

March 4, 2025

James Nellessen New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505

RE: New Source Review Permit Application Northwind Midstream Partners, LLC – Titan Treater Plant #2

Mr. Nellessen:

On behalf of Northwind Midstream Partners, LLC, PEI Consulting Group, Inc. (PEI) is submitting the attached application proposing construction of the Titan Treater Plant #2. Section 3 of the application provides details of the revisions. Should you have any questions, please contact me at etullos@pei-tx.com or Jillian Yamartino at jyamartino@nwmidstream.com.

Sincerely, **PEI Consulting Group, Inc.**

Evanfullor

Evan Tullos Vice President

Enclosure

New Source Review Permit Application NSR Permit No. To Be Assigned

Northwind Midstream Partners, LLC Titan Treater Plant #2 Lea County, New Mexico

Prepared by:

PEI Consulting Group, Inc.

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

 This application is submitted as (check all that apply):
 Request for a No Permit Required Determination (no fee)

 Updating an application currently under NMED review.
 Include this page and all pages that are being updated (no fee required).

 Construction Status:
 Not Constructed
 Existing Permitted (or NOI) Facility
 Existing Non-permitted (or NOI) Facility

 Minor Source:
 NOI 20.2.73 NMAC
 20.2.72 NMAC application or revision
 20.2.72.300 NMAC Streamline application

 Title V Source:
 Title V (new)
 Title V renewal
 TV minor mod.
 TV significant mod.
 TV Acid Rain:
 New
 Renewal

 PSD Major Source:
 PSD major source (new)
 Minor Modification to a PSD source
 a PSD major modification

Acknowledgements:

I acknowledge that a pre-application meeting is available to me upon request. Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

☑ \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications).

Check No.: 1377 in the amount of \$500

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.

I acknowledge there is an annual fee for permits in addition to the permit review fee: <u>www.env.nm.gov/air-quality/permit-fees-</u> <u>2/.</u>

This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.200.A(1) NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	AI # if known: TBD	Updating Permit/NOI #: NA						
1	Facility Name: Titan Treater Plant #2	Plant primary SIC Code (4 digits): 1311							
1		Plant NAIC code (6 digits): 21113							
	Facility Street Address (If no facility street address, provide directions from a prominent landmark):								
а	From Jal, NM head south on NM-205 S for 6.8 miles. Turn right on Bechham Rd and travel for 1.4 miles. Turn right on unnamed road and follow for 1 mile, bearing right at the fork to facility.								
2	Plant Operator Company Name: Northwind Midstream Partners, LLC	Phone/Fax: (281)800-	2120 / N/A						

а	Plant Operator Address: 811 Louisiana St., Suite 2500; Houston, TX 77002						
b	Plant Operator's New Mexico Corporate ID or Tax ID: Unknown						
3	Plant Owner(s) name(s): Northwind Midstream Partners, LLC	Phone/Fax: (281)800-2120 / N/A					
а	Plant Owner(s) Mailing Address(s): 811 Louisiana St., Suite 2500; Houston, TX 77002						
4	Bill To (Company): Northwind Midstream Partners, LLC	Phone/Fax: (281)800-2120 / N/A					
а	Mailing Address: 811 Louisiana St., Suite 2500; Houston, TX 77002	E-mail: jyamartino@nwmidstream.com					
5	Preparer: Consultant: Evan Tullos	Phone/Fax: (865) 850-2007 / N/A					
а	Mailing Address: 1414 W Sam Houston Pkwy N; Suite 160; Houston, TX 77043	E-mail: etullos@pei-tx.com					
6	Plant Operator Contact: Reagan Register	Phone/Fax: (432) 203-5315 / N/A					
а	Address: 600 N Marienfeld St., Suite 900 Midland, TX 79701	E-mail: rregister@nwmidstream.com					
7	Air Permit Contact: Jillian Yamartino	Title: Environmental - Air Manager					
а	E-mail: jyamartino@nwmidstream.com	Phone/Fax: (346) 613-1471 / N/A					
b	Mailing Address: 811 Louisiana St., Suite 2500; Houston, TX 77002						
с	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.						
Sec	tion 1-B: Current Facility Status						
1.a	Has this facility already been constructed? I lives IXINO	1.b If yes to question 1.a, is it currently operating in New Mexico? ☐ Yes ☐ No					

1.a	Has this facility already been constructed? 🔲 Yes 🛛 No		lexico?	Yes No			
2	If yes to question 1.a, was the existing facility subject to a Notice Intent (NOI) (20.2.73 NMAC) before submittal of this application Yes No	to a co	onstruction	1.a, was the existing facility subject permit (20.2.72 NMAC) before application?			
3	Is the facility currently shut down? 🔲 Yes 🔲 No If yes, gi	e month an	d year of sh	nut down (MM/YY): N/A			
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? Yes No						
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972? ☐ Yes ☐ No 🖾 N/A						
6	Does this facility have a Title V operating permit (20.2.70 NMAC) ☐ Yes ⊠ No	lf	yes, the pe	ermit No. is: N/A			
7	Has this facility been issued a No Permit Required (NPR)?	lf	yes, the NF	PR No. is: N/A			
8	Has this facility been issued a Notice of Intent (NOI)? 🔲 Yes 🛛	No If	yes, the NC	DI No. is: N/A			
9	Does this facility have a construction permit (20.2.72/20.2.74 NM	AC)?	yes, the pe	ermit No. is: N/A			
10	Is this facility registered under a General permit (GCP-1, GCP-2, e	c.)? If	yes, the reg	gister No. is: N/A			

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)								
а	Current Hourly: 9.2 MMscf/h (average) Daily: 220 MMscfd Annually: 80,300 MMsc								
b	Proposed Hourly: 9.2 MMscf/h (average)		Daily: 220 MMscfd	Annually: 80,300 MMscf/yr					
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)								
а	Current Hourly: 9.2 MMscf/h (average)		Daily: 220 MMscfd	Annually: 80,300 MMscf/yr					
b	b Proposed Hourly: 9.2 MMscf/h (average)		Daily: 220 MMscfd	Annually: 80,300 MMscf/yr					

Section 1-D: Facility Location Information

1	Latitude (decimal degrees): 32.03270	Longitude	(decimal degrees): -103.2	7470	County: Lea	Elevation (ft): 2980			
2	UTM Zone: 🔲 12 or 🔀 13		Datum: 🔲 NAD 83	🔀 wgs	84				
а	UTM E (in meters, to nearest 10 meters): 662,91	7	UTM N (in meters, to neare	st 10 meters)	: 3,54362				
3	Name and zip code of nearest New Mexico	o town: Jal,	NM 88252						
4	Detailed Driving Instructions from nearest S for 6.8 miles. Turn right on Bechham Rd right at the fork to facility.			• •					
5	The facility is 7.6 miles southwest of Jal, N	M.							
6	Land Status of facility (check one): 🔀 Priv	vate 🔲 Indi	ian/Pueblo 🔲 Governm	ent 🔲 Bl	LM 🔲 Forest Ser	rvice 🔲 Military			
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Jal, NM								
8	20.2.72 NMAC applications only : Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see <u>www.env.nm.gov/air-quality/modeling-publications/</u>)? Xes No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: Texas ~3.65 km								
9	Name nearest Class I area: Carlsbad Caverns National Park								
10	Shortest distance (in km) from facility boundary to the boundary of the nearest Class I area (to the nearest 10 meters): 104.6 km								
11	Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: ~12 km								
12	Method(s) used to delineate the Restricted Area: Fenceline "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted								
13	area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? □ Yes ○ No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.								
14	Will this facility operate in conjunction wit If yes, what is the name and permit numb			ame prope	erty? 🛛 No	Yes			

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating ($\frac{hours}{day}$): 24	(<mark>days</mark>): 7	(weeks year):52	(<mark>hours</mark>): 8760				
2	Facility's maximum daily operating schedule (if less	than 24 hours day)? Start: N/A	🗆 AM 🗆 PM	End: N/A	□ AM □ PM			
3	Month and year of anticipated start of construction: Upon receipt of permit.							
4	Month and year of anticipated construction completion: N/A							
5	Month and year of anticipated startup of new or modified facility: N/A							
6	Will this facility operate at this site for more than o	ne year? Yes						

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? Yes Xo If yes, specify: N/A								
а	If yes, NOV date or description of issue: N/A			NOV Tracking No: N/A					
b	Is this application in response to any issue listed in 1-F, 1 c If Yes, provide the 1c & 1d info below:	or 1a above? 🔲 Yes	No No						
с	Document Date: N/A Requirement # (or page # and paragraph #): N/A								
d	d Provide the required text to be inserted in this permit: N/A								
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? 🛛 Yes 🗌 No								
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? 🔲 Yes 🔯 No								
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? 🔀 Yes 🔲 No								
а	If Yes, what type of source? OR Major (□ ≥10 tpy of any single HAP OR □ ≥25 tpy of any combination of HAPS) Minor (□ <10 tpy of any single HAP A □ <25 tpy of any combination of HAPS)								
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? Yes No								
а	If yes, include the name of company providing commercia Commercial power is purchased from a commercial utility on site for the sole purpose of the user.	·							

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1 I have filled out Section 18, "Addendum for Streamline Applications." N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) Joshua Thomas (20.2.70.300.D.2 NMAC):	Phone: 214-679-4514						
а	R.O. Title: SVP, Operations	R.O. e-mail: jthom	as@nwmidstream.com					
b	R. O. Address: 811 Louisiana St. Suite 2500, Houston, TX 77002							
2	Alternate Responsible Official N/A (20.2.70.300.D.2 NMAC): Phone: N/A							
а	A. R.O. Title: N/A	ι.						
b	A. R. O. Address: N/A							
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): N/A							
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): N/A							
а	Address of Parent Company: N/A							
5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): N/A							
6	Telephone numbers & names of the owners' agents and site conta	icts familiar with pla	nt operations: N/A					
7	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: N/A							

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application

Secure electronic transfer. Air Permit Contact Name: Evan Tullos, Email: etullos@pei-tx.com,

Phone Number: (865) 850-2007.

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

 All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.

- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1:General Facility InformationSection 2:Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 20: Other Relevant Information
- Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

					Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One		Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
CE-1	Compressor Engine 1	Caterpillar	G3606	TBD	2065 hp	2065 hp	TBD	OxCat-1	20200254	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	4SLB	
CL-1	Compressor Engine 1	Caterpinal	03000	100	2005 11p	2005 110	TBD	CE-1	10100134	To Be Modified	To be Replaced	4560	
CE-2	Compressor Engine 2	Caterpillar	G3606	TBD	2065 hp	2065 hp	TBD	OxCat-2	20200254	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	4SLB	
							TBD	CE-2		To Be Modified	To be Replaced	-	
CE-3	Compressor Engine 3	Caterpillar	G3606	TBD	2065 hp	2065 hp	TBD	OxCat-3	20200254	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	4SLB	
							TBD	CE-3		To Be Modified	□ To be Replaced		
CE-4	Compressor Engine 4	Caterpillar	G3606	TBD	2065 hp	2065 hp	TBD	OxCat-4	20200254	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	4SLB	
							TBD	CE-4		□ To Be Modified	To be Replaced		
CE-5	Compressor Engine 5	Caterpillar	G3606	TBD	2065 hp	2065 hp	TBD	OxCat-5	20200254	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	4SLB	
							TBD	CE-5		To Be Modified	To be Replaced		
CE-6	Compressor Engine 6	Caterpillar	G3606	TBD	2065 hp	2065 hp	TBD	OxCat-6	20200254	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	4SLB	
		•					TBD	CE-6		□ To Be Modified	To be Replaced	-	
CE-7	Compressor Engine 7	Caterpillar	G3606	TBD	2065 hp	2065 hp	TBD	OxCat-7	20200254	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	4SLB	
		•					TBD	CE-7		To Be Modified	To be Replaced	-	
CE-8	Compressor Engine 8	Caterpillar	G3516J	TBD	1380 hp	1380 hp	TBD	OxCat-8	20200254	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	4SLB	
		-				-	TBD	CE-8		To Be Modified	To be Replaced		
CE-9	Compressor Engine 9	Caterpillar	G3516J	TBD	1380 hp	1380 hp	TBD	OxCat-9	20200254	 □ Existing (unchanged) ☑ New/Additional 	 To be Removed Replacement Unit 	4SLB	
							TBD	CE-9		To Be Modified	To be Replaced		
CE-10	Compressor Engine	Caterpillar	G3516J	TBD	1380 hp	1380 hp	TBD	OxCat-10	20200254	 □ Existing (unchanged) ☑ New/Additional 	 To be Removed Replacement Unit 	4SLB	
	10						TBD	CE-10		To Be Modified	To be Replaced		
CE-11	Compressor Engine	Caterpillar	G3516J	TBD	1380 hp	1380 hp	TBD	OxCat-11	20200254	 □ Existing (unchanged) ☑ New/Additional 	 To be Removed Replacement Unit 	4SLB	
	11	-				-	TBD	CE-11		To Be Modified	To be Replaced		
CE-12	Compressor Engine	Caterpillar	G3516J	TBD	1380 hp	1380 hp	TBD	OxCat-12	20200254	 □ Existing (unchanged) ☑ New/Additional 	 To be Removed Replacement Unit 	4SLB	
	12						TBD	CE-12		To Be Modified	 To be Replaced To be Removed 		
DHY-1	Glycol Dehydrator	Reset Energy	N/A	N/A	110	110	TBD	VRU	31000304	 □ Existing (unchanged) ☑ New/Additional 	Replacement Unit		
					MMSCFD	MMSCFD	TBD	VRU		 To Be Modified Existing (unchanged) 	 To be Replaced To be Removed 		
DHR-1	Glycol Reboiler	Reset Energy	N/A	N/A	1.1	1.1	TBD	N/A	31000228	☑ New/Additional	Replacement Unit		
					MMBtu/hr	MMBtu/hr	TBD	DHR-1		To Be Modified Evisting (upshanged)	To be Replaced To be Removed		
DHY-2	Glycol Dehydrator	Reset Energy	N/A	N/A	110 MMSCFD	110 MMSCFD	TBD	VRU	31000304	 □ Existing (unchanged) ☑ New/Additional 	 To be Removed Replacement Unit 		
					IVIIVISCED	IVIIVISCED	TBD	VRU		To Be Modified	To be Replaced		

Februrary	2025
-----------	------

					Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
DHR-2	Glycol Reboiler	Deset Energy	N/A	N/A	1.1	1.1	TBD	N/A	31000228	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit		
DHK-2	Giycol Reboller	Reset Energy	N/A	N/A	MMBtu/hr	MMBtu/hr	TBD	DHR-2	31000228	To Be Modified To be Replaced		
51.4	Main Flans Diant 2	7	NI / A	N1 / A	TDD	TRD	TBD	N/A		□ Existing (unchanged) □ To be Removed		
FL-1	Main Flare Plant 2	Zeeco	N/A	N/A	TBD	TBD	TBD	FL-1	31000216	 ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 		
							N/A	N/A		□ Existing (unchanged) □ To be Removed		
FUG-1	Piping Fugitives	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000311	 ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 		
							TBD	N/A		Existing (unchanged) To be Removed		
AGFL-1	Acid Gas Flare	Zeeco	N/A	N/A	TBD	TBD	TBD	AGFL-1		 ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 		
							TBD	NA		Existing (unchanged) To be Removed		
LOAD-1	Slop Oil Load	N/A	N/A	N/A	446 BBL/day	446 BBL/day	TBD	NA	40400250	 ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 		
					1,230,935	1,230,935	TBD	VRU		Existing (unchanged) To be Removed		
LOAD-2	Condensate Loading	N/A	N/A	N/A	1,230,935 BBL/YR	1,230,935 BBL/YR	TBD	VRU	40400250	☑ New/Additional		
						,	TBD	N/A		□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed		
AGI- COMP1	AGI Compressors (Electric)	N/A	N/A	N/A	N/A	N/A	TBD	N/A	31088811	☑ New/Additional		
										To Be Modified To be Replaced Existing (unchanged) To be Removed		
AGI- COMP2	AGI Compressors (Electric)	N/A	N/A	N/A	N/A	N/A	TBD	N/A	31088811	☑ New/Additional		
	(Electric)						TBD	N/A		□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed		
AGI- COMP3	AGI Compressors (Electric)	N/A	N/A	N/A	N/A	N/A	TBD	N/A	31088811	☑ New/Additional		
COIVIPS	(Electric)						TBD	N/A		To Be Modified To be Replaced		
AGI-	AGI Compressors	N/A	N/A	N/A	N/A	N/A	TBD	N/A	31088811	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit		
COMP4	(Electric)						TBD	N/A		To Be Modified To be Replaced		
AGI-	AGI Compressors	N/A	N/A	N/A	N/A	N/A	TBD	N/A	31088811	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit		
COMP5	(Electric)	.,,,,	,	,,,	,	,,,	TBD	N/A		□ To Be Modified □ To be Replaced		
TK-1	Slop Water Tank	N/A	N/A	N/A	400 bbl	400 bbl	TBD	VRU	40400311	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit		
114-1	Slop Water Talk	N/A	N/A	N/A	400 001	400 001	TBD	VRU	40400511	□ To Be Modified □ To be Replaced		
тк э	Class Mistan Taulu	N1/A	NI / A	NI / A	400 hhl	400 hbl	TBD	VRU	40400044	Existing (unchanged) To be Removed Neurolativities		
ТК-2	Slop Water Tank	N/A	N/A	N/A	400 bbl	400 bbl	TBD	VRU	40400311	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced		
							TBD	VRU		Existing (unchanged) To be Removed		
TK-3	Condensate Tank	N/A	N/A	N/A	1000 bbl	1000 bbl	TBD	VRU	40400311	 ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 		
							TBD	VRU		Existing (unchanged) To be Removed		
TK-4	Condensate Tank	N/A	N/A	N/A	1000 bbl	1000 bbl	TBD	VRU	40400311	 ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 		
							TBD	VRU		Existing (unchanged) To be Removed		
TK-5	Condensate Tank	N/A	N/A	N/A	1000 bbl	1000 bbl	TBD	VRU	40400311	New/Additional Replacement Unit To Be Medified To be Beplaced		
				l			100	VIIO		□ To Be Modified □ To be Replaced		

Februrary 2025	Februrary	2025
----------------	-----------	------

					Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
ТК-6	Condensate Tank	N/A	N/A	N/A	1000 bbl	1000 bbl	TBD	VRU	40400311	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit		
TK-0	Condensate Talik	N/A	N/A	N/A	1000 0001	1000 000	TBD	VRU	40400311	□ To Be Modified □ To be Replaced		
TK-TRI	Spent Triazine Tank	N/A	N/A	N/A	400 bbl	400 bbl	TBD	N/A	40400311	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit		
IN-INI	Spent mazine rank	N/A	N/A	N/A	400 001	400 001	TBD	N/A	40400311	□ To Be Modified □ To be Replaced		
	Trissian Londino	N1/A	N1/A	NI / A	200 PPI /day	200 001 /day	TBD	N/A	40400250	Existing (unchanged) To be Removed		
LOADTRI	Triazine Loading	N/A	N/A	N/A	200 BBL/day	200 BBL/day	TBD	N/A	40400250	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced		
				N1 (A	110	110	TBD	AGFL-1		□ Existing (unchanged) □ To be Removed		
AM-1	Amine Unit	N/A	N/A	N/A	MMscfd	MMscfd	TBD	AGFL-1	31000305	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced		
					110	110	TBD	AGFL-1		□ Existing (unchanged) □ To be Removed		
AM-2	Amine Unit	N/A	N/A	N/A	MMscfd	MMscfd	TBD	AGFL-1	31000305	 ✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 		
	Hot Oil Heater for				110	110	TBD	N/A		□ Existing (unchanged) □ To be Removed		
HOH-1	Amine Unit	N/A	N/A	N/A	MMBtu/hr	_	TBD	HOH-1	31000404	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced		
	Hot Oil Heater for				110	110	TBD	N/A		□ Existing (unchanged) □ To be Removed		
HOH-2	Amine Unit	N/A	N/A	N/A	MMBtu/hr	MMBtu/hr	TBD	HOH-2	31000404	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced		
					15	15	TBD	N/A		□ Existing (unchanged) □ To be Removed		
STABHR-1	Stabilizer Heater	N/A	N/A	N/A	MMBtu/hr	_	TBD	STABHR-1	31000404	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced		
							N/A	N/A		□ Existing (unchanged) □ To be Removed		
ROAD	Haul Roads	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	 ✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 		
SOH-	Stabilizer Over Head						N/A	N/A		Existing (unchanged) To be Removed		
COMP1	Compressor	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	☑ New/Additional		
6011	(Electric) Stabilizer Over Head						N/A	N/A		□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed		
SOH- COMP2	Compressor	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	☑ New/Additional		
	(Electric) Stabilizer Over Head						N/A N/A	N/A N/A		□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed		
SOH- COMP3	Compressor	N/A	N/A	N/A	N/A	N/A			31088811	☑ New/Additional		
	(Electric)						N/A	N/A		□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed		
TURB-1	Power Generating Turbine	Solar	Т60	TBD	6370 HP	6370 HP	TBD	N/A	20200201	☑ New/Additional		
┣───┤							TBD	TURB-1		□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed		
TURB-2	Power Generating	Solar	Т60	TBD	6370	6370	TBD	N/A	20200201	☑ New/Additional		
┣───┤	Turbine				HP	HP	TBD	TURB-2		□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed		
TURB-3	Power Generating	Solar	Т60	TBD	6370	6370	TBD	N/A	20200201	☑ Existing (unchanged) ☑ To be Removed ☑ New/Additional □ Replacement Unit		
	Turbine				HP	HP	TBD	TURB-3		□ To Be Modified □ To be Replaced		

					Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
TURB-4	Power Generating	Solar	Т60	TBD	6370	6370	TBD	N/A	20200201	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit		
IUKD-4	Turbine	301a1	100	ТБО	HP	HP	TBD	TURB-4	20200201	To Be Modified To be Replaced		
TURB-5	Power Generating	Solar	T60	TBD	6370	6370	TBD	N/A	20200201	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit		
IUKD-5	Turbine	301a1	100	ТБО	HP	HP	TBD	TURB-5	20200201	□ To Be Modified □ To be Replaced		
	Power Generating	Calar	тсо	TDD	6370	6370	TBD	N/A	20200204	Existing (unchanged) To be Removed		
TURB-6	Turbine	Solar	Т60	TBD	HP	HP	TBD	TURB-6	20200201	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced		

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-

Unit Number	Service Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Fach Disco of Functionant Charle One
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Piece of Equipment, Check Onc
Small Tanks	Small tanks for storing glycol make-up, Amine make-up, lube	N/A	N/A	55	20.2.72.202.B.2 NMAC	Nov-18	Existing (unchanged) To be Removed Mew/Additional Replacement Unit
	oil, methanol	N/A	N/A	gallons	N/A	Nov-18	□ To Be Modified □ To be Replaced
TK-TRIAZINE	Triazene Tanks	N/A	N/A	1000	20.2.72.202.B.2 NMAC	TBD	Existing (unchanged) To be Removed New/Additional Replacement Unit
IN-INIAZINE		N/A	N/A	barrels	N/A	TBD	□ To Be Modified □ To be Replaced
TK-47750	Water Tank	N/A	N/A	500	20.2.72.202.B.2 NMAC	TBD	Existing (unchanged) To be Removed New/Additional Replacement Unit
11-47750	Water Talik	N/A	N/A	barrels	N/A	TBD	□ To Be Modified □ To be Replaced
TK-47790	RO Water Tank	N/A	N/A	500	20.2.72.202.B.2 NMAC	TBD	Existing (unchanged) To be Removed New/Additional Replacement Unit
11-47750	NO Water Tank	N/A	N/A	barrels	N/A	TBD	□ To Be Modified □ To be Replaced
TK-47780	RO Wastewater Tank	N/A	N/A	500	20.2.72.202.B.2 NMAC	TBD	Existing (unchanged) To be Removed New/Additional Replacement Unit
11-47760		N/A	N/A	barrels	N/A	TBD	□ To Be Modified □ To be Replaced
TK-47800	Amine Storage Tank	N/A	N/A	500	20.2.72.202.B.2 NMAC	TBD	Existing (unchanged) To be Removed New/Additional Replacement Unit
11-47800	Amme Storage Tank	N/A	N/A	barrels	N/A	TBD	□ To Be Modified □ To be Replaced
TK-47825	TEG Storage Tank	N/A	N/A	500	20.2.72.202.B.2 NMAC	TBD	Existing (unchanged) To be Removed New/Additional Replacement Unit
11-47025	TEG Storage Talik	N/A	N/A	barrels	N/A	TBD	□ To Be Modified □ To be Replaced
TK-47025	Lube Oil Storage Tank	N/A	N/A	500	20.2.72.202.B.2 NMAC	TBD	Existing (unchanged) To be Removed New/Additional Replacement Unit
110-47025		N/A	N/A	barrels	N/A	TBD	□ To Be Modified □ To be Replaced
TK-47595	Lube Oil Storage Tank	N/A	N/A	500	20.2.72.202.B.2 NMAC	TBD	Existing (unchanged) To be Removed New/Additional Replacement Unit
11-47555		N/A	N/A	barrels	N/A	TBD	□ To Be Modified □ To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
OxCat-1	Oxidation Catalyst	TBD	CO, VOC, HAP	CE-1	CO: 88% VOC: 0% HCHO: 79%	Manufacturer
OxCat-2	Oxidation Catalyst	TBD	CO, VOC, HAP	CE-2	CO: 88% VOC: 0% HCHO: 79%	Manufacturer
OxCat-3	Oxidation Catalyst	TBD	CO, VOC, HAP	CE-3	CO: 88% VOC: 0% HCHO: 79%	Manufacturer
OxCat-4	Oxidation Catalyst	TBD	CO, VOC, HAP	CE-4	CO: 88% VOC: 0% HCHO: 79%	Manufacturer
OxCat-5	Oxidation Catalyst	TBD	CO, VOC, HAP	CE-5	CO: 88% VOC: 0% HCHO: 79%	Manufacturer
OxCat-6	Oxidation Catalyst	TBD	CO, VOC, HAP	CE-6	CO: 88% VOC: 0% HCHO: 79%	Manufacturer
OxCat-7	Oxidation Catalyst	TBD	CO, VOC, HAP	CE-7	CO: 88% VOC: 0% HCHO: 79%	Manufacturer
OxCat-8	Oxidation Catalyst	TBD	CO, VOC, HAP	CE-8	CO: 88% VOC: 42% HCHO: 86%	Manufacturer
OxCat-9	Oxidation Catalyst	TBD	CO, VOC, HAP	CE-9	CO: 88% VOC: 42% HCHO: 86%	Manufacturer
OxCat-10	Oxidation Catalyst	TBD	CO, VOC, HAP	CE-10	CO: 88% VOC: 42% HCHO: 86%	Manufacturer
OxCat-11	Oxidation Catalyst	TBD	CO, VOC, HAP	CE-11	CO: 88% VOC: 42% HCHO: 86%	Manufacturer
OxCat-12	Oxidation Catalyst	TBD	CO, VOC, HAP	CE-12	CO: 88% VOC: 42% HCHO: 86%	Manufacturer
FL-1	Process/SSM Flare	TBD	VOC, HAP, H2S	Drain system and various SSM gas streams	98%	Manufacturer
AGFL-1	Acid gas/SSM Flare	TBD	VOC, HAP, H2S	AGI-COMP1 to AGI-COMP5, AM-1, AM-2	98%	Manufacturer
AGI	Acid gas injection (underground)	N/A	H2S	AM-1, AM-2 (Regen Still Vent)	100%	Engineering Estimate
VRU1	Redundant Vapor Recovery Unit	TBD	VOC, HAP, H2S	TK-1 to TK-6, LOAD2, DHY-1, DHY-2	98% (uptime)	Engineering Estimate

Table 2-D: Maximum Emissions (under normal operating conditions)

This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-1. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

	N	Ox	C	0	V	OC	S	02	PI	M1	PN	110	PM	2.5 ¹		H₂S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
HOH-1	3.96	17.34	1.65	7.23	2.09	9.15	0.11	0.47	0.98	4.29	0.98	4.29	0.98	4.29	-	0.004	-	-
HOH-2	3.96	17.34	1.65	7.23	2.09	9.15	0.11	0.47	0.98	4.29	0.98	4.29	0.98	4.29	-	0.004	-	-
DHR-1	0.13	0.56	0.11	0.47	0.01	0.03	0.00	0.01	0.01	0.04	0.01	0.04	0.01	0.04	-	-	-	-
DHR-2	0.13	0.56	0.11	0.47	0.01	0.03	0.00	0.01	0.01	0.04	0.01	0.04	0.01	0.04	-	-	-	-
STABHR-1	0.55	2.42	0.57	2.48	0.10	0.42	0.01	0.06	0.13	0.59	0.13	0.59	0.13	0.59	-	-	-	-
CE-1	1.37	5.98	9.79	42.87	0.86	3.79	0.01	0.05	0.16	0.71	0.16	0.71	0.16	0.71	-	-	-	-
CE-2	1.37	5.98	9.79	42.87	0.86	3.79	0.01	0.05	0.16	0.71	0.16	0.71	0.16	0.71	-	-	-	-
CE-3	1.37	5.98	9.79	42.87	0.86	3.79	0.01	0.05	0.16	0.71	0.16	0.71	0.16	0.71	-	-	-	-
CE-4	1.37	5.98	9.79	42.87	0.86	3.79	0.01	0.05	0.16	0.71	0.16	0.71	0.16	0.71	-	-	-	-
CE-5	1.37	5.98	9.79	42.87	0.86	3.79	0.01	0.05	0.16	0.71	0.16	0.71	0.16	0.71	-	-	-	-
CE-6	1.37	5.98	9.79	42.87	0.86	3.79	0.01	0.05	0.16	0.71	0.16	0.71	0.16	0.71	-	-	-	-
CE-7	1.37	5.98	9.79	42.87	0.86	3.79	0.01	0.05	0.16	0.71	0.16	0.71	0.16	0.71	-	-	-	-
CE-8	1.52	6.66	6.15	26.92	1.31	5.73	0.01	0.03	0.11	0.49	0.11	0.49	0.11	0.49	-	-	-	-
CE-9	1.52	6.66	6.15	26.92	1.31	5.73	0.01	0.03	0.11	0.49	0.11	0.49	0.11	0.49	-	-	-	-
CE-10	1.52	6.66	6.15	26.92	1.31	5.73	0.01	0.03	0.11	0.49	0.11	0.49	0.11	0.49	-	-	-	-
CE-11	1.52	6.66	6.15	26.92	1.31	5.73	0.01	0.03	0.11	0.49	0.11	0.49	0.11	0.49	-	-	-	-
CE-12	1.52	6.66	6.15	26.92	1.31	5.73	0.01	0.03	0.11	0.49	0.11	0.49	0.11	0.49	-	-	-	-
TURB-1	2.97	13.03	3.51	15.39	1.74	7.63	0.00	0.01	0.34	1.49	0.34	1.49	0.34	1.49	-	-	-	-
TURB-2	2.97	13.03	3.51	15.39	1.74	7.63	0.00	0.01	0.34	1.49	0.34	1.49	0.34	1.49	-	-	-	-
TURB-3	2.97	13.03	3.51	15.39	1.74	7.63	0.00	0.01	0.34	1.49	0.34	1.49	0.34	1.49	-	-	-	-
TURB-4	2.97	13.03	3.51	15.39	1.74	7.63	0.00	0.01	0.34	1.49	0.34	1.49	0.34	1.49	-	-	-	-
TURB-5	2.97	13.03	3.51	15.39	1.74	7.63	0.00	0.01	0.34	1.49	0.34	1.49	0.34	1.49	-	-	-	-
TURB-6								Ba	ckup for T	JRB-1 to T	UBR-5							
FUG	-	-	-	-	14.50	63.49	-	-	-	-	-	-	-	-	0.61	2.68	-	-
AGFL-2 (Pilot)	0.30	1.31	1.19	5.20	0.01	0.03	-	-	0.01	0.06	0.01	0.06	0.01	0.06	-	-	-	-
FL-2 (Pilot)	1.30	5.68	2.59	11.35	0.05	0.22	-	-	0.06	0.25	0.06	0.25	0.06	0.25	-	-	-	-
DHY-1 SSM	-	-	-	-	49.77	218.00	-	-	-	-	-	-	-	-	0.07	0.29		
DHY-2 SSM	-	-	-	-	49.77	218.00	-	-	-	-	-	-	-	-	0.07	0.29		
TK-1	-	-	-	-	34.07	149.22	-	-	-	-	-	-	-	-	0.67	2.92	-	-
TK-2	-	-	-	-	34.07	149.22	-	-	-	-	-	-	-	-	0.67	2.92	-	-
TK-3	-	-	-	-	3.50	15.34	-	-	-	-	-	-	-	-	-	-	-	-
TK-4	-	-	-	-	3.50	15.34	-	-	-	-	-	-	-	-	-	-	-	-

Unit No.	N	Ох	C	0	V	OC	SC	02	PI	M1	PN	110	PM	2.5 ¹	ŀ	I₂S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
TK-5	-	-	-	-	3.50	15.34	-	-	-	-	-	-	-	-	-	-	-	-
TK-6	-	-	-	-	3.50	15.34	-	-	-	-	-	-	-	-	-	-	-	-
TK-TRI	-	-	-	-	0.22	0.97	-	-	-	-	-	-	-	-	-	-	-	-
LOADTRI	-	-	-	-	0.01	0.00	-	-	-	-	-	-	-	-	-	-	-	-
LOAD1	-	-	-	-	0.72	0.29	-	-	-	-	-	-	-	-	-	-	-	-
LOAD2	-	-	-	-	41.00	119.94	-	-	-	-	-	-	-	-	-	-	-	-
ROAD	-	-	-	-	-	-	-	-	1.35	5.20	0.34	1.33	0.03	0.13	-	-	-	-
AM-1	-	-	-	-	114.58	501.8	-	-	-	-	-	-	-	-	7,688.8	33,676.8	-	-
AM-2	-	-	-	-	114.6	501.8	-	-	-	-	-	-	-	-	7,688.8	33,676.8	-	-
Totals	42.36	185.54	124.68	546.09	492.94	2,096.55	0.36	1.58	6.94	29.68	5.93	25.81	5.62	24.61	15,379.62	67,362.74	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

Unit No.	N	Эx	C	0	V	C	so	02	PI	Иı	PN	/10	PM	2.5 ¹	н	₂ S	Le	ad
Offit NO.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
HOH-1	3.96	17.34	1.65	7.23	2.09	9.15	0.11	0.47	0.98	4.29	0.98	4.29	0.98	4.29	8.1E-04	0.004	-	-
HOH-2	3.96	17.34	1.65	7.23	2.09	9.15	0.11	0.47	0.98	4.29	0.98	4.29	0.98	4.29	8.1E-04	0.004	-	-
DHR-1	0.13	0.56	0.11	0.47	0.01	0.03	0.001	0.01	0.01	0.04	0.01	0.04	0.01	0.04	8.1E-06	3.6E-05	-	-
DHR-2	0.13	0.56	0.11	0.47	0.01	0.03	0.001	0.01	0.01	0.04	0.01	0.04	0.01	0.04	8.1E-06	3.6E-05	-	-
STABHR-1	0.55	2.42	0.57	2.48	0.10	0.42	0.015	0.06	0.13	0.59	0.13	0.59	0.13	0.59	1.1E-04	4.8E-04	-	-
CE-1	1.37	5.98	1.14	4.99	1.09	4.79	0.01	0.05	0.16	0.71	0.16	0.71	0.16	0.71	1.2E-04	5.3E-04	1	-
CE-2	1.37	5.98	1.14	4.99	1.09	4.79	0.01	0.05	0.16	0.71	0.16	0.71	0.16	0.71	1.2E-04	5.3E-04	-	-
CE-3	1.37	5.98	1.14	4.99	1.09	4.79	0.01	0.05	0.16	0.71	0.16	0.71	0.16	0.71	1.2E-04	5.3E-04	-	-
CE-4	1.37	5.98	1.14	4.99	1.09	4.79	0.01	0.05	0.16	0.71	0.16	0.71	0.16	0.71	1.2E-04	5.3E-04	-	-
CE-5	1.37	5.98	1.14	4.99	1.09	4.79	0.01	0.05	0.16	0.71	0.16	0.71	0.16	0.71	1.2E-04	5.3E-04	-	-
CE-6	1.37	5.98	1.14	4.99	1.09	4.79	0.01	0.05	0.16	0.71	0.16	0.71	0.16	0.71	1.2E-04	5.3E-04	-	-
CE-7	1.37	5.98	1.14	4.99	1.09	4.79	0.01	0.05	0.16	0.71	0.16	0.71	0.16	0.71	1.2E-04	5.3E-04	-	-
CE-8	1.52	6.66	0.76	3.33	0.96	4.23	0.01	0.03	0.11	0.49	0.11	0.49	0.11	0.49	8.3E-05	3.6E-04	-	-
CE-9	1.52	6.66	0.76	3.33	0.96	4.23	0.01	0.03	0.11	0.49	0.11	0.49	0.11	0.49	8.3E-05	3.6E-04	-	-
CE-10	1.52	6.66	0.76	3.33	0.96	4.23	0.01	0.03	0.11	0.49	0.11	0.49	0.11	0.49	8.3E-05	3.6E-04	-	-
CE-11	1.52	6.66	0.76	3.33	0.96	4.23	0.01	0.03	0.11	0.49	0.11	0.49	0.11	0.49	8.3E-05	3.6E-04	-	-
CE-12	1.52	6.66	0.76	3.33	0.96	4.23	0.01	0.03	0.11	0.49	0.11	0.49	0.11	0.49	8.3E-05	3.6E-04	-	-
TURB-1	2.97	13.03	3.51	15.39	1.74	7.63	0.002	0.01	0.34	1.49	0.34	1.49	0.34	1.49	-	-	-	-
TURB-2	2.97	13.03	3.51	15.39	1.74	7.63	0.002	0.01	0.34	1.49	0.34	1.49	0.34	1.49	-	-	-	-
TURB-3	2.97	13.03	3.51	15.39	1.74	7.63	0.002	0.01	0.34	1.49	0.34	1.49	0.34	1.49	-	-	-	-
TURB-4	2.97	13.03	3.51	15.39	1.74	7.63	0.002	0.01	0.34	1.49	0.34	1.49	0.34	1.49	-	-	-	-
TURB-5	2.97	13.03	3.51	15.39	1.74	7.63	0.002	0.01	0.34	1.49	0.34	1.49	0.34	1.49	-	-	-	-
TURB-6								B	ackup for	TURB1-TU	RB5							
FUG	-	-	-	-	14.50	63.49	-	-	-	-	-	-	-	-	0.61	2.68	-	-
AGFL-1	0.30	1.32	1.20	5.27	0.01	0.03	5.39	24.09	0.02	0.07	0.02	0.07	0.02	0.07	0.06	0.26	-	-
AGFL-1 SSM									See T	able 2-F								
FL-1	1.74	7.63	3.48	15.23	0.87	3.82	6.76	29.61	0.09	0.41	0.09	0.41	0.09	0.41	0.07	0.32	-	-
FL-1 SSM		See Table 2-F																
DHY-1 SSM		See Table 2-F																
DHY-2 SSM									See T	able 2-F								
TK-1									See T	able 2-F								
TK-2									See T	able 2-F								

Unit No.	N	Ох	C	0	V	DC DC	SC	02	PI	۷ ¹	PN	110	PM	2.5 ¹	H	₂ S	Le	ead
Offic NO.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ТК-3									See Ta	able 2-F								
TK-4									See Ta	able 2-F								
TK-5									See Ta	able 2-F								
TK-6									See Ta	able 2-F								
TK-TRI	-	-	-	-	0.22	0.97	-	-	-	-	-	-	-	-	2.3E-05	1.0E-04	-	-
LOADTRI	-	-	-	-	0.01	0.001	-	-	-	-	-	-	-	-	4.9E-05	9.4E-06	-	-
LOAD1	-	-	-	-	0.72	0.29	-	-	-	-	-	-	-	-	0.04	0.01	-	-
LOAD2	-	-	-	-	0.53	1.56	-	-	-	-	-	-	-	-	5.8E-10	1.7E-09	-	-
ROAD	-	-	-	-	-	-	-	-	1.351	5.203	0.34	1.33	0.03	0.13	-	-	-	-
SSMBD COMP									See Ta	able 2-F								
SSMBD DEHY									See Ta	able 2-F								
SSMBD Filters									See Ta	able 2-F								
SSMBD PIPE		See Table 2-F																
Totals	42.81	187.51	38.11	166.90	42.34	181.78	12.51	55.29	6.98	29.86	5.97	25.99	5.66	24.79	0.78	3.28	-	-

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Эx	C	0	VO	C**	SO	2**	PI	M²	PIV	110	PM	2.5 ²	H ₂ S	5**	Le	ead
Offic No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AGFL-1 SSM	100.73	7.13	401.16	28.38	9.03	0.64	3525.57	78.33	5.44	0.38	5.44	0.38	5.44	0.38	38.28	0.83	-	-
FL-1 SSM	93.73	6.89	187.13	13.76	173.52	12.99	1426.60	82.78	5.06	0.37	5.06	0.37	5.06	0.37	15.18	0.88	-	-
DHY-1 SSM	-	-	-	-	49.77	4.36	-	-	-	-	-	-	-	-	0.07	0.006	-	-
DHY-2 SSM	-	-	-	-	49.77	4.36	-	-	-	-	-	-	-	-	0.07	0.006	-	-
TK-1	-	-	-	-	0.68	2.98	-	-	-	-	-	-	-	-	0.01	0.058	-	-
TK-2	-	-	-	-	0.68	2.98	-	-	-	-	-	-	-	-	0.01	0.058	-	-
TK-3	-	-	-	-	0.07	0.31	-	-	-	-	-	-	-	-	2.7E-10	2.9E-10	-	-
TK-4	-	-	-	-	0.07	0.31	-	-	-	-	-	-	-	-	2.7E-10	2.9E-10	-	-
TK-5	-	-	-	-	0.07	0.31	-	-	-	-	-	-	-	-	2.7E-10	2.9E-10	-	-
TK-6	-	-	-	-	0.07	0.31	-	-	-	-	-	-	-	-	2.7E-10	2.9E-10	-	-
SSMBD COMP	-	-	-	-	232.07	11.60	-	-	-	-	-	-	-	-	0.002	7.7E-05	-	-
SSMBD DEHY	-	-	-	-	272.07	3.26	-	-	-	-	-	-	-	-	0.002	2.2E-05	-	-
SSMBD Filters	-	-	-	-	46.41	1.39	-	-	-	-	-	-	-	-	3.1E-04	9.2E-06	-	-
SSMBD PIPE	-	-	-	-	1,160.4	6.96	-	-	-	-	-	-	-	-	0.008	4.6E-05	-	-
Totals	100.73	14.02	401.16	42.14	1985.63	52.77	3525.57	161.10	5.44	0.76	5.44	0.76	5.44	0.76	38.45	1.84	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

** For SO2 and H2S, the facility-side maximum hourly emission rate occurs during AGFL SSM events. For VOC, that occurs during EC1/FL1/FL2 SSM

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ох	C	0	V	oc	S	Эх	PI	М	PN	110	PM	2.5	H ₂ S or	Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
								N/A									

Table 2-H: Stack Exit Conditions (Titan Treater Plant #2)

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s) from	Orientation (H-	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside Diameter
Number	Table 2-A	Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	(ft)
HOH-1	HOH-1	v	No	90	1000	1047.11	-	-	63.47	4.58
HOH-2	HOH-2	v	No	90	1000	1047.11	-	-	63.47	4.58
DHR-1	DHR-1	v	No	19	400	6.17	-	-	6.49	1.10
DHR-2	DHR-2	V	No	19	400	6.17	-	-	6.49	1.10
STABHR-1	STABHR-1	v	No	21	400	84.09	-	-	26.77	2.00
CE-1	CE-1	v	No	25	775	215.02	-	-	68.44	2.00
CE-2	CE-2	v	No	25	775	215.02	-	-	68.44	2.00
CE-3	CE-3	V	No	25	775	215.02	-	-	68.44	2.00
CE-4	CE-4	v	No	25	775	215.02	-	-	68.44	2.00
CE-5	CE-5	v	No	25	775	215.02	-	-	68.44	2.00
CE-6	CE-6	v	No	25	775	215.02	-	-	68.44	2.00
CE-7	CE-7	v	No	25	775	215.02	-	-	68.44	2.00
CE-8	CE-8	v	No	25	813	132.55	-	-	95.41	1.33
CE-9	CE-9	v	No	25	813	132.55	-	-	95.41	1.33
CE-10	CE-10	v	No	25	813	132.55	-	-	95.41	1.33
CE-11	CE-11	v	No	25	813	132.55	-	-	95.41	1.33
CE-12	CE-12	v	No	25	813	132.55	-	-	95.41	1.33
TURB-1	TURB-1	v	No	20	1000	695.53	-	-	98.40	3.00
TURB-2	TURB-2	v	No	20	1000	695.53	-	-	98.40	3.00
TURB-3	TURB-3	v	No	20	1000	695.53	-	-	98.40	3.00
TURB-4	TURB-4	v	No	20	1000	695.53	-	-	98.40	3.00
TURB-5	TURB-5	V	No	20	1000	695.53	-	-	98.40	3.00
TURB-6	TURB-6	V	No	20	1000	695.53	-	-	98.40	3.00
AGFL-1	AGFL-1	V	No	150	1,832	191.89	-	-	65.60	2.00
FL-1	FL-1	V	No	150	1,832	117.22	-	-	65.60	2.00

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs		dehyde or TAP	_	^{zene} Por TAP		dehyde Por TAP		^{hanol} P or TAP		^{xane} Por TAP	Tolue			lutant Name ere or TAP		ere
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
HOH-1	HOH-1	0.29	1.28	-	-	-	0.00	0.012	0.05	-	-	0.28	1.22	-	0.00				
HOH-2	HOH-2	0.29	1.28	-	-	-	0.00	0.012	0.05	-	-	0.28	1.22	-	0.00				
DHR-1	DHR-1	0.00	0.01	-	-	-	-	-	-	-	-	0.00	0.01	-	-				
DHR-2	DHR-2	0.00	0.01	-	-	-	-	-	-	-	-	0.00	0.01	-	-				
STABHR-1	STABHR-1	0.04	0.17	-	-	-	-	0.002	0.01	-	-	0.04	0.17	-	-				
CE-1	CE-1	0.28	1.23	0.03	0.13	0.01	0.03	0.137	0.60	0.04	0.18	0.02	0.08	0.01	0.03				
CE-2	CE-2	0.28	1.23	0.03	0.13	0.01	0.03	0.137	0.60	0.04	0.18	0.02	0.08	0.01	0.03				
CE-3	CE-3	0.28	1.23	0.03	0.13	0.01	0.03	0.137	0.60	0.04	0.18	0.02	0.08	0.01	0.03				
CE-4	CE-4	0.28	1.23	0.03	0.13	0.01	0.03	0.137	0.60	0.04	0.18	0.02	0.08	0.01	0.03				
CE-5	CE-5	0.28	1.23	0.03	0.13	0.01	0.03	0.137	0.60	0.04	0.18	0.02	0.08	0.01	0.03				
CE-6	CE-6	0.28	1.23	0.03	0.13	0.01	0.03	0.137	0.60	0.04	0.18	0.02	0.08	0.01	0.03				
CE-7	CE-7	0.28	1.23	0.03	0.13	0.01	0.03	0.137	0.60	0.04	0.18	0.02	0.08	0.01	0.03				
CE-8	CE-8	0.24	1.06	0.01	0.06	0.00	0.01	0.183	0.80	0.02	0.07	0.01	0.03	0.00	0.01				
CE-9	CE-9	0.24	1.06	0.01	0.06	0.00	0.01	0.183	0.80	0.02	0.07	0.01	0.03	0.00	0.01				
CE-10	CE-10	0.24	1.06	0.01	0.06	0.00	0.01	0.183	0.80	0.02	0.07	0.01	0.03	0.00	0.01				
CE-11	CE-11	0.24	1.06	0.01	0.06	0.00	0.01	0.183	0.80	0.02	0.07	0.01	0.03	0.00	0.01				
CE-12	CE-12	0.24	1.06	0.01	0.06	0.00	0.01	0.183	0.80	0.02	0.07	0.01	0.03	0.00	0.01				
TURB-1	TURB-1	0.05	0.23	0.00	0.01	-	0.00	0.038	0.17	-	-	-	-	0.01	0.03				
TURB-2	TURB-2	0.05	0.23	0.00	0.01	-	0.00	0.038	0.17	-	-	-	-	0.01	0.03				
TURB-3	TURB-3	0.05	0.23	0.00	0.01	-	0.00	0.038	0.17	-	-	-	-	0.01	0.03				
TURB-4	TURB-4	0.05	0.23	0.00	0.01	-	0.00	0.038	0.17	-	-	-	-	0.01	0.03				
TURB-5	TURB-5	0.05	0.23	0.00	0.01	-	0.00	0.038	0.17	-	-	-	-	0.01	0.03				
TURB-6	TURB-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
FUG	FUG	0.94	4.10	-	-	0.26	1.16	-	-	-	-	0.52	2.29	0.12	0.51				
AGFL-1	AGFL-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
AGFL-1 SSM	AGFL-1 SSM	0.05	0.00	-	-	0.05	0.00	-	-	-	-	-	-	0.00	-				

Stack No.	Unit No.(s)	Total	HAPs		ldehyde or TAP		^{zene} Por TAP		ldehyde Por TAP		nanol P or TAP		exane P or TAP	Tolue			utant Name ere r TAP		ere
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FL-1	FL-1	0.04	0.04	-	-	0.01	0.01	-	-	-	-	0.02	0.02	0.01	0.01				
FL-1 SSM	FL-1 SSM	8.42	0.45	-	-	2.40	0.13	-	-	-	-	3.39	0.18	1.90	0.10				
DHY-1 SSM	DHY-1 SSM	7.45	0.65	-	-	5.94	0.52	-	-	-	-	0.38	0.03	1.04	0.09				
DHY-2 SSM	DHY-2 SSM	7.45	0.65	-	-	5.94	0.52	-	-	-	-	0.38	0.03	1.04	0.09				
TK-1	TK-1	0.03	0.14	-	-	0.01	0.04	-	-	-	-	0.02	0.08	0.00	0.02				
TK-2	TK-2	0.03	0.14	-	-	0.01	0.04	-	-	-	-	0.02	0.08	0.00	0.02				
TK-3	TK-3	0.01	0.02	-	-	0.00	0.01	-	-	-	-	0.00	0.02	-	0.00				
TK-4	TK-4	0.01	0.02	-	-	0.00	0.01	-	-	-	-	0.00	0.02	-	0.00				
TK-5	TK-5	0.01	0.02	-	-	0.00	0.01	-	-	-	-	0.00	0.02	-	0.00				
TK-6	TK-6	0.01	0.02	-	-	0.00	0.01	-	-	-	-	0.00	0.02	-	0.00				
TK-TRI	TK-TRI	0.00	0.01	-	-	-	-	-	-	-	-	-	-	-	-				
LOADTRI	LOADTRI	0.01	0.00	-	-	-	-	-	-	-	-	-	-	-	-				
LOAD1	LOAD1	0.16	0.06	-	-	0.04	0.02	-	-	-	-	0.09	0.04	0.02	0.01				
LOAD2	LOAD2	0.05	0.14	-	-	0.02	0.05	-	-	-	-	0.03	0.08	0.00	0.01				
ROAD	ROAD	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
SSMBD COMP	SSMBD COMP	0.57	0.03	-	-	0.23	0.01	-	-	-	-	0.31	0.02	0.03	0.00				
SSMBD DEHY	SSMBD DEHY	0.70	0.01	-	-	0.30	0.00	-	-	-	-	0.37	0.00	0.03	-				
SSMBD Filters	SSMBD Filters	0.11	0.00	-	-	0.05	0.00	-	-	-	-	0.06	0.00	0.01	-				
SSMBD PIPE	SSMBD PIPE	2.86	0.02	-	-	1.15	0.01	-	-	-	-	1.57	0.01	0.13	-				
Total	s:	32.95	24.35	0.28	1.24	16.49	2.84	2.09	9.14	0.37	1.61	7.94	6.27	4.44	1.28				

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Spe	city Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value (Btu/scf)	Hourly Usage (scf)	Annual Usage (MMscf)	% Sulfur	% Ash
HOH-1	Natural Gas	Purchased	1,220	90,168	789.9	0.00	0
HOH-2	Natural Gas	Purchased	1220	90,168	789.9	0.00	0
DHR-1	Natural Gas	Purchased	1,220	902	7.9	0.00	0
DHR-2	Natural Gas	Purchased	1220	902	7.9	0.00	0
STABHR-1	Natural Gas	Purchased	1,220	12,296	107.7	0.00	0
CE-1	Natural Gas	Purchased	1,220	13,359	117.0	0.00	0
CE-2	Natural Gas	Purchased	1,220	13,359	117.0	0.00	0
CE-3	Natural Gas	Purchased	1,220	13,359	117.0	0.00	0
CE-4	Natural Gas	Purchased	1,220	13,359	117.0	0.00	0
CE-5	Natural Gas	Purchased	1,220	13,359	117.0	0.00	0
CE-6	Natural Gas	Purchased	1,220	13,359	117.0	0.00	0
CE-7	Natural Gas	Purchased	1,220	13,359	117.0	0.00	0
CE-8	Natural Gas	Purchased	1,220	9,255	81.1	0.00	0
CE-9	Natural Gas	Purchased	1,220	9,255	81.1	0.00	0
CE-10	Natural Gas	Purchased	1,220	9,255	81.1	0.00	0
CE-11	Natural Gas	Purchased	1,220	9,255	81.1	0.00	0
CE-12	Natural Gas	Purchased	1,220	9,255	81.1	0.00	0
TURB-1	Natural Gas	Purchased	1,220	44,322	388.3	0.00	0
TURB-2	Natural Gas	Purchased	1,220	44,322	388.3	0.00	0

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Spe	city Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value (Btu/scf)	Hourly Usage (scf)	Annual Usage (MMscf)	% Sulfur	% Ash
TURB-3	Natural Gas	Purchased	1,220	44,322	388.3	0.00	0
TURB-4	Natural Gas	Purchased	1,220	44,322	388.3	0.00	0
TURB-5	Natural Gas	Purchased	1,220	44,322	388.3	0.00	0
TURB-6	Natural Gas	Purchased	1,220	44,322	388.3	0.00	0
AGFL-1	Natural Gas	Purchased	1,271	1,700	14.9	0.00	0
FL-1	Natural Gas	Purchased	1,271	7,400	64.8	0.00	0

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Stora	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (Ib/gal)	Molecular Weight (Ib/Ib*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
TK-1	40400311	Slop Water	99.5% Water/0.5% Oil	3.49	55.04	65.41	11.75	72.45	13.26
TK-2	40400311	Slop Water	99.5% Water/0.5% Oil	3.49	55.04	65.41	11.75	72.45	13.26
TK-3	40400311	Condensate	Condensate	5.69	75.63	65.36	4.31	72.45	5.03
TK-4	40400311	Condensate	Condensate	5.69	75.63	65.36	4.31	72.45	5.03
TK-5	40400311	Condensate	Condensate	5.69	75.63	65.36	4.31	72.45	5.03
TK-6	40400311	Condensate	Condensate	5.69	75.63	65.36	4.31	72.45	5.03
TK-TRI	40400311	Spent Triazine	96% Water/ 3.8% Triazine/ 0.2% Oil	8.46	24.19	67.67	12.42	76.27	13.26

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Сара	acity	Diameter (M)	Vapor Space (M)	Co (from Ta	lor ble VI-C)	Paint Condition (from Table VI-	Annual Throughput	Turn- overs (per year)
			LK Delow)	LK below)	(bbl)	(M ³)			Roof	Shell	C)	(gal/yr)	
TK-1	TBD	Slop Water	FR	N/A	400 bbl	64	3.66	6.10	OT (Tan)	OT (Tan)	Good	3,483,377	242.17
TK-2	TBD	Slop Water	FR	N/A	400 bbl	64	3.66	6.10	OT (Tan)	OT (Tan)	Good	3,483,377	242.17
ТК-3	TBD	Condensate	FR	N/A	1000 bbl	119	4.72	9.14	OT (Tan)	OT (Tan)	Good	15,730,929	428.60
TK-4	TBD	Condensate	FR	N/A	1000 bbl	119	4.72	9.14	OT (Tan)	OT (Tan)	Good	15,730,929	428.60
TK-5	TBD	Condensate	FR	N/A	1000 bbl	119	4.72	9.14	OT (Tan)	OT (Tan)	Good	15,730,929	428.60
TK-6	TBD	Condensate	FR	N/A	1000 bbl	119	4.72	9.14	OT (Tan)	OT (Tan)	Good	15,730,929	428.60
TK-TRI	K-TRI TBD	Spent Triazine	FR	N/A	400 bbl	64	3.66	6.10	OT (Tan)	OT (Tan)	Good	1,532,999	106.58

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, W	/elded Tank Seal Type	Seal Type, Riv	veted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH : White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	b. Sheemounted secondary b. Weather sineld b. Weather sineld b. Sheemounted secondary		C: Rim-mounted secondary	LG: Light Gray		
					MG: Medium Gray	
Note: 1.00 bbl = 0.159 N	И ³ = 42.0 gal				BL: Black	_
					OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Material	Processed			Material Produce	ed	
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (MMscfd)	Description	Chemical Composition	Phase	Quantity (MMscfd)
Natural Gas	Natural Gas	Gas	220.0	Natural Gas	Natural Gas	Gas	183.33

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
				N/A					

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
			N/A					

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box.

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO2 ton/yr	N₂O ton/yr	CH₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²							N	otal GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3									
	mass GHG	66.10	-	0.00										66.1	
HOH-1	CO ₂ e	66.10	-	0.03											66.1
HOH-2	mass GHG	66.10	-	0.00										66.1	
nun-z	CO ₂ e	66.10	-	0.03											66.1
DHR-1	mass GHG	0.66	-	-										0.7	
DHK-1	CO ₂ e	0.66	-	-											0.7
DHR-2	mass GHG	0.66	-	-										0.7	
51112	CO ₂ e	0.66	-	-											0.7
STABHR-1	mass GHG	9.01	-	-										9.0	
STADIA 1	CO ₂ e	9.01	-	0.00											9.0
CE-1	mass GHG	8015.98	-	0.16										8016.1	
	CO ₂ e	8015.98	-	3.93											8019.9
CE-2	mass GHG	8015.98	-	0.16										8016.1	
	CO ₂ e	8015.98	-	3.93											8019.9
CE-3	mass GHG	8015.98	-	0.16										8016.1	
	CO ₂ e	8015.98	-	3.93								_			8019.9
CE-4	mass GHG	8015.98	-	0.16					-	-				8016.1	
-	CO ₂ e	8015.98	-	3.93											8019.9
CE-5	mass GHG	8015.98	-	0.16										8016.1	
	CO ₂ e	8015.98	-	3.93								_			8019.9
CE-6	mass GHG	8015.98	-	0.16										8016.1	
	CO ₂ e	8015.98	-	3.93						-		_	ļ		8019.9
CE-7	mass GHG	8015.98	-	0.16								-		8016.1	
	CO ₂ e	8015.98	-	3.93											8019.9
CE-8	mass GHG	6076.51	-	0.00						-				6076.5	6076.6
	CO ₂ e	6076.51	-	0.12								_		6076 F	6076.6
CE-9	mass GHG	6076.51	-	0.00										6076.5	6076.6
	CO ₂ e	6076.51 6076.51	-	0.12										C07C F	6076.6
CE-10	mass GHG CO ₂ e	6076.51	-	0.00									┼──┼─	6076.5	6076 G
			-	0.12										6076.5	6076.6
CE-11	mass GHG CO ₂ e	6076.51	-	0.00										0070.5	6076.6
	_	6076.51 6076.51	-	0.12								-		6076.5	0070.0
CE-12	mass GHG CO ₂ e	6076.51	-	0.00						+		+	╂───┤─	0070.5	6076.6
	mass GHG	27708.32	0.05	0.12										27708.9	0070.0
TURB-1	CO ₂ e	27708.32	15.56	13.06										27706.9	27736.9
	mass GHG	27708.32	0.05	0.52										27708.9	21130.9
TURB-2	CO ₂ e	27708.32	15.56	13.06								-	<u> </u>	21100.9	27736.9
	CO ₂ e	21108.32	10.00	12.00	1	1		1	I	1	I	I			27730.9

		CO2 ton/yr	N₂O ton/yr	CH₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²								Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3									
TURB-3	mass GHG	27708.32	0.05	0.52										27708.9	
10100	CO ₂ e	27708.32	15.56	13.06											27736.9
TURB-4	mass GHG	27708.32	0.05	0.52										27708.9	
1010 4	CO ₂ e	27708.32	15.56	13.06											27736.9
TURB-5	mass GHG	27708.32	0.05	0.52										27708.9	
	CO ₂ e	27708.32	15.56	13.06											27736.9
TURB-6	mass GHG	-	-	-										-	
	CO ₂ e	-	-	-											-
FUG	mass GHG	15.53	-	37.88										53.4	
	CO ₂ e	15.53	-	947.06											962.6
AGFL-1	mass GHG	939.32	-	1.71										941.0	
1051.4	CO ₂ e	939.32	-	42.85										5000 4	982.2
AGFL-1	mass GHG	4989.35	-	32.72										5022.1	5007.0
SSM	CO ₂ e	4989.35	0.00	817.90										5255.0	5807.3
FL-1	mass GHG CO ₂ e	5240.11 5240.11	-	15.68 391.91										5255.8	5622.0
	-		0.00											F3F3 C	5632.0
FL-1 SSM	mass GHG CO ₂ e	5237.39 5237.39	0.00	15.23 380.77									1	5252.6	5618.2
DHY-1	mass GHG	0.04	- 0.00	17.60										17.6	5018.2
SSM	CO ₂ e	0.04	-	439.91										17.0	439.9
DHY-2	mass GHG	0.04	-	17.60										17.6	459.9
SSM	CO ₂ e	0.04	_	439.91										17.0	439.9
	mass GHG	3.14	-	0.01										3.1	-33.5
TK-1	CO ₂ e	3.14	-	0.23										5.1	3.4
	mass GHG	3.14	-	0.01										3.1	5.1
TK-2	CO ₂ e	3.14	-	0.23											3.4
	mass GHG	-	-	-										-	
тк-3	CO ₂ e	-	-	-											-
T 14 A	mass GHG	-	-	-										-	
ТК-4	CO ₂ e	-	-	-											-
тиг	mass GHG	-	-	-										-	
ТК-5	CO ₂ e	-	-	-											-
ТК-6	mass GHG	-	-	-										-	
11-0	CO ₂ e	-	-	-											-
TK-TRI	mass GHG	10.48	-	7.13										17.6	
	CO ₂ e	10.48	-	178.29											188.8
LOADTRI	mass GHG	0.26	-	-										0.3	
	CO ₂ e	0.26	-	-											0.3
LOAD1	mass GHG	-	-	-										-	
	CO ₂ e	-	-	-											-
LOAD2	mass GHG	-	-	-										-	
	CO ₂ e	-	-	-											-
ROAD	mass GHG	-	-	-										-	
L	CO ₂ e	-	-	-	l	I	I	I	I	I	I	1	I [-

		CO2 ton/yr	N₂O ton/yr	CH₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²				Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3					
SSMBD	mass GHG	-	-	22.67						22.7	
COMP	CO ₂ e	-	-	566.72							566.7
SSMBD	mass GHG	-	-	6.37						6.4	
DEHY	CO ₂ e	-	-	159.26							159.3
SSMBD	mass GHG	-	-	2.72						2.7	
Filters	CO ₂ e	-	-	68.01							68.0
SSMBD	mass GHG	-	-	13.60						13.6	
PIPE	CO ₂ e	-	-	340.03							340.0
Total	mass GHG	241617.37	0.26	194.66						241812.3	
TOLAT	CO ₂ e	241617.37	77.82	4866.58							246561.8

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a mass basis is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The **Application Summary** shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **Process Summary** shall include a brief description of the facility and its processes.

<u>Startup</u>, <u>Shutdown</u>, <u>and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

In accordance with 20.2.72.200.A(1) NMAC, Northwind Midstream Partners, LLC (Northwind) is submitting this application for a new gas treating facility located in Lea County, NM. The Titan Treater Plant #2 will have 220 MMscfd of treating capacity. The facility receives sour natural gas from field production and treats it to remove acid gas (CO₂ and H₂S) and water. The treated gas is compressed and sent-off site via pipeline.

With this application Northwind is proposing to add the following equipment:

- Seven (7) Caterpillar G3606 compressor engines rated at 2065 horsepower (hp) (CE-1 to CE-7)
- Five (5) Caterpillar G3516 compressor engines rated at 1380 horsepower (hp) (CE-8 to CE-12)
- Six (6) Solar T60 Turbines rated at 6,370 horsepower for power generation (TURB-1 to TURB-6),
- Two (2) triethylene glycol dehydrators (DHY-1, DHY-2) and associated glycol regenerator heaters (DHR-1, DHR-2),
- One (1) acid gas flare (AGFL-1),
- One (1) process flare (FL-1),
- Slop water loading (LOAD-1),
- Condensate loading (LOAD-2) during pipeline shutdowns, with emissions routed to redundant VRUs,
- Two (2) slop water storage tanks (TK-1, TK-2) with emissions routed to redundant VRUs,
- Four (4) condensate storage tanks (TK-3 to TK-6) with emissions routed to redundant VRUs,
- One (1) Spent Triazine storage tank (TK-TRI),
- Five (5) electric-drive acid gas compressors (AGI-COMP1 to AGI-COMP5),
- Haul roads (ROAD),
- One (1) stabilizer heater (STABHR-1),
- Two (2) hot oil heaters (HOH-1, HOH-2) and,
- Three (3) electric-drive stabilizer overhead compressors (SOH-COMP1 to SOH-COMP3).

Startup, Shutdown, and Maintenance (SSM) Emissions

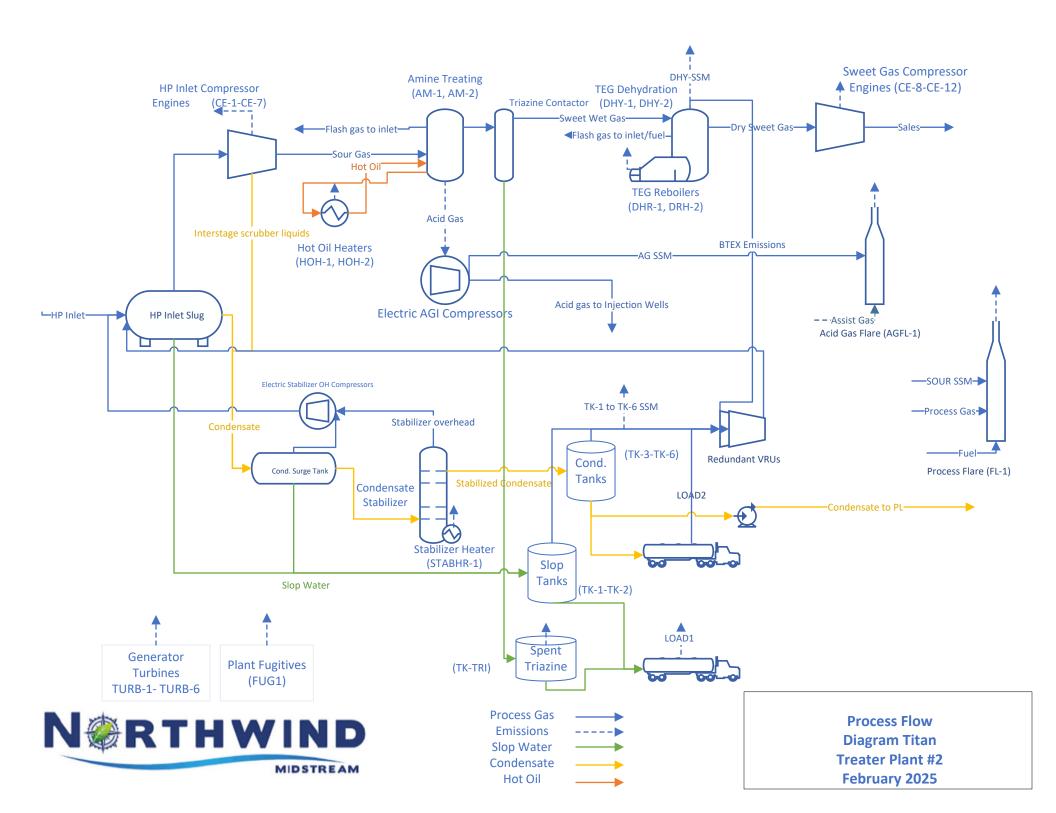
SSM emissions are a result of equipment blowdowns for maintenance as well as equipment downtime. Some sweet gas SSM is vented and some is flared, while all sour gas SSM is routed to a control device. Each SSM stream is discussed in more detail below.

Sweet Gas Blowdowns – Sweet gas is blown down to the atmosphere from compressors (SSM-BD COMP), dehydrator contactors (SSM-DEHY), coalescer filters (SSM-BD FILTER), and miscellaneous piping (SSM-BD PIPE). Worst case volumes were calculated and/or estimated. Emissions were estimated based on the number of blowdowns expected during the year. Stream compositions were obtained from Promax.

Acid Gas Blowdowns – During SSM events, acid gas is routed to the flare (AGFL-1). AGI compressors are blown down during maintenance activities. Compressor volumes were calculated, with up to three potentially blown down at the same time. Equipment used in the sweetening process may also be blown down to the flare, both individually and together. Various equipment volumes were calculated and included to estimate the hourly flow rate. Stream compositions were obtained from Promax.

Inlet Gas Blowdowns – During SSM events, inlet gas would be routed to the plant flare (FL-1). The volume of the inlet slug catcher was used to estimate maximum hourly emissions. For annual rates, the volumes of each piece of equipment and the estimated number of events were used. Stream compositions were obtained from Promax.

VRU Downtime – During VRU downtime, tank vapor and dehydrator still vent vapor are routed to atmosphere. This is assumed to occur up to 175 hours per year.

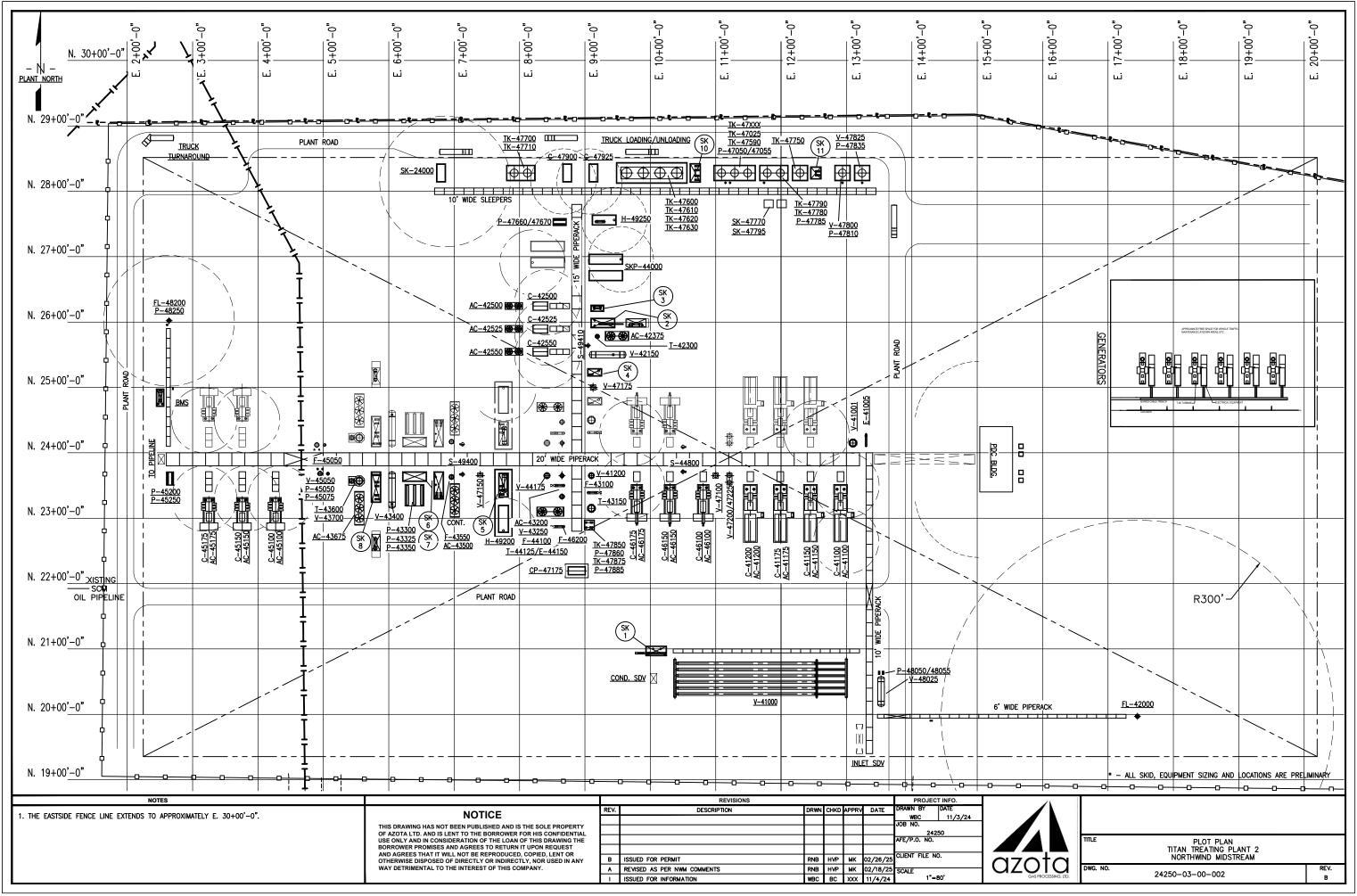

SSM events at AGFL-1 SSM will not occur at the same time as FL-1SSM.

Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow diagram of the facility has been attached on the following page.



Section 5

Plot Plan Drawn to Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan of the entire facility is attached on the following page.

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.

(4) The final result of the calculation shall be expressed in the units of the standard.

Form-Section 6 last revised: 5/3/16

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Calculations are provided with detailed notes explaining the methodology.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **<u>short</u>** tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Emissions Summary

EPN	Units	VOC	NOx	CO	PM10	PM2.5	SO2	H2S	Methane	CO2	N2O	Acetaldehyde	Benzene	Formaldehyde	Methanol	n-Hexane	Toluene	Total HAP
HOH-1	tpy	9.15	17.34	7.23	4.29	4.29	0.47	0.004	0.001	66.10	-	-	0.001	0.05	-	1.22	0.002	1.28
HOH-2	tpy	9.15	17.34	7.23	4.29	4.29	0.47	0.004	0.001	66.10	-	-	0.001	0.05	-	1.22	0.002	1.28
DHR-1	tpy	0.03	0.56	0.47	0.04	0.04	0.006	3.55E-05	-	0.66	-	-	-	-	-	0.01	-	0.01
DHR-2	tpy	0.03	0.56	0.47	0.04	0.04	0.006	3.55E-05	-	0.66	-	-	-	-	-	0.01	-	0.01
STABHR-1	tpy	0.42	2.42	2.48	0.59	0.59	0.06	4.84E-04	-	9.01	-	-	-	0.007	-	0.17	-	0.17
CE-1	tpy	4.79	5.98	4.99	0.55	0.71	0.05	5.26E-04	0.16	8015.98		0.13	0.03	0.60	0.18	0.08	0.03	1.23
CE-2	tpy	4.79	5.98	4.99	0.71	0.71	0.05	5.26E-04	0.10	8015.98		0.13	0.03	0.60	0.18	0.08	0.03	1.23
CE-3	tpy	4.79	5.98	4.99	0.71	0.71	0.05	5.26E-04	0.16	8015.98	-	0.13	0.03	0.60	0.18	0.08	0.03	1.23
CE-4	tpy	4.79	5.98	4.99	0.71	0.71	0.05	5.26E-04	0.10	8015.98	-	0.13	0.03	0.60	0.18	0.08	0.03	1.23
CE-5	tpy	4.79	5.98	4.99	0.71	0.71	0.05	5.26E-04	0.10	8015.98	-	0.13	0.03	0.60	0.18	0.08	0.03	1.23
CE-6	tpy	4.79	5.98	4.99	0.71	0.71	0.05	5.26E-04	0.10	8015.98		0.13	0.03	0.60	0.18	0.08	0.03	1.23
CE-0 CE-7		4.79	5.98	4.99	0.71	0.71	0.05	5.26E-04	0.16	8015.98		0.13	0.03	0.60	0.18	0.08	0.03	1.23
-	tpy	4.79	6.66	3.33	0.71	0.71	0.05	3.65E-04	0.16	6076.51	-	0.13	0.03	0.80	0.18	0.08	0.03	1.23
CE-8	tpy										-							
CE-9	tpy	4.23	6.66	3.33	0.49	0.49	0.03	3.65E-04	0.005	6076.51	-	0.06	0.01	0.80	0.07	0.03	0.01	1.06
CE-10	tpy	4.23	6.66	3.33	0.49	0.49	0.03	3.65E-04	0.005	6076.51	-	0.06	0.01	0.80	0.07	0.03	0.01	1.06
CE-11	tpy	4.23	6.66	3.33	0.49	0.49	0.03	3.65E-04	0.005	6076.51	-	0.06	0.01	0.80	0.07	0.03	0.01	1.06
CE-12	tpy	4.23	6.66	3.33	0.49	0.49	0.03	3.65E-04	0.005	6076.51	-	0.06	0.01	0.80	0.07	0.03	0.01	1.06
TURB-1	tpy	7.63	13.03	15.39	1.49	1.49	0.01	-	0.52	27708.32	0.05	0.009	0.003	0.17	-	-	0.03	0.23
TURB-2	tpy	7.63	13.03	15.39	1.49	1.49	0.01	-	0.52	27708.32	0.05	0.009	0.003	0.17	-	-	0.03	0.23
TURB-3	tpy	7.63	13.03	15.39	1.49	1.49	0.01	-	0.52	27708.32	0.05	0.009	0.003	0.17	-	-	0.03	0.23
TURB-4	tpy	7.63	13.03	15.39	1.49	1.49	0.01	-	0.52	27708.32	0.05	0.009	0.003	0.17	-	-	0.03	0.23
TURB-5	tpy	7.63	13.03	15.39	1.49	1.49	0.01	-	0.52	27708.32	0.05	0.009	0.003	0.17	-	-	0.03	0.23
TURB-6	tpy									Backup for TURE	1 - TURB-5							
FUG	tpy	63.49	-	-	-	-	-	2.68	37.88	15.53	-	-	1.16	-	-	2.29	0.51	4.10
AGFL-1	tpy	0.03	1.32	5.27	0.07	0.07	24.09	0.26	1.71	939.32	-	-	-	-	-	-	-	-
AGFL-1 SSM	tpy	0.64	7.13	28.38	0.38	0.38	78.33	0.83	32.72	4989.35	-	-	0.001	-	-	-	-	0.001
FL-1	tpy	3.82	7.63	15.23	0.41	0.41	29.61	0.32	15.68	5240.11	-	-	0.01	-	-	0.02	0.009	0.04
FL-1 SSM	tpy	12.99	6.89	13.76	0.37	0.37	82.78	0.88	15.23	5237.39	-	-	0.13	-	-	0.18	0.10	0.45
DHY-1 SSM	tpy	4.36						0.07	17.60	0.04	-	-	0.52	-	-	0.03	0.09	0.65
DHY-2 SSM	tpy	4.36						0.006	17.60	0.04	-	-	0.52	-	-	0.03	0.09	0.65
TK-1	tpy	2.98	-	-	-	-	-	0.06	0.009	3.14	-	-	0.04	-	-	0.08	0.02	0.14
ТК-2	tpy	2.98	-	-	-	-	-	0.06	0.009	3.14	-	-	0.04	-	-	0.08	0.02	0.14
TK-3	tpy	0.31	-	-	-	-	-	2.90E-10	1.59E-15	-	-	-	0.007	-	-	0.02	0.002	0.02
TK-4	tpy	0.31	-	-	-	-	-	2.90E-10	1.59E-15	-	-	-	0.007	-	-	0.02	0.002	0.02
TK-5	tpy	0.31	-	-	-	-	-	2.90E-10	1.59E-15	-	-	-	0.007	-	-	0.02	0.002	0.02
TK-6	tpy	0.31	-	-	-	-	-	2.90E-10	1.59E-15	-	-	-	0.007	-	- 1	0.02	0.002	0.02
TK-TRI	tpy	0.97	-	-	<u> </u>	-	-	1.02E-04	7.13	10.48	-	-	-	-	<u> </u>	-	-	0.01
LOADTRI	tpy	0.001	-	-	- I	-	-	9.35E-06	-	0.26	-	-	-	-	- 1	-	-	0.001
LOAD1	tpy	0.29	-	-	- 1	-	-	0.01	-	-	-	-	0.02	-	<u> </u>	0.04	0.008	0.06
LOAD1	tpy	1.56	-	-	_	-	-	1.68E-09	-	-	-	-	0.02	-	-	0.04	0.003	0.14
ROAD	tpy	1.50		-	1.33	0.13		1.001-09	-		-	-	0.03	-		0.08	0.01	0.14
SSMBD COMP	tpy	- 11.60	-	-	1.55	-	-	- 7.69E-05	22.67	-		-	- 0.01	-	-	0.02	0.001	0.03
SSMBD DEHY	tpy	3.26		-	-	-	-	2.19E-05	6.37	-	-	-	0.01	-	-	0.02		0.008
		1.39	-	-	-	-	-	9.22E-06	2.72	-		-	0.004	-	-	0.004	-	0.008
SSMBD Filters	tpy																	
SSMBD PIPE	tpy	6.96	-	-	-	-	-	4.61E-05	13.60	-	-	-	0.007	-	-	0.009	-	0.02
	otal tpy	234.54	201.52	209.04	26.74	25.55	216.39	5.18	194.66	241,617.37	0.26	1.24	2.84	9.14	1.61	6.27	1.28	24.35
Total minus Fugiti	vestpy	171.05	201.52	209.04	26.74	25.55	216.39	2.50	156.78	241,601.84	0.26	1.24	1.69	9.14	1.61	3.98	0.78	20.25
EPN	Units	VOC	NOx	CO	PM10	PM2.5	SO2	H2S	Methane	CO2	N2O	Acetaldehyde	Benzene	Formaldehyde	Methanol	n-Hexane	Toluene	Total HAP

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Emissions Summary

	11 /1	2.00	2.00	4.65	0.00		0.44	0.445.04						0.04	1	0.00	1	0.00
HOH-1	lb/hr lb/hr	2.09	3.96	1.65	0.98	0.98	0.11	8.11E-04	-			-	-	0.01	-	0.28	-	0.29
HOH-2		2.09	3.96	1.65	0.98	0.98	0.11	8.11E-04	-			-	-	0.01	-	0.28	-	0.29
DHR-1	lb/hr	0.007	0.13	0.11	0.010	0.010	0.001	8.11E-06	-			-	-	-	-	0.003	-	0.003
DHR-2	lb/hr	0.007	0.13	0.11	0.010	0.010	0.001	8.11E-06	-			-	-	-	-	0.003	-	0.003
STABHR-1	lb/hr	0.10	0.55	0.57	0.13	0.13	0.01	1.11E-04	-			-	-	0.002	-	0.04	-	0.04
CE-1	lb/hr	1.09	1.37	1.14	0.16	0.16	0.01	1.20E-04	0.04			0.03	0.007	0.14	0.04	0.02	0.007	0.28
CE-2	lb/hr	1.09	1.37	1.14	0.16	0.16	0.01	1.20E-04	0.04			0.03	0.007	0.14	0.04	0.02	0.007	0.28
CE-3	lb/hr	1.09	1.37	1.14	0.16	0.16	0.01	1.20E-04	0.04			0.03	0.007	0.14	0.04	0.02	0.007	0.28
CE-4	lb/hr	1.09	1.37	1.14	0.16	0.16	0.01	1.20E-04	0.04			0.03	0.007	0.14	0.04	0.02	0.007	0.28
CE-5	lb/hr	1.09	1.37	1.14	0.16	0.16	0.01	1.20E-04	0.04			0.03	0.007	0.14	0.04	0.02	0.007	0.28
CE-6	lb/hr	1.09	1.37	1.14	0.16	0.16	0.01	1.20E-04	0.04			0.03	0.007	0.14	0.04	0.02	0.007	0.28
CE-7	lb/hr	1.09	1.37	1.14	0.16	0.16	0.01	1.20E-04	0.04			0.03	0.007	0.14	0.04	0.02	0.007	0.28
CE-8	lb/hr	0.96	1.52	0.76	0.11	0.11	0.008	8.32E-05	0.001			0.01	0.003	0.18	0.02	0.007	0.003	0.24
CE-9	lb/hr	0.96	1.52	0.76	0.11	0.11	0.008	8.32E-05	0.001			0.01	0.003	0.18	0.02	0.007	0.003	0.24
CE-10	lb/hr	0.96	1.52	0.76	0.11	0.11	0.008	8.32E-05	0.001			0.01	0.003	0.18	0.02	0.007	0.003	0.24
CE-11	lb/hr	0.96	1.52	0.76	0.11	0.11	0.008	8.32E-05	0.001			0.01	0.003	0.18	0.02	0.007	0.003	0.24
CE-12	lb/hr	0.96	1.52	0.76	0.11	0.11	0.008	8.32E-05	0.001			0.01	0.003	0.18	0.02	0.007	0.003	0.24
TURB-1	lb/hr	1.74	2.97	3.51	0.34	0.34	0.002	-	0.12			0.002	-	0.04	-	-	0.007	0.05
TURB-2	lb/hr	1.74	2.97	3.51	0.34	0.34	0.002	-	0.12			0.002	-	0.04	-	-	0.007	0.05
TURB-3	lb/hr	1.74	2.97	3.51	0.34	0.34	0.002	-	0.12			0.002	-	0.04	-	-	0.007	0.05
TURB-4	lb/hr	1.74	2.97	3.51	0.34	0.34	0.002	-	0.12			0.002	-	0.04	-	-	0.007	0.05
TURB-5	lb/hr	1.74	2.97	3.51	0.34	0.34	0.002	-	0.12			0.002	-	0.04	-	-	0.007	0.05
TURB-6	lb/hr									Backup for TURB	1 - TURB-5							
FUG	lb/hr	14.50	-	-	-	-	-	0.61	8.65			-	0.26	-	-	0.52	0.12	0.94
AGFL-1	lb/hr	0.008	0.30	1.20	0.02	0.02	5.39	0.06	0.39			-	-	-	-	-	-	-
AGFL-1 SSM	lb/hr	9.03	100.73	401.16	5.44	5.44	3525.57	38.28	454.54			-	0.05	-	-	-	0.004	0.05
FL-1	lb/hr	0.87	1.74	3.48	0.09	0.09	6.76	0.07	3.58			-	0.01	-	-	0.02	0.009	0.04
FL-1 SSM	lb/hr	173.52	93.73	187.13	5.06	5.06	1426.60	15.18	215.17			-	2.40	-	-	3.39	1.90	8.42
DHY-1 SSM	lb/hr	49.77	-	-	-	-	-	0.07	200.87			-	5.94	-	-	0.38	1.04	7.45
DHY-2 SSM	lb/hr	49.77	-	-	-	-	-	0.07	200.87			-	5.94	-	-	0.38	1.04	7.45
TK-1	lb/hr	0.68	-	-	-	-	-	0.01	0.002			-	0.009	-	-	0.02	0.004	0.03
TK-2	lb/hr	0.68	-	-	-	-	-	0.01	0.002			-	0.009	-	-	0.02	0.004	0.03
ТК-3	lb/hr	0.07	-	-	-	-	-	6.63E-11	3.63E-16			-	0.002	-	-	0.004	-	0.006
TK-4	lb/hr	0.07	-	-	-	-	-	6.63E-11	3.63E-16			-	0.002	-	-	0.004	-	0.006
TK-5	lb/hr	0.07	-	-	-	-	-	6.63E-11	3.63E-16			-	0.002	-	-	0.004	-	0.006
TK-6	lb/hr	0.07	-	-	-	-	-	6.63E-11	3.63E-16			-	0.002	-	-	0.004	-	0.006
TK-TRI	lb/hr	0.22	-	-	-	-	-	2.32E-05	1.63			-	-	-	-	-	-	0.003
LOADTRI	lb/hr	0.007	-	-	-	-	-	4.94E-05	-			-	-	-	-	-	-	0.007
LOAD1	lb/hr	0.72	-	-	-	-	-	0.04	-			-	0.04	-	-	0.09	0.02	0.16
LOAD2	lb/hr	0.53	-	-	-	-	-	5.76E-10	-			-	0.02	-	-	0.03	0.004	0.05
ROAD	lb/hr	-	-	-	0.34	0.03	-	-	-			-	-	-	-	-	-	-
SSMBD COMP	lb/hr	232.07	-	-	-	-	-	0.002	453.38				0.23	-	-	0.31	0.03	0.57
SSMBD DEHY	lb/hr	272.07	-	-	-	-	-	0.002	530.86			-	0.30	-	-	0.37	0.03	0.70
SSMBD Filters	lb/hr	46.41	-	-	- 1	-	-	3.07E-04	90.68				0.05	-	-	0.06	0.005	0.11
SSMBD PIPE	lb/hr	1160.36	-	-	-	-	-	0.008	2266.88			-	1.15	-	-	1.57	0.13	2.86
	tal lb/hr	2,027.97	143.54	439.26	11.41	10.73	3,538.08	39.23	4,213.18			0.28	16.44	2.09	0.37	7.94	4.43	32.90
Total minus Fugitiv		2.013.47	143.54	439.26	11.41	10.73	3.538.08	38.62	4,204.54			0.28	16.17	2.09	0.37	7.42	4.32	31.97
		_,				0	2,230100		.,					2.05				

	PLANT #2 EMISSIONS																
	VOC	NOx	со	PM10	PM2.5	SO2	H2S	Methane	CO2	N2O	Acetaldehyde	Benzene	Formaldehyde	Methanol	n-Hexane	Toluene	Total HAP
Total lb/hr	2,027.97	143.54	439.26	11.41	11.10	3,538.08	39.23	4,213.18			0.28	16.44	2.09	0.37	7.94	4.43	32.90
Total minus Fugitives lb/hr	2,013.47	143.54	439.26	11.41	11.10	3,538.08	38.62	4,204.54			0.28	16.17	2.09	0.37	7.42	4.32	31.97
Total TPY	234.54	201.52	209.04	26.74	25.55	216.39	5.18	194.66	241,617.37	0.26	1.24	2.84	9.14	1.61	6.27	1.28	24.35
Total minus Fugitives TPY	171.05	201.52	209.04	26.74	25.55	216.39	2.50	156.78	241,601.84	0.26	1.24	1.69	9.14	1.61	3.98	0.78	20.25

1 SSM at AGFL-1 will not be conducted at the same time as FL-1 SSM. The higher of the two rates is included in the sum of hourly emissions.

2 The SSM streams flowing to AGFL-1 and FL-1 can occur at the same time as the streams occuring during normal operation.

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Hot Oil Heater - Natural Gas

EMISSION POINT ID: HOH-1 & HOH-2

Background Information	
Name	Hot Oil Heaters
Ivallie	1 & 2
Heater/Boiler rating (MMBtu/hr):	110.00
Rating above is:	below 100 MMBtu/hr,
Operating hours/year:	8760
Natural Gas Heat Value (Btu/scf) ^a :	1,020
Fuel Gas Heat Value (Btu/scf) ^b :	1,017
Max Permitted Fuel Gas Heat Value (Btu/scf):	1,220
Fuel Rate (scf/hr):	90,168
Fuel Rate (scf/yr):	789,871,212

a) Heating value for natural gas taken from Section 1.4 of AP-42 (dated 7/98). #REF!

Pollutant	Emission Factor ^a (lb/MMBtu)	lb/hr ^c	tpy
VOC	0.019	2.09	9.15
NOx	0.036	3.96	17.34
CO	0.015	1.65	7.23
PM ₁₀	7.6	0.98	4.29
PM _{2.5}	7.6	0.98	4.29
SO ₂	0.001	0.11	0.47
CO2	117.00	15.09	66.10
Methane	0.002	2.84E-04	1.25E-03
HAPS	Emission Factor ^a (lb/MMscf)	lb/hr ^c	tpy
Arsenic	0.0002	3.10E-05	1.36E-04
Benzene	0.0021	3.25E-04	1.42E-03
Beryllium	0.000012	1.86E-06	8.14E-06
Cadmium	0.0011	1.70E-04	7.46E-04
Chromium	0.0014	2.17E-04	9.49E-04
Cobalt	0.000084	1.30E-05	5.69E-05
Dichlorobenzene	0.0012	1.86E-04	8.14E-04
Formaldehyde	0.075	0.01	0.05
n-Hexane	1.8	0.28	1.22
Lead	0.0005	7.74E-05	3.39E-04
Manganese	0.00038	5.88E-05	2.58E-04
Mercury	0.00026	4.02E-05	1.76E-04
Naphthalene	0.00061	9.44E-05	4.14E-04
Nickel	0.0021	3.25E-04	1.42E-03
POM	0.000088	1.36E-05	5.97E-05
Toluene	0.0034	5.26E-04	2.30E-03
Selenium	0.000024	3.71E-06	1.63E-05
Total HAP		0.29	1.28
Other Pollutants			
H ₂ S	N/A ^c	8.11E-04	3.55E-03

a) Emission factors are taken from AP-42, Chapter 1, Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4, dated July 1998. NOx, CO, VOC, and PM are from heater manufacturer. b) H₂S emissions are conservatively based on 98% conversion of H₂S to SO₂.

c) lb/hr and TPY emissions rates adjusted for site specific fuel gas. AP-42 SO2 factor is based on 0.2 gr/100 scf.

