NMED/EMNRD MAP
SEPARATORS / HEATERS / STORAGE TANKS

Upstream Design Considerations for Emissions
10/24/19

Joe Leonard – Facilities Engineer – Devon Energy
Outline

• Within Scope
 • Upstream Process Overview
 • Dump Valves
 • What Causes Emissions?
 • Strategy Strengths & Challenges
 • Retrofits

• Other MAP Topics (e.g. LDAR, Pneumatics, etc.) not addressed
Upstream Process Overview

• Process Raw Production – Oil, Gas & Water

• Goal
 • Maximize Recovery
 • Minimize Cost

• Challenges
 • Safe
 • Compliant
 • Effective

• Resources
 • Pressure
 • Temperature
 • Etc.
Upstream Process Overview

Annotations:
1 - REMOTE "OFF-PAD" WELLHEAD
2 - LOCAL "ON-PAD" WELLHEAD
3 - ADDITIONAL WELLS
4 - INLET 2-PHASE SEPARATOR
5 - PRESSURE RELIEF VALVE
6 - INLET 3-PHASE SEPARATOR
7 - TEST SEPARATOR
8 - TEST PRODUCTION MANIFOLD
9 - BULK SEPARATOR
10 - HEATER TREATER
11 - SALES GAS 'LAST CHANCE' SEPARATOR
12 - BACK PRESSURE VALVE
13 - ULP/SVRT
14 - FWKO/GUN BARREL
15 - OIL STORAGE TANK
16 - ADDITIONAL OIL TANKS
17 - WATER STORAGE TANK
18 - ADDITIONAL WATER TANKS
19 - PVRV
20 - THIEF HATCH
21 - LACT
22 - WATER TRANSFER PUMP
23 - HYDROCARBON GAS STRATEGIES
Dump Valves

- Facilities are not a steady state process
- Selection affects instantaneous dump rate
- Failures Occur – Upset Condition
 - Erosion
 - Debris
- Rarely Catastrophic
- Can result in Pressure Relief Scenario
What Causes Emissions?

• Mechanic: Pressure
 • $\uparrow P_{\text{stream}} = \uparrow \text{Gas in Liquid Phase}$
 • Highest at Inlet
 • Gas – Sales Pressure (Some Variability)
 • Oil & Water – Atmospheric (Constant)
 • $\downarrow P_{\text{facility}} = \uparrow \text{EUR}$
 • Limit set by:
 • Sales Line Pressure (Gas)
 • Liquid Dump

• Mechanic: Temperature
 • $\downarrow T_{\text{stream}} = \uparrow \text{Gas in Liquid Phase}$
 • Converges to ambient
 • Avg Low: 20 °F
 • Avg High: 85 °F
 • Avg Annual: 50 °F
 • Heater Treaters used in Permian

Process Modeling (Permit Evaluation) Results can vary drastically based on Pressure, Temperature & Rate assumptions
What Causes Emissions?

• Other Mechanics:
 • Tanks – Working Losses
 • Tanks – Breathing Losses
 • Truck Loading – Agitation
What Causes Emissions?

• Unforeseen Operating Conditions (changes in rate, pressure, composition, etc.)
• Improper Design
• Improper Construction
• Improper Operation
• Improper Maintenance
• Malfunction
 • Dump Valve Failure
 • Seal Failure
 • Etc.
Strategy Strengths & Challenges

<table>
<thead>
<tr>
<th>RECOVER</th>
<th>COMBUST</th>
<th>VENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRENGTHS
• Gas to Sales
• >95% Efficient
• Centralized Production Opportunities
• QOQO Qs Enforceable if Applicable
• Complex
 - Mechanical Design Considerations
 ▪ Suction Piping Design
 ▪ Discharge Piping Design
 ▪ Placement of Equipment
 - I&IE Design Considerations
 ▪ Installation of Instrumentation
 ▪ Selection of Instrumentation
 ▪ PLC
 - Communications
 ▪ Vendor/Unit Selection
 ▪ (Tanks) Incorrect Composition
 ▪ Oxygen
 ▪ Blanket Gas
 ▪ (Tanks) Set Point Limitations
 ▪ Retrofit Complications
• Area Classification
• Downtime Considerations
• Maintenance
• Service in the area?
• Operational Deviations
 - Training
 - Theft Hatches
 - Suction Pressure Control Sensitivity
 ▪ VFD, etc.
• Construction Deviations
 - Equipment Verification</td>
<td>• Not as complex as recovery
 - No 3rd Party Maintenance
 • More reliable than recovery
 • >95% Efficient
 • QOQO Enforceable is Applicable
• Complex
 - Mechanical Design Considerations
 ▪ Vent Header Design (AP)
 ▪ Stack Height
 - I&IE Design Considerations
 ▪ Installation of Instrumentation
 ▪ Selection of Instrumentation
 ▪ PLC
 - Communications
 ▪ (LP Only) Smokeless Combustion
• Incorrect Composition
 - Arrestor Limited Protection
 • Large Radius of Exposure
 • Downtime Considerations
 • Operational Deviations
 - Training
 - Theft Hatches
• Construction Deviations
 - Equipment Verification</td>
<td>• Negligible Complexity
• Negligible Cost
• 0% Efficient
• Safety: Risk to Personnel
 - Toxicity
 - Asphyxiation
 - LEL</td>
</tr>
</tbody>
</table>

- **Overcoming challenges manifests in the form of additional cost**
- **Choosing strategies is a cost/benefit/risk evaluation**
- **Choosing strategies is operator and often site specific**
- **Infinite amount of engineering solutions**
Retrofits

• Range: Easy & Inexpensive ↔ Complex & Costly
 • Site & Scope Specific

• What data is available?
 • Hand sketch or P&ID’s?

• What other modifications need to be made?
 • Is power required and available?
 • Major/Minor Equipment
 • Piping
 • I&E, PLC & Communications

• What training is required for the modification?
• What maintenance is required for the modification?

• Example 1: Downsizing an existing flare
• Example 2: Adding a flare to an existing site
Summary

• Facility Design is not “one size fits all”
• Dump Valve “Right Sizing” is important
• Careful consideration must be made when modeling a process
 • Pressure, Temperature & Rates
• Choosing strategies is a site specific cost/benefit/risk evaluation
• Caution against prescriptive solutions
• Retrofit complexity & cost is project specific
THANK YOU