18 SMOKE EXCEPTIONAL EVENTS: February 25 — September
25, 2012

18.1 Summary of Events

2012, while not considered particularly an active fire season, saw several dates with smoke
impacts due to fires in eastern Arizona, southwestern New Mexico and northern Mexico.
Readings at the Sunland Park (SPCY) PM s Partisol monitor were elevated above the annual
NAAQS of 12 pug/m?® on several occasions due to smoke. Table 18-1, below, shows the dates
and concentrations of PM. s in pg/m? for which smoke from wildfires impacted the monitoring
site.

Date of exceedance SPCY PMj 5 concentration (pg/m°)
4/8/2012 20
4/10/2012 15
4/18/2012 19
4/23/2012 21
4/24/2012 22
5/7/2012 17
5/8/2012 20
5/24/2012 16
5/26/2012 22
6/2/2012 16
6/3/2012 18
6/4/2012 18
6/5/2012 29
6/9/2012 16
6/11/2012 20
6/12/2012 19
6/13/2012 17
6/14/2012 28
6/16/2012 16
6/21/2012 18
6/27/2012 33
6/28/2012 15
8/12/2012 67
9/6/2012 114
9/7/2012 18
9/17/2012 17
9/21/2012 19
9/25/2012 17

Table 18-1. Dates with smoke impacts and corresponding 24-hour average PM, s concentration for the SPCY Partisol monitor.

In effect, New Mexico was surrounded by wildfires for much of this time period. The following
images (Figures 18-1 to 18-28), one for each date listed in Table 18-1, are from Weather
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Underground’s Wundermap® showing satellite-detected fires as red-orange flame icons.
Satellites reporting fire detects include GOES-EAST, GOES-WEST, MODIS TERRA, MODIS
AQUA, AVHRR METOP-02, AVHRR NOAA-15, AVHRR NOAA-18 AND AVHRR NOAA-
19. Times of day vary because satellite coverage times vary. The yellow star superimposed on
each map indicates the approximate location of the SPCY Partisol monitor.
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Figure 18-2. Wundermap® with satellite detected fires April 10, 2012 at 6:00 pm.
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Figure 18-6. Wundermap® with satellite detected fires May 7, 2012 at 12:00 pm.
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As can be seen from the images above, smoke was added to the atmosphere beginning in
February and building in intensity through June, then decreasing again after June. Fires were
still present through August and September; beginning in October smoke was no longer a
significant factor for New Mexico’s air quality as indicated by more normalized concentrations
at the SPCY PMj, 5 Partisol monitor.
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As the events unfolded, winds blew from various directions throughout the border region,
carrying smoke from myriad fires into the Sunland Park area. The presence of smoke-producing
wildfires, little to no point sources in the area, and the high PM, 5 concentrations support the
assertion that these were exceptional events, specifically natural events caused by wildfire
smoke.

18.2 Is Not Reasonably Controllable or Preventable

18.2.1 Suspected Source Areas and Categories Contributing to the Event

Sources of smoke contributing to these exceedances include wildfires from eastern Arizona,
southwestern New Mexico, and northern Mexico. The largest sources of smoke are from the
Whitewater-Baldy fire in southwestern New Mexico and the various fires in northern Mexico,
although some contribution may also have been made by several fires in Arizona and New
Mexico, depending on the wind directions and speeds on each given date.

The sources of smoke were widespread, often covering large portions of northern Mexico and
sometimes nearly half of the contiguous 48 states. Smoke impacts may be due to smoke as far
away as California and Central America. Smoke has a relatively high residence time and may
remain in the upper atmosphere and then be brought down to the surface as air cools.

18.2.2 Recurrence Frequency

The forests, rangelands and grasslands of New Mexico are fire-adapted ecosystems where long
absence of fire has led to hazardous fuel and unhealthy forest conditions. Similar conditions
exist in Arizona and northern Mexico. Most fires occur during the spring and early summer
when conditions are commonly dry and windy. The frequency and intensity of wildfires,
including the frequency of catastrophic fires, has been exacerbated by ongoing drought
conditions. As Figures 18-29 to 18-36 show, drought conditions have persisted through the end
of September. These conditions range from “abnormally dry” to “drought — exceptional” and
while these levels ease somewhat from the end of February to the end of September due to
precipitation, it is important to note that most of Arizona, New Mexico and Mexico remain in a
long-term drought condition.
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Figure 18-29. North American Drought Monitor map analyzed as of February 29, 2012. Severe to exceptional drought conditions
dominate New Mexico and Mexico with mostly long-term impacts. Arizona conditions may be classified as moderate to severe, also with
long-term impacts.
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Figure 18-30. North American Drought Monitor map analyzed as of March 31, 2012. Much of New Mexico and Mexico are classified as
severe to exceptional conditions with mostly long-term impacts. In Arizona, conditions have worsened since February. In this analysis,
most of Arizona is classified as severe to extreme, with both short and long term impacts.

