Bench-scale Treatment Study of Produced Water from the Southern San Juan Basin New Mexico

Kanalis Group

December 1, 2022

Volume 2:

Appendices to Volume1

Complete Data Sets for Produced Water Testing and Greenhouse Growth Study

Prepared for:

CONTENTS

Appendix A-1	Hall Report 1 – Pretreated Source Water	3
Appendix A-2	Hall Report 2 – Pretreated Toray710 RO Filtered Water	47
Appendix A-3	Hall Report 3 – Pretreated Toray810 RO Single/Double Pass Filtered Water	105
Appendix B	Plant Growth & Soil Analysis - Final Published Results	119

Appendix A-1

Hall Report 1: Pre-treated Source Water Test Results

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL 505-345-3975 FAX 505-345-4107 Website clients.hallenvironmental.com

March 26, 2021

Nyle Khan

RE: NM DW Testing OrderNo.: 2102894

Dear Nyle Khan:

Hall Environmental Analysis Laboratory received 2 sample(s) on 2/19/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 3/26/2021

Lab Order 2102894

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Client Sample ID: Eagle Springs

Project: NM DW Testing
 Collection Date: 2/19/2021 9:57:00 AM

 Lab ID: 2102894-001
 Matrix: AQUEOUS
 Received Date: 2/19/2021 1:10:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE						Analyst: mb
Diesel Range Organics (DRO)	ND	1.0		mg/L	1	2/23/2021 8:31:04 AM
Motor Oil Range Organics (MRO)	ND	5.0		mg/L	1	2/23/2021 8:31:04 AM
Surr: DNOP	118	63.7-164		%Rec	1	2/23/2021 8:31:04 AM
EPA METHOD 8015D: GASOLINE RANGE						Analyst: CCM
Gasoline Range Organics (GRO)	0.17	0.050		mg/L	1	2/20/2021 2:47:00 PM
Surr: BFB	99.3	66.7-119		%Rec	1	2/20/2021 2:47:00 PM
EPA METHOD 300.0: ANIONS						Analyst: CAS
Fluoride	3.2	2.0		mg/L	20	2/19/2021 4:56:03 PM
Chloride	890	100	*	mg/L	200	2/22/2021 8:09:39 PM
Nitrogen, Nitrite (As N)	ND	2.0		mg/L	20	2/19/2021 4:56:03 PM
Bromide	0.51	0.10		mg/L	1	2/19/2021 4:19:00 PM
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	2/19/2021 4:19:00 PM
Phosphorus, Orthophosphate (As P)	ND	10		mg/L	20	2/19/2021 4:56:03 PM
Sulfate	6400	100	*	mg/L	200	2/22/2021 8:09:39 PM
EPA METHOD 200.7: METALS						Analyst: ELS
Aluminum	ND	0.020		mg/L	1	2/24/2021 9:55:47 AM
Barium	0.032	0.0030		mg/L	1	2/24/2021 9:55:47 AM
Boron	3.5	0.20		mg/L	5	2/24/2021 9:57:18 AM
Calcium	210	5.0		mg/L	5	2/24/2021 9:57:18 AM
Chromium	ND	0.0060		mg/L	1	2/24/2021 9:55:47 AM
Iron	1.2	0.25	*	mg/L	5	2/24/2021 9:57:18 AM
Magnesium	10	1.0		mg/L	1	2/24/2021 9:55:47 AM
Manganese	0.074	0.0020	*	mg/L	1	2/24/2021 9:55:47 AM
Nickel	ND	0.010		mg/L	1	2/24/2021 9:55:47 AM
Potassium	23	1.0		mg/L	1	2/24/2021 9:55:47 AM
Silver	ND	0.0050		mg/L	1	2/24/2021 9:55:47 AM
Sodium	3200	50		mg/L	50	2/24/2021 10:04:14 AM
Zinc	ND	0.010		mg/L	1	2/24/2021 9:55:47 AM
EPA 200.8: METALS						Analyst: bcv
Antimony	ND	0.0010		mg/L	1	3/4/2021 10:34:59 AM
Arsenic	0.015	0.0010	*	mg/L	1	3/4/2021 10:34:59 AM
Beryllium	ND	0.0010		mg/L	1	3/4/2021 12:57:52 PM
Cadmium	ND	0.00050		mg/L	1	3/4/2021 10:34:59 AM
Copper	ND	0.0010		mg/L	1	3/4/2021 10:34:59 AM
Lead	ND	0.00050		mg/L	1	3/4/2021 10:34:59 AM
Selenium	ND	0.0010		mg/L	1	3/4/2021 12:57:52 PM
Thallium	ND	0.00025		mg/L	1	3/4/2021 10:34:59 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 27

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/26/2021

CLIENT: Client Sample ID: Eagle Springs

Project: NM DW Testing
 Collection Date: 2/19/2021 9:57:00 AM

 Lab ID: 2102894-001
 Matrix: AQUEOUS
 Received Date: 2/19/2021 1:10:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA 200.8: METALS					Analyst: bcv
Uranium	ND	0.0025	mg/L	5	3/4/2021 1:05:04 PM
EPA METHOD 245.1: MERCURY					Analyst: ags
Mercury	ND	0.00020	mg/L	1	2/23/2021 2:20:59 PM
EPA METHOD 8270C: SEMIVOLATILES			· ·		Analyst: DAM
Acenaphthene	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Acenaphthylene	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Aniline	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Anthracene	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Azobenzene	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Benz(a)anthracene	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Benzo(a)pyrene	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Benzo(b)fluoranthene	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Benzo(g,h,i)perylene	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Benzo(k)fluoranthene	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Benzoic acid	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Benzyl alcohol	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Bis(2-chloroethoxy)methane	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Bis(2-chloroethyl)ether	ND	5.0		1	3/1/2021 12:38:50 PM
Bis(2-chloroisopropyl)ether	ND ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Bis(2-ethylhexyl)phthalate	ND ND	10	μg/L	1	3/1/2021 12:38:50 PM
4-Bromophenyl phenyl ether	ND ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
	ND ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Butyl benzyl phthalate	ND ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Carbazole	ND ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
4-Chloro-3-methylphenol 4-Chloroaniline	ND ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
			μg/L		
2-Chloronaphthalene	ND	5.0	μg/L	1 1	3/1/2021 12:38:50 PM
2-Chlorophenol	ND	5.0	μg/L		3/1/2021 12:38:50 PM
4-Chlorophenyl phenyl ether	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Chrysene	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Di-n-butyl phthalate	ND	10	μg/L	1	3/1/2021 12:38:50 PM
Di-n-octyl phthalate	ND	10	μg/L	1	3/1/2021 12:38:50 PM
Dibenz(a,h)anthracene	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Dibenzofuran	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	3/1/2021 12:38:50 PM
Diethyl phthalate	ND	10	μg/L	1	3/1/2021 12:38:50 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 27

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/26/2021

CLIENT: Client Sample ID: Eagle Springs

Project: NM DW Testing
 Collection Date: 2/19/2021 9:57:00 AM

 Lab ID: 2102894-001
 Matrix: AQUEOUS
 Received Date: 2/19/2021 1:10:00 PM

Analyses	Result	RL (Qual Uni	ts DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES					Analyst: DAM
Dimethyl phthalate	ND	10	μg/	L 1	3/1/2021 12:38:50 PM
2,4-Dichlorophenol	ND	5.0	μg/		3/1/2021 12:38:50 PM
2,4-Dimethylphenol	ND	5.0	μg/		3/1/2021 12:38:50 PM
4,6-Dinitro-2-methylphenol	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
2,4-Dinitrophenol	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
2,4-Dinitrotoluene	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
2,6-Dinitrotoluene	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
Fluoranthene	ND	10	μg/	L 1	3/1/2021 12:38:50 PM
Fluorene	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
Hexachlorobenzene	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
Hexachlorobutadiene	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
Hexachlorocyclopentadiene	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
Hexachloroethane	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
Isophorone	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
1-Methylnaphthalene	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
2-Methylnaphthalene	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
2-Methylphenol	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
3+4-Methylphenol	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
N-Nitrosodi-n-propylamine	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
N-Nitrosodimethylamine	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
N-Nitrosodiphenylamine	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
Naphthalene	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
2-Nitroaniline	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
3-Nitroaniline	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
4-Nitroaniline	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
Nitrobenzene	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
2-Nitrophenol	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
4-Nitrophenol	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
Pentachlorophenol	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
Phenanthrene	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
Phenol	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
Pyrene	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
Pyridine	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
2,4,5-Trichlorophenol	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
2,4,6-Trichlorophenol	ND	5.0	μg/	L 1	3/1/2021 12:38:50 PM
Surr: 2-Fluorophenol	8.05	15-88.8	S %R	tec 1	3/1/2021 12:38:50 PM
Surr: Phenol-d5	27.2	15-71.9	%R	tec 1	3/1/2021 12:38:50 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **2102894**

Date Reported: 3/26/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:

Client Sample ID: Eagle Springs

Project: NM DW Testing
 Collection Date: 2/19/2021 9:57:00 AM

 Lab ID: 2102894-001
 Matrix: AQUEOUS
 Received Date: 2/19/2021 1:10:00 PM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DAM
Surr: 2,4,6-Tribromophenol	2.66	15-97.4	S	%Rec	1	3/1/2021 12:38:50 PM
Surr: Nitrobenzene-d5	78.8	15-117		%Rec	1	3/1/2021 12:38:50 PM
Surr: 2-Fluorobiphenyl	84.0	15-100		%Rec	1	3/1/2021 12:38:50 PM
Surr: 4-Terphenyl-d14	104	15-120		%Rec	1	3/1/2021 12:38:50 PM
EPA METHOD 8260B: VOLATILES						Analyst: JMR
Benzene	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
Toluene	2.2	1.0		μg/L	1	2/23/2021 2:18:33 PM
Ethylbenzene	1.6	1.0		μg/L	1	2/23/2021 2:18:33 PM
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
1,2,4-Trimethylbenzene	2.2	1.0		μg/L	1	2/23/2021 2:18:33 PM
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
Naphthalene	ND	2.0		μg/L	1	2/23/2021 2:18:33 PM
1-Methylnaphthalene	ND	4.0		μg/L	1	2/23/2021 2:18:33 PM
2-Methylnaphthalene	ND	4.0		μg/L	1	2/23/2021 2:18:33 PM
Acetone	15	10		μg/L	1	2/23/2021 2:18:33 PM
Bromobenzene	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
Bromodichloromethane	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
Bromoform	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
Bromomethane	ND	3.0		μg/L	1	2/23/2021 2:18:33 PM
2-Butanone	ND	10		μg/L	1	2/23/2021 2:18:33 PM
Carbon disulfide	ND	10		μg/L	1	2/23/2021 2:18:33 PM
Carbon Tetrachloride	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
Chlorobenzene	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
Chloroethane	ND	2.0		μg/L	1	2/23/2021 2:18:33 PM
Chloroform	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
Chloromethane	ND	3.0		μg/L	1	2/23/2021 2:18:33 PM
2-Chlorotoluene	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
4-Chlorotoluene	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
cis-1,2-DCE	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
1,2-Dibromo-3-chloropropane	ND	2.0		μg/L	1	2/23/2021 2:18:33 PM
Dibromochloromethane	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
Dibromomethane	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
1,2-Dichlorobenzene	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
1,3-Dichlorobenzene	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
1,4-Dichlorobenzene	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM
Dichlorodifluoromethane	ND	1.0		μg/L	1	2/23/2021 2:18:33 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 27

Lab Order **2102894**

Date Reported: 3/26/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Client Sample ID: Eagle Springs

Project: NM DW Testing
 Collection Date: 2/19/2021 9:57:00 AM

 Lab ID: 2102894-001
 Matrix: AQUEOUS
 Received Date: 2/19/2021 1:10:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JMR
1,1-Dichloroethane	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	2/23/2021 2:18:33 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
2-Hexanone	ND	10	μg/L	1	2/23/2021 2:18:33 PM
Isopropylbenzene	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	2/23/2021 2:18:33 PM
Methylene Chloride	ND	3.0	μg/L	1	2/23/2021 2:18:33 PM
n-Butylbenzene	ND	3.0	μg/L	1	2/23/2021 2:18:33 PM
n-Propy benzene	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
sec-Butylbenzene	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
Styrene	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
tert-Butylbenzene	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	2/23/2021 2:18:33 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
trans-1,2-DCE	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	2/23/2021 2:18:33 PM
Vinyl chloride	ND	1.0	μg/L	1	2/23/2021 2:18:33 PM
Xylenes, Total	4.9	1.5	μg/L	1	2/23/2021 2:18:33 PM
Surr: 1,2-Dichloroethane-d4	90.7	70-130	%Rec	1	2/23/2021 2:18:33 PM
Surr: 4-Bromofluorobenzene	97.1	70-130	%Rec	1	2/23/2021 2:18:33 PM
Surr: Dibromofluoromethane	97.1	70-130	%Rec	1	2/23/2021 2:18:33 PM
Surr: Toluene-d8	101	70-130	%Rec	1	2/23/2021 2:18:33 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: JRR
Conductivity	15000	50	µmhos/c	5	2/25/2021 11:14:28 AM
SM2320B: ALKALINITY					Analyst: MH

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 27

Analytical Report

Lab Order **2102894**

Date Reported: 3/26/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Client Sample ID: Eagle Springs

Project: NM DW Testing
 Collection Date: 2/19/2021 9:57:00 AM

 Lab ID: 2102894-001
 Matrix: AQUEOUS
 Received Date: 2/19/2021 1:10:00 PM

Analyses	Result	RL Qua	al Units DF	Date Analyzed
SM2320B: ALKALINITY				Analyst: MH
Bicarbonate (As CaCO3)	146.6	20.00	mg/L Ca 1	2/22/2021 3:11:27 PM
Carbonate (As CaCO3)	ND	2.000	mg/L Ca 1	2/22/2021 3:11:27 PM
Total Alkalinity (as CaCO3)	146.6	20.00	mg/L Ca 1	2/22/2021 3:11:27 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS				Analyst: MH
Total Dissolved Solids	10200	20.0 *	mg/L 1	2/24/2021 8:40:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 27

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/26/2021

CLIENT: Client Sample ID: Trip Blank

Project: NM DW Testing **Collection Date:**

Lab ID: 2102894-002 **Matrix:** TRIP BLANK **Received Date:** 2/19/2021 1:10:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JMR
Benzene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Toluene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Ethylbenzene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Naphthalene	ND	2.0	μg/L	1	2/23/2021 2:47:19 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	2/23/2021 2:47:19 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	2/23/2021 2:47:19 PM
Acetone	ND	10	μg/L	1	2/23/2021 2:47:19 PM
Bromobenzene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Bromodichloromethane	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Bromoform	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Bromomethane	ND	3.0	μg/L	1	2/23/2021 2:47:19 PM
2-Butanone	ND	10	μg/L	1	2/23/2021 2:47:19 PM
Carbon disulfide	ND	10	μg/L	1	2/23/2021 2:47:19 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Chlorobenzene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Chloroethane	ND	2.0	μg/L	1	2/23/2021 2:47:19 PM
Chloroform	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Chloromethane	ND	3.0	μg/L	1	2/23/2021 2:47:19 PM
2-Chlorotoluene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
4-Chlorotoluene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
cis-1,2-DCE	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	2/23/2021 2:47:19 PM
Dibromochloromethane	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Dibromomethane	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	2/23/2021 2:47:19 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 27

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/26/2021

CLIENT: Client Sample ID: Trip Blank

Project: NM DW Testing **Collection Date:**

Lab ID: 2102894-002 **Matrix:** TRIP BLANK **Received Date:** 2/19/2021 1:10:00 PM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JMR
1,1-Dichloropropene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
2-Hexanone	ND	10	μg/L	1	2/23/2021 2:47:19 PM
Isopropylbenzene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	2/23/2021 2:47:19 PM
Methylene Chloride	ND	3.0	μg/L	1	2/23/2021 2:47:19 PM
n-Butylbenzene	ND	3.0	μg/L	1	2/23/2021 2:47:19 PM
n-Propy benzene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
sec-Butylbenzene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Styrene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
tert-Butylbenzene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	2/23/2021 2:47:19 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
trans-1,2-DCE	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	2/23/2021 2:47:19 PM
Vinyl chloride	ND	1.0	μg/L	1	2/23/2021 2:47:19 PM
Xylenes, Total	ND	1.5	μg/L	1	2/23/2021 2:47:19 PM
Surr: 1,2-Dichloroethane-d4	88.2	70-130	%Rec	1	2/23/2021 2:47:19 PM
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	1	2/23/2021 2:47:19 PM
Surr: Dibromofluoromethane	97.2	70-130	%Rec	1	2/23/2021 2:47:19 PM
Surr: Toluene-d8	101	70-130	%Rec	1	2/23/2021 2:47:19 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Pace Analytical® ANALYTICAL REPORT

Hall Environmental Analysis Laboratory

Sample Delivery Group:

L1320608

Samples Received:

02/26/2021

Project Number:

Description:

Report To:

Jackie Bolte

Entire Report Reviewed By: Jahn V Haukins

John Hawkins Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

Mount Juliet, TN 37122 12065 Lebanon Rd

615-758-5858

800-767-5859

www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
210289-001F EAGLE SPRINGS L1320608-01	5
210289-001G EAGLE SPRINGS L1320608-02	6
Qc: Quality Control Summary	7
Radiochemistry by Method 900	7
Radiochemistry by Method 904	8
Radiochemistry by Method SM7500Ra B M	9
GI: Glossary of Terms	10
Al: Accreditations & Locations	11
Sc: Sample Chain of Custody	12

SAMPLE SUMMARY

Non-Potable V	Vater	Collected by	Collected date/time 02/19/21 09:57	Received date 02/26/21 10:2	
Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
WG1629596	1	03/09/21 13:08	03/10/21 17:12	JMR	Mt. Ju iet, TN
Non-Potable	Water	Collected by	Collected date/time 02/19/21 09:57	Received da: 02/26/21 10::	
Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
WG1635388	1	03/17/21 11:41	03/22/21 09:25	JMR	Mt. Ju iet, TN
	Batch WG1629596 Non-Potable	WG1629596 1 Non-Potable Water	Batch Dilution Preparation date/time WG1629596 1 03/09/2113:08 Collected by Non-Potable Water Batch Dilution Preparation	Non-Potable Water 02/19/21 09:57 Batch Dilution date/time Preparation date/time Analysis date/time WG1629596 1 03/09/21 13:08 03/10/21 17:12 Collected by Collected date/time 02/19/21 09:57 Batch Dilution Preparation Analysis	Non-Potable Water

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

John Hawkins Project Manager

210289-001F EAGLE SPRINGS Collected date/time: 02/19/21 09:57

SAMPLE RESULTS - 01

Radiochemistry by Method 900

	Resut	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/I	date / time		
GROSS ALPHA	-4.15	U	18.6	308	03/10/2021 17:12	WG1629596	
GROSS BETA	-7.74	U	303	45.5	03/10/2021 17:12	WG1629596	

Hall Environmental Analysis Laboratory

210289-001G EAGLE SPRINGS Collected date/time: 02/19/21 09:57

Radiochemistry by Method SM7500Ra B M

Resu t

pCi/I

3.48

71.4

SAMPLE RESULTS - 02

Qualifier

Uncertainty

+/-

0.843

Radiochemistry by Method 904

Analyte

RADIUM-226

(T) Barium-133

	Resut	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/l	date / time		
RADIUM-228	3 61		0.415	0.71	03/22/2021 09:25	WG1635388	
(T) Barium	102			62.0-143	03/22/2021 09:25	WG1635388	
(T) Yttrium	105			79.0-136	03/22/2021 09:25	WG1635388	

MDA

pCi/I

0.436

30.0-143

Analysis Date

03/16/2021 16:08

03/16/2021 16:08

date / time

Batch

WG1634705

WG1634705

4	_
1	Cn

WG1629596

QUALITY CONTROL SUMMARY

L1320608-01

Method Blank (MB)

(MB) R3629708-5 03/10/21 17:12

Radiochemistry by Method 900

FIRE STATE OF THE				
	MB Result	MB Qualifier	MB MDA	
Analyte	pCi/I		pCi/l	
GROSS ALPHA	0.0448	U	0.466	
GROSS BETA	-0.750	Ü	1.26	

Cn

L1318552-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1318552-01 03/10/21 17:12 • (DUP) R3629708-4 03/10/21 13:49

	Original Resu t	DUP Result	Dilution	DUP RPD	DUP RER	DUP Qua ifier	DUP RPD Limits	DUP RER Limit
Analyte	pCi/l	pCi/l		%			%	
GROSS ALPHA	3 32	5.69	1	52 5	0.927		20	3
GROSS BETA	1.82	1.74	1	4.45	0.0333		20	3

LCS Qualifier

Laboratory Control Sample (LCS)

(LCS) R3629708-1 03/10/2113:49

	Spike Amount	LCS Resu t	LCS Rec.	Rec. Limits
Analyte	pCi/l	pCi/l	%	%
GROSS ALPHA	15.0	14.9	99.1	80.0-120
GROSS BETA	32.3	306	94.8	80.0-120

-
9
Sc
20

L1318494-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) | 1318494-01 03/10/21 13:49 • (MS) R3629708-2 03/10/21 13:49 • (MSD) R3629708-3 03/10/21 13:49

	Spike Amount	Original Resut	MS Resut	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qua ifier	RPD	MS RER	RPD Limits
Analyte	pCi/l	pCi/I	pCi/l	pCi/l	%	%		%			%		%
GROSS ALPHA	18.8	0.898	15.7	15.8	78.9	79.5	1	70.0-130			0.697		20
GROSS BETA	40.4	-0.948	43.0	46.8	106	116	1	70.0-130			8.33		20

WG1635388

QUALITY CONTROL SUMMARY

L1320608-02

Method Blank (MB)

(MB) R3634683-1 03/22/21 09:25

Radiochemistry by Method 904

Analyte	MB Result pCi/l	MB Qualifier	MB MDA pCi/l	
Radium-228	-0.442	<u>U</u>	0.455	
(T) Barium	105			
(T) Yttrium	102			

Cn

L1320778-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1320778-01 03/22/21 09:25 • (DUP) R3634683-5 03/22/21 09:25

	Original Resu t	DUP Result	Dilution	DUP RPD	DUP RER	DUP Qua ifier	DUP RPD Limits	DUP RER Limit	
Analyte	pCi/l	pCi/l		%			%		
Radium-228	1.06	0.761	1	33.0	0.503	<u>J</u>	20	3	
(T) Barium	96.8	99.3							
(T) Yttrium	110	109							

LCS Qualifier

Laboratory Control Sample (LCS)

(LCS) R3634683-2 03/22/21 09:25

	Spike Amount	LCS Resut	LCS Rec.	Rec. Limits
Analyte	pCi/l	pCi/l	%	%
Radium-228	5.00	5.66	113	80.0-120
(T) Barium			99.4	
(T) Yttrium			110	

Sc

L1320780-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Resut	MS Resut	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qua ifier	RPD	MS RER	RPD Limits
Analyte	pCi/l	pCi/l	pCi/l	pCi/l	%	%		%			%		%
Radium-228	10.0	1.27	11 6	12.1	103	108	1	70.0-130			4.15		20
(T) Barium		97.1			96.3	92.0							
(T) Yttrium		107			91.2	105							

WG1634705

Analyte Radium-226 (T) Barium-133

QUALITY CONTROL SUMMARY

L1320608-02

Method Blank (MB)

Radiochemistry by Method SM7500Ra B M

(MB) R3633093-1	03/16/21 16:08
	MD Do

MB Result pCi/l	MB Qualifier	MB MDA pCi/l
-0.00647	U	0.0815

L1324512-13 Original Sample (OS) • Duplicate (DUP)

(OS) L1324512-13 03/16/21 17:08 • (DUP) R3633093-5 03/16/21 16:08

88.4

	Original Resu t	DUP Result	Dilution	DUP RPD	DUP RER	DUP Qua ifier	DUP RPD Limits	DUP RER Limit
Analyte	pCi/I	pCi/l		%			%	
Radium-226	0.196	0.271	1	31.9	0.203	<u>J</u>	20	3
(T) Barium-133	76.1	82.3						

Cn

Laboratory Control Sample (LCS)

(LCS) R3633093-2 03/16/21 16:08

	Spike Amount	LCS Resut	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	pCi/l	pCi/l	%	%	
Radium-226	5.02	5.47	109	80.0-120	
(T) Barium-133			94.1		

L1324512-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1324512-12 03/16/21 17:08 • (MS) R3633093-3 03/16/21 16:08 • (MSD) R3633093-4 03/16/21 16:08

	Spike Amount	Original Resut	MS Resut	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qua ifier	RPD	MS RER	RPD Limits
Analyte	pCi/l	pCi/l	pCi/l	pCi/l	%	%		%			%		%
Radium-226	20.1	0.503	21.3	25 3	104	123	1	75.0-125			17 2		20
(T) Barium-133		76.9			95.2	88.9							

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Perm t Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Resu ts relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDA	Minimum Detectable Activity.
Rec.	Recovery.
RER	Replicate Error Ratio.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(T)	Tracer - A radioisotope of known concentration added to a solution of chemically equivalent radioisotopes at a known concentration to assist in mon toring the yield of the chemical separation.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have mu tiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest lim t of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a qual ty control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resure ported. If a Qualifier is present, a definition per Qual fier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qual fier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qual fiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were in tially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

a a a i i i i	2 ссельного
J	The ident fication of the analyte is acceptable; the reported value is an estimate.
U	Relow Detectable Limits: Indicates that the analyte was not detected

ACCREDITATIONS & LOCATIONS

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico 1	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
ldaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 14	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁶	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁶	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

HALL ENVIRONMENTAL ANALYSIS LABORATORY

CHAIN OF CUSTODY RECORD

AGE: OF: 1

G241

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

> TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

SUB CO	NTRATOR Pace T	COMPANY:	PACE TN		PHONE.	(800) 767-5859	FAX	(615) 758-5859
ADDRES	12065	Lebanon Rd			ACCOUNT #.		EMAIL:	
TTY, ST	TATE, ZIP Mt. Ju	lliet, TN 37122						
						#CO		
TEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	NTAINERS AI	NALYTIC	CAL COMMENTS
1	2102894-001F	Eagle Springs	1LHDPEHNO	Aqueous	2/19/2021 9:57:00 AM	2 Gross Alpha/Beta GW	<2	1320608-01
2	2102894-001G	Eagle Springs	1LHDPEHNO	Aqueous	2/19/2021 9:57:00 AM	2 Ra 226/228 GW	<2	67

		ipt	Checklist	
COC Seal Present/Intact:	13-	_N	If Applicable	
COC Signed/Accurate:	14	N	VOA Zero Headspace:	Y N
Bottles arrive intact:	Y	N	Pres.Correct/Check:	TY N
Correct bottles used:	1	N		
Sufficient volume sent:	1	N		
RAD Screen <0.5 mR/hr:	Y	N		
	1			

SPECIAL INSTRUCTIONS / COMMENTS: Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you. REPORT TRANSMITTAL DESIRED: 2/19/2021 1:53 PM HARDCOPY (extra cost) FAX ONLINE Relinquished By: Date: Time: Received By: Time: Time Relinquished By: Date: Time: Received By: Date: Next BD 2nd BD 3rd BD TAT: RUSH

Hall Environmental Analysis Laboratory, Inc.

WO#: **2102894**

26-Mar-21

Client: MM DW Testing

Sample ID: MB-58277 SampType: MBLK TestCode: EPA Method 200.7: Metals

Client ID: PBW Batch ID: 58277 RunNo: 75498

Prep Date: 2/23/2021	Analysis	Date: 2/	24/2021	S	SeqNo: 2	668198	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	ND	0.020								
Barium	ND	0.0030								
Boron	ND	0.040								
Calcium	ND	1.0								
Chromium	ND	0.0060								
Iron	ND	0.050								
Magnesium	ND	1.0								
Manganese	ND	0.0020								
Nickel	ND	0.010								
Potassium	ND	1.0								
Silver	ND	0.0050								
Sodium	ND	1.0								
Zinc	ND	0.010								

Sample ID: LLLCS-58277	Samp	Type: LC	SLL	Tes	tCode: El	PA Method	200.7: Metals			
Client ID: BatchQC	Bato	ch ID: 58	277	F	RunNo: 7	5498				
Prep Date: 2/23/2021	Analysis	Date: 2/	24/2021	5	SeqNo: 2	668200				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	ND	0.020	0.01000	0	135	50	150			
Barium	ND	0.0030	0.002000	0	129	50	150			
Boron	0.043	0.040	0.04000	0	106	50	150			
Calcium	ND	1.0	0.5000	0	104	50	150			
Chromium	ND	0.0060	0.006000	0	97.7	50	150			
Iron	ND	0.050	0.02000	0	123	50	150			
Magnesium	ND	1.0	0.5000	0	102	50	150			
Manganese	0.0021	0.0020	0.002000	0	105	50	150			
Nickel	ND	0.010	0.005000	0	118	50	150			
Potassium	ND	1.0	0.5000	0	98.2	50	150			
Sodium	ND	1.0	0.5000	0	106	50	150			
Zinc	0.012	0.010	0.01000	0	116	50	150			

Sample ID: LCS-58277 SampType: LCS				Tes	TestCode: EPA Method 200.7: Metals					
Client ID: LCSW	Batch ID: 58277			F	RunNo: 7	5498				
Prep Date: 2/23/2021	Analysis	Date: 2/ 2	24/2021	S	SeqNo: 2	668202	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.57	0.020	0.5000	0	113	85	115			
Barium	0.52	0.0030	0.5000	0	105	85	115			
Boron	0.56	0.040	0.5000	0	111	85	115			

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 9 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2102894**

26-Mar-21

Client: NM DW Testing

Sample ID: LCS-58277	SampType: LCS	Tes	TestCode: EPA Method 200.7: Metals				
Client ID: LCSW	Batch ID: 58277	F	RunNo: 75498				
Prep Date: 2/23/2021	Analysis Date: 2/24/2	021	SeqNo: 2668202	Units: mg/L			
Analyte	Result PQL SP	K value SPK Ref Val	%REC LowLimit	HighLimit %RPD	RPDLimit Qual		
Calcium	51 1.0	50.00 0	101 85	115			
Chromium	0.53 0.0060	0.5000 0	105 85	115			
Iron	0.50 0.050	0.5000 0	101 85	115			
Magnesium	51 1.0	50.00 0	102 85	115			
Manganese	0.51 0.0020	0.5000 0	102 85	115			
Nickel	0.51 0.010	0.5000 0	102 85	115			
Potassium	52 1.0	50.00 0	104 85	115			
Silver	0.12 0.0050	0.1000 0	116 85	115	S		
Sodium	52 1.0	50.00 0	104 85	115			
Zinc	0.52 0.010	0.5000 0	104 85	115			
Sample ID: LLLCS-58277	SampType: LCSLL	. Tes	tCode: EPA Method	200.7: Metals			
Client ID: BatchQC	Batch ID: 58277	F	RunNo: 75498				
Prep Date: 2/23/2021	Analysis Date: 2/24/2	2021	SeqNo: 2668237	Units: mg/L			
Analyte	Result PQL SP	K value SPK Ref Val	%REC LowLimit	HighLimit %RPD	RPDLimit Qual		
Silver	0.0050 0.0050 0.	.005000 0	101 50	150			
Sample ID: MB-58277	SampType: MBLK	Tes	tCode: EPA Method	200.7: Metals			
Client ID: PBW	Batch ID: 58277	F	RunNo: 75525				
Prep Date: 2/23/2021	Analysis Date: 2/25/2	0024	SeqNo: 2669608	Units: mg/L			
1 10p Date. 2/23/2021	Analysis Date. 2/23/2	.021	2003000	Omio. mg/L			
Analyte	Result PQL SP	K value SPK Ref Val	%REC LowLimit	HighLimit %RPD	RPDLimit Qual		
Silver	ND 0.0050						
Sample ID: LLLCS-58277	SampType: LCSLL	. Tes	tCode: EPA Method	200.7: Metals			
Client ID: BatchQC	Batch ID: 58277	F	RunNo: 75525				
Prep Date: 2/23/2021	Analysis Date: 2/25/2	021	SeqNo: 2669609	Units: mg/L			
Analyte	Result PQL SP	K value SPK Ref Val	%REC LowLimit	HighLimit %RPD	RPDLimit Qual		
Silver	0.0057 0.0050 0.	.005000 0	113 50	150			
Sample ID: LCS-58277	SampType: LCS	Tes	tCode: EPA Method	200.7: Metals			
Client ID: LCSW	Batch ID: 58277	F	RunNo: 75525				
Prep Date: 2/23/2021	Analysis Date: 2/25/2		SeqNo: 2669610	Units: mg/L			
Analyte	Result PQL SP	K value SPK Ref Val	%REC LowLimit	HighLimit %RPD	RPDLimit Qual		
Silver	0.10 0.0050	0.1000 0	104 85	115			

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: 2102894

26-Mar-21

Client:

Sample ID: MSLLLCS-58277

Project: NM DW Testing

Sample ID: MB-58277 SampType: MBLK TestCode: EPA 200.8: Metals

Client ID: PBW Batch ID: 58277 RunNo: 75535

SampType: LCSLL

Prep Date: 2/23/2021 Analysis Date: 2/25/2021 SeqNo: 2669885 Units: mg/L

PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Result Qual Antimony ND 0.0010 Arsenic ND 0.0010 Beryllium ND 0.0010 Cadmium ND 0.00050 Copper ND 0.0010 0.00050 Lead ND Selenium 0.0010 Thallium 0.00025 ND Uranium 0.00050

Client ID: BatchQC Batch ID: 58277 RunNo: 75535 Prep Date: 2/23/2021 Analysis Date: 2/25/2021 SeqNo: 2669886 Units: mg/L PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual 50 Antimony ND 0.0010 0.001000 0 79.1 150 ND 0.0010 0.001000 0 84.4 50 150 Arsenic Beryllium ND 0.0010 0.001000 0 89.7 50 150 0 98.9 Cadmium ND 0.00050 0.0005000 50 150 ND 0.0010 0 97.1 50 150 Copper 0.001000

0

0

0

98.7

103

92.5

50

50

50

150

150

150

TestCode: EPA 200.8: Metals

Sample ID: MSLCS-58277 TestCode: EPA 200.8: Metals SampType: LCS

0.00050 0.0005000

0.00050 0.0005000

0.001000

Batch ID: 58277 RunNo: 75535 Client ID: LCSW

0.0010

ND

ND

0.0010

Prep Date: 2/23/2021	Analysis Date:	2/25/2021	SeqNo: 2669887			Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	0.025 0.001	0.02500	0	101	85	115			
Arsenic	0.025 0.001	0.02500	0	98.2	85	115			
Beryllium	0.026 0.001	0.02500	0	104	85	115			
Cadmium	0.012 0.0005	0.01250	0	99.8	85	115			
Copper	0.024 0.001	0.02500	0	97.2	85	115			
Lead	0.012 0.0005	0.01250	0	97.0	85	115			
Selenium	0.024 0.001	0.02500	0	95.0	85	115			
Thallium	0.012 0.0002	0.01250	0	97.1	85	115			
Uranium	0.012 0.0005	0.01250	0	95.3	85	115			

Qualifiers:

Lead

Selenium

Uranium

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 11 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: 2102894

26-Mar-21

Client:

Thallium

Project: NM DW Testing

Sample ID: MSLLLCS-TL-58277 SampType: LCSLL TestCode: EPA 200.8: Metals

Client ID: BatchQC Batch ID: 58277 RunNo: 75535

ND 0.00025 0.0002500

Prep Date: 2/23/2021 Analysis Date: 2/25/2021 SeqNo: 2669893 Units: mg/L

Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0

94.9

50

150

Qualifiers: Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 12 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2102894**

26-Mar-21

Client:

Project: NM DW Testing

Sample ID: MB-58270 SampType: MBLK TestCode: EPA Method 245.1: Mercury

Client ID: PBW Batch ID: 58270 RunNo: 75476

Prep Date: 2/23/2021 Analysis Date: 2/23/2021 SeqNo: 2667246 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LLLCS-58270 SampType: LCSLL TestCode: EPA Method 245.1: Mercury

Client ID: BatchQC Batch ID: 58270 RunNo: 75476

Prep Date: 2/23/2021 Analysis Date: 2/23/2021 SeqNo: 2667247 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020 0.0001500 0 73.4 50 150

Sample ID: LCS-58270 SampType: LCS TestCode: EPA Method 245.1: Mercury

Client ID: LCSW Batch ID: 58270 RunNo: 75476

Prep Date: 2/23/2021 Analysis Date: 2/23/2021 SeqNo: 2667248 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0048 0.00020 0.005000 0 96.5 85 115

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit
S Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 13 of 27

Hall Environmental Analysis Laboratory, Inc.

