Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-A: Identification		
1	Name of facility:	Alto Concrete Batch Plant
2	Name of company:	Roper Construction, Inc
3	Current Permit number:	New Permit
4	Name of applicant's modeler:	Paul Wade
5	Phone number of modeler:	(505) 830-9680 ext6
6	E-mail of modeler:	pwade@montrose-env.com

16	16-B: Brief						
1	Was a modeling protocol submitted and approved? Submitted 04/18.2021; No Approval	Yes⊠	No□				
2	Why is the modeling being done?	New Facility					
3	Describe the permit changes relevant to the modeling.						
	New Permit						
4	What geodetic datum was used in the modeling? NAD83						
5	How long will the facility be at this location? Permanent						
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠				

7	Identify the Air Quality Control Region (AQCR) in which the facility is located							
	List the PSD baseline dates for this region (n	List the PSD baseline dates for this region (minor or major, as appropriate).						
0	NO2	08/02/1995						
8	SO2	N/A						
	PM10	06/16/2000	06/16/2000					
PM2.5 N/A								
9		as within 50 km of the facility (300 km for PSI) permits).					
	White Mountain Wilderness Area, 1.91 kilo	ometers						
10	Is the facility located in a non-attainment are	a? If so describe below	Yes□	No⊠				
11	Describe any special modeling requirements, such as streamline permit requirements.							
	None							

16	16-C: Modeling History of Facility							
	Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).							
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments				
	СО			New Permit – No Previous Modeling				
	NO ₂			New Permit – No Previous Modeling				
1	SO ₂			New Permit – No Previous Modeling				
	H_2S			Not Emitted				
	PM2.5			New Permit – No Previous Modeling				
	PM10			New Permit – No Previous Modeling				
	Lead			None				
	Ozone (PSD only)			Not a PSD Permit				
	NM Toxic Air Pollutants (20.2.72.402 NMAC)			Not Emitted				

16	16-D: Modeling performed for this application								
	For each pollutant, indicate the modeling performed and submitted with this application. Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.								
1	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.			
	СО	\boxtimes							
	NO ₂	\boxtimes	\bowtie						
	SO ₂	\boxtimes							

H_2S				\boxtimes
PM2.5	\boxtimes	\boxtimes		
PM10	\boxtimes	\boxtimes		
Lead				\boxtimes
Ozone				\boxtimes
State air toxic(s) (20.2.72.402 NMAC)				

16-E: New Mexico toxic air pollutants modeling

1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application. None							
2	•	List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required. Pollutant Emission Rate (pounds/hour) Emission Rate Screening Level (pounds/hour) Correction Factor Emission Rate/ Correction Factor						
2		(pounds nour)						

16-F: Modeling options						
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□			
	For volume sources were processed in flat terrain mode.					

16-G: Surrounding source modeling					
1	Date of surrounding source retrieval		March 16, 2021		
2	If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed.				
2	AQB Source ID	Description of Corrections			

16-H: Building and structure downwash				
1	How many buildings are present at the facility?	1 - Office		
2	How many above ground storage tanks are present at the facility?	1 – Cement/Fly Ash Storage Silo		

3	Was building downwash modeled for all buildings and tanks? If not explain why below.			No□
4	Building comments			

16-	16-I: Receptors and modeled property boundary							
1	continuous wa grade that wou within the pro- is required in o receptors shall	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area.						
	Site is fenced	on all sides of	the facility wi	th gates at entrances.				
2	Receptors must be placed along publicly accessible roads in the restricted area.Yes□No⊠Are there public roads passing through the restricted area?Yes□No⊠						No⊠	
3	Are restricted	area boundary	coordinates in	ncluded in the modeling	files?		Yes⊠	No□
	Describe the receptor grids and their spacing. The table below may be used, adding rows as needed.							
4	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility	Comments		
	Very fine	Cartesian	50	0	500 meters			
	Fine	Cartesian	100	500 meters	1000 meters			
	Course	Cartesian	250	1000 meters	3000 meters			
	Describe recep	otor spacing al	ong the fence	line.		•		
5	25 meters							
	Describe the P		*					
6	100 meters spa	acing across ea	ist side of Wh	ite Mountain Wildernes	s Area			

16-	16-J: Sensitive areas						
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes□	No⊠				

3

1

The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application? Yes \Box

No⊠

16-K: Modeling Scenarios

Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).

