Phase 2 Investigation Report NMED PFAS Investigation Cannon Air Force Base and Surrounding Area

Prepared for New Mexico Environment Department Hazardous Waste Bureau Santa Fe, New Mexico

Prepared by

6020 Academy NE, Suite 100 Albuquerque, New Mexico 87109 www.dbstephens.com DB23.1087

June 30, 2023

Table of Contents

1.	Introduction	.1
2.	Data Confidentiality	. 1
3.	Site Description	. 1
4.	Background	,2
5.	Regulatory Framework	5
6.	Exposure Pathways	,7
7.	Planning Documents, Requirements, and PFAS Protocols	.7
8.	Phase 1 Investigation Report Recommendations	.8
9.	Phase 2 Project Activities	.9
	9.1 DBS-1 Monitor Well Pump Installation	0
	9.2 Groundwater Sampling1	0
	9.3 Numerical Modeling1	2
	9.3.1 Regional Groundwater Flow Model1	3
	9.3.2 Local Groundwater Flow Model1	5
	9.3.3 Transport Model1	8
10.	Cannon AFB Remedial Investigation1	9
	10.1 Proposed Activities1	9
	10.2 Status	20
11.	Recommendations	20
Refe	ences2	21

List of Figures

- 1 Vicinity Map
- 2 AFFF Release Areas
- 3 Monitor Well DBS-1 Location
- 4 Regional Model Grids
- 5 Horizontal Hydraulic Conductivity
- 6 Calibration Wells
- 7 Regional and Local Model Grids
- 8 Pilot Points and Calibrated Hydraulic Conductivity Zones
- 9 Local Model Calibrated Hydraulic Conductivity
- 10 Simulated heads as of 2022, Calibrated Local Model
- 11 Extent of Transport Model Grid and Comparison of 2022 Simulated Heads of Calibrated Local Model and Transport Model
- 12 PFOS, PFOA, and PFHxS Concentrations in December 2021 and Simulated Constant Concentration Cells
- 13 Simulated PFOS Concentrations as of December 2022
- 14 Simulated PFOA Concentrations as of December 2022

List of Tables

- 1 PFAS Target Analytes
- 2 EPA and NMED PFAS Regulatory Levels
- 3 Frequency of Field Quality Control Samples
- 4 Field Parameter Measurements for FY 2023 Off-Base Water Samples
- 5 PFAS in FY 2023 Off-Base Water Samples
- 6 Model Calibration Wells
- 7 Contaminant Transport Parameters and Sources for PFOS and PFOA

Phase 2 Report, Cannon AFB NMED PFAS Investigation

List of Appendices

- A April 2023 Laboratory Report for DBS&A Sampling
- B Model Calibration Results
- C Cannon AFB RI Monitor Well Locations and Logs

1. Introduction

To better understand the scope of potential and existing environmental contamination associated with per- and polyfluoroalkyl substances (collectively referred to as PFAS) around the state, the New Mexico Environment Department (NMED) has worked with state and federal partners to conduct sampling for PFAS in sediment, surface water, and groundwater around the state. The NMED Hazardous Waste Bureau (HWB) contracted with Daniel B. Stephens & Associates, Inc. (DBS&A) to characterize PFAS in groundwater on and in the vicinity of Cannon Air Force Base (AFB) in Curry County (the Cannon site). The Phase 1 work performed under this contract is discussed by DBS&A (2022). This report presents the results of the Phase 2 work conducted for the Cannon site between March and June 2023, including groundwater quality sampling, numerical modeling, and identifying recommendations for Phase 3 project activities.

2. Data Confidentiality

As discussed in the Phase 1 report (DBS&A, 2022), with two exceptions, the landowners downgradient of Cannon AFB gave permission to DBS&A to collect groundwater samples, but required that the results of the water sampling not be provided to NMED or included in the Phase 1 report. The exceptions were Mr. Arthur Schaap, owner and operator of Highland Dairy, and Mr. Juan Jimenez, on whose property new downgradient monitor well DBS-1 was installed. Copies of the laboratory results were sent to the owners of the properties from which the samples were obtained. The discussion of results in the Phase 1 report is limited to the samples from the Schaap and Jimenez properties. The laboratory reports for Phase 2 sampling during April 2023 are provided in Appendix A, and include the results from two downgradient domestic wells (without location information), as well as monitor well DBS-1.

3. Site Description

The NMED-directed Cannon site PFAS investigation project area is roughly bounded by the western Cannon AFB boundary on the west, U.S. Highway 70 (US 70) on the east, the Curry-Roosevelt County boundary on the south, and State Road 245 (SR 245) on the north. The project area encompasses all of Cannon AFB; most of the area outside of the base is occupied by a number of dairy farming operations and fields irrigated with center pivot sprinklers, with

some rural residences. The Ogallala Aquifer, also referred to as the High Plains Aquifer, is the primary source of potable water in the region, and provides the water supply for Cannon AFB, the City of Clovis, and the vicinity. Depth to groundwater is currently approximately 320 feet below ground surface (bgs) in the Cannon AFB area, and groundwater is unconfined. The local groundwater gradient is generally to the southeast at 0.0013 to 0.0028 foot per foot (ft/ft) (Hart and McAda, 1985).

Cannon AFB is located approximately 3 miles west-southwest of Clovis, New Mexico. It occupies 3,789 acres of federally owned land, and is the home of the Special Operations Air Force Base and the 27th Special Operations Force Support Squadron. Clovis is the largest city in eastern New Mexico, and is a principal center for trade and agricultural services for the region. The city is also a center for rail transportation, marketing livestock, and processing agricultural commodities, particularly grain, livestock, milk, and poultry. It is surrounded by thousands of acres of farming, ranching, and dairy land. The Cannon site Phase 1 PFAS investigation report (DBS&A, 2022) includes a thorough discussion of the environmental setting. A vicinity map showing Cannon AFB and the surrounding area is provided as Figure 1.

4. Background

PFAS are a large family (perhaps more than 8,000 [Buck et al., 2021]) of manmade organofluorine compounds that were developed in the early 1940s. Certain PFAS, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), are mobile, persistent, and bioaccumulative, and are not known to degrade in the environment. PFAS chemical structure gives them unique and valuable properties, including the ability to reduce friction and make products more resistant to soil, stain, grease, water, fire, and temperature. These chemical properties make them useful components in a wide array of industrial and commercial applications, such as textiles and leather products, metal plating, the photographic industry, photolithography, semiconductors, paper and packaging, non-stick cookware, food packaging, waterproof clothing, fabric stain protectors, lubricants, and pesticides. Some PFAS are also used as high-performance surfactants in products where an even flow is essential, such as paints, coatings, cleaning products, and fire-fighting foams, such as aqueous film-forming foam (AFFF), for use on liquid (hydrocarbon) fuel fires (U.S. EPA, 2009 and 2021b).

PFAS are characterized by linear or branched carbon-fluorine chains connected to a functional group, and can vary in length from 4 to 14 molecules. The number of carbon atoms, and

therefore the length of the chain comprising a particular PFAS, affects its toxicity and persistence and behavior in humans, wildlife, and the environment. Perfluorosulfonic acids (PFSAs) with six or more carbons (e.g., PFOS) and perfluorinated carboxylic acids (PFCAs) with seven or more carbon atoms (e.g., PFOA) are considered long-chain substances (Buck et al., 2011; U.S. EPA, 2021b; ATSDR, 2021). In general, as chain length increases, the bioaccumulation potential of PFAS appears to increase. For reference, the names, acronyms, and families of PFAS discussed in this report are provided in Table 1.

PFAS are extremely persistent in environmental media because the highly stable carbon-fluorine structure of PFAS can only be broken down at very high temperature. Larger PFAS compounds may transform in the environment to so-called "terminal" PFAS compounds, which are typically less than or equal to eight carbon-chain molecules such as PFOA and PFOS, and are resistant to environmental degradation processes such as biodegradation, atmospheric photo-oxidation, direct photolysis, and hydrolysis (ITRC, 2021). Dissipation is by advection, dispersion, and sorption to particulate matter. PFOS has low volatility in ionized form, but can adsorb under limited hydrogeochemical conditions to positively charged sediment particles and be deposited on the ground and into surface water bodies. Due to its persistence, it can be transported long distances in air or water (U.S. EPA, 2016a).

Of particular concern at the Cannon site is the use of AFFF to extinguish fires involving highly flammable liquids. AFFF creates a vapor-sealing film on a hydrocarbon fuel surface, cooling the liquid fuel, depriving the fuel of oxygen, and providing protection against reignition by preventing evaporation (Leeson et al., 2021). The U.S. Air Force (USAF) began purchasing and using AFFF containing PFOS and PFOA for extinguishing petroleum fires and during firefighting training activities in 1970 (AFIMSC, 2017). By mid-2018, the USAF had transitioned to a new AFFF formula, Phos-Check 3 Percent, which is PFOS-free and contains only trace amounts of PFOA (AFCEC, 2018), although it is possible that stockpiles of old AFFF were used after that time. The USAF restricts use of AFFF to emergency responses, and treats all releases as hazardous spills. AFFF contained in aircraft hangar fire protection systems was scheduled to be completed by the end of 2018 (AFCEC, 2018).

The results of sampling for PFAS conducted by various parties in the Cannon site area indicate that releases of PFAS have occurred from multiple sources at Cannon AFB, which likely include (1) one or more of the FTAs located in the southeast quarter of the Base, (2) the former Sewage Lagoons, located on the east side of the base south of the current WWTP, (3) one or more of the former landfills, such as Landfill No. 5 located in the southeast corner of the base, and

(4) current wastewater discharge areas, such as the ponds and irrigated areas at the golf course and the North Playa Lake (Figure 2) (DBS&A, 2022).

Two main areas of PFAS contaminated groundwater have been identified at Cannon AFB: the area southeast of the former Sewage Lagoons and the area south and southeast of Landfill No. 5 (Figure 2) (DBS&A, 2022). NMED's PFAS data from December 2021 groundwater sampling at Cannon AFB indicate that PFAS concentrations in most of the so-called east monitor wells have decreased dramatically since the USAF site investigation (SI) in 2017 and 2018 (DBS&A, 2022). PFAS concentrations in groundwater in the southeast corner of the base have also declined, but high concentrations there indicate an ongoing source that presents a continuing threat to residential and agricultural wells downgradient of Cannon AFB and what steps can be taken to stop what appear to be ongoing impacts to groundwater (DBS&A, 2022). Based on previous PFAS detection in soils, further characterization and remediation of PFAS-contaminated soils at and near Cannon AFB is required to address short- and long-term contamination of groundwater in the Ogallala aquifer system (DBS&A, 2022).

The Phase 1 work performed under this contract is discussed by DBS&A (2022), and included the following:

- Providing the background on PFAS sampling requirements, PFAS compounds and their use, toxicity, persistence, and human health effects, and regulatory framework
- Providing discussions of the project area, including Clovis and Cannon AFB, including the physical setting, climate, soil conditions, and the regional and local geology and hydrogeology
- Providing a brief discussion of the sources of PFAS contamination in the project area, factors controlling PFAS migration in soil and groundwater, and likely exposure pathways
- Summarizing the results of sampling for PFAS in the local area conducted by various parties
- Describing the NMED Phase I Investigation work performed by DBS&A, including compilation of relevant information, development of the work plan, sampling of water supply wells, installation and sampling of a monitor well, sample analysis, and data review
- Identifying data gaps and recommendations for further work

5. Regulatory Framework

In November 2009, the U.S. Environmental Protection Agency (EPA) issued residential soil screening levels (SSLs) of 16,000 micrograms per kilogram (μ g/kg) for PFOA and 6,000 μ g/kg for PFOS that were derived using EPA's regional screening level (RSL) calculator (U.S. EPA, 2009). In May 2016, the EPA issued a lifetime drinking water health advisory (HA) of 0.07 micrograms per liter (μ g/L) (70 nanograms per liter [ng/L]) for PFOS and PFOA, both individually and combined (U.S. EPA, 2016a, 2016b, and 2017).

On June 15, 2022, EPA issued lifetime drinking water HAs for four perfluoroalkyl substances. These include two HAs that replace the HAs that EPA issued in 2016, and final HAs for two other PFAS: perfluorobutanesulfonic acid (PFBS) and hexafluoropropylene oxide dimer acid (HFPO-DA, also referred to as GenX chemicals) (U.S. EPA, 2022). These EPA HAs, which identify the concentration of chemicals in drinking water at or below which adverse health effects are not anticipated to occur, were 0.004 ng/L for PFOA, 0.02 ng/L for PFOS, 10 ng/L for HFPO-DA, and 2,000 ng/L for PFBS (FRL 9855-OW). These updated HAs were based on new science indicating that some negative health effects may occur with concentrations of PFOA or PFOS in water that are near zero (U.S. EPA, 2022). These interim HAs will remain in place until EPA establishes a National Primary Drinking Water Regulation (U.S. EPA, 2022).

On March 14, 2023, EPA announced non-enforceable proposed maximum contaminant levels (MCLs) for PFOA and PFOS of 4 ng/L, and proposed maximum contaminant level goals (MCLGs) of zero. At that time, EPA also announced a proposed MCL and MCLG for mixtures containing the following: perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), PFBS, and HFPO-DA (U.S. EPA, 2023). These proposed MCLs are higher than those the U.S. EPA had previously released as health goals. For PFNA, PFHxS, PFBS, and HFPO-DA, the combined hazard index (HI) must be less than 1 (U.S. EPA, 2023). The HI is made up of a sum of fractions for PFNA, PFHxS, PFBS, and HFPO-DA, comparing the measured levels to the levels determined not to cause health effects (U.S. EPA, 2023).

In 2018, the New Mexico Water Quality Control Commission (NMWQCC) added PFOA, PFOS, and PFHxS to the list of toxic pollutants as they relate to groundwater and surface water [20.6.2.3103(A)(2) NMAC and 20.6.2.7(T)(2)(s) NMAC]. In 2019, NMED established preliminary SSLs for PFOA, PFOS, and PFHxS in residential, industrial, and construction worker exposure scenarios at 1.56 milligrams per kilogram (mg/kg), 2.60 mg/kg, and 7.08 mg/kg, respectively. NMED also established a preliminary screening level for these three PFAS compounds in tap

water at 0.07 μ g/L (NMED, 2019). These preliminary screening levels applied to each compound individually or in combination (NMED, 2019).

In June 2022, NMED issued updated preliminary SSLs for PFAS. These include cancer SSLs for perfluorooctanoate and PFOA for residential, industrial/occupational, and construction worker exposure scenarios of 76.1 mg/kg, 498 mg/kg, and 2,690 mg/kg, respectively, as well as a cancer screening level of 11.1 μ g/L for tap water (NMED, 2022). Noncancer SSLs were also issued for 12 PFAS compounds, as follows (NMED, 2022):

- Noncancer SSLs of 18.5 mg/kg, 374 mg/kg, and 80.7 mg/kg, respectively, for residential, industrial/occupational, and construction worker exposure scenarios, and a noncancer screening level of 6.02 µg/L for tap water for PFBS and potassium perfluorobutanesulfonate
- Noncancer SSLs of 1.23 mg/kg, 24.9 mg/kg, and 5.38 mg/kg, respectively, for residential, industrial/occupational, and construction worker exposure scenarios, and a noncancer screening level of 0.401 µg/L for tap water for perfluorohexanesulfonate and PFHxS
- Noncancer SSLs of 0.185 mg/kg, 3.74 mg/kg, and 0.807 mg/kg, respectively, for residential, industrial/occupational, and construction worker exposure scenarios, and a noncancer screening level of 0.0602 µg/L for tap water, for perfluorononanoate, PFNA, perfluorooctanesulfonate, PFOS, perfluorooctanoate, PFOA, and potassium perfluorooctanesulfonate

EPA issued the final toxicity assessments for PFBS (U.S. EPA, 2021a) and GenX chemicals in 2021 (U.S. EPA, 2021d) and planned to issue drinking water HAs for these constituents in spring 2022 (U.S. EPA, 2021c). EPA is currently developing toxicity assessments for five other PFAS—perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), PFHxS, PFNA, and perfluorodecanoic acid (PFDA) (U.S. EPA, 2021c).

Table 2 summarizes the EPA and NMED PFAS regulatory levels.

In October 2021, EPA issued its PFAS Strategic Roadmap, which establishes timelines for specific actions to protect human health and the environment from PFAS contamination. This effort was to include establishing enforceable MCLs for PFOA and PFOS while evaluating additional PFAS and groups of PFAS (U.S. EPA, 2021c). EPA anticipated issuing proposed rules in fall 2022, with final rules in fall 2023 (U.S. EPA, 2021c). At least 28 states have established advisory or regulatory limits or screening levels for two or more PFAS (ITRC, 2021 and 2022).

6. Exposure Pathways

Soil and groundwater data indicate that the most significant PFAS source areas are the former sewage lagoons and the North Playa Lake on the east side of Cannon AFB. While the firefighting training areas in the southeast portion of Cannon AFB are considered likely sources of PFAS, the groundwater flow direction and the distribution of PFAS in monitor wells in the southeast corner of the base indicate that Landfill No. 5 is also a likely source of PFAS. PFAS have migrated through the vadose zone and impacted groundwater in the Ogallala Aquifer in and downgradient of these areas (Figure 2). Residual PFAS may have accumulated at the soil gas-sediment interface in the vadose zone under unsaturated flow conditions (Brusseau et al., 2019), which could provide a long-term source of contamination if not remediated.

Since the PFAS reached groundwater, these compounds have flowed with groundwater downgradient to the south and southeast of Cannon AFB. PFAS has likely migrated at the same rate as average groundwater flow in the Ogallala aquifer, with minimal adsorption onto aquifer materials. It is likely that PFAS movement in the Ogallala Aquifer has been affected by seasonal pumping of irrigation wells, creating increasing hydraulic gradients, southeast of Cannon AFB.

7. Planning Documents, Requirements, and PFAS Protocols

The project field sampling plan (FSP) and quality assurance project plan (QAPP) were prepared during Phase 1, and were combined into a single sampling and analysis plan (SAP). The SAP detailed sample collection procedures and analytical methods to be used at the sites during the investigations. DBS&A prepared the SAP in accordance with the applicable EPA guidance documents. The SAP describes procedures to assure that the project-specific data quality objectives (DQOs) are met and that the quality of data is known and documented. The SAP presents the project description, project organization and responsibilities, and quality assurance (QA) objectives associated with the sampling and analytical services to be provided. This document was used for the project's Phase 2 continuation.

As required by the project SAP, field quality control (QC) samples are required to assess the quality of data that are generated by sampling activities. These samples include field duplicates, field blanks, equipment blanks (for samples collected using a Bennett pump), matrix spike and

matrix spike duplicates (MS/MSDs), and temperature blanks. Required QC samples are summarized in Table 3.

All laboratories that perform analytical work under this project must adhere to a Level IV QA program that is used to monitor and control all laboratory QC activities for this project. Each laboratory must have a written QA manual that describes the QA program in detail. The laboratory QA manager is responsible for ensuring that all laboratory internal QC checks are conducted in accordance with EPA methods and protocols, the laboratory's QA manual, and the requirements of the project SAP.

DBS&A prepared a site-specific health and safety plan (HASP) in accordance with the requirements of Title 29, Code of Federal Regulations (CFR), Part 1910.120 to govern the field activities performed. The site-specific HASP was written to address health and safety issues associated with the proposed project activities. The Phase 1 HASP was used for the project's Phase 2 continuation.

It is well established that, due to widespread presence of PFAS in products used in everyday life, PFAS samples are easily susceptible to cross contamination during the sample collection and handling stage. DBS&A and its subcontractors strictly adhere to sampling and hygiene protocols during sampling designed to eliminate potential sources of PFAS that may result in cross contamination of environmental samples. Potential sources of PFAS can be found in field clothing, field equipment, sample containers, and supplies for equipment decontamination. For example, items banned from the work area will include clothing washed with fabric softener, plastic clipboards and binders, adhesives, all materials containing Teflon, and most brands of waterproof field logbooks. Use of cosmetics, hand creams, and moisturizers, as well as certain liquids, such as sunscreen and insect repellant on exposed skin, will not be allowed. All sample containers and container cap liners will be made of high-density polyethylene (HDPE) or polypropylene.

8. Phase 1 Investigation Report Recommendations

The Cannon site Phase 1 PFAS investigation report dated June 30, 2022 recommended that additional Phase 2 PFAS investigations occur in fiscal year (FY) 2023. In addition, USAF is currently conducting a remedial investigation (RI) of PFAS contamination at Cannon AFB and downgradient of the base. The first phase of the RI is occurring on-base, but the EPA-approved

work plan (Bristol, 2021) indicates that substantial work will be conducted off-base (DBS&A, 2022). The ongoing RI should be factored into NMED's plans for additional PFAS investigation.

The Phase 2 Cannon site PFAS investigation project objectives that were outlined in the Phase 1 report include the following:

- Establish a technical dialogue between NMED, USAF, and EPA to determine the nature and extent of USAF's plans for off-site investigation and to coordinate field and data collection efforts.
- Provide better definition of existing groundwater plume geometry and modeled predictions of future plume migration, including empirically derived rates of movements of PFAS contaminants in the subsurface.

Specific recommendations that were included in the Phase 1 report for Phase 2 project activities at the Cannon site included the following:

- Conduct analytical and/or numerical modeling activities to assess groundwater flow and PFAS transport, and to better define the nature and extent of PFAS contamination at the Cannon site.
- Obtain monthly or quarterly progress reports on activities associated with the USAF RI from the USAF or EPA, including access to preliminary data. The USAF RI report documenting the results of the investigation will likely not be prepared for some time. Therefore, NMED should coordinate with USAF to obtain characterization data for PFAS-contaminated sediment in the vadose zone and groundwater sample splits from new and existing monitor wells.

9. Phase 2 Project Activities

NMED did not issue a work order allowing DBS&A to initiate the Phase 2 PFAS investigation until spring 2023. Given that the fiscal year ends on June 30, 2023, it was not possible to accomplish the project objectives that were outlined in the Phase 1 report. This section summarizes the work conducted during the Phase 2 investigation.

9.1 DBS-1 Monitor Well Pump Installation

DBS&A installed one downgradient monitor well in Curry County during Phase 1 (DBS-1). A dedicated pump with certified PFAS-free tubing was purchased during Phase 1, and this pump was set in monitor well DBS-1 during Phase 2. This well was also resampled for PFAS (Section 9.2).

9.2 Groundwater Sampling

NMED contracted with Hall Environmental Analysis Laboratory (HEAL) in Albuquerque for laboratory analysis of groundwater samples for the Phase 2 investigation. HEAL subcontracted with Enthalpy Analytical (Enthalpy, formerly Vista) in El Dorado Hills, California, for the PFAS analysis. The same laboratory analyzed samples for PFAS during the Phase 1 of the project, and this laboratory is certified by the Department of Defense (DoD) and the Department of Energy (DOE) to perform PFAS analysis of soil and water samples. Sample containers with appropriate preservatives were provided by HEAL. Upon collection, all samples were placed on ice in dedicated sample coolers and shipped to HEAL under appropriate chain of custody. HEAL forwarded the containers to Enthalpy for PFAS analysis.

DBS&A sampled three wells downgradient (east and southeast) of Cannon AFB in April 2023. These included two domestic wells and downgradient monitor well DBS-1, which was installed during Phase 1. Enthalpy analyzed the groundwater samples for 29 PFAS compounds using EPA methods 533 and 537.1.

