KIRTLAND AIR FORCE BASE ALBUQUERQUE, NEW MEXICO

QUARTERLY MONITORING REPORT –
JANUARY–MARCH 2020
BULK FUELS FACILITY
SOLID WASTE MANAGEMENT UNITS ST-106/SS-111
KIRTLAND AIR FORCE BASE, NEW MEXICO

JUNE 2020

377 MSG/CEI 2050 Wyoming Boulevard SE Kirtland Air Force Base, New Mexico 87117-5270

KIRTLAND AIR FORCE BASE ALBUQUERQUE, NEW MEXICO

Quarterly Monitoring Report – January–March 2020 Bulk Fuels Facility Solid Waste Management Units ST-106/SS-111 Kirtland Air Force Base, New Mexico

June 2020

Prepared for

Kirtland Air Force Base 2050 Wyoming Boulevard SE Kirtland Air Force Base, New Mexico 87117-5270

Prepared by

EA Engineering, Science, and Technology, Inc., PBC 320 Gold Avenue Southwest, Suite 1300
Albuquerque, New Mexico 87102
U.S. Army Corps of Engineers Contract No. W912DR-12-D-0006
Delivery Order DM01

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 3. DATES COVERED (From - To) 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 01-01-2020 - 31-03-202030-06-2020 Revision 0 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Quarterly Monitoring Report – January–March 2020 W912DR-12-D-0006-DM01 **Bulk Fuels Facility 5b. GRANT NUMBER** 5c. PROGRAM ELEMENT NUMBER Solid Waste Management Units ST-106/SS-111 Kirtland Air Force Base, New Mexico 6. AUTHOR(S) 5d. PROJECT NUMBER EA Engineering, Science, and Technology, Inc., PBC 62599DM01 5e. TASK NUMBER 1026 5f. WORK UNIT NUMBER Not applicable 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PERFORMING ORGANIZATION AND ADDRESS(ES) REPORT NUMBER EA Engineering, Science, and Technology, Inc., PBC Not assigned 320 Gold Avenue Southwest, Suite 1300 Albuquerque, New Mexico 87102 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Corps of Engineers-Albuquerque District 4101 Jefferson Plaza Northeast 11. SPONSOR/MONITOR'S REPORT **NUMBER(S)** Albuquerque, New Mexico 87109-3435 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT This Quarterly Report describes activities performed from January 1 through March 31, 2020 and the progress of the Resource Conservation and Recovery Act interim measures for soil and groundwater remediation at Solid Waste Management Units ST-106/SS-111, the Bulk Fuels Facility site, at Kirtland Air Force Base, New Mexico. During the quarter, groundwater, drinking water from supply wells, and the groundwater treatment system (GWTS) samples were collected and analyzed for contaminants of concern (notably ethylene dibromide [EDB]) and other relevant field and laboratory parameters. The GWTS extracted and treated 50,111,500 gallons of groundwater through a granular activated carbon filtration system and discharged the treated effluent to the Tijeras Arroyo Golf Course main pond and injection well KAFB-7 in the first quarter (Q1) 2020. The GWTS was running 99 percent of the time and removed approximately 3,145 milligrams of EDB in Q1 2020. 15. SUBJECT TERMS Bulk Fuels Facility, Solid Waste Management Units ST-106/SS-111, ethylene dibromide, EDB, interim measures, RCRA, groundwater sampling, groundwater treatment system operation, granular activated carbon

17. LIMITATION

OF ABSTRACT

ABSTRACT

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

PERSON

Sheen Kottkamp

area code) 505-846-7674

NUMBER

OF PAGES

14.810

19a. NAME OF RESPONSIBLE

19b. TELEPHONE NUMBER (include

Kirtland AFB BFF Quarterly Report – January–March 2020 SWMUs ST-106/SS-111

16. SECURITY CLASSIFICATION OF:

b. ABSTRACT

UNCLASSIFIED

c. THIS PAGE

UNCLASSIFIED

a. REPORT

UNCLASSIFIED

40 CFR 270.11 DOCUMENT CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

35 The	·	<u> </u>
RYAN S. NYE, Colonel, U.S. Air Force		D
Vice Commander, 377th Air Base Wing		

19 June 20

This document has been approved for public release.

KIRTLAND AIR FORCE BASE 377th Air Base Wing Public Affairs <u>le/18/20</u>

PREFACE

This Quarterly Monitoring Report – January–March 2020 has been prepared by EA Engineering, Science, and Technology, Inc., PBC (EA) for Kirtland Air Force Base under the U.S. Army Corps of Engineers Contract Number W912DR-12-D-0006, Delivery Order DM01 and pertains to the Base Bulk Fuels Facility, Solid Waste Management Units ST-106/SS-111, located in Albuquerque, New Mexico.

This report contains data collected by EA itself as well as from other entities/sources that are not under EA's direct control (collectively "non-EA Data"). All non-EA data reported herein are displayed in the form they were received from their source entity, and EA assumes no liability for the accuracy of any non-EA data in this report.

This report was prepared in accordance with applicable federal, state, and local laws and regulations, including the New Mexico Hazardous Waste Act, New Mexico Statutes Annotated 1978, New Mexico Hazardous Waste Management Regulations, Resource Conservation and Recovery Act, and regulatory correspondence between the New Mexico Environment Department Hazardous Waste Bureau and the U.S. Air Force, dated March 25 and May 20, 2016.

Monitoring of groundwater and drinking water, and operation of the groundwater treatment system was conducted from January 1 through March 31, 2020.

CONTENTS

Section	n		Page			
EXEC	CUTIVE	SUMMARY	ES-1			
1.	INTR	ODUCTION	1-1			
2.	VAD	VADOSE ZONE MONITORING				
	2.1	VADOSE ZONE SOIL VAPOR DATA COLLECTION				
	2.2	BIOVENTING PILOT TEST				
3.	GPOI	UNDWATER MONITORING	2 1			
3.	3.1	NEW GROUNDWATER MONITORING ACTIVITIES				
	3.2	GROUNDWATER AND LIGHT NON-AQUEOUS PHASE LIQUID GAUGING				
		3.2.1 Gauging Deviations	3-2			
	3.3	GROUNDWATER SAMPLING	3-3			
		3.3.1 Sampling Deviations	3-3			
	3.4	DATA REVIEW AND USABILITY RESULTS				
	3.5	PROJECT SCREENING LEVELS	3-4			
	3.6	GROUNDWATER QUALITY DATA	3-5			
		3.6.1 Organic Compounds Analytical Results	3-5			
		3.6.2 Inorganic Compounds Analytical Results	3-6			
		3.6.3 Sampling Results for U.S. Geological Survey Sentinel Wells	3-6			
		3.6.4 Field Parameters				
		3.6.5 Bioremediation Indicators	3-6			
	3.7	GROUNDWATER MONITORING WELL NETWORK OPERATION AND				
		MAINTENANCE	3-6			
4.	DRIN	KING WATER SUPPLY WELL MONITORING	4-1			
	4.1	DRINKING WATER SUPPLY WELL SAMPLING AND ANALYSIS				
		PROCEDURES				
	4.2	DATA REVIEW AND USABILITY	4-1			
	4.3	DRINKING WATER SUPPLY WELL WATER QUALITY FOR Q1 2020	4-2			
5.	GRO	UNDWATER TREATMENT SYSTEM OPERATION AND PERFORMANCE	5-1			
	5.1	GROUNDWATER TREATMENT SYSTEM OPERATION	5-1			
		5.1.1 Groundwater Treatment System Treatment Volumes and Percentage Run Time	5 1			
		5.1.2 Extraction Well Performance Metrics				
		5.1.3 Injection Well Performance Metrics				
	5.2	GROUNDWATER TREATMENT SYSTEM PERFORMANCE MONITORING				
	3.2	ETHYLENE DIBROMIDE REMOVAL				
		5.2.1 Quarterly Sampling and Analysis	5_3			
		5.2.1 Your orly Sumpling and I mary sis				

		5.2.2	Data Validation	5-4
	5.3	GROI	JNDWATER TREATMENT SYSTEM MAINTENANCE AND EXPANSION	J
	5.5		VITIES	
		5.3.1	Routine Maintenance Activities	5-4
		5.3.2	Conveyance Line Security and Administrative Controls	
		5.3.3	Non-Routine Maintenance Activities	
		5.3.4	Effluent Conveyance Line Integrity	
	5.4	ETHY	LENE DIBROMIDE <i>IN SITU</i> BIODEGRADATION PILOT TEST	
		QUAF	RTERLY SUMMARY	5-6
6.	INVE	ESTIGAT	TON-DERIVED WASTE	6-1
	6.1	NON-	HAZARDOUS INVESTIGATION-DERIVED WASTE	6-1
		6.1.1	Groundwater Monitoring Liquid Investigation-Derived Waste	6-1
		6.1.2	Non-Hazardous Drilling Liquid Investigation-Derived Waste	6-2
		6.1.3	Non-Hazardous Well Drilling Liquid Investigation-Derived Waste Pending	6.2
		6.1.4	Disposal Non-Hazardous Solid Waste	0-2 6.2
		6.1.5	Non-Hazardous Well Drilling Solid Investigation-Derived Waste	
		6.1.6	Special Waste Well Drilling Solid Investigation-Derived Waste	
	6.2	HAZA	ARDOUS INVESTIGATION-DERIVED WASTE	6-2
		6.2.1	Hazardous Investigation-Derived Waste Volume Q1 2020	6-3
		6.2.2	Hazardous Investigation-Derived Waste Volume Quarterly Totals	
7.	PRO.	ECTED .	ACTIVITIES	7-1
8	RFFF	RENCE	2	8-1

APPENDICES

A	Regulatory Correspondence					
В	Biov	Bioventing Pilot Test				
C	Soil	Soil Vapor Field Sampling Records (Not Included in Q1 2020)				
D	Soil	Vapor Data Quality Evaluation Reports and Data Packages (Not Included in Q1 2020)				
Е	Groundwater Monitoring Network Field Sampling Data and Records					
	E-1 E-2 E-3 E-4 E-5 E-6	1				
F	Groundwater Monitoring Network Sample Data Quality Evaluation Reports and Data Packages					
	F-1 F-2 F-3	Data Quality Evaluation Report – Groundwater Samples Data Packages – Groundwater Samples U.S. Environmental Protection Agency Data Verification and Validation Figures				
G Drinking Water Supply Well Sampling Docum		king Water Supply Well Sampling Documentation				
	G-1 G-2	Daily Quality Control Reports – Drinking Water Supply Well Samples Drinking Water Sample Collection Logs and Chain-of-Custody Forms				
H Drinking Water Supply Well Data Quality Evaluation Rep		king Water Supply Well Data Quality Evaluation Reports and Data Packages				
		Data Quality Evaluation Report – Drinking Water Supply Well Samples Data Packages – Drinking Water Supply Well Samples				
I	Grou	Groundwater Treatment System Monitoring and Performance Evaluation				
	I-1 I-2 I-3 I-4	Groundwater Treatment System Plant Operation and Maintenance Documentation New Mexico 811 Line Locate Tickets Groundwater Treatment System Performance Sample Collection Logs Data Quality Evaluation Report – Groundwater Treatment System Samples				

I-5

Ethylene Dibromide In Situ Biodegradation Pilot Test Quarterly Summary

Data Packages – Groundwater Treatment System Samples

APPENDICES (CONCLUDED)

- J Waste Disposal Documentation
 - J-1 Non-Hazardous Liquid Investigation-Derived Waste Profiling and Disposal Documentation
 - J-2 Non-Hazardous Solid Investigation-Derived Waste Profiling and Disposal Documentation
 - J-3 Hazardous Investigation-Derived Waste Profiling and Disposal Documentation

FIGURES

1-1	Site Location Map
2-1	Bioventing Pilot Test Area in the Source Area Plume
3-1	Groundwater Monitoring Network, Drinking Water Supply Well, and Extraction Well Locations
3-2	Potentiometric Surface Map of Reference Elevation Interval 4857, January 20–22, 2020
3-3	Potentiometric Surface Map of Reference Elevation Interval 4838, January 20–22, 2020
3-4	Potentiometric Surface Map of Reference Elevation Interval 4814, January 20–22, 2020
3-5	Groundwater Monitoring Wells with Measurable LNAPL, January 20–22, 2020
3-6	EDB Concentrations, Q1 2020
3-7	BTEX Concentrations, Q1 2020
3-8	Sentinel Well Locations
4-1	EDB and BTEX Results in Drinking Water Supply Wells, Q1 2020
5-1	Groundwater Extraction and Treatment System Location

TABLES

3-1	Groundwater Monitoring Program
3-2	Groundwater Monitoring Wells Sampled in Q1 2020
3-3	Groundwater Elevation and Light Non-Aqueous Phase Liquid Thickness, Q1 2020
3-4	Groundwater Analytical Results for Newly Added Wells, Q1 2020
3-5	Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020
3-6	Groundwater Analytical Results for Inorganic Compounds for Groundwater Monitoring Wells, Q1 2020
3-7	Status of Quarterly Baseline Sampling Newly Added Wells and Summary of Q1 2020 Analytical Results
3-8	Historical EDB Concentrations
3-9	Historical BTEX Concentrations
4-1	Drinking Water Supply Well Analytical Results, Q1 2020
5-1	DP-1839 Discharge Permit Terms and Conditions, Operations and Maintenance Plan Cross References
5-2	Cumulative Quantities of Groundwater Treated and Discharged through Q1 2020
5-3	Groundwater Treatment System Extraction Well Performance, Q1 2020
5-4	Groundwater Treatment System Injection Well Performance, Q1 2020
5-5	Groundwater Treatment System Ethylene Dibromide Removal, Q1 2020
5-6	Monthly Groundwater Treatment System Performance Analytical Results for Train 1, Q1 2020
5-7	Monthly Groundwater Treatment System Performance Analytical Results for Train 2, Q1 2020
5-8	Extraction Well Analytical Results, Q1 2020
5-9	Groundwater Treatment System Routine Maintenance Schedule, Q1 2020
5-10	Groundwater Treatment System Non-Routine Maintenance Items, Q1 2020

LIST OF ACRONYMS AND ABBREVIATIONS

μg/L microgram(s) per liter

% percent

AFB Air Force Base

BFF Bulk Fuels Facility

BTEX benzene, toluene, ethylbenzene, and total xylenes

CFR Code of Federal Regulations

DO dissolved oxygen
DoD Department of Defense
DP Discharge Permit

EDB ethylene dibromide

EPA U.S. Environmental Protection Agency

ft foot (feet)

GAC granular activated carbon
GCMP Golf Course main pond
gpm gallon(s) per minute
GWM groundwater monitoring
GWTS groundwater treatment system

IDW investigation-derived waste ISB in situ bioremediation

LNAPL light non-aqueous phase liquid

MCL maximum contaminant level

mg milligram(s)

mg/L milligram(s) per liter

NMED New Mexico Environment Department

NMWQCC New Mexico Water Quality Control Commission

No. number

O&M operation and maintenance ORP oxidation-reduction potential

psi pound(s) per square inch PSL project screening level

Q1 first quarter of the year, January 1 through March 31
Q2 second quarter of the year, April 1 through June 30

Q4 fourth quarter of the year, October 1 through December 31

QAPjP Quality Assurance Project Plan

LIST OF ACRONYMS AND ABBREVIATIONS (CONCLUDED)

RCRA Resource Conservation and Recovery Act

REI reference elevation interval

SE Southeast

SVM soil vapor monitoring

SWMU Solid Waste Management Unit

TCZ Target Capture Zone

USGS U.S. Geological Survey

VA Veterans Affairs

VOC volatile organic compound

EXECUTIVE SUMMARY

The investigation and remediation of the Kirtland Air Force Base (AFB) Bulk Fuels Facility (BFF) release (Solid Waste Management Units [SWMUs] ST-106/SS-111) are being implemented pursuant to the Resource Conservation and Recovery Act (RCRA) corrective action provisions in Part 6 of Kirtland AFB's Hazardous Waste Treatment Facility Operating Permit (Permit Number NM9570024423 [RCRA Permit]) (New Mexico Environment Department [NMED], 2010). This Quarterly Report for the first quarter (Q1) of calendar year 2020 summarizes the activities performed from January 1 through March 31, 2020. These activities include regular groundwater monitoring, evaluation of the dissolved-phase ethylene dibromide (EDB) groundwater pump and treat interim measure, and data collected to support the EDB *in situ* biodegradation and bioventing pilot studies.

The long-term bioventing pilot test continued in Q1 2020 with a respiration test including field parameter measurements and analytical vapor samples in January. The Bioventilation Construction and Initiation Report that included data collected through Q4 2019 was submitted in January 2020, as requested by NMED in a letter dated February 25, 2019 (NMED, 2019). A summary of data collected during Q1 2020 is provided in this report.

In Q1 2020, 65 Kirtland AFB BFF groundwater monitoring wells were sampled. Depths to groundwater were gauged in 165 groundwater monitoring wells, including four recently installed wells. During gauging, light non-aqueous phase liquid was detected and measured in three of these wells. All three wells were located on-Base within the source area plume (KAFB-106059, KAFB-106076, and KAFB-106150-484) (Figure 3-5).

Long-term monitoring for the *in situ* biodegradation pilot test resumed in Q1 2020 with a sampling event in March. Eight wells were sampled for contaminants associated with the BFF release and for pilot test indicator compounds.

U.S. Geological Survey (USGS) monitors 14 sentinel wells between the EDB plume and drinking water wells owned and operated by the Albuquerque Bernalillo County Water Utility Authority and Raymond G. Murphy Veterans Affairs (VA) Medical Center. These wells are tested quarterly to provide advance notice of any threat to drinking water wells. No contaminants associated with the BFF release were detected in Q1 2020 samples. The USGS transmittal letter, including the Q1 2020 data results, are provided in Appendix E-5.

Three Kirtland AFB drinking water supply wells (KAFB-003, KAFB-015, and KAFB-016) and the VA drinking water supply well (ST106-VA-2) are located in the vicinity of the dissolved-phase EDB plume. These wells were sampled monthly to verify the safety of the drinking water. No contamination was detected in January, February, or March 2020 samples from the drinking water supply wells.

Groundwater pumped from extraction wells in the dissolved-phase EDB plume is treated in the GWTS located at Kirtland AFB. This groundwater flows into the GWTS and is filtered through one of two treatment trains which consist of a series of two granular activated carbon vessels. The water flowing into the GWTS had low concentrations of EDB, below the maximum contaminant level of 5 micrograms per liter, and had no detections of benzene, toluene, ethylbenzene, and total xylenes (BTEX). While flowing through the granular activated carbon vessels, the EDB was filtered out of the groundwater, and the effluent flow leaving the GWTS had no detections of EDB or BTEX. During Q1 2020, an estimated 3,145 milligrams of EDB was captured in the lead GAC vessels.

The GWTS ran for 99 percent of the time from January 1 to March 31, 2020, and 50,111,500 gallons of groundwater were treated during this period. Of the treated water, 14,707,400 gallons were discharged to the Tijeras Arroyo Golf Course main pond, and 35,404,100 gallons were discharged to gravity-fed injection well KAFB-7.

Planned activities for Q2 2020 include:

- Continuing the long-term bioventing pilot test (a report summarizing the available results of the bioventing pilot tests was submitted to NMED in January 2020);
- Sampling the soil vapor monitoring points;
- Sampling the Q2 2020 designated wells and measuring depth to water in the groundwater monitoring network beginning in April 2020;
- Sampling drinking water supply wells for organic compounds on a monthly basis;
- Performance assessment modeling for the GWTS; and
- Operating and performing routine maintenance and monitoring of the GWTS.

1. INTRODUCTION

The investigation and remediation of the Kirtland Air Force Base (AFB) Bulk Fuels Facility (BFF) release (Solid Waste Management Units [SWMUs] ST-106/SS-111) are being implemented pursuant to the Resource Conservation and Recovery Act (RCRA) corrective action provisions in Part 6 of Kirtland AFB's Hazardous Waste Treatment Facility Operating Permit (Permit Number [No.] NM9570024423 [RCRA Permit]) (New Mexico Environment Department [NMED], 2010). This Quarterly Report for the first quarter (Q1) of calendar year 2020 presents non-cumulative data for Q1 2020, summarizing the activities performed from January 1 through March 31, 2020. The reporting schedule is provided in the Work Plan for BFF Expansion of the Dissolved-Phase Plume Groundwater Treatment System (GWTS) Design (Kirtland AFB, 2017a). Key regulatory correspondence for Q1 2020 is provided in Appendix A.

The BFF site is located within the northwestern portion of Kirtland AFB, on the southern end of the city of Albuquerque, as shown on the site location map (Figure 1-1). The Phase I RCRA Facility Investigation (Kirtland AFB, 2018a) provides a detailed site description, history, and conceptual site model. Ongoing groundwater interim measures and pilot tests in groundwater and the vadose zone are discussed in this report along with the GWTS performance monitoring and site monitoring results.

The groundwater monitoring (GWM), bioventing pilot test, and interim measure for SWMUs ST-106/SS-111 were conducted concurrently. The Q1 2020 monitoring program was performed in accordance with multiple work plans: (1) bioventing pilot test (NMED, 2019; Kirtland AFB, 2017b, 2018b), (2) GWM (NMED, 2017a, 2018a; Kirtland AFB, 2017a, 2017c, 2017d), and (3) drinking water supply wells (NMED, 2018b; Kirtland AFB, 2017c). GWTS operations, sampling, and treated effluent discharge were performed in accordance with the Operations and Maintenance (O&M) Plan (NMED, 2016; Kirtland AFB, 2016a, 2017e, 2018c).

2. VADOSE ZONE MONITORING

This section describes the vadose zone monitoring activities conducted during Q1 2020. No soil vapor monitoring (SVM) activities were performed during Q1 2020 (Section 2.1). Section 2.2 provides a brief overview of the bioventing pilot project activities completed in Q1 2020 with additional information provided in Appendix B.

2.1 Vadose Zone Soil Vapor Data Collection

No SVM activities were performed during Q1 2020. The SVM program is performed semiannually in the second quarter (Q2) and fourth quarter (Q4) of each year (NMED, 2018b). Appendices C and D remain in this report as placeholders; information will be included in these appendices following the semiannual sampling events. The next semiannual SVM event will be performed in Q2 2020.

2.2 Bioventing Pilot Test

The bioventing pilot test is being performed in accordance with the Work Plan for Bioventing and Air-Lift Enhanced Bioremediation Pilot Tests, dated November 2017 (Work Plan [Kirtland AFB, 2017b]), the Bioventing Respiration Test Procedure (Test Procedure [Kirtland AFB, 2018b]), and the approval conditions requested by NMED in a letter dated February 25, 2019 (NMED, 2019). The bioventing pilot test utilizes existing soil vapor extraction wells and existing SVM wells for air injection and two new SVM well clusters at KAFB-106V1 and KAFB-106V2 for observation. Well locations are shown on Figure 2-1. The bioventing system installation, respiration testing, and long-term bioventing startup are detailed in the Bioventilation Construction and Initiation Report (Kirtland AFB, 2020) submitted to NMED in January 2020.

Between January 6 and January 13, 2020, the air injection blowers were shut down and a week-long respiration test was performed to assess the oxygen utilization rates and operational parameters.

Oxygen utilization observed from observation wells KAFB-106V1 and KAFB-106V2 ranged from 0.03 to 0.81 percent (%) per day. Biodegradation rates ranged from 0.02 to 0.48 milligrams per kilogram per day and oxygen demand air flow rates ranged from 0.27 to 1.05 standard cubic feet per minute. The oxygen radius of influence was calculated using oxygen utilization and ranged from 134 to 264 feet (ft).

Analytical vapor samples were collected at the end of the respiration test and represent the end of the first quarter of the long-term bioventing pilot test operation. Analytical samples were collected in accordance with the approved Test Procedure (Kirtland AFB, 2018b). Samples were submitted to an analytical laboratory for analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX) and total petroleum hydrocarbons-gasoline range organics by U.S. Environmental Protection Agency (EPA) Method TO-3, volatile organic compounds (VOCs) by EPA Method TO-15 SIM, and fixed gases/C1-C5 hydrocarbon compounds by ASTM International D1945. Elevated contaminant of concern concentrations continue to be observed within the source area vadose zone; laboratory results are provided in Appendix B. The air injection blowers were restarted after sample collection. Long-term bioventing data collected during the Q1 2020 are presented in the Quarterly Bioventing Status Report provided in Appendix B.

3. GROUNDWATER MONITORING

At the end of Q1 2020, the BFF GWM well network was comprised of 167 GWM wells (Figure 3-1 and Tables 3-1 and 3-3). A total of 65 of these wells were sampled in Q1 in accordance with the sampling requirements (Table 3-2).

Appendices pertinent to GWM are listed below:

- Appendix E-1 Daily Quality Control Reports Groundwater Sampling
- Appendix E-2 Groundwater and Light Non-Aqueous Phase Liquid (LNAPL) Measurements
- Appendix E-3 Groundwater Purge Logs and Sample Collection Logs
- Appendix E-4 Groundwater Sample Chain-of-Custody Forms
- Appendix E-5 U.S. Geological Survey (USGS) Sentinel Well Data
- Appendix E-6 Descriptions from Previous Reports
- Appendix F-1 Data Quality Evaluation Report Groundwater Samples
- Appendix F-2 Data Packages Groundwater Samples
- Appendix F-3 EPA Data Verification and Validation Figures.

Throughout this report, GWM wells, and their associated groundwater data, are described based on reference elevation intervals (REIs). REIs are below ground surface elevations that divide the GWM network into datasets comprised of wells that are screened across their respective elevations, allowing for a vertical evaluation of groundwater parameters and contaminant locations. Currently, wells are assigned to three REIs (4857, 4838, and 4814). A detailed explanation of how the REIs are defined is provided in Appendix E-6.

In previous reports, GWM wells were assigned designations based either on their location related to the groundwater gradient and their spatial relationship to the dissolved-phase ethylene dibromide (EDB) plume or simply on their location (i.e., source area, etc.). In response to the changing regional groundwater gradient (Appendix E-6), well designations are no longer used in figures and analytical results tables. The former well designations and current monitoring well objectives are provided in Table 3-1 along with the current sampling regime by quarter. A detailed description of the former well designations and the frequency of samples collected by designation is provided in Appendix E-6.

In this report, sample results from GWM wells are discussed based on their location (north or south) in relation to Ridgecrest Drive Southeast (SE). The source area plume containing dissolved-phase benzene is located south of Ridgecrest Drive SE. The Target Capture Zone [TCZ] for the groundwater interim measure is the distal section of the EDB plume located north of Ridgecrest Drive SE.

GWM activities included measuring the depths to groundwater and LNAPL (Table 3-3 and Figures 3-2 through 3-5) and measuring field parameters in wells sampled with low-flow sampling pumps (Appendix E-3). Field parameter measurements are not part of the passive sampling methodology, as discussed in more detail in Appendix E-6. Groundwater samples were collected and submitted for laboratory analysis from 65 wells in Q1 2020 (Tables 3-4 through 3-5 and Figures 3-6 and 3-7).

3.1 New Groundwater Monitoring Activities

After four quarters of baseline sampling, newly added wells will be assigned an objective and moved into their relevant sampling regime in the following quarter (Table 3-7), in accordance with the Work Plan for Data Gap Monitoring Well Installation (Kirtland AFB, 2017d) and the Work Plan for Vadose Zone Coring, Vapor Monitoring, and Water Supply Sampling (Kirtland AFB, 2017c). For wells KAFB-106S1,

KAFB-106S8, and KAFB-106247, baseline sampling was completed in Q1 2020. For well KAFB-106S7, baseline sampling will be completed in Q3 2020.

3.2 Groundwater and Light Non-Aqueous Phase Liquid Gauging

Depth to water was measured in 165 of the 167 GWM wells between January 20 and 22, 2020 (Figures 3-2 through 3-4 and Table 3-3), using two Solinst Model 122 oil-water interface probes and a Geotech interface probe in accordance with the approved work plan (Kirtland AFB, 2017a). Each well was also checked for the presence of LNAPL. Gauging deviations are discussed in Section 3.2.1. Of the 88 GWM wells in REI 4857 gauged in Q1 2020, 32 wells had screens that intersected the current water table, while the remaining wells had submerged well screens (Figure 3-2). Screen submergence in REI 4857 wells that were gauged in Q1 2020 ranged from 0.17 to 25.72 ft (KAFB-106025) (Table 3-3).

The interface probe was checked for proper operation and cable integrity prior to each use and was decontaminated after gauging each well. If LNAPL was detected using the interface probe, a plastic bailer was used to confirm the presence and thickness of the LNAPL. Additionally, during Bennett pump sampling, every well was checked for the presence of LNAPL prior to the installation of the pump. Depths to LNAPL and groundwater were recorded in the field on well gauging forms (Appendix E-2).

Depth to water in the GWM wells was gauged by three field teams. One dedicated oil-water interface probe (Solinst Model 122 Serial No. 253056) was used to measure water levels in wells that have historically met hazardous waste criteria, while two dedicated oil-water interface probes (Solinst Model 122 Serial No. 253053 and Geotech Serial No. 0001) were used to measure water levels in the remainder of the wells. Depth to water measurement differences between the three interface probes were assessed by measuring depth to water with each interface probe in three GWM wells located south of the source area (KAFB-106027, KAFB-106044, and KAFB-106045) (Appendix E-2). The measurement difference between the two Solinst probes is approximately 0.01 ft. Over a 3-day period, barometric pressure changes at the site can cause water levels in a given well to vary by up to 0.15 ft, even after diurnal variations are taken into account (Kirtland AFB, 2016b). The difference of 0.01 ft measured between the two Solinst probes is minimal as compared to the naturally occurring changes that could exist between measurements taken over the 3-day gauging period. Based on this, corrections were not made to water level measurements taken with these interface probes in Q1 2020. The measurement difference between the Geotech probe and the two Solinst probes was approximately 0.08 ft, 53% of natural groundwater level fluctuations. Therefore, depth to water measurements taken using the Geotech probe were adjusted down by 0.08 ft.

Groundwater elevations from each REI were used to create potentiometric surface maps (Figures 3-2 through 3-4). Horizontal groundwater gradients within the monitoring network are dominated by a radial flow pattern toward depressions in the water table, which are primarily attributable to groundwater extraction.

LNAPL was measured in KAFB-106059, KAFB-106076, and KAFB-106150-484 in Q1 2020 at thicknesses of 0.16, 0.04, and 0.11 ft, respectively (Table 3-3 and Figure 3-5). All three wells with LNAPL are located south of Ridgecrest Drive SE on-Base and within the footprint of the Source Area Plume.

3.2.1 Gauging Deviations

Water level measurements were not obtained from two wells during the Q1 2020 synoptic gauging event. Depth to water in wells KAFB-106063 and KAFB-106064 were not measured during the synoptic

gauging event in January due to the presence of dedicated downhole equipment related to the Environmental Security Technology Certification Program pilot test project for EDB *in situ* biodegradation (ISB), however, water levels were measured prior to sampling in March (Appendix I-6). The water level was measured in KAFB-106211 approximately 1.5 ft above the bottom of the screen. In previous quarters, an interface probe was deployed in this well, but there was no water column to measure; this well will be added to the sampling network after the water level rises enough to allow for passive sampling (approximately 5 ft of water column).

3.3 Groundwater Sampling

Quarterly groundwater samples were collected from 65 wells in the GWM network between January 6 and 17, 2020, using portable low-flow pump systems or passive sampling methods (Table 3-2). Well locations are shown on Figure 3-1, and sentinel well locations are shown on Figure 3-8. Groundwater samples collected for the Q1 2020 monitoring event were analyzed for EDB, BTEX, anions, alkalinity, and metals (Table 3-2). Groundwater samples were analyzed by Eurofins Lancaster Laboratories Environmental, LLC located in Lancaster, Pennsylvania, which maintains current Department of Defense (DoD) Environmental Laboratory Accreditation Program certification. The groundwater purge and sampling forms are provided in Appendix E-3 and the chain-of-custody forms are provided in Appendix E-4.

For low-flow sampling, well water was purged continuously at a flow rate between 0.5 and 1 liter per minute, while field parameters (turbidity, temperature, dissolved oxygen [DO], specific conductivity, pH, and oxidation reduction potential [ORP]) were measured and recorded every 5 minutes. Samples were collected after parameters stabilized for three consecutive readings within 10% of one another, or after 1 hour of purging. Field parameters were recorded on the field forms (Appendix E-3). Wells without a dedicated low-flow pump sampling system were designated, based on historical analytical data, as either clean, intermediate, or hazardous. Decontaminated non-dedicated tubing and portable low-flow pumps were used to sample wells designated as clean. The entire sampling assembly was decontaminated following use at each well. Dedicated tubing specific to a given well was used for wells designated as intermediate or hazardous.

Field parameters are not collected as part of the passive sampling methodology, as discussed in more detail in Appendix E-6. Field parameters were measured only from wells that were sampled using the low-flow methodology.

3.3.1 Sampling Deviations

Due to a failure in the sleeve surrounding the passive sampler, insufficient sample volume was available for the full suite of analytes at GWM wells KAFB-106149-484 and KAFB-106S7-451. A partial suite of analytes was collected for these two wells. At KAFB-106149-484, full aliquots were collected for EDB and dissolved metals, and a reduced volume aliquot was collected for total metals; there was insufficient volume to collect aliquots for anions or alkalinity. At KAFB-106S7-451, full aliquots were collected for dissolved metals and nitrate/nitrite, and reduced volume aliquots were collected for EDB and BTEX; there was insufficient volume to collect aliquots for total metals, alkalinity, or the remaining anions (bromide, chloride, sulfate). The reduced aliquots did not affect the analytical results.

3.4 Data Review and Usability Results

The Q1 2020 groundwater analytical data underwent EPA 100% Level 3 data validation by an independent third-party subcontractor, Environmental Data Services, Inc., Virginia Beach, Virginia,

following data verification. Data verification is performed on a data set to ensure method, procedural, and contractual compliance with project-specific requirements and is typically performed by the contractor responsible for data collection. Data validation is an analyte- and sample-specific process that extends the evaluation of analytical data beyond the data verification process to determine the analytical quality of a specific data set.

Data verification and data validation are sequential steps in a data review process that can be performed by either the contractor collecting the data or an independent third-party subcontractor. For this project, verification is performed by the contractor to ensure compliance with the project Quality Assurance Project Plan (QAPjP), Appendix D of the Work Plan for BFF Expansion of the Dissolved-Phase Plume GWTS and associated QAPjP (Kirtland AFB, 2017a), and is performed during or at the completion of field or laboratory data collection activities. EPA Stage 3 data validation is conducted by Environmental Data Services, Inc. and incorporates the data verification process and further evaluates data quality based on analytical method-specific quality control criteria and DoD Quality Systems Manual requirements as documented in the project QAPjP. Further details regarding EPA data verification and validation processes are documented in Figures 2 and 4 of the Guidance on Environmental Data Verification and Data Validation (EPA, 2002) that are provided in Appendix F-3.

Subsequent to performing data validation, the data qualifiers were uploaded to the EQuIS® project database. Data were further assessed for accuracy, precision, representativeness, comparability, completeness, and sensitivity and determined to achieve the project data quality objectives in Q1 2020. All groundwater data presented and discussed in this report are final validated data. The Environmental Resources Program Information Management System data deliverable is scheduled for submittal in April 2020. The Data Quality Evaluation Report for groundwater samples collected in Q1 2020 is provided in Appendix F-1, and the final laboratory data reports are included in Appendix F-2.

3.5 Project Screening Levels

The project screening levels (PSLs) were selected to satisfy the requirements of the Kirtland AFB RCRA Permit (NMED, 2010) as the lower of:

- New Mexico Water Quality Control Commission (NMWQCC) standards per the New Mexico Administrative Code, Title 20.6.2.3103, Standards for Groundwater of 10,000 milligrams per liter (mg/L) Total Dissolved Solids Concentration or Less (New Mexico Administrative Code, 2018).
 For metals, the NMWQCC standard applies to dissolved metals and total mercury.
- EPA National Primary Drinking Water Regulations, maximum contaminant levels (MCLs) and secondary MCLs, and Title 40 Code of Federal Regulations (CFR) Parts 141 and 143.

If no MCL or NMWQCC standard existed for an analyte, the PSL used was the EPA Tapwater Regional Screening Level (EPA, 2019).

The analytical method utilized to analyze for total nitrate/nitrite nitrogen concentrations (Method 353.2) cannot identify individual nitrate and nitrite concentrations without modification. Typically, in highly oxidizing and near neutral aquifers, nitrate is the primary nitrogen species found in groundwater (Langmuir, 1997). Previous studies in the Albuquerque Basin have used total nitrate/nitrite nitrogen concentrations as equivalent to nitrate nitrogen concentrations (Longmire, 2016; Anderholm et al., 1995). Therefore, total nitrate/nitrite nitrogen concentrations were compared to the 10 mg/L MCL for nitrate in this report.

Groundwater MCLs or PSLs for all analytes are provided in the groundwater analytical data tables included in this report.

3.6 Groundwater Quality Data

Groundwater samples collected for the Q1 2020 monitoring event were analyzed for EDB, while select wells were also analyzed for BTEX, total metals (arsenic, lead, calcium, magnesium, potassium, and sodium), dissolved metals (iron and manganese), anions (bromide, chloride, sulfate, and nitrate/nitrite nitrogen), and alkalinity (Table 3-2). Alkalinity, sulfate, dissolved iron, and dissolved manganese concentrations provide direct and indirect evidence of anaerobic conditions and thus are important indicators of bioremediation (Section 3.6.5). Contaminant concentrations were compared to their respective MCLs or PSLs and are discussed in the following sections. The analytical results for field duplicate samples are presented in the tables and were used to assess field and laboratory analytical precision. However, field duplicate results are not discussed in this text for comparison purposes unless otherwise noted and duplicate data are not provided on figures. The results for the duplicate sample analyses are included in the Data Quality Evaluation Report (Appendix F-1).

Analytical data for both organic and inorganic compounds for the newly added wells are provided in Table 3-4. Data for organic compounds for GWM wells are provided in Table 3-5 and inorganic compounds in Table 3-6. The status of baseline sampling of newly added wells is provided in Table 3-7. Historical EDB and BTEX results for the previous three samples are provided in Tables 3-8 and 3-9, respectively. EDB and BTEX concentrations are presented on Figures 3-6 and 3-7, respectively.

3.6.1 Organic Compounds Analytical Results

3.6.1.1 EDB Analytical Results

Groundwater samples from 65 wells were analyzed for EDB in Q1 2020. This includes 37 wells located north of Ridgecrest Drive SE and 28 wells located south of Ridgecrest Drive SE. EDB analytical results are presented in Tables 3-4 and 3-5, and on Figure 3-6. EDB concentrations exceeded the EPA MCL of 0.05 micrograms per liter (µg/L) in samples from 10 wells.

- None of the EDB exceedances were from wells that are north of Ridgecrest Drive SE.
- The 10 EDB exceedances were from wells that are south of Ridgecrest Drive SE, eight of which were on-Base in the immediate vicinity of or within the BFF. The highest EDB concentrations south of Ridgecrest Drive SE were detected in the groundwater samples collected from well KAFB-106153-484 and newly added well KAFB-106S1-447 (460 and 450 μg/L, respectively).

3.6.1.2 BTEX Analytical Results

Groundwater samples from 24 wells were analyzed for BTEX in Q1 2020. These wells are located south of Ridgecrest Drive SE. BTEX analytical results are presented in Tables 3-4 and 3-5, and on Figure 3-7. There were no exceedances of BTEX compounds in GWM wells located near drinking water supply wells in Q1 2020. BTEX was detected in areas consistent with previous Source Area Plume designations.

Benzene exceeded the 5.0 μg/L MCL in eight wells located south of Ridgecrest Drive SE (Figure 3-7); these exceedances were in REI 4857. The highest benzene concentration was detected in KAFB-106S2-451 (9,800 μg/L) in the Source Area Plume.

- Toluene exceeded the 1,000 μg/L PSL in six wells located south of Ridgecrest Drive SE (Figure 3-7); these exceedances were in REI 4857. The highest toluene concentration was detected in KAFB-106S2-451 (12,000 μg/L) in the Source Area Plume.
- Ethylbenzene exceeded the 700 μg/L PSL in five wells located south of Ridgecrest Drive SE (Figure 3-7); these exceedances were in REI 4857. The highest ethylbenzene concentration was detected in KAFB-106S5-446 (1,600 μg/L), located off-Base in the northern extent of the Source Area Plume.
- Total xylenes exceeded the 620 μg/L PSL in six wells located south of Ridgecrest Drive SE (Figure 3-7); these exceedances were in REI 4857. The highest total xylenes concentration was detected in KAFB-106S2-451 (4,600 μg/L), located in the Source Area Plume.

3.6.2 Inorganic Compounds Analytical Results

Inorganic compounds include total metals (arsenic, lead, calcium, magnesium, potassium, and sodium), dissolved metals (iron and manganese), and anions (bromide, chloride, sulfate, and nitrate/nitrite nitrogen). A total of 23 wells were sampled for inorganic compounds in Q1 2020; five of these wells are located north of Ridgecrest Drive SE, and 18 are located south of Ridgecrest Drive SE. Inorganic analytical results are presented in Tables 3-4 and 3-6. Inorganic sampling is conducted to assess geochemical aquifer conditions. Inorganic sample results are evaluated and discussed in the Q2 and Q4 reports when sufficient data are collected to evaluate geochemical aquifer conditions.

3.6.3 Sampling Results for U.S. Geological Survey Sentinel Wells

USGS monitors 14 sentinel wells between the Kirtland AFB BFF EDB plume and the Albuquerque Bernalillo County Water Utility Authority water supply wells as a means of providing independent observation of water quality in the vicinity of the Albuquerque Bernalillo County Water Utility Authority water supply wells. Samples are collected from these sentinel wells quarterly. For Q1 2020, these samples were collected using dual membrane samplers from January 6 to 9, 2020. The samples were analyzed for VOCs and EDB by the USGS National Water Quality Laboratory using Method O-4127-96 (Connor et al., 1998). No detections were found in the Q1 2020 samples. The USGS transmittal letter, including the Q1 2020 data results, is provided in Appendix E-5.

3.6.4 Field Parameters

Field parameters were collected from 10 wells located south of Ridgecrest Drive SE that were sampled using the low-flow sampling method. Field parameter data are provided on sample collection logs provided in Appendix E-3.

3.6.5 Bioremediation Indicators

Bioremediation indicators are not assessed in Q1 and the third quarter due to the limited data set.

3.7 Groundwater Monitoring Well Network Operation and Maintenance

The GWM well network was inspected to ensure that the condition of all protective covers and wellheads met the intended requirements for performance and security. During the inspection period, cleaning and maintenance were performed and all GWM wells were determined to be fully serviceable.

As of the end of Q1 2020, 92 dedicated Bennett pumps have been removed from the GWM well network as part of a transition to passive sampling for the monitoring program. No dedicated Bennett pumps were removed during Q1 2020. Although several wells are sampled using portable Bennett pumps, ongoing issues with this sampling system continue to arise due to biofouling of wells, corrosion of components, and mechanical failure due to aging parts.

4. DRINKING WATER SUPPLY WELL MONITORING

Three drinking water supply wells (KAFB-003, KAFB-015, and KAFB-016) provide drinking water to on-Base employees and tenants of Maxwell Housing, which is located off-Base. One drinking water supply well (ST106-VA-2) provides drinking water to Veterans Affairs (VA) Medical Center patients, employees, and visitors. These drinking water wells are community water systems that are regulated by the NMED Drinking Water Bureau in accordance with the Safe Drinking Water Act.

As part of the monitoring associated with the BFF site, these wells are sampled monthly and analyzed for EDB and BTEX due to their proximity to the BFF plume containing dissolved-phase EDB and benzene.

4.1 Drinking Water Supply Well Sampling and Analysis Procedures

Drinking water supply wells KAFB-003, KAFB-015, KAFB-016, and ST106-VA-2 were sampled in January, February, and March 2020. Field measurements, sample collection, packaging, shipping, and analyses were performed in accordance with the Vadose Zone Coring, Vapor Monitoring, and Water Supply Sampling Work Plan and associated QAPjP (Kirtland AFB, 2017c). Field DO, pH, ORP, conductivity, and temperature were measured using an YSI Professional Plus multiparameter water quality probe; turbidity was measured using a Hach 2100Q or Geotech portable turbidity meter. Instrument calibrations were performed at the start of each day of the sampling event to ensure accurate readings.

Prior to sample collection, the pump at each well ran for a minimum of 15 minutes. The sample port at each drinking water well head was then opened for 60 seconds prior to sampling to purge any entrained sediment. Following filling, the sample containers were immediately sealed, checked for headspace bubbles, labeled, and put into an iced cooler. Daily quality control reports are provided in Appendix G-1. Completed sample collection logs and chain-of-custody forms are provided in Appendix G-2. Drinking water supply samples were collected and submitted for the following analyses:

- EDB using EPA Method 504.1
- BTEX using EPA Method 524.2.

Samples were submitted to Eurofins TestAmerica Laboratories in Savannah, Georgia, for analytical testing. Analytical results were validated by Environmental Data Services, Inc. The Data Quality Evaluation Reports are provided in Appendix H-1. The Eurofins TestAmerica Laboratories Analytical Reports for January, February, and March 2020 are provided in Appendix H-2.

4.2 Data Review and Usability

The Q1 2020 drinking water analytical data underwent a 100% Level 3 data validation performed by Environmental Data Services, Inc., Virginia Beach, Virginia, following data verification. The data verification and validation steps are discussed in detail in Section 3.4.

All data were valid based on necessary criteria, and no data were qualified as rejected. The technical data completeness was 100%. The data met data quality objectives and were appropriate for use in project decision-making. The quality control parameter and data quality indicator (precision, bias [accuracy], representativeness, comparability, completeness, and sensitivity) evaluation results are provided in the Data Quality Evaluation Report and Data Validation Report provided in Appendix H-1. Final validated data are provided in Table 4-1.

4.3 Drinking Water Supply Well Water Quality for Q1 2020

All four wells continue to show no detectable concentrations of EDB or BTEX in the drinking water that is supplied to Kirtland AFB employees and tenants and VA Medical Center patients, employees, and visitors. Analytical results for January, February, and March 2020 are presented in Table 4-1, Figure 4-1, and Appendix H-2. Analytical data were compared to drinking water MCLs and Secondary MCLs. The MCLs for drinking water supply wells are established in the EPA National Primary Drinking Water Regulations, MCLs and Secondary MCLs, Title 40 CFR Parts 141 and 143.