The concrete batch plant will limit hourly processing rate to 125 cubic yard per hour and 500,000 cubic yard per year. The hours of operation are presented below in Table 1. Seasonal daily throughputs are presented in Table 2.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
12:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	0	0	0	0	1	1	1	1	0	0	0	0
4:00 AM	0	0	0	1	1	1	1	1	1	0	0	0
5:00 AM	0	0	1	1	1	1	1	1	1	1	0	0
6:00 AM	0	0	1	1	1	1	1	1	1	1	0	0
7:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
8:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
9:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
10:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
11:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
12:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
1:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
2:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
3:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
4:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
5:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
6:00 PM	0	0	1	1	1	1	1	1	1	1	0	0
7:00 PM	0	0	0	1	1	1	1	1	1	0	0	0
8:00 PM	0	0	0	1	1	1	1	1	1	0	0	0
9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
Total	11	11	14	17	18	18	18	18	17	14	11	11

 TABLE 1: CBP Plant Hours of Operation (MST)

		Month	h		Cubic Ya	rds Per Day	At M	ax Hourly Th	roughp Day	ut – Hou	rs per
	Ν	ovember - F	February		1	125	9				
		March, Oc	tober		1	500		12			
		April, Septe	ember		1	750	14				
		May - Au	gust		1875		15				
	Table 3 pr	resents the 3				rs for showing comp lel Scenario Time S			-	rating sce	nario.
	Mode	el Scenario	9	fime Segn)-Hour Bl ember - Fo	ocks	Time Segment 12-Hour Block March & Octob	s	Time Segmen 14-Hour Bloc pril & Septen	ks	Time Segment 15-Hour Block May - August	
		1		7 AM to 4	PM	5 AM to 5 PM		4 AM to 6 PM	M	3 AM t	o 6 PM
l		2		9 AM to 6	PM	7 AM to 7 PM		6 AM to 8 PM	N	5 AM to 8 PM	
		3		9 AM to 6	PM	7 AM to 7 PM		7 AM to 9 PM	N	6 AM t	o 9 PM
	PM10 – S	enario produ cenario 2 – ²	Year 201	7, low wine	d speed.			11			
	PM10 – S PM2.5 - S Were emis	cenario 2 – ` cenario 3 be ssion factor	Year 2017 ecause the sets used	7, low wing operating to limit en	d speed. times inclu	ides early evening, I s or hours of operati	ion?	_			
	PM10 – S PM2.5 - S Were emis (This ques to the factor	cenario 2 – cenario 3 be ssion factor a stion pertain ors used for	Year 2017 ecause the sets used s to the "S calculatin	7, low wind operating to limit en SEASON", ng the max	d speed. times inclu nission rate , "MONTH imum emis	ides early evening, i s or hours of operati ", "HROFDY" and ssion rate.)	on? related f	actor sets, not	Yes		No⊠
	PM10 – S PM2.5 - S Were emis (This ques to the fact	cenario 2 – ° cenario 3 be ssion factor stion pertains ors used for ribe factors	Year 201 ² ecause the sets used s to the "S calculatin for each g	7, low wind operating to limit en SEASON", ng the max group of sc	d speed. times inclunission rate "MONTH imum emis	ides early evening, I s or hours of operati (", "HROFDY" and	ion? related fa	actor sets, not	table fo	or that gro	oup.
	PM10 – S PM2.5 - S Were emis (This ques to the fact If so, desc (Modify o	cenario 2 – ° cenario 3 be ssion factor stion pertains ors used for ribe factors	Year 2017 ecause the sets used s to the "S calculatin for each g able as no Hour of Day	7, low wind operating to limit en SEASON", ng the max group of sc	d speed. times inclunission rate "MONTH imum emis	ides early evening, I s or hours of operati ", "HROFDY" and ssion rate.) the sources in each	ion? related fa	actor sets, not	table fo	or that gro	oup.
	PM10 – S PM2.5 - S Were emis (This ques to the fact If so, desc (Modify o Sources: Hour of Day 1	cenario 2 – cenario 3 be ssion factor stion pertain ors used for ribe factors r duplicate t	Year 2017 ecause the sets used s to the "S calculatin for each g table as not Hour of Day 13	7, low wind operating to limit en SEASON", ag the max group of sc eccessary. It	d speed. times inclunission rate "MONTH imum emis	ides early evening, I s or hours of operati ", "HROFDY" and ssion rate.) the sources in each	ion? related fa	actor sets, not	table fo	or that gro	oup.
	PM10 – S PM2.5 - S Were emis (This ques to the fact If so, desc (Modify o Sources: Hour of Day 1 2	cenario 2 – cenario 3 be ssion factor stion pertain ors used for ribe factors r duplicate t	Year 2017 ecause the sets used s to the "S calculatin for each g able as no Hour of Day 13 14	7, low wind operating to limit en SEASON", ag the max group of sc eccessary. It	d speed. times inclunission rate "MONTH imum emis	ides early evening, I s or hours of operati ", "HROFDY" and ssion rate.) the sources in each	ion? related fa	actor sets, not	table fo	or that gro	oup.