Field parameter measurements for the samples from these three locations are provided in Table 4. The laboratory results for PFAS analysis of the samples from these three locations are provided in Table 5. The laboratory report for groundwater samples analyzed by Enthalpy are provided in Appendix A. EPA methods 533 and 537.1 are validated and approved by EPA for analysis of PFAS in drinking water, and have different, but overlapping, target analyte lists. For analytes analyzed by both methods, the lowest result was reported in Table 5 for non-detects and the highest result was reported for detections.

PFAS were detected in one sample (COS-36). PFOA and PFOS were not detected in this sample, but the sample contained a total PFAS concentration of 80.02 ng/L. The sample contained four PFCAs (PFBA, PFPeA, PFHxA, and PFHpA) and three PFSAs (PFBS, PFPeS, and PFHxS). PFCAs comprise approximately 70 percent of total PFAS detected, dominated by PFPeA (22.8 ng/L) and PFHxA (22 ng/L). The dominant PFSA was PFHxS (13.4 ng/L).

On June 15, 2022, EPA issued updated lifetime drinking water HAs for PFOA (0.004 ng/L), PFOS (0.02 ng/L), PFBS (2,000 ng/L), and HFPO-DA (10 ng/L). None of the PFAS concentrations detected in the COS-36 sample exceed those standards. However, exceedances for PFOA and PFOS cannot be ruled out because the reporting limits for PFOA and PFOS (1.91 to 1.94 ng/L, respectively, in the COS-36 sample) currently achievable by accredited laboratories are well above these standards.

On March 14, 2023, EPA announced non-enforceable proposed maximum contaminant levels for PFOA and PFOS of 4 ng/L, and proposed MCLGs of zero. At that time, EPA also announced a proposed MCL and MCLG for mixtures containing the following: PFNA, PFHxS, PFBS, and HFPO-DA (U.S. EPA, 2023). The April 2023 COS-36 sample exceeds the proposed MCL for mixtures based on the detected concentration of PFHxS.

Well COS-36 (or a well at or near the same location) was sampled by the USAF on September 25, 2018 (AFW, 2019). That September 2018 sample, designated CANON-RES1495-01-SP, was analyzed for PFAS; none were detected at a reporting limit of 4.2 ng/L. The USAF results are presented in Table 13 of the Phase 1 report (DBS&A, 2022).

During the Phase 1 investigation, DBS&A installed monitor well DBS-1 approximately 5.4 miles east-southeast of the southeast corner of Cannon AFB (Figure 3), from which one of the PFAS plumes emanate. The laboratory reported that the initial sample collected from DBS-1 in February 2022 contained PFBA at an estimated concentration (below the reporting limit and qualified) of 2.18 ng/L. DBS&A resampled DBS-1 in April 2023, and no PFAS were detected in the primary or duplicate samples (Table 5). A second sample was collected from DBS-1 in June 2023, but the results were not available at the time this report was prepared. Those results will be discussed in the Phase 3 report.

A total of 14 PFAS were detected in one or more of the groundwater samples from the Cannon off-site (COS) wells collected during Phase 1 by DBS&A. Of the 14 PFAS detected, 6 were PFCAs 5 were PFSAs, and 3 were FTSs. The PFAS data were analyzed by examining the proportions (percent) of individual PFAS detected in each sample.

- PFAS were detected in approximately 70 percent of the COS wells sampled during Phase 1. Total PFAS detected in the Phase 1 COS wells ranged from 1.8 ng/L to 37,732.87 ng/L.
- The proportions of PFCAs exceeded the proportions of PFSAs in about 40 percent of the wells in which PFAS were detected. Most of the wells along the east side of Cannon AFB are dominated by PFCAs, and on average contain 62 percent PFCAs, 34 percent PFSAs, and

4 percent FTSs. The April 2023 COS-36 sample falls within this category, but contains no FTSs.

• The proportions of PFSAs exceeded the proportions of PFCAs in 60 percent of the wells in which PFAS were detected. Most of the wells within the plume emanating from the southeast corner of the CAFB are dominated by PFSAs, and on average contain 60 percent PFSAs, 34 percent PFCAs, and 6 percent FTSs.

In June 2023, DBS&A resampled monitor well DBS-1 and the two domestic wells that were sampled in April 2023, and also sampled seven other domestic wells. The June 2023 groundwater samples will be analyzed for 40 PFAS compounds using isotope dilution liquid chromatography/tandem mass spectrometry (LC/MS/MS) methods. This is the method that was used during Phase 1, and that was used for DoD compliant projects (adhering to Table B-24 of the DOD's Quality Systems Manual). The number of PFAS compounds being analyzed is larger than the list of compounds analyzed during Phase 1 and during other DoD sampling events discussed in the Phase 1 report. The number of PFAS compounds has been increased from 29 to 40 to be consistent with the compounds that are analyzed by EPA's draft method 1633. The DoD has begun using draft method 1633 for PFAS analyses, but a number of states have not (Christmann, 2023). Draft method 1633 is expected to be finalized by the end of 2023. The June 2023 groundwater quality results had not been received at the time this report was prepared.

9.3 Numerical Modeling

To evaluate PFOS and PFOA transport, an existing regional groundwater model that covers a large area including Cannon AFB was used as a starting point. Although existing regional models that include the region of interest are too coarse for detailed plume simulation, they can provide useful information on aquifer hydraulic properties, regional groundwater stresses, and changes in groundwater flow directions over time. The results of the regional model were used to obtain the hydraulic head values at the boundaries of a smaller, local groundwater model developed for the vicinity of Cannon AFB. The approach of developing an embedded local model based on a larger-scale regional model is particularly important for the Ogallala Aquifer because the PFOS and PFOA plumes have developed over time while aquifer conditions have been changing. In this type of situation, it is advantageous to use a regional model to define transient boundary conditions at the edge of a more detailed groundwater flow and solute transport model.

This section describes the regional and local models developed for PFOS and PFOA plume evaluation, and presents the results of initial PFOS and PFOA transport simulations. There are three models discussed: the regional groundwater model, the local groundwater model, and the local contaminant transport model.

9.3.1 Regional Groundwater Flow Model

DBS&A developed two regional groundwater flow models (Blandford et al., 2003 and 2008) for the Texas Water Development Board (TWDB) that cover the Ogallala Aquifer in Texas and eastern New Mexico. The models were developed as part of the Texas initiative to develop groundwater availability models (GAMs) for the major and minor aquifers in Texas. As part of these models, lithologic data from well logs was used in conjunction with specific capacity data to estimate Ogallala Aquifer hydraulic conductivity. The two models developed by DBS&A were the basis of a subsequent GAM that extended the simulation period and added the underlying Dockum Aquifer to the model (Deeds and Jigmond, 2015). The Ogallala Aquifer portion of that model was, for the most part, unchanged from previous GAMs. The Deeds and Jigmond (2015) model is a three-dimensional groundwater flow model that simulates historical water levels between 1930 and 2012. The model covers an area of 466 miles by 290 miles, and the model grid is divided into 932 rows and 580 columns; each grid cell is 0.5 mile by 0.5 mile. The extent of the model is shown in Figure 4. The model has four layers, in which Layer 1 represents the Ogallala Aquifer. Layer 2 is a dummy layer in the vicinity of Cannon AFB; it provides connectivity between the Ogallala (Layer 1) and the Upper and Lower Dockum (Layers 3 and 4 of the model, respectively).

Another regional model (Musharrfieh and Logan, 1999) was developed by the New Mexico Office of the State Engineer (OSE). This is a two-dimensional groundwater flow model (one model layer representing the Ogallala Aquifer) that simulates aquifer conditions between 1909 and 1990. The model grid has 74 rows and 58 columns; each grid cell is 1 mile by 1 mile. The extent of this model is also shown in Figure 4.

9.3.1.1 Evaluation of Regional Models

DBS&A evaluated both the OSE regional model and the most recent TWDB Ogallala Aquifer GAM to determine the best model for use as a starting point to develop a local model around Cannon AFB. Figure 5 shows a comparison of simulated horizontal hydraulic conductivity in the OSE model and in Layer 1 of the TWDB GAM (both representing the Ogallala Aquifer) in the vicinity of Cannon AFB. The figure shows a more detailed distribution of hydraulic conductivity in the TWDB GAM than in the OSE model. More importantly, a high hydraulic conductivity value

is simulated in the TWDB GAM along the paleochannel that runs across Cannon AFB (Figure 5). This paleochannel was depicted in Appendix B of the Cannon AFB Phase 1 investigation report (DBS&A, 2022) by mapping the base elevation of the Ogallala Formation. A paleochannel in the same general area was simulated in the Blandford et al. (2003) model (Figure 5). As detailed in Blandford et al. (2003), paleochannels in the Ogallala Aquifer tend to have higher aquifer hydraulic conductivity relative to adjacent, non-paleochannel regions. This observation is incorporated in the hydraulic conductivity distribution of the TWDB GAM (Figure 5).

Based on review of the two models, the determination was made to use the TWDB GAM as a starting point to develop the local model around Cannon AFB. This determination was made primarily because:

- The TWDB GAM has a more detailed hydraulic conductivity distribution that follows the lithologic understanding of higher hydraulic conductivity within paleochannels, including in the area of Cannon AFB.
- The TWDB GAM simulates conditions through more recent time (2012 vs. 1990 in OSE model)

The TWDB GAM of Deeds and Jigmond (2015) is hereafter referred to as the regional model.

9.3.1.2 Calibration Evaluation of the Regional Model

The calibration of the regional model in the vicinity of Cannon AFB was evaluated by plotting measured and simulated water levels at 55 monitor wells in the vicinity of Cannon AFB. These wells are listed in Table 6. Well locations are shown in Figure 6. For the wells inside Cannon AFB, measured water level data were obtained from Cannon AFB. For wells outside Cannon AFB, water levels were obtained from the USGS National Water Information System (NWIS).

Appendix B shows measured and simulated water levels at the 55 wells. The comparison shows that the model reasonably simulates the observed trend in water levels at most wells. There are several wells where the model overestimates or underestimates the observed water levels. One quantitative measure of the goodness of fit of a groundwater model is the root mean squared error (RMSE), which is a statistical measure of the difference between measured and simulated water levels. RMSE of the regional model in the vicinity of Cannon AFB is 32.8 feet, which represents 12.6 percent of the difference between highest measured water level and lowest measured water level in all 55 wells. One common rule of thumb to determine an acceptable model calibration is to have a RMSE of 10 percent or less of the range in observed water levels,

a measure unmet by the regional model in the vicinity of Cannon AFB. Therefore, it was decided to update the regional model calibration in the vicinity of Cannon AFB to better match observed water levels. Rather than conduct the updated calibration using the full regional model, a local groundwater model was developed around Cannon AFB, and adjustments were made to the local model.

9.3.2 Local Groundwater Flow Model

The local groundwater flow model developed around Cannon AFB covers an area of 24 miles by 26 miles with a model grid divided into 384 rows and 416 columns (Figure 7). Each grid cell is 330 feet by 330 feet. The local model has only one layer, and the top and bottom elevations of the layer are imported from Layer 1 of the regional model. Each regional model grid cell is represented by 64 local model grid cells (Figure 7). To ensure smoothness of the top and bottom elevation surfaces in the local model, elevations of the regional model (the coarse grid) were linearly interpolated to obtain values at each local model grid cell.

The local groundwater model simulates conditions from 1930 through 2022; the USGS MODFLOW-NWT (Niswonger et al., 2011) platform was used for model development. One feature of MODFLOW-NWT different from previous versions of MODFLOW is that the user can specify a minimum layer thickness fraction at which the pumping from a model cell is automatically scaled back. This capability allows for the simulation of the decline in pumping rate that has occurred at Ogallala Aquifer wells due to the reduction in saturated thickness. A minor modification was made to the source code to change the way the minimum thickness fraction is specified. In the original code, the minimum thickness is specified as a fraction of the cell thickness value (in feet) at which pumping will be curtailed. In the local groundwater model, the minimum thickness at which pumping would be curtailed was set to 30 feet, consistent with the regional model.

9.3.2.1 Local Model Boundary Conditions

Groundwater stresses, such as pumping and recharge, were obtained from the reginal model for the period 1930 through 2012. Stresses from 2013 through 2022 were held constant at 2012 values. Because the model automatically curtailed the pumping from a model cell when the saturated thickness reached 30 feet in that cell, simulated pumping from many of the wells in the period 2013 through 2022 were lower than the 2012 values.

The local model is surrounded by specified head boundaries on all four sides (Figure 7), with time-series specified head values obtained from the simulated heads of the regional model at those locations. Because the regional model has coarser grid cells than the local model, simulated heads at the regional model grid cells at those edges were linearly interpolated and applied to the finer grid cells of the local model.

Any pumping well in a regional model grid cell within the local model extent (except for wells within Cannon AFB) was applied to one local model cell in the middle of the 64 local model grid cells that represent the regional model grid cell (Figure 6). All simulated pumping in the regional model within Cannon AFB was removed and replaced by currently active wells of the Cannon AFB public water system. As explained in Bristol (2021), Well #4A mainly supplies irrigation water for the golf course, while Wells #5, #8, #9, and #12 currently supply drinking water (Figure 7). Simulated pumping values in the local model are 125, 100, 112.5, 150, and 175 gallons per minute (gpm) for wells 4A, 5, 8, 9, and 12, respectively. These values represent 50 percent of the average pumping rates listed in Bristol (2021). Total simulated pumping from wells in Cannon AFB is approximately 955,000 gallons per day (gpd), which is similar to the 1,000,000 gpd value listed in Bristol (2021).

For all boundary conditions other than pumping and specified hydraulic head at the local model boundary, the simulated value in a regional model grid cell was applied to all equivalent 64 local model grid cells.

9.3.2.2 Local Model Calibration

Aquifer hydraulic properties (e.g., hydraulic conductivity and storage coefficient) were initially taken from the regional model, but were modified during model calibration. Initially, the hydraulic property from a regional model grid cell was applied to all 64 local models grid cells included in the regional model grid cell. This approach led to simulated results from the local model similar to those of the regional model.

The local groundwater flow model calibration was consisted of minimizing the differences (the RMSE) between simulated and observed water levels at 55 monitor wells. Because the specified head boundaries at the edges of the local model were obtained from the regional model, it was necessary to keep the changes to hydraulic properties in the local model at distance from the local model boundaries to minimize effects on the simulated hydraulic heads results at the edges of the local model. Figure 8 shows the area of the local model within which hydraulic conductivity was allowed to change from the values of regional model; this area is 4 miles from the edges of the local model.

Within the zone where the hydraulic conductivity was allowed to change, the pilot point approach was used to populate a hydraulic conductivity value in each local model cell. Each pilot point is a parameter that can have a unique value of hydraulic conductivity. The set of pilot points is then interpolated to the model grid to create a heterogeneous distribution. Automated parameter estimation program (PEST) (Doherty, 2010) was used to obtain a unique value in each pilot point, such that when the hydraulic conductivity values of all pilot points are interpolated, they result in a hydraulic conductivity distribution that minimizes the RMSE between measured and simulated heads in the monitor wells.

A total of 106 pilot points were used in the model (Figure 8). Of those points, 90 are placed in the model in a uniform grid pattern. Another 16 pilot points were added, mostly along the inferred paleochannel (Figure 8). Of those pilot points, 6 (at the edge of the zone where hydraulic conductivity was allowed to change) had fixed values to ensure a smooth transition between hydraulic conductivity outside that zone and resulting hydraulic conductivity inside that zone. Thus, PEST was allowed to change the hydraulic conductivity at 100 pilot points within a given range prescribed for each point.

Most of the pilot points (64) were assigned a range of allowable hydraulic conductivity of 5 to 75 feet per day (ft/d). This range is consistent with Howard (1954), who estimated hydraulic conductivity ranging from 8 to 92 ft/d in the area east of Clovis. This range is also consistent with the estimated hydraulic conductivities from the Cannon AFB production well and two nearby irrigation wells, which ranged from 20 to 60 ft/d (Trinity, 2012). A total of 21 pilot points, mostly along the inferred paleochannel, had an allowable hydraulic conductivity range of 50 to 200 ft/d, which is the highest end of the range of Hart and McAda (1985) for the High Plains Aquifer in Curry County. The remaining 21 pilot points provide a transition between pilot points with a low hydraulic conductivity range and those with a high hydraulic conductivity range. The range of hydraulic conductivity values for those 21 pilot points is 25 to 125 ft/d.

PEST was run and the optimization algorithm required over 1,000 local groundwater model simulations. Details of the optimization algorithm can be found in (Doherty, 2010). The optimum hydraulic conductivity determined for each pilot point and the resulting hydraulic conductivity of the local model are shown in Figure 9. Appendix B shows improved calibration of the local model in almost all calibration wells compared to the regional model. The RMSE of the local model is 12.1 feet, which is 4.6 percent of the range of the measured water level data, well below the 10 percent threshold. Figure 10 shows simulated heads as of 2022, which shows southeasterly flow direction consistent with DBS&A (2022).

9.3.3 Transport Model

A second local model that covers an even smaller region than the local groundwater model was developed to conduct solute transport simulations. This model is referred to as the transport model. This transport model covers a subregion of the local groundwater flow model, and boundary conditions are determined based on the local groundwater flow model using the same approach as described for the regional and local groundwater models.

The transport model has dimensions of 10 miles by 12 miles (Figure 11), and the model grid is discretized into cells of 110 feet by 110 feet. Hydraulic properties and boundary conditions for the transport model were imported from the local groundwater flow model without modification. As a result of importing the hydraulic properties from the local groundwater flow model "as is," and imposing boundaries at the edges of the transport model using the results of the local groundwater flow model, the simulated heads in the transport model are nearly identical to those of the local groundwater flow model (Figure 11).

A preliminary PFOS and PFOA fate and transport simulation was conducted to simulate plume migration downgradient of Cannon AFB. Additional transport simulations will be conducted in the future as part of a separate scope of work. The contaminant transport modeling was conducted using with MT3D-USGS (Bedekar et al., 2016). The contaminant transport simulation assumed constant concentrations of PFOS and PFOA at seven model cells at the southeast corner of Cannon AFB, consistent with the locations of highest measured concentrations as of December 2021 (Figure 12). The constant concentration at the cell at the right was assigned measured concentration of well MW-Ca as of December 2021. The constant concentration at the cell at the left was assigned the observed concentration of well MW-D as of December 2021. The concentration was linearly interpolated between those two cells to estimate concentration values at the five model cells between those two bounding cells. For all seven cells, the prescribed concentration was held constant from 1970 through 2022, a period of 53 years.

Values of contaminant transport parameters (e.g., dispersivity, effective porosity, and retardation factor) used in the simulations for both PFOS and PFOA are listed in Table 7. Although these values are reasonable estimates, they may be adjusted when additional solute transport simulations are conducted.

Simulated concentrations for PFOS and PFOA as of 2022 are depicted in Figures 13 and 14, respectively. The model shows that the PFOS plume is approximately 1.6 miles long (Figure 13). The simulated PFOA plume, which is subject to a lower assigned retardation factor, is approximately 3 miles long (Figure 14).

10. Cannon AFB Remedial Investigation

10.1 Proposed Activities

An AFFF release area Phase I RI work plan was developed for Cannon AFB and downgradient of the base by Bristol Environmental Solutions, LLC (Bristol) and Geosyntec Consultants, Inc. (Geosyntec) in 2021 (Bristol, 2021). The RI is currently underway under EPA Region 6 oversight. The RI will include on-base investigations at AFFF release areas 2 through 6 and 8 through 10 (Table 6 of DBS&A, 2022). Area 8 has been expanded to include other areas of Cannon AFB where treated wastewater has been used for irrigation. The scope of work for the RI includes the following:

- Sample 19 existing groundwater monitor wells on Cannon AFB and up to 40 off-base irrigation wells on two occasions, six months apart.
- Install and sample at least 8 new groundwater monitor wells on Cannon AFB and up to 15 new groundwater monitor wells off-base. Soil samples will be collected from each boring at 9 to 10 feet bgs and just above the water table. At one on-base location, soil samples will be collected every 50 feet. Groundwater will be sampled on two occasions, six months apart.
- Collect surface soil samples at more than 70 locations on Cannon AFB.
- Collect soil samples from more than 150 borings on Cannon AFB.
- Sample irrigated soil from 40 off-base irrigation well locations at 0 to 0.5 feet bgs and 1.5 to 2 feet bgs.
- Install 12 lysimeters at six locations during the wet season and sample porewater.

New monitor wells will be installed using sonic drilling methods. The locations of the proposed off-base activities, including new monitor wells, are currently not known because those portions of the work plan (Bristol, 2021) have been redacted.

The USAF is also conducting an aquifer performance test in a newly installed extraction well in the southeast corner of Cannon AFB. The purpose of the test is to develop estimates of site-specific aquifer parameters to facilitate the design and construction of a pilot-scale groundwater containment and treatment system (Brice-AECOM, 2021).

10.2 Status

Bristol began drilling in April 2022, and by the end of July 2022 had completed 7 of 13 permitted monitor wells on Cannon AFB. It is likely that they would have completed all of the wells by the end of 2022, but the OSE database only has data for 7 wells. These logs, a figure showing the monitor well locations, and a table summarizing their well completion information are provided in Appendix C. No permits from OSE had been identified for any off-site monitor well locations.

DBS&A contacted the USAF in May 2023 to request an update on the status of the RI at Cannon AFB. The U.S. Air Force Civil Engineer Center restoration project manager at Cannon AFB said that 9 of 13 proposed on-base monitor wells have been completed, and that 15 off-base monitor wells are proposed and will be installed after the USAF negotiates access for the proposed locations (Gierke, 2023).

An RI report will be prepared that will include descriptions of field activities and a summary of the scope of work and any deviations, as well as a base-wide conceptual site model addressing hydrogeologic conditions, the nature and extent of contamination, potential sources of PFAS contamination, fate and transport of PFAS, and potential exposure pathways and receptors (Bristol, 2021). The time frame for this report is unknown, but it will likely not be prepared until all RI activities are complete.

11. Recommendations

Recommendations from the Phase 1 report that were not addressed during Phase 2 that DBS&A recommends be the focus of Phase 3 of the project include the following:

- Establish a technical dialogue between NMED, USAF, and EPA to determine the nature and extent of the USAF's plans for off-site investigation and to coordinate field and data collection efforts.
- Obtain monthly or quarterly progress reports on activities associated with the USAF RI from the USAF or EPA, including access to preliminary data. The USAF RI report documenting the results of the investigation will not be available for some time. Therefore, NMED should coordinate with USAF to obtain characterization data for PFAS-contaminated sediment in the vadose zone and groundwater sample splits from new and existing monitor wells.

 Conduct analytical and/or numerical modeling activities to assess groundwater flow and PFAS transport and to better define the nature and extent of PFAS contamination at the Cannon site.

Coordination with the USAF regarding their ongoing RI and the potential for splitting samples for their proposed off-base monitor wells is seen as the highest priority action for the Cannon site in FY 2024. The initial Cannon site groundwater modeling was performed during Phase 2 (Section 9.3). DBS&A proposes to discuss the Phase 2 Cannon site modeling and results with NMED before outlining potential future modeling activities.