5. GROUNDWATER TREATMENT SYSTEM OPERATION AND PERFORMANCE

This section presents Q1 2020 operations, performance metrics, system expansion activities, maintenance activities of the GWTS, and a summary of the EDB ISB pilot test activities.

Appendices pertinent to GWTS operation and performance are:

- Appendix I-1 GWTS Plant O&M Documentation
- Appendix I-2 New Mexico 811 Line Locate Tickets
- Appendix I-3 GWTS Performance Sample Collection Logs
- Appendix I-4 Data Quality Evaluation Report GWTS Samples
- Appendix I-5 Data Packages GWTS Samples.
- Appendix I-6 EDB *In Situ* Biodegradation Pilot Test Quarterly Summary.

5.1 Groundwater Treatment System Operation

The GWTS is part of the interim measure performed pursuant to the corrective action provisions in Kirtland AFB's RCRA Permit. The purpose of the interim measure is to collapse and treat the dissolved-phase EDB plume within the TCZ. The GWTS was operated during Q1 2020 to treat groundwater extracted from the distal portion of the plume north of Ridgecrest Drive SE, and is comprised of:

- Four extraction wells (KAFB-106228, KAFB-106233, KAFB-106234, and KAFB-106239);
- Conveyance piping;
- A dual train 800-gallon per minute (gpm) maximum capacity carbon treatment system located within the GWTS building; and
- Effluent conveyance lines discharging to either the Tijeras Arroyo Golf Course main pond (GCMP) or gravity-fed injection well KAFB-7 (Figure 5-1).

In addition to the operational procedures outlined in the O&M Plan (NMED, 2016; Kirtland AFB, 2016a, 2017e, 2018c), the GWTS is also subject to the terms of Class V Underground Injection Well Discharge Permit (DP) No. 1839 (DP-1839) (NMED, 2017b) for injecting treated groundwater to KAFB-7. DP-1839 became effective on April 28, 2017. The requirements associated with the conditions of DP-1839 and the location of reporting requirements in this report are summarized in Table 5-1.

5.1.1 Groundwater Treatment System Treatment Volumes and Percentage Run Time

5.1.1.1 Quarterly Run Time

During Q1 2020, the GWTS treated 50,111,500 gallons of groundwater; 14,707,400 gallons was discharged to the GCMP, and 35,404,100 gallons was discharged to injection well KAFB-7. During Q1 2020, Trains 1 and 2 treated 23,291,600 and 26,819,900 gallons, respectively. Table 5-2 provides a cumulative summary of groundwater quantities extracted, treated, and discharged.

For the purpose of run time evaluation, GWTS operation is defined as the time when groundwater was being pumped from at least one extraction well and was subsequently treated and discharged. Table 5-3

provides a monthly and quarterly summary of the extraction well performance, including individual extraction well run times.

From January 1 through March 31, 2020, the GWTS was operational 99% of the time (Table 5-3), which is similar to Q4 2019. Planned and unplanned system shutdowns affecting GWTS overall run time during Q1 2020 are described in Sections 5.3.1 and 5.3.3.

5.1.2 Extraction Well Performance Metrics

The following subsection provides a summary of the performance metrics for the four extraction wells. Quarterly extraction well performance data required for DP-1839 reporting compliance are provided in Table 5-3. Average operational extraction flow rates do not include flow rates during downtime. Well performance figures are provided in Appendix I-1.

5.1.2.1 Quarterly Extraction Rates

During Q1 2020, three extraction wells were operated based on GCMP capacity with the following priority: Extraction wells KAFB-106228 and KAFB-106239 continue to capture EDB mass based on treatment system performance monitoring and wellhead sampling, and thus are considered the highest priority for operation of the GWTS. Well KAFB-106234, which serves as a redundant distal plume capture well for protection of the municipal water supply wells northeast of the BFF groundwater plume is the next priority for the GWTS. Well KAFB-106233 is the lowest priority due to lack of EDB plume capture based on monitoring data showing non-detect or trace concentrations from 2017 to present. The flow from well KAFB-106233 was reduced during maintenance activities and periods when the GWTS effluent was otherwise limited, and therefore KAFB-106233 had limited run time during Q1 2020.

Water was extracted from KAFB-106228 during Q1 2020 at an average operational flow rate of 143.7 gpm with a run time of 98% (Table 5-3).

Water was extracted from KAFB-106234 during Q1 2020 at an average operational flow rate of 175.7 gpm with a run time of 98% (Table 5-3).

Water was extracted from KAFB-106239 during Q1 2020 at an average operational flow rate of 75.2 gpm with a run time of 96% (Table 5-3).

Water was extracted from KAFB-106233 during Q1 2020 at an average operational flow rate of 161.8 gpm with a run time of 0.4% (Table 5-3).

5.1.3 Injection Well Performance Metrics

Quarterly injection well performance data required for DP-1839 reporting compliance are provided in Table 5-4. Injection well performance figures are provided in Appendix I-1. Groundwater was injected into KAFB-7 during Q1 2020 at an average operational flow rate of 411.4 gpm with a run time of 74.7% (Table 5-4).

5.2 Groundwater Treatment System Performance Monitoring and Ethylene Dibromide Removal

GWTS performance monitoring is performed in conformance with the most recently approved Work Plan (Kirtland AFB, 2017a) as well as Appendix L of the O&M Plan, Sampling and Analysis Plan, and any subsequent revisions. DP-1839 provides additional sampling criteria. Table 2 of DP-1839 provides a list of the constituents of concern that are most frequently monitored at the GWTS (NMED, 2017b). Q1 2020 GWTS analytical performance metrics and EDB mass removal are discussed in the following sections.

5.2.1 Quarterly Sampling and Analysis

Water samples from Train 1 and Train 2 were collected monthly from the untreated influent (sample identifications GWTS-BFF-INF1 and GWTS-BFF-INF2), from a port located after the lead granular activated carbon (GAC) vessel (sample identifications GWTS-BFF-GAC1 and GWTS-BFF-GAC2) but before the final GAC vessel, and from the treated effluent (sample identifications GWTS-BFF-EFF1 and GWTS-BFF-EFF2) in Q1 2020. These samples were analyzed for EDB, BTEX, and dissolved iron and manganese. In previous reports, the samples collected between the two GAC vessels were referred to as post-GAC samples, but will hereafter be referred to as mid-GAC samples to clarify that they are not effluent samples. EDB concentrations and mass removal for Q1 2020 are summarized in Table 5-5. Sample results and effluent discharge limits are provided in Table 5-6 for Train 1, Table 5-7 for Train 2, and Table 5-8 for the extraction wells. GWTS performance sample collection logs are provided in Appendix I-3.

In Q1 2020, an estimated 3,145 milligrams (mg) of EDB was captured in the lead GAC vessels. Of this total, 1,073 mg was removed by Train 1 and 2,072 mg was removed by Train 2. Quantities of mass were calculated by taking the sum of each monthly influent concentration multiplied by the respective total weekly treated volume (Table 5-5).

Concentrations of EDB were detected in the influent samples of Train 1 below the $0.05~\mu g/L$ MCL at estimated concentrations of 0.016~J, 0.016~J, and $0.012~J~\mu g/L$ in January, February, and March 2020, respectively (Table 5-6). The J-qualifier denotes that the analyte was positively identified, but at a low enough concentration that the associated numerical value is estimated. Concentrations of EDB were detected in the influent samples of Train 2 at estimated concentrations of 0.021~J, 0.025~J, and $0.016~J~\mu g/L$ in January, February, and March 2020, respectively (Table 5-7). BTEX was not detected in any influent samples collected from either train during Q1 2020.

Dissolved manganese was detected below the PSL in all monthly influent samples collected from Train 2 in Q1 2020, but was not detected in any monthly influent samples collected from Train 1 (Tables 5-6 and 5-7). Dissolved iron was not detected in any monthly influent samples collected from either Train 1 or Train 2 (Tables 5-6 and 5-7).

Concentrations of EDB, BTEX, dissolved iron, and manganese were non-detect in all mid-GAC and effluent monthly samples collected from Train 2 during Q1 2020 (Table 5-7). Concentrations of BTEX and dissolved manganese were non-detect in all mid-GAC and effluent monthly samples collected from Train 1 during Q1 2020 (Table 5-6). Concentrations of EDB were detected in the mid-GAC samples of Train 1 at estimated concentrations of 0.013 J and 0.012 J µg/L in January and February 2020, respectively. EDB was not detected in the Train 1 mid-GAC sample in March 2020, or in any effluent samples of Train 1 during Q1 2020. Dissolved iron was detected below the PSL in the March 2020 effluent sample of Train 1.

All four extraction wells (KAFB-106228, KAFB-106233, KAFB-106234, and KAFB-106239) were sampled in January 2020 for EDB, BTEX, dissolved iron and manganese, and total metals (calcium, magnesium, potassium, sodium, arsenic, and lead). EDB was detected at concentrations below the PSL in the samples from KAFB-106228 and KAFB-106234 (Table 5-8). EDB was not detected in KAFB-106233 or KAFB-106239 (<0.019 μ g/L). BTEX and dissolved iron were not detected in any extraction well samples. Dissolved manganese was detected only in KAFB-106239 but below the PSL. All total metals analyzed (calcium, magnesium, potassium, sodium, arsenic, and lead) were detected below the PSL in all four extraction wells.

5.2.2 Data Validation

The GWTS analytical data from Q1 2020 underwent EPA Stage 3 data validation by Environmental Data Services, Inc., Virginia Beach, Virginia, following data verification. The data verification and validation steps are discussed in detail in Section 3.4.

Upon completion of the verification and validation process, the data were assessed for accuracy, precision, representativeness, comparability, completeness, and sensitivity to determine if the project data quality objectives were achieved and deemed usable for their intended purpose. The data validation results are included in the Data Quality Evaluation Report provided in Appendix I-4 and the final laboratory data reports provided in Appendix I-5.

5.3 Groundwater Treatment System Maintenance and Expansion Activities

Maintenance activities at the GWTS were performed in accordance with the O&M Plan (NMED, 2016; Kirtland AFB, 2016a, 2017e, 2018c). Maintenance activities performed at the GWTS in Q1 2020 are discussed in the following sections.

5.3.1 Routine Maintenance Activities

Routine maintenance is any activity described as such in the GWTS O&M Plan (NMED, 2016; Kirtland AFB, 2016a, 2017e, 2018c). A summary of routine maintenance activities is provided below.

5.3.1.1 Quarterly Routine Maintenance Activities

During Q1 2020, the effluent bag filters for Train 1 were changed out on March 26, 2020, and the effluent bag filters for Train 2 were changed out on March 27, 2020. Influent bag filters for Train 1 were changed out on March 30, 2020. Influent bag filters were not changed out for Train 2 in Q1 2020 as they did not reach the differential pressure requiring change outs (NMED, 2016; Kirtland AFB, 2016a, 2017e, 2018c). The differential pressure along the lead GAC vessel on Train 1 was 1.1 pounds per square inch (psi) on January 2, 2020; and, on March 31, 2020, the differential pressure was 1.2 psi (Appendix I-1). On January 2, 2020, the differential pressure along the lead GAC vessel of Train 2 was 3.0 psi. The differential pressure in the lead GAC of Train 2 was 4.0 psi as of March 31, 2020.

The influent basket strainers were cleaned 15 times for Train 1 and 33 times for Train 2 throughout Q1 2020. The effluent Wye-strainers were cleaned two times for both Train 1 and Train 2 throughout Q1 2020. Wye-strainers/basket strainers were cleaned to maintain equalization of the influent tanks and prevent cavitation at the influent pump intakes. The Wye-strainers/basket strainers accumulate biologic materials coming in with the influent.

The GWTS routine maintenance schedule is provided in Table 5-9 and non-routine maintenance activities that were performed during Q1 2020 are discussed in Section 5.3.3 and in Table 5-10.

5.3.2 Conveyance Line Security and Administrative Controls

Kirtland AFB is registered as a line-owner with New Mexico 811 for the off-Base portion of the conveyance lines. U.S. Air Force permits are required for all on-Base excavation projects.

5.3.2.1 Quarterly Conveyance Line Security

During Q1 2020, Kirtland AFB responded to five off-Base tickets requested through New Mexico 811 (Appendix I-2). There were no conveyance line breaches and all off-Base conveyance lines remained intact.

5.3.3 Non-Routine Maintenance Activities

Non-routine maintenance activities are defined as maintenance items that fall outside of the scope of the GWTS O&M Plan (NMED, 2016; Kirtland AFB, 2016a, 2017e, 2018c) but need to be addressed in order to maintain consistent GWTS operation. A summary of shutdowns associated with non-routine maintenance activities occurring during Q1 2020 is provided on Table 5-10. Major non-routine maintenance performed in Q1 2020 is listed below.

5.3.3.1 Quarterly Non-Routine Maintenance Activities

On October 22, 2019, KAFB-106233 was temporarily taken offline to maintain the water level in injection well KAFB-7 and prevent high leveling the well during the winter months when the amount of water that can be diverted to the GCMP is minimal. KAFB-106233 remains temporarily offline pending KAFB-7 rehabilitation which is scheduled for May 2020.

On February 22, 2020, 6-inch Val-Matic check valves were installed on the effluent lines of Train 1 and Train 2 (one check valve per train).

Extraction well KAFB-106239 was disinfected on February 26, 2020. Extraction well disinfection was performed in accordance with the Standard Operating Procedure provided as Appendix R to the O&M Plan (NMED, 2016; Kirtland AFB, 2016a, 2017e, 2018c). The Standard Operating Procedure was approved by NMED on August 6, 2018 (NMED, 2018c). The analytical sampling suites for pre-treatment and post-treatment groundwater samples were approved on November 16, 2018 (NMED, 2018d).

Pre- and post-treatment samples were analyzed for bromate and chlorite using EPA Method E300.1. Perchlorate was analyzed using EPA Method E331.0. Bromate and chlorite were not detected in either sample. Perchlorate was detected at concentrations ranging from 0.12 to 0.14 μ g/L, below the PSL of 14 μ g/L, in both samples (Table I-1-5). Groundwater from the Middle Rio Grande Basin has naturally occurring perchlorate concentrations ranging from 0.12 to 1.8 μ g/L (Plummer et al., 2006).

On March 6, 2020, the Train 2 effluent pump skid motor was replaced due to extensive wear on the bearings caused by standard use and aging of the motor.

5.3.4 Effluent Conveyance Line Integrity

Final retesting of the effluent conveyance line segment between the changeover valve and KAFB-7 will be performed after rehabilitation of KAFB-7 occurs. At that time a new surface-mounted flow control valve will be installed. The current valve is no longer sealing correctly; and while this does not result in leakage onto the ground surface, the failure to seal prevents proper line pressure testing. The seal integrity of the valve was tested again on January 24, 2020, with no success. The valve is scheduled for replacement in June 2020.

5.4 Ethylene Dibromide In Situ Biodegradation Pilot Test Quarterly Summary

The EDB ISB pilot test has been ongoing on Kirtland AFB. It is being performed directly south of Randolph Avenue, near the BFF groundwater source area. The main objective of the pilot test is to investigate *in situ* anaerobic bioremediation of EDB in groundwater. This pilot test is being completed under the NMED-approved EDB In Situ Biodegradation Pilot Test Work Plan (Kirtland AFB, 2016c).

Several new wells and existing monitoring wells (KAFB-106064 and KAFB-106063) are being utilized for this pilot test. The new wells include extraction wells KAFB-106EX1 and KAFB-106EX2; injection well KAFB-106IN1; and nested monitoring wells KAFB-106MW1-S, KAFB-106MW1-I, KAFB-106MW2-S, and KAFB-106MW2-I. Underground conveyance piping was also constructed to carry groundwater between the extraction and injection wells, directing the flow through an aboveground installation where amendments and/or tracers are introduced to the recirculated groundwater.

The pilot test was implemented in four phases, each briefly described below:

- Phase 1—Evaluate baseline conditions and the distribution of recirculated water using tracer amendments.
- *Phase 2*—Evaluate biostimulation in the subsurface after distribution of treatment amendments in recirculated groundwater.
- *Phase 3*—Additional evaluation of biostimulation in the subsurface after distribution of treatment amendments in recirculated groundwater.
- *Phase 4*—Continued monitoring with no active extraction/injection.

Per the Work Plan (Kirtland AFB, 2016c), Phase 3 was to consist of both biostimulation and bioaugmentation; however, after review of field results from both Phase 1 and Phase 2, it was determined that bioaugmentation was not warranted. Due to the success of biostimulation during Phase 2, Phase 3 was modified to further evaluate biostimulation and a Phase 3 Notification Letter was submitted to the NMED on July 26, 2018. The modified Phase 3 was approved by the NMED in a letter dated August 7, 2018 (NMED, 2018e).

Phase 4 of the pilot test, long-term rebound monitoring, began on November 19, 2018 and continues into 2020. One sampling event was conducted during 2019 as a part of Phase 4, occurring from January 16 through 21, 2019. This sampling event occurred approximately 2 months after the Phase 3 passive period was concluded, in accordance with the EDB In Situ Biodegradation Pilot Test Work Plan (Kirtland AFB, 2016c). The recirculation system was not operated during Phase 4, except briefly during extraction well sampling. A report summarizing activities associated with the pilot test through the first Phase 4 sampling event was submitted on April 18, 2019 in accordance with the NMED letter dated February 25, 2019

(NMED, 2019). In order to evaluate longer-term performance of ISB, wells associated with the pilot test will continue to be sampled on a quarterly basis beginning in 2020.

During Q1 2020, downhole equipment at two extraction wells (KAFB-106EX1 and KAFB-106EX2) and one injection well (KAFB-106IN1) was removed to assess the condition of the well infrastructure. The downhole infrastructure (drop pipe, pumps, injection flow control valve) was removed and inspected, and each well was video logged. Dedicated bladder pumps were installed in KAFB-106EX1 and KAFB-106IN1. Due to the presence of LNAPL, a dedicated bladder pump was not installed in extraction well KAFB-106EX2 during Q1 2020. The first quarterly long-term monitoring sampling event of 2020 was conducted from March 11 through 12, 2020. A more detailed discussion of Q1 2020 ISB pilot study activities and analytical results are included in the ISB Quarterly Summary Memorandum included as Appendix I-6.

6. INVESTIGATION-DERIVED WASTE

During Q1 2020, both hazardous and non-hazardous investigation-derived waste (IDW) were generated. Non-hazardous IDW consisted of liquids that were sourced from GWM operations. Liquid hazardous waste was generated during routine GWM activities performed during the quarter. There was no drilling-related solid or liquid IDW generated or disposed of during Q1 2020.

In addition to the IDW generated specifically during Q1 2020, non-hazardous IDW generated during Q4 2018 and 2019 and Q1 2020 from GWM activities was managed during Q1 2020. This section discusses the details of waste generated, disposed of, and managed during the quarter.

6.1 Non-Hazardous Investigation-Derived Waste

Non-hazardous IDW liquids comprised the majority of waste volume generated during the quarter. This waste was generated from quarterly GWM sampling activities. Appendices J-1 and J-2 provide specific information regarding the non-hazardous liquid and solid IDW generated and disposed of during Q1 2020.

6.1.1 Groundwater Monitoring Liquid Investigation-Derived Waste

Non-hazardous IDW purge water collected during sampling of the GWM wells was placed in 55-gallon plastic (poly) drums. The drums were sealed with matching plastic lids with steel, locking-ring collars, labeled with vinyl non-hazardous waste labels, and transferred to the designated non-hazardous IDW yard located on Kirtland AFB. Small volumes of IDW water, typically generated from the sampling of drinking water wells, were placed in labeled, 5-gallon plastic buckets (pails) with sealing lids.

Eligibility for discharge of non-hazardous liquid IDW to the GWTS was determined by comparing historical, well-specific data from the previous two quarters to the acceptance criteria of the GWTS. Liquid IDW from monitoring wells that had historically met the GWTS acceptance criteria was discharged to the facility without further review. Liquid IDW sourced from wells with historical data from the previous two quarters that exceeded the GWTS acceptance criteria was held for further evaluation.

For Q1 2020, a total of 421 gallons of non-hazardous water was generated. Of this total volume, 380 gallons of IDW were processed through the GWTS. The water was sourced from GWM well purge activities as well as small volumes from GWM equipment decontamination. In all cases, the water met the GWTS acceptance criteria. All IDW water processed through the GWTS was discharged to the GCMP (Table J-1-1). There was no non-hazardous liquid IDW from other sources collected or disposed of during Q1 2020 (Table J-1-2).

Any liquid IDW that is collected, but not yet processed through the GWTS, is temporarily accumulated in the "Pending Disposal" area of the IDW yard. Typically, this category includes non-hazardous purge water collected during the quarter that meets GWTS acceptance criteria, but was held due to GWTS discharge limitations, O&M activities, or pending disposal approvals. By the end of Q1 2020, no GWM purge water was being held in the "Pending Disposal" category (Table J-1-3).

Any liquid IDW that is collected, but held pending receipt and evaluation of analytical data, is placed in the "Pending Analysis" area of the IDW yard. The total volume of liquid in this area at the end of Q1 2020 was 56 gallons. This consisted of a variety of waste generated from GWM activities, meter calibration fluid, and spent laboratory preservative fluids (Table J-1-4).

6.1.2 Non-Hazardous Drilling Liquid Investigation-Derived Waste

There was no liquid IDW generated or disposed of from drilling activities during Q1 2020 (Table J-1-5).

6.1.3 Non-Hazardous Well Drilling Liquid Investigation-Derived Waste Pending Disposal

There was no well drilling liquid IDW held as "Pending Disposal" at the end of Q1 2020.

6.1.4 Non-Hazardous Solid Waste

There was no non-hazardous, non-routine (GWTS maintenance) solid waste generated or disposed of during Q1 2020 (Appendix J-2, Table J-2-1).

Routine, non-hazardous disposable solid wastes were generated during GWM activities. These included single-use dual membrane samplers, disposable in-line filters, nitrile gloves, and paper trash. These items were disposed of as municipal solid waste and volumes were not tracked.

6.1.5 Non-Hazardous Well Drilling Solid Investigation-Derived Waste

During Q1 2020, there was no non-hazardous solid IDW (soil or mud) managed and disposed of during the quarter (Table J-2-2a). There was no soil or mud waste generated from well drilling activities held as "Pending Disposal" at the end of Q1 2020.

6.1.6 Special Waste Well Drilling Solid Investigation-Derived Waste

Special waste is defined as petroleum-contaminated soil that has total petroleum hydrocarbon concentrations greater than 100 milligrams per kilogram (Subparagraph [i] of Paragraph [13] of Subsection S of 20.9.2.7 New Mexico Administrative Code [2011]). No special waste was generated or disposed of during Q1 2020 (Table J-2-2b). No special waste was held in "Pending Disposal" areas of the IDW yard at the end of Q1 2020.

6.2 Hazardous Investigation-Derived Waste

Hazardous or suspected hazardous IDW is accumulated in one of two RCRA less than 90-day accumulation areas associated with the Kirtland BFF Project. Hazardous waste generated from routine GWM sampling or well maintenance activities (purge or well development water) is placed in the Kirtland AFB BFF RCRA less than 90-day accumulation area. Hazardous or suspected hazardous waste generated during drilling activities is held in the Kirtland AFB Zia Park temporary RCRA less than 90-day accumulation area.

Prior to the start of each quarterly GWM sampling event, a preliminary evaluation is made to identify monitoring wells that are anticipated to generate characteristically hazardous liquid IDW for initial waste segregation purposes. Based on historical analytical data available for each well, the water is suspected to be characteristically hazardous if the concentration of benzene exceeded 500 µg/L (per 40 CFR Part 261.24) in either of the previous two sampling events. Liquid IDW from these wells is managed as a potentially characteristically hazardous waste pending confirmation from laboratory analytical results. The hazardous waste classification code for benzene is D018.

For monitoring wells located in the source area of the groundwater plume that show consistent data that indicate purge water is hazardous, "Generator Knowledge" is used for hazardous waste determination. Use of generator knowledge to determine if solid waste is hazardous is permitted under RCRA regulations 40 CFR 262.11(d)(1).

All liquid hazardous waste (purge or well development water) is placed in 55-gallon steel drums with steel tops and locking rings (UN designation 1A2/Y1.2/100/**). When small volumes (less than five gallons) of waste is generated at a well, a plastic container with threaded top (jerrican) is used to contain the liquid. The jerrican is then placed in a steel, 55-gallon drum for more secure storage. All waste containers are properly labeled, sealed, and placed on secondary containment pallets located within the appropriate less than 90-day accumulation area. The accumulation areas and waste containers are inspected on a weekly basis by trained personnel as required under 40 CFR 262.34.

Solid hazardous wastes are held in either 55-gallon steel drums with steel tops and locking rings or, if volume requires, 20-yard capacity roll-off bins. Bin doors are sealed with an expanding foam to minimize the potential of leaks and the bins are double lined with 10-millimeter plastic liners. Bins have either integrated hard cover tops with ratcheting straps or have removable, heavy-duty vinyl covers that are secured to the bin using heavy-duty rubber straps to protect the contents from weather or access by local fauna. All drums are placed on secondary containment pallets. Roll-off bins are placed on secondary containment composed of plastic sheeting with berm or rolled edges.

Upon receipt of analytical data, the IDW remains in the less than 90-day accumulation area if confirmed to be a hazardous waste. If the IDW is determined to not meet hazardous criteria based on analytical data, the non-hazardous waste is transferred to the "Pending Disposal" area of the non-hazardous IDW yard.

All hazardous waste must be removed from Kirtland AFB and properly disposed of off-Base within the required 90-day accumulation time limit. Hazardous waste is transported off Kirtland AFB after it is properly profiled, manifested, and approved for transport by the Kirtland AFB Hazardous Waste Management Group. Waste is transported by a licensed hazardous waste hauler to a permitted treatment, storage, and disposal facility.

When possible, liquid hazardous waste may be consolidated. This is typically done to combine small volumes of waste generated during passive sampling activities at multiple well sites. Consolidation is also performed to reduce the total number of drums that require offsite disposal. Appendix J-3 provides specific information regarding the hazardous liquid waste disposed of during Q1 2020.

6.2.1 Hazardous Investigation-Derived Waste Volume Q1 2020

During Q1 2020, hazardous purge water was generated from GWM activities. Well maintenance activities from Q4 2019 generated hazardous waste that was also managed in Q1 2020. A total of two drums of hazardous waste were held in the BFF less than 90-day area.

A total of 25 gallons of hazardous waste was disposed of from the BFF less than 90-day accumulation area by the end of Q1 2020. This drum contained consolidated GWM liquids from multiple wells utilizing a passive monitoring sampling technique. Passive monitoring methods generate a small volume of hazardous waste/well making consolidation of waste a routine waste management activity. This waste was removed from the less than 90-day accumulation area for disposal on February 26, 2020, by Advanced Chemical Transport Inc. under Manifest No. 012263976FLE (Table J-3-1).

One drum containing a jerrican with 0.5 gallons of hazardous waste sourced from well KAFB-106149 was held as "Pending Disposal" in the BFF less than 90-day accumulation area at the end of Q1 2020 (Table J-3-2). The 90-day deadline for disposal of this waste is June 17, 2020.

6.2.2 Hazardous Investigation-Derived Waste Volume Quarterly Totals

For the calendar year 2020, Table J-3-3 provides a cumulative total of hazardous waste disposed of from the Kirtland AFB BFF project. As of Q1 2020, a total of 25 gallons was manifested and disposed of in 2020.

7. PROJECTED ACTIVITIES

Q2 2020 will comprise the period between April 1 and June 30, 2020. Planned Q2 2020 activities are summarized below.

Vadose Zone Characterization and Monitoring

- Continue the long-term bioventing test.
- Perform semiannual SVM in Q2 2020.

Groundwater Monitoring

- Perform and report on quarterly GWM in Q2 2020.
- Report quarterly monitoring of USGS sentinel wells (by USGS).

Drinking Water Supply Well Monitoring

• Perform drinking water supply well monitoring monthly for organic compound analysis for the four wells sampled.

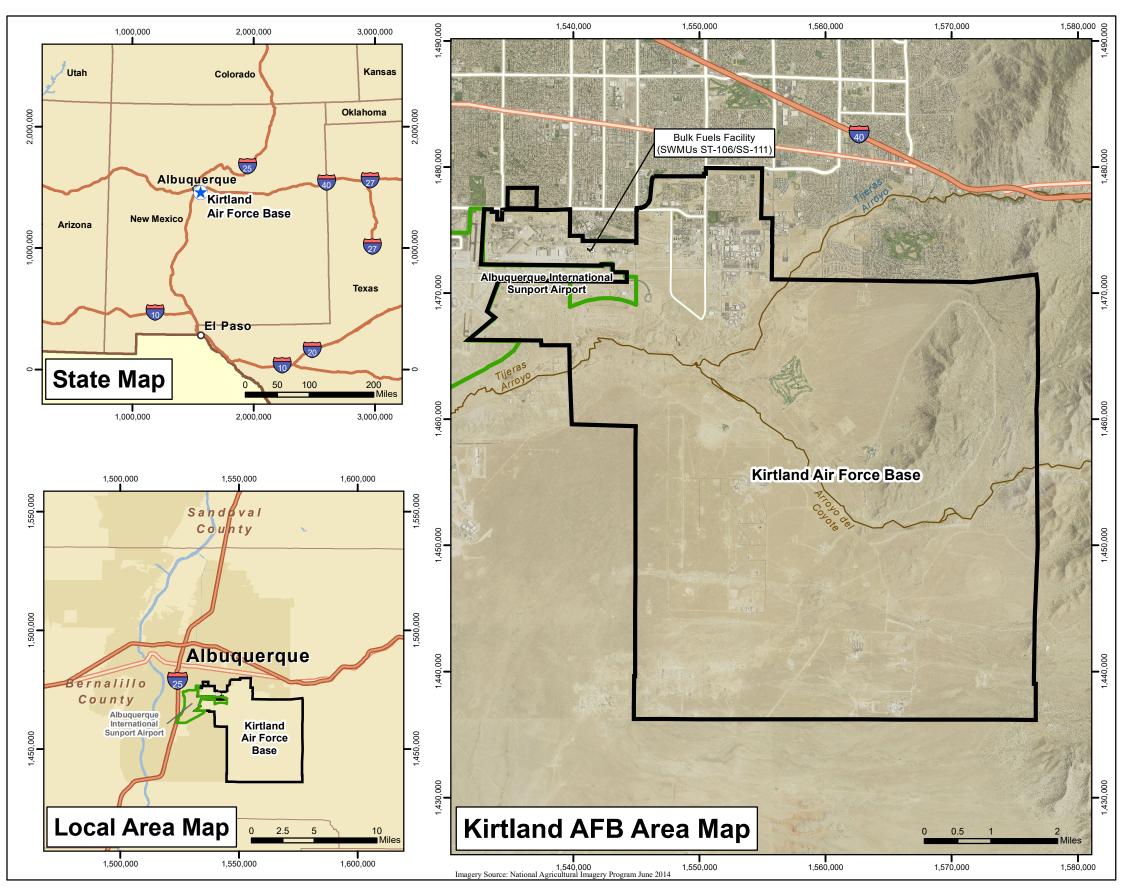
Groundwater Treatment System Operation

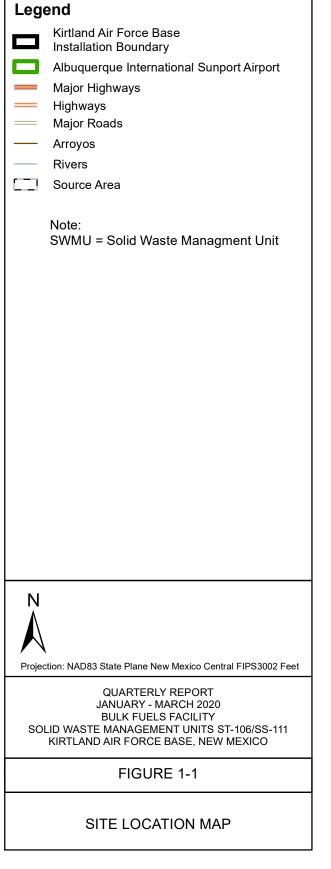
- Continue operating the GWTS and extraction wells KAFB-106228, KAFB-106233, KAFB-106234, and KAFB-106239.
- Perform GWTS well disinfection as required.
- Complete performance assessment of the GWTS extraction system.

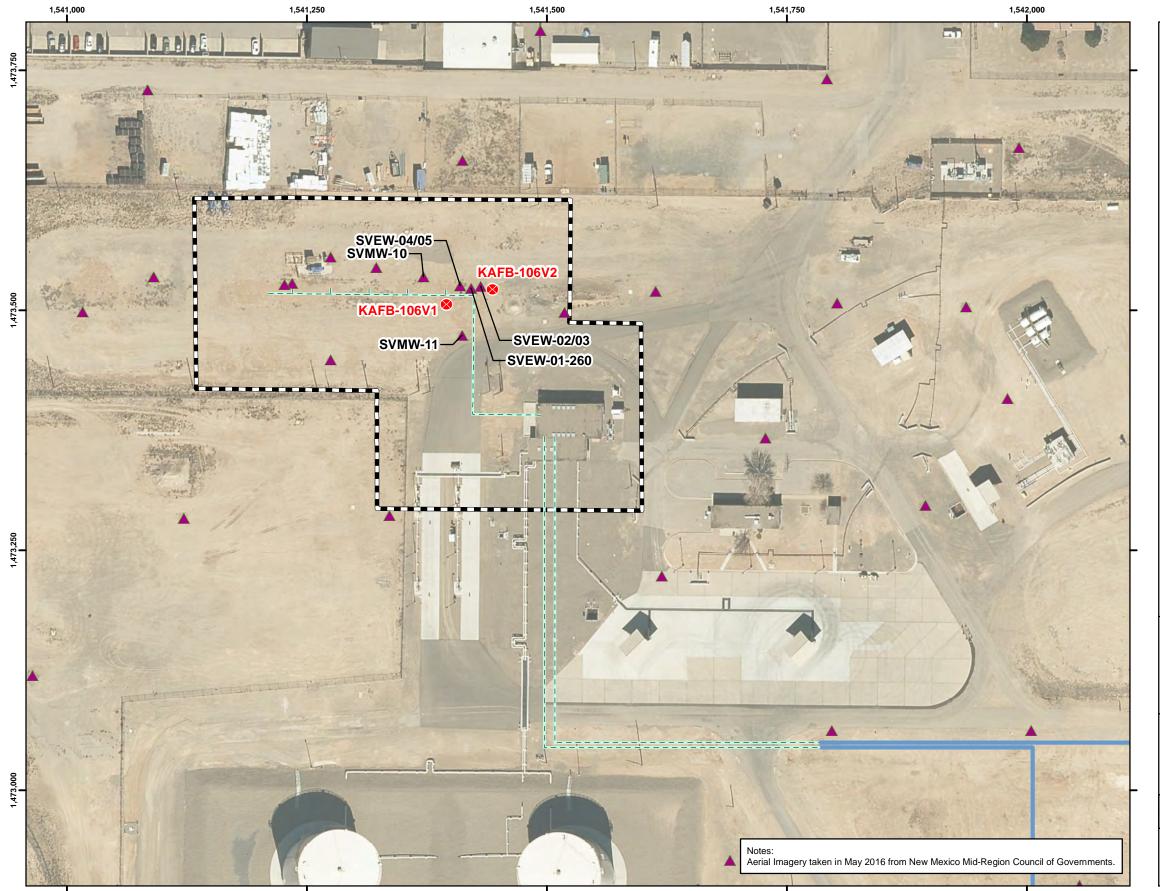
Reporting

• Prepare a quarterly report to detail the activities conducted during the quarter.

8. REFERENCES

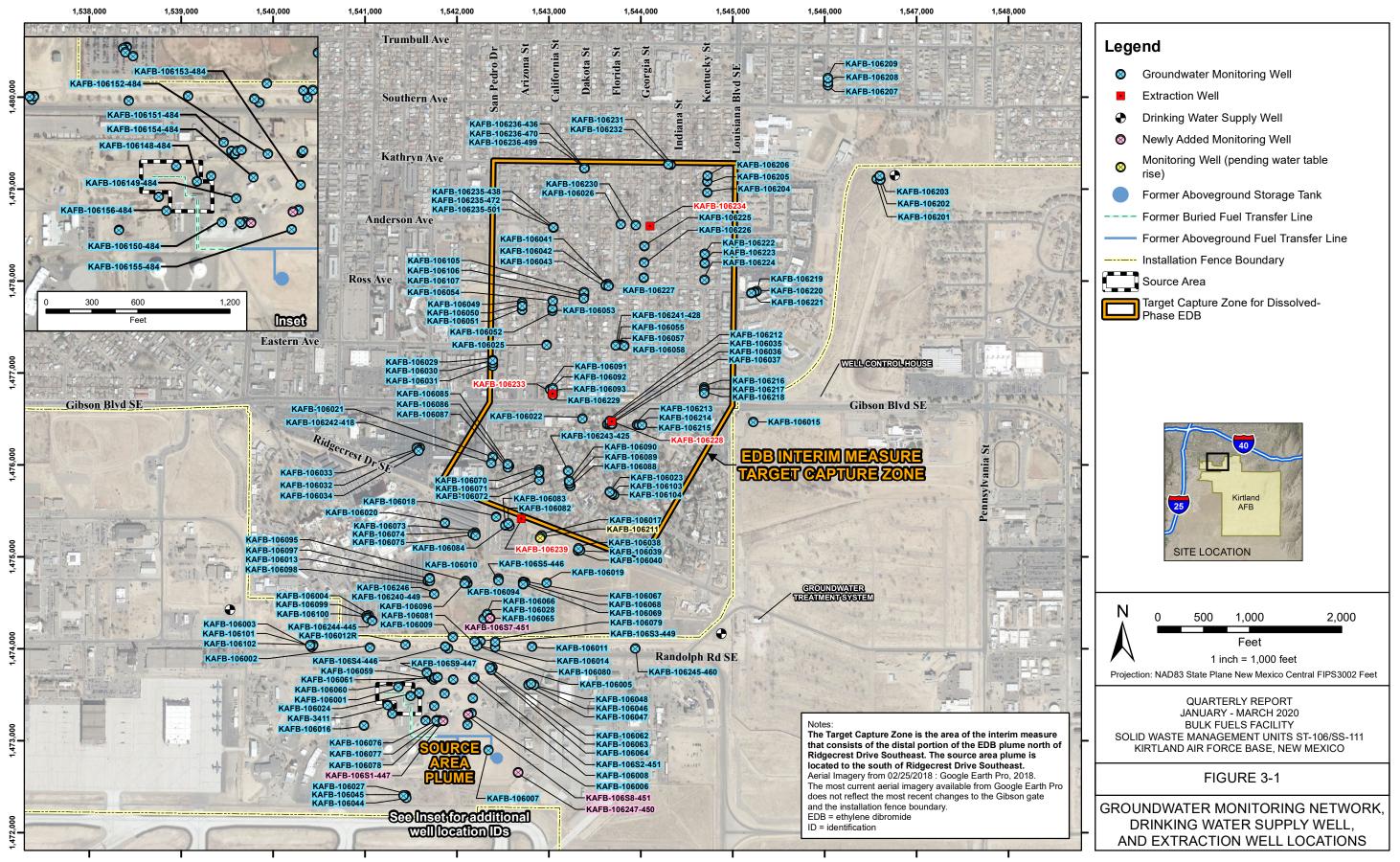

- Anderholm, S.K., M.J. Radell, and S.F. Richey. 1995. Water-quality Assessment of the Rio Grande Valley Study Unit, Colorado, New Mexico, and Texas Analysis of Selected Nutrient, Suspended-sediment, and Pesticide Data. U.S. Geological Survey. 167 p.
- Connor, B.F., D.L. Rose, M.C. Noriega, L.K. Murtagh, and S.R. Abney. 1998. *Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory Determination of 86 volatile organic compounds in water by gas chromatography/mass spectrometry, including detections less than reporting limits*. U.S. Geological Survey Open-File Report 97-829. 78 p.
- (U.S.) Environmental Protection Agency (EPA). 2002. *Guidance on Environmental Data Verification and Data Validation*. EPA QA/G-8. November.
- EPA. 2019. *Regional Screening Levels Master Table*. Available online at https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables . May.
- Kirtland Air Force Base (AFB). 2015. Quarterly Pre-Remedy Monitoring and Site Investigation Report for April June 2015, Bulk Fuels Facility, Solid Waste Management Unit ST-106/SS-111. Prepared by CB&I Federal Services for Kirtland AFB under U.S. Army Corps of Engineers (USACE)-Albuquerque District Contract No. W912DY-10-D-0014. November.
- Kirtland AFB. 2016a. Operations and Maintenance Plan, Groundwater Treatment System, Bulk Fuels Facility, SWMU ST-106/SS-111, Kirtland Air Force Base, New Mexico. Prepared by EA Engineering, Science, and Technology, Inc., PBC for Kirtland AFB under USACE–Albuquerque District Contract No. W912DR-12-D-0006. August.
- Kirtland AFB. 2016b. Aquifer Test Report for Groundwater Extraction Well KAFB-106228, Bulk Fuels Facility, Solid Waste Management Unit ST-106/SS-111, Kirtland Air Force Base, New Mexico. Prepared by CB&I Federal Services for Kirtland AFB under USACE—Albuquerque District Contract No. W912DY-10-D-0014. July.
- Kirtland AFB. 2016c. *Ethylene Dibromide In Situ Biodegradation Pilot Test Work Plan*. Prepared by CB&I Federal Services for Kirtland AFB under USACE-Omaha District Contract No. W9128F-12-D-0003. December.
- Kirtland AFB. 2017a. Work Plan for Bulk Fuels Facility Expansion of the Dissolved-Phase Plume Groundwater Treatment System Design Revision 2, Solid Waste Management Unit ST-106/SS-111. Prepared by EA Engineering, Science, and Technology, Inc., PBC for Kirtland AFB under USACE—Albuquerque District Contract No. W912DR-12-D-0006. January.
- Kirtland AFB. 2017b. Work Plan for Bioventing and Air-Lift Enhanced Bioremediation Pilot Tests, Bulk Fuels Facility, Solid Waste Management Unit ST-106/SS-11. Prepared by EA Engineering, Science, and Technology, Inc., PBC for Kirtland AFB under USACE—Albuquerque District Contract W912WR-12-D-006. November.
- Kirtland AFB. 2017c. Work Plan for Vadose Zone Coring, Vapor Monitoring, and Water Supply Sampling Revision 1, Bulk Fuels Facility, Solid Waste Management Unit ST-106/SS-111. Prepared by EA Engineering, Science, and Technology, Inc., PBC for Kirtland AFB under USACE—Albuquerque District Contract No. W9128F-13-D-0006. December.

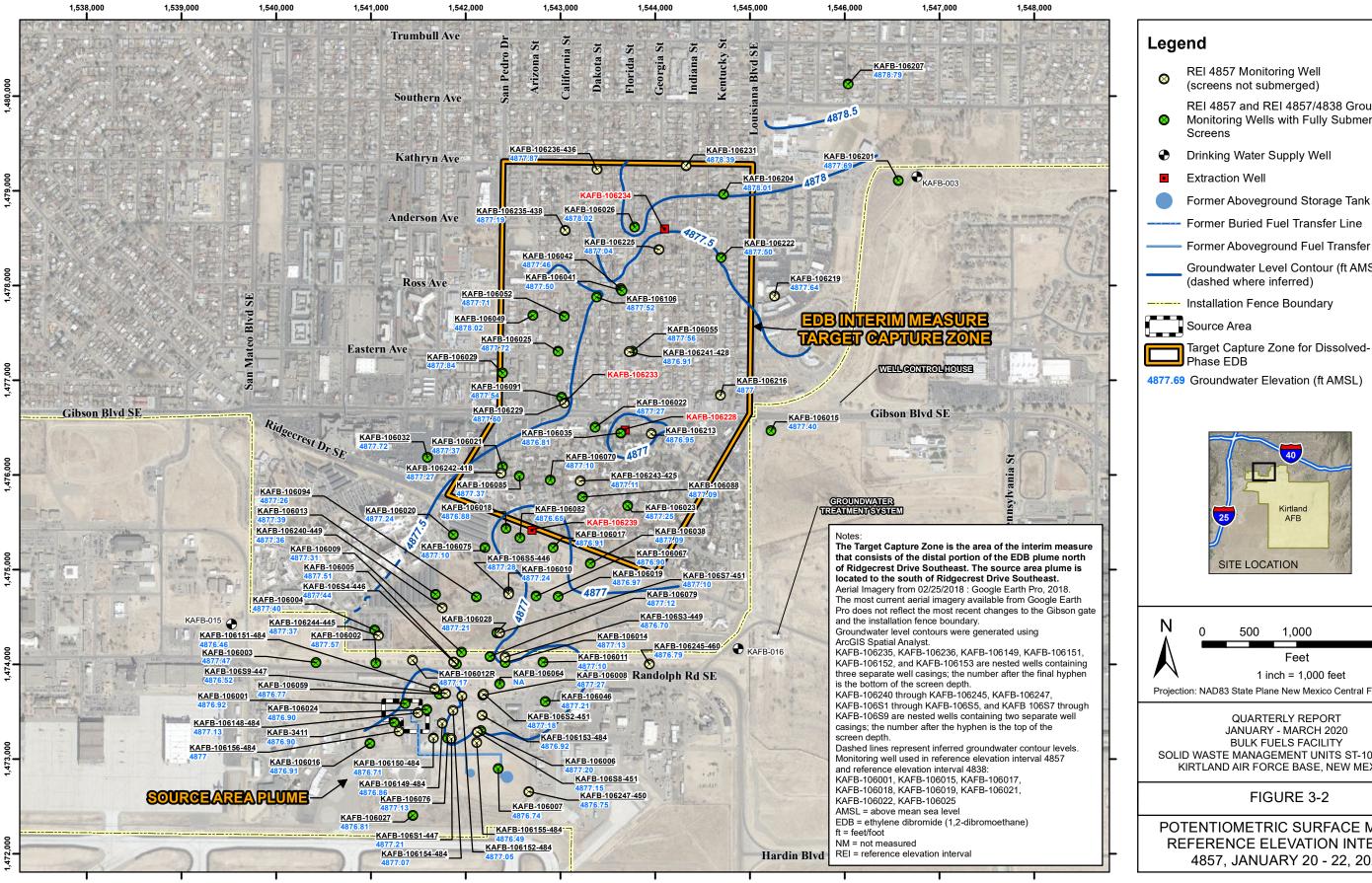

- Kirtland AFB. 2017d. Work Plan for Data Gap Monitoring Well Installation, Solid Waste Management Unit ST-106/SS-111. Prepared by EA Engineering, Science, and Technology, Inc., PBC for Kirtland AFB under USACE-Albuquerque District Contract No. W912DR-12-D-0006. December.
- Kirtland AFB. 2017e. Operations and Maintenance Plan, Groundwater Treatment System, Bulk Fuels Facility, SWMU ST-106/SS-111, Kirtland Air Force Base, New Mexico, Revision 1. Prepared by EA Engineering, Science, and Technology, Inc., PBC for Kirtland AFB under USACE—Albuquerque District under USACE Contract No. W912DR-12-D-0006. September.
- Kirtland AFB. 2018a. *Phase I RCRA Facility Investigation Report, Bulk Fuels Facility Releases, Solid Waste Management Unit ST-106/SS-111*. Prepared by Sundance Consulting, Inc. for Kirtland AFB under USACE-Albuquerque District Contract No. W912PP-16-C-0002. August.
- Kirtland AFB. 2018b. *Bioventing Respiration Pilot Testing Procedure, Rev. 0.* Prepared by EA Engineering, Science, and Technology, Inc., PBC for Kirtland AFB under USACE–Albuquerque District Contract No. W9128F-13-D-0006. September.
- Kirtland AFB. 2018c. Operations and Maintenance Plan, Groundwater Treatment System, Bulk Fuels Facility, SWMU ST-106/SS-111, Kirtland Air Force Base, New Mexico, Revision 2. Prepared by EA Engineering, Science, and Technology, Inc., PBC for Kirtland AFB under USACE–Albuquerque District Contract No. W912DR-12-D-0006. June.
- Kirtland AFB. 2020. Bioventilation Construction and Initiation Report, Bulk Fuels Facility, SWMU ST-106/SS-111, Kirtland Air Force Base, New Mexico. Prepared by EA Engineering, Science, and Technology, Inc., PBC for Kirtland AFB under USACE—Albuquerque District Contract No. W9128F-13-D-0006-DM02. January.
- Langmuir, D. 1997. *Aqueous Environmental Geochemistry*. Prentice-Hall, Upper Saddle River, New Jersey. 600 p.
- Longmire, D. 2016. Application of PHREEQC for Evaluating Precipitation of Reactive Phases During Injection of Treated Effluent Water at Well KAFB-7, Kirtland Air Force Base, Albuquerque, New Mexico. NMED. 9 p. February 2.
- New Mexico Administrative Code. 2011. State of New Mexico, Title 20.9.2 Solid Waste Management General Requirements.
- New Mexico Administrative Code. 2018. State of New Mexico, Title 20.6.2 Ground and Surface Water Protection.
- New Mexico Environment Department (NMED). 2010. *Hazardous Waste Treatment Facility Operating Permit, EPA ID No. NM9570024423*. Issued to U.S. Air Force for the Open Detonation Unit Located at Kirtland Air Force Base, Bernalillo County, New Mexico, by the NMED Hazardous Waste Bureau. July.
- NMED. 2016. Correspondence from Kathryn Roberts, Director, Resource Protection Division to Colonel Eric. H. Froehlich, Base Commander, Kirtland AFB, New Mexico, and Mr. John Pike, Director, Environmental Management Division, 377 MSG, Kirtland AFB, New Mexico, re: Operation and Maintenance Plan, Groundwater Treatment System, Bulk Fuels Facility Solid Waste Management Unit ST-106/SS-111, Kirtland Air Force Base. EPA ID No. NM9570024423, HWB-KAFB-13-MISC. December 12.