	PM10 – S PM2.5 - S Were emis (This ques to the fact If so, desc (Modify o Sources: Hour of Day 1 2 3	cenario 2 – cenario 3 be ssion factor stion pertain ors used for ribe factors r duplicate t	Year 2017 ecause the sets used s to the "S calculatin for each g able as no Hour of Day 13 14 15	7, low wind operating to limit en SEASON", ag the max group of sc eccessary. It	d speed. times inclunission rate "MONTH imum emis	ides early evening, I s or hours of operati ", "HROFDY" and ssion rate.) the sources in each	ion? related fa	actor sets, not	table fo	or that gro	oup.
	PM10 – S PM2.5 - S Were emis (This ques to the fact If so, desc (Modify o Sources: Hour of Day 1 2 3 4	cenario 2 – cenario 3 be ssion factor stion pertain ors used for ribe factors r duplicate t	Year 2017 ecause the sets used s to the "S calculatin for each g able as no Hour of Day 13 14 15 16	7, low wind operating to limit en SEASON", ag the max group of sc eccessary. It	d speed. times inclunission rate "MONTH imum emis	ides early evening, I s or hours of operati ", "HROFDY" and ssion rate.) the sources in each	ion? related fa	actor sets, not	table fo	or that gro	oup.
	PM10 – S PM2.5 - S Were emis (This ques to the fact If so, desc (Modify o Sources: Hour of Day 1 2 3 4 5	cenario 2 – cenario 3 be ssion factor stion pertain ors used for ribe factors r duplicate t	Year 2017 ecause the sets used s to the "S calculatin for each g table as not Hour of Day 13 14 15 16 17	7, low wind operating to limit en SEASON", ag the max group of sc eccessary. It	d speed. times inclunission rate "MONTH imum emis	ides early evening, I s or hours of operati ", "HROFDY" and ssion rate.) the sources in each	ion? related fa	actor sets, not	table fo	or that gro	oup.
	PM10 – S PM2.5 - S Were emis (This ques to the fact If so, desc (Modify o Sources: Hour of Day 1 2 3 4 5 6	cenario 2 – cenario 3 be ssion factor stion pertain ors used for ribe factors r duplicate t	Year 2017 ecause the sets used s to the "S calculatin for each g able as no Hour of Day 13 14 15 16 17 18	7, low wind operating to limit en SEASON", ag the max group of sc eccessary. It	d speed. times inclunission rate "MONTH imum emis	ides early evening, I s or hours of operati ", "HROFDY" and ssion rate.) the sources in each	ion? related fa	actor sets, not	table fo	or that gro	oup.
	PM10 – S PM2.5 - S Were emis (This ques to the fact If so, desc (Modify o Sources: Hour of Day 1 2 3 4 5 6 7	cenario 2 – cenario 3 be ssion factor stion pertain ors used for ribe factors r duplicate t	Year 201' ecause the sets used s to the "S calculatin for each g able as no Hour of Day 13 14 15 16 17 18 19	7, low wind operating to limit en SEASON", ag the max group of sc eccessary. It	d speed. times inclunission rate "MONTH imum emis	ides early evening, I s or hours of operati ", "HROFDY" and ssion rate.) the sources in each	ion? related fa	actor sets, not	table fo	or that gro	oup.
	PM10 – S PM2.5 - S Were emis (This ques to the fact If so, desc (Modify o Sources: Hour of Day 1 2 3 4 5 6 7 8	cenario 2 – cenario 3 be ssion factor stion pertain ors used for ribe factors r duplicate t	Year 2017 ecause the sets used s to the "S calculatin for each g able as no Hour of Day 13 14 15 16 17 18 19 20	7, low wind operating to limit en SEASON", ag the max group of sc eccessary. It	d speed. times inclunission rate "MONTH imum emis	ides early evening, I s or hours of operati ", "HROFDY" and ssion rate.) the sources in each	ion? related fa	actor sets, not	table fo	or that gro	oup.
	PM10 – S PM2.5 - S Were emis (This ques to the fact If so, desc (Modify o Sources: Hour of Day 1 2 3 4 5 6 7 8 9	cenario 2 – cenario 3 be ssion factor stion pertain ors used for ribe factors r duplicate t	Year 2017 ecause the sets used s to the "S calculatin for each g able as no Hour of Day 13 14 15 16 17 18 19 20 21	7, low wind operating to limit en SEASON", ag the max group of sc eccessary. It	d speed. times inclunission rate "MONTH imum emis	ides early evening, I s or hours of operati ", "HROFDY" and ssion rate.) the sources in each	ion? related fa	actor sets, not	table fo	or that gro	oup.
	PM10 – S PM2.5 - S Were emis (This ques to the fact If so, desc (Modify o Sources: Hour of Day 1 2 3 4 5 6 7 8	cenario 2 – cenario 3 be ssion factor stion pertain ors used for ribe factors r duplicate t	Year 2017 ecause the sets used s to the "S calculatin for each g able as no Hour of Day 13 14 15 16 17 18 19 20	7, low wind operating to limit en SEASON", ag the max group of sc eccessary. It	d speed. times inclunission rate "MONTH imum emis	ides early evening, I s or hours of operati ", "HROFDY" and ssion rate.) the sources in each	ion? related fa	actor sets, not	table fo	or that gro	oup.