2.3

0.10

WO#: **2102894**

26-Mar-21

Client: NM DW Testing

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R75434 RunNo: 75434

Prep Date: Analysis Date: 2/19/2021 SeqNo: 2665600 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Fluoride
 ND
 0.10

 Nitrogen, Nitrite (As N)
 ND
 0.10

 Bromide
 ND
 0.10

 Nitrogen, Nitrate (As N)
 ND
 0.10

 Phosphorus, Orthophosphate (As P
 ND
 0.50

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R75434 RunNo: 75434 Prep Date: Analysis Date: 2/19/2021 SeqNo: 2665601 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.51 0.10 0.5000 90 0 102 110 Fluoride Nitrogen, Nitrite (As N) 0.98 0.10 1.000 0 98.3 90 110 0 98.4 2.5 0.10 2.500 90 110 **Bromide** 101 2.5 0.10 2.500 0 90 110 Nitrogen, Nitrate (As N) Phosphorus, Orthophosphate (As P 4.7 0.50 5.000 O 94.7 90 110

Sample ID: 2102894-001DMS SampType: ms TestCode: EPA Method 300.0: Anions Client ID: Eagle Springs Batch ID: R75434 RunNo: 75434 Prep Date: Analysis Date: 2/19/2021 SeqNo: 2665627 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Nitrogen, Nitrite (As N) 0.10 80.7 0.81 1.000 n 75.5 113 Bromide 2.8 0.10 2.500 92.5 85.9 106 0.5126

0.03540

2.500

Sample ID: 2102894-001DMSD TestCode: EPA Method 300.0: Anions SampType: msd **Eagle Springs** Batch ID: **R75434** RunNo: **75434** Client ID: Prep Date: Analysis Date: 2/19/2021 SeqNo: 2665628 Units: mg/L Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte LowLimit Nitrogen, Nitrite (As N) 0.81 0.10 1.000 0 80.6 75.5 113 0.149 20 **Bromide** 2.9 0.10 2.500 0.5126 95.0 85.9 106 2.19 20 Nitrogen, Nitrate (As N) 2.3 0.10 2.500 0.03540 92.4 86.8 110 0.440 20

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: **R75454** RunNo: 75454 Prep Date: Analysis Date: 2/22/2021 SeqNo: 2666659 Units: mg/L PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte Result LowLimit

Qualifiers:

Nitrogen, Nitrate (As N)

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

92.0

86.8

110

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 14 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2102894**

Qual

26-Mar-21

Client:

Project: NM DW Testing

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R75454 RunNo: 75454

Prep Date: Analysis Date: 2/22/2021 SeqNo: 2666659 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Chloride
 ND
 0.50

 Sulfate
 ND
 0.50

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R75454 RunNo: 75454

Prep Date: Analysis Date: 2/22/2021 SeqNo: 2666660 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** 90 Chloride 4.8 0.50 5.000 0 95.7 110 Sulfate 9.9 0.50 10.00 0 98.7 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 15 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2102894**

26-Mar-21

Client:

W (DW T - - :

Project: NM DW Testing

Sample ID: MB-58232 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range

Client ID: PBW Batch ID: 58232 RunNo: 75467

Prep Date: 2/22/2021 Analysis Date: 2/23/2021 SeqNo: 2667073 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 1.0

Motor Oil Range Organics (MRO) ND 5.0

Surr: DNOP 1.1 1.000 112 63.7 164

Sample ID: LCS-58232 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range

Client ID: LCSW Batch ID: 58232 RunNo: 75467

Prep Date: 2/22/2021 Analysis Date: 2/23/2021 SeqNo: 2667074 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Diesel Range Organics (DRO)
 5.3
 1.0
 5.000
 0
 105
 70
 130

 Surr: DNOP
 0.54
 0.5000
 108
 63.7
 164

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 16 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: 2

2102894

26-Mar-21

Client:

Project: NM DW Testing

Sample ID: 2.5 GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: R75423 RunNo: 75423

Prep Date: Analysis Date: 2/19/2021 SeqNo: 2665188 Units: %Rec

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Surr: BFB 21 20.00 103 66.7 119

Sample ID: MB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R75423 RunNo: 75423

Prep Date: Analysis Date: 2/19/2021 SeqNo: 2665189 Units: %Rec

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Surr: BFB 18 20.00 91.9 66.7 119

Sample ID: 2.5 ug GRO Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: R75442 RunNo: 75442

Prep Date: Analysis Date: 2/20/2021 SeqNo: 2665893 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 0.51
 0.050
 0.5000
 0
 102
 72.5
 114

 Surr: BFB
 20
 20.00
 100
 66.7
 119

Sample ID: MB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R75442 RunNo: 75442

Prep Date: Analysis Date: 2/20/2021 SeqNo: 2665894 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 19 20.00 93.3 66.7 119

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 17 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: 2102894

26-Mar-21

Client:

Project: NM DW Testing

Sample ID: 100ng Ics	SampType: LCS			TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch	1D: R7	5496	F	RunNo: 7	5496				
Prep Date:	Analysis Date: 2/23/2021			9	SeqNo: 2	668162	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	92.7	70	130			
Toluene	19	1.0	20.00	0	96.5	70	130			
Chlorobenzene	20	1.0	20.00	0	101	70	130			
1,1-Dichloroethene	18	1.0	20.00	0	89.6	70	130			
Trichloroethene (TCE)	16	1.0	20.00	0	78.5	70	130			
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.8	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		94.5	70	130			
Surr: Dibromofluoromethane	9.1		10.00		90.7	70	130			
Surr: Toluene-d8	10		10.00		102	70	130			

Sample ID: mb1	SampType: MBLK	TestCode: EPA Method 8260B: VOLATILES
Client ID: PBW	Batch ID: R75496	RunNo: 75496
Prep Date:	Analysis Date: 2/23/2021	SeqNo: 2668163 Units: μg/L

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 18 of 27

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: 2102894

26-Mar-21

Client:

Sample ID: mb1

Project: NM DW Testing

Client ID: PBW Batch ID: **R75496** RunNo: **75496**

TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW	Batch ID: R75496		ı	RunNo: 7	5496					
Prep Date:	Analysis Date: 2/23/2021		;	SeqNo: 2	668163	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
· ·										

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 19 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2102894**

26-Mar-21

Client:

Project: NM DW Testing

Sample ID: mb1	SampType: MBLK			TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch ID: R75496			F	RunNo: 7	5496				
Prep Date:	Analysis Date: 2/23/2021			SeqNo: 2668163			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.7		10.00		86.9	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		103	70	130			
Surr: Dibromofluoromethane	9.6		10.00		95.9	70	130			
Surr: Toluene-d8	10		10.00		101	70	130			

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 20 of 27

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **2102894**

26-Mar-21

Client:

Sample ID: mb-58272

Project: NM DW Testing

PBW Client ID: Batch ID: 58272 RunNo: 75611 Prep Date: 2/23/2021 Analysis Date: 3/1/2021 SeqNo: 2673469 Units: µg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Acenaphthene ND 5.0 Acenaphthylene ND 5.0 ND 5.0 Aniline Anthracene ND 5.0 Azobenzene ND 5.0 Benz(a)anthracene ND 5.0 Benzo(a)pyrene ND 5.0 Benzo(b)fluoranthene ND 5.0 Benzo(g,h,i)perylene ND 5.0 Benzo(k)fluoranthene ND 5.0 Benzoic acid ND 5.0 5.0 ND Benzyl alcohol ND Bis(2-chloroethoxy)methane 5.0 Bis(2-chloroethyl)ether ND 5.0 Bis(2-chloroisopropyl)ether ND 5.0 Bis(2-ethylhexyl)phthalate ND 10 ND 5.0 4-Bromophenyl phenyl ether Butyl benzyl phthalate ND 5.0 Carbazole ND 5.0 4-Chloro-3-methylphenol ND 5.0 ND 4-Chloroaniline 5.0 2-Chloronaphthalene ND 5.0 2-Chlorophenol ND 5.0 4-Chlorophenyl phenyl ether ND 5.0 Chrysene ND 5.0 ND 10 Di-n-butyl phthalate Di-n-octyl phthalate ND 10 ND Dibenz(a,h)anthracene 5.0 Dibenzofuran ND 5.0 1,2-Dichlorobenzene ND 5.0 1,3-Dichlorobenzene ND 5.0 ND 1,4-Dichlorobenzene 5.0 3,3'-Dichlorobenzidine ND 5.0

TestCode: EPA Method 8270C: Semivolatiles

Qualifiers:

Diethyl phthalate

Dimethyl phthalate

2,4-Dichlorophenol

2,4-Dimethylphenol

2,4-Dinitrophenol

4,6-Dinitro-2-methylphenol

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND

ND

ND

ND

ND

ND

10

10

5.0

5.0

5.0

5.0

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2102894**

26-Mar-21

Client:

Project: NM DW Testing

Sample ID: mb-58272	SampT	уре: МЕ	BLK	TestCode: EPA Method 8270C: Semivolatiles						
Client ID: PBW	Batch	ID: 58 2	272	ı	RunNo: 7	5611				
Prep Date: 2/23/2021	Analysis D	ate: 3/	1/2021	;	SeqNo: 20	673469	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	5.0								
2,6-Dinitrotoluene	ND	5.0								
Fluoranthene	ND	10								
Fluorene	ND	5.0								
Hexachlorobenzene	ND	5.0								
Hexachlorobutadiene	ND	5.0								
Hexachlorocyclopentadiene	ND	5.0								
Hexachloroethane	ND	5.0								
Indeno(1,2,3-cd)pyrene	ND	5.0								
Isophorone	ND	5.0								
1-Methylnaphthalene	ND	5.0								
2-Methylnaphthalene	ND	5.0								
2-Methylphenol	ND	5.0								
3+4-Methylphenol	ND	5.0								
N-Nitrosodi-n-propylamine	ND	5.0								
N-Nitrosodimethylamine	ND	5.0								
N-Nitrosodiphenylamine	ND	5.0								
Naphthalene	ND	5.0								
2-Nitroaniline	ND	5.0								
3-Nitroaniline	ND	5.0								
4-Nitroaniline	ND	5.0								
Nitrobenzene	ND	5.0								
2-Nitrophenol	ND	5.0								
4-Nitrophenol	ND	5.0								
Pentachlorophenol	ND	5.0								
Phenanthrene	ND	5.0								
Phenol	ND	5.0								
Pyrene	ND	5.0								
Pyridine	ND	5.0								
1,2,4-Trichlorobenzene	ND	5.0								
2,4,5-Trichlorophenol	ND	5.0								
2,4,6-Trichlorophenol	ND	5.0								
Surr: 2-Fluorophenol	90		200.0		45.2	15	88.8			
Surr: Phenol-d5	71		200.0		35.4	15	71.9			
Surr: 2,4,6-Tribromophenol	93		200.0		46.5	15	97.4			
Surr: Nitrobenzene-d5	57		100.0		56.7	15	117			
Surr: 2-Fluorobiphenyl	55		100.0		55.4	15	100			
Surr: 4-Terphenyl-d14	96		100.0		95.7	15	120			

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 22 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2102894**

26-Mar-21

Client: NM DW Testing

Sample ID: Ics-58272 SampType: LCS TestCode: EPA Method 8270C: Semivolatiles Client ID: LCSW Batch ID: 58272 RunNo: 75611 Prep Date: 2/23/2021 Analysis Date: 3/1/2021 SeqNo: 2673470 Units: µg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Acenaphthene 70 5.0 100.0 0 70.5 23.1 103 4-Chloro-3-methylphenol 130 5.0 200.0 0 67.4 27.5 113 140 5.0 200.0 0 68.1 17.9 2-Chlorophenol 103 1,4-Dichlorobenzene 58 5.0 100.0 0 58.1 15 79.9 2,4-Dinitrotoluene 61 5.0 100.0 0 61.5 22.9 97.2 N-Nitrosodi-n-propylamine 61 5.0 100.0 0 61.0 34.1 104 4-Nitrophenol 100 5.0 200.0 0 52.0 20 78.8 Pentachlorophenol 140 5.0 200.0 0 69.1 26.8 97.6 Phenol 86 5.0 200.0 0 42.8 15 66.2 97 5.0 100.0 0 97.1 41.2 Pyrene 114 1,2,4-Trichlorobenzene 57 100.0 57.1 15 88.2 Surr: 2-Fluorophenol 87 200.0 43.4 15 88.8 67 200.0 33.3 15 71.9 Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol 130 200.0 66.9 15 97.4 Surr: Nitrobenzene-d5 58 100.0 58.2 15 117 Surr: 2-Fluorobiphenyl 62 100.0 61.7 15 100 Surr: 4-Terphenyl-d14 92 100.0 120 91.5 15

Sample ID: Icsd-58272	SampT	SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles								
Client ID: LCSS02	Batch	n ID: 582	272	F	RunNo: 7	5611				
Prep Date: 2/23/2021	Analysis D	ate: 3/	1/2021	5	SeqNo: 20	673471	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	56	5.0	100.0	0	56.0	23.1	103	22.8	52.7	
4-Chloro-3-methylphenol	110	5.0	200.0	0	55.3	27.5	113	19.7	45.2	
2-Chlorophenol	120	5.0	200.0	0	58.2	17.9	103	15.7	51.8	
1,4-Dichlorobenzene	49	5.0	100.0	0	49.0	15	79.9	16.9	59.6	
2,4-Dinitrotoluene	51	5.0	100.0	0	51.4	22.9	97.2	17.9	46.5	
N-Nitrosodi-n-propylamine	50	5.0	100.0	0	50.1	34.1	104	19.5	47.7	
4-Nitrophenol	91	5.0	200.0	0	45.3	20	78.8	13.8	42.6	
Pentachlorophenol	120	5.0	200.0	0	58.6	26.8	97.6	16.6	48.7	
Phenol	78	5.0	200.0	0	38.8	15	66.2	9.97	47.1	
Pyrene	86	5.0	100.0	0	85.7	41.2	114	12.5	26.6	
1,2,4-Trichlorobenzene	48	5.0	100.0	0	48.4	15	88.2	16.3	52.5	
Surr: 2-Fluorophenol	71		200.0		35.4	15	88.8	0	0	
Surr: Phenol-d5	57		200.0		28.6	15	71.9	0	0	
Surr: 2,4,6-Tribromophenol	110		200.0		54.1	15	97.4	0	0	
Surr: Nitrobenzene-d5	47		100.0		46.6	15	117	0	0	
Surr: 2-Fluorobiphenyl	45		100.0		45.5	15	100	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 23 of 27

Hall Environmental Analysis Laboratory, Inc.

77

WO#: **2102894**

26-Mar-21

Client:

Surr: 4-Terphenyl-d14

Project: NM DW Testing

Sample ID: Icsd-58272 SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles

100.0

Client ID: LCSS02 Batch ID: 58272 RunNo: 75611

Prep Date: 2/23/2021 Analysis Date: 3/1/2021 SeqNo: 2673471 Units: μg/L

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result LowLimit HighLimit Qual Surr: 4-Terphenyl-d14 77 100.0 76.8 15 120 Λ 0

Sample ID: mb-58459 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBW Batch ID: 58459 RunNo: 75795 Prep Date: 3/3/2021 Analysis Date: 3/8/2021 SeqNo: 2681657 Units: %Rec PQL SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result LowLimit HighLimit Qual Surr: 2-Fluorophenol 93 200.0 46.4 15 88.8 Surr: Phenol-d5 71 200.0 35.7 15 71.9 Surr: 2,4,6-Tribromophenol 120 59.3 15 200.0 97.4 Surr: Nitrobenzene-d5 59 100.0 59.3 15 117 100.0 54 53.6 100 Surr: 2-Fluorobiphenyl 15

76.6

120

Sample ID: Ics-58459 SampType: LCS TestCode: EPA Method 8270C: Semivolatiles Client ID: LCSW Batch ID: 58459 RunNo: 75795 Prep Date: 3/3/2021 Analysis Date: 3/8/2021 Units: %Rec SeqNo: 2681658 SPK value SPK Ref Val %REC HighLimit **RPDLimit** Analyte Result LowLimit %RPD Qual Surr: 2-Fluorophenol 100 200.0 52.0 15 88.8 200.0 43.0 71.9 Surr: Phenol-d5 86 15 Surr: 2,4,6-Tribromophenol 190 200.0 94.0 15 97.4 Surr: Nitrobenzene-d5 69 69.4 15 100.0 117 Surr: 2-Fluorobiphenyl 72 100.0 72.4 15 100 Surr: 4-Terphenyl-d14 90.3 90 100.0 15 120

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 24 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2102894**

26-Mar-21

Client:

Project: NM DW Testing

Sample ID: Ics-1 99.5uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R75552 RunNo: 75552

Prep Date: Analysis Date: 2/25/2021 SeqNo: 2670482 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 10 99.50 0 102 85 115

Sample ID: 2102894-001D DUP SampType: DUP TestCode: SM2510B: Specific Conductance

Client ID: Eagle Springs Batch ID: R75552 RunNo: 75552

Prep Date: Analysis Date: 2/25/2021 SeqNo: 2670510 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 16000 50 5.97 20

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 25 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2102894**

26-Mar-21

Client:

Project: NM DW Testing

Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R75456 RunNo: 75456

Prep Date: Analysis Date: 2/22/2021 SeqNo: 2666766 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R75456 RunNo: 75456

Prep Date: Analysis Date: 2/22/2021 SeqNo: 2666767 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 72.92 20.00 80.00 0 91.2 90 110

Sample ID: 2102894-001D DUP SampType: dup TestCode: SM2320B: Alkalinity

Client ID: Eagle Springs Batch ID: R75456 RunNo: 75456

Prep Date: Analysis Date: 2/22/2021 SeqNo: 2666771 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 144.5 20.00 1.48 20

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 26 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2102894**

26-Mar-21

Client:

Project: NM DW Testing

Sample ID: MB-58254 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: **PBW** Batch ID: **58254** RunNo: **75493**

Prep Date: 2/22/2021 Analysis Date: 2/24/2021 SeqNo: 2668079 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-58254 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 58254 RunNo: 75493

Prep Date: 2/22/2021 Analysis Date: 2/24/2021 SeqNo: 2668080 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1010 20.0 1000 0 101 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 27 of 27

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque. NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: clients.hallenvironmental.com Client Name: Work Order Number: 2102894 RcptNo: 1 Received By: andyl Andy Freeman 2/19/2021 1:10:00 PM Completed By: Erin Melendrez 2/19/2021 1:41:04 PM SPA 2.19.21 Reviewed By: Chain of Custody 1. Is Chain of Custody complete? Yes 🗸 No 🗌 Not Present 2. How was the sample delivered? Client Log In 3. Was an attempt made to cool the samples? Yes V No 🗌 NA 🗌 Were all samples received at a temperature of >0° C to 6.0°C No 🗸 Yes 🗌 NA 🗌 Samples were collected the same day and chilled. Sample(s) in proper container(s)? Yes 🗸 No 🗌 6. Sufficient sample volume for indicated test(s)? Yes V No 🗌 7. Are samples (except VOA and ONG) properly preserved? Yes V No 🗌 8. Was preservative added to bottles? No V Yes 🗌 NA 🗌 9. Received at least 1 vial with headspace <1/4" for AQ VOA? Yes No M 10. Were any sample containers received broken? Yes No V # of preserved bottles checked 11. Does paperwork match bottle labels? Yes 🗸 No 🗌 for pH: (Note discrepancies on chain of custody) (<2/or >12 unless noted) 12. Are matrices correctly identified on Chain of Custody? Adjusted? Yes 🗸 No 🗌 13. Is it clear what analyses were requested? Yes V No 🗌 Checked by: Con 2/19/4 14. Were all holding times able to be met? Yes V No 🗌 (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes No 🗌 NA V Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: 17. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By

29.3

Good

(Chain	-of-C	ustody Record	Turn-Around	d Time:	THE PERSON NAMED IN	1		10000											
Clie			,							ŀ	A	LL	E	N	/IF	20	N	ME	NT	AL
_				☐ Standar] [RY
				Project Nam	DW TE		100								men				. •	
Mai				NM	DW TE	esting		40												
				Project #:		7	ł										IM 87			
Pho				-			10000	Te	el. 50	05-34	15-3	and the same of					-410	7	100	. 14
Pho												A	nal	ysis	Req	ues	t			
ema				Project Mana			1	0					SO4		1	£				
QAV				Nul	e Kha	la.	802	MR	PCB's		NS		8,4			pse	1			
						771	TMB's (8021)	0	PC		SSI	19	PO ₄ ,			ITA	25.4			
	itation:		ompliance	Sampler:			MB	DR	382	7	327		NO ₂ ,			ser	7			
□ NEL		□ Other		On Ice:	Yes	□ No	_	00	s/8(90	or				(A)	Pre	~	0.1		
	(Type)	1		# of Coolers:			MTBE	(G	ide	pc	310	stals	Br, NO ₃ ,		>-	m.	Attach			
				Cooler Temp	(including CF):	29,3-0-29,3 (°C)	M	150	stic	etho	/ 83	Me	٦,	OA)	emi	lifor	#	5		
				Container	Droomative	LIFAL NI	×	80	Pe	3	s b	A 8	ω.	Š	(S	ပိ	6)			
Date	Time	Matrix	Sample Name	Type and #	Preservative Type	2107894	BTEX/	TPH:8015D(GRO / DRO / MRO)	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310 or 8270SIMS	RCRA 8 Metals	CI, F,	8260 (VOA)	8270 (Semi-VOA)	Total Coliform (Present/Absent)	3			
2/19	9:574			Тура ана п	1,700			ᅱ	- 0		-	<u>re</u>	0	80	ω	-		+	+	+-
	1.5 741		Eagle Springs Trip Link			-001	-	\dashv	-	_	_	_	_	\perp			X		\bot	
			Trip Link			-002														
					-)														\top	
					-		\neg	\dashv	_	\dashv	\exists	\dashv		\dashv			\dashv	+	+	++
							\dashv	\dashv	\dashv	\dashv	+	-	\dashv	-	-	\dashv	+	_	+	\vdash
							_	\dashv	_	\rightarrow	_	_	_	_						
												4 11 11								
													\neg	\neg						
						788 1 1 1	\dashv	\neg	\neg	\forall	\dashv	\dashv	\dashv			\dashv	_	_	1	
			A				\dashv	-	\dashv	+	+		-	\dashv	-	\dashv	+	-	+	\vdash
	100						+	+	+	-	+	-		-	-			\perp	\bot	
				-					_											
				=		1-3-									slet					
						The same										7				
Date:		Relinquishe	- 0 (1)	Received by:	Via:	Date Time	Rema	arks:					,							
114	13:10	Lya,	and Derm	1	/	2/19/21 /3/0			0	1 1	10	d	12/	19/2	1					
Date:	Time:	Relinquishe	d by:	Received by:	Via:	Date Time				1 -4	()	/			,					

Sample du to cerire today.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX; 505-345-4107 Website: clients.hallenvironmental.com

QUOTATION

Quote#:

2137

Date:

2/17/2021

Appendix A-2

Hall Report 2: Pretreated Toray710 RO Filtered Water Results

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL 505-345-3975 FAX 505-345-4107 Website clients.hallenvironmental.com

February 09, 2022

Nyle Khan

FAX:

RE: Eagle Springs OrderNo.: 2201113

Dear Nyle Khan:

Hall Environmental Analysis Laboratory received 1 sample(s) on 1/4/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **2201113**

Date Reported: 2/9/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Client Sample ID: Eagle Springs

Project: Eagle Springs
 Collection Date: 1/4/2022 12:30:00 PM

 Lab ID: 2201113-001
 Matrix: AQUEOUS
 Received Date: 1/4/2022 4:11:00 PM

EPA METHOD 504.1: EDB/DBCP	Analyses	Result	RL Qua	al Units	DF	Date Analyzed
Page	EPA METHOD 504.1: EDB/DBCP					Analyst: JME
Fluoride	1,2-Dibromo-3-chloropropane	ND	0.019	μg/L	1	1/12/2022 3:31:17 PM
Fluoride	1,2-Dibromoethane	ND	0.0095	μg/L	1	1/12/2022 3:31:17 PM
Chloride 29 10 mg/L 20 1/5/2022 1:49:41 PM Nitrogen, Nitrite (As N) ND 0.10 mg/L 1 1/5/2022 1:12:28 PM Nitrogen, Nitrate (As N) ND 0.10 mg/L 1 1/5/2022 1:12:28 PM Sulfate 82 10 mg/L 20 1/5/2022 1:12:28 PM EPA METHOD 200.7: DISSOLVED METALS ND 0.020 mg/L 1 1/6/2022 2:05:36 PM Barium 0.0031 0.0020 mg/L 1 1/6/2022 2:05:36 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Boron 2.0 0.20 mg/L 1 1/6/2022 2:05:36 PM Cadmium ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Chromium ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Copper ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Copper ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM	EPA METHOD 300.0: ANIONS					Analyst: LRN
Nitrogen, Nitrite (As N) ND 0.10 mg/L 1 1/5/2022 1:12:28 PM Nitrogen, Nitrate (As N) ND 0.10 mg/L 1 1/5/2022 1:12:28 PM Sulfate 82 10 mg/L 1 1/5/2022 1:12:28 PM EPA METHOD 200.7: DISSOLVED METALS *** Transpan="2">*** Tr	Fluoride	0.17	0.10	mg/L	1	1/5/2022 1:12:28 PM
Nitrogen, Nitrate (As N) ND 0.10 mg/L 1 1/5/2022 1:12:28 PM Sulfate 82 10 mg/L 20 1/5/2022 1:49:41 PM EPA METHOD 200.7: DISSOLVED METALS Aluminum ND 0.020 mg/L 1 1/6/2022 2:05:36 PM Barium 0.0031 0.0020 mg/L 1 1/6/2022 2:05:36 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Boron 2.0 0.20 mg/L 5 1/6/2022 2:05:36 PM Chromium ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Chromium ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Cobalt ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Copper ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Mord ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Manganese ND 0.0020 mg/L 1	Chloride	29	10	mg/L	20	1/5/2022 1:49:41 PM
Sulfate 82 10 mg/L 20 1/5/2022 1:49:41 PM EPA METHOD 200.7: DISSOLVED METALS Aluminum ND 0.020 mg/L 1 1/6/2022 2:05:36 PM Barium 0.0031 0.0020 mg/L 1 1/6/2022 2:05:36 PM Beryllium ND 0.0020 mg/L 5 1/6/2022 2:05:36 PM Boron 2.0 0.20 mg/L 5 1/6/2022 2:05:36 PM Cadmium ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Chromium ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Cobalt ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Copper ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Molybdenum ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Nickel ND	Nitrogen, Nitrite (As N)	ND	0.10	mg/L	1	1/5/2022 1:12:28 PM
Analyst: ELS Analyst: ELS Analyst: ELS Aluminum ND 0.020 mg/L 1 1/6/2022 2:05:36 PM Barium 0.0031 0.0020 mg/L 1 1/6/2022 2:05:36 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Boron 2.0 0.20 mg/L 5 1/6/2022 2:05:36 PM Cadmium ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Cadmium ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Cobalt ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Cobalt ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Copper ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.0030 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.0031 mg/L 1 1/6/2022 1:45:10 PM Iron ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Iron ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Iron ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Iron ND 0.0050 mg/	Nitrogen, Nitrate (As N)	ND	0.10	mg/L	1	1/5/2022 1:12:28 PM
Aluminum ND 0.020 mg/L 1 1/6/2022 2:05:36 PM Barium 0.0031 0.0020 mg/L 1 1/6/2022 2:05:36 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Boron 2.0 0.20 mg/L 5 1/6/2022 2:05:36 PM Cadmium ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Chromium ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Copper ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Copper ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Morybodenum ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Mickel ND 0.0080 mg/L 1 1/6/2022 2:05:36 PM Silver ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM EPA METHOD 200.7: METALS	Sulfate	82	10	mg/L	20	1/5/2022 1:49:41 PM
Barium 0.0031 0.0020 mg/L 1 1/6/2022 2:05:36 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Boron 2.0 0.20 mg/L 5 1/6/2022 2:07:14 PM Cadmium ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Chromium ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Cobalt ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Copper ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Molybdenum ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Mickel ND 0.0080 mg/L 1 1/6/2022 2:05:36 PM Silver ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM EPA METHOD 200.7: METALS T ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM	EPA METHOD 200.7: DISSOLVED METALS					Analyst: ELS
Beryllium ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Boron 2.0 0.20 mg/L 5 1/6/2022 2:05:36 PM Cadmium ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Chromium ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Cobalt ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Copper ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.020 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.020 mg/L 1 1/6/2022 2:05:36 PM Manganese ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Molybdenum ND 0.0080 mg/L 1 1/6/2022 2:05:36 PM Mickel ND 0.0080 mg/L 1 1/6/2022 2:05:36 PM Silver ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Aluminum ND	Aluminum	ND	0.020	mg/L	1	1/6/2022 2:05:36 PM
Boron 2.0 0.20 mg/L 5 1/6/2022 2:07:14 PM Cadmium ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Chromium ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Cobalt ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Copper ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Manganese ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Molybdenum ND 0.0080 mg/L 1 1/6/2022 2:05:36 PM Mickel ND 0.010 mg/L 1 1/6/2022 2:05:36 PM Silver ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Zinc 0.030 0.010 mg/L 1 1/6/2022 2:05:36 PM Zinc ND 0.030 0.010 mg/L 1 1/6/2022 2:45:10 PM Barium	Barium	0.0031	0.0020	mg/L	1	1/6/2022 2:05:36 PM
Cadmium ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Chromium ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Cobalt ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Copper ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Molybdenum ND 0.0080 mg/L 1 1/6/2022 2:05:36 PM Nickel ND 0.010 mg/L 1 1/6/2022 2:05:36 PM Silver ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Zinc 0.030 0.010 mg/L 1 1/6/2022 2:05:36 PM Zinc ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Zinc ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Zinc ND 0.0	Beryllium	ND	0.0020	mg/L	1	1/6/2022 2:05:36 PM
Chromium ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Cobalt ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Copper ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.020 mg/L 1 1/6/2022 2:05:36 PM Manganese ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Molybdenum ND 0.0080 mg/L 1 1/6/2022 2:05:36 PM Mickel ND 0.010 mg/L 1 1/6/2022 2:05:36 PM Silver ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Zinc ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM EPA METHOD 200.7: METALS T ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Barium ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM	Boron	2.0	0.20	mg/L	5	1/6/2022 2:07:14 PM
Cobalt ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Copper ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.020 mg/L 1 1/6/2022 2:05:36 PM Manganese ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Molybdenum ND 0.0080 mg/L 1 1/6/2022 2:05:36 PM Mickel ND 0.010 mg/L 1 1/6/2022 2:05:36 PM Silver ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Zinc 0.030 0.010 mg/L 1 1/6/2022 2:05:36 PM EPA METHOD 200.7: METALS T ND 0.0050 mg/L 1 1/6/2022 1:35:10 PM EPA METHOD 200.7: METALS T Analyst: ELS Analyst: ELS Analyst: ELS Aluminum ND 0.020 mg/L 1 1/6/2022 1:45:10 PM Barium 0.0031 0.0030 mg/L 1 1/6/2022 1:45:10 PM	Cadmium	ND	0.0020	mg/L	1	1/6/2022 2:05:36 PM
Copper ND 0.0060 mg/L 1 1/6/2022 2:05:36 PM Iron ND 0.020 mg/L 1 1/6/2022 2:05:36 PM Manganese ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Molybdenum ND 0.0080 mg/L 1 1/6/2022 2:05:36 PM Nickel ND 0.010 mg/L 1 1/6/2022 2:05:36 PM Silver ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Zinc 0.030 0.010 mg/L 1 1/6/2022 2:05:36 PM EPA METHOD 200.7: METALS T 1/6/2022 2:05:36 PM MICE MICE MICE 1 1/6/2022 2:05:36 PM EPA METHOD 200.7: METALS T ND 0.0050 mg/L 1 1/6/2022 1:45:10 PM Barium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Chromium ND 0.0020 mg/L <td< td=""><td>Chromium</td><td>ND</td><td>0.0060</td><td>mg/L</td><td>1</td><td>1/6/2022 2:05:36 PM</td></td<>	Chromium	ND	0.0060	mg/L	1	1/6/2022 2:05:36 PM
Iron ND 0.020 mg/L 1 1/6/2022 2:05:36 PM Manganese ND 0.0020 mg/L 1 1/6/2022 2:05:36 PM Molybdenum ND 0.0080 mg/L 1 1/6/2022 2:05:36 PM Nickel ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Silver ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Zinc 0.030 0.010 mg/L 1 1/6/2022 2:05:36 PM EPA METHOD 200.7: METALS Tanalyst: ELS Analyst: ELS Aluminum ND 0.020 mg/L 1 1/6/2022 1:45:10 PM Barium 0.0031 0.0030 mg/L 1 1/6/2022 1:45:10 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Cadmium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Chromium ND 0.0060 mg/L 1 1/6/2022 1:45:10 PM Manganese ND 0.0020	Cobalt	ND	0.0060	mg/L	1	1/6/2022 2:05:36 PM
Manganese ND 0.0020 mg/L of the properties of	Copper	ND	0.0060	mg/L	1	1/6/2022 2:05:36 PM
Molybdenum ND 0.0080 mg/L 1 1/6/2022 2:05:36 PM Nickel ND 0.010 mg/L 1 1/6/2022 2:05:36 PM Silver ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Zinc 0.030 0.010 mg/L 1 1/6/2022 2:05:36 PM EPA METHOD 200.7: METALS *** Factors** Aluminum ND 0.020 mg/L 1 1/6/2022 1:45:10 PM Barium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Gadmium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Chromium ND 0.0060 mg/L 1 1/6/2022 1:45:10 PM Iron ND 0.050 mg/L 1 1/6/2022 1:45:10 PM Manganese ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Zinc ND 0.001 mg/L 1	Iron	ND	0.020	mg/L	1	1/6/2022 2:05:36 PM
Nickel ND 0.010 mg/L 1 1/6/2022 2:05:36 PM Silver ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Zinc 0.030 0.010 mg/L 1 1/6/2022 2:05:36 PM EPA METHOD 200.7: METALS *** Land Silver** Aluminum ND 0.020 mg/L 1 1/6/2022 1:45:10 PM Barium 0.0031 0.0030 mg/L 1 1/6/2022 1:45:10 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Cadmium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Chromium ND 0.0060 mg/L 1 1/6/2022 1:45:10 PM Iron ND 0.050 mg/L 1 1/6/2022 1:45:10 PM Manganese ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Silver ND 0.0050 mg/L 1 1/6/2022 1:45:10 PM Zinc 0.021 0.010 mg/L	Manganese	ND	0.0020	mg/L	1	1/6/2022 2:05:36 PM
Silver ND 0.0050 mg/L 1 1/6/2022 2:05:36 PM Zinc 0.030 0.010 mg/L 1 1/6/2022 2:05:36 PM EPA METHOD 200.7: METALS ** Analyst: ELS*** Aluminum ND 0.020 mg/L 1 1/6/2022 1:45:10 PM Barium 0.0031 0.0030 mg/L 1 1/6/2022 1:45:10 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Cadmium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Chromium ND 0.0060 mg/L 1 1/6/2022 1:45:10 PM Iron ND 0.0050 mg/L 1 1/6/2022 1:45:10 PM Manganese ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Silver ND 0.0050 mg/L 1 1/6/2022 1:45:10 PM Zinc ND 0.0010 mg/L 1 1/6/2022 1:45:10 PM EPA 200.8: METALS Analyst: DBK	Molybdenum	ND	0.0080	mg/L	1	1/6/2022 2:05:36 PM
Zinc 0.030 0.010 mg/L 1 1/6/2022 2:05:36 PM EPA METHOD 200.7: METALS Sanalyst: ELS Aluminum ND 0.020 mg/L 1 1/6/2022 1:45:10 PM Barium 0.0031 0.0030 mg/L 1 1/6/2022 1:45:10 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Cadmium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Chromium ND 0.0060 mg/L 1 1/6/2022 1:45:10 PM Iron ND 0.050 mg/L 1 1/6/2022 1:45:10 PM Manganese ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Silver ND 0.0050 mg/L 1 1/6/2022 1:45:10 PM Zinc 0.021 0.010 mg/L 1 1/6/2022 1:45:10 PM EPA 200.8: METALS Analyst: DBK Antimony ND 0.0010 mg/L 1 1/10/2022 2:433:11 PM	Nickel	ND	0.010	mg/L	1	1/6/2022 2:05:36 PM
EPA METHOD 200.7: METALS Analyst: ELS Aluminum ND 0.020 mg/L 1 1/6/2022 1:45:10 PM Barium 0.0031 0.0030 mg/L 1 1/6/2022 1:45:10 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Cadmium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Chromium ND 0.0060 mg/L 1 1/6/2022 1:45:10 PM Iron ND 0.050 mg/L 1 1/6/2022 1:45:10 PM Manganese ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Silver ND 0.0050 mg/L 1 1/6/2022 1:45:10 PM Zinc 0.021 0.010 mg/L 1 1/6/2022 1:45:10 PM EPA 200.8: METALS Analyst: DBK Antimony ND 0.0010 mg/L 1 1/10/2022 2:43:11 PM Arsenic 0.0021 0.0010 mg/L 1 1/10/2022 2:43:11 PM <td>Silver</td> <td>ND</td> <td>0.0050</td> <td>mg/L</td> <td>1</td> <td>1/6/2022 2:05:36 PM</td>	Silver	ND	0.0050	mg/L	1	1/6/2022 2:05:36 PM
Aluminum ND 0.020 mg/L 1 1/6/2022 1:45:10 PM Barium 0.0031 0.0030 mg/L 1 1/6/2022 1:45:10 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Cadmium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Chromium ND 0.0060 mg/L 1 1/6/2022 1:45:10 PM Iron ND 0.050 mg/L 1 1/6/2022 1:45:10 PM Manganese ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Silver ND 0.0050 mg/L 1 1/6/2022 1:45:10 PM Zinc 0.021 0.010 mg/L 1 1/6/2022 1:45:10 PM EPA 200.8: METALS Analyst: DBK Antimony ND 0.0010 mg/L 1 1/10/2022 2:43:11 PM Arsenic 0.0021 0.0010 mg/L 1 1/10/2022 2:43:11 PM	Zinc	0.030	0.010	mg/L	1	1/6/2022 2:05:36 PM
Barium 0.0031 0.0030 mg/L 1 1/6/2022 1:45:10 PM Beryllium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Cadmium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Chromium ND 0.0060 mg/L 1 1/6/2022 1:45:10 PM Iron ND 0.050 mg/L 1 1/6/2022 1:45:10 PM Manganese ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Silver ND 0.0050 mg/L 1 1/6/2022 1:45:10 PM Zinc 0.021 0.010 mg/L 1 1/6/2022 1:45:10 PM EPA 200.8: METALS Analyst: DBK Antimony ND 0.0010 mg/L 1 1/10/2022 4:33:04 PM Arsenic 0.0021 0.0010 mg/L 1 1/10/2022 2:43:11 PM	EPA METHOD 200.7: METALS					Analyst: ELS
Beryllium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Cadmium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Chromium ND 0.0060 mg/L 1 1/6/2022 1:45:10 PM Iron ND 0.050 mg/L 1 1/6/2022 1:45:10 PM Manganese ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Silver ND 0.0050 mg/L 1 1/6/2022 1:45:10 PM Zinc 0.021 0.010 mg/L 1 1/6/2022 1:45:10 PM EPA 200.8: METALS Analyst: DBK Antimony ND 0.0010 mg/L 1 1/10/2022 2:43:10 PM Arsenic 0.0021 0.0010 mg/L 1 1/10/2022 2:43:11 PM	Aluminum	ND	0.020	mg/L	1	1/6/2022 1:45:10 PM
Cadmium ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Chromium ND 0.0060 mg/L 1 1/6/2022 1:45:10 PM Iron ND 0.050 mg/L 1 1/6/2022 1:45:10 PM Manganese ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Silver ND 0.0050 mg/L 1 1/6/2022 1:45:10 PM Zinc 0.021 0.010 mg/L 1 1/6/2022 1:45:10 PM EPA 200.8: METALS Analyst: DBK Antimony ND 0.0010 mg/L 1 1/10/2022 4:33:04 PM Arsenic 0.0021 0.0010 mg/L 1 1/10/2022 2:43:11 PM	Barium	0.0031	0.0030	mg/L	1	1/6/2022 1:45:10 PM
Chromium ND 0.0060 mg/L 1 1/6/2022 1:45:10 PM Iron ND 0.050 mg/L 1 1/6/2022 1:45:10 PM Manganese ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Silver ND 0.0050 mg/L 1 1/6/2022 1:45:10 PM Zinc 0.021 0.010 mg/L 1 1/6/2022 1:45:10 PM EPA 200.8: METALS Analyst: DBK Antimony ND 0.0010 mg/L 1 1/10/2022 4:33:04 PM Arsenic 0.0021 0.0010 mg/L 1 1/10/2022 2:43:11 PM	Beryllium	ND	0.0020	mg/L	1	1/6/2022 1:45:10 PM
Iron ND 0.050 mg/L 1 1/6/2022 1:45:10 PM Manganese ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Silver ND 0.0050 mg/L 1 1/6/2022 1:45:10 PM Zinc 0.021 0.010 mg/L 1 1/6/2022 1:45:10 PM EPA 200.8: METALS EPA 200.8: METALS Antimony ND 0.0010 mg/L 1 1/10/2022 4:33:04 PM Arsenic 0.0021 0.0010 mg/L 1 1/10/2022 2:43:11 PM	Cadmium	ND	0.0020	mg/L	1	1/6/2022 1:45:10 PM
Manganese ND 0.0020 mg/L 1 1/6/2022 1:45:10 PM Silver ND 0.0050 mg/L 1 1/6/2022 1:45:10 PM Zinc 0.021 0.010 mg/L 1 1/6/2022 1:45:10 PM EPA 200.8: METALS EPA 200.8: METALS Antimony ND 0.0010 mg/L 1 1/10/2022 4:33:04 PM Arsenic 0.0021 0.0010 mg/L 1 1/10/2022 2:43:11 PM	Chromium	ND	0.0060	mg/L	1	1/6/2022 1:45:10 PM
Silver ND 0.0050 mg/L 1 1/6/2022 1:45:10 PM Zinc 0.021 0.010 mg/L 1 1/6/2022 1:45:10 PM EPA 200.8: METALS Analyst: DBK Antimony ND 0.0010 mg/L 1 1/10/2022 4:33:04 PM Arsenic 0.0021 0.0010 mg/L 1 1/10/2022 2:43:11 PM	Iron	ND	0.050	mg/L	1	1/6/2022 1:45:10 PM
Zinc 0.021 0.010 mg/L 1 1/6/2022 1:45:10 PM EPA 200.8: METALS Analyst: DBK Antimony ND 0.0010 mg/L 1 1/10/2022 4:33:04 PM Arsenic 0.0021 0.0010 mg/L 1 1/10/2022 2:43:11 PM	Manganese	ND	0.0020	mg/L	1	1/6/2022 1:45:10 PM
EPA 200.8: METALS Analyst: DBK Antimony ND 0.0010 mg/L 1 1/10/2022 4:33:04 PM Arsenic 0.0021 0.0010 mg/L 1 1/10/2022 2:43:11 PM	Silver	ND	0.0050	mg/L	1	1/6/2022 1:45:10 PM
Antimony ND 0.0010 mg/L 1 1/10/2022 4:33:04 PM Arsenic 0.0021 0.0010 mg/L 1 1/10/2022 2:43:11 PM	Zinc	0.021	0.010	mg/L	1	1/6/2022 1:45:10 PM
Arsenic 0.0021 0.0010 mg/L 1 1/10/2022 2:43:11 PM	EPA 200.8: METALS					Analyst: DBK
Arsenic 0.0021 0.0010 mg/L 1 1/10/2022 2:43:11 PM	Antimony	ND	0.0010	mg/L	1	1/10/2022 4:33:04 PM
g ·	•			•		
	Copper	ND		mg/L		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 27