- NMED. 2017a. Correspondence from Juan Carlos Borrego, Deputy Secretary, Environment Department to Colonel Eric H. Froehlich, Base Commander, Kirtland AFB, New Mexico, and Lieutenant Colonel Wayne J. Acosta, Civil Engineer Office, Kirtland AFB, New Mexico, re: Work Plan for Bulk Fuels Facility Expansion of the Dissolved-Phase Plume Groundwater Treatment System Design Revision 2, Bulk Fuels Facility Solid Waste Management Unit ST-106/SS-111, Kirtland Air Force Base. EPA ID No. NM9570024423, HWB-KAFB-13-MISC. May 31.
- NMED. 2017b. Discharge Permit Issuance DP-1839, Kirtland Air Force Base, Bernalillo County, New Mexico. By the New Mexico Environment Department Groundwater Quality Bureau. April.
- NMED. 2018a. Correspondence from Mr. Juan Carlos Borrego, Deputy Secretary Environment Department, to Colonel Richard W. Gibbs, Base Commander, 377 ABW/CC, Kirtland AFB, New Mexico and Mr. Chris Segura, Chief, Installation Support Section, AFCEC/CZOW, Kirtland AFB, New Mexico, re: Work Plan for Data Gap Monitoring Well installation, Bulk Fuels Facility, Solid Waste Management Unit ST-106/SS-111, Kirtland Air Force Base. EPA ID No. NM9570024423, HWB-KAFB-13-MISC. February 28.
- NMED. 2018b. Correspondence from Mr. Juan Carlos Borrego, Deputy Secretary Environment Department, to Colonel Richard W. Gibbs, Base Commander, 377 ABW/CC, Kirtland AFB, New Mexico and Mr. Chris Segura, Chief, Installation Support Section, AFCEC/CZOW, Kirtland AFB, New Mexico, re: Work Plan for Vadose Zone Coring, Vapor Monitoring, and Water Supply Sampling, Revision 2, Solid Waste Management Unit ST-106/SS-111, Kirtland Air Force Base, New Mexico. EPA ID No. NM9570024423, HWB-KAFB-13-MISC. February 23.
- NMED. 2018c. Correspondence from Ms. Michelle Hunter, Chief, Ground Water Quality Bureau, New Mexico Environment Department to Colonel Dawn A. Nickell, Base Vice Commander, 377 AB/CC, Kirtland AFB, NM re: Conditional Approval of Standard Operating Procedure for Disinfection of the Groundwater Treatment System Remediation Wells and Groundwater Monitoring Wells, DP-1839, Bulk Fuels Facility, Solid Waste Management Unit ST-106/SS-11, Kirtland Air Force Base. August 6.
- NMED. 2018d. Personal Communication (email) from Mr. Andrew Romero, Environmental Scientist, Ground Water Quality Bureau, New Mexico Environment Department to Ms. Kate Lynnes, HQE, Senior Advisor Bulk Fuels Facility Project, Kirtland AFB, New Mexico *re: Approval of Proposed Analytical Methods, DP-1839*. November 16.
- NMED. 2018e. Correspondence from Mr. Juan Carlos Borrego, Deputy Secretary, Environment Department, to Colonel Richard W. Gibbs, Base Commander, 377 AB/CC, Kirtland AFB, NM and Mr. Chris Segura, Chief, Installation Support Section, AFCEC/CZOW, Kirtland AFB, NM, re: Phase 3 Ethylene Dibromide In Situ Biodegradation Pilot Test, Notification letter, Bulk Fuels Facility, Solid Waste Management Unit ST-106/SS-11, Kirtland Air Force Base. EPA ID# NM9570024423, HWB-KAFB-13-MISC. August 7.
- NMED. 2019. Correspondence from Mr. John Kieling, Bureau Chief to Colonel Richard W. Gibbs, Base Commander, 377 AB/CC, Kirtland AFB, NM and Mr. Chris Segura, Chief, Installation Support Section, AFCEC/CZOW, Kirtland AFB, NM, re: Bulk Fuels Facility Spill, Solid Waste Management Unit ST-106/SS-11, Kirtland Air Force Base. EPA ID# NM9570024423, HWB-KAFB-19-MISC. February 25.

Plummer, L.N., J.K. Bohlke, and M.W. Doughten. 2006. *Perchlorate in Pleistocene and Holocene Groundwater in North-Central New Mexico*. Environmental Science and Technology Vol. 40, pp. 1757-1763. February.

FIGURES



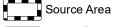


Legend **Biovent Observation Well** Existing Soil Vapor Well Former Buried Fuel Transfer Line Former Aboveground Fuel Transfer Line Source Area SITE LOCATION 50 100 200 Feet 1 inch = 100 feet Projection: NAD83 State Plane New Mexico Central FIPS3002 Feet QUARTERLY REPORT JANUARY - MARCH 2020 BULK FUELS FACILITY SOLID WASTE MANAGEMENT UNITS ST-106/SS-111 KIRTLAND AIR FORCE BASE, NEW MEXICO FIGURE 2-1 BIOVENTING PILOT TEST AREA IN THE

SOURCE AREA PLUME

P:\Projects\Kirtland\Figures\BFF Quarterly Report\2020_Q1\Section 2\2-1 Bioventing Pilot Test Area.mxd 3/17/2020 EA ecarpio

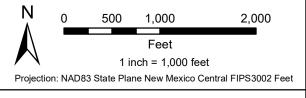
P:\Projects\Kirtland\Figures\BFF Quarterly Report\2020 Q1\Section 3\3-2 Interval 4857 PotentiometricSurface.mxd 5/24/2020 EA ecarpio


Legend REI 4857 Monitoring Well (screens not submerged) REI 4857 and REI 4857/4838 Groundwater Monitoring Wells with Fully Submerged Drinking Water Supply Well Extraction Well

Former Buried Fuel Transfer Line

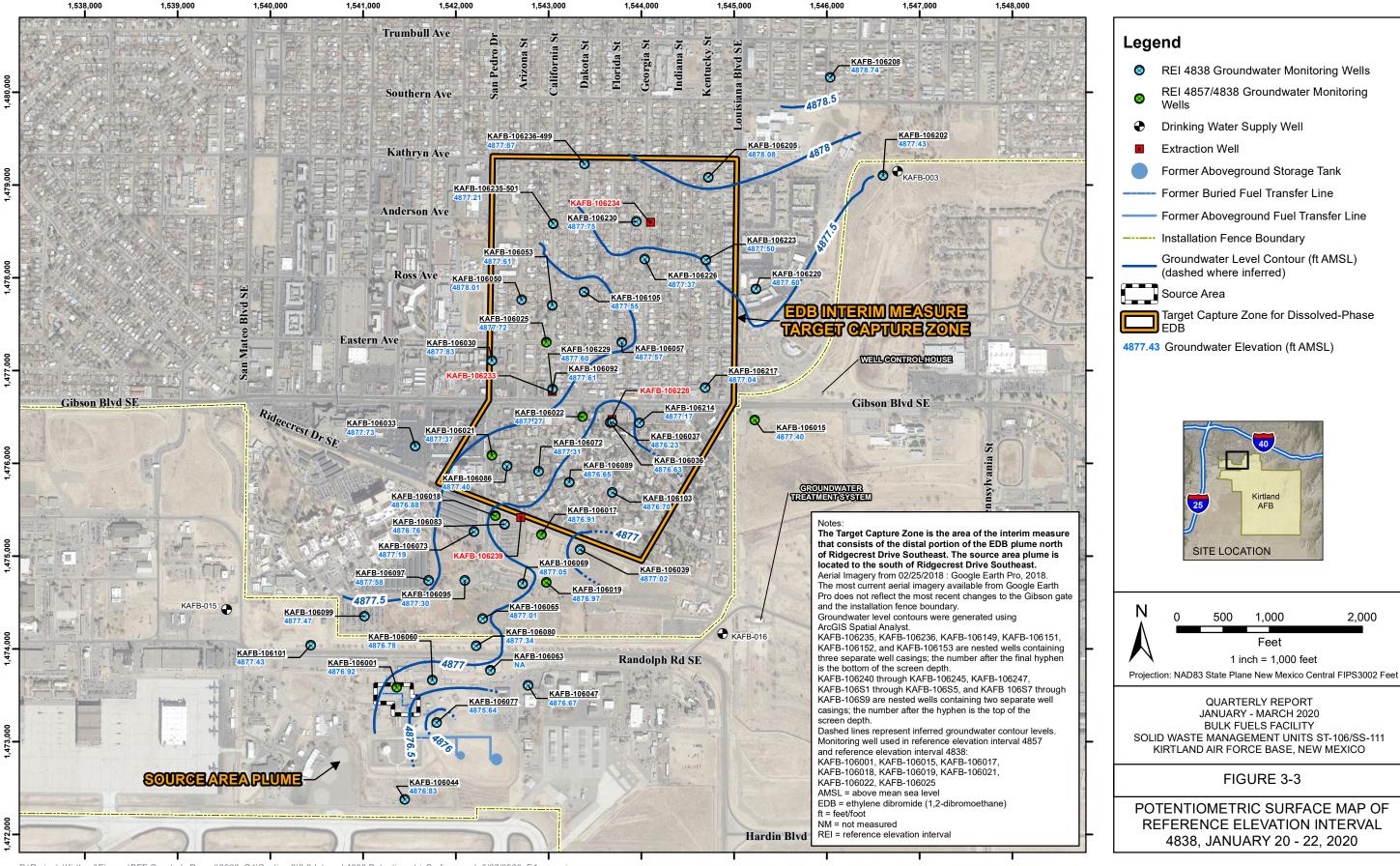
Former Aboveground Fuel Transfer Line

Groundwater Level Contour (ft AMSL) (dashed where inferred)


Installation Fence Boundary

Target Capture Zone for Dissolved-Phase EDB

4877.69 Groundwater Elevation (ft AMSL)



JANUARY - MARCH 2020 **BULK FUELS FACILITY** SOLID WASTE MANAGEMENT UNITS ST-106/SS-111 KIRTLAND AIR FORCE BASE, NEW MEXICO

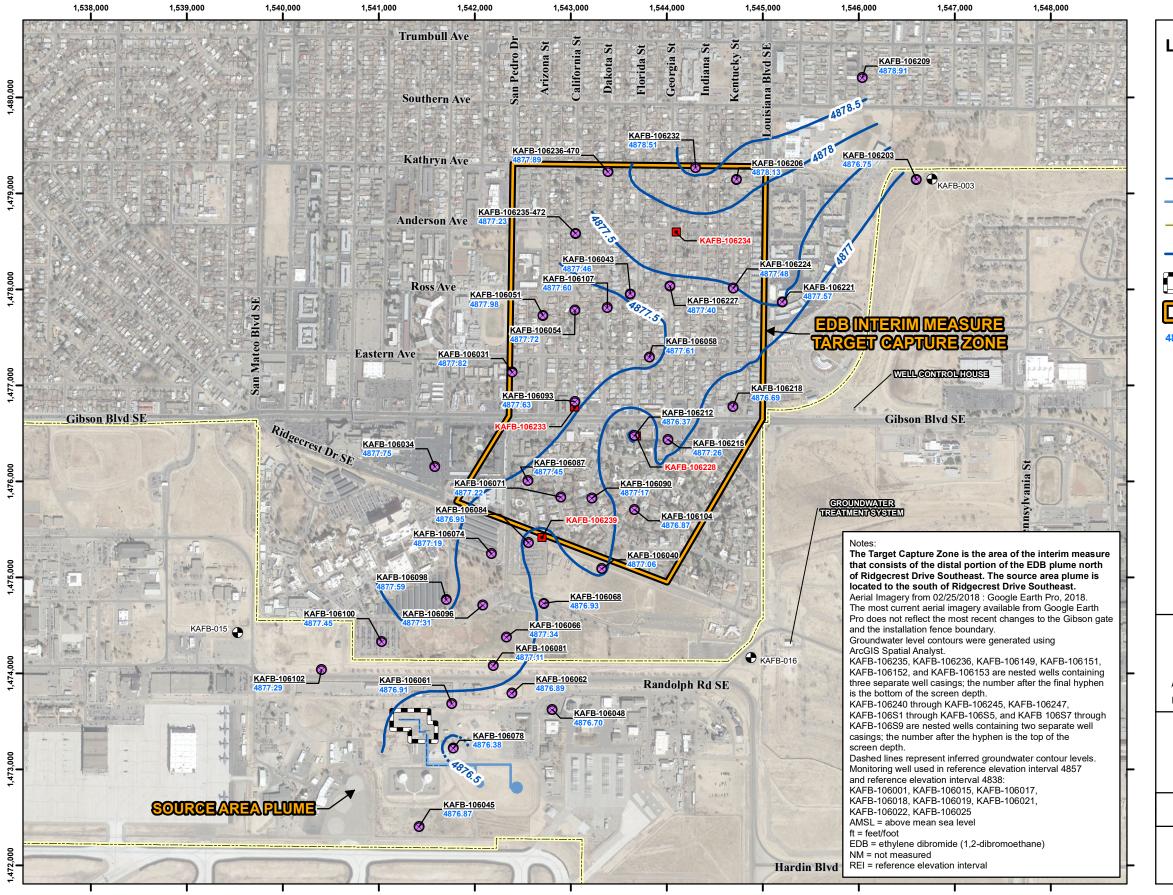

QUARTERLY REPORT

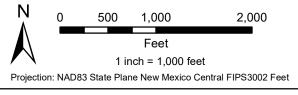
FIGURE 3-2

POTENTIOMETRIC SURFACE MAP OF REFERENCE ELEVATION INTERVAL 4857, JANUARY 20 - 22, 2020

P:\Projects\Kirtland\Figures\BFF Quarterly Report\2020_Q1\Section 3\3-3 Interval 4838 PotentiometricSurface.mxd 5/27/2020 EA ecarpio

P:\Projects\Kirtland\Figures\BFF Quarterly Report\2020 Q1\Section 3\3-4 Interval 4814 PotentiometricSurface.mxd 5/27/2020 EA ecarpio

Legend


- REI 4814 Monitoring Wells with screens fully submerged
- Drinking Water Supply Well
- Extraction Well
- Former Aboveground Storage Tank
- Former Buried Fuel Transfer Line
- Former Aboveground Fuel Transfer Line
- Installation Fence Boundary
- Groundwater Level Contour (ft AMSL) (dashed where inferred)

Target Capture Zone for Dissolved-Phase EDB

4877.43 Groundwater Elevation (ft AMSL)

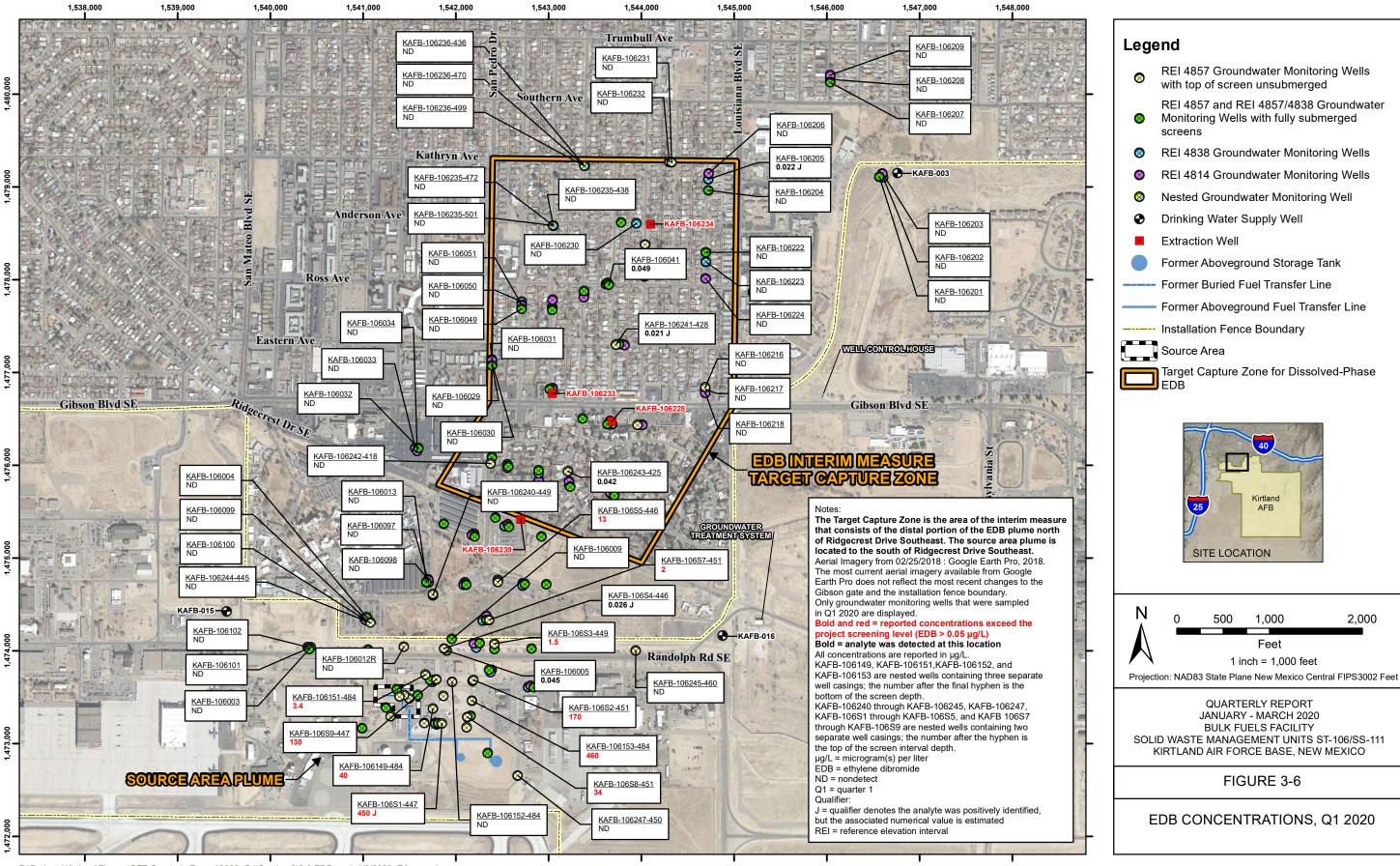
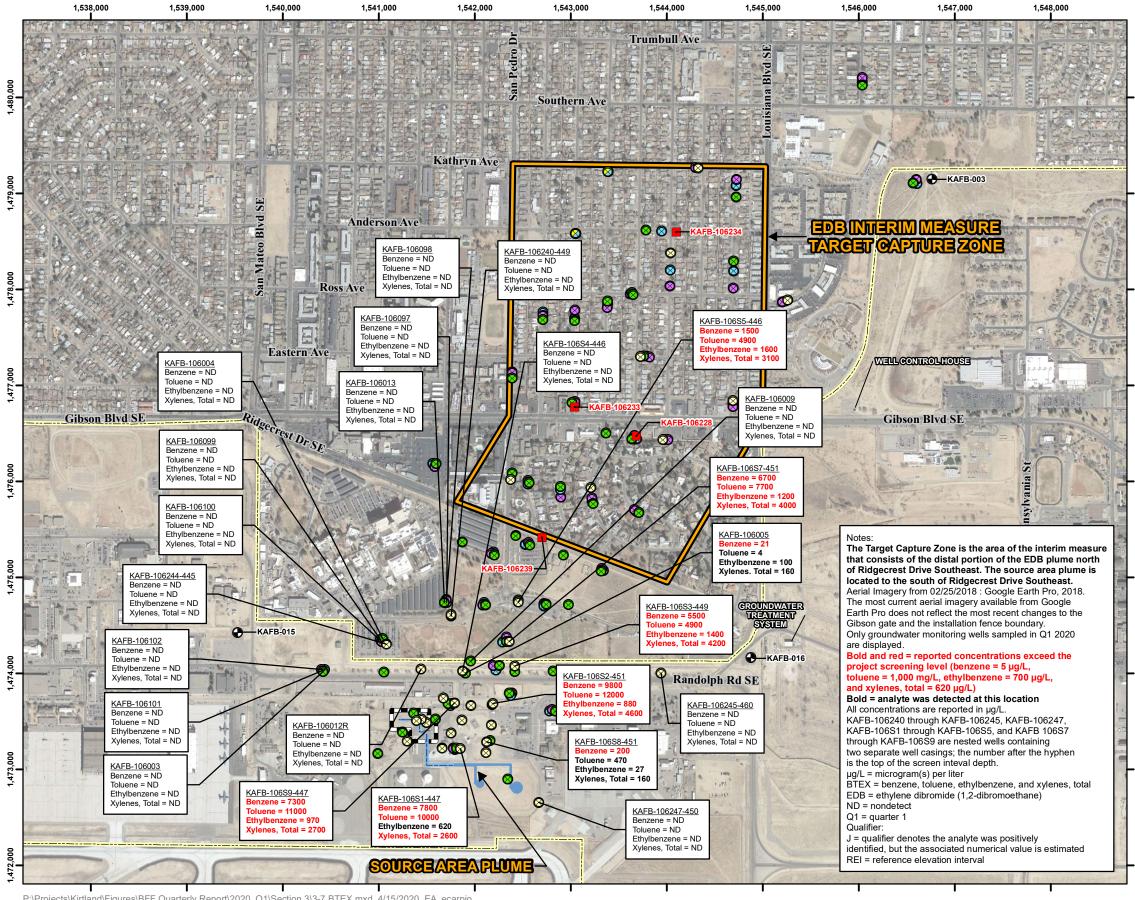

QUARTERLY REPORT JANUARY - MARCH 2020 **BULK FUELS FACILITY** SOLID WASTE MANAGEMENT UNITS ST-106/SS-111 KIRTLAND AIR FORCE BASE, NEW MEXICO

FIGURE 3-4

POTENTIOMETRIC SURFACE MAP OF REFERENCE ELEVATION INTERVAL 4814, JANUARY 20 - 22, 2020

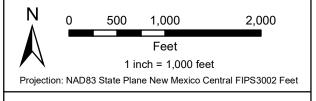


 $P:\label{lem:projects} P:\label{lem:projects} P:\label{lem:project$

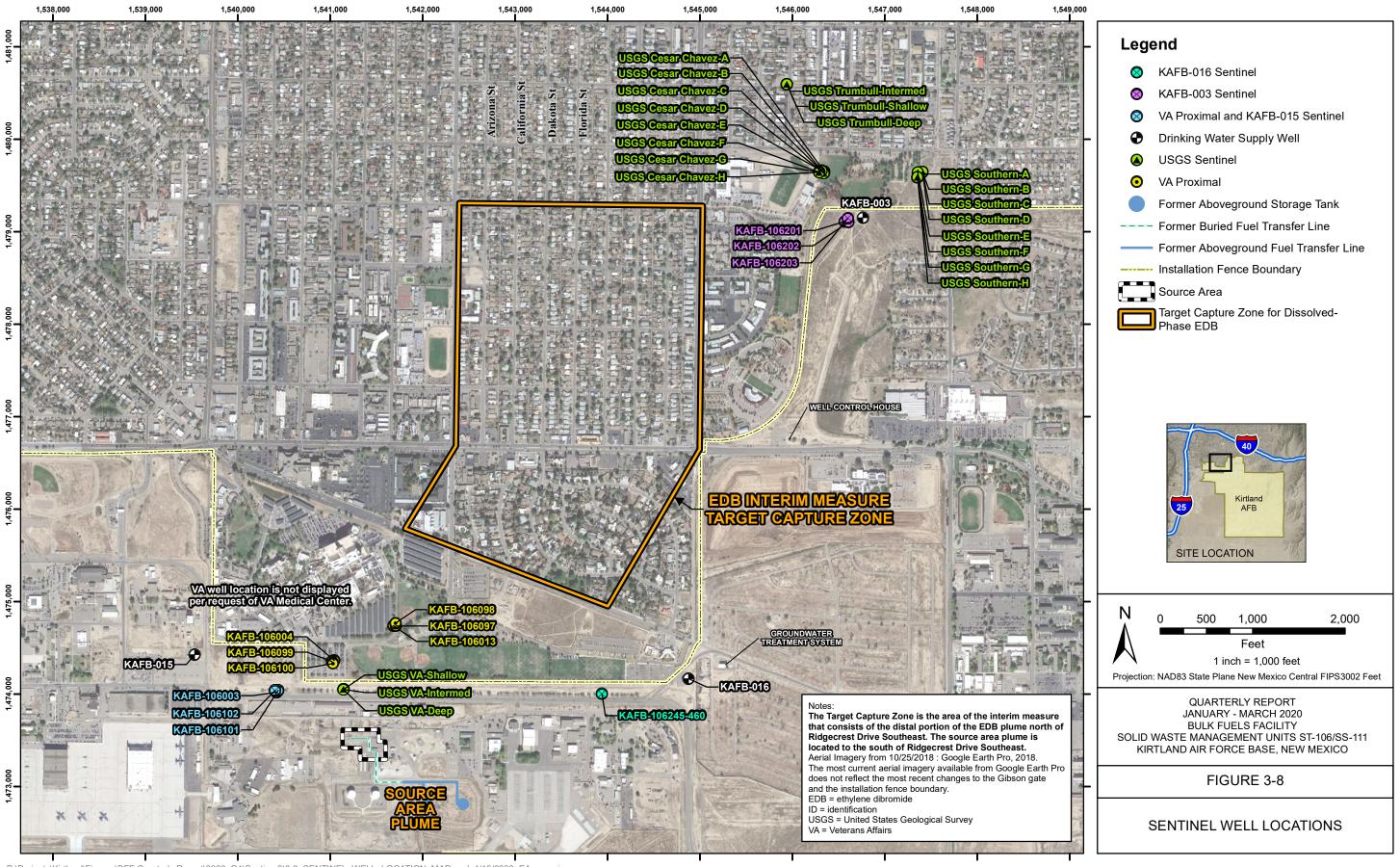
2,000

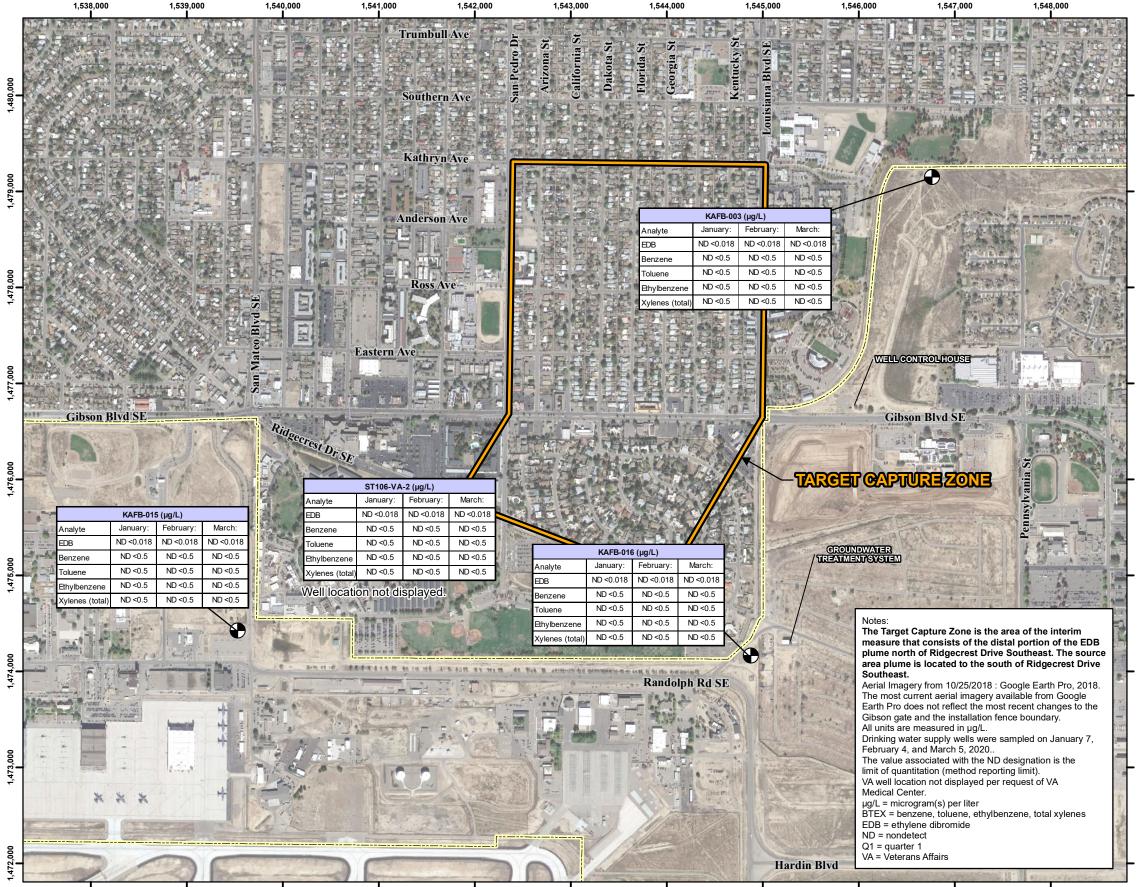
P:\Projects\Kirtland\Figures\BFF Quarterly Report\2020_Q1\Section 3\3-6 EDB.mxd 4/8/2020 EA ecarpio

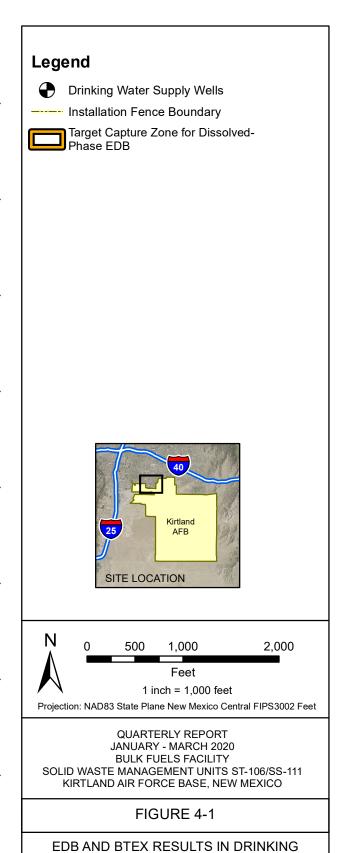
Legend


- REI 4857 Groundwater Monitoring Wells with top of screen unsubmerged
- REI 4857 and REI 4857/4838 Groundwater
- Monitoring Wells with fully submerged
- REI 4838 Groundwater Monitoring Wells
- REI 4814 Groundwater Monitoring Wells
- Nested Groundwater Monitoring Well
- Drinking Water Supply Well
- Extraction Well
- Former Aboveground Storage Tank
- Former Buried Fuel Transfer Line
- Former Aboveground Fuel Transfer Line
- ----- Installation Fence Boundary

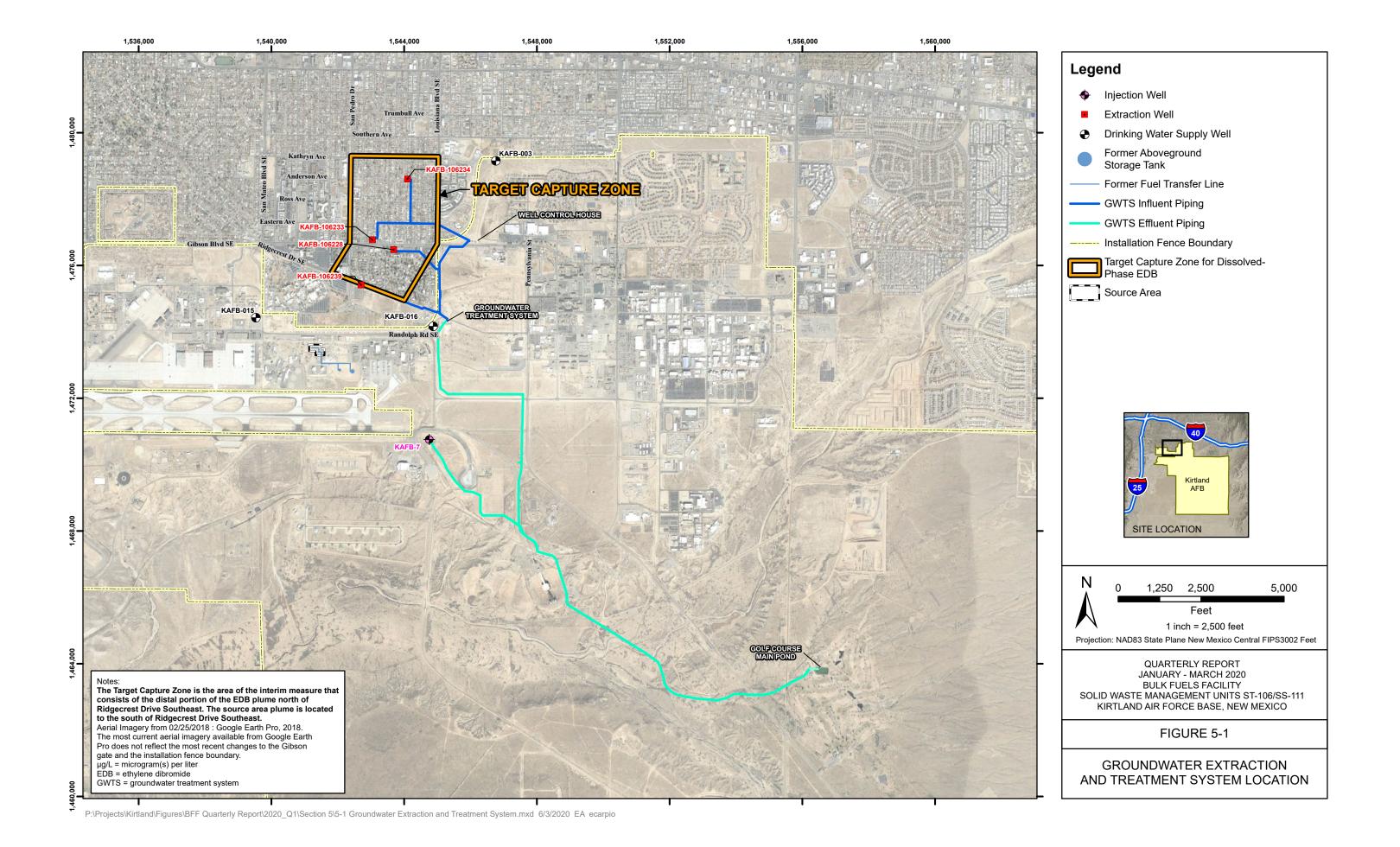
Target Capture Zone for Dissolved-Phase




QUARTERLY REPORT JANUARY - MARCH 2020 **BULK FUELS FACILITY** SOLID WASTE MANAGEMENT UNITS ST-106/SS-111 KIRTLAND AIR FORCE BASE, NEW MEXICO


FIGURE 3-7

BTEX CONCENTRATIONS, Q1 2020



 $P:\label{projects} P:\label{projects} P:\label{pr$

WATER SUPPLY WELLS, Q1 2020

TABLES

Table 3-1
Groundwater Monitoring Program

1st Quarter Well Location ID (January-March)		2nd Quarter Semiannual (April-June)	3rd Quarter (July-September)	4th Quarter Annual (October-December)	Former Well Designation and Current Monitoring Well Objective ^a
	(2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		Added Wells ^b	(22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	
KAFB-106247-450 ^c	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Downgradient Proximal (Seasonal)
KAFB-106S1-447 ^c	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Source Area
KAFB-106S7-451 ^c	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Source Area
KAFB-106S8-451 ^c	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Source Area
10 11 10 100 10 10 1		Groundwater	Monitoring Wells ^b		1
KAFB-106001	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring
KAFB-106002	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring
KAFB-106003	BTEX, EDB, FP	BTEX, EDB, metals, anions, alkalinity, FP	BTEX, EDB, FP	EDB, VOCs, metals, anions, alkalinity, FP	VA Proximal, KAFB-015 Sentinel
KAFB-106004	BTEX, EDB, FP	BTEX, EDB, metals, anions, alkalinity, FP	BTEX, EDB, FP	EDB, VOCs, metals, anions, alkalinity, FP	VA Proximal
KAFB-106005 ^c	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Source Area
KAFB-106006	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area
KAFB-106007	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring
KAFB-106008	None	BTEX, EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Source Area
KAFB-106009 ^c	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Source Area
KAFB-106010	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area
KAFB-106011	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area
KAFB-106012R	BTEX, EDB, metals, anions, alkalinity, FP	BTEX, EDB, metals, anions, alkalinity, FP	BTEX, EDB, metals, anions, alkalinity, FP	EDB, VOCs, metals, anions, alkalinity, FP	Source Area
KAFB-106013	BTEX, EDB, FP	BTEX, EDB, metals, anions, alkalinity, FP	BTEX, EDB, FP	EDB, VOCs, metals, anions, alkalinity, FP	VA Proximal
KAFB-106014	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area
KAFB-106015 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring
KAFB-106016	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring
KAFB-106017	None	BTEX, Naphthalene, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Signal
KAFB-106018	None	BTEX, Naphthalene, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Signal
KAFB-106019	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring
KAFB-106020	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring
KAFB-106021 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring
KAFB-106022 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring
KAFB-106023 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring
KAFB-106024	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring
KAFB-106025 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring
KAFB-106026 ^d	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring
KAFB-106027	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring
KAFB-106028	None	BTEX, EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Source Area
KAFB-106029 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Current Upgradient Well
KAFB-106030 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Current Upgradient Well
KAFB-106031 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Current Upgradient Well
KAFB-106032 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Current Upgradient Well
KAFB-106033 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Current Upgradient Well
KAFB-106034 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Current Upgradient Well
KAFB-106035 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring; Groundwater well paired with KAFB-106228 extraction well

Table 3-1
Groundwater Monitoring Program

1st Quarter		Semiannual	3rd Quarter	Annual	Current Monitoring Well	
Well Location ID	(January-March)	(April-June)	(July-September)	(October-December)	Objective ^a	
KAFB-106036 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring; Groundwater well paired with KAFB-106228 extraction well	
KAFB-106037 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring; Groundwater well paired with KAFB-106228 extraction well	
KAFB-106038	None	BTEX, Naphthalene, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Signal	
KAFB-106039	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring	
KAFB-106040	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring	
KAFB-106041 ^c	EDB, metals, anions, alkalinity	EDB, metals, anions, alkalinity	EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106042 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106043 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106044	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring	
KAFB-106045	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring	
KAFB-106046	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring	
KAFB-106047	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring	
KAFB-106048	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring	
KAFB-106049 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Current Upgradient Well	
KAFB-106050 ^c	EDB EDB, metals, anions, alkalinity		EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Current Upgradient Well	
KAFB-106051 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Current Upgradient Well	
KAFB-106052 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106053 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106054 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106055 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106057 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106058 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106059	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area	
KAFB-106060	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area	
KAFB-106061	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area	
KAFB-106062	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area	
KAFB-106063	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area	
KAFB-106064	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area	
KAFB-106065	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area	
KAFB-106066	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area	
KAFB-106067	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area	
KAFB-106068	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area	
KAFB-106069	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area	
KAFB-106070 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106071 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106072 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106073	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring	
KAFB-106074	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring	
KAFB-106075	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring	
KAFB-106076	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area	
KAFB-106077	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area	
KAFB-106078	None	BTEX, EDB, metals, anions, alkalinity, FP BTEX, EDB, metals, anions, alkalinity	None None	EDB, VOCs, metals, anions, alkalinity, FP EDB, VOCs, metals, anions, alkalinity	Source Area Source Area	
KAFB-106079 ^c	None					

Kirtland AFB BFF Quarterly Report – January-March 2020 SWMUs ST-106/SS-111

Table 3-1
Groundwater Monitoring Program

		2nd Quarter		4th Quarter	Former Well Designation and	
	1st Quarter	1st Quarter Semiannual		Annual	Current Monitoring Well	
Well Location ID	(January-March)	(April-June)	3rd Quarter (July-September)	(October-December)	Objective ^a	
KAFB-106081	None	BTEX, EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Source Area	
KAFB-106082	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring	
KAFB-106083	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring	
KAFB-106084	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring	
KAFB-106085 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106086 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106087 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106088 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106089 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106090°	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106090°	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106092 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring Groundwater Monitoring	
KAFB-106093 ^c		EDB, metals, anions, alkalinity EDB, metals, anions, alkalinity, FP				
KAFB-106094	None None	EDB, metals, anions, alkalinity, FP EDB, metals, anions, alkalinity, FP	None None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring Groundwater Monitoring	
KAFB-106095 ^c		-		EDB, VOCs, metals, anions, alkalinity, FP	S S	
KAFB-106096 KAFB-106097	None BTEX, EDB, FP	EDB, metals, anions, alkalinity, FP BTEX, EDB, metals, anions, alkalinity, FP	None BTEX, EDB, FP	EDB, VOCs, metals, anions, alkalinity, FP EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring VA Proximal	
KAFB-106097	BTEX, EDB, FP	BTEX, EDB, metals, anions, alkalinity, FP BTEX, EDB, metals, anions, alkalinity, FP	BTEX, EDB, FP	EDB, VOCs, metals, anions, arkalinity, FP EDB, VOCs, metals, anions, alkalinity, FP	VA Proximal VA Proximal	
KAFB-106099	BTEX, EDB, FP	BTEX, EDB, metals, anions, alkalinity, FP BTEX, EDB, metals, anions, alkalinity, FP	BTEX, EDB, FP	EDB, VOCs, metals, anions, alkalinity, FP	VA Proximal VA Proximal	
KAFB-106100	BTEX, EDB, FP	BTEX, EDB, metals, anions, alkalinity, FP	BTEX, EDB, FP	EDB, VOCs, metals, anions, alkalinity, FP	VA Proximal	
KAFB-106101	BTEX, EDB, FP	BTEX, EDB, metals, anions, alkalinity, FP	BTEX, EDB, FP	EDB, VOCs, metals, anions, alkalinity, FP	VA Proximal, KAFB-015 Sentinel	
KAFB-106102	BTEX, EDB, FP	BTEX, EDB, metals, anions, alkalinity, FP	BTEX, EDB, FP	EDB, VOCs, metals, anions, alkalinity, FP	VA Proximal, KAFB-015 Sentinel	
KAFB-106103 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106104 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106105 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106106 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106107 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
-	EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Source Area	
KAFB-106149-484 ^c	EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Source Area	
KAFB-106151-484 ^c	EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Source Area	
KAFB-106152-484 ^c						
KAFB-106153-484 ^c	EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Source Area	
KAFB-106201 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	KAFB-003 Sentinel	
KAFB-106202 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	KAFB-003 Sentinel	
KAFB-106203 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	KAFB-003 Sentinel	
KAFB-106204 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Downgradient Proximal (Seasonal)	
KAFB-106205 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Downgradient Proximal (Seasonal)	
KAFB-106206 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Downgradient Proximal (Seasonal)	
KAFB-106207 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Downgradient Proximal (Seasonal)	
KAFB-106208 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Downgradient Proximal (Seasonal)	
KAFB-106209 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Downgradient Proximal (Seasonal)	
KAFB-106211 ^e	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106212 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106213 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106214 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106215 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Downgradient Proximal (Seasonal)	
KAFB-106216 ^c	EDB	•	EDB	<u> </u>		
KAFB-106217 ^c		EDB, metals, anions, alkalinity		EDB, VOCs, metals, anions, alkalinity	Downgradient Proximal (Seasonal)	
KAFB-106218 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Downgradient Proximal (Seasonal)	
KAFB-106219 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	

Kirtland AFB BFF Quarterly Report – January-March 2020 SWMUs ST-106/SS-111

Table 3-1
Groundwater Monitoring Program

		2nd Quarter		4th Quarter	Former Well Designation and	
	1st Quarter	Semiannual	3rd Quarter	Annual	Current Monitoring Well	
Well Location ID	(January-March)	(April-June)	(July-September)	(October-December)	Objective ^a	
KAFB-106220 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106221 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106222 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Downgradient Proximal (Seasonal)	
KAFB-106223 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Downgradient Proximal (Seasonal)	
KAFB-106224 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Downgradient Proximal (Seasonal)	
KAFB-106225 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106226 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106227 ^c	None	EDB, metals, anions, alkalinity	None	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106229 ^{c,f}	None	EDB	None	EDB	Groundwater well paired with KAFB- 106233 extraction well	
KAFB-106230 ^{c,d}	EDB, metals, anions, alkalinity	EDB, metals, anions, alkalinity	EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106231 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Current Upgradient Well	
KAFB-106232 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Current Upgradient Well	
KAFB-106235-438 ^c	EDB EDB, metals, anions, alkalinity		EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Curren Upgradient Well	
KAFB-106235-472 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Curren Upgradient Well	
KAFB-106235-501 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Current Upgradient Well	
KAFB-106236-436 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Curren Upgradient Well	
KAFB-106236-470 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Curren Upgradient Well	
KAFB-106236-499 ^c	EDB	EDB, metals, anions, alkalinity	EDB	EDB, VOCs, metals, anions, alkalinity	Former Downgradient Proximal; Curren Upgradient Well	
KAFB-106240-449 ^c	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	VA Proximal	
KAFB-106241-428 ^c	EDB, metals, anions, alkalinity	EDB, metals, anions, alkalinity	EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106242-418 ^c	EDB, metals, anions, alkalinity	EDB, metals, anions, alkalinity	EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106243-425 ^c	EDB, metals, anions, alkalinity	EDB, metals, anions, alkalinity	EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Groundwater Monitoring	
KAFB-106244-445 ^c	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	VA Proximal	
KAFB-106245-460 ^c	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	KAFB-016 Sentinel	
KAFB-106S2-451 ^c	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Source Area	
KAFB-106S3-449 ^c	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Source Area	
KAFB-106S4-446 ^c	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Source Area	
KAFB-106S5-446 ^c	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Source Area	
KAFB-106S9-447 ^c	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	BTEX, EDB, metals, anions, alkalinity	EDB, VOCs, metals, anions, alkalinity	Source Area	
KAFB-3411	None	EDB, metals, anions, alkalinity, FP	None	EDB, VOCs, metals, anions, alkalinity, FP	Groundwater Monitoring	

Table 3-1 Groundwater Monitoring Program

^a Monitoring Well Objective:

Downgradient Proximal (Seasonal) Wells—Primarily located north of Ridgecrest Drive SE surrounding the historical EDB plume to the north and east into the distal portion of the GWM network. One well located to the south and east of the Benzene plume. Groundwater flow direction varies seasonally; these wells are downgradient of the EDB plume during part of each year. Analytical data for these wells have been historically below the maximum contaminant level (MCL) for EDB. Sampled every quarter. These wells assist in plume boundary definition.