due to limited information.
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Figure 18-31. North American Drought Monitor map analyzed as of April 30, 2012. Conditions have eased somewhat for Mexico,
although most of the country remains classified as severe to extreme. New Mexico is still mostly severe to exceptional and Arizona is still
mostly severe to extreme. Most areas are now classified as having both short- and long-term impacts.
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Figure 18-32. North American Drought Monitor map analyzed as of May 31, 2012. Conditions continue to ease for New Mexico,
although, as with Arizona and Mexico, severe to extreme conditions persist. Most of New Mexico and Mexico expect long-term impacts

while Arizona expects both short- and long-term impacts.
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Figure 18-33. North American Drought Monitor map analyzed as of June 30, 2012. Most of Arizona, New Mexico and Mexico are
classified as severe to extreme. Long-term impact areas have increased, however, now also including parts of Arizona. Most of Arizona
still expects both short- and long-term impacts.
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Figure 18-34. North American Drought Monitor map analyzed as of July 31, 2012. Conditions for New Mexico and Arizona are similar
to June’s analysis, although a larger portion of New Mexico has moved to short- and long-term impacts. Mexico’s conditions have
improved and now is mainly classified as moderate to severe, although with much of the country expecting long-term impacts.
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Figure 18-35. North American Drought Monitor map analyzed as of August 31, 2012. Most of New Mexico, Arizona and Mexico
conditions are classified as moderate to severe, with a few areas classified as extreme. Nearly all of Arizona and New Mexico expect long-
term impacts while Mexico expects both long- and short-term impacts.
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Figure 18-36. North American Drought Monitor map analyzed as of September 30, 2012. Conditions for Arizona and New Mexico are
similar to August’s analysis of mostly moderate to severe with mainly long-term impacts. For Mexico, conditions are mostly abnormally
dry to moderate, with both short- and long-term impacts.
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Drought conditions are predicted to intensify and temperatures are predicted to increase. If fires
are located in remote and rugged terrain, the ability to contain fires is dramatically reduced.
While the recurrence frequency for exceptional events resulting from smoke cannot be estimated,
such events will continue to recur and may increase.

18.2.3 Controls Analysis

In the United States, various agencies are responsible for land management, including the
management of forests. These agencies include the Bureau of Land Management, U.S. Forest
Service, State Forest agencies, and State Land Offices. Lands where fires may occur also
include private land. As such, the individual managers make decisions on forest thinning for the
purpose of wildfire prevention. Agencies or private land owners may use controlled burns to
manage grasslands, forests and agricultural residue.

Further, when public lands are in extremely dry conditions, managers may close them to public
use in order to minimize the risk of human-induced fires. However, no control strategy is 100%
effective and further, lightning strikes are completely uncontrollable. Lightning-induced
wildfires account for widely varying percentages of total acreage burned. For 2012, lighting-
induced fires accounted for approximately 80% of total acreage burned in the southwest. Data
are not available for Mexico fires.

18.3 Historical Fluctuations Analysis

A historical record of the number and burned acreage of wildfires in Arizona, New Mexico and
western Texas (Figure 18-37) has been documented by the Southwest Coordination Center.
While there is significant variability in the number of fires, the general trend is toward fewer
fires. Significant variability also exists in the number of acres burned. The Whitewater-Baldy
fire in the Gila National Forest northwest of the SPCY Partisol monitor, contributed nearly
300,000 of the 500,000 acres burned in 2012. These historical data suggest that, even though
fewer fires may start, drought conditions — especially when coupled with an exceptionally windy
fire season — will promote conditions conducive to extensive wild land burning.
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Figure 18-37. Historical record based on data from the Southwest Coordination Center, showing the number and acreage burned of
wildfires in Arizona, New Mexico and western Texas for the years 2000 through 2012. Data are not available for Mexico.