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Client Sample ID: Eagle Springs

Project: Eagle Springs
 Collection Date: 1/4/2022 12:30:00 PM

 Lab ID: 2201113-001
 Matrix: AQUEOUS
 Received Date: 1/4/2022 4:11:00 PM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA 200.8: METALS						Analyst: DBK
Selenium	ND	0.0010		mg/L	1	1/10/2022 2:43:11 PM
Thallium	ND	0.00025		mg/L	1	1/10/2022 2:43:11 PM
Uranium	ND	0.00050		mg/L	1	1/10/2022 2:43:11 PM
EPA 200.8: DISSOLVED METALS						Analyst: bcv
Antimony	ND	0.0010		mg/L	1	1/17/2022 12:35:20 PM
Arsenic	0.0018	0.0010		mg/L	1	1/14/2022 5:11:07 PM
Lead	ND	0.00050		mg/L	1	1/14/2022 5:11:07 PM
Selenium	ND	0.0010		mg/L	1	1/14/2022 5:11:07 PM
Thallium	ND	0.00025		mg/L	1	1/14/2022 5:11:07 PM
Uranium	ND	0.00050		mg/L	1	1/14/2022 5:11:07 PM
EPA METHOD 245.1: MERCURY						Analyst: VP
Mercury	ND	0.00020		mg/L	1	1/17/2022 1:08:20 PM
SM 9223B TOTAL COLIFORM						Analyst: dms
Total Coliform	Present	0		P/A	1	1/6/2022 3:38:00 PM
E. Coli	Absent	0		P/A	1	1/6/2022 3:38:00 PM
EPA METHOD 8270SIM						Analyst: DAM
Naphthalene	ND	0.10		μg/L	1	1/12/2022 7:10:00 PM
1-Methylnaphthalene	ND	0.10		μg/L	1	1/12/2022 7:10:00 PM
2-Methylnaphthalene	ND	0.10		μg/L	1	1/12/2022 7:10:00 PM
Benzo(a)pyrene	ND	0.070		μg/L	1	1/12/2022 7:10:00 PM
Atrazine	ND	1.5		μg/L	1	1/12/2022 7:10:00 PM
Pentachlorophenol	ND	0.10		μg/L	1	1/12/2022 7:10:00 PM
Surr: Nitrobenzene-d5	59.5	21.9-89.8		%Rec	1	1/12/2022 7:10:00 PM
Surr: 2,4,6-Tribromophenol	47.2	23.4-71.6		%Rec	1	1/12/2022 7:10:00 PM
Surr: 2-Fluorobiphenyl	62.5	15-84.5		%Rec	1	1/12/2022 7:10:00 PM
Surr: 4-Terphenyl-d14	108	73.1-152		%Rec	1	1/12/2022 7:10:00 PM
PURGEABLE ORGANICS BY EPA 524						Analyst: RAA
Benzene	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM
Carbon tetrachloride	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM
Chlorobenzene	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM
cis-1,2-Dichloroethene	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM
1,2-Dichlorobenzene	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM
1,4-Dichlorobenzene	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM
1,2-Dichloroethane	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM
1,1-Dichloroethene	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM
1,2-Dichloropropane	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM
Ethy benzene	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 27

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Client Sample ID: Eagle Springs

Project: Eagle Springs
 Collection Date: 1/4/2022 12:30:00 PM

 Lab ID: 2201113-001
 Matrix: AQUEOUS
 Received Date: 1/4/2022 4:11:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
PURGEABLE ORGANICS BY EPA 524						Analyst: RAA
Methylene chloride	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM
Styrene	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM
Tetrachloroethene	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM
Toluene	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM
trans-1,2-Dichloroethene	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM
1,2,4-Trichlorobenzene	ND	0.50	Р	μg/L	1	1/12/2022 11:38:00 AM
1,1,1-Trichloroethane	ND	0.50	Ρ	μg/L	1	1/12/2022 11:38:00 AM
1,1,2-Trichloroethane	ND	0.50	Ρ	μg/L	1	1/12/2022 11:38:00 AM
Trichloroethene	ND	0.50	Ρ	μg/L	1	1/12/2022 11:38:00 AM
Vinyl chloride	ND	0.50	Ρ	μg/L	1	1/12/2022 11:38:00 AM
Total Xylenes	ND	0.50	Ρ	μg/L	1	1/12/2022 11:38:00 AM
Surr: 1,2-Dichlorobenzene-d4	98.3	70-130	Р	%Rec	1	1/12/2022 11:38:00 AM
Surr: 4-Bromofluorobenzene	91.7	70-130	Р	%Rec	1	1/12/2022 11:38:00 AM
EPA METHOD 8260B: VOLATILES						Analyst: CCM
Benzene	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM
Toluene	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM
Ethy benzene	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM
Naphthalene	ND	2.0		μg/L	1	1/6/2022 12:40:00 AM
1-Methylnaphthalene	ND	4.0		μg/L	1	1/6/2022 12:40:00 AM
2-Methylnaphthalene	ND	4.0		μg/L	1	1/6/2022 12:40:00 AM
Acetone	ND	10		μg/L	1	1/6/2022 12:40:00 AM
Bromobenzene	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM
Bromodichloromethane	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM
Bromoform	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM
Bromomethane	ND	3.0		μg/L	1	1/6/2022 12:40:00 AM
2-Butanone	ND	10		μg/L	1	1/6/2022 12:40:00 AM
Carbon disulfide	ND	10		μg/L	1	1/6/2022 12:40:00 AM
Carbon Tetrachloride	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM
Chlorobenzene	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM
Chloroethane	ND	2.0		μg/L	1	1/6/2022 12:40:00 AM
Chloroform	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM
Chloromethane	ND	3.0		μg/L	1	1/6/2022 12:40:00 AM
2-Chlorotoluene	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM
4-Chlorotoluene	ND	1.0		μg/L	1	1/6/2022 12:40:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 27

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Client Sample ID: Eagle Springs

Project: Eagle Springs
 Collection Date: 1/4/2022 12:30:00 PM

 Lab ID: 2201113-001
 Matrix: AQUEOUS
 Received Date: 1/4/2022 4:11:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
cis-1,2-DCE	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	1/6/2022 12:40:00 AM
Dibromochloromethane	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
Dibromomethane	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
1,3-Dichloropropane	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
2,2-Dichloropropane	ND	2.0	μg/L	1	1/6/2022 12:40:00 AM
1,1-Dichloropropene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
Hexachlorobutadiene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
2-Hexanone	ND	10	μg/L	1	1/6/2022 12:40:00 AM
Isopropylbenzene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
4-Isopropyltoluene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/6/2022 12:40:00 AM
Methylene Chloride	ND	3.0	μg/L	1	1/6/2022 12:40:00 AM
n-Butylbenzene	ND	3.0	μg/L	1	1/6/2022 12:40:00 AM
n-Propy benzene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
sec-Butylbenzene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
Styrene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
tert-Butylbenzene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	1/6/2022 12:40:00 AM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
trans-1,2-DCE	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
Trichloroethene (TCE)	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	1/6/2022 12:40:00 AM
Vinyl chloride	ND	1.0	μg/L	1	1/6/2022 12:40:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 27

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Client Sample ID: Eagle Springs

Project: Eagle Springs
 Collection Date: 1/4/2022 12:30:00 PM

 Lab ID: 2201113-001
 Matrix: AQUEOUS
 Received Date: 1/4/2022 4:11:00 PM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Xylenes, Total	ND	1.5	μg/L	1	1/6/2022 12:40:00 AM
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	1/6/2022 12:40:00 AM
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	1/6/2022 12:40:00 AM
Surr: Dibromofluoromethane	107	70-130	%Rec	1	1/6/2022 12:40:00 AM
Surr: Toluene-d8	97.4	70-130	%Rec	1	1/6/2022 12:40:00 AM
TOTAL PHENOLICS BY SW-846 9067					Analyst: JPM
Phenolics	ND	5.0	μg/L	1	1/13/2022 8:38:00 AM
SM 2540 C: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	224	20.0	mg/L	1	1/12/2022 11:55:00 AM
SM4500-H+B / 9040C: PH					Analyst: LRN
рН	7.67		H pH unit	s 1	1/6/2022 2:03:51 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 27

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Lab Federal ID#: See Below Lab/Sample Number: MCA0118-01

Date Received: 01/07/2022 Date Reported by Lab: 02/02/2022

Compliance Sample: Replacement Sample:

Collect Date: 01/04/2022 Collection Time: 12:30

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2201113-001F (Eagle Spring) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
2034	Glyphosate	ND	ug/L	700	5 00	1/10/22 17:47	ВКР	EPA 547	
2005	Endrin	ND	ug/L	2	0.0100	1/14/22 18:56	GPB	EPA 505	
2010	Lindane (BHC-Gamma)	ND	ug/L	0.2	0.0200	1/14/22 18:56	GPB	EPA 505	
2015	Methoxychlor	ND	ug/L	40	0.100	1/14/22 18:56	GPB	EPA 505	
2020	Toxaphene	ND	ug/L	3	1 00	1/14/22 18:56	GPB	EPA 505	
2065	Heptachlor	ND	ug/L	0.4	0.0400	1/14/22 18:56	GPB	EPA 505	
2067	Heptachlor epoxide	ND	ug/L	0.2	0.0200	1/14/22 18:56	GPB	EPA 505	
2383	PCBs	ND	ug/L	0.5	0.500	1/14/22 18:56	GPB	EPA 505	
2959	Chlordane	ND	ug/L	2	0.200	1/14/22 18:56	GPB	EPA 505	

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Lab Federal ID#:See BelowLab/Sample Number:MCA0118-02Date Received:01/07/2022Date Reported by Lab:02/02/2022

Compliance Sample: Replacement Sample:

Collect Date: 01/04/2022 Collection Time: 12:30

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2201113-001G (Eagle Spring) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
2036 2046	Oxamyl (Vydate) Carbofuran	ND ND	ug/L ug/L	200 40	2 00 0.900	1/12/22 2:16 1/12/22 2:16	BKP BKP	EPA 531.2 EPA 531.2	

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Lab Federal ID#: See Below Lab/Sample Number: MCA0118-03

Date Received: 01/07/2022 Date Reported by Lab: 02/02/2022

Compliance Sample: Replacement Sample:

Collect Date: 01/04/2022 Collection Time: 12:30

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2201113-001H (Eagle Spring) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
2035	Di(2-ethylhexyl)adipate	ND	ug/L	400	0.600	1/13/22 7:38	BMM	EPA 525.2	
2037	Simazine	ND	ug/L	4	0.0700	1/13/22 7:38	BMM	EPA 525.2	
2039	Di(2-ethylhexl)phthalate	ND	ug/L	6	0.600	1/13/22 7:38	BMM	EPA 525.2	
2042	Hexachlorocyclopentadiene	ND	ug/L	50	0.100	1/13/22 7:38	BMM	EPA 525.2	
2050	Atrazine	ND	ug/L	3	0.100	1/13/22 7:38	BMM	EPA 525.2	
2051	Alachlor (Lasso)	ND	ug/L	2	0.200	1/13/22 7:38	BMM	EPA 525.2	
2274	Hexachlorobenzene	ND	ug/L	1	0.100	1/13/22 7:38	BMM	EPA 525.2	
2306	Benzo[a]pyrene	ND	ug/L	0.2	0.0200	1/13/22 7:38	BMM	EPA 525.2	

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Lab Federal ID#: See Below Lab/Sample Number: MCA0118-04

Date Received: 01/07/2022 Date Reported by Lab: 02/02/2022

Compliance Sample: Replacement Sample:

Collect Date: 01/04/2022 Collection Time: 12:30

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2201113-001I (Eagle Spring) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
2033	Endothall	ND	ug/L	100	9 00	1/13/22 18:15	GPB	EPA 548.1	
2031	Dalapon	ND	ug/L	200	1 00	1/11/22 18:08	SAT	EPA 515.4	
2040	Picloram	ND	ug/L	500	0.100	1/11/22 18:08	SAT	EPA 515.4	
2041	Dinoseb	ND	ug/L	7	0.200	1/11/22 18:08	SAT	EPA 515.4	
2105	2,4-D	ND	ug/L	70	0.100	1/11/22 18:08	SAT	EPA 515.4	
2110	2,4,5-TP (Silvex)	ND	ug/L	50	0.200	1/11/22 18:08	SAT	EPA 515.4	
2326	Pentachlorophenol	ND	ug/L	1	0.0400	1/11/22 18:08	SAT	EPA 515.4	

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Lab Federal ID#: See Below Lab/Sample Number: MCA0118-05

Date Received: 01/07/2022 Date Reported by Lab: 02/02/2022

Compliance Sample: Replacement Sample:

Collect Date: 01/04/2022 Collection Time: 12:30

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2201113-001J (Eagle Spring) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
2032	Diquat	ND	ug/L	20	0.400	1/31/22 20:35	taz	EPA 549.2	

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Lab Federal ID#: See Below Lab/Sample Number: MCA0118-06

Date Received: 01/07/2022 Date Reported by Lab: 02/02/2022

Compliance Sample: Replacement Sample:

Collect Date: 01/04/2022 Collection Time: 12:30

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2201113-001K (Eagle Spring) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

Inorganic Chemical (IOC) Analysis Report:

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
1905	Color	ND @ pH 7.56	Color Units	15	5 00	1/18/22 10:20	LAC	SM 2120 B	Н3
1920	Odor (threshold #)	ND	T.O.N.	3	1 00	1/18/22 10:20	LAC	SM 2150 B	

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Lab Federal ID#: See Below Lab/Sample Number: MCA0118-07

Date Received: 01/07/2022 Date Reported by Lab: 02/02/2022

Compliance Sample: Replacement Sample:

Collect Date: 01/04/2022 Collection Time: 12:30

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2201113-001L (Eagle Spring) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

Inorganic Chemical (IOC) Analysis Report:

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
1927	Alkalinity as CaCO3	31.0 to pH 4.2	mg CaCO3/L		2 00	1/13/22 11:43	LAC	SM 2320 B	
1016	Calcium	4 83	mg/L		0.100	1/11/22 14:20	TEC	EPA 200.7	
1997	Langlier Index	-1.89			-20.0	1/13/22 11:43	LAC	Calculation	
1925	pH	7.49 @ 18.2°C	pH Units			1/13/22 11:43	LAC	SM 4500-H-B	H5
1930	Total Dissolved Solids	222	mg/L	500	50.0	1/11/22 14:25	LAC	SM 2540 C	
2905	Surfactants	ND	mg/kg 342.4MW		0.0500	1/10/22 14:18	TAZ	SM 5540 C	Н3

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Lab Federal ID#: See Below Lab/Sample Number: MCA0118-08

Date Received: 01/07/2022 Date Reported by Lab: 02/02/2022

Compliance Sample:

Replacement Sample:

Collect Date: 01/04/2022 Collection Time: 12:30

Sample Type:

PWS#: PWS Name: Hall Environmental Analysis Lab

Sample Point/ Location: 2201113-001M (Eagle Spring) Tag#/Facility ID:

Contact Name: Andy Freeman Contact Phone: See Signature Page

Lab Federal ID#: ID00013

Public Drinking Water System Analysis Report

Inorganic Chemical (IOC) Analysis Report:

FRDS	Analyte	Result	Units	MCL	MRL	Analyzed	Analyst	Method	Qualifier
1024	Cyanide	ND	mg/L	0.2	0.0100	1/12/22 9:00	ВКР	EPA 335.4	

Andy Freeman Hall Environmental Analysis Lab 4901 Hawkins NE Suite D Albuquerque,NM 87109

505-345-3975

Authorized Signature,

Justin Doty For Todd Taruscio, Laboratory Manager

H3 Sample was received past holding time.

H5 This test is specified to be performed in the field within 15 minutes of sampling; sample was received and

analyzed past the regulatory holding time.

R7 LFB/LFBD RPD exceeded the laboratory acceptance limit. Recovery met acceptance criteria.

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

Not a certified analyteRPD Relative Percent Difference

%REC Percent Recovery

Source Sample that was spiked or duplicated.

This report shall not be reproduced except in full, without the written approval of the laboratory

The results reported related only to the samples indicated.

CHAIN OF CUSTODY RECORD PAGE: 1 OF

Hall Environmental bests + +

MCA0118

Due: 01/24/22

ADDRES	1282	tek ID 2 Alturas Dr scow, ID 83843	OMPANY A	natek Labs, Inc.		PHONE.	(208) 883-2839	EAX'	,
ITEM	SAMPLE	CLIENT SAMPLE	Ш	BOTTLE	MATRIX	COLLECTION DATE	* CONTAINERS	ANALYTICAL	COMMENTS
1	2201113-001	F Eagle Spring		VOANA2S2C	Aqueous	1/4/2022 12:30:00 PM	2 Full SOC W/O EDB		
2	2201113-001	G Eagle Spring			Aqueous	1/4/2022 12:30:00 PM	2 Full SOC W/O EDB		
3	2201113-001	H Eagle Spring			Aqueous	1/4/2022 12:30:00 PM	1 Full SOC W/O EDB		
4	2201113-001	I Eagle Spring			Aqueous	1/4/2022 12:30:00 PM	1 Full SOC W/O EDB		
5	2201113-001	J Eagle Spring			Aqueous	1/4/2022 12:30:00 PM	1 Full SOC W/O EDB		
6	2201113-001	K Eagle Spring		1LAmber	Aqueous	1/4/2022 12:30:00 PM	1 Color Odor		
7	2201113-001	L Eagle Spring		500HDPE	Aqueous	1/4/2022 12:30:00 PM	1 Corrosivity, Surfact	ants	
8	2201113-001	M Eagle Spring		500AMBHDP	Aqueous	1/4/2022 12:30:00 PM	1 Cyanide in Drinking	water	

Please include the LAB	ID and the CLIENT:	SAMPLE ID o	n all final reports. Plea	se e-mail res	sults to lab@hallenvironmental.co	om. Please return all coolers and l	blue ice. Thank you.	
Celinquished By	Date: 1/5/2022	Time 8:35 AM	Received By		Date Time Time	REPOR HARDCOPY (extra cost)	T TRANSMITTAL DESIRED. FAX EMAIL	ONLINE
						F	OR LAB USE ONLY	
elinquished By	Date	Time	Received By		Date Time	Temp of samples	C Attempt to Cool "	
TAT:	Standard	RUSH	Next BD	2nd BD	3rd BD	Comments		

Sample Receipt and Preservation Form

lient Name: Hall	Project: Due 01/24/22
AT: Normal RUSH:	days
amples Received From: FedEx	UPS USPS Client Courier Other:
Custody Seal on Cooler/Box: Yes	No Custody Seals Intact: Yes No N/A
lumber of Coolers/Boxes: 2	Type of Ice: Ice Tce Packs Blue Ice Dry Ice None
Packing Material: Bubble Wrap B	Bags Foam/Peanuts None Other:
cooler Temp As Read (°C): 3.0	Cooler Temp Corrected (°C): Thermometer Used:
	Comments:
Samples Received Intact?	Yes No N/A
Chain of Custody Present?	Yes No N/A
Samples Received Within Hold Time?	Yes No N/A
amples Properly Preserved?	Yes No N/A
OC Vials Free of Headspace (<6mm)?	Yes No MA
OC Trip Blanks Present?	Yes No (N/A)
abels and Chains Agree?	(es) No N/A
otal Number of Sample Bottles Received	ved:
Chain of Custody Fully Completed?	Yes No N/A
Correct Containers Received?	Yes No N/A
Anatek Bottles Used?	Yes (No) Unknown
Record preservatives (and lot numbers	s, if known) for containers below:
ST-Glyphosate/Pest	PCB-944mLX2 NaOH-Cn-P500mL
ST-Glyphosate/Pest ST/PDC-Carbamates-g	9.44nL x Z
55/HC1 - SOC 525 - g	1
ST - Endothall / Herb S	75-9500nL
ST- Diquat - p 250m	(L
lotes, comments, etc. (also use this s	space if contacting the client - record names and date/time)
Color/Oder - g1L	
Corrosivity / Surfactor	
Correspond 1200 Harc 100	(13)

(724)850-5600

February 08, 2022

Andy Freeman Hall Environmental 4901 Hawkins NE Albuquerque, NM 87109

RE: Project: 2201113

Pace Project No.: 30458569

Dear Andy Freeman:

Enclosed are the analytical results for sample(s) received by the laboratory on January 07, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

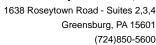
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karen L. Smetanka karen.smetanka@pacelabs.com (724)850-5600


Jour Drutor

Project Manager

Enclosures

cc: Ms. Jackie Ball, Hall Environmental Michelle Garcia, Hall Environmental

CERTIFICATIONS

Project: 2201113
Pace Project No.: 30458569

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification

Florida: Cert E871149 SEKS WET

Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

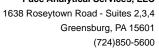
Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

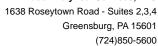

South Dakota Certification
Tennessee Certification #: 02867

Ohio EPA Rad Approval: #41249

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

REPORT OF LABORATORY ANALYSIS

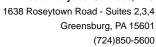


SAMPLE SUMMARY

Project: 2201113
Pace Project No.: 30458569

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30458569001	2201113-001 / Eagle Spring	Water	01/04/22 12:30	01/07/22 10:30

REPORT OF LABORATORY ANALYSIS



SAMPLE ANALYTE COUNT

Project: 2201113
Pace Project No.: 30458569

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30458569001	2201113-001 / Eagle Spring	EPA 900.0	RJS	2	PASI-PA
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

Project: 2201113
Pace Project No.: 30458569

Method: EPA 900.0

Description: 900.0 Gross Alpha/Beta
Client: Hall Environmental
Date: February 08, 2022

General Information:

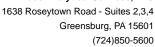
1 sample was analyzed for EPA 900.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 2201113
Pace Project No.: 30458569

Method: EPA 903.1

Description:903.1 Radium 226Client:Hall EnvironmentalDate:February 08, 2022

General Information:

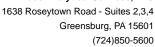
1 sample was analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 2201113
Pace Project No.: 30458569

Method: EPA 904.0

Description:904.0 Radium 228Client:Hall EnvironmentalDate:February 08, 2022

General Information:

1 sample was analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

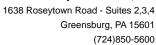
Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

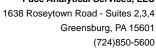
Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2201113
Pace Project No.: 30458569

Sample: 2201113-001 / Eagle Spring Lab ID: 30458569001 Collected: 01/04/22 12:30 Received: 01/07/22 10:30 Matrix: Water


PWS: Site ID: Sample Type:

Comments: • State of collection not listed on COC.

• Sampler name and signature not listed on COC.

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg		,		
Gross Alpha	EPA 900.0	-0.230 ± 0.880 (2.72) C:NA T:NA	pCi/L	02/03/22 06:55	12587-46-1	
Gross Beta	EPA 900.0	4.22 ± 1.39 (1.65) C:NA T:NA	pCi/L	02/03/22 06:55	12587-47-2	
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	4.18 ± 1.29 (0.866) C:NA T:93%	pCi/L	01/28/22 13:52	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.318 ± 0.276 (0.552) C:84% T:91%	pCi/L	01/26/22 14:07	15262-20-1	

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL - RADIOCHEMISTRY

Project:

2201113

Pace Project No.:

30458569

QC Batch: QC Batch Method: 479184

EPA 903.1

Analysis Method:

EPA 903.1

Analysis Description:

903.1 Radium-226

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples:

30458569001

METHOD BLANK: 2315319

Matrix: Water

Associated Lab Samples:

30458569001

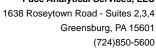
Parameter

Act ± Unc (MDC) Carr Trac

Units

Analyzed

Qualifiers


Radium-226

0.232 ± 0.361 (0.625) C:NA T:99%

pCi/L

01/28/22 13:52

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:

2201113

Pace Project No.:

30458569

QC Batch: QC Batch Method:

479185

EPA 904.0

Analysis Method:

EPA 904.0

Analysis Description:

904.0 Radium 228

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples:

30458569001

METHOD BLANK: 2315320

Matrix: Water

Associated Lab Samples:

30458569001

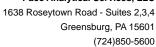
Parameter

Act ± Unc (MDC) Carr Trac

Units

Analyzed

Qualifiers


Radium-228

 0.0282 ± 0.242 (0.565) C:82% T:80%

pCi/L

01/26/22 14:04

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:

2201113

Pace Project No.:

30458569

QC Batch: QC Batch Method:

Gross Alpha

Gross Beta

480471

EPA 900.0

Analysis Method:

EPA 900.0

Analysis Description:

900.0 Gross Alpha/Beta

Laboratory:

Pace Analytical Services - Greensburg

Associated Lab Samples:

METHOD BLANK: 2321737

30458569001

Matrix: Water

Associated Lab Samples:

30458569001

Act ± Unc (MDC) Carr Trac Parameter Analyzed Qualifiers Units -1.53 ± 0.657 (2.77) C:NA T:NA pCi/L 02/02/22 07:59 -0.676 ± 0.559 (1.76) C:NA T:NA pCi/L 02/02/22 07:59

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: 2201113
Pace Project No.: 30458569

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 02/08/2022 04:15 PM

REPORT OF LABORATORY ANALYSIS

ENVIRONMENTAL

HALL

ANALYSIS

CHAIN OF CUSTODY RECORD PAGE: 1 OF 1

Hall Environmental Analysis Laboratory

Albuquerque. NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

SUB CONTR	SUB CONTRATOR: Pace-Greensburg	reensburg	COMPANY	Pace Analytical Ser	Services, Inc.	PHONE:	(724) 850-5600	FAX:	(724) 850-5601	
ADDRESS:	1638 Ro	1638 Roseytown Rd Ste 2,3,4	te 2,3,4			ACCOUNT #:		EMAIL:		
CITY, STATE	E, ZIP: Greensl	CITY, STATE, ZIP: Greensburg, PA 15601	1			The state of the s				
ITEM	SAMPLE	CLIENT SAMPLE ID	PLE ID	BOTTLE	MATRIX	COLLECTION DATE	# CONTAINERS	ANALYTIC?	ANALYTICAL COMMENTS	
1 220	. 2201113-001N Eagle Spring	agle Spring		1THDPEHNO	Aqueous	1LHDPEHNO Aqueous 1/4/2022 12:30:00 PM 2 Ra 226/228	2 Ra 226/228			
2 22(2 2201113-0010 Eagle Spring	agle Spring		1LHDPEHNO	Aqueous	1/4/2022 12:30:00 PM	LHDPEHNO Aqueous 1/4/2022 12:30:00 PM 2 Gross Alpha/Beta	\$\$-\$A\$		

WO#: 30458569 30458569

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

Relinquished By:	Date: 1/5/2022	Time: 8:37 AM	Date: 1/5/2022 Time: 8:37 AM ROMENDL	OEQUI EEPHH	
Relinquished By:	Date:	Тіте:	Received By:	Pate 199 Time	HAKDCOFT (extra cost)
					FOR LAB USE ONLY
Refinquished By:	Date:	Time:	Received By:	Date: Time:	
Pac					Temp of samples C Attempt to Cool?
TAT:	Standard 🗡	RUSH	Next BD	3rd BD	
3 of					Comments:
15					

Pace Analytical "

Client

Profile Number 1845

Notes

SPLC

Mekn

WGFU

VOAK

вьзс

BP2U

BP2S

UI48

BGSN

BGIN

AGST

UBĐA UEDA

SEDA

USDA

TroA

SFDA

HIĐ∀

Matrix

Sample Line Item

က 4 Ŋ ဖ

N

Mrqa|4

U69V					1	AL.D		
T69V					,			
Н69Л								
anoe								
S690								
UE98								
8698								
ИЕЧВ								
	T			 	1		1	

	n _	las	Plastic / 🏻	Misc.
GCUB	GCUB 1 Gallon Cubitainer		EZI	5g Encore
12GN	12GN 1/2 Gallon Cubitainer		VOAK	Kit for Volatile So
SP5T	SP5T 120mL Coliform Na Thiosulfate			Wipe/Swab

	JG9S 40mL amber VOA vial H2SO4	VG9U 40mL clear VOA vial	9T 40mL clear VOA vial Na Thiosul	VG9H 40mL clear VOA vial HCI	JGFU 4oz amber wide jar	WGFU 4oz wide jar unpreserved	BG2U 500mL clear glass unpreserved	AG2U 500mL amber glass unpreserved	WGKU 8oz wide jar unpreserved		
Glass	Gallon Jug with HNO3 DG	100mL amber glass unprserved VG	00mL amber glass Na Thiosulfate VG9T	Gallon Jug	L amber glass H2SO4	1L amber glass HCI WC	1L amber glass Na Thiosulfate BG	1L clear glass unpreserved AG	250mL amber glass H2SO4 WC	250mL amber glass unpreserved	
	GJN 1	AG5U 10	AG5T ∯(GJN 1	AG1S 1	AG1H 11	AG1T 11	BG10 11	AG3S 2	AG3U 2	

Container Codes

9 7 12

∞ တ

1∼

GCUB	GCUB 1 Gallon Cubitainer	EZ	5g Encore
12GN	12GN 1/2 Gallon Cubitainer	VOAK	Kit for Volatile Solid
SP5T	120mL Coliform Na Thiosulfate		Wipe/Swab
BP1N	BP1N 1L plastic HNO3	ZPLC	Ziploc Bag
BP1U	1 L plastic unpreserved		
BP3S	BP3S 250mL plastic H2SO4	WT	Water
BP3N	BP3N 250mL plastic HNO3	SL	Solid
BP3U	250mL plastic unpreserved	OF	Non-aqueous liquid
врзс	BP3C 250ml plastic NAOH	WP	Wipe
BP2S	BP2S 500mL plastic H2SO4		
BP2U	BP2U 500mL plastic unpreserved		

Pittsburgh La	b Sample Condit	ion l	Jpor	ı Re	eceipt		_			
Pace Analytical	Client Name:	Hai	I Er	N IYO	inmental	Project #	#	30	4	8 č
Courier: Fed Ex Tracking #: 4242 2	UPS □USPS □Client 2964 427,4			ercial	Pace Other		La LIMS Lo	bel <u> </u> gin 🔰	Q	
Custody Seal on Cooler	/Box Present: 🛮 yes	□n	0	Seals	sintact: 🗹 yes	по				
Thermometer Used	,	Туре	of Ice:	Wet	Blue None					
Cooler Temperature	Observed Temp		.c	Corre	ection Factor <u>:</u>	°C Final	Temp:		c	;
Temp should be above freez	ring to 6°C				pH paper Lot#	Date and	nitiale of	noreon ov	aminin	_ 1
Comments:		Yes	No	N/A	1002811	Date and contents	BE I	16122	<u>} </u>	9
Chain of Custody Present	•	X			1.					
Chain of Custody Filled O		Ň			2.					
		V			3.					
Chain of Custody Relinqu		/\/	X)		4.					
Sampler Name & Signatu		X			5.					
Sample Labels match CO		H		l	30.					
-Includes date/time/ID		X			6.					
Samples Arrived within He		/\(\)	X		7.					
Short Hold Time Analysi			$\stackrel{\sim}{\supset}$		8.	<u> </u>				
Rush Turn Around Time	Requested:	X	\sim		9.					
Sufficient Volume:		VÕ			10.					
Correct Containers Used:			V		10.					
-Pace Containers Use	u.	X	_)		11,					
Containers Intact:		100		X	12.					
Orthophosphate field filter				Ϋ́	13.					
Hex Cr Aqueous sample f				\sim				· · · · ·		
Organic Samples check				M	14.					
Filtered volume received to All containers have been che				1	15.					
exceptions: VOA, colifor	m TOC O&G Phenolics	Radon			16.					
Non-aqueous matrix	m, 100, 020, 1 nonexas,		,							
All containers meet methor requirements.	od preservation	X			Initial when completed	Date/time of preservation				
					Lot # of added preservative					
Headspace in VOA Vials	(>6mm):			X	17.					
Trip Blank Present:				Ø	18.					
Trip Blank Custody Seals	Present			X]					
Rad Samples Screened		X			Initial when completed:	Date:\\\\	3y Su	irvey Meter i: 1710	, ,	
Client Notification/ Reso	lution:									
Person Contacted:				Date/	Time:	Conta	cted B <u>y:</u>			
Comments/ Resolution:										

 \square A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Hall Environmental Analysis Laboratory, Inc.