6	Were different emission rates used for short-term and annual modeling? If so describe below.	Yes□	No⊠

16	-L: NC	D2 Modeling							
		pes of NO ₂ modeling were used? I that apply.							
	\boxtimes	ARM2							
1		100% NO _X to NO ₂ conversion							
		PVMRM							
		OLM							
		Other:							
2	Describe the NO ₂ modeling.								
-	ARM2 f	or both 1-hour and annual averaging period modeling. All ARM2 default values we	ere used.						
3		fault NO_2/NO_X ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not and justify the ratios used below.	Yes⊠	No□					
4	Describe	Describe the design value used for each averaging period modeled.							
		98th percentile as calculated by AERMOD Highest Annual Average of Three Years							

16	16-M: Particulate Matter Modeling							
	Select the	e pollutants for which plume depletion modeling was used.						
1								
	\boxtimes	PM10						
		None						
	Describe	the particle size distributions used. Include the source of info	rmation.					
	Represen	ntative average particle densities were obtained from NI	MED accepted value	es.				
			Density					
2		Material	(g/cm ³)	Reference				
		Road Dust – Roper Construction	2.5	NMED Value				
	Cement – Roper Construction		3.3	NMED Value				
		Fly Ash – Roper Construction	1.04	NMED Value				
		Combustion – Roper Construction and Neighbor	1.5	NMED Value				
		Fugitive Dust – Roper Construction and Neighbor	2.5	NMED Value				