H ₂ S Max Concentration (ppmv)	H ₂ S Mass to Heater (lb/hr)	H ₂ S Mass to Heater (tpy)	Grains/100 scf
5.00	0.04	0.18	0.33

a) H_2S Mass to Heater Treater (lb/hr) = H_2S Max Concentration (ppmv) /10⁶ * Fuel Rate (scf/hr) / Standard Molar Volume (scf/lbmol) * H_2S MW (lb/lbmol) b) 15.05 ppm $H_2S = 1$ gr/100 scf per the Sulfur Measurement Handbook

Stack Parameters						
Stack Height (ft):	90					
Stack Diameter (ft):	4.58					
Stack Temperature (F):	1000					
Stack Velocity (fps):	63.47					

Parameter	Value
scf/lbmole	379
Btu/MMBtu	1,000,000
scf/MMscf	1,000,000
lb/ton	2,000
$H_2S MW$	34.08
SO ₂ MW	64.06

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Hot Oil Heater - Natural Gas

EMISSION POINT ID: STABHR-1

Background Information	
Name	Stabilizer Heater
Heater/Boiler rating (MMBtu/hr):	15.00
Rating above is:	below 100 MMBtu/hr,
Operating hours/year:	8760
Natural Gas Heat Value (Btu/scf) ^a :	1,020
Fuel Gas Heat Value (Btu/scf) ^b :	1,017
Max Permitted Fuel Gas Heat Value (Btu/scf):	1,220
Fuel Rate (scf/hr):	12,296
Fuel Rate (scf/yr):	107,709,711

a) Heating value for natural gas taken from Section 1.4 of AP-42 (dated 7/98).
b) Heating value for fuel gas was taken from recent analysis.

Pollutant	Emission Factor ^a (lb/MMBtu)	lb/hr ^c	tpy
VOC	5.5	0.10	0.42
NOx	0.0368	0.55	2.42
CO	0.0377	0.57	2.48
PM_{10}	7.6	0.13	0.59
PM _{2.5}	7.6	0.13	0.59
SO ₂	0.001	0.01	0.06
CO2	117.00	2.06	9.01
Methane	0.002	3.88E-05	1.70E-04
HAPS	Emission Factor ^a (lb/MMscf)	lb/hr ^c	tpy
Arsenic	0.0002	4.22E-06	1.85E-05
Benzene	0.0021	4.43E-05	1.94E-04
Beryllium	0.000012	2.53E-07	1.11E-06
Cadmium	0.0011	2.32E-05	1.02E-04
Chromium	0.0014	2.95E-05	1.29E-04
Cobalt	0.000084	1.77E-06	7.77E-06
Dichlorobenzene	0.0012	2.53E-05	1.11E-04
Formaldehyde	0.075	1.58E-03	6.93E-03
n-Hexane	1.8	0.04	0.17
Lead	0.0005	1.06E-05	4.62E-05
Manganese	0.00038	8.02E-06	3.51E-05
Mercury	0.00026	5.49E-06	2.40E-05
Naphthalene	0.00061	1.29E-05	5.64E-05
Nickel	0.0021	4.43E-05	1.94E-04
POM	0.000088	1.86E-06	8.14E-06
Toluene	0.0034	7.18E-05	3.14E-04
Selenium	0.000024	5.07E-07	2.22E-06
Total HAP		0.04	0.17
Other Pollutants			
H ₂ S	N/A ^c	1.11E-04	4.84E-04

 H₂S
 N/A°
 1.11E-04
 4.84E-04

 a) Emission factors are taken from AP-42, Chapter 1, Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4, dated July 1998. NOx, CO, VOC, and PM are from heater manufacturer.

b) $\rm H_2S$ emissions are conservatively based on 98% conversion of $\rm H_2S$ to SO_2.

c) lb/hr and TPY emissions rates adjusted for site specific fuel gas. AP-42 SO2 factor is based on 0.2 gr/100 scf.

H ₂ S Max Concentration (ppmv)	H ₂ S Mass to Heater (lb/hr)	H ₂ S Mass to Heater (tpy)	Grains/100 scf
5.00	5.53E-03	0.02	0.33

a) H_2S Mass to Heater Treater (lb/hr) = H_2S Max Concentration (ppmv) /10⁶ * Fuel Rate (scf/hr) / Standard Molar Volume (scf/lbmol) * H_2S MW (lb/lbmol) b) 15.05 ppm $H_2S = 1$ gr/100 scf per the Sulfur Measurement Handbook

Stack Parameters							
Stack Height (ft):	21.33						
Stack Diameter (ft):	2.00						
Stack Temperature (F):	400						
Stack Velocity (fps):	26.77						

Parameter	Value
scf/lbmole	379
Btu/MMBtu	1,000,000
scf/MMscf	1,000,000
lb/ton	2,000
H ₂ S MW	34.08
SO ₂ MW	64.06

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Dehydrator Reboiler - Natural Gas

EMISSION POINT ID: DHR-1 & DHR-2

Background Information						
Name	Dehydrator Glycol					
Ivallie	Reboilers 1 & 2					
Heater/Boiler rating (MMBtu/hr):	1.1					
Rating above is:	below 100 MMBtu/hr,					
Operating hours/year:	8760					
Natural Gas Heat Value (Btu/scf) ^a :	1,020					
Fuel Gas Heat Value (Btu/scf) ^b :	1,017					
Max Permitted Fuel Gas Heat Value (Btu/scf):	1,220					
Fuel Rate (scf/hr):	902					
Fuel Rate (scf/yr):	7,898,712					

a) Heating value for natural gas taken from Section 1.4 of AP-42 (dated 7/98). #REF!

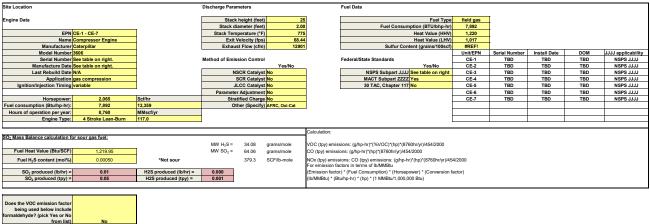
Pollutant	Emission Factor ^a (lb/MMscf)	lb/hr ^b	tpy
VOC	5.5	7.09E-03	0.03
NOx	100	0.13	0.56
СО	84	0.11	0.47
PM ₁₀	7.6	9.80E-03	0.04
PM _{2.5}	7.6	9.80E-03	0.04
SO ₂	1.00	1.29E-03	5.63E-03
HAPS			
Arsenic	0.0002	3.10E-07	1.36E-06
Benzene	0.0021	3.25E-06	1.42E-05
Beryllium	0.000012	1.86E-08	8.14E-08
Cadmium	0.0011	1.70E-06	7.46E-06
Chromium	0.0014	2.17E-06	9.49E-06
Cobalt	0.000084	1.30E-07	5.69E-07
Dichlorobenzene	0.0012	1.86E-06	8.14E-06
Formaldehyde	0.075	1.16E-04	5.08E-04
n-Hexane	1.8	2.79E-03	0.01
Lead	0.0005	7.74E-07	3.39E-06
Manganese	0.00038	5.88E-07	2.58E-06
Mercury	0.00026	4.02E-07	1.76E-06
Naphthalene	0.00061	9.44E-07	4.14E-06
Nickel	0.0021	3.25E-06	1.42E-05
POM	0.000088	1.36E-07	5.97E-07
Toluene	0.0034	5.26E-06	2.30E-05
Selenium	0.000024	3.71E-08	1.63E-07
Total HAP		2.92E-03	0.01
Other Pollutants			
H ₂ S	N/A	8.11E-06	3.55E-05

A) Emission factors are taken from AP-42, Chapter 1, Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4, dated July 1998

b) H₂S emissions are conservatively based on 98% conversion of H₂S to SO₂.

c) lb/hr and TPY emissions rates adjusted for site specific fuel gas. AP-42 SO2 factor is based on 0.2 gr/100 scf.

H ₂ S Max Concentration (ppmv)	H ₂ S Mass to Heater	H ₂ S Mass to Heater	Grains/100 scf ^b	
(PF)	(lb/hr) ^a	(tpy)	Granis/100 sci	
5.00	4.05E-04	1.78E-03	0.33	
9				


^a H₂S Mass to Heater Treater (lb/hr) = H₂S Max Concentration (ppmv) /10⁶ * Fuel Rate (scf/hr) / Standard Molar Volume (scf/lbmol) * H₂S MW (lb/lbmol) ^b 15.05 ppm H2S = 1 gr/100 scf per the Sulfur Measurement Handbook

Stack Parameters						
Stack Height (ft):	18.7					
Stack Diameter (ft):	1.10					
Stack Temperature (F):	400					
Stack Velocity (fps):	6.5					

Parameter	Value
scf/lbmole	379
Btu/MMBtu	1,000,000
scf/MMscf	1,000,000
lb/ton	2,000
H_2SMW	34.08
$SO_2 MW$	64.06

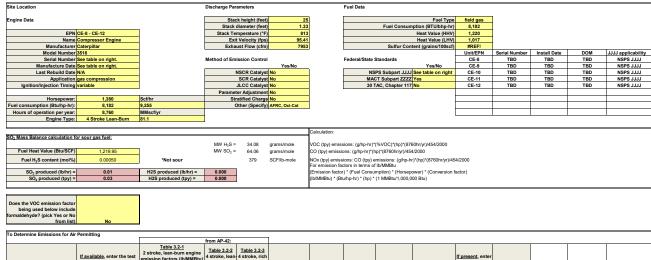
Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Natural Gas-Fired Compressor Engines

EMISSION POINT ID: CE-1 to CE-7

			from AP-42:											
	If available, enter the test results or manufacturer's emission factors before control (g/hp-hr)	<u>Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)		Table 3.2-3 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Uncontrolled	Uncontrolled	If present, enter the efficiency of any control device (as a %)	If present, enter the controlled emission factor (as g/hp-hr)	control factor used	lb/hr	tpy
VOC	0.19	0.12	0.118	0.0296	0.118	0.19	g/hp-hr	0.865	3.789	0.00	0.20	0.2	1.09	4.79
NOx	0.3	3.17	4.08	2.21	4.08	0.3	g/hp-hr	1.366	5.982		0.30	0.3	1.37	5.98
co	2.15	0.386	0.317	3.72	0.317	2.15	g/hp-hr	9.788	42.872	88.37	0.25	88.4	1.14	4.99
PM ₁₀		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.163	0.713			0	0.16	0.71
PM2.5		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.163	0.713			0	0.16	0.71
SO ₂												0	0.01	0.05
Formaldehyde	0.14	0.0552	0.0528	0.0205	0.0528	0.14	g/hp-hr	0.637	2.792	78.57	0.03	78.6	0.14	0.60
Benzene		0.00194	0.000404	0.00158	0.000404	0.000404	lb/MMBtu	0.007	0.029			0	0.01	0.03
Methane					0.002205	0.002205	lb/MMBtu	0.036	0.157				0.04	0.16
CO2											402	402	1,830.13	8,015.98
N2O					0.0001	0.0001	lb/MMBtu	0.002	0.007				0.002	0.01
	•		•											

Uncontrolled and controlled factors were obtained from the manufacturer. A safety factor (5.3%) was added to uncontrolled VOC emissions. If applicable, the VOC control factor was applied to all HAPs, except formaldehyde which has its own control fifciency. Acataldehyde and acrolein utilize the formaldehyde control efficiency. Fuel is not sour, used conservative 5 ppm H2S fuel gas as fuel in lieu of AP-42 factors.

$$\label{eq:constraints} \begin{split} & \textbf{Calculation:} \\ & For emission flactors in terms of glip-her: \\ & (glinusion flactor) * (Hencepower) / (Conversion flactor) \\ & (glip hep) * (kp) / (45.32 \, gglib) \\ & For emission flactors in terms of HoMBBin: \\ & (Emission flactors) * (Fuel Consumption) * (Horepower) * (Conversion flactor) \\ & ((hoMBBin) * (Gling hep) * (fight) * (MoBBin 2, MoBBin) * (Conversion flactor) \\ & (hoMBBin) * (Gling hep) * (fight) * (MoBBin 2, MoBBin) * (Conversion flactor) \\ & (hoMBBin) * (fight hep) * (fight) * (MoBBin 2, MoBBin) * (Conversion flactor) \\ & (hoMBBin) * (fight hep) * (fight) * (MoBBin 2, MoBBin) * (fight) * (fig$$


HAP Emission Calculation

	4 Stroke Lean-Burn	Engines CE-1	- CE-7	Engines CE-1 - CE-7			
Pollutant	AP-42 Table 3.2-2 Emission Factor (lb/MMBtu)	Emissions Ib/hr	Emissions tpy	UC Emissions lb/hr	UC Emissions tpy		
1,1,2,2-Tetrachloroethane	4.00E-05	6.52E-04	2.86E-03	6.52E-04	2.86E-03		
1,1,2-Trichloroethane	3.18E-05	5.18E-04	2.27E-03	5.18E-04	2.27E-03		
1,3-Butadiene	2.67E-04	4.35E-03	0.02	4.35E-03	0.02		
1,3-Dichloropropene	2.64E-05	4.30E-04	1.88E-03	4.30E-04	1.88E-03		
2,2,4-Trimethylbenzne		**			**		
2-Methylnaphthalene	3.32E-05	5.41E-04	2.37E-03	5.41E-04	2.37E-03		
2,2,4-Trimethylpentane	2.50E-04	4.07E-03	0.02	4.07E-03	0.02		
Acenaphthene	1.25E-06	2.04E-05	8.92E-05	2.04E-05	8.92E-05		
Acenaphthylene	5.53E-06	9.01E-05	3.95E-04	9.01E-05	3.95E-04		
Acetaldehyde	0.01	0.03	0.13	0.14	0.60		
Acrolein	0.01	0.02	0.08	0.08	0.37		
Anthracene		**					
Benz(a)anthracene		**			**		
Benzene	4.40E-04	0.01	0.03	0.01	0.03		
Benzo(a)pyrene							
Benzo(b)flouanthene	1.66E-07	2.71E-06	1.18E-05	2.71E-06	1.18E-05		
Benzo(e)pyrene	4.15E-07	6.76E-06	2.96E-05	6.76E-06	2.96E-05		
Benzo(g,h,i)perylene	4.14E-07	6.75E-06	2.96E-05	6.75E-06	2.96E-05		
Benzo(k)fluoranthene					-		
Biphenyl	2.12E-04	3.45E-03	0.02	3.45E-03	0.02		
Carbon Tetrachloride	3.67E-05	5.98E-04	2.62E-03	5.98E-04	2.62E-03		
Chlorobenzene	3.04E-05	4.95E-04	2.17E-03	4.95E-04	2.17E-03		
Chloroform	2.85E-05	4.64E-04	2.03E-03	4.64E-04	2.03E-03		
Chrysene	6.93E-07	1.13E-05	4.95E-05	1.13E-05	4.95E-05		
Ethylbenzene	3.97E-05	6.47E-04	2.83E-03	6.47E-04	2.83E-03		
Ethylene Dibromide	4.43E-05	7.22E-04	3.16E-03	7.22E-04	3.16E-03		
Flouranthene	1.11E-06	1.81E-05	7.92E-05	1.81E-05	7.92E-05		
Flourene	5.67E-06	9.24E-05	4.05E-04	9.24E-05	4.05E-04		
Formaldehyde	engine specific	0.14	0.60	0.64	2.79		
Indeno(1,2,3-c,d)pyrene	-				-		
Methanol	2.50E-03	0.04	0.18	0.04	0.18		
Methylene Chloride	2.00E-05	3.26E-04	1.43E-03	3.26E-04	1.43E-03		
n-Hexane	1.11E-03	0.02	0.08	0.02	0.08		
Naphthalene	7.44E-05	1.21E-03	0.01	1.21E-03	0.01		
PAH	2.69E-05	4.38E-04	1.92E-03	4.38E-04	1.92E-03		
Perylene					-		
Phenanthrene	1.04E-05	1.69E-04	7.42E-04	1.69E-04	7.42E-04		
Phenol	2.40E-05	3.91E-04	1.71E-03	3.91E-04	1.71E-03		
Pyrene	1.36E-06	2.22E-05	9.71E-05	2.22E-05	9.71E-05		
Styrene	2.36E-05	3.85E-04	1.68E-03	3.85E-04	1.68E-03		
Tetrachloroethane	2.48E-06	4.04E-05	1.77E-04	4.04E-05	1.77E-04		
Toluene	4.08E-04	0.01	0.03	0.01	0.03		
Vinyl Chloride	1.49E-05	2.43E-04	1.06E-03	2.43E-04	1.06E-03		
Xvlene	1.84E-04	3.00E-03	0.01	3.00E-03	0.01		
Total HAPs Minus HCOH		0.14	0.63	0.32	1.38		
Total HAP		0.28	1.23	0.95	4.18		

2 Stroke Lean- Burn				
AP-42 Table 3.2-1 Emission Factor (lb/MMBtu)	AP-42 Table 3.2-2 Emission Factor (lb/MMBtu)	AP-42 Table 3.2- 3 Emission Facto (lb/MMBtu)		
6.63E-05	4.00E-05	2.53E-05		
5.27E-05	3.18E-05	1.53E-05		
8.20E-04	2.67E-04	6.63E-04		
4.38E-05	2.64E-05	1.27E-05		
8.46E-04				
2.14E-05	3.32E-05			
	2.50E-04			
1.33E-06	1.25E-06			
3.17E-06	5.53E-06			
7.76E-03	8.36E-03	2.79E-03		
7.78E-03	5.14E-03	2.63E-03		
7.18E-07				
3.36E-07				
1.94E-03	4.40E-04	1.58E-03		
5.68E-09				
8.51E-09	1.66E-07			
2.34E-08	4.15E-07			
2.48E-08	4.14E-07			
4.26E-09				
3.95E-06	2.12E-04			
6.07E-05	3.67E-05	1.77E-05		
4.44E-05	3.04E-05	1.29E-05		
4.71E-05	2.85E-05	1.37E-05		
6.72E-07	6.93E-07			
1.08E-04	3.97E-05	2.48E-05		
7.34E-05	4.43E-05	2.13E-05		
3.61E-07	1.11E-06			
1.69E-06	5.67E-06			
5.52E-02	5.28E-02	2.05E-02		
9.93E-09				
2.48E-03	2.50E-03	3.06E-03		
1.47E-04	2.00E-05	4.12E-05		
4.45E-04	1.11E-03			
9.63E-05	7.44E-05	9.71E-05		
1.34E-04	2.69E-05	1.41E-04		
4.97E-09				
3.53E-06	1.04E-05			
4.21E-05	2.40E-05			
5.84E-07	1.36E-06			
5.48E-05	2.36E-05	1.19E-05		
	2.48E-06			
9.63E-04	4.08E-04	5.58E-04		
2.47E-05	1.49E-05	7.18E-06		
2.68E-04	1.84E-04	1.95E-04		

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Natural Gas-Fired Compressor Engine

EMISSION POINT ID: CE-8 to CE-12

		2 stroke, lean-burn engine		Table 3.2-3										
	If available, enter the test	emission factors (Ib/MMBtu)		4 stroke, rich						If present, enter				
	results or manufacturer's		burn engine	burn engine							If present, enter			
	emission factors before		emission	emission						any control	the controlled			
	control		factors	factors	appropriate	emission		Uncontrolled	Uncontrolled		emission factor			
	(g/hp-hr)		(lb/MMBtu)	(lb/MMBtu)	AP-42 factor	factor used	units	lb/hr	tpy	(as a %)	(as g/hp-hr)	used	lb/hr	tpy
VOC	0.43	0.12	0.118	0.0296	0.118	0.43	g/hp-hr	1.308	5.730	41.86	0.25	41.9	0.96	4.23
NOx	0.5	3.17	4.08	2.21	4.08	0.5	g/hp-hr	1.521	6.663		0.5	0.5	1.52	6.66
co	2.02	0.386	0.317	3.72	0.317	2.02	g/hp-hr	6.146	26.918	87.62	0.25	87.6	0.76	3.33
PM ₁₀	5	0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.113	0.494			0	0.11	0.49
PM2.5	5	0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.113	0.494			0	0.11	0.49
SO ₂												0	0.008	0.03
Formaldehyde	0.42	0.0552	0.0528	0.0205	0.0528	0.42	g/hp-hr	1.278	5.597	85.71	0.06	85.7	0.18	0.80
Benzene		0.00194	0.000404	0.00158	0.000404	0.000404	lb/MMBtu	0.005	0.020			0	0.005	0.02
Methane					0.0001	0.0001	lb/MMBtu	0.001	0.005				0.001	0.005
CO2											456	456	1,387.33	6,076.51
N2O					0.0001	0.0001	lb/MMBtu	0.001	0.005				0.001	0.00
Enter any notes here:	* Uncontrolled factors were	obtained from the manufactur	rer and control	led factors wer	e selected for ope	rational flexibili	ty. The VOC co	ntrol factor was a	applied to all HAPs	except formaldel	hyde which has it	s own control eff	iciency and acetal	dehyde and
	acrolein which utilize the fo	rmaldebyde control efficiency	Fuel is not se	our used consi	protive 5 npm H2	S fuel ras as fue	al in lieu of AP.	42 factors						

Uncontrolled factors were obtained from the manufacturer and controlled factors were selected for operational flexibility. The VOC control factor was applied to all HAPs, except formaldehyde which has its own control efficiency and ace rolein which utilize the formaldehyde control efficiency. Fuel is not sour, used conservative 5 ppm H2S fuel gas as fuel in lieu of AP-42 factors.

$$\label{eq:constraints} \begin{split} & \textbf{Calculation:} \\ & For emission flactors in terms of glip-her: \\ & (glinusion flactor) * (Honepower) / (Conversion flactor) \\ & (glip hep) * (kp) / (45.35 gg (h)) \\ & For emission flactors in terms of HoMBBin: \\ & (Emission flactors) * (Fuel Consumption) * (Honepower) * (Conversion flactor) \\ & ((hoMBBin) * (Glip hep) * (Kp) + (MoBBin / MoBBin) * (Honepower) * (Conversion flactor) \\ & (hoMBBin) * (Glip hep) * (Kp) + (MoBBin / MoBBin) * (Honepower) * (Conversion flactor) \\ & (hoMBBin) * (Glip hep) * (Kp) + (MoBBin / MoBBin) * (Honepower) * (Conversion flactor) \\ & (hoMBBin) * (Glip hep) * (Kp) + (MoBBin / MoBBin) * (Kp) + ($$

HAP Emission Calculations

	4 Stroke Lean-Burn	Engines CE-8	- CE-12	Engines CE-8 - CE-12			
Pollutant	AP-42 Table 3.2-2 Emission Factor (lb/MMBtu)	Emissions lb/hr	Emissions tpy	UC Emissions lb/hr	UC Emissions tpy		
1,1,2,2-Tetrachloroethane	4.00E-05	2.63E-04	1.15E-03	4.52E-04	1.98E-03		
1,1,2-Trichloroethane	3.18E-05	2.09E-04	9.14E-04	3.59E-04	1.57E-03		
1,3-Butadiene	2.67E-04	1.75E-03	0.01	3.01E-03	0.01		
1,3-Dichloropropene	2.64E-05	1.73E-04	7.59E-04	2.98E-04	1.31E-03		
2,2,4-Trimethylbenzne							
2-Methylnaphthalene	3.32E-05	2.18E-04	9.55E-04	3.75E-04	1.64E-03		
2,2,4-Trimethylpentane	2.50E-04	1.64E-03	0.01	2.82E-03	0.01		
Acenaphthene	1.25E-06	8.21E-06	3.59E-05	1.41E-05	6.18E-05		
Acenaphthylene	5.53E-06	3.63E-05	1.59E-04	6.24E-05	2.73E-04		
Acetaldehyde	0.01	0.01	0.06	0.09	0.41		
Acrolein	0.01	0.01	0.04	0.06	0.25		
Anthracene							
Benz(a)anthracene							
Benzene	4.40E-04	2.89E-03	0.01	4.97E-03	0.02		
Benzo(a)pyrene							
Benzo(b)flouanthene	1.66E-07	1.09E-06	4.77E-06	1.87E-06	8.21E-06		
Benzo(e)pyrene	4.15E-07	2.72E-06	1.19E-05	4.69E-06	2.05E-05		
Benzo(g,h,i)perylene	4.14E-07	2.72E-06	1.19E-05	4.67E-06	2.05E-05		
Benzo(k)fluoranthene							
Biphenyl	2.12E-04	1.39E-03	0.01	2.39E-03	0.01		
Carbon Tetrachloride	3.67E-05	2.41E-04	1.06E-03	4.14E-04	1.82E-03		
Chlorobenzene	3.04E-05	2.00E-04	8.74E-04	3.43E-04	1.50E-03		
Chloroform	2.85E-05	1.87E-04	8.19E-04	3.22E-04	1.41E-03		
Chrysene	6.93E-07	4.55E-06	1.99E-05	7.82E-06	3.43E-05		
Ethylbenzene	3.97E-05	2.61E-04	1.14E-03	4.48E-04	1.96E-03		
Ethylene Dibromide	4.43E-05	2.91E-04	1.27E-03	5.00E-04	2.19E-03		
Flouranthene	1.11E-06	7.29E-06	3.19E-05	1.25E-05	5.49E-05		
Flourene	5.67E-06	3.72E-05	1.63E-04	6.40E-05	2.80E-04		
Formaldehvde	engine specific	0.18	0.80	1.28	5.60		
Indeno(1,2,3-c,d)pyrene		-					
Methanol	2.50E-03	0.02	0.07	0.03	0.12		
Methylene Chloride	2.00E-05	1.31E-04	5.75E-04	2.26E-04	9.89E-04		
n-Hexane	1.11E-03	0.01	0.03	0.01	0.05		
Naphthalene	7.44E-05	4.88E-04	2.14E-03	8.40E-04	3.68E-03		
PAH	2.69E-05	1.77E-04	7.73E-04	3.04E-04	1.33E-03		
Pervlene		-	7.752-04	5.04104	1.552-65		
Phenanthrene	1.04E-05	6.83E-05	2.99E-04	1.17E-04	5.14E-04		
Phenol	2.40E-05	1.58E-04	6.90E-04	2.71E-04	1.19E-03		
Pyrene	1.36E-06	8.93E-06	3.91E-05	1.54E-05	6.73E-05		
Styrene	2.36E-05	1.55E-04	6.79E-04	2.66E-04	1.17E-03		
Styrene Tetrachloroethane	2.36E-05 2.48E-06	1.63E-04	6.79E-04 7.13E-05	2.80E-04	1.23E-04		
Toluene	2.48E-00 4.08E-04	2.68E-03	0.01	2.80E-03 4.61E-03	0.02		
Vinvl Chloride	4.08E-04 1.49E-05	2.68E-05	4.28E-04	4.61E-03	7.37E-04		
Vinyi Chioride Xvlene	1.49E-05	9.78E-03	9.28E-04	2.08E-03	0.01		
Total HAPs Minus HCOH	1.040.404	0.06	0.01	0.22	0.01		
Total HAP		0.00	1.06	1.50	6.56		
I otal HAP	1	0.24	1.06	1.50	6.56		

2 Stroke Lean- Burn	4 Stroke Lean- Burn	4 Stroke Rich- Burn		
	AP-42 Table 3.2-2			
Emission Factor (lb/MMBtu)	Emission Factor (lb/MMBtu)	3 Emission Factor (lb/MMBtu)		
6.63E-05	4.00E-05	2.53E-05		
5.27E-05	3.18E-05	1.53E-05		
8.20E-04	2.67E-04	6.63E-04		
4.38E-05	2.64E-05	1.27E-05		
8.46E-04				
2.14E-05	3.32E-05			
	2.50E-04			
1.33E-06	1.25E-06			
3.17E-06	5.53E-06			
7.76E-03	8.36E-03	2.79E-03		
7.78E-03	5.14E-03	2.63E-03		
7.18E-07				
3.36E-07				
1.94E-03	4.40E-04	1.58E-03		
5.68E-09				
8.51E-09	1.66E-07			
2.34E-08	4.15E-07			
2.48E-08	4.14E-07			
4.26E-09				
3.95E-06	2.12E-04			
6.07E-05	3.67E-05	1.77E-05		
4.44E-05	3.04E-05	1.29E-05		
4.71E-05	2.85E-05	1.37E-05		
6.72E-07	6.93E-07			
1.08E-04	3.97E-05	2.48E-05		
7.34E-05	4.43E-05	2.13E-05		
3.61E-07	1.11E-06			
1.69E-06	5.67E-06			
5.52E-02	5.28E-02	2.05E-02		
9.93E-09				
2.48E-03	2.50E-03	3.06E-03		
1.47E-04	2.00E-05	4.12E-05		
4.45E-04	1.11E-03			
9.63E-05	7.44E-05	9.71E-05		
1.34E-04	2.69E-05	1.41E-04		
4.97E-09				
3.53E-06	1.04E-05			
4.21E-05	2.40E-05			
5.84E-07	1.36E-06	_		
5.48E-05	2.36E-05	1.19E-05		
	2.48E-06	_		
9.63E-04	4.08E-04	5.58E-04		
2.47E-05	1.49E-05	7.18E-06		
2.68E-04	1.84E-04	1.95E-04		

Northwind Midstream Partners LLC Titan Treater Plant Plant #2 Natural Gas-Fired Turbines

EMISSION POINT ID: TURB-1 - TURB-6

** Note: TURB-6 is a backup to the other turbines. Only 5 may be operated at a time.

Turbine Stack Parar	neters
Stack height (feet)	20.0
Stack diameter (feet)	3.0
Stack Temperature (°F)	1000
Exit Velocity (fps)	98
Exhaust Flow (cfm)	41732

Background Information:

Turbine Data	
Manufacturer	Solar
Model ¹	T-60
Horsepower (hp)	6,370.0
Power (kW)	4,750
Fuel Consumption (Btu/hp-hr)	8,488
Method of emission control	SOLONOx
Hours of operation per year	8,760
Fuel Data	
Fuel type	Natural Gas
HHV (btu/scf)	1,219.9
Constants and Conversion Factors	
Horsepower per kilowatt (hp/kW)	1.3410
Grams per pound (g/lb)	453.59
SO ₂ MW (lb/lb-mole)	64.06
Elemental Sulfur MW (lb/lb-mole)	32.066
TI	11. O

There will be six (6) Solar T60 Turbines on site. One will be utilized as a spare. All six will never operate at the same time at the same time.

Manufacture Emission Factors

Pollutant	Uncontrolled Emission Factor (lb/MMbtu)	Percent Reduction by Emission Control Device	Controlled Emission Factor (lb/MMbtu)	
NOx	0.0550	0%	0.0550	
со	0.0650	0%	0.0650	
VOC (NMHC)	0.0322	0%	0.0322	

Equations used:

A. (Uncontrolled Emission Factor, g/hp-hr) = (Uncontrolled Emission Factor (g/kW-hr) / (1.341 hp/kW)

B. (Controlled Emission Factor, g/hp-hr) = (Uncontrolled Emission Factor, g/hp-hr) * (100% - Control Efficiency, %)

C. (Controlled Emission Factor, lb/MMBtu) = (Controlled Emission Factor, g/hp-hr) x (1,000,000 Btu/MMBtu) / (Fuel Consumption, Btu/hp-hr) / (453.5924 g/lb)

Emission Calculations:

	Emission Factor (g/hp-hr)/		Engine Emissions (per engine)	
Pollutants	(lb/Mmbtu)	Source of Emission Factor	lb/hr	tpy
VOC	0.0322	Manuf. Specs	1.74	7.63
NO _x	0.0550	Manuf. Specs	2.97	13.03
CO	0.0650	Manuf. Specs	3.51	15.39
PM	6.30E-03	AP-42	0.34	1.49
PM ₁₀	6.30E-03	AP-42	0.34	1.49
PM _{2.5}	6.30E-03	AP-42	0.34	1.49
SO ₂	4.50E-05	AP-42	2.43E-03	0.01
METHANE	2.21E-03	40 CFR 98	0.12	0.52
CO2	117.00	40 CFR 98	6326.10	27708.32
N2O	2.21E-04	40 CFR 98	0.01	0.05
	Emission			
HAPs	Factor (lb/MMBtu)	Source of Emission Factor ¹	lb/hr	tpy
Total HAP			0.05	0.23
1,3-Butadiene	4.30E-07	AP-42	2.33E-05	1.02E-04
Acetaldehyde	4.00E-05	AP-42	2.16E-03	9.47E-03
Acrolein	6.40E-06	AP-42	3.46E-04	1.52E-03
Benzene	1.20E-05	AP-42	6.49E-04	2.84E-03
Formaldehyde	7.10E-04	AP-42	0	0.17
Naphthalene	1.30E-06	AP-42	7.03E-05	3.08E-04
PAH	2.20E-06	AP-42	1.19E-04	5.21E-04
Toluene	1.30E-04	AP-42	7.03E-03	0.03
Xylenes	6.40E-05	AP-42	3.46E-03	0.02

¹AP-42 emission factors from AP-42, Table3.1-2a, 3.1-2b and 3.1-3 (AP-42, Section 3.1 Stationary Gas Turbines)

Equations used:

1. (Pollutant Emissions, lb/hr) = (Pollutant Emission Factor, lb/MMBtu) x (Turbine Horsepower, hp) x (Fuel Consumption, Btu/hp-hr) / (1,000,000 Btu/MMBtu)

2. (Pollutant Emissions, tpy) = (Pollutant Emissions, lb/hr) x (Hours of Operation per Year, hr/yr) / (2,000 lb/ton)

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Fugitive Emissions

EMISSION POINT: FUG

Emissions Estimate

Liquid Equipment/Service	Oil and Gas Production Operations Emission Factor ^a (Light Oil)	Oil and Gas Production Operations Emission Factor ^a (Gas)	Oil and Gas Production Operations Emission Factor ^a (Water/Oil)	Oil and Gas Production Operations Emission Factor ^a (Heavy Oil)	# Light Oil Components	# Gas Components	# Water/Oil Components	# Heavy Oil Components ^a	Reduction Factor ^b	Light Oil Service Hourly Emissions ^c	Gas Service Hourly Emissions ^d	Oil/Water Service Hourly Emissions ^d	Heavy Oil Service Hourly Emissions ^d
	(lb/hr/component)	(lb/hr/component)	(lb/hr/component)	(lb/hr/component)						(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Connectors	0.000463	0.00044	0.000243	0.0000165	2640	5680		1630		1.22	2.50	0.00	0.03
Valves	0.0055	0.00992	0.000216	0.0000185	828	1360		515		4.55	13.49	0.00	0.01
Flanges	0.000243	0.00086	0.000006	0.0000086	840	2080		309		0.20	1.79	0.00	0.00
Pump Seals	0.02866	0.00529	0.000052	0.00113	38	0		18		1.09	0.00	0.00	0.02
Other	0.0165	0.0194	0.0309	0.0000683	24	69		18		0.40	1.34	0.00	0.00
Totals TOC										7.47	19.12	0.00	0.06

^a Emission factors have been obtained from the TCEQ's website (Emissions Factors for Equipment Leak Fugitive Components; Addendum to RG-360, Table 4). Per Table 2-4, water streams greater than 99% water is considered negligible and those components are not included.

^b If applicable, emission reductions for LDAR28MID obtained from APDG 6422V2. For flanges and connectors, all service types claim reductions. For valves, gas and light oil use 97%. For pumps, only light oil service claims a reduction.

^c Controlled Short-Term ER (lb/hr) = (100% - Reduction Factor) *2(Number of Components * Emissions Factor [lb/hr/component]).

^d Controlled Annual ER (tpy) = Controlled Short-Term ER (lb/hr) * 8,760 (hr/yr) / 2,000 (lb/ton).

Speciated Fugitve Emissions

	Light Oil ^a	Light Oil ^a	Gas ^b	Gas ^b	Oil/Water ^c	Oil/Water ^c	Total	Total
Component	(lb/hr)	(ton/year)	(lb/hr)	(ton/year)	(lb/hr)	(ton/year)	(lb/hr)	(ton/year)
H2S	7.07E-09	3.09E-08	0.61	2.67	1.10E-03	4.81E-03	0.61	2.68
H2O	8.23E-17	3.61E-16			6.36E-04	2.79E-03	6.36E-04	2.79E-03
TEG	1.12E-14	4.92E-14			1.26E-14	5.54E-14	2.39E-14	1.05E-13
N2			0.42	1.84	1.23E-06	5.40E-06	0.42	1.84
CO2	2.10E-11	9.21E-11	3.55	15.53	1.18E-03	0.01	3.55	15.53
Methane	3.87E-14	1.70E-13	8.65	37.88	1.72E-04	7.54E-04	8.65	37.88
Ethane	1.96E-08	8.57E-08	3.49	15.30	2.03E-03	0.01	3.50	15.31
Propane	4.71E-05	2.06E-04	3.05	13.34	0.01	0.05	3.06	13.39
Isobutane	4.61E-03	0.02	0.53	2.32	4.87E-03	0.02	0.54	2.36
n-Butane	0.09	0.42	1.36	5.97	0.02	0.07	1.47	6.45
Isopentane	2.30	10.08	0.47	2.08	0.01	0.04	2.78	12.19
n-Pentane	2.92	12.77	0.46	2.00	0.01	0.03	3.38	14.81
i-Hexane	1.33	5.82	0.34	1.50	4.25E-03	0.02	1.68	7.34
Heptane	0.19	0.83	0.23	1.00	1.15E-03	0.01	0.42	1.83
Octane	0.03	0.15	0.15	0.67	2.87E-04	1.26E-03	0.19	0.83
Nonane	1.89E-03	0.01	0.03	0.14	2.02E-05	8.86E-05	0.03	0.15
n-Decane	1.71E-04	7.47E-04	0.01	0.05	2.18E-06	9.53E-06	0.01	0.05
n-Hexane	0.38	1.69	0.14	0.60	1.44E-03	0.01	0.52	2.29
Benzene	0.17	0.73	0.10	0.42	7.44E-04	3.26E-03	0.26	1.16
Toluene	0.04	0.17	0.08	0.33	3.19E-04	1.40E-03	0.12	0.51
Ethylbenzene	1.83E-03	0.01	0.01	0.05	1.95E-05	8.53E-05	0.01	0.06
o-Xylene	2.03E-03	0.01	0.02	0.08	2.58E-05	1.13E-04	0.02	0.09
MDEA	1.41E-09	6.19E-09			1.97E-07	8.63E-07	1.98E-07	8.69E-07
Piperazine	1.99E-10	8.71E-10			4.12E-10	1.80E-09	6.11E-10	2.67E-09
Total	7.47	32.70	23.69	103.77	0.06	0.27	31.22	136.74
Total TOC	7.47	32.70	19.12	83.74	0.06	0.26	26.64	116.69
Percent VOC in TOC	1.00	1.00	0.36	0.36	0.96	0.96	0.54	0.54
VOC	7.47	32.70	6.97	30.55	0.06	0.25	14.50	63.49
Total HAP	0.60	2.61	0.34	1.48	2.55E-03	0.01	0.94	4.10

 Light Oil TOC wt%
 100.00
 Condensate Emissions P2

 Gas TOC wt%
 80.69
 Site Inlet P2

 Oil/Water TOC wt%
 95.24
 Slop Tank Emissions P2

^aLight Oil Speciated Fugitive Emissions Composition obtained from NGL Stream.

^b Gas Speciated Fugitive Emissions Composition obtained from gas stream exiting the inlet slug catcher.

^c Water/Oil Speciated Fugitive Emissions Composition obtained from Slop Oil inlet stream.

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Slop Tanks

SOURCE: TK-1, TK-2

Identification - Verti	ical Fixed Roof Tanks	
	Tank ID	TK-1, TK-2
	Throughput (BPD)	454.5
	Throughput (BPY)	165,875
Tank Dimensions		
	Shell Height (ft)	20.0
	Diameter (ft)	12.0
	Volume (gal)	16,800
	Turnovers ^a	484.34
	Net Throughput (gal/yr)	6,966,755
Other Inputs		
	Shell & Roof Color/Shade	Tan
	Shell & Roof Condition	Tan
	Meteorological Data	Midland/Odessa
Tank Contents		
	Liquid TVP ^b	11.8
	Water, Mole %	99.6%
Total Uncontrolled	Tank VOC Emissions	
	VOC Working & Breathing Losses (ton/yr) ^b	24.44
	VOC Flashing Losses (ton/yr) ^b	274.01
	Total Uncontrolled VOC Losses (ton/yr) ^b	298.45
Tank Collection Effi	ciency	
	Collection Efficiency ^c	100%
Tank Control		
	VRU Uptime	98%

NSPS 0000/000	Jou'd Litaluation			
# of Tanks	2			
Event	VOC Rate (tpy)			
Tank Emissions	298.45			
Controlled by VRUs				
VRU Downtime	5.97			
Total Emissions	304.41			
Emissions Per Tank	152.21			
Per Tank Threshold 6.00				

^a Turnovers calculated using equation 1-30 of AP-42, Chapter 7, assuming a maximum fill height of 90% of the tank shell height.

^b From Promax AP-42 Emissions Report - Maximum value.

^c Tank vapors are routed to redundant vapor recovery units for 98% of the year.

Uncontrolled Speciated Slop Tanks Emissions

	Ho	ourly Emissions, lb/h	r	Annual Emissions, TPY				
Component	Working & Standing	Flash	Total	Working & Standing	Flash	Total		
H2S	0.18	1.15	1.33	0.80	5.04	5.85		
H2O	0.09	0.68	0.77	0.41	2.98	3.39		
TEG	1.24E-12	1.41E-11	1.54E-11	5.45E-12	6.18E-11	6.73E-11		
N2	5.04E-06	1.49E-03	1.50E-03	2.21E-05	0.01	0.01		
02	0.17	1.26	1.43	0.75	5.53	6.27		
Methane	1.50E-03	0.21	0.21	0.01	0.91	0.92		
Ethane	0.03	2.44	2.47	0.15	10.67	10.82		
Propane	0.28	12.91	13.19	1.24	56.55	57.79		
sobutane	0.26	5.66	5.92	1.15	24.78	25.94		
n-Butane	1.24	18.40	19.64	5.43	80.61	86.04		
sopentane	1.34	8.92	10.26	5.88	39.05	44.93		
n-Pentane	1.18	7.90	9.08	5.17	34.62	39.79		
-Hexane	0.66	4.51	5.17	2.90	19.74	22.64		
Heptane	0.17	1.22	1.40	0.76	5.36	6.12		
Octane	0.04	0.31	0.35	0.18	1.35	1.53		
Nonane	2.90E-03	0.02	0.02	0.01	0.09	0.11		
n-Decane	3.05E-04	2.34E-03	2.65E-03	1.34E-03	0.01	0.01		
n-Hexane	0.22	1.53	1.75	0.97	6.69	7.66		
Benzene	0.12	0.79	0.90	0.51	3.45	3.96		
Foluene	0.05	0.34	0.39	0.21	1.48	1.70		
Ethylbenzene	2.87E-03	0.02	0.02	0.01	0.09	0.10		
-Xylene	3.79E-03	0.03	0.03	0.02	0.12	0.14		
MDEA	3.39E-05	2.06E-04	2.39E-04	1.49E-04	9.00E-04	1.05E-03		
Piperazine	4.67E-08	4.54E-07	5.01E-07	2.04E-07	1.99E-06	2.19E-06		
Fotal	6.06	68.30	74.36	26.55	299.14	325.69		
VOC	5.58	62.56	68.14	24.44	274.01	298.45		
Fotal HAP	0.39	2.70	3.10	1.72	11.84	13.56		

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 **Triazine Tanks**

SOURCE: TKTRI

Identification - V	ertical Fixed Roof Tanks	
	Tank ID	TKRI
	Throughput (BPD)	200.0
	Throughput (BPY)	73,000
Tank Dimensions	s	
	Shell Height (ft)	20.0
	Diameter (ft)	12.0
	Volume (gal)	16,800
	Turnovers ^a	213.15
	Net Throughput (gal/yr)	3,065,998
Other Inputs		
	Shell & Roof Color/Shade	Tan
	Shell & Roof Condition	Tan
	Meteorological Data	Midland/Odessa
Tank Contents	•	
	Liquid TVP ^b	12.4
Total Uncontroll	ed Tank VOC Emissions	
	VOC Working & Breathing Losses (ton/yr) ^b	0.07
	VOC Flashing Losses (ton/yr) ^b	0.90
	Total Uncontrolled VOC Losses (ton/yr) ^b	0.97
Tank Collection	Efficiency	
	Collection Efficiency	0%
Tank Control		
	No Control	0%

NSPS OOOO/OOOOa/b Evaluation				
# of Tanks	2			
Event	VOC Rate (tpy)			
Tank Emissions	0.97			
Controlled by VRUs				
VRU Downtime				
Total Emissions	0.97			
Emissions Per Tank	0.49			
Per Tank Threshold	6.00			

Threshold obtained from 60.5365(e) and 60.5365a(e).

^a Turnovers calculated using equation 1-30 of AP-42, Chapter 7, assuming a maximum fill height of 90% of the tank shell height.
 ^b From Promax AP-42 Emissions Report - Maximum value.

	Но	urly Emissions, lb/h	r	Annual Emissions, TPY				
Component	Working & Standing	Flash	Total	Working & Standing	Flash	Total		
H2S	8.10E-06	1.51E-05	2.32E-05	3.55E-05	6.61E-05	1.02E-04		
H2O	0.04	0.10	0.14	0.20	0.44	0.63		
TEG								
N2	4.69E-04	0.04	0.04	2.05E-03	0.18	0.18		
CO2	0.84	1.55	2.39	3.69	6.79	10.48		
Methane	0.05	1.58	1.63	0.23	6.90	7.13		
Ethane	0.03	0.34	0.37	0.12	1.49	1.61		
Propane	0.01	0.14	0.16	0.05	0.63	0.68		
Isobutane	7.63E-04	0.01	0.01	3.34E-03	0.05	0.06		
n-Butane	3.62E-03	0.04	0.04	0.02	0.17	0.19		
Isopentane	2.85E-04	3.61E-03	3.90E-03	1.25E-03	0.02	0.02		
n-Pentane	1.68E-04	3.90E-03	4.06E-03	7.37E-04	0.02	0.02		
i-Hexane								
Heptane	3.82E-06	1.11E-04	1.15E-04	1.67E-05	4.88E-04	5.05E-04		
Octane								
Nonane								
n-Decane								
n-Hexane								
Benzene	3.92E-05	7.91E-05	1.18E-04	1.72E-04	3.46E-04	5.18E-04		
Toluene								
Ethylbenzene	7.66E-04	1.58E-03	2.34E-03	3.36E-03	0.01	0.01		
o-Xylene	1.57E-04	3.24E-04	4.81E-04	6.89E-04	1.42E-03	2.11E-03		
Triazine, MEA	3.27E-15	1.81E-14	2.14E-14	1.43E-14	7.95E-14	9.38E-14		
Piperazine	1.60E-11	4.66E-11	6.26E-11	7.01E-11	2.04E-10	2.74E-10		
Total	0.98	3.81	4.80	4.30	16.71	21.01		
VOC	0.02	0.21	0.22	0.07	0.90	0.97		
Total HAP	9.63E-04	1.98E-03	2.94E-03	4.22E-03	0.01	0.01		

Uncontrolled Speciated Tanks Emissions

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 **Condensate Tanks**

SOURCE: TK-3 TO TK-6

Identification - Vertica	al Fixed Roof Tanks	
ruentineation - vertie	Tank ID	TK-3 to TK-6
	Throughput (BPD)	4,104.6
	Throughput (BPY)	1,498,184
Tank Dimensions		
	Shell Height (ft)	30.0
	Diameter (ft)	15.5
	Volume (gal)	31,500
	Turnovers ^a	1,714.39
	Net Throughput (gal/yr)	62,923,714
Other Inputs		
	Shell & Roof Color/Shade	Tan
	Shell & Roof Condition	Tan
	Meteorological Data	Midland/Odessa
Tank Contents		
	Liquid TVP ^b	4.3
	Water, Mole %	0.0%
Total Uncontrolled Ta	nk VOC Emissions	
	VOC Working & Breathing Losses (ton/yr) ^b	61.38
	VOC Flashing Losses (ton/yr) ^b	0.00
	Total Uncontrolled VOC Losses (ton/yr) ^b	61.38
Tank Collection Effici	ency	
	Collection Efficiency ^c	100%
Tank Control		
	VRU Uptime	98%
1 m + + + +		au

20.2.50 Applicability		
# of Tanks	4	
Event	VOC Rate (tpy)	
Tank Emissions	61.38	
Controlled by VRUs		
VRU Downtime	1.23	
Total Emissions	62.61	
Emissions Per Tank	15.65	
Per Tank Threshold	6.00	
Threshold obtained from 60.5365(e) and 60.5365a(e).		

^a Turnovers calculated using equation 1-30 of AP-42, Chapter 7, assuming a maximum fill height of 90% of the tank shell height.

^b From Promax AP-42 Emissions Report - Maximum value.

^c Tank vapors are routed to vapor recovery for 98% of the year.

Uncontrolled Speciated Condensate Tanks Emissions

	Hou	rly Emissions, lb/	hr		Annual Emissions, TP	Y
Component Working &	Working & Standing	Flash	Total	Working & Standing	Flash	Total
H2S	1.33E-08		1.33E-08	5.81E-08		5.81E-08
H2O	1.55E-16		1.55E-16	6.77E-16		6.77E-16
TEG	2.11E-14		2.11E-14	9.24E-14		9.24E-14
N2						
CO2	3.94E-11		3.94E-11	1.73E-10		1.73E-10
Methane	7.27E-14		7.27E-14	3.18E-13		3.18E-13
Ethane	3.67E-08		3.67E-08	1.61E-07		1.61E-07
Propane	8.84E-05		8.84E-05	3.87E-04		3.87E-04
Isobutane	0.01		0.01	0.04		0.04
n-Butane	0.18		0.18	0.78		0.78
Isopentane	4.32		4.32	18.91		18.91
n-Pentane	5.47		5.47	23.98		23.98
i-Hexane	2.49		2.49	10.92		10.92
Heptane	0.36		0.36	1.56		1.56
Octane	0.06		0.06	0.28		0.28
Nonane	3.55E-03		3.55E-03	0.02		0.02
n-Decane	3.20E-04		3.20E-04	1.40E-03		1.40E-03
n-Hexane	0.72		0.72	3.17		3.17
Benzene	0.31		0.31	1.37		1.37
Toluene	0.07		0.07	0.32		0.32
Ethylbenzene	3.43E-03		3.43E-03	0.02		0.02
o-Xylene	3.81E-03		3.81E-03	0.02		0.02
MDEA	2.65E-09		2.65E-09	1.16E-08		1.16E-08
Piperazine	3.73E-10		3.73E-10	1.63E-09		1.63E-09
Total	14.01		14.01	61.38		61.38
VOC	14.01		14.01	61.38		61.38
Total HAP	1.12		1.12	4.89		4.89

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Slop Loading

EMISSION POINT: LOAD-1

Hourly		
Saturation Factor, S ^b	0.6	
Number of Loading Arms	1	
Produced Water Reduction (%) ^g	99%	
Max True Vapor Pressure, P ^a (psia)	13.260	
Molecular Weight of Vapors, M ^a (lb/lb-mol)	55.0	
Max Temp of Loaded Liquid ^a , T (°F)	95.00	
Emission Factor ^b (lb/10 ³ gal)	9.83	
Estimated Hourly Throughput ^c (gal/hr)	8,000	
Total Uncontrolled Hourly Emissions ^d (lb/hr)	0.79	
Collection Efficiency (%)	0.0%	
Loading Fugitive Hourly Emissions ^e (lb/hr)	0.79	
Maximum Hourly Gas to Control Device ^f		

Annual Saturation Factor, S ^b	0.6
Number of Loading Arms	1
Produced Water Reduction (%) ²	99%
True Vapor Pressure, P ^a (psia)	11.753
Molecular Weight of Vapors, M ^a (lb/lb-mol)	55.0
Temp of Loaded Liquid ^a , T (°F)	65.32
Emission Factor ^b (lb/10 ³ gal)	9.21
Estimated Annual Throughput ^c (gal/yr)	6,832,914
Total Uncontrolled Annual Emissions ^d (tpy)	0.31
Collection Efficiency (%)	0.0%
Loading Fugitive Annual Emissions (tpy)	0.31
Maximum Annual Gas to Control Device ^f (tpy)	

^a Estimated by ProMax.
 ^b Per AP-42, 5th Edition (6/08), Section 5.2, Equation 1 Emission Factor (lb/10³gal) =

<u>S x P x M x 12.46</u> T+460

I + 460

Saturation Factor = 0.6

Assumes liquid can be loaded at a maximum of 8,000 gal/hour per truck. Annual rates are based on production rate.

Assumes liquid can be loaded at a maximum of 8,000 gal/hour per truck. Annual rates are based on production rate.

Emissions (libhr) = Hourty Throughput (gal/ho)/ 1000 x Emission Factor (lib f) gal)

A Loading Fugures Temissions (libhr) = Uncontrolled Hourly Emissions (libhr) x (0% - 0% control efficiency)

Maximum Hourly to Control (libhr) = Uncontrolled Hourly Emissions (libhr) x 0% control efficiency.

Maximum Hourly to Control (libhr) = Uncontrolled Hourly Emissions (libhr) x 0% control efficiency.

I applicable, percent Reduction for Produced Water Tank Cale. as Oil/Cond. Tank calculated using condensate properties with a produced water throughput.

Component	lb/hr	ton/year
•	Slop Load	Slop Load
Promax Stream Name	Composition P2	Composition P2
H2S	0.036	0.015
H2O	0.03	0.01
TEG	3.44E-13	1.37E-13
N2		
CO2		
Methane		
Ethane		
Propane		
Isobutane		
n-Butane		
Isopentane	0.02	0.01
n-Pentane	0.18	0.07
i-Hexane	0.25	0.10
Heptane	0.09	0.03
Octane	0.02	0.01
Nonane	1.55E-03	6.20E-04
n-Decane	1.53E-04	6.13E-05
n-Hexane	0.09	0.04
Benzene	0.04	0.02
Toluene	0.02	0.01
Ethylbenzene	1.32E-03	5.27E-04
o-Xylene	1.73E-03	6.93E-04
MDEA	1.13E-05	4.53E-06
Piperazine	1.37E-08	5.49E-09
Total	0.79	0.31
VOC	0.72	0.29
Total HAP	0.16	0.06

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Condensate Loading

EMISSION POINT: LOAD-2

Hourly		
Saturation Factor, S ^b	0.6	
Number of Loading Arms	1	
Produced Water Reduction (%) ^g	0%	
Max True Vapor Pressure, P ^a (psia)	5.030	
Molecular Weight of Vapors, M ^a (lb/lb-mol)	75.6	
Max Temp of Loaded Liquid ^a , T (°F)	95.00	
Emission Factor ^b (lb/10 ³ gal)	5.12	
Estimated Hourly Throughput ^c (gal/hr)	8,000	
Total Uncontrolled Hourly Emissions ^d (lb/hr)	41.00	
Collection Efficiency (%)	98.7%	
Loading Fugitive Hourly Emissions ^c (lb/hr)	0.53	
Maximum Hourly Gas to Control Device ^f	40.46	

^a Estimated by ProMax.
 ^b Per AP-42, 5th Edition (6/08), Section 5.2, Equation 1 Emission Factor (lb/10³gal) =

<u>S x P x M x 12.46</u> T + 460

1 + 400 Saturation Factor = 0.6 ⁶ Assumes liquid can be loaded at a maximum of 8,000 gal/hour per truck. Annual rates are based on production rate. ^a Emissions (lb/hr) = Hourly Throughput (gal/hr) / 1000 x Emission Factor (lb/10³ gal) ^a Loading Fugitive Emissions (lb/hr) = Uncontrolled Hourly Emissions (lb/hr) x (100% - 98.7% control efficiency) ^f Maximum Hourly to Control (lb/hr) = Uncontrolled Hourly Emissions (lb/hr) x 98.7% control efficiency.

Component	lb/hr	ton/year
Promax Stream Name	Condensate Load Comp P2	Condensate Load Comp P2
H2S	5.76E-10	1.68E-09
H2O	1.40E-14	4.09E-14
TEG	6.40E-13	1.87E-12
N2		
CO2	1.56E-12	4.56E-12
Methane	1.02E-14	3.00E-14
Ethane	1.05E-09	3.07E-09
Propane	3.09E-06	9.04E-06
Isobutane	2.97E-04	8.68E-04
n-Butane	0.01	0.02
Isopentane	0.16	0.47
n-Pentane	0.20	0.60
-Hexane	0.10	0.28
Heptane	0.01	0.04
Octane	2.49E-03	0.01
Nonane	1.59E-04	4.65E-04
n-Decane	1.62E-05	4.74E-05
n-Hexane	0.03	0.08
Benzene	0.02	0.05
Toluene	3.98E-03	0.01
Ethylbenzene	1.73E-04	5.05E-04
p-Xylene	2.33E-04	6.81E-04
MDEA	3.51E-07	1.03E-06
Piperazine	5.44E-09	1.59E-08
Total	0.53	1.56
VOC	0.53	1.56
Total HAP	0.05	0.14

Annual	
Saturation Factor, S ^b	0.6
Number of Loading Arms	1
Produced Water Reduction (%) ^g	0%
True Vapor Pressure, P ^a	4.311
(psia)	4.511
Molecular Weight of Vapors, M ^a	75.6
(lb/lb-mol)	/3.0
Temp of Loaded Liquid ^a , T	65.32
(°F)	05.52
Emission Factor ^b	
(lb/10 ³ gal)	4.64
Estimated Annual Throughput ^c (gal/yr)	51,699,255
Total Uncontrolled Annual Emissions ^d (tpy)	119.94
Collection Efficiency (%)	98.7%
Loading Fugitive Annual Emissions (tpy)	1.56
Maximum Annual Gas to Control Device ^f (tpy)	118.38

N

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Spent Triazine Loading

EMISSION POINT: LOADTRI

Hourly		
Saturation Factor, S ^b	0.6	
Number of Loading Arms	1	
Produced Water Reduction (%) ^g	95%	
Max True Vapor Pressure, P ^a	13.260	
(psia)	15.200	
Molecular Weight of Vapors, M ^a	24.2	
(lb/lb-mol)	24.2	
Max Temp of Loaded Liquid ^a , T	95.00	
(°F)	95.00	
Emission Factor ^b	4.33	
$(lb/10^3 gal)$	4.32	
Estimated Hourly Throughput ^c (gal/hr)	8,000	
Total Uncontrolled Hourly Emissions ^d (lb/hr)	1.73	
Collection Efficiency (%)	0.0%	
Loading Fugitive Hourly Emissions ^e (lb/hr)	1.73	
Maximum Hourly Gas to Control Device ^f		

Saturation Factor, S ^b	0.6
Number of Loading Arms	1
Produced Water Reduction (%) ^g	95%
True Vapor Pressure, P ^a (psia)	12.419
Molecular Weight of Vapors, M ^a (lb/lb-mol)	24.2
Temp of Loaded Liquid ^a , T (°F)	66.55
Emission Factor ^b (lb/10 ³ gal)	4.27
Estimated Annual Throughput ^c (gal/yr)	3,065,998
Total Uncontrolled Annual Emissions ^d (tpy)	0.33
Collection Efficiency (%)	0.0%
Loading Fugitive Annual Emissions (tpy)	0.33
Maximum Annual Gas to Control Device ^f (tpy)	

N

Annual

^a Estimated by ProMax.
 ^b Per AP-42, 5th Edition (6/08), Section 5.2, Equation 1 Emission Factor (lb/10³gal) =

<u>S x P x M x 12.46</u> T+460

 1 + 400

 Saturation Factor = 0.6

 ^c Assumes liquid can be loaded at a maximum of 8,000 gal/hour per truck. Annual rates are based on production rate.

 ^d Emissions (lb/hr) = Hourly Throughput (gal/hr) / 1000 × Emission Factor (lb/l gal)

 ^d Loading Fugitive Emissions (lb/hr) = Uncontrolled Hourly Emissions (lb/hr) x (100% - 0% control efficiency)

 ^f Maximum Hourly to Control (lb/hr) = Uncontrolled Hourly Emissions (lb/hr) x (100% - 0% control efficiency).

 ^g In applicable, percent Reduction for Produced Water Tank Calc. as Oil/Cond. Tank calculated using condensate properties with a produced water throughput.

Component	lb/hr	ton/year
	Triazene loading	Triazene loading
Promax Stream Name	comp	comp
H2S	4.944E-05	9.353E-06
H2O	0.34	0.06
TEG		
N2		
CO2	1.38	0.26
Methane		
Ethane		
Propane		
Isobutane		
n-Butane		
Isopentane		
n-Pentane		
i-Hexane		
Heptane		
Octane		
Nonane		
n-Decane		
n-Hexane		
Benzene	2.89E-04	5.46E-05
Toluene		
Ethylbenzene	0.006	1.06E-03
o-Xylene	1.16E-03	2.20E-04
Triazine, MEA	1.84E-14	3.49E-15
Piperazine	1.11E-10	2.11E-11
Total	1.73	0.33
VOC	0.01	1.33E-03
Total HAP	0.01	1.33E-03

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Haul Road Emissions

EMISSION POINT: ROAD

Table 1. Summary of Maximum Hourly and Annual Fugitive Particulate Emissions from Unpaved Roads

	Pollutant											
Т	SP	PN	A10	PM _{2.5}								
lb/hr ¹	tpy ²	lb/hr ¹	tpy ²	lb/hr ¹	tpy ²							
1.4	5.20	0.34	1.33	0.03	0.13							

Notes:

¹ Maximum hourly emissions are based on the annual emissions divided by one hour per truck trip.

² Maximum annual emissions are based on the maximum annual throughput and truck trips as calculated below in Table 2.

						•	
Table 2.	Maximum	Annual	Fugitive	Particulate	Emissions	from	Unpaved Roads

Demonster	Slop Oil/Cond	lensate/Triazine	Tank Pick-Ups
Parameter	TSP	PM ₁₀	PM _{2.5}
Empty Truck Weight (ton) ¹	16	16	16
Load Size (ton) ²	33	33	33
Loaded Vehicle Weight (ton)	49	49	49
Average Truck Weight (ton)	32.7	32.7	32.7
Maximum Annual Throughput (gal) ³	61,598,168	61,598,168	61,598,168
Vehicle Miles Traveled (VMT) round trip ⁴	1.04	1.04	1.04
# of Truck Trips per year ⁵	7700	7700	7700
VMT/year ⁶	8007.8	8007.8	8007.8
Emission factor (lb/VMT) ⁷	7.6	1.9	0.2
TSP Emissions (tpy)	5.20	1.33	0.133

Notes:

¹ Empty vehicle weight includes driver and occupants and full fuel load.

² Each truck has a capacity of 8000 gallons.

Slop Oil tank contents are mostly water, therefore density is same as water: 8.34 lb/gal. Load Size = 8000 gal truck * 8.34 lb/gal /2000 lb/ton

3 Requested annual throughput

⁴ VMT distance assumes 5491' per trip

⁵ Number of truck trips per year calculated based on the requested annual throughput and the truck capacity, then rounding up to the next whole number as there cannot be a partial trip.

⁶ VMT per year calculated as the product of the VMT roundtrip and number of truck trips per year.

Emission factor calculated per AP-42 5th Ed., Vol.1, Section 13.2.2 (11/06), Equation 1a. PM10 and PM2.5 7 have a control efficiency of 57% applied per WRAP guidance for a speed limit of 15 mph. The actual site speed

limit is 10 mph. An additional control efficiency of 60% was applied for watering (Department Accepted Values for: Aggregate Handling, Storage Pile, and Haul Road Emissions)

 $E = k * (s/12)^{a} * (W/3)^{b}$

Where

E = size-specific emission factor (lb/VMT)

k = 4.9 (empirical constant for PM₃₀, per AP-42, Ch. 13.2.2, Table 13.2.2-2 (11/06) for Industrial Roads)

a = 0.7 (empirical constant for PM₃₀, per AP-42, Ch. 13.2.2, Table 13.2.2-2 (11/06) for Industrial Roads)

b = 0.45 (empirical constant for PM₃₀, per AP-42, Ch. 13.2.2, Table 13.2.2-2 (11/06) for Industrial Roads)

k = 1.5 (empirical constant for PM₁₀, per AP-42, Ch. 13.2.2, Table 13.2.2-2 (11/06) for Industrial Roads)

a = 0.9 (empirical constant for PM₁₀, per AP-42, Ch. 13.2.2, Table 13.2.2-2 (11/06) for Industrial Roads)

b = 0.45 (empirical constant for PM₁₀, per AP-42, Ch. 13.2.2, Table 13.2.2-2 (11/06) for Industrial Roads)

 $k = 0.15 \text{ (empirical constant for PM}_{2.5}, \text{ per AP-42}, \text{Ch. 13.2.2}, \text{ Table 13.2.2-2} \text{ (11/06) for Industrial Roads)}$

a = 0.9 (empirical constant for PM_{2.5}, per AP-42, Ch. 13.2.2, Table 13.2.2-2 (11/06) for Industrial Roads)

b = 0.45 (empirical constant for PM_{2.5}, per AP-42, Ch. 13.2.2, Table 13.2.2-2 (11/06) for Industrial Roads) s = 4.8 (surface material silt content (%), per AP-42, Ch. 13.2.2, Table 13.2.2-1 (11/06) for sand and gravel processing on a plant road)

W = mean vehicle weight (tons)

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 VRU Downtime - Hourly

EMISSION POINT: DHY-18SM & DHY-28SM SOURCE: DHY-1 & DHY-2

VRU Feed Ra	tes and Composition ^a			
Source	TEG Dehydrator Still Vents (Post-Condenser)	Total	VRU Control %	Still Vent Components ^b
Promax Stream Component	To VRU (lb/hr)	(lb/hr)	(%)	(lb/hr)
-	. ,	· · ·	· · ·	· · ·
H2S	0.07	0.07	0%	0.07
H2O	40.02	40.02	0%	40.02
TEG N2	4.54E-09	4.54E-09	0%	4.54E-09
N2 CO2	6.89	6.89 0.45	0%	6.89
		0.10		0.45
Methane Ethane	200.87 13.54	200.87 13.54	0%	200.87 13.54
	13.54	13.54	0%	
Propane Isobutane	2.92	2.92	0%	13.73 2.92
n-Butane	12.75	12.75	0%	12.75
Isopentane	4.55	4.55	0%	4.55
n-Pentane	3.91	3.91	0%	4.55
i-Hexane	4.22	4.22	0%	4.22
Heptane	0.20	0.20	0%	0.20
Octane	0.03	0.20	0%	0.03
Nonane	1.78E-03	1.78E-03	0%	1.78E-03
n-Decane	1.78E-04	1.78E-03	0%	1.78E-03
n-Hexane	0.38	0.38	0%	0.38
Benzene	5.94	5.94	0%	5.94
Toluene	1.04	1.04	0%	1.04
Ethylbenzene	0.03	0.03	0%	0.03
o-Xylene	0.05	0.05	0%	0.05
MDEA	3.87E-03	3.87E-03	0%	3.87E-03
Piperazine	1.50E-04	1.50E-04	0%	1.50E-04
Total	311.61	311.61		311.61
VOC	49.77	49.77		49.77
Total HAP	7.45	7.45		7.45

^a Uncontrolled stream properties determined via ProMax.

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 VRU Downtime - Annual

EMISSION POINT: DHY-1SSM & DHY-2SSM SOURCE: DHY-1 & DHY-2

VRU Downtime 2.00%

VRU	Feed Rates and Composition	a		
Source	TEG Dehydrator Still Vents (Post-Condenser)	Total	VRU Control%	Still Vent Components ^b
Promax Stream	To VRU			
Component	175.2 hr/yr (tpy)	(tpy)	(%)	(tpy)
H2S	0.01	0.01	0%	0.01
H2O	3.51	3.51	0%	3.51
TEG	0.00	3.98E-10	0%	3.98E-10
N2	0.60	0.60	0%	0.60
CO2	0.04	0.04	0%	0.04
Methane	17.60	17.60	0%	17.60
Ethane	1.19	1.19	0%	1.19
Propane	1.20	1.20	0%	1.20
Isobutane	0.26	0.26	0%	0.26
n-Butane	1.12	1.12	0%	1.12
Isopentane	0.40	0.40	0%	0.40
n-Pentane	0.34	0.34	0%	0.34
i-Hexane	0.37	0.37	0%	0.37
Heptane	0.02	0.02	0%	0.02
Octane	0.00	3.01E-03	0%	3.01E-03
Nonane	0.00	1.56E-04	0%	1.56E-04
n-Decane	0.00	1.56E-05	0%	1.56E-05
n-Hexane	0.03	0.03	0%	0.03
Benzene	0.52	0.52	0%	0.52
Toluene	0.09	0.09	0%	0.09
Ethylbenzene	0.00	3.00E-03	0%	3.00E-03
o-Xylene	0.00	4.08E-03	0%	4.08E-03
MDEA	0.00	3.39E-04	0%	3.39E-04
Piperazine	0.00	1.31E-05	0%	1.31E-05
Total	27.30	27.30		27.30
VOC	4.36	4.36		4.36
Total HAP	0.65	0.65		0.65

^a Uncontrolled stream properties determined via ProMax.

Stream	NC)x	C	0	V	OC	SC)2	PN	110	H	2S	n-He:	kane	Ben	zene	То	luene	O-X	ylene
Stream	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Table 2-D Emissions (Pilot Only Emissions																				
Pilot Emissions	0.30	1.31	1.19	5.20	0.008	0.03			0.01	0.06										
	Table 2-E Emissions (Including Pilot Emissions)																			
Steady State Emissions	0.30	1.32	1.20	5.27	0.008	0.03	5.39	24.09	0.02	0.07	0.06	0.26								
								Table	2-F Emissio	ns										
SSM Emissions	100.73	7.13	401.16	28.38	9.03	0.64	3525.57	78.33	5.44	0.38	38.28	0.83			0.05	0.001	0.004			
Maximum Emission Rate	101.03	8.45	402.34	33.65	9.03	0.68	3525.57	102.42	5.45	0.46	38.28	1.09			0.05	0.001	0.004		-	

1 Maximum hourly rates include both steady state and SSM emissions since both could occur at the same time.

2 Annual SSM emissions are taken as the sum of steady state and SSM emissions.

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Acid Gas Flare - Hourly

Stack Parameters									
Flare Height	150	ft							
Flare Diameter	3.00	ft							
Tip Exit Area	7.07	ft^2							
Velocity	65.60	ft/s							
Temp	1,832.00	°F							

EMISSION POINT: AGFL-1

Flare F	eed Rates and Co	mposition ^a					
Source	Pilot and Purge Gas	SS Packing/Purge	Total	FL DRE%	FL Exhaust Components ^b	Criteria F	'ollutant Emissions ^c
Promax Stream	Fuel Gas	Acid Gas to AGFL2					
Component	(lb/hr)	(lb/hr)	(lb/hr)	(%)	(lb/hr)		
H2S		2.93	2.93	98%	0.06	NO _x factor:	0.1380 lb/MMBtu
H2O		0.69	0.69	0%	0.69	CO factor:	0.5496 lb/MMBtu
TEG				98%			
N2	0.68	8.40E-05	0.68	0%	0.68	PM ₁₀ factor:	7.60 lb/MMscf
CO2	0.04	17.68	17.72	0%	17.72	PM _{2.5} factor:	7.60 lb/MMscf
Methane	19.55	0.02	19.57	98%	0.39		
Ethane	0.69	0.01	0.70	98%	0.01	NOx	0.30 lb/hr
Propane	0.04	4.98E-03	0.04	98%	8.64E-04	СО	1.20 lb/hr
Isobutane	2.99E-03	4.79E-04	3.47E-03	98%	6.95E-05	PM_{10}	0.02 lb/hr
n-Butane	0.01	1.75E-03	0.01	98%	2.43E-04	PM _{2.5}	0.02 lb/hr
Isopentane	0.01	5.00E-05	0.01	98%	1.59E-04		
n-Pentane	0.01	6.13E-05	0.01	98%	2.41E-04		
i-Hexane	0.31	7.23E-06	0.31	98%	0.01		
Heptane		8.68E-08	8.68E-08	98%	1.74E-09		
Octane		1.05E-08	1.05E-08	98%	2.09E-10		
Nonane				98%			
n-Decane				98%			
n-Hexane		1.56E-06	1.56E-06	98%	3.13E-08		
Benzene		3.77E-03	3.77E-03	98%	7.54E-05		
Toluene		3.39E-04	3.39E-04	98%	6.78E-06		
Ethylbenzene		4.32E-06	4.32E-06	98%	8.64E-08		
o-Xylene		5.57E-06	5.57E-06	98%	1.11E-07		
MDEA				98%			
Piperazine				0%			
Total	21.34	21.34	42.68		19.56	1	
VOC	0.38	0.01	0.39		0.01		
Total HAP		4.12E-03	4.12E-03		8.24E-05]	
			Total			-	
Heat Value of Stream (Btu/scf)	1,270.78	139.67	1,151.71				
Molecular Weight (lb/lb-mole)	16.78	40.44	19.27				
SO ₂ emissions (lb/hr)		5.39	5.39				
Volumetric Flow (scf/hr)	1,700.00	200.00	1,900.00				
Heat Release (MMBtu/hr)	2.16	0.03	2.19				

^a Uncontrolled stream properties determined via ProMax.

^b FL Exhaust (lb/hr) = Total Uncontrolled Emissions (lb/hr) x (100-DRE (%)).

^c Flare CO and NO_x emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers, October 2000 RG-109 (Draft), Table 4. PM and PM_{2.5} emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO₂ emissions assume 100% conversion of H₂S to SO₂. Since the Btu content of the makeup gas is sometimes just above 1000 Btu/scf, the most conservative emission factors were used for both NOx and CO.

Northwind Midstream Partners, LLC **Titan Treater Plant Plant #2** Acid Gas Flare - Annual

EMISSION POINT: AGFL-1

	Flare Feed Rates and Co	omposition ^a					
Source	Pilot and Purge Gas	Packing	Total	FL DRE%	FL Exhaust Components ^b	Criteria Po	ollutant Emissions ^c
Promax Stream	Fuel Gas	Acid Gas to AGFL2					
Commente	8760 hr/yr	8760 hr/yr	(4)	(0/)	(4)		
Component	(tpy)	(tpy)	(tpy)	(%)	(tpy)		
H2S		12.82	12.82	98%	0.26	NO _x factor:	0.1380 lb/MMBtu
H2O		3.04	3.04	0%	3.04	CO factor:	0.5496 lb/MMBtu
TEG				98%			
N2	2.96	3.68E-04	2.96	0%	2.96	PM ₁₀ factor:	7.60 lb/MMscf
CO2	0.16	77.44	77.60	0%	77.60	PM _{2.5} factor:	7.60 lb/MMscf
Methane	85.63	0.08	85.71	98%	1.71		
Ethane	3.04	0.05	3.08	98%	0.06	NOx	1.32 tpy
Propane	0.17	0.02	0.19	98%	3.78E-03	СО	5.27 tpy
Isobutane	0.01	2.10E-03	0.02	98%	3.04E-04	PM_{10}	0.07 tpy
n-Butane	0.05	0.01	0.05	98%	1.06E-03	PM _{2.5}	0.07 tpy
Isopentane	0.03	2.19E-04	0.03	98%	6.96E-04		
n-Pentane	0.05	2.68E-04	0.05	98%	1.06E-03		
i-Hexane	1.36	3.17E-05	1.36	98%	0.03		
Heptane		3.80E-07	3.80E-07	98%	7.61E-09		
Octane		4.58E-08	4.58E-08	98%	9.16E-10		
Nonane				98%			
n-Decane				98%			
n-Hexane		6.85E-06	6.85E-06	98%	1.37E-07		
Benzene		0.02	0.02	98%	3.30E-04		
Toluene		1.48E-03	1.48E-03	98%	2.97E-05		
Ethylbenzene		1.89E-05	1.89E-05	98%	3.78E-07		
o-Xylene		2.44E-05	2.44E-05	98%	4.88E-07		
MDEA				98%			
Piperazine				0%			
Total	93.46	93.46	186.93		85.66		
VOC	1.67	0.05	1.72		0.03		
Total HAP		0.02	0.02		3.61E-04		
Total CO ₂	861.52	77.80	939.32		939.32	1	
Total N ₂ O	2.09E-06	2.70E-08	2.11E-06		2.11E-06		
			Total	1		-	
Heat Value of Stream (Btu/scf)	1,270.78	139.67	1,151.71	1			
Molecular Weight (lb/lb-mole)	16.78	40.44	19.27	1			
SO ₂ emissions (tpy)		24.09	24.09	1			
Volumetric Flow (scf/yr)	14,892,000.00	1,752,000.00	16,644,000.00	1			
Heat Release (MMBtu/yr)	18,924.41	244.70	19,169.11	1			

^a Uncontrolled stream properties determined via ProMax.
 ^b FL Exhaust (tpy) = Total Uncontrolled Emissions (lb/hr) x (100-DRE (%)) x Annual Hours Routed to FL (hr/yr) / 2000 (lb/ton).

^c Flare CO and NO₂ emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers, October 2000 RG-109 (Draft), Table 4. PM and PM_{2.5} emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO₂ emissions assume 100% conversion of H₂S to SO₂. Since the Btu content of the makeup gas is sometimes just above 1000 Btu/scf, the most conservative emission factors were used for both NOx

^d GHG emissions source is 40 CFR § 98.233(n) for CH4 and CO2 mass emissions.

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Acid Gas Flare - Hourly (SSM)

EMISSION POINT: AGFL-1 SSM

Stack Parameters								
Flare Height	150	ft						
Flare Diameter	3.00	ft						
Tip Exit Area	7.07	ft^2						
Velocity	65.60	ft/s						
Temp	1,832.00	°F						

	Flare Feed Rates and Composition ^a			-				
Source	Assist Gas	Acid Gas SSM	AGI Compressor Blowdown	Total	FL DRE%	FL Exhaust Components ^b	Criteria P	ollutant Emissions ^c
Promax Stream	Fuel Gas	Acid Gas to AGFL2	Acid Gas to AGFL2					
Component	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(%)	(lb/hr)		
H2S		1,682.54	231.34	1,913.88	98%	38.28	NO _x factor:	0.1380 lb/MMBtu
H2O		398.61	54.81	453.42	0%	453.42	CO factor:	0.5496 lb/MMBtu
TEG					98%			
N2	784.82	0.05	0.01	784.88	0%	784.88	PM ₁₀ factor:	7.60 lb/MMscf
CO2	43.66	10,165.90	1,397.77	11,607.33	0%	11,607.33	PM _{2.5} factor:	7.60 lb/MMscf
Methane	22,715.93	9.92	1.36	22,727.21	98%	454.54		
Ethane	805.70	6.12	0.84	812.66	98%	16.25	NOx	100.73 lb/hr
Propane	44.41	2.87	0.39	47.67	98%	0.95	CO	401.16 lb/hr
Isobutane	3.48	0.28	0.04	3.79	98%	0.08	PM_{10}	5.44 lb/hr
n-Butane	12.09	1.01	0.14	13.23	98%	0.26	PM _{2.5}	5.44 lb/hr
Isopentane	9.18	0.03	3.95E-03	9.21	98%	0.18		
n-Pentane	13.93	0.04	4.84E-03	13.97	98%	0.28		
i-Hexane	360.79	4.16E-03	5.72E-04	360.80	98%	7.22		
Heptane		4.99E-05	6.86E-06	5.68E-05	98%	1.14E-06		
Octane		6.01E-06	8.27E-07	6.84E-06	98%	1.37E-07		
Nonane					98%			
n-Decane					98%			
n-Hexane		8.99E-04	1.24E-04	1.02E-03	98%	2.04E-05		
Benzene		2.17	0.30	2.47	98%	0.05		
Toluene		0.19	0.03	0.22	98%	4.43E-03		
Ethylbenzene		2.48E-03	3.41E-04	2.82E-03	98%	5.65E-05		
o-Xylene		3.20E-03	4.40E-04	3.64E-03	98%	7.29E-05		
MDEA					98%			
Piperazine					0%			
Total	24,793.98	12,269.73	1,687.03	38,750.74		13,363.72]	
VOC	443.87	6.59	0.91	451.36		9.03		
Total HAP		2.37	0.33	2.69		0.05		
				Total			_	
Heat Value of Stream (Btu/scf)	1,270.78	139.67	139.67	1,056.59				
Molecular Weight (lb/lb-mole)	16.78	40.44	40.44	21.26				
SO ₂ emissions (lb/hr)		3,099.41	426.16	3,525.57				
Volumetric Flow (scf/hr)	560,000.00	115,000.00	15,812.00	690,812.00				
Heat Release (MMBtu/hr)	711.64	16.06	2.21	729.91				

^a Uncontrolled stream properties determined via ProMax. The fuel gas makup volume is calculated based on the effective diameter needed to comly with the NAAQS.

^b FL Exhaust (lb/hr) = Total Uncontrolled Emissions (lb/hr) x (100-DRE (%)).

Flare CO and NOx emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers, October 2000 RG-109 (Draft), Table 4. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO₂ emissions assume 100% conversion of H₂S to SO₂. Since the Btu content of the makeup gas is sometimes just above 1000 Btu/scf, the most conservative emission factors were used for both NOx and CO.

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Acid Gas Flare - Annual (SSM)

EMISSION POINT: AGFL-1 SSM

	Flare Fe	ed Rates and Composition ^a						ſ	
Source	Assist Gas	Acid Gas SSM	AGI Compressor Blowdown	Total	FL DRE%	FL Exhaust Components ^b	Criteria Po	ria Pollutant Emissions ^c	
Promax Stream	Fuel Gas	Acid Gas to AGFL2	Acid Gas to AGFL2						
Component	144 hr/yr	40 hr/yr	208 blowdowns/yr	(tpy)	(%)	(tpy)			
Component	(tpy)	(tpy)	(tpy)	(upy)	(70)	(upy)			
H2S		33.65	8.02	41.67	98%	0.83	NO _x factor:	0.1380 lb/MMBtu	
H2O		7.97	1.90	9.87	0%	9.87	CO factor:	0.5496 lb/MMBtu	
TEG					98%				
N2	56.51	9.66E-04	2.30E-04	56.51	0%	56.51	PM ₁₀ factor:	7.60 lb/MMscf	
CO2	3.14	203.32	48.46	254.92	0%	254.92	PM _{2.5} factor:	7.60 lb/MMscf	
Methane	1,635.55	0.20	0.05	1,635.79	98%	32.72			
Ethane	58.01	0.12	0.03	58.16	98%	1.16	NOx	7.13 tpy	
Propane	3.20	0.06	0.01	3.27	98%	0.07	СО	28.38 tpy	
Isobutane	0.25	0.01	1.31E-03	0.26	98%	0.01	PM ₁₀	0.38 tpy	
n-Butane	0.87	0.02	4.80E-03	0.90	98%	0.02	PM _{2.5}	0.38 tpy	
Isopentane	0.66	5.75E-04	1.37E-04	0.66	98%	0.01			
n-Pentane	1.00	7.05E-04	1.68E-04	1.00	98%	0.02			
i-Hexane	25.98	8.32E-05	1.98E-05	25.98	98%	0.52			
Heptane		9.98E-07	2.38E-07	1.24E-06	98%	2.47E-08			
Octane		1.20E-07	2.87E-08	1.49E-07	98%	2.98E-09			
Nonane					98%				
n-Decane					98%				
n-Hexane		1.80E-05	4.28E-06	2.23E-05	98%	4.45E-07			
Benzene		0.04	0.01	0.05	98%	1.07E-03			
Toluene		3.90E-03	9.29E-04	4.83E-03	98%	9.66E-05	1		
Ethylbenzene		4.97E-05	1.18E-05	6.15E-05	98%	1.23E-06			
o-Xylene		6.41E-05	1.53E-05	7.93E-05	98%	1.59E-06	1		
MDEA					98%				
Piperazine					0%				
Total	1,785.17	245.39	58.48	2,089.04		356.65	1		
VOC	31.96	0.13	0.03	32.12		0.64			
Total HAP		0.05	0.01	0.06		1.17E-03			
Total CO ₂	4,736.40	204.27	48.68	4,989.35		4,989.35			
Total N ₂ O	1.13E-05	7.08E-08	1.69E-08	1.14E-05		1.14E-05			
				Total			-		
Heat Value of Stream (Btu/scf)	1,270.78	139.67	139.67	1,196.15	7				
Molecular Weight (lb/lb-mole)	16.78	40.44	40.44	18.34	1				
SO ₂ emissions (tpy)		63.25	15.07	78.33	1				
Volumetric Flow (scf/yr)	80,640,000.00	4,600,000.00	1,096,298.67	86,336,298.67	1				
Heat Release (MMBtu/yr)	102,475.44	642.48	153.12	103,271.04	1				

^a Uncontrolled stream properties determined via ProMax. Since the stream is close to 1,000 Btu, the more conservative CO factor is used.

^a Uncontrolled stream properties determined via ProMax. Since the stream is close to 1,000 Btu, the more conservative CO factor is used.
 ^b FL Exhaust (tpy) = Total Uncontrolled Emissions (lb/hr) x (100-DRE (%)) x Annual Hours Routed to FL (hr/yr) / 2000 (lb/ton).
 ^c Flare CO and NO_x emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers, October 2000 RG-109 (Draft), Table 4. PM and PM_{2.5} emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO₂ emissions assume 100% conversion of H₂S to SO₂. Since the Btu content of the makeup gas is sometimes just above 1000 Btu/sef, the most conservative emission factors were used for both NOx and CO.
 ^d GHG emissions source is 40 CFR § 98.233(n) for CH4 and CO2 mass emissions.

61	NC)x	C	0	VC	C	SC	02	PN	/110	H	2S	n-He	kane	Ben	zene	Tol	uene	O-Xy	lene
Stream	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Table 2-D Emissions (Pilot Only Emissions																				
Pilot Emissions	1.30	5.68	2.59	11.35	0.05	0.22			0.06	0.25										
Table 2-E Emissions (Including Pilot Emissions)																				
Steady State Emissions	1.74	7.63	3.48	15.23	0.87	3.82	6.76	29.61	0.09	0.41	0.07	0.32	0.02	0.07	0.01	0.05	0.009	0.04	0.002	0.01
Table 2-F Emissions																				
SSM Emissions	93.73	6.89	187.13	13.76	173.52	12.99	1426.60	82.78	5.06	0.37	15.18	0.88	3.39	0.18	2.40	0.13	1.90	0.10	0.45	0.02
Maximum Emission Rate	95.48	14.52	190.61	28.99	174.39	16.81	1433.36	112.39	5.15	0.78	15.25	1.20	3.41	0.25	2.41	0.18	1.91	0.14	0.45	0.03
	1 Maximum hourly rates include both steady state and SSM emissions since both could occur at the same time.																			

Maximum hourly rates include both steady state and SSM emissions since both could occur at the san
 Annual SSM emissions are taken as the sum of steady state and SSM emissions.

Page 24 of 32

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Process Gas Flare - Hourly

Stack Parameters									
Flare Height	150	ft							
Flare Diameter	3.00	ft							
Tip Exit Area	7.07	ft^2							
Velocity	65.60	ft/s							
Temp	1,832.00	°F							

EMISSION POINT: FL-1

Flare Fe	ed Rates and Com	position ^a					
Source Promax Stream	Pilot and Purge Gas Fuel Gas	Process Flare Gas	Total	FL DRE%	FL Exhaust Components ^b	Criteria Po	llutant Emissions ^c
Component	(lb/hr)	(lb/hr)	(lb/hr)	(%)	(lb/hr)		
-	. ,						0 1200 11 0 0 0
H2S		3.60	3.60	98%	0.07	NO _x factor:	0.1380 lb/MMBtu
H2O				0%		CO factor:	0.2755 lb/MMBtu
TEG				98%		DM forten	7 (0 11 0 0 () 6
N2	4.42	2.47	6.89	0%	6.89	PM_{10} factor:	7.60 lb/MMscf
CO2	0.25	20.90	21.15	0%	21.15	PM _{2.5} factor:	7.60 lb/MMscf
Methane	127.97	50.99	178.96	98%	3.58		
Ethane	4.54	20.60	25.14	98%	0.50	NOx	1.74 lb/hr
Propane	0.25	17.95	18.20	98%	0.36	CO	3.48 lb/hr
Isobutane	0.02	3.12	3.14	98%	0.06	PM_{10}	0.09 lb/hr
n-Butane	0.07	8.03	8.10	98%	0.16	PM _{2.5}	0.09 lb/hr
Isopentane	0.05	2.80	2.85	98%	0.06		
n-Pentane	0.08	2.70	2.78	98%	0.06		
i-Hexane	2.03	2.03	4.06	98%	0.08		
Heptane		1.34	1.34	98%	0.03		
Octane		0.91	0.91	98%	0.02		
Nonane		0.19	0.19	98%	3.80E-03		
n-Decane		0.06	0.06	98%	1.23E-03		
n-Hexane		0.80	0.80	98%	0.02		
Benzene		0.57	0.57	98%	0.01		
Toluene		0.45	0.45	98%	0.01		
Ethylbenzene		0.07	0.07	98%	1.32E-03		
o-Xylene		0.11	0.11	98%	2.13E-03		
MDEA				98%			
Piperazine				0%			
Total	139.67	139.67	279.35		33.06		
VOC	2.50	41.12	43.62		0.87		
Total HAP		1.99	1.99		0.04		
			Total			-	
Heat Value of Stream (Btu/scf)	1,270.78	1,609.55	1,342.86]			
Molecular Weight (lb/lb-mole)	16.78	26.47	18.84	1			
SO ₂ emissions (lb/hr)		6.76	6.76	1			
Volumetric Flow (scf/hr)	7,400.00	2,000.00	9,400.00	1			
Heat Release (MMBtu/hr)	9.40	3.22	12.62	1			

^a Uncontrolled stream properties determined via ProMax.

^b FL Exhaust (lb/hr) = Total Uncontrolled Emissions (lb/hr) x (100-DRE (%)).

^c Flare CO and NO_x emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers, October 2000 RG-109 (Draft), Table 4. PM and PM_{2.5} emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO₂ emissions assume 100% conversion of H₂S to SO₂.

Northwind Midstream Partners, LLC **Titan Treater Plant Plant #2 Process Gas Flare - Annual**

EMISSION POINT: FL-1

Source	Pilot and Purge Gas	Process Flare Gas	Total	FL DRE%	FL Exhaust Components ^b	Criteria Pollutant Emissions ^c		
Promax Stream	Fuel Gas	Site Inlet P2						
Component	8760 hr/yr (tpy)	8760 hr/yr (tpy)	(tpy)	(%)	(tpy)			
H2S		15.75	15.75	98%	0.32	NO _x factor:	0.1380 lb/MMBtu	
H2O		0.00		0%		CO factor:	0.2755 lb/MMBtu	
TEG		0.00		98%				
N2	19.36	10.82	30.19	0%	30.19	PM ₁₀ factor:	7.60 lb/MMscf	
CO2	1.08	91.54	92.62	0%	92.62	PM _{2.5} factor:	7.60 lb/MMscf	
Methane	560.50	223.33	783.83	98%	15.68	2.5		
Ethane	19.88	90.23	110.11	98%	2.20	NOx	7.63 tpy	
Propane	1.10	78.64	79.73	98%	1.59	CO	15.23 tpy	
Isobutane	0.09	13.66	13.74	98%	0.27	PM ₁₀	0.41 tpy	
n-Butane	0.30	35.18	35.48	98%	0.27	PM _{2.5}	0.41 tpy	
Isopentane	0.23	12.25	12.48	98%	0.25	2.3	oni i i pj	
n-Pentane	0.34	11.81	12.16	98%	0.23			
i-Hexane	8.90	8.87	17.77	98%	0.36	1		
Heptane		5.88	5.88	98%	0.12	1		
Octane		3.97	3.97	98%	0.12	-		
Nonane		0.83	0.83	98%	0.08			
		0.83	0.83	98%	0.02			
n-Decane n-Hexane								
		3.52	3.52	98%	0.07	4		
Benzene		2.49	2.49	98%	0.05	4		
Toluene		1.97	1.97	98%	0.04			
Ethylbenzene		0.29	0.29	98%	0.01			
o-Xylene		0.47	0.47	98%	0.01			
MDEA		0.00		98%				
Piperazine		0.00		0%				
Total	611.78	611.78	1,223.55		144.82			
VOC	10.95	180.10	191.05		3.82			
Total HAP		8.74	8.74		0.17			
Total CO ₂	3,750.13	1,489.98	5,240.11		5,240.11			
Total N ₂ O	9.08E-06	3.11E-06	1.22E-05		1.22E-05	J		
			Total	4				
Heat Value of Stream (Btu/scf)	1,270.78	1,609.55	1,342.86					
Molecular Weight (lb/lb-mole)	16.78	26.47	18.84	_				
SO ₂ emissions (tpy)		29.61	29.61	_				
Volumetric Flow (scf/yr)	64,824,000.00	17,520,000.00	82,344,000.00					
Heat Release (MMBtu/yr)	82,376.83	28,199.38	110,576.21					

^a Uncontrolled stream properties determined via ProMax.
 ^b FL Exhaust (tpy) = Total Uncontrolled Emissions (lb/hr) x (100-DRE (%)) x Annual Hours Routed to FL (hr/yr) / 2000 (lb/ton).
 ^c Flare CO and NO_x emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers, October 2000 RG-109 (Draft), Table 4. PM and PM₅ emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO₂ emissions assume 100% conversion of H₂S to SO₂.