WO#: **2201113**

09-Feb-22

Client: Eagle Springs

Sample ID: LLLCS	Samp	Type: LC	SLL	Tes	tCode: EF	PA Method	200.7: Metals			
Client ID: BatchQC	Bato	ch ID: A84	4993	R	RunNo: 84	1993				
Prep Date:	Analysis	Date: 1/0	6/2022	S	SeqNo: 29	990190	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	ND	0.020	0.01000	0	102	50	150			
Barium	ND	0.0030	0.002000	0	113	50	150			
Beryllium	ND	0.0020	0.002000	0	87.6	50	150			
Boron	0.041	0.040	0.04000	0	102	50	150			
Cadmium	0.0023	0.0020	0.002000	0	114	50	150			
Chromium	0.0061	0.0060	0.006000	0	102	50	150			
Cobalt	0.0061	0.0060	0.006000	0	102	50	150			
Copper	0.0062	0.0060	0.006000	0	103	50	150			
Iron	ND	0.050	0.02000	0	107	50	150			
Manganese	ND	0.0020	0.002000	0	99.0	50	150			
Molybdenum	ND	0.0080	0.008000	0	91.7	50	150			
Nickel	ND	0.010	0.005000	0	117	50	150			
Silver	ND	0.0050	0.005000	0	97.8	50	150			
Zinc	0.012	0.010	0.01000	0	121	50	150			
Sample ID: LCS	Samp	Туре: LC	<u> </u>	Test	tCode: EF	PA Method	200.7: Metals			
Client ID: LCSW	Bato	ch ID: A84	4993	R	RunNo: 84	1993				
Prep Date:	Analysis	Date: 1/0	6/2022	S	SeqNo: 29	990192	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.52	0.020	0.5000	0	103	85	115			
Barium	0.49	0.0030	0.5000	0	98.0	85	115			
Beryllium	0.49	0.0020	0.5000	0	98.1	85	115			

011 115 5544	5.			-				
Sample ID: MB	Samp	Туре: МВL	K	Tes	tCode: EPA	Method 200	0.7: Metals	
Zinc	0.49	0.010	0.5000	0	97.8	85	115	
Silver	0.097	0.0050	0.1000	0	97.0	85	115	
Nickel	0.47	0.010	0.5000	0	93.7	85	115	
Molybdenum	0.49	0.0080	0.5000	0	98.8	85	115	
Manganese	0.47	0.0020	0.5000	0	94.9	85	115	
Iron	0.49	0.050	0.5000	0	97.9	85	115	
Copper	0.46	0.0060	0.5000	0	93.0	85	115	
Cobalt	0.48	0.0060	0.5000	0	95.2	85	115	
Chromium	0.49	0.0060	0.5000	0	97.5	85	115	
Cadmium	0.49	0.0020	0.5000	0	97.2	85	115	
Boron	0.51	0.040	0.5000	0	101	85	115	
Borymann	0.10	0.0020	0.0000	•	00.1	00	1.10	

Client ID: PBW Batch ID: A84993 RunNo: 84993

Prep Date: Analysis Date: 1/6/2022 SeqNo: 2990221 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: 2201113

09-Feb-22

Client: Project: Eagle Springs

Sample ID: MB SampType: MBLK TestCode: EPA Method 200.7: Metals

Client ID: PBW Batch ID: A84993 RunNo: 84993

Prep Date: Analysis Date: 1/6/2022 SeqNo: 2990221 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Aluminum ND 0.020 Barium ND 0.0030 ND 0.0020 Beryllium Boron ND 0.040 Cadmium ND 0.0020 Chromium ND 0.0060 Cobalt ND 0.0060 ND 0.0060 Copper ND 0.050 Iron ND 0.0020 Manganese ND 0.0080 Molybdenum ND 0.010 Nickel Silver ND 0.0050 ND 0.010 Zinc

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- Practical Quanitative Limit PQL
- % Recovery outside of range due to dilution or matrix interference
- В Analyte detected in the associated Method Blank
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Page 7 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2201113**

09-Feb-22

Client: Eagle Springs

Sample ID: MB SampType: MBLK TestCode: EPA Method 200.7: Dissolved Metals

Client ID: PBW Batch ID: A84993 RunNo: 84993

Prep Date: Analysis Date: 1/6/2022 SeqNo: 2990189 Units: mg/L Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual ND 0.020 Aluminum Barium ND 0.0020 ND 0.0020 Beryllium ND 0.040 Boron Cadmium ND 0.0020 ND 0.0060 Chromium Cobalt ND 0.0060 Copper ND 0.0060 Iron ND 0.020 Manganese ND 0.0020 ND 0.0080 Molybdenum Nickel ND 0.010 Silver ND 0.0050 Zinc ND 0.010

Sample ID: LLLCS	Samp	Type: LC	SLL	Tes	tCode: EF	PA Method	200.7: Dissol	ved Metal	ls	
Client ID: BatchQC	Bate	ch ID: A8	4993	F	RunNo: 84	1993				
Prep Date:	Analysis	Date: 1/	6/2022	8	SeqNo: 29	990191	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	ND	0.020	0.01000	0	102	50	150			
Barium	0.0023	0.0020	0.002000	0	113	50	150			
Beryllium	ND	0.0020	0.002000	0	87.6	50	150			
Boron	0.041	0.040	0.04000	0	102	50	150			
Cadmium	0.0023	0.0020	0.002000	0	114	50	150			
Chromium	0.0061	0.0060	0.006000	0	102	50	150			
Cobalt	0.0061	0.0060	0.006000	0	102	50	150			
Copper	0.0062	0.0060	0.006000	0	103	50	150			
Iron	0.021	0.020	0.02000	0	107	50	150			
Manganese	ND	0.0020	0.002000	0	99.0	50	150			
Molybdenum	ND	0.0080	0.008000	0	91.7	50	150			
Nickel	ND	0.010	0.005000	0	117	50	150			
Silver	ND	0.0050	0.005000	0	97.8	50	150			
Zinc	0.012	0.010	0.01000	0	121	50	150			

Sample ID: LCS SampType: LCS TestCode: EPA Method 200.7: Dissolved Metals

Client ID: LCSW Batch ID: A84993 RunNo: 84993

Prep Date: Analysis Date: 1/6/2022 SeqNo: 2990193 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 8 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2201113**

09-Feb-22

Client: Eagle Springs

Sample ID: LCS	Samp	Type: LC	s	Tes	tCode: El	PA Method	200.7: Dissol	ved Metal	s	
Client ID: LCSW	Bato	h ID: A8	4993	F	RunNo: 84	4993				
Prep Date:	Analysis	Date: 1/	6/2022	5	SeqNo: 29	990193	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum	0.52	0.020	0.5000	0	103	85	115			
Barium	0.49	0.0020	0.5000	0	98.0	85	115			
Beryllium	0.49	0.0020	0.5000	0	98.1	85	115			
Boron	0.51	0.040	0.5000	0	101	85	115			
Cadmium	0.49	0.0020	0.5000	0	97.2	85	115			
Chromium	0.49	0.0060	0.5000	0	97.5	85	115			
Cobalt	0.48	0.0060	0.5000	0	95.2	85	115			
Copper	0.46	0.0060	0.5000	0	93.0	85	115			
Iron	0.49	0.020	0.5000	0	97.9	85	115			
Manganese	0.47	0.0020	0.5000	0	94.9	85	115			
Molybdenum	0.49	0.0080	0.5000	0	98.8	85	115			
Nickel	0.47	0.010	0.5000	0	93.7	85	115			
Silver	0.097	0.0050	0.1000	0	97.0	85	115			
Zinc	0.49	0.010	0.5000	0	97.8	85	115			

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2201113**

09-Feb-22

Client: Eagle Springs

Sample ID: MB SampType: MBLK TestCode: EPA 200.8: Metals Client ID: PBW Batch ID: A85050 RunNo: 85050 Prep Date: Analysis Date: 1/10/2022 SeqNo: 2992301 Units: mg/L Analyte SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual ND 0.0010 Arsenic Copper ND 0.0010 ND 0.0010 Selenium Thallium ND 0.00025 0.00050 Uranium ND Sample ID: LLLCS-TL SampType: LCSLL TestCode: EPA 200.8: Metals Client ID: **BatchQC** Batch ID: A85050 RunNo: 85050 Prep Date: Analysis Date: 1/10/2022 SeqNo: 2992302 Units: mg/L SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** PQL HighLimit Analyte Result Qual Thallium ND 0.00025 0.0002500 0 99.3 50 150

Sample ID:	LLLCS	Samp	Type: LC	SLL	Tes	tCode: EF	PA 200.8: N	letals			
Client ID:	BatchQC	Bat	ch ID: A8	5050	F	RunNo: 8	5050				
Prep Date:		Analysis	Date: 1/	10/2022	8	SeqNo: 2 9	992303	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND	0.0010	0.001000	0	99.7	50	150			
Copper		0.0011	0.0010	0.001000	0	107	50	150			
Selenium		0.0011	0.0010	0.001000	0	110	50	150			

Sample ID: LCS	SampT	s	TestCode: EPA 200.8: Metals							
Client ID: LCSW	Batch	ID: A8	5050	R	RunNo: 8	5050				
Prep Date:	Analysis D	ate: 1/ 1	10/2022	S	SeqNo: 29	992304				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.026	0.0010	0.02500	0	102	85	115			
Copper	0.026	0.0010	0.02500	0	102	85	115			
Selenium	0.026	0.0010	0.02500	0	104	85	115			
Thallium	0.013 0	0.00025	0.01250	0	100	85	115			
Uranium	0.013 0	0.00050	0.01250	0	102	85	115			

Sample ID: 2201113-001DMS	SampType: MS	3	Tes	tCode: EF	PA 200.8: M	etals				
Client ID: Eagle Springs	Batch ID: A8	5050	F	RunNo: 8	5050					
Prep Date:	Analysis Date: 1/	10/2022	9	SeqNo: 29	992309	Units: mg/L				
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Arsenic	0.028 0.0010	0.02500	0.002081	102	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2201113**

09-Feb-22

Client: Eagle Springs

Sample ID:	2201113-001DMS	Samp	Туре: МЅ		Tes	tCode: EF	PA 200.8: N	letals			
Client ID:	Eagle Springs	Bat	ch ID: A8	5050	R	tunNo: 85	5050				
Prep Date:		Analysis	Date: 1/	10/2022	S	eqNo: 29	992309	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper		0.025	0.0010	0.02500	0	99.7	70	130			
Selenium		0.027	0.0010	0.02500	0	110	70	130			
Thallium		0.013	0.00025	0.01250	0	103	70	130			
Uranium		0.013	0.00050	0.01250	0	108	70	130			
Sample ID:	2201113-001DMSE	Samp	Туре: МЅ	iD.	Tes	Code: EF	PA 200.8: N	letals			
Client ID:	Eagle Springs	Bat	ch ID: A8	5050	R	unNo: 85	5050				
Prep Date:		Analysis	Date: 1/	10/2022	S	eqNo: 29	992312	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		0.029	0.0010	0.02500	0.002081	109	70	130	6.42	20	
Copper		0.026	0.0010	0.02500	0	104	70	130	4.60	20	
Selenium		0.029	0.0010	0.02500	0	115	70	130	4.32	20	
Thallium		0.013	0.00025	0.01250	0	105	70	130	2.84	20	
Uranium		0.014	0.00050	0.01250	0	113	70	130	4.98	20	
Sample ID:	МВ	Samp	Туре: МВ	LK	Tes	tCode: EF	PA 200.8: N	letals			
Client ID:	PBW	Bat	ch ID: B8	5050	R	tunNo: 85	5050				
Prep Date:		Analysis	Date: 1/	10/2022	S	eqNo: 29	992339	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony		ND	0.0010								
Sample ID:	LLLCS	Samp	Type: LC	SLL	Tes	tCode: EF	PA 200.8: N	letals			
Client ID:	BatchQC	Bat	ch ID: B8	5050	R	tunNo: 85	5050				
Prep Date:		Analysis	Date: 1/	10/2022	S	eqNo: 29	992340	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony		0.0011	0.0010	0.001000	0	105	50	150			
Sample ID:	LCS	SampType: LCS TestCode: EPA 200.8: Metals									

Qualifiers:

Client ID: LCSW

Prep Date:

Analyte

Antimony

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference

Batch ID: **B85050**

PQL

0.02500

0.0010

Analysis Date: 1/10/2022

0.026

B Analyte detected in the associated Method Blank

RunNo: 85050

102

SeqNo: 2992341

Units: mg/L

HighLimit

115

85

%RPD

E Estimated value

SPK value SPK Ref Val %REC LowLimit

0

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

RPDLimit

Qual

Hall Environmental Analysis Laboratory, Inc.

WO#: 2201113

09-Feb-22

Client: Project:

Antimony

Eagle Springs

Sample ID: 2201113-001DMS

SampType: MS Client ID: Eagle Springs

Batch ID: **B85050** RunNo: 85050

0.02500 0.0006221

Prep Date: Analysis Date: 1/10/2022 SeqNo: 2992345 Units: mg/L

Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

TestCode: EPA 200.8: Metals

0.027 0.0010 0.02500 0.0006221 105 130 Antimony

Sample ID: 2201113-001DMSD SampType: MSD TestCode: EPA 200.8: Metals

Client ID: Eagle Springs Batch ID: **B85050** RunNo: 85050

0.0010

0.028

Prep Date: Analysis Date: 1/10/2022 SeqNo: 2992346 Units: mg/L

SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Analyte Result PQL HighLimit Qual

110

70

130

4.74

20

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Η Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference

Analyte detected in the associated Method Blank

Analyte detected below quantitation limits

Sample pH Not In Range

Reporting Limit

Page 12 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2201113**

09-Feb-22

Client:	
Project:	Eagle Springs

Sample ID: MB	SampType:	SampType: MBLK TestCode: EPA 200.8: Dissolved Metals							
Client ID: PBW	Batch ID:	A85189	F	RunNo: 8	5189				
Prep Date:	Analysis Date:	1/14/2022	5	SeqNo: 29	996976	Units: mg/L			
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND 0.00)10							
Lead	ND 0.000)50							
Selenium	ND 0.00)10							
Thallium	ND 0.000)25							
Uranium	ND 0.000)50							
Sample ID: LCSLL	SampType:	LCSLL	Tes	tCode: EF	PA 200.8: [Dissolved Met	als		
Client ID: BatchQC	Batch ID:	A85189	F	RunNo: 8	5189				
Prep Date:	Analysis Date:	1/14/2022	S	SeqNo: 29	996977	Units: mg/L			
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.0010 0.00	0.001000	0	101	50	150			
Lead	0.00052 0.000	0.0005000	0	103	50	150			
Selenium	0.0012 0.00	0.001000	0	116	50	150			
Thallium	0.00051 0.000	0.0005000	0	101	50	150			
Uranium	ND 0.000	0.0005000	0	98.3	50	150			
Sample ID: LCS	SampType:	LCS	Tes	tCode: EF	PA 200.8: [Dissolved Met	als		
Client ID: LCSW	Batch ID:	A85189	F	RunNo: 8	5189				
Prep Date:	Analysis Date:	1/14/2022	5	SeqNo: 29	996978	Units: mg/L			
Analyte	Result PC	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.025 0.00	0.02500	0	99.9	85	115			
Lead	0.013 0.000	0.01250	0	100	85	115			
Selenium	0.026 0.00	0.02500	0	106	85	115			

Sample ID: MB	Samp	Туре: МЕ	BLK	Tes	tCode: El	PA 200.8: I	Dissolved Meta	als		
Client ID: PBW	Bato	h ID: A8	5205	F	RunNo: 8	5205				
Prep Date:	Analysis	Date: 1/	17/2022	9	SeqNo: 29	997738	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	ND	0.0010								

0

0

100

97.1

85

85

115

115

Sample ID: LCSLL SampType: LCSLL TestCode: EPA 200.8: Dissolved Metals

0.01250

0.01250

Client ID: BatchQC Batch ID: A85205 RunNo: 85205

0.013 0.00025

0.012 0.00050

Prep Date: Analysis Date: 1/17/2022 SeqNo: 2997739 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

Thallium Uranium

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2201113**

09-Feb-22

Client:

Project: Eagle Springs

Sample ID: LCSLL SampType: LCSLL TestCode: EPA 200.8: Dissolved Metals

Client ID: BatchQC Batch ID: A85205 RunNo: 85205

Prep Date: Analysis Date: 1/17/2022 SeqNo: 2997739 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Antimony ND 0.0010 0.001000 0 87.8 50 150

Sample ID: LCS SampType: LCS TestCode: EPA 200.8: Dissolved Metals

Client ID: LCSW Batch ID: A85205 RunNo: 85205

Prep Date: Analysis Date: 1/17/2022 SeqNo: 2997740 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Antimony 0.023 0.0010 0.02500 0 91.4 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 14 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2201113**

09-Feb-22

Client:

Project: Eagle Springs

Sample ID: MB-65046 SampType: MBLK TestCode: EPA Method 245.1: Mercury

Client ID: PBW Batch ID: 65046 RunNo: 85199

Prep Date: 1/17/2022 Analysis Date: 1/17/2022 SeqNo: 2997148 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LCSLL-65046 SampType: LCSLL TestCode: EPA Method 245.1: Mercury

Client ID: BatchQC Batch ID: 65046 RunNo: 85199

Prep Date: 1/17/2022 Analysis Date: 1/17/2022 SeqNo: 2997149 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020 0.0001500 0 97.6 50 150

Sample ID: LCS-65046 SampType: LCS TestCode: EPA Method 245.1: Mercury

Client ID: LCSW Batch ID: 65046 RunNo: 85199

Prep Date: 1/17/2022 Analysis Date: 1/17/2022 SeqNo: 2997150 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0052 0.00020 0.005000 0 103 85 115

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 15 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: 2201113

09-Feb-22

Client:

Total Dissolved Solids

Project: Eagle Springs

Sample ID: MB-64920 SampType: MBLK TestCode: SM 2540 C: Total Dissolved Solids

Client ID: PBW Batch ID: 64920 RunNo: 85103

Prep Date: 1/7/2022 Analysis Date: 1/12/2022 SeqNo: 2994364 Units: mg/L

Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-64920 SampType: LCS TestCode: SM 2540 C: Total Dissolved Solids

1000

Client ID: LCSW Batch ID: 64920 RunNo: 85103

20.0

1010

Prep Date: 1/7/2022 Analysis Date: 1/12/2022 SeqNo: 2994365 Units: mg/L

SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Result PQL HighLimit Qual Analyte 0

101

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Η Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference

Analyte detected in the associated Method Blank

Analyte detected below quantitation limits

Sample pH Not In Range

Reporting Limit

Page 16 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: 2201113

09-Feb-22

Client: Project: Eagle Springs

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R84955 RunNo: 84955

Prep Date: Analysis Date: 1/5/2022 SeqNo: 2989756 Units: mg/L

Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual ND 0.10 Fluoride

Chloride ND 0.50 ND Nitrogen, Nitrite (As N) 0.10 Nitrogen, Nitrate (As N) ND 0.10 Sulfate ND 0.50

Sample ID: LCS TestCode: EPA Method 300.0: Anions SampType: Ics Client ID: LCSW Batch ID: R84955 RunNo: 84955 Units: mg/L Prep Date: Analysis Date: 1/5/2022 SeqNo: 2989757 SPK value SPK Ref Val %RPD **RPDLimit** PQL %REC HighLimit Analyte Result LowLimit Qual Fluoride 0.48 0.10 0.5000 0 96.1 90 110 0 96.2 0.50 5.000 90 110 Chloride 4.8 Nitrogen, Nitrite (As N) 0 97.5 0.97 0.10 1.000 90 110 Nitrogen, Nitrate (As N) 2.500 0 102 90 2.6 0.10 110

0

94.3

90

110

Sample ID: 2201113-001CMS SampType: ms TestCode: EPA Method 300.0: Anions

10.00

Batch ID: R84955 Client ID: **Eagle Springs** RunNo: 84955

0.50

9.4

Prep Date: Analysis Date: 1/5/2022 SeqNo: 2989761 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte 0.1719 87.1 79.7 Fluoride 0.61 0.10 0.5000 110 Nitrogen, Nitrite (As N) 0.94 0.10 1.000 O 94.1 83.4 105 Nitrogen, Nitrate (As N) 2.6 0.10 2.500 0.01450 102 93.5 110

Sample ID: 2201113-001CMSD SampType: msd TestCode: EPA Method 300.0: Anions

Client ID: Eagle Springs Batch ID: R84955 RunNo: 84955

Prep Date: Analysis Date: 1/5/2022 SeaNo: 2989762 Units: ma/L

'	•						_			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.61	0.10	0.5000	0.1719	87.1	79.7	110	0.0542	20	
Nitrogen, Nitrite (As N)	0.94	0.10	1.000	0	93.7	83.4	105	0.437	20	
Nitrogen, Nitrate (As N)	2.6	0.10	2.500	0.01450	102	93.5	110	0.291	20	

Qualifiers:

Sulfate

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference

В Analyte detected in the associated Method Blank

Analyte detected below quantitation limits

Sample pH Not In Range

Reporting Limit

Page 17 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2201113**

09-Feb-22

Client:

Eagle Springs

Project: Eagle Springs

Sample ID: MB-64981 SampType: MBLK TestCode: EPA Method 504.1: EDB/DBCP
Client ID: PBW Batch ID: 64981 RunNo: 85109

Para Para - Marinese - Applicate Para - Marinese - Quality and Free - Units - Marinese

Prep Date: 1/12/2022 Analysis Date: 1/12/2022 SeqNo: 2994563 Units: $\mu g/L$

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

1,2-Dibromo-3-chloropropane ND 0.020 1,2-Dibromoethane ND 0.010

Sample ID: MB-64981 SampType: MBLK TestCode: EPA Method 504.1: EDB/DBCP

Client ID: PBW Batch ID: 64981 RunNo: 85109

Prep Date: 1/12/2022 Analysis Date: 1/12/2022 SeqNo: 2994586 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

1,2-Dibromo-3-chloropropaneND0.0201,2-DibromoethaneND0.010

Sample ID: LCS-64981 SampType: LCS TestCode: EPA Method 504.1: EDB/DBCP

Client ID: LCSW Batch ID: 64981 RunNo: 85109

Prep Date: 1/12/2022 Analysis Date: 1/12/2022 SeqNo: 2994587 Units: μg/L

Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte 0.091 90.6 70 1,2-Dibromo-3-chloropropane 0.020 0.1000 n 130 0.010 0.1000 120 70 130 1,2-Dibromoethane 0.12 0

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 18 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2201113**

09-Feb-22

Client: Eagle Springs

Sample ID: 62.5ng lcs	SampType: LCS TestCode: PURGEABLE ORGANICS by EPA 524									
Client ID: LCSW	Batcl	n ID: DV	/85133	F	RunNo: 8	5133				
Prep Date:	Analysis D	Date: 1/	12/2022	\$	SeqNo: 29	995288	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	2.7	0.50	2.500	0	109	70	130			
Carbon tetrachloride	2.4	0.50	2.500	0	97.2	70	130			
Chlorobenzene	2.6	0.50	2.500	0	103	70	130			
cis-1,2-Dichloroethene	2.6	0.50	2.500	0	104	70	130			
1,2-Dichlorobenzene	2.5	0.50	2.500	0	99.5	70	130			
1,4-Dichlorobenzene	2.5	0.50	2.500	0	100	70	130			
1,2-Dichloroethane	2.3	0.50	2.500	0	91.5	70	130			
1,1-Dichloroethene	2.5	0.50	2.500	0	98.9	70	130			
1,2-Dichloropropane	2.6	0.50	2.500	0	105	70	130			
Ethylbenzene	2.5	0.50	2.500	0	98.6	70	130			
Methylene chloride	2.6	0.50	2.500	0	103	70	130			
Styrene	2.5	0.50	2.500	0	99.6	70	130			
Tetrachloroethene	2.5	0.50	2.500	0	102	70	130			
Toluene	2.5	0.50	2.500	0	101	70	130			
trans-1,2-Dichloroethene	2.5	0.50	2.500	0	102	70	130			
1,2,4-Trichlorobenzene	2.2	0.50	2.500	0	87.4	70	130			
1,1,1-Trichloroethane	2.4	0.50	2.500	0	97.3	70	130			
1,1,2-Trichloroethane	2.6	0.50	2.500	0	106	70	130			
Trichloroethene	2.5	0.50	2.500	0	102	70	130			
Vinyl chloride	2.5	0.50	2.500	0	100	70	130			
Total Xylenes	7.7	0.50	7.500	0	102	70	130			
Surr: 1,2-Dichlorobenzene-d4	2.0		2.000		98.7	70	130			
Surr: 4-Bromofluorobenzene	2.0		2.000		101	70	130			

Sample ID: mb	SampT	ype: ME	BLK	Tes	tCode: Pl	URGEABLE	ORGANICS	by EPA 52	24	
Client ID: PBW	Batch	n ID: DV	V85133	F	RunNo: 8	5133				
Prep Date:	Analysis D	ate: 1/	12/2022	9	SeqNo: 29	995289	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.50								
Carbon tetrachloride	ND	0.50								
Chlorobenzene	ND	0.50								
cis-1,2-Dichloroethene	ND	0.50								
1,2-Dichlorobenzene	ND	0.50								
1,4-Dichlorobenzene	ND	0.50								
1,2-Dichloroethane	ND	0.50								
1,1-Dichloroethene	ND	0.50								
1,2-Dichloropropane	ND	0.50								
Ethylbenzene	ND	0.50								

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2201113**

09-Feb-22

Client: Eagle Springs

Sample ID: mb SampType: MBLK TestCode: PURGEABLE ORGANICS by EPA 524 Client ID: PBW Batch ID: **DW85133** RunNo: 85133 Prep Date: Analysis Date: 1/12/2022 SeqNo: 2995289 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Methylene chloride ND 0.50 Styrene ND 0.50 ND 0.50 Tetrachloroethene Toluene ND 0.50 trans-1,2-Dichloroethene ND 0.50 1,2,4-Trichlorobenzene ND 0.50 0.50 1,1,1-Trichloroethane ND 1.1.2-Trichloroethane ND 0.50 Trichloroethene ND 0.50 ND 0.50 Vinyl chloride ND 0.50 Total Xylenes 2.000 96.6 70 130 Surr: 1,2-Dichlorobenzene-d4 1.9 70 Surr: 4-Bromofluorobenzene 2.000 89.7 130 1.8

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 27

Hall Environmental Analysis Laboratory, Inc.

9.7

SampType: MBLK

WO#: **2201113**

09-Feb-22

Client: Eagle Springs

Surr: Toluene-d8

Sample ID: mb

Sample ID: 100ng lcs SampType: LCS TestCode: EPA Method 8260B: VOLATILES Client ID: LCSW Batch ID: R84966 RunNo: 84966 Prep Date: Analysis Date: 1/5/2022 SeqNo: 2989808 Units: µg/L Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 22 1.0 20.00 0 111 70 130 Benzene Toluene 20 1.0 20.00 0 101 70 130 20 0 102 70 Chlorobenzene 1.0 20.00 130 1,1-Dichloroethene 20 1.0 20.00 0 101 70 130 Trichloroethene (TCE) 22 1.0 20.00 0 108 70 130 Surr: 1,2-Dichloroethane-d4 11 10.00 108 70 130 Surr: 4-Bromofluorobenzene 10 10.00 102 70 130 Surr: Dibromofluoromethane 111 130 11 10.00 70

10.00

96.7

70

TestCode: EPA Method 8260B: VOLATILES

130

· ·	•									
Client ID: PBW	Batch	n ID: R8	4966	F	RunNo: 84	4966				
Prep Date:	Analysis D)ate: 1/	5/2022	5	SeqNo: 29	989809	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2201113**

09-Feb-22

Client: Eagle Springs

Sample ID: mb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW	Batch	n ID: R8	4966	F	RunNo: 84	1966				
Prep Date:	Analysis D	ate: 1/	5/2022	5	SeqNo: 29	989809	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 27

Hall Environmental Analysis Laboratory, Inc.

9.8

WO#: **2201113**

09-Feb-22

Client: Eagle Springs

Surr: Toluene-d8

Sample ID: mb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES Client ID: PBW Batch ID: R84966 RunNo: 84966 Prep Date: Analysis Date: 1/5/2022 SeqNo: 2989809 Units: µg/L Analyte SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Vinyl chloride ND 1.0 Xylenes, Total ND 1.5 10.00 110 70 130 Surr: 1,2-Dichloroethane-d4 11 Surr: 4-Bromofluorobenzene 10 10.00 103 70 130 70 Surr: Dibromofluoromethane 11 10.00 111 130

97.8

70

130

10.00

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2201113**

09-Feb-22

Client: Eagle Springs

	1 6									
Sample ID: mb-64915	Samp	Гуре: МЕ	BLK	Tes	stCode: EI	PA Method	8270SIM			
Client ID: PBW	Batc	h ID: 64 9	915	F	RunNo: 8	5114				
Prep Date: 1/7/2022	Analysis [Date: 1/	12/2022	;	SeqNo: 2	994706	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	ND	0.10	_							-
1-Methylnaphthalene	ND	0.10								
2-Methylnaphthalene	ND	0.10								
Benzo(a)pyrene	ND	0.070								
Atrazine	ND	1.5								
Pentachlorophenol	ND	0.10								
Surr: Nitrobenzene-d5	2.9		4.000		71.5	21.9	89.8			
Surr: 2,4,6-Tribromophenol	5.4		8.000		67.0	23.4	71.6			
Surr: 2-Fluorobiphenyl	2.2		4.000		54.0	15	84.5			
Surr: 4-Terphenyl-d14	4.4		4.000		109	73.1	152			
Sample ID: Ics-64915	Samp ⁻	Гуре: LC	s	Tes	stCode: El	PA Method	8270SIM			
Client ID: LCSW	Batc	h ID: 64 9	915	F	RunNo: 8	5114				
Prep Date: 1/7/2022	Analysis [Date: 1/	12/2022	;	SeqNo: 2	994707	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	1.4	0.10	2.000	0	69.0	26.5	90.9			
1-Methylnaphthalene	1.4	0.10	2.000	0	69.0	27.9	88.2			
2-Methylnaphthalene	1.3	0.10	2.000	0	67.0	29.2	87.5			
Benzo(a)pyrene	2.1	0.070	2.000	0	107	36.6	122			
Atrazine	2.0	1.5	2.000	0	102	32.5	135			
Pentachlorophenol	1.6	0.10	2.000	0	80.0	15	116			
Surr: Nitrobenzene-d5	4.8		5.000		96.8	21.9	89.8			S
Surr: 2,4,6-Tribromophenol	8.0		10.00		79.6	23.4	71.6			S
Surr: 2-Fluorobiphenyl	3.9		5.000		78.0	15	84.5			
Surr: 4-Terphenyl-d14	6.9		5.000		138	73.1	152			
Sample ID: Icsd-64915	Samp	Гуре: LC	SD	Tes	stCode: El	PA Method	8270SIM	_		_
Client ID: LCSS02	Batc	h ID: 64 9	915	F	RunNo: 8	5114				
Prep Date: 1/7/2022	Analysis [Date: 1/	12/2022	;	SeqNo: 2	994708	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	1.2	0.10	2.000	0	58.0	26.5	90.9	17.3	37.6	
1-Methylnaphthalene	1.2	0.10	2.000	0	59.0	27.9	88.2	15.6	33.1	
2-Methylnaphthalene	1.1	0.10	2.000	0	57.0	29.2	87.5	16.1	35.4	
Benzo(a)pyrene	2.1	0.070	2.000	0	106	36.6	122	0.939	22.4	
Atrazine	2.0	1.5	2.000	0	102	32.5	135	0	34.8	
	. –			_						

Qualifiers:

Pentachlorophenol

Surr: Nitrobenzene-d5

Surr: 2,4,6-Tribromophenol

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference

1.7

3.8

7.7

0.10

2.000

5.000

10.00

B Analyte detected in the associated Method Blank

83.0

76.0

77.4

15

21.9

23.4

E Estimated value

0

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 27

53.3

0

0

S

3.68

0

0

116

89.8

71.6

Hall Environmental Analysis Laboratory, Inc.

WO#: **2201113**

Qual

09-Feb-22

Client: Project:

Eagle Springs

 Sample ID: Icsd-64915
 SampType: LCSD
 TestCode: EPA Method 8270SIM

 Client ID: LCSS02
 Batch ID: 64915
 RunNo: 85114

 Prep Date: 1/7/2022
 Analysis Date: 1/12/2022
 SeqNo: 2994708
 Units: μg/L

Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Surr: 2-Fluorobiphenyl 3.3 5.000 66.8 15 84.5 0 0 Surr: 4-Terphenyl-d14 6.4 5.000 128 73.1 152 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: 2201113

09-Feb-22

Client:

Phenolics

Project: Eagle Springs

Sample ID: MB-64994 SampType: MBLK TestCode: Total Phenolics by SW-846 9067 Client ID: PBW Batch ID: 64994 RunNo: 85130

Prep Date: 1/13/2022 Analysis Date: 1/13/2022 SeqNo: 2995262 Units: µg/L

Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

ND 5.0 Phenolics

Sample ID: LCS-64994 SampType: LCS TestCode: Total Phenolics by SW-846 9067

20.00

Client ID: LCSW Batch ID: 64994 RunNo: 85130

15

Prep Date: 1/13/2022 Analysis Date: 1/13/2022 SeqNo: 2995263 Units: µg/L

RPDLimit SPK value SPK Ref Val %REC %RPD Result PQL LowLimit HighLimit Qual Analyte 0

73.7

58.1

TestCode: Total Phenolics by SW-846 9067

107

Sample ID: LCSD-64994

Client ID: LCSS02 Batch ID: 64994 RunNo: 85130

SampType: LCSD

5.0

Analysis Date: 1/13/2022 SeqNo: 2995264 Prep Date: 1/13/2022 Units: µg/L

Analyte SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

20.00 0 20 Phenolics 15 5.0 73.7 58.1 107

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference

Analyte detected in the associated Method Blank

Analyte detected below quantitation limits

Sample pH Not In Range

Reporting Limit

Page 26 of 27

Hall Environmental Analysis Laboratory, Inc.