T	ABLE 4: Unpaved Road Vehicle	Fugitive Dust Depletion Param	eters
Particle Siz	ze Mass Mean	Mass Weighted	Donait
Category	Particle Diameter	Size Distribution	Densit
(µm)	(μm)	(%)	(g/cm ³
	PM	110	<u> </u>
0-2.5	1.57	25.0	2.5
2.5 - 10	6.91	75.0	2.5
1	-	Source Depletion Parameters	
Particle Siz		Mass Weighted	Densit
Category	Particle Diameter	Size Distribution	(g/cm ²
(µm)	(μm)	(%)	(g/cm
		110	
0-2.5	1.57	25	3.3
2.5-10	1.57 6.91 aghouse exhaust capture percentage	25 75	3.3 3.3
2.5-10 arameters based on b Particle Siz	1.57 6.91 aghouse exhaust capture percentage TABLE 6: Fly Ash Baghouse	25 75	3.3 Densit
2.5-10 rameters based on b Particle Siz Category	1.57 6.91 aghouse exhaust capture percentage TABLE 6: Fly Ash Baghouse ze Mass Mean Particle Diameter	25 75 rs. Source Depletion Parameters Mass Weighted	3.3 Densit
2.5-10 rameters based on b	1.57 6.91 aghouse exhaust capture percentage TABLE 6: Fly Ash Baghouse ze Mass Mean Particle Diameter (μm)	25 75 Source Depletion Parameters Mass Weighted Size Distribution	3.3 Densit
2.5-10 ameters based on b Particle Siz Category	1.57 6.91 aghouse exhaust capture percentage TABLE 6: Fly Ash Baghouse ze Mass Mean Particle Diameter (μm)	25 75 's. Source Depletion Parameters Mass Weighted Size Distribution (%)	3.3 Densit
2.5-10 ameters based on b Particle Siz Category (µm)	1.57 6.91 aghouse exhaust capture percentage TABLE 6: Fly Ash Baghouse ze Mass Mean Particle Diameter (μm)	25 75 Source Depletion Parameters Mass Weighted Size Distribution (%)	3.3 Densit (g/cm ³
2.5-10 rameters based on b Particle Siz Category (μm) 0-2.5 2.5-10	1.57 6.91 aghouse exhaust capture percentage TABLE 6: Fly Ash Baghouse TABLE 6: Fly Ash Baghouse TABLE 6: Fly Ash Baghouse re Mass Mean Particle Diameter (µm) PN 1.57 1.57	25 75 Source Depletion Parameters Mass Weighted Size Distribution (%) 110 25 75	3.3 Densit (g/cm ³ 3.3
2.5-10 arameters based on b Particle Siz Category (μm) 0-2.5 2.5-10	1.57 6.91 aghouse exhaust capture percentage TABLE 6: Fly Ash Baghouse TABLE 6: Fly Ash Baghouse TABLE 6: Fly Ash Baghouse Te Mass Mean Particle Diameter (µm) PN 1.57 6.91 aghouse exhaust capture percentage	25 75 Source Depletion Parameters Mass Weighted Size Distribution (%) 110 25 75	3.3 Densit (g/cm ³ 3.3
2.5-10 arameters based on b Particle Siz Category (µm) 0-2.5 2.5-10 arameters based on b	1.57 6.91 aghouse exhaust capture percentage TABLE 6: Fly Ash Baghouse TABLE 6: Fly Ash Baghouse TABLE 6: Fly Ash Baghouse Te Mass Mean PN 1.57 6.91 aghouse exhaust capture percentage TABLE 7: Combustion So TABLE 7: Combustion So	25 75 *8. Source Depletion Parameters Mass Weighted Size Distribution (%) 110 25 75 *8 *8 urce Depletion Parameters Mass Weighted	3.3 Densit (g/cm ³ 3.3 3.3
2.5-10 rameters based on b Particle Siz Category (µm) 0-2.5 2.5-10 rameters based on b Particle Siz Category	1.57 6.91 aghouse exhaust capture percentage TABLE 6: Fly Ash Baghouse TABLE 6: Fly Ash Baghouse TABLE 6: Fly Ash Baghouse Te Mass Mean PN 1.57 6.91 aghouse exhaust capture percentage TABLE 7: Combustion So TABLE 7: Combustion So	25 75 Source Depletion Parameters Mass Weighted Size Distribution (%) 410 25 75 33	3.3 Densit (g/cm ³ 3.3 3.3 Densit
2.5-10 rameters based on b Particle Siz Category (µm) 0-2.5 2.5-10 rameters based on b	1.57 6.91 aghouse exhaust capture percentage TABLE 6: Fly Ash Baghouse TABLE 6: Fly Ash Baghouse TABLE 6: Fly Ash Baghouse Te Mass Mean PN 1.57 6.91 aghouse exhaust capture percentage TABLE 7: Combustion So TABLE 7: Combustion So	25 75 *8. Source Depletion Parameters Mass Weighted Size Distribution (%) 110 25 75 *8 *8 urce Depletion Parameters Mass Weighted	3.3 Densit (g/cm ³ 3.3 3.3 Densit
2.5-10 rameters based on b Particle Siz Category (µm) 0-2.5 2.5-10 rameters based on b Particle Siz Category	1.57 6.91 aghouse exhaust capture percentage TABLE 6: Fly Ash Baghouse TABLE 6: Fly Ash Baghouse re Mass Mean Particle Diameter (µm) PI 1.57 6.91 aghouse exhaust capture percentage TABLE 7: Combustion So TABLE 7: Combustion So Particle Diameter (µm) Particle Diameter (µm) Particle Diameter	25 75 Source Depletion Parameters Mass Weighted Size Distribution (%) 410 25 75 33	3.3 Densit (g/cm ³ 3.3 3.3

	Particle S	ize	Mass Mean	Mass Weighted		
	Categor	y Par	ticle Diameter	Size Distribution	Densit	•
	(μm)		(µm)	(%)	(g/cm	3)
			PM	10		
	2.5 - 5		3.88	22.6	2.5	
	5 - 10		7.77	77.4	2.5	
				t 40 tons per year of SO ₂ ?		
3	Does the facility emit at le Sources that emit at least considered to emit signifi- formation of PM2.5.	40 tons per year of	NO_X or at least 40	tons per year of SO_2 are	Yes□	No⊠
	Sources that emit at least considered to emit signification.	40 tons per year of cant amounts of pr	NO_X or at least 40	tons per year of SO_2 are	Yes 🗆 Yes 🗆	No⊠ No⊠
	Sources that emit at least considered to emit signific formation of PM2.5. Was secondary PM mode	40 tons per year of cant amounts of pr led for PM2.5?	NO _X or at least 40 ecursors and must a	tons per year of SO_2 are	Yes	No⊠
4	Sources that emit at least considered to emit signifi- formation of PM2.5. Was secondary PM mode If MERPs were used to ac	40 tons per year of cant amounts of pr led for PM2.5?	NO _X or at least 40 ecursors and must a ry PM2.5 fill out the	tons per year of SO ₂ are ccount for secondary	Yes	No 🖂
3 4 5	Sources that emit at least considered to emit signifi- formation of PM2.5. Was secondary PM mode If MERPs were used to ac below.	40 tons per year of cant amounts of pr led for PM2.5?	NO _X or at least 40 ecursors and must a ry PM2.5 fill out the	tons per year of SO ₂ are account for secondary	Yes r method was u	No 🖂