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Process Gas Flare - Hourly (SSM)

Stack Parameters									
Flare Height	150	ft							
Flare Diameter	3.00	ft							
Tip Exit Area	7.07	ft ²							
Velocity	65.60	ft/s							
Temp	1,832	°F							

EMISSION POINT: FL-1 SSM

Flare Feed Ra	tes and Composition ^a					
Source	SSM Flare Gas	Total	FL DRE%	FL Exhaust Components ^b	Criteria Pollutant Emissions ^e	
Promax Stream	Site Inlet P2					
Component	(lb/hr)	(lb/hr)	(%)	(lb/hr)		
H2S	758.95	758.95	98%	15.18	NO _x factor: 0.1380 lb/MMBtu	
H2O			0%	-	CO factor: 0.2755 lb/MMBtu	
TEG			98%	-		
N2	521.31	521.31	0%	521.31	PM_{10} factor: 7.60 lb/MMscf	
CO2	4,409.99	4,409.99	0%	4,409.99	PM _{2.5} factor: 7.60 lb/MMscf	
Methane	10,758.42	10,758.42	98%	215.17		
Ethane	4,346.61	4,346.61	98%	86.93	NOx 93.73 lb/hr	
Propane	3,788.20	3,788.20	98%	75.76	CO 187.13 lb/hr	
Isobutane	657.91	657.91	98%	13.16	PM ₁₀ 5.06 lb/hr	
n-Butane	1,694.93	1,694.93	98%	33.90	PM _{2.5} 5.06 lb/hr	
Isopentane	590.14	590.14	98%	11.80		
n-Pentane	569.01	569.01	98%	11.38		
i-Hexane	427.28	427.28	98%	8.55		
Heptane	283.28	283.28	98%	5.67		
Octane	191.42	191.42	98%	3.83		
Nonane	40.13	40.13	98%	0.80		
n-Decane	12.99	12.99	98%	0.26		
n-Hexane	169.64	169.64	98%	3.39		
Benzene	119.85	119.85	98%	2.40		
Toluene	94.90	94.90	98%	1.90		
Ethylbenzene	13.95	13.95	98%	0.28		
o-Xylene	22.46	22.46	98%	0.45		
MDEA			98%			
Piperazine			0%			
Total	29,471.36	29,471.36		5,422.10		
VOC	8,676.07	8,676.07		173.52		
Total HAP	420.80	420.80		8.42	J	
		Total	_			
Heat Value of Stream (Btu/scf)	1,609.55	1,609.55	4			
Molecular Weight (lb/lb-mole)	26.47	26.47	4			
SO ₂ emissions (lb/hr)	1,426.60	1,426.60	4			
Volumetric Flow (scf/hr)	422,000.00	422,000.00	_			
Heat Release (MMBtu/hr)	679.23	679.23				

^a Uncontrolled stream properties determined via ProMax. The max hourly flow is based on a blowdown of the inlet slug catcher within 1 hour.

^b FL Exhaust (lb/hr) = Total Uncontrolled Emissions (lb/hr) x (100-DRE (%)).

^c Flare CO and NO_x emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers, October 2000 RG-109 (Draft), Table 4. PM and PM_{2.5} emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO₂ emissions assume 100% conversion of H₂S to SO₂.

^d GHG emissions source is 40 CFR § 98.233(n) for CH4 and CO2 mass emissions.

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 Process Gas Flare - Annual (SSM)

EMISSION POINT: FL-1 SSM

Flare Feed I	Rates and Composition ^a						
Source	SSM Flare Gas	Total	FL DRE%	FL Exhaust Components ^b	Criteria Pollutant Emissions ^c		
Promax Stream	N/A						
Component	(tpy)	(tpy)	(%)	(tpy)			
H2S	44.04	44.04	98%	0.88	NO _x factor:	0.1380 lb/MMBtu	
H2O	1.42	1.42	0%	1.42	CO factor:	0.2755 lb/MMBtu	
TEG	0.01	0.01	98%	1.18E-04			
N2	34.78	34.78	0%	34.78	PM ₁₀ factor:	7.60 lb/MMscf	
CO2	246.84	246.84	0%	246.84	PM _{2.5} factor:	7.60 lb/MMscf	
Methane	761.55	761.55	98%	15.23			
Ethane	342.17	342.17	98%	6.84	NOx	6.89 tpy	
Propane	309.08	309.08	98%	6.18	СО	13.76 tpy	
Isobutane	52.06	52.06	98%	1.04	PM_{10}	0.37 tpy	
n-Butane	136.20	136.20	98%	2.72	PM _{2.5}	0.37 tpy	
Isopentane	41.41	41.41	98%	0.83			
n-Pentane	36.61	36.61	98%	0.73			
i-Hexane	23.69	23.69	98%	0.47			
Heptane	14.85	14.85	98%	0.30			
Octane	9.96	9.96	98%	0.20			
Nonane	2.08	2.08	98%	0.04			
n-Decane	0.67	0.67	98%	0.01			
n-Hexane	9.18	9.18	98%	0.18			
Benzene	6.61	6.61	98%	0.13	1		
Toluene	4.98	4.98	98%	0.10	1		
Ethylbenzene	0.73	0.73	98%	0.01			
o-Xylene	1.17	1.17	98%	0.02	1		
MDEA	0.00	5.87E-04	98%	1.17E-05	1		
Piperazine	0.00	2.59E-03	0%	2.59E-03	1		
Total	2,080.08	2,080.08		318.98	1		
VOC	649.28	649.28		12.99	1		
Total HAP	22.66	22.66		0.45	1		
Total CO ₂	5,237.39	5,237.39		5,237.39	1		
Total N ₂ O	1.10E-05	1.10E-05		1.10E-05	1		
		Total	1		-		
Heat Value of Stream (Btu/scf)	1,584.51	1,584.51					
Molecular Weight (lb/lb-mole)	25.01	25.01					
SO_2 emissions (tpy)	82.78	82.78					
Volumetric Flow (scf/yr)	63,031,665	63,031,665					
Heat Release (MMBtu/yr)	99,874.58	99,874.58	1				

^a Uncontrolled stream properties determined via ProMax. The flared gas stream is a mixture of numerous SSM streams potentially being flared.

^b FL Exhaust (tpy) = Total Uncontrolled Emissions (lb/hr) x (100-DRE (%)) x Annual Hours Routed to FL (hr/yr) / 2000 (lb/ton).

^c Flare CO and NO_x emission factors from TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers, October 2000 RG-109 (Draft), Table 4. PM and PM_{2.5} emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO₂ emissions assume 100% conversion of H₂S to SO₂.

^d GHG emissions source is 40 CFR § 98.233(n) for CH4 and CO2 mass emissions.

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 SSM - Sweet Gas Compressor Blowdowns

EMISSION POINT: SSMBD COMP

EPN	SSM-BD1								
FIN	SSM-BD1	Sweet Gas Compressor Blowdowns							
Identifier	Sweet Gas Compre	essor Blowdowns							
Describe this MSS event in detail,	C					/			
include specifically what is being				urposes. A total of 20 compressor blowdowns j	per year per compressor. v	olumes are calculated usin			
done and how it is being done.	inlet and discharge	pressures/temperatures	s from each stage	of compression.					
			Venting Emis	sion Calculation					
			· chung Linns	Sion Carcandon					
				Ideal Gas Constant, [(#2*ncia)/(D*1h mal)				
				ideal Gas Constant, [(Its psia)/(K to-mor)				
Volume of the Vented Unit (scf - sta	andard cubic feet)	15000.0			10.73159				
Duration of Each E		12000.0			101/0109				
	vents (events/year)	100							
Venting Gas Molecular		22.31							
17	VOC wt %	26.30							
	benzene wt%	0.03							
	HAP wt%	0.06							
	H ₂ S wt%	1.74E-04							
Are planned MSS vapors (A)	uncontrolled: (B)								
controlled by a flare, vapor co	ombustor, thermal	(A) uncontrolled							
oxidizer, or vapor recovery u	unit (VRU); or <mark>(C)</mark>								
controlled by another type	of control device?								
<u>P1</u>	anned MSS Emissi	ons		Gas Molecular Weigh	nt and Weight Percents Fro	om Analyses Tab:			
			Annual						
		Hourly Emissions	Emissions						
	Results:	(lb/hr)	(tpy)	Molecular Weight	22.31				
	VOC	232.07	11.60	VOC wt %	26.30				
	Benzene	0.23	0.01	Benzene wt %	0.03				
	Total HAP	0.57	0.03	HAP wt %	0.06				
	H ₂ S	1.54E-03	7.69E-05	H2S wt %	1.74E-04				
	CO ₂	0.02	7.81E-04	CO2 wt %	1.77E-03				
	Methane Ethane	453.38 174.81	22.67 8.74	CH4 wt % Ethane wt %	51.38 19.81				
	Propane	138.88	6.94	Propane wt %	15.74				
	Isobutane	21.20	1.06	Isobutane wt %	2.40				
	n-Butane	51.70	2.59	n-Butane wt %	5.86				
	Isopentane	11.25	0.56	Isopentane wt %	1.27				
	n-Pentane	6.98	0.35	n-Pentane wt %	0.79				
	i-Hexane	1.39	0.07	i-Hexane wt %	0.16				
	Heptane	0.09	4.38E-03	Heptane wt %	0.01				
	Octane	0.01	3.96E-04	Octane wt %	8.97E-04				
	Nonane	1.73E-04	8.64E-06	Nonane wt %	1.96E-05				
	n-Decane n-Hexane	1.04E-05 0.31	5.18E-07 0.02	n-Decane wt % n-Hexane wt %	1.17E-06 0.04				
	Toluene	0.03	1.30E-03	Toluene wt %	2.95E-03				
	Ethylbenzene	6.06E-04	3.03E-05	Ethylbenzene wt %	6.87E-05				
	o-Xylene	6.10E-04	3.05E-05	o-Xylene wt %	6.91E-05				
	MDEA	3.99E-06	1.99E-07	MDEA wt %	4.52E-07				
	Piperazine	2.35E-03	1.17E-04	Piperazine wt %	2.66E-04				
VOC Type: (pick from list)	7								
Natural Gas VOC	-								
Natalai Gas 100	_								
Emission Type: (pick from list)									
Low Pressure Periodic									
Enter any notes here: Physical pro	operties of the vapor	are based on the prope	rties of the inlet	to the sweet gas compression stream.					
		Calculations / Equat	ions used						

VOC result (lb/hr) = (Standard Volume of Gas Vented per Event) * (Molecular Weight) * VOC wt%

(379.3 scf/lb-mol) * (Duration of Event

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 SSM - Dehydrator Contactor Blowdowns

EMISSION POINT: SSMBD DEHY

EPN	SSM-BD DEHY					
	SSM-BD DEHY					
FIN						
Identifier	Dehydrator Contac	tor Blowdowns				
Describe this MSS event in detail,	Dehydrator contac	tors are blown down fo	r maintenance an	d other purposes. A tota	al of 12 blowdowns per year per co	ontactor. Volumes are calculated using inle
include specifically what is being done and how it is being done.	and discharge pres	sures/temperatures.				
done and now it is being done.						
			Vonting Emic	sion Calculation		
			venting Ennis	sion Calculation		
					Ideal Gas Constant, [(ft3*psia)/(P*lb mol
			1		Ideal Gas Colistant, [(115 psia)/(K 10-III01)
Volume of the Vented Unit (scf - st	andard cubic feet)	17600.0			10.73159	
Duration of Each E		1				
	vents (events/year)	24				
Venting Gas Molecular		22.31				
	VOC wt % benzene wt%	26.28				
	HAP wt%	0.05				
	H ₂ S wt%	1.76E-04				
Are planned MSS vapors (A)	uncontrolled: (B)					
controlled by a flare, vapor co	ombustor, thermal	(A) uncontrolled				
oxidizer, or vapor recovery u						
controlled by another type	of control device?		ļ			
				1		
P	anned MSS Emissi	ons				
					Gas Molecular Weight and Weight	ght Percents From Analyses Tab:
		Hourly Emissions	Annual Emissions			
		(lb/hr)	(tpy)		Molecular Weight	22.31
	VOC	272.07	3.26		VOC wt %	26.28
	Benzene	0.30	3.54E-03		Benzene wt %	0.03
	Total HAP	0.70	0.01		HAP wt %	0.07
	H ₂ S CO ₂	1.82E-03 0.02	2.19E-05		H2S wt %	1.76E-04
	Methane	530.86	2.20E-04 6.37		CO2 wt % CH4 wt %	1.77E-03 51.28
	Ethane	204.78	2.46		Ethane wt %	19.78
	Propane	162.76	1.95		Propane wt %	15.72
	Isobutane	24.85	0.30		Isobutane wt %	2.40
	n-Butane	60.63 13.19	0.73 0.16		n-Butane wt % Isopentane wt %	5.86 1.27
	Isopentane n-Pentane	8.19	0.10		n-Pentane wt %	0.79
	i-Hexane	1.63	0.02		i-Hexane wt %	0.16
	Heptane	0.10	1.24E-03		Heptane wt %	0.01
	Octane	0.01	1.12E-04		Octane wt %	9.02E-04
	Nonane	2.04E-04 1.23E-05	2.45E-06		Nonane wt % n-Decane wt %	1.97E-05
	n-Decane n-Hexane	0.37	1.47E-07 4.44E-03		n-Hexane wt %	1.19E-06 0.04
	Toluene	0.03	4.18E-04		Toluene wt %	3.37E-03
	Ethylbenzene	8.49E-04	1.02E-05		Ethylbenzene wt %	8.20E-05
	o-Xylene	9.03E-04	1.08E-05		o-Xylene wt %	8.72E-05
	MDEA Piperazine	2.18E-04 4.90E-03	2.61E-06 5.88E-05		MDEA wt % Piperazine wt %	2.10E-05 4.73E-04
	riperazine	4.90E-03	3.88E-03	1	Piperazine wt 76	4.73E-04
VOC Type: (pick from list)	_					
Natural Gas VOC						
Emission Type: (pick from list)	1					
Low Pressure Periodic						
	_					
Enter any notes here: Physical pro	operties of the vapor	are based on the prope	rties of the glyco	l contactor inlet stream.		
		Calculations / Equat	tions used			
VOC result (lb/hr) = (Standard Volur	ne of Gas Vented pe	er Event) * (Molecular	Weight) * VOC	wt%		
(270.2	h	-£ E				
(379.3 scf/l)	b-mol) * (Duration	or Event				

Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 SSM - Sweet Gas Filter Blowdowns

EMISSION POINT: SSMBD FILTERS

EPN	SSM-BD Filters					
FIN	SSM-BD Filters					
Identifier	Coalescer Filter B	lowdowns				
Describe this MSS event in detail, include specifically what is being done and how it is being done.	Emissions from o	coalescer filter blowdo	owns. Assuming	I monthly blowdowns	of 5 filters.	
h						
			Venting Emis	sion Calculation		
					Ideal Gas Constant, [(ft3*psia)/	(R*lb-mol)
Volume of the Vented Unit (scf - sta Duration of Each E		3000.0			10.7315	9
	ents (events/year)	60				
Venting Gas Molecular		22.31				
a	VOC wt %	26.30				
	benzene wt% HAP wt%					
	0.06 1.74E-04					
	H ₂ S wt%					
Are planned MSS vapors (A) controlled by a flare, vapor co oxidizer, or vapor recovery u controlled by another type	mbustor, thermal init (VRU); or <mark>(C)</mark>	(A) uncontrolled				
<u></u> <u>PI</u>	ions			Gas Molecular Weight and Weight	ight Percents From Analyses Tab:	
			Annual			
		Hourly Emissions	Emissions			22.21
	VOC	(lb/hr) 46.41	(tpy) 1.39		Molecular Weight VOC wt %	22.31 26.30
	Benzene	0.05	1.39 1.38E-03		Benzene wt %	0.03
	Total HAP	0.11	3.43E-03		HAP wt %	0.06
	H ₂ S	3.07E-04	9.22E-06		H2S wt %	1.74E-04
	CO ₂	3.12E-03	9.37E-05		CO2 wt %	1.77E-03
	Methane	90.68	2.72		CH4 wt %	51.38
	Ethane	34.96 27.78	1.05 0.83		Ethane wt %	19.81 15.74
	Propane Isobutane	4.24	0.85		Propane wt % Isobutane wt %	2.40
	n-Butane	10.34	0.31		n-Butane wt %	5.86
	Isopentane	2.25	0.07		Isopentane wt %	1.27
	n-Pentane	1.40	0.04		n-Pentane wt %	0.79
	i-Hexane	0.28	0.01		i-Hexane wt %	0.16
	Heptane	0.02	5.26E-04		Heptane wt %	0.01
	Octane Nonane	1.58E-03 3.46E-05	4.75E-05 1.04E-06		Octane wt % Nonane wt %	8.97E-04 1.96E-05
	n-Decane	2.07E-06	6.22E-08		n-Decane wt %	1.17E-06
	n-Hexane	0.06	1.89E-03		n-Hexane wt %	0.04
	Toluene	0.01	1.56E-04		Toluene wt %	2.95E-03
	Ethylbenzene	1.21E-04	3.64E-06		Ethylbenzene wt %	6.87E-05
	o-Xylene MDEA	1.22E-04 7.97E-07	3.66E-06 2.39E-08		o-Xylene wt % MDEA wt %	6.91E-05 4.52E-07
	Piperazine	4.70E-04	1.41E-05		Piperazine wt %	2.66E-04
VOC Type: (pick from list) Natural Gas VOC]					
Emission Type: (pick from list) Low Pressure Periodic]					
Enter any notes here: Physical pro	pperties of the vapor	are based on the prope	rties of the sweet	gas stream.		
VOC result (lb/hr) = (Standard Volun		Calculations / Equat er Event) * (Molecular		wt9		

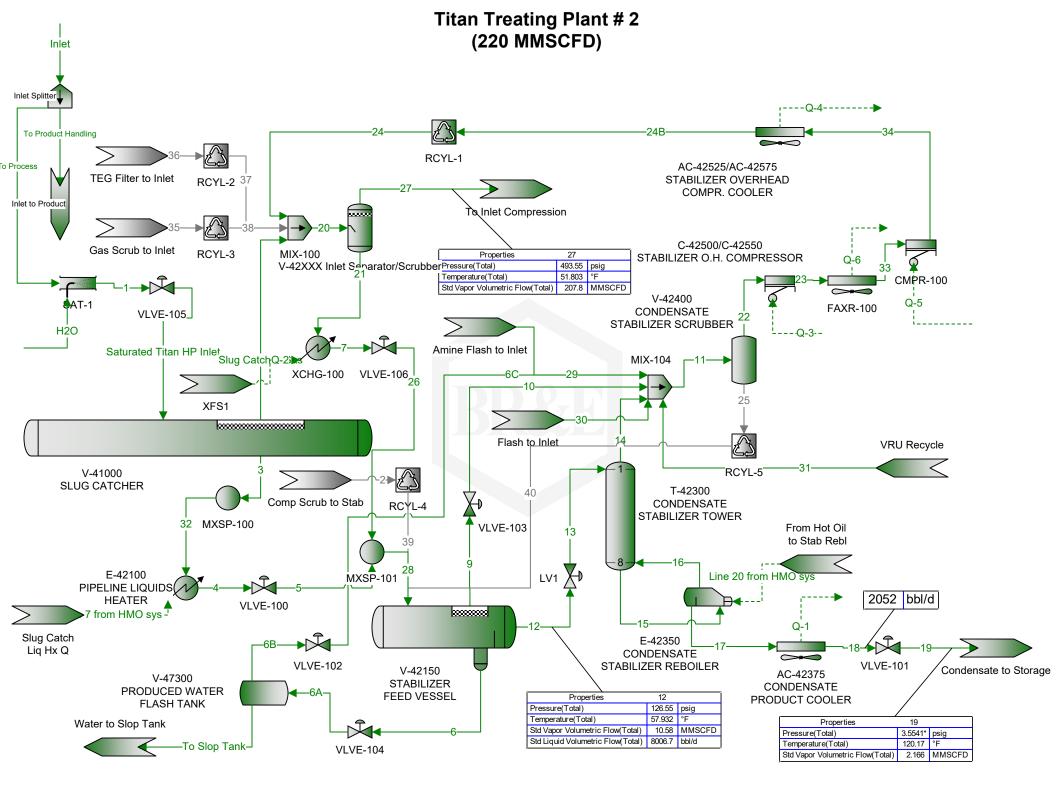
(379.3 scf/lb-mol) * (Duration of Event

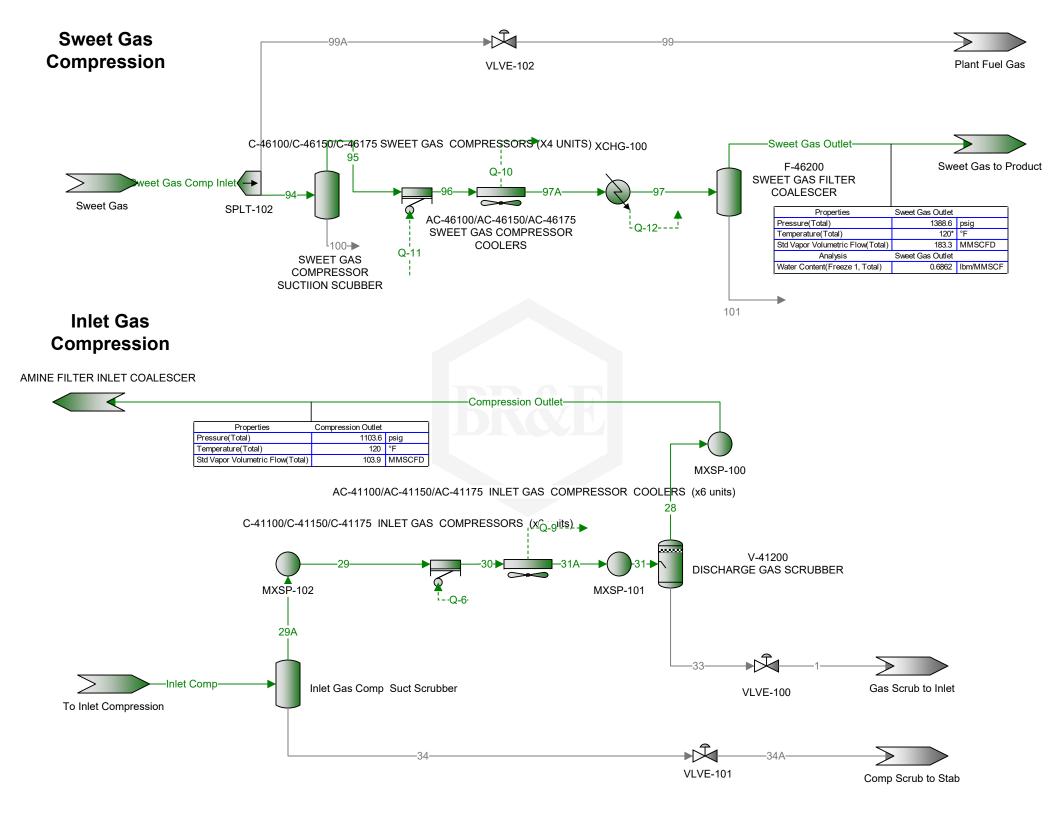
Northwind Midstream Partners, LLC Titan Treater Plant Plant #2 SSM - Sweet Gas Piping Blowdowns

EMISSION POINT: SSMBD PIPE

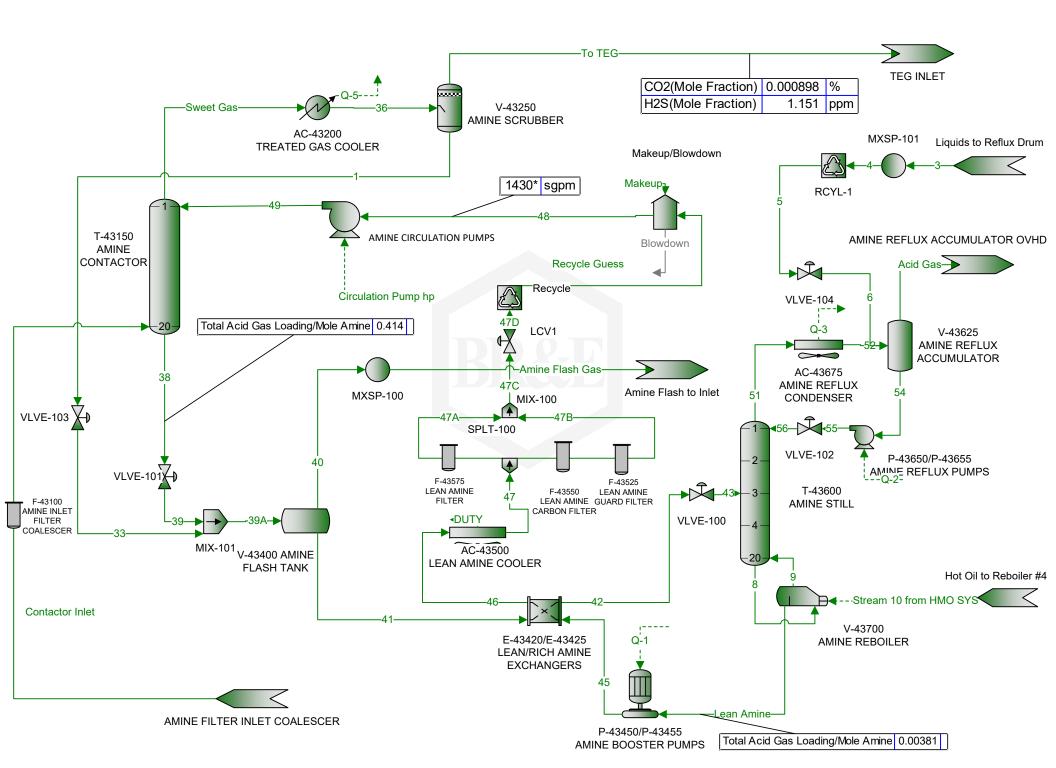
EPN	SSM-BD PIPE						
	SSM-BD PIPE SSM-BD PIPE						
FIN		DI 1					
Identifier	Sweet Gas Piping	Biowdowns					
Describe this MSS event in detail, include specifically what is being done and how it is being done.		re blown down for main tures and acft of piping.		r purposes. A total of 1	2 blowdowns per year. Volun	nes are calculated using conserva	tive
			Venting Emis	sion Calculation			
					Ideal Gas Constant, [(ft3*p	sia)/(R*lb-mol)	
Volume of the Vented Unit (scf - st		75000.0			10.7	3159	
Duration of Each E		12					
Venting Gas Molecular	ents (events/year)	12 22.31					
Venting Gas Molecular	VOC wt %	26.30					
	benzene wt%	0.03					
	HAP wt%	0.06					
	H ₂ S wt%	1.74E-04					
Are planned MSS vapors (A) controlled by a flare, vapor co oxidizer, or vapor recovery u controlled by another type	ombustor, thermal init (VRU); or (C)	(A) uncontrolled					
<u></u>	anned MSS Emiss	ions			Gas Molecular Weight and	Weight Percents From Analyses	Tab:
		Hourly Emissions	Annual Emissions			22.21	
	VOC	(lb/hr) 1,160.36	(tpy) 6.96		Molecular Weight VOC wt %	22.31 26.30	
	Benzene	1.15	0.01		Benzene wt %	0.03	
	Total HAP	2.86	0.02		HAP wt %	0.06	
	H ₂ S	0.008	4.61E-05		H2S wt %	1.74E-04	
	CO ₂	0.08	4.69E-04		CO2 wt %	1.77E-03	
	Methane	2,266.88	13.60		CH4 wt %	51.38	
	Ethane Propane	874.03 694.38	5.24 4.17		Ethane wt % Propane wt %	19.81 15.74	
	Isobutane	106.01	0.64		Isobutane wt %	2.40	
	n-Butane	258.51	1.55		n-Butane wt %	5.86	
	Isopentane	56.23	0.34		Isopentane wt %	1.27	
	n-Pentane	34.90	0.21		n-Pentane wt %	0.79	
	i-Hexane	6.93 0.44	0.04 2.63E-03		i-Hexane wt %	0.16 0.01	
	Heptane Octane	0.04	2.63E-03 2.38E-04		Heptane wt % Octane wt %	8.97E-04	
	Nonane	8.64E-04	5.18E-06		Nonane wt %	1.96E-05	
	n-Decane	5.18E-05	3.11E-07		n-Decane wt %	1.17E-06	
	n-Hexane	1.57	0.01		n-Hexane wt %	0.04	
	Toluene	0.13	7.82E-04		Toluene wt %	2.95E-03	
	Ethylbenzene o-Xylene	3.03E-03 3.05E-03	1.82E-05 1.83E-05		Ethylbenzene wt % o-Xylene wt %	6.87E-05 6.91E-05	
	MDEA	1.99E-05	1.20E-07		MDEA wt %	4.52E-07	
	Piperazine	0.01	7.05E-05		Piperazine wt %	2.66E-04	
				-			
VOC Type: (pick from list) Natural Gas VOC							
Emission Type: (pick from list) Low Pressure Periodic							
Enter any notes here: Physical pro	operties of the vapo	r are based on the prope	rties of the sweet	gas stream.			
		Calculations / Equa	tions used				
VOC result (lb/hr) = (Standard Volur	ne of Gas Vented p	-		wt%			

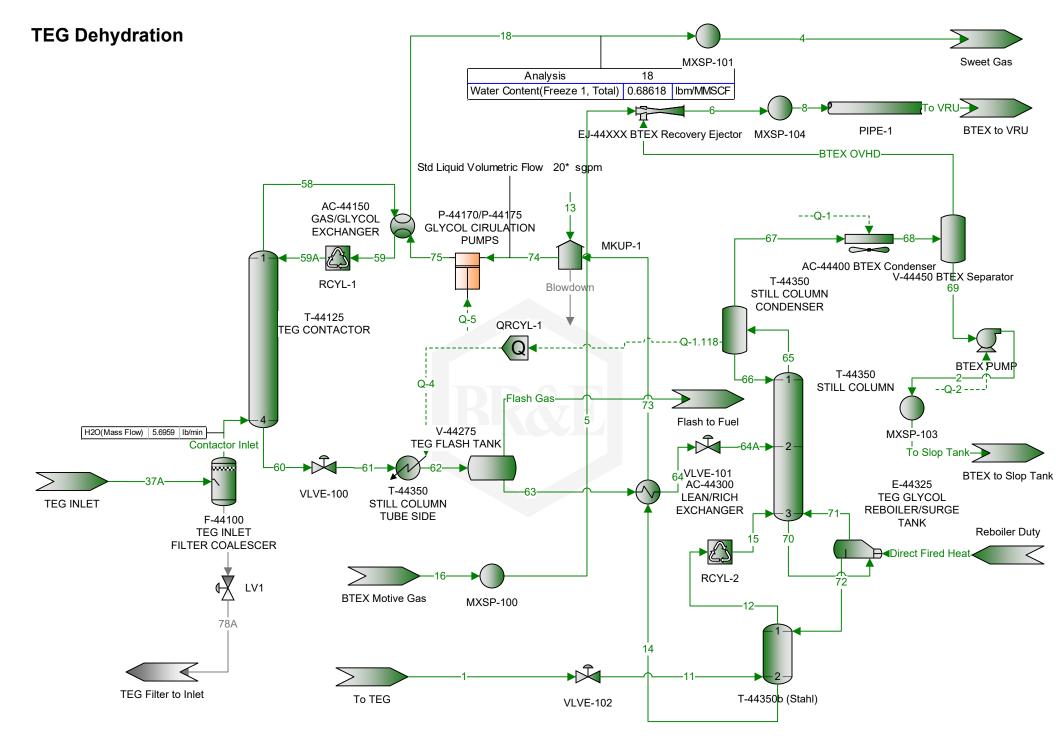
(379.3 scf/lb-mol) * (Duration of Event

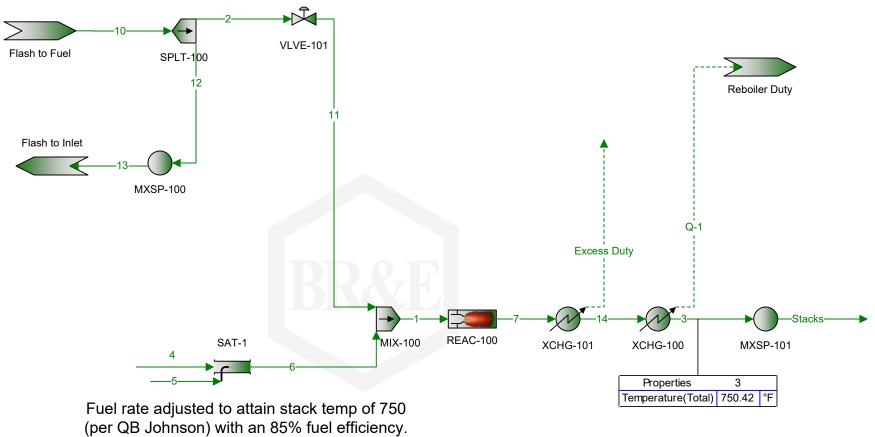

Section 7


Information Used to Determine Emissions

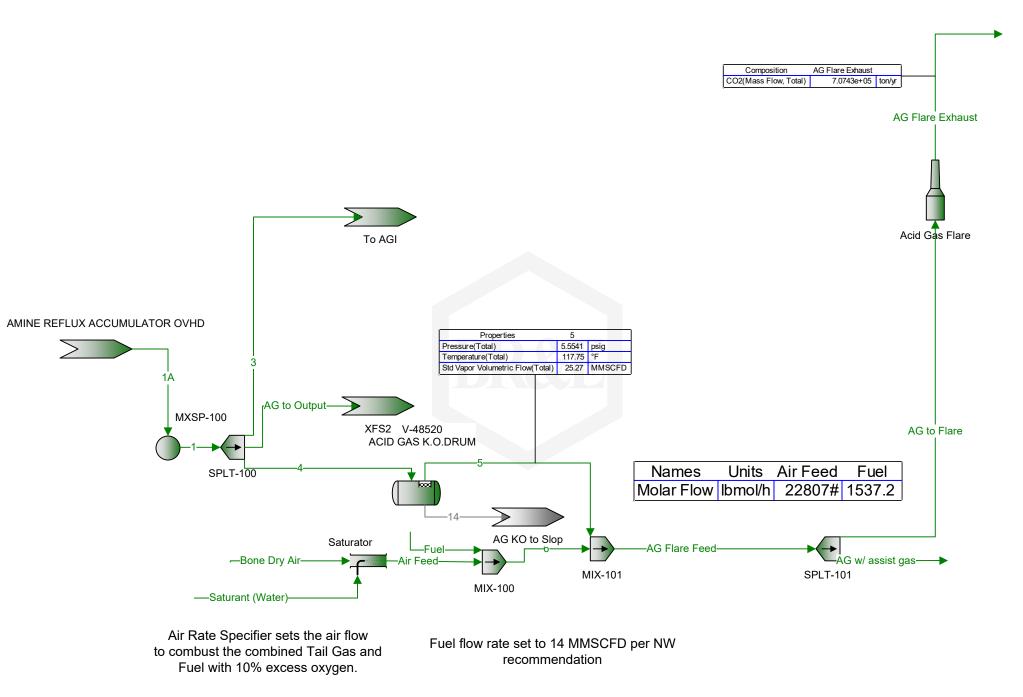
Information Used to Determine Emissions shall include the following:

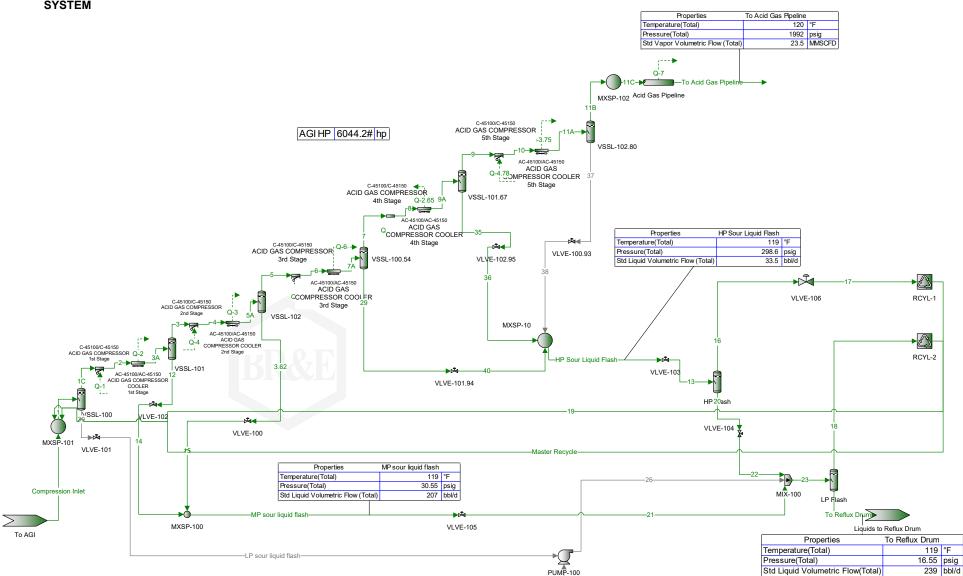

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- □ If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.
 - BR&E ProMax Report
 - o Representative Inlet Gas Analysis Upstream well stream gas composition that flows into site
 - Heater manufacturer specification sheets
 - Flare manufacturer specification sheets
 - o Current version of AP-42 located online at: EPA AP-42 Compilation Air Emissions Factors
 - o TNRCC RG-109 Emission Factors
 - \circ $\,$ 40 CFR 98 Subpart C Tables C-1 & C-2 and Subpart W §98.233 (n) $\,$
 - Engine manufacturer specification sheets
 - o Turbine manufacturer specification sheets


Promax Report - Titan Treater Plant #2



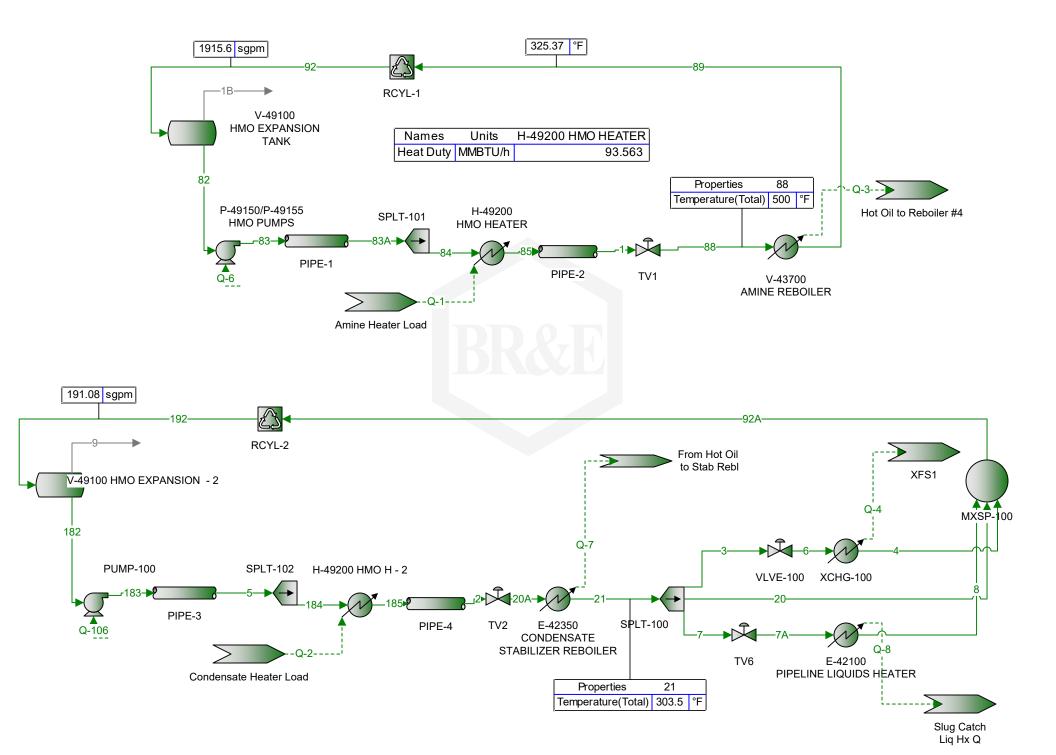
Amine System

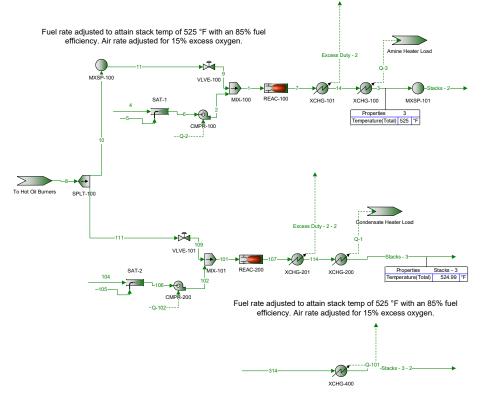




Air rate adjusted for 20% excess oxygen.

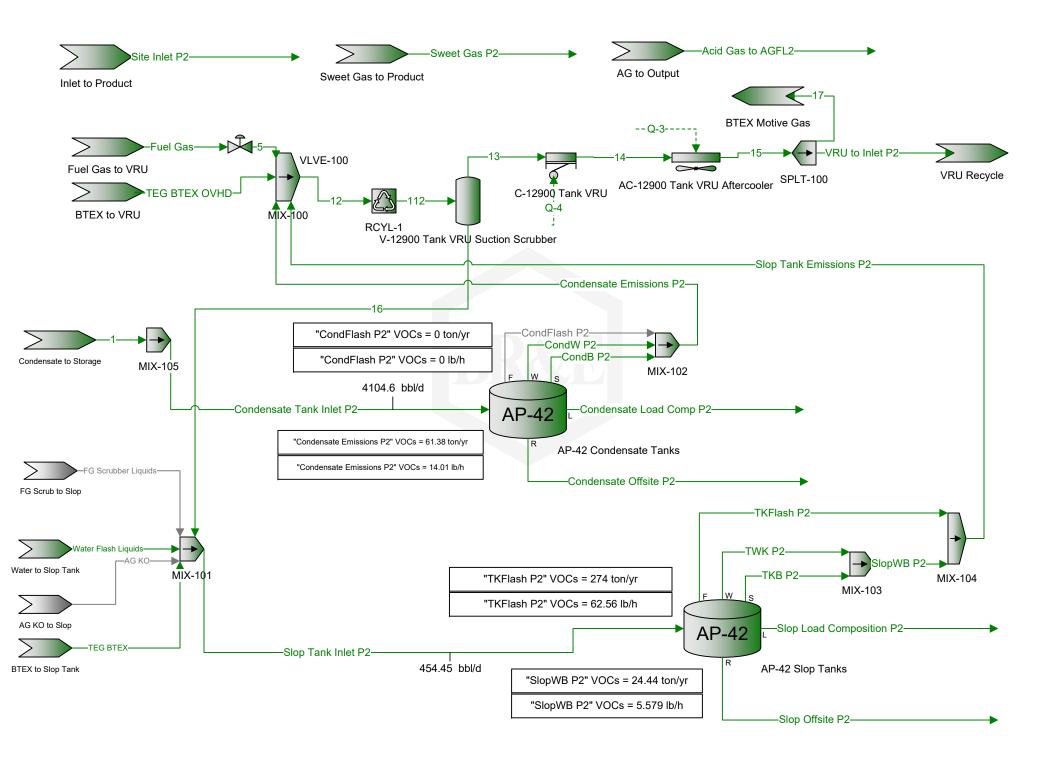
Acid Gas Flare



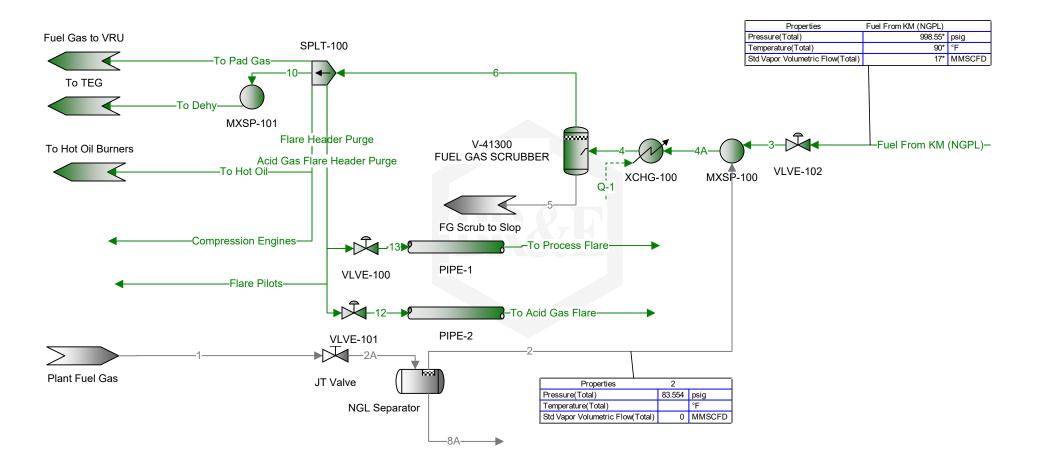

ACID GAS INJECTION SYSTEM

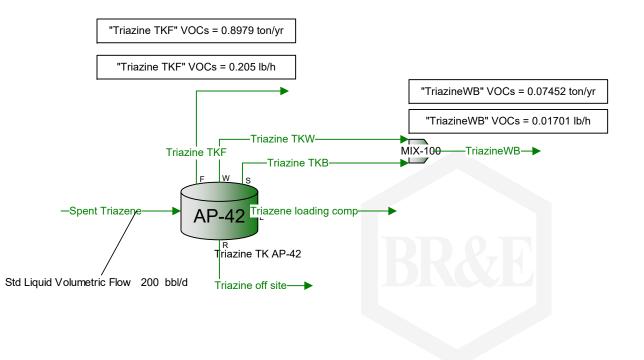
-----Q-8

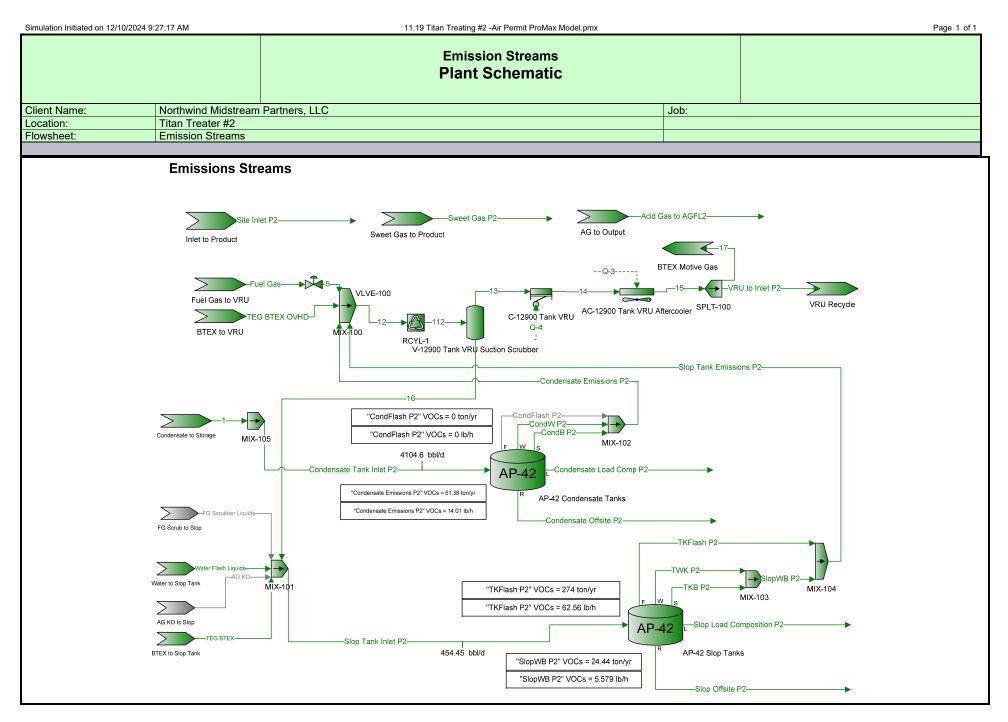
Hot Oil System



Hot Oil Burners




Emissions Streams



Fuel Gas

Triazine Tank

		AII S Tabulated	treams Report Streams I by Total Phase			
Client Name:		ream Partners, LLC		Job:		
Location: Flowsheet:	Titan Treater #2 Emission Strear					
Tiowsheet.						
		Con	nections			
		Acid Gas to	AG KO	CondB P2	Condensate	Condensate
		AGFL2	AGRO	Conub F2	Emissions P2	Load Comp P2
From Block		AG to Output	AG KO to Slop	AP-42 Condensate Tanks	MIX-102	AP-42 Condensate Tanks
To Block			MIX-101	MIX-102	MIX-100	
		Stream	Composition			
		Acid Gas to AGFL2	AG KO	CondB P2	Condensate Emissions P2	Condensate Load Comp P2
Mole Fraction		%	%	%	%	%
H2S		16.2703		2.10048E-07	2.10048E-07	2.40249E-07
H2O		7.29203		4.63086E-15	4.63086E-15	1.10402E-11
TEG		0		7.58534E-14	7.58534E-14	6.05638E-11
N2 CO2		0.000568096 76.1274		0 4.83796E-10	0 4.83796E-10	0 5.03451E-10
Methane		0.203722		2.44465E-12	2.44465E-12	9.07812E-12
Ethane		0.0671245		6.5916E-07	6.5916E-07	4.95889E-07
Propane		0.0214164		0.00108216	0.00108216	0.000995942
Isobutane		0.00156062		0.0802806	0.0802806	0.0725734
n-Butane		0.00571313 0.000131341		1.65272	1.65272	1.49254 31.6058
Isopentane n-Pentane		0.000131341		32.3039 40.9535	32.3039 40.9535	40.3596
i-Hexane		1.59015E-05		15.6098	15.6098	15.9581
Heptane		1.64194E-07		1.91893	1.91893	1.78278
Octane		1.73505E-08		0.303917	0.303917	0.309884
Nonane		0		0.0149439	0.0149439 0.00121509	0.0175997
n-Decane n-Hexane		0 3.43688E-06		0.00121509 4.52609	4.52609	0.0016195 4.41537
Benzene		0.00914534		2.16561	2.16561	3.31417
Toluene		0.00069728		0.431228	0.431228	0.614626
Ethylbenzene		7.70768E-06		0.0174608	0.0174608	0.0231148
o-Xylene		9.9448E-06		0.0193901	0.0193901	0.0311822
MDEA Piperazine		0		1.20235E-08 2.33893E-09	1.20235E-08 2.33893E-09	4.18526E-05 8.98235E-07
Piperazine		0		2.33693E-09	2.33093E-09	0.90233E-07
		Acid Gas to AGFL2	AG KO	CondB P2	Condensate Emissions P2	Condensate Load Comp P2
Mass Fraction		%	%	%	%	%
H2S		13.713		9.46495E-08	9.46495E-08	1.08066E-07
H2O		3.24873		1.10304E-15	1.10304E-15	2.62504E-12
TEG N2		0.00039356		1.5061E-13 0	1.5061E-13 0	1.20039E-10 0
CO2		82.8535		2.81512E-10	2.81512E-10	2.9243E-10
Methane		0.0808225		5.18533E-13	5.18533E-13	1.92214E-12
Ethane		0.0499142		2.62059E-07	2.62059E-07	1.96799E-07
Propane		0.0233543		0.000630922	0.000630922	0.000579626
Isobutane		0.00224318		0.0616937	0.0616937	0.0556722
n-Butane Isopentane		0.00821182		1.27007 30.8157	30.8157	1.14495 30.0964
n-Pentane		0.000234343		39.0668	39.0668	38.4322
i-Hexane		3.38878E-05		17.7856	17.7856	18.1503
Heptane		4.06872E-07		2.54229	2.54229	2.35772
Octane		4.90129E-08		0.459006	0.459006	0.467189
Nonane		0		0.0253413	0.0253413	0.0297919
n-Decane n-Hexane		0 7.32439E-06		0.00228584 5.15696	0.00228584 5.15696	0.00304123 5.02192
Benzene		0.0176661		2.23659	2.23659	3.41673

		F	All St	reams Report reams by Total Phase			
Client Name:	Northwind Midst	ream Partners, LLC			Job:	_	
Location:	Titan Treater #2						
Flowsheet:	Emission Stream	ns					
			cid Gas to AGFL2	AG KO	CondB P2	Condensate Emissions P2	Condensate Load Comp P2
Mass Fraction			%	%	%	%	%
Toluene			0.00158881		0.525335	0.525335	0.74743
Ethylbenzene		2	.02362E-05		0.0245095	0.0245095	0.0323885
o-Xylene		2	.61097E-05		0.0272177	0.0272177	0.0436926
MDEA			0		1.89433E-08	1.89433E-08	6.58233E-05
Piperazine			0		2.66372E-09	2.66372E-09	1.02115E-06
			cid Gas to AGFL2	AG KO	CondB P2	Condensate Emissions P2	Condensate Load Comp P2
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
H2S			15386.9	0	1.15619E-09	1.32635E-08	3.52424E-08
H2O			3645.31	0	1.34742E-17	1.54572E-16	8.56073E-13
TEG			0	0	1.83978E-15	2.11054E-14	3.9147E-11
N2			0.441604	0	0	0	(
CO2			92967.8	0	3.43882E-12	3.9449E-11	9.53668E-11
Methane			90.6889	0	6.33416E-15	7.26633E-14	6.26845E-13
Ethane			56.0075	0	3.20118E-09	3.67229E-08	6.41797E-08
Propane			26.2052	0	7.70705E-06	8.84127E-05	0.000189027
Isobutane			2.51701	0	0.000753621	0.00864529	0.0181557
n-Butane			9.21428	0	0.0155146	0.177978	0.37339
Isopentane							0.0440
Isopeniane			0.262951	0	0.37643	4.31827	
n-Pentane			0.322148	0	0.477222	4.31827 5.47453	12.5334
n-Pentane			0.322148 0.0380247	0	0.477222 0.21726		12.5334
n-Pentane i-Hexane Heptane			0.322148 0.0380247 0.00045654	0	0.477222 0.21726 0.0310554	5.47453 2.49233 0.356257	12.5334 5.91913 0.768895
n-Pentane i-Hexane Heptane Octane			0.322148 0.0380247	0 0 0 0	0.477222 0.21726 0.0310554 0.005607	5.47453 2.49233 0.356257 0.0643216	12.5334 5.91913 0.768895 0.152359
n-Pentane i-Hexane Heptane Octane Nonane			0.322148 0.0380247 0.00045654 .49961E-05 0	0 0 0 0 0	0.477222 0.21726 0.0310554 0.005607 0.000309557	5.47453 2.49233 0.356257 0.0643216 0.00355113	12.5334 5.91913 0.768895 0.152355 0.0097157
n-Pentane i-Hexane Heptane Octane Nonane n-Decane			0.322148 0.0380247 0.00045654 .49961E-05 0 0	0 0 0 0 0 0	0.477222 0.21726 0.0310554 0.005607 0.000309557 2.79228E-05	5.47453 2.49233 0.356257 0.0643216 0.00355113 0.000320321	12.5334 5.91913 0.768895 0.152359 0.0097157 0.0009918
n-Pentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane			0.322148 0.0380247 0.00045654 .49961E-05 0 0 0.0082185	0 0 0 0 0 0 0 0	0.477222 0.21726 0.0310554 0.005607 0.000309557 2.79228E-05 0.062995	5.47453 2.49233 0.356257 0.0643216 0.00355113 0.000320321 0.722658	12.5334 5.91913 0.768895 0.152359 0.0097157 0.0009918 1.63774
n-Pentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane Benzene			0.322148 0.0380247 0.00045654 .49961E-05 0 0 0.0082185 19.8227	0 0 0 0 0 0 0 0 0 0	0.477222 0.21726 0.0310554 0.005607 0.000309557 2.79228E-05 0.062995 0.0273211	5.47453 2.49233 0.356257 0.0643216 0.00355113 0.000320321 0.722658 0.313419	9.81497 12.5334 5.91913 0.768895 0.152359 0.0097157 0.0009918 1.63774 1.11420
n-Pentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane Benzene Toluene			0.322148 0.0380247 0.00045654 .49961E-05 0 0 0.0082185 19.8227 1.78276	0 0 0 0 0 0 0 0 0 0 0 0	0.477222 0.21726 0.0310554 0.005607 0.000309557 2.79228E-05 0.062995 0.0273211 0.00641724	5.47453 2.49233 0.356257 0.0643216 0.00355113 0.000320321 0.722658 0.313419 0.0736164	12.5334 5.91913 0.768895 0.152355 0.0097157 0.0009918 1.63774 1.11426 0.24375
n-Pentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane Benzene Toluene Ethylbenzene			0.322148 0.0380247 0.00045654 .49961E-05 0 0 0.0082185 19.8227 1.78276 0.0227065	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.477222 0.21726 0.0310554 0.005607 0.000309557 2.79228E-05 0.062995 0.0273211 0.00641724 0.000299396	5.47453 2.49233 0.356257 0.0643216 0.00355113 0.000320321 0.722658 0.313419 0.0736164 0.00343458	12.5334 5.91913 0.768895 0.152359 0.0097157 0.0009918 1.63774 1.11426 0.24375 0.0105625
n-Pentane i-Hexane Heptane Octane n-Decane n-Hexane Benzene Toluene Ethylbenzene o-Xylene			0.322148 0.0380247 0.00045654 .49961E-05 0 0 0.0082185 19.8227 1.78276 0.0227065 0.029297	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.477222 0.21726 0.0310554 0.005607 0.000309557 2.79228E-05 0.062995 0.0273211 0.00641724 0.000299396 0.000332478	5.47453 2.49233 0.356257 0.0643216 0.00355113 0.000320321 0.722658 0.313419 0.0736164 0.00343458 0.00381408	12.5334 5.91913 0.768895 0.152359 0.0097157 0.0009918 1.63774 1.11426 0.24375 0.0105625 0.0142485
n-Pentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane Benzene Toluene Ethylbenzene			0.322148 0.0380247 0.00045654 .49961E-05 0 0 0.0082185 19.8227 1.78276 0.0227065	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.477222 0.21726 0.0310554 0.005607 0.000309557 2.79228E-05 0.062995 0.0273211 0.00641724 0.000299396	5.47453 2.49233 0.356257 0.0643216 0.00355113 0.000320321 0.722658 0.313419 0.0736164 0.00343458	12.5334 5.91913 0.768895 0.152359 0.0097157 0.0009918 1.63774 1.11426 0.24375 0.0105625

		roperties			
Units	Acid Gas to AGFL2	AG KO	CondB P2	Condensate Emissions P2	Condensate Load Comp P2
°F	118.003		73.4549	73.4549	73.4549
psia	22.25	20.25	13.26	13.26	13.26
lb/lbmol	40.4368		75.6331	75.6331	75.7672
lb/h	112207	0	1.22155	14.0132	32.6118
MMSCFD	25.2726	0	0.000147097	0.00168745	0.00392011
sgpm	274.337	0	0.00380684	0.0436708	0.101199
Btu/ft^3	99.4974		3865.2	3865.2	3866.29
Btu/ft^3	111.735		4174.99	4174.99	4174.24
	°F psia lb/lbmol lb/h MMSCFD sgpm Btu/ft^3	AGFL2 °F 118.003 psia 22.25 lb/lbmol 40.4368 lb/h 112207 MMSCFD 25.2726 sgpm 274.337 Btu/ft^3 99.4974	AGFL2 °F 118.003 psia 22.25 lb/lbmol 40.4368 lb/h 112207 MMSCFD 25.2726 sgpm 274.337 Btu/ft^3 99.4974	AGFL2 AGFL2 °F 118.003 73.4549 psia 22.25 20.25 13.26 lb/lbmol 40.4368 75.6331 lb/h 112207 0 1.22155 MMSCFD 25.2726 0 0.000147097 sgpm 274.337 0 0.00380684 Btu/ft^3 99.4974 3865.2	AGFL2 Emissions P2 °F 118.003 73.4549 73.4549 psia 22.25 20.25 13.26 13.26 lb/lbmol 40.4368 75.6331 75.6331 lb/h 112207 0 1.22155 14.0132 MMSCFD 25.2726 0 0.000147097 0.00168745 sgpm 274.337 0 3865.2 3865.2

			reams Report			
			treams by Total Phase			
	N I a setta a si a di N di atas					
Client Name: Location:	Titan Treater #2	ream Partners, LLC		Job:		
Flowsheet:	Emission Stream					
		Conr	ections			
		Condensate	Condensate	CondFlash P2	CondW P2	FG Scrubber
		Offsite P2	Tank Inlet P2			Liquids
From Block		AP-42	MIX-105	AP-42	AP-42	FG Scrub to
		Condensate Tanks		Condensate Tanks	Condensate Tanks	Slop
To Block			AP-42	MIX-102	MIX-102	MIX-101
TO DIOOK			Condensate	1012	WINC TOP	
			Tanks			
			omposition	·	r - · · ·	· ·
		Condensate Offsite P2	Condensate Tank Inlet P2	CondFlash P2	CondW P2	FG Scrubber Liquids
Mole Fraction H2S		3.5074E-09	% 3.58787E-09	% 2.23859E-07	% 2.10048E-07	%
H2S H2O		<u>3.5074E-09</u> 6.22895E-14	3.58787E-09 6.2267E-14	2.23859E-07 9.79868E-12	2.10048E-07 4.63086E-15	
TEG		6.20595E-08	6.20353E-08	7.28788E-11	7.58534E-14	
N2		0	0.200002.00	0	0	
CO2		2.3766E-12	2.56416E-12	4.83587E-10	4.83796E-10	
Methane		1.48523E-14	1.57989E-14	8.32655E-12	2.44465E-12	
Ethane		5.34982E-09	5.60453E-09	4.68248E-07	6.5916E-07	
Propane Isobutane		3.79299E-05 0.00808866	3.83367E-05 0.00811679	0.000936411 0.0696301	0.00108216 0.0802806	
n-Butane		0.246992	0.00811079	1.44399	1.65272	
Isopentane		12.9346	12.9421	31.1956	32.3039	
n-Pentane		22.2992	22.3064	40.2015	40.9535	
i-Hexane		21.1086	21.1065	16.1823	15.6098	
Heptane		12.6737	12.6695	1.8945	1.91893	
Octane Nonane		7.43433 1.37817	7.43156 1.37764	0.339495 0.0198968	0.303917 0.0149439	
n-Decane		0.401302	0.401146	0.00188337	0.00121509	
n-Hexane		8.66698	8.66536	4.5438	4.52609	
Benzene		6.70254	6.70077	3.3952	2.16561	
Toluene		4.62348	4.62185	0.651763	0.431228	
Ethylbenzene o-Xylene		0.583463	0.583242	0.0252895 0.0342137	0.0174608	
MDEA		0.937788	0.000723549	4.30221E-05	1.20235E-08	
Piperazine		3.09592E-07	3.09472E-07	8.33895E-07	2.33893E-09	
		Condensate Offsite P2	Condensate Tank Inlet P2	CondFlash P2	CondW P2	FG Scrubber Liquids
Mass Fraction		%	%	%	%	%
H2S		1.39206E-09	1.42406E-09	1.0054E-07	9.46495E-08	
H2O		1.30682E-14	1.30641E-14	2.32629E-12	1.10304E-15	
TEG N2		1.08533E-07 0	1.08495E-07 0	1.44227E-10 0	1.5061E-13 0	
CO2		1.21805E-12	1.31423E-12	2.80463E-10	2.81512E-10	
Methane		2.77475E-15	2.95174E-15	1.76032E-12	5.18533E-13	
Ethane		1.87335E-09	1.96264E-09	1.85545E-07	2.62059E-07	
Propane		1.94777E-05	1.96875E-05	0.000544147	0.000630922	
Isobutane		0.00547494	0.00549423	0.0533327	0.0616937	
n-Butane Isopentane		0.167181 10.8678	0.167559 10.8747	1.10601 29.6604	1.27007 30.8157	
n-Pentane		18.736	18.743	38.2231	39.0668	
i-Hexane		21.1838	21.1826	18.3771	17.7856	
Heptane		14.7891	14.7849	2.50164	2.54229	
Octane		9.88956	9.88633	0.511049	0.459006	
Nonane		2.05844	2.05774	0.0336288	0.0253413	
n-Decane n-Hexane		0.664938	0.66471 8.69662	0.00353133 5.16008	0.00228584 5.15696	
Benzene		6.09701	6.09568	3.49492	2.23659	
Toluene		4.96101	4.95949	0.79138	0.525335	
* User Specified Values			6.0.24054.0		Northwind Midstream Pa	1

			All S	reams Report treams by Total Phase			
Client Name:	Northwind Mids	ream Partners, Ll	C		Job:	<u>.</u>	
Location:	Titan Treater #2						
Flowsheet:	Emission Stream	ns					
	•				· ·		
Mass Fraction			Condensate Offsite P2 %	Condensate Tank Inlet P2 %	CondFlash P2 %	CondW P2 %	FG Scrubber Liquids %
Ethylbenzene			0.721365	0.721126	0.0353814	0.0245095	70
o-Xylene			1.15943	1.15905	0.0478669	0.0243093	
MDEA			0.00100447	0.00100412	6.75592E-05	1.89433E-08	
Piperazine			3.10551E-07	3.10445E-07	9.46561E-07	2.66372E-09	
			0.100012-07	0.104402 07	0.4000TE 07	2.000722 00	I
			Condensate Offsite P2	Condensate Tank Inlet P2	CondFlash P2	CondW P2	FG Scrubber Liquids
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
H2S			5.68265E-07	5.81528E-07	0	1.21073E-08	0
H2O			5.3347E-12	5.33486E-12	0	1.41097E-16	0
TEG			4.43052E-05	4.43052E-05	0	1.92656E-14	0
N2			0	0	0	0	0
CO2			4.9723E-10	5.36679E-10	0	3.60102E-11	0
Methane			1.13271E-12	1.20537E-12	0	6.63292E-14	0
Ethane			7.64739E-07	8.01462E-07	0	3.35217E-08	0
Ethane Propane			0.00795118	0.00803959	0	8.07056E-05	0
Ethane Propane Isobutane			0.00795118 2.23498	0.00803959 2.24362	0	8.07056E-05 0.00789167	0
Ethane Propane Isobutane n-Butane			0.00795118 2.23498 68.2465	0.00803959 2.24362 68.4245	0 0 0	8.07056E-05 0.00789167 0.162464	0 0 0
Ethane Propane Isobutane n-Butane Isopentane			0.00795118 2.23498 68.2465 4436.46	0.00803959 2.24362 68.4245 4440.77	0 0 0 0	8.07056E-05 0.00789167 0.162464 3.94184	0 0 0 0
Ethane Propane Isobutane n-Butane Isopentane n-Pentane			0.00795118 2.23498 68.2465 4436.46 7648.42	0.00803959 2.24362 68.4245 4440.77 7653.9	0 0 0 0 0	8.07056E-05 0.00789167 0.162464 3.94184 4.99731	0 0 0 0 0
Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane			0.00795118 2.23498 68.2465 4436.46 7648.42 8647.64	0.00803959 2.24362 68.4245 4440.77 7653.9 8650.13	0 0 0 0 0 0	8.07056E-05 0.00789167 0.162464 3.94184 4.99731 2.27507	0 0 0 0 0 0
Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane Heptane			0.00795118 2.23498 68.2465 4436.46 7648.42 8647.64 6037.19	0.00803959 2.24362 68.4245 4440.77 7653.9 8650.13 6037.55	0 0 0 0 0 0 0	8.07056E-05 0.00789167 0.162464 3.94184 4.99731 2.27507 0.325201	0 0 0 0 0 0 0 0
Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane Heptane Octane			0.00795118 2.23498 68.2465 4436.46 7648.42 8647.64 6037.19 4037.11	0.00803959 2.24362 68.4245 4440.77 7653.9 8650.13 6037.55 4037.18	0 0 0 0 0 0 0 0 0	8.07056E-05 0.00789167 0.162464 3.94184 4.99731 2.27507 0.325201 0.0587146	0 0 0 0 0 0 0 0 0
Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane Heptane Octane Nonane			0.00795118 2.23498 68.2465 4436.46 7648.42 8647.64 6037.19 4037.11 840.297	0.00803959 2.24362 68.4245 4440.77 7653.9 8650.13 6037.55 4037.18 840.3	0 0 0 0 0 0 0 0 0 0 0	8.07056E-05 0.00789167 0.162464 3.94184 4.99731 2.27507 0.325201 0.0587146 0.00324158	0 0 0 0 0 0 0 0 0 0 0
Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane Heptane Octane Nonane n-Decane			0.00795118 2.23498 68.2465 4436.46 7648.42 8647.64 6037.19 4037.11 840.297 271.441	0.00803959 2.24362 68.4245 4440.77 7653.9 8650.13 6037.55 4037.18 840.3 271.441	0 0 0 0 0 0 0 0 0 0 0 0 0	8.07056E-05 0.00789167 0.162464 3.94184 4.99731 2.27507 0.325201 0.0587146 0.00324158 0.000292398	0 0 0 0 0 0 0 0 0 0 0 0 0
Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane			0.00795118 2.23498 68.2465 4436.46 7648.42 8647.64 6037.19 4037.11 840.297 271.441 3550.63	0.00803959 2.24362 68.4245 4440.77 7653.9 8650.13 6037.55 4037.18 840.3 271.441 3551.35	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.07056E-05 0.00789167 0.162464 3.94184 4.99731 2.27507 0.325201 0.0587146 0.00324158 0.000292398 0.659663	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane Benzene			0.00795118 2.23498 68.2465 4436.46 7648.42 8647.64 6037.19 4037.11 840.297 271.441 3550.63 2488.92	0.00803959 2.24362 68.4245 4440.77 7653.9 8650.13 6037.55 4037.18 840.3 271.441 3551.35 2489.23	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.07056E-05 0.00789167 0.162464 3.94184 4.99731 2.27507 0.325201 0.0587146 0.00324158 0.000292398 0.659663 0.286097	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane Heptane Octane Nonane n-Decane n-Decane n-Hexane Benzene Toluene			0.00795118 2.23498 68.2465 4436.46 7648.42 8647.64 6037.19 4037.11 840.297 271.441 3550.63	0.00803959 2.24362 68.4245 4440.77 7653.9 8650.13 6037.55 4037.18 840.3 271.441 3551.35	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.07056E-05 0.00789167 0.162464 3.94184 4.99731 2.27507 0.325201 0.0587146 0.00324158 0.000292398 0.659663	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane Benzene			0.00795118 2.23498 68.2465 4436.46 7648.42 8647.64 6037.19 4037.11 840.297 271.441 3550.63 2488.92 2025.18	0.00803959 2.24362 68.4245 4440.77 7653.9 8650.13 6037.55 4037.18 840.3 271.441 3551.35 2489.23 2025.26	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.07056E-05 0.00789167 0.162464 3.94184 4.99731 2.27507 0.325201 0.0587146 0.00324158 0.000292398 0.659663 0.286097 0.0671992	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane Benzene Toluene Ethylbenzene			0.00795118 2.23498 68.2465 4436.46 7648.42 8647.64 6037.19 4037.11 840.297 271.441 3550.63 2488.92 2025.18 294.476	0.00803959 2.24362 68.4245 4440.77 7653.9 8650.13 6037.55 4037.18 840.3 271.441 3551.35 2489.23 2025.26 294.479	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.07056E-05 0.00789167 0.162464 3.94184 4.99731 2.27507 0.325201 0.0587146 0.00324158 0.659663 0.286097 0.0671992 0.00313518	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Stream Properties								
Units	Condensate Offsite P2	Condensate Tank Inlet P2	CondFlash P2	CondW P2	FG Scrubber Liquids			
°F	73.4549	120.167	73.4549	73.4549				
psia	13.26	18.25	13.26	13.26	133.25			
lb/lbmol	85.8696	85.8656	75.8832	75.6331				
lb/h	40822	40836	0	12.7917	0			
MMSCFD	4.32972	4.3314	0	0.00154036	0			
sgpm	119.674	119.718	0	0.039864	0			
Btu/ft^3	4331.54	4331.36	3871.55	3865.2				
Btu/ft^3	4660.52	4660.33	4179.7	4174.99				
	°F psia lb/lbmol lb/h MMSCFD sgpm Btu/ft^3	Units Condensate Offsite P2 °F 73.4549 psia 13.26 lb/lbmol 85.8696 lb/h 40822 MMSCFD 4.32972 sgpm 119.674 Btu/ft^3 4331.54	Units Condensate Offsite P2 Condensate Tank Inlet P2 °F 73.4549 120.167 psia 13.26 18.25 lb/lbmol 85.8696 85.8656 lb/h 40822 40836 MMSCFD 4.32972 4.3314 sgpm 119.674 119.718 Btu/ft^3 4331.54 4331.36	Units Condensate Offsite P2 Condensate Tank Inlet P2 CondFlash P2 °F 73.4549 120.167 73.4549 psia 13.26 18.25 13.26 lb/lbmol 85.8696 85.8656 75.8832 lb/h 40822 40836 0 MMSCFD 4.32972 4.3314 0 sgpm 119.674 119.718 0 Btu/ft^3 4331.54 4331.36 3871.55	UnitsCondensate Offsite P2Condensate Tank Inlet P2CondFlash P2CondW P2°F73.4549120.16773.454973.4549psia13.2618.2513.2613.26lb/lbmol85.869685.865675.883275.6331lb/h4082240836012.7917MMSCFD4.329724.331400.00154036sgpm119.674119.71800.039864Btu/ft^34331.544331.363871.553865.2			

			All S	reams Report treams by Total Phase			
Client Name:		ream Partners, LL	C		Job:	•	
Location: Flowsheet:	Titan Treater #2 Emission Strear						
riowsneet.	Emission Stream	115					
			Conn	ections			
			Fuel Gas	Site Inlet P2	Slop Load	Slop Offsite	Slop Tank
					Composition P2	P2	Emissions P2
From Block			Fuel Gas to VRU	Inlet to Product	AP-42 Slop Tanks	AP-42 Slop Tanks	MIX-104
To Block			VLVE-100				MIX-100
		1		omposition			
			Fuel Gas	Site Inlet P2	Slop Load Composition P2	Slop Offsite P2	Slop Tank Emissions P2
Mole Fraction			%	%	%	%	%
H2S			0	2	9.41264	0.00236629	2.94238
H2O			0	0	14.3934	99.9469	3.22485
TEG			0	0	2.01953E-11	4.97237E-05	7.68671E-12
N2 CO2			<u>1.89607</u> 0.0671419	1.6713 8.9995	0	0	0.00402347 2.44615
Methane			95.832	60.2288	0	0	0.979952
Ethane			1.81344	12.9825	0	0	6.17208
Propane			0.0681546	7.7155	0	0	22.4853
Isobutane			0.00405079	1.0166	0	0	7.65566
n-Butane			0.0140765	2.619	0	0	25.3952
Isopentane n-Pentane			0.00860793 0.0130638	0.7346 0.7083	3.02006 21.5908	0.000176881 0.00164405	10.6841 9.46051
i-Hexane			0.283353	0.4453	25.6554	0.00484723	4.50699
Heptane			0	0.2539	7.67732	0.00743682	1.04767
Octane			0	0.1505	1.71793	0.00562043	0.229838
Nonane			0	0.0281	0.106766	0.00113621	0.0144036
n-Decane n-Hexane			0	0.0082	0.00951207 9.72733	0.000340249 0.00273892	0.00139743 1.52472
Benzene			0	0.1378	4.44756	0.00407489	0.869923
Toluene			0	0.0925	1.98689	0.00304893	0.315796
Ethylbenzene			0	0.0118	0.109518	0.000449196	0.0167467
o-Xylene			0	0.019	0.144089	0.000738219	0.0221627
MDEA			0	0	0.00083855	2.17649E-05 0.0184388	0.000151005 4.36731E-07
Piperazine			0	0	1.40684E-06	0.0104300	4.30731E-07
			Fuel Gas	Site Inlet P2	Slop Load Composition	Slop Offsite P2	Slop Tank Emissions P2
Mass Fraction			%	%	P2 %	%	%
H2S			0	2.57522	4.62041	0.00446704	1.79466
H2O			0	0	3.73474	99.7357	1.03974
TEG			0	0	4.36816E-11	0.000413615	2.06589E-11
N2			3.16537	1.76886	0	0	0.00201716
CO2 Methane			0.176093 91.6187	14.9637 36.5047	0	0	1.92665 0.281352
Ethane			3.24956	14.7486	0	0	3.32143
Propane			0.179099	12.8538	0	0	17.7447
Isobutane			0.0140309	2.23237	0	0	7.9634
n-Butane			0.0487573	5.7511	0	0	26.4161
Isopentane n-Pentane			0.037011 0.0561696	2.00241 1.93072	3.13836 22.4365	0.000706889 0.00657028	13.7955 12.2157
i-Hexane			1.45517	1.93072	31.8434	0.00657028	6.95094
Heptane			0	0.961196	11.0801	0.0412766	1.87877
Octane			0	0.649507	2.82642	0.0355619	0.469862
Nonane			0	0.136161	0.197226	0.00807188	0.0330612
n-Decane			0	0.0440794	0.0194931	0.00268155	0.00355839
n-Hexane Benzene			0	0.575623 0.406667	12.0735 5.00376	0.0130738	2.3515 1.21611
Toluene			0	0.406667	2.63678	0.0176308	0.52074
* User Specified Values				6.0.24054.0		Northwind Midstream Pa	

ProMax 6.0.24054.0 Copyright © 2002-2024 BRE Group, Ltd.

	All S	treams Report Streams by Total Phase			
Client Name: Northwind Mi	dstream Partners, LLC		Job:	4	
Location: Titan Treater					
Flowsheet: Emission Stre					
	Fuel Gas	Site Inlet P2	Slop Load Composition P2	Slop Offsite P2	Slop Tank Emissions P2
Mass Fraction	%	%	%	%	%
Ethylbenzene	0	0.04733	0.167466	0.00264154	0.0318189
o-Xylene	0	0.0762093	0.220328	0.00434118	0.0421093
MDEA	0	0	0.00143921	0.00014366	0.000322035
Piperazine	0	0	1.74537E-06	0.0879745	6.73241E-07
•					
	Fuel Gas	Site Inlet P2	Slop Load Composition P2	Slop Offsite P2	Slop Tank Emissions P2
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
H2S	0	16462.5	0.0765716	0.290204	1.33449
H2O	0	0	0.061894	6479.38	0.77314
TEG	0	0	7.23913E-13	0.0268707	1.53617E-11
N2	2.85731	11307.7	0	0	0.00149994
CO2	0.158956	95657.4	0	0	1.43264
Methane	82.7023	233361	0	0	0.20921
Ethane	2.93331	94282.6	0	0	2.46978
Propane	0.161669	82170	0	0	13.1948
Isobutane	0.0126654	14270.7	0	0	5.9215
n-Butane	0.0440122	36764.7	0	0	19.6427
Isopentane	0.033409	12800.7	0.0520104	0.0459234	10.2582
n-Pentane	0.0507031	12342.4	0.371829	0.426842	9.08345
i-Hexane	1.31355	9268.08	0.527724	1.50314	5.16864
Heptane	0	6144.59	0.183625	2.68156	1.39703
Octane	0	4152.07	0.0468408	2.3103	0.349385
Nonane	0	870.432	0.00326853	0.524394	0.024584
n-Decane	0	281.784	0.00032305	0.174209	0.00264598
n-Hexane	0	3679.76	0.200088	0.849349	1.74855
Benzene	0	2599.68	0.0829246	1.1454	0.904284
Toluene	0	2058.43	0.0436979	1.01091	0.387217
Ethylbenzene	0	302.564	0.00277532	0.171609	0.0236602
o-Xylene	0	487.179	0.00365138	0.282027	0.031312
MDEA	0	0	2.38513E-05	0.00933297	0.000239462
Piperazine	0	0	2.89251E-08	5.71531	5.00614E-07
	Stream	Properties			

	Stream	Properties			
Units	Fuel Gas	Site Inlet P2	Slop Load Composition P2	Slop Offsite P2	Slop Tank Emissions P2
°F	79.8061	50	73.4479	73.4479	71.9208
psia	133.25	563.25	13.26	13.26	13.26
lb/lbmol	16.7802	26.4684	69.4292	18.0534	55.8761
lb/h	90.2679 *	639265	1.65725	6496.55	74.3589
MMSCFD	0.0489938	219.968	0.000217395	3.27739	0.0121203
sgpm	0.580367	3052.8	0.00484426	13.0002	0.254643
Btu/ft^3	916.235	1172.91	3279.22	2.14317	2766.55
Btu/ft^3	1016.62	1287.64	3540.73	52.5847	2997.69
	°F psia lb/lbmol lb/h MMSCFD sgpm Btu/ft^3	Units Fuel Gas °F 79.8061 psia 133.25 lb/lbmol 16.7802 lb/h 90.2679 * MMSCFD 0.0489938 sgpm 0.580367 Btu/ft^3 916.235	Units Fuel Gas Site Inlet P2 °F 79.8061 50 psia 133.25 563.25 lb/lbmol 16.7802 26.4684 lb/h 90.2679 * 639265 MMSCFD 0.0489938 219.968 sgpm 0.580367 3052.8 Btu/ft^3 916.235 1172.91	Units Fuel Gas Site Inlet P2 Slop Load Composition P2 °F 79.8061 50 73.4479 psia 133.25 563.25 13.26 lb/lbmol 16.7802 26.4684 69.4292 lb/h 90.2679 * 639265 1.65725 MMSCFD 0.0489938 219.968 0.000217395 sgpm 0.580367 3052.8 0.00484426 Btu/ft^3 916.235 1172.91 3279.22	Units Fuel Gas Site Inlet P2 Slop Load Composition P2 Slop Offsite P2 °F 79.8061 50 73.4479 73.4479 psia 133.25 563.25 13.26 13.26 lb/lbmol 16.7802 26.4684 69.4292 18.0534 lb/h 90.2679 * 639265 1.65725 6496.55 MMSCFD 0.0489938 219.968 0.000217395 3.27739 sgpm 0.580367 3052.8 0.00484426 13.0002 Btu/ft^3 916.235 1172.91 3279.22 2.14317

		All S	reams Report treams by Total Phase			
Client Name:		eam Partners, LLC		Job:	-	
Location: Flowsheet:	Titan Treater #2 Emission Stream	•				
riowsneet.	Emission Stream	5				
		Conr	ections			
		Slop Tank	SlopWB P2	Sweet Gas P2	TEG BTEX	TEG BTEX
		Inlet P2	0.000.00		120 212/	OVHD
From Block		MIX-101	MIX-103	Sweet Gas to Product	BTEX to Slop	BTEX to VRU
To Block		AP-42 Slop	MIX-104	Product	Tank MIX-101	MIX-100
		Tanks				
		Streem (omposition			
		Slop Tank	Omposition SlopWB P2	Sweet Gas P2	TEG BTEX	TEG BTEX
		Inlet P2		Sweet Gas F2	ILG BIEA	OVHD
Mole Fraction		%	%	%	%	%
H2S		0.0131988	5.52638	0.000114052	6.03861E-07	0.0120694
H2O		99.5905	5.30354	0.00144539	99.9783	13.6339
TEG		4.95405E-05	8.5178E-12	0.000204894	2.1778E-05	1.85523E-10
N2 CO2		1.48245E-05	0.00018491	1.99923 0.000897751	1.3714E-05	1.50981
Methane		0.00901288 0.00361065	3.97502 0.0962262	71.4628	1.58791E-05 0.00141298	0.0628785 76.8493
Ethane		0.00361065	1.1809	14.7004	6.20542E-05	2.76297
		0.0227411	6.59832	7.96382	6.20542E-05 2.862E-05	1.91147
Propane Isobutane		0.0826475	4.64798	0.922414	2.37866E-06	0.308053
n-Butane		0.0282074	21.9077	2.24936	1.82708E-05	1.34602
Isopentane		0.0395418	19.1183	0.394154	2.8462E-06	0.38742
n-Pentane		0.0393418	16.8128	0.244626	1.39798E-06	0.332776
i-Hexane		0.0214354	7.88984	0.0406887	6.02897E-07	0.300777
Heptane		0.0112696	1.77107	0.00221237	1.41394E-08	0.0122467
Octane		0.00644656	0.379421	0.000175271	7.95747E-10	0.00184843
Nonane		0.0011851	0.0232089	3.40638E-06	1.23264E-11	8.53811E-05
n-Decane		0.000344144	0.00220273	1.84137E-07	3.15643E-13	7.6603E-06
n-Hexane		0.00834667	2.63931	0.00923115	5.87831E-08	0.0269788
Benzene		0.00726512	1.52331	0.00746154	0.000609086	0.467089
Toluene		0.00420125	0.539492	0.000715019	6.9724E-05	0.0693939
Ethylbenzene		0.000509244	0.0277665	1.44384E-05	1.49999E-06	0.00198301
o-Xylene		0.000817158	0.036699	1.45289E-05	3.10616E-06	0.00268931
MDÉA		2.22411E-05	0.000292772	8.45933E-08	2.50656E-05	0.000199123
Piperazine		0.0183709	5.5707E-07	6.89644E-05	0.0193931	1.06826E-05
		Slop Tank	SlopWB P2	Sweet Gas P2	TEG BTEX	TEG BTEX
Maga Fraction		Inlet P2	0/	0/	0/	OVHD
Mass Fraction H2S		0.0247256	% 3.02331	% 0.000174197	% 1.1415E-06	% 0.0215077
H2S H2O		98.6189	1.53369	0.00174197	1.1415E-06 99.9024	12.8427
TEG		0.000408934	2.05329E-11	0.00116695	0.000181401	12.8427 1.45675E-09
N2		2.2827E-05	8.31492E-05	2.50989	2.13088E-05	2.2115
CO2		0.0218028	2.80813	0.00177064	3.87615E-05	0.144692
Methane		0.00318388	0.0247797	51.378	0.00125729	64.4627
Ethane		0.003183865	0.569987	19.8096	0.000123729	4.34403
Propane		0.200806	4.67046	15.7378	6.99994E-05	4.40718
Isobutane		0.0901169	4.33648	2.40267	7.66839E-06	0.936191
n-Butane		0.298934	20.4395	5.85906	5.89018E-05	4.09065
Isopentane		0.156815	22.1416	1.27445	1.139E-05	1.46153
n-Pentane		0.144733	19.4716	0.790967	5.59445E-06	1.25539
		0.101535	10.914	0.157139	2.88174E-06	1.35527
i-Hexane		0.101000				0.064164
		0.0620704	2.84868	0.00993483	7.85844E-08	
i-Hexane Heptane Octane		0.0620704 0.0404766	0.695707	0.000897245	5.04172E-09	0.0110401
i-Hexane Heptane		0.0620704 0.0404766 0.00835467	0.695707 0.0477815	0.000897245 1.95792E-05	5.04172E-09 8.7688E-11	0.0110401 0.000572577
i-Hexane Heptane Octane Nonane n-Decane		0.0620704 0.0404766 0.00835467 0.00269148	0.695707 0.0477815 0.00503084	0.000897245 1.95792E-05 1.17413E-06	5.04172E-09 8.7688E-11 2.491E-12	0.0110401 0.000572577 5.69892E-05
i-Hexane Heptane Octane Nonane n-Decane n-Hexane		0.0620704 0.0404766 0.00835467 0.00269148 0.0395364	0.695707 0.0477815 0.00503084 3.65093	0.000897245 1.95792E-05 1.17413E-06 0.0356505	5.04172E-09 8.7688E-11 2.491E-12 2.80973E-07	0.0110401 0.000572577 5.69892E-05 0.121564
i-Hexane Heptane Octane Nonane n-Decane n-Hexane Benzene		0.0620704 0.0404766 0.00835467 0.00269148 0.0395364 0.0311933	0.695707 0.0477815 0.00503084 3.65093 1.91002	0.000897245 1.95792E-05 1.17413E-06 0.0356505 0.0261199	5.04172E-09 8.7688E-11 2.491E-12 2.80973E-07 0.00263891	0.0110401 0.000572577 5.69892E-05 0.121564 1.90772
i-Hexane Heptane Octane Nonane n-Decane n-Hexane Benzene Toluene		0.0620704 0.0404766 0.00835467 0.00269148 0.0395364 0.0311933 0.0212775	0.695707 0.0477815 0.00503084 3.65093 1.91002 0.797915	0.000897245 1.95792E-05 1.17413E-06 0.0356505 0.0261199 0.00295247	5.04172E-09 8.7688E-11 2.491E-12 2.80973E-07 0.00263891 0.00035633	0.0110401 0.000572577 5.69892E-05 0.121564 1.90772 0.334318
i-Hexane Heptane Octane Nonane n-Decane n-Hexane Benzene		0.0620704 0.0404766 0.00835467 0.00269148 0.0395364 0.0311933	0.695707 0.0477815 0.00503084 3.65093 1.91002	0.000897245 1.95792E-05 1.17413E-06 0.0356505 0.0261199	5.04172E-09 8.7688E-11 2.491E-12 2.80973E-07 0.00263891	0.0110401 0.000572577 5.69892E-05 0.121564 1.90772

ProMax 6.0.24054.0 Copyright © 2002-2024 BRE Group, Ltd. Г

	All S	reams Report treams by Total Phase			
Client Name: Northwind M	idstream Partners, LLC		Job:	•	
Location: Titan Treater					
Flowsheet: Emission Str	eams				
Mass Fraction	Slop Tank Inlet P2 %	SlopWB P2	Sweet Gas P2	TEG BTEX	TEG BTEX OVHD %
	0.000145679	0.000560014	4.51753E-07	0.000165671	0.00124067
MDEA Disercation	0.000145679				
Piperazine	0.086979	7.70235E-07	0.000266216	0.0926527	4.81122E-05
Mass Flow	Slop Tank Inlet P2 Ib/h	SlopWB P2	Sweet Gas P2	TEG BTEX	TEG BTEX OVHD lb/h
H2S	1.6247	0.183261	0.782407	6.90517E-06	0.134039
H20	6480.16	0.0929664	5.24136	604.329	80.0376
TEG	0.0268707	1.24462E-12	6.19356	0.00109733	9.07868E-09
N2	0.00149994	5.04018E-06	11273.2	0.000128901	13.7823
CO2	1.43264	0.170218	7.95284	0.000234476	0.901742
Methane	0.20921	0.00150205	230765	0.00760562	401.74
Ethane	2.46978	0.0345504	88975	0.000626062	27.0726
Propane	13.1948	0.283105	70686.5	0.00042344	27.4661
Isobutane	5.9215	0.26286	10791.6	4.63876E-05	5.83447
n-Butane	19.6427	1.23896	26316	0.000356309	25.4935
Isopentane	10.3041	1.34214	5724.2	6.89003E-05	9.10847
n-Pentane	9.51029	1.18029	3552.64	3.3842E-05	7.82376
i-Hexane	6.67179	0.661562	705.792	1.74322E-05	8.44622
Heptane	4.07859	0.172676	44.6225	4.75372E-07	0.399879
Octane	2.65968	0.0421711	4.02999	3.04984E-08	0.0688037
Nonane	0.548978	0.00289633	0.0879401	5.30442E-10	0.00356838
n-Decane	0.176854	0.00030495	0.00527364	1.50686E-11	0.000355164
n-Hexane	2.5979	0.221305	160.125	1.69966E-06	0.7576
Benzene	2.04968	0.115778	117.318	0.0159633	11.8891
Toluene	1.39812	0.0483665	13.2611	0.00215551	2.08351
Ethylbenzene	0.195269	0.00286828	0.308547	5.34315E-05	0.0686027
o-Xylene	0.313339	0.003791	0.310481	0.000110645	0.0930372
MDEA	0.00957243	3.39458E-05	0.00202906	0.00100218	0.00773205
Piperazine	5.71531	4.66887E-08	1.19571	0.560475	0.000299842
	Stream	Properties			

		Stream	Properties	<u>, </u>			
Property	Units	Slop Tank Inlet P2	SlopWB P2	Sweet Gas P2	TEG BTEX	TEG BTEX OVHD	
Temperature	°F	164.149	73.4479	120	187.106	132.009	
Pressure	psia	13.26	13.26	1403.25	23.25	13.7122	
Molecular Weight	lb/lbmol	18.1928	62.2973	22.3138	18.029	19.1251	
Mass Flow	lb/h	6570.91	6.06161	449152	604.92	623.214	
Std Vapor Volumetric Flow	MMSCFD	3.28951	0.000886184	183.326	0.305585	0.296783	
Std Liquid Volumetric Flow	sgpm	13.2549	0.0192807	2505.26	1.20976	3.35835	
Net Ideal Gas Heating Value	Btu/ft^3	12.3287	2992.63	1193.92	0.659156	899.481	
Gross Ideal Gas Heating Value	Btu/ft^3	63.436	3238.05	1314.09	51.0098	1000.07	