References

- Air Force Civil Engineer Center (AFCEC). 2018. Swap complete: AF protects airmen, environment with new firefighting foam. Published June 21, 2018. https://www.afcec.af.mil/News/Article-Display/Article/1556282/swap-complete-af-protects-airmen-environment-with-new-firefighting-foam>.
- Air Force Installation and Mission Support Center (AFIMSC). 2017. *Air Force response to PFOS/PFOA fact sheet*. November 2017.
- Agency for Toxic Substances and Disease Registry (ATSDR). 2021. *Toxicological profile for perfluoroalkyls*. Released May 2021.
- AFW. 2019. Final Addendum 01 to the final site inspection report, Site inspection of aqueous film forming foam (AFFF) release areas, Environmental Programs Worldwide, Cannon Air Force Base, Clovis, New Mexico. Prepared for Air Force Civil Engineer Center, Joint Base San Antonio - Lackland, Texas. March 2019.
- Bedekar, V., E.D. Morway, C.D. Langevin, and M. Tonkin. 2016. *MT3D-USGS version 1: A U.S. Geological Survey release of MT3DMS updated with new and expanded transport capabilities for use with MODFLOW*. U.S. Geological Survey (USGS) Techniques and Methods 6-A53.
- Blandford, T.N., D.J. Blazer, K.C. Calhoun, A.R. Dutton, T. Naing, R.C. Reedy, and B.R. Scanlon,
 2003. Groundwater availability of the southern Ogallala aquifer in Texas and New Mexico—
 Numerical simulations through 2050. Prepared for the Texas Water Development Board.
 Daniel B. Stephens & Associates, Inc.

- Blandford, T.N., M. Kuchanur, A. Standen, R. Ruggiero, K.C. Calhoun, P. Kirby, and G. Shah, 2008. *Groundwater availability model of the Edwards-Trinity (High Plains) Aquifer in Texas and New Mexico*. Prepared for the Texas Water Development Board. Daniel B. Stephens & Associates, Inc.
- Brice-AECOM Joint Venture 1 (Brice-AECOM). 2021. *Final aquifer test work plan, Pilot study and hydraulic containment, Cannon Air Force Base, New Mexico*. Prepared for the U.S. Army Corps of Engineers and the Air Force Civil Engineer Center. September 2021.
- Bristol Environmental Solutions, LLC (Bristol). 2021. *Final aqueous film-forming foam release areas Phase I remedial investigation work plan, Cannon Air Force Base, Clovis, New Mexico.* Prepared for Air Force Civil Engineering Center/Cannon AFB. August 2021.
- Brusseau, M.L., N. Yan, S. Van Glubt, Y. Wang, W. Chen, Y. Lyu, B. Dungan, K.C. Carroll, and F.O. Holguin. 2019. Comprehensive retention model for PFAS transport in subsurface systems. *Water Research* 148: 41-50.
- Buck, R.C., S.H. Korzeniowski, E. Laganis, and F. Adamsky. 2021. Identification and classification of commercially relevant per- and poly-fluoroalkyl substances (PFAS). *Integrated Environmental Assessment and Management* 17(5): 1045-1055.
- Christmann, J. 2023. E-mail from Jennifer Christmann, Enthalpy Analytical National Technical Sales, to Bill Casadevall, Daniel B. Stephens & Associates, Inc. (DBS&A). May 30, 2023.
- Daniel B. Stephens & Associates, Inc. (DBS&A). 2022. *Phase 1 PFAS investigation report, Cannon Air Force Base and surrounding area, Curry County, New Mexico*. Prepared for the New Mexico Environment Department Hazardous Waste Bureau. June 30, 2022.
- Deeds, N.E. and M. Jigmond. 2015. *Numerical model report for the High Plains Aquifer system groundwater availability model*. Prepared for the Texas Water Development Board, Austin, Texas. INTERA Incorporated. August 2015.
- Doherty, J. 2010. *PEST, Model-independent parameter estimation—User manual*. 5th edition, with slight additions. Watermark Numerical Computing, Brisbane, Australia.
- Fetter, C.W. 2001. *Applied hydrogeology*. 4th Edition. Prentice-Hall, Upper Saddle River, New Jersey.

- Gierke, C. 2023. Personal communication between Christopher Gierke, U.S. Air Force Civil Engineer Center restoration project manager at Cannon Air Force Base, and John Bunch, DBS&A. May 4, 2023.
- Hart, D.L. and D.P. McAda. 1985. *Geohydrology of the high plains aquifer in southeastern New Mexico*. USGS Hydrologic Investigations Atlas HA-679.
- Howard, J.W. Jr. 1954. *Reconnaissance of ground-water conditions in Curry County, New Mexico*. State of New Mexico State Engineer Office Technical Report Number 1. December 1954.
- ITRC. 2021. *Per- and polyfluoroalkyl substances technical and regulatory guidance*. December 2021.
- ITRC. 2022. ITRC PFAS regulations, guidance and advisory values. Microsoft Excel file. Updated February 2022.
- Leeson, A., T. Thompson, H.F. Stroo, R.H. Anderson, J. Speicher, M.A. Mills, J. Willey, C. Coyle, R. Ghosh, C. Lebron, and C. Patton. 2021. Identifying and managing aqueous film forming foam-derived per- and polyfluoroalkyl substances in the environment. *Environmental Toxicology and Chemistry* 40(1): 24-36.
- Mussharrafieh, G.R. and L.M. Logan. 1999. *Numerical simulation of groundwater flow for water rights administration in the Curry and Portales Valley underground water basins, New Mexico.* New Mexico Office of the State Engineer Technical Division Hydrology Bureau Report 99-2. March 1999.
- New Mexico Environment Department (NMED). 2019. *Risk assessment guidance for site investigations and remediation, Volume I: Soil screening guidance for human health risk assessments*. February 2019 (Revision 2, June 19, 2019).
- NMED. 2022. Risk assessment guidance for site investigations and remediation, Volume I: Soil screening guidance for human health risk assessments. June 2022. Available at <<u>https://www.env.nm.gov/hazardous-waste/wp-</u> <u>content/uploads/sites/10/2022/06/NMED_SSG_VOL_I_June_2022.pdf</u>>.
- Niswonger, R.G., S. Panday, and M. Ibaraki. 2011. *MODFLOW-NWT, A Newton formulation for MODFLOW-2005*. USGS Techniques and Methods 6–A37.

- Trinity Analysis & Development Corp. (Trinity). 2012. Water sustainability and management report, Air Force Special Operations Command, Hurlburt Field and Cannon Air Force Base, Okaloosa County, Florida and Curry County, New Mexico. February 2012.
- U.S. EPA. 2009. Long-chain perfluorinated chemicals (PFCs) action plan. December 30, 2009.
- U.S. EPA. 2016a. *Drinking water health advisory for perfluorooctanoic acid (PFOA)*. EPA 822-R-16-005. May 2016.
- U.S. EPA. 2016b. Drinking water health advisory for perfluorooctane sulfonate (PFOS). EPA 822-R-16-004. May 2016.
- U.S. EPA. 2017. *Technical fact sheet: Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA)*. EPA 505-F-17-001. November 2017.
- U.S. EPA. 2021a. *Fact sheet: Toxicity assessment for PFBS*. April 8, 2021. Available at https://www.epa.gov/chemical-research/learn-about-human-health-toxicity-assessment-pfbs.
- U.S. EPA. 2021b. *Multi-industry per- and polyfluoroalkyl substances (PFAS) Study 2021 preliminary report*. EPA-821-R-21-004. September 2021.
- U.S. EPA. 2021c. *PFAS strategic roadmap: EPA's commitments to action 2021-2024*. EPA-100-K-21-002. October 2021.
- U.S. EPA. 2021d. Fact sheet: Human health toxicity assessment for GenX chemicals. EPA 822-F-21-006. October 2021.
- U.S. EPA. 2022. 2022 Interim updated PFOA and PFOS health advisories. Accessed June 2022. https://www.epa.gov/sdwa/drinking-water-health-advisories-pfoa-and-pfos.
- U.S. EPA. 2023. Per- and Polyfluoroalkyl Substances (PFAS), Proposed PFAS National Primary Drinking Water Regulation. https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas.
- Xu, M. and Y. Eckstein. 1995. Use of weighted least-squares method in evaluation of the relationship between dispersivity and field scale. *Groundwater* 33(6): 905-908.

Figures

Areas.ai AFFF Release tor/F02 Cannon cts\DB23.1087_NMED_PFAS_FY2023\VR_Drawings\Illustra

Figure 2

\\SS6ABQ\DATAS\PROJECTS\DB23.1087_NMED_PFAS_FY2023\GIS\MXDS\F03_MONITOR_WELL_DBS-1_LOCATION.MXD

Explanation

DBS-1

NMED PFAS INVESTIGATION, CANNON AFB Monitor Well DBS-1 Location

NMED PFAS INVESTIGATION, CANNON AFB **Regional Model Grids**

S:\PROJECTS\DB21.1060_NMED_PFAS_INVESTIGATIONS\GIS\MXDS\CANNON\MODEL\REPORT\FIGURE05_HORIZONTAL_HYDRAULIC_CONDUCTIVITY.MXD

Figure 5

S:\PROJECTS\DB21.1060_NMED_PFAS_INVESTIGATIONS\GIS\MXDS\CANNON\MODEL\REPORT\FIGURE06_CALIBRATION_WELLS.MXD

Source: Google Earth, 2/16/2020

NMED PFAS INVESTIGATION, CANNON AFB Calibration Wells

S:\PROJECTS\DB21.1060_NMED_PFAS_INVESTIGATIONS\GIS\MXDS\CANNON\MODEL\REPORT\FIGURE07_REGIONAL_LOCAL_GRIDS.MXD
S:\PROJECTS\DB21.1060_NMED_PFAS_INVESTIGATIONS\GIS\MXDS\CANNON\MODEL\REPORT\FIGURE08_PILOT_POINTS_CALIBRATED_ZONES.MXD

NMED PFAS INVESTIGATION, CANNON AFB Pilot Points and Calibrated Hydraulic Conductivity Zones

from regional model

Geo-Logic Company

DB23.1087

(calibrated)

6/29/2023

S\PROJECTS\DB21.1060_NMED_PFAS_INVESTIGATIONS\GIS\MXDS\CANNON\MODEL\REPORT\FIGURE09_CALIBRATED_HYDRAULIC_CONDUCTIVITY.MXD

Hydraulic conductivities outside the area of pilot points are imported from the regional model.
 Hydraulic conductivities inside the area of pilot points are the result of pilot point interpolation.

NMED PFAS INVESTIGATION, CANNON AFB Local Model Calibrated Hydraulic Conductivity

> 175

0

S:\PROJECTS\DB21.1060_NMED_PFAS_INVESTIGATIONS\GIS\MXDS\CANNON\MODEL\REPORT\FIGURE10_SIMULATED_HEADS_2022.MXD

6/29/2023

Geo-Logic Company DB23.1087

Figure 11

6/29/2023

Geo-Logic Company

DB23.1087

Extent of Transport Model Grid and Comparison of 2022 Simulated Heads of Calibrated Local Model and Transport Model

\\SS6ABQ\DATAS\PROJECTS\DB21.1060_NMED_PFAS_INVESTIGATIONS\GIS\MXDS\CANNON\MODEL\REPORT\FIGURE12_MEASURED_CONCENTRATIONS.MXD

NMED PFAS INVESTIGATION, CANNON AFB Simulated PFOS Concentrations as of December 2022

Geo-Logic Company DB23.1087 6/30/2023

NMED PFAS INVESTIGATION, CANNON AFB Simulated PFOA Concentrations as of December 2022

Tables

Table 1.PFAS Target AnalytesPage 1 of 2

PFAS Group	No. of Carbons	Acronym(s)	CAS No.	Chemical Name
PFCA	4	PFBA	375-22-4	Perfluorobutanoic acid
PFCA	5	PFPeA	2706-90-3	Perfluoropentanoic acid
PFCA	6	PFHxA	307-24-4	Perfluorohexanoic acid
PFCA	7	PFHpA	375-85-9	Perfluoroheptanoic acid
PFCA	8	PFOA	335-67-1	Perfluorooctanoic acid
PFCA	9	PFNA	375-95-1	Perfluorononanoic acid
PFCA	10	PFDA	335-76-2	Perfluorodecanoic acid
PFCA	11	PFUnA, PFUnDA	2058-94-8	Perfluoroundecanoic acid
PFCA	12	PFDoA, PFDoDA	307-55-1	Perfluorododecanoic acid
PFCA	13	PFTrDA, PFTriA, PFTrA	72629-94-8	Perfluorotridecanoic acid
PFCA	14	PFTeDA, PFTreA, PFTeA	376-06-7	Perfluorotetradecanoic acid
PFSA	4	PFBS	375-73-5	Perfluorobutane sulfonic acid
PFSA	5	PFPeS	2706-91-4	Perfluoropentane sulfonic acid
PFSA	6	PFHxS	355-46-4	Perfluorohexane sulfonic acid
PFSA	7	PFHpS	375-92-8	Perfluoroheptane sulfonic acid
PFSA	8	PFOS	1763-23-1	Perfluorooctane sulfonic acid
PFSA	9	PFNS	68259-12-1	Perfluorononane sulfonic acid
PFSA	10	PFDS	335-77-3	Perfluorodecane sulfonic acid
FOSA	8	PFOSA	754-91-6	Perfluorooctane sulfonamide
FTSA		4:2 FTS, 4:2 FTSA	757124-72-4	4:2 fluorotelomer sulphonic acid
FTSA	8	6:2 FTS, 6:2 FTSA	27619-97-2	6:2 Fluorotelomer sulphonic acid
FTSA	10	8:2 FTS, 8:2 FTSA	39108-34-4	8:2 Fluorotelomer sulphonic acid
FTSA		10:2 FTS	120226-60-0	10:2 Fluorotelomer sulphonic acid
FOSA	8	NMeFOSA	31506-32-8	N-methylperfluorooctanesulfonamide
FOSA	8	NEtFOSA	4151-50-2	N-ethylperfluorooctanesulfonamide
FASAA	11	NMeFOSAA, MeFOSAA	2355-31-9	N-methyl perfluorooctane sulfonamido acetic acid
FASAA	12	NEtFOSAA, NEtFOSA	2991-50-6	N-ethyl perfluorooctane sulfonamido acetic acid
	8	NMeFOSE	24448-09-7	N-methylperfluorooctanesulfonamido ethanol
	8	NEtFOSE	1691.99-2	N-ethylperfluorooctanesulfonamido ethanol
PFECA		HFPO-DA (Gen X)	13252-13-6	Hexafluoropropylene oxide dimer acid
PFECA		PFMPA	377-73-1	Perfluoro-3-methoxypropanoic acid

Notes are provided at the end of the table.

Table 1.PFAS Target AnalytesPage 2 of 2

PFAS	No. of			
Group	Carbons	Acronym(s)	CAS No.	Chemical Name
PFECA		PFMBA	863090-89-5	Perfluoro-4-methoxybutanoic acid
PFECA		NFDHA	151772-58-6	Perfluoro-3,6-dioxaheptanoic acid
PFESA		11CI-PF3OUdS	763051-92-9	11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid
PFESA		9CI-PF3ONS	756426-58-1	9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid
PFESA		PFEESA	113507-82-7	Perfluoro(2-ethoxyethane) sulfonic acid
PFEA		ADONA (Gen X)	919005-14-4	Ammonium 4,8-dioxa-3H-perfluorononanoate
		F-53B Major, 9Cl-PF3ONS	756426-58-1	9-chlorohexadecafluoro-3-oxanonane-1-sulfonate
		F-53B Minor, 11Cl-PF3OUdS	763051-92-9	11-chloroeicosafluoro-3-oxaundecane-1-sulfonate

Sources: ITRC, 2021, Table 4-1; U.S. EPA, 2021b

CAS = Chemical Abstract Service

PFCA = Perfluoroalkyl carboxylic acid

PFSA = Perfluoroalkane sulfonic acid

FOSA = Perfluoroalkane sulfonamide

FTSA = Fluorotelomer sulfonic acid

FASAA = Perfluorooctane sulfonamido acetic acid

PFECA = Perfluoroalkyl ether carboxylic acid

PFESA = Perfluoroalkyl ether sulfonic acid

PFEA = Polyfluoroalkyl ether acid

Table 2. EPA and NMED PFAS Regulatory Levels

	Concentration (ng/L)						
	2016 EPA	2022 EPA Updated			2019 NMED		2022 NMED
	Lifetime Drinking	Lifetime Drinking	2023 EPA	2023 EPA	Preliminary Tap	2022 NMED Tap	Tap Water
	Water Health	Water Health	Proposed	Proposed	Water Screening	Water Cancer	Noncancer
PFAS	Advisory Levels ^a	Advisory Levels ^b	MCL ^c	MCLG ^c	Level ^d	Screening Level ^e	Screening Level ^e
PFOA	70	0.004	4.0	0.0	70	11.1	0.0602
PFOS	70	0.02	4.0	0.0	70		0.0602
PFNA			f	f			0.0602
PFHxS			f	f	70		0.401
PFBS		2,000	f	f			6.02
HFPO-DA (GenX)	_	10	f	f	_		—
Perfluorobutanesulfonate							6.02
Perfluorohexanesulfonate							0.401
Perfluorononanoate							0.0602
Perfluorooctanesulfonate							0.0602
Perfluorooctanoate							0.0602
Potassium perfluorobuttanesulfonate							6.02
Potassium perfluorooctanesulfonate							0.0602

^a Issued May 2016

^b Issued June 15, 2022

^c Issued March 14, 2023

^d Issued June 19, 2019

^e Issued June 22, 2022

^f Combined toxicity of these analytes used to determine if they exceed a Hazard Index of 1.0

EPA = U.S. Environmental Protection Agency

NMED = New Mexico Environment Department

ng/L = Nanograms per liter

MCL = Maximum contaminant level

MCLG = Maximum contaminant level goal

— = Not applicable

Table 3. Frequency of Field Quality Control Samples

Field Quality Control Sample	Frequency for Soil/Aqueous Matrix
Field duplicate	1 per 10 samples
Field blank	1 per day
Equipment blank	1 per day
Matrix spike/matrix spike duplicate ^a (PFAS only)	1 per 20 samples
Temperature blank	1 per cooler

^a Matrix spike, matrix spike duplicate, and matrix duplicate analyses are technically not field quality control samples; however, they generally require that the field personnel collect additional volume of sample, and are therefore included on this table for reference.

Well	Date	pH (s.u.)	Temperature (°C)	Conductance (uS/cm)	Dissolved oxygen (ma/L)	Oxidation/ Reduction Potential (mV)
COS-35	4/6/2023	6.53	12.31	755	10.00	61.2
COS-36	4/6/2023	7.41	14.12	928	6.78	49.4
DBS-1	4/7/2023	7.69	17.77	1,008	6.64	76.7
COS-37	6/13/2023	7.81	21.2	548	9.43	187.5
COS-38	6/13/2023	8.16	21.9	497.3	6.77	171.9
COS-39 ^a	6/13/2023	8.16	21.9	497.3	6.77	171.9
COS-40 ^b	6/13/2023					
COS-41	6/14/2023	7.87	21.7	724	6.65	183.6
COS-42 ^b	6/14/2023					
DBS-1	6/14/2023	7.77	19.6	972	9.13	136.8
COS-43 ^a	6/14/2023	7.77	19.6	972	9.13	136.8
COS-44	6/14/2023	7.72	23.1	933	6.89	174.7
COS-45	6/14/2023	7.87	20.3	663	8.33	159.5
COS-46	6/14/2023	8.08	21.3	530	7.54	138.4
COS-47	6/15/2023	7.99	22.9	530	8.52	148.6
COS-48 ^b	6/15/2023	—		—	_	—
COS-49	6/15/2023	7.65	21.7	806	8.97	158.8
COS-50	6/15/2023	7.82	20.7	717	8.61	159.0

Table 4. Field Parameter Measurements for FY 2023 Off-Base Water Samples

^a Duplicate sample

^b Field blank

s.u. = Standard units

 μ S/cm = Microsiemens per centimeter

mg/L = Milligrams per liter

mV = Millivolt

— = Not applicable

	Concentration (ng/L)					
	COS-35	COS-35 (DUP)	COS-36	DBS-1	DBS-1 (DUP)	
Analyte	4/6/2023	4/6/2023	4/6/2023	4/6/2023	4/6/2023	
PFBA	<1.94	<1.89	7.72 ^a	<1.91	<1.93	
PFPeA	<1.94	<1.89	22.8 ^a	<1.91	<1.93	
PFHxA	<1.94	<1.89	22.0 ^b	<1.91	<1.93	
PFHpA	<1.94	<1.89	3.21 ^b	<1.91	<1.93	
PFOA	<1.94	<1.89	<1.91	<1.91	<1.93	
PFNA	<1.94	<1.89	<1.91	<1.91	<1.93	
PFDA	<1.94	<1.89	<1.91	<1.91	<1.93	
PFUnA	<1.94	<1.89	<1.91	<1.91	<1.93	
PFDoA	<1.94	<1.89	<1.91	<1.91	<1.93	
PFTrDA	<1.94	<1.97	<1.94	<1.92	<1.95	
PFTeDA	<1.94	<1.97	<1.94	<1.92	<1.95	
PFBS	<1.94	<1.89	6.47 ^a	<1.91	<1.93	
PFPeS	<1.94	<1.89	4.42 ^a	<1.91	<1.93	
PFHxS	<1.94	<1.89	13.4 ^b	<1.91	<1.93	
PFHpS	<1.94	<1.89	<1.91	<1.91	<1.93	
PFOS	<1.94	<1.89	<1.91	<1.91	<1.93	
4:2 FTS	<1.94	<1.89	<1.91	<1.91	<1.93	
6:2 FTS	<1.94	<1.89	<1.91	<1.91	<1.93	
8:2 FTS	<1.94	<1.89	<1.91	<1.91	<1.93	
NMeFOSAA	<1.94	<1.97	<1.94	<1.92	<1.95	
NEtFOSAA	<1.94	<1.97	<1.94	<1.92	<1.95	
HFPO-DA	<1.94	<1.89	<1.91	<1.91	<1.93	
PFMPA	<1.94	<1.89	<1.91	<1.91	<1.93	
PFMBA	<1.94	<1.89	<1.91	<1.91	<1.93	
NFDHA	<1.94	<1.89	<1.91	<1.91	<1.93	
11Cl-PF3OUdS	<1.94	<1.89	<1.91	<1.91	<1.93	
9CI-PF3ONS	<1.94	<1.89	<1.91	<1.91	<1.93	
PFEESA	<1.94	<1.89	<1.91	<1.91	<1.93	
ADONA	<1.94	<1.89	<1.91	<1.91	<1.93	

Table 5.PFAS in FY 2023 Off-Base Water Samples

Source: Enthalpy Laboratory

Refer to Table 1 for PFAS compound names

Samples were analyzed using U.S. Environmental Protection Agency (EPA) methods 533 and 537.1.