WO#: **2201113**

09-Feb-22

Client:

Project: Eagle Springs

Sample ID: MB-64870 SampType: MBLK TestCode: SM 9223B Total Coliform

Client ID: PBW Batch ID: 64870 RunNo: 85000

Prep Date: 1/5/2022 Analysis Date: 1/6/2022 SeqNo: 2990586 Units: P/A

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Coliform Absent 0
E. Coli Absent 0

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 27 of 27

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: clients.hallenvironmental.com Client Name: Work Order Number: 2201113 RcptNo: 1 Charant Received By: Juan Rojas 1/4/2022 4:11:00 PM Completed By: Cheyenne Cason 1/5/2022 8:16:39 AM DAD Reviewed By: 1/5/22 @ 9:00 Chain of Custody 1. Is Chain of Custody complete? Yes V No 🗌 Not Present How was the sample delivered? Client Log In 3. Was an attempt made to cool the samples? Yes No V NA 🗌 Were all samples received at a temperature of >0° C to 6.0°C No V NA 🗌 Approved by client, Sample(s) in proper container(s)? Yes V No 6. Sufficient sample volume for indicated test(s)? Yes V No \square 7. Are samples (except VOA and ONG) properly preserved? Yes V No 🗌 8. Was preservative added to bottles? Yes V No 🗌 NA HN03, H2SO4 9. Received at least 1 vial with headspace <1/4" for AQ VOA? Yes 🗌 No 🗌 NA V 10. Were any sample containers received broken? Yes No V # of preserved bottles checked 11. Does paperwork match bottle labels? Yes 🗸 No 🗌 for pH: (Note discrepancies on chain of custody) 12 unless noted) 12. Are matrices correctly identified on Chain of Custody? Adjusted? Yes 🗸 No 13. Is it clear what analyses were requested? Yes 🗸 No 🗌 14. Were all holding times able to be met? Checked by: Che 1/5/22 Yes 🗸 No 🗌 (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes No 🗌 NA V Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: Filtw 1 + F52651 Poured off and Filtered ~125ml from unpreserved plastic and added ~0.4ml HNO3 for dissolved metals analysis. Added ~2ml H2SO4 to unpreserved amber glass for Phenols analysis --17. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By 14.2 Good Not Present 2 16.7 Good Not Present

ວິ	ain-of-C	Chain-of-Custody Record	Turn-Around Time:	d Time:		_												
Client:				- C	2			П	¥			M	8	Z	HALL ENVIRONMENT	TA	_	
			Project Name:			1			Z ▼	A	Z	IS	3	Ö	ANALYSIS LABORATORY	Ö	7	
Mailing			1		4				§	w.hal	envir	www.hallenvironmental.com	ntal.co	ш				
0			\neg	Chindes	2	_	490	4901 Hawkins NE	vkins	빌	Albu	Albuquerque, NM 87109	ue, N	M 871	60			
			Project #:				Tel	Tel. 505-345-3975	345-3	975	Fa	Fax 505-345-4107	5-345	-4107				
Phone #										A	nalys	Analysis Request	dnes					6000
email or			€ or Project Man	ager:		()	_	H			ÞΟ	H	(tr	0				
QA/QC Package:	cage:		Nyle Khan	Khan		208	MR	s,e	SV		S '‡		Jəsc	ZINI				
□ Standard	-0	☐ Level 4 (Full Validation)	١ (١			3) s,	10	ЬСІ	VISC		Ю		₹¥	25.				
Accreditation:		□ Az Compliance	Sampler:			BM.	ם ב				' ^Z O		uəs	Nay				
□ NELAC	□ Other	ıer	On Ice:	.□ Yes	540	L /	/ O			,	N '	(A		M				
□ EDD (Type)	(be)		# of Coolers:	2		38 T	HO)			slet				Λ			-	
			Cooler Temp(including CF).	O(including CF):	3.946.3=144°C		2D(əΜ				Q	-			
			Container	Preservative	16-4-16-3-16-7 HEAL NO.	/ X3.	108:H	81 Pe M) B	yd sH	8 A지:	F, Br	9S) 02	oO ls	311	000			
Date Time	ne Matrix	Sample Name	Type and #	Type	7.201113	T8	dТ			ВС			00 100 0	N	M			
0/04 12:	12:30	Paglosprings			<u> </u>							_		X	*			_
		1/10 Blood			200			-						1			+	_
		-						-			H	-		t	-	Ţ	+	
						1		+			+	+		t			+	
						1	\dagger	+		1	+	+		+	+		+	
						_	+	+			+			1				
							1	\dashv			\dashv		-					
					,			\dashv										
					5		1	-										
								-										
	+							-										
								-										
T	\neg																	
Orloy 4:11pm	Comparison of the comparison	sned by:	Received by:	EDS.	Date Time	Ren	Remarks:	120	3	40	J. C.	. }		ව	no -10	.27		
				, dia.		15.	Trip Blan) 4 _	Boken	,	1/4/2)	
lf nece	ssary, samples su	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredi	ubcontracted to other a	ccredited laboratori	ted laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	is possit	ility. An	y sub-co	ntracted	data w	II be cle	arly nota	ited on t	he analy	rtical repo	ort.		3

WQCC List (NM Code 20.6.2.3103)

3-40mL HCl VOAs

8260_W: Volatile Organics

~2-40mL Na₂S₂O₃ VOAs*

• 504.1 W: EDB-

4-1L glass amber unpreserved Z

- 8082 LF: PCBs-
- 8270LF: Semi Volatile Organics
 - Naphthalene, 1-Methylnaphthalene,
 2-Methylnaphthalene,
 Benzo(a)pyrene, Atrazine,
 Pentachlorophenol

1-1L glass amber H₂SO₄

9067 W: Phenol*

1-500mL HDPE unpreserved

- 300.0 W: Anions
 - o F, Cl, NO₃, SO₄, NO₂
- TDS_W: SM2540 C (Mod.)
- PH-W: SM4500-H+B/EPA 9040C

1-125mL HDP H2SO4

- 300 W: Anions
 - NO₃+NO₂ backup

1-250mL HDPE HNO3

• 245.1: Mercury

1-125mL HDP HNO3 (filter and syringe)**

- 200.7 DISS: Dissolved Metals by ICP
 - Al, Ba, Be, B, Cd, Cr, Co, Cu, Fe, Mn, Mo, Ni, Ag, Zn
- 200.8 DISS: Dissolved Metals by ICP/MS
 - o As, Sb, Pb, Se, Tl, U

2-1L HDPE HNO3

• RADCM: Ra-226/228 by EPA 903.1/904.0

✓ 1-500mL plastic amber NaOH

CN_TW: Total CN by EPA 335.4

Be sure to include Trip Blank for 504.1_W and 8260_W.

*Include an extra bottle for QC per set of 20 samples

**Filtering events after sample receipt, must be properly documented including the lot number of the filter(s) used.

This Document Has Been Approved for Use at HEAL on 9/23/21 by: _AF_ and _TES_. Page 26 of 32

D-Login Test Group & Bottle Types.v6

NMED NEW WATER SOURCES

3-40mL ascorbic acid VOAs (w/ HCl dropper and instructions)

• 524_W: Volatile Organics in DW

1-1L glass amber unpreserved

COLOR: SM2120 B

ODOR: SM2150 B

1-120mL Na₂S₂O₃ (certified clean w/ seal)

• Coliform: SM9223 B

2-500mL HDPE unpreserved

- 1 Bottle Fraction C
 - o 300 W: Anions
 - F, NO3, NO2, Cl, SO4
 - o 2540 C NELAC: TDS by SM2540 C
 - PH_W: SM4500-H⁺ B/EPA 9040C
- 1 Bottle Fraction L:
 - o SURF: SM5540 C
 - o CORR: Corrosivity by EPA 9045D

1-125mL HDP H₂SO₄

- 300 W: Anions
 - o NO2+NO3 backup

V 1-250mL HDPE HNO₃

- 200.7: Metals by ICP
 - o Al, Ba, Cd, Cr, Be, Fe, Mn, Ag, Zn
- 200.8 COMPLIANCE: Metals ICP/MS
 - o Sb, As, Cu, Se, Tl, U
 - 245.1: Mercury

/ 1-500mL plastic amber NaOH

• CN_DW: Total CN in DW by EPA 335.4 (Fill amber halfway, shake then add NaOH then continue to fill)

4-1L HDPE HNO₃

- RADCM: Ra-226/228 by EPA 903.1/904.0
- ALBETA: Gross Alpha/Beta by EPA 900.0

1 Full SOC list

• (See page 21.)

Be sure to include a Trip Blank for 524 W.

Appendix A-3

Hall (HEAL) Report 3: Pretreated Toray810 RO Single/Double Pass Filtered Water Results

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL 505-345-3975 FAX 505-345-4107 Website clients.hallenvironmental.com

March 30, 2022

Nyle Khan

RE: Eagle Springs Seawater RO Test OrderNo.: 2203907

Dear Nyle Khan:

Hall Environmental Analysis Laboratory received 2 sample(s) on 3/16/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **2203907**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/30/2022

CLIENT: Client Sample ID: ES Pass #1 SWRO

Project:Eagle Springs Seawater RO TestCollection Date: 3/16/2022 11:20:00 AMLab ID:2203907-001Matrix: AQUEOUSReceived Date: 3/16/2022 4:15:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE					Analyst: SB
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	3/22/2022 11:55:12 AM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	3/22/2022 11:55:12 AM
Surr: DNOP	129	43.2-147	%Rec	1	3/22/2022 11:55:12 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	3/19/2022 3:12:00 PM
Surr: BFB	109	68.5-136	%Rec	1	3/19/2022 3:12:00 PM
EPA METHOD 300.0: ANIONS					Analyst: LRN
Fluoride	ND	0.10	mg/L	1	3/17/2022 11:10:44 AM
Chloride	7.1	0.50	mg/L	1	3/17/2022 11:10:44 AM
Nitrogen, Nitrite (As N)	ND	0.10	mg/L	1	3/17/2022 11:10:44 AM
Bromide	ND	0.10	mg/L	1	3/17/2022 11:10:44 AM
Nitrogen, Nitrate (As N)	ND	0.10	mg/L	1	3/17/2022 11:10:44 AM
Phosphorus, Orthophosphate (As P)	ND	0.50	mg/L	1	3/17/2022 11:10:44 AM
Sulfate	7.1	0.50	mg/L	1	3/17/2022 11:10:44 AM
EPA METHOD 200.7: METALS					Analyst: ELS
Boron	0.85	0.040	mg/L	1	3/22/2022 11:16:33 AM
Calcium	ND	1.0	mg/L	1	3/22/2022 11:16:33 AM
Magnesium	ND	1.0	mg/L	1	3/22/2022 11:16:33 AM
Potassium	ND	1.0	mg/L	1	3/22/2022 11:16:33 AM
Sodium	9.1	1.0	mg/L	1	3/22/2022 12:17:39 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: MRA
Conductivity	58	10	µmhos/c	1	3/22/2022 9:40:52 PM
SM2320B: ALKALINITY					Analyst: MRA
Bicarbonate (As CaCO3)	ND	20.00	mg/L Ca	1	3/22/2022 9:40:52 PM
Carbonate (As CaCO3)	ND	2.000	mg/L Ca	1	3/22/2022 9:40:52 PM
Total Alkalinity (as CaCO3)	ND	20.00	mg/L Ca	1	3/22/2022 9:40:52 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	35.0	20.0	mg/L	1	3/24/2022 5:38:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 10

Date Reported: 3/30/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT:

Client Sample ID: ES Pass #2 SWRO

Project:Eagle Springs Seawater RO TestCollection Date: 3/16/2022 11:20:00 AMLab ID:2203907-002Matrix: AQUEOUSReceived Date: 3/16/2022 4:15:00 PM

Analyses	Result	PQL Qua	al Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: LRN
Fluoride	ND	0.10	mg/L	1	3/17/2022 12:02:10 PM
Chloride	ND	0.50	mg/L	1	3/17/2022 12:02:10 PM
Nitrogen, Nitrite (As N)	ND	0.10	mg/L	1	3/17/2022 12:02:10 PM
Bromide	ND	0.10	mg/L	1	3/17/2022 12:02:10 PM
Nitrogen, Nitrate (As N)	ND	0.10	mg/L	1	3/17/2022 12:02:10 PM
Phosphorus, Orthophosphate (As P)	ND	0.50	mg/L	1	3/17/2022 12:02:10 PM
Sulfate	ND	0.50	mg/L	1	3/17/2022 12:02:10 PM
EPA METHOD 200.7: METALS					Analyst: ELS
Boron	0.34	0.040	mg/L	1	3/22/2022 11:19:45 AM
Calcium	ND	1.0	mg/L	1	3/22/2022 11:19:45 AM
Magnesium	ND	1.0	mg/L	1	3/22/2022 11:19:45 AM
Potassium	ND	1.0	mg/L	1	3/22/2022 11:19:45 AM
Sodium	ND	1.0	mg/L	1	3/22/2022 12:19:17 PM
SM2510B: SPECIFIC CONDUCTANCE					Analyst: MRA
Conductivity	ND	10	µmhos/c	1	3/22/2022 9:52:08 PM
SM2320B: ALKALINITY					Analyst: MRA
Bicarbonate (As CaCO3)	ND	20.00	mg/L Ca	1	3/22/2022 9:52:08 PM
Carbonate (As CaCO3)	ND	2.000	mg/L Ca	1	3/22/2022 9:52:08 PM
Total Alkalinity (as CaCO3)	ND	20.00	mg/L Ca		3/22/2022 9:52:08 PM
SM2540C MOD: TOTAL DISSOLVED SOLIDS					Analyst: KS
Total Dissolved Solids	ND	20.0	mg/L	1	3/24/2022 5:38:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- $ND \qquad Not \ Detected \ at \ the \ Reporting \ Limit$
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

eporting Limit Page 2 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: 2203907

30-Mar-22

Client:

Project: Eagle Springs Seawater RO Test

Sample ID: MB SampType: MBLK TestCode: EPA Method 200.7: Metals Client ID: PBW Batch ID: A86637

RunNo: 86637

Prep Date: Analysis Date: 3/22/2022 SeqNo: 3058540 Units: mg/L

PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual

Boron ND 0.040 Calcium ND 1.0 ND Magnesium 1.0 Potassium ND 1.0 Sodium ND 1.0

Sample ID: LLLCS SampType: LCSLL TestCode: EPA Method 200.7: Metals Client ID: BatchQC Batch ID: A86637 RunNo: 86637 Units: mg/L Prep Date: Analysis Date: 3/22/2022 SeqNo: 3058541 Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual ND 0.040 0.04000 0 99.1 50 150 Boron Calcium ND 1.0 0.5000 0 104 50 150 ND 0 97.8 50 1.0 0.5000 150 Magnesium

0

0

95.3

120

50

50

150

150

Sample ID: LCS SampType: LCS TestCode: EPA Method 200.7: Metals

0.5000

0.5000

Client ID: LCSW Batch ID: A86637 RunNo: 86637

1.0

1.0

ND

ND

Prep Date: Analysis Date: 3/22/2022 SeqNo: 3058542 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.040 107 85 0.54 0.5000 115 n Boron Calcium 48 1.0 50.00 0 97.0 85 115 0 47 50.00 94.9 85 Magnesium 1.0 115 Potassium 47 1.0 50.00 0 94.6 85 115 Sodium 46 50.00 0 92.4 85 1.0 115

Qualifiers:

Potassium

Sodium

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference

Analyte detected in the associated Method Blank

Е Estimated value

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

ND

ND

ND

4.5

9.3

0.10 0.50

0.50

0.50

0.50

5.000

10.00

WO#: **2203907**

30-Mar-22

Client:

Nitrogen, Nitrate (As N)

Sulfate

Sulfate

Phosphorus, Orthophosphate (As P

Phosphorus, Orthophosphate (As P

Project: Eagle Springs Seawater RO Test

Sample ID: MB	SampT	ype: mb	olk	Tes	tCode: El	PA Method	300.0: Anions	3		
Client ID: PBW	Batch	ID: R8	6573	F	RunNo: 8	6573				
Prep Date:	Analysis Da	ate: 3/	17/2022	8	SeqNo: 3	055603	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								
Nitrogen, Nitrite (As N)	ND	0.10								
Bromide	ND	0.10								

Sample ID: LCS	SampT	ype: Ics	3	Tes	tCode: El	PA Method	300.0: Anions	3		
Client ID: LCSW	Batch	n ID: R8	6573	F	RunNo: 8	6573				
Prep Date:	Analysis D	oate: 3/	17/2022	S	SeqNo: 3	055607	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.50	0.10	0.5000	0	99.1	90	110			
Chloride	4.7	0.50	5.000	0	93.4	90	110			
Nitrogen, Nitrite (As N)	0.97	0.10	1.000	0	97.2	90	110			
Bromide	2.4	0.10	2.500	0	97.6	90	110			
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0	100	90	110			

0

0

90.8

93.1

90

90

110

110

Sample ID: 2203907-001CMS	SampT	ype: ms	3	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: ES Pass #1 SWRC	Batch	ID: R8	6573	F	RunNo: 8	6573				
Prep Date:	Analysis D	ate: 3/	17/2022	8	SeqNo: 3	055615	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.49	0.10	0.5000	0	97.7	79.7	110			
Chloride	12	0.50	5.000	7.143	101	86.3	114			
Nitrogen, Nitrite (As N)	0.95	0.10	1.000	0	94.8	83.4	105			
Bromide	2.4	0.10	2.500	0	95.5	91.2	106			
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0	98.1	93.5	110			
Phosphorus, Orthophosphate (As P	4.4	0.50	5.000	0	88.7	80.1	109			
Sulfate	16	0.50	10.00	7.057	94.3	90.5	112			

Sample ID:	2203907-001CMSD	SampTyp	e: ms	sd	Tes	tCode: El	PA Method	300.0: Anions	\$		
Client ID:	ES Pass #1 SWRO	Batch II): R8	6573	F	lunNo: 8	6573				
Prep Date:		Analysis Date	e: 3/	17/2022	S	SeqNo: 3	055616	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		0.49	0.10	0.5000	0	97.6	79.7	110	0.0820	20	

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 4 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203907**

30-Mar-22

Client:

Project: Eagle Springs Seawater RO Test

Sample ID: 2203907-001CMSD SampType: msd TestCode: EPA Method 300.0: Anions Client ID: ES Pass #1 SWRO Batch ID: R86573 RunNo: 86573 Prep Date: Analysis Date: 3/17/2022 SeqNo: 3055616 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 7.143 Chloride 12 0.50 5.000 101 86.3 114 0.00410 20 Nitrogen, Nitrite (As N) 0.95 0.10 1.000 0 95.0 83.4 105 0.148 20 2.4 2.500 0 95.6 91.2 20 **Bromide** 0.10 106 0.0879 0 98.1 20 Nitrogen, Nitrate (As N) 2.5 0.10 2.500 93.5 110 0.0245 0 88.9 20 Phosphorus, Orthophosphate (As P 4.4 0.50 5.000 80.1 109 0.227 Sulfate 16 0.50 10.00 7.057 94.4 90.5 112 0.0728 20

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203907**

30-Mar-22

Client:

Eagle Springs Seawe

Project: Eagle Springs Seawater RO Test

Sample ID: MB-66291 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range
Client ID: PBW Batch ID: 66291 RunNo: 86643

Prep Date: 3/21/2022 Analysis Date: 3/22/2022 SeqNo: 3059907 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 1.0

Motor Oil Range Organics (MRO) ND 5.0

Surr: DNOP 0.62 0.5000 123 43.2 147

Sample ID: LCS-66291 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range

Client ID: LCSW Batch ID: 66291 RunNo: 86643

Prep Date: 3/21/2022 Analysis Date: 3/22/2022 SeqNo: 3059908 Units: mg/L

SPK value SPK Ref Val %REC Analyte PQL LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 2.9 1.0 2.500 116 70 130 Surr: DNOP 0.31 0.2500 122 43.2 147

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 6 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203907**

30-Mar-22

Client:

Sample ID: 2203907-001ams

Project: Eagle Springs Seawater RO Test

Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range Client ID: LCSW Batch ID: A86605 RunNo: 86605 Prep Date: Analysis Date: 3/19/2022 SeqNo: 3057167 Units: mg/L SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result PQL LowLimit Qual Gasoline Range Organics (GRO) 0 0.57 0.050 0.5000 115 80 120 Surr: BFB 45 20.00 227 68.5 136 S Sample ID: mb TestCode: EPA Method 8015D: Gasoline Range SampType: MBLK

Client ID: PBW Batch ID: A86605 RunNo: 86605 Prep Date: Analysis Date: 3/19/2022 SeqNo: 3057168 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 0.050 ND

 Surr: BFB
 21
 20.00
 107
 68.5
 136

20.00

SampType: MS

44

Client ID: ES Pass #1 SWRO Batch ID: A86605 RunNo: 86605 Prep Date: Analysis Date: 3/19/2022 SeqNo: 3057170 Units: mg/L %REC PQL SPK value SPK Ref Val HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual

TestCode: EPA Method 8015D: Gasoline Range

 Gasoline Range Organics (GRO)
 0.60
 0.050
 0.5000
 0
 120
 70
 130

 Surr: BFB
 46
 20.00
 232
 68.5
 136
 S

Sample ID: 2203907-001amsd TestCode: EPA Method 8015D: Gasoline Range SampType: MSD Client ID: ES Pass #1 SWRO Batch ID: A86605 RunNo: 86605 Prep Date: Analysis Date: 3/19/2022 SeqNo: 3057171 Units: mg/L SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result PQL LowLimit Qual Gasoline Range Organics (GRO) 0.58 0.050 115 70 4.49 0.5000 n 130 20

Qualifiers:

Surr: BFB

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

219

68.5

136

0

0

S

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 7 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203907**

30-Mar-22

Client:

Project: Eagle Springs Seawater RO Test

Sample ID: 2203907-001c dup SampType: dup

Client ID: ES Pass #1 SWRO Batch ID: R86681 RunNo: 86681

Prep Date: Analysis Date: 3/22/2022 SeqNo: 3060532 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

TestCode: SM2510B: Specific Conductance

Conductivity 58 10 0 20

Sample ID: Ics-1 100.2uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R86681 RunNo: 86681

Prep Date: Analysis Date: 3/22/2022 SeqNo: 3060544 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 110 10 100.0 0 108 85 115

Sample ID: Ics-2 100.2uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R86681 RunNo: 86681

Prep Date: Analysis Date: 3/22/2022 SeqNo: 3060570 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 10 100.2 0 104 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 8 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203907**

30-Mar-22

Client:

Total Alkalinity (as CaCO3)

Project: Eagle Springs Seawater RO Test

Sample ID: mb-1 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R86681 RunNo: 86681

Prep Date: Analysis Date: 3/22/2022 SeqNo: 3060403 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R86681 RunNo: 86681

Prep Date: Analysis Date: 3/22/2022 SeqNo: 3060404 Units: mg/L CaCO3

80.00

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

91.4

110

Sample ID: mb-2 alk SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R86681 RunNo: 86681

20.00

73.08

Prep Date: Analysis Date: 3/22/2022 SeqNo: 3060426 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-2 alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R86681 RunNo: 86681

Prep Date: Analysis Date: 3/22/2022 SeqNo: 3060427 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 74.16 20.00 80.00 0 92.7 90 110

Sample ID: 2203907-001C DUP SampType: dup TestCode: SM2320B: Alkalinity

Client ID: ES Pass #1 SWRO Batch ID: R86681 RunNo: 86681

20.00

ND

Prep Date: Analysis Date: 3/22/2022 SeqNo: 3060432 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Total Alkalinity (as CaCO3)

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 9 of 10

20

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203907**

30-Mar-22

Client:

Project: Eagle Springs Seawater RO Test

Sample ID: MB-66350 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 66350 RunNo: 86728

Prep Date: 3/23/2022 Analysis Date: 3/24/2022 SeqNo: 3062125 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-66350 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 66350 RunNo: 86728

Prep Date: 3/23/2022 Analysis Date: 3/24/2022 SeqNo: 3062126 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1020 20.0 1000 0 102 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 10

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

Sample Log-In Check List

Client Name: Work Order Number: 2203907 RcptNo: 1 Received By: Juan Rojas 3/16/2022 4:15:00 PM Completed By: Cheyenne Cason 3/16/2022 4:27:02 PM Reviewed By: 3/16/22 Chain of Custody 1. Is Chain of Custody complete? Yes 🗸 No 🗌 Not Present 2. How was the sample delivered? Log In 3. Was an attempt made to cool the samples? Yes 🗸 No 🗌 NA 🗌 Were all samples received at a temperature of >0° C to 6.0°C No 🗸 Yes NA 🗌 Approved by client. Sample(s) in proper container(s)? No V Yes 6. Sufficient sample volume for indicated test(s)? Yes V No 🗌 7. Are samples (except VOA and ONG) properly preserved? No 🗌 8. Was preservative added to bottles? Yes 🗸 No NA 🗌 HNO3 9. Received at least 1 vial with headspace <1/4" for AQ VOA? Yes 🗸 No NA 🗌 10. Were any sample containers received broken? Yes 🗌 No V # of preserved bottles checked 11. Does paperwork match bottle labels? Yes V No 🗌 for pH: (Note discrepancies on chain of custody) (<2)or >12 unless noted) 12. Are matrices correctly identified on Chain of Custody? Yes 🗸 No 13. Is it clear what analyses were requested? Yes V No Checked by: JR 3 16/2 > 14. Were all holding times able to be met? No 🗌 Yes 🗸 (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes NA 🗸 No Person Notified: Date: By Whom: Via: eMail Phone Fax Regarding: Client Instructions: Additional remarks: Poured off from unpreserved plastic jugs for all samples and all fractions, added ~ U. ml HNO3 to 001D for metals analysis, added ~ 0.5 ml HNO3 to 002B for metals analysis -- JN 3 116 [2 2 17. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date

Signed By

24.6

Good

Not Present

	hain-o	-Cux	Chain-of-Custody Record	Turn-Around Time:	d Time:		1000	瓣					
				□ Standard	d XX Rush	ush	-			HALL ENVIRONMENTA ANALYSIA POPATOR	MEN	Ϋ́	
				Project Name:	ie:			靈	•	Many hallenvironmental com	2	5	
				Facile Spring	Facile Springs Seawater DO Tool	100 T C 0				www.namenvinoninental.com			
				Project #:	as ocawater	NO LESI	Т	084 	памк	₹	37109		
								lei.	505-34	lel. 505-345-3975 Fax 505-345-4107 Analysis Request	07		
				Project Manager:	ager:		1	(0					
				Nyle Khan			, , ,) / MRG					
				Sampler:			noinA	אם /					
□ EDD (Tvpe)	vne)			On Ice:	□ Yes	ON-O	//uo	ОЯ					
				Cooler Temp(including cr.);	(including CF).	24.4 +0.2-24.	Cat	D(G					
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type		andard	108:Hc	non				
3/16/2022	5.00 PM			Diactic Diactic	36	70750707	10	11 ,			$\frac{1}{2}$	\perp	
3/16/2022	₩d 00:9		ES Pass #2 SWRO	Plastic Ind			< >	< >			$^{+}$	\perp	
	of studes					7	<	<					
										X			
								+					
Jate: 122	Time: R	Relinquished by:	ed by:	Received by:	Via:	Date Time	Rem	Remarks: (Para)	ارمً	Apprine Wan	30	3/16/22	N
Date:	Time:	Relinquished by:		Réceived by:	Via:) <u>=</u>							
	If necessary, sa	imples subr	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	ontracted to other ac	ccredited laboratorie	es. This serves as notice of the	dis possib	lity. Any	sub-contra	rcted data will be clearly notated on the an	nalytical rep	, E	

Appendix B

Plant Growth and Soil Analysis: Final Published Results

ELSEVIER

Contents lists available at ScienceDirect

Agricultural Water Management

journal homepage: www.elsevier.com/locate/agwat

Irrigation with desalinated and raw produced waters: Effects on soil properties, and germination and growth of five forages

Akram R. Ben Ali^{a,*}, Manoj K. Shukla^a, Mark Marsalis^b, Nyle Khan^c

- a Plant and Environmental Sciences Department. New Mexico State University. P.O. Box 30003, MSC-3O. Las Cruces. NM 88003-8003, USA
- ^b Los Lunas Agricultural Science Center, USA
- c HPOC, LLC, USA

ARTICLE INFO

Handling Editor - Dr. B.E. Clothier

Keywords:
Produced water
Evapotranspiration
Russian wildrye
Alfalfa
Tall fescue

ABSTRACT

Produced water is generated during oil and gas production in copious amounts daily in the United States. With increasing water shortfalls in arid and semi-arid regions, it could be a valuable source of water for irrigation purposes after treatment. The present study examined the effects of irrigation with produced waters on five perennials cool season forage, species western wheatgrass (Pascopyrum smithii), alfalfa (Medicago sativa), meadow bromegrass (Bromus biebersteinii), Russian wildrye (Psathyrostachys junceus), and tall fescue (Schedonorus arundinaceus). The forages were grown in a greenhouse, in loamy soil, and irrigated with desalinated reverse osmosis RO (231 mg/l), diluted RAW (1400 mg/l), RAW produced (8610 mg/l), and tap (427 mg/l) water. All forages were harvested three times at an interval of ≈ 90 days after 30 days germination period. Tall fescue germinated (100 %) and grew well under all four treatments. The higher biomass was with alfalfa, tall fescue, wheatgrass, bromegrass, and Russian wildrye, respectively. Evapotranspiration (ET) of the five species decreased with increasing soil and irrigation water salinity. Na, Cl, and B ions concentrations were 10.7, 13.6, and 42.3 mg/l, respectively in wheatgrass; 24.7, 17, and 14.5 mg/l, respectively in alfalfa; 27.7, 25.6, and 92.5 mg/l, respectively in bromegrass; 18, 14.6, and 59.6 mg/l, respectively in Russian wildrye; and 33, 35, and 207.5 mg/l, respectively in tall fescue, in plant tissues obtained after the second harvest. In soil, Na and B ions concentrations were 1173, 2.1 mg/l, respectively in wheatgrass pots; 1047, 1.7 mg/l, respectively in alfalfa pots; 874.6, 1.4 mg/ l, respectively in bromegrass pots; 782, 1.6 mg/l, respectively in Russian wildrye pots; and 1974, 3.17 mg/l, respectively in tall fescue pots. Plant biomass decreased with increasing salinity; however, plants continued to grow even after the third harvest. Utilizing desalinated and diluted produced waters as a valuable source of water for irrigation after treatment could alleviate water demand in arid oil producing regions of the world.

1. Introduction

The search for alternative water sources for agricultural purposes due to continued drought and reduction in fresh water supplies has become mandatory in arid areas to save water for human consumption. Oil and gas industries generate large volumes (around 630 – 840 billion gallons/year) of water during extraction processes, and the largest byproduct called "produced water" (Clark and Veil, 2009; Veil, 2011). This valuable source of water has been investigated as a useful source of irrigation in drylands in the US (Pica et al., 2017; Echchelh et al., 2020).

In the US, west of the 98th meridian, the federal National Pollutant Discharge Elimination System (NPDES) exemption allows the use of produced water for agricultural irrigation if oil and grease are less than 35 mg/L (McLaughlin et al., 2020). Reusing saline waters including produced water to irrigate croplands can contribute to food security (Flores et al., 2015). However, salt content of produced water could be extremely high; therefore, long-term irrigation would cause decline in soil fertility and crop productivity and increase groundwater contamination (Echchelh et al., 2020). High salinity, organic matter load, and toxic organic compounds are some of the main pollutant constituents in produced water that have to be accounted for prior to the reuse as an irrigation source (Pica et al., 2017). Treatment of the produced water to remove organics, microbial contaminants and heavy metals, prior to use will also be required.

Ben Ali et al. (2021); (2020) illustrated that irrigation with RO concentrate (5600 mg/l) negatively impacted soil properties and plant

^{*} Correspondence to: Plant and Environmental Science Department, New Mexico State University, Las Cruces, NM, USA.

E-mail addresses: bena1971@nmsu.edu (A.R. Ben Ali), shuklamk@nmsu.edu (M.K. Shukla), marsalis@nmsu.edu (M. Marsalis), n.khan@hpocllc.com (N. Khan).

growth. Reduction in pecan (*Carya illinoinensis*) chlorophyll, height, and growth was the results of irrigation with 5600 mg/l saline water (Ben Ali et al., 2020). Previous studies reported small decreases in halophytic species biomass irrigated with saline water (5600 – 7000 mg/l) (Flores et al., 2016; Ozturk et al., 2018). Decreases in tomato growth and yield were reported due to irrigation with 2800 mg/l saline water (Yang et al., 2020; Farooq et al., 2021). Accumulation of Na and Cl caused reductions in plant height, chlorophyll content and leaf area of *Dichroa febrifuga*, ×*H. macrophylla*, and *D. febrifuga* irrigated due to the irrigation with saline water of concentrations ranging from 3500 to 7000 mg/l (Sun et al., 2022).

Changes in soil properties have to be monitored on a regular basis when produced water is utilized for irrigation. Burkhardt et al. (2015) reported increasing accumulation of Na and other salts in the soil with increasing concentration of produced water. Other studies conducted in arid areas have reported that produced water quality was responsible for increases in soil salinity and sodicity that negatively affected the soil structure and soil hydraulic properties (Biggs et al., 2012; Burkhardt et al., 2015), consequently, decreasing crop productivity (Yang et al., 2020; Echchelh et al., 2020).

Pica et al. (2017) reported decreases in Rapeseed (*Brassica napus L.*) and switchgrass (*Panicum virgatum L.*) growth when irrigated with produced water (up to 21,000 mg/l salinity). Plant growth and consequently biomass production can be inhibited when soil salinity increase due to irrigation with produced water (Munns, 2005). Burkhardt et al. (2015) reported a decline in wormwood and switchgrass growth with increases in produced water concentration due to high Na content (\approx 1156 mg/l). A dilution to less than 1000 mg/l of row-produced water was utilized to irrigate greenhouse tomatoes (Martel-Valles et al., 2014). The feasibility of utilizing produced water in crop irrigation is related to its ion and organics. To that end, desalination of produced water to acceptable levels of various plants could be a viable solution.

HPOC, LLC is one of the oil and gas companies that produces substantial amounts of produced water during oil explorations. The company provided produced water (source water) of a salinity of about 8600 mg/l. In the state of New Mexico, produced water salinity is highly variable and can range from 8000 mg/l to 250,000 mg/l. In the present study, we created a salinity gradient of irrigation waters from 230 mg/l to 8600 mg/l to irrigate five forages species. The objectives of this study were to: (i) investigate the effects of produced water on seed germination and plants growth parameters, and (ii) monitor the changes in the soil properties due to irrigation with produced water.

2. Materials and methods

2.1. Experimental design and treatments

Two harvests (from 22 May 2021-15 December 2021) were conducted in the Fabian Garcia Science Center greenhouse in Las Cruces, NM, USA (32.2805° N and 106.770° W; elevation 1186 m). An extended third harvest continued from December 15, 2021, to February 27, 2022, to confirm the viability of the experiment. For each experimental harvest, the experimental unit was a pot (15 cm deep and 15 cm in diameter) packed with air-dried and sieved through a 2 mm sieve loamy soil (52.56 % sand, 22.72 % silt, 24.72 % clay) with a bulk density of 1.43 g/ cm3. Three produced water treatments with total dissolved solids (TDS) of 231 mg/l RO water (desalinated using reverse osmosis, RO), 1400 mg/l diluted RAW (RAW produced water diluted with city water), 8610 mg/l RAW produced water (source water), and 427 mg/l tap (or city) water (Table 1) were arranged in a completely randomized design with four replicates. The RAW produced water or source water was provided by HPOC and was first run through a carbon filter then desalinated using RO at the Brackish Groundwater National Desalination Research Facility (BGNDRF), Alamogordo, New Mexico. All treatment waters are shown in Table 1, which also provides pH, sodium adsorption ratio (SAR), total dissolved solids (TDS), and concentrations of some ions.

Table 1
Ion concentrations (mg/l), SAR, and pH in four treatment waters.

Treatment waters	TDS mg/l	Mg mg/ l	Ca mg/l	Na mg/l	SAR	Cl mg/l	pН
RO	231	0.48	13.16	67.49	4.83	36.2	8.2
Тар	427	8.25	40.77	58.22	1.93	56.0	7.4
Diluted RAW	1400	8.91	54.56	360.94	10.81	141.0	8.3
RAW	8610	9.61	172.84	3425.80	65.81	856.0	8.3

Note: RO is the raw water desalinated using reverse osmosis (231 mg/l). Tap water = 427 mg/l. Diluted RAW produced water = 1400 mg/l. RAW produced water = 8610 mg/l. TDS = total dissolved solids. SAR = Sodium adsorption ratio

2.2. Plant selection

Western wheatgrass (Pascopyrum smithii), alfalfa (Medicago sativa), meadow bromegrass (Bromus biebersteinii), Russian wildrye (Psathyrostachys junceus), and tall fescue (Schedonorus arundinaceus) seeds were selected for the study because they are broadly adapted to grow in the colder climates of northern New Mexico. In a completely randomized design, these five forage species were arranged in four replicates and irrigated with four water treatments in 80 pots (5 *4 *4 = 80) in each harvest. Randomization was achieved by generating random numbers using Microsoft Excel (2013). Prior to sowing, seeds were subjected to water -test to check for seed viability. Twenty-five seeds per pot of each species were planted in the top 2 cm of the soil. The pots with the seedlings were irrigated with the four treatments from the beginning of the experiment. Depending on soil moisture content, plants were irrigated five to six times every month. Germination percentage was calculated 30 days after seeding. Plants were harvested on September 22, 2021, for the first harvest, December 15, 2021, for the second harvest, and February 27, 2021, for the extended third harvest.

2.3. Evapotranspiration

Evapotranspiration (ET) was determined using a water balance equation; (Shukla, 2014).

$$ET = IR + R - \Delta S - RO - DP \tag{1}$$

where IR is the depth of irrigation (cm), R is rainfall (cm; R=0), ΔS is the change in soil water storage between irrigations (cm; assumed= 0), RO is runoff (cm; RO= 0), and DP is the deep percolation (cm; leachate collected from the bottom of pots). Irrigations were made at a management allowed depletion of about 50 %.

2.4. Plant measurements

Each month, plant heights (from the base of the stem to the tip of the shoot), chlorophyll content, and leaf temperature were measured during the two harvests of the experiment using a tape measure, SPAD meter, and IR thermometer, respectively. The exact number of plants were allowed to grow for three months with no thinning during each harvest. At the end of each harvest, shoots were harvested and fresh weights were recorded. The shoots were dried in the oven at $65\,^{\circ}$ C for 48 h, and dry weights were recorded for biomass calculation. Dried shoots were ground and packed in small storage bags and sent to Ag Source Laboratory, Lincoln, Nebraska for chemical analysis along with irrigation water and leachate samples.

2.5. Soil bulk density and chemical analysis

Core samples were collected from each of the pots under irrigation salinity treatments at the end of the experiment. Soil bulk density was determined using cores (Blake and Hartge, 1986). Loose soil samples were collected from the pots, air-dried, mixed and sieved through a 2

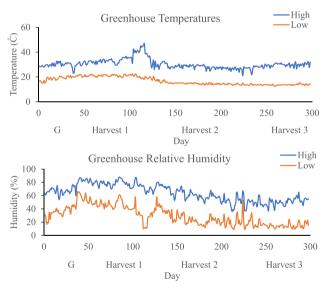
Note: RO = 231 mg/l. Tap = 427 mg/l. Diluted RAW = 1400 mg/l. RAW = 8610 mg/l. TDS = total dissolved solids. Means within columns with same letter are not significant at $\alpha \le 0.05$. NA= not available.

mm sieve, prior to shipping them to the Ag Source Laboratories, Lincoln, Nebraska for chemical analysis.

Sodium adsorption ratio (SAR) was calculated based on (Robbins, 1983) using the following equation:

$$SAR = \frac{(Na^{+1})}{\sqrt{\frac{(Ca^{+2}) + (Mg^{+2})}{2}}},$$
 (2)

where [Na] is sodium ion concentration (meg/l), [Ca] is calcium ion concentration (meq/l), and [Mg] is magnesium ion concentration (meq/l).


2.6. Statistical analysis

The experimental design was a completely randomized design with four replications. All statistical analyses were performed using SAS software, v 9.4. Differences due to treatments on plant germination and growth were determined using one-way analysis of variance (ANOVA) and means were separated using the least significant difference (LSD). An alpha level of 0.05 was used to determine statistical significance.