16-	N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location. Permanent Site
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling. N/A

16-	16-O: PSD Increment and Source IDs						
1	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2- modeling files. Do these match? If not, provide a cross-referen if they do not match below.		Yes□	No⊠			
1	Unit Number in UA-2	Unit Number in Modeling Files	5				
	Concrete Plant Truck Load Baghouse (Unit 7,8)	TM	ВН				
	Concrete Plant Cement Silo Baghouse (Unit 9)	BH					
	Concrete Plant Fly Ash Baghouse (Unit 10)	FAS	BH				

	Concrete Batch Plan	t Hostor (Unit 12)		СВРН				
	Feed Hopper Loadir	· /			E			
	**	ling to Conveyor (Un	it 2)		T			
	Aggregate Bin Load	<u> </u>	n <i>5)</i>		A			
		atcher and Conveyor	(Unit 5 6)					
	Storage Piles (Aggre	•	(Unit 3,0)	WH				
		SP1 SP2						
	Storage Piles (Aggre	- · · · · · · · · · · · · · · · · · · ·						
	Storage Piles (Aggre				SF			
	Storage Piles (Sand)				SF			
	Storage Piles (Sand)				SF			
	Storage Piles (Sand)		、 、		SF			
		cks Volume 1 (Unit 1			AGG_00			
		y Ash Haul Trucks V		• .1 1	CON_00	001 - 1	8	
	The emission rates in these match? If not,		2-F should match the	ones in the mod	eling files. Do	Yes		No⊠
			handling sources (Em					
			oso 1996 - 2006. Mir particulate emission f		nodeled emissior	n rate 19	s based o	on the hourly
	Emission				PM10	PM	2.5	
	Point #	Pro	ocess Unit Descriptio	n	lbs/hr	lbs/	/hr	
2	FH	Feed Hopper Loadi	ng (Unit 2)		0.27369	0.27369 0.04144		
	SP1	Storage Piles (Aggr	egate) (Unit 11)		0.05970	0.05970 0.00904		
	SP2	Storage Piles (Aggr	egate) (Unit 11)	0.05970		0.00904		
	SP3	Storage Piles (Aggr	egate) (Unit 11)		0.05970	0.00904		
	SP4	Storage Piles (Sand) (Unit 11)	0.05970		0.00904		
	SP5	Storage Piles (Sand) (Unit 11)			0.00904		
	SP6	Storage Piles (Sand) (Unit 11)		0.05970	0.00904		
	CSBH	Concrete Plant Cerr	ent Silo Baghouse (U	nit 9) 0.01436		0.00331		
	FASBH		Ash Baghouse (Unit 1		0.00908	0.00	209	
3		-	itle V Insignificant A					
5	been modeled?		C	~	,	Yes		No⊠
	Which units consum	e increment for which	h pollutants?					
	Unit ID	NO ₂	SO_2	P	M10		PM2.5	
	TMBH			X				
	CSBH		X					
4	FASBH			X				
	CBPH	X		X				
	FH TP			X	X			
	AB							
	WH			X				
	SP1	X						

	SP2				Х			
	SP3				Х			
	SP4				Х			
	SP5				Х			
	SP6				Х			
	AGG_0001 - 36				Х			
	CON_0001 - 18				Х			
5	PSD increment descript (for unusual cases, i.e., after baseline date).	ion for sources. baseline unit expanded em	issions	Baseline ur	it expanded emission	ons afte	er minor l	paseline date
6	This is necessary to ver	ation dates included in Tal ify the accuracy of PSD ind ption status is determined f	crement mod	leling. If not	please explain	Yes		No⊠
	Facility has not been ins	stalled. Is a new facility th	at will consu	me incremen	t for NO_2 and PM_{10}			