18.4 Clear Causal Relationship

Fires in Arizona, New Mexico and northern Mexico caused significant amounts of smoke to be
entrained in the atmosphere beginning as early as February and continuing through September.

For each of the dates listed in Table 18-1, a Naval Research Laboratory’s Navy Aerosol Analysis
and Prediction System (NAAPS) product is available in 6-hour increments. This product breaks
down the aerosols, using the AOD data, fire locations, weather data, and microchemistry and
physics, into sulfates, dust and smoke and projects these onto a map. The following images
show, from the NAAPS Archive, that for each of these dates, smoke was present and affected the
SPCY PMs Partisol monitor. (Figures 18-38 to 18-65) While only one image is shown for each
date, many dates have several available confirming images. These analyses show that smoke
impacts were seen for each of these dates.
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Figure 18-38. Smoke surface concentration for April 8, 2012 at 6:00 pm MDT
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Figure 18-39. Smoke Surface Concentration for April 18, 2012 at 6:00 pm MDT.
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Figure 18-40. Smoke Surface Concentration for April 19, 2012 at 6:00 pm MDT.
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Figure 18-41. Smoke Surface Concentration for April 23, 2012 at 6:00 pm MDT.
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Figure 18-42. Smoke Surface Concentration for April 24, 2012 at 12:00 pm MDT.
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Figure 18-43. Smoke Surface Concentration for May 7, 2012 at 12:00 pm MDT.

360|NM Exceptional Events Demonstration 2012



Srmoke Surfoce Concentration (ug/mssd)
for 12:3002 08 Mayw Z012

—17a —162 130 —140 —13d —120 —110 —100 —5d —aAD =70
- - - - - - - - .I. - - - - -

o

Figure 18-44. Smoke Surface Concentration for May 8, 2012 at 6:00 am MDT.
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Figure 18-45. Smoke Surface Concentration for May 24, 2012 at 6:00 am MDT
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Figure 18-46. Smoke Surface Concentration for May 26, 2012 at 12:00 pm MDT
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Figure 18-47. Smoke Surface Concentration for June 2, 2012 at 6:00 pm MDT

362|NM Exceptional Events Demonstration 2012



Srmoke Surfuce Concentrotion (g mss30
for 1202 0% Jun 2012

—170 —162 —=0 —140 —130 —120 —110 —100 -850 —ad  —70
- - = - - . - - .I. - - = - -

FO

Figure 18-48. Smoke Surface Concentration for June 3, 2012 at 6:00 am MDT
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Figure 18-49. Smoke Surface Concentration for June 4, 2012 at 6:00 am MDT
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Figure 18-50. Smoke Surface Concentration for June 5, 2012 at 6:00 am MDT
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Figure 18-51. Smoke Surface Concentration for June 9, 2012 at 6:00 am MDT
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Figure 18-52. Smoke Surface Concentration for June 11, 2012 at 6:00 am MDT
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Figure 18-53. Smoke Surface Concentration for June 12, 2012 at 6:00 am MDT
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Figure 18-54. Smoke Surface Concentration for June 13, 2012 at 6:00 am MDT
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Figure 18-55. Smoke Surface Concentration for June 14, 2012 at 6:00 am MDT
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Figure 18-56. Smoke Surface Concentration for June 16, 2012 at 6:00 pm MDT
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Figure 18-57. Smoke Surface Concentration for June 21, 2012 at 6:00 am MDT
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Figure 18-58. Smoke Surface Concentration for June 27, 2012 at 12:00 pm MDT
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Figure 18-59. Smoke Surface Concentration for June 28, 2012 at 6:00 pm MDT
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Figure 18-60. Smoke Surface Concentration for August 12, 2012 at 6:00 pm MDT
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Figure 18-61. Smoke Surface Concentration for September 6, 2012 at 12:00 pm MDT
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Srmoke Surfoce Concentrotion [ug mssS)
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Figure 18-62. Smoke Surface Concentration for September 7, 2012 at 6:00 pm MDT
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Figure 18-63. Smoke Surface Concentration for September 17, 2012 at 6:00 am MDT
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Figure 18-64. Smoke Surface Concentration for September 21, 2012 at 12:00 pm MDT
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Figure 18-65. Smoke Surface Concentration for September 25, 2012 at 6:00 am MDT
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Typically, when smoke effects are present, the ratio of PM,sto PMy, increases. The average
ratio for non- smoke event days is .32648. For smoke-flagged event days, the average rises to
46757, indicating that these events did indeed see an effect from smoke.