Former Downgradient Proximal; Current Upgradient Wells—Primarily located north of Ridgecrest Drive SE to the west and north of the historical EDB plume. These wells were previously downgradient of the historical EDB plume, but as groundwater flow direction has shifted, they are currently upgradient. Sampled every quarter.

Groundwater Monitoring Wells—Primarily located north of Ridgecrest Drive SE within the historical footprint of the EDB plume. Analytical data from these wells help to estimate the volume and mass of the EDB plume throughout the GWM network. Sampled in Q2 and Q4 at a minimum, with wells previously designated as newly added sampled every quarter.

KAFB-003 Sentinel Wells—One set of nested wells located west of drinking water production well KAFB-003. Sampled every guarter. These wells help to assess any potential contaminant migration towards KAFB-003.

KAFB-015 Sentinel Wells—One set of nested wells located east of drinking water production well KAFB-015. Sampled every quarter. These wells help to assess any potential contaminant migration towards KAFB-015.

KAFB-016 Sentinel Well—One well located west of drinking water production well KAFB-016. Sampled every quarter. This well helps to assess the potential for contaminant migration towards KAFB-016.

Paired wells—Wells located near a GWM IM extraction well to assess the quality of the water entering the extraction well.

Signal Wells—Three wells located along the south side of Ridgecrest Drive SE to monitor BTEX and provide early indication if the benzene plume is migrating from the source area into the interim measure target area capture zone created by the groundwater extraction wells. Sampled during Q2 and Q4.

Source Area Wells—Primarily located in the Bulk Fuels Facility south of Randolph Road SE and proximal to the spill site on-Base. Sampled during Q2 and Q4 at a minimum, with some sampled every quarter. These wells monitor the higher concentrations of dissolved-phase plumes on-Base.

Veterans Affairs (VA) Proximal Wells—Three sets of nested wells located between the historical EDB plume south of Ridgecrest Drive SE and the Raymond G. Murphy VA Medical Center as a means to observe for potential contaminant migration towards the VA medical campus. Sampled every quarter. These wells provide additional wellhead protection monitoring for the VA supply well.

^b The groundwater monitoring network consists of 162 wells, 161 wells that are currently sampled under SWMU ST106/SS-111, and one well which will be sampled once water level has risen sufficiently. Select wells are identified for additional or more frequent monitoring of risk-driving constituents. Metals analysis consists of select total metals (arsenic, calcium, lead, potassium, magnesium, and sodium) and select dissolved metals (iron and manganese). Anions analysis consists of bromide, chloride, nitrate/nitrite nitrogen, and sulfate. Field parameters include pH, specific conductivity, dissolved oxygen, oxidation reduction potential, temperature, and turbidity.

Newly Added Wells—Newly added wells can include both existing wells that are added to the GWM network as well as newly installed wells. Newly added GWM wells require a minimum of four quarters of baseline full-suite analytical sampling. These wells have been added to assess the plume boundaries and provide additional water table monitoring due to the rising groundwater elevation.

Groundwater Monitoring Wells—Wells which have completed the minimum four quarters of baseline full-suite analytical sampling. These wells can have any of the objectives described above.

^c Well sampled with passive sampling methodology; field parameter measurements are not representative and therefore are not collected.

^d Well was last sampled in Q2 2016, after which it was removed from the groundwater monitoring network due to safety concerns. These concerns were mitigated and the well was sampled for the Q4 2019 sampling event; sampling at this well is considered supplemental to the groundwater monitoring program.

e KAFB-106211 will be included for sampling when it has enough saturated water column to deploy passive samplers (former air sparge well).

^f KAFB-106229 is not formally part of the groundwater monitoring network. However, it gets sampled semiannually for EDB.

BTEX = benzene, toluene, ethylbenzene, and total xylenes

EDB = ethylene dibromide

FP = field parameter

GWM = groundwater monitoring

ID = identification

Q2 = second quarter

Q4 = fourth quarter

SE = Southeast

SWMU = Solid Waste Management Unit

VA = Veterans Affairs

VOC = volatile organic compound

Table 3-2
Groundwater Monitoring Wells Sampled in Q1 2020

	Reference	Well			Screen		Screen	Estimated	
	Elevation Interval	Installation	Date	Screen Interval ^b	Interval ^b		Submerged ^c	Sample Depth ^{d,e,f}	_
Location ID	(ft AMSL)	Date ^a	Sampled	(ft bgs)	(ft AMSL)	Sampling System	(Yes/No)?	(ft bgs)	Analytical Suite ^g
(AED 400000	1057	1/05/0000	1/17/0000			7 (ft AMSL) Ground			DIEV EDD ED
(AFB-106003	4857	1/25/2003	1/17/2020	476-501	4861-4836	Portable pump	Yes	478	BTEX, EDB, FP
(AFB-106004	4857	1/4/2006	1/16/2020	484-509	4859-4834	Portable pump	Yes	486	BTEX, EDB, FP
(AFB-106005	4857	1/22/2007	1/8/2020	479-504	4865-4840	Passive sampler	Yes	483	BTEX, EDB, metals, anions, alkalinity
(AFB-106009	4857	11/28/2007	1/8/2020	480-505	4865-4840	Passive sampler	Yes	484	BTEX, EDB, metals, anions, alkalinity
(AFB-106012R	4857	4/22/2014	1/14/2020	466-495	4877-4847	Portable pump	Yes	468	BTEX, EDB, metals, anions, alkalinity, FP
(AFB-106013	4857	9/19/2008	1/15/2020	487-512	4861-4836	Portable pump	Yes	489	BTEX, EDB, FP
(AFB-106029	4857	6/4/2011	1/6/2020	451-471	4860-4840	Passive sampler	Yes	452	EDB
(AFB-106032	4857	6/24/2011	1/6/2020	456-476	4862-4842	Passive sampler	Yes	457	EDB
(AFB-106041	4857	6/6/2011	1/9/2020	449-469	4875-4855	Passive sampler	Yes	450	EDB, metals, anions, alkalinity
KAFB-106049	4857	5/13/2011	1/8/2020	457-477	4859-4839	Passive sampler	Yes	458	EDB
(AFB-106149-484 ^h	4857	9/16/2011	1/9/2020	354-484	4992-4862	Passive sampler	No	472	EDB, metals, anions, alkalinity
KAFB-106151-484	4857	9/30/2011	1/9/2020	355-484	4990-4861	Passive sampler	No	472	EDB, metals, anions, alkalinity
KAFB-106152-484	4857	10/7/2011	1/9/2020	355-484	4992-4863	Passive sampler	No	472	EDB, metals, anions, alkalinity
(AFB-106153-484	4857	10/27/2011	1/9/2020	355-484	4994-4865	Passive sampler	No	475	EDB, metals, anions, alkalinity
(AFB-106201	4857	9/24/2012	1/7/2020	487-517	4867-4837	Passive sampler	Yes	490	EDB
KAFB-106204	4857	8/22/2012	1/8/2020	463-493	4870-4840	Passive sampler	Yes	463	EDB
(AFB-106207	4857	8/22/2012	1/8/2020	473-503	4871-4841	Passive sampler	Yes	474	EDB
KAFB-106216	4857	2/17/2015	1/8/2020	456-486	4878-4848	Passive sampler	No	459	EDB
KAFB-106222	4857	1/15/2015	1/7/2020	458-488	4875-4845	Passive sampler	Yes	459	EDB
(AFB-106231	4857	9/15/2015	1/6/2020	440-475	4888-4853	Passive sampler	No	451	EDB
(AFB-106235-438	4857	10/31/2016	1/6/2020	438-463	4878-4853	Passive sampler	No	441	EDB
KAFB-106236-436	4857	11/23/2016	1/7/2020	436-461	4880-4855	Passive sampler	No	439	EDB
KAFB-106240-449	4857	6/14/2018	1/7/2020	449-489	4899-4859	Passive sampler	No	473	BTEX, EDB, metals, anions, alkalinity
KAFB-106241-428	4857	8/16/2018	1/8/2020	428-468	4896-4856	Passive sampler	No	450	EDB, metals, anions, alkalinity
KAFB-106242-418	4857	8/23/2018	1/6/2020	418-458	4898-4858	Passive sampler	No	442	EDB, metals, anions, alkalinity
KAFB-106243-425	4857	7/27/2018	1/6/2020	425-465	4896-4856	Passive sampler	No	447	EDB, metals, anions, alkalinity
KAFB-106244-445	4857	7/12/2018	1/7/2020	445-485	4898-4858	Passive sampler	No	469	BTEX, EDB, metals, anions, alkalinity
(AFB-106245-460	4857	9/7/2018	1/8/2020	461-501	4897-4857	Passive sampler	No	488	BTEX, EDB, metals, anions, alkalinity
(AFB-106247-450	4857	3/1/2019	1/6/2020	450-490	4898-4858	Passive sampler	No	477	BTEX, EDB, metals, anions, alkalinity
(AFB-106S1-447	4857	2/18/2019	1/9/2020	447-487	4898-4858	Passive sampler	No	471	BTEX, EDB, metals, anions, alkalinity
(AFB-106S2-451	4857	11/21/2018	1/6/2020	451-491	4898-4858	Passive sampler	No	478	BTEX, EDB, metals, anions, alkalinity
(AFB-106S3-449	4857	11/29/2018	1/9/2020	449-489	4899-4859	Passive sampler	No	476	BTEX, EDB, metals, anions, alkalinity
(AFB-106S4-446	4857	11/16/2018	1/6/2020	446-486	4897-4857	Passive sampler	No	471	BTEX, EDB, metals, anions, alkalinity
(AFB-106S5-446	4857	11/5/2018	1/9/2020	446-486	4898-4858	Passive sampler	No	470	BTEX, EDB, metals, anions, alkalinity
	4857	2/4/2019	1/9/2020	451-491	4898-4858	Passive sampler		475	BTEX, EDB, metals, anions, alkalinity
KAFB-106S7-451 ¹ KAFB-106S8-451	4857	3/1/2019	1/6/2020	451-491	4897-4857	Passive sampler	No	476	BTEX, EDB, metals, anions, alkalinity
(AFB-106S9-447	4857	11/8/2019	1/9/2020	447-487	4899-4859	Passive sampler	No No	471	BTEX, EDB, metals, anions, alkalinity

Table 3-2
Groundwater Monitoring Wells Sampled in Q1 2020

Location ID	Reference Elevation Interval (ft AMSL)	Well Installation Date ^a	Date Sampled	Screen Interval ^b (ft bgs)	Screen Interval ^b (ft AMSL)	Sampling System	Screen Submerged ^c (Yes/No)?	Estimated Sample Depth ^{d,e,f} (ft bgs)	Analytical Suite ^g
						88 (ft AMSL) Ground	water Monitoring \		
KAFB-106030	4838	5/25/2011	1/6/2020	470-485	4842-4827	Passive sampler		470	EDB
KAFB-106033	4838	6/18/2011	1/6/2020	477-492	4841-4826	Passive sampler		478	EDB
KAFB-106050	4838	5/2/2011	1/8/2020	474-489	4841-4826	Passive sampler		475	EDB
KAFB-106097	4838	4/27/2011	1/15/2020	506-521	4842-4827	Portable pump		508	BTEX, EDB, FP
KAFB-106099	4838	5/12/2011	1/16/2020	501-516	4842-4827	Portable pump		503	BTEX, EDB, FP
KAFB-106101	4838	2/21/2011	1/17/2020	496-511	4842-4826	Portable pump		498	BTEX, EDB, FP
KAFB-106202	4838	9/23/2012	1/7/2020	517-532	4838-4823	Passive sampler		521	EDB
KAFB-106205	4838	8/15/2012	1/8/2020	493-508	4841-4826	Passive sampler		493	EDB
KAFB-106208	4838	8/16/2012	1/8/2020	503-518	4841-4826	Passive sampler		504	EDB
KAFB-106217	4838	2/17/2015	1/7/2020	485-500	4849-4834	Passive sampler		486	EDB
(AFB-106223	4838	2/17/2015	1/7/2020	488-503	4846-4831	Passive sampler		489	EDB
KAFB-106235-472	4838	10/31/2016	1/6/2020	472-492	4844-4824	Passive sampler		473	EDB
KAFB-106236-470	4838	11/23/2016	1/7/2020	470-490	4846-4826	Passive sampler		471	EDB
	•			Reference Elevation	on Interval 48°	4 (ft AMSL) Ground	water Monitoring \	Wells	
KAFB-106031	4814	5/25/2011	1/6/2020	496-510	4815-4802	Passive sampler		497	EDB
KAFB-106034	4814	6/24/2011	1/6/2020	502-517	4817-4802	Passive sampler		503	EDB
KAFB-106051	4814	4/26/2011	1/8/2020	501-516	4815-4800	Passive sampler		502	EDB
KAFB-106098	4814	4/17/2011	1/15/2020	531-546	4817-4802	Portable pump		533	BTEX, EDB, FP
KAFB-106100	4814	5/3/2011	1/16/2020	526-541	4817-4802	Portable pump		528	BTEX, EDB, FP
KAFB-106102	4814	3/3/2011	1/17/2020	521-535	4816-4803	Portable pump		523	BTEX, EDB, FP
KAFB-106203	4814	9/9/2012	1/7/2020	620-635	4734-4719	Passive sampler		624	EDB
KAFB-106206	4814	7/16/2012	1/8/2020	594-608	4740-4725	Passive sampler		594	EDB
(AFB-106209	4814	8/7/2012	1/8/2020	603-617	4740-4726	Passive sampler		604	EDB
(AFB-106218	4814	5/26/2015	1/7/2020	552-567	4782-4767	Passive sampler		553	EDB
(AFB-106224	4814	5/22/2015	1/7/2020	555-570	4780-4765	Passive sampler		556	EDB
(AFB-106230	4814	9/1/2015	1/7/2020	501-516	4824-4809	Passive sampler		502	EDB, metals, anions, alkalinity
(AFB-106232	4814	9/15/2015	1/6/2020	503-518	4824-4809	Passive sampler		504	EDB
(AFB-106235-501	4814	10/31/2016	1/6/2020	501-521	4815-4795	Passive sampler		502	EDB
(AFB-106236-499	4814	11/23/2016	1/7/2020	499-519	4817-4797	Passive sampler		500	EDB

Table 3-2

Groundwater Monitoring Wells Sampled in Q1 2020

^a Well installation date is the date provided in ERPIMS, except where the date in ERPIMS is the start of drilling, in which case the well installation date is the date provided in the well completion diagram submitted to the NMOSE.

^c Well screens in REI 4857 wells intersected the water table when they were installed and current screen submergence is the result of water table rise. Well screens in REI 4838 and 4814 wells were designed with the screened interval fully submerged to capture conditions at depths below the water table.

^d Portable pump sampling depth is estimated to the nearest foot as 2 ft below top of screen if submerged or 2 ft above bottom of screen if not submerged.

^e Dedicated pump sampling depth is estimated to the nearest foot as half-way between top and bottom of screen.

^f Passive sampling depth is estimated to the nearest foot as the depth to the top of the highest sampler.

^g The analytical methods for EDB and VOCs are 8011 and 8260C, respectively. Metals analyses consisted of select total metals (arsenic, calcium, lead, potassium, magnesium, and sodium by analytical method 6020A/6010C and select and dissolved metals (iron and manganese) (6010C). Anions analysis consisted of bromide by method 300.0A, chloride by method 300.0A, nitrate/nitrite nitrogen by method 353.2, and sulfate by method 300.0A. Field parameters include pH, specific conductivity, dissolved oxygen, oxidation reduction potential, temperature, and turbidity.

^hDuring sampling on January 9, 2020, there was a failure in the sleeve around the passive sampler that resulted in insufficient sample volume for a full suite of analytes. Samples were collected for EDB, dissolved metals, and total metals.

During sampling on January 9, 2020, there was a failure in the sleeve around the passive sampler that resulted in insufficient sample volume for a full suite of analytes. Samples were collected for dissolved metals, nitrate/nitrite, and reduced volume aliquots for EDB -- = Well was designed with the screened interval fully submerged to capture conditions at depths below the water table

AMSL = above mean sea level

bgs = below ground surface

EDB = ethylene dibromide (1,2-dibromoethane)

ERPIMS = Environmental Resources Program Information Management System

FP = field parameter

ft = foot/feet

ID = identification

NA = not applicable

NMOSE = New Mexico Office of the State Engineer

REI = reference elevation interval

VOC = volatile organic compound

^b Screen interval is rounded to the nearest foot.

Table 3-3
Groundwater Elevation and Light Non-Aqueous Phase Liquid Thickness, Q1 2020

Well Location ID	Reference Elevation Interval (ft AMSL)	Date of Measurement	MRP Elevation (ft AMSL)	Top of Screen (ft AMSL)	Depth to LNAPL ^a (ft MRP)	Depth to Water ^a (ft MRP)	Screen Submergence Depth ^b (ft)	Measured LNAPL Thickness (ft)	LNAPL Elevation (ft AMSL)	Groundwater Elevation Corrected for LNAPL Thickness ^c (ft AMSL)
KAFB-106001 ^d	4857/4838	1/20/2020	5344.90	4859	_	467.98	17.92	_	_	4876.92
KAFB-106002	4857	1/21/2020	5342.24	4861	_	464.67	16.57	_	_	4877.57
KAFB-106003	4857	1/21/2020	5340.28	4861	_	462.81	16.47	_	_	4877.47
KAFB-106004	4857	1/20/2020	5345.81	4859	_	468.41	18.40	_	_	4877.40
KAFB-106005	4857	1/22/2020	5346.91	4865	_	469.40	12.51	_	_	4877.51
KAFB-106006	4857	1/22/2020	5351.48	4865	_	474.28	12.20	_	_	4877.20
KAFB-106007	4857	1/20/2020	5349.60	4861	_	472.86	15.74	_	_	4876.74
KAFB-106008	4857	1/22/2020	5351.77	4863	_	474.50	14.27	_	_	4877.27
KAFB-106009	4857	1/21/2020	5348.55	4865	_	471.24	12.31	_	_	4877.31
KAFB-106010	4857	1/22/2020	5343.26	4860	_	466.02	17.24	_	_	4877.24
KAFB-106011	4857	1/21/2020	5353.15	4864	_	476.05	13.10	_	_	4877.10
KAFB-106012R	4857	1/21/2020	5345.00	4877	_	467.83	0.17	_	_	4877.17
KAFB-106013	4857	1/21/2020	5350.62	4861	_	473.23	16.39	_	_	4877.39
KAFB-106014	4857	1/21/2020	5350.22	4861	_	473.09	16.13	_	_	4877.13
KAFB-106015 ^d	4857/4838	1/22/2020	5342.44	4855	_	465.04	22.40	_	_	4877.40
KAFB-106016	4857	1/20/2020	5342.43	4864	_	465.52	12.90	_	_	4876.91
KAFB-106017 ^d	4857/4838	1/21/2020	5342.52	4857	_	465.61	19.91	_	_	4876.91
KAFB-106018 ^d	4857/4838	1/20/2020	5336.31	4857	_	459.43	19.88	_	_	4876.88
KAFB-106019 ^d	4857/4838	1/21/2020	5354.62	4859	_	477.65	17.97	_	_	4876.97
KAFB-106020	4857	1/20/2020	5341.05	4859	_	463.81	18.23		_	4877.24
KAFB-106021 ^d	4857/4838	1/21/2020	5314.33	4856	_	436.96	21.37		_	4877.37
	4857/4838	1/21/2020	5318.06	4856		440.79	21.27			4877.27
KAFB-106022 ^d					_				_	
KAFB-106023	4857	1/22/2020	5328.76	4856	_	451.51	21.25	_	_	4877.25
KAFB-106024	4857	1/20/2020	5343.55	4863	_	466.65	13.90	_	_	4876.90
KAFB-106025 ^d	4857/4838	1/21/2020	5317.28	4852	_	439.56	25.72	<u> </u>	_	4877.72
KAFB-106026	4857	1/21/2020	5322.68	4857	_	444.66	21.02		_	4878.02
KAFB-106027	4857	1/20/2020	5348.62	4864	_	471.81	12.81	_	_	4876.81
KAFB-106028	4857	1/22/2020	5348.89	4863	_	471.68	14.21	_	_	4877.21
KAFB-106029	4857	1/21/2020	5310.94	4860	_	433.10	17.84	_	_	4877.84
KAFB-106030	4838	1/21/2020	5311.03	4842	_	433.20		_	_	4877.83
KAFB-106031 KAFB-106032	4814 4857	1/21/2020	5311.06	4815 4862	_	433.24	 15.70		<u> </u>	4877.82
KAFB-106032	4838	1/21/2020 1/21/2020	5317.60 5317.76	4841	_	439.88 440.03	15.72		_	4877.72 4877.73
KAFB-106033	4814	1/21/2020	5318.63	4817	<u> </u>	440.88		<u></u>	_	4877.75
KAFB-106035	4857	1/21/2020	5321.58	4869		444.77	7.81			4876.81
KAFB-106036	4838	1/22/2020	5321.85	4840	_	445.22	7.01			4876.63
KAFB-106037	4838	1/22/2020	5322.10	4815	_	445.87			_	4876.23
KAFB-106038	4857	1/21/2020	5351.61	4870	_	474.52	7.09	_	_	4877.09
KAFB-106039	4838	1/21/2020	5351.32	4840	_	474.30			_	4877.02
KAFB-106040	4814	1/21/2020	5350.26	4817	_	473.20			_	4877.06
KAFB-106041	4857	1/20/2020	5324.35	4875	_	446.85	2.50	_	_	4877.50
KAFB-106042	4857	1/20/2020	5324.07	4855	_	446.61	22.46	_	_	4877.46
KAFB-106043	4814	1/20/2020	5324.30	4781	_	446.84		_	_	4877.46
KAFB-106044	4838	1/20/2020	5348.79	4841	_	471.96		_	_	4876.83
KAFB-106045	4814	1/20/2020	5348.52	4817	_	471.65		_	_	4876.87
KAFB-106046	4857	1/20/2020	5352.84	4863	_	475.63	14.21	_	_	4877.21
KAFB-106047	4838	1/20/2020	5352.81	4841	_	476.14		_	_	4876.67
KAFB-106048	4814	1/20/2020	5352.58	4817	_	475.88		_	_	4876.70
KAFB-106049	4857	1/21/2020	5316.10	4859	_	438.08	19.02	_	_	4878.02
KAFB-106050	4838	1/21/2020	5315.51	4841	_	437.50		_	_	4878.01

Table 3-3
Groundwater Elevation and Light Non-Aqueous Phase Liquid Thickness, Q1 2020

Well Location ID	Reference Elevation Interval (ft AMSL)	Date of Measurement	MRP Elevation (ft AMSL)	Top of Screen (ft AMSL)	Depth to LNAPL ^a (ft MRP)	Depth to Water ^a (ft MRP)	Screen Submergence Depth ^b (ft)	Measured LNAPL Thickness (ft)	LNAPL Elevation (ft AMSL)	Groundwater Elevation Corrected for LNAPL Thickness ^c (ft AMSL)
KAFB-106051	4814	1/21/2020	5315.78	4815		437.80				4877.98
KAFB-106052	4857	1/21/2020	5318.86	4869	_	441.15	8.71	_	_	4877.71
KAFB-106053	4838	1/21/2020	5318.67	4840	_	441.06		_	_	4877.61
KAFB-106054	4814	1/21/2020	5318.38	4814	_	440.66		_	_	4877.72
KAFB-106055	4857	1/21/2020	5325.09	4859	_	447.53	18.56	_	_	4877.56
KAFB-106057	4838	1/21/2020	5325.46	4841	_	447.89		_	_	4877.57
KAFB-106058	4814	1/21/2020	5326.05	4814	_	448.44		_	_	4877.61
KAFB-106059	4857	1/20/2020	5347.87	4861	470.94	471.10	15.89	0.16	4876.93	4876.89
KAFB-106060	4838	1/20/2020	5345.32	4842	_	468.54		_	_	4876.78
KAFB-106061	4814	1/20/2020	5345.43	4772	_	468.52		_	_	4876.91
KAFB-106062	4814	1/20/2020	5351.20	4773	_	474.31		_	_	4876.89
KAFB-106063 ^e	4838	3/11/2020	5351.86	4844	_	474.18		_	_	4877.68
KAFB-106064 ^e	4857	3/11/2020	5351.08	4863	_	473.35	14.73	_	_	4877.73
KAFB-106065	4838	1/22/2020	5348.76	4841	_	471.75				4877.01
KAFB-106066	4814	1/22/2020	5349.09	4773	_	471.75			_	4877.34
KAFB-106067	4857	1/21/2020	5347.50	4862	_	470.60	14.90			4876.90
KAFB-106068	4814	1/21/2020	5347.23	4767	_	470.30			_	4876.93
KAFB-106069	4838	1/21/2020	5347.25	4841	_	470.20		_	_	4877.05
KAFB-106070	4857	1/22/2020	5318.54	4859	_	441.44	18.10		_	4877.10
KAFB-106071	4814	1/22/2020	5320.90	4773	_	443.68			_	4877.22
KAFB-106072	4838	1/22/2020	5319.29	4844	_	441.98		_	_	4877.31
KAFB-106072	4838	1/20/2020	5339.87	4840	_	462.68		_	_	4877.19
KAFB-106074	4814	1/20/2020	5340.59	4771	_	463.40		_	_	4877.19
KAFB-106075	4857	1/20/2020	5340.50	4860	_	463.40	17.10	_	_	4877.10
KAFB-106076	4857	1/22/2020	5344.92	4865	467.84	467.88	12.07	0.04	4877.08	4877.07
KAFB-106077	4838	1/21/2020	5344.72	4841	—	469.08		-	_	4875.64
KAFB-106078	4814	1/21/2020	5344.60	4771	_	468.22		_	_	4876.38
KAFB-106079	4857	1/22/2020	5349.67	4863	_	472.55	14.12	_	_	4877.12
KAFB-106080	4838	1/22/2020	5348.48	4843	_	471.14		_	_	4877.34
KAFB-106081	4814	1/21/2020	5349.48	4772	_	472.37		_	_	4877.11
KAFB-106082	4857	1/20/2020	5335.26	4863	_	458.61	13.65	_	_	4876.65
KAFB-106083	4838	1/20/2020	5335.04	4840	_	458.28		_	_	4876.76
KAFB-106084	4814	1/20/2020	5337.94	4768	_	460.99		_	_	4876.95
KAFB-106085	4857	1/22/2020	5317.23	4871	_	439.86	6.37	_	_	4877.37
KAFB-106086	4838	1/22/2020	5317.65	4842	_	440.25		_	_	4877.40
KAFB-106087	4814	1/22/2020	5316.87	4771	_	439.42		_	_	4877.45
KAFB-106088	4857	1/22/2020	5324.27	4864	_	447.18	13.09	_	_	4877.09
KAFB-106089	4838	1/22/2020	5323.54	4842	_	446.89		_	_	4876.65
KAFB-106090	4814	1/22/2020	5322.85	4768	_	445.68		_	_	4877.17
KAFB-106091	4857	1/21/2020	5314.33	4860	_	436.79	17.54	_	_	4877.54
KAFB-106092	4838	1/21/2020	5314.51	4841	_	436.90		_	_	4877.61
KAFB-106093	4814	1/21/2020	5314.62	4771	_	436.99		_	_	4877.63
KAFB-106094	4857	1/21/2020	5345.07	4861	_	467.81	16.26	_	_	4877.26
KAFB-106095	4838	1/21/2020	5344.66	4841	_	467.36		_	_	4877.30
KAFB-106096	4814	1/21/2020	5345.31	4769	_	468.00		_	_	4877.31
KAFB-106097	4838	1/21/2020	5347.74	4842	_	470.16		_	_	4877.58
KAFB-106098	4814	1/21/2020	5347.83	4817	_	470.24		_	_	4877.59
KAFB-106099	4838	1/20/2020	5342.85	4842	_	465.38		_	_	4877.47
KAFB-106100	4814	1/20/2020	5342.85	4817	_	465.40		_	_	4877.45
KAFB-106101	4838	1/21/2020	5340.32	4842	_	462.89		_	_	4877.43
KAFB-106102	4814	1/21/2020	5340.32	4816	_	463.03		_	_	4877.29

Table 3-3
Groundwater Elevation and Light Non-Aqueous Phase Liquid Thickness, Q1 2020

Well Location ID	Reference Elevation Interval (ft AMSL)	Date of Measurement	MRP Elevation (ft AMSL)	Top of Screen (ft AMSL)	Depth to LNAPL ^a (ft MRP)	Depth to Water ^a (ft MRP)	Screen Submergence Depth ^b (ft)	Measured LNAPL Thickness (ft)	LNAPL Elevation (ft AMSL)	Groundwater Elevation Corrected for LNAPL Thickness ^c (ft AMSL)
KAFB-106103	4838	1/22/2020	5328.44	4843	_	451.74		_	_	4876.70
KAFB-106104	4814	1/22/2020	5328.08	4818	_	451.21		_	_	4876.87
KAFB-106105	4838	1/21/2020	5321.96	4838	_	444.41		_	_	4877.55
KAFB-106106	4857	1/21/2020	5321.80	4868	_	444.28	9.52	_	_	4877.52
KAFB-106107	4814	1/21/2020	5322.12	4812	_	444.52		_	_	4877.60
KAFB-106148-484 ^f	4857	1/22/2020	5344.24	4990	_	467.11	-113.11	_	_	4877.13
KAFB-106149-484 ^f	4857	1/22/2020	5345.94	4992	_	469.08	-115.14	_	_	4876.86
KAFB-106150-484 ^f	4857	1/22/2020	5344.10	4989	467.36	467.47	-112.29	0.11	4876.74	4876.71
KAFB-106151-484 ^f	4857	1/20/2020	5345.49	4990	_	469.03	-113.54	_	_	4876.46
KAFB-106152-484 ^f	4857	1/22/2020	5347.68	4992	_	470.63	-114.95	_	_	4877.05
KAFB-106153-484 ^f	4857	1/22/2020	5348.99	4994	_	472.07	-117.08	_	_	4876.92
KAFB-106154-484 ^f	4857	1/22/2020	5347.34	4992	_	470.27	-114.93	_	_	4877.07
KAFB-106155-484 ^f	4857	1/22/2020	5347.13	4992	_	470.64	-115.51	<u> </u>	_	4876.49
KAFB-106156-484 ^f	4857	1/20/2020	5341.19	4996	_	464.19	-119.00	_	_	4877.00
KAFB-106201	4857	1/21/2020	5357.00	4867	_	479.31	10.69		_	4877.69
KAFB-106202	4838	1/21/2020	5357.80	4838	_	480.37		_	_	4877.43
KAFB-106203	4814	1/21/2020	5357.52	4734	_	480.77		_	_	4876.75
KAFB-106204	4857	1/20/2020	5332.86	4870	_	454.85	8.01	_	_	4878.01
KAFB-106205	4838	1/20/2020	5333.29	4841	_	455.21		_	_	4878.08
KAFB-106206	4814	1/20/2020	5333.46	4740	_	455.33		_	_	4878.13
KAFB-106207	4857	1/20/2020	5344.20	4871	_	465.41	7.78	_	_	4878.79
KAFB-106208	4838	1/20/2020	5343.85	4841	_	465.11		_	_	4878.74
KAFB-106209	4814	1/20/2020	5343.38	4740	_	464.47		_	_	4878.91
KAFB-106211 ^f	4857	1/21/2020	5342.51	4905	_	465.49	-27.98	_	_	4877.02
KAFB-106212	4814	1/22/2020	5321.80	4779	_	445.43		_	_	4876.37
KAFB-106213	4857	1/22/2020	5325.19	4877	_	448.24	-0.05	_	_	4876.95
KAFB-106214	4838	1/22/2020	5325.45	4847	_	448.28		_	_	4877.17
KAFB-106215	4814	1/22/2020	5325.77	4779	_	448.51		_	_	4877.26
KAFB-106216	4857	1/20/2020	5333.91	4878	_	456.91	-1.00	_	_	4877.00
KAFB-106217	4838	1/20/2020	5333.85	4849	_	456.81		_	_	4877.04
KAFB-106218	4814	1/20/2020	5333.64	4782	_	456.95		_	_	4876.69
KAFB-106219	4857	1/20/2020	5340.41	4878	_	462.77	-0.36	_	_	4877.64
KAFB-106220	4838	1/20/2020	5340.34	4847	_	462.74		_	_	4877.60
KAFB-106221	4814	1/20/2020	5340.10	4779	_	462.53		_	_	4877.57
KAFB 400000	4857	1/20/2020	5333.24	4875	_	455.74	2.50		<u> </u>	4877.50
KAFB-106223	4838	1/20/2020	5333.96	4846	_	456.46			_	4877.50
KAFB-106224 KAFB-106225	4814 4857	1/20/2020	5335.08	4780 4876	_	457.60	1.04	<u> </u>		4877.48 4877.04
KAFB-106225 KAFB-106226	4837	1/20/2020 1/20/2020	5326.36 5327.31	4847	_	449.32 449.94		<u> </u>	_	4877.04
KAFB-106226 KAFB-106227	4838 4814	1/20/2020	5327.31	4847 4780	<u> </u>	449.94 450.69				4877.40
	4857/4838	1/20/2020	5314.31	4883		436.71	-5.40			4877.60
KAFB-106229 ^{d,f} KAFB-106230	4814	1/21/2020	5324.51	4824		446.76	-0.70	<u>_</u>		4877.75
KAFB-106230	4857	1/21/2020	5327.56	4888	<u> </u>	449.17	-9.61	<u>_</u>		4878.39
KAFB-106231	4814	1/21/2020	5327.20	4824		448.69	-9.01	<u> </u>		4878.51
KAFB-106235-438	4857	1/20/2020	5315.67	4878		438.48	-0.81			4877.19
KAFB-106235-472	4838	1/20/2020	5315.67	4844	_	438.44			_	4877.23
KAFB-106235-501	4814	1/20/2020	5315.67	4815	_	438.46		_	_	4877.21
KAFB-106236-436	4857	1/20/2020	5316.02	4880	_	438.15	-2.13	_	_	4877.87
KAFB-106236-470	4838	1/20/2020	5316.02	4846	_	438.13		_	_	4877.89

Table 3-3
Groundwater Elevation and Light Non-Aqueous Phase Liquid Thickness, Q1 2020

Well Location ID	Reference Elevation Interval (ft AMSL)	Date of Measurement	MRP Elevation (ft AMSL)	Top of Screen (ft AMSL)	Depth to LNAPL ^a (ft MRP)	Depth to Water ^a (ft MRP)	Screen Submergence Depth ^b (ft)	Measured LNAPL Thickness (ft)	LNAPL Elevation (ft AMSL)	Groundwater Elevation Corrected for LNAPL Thickness ^c (ft AMSL)
KAFB-106236-499	4814	1/20/2020	5316.02	4817		438.15				4877.87
KAFB-106240-449	4857	1/21/2020	5347.57	4899	_	470.21	-21.64	_		4877.36
KAFB-106241-428	4857	1/21/2020	5324.06	4896	_	447.15	-19.09	_	_	4876.91
KAFB-106242-418	4857	1/21/2020	5316.15	4898	_	438.88	-20.73	_	_	4877.27
KAFB-106243-425	4857	1/22/2020	5320.57	4896	_	443.46	-18.89	_	_	4877.11
KAFB-106244-445	4857	1/20/2020	5343.51	4898	_	466.14	-20.63	_	_	4877.37
KAFB-106245-460	4857	1/22/2020	5360.90	4897	_	484.11	-20.21	_	_	4876.79
KAFB-106247-450	4857	1/20/2020	5351.60	4901	_	474.85	-24.25	_	_	4876.75
KAFB-106S1-447	4857	1/22/2020	5345.22	4898	_	468.01	-20.79	_	_	4877.21
KAFB-106S2-451	4857	1/22/2020	5352.40	4898	_	475.22	-20.82	_	_	4877.18
KAFB-106S3-449	4857	1/22/2020	5351.01	4899	_	474.31	-22.30	_	_	4876.70
KAFB-106S4-446	4857	1/22/2020	5346.57	4898	_	469.13	-20.56	_	_	4877.44
KAFB-106S5-446	4857	1/22/2020	5343.58	4898	_	466.30	-20.72	_	_	4877.28
KAFB-106S7-451	4857	1/22/2020	5348.88	4898	_	471.78	-20.90	_	_	4877.10
KAFB-106S8-451	4857	1/22/2020	5351.45	4900	_	474.30	-22.85	_	_	4877.15
KAFB-106S9-447	4857	1/20/2020	5345.82	4899	_	469.30	-22.48	_	_	4876.52
KAFB-3411	4857	1/20/2020	5343.49	4863	_	466.59	13.90	_	_	4876.90

^a See appendix table E-2-1 for corrections to water level and LNAPL depths based on interface probe calibration.

AMSL = above mean sea level

ft = foot/feet

ID = identification

JP = jet propellant

LNAPL = light non-aqueous phase liquid

MRP = measurement reference point

NA = not applicable

Q1 = first quarter

REI = reference elevation interval

-- = Well was designed with the screened interval fully submerged to capture conditions at depths below the water table

- = LNAPL not detected

b Screen submergence depth is calculated for wells which intersected the water table when they were installed; those located in REI 4857 and 4857/4838. It is the difference between the groundwater elevation corrected for LNAPL thickness and the top of screen elevation. Negative values reflect the length of screen remaining above the water table.

^c Groundwater elevation corrected for LNAPL thickness was calculated by the following formula: MRP Elevation - Depth to LNAPL/water interface + (LNAPL Thickness * Specific Gravity of Weathered JP4/JP8 Fuel) where the specific gravity of JP4/JP8 fuel is 0.7592. The specific gravity is based on the December 13, 2018 site-specific fuel testing report from PTS Laboratories using LNAPL collected from wells KAFB-106059, and KAFB-106079.

^d Well used in analyses for both REI 4857 and 4838.

^e Well was not gauged in January due to presence of monitoring equipment. Gauging occurred prior to sampling in March and is presented here for informational purposes only. Data was not used in the creation of potentiometric surface maps.

^fWell not permanently designated in REI listed.

Table 3-4
Groundwater Analytical Results for Newly Added Wells, Q1 2020

KAFB-106247-450

GW247-450-201

KAFB-106S1-447

GWS1-447-201

KAFB-106S7-451

GWS7-451-201

KAFB-106S8-451

GWS8-451-201

Well Location ID:

Field Sample ID:

			1 icia campie ib.				1	277 700 2	-01	j	101 777	201	٠,	VO7 -01	201	0,	VOO -01 2	-01
						Sample Date:		1/6/2020			1/9/2020			1/9/2020)		1/6/2020	
						Sample Type:		REG			REG			REG			REG	
					Sample	Depth (ft bgs):		477.42			471.12			475.1			478.32	
			Refere	nce Elev	ation Inte	rval (ft AMSL):		4857			4857			4857			4857	
						Project												
	Analytical		NMAC	EPA	EPA	Screening		Val			Val			Val			Val	
Parameter	Method	Analyte	NMWQCC ^b	MCL ^c	RSL ^d	Levele	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (µg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	450	J	95	2		0.38	34		9.4
	Method SW8260C (µg/L)	Benzene	10	5	4.5	5	ND	U	0.5	7,800		50	6,700		50	200		0.5
		Ethylbenzene	750	700	15	700	ND	U	0.8	620		8	1,200		8	27		0.8
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	10,000		50	7,700		50	470		5
		Xylenes, total	620	10,000	190	620	ND	U	2	2,600		20	4,000		20	160		2
Metals	Method SW6010C (mg/L)	Calcium	NS	NS	NS	NS	42.7		0.15	91.5		0.15	_	_	_	100		0.15
		Iron	1.0	NS	NS	1.0	ND	U	0.103	1.02		0.103	6.82		0.103	12.6		0.103
		Magnesium	NS	NS	NS	NS	6.2		0.0751	15		0.0751	_	_	_	15.3		0.0751
		Manganese	0.2	NS	NS	0.2	0.0929		0.0052	2.76		0.0052	5.58		0.0052	1.75		0.0052
		Potassium	NS	NS	NS	NS	2.41		0.375	3.12		0.375	_	_	_	3.34		0.375
		Sodium	NS	NS	NS	NS	24.9	-	0.5	30.1		0.5	_		_	31.9		0.5
	Method SW6020A (mg/L)	Arsenic	0.01	0.01	0.00052	0.01	0.00071	J	0.0016	0.0028		0.0016	_		_	0.0032		0.0016
		Lead	0.015	0.015	0.015	0.015	0.000095	J	0.00025	0.00014	J	0.00025	_	_	_	0.00028	J	0.00025
Anions	Method E300.0 (mg/L)	Bromide	NS	NS	NS	NS	ND	U	2	ND	U	2	_	_	_	ND	U	2
		Chloride	250	250	NS	250	10.8		1.5	25.3		1.5	_	_	_	11.3		1.5
		Sulfate	600	250	NS	250	30.2	-	4.5	14.8		4.5	_		_	ND	U	4.5
	Method E353.2 (mg/L)	Nitrate/Nitrite Nitrogen	10 ^f	10 ^f	NS	10 ^f	0.85		0.09	ND	U	0.09	ND	U	0.09	ND	U	0.09
Alkalinity	Method SM2320B (mg/L)	Alkalinity, bicarbonate (as CaCO ₃)	NS	NS	NS	NS	135		6	288		6	_	_	_	341		6
		Alkalinity, carbonate (as CaCO ₃)	NS	NS	NS	NS	ND	U	6	ND	U	6	_	_	_	ND	U	6
		Alkalinity, total (as CaCO ₃)	NS	NS	NS	NS	135		6	288		6	_	_	_	341		6
																		_

Table 3-4

Groundwater Analytical Results for Newly Added Wells, Q1 2020

— = Compound not analyzed for.

μg/L = microgram per liter

AFB = Air Force Base

AMSL = above mean sea level

bgs = below ground surface

BTEX = benzene, toluene, ethylbenzene, and total xylenes

CaCO₃ = calcium carbonate

CFR = Code of Federal Regulations

EDB = ethylene dibromide (1,2-dibromoethane)

EPA = U.S. Environmental Protection Agency

ft = foot (feet)

ID = identification

LOD = limit of detection

MCL = maximum contaminant level

mg/L = milligram per liter

ND = not detected

NMAC = New Mexico Administrative Code

NMWQCC = New Mexico Water Quality Control Commission

NS = not specified

Q1 = first quarter

REG = normal field sample

RSL = regional screening level

Val Qual = validation qualifier

Shading = detected concentrations above the detection limit

Bold/Shading = reported concentrations exceed the project screening level

Val Quals based on independent data validation:

J = Qualifier denotes the analyte was positively identified, but the associated numerical value is estimated.

U = Qualifier denotes the analyte was analyzed but not detected above the detection limit. The value associated with the U-qualifier is the LOD.

-- = Validation qualifier not assigned.