Remarks

* User Specified Values ? Extrapolated or Approximate Values

		All S Tabulated I	reams Report treams by Total Phase			
Client Name:		ream Partners, LLC		Job:	•	
Location:	Titan Treater #2					
Flowsheet:	Emission Stream	15				
		_				
			ections			
		TKB P2	TKFlash P2	TWK P2	VRU to Inlet P2	Water Flash Liquids
From Block		AP-42 Slop Tanks	AP-42 Slop Tanks	AP-42 Slop Tanks	SPLT-100	Water to Slop Tank
To Block		MIX-103	MIX-104	MIX-103	VRU Recycle	MIX-101
		Stroom C	omposition			
		TKB P2	omposition TKFlash P2	TWK P2	VRU to Inlet	Water Flash
Mole Fraction		1KB P2 %	%	%	P2 %	Liquids %
H2S		5.52638	2.73854	5.52638	0.126772	0.0943724
H2O		5.30354	3.06088	5.30354	13.0673	97.2052
TEG		8.5178E-12	7.62115E-12	8.5178E-12	1.32252E-12	0.000220423
N2		0.00018491	0.00432627	0.00018491	1.44411	2.16632E-05
CO2		3.97502	2.32555	3.97502	0.155938	0.0643479
Methane		0.0962262	1.04966	0.0962262	73.5356	0.017128
Ethane Propane		6.59832	6.5658 23.7385	1.1809 6.59832	2.88418	0.162226 0.592216
Isobutane		4.64798	7.89292	4.64798	0.594881	0.20168
n-Butane		21.9077	25.6703	21.9077	2.29088	0.668944
Isopentane		19.1183	10.0187	19.1183	0.964596	0.282722
n-Pentane		16.8128	8.88054	16.8128	0.911455	0.260948
i-Hexane		7.88984	4.24014	7.88984	0.549046	0.153268
Heptane		1.77107	0.990601	1.77107	0.0631767	0.0805818
Octane		0.379421	0.218039	0.379421	0.0124215	0.0460955
Nonane n-Decane		0.0232089 0.00220273	0.013709 0.00133391	0.0232089 0.00220273	0.000727002 6.86609E-05	0.00847391 0.00246077
n-Decane n-Hexane		2.63931	1.43679	2.63931	0.00009E-05	0.0596817
Benzene		1.52331	0.818381	1.52331	0.492561	0.0482022
Toluene		0.539492	0.29815	0.539492	0.0810797	0.0296117
Ethylbenzene		0.0277665	0.0158774	0.0277665	0.00264733	0.00363207
o-Xylene		0.036699	0.0210161	0.036699	0.00354542	0.0058239
MDEA		0.000292772	0.000139822	0.000292772	0.000196328	4.88044E-06
Piperazine		5.5707E-07	4.27238E-07	5.5707E-07	3.42022E-06	0.0121601
		ТКВ Р2	TKFlash P2	TWK P2	VRU to Inlet P2	Water Flash Liquids
Mass Fraction		%	%	%	%	%
H2S		3.02331	1.68562	3.02331	0.206993	0.167513
H2O		1.53369	0.995901	1.53369	11.2784	91.2059
TEG N2		2.05329E-11 8.31492E-05	2.067E-11 0.00218881	2.05329E-11 8.31492E-05	9.51513E-12 1.93815	0.00172401 3.16069E-05
CO2		2.80813	1.84842	2.80813	0.328791	0.147494
Methane		0.0247797	0.304123	0.0247797	56.5183	0.014311
Ethane		0.569987	3.56563	0.569987	4.15491	0.254058
Propane		4.67046	18.9051	4.67046	5.72244	1.36009
Isobutane		4.33648	8.2853	4.33648	1.65651	0.610515
n-Butane		20.4395	26.9465	20.4395	6.3792	2.025
Isopentane		22.1416	13.0548	22.1416	3.33423	1.06238
n-Pentane		19.4716	11.5717	19.4716	3.15054	0.980563
i-Hexane Heptane		<u> </u>	6.59921 1.79268	10.914 2.84868	2.2668 0.303287	0.687904 0.420538
Octane		0.695707	0.449818	0.695707	0.0679783	0.420538
Nonane		0.0477815	0.0317547	0.0477815	0.00446716	0.0566045
n-Decane		0.00503084	0.00342771	0.00503084	0.000468036	0.0182353
n-Hexane		3.65093	2.23618	3.65093	0.454667	0.267865
Benzene		1.91002	1.15452	1.91002	1.84331	0.196099
Toluene		0.797915	0.49614	0.797915	0.35791	0.142101
Ethylbenzene		0.0473187	0.0304432	0.0473187	0.0134651	0.020083
o-Xylene		0.0625412	0.0402959	0.0625412	0.0180331	0.0322023
MDEA		0.000560014	0.000300913	0.000560014 Licensed t	0.00112084	3.02893E-05

ProMax 6.0.24054.0 Copyright © 2002-2024 BRE Group, Ltd.

		l l	ss Streams All Stream ulated by Total P	S			
Client Name:	Northwind Midst	ream Partners, LLC			Job:	- L	
Location:	Titan Treater #2	, -					
Flowsheet:	Emission Strear	ns					
		ткв ра	TKFla	ish P2	TWK P2	VRU to Inlet P2	Water Flash Liquids
Mass Fraction		%	0	6	%	%	%
Piperazine		7.70235	E-07 6.646	632E-07	7.70235E-07	1.41142E-05	0.0545523
		ТКВ Р2	TKFla	ish P2	TWK P2	VRU to Inlet P2	Water Flash Liquids
Mass Flow		lb/h		/h	lb/h	lb/h	lb/h
H2S		0.0261		1.15123	0.157075	1.34448	0.175635
H2O		0.0132	837 0	.680174	0.0796827	73.2561	95.628
TEG		1.778411	-	171E-11	1.06678E-12	6.18033E-11	0.0018076
N2		7.20176		014949	4.32E-06	12.5888	3.31393E-05
CO2		0.0243		1.26242	0.145896	2.13559	0.154645
Methane		0.000214		.207708	0.00128742	367.102	0.0150049
Ethane		0.0049		2.43523	0.0296136	26.9873	0.266376
Propane		0.040		12.9116	0.242653	37.1688	1.42604
Isobutane		0.0375		5.65864	0.225301	10.7595	0.640116
n-Butane		0.177		18.4037	1.06193	41.4346	2.12318
Isopentane		0.191		8.91608	1.15036	21.6567	1.11389
n-Pentane		0.168		7.90316	1.01164	20.4636	1.02811
i-Hexane		0.0945		4.50708	0.567033	14.7235	0.721257
Heptane		0.0246	-	1.22435	0.148003	1.96993	0.440928
Octane		0.0060		.307214	0.0361454	0.441538	0.287533
Nonane		0.000413		216876	0.00248248	0.0290154	0.0593489
n-Decane		4.35734		234103	0.000261377	0.00304002	0.0191194
n-Hexane		0.0316		1.52725	0.189684	2.95319	0.280853
Benzene		0.0165	-	.788506	0.0992346	11.9728	0.205607
Toluene		0.00691		.338851	0.0414555	2.32472	0.148991
Ethylbenzene		0.000409		207919	0.00245844	0.0874595	0.0210567
o-Xylene		0.000541		.027521	0.00324932	0.11713	0.0337637
MDEA Piperazine		4.85042		205516 26E-07	2.90954E-05 4.00175E-08	0.00728015 9.16757E-05	3.17579E-05 0.0571972

Stream Properties										
Property	Units	TKB P2	TKFlash P2	TWK P2	VRU to Inlet P2	Water Flash Liquids				
Temperature	°F	73.4479	73.4479	73.4479	200	56.9696				
Pressure	psia	13.26	13.26	13.26	63.25	84.6959				
Molecular Weight	lb/lbmol	62.2973	55.3696	62.2973	20.8727	19.2003				
Mass Flow	lb/h	0.866125	68.2973	5.19548	649.527	104.848				
Std Vapor Volumetric Flow	MMSCFD	0.000126624	0.0112341	0.000759559	0.283415	0.0497347				
Std Liquid Volumetric Flow	sgpm	0.00275495	0.235362	0.0165257	3.33917	0.222001				
Net Ideal Gas Heating Value	Btu/ft^3	2992.63	2748.72	2992.63	989.613	84.1033				
Gross Ideal Gas Heating Value	Btu/ft^3	3238.05	2978.73	3238.05	1096.5	139.864				

H2O 6.2267E-14 0 13.1536 13.0673 13.0673 TEG 6.20358-08 0 1.77575E-10 1.32252E-12 1.32252E-12 N2 0 1.89607 1.44285 1.44411 1.44411 CO2 2.56416E-12 0.0671419 0.15554 0.155938 0.155938 Methane 1.57989E-14 95.832 73.4711 73.5356 73.5356 Ethane 5.60453E-09 1.81344 2.88099 2.88418 2.88418 Propane 3.83367E-05 0.0681546 2.70395 2.70872 2.70872 Isobutane 0.024754 0.0140765 2.28617 2.29088 2.29088 Isopentane 12.9421 0.00860793 0.962632 0.964596 0.964596 n-Pentane 22.3064 0.0130638 0.909665 0.911455 0.911455 Heptane 12.6695 0 0.633112 0.631767 0.0631767 Nonane 1.26695 0 0.00724851 0.000727002 0.00072702 Nonane 1.42685 0 0.000724851 0.00072702							
Client Nume: Introduction Medication Partmers, LLC Transition Streams Job: Introduction Medication Partmers, LLC Transition Streams Form Block Connections Form Block Connections To Block Connections Stream Composition Stream Composition Connections Stream Composition Stream Composition Stream Composition Stream Composition Connections Stream Composition Connections Stream Composition Connections			Process Str	eams Report			
Tabuidad by Total Phase Clanct Name: Northwind Miditheam Partners, LLC. Job: Envision Environ Emission Environ Emission Environ From Block Connections 13 14 From Block Condensate to Storage NLVE-100 MLX-100 V-12900 Tank VEU Scotto Tank VEU Scotto Tank VEU Scotto Tank -14 To Block NLX-105 RCVL-1 C-12900 Tank VEU Scotto Tank VEU Scotto Tank Mole Fraction 1 5 12 13 Mole Fraction 1 5 13 13 Mole Fraction 1 5 13 13 1/20 0.2227E-14 0 13 13 13 1/20 0.2227E-14 0.55834 0.125772 0.125784 0.125784 0.125784 0.125784 0.125784 0.125784 0.125784 0.125784 0.125784 0.125784 0.125784 0.125784 0.125784 0.125784 0.125784 0.125784 0.122772 0.12				-			
Location Tites Treater #2 Flowstreid: Emission Streams From Block Confections 1 5 12 13 14 From Block Confections VIVE-100 MIX-100 VI-100 VI-100 VI-100 VI-100 VI-100 VI-100 VI-100 VI-100 VI-100 Tank VRU							
Location Tites Treater #2 Flowstreid: Emission Streams From Block Confections 1 5 12 13 14 From Block Confections VIVE-100 MIX-100 VI-100 VI-100 VI-100 VI-100 VI-100 VI-100 VI-100 VI-100 VI-100 Tank VRU				-			
Elowshop Streams Connections From Block Condensate to Storage VLVE-100 MIX-100 VLVE-100 VRU VRU VRU C-12800 Tank VRU C-12800					Job:		
Connections From Block Candensate to Storage St 13 14 From Block Candensate to Storage VLVE-100 MIX-100 V12000 Tank VRU Sucient Scrubber C-12000 Tank VRU AC-12200 Tank VRU To Block MIX-105 - RCYL-11 C-12000 Tank VRU AC-12200 Tank VRU AC-12200 Tank VRU AC-12200 Tank VRU AC-12000 Tank VRU <							
form Block Condensate ID Storage VLVE-100 MIX-100 V-12800 Tank VTU Sucino Scrubber C-12800 Tank VTU To Block MIX-105 RCYL-1 C-12800 Tank VTU C-12800 Tank VTU AC-12800 AC-12800 To Block MIX-105 RCYL-1 C-12800 Tank VTU AC-12800 AC-12800 Stream Composition Mole Fraction 12 3 44 M2S 3.56787E-09 0 0.126354 0.126772 0.126772 M2O 6.2267E-14 0 1.5558 1.30673 13.0673 TEG 0.256416-12 0.0671419 0.15654 0.15838 0.15888 0.15888 CO2 2.561462-12 0.0671419 0.15854 0.58488 0.58488 Propane 3.8387E-05 0.0681546 2.28917 2.28048 0.354881 0.58488 Robulane 0.24741 0.0140765 2.28617 2.28048 0.996656 0.914145 0.94666 0.941455 Propane 3.638987E-05 0.0681549	Tiowsheet.	Emission otream					
form Block Condensate ID Storage VLVE-100 MIX-100 V-12800 Tank VTU Sucino Scrubber C-12800 Tank VTU To Block MIX-105 RCYL-1 C-12800 Tank VTU C-12800 Tank VTU AC-12800 AC-12800 To Block MIX-105 RCYL-1 C-12800 Tank VTU AC-12800 AC-12800 Stream Composition Mole Fraction 12 3 44 M2S 3.56787E-09 0 0.126354 0.126772 0.126772 M2O 6.2267E-14 0 1.5558 1.30673 13.0673 TEG 0.256416-12 0.0671419 0.15654 0.15838 0.15888 0.15888 CO2 2.561462-12 0.0671419 0.15854 0.58488 0.58488 Propane 3.8387E-05 0.0681546 2.28917 2.28048 0.354881 0.58488 Robulane 0.24741 0.0140765 2.28617 2.28048 0.996656 0.914145 0.94666 0.941455 Propane 3.638987E-05 0.0681549			Conn	octions			
From Block Condensate to Storage VLVE-100 MIX-100 VLVE-100 Serubber VLVE-100 Serubber VLVE-100 Serubber To Block MIX-105 RCVL-1 C-12900 Tank VRU AC-12900 Tank VRU Mole Fraction 1 5 12 13 % % Mole Fraction 1 5 12 13 % % Mole Fraction 1 5 12 13 % % TEG 6.203532-60 0 1.727576-10 1.322262-12 0.128777 N2 0 1.739564 0.130973 1.322262-12 0.128777 N2 0.091149 0.158538 0.159538 0.159538 0.159538 CO2 2.64166-12 0.091149 0.158548 0.159538 0.159538 Propune 3.338776-00 0.041765 2.27081 2.27087 2.27087 2.27087 2.27087 2.27087 2.27087 2.27087 2.27087 2.27087 2.27087 2.27087 2.27087 2.27087					12	13	14
Storage VRU VRU VRU VRU To Block MIX-105 RCYL-1 C:12300 Tark AC-12900 Tark VRU Mole Fraction X %	From Block			-			
To: Block MIX-105 RCYL-1 C-12000 Tank VRU AC-12000 Tank VRU Aftercooler Stream Composition Mode Fraction Mode Fraction 1 5 12 13 14 % M2S 3.88787F-09 0 0.128354 0.126772 0.126772 0.126772 M2O 6.220357-08 0 1.757576-10 1.322252-12 1.32254 1.3444 1.44411						VRU Suction	
Stream Composition Taik VRU Taik VRU Mole Fraction 1 5 12 13 14 Mole Fraction 1 5 12 13 14 Mole Fraction 1 5 12 13 14 Mole Fraction 1 5 12 13 1673 13.0673 TEG 6.2027F:14 0 13.1536 13.0673 13.0673 TEG 6.2025F:14 0 13.1536 13.0673 13.0673 CO2 2.64416:-12 0.0071419 0.15654 0.15638 0.128987 14.4411 CO2 2.64416:-12 0.0071419 0.15654 0.15838 0.15698 73.555 Ethane 5.694532:-05 0.13144 2.80091 2.28041 0.294644 0.549441 0.549441 0.549441 0.549444 0.549441 0.549444 0.549444 0.549444 0.549444 0.549444 0.549444 0.549444 0.549444 0.549444 0.549444 0.549444 0.549444 </td <td>To Block</td> <td></td> <td>MIX-105</td> <td></td> <td>RCYL-1</td> <td></td> <td>AC-12900</td>	To Block		MIX-105		RCYL-1		AC-12900
Stream Composition Mole Fraction % % 12 13 14 H2S 6.226714 0 0.128734 0.128772 0.128772 0.128774 H2S 6.236382-08 0 1.75776E-10 1.32252E-12 1.32356 7.33586 7.33586 7.35356 7.33586 7.35356 7.35356 7.35356 7.35356 7.35356 7.35356 7.35356 7.35356 7.35356 7.35356 7.35356 7.35356 7.35356 7.25988 2.29088 1.059148 0.594881 0.594881 0.594881 0.594881 0.594881 0.594881 0.594881 0.594881 0.594881 0.594881 0.594881 0.594894 0.6363762 0.91455 0.911455 0.911455 0.911455 0.911455 0.911455 0.911455 0.911455 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Tank VRU</td>							Tank VRU
Note Fraction 1 5 12 13 14 H2S 3.58787E-09 0 0.128354 0.128772 0.128772 H2O 6.2287E-14 0 1.31536 11.30673 13.0673 TEG 6.22358E-08 0 1.77575E-10 1.32252E-12 1.32252E-12 N22 0 1.89807 1.14285 1.144411 1.44411 CO2 2.55416E-12 0.0677419 0.155938 0.155938 0.155938 Bethane 1.57969E-14 05.8322 7.3711 73.5356 73.5356 Fropane 3.83367-65 0.0681546 2.2017 2.20817 2.2088 2.29088 Isopentane 1.2472 0.040755 0.284351 0.594881 0.594881 Isopentane 1.2421 0.00680793 0.99686 0.011455 0.911455 Isopentane 1.2474 0.1002338 0.99686 0.911455 0.911455 Octane 7.4196 0 0.0122885 0.00172702 0.020172702							Altercooler
Mote Fraction % <					40	40	
H2S 3.58787E-09 0 0.128354 0.128772 0.128772 H2O 6.20358E-08 0 1.77675E-10 1.32252E-12 1.32252E-12 N2 0 1.89607 1.44255 1.44211 1.44215 CO2 2.56416E-12 0.0671419 0.155538 0.155938 0.155938 Bethane 1.576989E-14 0.5632 73.3356 73.5356 73.5356 73.5356 Propane 3.8367E-05 0.0681546 2.70972 2.70872 2.70872 Isobutane 0.0201579 0.298433 0.59481 0.594818 0.594481 Isopentane 1.24721 0.008079 0.293543 0.594813 0.594813 Isopentane 1.2471 0.00405079 0.29343 0.549464 0.549464 Heptane 2.24068 0.944550 0.944556 0.944596 0.944596 I-Petane 1.24921 0.0030112 0.0631767 0.0024351 0.0024351 0.00247215 0.0124215 Ocanne 1.7764	Mole Fraction						
H2O 6.2287E-14 0 13.1673 13.0673 13.0673 TEG 6.20358-08 0 1.7757E-10 13.2252E-12 13.2252E-12 N2 0 1.89607 1.44411 1.44411 CO2 2.56416E-12 0.0671419 0.155534 0.155938 Methane 1.57959E-14 9.5332 7.3.3556 7.35356 Propane 3.83367E-05 0.0681546 2.70395 2.70872 2.70872 Sobulane 0.00611679 0.00405079 0.958353 0.964596 0.994596 0.994596 0.994596 0.994596 0.994596 0.994596 0.994596 0.914155 1.91455 1.91455 1.91455 1.91455 1.91455 1.91455 1.91455 1.91455 1.914155 1.91455 1.91455 1.91455 1.914155 1.914155 1.914145 1.94411 1.924764 1.924764 0.924515 0.914455 0.914455 0.914455 0.914455 0.914455 0.914455 0.914455 0.914455 0.914455 0.914455	H2S						
TEG 6 20358E-08 0 1.77675E-10 1.32252E-12 1.32252E-12 N2 0 1.89607 1.44255 1.44411 1.44411 CO2 2.56416E-12 0.0671419 0.155938 0.155938 Ethane 5.60453E-09 0.681546 2.70395 2.270872 2.70872 Propane 3.83367E-05 0.0681546 2.70395 2.29088 2.29088 Isopatnane 0.024754 0.0140757 2.29018 2.29088 2.29088 Isopatnane 1.29421 0.0068073 0.926655 0.944596 0.944596 -Pentane 12.9421 0.0068073 0.46555 0.0124215 0.0123451 0.000721002 0.06031767 0.04031767 0.04027451 0.0124215 0.0124215 0.0124215 0.0124215 0.0124215 0.0124215 0.0124215 0.0124215 0.0124215 0.0124215 0.0124215 0.0124215 0.012261 0.4292561 0.4292561 0.4292561 0.4292561 0.4292561 0.4292561 0.4292561 0.4292561	H2O						
N2 0 1.89607 1.44265 1.44411 1.44411 CO2 2.5644EE-12 0.0671419 0.15554 0.1555938 0.155938 Methane 1.57989E-14 95.832 73.4711 73.5356 73.5356 Propane 3.83367E-05 0.0681546 2.70972 2.270872 2.270872 Isobutane 0.00405079 0.593543 0.5548481 0.5548481 0.5548481 n-Butane 0.24754 0.0140765 2.28017 2.29088 2.29088 Sopentane 12.49421 0.00460579 0.982532 0.945456 0.945456 n-Petnane 22.3064 0.0103638 0.909655 0.911455 0.0124215 Nonane 1.37764 0 0.00214251 0.000277002 0.000727002 Nonane 1.37764 0 0.482037 0.4492561 0.492261 Toluene 4.62185 0 0.00264733 0.00264733 0.00264733 o.00264733 0.00264733 0.00264733 0.00264733 0.00264733<	TEG						
Methane 157989E-14 95.82 73.111 73.536 73.536 Propane 3.83367E-05 0.0861546 2.70972 2.70872 2.70872 Isobutane 0.0081679 0.00405679 0.59343 0.554481 0.554481 n-Butane 0.24754 0.0140765 2.28617 2.20086 0.24664 heptane 12.9421 0.00860763 0.982632 0.944566 0.941455 heptane 12.26895 0.0030533 0.54602 0.941455 0.911455 0.911455 heptane 1.26895 0.0030636 0.0124215 0.000727002 0.02054542 0.0002742631 0.0202702 0.02054542 0.000254542 0.000254542 0.000254542 0.000254542	N2		0		1.44285	1.44411	1.44411
Ehane 5.60458:0-90 1.81344 2.88099 2.88418 2.88418 Propane 3.8387E-05 0.0881546 2.70395 2.70872 2.70872 Isobutane 0.00811679 0.0964564 2.70395 2.50481 0.594881 Isobutane 0.24754 0.0160573 0.9964582 0.964596 0.944586 0.964596 Isopentane 12.9421 0.00660733 0.9962632 0.964596 0.914455 0.014455 0.014455 0.014455 0.014455 0.014455 0.014455 0.014455 0.014455 0.014455 0.014455 0.014255 0.014255 0.014275 0.000724851 0.00072702 0.000724851 0.00072702 0.000724851							
Propane 3.83367E-05 0.0841564 2.70395 2.70872 2.70872 2.70872 Isobutane 0.00415679 0.0349579 0.539543 0.594881 0.554881 n-Butane 0.24754 0.0140765 2.28617 2.29088 2.29088 n-Pentane 22.3064 0.039633 0.990665 0.911455 0.911455 n-Pentane 22.3064 0.0130638 0.990665 0.911455 0.0631767 Iverane 21.6065 0.000724561 0.000270202 0.000727002 0.000727002 Nonane 1.37764 0 0.0123865 0.012426 0.10126 n-Pocane 0.401146 0 6.88609E-05 6.88609E-05 0.88609E-05 n-Pocane 0.401146 0 6.942037 0.492261 0.492261 n-Decane 6.70077 0 0.442233 0.00024733 0.00024733 0.00264733 notene 0.533242 0 0.00264323 0.000264542 0.00354542 MDEA 0.0000723549 0							
Isobutane 0.00811679 0.0045079 0.533543 0.594881 0.594881 Isopentane 0.24754 0.0140765 2.28617 2.29088 2.29088 Isopentane 12.9421 0.00860793 0.9964506 0.914455 0.014455 n-Pentane 22.3064 0.0130638 0.906606 0.914455 0.014455 Heptane 12.6695 0.01013286 0.0631767 0.0631767 0.0631767 Octane 7.43156 0.01012386 0.000727002 0.000727002 0.000727002 Nonane 1.37764 0.00198693 0.0123865 0.0101265 6.866096-05 n-Becane 8.66536 0.01098693 0.01027002 0.000727002 0.000727002 Dentene 4.52185 0 0.0080752 0.00810797 0.0810797 Toluene 0.533242 0 0.00354542 0.00354542 0.00354542 0.00354542 0.00354542 0.00354542 0.00354542 0.00354542 0.00354542 0.00354542 0.00354542 0.00354542 0.00354542							
n-Butane 0.24754 0.0140765 2.28617 2.29088 2.29088 isopentane 12.9421 0.00860793 0.96252 0.964596 0.914455 n-Pentane 22.3064 0.0130538 0.909665 0.911455 0.944966 h=ptane 12.6695 0 0.0630112 0.0631767 0.0631767 Octane 7.43166 0 0.00724055 0.00727002 0.000727002 Nonane 0.401146 0 6.84538E-0.56 6.86609E-0.56 6.86609E-0.56 n-Hexane 8.66536 0 0.000274052 0.0810797 0.0810797 0.049237 0.492561 0.492561 Toluene 4.62185 0 0.000264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.000264733 0.000264733 0.000264733 0.000264733 0.000264733 0.000264733 0.000264733 0.000264733 0.000264733 0.000264733 0.000264733 0.000264733 0.000264733 0.000264733 0.000264733							
Isopentane 12.9421 0.00860793 0.962532 0.964596 0.911455 n-Pentane 22.3064 0.013068 0.909656 0.111455 0.911455 h-Hexane 12.6696 0 0.0631767 0.0631767 0.0631767 Nonane 1.37764 0 0.000724851 0.00124215 0.00127002 Nonane 0.301764 0 0.000724851 0.000727002 0.000727002 n-Decane 0.401146 0 6.84538E-05 6.86609E-05 6.86609E-05 n-Hexane 8.66536 0 0.109869 0.110126 0.110126 Benzene 0.503242 0 0.0264733 0.00264733 0.00264733 Toluene 0.533242 0 0.00264733 0.00264733 0.00264733 0.00264733 o-Xylene 0.937343 0 0.000196324 0.000196324 0.000196324 0.000196324 Piperazine 3.09472E-07 0 1.0247E-05 3.42022E-06 3.42022E-06 Hybes 1.42406E-09 <							
n-Pentane 22.3064 0.0130638 0.909665 0.911455 0.911455 14exane 21.1065 0.28333 0.540902 0.549046 0.549046 Heptane 21.066 0.28333 0.540902 0.0631767 0.06831767 Octane 7.43156 0 0.00724851 0.000727002 0.000727002 n-Decane 0.401146 0 6.84338E-05 6.86609E-05 6.86609E-05 n-Decane 6.70077 0 0.0492037 0.492561 0.492561 O.0810797 Ehylbenzene 6.70077 0 0.482037 0.492561 0.492561 Toluene 4.62185 0 0.00027432 0.00354542 0.00024433 0.00264733 0.00264733 0.00354542 0.00354542 MDEA 0.000196184 0.000354542 0.00354542 MDEA 0.000196184 0.000354542 0.00354542 MDEA 0.000196184 0.000196328 0.000196328 Piperazine 3.09472E-07 0 1.02247-50 3.42022E-06 3.42022E-08 H2C 1.30641E-14 0 1113664 11.2784 11.2784 TEG 1.04495E-07 0 1.202675 0.206993 0.206993 H2C 1.30641E-14 0 113664 11.2784 11.2784 TEG 0 3.16537 1.93706 1.93815 1.93815 CQ 1.30641E-14 0 1.12864 11.2784 11.2784 TEG 0 3.16537 1.93706 1.93815 1.93815 CQ 1.34429E-09 3.24956 4.15162 4.15491 1.32845 MEhane 2.95174E-15 9.16187 6.4864 6.65183 565183 CQ 1.31423E-12 0.170993 0.328053 0.328791 Methane 2.96174E-15 91.6187 5.43804 56.5183 56.5183 Tehane 1.96264E-09 3.24956 4.15162 4.15491 4.15491 Propane 1.98675E-05 0.179099 5.71414 5.72244 5.72244 Propane 1.98675E-05 0.179099 5.71414 5.72244 5.72244 Propane 1.98675E-05 0.179099 5.71414 5.72244 5.72244 1.966147 0.0307011 3.328048 3.33423 3.3423 n-Pentane 0.16759 0.0447573 6.38805 6.3792 6.3792 Octane 9.98633 0 0.0678077 0.064771 0.000446733 0.00446716 n-Buzane 0.065474 0 0.00446733 0.00446716 0.00446716 n-Decane 0.066471 0 0.00446734 0.00446716 0.00446716 n-Decane 0.066471 0 0.00446735 0.00446716 0.00446716 n-Decane 0.066471 0 0.00446735 0.00446716 0.00446716 n-Decane 0.066471 0 0.00446735 0.00446716 0.00446716 n-Decane 0.066471 0 0.00446							
i-Hexane 21.1065 0.283353 0.548092 0.549046 0.549046 Heptane 12.6695 0 0.063112 0.0631767 0.0631767 Octane 7.43156 0 0.0123865 0.0124215 0.0124215 Nonane 1.37764 0 0.000724651 0.000727002 0.000727002 n-Becane 0.401146 0 6.84538E-05 6.86609E-05 6.86609E-05 n-Hexane 8.65536 0 0.109269 0.110126 0.110126 Benzene 6.70077 0 0.492037 0.0492641 0.492561 Toluene 4.62185 0 0.00264733 0.00264733 0.00264733 o-Xylene 0.93743 0 0.00284532 0.000196328 0.000196328 Piperazine 3.09472E-07 0 1.02247E-05 3.42022E-06 Mass Fraction % % % % % % % % % % % % % % % %							
Heptane 12.6695 0 0.0630112 0.0631767 0.0631767 Nonane 74.3156 0 0.013865 0.0124215 0.000727002 0.000727002 0.000727002 0.000727002 0.000727002 0.000727002 0.000727002 0.000727002 0.000727002 0.000727002 0.000727002 0.000727002 0.000727002 0.000727002 0.000727002 0.000727002 0.001707 0 0.492037 0.492561 0.492561 0.492561 0.492561 0.001707 0 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.000196328 0.000196328 0.000196328 0.000196328 0.000196328 0.000196328 0.000196328 0.000196328 0.000196328 0.000196328 0.000196328 0.026637 1.342022E-06 3.42022E-06 3.42022E-06 3.42022E-06 3.42022E-06 3.42022E-06 3.42022E-06 3.42022E-06							
Octane 7.43156 0 0.0123865 0.0124215 0.0124215 Nonane 1.37764 0 0.000727002 0.000727002 n-Decane 0.401146 0 6.84538E-05 6.86609E-05 6.86609E-05 n-Hexane 8.66536 0 0.109869 0.110126 0.110126 Benzene 6.70077 0 0.492037 0.492561 0.492561 Toluene 4.62185 0 0.00264323 0.00264733 0.00264733 o-Xylene 0.93743 0 0.000196164 0.000196328 0.00196328 MDEA 0.000723549 0 0.000196128 0.000196328 0.00196328 Piperazine 3.09472E-07 0 1.02247E-05 3.42022E-06 3.42022E-06 M2S 1.42406E-09 0 0.206933 0.206903 1.2784 11.2784 H2S 1.4240E-09 0 1.02247E-05 0.206903 0.206903 H2O 1.30641E-14 0 11.3764 11.2784 11.2784							
n-Decane 0.401146 0 6.84538E-05 6.86609E-05 6.86609E-05 n-Hexane 8.66536 0 0.109869 0.110126 0.492261 0.492261 0.492261 0.492261 0.492261 0.492261 0.492261 0.492561 0.492261 0.492261 0.492261 0.492261 0.492261 0.492261 0.492261 0.492261 0.492261 0.492261 0.492561 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00354542 0.00354542 0.00354542 0.00354542 0.00354542 0.00354542 0.00354542 0.00354542 0.00354542 0.00354542 0.00264733 0.206993 H202E-06 3.4202E-06 3.4202E-06 3.4202E-06 3.4202E-06 3.4202E-06 3.4202E-07 0	Octane		7.43156	0			0.0124215
n-Hexane 8.66536 0 0.109869 0.110126 0.110126 Benzene 6.70077 0 0.492037 0.492561 0.00264733 0.00264733 0.00264733 0.00264733 0.00264733 0.00254542 0.000354542 0.000186328 0.900186328 0.900186328 0.900186328 0.900186328 0.900186328 0.202693 1.2022E-06 3.42022E-06 3							
Benzene 6.70077 0 0.492037 0.492561 0.492561 Toluene 4.62185 0 0.0809752 0.0810797 0.0810797 Ehylbenzene 0.583242 0 0.00264323 0.00264733 0.00264733 o-Xylene 0.93743 0 0.00353996 0.00264323 0.000196328 DEA 0.000732549 0 0.000196328 0.000196328 0.000196328 Piperazine 3.09472E-07 0 1.02247E-05 3.42022E-06 3.42022E-06 Mass Fraction 1 5 12 13 14 Mass Fraction % % % % % % H2C 1.42406E-09 0 0.206375 0.206993 0.206993 H2D 1.30641E-14 0 11.3564 11.2784 11.2784 TEG 1.08495E-07 0 1.278E-09 9.51513E-12 9.51513E-12 N2 0 3.14524 1.31423E-12 0.176093 0.328053 0.328791<							
Toluene 4.62185 0 0.0809752 0.0810797 0.0810797 Ehylbenzene 0.583242 0 0.00264733 0.000196184 0.000196184 0.000196184 0.000196184 0.000196328 0.000196328 0.000196328 0.000196328 0.000196328 0.000196328 0.40202E-06 3.4202E-06 3.4202E-162 3.4202E-162 3.5							
Ethylbenzene 0.583242 0 0.00264233 0.00264733 0.00264733 o-Xylene 0.93743 0 0.0035996 0.00354542 0.00354542 MDEA 0.000723549 0 0.000196328 0.000196328 0.000196328 Piperazine 3.09472E-07 0 1.02247E-05 3.42022E-06 3.42022E-06 Mass Fraction % % % % % % H2S 1.42406E-09 0 0.206375 0.206993 0.206993 H2O 1.30641E-14 0 11.3564 11.2784 11.2784 TEG 1.08495E-07 0 1.278E-09 9.51513E-12 9.51513E-12 N2 0 3.16537 1.93706 1.93815 1.93815 CO2 1.31423E-12 0.176093 0.328053 0.328791 0.328791 N2 0 3.24956 4.15162 4.15491 4.15491 Propane 1.96264E-09 3.24956 4.154291 4.54291 Propane <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
o-Xjene 0.93743 0 0.00353996 0.00354542 0.00354542 MDEA 0.00072359 0 0.000196164 0.000196328 0.000196328 Piperazine 3.09472E-07 0 1.02247E-05 3.42022E-06 Mass Fraction 1 5 12 13 14 Mass Fraction % % % % % H2S 1.42406E-09 0 0.206375 0.206993 0.206993 H2O 1.30641E-14 0 11.3564 11.2784 11.2784 TEG 0 3.420557 0.206993 0.206993 0.206993 CQ2 1.08495E-07 0 1.2784 11.2784 11.2784 N2 0 3.1423E-12 0.176093 0.328053 0.328791 0.328791 Methane 2.95174E-15 91.6187 56.4864 56.5183 56.5183 Ethane 1.96875E-05 0.179099 5.71414 5.72244 5.72244 Isobutane 0.06549423 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
MDEA 0.000723549 0 0.000196164 0.000196328 0.000196328 Piperazine 3.09472E-07 0 1.02247E-05 3.42022E-06 3.42022E-06 Mass Fraction % % % % % % % H2S 1.42406E-09 0 0.206375 0.206993 0.206993 0.206993 H2O 1.30641E-14 0 11.3564 11.2784 11.2784 TEG 0.316537 1.93706 1.93815 1.93815 1.93815 CO2 1.31423E-12 0.176093 0.328053 0.328791 0.328791 Methane 2.95174E-15 91.6187 56.4864 56.5183 56.5183 Ethane 1.96624E-09 3.24956 4.15162 4.15491 4.15491 Propane 1.96675E-05 0.179099 5.71414 5.72244 5.72244 5.72244 Isopentane 0.0674973 6.38605 6.3792 6.3792 6.3792 6.3792 6.3792 6.3792 6.3792 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Piperazine 3.09472E-07 0 1.02247E-05 3.42022E-06 3.42022E-06 Mass Fraction 1 5 12 13 14 Mass Fraction %							
Mass Fraction % % % % % % H2S 1.42406E-09 0 0.206375 0.206993 0.206993 H2O 1.30641E-14 0 11.3564 11.2784 11.2784 TEG 1.08495E-07 0 1.278E-09 9.51513E-12 9.51513E-12 N2 0 3.16537 1.93706 1.93815 1.93815 CO2 1.31423E-12 0.176993 0.328053 0.328791 0.328791 Methane 2.95174E-15 91.6187 56.4864 56.5183 56.5183 Ethane 1.96264E-09 3.24956 4.15162 4.15491 4.15491 Propane 1.96264E-03 0.0140309 1.6533 1.65651 1.65651 n-Butane 0.00549423 0.0140309 1.6533 1.65651 1.65651 n-Pentane 10.8747 0.037011 3.32423 3.33423 3.33423 3.33423 3.33423 3.33423 3.33423 3.33423 3.33423 3.328791 <t< td=""><td>Piperazine</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Piperazine						
Mass Fraction % % % % % % H2S 1.42406E-09 0 0.206375 0.206993 0.206993 H2O 1.30641E-14 0 11.3564 11.2784 11.2784 TEG 1.08495E-07 0 1.278E-09 9.51513E-12 9.51513E-12 N2 0 3.16537 1.93706 1.93815 1.93815 CO2 1.31423E-12 0.176993 0.328053 0.328791 0.328791 Methane 2.95174E-15 91.6187 56.4864 56.5183 56.5183 Ethane 1.96264E-09 3.24956 4.15162 4.15491 4.15491 Propane 1.96264E-03 0.0140309 1.6533 1.65651 1.65651 n-Butane 0.00549423 0.0140309 1.6533 1.65651 1.65651 n-Pentane 10.8747 0.037011 3.32423 3.33423 3.33423 3.33423 3.33423 3.33423 3.33423 3.33423 3.33423 3.328791 <t< th=""><th></th><th></th><th></th><th><u> </u></th><th>40</th><th>42</th><th></th></t<>				<u> </u>	40	42	
H2O 1.30641E-14 0 11.3564 11.2784 11.2784 TEG 1.08495E-07 0 1.278E-09 9.51513E-12 9.51513E-12 N2 0 3.16537 1.93706 1.93815 1.93815 CO2 1.31423E-12 0.176093 0.328053 0.328791 0.328053 Methane 2.95174E-15 91.6187 56.4864 56.5183 56.5183 Ethane 1.96264E-09 3.24956 4.15162 4.15491 4.15491 Propane 1.96264E-09 0.0140309 1.6533 1.65651 1.65651 n-Butane 0.00549423 0.0140309 1.6533 1.65651 1.65651 n-Butane 0.167559 0.0487573 6.36805 6.3792 6.3792 Isopentane 10.8747 0.037011 3.32848 3.33423 3.33423 n-Pertane 14.7849 0 0.302867 0.30287 0.30287 Octane 9.88633 0 0.0678077 0.0679783 0.0679783 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
TEG1.08495E-0701.278E-099.51513E-129.51513E-12N203.165371.937061.938151.93815CO21.31423E-120.1760930.3280530.3287910.328791Methane2.95174E-1591.618756.486456.518356.5183Ethane1.96264E-093.249564.151624.154914.15491Propane1.96875E-050.1790995.714145.722445.72244Isobutane0.005494230.01403091.65331.656511.65651n-Butane0.1675590.04875736.368056.37926.3792Isopentane10.87470.0370113.328483.334233.33423n-Pentane18.7430.05616963.145333.150543.15054i-Hexane21.18261.455172.263562.26682.2668Heptane0.0647100.004457330.004467160.00446716n-Decane0.6647100.000466070.0004680360.000468036n-Hexane8.6966200.4537490.4546670.454667Benzene6.0956801.841921.843311.84331Tolene4.9594900.357560.357910.35791Ethylbenzene0.72112600.01344850.01346510.0134651o-Xylene0.02010041200.001120840.00112084	H2S						
N2 0 3.16537 1.93706 1.93815 1.93815 CO2 1.31423E-12 0.176093 0.328053 0.328791 0.328791 Methane 2.95174E-15 91.6187 56.4864 56.5183 56.5183 Propane 1.96264E-09 3.24956 4.15162 4.15491 4.15491 Propane 1.96875E-05 0.179099 5.71414 5.72244 5.72244 Isobutane 0.00549423 0.0140309 1.6533 1.65651 1.65651 n-Butane 0.167559 0.0487573 6.36805 6.3792 6.3792 Isopentane 10.8747 0.037011 3.32848 3.33423 3.33423 i-Hexane 21.1826 1.45517 2.26356 2.2668 2.2668 Heptane 14.7849 0 0.302587 0.303287 0.303287 Nonane 2.05774 0 0.00445533 0.00446716 0.00446716 n-Decane 0.66471 0 0.00046677 0.00046676 0.454667 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
CO21.31423E-120.1760930.3280530.3287910.328791Methane2.95174E-1591.618756.486456.518356.5183Ethane1.96264E-093.249564.151624.154914.15491Propane1.96875E-050.1790995.714145.722445.72244Isobutane0.005494230.01403091.65331.656511.65651n-Butane0.1675590.04875736.368056.37926.3792Isopentane10.87470.0370113.328483.334233.33423n-Pentane18.7430.05616963.145333.150543.15054Heptane21.18261.455172.263562.26682.2668Heptane9.8863300.06780770.06797830.03287Nonane2.0577400.000466770.0004680360.000468036n-Pecane0.6647100.000466770.0004680360.000468036n-Hexane8.6966200.4537490.4546670.454667Benzene6.0956801.841921.843311.84331Toluene4.9594900.357560.357910.35791Ox37050.072112600.01344850.01346510.0180331o-Xylene1.1590500.01801090.01803310.0180331				•			
Methane2.95174E-1591.618756.486456.518356.5183Ethane1.96264E-093.249564.151624.154914.15491Propane1.96875E-050.1790995.714145.722445.72244Isobutane0.005494230.01403091.65331.656511.65651n-Butane0.1675590.04875736.368056.37926.3792Isopentane10.87470.0370113.328483.334233.33423n-Pentane18.7430.05616963.145333.150543.15054i-Hexane21.18261.455172.263562.26682.2668Heptane14.784900.3025870.3032870.303287Octane9.8863300.06780770.06797830.0679783Nonane2.0577400.000466770.0004680360.000468036n-Hexane8.6966201.841921.843311.84331Toluene4.9594900.357560.357910.35791colume0.72112600.01344850.01346510.0134651o-Xylene1.1590500.001120250.001120840.00112084			-				
Ethane1.96264E-093.249564.151624.154914.15491Propane1.96875E-050.1790995.714145.722445.72244Isobutane0.005494230.01403091.65331.656511.65651n-Butane0.1675590.04875736.368056.37926.3792Isopentane10.87470.0370113.328483.334233.33423n-Pentane18.7430.05616963.145333.150543.15054i-Hexane21.18261.455172.263562.26682.2668Heptane14.784900.3025870.3032870.303287Octane9.8863300.06780770.06797830.0679783Nonane2.0577400.004465730.004467160.00446716n-Hexane8.6966200.4537490.4546670.454667Benzene6.0956801.841921.843311.84331Toluene4.9594900.357560.357910.35791ehylenzene0.72112600.01344850.01346510.0134651o-Xylene1.1590500.01803310.01803310.0180331							
Propane1.96875E-050.1790995.714145.722445.72244Isobutane0.005494230.01403091.65331.656511.65651n-Butane0.1675590.04875736.368056.37926.3792Isopentane10.87470.0370113.328483.334233.33423n-Pentane18.7430.05616963.145333.150543.15054i-Hexane21.18261.455172.263562.26682.2668Heptane14.784900.3025870.3032870.303287Octane9.8863300.06780770.06797830.0679783Nonane2.0577400.000465730.0004680360.00046676n-Hexane8.6966200.4537490.4546670.454667Benzene6.0956801.841921.843311.84331Toluene4.9594900.357560.357910.35791Ethylbenzene0.72112600.01344850.01346510.0134651o-Xylene1.1590500.01120250.001120840.00112084							
Isobutane0.005494230.01403091.65331.656511.65651n-Butane0.1675590.04875736.368056.37926.3792Isopentane10.87470.0370113.328483.334233.33423n-Pentane18.7430.05616963.145333.150543.15054i-Hexane21.18261.455172.263562.26682.2668Heptane14.784900.3025870.3032870.303287Octane9.8863300.06780770.06797830.0679783Nonane2.0577400.004455330.004467160.00446716n-Becane0.6647100.000466770.0004680360.0044676n-Hexane8.6966200.4537490.4546670.454667Benzene6.0956801.841921.843311.84331Toluene4.9594900.0357560.357910.35791Ethylbenzene0.72112600.01344850.01346510.0134651o-Xylene1.1590500.01801090.01803310.0180331MDEA0.0010041200.001120250.001120840.00112084							
Isopentane10.87470.0370113.328483.334233.33423n-Pentane18.7430.05616963.145333.150543.15054i-Hexane21.18261.455172.263562.26682.2668Heptane14.784900.3025870.3032870.303287Octane9.8863300.06780770.06797830.0679783Nonane2.0577400.0004655330.004467160.00446716n-Decane0.6647100.000466770.0004680360.000468036n-Hexane8.6966200.4537490.4546670.454667Benzene6.0956801.841921.843311.84331Toluene4.9594900.357560.357910.35791Ethylbenzene0.72112600.01344850.01346510.0134651o-Xylene1.1590500.01801090.01803310.0180331MDEA0.0010041200.001120250.001120840.00112084						1.65651	
n-Pentane18.7430.05616963.145333.150543.15054i-Hexane21.18261.455172.263562.26682.2668Heptane14.784900.3025870.3032870.303287Octane9.8863300.06780770.06797830.0679783Nonane2.0577400.0004655330.004467160.00446716n-Decane0.6647100.000466770.0004680360.000468036n-Hexane8.6966200.4537490.4546670.454667Benzene6.0956801.841921.843311.84331Toluene4.9594900.357560.357910.35791Ethylbenzene0.72112600.01344850.01346510.0134651o-Xylene1.1590500.01801090.01803310.0180331MDEA0.0010041200.001120250.001120840.00112084							
i-Hexane21.18261.455172.263562.26682.2668Heptane14.784900.3025870.3032870.303287Octane9.8863300.06780770.06797830.0679783Nonane2.0577400.004455330.004467160.00446716n-Decane0.6647100.000466770.0004680360.000468036n-Hexane8.6966200.4537490.4546670.454667Benzene6.0956801.841921.843311.84331Toluene4.9594900.357560.357910.35791Ethylbenzene0.72112600.01344850.01346510.0134651o-Xylene1.1590500.01803310.01803310.0180331MDEA0.0010041200.001120250.001120840.00112084							
Heptane14.784900.3032870.3032870.303287Octane9.8863300.06780770.06797830.0679783Nonane2.0577400.004455330.004467160.00446716n-Decane0.6647100.000466770.0004680360.000468036n-Hexane8.6966200.4537490.4546670.454667Benzene6.0956801.841921.843311.84331Toluene4.9594900.357560.357910.35791Ethylbenzene0.72112600.01344850.01346510.0134651o-Xylene1.1590500.01803310.01803310.0180331MDEA0.0010041200.001120250.001120840.00112084							
Octane9.8863300.06780770.06797830.0679783Nonane2.0577400.004455330.004467160.00446716n-Decane0.6647100.000466770.0004680360.000468036n-Hexane8.6966200.4537490.4546670.454667Benzene6.0956801.841921.843311.84331Toluene4.9594900.357560.357910.35791Ethylbenzene0.72112600.01344850.01346510.0134651o-Xylene1.1590500.01803310.01803310.0180331MDEA0.0010041200.001120250.001120840.00112084							
Nonane2.0577400.004455330.004467160.00446716n-Decane0.6647100.000466770.0004680360.000468036n-Hexane8.6966200.4537490.4546670.454667Benzene6.0956801.841921.843311.84331Toluene4.9594900.357560.357910.35791Ethylbenzene0.72112600.01344850.01346510.0134651o-Xylene1.1590500.01801090.01803310.0180331MDEA0.0010041200.001120250.001120840.00112084							
n-Decane0.6647100.000466770.0004680360.000468036n-Hexane8.6966200.4537490.4546670.454667Benzene6.0956801.841921.843311.84331Toluene4.9594900.357560.357910.35791Ethylbenzene0.72112600.01344850.01346510.0134651o-Xylene1.1590500.01801090.01803310.0180331MDEA0.0010041200.001120250.001120840.00112084							
n-Hexane8.6966200.4537490.4546670.454667Benzene6.0956801.841921.843311.84331Toluene4.9594900.357560.357910.35791Ethylbenzene0.72112600.01344850.01346510.0134651o-Xylene1.1590500.01801090.01803310.0180331MDEA0.0010041200.001120250.001120840.00112084							
Benzene6.0956801.841921.843311.84331Toluene4.9594900.357560.357910.35791Ethylbenzene0.72112600.01344850.01346510.0134651o-Xylene1.1590500.01801090.01803310.0180331MDEA0.0010041200.001120250.001120840.00112084							
Ethylbenzene0.72112600.01344850.01346510.0134651o-Xylene1.1590500.01801090.01803310.0180331MDEA0.0010041200.001120250.001120840.00112084				0		1.84331	
o-Xylene1.1590500.01801090.01803310.0180331MDEA0.0010041200.001120250.001120840.00112084							
MDEA 0.00100412 0 0.00112025 0.00112084 0.00112084							
				-			

ProMax 6.0.24054.0 Copyright © 2002-2024 BRE Group, Ltd.

Client Name:	Northwind Mids	ream Partners.	LLC		Job:		
Location:	Titan Treater #2	,					
Flowsheet:	Emission Stream	ns					
	- +						
			1	5	12	13	14
Mass Fraction			%	%	%	%	%
Piperazine			3.10445E-07	0	4.22076E-05	1.41142E-05	1.41142E-05
					1		
			1	5	12	13	14
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
H2S			2.90764E-07	0	1.46853	1.47183	1.47183
H2O			2.66743E-12	0	80.8108	80.1949	80,1949
TEG			2.21526E-05	0	9.09407E-09	6.76574E-11	6.76574E-11
N2			0	2.85731	13.7838	13.7812	13.7812
CO2			2.6834E-10	0.158956	2.33438	2.33787	2.33787
Methane			6.02686E-13	82.7023	401.949	401.874	401.874
Ethane			4.00731E-07	2.93331	29.5424	29.5435	29.5435
Propane			0.00401979	0.161669	40.661	40.6894	40.6894
Isobutane			1.12181	0.0126654	11.7646	11.7786	11.7786
n-Butane			34.2122	0.0440122	45.3142	45.3593	45.3593
Isopentane			2220.39	0.033409	23.685	23.708	23.708
n-Pentane			3826.95	0.0507031	22.3817	22.4019	22.4019
i-Hexane			4325.07	1.31355	16.1072	16.1181	16.1181
Heptane			3018.77	0	2.15317	2.15652	2.15652
Octane			2018.59	0	0.48251	0.48336	0.48336
Nonane			420.15	0	0.0317035	0.0317637	0.0317637
n-Decane			135.72	0	0.00332147	0.00332797	0.00332797
n-Hexane			1775.68	0	3.22881	3.23291	3.23291
Benzene			1244.62	0	13.1068	13.1068	13.1068
Toluene			1012.63	0	2.54435	2.54492	2.54492
Ethylbenzene			147.239	0	0.0956975	0.0957437	0.0957437
o-Xylene			236.654	0	0.128163	0.128224	0.128224
MDEA			0.205022	0	0.00797152	0.00796972	0.00796972
Piperazine			6.33867E-05	0	0.000300343	0.000100359	0.000100359
			Stream P	roperties			
Due a entre		Unite			10	40	44

		Stream	lobernes			
Property	Units	1	5	12	13	14
Temperature	°F	120.167	71.8875	120.691	120.688	428.347
Pressure	psia	18.25	13.75 *	13.26	13.26	65.25
Molecular Weight	lb/lbmol	85.8656	16.7802	20.8662	20.8727	20.8727
Mass Flow	lb/h	20418	90.2679	711.586	711.05	711.05
Std Vapor Volumetric Flow	MMSCFD	2.1657	0.0489938	0.310591	0.31026	0.31026
Std Liquid Volumetric Flow	sgpm	59.8589	0.580367	3.65666	3.65545	3.65545
Net Ideal Gas Heating Value	Btu/ft^3	4331.36	916.235	988.453	989.613	989.613
Gross Ideal Gas Heating Value	Btu/ft^3	4660.33	1016.62	1095.27	1096.5	1096.5

* User Specified Values ? Extrapolated or Approximate Values

			All S	reams Report treams by Total Phase			
Client Name:	Northwind Midst	ream Partners, Ll	_C		Job:	4	
Location:	Titan Treater #2						
Flowsheet:	Emission Stream	าร					
				ections		110	
From Block			15 AC-12900	16 V-12900 Tank	17 SPLT-100	112 RCYL-1	
FIOIII DIOCK			Tank VRU	VRU Suction	3FL1-100	RGTL-T	
			Aftercooler	Scrubber			
To Block			SPLT-100	MIX-101	BTEX Motive Gas	V-12900 Tank VRU Suction Scrubber	
						Scrubber	
				omposition	47	440	
Mole Fraction			15 %	16 %	17 %	112 %	
H2S			0.126772	0.000110988	0.126772	0.126649	
H2O			13.0673	99.9907	13.0673	13.1522	
TEG			1.32252E-12	1.80403E-07	1.32252E-12	1.77586E-10	
N2			1.44411	1.23158E-05	1.44411	1.4427	
CO2 Methane			0.155938	4.44487E-05	0.155938	0.155786	
Methane Ethane			73.5356 2.88418	0.00127215 6.23484E-05	73.5356 2.88418	73.4637 2.88136	
Propane			2.70872	4.05333E-05	2.70872	2.70608	
Isobutane			0.594881	4.93406E-06	0.594881	0.5943	
n-Butane			2.29088	3.19588E-05	2.29088	2.28865	
Isopentane			0.964596	8.05518E-06	0.964596	0.963653	
n-Pentane			0.911455	4.3476E-06	0.911455	0.910564	
i-Hexane Heptane			0.549046 0.0631767	1.11745E-06 1.18913E-07	0.549046 0.0631767	0.54851 0.063115	
Octane			0.0124215	1.16836E-08	0.0124215	0.0124094	
Nonane			0.000727002	4.08578E-10	0.000727002	0.000726292	
n-Decane			6.86609E-05	1.31838E-11	6.86609E-05	6.85938E-05	
n-Hexane			0.110126	3.26953E-07	0.110126	0.110018	
Benzene			0.492561 0.0810797	0.000641081	0.492561	0.49208	
Toluene Ethylbenzene			0.00264733	8.19542E-05 2.07167E-06	0.0810797 0.00264733	0.0810006 0.00264474	
o-Xylene			0.00354542	4.22322E-06	0.00354542	0.00354196	
MDEA			0.000196328	2.32576E-05	0.000196328	0.000196159	
Piperazine			3.42022E-06	0.00695894	3.42022E-06	1.02162E-05	
			,		· · ·	r · · r	
Mass Fraction			15 %	16 %	17 %	112 %	
H2S			0.206993	0.000209904	0.206993	0.206819	
H2O TEG			11.2784 9.51513E-12	99.9615 1.50338E-06	11.2784 9.51513E-12	11.3532 1.27785E-09	
N2			1.93815	1.91452E-05	1.93815	1.93652	
CO2			0.328791	0.000108552	0.328791	0.328514	
Methane			56.5183	0.00113251	56.5183	56.4707	
Ethane			4.15491	0.000104034	4.15491	4.15141	
Propane			5.72244	9.91835E-05	5.72244	5.71761	
Isobutane n-Butane			1.65651 6.3792	1.5914E-05 0.000103078	1.65651 6.3792	1.65511 6.37382	
Isopentane			3.33423	3.22505E-05	3.33423	3.33141	
n-Pentane			3.15054	1.74065E-05	3.15054	3.14788	
i-Hexane			2.2668	5.3437E-06	2.2668	2.26489	
Heptane			0.303287	6.6121E-07	0.303287	0.303031	
Octane Nonane			0.0679783	7.40597E-08 2.90792E-09	0.0679783	0.067921 0.00446339	
n-Decane			0.000448718	1.04093E-10	0.000448718	0.000446339	
n-Hexane			0.454667	1.56351E-06	0.454667	0.454284	
Benzene			1.84331	0.00277883	1.84331	1.84175	
Toluene			0.35791	0.000419029	0.35791	0.357609	
Ethylbenzene			0.0134651	1.22049E-05	0.0134651	0.0134538	
o-Xylene MDEA			0.0180331	2.48804E-05 0.000153793	0.0180331 0.00112084	0.0180179 0.00112002	
* User Specified Values				6.0.24054.0		o Northwind Midstream Par	there IIC and Affiliates

			All St	reams Report reams y Total Phase			
Client Name:	Northwind Midst	ream Partners,	LLC		Job:	4	
Location:	Titan Treater #2						
Flowsheet:	Emission Stream	ns					
			15	16	17	112	
Mass Fraction			%	%	%	%	
Piperazine			1.41142E-05	0.0332627	1.41142E-05	4.21647E-05	
			15	16	17	112	
Mass Flow			lb/h	lb/h	lb/h	lb/h	
H2S			1.47183	1.26024E-06	0.127349	1.47183	
H2O			80.1949	0.60016	6.93882	80.7951	
TEG			6.76574E-11	9.02615E-09	5.85401E-12	9.09381E-09	
N2			13.7812	1.14946E-07	1.19241	13.7812	
CO2			2.33787	6.51736E-07	0.202283	2.33787	
Methane			401.874	6.79949E-06	34.7719	401.874	
Ethane			29.5435	6.24613E-07	2.55624	29.5435	
Propane			40.6894	5.95489E-07	3.52063	40.6894	
Isobutane			11.7786	9.5546E-08	1.01914	11.7786	
n-Butane			45.3593	6.1887E-07	3.92469	45.3593	
Isopentane			23.708	1.93629E-07	2.05132	23.708	
n-Pentane			22.4019	1.04507E-07	1.93831	22.4019	
i-Hexane			16.1181	3.20831E-08	1.39461	16.1181	
Heptane			2.15652	3.96985E-09	0.186592	2.15652	
Octane			0.48336	4.44648E-10	0.0418224	0.48336	
Nonane			0.0317637	1.74589E-11	0.00274834	0.0317637	
n-Decane			0.00332797	6.24963E-13	0.000287951	0.00332797	
n-Hexane			3.23291	9.38717E-09	0.279726	3.23291	
Benzene			13.1068	1.66839E-05	1.13406	13.1069	
Toluene			2.54492	2.51581E-06	0.220198	2.54492	
Ethylbenzene			0.0957437	7.32772E-08	0.00828416	0.0957437	
o-Xylene			0.128224	1.4938E-07	0.0110945	0.128224	
MDEA			0.00796972	9.23357E-07	0.000689575	0.00797064	
Piperazine			0.000100359	0.000199706	8.68352E-06	0.000300066	
			Stream I	Properties			
Property		Units	15	16	17	112	

		Stream Properties									
Property	Units	15	16	17	112						
Temperature	°F	200 *	120.688	200	120.688						
Pressure	psia	63.25 *	13.26	63.25	13.26						
Molecular Weight	lb/lbmol	20.8727	18.0205	20.8727	20.8699						
Mass Flow	lb/h	711.05	0.600391	61.5232	711.651	L					
Std Vapor Volumetric Flow	MMSCFD	0.31026	0.000303439	0.0268451	0.310564	L					
Std Liquid Volumetric Flow	sgpm	3.65545	0.00120042	0.316286	3.65665	L					
Net Ideal Gas Heating Value	Btu/ft^3	989.613	0.264894	989.613	988.646	1					
Gross Ideal Gas Heating Value	Btu/ft^3	1096.5	50.5906	1096.5	1095.48						

* User Specified Values ? Extrapolated or Approximate Values

Page 1 of 4

-			Т	Blocks ndensate Ta ^{Tank Losses}				
ocation.		stream Partners, LL	С			Job:		
	Titan Treater #	=				Modified: 2:05 PM, '		
Flowsheet:	Emission Strea	ıms			5	Status: Solved 2:00	PM, 11/19/	2024
			Co	onnections				
Stream		tion Type	Other Block	Strea		Connection Type		Other Block
Condensate Tank Inl	et Ir	nlet	MIX-105	CondFlas	sh P2	Flashing Losses		MIX-102
P2					D 0	Stream		
CondW P2		ig Losses ream	MIX-102	CondB	P2	Standing Losses Stream		MIX-102
Condensate Load Comp P2		osses Stream		Condensate (Offsite P2 F	Residual Liquid Stre	am	
				Standing Prop	erties			
Tank Geometry		Vertical Cylinder		Roof Type			Cone	
* Shell Length) ft	Slope of Co			0.0625	
* Shell Diameter	T	15.5			ent Pressure		0.03	
* Number of Storage Maximum Fraction		4			acuum Pressu		-0.03	psi
Maximum Fraction Tank Average Fraction F) %	* Location	<u></u>	Μ	idland, TX	
Minimum Fraction F) %	Known Ligu			False	
Tank	01	10	, 70	Temperatur			1 0150	
* Material Category		Light Organics	3		Temperature	•	65.3235	°F
Insulation		Uninsulated			Raoult's Vap		True	
Bolted or Riveted Construction?		False	-	Flashing Te	•		73.4549	
Vapor Balanced Ta	nk?	False	;	Average Da Ambient Ter	aily Maximum mperature		76.7	°F
Known Sum of Incr Liquid Level?	eases in	False	;		ily Minimum		51.4	°F
Sum of Increases in	n Liquid	11133.8	3 ft/yr		c Pressure at	t	13.26	psia
Level	·		-	Tank Locati				•
Shell Color		White		Daily Solar				Btu/(day*ft^2)
Shell Paint Condition	งท	Average		Average Wi				mph
Roof Color		White	;	* Include Sho	ort Term		True	
Roof Paint Conditio		Average		Emissions				
	11	Average						
			`ompositio	n Suboot Brong	rtico			
Component Subset	+	VOCs		n Subset Prope Species in F		Solooto	d Species	
Atomic Basis	<u>.</u>	False		Fraction De			d Species	
7							<u>a epeciec</u>	
				osition Subset I	Properties	6		
Indox	Sel	lected Components	5					
Index H2S		Fals						
H2S H2O		Fais Fais						
TEG		Tru						
N2		Fals						
CO2		Fals						
Methane		Fals						
Ethane		Fals	se					
Propane		Tru						
Isobutane		Tru						
_		Tru						
n-Butane		Tru						
Isopentane		Tru						
Isopentane n-Pentane			ie I					
lsopentane n-Pentane i-Hexane		Tru				1		
Isopentane n-Pentane i-Hexane Heptane		Tru	le					
Isopentane n-Pentane i-Hexane Heptane Octane		Tru Tru	ie ie					
Isopentane n-Pentane i-Hexane Heptane Octane Nonane		Tru Tru Tru	IE IE					
Isopentane n-Pentane i-Hexane Heptane Octane		Tru Tru	IE IE IE					

* User Specified Values ? Extrapolated or Approximate Values

ProMax 6.0.24054.0 Copyright © 2002-2024 BRE Group, Ltd.

				Blocks ondensate Ta Tank Losses			
Client Name:		Midstream Partners, LLC	;		Job:		
Location:	Titan Treat					lified: 2:05 PM, 11/13/2024	
Flowsheet:	Emission S	streams			Stat	us: Solved 2:00 PM, 11/19	/2024
		Tobulo	ted Co	position Subset I	Proportion		
				position subset i	ropenties		
Index		Selected Components					
Toluene		True	•				
Ethylbenzen	e	True					
o-Xylene		True					
MDEA		True					
Piperazine		True	,				
				- ile. Due se stile e			
Vapor Space Volu	Imo	2860.84		ails Properties	<u></u>	0.161458	4
Vapor Space Volt Vapor Density	lille	0.0576415		Roof Outage Tank Roof H		0.161458	
Vapor Space Exp	ansion	0.198405		Tank Shell F		7.75	
Factor			,				
Vented Vapor Sat	uration	0.224018		Vapor Moleo	ular Weight	75.6331	lb/lbmol
Factor Vapor Space Outa	200	15.1615	ft		oor Temperature	E07.060	°D
Average Daily Va		28.3774		Average Va Average Da	lv Ambient	e 527.068 523.72	
Temperature Ran		20.0114	IX.	Temperature		020.12	IX .
Average Daily Va		1.35279	psi	Net Working		2.10086E+06	ft^3/yr
Pressure Range				Throughput			
Breather Vent Pre	essure	0.06	psi	Working Los	s Turnover	0.231335	
Setting Range Vapor Pressure a	t Average	4.31075	nsia	(Saturation)	urnovers per	463.908	
Daily Liquid Surfa		4.01070	psia	Year	uniovers per	403.900	
Temperature							
Average Daily Liq	uid Surface	526.031	°R	Annual Net	Annual Net Throughput		bbl/yr
Temperature		05.0	٩D	Massimum L	autial I latin hat	07	£4
Average Daily Am Temperature Ran		25.3	ĸ	Maximum Li	quia Height	27	ft
Tank Roof Surfac		0.25		Minimum Lie	uid Heiaht	3	ft
Absorptance							
Tank Shell Surfac	e Solar	0.25		Working Los	s Product Facto	or 1	
Absorptance		F 00000		Mant Oattin	O		
Vapor Pressure a Liquid Surface Te		5.02986	psia	Vent Setting Factor	Correction	1	
Vapor Pressure a	t Minimum	3.67706	psia	Saturation F	actor	0.6	
Liquid Surface Te	mperature						
Maximum Liquid S	Surface	533.125	°R		Vapor Pressure of Liquid 4.2116		psia
Temperature Minimum Liquid S	urfaac	518.936	°D	Loaded		074047	bbl/ur
Temperature	unace	518.936	П	Tank	Annual Net Throughput Per 374217 bbl/		DDI/YI
Liquid Height		15	ft	, diik			
			Lo	ding Properties			
Cargo Carrier		Tank Truck or Rail			uction Efficiency	0	%
		Tank Car					
Land Based Mode Operation	e of	Submerged Loading: Dedicated Normal					
Operation		Service					
			R	ults Properties			
Flashing Losses		0	ton/yr		sses per Tank	1.3376	ton/yr
Working Losses		56.0276	ton/yr	Flashing Los	sses per Tank	0	ton/yr
Standing Losses		5.3504	ton/yr	Working and	I Standing	61.378	ton/yr
		440.04	ton	Losses Working and	Standing	1E 011F	ton//r
Loading Losses		142.84	ion/yr	Losses per		15.3445	lon/yr
Working Losses p	er Tank	14.0069	ton/vr		ses per Tank	35.7099	ton/yr
J = 9							.,

		Δ		Blocks ndensate Ta ank Losses	nks			
		tream Partners, LLC			Job:			
	itan Treater #2					05 PM, 11/13/2024		
Flowsheet: E	Emission Stream	ns			Status: Solv	Status: Solved 2:00 PM, 11/19/2024		
		1	abulated	Results Proper	ties			
	Flas	hing Losses Mass Flows	Workir	ng Losses Mass Flows	Standing Losses M Flows	lass Loading	g Losses Mass Flows	
Index		ton/yr	-	ton/yr	ton/yr		ton/yr	
TEG		0		8.43834E-14	8.05826		1.71464E-10	
Propane		0		0.000353491	3.37569		0.000827937	
Isobutane		0		0.0345655	0.0033		0.079522	
n-Butane		0		<u>0.711591</u> 17.2653	0.06		1.63545 42.9896	
Isopentane n-Pentane		0		21.8882		4876 9023	<u>42.9896</u> 54.8964	
i-Hexane		0		9.96483	0.95		25.9258	
Heptane		0		1.42438	0.93		3.36776	
Octane		0		0.25717	0.024		0.667331	
Nonane		0		0.0141981	0.0013		0.0425547	
n-Decane		0		0.0012807	0.00012		0.00434408	
n-Hexane		0		2.88932	0.27		7.17329	
Benzene		0		1.25311	0.11		4.88045	
Toluene		C		0.294332	0.028		1.06763	
Ethylbenzene		0		0.0137321	0.0013		0.0462637	
o-Xylene		0		0.0152494	0.0014		0.0624103	
MDEA		0		1.06135E-08	1.01354		9.40219E-05	
Piperazine		0		1.49242E-09	1.4252	E-10	1.45861E-06	
TEG Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane		9.24416E-14 0.000387247 0.0378664 0.779545 18.914 23.9785 10.9164						
Heptane		1.5604						
Octane		0.281729						
Nonane		0.015554						
n-Decane		0.00140301						
n-Hexane Benzene		<u>3.16524</u> 1.37277						
Toluene		0.32244						
Ethylbenzene		0.0150434						
o-Xylene		0.0167057						
MDEA		1.1627E-08						
Piperazine		1.63494E-09						
				erm Properties				
Maximum Battery Fi Rate	-		bbl/hr	per Tank	Flashing Losses		lb/h	
Short-Term Number of Storage Tanks		4		per Tank			lb/h	
Worst-Case Liquid Surface Temperature		95		per Tank	Short-Term Loading Losses per Tank		lb/h	
Maximum Loading F			bbl/hr	Weight	Vapor Molecular		lb/lbmol	
Worst-Case Flashing	-		lb/h	Worst-Case	Vapor Pressure at Worst-Case Temperature		psia	
Short-Term Working		106.602			* Short-Term Overall Reduction Efficiency		%	
Short-Term Loading	Losses	64.0031	Ib/h					

Γ

		Blocks AP-42 Condensate Tanks Tank Losses		
Client Name:	Northwind Mids	tream Partners, LLC	Job:	•
Location:	Titan Treater #2		Modified: 2	:05 PM, 11/13/2024
Flowsheet:	Emission Stream	ns	Status: Sol	ved 2:00 PM, 11/19/2024

Tabulated Short Term Properties							
Index	Worst-Case Flashing Losses Mass Flows Ib/h	Short-Term Working Losses Mass Flows Ib/h	Short-Term Loading Losses Mass Flows Ib/h				
TEG	0	5.33719E-13	1.47062E-10				
Propane	0	0.000547221	0.000272495				
Isobutane	0	0.0569581	0.0297713				
n-Butane	0	1.19746	0.637432				
Isopentane	0	31.2926	18.2225				
n-Pentane	0	40.8473	24.0756				
i-Hexane	0	19.8538	12.1577				
Heptane	0	3.2454	1.86444				
Octane	0	0.663103	0.411401				
Nonane	0	0.0370567	0.0292923				
n-Decane	0	0.00293867	0.00330206				
n-Hexane	0	5.94584	3.54154				
Benzene	0	2.69306	2.37554				
Toluene	0	0.690268	0.587165				
Ethylbenzene	0	0.0354478	0.0283883				
o-Xylene	0	0.0404394	0.0387024				
MDEA	0	5.87187E-08	4.63861E-05				
Piperazine	0	4.85233E-09	5.01512E-07				

Remarks

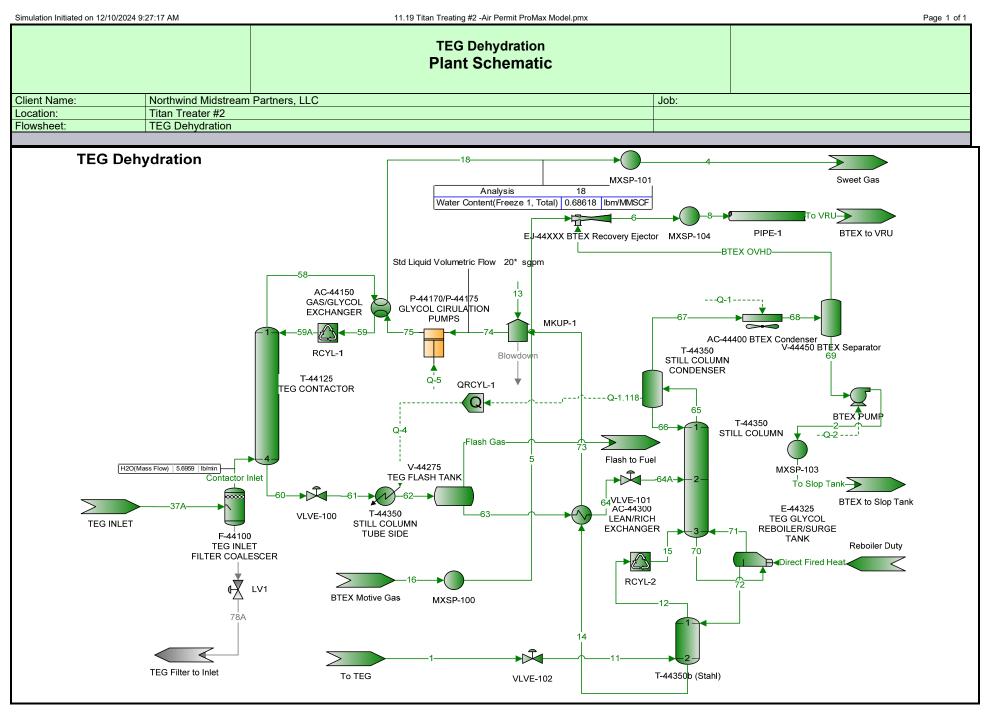
Page 1 of 4

Simulation Initiated on 12/10/	2024 9:27:17 AM	11.	19 Titan Treating #2 -/	Air Permit ProMax Moo	del.pmx		Page 1		
			AP-42 S	ocks Iop Tanks Losses					
Client Name:	Northwind Mids	tream Partners, LLC			Job:				
	Fitan Treater #2				Modified: 2:05 PM, 11/13/2024				
Flowsheet:	ns		Status: Solved 5:40 PM, 11/20/2024						
			Com	a ati a ma					
Stream	Connect	ion Type C	Other Block	ections Stream	n Co	onnection Type	Other Block		
Slop Tank Inlet P2		let	MIX-101	TKFlash		lashing Losses	MIX-104		
·			-			Stream			
TWK P2		l Losses eam	MIX-103	TKB P	2 S	tanding Losses Stream	MIX-103		
Slop Load Compositio	n Loading Los	sses Stream		Slop Offsi	te P2 Resi	dual Liquid Stream			
P2									
		Wo	rking and St	anding Prop	erties				
Tank Geometry		Vertical Cylinder		Roof Type			one		
Shell Length		20		Slope of Co			625		
Shell Diameter	Tanka	12	π	Breather Ve			0.03 psi		
Number of Storage		<u>2</u> 90	%	Breather Va * Location	cuum Pressure)- Midland.	<u>).03 psi</u> TX		
Tank							·		
Average Fraction Fi		50		Time Frame			'ear		
Minimum Fraction F Tank	III of	10	%	Known Liqui Temperature		Fa	alse		
Material Category		Heavy Crude			Femperature	65.3	235 °F		
Insulation		Uninsulated		Use AP 42 F	Raoult's Vapor		alse		
Bolted or Riveted		False		Pressure? Flashing Te	mperature	73.4	479 °F		
Construction?					-	-	-		
Vapor Balanced Tar	ık?	False		Average Da Ambient Ter	ily Maximum nperature	7	76.7 °F		
Known Sum of Incre	eases in	False		Average Da	ily Minimum	Ę	51.4 °F		
Liquid Level? Sum of Increases in	Liquid	4045.16	ft/vr	Ambient Ter Atmospheric	nperature Pressure at	13	3.26 psia		
Level	· .		,	Tank Location	on				
Shell Color	-	White		Daily Solar I		1	698 Btu/(day*ft^2)		
Shell Paint Condition Roof Color	n	Average White			1	<u>11 mph</u> īrue			
Roof Paint Condition	2	Average		Emissions					
Roof Paint Condition	1	Average							
		Co	omposition S						
Component Subset VOCs			Species in Results		Selected Spe				
Atomic Basis		False		Fraction Der	nominator	Selected Spe	cies		
		Tabulat	ed Composi	tion Subset I	Properties				
	Sele	ected Components			•				
Index H2S		Falss	•						
H2S H2O		False False							
TEG		True							
N2		False							
CO2		False							
Methane		False							
Ethane		False							
Propane		True							
Isobutane		True							
n-Butane		True							
Isopentane		True							
n-Pentane		True True							
i-Hexane Heptane		True							
Octane		True							
Nonane		True							
n-Decane		True							
n-Hexane		True							
Benzene		True			1				

* User Specified Values ? Extrapolated or Approximate Values

			A	Blocks Slop Tanks ank Losses				
Client Name:	Northwind	Midstream Partners, LLC	;		Job:			
ocation:	Titan Treat		#2			Modified: 2:05 PM, 11/13/2024		
lowsheet:	Emission S	Streams			Status: S	olved 5:40 PM, 11/20/	/2024	
		Tabula	ted Co	sition Subset I	Properties			
		Selected Components			-			
Index								
Toluene		True						
Ethylbenze		True						
o-Xylene	9	True						
MDEA Piperazin	0	True True						
Fiperazili		The	;					
				- Descention				
	1			s Properties	-	0.407	4	
Vapor Space Vo Vapor Density	nume	<u>1145.11</u> 0.114354		Roof Outage Tank Roof H		0.125		
Vapor Density Vapor Space Ex	nansion		1/day	Tank Rool F			ft	
Factor	parision	I	iruay			0		
Vented Vapor Sa	aturation	0.136856		Vapor Moleo	cular Weight	55.0434	lb/lbmol	
Factor					0			
Vapor Space Ou		10.125			por Temperature	527.157		
Average Daily V		28.1714	°R	Average Da		523.72	°R	
Temperature Ra		0.07000	nc!	Temperature		457407	#A2/	
Average Daily V Pressure Range		2.87602	psi	Net Working Throughput		457497	π^3/yr	
Breather Vent P		0.06	nei	Working Los		1		
Setting Range	lessure	0.00	psi	(Saturation)		I		
Vapor Pressure	at Average	11.753	psia		Number of Turnovers per			
Daily Liquid Surf			•	Year	·			
Temperature								
Average Daily Li	iquid Surface	526.075	°R	Annual Net	Throughput	162984	bbl/yr	
Temperature Average Daily A	mbiont	25.3	°D	Movimum Li	Movimum Liquid Hoight		ft	
Temperature Ra		25.5	ĸ		Maximum Liquid Height		п	
Tank Roof Surfa		0.25		Minimum Lio	Minimum Liquid Height		ft	
Absorptance					1	_		
Tank Shell Surfa	ace Solar	0.25		Working Los	ss Product Factor	0.75		
Absorptance								
Vapor Pressure		13.26	psia	Vent Setting	Correction	1		
Liquid Surface T Vapor Pressure		10.384	noic	Factor Saturation F	actor	0.6		
Liquid Surface T		10.384	рыа	Saturation F	aciUI	0.0		
Maximum Liquid		533.118	°R	Vapor Press	sure of Liquid	2.14506	psia	
Temperature				Loaded	·			
Minimum Liquid	Surface	519.032	°R	Annual Net	Throughput Per	81492.1	bbl/yr	
Temperature				Tank				
Liquid Height		10	ft					
			L	ng Properties				
Cargo Carrier		Tank Truck or Rail		* Overall Red	uction Efficiency	0	%	
Land Based Mod	de of	Tank Car Submerged Loading:						
Cand Based Mod		Dedicated Normal						
operation		Service						
			-	ts Properties				
Flashing Losses		274.009			sses per Tank	1.74583	ton/vr	
Working Losses		274.009 20.9448			sses per Tank	137.004		
Standing Losses		3.49166		Working and		24.4365		
3000				Losses	•		- ,	
Loading Losses		6.65227	ton/yr	Working and		12.2182	ton/yr	
				Losses per				
Working Losses	per Tank	10.4724	ton/yr	Loading Los	ses per Tank	3.32613	ton/yr	

			AP-42 SI	ocks op Tanks Losses			
Client Name: N	orthwind Mids	ream Partners, LLC			Job:		
	tan Treater #2					05 PM, 11/13/2024	
Flowsheet: E	mission Strear	ns			Status: Solv	ved 5:40 PM, 11/20	/2024
		Т	abulated Res	sults Propert	ties		
	Flas	hing Losses Mass Flows	Flo	osses Mass ows	ws Flows		g Losses Mass Flows
Index		ton/yr		n/yr	ton/yr	- 10	ton/yr
TEG		6.18328E-11		4.67251E-12	7.78942		3.17074E-12
Propane Isobutane		<u>56.553</u> 24.7848		1.06282 0.986819		7718 6451	0
n-Butane		80.6084		4.65125	0.77		0
Isopentane		39.0524		5.03859		3997	0.227805
n-Pentane		34.6158		4.43099	0.738		1.62861
i-Hexane		19.741		2.48361	0.414		2.31143
Heptane		5.36267		0.648252	0.108		0.804276
Octane		1.3456		0.158317	0.0263		0.205163
Nonane		0.0949918		0.0108733	0.0018		0.0143162
n-Decane		0.0102537		0.00114483	0.000190	0851	0.00141496
n-Hexane		6.68935		0.830814	0.138		0.876387
Benzene		3.45366		0.434647	0.0724	4589	0.36321
Toluene		1.48417		0.181575	0.0302	2699	0.191397
Ethylbenzene		0.0910685		0.010768	0.001		0.0121559
o-Xylene		0.120542		0.014232	0.0023		0.0159931
MDEA		0.000900159		0.000127438	2.12448		0.000104469
Piperazine		1.9882E-06		1.75276E-07	2.92199	E-08	1.26692E-07
			Ĩ		1	-	
		king and Standing sses Mass Flows					
Index		ton/yr					
TEG		5.45145E-12					
Propane		1.24					
Isobutane		<u>1.15133</u> 5.42665					
n-Butane Isopentane		5.87856					
n-Pentane		5.16967					
i-Hexane		2.89764					
Heptane		0.756321					
Octane		0.184709					
Nonane		0.0126859					
n-Decane		0.00133568					
n-Hexane		0.969317					
Benzene		0.507106					
Toluene		0.211845					
Ethylbenzene		0.012563					
o-Xylene		0.0166046					
MDEA		0.000148683					
Piperazine		2.04496E-07					
			Short Term	n Properties			
Maximum Battery Fill	ing	190	bbl/hr		Flashing Losses	362.155	lb/h
Rate		2		Short-Term	Working Losses	15.9571	lb/h
Rate Short-Term Number of Storage Tanks	DT	Z		per Tank			
Short-Term Number Storage Tanks Worst-Case Liquid St		95	°F		Loading Losses	4.36051	lb/h
Short-Term Number of Storage Tanks	urface	95	°F bbl/hr	Short-Term per Tank Short-Term	Loading Losses Vapor Molecular		lb/h lb/lbmol
Short-Term Number of Storage Tanks Worst-Case Liquid So Temperature	urface ate	95	bbl/hr	Short-Term per Tank Short-Term Weight Vapor Press	Vapor Molecular		lb/lbmol
Short-Term Number of Storage Tanks Worst-Case Liquid So Temperature Maximum Loading Ra	urface ate Losses	95 190	bbl/hr lb/h	Short-Term per Tank Short-Term Weight Vapor Press	Vapor Molecular sure at Temperature Overall	56.1714	lb/lbmol


		AP-42 S	ocks I <mark>op Tanks</mark> _{Losses}				
Client Name:	Northwind Mids	ream Partners, LLC		Job:			
Location:	Titan Treater #2	Titan Treater #2			Modified: 2:05 PM, 11/13/2024		
Flowsheet:	Emission Stream	Emission Streams			Status: Solved 5:40 PM, 11/20/2024		
	•						

	Tabulated Short Term Properties									
Index	Worst-Case Flashing Losses Mass Flows Ib/h	Short-Term Working Losses Mass Flows Ib/h	Short-Term Loading Losses Mass Flows Ib/h							
TEG	1.07839E-09	1.81659E-10	1.01517E-10							
Propane	131.306	1.09088	0							
Isobutane	58.7133	0.703318	0							
n-Butane	193.733	3.36247	0							
Isopentane	100.016	3.37624	0							
n-Pentane	91.6084	3.81831	0							
i-Hexane	61.2763	5.66873	0							
Heptane	29.2501	4.9273	3.91275							
Octane	12.0253	2.02572	2.37014							
Nonane	1.20376	0.202779	0.261902							
n-Decane	0.153924	0.0259292	0.0329384							
n-Hexane	23.0554	3.01208	0							
Benzene	12.491	2.10416	1.02486							
Toluene	7.70384	1.29775	0.846875							
Ethylbenzene	0.746294	0.125716	0.115594							
o-Xylene	1.02322	0.172367	0.15569							
MDEA	0.00277754	0.000467889	0.000271384							
Piperazine	2.29375E-05	3.86392E-06	2.25761E-06							

Warnings ProMax:ProMax!Project!Flowsheets!Emission Streams!Blocks!AP-42 Slop Tanks

Warning: Vapor adjusted to ensure mass balance.

Warning: Short Term vapor adjusted to ensure mass balance.

Page 1 of 18

Simulation Initiated on 12/	/10/2024 9:27:17 AM	11.19 Hta	T Treating #2 -	ir Permit ProMax Model.	omx		Page 1 of
		Pre	DCESS Sti All St Tabulated b				
Client Name:	Northwind Midst	ream Partners, LLC			Job:		
Location:	Titan Treater #2				300.		
Flowsheet:	TEG Dehydration	n					
	TEO Denyaration						
			Conn	ections			
		Blov	vdown	BTEX OVHD	Contactor Inlet	Flash Gas	MultiplierByp ass-1
From Block		MK	UP-1	V-44450 BTEX Separator	F-44100 TEG INLET FILTER	V-44275 TEG FLASH TANK	MultiplierMixer- I-1
To Block				EJ-44XXX BTEX Recovery	COALESCER T-44125 TEG CONTACTOR	Flash to Fuel	MultiplierMixer- O-1
				Ejector			
			Stream C	omposition			
			vdown	BTEX OVHD	Contactor	Flash Gas	MultiplierByp
					Inlet		ass-1
Mole Fraction			%	%	%	%	%
H2S			567E-12	0.000662282	0.000115144	0.000901314	
H2O).991197	13.6902	0.188036	0.512452	
TEG			98.8884	2.03841E-10	0	0.000289097	
N2		0.00	0503984	1.51635	1.99464	0.4369	
002		0.00	0131343	0.0536238	0.000897977	0.00389202	
Vethane		0.	0567054	77.1789	71.3146	50.0383	
Ethane			0223944	2.75091	14.6773	23.4083	
Propane			0128281	1.83219	7.95449	16.3771	
sobutane			161E-06	0.279528	0.921424	1.86477	
n-Butane			928E-05	1.25206	2.24825	5.63556	
sopentane			307E-05	0.330021	0.394089	0.926087	
n-Pentane			853E-05	0.275227	0.244705	0.632299	
-Hexane			0242272	0.276087	0.040725	0.0964679	
leptane			544E-10	0.00718173	0.00221973	0.00482892	
Dctane			674E-10	0.000796944	0.000176159	0.000313699	
Vonane			089E-11	2.15725E-05	3.43198E-06	4.73535E-06	
n-Decane			461E-11	1.59385E-06	1.86125E-07	1.98215E-07	
n-Hexane			303E-09	0.0187099	0.00924467	0.0223207	
Benzene			482E-05	0.464556	0.00814271	0.0359595	
oluene			179E-06	0.0682317	0.000814815	0.00282072	
Ethylbenzene			606E-06	0.00191695	1.72352E-05	4.69783E-05	
-Xylene			328E-06	0.00260417	1.83323E-05	4.51417E-05	
MDEA			0529583	0.000199401	3.93894E-06	3.27543E-07	
Piperazine			0527874	1.14048E-05	0.000122632	0.000326913	
		Blov	vdown	BTEX OVHD	Contactor Inlet	Flash Gas	MultiplierByp ass-1
Mass Fraction			%	%	%	%	%
						/0	/0
12S		1.56	6161E-12	0.00119101	0.00017589	0.0010921	
12S 12O		1.56	0161E-12 0.120048	0.00119101 13.0141	0.00017589 0.151836	0.0010921 0.328222	
12S 12O TEG		1.56	0161E-12 0.120048 99.8369	0.00119101 13.0141 1.61527E-09	0.00017589 0.151836 0	0.0010921 0.328222 0.00154351	
12S 12O TEG 12		9.45	0161E-12 0.120048 99.8369 0154E-05	0.00119101 13.0141 1.61527E-09 2.24144	0.00017589 0.151836 0 2.5045	0.0010921 0.328222 0.00154351 0.435133	
12S 12O EG 12 12 202		9.49 3.88	0161E-12 0.120048 99.8369 0154E-05 0604E-05	0.00119101 13.0141 1.61527E-09 2.24144 0.124528	0.00017589 0.151836 0 2.5045 0.00177134	0.0010921 0.328222 0.00154351 0.435133 0.0060897	
12S 12O EG 12 12 2O2 Methane		9.49 3.86 0.0	0161E-12 0.120048 99.8369 0154E-05 0604E-05 0611574	0.00119101 13.0141 1.61527E-09 2.24144 0.124528 65.3328	0.00017589 0.151836 0 2.5045 0.00177134 51.279	0.0010921 0.328222 0.00154351 0.435133 0.0060897 28.5396	
12S 12O EG 12 12 2O2 Methane Ethane		9.49 3.86 0.00	161E-12 0.120048 99.8369 0154E-05 604E-05 0611574 0452703	0.00119101 13.0141 1.61527E-09 2.24144 0.124528 65.3328 4.36474	0.00017589 0.151836 0 2.5045 0.00177134 51.279 19.7814	0.0010921 0.328222 0.00154351 0.435133 0.0060897 28.5396 25.0244	
12S 12O EG 12 12 2O2 Methane Propane		9.49 9.49 3.86 0.0 0.00 3.80	3161E-12 0.120048 99.8369 9154E-05 3604E-05 0611574 0452703 9287E-05	0.00119101 13.0141 1.61527E-09 2.24144 0.124528 65.3328 4.36474 4.26311	0.00017589 0.151836 0 2.5045 0.00177134 51.279 19.7814 15.7217	0.0010921 0.328222 0.00154351 0.435133 0.0060897 28.5396 25.0244 25.6748	
12S 12O EG 12 12 12 12 12 202 Methane Propane Sobutane		9.49 9.49 3.86 0.0 0.00 3.80 3.81	1161E-12 0.120048 99.8369 154E-05 604E-05 0611574 0452703 0287E-05 042E-06	0.00119101 13.0141 1.61527E-09 2.24144 0.124528 65.3328 4.36474 4.26311 0.857293	0.00017589 0.151836 0 2.5045 0.00177134 51.279 19.7814 15.7217 2.40045	0.0010921 0.328222 0.00154351 0.435133 0.0060897 28.5396 25.0244 25.6748 3.85338	
12S 12O EG V2 2O2 Methane Ethane Propane sobutane I-Butane		9.49 9.49 3.86 0.0 0.00 3.80 3.81 1.55	1161E-12 0.120048 99.8369 1154E-05 0604E-05 0611574 0452703 1287E-05 042E-06 0397E-05	0.00119101 13.0141 1.61527E-09 2.24144 0.124528 65.3328 4.36474 4.26311 0.857293 3.83998	0.00017589 0.151836 0 2.5045 0.00177134 51.279 19.7814 15.7217 2.40045 5.85703	0.0010921 0.328222 0.00154351 0.435133 0.0060897 28.5396 25.0244 25.6748 3.85338 11.6454	
12S 12O TEG V2 CO2 Methane Ethane Propane sobutane n-Butane sopentane		9.49 9.49 3.88 0.0 0.00 3.80 3.81 1.59 1.67	161E-12 0.120048 99.8369 1154E-05 0604E-05 0611574 0452703 0287E-05 042E-06 0397E-05 0975E-05	0.00119101 13.0141 1.61527E-09 2.24144 0.124528 65.3328 4.36474 4.26311 0.857293 3.83998 1.25641	0.00017589 0.151836 0 2.5045 0.00177134 51.279 19.7814 15.7217 2.40045 5.85703 1.27442	0.0010921 0.328222 0.00154351 0.435133 0.0060897 28.5396 25.0244 25.6748 3.85338 11.6454 2.3755	
12S 12O EG 12 2O2 Methane Ethane Propane sobutane n-Butane sopentane n-Pentane		1.56 9.49 3.86 0.0 0.00 3.80 3.81 1.59 1.67 2.7	161E-12 0.120048 99.8369 1154E-05 3604E-05 0611574 0452703 1287E-05 042E-06 397E-05 975E-05 786E-05	0.00119101 13.0141 1.61527E-09 2.24144 0.124528 65.3328 4.36474 4.26311 0.857293 3.83998 1.25641 1.04781	0.00017589 0.151836 0 2.5045 0.00177134 51.279 19.7814 15.7217 2.40045 5.85703 1.27442 0.791339	0.0010921 0.328222 0.00154351 0.435133 0.0060897 28.5396 25.0244 25.6748 3.85338 11.6454 2.3755 1.62191	
12S 12O TEG N2 CO2 Methane Ethane Propane sobutane I-Butane sopentane I-Pentane -Pentane		1.56 9.49 3.88 0.0 0.00 3.80 3.81 1.55 1.67 2.7 0.0	161E-12 0.120048 99.8369 1154E-05 1604E-05 0604E-05 0452703 1287E-05 042E-06 397E-05 975E-05 786E-05 0140359	0.00119101 13.0141 1.61527E-09 2.24144 0.124528 65.3328 4.36474 4.26311 0.857293 3.83998 1.25641 1.04781 1.25543	0.00017589 0.151836 0 2.5045 0.00177134 51.279 19.7814 15.7217 2.40045 5.85703 1.27442 0.791339 0.157302	0.0010921 0.328222 0.00154351 0.435133 0.0060897 28.5396 25.0244 25.6748 3.85338 11.6454 2.3755 1.62191 0.295557	
12S 12O EG 12 202 Methane CD2 Methane Chane Sobutane I-Butane Sopentane I-Pentane Hexane Hexane Hexane		1.56 9.49 3.88 0.0 0.00 3.80 3.81 1.55 1.65 2.7 0.0 3.13	161E-12 0.120048 99.8369 1154E-05 1604E-05 0604E-05 0452703 0287E-05 042E-06 397E-05 975E-05 786E-05 0140359 0611E-10	0.00119101 13.0141 1.61527E-09 2.24144 0.124528 65.3328 4.36474 4.26311 0.857293 3.83998 1.25641 1.04781 1.25543 0.0379723	0.00017589 0.151836 0 2.5045 0.00177134 51.279 19.7814 15.7217 2.40045 5.85703 1.27442 0.791339 0.157302 0.00996934	0.0010921 0.328222 0.00154351 0.435133 0.0060897 28.5396 25.0244 25.6748 3.85338 11.6454 2.3755 1.62191 0.295557 0.0172029	
12S 12O EG 12 12 12 12 12 12 12 14 14 14 14 14 14 14 14 14 14		1.56 9.49 3.88 0.0 0.00 3.80 3.81 1.55 1.67 2.77 0.0 3.13 1.55	161E-12 0.120048 99.8369 1154E-05 1604E-05 0604E-05 061574 0452703 0287E-05 042E-06 397E-05 975E-05 0140359 0611E-10 6642E-10	0.00119101 13.0141 1.61527E-09 2.24144 0.124528 65.3328 4.36474 4.26311 0.857293 3.83998 1.25641 1.04781 1.25543 0.0379723 0.00480358	0.00017589 0.151836 0 2.5045 0.00177134 51.279 19.7814 15.7217 2.40045 5.85703 1.27442 0.791339 0.157302 0.00996934 0.000901923	0.0010921 0.328222 0.00154351 0.435133 0.0060897 28.5396 25.0244 25.6748 3.85338 11.6454 2.3755 1.62191 0.295557 0.0172029 0.00127398	
12S 12O EG 12 202 Methane CO2 Methane Propane Propane sobutane sobutane sobutane -Butane -Pentane -Pentane Hexane Hexane deptane Octane Nonane		1.56 9.49 3.88 0.0 0.00 3.80 3.81 1.55 2.7 0.0 3.13 1.55 2.37	3161E-12 0.120048 99.8369 1154E-05 1604E-05 0611574 0452703 9287E-05 042E-06 0397E-05 975E-05 0742059 6011E-10 6642E-10 193E-11	0.00119101 13.0141 1.61527E-09 2.24144 0.124528 65.3328 4.36474 4.26311 0.857293 3.83998 1.25641 1.04781 1.25543 0.0379723 0.00480358 0.000145995	0.00017589 0.151836 0 2.5045 0.00177134 51.279 19.7814 15.7217 2.40045 5.85703 1.27442 0.791339 0.157302 0.00996934 0.000901923 1.97292E-05	0.0010921 0.328222 0.00154351 0.435133 0.0060897 28.5396 25.0244 25.6748 3.85338 11.6454 2.3755 1.62191 0.295557 0.0172029 0.00127398 2.15924E-05	
12S 12O TEG V2 CO2 Methane Ethane Propane sobutane obutane obutane obutane h-Butane h-Pentane Hexane Heptane Octane Nonane		1.56 9.49 3.88 0.0 0.00 3.80 3.81 1.59 1.67 2.7 0.0 3.13 1.55 2.37 1.06	161E-12 0.120048 99.8369 1154E-05 1604E-05 0611574 0452703 1287E-05 0475E-05 975E-05 786E-05 0140359 161E-10 642E-10 193E-11 617E-11	0.00119101 13.0141 1.61527E-09 2.24144 0.124528 65.3328 4.36474 4.26311 0.857293 3.83998 1.25641 1.04781 1.25543 0.0379723 0.00480358 0.000145995 1.19663E-05	0.00017589 0.151836 0 2.5045 0.00177134 51.279 19.7814 15.7217 2.40045 5.85703 1.27442 0.791339 0.157302 0.00996934 0.00996934 0.000901923 1.97292E-05 1.18698E-06	0.0010921 0.328222 0.00154351 0.435133 0.0060897 28.5396 25.0244 25.6748 3.85338 11.6454 2.3755 1.62191 0.295557 0.0172029 0.00127398 2.15924E-05 1.00267E-06	
12S 12O 12O 12O 12O 12C 12C 12C 12C 12C 12C 12C 12C		1.56 9.49 3.86 0.0 0.00 3.80 3.81 1.59 1.67 2.7 0.0 3.13 1.55 2.37 1.06 8.30	3161E-12 0.120048 99.8369 1154E-05 1604E-05 0611574 0452703 9287E-05 042E-06 0397E-05 975E-05 0742059 6011E-10 6642E-10 193E-11	0.00119101 13.0141 1.61527E-09 2.24144 0.124528 65.3328 4.36474 4.26311 0.857293 3.83998 1.25641 1.04781 1.25543 0.0379723 0.00480358 0.000145995	0.00017589 0.151836 0 2.5045 0.00177134 51.279 19.7814 15.7217 2.40045 5.85703 1.27442 0.791339 0.157302 0.00996934 0.000901923 1.97292E-05	0.0010921 0.328222 0.00154351 0.435133 0.0060897 28.5396 25.0244 25.6748 3.85338 11.6454 2.3755 1.62191 0.295557 0.0172029 0.00127398 2.15924E-05	

? Extrapolated or Approximate Values

Copyright © 2002-2024 BRE Group, Ltd.