At night, the land cools quickly, allowing the air above it to cool relatively quickly as well.
During the night and morning hours, when winds are low, cool air descends, carrying with it the
smoke that was aloft. Because the winds are low, the entrained particles build up near the
ground. When the winds increase somewhat, the smoke may be blown out of the area. For this
reason, we see a general inverse pattern between wind speed and PM 5 in the morning and night
hours. PM, s peaks are typically found during periods of low winds. In general, the reverse
applies to midday hours as the land heats the air above it. During the late morning and afternoon
hours, when winds increase, PM, s levels generally increase as smoke is blown in from the
surrounding areas, following the terrain into the valley at Sunland Park. When peaks occur
during midday, they usually occur when winds increase somewhat. Figures 18-66 to 18-93 show
these relationships, using PMyg as a proxy at the SPCY TEOM monitor.

PM,, vs Wind Speed
April 8, 2012
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Figure 18-66. Wind speed vs. hourly PM, concentrations at the SPCY TEOM monitor. The three peaks occurred in the early morning
hours and the evening, as wind speeds decreased.
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PM,, vs Wind Speed
April 10, 2012
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Figure 18-67. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. The first PM;, peak occrred as wind speed
decreased in the evening. The second peak which occurred at 11:00 pm corresponds to a change in wind direction from easterly to
southerly as shown in Figure 18-94.

PM,, vs Wind Speed
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Figure 18-68. Wind speed vs. hourly PM, concentrations at the SPCY TEOM monitor. The morning PM, peaks occur when wind
speeds are low, as do evening PMyo peaks. The afternoon peaks roughly correspond to increased wind speeds.
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PM,, vs Wind Speed
April 23, 2012
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Figure 18-69. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. Major PMy, peaks occur in the morning and
evening as wind speeds decrease.

PM,, vs Wind Speed
April 24, 2012
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Figure 18-70. Wind speed vs. hourly PM, concentrations at the SPCY TEOM monitor. Two major PMy, peaks occur, one in the
morning and one mid-afternoon. Wind speeds are low in the morning and higher in the afternoon.
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PM,, vs Wind Speed
May 7, 2012
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Figure 18-71. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. Major PMy, peaks occur in the morning, early
evening and late evening. These spikes roughly correspond to low winds.

PM,, vs Wind Speed
May 8, 2012

[EEN
o

400
350 A ~ i

\ A T N A

VA ~\/ \ ;
N/ \ /7 \ [\
N\ /

[PM,,] (ng/m?3)
S

| <<
I </
j N
ﬁ f’

=

o

o
|

/
T~
I
O P N W b U1 O N 0O O
Wind Speed (m/s)

0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23
Hour of Day

=== PM10 e=\Nind Speed

Figure 18-72. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. The first two PM;, peaks occur in the morning
when winds are low. The third major PMy, peak occurs mid- to late morning as winds are rising. This peak requires further
explanation, which follows this series of charts. The fourth peak occurs mid-afternoon with increased wind speed as expected.
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PM,, vs Wind Speed
May 24, 2012
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Figure 18-73. Wind speed vs. hourly PMy, concentrations at the SPCY TEOM monitor. The only major PMy, peak occurs midday as
wind speeds increase.

PM,, vs Wind Speed
May 26, 2012
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Figure 18-74. Wind speed vs. hourly PM, concentrations at the SPCY TEOM monitor. Two major peaks occur: one in the morning as
wind speeds are low and one in the late afternoon when wind speeds increase.
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PM,, vs Wind Speed

June 2, 2012
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Figure 18-75. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. The major peaks occur in the morning when
wind speeds are low.

PM,, vs Wind Speed
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Figure 18-76. Wind speed vs. hourly PM;o concentrations at the SPCY TEOM monitor. Morning and evening PMy, peaks occur when
wind speeds are low. The afternoon peak occurs when wind speed is relatively higher.
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PM,, vs Wind Speed

June 4, 2012
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Figure 18-77. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. The major PM;, peak occurs at night as wind
speed is low.