3. Results

3.1. Greenhouse meteorology

Greenhouse temperatures ranged from 15.1 to 46.9°C prior to first harvest, 13.4–33.5 C before the second harvest, and 13.7–28.4 C prior to the third harvest (Fig. 1). Relative humidity in the greenhouse ranged from 10 % to 88 %, 12 -- 80 %, and 16.4-50.2 % for the three harvests, respectively (Fig. 1). Daily light integral (DLI) is important for

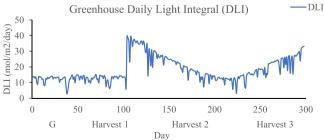


Fig. 1. Greenhouse data from May 22, 2021, to December 15, 2021, for temperature (C), relative humidity (%), and daily light integral (mol/m²/day). G = Germination.

Mean and standard error	inean and staituatu ettot oi seeu gemmanom (70) and two ma vests of	dry bronnass (g) or rive rorages under mingation with produced water.	nigation with produced water.		
Plant ID	Treatment TDS mg/l	Seed germination (%)	Dry biomass 1 (g)	Dry biomass 2 (g)	Cumulative biom: (g)
		Mean ± SE			
Wheatgrass	231	49 ± 3.70 a	0.79 ± 0.20 a	$1.01 \pm 0.08\mathrm{b}$	1.80 ± 0.28 a
	427	$17 \pm 5.00\mathrm{b}$	$0.79 \pm 0.04 a$	$1.28 \pm 0.07~\mathrm{a}$	$2.07 \pm 0.11~a$
	1400	$23 \pm 6.10\mathrm{b}$	$0.77 \pm 0.08 a$	$1.34 \pm 0.04\mathrm{a}$	$2.11 \pm 0.09~a$
	8610	NA	NA	NA	NA
Alfalfa	231	$98\pm2.00\mathrm{a}$	3.76 ± 0.04 ab	$4.59\pm0.43\mathrm{b}$	$8.36\pm0.98~\mathrm{b}$
	427	$88\pm6.90\mathrm{a}$	$5.11\pm0.57~a$	$8.73 \pm 0.24\mathrm{a}$	$13.84 \pm 0.44\mathrm{a}$
	1400	$50\pm17.10~\rm b$	$2.18 \pm 0.56 \text{ b}$	$4.82 \pm 0.44\mathrm{b}$	$7.00 \pm 0.58~\mathrm{b}$
	8610	NA	NA	NA	NA
Bromegrass	231	$86\pm0.14\mathrm{a}$	$0.49\pm0.12~\mathrm{b}$	$0.87 \pm 0.02\mathrm{b}$	$1.36\pm0.10~a$
	427	$100\pm0.00~\mathrm{a}$	$0.91 \pm 0.09 \mathrm{a}$	$1.19 \pm 0.10\mathrm{a}$	$2.10\pm0.18~a$
	1400	$100\pm0.00\mathrm{a}$	$0.99 \pm 0.47 a$	$0.94 \pm 0.07~\mathrm{b}$	1.94 ± 0.47 a
	8610	$100\pm0.00\mathrm{a}$	NA	NA	NA
Russian wildrye	231	$7\pm1.90~\rm b$	$0.60\pm0.05~\mathrm{a}$	$0.69 \pm 0.09 \mathrm{a}$	1.29 ± 0.13 a
	427	$18\pm3.80\mathrm{a}$	$0.62\pm0.12~\mathrm{a}$	$1.10\pm0.30\mathrm{a}$	$1.72\pm0.24~\mathrm{a}$
	1400	9 ± 4.10 ab	$0.52\pm0.08~\mathrm{a}$	0.92 ± 0.03 a	$1.45\pm0.05\mathrm{a}$
	8610	NA	NA	NA	NA
Tall fescue	231	100 ± 0.00 a	$0.59 \pm 0.09 \text{ ab}$	$1.17\pm0.16\mathrm{a}$	$1.76\pm0.19~\rm b$
	427	100 ± 0.00 a	$1.25\pm0.38~a$	$1.81 \pm 0.08\mathrm{a}$	3.07 ± 0.46 a
	1400	100 ± 0.00 a	$1.16\pm0.27~\mathrm{a}$	$1.86\pm0.39\mathrm{a}$	3.02 ± 0.57 a
	8610	$93\pm7.00\mathrm{a}$	$0.30\pm0.05\mathrm{b}$	$1.20\pm0.30\mathrm{a}$	$1.50\pm0.26~\rm b$

ulative biomass

plant growth, development, yield and quality. DLI was 16.21, 19.82, and $18.63 \text{ mol/m}^2/\text{day}$ for the three harvests respectively (Fig. 1). At day 104 of the experiment period, greenhouse shade was removed which explained the increase in DLI at that time.

3.2. Seed germination

Table 2 shows the germination percentage of the five forage species. Only bromegrass and tall fescue germinated in RAW water (Table 2). Bromegrass had an 86 % germination in RO water but 100 % in RAW water; however, plants did not survive beyond the first month of

irrigation with RAW water (Table 2). A similar germination trend was observed for Alfalfa irrigated with RO and tap water; however, germination was 50 % in diluted RAW (Table 2). Russian wildrye had the lowest germination percentages in RO, tap, and diluted RAW followed by wheatgrass species (Table 2). Among the five forage species, tall fescue germinated well with all the irrigation treatments. Wheatgrass, alfalfa, and Russian wildrye germination significantly decreased with increases in salinity but none germinated in the soil irrigated with RAW water (Table 2).

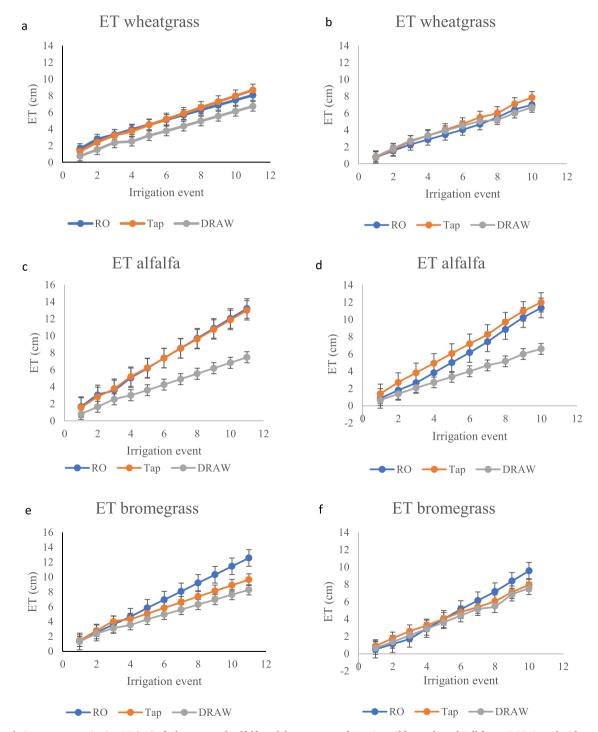


Fig. 2. Cumulative evapotranspiration ET (cm) of wheatgrass a,b, alfalfa c, d, bromegrass e, f, Russian wildrye g, h, and Tall fescue i, j irrigated with produced water during the two harvests. RO = 231 mg/l. Tap = 427 mg/l. Diluted RAW = 1400 mg/l. RAW = 8610 mg/l.

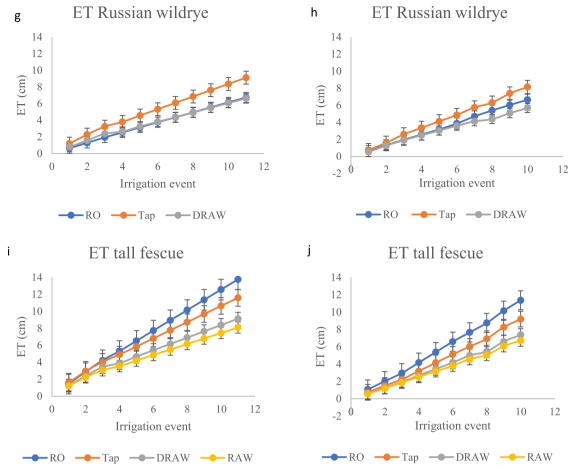


Fig. 2. (continued).

3.3. Plant dry biomass

Forage species dry biomass of the first harvest (biomass 1), and the second harvest (biomass 2) are presented in (Table 2). Wheatgrass dry biomass was similar in all the irrigation treatments in the first harvest (Table 2). In the second harvest, however, increase in dry biomass in all the three treatments was observed compared to the first harvest and the greater increase was in diluted RAW water followed by tap water (Table 2). Alfalfa dry biomass decreased in diluted RAW compared with tap water in the first harvest (Table 2). Increases in alfalfa dry biomass in all three treatments can be observed whereas alfalfa dry biomass in RO and diluted RAW water remained the lowest compared with tap water in the second harvest (Table 2). No differences were found in bromegrass dry biomass between the three treatments in the first harvest (Table 2). All three treatments showed increases in dry biomass in the second harvest while dry biomass was lower in RO and diluted RAW water, respectively, compared with tap water (Table 2). Russian wildrye dry biomass showed no differences in the first and the second harvests while the dry biomass increased in all treatments in the second harvest compared with first harvest (Table 2). In the first harvest, tall fescue dry biomass significantly decreased in RAW water compared with tap water; however, in the second harvest, all dry biomass increased with no significant differences observed (Table 2). Diluted RAW and RAW irrigation decreased wheatgrass, alfalfa, bromegrass, and tall fescue dry biomass. There were no statistically differences in cumulative biomass among the treatments for wheatgrass, bromegrass, and Russian wildrye (Table 2). However, the cumulative tall fescue biomass was lower in RO and RAW irrigated pots than other treatments. For alfalfa, the cumulative biomass was lower for RO and diluted RAW irrigated pots than other city or tap water (Table 2).

3.4. Evapotranspiration

Fig. 2a to j shows the cumulative ET for wheatgrass (western), alfalfa, bromegrass, Russian wildrye, and tall fescue. The results illustrated decreases in cumulative ET for all the five forages in diluted RAW and RAW (Fig. 2). As treatment salinity increased, wheatgrass, alfalfa, bromegrass, Russian wildrye, and tall fescue ET decreased for both harvests (Fig. 2). Pots irrigated with RAW water remained wetter than other treatments.

3.5. Plants heights and SPAD value

Table 3 shows the first measurement, in July, of the height and SPAD value of forage species during the first harvest. Wheatgrass (western) height and SPAD value were higher in diluted RAW irrigated water, than tap and RO treatments (Table 3). This trend was similar for the second measurement in August (Table 3). Alfalfa height was greater in RO treatment while SPAD value was slightly higher in diluted RAW with no significant differences than other treatments (Table 3). No differences were recorded in the second measurement in August for alfalfa heights and SPAD value (Table 3). For bromegrass, the lowest recorded height in July was in RAW irrigated water while the SPAD value was highest in RAW water (Table 3); however, bromegrass irrigated continuously with RAW irrigation died by August. In August, bromegrass SPAD was higher in tap water than diluted RAW and RO (Table 3).

Russian wildrye height was similar in RO, tap, and diluted RAW water while the SPAD value was higher in diluted RAW water than RO and tap water (Table 3). This trend shifted in August when height was greater in the diluted RAW irrigation with no differences observed in the SPAD value (Table 3). Greater tall fescue height was recorded in tap

Mean and standard error of plant's heights (cm) and SPAD value irrigated with produced water (first harvest, July and August). Table 3

		July		August	
Plant ID	Treatment TDS mg/l	Height (cm)	SPAD	Height (cm)	SPAD
			Mean ± SE		
Wheatgrass	231	$24.25 \pm 2.09 \ b$	$4.67\pm1.60b$	$27.05 \pm 3.04b$	$4.58\pm0.45~\mathrm{b}$
	427	31.65 ± 1.84 a	$5.87 \pm 1.00\mathrm{b}$	$34.25 \pm 1.25 \mathrm{a}$	$15.55 \pm 2.93 \mathrm{ab}$
	1400	$32.87\pm1.98~a$	12.42 ± 0.94 a	$36.50 \pm 1.94 \mathrm{a}$	$25.20 \pm 6.33 \mathrm{a}$
	8610	NA	NA	NA	NA
Alfalfa	231	24 ± 1.22 a	$48.62 \pm 1.92 \text{ a}$	$30.00 \pm 2.74\mathrm{a}$	$51.90\pm2.30\mathrm{a}$
	427	$22.77 \pm 0.75 \text{ ab}$	45.47 ± 2.54 a	$30.25 \pm 4.39 \mathrm{a}$	$53.93 \pm 2.73 \mathrm{a}$
	1400	$19.37 \pm 1.79 \text{ b}$	$50.82 \pm 2.33 a$	$28.00 \pm 2.86\mathrm{a}$	$44.13 \pm 6.35 \mathrm{a}$
	8610	NA	NA	NA	NA
Bromegrass	231	$21.5\pm1.51\mathrm{a}$	$2.85\pm0.89\mathrm{b}$	19.25 \pm 2.25 a	$8.13\pm2.87~\mathrm{b}$
	427	23 ± 0.40 a	$6.8 \pm 1.14\mathrm{a}$	23.63 ± 1.07 a	$17.48 \pm 2.99 \mathrm{a}$
	1400	$20.75 \pm 3.19 \mathrm{a}$	$3.6\pm0.58~b$	$23.75 \pm 1.65 a$	$13.85 \pm 2.71 \text{ ab}$
	8610	$9.75\pm0.87b$	$7.67\pm1.02a$	NA	NA
Russian wildrye	231	17.75 ± 1.56 a	$9.35\pm1.03\mathrm{b}$	$22.38 \pm 1.55 \text{ b}$	$15.83 \pm 5.86 a$
	427	$23.85 \pm 1.35 \text{ a}$	$6.6\pm1.10~\mathrm{b}$	28.50 ± 2.10 ab	$17.00\pm2.87~\mathrm{a}$
	1400	$20.5 \pm 3.95 \mathrm{a}$	$32.85 \pm 2.06 \text{ a}$	33.05 ± 2.54 a	$23.55 \pm 4.37 a$
	8610	NA	NA	NA	NA
Tall fescue	231	$20.3\pm1.89~\mathrm{ab}$	$8.27 \pm 1.41c$	$22.50 \pm 2.22 \mathrm{a}$	$7.43\pm2.04~\mathrm{b}$
	427	$24.5 \pm 1.37 \mathrm{a}$	$16.75 \pm 0.91 \; b$	25.00 ± 2.52 a	$14.13\pm2.34~\mathrm{b}$
	1400	$19.62 \pm 1.86 \ ab$	$8.55\pm0.73c$	23.00 ± 1.22 a	$12.53\pm1.20~\mathrm{b}$
	8610	$16.6\pm1.80~\mathrm{b}$	$24.82\pm1.12a$	$18.75 \pm 2.69 a$	22.90 ± 4.13 a

Note: RO = 231 mg/l. Tap = 427 mg/l. Diluted RAW = 1400 mg/l. RAW = 8610 mg/l. TDS = total dissolved solids. Means within columns with same the letter are not significant at $\alpha \le 0.05$. NA= not available.

 Table 4

 Mean and standard error of plant heights (cm) and SPAD value irrigated with produced water (second harvest, October and November).

	,,,	,			
		October		November	
Plant ID	Treatment TDS mg/l	Height (cm)	SPAD	Height (cm)	SPAD
		Mean \pm SE			
Wheatgrass	231	$21.00\pm1.73~\mathrm{b}$	$23.68\pm2.65\mathrm{a}$	$22.75\pm2.10~\mathrm{b}$	10.48 ± 4.44 a
	427	$27.25\pm1.93~\mathrm{a}$	$24.83 \pm 3.35 \mathrm{a}$	$29.25 \pm 3.35 \text{ ab}$	$19.83 \pm 4.65 \text{ a}$
	1400	$29.00\pm0.91~\mathrm{a}$	$28.95 \pm 4.22\mathrm{a}$	$32.25 \pm 2.75 a$	$21.40 \pm 4.26 a$
	8610	NA	NA	NA	NA
Alfalfa	231	$18.75\pm0.31~\mathrm{a}$	$41.98 \pm 3.80 \mathrm{a}$	$20.75\pm2.10~\mathrm{a}$	46.83 ± 4.04 a
	427	$26.50 \pm 4.35 a$	49.78 ± 1.79 a	$27.25 \pm 3.99 a$	$34.00\pm3.20~\mathrm{b}$
	1400	$17.00 \pm 4.53~a$	$30.83 \pm 1.58\mathrm{b}$	26.25 ± 1.11 a	$46.50 \pm 3.21 \text{ a}$
	8610	NA	NA	NA	NA
Bromegrass	231	$14.00\pm0.82~a$	11.23 ± 1.61 a	15.25 ± 2.72 a	$16.68 \pm 8.73 \mathrm{a}$
	427	$17.00\pm1.08~\mathrm{a}$	$19.70\pm2.82\mathrm{a}$	16.75 ± 1.65 a	$10.03 \pm 4.49 \mathrm{a}$
	1400	$16.25\pm1.11~\mathrm{a}$	$19.20 \pm 4.01\mathrm{a}$	$18.25\pm2.10\mathrm{a}$	21.15 ± 3.08 a
	8610	NA	NA	NA	NA
Russian wildrye	231	$16.50\pm0.87~\mathrm{b}$	$25.03 \pm 2.91 \text{ ab}$	$16.75 \pm 1.49 \mathrm{a}$	$8.38 \pm 2.99\mathrm{b}$
	427	$21.75 \pm 2.50 \text{ ab}$	$21.50 \pm 3.56\mathrm{b}$	$21.25\pm0.85\mathrm{a}$	$15.55\pm4.06~\mathrm{b}$
	1400	24.50 ± 2.72 a	$33.45\pm0.13\mathrm{a}$	$23.75 \pm 3.75 \mathrm{a}$	$27.80 \pm 3.00~\mathrm{a}$
	8610	NA	NA	NA	NA
Tall fescue	231	$13.25\pm0.75~a$	$14.88 \pm 2.46\mathrm{a}$	$11.5\pm1.55~\mathrm{b}$	$7.33 \pm 3.60 \text{ b}$
	427	13.45 ± 0.63 a	$15.83 \pm 1.23 \mathrm{a}$	$13\pm1.41~\mathrm{b}$	$9.73 \pm 0.92~\mathrm{b}$
	1400	$13.50\pm1.32~\mathrm{a}$	$11.58 \pm 3.46 \mathrm{a}$	$16\pm1.08~\mathrm{ab}$	$12.68 \pm 4.27 \text{ ab}$
	8610	$22.67 \pm 2.75 \mathrm{a}$	$29.00 \pm 1.73 \mathrm{a}$	19 ± 3.03 a	$22.15 \pm 5.52 \mathrm{a}$

Note: RO = 231 mg/l. Tap = 427 mg/l. Diluted RAW = 1400 mg/l. RAW = 8610 mg/l. TDS = total dissolved solids. Means within columns with the same letter are not significant at $\alpha \le 0.05$. NA= not available.

Mean and standard error of Na. Me. Ca. and Cl ion concentration (me/l). SAR. and TDS (mg/l) of first sample leachate water. first harvest of five forages irrigated with produced water

Plant ID	Treatment	Na	Mg	Ca	SAR	, D	EC
	TDS mg/l	mg/l	mg/l	mg/l		mg/l	mg/l
		Mean \pm SE					
Wheatgrass (western)	231	275.70 ± 38.06 b	39.12 ± 13.89 b	229.24 ± 84.42 a	$6.53 \pm 0.31 \mathrm{b}$	693.33 ± 180.87 b	666 ± 0.51 b
	427	$199.17 \pm 6.44 \mathrm{b}$	$47.99 \pm 2.82 \text{ ab}$	$210.48 \pm 21.64 \mathrm{a}$	$4.56\pm0.07\mathrm{b}$	$589.33 \pm 63.30 \text{ b}$	$1624 \pm 0.21~\mathrm{b}$
	1400	$2341.47 \pm 366.81 a$	84.84 \pm 22.70 a	$391.6 \pm 95.43 a$	$39.71\pm1.30~\mathrm{a}$	$1250 \pm 170.59 \mathrm{a}$	$6652 \pm 1.23 a$
	8610	NA	NA	NA	NA	NA	NA
Alfalfa	231	$382.33 \pm 72.86 \mathrm{b}$	$57.41 \pm 14.83~\mathrm{a}$	$355.76 \pm 97.75 \mathrm{a}$	$7.05\pm0.34\mathrm{b}$	$879.33 \pm 189.83 b$	$2741 \pm 0.88~\mathrm{b}$
	427	$242.50\pm23.10\mathrm{b}$	80.03 ± 8.96 a	$326.73 \pm 34.03 \mathrm{a}$	$4.39\pm0.21~\mathrm{b}$	$848 \pm 91.08~\mathrm{b}$	$2426\pm0.30~\mathrm{b}$
	1400	$2893.83 \pm 440.30 a$	138.85 ± 43.16 a	$533.32 \pm 109.09 a$	41.38 ± 3.09 a	1526.67 \pm 229.35 a	$8151 \pm 1.90 a$
	8610	NA	NA	NA	NA	NA	NA
Bromegrass (Meadow)	231	$316.63 \pm 40.07 \mathrm{b}$	35.13 ± 6.42 a	$202.44 \pm 36.35 \text{ b}$	$7.68\pm0.56~\mathrm{b}$	$651 \pm 99.12~\mathrm{b}$	$1762 \pm 0.35~\mathrm{b}$
	427	$211.88\pm2.86~b$	59.48 ± 3.66 a	$228.18 \pm 12.34 \text{ b}$	$4.56\pm0.14~\mathrm{b}$	$627.67 \pm 38.22 \text{ b}$	$1754\pm0.08~\mathrm{b}$
	1400	3371.97 ± 484.11 a	$76.47 \pm 19.46 \mathrm{a}$	$499.1 \pm 116.45 a$	$52.97\pm1.00~\mathrm{a}$	$1400 \pm 183.79 \mathrm{a}$	$8451 \pm 1.82 a$
	8610	NA	NA	NA	NA	NA	NA
Russian wildrye	231	$787.21 \pm 367.18 \mathrm{b}$	$59.42\pm24.17\mathrm{b}$	343.96 ± 142.73 a	$13.7 \pm 3.68 \mathrm{c}$	$1069.67 \pm 374.75 \; \mathrm{b}$	$2524\pm086~\mathrm{b}$
	427	$475.69 \pm 248.23 \mathrm{b}$	$104.3\pm40.08\mathrm{b}$	427.77 ± 166.78 a	$6.92 \pm 2.36c$	$1019.33 \pm 314.85 \text{ b}$	$1953 \pm 0.29 \text{ b}$
	1400	$2538.43 \pm 176.79 b$	$51.11 \pm 5.24~\mathrm{b}$	345.35 ± 24.54 a	$47.95\pm4.77~\mathrm{b}$	$983 \pm 30.47~\mathrm{b}$	$6393 \pm 0.14~\mathrm{b}$
	8610	$21,617.7 \pm 122.97$ a	284.47 ± 73.73 a	$336.87 \pm 22.40 a$	$292.2 \pm 37.97 a$	$1953.33 \pm 214.29 a$	$10,232 \pm 1.21$ a
Tall fescue	231	$161.09\pm13.13c$	$14.63\pm2.99~\mathrm{d}$	$70.08\pm10.44\mathrm{d}$	$6.57 \pm 0.76c$	$216\pm34.35~\mathrm{d}$	$949 \pm 0.17c$
	427	$227.21 \pm 34.65c$	$56.01 \pm 9.72c$	$231.23 \pm 44.60c$	$4.9 \pm 0.31 \mathrm{c}$	$570.33 \pm 128.07c$	$1733 \pm 0.41c$
	1400	$3106.57 \pm 118.30 \mathrm{a}$	$98.1 \pm 7.02~\mathrm{b}$	541.43 ± 21.34 a	$45.66\pm2.81~\mathrm{b}$	$1170\pm11.56\mathrm{b}$	$7424 \pm 0.88~\mathrm{b}$
	8610	$21,778.3 \pm 815.26 \text{ b}$	$293.81 \pm 14.70 \mathrm{a}$	$345.25\pm3.90\mathrm{b}$	$293.73 \pm 15.97 a$	$2080 \pm 46.24 \mathrm{a}$	$17,290 \pm 0.75$ a

are not significant letter same with the Means within columns TDS = total dissolved solids.= Sodium adsorption ratio; 8610 mg/l. SAR Note: RO = 231 mg/l. Tap = 427 mg/l. Diluted RAW = 1400 mg/l. RAW = 1400 mg/l. $\alpha \leq 0.05$. NA= not available. EC = Electrical conductivity. water while the lowest height was recorded in RAW water; whereas the SPAD value was greater in the RAW water in July (Table 3). A similar trend was observed in August (Table 3). Diluted RAW irrigation increased SPAD value of wheatgrass, and Russian wildrye while decreased the SPAD value of bromegrass. Decreases in tall fescue heights as the irrigation water salinity increases.

In the second harvest, first and second measurements in October and November, wheatgrass height and SPAD value were greater numerically in diluted RAW than RO and tap water (Table 4). No differences were observed with regard to alfalfa height in October and November (Table 4) and the SPAD value was the lowest in diluted RAW irrigation and of with tap irrigation in October and November, respectively (Table 4). The observations illustrated no differences among the treatments with regard to bromegrass height and SPAD value for both measurement time (Table 4). Russian wildrve was the tallest and SPAD value was the highest in diluted RAW water in October (Table 4). However, in November, no differences between the grass heights were observed; although, SPAD value remained higher in diluted RAW irrigation than RO and tap (Table 4). Tall fescue grass showed only numerical differences with regard to height and SPAD value with the RAW treatment in October (Table 4). In November, however, the height of 19 cm and SPAD value of 22.15 were recorded with RAW water (Table 4). Wheatgrass, Russian wildrye, and tall fescue height and SPAD value increased with increasing water salinity while alfalfa height and SPAD value decreased with increases in water salinity.

3.6. Leachate ions concentrate

Collected leachate water samples from all the five forage species showed increases in Na, Mg, Ca, and Cl ion concentration in produced water compared with the tap water for the two measurement times during the first harvest (Table 5). Large increases in Na ions followed by Cl from resulted leachate from the pots irrigated with RAW and diluted RAW water. Leachate water of the diluted RAW and RAW irrigation was considered sodic (SAR > 13) and saline (EC > 2800 mg/l) for the two times measurements for the first harvest (Table 5, S1). Similarly, in the second harvest, the ion concentrations were higher in the leachate water samples with increasing salt concentration of the irrigation treatment (Table 6, S2). Similar to the first harvest, leachate water in the second harvest was considered saline and sodic in RAW and diluted RAW irrigation (Table 6, S2). Increases in irrigation water salinity increased the leachate water Na, Mg, Ca, and Cl ions concentration and SAR.

3.7. Plants ion contents

The plant tissue samples, at the end of the first harvest, showed non-significant differences with regard to total N with increasing irrigation water salinity (Table 7). Alfalfa did not show a significant difference in phosphorus content with increasing treatment salinity (Table 7). Nonsignificant differences were observed in bromegrass samples with regard to P, K, Ca, Mn, Fe, and S content with increasing irrigation water salinity (Tables 7, 8). Increasing irrigation water salinity did not significantly affect the content of P, Mg, Fe, and Al in Russian wildrye (Tables 7, 8). Increases in irrigation water salinity had no significant effect on the Mg, Ca, and Zn concentration in tall fescue (Table 7).

Increases in irrigation water salinity (diluted RAW) significantly decreased the concentration of P, K, Mg, Ca, Zn, Fe, and Al in wheatgrass tissue while Mn, S, and Na increased in wheatgrass tissue (Tables 7, 8). With the increases in water salinity (diluted RAW), K, and Ca in alfalfa decreased (Table 7) while Mg, Mn, S, and Na increased (Tables 7, 8). Increases in Mg, S, Zn, and Na content in bromegrass can be observed with increases in water salinity (diluted RAW) whereas B decreased (Tables 7, 8). Russian wildrye showed significant increases in Mg, Mn, S, and Na ion concentrations with increases in irrigation water salinity (from RO to diluted RAW) (Tables 7, 8) while K, Ca, Zn, and B decreased (Tables 7, 8). Tall fescue's Fe, B, Al, S, and Na ion concentrations

increased with increases in water salinity (RAW) (Table 8); however, P, K, Mn, and B decreased (Tables 7, 8).

Tables 9 and 10 show the plants ion concentrations in the second harvest. The second harvest continued to show similar trends as the first harvest with regard to the ion concentration of forage species. Salts accumulation in plant tissues can be observed with increases in salt uptake when comparing the results of the two harvests; however, species survived both harvests and also grew back again after the second harvest with continued irrigation with the same treatments.

3.8. Soil bulk density, organic matter, pH, and electrical conductivity EC

Soil bulk density at the end of the experiment is presented in (Table 11). Within species, the results indicated a slight increase in soil bulk density with continued irrigation with diluted RAW; however, this increase was not statistically significant (Table 11). A significant increase in soil bulk density can be observed in RAW irrigated pots followed by diluted RAW within tall fescue illustrating that increases in irrigation water salinity increased soil bulk density (Table 11). Pots irrigated with RO and diluted RAW showed significant decline in soil OM % compared with the control for wheatgrass, alfalfa, bromegrass, and Russian wildrye species (Table 11). For tall fescue species, the decline in soil OM % continued in RO and diluted water; however, the lowest soil OM % was recorded in RAW water irrigated soil (Table 11). The soil pH trend was near neutral in RO water; however, alkalinity increased as water salinity increased (Table 11). Soil EC increased in diluted RAW for wheatgrass, alfalfa, bromegrass, and Russian wildrye pots. The highest EC recorded was in RAW water in tall fescue followed by diluted RAW (Table 11).

3.9. Soil ions concentrations

For wheatgrass, soil P, Fe, and B decreased with increases in salinity while K, S, Mg, Ca, Na significantly increased (Tables 12, 13). In alfalfa pots irrigated with diluted RAW, soil N, Fe, and B significantly decreased, while K, S, Na increased in pots irrigated with diluted RAW (Tables 12, 13). Reduction in soil K, Mg, Ca, and B ion concentrations resulted in diluted RAW whereas S, Na, increased in bromegrass pots irrigated with diluted RAW (Tables 12, 13). Russian wildrye pots showed increases in soil S and Na with increasing water salinity while K, Mg, and B decreased (Tables 12, 13). Increases were seen in soil P, S, Na, Mn and Fe ion concentrations in tall fescue pots irrigated with RAW water. However, Mg, Ca, and B decreased (Table 13). Soil SAR significantly increased in diluted RAW water pots of wheatgrass, alfalfa, and bromegrass and was considered saline soil but not sodic (Table 13). In tall fescue pots, soil in RAW water was considered saline and sodic (Table 13).

4. Discussion

4.1. Seed germination

Forage species germination results showed differences in their response to the four irrigation treatments. This could be due to their level of tolerance to various levels of saline water. Flores et al. (2015), with regard to germination rate, reported similarities between six halophytic species *X triticosecale, Atriplex canescens, Hordeum vulgare, Lepidium alyssoides, Distichlis stricta, and Panicum virgatum* irrigated with saline water up to 7000 mg/l. As results showed, Russian wildrye germination percentage was the lowest among the species utilized in this study and that might be due to the seeds vitality since it was for all three treatments. As the level of salinity increased, alfalfa, wheatgrass, bromegrass, and Russian wildrye germination percentages decreased and never germinated under RAW water (8610 mg/l) and this emphasized that these species are more sensitive to increases in water salinity. Among the five species, tall fescue species germinated well with RAW

Mean and standard error of Na, Mg, Ca, and Cl ion concentration (mg/l), SAR and TDS (mg/l) of first sample leachate water, second harvest of five forages irrigated with produced water

Plant ID	Treatment TDS mg/l	Na mg/l	Mg mg/l	Ca mg∕l	SAR	Cl mg/l	EC mg/l
		Mean \pm SE					
Wheatgrass (western)	231	$460.39 \pm 60.36 \text{ b}$	$13.65\pm1.83b$	$77.22\pm10.55\mathrm{b}$	$17.84\pm1.29\mathrm{b}$	$249.00 \pm 35.54 \mathrm{b}$	$1573\pm0.40~\mathrm{b}$
	427	$360.93 \pm 59.31 \text{ b}$	$34.27 \pm 8.01~\mathrm{b}$	$115.84 \pm 25.80 \ \mathrm{b}$	$10.70\pm0.52\mathrm{b}$	$416.33 \pm 104.29 \text{ b}$	$1674\pm0.19~\mathrm{b}$
	1400	$3725.27 \pm 621.55 a$	$134.17 \pm 26.94 \mathrm{a}$	$395.45 \pm 41.31 \text{ a}$	$57.72\pm6.32a$	1586.67 \pm 268.79 a	$6892 \pm 1.19 a$
	8610	NA	NA	NA	NA	NA	NA
Alfalfa	231	$313.42\pm46.35c$	$8.48\pm1.58~\mathrm{b}$	$57.00\pm12.05\mathrm{b}$	$14.60\pm1.09\mathrm{b}$	$208.67 \pm 36.49 \mathrm{b}$	$2691 \pm 0.85 \mathrm{b}$
	427	$846.51 \pm 177.99 \mathrm{b}$	$92.52 \pm 25.71 \text{ a}$	$338.16 \pm 133.16 \mathrm{a}$	$15.24\pm0.49\mathrm{b}$	$911.33 \pm 222.96 a$	$2532 \pm 0.26~\mathrm{b}$
	1400	1375.70 ± 60.71 a	$43.26 \pm 3.90 \mathrm{ab}$	$184.77 \pm 19.53 \text{ ab}$	$33.52 \pm 1.14\mathrm{a}$	$458.33 \pm 25.16 \text{ ab}$	$8310 \pm 1.95 a$
	8610	NA	NA	NA	NA	NA	NA
Bromegrass (Meadow)	231	$365.40 \pm 96.65 \text{ b}$	$13.58\pm3.81\mathrm{b}$	$78.23\pm19.52\mathrm{a}$	$13.96\pm1.93\mathrm{b}$	$251 \pm 71.27 \text{ ab}$	$1783 \pm 0.36~\mathrm{b}$
	427	$207.37 \pm 27.23 \mathrm{b}$	$25.47 \pm 2.06 \text{ ab}$	$76.71 \pm 9.00 \text{ a}$	$7.35\pm0.60~\rm b$	$221.67 \pm 34.15 \mathrm{b}$	$1793\pm0.07~\mathrm{b}$
	1400	$1697.47 \pm 306.40 \mathrm{a}$	$31.95\pm6.37\mathrm{a}$	$163.01 \pm 39.54 \mathrm{a}$	$45.07 \pm 4.87\mathrm{a}$	641.67 ± 180.84 a	$8400 \pm 1.65 a$
	8610	NA	NA	NA	NA	NA	NA
Russian wildrye	231	505.15 \pm 178.93 b	$13.82 \pm 3.88\mathrm{b}$	$72.42\pm16.09\mathrm{b}$	$19.38 \pm 4.55\mathrm{b}$	$314 \pm 127.71 \text{ b}$	$2524\pm0.75~\mathrm{b}$
	427	592.08 \pm 60.15 b	$52.88 \pm 8.11\mathrm{a}$	$170.99 \pm 31.02 \text{ ab}$	$14.59\pm1.99\mathrm{b}$	687 \pm 125.43 ab	$2019 \pm 0.24~\mathrm{b}$
	1400	$2402.15 \pm 408.01 a$	$43.50 \pm 9.90 \mathrm{a}$	$206.58 \pm 48.65 a$	$56.14 \pm 2.95\mathrm{a}$	1050 ± 255.71 a	$6481 \pm 0.20 a$
	8610	NA	NA	NA	NA	NA	NA
Tall fescue	231	$256.69 \pm 9.48c$	$14.91 \pm 2.36 \mathrm{a}$	$62.49 \pm 6.71c$	$10.76 \pm 0.30 \mathrm{c}$	$210.33\pm14.33c$	$969 \pm 0.14c$
	427	$281.63 \pm 114.34c$	$29.45\pm10.05~a$	$104.25 \pm 35.09 \; \text{BCE}$	$8.43\pm1.98c$	$366\pm173.34~\text{BCE}$	$1760\pm0.36\mathrm{c}$
	1400	$2011.74 \pm 430.18\mathrm{b}$	52.50 ± 22.26 a	$210.29 \pm 68.39 \mathrm{b}$	$46.42 \pm 1.68\mathrm{b}$	$813.67 \pm 231.08 \text{ b}$	$7512\pm0.55~\mathrm{b}$
	8610	13,304 \pm 443.29 a	$61.13 \pm 18.88 \text{ a}$	$336.12\pm2.10\mathrm{a}$	$247.69 \pm 5.98~\mathrm{a}$	$1846.67 \pm 63.93~a$	$17,803\pm0.80\mathrm{a}$

Note: RO = 231 mg/l. Tap = 427 mg/l. Diluted RAW = 1400 mg/l. RAW = 8610 mg/l. SAR = Sodium adsorption ratio, TDS = total dissolved solids. Means within columns with the same letter are not significant at $\alpha \le 0.05$. NA= not available. EC = Electrical conductivity.

Mean and standard error of total N, P, K, Mg, Ca, and Zn ion concentration (mg/l) in shoots of five forages irrigated with produced water (first harvest).