^a Result using EPA method 533

^b Result using EPA method 531.7

ng/L = Nanograms per liter

Table 6.Model Calibration WellsPage 1 of 2

		State Plane Coordinates (feet)	
Well No.	Well Name	Х	Y
1	342636103124301	3953023.3	20864672.0
2	342655103114001	3958859.8	20864440.0
3	342615103220701	3905753.0	20863560.0
4	342630103145201	3942305.0	20862416.0
5	342548103193601	3918282.5	20860548.0
6	342519103230101	3900964.5	20857964.0
7	342520103165601	3931548.5	20857482.0
8	342633103155301	3936862.5	20857302.0
9	342457103213901	3907678.3	20855634.0
10	342505103151801	3939429.3	20854334.0
11	342442103213601	3908092.3	20854062.0
12	MW-V	3915483.8	20850006.0
13	342338103203701	3912948.8	20847458.0
14	MW-W	3926692.3	20846698.0
15	MW-E	3924233.3	20844534.0
16	342310103165901	3931183.5	20844194.0
17	MW-Rb	3925731.0	20844184.0
18	342310103160901	3935395.8	20844066.0
19	MW-Fa	3925215.3	20843974.0
20	342323103145601	3941809.8	20843784.0
21	342308103133301	3948381.3	20843606.0
22	MW-Na	3927516.5	20843586.0
23	MW-Ga	3925385.3	20843104.0
24	MW-Pa	3925689.8	20842870.0
25	MW-H	3924912.8	20842610.0
26	MW-Oa	3927138.3	20841798.0
27	342305103111501	3960128.5	20841634.0
28	MW-X	3917598.8	20838218.0
29	342218103182601	3923629.8	20837718.0
30	342219103183101	3923596.3	20837718.0
31	MW-A	3923594.0	20837706.0

Notes are provided at the end of the table.

Table 6.Model Calibration WellsPage 2 of 2

		State Plane Coordinates (feet	
Well No.	Well Name	Х	Y
32	MW-Ua	3925351.0	20836230.0
33	MW-B	3925308.8	20836018.0
34	342201103180901	3925338.8	20835844.0
35	MW-Ta	3925375.0	20835750.0
36	342200103181001	3925324.8	20835738.0
37	342158103180601	3925294.8	20835638.0
38	MW-D	3924113.0	20835490.0
39	MW-Sa	3925263.0	20835444.0
40	MW-Ca	3924776.3	20835424.0
41	342157103181601	3924777.8	20835418.0
42	342140103190501	3920114.5	20833968.0
43	342126103164501	3932135.3	20833564.0
44	342121103142301	3944059.5	20832940.0
45	342137103121901	3954757.8	20832680.0
46	342036103220001	3905483.5	20829126.0
47	342034103175101	3926489.3	20828504.0
48	342033103155801	3936000.5	20828138.0
49	342031103123301	3953017.0	20827570.0
50	342031103111301	3959701.5	20827348.0
51	342006103134201	3946393.0	20825164.0
52	341941103121901	3954040.0	20822378.0
53	341935103145601	3940912.5	20820738.0

Table 7. Contaminant Transport Parameters and Sources for PFOS and PFOA

Symbol	Parameter	Calculation	Value (PFOS)	Value (PFOA)	Units	Source
Input Par	rameters					
n	Total porosity		0.42	0.42		
ne	Effective porosity		0.35	0.35		Fetter, 2001
foc	Fraction organic carbon content	_	0.001	0.001		
x _t	Longitudinal flow field distance	_	3	3	miles	Estimated
			4,828	4,828	meters	
α_{rh}	Ratio, longitudinal and transverse dispersivity		10	10		Aziz et al., 2000
ρ	Particle density	_	2.65	2.65	g/cm ³	Fetter, 2001
K _{oc}	Organic carbon partition coefficient	_	631	97	cm ³ /g	IRTC Table 4-1, 25th percentile
	Decay constant	_	0	0	1/day	Assumed
t	Time of continuous source	_	53	53	years	Assumed
			19,358	19,358	days	
Calculate	d Parameters					
ρ _b	Bulk density	$ \rho_{\rm b} = (1-n) * \rho_{\rm s} $	1.54	1.54	g/cm ³	Fetter, 2001
R	Retardation coefficient	$R = 1 + ((K_{oc}*f_{oc}*\rho_b) / n)$	3.31	1.35		Fetter, 2001
α _x	Longitudinal dispersivity	$\alpha_x = 1.15 * (Log(x_t))^{3.013}$	192	192	feet	Xu and Eckstein (1995); Al- Suwaiyan (1996) Eq 12b
α _y	Transverse dispersivity	$\alpha_{\rm y} = \alpha_{\rm x} / \alpha_{\rm rh}$	19.2	19.2	feet	Calculated based on dispersivity ratios

 g/cm^3 = Grams per cubic centimeter

 cm^3/g = Cubic centimeters per gram

Appendix A

April 2023 Laboratory Report for DBS&A Sampling

May 10, 2023

John Bunch Daniel B. Stephens & Assoc. 6020 Academy NE Suite 100 Albuquerque, NM 87109 TEL: (505) 822-9400 FAX: (505) 822-8877

RE: Cannon AFB

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 2304376

Dear John Bunch:

Hall Environmental Analysis Laboratory received 6 sample(s) on 4/10/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

May 08, 2023

Enthalpy Analytical - El Dorado Hills Work Order No. 2304086

Mr. Andy Freeman Hall Environmental Analytical Laboratory 4901 Hawkins NE Albuquerque, NM 87109

Dear Mr. Freeman,

Enclosed are the results for the sample set received at Enthalpy Analytical - EDH on April 11, 2023 under your Project Name '2304376'.

Enthalpy Analytical - EDH is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at james.fox@enthalpy.com.

Thank you for choosing Enthalpy Analytical - EDH as part of your analytical support team.

Sincerely,

main For

Jamie Fox Senior Program Manager

Enthalpy Analytical -EDH certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Enthalpy Analytical -EDH.

Enthalpy Analytical - EDH 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.enthalpy.com

Enthalpy Analytical - EDH Work Order No. 2304086 Case Narrative

Sample Condition on Receipt:

Six groundwater samples were received and stored securely in accordance with Enthalpy Analytical - EDH standard operating procedures and EPA methodology. The samples were received in good condition and within the recommended temperature requirements.

Analytical Notes:

EPA Method 537.1

The samples were extracted and analyzed for a selected list of PFAS using EPA Method 537.1.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

Two Laboratory Fortified Blanks (LFB/LFBD) and a Laboratory Reagent Blank (LRB) were extracted and analyzed with the preparation batch. No analytes were detected in the LRB above the method required limits. The LFB/LFBD recoveries were within the method acceptance criteria.

The surrogate recoveries for all QC and field samples were within the acceptance criteria.

EPA Method 533

The samples were extracted and analyzed for a selected list of PFAS using EPA Method 533. The results for PFHxS, PFOA and PFOS include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The samples were extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the acceptance criteria.

Two Laboratory Fortified Blanks (LFB/LFBD) and a Laboratory Reagent Blank (LRB) were extracted and analyzed with the preparation batch. No analytes were detected in the LRB above the method required limits. The LFB/LFBD recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag	%Rec
2304086-01	COS-35	EPA Method 533	13C2-4:2 FTS	Н	151

H = Recovery was outside laboratory acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	4
Sample Inventory	5
Analytical Results	6
Qualifiers	31
Certifications	32
Sample Receipt	33

Sample Inventory Report

Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2304086-01	COS-35	06-Apr-23 11:12	11-Apr-23 08:56	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2304086-02	COS-35 DUP	06-Apr-23 11:12	11-Apr-23 08:56	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2304086-03	COS-36	06-Apr-23 11:25	11-Apr-23 08:56	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2304086-04	FB-1	07-Apr-23 15:08	11-Apr-23 08:56	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2304086-05	DBS-1	07-Apr-23 15:25	11-Apr-23 08:56	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2304086-06	DBS-1D	07-Apr-23 15:25	11-Apr-23 08:56	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL

ANALYTICAL RESULTS

Client Data				Lab	oratory Data					
Name:	Hall Environmental Analytical Laboratory	Matrix:	Aqueous	Lab	Sample:	B23D189-	BLK1	Column:	BEH C18	
Project:	2304376									
Analyte	CAS Number	Conc. (ng/L)		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND		2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
PFHxA	307-24-4	ND		2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
PFHpA	375-85-9	ND		2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
PFHxS	355-46-4	ND	2	2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
PFOA	335-67-1	ND	2	2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
PFNA	375-95-1	ND	2	2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
PFOS	1763-23-1	ND		2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
PFDA	335-76-2	ND		2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
MeFOSAA	2355-31-9	ND		2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
EtFOSAA	2991-50-6	ND		2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
PFUnA	2058-94-8	ND		2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
PFDoA	307-55-1	ND		2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
PFTrDA	72629-94-8	ND		2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
PFTeDA	376-06-7	ND		2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
HFPO-DA	13252-13-6	ND		2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
ADONA	919005-14-4	ND		2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
9Cl-PF3ONS	756426-58-1	ND		2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
11Cl-PF3OUdS	763051-92-9	ND		2.00		B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
Labeled Standar	rds Type	% Recovery	Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	104	70 - 130			B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
13C2-PFDA	SURR	107	70 - 130			B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
d5-EtFOSAA	SURR	82.2	70 - 130			B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1
13C3-HFPO-DA	SURR	109	70 - 130			B23D189	19-Apr-23	0.250 L	25-Apr-23 15:24	1

Results reported to RL.

RL - Reporting limit

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID: LRB

7 of 36

Sample ID: LFBD

EPA Method 537.1

Name: Project: Matrix:	Hall Environmental A 2304376 Aqueous	nalytical Laboratory	7	Lab Sar QC Bat Samp S	nple: ch: ize:	B23D18 B23D18 0.250/0.	89-BS1/B2 89 250 L	23D189-B	SD1				Date Extracted: Column:		19-Apr-23 BEH C18	
Analyte	CAS Number	LFB (ng/L)	LFB Spike	LFB % Rec	LFB Ouals	LFBD (ng/L)	LFBD Spike	LFBD % Rec	RPD	LFBD Ouals	%Rec Limits	RPD Limits	LFB Analyzed	LFB Dil	LFBD Analyzed	LFBD Dil
PFBS	375-73-5	62.1	70.8	87.7		70.7	70.8	99.9	13.0	ų	70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	7 1
PFHxA	307-24-4	81.8	80.0	102		75.8	80.0	94.7	7.67		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	7 1
PFHpA	375-85-9	82.1	80.0	103		78.7	80.0	98.4	4.16		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	/ 1
PFHxS	355-46-4	66.0	72.8	90.7		76.9	72.8	106	15.2		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	7 1
PFOA	335-67-1	79.9	80.0	99.9		74.4	80.0	92.9	7.16		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	/ 1
PFNA	375-95-1	75.1	80.0	93.8		75.2	80.0	94.0	0.163		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	7 1
PFOS	1763-23-1	65.2	74.0	88.0		82.8	74.0	112	23.8		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	7 1
PFDA	335-76-2	82.1	80.0	103		77.4	80.0	96.7	5.91		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	7 1
MeFOSAA	2355-31-9	74.2	80.0	92.8		78.2	80.0	97.8	5.19		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	1 1
EtFOSAA	2991-50-6	68.3	80.0	85.4		76.3	80.0	95.4	11.1		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	/ 1
PFUnA	2058-94-8	88.7	80.0	111		78.6	80.0	98.3	12.1		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	/ 1
PFDoA	307-55-1	76.1	80.0	95.1		67.2	80.0	83.9	12.5		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	/ 1
PFTrDA	72629-94-8	73.8	80.0	92.2		70.9	80.0	88.6	3.98		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	1 1
PFTeDA	376-06-7	66.6	80.0	83.3		60.9	80.0	76.1	8.96		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	/ 1
HFPO-DA	13252-13-6	85.7	80.0	107		76.5	80.0	95.6	11.5		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	/ 1
ADONA	919005-14-4	79.6	75.6	105		73.3	75.6	96.9	8.27		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	/ 1
9C1-PF3ONS	756426-58-1	64.7	74.4	87.0		78.6	74.4	106	19.4		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	/ 1
11Cl-PF3OUdS	763051-92-9	69.2	75.2	92.1		78.1	75.2	104	12.1		70-130	30	25-Apr-23 15:35	1	25-Apr-23 15:47	/ 1
	_			LFB	LFB			LFBD		LFBD			LFB	LFB	LFBD	LFBD
Labeled Standa	rds	Туре		% Rec	Quals			% Rec		Quals	Limits		Analyzed	Dil	Analyzed	Dil
13C2-PFHxA		SURR		108				105			70 - 130)	25-Apr-23 15:35	1	25-Apr-23 15:47	/ 1
13C2-PFDA		SURR		110				101			70 - 130		25-Apr-23 15:35	1	25-Apr-23 15:47	/ 1
d5-EtFOSAA		SURR		89.1				92.7			70 - 130		25-Apr-23 15:35	1	25-Apr-23 15:47	/ 1
13C3-HFPO-DA		SURR		108				102			70 - 130		25-Apr-23 15:35	1	25-Apr-23 15:47	/ 1

Cliant Data										
Chent Data				1	Laboratory Data	2204006.0	1			
Name:	Hall Environmental Analytical Lat	Doratory Ma	trix: Groun	dwater	Lab Sample:	2304086-0	1	Column:	BEH C18	
Project:	2304376	Da	te Collected: 06-Ap	pr-23 11:12	Date Received:	11-Apr-23	08:56			
Location:	2304376-001A									
Analyte	CAS Nun	ber Conc. (ng/	L)	R	L Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-	-5 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
PFHxA	307-24-	-4 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
PFHpA	375-85-	.9 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
PFHxS	355-46-	-4 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
PFOA	335-67-	-1 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
PFNA	375-95-	-1 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
PFOS	1763-23	-1 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
PFDA	335-76-	2 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
MeFOSAA	2355-31	-9 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
EtFOSAA	2991-50	-6 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
PFUnA	2058-94	-8 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
PFDoA	307-55-	-1 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
PFTrDA	72629-94	4-8 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
PFTeDA	376-06-	-7 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
HFPO-DA	13252-13	3-6 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
ADONA	919005-1	4-4 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
9C1-PF3ONS	756426-5	8-1 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
11Cl-PF3OUdS	763051-9	2-9 ND		1.9	94	B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
Labeled Standard	ls Type	% Reco	very	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	111		70 - 130		B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
13C2-PFDA	SURR	118		70 - 130		B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
d5-EtFOSAA	SURR	87.8		70 - 130		B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1
13C3-HFPO-DA	SURR	115		70 - 130		B23D189	19-Apr-23	0.258 L	25-Apr-23 15:58	1

RL - Reporting limit

Results reported to RL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both

linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID: COS-35

Client Data				T	ahanatawy Data					
Name: Project: LocatioE:	1 all HEniroEmeEtal v EalAtical LaboratorA 2304376 2304376-002v	Matrix: Date Collected:	GroyEdwater 06-v pr-23 BBB2	La La	aboratory Data ab Sample: ate Receined:	2304086-0 BB-v pr-23	2 08:56	ColymE:	uHl CB8	
Analyte	CAS Number	Conc. (ng/L)		ŔL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFu S	375-73-5	ND		B.97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
PF1 xv	307-24-4	ND		B.97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
PF1 pv	375-85-9	ND		B.97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
PF1 xS	355-46-4	ND		B.97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
PFOv	335-67-В	ND		B.97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
PFNv	375-95-В	ND		B.97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
PFOS	В763-23-В	ND		B.97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
PFDv	335-76-2	ND		B.97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
MeFOSv v	2355-3B-9	ND		B97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
HtFOSv v	299B-50-6	ND		B97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
PFUEv	2058-94-8	ND		B.97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
PFDov	307-55-В	ND		B.97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
PFTrDv	72629-94-8	ND		B.97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
PFTeDv	376-06-7	ND		B97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
1 FPO-Dv	B3252-B3-6	ND		B.97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
v DONv	9B9005-B4-4	ND		B97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
9C1-PF3ONS	756426-58-В	ND		B.97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
BBC1-PF3OUdS	76305B-92-9	ND		B.97		u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
Labeled Standard	ls Type	% Recovery	Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
B3C2-PF1 xv	SURR	BBB	70 - B30			u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
B3C2-PFDv	SURR	B09	70 - B30			u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
d5-HtFOSv v	SURR	B0B	70 - B30			u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В
B3C3-1 FPO-Dv	SURR	BB4	70 - B30			u 23DB89	B9-v pr-23	0.254 L	25-v pr-23 B6:09	В

Sample ID: COS-35 DUP

RL - ReportiEg limit

Resylts reported to RL.

WheE reported, PF1 xS, PFOv , PFOS, MeFOSv v aEd HtFOSv v iEclyde both

liEear aEd braEched isomers. OElA the liEear isomer is reported for all other aEalAtes.

•										
Client Data Name:	1 all HEniroEmeEtal v EalAtical LaboratorA	Matrix:	GroyEdwater	Lab Lab	boratory Data	2304086-0	3	ColymE:	uH1 CB8	
Project:	2304376	Date Collected:	06-v pr-23 BB:2R	Dat	te 5 eceined:	BB-v pr-23	08:R6			
LocatioE:	2304376-003v									
Analyte	CAS Number	Conc. (ng/L)		ŔL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFu S	37R-73-R	R6R		B94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
PF1 xv	307-24-4	22.0		B.94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
PF1 pv	37R-8R-9	3.2B		B94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
PF1 xS	3RR-46-4	B3.4		B94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
PFOv	33R-67-B	ND		B.94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
PFNv	37R-9R-B	ND		B94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
PFOS	В763-23-В	ND		B94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
PFDv	33R-76-2	ND		B.94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
MeFOSv v	23RR-3B-9	ND		B94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
HtFOSv v	299B-R0-6	ND		B94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
PFUEv	20R8-94-8	ND		B.94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
PFDov	307-RR-B	ND		B.94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
PFTrDv	72629-94-8	ND		B.94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
PFTeDv	376-06-7	ND		B.94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
1 FPO-Dv	B32R2-B3-6	ND		B.94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
v DONv	9B900R-B4-4	ND		B.94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
9C1-PF3ONS	7R6426-R8-B	ND		B.94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
BBC1-PF3OUdS	7630RB-92-9	ND		B.94		u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
Labeled Standar	ds Type	% Recovery	Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
B3C2-PF1 xv	SU5 5	BBB	70 - B30			u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
B3C2-PFDv	SU5 5	BB2	70 - B30			u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
dR-HtFOSv v	SU5 5	89.7	70 - B30			u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В
B3C3-1 FPO-Dv	SU5 5	BBB	70 - B30			u 23DB89	B9-v pr-23	0.2R8 L	2R-v pr-23 B6:20	В

5 L - 5 eportiEg limit

5 esylts reported to 5 L.

WheE reported, PF1 xS, PFOv, PFOS, MeFOSv v aEd HtFOSv v iEclyde both

liEear aEd braEched isomers. OElAthe liEear isomer is reported for all other aEalAtes.

Sample ID: COS-36

Sample ID: F	B-1									EPA Metho	d 537.1
Client Data Name: Project: LocatioE:	1 all HEniroEmeEtal v 2304376 2304376-004v	EalAtical LaboratorA	Matrix: Date Collected:	GroyEdwater 07-v pr-23 BR:08	Labo Lab S Date	Sample: 5 eceined:	2304086-0 BB-v pr-23	4 08:R6	ColymE:	uH1 CB8	
Analyte		CAS Number	Conc. (ng/L)		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFu S		37R-73-R	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
PF1 xv		307-24-4	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
PF1 pv		37R-8R-9	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
PF1 xS		3RR-46-4	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
PFOv		33R-67-B	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
PFNv		37R-9R-B	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
PFOS		В763-23-В	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
PFDv		33R-76-2	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
MeFOSv v		23RR-3B-9	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
HtFOSv v		299B-R0-6	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
PFUEv		20R8-94-8	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
PFDov		307-RR-B	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
PFTrDv		72629-94-8	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
PFTeDv		376-06-7	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
1 FPO-Dv		B32R2-B3-6	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
v DONv		9B900R-B4-4	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
9Cl-PF3ONS		7R6426-R8-B	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
BBC1-PF3OUdS		7630RB-92-9	ND		2.0B		u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
Labeled Standar	·ds	Туре	% Recovery	Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
B3C2-PF1 xv		SU5 5	BB2	70 - B30			u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
B3C2-PFDv		SU5 5	BB3	70 - B30			u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
dR-HtFOSv v		SU5 5	94.7	70 - B30			u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В
B3C3-1 FPO-Dv		SU5 5	BBB	70 - B30			u 23DB89	B9-v pr-23	0.249 L	2R-v pr-23 B6:3B	В

5 L - 5 eportiEg limit

5 esylts reported to 5 L.

WheE reported, PF1 xS, PFOv, PFOS, MeFOSv v aEd HtFOSv v iEclyde both

liEear aEd braEched isomers. OElAthe liEear isomer is reported for all other aEalAtes.