16	16-P: Flare Modeling						
1	For each flare or flaring scenar	rio, complete the following					
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)			
	NA						

16-	Q: Volume and Related Sources		
	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines?	Yes□	No⊠
1	If not please explain how increment consumption status is determined for the missing installation dates below.		
	Volume sources for storage piles are based on 8 feet release height and 50 feet width.		
	Describe the determination of sigma-Y and sigma-Z for fugitive sources.		
2	For storage piles, the model inputs were based on the size (100 feet) of the pile/4.3 (sigma-Y) a a sigma-Z of 8ft*2/2.15. All others followed standard dimensions from Air Quality Bureau (AC		
3	Describe how the volume sources are related to unit numbers. Or say they are the same.		
	Describe any open pits.		
4	None		
5	Describe emission units included in each open pit.		
-	None		

16-	6-R: Background Concentrations							
	Were NMED provided background concentrations used? Identify the backgr below. If non-NMED provided background concentrations were used descri- was used.		Yes⊠	No□				
	CO: Del Norte High School (350010023)							
	NO ₂ : Outside Carlsbad (350151005)							
1	PM2.5: Las Cruces Distric Office (350130025)							
	PM10: Las Cruces City Well #46 (350130024)							
	SO ₂ : Bloomfield(350450009)							
	Other:							
	Comments:							
2	Were background concentrations refined to monthly or hourly values? If so	describe below.	Yes□	No⊠				

16-	S: Meteorological Data		
1	Was NMED provided meteorological data used? If so select the station used.	Yes□	No⊠
	If NMED provided meteorological data was not used describe the data set(s) used below. Discus handled, how stability class was determined, and how the data were processed.	Ū.	
	Dispersion model meteorological input files were created from meteorological data collected at years 2016 - 2020, about 45 miles south-southwest from the site. The similar elevation, topogra climate of both sites make this meteorological data representative of the model area. Figure 3 sl the meteorological wind speed versus direction data that has been collected for the years 2016 -	phy, terrain, ve hows wind rose	getation, and
	AERMET wind speed threshold for surface data is 0.5 meters per second.		
	Santa Teresa Airport 2016-2020 data was used for upper air.		
	Since the meteorological input data does not include turbulence data, the adjust U* option in AE processing of the meteorological data.	ERMET was use	ed during
2	AERMET/AERMOD requires that several additional parameters be input during data processing	g in AERMET:	
	 Surface roughness length (m) Albedo Bowen Ratio 		
	The surface roughness length influences the surface shear stress and is an important factor in de mechanical turbulence and the stability of the boundary layer. The albedo is the fraction of total reflected by the surface back to space without absorption. The daytime Bowen ratio, an indicato ratio of sensible heat flux to latent heat flux and, together with albedo and other meteorological determining planetary boundary layer parameters for convective conditions driven by the surface	incident solar r r of surface mot observations, is	adiation isture, is the used for
	These parameters would be obtained using AERSURFACE (<i>Version 20060</i>). AERSURFACE to cover data from the U.S. Geological Survey (USGS) National Land Cover Data (NLCD) 2016 a determine the land cover types for the Alamogordo airport-specified location. AERSURFACE	rchives, which	it uses to

cover categories to seasonal values of albedo, Bowen ratio, and surface roughness. Values of surface characteristics are calculated based on the land cover data for the study area and output in a format for input into AERMET Stage 3.

Site descriptive questions required by AERSURFACE include:

- Meteorological data from airport
- Continuous snowcover for a month in winter
- Arid climate
- Dry climate

For the Holloman AFB meteorological data, YES was checked for airport data, NO was checked for continuous snowcover in winter, YES was checked for arid climate, and YES was checked for dry climate. For each parameter, data was extracted from land cover data for each month of the year and 12 equal sectors radiating from the Alamogordo Airport.

The meteorological data was processed using AERMET (*Version 19191*) and upper air from Santa Teresa Airport for the same time period. The upper air and surface data are considered to be representative and comparable with both the Holloman AFB and Roper Construction's Alto CBP site. The Holloman AFB meteorological data files, Santa Teresa upper air files, and Holloman AFB surface air file are submitted to the NMED-AQB Modeling Section for review with this modeling protocol.

No missing hours were substituted.