^a During sampling on January 9, 2020, there was a failure in the sleeve around the passive sampler that resulted in insufficient sample volume for a full suite of analytes. Samples were collected for dissolved metals, nitrate/nitrite, and reduced volume aliquots for EDB and BTEX.

b NMWQCC numeric standards per the NMAC Title 20.6.2.3101A, Standards for Ground Water of 10,000 mg/L Total Dissolved Solids Concentration or Less (NMAC, 2018). For metals, the NMWQCC numeric standard applies to dissolved metals.

^c EPA National Primary Drinking Water Regulations, MCLs and Secondary MCLs, Title 40 CFR Part 141, 143 (May 2018).

^d EPA Region 6 RSL for Tapwater (November 2019) for hazard index = 1.0 for noncarcinogens and a 10-5 cancer risk level for carcinogens.

^e The project screening level was selected to satisfy the requirements of the Kirtland AFB Hazardous Waste Permit Number NM9570024423 as the lowest of (1) NMWQCC numeric standard or (2) EPA MCL. If no NMQWCC standard or MCL exists for any analyte, then the project screening level will be the EPA RSL.

f Based on the geochemical equilibrium of the site groundwater and previous site data analyses, nitrate/nitrite results represent nitrate concentrations.

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAI	B-10600	3	KAI	B-10600	4	KAI	-B-10600	5
					Field	d Sample ID:	G۷	V003-201		GV	V004-201		G۷	V005-201	
					5	Sample Date:	1,	/17/2020		1,	/16/2020		1	/8/2020	
					S	ample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		481			488.74			482.57	
			Refere	Reference Elevation Interval (ft AMSL): Project				4857			4857			4857	
			Project												
			NMAC EPA EPA Screening				Val			Val			Val	1	
Parameter	Analytical Method	Analyte	NMAC EPA EPA Screening NMWQCC ^a MCL ^b RSL ^c Level ^d		Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD		
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	0.045		0.019
BTEX	Method SW8260C (µg/L)	Benzene	10	5	4.5	5	ND	U	0.5	ND	U	0.5	21		0.5
		Ethylbenzene	750	700	15	700	ND	U	0.8	ND	U	0.8	100		0.8
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	U	0.5	4		0.5
		Xylenes, total	620	10,000	190	620	ND	U	2	ND	U	2	160		2

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAI	FB-10600	5	KAI	FB-10600	9	KAI	-B-10600	9
					Fiel	d Sample ID:	GV	N 005-601		G\	N009-201		G\	V009-601	
					,	Sample Date:	1	1/8/2020		1	1/8/2020		1	/8/2020	
					S	Sample Type:	Field	d Duplica	te		REG		Fiel	d Duplica	te
					Sample D	epth (ft bgs):		482.57			484.39			484.39	
			Reference Elevation Interval (ft AMSL): Project				4857			4857			4857		
						Project									
			NMAC EPA EPA Screening			Val			Val			Val			
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	0.045		0.019	ND	U	0.019	ND	U	0.019
BTEX	Method SW8260C (μg/L)	Benzene	10	5	4.5	5	22		0.5	ND	U	0.5	ND	U	0.5
		Ethylbenzene	750	700	15	700	100		0.8	ND	U	0.8	ND	U	0.8
		Toluene	1,000	1,000	1,100	1,000	4		0.5	ND	U	0.5	ND	U	0.5
		Xylenes, total	620	10,000	190	620	160		2	ND	U	2	ND	U	2

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAF	B-106012	2R	KAF	B-106012	2R	KAI	B-10601	3
					Field	d Sample ID:	GW	012R-20	1	GW	012R-60	1	GV	V013-201	
					9	Sample Date:	1/	14/2020		1,	/14/2020		1,	/15/2020	
					S	ample Type:		REG		Field	d Duplica	te		REG	
					Sample D	epth (ft bgs):		470.5			470.5			491	
			Refere	Reference Elevation Interval (ft AMSL): Project				4857			4857			4857	
			Project												
			NMAC EPA EPA Screenin			Screening		Val			Val			Val	I
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	ND	U	0.019
															i
BTEX	Method SW8260C (µg/L)	Benzene	10	5	4.5	5	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Ethylbenzene	750	700	15	700	ND	J	0.8	ND	J	0.8	ND	U	0.8
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	U	0.5	ND	Ū	0.5
		Xylenes, total	620	10,000	190	620	ND	U	2	ND	U	2	ND	Ū	2

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAF	B-10602	9	KAF	B-10602	9	KAF	B-10603	0
					Fiel	d Sample ID:	G۷	V029-201		G۷	V029-601		G۷	V030-201	
					,	Sample Date:	1	/6/2020		1	/6/2020		1	/6/2020	
					S	Sample Type:		REG		Field	d Duplicat	te		REG	
					Sample D	epth (ft bgs):		451.5			451.5			470.2	
			Refere					4857			4857			4838	
						Project									
						Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	1		RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	ND	U	0.019
BTEX	Method SW8260C (µg/L)	Benzene	10	5	4.5	5	_	_	_	_	_	_	_	_	_
		Ethylbenzene	750	700	15	700		_	_	_	_	_	_	_	_
		Toluene	1,000	1,000	1,100	1,000	_	_	_	_	_	_	_	_	_
		Xylenes, total	620	10,000	190	620		_	_	_	_	_	_	_	_

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAI	-B-10603	1	KAI	-B-10603	2	KAI	FB-10603	,3
					Field	d Sample ID:	GV	V031-201		GV	V032-201		G\	V 033-201	1
					9	Sample Date:	1	/6/2020		1	/6/2020		1	/6/2020	
					S	Sample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		496.5			456.7			477.7	
			Reference Elevation Interval (ft AMSL): Project				4814			4857			4838		
			Project												
			NMAC EPA EPA Screening			Val			Val			Val	1		
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	ND	U	0.019
BTEX	Method SW8260C (µg/L)	Benzene	10	5	4.5	5	_	_	_	_	_	_	_	_	_
		Ethylbenzene	750	700	15	700	_	_	_	_	_	_	_	_	_
		Toluene	1,000	1,000	1,100	1,000	_	_	_	_	_	_	_	_	_
		Xylenes, total	620	10,000	190	620	_		_	_	_	_	_	_	_

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KA	FB-10603	4	KAI	-B-10604	1	KA	FB-10604	9
					Fiel	d Sample ID:	G\	V 034-201		GV	V041-201		G\	N 049-201	ı
					(Sample Date:	•	/6/2020		1	/9/2020		1	1/8/2020	
					S	ample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		502.7			449.7			457.5	
			Reference Elevation Interval (ft AMSL): Project				4814			4857			4857		
			Project											1	
			NMAC	NMAC EPA EPA Screening			Val			Val			Val	1	
Parameter	Analytical Method	Analyte			Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD		
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	0.049		0.019	ND	U	0.019
BTEX	Method SW8260C (µg/L)	Benzene	10	5	4.5	5	_	_	_	_	_	_	_	_	_
		Ethylbenzene	750	700	15	700	_	_	_	_	_	_	_	_	_
		Toluene	1,000	1,000	1,100	1,000	_	_	_	_	_	_		_	_
		Xylenes, total	620	10,000	190	620	_			_			_		

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAI	FB-10605	0	KAF	FB-10605	1	KAI	FB-10609	7
					Field	d Sample ID:	G۱	N 050-201		GV	V051-201		G\	N 097-201	i
						Sample Date:	1	1/8/2020		1	/8/2020		1	/15/2020	
					S	Sample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		475.1			501.5			508	
			Refere	ence Eleva	ation Interv	val (ft AMSL):		4838			4814			4838	
			NMAC EPA EPA Screening												
			NMAC EPA EPA Screening					Val			Val			Val	1
Parameter	Analytical Method	Analyte	NMAC EPA EPA Screening NMWQCC ^a MCL ^b RSL ^c Level ^d			Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	
EDB	Method SW8011 (µg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	ND	U	0.019
BTEX	Method SW8260C (µg/L)	Benzene	10	5	4.5	5	_	_	_	_	_	_	ND	U	0.5
		Ethylbenzene	750	700	15	700	_	_	_	_	_	_	ND	U	0.8
		Toluene	1,000	1,000	1,100	1,000	_	_	_	_	_	_	ND	U	0.5
		Xylenes, total	620	10,000	190	620	_	_	_	_	_	_	ND	U	2

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

				Well Location				FB-10609	8	KAI	FB-10609	9	KA	FB-10610	<i>i</i> O
					Fiel	d Sample ID:	G\	N 098-201		G\	V099-201		G\	W100-201	l
					;	Sample Date:	1	/15/2020		1.	/16/2020		1	/16/2020	
					5	Sample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		533			503			528	
			Refer	Reference Elevation Interval (ft AMSL): Project				4814			4838			4814	
			Project												
			NMAC EPA EPA Screening			Val			Val			Val	1		
Parameter	Analytical Method	Analyte	NMAC EPA EPA Screening NMWQCC ^a MCL ^b RSL ^c Level ^d		Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD		
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	ND	U	0.019
BTEX	Method SW8260C (μg/L)	Benzene	10	5	4.5	5	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Ethylbenzene	750	700	15	700	ND	U	0.8	ND	U	0.8	ND	U	0.8
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Xvlenes, total	620	10.000	190	620	ND	U	2	ND	U	2	ND	U	2

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAF	B-10610	1	KAI	B-10610	2	KAFB	-106149-4	484
					Fiel	d Sample ID:	G۷	V101-201		GV	V102-201		GW1	49-484-2	01
						Sample Date:	1/	17/2020		1,	/17/2020		1	/9/2020	
					S	Sample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		501			526			472	
			Refer					4838			4814			4857	
					Project										
			NMAC EPA EPA		Screening		Val			Val			Val	I	
Parameter	Analytical Method	Analyte	NMWQCC ^a	_		Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (µg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	40		9.6
															i
BTEX	Method SW8260C (µg/L)	Benzene	10	5	4.5	5	ND	U	0.5	ND	U	0.5	_	_	_
		Ethylbenzene	750	700	15	700	ND	U	0.8	ND	U	0.8	_	_	_
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	J	0.5	_	_	_
		Xylenes, total	620	10,000	190	620	ND	U	2	ND	U	2	_	_	_

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAFB	-106151-	484	KAFB	-106152-	484	KAFB	-106153-4	484
					Fiel	d Sample ID:	GW1	51-484-2	01	GW1	152-484-2	01	GW1	53-484-2	01
					(Sample Date:	1	/9/2020		1	/9/2020		1	/9/2020	
					S	Sample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		472.19			472.88			474.89	
			Refere	ence Eleva	ation Interv	val (ft AMSL):		4857			4857			4857	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	3.4		0.96	ND	U	0.019	460		96
BTEX	Method SW8260C (μg/L)	Benzene	10	5	4.5	5	_	_	_	_	_	_	_	_	_
		Ethylbenzene	750	700	15	700	_	_	_	_	_	_	_	_	_
		Toluene	1,000	1,000	1,100	1,000	_	_	_	_	_	_		_	_
		Xylenes, total	620 10,000 190 620			620	_	_	_		_			_	_

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAF	B-10620	1	KAI	B-10620	2	KAI	FB-10620	3
					Fiel	d Sample ID:	G۷	V201-201		GV	V202-201		G۷	V 203-201	
					,	Sample Date:	1	/7/2020		1	/7/2020		1	/7/2020	
					S	Sample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		490.35			520.6			623.78	
			Reference Elevation Interval (ft AMSL): Project				4857			4838			4814		
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	1
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	ND	U	0.019
BTEX	Method SW8260C (μg/L)	Benzene	10	5	4.5	5		_	_	_	_	_		_	_
		Ethylbenzene	750	700	15	700	_	_	_	_	_	_	_	_	_
		Toluene	1,000	1,000	1,100	1,000	_	_	_		_	_	_	_	_
		Xylenes, total	620 10,000 190 620			_	_	_	_	_	_	_	_	_	

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAF	B-10620	4	KAF	B-10620	5	KAI	B-10620	6
					Field	d Sample ID:	GV	V204-201		GV	V205-201		GV	V206-201	
					5	Sample Date:	1	/8/2020		1	/8/2020		1	/8/2020	
					S	ample Type:		REG			REG			REG	
					Sample Do	epth (ft bgs):		463.2			493.2			594.2	
			Refere	ence Eleva	ation Interv	al (ft AMSL):		4857			4838			4814	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	0.022	J	0.019	ND	U	0.019
BTEX	Method SW8260C (µg/L)	Benzene	10	5	4.5	5	_	_	_	_	_	_	_		_
		Ethylbenzene	750	700	15	700	_	_	_	_	_	_	_	_	_
		Toluene	1,000	1,000	1,100	1,000	_	_	_	_	_	_	_	_	_
		Xylenes, total	620					_	_		_		_	_	_

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAF	B-10620	6	KAF	B-10620	7	KAF	B-10620	8
					Fiel	d Sample ID:	G۷	V206-601		GV	V207-201		G۷	V208-201	
					5	Sample Date:	1	/8/2020		1	/8/2020		1	/8/2020	
					S	Sample Type:	Field	d Duplicat	:e		REG			REG	
					Sample D	epth (ft bgs):		594.2			473.7			503.7	
			Refere	ence Eleva	tion Interv	/al (ft AMSL):		4814			4857			4838	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Leveld	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	ND	U	0.019
BTEX	Method SW8260C (µg/L)	Benzene	10	5	4.5	5	_	_	_	_	_	_	_	_	_
		Ethylbenzene	750	700	15	700	_	_	_	_	_	_		_	_
		Toluene	1,000	1,000	1,100	1,000	_	_	_		_			_	_
		Xylenes, total	620	10,000	190	620	_	_			_		1	_	_

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAI	B-10620	9	KAI	B-10621	6	KAI	FB-10621	7
					Fiel	d Sample ID:	GV	V209-201		GV	V216-201		G\	N217-201	
						Sample Date:	1	/8/2020		1	/7/2020		1	1/7/2020	
					S	ample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		603.7			461.4			485.7	
			Reference Elevation Interval (ft AMSL): Project				4814			4857			4838		
			Project												
			NMAC EPA EPA Screening			Val			Val			Val	Í		
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	ND	U	0.019
BTEX	Method SW8260C (μg/L)	Benzene	10	5	4.5	5	_	_	_	_	_	_	_	_	_
		Ethylbenzene	750	700	15	700	_	_	_	_	_	_	_	_	_
		Toluene	1,000	1,000	1,100	1,000	_	_	_	_	_	_	_	_	_
		Xylenes, total	1,000 1,000 1,100 1,000 620 10,000 190 620			620	_	_	_	_	_	_	_	_	_

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAF	B-10621	8	KAI	B-10621	8	KAI	B-10622	2
					Field	d Sample ID:	GV	V218-201		GV	V218-601		GV	V222-201	ı
					5	Sample Date:	1	/7/2020		1	/7/2020		1	/7/2020	
					S	ample Type:		REG		Field	d Duplica	te		REG	
					Sample D	epth (ft bgs):		552.7			552.7			461.1	
			Reference Elevation Interval (ft AMSL): Project				4814			4814			4857		
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	i l
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	ND	U	0.019
BTEX	Method SW8260C (μg/L)	Benzene	10	5	4.5	5	_	_	_	_	_	_	_	_	_
		Ethylbenzene	750	700	15	700	_	_	_	_	_	_	_	_	_
		Toluene	1,000	1,000	1,100	1,000		_	_	_	_	_	_	_	
		Xylenes, total	1,000 1,000 1,100 1,000 620 10,000 190 620			_	_	_	_	_	_	_	_	_	

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAI	B-10622	3	KAI	-B-10622	4	KAI	FB-10623	0
					Field	d Sample ID:	G۷	V223-201		GV	V224-201		G\	N 230-201	
					9	Sample Date:	1	/7/2020		1	/7/2020		1	1/7/2020	
					S	ample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		488.5			555.7			501.7	
			Reference Elevation Interval (ft AMSL): Project				4838			4814			4814		
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	ND	U	0.019
BTEX	Method SW8260C (μg/L)	Benzene	10	5	4.5	5	_	_	_	_	_	_	_	_	_
		Ethylbenzene	750	700	15	700	_	_	_	_	_	_	_	_	_
		Toluene	1,000	1,000	1,100	1,000	_	_	_	_	_	_	_	_	_
		Xylenes, total	1,000 1,000 1,100 1,000 620 10,000 190 620			620	_	_	_	_	_	_	_	_	_

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAF	B-10623	0	KAI	B-10623	1	KAI	FB-10623	1
					Fiel	d Sample ID:	G۷	V230-601		GV	V231-201		G\	N 231-601	
					(Sample Date:	1	/7/2020		1	/6/2020		1	1/6/2020	
					S	Sample Type:	Field	d Duplica	te		REG		Fiel	d Duplicat	ie
					Sample D	epth (ft bgs):		501.7			453.7			453.7	
			Refere	ence Eleva	ation Interv	val (ft AMSL):		4814			4857			4857	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	ND	U	0.019
BTEX	Method SW8260C (µg/L)	Benzene	10	5	4.5	5	_	_	_		_	_		_	_
		Ethylbenzene	750	700	15	700	_		_	_	_	_		_	_
		Toluene	1,000	1,000	1,100	1,000	_	_	_	_	_	_	_	_	_
		Xylenes, total			620	_	_	_	_	_	_		_	_	

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAF	B-10623	2	KAFB	-106235-	438	KAFB	-106235-	472
					Field	d Sample ID:	G۷	V232-201		GW2	235-438-2	01	GW2	235-472-2	01
					9	Sample Date:	1	/6/2020		1	/6/2020		1	/6/2020	
					S	ample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		503.7			441.3			472.7	
			Refer	ence Eleva	ation Interv	/al (ft AMSL):		4814			4857			4838	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	ND	U	0.019
DTEV	14 (1 1 0)4(0000 (1 1/1)		40												
BTEX	Method SW8260C (µg/L)	Benzene	10	5	4.5	5	_		_	_		_			_
		Ethylbenzene	750	700	15	700	_	_	_	_	_		_	_	_
		Toluene	1,000	1,000	1,100	1,000	_		_	_	_	_	_		_
		Xylenes, total	620	10,000	190	620	_	_	_	_	_	_	_	_	_

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAFB	-106235-	501	KAFB	-106236-	436	KAFB	-106236-	470
					Fiel	d Sample ID:	GW2	35-501-2	01	GW2	36-436-2	01	GW2	236-470-2	01
					5	Sample Date:	1	/6/2020		1	/7/2020		1	/7/2020	
					S	ample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		501.7			441.9			470.7	
			Refere	ence Eleva	ation Interv	/al (ft AMSL):		4814			4857			4838	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	i
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	ND	U	0.019
		_													
BTEX	Method SW8260C (µg/L)		10	5	4.5	5	_	_	_	_	_	_	_	_	
		Ethylbenzene	750	700	15	700	_	_	_	1	_	_		_	_
		Toluene	1,000	1,000	1,100	1,000		_	_	_	_	_	_	_	_
		Xylenes, total	1,000 1,000 1,100 1,000 620 10,000 190 620			_	_	_			_		_	_	

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAFB	-106236-	499	KAFB	-106240-	449	KAFB	-106241-4	428
					Fiel	d Sample ID:	GW2	236-499-2	01	GW2	240-449-2	01	GW2	241-428-2	01
						Sample Date:	1	/7/2020		1	/7/2020		1	/8/2020	
					S	ample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		499.7			473.14			449.6	
			Reference Elevation Interval (ft AMSL): Project				4814			4857			4857		
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	0.021	J	0.017
DTEV	11 (1 10)1/(0000 (1 // // // // // // // // // // // // //		4.0							N.D.		0.5			
BTEX	Method SW8260C (µg/L)		10	5	4.5	5	_		_	ND	U	0.5	_	_	_
		Ethylbenzene	750	700	15	700	_	_	_	ND	U	0.8		_	_
		Toluene	1,000	1,000	1,100	1,000	_	_	_	ND	U	0.5		_	_
		Xylenes, total	620 10,000 1,100 1,000 620 10,000 190 620			_	_	_	ND	U	2		_	_	

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAFB	-106242-	418	KAFB	-106243-	425	KAFB	-106244-4	445
					Fiel	d Sample ID:	GW2	42-418-2	01	GW2	43-425-2	01	GW2	244-445-2	01
						Sample Date:	1	/6/2020		1	/6/2020		1	/7/2020	
					S	ample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		442.24			446.54			469.19	
			Reference Elevation Interval (ft AMSL): Project				4857			4857			4857		
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	i
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	0.042		0.019	ND	U	0.019
						_									
BTEX	Method SW8260C (µg/L)		10	5	4.5	5	_		_	_	_	_	ND	U	0.5
		Ethylbenzene	750	700	15	700	_		_	1	_	_	ND	U	0.8
		Toluene	1,000	1,000	1,100	1,000		_	_	_	_	_	ND	U	0.5
		Xylenes, total	1,000 1,000 1,100 1,000 620 10,000 190 620			_	_	_	_	_	_	ND	U	2	

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAFB	-106245-	460	KAFE	3-106S2-4	151	KAFE	3-106S3-4	49
					Fiel	d Sample ID:	GW2	245-460-2	01	GW:	S2-451-20	01	GW	S3-449-20)1
						Sample Date:	1	/8/2020		1	/6/2020		1	1/9/2020	
					S	Sample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		487.77			478.15			478.91	
			Reference Elevation Interval (ft AMSL): Project				4857			4857			4857		
			Project												
			` '			Val			Val			Val			
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.019	170		38	1.5		0.38
						_									
BTEX	Method SW8260C (µg/L)	Benzene	10	5	4.5	5	ND	U	0.5	9,800		50	5,500		25
		Ethylbenzene	750	700	15	700	ND	U	0.8	880		8	1,400		4
		Toluene	1,000	1,000	1,100	1,000	ND	Ū	0.5	12,000	ŀ	50	4,900		25
		Xylenes, total	620	10,000	190	620	ND	U	2	4,600		20	4,200		10

Table 3-5
Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAFE	3-106S4-4	46	KAFE	3-106S5-4	146	KAFE	3-106S9-4	47
					Field	d Sample ID:	GW:	S4-446-20	01	GW:	S5-446-20	10	GW:	S9-447-20)1
					9	Sample Date:	1	/6/2020		1	/9/2020		1	/9/2020	
					S	ample Type:		REG			REG			REG	
					Sample D	epth (ft bgs):		473.04			470.1			473.7	
			Refere	Reference Elevation Interval (ft AMSL): Project				4857			4857			4857	
			Project												
			NMAC EPA EPA Screening			Val			Val			Val	1		
Parameter	Analytical Method	Analyte	NMAC EPA EPA Screening		Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD		
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	0.026	J	0.019	13		3.8	130		38
BTEX	Method SW8260C (μg/L)	Benzene	10	5	4.5	5	ND	U	0.5	1,500		10	7,300		50
		Ethylbenzene	750	700	15	700	ND	U	8.0	1,600		16	970		8
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	4,900		10	11,000		50
		Xylenes, total	620	10,000	190	620	ND	Ū	2	3,100	ŀ	40	2,700		20

Table 3-5

Groundwater Analytical Results for Organic Compounds for Groundwater Monitoring Wells, Q1 2020

— = Compound not analyzed for.

 μ g/L = microgram per liter

AFB = Air Force Base

AMSL = above mean sea level

bgs = below ground surface

BTEX = benzene, toluene, ethylbenzene, and total xylenes

CFR = Code of Federal Regulations

EDB = ethylene dibromide (1,2-dibromoethane)

EPA = U.S. Environmental Protection Agency

ft = foot (feet)

ID = identification

LOD = limit of detection

MCL = maximum contaminant level

mg/L = milligrams per liter

ND = not detected

NMAC = New Mexico Administrative Code

NMWQCC = New Mexico Water Quality Control Commission

Q1 = first quarter

REG = normal field sample

RSL = regional screening level

Val Qual = validation qualifier

Shading = detected concentrations above the detection limit

Bold/Shading = reported concentrations exceed the project screening level

Val Quals based on independent data validation:

J = Qualifier denotes the analyte was positively identified, but the associated numerical value is estimated.

U = Qualifier denotes the analyte was analyzed but not detected above the detection limit. The value associated with the U-qualifier is the LOD.

-- = Validation qualifier not assigned.

a NMWQCC numeric standards per the NMAC Title 20.6.2.3101A, Standards for Ground Water of 10,000 mg/L Total Dissolved Solids Concentration or Less (NMAC, 2018). For metals, the NMWQCC numeric standard applies to dissolved metals.

^b EPA National Primary Drinking Water Regulations, MCLs and Secondary MCLs, Title 40 CFR Part 141, 143 (May 2018).

^c EPA Region 6 RSL for Tapwater (November 2019) for hazard index = 1.0 for noncarcinogens and a 10-5 cancer risk level for carcinogens.

^d The project screening level was selected to satisfy the requirements of the Kirtland AFB Hazardous Waste Permit Number NM9570024423 as the lowest of (1) NMWQCC numeric standard or (2) EPA MCL. If no NMQWCC standard or MCL exists for any analyte, then the project screening level will be the EPA RSL.

Table 3-6
Groundwater Analytical Results for Inorganic Compounds for Groundwater Monitoring Wells, Q1 2020

Field Sample ID:

Sample Date:

KAFB-106005

GW 005-201

1/8/2020

KAFB-106005

GW005-601

1/8/2020

KAFB-106009

GW009-201

1/8/2020

					Sa	ample Type:		REG		Fiel	d Duplica	ate		REG	
			Sample Depth (ft bgs): Reference Elevation Interval (ft AMSL):				482.57			482.57			484.39		
			Referer	nce Elevat	ion Interv	al (ft AMSL):		4857			4857			4857	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^b	MCL ^c	RSL^d	Level ^e	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
Metals	Method SW6010C (mg/L)	Calcium	NS	NS	NS	NS	162		0.15	160		0.15	153		0.15
		Iron, dissolved	1.0	NS	NS	1.0	ND	U	0.103	ND	U	0.103	ND	U	0.103
		Magnesium	NS	NS	NS	NS	28.2		0.0751	27.8		0.0751	22.3		0.0751
		Manganese, dissolved	0.2	NS	NS	0.2	1.14		0.0052	1.15		0.0052	0.0613		0.0052
		Potassium	NS	NS	NS	NS	4.2		0.375	4.08		0.375	3.9		0.375
		Sodium	NS	NS	NS	NS	68.5		0.5	67.6		0.5	47.8		0.5
	Method SW6020A (mg/L)	Arsenic	0.01	0.01	0.00052	0.01	ND	U	0.0016	ND	U	0.0016	ND	U	0.0016
		Lead	0.015	0.015	0.015	0.015	0.00021	J	0.00025	0.00021	J	0.00025	ND	U	0.00025
Anions	Method E300.0 (mg/L)	Bromide	NS	NS	NS	NS	3.6		2	3.6		2	2.8		2
		Chloride	250	250	NS	250	211	J	60	215	J	60	164	J	60
		Sulfate	600	250	NS	250	139	J	18	127	J	18	219	J	180
	Method E353.2 (mg/L)	Nitrate/Nitrite Nitrogen	10 ^f	10 ^f	NS	10 ^f	ND	U	0.09	0.062	J	0.09	2.5		0.45
Alkalinity	Method SM2320B (mg/L)	Alkalinity, bicarbonate (as CaCO ₃)	NS	NS	NS	NS	298		6	314		6	145		6
		Alkalinity, carbonate (as CaCO ₃)	NS	NS	NS	NS	ND	U	6	ND	U	6	ND	U	6
		Alkalinity, total (as CaCO ₃)	NS	NS	NS	NS	298		6	314		6	145		6

Table 3-6
Groundwater Analytical Results for Inorganic Compounds for Groundwater Monitoring Wells, Q1 2020

Field Sample ID:

Sample Date:

KAFB-106009

GW009-601

1/8/2020

KAFB-106012R

GW012R-201

1/14/2020

KAFB-106012R

GW012R-601

1/14/2020

					Sa	ample Type:	Fie	ld Duplica	ate		REG		Fie	d Duplica	ate
				5	Sample De	pth (ft bgs):		484.39			470.5			470.5	
			Referer	nce Elevat	ion Interv	al (ft AMSL):		4857			4857			4857	
			NMAC	EPA	EPA	Project Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^b	MCL ^c	RSL^d	Level ^e	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
Metals	Method SW6010C (mg/L)	Calcium	NS	NS	NS	NS	150		0.15	153		0.15	156		0.15
		Iron, dissolved	1.0	NS	NS	1.0	ND	U	0.103	ND	U	0.103	ND	U	0.103
		Magnesium	NS	NS	NS	NS	21.8		0.0751	26.1		0.0751	25.1		0.0751
		Manganese, dissolved	0.2	NS	NS	0.2	0.0593		0.0052	ND	U	0.0052	ND	U	0.0052
		Potassium	NS	NS	NS	NS	3.82		0.375	4.74		0.375	4.8		0.375
		Sodium	NS	NS	NS	NS	46.6		0.5	68.9		0.5	69.8		0.5
	Method SW6020A (mg/L)	Arsenic	0.01	0.01	0.00052	0.01	ND	U	0.0016	ND	U	0.0016	0.00084	٦	0.0016
		Lead	0.015	0.015	0.015	0.015	ND	U	0.00025	ND	U	0.00025	ND	U	0.00025
Anions	Method E300.0 (mg/L)	Bromide	NS	NS	NS	NS	2.6		2	ND	U	2	2.2	J	2
		Chloride	250	250	NS	250	120	J	30	142	J	30	133	J	30
		Sulfate	600	250	NS	250	152	J	90	306	J	90	298	J	90
	Method E353.2 (mg/L)	Nitrate/Nitrite Nitrogen	10 ^f	10 ^f	NS	10 ^f	2.4		0.45	4.2		0.18	4.1	-	0.18
Alkalinity	Method SM2320B (mg/L)	Alkalinity, bicarbonate (as CaCO ₃)	NS	NS	NS	NS	146		6	120		6	120		6
		Alkalinity, carbonate (as CaCO ₃)	NS	NS	NS	NS	ND	U	6	ND	U	6	ND	U	6
		Alkalinity, total (as CaCO ₃)	NS	NS	NS	NS	146		6	120		6	120		6

Table 3-6 Groundwater Analytical Results for Inorganic Compounds for Groundwater Monitoring Wells, Q1 2020

Field Sample ID:

Sample Date:

KAFB-106041

GW041-201

1/9/2020

KAFB-106149-484^a

GW149-484-201

1/9/2020

KAFB-106151-484 GW151-484-201

1/9/2020

						ample Type:		REG			REG			REG	
				5	Sample De	pth (ft bgs):		449.7			472			472.19	
			Referer	nce Elevat	ion Interv	al (ft AMSL):		4857			4857			4857	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^b	MCL ^c	RSL^d	Level ^e	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
Metals	Method SW6010C (mg/L)	Calcium	NS	NS	NS	NS	53.7		0.15	52.3		0.15	142		0.15
		Iron, dissolved	1.0	NS	NS	1.0	ND	U	0.103	ND	U	0.103	0.134	J	0.103
		Magnesium	NS	NS	NS	NS	7.31		0.0751	8.22		0.0751	22.5	-	0.0751
		Manganese, dissolved	0.2	NS	NS	0.2	ND	U	0.0052	0.76		0.0052	0.976	1	0.0052
		Potassium	NS	NS	NS	NS	3		0.375	2.84		0.375	4.13	1	0.375
		Sodium	NS	NS	NS	NS	27.5		0.5	27.9		0.5	38.6	1	0.5
	Method SW6020A (mg/L)	Arsenic	0.01	0.01	0.00052	0.01	0.00099	J	0.0016	0.0012	J	0.0016	ND	J	0.0016
		Lead	0.015	0.015	0.015	0.015	ND	U	0.00025	0.00014	J	0.00025	0.0002	J	0.00025
Anions	Method E300.0 (mg/L)	Bromide	NS	NS	NS	NS	ND	U	2	_	_	_	ND	U	2
		Chloride	250	250	NS	250	31.7		6	_	_	_	35		3
		Sulfate	600	250	NS	250	75.5		18	_	_	_	28.5		4.5
	Method E353.2 (mg/L)	Nitrate/Nitrite Nitrogen	10 ^f	10 ^f	NS	10 ^f	0.48		0.09	_	_	_	ND	U	0.09
Alkalinity	Method SM2320B (mg/L)	Alkalinity, bicarbonate (as CaCO ₃)	NS	NS	NS	NS	111		6	_	_	_	326	1	6
		Alkalinity, carbonate (as CaCO ₃)	NS	NS	NS	NS	ND	U	6	_	_	_	ND	U	6
		Alkalinity, total (as CaCO ₃)	NS	NS	NS	NS	111		6	_	_	_	326		6

Table 3-6
Groundwater Analytical Results for Inorganic Compounds for Groundwater Monitoring Wells, Q1 2020

					Well	Location ID:	KAFE	3-106152	484	KAFE	3-106153	-484	KA	FB-10623	30
					Field	I Sample ID:	GW ·	152-484-2	201	GW.	153-484-2	201	G\	N 230-20	1
					S	ample Date:	•	1/9/2020			1/9/2020		•	1/7/2020	
			Sample Type: Sample Depth (ft bgs):					REG			REG			REG	
								472.88			474.89			501.7	
			Referer	nce Elevat	ion Interv	al (ft AMSL):		4857			4857			4814	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^b	MCL ^c	RSL ^d	Level ^e	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
/letals	Method SW6010C (mg/L)	Calcium	NS	NS	NS	NS	167		0.15	133		0.15	42.7		0.15

						Project									1
			NMAC	EPA	EPA	Screening		Val			Val			Val	ĺ
Parameter	Analytical Method	Analyte	NMWQCC ^b	MCL ^c	RSL ^d	Level ^e	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
Metals	Method SW6010C (mg/L)	Calcium	NS	NS	NS	NS	167		0.15	133	-	0.15	42.7		0.15
		Iron, dissolved	1.0	NS	NS	1.0	1.39		0.103	0.395	-	0.103	ND	U	0.103
		Magnesium	NS	NS	NS	NS	27.3		0.0751	20.5	-	0.0751	5.85		0.0751
		Manganese, dissolved	0.2	NS	NS	0.2	4.14		0.0052	2.7	-	0.0052	ND	U	0.0052
		Potassium	NS	NS	NS	NS	4.67		0.375	4	-	0.375	2.4		0.375
		Sodium	NS	NS	NS	NS	45		0.5	39.5		0.5	21.6		0.5
	Method SW6020A (mg/L)	Arsenic	0.01	0.01	0.00052	0.01	0.001	J	0.0016	0.0019	J	0.0016	0.00085	J	0.0016
		Lead	0.015	0.015	0.015	0.015	0.00056		0.00025	0.00019	J	0.00025	0.00017	J	0.00025
Anions	Method E300.0 (mg/L)	Bromide	NS	NS	NS	NS	1.7	J	2	ND	U	2	ND	U	2
		Chloride	250	250	NS	250	77.9		6	13.8		1.5	37.8		3
		Sulfate	600	250	NS	250	ND	U	4.5	ND	U	4.5	55.1		4.5
	Method E353.2 (mg/L)	Nitrate/Nitrite Nitrogen	10 ^f	10 ^f	NS	10 ^f	ND	U	0.09	ND	U	0.09	1		0.09
Alkalinity	Method SM2320B (mg/L)	Alkalinity, bicarbonate (as CaCO ₃)	NS	NS	NS	NS	465		6	391		6	109		6
		Alkalinity, carbonate (as CaCO ₃)	NS	NS	NS	NS	ND	U	6	ND	U	6	ND	U	6
		Alkalinity, total (as CaCO ₃)	NS	NS	NS	NS	465		6	391		6	109		6
	•		-		-	-		4				•		•	,

Table 3-6
Groundwater Analytical Results for Inorganic Compounds for Groundwater Monitoring Wells, Q1 2020

Field Sample ID:

Sample Date:

KAFB-106230

GW230-601

1/7/2020

KAFB-106240-449

GW240-449-201

1/7/2020

KAFB-106241-428

GW241-428-201

1/8/2020

					Sa	ample Type:	Fie	ld Duplica	ate		REG			REG	
				Reference Eleva		pth (ft bgs):		501.7			473.14			449.6	
			Referer	nce Elevat	ion Interv	al (ft AMSL):		4814			4857			4857	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^b	MCL ^c	RSL^d	Level ^e	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
Metals	Method SW6010C (mg/L)	Calcium	NS	NS	NS	NS	47.6	1	0.15	78.3	1	0.15	44.2	I	0.15
		Iron, dissolved	1.0	NS	NS	1.0	0.0735	J	0.103	ND	U	0.103	ND	U	0.103
		Magnesium	NS	NS	NS	NS	6.5		0.0751	11.4		0.0751	6.21		0.0751
		Manganese, dissolved	0.2	NS	NS	0.2	ND	U	0.0052	ND	U	0.0052	ND	U	0.0052
		Potassium	NS	NS	NS	NS	2.62		0.375	3.09		0.375	2.34		0.375
		Sodium	NS	NS	NS	NS	24		0.5	27.8		0.5	23.5		0.5
	Method SW6020A (mg/L)	Arsenic	0.01	0.01	0.00052	0.01	0.00098	J	0.0016	0.0011	J	0.0016	0.0011	J	0.0016
		Lead	0.015	0.015	0.015	0.015	0.00016	J	0.00025	ND	U	0.00025	ND	U	0.00025
Anions	Method E300.0 (mg/L)	Bromide	NS	NS	NS	NS	ND	U	2	ND	U	2	ND	UJ	2
		Chloride	250	250	NS	250	35.5	1	3	56.3	1	15	21.7	7	1.5
		Sulfate	600	250	NS	250	59	1	4.5	72.6	1	4.5	39.6	7	4.5
	Method E353.2 (mg/L)	Nitrate/Nitrite Nitrogen	10 ^f	10 ^f	NS	10 ^f	1.1	-	0.09	1.5	-	0.09	ND	U	0.09
Alkalinity	Method SM2320B (mg/L)	Alkalinity, bicarbonate (as CaCO ₃)	NS	NS	NS	NS	90.5		6	167		6	134		6
		Alkalinity, carbonate (as CaCO ₃)	NS	NS	NS	NS	ND	U	6	ND	U	6	ND	U	6
		Alkalinity, total (as CaCO ₃)	NS	NS	NS	NS	90.5		6	167		6	134		6

Table 3-6
Groundwater Analytical Results for Inorganic Compounds for Groundwater Monitoring Wells, Q1 2020

Field Sample ID:

KAFB-106242-418

GW242-418-201

KAFB-106243-425

GW243-425-201

KAFB-106244-445

GW244-445-201

							• • • •		_ • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		_ •
					S	ample Date:		1/6/2020		•	1/6/2020			1/7/2020	
					Sa	ample Type:		REG			REG			REG	
				5	Sample De	pth (ft bgs):		442.24			446.54			469.19	
			Referer	nce Elevat	ion Interv	al (ft AMSL):		4857			4857			4857	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^b	MCL ^c	RSL ^d	Level ^e	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
Metals	Method SW6010C (mg/L)	Calcium	NS	NS	NS	NS	117		0.15	54.8		0.15	146	-	0.15
		Iron, dissolved	1.0	NS	NS	1.0	ND	U	0.103	0.076	J	0.103	ND	U	0.103
		Magnesium	NS	NS	NS	NS	15.9		0.0751	7.26		0.0751	23.2		0.0751
		Manganese, dissolved	0.2	NS	NS	0.2	ND	U	0.0052	0.0472		0.0052	ND	U	0.0052
		Potassium	NS	NS	NS	NS	3.8		0.375	2.72		0.375	4.82		0.375
		Sodium	NS	NS	NS	NS	36.7		0.5	27.9		0.5	59.5		0.5
	Method SW6020A (mg/L)	Arsenic	0.01	0.01	0.00052	0.01	0.001	J	0.0016	0.0011	J	0.0016	0.00091	J	0.0016
		Lead	0.015	0.015	0.015	0.015	ND	U	0.00025	0.00012	J	0.00025	0.000096	J	0.00025
Anions	Method E300.0 (mg/L)	Bromide	NS	NS	NS	NS	1.6	J	2	ND	U	2	ND	U	2
		Chloride	250	250	NS	250	94.3		6	21.8		1.5	233		30
		Sulfate	600	250	NS	250	188		18	46.6		4.5	624		90
	Method E353.2 (mg/L)	Nitrate/Nitrite Nitrogen	10 ^f	10 ^f	NS	10 ^f	2.3		0.09	ND	U	0.09	3.2		0.09
Alkalinity	Method SM2320B (mg/L)	Alkalinity, bicarbonate (as CaCO ₃)	NS	NS	NS	NS	120		6	150		6	109		6
		Alkalinity, carbonate (as CaCO ₃)	NS	NS	NS	NS	ND	U	6	ND	U	6	ND	U	6
		Alkalinity, total (as CaCO ₃)	NS	NS	NS	NS	120		6	150		6	109		6

Table 3-6
Groundwater Analytical Results for Inorganic Compounds for Groundwater Monitoring Wells, Q1 2020

Field Sample ID:

Sample Date:

KAFB-106245-460

GW245-460-201

1/8/2020

KAFB-106S2-451

GWS2-451-201

1/6/2020

KAFB-106S3-449

GWS3-449-201

1/9/2020

452

					Sa	ample Type:		REG			REG			REG	
				5	Sample De	pth (ft bgs):		487.77			478.15			478.91	
			Referer	nce Elevat	ion Interv	al (ft AMSL):		4857			4857			4857	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^b	MCL ^c	RSL ^d	Levele	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
Metals	Method SW6010C (mg/L)	Calcium	NS	NS	NS	NS	46.4		0.15	161		0.15	167		0.15
		Iron, dissolved	1.0	NS	NS	1.0	ND	U	0.103	0.43		0.103	7.47		0.103
		Magnesium	NS	NS	NS	NS	6.85		0.0751	26.1		0.0751	28.6		0.0751
		Manganese, dissolved	0.2	NS	NS	0.2	ND	U	0.0052	7.33		0.0052	7.33		0.0052
		Potassium	NS	NS	NS	NS	2.2		0.375	3.89		0.375	4.4		0.375
		Sodium	NS	NS	NS	NS	22.5		0.5	44.3		0.5	44.5		0.5
	Method SW6020A (mg/L)	Arsenic	0.01	0.01	0.00052	0.01	0.0009	J	0.0016	0.0042		0.0016	0.0058		0.0016
		Lead	0.015	0.015	0.015	0.015	ND	U	0.00025	0.00061		0.00025	0.00097		0.00025
Anions	Method E300.0 (mg/L)	Bromide	NS	NS	NS	NS	ND	U	2	1.9	J	2	2.2	J	2
		Chloride	250	250	NS	250	39	J	3	75.2		15	122		15
		Sulfate	600	250	NS	250	28.5	J	4.5	7.9		4.5	ND	U	4.5
	Method E353.2 (mg/L)	Nitrate/Nitrite Nitrogen	10 ^f	10 ^f	NS	10 ^f	0.74		0.09	ND	U	0.09	ND	U	0.09
Alkalinity	Method SM2320B (mg/L)	Alkalinity, bicarbonate (as CaCO ₃)	NS	NS	NS	NS	111		6	398		6	452		6
		Alkalinity, carbonate (as CaCO ₃)	NS	NS	NS	NS	ND	U	6	ND	U	6	ND	U	6

Alkalinity, total (as CaCO₃)

NS

NS

NS

NS

111

6

398

Table 3-6
Groundwater Analytical Results for Inorganic Compounds for Groundwater Monitoring Wells, Q1 2020

Field Sample ID:

KAFB-106S4-446

GWS4-446-201

						0 0 1 1 1 1						- 0 .			
					S	ample Date:		1/6/2020		•	1/9/2020			1/9/2020	
					Sa	ample Type:		REG			REG			REG	
				5	Sample De	pth (ft bgs):		473.04			470.1			473.7	
			Referen	ice Elevat	ion Interv	al (ft AMSL):		4857			4857			4857	
						Project									1
			NMAC	EPA	EPA	Screening		Val			Val			Val	1
Parameter	Analytical Method	Analyte	NMWQCC ^b	MCL ^c	RSL ^d	Level ^e	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
Metals	Method SW6010C (mg/L)	Calcium	NS	NS	NS	NS	205		0.15	73.5		0.15	117		0.15
		Iron, dissolved	1.0	NS	NS	1.0	ND	U	0.103	1.51		0.103	0.972		0.103
		Magnesium	NS	NS	NS	NS	30.7		0.0751	12.2	-	0.0751	20.7	-	0.0751
		Manganese, dissolved	0.2	NS	NS	0.2	ND	U	0.0052	2.19	-	0.0052	3.73	-	0.0052
		Potassium	NS	NS	NS	NS	5.11		0.375	3.03		0.375	3.71		0.375
		Sodium	NS	NS	NS	NS	70.7		0.5	28.9		0.5	35.3		0.5
	Method SW6020A (mg/L)	Arsenic	0.01	0.01	0.00052	0.01	ND	U	0.0016	0.003		0.0016	0.0032		0.0016
		Lead	0.015	0.015	0.015	0.015	ND	U	0.00025	0.00047	J	0.00025	0.00052		0.00025
Anions	Method E300.0 (mg/L)	Bromide	NS	NS	NS	NS	2.8		2	ND	U	2	ND	U	2
		Chloride	250	250	NS	250	196		30	21.5		1.5	1.4	J	1.5
		Sulfate	600	250	NS	250	397		90	5	J	4.5	17.8		4.5
	Method E353.2 (mg/L)	Nitrate/Nitrite Nitrogen	10 ^f	10 ^f	NS	10 ^f	6.9	-	0.9	ND	U	0.09	ND	U	0.09
Alkalinity	Method SM2320B (mg/L)	Alkalinity, bicarbonate (as CaCO ₃)	NS	NS	NS	NS	98		6	271		6	379		6
		Alkalinity, carbonate (as CaCO ₃)	NS	NS	NS	NS	ND	U	6	ND	U	6	ND	U	6
		Alkalinity, total (as CaCO ₃)	NS	NS	NS	NS	98		6	271		6	379		6

KAFB-106S9-447

GWS9-447-201

KAFB-106S5-446

GWS5-446-201

Table 3-6

Groundwater Analytical Results for Inorganic Compounds for Groundwater Monitoring Wells, Q1 2020

^hDuring sampling on January 9, 2020, there was a failure in the sleeve around the passive sampler that resulted in insufficient sample volume for a full suite of analytes. Samples were collected for EDB, dissolved metals, and total metals.

b NMWQCC numeric standards per the NMAC Title 20.6.2.3101A, Standards for Ground Water of 10,000 mg/L Total Dissolved Solids Concentration or Less (NMAC, 2018). For metals, the NMWQCC numeric standard applies to dissolved metals.