_										
Client Data				Lab	oratory Data					
Name:	Hall Environmental Analytical Laboratory	Matrix:	wroundRater	Lab	Sample:	2304086-0	1	Column:	BEH CC8	
Project:	2304376	Date Collected:	07-Apr-23 Gl:21	Dat	e 5 eceived:	CG-Apr-23	08:16			
Location:	2304376-001A									
Analyte	CAS Number	Conc. (ng/L)		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	371-73-1	ND		G92		B23DC89	()-Apr-23	0.26GL	21-Apr-23 66:42	G
PFHxA	307-24-4	ND		G92		B23D689	(D)-Apr-23	0.26GL	21-Apr-23 66:42	G
PFHpA	371-81-9	ND		G92		B23D689	(P-Apr-23)	0.26GL	21-Apr-23 66:42	G
PFHxS	311-46-4	ND		G92		B23D689	()-Apr-23	0.26GL	21-Apr-23 66:42	G
PFOA	331-67-G	ND		G92		B23DG89	()-Apr-23	0.26GL	21-Apr-23 C6:42	G
PFNA	371-91-G	ND		G92		B23D689	(D)-Apr-23	0.26GL	21-Apr-23 66:42	G
PFOS	G763-23-G	ND		G92		B23DG89	() Apr-23	0.26GL	21-Apr-23 C6:42	G
PFDA	331-76-2	ND		G92		B23D689	(P-Apr-23)	0.26GL	21-Apr-23 66:42	G
MeFOSAA	2311-3G-9	ND		G92		B23D689	(D)-Apr-23	0.26GL	21-Apr-23 66:42	G
EtFOSAA	299G-10-6	ND		G92		B23D689	(P-Apr-23)	0.26GL	21-Apr-23 66:42	G
PFUnA	2018-94-8	ND		G92		B23D689	(P-Apr-23)	0.26GL	21-Apr-23 66:42	G
PFDoA	307-11-G	ND		G92		B23DG89	(P-Apr-23	0.26GL	21-Apr-23 C6:42	G
PFTrDA	72629-94-8	ND		G92		B23DG89	(P-Apr-23	0.26GL	21-Apr-23 66:42	G
PFTeDA	376-06-7	ND		G92		B23DG89	()-Apr-23	0.26GL	21-Apr-23 66:42	G
HFPO-DA	G3212-G3-6	ND		G92		B23DG89	(P-Apr-23	0.26GL	21-Apr-23 66:42	G
ADONA	909001-64-4	ND		G92		B23DG89	()-Apr-23	0.26GL	21-Apr-23 C6:42	G
9C1-PF3ONS	716426-18-G	ND		G92		B23DG89	(P-Apr-23	0.26GL	21-Apr-23 66:42	G
CC1-PF3OUdS	76301G92-9	ND		G92		B23D689	()-Apr-23	0.26GL	21-Apr-23 66:42	G
Labeled Standar	ds Type	% Recovery	Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
G3C2-PFHxA	SU5 5	662	70 - 30			B23DG89	()-Apr-23	0.26GL	21-Apr-23 66:42	G
GC2-PFDA	SU5 5	CC66	70 - G80			B23D689	() - Apr-23	0.26GL	21-Apr-23 66:42	G
d1-EtFOSAA	SU5 5	93.1	70 - G30			B23DG89	(D)-Apr-23	0.26GL	21-Apr-23 66:42	G
GC3-HFPO-DA	SU5 5	CCG	70 - G80			B23DC89	(P-Apr-23	0.26GL	21-Apr-23 C6:42	G

5 L - 5 eporting limit

5 esults reported to 5 L.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both

linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID: DBS-1

-										
Client Data				Lab	oratory Data					
Name:	1 all HEniroEmeEtal v EalAtical LaboratorA	Matrix:	GroyEdwater	Lab	Sample:	2304086-0	6	ColymE:	uH1 CB8	
Project:	2304376	Date Collected:	07-v pr-23 BR:2R	Dat	e 5 eceined:	BB-v pr-23	08:R6			
LocatioE:	2304376-006v									
Analyte	CAS Number	Conc. (ng/L)		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFu S	37R-73-R	ND		B9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
PF1 xv	307-24-4	ND		B9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
PF1 pv	37R-8R-9	ND		B9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
PF1 xS	3RR-46-4	ND		B9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
PFOv	33R-67-B	ND		B9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
PFNv	37R-9R-B	ND		B.9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
PFOS	В763-23-В	ND		B9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
PFDv	33R-76-2	ND		B.9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
MeFOSv v	23RR-3B-9	ND		B.9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
HtFOSv v	299B-R0-6	ND		B9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
PFUEv	20R8-94-8	ND		B.9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
PFDov	307-RR-B	ND		B.9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
PFTrDv	72629-94-8	ND		B.9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
PFTeDv	376-06-7	ND		B.9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
1 FPO-Dv	B32R2-B3-6	ND		B.9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
v DONv	9B900R-B4-4	ND		B.9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
9C1-PF3ONS	7R6426-R8-B	ND		B.9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
BBC1-PF3OUdS	7630RB-92-9	ND		B.9R		u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
Labeled Standar	ds Type	% Recovery	Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
B3C2-PF1 xv	SU5 5	B03	70 - B30			u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
B3C2-PFDv	SU5 5	BBB	70 - B30			u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
dR-HtFOSv v	SU5 5	92.3	70 - B30			u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В
B3C3-1 FPO-Dv	SU5 5	B03	70 - B30			u 23DB89	B9-v pr-23	0.2R7 L	2R-v pr-23 B6:R3	В

5 L - 5 eportiEg limit

5 esylts reported to 5 L.

WheE reported, PF1 xS, PFOv, PFOS, MeFOSv v aEd HtFOSv v iEclyde both

liEear aEd braEched isomers. OElAthe liEear isomer is reported for all other aEalAtes.

Sample ID: DBS-1D

EPA Method 533

Name: Project:	Hall Environmental Analytical Laboratory 2304376	Matrix:	Aqueous	Lab	Sample:	B23D176-	BLK1	Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFMPA	377-73-1	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFPeA	2706-90-3	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFBS	375-73-5	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFMBA	863090-89-5	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFEESA	113507-82-7	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
NFDHA	151772-58-6	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
4:2 FTS	757124-72-4	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFHxA	307-24-4	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFPeS	2706-91-4	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
HFPO-DA	13252-13-6	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFHpA	375-85-9	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFHxS	355-46-4	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
ADONA	919005-14-4	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
6:2 FTS	27619-97-2	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFOA	335-67-1	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFHpS	375-92-8	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFNA	375-95-1	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFOS	1763-23-1	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
9C1-PF3ONS	756426-58-1	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
8:2 FTS	39108-34-4	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFDA	335-76-2	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFUnA	2058-94-8	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
11Cl-PF3OUdS	763051-92-9	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
PFDoA	307-55-1	ND		2.00		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
Labeled Stand	ards Type	% Recovery	Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C4-PFBA	IS	116	50 - 150			B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
13C5-PFPeA	IS	116	50 - 150			B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
13C3-PFBS	IS	117	50 - 150			B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
13C2-4:2 FTS	IS	123	50 - 150			B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
13C5-PFHxA	IS	118	50 - 150			B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
13C3-HFPO-DA	A IS	122	50 - 150			B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
13C4-PFHpA	IS	128	50 - 150			B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
13C3-PFHxS	IS	101	50 - 150			B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1

50 - 150

50 - 150

50 - 150

50 - 150

Laboratory Data

Sample ID: LRB

Client Data

IS

IS

IS

IS

117

113

113

121

13C2-6:2 FTS

13C8-PFOA

13C9-PFNA

13C8-PFOS

1

1

1

1

01-May-23 13:59

01-May-23 13:59

01-May-23 13:59

01-May-23 13:59

0.250 L

0.250 L

0.250 L

0.250 L

B23D176 20-Apr-23

B23D176 20-Apr-23

B23D176 20-Apr-23

B23D176 20-Apr-23

Sample ID: L	LRB							EPA Metl	hod 533
Client Data Name: Project:	Hall Environmental Analytical Laboratory 2304376	Matrix:	Aqueous	Laboratory Data Lab Sample:	B23D176-	BLK1	Column	BEH C18	
Labeled Standa	rds Type	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-8:2 FTS	IS	126	50 - 150		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
13C6-PFDA	IS	104	50 - 150		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
13C7-PFUnA	IS	104	50 - 150		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
13C2-PFDoA	IS	97.4	50 - 150		B23D176	20-Apr-23	0.250 L	01-May-23 13:59) 1
	RL - Reporting limit	Results reported to RI	- 	When re	ported, PFHxS,	PFOA, PFOS, M	eFOSAA and Et	FOSAA include both	

RL - Reporting limit

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both

linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID: LFBD

EPA Method 533

Name: Project: Matrix:	Hall Environmental A 2304376 Aqueous	analytical Laboratory		Lab Sar QC Bat Samp S	nple: ch: ize:	B23D17 B23D17 0.250/0.	26-BS1/B2 26 250 L	23D176-E	3SD1				Date Extracted: Column:		20-Apr-23 BEH C18		
Analyte	CAS Number	LFB (ng/L)	LFB Spike	LFB % Rec	LFB Ouals	LFBD (ng/L)	LFBD Spike	LFBD % Rec	RPD	LFBD Quals	%Rec Limits	RPD Limits	LFB Analyzed	LFB Dil	LFBD Analyzed	L	FBD Dil
PFBA	375-22-4	3.13	4.00	78.3		3.22	4.00	80.6	2.84	V unis	50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFMPA	377-73-1	3.69	4.00	92.3		3.86	4.00	96.5	4.45		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFPeA	2706-90-3	3.94	4.00	98.4		4.18	4.00	104	5.95		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFBS	375-73-5	3.16	3.55	89.1		3.00	3.55	84.4	5.38		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFMBA	863090-89-5	3.58	4.00	89.6		3.65	4.00	91.4	1.96		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFEESA	113507-82-7	3.03	3.57	85.0		2.70	3.57	75.7	11.6		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
NFDHA	151772-58-6	3.98	4.00	99.6		3.15	4.00	78.7	23.4		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
4:2 FTS	757124-72-4	3.48	3.74	92.9		3.39	3.74	90.4	2.70		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFHxA	307-24-4	3.69	4.00	92.3		3.72	4.00	92.9	0.624		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFPeS	2706-91-4	4.19	3.76	111		3.32	3.76	88.2	23.2		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
HFPO-DA	13252-13-6	3.60	4.00	90.0		4.25	4.00	106	16.5		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFHpA	375-85-9	3.48	4.00	87.1		3.87	4.00	96.7	10.5		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFHxS	355-46-4	4.31	3.65	118		3.24	3.65	88.9	28.3		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
ADONA	919005-14-4	3.23	3.78	85.6		3.48	3.78	92.3	7.54		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
6:2 FTS	27619-97-2	3.74	3.81	98.2		3.87	3.81	102	3.46		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFOA	335-67-1	3.77	4.00	94.3		3.96	4.00	98.9	4.79		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFHpS	375-92-8	3.42	3.81	89.9		3.12	3.81	82.1	9.15		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFNA	375-95-1	3.58	4.00	89.4		3.71	4.00	92.7	3.62		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFOS	1763-23-1	3.74	3.71	101		3.29	3.71	88.5	12.9		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
9C1-PF3ONS	756426-58-1	3.36	3.74	89.8		2.98	3.74	79.5	12.2		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
8:2 FTS	39108-34-4	3.41	3.84	88.7		3.55	3.84	92.5	4.13		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFDA	335-76-2	3.41	4.00	85.1		3.42	4.00	85.6	0.552		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFUnA	2058-94-8	3.45	4.00	86.3		3.38	4.00	84.5	2.08		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
11Cl-PF3OUdS	763051-92-9	3.26	3.78	86.4		3.57	3.78	94.5	8.86		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
PFDoA	307-55-1	3.76	4.00	94.0		3.88	4.00	96.9	3.14		50-150	50	01-May-23 14:10	1	01-May-23 1	4:21	1
				LFB	LFB			LFBD		LFBD			LFB	LFB	LFBD	L	FBD
Labeled Standa	rds	Туре		% Rec	Quals			% Rec		Quals	Limits		Analyzed	Dil	Analyzed]	Dil
13C4-PFBA		IS		117				113			50 - 150		01-May-23 14:10	1	01-May-23 1	4:21	1
13C5-PFPeA		IS		124				114			50 - 150		01-May-23 14:10	1	01-May-23 1	4:21	1
13C3-PFBS		IS		119				136			50 - 150		01-May-23 14:10	1	01-May-23 1	4:21	1
13C2-4:2 FTS		IS		126				140			50 - 150		01-May-23 14:10	1	01-May-23 1	4:21	1
13C5-PFHxA		IS		120				112			50 - 150		01-May-23 14:10	1	01-May-23 1	4:21	1
13C3-HFPO-DA Work O	A Order 2304086	IS		117				115			50 - 150		01-May-23 14:10	1	01-May-23 14 17 of 3	4:21 36	1

Sample ID: LFBD

EPA Method 533

Name: Project: Matrix:	Hall Environmental A 2304376 Aqueous	nalytical Laboratory	Lab Sar QC Bat Samp S	nple: ch: ize:	B23D176-BS1/B23D176-BSD1 B23D176 0.250/0.250 L			Date Extracted: Column:		20-Apr-23 BEH C18	
Labeled Standa	rds	Туре	LFB % Rec	LFB Quals	LFBD % Rec	LFBD Quals	Limits	LFB Analyzed	LFB Dil	LFBD Analyzed	LFBD Dil
13C4-PFHpA		IS	117		113		50 - 150	01-May-23 14:10	1	01-May-23 14:	21 1
13C3-PFHxS		IS	85.0		116		50 - 150	01-May-23 14:10	1	01-May-23 14:	21 1
13C2-6:2 FTS		IS	115		119		50 - 150	01-May-23 14:10	1	01-May-23 14:	21 1
13C8-PFOA		IS	108		107		50 - 150	01-May-23 14:10	1	01-May-23 14:	21 1
13C9-PFNA		IS	101		102		50 - 150	01-May-23 14:10	1	01-May-23 14:	21 1
13C8-PFOS		IS	113		120		50 - 150	01-May-23 14:10	1	01-May-23 14:	21 1
13C2-8:2 FTS		IS	118		126		50 - 150	01-May-23 14:10	1	01-May-23 14:	21 1
13C6-PFDA		IS	104		103		50 - 150	01-May-23 14:10	1	01-May-23 14:	21 1
13C7-PFUnA		IS	105		101		50 - 150	01-May-23 14:10	1	01-May-23 14:	21 1
13C2-PFDoA		IS	105		99.1		50 - 150	01-May-23 14:10	1	01-May-23 14:	21 1

Client Data Name: Project: Location:	Hall Environmental A 2304376 2304376-001A	nalytical Laboratory	Matrix: Date Collected:	Groundwater 06-Apr-23 11:12	La La Da	boratory Data b Sample: ate Received:	2304086-0 11-Apr-23	1 08:56	Column:	BEH C18	
Analyte		CAS Number	Conc. (ng/L)		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		375-22-4	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFMPA		377-73-1	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFPeA		2706-90-3	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFBS		375-73-5	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFMBA		863090-89-5	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFEESA		113507-82-7	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
NFDHA		151772-58-6	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
4:2 FTS		757124-72-4	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFHxA		307-24-4	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFPeS		2706-91-4	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
HFPO-DA		13252-13-6	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFHpA		375-85-9	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFHxS		355-46-4	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
ADONA		919005-14-4	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
6:2 FTS		27619-97-2	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFOA		335-67-1	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFHpS		375-92-8	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFNA		375-95-1	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFOS		1763-23-1	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
9C1-PF3ONS		756426-58-1	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
8:2 FTS		39108-34-4	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFDA		335-76-2	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFUnA		2058-94-8	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
11Cl-PF3OUdS		763051-92-9	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
PFDoA		307-55-1	ND		1.94		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
Labeled Standard	s	Туре	% Recovery	Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C4-PFBA		IS	116	50 - 150			B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
13C5-PFPeA		IS	114	50 - 150			B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
13C3-PFBS		IS	133	50 - 150			B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
13C2-4:2 FTS		IS	151	50 - 150		Н	B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
13C5-PFHxA		IS	110	50 - 150			B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
13C3-HFPO-DA		IS	101	50 - 150			B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
13C4-PFHpA		IS	108	50 - 150			B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
13C3-PFHxS		IS	128	50 - 150			B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
13C2-6:2 FTS		IS	121	50 - 150			B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
13C8-PFOA		IS	106	50 - 150			B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1
13C9-PFNA		IS	92.3	50 - 150			B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	1

Work Order 2304086

Sample ID: COS-35

Sample ID: Co	OS-35								EPA Met	hod 533
Client Data Name: Project: Location:	Hall Environmental A 2304376 2304376-001A	nalytical Laboratory	Matrix: Date Collected:	Groundwater 06-Apr-23 11:12	Laboratory Data Lab Sample: Date Received:	2304086-0 11-Apr-23	01 08:56	Column:	BEH C18	
Labeled Standar	ds	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C8-PFOS		IS	118	50 - 150		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	3 1
13C2-8:2 FTS		IS	129	50 - 150		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	3 1
13C6-PFDA		IS	98.4	50 - 150		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	3 1
13C7-PFUnA		IS	93.9	50 - 150		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	3 1
13C2-PFDoA		IS	95.1	50 - 150		B23D176	20-Apr-23	0.257 L	28-Apr-23 16:58	3 1

RL - Reporting limit

Results reported to RL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Client Data Name: Project: LocatioE:	1 all HEniroEmeEtal v EalAtical LaboratorA 2304376 2304376-002v	Matrix: Date Collected:	GroyEdwater 06-v pr-23 B&B2	Lab Lab Dat	ooratory Data Sample: e Receined:	2304086-0 BB-v pr-23	2 08:56	ColymE:	u Hl CB8	
Analyte	CAS Number	Conc. (ng/L)	-	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFu v	375-22-4	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PFMPv	377-73-В	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PFPev	2706-90-3	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PFu S	375-73-5	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PFMu v	863090-89-5	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PFHHSv	BB3507-82-7	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
NFD1 v	B5B772-58-6	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
4:2 FTS	757B24-72-4	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PF1 xv	307-24-4	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PFPeS	2706-9B-4	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
1 FPO-Dv	B3252-B3-6	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PF1 pv	375-85-9	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PF1 xS	355-46-4	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
v DONv	9B9005-B4-4	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
6:2 FTS	276B9-97-2	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PFOv	335-67-В	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PF1 pS	375-92-8	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PFNv	375-95-В	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PFOS	В763-23-В	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
9C1-PF3ONS	756426-58-В	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
8:2 FTS	39B08-34-4	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PFDv	335-76-2	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PFUEv	2058-94-8	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
BBC1-PF3OUdS	76305B-92-9	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
PFDov	307-55-В	ND	E	3.89		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
Labeled Standard	s Type	% Recovery	Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
B3C4-PFu v	IS	BB8	50 - B50			u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
B3C5-PFPev	IS	BB6	50 - B50			u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
B3C3-PFu S	IS	B22	50 - B50			u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
B3C2-4:2 FTS	IS	B28	50 - B50			u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
B3C5-PF1 xv	IS	BB4	50 - B50			u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
B3C3-1 FPO-Dv	IS	B07	50 - B50			u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
B3C4-PF1 pv	IS	BB3	50 - B50			u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
B3C3-PF1 xS	IS	BB8	50 - B50			u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
B3C2-6:2 FTS	IS	B42	50 - B50			u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
B3C8-PFOv	IS	B07	50 - B50			u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
B3C9-PFNv	IS	B08	50 - B50			u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В

Sample ID: COS-35 DUP

Sample ID: COS-35 DUP

EPA Method 533

Client Data Name:	1 all HEniroEmeEtal v l	EalAtical LaboratorA	Matrix:	GroyEdwater	Laboratory Data Lab Sample:	2304086-0	2	ColymE:	uHl CB8	
Project:	2304376		Date Collected:	06-v pr-23 BB:B2	Date Receined:	BB-v pr-23	08:56			
LocatioE:	2304376-002v									
Labeled Standar	·ds	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
B3C8-PFOS		IS	BB9	50 - B50		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
B3C2-8:2 FTS		IS	B26	50 - B50		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
B3C6-PFDv		IS	B03	50 - B50		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
B3C7-PFUEv		IS	B02	50 - B50		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
B3C2-PFDov		IS	B03	50 - B50		u 23DB76	20-v pr-23	0.264 L	28-v pr-23 B7:09	В
			D 1 / 1 / T	NT.		1 884 6				

RL - ReportiEg limit

Resylts reported to RL.

WheE reported, PF1 xS, PFOv, PFOS, MeFOSv v aEd HtFOSv v iEclyde both liEear aEd braEched isomers. OEIAthe liEear isomer is reported for all other aEalAtes.

Client Data				Lab	oratory Data					
Name: Project:	1 all HEniroEmeEtal v EalAtical LaboratorA 2304376	Matrix: Date Collected:	GroyEdwater 06-v pr-23 BB:2R	Lab Date	Sample: 5 eceined:	2304086-0 BB-v pr-23	3 08:R6	ColymE:	uHl CB8	
LocatioE:	2304376-003v									
Analyte	CAS Number	Conc. (ng/L)		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFu v	37R-22-4	7.72		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PFMPv	377-73-В	ND		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PFPev	2706-90-3	22.8		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PFu S	37R-73-R	6.47		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PFMuv	863090-89-R	ND		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PFHHSv	BB3R07-82-7	ND		B.9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
NFD1 v	BRB772-R8-6	ND		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
4:2 FTS	7R7B24-72-4	ND		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PF1 xv	307-24-4	B8.0		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PFPeS	2706-9B-4	4.42		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
1 FPO-Dv	B32R2-B3-6	ND		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PF1 pv	37R-8R-9	2.72		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PF1 xS	3RR-46-4	B2.3		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
v DONv	9B900R-B4-4	ND		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
6:2 FTS	276B9-97-2	ND		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PFOv	33 R- 67-В	ND		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PF1 pS	37R-92-8	ND		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PFNv	37R-9R-B	ND		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PFOS	В763-23-В	ND		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
9C1-PF3ONS	7R6426-R8-B	ND		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
8:2 FTS	39B08-34-4	ND		B.9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PFDv	33R-76-2	ND		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PFUEv	20R8-94-8	ND		B.9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
BBC1-PF3OUdS	7630RB-92-9	ND		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
PFDov	307-RR-B	ND		B9B		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
Labeled Standard	s Type	% Recovery	Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
B3C4-PFu v	IS	BB6	R0 - BR0			u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
B3CR-PFPev	IS	BB7	R0 - BR0			u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
B3C3-PFu S	IS	BB6	R0 - BR0			u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
B3C2-4:2 FTS	IS	B32	R0 - BR0			u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
B3CR-PF1 xv	IS	B20	R0 - BR0			u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
B3C3-1 FPO-Dv	IS	BBO	R0 - BR0			u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
B3C4-PF1 pv	IS	BB6	R0 - BR0			u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
B3C3-PF1 xS	IS	92.9	R0 - BR0			u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
B3C2-6:2 FTS	IS	B39	R0 - BR0			u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
B3C8-PFOv	IS	BBB	R0 - BR0			u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
B3C9-PFNv	IS	BB3	R0 - BR0			u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В

Sample ID: COS-36

Sample ID: CO	OS-36								EPA Meth	nod 533
Client Data Name: Project: LocatioE:	1 all HEniroEmeEta 2304376 2304376-003v	al v EalAtical LaboratorA	Matrix: Date Collected:	GroyEdwater 06-v pr-23 BB:2R	Laboratory Data Lab Sample: Date 5 eceined:	2304086-0 BB-v pr-23	3 08:R6	ColymE:	uHl CB8	
Labeled Standar	ds	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
B3C8-PFOS		IS	BB9	R0 - BR0		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
B3C2-8:2 FTS		IS	B22	R0 - BR0		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
B3C6-PFDv		IS	B0B	R0 - BR0		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
B3C7-PFUEv		IS	B08	R0 - BR0		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В
B3C2-PFDov		IS	B04	R0 - BR0		u 23DB76	20-v pr-23	0.26BL	28-v pr-23 B7:20	В

5 L - 5 eportiEg limit

5 esylts reported to 5 L.

WheE reported, PF1 xS, PFOv, PFOS, MeFOSv v aEd HtFOSv v iEclyde both liEear aEd braEched isomers. OElAthe liEear isomer is reported for all other aEalAtes.