Plant ID	Treatment TDS mg/l	Total N mg/l	P mg/l	K mg/l	Mg mg/l	Ca mg/l	Zn mg/l
		Mean ± SE					
Wheatgrass (western)	231	$11.18\pm1.04\mathrm{a}$	$1.54 \pm 0.01 \text{ ab}$	$13.8\pm0.70~a$	1.97 ± 0.32 ab	4.7 ± 0.71 a	$161 \pm 13.33 \mathrm{a}$
	427	$10.87\pm0.29\mathrm{a}$	$1.92 \pm 0.19~\text{a}$	$14.5\pm0.30~a$	$2.57\pm0.20~a$	3.97 ± 0.20 ab	$50.78\pm16.53~\mathrm{b}$
	1400	$10.55\pm0.70\mathrm{a}$	$1.38\pm0.08~\mathrm{b}$	$10.6\pm0.56~\mathrm{b}$	$1.73 \pm 0.12~\mathrm{b}$	$2.63 \pm 0.17~\mathrm{b}$	$31.45\pm4.40\mathrm{b}$
	8610	NA	NA	NA	NA	NA	NA
Alfalfa	231	$21.77\pm0.79\mathrm{a}$	$1.04 \pm 0.10 \text{ a}$	$14.2\pm0.18~\mathrm{a}$	$2.77\pm0.12~\mathrm{b}$	20.23 ± 1.36 a	$70.35 \pm 14.50 \mathrm{a}$
	427	$21.03 \pm 1.02\mathrm{a}$	$1.07\pm0.12~a$	$13.4\pm0.39~\mathrm{a}$	3.87 ± 0.46 a	22.37 ± 1.46 a	$21.14 \pm 4.23\mathrm{b}$
	1400	$20.4 \pm 2.45 a$	$1.27\pm0.07~\mathrm{a}$	$7.87 \pm 0.58~\mathrm{b}$	2.97 ± 0.20 ab	$15.47\pm0.67\mathrm{b}$	$27.37 \pm 0.43\mathrm{b}$
	8610	NA	NA	NA	NA	NA	NA
Bromegrass (Meadow)	231	$11.6\pm1.00~\mathrm{a}$	$1.95\pm0.20~a$	$18\pm1.07~\mathrm{a}$	$3.17\pm0.18~b$	$14.17 \pm 3.49 \mathrm{a}$	$47.82 \pm 7.66 a$
	427	$11.61 \pm 0.88~a$	1.72 ± 0.02 a	$19.6\pm0.83~a$	$4.4\pm0.25\mathrm{a}$	$9.4\pm0.65\mathrm{a}$	$21.36 \pm 2.42\mathrm{b}$
	1400	$11.2\pm0.25~a$	$1.49 \pm 0.14 \mathrm{a}$	$18.7\pm0.48~\mathrm{a}$	3.47 ± 0.37 ab	$7.2\pm1.21\mathrm{a}$	$31.24 \pm 4.52 \mathrm{ab}$
	8610	NA	NA	NA	NA	NA	NA
Russian wildrye	231	16.83 ± 1.73 a	1.94 ± 0.26 a	21.9 ± 0.80 a	$3.2 \pm 0.25 \mathrm{a}$	8.13 ± 0.03 a	$77.91 \pm 3.40 \mathrm{a}$
	427	$29.1 \pm 10.54 \mathrm{a}$	2.02 ± 0.12 a	$19.3\pm0.84~a$	$4.2 \pm 0.32 \mathrm{a}$	$6.3 \pm 0.55\mathrm{b}$	$42.89 \pm 12.18~\mathrm{b}$
	1400	$17.2\pm0.93~a$	$1.66 \pm 0.14 \mathrm{a}$	$15.9\pm0.70~\mathrm{b}$	3.23 ± 0.45 a	$4.97\pm0.69~\mathrm{b}$	$42.52 \pm 2.16\mathrm{b}$
	8610	NA	NA	NA	NA	NA	NA
Tall fescue	231	$11.37\pm0.93~a$	2.42 ± 0.12 a	$11.7\pm0.72\mathrm{ab}$	7.03 ± 0.47 a	$8.6\pm0.57\mathrm{a}$	$47.27 \pm 7.80 a$
	427	$12.14 \pm 3.21 a$	$2.41 \pm 0.28 \mathrm{a}$	$15.1\pm1.21\mathrm{a}$	$7.17 \pm 0.90 a$	9.7 ± 1.55 a	$41.12 \pm 5.34\mathrm{a}$
	1400	9.38 ± 0.15 a	$1.55\pm0.09\mathrm{b}$	$9.17\pm0.77~\rm b$	4.53 ± 0.18 a	$6.57 \pm 0.27 a$	$29.16 \pm 3.87\mathrm{a}$
	8610	$13.73\pm0.95~a$	$1.17\pm0.28\mathrm{b}$	$8.73 \pm 2.22\mathrm{b}$	5.17 ± 1.27 a	$17.1\pm12.13\mathrm{a}$	$68.7 \pm 19.45 a$

Note: RO = 231 mg/l. Tap = 427 mg/l. Diluted RAW = 1400 mg/l. RAW = 8610 mg/l. TDS = total dissolved solids. Means within columns with the same letter are not significant at $\alpha \le 0.05$. NA= not available.

Mean and standard error of Mn, Fe, B, Al, S, and Na ion concentration (mg/l) in shoots of five forages irrigated with produced water (first harvest). Table 8

Plant ID	Treatment TDS mg/l	Mn	Fe	В	Al	S	Na
		mg/l	mg/l	mg/l	mg/1	mg/l	mg/l
				Mean \pm SE			
Wheatgrass (western)	231	$79.64\pm2.68\mathrm{b}$	$367.85\pm8.92~a$	$237.35\pm2.71~\mathrm{a}$	214 ± 4.82 a	$3.4\pm0.38\mathrm{b}$	$7.38\pm0.60~\mathrm{b}$
	427	$75.61 \pm 11.79 \mathrm{b}$	$48.7 \pm 8.49 \mathrm{b}$	$14.99 \pm 1.60~\mathrm{b}$	$17.15 \pm 3.15~\mathrm{b}$	$2.57 \pm 0.03~\mathrm{b}$	$7.15\pm1.14\mathrm{b}$
	1400	$113.9\pm6.18~\mathrm{a}$	$28.38 \pm 0.97\mathrm{b}$	$19.18\pm2.01~\mathrm{b}$	$11.71\pm0.48~\mathrm{b}$	$5.73 \pm 0.43 a$	$11.5\pm0.81~\mathrm{a}$
	8610	NA	NA	NA	NA	NA	NA
Alfalfa	231	$217.95\pm5.80~\mathrm{a}$	$103.45\pm5.38~a$	$369.19\pm5.51\mathrm{b}$	$45.67 \pm 2.68 a$	$7.5\pm1.35\mathrm{b}$	$11.7\pm2.86~\mathrm{b}$
	427	$65.31 \pm 0.53~\mathrm{b}$	$76.62 \pm 2.02\mathrm{b}$	$80.86\pm2.01~\mathrm{b}$	$36.23 \pm 5.06 a$	$5.97 \pm 1.88~\mathrm{b}$	$7.11 \pm 2.18\mathrm{b}$
	1400	$142.6 \pm 3.84 \text{ ab}$	$87.33 \pm 1.32\mathrm{b}$	125.84 \pm 3.98 a	$31.49 \pm 1.15 a$	$22.73 \pm 2.02 \mathrm{a}$	$42.7 \pm 2.96 \mathrm{a}$
	8610	NA	NA	NA	NA	NA	NA
Bromegrass (Meadow)	231	$186.5\pm5.59~a$	$81.08\pm1.74\mathrm{a}$	$737.82 \pm 4.40 \mathrm{a}$	$55.87 \pm 2.02 a$	$8.7\pm1.23\mathrm{b}$	$16.08 \pm 1.48\mathrm{b}$
	427	$134.22\pm5.91~\mathrm{a}$	$61.76 \pm 1.43 \mathrm{a}$	$35.93\pm1.60~\mathrm{b}$	$45.15 \pm 2.39 a$	$5.93 \pm 0.62~\mathrm{b}$	$13.43\pm0.90\mathrm{b}$
	1400	$166.98 \pm 9.93 \mathrm{a}$	$60.12 \pm 6.88\mathrm{a}$	$101.09\pm9.76\mathrm{b}$	$44.08 \pm 2.63 \mathrm{a}$	$20.83 \pm 2.80 \mathrm{a}$	$44.96 \pm 3.70 \mathrm{a}$
	8610	NA	NA	NA	NA	NA	NA
Russian wildrye	231	$119.97 \pm 5.58~\mathrm{a}$	129.78 ± 9.61 a	$413.17 \pm 5.97 a$	$94.26 \pm 3.18 a$	$5.97\pm0.41~\mathrm{b}$	$16.16\pm1.95\mathrm{b}$
	427	$64.35 \pm 1.80 \text{ b}$	$49.4 \pm 1.69 \mathrm{a}$	$22.45\pm0.64~\mathrm{b}$	$31.56\pm1.58~\mathrm{a}$	$3.43 \pm 0.26c$	$8.20\pm1.24~\mathrm{b}$
	1400	$130.4\pm10.21~\mathrm{a}$	$66.35 \pm 4.57 \mathrm{a}$	$53.47\pm2.79~\mathrm{b}$	$44.04 \pm 2.42 a$	$13.57\pm0.60\mathrm{a}$	$33.62 \pm 3.59 \mathrm{a}$
	8610	NA	NA	NA	NA	NA	NA
Tall fescue	231	$336.14\pm6.11~\mathrm{b}$	$96.03 \pm 4.78\mathrm{b}$	$306.95 \pm 4.94 a$	$75.09 \pm 2.82 \text{ ab}$	$9.03 \pm 2.07~\mathrm{b}$	$24.27 \pm 3.79 \ \mathrm{BCE}$
	427	$326.84 \pm 8.47 \text{ b}$	$75.34 \pm 1.29\mathrm{b}$	$35.89 \pm 2.36c$	$60.1 \pm 1.96 \text{ ab}$	$5.33 \pm 1.16~\mathrm{b}$	$15.95 \pm 3.66c$
	1400	$552.8 \pm 7.11\mathrm{a}$	$80.68 \pm 5.84\mathrm{b}$	$77.76 \pm 4.57 \text{ BCE}$	$48.48\pm2.34\mathrm{b}$	$17.33\pm0.50\mathrm{b}$	$35.61 \pm 1.56\mathrm{b}$
	8610	$136.33 \pm 5.36c$	$138.46\pm8.37~a$	$159.95\pm8.80~\mathrm{b}$	$94 \pm 3.76 \mathrm{a}$	$45.2\pm15.50\mathrm{a}$	$70.20 \pm 8.12\mathrm{a}$

Note: RO = 231 mg/l. Tap = 427 mg/l. Diluted RAW = 1400 mg/l. RAW = 8610 mg/l. TDS = total dissolved solids. Means within columns with the same letter are not significant at $\alpha \le 0.05$. NA= not available.

 Table 9

 Mean and standard error of Total N, P, K, Mg, Ca, Zn, and Mn ion concentration (mg/l) in shoots of five forages irrigated with produced water (second harvest).

ment TDS mg/l mg/l Mg ment TDS mg/l mg/l mg/l Mg ment TDS mg/l mg/l mg/l mg/l Mean ± SE mg/l mg/l mg/l Mean ± SE mg/l mg/l mg/l Mean ± SE mg/l mg/l mg/l As 20 ± 0.20 b 1.17 ± 0.09 b 9.5 ± 0.30 b 1.83 ± 0.13 a R As 2 ± 0.36 ab 1.23 ± 0.07 b 9.27 ± 0.38 b 2.02 ± 0.19 a NA NA NA NA NA 31.27 ± 6.33 a 0.95 ± 0.07 b 10.2 ± 1.35 a 2.03 ± 0.19 a NA NA NA NA NA 11.7 ± 0.46 b 2.93 ± 0.07 b 10.2 ± 1.35 a 2.03 ± 0.15 b NA 11.7 ± 0.46 b 2.93 ± 0.09 a 20.97 ± 0.38 a 3.27 ± 0.12 b 12.5 ± 0.73 ab 2.21 ± 0.10 b 19.4 ± 0.88 ab 4.87 ± 0.20 b 13.9 ± 0.46 a 2.04 ± 0.12 b 19.4 ± 0.88 ab 3.73 ± 0.12 b 11.99 ± 1.22 a 2.04 ± 0.12 a 16.37 ± 1.2 a 3.73									
231 7.30 ± 0.20 b 1.17 ± 0.09 b 9.5 ± 0.30 b 1.83 ± 0.13 a 8.79 ± 0.45 a 1.23 ± 0.07 b 9.27 ± 0.38 b 2.03 ± 0.19 a 8.43 ± 0.36 ab 1.23 ± 0.07 b 9.27 ± 0.38 b 2.03 ± 0.19 a 8.40 ± 0.30 a 1.23 ± 0.07 b 9.27 ± 0.38 b 2.03 ± 0.19 a 8.40 ± 0.35 ± 2.11 a 0.95 ± 0.05 b 10.2 ± 1.35 a 2.63 ± 0.24 b 29.53 ± 2.11 a 0.95 ± 0.07 b 10.2 ± 1.35 a 2.63 ± 0.24 b 10.2 ± 1.35 a 2.3 ± 0.15 b 10.2 ± 1.35 a 10.3 ± 0.44 a 2.31 a 11.7 ± 0.46 b 2.21 ± 0.10 b 19.4 ± 0.85 ab 4.87 ± 0.20 a 13.9 ± 0.46 a 2.46 ± 0.12 b 19.4 ± 0.85 ab 4.87 ± 0.20 a 13.9 ± 0.46 a 2.46 ± 0.12 b 19.4 ± 0.85 ab 4.87 ± 0.20 a 13.9 ± 0.46 a 2.04 ± 0.34 a 16.37 ± 1.2 a 3.73 ± 0.43 b 1400	Plant ID	Treatment TDS mg/l	Total N mg/l	P mg/l	K mg/l	Mg mg/l	Ca mg/l	Zn mg/l	Mn mg/l
231 7.30 ± 0.20 b 1.17 ± 0.09 b 9.5 ± 0.30 b 1.83 ± 0.13 a 427 8.79 ± 0.45 a 1.53 ± 0.07 a 12 ± 0.55 a 2.2 ± 0.31 a 1400 NA NA NA NA 8610 NA NA NA NA 231 31.27 ± 6.33 a 0.95 ± 0.05 b 10.2 ± 1.35 a 2.63 ± 0.24 b 427 29.53 ± 2.11 a 0.88 ± 0.07 b 10.7 ± 1.51 a 2.3 ± 0.15 b 8610 NA NA NA NA 231 11.7 ± 0.46 b 2.93 ± 0.09 a 20.97 ± 0.38 a 3.27 ± 0.12 b 8610 NA 11.7 ± 0.46 b 2.93 ± 0.09 a 20.97 ± 0.38 a 3.27 ± 0.12 b 427 13.9 ± 0.46 a 2.21 ± 0.10 b 19.4 ± 0.85 ab 4.87 ± 0.20 a 8610 NA NA NA NA 231 11.9 ± 1.22 a 2.04 ± 0.12 b 18.1 ± 0.21 b 3.3 ± 0.12 b 8610 NA 11.99 ± 1.22 a 1.81 ± 0.13 a 3.7 ± 0.17 b 1400 11.99 ± 1.22 a 1.74 ± 0.31 a 16.37 ± 1.2 a 3.73 ± 0.43 b 8610 N			Mean ± SE						
427 8.79 ± 0.45 a 1.53 ± 0.07 a 12 ± 0.55 a 2.2 ± 0.31 a 1400 8.43 ± 0.36 ab 1.23 ± 0.07 b 9.27 ± 0.38 b 2.03 ± 0.19 a 8610 NA NA NA NA 231 31.27 ± 6.33 a 0.95 ± 0.05 b 10.2 ± 1.35 a 2.63 ± 0.24 b 427 29.53 ± 2.11 a 0.88 ± 0.07 b 10.7 ± 1.51 a 5.03 ± 0.44 a 8610 NA 1.7 ± 0.46 b 2.93 ± 0.09 a 20.97 ± 0.38 a 2.3 ± 0.15 b 8610 NA 11.7 ± 0.46 b 2.93 ± 0.09 a 20.97 ± 0.38 a 3.27 ± 0.12 b 427 12.5 ± 0.73 ab 2.21 ± 0.10 b 19.4 ± 0.85 ab 4.87 ± 0.20 a 8610 NA NA NA NA 1400 11.99 ± 0.46 a 2.04 ± 0.12 b 18.1 ± 0.21 b 3.3 ± 0.29 b 8610 NA NA NA NA 1400 11.99 ± 1.22 a 2.04 ± 0.34 a 16.97 ± 0.37 a 3.73 ± 0.43 b 8610 NA NA NA NA 1400 NA NA NA 1400 10.45 ± 0.66 a <	Wheatgrass (western)	231	$7.30\pm0.20~b$	$1.17\pm0.09~\mathrm{b}$	$9.5\pm0.30\mathrm{b}$	1.83 ± 0.13 a	5.03 ± 0.34 a	$24.32 \pm 3.27~\mathrm{a}$	83.01 ± 5.74 b
1400 8.43 ± 0.36 ab 1.23 ± 0.07 b 9.27 ± 0.38 b 2.03 ± 0.19 a 8610 NA NA NA NA 8610 NA NA NA NA 231 31.27 ± 6.33 a 0.95 ± 0.05 b 10.2 ± 1.35 a 2.63 ± 0.24 b 427 29.53 ± 2.14 a 10.38 ± 0.07 b 10.7 ± 1.51 a 5.03 ± 0.44 a 8610 NA NA NA NA 231 11.7 ± 0.46 b 2.93 ± 0.09 a 20.97 ± 0.38 a 3.27 ± 0.12 b 1400 NA 12.5 ± 0.73 ab 2.21 ± 0.10 b 19.4 ± 0.85 ab 4.87 ± 0.20 a 8610 NA NA NA NA NA 1400 13.9 ± 0.46 a 2.04 ± 0.12 b 18.1 ± 0.21 b 3.33 ± 0.29 b 8610 NA NA NA NA 1400 11.99 ± 1.22 a 2.04 ± 0.34 a 16.97 ± 0.37 a 3.73 ± 0.43 b 8610 NA 12.57 ± 0.24 a 1.74 ± 0.31 a 16.37 ± 1.2 a 3.73 ± 0.43 b 8610 NA NA NA NA NA NA 231		427	$8.79 \pm 0.45 a$	$1.53\pm0.07~a$	$12 \pm 0.55 \mathrm{a}$	$2.2\pm0.31~\mathrm{a}$	4.8 ± 0.61 a	$22.86\pm1.35\mathrm{a}$	$61.56 \pm 7.81 \text{ b}$
8610 NA		1400	$8.43 \pm 0.36 \text{ ab}$	$1.23\pm0.07~\mathrm{b}$	$9.27\pm0.38~\mathrm{b}$	$2.03 \pm 0.19~a$	$3.77 \pm 0.32 a$	$18.3 \pm 2.21 \text{ a}$	$131.55 \pm 7.32 a$
231 31.27 ± 6.33 a 0.95 ± 0.05 b 10.2 ± 1.35 a 2.63 ± 0.24 b 427 29.53 ± 2.11 a 0.88 ± 0.07 b 10.7 ± 1.51 a 5.03 ± 0.44 a 1400 35.53 ± 2.14 a 1.94 ± 0.05 a 10.3 ± 1.74 a 2.3 ± 0.15 b 8610 NA NA NA NA 231 11.7 ± 0.46 b 2.93 ± 0.09 a 20.97 ± 0.38 a 3.27 ± 0.12 b 427 12.5 ± 0.73 ab 2.21 ± 0.10 b 19.4 ± 0.85 ab 4.87 ± 0.20 a 8610 NA NA NA NA 231 11.99 ± 1.22 a 2.04 ± 0.12 b 18.1 ± 0.21 b 3.33 ± 0.29 b 427 11.99 ± 1.22 a 2.04 ± 0.34 a 16.97 ± 0.37 a 5.1 ± 0.40 a 428 11.99 ± 1.22 a 2.04 ± 0.34 a 16.37 ± 0.37 a 3.73 ± 0.43 b 8610 NA NA NA NA NA 8610 NA NA NA NA NA 231 10.45 ± 0.96 a 2.07 ± 0.25 a 12.9 ± 0.44 a 4.3 ± 0.33 a 1400 14.4 ± 4.27 a 1.74 ± 0.08 a 12.9 ± 0.44 a 4.3 ± 0.40 a		8610	NA	NA	NA	NA	NA	NA	NA
427 29.53 ± 2.11a 0.88 ± 0.07 b 10.7 ± 1.51 a 5.03 ± 0.44 a 1400 NA NA NA NA NA 8610 NA NA NA NA 231 11.7 ± 0.46 b 2.23 ± 0.09 a 20.97 ± 0.38 a 3.27 ± 0.12 b 427 12.5 ± 0.73 ab 2.21 ± 0.10 b 19.4 ± 0.85 ab 4.87 ± 0.20 a 1400 13.9 ± 0.46 a 2.46 ± 0.12 b 18.1 ± 0.21 b 3.33 ± 0.29 b 8610 NA NA NA NA 427 11.99 ± 1.22 a 2.04 ± 0.34 a 16.97 ± 0.37 a 3.7 ± 0.17 b 428 12.57 ± 0.24 a 1.81 ± 0.16 a 17.83 ± 0.18 a 5.1 ± 0.40 a 1400 14.43 ± 1.30 a 1.74 ± 0.31 a 16.37 ± 1.2 a 3.73 ± 0.43 b 8610 NA NA NA NA 231 10.45 ± 0.96 a 2.07 ± 0.25 a 12.9 ± 0.44 a 4.43 ± 0.33 a 140 15.67 ± 0.25 a 12.9 ± 0.44 a 4.33 ± 0.35 a 140 15.67 ± 0.25 a 12.9 ± 0.44 a 4.33 ± 0.35 a 140 15.67 ± 0.25 a 12.9 ± 0.44	Alfalfa	231	$31.27 \pm 6.33 \mathrm{a}$	$0.95\pm0.05~\mathrm{b}$	10.2 ± 1.35 a	$2.63 \pm 0.24 \; \mathrm{b}$	$19.47\pm0.64~\mathrm{b}$	$19.1 \pm 3.85 \text{ ab}$	195.14 \pm 7.31 a
1400 35.53 ± 2.14 a 1.94 ± 0.05 a 10.3 ± 1.74 a 2.3 ± 0.15 b 8610 NA NA NA NA 231 11.7 ± 0.46 b 2.93 ± 0.09 a 20.97 ± 0.38 a 3.27 ± 0.12 b 427 12.5 ± 0.73 ab 2.21 ± 0.10 b 19.4 ± 0.85 ab 4.87 ± 0.20 a 8610 NA NA NA NA 231 11.99 ± 1.22 a 2.04 ± 0.34 a 16.97 ± 0.37 a 3.7 ± 0.17 b 427 12.57 ± 0.24 a 1.81 ± 0.16 a 17.83 ± 0.18 a 5.1 ± 0.40 a 427 12.57 ± 0.24 a 1.81 ± 0.16 a 17.83 ± 0.18 a 5.1 ± 0.40 a 1400 NA NA NA NA 8610 NA NA NA NA 427 10.45 ± 0.96 a 2.07 ± 0.25 a 12.87 ± 1.19 a 4.43 ± 0.33 a 428 10.39 ± 0.43 a 1.74 ± 0.31 a 12.9 ± 0.44 a 4.3 ± 0.40 a 1400 15.67 ± 0.25 a 12.9 ± 0.44 a 4.3 ± 0.03 a 1.40 ± 1.07 a 1401 16.69 ± 0.05 a <td< td=""><th></th><td>427</td><td>$29.53 \pm 2.11 a$</td><td>$0.88\pm0.07~\mathrm{b}$</td><td>10.7 ± 1.51 a</td><td>$5.03 \pm 0.44 a$</td><td>30.07 ± 1.32 a</td><td>$18.28\pm2.45\mathrm{b}$</td><td>$80.89 \pm 1.91~\mathrm{b}$</td></td<>		427	$29.53 \pm 2.11 a$	$0.88\pm0.07~\mathrm{b}$	10.7 ± 1.51 a	$5.03 \pm 0.44 a$	30.07 ± 1.32 a	$18.28\pm2.45\mathrm{b}$	$80.89 \pm 1.91~\mathrm{b}$
8610 NA NA NA NA 231 11.7 ± 0.46 b 2.93 ± 0.09 a 20.97 ± 0.38 a 3.27 ± 0.12 b 427 12.5 ± 0.73 ab 2.21 ± 0.10 b 19.4 ± 0.85 ab 4.87 ± 0.20 a 1400 13.9 ± 0.46 a 2.46 ± 0.12 b 18.1 ± 0.21 b 3.33 ± 0.29 b 8610 NA NA NA NA 427 11.99 ± 1.22 a 2.46 ± 0.13 a 16.97 ± 0.37 a 3.7 ± 0.17 b 427 12.57 ± 0.24 a 1.81 ± 0.16 a 17.83 ± 0.18 a 5.1 ± 0.40 a 1400 NA NA NA NA 8610 NA NA NA NA 427 10.45 ± 0.96 a 2.07 ± 0.25 a 12.87 ± 1.19 a 4.43 ± 0.33 a 428 10.39 ± 0.43 a 1.74 ± 0.03 a 12.9 ± 0.44 a 4.3 ± 0.40 a 1400 15.67 ± 4.27 a 1.96 ± 0.03 a 12.9 ± 0.44 a 4.3 ± 0.03 a 1400 15.6 ± 0.03 a 12.9 ± 0.44 a 4.3 ± 0.03 a 1.40 ± 1.67 a		1400	$35.53 \pm 2.14 a$	$1.94 \pm 0.05 a$	$10.3 \pm 1.74 \mathrm{a}$	$2.3 \pm 0.15\mathrm{b}$	$12.7\pm1.74\mathrm{c}$	$30.04 \pm 3.33 \mathrm{a}$	$64\pm1.65\mathrm{b}$
231 11.7 ± 0.46 b 2.93 ± 0.09 a 20.97 ± 0.38 a 3.27 ± 0.12 b 427 12.5 ± 0.73 ab 2.21 ± 0.10 b 19.4 ± 0.85 ab 4.87 ± 0.20 a 1400 13.9 ± 0.46 a 2.46 ± 0.12 b 18.1 ± 0.21 b 3.33 ± 0.29 b 8610 1.99 ± 1.22 a 2.46 ± 0.12 b 18.1 ± 0.21 b 18.3 ± 0.29 b 11.99 ± 1.22 a 2.04 ± 0.34 a 16.97 ± 0.37 a 3.7 ± 0.17 b 12.57 ± 0.24 a 1.81 ± 0.16 a 17.83 ± 0.18 a 5.1 ± 0.40 a 1400 14.3 ± 1.30 a 1.74 ± 0.31 a 16.37 ± 1.2 a 3.73 ± 0.43 b 16.37 ± 0.24 b 16.37 ± 0.24 a 16.37 ± 1.2 a 16.37 ± 0.2 a $16.37 $		8610	NA	NA	NA	NA	NA	NA	NA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bromegrass (Meadow)	231	$11.7\pm0.46~\mathrm{b}$	$2.93 \pm 0.09 a$	$20.97 \pm 0.38 \mathrm{a}$	$3.27\pm0.12~\mathrm{b}$	12.3 ± 0.21 a	$19.3 \pm 0.90 a$	$96.1 \pm 6.41 a$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		427	$12.5 \pm 0.73 \text{ ab}$	$2.21 \pm 0.10~\mathrm{b}$	$19.4 \pm 0.85 \text{ ab}$	$4.87 \pm 0.20 a$	$13.4 \pm 0.93 \mathrm{a}$	$16.24\pm1.87\mathrm{a}$	$78.53 \pm 4.05 a$
8610 NA		1400	$13.9 \pm 0.46 a$	$2.46\pm0.12~\mathrm{b}$	$18.1\pm0.21~\mathrm{b}$	$3.33 \pm 0.29 \text{ b}$	$13.37 \pm 2.15 a$	$16.69 \pm 4.32\mathrm{a}$	$90.38 \pm 9.96 a$
231 $11.99 \pm 1.22a$ $2.04 \pm 0.34a$ $16.97 \pm 0.37a$ $3.7 \pm 0.17b$ $427 = 12.57 \pm 0.24a$ $1.81 \pm 0.16a$ $17.83 \pm 0.18a$ $5.1 \pm 0.40a$ $14.43 \pm 1.30a$ $1.74 \pm 0.31a$ $16.37 \pm 1.2a$ $3.73 \pm 0.43b$ 8610 NA NA NA NA NA $1.045 \pm 0.96a$ $2.07 \pm 0.25a$ $12.87 \pm 1.19a$ $4.43 \pm 0.33a$ $4.43 \pm 0.33a$ $1.74 \pm 0.08a$ $12.94 \pm 0.44a$ $4.33 \pm 0.40a$ $12.94 \pm 0.44a$ $12.33 \pm 1.67a$ $12.34 \pm 0.96a$		8610	NA	NA	NA	NA	NA	NA	NA
427 12.57 ± 0.24a 1.81 ± 0.16a 17.83 ± 0.18a 5.1 ± 0.40a 14.43 ± 1.30a 1.74 ± 0.31a 16.37 ± 1.2a 3.73 ± 0.43 b 8610 NA	Russian wildrye	231	$11.99\pm1.22\mathrm{a}$	2.04 ± 0.34 a	$16.97 \pm 0.37~\mathrm{a}$	$3.7\pm0.17\mathrm{b}$	$8\pm0.21\mathrm{a}$	$16.02 \pm 2.46\mathrm{a}$	$66.23 \pm 1.17\mathrm{b}$
1400 14.43±1.30a 1.74±0.31a 16.37±1.2a 3.73±0.43 b 8610 NA NA NA NA 231 10.45±0.96a 2.07±0.25 a 12.87±1.19 a 4.43±0.33 a 427 10.39±0.43 a 1.74±0.08 a 12.9±0.44 a 4.3±0.40 a 1400 15.67±4.27 a 1.96±0.03 a 12.3±1.67 a 3.4±0.36 a		427	$12.57\pm0.24\mathrm{a}$	$1.81\pm0.16~\mathrm{a}$	$17.83\pm0.18~\mathrm{a}$	$5.1\pm0.40\mathrm{a}$	$9.03 \pm 0.56 \mathrm{a}$	$16.43 \pm 2.34 \mathrm{a}$	$45.78 \pm 3.01~\mathrm{b}$
8610 NA NA NA NA NA NA NA 1287 ± 1.19 a 4.43 ± 0.33 a 12.39 ± 0.43 a 12.59 ± 0.44 a 4.33 ± 0.40 a 12.60 ± 0.03 a 12.39 ± 0.45 a 12.90 ± 0.03 a 12.39 ± 0.45 a 12.90 ± 0.03 a 12.39 ± 0.45 a 12.90 ± 0.03 a 12.39 ± 0.03 a 12.30 ± 0.03		1400	$14.43 \pm 1.30 \mathrm{a}$	1.74 ± 0.31 a	$16.37\pm1.2~\mathrm{a}$	$3.73\pm0.43~\mathrm{b}$	$7.27\pm1.11\mathrm{a}$	$17.79\pm2.79\mathrm{a}$	$122.08\pm1.32~a$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8610	NA	NA	NA	NA	NA	NA	NA
10.39 ± 0.43 a 1.74 ± 0.08 a 12.9 ± 0.44 a 4.3 ± 0.40 a 15.67 ± 4.27 a 1.96 ± 0.03 a 12.33 ± 1.67 a 3.4 ± 0.36 a 15.13 ± 1.67 a 1.40 ± 1.60 a 1.40 ± 1.40 a 1.40 ± 1.40 a	Tall fescue	231	$10.45 \pm 0.96 \mathrm{a}$	2.07 ± 0.25 a	$12.87\pm1.19~\mathrm{a}$	$4.43 \pm 0.33 a$	8.9 ± 0.93 a	$20.73\pm1.14\mathrm{a}$	$232.86\pm9.79~b$
15.67 ± 4.27 a 1.96 ± 0.03 a 12.33 ± 1.67 a 3.4 ± 0.36 a		427	$10.39\pm0.43\mathrm{a}$	$1.74\pm0.08~a$	$12.9 \pm 0.44 a$	$4.3 \pm 0.40 \mathrm{a}$	$9.07 \pm 0.56 \mathrm{a}$	$19.05\pm1.54\mathrm{a}$	$228.77 \pm 9.29~\mathrm{b}$
1619 1 95 0 97 1 1 4 9 1 1 00 0 1 4 7 1 0 90 5		1400	$15.67 \pm 4.27 \mathrm{a}$	$1.96\pm0.03~a$	$12.33\pm1.67~\mathrm{a}$	$3.4 \pm 0.36 \mathrm{a}$	$6.93 \pm 0.72 \mathrm{a}$	$21.74 \pm 1.76 a$	$616.45 \pm 7.41 a$
15.13 ± 1.23 d 1.90 ± 0.27 d 14.6 ± 1.90 d 1.47 ± 0.20 D		8610	$15.13\pm1.25\mathrm{a}$	$1.96\pm0.27~\mathrm{a}$	$14.8\pm1.90~\mathrm{a}$	$1.47\pm0.20~\mathrm{b}$	$4.1\pm0.32~\mathrm{b}$	$13.45\pm1.00\mathrm{b}$	$225.01 \pm 5.80 \; b$

Note: RO = 231 mg/l. Tap = 427 mg/l. Diluted RAW = 1400 mg/l. RAW = 8610 mg/l. TDS = total dissolved solids. Means within columns with the same letter are not significant at $\alpha \le 0.05$. NA= not available.

Mean and standard error of Fe, B, Al, S, Cl, and Na ion concentration (mg/l) in shoots of five forages irrigated with produced water (second harvest). Table 10

Plant ID	Treatment TDS mg/l	Fe mg/1	B mg/l	Al mg/l	S mg/l	Cl mg/l	Na mg/1
				$\mathbf{Mean} \pm \mathbf{SE}$			
Wheatgrass (western)	231	105.07 ± 4.13 a	$391.68 \pm 3.19 \mathrm{a}$	79.06 ± 5.67 a	$1.77\pm0.07\mathrm{b}$	$11.9\pm1.68\mathrm{a}$	$3.06\pm0.10~\mathrm{b}$
	427	$40.56\pm0.19~a$	$15.96\pm0.61~\mathrm{b}$	$21.66\pm1.51~a$	$2.57\pm0.53ab$	$16.23\pm0.91~\mathrm{a}$	$4.84 \pm 1.92 \text{ ab}$
	1400	43.05 ± 2.72 a	$42.31\pm1.97~\mathrm{b}$	$24.74 \pm 2.68 \mathrm{a}$	$4 \pm 0.76 a$	$13.6\pm0.34\mathrm{a}$	10.7 ± 2.35 a
	8610	NA	NA	NA	NA	NA	NA
Alfalfa	231	$173.73 \pm 7.58 a$	$520.86 \pm 9.65 a$	$44.99 \pm 4.22 a$	$3.87\pm0.62b$	$13.9\pm0.55\mathrm{a}$	$8.43\pm0.85~\mathrm{b}$
	427	$131.98 \pm 2.97 \text{ a}$	$132.2\pm2.93~\mathrm{b}$	$77.74 \pm 3.55 a$	$5.2 \pm 0.45~\mathrm{b}$	$14.07 \pm 0.94 a$	$5.82\pm1.05~\mathrm{b}$
	1400	$150.08\pm6.90~a$	$140.57\pm5.54\mathrm{b}$	$69.41 \pm 3.93 \mathrm{a}$	$12.17\pm0.93~a$	17.17 ± 0.16 a	$24.79 \pm 4.41 a$
	8610	NA	NA	NA	NA	NA	NA
Bromegrass (Meadow)	231	$148.65 \pm 4.80\mathrm{a}$	$791.16 \pm 9.71 \mathrm{a}$	$102.14\pm1.52\mathrm{a}$	$4.97\pm0.24\;\mathrm{b}$	$9.03 \pm 0.18~a$	$7.72\pm0.65~\mathrm{b}$
	427	98.33 ± 1.08 a	$33.37 \pm 3.50 \mathrm{b}$	92.13 ± 2.21 a	$7.1 \pm 0.35 \mathrm{b}$	14.17 ± 0.36 a	$13.34\pm0.66~\mathrm{b}$
	1400	$92.64 \pm 1.55 a$	$92.53 \pm 4.20~\mathrm{b}$	$48.86 \pm 0.09 a$	14.57 ± 2.47 a	25.63 ± 0.71 a	$27.78 \pm 5.43 a$
	8610	NA	NA	NA	NA	NA	NA
Russian wildrye	231	$87.98 \pm 2.38 a$	$388.53 \pm 8.28\mathrm{a}$	$42.04 \pm 0.50 a$	4.4 ± 0.47 a	$16.53 \pm 0.69 \mathrm{a}$	$11.02\pm0.97~\mathrm{b}$
	427	$65.82 \pm 3.68 a$	$22.17 \pm 0.66~\mathrm{b}$	48.11 ± 4.31 a	$\textbf{4.5} \pm \textbf{0.36} \text{a}$	$10.87\pm0.02~\mathrm{a}$	$11.36 \pm 1.08 \text{ ab}$
	1400	72.74 ± 4.48 a	$59.65 \pm 9.96~\mathrm{b}$	35.9 ± 0.12 a	$7.5\pm1.51\mathrm{a}$	$14.6\pm0.70~\mathrm{a}$	$18.06 \pm 3.17 a$
	8610	NA	NA	NA	NA	NA	NA
Tall fescue	231	70.18 ± 1.76 a	$686.45\pm6.20\mathrm{a}$	$39.8\pm0.10~ab$	$5.63 \pm 0.04 \; \text{BCE}$	$18.3\pm0.20~\mathrm{a}$	$10.83 \pm 1.54 \ \mathrm{BCE}$
	427	$72.29 \pm 3.45 a$	$31.79 \pm 3.85~\mathrm{b}$	$49.4 \pm 0.67 a$	$4.17\pm0.12c$	$16.1\pm1.75~\mathrm{a}$	$8.22 \pm 1.19c$
	1400	74.8 ± 6.66 a	$93.72 \pm 4.61~\mathrm{b}$	$38.5 \pm 0.25 \text{ ab}$	$7.8 \pm 0.40\mathrm{b}$	76.4 ± 0.03 a	$16.55\pm1.98~\mathrm{b}$
	8610	$75.05\pm9.23~a$	$207.58\pm4.52\mathrm{b}$	$30.52\pm0.19~b$	$12.6\pm0.91~\mathrm{a}$	$35.57\pm0.95~a$	$33.62\pm4.00~a$

Note: RO = 231 mg/l. Tap = 427 mg/l. Diluted RAW = 1400 mg/l. RAW = 8610 mg/l. TDS = total dissolved solids. Means within columns with the same letter are not significant at $\alpha \le 0.05$. NA= not available.