^c EPA National Primary Drinking Water Regulations, MCLs and Secondary MCLs, Title 40 CFR Part 141, 143 (May 2018).

d EPA Region 6 RSL for Tapwater (November 2019) for hazard index = 1.0 for noncarcinogens and a 10-5 cancer risk level for carcinogens.

e The project screening level was selected to satisfy the requirements of the Kirtland AFB Hazardous Waste Permit Number NM9570024423 as the lowest of (1) NMWQCC numeric standard or (2) EPA MCL. If no NMQWCC standard or MCL exists for any analyte, then the project screening level will be the EPA RSL.

f Based on the geochemical equilibrium of the site groundwater and previous site data analyses, nitrate/nitrite results represent nitrate concentrations.

— = Compound not analyzed for.

AFB = Air Force Base

AMSL = above mean sea level

bgs = below ground surface

 $CaCO_3$ = calcium carbonate

CFR = Code of Federal Regulations

EPA = U.S. Environmental Protection Agency

ft = foot (feet)

ID = identification

LOD = limit of detection

MCL = maximum contaminant level

mg/L = milligram per liter

ND = not detected

NMAC = New Mexico Administrative Code

NMWQCC = New Mexico Water Quality Control Commission

NS = not specified

Q1 = first quarter

REG = normal field sample

RSL = regional screening level

Val Qual = validation qualifier

Shading = detected concentrations above the detection limit

Bold/Shading = reported concentrations exceed the project screening level

Val Quals based on independent data validation:

J = Qualifier denotes the analyte was positively identified, but the associated numerical value is estimated.

U = Qualifier denotes the analyte was analyzed but not detected above the detection limit. The value associated with the U-qualifier is the LOD.

-- = Validation qualifier not assigned.

Table 3-7
Status of Quarterly Baseline Sampling Newly Added Wells and Summary of Q1 2020 Analytical Results

Well Location ID	Reference Elevation Interval (ft AMSL)	Dates Newly Added Wells Sampled	Number of Quarters Sampled	Remaining Quarters to Complete Baseline	Quarters Needed for Baseline Completion	Summary of Analytical Results for Samples Collected During Q1 2020
KAFB-106247-450 ^a	4857	4/16/2019,	1	0	4	EDB and BTEX were not detected.
		5/9/2019				No inorganic compounds exceeded
		8/12/2019	2]		their respective PSL.
		10/31/2019	3			
		1/6/2020	4			
KAFB-106S1-447 ^a	4857	4/16/2019,	1	0	4	EDB, benzene, toluene, and total
		5/9/2019				xylenes exceeded their respective
		8/12/2019	2			MCLs. Ethylbenzene was detected
		10/31/2019	3			below the MCL.
		1/9/2020	4			Dissolved manganese and iron exceeded their PSLs. No other inorganic compounds exceeded their respective PSL.
KAFB-106S7-451 ^{a,b}	4857	4/16/2019,	1	2	4	EDB and BTEX exceeded their
10.10007 101		5/9/2019				respective MCLs.
		8/12/2019	2	1		Dissolved manganese and
		10/31/2019	3			dissolved iron exceeded their
		1/9/2020	4			PSLs.
		TBD	5]		
		TBD	6			
KAFB-106S8-451 ^a	4857	4/16/2019,	1	0	4	EDB and benzene exceeded their
		5/9/2019		1		respective MCLs. Toluene,
		8/12/2019	2	1		ethylbenzene, and total xylenes
		10/31/2019	3	1		were detected below their
		1/6/2020	4			respective MCLs. Dissolved manganese and iron exceeded their respective PSLs. No other inorganic compounds exceeded their respective PSL.

Table 3-7

Status of Quarterly Baseline Sampling Newly Added Wells and Summary of Q1 2020 Analytical Results

AMSL = above mean sea level

BTEX = benzene, toluene, ethylbenzene, and total xylenes

EDB = ethylene dibromide (1,2-dibromoethane)

ft = foot (feet)

ID = identification

MCL = maximum contaminant level

PSL = project screening level

Q1 = first quarter

TBD = to be determined

^a This well was sampled for dissolved metals, anions, and alkalinity on May 9, 2019.

^b During sampling in both Q4 2019 and Q1 2020, there was a failure in the sleeve around the passive sampler that resulted in insufficient sample volume for the full suite of analytes. Therefore, to achieve four complete sets of baseline analysis, two additional quarters of baseline sampling will be conducted.

Table 3-8
Historical EDB Concentrations

		Analyte:	EDB	(1,2-dibromoet	hane)		
		EPA MCL ^a :	0.05 μg/L				
Well	Sample	Sampling		Val			
Location ID	Date	Quarter	Result	Qual	LOD		
KAFB-106001 ^b	11/1/2019	Q4 2019	0.76		0.19		
	10/30/2018	Q4 2018	1.2		0.19		
144 = 5 400000	5/2/2018	Q2 2018	2.6		0.38		
KAFB-106002	10/11/2019	Q4 2019	ND	U	0.019		
	4/2/2019	Q2 2019	ND	U	0.019		
KAFB-106003	10/17/2018 1/17/2020	Q4 2018	ND ND	U	0.019 0.019		
KAFD-100003	10/28/2019	Q1 2020 Q4 2019	ND ND	U	0.019		
	7/24/2019	Q3 2019	ND	Ü	0.019		
	4/25/2019	Q2 2019	ND ND	Ü	0.019		
KAFB-106004	1/16/2020	Q1 2020	ND	Ü	0.019		
	10/24/2019	Q4 2019	ND	U	0.019		
	7/12/2019	Q3 2019	ND	U	0.019		
	5/1/2019	Q2 2019	ND	U	0.019		
KAFB-106005	1/8/2020	Q1 2020	0.045		0.019		
	10/30/2019	Q4 2019	0.10	J	0.019		
	7/31/2019	Q3 2019	0.11		0.019		
KAED 400000	4/18/2019	Q2 2019	0.40	J	0.094		
KAFB-106006	11/4/2019	Q4 2019	ND 0.035	U	0.019		
	4/25/2019 11/5/2018	Q2 2019 Q4 2018	0.035 ND	 U	0.019 0.019		
KAFB-106007	10/18/2019	Q4 2018 Q4 2019	ND ND	U	0.019		
D-100001	4/24/2019	Q2 2019	ND ND	U	0.019		
ŀ	10/25/2018	Q4 2018	ND	Ü	0.019		
KAFB-106008 ^b	11/7/2019	Q4 2019	4.6		1.9		
	10/22/2018	Q4 2018	20		3.8		
	4/18/2018	Q2 2018	0.015	J	0.019		
KAFB-106009	1/8/2020	Q1 2020	ND	U	0.019		
	10/31/2019	Q4 2019	ND	U	0.019		
	7/31/2019	Q3 2019	ND	U	0.019		
I/AED 100015	4/16/2019	Q2 2019	ND 2.00	U	0.019		
KAFB-106010	11/5/2019	Q4 2019	0.89	J	0.38		
	4/23/2019 10/25/2018	Q2 2019	0.65		0.19		
KAFB-106011	10/25/2018	Q4 2018 Q4 2019	2.1 ND	 U	0.19 0.019		
KAFB-100011	4/2/2019	Q2 2019	0.013	J	0.019		
	10/16/2018	Q4 2018	ND	Ü	0.019		
KAFB-106012R	1/14/2020	Q1 2020	ND	Ü	0.019		
	10/18/2019	Q4 2019	ND	U	0.019		
	7/24/2019	Q3 2019	ND	U	0.019		
	4/23/2019	Q2 2019	ND	U	0.019		
KAFB-106013	1/15/2020	Q1 2020	ND	U	0.019		
	10/23/2019	Q4 2019	ND	U	0.019		
ļ	7/15/2019	Q3 2019	ND	U	0.019		
KAFB-106014	4/30/2019	Q2 2019	ND	U	0.019		
NAFD-100014	11/4/2019 5/1/2019	Q4 2019 Q2 2019	ND 0.1		0.019		
	11/5/2018	Q2 2019 Q4 2018	0.1		0.019		
KAFB-106015	10/30/2019	Q4 2019	ND	U	0.093		
14 1 2 100010	4/16/2019	Q2 2019	ND	Ü	0.019		
	10/2/2018	Q4 2018	ND	Ü	0.019		
KAFB-106016	10/11/2019	Q4 2019	ND	U	0.019		
	4/2/2019	Q2 2019	ND	U	0.019		
	10/18/2018	Q4 2018	ND	U	0.019		
KAFB-106017	10/15/2019	Q4 2019	0.25	J	0.095		
	4/2/2019	Q2 2019	0.2		0.019		
KAED 400040	10/18/2018	Q4 2018	0.25	 :: 	0.019		
KAFB-106018	10/15/2019 4/4/2019	Q4 2019 Q2 2019	ND 0.038	U	0.019 0.019		
}	4/4/2019 10/18/2018	Q2 2019 Q4 2018	0.038	 J	0.019		
KAFB-106019	10/18/2018	Q4 2018 Q4 2019	0.025	J 	0.019		
	5/1/2019	Q2 2019	0.032	J	0.019		
ŀ	10/29/2018	Q4 2018	0.079		0.019		
KAFB-106020	10/17/2019	Q4 2019	ND	U	0.019		
ľ	5/2/2019	Q2 2019	ND	U	0.019		
	11/6/2018	Q4 2018	ND	U	0.019		
KAFB-106021	10/28/2019	Q4 2019	ND	U	0.019		
	4/15/2019	Q2 2019	ND	U	0.019		
I/AED 400000	10/8/2018	Q4 2018	ND	U	0.019		
KAFB-106022	10/24/2019	Q4 2019	ND 0.000	U	0.019		
	4/15/2019	Q2 2019	0.022	J	0.019		
KAED 106000	10/2/2018	Q4 2018	0.038		0.019		
KAFB-106023	10/31/2019 4/9/2019	Q4 2019 Q2 2019	ND ND	U	0.019 0.019		
	10/3/2018	Q2 2019 Q4 2018	ND ND	U	0.019		
KAFB-106024	10/3/2018	Q4 2019	ND ND	U	0.019		
	4/3/2019	Q2 2019	ND ND	U	0.019		
ľ			110		0.010		
				U	0.019		
KAFB-106025	10/17/2018 10/30/2019	Q4 2018 Q4 2019	ND ND	U	0.019 0.019		

Table 3-8
Historical EDB Concentrations

		Analyte:	EDB	(1,2-dibromoe	thane)
		EPA MCL ^a :		0.05 μg/L	
KAFB-106026 ^c	10/29/2019	Q4 2019	ND	U	0.019
	11/12/2015	Q4 2015	0.0214	J	0.0285
	8/17/2015	Q3 2015	0.0199	J	0.0278
KAFB-106027	10/15/2019	Q4 2019	ND	U	0.019
	4/1/2019	Q2 2019	ND	U	0.019
4	10/16/2018	Q4 2018	ND	U	0.019
KAFB-106028 ^d	4/22/2019	Q2 2019	0.34		0.095
	10/22/2018 4/12/2018	Q4 2018 Q2 2018	4.0		1.9 0.95
KAFB-106029	1/6/2020	Q1 2020	ND	U	0.019
TVAI D-100029	10/28/2019	Q4 2019	ND ND	U	0.019
	7/29/2019	Q3 2019	ND	U	0.019
	4/15/2019	Q2 2019	ND	U	0.019
KAFB-106030	1/6/2020	Q1 2020	ND	U	0.019
	10/28/2019	Q4 2019	ND	U	0.019
	7/29/2019	Q3 2019	ND	U	0.019
	4/15/2019	Q2 2019	ND	U	0.019
KAFB-106031	1/6/2020	Q1 2020	ND	U	0.019
	10/28/2019	Q4 2019	ND	U	0.019
	7/29/2019	Q3 2019	ND ND	U	0.019
KAED 400000	4/15/2019	Q2 2019	ND	U	0.019
KAFB-106032	1/6/2020	Q1 2020	ND ND	U	0.019
	10/29/2019 7/29/2019	Q4 2019 Q3 2019	ND ND	U	0.019 0.019
	4/15/2019	Q3 2019 Q2 2019	ND ND	U	0.019
KAFB-106033	1/6/2020	Q1 2020	ND ND	U	0.019
	10/29/2019	Q4 2019	ND ND	U	0.019
	7/29/2019	Q3 2019	ND	U	0.019
	4/15/2019	Q2 2019	ND	U	0.019
KAFB-106034	1/6/2020	Q1 2020	ND	U	0.019
	10/29/2019	Q4 2019	ND	U	0.019
	7/29/2019	Q3 2019	ND	U	0.019
	4/15/2019	Q2 2019	ND	U	0.019
KAFB-106035	10/29/2019	Q4 2019	0.12		0.019
	4/10/2019	Q2 2019	0.12		0.019
KAED 400000	10/2/2018	Q4 2018	0.15		0.019
KAFB-106036	10/29/2019	Q4 2019	0.097		0.019
	4/10/2019 10/2/2018	Q2 2019	0.13		0.019 0.019
KAFB-106037	10/29/2019	Q4 2018 Q4 2019	0.19 0.15		0.019
100007	4/10/2019	Q2 2019	0.13		0.019
	10/2/2018	Q4 2018	0.099		0.019
KAFB-106038	10/17/2019	Q4 2019	ND	U	0.019
	4/4/2019	Q2 2019	ND	U	0.019
	11/7/2018	Q4 2018	ND	U	0.019
KAFB-106039	10/17/2019	Q4 2019	ND	U	0.019
	4/22/2019	Q2 2019	ND	U	0.019
I/AED 100010	11/7/2018	Q4 2018	ND	U	0.019
KAFB-106040	10/16/2019	Q4 2019	ND	U	0.019
	4/22/2019 11/7/2018	Q2 2019 Q4 2018	ND ND	U	0.019 0.019
KAFB-106041	1/9/2020	Q1 2020	0.049		0.019
	10/30/2019	Q4 2019	0.049	J	0.019
	8/12/2019	Q3 2019	0.032		0.019
	4/8/2019	Q2 2019	0.015	J	0.019
KAFB-106042	10/30/2019	Q4 2019	0.057	J	0.019
	4/8/2019	Q2 2019	0.027	J	0.019
	10/2/2018	Q4 2018	0.017	J	0.0095
KAFB-106043	10/30/2019	Q4 2019	ND	U	0.019
	4/8/2019	Q2 2019	ND	U	0.019
VAED 400044	10/2/2018	Q4 2018	ND	U	0.019
KAFB-106044	10/15/2019 4/1/2019	Q4 2019 Q2 2019	ND ND	U	0.019 0.019
	4/1/2019 10/16/2018	Q2 2019 Q4 2018	ND ND	U	0.019
KAFB-106045	10/10/2010	Q4 2016 Q4 2019	ND ND	U	0.019
	4/24/2019	Q2 2019	ND ND	U	0.019
	10/25/2018	Q4 2018	ND ND	U	0.019
KAFB-106046	10/14/2019	Q4 2019	ND	U	0.019
	4/3/2019	Q2 2019	ND	U	0.019
	10/18/2018	Q4 2018	ND	U	0.019
KAFB-106047	10/14/2019	Q4 2019	ND	U	0.019
	4/3/2019	Q2 2019	ND	U	0.019
1/455 /555	10/17/2018	Q4 2018	ND	U	0.019
KAFB-106048	10/22/2019	Q4 2019	ND	U	0.019
	4/26/2019	Q2 2019	ND	U	0.019
KAED 400040	11/13/2018	Q4 2018	ND	U	0.019
KAFB-106049	1/8/2020	Q1 2020 Q4 2019	ND ND	U	0.019
	10/31/2019 7/31/2019	Q4 2019 Q3 2019	ND ND	U	0.019 0.019
	4/9/2019	Q3 2019 Q2 2019	ND ND	U	0.019
KAFB-106050	1/8/2020	Q1 2020	ND ND	U	0.019
	10/31/2019	Q4 2019	ND ND	U	0.019
	7/31/2019	Q3 2019	ND ND	U	0.019

Table 3-8
Historical EDB Concentrations

		Analyte:	EDB	(1,2-dibromoet	hane)
		EPA MCLa:		0.05 µg/L	
KAFB-106051	1/8/2020	Q1 2020	ND	U	0.019
ľ	10/31/2019	Q4 2019	ND	U	0.019
	7/31/2019	Q3 2019	ND	U	0.019
	4/9/2019	Q2 2019	ND	U	0.019
KAFB-106052	10/30/2019	Q4 2019	ND	U	0.019
	4/8/2019	Q2 2019	ND	U	0.019
	10/2/2018	Q4 2018	ND	U	0.019
KAFB-106053	10/30/2019	Q4 2019	ND	U	0.019
	4/8/2019	Q2 2019	ND	U	0.019
	10/2/2018	Q4 2018	ND	U	0.019
KAFB-106054	10/30/2019	Q4 2019	ND	U	0.019
	4/8/2019	Q2 2019	ND	U	0.019
	10/2/2018	Q4 2018	ND	U	0.019
KAFB-106055	10/28/2019	Q4 2019	ND	U	0.019
	4/15/2019	Q2 2019	0.019	J	0.019
KAED 400057	10/4/2018	Q4 2018	0.02	J	0.019
KAFB-106057	10/28/2019	Q4 2019	ND 0.01	U	0.019
	4/15/2019	Q2 2019	0.01	J	0.019
KAFB-106058	10/9/2018	Q4 2018	ND ND	U	0.019
KAFB-100058	10/28/2019	Q4 2019	0.0095	J	0.019
	4/15/2019 10/4/2018	Q2 2019 Q4 2018	0.0095 ND	U	0.019
KAFB-106059	10/4/2018	Q4 2018 Q4 2019	1.7	J	0.019
1771 D-100009	4/26/2019	Q4 2019 Q2 2019	3.1	J 	0.38
ŀ	10/25/2018	Q4 2018	2.7		0.38
KAFB-106060	10/23/2018	Q4 2018 Q4 2019	0.14		0.019
144 P-100000	4/1/2019	Q4 2019 Q2 2019	0.14		0.019
ŀ	10/23/2018	Q4 2018	ND	U	0.019
KAFB-106061	11/5/2019	Q4 2019	ND ND	U	0.019
	4/2/2019	Q2 2019	ND ND	U	0.019
	10/24/2018	Q4 2018	ND	U	0.019
KAFB-106062	10/14/2019	Q4 2019	ND	U	0.019
	4/4/2019	Q2 2019	ND	U	0.019
	10/4/2018	Q4 2018	ND	Ü	0.019
KAFB-106063 ^e	10/4/2018	Q4 2018	3.6	J	0.38
10 (I D-100000	4/10/2018	Q2 2018	3.7		0.95
	10/24/2017	Q4 2017	ND	U	0.019
KAFB-106064 ^e	10/4/2018	Q4 2018	0.25		0.019
10 " 5 100001	4/10/2018	Q2 2018	12		1.9
	10/24/2017	Q4 2017	62		0.019
KAFB-106065	10/11/2019	Q4 2019	ND	U	0.019
	4/2/2019	Q2 2019	ND	U	0.019
	10/17/2018	Q4 2018	ND	U	0.019
KAFB-106066	10/10/2019	Q4 2019	ND	U	0.019
	4/2/2019	Q2 2019	ND	U	0.019
	10/17/2018	Q4 2018	ND	U	0.019
KAFB-106067	10/14/2019	Q4 2019	ND	U	0.019
	4/1/2019	Q2 2019	0.027	J	0.019
	10/5/2018	Q4 2018	0.018	J	0.019
KAFB-106068	10/11/2019	Q4 2019	ND	U	0.019
	4/1/2019	Q2 2019	ND	U	0.019
1/4 = 7 / 2 2 2 2 2	10/5/2018	Q4 2018	ND	U	0.019
KAFB-106069	10/16/2019	Q4 2019	ND 0.014	U	0.019
ļ	4/30/2019	Q2 2019	0.014	J	0.019
KAED 400070	10/29/2018	Q4 2018	0.044		0.019
KAFB-106070	11/1/2019	Q4 2019	ND	U	0.019
	4/16/2019	Q2 2019	ND	U	0.026
KAED 400074	10/1/2018	Q4 2018	ND	U	0.019
KAFB-106071	11/1/2019	Q4 2019	ND	U	0.019
	4/16/2019	Q2 2019	ND	U	0.019
KAFB-106072	10/1/2018	Q4 2018 Q4 2019	ND ND	U	0.019
NACD-100072	11/1/2019 4/16/2019	Q4 2019 Q2 2019	0.03	 	0.019 0.019
}	10/1/2019	Q2 2019 Q4 2018	0.03 ND	 U	0.019
KAFB-106073	10/1/2018	Q4 2018 Q4 2019	ND ND	U	0.019
יישיים ויישי	5/2/2019	Q4 2019 Q2 2019	0.015	J	0.019
ŀ	11/6/2018	Q4 2018	0.015	J	0.019
KAFB-106074	10/22/2019	Q4 2018 Q4 2019	0.012 ND	U	0.019
D-100014	4/25/2019	Q4 2019 Q2 2019	ND ND	U	0.019
ŀ	11/1/2018	Q4 2018	ND ND	U	0.019
KAFB-106075	10/14/2019	Q4 2019	0.034		0.019
	4/3/2019	Q2 2019	0.043		0.019
ŀ	10/23/2018	Q4 2018	0.045		0.019
KAFB-106076	10/25/2019	Q4 2019	0.035		0.019
	5/2/2019	Q2 2019	0.047		0.019
ŀ	10/30/2018	Q4 2018	0.013	J	0.019
KAFB-106077	10/30/2019	Q4 2019	ND	U	0.019
	4/23/2019	Q2 2019	ND ND	U	0.019
ŀ	11/9/2018	Q4 2018	ND ND	U	0.019
KAFB-106078	10/15/2019	Q4 2019	ND ND	U	0.019
00010	4/2/2019	Q2 2019	ND ND	U	0.019
•					0.010

Table 3-8
Historical EDB Concentrations

		Analyte:	EDB	(1,2-dibromoet	thane)
		EPA MCLa:		0.05 μg/L	
KAFB-106079 ^b	10/23/2019	Q4 2019	0.027	J	0.019
	10/23/2018	Q4 2018	0.011	J	0.019
	4/16/2018	Q2 2018	0.023	J	0.019
KAFB-106080	10/16/2019	Q4 2019	ND	U	0.019
	4/3/2019	Q2 2019	ND	U	0.019
	10/18/2018	Q4 2018	ND	U	0.019
KAFB-106081	10/18/2019	Q4 2019	ND	U	0.019
	4/24/2019	Q2 2019	ND	U	0.019
	10/18/2018	Q4 2018	ND	U	0.019
KAFB-106082	10/18/2019	Q4 2019	ND	U	0.019
	4/29/2019	Q2 2019	ND	U	0.019
	10/31/2018	Q4 2018	0.016	J	0.019
KAFB-106083	10/18/2019	Q4 2019	ND	U	0.019
	4/30/2019	Q2 2019	0.026	J	0.019
	10/31/2018	Q4 2018	0.022	J	0.019
KAFB-106084	10/22/2019	Q4 2019	ND	U	0.019
	4/29/2019	Q2 2019	ND	U	0.095
	10/31/2018	Q4 2018	ND	U	0.019
KAFB-106085	11/4/2019	Q4 2019	0.014	J	0.019
	4/10/2019	Q2 2019	0.014	J	0.019
	10/1/2018	Q4 2018	0.054		0.019
KAFB-106086	11/4/2019	Q4 2019	ND	U	0.019
	4/10/2019	Q2 2019	ND	U	0.019
	10/1/2018	Q4 2018	ND	U	0.019
KAFB-106087	11/4/2019	Q4 2019	ND	U	0.019
	4/10/2019	Q2 2019	ND	U	0.019
	10/1/2018	Q4 2018	ND	U	0.019
KAFB-106088	11/4/2019	Q4 2019	0.11		0.019
	4/10/2019	Q2 2019	0.085		0.019
	10/1/2018	Q4 2018	0.14		0.019
KAFB-106089	11/4/2019	Q4 2019	0.064		0.019
	4/10/2019	Q2 2019	0.058		0.019
	10/1/2018	Q4 2018	0.045	J	0.0095
KAFB-106090	11/4/2019	Q4 2019	ND	U	0.019
	4/10/2019	Q2 2019	ND	U	0.019
	10/1/2018	Q4 2018	ND	U	0.019
KAFB-106091	10/31/2019	Q4 2019	ND	U	0.019
	4/10/2019	Q2 2019	ND	U	0.019
	10/3/2018	Q4 2018	ND	U	0.019
KAFB-106092	10/31/2019	Q4 2019	ND	U	0.019
	4/16/2019	Q2 2019	ND	U	0.019
	10/3/2018	Q4 2018	ND	U	0.019
KAFB-106093	10/31/2019	Q4 2019	ND	U	0.019
	4/16/2019	Q2 2019	ND	U	0.019
	10/3/2018	Q4 2018	ND	U	0.019
KAFB-106094	10/14/2019	Q4 2019	ND	U	0.019
	4/3/2019	Q2 2019	0.019	J	0.019
	10/16/2018	Q4 2018	0.030		0.019
KAFB-106095	10/21/2019	Q4 2019	ND	U	0.019
	5/2/2019	Q2 2019	ND	U	0.019
	11/13/2018	Q4 2018	ND	U	0.019
KAFB-106096	10/10/2019	Q4 2019	ND	U	0.019
	4/1/2019	Q2 2019	ND	U	0.019
	10/16/2018	Q4 2018	ND	U	0.019
KAFB-106097	1/15/2020	Q1 2020	ND	U	0.019
	10/23/2019	Q4 2019	ND	U	0.019
	7/15/2019	Q3 2019	ND	U	0.019
	4/29/2019	Q2 2019	ND	U	0.19
KAFB-106098	1/15/2020	Q1 2020	ND	U	0.019
	10/23/2019	Q4 2019	ND	U	0.019
	7/15/2019	Q3 2019	ND ND	U	0.019
KAED 400000	4/30/2019	Q2 2019	ND	U	0.019
KAFB-106099	1/16/2020	Q1 2020	ND	U	0.019
	10/24/2019	Q4 2019	ND	U	0.019
	7/12/2019	Q3 2019	ND	U	0.019
KAED 400400	5/1/2019	Q2 2019	ND	U	0.019
KAFB-106100	1/16/2020	Q1 2020	ND	U	0.019
	10/24/2019	Q4 2019	ND	U	0.019
	7/12/2019	Q3 2019	ND	U	0.019
VAED 400404	5/1/2019	Q2 2019	ND	U	0.019
KAFB-106101	1/17/2020	Q1 2020	ND	U	0.019
	10/28/2019	Q4 2019	ND	U	0.019
	7/11/2019	Q3 2019	ND	U	0.019
VAED 400400	4/26/2019	Q2 2019	ND	U	0.019
KAFB-106102	1/17/2020	Q1 2020	ND	U	0.019
	10/28/2019	Q4 2019	ND	U	0.019
	7/11/2019	Q3 2019	ND	U	0.019
KAED 100100	4/25/2019	Q2 2019	ND	U	0.019
KAFB-106103	10/31/2019	Q4 2019	ND	U	0.019
	4/9/2019	Q2 2019	ND	U	0.019
VAED 400404	10/3/2018	Q4 2018	ND	U	0.019
KAFB-106104	10/31/2019	Q4 2019	ND	U	0.019
	4/9/2019	Q2 2019	ND	U	0.019

Table 3-8
Historical EDB Concentrations

		Analyte:	EDB	(1,2-dibromoetl	nane)
		EPA MCLa:		0.05 µg/L	
KAFB-106105	10/30/2019	Q4 2019	ND	U I	0.019
	4/9/2019	Q2 2019	ND	U	0.019
Ī	10/2/2018	Q4 2018	ND	U	0.019
KAFB-106106	10/30/2019	Q4 2019	ND	U	0.019
Ī	4/9/2019	Q2 2019	ND	U	0.019
Ī	10/2/2018	Q4 2018	0.020	J	0.019
KAFB-106107	10/30/2019	Q4 2019	ND	U	0.019
Ī	4/9/2019	Q2 2019	ND	U	0.019
	10/2/2018	Q4 2018	ND	U	0.019
KAFB-106149-484	1/9/2020	Q1 2020	40		9.6
	11/1/2019	Q4 2019	100		19
	8/13/2019	Q3 2019	38		9.5
	4/16/2019	Q2 2019	36		3.8
KAFB-106151-484	1/9/2020	Q1 2020	3.4		0.96
	11/1/2019	Q4 2019	1.4		0.38
	8/13/2019	Q3 2019	0.29		0.019
	4/18/2019	Q2 2019	4.3		0.94
KAFB-106152-484	1/9/2020	Q1 2020	ND	U	0.019
	11/1/2019	Q4 2019	0.043		0.019
	8/13/2019	Q3 2019	0.013	J	0.019
Ī	4/18/2019	Q2 2019	ND	U	0.095
KAFB-106153-484	1/9/2020	Q1 2020	460		96
ļ	11/1/2019	Q4 2019	820		94
ţ	8/12/2019	Q3 2019	68	- 1	38
ļ	4/18/2019	Q2 2019	350		95
KAFB-106201	1/7/2020	Q1 2020	ND	U	0.019
ļ	10/30/2019	Q4 2019	ND	U	0.019
ļ	7/30/2019	Q3 2019	ND	U	0.019
ţ	4/15/2019	Q2 2019	ND	U	0.019
KAFB-106202	1/7/2020	Q1 2020	ND	U	0.019
	10/30/2019	Q4 2019	ND	U	0.019
	7/30/2019	Q3 2019	ND	U	0.019
	4/15/2019	Q2 2019	ND	U	0.019
KAFB-106203	1/7/2020	Q1 2020	ND	U	0.019
	10/30/2019	Q4 2019	ND	U	0.019
	7/30/2019	Q3 2019	ND	U	0.019
	4/15/2019	Q2 2019	ND	U	0.019
KAFB-106204	1/8/2020	Q1 2020	ND	U	0.019
Ī	10/23/2019	Q4 2019	ND	U	0.019
	7/31/2019	Q3 2019	ND	U	0.019
	4/9/2019	Q2 2019	ND	U	0.019
KAFB-106205	1/8/2020	Q1 2020	0.022	J	0.019
	10/23/2019	Q4 2019	ND	U	0.019
	7/31/2019	Q3 2019	ND	U	0.019
	4/9/2019	Q2 2019	ND	U	0.019
KAFB-106206	1/8/2020	Q1 2020	ND	U	0.019
	10/23/2019	Q4 2019	ND	U	0.019
	7/31/2019	Q3 2019	ND	U	0.019
	4/9/2019	Q2 2019	ND	U	0.019
KAFB-106207	1/8/2020	Q1 2020	ND	U	0.019
Ţ	10/24/2019	Q4 2019	ND	U	0.019
ţ	7/31/2019	Q3 2019	ND	U	0.019
<u> </u>	4/8/2019	Q2 2019	ND	U	0.019
KAFB-106208	1/8/2020	Q1 2020	ND	U	0.019
Ţ	10/24/2019	Q4 2019	ND	U	0.019
Ī	7/31/2019	Q3 2019	ND	U	0.019
	4/8/2019	Q2 2019	ND	U	0.019
KAFB-106209	1/8/2020	Q1 2020	ND	U	0.019
Ī	10/24/2019	Q4 2019	ND	U	0.019
Ī	7/31/2019	Q3 2019	ND	U	0.019
	4/8/2019	Q2 2019	ND	U	0.019
KAFB-106212	10/29/2019	Q4 2019	ND	U	0.019
Ţ	4/10/2019	Q2 2019	ND	U	0.019
	10/2/2018	Q4 2018	ND	U	0.019
KAFB-106213	10/29/2019	Q4 2019	ND	U	0.019
Ī	4/16/2019	Q2 2019	ND	U	0.019
	10/2/2018	Q4 2018	ND	U	0.019
KAFB-106214	10/29/2019	Q4 2019	ND	U	0.019
Г	4/16/2019	Q2 2019	ND	U	0.019
	10/2/2018	Q4 2018	ND	U	0.019
KAFB-106215	10/29/2019	Q4 2019	ND	U	0.019
Ī	4/10/2019	Q2 2019	ND	U	0.019
	10/2/2018	Q4 2018	ND	U	0.019
KAFB-106216	1/7/2020	Q1 2020	ND	U	0.019
Ţ	10/24/2019	Q4 2019	ND	U	0.019
Ţ	7/30/2019	Q3 2019	ND	U	0.019
ļ	4/9/2019	Q2 2019	ND	U	0.019
KAFB-106217	1/7/2020	Q1 2020	ND	U	0.019
ļ	10/24/2019	Q4 2019	ND	U	0.019
		Q3 2019	ND	Ü	0.019
	7/30/2019	Q3 2019 I	ND	0 1	0.019

Table 3-8
Historical EDB Concentrations

		Analyte:	EDB	(1,2-dibromoet	nane)
		EPA MCLa:		0.05 μg/L	
KAFB-106218	1/7/2020	Q1 2020	ND	U	0.019
_	10/24/2019	Q4 2019	ND	U	0.019
_	7/30/2019	Q3 2019	ND	U	0.019
=	4/9/2019	Q2 2019	ND	U	0.019
KAFB-106219	11/5/2019	Q4 2019	ND	U	0.019
<u>_</u>	4/10/2019	Q2 2019	ND	U	0.019
	10/4/2018	Q4 2018	ND	U	0.019
KAFB-106220	11/4/2019	Q4 2019	ND	U	0.019
<u> </u>	4/10/2019	Q2 2019	ND	U	0.019
1/A ED 400004	10/4/2018	Q4 2018	ND	U	0.019
KAFB-106221	11/4/2019	Q4 2019 Q2 2019	ND ND	U	0.019 0.019
_	4/10/2019 10/4/2018	Q2 2019 Q4 2018	ND ND	U	0.019
KAFB-106222	1/7/2020	Q4 2016 Q1 2020	ND ND	U	0.019
KAFB-100222	10/24/2019	Q1 2020 Q4 2019	ND ND	U	0.019
-	7/30/2019	Q3 2019	ND ND	U	0.019
	4/9/2019	Q2 2019	ND ND	U	0.019
KAFB-106223	1/7/2020	Q1 2020	ND ND	U	0.019
10 (I B-100220	10/24/2019	Q4 2019	ND ND	Ü	0.019
-	7/30/2019	Q3 2019	ND ND	Ü	0.019
-	4/9/2019	Q2 2019	ND ND	Ü	0.019
KAFB-106224	1/7/2020	Q1 2020	ND	U	0.019
	10/24/2019	Q4 2019	ND ND	U	0.019
	7/30/2019	Q3 2019	ND	Ü	0.019
-	4/9/2019	Q2 2019	ND	Ü	0.019
KAFB-106225	10/29/2019	Q4 2019	ND	Ü	0.019
	4/9/2019	Q2 2019	0.018	J	0.019
-	10/1/2018	Q4 2018	0.17		0.019
KAFB-106226	10/29/2019	Q4 2019	ND	U	0.019
	4/9/2019	Q2 2019	ND	U	0.019
	10/1/2018	Q4 2018	ND	U	0.019
KAFB-106227	10/29/2019	Q4 2019	ND	U	0.019
	4/9/2019	Q2 2019	ND	U	0.019
	10/1/2018	Q4 2018	ND	U	0.019
KAFB-106229	10/29/2019	Q4 2019	ND	U	0.019
	4/8/2019	Q2 2019	ND	U	0.019
	10/1/2018	Q4 2018	0.011	J	0.019
KAFB-106230	1/7/2020	Q1 2020	ND	U	0.019
	10/29/2019	Q4 2019	ND	U	0.019
_	4/7/2016	Q2 2016	0.011	J	0.020
	2/4/2016	Q1 2016	0.020	J	0.020
KAFB-106231	1/6/2020	Q1 2020	ND	U	0.019
_	10/28/2019	Q4 2019	ND	U	0.019
_	7/29/2019	Q3 2019	ND	U	0.019
KAED 400000	4/15/2019	Q2 2019	ND	U	0.019
KAFB-106232	1/6/2020	Q1 2020	ND	U	0.019
_	10/28/2019	Q4 2019	ND	_	0.019
_	7/29/2019 4/15/2019	Q3 2019 Q2 2019	ND ND	U	0.019 0.019
KAFB-106235-438	1/6/2020	Q1 2020	ND ND	U	0.019
KAFD-100233-430	10/29/2019	Q4 2019	ND ND	U	0.019
-	7/29/2019	Q3 2019	ND ND	U	0.019
F	4/8/2019	Q2 2019	ND ND	U	0.019
KAFB-106235-472	1/6/2020	Q1 2020	ND ND	U	0.019
	10/29/2019	Q4 2019	ND ND	U	0.019
	7/29/2019	Q3 2019	ND	Ü	0.019
-	4/8/2019	Q2 2019	ND	Ü	0.019
KAFB-106235-501	1/6/2020	Q1 2020	ND	Ü	0.019
-	10/29/2019	Q4 2019	ND	Ü	0.019
F	7/29/2019	Q3 2019	ND	U	0.019
	4/8/2019	Q2 2019	ND	U	0.019
KAFB-106236-436	1/7/2020	Q1 2020	ND	U	0.019
	10/29/2019	Q4 2019	ND	U	0.019
	7/29/2019	Q3 2019	ND	U	0.019
	4/8/2019	Q2 2019	ND	U	0.019
KAFB-106236-470	1/7/2020	Q1 2020	ND	U	0.019
	10/29/2019	Q4 2019	ND	U	0.019
	7/29/2019	Q3 2019	ND	U	0.019
IVAED 100000	4/8/2019	Q2 2019	ND	U	0.019
KAFB-106236-499	1/7/2020	Q1 2020	ND ND	U	0.019
<u> </u>	10/29/2019	Q4 2019	ND	U	0.019
 	7/29/2019	Q3 2019	ND	U	0.019
-	4/8/2019	Q2 2019	ND	U	0.019
I/AED 100010 110		Q1 2020	ND	U	0.019
KAFB-106240-449	1/7/2020	04.0040			0.019
KAFB-106240-449	10/30/2019	Q4 2019	ND	U	
KAFB-106240-449	10/30/2019 7/30/2019	Q3 2019	ND	U	0.019
	10/30/2019 7/30/2019 4/8/2019	Q3 2019 Q2 2019	ND ND	U	0.019 0.019
KAFB-106240-449 KAFB-106241-428	10/30/2019 7/30/2019 4/8/2019 1/8/2020	Q3 2019 Q2 2019 Q1 2020	ND ND 0.021	U U	0.019 0.019 0.017
	10/30/2019 7/30/2019 4/8/2019	Q3 2019 Q2 2019	ND ND	U	0.019 0.019

Table 3-8 Historical EDB Concentrations

		Analyte:	EDB (1,2-dibromoethane)					
		EPA MCL ^a :	0.05 μg/L					
KAFB-106242-418	1/6/2020	Q1 2020	ND	U Ι	0.019			
10 (I B-100242-410	10/28/2019	Q4 2019	ND ND	Ü	0.019			
-	7/29/2019	Q3 2019	ND	Ü	0.019			
-	4/15/2019	Q2 2019	ND	Ü	0.019			
KAFB-106243-425	1/6/2020	Q1 2020	0.042		0.019			
	10/30/2019	Q4 2019	0.054	J	0.019			
-	7/30/2019	Q3 2019	ND	Ü	0.019			
-	4/8/2019	Q2 2019	0.044		0.019			
KAFB-106244-445	1/7/2020	Q1 2020	ND	U	0.019			
-	10/30/2019	Q4 2019	ND	U	0.019			
	7/30/2019	Q3 2019	ND	U	0.019			
	4/8/2019	Q2 2019	ND	Ü	0.019			
KAFB-106245-460	1/8/2020	Q1 2020	ND	Ü	0.019			
-	10/31/2019	Q4 2019	ND	Ü	0.019			
	7/30/2019	Q3 2019	ND	U	0.019			
	4/8/2019	Q2 2019	ND	U	0.019			
KAFB-106247-450	1/6/2020	Q1 2020	ND	Ü	0.019			
-	10/31/2019	Q4 2019	ND	Ü	0.019			
	8/12/2019	Q3 2019	ND	Ü	0.019			
-	4/16/2019	Q2 2019	ND	U	0.019			
KAFB-106S1-447	1/9/2020	Q1 2020	450	J	95			
	10/31/2019	Q4 2019	380		95			
-	8/12/2019	Q3 2019	480		76			
_	4/16/2019	Q2 2019	250		97			
KAFB-106S2-451	1/6/2020	Q1 2020	170		38			
1011 10002 101	10/31/2019	Q4 2019	280		96			
_	8/13/2019	Q3 2019	160		38			
-	4/16/2019	Q2 2019	260		95			
KAFB-106S3-449	1/9/2020	Q1 2020	1.5		0.38			
	10/31/2019	Q4 2019	0.80		0.19			
-	8/13/2019	Q3 2019	2.6		0.38			
-	4/16/2019	Q2 2019	11		2			
KAFB-106S4-446	1/6/2020	Q1 2020	0.026	J	0.019			
-	10/31/2019	Q4 2019	0.048		0.019			
-	8/13/2019	Q3 2019	0.034		0.019			
-	4/16/2019	Q2 2019	0.041		0.019			
KAFB-106S5-446	1/9/2020	Q1 2020	13		3.8			
-	10/31/2019	Q4 2019	16		1.9			
	8/12/2019	Q3 2019	12		1.9			
	4/16/2019	Q2 2019	15		1.9			
KAFB-106S7-451	1/9/2020	Q1 2020	2.0		0.38			
-	10/31/2019	Q4 2019	2.6		0.38			
-	8/12/2019	Q3 2019	22		3.8			
-	4/16/2019	Q2 2019	8.7		0.95			
KAFB-106S8-451	1/6/2020	Q1 2020	34		9.4			
	10/31/2019	Q4 2019	170		38			
F	8/12/2019	Q3 2019	140		38			
-	4/16/2019	Q2 2019	96		19			
KAFB-106S9-447	1/9/2020	Q1 2020	130		38			
	11/1/2019	Q4 2019	58		9.5			
F	8/13/2019	Q3 2019	0.065		0.019			
-	4/16/2019	Q2 2019	63		19			
KAFB-3411	10/17/2019	Q4 2019	ND	U	0.019			
10 11 D-07 11	4/23/2019	Q2 2019	ND ND	U	0.019			
<u> </u>	10/22/2018	Q4 2018	ND ND	U	0.019			

Table 3-8 Historical EDB Concentrations

^a The project screening level was selected to satisfy the requirements of the Kirtland AFB Hazardous Waste Permit Number NM9570024423 as the lowest of (1) NMWQCC numeric standard or (2) EPA MCL. If no NMQWCC standard or MCL exists for any analyte, then the project screening level will be the EPA RSL. For EDB, the EPA MCL and the NMWQCC numeric standard are both 0.05 µg/L.

^f This well was not sampled between Q2 2016 and Q4 2019 due to security issues.

— = Compound not analyzed for.

μg/L = microgram per liter

AFB = Air Force Base

EDB = ethylene dibromide (1,2-dibromoethane)

EPA = U.S. Environmental Protection Agency

ID = identification

LOD = limit of detection

MCL = maximum contaminant level

ND = not detected

NMWQCC = New Mexico Water Quality Control Commission

RSL = regional screening level

Val Qual = validation qualifier

Shading = detected concentrations above the detection limit

Bold/Shading = reported concentrations exceed the project screening level

Val Quals based on independent data validation

J = Qualifier denotes the analyte was positively identified, but the associated numerical value is estimated.

U = Qualifier denotes the analyte was analyzed but not detected above the detection limit. The value associated with the U-qualifier is the LOD.

-- = Validation qualifier not assigned.

^b This well was not sampled in Q2 2019 due to suspected biofouling in the well.

^c This well was not sampled between Q4 2015 and Q4 2019 due to security issues.

^d This well was not sampled in Q4 2019 due to suspected biofouling in the well.

^e This well was not sampled in 2019 due to the presence of dedicated downhole equipment related to the EDB *in situ* biodegradation pilot test. Monitoring was resumed in 2020, and results will be available in the next report.