PM,, vs Wind Speed
June 5, 2012
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Figure 18-78. Wind speed vs. hourly PMy, concentrations at the SPCY TEOM monitor. The major PMy, peaks occur in the morning
and evening when wind speeds are low.
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Figure 18-79. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. The major PM;, peaks occur in the morning
when winds are low, and the afternoon when wind speeds are relatively higher.
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Figure 18-80. Wind speed vs. hourly PM, concentrations at the SPCY TEOM monitor. The major PMyo peaks occur in the morning
and evening when wind speeds are low.
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PM,, vs Wind Speed
June 12, 2012
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Figure 18-81. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. All major PM;, peaks occur in the morning and

evening when wind speeds are low. A minor peak occurs in the afternoon when wind speed is higher.
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PM,, vs Wind Speed
June 13, 2012
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Figure 18-82. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. The major PM;, peak occurs in the morning

when wind speed is low. One minor peak occurs after midnight when wind speed is low. Another minor peak occurs in the evening and
responds inversely to wind speed.
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PM,, vs Wind Speed
June 14, 2012
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Figure 18-83. Wind speed vs. hourly PM, concentrations at the SPCY TEOM monitor. The largest PMy, peak occurs in the evening as
wind speed drops. The other peak occurs in the morning when wind speed is increasing, although less than 3 m/s.
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Figure 18-84. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. The first PMy, peak occurs at midnight
following a high wind dust event. The other peaks occur mid- and late afternoon as wind speeds increase.
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PM,, vs Wind Speed

June 21, 2012
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Figure 18-85. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. The largest peak occurs late morning as wind
speeds increase. The other peaks occur in the (earlier) morning as winds are low, and mid-afternoon as wind speeds increase, and late
evening as wind speeds decrease slightly. As Figure 18-99 shows, the evening did not cool to a normal extent.

PM,, vs Wind Speed
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Figure 18-86. Wind speed vs. hourly PM, concentrations at the SPCY TEOM monitor. The major PMyo peak occurs in the evening as
wind speed drops.

382|NM Exceptional Events Demonstration 2012



PM,, vs Wind Speed
June 28, 2012
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Figure 18-87. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. The first set of PM;, peaks occurs early to mid-
morning when wind speeds are low. The other peak occurs in the evening as wind speed drops.

PM,, vs Wind Speed
August 12, 2012
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Figure 18-88. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. The first PMy, peak occurs in the morning when
wind speed is low. The two evening peaks occur when wind speed is relatively higher, although still relatively low.
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PM,, vs Wind Speed
September 6, 2012
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Figure 18-89. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. The only major PM;, peak occurs at midnight.
Wind data cannot explain this peak, but the smoke analysis shown in Figure 18-61 above indicates that smoke was arriving from as far
away as California on this date.
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Figure 18-90. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. The major PMy, spike occurs in the early
evening as wind speed increases.
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PM,, vs Wind Speed

September 17, 2012
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Figure 18-91. Wind speed vs. hourly PM;o concentrations at the SPCY TEOM monitor. The first set of PMyo peaks occurs in the
morning as wind speeds are low. Another peak occurs in the afternoon as wind speeds increase. The evening peak also occurs as wind

speeds are low.
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PM,, vs Wind Speed
September 21, 2012
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Figure 18-92. Wind speed vs. hourly PMy, concentrations at the SPCY TEOM monitor. Wind speeds were low all day. The morning

peak followed extremely low wind, allowing smoke to concentrate. As the wind picked up slightly, settled smoke was likely blown into
the valley. The evening peak also occurred following low wind speeds.
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PM,, vs Wind Speed
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Figure 18-93. Wind speed vs. hourly PM;, concentrations at the SPCY TEOM monitor. The morning and evening PM;, peaks

correspond roughly to lowered wind speeds.

The exceptions noted in the captions for April 10, May 8, June 21, and September 6 are
explained here with supporting documentation provided in Figures 18-94 to 18-99 below. El

Paso climate data is included in several explanations because it is the nearest weather station
(approximately 13 miles from the SPCY Partisol monitor) with information on barometric

pressure and wind direction.

April 10, 2012 — Between 10:00 pm and 11:00 pm, the winds at the El Paso, Texas weather
station reported a change in direction from easterly to westerly, then southerly (Figure 18-94).
The peak seen at 11:00 pm while wind speeds were relatively high can be explained by smoke

being blown in from fires in Mexico, eastern Arizona and western New Mexico as shown in

Figure 18-2 above.
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Figure 18-94. Data from the El Paso, Texas weather station showing late evening wind direction changes from easterly to westerly, then

southerly on April 10, 2012. This directional change corresponds to an exception noted in Figure 18-67 above. Figure 18-39, above,
further confirms the large areas in Mexico and the United States with smoke available for transport.