Client Name: Northwind Mids	tream Partners, LLC		Job:	<u> </u>	
Location: Titan Treater #2					
Flowsheet: TEG Dehydratio					
Mass Fraction	Blowdown %	BTEX OVHD	Contactor Inlet %	Flash Gas %	MultiplierByp ass-1 %
Toluene	5.21674E-06	0.331733	0.00336504	0.00924007	
Ethylbenzene	7.60878E-07	0.0107388	8.20142E-05	0.000177318	
o-Xylene	2.43617E-06	0.0145886	8.72345E-05	0.000170386	
MDEA	0.00424254	0.0012538	2.10382E-05	1.38766E-06	
Piperazine	0.030568	5.18361E-05	0.000473454	0.00100113	
		01100012.00	01000110101	0100100110	
	Blowdown	BTEX OVHD	Contactor Inlet	Flash Gas	MultiplierByp ass-1
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
H2S	0	0.00334489	0.395893	0.00134167	0
H2O	0	36.5494	341.752	0.40323	0
TEG	0	4.53641E-09	0	0.00189624	0
N2	0	6.29497	5637.13	0.534573	0
CO2	0	0.34973	3.98694	0.00748136	0
Methane	0	183.484	115419	35.0617	0
Ethane	0	12.2582	44523.9	30.7432	0
Propane	0	11.9728	35386.3	31.5422	0
Isobutane	0	2.40767	5402.93	4.73398	0
n-Butane	0	10.7844 3.52857	13183 2868.47	14.3066 2.91837	0
Isopentane n-Pentane	0	2.94273	1781.15	1.99256	0
i-Hexane	0	3.52581	354.056	0.363099	0
Heptane	0	0.106643	22.439	0.363099	0
Octane	0	0.0134906	2.03005	0.00156512	0
Nonane	0	0.00041002	0.0444066	2.65269E-05	0
n-Decane	0	3.36068E-05	0.00267166	1.23181E-06	0
n-Hexane	0	0.238937	80.3716	0.0840138	0
Benzene	0	5.37754	64.1673	0.122685	0
Toluene	0	0.931657	7.57404	0.0113517	0
Ethylbenzene	0	0.0301593	0.184598	0.00021784	0
o-Xylene	0	0.0409713	0.196347	0.000209324	0
MDEA	0	0.00352124	0.0473528	1.70477E-06	0
Piperazine	<u>0</u>	0.000145579	1.06565	0.00122991	0
	Stream	Properties			

Units	Disurdanus				
	Blowdown	BTEX OVHD	Contactor Inlet	Flash Gas	MultiplierByp ass-1
°F		125	119.882	134.601	
psia	14.65	14.25	1096.25	73.25	
lb/lbmol	148.746	18.9513	22.3105	28.1271	
lb/h	0	280.845	225080	122.853	0
MMSCFD	0	0.134969	91.8824	0.0397799	0
sgpm	0	1.52103	1254.09	0.615868	0
Btu/ft^3	3737.56	890.518	1191.95	1503.41	
Btu/ft^3	4086.19	990.477	1312	1646.29	
	psia lb/lbmol lb/h MMSCFD sgpm Btu/ft^3	Image: prise 14.65 lb/lbmol 148.746 lb/h 0 MMSCFD 0 sgpm 0 Btu/ft^3 3737.56	Izs Izs psia 14.65 14.25 lb/lbmol 148.746 18.9513 lb/h 0 280.845 MMSCFD 0 0.134969 sgpm 0 1.52103 Btu/ft^3 3737.56 890.518	°F 125 119.882 psia 14.65 14.25 1096.25 lb/lbmol 148.746 18.9513 22.3105 lb/h 0 280.845 225080 MMSCFD 0 0.134969 91.8824 sgpm 0 1.52103 1254.09 Btu/ft^3 3737.56 890.518 1191.95	°F 125 119.882 134.601 psia 14.65 14.25 1096.25 73.25 lb/lbmol 148.746 18.9513 22.3105 28.1271 lb/h 0 280.845 225080 122.853 MMSCFD 0 0.134969 91.8824 0.0397799 sgpm 0 1.52103 1254.09 0.615868 Btu/ft^3 3737.56 890.518 1191.95 1503.41

* User Specified Values ? Extrapolated or Approximate Values

			reams Report treams			
			by Total Phase			
Client Name:	Northwind Midst	ream Partners, LLC		Job:		
Location:	Titan Treater #2			505.		
Flowsheet:	TEG Dehydratio					
				ł		
		Conr	nections			
		MultiplierInlet-	MultiplierOutl et-1	To Slop Tank	To VRU	1
From Block		MultiplierMixer-		MXSP-103	PIPE-1	To TEG
To Block			MultiplierMixer- O-1	BTEX to Slop Tank	BTEX to VRU	VLVE-102
		01		Turik		
			omposition	To Slaw Taula		
		MultiplierInlet-	MultiplierOutl et-1	To Slop Tank	To VRU	1
Mole Fraction		%	%	%	%	%
H2S		/0	0.000101006 *	6.03861E-07	0.0120694	/8
H2O			0.189625 *	99.9783	13.6339	0
TEG			0 *	2.1778E-05	1.85523E-10	0
N2			1.76798 *	1.3714E-05	1.50981	1.89607
CO2			0.000758027 *	1.58791E-05	0.0628785	0.0671419
Methane			76.7087 *	0.00141298	76.8493	95.832
Ethane			11.8649 *	6.20542E-05	2.76297	1.81344
Propane			6.07115 *	2.862E-05	1.91147	0.0681546
Isobutane			0.830122 *	2.37866E-06	0.308053	0.00405079
n-Butane Isopentane			<u> </u>	1.82708E-05 2.8462E-06	1.34602 0.38742	0.0140765 0.00860793
n-Pentane			0.296297	1.39798E-06	0.332776	0.00860793
i-Hexane			0.222348	6.02897E-07	0.300777	0.283353
Heptane			0.0160074 *	1.41394E-08	0.0122467	0.200000
Octane			0.00283274 *	7.95747E-10	0.00184843	0
Nonane			0.000298006 *	1.23264E-11	8.53811E-05	0
n-Decane			0 *	3.15643E-13	7.6603E-06	0
n-Hexane			0.0897765 *	5.87831E-08	0.0269788	0
Benzene			0.00406056 *	0.000609086	0.467089	0
Toluene			0.00165831 *	6.9724E-05	0.0693939	0
Ethylbenzene			6.9515E-05 *	1.49999E-06	0.00198301	0
o-Xylene			4.90432E-05 *	3.10616E-06	0.00268931	0
MDEA			3.12095E-06 *	2.50656E-05	0.000199123	0
Piperazine			0.000112641 *	0.0193931	1.06826E-05	0
		MultiplierInlet-	MultiplierOutl et-1	To Slop Tank	To VRU	1
Mass Fraction		%	%	%	%	%
H2S		,,,	0.000162662 *	1.1415E-06	0.0215077	0
H2O			0.161423 *	99.9024	12.8427	0
TEG			0 *	0.000181401	1.45675E-09	0
N2			2.3403 *	2.13088E-05	2.2115	3.16537
CO2			0.00157637 *		0.144692	0.176093
Methane			58.1491 *	0.00125729	64.4627	91.6187
Ethane			16.8582 *		4.34403	3.24956
Propane			12.6501 *	6.99994E-05	4.40718	0.179099
Isobutane			<u>2.27988</u> * 5.30864 *	7.66839E-06	0.936191	0.0140309
n-Butane Isopentane			5.30864 *	5.89018E-05 1.139E-05	4.09065 1.46153	0.0487573 0.037011
n-Pentane			0.758717 *		1.25539	0.0561696
i-Hexane			0.756717		1.35527	1.45517
Heptane			0.0757923 *	7.85844E-08	0.064164	0
Octane			0.0152901 *	5.04172E-09	0.0110401	0
Nonane			0.00180604 *	8.7688E-11	0.000572577	0
n-Decane			0 *	2.491E-12	5.69892E-05	0
n-Hexane			0.365572 *	2.80973E-07	0.121564	0
Benzene			0.0149875 *	0.00263891	1.90772	0
Toluene			0.00721994 *		0.334318	0
Ethylbenzene			0.000348728 *	0.002021 00	0.0110079	0
o-Xylene			0.00024603 *	1.82909E-05	0.0149286	0
* User Specified Values		ProMax	6.0.24054.0	Licensed t	o Northwind Midstream Pa	ortners LLC and Affiliates

ProMax 6.0.24054.0 Copyright © 2002-2024 BRE Group, Ltd.

Client Name:	Northwind Midst	ream Partners. LLC		Job:	4	
Location:	Titan Treater #2	, -				
Flowsheet:	TEG Dehydratio	n				
	•			•		
		MultiplierInlet-	MultiplierOutl	To Slop Tank	To VRU	1
			et-1		a (A (
Mass Fraction		%	%	%	%	%
MDEA			1.75733E-05 *	0.000165671	0.00124067	0
Piperazine			0.000458464 *	0.0926527	4.81122E-05	0
		MultiplierInlet-	MultiplierOutl	To Slop Tank	To VRU	1
Mass Flow		lb/h	et-1 Ib/h	lb/h	lb/h	lb/h
H2S				6.90517E-06	0.134039	0
H20				604.329	80.0376	0
TEG				0.00109733	9.07868E-09	0
N2				0.000128901	13.7823	6.29855
CO2				0.000234476	0.901742	0.350396
Methane				0.00760562	401.74	182.306
Ethane				0.000626062	27.0726	6.46608
Propane				0.00042344	27.4661	0.356377
Isobutane				4.63876E-05	5.83447	0.0279191
n-Butane				0.000356309	25.4935	0.0970188
Isopentane				6.89003E-05	9.10847	0.0736456
n-Pentane				3.3842E-05	7.82376	0.111768
i-Hexane				1.74322E-05	8.44622	2.89554
Heptane				4.75372E-07	0.399879	0
Octane				3.04984E-08	0.0688037	0
Nonane				5.30442E-10	0.00356838	0
n-Decane				1.50686E-11	0.000355164	0
n-Hexane				1.69966E-06	0.7576	0
Benzene				0.0159633	11.8891	0
Toluene				0.00215551	2.08351	0
Ethylbenzene				5.34315E-05	0.0686027	0
o-Xylene				0.000110645	0.0930372	0
MDEA Piperazine				0.00100218	0.00773205	0
			1	0.560475	0.000299842	0

Stream Properties								
Property	Units	MultiplierInlet- 1	MultiplierOutl et-1	To Slop Tank	To VRU	1		
Temperature	°F			187.106	132.009	79.8061		
Pressure	psia			23.25 *	13.7122	133.25		
Molecular Weight	lb/lbmol		21.1628	18.029	19.1251	16.7802		
Mass Flow	lb/h			604.92	623.214	198.983		
Std Vapor Volumetric Flow	MMSCFD			0.305585	0.296783	0.108		
Std Liquid Volumetric Flow	sgpm			1.20976	3.35835	1.27934		
Net Ideal Gas Heating Value	Btu/ft^3		1137.72	0.659156	899.481	916.235		
Gross Ideal Gas Heating Value	Btu/ft^3		1254	51.0098	1000.07	1016.62		
Gross Ideal Gas Heating Value	Btu/ft^3		1254	51.0098	1000.07	10		

		Α	s Streams Re II Streams ated by Total Phase				
Client Name:		ream Partners, LLC		Jo	Job:		
Location: Flowsheet:	Titan Treater #2 TEG Dehydratio	n					
Tiowsheet.							
		C	onnections				
		2	4	5		6	8
From Block		BTEX PUM	P MXSP-10		F	J-44XXX BTEX Recovery Ejector	MXSP-104
To Block		MXSP-103	3 Sweet Ga	as EJ-44> BTE Recov Eject	XX M X ery	XSP-104	PIPE-1
			m Compositio				
Mole Fraction		2 %	4 %	5 %		6 %	8 %
H2S		6.03861E-			26772	0.0120694	0.0120694
H2O		99.97	0.00144	539 13	8.0673	13.6339	13.6339
TEG		2.1778E-				.85523E-10	1.85523E-10
N2 CO2		1.3714E- 1.58791E-			44411 55938	1.50981 0.0628785	1.50981 0.0628785
Methane		0.001412			5356	76.8493	76.8493
Ethane		6.20542E-		2.	88418	2.76297	2.76297
Propane		2.862E-			70872	1.91147	1.91147
Isobutane n-Butane		2.37866E- 1.82708E-			94881 29088	0.308053	0.308053
Isopentane		2.8462E-			64596	0.38742	0.38742
n-Pentane		1.39798E-			11455	0.332776	0.332776
i-Hexane		6.02897E-			49046	0.300777	0.300777
Heptane Octane		1.41394E- 7.95747E-			31767 24215 (0.0122467	0.0122467 0.00184843
Nonane		1.23264E-				.53811E-05	8.53811E-05
n-Decane		3.15643E-				7.6603E-06	7.6603E-06
n-Hexane		5.87831E-			10126	0.0269788	0.0269788
Benzene Toluene		0.0006090 6.9724E-			92561 10797	0.467089	0.467089 0.0693939
Ethylbenzene		1.49999E-				0.0093939	0.00198301
o-Xylene		3.10616E-				0.00268931	0.00268931
MDEA		2.50656E-			96328 0.	000199123	0.000199123
Piperazine		0.01939	6.89644	-05 3.4202	2E-06 1	.06826E-05	1.06826E-05
		2	4	5	- [6	8
Mass Fraction		%	%	%		%	%
H2S		1.1415E-	-06 0.000174	197 0.2	06993	0.0215077	0.0215077
H2O		99.90			.2784	12.8427	12.8427
TEG N2		0.0001814 2.13088E-			3E-12 1. 93815	.45675E-09 2.2115	1.45675E-09 2.2115
CO2		3.87615E-			28791	0.144692	0.144692
Methane		0.001257	29 51	.378 56	6.5183	64.4627	64.4627
Ethane		0.0001034			15491	4.34403	4.34403
Propane Isobutane		6.99994E- 7.66839E-			72244 65651	4.40718 0.936191	4.40718 0.936191
n-Butane		5.89018E-			6.3792	4.09065	4.09065
Isopentane		1.139E-	-05 1.27	445 3.	33423	1.46153	1.46153
n-Pentane		5.59445E-			15054	1.25539	1.25539
i-Hexane Heptane		2.88174E- 7.85844E-			2.2668 03287	1.35527 0.064164	1.35527 0.064164
Octane		5.04172E-			79783	0.0110401	0.0110401
Nonane		8.7688E-	-11 1.95792	E-05 0.004	46716 0.	000572577	0.000572577
n-Decane		2.491E-				.69892E-05	5.69892E-05
n-Hexane Benzene		2.80973E- 0.002638			54667 84331	0.121564	0.121564
Toluene		0.002036			35791	0.334318	0.334318
Ethylbenzene		8.83282E-			34651	0.0110079	0.0110079
* User Specified Values	_		roMax 6.0.24054.0		I to a second des Minister		artners, LLC and Affiliates

ProMax 6.0.24054.0 Copyright © 2002-2024 BRE Group, Ltd.

r

			All St	reams Report reams y Total Phase				
Client Name:	Northwind Mids	tream Partners	LLC		Job:			
Location:		Titan Treater #2						
Flowsheet:	TEG Dehydratic							
	,				ŀ			
Mass Fraction			2 %	4 %	5 %	6 %	8 %	
o-Xylene			1.82909E-05	6.91261E-05	0.0180331	0.0149286	0.0149286	
MDEA			0.000165671	4.51753E-07	0.00112084	0.00124067	0.00124067	
Piperazine			0.0926527	0.000266216	1.41142E-05	4.81122E-05	4.81122E-05	
,								
Mass Flow			2 lb/h	4 Ib/h	5 Ib/h	6 Ib/h	8 Ib/h	
H2S			3.45259E-06	0.782407	0.0636745	0.0670193	0.134039	
H2O			302.165	5.24136	3.46941	40.0188	80.0376	
TEG			0.000548665	6.19356	2.92701E-12	4.53934E-09	9.07868E-09	
N2			6.44507E-05	11273.2	0.596207	6.89117	13.7823	
CO2			0.000117238	7.95284	0.101141	0.450871	0.901742	
Methane			0.00380281	230765	17.3859	200.87	401.74	
Ethane			0.000313031	88975	1.27812	13.5363	27.0726	
Propane			0.00021172	70686.5	1.76031	13.7331	27.4661	
Isobutane			2.31938E-05	10791.6	0.509568	2.91723	5.83447	
n-Butane			0.000178154	26316	1.96234	12.7467	25.4935	
Isopentane			3.44501E-05	5724.2	1.02566	4.55424	9.10847	
n-Pentane			1.6921E-05	3552.64	0.969156	3.91188	7.82376	
i-Hexane			8.71611E-06	705.792	0.697303	4.22311	8.44622	
Heptane			2.37686E-07	44.6225	0.093296	0.199939	0.399879	
Octane			1.52492E-08	4.02999	0.0209112	0.0344018	0.0688037	
Nonane			2.65221E-10	0.0879401	0.00137417	0.00178419	0.00356838	
n-Decane			7.53429E-12	0.00527364	0.000143975	0.000177582	0.000355164	
n-Hexane			8.4983E-07	160.125	0.139863	0.3788	0.7576	
Benzene			0.00798165	117.318	0.567031	5.94457	11.8891	
Toluene			0.00107775	13.2611	0.110099	1.04176	2.08351	
Ethylbenzene			2.67157E-05	0.308547	0.00414208	0.0343014	0.0686027	
o-Xylene MDEA			5.53226E-05 0.000501088	0.310481	0.00554726	0.0465186 0.00386603	0.0930372	
NDEA Piperazine			0.000501088	1.19571	4.34176E-06	0.00386603	0.000773205	
грегадне			0.200237	1.193/1	4.341/0E-00	0.000149921	0.000299642	
			Stroom	Proportion				
Property		Units	Stream I	Properties	5	6	8	
Property		UNITS		4		n	X	

Stream Properties									
Property	Units	2	4	5	6	8			
Temperature	°F	187.106	125.68	200	132.147	132.147			
Pressure	psia	23.25	1091.25	63.25	13.85 *	13.85			
Molecular Weight	lb/lbmol	18.029	22.3138	20.8727	19.1251	19.1251			
Mass Flow	lb/h	302.46	449152	30.7616	311.607	623.214			
Std Vapor Volumetric Flow	MMSCFD	0.152792	183.326	0.0134225	0.148391	0.296783			
Std Liquid Volumetric Flow	sgpm	0.604878	2505.26	0.158143	1.67917	3.35835			
Net Ideal Gas Heating Value	Btu/ft^3	0.659156	1193.92	989.613	899.481	899.481			
Gross Ideal Gas Heating Value	Btu/ft^3	51.0098	1314.09	1096.5	1000.07	1000.07			

Remarks

* User Specified Values ? Extrapolated or Approximate Values

		F	Process St	reams Report			
			-	treams			
			Tabulated	by Total Phase			
Client Name:	Northwind Midst	ream Partners. LLC			Job:		
Location:	Titan Treater #2						
Flowsheet:	TEG Dehydratio	n					
				nections			
En an Dia da			11	12 T 11050h	13	14	15
From Block		V	'LVE-102	T-44350b (Stahl)		T-44350b (Stahl)	RCYL-2
To Block		Т	-44350b	RCYL-2	MKUP-1	AC-44300	T-44350 STILL
			(Stahl)		_	LEAN/RICH	COLUMN
						EXCHANGER	
				omposition	· · ·	· · · ·	· · ·
Mole Fraction			11 %	12 %	13 %	14 %	15 %
H2S			0	2.53219E-08	70 0 *	6.81567E-12	2.3898E-08
H2O			0	29.1405	0.827516 *	0.991197	29.1385
TEG			0	6.04557	99.1725 *	98.8884	6.04581
N2			1.89607	1.22721	0 *	0.000503984	1.22729
CO2 Methane			0.0671419 95.832	0.042993 61.8973	0 *	0.000131343 0.0567054	0.0429898 61.9012
Ethane			1.81344	1.1665	0 *	0.0001004	1.16673
Propane			0.0681546	0.0436626	0 *	0.000128281	0.0437859
Isobutane		(0.00405079	0.00258684	0 *	9.75161E-06	0.00259668
n-Butane			0.0140765	0.00896395	0 *	4.07928E-05	0.00898325
Isopentane n-Pentane		(0.00860793 0.0130638	0.00544359 0.00824208	0 *	3.46307E-05 5.72853E-05	0.00544224 0.00823745
i-Hexane			0.283353	0.174197	0 *		0.17367
Heptane			0	8.25694E-07	0 *	4.65544E-10	8.28825E-07
Octane			0	2.21422E-07	0 *	2.02674E-10	2.22994E-07
Nonane n-Decane			0	1.62228E-08	0 *	2.75089E-11 1.11461E-11	1.66332E-08 3.51263E-09
n-Hexane			0	3.49297E-09 2.2021E-06	0 *	1.43303E-09	5.19002E-05
Benzene			0	0.00223684	0 *	1.06482E-05	0.00222819
Toluene			0	0.000959104	0 *	8.42179E-06	0.00097812
Ethylbenzene			0	6.86596E-05	0 *	1.00000L-00	7.10732E-05
o-Xylene MDEA			0	0.000161211 0.00130518	0 *	3.41328E-06 0.00529583	0.00016507 0.00130461
Piperazine			0	0.232117	0 *	0.0527874	0.230007
1			-				
			11	12	13	14	15
Mass Fraction			%	%	%	%	%
H2S H2O			0	3.40268E-08 20.6991	0 *	1.56161E-12 0.120048	3.21152E-08 20.6988
TEG			0	35.7966	99.9 *	99.8369	20.6988
N2			3.16537	1.3555	0 *	9.49154E-05	1.35566
CO2			0.176093	0.0746032	0 *	3.88604E-05	0.0746019
Methane			91.6187	39.1522	0 *	0.00611574	39.1568
Ethane Propane			3.24956 0.179099	1.38299 0.0759134	0 *	0.000452703 3.80287E-05	1.38334 0.0761321
Isobutane			0.0140309	0.00592824	0 *	3.81042E-06	0.00595111
n-Butane			0.0487573	0.0205426	0 *	1.59397E-05	0.020588
Isopentane			0.037011	0.0154856	0 *	1.67975E-05	0.0154826
n-Pentane			0.0561696	0.0234466	0 *	2.7786E-05	0.0234347
i-Hexane Heptane			<u>1.45517</u> 0	0.591884 3.26219E-06	0 *	0.00140359 3.13611E-10	0.590128 3.27474E-06
Octane			0	9.97261E-07	0 *	0.100112 10	1.0044E-06
Nonane			0	8.20377E-08	0 *	2.37193E-11	8.4118E-08
n-Decane			0	1.95955E-08	0 *	1.06617E-11	1.9707E-08
n-Hexane			0	7.48227E-06	0 *	8.30217E-10	0.000176356
Benzene Toluene			0	0.00688914 0.00348433	0 *	5.59176E-06 5.21674E-06	0.00686288 0.00355362
Ethylbenzene			0	0.000287406	0 *		0.000297526
o-Xylene			0	0.000674821	0 *	2.43617E-06	0.000691014
MDEA			0	0.00613227	0 *	0.00424254	0.00612996
Piperazine			0	0.788319	0 *	0.000000	0.7812
* User Specified Values	s		ProMax	6.0.24054.0	Licensed to	Northwind Midstream Pa	artners IIC and Affiliates

ProMax 6.0.24054.0 Copyright © 2002-2024 BRE Group, Ltd.

			All St	eams Report reams _{y Total Phase}			
Client Name: N	orthwind Mid	stream Partners. L	IC		Job:		
-	itan Treater #	,					
	EG Dehydrat						
				-	r		r •
Mass Flow			11 Ib/h	12 lb/h	13 Ib/h	14 Ib/h	15 Ib/h
H2S			0	1.57842E-07	0 *	1.76342E-10	1.48957E-07
H2O			0	96.018	0.00297278 *	13.5562	96.0054
TEG			0	166.052	2.96981 *	11273.9	166.048
N2			6.29855	6.28784	0 *	0.0107181	6.28785
CO2			0.350396	0.346066	0 *	0.00438823	0.346019
Methane			182.306	181.618	0 *	0.690608	181.617
Ethane			6.46608	6.41535	0 *	0.0511206	6.41621
Propane			0.356377	0.352144	0 *	0.00429431	0.353116
Isobutane			0.0279191	0.0274997	0 *	0.000430284	0.0276025
n-Butane			0.0970188	0.095292	0 *	0.00179996	0.0954911
Isopentane			0.0736456	0.0718339	0 *	0.00189682	0.0718115
n-Pentane			0.111768	0.108763	0 *	0.00313768	0.108695
i-Hexane			2.89554	2.74561	0 *	0.158497	2.73713
Heptane			0	1.51325E-05	0 *	3.54138E-08	1.51889E-05
Octane			0	4.62605E-06	0 *	1.75756E-08	4.6586E-06
Nonane			0	3.80553E-07	0 *	2.67846E-09	3.90156E-07
n-Decane			0	9.08989E-08	0 *	1.20395E-09	9.14049E-08
n-Hexane			0	3.47084E-05	0 *	9.37506E-08	0.000817974
Benzene			0	0.0319571	0 *	0.000631439	0.0318314
Toluene			0	0.016163	0 *	0.00058909	0.0164824
Ethylbenzene			0	0.00133321	0 *	8.59206E-05	0.00137999
o-Xylene			0	0.00313033	0 *	0.0002751	0.00320507
MDEA			0	0.0284461	0 *	0.479081	0.028432
Piperazine			0	3.65682	0 *	3.45183	3.62336
			Stream	Properties			
Property		Units	11	12	13	14	15
Temperature		°F	72.0232	384.567	100 *	374.264	384.568
Pressure		psia	15.75 *	14.95	25.45 *	15.15	14.95
Molecular Weight		lb/lbmol	16.7802	25.3622	149.079	148.746	25.3608
Mass Flow		lb/h	198.983	463.876	2.97278	11292.3	463.82
Std Vapor Volumetric F	low	MMSCFD	0.108 *	0.166579	0.000181614	0.691419	0.166568
Std Liquid Volumetric F		sgpm	1.27934	1.77007	0.00526169	19.9947	1.76993
Net Ideal Gas Heating		Btu/ft^3	916.235	827.207	3745.75	3737.56	827.171
Gross Ideal Gas Heating		Btu/ft^3	1016.62	928.529	4095.08	4086.19	928.491

Remarks

		Process St	reams Report			
			treams			
			by Total Phase			
			sy rotarr naco			
Client Name:		ream Partners, LLC		Job:	-	
Location:	Titan Treater #2					
Flowsheet:	TEG Dehydratio	n				
			ections			
		16	18	37A	58	59
From Block		BTEX Motive	AC-44150	TEG INLET	T-44125 TEG	AC-44150
		Gas	GAS/GLYCOL		CONTACTOR	GAS/GLYCOL
To Block		MXSP-100	EXCHANGER MXSP-101	F-44100 TEG	AC-44150	EXCHANGER RCYL-1
TO DIOCK		MX31 - 100		INLET	GAS/GLYCOL	NOTE-T
				FILTER	EXCHANGER	
				COALESCER		
		Stream C	omposition			
		16	18	37A	58	59
Mole Fraction		%	%	%	%	%
H2S		0.126772	0.000114052	0.000115144	0.000114052	0
H2O		13.0673	0.00144539	0.188036	0.00144539	0.991154
TEG		1.32252E-12	0.000204894	0	0.000204894	98.8885
N2 CO2		<u> </u>	1.99923	1.99464 0.000897977	1.99923 0.000897751	0.000503852
Methane		73.5356	0.000897751 71.4628	71.3146	71.4628	0.000131308 0.0566905
Ethane		2.88418	14.7004	14.6773	14.7004	0.00223885
Propane		2.70872	7.96382	7.95449	7.96382	0.000128247
Isobutane		0.594881	0.922414	0.921424	0.922414	9.74905E-06
n-Butane		2.29088	2.24936	2.24825	2.24936	4.07821E-05
Isopentane		0.964596	0.394154	0.394089	0.394154	3.46216E-05
n-Pentane		0.911455	0.244626	0.244705	0.244626	5.72703E-05
i-Hexane		0.549046	0.0406887	0.040725	0.0406887	0.00242208
Heptane Octane		0.0631767 0.0124215	0.00221237 0.000175271	0.00221973 0.000176159	0.00221237 0.000175271	0
Nonane		0.00727002	3.40638E-06	3.43198E-06	3.40638E-06	0
n-Decane		6.86609E-05	1.84137E-07	1.86125E-07	1.84137E-07	0
n-Hexane		0.110126	0.00923115	0.00924467	0.00923115	0
Benzene		0.492561	0.00746154	0.00814271	0.00746154	1.06454E-05
Toluene		0.0810797	0.000715019	0.000814815	0.000715019	8.41958E-06
Ethylbenzene		0.00264733	1.44384E-05	1.72352E-05	1.44384E-05	1.06578E-06
o-Xylene		0.00354542	1.45289E-05	1.83323E-05	1.45289E-05	3.41239E-06
MDEA		0.000196328	8.45933E-08	3.93894E-06	8.45933E-08	0.00529444
Piperazine		3.42022E-06	6.89644E-05	0.000122632	6.89644E-05	0.0527735
		16	18	37A	58	59
Mass Fraction		%	%	%	%	39 %
H2S		0.206993	0.000174197	0.00017589	0.000174197	0
H2O		11.2784	0.00116695	0.151836	0.00116695	0.120043
TEG		9.51513E-12	0.00137895	0	0.00137895	99.8369
N2		1.93815	2.50989	2.5045	2.50989	9.48905E-05
CO2		0.328791	0.00177064	0.00177134	0.00177064	3.88502E-05
Methane		56.5183	51.378	51.279	51.378	0.00611413
Ethane Propane		4.15491 5.72244	19.8096 15.7378	19.7814 15.7217	19.8096 15.7378	0.000452584 3.80187E-05
Isobutane		1.65651	2.40267	2.40045	2.40267	3.80941E-06
n-Butane		6.3792	5.85906	5.85703	5.85906	1.59355E-05
Isopentane		3.33423	1.27445	1.27442	1.27445	1.6793E-05
n-Pentane		3.15054	0.790967	0.791339	0.790967	2.77787E-05
i-Hexane		2.2668	0.157139	0.157302	0.157139	0.00140322
Heptane		0.303287	0.00993483	0.00996934	0.00993483	0
Octane		0.0679783	0.000897245	0.000901923	0.000897245	0
Nonane		0.00446716	1.95792E-05	1.97292E-05	1.95792E-05 1.17413E-06	0
n-Decane n-Hexane		0.000468036	1.17413E-06 0.0356505	1.18698E-06 0.035708	0.0356505	0
Benzene		1.84331	0.0356505	0.035708	0.0356505	5.59029E-06
Toluene		0.35791	0.00295247	0.00336504	0.00295247	5.21537E-06
Ethylbenzene		0.0134651	6.86955E-05	8.20142E-05	6.86955E-05	7.60678E-07
o-Xylene		0.0180331	6.91261E-05	8.72345E-05	6.91261E-05	2.43553E-06
* User Specified Values		BroMov	6.0.24054.0	Licenced to	o Northwind Midstream Pa	

ProMax 6.0.24054.0 Copyright © 2002-2024 BRE Group, Ltd.

		All S	reams Report treams by Total Phase			
Client Name:		ream Partners, LLC		Job:		
Location:	Titan Treater #2					
Flowsheet:	TEG Dehydratio	n				
				074		
 .		16	18	37A	58	59
Mass Fraction		%	%	%	%	%
MDEA		0.00112084	4.51753E-07	2.10382E-05	4.51753E-07	0.00424143
Piperazine		1.41142E-05	0.000266216	0.000473454	0.000266216	0.0305599
Mass Flow		16 b/h	18 lb/h	37A Ib/h	58 Ib/h	59 lb/h
H2S		0.127349	0.391203	0.395893	0.391203	0
H2O		6.93882	2.62068	341.752	2.62068	13.5592
TEG		5.85401E-12	3.09678	0	3.09678	11276.9
N2		1.19241	5636.61	5637.13	5636.61	0.0107181
CO2		0.202283	3.97642	3.98694	3.97642	0.00438823
Methane		34,7719	115383	115419	115383	0.690608
Ethane		2.55624	44487.5	44523.9	44487.5	0.0511206
Propane		3.52063	35343.2	35386.3	35343.2	0.00429431
Isobutane		1.01914	5395.82	5402.93	5395.82	0.000430284
n-Butane		3.92469	13158	13183	13158	0.00179996
Isopentane		2.05132	2862.1	2868.47	2862.1	0.00189682
n-Pentane		1.93831	1776.32	1781.15	1776.32	0.00313768
i-Hexane		1.39461	352.896	354.056	352.896	0.158497
Heptane		0.186592	22.3112	22.439	22.3112	C
Octane		0.0418224	2.01499	2.03005	2.01499	C
Nonane		0.00274834	0.0439701	0.0444066	0.0439701	C
n-Decane		0.000287951	0.00263682	0.00267166	0.00263682	0
n-Hexane		0.279726	80.0623	80.3716	80.0623	0
Benzene		1.13406	58.659	64.1673	58.659	0.000631439
Toluene		0.220198	6.63053	7.57404	6.63053	0.00058909
Ethylbenzene		0.00828416	0.154274	0.184598	0.154274	8.59206E-05
o-Xylene		0.0110945	0.15524	0.196347	0.15524	0.0002751
MDÉA		0.000689575	0.00101453	0.0473528	0.00101453	0.479081
Piperazine		8.68352E-06	0.597857	1.06565	0.597857	3.45183

Stream Properties										
Property	Units	16	18	37A	58	59				
Temperature	°F	200	125.68	119.882	123.154	143 *				
Pressure	psia	63.25	1091.25	1096.25	1094.25	1208.25				
Molecular Weight	lb/lbmol	20.8727	22.3138	22.3105	22.3138	148.746				
Mass Flow	lb/h	61.5232	224576	225080	224576	11295.3				
Std Vapor Volumetric Flow	MMSCFD	0.0268451	91.6631	91.8824	91.6631	0.691601				
Std Liquid Volumetric Flow	sgpm	0.316286	1252.63	1254.09	1252.63	20				
Net Ideal Gas Heating Value	Btu/ft^3	989.613	1193.92	1191.95	1193.92	3737.56				
Gross Ideal Gas Heating Value	Btu/ft^3	1096.5	1314.09	1312	1314.09	4086.19				

			All St	reams Report treams by Total Phase			
Client Name:		ream Partners, Ll	_C		Job:	¥	
Location:	Titan Treater #2						
Flowsheet:	TEG Dehydratio	n					
			Conn	ections			
			59A	60	61	62	63
From Block			RCYL-1	T-44125 TEG CONTACTOR	VLVE-100	T-44350 STILL COLUMN TUBE SIDE	V-44275 TEG FLASH TANK
To Block			T-44125 TEG CONTACTOR	VLVE-100	T-44350 STILL COLUMN TUBE SIDE	V-44275 TEG FLASH TANK	AC-44300 LEAN/RICH EXCHANGER
			Streem C				Excitent
			59A	omposition 60	61	62	63
Mole Fraction			59A %	60 %	61 %	%	63 %
H2S			0	0.000137583	0.000137583	0.000137583	0.00010271
H2O			0.990851	19.5726	19.5726	19.5726	20.4429
TEG N2			<u>98.8895</u> 0.000704997	75.0555 0.0193353	75.0555 0.0193353	75.0555 0.0193353	78.4826 0.000268674
CO2			2.54159E-05	0.000258253	0.000258253	0.000258253	9.23294E-05
Methane			0.0531795	2.30177	2.30177	2.30177	0.122044
Ethane			0.00717973	1.21645	1.21645	1.21645	0.203134
Propane			0.00254994	0.978606	0.978606	0.978606	0.275486
Isobutane n-Butane			0.000163093 0.000274534	0.122371 0.429957	0.122371 0.429957	0.122371 0.429957	0.0428099 0.192262
Isopentane			1.92986E-05	0.0883423	0.0883423	0.0883423	0.0500896
n-Pentane			1.57766E-05	0.0668844	0.0668844	0.0668844	0.0410667
i-Hexane			0	0.0134618	0.0134618	0.0134618	0.00967164
Heptane Octane			0	0.00127491 0.000131773	0.00127491 0.000131773	0.00127491 0.000131773	0.00111263 0.000123466
Nonane			0	3.40291E-06	3.40291E-06	3.40291E-06	3.34206E-06
n-Decane			0	2.44805E-07	2.44805E-07	2.44805E-07	2.46933E-07
n-Hexane			0.000197735	0.00373767	0.00373767	0.00373767	0.00288914
Benzene			1.15936E-05	0.0705105	0.0705105	0.0705105	0.0720881
Toluene Ethylbenzene			1.21115E-05 1.47289E-06	0.010247	0.010247	0.010247	0.0105861 0.000297631
o-Xylene			4.08545E-06	0.000390212	0.000390212	0.000390212	0.000405968
MDEA			0.00482696	0.00405337	0.00405337	0.00405337	0.00423844
Piperazine			0.0504386	0.0437222	0.0437222	0.0437222	0.0457037
			59A	60	61	62	63
Mass Fraction			%	%	%	%	%
H2S H2O			0.120007	3.97476E-05 2.98898	3.97476E-05 2.98898	3.97476E-05 2.98898	2.86756E-05 3.01698
TEG			99.8385	95.5453	95.5453	95.5453	96.5505
N2			0.000132773	0.00459147	0.00459147	0.00459147	6.16569E-05
CO2			7.51983E-06	9.63443E-05	9.63443E-05	9.63443E-05	3.32871E-05
Methane Ethane			0.0057355 0.00145139	0.313016	0.313016 0.310062	0.313016 0.310062	0.0160389 0.050037
Propane			0.00075593	0.365795	0.365795	0.310082	0.0995138
Isobutane			6.37284E-05	0.0602912	0.0602912	0.0602912	0.0203833
n-Butane			0.000107274	0.211837	0.211837	0.211837	0.0915428
Isopentane			9.36077E-06 7.65243E-06	0.0540297 0.0409062	0.0540297 0.0409062	0.0540297 0.0409062	0.029605 0.0242721
n-Pentane i-Hexane			7.65243E-06	0.00983381	0.0409062	0.0409062	0.0242721 0.00682767
Heptane			0	0.00108291	0.00108291	0.00108291	0.000913304
Octane			0	0.000127596	0.000127596	0.000127596	0.000115535
Nonane			0	3.69964E-06	3.69964E-06	3.69964E-06	3.51139E-06
n-Decane n-Hexane			0.000114558	2.9526E-07 0.00273035	2.9526E-07 0.00273035	2.9526E-07 0.00273035	2.87817E-07 0.00203958
n-Hexane Benzene			6.08822E-06	0.00273035	0.00273035	0.00273035	0.0461285
Toluene			7.50233E-06	0.00800334	0.00800334	0.00800334	0.00799032
Ethylbenzene			1.05125E-06	0.000258002	0.000258002	0.000258002	0.00025885
o-Xylene			2.91593E-06	0.000351169	0.000351169	0.000351169	0.000353072
* User Specified Values			0.00386695	0.00409439	0.00409439	0.00409439 o Northwind Midstream Pa	0.00413746

ProMax 6.0.24054.0 Copyright © 2002-2024 BRE Group, Ltd.

am Partners, LLC	60 % 0.0319242 60 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682 36.9345	61 % 0.0319242 61 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682 36.9345	62 % 0.0319242 62 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682 36.9345	63 % 0.0322495 63 Ib/h 0.00334836 352.283 11273.9 0.00719947 0.00388682 1.87281
59A % 0.029208 59A Ib/h 0 13.555 11277 0.014997 0.000849382	% 0.0319242 60 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	% 0.0319242 61 lb/h 0.00469003 352.686 11273.9 0.541772 0.0113682	% 0.0319242 62 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	% 0.0322495 63 1b/h 0.00334836 352.283 11273.9 0.00719947 0.00388682
% 0.029208 59A Ib/h 0 13.555 11277 0.014997 0.000849382	% 0.0319242 60 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	% 0.0319242 61 lb/h 0.00469003 352.686 11273.9 0.541772 0.0113682	% 0.0319242 62 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	% 0.0322495 63 1b/h 0.00334836 352.283 11273.9 0.00719947 0.00388682
% 0.029208 59A Ib/h 0 13.555 11277 0.014997 0.000849382	% 0.0319242 60 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	% 0.0319242 61 lb/h 0.00469003 352.686 11273.9 0.541772 0.0113682	% 0.0319242 62 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	% 0.0322495 63 1b/h 0.00334836 352.283 11273.9 0.00719947 0.00388682
% 0.029208 59A Ib/h 0 13.555 11277 0.014997 0.000849382	% 0.0319242 60 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	% 0.0319242 61 lb/h 0.00469003 352.686 11273.9 0.541772 0.0113682	% 0.0319242 62 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	% 0.0322495 63 1b/h 0.00334836 352.283 11273.9 0.00719947 0.00388682
0.029208 59A Ib/h 0 13.555 11277 0.014997 0.000849382	0.0319242 60 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	0.0319242 61 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	0.0319242 62 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	0.0322495 63 Ib/h 0.00334836 352.283 11273.9 0.00719947 0.00388682
59A Ib/h 0 13.555 11277 0.014997 0.000849382	60 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	61 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	62 Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	63 Ib/h 0.00334836 352.283 11273.9 0.00719947 0.00388682
Ib/h 0 13.555 11277 0.014997 0.000849382	Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	Ib/h 0.00334836 352.283 11273.9 0.00719947 0.00388682
Ib/h 0 13.555 11277 0.014997 0.000849382	Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	Ib/h 0.00469003 352.686 11273.9 0.541772 0.0113682	Ib/h 0.00334836 352.283 11273.9 0.00719947 0.00388682
0 13.555 11277 0.014997 0.000849382	0.00469003 352.686 11273.9 0.541772 0.0113682	0.00469003 352.686 11273.9 0.541772 0.0113682	0.00469003 352.686 11273.9 0.541772 0.0113682	0.00334836 352.283 11273.9 0.00719947 0.00388682
13.555 11277 0.014997 0.000849382	352.686 11273.9 0.541772 0.0113682	352.686 11273.9 0.541772 0.0113682	352.686 11273.9 0.541772 0.0113682	352.283 11273.9 0.00719947 0.00388682
11277 0.014997 0.000849382	11273.9 0.541772 0.0113682	11273.9 0.541772 0.0113682	11273.9 0.541772 0.0113682	11273.9 0.00719947 0.00388682
0.014997 0.000849382	0.541772 0.0113682	0.541772 0.0113682	0.541772 0.0113682	0.00719947 0.00388682
0.000849382	0.0113682	0.0113682	0.0113682	0.00388682
	36 9345			1 87281
0.647838			00.0040	1.07201
0.163938	36.5858	36.5858	36.5858	5.84266
0.085384	43.1621	43.1621	43.1621	11.6199
0.00719827	7.11408	7.11408	7.11408	2.3801
0.0121168	24.9958	24.9958	24.9958	10.6892
0.00105732	6.37525	6.37525	6.37525	3.45688
0.00086436	4.82674	4.82674	4.82674	2.83418
0	1.16034	1.16034	1.16034	0.797245
0	0.127778	0.127778	0.127778	0.106644
0	0.0150557	0.0150557	0.0150557	0.0134906
-				0.000410013
Ţ				3.36075E-05
				0.238155
				5.38628
				0.933005
				0.0302251
				0.041227
				0.483117
2 20011	3.7669	3.7669	3.7669	3.76567
	0 0.0129395 0.000687679 0.000847405 0.000118741 0.000329361 0.436781 3.29911	0 3.48393E-05 0.0129395 0.322169 0.000687679 5.50897 0.000847405 0.944356 0.000118741 0.030443 0.000329361 0.0414364 0.436781 0.483119	0 3.48393E-05 3.48393E-05 0.0129395 0.322169 0.322169 0.000687679 5.50897 5.50897 0.000847405 0.944356 0.944356 0.000118741 0.030443 0.030443 0.000329361 0.0414364 0.0414364 0.436781 0.483119 0.483119 3.29911 3.7669 3.7669	0 3.48393E-05 3.48393E-05 3.48393E-05 0.0129395 0.322169 0.322169 0.322169 0.000687679 5.50897 5.50897 5.50897 0.000847405 0.944356 0.944356 0.944356 0.000118741 0.030443 0.030443 0.030443 0.000329361 0.0414364 0.0414364 0.0414364 0.436781 0.483119 0.483119 0.483119

Stream Properties										
Property	Units	59A	60	61	62	63				
Temperature	°F	143	121.995	125.907	134.601	134.601				
Pressure	psia	1208.25	1096.25	78.25 *	73.25	73.25				
Molecular Weight	lb/lbmol	148.746	117.968	117.968	117.968	122.071				
Mass Flow	lb/h	11295.2	11799.5	11799.5	11799.5	11676.7				
Std Vapor Volumetric Flow	MMSCFD	0.691601	0.910971	0.910971	0.910971	0.871191				
Std Liquid Volumetric Flow	sgpm	20	21.4573	21.4573	21.4573	20.8414				
Net Ideal Gas Heating Value	Btu/ft^3	3737.53	2925.87	2925.87	2925.87	2990.82				
Gross Ideal Gas Heating Value	Btu/ft^3	4086.15	3208.07	3208.07	3208.07	3279.38				

* User Specified Values ? Extrapolated or Approximate Values

			All S Tabulated	reams Report treams by Total Phase			
Client Name:		ream Partners, LL	_C		Job:		
Location: Flowsheet:	Titan Treater #2 TEG Dehydratio						
Flowsheet.	TEG Denydralid	n					
			Conn	actiona			
			64	ections	05	00	67
From Block			AC-44300	64A VLVE-101	65 T-44350 STILL	66 T-44350 STILL	57 T-44350 STILL
I TOITI BIOCK			LEAN/RICH	VEVE-TOT	COLUMN	COLUMN	COLUMN
			EXCHANGER		0010111	CONDENSER	CONDENSER
To Block			VLVE-101	T-44350 STILL	T-44350 STILL	T-44350 STILL	AC-44400
				COLUMN	COLUMN	COLUMN	BTEX
					CONDENSER		Condenser
				omposition	-		-
Molo Frest's			64 9/	64A	65 9/	66 %	67 9/
Mole Fraction H2S			% 0.00010271	% 0.00010271	% 0.000282703	% 2.2066E-07	% 0.000310951
H2S H2O			20.4429	20.4429	63.1158	2.2066E-07 99.2088	59.5065
TEG			78.4826	78.4826	0.00246511	0.0270006	1.15636E-05
N2			0.000268674	0.000268674	0.646565	6.38168E-06	0.711221
CO2			9.23294E-05	9.23294E-05	0.0228729	5.51188E-06	0.0251596
Methane			0.122044	0.122044	32.9092	0.000638742	36.2
Ethane			0.203134	0.203134	1.173	2.46909E-05	1.2903
Propane			0.275486	0.275486	0.781244	1.2097E-05	0.859367
Isobutane n-Butane			0.0428099 0.192262	0.0428099 0.192262	0.11919 0.533877	8.66538E-07 8.13073E-06	0.131108 0.587264
Isopentane			0.0500896	0.0500896	0.14072	1.14148E-06	0.154791
n-Pentane			0.0410667	0.0410667	0.117355	8.1384E-07	0.129091
i-Hexane			0.00967164	0.00967164	0.117722	3.98627E-07	0.129494
Heptane			0.00111263	0.00111263	0.00306224	7.29845E-09	0.00336846
Octane			0.000123466	0.000123466	0.000339811	5.08659E-10	0.000373792
Nonane			3.34206E-06	3.34206E-06	9.19836E-06	5.05914E-12	1.01182E-05
n-Decane n-Hexane			2.46933E-07 0.00288914	2.46933E-07 0.00288914	6.79606E-07 0.00797778	1.61605E-13 3.33822E-08	7.47567E-07 0.00877556
Benzene			0.0720881	0.0720881	0.198391	0.00016162	0.218214
Toluene			0.0105861	0.0105861	0.0291289	1.99236E-05	0.0320398
Ethylbenzene			0.000297631	0.000297631	0.000818131	3.91479E-07	0.000899905
o-Xylene			0.000405968	0.000405968	0.00111197	8.17488E-07	0.00122309
MDEA			0.00423844	0.00423844	9.83266E-05	1.32483E-05	0.000106834
Piperazine			0.0457037	0.0457037	0.0787544	0.763273	0.0103025
			· · ·				
Mass Fraction			64 %	64A %	65 %	66 %	67 %
H2S			2.86756E-05	2.86756E-05	0.000521601	4.04947E-07	0.00057403
H2O			3.01698	3.01698	61.557	96.2399	58.0681
TEG			96.5505	96.5505	0.0200413	0.218338	9.40622E-05
N2			6.16569E-05	6.16569E-05	0.980564	9.62642E-06	1.0792
CO2			3.32871E-05	3.32871E-05	0.0544961	1.3062E-05	0.0599767
Methane			0.0160389	0.0160389	28.5815	0.000551773	31.4566
Ethane			0.050037 0.0995138	0.050037	<u>1.90948</u> 1.865	3.99779E-05 2.87234E-05	2.10156 2.05261
Propane Isobutane			0.0203833	0.0995138	0.375041	2.87234E-05 2.71202E-06	0.412767
Jobulanc				0.0203833	1.67989	2.54469E-05	1.84887
			0.0915428	0.0910420	1.07909		
n-Butane Isopentane			0.0915428	0.029605	0.549644	4.43468E-06	0.604934
n-Butane			0.029605 0.0242721	0.029605 0.0242721	0.549644 0.458385	4.43468E-06 3.16178E-06	0.504495
n-Butane Isopentane n-Pentane i-Hexane			0.029605 0.0242721 0.00682767	0.029605 0.0242721 0.00682767	0.549644 0.458385 0.549209	4.43468E-06 3.16178E-06 1.84975E-06	0.504495 0.604455
n-Butane Isopentane n-Pentane i-Hexane Heptane			0.029605 0.0242721 0.00682767 0.000913304	0.029605 0.0242721 0.00682767 0.000913304	0.549644 0.458385 0.549209 0.0166116	4.43468E-06 3.16178E-06 1.84975E-06 3.93795E-08	0.504495 0.604455 0.0182826
n-Butane Isopentane n-Pentane i-Hexane Heptane Octane			0.029605 0.0242721 0.00682767 0.000913304 0.000115535	0.029605 0.0242721 0.00682767 0.000913304 0.000115535	0.549644 0.458385 0.549209 0.0166116 0.0021014	4.43468E-06 3.16178E-06 1.84975E-06 3.93795E-08 3.12871E-09	0.504495 0.604455 0.0182826 0.00231279
n-Butane Isopentane n-Pentane i-Hexane Heptane Octane Nonane			0.029605 0.0242721 0.00682767 0.000913304 0.000115535 3.51139E-06	0.029605 0.0242721 0.00682767 0.000913304 0.000115535 3.51139E-06	0.549644 0.458385 0.549209 0.0166116 0.0021014 6.38679E-05	4.43468E-06 3.16178E-06 1.84975E-06 3.93795E-08 3.12871E-09 3.49394E-11	0.504495 0.604455 0.0182826 0.00231279 7.02926E-05
n-Butane Isopentane n-Pentane i-Hexane Heptane Octane Nonane n-Decane			0.029605 0.0242721 0.00682767 0.000913304 0.000115535 3.51139E-06 2.87817E-07	0.029605 0.0242721 0.00682767 0.000913304 0.000115535 3.51139E-06 2.87817E-07	0.549644 0.458385 0.549209 0.0166116 0.0021014 6.38679E-05 5.23485E-06	4.43468E-06 3.16178E-06 1.84975E-06 3.93795E-08 3.12871E-09 3.49394E-11 1.23813E-12	0.504495 0.604455 0.0182826 0.00231279 7.02926E-05 5.76144E-06
n-Butane Isopentane n-Pentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane			0.029605 0.0242721 0.00682767 0.000913304 0.000115535 3.51139E-06 2.87817E-07 0.00203958	0.029605 0.0242721 0.00682767 0.000913304 0.000115535 3.51139E-06 2.87817E-07 0.00203958	0.549644 0.458385 0.549209 0.0166116 0.0021014 6.38679E-05 5.23485E-06 0.0372189	4.43468E-06 3.16178E-06 1.84975E-06 3.93795E-08 3.12871E-09 3.49394E-11 1.23813E-12 1.54904E-07	0.504495 0.604455 0.0182826 0.00231279 7.02926E-05 5.76144E-06 0.0409628
n-Butane Isopentane n-Pentane i-Hexane Heptane Octane Nonane n-Decane			0.029605 0.0242721 0.00682767 0.000913304 0.000115535 3.51139E-06 2.87817E-07	0.029605 0.0242721 0.00682767 0.000913304 0.000115535 3.51139E-06 2.87817E-07	0.549644 0.458385 0.549209 0.0166116 0.0021014 6.38679E-05 5.23485E-06	4.43468E-06 3.16178E-06 1.84975E-06 3.93795E-08 3.12871E-09 3.49394E-11 1.23813E-12	0.504495 0.604455 0.0182826 0.00231279 7.02926E-05 5.76144E-06
n-Butane Isopentane n-Pentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane Benzene			0.029605 0.0242721 0.00682767 0.000913304 0.000115535 3.51139E-06 2.87817E-07 0.00203958 0.0461285	0.029605 0.0242721 0.00682767 0.000913304 0.000115535 3.51139E-06 2.87817E-07 0.00203958 0.0461285	0.549644 0.458385 0.549209 0.0166116 0.0021014 6.38679E-05 5.23485E-06 0.0372189 0.838953	4.43468E-06 3.16178E-06 1.84975E-06 3.93795E-08 3.12871E-09 3.49394E-11 1.23813E-12 1.54904E-07 0.000679791	0.504495 0.604455 0.0182826 0.00231279 7.02926E-05 5.76144E-06 0.0409628 0.923278
n-Butane Isopentane n-Pentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane Benzene Toluene			0.029605 0.0242721 0.00682767 0.000913304 0.000115535 3.51139E-06 2.87817E-07 0.00203958 0.0461285 0.00799032	0.029605 0.0242721 0.00682767 0.000913304 0.000115535 3.51139E-06 2.87817E-07 0.00203958 0.0461285 0.00799032	0.549644 0.458385 0.549209 0.0166116 0.0021014 6.38679E-05 5.23485E-06 0.0372189 0.838953 0.145299	4.43468E-06 3.16178E-06 1.84975E-06 3.93795E-08 3.12871E-09 3.49394E-11 1.23813E-12 1.54904E-07 0.000679791 9.8849E-05	0.504495 0.604455 0.0182826 0.00231279 7.02926E-05 5.76144E-06 0.0409628 0.923278 0.159905

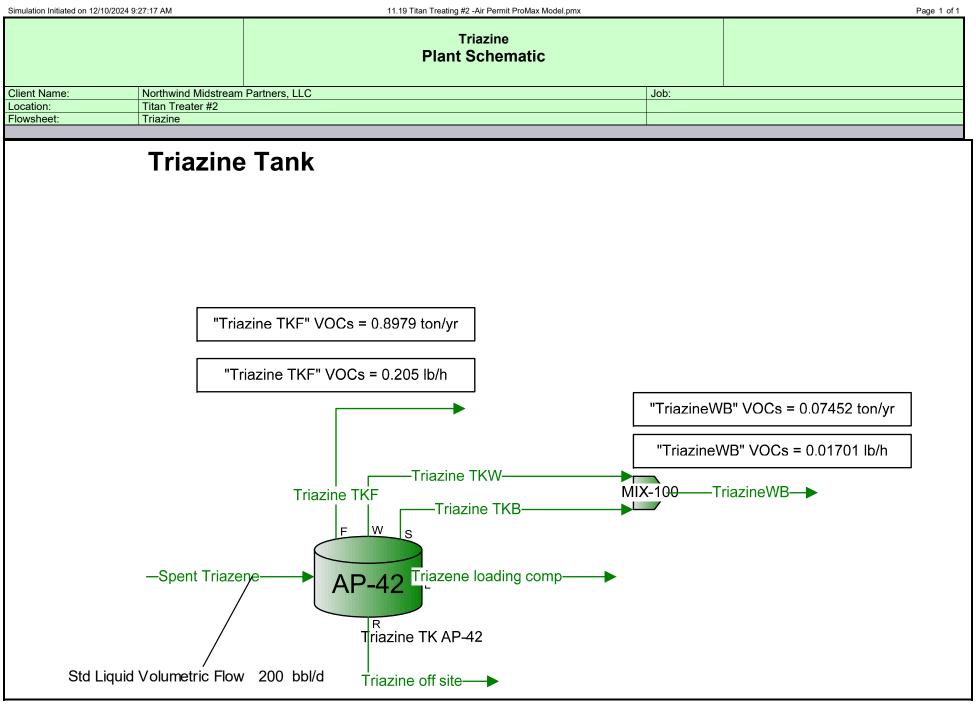
ProMax 6.0.24054.0 Copyright © 2002-2024 BRE Group, Ltd.

		All St	eams Report reams by Total Phase			
Client Name:	Northwind Midstream Par	thers IIC		Job:	<u> </u>	
Location:	Titan Treater #2					
Flowsheet:	TEG Dehydration					
				ŀ		
		64	64A	65	66	67
Mass Fraction		%	%	%	%	%
Piperazine		0.0322495	0.0322495	0.367244	3.54019	0.048068
-						
		64	64A	65	66	67
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h
H2S		0.00334836	0.00334836	0.00334858	2.37608E-07	0.00334835
H2O		352.283	352.283	395.184	56.4701	338.714
TEG		11273.9	11273.9	0.128661	0.128113	0.00054867
N2		0.00719947	0.00719947	6.29504	5.64844E-06	6.29503
CO2		0.00388682	0.00388682	0.349855	7.66432E-06	0.349847
Methane		1.87281	1.87281	183.488	0.00032376	183.488
Ethane		5.84266	5.84266	12.2585	2.34576E-05	12.2585
Propane		11.6199	11.6199	11.973	1.68539E-05	11.973
Isobutane		2.3801	2.3801	2.40769	1.59132E-06	2.40769
n-Butane		10.6892	10.6892	10.7846	1.49313E-05	10.7846
Isopentane		3.45688	3.45688	3.52861	2.60211E-06	3.52861
n-Pentane		2.83418	2.83418	2.94274	1.85522E-06	2.94274
i-Hexane		0.797245	0.797245	3.52582	1.08537E-06	3.52582
Heptane		0.106644	0.106644	0.106644	2.31065E-08	0.106644
Octane		0.0134906	0.0134906	0.0134906	1.83581E-09	0.0134906
Nonane		0.000410013	0.000410013	0.00041002	2.05012E-11	0.00041002
n-Decane		3.36075E-05	3.36075E-05	3.36068E-05	7.26492E-13	3.36068E-05
n-Hexane		0.238155	0.238155	0.238938	9.0892E-08	0.238938
Benzene		5.38628	5.38628	5.38592	0.000398877	5.38552
Toluene		0.933005	0.933005	0.932793	5.8001E-05	0.932735
Ethylbenzene		0.0302251	0.0302251	0.0301873	1.31316E-06	0.030186
o-Xylene		0.041227	0.041227	0.0410294	2.74214E-06	0.0410267
MDEA		0.483117	0.483117	0.00407221	4.98798E-05	0.00402233
Piperazine		3.76567	3.76567	2.35764	2.07726	0.280383
		04				
			Properties			
Property	Units	64	64A	65	66	67
Temperature	°F	302.5 *	301.494	194.495	185.777	185.777

Property	Units	64	64A	65	66	67
Temperature	°F	302.5 *	301.494	194.495	185.777	185.777
Pressure	psia	57.25	27.25	14.25	14.25	14.25
Molecular Weight	lb/lbmol	122.071	122.071	18.4715	18.571	18.4616
Mass Flow	lb/h	11676.7	11676.7	641.981	58.6764	583.305
Std Vapor Volumetric Flow	MMSCFD	0.871191	0.871191	0.316537	0.0287761	0.287761
Std Liquid Volumetric Flow	sgpm	20.8414	20.8414	2.24479	0.118881	2.12591
Net Ideal Gas Heating Value	Btu/ft^3	2990.82	2990.82	382.329	25.3189	418.03
Gross Ideal Gas Heating Value	Btu/ft^3	3279.38	3279.38	453.976	77.245	491.649

Deatain Tites Treater #2 Flowsheed: TEG Dehydration Form Block AC-44400 BTEX V4450 BTEX Separator 70 71 72 Form Block AC-44400 BTEX V4450 BTEX Separator T4450 STEL C4U/NN E44252 TEG C4U/C0L C4U/NN E44252 TEG C4U/C0L C4U/C0L C4U/C0L REDILER/SU REDE TAWK E4425 TEG C4U/C0L C4U/NN E4425 TEG C4U/C0L C4U/NN E4425 TEG C4U/C0L REDILER/SU REDE TAWK F4450 BTEX C4U/NN E4425 TEG C4U/C0L REDILER/SU REDE TAWK F4450 BTEX C4U/NN F4450 BTEX C4U/NN F4450 BTEX C4U/NN F4450 BTEX C4U/C0L REDILER/SU REDE TAWK F4450 STLL C4U/NN F4450 STLL C4U/NN <t< th=""><th></th><th></th><th></th><th>All St Tabulated b</th><th>reams Report treams by Total Phase</th><th></th><th></th><th></th></t<>				All St Tabulated b	reams Report treams by Total Phase			
Flowsheet: TEG Dehydration Connections 7 7 7 From Block AC-44400 V-44400 BTEX Separator Separator COLUMN COLURSU RCE TANK E-44325 TEG GLYCOL REDICERSU RCE TANK T-44350 bTEX COLUMN T-44350 bTEX COLUNN	Client Name:			_C		Job:		
Connections From Block A A 44400 BTEX Condenser 70 V 71 V F 72 V To Block B Separator CA4305 TEL COLUMN E44325 TEG CVC0L REBOLER/SU RGE TANK E44325 TEG CVC0L REBOLER/SU RGE TANK E44325 TEG CVC0L RGE TANK Te4330 STLL COLUMN Te43330 STLL COLUMN Te43330 STLL COLUMN<								
Biock RC-44400 T-4350 T-7 72 From Block AC-44400 T-44305 TEL C-44325 TEG CH-4325 TEG CH-4325 TEG CH-4325 TEG CH-4325 TEG CH-4325 TEG CH-4325 TEG CH-4305 TEG CH-4305 TH T-44350 TH	Flowsheet:	TEG Dehydratio	n					
Biock RC-44400 T-4350 T-7 72 From Block AC-44400 T-44305 TEL C-44325 TEG CH-4325 TEG CH-4325 TEG CH-4325 TEG CH-4325 TEG CH-4325 TEG CH-4325 TEG CH-4305 TEG CH-4305 TH T-44350 TH								
From Block AC-44400 BTEX Condenser F-44350 STILL Separator E-44325 TEG CULUMN E-44325 TEG EL-4325 TEG CULUMN E-44325 TEG EL-4325 TEG CULUMN E-44325 TEG EL-4325 TEG CULUMN E-44325 TEG EL-4325 TEG CULUMN E-44325 TEG CULUMN E-44325 TEG CULUMN E-44325 TEG CULUMN E-44325 TEG CULUMN E-44325 TEG CULUMN T-44350 CULUMN RGE TANK Mole Fraction 69 69 70 71 72 Mole Fraction 99.5065 99.9783 115.3271 92.0851 7.38007 V2 0.0711221 1.3714E-05 0.000148449 0.00018534 6.3418E-07 V2 0.0711221 1.3714E-05 0.00017458 0.00017648 1.0012156 1.23174E-05 CO2 0.0251503 2.4252-05 0.00017648 0.00017648 1.63732E-05 Propane 0.83987 2.882E-05 0.00017648 0.00018762 1.63732E-05 Propane 0.137979 2.248E-06 6.3171E-06 8.404812-05 2.2758E-06 Propane 0.00017648 0.00017648 0.00018762 1.63732E-06 Propane					-		1	
BTEX Condenser Separator COLUMIN Coldenser COLUMIN REBOLIER/SU R								
Separator CLYCOL REBIDICENSU RGE TANK COLUMN (Stahl) Stream Composition Stream Composition Mole Fraction 68 69 70 71 72 Mole Fraction 68 69 70 74 74 74 Mole Fraction 69,5065 99,9783 15,3271 92,0067 73,8803 N2 0.03179616 51,37786-06 84,5151 77,20007 92,5075 N2 0.0217916-05 2,17786-05 84,5151 77,20007 92,5075 N2 0.02141298 0.023974 0.25403 0.00017834 16,31146-05 0.353967 2,862E-05 7.81956E-05 0.000370214 14,31476-06 14,31476-06 14,31476-06 14,31476-06 14,31476-06 14,31476-06 14,31476-06 14,31476-06 14,31476-06 14,31476-06 14,31476-06 14,31476-06 14,31476-06 14,31476-06 14,31476-06 14,31476-06 14,32786-06 4,37786-05 0,00				BTEX Condenser	Separator	COLUMN	GLYCOL REBOILER/SU RGE TANK	GLYCOL REBOILER/SU RGE TANK
68 69 70 71 72 H2S 0.000310951 6.03861E-07 8.69737E-08 8.73238E-07 5.63044E-09 H2O 59.5965 99.9783 15.3271 32.0851 7.38057 TEG 1.15636E-65 2.1778E-05 8.45151 7.28087 92.0851 N2 0.711221 1.3714E-05 0.000184494 0.00018334 6.3418E-07 CQ2 0.0251566 1.68791E-05 7.2111E-05 0.000175044 1.69732E-06 Methane 3.62 0.00114128 0.000175044 1.69732E-06 1.69732E-06 Isobutane 0.131108 2.37868E-06 8.31571E-08 8.64935E-06 2.27308F-06 Isobutane 0.154791 2.8462E-06 3.22571E-08 0.0003721 1.43187E-06 Nonane 0.154791 2.8462E-06 3.22571E-08 0.0003722 2.23106F-06 Heptane 0.120941 1.3978E-06 4.63737E-05 0.0003723 2.2316E-06 Hoptane 0.120944 1.622847E-07 0.0013722	To Block				BTEX PUMP	GLYCOL REBOILER/SU		
68 69 70 71 72 H2S 0.000310951 6.03861E-07 8.69737E-08 8.73238E-07 5.63044E-09 H2O 59.5965 99.9783 15.3271 32.0851 7.38057 TEG 1.15636E-65 2.1778E-05 8.45151 7.28087 92.0851 N2 0.711221 1.3714E-05 0.000184494 0.00018334 6.3418E-07 CQ2 0.0251566 1.68791E-05 7.2111E-05 0.000175044 1.69732E-06 Methane 3.62 0.00114128 0.000175044 1.69732E-06 1.69732E-06 Isobutane 0.131108 2.37868E-06 8.31571E-08 8.64935E-06 2.27308F-06 Isobutane 0.154791 2.8462E-06 3.22571E-08 0.0003721 1.43187E-06 Nonane 0.154791 2.8462E-06 3.22571E-08 0.0003722 2.23106F-06 Heptane 0.120941 1.3978E-06 4.63737E-05 0.0003723 2.2316E-06 Hoptane 0.120944 1.622847E-07 0.0013722								
Mole Fraction % <								
H2S 0.000310951 6.03861E-07 8.80737E-08 8.73238E-07 5.8044E-09 H2O 59.5065 99.9783 15.3271 92.0851 7.38605 TEG 1.15638E-05 2.1778E-05 8.45151 7.26087 92.5075 N2 0.711221 1.3714E-05 0.00198464 0.001975446 1.8214E-07 CO2 0.0251596 1.58791E-05 7.211426 0.20507540 0.250754 Methane 3.62.0542E-05 0.0014288 0.0113102 1.56431E-05 Poppane 0.859367 2.802E-06 8.3171E-06 8.4093E-06 2.27298E-07 Isobutane 0.131108 2.37866E-06 8.3171E-06 0.00039214 1.43187E-06 Isopentane 0.154791 2.8462E-06 3.2271E-05 0.0003030214 1.43187E-06 Heptane 0.129091 1.37978E-06 0.3034216 1.43187E-06 Nonane 0.000373792 7.95747E-10 4.4381E-06 4.93621E-07 Nonane 1.01132E-05 1.23284E-11 4.3238E-07 4.4881E-06<								
H2O 59.5065 99.9783 15.2271 92.0851 7.38005 TEG 1.15636E-05 2.1778E-05 0.45151 7.28007 92.5075 N2 0.0251596 1.58791E-05 0.000175344 1.6214E-05 0.000175444 1.6214E-05 Methane 0.0251596 1.58791E-05 0.000175444 1.6214E-05 0.00017544 1.6214E-05 Ehane 1.2003 6.20542E-05 7.8196E-05 0.00017502 1.6872E-05 Propane 0.6587264 2.7666E-06 8.31571E-06 6.484925E-05 2.22296E-07 n-Butane 0.154791 2.8462E-05 4.63273E-05 0.000330214 1.43187E-06 I-Pentane 0.129491 1.3798E-06 4.63273E-05 0.00047250 2.2306E-06 Heptane 0.033846 1.4334E-04 2.0396E-06 1.9857E-06 1.83282E-07 Heptane 0.00037372 .95747E-10 4.3345E-07 4.14581E-06 4.9306E-06 Heptane 0.00037372 .95747E-10 4.33568E-05 1.83082E-07 5.18382E-07								
TEG 116563E-05 21778E-05 84.511 7.26087 92.5075 N2 0.711221 1.3714E-05 0.001984649 0.001953464 1.62134E-05 CO2 0.0251596 1.58791E-05 7.2114-05 0.000753464 1.62134E-05 Channe 0.2539754 0.2240705 0.254030 0.000175041 Ehane 2.2682E-05 0.00107488 0.000184261 1.52842E-05 Dopentane 0.587264 1.82709E-05 4.67876E-05 0.00047262 2.23106E-06 Supentane 0.154791 2.8462E-06 8.31571E-06 8.64983E-05 2.223106E-06 Interane 0.1229091 1.39798E-06 0.00033270 0.001032702 2.23106E-06 Hexane 0.1229091 1.39798E-06 4.63275-05 0.000472662 2.23106E-06 Hexane 0.129494 6.02897E-07 0.0133729 0.0012058 1.8827E-07 Hexane 0.0033742 9.5747E-10 4.33425E-07 4.583E-06 4.38025E-05 1.8827E-07 Nonane 1.01182E-05								
N2 0.711221 1.3714E-05 0.00196344 6.3418E-07 CO2 0.0251596 1.58791E-05 7.2111E-00 0.00073444 1.6314E-06 Methane 36.2 0.00141298 0.0239754 0.25403 0.00017504 Propane 0.859367 2.8682E-05 7.81966E-05 0.00074564 1.62752E-06 Isophane 0.15100 2.37686E-06 8.31971E-06 8.64983E-05 2.27286E-07 n-Butane 0.154791 2.8462E-06 3.22571E-05 0.00043261 1.4387E-06 n-Pentane 0.129091 1.39798E-06 4.63273E-05 0.000472562 2.23108E-06 Hexame 0.01336946 1.4194E-08 2.0013372 0.0101372 0.00120658 Hexame 0.00336946 1.4194E-08 2.2051E-06 1.8921E-07 3.15642E-07 3.15642E-07 3.15642E-07 3.15642E-07 3.15642E-07 3.15642E-07 3.25642E-08 3.02564E-08 1.000742737 0.0133973 0.000216351 4.9208E-06 4.9208E-06 4.9208E-06 4.9208E-07 3.5654E-08 0.40								
CO2 0.0251596 1.85791E-05 7.2111E-05 0.000753464 1.62134E-06 Bethane 36.2 0.0014298 0.0239754 0.25403 0.000175041 Ehane 2.8622-06 0.00107458 0.0113102 1.56431E-05 Spopane 0.539367 2.8622-06 7.81966E-06 8.491371E-00 8.64933E-05 2.27298E-07 n-Butane 0.547264 1.82708E-06 4.27378E-05 0.00044281 1.52882E-06 Sopentane 0.124944 6.02897E-07 0.0013372 0.013073 0.00012058 Heptane 0.0033646 1.41394E-08 2.006E-06 1.98576E-05 1.83821E-07 Nonane 1.01182E-05 1.32494E-11 2.44315E-06 2.3565E-08 7.8608E-10 n-Decane 0.0323792 7.95747E-10 4.34315E-06 4.3632E-06 3.8365E-08 Nonane 1.01182E-05 1.3234E-06 4.3059E-06 4.3059E-06 4.3059E-06 n-Decane 0.24824 0.00007403 1.00173934 0.000220787 Denzee 0.228516-05<	N2							
Ehane 1.2903 6.20542E-05 N.00107458 0.0113102 1.56431E-05 Propane 0.859367 2.8622-05 7.81956E-05 0.000817626 1.89752E-06 Isobutane 0.1511108 2.37666E-06 8.431571E-06 0.000484261 1.52882E-06 Isopentane 0.154791 2.8462E-06 3.22571E-05 0.000472652 2.23106E-06 I-Pentane 0.129494 6.02877E-07 0.0133729 0.010130732 0.0010100564 Heptane 0.0003373792 7.55747E-10 4.33322-07 4.14581E-06 4.9368E-08 Nonane 1.01182E-05 1.32264E-11 2.44315E-08 3.25515E-07 3.26354E-09 n-Decane 7.47567E-07 3.156438E-13 4.02726E-09 3.55656E-08 7.86084E-107 Denzene 0.0320396 6.9724E-05 0.000216371 0.0183943 0.000506632 Totuene 0.0320396 6.9724E-05 0.000217209 0.000267878 0.000220777 Disparate 0.0001230391 3.106146E-06 9.403950-50 0.000260503 3.89555E-05<	CO2				1.58791E-05			1.62134E-06
Propane 0.859367 2.862E-05 7.81956E-05 0.000617626 1.69752E-06 isobutane 0.131108 2.37686E-06 8.31571E-06 8.4083E-05 2.27298E-07 n-Butane 0.154791 2.8462E-06 3.22571E-06 0.000422661 1.52882E-06 Isopentane 0.129091 1.39708E-06 4.03275E-05 0.000422662 2.23106E-06 Hexane 0.00336846 1.41394E-08 2.0096E-06 1.9567E-05 1.83221E-07 Octane 0.000373792 7.95747E-10 4.33432E-07 4.14581E-06 4.9366E-08 Nonane 1.01182E-05 5.8731E-08 4.20206E-04 3.53565E-08 7.86084E-10 n-Hexane 0.0027756 5.8731E-08 4.9220E-06 4.774E-05 4.9042E-07 n-Hexane 0.00877565 5.8731E-08 4.9209E-06 4.774E-05 4.9042E-07 n-Hexane 0.00877565 5.8731E-08 4.9202E-06 4.774E-05 4.9042E-07 Detexene 0.00807565 5.8731E-08 4.9209E-06 4.774E-05 0.00027873	Methane							
Isobutane 0.131108 2.37866E-06 8.31571E-06 8.64983E-05 2.27298E-07 -Butane 0.587264 1.82708E-05 4.07878C-55 0.000330214 1.43288ZE-06 In-Pentane 0.129091 1.39798E-06 4.83273E-05 0.00037262 2.23106E-06 Hexane 0.0139674 0.00133729 0.01130973 0.001120654 Heytane 0.00337372 7.957477-10 4.33422-07 4.14581E-06 4.9366E-08 Nonane 1.01182E-05 1.23264E-11 2.44315E-08 2.25513E-07 3.62854E-09 n-Decane 7.47567E-07 3.15643E-13 4.02726C-93 3.5365E-08 7.86094E-107 Dentexane 0.00877566 5.87831E-08 4.9209E-06 4.7746E-05 4.9042E-07 Benzene 0.0212309 8.0724E-05 0.000742732 0.00578766 0.000220787 Eitybenzene 0.000122059 1.49999E-06 4.9095E-05 0.000220787 Eitybenzene 0.0001230392 0.0103325 0.00031398 1.02022077 Eitybenzene 0.000122059								
n-Butane 0.587264 1.82708E-05 4.67878E-05 0.00044261 1.52882E-06 Isopentane 0.154791 2.8482E-06 3.22571E-05 0.000330214 1.43187E-06 n-Pentane 0.129091 1.39798E-06 4.63273E-05 0.00030273 0.00120658 Hetxane 0.00336246 1.41394E-08 2.0096E-06 1.95676E-05 1.83321E-07 Octane 0.000373792 7.95747E-10 4.33432E-07 4.14581E-06 4.9366E-08 Nonane 1.01182E-05 1.32244E-11 2.44315E-08 2.25513E-07 3.62854E-09 n-Decane 7.47567E-07 3.15643E-13 4.40276E-09 3.53565E-08 7.86084E-10 D-Netane 0.021871 0.0183943 0.00056632 1.00082171 0.0183943 0.00056082 Toluene 0.0212209 3.10616E-06 9.43096E-05 0.000220787 0.000220787 Ehylbenzene 0.00120209 3.10616E-06 0.430650E-05 0.000220787 3.8825E-05 O-Xjene 0.00057403 1.14145E-06 2.28362E-08 1.067785E-06								
Isopentane 0.154791 2.8462E-06 3.2571E-05 0.000330214 1.3187E-06 n-Pentane 0.129091 1.39798E-06 4.63278E-05 0.000472562 2.23106E-06 Hexane 0.0336846 1.41394E-08 2.0096E-06 1.96576E-05 1.83821E-07 Octane 0.000373792 7.95774E-10 4.33432E-07 4.14581E-06 4.39366E-08 Nonane 1.01182E-05 1.32264E-11 2.44315E-08 2.25513E-07 3.6864E-10 n-becane 7.47567E-07 3.15643E-13 4.0276E-09 3.55366E-08 7.86084E-10 n-hexane 0.00877556 5.87831E-08 4.9209E-06 4.7746E-05 4.9042E-07 Benzene 0.218214 0.00069086 0.00218371 0.0183943 0.00050652 Toluene 0.00023093 3.0616E-06 9.41839E-05 0.00051805 3.89525E-05 MDEA 0.000166834 2.50656E-05 0.0043809 0.00151808 1.06785E-06 1.36727E-09 H2A 0.00057403 1.1415E-06 2.28362E-08 1.06785E-06								
n-Pentane 0.129091 1.39788E-06 4.63273E-05 0.00472562 2.23108E-06 Heptane 0.00336846 1.41394E-08 2.0096E-06 1.96576E-05 1.83821E-07 Octane 0.000373792 7.95747E-10 4.33432E-07 4.14581E-06 4.3966E-08 Nonane 1.01182E-05 1.2324E-11 2.44315E-08 2.25513E-07 3.6284E-09 n-Decane 7.47567E-07 3.15643E-13 4.02728E-09 3.53565E-08 7.80084E-10 n-Hexane 0.00877565 5.8731E-08 4.9209E-06 4.7746E-05 4.0002020787 Benzene 0.0218371 0.0183943 0.000220787 Ethylbenzene 0.000742732 0.00057466 0.000220787 Ethylbenzene 0.00012309 1.0616E-06 9.41839E-05 0.000311398 1.62325E-05 o-Xylene 0.00012309 1.014352 0.0483690 0.0015841 0.00517208 Piperazine 0.0103025 0.0193931 0.123061 0.343858 0.100219 H2S 0.000574073 1.1415E-06 2.2802E-08 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Heptane 0.00336846 1.41394E-08 2.0096E-06 1.96576E-05 1.83821E-07 Octane 0.000373792 7.95747E-10 4.343352E-07 4.14581E-06 4.9366E-08 Nonane 1.01182E-05 1.23264E-11 2.44315E-08 2.25513E-07 3.62854E-09 n-Becane 7.47567E-07 3.15643E-13 4.02726E-09 3.53565E-08 7.86084E-10 n-Hexane 0.0027556 5.87831E-08 4.9209E-06 4.7746E-05 4.9042E-07 Benzene 0.0128244 0.000609086 0.00218371 0.0183943 0.00020787 Ethylbenzene 0.00122309 3.10616E-06 9.41839E-05 0.00020787 5.00051398 1.62325E-05 OLDEA 0.00103025 0.0193931 0.123061 0.343858 0.100219 Mass Fraction %	n-Pentane				1.39798E-06			
Octane 0.000373792 7.95747E-10 4.33432E-07 4.14581E-06 4.3368E-08 Nonane 1.01182E-05 1.23264E-11 2.44315E-08 2.25513E-07 3.62834E-09 n-Decane 7.47567E-07 3.15643E-13 2.44315E-08 4.9209E-06 4.774E-05 4.9042E-07 Benzene 0.0218214 0.000009086 0.00218371 0.0183943 0.0000506532 Toluene 0.0320398 6.9724E-05 0.000742732 0.0005267876 0.000202787 Ethylbenzene 0.00122309 3.10616E-06 4.339059E-05 0.00012805 3.8952E-05 O-Xylene 0.00122309 3.10616E-06 9.41339E-07 4.7458 0.0051703 Mass Fraction 0.0103025 0.019391 0.123061 0.343858 0.0017208 Piperazine 0.00057403 1.1415E-06 2.28362E-08 1.06785E-06 1.36727E-09 H2C 0.00057403 1.1415E-05 2.20836E-04 1.06785E-06 1.36727E-09 H2C 0.00057403 1.1415E-05 2.00197346 1.9628E-07 <td< td=""><td>i-Hexane</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	i-Hexane							
Nonane 1.01182E-05 1.23264E-11 2.4315E-08 2.25513E-07 3.62854E-09 n-Decane 7.47567E-07 3.15643E-13 4.02726E-09 3.53565E-08 7.86084E-10 n-Hexane 0.00877566 5.87831E-08 4.9209E-06 4.7746E-05 4.9042E-07 Benzene 0.0218214 0.0000986 0.00218371 0.0183943 0.00050632 Toluene 0.0302398 6.9724E-05 0.00074722 0.000578768 0.0000578768 O.00122309 3.10616E-06 9.41839E-05 0.00057878 0.00057808 0.000158841 0.0017208 Piperazine 0.0010834 2.50656E-05 0.000158841 0.0017208 Piperazine 0.00158841 0.0017208 Piperazine 0.00057403 1.1415E-06 2.28362E-08 1.06785E-06 1.38727E-09 H2C 58.0681 99.9024 2.12729 59.5249 0.948104 TEG 9.40622E-05 0.000181401 97.7804 39.1245 98.9854 N2 0.0599767 3.876152-05 2.44497E-05								
n-Decane 7.47567E-07 3.15643E-13 4.02726E-09 3.53665E-08 7.86084E-10 n-Hexane 0.00877556 5.87831E-08 4.9209E-06 4.7746E-05 4.9042E-07 Benzene 0.0218214 0.000609086 0.0021371 0.0183943 0.0005206632 Toluene 0.0320398 6.9724E-05 0.000742732 0.000578766 0.000220787 Ethylbenzene 0.00122309 3.10616E-06 9.41839E-05 0.00052805 3.8952E-05 OXPLAN 0.00100834 2.50656E-05 0.00483609 0.00158841 0.000517208 Piperazine 0.0103025 0.0193931 0.123061 0.343858 0.100219 Mass Fraction %<								
n-Hexane 0.00877556 5.87831E-08 4.9209E-06 4.7746E-05 4.9042E-07 Benzene 0.218214 0.00060906 0.00218371 0.0183943 0.00020787 Ethylbenzene 0.002899905 1.49999E-06 4.39059E-05 0.000183943 0.000220787 Ethylbenzene 0.000106834 2.50656E-05 0.000423059 0.00028055 3.89525E-05 Ox00106834 2.50656E-05 0.00483609 0.0015841 0.000517208 Piperazine 0.0103025 0.0193931 0.123061 0.34858 0.100219 H2S 0.00057403 1.1415E-06 2.8362E-08 1.06785E-06 1.36727E-09 H2S 0.00057403 1.1415E-06 2.8362E-08 1.06785E-06 1.36727E-09 H2O 58.0681 99.024 2.12729 59.5249 0.948104 TEG 9.40622E-05 0.000181401 97.7604 39.1245 98.854 N2 1.0792 2.13088E-05 0.001197346 1.26868E-07 CO2 0.0599767 3.87615E-05 2.0								
Toluene 0.0320398 6.9724E-05 0.000742732 0.00578786 0.000220787 Ethylbenzene 0.00122309 3.10618E-06 4.39059E-05 0.000131398 1.62325E-05 MDEA 0.001122309 3.10618E-06 9.41399E-05 0.000188841 0.00517208 Piperazine 0.0103025 0.0193931 0.123061 0.343858 0.100219 Mass Fraction % </td <td>n-Hexane</td> <td></td> <td></td> <td></td> <td>5.87831E-08</td> <td>4.9209E-06</td> <td></td> <td></td>	n-Hexane				5.87831E-08	4.9209E-06		
Ethylbenzene 0.000899905 1.49999E-06 4.39059E-05 0.000311398 1.62325E-05 o-Xylene 0.00106834 2.50656E-05 0.00483609 0.0058841 0.000217208 Piperazine 0.0103025 0.0193931 0.123061 0.343858 0.100219 Mass Fraction % % % % % % H2S 0.00057403 1.1415E-06 2.28362E-08 1.06785E-06 1.36727E-09 H2O 58.0681 99.9024 2.12729 59.5249 0.948104 N2 1.0792 2.13088E-05 3.9851E-05 0.00197346 1.26585E-07 CO2 0.0559767 3.87615E-05 2.44497E-05 0.00118981 5.08419E-07 Methane 2.10156 0.00125729 0.00296321 0.146225 2.00084E-05 Isobutane 0.412767 7.66839E-06 3.72363E-06 0.00129392 9.41328E-08 Isobutane 0.412767 7.66839E-06 3.72363E-05 0.0012936 5.33352E-07 Isobutane 0.6044934 <td>Benzene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Benzene							
o-Xylene 0.00122309 3.10616E-06 9.41839E-05 0.00062805 3.89525E-05 MDEA 0.00106834 2.50656E-05 0.00483609 0.0158841 0.00517208 Piperazine 0.0103025 0.0193931 0.123061 0.343858 0.100219 Mass Fraction 68 69 70 71 72 Mass Fraction % % % % % H2S 0.00057403 1.1415E-06 2.28362E-08 1.06785E-06 1.36727E-09 H2O 58.0681 99.9024 2.12729 59.5249 0.948104 TEG 9.40622E-05 0.000181401 97.7804 39.1245 98.954 N2 1.0792 2.13088E-05 3.9851E-05 0.00118981 5.08419E-07 CO2 0.0599767 3.87615E-05 2.44497E-05 0.00118981 5.08419E-07 Methane 2.10156 0.0012345 0.00248934 0.0122028 3.35156E-06 Propane 2.05261 6.99994E-05 2.65646E-05 0.00119346 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
MDEA 0.000106834 2.50656E-05 0.00483609 0.00158841 0.00517208 Piperazine 0.013025 0.013931 0.123061 0.343858 0.100219 Mass Fraction % <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Piperazine 0.0103025 0.0193931 0.123061 0.343858 0.100219 Mass Fraction 68 69 70 71 72 Mass Fraction % % % % % % % H2S 0.00057403 1.1415E-06 2.28362E-08 1.06785E-06 1.36727E-09 H2O 58.0681 99.9024 2.12729 59.5249 0.948104 TEG 9.40622E-05 0.00181401 97.7804 39.1245 98.9854 N2 1.0792 2.13088E-05 3.9851E-05 0.00197346 1.26585E-07 CO2 0.0599767 3.87615E-05 2.44497E-05 0.00118811 5.08419E-07 Methane 2.10156 0.000103495 0.00226321 0.146225 2.00084E-05 Ethane 2.05261 6.99994E-05 2.65646E-05 0.001129365 5.33352E-07 Isobutane 0.412767 7.66839E-06 3.7263E-06 0.00180392 9.41328E-08 n-Butane 0.504495 5.59445E-06 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Mass Fraction%%%%H2S0.000574031.1415E-062.28362E-081.06785E-061.36727E-09H2O58.068199.90242.1272959.52490.948104TEG9.40622E-050.00018140197.780439.124598.9854N21.07922.13088E-053.9851E-050.001973461.26585E-07CO20.05997673.87615E-052.44497E-050.001199815.08419E-07Methane31.45660.001257290.002963210.1462252.00084E-05Ethane2.101560.000143950.0002489340.01220283.335156E-06Propane2.052616.9994E-052.65646E-050.001293655.33352E-07Isobutane0.4127677.66839E-063.72363E-060.0001803929.41328E-08n-Butane1.848875.89018E-052.09508E-050.001099336.33142E-07n-Pentane0.5044955.59445E-062.57509E-050.001223361.14695E-06i-Hexane0.06043552.88174E-060.000887840.04049787.40868E-05Heptane0.002312795.04172E-093.81436E-071.69923E-054.01795E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Decane5.76144E-062.491E-124.41453E-091.80504E-077.96931E-10n-Hexane0.0429283.00736330.00136330.0001449493.0113E-07Benzene0.0429280.02038910.0013633 <td< td=""><td>Piperazine</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Piperazine							
Mass Fraction%%%%H2S0.000574031.1415E-062.28362E-081.06785E-061.36727E-09H2O58.068199.90242.1272959.52490.948104TEG9.40622E-050.00018140197.780439.124598.9854N21.07922.13088E-053.9851E-050.001973461.26585E-07CO20.05997673.87615E-052.44497E-050.001199815.08419E-07Methane31.45660.001257290.002963210.1462252.00084E-05Ethane2.101560.000143950.0002489340.01220283.335156E-06Propane2.052616.9994E-052.65646E-050.001293655.33352E-07Isobutane0.4127677.66839E-063.72363E-060.0001803929.41328E-08n-Butane1.848875.89018E-052.09508E-050.001099336.33142E-07n-Pentane0.5044955.59445E-062.57509E-050.001223361.14695E-06i-Hexane0.06043552.88174E-060.000887840.04049787.40868E-05Heptane0.002312795.04172E-093.81436E-071.69923E-054.01795E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Decane5.76144E-062.491E-124.41453E-091.80504E-077.96931E-10n-Hexane0.0429283.00736330.00136330.0001449493.0113E-07Benzene0.0429280.02038910.0013633 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>								
H2S0.000574031.1415E-062.28362E-081.06785E-061.36727E-09H2O58.068199.90242.1272959.52490.948104TEG9.40622E-050.00018140197.780439.124598.9854N21.07922.13088E-053.9851E-050.001973461.26585E-07CO20.05997673.87615E-052.44497E-050.001183815.08419E-07Methane31.45660.001257290.002963210.1462252.00084E-05Ethane2.101560.0001034950.0002489340.01220283.35156E-06Propane2.052616.99994E-052.65646E-050.0011803929.41328E-08Isobutane0.4127677.66839E-063.72363E-060.001203655.33352E-07Isopentane0.6049341.139E-051.793E-050.00109036.3142E-07Isopentane0.6044955.59445E-062.05608E-050.00100936.3142E-07I-Hexane0.00241955.59445E-062.57509E-050.001223361.14695E-06I-Hexane0.002312795.04172E-093.81436E-071.69923E-054.01795E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Hexane0.002312795.04172E-093.81436E-071.69923E-054.01795E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Hexane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Nenane								
H2O58.068199.90242.1272959.52490.948104TEG9.40622E-050.00018140197.780439.124598.9854N21.07922.13088E-053.9851E-050.001973461.26585E-07CO20.05997673.87615E-052.44497E-050.001189815.08419E-07Methane31.45660.001257290.002963210.1462252.00084E-05Ethane2.101560.0001034950.0002489340.01220283.35156E-06Propane2.052616.99994E-052.65646E-050.001293655.33352E-07Isobutane0.4127677.66839E-063.72363E-060.0001803929.41328E-08n-Butane1.848875.89018E-052.09508E-050.001109936.33142E-07Isopentane0.6044552.88174E-062.57509E-050.00122361.14695E-06i-Hexane0.6044552.88174E-060.000887840.04049787.40868E-05Heptane0.01828267.85844E-081.55136E-067.06764E-051.31242E-07Octane0.002312795.04172E-093.81436E-071.69923E-054.01795E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Hexane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Benzene0.04096282.80973E-073.26704E-060.0001476343.0113E-07Nonane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Benzene	Mass Fraction							
TEG9.40622E-050.00018140197.780439.124598.9854N21.07922.13088E-053.9851E-050.001973461.26585E-07CO20.05997673.87615E-052.44497E-050.001189815.08419E-07Methane31.45660.001257290.002963210.1462252.00084E-05Ethane2.101560.0001034950.0002489340.01220283.3516E-06Propane2.052616.99994E-052.65646E-050.0011803929.41328E-08n-Butane1.848875.89018E-052.09508E-050.0001803929.41328E-08n-Pentane0.6049341.139E-051.793E-050.0001823821.36097E-07n-Pentane0.6044552.88174E-060.000887840.04049781.4695E-06Heptane0.01828267.85844E-081.55136E-067.06764E-051.31242E-07Octane0.002312795.04172E-093.81436E-071.69923E-054.01795E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Hexane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Benzene0.9232780.002638910.001314130.05155480.00281976Toluene0.1599050.000263330.0005272280.01913490.000144949								
N21.07922.13088E-053.9851E-050.001973461.26585E-07CO20.05997673.87615E-052.44497E-050.001189815.08419E-07Methane31.45660.001257290.002963210.1462252.00084E-05Ethane2.101560.0001034950.0002489340.01220283.35156E-06Propane2.052616.99994E-052.65646E-050.001183829.41328E-08Isobutane0.4127677.66839E-063.72363E-060.0010030936.3142E-07Isopentane1.848875.89018E-052.09508E-050.001009936.3142E-07Isopentane0.6049341.139E-051.793E-050.001223361.14695E-06i-Hexane0.5044955.59445E-062.57509E-050.001223361.14695E-06i-Hexane0.01828267.85844E-081.55136E-067.06764E-051.31242E-07Octane0.002312795.04172E-093.81436E-071.69923E-054.01795E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Hexane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Benzene0.9232780.002638910.001314130.05155480.000281976Toluene0.1599050.000356330.0005272280.01913490.000144949	TEG							
CO20.05997673.87615E-052.44497E-050.001189815.08419E-07Methane31.45660.001257290.002963210.1462252.00084E-05Ethane2.101560.0001034950.0002489340.01220283.35156E-06Propane2.052616.99994E-052.65646E-050.001293655.33352E-07Isobutane0.4127677.66839E-063.72363E-060.0001803929.41328E-07Isopentane1.848875.89018E-052.09508E-050.00109936.33142E-07Isopentane0.6049341.139E-051.793E-050.0008548547.36097E-07n-Pentane0.5044955.59445E-062.57509E-050.001223361.14695E-06i-Hexane0.01828267.85844E-081.55136E-067.06764E-051.31242E-07Octane0.002312795.04172E-093.81436E-071.69923E-054.01795E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.5196E-06n-Hexane0.04096282.8973E-073.26704E-060.0001476343.0113E-07Benzene0.9232780.00236330.0005272280.01913490.000144949	N2			1.0792				
Ethane2.101560.0001034950.0002489340.01220283.35156E-06Propane2.052616.99994E-052.65646E-050.001293655.33352E-07Isobutane0.4127677.66839E-063.72363E-060.0001803929.41328E-08n-Butane1.848875.89018E-052.09508E-050.001009936.33142E-07Isopentane0.6049341.139E-051.793E-050.0008548547.36097E-07n-Pentane0.5044955.59445E-062.57509E-050.001223361.14695E-06i-Hexane0.6044552.88174E-060.000887840.04049787.40868E-05Heptane0.01828267.85844E-081.55136E-067.06764E-051.31242E-07Octane0.002312795.04172E-093.81436E-071.69923E-054.01795E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Decane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Benzene0.9232780.002638910.001314130.05155480.000281976Toluene0.1599050.000356330.0005272280.01913490.000144949	CO2							
Propane2.052616.99994E-052.65646E-050.001293655.33352E-07Isobutane0.4127677.66839E-063.72363E-060.0001803929.41328E-08n-Butane1.848875.89018E-052.09508E-050.001009936.33142E-07Isopentane0.6049341.139E-051.793E-050.0008548547.36097E-07n-Pentane0.5044955.59445E-062.57509E-050.001223361.14695E-06i-Hexane0.6044552.88174E-060.000887840.04049787.40868E-05Heptane0.01828267.85844E-081.55136E-067.06764E-051.31242E-07Octane0.002312795.04172E-093.81436E-071.69923E-054.01795E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Decane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Benzene0.9232780.002638910.001314130.05155480.000281976Toluene0.1599050.000356330.0005272280.01913490.000144949	Methane							
Isobutane0.4127677.66839E-063.72363E-060.0001803929.41328E-08n-Butane1.848875.89018E-052.09508E-050.001009936.33142E-07Isopentane0.6049341.139E-051.793E-050.0008548547.36097E-07n-Pentane0.5044955.59445E-062.57509E-050.001223361.14695E-06i-Hexane0.6044552.88174E-060.000887840.04049787.40868E-05Heptane0.01828267.85844E-081.55136E-067.06764E-051.31242E-07Octane0.002312795.04172E-093.81436E-071.69923E-054.0179E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Hexane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Benzene0.9232780.002638910.001314130.05155480.000281976Toluene0.1599050.000356330.0005272280.01913490.000144949								
n-Butane1.848875.89018E-052.09508E-050.001009936.33142E-07Isopentane0.6049341.139E-051.793E-050.0008548547.36097E-07n-Pentane0.5044955.59445E-062.57509E-050.001223361.14695E-06i-Hexane0.6044552.88174E-060.000887840.04049787.40868E-05Heptane0.01828267.85844E-081.55136E-067.06764E-051.31242E-07Octane0.002312795.04172E-093.81436E-071.69923E-054.01795E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Hexane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Benzene0.9232780.002638910.001314130.05155480.000281976Toluene0.1599050.000356330.0005272280.01913490.000144949								
Isopentane0.6049341.139E-051.793E-050.0008548547.36097E-07n-Pentane0.5044955.59445E-062.57509E-050.001223361.14695E-06i-Hexane0.6044552.88174E-060.000887840.04049787.40868E-05Heptane0.01828267.85844E-081.55136E-067.06764E-051.31242E-07Octane0.002312795.04172E-093.81436E-071.69923E-054.01795E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Decane5.76144E-062.491E-124.41453E-091.80504E-077.96931E-10n-Hexane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Benzene0.9232780.002638910.001314130.05155480.000281976Toluene0.1599050.000356330.0005272280.01913490.000144949	n-Butane							
n-Pentane0.5044955.59445E-062.57509E-050.001223361.14695E-06i-Hexane0.6044552.88174E-060.000887840.04049787.40868E-05Heptane0.01828267.85844E-081.55136E-067.06764E-051.31242E-07Octane0.002312795.04172E-093.81436E-071.69923E-054.01795E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Decane5.76144E-062.491E-124.41453E-091.80504E-077.96931E-10n-Hexane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Benzene0.9232780.002638910.001314130.05155480.000281976Toluene0.1599050.000356330.0005272280.01913490.00144949	Isopentane							
Heptane0.01828267.85844E-081.55136E-067.06764E-051.31242E-07Octane0.002312795.04172E-093.81436E-071.69923E-054.01795E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Decane5.76144E-062.491E-124.41453E-091.80504E-077.96931E-10n-Hexane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Benzene0.9232780.002638910.001314130.05155480.00281976Toluene0.1599050.000356330.0005272280.01913490.00144949	n-Pentane						0.00122336	
Octane0.002312795.04172E-093.81436E-071.69923E-054.01795E-08Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Decane5.76144E-062.491E-124.41453E-091.80504E-077.96931E-10n-Hexane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Benzene0.9232780.002638910.001314130.05155480.00281976Toluene0.1599050.000356330.0005272280.01913490.00144949	i-Hexane							
Nonane7.02926E-058.7688E-112.41408E-081.0378E-063.31596E-09n-Decane5.76144E-062.491E-124.41453E-091.80504E-077.96931E-10n-Hexane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Benzene0.9232780.002638910.001314130.05155480.00281976Toluene0.1599050.000356330.0005272280.01913490.00144949								
n-Decane5.76144E-062.491E-124.41453E-091.80504E-077.96931E-10n-Hexane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Benzene0.9232780.002638910.001314130.05155480.00281976Toluene0.1599050.000356330.0005272280.01913490.00144949							1.09923E-05	
n-Hexane0.04096282.80973E-073.26704E-060.0001476343.0113E-07Benzene0.9232780.002638910.001314130.05155480.000281976Toluene0.1599050.000356330.0005272280.01913490.000144949	n-Decane							
Benzene 0.923278 0.00263891 0.00131413 0.0515548 0.000281976 Toluene 0.159905 0.00035633 0.000527228 0.0191349 0.000144949	n-Hexane							
	Benzene			0.923278	0.00263891	0.00131413	0.0515548	0.000281976
Envidenzene	Toluene							
	Ethylbenzene * User Specified Values				8.83282E-06	3.59112E-05	0.00118622	1.22792E-05

ProMax 6.0.24054.0 Copyright © 2002-2024 BRE Group, Ltd.