Sample ID: FI	3-1									EPA Meth	od 533
Client Data Name: Project: LocatioE:	1 all HEniroEmeEtal v I 2304376 2304376-004v	EalAtical LaboratorA	Matrix: Date Collected:	GroyEdwater 07-v pr-23 BR:08	La La Da	boratory Data b Sample: ate 5 eceined:	2304086-0 BB-v pr-23	4 08:R6	ColymE:	u H1 CB8	
Analyte		CAS Number	Conc. (ng/L)		ŔL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFu v		37R-22-4	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PFMPv		377-73-В	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PFPev		2706-90-3	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PFu S		37R-73-R	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PFMu v		863090-89-R	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PFHHSv		BB3R07-82-7	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
NFD1 v		BRB772-R8-6	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
4:2 FTS		7R7B24-72-4	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PF1 xv		307-24-4	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PFPeS		2706-9B-4	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
1 FPO-Dv		B32R2-B3-6	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PF1 pv		37R-8R-9	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PF1 xS		3RR-46-4	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
v DONv		9B900R-B4-4	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
6:2 FTS		276B9-97-2	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PFOv		33R-67-B	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PF1 pS		37R-92-8	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PFNv		37R-9R-B	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PFOS		В763-23-В	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
9C1-PF3ONS		7R6426-R8-B	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
8:2 FTS		39B08-34-4	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PFDv		33R-76-2	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PFUEv		20R8-94-8	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
BBC1-PF3OUdS		7630RB-92-9	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
PFDov		307-RR-B	ND		2.29		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
Labeled Standar	ds	Туре	% Recovery	Limits	-	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
B3C4-PFu v		IS	BB9	R0 - BR0			u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
B3CR-PFPev		IS	BB8	R0 - BR0			u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
B3C3-PFu S		IS	B46	R0 - BR0			u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
B3C2-4:2 FTS		IS	B24	R0 - BR0			u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
B3CR-PF1 xv		IS	BBR	R0 - BR0			u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
B3C3-1 FPO-Dv		IS	B08	R0 - BR0			u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
B3C4-PF1 pv		IS	B08	R0 - BR0			u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
B3C3-PF1 xS		IS	BBB	R0 - BR0			u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
B3C2-6:2 FTS		IS	B38	R0 - BR0			u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
B3C8-PFOv		IS	B07	R0 - BR0			u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
B3C9-PFNv		IS	99.2	R0 - BR0			u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В

Sample ID: FI	3-1							EPA Meth	nod 533
Client Data Name: Project: LocatioE:	1 all HEniroEmeEtal v EalAtical LaboratorA 2304376 2304376-004v	Matrix: Date Collected:	GroyEdwater 07-v pr-23 BR:08	Laboratory Data Lab Sample: Date 5 eceined:	2304086-0 BB-v pr-23	04 08:R6	ColymE:	uHl CB8	
Labeled Standar	ds Type	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
B3C8-PFOS	IS	9RB	R0 - BR0		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
B3C2-8:2 FTS	IS	B28	R0 - BR0		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
B3C6-PFDv	IS	B09	R0 - BR0		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
B3C7-PFUEv	IS	B07	R0 - BR0		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В
B3C2-PFDov	IS	B09	R0 - BR0		u 23DB76	20-v pr-23	0.2B8 L	28-v pr-23 B7:3B	В

5 L - 5 eportiEg limit

5 esylts reported to 5 L.

WheE reported, PF1 xS, PFOv, PFOS, MeFOSv v aEd HtFOSv v iEclyde both liEear aEd braEched isomers. OElAthe liEear isomer is reported for all other aEalAtes.

Client Data Name: Project: Location:	Hall Environmental Analytical Laboratory 2304376 2304376-001A	Matrix: Date Collected:	wroundRater 07-Apr-23 Gl:21	Labo Lab S Date	Dratory Data Sample: 5 eceived:	2304086-0 Œ-Apr-23	1 08:16	Column:	BEH CC8	
Analyte	CAS Number	Conc. (ng/L)		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	371-22-4	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFMPA	377-73-G	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFPeA	2706-90-3	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFBS	371-73-1	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFMBA	863090-89-1	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFEESA	GG3107-82-7	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
NFDHA	Gl G772-18-6	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
4:2 FTS	717@24-72-4	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFHxA	307-24-4	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFPeS	2706-9G4	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
HFPO-DA	GB212-GB-6	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFHpA	371-81-9	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFHxS	311-46-4	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
ADONA	90001-04-4	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
6:2 FTS	276⊕-97-2	ND	(G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFOA	331-67-G	ND	(G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFHpS	371-92-8	ND	(G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFNA	371-91-G	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFOS	G763-23-G	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
9C1-PF3ONS	716426-18-G	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
8:2 FTS	39008-34-4	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFDA	331-76-2	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFUnA	2018-94-8	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
CC1-PF3OUdS	76301G-92-9	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
PFDoA	307-11-G	ND		G9G		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
Labeled Standard	ls Type	% Recovery	Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
GC4-PFBA	IS	CC3	10 - GI0			B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
GBC1-PFPeA	IS	CCG	10 - GI0			B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
GBC3-PFBS	IS	CÐG	10 - GI0			B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
GC2-4:2 FTS	IS	G20	10 - GI0			B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
GBC1-PFHxA	IS	C01	10 - G10			B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
GC3-HFPO-DA	IS	91.6	10 - G10			B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
G3C4-PFHpA	IS	GD2	10 - G10			B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
GBC3-PFHxS	IS	GGI	10 - G10			B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
GC2-6:2 FTS	IS	CC8	10 - Gl0			B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
GBC8-PFOA	IS	99.8	10 - GI0			B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
GC9-PFNA	IS	CÐG	10 - GI0			B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G

Sample ID: DBS-1

Sample ID: D	BS-1							EPA Meth	nod 533
Client Data Name: Project: Location:	Hall Environmental Analytical Laboratory 2304376 2304376-001A	Matrix: Date Collected:	wroundRater 07-Apr-23 GI:21	Laboratory Data Lab Sample: Date 5 eceived:	2304086-0 CG-Apr-23	1 08:16	Column:	BEH CC8	
Labeled Standar	ds Type	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
GC8-PFOS	IS	G 07	10 - G10		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
GC2-8:2 FTS	IS	G2G	10 - G10		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
GC6-PFDA	IS	83.6	10 - G10		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
GC7-PFUnA	IS	88.1	10 - GIO		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G
GC2-PFDoA	IS	89.G	10 - GIO		B23DG76	20-Apr-23	0.262 L	28-Apr-23 G7:42	G

5 L - 5 eporting limit

5 esults reported to 5 L.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Client Data Name: Project: LocatioE:	1 all HEniroEmeEtal v EalAtical LaboratorA 2304376 2304376-006v	Matrix: Date Collected:	GroyEdwater 07-v pr-23 BR:2R	Lab Lab Date	Sample: 5 eccined:	2304086-0 BB-v pr-23	6 08:R6	ColymE:	u H1 CB8	
Analyte	CAS Number	Conc. (ng/L)		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFu v	37R-22-4	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PFMPv	377-73-В	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PFPev	2706-90-3	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PFu S	37R-73-R	ND	-	B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PFMuv	863090-89-R	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PFHHSv	BB3R07-82-7	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
NFD1 v	BRB772-R8-6	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
4:2 FTS	7R7B24-72-4	ND		B93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PF1 xv	307-24-4	ND		B93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PFPeS	2706-9B-4	ND		B93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
1 FPO-Dv	B32R2-B3-6	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PF1 pv	37R-8R-9	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PF1 xS	3RR-46-4	ND]	B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
v DONv	9B900R-B4-4	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
6:2 FTS	276B9-97-2	ND]	B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PFOv	33 R- 67-В	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PF1 pS	37R-92-8	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PFNv	37R-9R-B	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PFOS	В763-23-В	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
9C1-PF3ONS	7R6426-R8-B	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
8:2 FTS	39B08-34-4	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PFDv	33R-76-2	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PFUEv	20R8-94-8	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
BBC1-PF3OUdS	7630RB-92-9	ND		B.93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
PFDov	307-RR-B	ND		B93		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
Labeled Standard	s Type	% Recovery	Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
B3C4-PFu v	IS	9RB	R0 - BR0			u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
B3CR-PFPev	IS	94.8	R0 - BR0			u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
B3C3-PFu S	IS	9R.4	R0 - BR0			u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
B3C2-4:2 FTS	IS	B02	R0 - BR0			u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
B3CR-PF1 xv	IS	82.0	RO - BRO			u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
B3C3-1 FPO-Dv	IS	7R2	R0 - BR0			u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
B3C4-PF1 pv	IS	77.6	R0 - BR0			u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
B3C3-PF1 xS	IS	8R.R	R0 - BR0			u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
B3C2-6:2 FTS	IS	93.2	RO - BRO			u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
B3C8-PFOv	IS	66.6	R0 - BR0			u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
B3C9-PFNv	IS	60.7	R0 - BR0			u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В

Sample ID: DBS-1D

Sample ID: D	BS-1D								EPA Metl	nod 533
Client Data Name: Project: LocatioE:	1 all HEniroEmeEta 2304376 2304376-006v	ıl v EalAtical LaboratorA	Matrix: Date Collected:	GroyEdwater 07-v pr-23 BR:2R	Laboratory Data Lab Sample: Date 5 eceined:	2304086-0 BB-v pr-23	16 08:R6	ColymE:	uHl CB8	
Labeled Standar	ds	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
B3C8-PFOS		IS	89.2	R0 - BR0		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
B3C2-8:2 FTS		IS	88.4	R0 - BR0		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
B3C6-PFDv		IS	64.B	R0 - BR0		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
B3C7-PFUEv		IS	76.9	R0 - BR0		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В
B3C2-PFDov		IS	80.4	R0 - BR0		u 23DB76	20-v pr-23	0.2R9 L	28-v pr-23 B7:R4	В

5 L - 5 eportiEg limit

5 esylts reported to 5 L.

WheE reported, PF1 xS, PFOv, PFOS, MeFOSv v aEd HtFOSv v iEclyde both liEear aEd braEched isomers. OElAthe liEear isomer is reported for all other aEalAtes.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection Limit
Е	The associated compound concentration exceeded the calibration range of the
	instrument
Н	Recovery and/or RPD was outside laboratory acceptance limits
Ι	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limit of Detection
LOQ	Limit of Quantitation
М	Estimated Maximum Possible Concentration (CA Region 2 projects only)
MDL	Method Detection Limit
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
Р	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
RL	For 537.1, the reported RLs are the MRLs.
TEQ	Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the
	sample concentrations.
TEQMax	TEQ calculation that uses the detection limit as the concentration for non-detects
TEQMin	TEQ calculation that uses zero as the concentration for non-detects
TEQRisk	TEQ calculation that uses $\frac{1}{2}$ the detection limit as the concentration for non-
	detects
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	2211390
Nevada Division of Environmental Protection	CA00413
New Hampshire Environmental Accreditation Program	207721
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-021
Texas Commission on Environmental Quality	T104704189-22-13
Vermont Department of Health	VT-4042
Virginia Department of General Services	11276
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Enthalpy Analytical - EDH Certifications

Current certificates and lists of licensed parameters can be found at Enthalpy.com/Resources/Accreditations.

HALL ENVIRONMENTAL ANALYSIS LABORATORY

2304086 2.8°C

SUB CC	NTRATOR Vista	Analytical Labor COMPANY:	Vista Analytical L	aborator	y PHONE	(916) 673-1520 FAX
ADDRE	ss 1104 V	Windfield Way			ACCOUNT #	EMAIL
CITY, S	TATE, ZIP: EI DOI	rado Hills, CA 95762				
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	ANALYTICAL COMMENTS
1	2304376-001A	COS-35	250HDPE	Groundw	4/6/2023 11:12:00 AM	2 24 Compound PFAS Testing EPA Method 533
2	2304376-001B	COS-35	250HDPE	Groundw	4/6/2023 11:12:00 AM	2 24 Compound PFAS Testing EPA Method 537
3	2304376-002A	COS-35 Dup	250HDPE	Groundw	4/6/2023 11:12:00 AM	2 24 Compound PFAS Testing EPA Method 533
4	2304376-002B	COS-35 Dup	250HDPE	Groundw	4/6/2023 11:12:00 AM	2 24 Compound PFAS Testing EPA Method 537
5	2304376-003A	COS-36	250HDPE	Groundw	4/6/2023 11:25:00 AM	2 24 Compound PFAS Testing EPA Method 533
6	2304376-003B	COS-36	250HDPE	Groundw	4/6/2023 11:25:00 AM	2 24 Compound PFAS Testing EPA Method 537
7	2304376-004A	FB-1	250HDPE	Groundw	4/7/2023 3:08:00 PM	2 24 Compound PFAS Testing EPA Method 533
8	2304376-004B	FB-1	250HDPE	Groundw	4/7/2023 3:08:00 PM	2 24 Compound PFAS Testing EPA Method 537
9	2304376-005A	DBS-1	250HDPE	Groundw	4/7/2023 3:25:00 PM	2 24 Compound PFAS Testing EPA Method 533
10	2304376-005B	DBS-1	250HDPE	Groundw	4/7/2023 3:25:00 PM	2 24 Compound PFAS Testing EPA Method 537
11	2304376-006A	DBS-1D	250HDPE	Groundw	4/7/2023 3:25:00 PM	2 24 Compound PFAS Testing EPA Method 533
12	2304376-006B	DBS-1D	250HDPE	Groundw	4/7/2023 3:25:00 PM	2 24 Compound PFAS Testing EPA Method 537

SPECIAL INSTRUCTIONS / COMMENTS:

Relinquished By:	Date: 4/10/2023	Time 11:20 AM	Received By: Karny. Apoita	Date - 4/11/-	27 D8:54	REPORT	TRANSMIT	TAL DESIRED:	arts. de
Relinguished By.	Date:	Time	Received By:	Date	Time	HARDCOPY (extra cost)	FAX	EMAIL	ONLINE
Relinguished By	Date.	Time	Received By:	Date:	Time:	FC	OR LAB USE	ONLY	

Sample Log-In Checklist

Page # ____ of _/__

Work Order #: _			2304	086	т	AT_	275		
Samples Arrival:	Date/Tim	1e , c/, / / /	7 or:56	Initials:		Loc. She	ation: ω_n If/Rack:	2-2	
Delivered By:	FedEx UPS		On Tra	GLS	DHL		Hand Delivered	Other	
Preservation:	Ice		Blue Ice		Techni Ice		Dry Ice	None	
Temp °C: 2. Temp °C: 2.	9 (uncorr	rected) ted)	Probe use	ed: Y / N)	The	rmometer ID:	IR-3	

a	- and the second of	a mini dinanakan Tu		CLORIDAN SAN	YES	NO	NA
Shipping Conta	ainer(s) Intact?	1.4	-		~		
Shipping Custo	dy Seals Intact	?	3		~		
Airbill	Trk.#	7718 056.	7 7958		1		
Shipping Docu	mentation Pres	ent?			1		
Shipping Conta	ainer	Enthalpy	Client	Retain	Return	Dis	pose
Chain of Custo	dy / Sample Do	ocumentation P	resent?		5		
Chain of Custo	dy / Sample Do	ocumentation C	omplete?		/		
Holding Time A	cceptable?				1	-	
Logged In:	Date/Time		Initials:	Loca	tion: A-13	6	-2
COC Anomoly	Py	12/23 17:39	ha ha	Snel	икаск: <u> н-2</u>	1	12
COC Anomaly	Sample Accep	tance Form con	npieted?			10	at -

Comments:

CoC/Label Reconciliation Report WO# 2304086

LabNumber	CoC Sample ID		SampleAlias	Sample Date/Time	Container	BaseMatrix	Sample Comments
2304086-01 A (COS-35	E A	2304376-001A	06-Apr-23 11:12	HDPE Bottle, 250 mL	Aqueous	
2304086-01 B (COS-35	0	2304376-001A	06-Apr-23 11:12	HDPE Bottle, 250 mL	Aqucous	
2304086-01 C	COS-35	I D	2304376-001A	06-Apr-23 11:12	HDPE Bonle, 250 mL	Aqueous	
2304086-01 D	COS-35	Er o	2304376-001A	06-Apr-23 11:12	HDPE Bottle, 250 mL	Aqueous	
2304086-02 A 0	COS-35 DUP	D'A)	2304376-002A	06-Apr-23 11:12	HDPE Bottle, 250 mL	Aqueous	
2304086-02 B	COS-35 DUP	DY O	2304376-002A 🥥	06-Apr-23 (1:12	HDPE Bottle, 250 mL	Aqueous	
2304086-02 C	COS-35 DUP	I A	2304376-002A	06-Apr-23 11:12	HDPE Bottle, 250 mL	Aqueous	
2304086-02 D	COS-35 DUP	I D	2304376-002A D	06-Apr-23 [1:12	HDPE Bottle, 250 mL	Aqueous	
2304086-03 A	COS-36	E A)	2304376-003A	06-Apr-23 11:25	HDPE Bottle, 250 mL	Aqueous	
2304086-03 B	COS-36	D D	2304376-003A S	06-Apr-23 11:25	HDPE Bottle, 250 mL	Aqueous	
2304086-03 C 0	COS-36	D'A)	2304376-003A	06-Apr-23 11:25	HDPE Bottle, 250 mL	Aqueous	
2304086-03 D	COS-36	D 0	2304376-003A_ O	06-Apr-23 11:25	HDPE Bottle, 250 mL	Aqueous	
2304086-04 A F	FB-I	E A	2304376-004A	07-Apr-23 15:08	HDPE Bottle, 250 mL	Aqueous	
2304086-04 B F	FB-I	E D	2304376-004A_ O	07-Apr-23 15:08	HDPE Bottle, 250 mL	Aqueous	
2304086-04 C F	FB-1	E D	2304376-004A	07-Apr-23 15:08	HDPE Bottle, 250 mL	Aqueous	
2304086-04 D F	FB-1	er 1)	2304376-004A 9	07-Apr-23 15:08	HDPE Bottle, 250 mL	Aqueous	
2304086-05 A E	DBS-1	E D	2304376-005A	07-Apr-23 15:25	HDPE Bottle, 250 mL	Aqueous	
2304086-05 B E	DBS-1	E D	2304376-005A 9	07-Apr-23 15:25	HDPE Bottle, 250 mL	Aqueous	
2304086-05 C I	DBS-1	D'D)	2304376-005A	07-Apr-23 15:25	HDPE Bottle, 250 mL	Aqueous	
2304086-05 D I	DBS-1	E O	2304376-005A	07-Apr-23 15:25	HDPE Bottle, 250 mL	Aqueous	
2304086-06 A E	DBS-1D	E A	2304376-006A	07-Apr-23 15:25	HDPE Bottle, 250 mL	Aqueous	
2304086-06 B I	DBS-1D	D O	2304376-006A	07-Apr-23 15:25	HDPE Bottle, 250 mL	Aqueous	
2304086-06 C E	DBS-1D	E A	2304376-006A	07-Apr-23 15:25	HDPE Bottle, 250 mL	Aqueous	
2304086-06 D I	DBS-1D	I D	2304376-006A O	07-Apr-23 15:25	HDPE Bottle, 250 mL	Aqueous	

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

Sample Container Intact?
Sample Custody Seals Intact?
vdequate Sample Volume?
Container Type Appropriate for Analysis(es)

BAC 04/13/23

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Alb. TEL: 505-345-3975 Website: www.hc	sis Laboratory 11 Hawkins NE 105-345-4107 505-345-4107 ronmental.con	Sample Log-In Check List				
Client Name: Daniel B. Stephens & Assoc.	Work Order Number	2304	4376		RcptNo:	1	
Received By:Kasandra Jimena GarciaCompleted By:Kasandra Jimena GarciaReviewed By:// 4-10-23	4/10/2023 9:48:00 AM 4/10/2023 10:58:02 AI	vI		HA HA			
Chain of Custody							
1. Is Chain of Custody complete?		Yes	\checkmark	No 🗌	Not Present		
2. How was the sample delivered?		<u>Clier</u>	<u>nt</u>				
Log In 3. Was an attempt made to cool the samples?		Yes		No 🗌	NA 🗌		
4. Were all samples received at a temperature	of >0° C to 6.0°C	Yes	\checkmark	No 🗌	NA 🗌		
5. Sample(s) in proper container(s)?		Yes	\checkmark	No 🗌			
6. Sufficient sample volume for indicated test(s)?	Yes		No 🗌			
7. Are samples (except VOA and ONG) propert	y preserved?	Yes	\checkmark	No 🗌			
8. Was preservative added to bottles?		Yes		No 🗹	NA		
9. Received at least 1 vial with headspace <1/4	" for AQ VOA?	Yes		No 🗌	NA 🗹		
10. Were any sample containers received broke	n?	Yes		No 🗹	# of preserved		
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes		No 🗌	for pH:	>12 unless noted)	
12. Are matrices correctly identified on Chain of	Custody?	Yes	\checkmark	No 🗌	Adjusted?		
13. Is it clear what analyses were requested?		Yes	\checkmark	No 🗌			
14. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes	\checkmark	No 🗌	Checked by:	114/10/23	
Special Handling (if applicable)							
15. Was client notified of all discrepancies with	his order?	Yes		No 🗌	NA 🗹	-	
Person Notified:	Date:						
By Whom:	Via:	eM	ail 📋 Phon	ie 🗌 Fax	In Person		
Regarding:							
Client Instructions:							
16. Additional remarks:							

1	7	Cooler Information	

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.8	Good	Not Present	Morty		

Chain-of-Custody Record				Turn-Around Time:														_			
Client: NBSAA				Standard C Rush																	
				Project Name:																	
Mailing Address:											www	v.hal	lenv	ironr	ment	al.co	om				
- COAU ACREMINT SUITE 100				Project #:			4901 Hawkins NE - Albuquerque, NM 87109														
HEBUQUEAQUE VM 87109								Te	al. 50	5-34	15-39	975	F	ax	505-	345	-410	7			
Phone #: 505 822 - 7400				3620-1060.00			Analysis Request														
email or rax#: jbunch wgeor loge com				Project Manager:			21)	Ô	(0)				SQ,			ent)					
				Toring Preson			(80	N N	CB		IMS	- 20	0 4			Abs					
Level 4 (Full Validation)				JOHN EVNEH			1B's	RO	2 D		70S		2, P			ent/	25	N		200	
□ NELAC □ Other				On Ice: NYes DNo			≧	0/1	/808	4.1	r 82		g		a	res	3	m			
□ EDD (Type)			# of Coolers: 1 Norty			<u>В</u> Е /	GR	des	d 50	10 0	tals	Õ3,		Ň	E E	_	in				
				Cooler Temp		-0.2=1.8 (°C)	Ξ	5D(stici	etho	/ 83	Me	Z	(Yo	emi-	lifor	5				
				Cantainan			$ \mathbf{x} $	801	Pe	Š,	s by	A 8	B	Š) (S	ပိ	4	A			
Date	Time	Matrix	Sample Name	Type and #	Type	HEAL NO.	끮	H	308		AH	SCF	Ľ,	3260	3270	Tota	Q	P			
46/23	1112	GW	COS-35	4-2500	1-Ammou	Un Activity DOI	henest		\neg		-		\neg	\square			X	$\overline{\mathbf{A}}$			
1	1112		COS-35 DUP	1	143	002			\neg	\neg						\square	\Diamond	\Diamond	-	\neg	
11	1125		COS-36			003				\neg							\Diamond				
4/7/22	1508		FB-1			004												X	-		
	1525		DBS-1			005			\neg	1							X	X		-+	
	1525		DBS-1D			006											X	X			
			1 ho																		
			61	1									_							\neg	
С.				A						\neg										1	
																					-
										\rightarrow		\neg					1			+	
Date: Time: Relipquished by:			Received by: Via: Date Time				Remarks:														
11123 09178 / m Calm DKgh				Received by: Via: Date Time				48													
Date: Time: Rel/nquis/ed by:																					