April 22, 2012 — The normal low temperature for this time of year is less than 60 °F. As Figure
18-95 shows, from 7 — 10 pm MDT the times of peaks noted as exceptions in Figure 18-68
above, the temperature remained at or above 80 °F, making the conditions more likely to follow
afternoon patterns.
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Figure 18-95. April 22, 2012 EIl Paso, Texas climate data showing the lack cooling that normally occurs at this time of year. Lack of
cooling caused the evening hours’ moderate winds to blow smoke into the valley, similar to afternoon patterns.

May 8, 2012 — The exception noted in the caption in Figure 18-72 above occurs between 7 and
10 am. A HYSPLIT 24-hour smoke dispersion analysis simulation shows smoke effects at the
SPCY Partisol monitor during this time period, taking into account meteorological conditions
and aerosol data. Figures 18-96 and 18-97, below, show the analysis at 7 am and 10 am
respectively. This may have been due to the mostly easterly wind directions shown in Figure 18-
98 below.
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Figure 18-97. HYSPLIT smoke dispersion 24-hour naIyS|s simulation based on aerosol data and meteorological conditions. At 10:00
am (MDT), the SPCY monitor was still affected by smoke.
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Figure 18-98. El Paso, Texas climate data May 8, 2012, showing that between the hours of 7 and 10 am MDT (between 8 and 11 am
CDT), winds changed from east northeast to east southeast, confirming the smoke dispersion analysis images in Figures 18-96 and 18-97
above.

June 21, 2012 — The peak noted in the caption of Figure 18-85 above occurred at approximately
7-9pm (MDT). As the El Paso climate data shown in Figure 18-99 below shows, the
temperature remained at or above 85 °F during these hours. This may have caused the
fluctuation pattern to mimic those of afternoon. In addition, high wind gusts were seen during
this time, likely contributing dust to the high PM, readings.
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Figure 18-99. El Paso, Texas climate data June 21, 2012, showing that the temperature remained relatively high during the hours of 7 -9
pm (MDT). Also shown are high wind gusts which may have contributed dust to the PM;, readings.

September 6, 2012 — The only major peak on this date occurred at midnight. Examination of
Figure 18-61 above, shows that smoke was likely reaching the monitor from California.
Readings at the SPCY monitor were elevated (116) and the PM; 5 to PMj ratio was over 2.3,
indicating that smoke was indeed a factor.

18.5 Affects Air Quality

Smoke undoubtedly affected air quality on all dates listed in Table 18-1, as each of these dates
had a smoke impact. The NM Border Air Quality Blog confirms that air quality was affected.
Full reports for fire season (and other) months may be viewed at
http://nmborderaq.blogspot.com/search?updated-min=2012-01-01T00:00:00-07:00&updated-
max=2013-01-01T00:00:00-07:00&max-results=50.

18.6 Natural Events

The Clear Causal Relationship and not Reasonably Controllable or Preventable analyses show
that these were natural events caused mainly by wildfire smoke. 80% of the fires were
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attributable to lightning in 2012. Natural conditions (including severe drought conditions, winds,
and remote or rugged terrain) in many fire locations make control of these fires difficult.

18.7 No Exceedance but for the Event

As the previous sections of this chapter have shown, the exceedances shown in Table 18-1were
caused by natural events — specifically, wildfires in Arizona, New Mexico, northern Mexico and
even southern California, which put significant amounts of smoke (and therefore PM, ) into the
atmosphere when low winds and cooling land mass caused increases in particle concentrations
near the ground, or when moderate winds caused smoke to be blown into the valley. The only
other possible source for PM, s would have been from Ciudad Juarez as reports to EPA have
previously shown and which were not analyzed for this demonstration.

2012 average PM, s concentration at the SPCY Partisol monitor is 14.8 micrograms per cubic
meter. However, the average for the dates included in Table 18-1 for which smoke was a factor
is 23.84 micrograms per cubic meter. Excluding this data lowers the average to 13.3 micrograms
per cubic meter. As fine dust is also a factor for PM, s readings, another average was calculated
which also excluded the high wind events described in previous chapters. This average drops
even further, to 11.3 micrograms per cubic meter. Therefore, the SPCY PM, 5 Partisol monitor
would have had no exceedance but for the smoke due to wildfires.
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