		Alls	Streams Report Streams d by Total Phase			
Client Name:	Northwind Mids	ream Partners, LLC		Job:	1	
Location:	Titan Treater #2					
Flowsheet:	TEG Dehydratic					
				4		
		68	69	70	71	72
Mass Fraction		%	%	%	%	%
o-Xylene		0.00703348	1.82909E-05	7.70342E-05	0.00239245	2.94659E-05
MDEA		0.000689575	0.000165671	0.00443975	0.00679153	0.00439144
Piperazine		0.048068	0.0926527	0.081664	1.06275	0.0615085
		68	69	70	71	72
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h
H2S		0.00334835	3.45259E-06	2.69345E-06	2.53543E-06	1.58019E-07
H2O		338.714	302.165	250.906	141.331	109.574
TEG		0.00054867	0.000548665	11532.8	92.8943	11439.9
N2		6.29503	6.44507E-05	0.00470028	0.00468565	1.46296E-05
CO2		0.349847	0.000117238	0.00288375	0.00282499	5.8759E-05
Methane		183.488	0.00380281	0.349499	0.347187	0.00231241
Ethane		12.2585	0.000313031	0.0293608	0.0289734	0.000387346
Propane		11.973	0.00021172	0.0031332	0.00307156	6.16405E-05
Isobutane		2.40769	2.31938E-05	0.000439189	0.00042831	1.08791E-05
n-Butane		10.7846	0.000178154	0.00247107	0.00239789	7.31734E-05
Isopentane		3.52861	3.44501E-05	0.00211478	0.0020297	8.50721E-05
n-Pentane		2.94274	1.6921E-05	0.00303722	0.00290466	0.000132555
i-Hexane		3.52582	8.71611E-06	0.104717	0.0961551	0.00856236
Heptane		0.106644	2.37686E-07	0.000182977	0.000167809	1.51679E-05
Octane		0.0134906	1.52492E-08	4.49889E-05	4.03453E-05	4.64363E-06
Nonane		0.00041002	2.65221E-10	2.84731E-06	2.46408E-06	3.83232E-07
n-Decane		3.36068E-05	7.53429E-12	5.20678E-07	4.28575E-07	9.21029E-08
n-Hexane		0.238938	8.4983E-07	0.000385335	0.000350532	3.48022E-05
Benzene		5.38552	0.00798165	0.154996	0.122408	0.0325885
Toluene		0.932735	0.00107775	0.0621846	0.0454325	0.0167521
Ethylbenzene		0.030186	2.67157E-05	0.0042356	0.00281647	0.00141913
o-Xylene		0.0410267	5.53226E-05	0.0090859	0.00568047	0.00340543
MDEA		0.00402233	0.000501088	0.523652	0.0161253	0.507527
Piperazine		0.280383	0.280237	9.63196	2.52331	7.10865

Stream Properties									
71	72								
395	395								
14.95	14.95								
27.8697	140.345								
237.433	11557.2								
0.0775913	0.749998								
0.457188	20.4855								
289.334	3497.43								
362.442	3826.87								
	289.334								

		A	s Streams Repor Il Streams ated by Total Phase	t		
Client Name:	Northwind Midst	ream Partners, LLC		Job:	+	
Location:	Titan Treater #2					
Flowsheet:	TEG Dehydratio	<u>n</u>				
		С	onnections			
		73	74	75	78	78A
From Block		AC-44300 LEAN/RICH EXCHANGE		P-44170/P-441 75 GLYCOL CIRULATION PUMPS	F-44100 TEG INLET FILTER COALESCER	LV1
To Block		MKUP-1	P-44170/P-441 75 GLYCOL CIRULATION PUMPS	AC-44150 GAS/GLYCOL EXCHANGER	LV1	TEG Filter to Inlet
		Strea	m Composition			
Mole Fraction		73 %	74 %	75 %	78 %	78A %
H2S		6.81567E-		-	0.0070475	0.0070475
H2O		0.9911			97.7934	97.7934
TEG		98.88			0	0
N2 CO2		0.0005039			0.00140052	0.00140052 0.354805
Methane		0.0001313			0.0789688	0.354805
Ethane		0.002239			0.0123386	0.0123386
Propane		0.0001282			0.00373363	0.00373363
Isobutane		9.75161E-			0.000208821	0.000208821
n-Butane		4.07928E-			0.000736282	0.000736282
Isopentane		3.46307E-	05 3.46216E-05	3.46216E-05	4.63884E-05	4.63884E-05
n-Pentane		5.72853E-			3.60707E-05	3.60707E-05
i-Hexane		0.002422			2.72127E-06	2.72127E-06
Heptane		4.65544E-			5.86102E-08	5.86102E-08
Octane Nonane		2.02674E- 2.75089E-			2.94003E-09 1.71307E-11	2.94003E-09 1.71307E-11
n-Decane		1.11461E-			2.5103E-13	2.5103E-13
n-Hexane		1.43303E-			5.75576E-07	5.75576E-07
Benzene		1.06482E-		-	0.000173851	0.000173851
Toluene		8.42179E-			9.87219E-06	9.87219E-06
Ethylbenzene		1.06606E-			1.2872E-07	1.2872E-07
o-Xylene		3.41328E-	06 3.41239E-06	3.41239E-06	1.813E-07	1.813E-07
MDEA		0.005295			0.394737	0.394737
Piperazine		0.05278	74 0.0527735	0.0527735	1.35231	1.35231
		73	74	75	78	78A
Mass Fraction		%	%	%	%	%
H2S		1.56161E-	12 0	0	0.0123611	0.0123611
H2O		0.1200			90.6698	90.6698
TEG		99.83			0	0
N2		9.49154E-			0.00201915	0.00201915
CO2 Mothono		3.88604E-			0.803615	0.803615
Methane Ethane		0.006115			0.0651986	0.0651986 0.019094
Propane		0.0004527 3.80287E-			0.00847302	0.00847302
Isobutane		3.81042E-			0.000624638	0.000624638
n-Butane		1.59397E-			0.00220241	0.00220241
Isopentane		1.67975E-	05 1.6793E-05	1.6793E-05	0.000172247	0.000172247
n-Pentane		2.7786E-			0.000133935	0.000133935
i-Hexane		0.001403			1.20689E-05	1.20689E-05
Heptane		3.13611E-			3.02246E-07	3.02246E-07
Octane		1.55642E-			1.72838E-08	1.72838E-08
Nonane n-Decane		2.37193E- 1.06617E-			1.13074E-10 1.83817E-12	1.13074E-10 1.83817E-12
n-Decane n-Hexane		8.30217E-			2.55269E-06	2.55269E-06
Benzene		5.59176E-			0.000698885	0.000698885
Toluene		5.21674E-			4.6813E-05	4.6813E-05
Ethylbenzene		7.60878E-			7.03298E-07	7.03298E-07
* User Specified Values	_		roMax 6.0.24054.0		to Northwind Midstream P	

		All S	reams Report treams by Total Phase			
Client Name:	Northwind Mids	tream Partners. LLC		Job:		
Location:	Titan Treater #2					
Flowsheet:	TEG Dehydratic					
Mass Fraction		73	74 %	75 %	78 %	78A %
o-Xylene		2.43617E-06	2.43553E-06	2.43553E-06	9.90582E-07	9.90582E-07
MDEA		0.00424254	0.00424143	0.00424143	2.4208	2.4208
Piperazine		0.030568	0.0305599	0.0305599	5.99473	5.99473
		0.000000	0.0000000	0.0000000	0.000.00	0.00110
Mass Flow		73 b/h	74 lb/h	75 lb/h	78 Ib/h	78A lb/h
H2S		1.76342E-10	0	0	0	0
H2O		13.5562	13.5592	13.5592	0	0
TEG		11273.9	11276.9	11276.9	0	0
N2		0.0107181	0.0107181	0.0107181	0	0
CO2		0.00438823	0.00438823	0.00438823	0	0
Methane		0.690608	0.690608	0.690608	0	0
Ethane		0.0511206	0.0511206	0.0511206	0	0
Propane		0.00429431	0.00429431	0.00429431	0	0
Isobutane		0.000430284	0.000430284	0.000430284	0	0
n-Butane		0.00179996	0.00179996	0.00179996	0	0
Isopentane		0.00189682	0.00189682	0.00189682	0	0
n-Pentane		0.00313768	0.00313768	0.00313768	0	0
i-Hexane		0.158497	0.158497	0.158497	0	0
Heptane		3.54138E-08	0	0	0	0
Octane		1.75756E-08	0	0	0	0
Nonane		2.67846E-09	0	0	0	0
n-Decane		1.20395E-09	0	0	0	0
n-Hexane		9.37506E-08	0	0	0	0
Benzene		0.000631439	0.000631439	0.000631439	0	0
Toluene		0.00058909	0.00058909	0.00058909	0	0
Ethylbenzene		8.59206E-05	8.59206E-05	8.59206E-05	0	0
o-Xylene		0.0002751	0.0002751	0.0002751	0	0
MDEA		0.479081	0.479081	0.479081	0	0
Piperazine		3.45183	3.45183	3.45183	0	0

Stream Properties									
Property	Units	73	74	75	78	78A			
Temperature	°F	201.254	201.228	204.626	119.882				
Pressure	psia	14.65	14.65	1213.25 *	1096.25				
Molecular Weight	lb/lbmol	148.746	148.746	148.746	19.4307	19.4307			
Mass Flow	lb/h	11292.3	11295.3	11295.3	0	0			
Std Vapor Volumetric Flow	MMSCFD	0.691419	0.691601	0.691601	0	0			
Std Liquid Volumetric Flow	sgpm	19.9947	20 *	20	0	0			
Net Ideal Gas Heating Value	Btu/ft^3	3737.56	3737.56	3737.56	58.2385	58.2385			
Gross Ideal Gas Heating Value	Btu/ft^3	4086.19	4086.19	4086.19	112.238	112.238			
			in the second	in the second					

			reams Report treams by Total Phase			
Client Name:	Northwind Midst	ream Partners, LLC		Job:		
Location:	Titan Treater #2					
Flowsheet:	Triazine					
		Conn	ections			
		Spent Triazene	Triazene loading comp	Triazine off site	Triazine TKB	Triazine TKF
From Block			Triazine TK AP-42	Triazine TK AP-42	Triazine TK AP-42	Triazine TK AP-42
To Block		Triazine TK AP-42			MIX-100	
		Streem 0				
			omposition	Talaalaa aff	Talasias TKD	
Molo Frection		Spent Triazene	Triazene loading comp	Triazine off site	Triazine TKB	Triazine TKF
Mole Fraction H2S		% 1.3E-06 *	% 0.00288905	% 7.09421E-07	% 0.000912108	% 0.000283421
H20		96.0025 *	37.2141	96.1479	9.51209	3.55141
TEG		0 *	0	0	0	0
N2		0.00129048 *	0	0	0.06416	0.939595
CO2		0.0516391 *	62.6491	0.00437159	73.3221	22.5691
Methane		0.0882726 *	0	0	12.3738	62.9378
Ethane		0.0106339 *	0	0	3.40308	7.26257
Propane		0.00307114 *	0	0	0.974832	2.0988
Isobutane		0.000193071 *	0	0	0.0503394	0.133772
n-Butane		0.000634234 * 4.7E-05 *	0	0	0.239164 0.0151438	0.427114 0.0320821
Isopentane n-Pentane		4.7E-05 *	0	0	0.0151438	0.0320821
i-Hexane		4.92-05	0	0	0.00093907	0.034391
Heptane		1E-06 *	0	0	0.000146091	0.000712006
Octane		0 *	0	0	0	0
Nonane		0 *	0	0	0	0
n-Decane		0 *	0	0	0	0
n-Hexane		0 *	0	0	0	0
Benzene		1.3E-05 *	0.00736283	1.17011E-05	0.00192612	0.000648553
Toluene Ethylbenzene		0.000196072 *	0.104817	0 0.000177145	0 0.0276897	0 0.00952042
o-Xylene		6.2E-05 *	0.0217755	5.81528E-05	0.00568413	0.00195179
Triazine, MEA		3.84142 *	1.67473E-13	3.84752	5.72398E-14	5.29989E-14
Piperazine		5E-06 *	2.57281E-09	5.00794E-06	7.12796E-10	3.4623E-10
		Spent Triazene	Triazene loading comp	Triazine off site	Triazine TKB	Triazine TKF
Mass Fraction		%	%	%	%	%
H2S		1.71984E-06 *	0.00286085	9.38561E-07	0.000825389	0.000395398
H2O		67.1361 *	19.4795	67.2401	4.55008	2.61898
TEG		0 *	0	0	0	0
N2		0.00140329 *	0	0	0.0477235	1.07745
CO2 Mothono		0.0882181 *	80.1105	0.0074685	85.6808	40.6585
Methane Ethane		0.0124121 *	0	0	5.27079 2.71703	41.3308 8.93924
Propane		0.00525687 *	0	0	1.14137	3.78842
Isobutane		0.000435604 *	0	0	0.0776877	0.318271
n-Butane		0.00143095 *	0	0	0.369096	1.01619
Isopentane		0.000131631 *	0	0	0.0290112	0.0947505
n-Pentane		0.000137233 *	0	0	0.0171247	0.10216
i-Hexane		0 *	0	0	0	0
Heptane		3.88964E-06 *	0	0	0.00038869	0.00292045
		0 *	0	0	0	0
Octane		0 *	0	0	0	0
Octane Nonane						1 U
Octane Nonane n-Decane		0 *	0	-	-	-
Octane Nonane n-Decane n-Hexane		0 *	0	0	0	0
Octane Nonane n-Decane n-Hexane Benzene		0 * 0 * 3.94179E-05 *	0 0.0167105	0 3.54805E-05	0 0.00399487	0 0.00207373
Octane Nonane n-Decane n-Hexane		0 *	0	0	0	0

			All S	reams Report treams by Total Phase			
Client Name:	Northwind Mids	tream Partners.	LLC		Job:	4	
Location:	Titan Treater #2	, !					
Flowsheet:	Triazine						
	ł				ł		
Mass Fraction			Spent Triazene %	Triazene loading comp %	Triazine off site %	Triazine TKB %	Triazine TKF %
Triazine, MEA			32.6984	1.06702E-12	32.7514	3.33274E-13	4.75729E-13
Piperazine			1.6718E-05	6.439E-09	1.67452E-05	1.63024E-09	1.22078E-09
Mass Flow			Spent Triazene Ib/h	Triazene loading comp lb/h	Triazine off site Ib/h	Triazine TKB	Triazine TKF
H2S			5.09418E-05		2.77553E-05	1.26069E-06	1.50817E-05
H2O			1988.58	0.0234828	1988.44	0.00694974	0.0998959
TEG			0	* 0	0	0.00004074	0.0000000
N2			0.0415658	* 0	0	7.28923E-05	0.0410972
CO2			2.61304	* 0.0965746	0.22086	0.130868	1.55084
Methane			1.62824	* 0	0	0.00805054	1.57648
Ethane			0.367649	* 0	0	0.00414996	0.34097
Propane			0.155709	• 0	0	0.00174332	0.144502
Isobutane			0.0129027	* 0	0	0.000118659	0.0121398
n-Butane			0.042385	* 0	0	0.000563753	0.0387607
Isopentane			0.00389895	* 0	0	4.43114E-05	0.00361407
n-Pentane			0.00406486	* 0	0	2.61561E-05	0.0038967
i-Hexane			0	* 0	0	0	0
Heptane			0.000115212	• 0	0	5.9368E-07	0.000111395
Octane			0	* 0	0	0	0
Nonane			0	* 0	0	0	0
n-Decane			0	* 0	0	0	0
n-Hexane			0	* 0	0	0	0
Benzene			0.00116756	* 2.01448E-05	0.00104924	6.10172E-06	7.90985E-05
Toluene			0	* 0	0	0	0
Ethylbenzene			0.0239341	0.000389774	0.0215895	0.000119221	0.00157813
o-Xylene			0.00756822	* 8.0975E-05	0.00708734	2.44736E-05	0.000323534
Triazine, MEA			968.532	1.28632E-15	968.532	5.0904E-16	1.81457E-14
Piperazine			0.000495192	* 7.76233E-12	0.000495191	2.49E-12	4.65643E-11
			Stream	Properties			
Property		Unite	Spont	Triazono	Triazino off	Triazino TKB	Triazino TKE

Property	Units	Spent Triazene	Triazene loading comp	Triazine off site	Triazine TKB	Triazine TKF
Temperature	°F	114.5 *	77.2706	77.2706	77.2706	77.2706
Pressure	psia	15.1959 *	13.26	13.26	13.26	13.26
Molecular Weight	lb/lbmol	25.7613	34.4169	25.7604	37.6615	24.4292
Mass Flow	lb/h	2962.02	0.120552	2957.22	0.152739	3.8143
Std Vapor Volumetric Flow	MMSCFD	1.04719	3.19012E-05	1.04553	3.69366E-05	0.00142204
Std Liquid Volumetric Flow	sgpm	5.83333 *	0.000284329	5.81333	0.00042097	0.0172925
Net Ideal Gas Heating Value	Btu/ft^3	248.785	6.57141	248.103	201.534	758.498
Gross Ideal Gas Heating Value	Btu/ft^3	317.47	25.6244	316.78	226.744	840.41

		All Si Tabulated b	reams Report treams by Total Phase		
Client Name:		ream Partners, LLC		Job:	
Location:	Titan Treater #2				
Flowsheet:	Triazine				
		Conn	ections		
		Triazine TKW	TriazineWB		
From Block		Triazine TK	MIX-100		
Profit Blook		AP-42			
To Block		MIX-100			
		Stroom C	omposition		
					· · · · · · · · · · · · · · · · · · ·
Mala Frentian		Triazine TKW	TriazineWB		
Mole Fraction		%	%		· · · · · · · · · · · · · · · · · · ·
H2S		0.000912108	0.000912108		
H2O TEG		9.51209	9.51209		
N2		0.06416	0.06416		
N2 CO2		73.3221	73.3221		
Methane Ethane		12.3738 3.40308	12.3738 3.40308		
Propane		0.974832	0.974832		
Isobutane		0.0503394	0.0503394		
n-Butane		0.239164	0.239164		
Isopentane		0.239164	0.239164		
n-Pentane		0.00893907	0.00893907		
i-Hexane		0.00893907	0.00893907		
Heptane		0.000146091	0.000146091		
Octane		0.000140091	0.000140091		
Nonane		0	0		
n-Decane		0	0		
n-Hexane		0	0		
Benzene		0.00192612	0.00192612		
Toluene		0	0.00102012		
Ethylbenzene		0.0276897	0.0276897		
o-Xylene		0.00568413	0.00568413		
Triazine, MEA		5.72398E-14	5.72398E-14		
Piperazine		7.12796E-10	7.12796E-10		
1 ipolazilio		11121002 10	1.121002 10		
Mass Fraction		Triazine TKW %	TriazineWB %		
H2S		0.000825389	0.000825389		
H20		4.55008	4.55008		
TEG		4.55008	4.55008		
N2		0.0477235	0.0477235		
CO2		85.6808	85.6808		
Methane		5.27079	5.27079		
Ethane		2.71703	2.71703		
Propane		1.14137	1.14137		
Isobutane		0.0776877	0.0776877		
n-Butane		0.369096	0.369096		
Isopentane		0.0290112	0.0290112		
n-Pentane		0.0171247	0.0171247		
i-Hexane		0	0.0171247		
Heptane		0.00038869	0.00038869		
Octane		0	0		
Nonane		0	0		
n-Decane		0	0		
n-Hexane		0	0		
Benzene		0.00399487	0.00399487		
Toluene		0	0		
Ethylbenzene		0.0780553	0.0780553		
o-Xylene		0.0160231	0.0160231		
		3.33274E-13	3.33274E-13		
Triazine. MEA		3.332/4E-13			I
Triazine, MEA Piperazine		1.63024E-09	1.63024E-09		

Г

			treams Report Streams I by Total Phase		
Client Name:	Northwind Mids	tream Partners, LLC		Job:	4
Location:	Titan Treater #2	2			
Flowsheet:	Triazine				
	•			•	
		Triazine TKW	TriazineWB		
Mass Flow		lb/h	lb/h		
H2S		6.84416E-06	8.10485E-06		
H2O		0.0377294	0.0446791		
TEG		0	0		
N2		0.000395725	0.000468617		
CO2		0.710468	0.841336		
Methane		0.0437055	0.0517561		
Ethane		0.0225297	0.0266796		
Propane		0.0094643	0.0112076		
Isobutane		0.000644189	0.000762849		
n-Butane		0.00306056	0.00362431		
Isopentane		0.000240562	0.000284874		
n-Pentane		0.000141999	0.000168155		
i-Hexane		0	0		
Heptane		3.22303E-06	3.81671E-06		
Octane		0	0		
Nonane		0	0		
n-Decane		0	0		
n-Hexane		0	0		
Benzene		3.31256E-05	3.92273E-05		
Toluene		0	0		
Ethylbenzene		0.000647237	0.000766458		
o-Xylene		0.000132864	0.000157338		
Triazine, MEA		2.76352E-15	3.27256E-15		
Piperazine		1.3518E-11	1.6008E-11		

Stream Properties							
Property	Units	Triazine TKW	TriazineWB			· · ·	
Temperature	°F	77.2706	77.2706				
Pressure	psia	13.26	13.26				
Molecular Weight	lb/lbmol	37.6615	37.6615				
Mass Flow	lb/h	0.829203	0.981942				
Std Vapor Volumetric Flow	MMSCFD	0.000200525	0.000237461				
Std Liquid Volumetric Flow	sgpm	0.0022854	0.00270637				
Net Ideal Gas Heating Value	Btu/ft^3	201.534	201.534				
Gross Ideal Gas Heating Value	Btu/ft^3	226.744	226.744				

Page 1 of 3

Simulation Initiated on 12/10	0/2024 9:27:17 AM	11	.19 Titan Treating #2 -Air	Permit ProMax Mo	del.pmx			Page 1 of 3
			Triazine Tank L					
		tream Partners, LLC	;			Job:		
	Titan Treater #2						35 AM, 11/25/2024	
Flowsheet:	Triazine					Status: Solv	/ed 9:10 AM, 12/10	/2024
			Conne	ections				
Stream	Connect	ion Type	Other Block	Strea	m	Connect		Other Block
Spent Triazene	Inl	let		Triazine	TKF	Flashing	Losses	
Triazine TKW	Working		MIX-100	Triazine	ТКВ	Stre Standing	Losses	MIX-100
Triazene loading con	Stre			Triazine o	off site	Stre Residual Lic		
Thazene loading con				Thazine e				
		\ M /	rking and Sta	nding Bron	ortion			
Topk Coorset			orking and Sta		ernes		0	
Tank Geometry * Shell Length		Vertical Cylinder 20	ft	Roof Type Slope of Co	and Deef		Cone 0.0625	
* Shell Diameter				Breather Ve		د	0.0625	nsi
Number of Storage	Tanks	12	<u>п</u>	Breather Va			-0.03	
Maximum Fraction		90	%	* Location			Midland, TX	
Average Fraction F	ill of Tank	50	%	Time Frame	9		Year	
Minimum Fraction I	Fill of		%	Known Liqu			False	
Tank				Temperatur				
 Material Category Insulation 		Heavy Crude Uninsulated		Liquid Bulk Use AP 42 Pressure?			66.5461 False	°F
Bolted or Riveted Construction?		False		Flashing Te	emperature		77.2706	°F
Vapor Balanced Ta	ank?	False		Average Da Ambient Te		n	76.7	°F
Known Sum of Incr Liquid Level?	reases in	False		Average Da Ambient Te	ily Minimum	า	51.4	°F
Sum of Increases in Level	n Liquid	3490.22	ft/yr	Atmospheri Tank Locati	on	at	13.26	
* Shell Color		Tan		Daily Solar				Btu/(day*ft^2)
Shell Paint Condition * Roof Color	on	Average Tan		Average Wi Include Sho			11 False	mph
Roof Paint Condition	on	Average		Emissions				
		C	omposition Su					
Component Subset	t	VOCs		Species in I			Selected Species	
Atomic Basis		False		Fraction De	nominator		Selected Species	
			<mark>ted Compositi</mark>	on Subset	Propertie	s		
Index	Sele	ected Components						
H2S		False						
H2O		False						
TEG		True						
<u>N2</u> CO2		False False						
CO2 Methane		Faise						
Ethane		False						
Propane		True						
Isobutane		True						
n-Butane		True						
Isopentane		True						
n-Pentane		True						
i-Hexane		True						
Heptane		True						
Octane		True						
Nonane		True						
n-Decane		True						
n-Hexane		True						
Benzene		True						
Toluene		True			1			
		146	, DraMay 6		+			

* User Specified Values ? Extrapolated or Approximate Values

ProMax 6.0.24054.0 Copyright © 2002-2024 BRE Group, Ltd.

Page	2	of 3	3

			Triaz	Blocks ine TK AP-42 Tank Losses			
Client Name:		Midstream Partners, LLC	;		Job:	•	
ocation:	Titan Treat	er #2				7:35 AM, 11/25/2024	
lowsheet:	Triazine				Status: S	olved 9:10 AM, 12/10/	/2024
		Tabula	ted Comp	osition Subset P	roperties		
		Selected Components					
Index							
Ethylbenzene)	True					
o-Xylene		True					
Triazine, MEA	\	True					
Piperazine		True	•				
				ils Properties			
Vapor Space Volur	ne	1145.11		Roof Outage		0.125	
Vapor Density		0.0527739		Tank Roof H		0.375	
Vapor Space Expa	nsion	1	1/day	Tank Shell R	adius	6	ft
Factor Vented Vapor Satu	ration	0.130471		Vapor Molec	ular Maiaht	24.1899	lb/lbmol
Factor	nauun	0.130471		vapor wolec	ular vvelgrit	24.1899	וטווזעוקעו
Vapor Space Outa	ne	10.125	ft	Average Van	or Temperature	530.456	°R
Average Daily Vap		34.4184		Average Dail	v Ambient	523.72	°R
Temperature Rang		0104		Temperature		020.72	
Average Daily Vap		1.65681	psi	Net Working	Loss	394735	ft^3/yr
Pressure Range			•	Throughput			
Breather Vent Pres	sure	0.06	psi	Working Los		1	
Setting Range				(Saturation)			
Vapor Pressure at		12.4193	psia	Number of T	urnovers per	218.139	
Daily Liquid Surfac	е			Year			
Temperature	id Curfage	E00 000	°D	Annual Nat T	broughput	70242.6	hhl/ur
Average Daily Liqu Temperature	ld Surface	528.336	ĸ	Annual Net T	nrougnput	70312.6	DDI/yr
Average Daily Amb	nient	25.3	°R	Maximum Lic	wid Height	18	ft
Temperature Rang		20.0	IX I	Maximum Ex	uid Hoight	10	it.
Tank Roof Surface		0.49		Minimum Liq	uid Height	2	ft
Absorptance							
Tank Shell Surface	e Solar	0.49		Working Los	s Product Factor	0.75	
Absorptance							
Vapor Pressure at		13.26	psia	Vent Setting	Correction	1	
Liquid Surface Ten	nperature			Factor		• -	
Vapor Pressure at		11.6032	psia	Saturation Fa	actor	0.5	
Liquid Surface Ten Maximum Liquid S		536.941	°D	Vanar Drass	uro of Liquid	0.077600	ncia
Temperature	unace	530.941	К	Vapor Press Loaded		0.877606	psia
Minimum Liquid Su	Irface	519.731	°R	Collection Ef	ficiency	70	%
Temperature		010.701	13	CONCOUNTER	lisionoy	10	,,,
Liquid Height		10	ft	Annual Net T	hroughput Per	70312.6	bbl/yr
				Tank			
			Load	ing Properties			
Cargo Carrier		Tank Truck or Rail		Truck Annua	Leak Test	None	
J		Tank Car		Passed			
Land Based Mode	of	Submerged Loading of		Overall Redu	ction Efficiency	0	%
Operation		a Clean Cargo Tank			-		
Control Efficiency		0	%				
			Resi	ults Properties			
Flashing Losses		0.897923			ses per Tank	0.0115921	ton/yr
Working Losses		0.0629321	ton/yr	Flashing Los	ses per Tank	0.897923	ton/yr
Standing Losses		0.0115921	ton/yr	Working and	Standing	0.0745242	ton/yr
<u> </u>				Losses	<u> </u>		<u> </u>
Loading Losses		0.00215012	ton/yr	Working and		0.0745242	ton/yr
Marking	Tort	0.0000001	tonk	Losses per T		0.00045040	tophin
Working Losses pe	eriank	0.0629321	ιon/yr	Loading Loss	ses per Tank	0.00215012	ion/yr

lient Name: ocation: owsheet:	Titan Treater # Triazine	stream Partners, LLC 2		Job: Modified: 7:35 AM,				
	Triazine			Wodified: 7:35 AM,	11/25/2024			
			Status: Solved 9:10 AM, 12/10/2024					
		Tat	ulated Results Propert	ies				
	Fla	shing Losses Mass Flows	Working Losses Mass Flows	Standing Losses Mass Flows	Loading Losses Mass Flows			
Index		ton/yr	ton/yr	ton/yr	ton/yr			
TEG		0	0	0				
Propane		0.632918	0.0414536	0.00763574				
Isobutane		0.0531724	0.00282155	0.000519728				
n-Butane		0.169772	0.0134052	0.00246924				
Isopentane		0.0158296	0.00105366	0.000194084				
n-Pentane i-Hexane		0.0170676	0.000621955	0.000114564				
Heptane		0.00048791	1.41169E-05					
Octane		0.00048791	1.41169E-05 0	<u>2.60032E-06</u>				
Nonane		0	0	0				
n-Decane		0	0	0				
n-Hexane		0	0	0				
Benzene		0.000346451	0.00014509	2.67255E-05	8.82344E-0			
Toluene					0.020446-0			
			0					
	e	0	0 0.0028349	0				
Ethylbenzer	e	0 0.00691222	0.0028349	0 0.000522187	0.0017072			
Ethylbenzer o-Xylene		0 0.00691222 0.00141708	0.0028349 0.000581946	0 0.000522187 0.000107194	0.0017072 0.0003546			
Ethylbenzer		0 0.00691222	0.0028349	0 0.000522187	0.0017072 0.0003546 5.63406E-1 3.3999E-1			
Ethylbenzer o-Xylene Triazine, ME		0 0.00691222 0.00141708 7.94783E-14	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME	A Wo	0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 orking and Standing	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine	A Wo	0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 orking and Standing osses Mass Flows	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index	A Wo	0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 orking and Standing osses Mass Flows ton/yr	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG	A Wo	0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 orking and Standing osses Mass Flows ton/yr 0	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG Propane	A Wo	0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 orking and Standing osses Mass Flows ton/yr 0 0.0490894	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG Propane Isobutane	A Wo	0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 orking and Standing osses Mass Flows ton/yr 0 0.0490894 0.00334128	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG Propane Isobutane n-Butane		0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 orking and Standing osses Mass Flows ton/yr 0 0.0490894 0.00334128 0.0158745	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG Propane Isobutane n-Butane		0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 orking and Standing osses Mass Flows ton/yr 0 0.0490894 0.00334128 0.0158745 0.00124775	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG Propane Isobutane n-Butane Isopentane		0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 orking and Standing osses Mass Flows ton/yr 0 0.0490894 0.00334128 0.0158745 0.00124775 0.000736518	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane		0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 0 0 0 0 0 0.0490894 0.00334128 0.0158745 0.00124775 0.000736518 0 0	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane Heptane		0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 0 0 0 0 0 0.0490894 0.00334128 0.0158745 0.00124775 0.000736518 0 1.67172E-05	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG Propane Isobutane n-Butane Isopentane i-Hexane Heptane Octane		0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 0 0 0 0 0 0.0490894 0.00334128 0.0158745 0.00124775 0.000736518 0 0	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG Propane Isobutane n-Butane n-Butane i-Hexane Heptane Octane Nonane		0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 0 0 0 0 0 0.0490894 0.00334128 0.0158745 0.00124775 0.000736518 0 1.67172E-05 0	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG Propane Isobutane n-Butane n-Butane Isopentane i-Hexane Heptane Octane Nonane n-Decane		0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 0 0 0 0 0.0490894 0.00334128 0.0158745 0.00124775 0.000736518 0 1.67172E-05 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG Propane Isobutane n-Butane Isopentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane		0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 0 0 0 0.0490894 0.00334128 0.0158745 0.00124775 0.000736518 0 1.67172E-05 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG Propane Isobutane n-Butane n-Butane Isopentane i-Hexane Heptane Octane Nonane n-Decane		0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 0 0 0 0 0.0490894 0.00334128 0.0158745 0.00124775 0.00124775 0.00124775 0.000736518 0 1.67172E-05 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG Propane Isobutane n-Butane Isopentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane Benzene		0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 0 0 0 0.0490894 0.00334128 0.0158745 0.00124775 0.000736518 0 1.67172E-05 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG Propane Isobutane n-Butane Isopentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane Enzene Toluene		0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 0 0 0 0.0490894 0.00334128 0.0158745 0.00124775 0.000736518 0 1.67172E-05 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			
Ethylbenzer o-Xylene Triazine, ME Piperazine Index TEG Propane Isobutane n-Butane Isopentane i-Hexane Heptane Octane Nonane n-Decane n-Hexane Benzene Toluene Ethylbenzer	A Voc	0 0.00691222 0.00141708 7.94783E-14 2.03952E-10 0 0 0 0 0.0490894 0.00334128 0.0158745 0.00124775 0.000736518 0 1.67172E-05 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0028349 0.000581946 1.21042E-14	0 0.000522187 0.000107194 2.22959E-15	0.0017072 0.0003546 5.63406E-1			

Inlet Gas Analysis

Certificate of Analysis

Number: 5030-23070671-001A

Station Name:MTDR UNCLE RICHARD Sample Point: SEP Cylinder No: 5030-00259 Analyzed: 08/02/2023 10:23:42 by CDW

	Aug. 1	6, 2023
Sampled By:	JOSUE J	
Sample Of:		Spot
Sample Date:	07/25/2023	3 09:50
Sample Conditions:	95 psig, @	112 °F
Method:	GPA 2286	

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Hydrogen Sulfide	0.000	0.000		GPM TOTAL C2+	8.639	
Nitrogen	1.843	2.078		GPM TOTAL C3+	4.792	
Methane	66.415	42.874		GPM TOTAL iC5+	1.153	
Carbon Dioxide	1.858	3.291				
Ethane	14.316	17.322	3.847			
Propane	8.508	15.097	2.355			
lso-butane	1.121	2.622	0.369			
n-Butane	2.888	6.755	0.915			
Iso-pentane	0.810	2.352	0.298			
n-Pentane	0.781	2.268	0.285			
Hexanes Plus	1.460	5.341	0.570			
	100.000	100.000	8.639			
Calculated Physica	al Properties		Total	C6+		
Relative Density Re	al Gas		0.8618	3.1263		
Calculated Molecula	r Weight		24.85	90.54		
Compressibility Fact	or		0.9950			
GPA 2172 Calculat	ion:					
Calculated Gross E	BTU per ft ³ @	2 14.73 psi	a & 60°F			
Real Gas Dry BTU	-	-	1413	4821		
Water Sat. Gas Bas	e BTU		1389	4737		
Comments: H2S F		0.8 ppm	1389	4131		

Data reviewed by: Raymond Bradford, Laboratory Manager The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Quality Assurance:

Certificate of Analysis

Number: 5030-23070671-001A

Station Name:MTDR UNCLE RICHARD Sample Point: SEP Cylinder No: 5030-00259 Analyzed: 08/02/2023 10:23:42 by CDW

	Aug. 1	6, 2023
Sampled By:	JOSUE J	
Sample Of:	Gas	Spot
Sample Date:	07/25/2023	3 09:50
Sample Conditions:	95 psig, @	112 °F
Method:	GPA 2286	

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Hydrogen Sulfide	0.000	0.000		GPM TOTAL C2+	8.6390	
Nitrogen	1.843	2.078		GPM TOTAL C3+	4.7920	
Methane	66.415	42.874		GPM TOTAL iC5+	1.1530	
Carbon Dioxide	1.858	3.291				
Ethane	14.316	17.322	3.847			
Propane	8.508	15.097	2.355			
Iso-Butane	1.121	2.622	0.369			
n-Butane	2.888	6.755	0.915			
Iso-Pentane	0.810	2.352	0.298			
n-Pentane	0.781	2.268	0.285			
Hexanes	0.543	1.838	0.217			
Heptanes Plus	0.917	3.503	0.353			
	100.000	100.000	8.639			
Calculated Physica	I Properties		Total	C7+		
Relative Density Rea	al Gas		0.8618	3.2365		
Calculated Molecula	r Weight		24.85	93.74		
Compressibility Fact	or		0.9950			
GPA 2172 Calculat	ion:					
Calculated Gross E	BTU per ft ³ @	2 14.73 psia	a & 60°F			
Real Gas Dry BTU			1413.1	4895.0		
Water Sat. Gas Bas	e BTU		1388.5	4821.0		
Comments: H2S F	ield Content	0.8 ppm				

Data reviewed by: Raymond Bradford, Laboratory Manager The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Quality Assurance:

Certificate of Analysis

Number: 5030-23070671-001A

Station Name:MTDR UNCLE RICHARD Sample Point: SEP Cylinder No: 5030-00259 Analyzed: 08/02/2023 10:23:42 by CDW

	Aug. 1	6, 2023
Sampled By:	JOSUE J	
Sample Of:	Gas	Spot
Sample Date:	07/25/2023	3 09:50
Sample Conditions	:95 psig, @	2 112 °F
Method:	GPA 2286	

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Hydrogen Sulfide	0.000	0.000		GPM TOTAL C2+	8.639	
Nitrogen	1.843	2.078				
Methane	66.415	42.874				
Carbon Dioxide	1.858	3.291				
Ethane	14.316	17.322	3.847			
Propane	8.508	15.097	2.355			
Iso-Butane	1.121	2.622	0.369			
n-Butane	2.888	6.755	0.915			
Iso-Pentane	0.810	2.352	0.298			
n-Pentane	0.781	2.268	0.285			
i-Hexanes	0.348	1.167	0.138			
n-Hexane	0.195	0.671	0.079			
Benzene	0.152	0.477	0.042			
Cyclohexane	0.143	0.479	0.048			
i-Heptanes	0.224	0.838	0.090			
n-Heptane	0.056	0.227	0.026			
Toluene	0.102	0.375	0.034			
i-Octanes	0.147	0.625	0.066			
n-Octane	0.019	0.088	0.010			
Ethylbenzene	0.013	0.056	0.005			
Xylenes	0.021	0.086	0.008			
i-Nonanes	0.026	0.147	0.015			
n-Nonane	0.005	0.027	0.003			
Decane Plus	0.009	0.078	0.006			
	100.000	100.000	8.639			
Calculated Physica Relative Density Rea			Total 0.8618	C10+ 4.3506		
Calculated Molecula			24.85	126.01		
Compressibility Fact			0.9950	120.01		
GPA 2172 Calculati			0.3300			
Calculated Gross E) 14 73 nei	a & 60°F			
Real Gas Dry BTU	no per ite d	s 14.75 hai	1413.1	6597.0		
Water Sat. Gas Bas	□ BTU		1388.5	6449.9		
Water Oat. Oas Das			1000.0	0.0		

Data reviewed by: Raymond Bradford, Laboratory Manager The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality

Quality Assurance:

assurance, unless otherwise stated.

Heater Specifications

PURCHASER / OWNER: AZOTA / NORTHWIND MIDSTREAM ITEM NO: HT-49200/59200 **HOH-1 & HOH-2** SERVICE: HOT OIL HEATER LOCATION: JAL, NEW MEXICO UNIT: NUMBER REQUIRED: REV 2 OPTIMIZED PROCESS FURNACES, INC MANUFACTURER: REFERENCE: 2024-025-1 REV 2 TYPE OF HEATER: VERTICAL CYLINDRICAL, NATURAL DRAFT TOTAL HEATER ABSORBED DUTY, MM Btu/hr. **PROCESS DESIGN CONDITIONS** OPERATING CASE RATED NORMAL HEATER SECTION RAD + CONV RAD + CONV 8 SERVICE HOT OIL HOT OIL 9 HEAT ABSORPTION, MM Btu/hr 100.00 93 50 10 FLUID **CEMTHERM 550 CEMTHERM 550** FLOW RATE, Lb/hr. 2,238,220 2,088,000 11 12 FLOW RATE, B.P.D PRESSURE DROP, ALLOWABLE (CLEAN / FOULED), Psi. 30 13 PRESSURE DROP, CALCULATED (CLEAN / FOULED), Psi 30 25 14 AVG. RAD. SECT. FLUX DENSITY, ALLOWABLE, Btu/hr-ft 15 AVG. RAD. SECT. FLUX DENSITY, CALCULATED, Btu/hr-ft² 11.730 16 12.380 MAX. RAD. SECT. FLUX DENSITY, Btu/hr-ft² 17 22,130 20,960 CONV. SECT. FLUX DENSITY, (BARE TUBE), Btu/hr-ft2. 17,650 16,070 18 19 VELOCITY LIMITATION, ft/s. PROCESS FLUID MASS VELOCITY, Lb/sec-ft2 20 620 578 MAXIMUM ALLOW. / CALC. INSIDE FILM TEMPERATURE, °F 625 488 625 483 FOULING FACTOR, hr-ft2-°F/Btu. 0.002 0.002 COKING ALLOWANCE, in 2 **INLET CONDITIONS** 2 TEMPERATURE, °F 325 325 PRESSURE, (Psig) 95 90 26 LIQUID FLOW 1 b/hr 2 238 220 2 088 000 27 VAPOR FLOW, Lb/hr DENSITY (LIQUID / VAPOR), Lb/ft³ 50.4 50.4 29 30 VAPOR MOLECULAR WEIGHT VISCOSITY, (LIQUID / VAPOR), cP 1.327 1.327 SPECIFIC HEAT, (LIQUID / VAPOR), Btu/Lb-°F 0.579 0.579 THERMAL CONDUCTIVITY, (LIQUID / VAPOR), Btu/hr-ft-°F 0.0706 0.0706 31 OUTLET CONDITIONS TEMPERATURE, °F 400 400 PRESSURE, (Psig) 65 65 36 2.088.000 37 LIQUID FLOW, Lb/hr 2.238.220 VAPOR FLOW, Lb/hr 38 DENSITY (LIQUID / VAPOR), Lb/ft3 39 48.8 48.8 40 VAPOR MOLECULAR WEIGHT VISCOSITY, (LIQUID / VAPOR), cP. 41 0.921 0.921 42 SPECIFIC HEAT, (LIQUID / VAPOR), Btu/Lb-°F. 0.615 0.615 THERMAL CONDUCTIVITY, (LIQUID / VAPOR), Btu/hr-ft-°F 43 0.0653 0.0653 REMARKS AND SPECIAL REQUIREMENTS: 4 45 DISTILLATION DATA OR FEED COMPOSITION SHORT TERM OPERATING CONDITIONS: 46 47 48 NOTES: 49 50 51 52 53 54 55 56 57 58 CUSTOMARY UNITS FIRED HEATER DATA SHEET RE∖ PROJECT NUMBER DOCUMENT NUMBER SHEET **API STD 560** 1 OF 6 2

COMBUSTION DESIGN CONDITIONS OPERATING CASE RATED REV NORMAI 2 TYPE OF FUEL NATURAL GAS NATURAL GAS 3 EXCESS AIR. % 15 15 4 CALCULATED HEAT RELEASE (LHV), MM Btu/hr 117.71 109.20 5 FUEL EFFICIENCY CALCULATED, % (LHV) 85 85.5 6 FUEL EFFICIENCY GUARANTEED, % (LHV) 84 7 RADIATION LOSS, PERCENT OF HEAT RELEASE (LHV) 1.5 1.5 8 FLUE GAS TEMPERATURE LEAVING: 1619 RADIANT SECTION, °F 1657 9 CONVECTION SECTION, °F 550 571 10 AIR PREHEATER. °F 11 FLUE GAS QUANTITY, Lb/hr. 114,304 106,020 12 FLUE GAS MASS VELOCITY THRU CONV. SECTION, Lb/sec-ft². 0.43 0.04 13 DRAFT: AT ARCH, in-H₂O. 0.10 0.10 14 AT BURNERS, in-H₂O. 0.49 0.49 15 AMBIENT AIR TEMPERATURE, EFFICIENCY CALCULATION, °F. 60 60 AMBIENT AIR TEMPERATURE, STACK DESIGN, °F. 16 90 90 ALTITUDE ABOVE SEA LEVEL, ft. 2900 (13.22 psia) 2900 (13.22 psia) 17 VOLUMETRIC HEAT RELEASE (LHV), Btu/hr-ft³ 18 6839 6344 FUEL CHARACTERISTICS 19 20 LIQUID TYPE GAS TYPE NATURAL GAS OTHER TYPE 21 * LHV Btu/(Lb) (Scf) LHV LHV Btu/(Lb) (Scf 22 * HHV, Btu/(Lb) (Scf). HHV, Btu/Lb ' HHV, Btu/(Lb) (Scf) 20 Psig. * PRESS. @ BURNER PRESS. @ BURNER, PRESS. @ BURNER, 23 Psig Psic °F 24 TEMP. @ BURNER 80 °F. TEMP. @ BURNER, °F TEMP. @ BURNER MOLECULAR WEIGHT VISCOSITY @ SSU MOLECULAR WEIGHT 25 26 ATOMIZING STEAM TEM * COMPOSITION MOLE % COMPOSITION ATOMIZING STEAM PRE Psig 27 MOLE % 28 NITROGEN 2.6557 COMPOSITION WT% CO2 0.013 29 30 H2S 0 31 METHANE 89.965 32 ETHANE 5.8188 33 PROPANE 1.3558 i-BUTANE /n-BUTANE 0.0678 / 0.0948 VANADIUM (PPM) 34 35 i-PENTANE / n-PENTANE 0.0048 / 0.0036 SODIUM (PPM) HEXANE 0.0207 SULFUR 36 37 ASH BURNER DATA: 38 MANUFACTURER: 39 SIZE / MODEL: NUMBER: 8 40 2 TYPE ULTRA LOW NOx LOCATION: FLOOR ORIENTATION VERTICAL MINIMUM: 4.05 41 BURNER DESIGN: 16.19 HEATER DESIGN: 14.71 HEAT RELEASE PER BURNER, MM Btu/hr 42 PRESSURE DROP ACROSS BURNER @ DESIGN HEAT RELEASE, in H₂0: 0.49 43 DISTANCE BURNER CENTER LINE TO TUBE CENTER LINE, ft. VERTICAL: 46.15 HORIZONTAL: 6.21 DISTANCE BURNER CENTER LINE TO UNSHIELDED REFRACTORY, ft. 44 VERTICAL: 44.15 HORIZONTAL CAPACITY, BTU / HR: 90,000 45 PILOT, TYPE GAS GINITION METHOD: MANUAL 46 47 * FLAME SCANNERS, LOCATION: NONE SCANNER QUANTITY: 0 48 REQUIRED EMISSIONS: ppmv(d) (CORRECTED TO 3% 02) NOx: NOTE 1 CO: NOTE 2 SOx: 2 49 Lb/ MM Btu (LHV) (HHV) UHC PARTICULATES 50 NOTES 51 NOx Emissions: 30 ppm // 0.036 lb/MMBtu (HHV) (Dry, corrected to 3% O2) when operating 60%-100% of Burner Design Heat Release 2 52 2 . CO Emissions: 20 ppm // 0.015 lb/MMBtu (HHV) (Dry, corrected to 3% O2) when firebox > 1200°F 2 53 Pollutant emissions are guaranteed in the following conditions: - Single Burner HR is in the range 60% - 100% of Max Burner HR 54 55 56 57 58 59 60 CUSTOMARY UNITS **FIRED HEATER DATA SHEET** PROJECT NUMBER DOCUMENT NUMBER SHEET RE\ **API STD 560** 2 OF 6 2

OPTIMIZED PROCESS FURNACES, INC. PROPOSAL NO 2024-025-1 REV 2 12/17/2024

MECHANICAL DESIGN CONDITIONS

	MECHANICAL D	DESIGN CO	NDITIONS				
1	* PLOT LIMITATIONS:	* STA	ACK LIMITATIONS	:			REV
2	* TUBE LIMITATIONS:		* NOISE LIMITATIONS:				
3	* STRUCTURAL DESIGN DATA: WIND VELOCITY: 112 MPH		*WIND OCCURRENCE: ASCE CAT III				
4	SNOW LOAD:		SMIC ZONE:		ASCE CAT A, CL	ASS D	
5	* MIN./ NORMAL / MAX. AMBIENT AIR TEMPERATURE, °F: 0 / 60 / 110	* REL	LATIVE HUMIDITY	, %:	60	-	
6	HEATER SECTION:	RADIANT	SH	OCK	CONVECTION	CONVECTION	
7	SERVICE:	HOT OIL	HO	T OIL	HOT OIL	HOT OIL	
8	COIL DESIGN:						
9	* DESIGN BASIS: TUBE WALL THICKNESS (CODE OR SPECIFICATION):		۵	PI RP 530 / 4	SME SECT VIII		
10	RUPTURE STRENGTH (MINIMUM OR AVERAGE):	MINIMUM	1	IMUM	MINIMUM	MINIMUM	
11	*DESIGN LIFE, hr.	100,000		0,000	100,000	100000	
12	* DESIGN PRESSURE, ELASTIC / RUPTURE, Psig.	150	- 150	-	150 -	150 -	-
12	* DESIGN FLUID TEMPERATURE, °F.	650		50	650	650	
14	* TEMPERATURE ALLOWANCE, °F.	25		25	25	25	-
15	* CORROSION ALLOWANCE, TUBES / FITTINGS, in.	0.0625	- 0.0625	-	0.0625 -	0.0625 -	-
16	HYDROSTATIC TEST PRESSURE, Psig.	PER CODE		CODE	PER CODE	PER CODE	
10	* POST WELD HEAT TREATMENT (YES or NO)	NO		10	NO	NO	-
-		10		0	10	10	-
18 19	* PERCENT OF WELDS FULLY RADIOGRAPHED MAXIMUM (CLEAN) TUBE METAL TEMPERATURE, °F.	531		52	632	547	
	DESIGN TUBE METAL TEMPERATURE, °F.					1	-
20 21		657 376		57 53	657 363	657 351	
	INSIDE FILM COEFFICIENT, Btu/hr-ff-°F.	3/0	3		303	331	
22	COIL ARRANGEMENT:					-	
23	TUBE ORIENTATION: VERTICAL or HORIZONTAL	VERTICAL	. HORIZ	ZONTAL	HORIZONTAL	HORIZONTAL	
24	* TUBE MATERIAL (ASTM SPECIFICATION AND GRADE)	SA106 GR E	B SA10	6 GR B	SA106 GR B	SA106 GR B	
25	TUBE OUTSIDE DIAMETER, in.	6.625	6.0	625	6.625	6.625	
26	TUBE WALL THICKNESS, (AVERAGE), in.	SCH 40	SC	H 40	SCH 40	SCH 40	
27	NUMBER OF FLOW PASSES	5		5	5	5	
28	NUMBER OF TUBES / NUMBER OF TUBE ROWS	65	- 20	2	10 1	40 4	
29	NUMBER OF TUBES PER ROW (CONVECTION SECTION)	-		10	10	10	
30	OVERALL TUBE LENGTH, ft.	10 x 40.95', 55 x	41.45' 19	9.90	19.90	19.90	
31	EFFECTIVE TUBE LENGTH, ft.	43.00		3.67	18.67	18.67	
32	BARE TUBES: NUMBER	65		20	-	-	
33	TOTAL EXPOSED SURFACE, ft	4847		47	-	-	
34	EXTENDED SURFACE TUBES: NUMBER	-		-	10	40	
35	TOTAL EXPOSED SURFACE, ² t	_		-	3675	16616	
36	TUBES LAYOUT (INLINE or STAGGERED)	INLINE	STAG	GERED	STAGGERED	STAGGERED	
37	TUBE SPACING, CENT. TO CENT.: HORIZONTAL, in.	10 x 18", 55 x		2	12	12	
38	DIAGONAL, in.	-		2	12	12	
39	VERTICAL, in.			0.4	10.4	10.4	
40	SPACING TUBE CENT. TO FURNACE WALL, in.	9		6	6	6	
41	CORBELS (YES or NO)	NO		0 1ST ROW	YES	YES	
41	CORBEL WIDTH, in.	UNI		6	6	6	1
		-	1	•	0	U	-
	DESCRIPTION OF EXTENDED SURFACE:	1			1	T	
44	TYPE: (STUDS) (SERRATED FINS) (SOLID FINS)				SERRATED	SERRATED	_
45	MATERIAL				CS	CS	
46	DIMENSIONS: HEIGHT, in.	_			0.875	1	_
47	THICKNESS, in.	1			0.06	0.06	4
48	SPACING (No. / in.)	1			5	5	_
49	MAXIMUM TIP TEMPERATURE, (CALCULATED), °F.	1			816	700	
50	EXTENSION RATIO (TOTAL AREA / BARE AREA)				11.35	12.83	
51	PLUG TYPE HEADERS: NONE						I
52	* TYPE						1
53	* MATERIAL (ASTM SPECIFICATION AND GRADE)						1
54	NOMINAL RATING						1
55	* LOCATION (ONE OR BOTH ENDS)						1
	WELDED OR ROLLED JOINT						+
56	NOTEO.						
56 57	NOTES:						
56 57 58	NOTES:						_
56 57 58 59	NOTES:						
56 57 58	NOTES:						
56 57 58 59				CUSTO	MARY UNITS		
56 57 58 59	NOTES: FIRED HEATER DATA SHEET API STD 560	PROJECT	T NUMBER	1	MARY UNITS	SHEET	REV

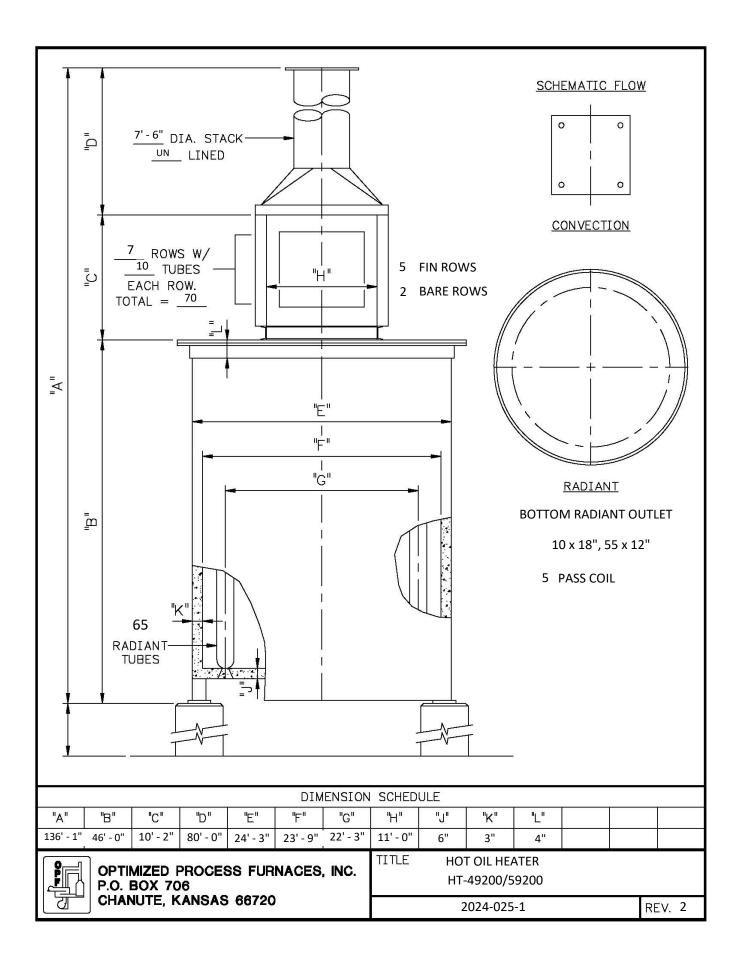
OPTIMIZED PROCESS FURNACES, INC. PROPOSAL NO 2024-025-1 REV 2 12/17/2024

	AL DESIGN COND	ITIONS (Cont'o	d)(b	
1 HEATER SECTION	RADIANT	SHOCK	CONVECTION	RI
2 SERVICE	HOT OIL	HOT OIL	HOT OIL	
3 RETURN BENDS:				
4 TYPE	U-BEND	U-BEND	U-BEND	
5 MATERIAL (ASTM SPECIFICATION AND GRADE)	SA234 WPB	SA234 WPB	SA234 WPB	
6 NOMINAL RATING OR SCHEDULE	SCH 40	SCH 40	SCH 40	
7 LOCATION (F.B.:=FIREBOX, H.B.:=HEADER BOX)	FB	HB	HB	
8 TERMINALS / MANIFOLDS:				
9 TYPE (BEV .:= BEVELED, MAN .= MANIFOLD, FLG= FLANGED	FLG		MAN	
0 INLET: MATERIAL (ASTM SPECIFICATION AND GRADE)			SA106 GR B	
1 SIZE			16 NPS	
2 SCHEDULE OR THICKNESS			STD	
3 NUMBER OF TERMINALS			1	
4 FLANGE MATERIAL (ASTM SPEC. AND GRADE)			SA105	
5 FLANGE SIZE AND RATING			300#	
6 OUTLET: MATERIAL (ASTM SPECIFICATION AND GRADE)	SA106 GR B			
7 SIZE	6			
8 SCHEDULE OR THICKNESS	SCH 40			
9 NUMBER OF TERMINALS	5			
0 FLANGE MATERIAL (ASTM SPEC. AND GRADE)	SA105			
1 FLANGE SIZE AND RATING	300# OUTLET MANIFOLD		WELDED	
2 MANIFOLD TO TUBE CONN. (WELDED, EXTRUDED, ETC.)	BY OTHERS		WELDED EXTERNAL	_
MANIFOLD LOCATION (INSIDE OR OUTSIDE HEADER BOX) CROSSOVERS:	BY OTHERS		EXTERNAL	
5 WELDED OR FLANGED		WELDED		
6 PIPE MATERIAL (ASTM SPECIFICATION AND GRADE)		SA106 GR B		
7 PIPE SIZE		6		
8 PIPE SCHEDULE OR THICKNESS		SCH 40		
9 FLANGE MATERIAL		-		
0 FLANGE SIZE / RATING				
LOCATION (INTERNAL / EXTERNAL) FLUID TEMPERATURE, °F.		EXTERNAL 355		
		300		
3 TUBE SUPPORTS:				
4 LOCATION (ENDS, TOP, BOTTOM)	TOP	ENDS	ENDS	
5 MATERIAL (ASTM SPECIFICATION AND GRADE)	HK40	A36	A36	
6 DESIGN METAL TEMPERATURE, °F.				
7 THICKNESS, IN.		3/8	3/8	
8 INSULATION: THICKNESS, in. 9 MATERIAL		4	4	
9 MATERIAL 0 ANCHOR (MATERIAL AND TYPE)		REFRACTORY 304SS V-ANCHORS	REFRACTORY 304SS V-ANCHORS	_
		30433 V-ANCHURS	30433 V-ANCHORS	
			I	
2 MATERIAL (ASTM SPECIFICATION AND GRADE)				
3 DESIGN METAL TEMPERATURE, °F.				
4 THICKNESS, IN.				
5 SPACING, ft.				
7 LOCATION	BOTTOM			
8 MATERIAL	310SS			
9 TYPE / SPACING				
1 LOCATION: CONVECTION ENDS		HINGED DOOR / BOLTER	PANEL: BOLTED	
2 CASING MATERIAL: A36		THICKNESS, in.	3/16	
3 LINING MATERIAL: 8# CERAMIC FIBER BLANKET		THICKNESS, in.	1	
4 ANCHOR (MATERIAL AND TYPE): 304 SS PINS & CLIPS				
5 NOTES:				
6				
7				
8				
9				
0				L
			MARY UNITS	

PROJECT NUMBER	DOCUMENT NUMBER	

REV

2



MECHANICAL DESIGN CONDITIONS (Cont'd) REFRACTORY DESIGN BASIS: REV AMBIENT, °F: 80 WIND VELOCITY, mph: 200 2 CASING TEMP., °F 0 EXPOSED VERTICAL WALLS: 3 4 LINING THICKNESS, in.: HOT FACE TEMPERATURE, SERVICE, °F: 2300 CALCULATED, °F: 5 WALL CONSTRUCTION: 6 7 ANCHOR (MATERIAL & TYPE): 8 CASING MATERIAL THICKNESS. in .: TEMPERATURE. °F SHIELDED VERTICAL WALLS: 9 LINING THICKNESS, in: HOT FACE TEMPERATURE, SERVICE, °F: 2300 CALCULATED, °F: 1076 10 ٦ 11 WALL CONSTRUCTION: 1 8# Ceramic Fiber Blanket 12 2 6# Ceramic Fiber Blanket ANCHOR (MATERIAL & TYPE): 304 SS Pins & Clips 13 CASING MATERIAL A36 TEMPERATURE, °F: 14 THICKNESS, in. 1/4 <200 ARCH: 15 16 LINING THICKNESS, in. : 4 HOT FACE TEMPERATURE, SERVICE, °F: 2300 CALCULATED, °F: 1657 17 WALL CONSTRUCTION: 2 8# Ceramic Fiber Blanket 18 2 6# Ceramic Fiber Blanket 19 ANCHOR (MATERIAL & TYPE): 310 SS Pins & Clips 20 CASING MATERIAL: A36 THICKNESS, in. : TEMPERATURE, °F: <200 1/4 FLOOR: 21 LINING THICKNESS, in. CALCULATED, °F: 1457 22 6 HOT FACE TEMPERATURE, SERVICE, °F: 2300 FLOOR CONSTRUCTION: 6 Kaolite 2300 LI 23 24 CASING MATERIAL: 25 A36 ELEVATION ABOVE GRADE, ft: THICKNESS, in. : TEMPERATURE, °F: 200 (1) 26 10 1/4 **CONVECTION SECTION:** 27 CALCULATED, °F: 1114 28 LINING THICKNESS, in, : HOT FACE TEMPERATURE, SERVICE, °F: 2300 3 WALL CONSTRUCTION: 29 1 8# Ceramic Fiber Blanket 30 2 6# Ceramic Fiber Blanket 31 ANCHOR (MATERIAL & TYPE): 304 SS Pins & Clips (310 SS to Shock Rows) CASING MATERIAL: THICKNESS, in. : TEMPERATURE, °F. 32 A36 3/16 <200 INTERNAL WALL: 33 MATERIAL 34 TYPE 35 DIMENSION, HEIGHT / WIDTH, ft.: COMBUSTION AIR DUCTS: **FLUE GAS** 36 LOCATION CONV BREECHING TRANSITION 37 SIZE, ft. OR NET FREE AREA, ft² 38 CASING MATERIAL 39 A36 A36 40 CASING THICKNESS, in. 3/16 1/4 INTERNAL 41 LINING: INTERNAL / EXTERNAL 42 THICKNESS, in 43 MATERIAL 8# CFB 44 ANCHOR (MATERIAL & TYPE) CS Pins & Clips CASING TEMPERATURE, °F. 45 <200 PLENUM CHAMBER (AIR): 46 47 TYPE OF PLENUM (COMMON OR INTEGRAL): 48 CASING MATERIAL: THICKNESS, in. : SIZE, ft. : LINING MATERIAL: THICKNESS, in. : 49 50 ANCHOR (MATERIAL & TYPE): 51 NOTES: 52 1. Measured at the burner face. 54 55 56 57 58 59 60 CUSTOMARY UNITS FIRED HEATER DATA SHEET REV PROJECT NUMBER DOCUMENT NUMBER SHEET API STD 560 5 OF 6 2

MECHANICAL DESIGN CONDITIONS (Continued)

ID #BURNERS 3 ft 4 ft LADDER ØRDER 20 CONVECTON PLATFORM 1 3 ft 8 ft LADDER PLATED 21 FLACK DAMER PLATFORM 1 3 ft 3 ft 1 ADDER PLATED 22 FLACK DAMER PLATFORM 1 3 ft 1 STACK DAMER PLATFORM 1 3 ft 1 ADDER PLATED 21 Image: Platform 1 3 ft 1 STACK DAMER PLATFORM PLATED 21 Image: Platform 1 3 ft 1 ADDER PLATED 23 Image: Platform NUMBER LOCATION SIZE BOL 24 Image: Platform 1 ADDER Image: Platform SIZE BOL 24 Image: Platform 1 Relation floor 24 * 24 * Belded Bolded		N	IECHANICAL	DESIGN	CONDITIONS	(Continued)			
S APP COMPARIANCE NA COMPARIANCE NA MAN	1	STACK OR STACK STUB:							REV
Image: Distance Market Dowelling H. B. (P. P.) STACE LEMPICH. P. P. (P. C.) Image:	2	NUMBER: 1	SELF	-SUPPORTED OF	R GUYED:	SELF-SUPPORTED	LOCATION: TOP OF CO	ONVECTION	
s International matrix THORESS, In: 0 A MODER AND TAPE: INTERNAL OF EXTERNAL INTERNAL OF EXTERNAL S EXTERNAL NOT TREE: STACA STACA DEMONECTION INTERNAL OF EXTERNAL STACA INTERNAL OF EXTERNAL DEMONECTION TARE OF EXTERNAL STACA INTERNAL OF EXTERNAL DEMONECTION ENDET OF INTERNAL OF EXTERNAL STACA INTERNAL OF EXTERNAL INTERNAL OF EXTERNAL DEMONECTION ENDET OF EXTERNAL CONTECOL CONTECOL INTERNAL OF EXTERNAL INTERNAL OF EXTERNAL DEMONECTION ENDERTING INMUNUL, OR ANTOMINIC CONTECOL OR INTERNAL OF EXTERNAL INTERNAL OF EXTERNAL INTERNAL OF EXTERNAL DEMONECTION ENDERTING INMUL, OR ANTOMINIC INTERNAL OF EXTERNAL INTERNAL OF EXTERNAL INTERNAL OF EXTERNAL DEMONECTION ENDERTING INMUL, OR ANTOMINIC INTERNAL OF EXTERNAL INTERNAL OF EXTERNAL INTERNAL OF EXTERNAL INTERNAL OF EXTERNAL DEMONECTION ENDERTING INMUL, OR ANTOMINIC INTERNAL OF EXTERNAL INTERNAL OF EXTERNAL INTERNAL OF EXTERNAL DEMONECTION ENTERNAL INTERNAL OF EXTERNAL INTERNAL OF EXTERNAL INTERNAL OF EXTERNAL DEMONECTION ENTERNAL	3	CASING MATERIAL: A36	COR	ROSION ALLOWA	NCE, in. :	1/8	MIN THICKNESS, in. :	3/16	
8 PRICENCY ON PARSE . 2 PLIC AND PLIC PLACE NOT PLICE AND PLICE PLACE NOT PLICE AND PLICE PLACE NOT PLICE AND P	4	OUTSIDE METAL DIAMETER, ft. : 7' - 6"	ESTI	MATED HEIGHT A	ABOVE GRADE, ft. :	148	STACK LENGTH, ft. :	80' - 0"	
Internet of Landon Internet of Landon Internet of Landon 0 DAMPERS: 01	5	LINING MATERIAL: -					THICKNESS, in. :	0	
9 Deski Full GAS FULGOR/NUESE: 2 FULE GAS FLANDPRATURE, 'F; 9/1 1 Defter CONTRAL. TIGHT SHUTOPT, ETC.) 00ATROL 9 0 11 TOPE (CONTRAL. TIGHT SHUTOPT, ETC.) 00ATROL 00ATROL 0 12 MATERIX: 0.03 0 0 0 13 MATERIX: 0.03 0 0 0 14 MATERIX: 0.03 0 0 0 14 MATERIX: 0.03 0 0 0 15 RODORSON TOR CORL DATA MANUL OR AUTOMATIC) NUMBER NUMBER 0 0 16 DORSON TOR CORL DATA MANUL OR AUTOMATIC) NUMBER NUMBER 0 0 17 DORSON TOR CORL DATA MATOR 1 0 1 0 0 18 CONTON ON AUTOMANTIC) NUMBER 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6	ANCHOR (MATERIAL AND TYPE): -							
DAMPERS: 0 DAMPERS: 0 DOCTON. 0 DOCTON. 10 DECONTON. 11 TPPC (CONTON Train "surgery of the surgery of the	7	EXTENT OF LINING: -	INTE	RNAL OR EXTERI	NAL:	-			
0 DOARDN SHACK SHACK SHACK SHACK 11 TYPE CONTROL, TIGHT SHUT-PEC) CONTROL SHACK	8	DESIGN FLUE GAS VELOCITY, ft/sec. : 22	FLUE	E GAS TEMPERAT	URE, °F. :	571			
Image: CONTROL Control <thcontrol< th=""> <thcontrol< th=""> <thc< td=""><td>9</td><td>DAMPERS:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thc<></thcontrol<></thcontrol<>	9	DAMPERS:							
Image CONTROL Control <thcontro< th=""> <thcontro< th=""> <thcont< td=""><td>10</td><td>LOCATION:</td><td></td><td></td><td>STACK</td><td></td><td></td><td></td><td></td></thcont<></thcontro<></thcontro<>	10	LOCATION:			STACK				
Second Signation Signation <ths< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ths<>	-								
3 SAPAT 05 0 0 18 MAITTEC SURGILLAP International Surgitational Surgitatindinterational Surgitatindication	12	,							
M.M.THE./SNG.LLAF. MULTIPLE Interfect Interfect MULTIPLE Interfect Interfect 10 TYPE OF OPENATOR (CARLE OR PREJMANTIC) CARLE Interfect Interfe	-								
is MANUAL CABLE MANUAL MANUAL MANUAL MANUAL MANUAL CABLE Common Manual MANUAL MANUAL MANUAL MANUAL CABLE Common Manual MANUAL CABLE MANUAL PLATOR MANUAL CABLE MANUAL MANUAL MANUAL MANUAL CABLE MANUAL MA									
is The OF OPERATOR (CALLE OR NELLIANTIC) CALLE CALLE Is 17 PLATFOR MS: STARS / LADORR ACCONS STARS / LADORR ACCONS ACCONS / ACCOSS FI 18 ISCATION NUMBER 3.6 6.6 LADORR GRACE 19 ISCATION 1 3.6 6.6 ILCATOR PLATFOR 20 CONVECTION PLATFORM 1 3.6 1.00" LADDER PLATFOR 21 EAC CONNECTION PLATFORM 1 3.6 1.00" LADDER PLATFOR 22 CONNECTION PLATFORM 1 3.6 1.00" LADDER PLATFOR 23 TYPE INUMEER LOCATION SZE BOLTED 24 VEPC NUMEER LOCATION SZE BOLTED 24 VEPC NUMEER LOCATION SZE BOLTED 24 VEPC NUMEER LOCATION SZE BOLTED 24 VEPC REGRAMAL 1 REGRAMAL <td>_</td> <td></td> <td>TOMATIC)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_		TOMATIC)						
PLATFORMS: NUMBER WIDTH LENGTH STARE S/LADDER ACCESS T 18 LOCATION STARE S/LADDER NUMBER 3.1 4.1 LADDER ACCESS T 19 LOCATION STARE S/LADDER PLATFORM 1.50E 3.1 4.1 LADDER PLATFOR 20 CONNECTION PLATFORM 1.1 3.8 9.0 LADDER PLATFOR 21 CONNECTION PLATFORM 1.1 3.8 9.00 LADDER PLATFOR 21 CONNECTION PLATFORM 1.1 3.8 9.00 LADDER PLATFOR 22 CONNECTION PLATFORM 1.1 S.8 9.00 PLATFOR 23 TYPE OF FLOORING (GRATING LOCATION SIZE BOLTEDMIN 24 TYPE OF FLOORING (GRATING LOCATION SIZE BOLTEDMIN 24 TYPE OF FLOORING (GRATING LOCATION SIZE BOLTEDMIN 25 TYPE OF FLOORING (GRATING 1.10 ROURING 3.4 BOLTEDMIN 25 TYPE OF FLOORI			/						
Instrument NUMBER WUDTH LENGTH STARE / LADDER ACCESS FT IN REARTLUCE, PLATFORM INDURATES 3.1 4.1 LADDER GRADER CONVECTOR PLATFORM 1 3.8 8.1 LADDER PLATFOR STARE ALL DATE, DEVENDENT 1 3.8 8.1 LADDER PLATFOR STARE ALL DATE, DEVENDENT 1 3.8 2.0° LADDER PLATFOR STARE ALL DATE, DEVENDENT 1 3.8 2.0° LADDER PLATFOR STARE ALL DATE, DEVENDENT 1 3.8 2.0° LADDER PLATFOR STARE ALL DATE, DEVENDENT NUMBER LOCATION SIZE BOLTEDHING STARE ALL DATE, DEVENDENT 1 Readant Floor SIZE BOLTEDHING STARE ALL DATE, DEVENDENT 1 Readant Floor SIZE BOLTEDHING STARE ALL DATE, DEVENDENT 1 Readant Floor SIZE TYPE STARE ALL DATE, DEVENDENT 1 Readant Floor SIZE TYPE STARE ALL DATE,	_								
B B </td <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>	_								_
20 0.0000 FLATFORMS 1 SIDE 3 ft 9 ft ADDER PLATEOR 21 STACK DAMPER PLATFORM 1 3 ft 20'' LADDER PLATEOR 22 EAC CONNECIDIN PLATFORM 1 3 ft 10'' 3 ft 10'' LADDER PLATEOR 23 CATOR ON PLATFORM 1 3 ft 10'' 10''' LADDER PLATEOR 24 VPTE OF FLOORING: GRATING VENTEOR VENTEOR NUMBER LOCATION SIZE Bolted 26 CONSIS 1 Refain Floor 24' s 24' Bolted 26 CONSISTON 1 Refain Floor 24' s 24' Bolted 27 COURS 1 Refain Floor 24' s 24' Bolted 37 TUBE REMOVAL 1 Refain Floor 24' s 24' Bolted 38 INSEELLANEOUS: 1 Refain Floor 24' s 24' Bolted 39 TUBE REMOVAL 1 NUMBER S' 24' s 20''''''''''''''''''''''''''''''''''	-		 			-		ACCESS FROM	
1 3 ft 270° LADDER PLATOR 22 EACONNECTION PLATFORM 1 3 ft 180° LADDER PLATOR 22 EACONNECTION PLATFORM 1 3 ft 180° LADDER PLATOR 24 TYPE OF FLOORING, GRATING STZE BOATS BOATS BOATS 27 TYPE OF FLOORING, GRATING STZE BOATS BOATS BOATS 28 TYPE OF FLOORING, GRATING STZE BOATS BOATS BOATS 20 CCCESS 1 Radian Floori 24' + 24' Bolida 20 GCCESS ANTON STZE 1 Radian Floori 24' + 24' Bolida 20 GCCESS ANTON 1 Radian Floori 4' + 24' Bolida 20 GCCESS ANTON 1 Radian Floori 4' + 24' Bolida 20 GCCESS ANTON 1 Radian Floori 4' + 24' Bolida 20 GCCESS ANTON 1 Radian Floori 24' + 24' Bolida 20 GCCESS ANTON STEMERATURE NUMBER 5 1'1'D'A' 20 GCCESS ANTOLE 4 1'1'D'A' 30000 CP 20 GCCESS ANTOLE 2 <t< td=""><td>-</td><td></td><td> </td><td></td><td></td><td></td><td></td><td>GRADE</td><td></td></t<>	-		 					GRADE	
2 PA CONNECTION PLATFORM 1 3 ft 180° LADDER PLATFOR 23 IVPE OF FLOORING. GRATING IVE IVE IVE IVE 20 DOORS: IVE IVE IVE IVE IVE IVE 20 ACCESS 1 Radarf Floor 24° x 24° Bolied 20 OSERVATION 1 Oron Rod 24° x 24° Bolied 20 OSERVATION 1 Per burner Radarf Floor 4° DA 21 IVER REMOVAL 1 Problemer Radarf Floor 4° DA 23 UBE REMOVAL 1 Radarf Floor 4° DA 0 24 SCELLANEOUS: 1 Radarf Floor 4° DA 0 25 OMSUSTONAR: TEMPERATURE NUMBER 5 1'1/2' 0000 PC 26 OMSUSTONAR: TEMPERATURE 5 1'1/2' 0000 PC 36 ULC GAS SAMPLE 4 1'1/2' 0000 PC 37 ULE GAS SAMPLE 1 1'1/2' 0000 PC 37 ULE GAS SAMPLE 2 4' 1'10'FC 37 VERTS TRAI/PURG 2 2' 0000 PC 38 ULE	-				1	1		PLATFORM	
28 NUMBER LOCATION SIZE BOUTEDMIN 28 TYPE NUMBER LOCATION SIZE BOUTEDMIN 27 COESS 1 Radiant Roor 24* 24* Bolited 28 TYPE 1 Radiant Roor 24* 24* Bolited 29 GSERVATION 1 Part Auror Part Auror <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>PLATFORM</td><td>_</td></t<>	-							PLATFORM	_
24 TYPE OF FLOORING. GRATING 35 DOORS: 36 DOORS: 37 MUMBER LOCATION SIZE BOLTEDMIN 21 ACCESS 1 Radiant Floor 24" x 24" Bolded 36 1 Pretom Roid 24" x 24" Bolded 37 Hinged 0 24" x 24" Bolded 38 DESERVATION 1 per burner Radiant Slow Slow Slow Slow Slow Slow Slow Slow	-	EPA CONNECTION PLATFORM		1	3 ft	180°	LADDER	PLATFORM	
BOORS: NUMBER LOCATION SIZE BOLTEDHIU 20 TYPE NUMBER LOCATION SIZE BOLTEDHIU 21 ACCESS 1 Radiant Floor 24" x 24" Bolted 20 DESERVATION 1 per humer Radiant Floor 24" x 24" Bolted 20 DESERVATION 1 per humer Radiant Floor 4" DIA 20 DESERVATION 1 Radiant Floor 4" DIA 21 UBE REMOVAL 1 Radiant Floor 4" DIA 23 TUBE REMOVAL 1 Radiant Floor 4" DIA 24 INSTELLANEOUS: 1 Radiant Floor 4" DIA 25 TEMPERATURE NUMBER SIZE TYPE 26 GARUSTION AIR: TEMPERATURE 4 1-1/2" 30000 CP 26 FLUE GAS SAMPLE 5 1-1/2" 30000 CP 1 20 At 1500 RFW 1 4" 1500 RFW 1500 RFW	_								
NUMBER LOCATION SIZE BOLTEDMIN 22 1 Radiant Floor 24" x 24" Bolined 23 CORRENTION 1 Prediant Floor 24" x 24" Bolined 24 DISERVATION 1 per burner Radiant Floor 24" x 24" Bolined 26 OBSERVATION 1 per burner Radiant Floor 4"DIA Come state 27 TUBE FEMOVAL 1 per burner Radiant Floor 4"DIA Come state 28 TUBE FEMOVAL 1 Radiant Floor 4"DIA Come state 29 TUBE FEMOVAL 1 Radiant Floor 4"DIA Come state 39 TUBE FEMOVAL 1 Radiant Floor 4"DIA Come state 30 Come state NUMBER NUMBER Size TYPE 4 NUMBER Size TYPE Size TYPE 5 Size TEMPERATURE NUMBER Size TYPE 6 Come strate Fize Size	-								
21 ACCESS 1 Redam Floor 24* x 24' Bolled 28 Conv Roft 24* x 24' Bolled 29 OBSERVATION 1 per burner Radam Floor 24* x 24' Bolled 30 Incention 1 per burner Radam Floor 24* x 24' Bolled 30 Incention 1 per burner Radam Floor 24* x 24' Bolled 31 TUBE REMOVAL 1 per burner Radam Floor 4* DA Da 31 TUBE REMOVAL 1 Padam Floor 4* DA Da 32 TUBE REMOVAL 1 Radam Floor 4* DA Da 33 TUBE REMOVAL 1 Radam Floor 24* x 24' Bolled 34 TUBE REMOVAL 1 Padam Floor 4* DA Da Da 35 TUBE REMOVAL NUMBER SIZE TYPE TYPE 36 COMUSTON AR: TEMPERATURE NUMBER SIZE TYPE 37 FLUE GAS SAMPLE FEMPERATURE 4 1*1/2' 3000F CP 38 SINUFFING STEAM / PURGE 2 4*' 150F FAV 39 VEXTS J DRAINS 2 4*' 150F FAV 40	25	DOORS:							
28 1 Conv Roof 24* 24* Bolaed 29 OBSERVATION 1 per burner Radiant Sidewall 5* x 9* Hinged 20 I per burner Radiant Sidewall 5* x 9* Hinged 31 TUBE REMOVAL 1 Prediant Roof 24* x 24* Bolaed 31 TUBE REMOVAL 1 Radiant Sidewall 5* x 9* Hinged 33 TUBE REMOVAL 1 Radiant Roof 24* x 24* Bolaed 34 INSECELLANEOUS: 1 Radiant Roof 24* x 24* Bolaed 35 OSMUSTION AIR: TEMPERATURE NUMBER SIZE TYPE 36 PRESSURE 1 1.1/2* 30000f CP 37 FLUE GAS: TEMPERATURE 2 4* 1509 RFN 37 FLUE GAS SAMPLE 2 4* 1509 RFN 38 SUMFING STEAM / PURGE 2 4* 1509 RFN 39 RLUE GAS SAMPLE 2 4* 1509 RFN	26	TYPE			NUMBER	LOCATION	SIZE	BOLTED/HINGED	
20 OBSERVATION 1 pr burner Radiant Sidewall 5* s 0* Hinged 30 1 per burner Radiant Floor 4*'0 IA ************************************	27	ACCESS			1	Radiant Floor	24" x 24"	Botled	
30 1 1 1 Radiant Roor 4* DiA 31 TUBE REMOVAL 1 Radiant Roor 24* 2.4* Bolled 31 TUBE REMOVAL 1 Radiant Roor 24* 2.4* Bolled 33 TUBE REMOVAL 1 Radiant Roor 24* 2.4* Bolled 34 MISCELLANEOUS: NUMBER Size TYPE 34 MISCELLANEOUS: NUMBER Size TYPE 35 ORDINISTION AR: TEMPERATURE NUMBER Size TYPE 36 ORDINISTION AR: TEMPERATURE 4 1.1.0? 30000 CP 37 RUE GAS: TEMPERATURE 5 1.1.12? 30000 CP 38 FUNE STEAM / PURGE 2 4* 1508 RFW 39 FUUE GAS: TEMPERATURE 2 4* 1508 RFW 40 SNUFFING STEAM / PURGE 1 4* 1508 RFW 41 PACONKETONS 2 4* 1508 RFW 42 PACONKETONS 1 4* 1508 RFW 43 VENTS / DRAINS 1 4* 1508 RFW 44 PACONKETONS 2 4* 1508 RFW 45 VENTS / DRAINS	28				1	Conv Roof	24" x 24"	Bolted	
1 Radiart Roof 24* x 2* Bolted 32 Image: Construction of the state of the	29 (OBSERVATION			1 per burner	Radiant Sidewall	5" x 9"	Hinged	
32 MSCELLANEOUS: 33 MISCELLANECTIONS NUMBER SIZE TYPE 34 NSTRUMENT CONNECTIONS NUMBER SIZE TYPE 35 COMBUSTION AIR: TEMPERATURE Image: Size TYPE 36 ORESSURE Image: Size TYPE Image: Size TYPE 37 FLUE GAS: TEMPERATURE Image: Size Type Image: Size Type 37 FLUE GAS: TEMPERATURE Image: Size Image: Siz	30				1 per burner	Radiant Floor	4" DIA		
33 MISCELLANEOUS: 34 INSTRUMENT CONNECTIONS NUMBER SIZE TYPE 36 OMBUSTION AIR: TEMPERATURE Image: Connection State St	31	TUBE REMOVAL			1	Radiant Roof	24" x 24"	Bolted	
34 INTRUMENT CONNECTIONS NUMBER SIZE TYPE 36 OORBUSTION AIR: TEMPERATURE Image: Size TYPE 36 PRESSURE Image: Size TYPE Image: Size TYPE 37 FLUE GAS: TEMPERATURE 4 Image: Size TYPE 38 PRESSURE 5 Image: Size TYPE 30000 CP 38 PRESSURE 2 4* 1500 RFW 30000 CP 39 FLUE GAS SAMPLE 2 4* 1500 RFW 30000 CP 30 SUSFINA / PURGE 2 4* 1500 RFW 30000 CP 40 SNUFFING STEAM / PURGE 1 4* 1500 RFW 30000 CP 41 Q2 ANALYZER 1 4* 1500 RFW 30000 CP 42 EPA CONNECTIONS 2 4* 1500 RFW 43 VERTS / DRAINS 1 1 4* 1500 RFW 44 PROCESS FLUID TEMPERATURE 1 1 1 1	32								
34 INTRUMENT CONNECTIONS NUMBER SIZE TYPE 35 COMBUSTION AR: TEMPERATURE Image: Size TYPE 36 PRESSURE Image: Size TYPE Image: Size TYPE 36 PRESSURE Image: Size TYPE Image: Size TYPE 37 FLUE GAS: TEMPERATURE 4 Image: Size TYPE 38 PRESSURE 5 Image: Size Type 300000 CP 38 Image: Size TZ 300000 CP 300000 CP 300000 CP 39 FLUE GAS SAMPLE 2 4* 15000 RF/ 300000 CP 40 SNUFFING STEAM / PURGE 1 4* 15000 RF/ 30000 CP 41 QZANALYZER 1 4* 15000 RF/ 30000 CP 42 EPA CONNECTIONS 2 4* 15000 RF/ 44 PROCESS FLUID TEMPERATURE 1 1 10000 CP 45 TUDESEN THERMOTS: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heate	33	MISCELLANEOUS:					•		
35 COMBUSTION AIR: TEMPERATURE Image: Comparison of the second of th	-						SIZE	TYDE	
38 PRESSURE Image: Customer of the state						NUMBER	SIZE	TIPE	
31 FLUE GAS: TEMPERATURE 4 1-1/2" 3000# CP 38 PRESSURE 5 1-1/2" 3000# CP 39 FLUE GAS: FLUE GAS: 1-1/2" 3000# CP 39 FLUE GAS: 2 4" 156# RFM 40 SNUFFING STEAM / PURGE 2 2" 3000# CP 41 CANALYZER 1 4" 156# RFM 42 EPA CONNECTIONS 2 4" 156# RFM 43 VENTS / DRAINS 2 4" 156# RFM 44 PROCESS FLUID TEMPERATURE 2 4" 156# RFM 45 TUBESKIN THERMOCOUPLES 2 4" 156# RFM 46 VENTS / DRAINS 2 4" 156# RFM 5 TUBESKIN THERMOCOUPLES 2 4" 156# RFM 6 TUBESKIN THERMOCOUPLES 2 4" 156# RFM 7 PAINTING REQUIREMENTS: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Status 5 6 GALYANZING REQUIREMENTS: L&P/ Handralis are hot-dip galvanized. 5 5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
38 PRESSURE 5 1.1/2" 3000# CP 39 FLUE GAS SAMPLE 2 4* 150# RFW 39 RUFFING STEAM / PURGE 2 4* 150# RFW 40 SUUFFING STEAM / PURGE 2 4* 150# RFW 41 Q2 ANALYZER 1 4* 150# RFW 42 EPA CONNECTIONS 2 4* 150# RFW 43 VENTS / DRAINS 2 4* 150# RFW 44 PROCESS FLUID TEMPERATURE 2 4* 150# RFW 45 TUBESKIN THERMOCOUPLES 0 0 0 0 45 TUBESKIN THEMOCOUPLES 0	-					4	1 1/2"	3000# CPL C	-
39 FLUE GAS SAMPLE 2 4" 150# RFW 40 SNUFFING STEAM / PURGE 2 2" 3000# CPL 41 02 ANALYZER 2 2" 3000# CPL 42 CPA CONNECTIONS 1 4" 150# RFW 42 EPA CONNECTIONS 2 4" 150# RFW 43 VENTS / DRAINS 0 4" 150# RFW 44 PROCESS FLUID TEMPERATURE 0 4" 150# RFW 45 TUBESKIN THERMOCOUPLES 0 0 0 0 46 TUBESKIN THERMOCOUPLES 0	-					1		1	
40 SNUFFING STEAM / PURGE 2 2* 3000# CPI 41 02 ANALYZER 1 4* 150# RFM 42 EPA CONNECTIONS 2 4* 150# RFM 43 VENTS / DRAINS 2 4* 150# RFM 44 PROCESS FLUID TEMPERATURE 2 4* 150# RFM 45 TUBESKIN THERMOCOUPLES 2 4* 150# RFM 46 PROCESS FLUID TEMPERATURE 2 4* 150# RFM 47 PROCESS FLUID TEMPERATURE 2 4* 2 4* 48 PROCESS FLUID TEMPERATURE 2 4* 2 4* 49 INTERNACOUTEMENTS: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Stat ************************************			JOILE						
41 02 ANALYZER 1 4" 150# RFW 42 EPA CONNECTIONS 2 4" 150# RFW 43 VENTS / DRAINS 2 4" 150# RFW 44 PROCESS FLUID TEMPERATURE 2 4" 150# RFW 45 TUBESKIN THERMOCOUPLES 2 4" 150# RFW 46 TUBESKIN THERMOCOUPLES 2 4" 150# RFW 47 PAINTING REQUIREMENTS: Commercial Sandblast (SP-6) and Inorganic Zino Primer on Heater and Stack 2 4" 4" 48 FANUALYZING REQUIREMENTS: Commercial Sandblast (SP-6) and Inorganic Zino Primer on Heater and Stack 4 4 4" <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-								
42 PA CONNECTIONS 2 4" 150# REW 43 VENTS / DRAINS 2 4" 150# REW 44 PROCESS FLUID TEMPERATURE 2 4" 100 4 45 TUBESKIN THERMOCOUPLES 2 4" 100 4 46 Outpersonance 2 4" 100 4 47 PAINTING REQUIREMENTS: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Stack 1 1 48 Outpersonance 1 1 1 1 49 INTERNAL COATING: None 1 1 1 1 50 ALVANIZING REQUIREMENTS: L&Ps / Handrails are hot-dip galvanized. 1 1 1 1 51 ARE PAINTERS TROLLEY AND RAIL INCLUDED (YES OR NO): NO 1 1 1 1 52 SPECIAL EQUIPMENT: SOOTBLOWERS: NO 1 1 1 1 1 53 OTHER: Downdraft Eliminator (Adder) 1 1 1 1 1 54 OTHER: Downdraft Eliminator (Adder) 1 1 1 1 1 55 Orors and miscellan	-								
43 VENTS / DRAINS Initial Control Initial Control 44 PROCESS FLUID TEMPERATURE Initial Control Initial Control 45 TUBESKIN THERMOCOUPLES Initial Control Initial Control 46 Initial Control Initial Control Initial Control 47 PAINTING REQUIREMENTS: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Status Initial Control 48 Initial Control Initial Control Initial Control Initial Control 49 Initial Control Initial Control Initial Control Initial Control 49 Initial Control Initial Control Initial Control Initial Control 40 Initial Control Initial Control Initial Control Initial Control 50 Initial Control Initial Control Initial Control Initial Control 51 Initial Control Initial Control Initial Control Initial Control 52 Special EquiPMENT: SootBLOWERS: NO Initial Control Initial Control 52 Initial Control Initial Control Initial Control Initial Contro Initial Cont	-					1		1	
44 PROCESS FLUID TEMPERATURE Image: Constraint of the second of the	_					2			1
45 TUBESKIN THERMOCOUPLES Image: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Start Image: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Start 47 PAINTING REQUIREMENTS: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Start Image: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Start 48 Image: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Start Image: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Start 49 Image: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Start Image: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Start 49 Image: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Start Image: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Start 50 GALVANIZING REQUIREMENTS: L&PA / Handrails are hot-dip galvanized. Image: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Start 51 ARE PAINTERS TROLLEY AND RAIL INCLUDED (YES OR NO): NO Image: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Start 52 SPECIAL EQUIPMENT: SOOTBLOWERS: NO Image: Commercial Sandblast (Adder) 53 OTHER: Downdraft Eliminator (Adder) Image: Commercial Sandblast (Adder) 54 Oros and miscellaneous entries are for example only and ma	-								+
46 47 PAINTING REQUIREMENTS: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Stack 48	_								1
PAINTING REQUIREMENTS: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Stack PAINTING REQUIREMENTS: Commercial Sandblast (SP-6) and Inorganic Zinc Primer on Heater and Stack INTERNAL COATING: None GALVANIZING REQUIREMENTS: L&Ps / Handrails are hot-dip galvanized. SPECIAL EQUIPMENT: SOOTBLOWERS: NO SPECIAL EQUIPMENT: SOOTBLOWERS: NO SOOTBLOWERS: NO SOOTBLOWERS: NO SPECIAL EQUIPMENT: SOOTBLOWERS: NO SOOTBLOWERS: NO SOOTBLOWERS: NO SPECIAL EQUIPMENT: SOOTBLOWERS: NO SOOTBLOWERS: NO SOOTBLOWERS: NO SPECIAL EQUIPMENT: SOOTBLOWERS: NO SOTES: OTHER: Downdraft Eliminator (Adder) SPECIAL EQUIPMENT: SOOTBLOWERS: NO SOOTA on miscellaneous entries are for example only and may be altered by the customer to fit their needs. Platforms are available as an adder. SPECIAL EQUIPMENT: SOOTBLOWERS: NO SOOTA on miscellaneous entries are for example only and may be altered by the customer to fit their needs. Platforms are available as an adder. SPECIAL EQUIPMENT: SOOTBLOWERS: NO SPECIAL EQUIPMENT: SOOTBLOWERS: NO SPECIAL EQUIPMENT: SOOTBLOWERS: NO SPEC	_							1	-
48 49 INTERNAL COATING: None 50 GALVANIZING REQUIREMENTS: L&Ps / Handraiis are hot-dip galvanized. 51 ARE PAINTERS TROLLEY AND RAIL INCLUDED (YES OR NO): NO 52 SPECIAL EQUIPMENT: SOOTBLOWERS: NO 53 AIR PREHEATER: NO 54 FAN(S): NO 55 OTHER: Downdraft Eliminator (Adder) 56 OTHER: Downdraft Eliminator (Adder) 57 Doors and miscellaneous entries are for example only and may be altered by the customer to fit their needs. Platforms are available as an adder. 58	_		orgial Sandhlact (CD 0)	and Increases 7		taak			-
49 INTERNAL COATING: None 50 GALVANIZING REQUIREMENTS: L&Ps / Handrails are hot-dip galvanized. 51 ARE PAINTERS TROLLEY AND RAIL INCLUED (YES OR NO): NO 52 SPECIAL EQUIPMENT: SOOTBLOWERS: NO 53 AIR PREHEATER: NO 54 FAN(S): NO 55 OTHER: Downdraft Eliminator (Adder) 56 NOTES: 57 Dors and miscellaneous entries are for example only and may be altered by the customer to fit their needs. Platforms are available as an adder. 58	_	FAILTING REQUIREMENTS: Comm	ercial Sandblast (SP-6)	and morganic Zinc	Further on Heater and St	аск			-
50 GALVANIZING REQUIREMENTS: L&Ps / Handraiis are hot-dip galvanized. 51 ARE PAINTERS TROLLEY AND RAIL INCLUED (YES OR NO): NO 52 SPECIAL EQUIPMENT: SOOTBLOWERS: NO 53 AIR PREHEATER: NO 54 FAN(S): NO 55 OTHER: Downdraft Eliminator (Adder) 56 NOTES: 57 Dors and miscellaneous entries are for example only and may be altered by the customer to fit their needs. Platforms are available as an adder. 58	-								-
ARE PAINTERS TROLLEY AND RAIL INCLUDED (YES OR NO): NO SPECIAL EQUIPMENT: SOOTBLOWERS: NO AIR PREHEATER: NO FAN(S): NO OTHER: Downdraft Eliminator (Adder) FORS: Pors and miscellaneous entries are for example only and may be altered by the customer to fit their needs. Platforms are available as an adder. SPECIAL EQUIPMENT: CUSTOMARY UNITS			Hondrollo ora bat d'a a	alvanizad					+
52 SPECIAL EQUIPMENT: SOOTBLOWERS: NO 53 AIR PREHEATER: NO 54 FAN(S): NO 55 OTHER: Downdraft Eliminator (Adder) 56 NOTES: 57 Doors and miscellaneous entries are for example only and may be altered by the customer to fit their needs. Platforms are available as an adder. 58	-			alvanized.					-
53 AIR PREHEATER: NO 54 FAN(S): NO 55 OTHER: Downdraft Eliminator (Adder) 56 NOTES: 57 Doors and miscellaneous entries are for example only and may be altered by the customer to fit their needs. Platforms are available as an adder. 58	_								-
54 FAN(S): NO 55 OTHER: Downdraft Eliminator (Adder) 56 NOTES: 57 Doors and miscellaneous entries are for example only and may be altered by the customer to fit their needs. Platforms are available as an adder. 58	-								-
55 OTHER: Downdraft Eliminator (Adder) 56 NOTES: 57 Doors and miscellaneous entries are for example only and may be altered by the customer to fit their needs. Platforms are available as an adder. 58	_								_
NOTES: 57 Doors and miscellaneous entries are for example only and may be altered by the customer to fit their needs. Platforms are available as an adder. 58 59 60 CUSTOMARY UNITS	_		,						-
57 Doors and miscellaneous entries are for example only and may be altered by the customer to fit their needs. Platforms are available as an adder. 58	_		R: Downdraft Eliminator	(Adder)					_
58 59 60 CUSTOMARY UNITS	_								-
59 60 CUSTOMARY UNITS	57 [Doors and miscellaneous entries are for example on	ly and may be altered b	y the customer to f	it their needs. Platforms	are available as an adder.			
60 CUSTOMARY UNITS	58								1
CUSTOMARY UNITS	59								
	60								
FIRED HEATER DATA SHEET PROJECT NUMBER DOCUMENT NUMBER SHEET							CUSTOMARY UNI	TS	
		FIRED HEAT	TER DATA SI	HEET		PROJECT NUMBER	DOCUMENT NUMBER	SHEET	RE
API STD 560 6 OF 6								6 OF 6	2