Mean and standard error of soil bulk density (g/cm³), Organic matter OM (%), pH, and EC (mg/l) irrigated with produced water.

Plant ID	Treatment TDS mg/l	Soil bulk density 8/cm ³	OM %	Нф	EC mg/l
		Mean \pm SE			
Wheatgrass (western)	231	$1.30\pm0.05b$	$0.67\pm0.03\mathrm{b}$	$7.53 \pm 0.15 b$	$401.3 \pm 91.76 \text{ b}$
	427	$1.49\pm0.03\mathrm{a}$	$0.93 \pm 0.03\mathrm{a}$	$8.3 \pm 0.06\mathrm{a}$	$140\pm25.26c$
	1400	$1.51 \pm 0.06\mathrm{a}$	$0.77\pm0.07~\mathrm{b}$	$8.4\pm0.00\mathrm{a}$	877.3 ± 67.86 a
Alfalfa	231	$1.51\pm0.03\mathrm{a}$	$0.67 \pm 0.03\mathrm{b}$	$7.63 \pm 0.20~b$	$165.6 \pm 30.36 \mathrm{b}$
	427	$1.53\pm0.05\mathrm{a}$	$1.07\pm0.03\mathrm{a}$	$8.27 \pm 0.03~a$	$135.3 \pm 16.84 \text{ b}$
	1400	$1.52 \pm 0.10\mathrm{a}$	$0.77\pm0.03\mathrm{b}$	$8.4\pm0.00\mathrm{a}$	$938 \pm 112.20 \mathrm{a}$
Bromegrass (Meadow)	231	$1.54 \pm 0.06\mathrm{a}$	$0.60\pm0.00\mathrm{b}$	$7.63 \pm 0.12b$	$233.3 \pm 100.77 \text{ b}$
	427	$1.56\pm0.03\mathrm{a}$	$0.90 \pm 0.06\mathrm{a}$	$8.1\pm0.06\mathrm{a}$	$177.3 \pm 18.24 \text{ b}$
	1400	$1.60\pm0.01\mathrm{a}$	$0.53 \pm 0.03\mathrm{b}$	$8.27 \pm 0.03~a$	$1064 \pm 37.08\mathrm{a}$
Russian wildrye	231	$1.58\pm0.03\mathrm{a}$	$0.60\pm0.00\mathrm{b}$	$7.67 \pm 0.09 \mathrm{b}$	$133\pm4.04\mathrm{b}$
	427	$1.54\pm0.03\mathrm{a}$	$0.90\pm0.06\mathrm{a}$	$8.17\pm0.03~a$	$172.6\pm14.20~\mathrm{b}$
	1400	$1.60\pm0.04\mathrm{a}$	$0.60\pm0.00\mathrm{b}$	$8.23\pm0.09~a$	$966 \pm 71.58 a$
Tall fescue	231	$1.56\pm0.01~ab$	$0.80 \pm 0.00\mathrm{ab}$	8.23 ± 0.03 a	$165.6\pm24.72c$
	427	$1.50\pm0.03\mathrm{b}$	$0.90\pm0.10\mathrm{a}$	$8.13 \pm 0.09 \mathrm{a}$	$205.3 \pm 26.94c$
	1400	$1.60\pm0.01~ab$	$0.63 \pm 0.03~\text{BCE}$	$8.17\pm0.03~a$	$1008 \pm 50.53\mathrm{b}$
	8610	$1.61\pm0.04a$	$0.50\pm0.00c$	$8.13\pm0.03~a$	$1726.6\pm61.80~\mathrm{a}$

Note: RO = 231 mg/l. Tap = 427 mg/l. Diluted RAW = 1400 mg/l. RAW = 8610 mg/l. TDS = total dissolved solids. EC = Electrical conductivity. Means within columns with the same letter are not significant at $\alpha \le 0.05$.

 Table 12

 Mean and standard error of N, P, K, S, Zn, and Mn ion concentrations in soil irrigated with produced water.

Plant ID	Treatment TDS mg/l	Z	Ь	Ж	S	Zn	Mn
		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
		$\mathrm{Mean} \pm \mathrm{SE}$				Mean \pm SE	
Wheatgrass	231	$3.57\pm0.13b$	$4.67\pm0.67~\mathrm{b}$	6.67 ± 0.67 b	$41.33 \pm 2.34 \mathrm{b}$	$0.61\pm0.11~\mathrm{a}$	0.87 ± 0.19 a
Wheatgrass	427	$6.3\pm0.75~\mathrm{a}$	$8\pm0.00\mathrm{a}$	$112\pm11.55~\mathrm{a}$	$34\pm11.55~\mathrm{b}$	$0.55\pm0.06~\mathrm{a}$	$0.43 \pm 0.07 a$
Wheatgrass	1400	$\textbf{4.4} \pm \textbf{0.81} \text{ ab}$	$6.3 \pm 0.88 \text{ ab}$	$114.33\pm6.18~a$	$494.67 \pm 41.24 a$	$1.21 \pm 0.34~\mathrm{a}$	$0.93 \pm 0.24 \mathrm{a}$
Alfalfa	231	$12.6\pm3.14\mathrm{a}$	$5.33\pm1.33~\mathrm{a}$	$56 \pm 7.01~\mathrm{b}$	$25\pm1.53~b$	$1.31 \pm 0.58~\mathrm{a}$	2.13 ± 0.15 a
Alfalfa	427	$6.67 \pm 0.86 \mathrm{ab}$	4.67 ± 0.67 a	$100.33 \pm 6.34 a$	$21\pm1.16~\rm b$	0.84 ± 0.07 a	3.33 ± 1.84 a
Alfalfa	1400	$4.23 \pm 0.37\mathrm{b}$	4.33 ± 0.33 a	$105.33 \pm 7.81 a$	$288 \pm 31.99 \mathrm{a}$	$0.36\pm0.03~a$	$1.93 \pm 0.47 a$
Bromegrass	231	$3.6\pm0.36~\mathrm{a}$	4.33 ± 1.33 a	$66\pm2.52~\mathrm{b}$	$31.33\pm1.45\mathrm{b}$	$0.85\pm0.27~a$	$0.93 \pm 0.07 a$
Bromegrass	427	$5.63 \pm 0.50\mathrm{a}$	$8.67 \pm 2.19\mathrm{a}$	$111\pm7.78\mathrm{a}$	42.67 4.92 b	$0.80\pm0.13\mathrm{a}$	0.70 ± 0.10 a
Bromegrass	1400	$5.8\pm0.95~\mathrm{a}$	$8\pm1.00\mathrm{a}$	$81.67 \pm 0.33~\mathrm{b}$	$323.33 \pm 20.43 \mathrm{a}$	$0.51 \pm 0.06 \mathrm{a}$	$1.40 \pm 0.65 a$
Russian wildrye	231	$2.97 \pm 0.12\mathrm{a}$	$5.33 \pm 0.67 \mathrm{b}$	$63.33 \pm 4.92c$	$30\pm3.79\mathrm{b}$	0.40 ± 0.01 a	$0.83 \pm 0.23~\mathrm{a}$
Russian wildrye	427	$5.67 \pm 2.04\mathrm{a}$	$9.67 \pm 0.88\mathrm{a}$	$127.67\pm2.91~a$	$33.67 \pm 3.85\mathrm{b}$	$0.62 \pm 0.16 \mathrm{a}$	$0.53 \pm 0.09 a$
Russian wildrye	1400	$5.53 \pm 0.27\mathrm{a}$	8.33 ± 0.33 a	$90.33 \pm 1.86~\mathrm{b}$	$295.33 \pm 76.08 \mathrm{a}$	$0.52\pm0.06~a$	1.10 ± 0.15 a
Tall fescue	231	$2.73\pm0.22\mathrm{a}$	$5.33 \pm 1.33\mathrm{b}$	$80.67 \pm 51.00~\mathrm{a}$	$51\pm13.13\mathrm{c}$	$0.84 \pm 0.03 \mathbf{a}$	$0.57\pm0.12~\mathrm{b}$
Tall fescue	427	$5.07 \pm 2.22\mathrm{a}$	$5.33 \pm 0.33\mathrm{b}$	$96.33\pm10.68~\mathrm{a}$	$50.33 \pm 26.99c$	0.90 ± 0.41 a	$0.60\pm0.00~\rm b$
Tall fescue	1400	$4.8\pm0.93~\mathrm{a}$	$7\pm0.58~\mathrm{b}$	$81.33 \pm 2.97~\mathrm{a}$	$211.67 \pm 73.87 \mathrm{b}$	$0.73 \pm 0.19 a$	$0.97\pm0.17~\rm b$
Tall fescue	8610	$4.73 \pm 0.12\mathrm{a}$	$10.3\pm0.67\mathrm{a}$	99.67 ± 7.06 a	$982.67 \pm 20.19 \mathrm{a}$	0.60 ± 0.05 a	1.93 ± 0.23 a

Note: RO = 231 mg/l. Tap = 427 mg/l. Diluted RAW = 1400 mg/l. RAW = 8610 mg/l. TDS = total dissolved solids. Means within columns with the same letter are not significant at $\alpha \le 0.05$.

Mean and standard error of Mg, Ca, Na, Fe, and B ion concentrations and SAR in soil irrigated with produced water

Plant ID	Treatment TDS mg/l	Mg mg/l	Ca mg∕l	Na mg/l	SAR	Fe mg/l	B mg/1
				Mean \pm SE			
Wheatgrass	231	$105.67 \pm 0.88 \mathrm{b}$	849.67 ± 25.74 b	$267.33 \pm 25.16 \mathrm{b}$	$3.25\pm0.34~\mathrm{b}$	$11.2\pm1.71~\mathrm{a}$	3.87 ± 0.24 a
Wheatgrass	427	277.67 ± 38.83 a	$2393.6\pm291.88\mathrm{a}$	$187.33 \pm 37.40 \mathrm{b}$	$1.38 \pm 0.30 \mathrm{c}$	$5.1\pm0.36\mathrm{b}$	$0.90 \pm 0.06c$
Wheatgrass	1400	$254.67 \pm 33.93 a$	$2191 \pm 245.19 a$	$1173 \pm 18.93 \mathrm{a}$	$9.01 \pm 0.61~a$	$5\pm0.20~\mathrm{b}$	$2.10\pm0.15~\mathrm{b}$
Alfalfa	231	$119.67 \pm 5.21\mathrm{c}$	$1008\pm170.03~\mathrm{b}$	$220.33 \pm 30.05~\mathrm{b}$	$2.52 \pm 0.46~\mathrm{b}$	21.13 ± 2.27 a	$2.43 \pm 0.29 a$
Alfalfa	427	$360 \pm 19.70 \mathrm{a}$	$2692 \pm 194.99 a$	$186.33 \pm 13.26 \mathrm{b}$	$1.26\pm0.07c$	$11.8\pm1.85~\mathrm{b}$	$0.73 \pm 0.07c$
Alfalfa	1400	$259.67 \pm 36.60 \mathrm{b}$	$1909 \pm 310.77 \text{ a}$	1047 ± 74.01 a	$8.51 \pm 0.42\mathrm{a}$	$9.73\pm2.14\mathrm{b}$	$1.70\pm0.17~\mathrm{b}$
Bromegrass	231	$108.67 \pm 3.76~\mathrm{b}$	963 ± 97.97 b	$209.33 \pm 12.16 \mathrm{b}$	$2.41 \pm 0.06~\mathrm{b}$	$10.47 \pm 0.62\mathrm{a}$	3.07 ± 0.13 a
Bromegrass	427	312 ± 30.04 a	$2417.6 \pm 223.78 \mathrm{a}$	$250.67 \pm 25.79 \mathrm{b}$	$1.79 \pm 0.10~\mathrm{b}$	$8.60 \pm 1.40 \mathrm{a}$	$0.77\pm0.09c$
Bromegrass	1400	$130 \pm 7.10 \mathrm{b}$	$1050.67 \pm 72.50 \mathrm{b}$	874.67 ± 54.61 a	$9.61 \pm 0.82~\mathrm{a}$	8.30 ± 2.18 a	$1.37\pm0.09~\rm b$
Russian wildrye	231	$101.33 \pm 5.90~\mathrm{b}$	$785\pm13.44c$	$203\pm18.79~\mathrm{b}$	2.56 ± 0.23 a	$9.97 \pm 1.97 a$	3.03 ± 0.20 a
Russian wildrye	427	301.67 ± 20.54 a	$2359.3 \pm 183.15 \mathrm{a}$	$243 \pm 28.97 \text{ ab}$	$1.79 \pm 0.26~\mathrm{a}$	$6.33 \pm 1.09 a$	$0.80 \pm 0.10c$
Russian wildrye	1400	$145.67 \pm 8.96~\mathrm{b}$	$1397.3 \pm 189.28\mathrm{b}$	$782 \pm 272.71 \text{ a}$	$7.89 \pm 3.19 \mathrm{a}$	$6.07 \pm 1.59 \mathrm{a}$	$1.60\pm0.26~\mathrm{b}$
Tall fescue	231	219 ± 13.07 ab	$1766\pm65.01~\mathrm{ab}$	$265.33 \pm 45.75c$	$2.22 \pm 0.34c$	7.13 ± 0.32 ab	$4.67\pm0.57~a$
Tall fescue	427	283.67 ± 49.93 a	$2248 \pm 423.53 a$	$234\pm62.37c$	$1.72\pm0.34c$	$6.43\pm0.73~\mathrm{b}$	$0.80 \pm 0.10 \mathrm{c}$
Tall fescue	1400	$150.67 \pm 8.66~\mathrm{BCE}$	$1162.3\pm46.16~\mathrm{BCE}$	$666.6 \pm 166.89 \mathrm{b}$	$6.84 \pm 1.62~\mathrm{b}$	$8.17 \pm 1.20 \text{ ab}$	$1.33 \pm 0.23c$
Tall fescue	8610	$39 \pm 4.36c$	$920.67\pm27.32c$	1974 ± 7.65 a	24.5 ± 0.27 a	10.37 ± 1.44 a	$3.17\pm0.15~\mathrm{b}$

Note: RO = 231 mg/l. Tap = 427 mg/l. Diluted RAW = 1400 mg/l. RAW = 8610 mg/l. TDS = total dissolved solids. SAR = Sodium adsorption ratio. Means within columns with the same letter are not significant at

water which shows suitability of this species for irrigation with RAW water.

4.2. Plant dry biomass

Within species, alfalfa biomass decreased with diluted RAW; however, compared with other species, alfalfa produced higher dry biomass in RO, tap and diluted RAW water. This could be due to the rapid growth of alfalfa aboveground biomass compared with the other grass species. This agrees with a previous study comparing the growth of alfalfa and triticale irrigated with various levels of saline water up to 5600 mg/l where alfalfa growth decreased with increasing irrigation water salinity (Kankarla et al., 2019). Barley (Hordeum vulgare) grew well with high biomass as the irrigation treatment salinity increased (Katerji et al., 2009). In contrast, with increasing water salinity, Khan and Glenn (1996) reported reduction in barley biomass. Tall fescue grew well in RAW up to 8610 mg/l; therefore, it can be considered a halophyte. Kankarla et al. (2019) and Ozturk et al. (2018) reported no reduction in triticale biomass irrigated with 5600 and 7000 mg/l saline water, respectively, which agrees with our finding for tall fescue species.

4.3. Evapotranspiration

Continuous irrigation with saline water caused decreases in cumulative ET for all five species and resulted in decreased plant growth and biomass. Yang et al. (2020) reported related results when ET of tomato decreased with increasing irrigation water salinity ranged between 1400 and 4200 mg/l. On accord with this study, decreases in pecan ET with increasing irrigation water salinity up to 5600 mg/l have been reported (Ben Ali et al., 2021). However, no changes in plant biomass and ET were reported when irrigation up to 7000 mg/l was applied to halophytic species (Ozturk et al., 2018).

4.4. Plant height and SPAD value

The results indicated no significant changes in the forage species with continued irrigation with diluted RAW and tall fescue with RAW water irrigation. On the contrary, Pessarakli (2011) reported decreases in salt-grass species *Distichlis spicata L.* shoot length with increasing water salinity. SPAD value was higher in tap and diluted RAW water irrigated plants than with RO treatment. A decrease in chlorophyll content was reported on pecan leaves irrigated with water up to 5600 mg/l (Ben Ali et al., 2020). Tomato chlorophyll content decreased with increases in salinity (Taffouo et al., 2010; Zhang et al., 2016). Li et al. (2018) reported decreases in chlorophyll content of *Eremochloa ophiuroids* irrigated with NaCl dominant saline water.

4.5. Plant ion contents

Three major tools to distinguish ions toxicity are plant analysis, soil testing, and field observations (McCauley et al., 2009). The irrigation water showed increases in Na, Ca, Mg, and Cl with increasing salinity of water. These ions respond in one of paths: leach out of the soil, accumulate in the soil, or accumulate in plants tissue by root water uptake. As the results indicated, Na, Ca, Mg, and Cl ions presented in the plants' tissues increased as the treatment salinity increased. Wheatgrass, alfalfa, bromegrass, Russian wildrye, and tall fescue gained and accumulate Na and Cl and which may have led to the decreases in the biomass by increasing water salinity. These results are consistent with a previous study that applied saline water on alfalfa and triticale (Kankarla et al., 2019). Pica et al. (2017) reported that produced water with a Na concentration of 1156 mg/l inhibited sweet wormwood and switchgrass growth.

Tall fescue thrived and grew back after the two harvests despite the Na content in RAW water being 59 times greater than in the control,

demonstrating that tall fescue is more tolerant to high Na levels than other species. A previous study reported that the tolerance of tissue to accumulated Na or Cl, osmotic stress tolerance, and Na or Cl exclusion are the three adaptation types of plant to salinity stress (Munns and Tester, 2008), and plants differ in their response to Na and Cl accumulation (Tavakkoli et al., 2010). Ca performs a significant role in mitigating salt toxicity, which is associated with the selective effect of K/Na by controlling the flow of Na through non-selective ion channels (Rahneshan et al., 2018). The results showed decreases in Ca in RAW irrigated species meaning that tall fescue might have the potential of utilizing Na for growth while higher Ca might assist wheatgrass, alfalfa, bromegrass, and Russian wildrye to reduce the toxic effects of Na on their growth. This role might be the reason for the grasses' survival since the increases in Na were higher with increases in the treatment's salinity; however, these plants might have a mechanism that controls the increases in Na and Cl by sequestering these ions in the vacuoles to manage low concentrations in the cytoplasm therefore resulting in good metabolism (Kankarla et al., 2019).

Nitrogen is responsible for Nucleic acid, chlorophyll, and protein production (McCauley et al., 2009). Magnesium has a key role on enzyme activation and is related to chlorophyll content (Ben Ali et al., 2020). In our study, Mg declined as the irrigation water increased, which might explain the increases in chlorophyll content by increasing water salinity. A previous study mentioned that increased Mg decreased chlorophyll content of pecan trees irrigated with saline water up to 5600 mg/l (Ben Ali et al., 2020). Phosphorus reduction causes interruption in cell signaling and protein synthesis (Epstein and Bloom, 2005). Our results showed decreases in P concentration in the forage tissues with increasing water salinity. These results agreed with a previous study (Hussain et al., 2014).

Potassium's role is to activate enzymes contributed with ATP production and to regulate photosynthetic presses (Epstein and Bloom, 2005). The increases in Na might eliminate plant K uptake and interrupt photosynthesis regulation (Hussain et al., 2014). In this study, K decreased in wheatgrass, bromegrass, and tall fescue tissues with increased Na concentration. The sulfur ion is important for chlorophyll and protein synthesis (McCauley et al., 2009). Our results showed increases in S ions when water salinity increased. Zinc is used primarily for internode elongation and chlorophyll therefore any deficiency can affect the plants growth (McCauley et al., 2009). The forage species presented reduction in Zn as the irrigation water salinity increased; however, growth was not affected.

Iron is a principal element for plant respiration (McCauley et al., 2009). Fe decreased with increased water salinity; however, the plant's growth was not clearly affected. Manganese is important in chloroplasts where photosynthesis takes place (McCauley et al., 2009). In this study, Mn declined with increased water salinity with all the forage species. Boron has a role on cell wall formation and reproductive tissue (McCauley et al., 2009). Boron can be toxic to plants; however, plants are varied in acceptable concentrations that they can manage (McCauley et al., 2009). Even with the increases in B concentration in the forages irrigated with RO and RAW, plant species did not show any signs of B toxicity such as chlorosis and necrosis, meaning that the plants could have managed the increase in B concentration. One exception was with bromegrass showing signs of B toxicity due to the increases in B concentration with RO irrigation treatment.

4.6. Soil bulk density, organic matter, pH, and EC

As the water salinity increased with continuous irrigation, soil bulk density increased. This was due to salt precipitation in the soil pores with attendant decreases in the pores size. In contrast, Al-Nabulsi (2001) reported decreases in soil bulk density when irrigated with 7700 mg/l sodic drainage water while Ben Ali et al. (2021) reported no differences with continuous irrigation with saline water up to 5600 mg/l. Our results indicated significant reduction in soil OM % as the salinity

increased. In agreement with our findings, Zhang et al. (2019) also reported a reduction in OM % and increases in alkalinity with increasing salinity. Results indicated that as the irrigation water salinity increased, soil EC significantly increased. This increase, however, was not as large as expected and this was due to the leaching fraction, which ranged between 40 % and 50 % of the irrigation water amount which prevented salt build up in the soil. According to Ayres and Wescot, (1985) leachate of 50 % could control salt build up in the soil reflecting in reduced salt accumulation in plants. In consent with this study, previous greenhouse studies reported greater increases in soil EC than ours along with continued irrigation with brackish water (EC 2870 – 7000 mg/l) to irrigate halophytic species (Flores et al., 2016; Ozturk et al., 2018).

4.7. Leachate and soil ion concentrations

Leaching, accumulation, and root uptake are the three major pathways for water and soil ion transport. Irrigation with produced water could increase salinity and sodicity, which can be observed on leachate water results collected from the pots. As the water salinity concentration increased, the leachate became more saline and sodic. The increase in treatment salinity led to leaching of Mg, Ca, Na, and Cl in the collected leachate samples. Comparable results were reported with alfalfa species irrigated with various levels of saline water (Kankarla et al., 2019). Compared to the control irrigated soil, soil Na concentration was five times higher in diluted RAW water in wheatgrass and alfalfa pots while it was around three times in bromegrass and Russian wildrye pots. Due to the increases in Na ion concentration as the water salinity increased, soil SAR increased and reached 24.46, which is highly sodic. From the observed data, tall fescue had the ability to utilize Na ions to build up its biomass in RAW water and that might explain the decline in Na ions in RAW water irrigated soil compared to other species. Bromegrass and alfalfa could not maintain an adequate Ca/Na ratio and that resulted in the decline in biomass in diluted RAW water compared to the control. Potassium has been reported to increase the soil microporosity resulting in increases in soil moisture capacity (Zaker and Emami, 2019). This was observed in the greenhouse in tall fescue pots irrigated with RAW water and those pots remained wet for longer durations than other pots. In consent with our results, soil irrigated with reverse osmosis concentrate remained wet for longer than control treatment (Ben Ali et al., 2021). To control salt build up in plant tissues, plants might reduce the root water uptake as a mechanism to survive the unpreparable conditions (Munns and Tester, 2008).

Toxicity is usually related to boron, sodium and chloride concentrations (Ayres and Wescot, 1985). Toxic and excessive levels of boron has been reported in arid and semi-arid regions (Padbhushan and Kumar, 2017). Based on soil saturated extract, 5-10 mg/l soil boron concentration represent semi-tolerant and tolerant plants respectively while the toxicity threshold begins at 2 mg/l soil boron concentration for sensitive plants (Gough et al., 1980). Our boron results exceeded the threshold of 2 mg/l, as reported previously, in RO, diluted RAW, and RAW for all species; however, toxicity signs were observed in bromegrass species. A previous study reported reduction in boron toxicity in wheat, numerous vegetables, and rootstock with increasing in salinity (Henry Ezechi et al., 2012). This could be what happened with those plants with increases in salinity, thus surviving two harvests. Munns and Tester (2008) reported that in soil, 40 mM (≈ 2800 mg/l) of NaCl concentration is toxic for most of the plants species. Soil sodium concentration, in this study was about 1974 mg/l in RAW water in tall fescue pots, which is the highest concentration among all the species. Toxicity level differs among plants species and depends on the plant's sensitivity for salts type and concentration; thus, some plants are sensitive to Na while others are more sensitive for Cl (Ayres and Wescot, 1985). Some water, plant, and soil ion concentrations thresholds are included in (Table S3). To confirm our results, continuous irrigation with the same treatments, after the second harvest, resulted in those species growing well again for two more full harvests. This provides the evidence of the

feasibility to utilize desalinated and diluted produced waters for irrigating forage plants.

5. Conclusion

The present study investigated the effects of irrigating western wheatgrass, alfalfa, meadow bromegrass, Russian wildrye, and tall fescue with RO desalinated produced water, Tap water, diluted RAW produced water, and RAW produced water as a valuable source of water in arid areas. Desalination of produced water reduced the salt buildup in soil and plants. ET decreased with increasing water salinity but wheatgrass, alfalfa, bromegrass, and Russian wildrye grew well during two harvests of the experiment and grew back again with continued RO, tap, and diluted RAW irrigation after the second harvest; however, tall fescue survived even the RAW irrigation. Alfalfa biomass decreased in diluted RAW water while tall fescue was a tolerant species and can be irrigated with higher salinity water. Increasing soil salinity is a major issue when considering irrigation with produced water; however, a good leaching ratio, especially in areas where water tables are deep, can reduce Na, Cl, and other ions from building up in the rootzone and in plant tissue. Boron toxicity symptoms were noticed only in the meadow bromegrass. There was no sign of toxicity regarding Na and Cl in all the surviving plants in this study with continued irrigation with saline water. The research results promote the feasibility of using desalinated and diluted produced water to irrigate forage grasses; however, an effective monitoring system is required especially when RAW or diluted RAW is used for irrigation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgment

The authors are thankful to NMSU Agricultural Experiment Station, NIFA, HPOC, LLC, and Brackish Groundwater National Desalination Research Facility in Alamogordo, New Mexico.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.agwat.2022.107966.

References

- Al-Nabulsi, Y.A., 2001. Saline drainage water, irrigation frequency and crop species effects on some physical properties of soils. J. Agron. Crop Sci. 186 (1), 15–20. Ayers, R., Westcot, D., 1985. Water quality for agriculture. In: Irrigation and Drainage, Paper, 29. Food and Agriculture Organization of the United Nations., Rome, p. 174.
- Ben Ali, A.R., Yang, H., Shukla, M., 2021. Brackish groundwater and reverse osmosis concentrate influence soil physical and thermal properties and pecan evapotranspiration. Soil Sci. Soc. Am. J. 85 (5), 1519–1533. https://doi.org/10.1002/saj2.20281.
- Ben Ali, A.R., Shukla, M.K., Schutte, B.J., Gard, C.C., 2020. Irrigation with RO concentrate and brackish groundwater impacts pecan tree growth and physiology. Agric. Water Manag. 240, 106328 https://doi.org/10.1016/j.agwat.2020.106328.
- Biggs, A.J., Biggs, A.J.W., Witheyman, S.L., Williams, K.M., Cupples, N., De Voil, C.A., Power, R.E. and Stone, B.J., 2012. Assessing the salinity impacts of coal seam gas water on landscapes and surface streams. Department of Natural Resources.
- Blake, G.R., Hartge, K.H., 1986. Particle density. Methods Soil Anal.: Part 1 Phys. Mineral. Methods 5, 377–382. https://doi.org/10.2136/sssabookser5.1.2ed.c13.
- Burkhardt, A., Gawde, A., Cantrell, C.L., Baxter, H.L., Joyce, B.L., Stewart Jr, C.N., Zheljazkov, V.D., 2015. Effects of produced water on soil characteristics, plant

- biomass, and secondary metabolites. J. Environ. Qual. 44 (6), 1938–1947. https://doi.org/10.2134/jeq2015.06.0299.
- Clark, C.E. and Veil, J.A., 2009. Produced water volumes and management practices in the United States (No. ANL/EVS/R-09-1). Argonne National Lab.(ANL), Argonne, IL (United States).
- Echchelh, A., Hess, T., Sakrabani, R., 2020. Agro-environmental sustainability and financial cost of reusing gas field-produced water for agricultural irrigation. Agric. Water Manag. 227, 105860 https://doi.org/10.1016/j.agwat.2019.105860.
- Epstein, E., Bloom, A.J., 2005. Mineral nutrition of plants: Principles and perspective. 2nd ed. Sinauer Associations, Sunderland.
- Farooq, H., Bashir, M.A., Khalofah, A., Khan, K.A., Ramzan, M., Hussain, A., Wu, L., Simunek, L., Aziz, I., Samdani, M.S., Alghanem, S.M., 2021. Interactive effects of saline water irrigation and nitrogen fertilization on tomato growth and yield. Fresenius Environ. Bull. 30 (04), 3557–3564.
- Flores, A.M., Schutte, B.J., Shukla, M.K., Picchioni, G.A., Ulery, A.L., 2015. Time-integrated measurements of seed germination for salt tolerant plant species. Seed Sci. Technol. 43 (3), 541–547. https://doi.org/10.15258/sst.2015.43.3.09.
- Flores, A.M., Shukla, M.K., Daniel, D., Ulery, A.L., Schutte, B.J., Picchioni, G.A., Fernald, S., 2016. Evapotranspiration changes with irrigation using saline groundwater and RO concentrate. J. Arid Environ. 131, 35–45.
- Gough, L.P., Pearson, R.C., Shacklette, H.T. and Case, A.A., 1980. Element Concentrations Toxic to Plants, Animals, and Man: An Appraisal of the Toxicity Hazard to Plants, Animals, and Man from Natural and Manmade Element Concentrations of Environmental Concern (No. 1463–1467). US Government Printing Office.
- Henry Ezechi, E., Isa, M.H., Mohamed Kutty, S.R., 2012. Boron in Produced Water: Challenges and Improvements: A Comprehensive Review. J. Appl. Sci. 12, 402–415. https://doi.org/10.3923/jas.2012.402.415.
- Hussain, R.A., Ahmad, R., Waraich, E.A., Nawaz, F., 2014. Nutrient uptake, water relations, and yield performance of different wheat cultivars (Triticum aestivum L) under salinity stress. J. Plant Nutr. 35, 961–974.
- Kankarla, V., Shukla, M.K., VanLeeuwen, D., Schutte, B.J., Picchioni, G.A., 2019. Growth, evapotranspiration, and ion uptake characteristics of alfalfa and triticale irrigated with brackish groundwater and desalination concentrate. Agronomy 9 (12), 789. https://doi.org/10.3390/agronomy9120789.
- Katerji, N., Mastrorilli, M., Van Hoorn, J.W., Lahmer, F.Z., Hamdy, A., Oweis, T., 2009. Durum wheat and barley productivity in saline-drought environments. Eur. J. Agron. 31 (1), 1–9. https://doi.org/10.1016/j.eja.2009.01.003.
- Khan, M.J., Glenn, E.P., 1996. Yield and evapotranspiration of two barley varieties as affected by sodium chloride salinity and leaching fraction in lysimeter tanks. Commun. Soil Sci. Plant Anal. 27 (1–2), 157–177. https://doi.org/10.1080/ 00103629609369550.
- Li, J., Wan, Y., Wang, B., Waqas, M.A., Cai, W., Guo, C., Zhou, S., Su, R., Qin, X., Gao, Q., Wilkes, A., 2018. Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield. Geoderma 315, 1–10. https://doi.org/10.1016/j.geoderma.2017.11.033.
- Martel-Valles, F., Benavides-Mendoza, A., Mendoza-Villarreal, R., ZermeÑO-GonzÁLez, A., JuÁRez-Maldonado, A., 2014. Agronomic use of produced water in tomato plants (Lycopersicon esculentum L.) under greenhouse conditions. Rev. Int. De. Contam. Ambient. 30 (4), 365–377. (http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0188-49992014000400005&lng=es&nrm=iso&thng=en).
- McCauley, A., Jones, C., Jacobsen, J., 2009. Plant nutrient functions and deficiency and toxicity symptoms. Nutr. Manag. Modul. 9, 1–16.
- McLaughlin, M.C., Blotevogel, J., Watson, R.A., Schell, B., Blewett, T.A., Folkerts, E.J., Goss, G.G., Truong, L., Tanguay, R.L., Argueso, J.L., Borch, T., 2020. Mutagenicity assessment downstream of oil and gas produced water discharges intended for agricultural beneficial reuse. Sci. Total Environ. 715, 136944 https://doi.org/ 10.1016/j.scitotenv.2020.136944.
- Munns, R., 2005. Genes and salt tolerance: bringing them together. N. Phytol. 167 (3), 645–663. https://doi.org/10.1111/j.1469-8137.2005.01487.x.
- Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911.
- Ozturk, O.F., Shukla, M.K., Stringam, B., Picchioni, G.A., Gard, C., 2018. Irrigation with brackish water changes evapotranspiration, growth and ion uptake of halophytes. Agric. Water Manag. 195, 142–153. https://doi.org/10.1016/j.agwat.2017.10.012.
- Padbhushan, R., Kumar, D., 2017. Fractions of soil boron: a review. J. Agric. Sci. 155 (7), 1023–1032.
- Pessarakli, M., 2011. Saltgrass, a high salt and drought tolerant species for sustainable agriculture in desert regions. Int. J. Water Resour. Arid Environ. 1 (1), 55–64.
- Pica, N.E., Carlson, K., Steiner, J.J., Waskom, R., 2017. Produced water reuse for irrigation of non-food biofuel crops: Effects on switchgrass and rapeseed germination, physiology and biomass yield. Ind. Crops Prod. 100, 65–76. https:// doi.org/10.1016/j.indcrop.2017.02.011.
- Rahneshan, Z., Nasibi, F., Moghadam, A.A., 2018. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J. Plant Interact. 13 (1), 73–82.
- Robbins, C.W., 1983. Sodium adsorption ratio-exchangeable sodium percentage relationships in a high potassium saline-sodic soil. Irrig. Sci. 5 (3), 173–179.
 Shukla, M.K., 2014. Soil Physics: An Introduction. CRC Press, Boca Raton, FL, p. 58.
- Sun, Y., Niu, G., Dou, H., Perez, C., Alexander, L., 2022. Growth, gas exchange, and mineral nutrients of hydrangea hybrids irrigated with saline water. HortScience 57 (2), 319–325. https://doi.org/10.21273/HORTSCI16196-21.
- Taffouo, V.D., Nouck, A.H., Dibong, S.D., Amougou, A., 2010. Effects of salinity stress on seedlings growth, mineral nutrients and total chlorophyll of some tomato (Lycopersicum esculentum L.) cultivars. Afr. J. Biotechnol. 9 (33) https://doi.org/10.4314/ajb.v9i33.

- Tavakkoli, E., Rengasamy, P., McDonald, G.K., 2010. High concentrations of Na+ and Cl-ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J. Exp. Bot. 61 (15), 4449–4459. https://doi.org/10.1093/jxb/erg/251.
- Veil, J.A., 2011. Produced water management options and technologies. In: Lee, K., Neff, J. (Eds.), Produced Water: Environmental Risks and Advances in Mitigation Technologies (. Springer, pp. 537–571. https://doi.org/10.1007/978-1-4614-0046-2-20
- Yang, H., Du, T., Mao, X., Shukla, M.K., 2020. Modeling tomato evapotranspiration and yield responses to salinity using different macroscopic reduction functions. Vadose Zone J. 19 (1), e20074 https://doi.org/10.1002/vzj2.20074.
- Zaker, M., Emami, H., 2019. Effect of potassium to bivalent cations ratio in irrigation water on some physical and hydraulic properties of sandy loam soil. Soil & Environment, 38, 1.
- Zhang, P., Senge, M., Dai, Y., 2016. Effects of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. Rev. Agric. Sci. 4, 46–55. https://doi.org/10.7831/ras.4.46.
- Zhang, W.W., Chong, W.A.N.G., Rui, X.U.E., Wang, L.J., 2019. Effects of salinity on the soil microbial community and soil fertility. J. Integr. Agric. 18 (6), 1360–1368.