16-	T: Terrain					
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□			
2	What was the source of the terrain data?					
2	NED					

16	-U: Modeling Files			
	Describe the modeling files:			
	File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)	
	RoperAltaCombustionROI	CO, NO2, SO2	ROI	
	RoperAltaPMROIS1-3	PM10, PM2.5	ROI	
1	RoperAltaCIANO21Hr	NO2	Cumulative	
	RoperAltaCIAPM10dS1-3	PM10 24 Hour and Annual Increment	Cumulative, PSD Class II Increment	
	RoperAltaCIAPM25_24S1-3	PM2.5 24 Hour	Cumulative	
	RoperAltaCIAPM25_YrS1-3	PM2.5 Annual	Cumulative	
	RoperAltaNO2IncSIL	NO2	Class I Increment SIL	
	RoperAltaPM10dS1IncSIL – S3	PM10	Class I Increment SIL	
	RoperAltaPM10dS1Inc – S3	PM10 24 Hour and Annual	Class I Increment Cumulative	

16-	V: PSD New or Major Modification Applications					
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No⊠			
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No⊠			
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.					
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.					
	NA					
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No⊠			
	Total facility emissions of NO2, SO2, and VOC are all less than <1.0 tons per year					

16-W:	Mode	eling	Results								
1	If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so describe below.								No⊠		
2		Identify as neces		ncentrations f	from the modelin	g analysis. Rows	may be more	dified, adde	d and remove	d from the tal	ble below
Pollutant, Time Period	Modeled		Modeled Concentration with	Secondary PM	Background Concentration	Cumulative Concentration	Value of	Percent		Location	
and Standard		ntration (/m3)	Surrounding Sources (µg/m3)	(μg/m3)	(µg/m3)	(µg/m3)	Standard (µg/m3)	of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
NO ₂ 1 Hour H8H	20	0.8	-	-	38.7	59.5	188.03	31.6	438252.1	3697885.1	1267.39
NO ₂ Annual H1H	0.	.87	-	-	-	-	SIL-1	87.0	438252.1	3697885.1	-
NO2 Annual Class II	0.	.87	-	-	-	-	SIL-1	87.0	438252.1	3697885.1	-
NO ₂ Annual Class I	0.0)046	-	-	-	-	SIL-0.1	4.6	437055.0	3699583.7	2222.57
CO 1 Hour H1H	50	0.5	-	-	-	-	SIL-2000	2.5	438158.3	3697938.3	-
CO 8 Hour H1H	12	2.8	-	-	-	-	SIL-500	2.6	438252.1	3697885.1	-
SO ₂ 1 Hour H1H	0.	.64	-	-	-	-	SIL-7.8	8.2	438158.3	3697938.3	-
SO ₂ 3 Hour H1H	0.	.24	-	-	-	-	SIL-25	1.0	438319.0	3697924.6	-
SO ₂ 24 Hour H1H	0.	.07	-	-	-	-	SIL-5	1.4	438252.1	3697885.1	-
SO ₂ Annual H1H	0.	.01	-	-	-	-	SIL-1	1.0	438252.1	3697885.1	-
PM _{2.5} 24 Hour H8H	3	3.9	4.1	-	14.9	19.0	35	54.3	438234.5	3698033.5	2208.74

Roper Construction, Inc.

Pollutant, Time Period	Modeled Facility	Modeled Concentration with	Secondary PM	Background Concentration	Cumulative Concentration	Value of	Percent	Location		
and Standard	Concentration (µg/m3)	Surrounding Sources (µg/m3)	(μg/m3)	(µg/m3)	(µg/m3)	Standard (µg/m3)	of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
PM _{2.5} Annual H1H	2.01	2.15	-	5.1	7.25	12	60.4	438234.5	3698033.5	2208.74
PM ₁₀ 24 Hour H2H	29.7	29.9	-	94.7	124.6	150	83.1	438234.5	3698033.5	2208.74
PM ₁₀ 24 Hour Class II	29.7	29.8	-	-	29.8	30	99.3	438234.5	3698033.5	2208.74
PM ₁₀ Annual Class II	11.8	11.9	-	-	11.9	17	70.0	438234.5	3698033.5	2208.74
PM ₁₀ 24 Hour Class I	0.23	0.64	-	-	0.64	8	8.0	436950.0	3699650.0	2279.07
PM ₁₀ Annual Class I	0.018	-	-	-	-	SIL-0.2	9.0	437055.0	3699583.7	2222.57

16-	-X: Summary/conclusions
	A statement that modeling requirements have been satisfied and that the permit can be issued.
1	Dispersion modeling was performed for all regulated sources at Roper Construction's Alto CBP. All facility pollutants with
1	ambient air quality standards were modeled to show compliance with those standards. All results of this modeling analysis
	showed the facility is in compliance with applicable ambient air quality standards and PM ₁₀ and NO ₂ PSD Class I and Class
	II increment limits. Based on the dispersion modeling analysis, the permit can be issued.