www.astecindustries.com Office: 423.821.5200 5200 Wilson Rd Chattanooga, TN 37410 USA

December 17, 2024

ASTEC PROPOSAL #: HI 24-15402 Rev 2

OPTIONAL ITEMS: (NOT REC	STABHR-1	
Model	Description	Investment (U.S. \$)
5 Days Service On-site	Estimate (1 Man, 1 Trip, 2 Weeks Notice)	See Page 25
Industrial Customer School	Tentatively in April / October	\$1,875.00
Low NOx Burner	< 30 ppm NOx, < 50 ppm CO emissions	\$23,214.00
Class I, Div 2 Classification	Equipment suitable for Class I, Div 2 Area	\$9,250.00
Pump Skid	Pump Skid with 2 Pumps (Dean RA3146), Slip Stream Filter, Expansion Tank and Tower	\$132,111.00
Spare Parts	Commissioning and 2 Years Spare Parts	TBD

LOW NOX BURNER OPTION: POWER FLAME TYPE EVO BURNER:

The Power Flame EVO[™] burner offers staged/premix combustion technology to maximize operating efficiency and reduce NOx emission on natural gas firing below 30 PPM without the use of flue gas recirculation (FGR). Designed to fire a range of gaseous fuels and light oil, this burner utilizes a unique firing head design which provides stable combustion over a wide turndown.

- Direct spark ignited natural gas pilot (Interrupted type)
- Ignition transformer
- > UV self-checking flame detection scanner
- Blower is integral to burner
- > Inlet damper with modulation motor, duct and combustion air pressure switch

Emission Guarantees based on HHV: NOx < 30 ppm = 0.0365 lb/mmbtu

CO < 50 ppm = 0.0377 lb/mmbtu.

- All emissions are at 100% of maximum combustion rating (MCR) and are in the units of PPM referenced to 3% dry stack oxygen
- Emissions are valid for natural gas combustion only. The values are based on natural gas containing no fuel bound nitrogen and no sulfur

Flare Specifications

ZEECO, INC.

22151 East 91st Street Broken Arrow, OK 74014 USA

+1 (918) 258 8551 | sales@zeeco.com | zeeco.com

REFERENCE:	71308 Emissions	DATE:	December 6, 2024
DELIVER TO:	Northwind Midstream		

To Whom it May Concern,

The hydrocarbon destruction efficiency for the combustion system provided on quote number 2024-06546RA-01 R0 and shop order number 71308 will be 98% or higher as long as the flare is operated and maintained within the designed operating parameters and accepted industry standard practices for this type of equipment.

Thank you and Best Regards,

-7

Brady Parmenter Rentals Global Business Development Manager Zeeco Inc.

P: 918-261-6297 Email: <u>brady_parmenter@zeeco.com</u>

ZEECO, INC.

22151 East 91st Street Broken Arrow, OK 74014 USA

+1 (918) 258 8551 | sales@zeeco.com | zeeco.com

REFERENCE:	71334 Emissions	DATE:	December 6, 2024
DELIVER TO:	Northwind Midstream		

To Whom it May Concern,

The hydrocarbon destruction efficiency for the combustion system provided on quote number 2024-03784FL-01 and shop order number 71334 will be 98% or higher as long as the flare is operated and maintained within the designed operating parameters and accepted industry standard practices for this type of equipment.

Thank you and Best Regards,

Chris O'Kelly

Chris O'Kelly Flares Applications Engineer Zeeco Inc.

P: 918-893-8302 Email: <u>chris_okelly@zeeco.com</u>

AP-42 Emission Factors

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhou	se Gases	
NO _x ^c 90 - 105% Load	4.08 E+00	В
NO _x ^c <90% Load	8.47 E-01	В
CO ^c 90 - 105% Load	3.17 E-01	С
CO ^c <90% Load	5.57 E-01	В
$\mathrm{CO_2}^{\mathrm{d}}$	1.10 E+02	А
SO ₂ ^e	5.88 E-04	А
TOC ^f	1.47 E+00	А
Methane ^g	1.25 E+00	С
VOC ^h	1.18 E-01	С
PM10 (filterable) ⁱ	7.71 E-05	D
PM2.5 (filterable) ⁱ	7.71 E-05	D
PM Condensable ^j	9.91 E-03	D
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ^k	<4.00 E-05	Е
1,1,2-Trichloroethane ^k	<3.18 E-05	Е
1,1-Dichloroethane	<2.36 E-05	Е
1,2,3-Trimethylbenzene	2.30 E-05	D
1,2,4-Trimethylbenzene	1.43 E-05	С
1,2-Dichloroethane	<2.36 E-05	Е
1,2-Dichloropropane	<2.69 E-05	Е
1,3,5-Trimethylbenzene	3.38 E-05	D
1,3-Butadiene ^k	2.67E-04	D
1,3-Dichloropropene ^k	<2.64 E-05	Е
2-Methylnaphthalene ^k	3.32 E-05	С
2,2,4-Trimethylpentane ^k	2.50 E-04	С
Acenaphthene ^k	1.25 E-06	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINESa(SCC 2-02-002-54)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Acenaphthylene ^k	5.53 E-06	С
Acetaldehyde ^{k,l}	8.36 E-03	А
Acrolein ^{k,l}	5.14 E-03	А
Benzene ^k	4.40 E-04	А
Benzo(b)fluoranthene ^k	1.66 E-07	D
Benzo(e)pyrene ^k	4.15 E-07	D
Benzo(g,h,i)perylenek	4.14 E-07	D
Biphenyl ^k	2.12 E-04	D
Butane	5.41 E-04	D
Butyr/Isobutyraldehyde	1.01 E-04	С
Carbon Tetrachloride ^k	<3.67 E-05	Е
Chlorobenzene ^k	<3.04 E-05	Е
Chloroethane	1.87 E-06	D
Chloroform ^k	<2.85 E-05	E
Chrysene ^k	6.93 E-07	С
Cyclopentane	2.27 E-04	С
Ethane	1.05 E-01	С
Ethylbenzene ^k	3.97 E-05	В
Ethylene Dibromide ^k	<4.43 E-05	Е
Fluoranthene ^k	1.11 E-06	С
Fluorene ^k	5.67 E-06	С
Formaldehyde ^{k,1}	5.28 E-02	А
Methanol ^k	2.50 E-03	В
Methylcyclohexane	1.23 E-03	С
Methylene Chloride ^k	2.00 E-05	С
n-Hexane ^k	1.11 E-03	С
n-Nonane	1.10 E-04	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES (Continued)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
n-Octane	3.51 E-04	С
n-Pentane	2.60 E-03	С
Naphthalene ^k	7.44 E-05	С
PAH ^k	2.69 E-05	D
Phenanthrene ^k	1.04 E-05	D
Phenol ^k	2.40 E-05	D
Propane	4.19 E-02	С
Pyrene ^k	1.36 E-06	С
Styrene ^k	<2.36 E-05	Е
Tetrachloroethane ^k	2.48 E-06	D
Toluene ^k	4.08 E-04	В
Vinyl Chloride ^k	1.49 E-05	С
Xylene ^k	1.84 E-04	В

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN **ENGINES** (Continued)

^a Reference 7. Factors represent uncontrolled levels. For NO_v, CO, and PM10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM-10 = Particulate Matter \leq 10 microns (μ m) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit. ^b Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA Method 19. To convert from (lb/MMBtu) to (lb/ 10^6 scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from

(lb/MMBtu) to (lb/hp-hr) use the following equation:

lb/hp-hr = (lb/MMBtu) (heat input, MMBtu/hr) (1/operating HP, 1/hp)

^c Emission tests with unreported load conditions were not included in the data set.

^d Based on 99.5% conversion of the fuel carbon to CO_2 . CO_2 [lb/MMBtu] = (3.67)(%CON)(C)(D)(1/h), where %CON = percent conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.75), D = density of fuel, 4.1 E+04 lb/10⁶ scf. and

Emission Factors ^a - Uncontrolled						
	Natural Gas-	Fired Turbines ^b	Distillate Oi	l-Fired Turbines ^d		
Pollutant	(lb/MMBtu) ^c (Fuel Input)	Emission Factor Rating	(lb/MMBtu) ^e (Fuel Input)	Emission Factor Rating		
$\mathrm{CO}_2^{\mathrm{f}}$	110	А	157	А		
N ₂ O	0.003 ^g	Е	ND	NA		
Lead	ND	NA	1.4 E-05	С		
SO ₂	0.94S ^h	В	1.01S ^h	В		
Methane	8.6 E-03	С	ND	NA		
VOC	2.1 E-03	D	4.1 E-04 ^j	Е		
TOC^k	1.1 E-02	В	4.0 E-03 ¹	С		
PM (condensible)	4.7 E-03 ¹	С	7.2 E-03 ¹	С		
PM (filterable)	1.9 E-03 ¹	С	4.3 E-03 ¹	С		
PM (total)	6.6 E-03 ¹	С	$1.2 \text{ E-}02^{l}$	С		

Table 3.1-2a. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSEGASES FROM STATIONARY GAS TURBINES

^a Factors are derived from units operating at high loads (≥ 80 percent load) only. For information on units operating at other loads, consult the background report for this chapter (Reference 16), available at "www.epa.gov/ttn/chief". ND = No Data, NA = Not Applicable.

^b SCCs for natural gas-fired turbines include 2-01-002-01, 2-02-002-01 & 03, and 2-03-002-02 & 03.

^c Emission factors based on an average natural gas heating value (HHV) of 1020 Btu/scf at 60°F. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by 1020. Similarly, these emission factors can be converted to other natural gas heating values.

^d SCCs for distillate oil-fired turbines are 2-01-001-01, 2-02-001-01, 2-02-001-03, and 2-03-001-02.

^e Emission factors based on an average distillate oil heating value of 139 MMBtu/ 10^3 gallons. To convert from (lb/MMBtu) to (lb/ 10^3 gallons), multiply by 139.

- ^f Based on 99.5% conversion of fuel carbon to CO₂ for natural gas and 99% conversion of fuel carbon to CO₂ for distillate oil. CO₂ (Natural Gas) [lb/MMBtu] = (0.0036 scf/Btu)(% CON)(C)(D), where % CON = weight percent conversion of fuel carbon to CO₂, C = carbon content of fuel by weight, and D = density of fuel. For natural gas, C is assumed at 75%, and D is assumed at 4.1 E+04 lb/10⁶ scf. For distillate oil, CO₂ (Distillate Oil) [lb/MMBtu] = (26.4 gal/MMBtu) (%CON)(C)(D), where C is assumed at 87%, and the D is assumed at 6.9 lb/gallon.
- ^g Emission factor is carried over from the previous revision to AP-42 (Supplement B, October 1996) and is based on limited source tests on a single turbine with water-steam injection (Reference 5).
- ^h All sulfur in the fuel is assumed to be converted to SO₂. S = percent sulfur in fuel. Example, if sulfur content in the fuel is 3.4 percent, then S = 3.4. If S is not available, use 3.4 E-03 lb/MMBtu for natural gas turbines, and 3.3 E-02 lb/MMBtu for distillate oil turbines (the equations are more accurate).
- ^j VOC emissions are assumed equal to the sum of organic emissions.
- ^k Pollutant referenced as THC in the gathered emission tests. It is assumed as TOC, because it is based on EPA Test Method 25A.
- ¹ Emission factors are based on combustion turbines using water-steam injection.

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO ₂ ^d	0.6	А
TOC	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASESFROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by 16. To convert from $lb/10^6$ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

- ^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.
- ^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM_{10} , $PM_{2.5}$ or PM_1 emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO_2 . Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO_2 emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO_2 emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D	
56-49-5	3-Methylchloranthrene ^{b, c}	<1.8E-06	Е	
	7,12-Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	Е	
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	Е	
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	Е	
120-12-7	Anthracene ^{b,c}	<2.4E-06	Е	
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	Е	
71-43-2	Benzene ^b	2.1E-03	В	
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е	
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	Е	
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	Е	
205-82-3	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	Ε	
106-97-8	Butane	2.1E+00	Е	
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е	
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	Ε	
25321-22-6	Dichlorobenzene ^b	1.2E-03	Е	
74-84-0	Ethane	3.1E+00	Е	
206-44-0	Fluoranthene ^{b,c}	3.0E-06	Е	
86-73-7	Fluorene ^{b,c}	2.8E-06	Е	
50-00-0	Formaldehyde ^b	7.5E-02	В	
110-54-3	Hexane ^b	1.8E+00	Е	
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	Е	
91-20-3	Naphthalene ^b	6.1E-04	Е	
109-66-0	Pentane	2.6E+00	Е	
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D	

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION^a

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	
74-98-6	Propane	1.6E+00	Е	
129-00-0	Pyrene ^{b, c}	5.0E-06	Е	
108-88-3	Toluene ^b	3.4E-03	С	

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceeded with a less-than symbol are based on method detection limits.

^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
7440-38-2	Arsenic ^b	2.0E-04	Е
7440-39-3	Barium	4.4E-03	D
7440-41-7	Beryllium ^b	<1.2E-05	Е
7440-43-9	Cadmium ^b	1.1E-03	D
7440-47-3	Chromium ^b	1.4E-03	D
7440-48-4	Cobalt ^b	8.4E-05	D
7440-50-8	Copper	8.5E-04	С
7439-96-5	Manganese ^b	3.8E-04	D
7439-97-6	Mercury ^b	2.6E-04	D
7439-98-7	Molybdenum	1.1E-03	D
7440-02-0	Nickel ^b	2.1E-03	С
7782-49-2	Selenium ^b	<2.4E-05	Е
7440-62-2	Vanadium	2.3E-03	D
7440-66-6	Zinc	2.9E-02	E

TABLE 1.4-4. EMISSION FACTORS FOR METALS FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. Emission factors preceeded by a less-than symbol are based on method detection limits. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by l6. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020.
^b Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.

5.2 Transportation And Marketing Of Petroleum Liquids 5.2.1 General

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T}$$
(1)

where:

- L_{L} = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded
- S = a saturation factor (see Table 5.2-1)
- P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")
- M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")
- T = temperature of bulk liquid loaded, $^{\circ}$ R ($^{\circ}$ F + 460)

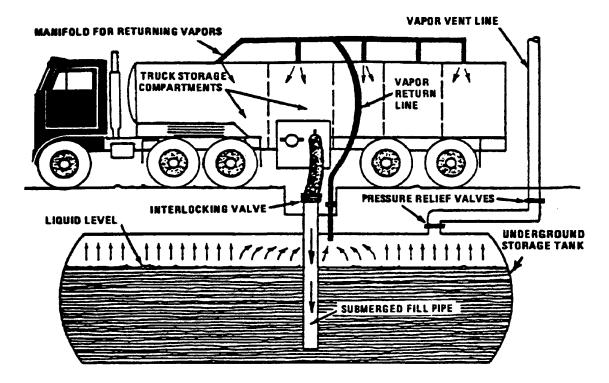


Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1.	SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID
	LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-

2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

The saturation factor, S, represents the expelled vapor's fractional approach to saturation, and it accounts for the variations observed in emission rates from the different unloading and loading methods. Table 5.2-1 lists suggested saturation factors.

Emissions from controlled loading operations can be calculated by multiplying the uncontrolled emission rate calculated in Equation 1 by an overall reduction efficiency term:

$$\left(1 - \frac{\text{eff}}{100}\right)$$

The overall reduction efficiency should account for the capture efficiency of the collection system as well as both the control efficiency and any downtime of the control device. Measures to reduce loading emissions include selection of alternate loading methods and application of vapor recovery equipment. The latter captures organic vapors displaced during loading operations and recovers the vapors by the use of refrigeration, absorption, adsorption, and/or compression. The recovered product is piped back to storage. Vapors can also be controlled through combustion in a thermal oxidation unit, with no product recovery. Figure 5.2-6 demonstrates the recovery of gasoline vapors from tank trucks during loading operations at bulk terminals. Control efficiencies for the recovery units range from 90 to over 99 percent, depending on both the nature of the vapors and the type of control equipment used.⁵⁻⁶ However, not all of the displaced vapors reach the control device, because of leakage from both the tank truck and collection system. The collection efficiency should be assumed to be 99.2 percent for tanker trucks passing the MACT-level annual leak test (not more than 1 inch water column pressure change in 5 minutes after pressurizing to 18 inches water followed by pulling a vacuum of 6 inches water).⁷ A collection efficiency of 98.7 percent (a 1.3 percent leakage rate) should be assumed for trucks not passing one of these annual leak tests⁶.

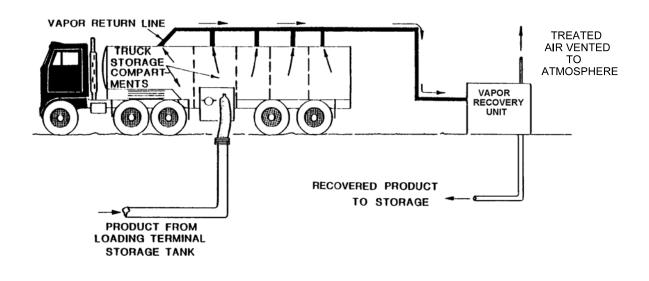


Figure 5.2-6. Tank truck loading with vapor recovery.

Sample Calculation -

Loading losses (L₁) from a gasoline tank truck in dedicated vapor balance service and practicing vapor recovery would be calculated as follows, using Equation 1:

Design basis -

Cargo tank volume is 8000 gal Gasoline Reid vapor pressure (RVP) is 9 psia Product temperature is 80°F Vapor recovery efficiency is 95 percent Vapor collection efficiency is 98.7 percent (NSPS-level annual leak test)

Loading loss equation -

$$L_{L} = 12.46 \frac{SPM}{T} \left(1 - \frac{eff}{100} \right)$$

where:

- S = saturation factor (see Table 5.2-1) 1.00
- P = true vapor pressure of gasoline = 6.6 psia
- M = molecular weight of gasoline vapors = 66
- T = temperature of gasoline = 540°R

eff = overall reduction efficiency (95 percent control x 98.7 percent collection) = 94 percent

$$L_{L} = 12.46 \frac{(1.00)(6.6)(66)}{540} \left(1 - \frac{94}{100}\right)$$

$$= 0.60 \text{ lb}/10^3 \text{ gal}$$

Total loading losses are:

$$(0.60 \text{ lb}/10^3 \text{ gal})(8.0 \text{ x } 10^3 \text{ gal}) = 4.8 \text{ pounds (lb)}$$

Measurements of gasoline loading losses from ships and barges have led to the development of emission factors for these specific loading operations.⁸ These factors are presented in Table 5.2-2 and should be used instead of Equation 1 for gasoline loading operations at marine terminals. Factors are

expressed in units of milligrams per liter (mg/L) and pounds per 1000 gallons ($lb/10^3$ gal).

13.2.2 Unpaved Roads

13.2.2.1 General

When a vehicle travels an unpaved road, the force of the wheels on the road surface causes pulverization of surface material. Particles are lifted and dropped from the rolling wheels, and the road surface is exposed to strong air currents in turbulent shear with the surface. The turbulent wake behind the vehicle continues to act on the road surface after the vehicle has passed.

The particulate emission factors presented in the previous draft version of this section of AP-42, dated October 2001, implicitly included the emissions from vehicles in the form of exhaust, brake wear, and tire wear as well as resuspended road surface material²⁵. EPA included these sources in the emission factor equation for unpaved public roads (equation 1b in this section) since the field testing data used to develop the equation included both the direct emissions from vehicles and emissions from resuspension of road dust.

This version of the unpaved public road emission factor equation only estimates particulate emissions from resuspended road surface material ^{23, 26}. The particulate emissions from vehicle exhaust, brake wear, and tire wear are now estimated separately using EPA's MOBILE6.2 ²⁴. This approach eliminates the possibility of double counting emissions. Double counting results when employing the previous version of the emission factor equation in this section and MOBILE6.2 to estimate particulate emissions from vehicle traffic on unpaved public roads. It also incorporates the decrease in exhaust emissions that has occurred since the unpaved public road emission factor equation includes estimates of emissions from exhaust, brake wear, and tire wear based on emission rates for vehicles in the 1980 calendar year fleet. The amount of PM released from vehicle exhaust has decreased since 1980 due to lower new vehicle emission standards and changes in fuel characteristics.

13.2.2.2 Emissions Calculation And Correction Parameters¹⁻⁶

The quantity of dust emissions from a given segment of unpaved road varies linearly with the volume of traffic. Field investigations also have shown that emissions depend on source parameters that characterize the condition of a particular road and the associated vehicle traffic. Characterization of these source parameters allow for "correction" of emission estimates to specific road and traffic conditions present on public and industrial roadways.

Dust emissions from unpaved roads have been found to vary directly with the fraction of silt (particles smaller than 75 micrometers $[\mu m]$ in diameter) in the road surface materials.¹ The silt fraction is determined by measuring the proportion of loose dry surface dust that passes a 200-mesh screen, using the ASTM-C-136 method. A summary of this method is contained in Appendix C of AP-42. Table 13.2.2-1 summarizes measured silt values for industrial unpaved roads. Table 13.2.2-2 summarizes measured silt values for public unpaved roads. It should be noted that the ranges of silt content vary over two orders of magnitude. Therefore, the use of data from this table can potentially introduce considerable error. Use of this data is strongly discouraged when it is feasible to obtain locally gathered data.

Since the silt content of a rural dirt road will vary with geographic location, it should be measured for use in projecting emissions. As a conservative approximation, the silt content of the parent soil in the area can be used. Tests, however, show that road silt content is normally lower than in the surrounding parent soil, because the fines are continually removed by the vehicle traffic, leaving a higher percentage of coarse particles.

Other variables are important in addition to the silt content of the road surface material. For example, at industrial sites, where haul trucks and other heavy equipment are common, emissions are highly correlated with vehicle weight. On the other hand, there is far less variability in the weights of cars and pickup trucks that commonly travel publicly accessible unpaved roads throughout the United States. For those roads, the moisture content of the road surface material may be more dominant in determining differences in emission levels between, for example a hot, desert environment and a cool, moist location.

The PM-10 and TSP emission factors presented below are the outcomes from stepwise linear regressions of field emission test results of vehicles traveling over unpaved surfaces. Due to a limited amount of information available for PM-2.5, the expression for that particle size range has been scaled against the result for PM-10. Consequently, the quality rating for the PM-2.5 factor is lower than that for the PM-10 expression.

	Road Use Or Pl	Plant	No. Of	Silt Content (%)	
Industry	Surface Material	Sites	Samples	Range	Mean
Copper smelting	Plant road	1	3	16 - 19	17
Iron and steel production	Plant road	19	135	0.2 - 19	6.0
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	4.8
	Material storage area	1	1	-	7.1
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10
	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	cessing Service road		8	2.4 - 7.1	4.3
	Haul road to/from pit	1	12	3.9 - 9.7	5.8
Vestern surface coal mining Haul road to/from pit		3	21	2.8 - 18	8.4
	Plant road	2	2	4.9 - 5.3	5.1
	Scraper route	3	10	7.2 - 25	17
	Haul road (freshly graded)	2	5	18 - 29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills Disposal routes		4	20	2.2 - 21	6.4

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS^a

^aReferences 1,5-15.

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^{a} (W/3)^{b}$$
(1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$
(1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

- E = size-specific emission factor (lb/VMT)
- s = surface material silt content (%)
- W = mean vehicle weight (tons)
- M = surface material moisture content (%)
- S = mean vehicle speed (mph)
- C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

1 lb/VMT = 281.9 g/VKT

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

	Industrial Roads (Equation 1a)			Public Roads (Equation 1b)			
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*	
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0	
а	0.9	0.9	0.7	1	1	1	
b	0.45	0.45	0.45	-	-	-	
с	-	-	-	0.2	0.2	0.3	
d	-	-	-	0.5	0.5	0.3	
Quality Rating	В	В	В	В	В	В	

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

*Assumed equivalent to total suspended particulate matter (TSP)

"-" = not used in the emission factor equation

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

		Mean Vehicle Weight		Mean Vehicle Speed		Mean	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4-17 ^a	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (*C*) was obtained from EPA's MOBILE6.2 model 23 . The emission factor also varies with aerodynamic size range

Particle Size Range ^a	C, Emission Factor for Exhaust, Brake Wear and Tire Wear ^b lb/VMT
PM _{2.5}	0.00036
\mathbf{PM}_{10}	0.00047
PM_{30}^{c}	0.00047

Table 13.2.2-4. EMISSION FACTOR FOR 1980'S VEHICLE FLEET EXHAUST, BRAKE WEAR AND TIRE WEAR

- ^a Refers to airborne particulate matter (PM-x) with an aerodynamic diameter equal to or less than x micrometers.
- ^b Units shown are pounds per vehicle mile traveled (lb/VMT).
- ^c PM-30 is sometimes termed "suspendable particulate" (SP) and is often used as a surrogate for TSP.

It is important to note that the vehicle-related source conditions refer to the average weight, speed, and number of wheels for all vehicles traveling the road. For example, if 98 percent of traffic on the road are 2-ton cars and trucks while the remaining 2 percent consists of 20-ton trucks, then the mean weight is 2.4 tons. More specifically, Equations 1a and 1b are *not* intended to be used to calculate a separate emission factor for each vehicle class within a mix of traffic on a given unpaved road. That is, in the example, one should *not* determine one factor for the 2-ton vehicles and a second factor for the 20-ton trucks. Instead, only one emission factor should be calculated that represents the "fleet" average of 2.4 tons for all vehicles traveling the road.

Moreover, to retain the quality ratings when addressing a group of unpaved roads, it is necessary that reliable correction parameter values be determined for the road in question. The field and laboratory procedures for determining road surface silt and moisture contents are given in AP-42 Appendices C.1 and C.2. Vehicle-related parameters should be developed by recording visual observations of traffic. In some cases, vehicle parameters for industrial unpaved roads can be determined by reviewing maintenance records or other information sources at the facility.

In the event that site-specific values for correction parameters cannot be obtained, then default values may be used. In the absence of site-specific silt content information, an appropriate mean value from Table 13.2.2-1 may be used as a default value, but the quality rating of the equation is reduced by two letters. Because of significant differences found between different types of road surfaces and between different areas of the country, use of the default moisture content value of 0.5 percent in Equation 1b is discouraged. The quality rating should be downgraded two letters when the default moisture content value is used. (It is assumed that readers addressing industrial roads have access to the information needed to develop average vehicle information in Equation 1a for their facility.)

The effect of routine watering to control emissions from unpaved roads is discussed below in Section 13.2.2.3, "Controls". However, all roads are subject to some natural mitigation because of rainfall and other precipitation. The Equation 1a and 1b emission factors can be extrapolated to annual

average uncontrolled conditions (but including natural mitigation) under the simplifying assumption that annual average emissions are inversely proportional to the number of days with measurable (more than 0.254 mm [0.01 inch]) precipitation:

$$E_{ext} = E [(365 - P)/365]$$
 (2)

where:

 E_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT

E = emission factor from Equation 1a or 1b

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation (see

below)

Figure 13.2.2-1 gives the geographical distribution for the mean annual number of "wet" days for the United States.

Equation 2 provides an estimate that accounts for precipitation on an annual average basis for the purpose of inventorying emissions. It should be noted that Equation 2 does not account for differences in the temporal distributions of the rain events, the quantity of rain during any event, or the potential for the rain to evaporate from the road surface. In the event that a finer temporal and spatial resolution is desired for inventories of public unpaved roads, estimates can be based on a more complex set of assumptions. These assumptions include:

1. The moisture content of the road surface material is increased in proportion to the quantity of water added;

2. The moisture content of the road surface material is reduced in proportion to the Class A pan evaporation rate;

3. The moisture content of the road surface material is reduced in proportion to the traffic volume; and

4. The moisture content of the road surface material varies between the extremes observed in the area. The CHIEF Web site (http://www.epa.gov/ttn/chief/ap42/ch13/related/c13s02-2.html) has a file which contains a spreadsheet program for calculating emission factors which are temporally and spatially resolved. Information required for use of the spreadsheet program includes monthly Class A pan evaporation values, hourly meteorological data for precipitation, humidity and snow cover, vehicle traffic information, and road surface material information.

It is emphasized that <u>the simple assumption underlying Equation 2 and the more complex set of</u> <u>assumptions underlying the use of the procedure which produces a finer temporal and spatial resolution</u> have not been verified in any rigorous manner. For this reason, the quality ratings for either approach should be downgraded one letter from the rating that would be applied to Equation 1.

13.2.2.3 Controls¹⁸⁻²²

A wide variety of options exist to control emissions from unpaved roads. Options fall into the following three groupings:

1. <u>Vehicle restrictions</u> that limit the speed, weight or number of vehicles on the road;

2. <u>Surface improvement</u>, by measures such as (a) paving or (b) adding gravel or slag to a dirt road; and

3. Surface treatment, such as watering or treatment with chemical dust suppressants.

Available control options span broad ranges in terms of cost, efficiency, and applicability. For example, traffic controls provide moderate emission reductions (often at little cost) but are difficult to enforce. Although paving is highly effective, its high initial cost is often prohibitive. Furthermore, paving is not feasible for industrial roads subject to very heavy vehicles and/or spillage of material in transport. Watering and chemical suppressants, on the other hand, are potentially applicable to most industrial roads at moderate to low costs. However, these require frequent reapplication to maintain an acceptable level of control. Chemical suppressants are generally more cost-effective than water but not in cases of temporary roads (which are common at mines, landfills, and construction sites). In summary, then, one needs to consider not only the type and volume of traffic on the road but also how long the road will be in service when developing control plans.

<u>Vehicle restrictions</u>. These measures seek to limit the amount and type of traffic present on the road or to lower the mean vehicle speed. For example, many industrial plants have restricted employees from driving on plant property and have instead instituted bussing programs. This eliminates emissions due to employees traveling to/from their worksites. Although the heavier average vehicle weight of the busses increases the base emission factor, the decrease in vehicle-miles-traveled results in a lower overall emission rate.

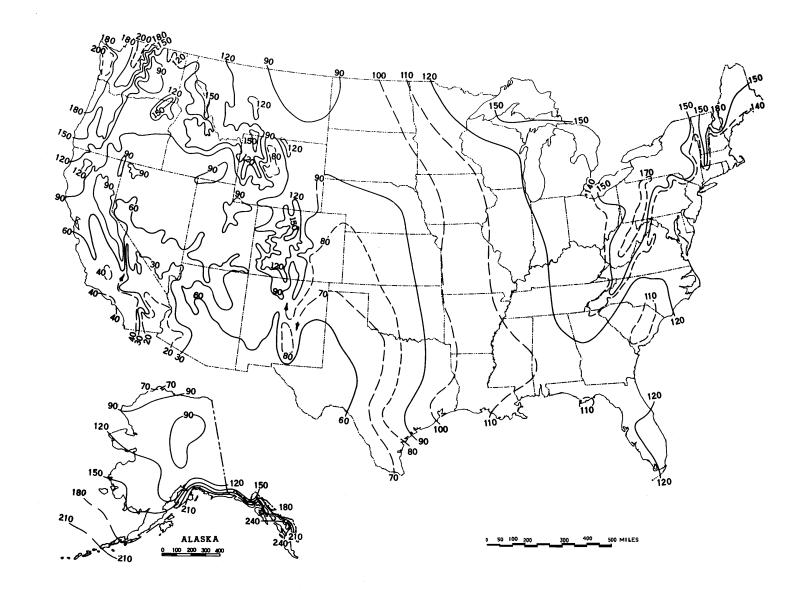


Figure 13.2.2-1. Mean number of days with 0.01 inch or more of precipitation in United States.

<u>Surface improvements</u>. Control options in this category alter the road surface. As opposed to the "surface treatments" discussed below, improvements are relatively "permanent" and do not require periodic retreatment.

The most obvious surface improvement is paving an unpaved road. This option is quite expensive and is probably most applicable to relatively short stretches of unpaved road with at least several hundred vehicle passes per day. Furthermore, if the newly paved road is located near unpaved areas or is used to transport material, it is essential that the control plan address routine cleaning of the newly paved road surface.

The control efficiencies achievable by paving can be estimated by comparing emission factors for unpaved and paved road conditions. The predictive emission factor equation for paved roads, given in Section 13.2.1, requires estimation of the silt loading on the traveled portion of the paved surface, which in turn depends on whether the pavement is periodically cleaned. Unless curbing is to be installed, the effects of vehicle excursion onto unpaved shoulders (berms) also must be taken into account in estimating the control efficiency of paving.

Other improvement methods cover the road surface with another material that has a lower silt content. Examples include placing gravel or slag on a dirt road. Control efficiency can be estimated by comparing the emission factors obtained using the silt contents before and after improvement. The silt content of the road surface should be determined after 3 to 6 months rather than immediately following placement. Control plans should address regular maintenance practices, such as grading, to retain larger aggregate on the traveled portion of the road.

<u>Surface treatments</u> refer to control options which require periodic reapplication. Treatments fall into the two main categories of (a) "wet suppression" (i. e., watering, possibly with surfactants or other additives), which keeps the road surface wet to control emissions and (b) "chemical stabilization/ treatment", which attempts to change the physical characteristics of the surface. The necessary reapplication frequency varies from several minutes for plain water under summertime conditions to several weeks or months for chemical dust suppressants.

Watering increases the moisture content, which conglomerates particles and reduces their likelihood to become suspended when vehicles pass over the surface. The control efficiency depends on how fast the road dries after water is added. This in turn depends on (a) the amount (per unit road surface area) of water added during each application; (b) the period of time between applications; (c) the weight, speed and number of vehicles traveling over the watered road during the period between applications; and (d) meteorological conditions (temperature, wind speed, cloud cover, etc.) that affect evaporation during the period. Figure 13.2.2-2 presents a simple bilinear relationship between the instantaneous control efficiency due to watering and the resulting increase in surface moisture. The moisture ratio "M" (i.e., the x-axis in Figure 13.2.2-2) is found by dividing the surface moisture content of the watered road by the surface moisture content of the uncontrolled road. As the watered road surface dries, both the ratio M and the predicted instantaneous control efficiency (i.e., the y-axis in the figure) decrease. The figure shows that between the uncontrolled moisture content and a value twice as large, a small increase in moisture content results in a large increase in control efficiency. Beyond that, control efficiency grows slowly with increased moisture content.

Given the complicated nature of how the road dries, characterization of emissions from watered roadways is best done by collecting road surface material samples at various times between water truck passes. (Appendices C.1 and C.2 present the sampling and analysis procedures.) The moisture content measured can then be associated with a control efficiency by use of Figure 13.2.2-2. Samples that reflect average conditions during the watering cycle can take the form of either a series of samples between water applications or a single sample at the midpoint. It is essential that samples be collected during periods with active traffic on the road. Finally, because of different evaporation rates, it is recommended that samples be collected at various times during the year. If only one set of samples is to be collected, these must be collected during hot, summertime conditions.

When developing watering control plans for roads that do not yet exist, it is strongly recommended that the moisture cycle be established by sampling similar roads in the same geographic area. If the moisture cycle cannot be established by similar roads using established watering control plans, the more complex methodology used to estimate the mitigation of rainfall and other precipitation can be used to estimate the control provided by routine watering. An estimate of the maximum daytime Class A pan evaporation (based upon daily evaporation data published in the monthly Climatological Data for the state by the National Climatic Data Center) should be used to insure that adequate watering capability is available during periods of highest evaporation. The hourly precipitation values in the spreadsheet should be replaced with the equivalent inches of precipitation (where the equivalent of 1 inch of precipitation is provided by an application of 5.6 gallons of water per square yard of road). Information on the long term average annual evaporation and on the percentage that occurs between May and October was published in the Climatic Atlas (Reference 16). Figure 13.2.2-3 presents the geographical distribution for "Class A pan evaporation" throughout the United States. Figure 13.2.2-4 presents the geographical distribution of the percentage of this evaporation that occurs between May and October. The U.S. Weather Bureau Class A evaporation pan is a cylindrical metal container with a depth of 10 inches and a diameter of 48 inches. Periodic measurements are made of the changes of the water level.

The above methodology should be used <u>only for prospective analyses</u> and for designing watering programs for existing roadways. The quality rating of an emission factor for a watered road that is based on this methodology should be downgraded two letters. Periodic road surface samples should be collected and analyzed to verify the efficiency of the watering program.

As opposed to watering, chemical dust suppressants have much less frequent reapplication requirements. These materials suppress emissions by changing the physical characteristics of the existing road surface material. Many chemical unpaved road dust suppressants form a hardened surface that binds particles together. After several applications, a treated road often resembles a paved road except that the surface is not uniformly flat. Because the improved surface results in more grinding of small particles, the silt content of loose material on a highly controlled surface may be substantially higher than when the surface was uncontrolled. For this reason, the models presented as Equations 1a and 1b cannot be used to estimate emissions from chemically stabilized roads. Should the road be allowed to return to an

uncontrolled state with no visible signs of large-scale cementing of material, the Equation 1a and 1b emission factors could then be used to obtain conservatively high emission estimates.

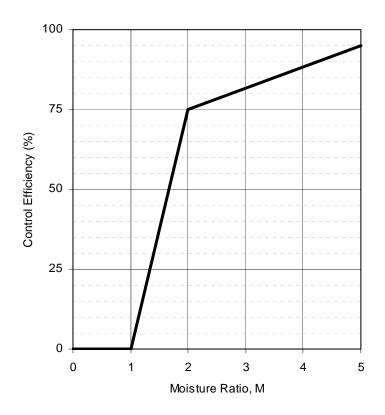


Figure 13.2.2-2. Watering control effectiveness for unpaved travel surfaces

The control effectiveness of chemical dust suppressants appears to depend on (a) the dilution rate used in the mixture; (b) the application rate (volume of solution per unit road surface area); (c) the time between applications; (d) the size, speed and amount of traffic during the period between applications; and (e) meteorological conditions (rainfall, freeze/thaw cycles, etc.) during the period. Other factors that affect the performance of dust suppressants include other traffic characteristics (e. g., cornering, track-on from unpaved areas) and road characteristics (e. g., bearing strength, grade). The variabilities in the above factors and differences between individual dust control products make the control efficiencies of chemical dust suppressants difficult to estimate. Past field testing of emissions from controlled unpaved roads has shown that chemical dust suppressants provide a PM-10 control efficiency of about 80 percent when applied at regular intervals of 2 weeks to 1 month.

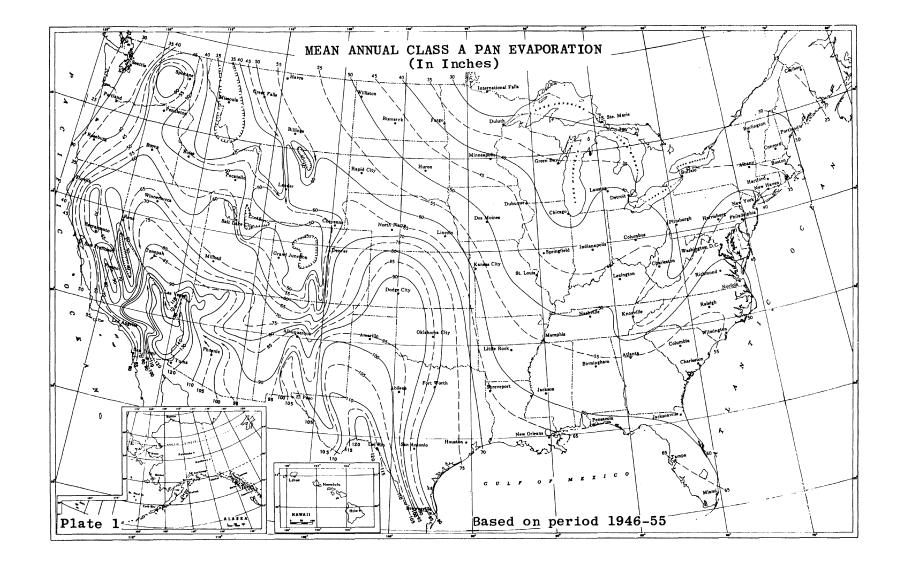


Figure 13.2.2-3. Annual evaporation data.

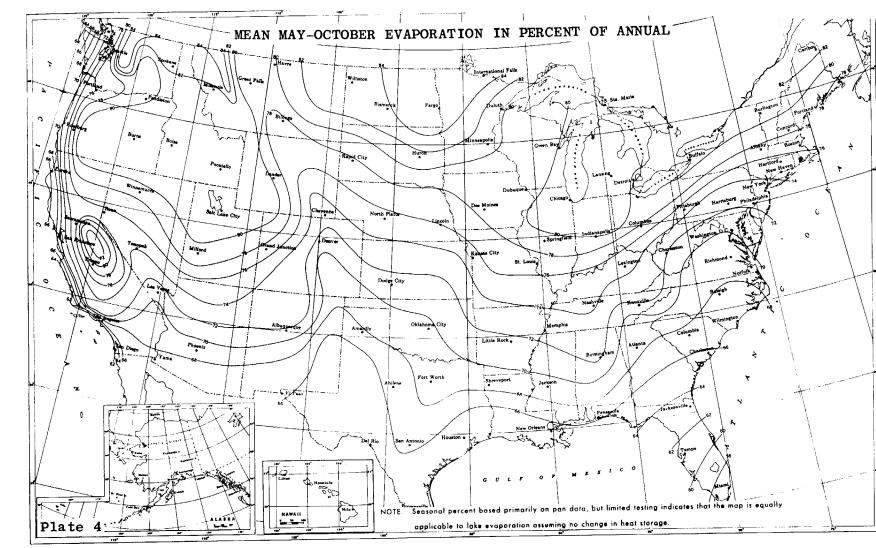


Figure 13.2.2-4. Geographical distribution of the percentage of evaporation occurring between May and October.

Petroleum resin products historically have been the dust suppressants (besides water) most widely used on industrial unpaved roads. Figure 13.2.2-5 presents a method to estimate average control efficiencies associated with petroleum resins applied to unpaved roads.²⁰ Several items should be noted:

1. The term "ground inventory" represents the total volume (per unit area) of petroleum resin concentrate (*not solution*) applied since the start of the dust control season.

2. Because petroleum resin products must be periodically reapplied to unpaved roads, the use of a time-averaged control efficiency value is appropriate. Figure 13.2.2-5 presents control efficiency values averaged over two common application intervals, 2 weeks and 1 month. Other application intervals will require interpolation.

3. Note that zero efficiency is assigned until the ground inventory reaches 0.05 gallon per square yard (gal/yd^2). Requiring a minimum ground inventory ensures that one must apply a reasonable amount of chemical dust suppressant to a road before claiming credit for emission control. Recall that the ground inventory refers to the amount of petroleum resin concentrate rather than the total solution.

As an example of the application of Figure 13.2.2-5, suppose that Equation 1a was used to estimate an emission factor of 7.1 lb/VMT for PM-10 from a particular road. Also, suppose that, starting on May 1, the road is treated with 0.221 gal/yd² of a solution (1 part petroleum resin to 5 parts water) on the first of each month through September. Then, the average controlled emission factors, shown in Table 13.2.2-5, are found.

Period	Ground Inventory, gal/yd ²	Average Control Efficiency, % ^a	Average Controlled Emission Factor, lb/VMT
May	0.037	0	7.1
June	0.073	62	2.7
July	0.11	68	2.3
August	0.15	74	1.8
September	0.18	80	1.4

Table 13.2-2-5. EXAMPLE OF AVERAGE CONTROLLED EMISSION FACTORSFOR SPECIFIC CONDITIONS

^a From Figure 13.2.2-5, $\leq 10 \,\mu$ m. Zero efficiency assigned if ground inventory is less than 0.05 gal/yd². 1 lb/VMT = 281.9 g/VKT. 1 gal/yd² = 4.531 L/m².

Besides petroleum resins, other newer dust suppressants have also been successful in controlling emissions from unpaved roads. Specific test results for those chemicals, as well as for petroleum resins and watering, are provided in References 18 through 21.

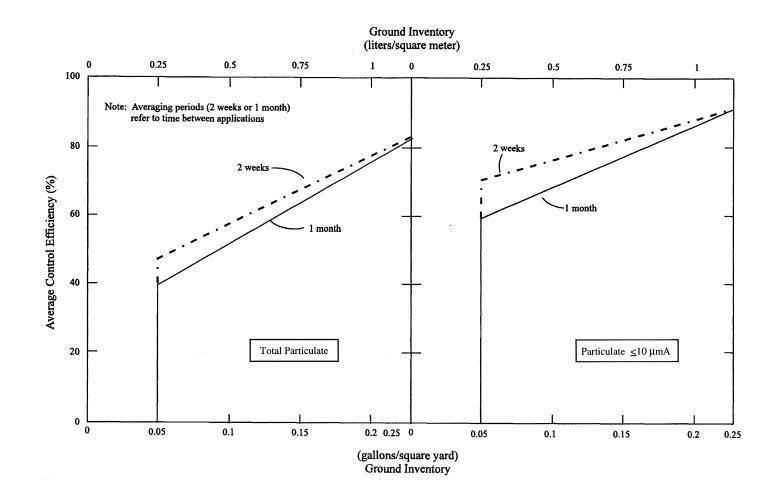


Figure 13.2.2-5. Average control efficiencies over common application intervals.

Source Category	Control Measure	Published PM10 Control Efficiency
Agricultural Tilling	Reduce tilling during high winds	1 – 5%
	Roughen surface	15 - 64%
	Modify equipment	50%
	Employ sequential cropping	50%
	Increase soil moisture	90%
	Use other conservation management practices	25 - 100%
Agricultural Harvesting	Limited activity during high winds	5 - 70%
	Modify equipment	50%
	Night farming	10%
	New techniques for drying fruit	25 -60%
Construction/Demolition	Water unpaved surfaces	10 - 74%
	Limit on-site vehicle speed to 15 mph	57%
	Apply dust suppressant to unpaved areas	84%
	Prohibit activities during high winds	98%
Materials Handling	Implement wet suppression	50 - 90%
	Erect 3-sided enclosure around storage piles	75%
	Cover storage pile with a tarp during high winds	90%
Paved Roads	Sweep streets	4-26%
	Minimize trackout	40 - 80%
	Remove deposits on road ASAP	> 90%
Unpaved Roads	Limit vehicle speed to 25 mph	44%
I	Apply water	10 - 74%
	Apply dust suppressant	84%
	Pave the surface	>90%
Mineral Products Industry	Cyclone or muliclone	68 - 79%
	Wet scrubber	78 – 98%
	Fabric filter	99 - 99.8%
	Electrostatic precipitator	90 - 99.5%
Abrasive Blasting	Water spray	50-93%
	Fabric filter	> 95%
Livestock Husbandry	Daily watering of corrals and pens	> 10%
	Add wood chips or mulch to working pens	> 10%
Wind Erosion	Plant trees or shrubs as a windbreak	25%
(agricultural, open area, and	Create cross-wind ridges	24 - 93%
storage piles)	Erect artificial wind barriers	4 - 88%
	Apply dust suppressant or gravel	84%
	Revegetate; apply cover crop	90%
	Water exposed area before high winds	90%

Fugitive Dust Control Measures Applicable for the WRAP Region

SUSANA MARTINEZ GOVERNOR

JOHN A. SANCHEZ LIEUTENANT GOVERNOR

New Mexico ENVIRONMENT DEPARTMENT

505 Camino de los Marquez, Suite 1 Santa Fe, NM 87505 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov

BUTCH TONGATE CABINET SECRETARY-DESIGATE

JC BORREGO DEPUTY SECRETARY

DEPARTMENT ACCEPTED VALUES FOR: AGGREGATE HANDLING, STORAGE PILE, and HAUL ROAD EMISSIONS

TO: Applicants and Air Quality Bureau Permitting Staff

SUBJECT: Department accepted default values for percent silt, wind speed, moisture content, and control efficiencies for haul road control measures

This guidance document provides the Department accepted default values for correction parameters in the emission calculation equations for aggregate handling and storage piles emissions in construction permit applications and notices of intent submitted under 20.2.72 and 20.2.73 NMAC; and the Department accepted control efficiencies for haul road control measures for applications submitted under 20.2.72 NMAC.

Aggregate Handling and Storage Pile Emission Calculations

Applicants should calculate the particulate matter emissions from aggregate handling and storage piles using the EPA's AP-42 Chapter 13.2.4.

http://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0204.pdf

Equation 1 from Chapter 13.2.4 requires users to input values for two correction parameters, U and M, where U = mean wind speed and M = material moisture content. Below are the accepted values for U and M:

Default Values for Chapter 13.2.4, Equation 1:

Parameter	Default Value
U = Mean wind speed (miles per hour)	11 mph
M = Material moisture content (% water)	2%

Applicants must receive preapproval from the Department if they wish to assume a higher moisture content and/or a lower wind speed in these calculations. Higher moisture contents may require site specific testing either as a permit condition or submitted with the application. Applicants may assume higher wind speeds and lower percent moisture content in their calculations without prior approval from the Department.

Haul Road Emissions and Control Measure Efficiencies

Accepted Default Values for Aggregate Handling, Storage Piles, and Haul Roads Page 2 of 2

Applicants should calculate the particulate matter emissions from unpaved haul roads using the EPA's AP-42 Chapter 13.2.2. <u>http://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0202.pdf</u>

Equation 1(a) from Chapter 13.2.2 requires users to input values for two correction parameters, s and W, where s = surface material silt content (%) and W = mean vehicle weight (tons). The applicant should calculate the mean vehicle weight in accordance with the chapter's instructions. Below is the accepted value for the parameter s:

Default Values for Chapter 13.2.2, Equation 1(a):

Parameter	Default Value
s = surface material silt content (%)	4.8%

Applicants may use a higher silt content without prior approval from the Department. Use of a lower silt content requires prior approval from the Department and may require site specific testing in support of the request.

Equation 2 from Chapter 13.2.2 allows users to take credit for the number of days that receive precipitation in excess of 0.01 inches, in the annual emissions calculation, where P = number of days in a year with at least 0.01 inches of precipitation.

Default Values for Chapter 13.2.2, Equation 2:

Parameter	Default Value
P = number of days in a year with at least 0.01 inches of precipitation	70 days

Applications submitted under Part 72 <u>may</u> request to apply control measures to reduce the particulate matter emissions from facility haul roads. Applications submitted under Part 73 <u>may not</u> consider any emission reduction from control measures in the potential emission rate calculation, as registrations issued under Part 73 are not federally enforceable under the Clean Air Act or the New Mexico Air Quality Control Act. In order for those control measures to be federally enforceable, the controls must be a requirement in an air quality permit.

Below are the Department accepted control efficiencies for various haul road control measures:

Haul Road Control Measures and Control Efficiency:

Control Measure	Control Efficiency
None	0%
Base course or watering	60%
Base course and watering	80%
Base course and surfactant	90%
Paved and Swept	95%

TCEQ Emission Factors

Development of TNRCC Emission Factors

In 1994, the TNRCC published emission factors primarily based on statistical data from the original study performed by the CMA and EPA in 1983. To achieve higher accuracy for estimating actual emissions from elevated flares, the TNRCC emission factors accounted for the flare type and lower heating value of the relief gas. The emission factors developed by the TNRCC are shown below in Table 1.

Table 1. Emission factors developed by the TNRCC for NOx and CO						
Туре	Waste Gas	NOx Ib/MM Btu of Waste Gas	CO Ib/MM Btu of Waste Gas			
Steam-Assisted	High Btu (>1000/scf	0.0485	0.3503			
Steam-Assisted	Low Btu (192-1000/scf)	0.0680	0.3465			
Air and Non-Assisted	High Btu (>1000/scf	0.1380	0.2755			
Air and Non-Assisted	Low Btu (184-1000/scf)	0.0641	0.5496			

Upon reviewing the statistical data collected during the CMA testing, the emission factors shown in Table 1 reflect an average of the derived NO_x and CO emission factors pertaining to the flare type and lower heating value of the relief gas. When calculating the emission factors for steam-assisted flares relieving a low Btu waste gas and air-assisted flares relieving a high Btu waste gas, all test data collected during the CMA testing was included in the average of the derived emission factors.

In order to calculate emission factors for the remaining categories, multiple tests had to be disregarded due to various reasons. For instance, during testing in the high Btu steam-assisted category, the emission probe was placed into the flare flame during test 67, resulting in a substantial increase in the concentration level of both THC and carbon monoxide. During tests 61 and 55, it was noted that the flare was capped by the assist steam, contributing to destruction efficiencies well below 98%. Omitting tests 67, 61 and 55 from the high Btu steam-assisted waste gas data, the average of the derived NO_x and CO emission factor of the remaining tests resulted in the values shown above in Table 1.

To calculate the emission factor for air and non-assisted flares relieving low Btu waste gas, certain CMA test data were excluded in the calculation performed by TNRCC. Upon detailed review of the CMA test data, one possible method for calculating the emission factors in Table 1 entails disregarding tests 66, 29, 29a, 29b, and 62. Reasoning for this assumption may be due to the lower heating value of the relief gas being below 184 Btu/SCF. However, data from test 33 appears to be included in the overall average

Table II: Facility/Compound Specific Fugitive Emission Factors

Equipment/Service	Compound Specific See Section I for more information				Facility Specific ¹				
	Ethylene Oxide ² w/LDAR	Phosgene ³ w/LDAR	Butadiene w/LDAR ⁴	Petroleum Marketing Terminal ^{5, 6} w/28PET	Oil and (Gas ProductionOperation [®]			Refinery 6
					Gas	Heavy Oil < 20 API	Light Oil	Water/ Light Oil	
Valves					0.00992	0.0000185	0.0055	0.000216	
Gas/Vapor	0.000444	0.00000216	0.001105	0.0000287					0.059
Light Liquid	0.00055	0.00000199	0.00314	0.0000948					0.024
Heavy Liquid				0.0000948					0.00051
Pumps	0.042651	0.0000201	0.05634		0.00529	0.00113 ⁷	0.02866	0.000052	
Light Liquid				0.00119					0.251
Heavy Liquid				0.00119					0.046
Flanges/Connectors ¹¹	0.000555	0.00000011	0.000307		0.00086	0.0000086	0.000243	0.000006	0.00055
					0.00044	0.0000165	0.000463	0.000243	
Gas/Vapor				0.000092604					
Light Liquid				0.00001762					
Heavy Liquid				0.0000176					
Compressors	0.000767		0.000004		0.0194	0.0000683	0.0165	0.0309	1.399
Relief Valve	0.000165	0.0000162	0.02996		0.0194	0.0000683	0.0165	0.0309	0.35
Open-ended Lines ⁸	0.001078	0.0000007	0.00012		0.00441	0.000309	0.00309	0.00055	0.0051
Sampling ⁹	0.000088		0.00012						0.033
Other ¹⁰	1				0.0194	0.0000683	0.0165	0.0309	
Gas/Vapor				0.000265					
Light/Heavy Liquid				0.000287					
Process Drains					0.0194	0.0000683	0.0165	0.0309	0.07

Endnotes Table II

- ¹ Factors give the total organic compound emission rate. Multiply by the weight percent of non-methane, non-ethane organics to get the VOC emission rate.
- ² These emission factors require the use of the 28MID fugitive program. Monitoring must occur at a leak definition of 500 ppmv. No additional control credit can be applied to these factors except 28CNTQ and 28CNTA. Emission factors are from EOIC Fugitive Emission Study, summer 1988.
- ³ These emission factors require the use of the 28MID fugitive program. Monitoring must occur at a leak definition of 50 ppmv. No additional control credit can be applied to these factors. Emission factors are from Phosgene Panel Study, summer 1988.
- ⁴ These emission factors require the use of the 28MID fugitive program. Monitoring must occur at a leak definition of 100 ppmv. No additional control credit can be applied to these factors. Emission factors are from Randall, J. L., et al., Radian Corporation. Fugitive Emissions from the 1,3-butadiene Production Industry: A Field Study. Final Report. Prepared for the 1,3-Butadiene Panel for the Chemical Manufacturers Association. April 1989.
- ⁵ Control credit is included in the factor; no additional control credit can be applied to these factors. Monthly 28 PET inspection is required.
- ⁶ Factors are taken from EPA Document EPA-453/R-95-017, November 1995, pages 2-13, 2-14, and 2-15.
- ⁷ Heavy liquid oil Pump factor was not derived during the API study. The factor is the SOCMI without C₂ Heavy Liquid – Pump factor with a 93% reduction credit for the physical inspection.

Table III: Leak Detection and Repair (LDAR) Program Instrument Monitoring Options

LDAR Program	28M	28RCT	28VHP	28MID	28LAER	28CNTQ	28CNTA
Leak Definition for Pumps and Compressors	10,000 ppmv	10,000 ppmv	2,000 ppmv	500 ppmv	500 ppmv	N/A	N/A
Leak Definition for All Other Components	10,000 ppmv	500 ppmv	500 ppmv	500 ppmv	500 ppmv	500 ppmv	500 ppmv
Applicable Vapor Pressure	>0.5 psia at 100°F	>0.044 psia at 68°F	>0.044 psia at 68°F	>0.044 psia at 68°F	>0.044 psia at 68°F	>0.044 psia at 68°F	>0.044 psia at 68°F
Monitoring Frequency	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Annually
Directed/Nondirected Maintenance	Nondirected	Nondirected	Nondirected	Directed	Directed	Nondirected	Nondirected
Most Common State/Federal Programs with Similar Requirements	40 CFR Part 60 Subpart VV 40 CFR Part 61 30 TAC §115.322	30 TAC §115.352 ¹	40 CFR Part 60 Subpart VVa 40 CFR Part 63 Subparts H, CC	N/A	Nonattainment NSR	N/A	40 CFR Part 60Subpart VVa, 40 CFR Part 63 Subparts H, CC
	•	•			•	•	•

Endnotes Table III

¹ Except in Gregg, Nueces, and Victoria Counties where 28M applies.

Equipment/Service	28M	28RCT	28VHP	28MID	28LAER	28CNTQ	28CNTA	28PI	28AVO ⁹
Valves ¹									97%
Gas/Vapor	75%	97%	97%	97%	97%			30%	
Light Liquid	75%	97%	97%	97%	97%			30%	
Heavy Liquid⁵	0% ⁶	0% ⁶	0% ⁶	0% ⁶	30% ^{6, 8}			30% ⁸	
Pumps ¹									93%
Light Liquid	75%	75%	85%	93%	93%			30%	
Heavy Liquid ^⁵	0%	0%7	0%7	0% ^{8, 10}	30% ⁸			30% ⁸	
Flanges/Connectors ¹	30%	30%	30%	30%				30%	97%
Gas/Vapor					97%	97%	75%		
Light Liquid					97%	97%	75%		
Heavy Liquid ⁸					30%	30%	30%		
Compressors ¹	75%	75%	85%	95%	95%			30%	95%
Relief Valves ^{1, 2} (Gas/Vapor)	75%	97%	97%	97%	97%			30%	97%
Sampling Connection ³ (pounds per hour per sample taken)	0%	0%	0%	0%	0%			0%	0%
Open Ended Lines ^{1, 4}									

Table V: Control Efficiencies for LDAR

It should be noted in the application and added to the permit conditions if any of the footnotes are applicable. For example, if components in heavy liquid service are monitored, then the application should include the monitored concentration and the concentration of saturation, in ppmv and such monitoring will be added as a separate condition.

Endnotes Table V

- ¹ Control efficiencies apply only to components that are actually monitored. Control efficiencies do not apply to components that are difficult or unsafe-to-monitor on the standard schedule. However, difficult-to-monitor gas or light liquid valves under the 28RCT, 28VHP, 28MID, or 28LAER programs that are monitored once per year may apply a 75% reduction credit.
- ² 100% control may be taken if a relief valve vents to an operating control device or if it is equipped with a rupture disc and a pressure-sensing device between the valve and disc to monitor for disc integrity. For new facilities, BACT guidelines generally require that all relief valves vent to a control device. When there are safety reasons that the relief valve cannot achieve 100% control, the relief valve can be monitored under the LDAR programs for the credit listed. This monitoring must be performed regardless of whether the relief valve is considered accessible, difficult-to-monitor or unsafe-to-monitor. Relief valves that do not achieve 100% control should not be built in locations that are unsafe-to-monitor.
- ³ Sampling connection control efficiencies are covered under other equipment and services. Sampling emissions are based on the number of samples taken per year as opposed to the number of connections. Fugitives for a closed loop sampling system are based on the component count.
- ⁴ Good design criteria for special chemicals handling and most LDAR programs require open-ended lines to be equipped with an appropriately sized cap, blind flange, plug, or a second valve. If so equipped, open-ended lines may be given a 100% control credit. Regardless of the lines given 100% credit, these lines should be mentioned in permit applications. Exceptions to the LDAR program criteria may be made for safety reasons with the approval of TCEQ management.

40 CFR 98 Emission Factors

eCFR :: Table C-1 to Subpart C of Part 98, Title 40 -- Default CO2 Emission Factors and High Heat Values for Various Types of Fuel This content is from the eCFR and is authoritative but unofficial.

Displaying title 40, up to date as of 8/24/2023. Title 40 was last amended 8/24/2023.

Title 40—**Protection of Environment Chapter I** – Environmental Protection Agency Subchapter C — Air Programs Part 98 – Mandatory Greenhouse Gas Reporting Subpart C – General Stationary Fuel Combustion Sources

• Table C-1 to Subpart C of Part 98–Default CO₂ Emission Factors and High Heat Values for Various Types of Fuel

Default CO₂ Emission Factors and High Heat Values for Various Types of Fuel

Fuel type	Default high heat value	Default CO ₂ emission factor
Coal and coke	mmBtu/short ton	kg CO ₂ /mmBtu
Anthracite	25.09	103.69
Bituminous	24.93	93.28
Subbituminous	17.25	97.17
Lignite	14.21	97.72
Coal Coke	24.80	113.67
Mixed (Commercial sector)	21.39	94.27
Mixed (Industrial coking)	26.28	93.90
Mixed (Industrial sector)	22.35	94.67
Mixed (Electric Power sector)	19.73	95.52
Natural gas	mmBtu/scf	kg CO ₂ /mmBtu
(Weighted U.S. Average)	1.026 × 10 ⁻³	53.06
Petroleum products-liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Distillate Fuel Oil No. 1	0.139	73.25
Distillate Fuel Oil No. 2	0.138	73.96
Distillate Fuel Oil No. 4	0.146	75.04
Residual Fuel Oil No. 5	0.140	72.93
Residual Fuel Oil No. 6	0.150	75.10
Used Oil	0.138	74.00

Fuel type	Default high heat value	Default CO ₂ emission factor
Kerosene	0.135	75.20
Liquefied petroleum gases (LPG) ¹	0.092	61.71
Propane ¹	0.091	62.87
Propylene ²	0.091	67.77
Ethane ¹	0.068	59.60
Ethanol	0.084	68.44
Ethylene ²	0.058	65.96
Isobutane ¹	0.099	64.94
Isobutylene ¹	0.103	68.86
Butane ¹	0.103	64.7
Butylene ¹	0.105	68.72
Naphtha (<401 deg F)	0.125	68.0
Natural Gasoline	0.110	66.8
Other Oil (>401 deg F)	0.139	76.2
Pentanes Plus	0.110	70.0
Petrochemical Feedstocks	0.125	71.0
Special Naphtha	0.125	72.34
Unfinished Oils	0.139	74.5
Heavy Gas Oils	0.148	74.9
Lubricants	0.144	74.2
Motor Gasoline	0.125	70.2
Aviation Gasoline	0.120	69.2
Kerosene-Type Jet Fuel	0.135	72.2
Asphalt and Road Oil	0.158	75.30
Crude Oil	0.138	74.54
Petroleum products—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Petroleum Coke	30.00	102.41

Fuel type	Default high heat value	Default CO ₂ emission factor
Petroleum products—gaseous	mmBtu/scf	kg CO ₂ /mmBtu.
Propane Gas	2.516 × 10 ^{−3}	61.46.
Other fuels-solid	mmBtu/short ton	kg CO ₂ /mmBtu
Municipal Solid Waste	9.95 ³	90.7
Tires	28.00	85.97
Plastics	38.00	75.00
Other fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Blast Furnace Gas	0.092 × 10 ⁻³	274.32
Coke Oven Gas	0.599 × 10 ⁻³	46.85
Fuel Gas ⁴	1.388 × 10 ⁻³	59.00
Biomass fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Wood and Wood Residuals (dry basis) ⁵	17.48	93.80
Agricultural Byproducts	8.25	118.17
Peat	8.00	111.84
Solid Byproducts	10.39	105.51
Biomass fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Landfill Gas	0.485 × 10 ⁻³	52.07
Other Biomass Gases	0.655 × 10 ^{−3}	52.07
Biomass Fuels–Liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Ethanol	0.084	68.44
Biodiesel (100%)	0.128	73.84
Rendered Animal Fat	0.125	71.06
Vegetable Oil	0.120	81.55

¹ The HHV for components of LPG determined at 60 °F and saturation pressure with the exception of ethylene.

 2 Ethylene HHV determined at 41 °F (5 °C) and saturation pressure.

³ Use of this default HHV is allowed only for: (a) Units that combust MSW, do not generate steam, and are allowed to use Tier 1; (b) units that derive no more than 10 percent of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year.

8/28/23, 1:25 PM

M eCFR :: Table C-1 to Subpart C of Part 98, Title 40 -- Default CO2 Emission Factors and High Heat Values for Various Types of Fuel

⁴ Reporters subject to subpart X of this part that are complying with § 98.243(d) or subpart Y of this part may only use the default HHV and the default CO_2 emission factor for fuel gas combustion under the conditions prescribed in § 98.243(d) (2)(i) and (d)(2)(ii) and § 98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4.

⁵ Use the following formula to calculate a wet basis HHV for use in Equation C-1: HHV_w = ((100 - M)/100)*HHV_d where HHV_w = wet basis HHV, M = moisture content (percent) and HHV_d = dry basis HHV from Table C-1.

[78 FR 71950, Nov. 29, 2013, as amended at 81 FR 89252, Dec. 9, 2016]

This content is from the eCFR and is authoritative but unofficial.

Displaying title 40, up to date as of 8/24/2023. Title 40 was last amended 8/24/2023.

Title 40 — Protection of Environment Chapter I — Environmental Protection Agency Subchapter C — Air Programs Part 98 — Mandatory Greenhouse Gas Reporting Subpart C — General Stationary Fuel Combustion Sources

⊙ Table C-2 to Subpart C of Part 98—Default CH₄ and N₂O Emission Factors for Various Types of Fuel

Fuel type	Default CH₄ emission factor (kg CH₄/mmBtu)	Default N ₂ O emission factor (kg N ₂ O/mmBtu)
Coal and Coke (All fuel types in Table C–1)	1.1 × 10 ⁻⁰²	1.6 × 10 ⁻⁰³
Natural Gas	1.0×10^{-03}	1.0×10^{-04}
Petroleum Products (All fuel types in Table C−1)	3.0 × 10 ⁻⁰³	6.0×10^{-04}
Fuel Gas	3.0×10^{-03}	6.0×10^{-04}
Other Fuels-Solid	3.2×10^{-02}	4.2×10^{-03}
Blast Furnace Gas	2.2×10^{-05}	1.0×10^{-04}
Coke Oven Gas	4.8×10^{-04}	1.0×10^{-04}
Biomass Fuels—Solid (All fuel types in Table C–1, except wood and wood residuals)	3.2 × 10 ⁻⁰²	4.2×10^{-03}
Wood and wood residuals	7.2×10^{-03}	3.6×10^{-03}
Biomass Fuels—Gaseous (All fuel types in Table C–1)	3.2 × 10 ⁻⁰³	6.3×10^{-04}
Biomass Fuels—Liquid (All fuel types in Table C–1)	1.1 × 10 ⁻⁰³	1.1×10^{-04}

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1g of CH₄/mmBtu.

[78 FR 71952, Nov. 29, 2013, as amended at 81 FR 89252, Dec. 9, 2016]

LII > Electronic Code of Federal Regulations (e-CFR)

- > Title 40—Protection of Environment
- > CHAPTER I—ENVIRONMENTAL PROTECTION AGENCY
- > SUBCHAPTER C—AIR PROGRAMS
- > PART 98—MANDATORY GREENHOUSE GAS REPORTING
- > Subpart W—Petroleum and Natural Gas Systems
- > § 98.233 Calculating GHG emissions.

40 CFR § 98.233 - Calculating GHG emissions.

CFR

§ 98.233 Calculating GHG emissions.

You must calculate and report the annual GHG emissions as prescribed in this section. For calculations that specify measurements in actual conditions, reporters may use a flow or volume measurement system that corrects to standard conditions and determine the flow or volume at standard conditions; otherwise, reporters must use average atmospheric conditions or typical operating conditions as applicable to the respective monitoring methods in this section.

(a) *Natural gas pneumatic device venting.* Calculate CH⁴ and CO² volumetric emissions from continuous high bleed, continuous low bleed, and intermittent bleed <u>natural gas</u> pneumatic devices using Equation W–1 of this section.

$$E_{s,i} = \sum_{i=1}^{3} \text{Count}_{i} * \text{EF}_{i} * \text{GHG}_{i} * T_{i} (\text{Eq. W-1})$$

Where:

40 CFR § 98.233 - Calculating GHG emissions. | Electronic Code of Federal Regulations (e-CFR) | US Law | LII / Legal Informati...

(4) Calculate both CH⁴ and CO² volumetric and mass emissions from volumetric <u>natural gas</u> emissions using calculations in paragraphs (u) and (v) of this section.

(5) Calculate emissions from associated <u>natural gas</u> if emissions are routed to a <u>flare</u> as specified in paragraphs (m)(5)(i) and (ii) of this section.

(i) Use the associated <u>natural gas</u> volume and gas composition as determined in paragraph (m)(1) through (4) of this section.

(ii) Use the calculation method of <u>flare</u> stacks in <u>paragraph</u> (n) of this section to determine associated gas emissions from the flare.

(n) *Flare stack emissions.* Calculate CO^2 , CH^4 , and N^2O emissions from a <u>flare</u> stack as specified in paragraphs (n)(1) through (9) of this section.

(1) If <u>you</u> have a continuous flow measurement device on the <u>flare</u>, <u>you</u> must use the measured flow volumes to calculate the <u>flare</u> gas emissions. If all of the <u>flare</u> gas is not measured by the existing flow measurement device, then the flow not measured can be estimated using engineering calculations based on best available data or <u>company records</u>. If <u>you</u> do not have a continuous flow measurement device on the <u>flare</u>, <u>you</u> can use engineering calculations based on process knowledge, company records, and best available data.

(2) If <u>you</u> have a continuous gas composition analyzer on gas to the <u>flare</u>, <u>you</u> must use these compositions in calculating emissions. If <u>you</u> do not have a continuous gas composition analyzer on gas to the <u>flare</u>, <u>you</u> must use the appropriate gas compositions for each stream of hydrocarbons going to the <u>flare</u> as specified in paragraphs (n)(2)(i) through (iii) of this section.

(i) For onshore <u>natural gas</u> production and onshore <u>petroleum</u> and <u>natural gas</u> gathering and boosting, determine the GHG mole fraction using <u>paragraph (u)(2)(i)</u> of this section.

(ii) For onshore natural gas processing, when the stream going to flare is natural gas, use the GHG mole fraction in feed natural gas for all streams upstream of the de-methanizer or dew point control, and GHG mole fraction in facility specific residue gas to transmission pipeline systems for all emissions sources downstream of the de-methanizer overhead or dew point control for onshore natural gas processing facilities. For onshore natural gas processing plants that solely fractionate a liquid stream, use the GHG mole fraction in feed natural gas liquid for all streams.

(iii) For any industry segment required to report to <u>flare stack emissions</u> under <u>§</u> 98.232, when the stream going to the <u>flare</u> is a hydrocarbon <u>product</u> stream, such as methane, <u>ethane</u>, <u>propane</u>, butane, pentane-plus and mixed light

hydrocarbons, then <u>you</u> may use a representative composition from the source for the stream determined by engineering calculation based on process knowledge and best available data.

(3) Determine <u>flare combustion efficiency</u> from manufacturer. If not available, assume that flare combustion efficiency is 98 percent.

(4) Convert GHG volumetric emissions to standard conditions using calculations in paragraph (t) of this section.

(5) Calculate GHG volumetric emissions from flaring at standard conditions using Equations W–19 and W–20 of this section.

$$E_{s, CH4} = V_s * X_{CH4} * [(1 - \eta) * Z_L + Z_U]$$
(Eq. W-19)
$$E_{s, CO2} = V_s * X_{CO2} + \sum_{j=1}^{5} (\eta \times V_s \times Y_j \times R_j \times Z_L)$$
(Eq. W-20)

Where:

 $E^{s,CH4}$ = Annual CH⁴ emissions from flare stack in cubic feet, at standard conditions. $E^{s,CO2}$ = Annual CO² emissions from flare stack in cubic feet, at standard conditions.

 V^{s} = Volume of gas sent to flare in standard cubic feet, during the year as determined in paragraph (n)(1) of this section.

 η = Flare combustion efficiency, expressed as fraction of gas combusted by a burning flare (default is 0.98).

 X^{CH4} = Mole fraction of CH⁴ in the feed gas to the flare as determined in <u>paragraph (n)</u> (2) of this section.

 X^{CO2} = Mole fraction of CO² in the feed gas to the flare as determined in paragraph (n) (2) of this section.

 Z^{U} = Fraction of the feed gas sent to an un-lit flare determined by engineering estimate and process knowledge based on best available data and operating records.

 Z^{L} = Fraction of the feed gas sent to a burning flare (equal to 1 – Z^{U}).

Y^j = Mole fraction of hydrocarbon constituents j (such as methane, ethane, propane, butane, and pentanes-plus) in the feed gas to the flare as determined in <u>paragraph (n)</u> (1) of this section.

R^j = Number of carbon atoms in the hydrocarbon constituent j in the feed gas to the flare: 1 for methane, 2 for ethane, 3 for propane, 4 for butane, and 5 for pentanes-plus).

(6) Calculate both CH⁴ and CO² mass emissions from volumetric emissions using calculation in paragraph (v) of this section.

(7) Calculate N²O emissions from <u>flare</u> stacks using Equation W–40 in <u>paragraph (z)</u> of this section.

40 CFR § 98.233 - Calculating GHG emissions. | Electronic Code of Federal Regulations (e-CFR) | US Law | LII / Legal Informati...

(8) If <u>you</u> operate and maintain a CEMS that has both a CO² concentration monitor and volumetric flow rate monitor for the combustion gases from the <u>flare</u>, <u>you</u> must calculate only CO² emissions for the <u>flare</u>. <u>You</u> must follow the Tier 4 Calculation Method and all associated calculation, quality assurance, reporting, and recordkeeping requirements for Tier 4 in <u>subpart C</u> of this part (General Stationary <u>Fuel</u> Combustion Sources). If a CEMS is used to calculate <u>flare</u> stack emissions, the requirements specified in paragraphs (n)(1) through (7) of this section are not required.

(9) The <u>flare</u> emissions determined under this paragraph (n) must be corrected for <u>flare</u> emissions calculated and reported under other paragraphs of this section to avoid double counting of these emissions.

(o) *Centrifugal compressor venting.* If you are required to report emissions from centrifugal compressor venting as specified in § 98.232(d)(2), (e)(2), (f)(2), (g)(2), and (h) (2), you must conduct volumetric emission measurements specified in paragraph (o)(1) of this section using methods specified in paragraphs (o)(2) through (5) of this section; perform calculations specified in paragraphs (o)(6) through (9) of this section; and calculate CH⁴ and CO² mass emissions as specified in paragraph (o)(11) of this section. If emissions from a compressor source are routed to a flare, paragraphs (o)(1) through (11) do not apply and instead you must calculate CH⁴, CO², and N²O emissions as specified in paragraph (o)(12) of this section. If emissions from a compressor source are captured for fuel use or are routed to a thermal oxidizer, paragraphs (o)(1) through (12) do not apply and instead you must calculate and report emissions as specified in subpart C of this part. If emissions from a compressor source are routed to vapor recovery, paragraphs (o)(1) through (12) do not apply. If you are required to report emissions from centrifugal compressor venting at an onshore petroleum and natural gas production facility as specified in § 98.232(c)(19) or an onshore petroleum and natural gas gathering and boosting facility as specified in § 98.232(j)(8), you must calculate volumetric emissions as specified in paragraph (o)(10); and calculate CH⁴ and CO^2 mass emissions as specified in paragraph (o)(11).

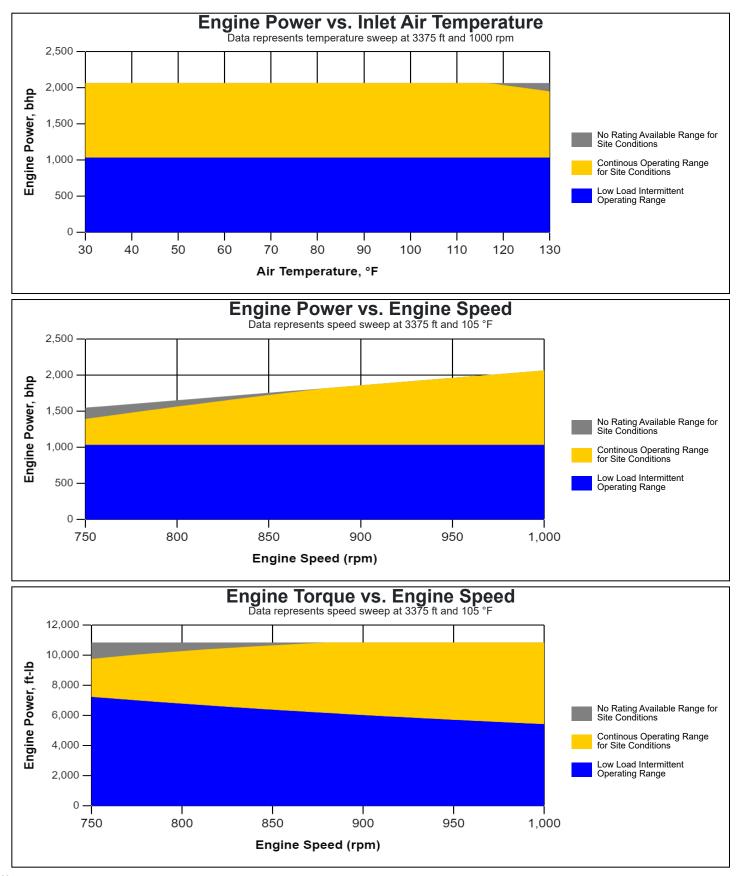
(1) General requirements for conducting volumetric emission measurements. You must conduct volumetric emission measurements on each centrifugal compressor as specified in this paragraph. Compressor sources (as defined in § 98.238) without manifolded vents must use a measurement method specified in paragraph (o)(1)(i) or (ii) of this section. Manifolded compressor sources (as defined in § 98.238) must use a measurement method specified in § 98.238) must use a measurement method specified in § 98.238) must section.