Table 3-9
Historical BTEX Concentrations

		Analyte:		Benzene			Ethylbenzene	!		Toluene			Xylenes, Total	
	Project Sc	reening Level ^a :		5 µg/L			700 μg/L			1,000 µg/L			620 µg/L	
Well	Sample	Sampling		Val	l		Val			Val			Val	
Location ID	Date	Quarter	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
	11/1/2019	Q4 2019	4		0.5	ND	U	0.8	11		0.5	2	J	2
KAFB-106001 ^b	10/30/2018	Q4 2019 Q4 2018	6		0.5	0.8	J	0.8	34		0.5	6		2
	10/30/2018	Q4 2016 Q4 2017	1		0.5	ND	U	0.0	12		0.5	4		1
KAFB-106002	10/31/2017	Q4 2017 Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
IVAI D-100002	10/17/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND ND	U	0.5	ND	U	2
	10/17/2018	Q4 2017	ND	U	1	ND ND	U	1	ND ND	U	1	ND	U	1
KAFB-106003	1/17/2020	Q1 2020	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
10 (I D 100000	10/28/2019	Q4 2019	ND	U	0.5	ND	U	0.8	0.3	J	0.5	ND	U	2
	7/24/2019	Q3 2019	ND	U	0.5	ND	U	0.8	0.2	J	0.5	ND	U	2
	4/25/2019	Q2 2019	ND	U	0.5	ND	U	0.8	3		0.5	ND	U	2
KAFB-106004	1/16/2020	Q1 2020	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/24/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
	7/12/2019	Q3 2019	ND	Ü	0.5	ND	U	0.8	ND	Ü	0.5	ND	Ü	2
	5/1/2019	Q2 2019	ND	U	0.5	ND	U	0.8	2		0.5	ND	U	2
KAFB-106005	1/8/2020	Q1 2020	21		0.5	100		0.8	4		0.5	160		2
	10/30/2019	Q4 2019	30		0.5	83		0.8	2		0.5	170		2
	7/31/2019	Q3 2019	37		0.5	42		0.8	1		0.5	95		2
	4/18/2019	Q2 2019	120		0.5	51		0.8	2		0.5	110		2
KAFB-106006	11/4/2019	Q4 2019	3		0.5	1		0.8	3		0.5	4	J	2
	4/25/2019	Q2 2019	22		0.5	0.8	J	0.8	27		0.5	5		2
	11/5/2018	Q4 2018	17		0.5	ND	U	0.8	12		0.5	ND	U	2
KAFB-106007	10/18/2019	Q4 2019	ND	U	0.5	ND	U	0.8	4		0.5	ND	U	2
	10/25/2018	Q4 2018	ND	U	0.5	ND	U	0.8	0.5	J	0.5	ND	U	2
	10/26/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106008	11/7/2019	Q4 2019	3,400		10	230		2	950		10	480		4
	10/22/2018	Q4 2018	5,800		50	180	J	8	2,700		5	540		20
	10/20/2017	Q4 2017	2,300		20	120		2	1,700		20	310		2
KAFB-106009	1/8/2020	Q1 2020	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/31/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	7/31/2019	Q3 2019	2	-	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	4/16/2019	Q2 2019	1		0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106010	11/5/2019	Q4 2019	280		5	190		0.8	180		0.5	150		2
	4/23/2019	Q2 2019	280		0.5	130		8.0	28		0.5	40		2
	10/25/2018	Q4 2018	2,300		10	580		16	2,900		10	1,100		40
KAFB-106011	10/14/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	4/2/2019	Q2 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
1/AED 1005:55	10/16/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106012R	1/14/2020	Q1 2020	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/18/2019	Q4 2019	ND	U	0.5	ND	U	0.8	1		0.5	ND	U	2
	7/24/2019	Q3 2019	ND	U	0.5	ND	U	0.8	2		0.5	ND	U	2
I/AED 100010	4/23/2019	Q2 2019	ND	U	0.5	ND	U	0.8	0.9	J	0.5	ND	U	2
KAFB-106013	1/15/2020	Q1 2020	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/23/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	7/15/2019	Q3 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
I/AED 400044	4/30/2019	Q2 2019	ND	U	0.5	ND	U	0.8	4		0.5	ND	U	2
KAFB-106014	11/4/2019	Q4 2019	15		0.5	20		0.8	2		0.5	20		2
	5/1/2019	Q2 2019	53		0.5	67		0.8	460		5	190		2
	11/5/2018	Q4 2018	240		0.5	190		0.8	67		0.5	89		2

Table 3-9
Historical BTEX Concentrations

		Analyte:		Benzene			Ethylbenzene)		Toluene			Xylenes, Total	i
	Project Sc	reening Level ^a :		5 μg/L			700 μg/L			1,000 µg/L			620 µg/L	
Well	Sample	Sampling		Val			Val			ارور الم			Val	
Location ID	Date	Quarter	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
KAFB-106015	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
10 11 12 100010	10/2/2018	Q4 2018	ND	U	0.5	ND	Ü	0.8	ND	Ü	0.5	ND	U	2
	10/5/2017	Q4 2017	ND	U	1	ND	Ü	1	ND	Ü	1	ND	U	1
KAFB-106016	10/11/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
	10/18/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/26/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106017	10/15/2019	Q4 2019	0.8	J	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	4/2/2019	Q2 2019	0.6	J	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/18/2018	Q4 2018	1		0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106018	10/15/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	4/4/2019	Q2 2019	0.2	J	0.5	ND	U	8.0	ND	U	0.5	ND	U	2
	10/18/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106019	10/16/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/29/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/12/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106020	10/17/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	11/6/2018	Q4 2018	ND	U	0.5	ND	U	8.0	ND	U	0.5	ND	U	2
	10/9/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106021	10/28/2019	Q4 2019	ND	U	0.5	ND	U	8.0	ND	U	0.5	ND	U	2
	10/8/2018	Q4 2018	ND	U	0.5	ND	U	8.0	ND	U	0.5	ND	U	2
1/1 = 100000	10/6/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106022	10/24/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2018	Q4 2018	0.2	J	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAED 400000	10/6/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106023	10/31/2019	Q4 2019	ND ND	U	0.5 0.5	ND ND	U	0.8	ND ND	U	0.5 0.5	ND ND	U	2
	10/3/2018 10/4/2017	Q4 2018 Q4 2017	ND ND	U	0.5	ND ND	U	0.8	ND ND	U	0.5	ND ND	U	2
KAFB-106024	10/4/2017	Q4 2017 Q4 2019	ND ND	U	0.5	ND ND	U	0.8	ND ND	U	0.5	ND ND	U	2
KAFD-100024	10/17/2018	Q4 2019 Q4 2018	ND	U	0.5	ND	U	0.8	ND ND	U	0.5	ND ND	U	2
	10/17/2018	Q4 2017	ND	U	0.5	ND ND	U	0.6	ND ND	U	0.5	ND ND	U	1
KAFB-106025	10/30/2019	Q4 2017 Q4 2019	ND	U	0.5	ND ND	U	0.8	ND ND	U	0.5	ND ND	U	2
TVAI D-100025	10/1/2018	Q4 2018	ND	U	0.5	ND ND	U	0.8	ND	U	0.5	ND	U	2
	10/6/2017	Q4 2017	ND	U	1	ND	U	1	ND	Ü	1	ND	U	1
KAFB-106026 ^c	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
1V-1 D-100020	11/12/2015	Q4 2015	ND	U	1	ND	U	1	ND	Ü	1	ND	Ü	3
	8/17/2015	Q3 2015	ND	U	1	ND	U	1	ND	U	1	ND	U	3
KAFB-106027	10/15/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	Ü	2
	10/16/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/12/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106028	4/22/2019	Q2 2019	220	-	0.5	130		0.8	77	-	0.5	38		2
	10/22/2018	Q4 2018	6,800		100	1,400		16	15,000		100	3,000		40
	10/17/2017	Q4 2017	9,200		100	2,800		10	16,000		100	3,500		10
KAFB-106029	10/28/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/8/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/6/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106030	10/28/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/8/2018	Q4 2018	ND	U	0.5	ND	U	8.0	ND	U	0.5	ND	U	2
	10/6/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1

Table 3-9
Historical BTEX Concentrations

		Analyte:		Benzene			Ethylbenzene			Toluene			Xylenes, Tota	ĺ
	Project Sc	reening Level ^a :		5 μg/L			700 μg/L			1,000 µg/L			620 µg/L	
Well	Sample	Sampling		Val			Val			Val		İ	Val	
Location ID	Date	Quarter	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
KAFB-106031	10/28/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/8/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/6/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106032	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/4/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/5/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106033	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/4/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/5/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106034	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/4/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/5/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106035	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/3/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106036	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/3/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106037	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/3/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106038	10/17/2019	Q4 2019	ND	U	0.5	ND	U	0.8	1		0.5	ND	U	2
	4/4/2019	Q2 2019	ND	U	0.5	ND	U	0.8	63		0.5	ND	U	2
	11/7/2018	Q4 2018	ND	U	0.5	ND	U	0.8	0.3	J	0.5	ND	U	2
KAFB-106039	10/17/2019	Q4 2019	ND	U	0.5	ND	U	0.8	4		0.5	ND	U	2
	11/7/2018	Q4 2018	ND	U	0.5	ND	U	0.8	0.5	J	0.5	ND	U	2
	10/9/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106040	10/16/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	11/7/2018	Q4 2018	ND	U	0.5	ND	U	0.8	0.3	J	0.5	ND	U	2
	10/25/2017	Q4 2017	ND	U	1	ND	U	1	0.5	J	1	ND	U	1
KAFB-106041	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/16/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106042	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106043	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106044	10/15/2019	Q4 2019	ND	U	0.5	ND	U	8.0	ND	U	0.5	ND	U	2
	10/16/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/12/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106045	10/21/2019	Q4 2019	ND	U	0.5	ND	U	0.8	3		0.5	ND	U	2
	10/25/2018	Q4 2018	ND	U	0.5	ND	U	0.8	0.3	J	0.5	ND	U	2
	10/30/2017	Q4 2017	ND	U	1	ND	U	1	0.7	J	1	ND	U	1
KAFB-106046	10/14/2019	Q4 2019	ND	U	0.5	ND	U	8.0	ND	U	0.5	ND	U	2
	10/18/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	11/1/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1

Table 3-9
Historical BTEX Concentrations

		Analyte:		Benzene			Ethylbenzene	!		Toluene			Xylenes, Total	
	Project Sc	reening Level ^a :		5 μg/L			700 μg/L			1,000 μg/L		620 μg/L		
Well	Sample	Sampling		Val			Val			Val			Val	
Location ID	Date	Quarter	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
KAFB-106047	10/14/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
10 (I B-1000+1	10/17/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
	11/1/2017	Q4 2017	ND ND	U	1	ND ND	U	1	ND	Ü	1	ND	U	1
KAFB-106048	10/22/2019	Q4 2019	ND	U	0.5	ND	U	0.8	1		0.5	ND	U	2
10 ti B-100040	11/13/2018	Q4 2018	ND	U	0.5	ND	U	0.8	0.4	J	0.5	ND	U	2
	11/1/2017	Q4 2017	ND	U	1	ND	U	1	ND	Ü	1	ND	U	1
KAFB-106049	10/31/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
10 11 10 1000 10	10/3/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	Ü	2
	10/4/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106050	10/31/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
10 11 10 100000	10/3/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/4/2017	Q4 2017	ND ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106051	10/4/2017	Q4 2017 Q4 2019	ND ND	U	0.5	ND ND	U	0.8	ND	U	0.5	ND	U	2
	10/3/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/4/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	
KAFB-106052	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	Ü	2
10 11 2 100002	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	Ü	2
	10/5/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	
KAFB-106053	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
10 11 2 100000	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/5/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106054	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	Ü	2
	10/5/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	Ü	
KAFB-106055	10/28/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	Ü	2
	10/4/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
	10/5/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	
KAFB-106057	10/28/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	Ü	2
	10/9/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
	10/5/2017	Q4 2017	ND	U	1	ND	U	1	ND	Ü	1	ND	U	1
KAFB-106058	10/28/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	Ü	2
	10/4/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/5/2017	Q4 2017	ND	U	1	ND	U	1	ND	Ü	1	ND	U	1
KAFB-106059	10/21/2019	Q4 2019	13,000		50	640		8	12,000		50	2,000		20
	4/26/2019	Q2 2019	12,000		50	900		8	15,000		50	3,100		20
	10/25/2018	Q4 2018	17,000		50	920		8	20,000		50	3,100		20
KAFB-106060	10/11/2019	Q4 2019	0.2	J	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	4/1/2019	Q2 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/23/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106061	11/5/2019	Q4 2019	ND	U	0.5	ND	U	0.8	4		0.5	ND	U	2
	4/2/2019	Q2 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/24/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106062	10/14/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	4/4/2019	Q2 2019	ND	U	0.5	ND	Ü	0.8	ND	Ü	0.5	ND	U	2
	10/4/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106063 ^d	10/4/2018	Q4 2018	6,400	<u>-</u>	50	2,000		8	20,000		50	5,700		20
5 100000	4/10/2018	Q2 2018	2,000		10	710		10	3,600		100	1,200		10
	10/24/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1

Table 3-9
Historical BTEX Concentrations

		Analyte:		Benzene			Ethylbenzene			Toluene			Xylenes, Tota	I
	Project Sc	reening Level ^a :		5 µg/L			700 μg/L			1,000 µg/L			620 µg/L	
Well	Sample	Sampling		Val			Val			Val			Val	<u> </u>
Location ID	Date	Quarter	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
KAFB-106064 ^d	10/4/2018	Q4 2018	3,600		50	1,200		8	12,000		50	3,800		20
10 ti D-100004	4/10/2018	Q2 2018	3,800		100	2,100		100	15,000		100	5,900		100
	10/24/2017	Q4 2017	3,000		10	850		10	8,000		100	3,100		10
KAFB-106065	10/11/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	4/2/2019	Q2 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/17/2018	Q4 2018	0.2	J	0.5	ND	Ü	0.8	ND	U	0.5	ND	U	2
KAFB-106066	10/10/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	4/2/2019	Q2 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/17/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106067	10/14/2019	Q4 2019	1		0.5	0.7	J	0.8	ND	U	0.5	ND	U	2
	4/1/2019	Q2 2019	1		0.5	2		0.8	ND	U	0.5	ND	U	2
	10/5/2018	Q4 2018	5		0.5	2		0.8	0.2	J	0.5	ND	U	2
KAFB-106068	10/11/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	4/1/2019	Q2 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/5/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106069	10/16/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	4/30/2019	Q2 2019	ND	U	0.5	ND	U	0.8	0.2	J	0.5	ND	U	2
	10/29/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106070	11/1/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/5/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106071	11/1/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/5/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106072	11/1/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/5/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106073	10/17/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	11/6/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/10/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106074	10/22/2019	Q4 2019	ND	U	0.5	ND	U	0.8	1		0.5	ND	U	2
	11/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	0.3	J	0.5	ND	U	2
	10/10/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106075	10/14/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/23/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/12/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106076	10/16/2019	Q4 2019	1		0.5	37		0.8	ND	U	0.5	100		2
	5/2/2019	Q2 2019	4		0.5	40		0.8	41		0.5	100		2
	10/30/2018	Q4 2018	1		0.5	62		0.8	20		0.5	180		2
KAFB-106077	10/18/2019	Q4 2019	ND	U	0.5	ND	U	0.8	2		0.5	ND	U	2
	4/23/2019	Q2 2019	ND	U	0.5	ND	U	0.8	0.5	J	0.5	ND	U	2
	11/9/2018	Q4 2018	ND	U	0.5	ND	U	0.8	0.6	J	0.5	ND	U	2
KAFB-106078	10/15/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	4/2/2019	Q2 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/17/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106079	10/23/2019	Q4 2019	140	-	0.5	34		0.8	66		0.5	79		2
	10/23/2018	Q4 2018	1,800	-	5	200		0.8	51		0.5	380		2
	11/2/2017	Q4 2017	580		10	200		1	140		1	610		1

Table 3-9
Historical BTEX Concentrations

		Analyte:		Benzene			Ethylbenzene			Toluene			Xylenes, Tota	<u> </u>
	Proiect Sc	reening Level ^a :		5 μg/L			700 μg/L			1,000 µg/L			620 µg/L	
Well	Sample	Sampling		Val			Val		<u> </u>	Val			Val	
Location ID	Date	Quarter	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
KAFB-106080	10/16/2019	Q4 2019	170		0.5	9		0.8	ND	U	0.5	4	J	2
100000	4/3/2019	Q2 2019	8		0.5	5		0.8	0.3	J	0.5	ND	U	2
	10/18/2018	Q4 2018	16		0.5	8		0.8	0.2	J	0.5	ND ND	U	2
KAFB-106081	10/18/2019	Q4 2019	ND	U	0.5	ND	U	0.8	1		0.5	ND	U	2
10 (I D-100001	4/24/2019	Q2 2019	ND	U	0.5	ND	U	0.8	3		0.5	ND	U	2
	10/18/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106082	10/18/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
1011 100002	10/31/2018	Q4 2018	ND	U	0.5	ND	U	0.8	0.4	J	0.5	ND	U	2
	10/10/2017	Q4 2017	ND	U	1	ND	U	1	ND	Ü	1	ND	U	1
KAFB-106083	10/18/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
10 100000	10/31/2018	Q4 2018	ND	U	0.5	ND	U	0.8	0.6	.J	0.5	ND	U	2
	10/10/2017	Q4 2017	ND	U	1	ND	U	1	ND	Ü	1	ND	U	1
KAFB-106084	10/22/2019	Q4 2019	ND	U	0.5	ND	U	0.8	2		0.5	ND	U	2
	10/31/2018	Q4 2018	ND	U	0.5	ND	U	0.8	0.5	.J	0.5	ND	U	2
	10/10/2017	Q4 2017	ND	U	1	ND	U	1	0.6	.J	1	ND	U	1
KAFB-106085	11/4/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	Ü	2
14.1.2 100000	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/4/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106086	11/4/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
14.1.2 100000	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/4/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106087	11/4/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/4/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106088	11/4/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
	10/1/2018	Q4 2018	0.2	J	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/4/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106089	11/4/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/4/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106090	11/4/2019	Q4 2019	ND	Ü	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/4/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106091	10/31/2019	Q4 2019	ND	Ü	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/3/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/6/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106092	10/31/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/3/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/6/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106093	10/31/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/3/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/4/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106094	10/14/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/16/2018	Q4 2018	0.3	J	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/11/2017	Q4 2017	1		1	0.7	J	1	ND	U	1	ND	U	1
KAFB-106095	10/21/2019	Q4 2019	ND	U	0.5	ND	U	0.8	2		0.5	ND	U	2
	11/13/2018	Q4 2018	ND	U	0.5	ND	Ü	0.8	ND	U	0.5	ND	Ü	2
	10/11/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1

Table 3-9
Historical BTEX Concentrations

		Analyte:		Benzene			Ethylbenzene			Toluene			Xylenes, Total	·
	Proiect Sc	reening Level ^a :		5 μg/L			700 μg/L			1,000 µg/L			620 µg/L	
Well	Sample	Sampling		Val			Val			Val			Val	
Location ID	Date	Quarter	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
KAFB-106096	10/10/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
14 11 12 100000	10/16/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
	10/11/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106097	1/15/2020	Q1 2020	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
	10/23/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	7/15/2019	Q3 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	4/29/2019	Q2 2019	ND	U	0.5	ND	U	0.8	3		0.5	ND	U	2
KAFB-106098	1/15/2020	Q1 2020	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/23/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	7/15/2019	Q3 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	4/30/2019	Q2 2019	ND	U	0.5	ND	U	0.8	1		0.5	ND	U	2
KAFB-106099	1/16/2020	Q1 2020	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/24/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	7/12/2019	Q3 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	5/1/2019	Q2 2019	ND	U	0.5	ND	U	0.8	0.7	J	0.5	ND	U	2
KAFB-106100	1/16/2020	Q1 2020	ND	U	0.5	ND	U	8.0	ND	U	0.5	ND	U	2
	10/24/2019	Q4 2019	ND	U	0.5	ND	U	8.0	ND	U	0.5	ND	U	2
	7/12/2019	Q3 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	5/1/2019	Q2 2019	ND	U	0.5	ND	U	0.8	4		0.5	ND	U	2
KAFB-106101	1/17/2020	Q1 2020	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/28/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	7/11/2019	Q3 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106102	4/26/2019 1/17/2020	Q2 2019 Q1 2020	ND	U	0.5	ND	U	0.8	1 ND	 U	0.5 0.5	ND ND	U	2
KAFB-100102	10/28/2019	Q1 2020 Q4 2019	ND ND	U	0.5 0.5	ND ND	U	0.8	ND ND	U	0.5	ND ND	U	2
	7/11/2019	Q4 2019 Q3 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND ND	U	2
	4/25/2019	Q2 2019	ND	U	0.5	ND	U	0.8	1		0.5	ND ND	U	2
KAFB-106103	10/31/2019	Q4 2019	ND	U	0.5	ND ND	U	0.8	ND	U	0.5	ND ND	U	2
10 ti B-100100	10/3/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
	10/4/2017	Q4 2017	ND	U	1	ND	Ü	1	ND	Ü	1	ND	U	1
KAFB-106104	10/31/2019	Q4 2019	ND	U	0.5	ND	Ü	0.8	ND	U	0.5	ND	U	2
	10/3/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/4/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106105	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
<u> </u>	10/4/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106106	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/4/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106107	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2018	Q4 2018	ND	U	0.5	ND	U	8.0	ND	U	0.5	ND	U	2
	10/4/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106149-484	11/1/2019	Q4 2019	8,200		50	560		8	10,000		50	2,300		20
	4/16/2019	Q2 2019	26,000		250	1,600		400	33,000		250	6,000		1,000
	10/3/2018	Q4 2018	11,000		50	880		8	16,000		50	3,400		20
KAFB-106151-484	11/1/2019	Q4 2019	1,100		10	540		2	20		1	230		4
	4/18/2019	Q2 2019	1,900		10	600		16	70		1	350		4
	10/3/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2

Table 3-9
Historical BTEX Concentrations

		Analyte:		Benzene			Ethylbenzene			Toluene			Xylenes, Tota	<u> </u>
	Project Sc	reening Level ^a :		5 μg/L			700 μg/L			1,000 µg/L			620 µg/L	
Well	Sample	Sampling		Val			Val		1	Val			Val	
Location ID	Date	Quarter	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
KAFB-106152-484	11/1/2019	Q4 2019	1,500		3	330		4	850		3	360		10
10 11 10 102 101	4/18/2019	Q2 2019	430		5	300		8	12		0.5	290		20
-	10/3/2018	Q4 2018	71		0.5	1		0.8	2		0.5	17		2
KAFB-106153-484	11/1/2019	Q4 2019	9,000		100	400		16	7,100		100	1,800		40
10 100 100 101	4/18/2019	Q2 2019	9,200		100	440		160	9,100		100	1,800		400
-	10/3/2018	Q4 2018	4,700		25	54		4	1,400		3	250		10
KAFB-106201	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/3/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
-	10/3/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106202	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
10 11 10 100202	10/3/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
}	10/18/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106203	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
	10/3/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
-	10/18/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106204	10/23/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
-	10/2/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106205	10/23/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/1/2018	Q4 2018	ND	Ü	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
-	10/2/2017	Q4 2017	ND	Ü	1	ND	U	1	ND	Ü	1	ND	U	1
KAFB-106206	10/23/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
•	10/2/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106207	10/24/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	Ü	0.5	ND	U	2
	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
•	10/2/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106208	10/24/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ŀ	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ŀ	10/2/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106209	10/24/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ŀ	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
•	10/2/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106212	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
•	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
•	10/3/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106213	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
-	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
-	10/3/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106214	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/3/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106215	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/3/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106216	10/24/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ľ	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ļ	10/3/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1

Table 3-9
Historical BTEX Concentrations

		Analyte:		Benzene			Ethylbenzene			Toluene			Xylenes, Tota	l
	Project Sc	reening Level ^a :		5 µg/L			700 μg/L			1,000 µg/L			620 µg/L	
Well	Sample	Sampling		Val			Val			Val			Val	
Location ID	Date	Quarter	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
KAFB-106217	10/24/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
Ī	10/3/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106218	10/24/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
•	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
•	10/3/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106219	11/5/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/4/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ľ	10/6/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106220	11/4/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ļ	10/4/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
Ţ	10/6/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106221	11/4/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ļ	10/4/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ļ	10/6/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106222	10/24/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ŀ	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/3/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	Ü	1
KAFB-106223	10/24/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	Ü	2
ŀ	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/3/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	Ü	1
KAFB-106224	10/24/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	Ü	2
ŀ	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ŀ	10/3/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106225	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	Ü	2
ŀ	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ŀ	10/2/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106226	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ľ	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ľ	10/2/2017	Q4 2017	0.9	J	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106227	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
•	10/3/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106229 ^e	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	11/20/2015	Q4 2015	0.376	J	1	ND	U	1	ND	U	1	ND	U	3
KAFB-106230 ^f	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	4/7/2016	Q2 2016	ND	U	1	ND	U	1	ND	U	1	ND	U	1
ļ	11/18/2015	Q4 2015	ND	U	1	ND	U	1	ND	U	1	ND	U	3
KAFB-106231	10/28/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ļ	10/8/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ļ	10/6/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106232	10/28/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ļ	10/8/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ļ	10/6/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106235-438	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ļ	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
ļ	10/2/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	Ü	1

Table 3-9
Historical BTEX Concentrations

		Analyte:		Benzene			Ethylbenzene)		Toluene			Xylenes, Total	
	Proiect Sc	reening Level ^a :		5 μg/L			700 μg/L			1,000 µg/L			620 µg/L	
Well	Sample	Sampling		Val			Val			Val			Val	
Location ID	Date	Quarter	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
KAFB-106235-472	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
-	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
•	10/2/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106235-501	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
•	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
•	10/2/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106236-436	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106236-470	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
Ţ	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2017	Q4 2017	ND	U	11	ND	U	1	ND	U	1	ND	U	1
KAFB-106236-499	10/29/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/1/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1
KAFB-106240-449	1/7/2020	Q1 2020	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
_	7/30/2019	Q3 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	5/9/2019	Q2 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106241-428 ^e	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/2/2018	Q4 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106242-418 ^e	10/28/2019	Q4 2019	ND	U	0.5	ND	U	8.0	ND	U	0.5	ND	U	2
	10/8/2018	Q4 2018	ND	U	0.5	ND	U	8.0	ND	U	0.5	ND	U	2
KAFB-106243-425	10/30/2019	Q4 2019	ND	U	0.5	ND	U	8.0	ND	U	0.5	ND	U	2
-	10/2/2018	Q4 2018	ND	U	0.5	ND	U	8.0	ND	U	0.5	ND	U	2
	9/4/2018	Q3 2018	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106244-445	1/7/2020	Q1 2020	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
-	10/30/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
-	7/30/2019	Q3 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
I/AED 400045 400	5/9/2019	Q2 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106245-460	1/8/2020	Q1 2020	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
-	10/31/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	7/30/2019	Q3 2019	ND	U	0.5	ND ND	U	0.8	ND	U	0.5	ND	U	2
KAED 106047 450	5/20/2019	Q2 2019	ND ND	U	0.5		U	0.8	ND ND	_	0.5	ND	U	2
KAFB-106247-450	1/6/2020	Q1 2020 Q4 2019	ND ND	U	0.5 0.5	ND ND	U	0.8	ND ND	U	0.5 0.5	ND ND	U	2
}	10/31/2019		ND ND	U	0.5	ND ND	U	0.8	ND ND	U	0.5		U	2
}	8/12/2019 4/16/2019	Q3 2019 Q2 2019	ND ND	U	0.5	ND ND	U	0.8	ND ND	U	0.5	ND ND	U	2
KAFB-106S1-447	1/9/2020	Q2 2019 Q1 2020	7,800		50	620		8	10,000		50	2,600		20
1441 0-1000 1-441	10/31/2019	Q1 2020 Q4 2019	7,800		100	610		16	8,800		100	2,400		40
 	8/12/2019	Q4 2019 Q3 2019	5,700		50	510		8	5,600		50	2,400		20
}	4/16/2019	Q2 2019 Q2 2019	6,600		100	580		160	8,900		100	2,400		400
KAFB-106S2-451	1/6/2020	Q2 2019 Q1 2020	9,800		50	880		8	12,000		50	4,600		20
11/11/11/11/11/11	10/31/2019	Q4 2019	8,300		100	560		16	8,700		100	3,600		40
}	8/13/2019	Q3 2019	6,000		13	210		20	4,400		13	1,400		50
}	4/16/2019	Q2 2019	8,800		100	930		160	15,000		100	4,100		400
	4/ 10/20 18	Ψ Ζ Ζ018	0,000		100	330		100	19,000	<u>-</u>	100	4,100		400

Table 3-9
Historical BTEX Concentrations

		Analyte:		Benzene			Ethylbenzene	1		Toluene			Xylenes, Tota	ı
	Project Sc	reening Level ^a :		5 µg/L			700 µg/L			1,000 µg/L			620 µg/L	
Well	Sample	Sampling		Val			Val			Val			Val	
Location ID	Date	Quarter	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
KAFB-106S3-449	1/9/2020	Q1 2020	5,500		25	1,400		4	4,900		25	4,200		10
	10/31/2019	Q4 2019	4,800		50	930		8	3,600		50	2,800		20
	8/13/2019	Q3 2019	390		10	22		16	19	J	10	180		40
	4/16/2019	Q2 2019	4,800		50	720		80	6,000		50	2,200		200
KAFB-106S4-446	1/6/2020	Q1 2020	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	10/31/2019	Q4 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	8/13/2019	Q3 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
	4/16/2019	Q2 2019	ND	U	0.5	ND	U	0.8	ND	U	0.5	ND	U	2
KAFB-106S5-446	1/9/2020	Q1 2020	1,500		10	1,600		16	4,900		10	3,100		40
	10/31/2019	Q4 2019	1,300		3	1,700		40	3,400		25	2,500		10
	8/12/2019	Q3 2019	980		3	1,400		4	2,300		25	1,700		10
	4/16/2019	Q2 2019	1,300		25	1,400		40	2,500		25	1,900		100
KAFB-106S7-451	1/9/2020	Q1 2020	6,700		50	1,200		8	7,700		50	4,000		20
	10/31/2019	Q4 2019	5,900		50	1,200		8	7,800		50	4,000		20
	8/12/2019	Q3 2019	230		3	94		4	490		3	210		10
	4/16/2019	Q2 2019	3,800		25	450		40	3,600		25	2,200		100
KAFB-106S8-451	1/6/2020	Q1 2020	200		0.5	27		0.8	470		5	160		2
	10/31/2019	Q4 2019	1,800		5	160		8	5,600		50	1,100		20
	8/12/2019	Q3 2019	2,200		5	350		8	8,400		50	2,000		20
	4/16/2019	Q2 2019	2,100		100	550		160	10,000		100	2,700		400
KAFB-106S9-447	1/9/2020	Q1 2020	7,300		50	970		8	11,000		50	2,700		20
	11/1/2019	Q4 2019	7,300		50	1,100		8	6,900		50	1,900		20
	8/13/2019	Q3 2019	2,900		10	630		16	2,700		10	980		40
	4/16/2019	Q2 2019	9,000		100	1,200		16	14,000		100	2,800		40
KAFB-3411	10/17/2019	Q4 2019	ND	U	0.5	ND	U	0.8	1		0.5	ND	U	2
	10/22/2018	Q4 2018	ND	U	0.5	ND	U	0.8	0.5	J	0.5	ND	U	2
•	10/30/2017	Q4 2017	ND	U	1	ND	U	1	ND	U	1	ND	U	1

Table 3-9 Historical BTEX Concentrations

^f This well was not sampled between Q2 2016 and Q4 2019 due to security issues.

μg/L = microgram per liter

AFB = Air Force Base

BTEX = benzene, toluene, ethylbenzene, and total xylenes

EPA = U.S. Environmental Protection Agency

ID = identification

LOD = limit of detection

MCL = maximum contaminant level

ND = not detected

NMWQCC = New Mexico Water Quality Control Commission

Q1 = first quarter

Q2 = second quarter

Q3 = third quarter

Q4 = fourth quarter

RSL = regional screening level

Val Qual = validation qualifier

Shading = detected concentrations above the detection limit

Bold/Shading = reported concentrations exceed the project screening level

Val Quals based on independent data validation

- J = Qualifier denotes the analyte was positively identified, but the associated numerical value is estimated.
- U = Qualifier denotes the analyte was analyzed but not detected above the detection limit. The value associated with the U-qualifier is the LOD.
- -- = Validation qualifier not assigned.

Kirtland AFB BFF Quarterly Report – January-March 2020 SWMUs ST-106/SS-111

^a The project screening level was selected to satisfy the requirements of the Kirtland AFB Hazardous Waste Permit Number NM9570024423 as the lowest of (1) NMWQCC numeric standard or (2) EPA MCL. If no NMQWCC standard or MCL exists for any analyte, then the project screening level will be the EPA Tapwater RSL. For benzene, ethylbenzene, and toluene, the project screening level is the PA MCL. For total xylenes, the project screening level is the NMWQCC numeric standard.

^b This well was not sampled in Q2 2019 due to suspected biofouling in the well.

^c This well was not sampled between Q4 2015 and Q4 2019 due to security issues.

^d This well was not sampled in 2019 due to the presence of dedicated downhole equipment related to the EDB *in situ* biodegradation pilot test. Monitoring was resumed in 2020, and results will be available in the next report.

^e This well has not been sampled three times for these analytes, all historical data from this well is presented here.

Table 4-1
Drinking Water Supply Well Analytical Results, Q1 2020

						ocation ID:	K	AFB-00	3	K	AFB-00	3	K	AFB-00	3
					Field	Sample ID:	GW	K003-2	011	GW	K003-2	012	GW	′K003-2	013
					S	ample Date:	·	1/7/2020)	4	2/4/2020)	3	3/5/2020)
					Sa	mple Type:		REG			REG			REG	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL^c	Level ^d	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOD
EDB	Method E504.1 (μg/L)	1,2-dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.018	ND	U	0.018	ND	U	0.018
BTEX	Method E524.2 (µg/L)	Benzene	5	5	4.6	5	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Ethylbenzene	700	700	15	700	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Xylenes, Total	620	10,000	190	620	ND	U	0.5	ND	U	0.5	ND	U	0.5
Field Paramet	ers	Temperature (°C)	NS	NS	NS	NS		18.3			19.2			20.1	
		Specific Conductance (µS/cm)	NS	NS	NS	NS		417.4			560			458.4	
		pH (S.U.)	NS	NS	NS	NS		7.87			7.67			7.86	
		ORP (mV)	NS	NS	NS	NS		223.0			65.2			245.0	
		DO (mg/L)	NS	NS	NS	NS	·	4.47	•		4.29			4.82	
		Turbidity (NTU)	NS	NS	NS	NS		0.31	•		0.14			0.23	

Table 4-1
Drinking Water Supply Well Analytical Results, Q1 2020

						Location ID:	K	AFB-01	5	K	AFB-01	5	K	AFB-01	5
					Field	Sample ID:	GW	K015-2	011	GW	′K015-2	012	GW	′K015-2	013
					S	ample Date:	·	1/7/2020)		2/4/2020)	(3/5/2020)
					Sa	ample Type:		REG			REG			REG	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOD
EDB	Method E504.1 (μg/L)	1,2-dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.018	ND	U	0.018	ND	U	0.018
BTEX	Method E524.2 (µg/L)	Benzene	5	5	4.6	5	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Ethylbenzene	700	700	15	700	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Xylenes, Total	620	10,000	190	620	ND	U	0.5	ND	U	0.5	ND	U	0.5
Field Paramet	ers	Temperature (°C)	NS	NS	NS	NS		19.8			23.7			24.1	
		Specific Conductance (µS/cm)	NS	NS	NS	NS		472.0			714			558	
		pH (S.U.)	NS	NS	NS	NS		7.84			7.74			7.96	
		ORP (mV)	NS	NS	NS	NS		248.9			100.7			264.0	
		DO (mg/L)	NS	NS	NS	NS		1.54			0.77			1.14	
		Turbidity (NTU)	NS	NS	NS	NS		0.20			0.20			0.38	

Table 4-1
Drinking Water Supply Well Analytical Results, Q1 2020

						Location ID:	K	AFB-01	6	K	AFB-01	6	K	AFB-01	6
					Field	Sample ID:	GW	'K016-2	011	GW	′K016-2	012	GW	/K016-2	013
					S	ample Date:	•	1/7/2020)		2/4/2020	0	(3/5/2020)
					Sa	ample Type:		REG			REG			REG	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOD
EDB	Method E504.1 (μg/L)	1,2-dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.018	ND	U	0.018	ND	U	0.018
BTEX	Method E524.2 (μg/L)	Benzene	5	5	4.6	5	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Ethylbenzene	700	700	15	700	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Xylenes, Total	620	10,000	190	620	ND	U	0.5	ND	U	0.5	ND	U	0.5
Field Paramet	ers	Temperature (°C)	NS	NS	NS	NS		21.3			23.4	-		23.1	
		Specific Conductance (µS/cm)	NS	NS	NS	NS		522.7			827			604	
		pH (S.U.)	NS	NS	NS	NS		7.00			6.74			7.63	
		ORP (mV)	NS	NS	NS	NS		262.0			156.6			305.8	
		DO (mg/L)	NS	NS	NS	NS		1.41			2.52			2.98	
		Turbidity (NTU)	NS	NS	NS	NS		0.40			0.22			0.41	

Table 4-1
Drinking Water Supply Well Analytical Results, Q1 2020

						Location ID:	S	T106-V/	\2	S	T106-V	\ 2	S	T106-V <i>F</i>	.2
					Field	Sample ID:	G۷	/VA2-20)11	G۷	/VA2-60	011	GW	VVA2-20)12
					S	ample Date:	·	1/7/2020)	,	1/7/2020)	2	2/4/2020)
					Sa	ample Type:		REG		Fiel	d Duplic	cate		REG	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOQ	Result	Qual	LOQ	Result	Qual	LOQ
EDB	Method E504.1 (μg/L)	1,2-dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.018	ND	U	0.018	ND	U	0.018
BTEX	Method E524.2 (µg/L)	Benzene	5	5	4.6	5	ND	UJ	0.5	ND	U	0.5	ND	U	0.5
		Ethylbenzene	700	700	15	700	ND	UJ	0.5	ND	U	0.5	ND	U	0.5
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Xylenes, Total	620	10,000	190	620	ND	UJ	0.5	ND	U	0.5	ND	U	0.5
Field Paramet	ers	Temperature (°C)	NS	NS	NS	NS		17.0			17.0			20.6	
		Specific Conductance (µS/cm)	NS	NS	NS	NS		430.3			430.3			639	
		pH (S.U.)	NS	NS	NS	NS		7.89			7.89			7.69	
		ORP (mV)	NS	NS	NS	NS		224.9			224.9			74.5	
		DO (mg/L)	NS	NS	NS	NS		3.01			3.01		_	2.67	
		Turbidity (NTU)	NS	NS	NS	NS		0.41			0.41			0.11	

Table 4-1
Drinking Water Supply Well Analytical Results, Q1 2020

						Location ID:	S	T106-VA	2	S	T106-VA	2
					Field	Sample ID:	G\	NVA2-20	13	G\	VVA2-60	13
					S	ample Date:		3/5/2020			3/5/2020	
					Sa	mple Type:		REG		Fie	ld Duplic	ate
						Project						
			NMAC	EPA	EPA	Screening		Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD
EDB	Method E504.1 (μg/L)	1,2-dibromoethane	0.05	0.05	0.075	0.05	ND	U	0.018	ND	U	0.018
BTEX	Method E524.2 (µg/L)	Benzene	5	5	4.6	5	ND	U	0.5	ND	U	0.5
		Ethylbenzene	700	700	15	700	ND	U	0.5	ND	U	0.5
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	U	0.5
		Xylenes, Total	620	10,000	190	620	ND	U	0.5	ND	U	0.5
Field Paramet	ers	Temperature (°C)	NS	NS	NS	NS		21.8			21.8	
		Specific Conductance (µS/cm)	NS	NS	NS	NS		517.1			517.1	
		pH (S.U.)	NS	NS	NS	NS		7.87			7.87	
		ORP (mV)	NS	NS	NS	NS		261.7			261.7	
		DO (mg/L)	NS	NS	NS	NS		2.65			2.65	
		Turbidity (NTU)	NS	NS	NS	NS		0.25			0.25	

Table 4-1

Drinking Water Supply Well Analytical Results, Q1 2020

^a NMWQCC numeric standards per the NMAC Title 20.6.2.3101A, Standards for Ground Water of 10,000 mg/L Total Dissolved Solids Concentration or Less (NMAC, 2018).

^b EPA National Primary Drinking Water Regulations, MCLs and Secondary MCLs, Title 40 CFR Parts 141 and 143 (May 2018).

^c EPA Region 6 RSL for Tapwater (November 2019) for hazard index = 1.0 for non-carcinogens and a 10-5 cancer risk level for carcinogens.

^d The project screening level was selected to satisfy the requirements of the Kirtland AFB Hazardous Waste Permit Number NM9570024423 as the lowest of (1) NMWQCC numeric standard or (2) EPA MCL. If no NMQWCC numeric standard or MCL exists for any analyte, then the project screening level will be the EPA RSL.

— = Compound not analyzed for.

μg/L = micrograms per liter

μS/cm = microsiemens per centimeter

°C = degree Celsius

AFB = Air Force Base

BTEX = benzene, toluene, ethylbenzene, and total xylenes

CFR = Code of Federal Regulations

DO = dissolved oxygen

EDB = ethylene dibromide (1,2-dibromoethane)

EPA = U.S. Environmental Protection Agency

ID = identification

LOQ = limit of quantitation

MCL = maximum contaminant level

mg/L = milligram per liter

mV = millivolt

ND = nondetect

NMAC = New Mexico Administrative Code

NMWQCC = New Mexico Water Quality Control Commission

NS = not specified

NTU = nephelometric turbidity unit

ORP = oxidation reduction potential

Q1 = first quarter

REG = normal field sample

RSL = regional screening level

S.U. = standard units

Val Qual = validation qualifier

Val Quals based on independent data validation:

U = Qualifier denotes the analyte was analyzed but not detected above the detection limit. The value associated with the U-qualifier is the LOQ.