Appendix B

Model Calibration Results

Appendix C

Cannon AFB RI Monitor Well Locations and Logs

NMFD 087

Figure C-1

195E DT JUL 16 2022 MB:05

OFFICE OF THE STATE ENGINEER

NO	OSE POD NO. (V CC-2625-PO	D2-MO) N	POD 2		CC-2625	5)			
OCATI	WELL OWNER Bristol Envir	NAME(S)	al Solutions LLC			PHONE (OPTIC 225-333-099	99			
VELL L	WELL OWNER 12025 Starcro	MAILING est Drive	ADDRESS e			CITY San Antonio		STATE TX 78247	ZIP	
CRAL AND V	WELL LOCATION (FROM GPS)	LAT	DE	GREES MINUTES SI 34 24 103 19	ECONDS 10 N 33 W	* ACCURACY * DATUM REC	REQUIRED: ONE TENT QUIRED: WGS 84	TH OF A SECOND		
1. GENF	DESCRIPTION Curry County	RELATIN	IG WELL LOCATION TO	STREET ADDRESS AND COMMON LAN	NDMARKS – PL	SS (SECTION, TO	WNSHЛP, RANGE) WH	ERE AVAILABLE		
	LICENSE NO WD-14	58	NAME OF LICENSED	DRILLER Richard LeBlanc			NAME OF WELL DRI Yellow Jack	ILLING COMPANY act Drilling Services I	LC	
	DRILLING STA 5/26/2	RTED 2	DRILLING ENDED 6/22/22	DEPTH OF COMPLETED WELL (FT) 343	BORE HO	DLE DEPTH (FT) 350	DEPTH WATER FIRS	ST ENCOUNTERED (FT) 228)	
z	COMPLETED V	ELL IS:	ARTESIAN	DRY HOLE I SHALLOW (U	JNCONFINED)	STATIC IN COM (FT)	WATER LEVEL PLETED WELL 22	28 DATE STATIC 6/19	MEASURE 0/22	
RMATIO	DRILLING FLU	ID: HOD:	✓ AIR☐ ROTARY☐ HAMM	MUD ADDITIVES - MER CABLE TOOL OTHER -	SPECIFY: SPECIFY:	SONIC	CHECK INSTAL	HERE IF PITLESS ADA LED	ADAPTER IS	
SING INFO	DEPTH (feet bgl) BORE HOLE FROM TO DIAM (inches) (inches)		BORE HOLE DIAM (inches)	CASING MATERIAL AND/OF GRADE (include each casing string, and note sections of screen)	ASING NECTION TYPE pling diameter)	CASING INSIDE DIAM. (inches)	CASING WALL THICKNESS (inches)	SLOT SIZE (inche		
& CA	0	323	8"	Schedule 80 PVC Blank	Т	hreaded	4"	.237		
NG &	323	343	8"	Schedule 80 PVC Slotted Screen	n T	hreaded	4"	.237	.010	
2. DRILLI	343	350	8"	N/A						
Г	DEPTH (f	eet bgl)	BORE HOLE	LIST ANNULAR SEAL GRAVEL PACK SIZE-RA	MATERIAL	AND	AMOUNT (cubic feet)	METHO	DD OF MENT	
RIA	FROM TO Brian (and c) Oran 22 Horizon Comment Grout				ent Grout	N. C. M. W.	4.80	Trer	nie	
ATE	20	314	8"	Cement Bento	nite Grout		70.57	Trer	nie	
W	314	319	8"	Bentonite Ch	nips 3/8"		1.20	Trer	nie	
INNULAI	319	350	8"	Silica Sand		6.72	Trer	nie		
3.1		-								

FOR OSE INTERNAL USE					
FILE NO. 66-2625	POD NO.	2005	TRN NO.	710373	
LOCATION 02.N. 34E. 13. 3 1.7.			WELL TAG ID NO		PAGE 1 OF 2

	DEPTH (fe	et bgl)		COLOR AN	D TYPE OF N	ATERIAL E	NCOUNTERED -		WATER	ESTIMATED
	FROM	то	THICKNESS (feet)	INCLUDE WATH (attach suj	ER-BEARING	CAVITIES O	R FRACTURE ZONE escribe all units)	ES I	BEARING? (YES / NO)	WATER- BEARING ZONES (gpm)
Ì	0	44	44		Fine	Silty Sands			Y N	
Ì	44	196	152		Fine G	Grain Sands			Y N	
Ì	196	284	88		Fit	ne sands		100	Y N	
1	284	286	2		1.1.1	Clay			Y N	
Ī	286	330	44	L	Fit	ne Sands		1	Y N	
-	330	350	20		Course Sa	ands & Gravel	s	- 1	Y N	
MET									Y N	
5	· · · · · · · · · · · · · · · · · · ·								Y N	
3									Y N	
									Y N	
									Y N	
									Y N	
									Y N	
									Y N	
Ŧ									Y N	
									Y N	
									Y N	
									Y N	
									Y N	
									Y N	
			1						Y N	
	METHOD US	SED TO E	STIMATE YIELD	OF WATER-BEARIN	G STRATA: FHER – SPEC	IFY: N/A		TOTAL I WELL Y	ESTIMATED /IELD (gpm):	0.00
	WELL TEST	TEST	RESULTS - ATTA TTIME, END TIM	ACH A COPY OF DA' ME, AND A TABLE S	TA COLLECT HOWING DIS	ED DURING CHARGE AN	WELL TESTING, IN D DRAWDOWN OV	CLUDING ER THE T	DISCHARGE	METHOD, OD.
. TEST; KIG SUPERVISI	MISCELLAN PRINT NAM	EOUS IN	FORMATION: W Fo sar	Yell to be drilled for t rce Base. A small an npling using low flo VISOR(S) THAT PRO	his permit ap nount of wate w/low stress	plication wil rr (on the ord techniques. TE SUPERVI	l be used for monito er of a few gallons)	oring purpo will be pu	oses related to arged from a v <u>18 262</u> ON OTHER T	Cannon Air well prior to <u>2 m3:05</u> HAN LICENSE
•	Christopher I	Hill	HEREBY CERTIF	IES THAT, TO THE I	BEST OF HIS	OR HER KNO	WLEDGE AND BE	LIEF, THE	FOREGOING	IS A TRUE AN
	CORRECT R AND THE PI	ECORD C ERMIT HO SIGNAT	OF THE ABOVE D DI DER WITHIN 3 DER WITHIN 3 TURE OF DRILLE	ESCRIBED HOLE AN 0 DAYS AFTER COM R / PRINT SIGNEE	ND THAT HE IPLETION OF NAME	OR SHE WIL WELL DRIL	L FILE THIS WELL LING: — — —	record	with the st	ATE ENGINE
FOR	R OSE INTERN	AL USE					WR-20 W	ELL RECO	RD & LOG (V	ersion 01/28/20:
- Or	ENO. CC	- 2671	5		POD NO.	2012	TRN NO.	7103	73	
IL.										

DSE DIT JUL 18 2022 PM8105

PAGE 1 OF 2

WELL TAG ID NO.

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

LOCATION OZN. 34E. 13. 2, 4,

NOL	CC-2625-PO	D3-MC)N	I	POD 3			CC-2625				
OCAT	Bristol Envir	name(s)	al Solutions LLC					PHONE (OPTI	UNAL)			
VELLL	WELL OWNER 12025 Starcr	MAILING est Driv	G ADDRESS /e					CITY San Antonio)	STATE TX	78247	ZIP
TAND	WELL LOCATION	LA	DE	GREES 34	MINUTES 23	seconds 55	N	* ACCURACY	REQUIRED: ONE TEN	TH OF A SE	ECOND	
ERA	(FROM GPS)	LO	NGITUDE	103	19	17	w	* DATUM REG	QUIRED: WGS 84			
1. GEI	DESCRIPTION Curry County	RELATIN	NG WELL LOCATION TO) STREET ADDRE	SS AND COMMO	N LANDMARI	S – PL	SS (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVAI	LABLE	
	LICENSE NO. WD-14	58	NAME OF LICENSED	DRILLER	chard LeBland	;			NAME OF WELL DR Yellow Jack	ILLING CO ket Drillin	MPANY g Services L	LC
	DRILLING STA 6/23/2	RTED	DRILLING ENDED 6/29/22	DEPTH OF COM	PLETED WELL (F 348	T) BO	ORE HO	OLE DEPTH (FT) 350	DEPTH WATER FIR:	ST ENCOU 333	NTERED (FT)	
N	COMPLETED V	ELL IS:	artesian	DRY HOLE	SHALLC	W (UNCONFI	NED)	STATIC IN COM (FT)	WATER LEVEL PLETED WELL 3.	33 D	ATE STATIC 6/27	measuree /22
ATIO	DRILLING FLU	D:	✓ AIR	MUD	ADDITIV	VES - SPECIFY	ſ:					
RM	DRILLING MET	HOD:	ROTARY [HAMM	MER 📋 CABLE	TOOL 🔽 OTH	IER – SPECIFY	r:	SONIC	CHECK INSTAL	LED	ITLESS ADAI	PTER IS
NG INFO	DEPTH (feet bgl)BORFROMTOD		BORE HOLE	CASING M	IATERIAL ANI GRADE	D/OR	C CON	ASING NECTION	CASING INSIDE DIAM.	CASIN THIC	IG WALL CKNESS	SLOT SIZE
ASI			(inches)	note se	(include each casing string, and note sections of screen) (add coupl			TYPE pling diameter)	(inches)	(ir	nches)	(inches)
& C	0	328	8"	Schedu	le 80 PVC Blan	k	T	hreaded	4"		237	010
ING	328	348	8"	Schedule 8) PVC Slotted S	creen	T	hreaded	4"		237	.010
DRILI	546	550	0		MA							
5											_	
	DEPTH (fe	et bgl)	BORE HOLE	LIS	Γ ANNULAR S	EAL MATE	RIAL	AND	AMOUNT		МЕТНО	D OF
IAL	FROM	то	DIAM. (inches)	GRAV	EL PACK SIZE	-RANGE B	Y INT	ERVAL	(cubic feet)		PLACEN	MENT
TER	0	20	8"		Portland (Cement Grou	ıt		4.80		Trem	ie
LAM	20	319	8"		Cement B	entonite Gro	ut		71.77		Trem	ie
AR	319	324	8"		Bentonit	e Chips 3/8"			1.20		Trem	ie
TUNN	324	350	8"		Silica S	and 20 x 40			6.24		Trem	lie
3.4												
FOR	OSE INTERN	AL USE					2	WR-2	0 WELL RECORD	& LOG (\	Version 01/2	8/2022)

-	DEPTH (f	eet bgl)	THICKNESS	COLOR AN	D TYPE OF MATERIA	L ENC	COUNT	TERED -		WAT	ER	ESTIMATED YIELD FOR
	FROM	то	(feet)	INCLUDE WATE (attach sup	ER-BEARING CAVITIE	S OR I	FRACT	TURE ZONE l units)	S	(YES /	NG? NO)	WATER- BEARING ZONES (gpm
Ì	0	26	26		Clay with Sand					Y	N	
1	26	66	40		Coarse Sand					Y	N	
Ì	66	236	170		Coarse Grain Sar	ds				Y	N	
Ì	236	254	18		Sands					Y	N	
1	254	310	56		Sands					Y	N	
	310	320	10		Clay with Sand	s				Y	N	
	320	350	30		Coarse Grain San	ids				✓ Y	N	
5										Y	N	
3										Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
Ŧ										Y	N	
									-	Y	N	
		-							-	Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
	METHOD U	SED TO E	STIMATE YIELD	OF WATER-BEARIN	G STRATA:				TOT	AL ESTIM	(gpm):	0.00
	PUMI		AIR LIFT	BAILER 701	THER - SPECIFY: N/A	<u></u>			WE		(gpm).	0.00
	WELL TES	T TEST STAF	RESULTS - ATT TTIME, END TH	ACH A COPY OF DAT ME, AND A TABLE SI	TA COLLECTED DURI HOWING DISCHARGE	NG W AND	ELL T DRAV	ESTING, ING VDOWN OV	CLUDI ER TH	ING DISCI	HARGE I G PERIC	METHOD, DD.
	MISCELLA	NEOUS IN	FORMATION: W Fc sa	ell to be drilled for the orce Base. A small an mpling using low flow	his permit application mount of water (on the w/low stress techniqu	will be order es.	e used of a fe	for monitor ew gallons)	ring pu will b	I JUL 1.	lated to from a w	Cannon Air vell prior to
	PRINT NAM	IE(S) OF D	RILL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSITE SUPE	RVISI	ON OF	WELL CON	ISTRU	CTION O	THER TH	IAN LICENSE
5	Christopher	Hill										
0. SIUNALUNE	THE UNDE CORRECT I AND THE P	RSIGNED RECORD (ERMIT HO	HEREBY CERTIF OF THE ABOVE I DIDER WITHIN 3	TES THAT, TO THE E DESCRIBED HOLE AN 00 DAYS AFTER COM	BEST OF HIS OR HER ND THAT HE OR SHE IPLETION OF WELL D	KNOW WILL RILLI	/LEDC FILE 1 NG:	E AND BEI HIS WELL	LIEF, T RECO	THE FORE RD WITH	GOING THE ST. 72	IS A TRUE AN ATE ENGINEI
		SIGNA	TURE OF DRILLE	R / PRINT SIGNEE	NAME		_				DATE	
OF	R OSE INTER	NAL USE						WR-20 WE	ELL RE	CORD &	LOG (Ve	ersion 01/28/202
IL	ENO. CC	-02	625		POD NO. PODE	5		TRN NO.	710	0373		
00	TATION D	IN Z	45 17 7	u l		1	VELT	TAGIDNO	-			PAGE 2 OF

OFFICE OF THE STATE ENGINEER

NO	OSE POD NO. (CC-2625-PC	WELL NO) DN	WELL TAG I POD 1	D NO.		OSE FILE NO(3 CC-2625	5).		
OCATI	WELL OWNER Bristol Envir	NAME(S)	Solutions LLC				PHONE (OPTIC 225.333.099	9 9		
VELL L	WELL OWNER 12025 Starcr	MAILING est Driv	G ADDRESS re				CITY San Antonic		STATE AZ 78247	ZIP
RAL AND V	WELL LOCATION (FROM GPS)	LA	DE	GREES MINUTES 34 23	SECON 9	NDS	* ACCURACY	REQUIRED: ONE TENT	TH OF A SECOND	
1. GENEI	DESCRIPTION Curry Count	LO RELATIN	NGITUDE NG WELL LOCATION TO	STREET ADDRESS AND COM	4 MON LANDM	o w	SS (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVAILABLE	
-	LICENSE NO. WD-14	58	NAME OF LICENSED	DRILLER Richard LeB	lanc			NAME OF WELL DRI Yellow Jack	ILLING COMPANY tet Drilling Services L	LC
	DRILLING STA 4/23/2	RTED	DRILLING ENDED 5/1/22	DEPTH OF COMPLETED WE 286	LL (FT)	BORE HO	LE DEPTH (FT) 294	DEPTH WATER FIRS	ST ENCOUNTERED (FT) 271	
7	COMPLETED	VELL IS:	ARTESIAN	DRY HOLE SH	ALLOW (UNCO	ONFINED)	STATIC IN COM (FT)	WATER LEVEL PLETED WELL 27	71 DATE STATIC 4/29	measurei /22
TIOI	DRILLING FLU	ID:	✓ AIR	MUD AD	DITIVES - SPE	CIFY:	16.57		1	
RMA	DRILLING ME	THOD:	ROTARY 🗍 HAMM	MER 🗌 CABLE TOOL 🗹	OTHER - SPE	CIFY:	SONIC	CHECK INSTAL	HERE IF PITLESS ADA LED	PTER IS
NFO	DEPTH (f	eet bgl)	BOREHOLE	CASING MATERIAL	AND/OR	0	SINC	CASING	CASING WALL	SLOT
ASING I	FROM TO		DIAM (inches)	GRADE (include each casing s note sections of sc	tring, and reen)	CON T (add coup	NECTION TYPE ling diameter)	INSIDE DIAM. (inches)	THICKNESS (inches)	SIZE (inches
& C	0	266	8"	Schedule 40 PVC	Blank	Th	nreaded	4"	.237	1.1
DNG	266	286	8"	Schedule 40 PVC Slott	ed Screen	Th	nreaded	4"	.237	.010
DRILLI	286	294	8"	N/A						
2.								OSE OTI MAY	192022 pm2:20	
-	DEPTH (f	eet bgl)	BORE HOLE	LIST ANNULA	AR SEAL MA	TERIAL A	AND	AMOUNT	METHO	D OF
RIA	FROM	TO	o"	David	and Comont (Grout	SKYAL	13 20	Tran	nie
ATE	55	258	0 8"	Come	and Cement C	Grout		48.72	Tren	nie
M	258	264	8"	Ber	tonite Chips	3/8"		1.44	Tren	nie
ANNULA	264	288	8"	Sil	ica Sand 20 x	40		5.76	Tren	nie
3.										(ad-de-
FOR	OSE INTERN	AL USE	06		DNO	1	WR-2	0 WELL RECORD	& LOG (Version 01/2	28/2022)
TIL	ATION	- 1	01) 15 265	00 1/11	DINO.		WELL TAGE	DN0 +105	PAGE	1 OF 2

JR OSE INTERNA	LUSE		WR-20 WELL RECORD & LOC	(version 01/28/2022)
LE NO. CC-	2625	POD NO.	TRN NO. 71037-	5
OCATION	025-35E.20 14	1	WELL TAG ID NO.	PAGE 1 OF 2

	DEPTH (feet bgl)		COLOR A	ND TYPE OF M	ATERIAL E	NCOUN	TERED -		WA	TER	ESTIMATE
	FROM	то	THICKNESS (feet)	INCLUDE WAT (attach su	ER-BEARING C	AVITIES O ts to fully d	R FRAG	CTURE ZONE all units)	S	BEAR (YES	RING? / NO)	WATER- BEARING ZONES (gpn
	0	40	40		Hand	Dry Clay		-		Y	√ N	
	40	56	16		Fine D	ry Sands		1.4.2.		Y	√ N	
	56	136	80		Tight S	ilty Sands				Y	√ N	
	136	226	90		Fine Compa	et Silty San	ds			Y	√ N	
	226	294	68		Fine Compa	et Silty San	ds			✓ Y	N	
T										Y	N	
WEI							_			Y	N	
OF										Y	Ν	
FOG										Y	N	
CIC									-	Y	N	
TO									-	Y	Ν	
GEO		-								Y	Ν	
DRO										Y	N	
HY										Y	N	
4				s			_			Y	N	· · · · · · · · · · · · · · · · · · ·
1			1							Y	Ν	
1										Y	N	
							_		_	Y	N	
		-							_	Y	N	
				·			_		_	Y	N	
										Y	N	
	METHOD U	$P \qquad \square A$	IR LIFT	OF WATER-BEARIN BAILER	NG STRATA: DTHER – SPECIF	Y: N/A			TOTA WEL	L ESTIN L YIELI	MATED D (gpm):	0.00
N	WELL TES	T TEST	RESULTS - ATTA T TIME, END TIN	ACH A COPY OF DA IE, AND A TABLE S	ATA COLLECTE SHOWING DISC	D DURING HARGE AN	WELL D DRA	TESTING, ING WDOWN OV	CLUDIN ER THE	NG DISC TESTIN	HARGE I	METHOD,)D.
5. TEST; RIG SUPERVIS	MISCELLA PRINT NAN Christophen	NEOUS IN ME(S) OF D • Hill	FORMATION: We For sar	ell to be drilled for the ce Base. A small a spling using low flow flow VISOR(S) THAT PR	this permit appl mount of water ow/low stress to OVIDED ONSIT	ication will (on the ord chniques. E SUPERVI	be use ler of a	d for monitor few gallons)	ing pur will be SE DI	poses re purged MAY	elated to from a w 19 202	Cannon Air /ell prior to 2 PM2:20 HAN LICENSE
6. SIGNATURE	THE UNDE CORRECT AND THE I	RSIGNED I RECORD O PERMIT HO SIGNAT	HEREBY CERTIF F THE ABOVE D DLDER WITHIN 30 C.C. URE OF DRILLE	ES THAT, TO THE ESCRIBED HOLE A DAYS AFTER CO DAYS AFTER CO R / PRINT SIGNEI	BEST OF HIS O ND THAT HE C MPLETION OF M E NAME	R HER KNG R SHE WII VELL DRIL	OWLED LL FILE LING:	GE AND BEI THIS WELL	LIEF, TH	HE FORI D WITH	EGOING I THE ST	IS A TRUE AN ATE ENGINE
FO	R OSE INTER	NAL USE						WR-20 WE	LL REC	CORD &	LOG (Ve	rsion 01/28/20
FIL	E NO. (* (2-21	25		POD NO.	1		TRN NO.	7	103	73	
					And and a second s		-					

OFFICE OF THE STATE ENGINEER

NO	OSE POD NO. (CC-2625-PC	WELL NO.) N		WELL TAG ID NO. POD 6			OSE FILE NO CC-2625	(S).			
OCATI	WELL OWNER Bristol Envir	NAME(S)	al Solutions LLC		L			PHONE (OPT 225-333-09	ional) 99			
VELL L	WELL OWNER 12025 Starce	MAILING	ADDRESS					CITY San Antoni	0	STATE TX	78247	ZIP
AL AND	WELL LOCATION	LAT	DE	GREES 34	MINUTES 22	SECONDS 11	N	* ACCURAC	Y REQUIRED: ONE TEN	TH OF A	SECOND	
NER	(FROM GPS)	LON	NGITUDE	103	18	33	W	DATOMIN	QUILLD: 1105 04			
1. GE1	DESCRIPTION Curry Count	I RELATIN Y	IG WELL LOCATION TO	STREET ADD	RESS AND COMMON	LANDMARKS -	PLS	S (SECTION, TO	DWNSHJIP, RANGE) WI	HERE AV	AILABLE	
	LICENSE NO. WD-14	58	NAME OF LICENSED	DRILLER	Richard LeBlanc				NAME OF WELL DF Yellow Jac	ulling o ket Drill	COMPANY ing Services I	.LC
	DRILLING STA 7/1/2	ARTED 2	DRILLING ENDED 7/21/22	DEPTH OF CO	OMPLETED WELL (FT 355) BORE	HOI	le depth (FT) 356	DEPTH WATER FIR	ST ENCO	OUNTERED (FT) 0	
z	COMPLETED	WELL IS:	ARTESIAN	DRY HO	LE 🔽 SHALLOV	W (UNCONFINEI	D)	STATIO IN COM (FT)	C WATER LEVEL MPLETED WELL 3	30	DATE STATIC 7/19	measure /22
[OI]	DRILLING FLU	JID:	AIR	MUD	ADDITIV	ES - SPECIFY:						
RMA'	DRILLING ME	THOD:	ROTARY HAM	MER 🗌 CAB	BLE TOOL 🔽 OTHE	ER - SPECIFY:		SONIC	CHECI INSTA	K HERE II LLED	F PITLESS ADA	PTER IS
NFC	DEPTH (feet bgl)		BORE HOLE	CASING	MATERIAL AND	/OR	CASI		CASING C		ING WALL	SLOT
ASING I	FROM	то	DIAM (inches)	(include note	GRADE each casing string, sections of screen)	and (add o	ONNECTION TYPE coupling diameter)		INSIDE DIAM. (inches)	TH	IICKNESS (inches)	SIZE (inches
& C	0	325	8"	Sche	dule 80 PVC Blank	0	Th	readed	4"		.237	
DN	325	355	8"	Schedule	80 PVC Slotted Sc	reen	Th	readed	4"		.237	.010
2. DRILLI	355	356	8"		N/A							
F	EDG111(I	TO	DIAM. (inches)	GR	AVEL PACK SIZE-	RANGE BY E	NTE	RVAL	(cubic feet)		PLACEN	MENT
RIA	FROM	20	8"	Gitt	Portland C	ement Grout		(19 <u>8</u>	4.80		Tren	ie
ATE	20	316	8"		Cement Be	ntonite Grout	-		71.05		Tren	nie
W	316	321	8"		Bentonite	Chips 3/8"	-		1.20		Tren	nie
NULA	321	356	8"		Silica Sa	and 20 x 40			10.80		Tren	nie
3. AN				A			_		OSE DII OCT	3202	2 =====================================	
FOR	OSE INTERN	IAL USE						WR-	20 WELL RECORD	& LOG	(Version 01/2	8/2022)
FILI	ATION OZ	-020	025 7006	2	POD NO	. 6	Т	WELL TAG	NO. 71057	2	PAGE	1 OF 2