(i) <u>Centrifugal compressor</u> source as found measurements. Measure venting from each <u>compressor</u> according to either paragraph (o)(1)(i)(A) or (B) of this section at least once annually, based on the compressor mode (as defined in § 98.238) in

Engine Specifications – CAT 3606s

G3606

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Eric Miller - Northwind 3606 Compressors



GAS COMPRESSION APPLICATION ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER - STAGE 1/STAGE 2 INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOX): SET POINT TIMING:	1000 7.6 SCAC 174 / 130 190 TA JW+1AC, OC+2AC ADEM4 DRY LOW EMISSION 0.3 18	RATII FUEL FUEL FUEL FUEL FUEL ALTIT		I <mark>S:</mark> E RANGE(psia): (S NUMBER: ›f):	,		CONTINUOUS GAV
				MAX RATING		G AT MAX INLE	
RATING		NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER INLET AIR TEMPERATURE	(WITHOUT FAN)	(2)	bhp °F	2065 105	2065 105	1549 105	1033 105
		9	F	105	105	105	105
ENGINE DATA							
FUEL CONSUMPTION (LHV) FUEL CONSUMPTION (HHV) AIR FLOW (@inlet air temp, 14.7 psia)	(WET)	(3) (3) (4)(5)	Btu/bhp-hr Btu/bhp-hr ft3/min	6817 7563 5536	6817 7563 5536	7113 7892 4206	7659 8497 2877
AIR FLOW	(WET)	(4)(5)	lb/hr	23329	23329	17724	12125
FUEL FLOW (60°F, 14.7 psia)		(0)	scfm	254	254	199	143
INLET MANIFOLD PRESSURE EXHAUST TEMPERATURE - ENGINE OUTLET		(6) (7)	psi(abs) °F	57.0 775	57.0 775	43.7 852	30.6 929
EXHAUST GAS FLOW (@engine outlet temp, 14.5 g	osia) (WET)	(5)(8)	ft3/min	12901	12901	10426	7570
EXHAUST GAS MASS FLOW	(WET)	(5)(8)	lb/hr	24009	24009	18256	12507
EMISSIONS DATA - EXHAUST OUT	r	1					
NOx (as NO2)		(9)(10)	g/bhp-hr	0.30	0.30	0.30	0.30
CO		(9)(10)	g/bhp-hr	2.15	2.15	2.15	2.14
NMHC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	0.28	0.28	0.29	0.31
NMNEHC (VOCs) (mol. wt. of 15.84) HCHO (Formaldehyde)		(9)(10)(11)	g/bhp-hr	0.19 0.14	0.19 0.14	0.19 0.14	0.21 0.16
CH4 (mol. wt. of 16.04)	(NOMINAL)	(9)(10) (9)(12)	g/bhp-hr g/bhp-hr	2.39	2.39	2.47	2.61
CO2	(NOMINAL)	(9)(12)	g/bhp-hr	402	402	417	452
EXHAUST OXYGEN	(NOMINAL)	(9)(13)	% DRY	11.1	11.1	11.0	10.6
HEAT REJECTION]					
HEAT REJ. TO JACKET WATER (JW)		(14)	Btu/min	24996	24996	21046	17921
HEAT REJ. TO ATMOSPHERE		(14)	Btu/min	6405	6405	5891	5503
HEAT REJ. TO LUBE OIL (OC)		(14)	Btu/min	11732	11732	11201	9754
HEAT REJ. TO A/C - STAGE 1 (1AC) HEAT REJ. TO A/C - STAGE 2 (2AC)		(14)(15) (14)(15)	Btu/min Btu/min	23965 11126	23965 11126	12704 6653	4459 3130
HEAT REJ. TO A/C - STAGE 2 (2AC)		(14)(13)	Dlu/min	11120	11120	0053	3130
COOLING SYSTEM SIZING CRITEI	RIA						
TOTAL JACKET WATER CIRCUIT (JW+1AC)		(15)(16)	Btu/min	52659			
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+24		(15)(16)	Btu/min	25761			
A cooling system safety factor of 0% has been added	a to the cooling system sizing c	riteria.					
CONDITIONS AND DEFINITIONS							

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Refer to product O&M manual for details on additional lower load capability. No overload permitted at rating shown.

For notes information consult page three.

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Eric Miller - Northwind 3606 Compressors

Note:

At site conditions of 3375 ft and 105°F inlet air temp., constant torque can be maintained down to 885 rpm. The minimum speed for loading at these conditions is 750 rpm.

CATERPIII Λ R[®]

G3606

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Eric Miller - Northwind 3606 Compressors

NOTES:

1. Fuel pressure range specified is to the engine gas shutoff valve (GSOV). Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.

3. Fuel consumption tolerance is $\pm 2.5\%$ of full load data.

4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.

5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of \pm 6 %.

9. Emissions data is at engine exhaust flange prior to any after treatment.

10. CO, NMHC, NMNEHC, and HCHO emission values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. CO2 tolerance is \pm 2.5%. CH4 tolerance is \pm 26.0%. Fuel methane number cannot vary more than \pm 3.

13. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

14. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

15. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

16. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

G3606

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Eric Miller - Northwind 3606 Compressors

Constituent	Abbrev	Mole %	Norm	Fuel Makeup:	Northwind TItan Fuel
Water Vapor	H2O	0.0000	0.0000	Unit of Measure:	English
Methane	CH4	95.3839	95.3839	Coloulated Eval Properties	
Ethane	C2H6	2.2605	2.2605	Calculated Fuel Properties:	00.4
Propane	C3H8	0.4051	0.4051	Caterpillar Methane Number:	89.4
Isobutane	iso-C4H10	0.0640	0.0640	Lower Heating Value (Btu/scf):	922
Norbutane	nor-C4H10	0.0710	0.0710	Higher Heating Value (Btu/scf):	1023
Isopentane	iso-C5H12	0.0260	0.0260	WOBBE Index (BTU/scfm):	1205
Norpentane	nor-C5H12	0.0010	0.0010	WOBBE Index (BT0/Scim).	1205
Hexane	C6H14	0.0190	0.0190	THC: Free Inert Ratio:	55.96
Heptane	C7H16	0.0140	0.0140	Total % Inerts (% N2,CO2,He):	1.76%
Nitrogen	N2	0.6322	0.6322	RPC (%) (To 905 Btu/scf Fuel):	100%
Carbon Dioxide	CO2	1.1233	1.1233		10070
Hydrogen Sulfide	H2S	0.0000	0.0000	Compressibility Factor:	0.998
Carbon Monoxide	CO	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	9.63
Hydrogen	H2	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.44
Oxygen	02	0.0000	0.0000	Specific Gravity (Relative to Air):	0.586
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.311
Octane	C8H18	0.0000	0.0000		
Nonane	C9H20	0.0000	0.0000		
Ethylene	C2H4	0.0000	0.0000		
Propylene	C3H6	0.0000	0.0000		
TOTAL (Volume %)	100.0000	100.0000		

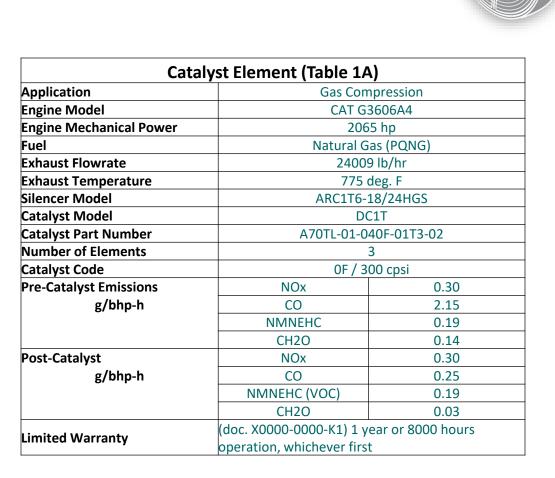
CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.


Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Global Leader in Emission Control Solutions DCL America Inc. 27603 Commerce Oaks Drive, Oak Ridge North, TX 77385 Toll free: 1-877-965-8989 Fax: 281-605-5858 Email: info@dcl-inc.com www.dcl-inc.com

Engine Specifications – CAT 3516J

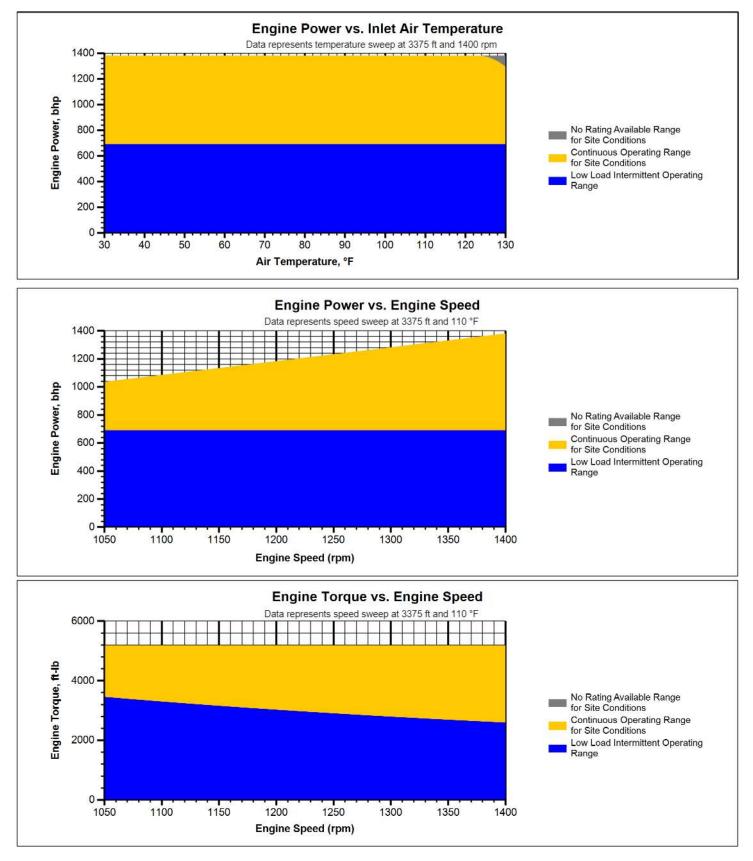
G3516J

GAS ENGINE SITE SPECIFIC TECHNICAL DATA
{Scratch Project}

	1400 8 SCAC 130 201 210 TA	RATING STRATEGY: RATING LEVEL: FUEL SYSTEM: SITE CONDITIONS: FUEL: FUEL PRESSURE RAM FUEL METHANE NUM	
COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOX): SET POINT TIMING:	JW+OC+1AC, 2AC ADEM3 ASWC LOW EMISSION 0.5 30	FUEL METHANE NUME FUEL LHV (Btu/scf): ALTITUDE(ft): INLET AIR TEMPERATU STANDARD RATED PC	

NGE(psig): (See note 1) BER: TURE(°F): OWER:

STANDARD CONTINUOUS CAT WIDE RANGE WITH AIR FUEL RATIO CONTROL


> Gas Analysis 7.0-40.0 92.8 904 3375 110 1380 bhp@1400rpm

				MAXIMUM RATING	Contraction International Contract	TING AT M	
RATING		NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER	(WITHOUT FAN)	(2)	bhp	1380	1380	1035	690
INLET AIR TEMPERATURE		1000	°F	110	110	110	110
ENGINE DATA							
FUEL CONSUMPTION (LHV)		(3)	Btu/bhp-hr	7374	7374	7741	8320
FUEL CONSUMPTION (HHV)		(3)	Btu/bhp-hr	8182	8182	8588	9231
AIR FLOW (@inlet air temp, 14.7 psia)	(WET)	(4)(5)	ft3/min	3301	3301	2522	1732
AIR FLOW	(WET)	(4)(5)	lb/hr	13789	13789	10537	7235
FUEL FLOW (60°F, 14.7 psia)	. 12 44		scfm	188	188	148	106
NLET MANIFOLD PRESSURE		(6)	psi(abs)	44.0	44.0	35.1	24.1
EXHAUST TEMPERATURE - ENGINE OUTLET		(7)	°F	813	813	811	867
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia)	(WET)	(5)(8)	ft3/min	7953	7953	6080	4370
EXHAUST GAS MASS FLOW	(WET)	(5)(8)	lb/hr	14283	14283	10925	7514
EMISSIONS DATA - ENGINE OUT							
NOx (as NO2)		(9)(10)	g/bhp-hr	0.50	0.50	0.50	0.50
0		(9)(10)	g/bhp-hr	2.02	2.02	2.03	1.96
THC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	4.27	4.27	4.17	3.93
NMHC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	0.64	0.64	0.63	0.59
NMNEHC (VOCs) (mol. wt. of 15.84)		(9)(10)(11)	g/bhp-hr	0.43	0.43	0.42	0.39
HCHO (Formaldehyde)		(9)(10)	g/bhp-hr	0.42	0.42	0.40	0.39
CO2		(9)(10)	g/bhp-hr	456	456	476	515
EXHAUST OXYGEN		(9)(12)	% DRY	9.0	9.0	8.7	8.3
HEAT REJECTION							
HEAT REJ. TO JACKET WATER (JW)		(13)	Btu/min	37570	37570	32175	26761
HEAT REJ. TO ATMOSPHERE		(13)	Btu/min	5313	5313	4428	3543
HEAT REJ. TO LUBE OIL (OC)		(13)	Btu/min	4542	4542	3889	3235
HEAT REJ. TO A/C - STAGE 1 (1AC)		(13)(14)	Btu/min	12428	12428	9506	2742
HEAT REJ. TO A/C - STAGE 2 (2AC)		(13)(14)	Btu/min	5545	5545	4782	2920
COOLING SYSTEM SIZING CRITERIA							
TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)		(14)(15)	Btu/min	59826			
TOTAL AFTERCOOLER CIRCUIT (2AC)		(14)(15)	Btu/min	5822	2		
A cooling system safety factor of 0% has been added to the cool	ling system sizing criteria.		•				

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Refer to product O&M manual for details on additional lower load capability. No overload permitted at rating shown.

For notes information consult page three.

GAS ENGINE SITE SPECIFIC TECHNICAL DATA {Scratch Project}

Note:

At site conditions of 3375 ft and 110°F inlet air temp., constant torque can be maintained down to 1050 rpm. The minimum speed for loading at these conditions is 1050 rpm.

CATERPILLAR®

G3516J

GAS ENGINE SITE SPECIFIC TECHNICAL DATA {Scratch Project}

NOTES:

1. Fuel pressure range specified is to the engine fuel pressure regulator. Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

3. Fuel consumption tolerance is ± 3.0% of full load data.

4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.

5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

6. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.

7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.

9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

GAS ENGINE SITE SPECIFIC TECHNICAL DATA {Scratch Project}

Constituent	Abbrev	Mole %	Norm	12 071 0	
Water Vapor	H2O	0.0000	0.0000	Fuel Makeup:	Gas Analysis
Methane	CH4	94.7351	94.7350	Unit of Measure:	English
Ethane	C2H6	2.3990	2.3990		
Propane	C3H8	0.0568	0.0568	Calculated Fuel Properties	
Isobutane	iso-C4H10	0.0005	0.0005	Caterpillar Methane Number:	92.8
Norbutane	nor-C4H10	0.0006	0.0006		
Isopentane	iso-C5H12	0.0000	0.0000	Lower Heating Value (Btu/scf):	904
Norpentane	nor-C5H12	0.0000	0.0000	Higher Heating Value (Btu/scf):	1003
Hexane	C6H14	0.0000	0.0000	WOBBE Index (Btu/scf):	1189
Heptane	C7H16	0.0000	0.0000	8 S	
Nitrogen	N2	2.7394	2.7394	THC: Free Inert Ratio:	34.61
Carbon Dioxide	CO2	0.0687	0.0687	Total % Inerts (% N2, CO2, He):	2.81%
Hydrogen Sulfide	H2S	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Carbon Monoxide	CO	0.0000	0.0000		
Hydrogen	H2	0.0000	0.0000	Compressibility Factor:	0.998
Oxygen	02	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	9.44
Helium	HE	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.33
Neopentane	neo-C5H12	0.0000	0.0000	Specific Gravity (Relative to Air):	0.578
Octane	C8H18	0.0000	0.0000		
Nonane	C9H20	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.314
Ethylene	C2H4	0.0000	0.0000	r dor opcome riodi riddi (rij.	1.014
Propylene	C3H6	0.0000	0.0000		
TOTAL (Volume %)		100.0001	100.0000		

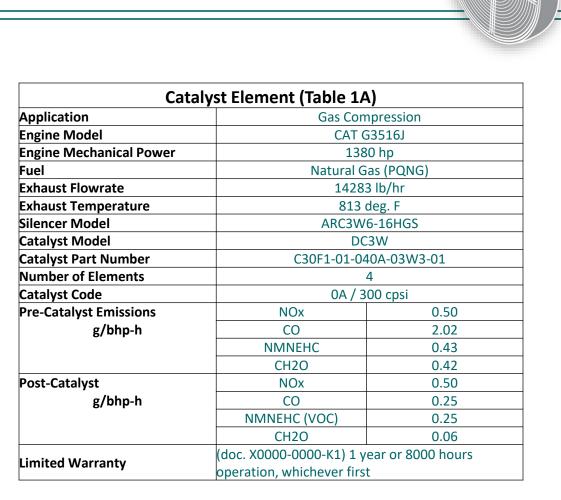
CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.


Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Global Leader in Emission Control Solutions DCL America Inc. 27603 Commerce Oaks Drive, Oak Ridge North, TX 77385 Toll free: 1-877-965-8989 Fax: 281-605-5858 Email: info@dcl-inc.com www.dcl-inc.com

Confidential

Turbine Specifications – Solar T60

4.1 GUARANTEED PERFORMANCE

4.1.1 GAS TURBINE PERFORMANCE DATA

Performance Conditions (See Note a)	
Elevation	3,045	feet
Design Ambient Temperature	59	Fahrenheit
Design Relative Humidity		%
Inlet Pressure Drop	6.0	in W.C.
Exhaust Pressure Drop	4.0	in W.C.
Turbine Operating Level	100%; Continuous D	uty

Power Output and Heat Rate (See

Note b) Gas I

Gas Fuel		
Output Power	4,750	kW
Heat Rate	11,383	Btu/kW-hr (LHV)

Notes:

(b)

Generator set performance is guaranteed on the basis of the pressure drops indicated for the inlet and exhaust systems. These are assumed values. Losses

(a) through the Turbine Air Inlet System are based on the configuration described and a clean filter. Deviations from these values will have a corresponding impact on performance observed at the project site. Intake air quality, gas fuel, and liquid fuel shall meet ES 9-98. Natural Gas fuel sulfur content shall be no greater than 0.1%. Output Power and Heat Rate is guaranteed on the basis of the referenced Performance Conditions listed above, by the Fuel Component Analysis section of this proposal (as applicable), and on the basis of the equipment being in new and clean condition as defined in this proposal;

Guarantee Performance is demonstrated based on a standard San Diego factory test, corrected to:

- > 0 feet above sea level
- > 60% Relative Humidity
 - > 0 inlet duct loss; 0 exhaust duct loss

 $>59^{\circ}$ F, 80° F, or 100° F, depending on the local ambient temperature when the test is conducted

Electric Output Power (and power used to determine Heat Rate) is referenced to the generator terminals, and is based on the generator operating at unity Power Factor (PF = 1.0). For multiple unit applications, it will be based on the average over the total number of units, not on an individual basis;

(c) Exhaust Energy is not guaranteed. Instead, "Expected Values" are provided in the following section entitled, "Expected Generator Set Performance".

4.1.2 EMISSIONS OUTPUT (GAS FUEL)

The following turbine output emissions are warranted by Solar Turbines subject to the conditions indicated below, and through the warranty period indicated in Commercial Highlights.

Gas Fuel Operation (per the Gas Fuel Component Analysis):

NOx	15 ppmvd
СО	25 ppmvd
UHC	25 ppmvd

Operating Conditions for the above emissions are as follows:

Ambient Temperature range:	-4 to 120°F (-20 to 49°C)
Operating Range:	50-100%

(Must meet or exceed ES9-98 for air, fuel, and water quality. Emissions corrected to $15\% O_2$ dry basis, steady-state operation.)

Notes/Clarifications:

The emissions cited above are applicable only for steady-state conditions and does not apply during start-up, shutdown, malfunction, or during transient events.

Any gas turbine fuels that do not meet or exceed Solar Specification ES 9-98 will impact emissions performance. As the SMT unit is moved from site to site, deviations from approved fuels will adversely affect emission performance and may impact any emissions warranty and/or performance guarantee. Site specific fuel samples require review by Solar Engineering.

Due to the mobility of the SMT product, the unit is not equipped with an exhaust stack therefore Solar cannot demonstrate / test / verify emissions at site or during package test. Factory testing is with Natural Gas and Emissions testing is available during the gas turbine engine acceptance test.

4.2 EXPECTED PERFORMANCE

4.2.1 GAS TURBINE PERFORMANCE DATA

The following gas turbine package performance is expected, but not guaranteed. The "Run" numbers correspond to different operating points and/or ambient conditions.

Customer		TAURUS 60-7901S
		Package Type GSC
Job ID		Match STANDARD
Run By	Date Run	Fuel System
Hobbs Mattison G	5-Nov-24	GAS
Engine Performance Code	Engine Performance Data	Fuel Type
REV. 4.20.2.28.14	REV. 2.1	SD NATURAL GAS

DATA FOR NOMINAL PERFORMANCE

Elevation Inlet Loss Exhaust Loss	feet in H2O in H2O	3045 6.0 4.0					
		1	2	3	4	5	
Engine Inlet Temperatu Relative Humidity Gearbox Efficiency Generator Efficiency Based On 1.0 Power Fa	%	0 60.0 0.9820 0.9740	32.0 60.0 0.9820 0.9740	59.0 60.0 0.9820 0.9740	85.0 60.0 0.9820 0.9740	104.0 60.0 0.9820 0.9740	
Specified Load* Net Output Power*	kW kW	FULL 5837	FULL 5331	FULL 4897	FULL 4369	FULL 3981	
Fuel Flow Heat Rate*	mmBtu/hr Btu/kW-hr	<u>62.00</u> 10621	57.66 10817	<u> </u>	<u>4369</u> 50.22 11495	47.64 11966	
Therm Eff*	%	32.126	31.544	30.903	29.683	28.515	
Engine Exhaust Flow PT Exit Temperature	lbm/hr deg F	165960 931	158956 945	151974 959	142684 981	135483 1002	
Exhaust Temperature	deg F	931	945	959	981	1002	
Fuel Gas Composition (Volume Percent)	Methane (CH Ethane (C2H Propane (C3H	6)	<u>92.7</u> 4.1 0.8	6			
	N-Butane (C4	H10)	0.1	8			
	N-Pentane (C Hexane (C6H		<u>0.0</u> 0.0				
	Carbon Dioxi	de (CO2)	0.4				
	Hydrogen Su Nitrogen (N2)		<u>0.000</u> 1.5				
Fuel Gas Properties	LHV (Btu/Scf) 93	9.2 Specifi	c Gravity	0.5970 V	Vobbe Index at 60F	1215.6

*Electric power measured at the generator terminals.

This performance was calculated with a basic inlet and exhaust system. Special equipment such as low noise silencers, special filters, heat recovery systems or cooling devices will affect engine performance. Performance shown is "Expected" performance at the pressure drops stated, not guaranteed.

Fuel Gas Analysis

Certificate of Analysis

Number: 6030-24090932-001A

Brenda McGough Northwind Midstream Partners 825 Town & Country Lane Houston, TX 77380

Station Name:Titan Fuel GasStation Number:1000-11525Station Location:Northwind MidstreamSample Point:Meter RunInstrument:70142339 (Inficon GC-MicroFusion)Last Inst. Cal.:09/23/2024 0:00 AMAnalyzed:09/27/2024 08:44:34 by CDW

Sampled By:Landon BuckSample Of:GasSpotSample Date:09/24/2024 11:00Sample Conditions: 1000 psig, @ 78.9 °FEffective Date:09/24/2024 11:00Method:GPA-2261MCylinder No:1111-007909

Oct. 01, 2024

Analytical Data

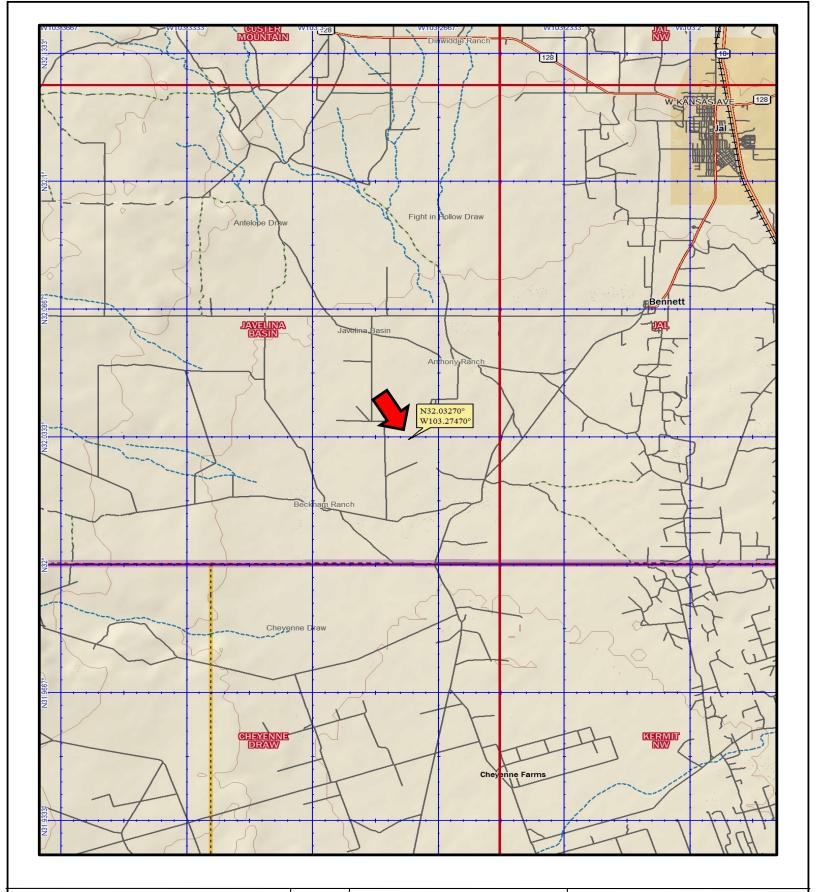
Components	Un-normalized Mol %	Mol. %	Wt. %	GPM at 14.73 psia		
Hydrogen Sulfide	0.0000	0.0000	0.0000		GPM TOTAL C2+	0.642
Nitrogen	1.8723	1.8961	3.1616		GPM TOTAL C3+	0.156
Methane	94.6304	95.8319	91.5098		GPM TOTAL iC5+	0.132
Carbon Dioxide	0.0663	0.0671	0.1758			
Ethane	1.7907	1.8134	3.2456	0.486		
Propane	0.0673	0.0682	0.1790	0.019		
Iso-butane	0.0040	0.0041	0.0142	0.001		
n-Butane	0.0139	0.0141	0.0488	0.004		
Iso-pentane	0.0085	0.0086	0.0369	0.003		
n-Pentane	0.0129	0.0131	0.0563	0.005		
Hexanes Plus	0.2798	0.2834	1.5720	0.124		
	98.7461	100.0000	100.0000	0.642		
Calculated Physical	Properties	Tota	al	C6+		
Relative Density Real	l Gas	0.581	1	3.2176		
Calculated Molecular	Weight	16.8	0	93.19		
Compressibility Facto	or	0.997	9			
GPA 2172 Calculation	on:					
Calculated Gross B	TU per ft ³ @ 14.73 p	sia & 60°F				
Real Gas Dry BTU		1022.	2	5141.1		
Water Sat. Gas Base	BTU	1004.	.8	5051.6		
Ideal, Gross HV - Dry	[,] at 14.73 psia	1020.	.1	5141.1		
Ideal, Gross HV - We	•	1002.	.3	5051.6		
Commontor U28 Ei	old Contant 0 ppm					

Comments: H2S Field Content 0 ppm

lostag NOM N

Hydrocarbon Laboratory Manager

Quality Assurance:


The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A map of the facility is attached on the following page.

PROJECT	19901-03					
PREPARED FOR	Northwind Midstream Partners LLC					
LOCATION	Lea County, New Mexico					
SHEET 1 of 1	DRAWN BY TH	REVIEWED BY ET	DATE 03/03/25			

AREA MAP Titan Treater Plant #2

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications"

This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

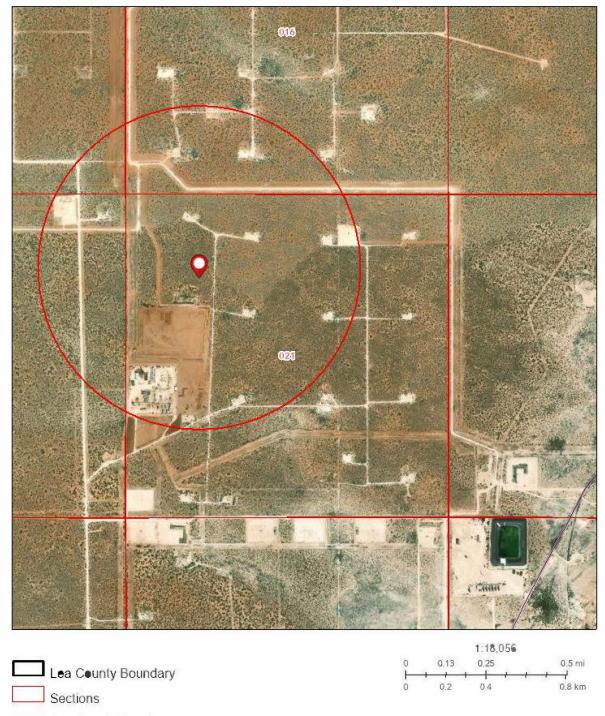
Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. I A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. ☑ A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. ☑ A copy of the property tax record (20.2.72.203.B NMAC).
- 4. A sample of the letters sent to the owners of record.
- 5. I A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. 🗹 A sample of the public notice posted and a verification of the local postings.
- 7. 🗹 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. Z A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. ☑ A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

Category	Notified Party	
Citizens	NGL South Ranch Inc.	
Other Landowners		
Counties	Lea	
Municipalities	Jal	
Indian Tribes	None	

Location of Postings
Plant Entrance
US Post Office; Jal
Coles Diner; Jal
Lowe's Grocery Store; Jal



Area of Interest (AOI) Information

Area : 501.9 acres

Feb 24 2025 10:13:09 Central Standard Time

Lea County Roads

Maxar

Assessment Information

#	Owner Number	Parcel Number	UPC Code	Owner Name	Mailing Address
1	51649	4000516490011	51649	NGL SOUTH RANCH INC	2424 RIDGE RD ROCKWELL, TX 75087- 5116
2	216634	4000516490005	216634	NORTHWIND MIDSTREAM PARTNERS LLC	825 TOWN AND COUNTRY LN STE 700 HOUSTON, TX 77024- 2326
3	No Data	No Data	STATE - Beckham Ranch Inc	No Data	Empty Mailing Address
4	No Data	No Data	STATE - Dinwiddie Cattle Co	No Data	Empty Mailing Address
5	51649	4930721083029	51649	NGL SOUTH RANCH INC	2424 RIDGE RD ROCKWELL, TX 75087- 5116

#	Property Address	Subdivision Name	Legal Information	Unit	Block	Lot	Area(acres)
1		No Data	No Data	No Data	No Data	No Data	18.10
2		No Data	No Data	No Data	No Data	No Data	61.21
3		No Data	No Data	No Data	No Data	No Data	92.11
4		No Data	No Data	No Data	No Data	No Data	92.42
5		No Data	No Data	No Data	No Data	No Data	238.06

Other Information

#	Taxable Value	Exempt Value	Net Value	Livestock Value	Manufactured Home Value
1	235,252	0	235,252	0	0
2	No Data	No Data	No Data	No Data	No Data
3	5,730	0	5,730	0	0

#	Personal Property Value	Land Value	Improvement Value	Full Value	Deed Book
1	0	705,756	0	705,756	2211
2	No Data	No Data	No Data	No Data	No Data
3	0	17,190	0	17,190	No Data

#	Deed Page	District	Section	Township	Range
1	830	190	No Data	26	36
2	No Data	No Data	No Data	26	36
3	0	190	No Data	26	36

#	Date Filed	Date Filed Most Current Tax		Area(acres)
1	0	5,193.00	2023	61.21
2	o Data No Data		No Data	184.52
3	0 123.00		No Data	256.16

Building Information

#	Year Built	Number of Stories	First Floor SQFT	Second Floor SQFT	Basement SQFT	Area(acres)
1	No Data	No Data	No Data	No Data	No Data	501.90

Lea County, New Mexico Disclaimer

Information deeded reliable but not guaranteed. Copyright 2022.

MAP TO BE USED FOR TAX PURPOSES ONLY. NOT TO BE USED FOR CONVEYANCE.

Square Foot and Year Built listed only to be used for comparative purposes, NOT to be used for commerce.

February 24, 2025

Certified Mail No. 9589 0710 5270 1958 8246 22

Jal City Manager 710 Wyoming Ave. Jal, New Mexico 88252

Re: Public Notice for NSR Permit Application Titan Treater Plant #2

Dear City Manager:

In accordance with the application requirements of 20.2.72 NMAC, Northwind Midstream Partners, LLC is providing notification of the planned construction of Titan Treater Plant #2 in Lea County, NM. The site is located within 10 miles of Jal. A public notice will be published in the Hobbs News Sun newspaper, then placed at the proposed site location and three other locations in the surrounding area. A copy of the notice is attached. Should you have any questions, please contact me at (346) 613-1471 or by email at jyamartino@nwmidstream.com.

Sincerely,

Jillian Yamartino Air-Environmental Manager

Attachment: Public Notice

February 24, 2025

Certified Mail No. 9589 0710 5270 1958 8246 15

Lea County Manager 100 N. Main Avenue Suite 4 Lovington, New Mexico 88260

Re: Public Notice for NSR Permit Application Titan Treater Plant #2

Dear Manager:

In accordance with the application requirements of 20.2.72 NMAC, Northwind Midstream Partners, LLC is providing notification of the planned construction of Titan Treater Plant #2 in Lea County, NM. The site is located on private property. A public notice will be published in the Hobbs News Sun newspaper, then placed at the proposed site location and three other locations in the surrounding area. A copy of the notice is attached. Should you have any questions, please contact me at (346) 613-1471 or by email at jyamartino@nwmidstream.com.

Sincerely,

Jillian Yamartino Air-Environmental Manager

Attachment: Public Notice

February 24, 2025

Certified Mail No. 9589 0710 5270 1958 8245 92

NGL South Ranch Inc. 2424 Ridge Road Rockwell, TX 75087

Re: Public Notice for NSR Permit Application Titan Treater Plant #2

To Whom It May Concern:

In accordance with the application requirements of 20.2.72 NMAC, Northwind Midstream Partners, LLC is providing notification of the planned construction of Titan Treater Plant #2 in Lea County, NM. The site is located within one-half mile of your property. A public notice will be published in the Hobbs News Sun newspaper, then placed at the proposed site location and three other locations in the surrounding area. A copy of the notice is attached. Should you have any questions, please contact me at (346) 613-1471 or by email at jyamartino@nwmidstream.com.

Sincerely,

Jillian Yamartino Air-Environmental Manager

Attachment: Public Notice

NOTICE OF AIR QUALITY PERMIT APPLICATION

Northwind Midstream Partners, LLC announces its application to the New Mexico Environment Department for an air quality permit to construct a natural gas treating facility. The expected date of application submittal to the Air Quality Bureau is February 28, 2025. The exact location for the facility known as Titan Treater Plant #2 is at latitude 32.0327 dec deg North and longitude -103.2747 dec deg West. The approximate location of this facility is 7.6 miles SW of Jal in Lea County. From Jal, NM head south on NM-205 S for 6.8 miles. Turn right on Bechham Rd and travel for 1.4 miles. Turn right on unnamed road and follow for 1 mile, bearing right at the fork to facility.

The total inlet capacity of the facility will be approximately 220 million standard cubic feet per day.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

•	
Pounds per hour	Tons per year
17	51
16	47
16	46
3573	219
145	204
444	211
2051	238
34	24.8
n/a	250,000
	17 16 16 3573 145 444 2051 34

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days per week, and 52 weeks per year.

The owner and/or operator of the Facility is: Northwind Midstream Partners, LLC; 811 Louisiana St., Suite 2500; Houston, TX 77002

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: www.env.nm.gov/air-quality/permitting-section-home-page/. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

Atención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

General Posting of Notices – Certification

I, <u>Tash Barker</u>, the undersigned, certify that on <u>February 24th</u> 2025, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the Jal of Lea County, State of New Mexico on the following dates:

- 1. Titan Plant Sign
- 2. US Post Office; Jal, NM
- 3. Coles Diner; Jal, NM
- 4. Lowe's Grocery Store; Jal, NM

Signed this 24 day of February , 2025,

<u>2.24.25</u> Date

Signature

Josh Barker Printed Name

HSE Field Supervisor Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

From:	Jillian Yamartino
То:	dawn@noalmark.com
Subject:	Public Service Announcement - Northwind Midstream Partners, LLC - Titan Treater Plant #2
Date:	Wednesday, February 26, 2025 3:47:00 PM
Attachments:	image001.png

In accordance with New Mexico Administrative Code 20.2.72.203.B, we request the following public service announcement (PSA) be aired for the Titan Treater Plant #2.

Northwind Midstream Partners, LLC announces its application to modify Titan Treater Plant #2, a sour gas treating facility located at latitude 32.0327 and longitude -103.2747 near Jal, New Mexico The proposed application consists of the construction of a treating plant, Titan Treater Plant #2. The expected date of application submittal to the Air Quality Bureau is February 28, 2025. Notices have been posted in the Hobbs News Sun, at the Titan Treater Plant entrance, at the US Postal Service office in Jal, at Coles Diner in Jal, and at Lowe's Grocery Store in Jal. If you have any comments about the construction or operation of the above facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to the address below:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816 (505) 476-4300

Jillian Yamartino Environmental-Air Manager jyamartino@nwmidstream.com Cell: 207-745-0783

Affidav	Northwind Midstream Partners, LLC announces its applicatic construct a natural gas treating facility. The expected flate of exact location for the facility known as Titan Treater Plant #2 The approximate location of this facility is 7.6 miles SW of Ja right on Bechham Rd and travel for 1.4 miles. Turn right on U	of application submittal to the 2 is at latitude 32.0327 dec deg 1 in Lea County, From Jal, NM J	Air Quality Bureau is February 28, 2 North and longitude -103.2747 de	2025. The ec deg West
STATE OF N	The total inlet capacity of the facility will be approximately 2			and a second
	The estimated maximum quantities of any regulated air cont These reported emissions could change slightly during the co	aminants will be as follows in ourse of the Department's revi	pound per hour (pph) and tons per ew:	year (tpy).
Daniel Rus	Pollutant:	Pounds per hour	Tons per year	
lews-Sun, a	Particulate Matter (PM)	17	51	
lobbs, New	PM 10	16	47	Anterior and
ne clipping a	PM 2.5	16	46	
the regula	Sulfur Dioxide (SO ₂)	3573	219	
ewspaper,	Nitrogen Oxides (NO _x)	145	204	1. 191.24
or a period	Carbon Monoxide (CO)	444	204	
	Volatile Organic Compounds (VOC)	2051	238	ANTINETSA AMANATO
	Total sum of all Hazardous Air Pollutants (HAPs)	34	238	Anna and a second
Begir	Green House Gas Emissions as Total CO ₂ e	n/a		analise and
5		II/ d	250,000	address of the
and (The standard and maximum operating schedules of the facilit The owner and/or operator of the Facility is: Northwind Mid	in the second second second	A State Acres and a state of the	- Contractor
	If you have any comments about the construction or operation permit review process, you must submit your comments in w Environment Department; Air Quality Bureau; 525 Camino de comments and questions may be submitted verbally. (505) 4	riting to this address: Permit F los Marquez, Suite 1: Santa F	rograms Manager, New Mexico	and the second
Ublisher	permit review process, you must submit your comments in w	riting to this address: Permit F e los Marquez, Suite 1; Santa F 76-4300; 1 800 224-7009. opy of this notice along with y a legible return mailing addres ation and its air quality Impac location.	rograms Manager; New Mexico e, New Mexico; 87505-1816. Other our comments, since the Departme s with your comments. Once the ts, the Department's notice will be	ent may published
ublisher worn and s	Permit review process, you must submit your comments in w Environment Department; Air Quality Bureau; 525 Camino de comments and questions may be submitted verbally. (505) 4 Please refer to the company name and site name, or send a c have not yet received the permit application. Please include Department has performed a preliminary review of the applic in the legal section of a newspaper circulated near the facility General information about air quality and the permitting pro- website: www.env.nm.gov/air-quality/permitting-section-ho review process is 20.2.72.206 NMAC.	riting to this address: Permit F e los Marquez, Suite 1; Santa F 76-4300; 1 800 224-7009. opy of this notice along with y a legible return mailing addres ation and its air quality Impac location.	rograms Manager; New Mexico e, New Mexico; 87505-1816. Other our comments, since the Departme s with your comments. Once the ts, the Department's notice will be	ent may published
worn and s	Permit review process, you must submit your comments in w Environment Department; Air Quality Bureau; 525 Camino de comments and questions may be submitted verbally. (505) 4 Please refer to the company name and site name, or send a c have not yet received the permit application. Please include Department has performed a preliminary review of the applic in the legal section of a newspaper circulated near the facility General information about air quality and the permitting pro- website: www.env.nm.gov/air-quality/permitting-section-ho	riting to this address: Permit F los Marquez, Suite 1; Santa F 76-4300; 1 800 224-7009. opy of this notice along with y a legible return mailing addres ation and its air quality impac location. pcess, and links to the regulati me-page/. The regulation dea	rograms Manager; New Mexico e, New Mexico; 87505-1816. Other our comments, since the Departme s with your comments. Once the ts, the Department's notice will be ons can be found at the Air Qualit ling with public participation in t	ent may published y Bureau's he permit
worn and s	Permit review process, you must submit your comments in w Environment Department; Air Quality Bureau; 525 Camino de comments and questions may be submitted verbally. (505) 4 Please refer to the company name and site name, or send a c have not yet received the permit application. Please include Department has performed a preliminary review of the applic in the legal section of a newspaper circulated near the facility General information about air quality and the permitting pro- website: www.env.nm.gov/air-quality/permitting-section-ho review process is 20.2.72.206 NMAC. Atención Este es un aviso de la oficina de Calidad del Aire del Departam producidas por un establecimiento en esta área. Si usted dese teléfono 505-629-3395.	riting to this address: Permit F los Marquez, Suite 1; Santa F 76-4300; 1 800 224-7009. opy of this notice along with y a legible return mailing addres ation and its air quality impac location. pcess, and links to the regulati me-page/. The regulation dea	rograms Manager; New Mexico e, New Mexico; 87505-1816. Other our comments, since the Departme s with your comments. Once the ts, the Department's notice will be ons can be found at the Air Qualit ling with public participation in t	ent may published y Bureau's he permit
worn and s 5th day of USS	Permit review process, you must submit your comments in w Environment Department; Air Quality Bureau; 525 Camino de comments and questions may be submitted verbally. (505) 4 Please refer to the company name and site name, or send a c have not yet received the permit application. Please include Department has performed a preliminary review of the applic in the legal section of a newspaper circulated near the facility General information about air quality and the permitting pro- website: www.env.nm.gov/air-quality/permitting-section-ho review process is 20.2.72.206 NMAC. Atención Este es un aviso de la oficina de Calidad del Aire del Departam producidas por un establecimiento en esta área. Si usted dese teléfono 505-629-3395. Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, nation activities, as required by applicable laws and regulations. NMI	riting to this address: Permit F los Marquez, Suite 1; Santa F 76-4300; 1 800 224-7009. opy of this notice along with y a legible return mailing addres ation and its air quality impac location. beess, and links to the regulati me-page/. The regulation dea nento del Medio Ambiente de ta información en español, por hal origin, disability, age or sex ED is responsible for coordinat	rograms Manager; New Mexico e, New Mexico; 87505-1816. Other our comments, since the Departme s with your comments. Once the ts, the Department's notice will be ons can be found at the Air Qualit- ling with public participation in t Nuevo México, acerca de las emisio favor comuníquese con esa oficina in the administration of its progra	ent may published y Bureau s he permit- ones a al
worn and s oth day of <u>USS</u> usiness N	Permit review process, you must submit your comments in w Environment Department; Air Quality Bureau; 525 Camino de comments and questions may be submitted verbally. (505) 4 Please refer to the company name and site name, or send a c have not yet received the permit application. Please include Department has performed a preliminary review of the applid in the legal section of a newspaper circulated near the facility General information about air quality and the permitting pro- website: www.env.nm.gov/air-quality/permitting-section-ho review process is 20.2.72.206 NMAC. Atención Este es un aviso de la oficina de Calidad del Aire del Departam producidas por un establecimiento en esta área. Si usted dese teléfono 505-629-3395. Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, nation activities, as required by applicable laws and regulations. NMM inquiries concerning non-discrimination requirements implem	riting to this address: Permit F los Marquez, Suite 1; Santa F 76-4300; 1 800 224-7009. opy of this notice along with y a legible return mailing addres ation and its air quality impac location. beess, and links to the regulati me-page/. The regulation dea hento del Medio Ambiente de ta información en español, por hal origin, disability, age or sex D is responsible for coordinat lented by 40 C.F.R. Part 7, incli	rograms Manager; New Mexico e, New Mexico; 87505-1816. Other our comments, since the Departme s with your comments. Once the s, the Department's notice will be ons can be found at the Air Qualit- ling with public participation in t Nuevo México, acerca de las emisio favor comuníquese con esa oficina in the administration of its progra on of compliance efforts and recei-	ent may published y Bureau's he permit- ones a al
worn and s 5th day of <u>WJJ</u> usiness N ly commis	Permit review process, you must submit your comments in w Environment Department; Air Quality Bureau; 525 Camino de comments and questions may be submitted verbally. (505) 4 Please refer to the company name and site name, or send a c have not yet received the permit application. Please include Department has performed a preliminary review of the applid in the legal section of a newspaper circulated near the facility General information about air quality and the permitting pro- website: www.env.nm.gov/air-quality/permitting-section-ho review process is 20.2.72.206 NMAC. Atención Este es un aviso de la oficina de Calidad del Aire del Departam producidas por un establecimiento en esta área. Si usted dese teléfono 505-629-3395. Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, nation activities, as required by applicable laws and regulations. NMM inquiries concerning non-discrimination requirements implem as amended; Section 504 of the Rehabilitation Act of 1973; th	riting to this address: Permit F e los Marquez, Suite 1; Santa F 76-4300; 1 800 224-7009. opy of this notice along with y a legible return mailing addres ration and its air quality Impac location. Decess, and links to the regulati me-page/. The regulation dea nento del Medio Ambiente de tea información en español, por hal origin, disability, age or sex ED is responsible for coordinat tented by 40 C.F.R. Part 7, inclue e Age Discrimination Act of 19	rograms Manager; New Mexico e, New Mexico; 87505-1816. Other our comments, since the Departme s with your comments. Once the ts, the Department's notice will be ons can be found at the Air Qualit ling with public participation in t Nuevo México, acerca de las emisio favor comuníquese con esa oficina in the administration of its progra ion of compliance efforts and recei- iding Title IX of the Civil Rights Act 75. Title IX of the Education Americ	ent may published y Bureau's he permit ones a al ms or pt of of 1964,
1	Permit review process, you must submit your comments in w Environment Department; Air Quality Bureau; 525 Camino de comments and questions may be submitted verbally. (505) 4 Please refer to the company name and site name, or send a c have not yet received the permit application. Please include Department has performed a preliminary review of the applid in the legal section of a newspaper circulated near the facility General information about air quality and the permitting pro- website: www.env.nm.gov/air-quality/permitting-section-ho review process is 20.2.72.206 NMAC. Atención Este es un aviso de la oficina de Calidad del Aire del Departam producidas por un establecimiento en esta área. Si usted dese teléfono 505-629-3395. Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, nation activities, as required by applicable laws and regulations. NMM inquiries concerning non-discrimination requirements implem	riting to this address: Permit F e los Marquez, Suite 1; Santa F 76-4300; 1 800 224-7009. opy of this notice along with y a legible return mailing address ration and its air quality impace location. weess, and links to the regulati me-page/. The regulation dea nento del Medio Ambiente de ta información en español, por hal origin, disability, age or sex ED is responsible for coordinat tented by 40 C.F.R. Part 7, inclu- e Age Discrimination Act of 19 ct Amendments of 1972. If you dures, or if you believe that you- Discrimination Coordinator, N or@env.nm.gov. You may also	rograms Manager; New Mexico e, New Mexico; 87505-1816. Other our comments, since the Departme s with your comments. Once the ts, the Department's notice will be ons can be found at the Air Qualit ling with public participation in t Nuevo México, acerca de las emisic favor comuníquese con esa oficina in the administration of its progra ion of compliance efforts and recei uding Title VI of the Civil Rights Act 75, Title IX of the Education Ameno I have any questions about this no pu have been discriminated against MED, 1190 St. Francis Dr., Suite NA visit our website at	ent may published y Bureau's he permit ones a al ms or pt of of 1964, iments of tice or with i050, P.O.

egal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said publication has been made.

EVAN TULLOS PEI 5 CARDINAL COURT EDWARDSVILLE, IL 62025

Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published n the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated February 25, 2025 and ending with the issue dated February 25, 2025.

²ublisher

Sworn and subscribed to before me this 25th day of February 2025.

issiekuthBlack

3usiness Manager

Vy commission expires January 29, 2027 (Seal) STATE OF NEW MEXICO (Seal) NOTARY PUBLIC GUSSIE RUTH BLACK COMMISSION # 1087526 COMMISSION EXPIRES 01/29/2027

This newspaper is duly qualified to publish egal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said publication has been made.

EVAN TULLOS PEI 5 CARDINAL COURT EDWARDSVILLE, IL 62025

Affidavit of Publication

LEGAL

LEGAL

LEGAL

LEGAL

STATE OF NEW MEXICO COUNTY OF LEA

I. Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated February 25, 2025 and ending with the issue dated February 25, 2025.

Publisher

Sworn and subscribed to before me this 25th day of February 2025.

Business Manager

My commission expires January 29, 2027 (Soal) STATE OF NEW MEXICO (Seal) NOTARY PUBLIC GUSSIE RUTH BLACK COMMISSION # 1087526 COMMISSION EXPIRES 01/29/2027

This newspaper is duly gualified to publish egal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said publication has been made.

LEGAL NOTICE February 25, 2025 NOTICE OF AIR QUALITY PERMIT APPLICATION

Northwind Midstream Partners, LLC announces its application to the New Mexico Environment Department for an air quality permit to construct a natural gas treating facility. The expected date of application submittal to the Air Quality Bureau is February 28, 2025. The exact location for the facility known as Titan Treater Plant #2 is at latitude 32.0327 dec deg North and longitude -103.2747 dec deg West. The approximate location of this facility is 7.6 miles SW of Jal in Lea County. From Jal, NM head south on NM-205 S for 6.8 miles. Turn right on Bechham Rd and travel for 1.4 miles. Turn right on unnamed road and follow for 1 mile, bearing right at the fork to facility.

The total inlet capacity of the facility will be approximately 220 million standard cubic feet per day.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

and the second		
Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	17 .	51
PM ₁₀	16	47
PM ₂₅	16	46
Sulfur Dioxide (SO ₂)	3573	219
Nitrogen Oxides (NO _x)	145	204
Carbon Monoxide (CO)	444	211
Volatile Organic Compounds (VOC)	2051	238
Total sum of all Hazardous Air Pollutants (HAP		24.8
Green House Gas Emissions as Total CO ₂ e	n/a	250,000

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days per week, and 52 weeks per year.

The owner and/or operator of the Facility is: Northwind Midstream Partners, LLC; 811 Louislana St., Suite 2500; Houston, TX 77002

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: www.env.nm.gov/air-quality/permitting-section-home-page/. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

Atención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O., Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination. file a complaint of discrimination. #00298591

67110905

00298591

EVAN TULLOS PEI **5 CARDINAL COURT** EDWARDSVILLE, IL 62025

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Routine Operations:

Titan Treater Plant #2 is a 220 million standard cubic feet per day (MMscfd) sour gas treating facility designed to handle highpressure field gas. The facility compresses inlet gas using natural gas-fired engines (CE-1 through CE-7). Post-compression, the inlet gas undergoes amine treatment (AM-1 and AM-2) to remove acid gases such as H2S and CO2. Hot oil heaters (HOH-1 and HOH-2) provide heat for the amine treatment system. The resulting acid gas stream is directed to five (5) electric-driven compressors (AGI-COMP1 through AGI-COMP5), one (1) of which will be a spare unit, which inject the acid gas underground via AGI wells. The sweetened gas is first sent through a triazine contact tower to remove any residual sulfur compounds. Gas is then dehydrated using triethylene glycol units (DHY-1 and DHY-2) and compressed using natural gas-fired compressors (CE-8 through CE-12) for sales.

Condensate separated in the inlet slug catcher undergoes further processing in the stabilization train. Stabilizer overhead gas is recycled into the plant inlet via three (3) electric-driven compressors (SOH-COMP1 through SOH-COMP3), while the stabilized condensate is stored in four (4) 1000-barrel tanks (TK-3, TK-4, TK-5, and TK-6) before being pumped offsite. In case of pipeline unavailability, condensate is loaded out via truck (LOAD-2). Additionally, liquids collected via the closed drain system are directed to two (2) 400-barrel slop water tanks (TK-1 and TK-2) and hauled offsite via truck (LOAD-1). Emissions from LOAD-2 are routed to the tank header via a vapor return line. A redundant VRU system (VRU) controls emissions from the condensate and slop water tanks and truck loading, routing vapors back to the inlet. Sweep gas is introduced to the flare header for FL-1 and AGFL-1 to prevent oxygen ingress into the system.

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

All sources in Table 2-A are included in this evaluation.

B. Apply the 3 criteria for determining a single source:

<u>SIC Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

🗹 Yes 🛛 🗆 No

<u>Common Ownership or Control</u>: Surrounding or associated sources are under common ownership or control as this source.

🗹 Yes 🛛 🗆 No

<u>Contiguous or Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

🗹 Yes 🗆 No

C. Make a determination:

- ✓ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the EPA New Source Review Workshop Manual to determine if the revision is subject to PSD review.

- A. This facility is:
 - a minor PSD source before and after this modification (if so, delete C and D below).
 - □ a major PSD source before this modification. This modification will make this a PSD minor source.
 - an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - □ an existing PSD Major Source that has had a major modification requiring a BACT analysis
 - □ a new PSD Major Source after this modification.
- B. This facility is not one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are not significant. The increase in emissions from each criteria pollutant is less than 250 TPY. The "project" emissions listed below do only result from changes described in this permit application. Also, specifically discuss whether this project results in "de-bottlenecking", or other associated emissions resulting in higher emissions. The project emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]:
 - a. NOx: 201.5 TPY
 - b. CO: 209.0 TPY
 - c. VOC: 235.0 TPY
 - d. SOx: 216.4 TPY
 - e. PM: 26.7 TPY
 - f. PM10: 26.7 TPY
 - g. PM2.5: 25.6 TPY
 - h. Fluorides: TPY
 - i. Lead: TPY
 - j. Sulfur compounds (listed in Table 2): TPY
 - k. GHG: 241,617 TPY

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: <u>http://cfpub.epa.gov/adi/</u>

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. The owner or operator will operate the source at the facility having an excess emission, to the extent practicable, including associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions. The facility will also notify the NMED of any excess emissions per 20.2.7.110 NMAC.
20.2.23 NMAC	Fugitive Dust Control	No	N/A	This regulation does not apply because this application is not for a Notice of Intent.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This facility does not operate gas burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility does not have oil burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	The facility does not meet the definition of gas processing plant and does not operate a sulfur recovery unit.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	TK-3 to TK- 6	The facility will operate storage tanks greater than 20,000 gallons that process more than 30,000 gallons per week. Redundant VRUs are used to control emissions for TK-3 to TK-6.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This facility is not a sulfur recovery plant; therefore, this regulation does not apply.
20.2.50 NMAC	Oil and Gas Sector – Ozone Precursor Pollutants	Yes	CE-1 to CE- 12, TURB-1 to TUBR-6, DHY-1 to DHY-2, HOH-1 to HOH-2, TK- 1 to TK-2	 This regulation establishes emission standards for volatile organic compounds (VOC) and oxides of nitrogen (NOx) for oil and gas production, processing, compression, and transmission sources. 20.2.50 NMAC subparts below: 113 – Engines and Turbines 114 – Compressor Seals 115 – Control Devices and Closed Vent Systems 116 – Equipment Leaks and Fugitive Emissions 117 – Natural Gas Well Liquid Unloading 118 – Glycol Dehydrators 119 – Heaters 120 – Hydrocarbon Liquid Transfers 121 – Pig Launching and Receiving 122 – Pneumatic Controllers and Pumps 123 – Storage Vessels 124 – Well Workovers 125 – Small Business Facilities 126 – Produced Water Management Unit 127 – Flowback Vessels and Preproduction Operations 113 – CE-1-CE-12 are spark ignition engines that will be subject to this regulation. 114 - Northwind Midstream Partners, LLC will comply with the applicable requirements.

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
				116 - Northwind Midstream Partners, LLC will comply with the applicable requirements of this subpart.
				118 - DHY-1-DHY-2 each have a PTE > 2 tpy of VOC; therefore, these units will be subject to this subpart.
				119 – HOH-1 to HOH-2 have heat inputs greater than 20 MMBtu/hr and are therefore subject to this subpart.
				120 – Liquids will be loaded primarily by pipeline; however, truck loading would occur in the event of downtime. Truck vapor is routed back to the tank for control.
				121 – Each Pig Launching and receiver have a PTE <1 TPY, therefore, this subpart does not apply.
				122 – Pneumatic controllers and pumps are non-emitting and operated via instrument air, therefore, this subpart does not apply.
				123 - The TK-1 & TK-2 have a PTE greater than 2 tpy; therefore, this subpart does apply.
				117 and 124-127 - Are not applicable to the operations at this facility.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	CE-1 to CE- 12, HOH-1 to HOH-2, DHR-1 to DHR-2, STABHR-1, AGFL-1, FL- 1, TURB-1 to TURB-6	Stationary Combustion Equipment, such as engines, boilers, heaters, and flares are subject to this regulation.
20.2.70 NMAC	Operating Permits	Yes	Facility	The facility will be subject to 20.2.70 NMAC.
20.2.71 NMAC	Operating Permit Fees	No	Facility	The facility will be subject to 20.2.71 NMAC.
20.2.72 NMAC	Construction Permits	Yes	Facility	This facility is subject to 20.2.72 NMAC.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The facility is subject to 20.2.73 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	Facility	This is not a PSD source; therefore, this regulation does not apply.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This facility is subject to 20.2.72 NMAC; therefore, this regulation applies.
20.2.77 NMAC	New Source Performance	Yes	CE-1 to CE- 12, TURB-1 to TURB-6, FUG-1, HOH- 1 to HOH-2, AGI-COMP1 to AGI- COMP5, SOH-COMP1 to SOH- COMP3,	See applicable NSPS discussions below.

State Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
			STABHR-1	
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	This facility emits hazardous air pollutants which are subject to the requirements of 40 CFR Part 63; however, there are no units subject to 40 CFR Part 61.
20.2.79 NMAC	Permits – Nonattainment Areas	No	Facility	This facility is not located in a nonattainment area; therefore, this regulation does not apply.
20.2.80 NMAC	Stack Heights	No	Facility	This regulation establishes requirements for the evaluation of stack heights and other dispersion techniques. This regulation does not apply as a modeling waiver form was submitted.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	Units subject to 40 CFR 63	See applicable NESHAP discussions below.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
				If subject, this would normally apply to the entire facility.
40 CFR 50	NAAQS	Yes	Facility	This applies if you are subject to 20.2.70, 20.2.72, 20.2.74, and/or 20.2.79 NMAC.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	CE-1 to CE- 12, TURB-1 to TURB-6, FUG-1, HOH- 1 to HOH-2, AGI-COMP1 to AGI- COMP5, SOH-COMP1 to SOH- COMP3, STABHR-1	Applies if any other Subpart in 40 CFR 60 applies.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	Not applicable as there are no electric utility steam generating units at this facility.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	Not applicable as there are no electric utility steam generating units at this facility.
40 CFR 60.40c, Subpart Dc	Small Industrial- Commercial- Institutional Steam Generating Units	Yes	HOH-1, HOH-2 & STABHR-1	HOH-1, HOH-2 and STABHR-1 meet the definition of steam generating units as each device combusts fuel and heats heat transfer medium and are greater than 10 MMbtu/hr.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR 60, Subpart Ka	Storage Vessels for Petroleum Liquids After May 18, 1978, and Prior to July 23, 1984	No	N/A	Not applicable since the tanks were constructed after July 23, 1984.
NSPS 40 CFR 60, Subpart Kb	Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) After July 23, 1984	No	N/A	Not applicable since the tanks were constructed after October 4, 2023.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	Not applicable as the turbines were constructed after the applicability date of NSPS KKKK.
NSPS 40 CFR 60, Subpart KKKK	Stationary Gas Turbines	No	TURB-1 to TURB-6	TURB-1 to TURB-6 will be subject to this regulation since they will be constructed after February 18, 2005 and are greater than 10 MMBtu/hr.
NSPS 40 CFR Part 60 Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	The facility was constructed after August 23, 2011.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions	No	N/A	The facility was constructed after August 23, 2011.
NSPS 40 CFR Part 60 Subpart 0000	O&G after August 23, 2011 and before September 18, 2015	No	N/A	This regulation is applicable to affected facilities after August 23, 2011 and on or before September 18, 2015. The facility is not subject to this regulation.
NSPS 40 CFR Part 60 Subpart 0000a	O&G After September 18, 2015	Yes	N/A	This regulation is applicable to affected facilities after September 18, 2015and on or before December 6, 2022. The facility is not subject to this regulation.
NSPS 40 CFR Part 60 Subpart OOOOb	O&G After December 6, 2022	Yes	CE-1 to CE-12, FUG-1, AGI- COMP1 to AGI-COMP5, SOH-COMP1 to SOH- COMP3	The reciprocating compressors associated with are likely subject pursuant to 60.5365b(c). A formal determination of applicability will be made upon delivery of compressors. FUG-1 is subject per 60.5365a(i). AM-1 and AM-2 are exempt per §60.5365b(g)(4). TK-1 through TK-6 are not affected facilities since post-VRU emissions are less than applicable thresholds in 60.5365b(e)(1)(i) and (ii). The tanks will comply with the closed vent system requirements.
NSPS 40 CFR Part 60 Subpart OOOOc	Greenhouse Gas Emissions from Existing Crude Oil and Natural Gas Facilities	Yes	N/A	It is expected all affected sources will be subject to OOOOb.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition ICE	No	N/A	The engines located at this facility are SI engines; therefore, this subpart does not apply.
NSPS	Standards of Performance for	Yes	CE-1 to CE- 12	According to the 40 CFR §60.4230 (a)(4), spark ignition reciprocating internal combustion engines commencing construction, modification, or

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR Part 60 Subpart JJJJ	Stationary Spark Ignition Internal Combustion Engines			reconstruction after June 12, 2006 and engines with a maximum engine power greater than or equal to 500 hp manufactured after July 1, 2007 are subject to these standards.
NSPS 40 CFR 60 Subpart TTTT	Greenhouse Gas Emissions for Electric Generating Units	No	N/A	This facility does not have any electric generating units capable of combusting more than 250 MMBtu/h heat input of fossil fuel and it does not supply/sell power to an electric utility grid.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	This facility is not an electric utility and therefore not subject to this subpart.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	This facility is not a municipal solid waste landfill and is therefore not subject to this subpart.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	The facility is not subject to any subparts of 40 CFR 61.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The provisions of this subpart are applicable to those stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge. Therefore, this subpart does not apply.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	Not applicable as the facility equipment does not operate in VHAP service. VHAP service is a piece of equipment, which contains or encounters a fluid that is at least 10% weight of VHAP. VHAP is a substance regulated under this subpart for which a standard for equipment leaks of VHAPs has been promulgated.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	DHY-1 to DHY-2, CE- 1 to CE-12	Applies if any other Subpart in 40 CFR 63 applies.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DHY-1 to DHY-2	The facility is an area source of HAPs and this regulation applies to TEG units at area sources pursuant to 40 CFR 63.760(b)(2). The units will meet the requirements of this subpart as applicable. Since actual annual benzene emissions are less than 1 tpy, the facility is subject to only recordkeeping requirements. Per 40 CFR 63.760(b)(1)(iii)&(iv) fugitive components and compressors are not applicable as this facility is not a natural gas processing plant.
MACT 40 CFR 63 Subpart HHH		No	N/A	This facility is not a natural gas transmission facility; therefore, this facility is not subject to this regulation.
MACT 40 CFR 63 Subpart DDDDD	NESHAP for Major Boilers & Process Heaters	No	N/A	Per 40 CFR 63.7485, only HAP emissions from glycol dehydration units and storage vessels with the potential for flash emissions shall be aggregated for a major source determination. Based on the definition, this facility is not a major source of HAPs.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:	
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	This facility does not contain coal or oil fired electric utility steam generating units; therefore, this regulation does not apply.	
MACT 40 CFR 63 Subpart ZZZZ	RICE MACT	Yes	CE-1 to CE- 12	Per 40 CFR 63.6585 these engines are subject to this subpart and are considered new stationary RICE with site rated HP >500 located at an area source. These units will comply with the emissions and operating limitations.	
40 CFR 64	Compliance Assurance Monitoring	Yes	AM-1 to AM-2	Per 40 CFR 64.2, The amine units (AM-1 to AM-2) are subject because they have the potential, pre-control device, emissions that are equal to or greater than 100%, in tons per year, required for a source to be classified as a major source. The units will comply with all applicable requirements upon issuance of the Title V permit for this facility.	
40 CFR 68	Chemical Accident Prevention	No	N/A	This facility does not have any sources listed in this subpart.	
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	Not applicable as this facility is not an acid rain source.	
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	Not applicable as this facility is not an acid rain source.	
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	This facility does not generate commercial electric power or electric power for sale and is therefore not subject to this regulation.	

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

- Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions During</u> <u>Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Startup and shutdown procedures are based on manufacturer's recommendations Northwind's experience with specific equipment. These procedures are designed to proactively address the potential for malfunction to the greatest extent possible. These procedures dictate a sequence of operations that are designed to minimize emissions from the facility during events that result in shutdown and subsequent startup.

Equipment located at this facility is equipped with various safety devices and features that aid in the prevention of excess emissions in the event of an operational emergency. If an operational emergency does occur and excess emissions occur, Northwind will submit the required Excess Emissions Report as per 20.2.7 NMAC. Corrective action to eliminate the excess emissions and prevent recurrence in the future will be undertaken as quickly as safety allows.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

There are no alternate operating scenarios. All operations are covered under routine operations or SSM.

Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC). See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	х
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

- □ See attached, approved modeling **waiver for all** pollutants from the facility.
- See attached, approved modeling **waiver for some** pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- Attached in UA4 is a **modeling report for some** pollutants from the facility.
- □ No modeling is required.

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Compliance Test History Table

Unit No.	Test Description	Test Date
CE-1 to CE-12	These units have not started	N/A

Addendum for Streamline Applications

Do not print this section unless this is a streamline application.

Streamline Applications do not require a complete application. Submit Sections 1-A, 1-B, 1-D, 1-F, 1-G, 2-A, 2-C thru L, Sections 3 thru 8, Section 13, Section 18, Section 22, and Section 23 (Certification). Other sections may be required at the discretion of the Department. 20.2.72.202 NMAC Exemptions do not apply to Streamline sources. 20.2.72.219 NMAC revisions and modifications do not apply to Streamline sources, thus 20.2.72.219 type actions require a complete new application submittal. Please do not print sections of a streamline application that are not required.

This is not a Streamline Application.

Requirements for Title V Program

Do not print this section unless this is a Title V application.

Who Must Use this Attachment:

- * Any major source as defined in 20.2.70 NMAC.
- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See <u>www.env.nm.gov/air-quality/air-quality-title-v-operating-permits-guidance-page/</u>. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

This is not a Title V Application.

Other Relevant Information

Other relevant information. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is being submitted as part of this application.

Addendum for Landfill Applications

Do not print this section unless this is a landfill application.

Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: <u>www.epa.gov/stationary-sources-air-pollution/clean-air-act-guidelines-and-standards-waste-management</u>

NM Solid Waste Bureau Website: <u>www.env.nm.gov/solid-waste/</u>

This is not a landfill.

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-A: Identification					
1	Name of facility:	Titan Treater Plant #2			
2	Name of company:	Northwind Midstream Partners LLC			
3	Current Permit number:	N/A			
4	Name of applicant's modeler:	Bruce Ferguson			
5	Phone number of modeler:	601-824-1860			
6	E-mail of modeler:	bferguson@fce-engineering.com			

16	-B: Brief							
1	Was a modeling protocol submitted and approved?	Yes□	No⊠					
2	Why is the modeling being done? New Facility							
3	Describe the permit changes relevant to the modeling.							
4	What geodetic datum was used in the modeling?	WGS84						
5	How long will the facility be at this location? Indefinite							
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠					

16	16-B: Brief									
7	Identify the Air Quality Control Region (AQCR) in which the fac	ility is located	155							
	List the PSD baseline dates for this region (minor or major, as	List the PSD baseline dates for this region (minor or major, as appropriate).								
8	NO2	3/16/1988								
0	SO2	7/28/1978								
	PM10	2/20/1979								
	PM2.5 11/13/2013									
	Provide the name and distance to Class I areas within 50 km of the facility (300 km for PSD permits).									
9	104.6 east of Carlsbad Caverns National Park									
10	Is the facility located in a non-attainment area? If so describe	below	Yes□	No⊠						
11	Describe any special modeling requirements, such as streamline	ne permit requirements.								
	None									

16-	C: Modeling Hi	story of Facility									
	•	Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).									
	Pollutant	Latest permit and modification number that modeled the Date of Permit pollutant facility-wide.		Comments							
	СО	none									
	NO ₂	none									
1	SO ₂	none									
	H ₂ S	none									
	PM2.5	none									
	PM10	none									
	Lead	none									
	Ozone (PSD only)	none									
	NM Toxic Air Pollutants (20.2.72.402 NMAC)	none									

16-D: Modeling performed for this application

For each pollutant, indicate the modeling performed and submitted with this application. Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.

	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.				
	СО	\boxtimes								
	NO ₂	\boxtimes	\boxtimes							
1	SO ₂	\boxtimes	\boxtimes	\boxtimes						
	H ₂ S	\boxtimes	\boxtimes	\boxtimes						
	PM2.5	\boxtimes	\boxtimes							
	PM10	\boxtimes	\boxtimes							
	Lead					\boxtimes				
	Ozone					\boxtimes				
	State air toxic(s) (20.2.72.402 NMAC)					\boxtimes				

16-	16-E: New Mexico toxic air pollutants modeling									
1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application. None									
	-	List any NMTAPs that are emitted but not modeled because of stack height correction factor. Add additional rows to the table below, if required.								
2	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor				
	None									

16	16-F: Modeling options									
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□							
	AERMOD Version 24142 was used in the analysis using the regulatory default option.									

	Date of surround	rounding source retrieval 2/19/25 Downloaded from MergeMaster Web page.							
	If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed.								
	AQB Source ID	Description of Corrections							
	38125R6	Emissions removed as it is one even	nt per year lasting 6 hrs						
	SSM Surrounding Sources Removed from Analysis per NMED Guideline Section 4.1.6	8695E11, 7803E12, 31865E12, 780 40136E15, 34629E16, 40136E16, 44 34418E19, 40853E19, 37580E20, 44 39823E23, 40192E23, 37956E24, 33 40192E26, 40221E26, 9292E28, 37 7689E36, 38441E36, 39871E36, 38 38342E56, 38342E59, 38342E62, 56 38049R4, 7689R3, 40146R2, 39871	4, 40554E6, 40795E6, 38313E8, 40258E8, 9292E10, 40142E10, 3E13, 40159E13, 32333E14, 39785E14, 40747E14, 39140E15, 0872E16, 39004E17, 39145E17, 5515E18, 40265E18, 33319E19, 0211E20, 38292E21, 39591E21, 40211E21, 37960E22, 39591E22, 8270E24, 40192E24, 40192E25, 40221E25, 11000E26, 12523E26, 766E28, 38441E31, 38863E33, 38909E34, 38441E35, 38909E35, 838E39, 38838E40, 38838E42, 38438E47, 38438E48, 38438E49, 69E72, 30535R2, 569R30, 664R3, 7689R3, 40146R2, 39871R2, .R2, 38049R4, 38183R4, 38125R1, 39955R6, 39604R3, 40095R3, .R2, 39823R1, 8008@1, 8008R2, 5515R2, 39565E13, 39565E16,						
	39955 38439	For SO2 modeling, source locations were moved to correspond to aerial photo. Receptors within fence line were removed.							
	38125E14	Changed the diameter of 0.61 m to the Table 38: Missing Stack Parameter Substitutions for Flares value of 2.79 m for SO2 of 90 lb/hr. Inventory diameter did not appear to account for assist gas required for elevated H2S.							
	38125R2	Removed truck loading emissions as the source is an insignificant activity not required to be modeled.							
	38125E11	SO2 emissions changed to normal of	operations listed in the application of 0.0036 lb/hr.						
	39955E12 39955E11	H2S emissions removed. Application states "100% Vapor Recovery Unit (VRU) control controlling tank VOC and H2S vapors to TK-1-TK-2. VRUs are redundant. When one is down for maintenance the other will be in service."							
	38439E5	Changed to 21.89 lb/hr H2S as in a	pplication						
	39823E13 39823E14 39823E15 39823E46 39823E47 39823E47 39823E48 39823E49	Source changed from volume source	ce to stack with parameters listed in application.						
	28937@1		tack estimated at 25 ft with effective diameter of 5 feet. Velocity I listed in application of 47,000 acfm. Exhaust temp of 200 F assume						
_	39955R4	Changed to an area source encompassing the pipe rack.							
	39955@1	Removed H2S truck loading emission modeled.	ons as the source is an insignificant activity not required to be						
	7689E11	MMscf/day and average MW of na							
	39871E12	The actual gas flow was changed from 3.3 ft3/s to 8.35 ft3/s and the natural gas Fw factor for natural							

16	16-G: Surrounding source modeling								
	38342	The facility was modeled as presented in the modeling files for NSR 7747-M6							
	PM ₁₀ /PM _{2.5} Analysis	Sources identified in the MergeMaster input file as greater than 10 km from the source were removed from the NAAQS source group.							

16-	16-H: Building and structure downwash									
1	1 How many buildings are present at the facility?									
2	How many above ground storage tanks are present at the facility?	14								
3	Was building downwash modeled for all buildings and tanks? If not explain why below.	Yes⊠	No□							
4	Building comments									

16				property boun	-					
1	continuous w grade that wo area within th Area is requir receptors sha Describe the t	alls, or other co ould require sp ne property ma ed in order to e Il be placed wit fence or other	ontinuous barr ecial equipmer y be identified exclude recept thin the prope physical barrie	c entry is effectively pr riers approved by the D nt to traverse. If a large with signage only. Put ors from the facility pro- rty boundaries of the fa- er at the facility that de- rs were placed at and b	epartment, such as re property is complete blic roads cannot be p operty. If the facility o acility. fines the restricted ar	ugged phy ely enclose aart of a Re does not h rea.	vsical terrain ed by fencin estricted Ar	n with a steep g, a restricted ea. A Restricted		
2	Receptors must be placed along publicly accessible roads in the restricted area.YesNoAre there public roads passing through the restricted area?YesNo									
3	Are restricted	l area boundar	y coordinates i	ncluded in the modelir	ng files?		Yes□	No□		
	Describe the receptor grids and their spacing. The table below may be used, adding rows as needed.									
	Grid Type Shape Spacing		Spacing	Start distance fromEnd distance fromcenter of facilitycenter of facility		Comments				
	Fence Line	Rectangle	50-meter							
4	Cartesian	Round	50-meter	0	1 km					
	Cartesian	Round	100-meter	1 km	3-km					
	Cartesian	Round	250-meter	3-km	6-km					
	Cartesian	Round	500-meter	6-km	12-km					
	Cartesian	Round	1-km	12-km	50-km					
		ptor spacing al	ong the fence	line.						
5	50-meter									
	Describe the	PSD Class I area	a receptors.							
6	n/a									

16	-J: Mod	leling S	cenar	ios									
1	Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition period etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).										n periods,		
	AGFLSSM	– All source	es and pro	acid gas flare ocess flare wi gas flare with	th norma	l emissio	ns, acid g	gas flare					
2	PM, NOx a which are	nd CO imp offset from	acts were n the flare	highest conce e the highest e high impact emissions for	for norm s. The AG	al operat iFLSSM so						-	•
2		CO		NOx	PM	2.5	PM	110		SC	02		H2S
	Senario			-hr Annual	24-hr	Annual	24-hr	Annual	1-hr	3-hr	24-hr	Annual	1-hr
		15.3268 70.						3.85425	12.15405			0.60593	
		15.3240 70. 15.3267 70.			5.33410 5.31007	-	10.66005 10.66041		181.42402 78.56749		28.39031		106.8009 106.8008
3	Were emis (This ques	ssion factor tion pertai	r sets use ns to the	d to limit emi "SEASON", "N g the maximu	ission rat MONTH",	es or hou "HROFD	irs of ope			not to	Yes	N	10
4				group of sou necessary. It's								-	up.
	Hour of Day	Factor	Hour of Day	Factor									
	1		13										
	2		14										
	3		15										
	4		16										
	5		17										
-	6		18										
5	7		19										
	8		20										
	9		21										
	10		22										
	11		23										
	12		24										
	If hourly, v	variable em	hission rat	tes were used	that we	re not de	scribed a	bove, de	scribe the	em belov	V.		
	Were diffe	erent emiss	ion rates	used for sho	rt-term a	nd annua	al modelii	ng? If so	describe	[
6	below.				u			3 00			Yes□	Ν	lo⊠

16-	-K: NO ₂	Modeling						
	Which type Check all th	es of NO ₂ modeling were used? nat apply.						
	\boxtimes	ARM2						
1	\boxtimes	Image: NOx to NO2 conversion						
		PVMRM						
		OLM						
		Other:						
2	Describe the NO ₂ modeling.							
	Full conver	sion was assumed in the SIL analysis. The ARM2 method was used in the cumula	itive analysis.					
3	Were default NO2/NOx ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not describe and justify the ratios used below. Yes Image: No							
4	Describe th							
		h percentile as calculated by AERMOD er (Describe): : highest of 5-years modeled						

contribute to any violat The basis of the ozone <u>Prevention of Signific</u> accepts this SIL basis ar concentration analysis The MERP values prese	tions of ozone NAAQS. SIL is documented in $\frac{O}{C}$ and Deterioration Period incorporates it into using MERPS is include ented in Table 10 and T that facilities emitting on of O ₃ than the O ₃ sign	The analysis follows. Guidance on Significant ermitting Program, EPA, this permit record by refe ed in the New Mexico Air Fable 11 of the NM AQB M g no more than 250 tons, gnificance level.	at are minor with respect to <u>Impact Levels for Ozone</u> , April 17, 2018 and associa rerence. Complete documer <u>Quality Bureau Air Dispersi</u> Modeling Guidelines that pr /year of NO _x and no more t	and Fine Particles in the ted documents. NMED tation of the ozone on Modeling Guidelines. oduce the highest
•	=1.546 μg zone concentrations b	y/m ³ , which is below the s	$\left(\frac{ton}{yr}\right) \times 1.96 \ \mu g/m^3$ significance level of 1.96 μg	
Does the facility emit at least 250 tons per year of NO _x or at least 250 tons per year of VOCs? Sources that emit at least 250 tons per year of NO _x or at least 250 tons per year of Yes□ No⊠				
VOCs are covered by the analysis above and require an individual analysis. Image: Covered by the analysis above and require an individual analysis. For new PSD Major Sources or PSD major modifications, if MERPs were used to account for ozone fill out the information below. If another method was used describe below. NO _x (ton/yr) MERP _{NOx} VOCs (ton/yr) MERP _{voc} [O ₃] _{8-hour}				
3 VOCs? Sources that emit at least 250 tons per year of NOx or at least 250 tons per year of VOx or at least 250 tons per year of VOx or at least 250 tons per year of VOCs are covered by the analysis above and require an individual analysis. Yes□ No⊠ For new PSD Major Sources or PSD major modifications, if MERPs were used to account for ozone fill out the information below. If another method was used describe below. No⊠				/OCs? Sources that emit at least 250 tons per year of NOx or at least 250 tons per year of Yes /OCs are covered by the analysis above and require an individual analysis. Yes For new PSD Major Sources or PSD major modifications, if MERPs were used to account for ozone below. If another method was used describe below.

	M: Particulate Matter Modeling Select the pollutants for which plume depletion modeling was used.									
1	□ PM2.5									
-	□ PM10	PM10								
	□ None									
2 Describe the particle size distributions used. Include the source of information.										
	N/A									
3	Does the facility emit at le tons per year of SO ₂ ? Sour NO _x or at least 40 tons per significant amounts of pre formation of PM2.5.	ces that emit at year of SO ₂ are	r of Yes⊠	No□						
4	Was secondary PM modeled for PM2.5? Yes				No⊠					
	If MERPs were used to acc below.	ount for second	ary PM2.5 fill out the	information below. If another r	nethod was used describe					
	Pollutant	NO _x	SO ₂	[PM2.5] _{24-hour}						
5	MERP _{annual}	26780	14978	0.164065749						
	MERP _{24-hour}	7331	1981	[PM2.5] _{annual}						
	Emission rate (ton/yr)	201.52	216.39	0.004204442	0.004394442					

16-	-N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration require that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
	N/A
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.
	N/A

16-O: PSD Increment and Source IDs					
	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-I s modeling files. Do these match? If not, provide a cross-referer numbers if they do not match below.	Yes⊠	No□		
	Unit Number in UA-2 Unit Number in Modeling File				
1	DHY-1 SSM				
	DHY-2 SSM SSMBD COMP SSMBD DEHY SSMB				
	SSMBD Filters				
	SSMBD PIPE				

16-	O: PSD Incr	ement and So	urce IDs					
2	The emission rates in the Tables 2-E and 2-F should match the ones in the modeling files. Do these match? If not, explain why below.						No□	
3	Have the minor N been modeled?	ISR exempt sources or	Title V Insignificant Act	ivities" (Table 2-B) sources	Yesl		No□	
	Which units consume increment for which pollutants?							
4	Unit ID	NO ₂	SO ₂	PM10		PM2.5		
5		escription for sources. s, i.e., baseline unit exp :e).	banded emissions					
6	This is necessary	to verify the accuracy o	of PSD increment mode	application form, as required? ling. If not please explain how Istallation dates below.			No□	

16	16-P: Flare Modeling							
1	For each flare or flaring scenario, complete the following							
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)				
	AGFL	19.27	153,277.81	0.35				
	AGFLSSM	21.25	51,280,012.36	6.32				
	FL1	18.84	884,176.73	0.84				
	FL1SSM	26.3	48,461,428.15	6.04				

16-	16-Q: Volume and Related Sources					
	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines?					
1	If not please explain how increment consumption status is determined for the missing installation dates below.	Yes□	No□			
2	Describe the determination of sigma-Y and sigma-Z for fugitive sources.					
2						
	Describe how the volume sources are related to unit numbers.					
3	Or say they are the same.					
	Describe any open pits.					

4	
5	Describe emission units included in each open pit.
5	

16-	16-R: Background Concentrations						
	used below.	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data Yes□ No⊠ that was used. No No No No No					
	CO: N/A						
	NO ₂ : Outside	Carlsbad (350151005)					
1	PM2.5: Hobbs-Jefferson (350450019)						
	PM10: Hobbs-Jefferson (350250008)						
	SO ₂ : N/A						
	Other:						
	The monitor design values posted at https://www.epa.gov/air-trends/air-quality-design-values#report wereComments:used for NO2 and PM2.5. This was approved by Sahil Kassanjee by a 2/27/25 email. The PM10 background was taken from the NMED guideline as there was no design value posted for this pollutant.						
2	Were backgr	Were background concentrations refined to monthly or hourly values? If so describe below. Yes No					
			<u>.</u>				

16-	16-S: Meteorological Data						
	Was NMED provided meteorological data used? If so select the station used.						
1	Carlsbad	Yes⊠	No□				
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discu handled, how stability class was determined, and how the data were processed.	uss how missing	data were				

16-	16-T: Terrain					
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□			
	What was the source of the terrain data?					
2						

16	-U: Modeling Files
1	Describe the modeling files:

File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)
SIA/CO.zip	CO	SIA
SIA/H2S.zip	H2S	
SIA/NOx.zip	NOx	
SIA/PM10.zip	PM10	
SIA/PM25.zip	PM2.5	
SIA/SO2.zip	SO2	SIA 3-hr, 24-hr
SIA/SO2_NAAQS.zip	SO2	1-hr, Annual
CIA/H2S.zip Zip.(H2S.AD/exceedance.MAX) Zip(H2S.evo)	H2S	CIA Threshold file for H2s exceedances Event output file with source contributions
CIA/NO2.zip	NO2	CIA
CIA/PM10.zip	PM10	CIA
CIA/PM25.zip	PM2.5	CIA
CIA/SO2_INC.zip .zip(SO2_INC/[year]/SO2.AD/exceed3. max & exceed24.max	SO2	CIA 3-hr, 24-hr Threshold exceedance files for 3-hr and 24-hr avg period
CIA/SO2_Refined.zip	SO2	CIA 1-hr, Annual
Surrounding Sources	All pollutants	NMED Mergemaster surrounding sources and excluded SSM sources.
CIA/Culpability/ H2S Culpability 3_3_25.xlsx, SO2 1-hr Culpability.xlsx, SO2 Increment Culpability.xlsx	H2S, SO2	Summary of Source contribution
CIA/Culpability/ SO2 2017 3hr Inc.zip, SO2 2020 24hr Inc.zip	SO2	Culpability modeling of years with exceedances of the 3-hr and 24-hr average.

16-	V: PSD New or Major Modification Applications (Not App	licable)	
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No□
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□
3	Describe how preconstruction monitoring has been addressed or attach the approved precor monitoring exemption.	nstruction monito	oring or
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.		
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□

16-W: Mode	eling	Results										
	require signific	ed for the sou	irce to show th	d because of surrounding sources, a culpability analysis is nat the contribution from this source is less than the pollutant. Was culpability analysis performed? If so				s is Yes⊠	No□	No□		
1	he AERMOD in h exceedance. the Titan 2 fac	put file cr The Titan cility was f led in the	eated a sou 2 impacts a ound to be SO2 NAAQS	rce contribution at each event v insignificant a Ganalysis. One	on input file were compa t each ever receptor w	e that wa ared to t it.	as run to deter he H ₂ S modeli	impact exceedir mine the source ng significance le e NAAQS and the	evel and			
2		y the maximu as necessary.		ons from t	the modelir	ng analysis. Ro	ws may be	modified	d, added and r	emoved from the	e table	
				y PM 3)	und ation 3)	ive ation 3)	andard 3)	tandard		Location		
Pollutant, Time Period and Standard		Modeled Facility Concentration (µg/m3)	Modeled Concentration with Surrounding Sources (µg/m3)	Secondary PM (µg/m3)	Background Concentration (µg/m3)	Cumulative Concentration (μg/m3)	Value of Standard (µg/m3)	Percent of Standard	UTM E (m)	UTM N (m)	Elevation (ft)	
CO 1-hr SIL		115.32669	N/A	N/A	N/A	115.32669	2000	5.8	663248.08	3545486.62	895.02	
CO 8-hr SIL 70.38936		70.38936	N/A	N/A	N/A	70.38936	500	14.1	663297.43	3545485.41	894.73	
NO2 1-hr NAAQS		73.61416	N/A	38	128.1	188.03	68.1	662800.00	3545550.00	895.88		
NO2 Annual NMAAQS			8.45754	N/A	9.3	17.8	99.66	17.9	662801.37	3545514.45	896.06	
NO2 Annual PSD		8.45754	N/A	6.1	17.8	25	71.2	662801.37	3545514.45	896.06		
PM2.5 annual NAAQS		1.49804	0.0044	6.6	8.60	9	95.6	662801.37	3545514.45	896.06		
PM2.5 annual PSD		1.55691	0.0044	N/A	1.56	4	39.0	662801.37	3545514.45	896.06		
PM2.5 24-hour NAAQS		3.92245	0.1641	20	24.09	35	68.8	662900.00	3544850.00	892.83		
PM2.5 24-hour PSD		5.11853	0.1641	N/A	5.28	9	58.7	662850.00	3544850.00	892.98		
PM10 24-hour NAAQS		10.74441	N/A	37.3	48.0	150	32.0	662600.00	3545400.00	893.91		
PM10 24-hour PSD		12.48320	N/A	N/A	12.48320	30	41.6	662801.37	3545514.45	896.06		
PM10 annual PSD		4.74890	N/A	N/A	4.74890	17	27.9	662801.37	3545514.45	896.06		
SO2 annual PSD			15.11422	N/A	N/A	15.11422	20	75.6	662300.00	3545850.00	894.78	
SO2 24-hr PSD			78.31956	N/A	N/A	78.31956	91	86.1	662621.71	3545468.21	894.06	

ne Period dard	Facility ration (5ר	ed on with Sources 3)	y PM 3)	und ation 3)	tive ation 3)	tandard n3)	Standard	Location		
Pollutant, Tim and Stanc	Modeled Fac Concentrat (µg/m3)	Modeled Concentration Surrounding So (µg/m3)	Secondary (µg/m3	Backgroun Concentrati (μg/m3)	Cumulative Concentratio (µg/m3)	Value of Stan (μg/m3)	Percent of St	UTM E (m)	UTM N (m)	Elevation (ft)
SO2 3-hr PSD		265.21264	N/A	N/A	265.21264	512	51.8	662600.00	3545400.00	893.91
SO2 1-hr NAAQS		193.66849	N/A	N/A	193.66849	196.4	98.6	662800.00	3544000.00	889.3
H2S ½ hr NMAAQS		129.90696	N/A	N/A	129.90696	139.4	93.2	664400.00	3543700.00	888.37

16-X: Summary/conclusions

1

A statement that modeling requirements have been satisfied and that the permit can be issued.

The proposed facility emissions were modeled to determine the significant impact surrounding the facility. Three scenarios were modeled, normal operations, normal operations plus Acid Gas Flare SSM emissions and normal operations plus process flare SSM emissions. The maximum impact for all scenarios occurs within the receptor grid at 100-meter spacing, i.e., within 3-km of the facility. In general, the cumulative impact analysis was performed only with those receptors that were impacted significantly in the signification impact analysis.

For the SO2 1-hr impacts, the significant impact distance was within 1-km of the facility. For the scenarios with SSM emissions, all receptors within the domain (50 km) had significant impacts. To reduce the modeling time, the receptors carried forward to the cumulative analysis were those with a significant impact for the 3-hr, 24-hr or annual averaging period or receptors within 1-km from the facility.

Surrounding sources were included in the model using the MergeMaster input files downloaded from the NMED website. Sources in the files identified as SSM sources were removed from the surrounding source inventory. For the PM₁₀ and PM_{2.5} analysis, sources greater than 10 km from the proposed project were removed from the NAAQS source group, sources greater that 10 km are accounted for in the monitored background value..

Except for the ½ hr H2S, 1-hr SO2 NAAQS and 3-hr SO2 PSD increment, all pollutants/averaging periods were compliant with the standards as presented above. A culpability analysis was performed for the pollutant/averaging periods with an exceedance of the standards. The contribution of the combined impacts from the proposed source Titan #2 and the existing Titan #1 at the time and location of the exceedance was below the modeling significance level for all events.

The proposed Titan #2 Treating Plant, therefore, does not cause or contribute to an existing exceedance of any air quality standard and the permit can be issued as proposed in the application.

Section 22: Certification

Company Name: Northwind Midstream Partners, LLC

I, <u>Josh Thomas</u>, hereby certify that the information and data submitted in this application are true and as

accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this 20^{4} day of <u>February</u>, 2025, upon my oath or affirmation, before a notary of the State of

Texas gnature

<u>February 20,</u>2025 Date

Josh Thomas Printed Name

SVP Operations	
Title	

2025 Scribed and sworn before me on this 20 day of _ fthrowry

	My authorization as a notary of the State o	f ¬	rixa	2
--	---	-----	------	---

expires on the

day of Suptember

Nótary's Signature

februng 20, 2025

ANNA BELTRAN Notary ID #134541619

My Commission Expires

September 6, 2027

Anna Beltran Notary's Printed Name

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

2027

Air Permit Application Compliance History Disclosure Form

Pursuant to Subsection 74-2-7(S) of the New Mexico Air Quality Control Act ("AQCA"), NMSA §§ 74-2-1 to -17, the New Mexico Environment Department ("Department") may deny any permit application or revoke any permit issued pursuant to the AQCA if, within ten years immediately preceding the date of submission of the permit application, the applicant met any one of the criteria outlined below. In order for the Department to deem an air permit application administratively complete, or issue an air permit for those permits without an administrative completeness determination process, the applicant must complete this Compliance History Disclosure Form as specified in Subsection 74-2-7(P). An existing permit holder (permit issued prior to June 18, 2021) shall provide this Compliance History Disclosure Form to the Department upon request.

Permi	ttee/Applicant Company Name	Expected Application Submittal Date					
North	wind Midstream Partners, LLC	March 4, 2025					
Permi	Permittee/Company Contact Phone Email						
Jillian	Jillian Yamartino (346) 613-1471 jyamartino@nwmidstream.com						
Withi	Within the 10 years preceding the expected date of submittal of the application, has the permittee or applicant:						
1	Knowingly misrepresented a material fact	in an application for a permi	it?	🗆 Yes 🛛 No			
2	Refused to disclose information required	by the provisions of the New	Mexico Air Quality Control Act?	🗆 Yes 🖂 No			
3	Been convicted of a felony related to envi	ronmental crime in any cour	t of any state or the United States?	🗆 Yes 🗵 No			
4	Been convicted of a crime defined by stat price fixing, bribery, or fraud in any court			🗆 Yes 🛛 No			
5a	Constructed or operated any facility for which a permit was sought, including the current facility, without the required air quality permit(s) under 20.2.70 NMAC, 20.2.72 NMAC, 20.2.74 NMAC, 20.2.79 NMAC, or 20.2.84 NMAC?						
5b	 If "No" to question 5a, go to question 6. If "Yes" to question 5a, state whether each facility that was constructed or operated without the required air quality permit met at least one of the following exceptions: a. The unpermitted facility was discovered after acquisition during a timely environmental audit that was authorized by the Department; or b. The operator of the facility estimated that the facility's emissions would not require an air permit, and the operator applied for an air permit within 30 calendar days of discovering that an air permit was 						
6	required for the facility. Had any permit revoked or permanently s or the United States?	🗆 Yes 🖂 No					
7	For each "yes" answer, please provide an explanation and documentation. Northwind became aware that construction had started prior to the issuance of the NSR permit No. 7747M6. Northwind immediately self-reported to NMED on August 23, 2024 and initiated a plan to shut down unpermitted construction activities. On September 11, 2024, AQB C&E Section Chief issued approval of Northwind's Enforcement Discretion Application to resume and complete construction under the significant revision to air permit 7747M5. Air permit 7747M6 was issued on November 4, 2024.						