Table 5-1
DP-1839 Discharge Permit Terms and Conditions, Operations and Maintenance Plan Cross References

Condition No.	Terms and Conditions	Reference Location in Quarterly Report
15	The Permittee shall ensure the treated effluent conveyance system, i.e., piping, between the GWTS and the UIC well(s) does not leak and shall report any such leakage to the NMED GWQB in accordance with 20.6.2.1203(A) NMAC and copy the NMED HWB.	5.3.4 Effluent Conveyance Line Integrity (not applicable in Q1 2020)
	Within 1 year of the effective date of this Discharge Permit, the Permittee shall demonstrate the structural integrity of the treated effluent conveyance system between the GWTS and KAFB-7.	5.3.4 Effluent Conveyance Line Integrity (not applicable in Q1 2020)
	Prior to testing, the Permittee shall propose for NMED approval the test method to be used.	5.3.4 Effluent Conveyance Line Integrity (not applicable in Q1 2020)
	The results of the mechanical integrity testing shall be submitted to NMED within 60 days of test completion.	5.3.4 Effluent Conveyance Line Integrity (not applicable in Q1 2020)
	The Permittee shall integrity test the treated effluent conveyance system between GWTS and the UIC well(s) prior to submitting a permit renewal application. [20.6.2.3106(C) NMAC, 20.6.2.3107(A) NMAC]	5.3.4 Effluent Conveyance Line Integrity (not applicable in Q1 2020)
17	The Permittee shall conduct the monitoring, operations, and reporting listed below.	5.1 Groundwater Treatment System Operation
	Unless otherwise specified, all periodic monitoring results or general information obtained shall be reported in the forthcoming quarterly report. [20.6.2.3107 NMAC]	5.1 Groundwater Treatment System Operation
18	Unless otherwise approved by NMED, the Permittee shall conduct sampling in accordance with standard industry practice.	5.2 Groundwater Treatment System Performance Monitoring and Ethylene Dibromide Removal
	Sampling in accordance with the most current version of the GWTS Sampling and Analysis Plan (Appendix L of the O&M Plan), which includes sampling locations, procedures, field measurements, quality control samples, handling and custody, analytical methods, quality control, analytical validation, and reporting requirements, satisfies this Condition. [20.6.2.3107(B) NMAC]	5.2 Groundwater Treatment System Performance Monitoring and Ethylene Dibromide Removal
19	The Permittee shall submit quarterly and annual reports to NMED pursuant to the most recent NMED HWB approved Work Plans.	5.2 Groundwater Treatment System Performance Monitoring and Ethylene Dibromide Removal
	The Permittee shall identify the portions of these reports pertaining to this Discharge Permit with a table in the reports that identifies those portions.	Table 5-1 DP-1839 Discharge Permit Terms and Conditions, Operations and Maintenance Plan Cross References
	Quarterly reports shall be submitted as specified below unless otherwise authorized by NMED: • January 1st through March 31st - due by June 30th • April 1st through June 30th - due by September 30th • July 1st through September 30th - due by December 31st • October 1st through December 31st - due by March 31st	Noted
	Annual reporting requirements for the previous year, i.e., January 1 through December 31, shall be reported in the March 31 quarterly report. [20.6.2.3107(A) NMAC]	Noted
20	The Permittee shall monitor the concentration of all COCs listed on Table 2 in GWTS treated effluent. Associated sampling and analysis shall be performed monthly at a minimum.	5.2 Groundwater Treatment System Performance Monitoring and Ethylene Dibromide Removal Table 5-6 Monthly GWTS Performance Analytical Results for Train 1, Q1 2020 Table 5-7 Monthly GWTS Performance Analytical Results for Train 2, Q1 2020
	When groundwater from a new extraction well is first introduced to the GWTS, COC monitoring of the GWTS treated effluent shall occur daily for the first week of treatment, weekly for the first month of treatment, and monthly thereafter.	Not applicable in Q1 2020
	If alterations to, or conditions at, the GWTS result in a potential impact to effluent quality, the Permittee will repeat this sampling sequence as directed by NMED.	No effluent quality impacts Q1 2020
20	A representative sample of GWTS influent and effluent shall be analyzed annually for the constituents identified in Table 3.	Performed in Q3 2019; last reported in Q3 2019; Not applicable to Q1 2020
	A representative sample of GWTS influent and effluent shall be analyzed every 5 years for the constituents identified in Table 4	Performed in Q3 2017; last reported in Q3 2017; Not applicable to Q1 2020
	The first analysis of the 5-year constituent list shall occur in July 2017. Any newly identified constituents detected during the 5-year sampling events will be added to the annual sampling constituent list in Table 3.	Performed in Q3 2017; last reported in Q3 2017; Not applicable to Q1 2020
	All analysis of GWTS influent and effluent shall utilize analytical methods with detection limits that are sufficiently low to allow comparison to the standards included in the above referenced state and federal regulations.	5.2 Groundwater Treatment System Performance Monitoring and Ethylene Dibromide Removal Table 5-6 Monthly GWTS Performance Analytical Results for Train 1, Q1 2020 Table 5-7 Monthly GWTS Performance Analytical Results for Train 2, Q1 2020
	All sampling, analysis, and reporting shall comply with the most recent approved Work Plans. [20.6.2.3107(A) NMAC and 20.6.2.3107(B) NMAC]	5.2 Groundwater Treatment System Performance Monitoring and Ethylene Dibromide Removal

Table 5-1
DP-1839 Discharge Permit Terms and Conditions, Operations and Maintenance Plan Cross References

Condition No.	Terms and Conditions	Reference Location in Quarterly Report
21	The Permittee shall report the volume of treated GWTS effluent discharged to each UIC well each quarter. This report shall include the following:	See Below
	a. Monthly average, maximum, and minimum values for flow rate and volume of treated effluent transferred to each UIC well	Table 5-4 Groundwater Treatment System Injection Well Performance, Q1 2020
	b. The totalized monthly volume of treated effluent transferred to all UIC wells	Table 5-2 Quantities of Groundwater Treated and Discharged, Q1 2020
	c. Monthly average, maximum, and minimum head values of injection water for each UIC well.	Table 5-4 Groundwater Treatment System Injection Well Performance, Q1 2020
	The Permittee shall monitor the GWTS effluent volume utilizing an effluent flow meter installed on the effluent pump skid after the GAC units. Each UIC well shall have a dedicated flowmeter. Flowmeters shall be inspected and calibrated in accordance with the associated manufacturer's recommendations. [20.6.2.3107 NMAC]	Table 5-4 Groundwater Treatment System Injection Well Performance, Q1 2020 Table 5-9 GWTS Routine Maintenance (Monthly Flowmeter Inspection and Annual Calibration Verification)
22	The Permittee shall include the following results and general information in quarterly reports to NMED:	See Below
	a. Any mechanical integrity (tests) conducted on either the GWTS or a UIC well	5.3.3 Non-Routine Maintenance Table 5-10 GWTS Non-Routine Maintenance Items, Q1 2020
	b. Any replacement of GAC media and the associated data that initiated the decision to replace the media	5.3.3 Non-Routine Maintenance Table 5-10 GWTS Non-Routine Maintenance Items, Q1 2020
	c. Any UIC well rehabilitation conducted	5.3.1 Routine Maintenance Activities Table 5-9 GWTS Routine Maintenance Items, Q1 2020 5.3.3 Non-Routine Maintenance Table 5-10 GWTS Non-Routine Maintenance Items, Q1 2020
	d. Any malfunction, repair, or replacement of a flowmeter	5.3.3 Non-Routine Maintenance Table 5-10 GWTS Non-Routine Maintenance Items, Q1 2020
	e. Any additional operational changes with the potential to affect the discharge. [20.6.2.3107 NMAC]	5.3.3 Non-Routine Maintenance Table 5-10 GWTS Non-Routine Maintenance Items, Q1 2020
	The Permittee shall monitor the groundwater wells in the vicinity of KAFB-7 and in the vicinity of any newly installed UIC well(s) to determine any change to aquifer chemistry that may be the result of injection.	Not applicable in Q1 2020
	This monitoring shall be performed annually, shall conform to the procedures of the most current approved Work Plan, and shall measure the COCs listed in Table 2. This chemistry will be reported in the Annual Report for BFF.	Provided in this Q4 2019 Report; Section 5.2.1.1
	ST-105 Annual Report includes elevation contour mapping and analytical parameters identified in the Stage 2 Abatement Plan.	Reported annually in the ST-105 Annual Report
	The Permittee shall develop a groundwater elevation contour map depicting the groundwater flow direction in the vicinity of each UIC well and report it in the ST-105 Annual Report.	Reported annually in the ST-105 Annual Report Also reported in Q4 of each year, last reported in Q4 2019
	If the chemical quality of the treated groundwater being injected changes over time, NMED may require the Permittee to repeat geochemical modeling (numeric or analytical) to predict the interaction between the treated effluent and receiving groundwater. [20.6.2.3107 NMAC]	
	The Permittee shall post all reports required by this Discharge Permit on Kirtland AFB's most current website (e.g., https://kirtlandafb.tlisolutions.com/main.aspx.) [20.6.2.3107(A) NMAC]	http://afcec.publicadmin-record.us.af.mil/search.aspx

Table 5-1
DP-1839 Discharge Permit Terms and Conditions, Operations and Maintenance Plan Cross References

Condition No.	Terms and Conditions	Reference Location in Quarterly Report
34	In the event the Permittee proposes a change to the facility or the facility's discharge that would result in a change in the volume discharged; the location of the discharge; or in the amount or character of water contaminants received, treated, or discharged by the facility that differs from the terms and conditions in this Discharge Permit, the Permittee shall notify NMED prior to implementing such changes.	Noted
	The Permittee shall obtain approval (which may require modification of this Discharge Permit) by NMED prior to implementing such changes. [20.6.2.7(P) NMAC, 20.6.2.3107(C) NMAC, 20.6.2.3109(E) and (G) NMAC]	Noted
35	In the event the Permittee proposes to construct or change an existing system such that the quantity or quality of the discharge will change substantially from that authorized by this Discharge Permit, the Permittee shall submit construction plans and specifications to NMED for the proposed system or process unit prior to the commencement of construction.	Noted
	In the event the Permittee implements changes to an existing system authorized by this Discharge Permit which will result in only a minor effect on the quality of the discharge, the Permittee shall report such changes (including the submission of record drawings, where applicable) in the next quarterly report to NMED. [20.6.2.1202(A) and (C) NMAC, New Mexico Statutes Annotated 1978, §§ 61-23-1 through 61-23-32]	Not applicable in Q1 2020

BFF = Bulk Fuels Facility

COC = contaminant of concern

GAC = granular activated carbon

GWTS = groundwater treatment system

GWQB = Groundwater Quality Bureau

HWB = Hazardous Waste Bureau

NMAC = New Mexico Administrative Code

NMED = New Mexico Environment Department

No. = number

O&M = Operation and maintenance

Q3 = third quarter

Q4 = fourth quarter

UIC = underground injection control

Table 5-2
Cumulative Quantities of Groundwater Treated and Discharged through Q1 2020

Г		Ι			
GWTS Operating	Train 1 Total Groundwater Treated	Train 2 Total Groundwater Treated	Total Groundwater Extracted	Treated Groundwater Injected to Injection Well KAFB-7	Treated Groundwater Discharged to the GCMP ^a
Month	(gallons) FE/FIT-3108	(gallons) FE/FIT-3208	(gallons) FE/FIT-3108 +	(gallons) FE/FIT-3108 +	(gallons) FE/FIT-3108 +
Totalizing Flowmeter ^b	FE/FII-3100	FE/FII-3200	FE/FIT-3106 + FE/FIT-3208	FE/FIT-3106 + FE/FIT-3208	FE/FIT-3106 + FE/FIT-3208
December 2015 ^c	17,664,900	0	17,664,900	0	17,664,900
2015 Total	17,664,900	0	17,664,900	0	17,664,900
January 2016	1,777,200	0	1,777,200	0	1,777,200
February 2016	881,000	0	881,000	181,300	699,700
March 2016	22,168,080	0	22,168,080	1,231,350	20,936,730
April 2016	12,649,920	0	12,649,920	582,570	12,067,350
May 2016	12,090,000	0	12,090,000	0	12,090,000
June 2016	8,850,000	0	8,850,000	0	8,850,000
July 2016	9,940,000	0	9,940,000	0	9,940,000
August 2016	9,400,000	0	9,400,000	0	9,400,000
September 2016	12,980,000	0	12,980,000	0	12,980,000
October 2016	8,300,000	0	8,300,000	0	8,300,000
November 2016	7,200,000	0	7,200,000	2,970,000	4,230,000
December 2016	14,570,100	0	14,570,100	14,501,190	68,910
2016 Total	120,806,300	0	120,806,300	19,466,410	101,339,890
January 2017	6,089,700	87,300	6,177,000	5,877,600	299,400
February 2017	1,637,100	2,357,400	3,994,500	2,216,600	1,777,900
March 2017	5,551,200	5,705,400	11,256,600	5,172,800	6,083,800
April 2017	7,269,000	6,712,700	13,981,700	2,248,062	11,733,638
May 2017	9,234,900	9,453,700	18,688,600	4,722,563	13,966,037
June 2017	9,706,100	9,055,100	18,761,200	1,592,700	17,168,500
July 2017	13,260,800	10,875,200	24,136,000	3,023,500	21,112,500
August 2017	9,461,200	8,999,500	18,460,700	4,847,500	13,613,200
September 2017	9,734,500	9,227,600	18,962,100	6,752,400	12,209,700
October 2017	8,684,700	12,941,900	21,626,600	14,775,800	6,850,800
November 2017	0	12,513,400	12,513,400	3,734,900	8,778,500
December 2017	0	13,304,300	13,304,300	10,724,700	2,579,600
2017 Total	80,629,200	101,233,500	181,862,700	65,689,125	116,173,575
January 2018	9,865,000	5,497,700	15,362,700	13,887,700	1,475,000
February 2018	10,785,300	6,786,100	17,571,400	13,765,300	3,806,100
March 2018	11,006,000	7,092,900	18,098,900	9,235,300	8,863,600
April 2018	7,468,200	5,800,700	13,268,900	O _q	13,268,900

Kirtland AFB BFF Quarterly Report – January-March 2020 SWMUs ST-106/SS-111

Table 5-2
Cumulative Quantities of Groundwater Treated and Discharged through Q1 2020

GWTS Operating Month	Train 1 Total Groundwater Treated (gallons)	Train 2 Total Groundwater Treated (gallons)	Total Groundwater Extracted (gallons)	Treated Groundwater Injected to Injection Well KAFB-7 (gallons)	Treated Groundwater Discharged to the GCMP ^a (gallons)
May 2018	11,238,400	8,061,600	19,300,000	O _q	19,300,000
June 2018	14,746,800	10,186,400	24,933,200	Oq	24,933,200
July 2018	12,038,500	7,901,100	19,939,600	O _q	19,939,600
August 2018	14,973,100	9,583,900	24,557,000	0_{q}	24,557,000
September 2018	9,516,900	7,509,600	17,026,500	0_{q}	17,026,500
October 2018	1,572,600	7,288,500	8,861,100	O _q	8,861,100
November 2018	7,788,300	4,682,900	12,471,200	7,517,100	4,954,100
December 2018	15,521,500	10,282,100	25,803,600	23,080,800	2,722,800
2018 Total	126,520,600	90,673,500	217,194,100	67,486,200	149,707,900
January 2019	13,105,900	8,431,000	21,536,900	19,494,500	2,042,400
February 2019	12,821,800	8,443,300	21,265,100	13,624,600	7,640,500
March 2019	16,066,200	10,450,300	26,516,500	13,435,900	13,080,600
April 2019	12,729,900	8,472,000	21,201,900	7,170,800	14,031,100
May 2019	12,789,200	10,082,100	22,871,300	5,779,900	17,091,400
June 2019	9,569,300	7,798,200	17,367,500	1,512,500	15,855,000
July 2019	9,153,800	8,748,700	17,902,500	551,100	17,351,400
August 2019	17,091,500	10,580,700	27,672,200	5,494,800	22,177,400
September 2019	12,899,200	7,297,200	20,196,400	2,916,700	17,279,700
October 2019	13,112,400	10,391,900	23,504,300	17,177,900	6,326,400
November 2019	7,060,700	8,546,700	15,607,400	14,525,700	1,081,700
Dec-19	7,330,400	8,499,400	15,829,800	15,695,800	134,000
Q4 2019 Total	27,503,500	27,438,000	54,941,500	47,399,400	7,542,100
2019 Total	143,730,300	107,741,500	251,471,800	117,380,200	134,091,600
January 2020	9,025,600	10,401,500	19,427,100	18,919,600	507,500
February 2020	6,985,200	8,249,600	15,234,800	12,237,600	2,997,200
March 2020 ^e	7,280,800	8,168,800	15,449,600	4,246,900	11,202,700
Q1 2020 Total	23,291,600	26,819,900	50,111,500	35,404,100	14,707,400
2020 Total ^f	23,291,600	26,819,900	50,111,500	35,404,100	14,707,400
Cumulative Total	512,642,900	326,468,400	839,111,300	305,426,035	533,685,265

Table 5-2

Cumulative Quantities of Groundwater Treated and Discharged through Q1 2020

FE/FIT-3208 = Flowmeter/flow meter transmitter (followed by the component designation)

GCMP = Tijeras Arroyo Golf Course main pond

GWTS = groundwater treatment system

Q1 = first quarter

^a Corrected volumes from human machine interface datasets.

^b Flowmeters are inspected monthly, see Appendix I-1.

^c Train 1 treatment volume for December 2015 includes all water treated by the temporary treatment system and water treated by Train 1 during December 2015.

^d On March 14, 2018 at 0206, the KAFB-7 V-Smart valve hydraulic assembly failed downhole. Repairs to KAFB-7 were completed on November 14, 2018. All treated water between March 14, 2018 and November 15, 2018 was discharged to the GCMP.

^e Treatment volumes for March 2020 are calculated through March 30, 2020.

^f Cumulative 2020 total through March 30, 2020.

Table 5-3
Groundwater Treatment System Extraction Well Performance, Q1 2020

Well ID	Well Parameter	January	February	March	Q1 (Average)
KAFB-106228	Average Operational Flow Rate ^a (gpm)	144.0	143.7	143.4	143.7
	Flow Rate Range ^b (gpm; min-max)	143.3 - 145.7	143.1 - 146.6	142.6 - 148.0	142.6 - 148.0
	Average Drawdown ^c (ft)	16.1	14.8	14.7	15.2
	Water Level Elevation Range ^b (ft AMSL; min-max)	4859.8 - 4861.9	4861.3 - 4862.8	4861.2 - 4864.4	4859.7 - 4864.4
	Average Specific Capacity ^d (gpm/ft)	9.0	9.7	9.8	9.5
	Average Transmissivity ^d (gpd/ft)	13,445	14,515	14,629	14,189
	Run Time % ^e	98%	99%	98%	98%
	Notes	NA	NA	NA	NA
KAFB-106233	Average Operational Flow Rate ^{a,f} (gpm)	161.5	161.7	162.2	161.8
	Flow Rate Range ^b (gpm; min-max)	0.0 - 161.6	0.0 - 161.7	0.0 - 162.3	0.0 - 162.3
	Average Drawdown ^c (ft)	5.3	4.6	4.4	4.8
	Water Level Elevation Range ^b (ft AMSL; min-max)	4871.8 - 4877.5	4872.4 - 4878.0	4872.5 - 4878.5	4871.8 - 4878.5
	Average Specific Capacity ^d (gpm/ft)	30.7	35.0	36.9	34.1
	Average Transmissivity ^d (gpd/ft)	46,088	52,454	55,381	51,079
	Run Time % ^e	0.8%	0.5%	0.0%	0.4%
	Notes	Intermittently Online ⁹	Intermittently Online ^g	Intermittently Online ^g	Intermittently Online
KAFB-106234	Average Operational Flow Rate ^a (gpm)	175.7	175.8	175.8	175.7
	Flow Rate Range ^b (gpm; min-max)	175.2 - 176.0	175.4 - 176.2	174.4 - 177.5	174.4 - 177.5
	Average Drawdown ^c (ft)	3.6	2.8	2.6	3.0
	Water Level Elevation Range ^b (ft AMSL; min-max)	4871.8 - 4872.8	4872.6 - 4875.7	4873.0 - 4873.7	4871.8 - 4875.7
	Average Specific Capacity ^d (gpm/ft)	48.7	81.5	68.0	65.7
	Average Transmissivity ^d (gpd/ft)	72,988	122,309	102,017	98,595
	Run Time % ^e	99%	98%	99%	98%
	Notes	NA	NA	NA	NA
KAFB-106239	Average Operational Flow Rate ^a (gpm)	75.6	73.4	76.5	75.2
	Flow Rate Range ^b (gpm; min-max)	34.4 - 75.4	72.2 - 74.4	32.3 - 76.0	32.3 - 76.0
	Average Drawdown ^c (ft)	9.4	8.8	7.6	8.6
	Water Level Elevation Range ^b (ft AMSL; min-max)	4872.1 - 4878.2	4872.4 - 4875.7	4873.5 - 4879.0	4872.1 - 4879.0
	Average Specific Capacity ^d (gpm/ft)	7.8	8.5	9.8	8.7
	Average Transmissivity ^d (gpd/ft)	11,697	12,696	14,637	13,017
	Run Time % ^e	99%	94%	94%	96%
	Notes	NA	NA	NA	NA
ombined Extraction Well	Combined Average Operational Flow Rate (gpm)	403.2	398.4	403.7	401.8
Totals	Combined Flow Rate Range (gpm)	355.8 - 556.1	391.6 - 554.1	352.1 - 556.6	352.1 - 556.6
	Run Time % ⁱ	99%	100%	100%	99%

Groundwater Treatment System Extraction Well Performance, Q1 2020

e Percent run time is calculated when the given well is running at a minimum of 50 gpm; dataset includes readings for every minute throughout Q1.

% = percent

AMSL = above mean sea level

ft = foot (feet)

gpd = gallons per day
gpm = gallons per minute
GWTS = groundwater treatment system
HMI = human machine interface
ID = identification
max = maximum
min = minimum

Q1 = first quarter

NA = not applicable

Kirtland AFB BFF Quarterly Report – January-March 2020 SWMUs ST-106/SS-111

^a Flow rate calculation is an average rate that only includes time while the pump was operational; average values were computed from daily values throughout Q1 2020.

^b Ranges are provided from daily values throughout Q1 2020.

^c Average drawdown is calculated from the approximate static water elevation in Q1 2020, only includes time while the pump was operational and does not account for dynamic water elevation increases in the aquifer; average values were computed from daily values throughout Q1 that were obtained from the HMI for all the extraction wells.

d Specific capacity and transmissivity average values only include pump run time (i.e., pump down time is not factored into the calculation); average values were computed from daily values throughout Q1.

^f Due to temporary limited run-time pending maintenance of KAFB-7, the indicated flowrates for KAFB-106233 only apply during periods of active extraction.

^g KAFB-106233 was intermittently online to maintain water level at injection well KAFB-7.

^h Combined Average Operation Flow Rate is the average influent flow rate to the GWTS.

¹ The combined extraction well percent run time is based on the percentage of time that water is entering the GWTS from any combination of extraction wells.

Table 5-4
Groundwater Treatment System Injection Well Performance, Q1 2020

Well ID	Well Parameter	January	February	March	Q1 (average)
KAFB-7	Average Operational Flow Rate ^a (gpm)	411.1	410.4	414.6	411.4
	Flow Rate Range ^b (gpm; min-max)	0.0 - 559.34	0.0 - 561.0	0.0 - 1029.0	0.0 - 1029.0
	Volume Injected ^c (gal)	18,919,600	12,237,600	4,246,900	11,801,367
	Average Water Level Elevation ^d (ft AMSL)	4916.1	4904.6	4891.8	4,904.2
	Water Level Elevation Range ^a (ft AMSL; min-max	4878.0 - 4931.1	4876.2 - 4931.3	4877.0 - 4943.6	4876.2 - 4943.6
	Run Time (%)	100%	89.7%	35.5%	74.7%
	Notes	NA	NA	NA	NA
GWTS Effluent	Average Operational Flow Rate ^a (gpm)	411.5	408.9	418.6	413.1
	Flow Rate Range ^b (gpm; min-max)	0.0 - 765.1	0.0 - 678.2	0.0 - 682.1	0.0 - 765.1

^a Flow rate calculation is an average rate that only includes time while the system was operational; average values were computed from HMI values throughout Q1 2020.

ft = foot (feet)

gal = gallon(s)

gpm = gallons per minute

GWTS = groundwater treatment system

HMI = human machine interface

ID = identification

max = maximum

min = minimum

NA = not applicable

Q1 = first quarter

^b Ranges are provided from HMI values throughout Q1 2020. KAFB-7 flow rate fluctuates due to surging, etc. and is not consistent with GWTS effluent flow rates.

^c Volume injected is calculated using totalizer readings from flow meters installed on the GWTS effluent skids. December injection volume calculated through March 31, 2020.

^d Water level elevation averages and ranges include times when injection wells are not being utilized and data was collected from the HMI for Q1 AMSL = above mean sea level

Table 5-5
Groundwater Treatment System Ethylene Dibromide Removal, Q1 2020

Treatment Train	Month	Date ^a	Cumulative Volume Extracted (gal)	Monthly Volume Treated (gal)	Influent EDB Concentration (µg/L) ^b	Cumulative Mass of EDB Extracted (mg)	Mass of EDB Removed (mg) ^c
Train 1	January	12/30/2020	489,351,300	9,025,600	ND < 0.019	80,510	319
		1/6/2019	491,116,300		ND < 0.019	80,510	
		1/13/2019	493,114,000		ND < 0.019	80,510	1
		1/20/2019	494,888,800		0.016	80,617	1
		1/27/2019	496,647,100		0.016	80,724	
		2/3/2019	498,376,900		0.016	80,829	1
	February	2/10/2019	500,141,900	6,985,200	0.016	80,936	423
		2/17/2019	501,849,200		0.016	81,039	1
		2/24/2019	503,596,300		0.016	81,145	
		3/2/2019	505,362,100		0.016	81,252	
	March	3/9/2019	507,137,800	7,280,800	0.012	81,332	331
		3/16/2019	508,870,800		0.012	81,411	
		3/23/2019	510,641,200		0.012	81,491	
		3/30/2019	512,642,900		0.012	81,582	
Train 2	January	12/30/2020	299,648,500	10,401,500	0.019	43,324	797
		1/6/2019	301,802,200		0.019	43,479	
		1/13/2019	303,656,700		0.019	43,613	
		1/20/2019	305,804,500		0.021	43,783	
		1/27/2019	307,953,500		0.021	43,954	
		2/3/2019	310,050,000		0.021	44,121	
	February	2/10/2019	312,174,700	8,249,600	0.025	44,322	781
		2/17/2019	314,199,700		0.025	44,514	
		2/24/2019	316,295,900		0.025	44,712	
		3/2/2019	318,299,600		0.025	44,902	
	March	3/9/2019	320,265,500	8,168,800	0.016	45,021	495
		3/16/2019	322,147,400		0.016	45,135	
		3/23/2019	324,304,100		0.016	45,265	
		3/30/2019	326,468,400		0.016	45,396	

Table 5-5
Groundwater Treatment System Ethylene Dibromide Removal, Q1 2020

Treatment Train	Month	Date ^a	Cumulative Volume Extracted (gal)	Monthly Volume Treated (gal)	Influent EDB Concentration (µg/L) ^b	Cumulative Mass of EDB Extracted (mg)	Mass of EDB Removed (mg) ^c
	Q1 2020 T	rain 1 Total		23,291,600			1,073
	Q1 2020 T	rain 2 Total		26,819,900			2,072
	Q1 202	20 Total		50,111,500			3,145

^a Monthly date ranges may include dates falling outside of the actual month as weekly human machine interface data retrievals occur every Monday.

< = less than

 μ g/L = microgram per liter

EDB = ethylene dibromide

gal = gallon(s)

LOD = limit of detection

mg = milligram(s)

ND = nondetect

Q1 = first quarter

^b The analytical result from the most recent monthly sample is used for the influent EDB concentration (Tables 5-6 and 5-7). Where EDB is non-detect, a concentration of 0 is used for the purpose of mass calculation and is displayed in this table as ND < [LOD].

^c The mass of EDB removed is the sum of the weekly mass of EDB removed, which is the influent EDB concentration multiplied by the weekly treated volume, which is calculated each Monday from the difference in effluent totalizer readings since the previous Monday.

Table 5-6
Monthly Groundwater Treatment System Performance Analytical Results for Train 1, Q1 2020

					Well	Location ID:	GW	ΓS-BFF-	INF1	GWT	S-BFF-	GAC1	GWT	S-BFF-	EFF1	GW1	S-BFF-	INF1
					Field	Sample ID:	GWTS	S-INF1-C	11420	GWTS	-GAC1-	011420	GWTS	EFF1-0	011420	GWTS	S-INF1-C	20520
					S	ample Date:	1	/14/202	0	1	/14/202	0	1	/14/202	0		2/5/2020)
					S	ample Type:		REG			REG			REG			REG	
						Project												
			NMAC	EPA	EPA	Screening		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (µg/L)	1,2-Dibromoethane	0.1	0.05	0.075	0.05	0.016	J	0.019	0.013	J	0.019	ND	U	0.019	0.016	J	0.019
VOCs	Method SW8260C (µg/L)	Benzene	5	5	4.5	5	ND	U	0.5	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Ethylbenzene	700	700	15	700	ND	U	0.8	ND	U	0.8	ND	U	0.8	ND	U	0.8
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Xylenes, total	620	10,000	190	620	ND	U	2	ND	U	2	ND	U	2	ND	U	2
Dissolved	Method SW6010C (mg/L)	Iron, dissolved	1.0	NS	NS	1	ND	U	0.1	ND	U	0.1	ND	U	0.1	ND	U	0.103
Metals		Manganese, dissolved	0.2	NS	NS	0.2	ND	U	0.005	ND	U	0.005	ND	U	0.005	ND	U	0.0052
Field Parame	ters	Temperature (°C)	NS	NS	NS	NS		19.2			19			18.9			19	
		Spec Cond (µS/cm)	NS	NS	NS	NS		468.4			469.3			464.7			675	
		pH (S.U.)	NS	NS	NS	NS		7.57			7.09			7.08			7.79	
		ORP (mV)	NS	NS	NS	NS		509.3			87.5			160.2			600.7	
		DO (mg/L)	NS	NS	NS	NS		6.75			3.62			5.97			5.67	

Table 5-6
Monthly Groundwater Treatment System Performance Analytical Results for Train 1, Q1 2020

					Well	Location ID:	GWT	S-BFF-0	GAC1	GWT	S-BFF-	EFF1	GWT	S-BFF-	EFF1	GW	rs-BFF-	INF1
					Field	Sample ID:	GWTS	GAC1-0)20520	GWTS	-EFF1-(020520	GWTS-E	FF1DUI	P-020520	GWTS	S-INF1-0	30520
					S	ample Date:		2/5/2020)		2/5/2020)	2	2/5/2020)	;	3/5/2020)
					S	ample Type:		REG			REG		Fiel	d Duplic	cate		REG	
						Project												
			NMAC	EPA	EPA	Screening		Val			Val			Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.1	0.05	0.075	0.05	0.012	J	0.019	ND	U	0.019	ND	U	0.019	0.012	J	0.019
VOCs	Method SW8260C (μg/L)	Benzene	5	5	4.5	5	ND	U	0.5	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Ethylbenzene	700	700	15	700	ND	U	0.8	ND	U	0.8	ND	U	0.8	ND	U	0.8
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Xylenes, total	620	10,000	190	620	ND	U	2	ND	U	2	ND	U	2	ND	U	2
Dissolved	Method SW6010C (mg/L)	Iron, dissolved	1.0	NS	NS	1	ND	U	0.103	ND	U	0.103	ND	U	0.103	ND	UJ	0.103
Metals		Manganese, dissolved	0.2	NS	NS	0.2	ND	U	0.0052	ND	U	0.0052	ND	U	0.0052	ND	U	0.0052
Field Parame	ters	Temperature (°C)	NS	NS	NS	NS		19.2			19.2			19.2			19.4	
		Spec Cond (µS/cm)	NS	NS	NS	NS		675			672			672			566	
		pH (S.U.)	NS	NS	NS	NS		7.33			7.28			7.28			7.19	
		ORP (mV)	NS	NS	NS	NS		376.7			439.7			439.7			127.3	
		DO (mg/L)	NS	NS	NS	NS		1.83			5.15			5.15			5.83	

Table 5-6
Monthly Groundwater Treatment System Performance Analytical Results for Train 1, Q1 2020

					Well	Location ID:	GWT	S-BFF-	GAC1	GWT	S-BFF-	EFF1
					Field	Sample ID:	GWTS	-GAC1-	030520	GWTS	S-EFF1-(030520
					S	ample Date:	;	3/5/2020)	,	3/5/2020	<u> </u>
					S	ample Type:		REG			REG	
						Project						
			NMAC	EPA	EPA	Screening		Val			Val	
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (µg/L)	1,2-Dibromoethane	0.1	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019
VOCs	Method SW8260C (µg/L)	Benzene	5	5	4.5	5	ND	U	0.5	ND	U	0.5
		Ethylbenzene	700	700	15	700	ND	U	0.8	ND	U	0.8
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	U	0.5
		Xylenes, total	620	10,000	190	620	ND	U	2	ND	U	2
Dissolved	Method SW6010C (mg/L)	Iron, dissolved	1.0	NS	NS	1	ND	UJ	0.103	0.171	J	0.103
Metals		Manganese, dissolved	0.2	NS	NS	0.2	ND	U	0.0052	ND	U	0.0052
Field Paramet	ters	Temperature (°C)	NS	NS	NS	NS		19.2	5		19.4	
		Spec Cond (µS/cm)	NS	NS	NS	NS		565			567	
		pH (S.U.)	NS	NS	NS	NS		6.77			6.72	
		ORP (mV)	NS	NS	NS	NS		126.5			154	
		DO (mg/L)	NS	NS	NS	NS		1.88			0.28	

Monthly Groundwater Treatment System Performance Analytical Results for Train 1, Q1 2020

μg/L = microgram per liter

 μ S/cm = microSiemens per centimeter

°C = degree Celsius

AFB = Air Force Base

CFR = Code of Federal Regulations

DO = dissolved oxygen

EDB = ethylene dibromide (1,2-dibromoethane)

EPA = U.S. Environmental Protection Agency

ID = identification

LOD = limit of detection

LOQ = limit of quantitation

MCL = maximum contaminant level

mg/L= milligram per liter

mV = millivolt

ND = nondetect

NMAC = New Mexico Administrative Code

NMWQCC = New Mexico Water Quality Control Commission

NS = not specified

ORP = oxidation reduction potential

Q1 = first quarter

REG = normal field sample

RSL = regional screening level

Spec Cond = specific conductivity

S.U. = standard unit

Val Qual = validation qualifier

VOC = volatile organic compound

Shading = detected concentrations above the detection limit

Val Quals based on independent data validation:

J = Qualifier denotes the analyte was positively identified, but the associated numerical value is estimated.

U = Qualifier denotes the analyte was analyzed but not detected above the detection limit. The value associated with the U-qualifier is the LOD.

^a NMWQCC numeric standards per the New Mexico Administrative Code Title 20.6.2.3101A, Standards for Groundwater of 10,000 mg/L Total Dissolved Solids Concentration or Less (NMAC, 2018).

^b EPA National Primary Drinking Water Regulations, MCLs and Secondary MCLs, Title 40CFR Part 141, 143 (May 2018).

^c EPA Region 6 RSL for Tapwater (November 2019) for hazard index = 1.0 for noncarcinogens and a 10-5 cancer risk level for carcinogens.

^d The project screening level was selected to satisfy the requirements of the Kirtland AFB Hazardous Waste Permit Number NM9570024423 as the lowest of (1) NMWQCC numeric standard or (2) EPA MCL. If no NMQWCC numeric standard or MCL exists for any analyte, then the project screening level will be the EPA RSL. Where the EPA RSL is lower than the LOQ, the project screening level is the LOQ.

Table 5-7
Monthly Groundwater Treatment System Performance Analytical Results for Train 2, Q1 2020

					Well	Location ID:	GW.	TS-BFF-	INF2	GWT	S-BFF-0	GAC2	GW1	S-BFF-	EFF2	GWT	ΓS-BFF-I	EFF2
					Field	d Sample ID:	GWT	S-INF2-0	11420	GWTS	-GAC2-	011420	GWTS	S-EFF2-(011420	GWTS-E	FF2DUI	P-011420
					S	Sample Date:	1	/14/202)	1	/14/202	0	1	/14/202	0	1	1/14/2020	0
					S	ample Type:		REG			REG			REG		Fie	ld Duplic	ate
						Project												
			NMAC	EPA	EPA	Screening		Val			Val			Val			Val	l
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (µg/L)	1,2-Dibromoethane	0.1	0.05	0.075	0.05	0.021	J	0.019	ND	U	0.019	ND	U	0.019	ND	U	0.019
VOCs	Method SW8260C (µg/L)	Benzene	5	5	4.5	5	ND	U	0.5	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Ethylbenzene	700	700	15	700	ND	U	0.8	ND	U	0.8	ND	U	0.8	ND	U	0.8
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Xylenes, total	620	10,000	190	620	ND	U	2	ND	U	2	ND	U	2	ND	U	2
Dissolved	Method SW6010C (mg/L)	Iron, dissolved	1.0	NS	NS	1	ND	U	0.1	ND	U	0.1	ND	U	0.1	ND	U	0.1
Metals		Manganese, dissolved	0.2	NS	NS	0.2	0.0303		0.005	ND	U	0.005	ND	U	0.005	ND	U	0.005
Field Parame	ters	Temperature (°C)	NS	NS	NS	NS		19.5			19.5			19.5			19.5	
		Spec Cond (µS/cm)	NS	NS	NS	NS		367.4			366.2			366.5			366.5	
		pH (S.U.)	NS	NS	NS	NS		7.47			7.11			7.09			7.09	
		ORP (mV)	NS	NS	NS	NS		168.2			64.8			66.1			66.1	
		DO (mg/L)	NS	NS	NS	NS		5.11			3.34			4.54			4.54	

Table 5-7
Monthly Groundwater Treatment System Performance Analytical Results for Train 2, Q1 2020

					Well	Location ID:	GW ⁻	ΓS-BFF-	INF2	GWT	S-BFF-0	GAC2	GW1	S-BFF-	EFF2	GW1	TS-BFF-	INF2
					Field	d Sample ID:	GWTS	S-INF2-0	20520	GWTS	-GAC2-	020520	GWTS	-EFF2-(020520	GWTS	S-INF2-0	30520
					S	ample Date:		2/5/2020)	2	2/5/2020)		2/5/2020)	;	3/5/2020)
					S	ample Type:		REG			REG			REG			REG	
						Project												1
			NMAC	EPA	EPA	Screening		Val			Val			Val			Val	1
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (µg/L)	1,2-Dibromoethane	0.1	0.05	0.075	0.05	0.025	J	0.019	ND	U	0.019	ND	U	0.019	0.016	J	0.019
VOCs	Method SW8260C (µg/L)	Benzene	5	5	4.5	5	ND	U	0.5	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Ethylbenzene	700	700	15	700	ND	U	0.8	ND	U	0.8	ND	U	0.8	ND	U	0.8
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Xylenes, total	620	10,000	190	620	ND	U	2	ND	U	2	ND	U	2	ND	U	2
Dissolved	Method SW6010C (mg/L)	Iron, dissolved	1.0	NS	NS	1	ND	U	0.103	ND	U	0.103	ND	U	0.103	ND	U	0.103
Metals		Manganese, dissolved	0.2	NS	NS	0.2	0.0288		0.0052	ND	U	0.0052	ND	U	0.0052	0.0344		0.0052
Field Parame	ters	Temperature (°C)	NS	NS	NS	NS		19.6			19.6			19.8			19.7	
		Spec Cond (µS/cm)	NS	NS	NS	NS		472.2			527.3			524.2			447.8	
		pH (S.U.)	NS	NS	NS	NS		7.7			7.3			7.33			7.15	
		ORP (mV)	NS	NS	NS	NS		455.5			174.4			110			230.4	
		DO (mg/L)	NS	NS	NS	NS		5.24	•		1	•		4.28	•		4.91	

Table 5-7
Monthly Groundwater Treatment System Performance Analytical Results for Train 2, Q1 2020

					Well	Location ID:	GWT	S-BFF-0	3ΔC2	GWT	S-BFF-	FFF2	GWT	S-BFF-	FFF2
						Sample ID:		-GAC2-			-EFF2-(1		P-030520
						ample Date:		3/5/2020			3/5/2020		ł	3/5/2020	
						ample Type:	•	REG	,	,	REG	,	ł	d Duplic	
						Project									
			NMAC	EPA	EPA	Screening		Val			Val			Val	I
Parameter	Analytical Method	Analyte	NMWQCC ^a	MCL ^b	RSL ^c	Level ^d	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.1	0.05	0.075	0.05	ND	U	0.019	ND	U	0.019	ND	U	0.019
VOCs	Method SW8260C (µg/L)	Benzene	5	5	4.5	5	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Ethylbenzene	700	700	15	700	ND	U	0.8	ND	U	0.8	ND	U	0.8
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Xylenes, total	620	10,000	190	620	ND	U	2	ND	U	2	ND	U	2
Dissolved	Method SW6010C (mg/L)	Iron, dissolved	1.0	NS	NS	1	ND	UJ	0.103	ND	UJ	0.103	ND	UJ	0.103
Metals		Manganese, dissolved	0.2	NS	NS	0.2	ND	U	0.0052	ND	U	0.0052	ND	U	0.0052
Field Paramet	ers	Temperature (°C)	NS	NS	NS	NS		19.7			19.7			19.7	
		Spec Cond (µS/cm)	NS	NS	NS	NS		445.2			445.6			445.6	
		pH (S.U.)	NS	NS	NS	NS		6.75			6.72			6.72	
		ORP (mV)	NS	NS	NS	NS	-	111	-		91			91	
		DO (mg/L)	NS	NS	NS	NS		1.56			4.54			4.54	

Monthly Groundwater Treatment System Performance Analytical Results for Train 2, Q1 2020

μg/L = microgram per liter

 μ S/cm = microSiemens per centimeter

°C = degree Celsius

AFB = Air Force Base

CFR = code of federal regulations

DO = dissolved oxygen

EDB = ethylene dibromide (1,2-dibromoethane)

EPA = U.S. Environmental Protection Agency

ID = identification

LOD = limit of detection

LOQ = limit of quantitation

MCL = maximum contaminant level

mg/L= milligram per liter

mV = millivolt

ND = nondetect

NMAC = New Mexico Administrative Code

NMWQCC = New Mexico Water Quality Control Commission

NS = not specified

ORP = oxidation reduction potential

Q1 = first quarter

REG = normal field sample

RSL = regional screening level

Spec Cond = specific conductivity

S.U. = standard unit

Val Qual = validation qualifier

VOC = volatile organic compound

Shading = detected concentrations above the detection limit

Val Quals based on independent data validation:

J = Qualifier denotes the analyte was positively identified, but the associated numerical value is estimated.

U = Qualifier denotes the analyte was analyzed but not detected above the detection limit. The value associated with the U-qualifier is the LOD.

-- = Validation qualifier not assigned.

^a NMWQCC numeric standards per the New Mexico Administrative Code Title 20.6.2.3101A, Standards for Groundwater of 10,000 mg/L Total Dissolved Solids Concentration or Less (NMAC, 2018).

^b EPA National Primary Drinking Water Regulations, MCLs and Secondary MCLs, Title 40CFR Part 141, 143 (May 2018).

^c EPA Region 6 RSL for Tapwater (November 2019) for hazard index = 1.0 for noncarcinogens and a 10-5 cancer risk level for carcinogens.

^d The project screening level was selected to satisfy the requirements of the Kirtland AFB Hazardous Waste Permit Number NM9570024423 as the lowest of (1) NMWQCC numeric standard or (2) EPA MCL. If no NMQWCC numeric standard or MCL exists for any analyte, then the project screening level will be the EPA RSL. Where the EPA RSL is lower than the LOQ, the project screening level is the LOQ.

Table 5-8
Extraction Well Analytical Results, Q1 2020

					Well	Location ID:	KAI	FB-106	228	KA	FB-106	5233	KAI	-B-106	234	KAI	FB-106	239	KAI	FB-106	239
					Field	d Sample ID:	G۷	N 228-2	201	G\	N 233-	201	G۷	V234-2	201	G۷	V 239-2	201	G۷	N 239-6	i01
					S	ample Date:	1.	/14/202	20	1	/14/20	20	1,	/14/202	20	1,	/14/202	20	1,	/14/202	20
					S	ample Type:		REG			REG			REG			REG		Field	d Dupli	cate
						Project															
	Analytical		NMAC	EPA	EPA	Screening		Val			Val			Val			Val			Val	l
Parameter	1	Analyte	NMWQCC ^a	MCL ^b	RSL^c	Leveld	Result		LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD	Result	Qual	LOD
EDB	Method SW8011 (μg/L)	1,2-Dibromoethane	0.05	0.05	0.075	0.05	0.032		0.019	ND	U	0.019	0.017	J	0.019	ND	U	0.019	ND	U	0.019
BTEX	Method SW8260C	Benzene	10	5	4.5	5	ND	U	0.5	ND	U	0.5	ND	U	0.5	ND	U	0.5	ND	U	0.5
	(μg/L)	Ethylbenzene	750	700	15	700	ND	U	8.0	ND	U	0.8	ND	U	0.8	ND	U	0.8	ND	U	0.8
		Toluene	1,000	1,000	1,100	1,000	ND	U	0.5	ND	U	0.5	ND	U	0.5	ND	U	0.5	ND	U	0.5
		Xylenes, total	620	10,000	190	620	ND	U	2	ND	U	2	ND	U	2	ND	U	2	ND	U	2
Metals	Method SW6010C	Calcium	NS	NS	NS	NS	37.7		0.150	61.5		0.150	54.5		0.150	44.0		0.150	44.4		0.150
	(mg/L)	Iron	1.0	NS	NS	1.0	ND	U	0.103	ND	J	0.103	ND	U	0.103	ND	U	0.103	ND	U	0.103
		Magnesium	NS	NS	NS	NS	5.45		0.0751	9.10	1	0.0751	7.64		0.0751	6.24		0.0751	6.54		0.0751
		Manganese	0.2	NS	NS	0.2	ND	U	0.0052	ND	J	0.0052	ND	U	0.0052	0.170		0.0052	0.167		0.0052
		Potassium	NS	NS	NS	NS	2.16		0.375	2.89		0.375	2.90		0.375	2.37		0.375	2.30		0.375
		Sodium	NS	NS	NS	NS	25.1		0.500	29.1		0.500	29.1		0.500	25.7		0.500	25.4		0.500
	Method SW6020A	Arsenic	0.01	0.01	0.00052	0.01	0.00096	J	0.0016	0.0011	J	0.0016	0.00094	J	0.0016	0.0010	J	0.0016	0.00095	J	0.0016
	(mg/L)	Lead	0.015	0.015	0.015	0.015	0.00017	J	0.00025	0.0016		0.00025	0.00043	J	0.00025	0.00073		0.00025	0.00071		0.00025

Table 5-8 Extraction Well Analytical Results, Q1 2020

a NMWQCC numeric standards per the NMAC Title 20.6.2.3101A, Standards for Ground Water of 10,000 mg/L Total Dissolved Solids Concentration or Less (NMAC, 2018). For metals, the NMWQCC numeric standard applies to dissolved metals.

μg/L = microgram per liter

AFB = Air Force Base

BTEX = benzene, toluene, ethybenzene, and total xylenes

CFR = Code of Federal Regulations

EDB = ethylene dibromide (1,2-dibromoethane)

EPA = U.S. Environmental Protection Agency

ID = identification

LOD = limit of detection

MCL = maximum contaminant level

mg/L = milligram per liter

ND = not detected

NMAC = New Mexico Administrative Code

NMWQCC = New Mexico Water Quality Control Commission

NS = not specified

Q1 = first quarter

REG = normal field sample

RSL = regional screening level

Val Qual = validation qualifier

Shading = detected concentrations above the detection limit

Bold/Shading = reported concentrations exceed the project screening level (none for Q1 2020)

Val Quals based on independent data validation:

J = Qualifier denotes the analyte was positively identified, but the associated numerical value is estimated.

U = Qualifier denotes the analyte was analyzed but not detected above the detection limit. The value associated with the U-qualifier is the LOD.

-- = Validation qualifier not assigned.

^b EPA National Primary Drinking Water Regulations, MCLs and Secondary MCLs, Title 40 CFR Part 141, 143 (May 2018).

^c EPA Region 6 RSL for Tapwater (November 2019) for hazard index = 1.0 for noncarcinogens and a 10-5 cancer risk level for carcinogens.

^d The project screening level was selected to satisfy the requirements of the Kirtland AFB Hazardous Waste Permit Number NM9570024423 as the lowest of (1) NMWQCC numeric standard or (2) EPA MCL. If no NMQWCC standard or MCL exists for any analyte, then the project screening level will be the EPA RSL.

Table 5-9
Groundwater Treatment System Routine Maintenance Schedule, Q1 2020

		Freq	uency	
Maintenance Activity	Daily	Weekly	Monthly	As Needed
Recording and inspecting influent, GAC vessel, and	Х	1		
effluent skid pressure, flow rate, and totalizer				
readings from their respective gauges and the				
human machine interface				
Recording extraction well pressure, flow rate, and	Х			
totalizer readings from the human machine interface				
Recording extraction well pressure, flow rate, and		Х		
totalizer readings from the gauges at the well vaults				
Inspecting well control house and recording well		Х		
control house pressure, flow rate, and totalizer				
readings				
Recording totalizer reading at KAFB-7		X		
Running and inspecting the GWTS air compressor		Х		
Inspecting extraction well, conveyance line, and air			Х	
release valve vaults			X	
Inspecting wellhead and associated equipment of injection well KAFB-7			\ \ \	
Inspecting and performing maintenance of			Х	
flowmeters throughout the system				
Inspecting and performing maintenance on actuating			Х	
valves throughout the system				
Performing confined space entries			Х	
Gauging extraction well filter pack			Х	
Semiannual inspections and maintenance of Tijeras				Х
Arroyo Gold Course ponds				
Logging lockout-tagout entries				X
Logging system shutdowns				Х
Emptying storm water runoff flooded vaults				X
Performing air compressor maintenance				X
Cleaning GWTS sumps				X
Draining air release valve containment vessels				X
Grounds keeping including vegetation control				X
Inspecting and cleaning the GWTS Wye-				X
strainer/basket strainer				
Performing flow meter calibration				X ^a
Greasing pump bearings				X ^b
Changing process pump oil				X ^b
Changing air filter on control room air conditioner			<u> </u>	Xp
Changing bag filters				Xc
Changing out GAC				Xc
Disinfection of extraction wells and conveyance lines				X ^d
Testing of alarms and interlocks				Xe
Cleaning coils and replacing air filter for the Well				X ^f
Control House air conditioner GAC skimming of the lead GAC vessel				Xg
2. 12 2g 2. 1 1244 0/10 100001		1	L	^

Groundwater Treatment System Routine Maintenance Schedule, Q1 2020

GAC = granular activated carbon GWTS = groundwater treatment system psi = pound per square inch Q1 = first quarter

^a Flowmeters are calibrated at a minimum of once per year, but may be calibrated more often as needed.

^b Changing of process pump oil, greasing pump bearings, and replacing the air filter in the air conditioning unit are required every 3 months, but may be changed more often as needed.

^c Bag filters are scheduled for change out when the pressure differential across a bag filter vessel exceeds 15 psi and GAC is scheduled for change out when the pressure differential across a GAC vessel exceeds 10 psi.

^d Disinfection of extraction wells and conveyance lines occurs semiannually or more often as needed.

^e Testing of alarms and interlocks occurs annually or more often as needed.

^f Cleaning of the coil and replacing of the air filter are scheduled as quarterly activities, but frequency may be adjusted as necessary.

⁹ GAC skimming is performed when the differential pressure in the lead GAC vessel has increased from the operational differential pressure by at least 7 psi.

Table 5-10
Groundwater Treatment System Non-Routine Maintenance Items, Q1 2020

		Approximate	
	Extent of	Downtime	
Date	Shutdown	(hours)	Cause of Shutdown
2/11/2020	Entire GWTS	6.5	Installed check valves on the Train 1 and Train 2 effluent lines
2/26/2020	KAFB-106239	24.0	Disinfected KAFB-106239
3/6/2020	Train 2	Not applicable	Replaced the Train 2 effluent skid motor
1/1/2020 - 3/31/2020	KAFB-106233	Not applicable	KAFB-106233 intermittently turned offline to maintain injection well KAFB-7 water level during injection

GWTS = groundwater treatment system

KAFB = Kirtland Air Force Base

Q1 = first quarter