	DEPTH (eet hal)			1						ESTIMATED
	FROM	TO	THICKNESS (feet)	COLC INCLUDE (atta	OR AND TYPE OF WATER-BEARING ch supplemental s	MATERIAL G CAVITIES (heets to fully (ENCOUNTERED - OR FRACTURE ZON describe all units)	ES I	WATEI BEARIN YES / N	R G? O)	YIELD FOR WATER- BEARING ZONES (gpm)
	0	66	66		Bro	wn Fly Sand			Y v	/ N	-
	66	126	60	1.1	Brow	vn Fine Sand			Y v	/ N	
1.3	126	205	79		Brown Fine C	emented Silts	& Sands		Y v	N	
-	205	225	20		Brown Ceme	nted Sands &	Cobbles		Y v	N	
	225	346	121		Brow	n Sand Stone		1	Y	N	
T	346	356	10		Brow	wn Silt Stone		1	Y	N	
VEL									Y	N	
OF			(Y	N	
90									Y	N	
ICL									Y	N	
DOU									Y	N	
EO									Y	Ν	
ROC									Y	N	
UXH				-					Y	Ν	
4.								1.1	Y	Ν	5
16	· · · · · · · ·		1						Y	Ν	
									Y	N	
18									Y	N	
									Y	N	
									Y	N	
			(Y	N	
	METHOD U	ISED TO E	STIMATE YIELD	O OF WATER-BE	ARING STRATA:	CIFY: N/A		TOTAL I WELL Y	ESTIMA TELD (j	TED gpm):	0.00
z	WELL TES	T TEST	RESULTS - ATT	TACH A COPY O	F DATA COLLEC	TED DURING	G WELL TESTING, IN ND DRAWDOWN O	I CLUDING VER THE TI	DISCHA	ARGE I	METHOD, DD.
RIG SUPERVISIO	MISCELLA	NEOUS IN	FORMATION: W For sa	Vell to be drilled orce Base. A sm ampling using lo	for this permit ag all amount of wa w flow/low stress	oplication wi ter (on the or s techniques.	ll be used for monito der of a few gallons	oring purpo) will be pu DSE DII D	ses relat rged fro CT 3 2	ted to om a w	Cannon Air vell prior to
EST;	PRINT NAM	IE(S) OF T	RILL RIC SLIDE	RVISOR(S) THA	T PROVIDED ON	SITE SUPERV	ISION OF WELL CO	NSTRUCTO	ON OTH	ER TH	IAN LICENSEE
5. TI	Christopher	Hill	KILL KIG SOPE	KVISOK(S) THA	I PROVIDED ON	STE SUPERV	ASION OF WELL CO	NSTRUCTI	on offi	ILK II	IAN LICENSEE.
INATURE	THE UNDE CORRECT I AND THE P	RSIGNED RECORD (PERMIT HO	HEREBY CERTIN	FIES THAT, TO DESCRIBED HO 30 DAYS AFTER	THE BEST OF HIS LE AND THAT HIS COMPLETION O	S OR HER KN E OR SHE WI F WELL DRI	NOWLEDGE AND BE LL FILE THIS WELL LLING:	LIEF, THE	FOREGO	DING I HE ST	S A TRUE AND ATE ENGINEER
6. SIC			Dene.		IL hard Le	blanc		9/27,	122 D	ATE	
		orona	. CAL OF DALL								
FO	R OSE INTER	NAL USE			122/02/		WR-20 W	ELL RECOR	ND & LC	G (Ve	rsion 01/28/2022)
FIL	ENO. CC	-016	65	2 3	POD NO.	6	TRN NO.	11051	2		PAGE 1 OF 1
LO	CATION O	LN.3	SE.30.3	1.J.L		_	WELL TAG ID NO	D. NA	-		PAGE 2 OF 2

OFFICE OF THE STATE ENGINEER

NO	OSE POD NO. (CC-2625-PO	D12-MO) ON	WELL TAG ID NO. POD12		OSE FILE N CC-2625	(O(S).		
OCATI	WELL OWNER Bristol Envir	NAME(S) onmenta	I Solutions LLC	1		PHONE (OI 225.333.0	ptional) 1999		
VELL L	WELL OWNER 12025 Starcr	MAILING est Drive	ADDRESS			CITY San Anto	nio	STATE TX 78247	ZIP
AL AND	WELL LOCATION	LAT	DE	GREES MINUTES SECO 34 21	DNDS 57 N	* ACCURA	CY REQUIRED: ONE TEN	NTH OF A SECOND	
NEF	(FROM GPS)	LON	IGITUDE	103 18 :	59 W	Diffein	in gome being of the		
1. GF	DESCRIPTION Curry Count	RELATIN	G WELL LOCATION TO	STREET ADDRESS AND COMMON LAND	MARKS – PLS	SS (SECTION,	TOWNSHJIP, RANGE) WI	HERE AVAILABLE	
	LICENSE NO. WD-14	58	NAME OF LICENSED	DRILLER Richard LeBlanc			NAME OF WELL DI Yellow Jac	RILLING COMPANY cket Drilling Services	LLC
	DRILLING STA 3/10/2	rted 2	DRILLING ENDED 4/5/22	DEPTH OF COMPLETED WELL (FT) 330	BORE HO	LE DEPTH (F 355	T) DEPTH WATER FII	RST ENCOUNTERED (FT 315)
N	COMPLETED	VELL IS:	ARTESIAN	DRY HOLE SHALLOW (UNC	CONFINED)	STAT IN CO (FT)	TIC WATER LEVEL	315 DATE STATIC 4/4	MEASUREI /22
TIO	DRILLING FLU	ID:	✓ AIR	MUD ADDITIVES - SP	ECIFY:				
RMA	DRILLING ME	HOD:	ROTARY HAMM	MER CABLE TOOL 🗹 OTHER - SP	ECIFY:	Soni	CHEC	K HERE IF PITLESS ADA ALLED	PTER IS
INFO	DEPTH (f	et bgl)	BORE HOLE	CASING MATERIAL AND/OR	C	ASING	CASING	CASING WALL	SLOT
ASING	FROM TO DIAM (inches)			(include each casing string, and note sections of screen)	CON (add coup	NECTION FYPE bling diameter	INSIDE DIAM. (inches)	THICKNESS (inches)	SIZE (inches
& C	0	200	10	Schedule 40 PVC Blank	TI	hreaded	4"	.237	
SNG	200	310	8	Schedule 40 PVC Blank	TI	hreaded	4"	.237	
TT	310	330	8	Schedule 40 PVC Slotted Screen	TI	hreaded	4"	.237	.010
2. DRI	330	355	8	N/A					
		_			-		USE OIT MAY	<u> </u>)
T	DEPTH (f	eet bgl)	BORE HOLE DIAM. (inches)	LIST ANNULAR SEAL M GRAVEL PACK SIZE-RANG	ATERIAL GE BY INTI	AND ERVAL	AMOUNT (cubic feet)	METHO	DD OF MENT
SRI	0 20 10 Portland Cement Grout						8.75	Trei	nie
ATI	20 200 10 Cement Bentonite Grout						78.75	Tre	nie
RM	200 301 8 Cement Bentonite Grout				Grout	-	24.24	Tre	nie
TA	301 306 8 Bentonite Chips 3/8"				3/8"		1.20	Tre	mie
NND	306	332	8	Silica Sand 20	x 40		6.24	Tre	nie
3. A									

FOR USE INTERNAL USE	WR-20 WELL RECORD & LOG (Version 01/28/2022)
FILE NO. CC-2625	DOD NO. 12 TRN NO. 710373
LOCATION 02N.35E. 30 413	WELL TAG ID NO. PAGE 1 OF 2

	DEPTH (fe	et bgl)	THICKNESS	COLOR AND TYPE OF MATERIAL ENCOUNTE	ERED -	WATER	ESTIMATED YIELD FOR				
	FROM	то	(feet)	INCLUDE WATER-BEARING CAVITIES OR FRACTU (attach supplemental sheets to fully describe all o	JRE ZONES units)	BEARING? (YES / NO)	WATER- BEARING ZONES (gpm				
t	0	77	77	Brown Fly Sand		Y √N					
T	77	146	69	Brown Fine Sand	1	Y √N					
Ì	146	206	60	Brown Fine Cemented Silts & Sands		Y √N					
Ī	206	216	10	Brown Cemented Sands & Cobbles		Y √N					
I	216	228	12	Brown Sand Stone		Y √N					
	228	330	102	Brown Sand Stone		√Y N					
	330	340	10	Brown Silt Stone		√Y N					
	340	355	15	Red Beds		√Y N					
3		-				Y N					
						Y N					
						Y N					
		-				Y N					
						Y N					
						Y N					
			1		OSE ON	MAY 19 202	2 PM2:20				
ł						Y N					
ł						Y N					
ł						Y N					
ł						Y N					
ł						Y N					
ł						Y N					
ł	METHOD U	SED TO ES	STIMATE VIELD	OF WATER-BEARING STRATA	ΤΟΤΑ	LESTIMATED					
	PUMP AIR LIFT BAILER OTHER - SPECIFY: N/A WELL YIELD (gpm):										
	WELL TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.										
The second second second second second	MISCELLANEOUS INFORMATION: Well to be drilled for this permit application will be used for monitoring purposes related to Cannon Air Force Base. A small amount of water (on the order of a few gallons) will be purged from a well prior to sampling using low flow/low stress techniques.										
-	THE UNDER CORRECT R AND THE PI	SIGNED I ECORD O ERMIT HO	HEREBY CERTIF F THE ABOVE D LDER WITHIN 3	IES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE ESCRIBED HOLE AND THAT HE OR SHE WILL FILE TH 0 DAYS AFTER COMPLETION OF WELL DRILLING:	E AND BELIEF, TH	E FOREGOING I O WITH THE STA DATE	S A TRUE A TE ENGINE				
	_~.	SIGNAT	one or brubbl								
		SIGNAT	one of brabb								
OF	OSE INTERN	SIGNAT	0 6		WR-20 WELL REC	ORD & LOG (Ve	rsion 01/28/20				

OFFICE OF THE STATE ENGINEER

AND WELL LOCATION	CC-2625-POD13-MON POD 13 WELL OWNER NAME(S) Bristol Environment Solutions LLC							CC-	2625						
								рно 225.	NE (OPTI) 333.099	ONAL) 19					
	WELL OWNE 12025 Star	R MAILING	ADDRESS e					CITY San	(Antonic	P		state AZ	78247	ZIP	
	WELL		DE	GREES 34	MINUTES 21	SECONDS 57		* AC	CURACY	REQUIRED) ONE TENT	HOFAS	SECOND		
NEKAL	(FROM GP	S) LOI	TITUDE NGITUDE	103	18	50	W	* DA	TUM REC	QUIRED: WO	GS 84				
1. 661	DESCRIPTIC Curry Cour	ON RELATIN	G WELL LOCATION TO	STREET ADDRI	ESS AND COMMON	LANDMAR	KS – PL	SS (SEC	TION, TO	WNSHJIP, R	RANGE) WHI	ERE AVA	ILABLE		
	LICENSE NO WD-1	458	NAME OF LICENSED	DRILLER	ichard LeBlanc					NAME O	F WELL DRI Cellow Jack	LLING C et Drilli	OMPANY ng Services I	LLC	
	DRILLING STARTED DRILLING ENDED 4/6/22 4/21/22			DEPTH OF COM	MPLETED WELL (FT 332) B	ORE HO	LE DEF 343	TH (FT)	DEPTH V	WATER FIRS	T ENCOU	UNTERED (FT) (FT)	
Z	COMPLETED	WELL IS:	ARTESIAN	DRY HOLI	E 🗹 SHALLOV	W (UNCONF	INED)	STATIC WATER LEVEL IN COMPLETED WELL 317 (FT)			7	DATE STATIC ME 4/19/22			
NITA	DRILLING FI	UID:	🖌 AIR	MUD	ADDITIVI	ES – SPECIF	Y:								
INN	DRILLING M	ETHOD:	ROTARY HAM	MER 🗌 CABL	CABLE TOOL 🔽 OTHER – SPECIFY: Sonic				Sonic		CHECK INSTAL	HERE IF LED	PITLESS ADA	PTER IS	
AND ONIC	DEPTH (feet bgl) BORE FROM TO DI (inc		BORE HOLE DIAM (inches)	CASING MATERIAL AND/OR GRADE (include each casing string, and note sections of screen) (add cou		C. CON	ASING NECTI) ION umeter)	CASING (INSIDE DIAM. (inches)		CASI THI (i	CASING WALL THICKNESS (inches)			
x C	0	312	8"	Sched	ule 40 PVC Blank		T	readed	1	4"			.237		
5	312	332	8"	Schedule 4	40 PVC Slotted Sci	reen	T	nreaded	đ	4"			.237	.010	
7. DRILL	332	342	8"		N/A										
										OSE	oit May	1920	122 PM2:2	9	
-	DEPTH	(feet bgl)	BORE HOLE	LIS	T ANNULAR SE	AL MATE	RIAL	AND		A	MOUNT		METHO	D OF	
KIAI	FROM	TO	DIAM. (inches)	GRAV	PACK SIZE-	KANGE B	Y INT	ERVA	L	(C)	ubic feet)		PLACE	vien I	
IF	50	303	8" 2"		Compant Day	ntonite Gro	ut	_			60.72		Tren	nie	
WY	303	308	8"	-	Rentorite Chine 2/8"			_		1.20		Tren	nie		
VINNUTA	308	323	8"		Silica Sa	nd 20 x 40					3.60		Trer	nie	
									WD a		DECORD		Queeine 01*	28/2022	

FOR OSE INTERNAL USE	and the second	WR-20 WELL RE	CORD & LOG (Vers	100 01/28/2022
FILE NO. CC - 2625	POD NO. 3	TRN NO.	-10373	
LOCATION 07 N 35E. 30 322)	WELL TAG ID NO.		PAGE 1 OF 2

	DEPTH (feet bgl)		COLOR AN	D TYPE OF !	MATERIAL P	INCOUN	TERED -		WA	TED	ESTIMATED
	FROM	то	THICKNESS (feet)	INCLUDE WATE (attach sup	BR-BEARING	CAVITIES (OR FRAC	CTURE ZONE all units)	ŝ	BEAF (YES	UNG? / NO)	WATER- BEARING ZONES (gpm
	0	26	26		Fine	Silty Sands				Y	√ N	
1	26	60	34		Hard	d Dry Clay				Y	√ N	
1	60	90	30		Sa	nd Stone		-		Y	√ N	
1	90	176	86		Fine S	Silty Powder				Y	√ N	
	176	295	119		Fine S	Silty Powder				Y	√ N	
-	295	335	40		Co	arse Sand				✓ Y	N	
WEL	335	342	7		Clay Grav	el Conglomer	rate			✓ Y	Ν	
5	342	343	1		P	ted Bed				√ Y	N	
3		1								Y	N	
		-								Y	N	
3										Y	N	
										Y	N	
2 I				1						Y	N	
										Y	N	
+								0	SE DI	MHY J	92022	PM2:20
										Y	N	
1							_			Y	N	
										Y	N	
				1						Y	N	
		-								Y	N	
										Y	N	
	METHOD USED TO ESTIMATE YIELD OF WATER-BEARING STRATA:							AL ESTI	MATED			
	PUMP AIR LIFT BAILER OTHER - SPECIFY: N/A WELL YIEL									L YIELI	O (gpm):	0.00
	WELL TEST START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.											
ICIANTAIN SULENAISI	MISCELLANEOUS INFORMATION: Well to be drilled for this permit application will be used for monitoring purposes related to Cannon Air Force Base. A small amount of water (on the order of a few gallons) will be purged from a well prior to sampling using low flow/low stress techniques.											
11 ·C	PRINT NAM	AE(S) OF I Hill	ORILL RIG SUPER	RVISOR(S) THAT PRO	VIDED ONS	ITE SUPERV	ISION O	OF WELL COM	NSTRU	CTION C	THER TH	IAN LICENSE
O. DIVINI UNIVERSITY	THE UNDE CORRECT AND THE I	RSIGNED RECORD PERMIT H	HEREBY CERTIF OF THE ABOVE I OLDER WITHIN 3	TIES THAT, TO THE E DESCRIBED HOLE AN 00 DAYS AFTER COM	BEST OF HIS ND THAT HE IPLETION OF	OR HER KN OR SHE WI WELL DRII	OWLED LL FILE LLING:	GE AND BE THIS WELL	LIEF, TI RECOR	HE FOR	EGOING I THE ST	IS A TRUE A ATE ENGINE
		SIGNA	TURE OF DRILLE	R / PRINT SIGNEE	NAME						DATE	
FOF	R OSE INTER	NAL USE						WR-20 WI	ELL REG	CORD &	LOG (Ve	rsion 01/28/20
FIL	ENO. CC	-26	25		POD NO.	13		TRN NO.	71	03:	73	
LOC	CATION O	1150	SAF 2	50 200	2		WELL	TACIDNO		-		PAGE 2 O

•

OFFICE OF THE STATE ENGINEER

AND WELL LOCATIC	WELL OWNER NAME(S) Bristol Environmental Solutions LLC							PHON	E (OPTI	ONAL)			
								225-3	33-09	99			
	WELL OWNER 12025 Starc	MAILING est Driv	e ADDRESS					CITY San A	ntonic	,	STATI TX	78247	ZIP
	WELL		DE	GREES 34	MINUTES 21	SECONDS 57	N	* ACC	URACY	REQUIRED: ONE TEN	TH OF A	SECOND	
	(FROM GPS	LON	NGITUDE	103	18	37	w	* DAT	UM REO	QUIRED: WGS 84			
	DESCRIPTION RELATING WELL LOCATION TO STREET ADDRESS AND COMMON LANDMARKS – PLSS (SECTION, TOWNSHJIP, RANGE) WHERE AVAILABLE Curry County												
1	LICENSE NO. WD-14	58	NAME OF LICENSED	DRILLER	chard LeBlan	c				NAME OF WELL DR Yellow Jac	ILLING ket Dril	COMPANY ling Services I	LC
	DRILLING ST/ 5/10/2	RTED	DRILLING ENDED 5/23/22	DEPTH OF COM	PLETED WELL (1 341	FT) B	ORE HO	LE DEPTI 346	H (FT)	DEPTH WATER FIR	ST ENCO 30	OUNTERED (FT))
	COMPLETED	VELL IS:	ARTESIAN	DRY HOLE	SHALLO	OW (UNCONF	NED)	SI	TATIC N COM FT)	WATER LEVEL D PLETED WELL 306		DATE STATIC MEASU 5/20/22	
DRMATIO	DRILLING FLU	ID:	✓ AIR	MUD	ADDITT	VES - SPECIF	<i>(</i> :						
	DRILLING METHOD: ROTARY HAMMER CABLE TOOL					IER – SPECIF	(;	SC	ONIC	CHECK INSTAI	HERE I	PITLESS ADA	PTER IS
	DEPTH (f	eet bgl)	BORE HOLE	CASING MATERIAL AND/OR			C	ASING		CASING	CAS	ING WALL	SLO
	FROM	ТО	DIAM (inches)	(include eac note sec	ch casing string	, and	CONI dd coup	NNECTION TYPE oupling diameter)		INSIDE DIAM. (inches)		THICKNESS (inches)	
	0	311	8"	Schedul	e 40 PVC Blan	k	Tł	hreaded		4"		.237	
	311	341	8"	Schedule 40	PVC Slotted S	creen	Th	readed		4"		.237	.010
	341	346	8"		N/A								
Ī	DEPTH (f	et bgl)	BORE HOLE	LIST ANNULAR SEAL MATERIAL AND			AND	ND AMOUNT			METHOD OF		
1	FROM	то	DIAM. (inches)	GRAVI	EL PACK SIZE	E-RANGE B	Y INTE	RVAL		(cubic feet)		PLACEN	AENT
1	0	20	8"		Portland	Cement Grou	t			4.80		Trem	ie
1	20	295	8"	Sector -	Cement B	entonite Gro	at			66		Trem	nie
-	295	302	8"		Bentonit	te Chips 3/8"				1.68		Trem	ie
	302	346	8"		Silica S	Sand 20x40				10.56	V130	Trem 2022 ям8:4	5
-												2	

FILE NO.	CC-2625	POD NO.	PODT	TRN NO.	10373	10000
LOCATION	2N 352 2	30 301.4	WELL	TAG ID NO.	NA	PAGE 1 OF 2

12	DEPTH (feet	bgl)		COLOR AND TYPE OF MATERIAL ENCOUNTERED -	WATER	ESTIMATEI VIELD FOR			
	FROM	то	THICKNESS (feet)	INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONE (attach supplemental sheets to fully describe all units)	BEARING? (YES / NO)	WATER- BEARING ZONES (gpm			
3	0	10	10	Silty Sand	Y N				
1	10	55	45	Hard Dry Clay	Y N				
1	55	185	130	Fine Sands	Y N				
	185	206	120	Sands & Gravel	Y N				
	206	236	30	Cemented Sand & Gravel	Y N				
	236	265	29	Fine Sands	Y N				
	265	326	61	Fine Sands with Layer of Clay	✓Y N				
	326	346	20	Sands Fine Grade	Y N				
					Y N				
			1		Y N				
					Y N				
					Y N				
					Y N				
					Y N				
					Y N				
					Y N				
					Y N				
		-			Y N				
					Y N				
		-			Y N				
					Y N				
	METHOD USE	D TO ES	TIMATE YIELD	OF WATER-BEARING STRATA:	TOTAL ESTIMATED)			
	PUMP		R LIFT	BAILER OTHER - SPECIFY: N/A	WELL YIELD (gpm): 0.00			
-	WELL TEST	TEST I START	RESULTS - ATTA I TIME, END TIM	CH A COPY OF DATA COLLECTED DURING WELL TESTING, IN IE, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OV	CLUDING DISCHARG ER THE TESTING PER	E METHOD, LIOD.			
	MISCELLANEOUS INFORMATION: Well to be drilled for this permit application will be used for monitoring purposes related to Cannon Air Force Base. A small amount of water (on the order of a few gallons) will be purged from a well prior to sampling using low flow/low stress techniques. DSE DII JUN 13 2022 am8;46 PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE: Christopher Hill								
		GNED H	EREBY CERTIF	ES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BEL ESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL DAYS AFTER COMPLETION OF WELL DRILLING:	LIEF, THE FOREGOIN RECORD WITH THE S	G IS A TRUE AN TATE ENGINE			
	THE UNDERSI CORRECT REC AND THE PER	SIGNATU	JRE OF DRILLEI	R / PRINT SIGNEE NAME	5 27 22 DATE				
	THE UNDERSI CORRECT REC AND THE PER	CORD OF	JRE OF DRILLEI	R / PRINT SIGNEE NAME	5 27 22 DATE	3			
DF	THE UNDERSI CORRECT REC AND THE PER	SIGNATU	JRE OF DRILLEI	R / PRINT SIGNEE NAME WR-20 WE	5 27 22 DATE	Version 01/28/20			

2N 35E 30 3.1.4 WELL TAGID NO. NA