Cirrus Consulting, LLC

April 30, 2021

Elizabeth Bisbey-Kuehn New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816

Re: Application to Modify Title V Operating Permit Number P097-R3 Harvest Four Corners, LLC – Kutz Canyon Processing Plant

Dear Ms. Bisbey-Kuehn,

On behalf of Harvest Four Corners, LLC (HFC), Cirrus Consulting, LLC submits the enclosed application to modify the Title V operating permit for the Kutz Canyon Processing Plant.

Thank you for your help. If you have questions or need any additional information, please contact Monica Smith of HFC at (505) 632-4625.

Sincerely,

CIRRUS CONSULTING, LLC

James W. Newby

Enclosures Kutz Canyon Processing Plant Title V Operating Permit Applications

c: Monica Smith, HFC

MAY 3 2021

Air Quality Bureau

This Page Intentionally Left Blank

NEW MEXICO 20.2.70 NMAC APPLICATION TO MODIFY PERMIT NUMBER P097-R3

KUTZ CANYON PROCESSING PLANT

Submitted By:

HARVEST FOUR CORNERS, LLC 1755 Arroyo Drive Bloomfield, New Mexico 87413

Prepared By:

CIRRUS CONSULTING, LLC 951 Diestel Road Salt Lake City, Utah 84105 (801) 484-4412

April 2021

Table of Contents

Introduction

Section 1:	General Information
Section 2:	Tables
Section 3:	Application Summary
Section 4:	Process Flow Sheet
Section 5:	Plot Plan Drawn to Scale
Section 6:	All Calculations
Section 7:	Information Used to Determine Emissions
Section 8:	Map(s)
Section 9:	Proof of Public Notice
Section 10:	Written Description of the Routine Operations of the Facility
Section 11:	Source Determination
Section 12:	PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
Section 13:	Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
Section 14:	Operational Plan to Mitigate Emissions
Section 15:	Alternative Operating Scenarios
Section 16:	Air Dispersion Modeling
Section 17:	Compliance Test History
Section 18:	Addendum for Streamline Applications
Section 19:	Requirements for the Title V (20.2.70 NMAC) Program
Section 20:	Other Relevant Information
Section 21:	Addendum for Landfill Applications
Section 22:	Certification Page

Introduction

The Harvest Four Corners, LLC (HFC) Kutz Canyon Processing Plant currently operates under a construction permit issued by the New Mexico Air Quality Bureau (NMAQB), 0301-M11-R1, dated March 31, 2020 and a Title V operating permit, P097-R3, dated August 3, 2018.

The facility is currently approved by the Title V operating permit to operate the following equipment/sources:

- Six Solar Centaur 40 turbines (Units 1-6);
- Three Solar Saturn 1200 turbines (Units 7, 8 & 29);
- Three Clark HRA-8 reciprocating engines (Units 16-18);
- Two Solar Centaur 3016 turbines (Units 19 & 20);
- One Wheco heater (Unit 22);
- One Alcorn heater (Unit 23);
- One ethylene glycol (EG) dehydrator (Units 24a & 24b);
- One Born glycol heater (Unit 25);
- One Born hot oil heater (Unit 27);
- One plant flare (Unit 28);
- One Pesco fuel gas heater (Unit 30);
- One Cummins 6BTA 208-2100 reciprocating fire pump engine (Unit 32);
- One Ford 428 reciprocating standby fire pump engine (Unit 33);
- One Caterpillar D343 reciprocating standby generator engine (Unit 34)
- One triethylene glycol (TEG) dehydrator (Units 35a & 35b);
- One Zeeco flare (Unit 36);
- One Waukesha L5794LT or L7042GL reciprocating engine (Unit 37a or 37b);
- Truck loading (Unit 38);
- Three cooling towers (Units 39-41);
- One amine contactor (Unit 75);
- One Kohler 8.5RES reciprocating standby generator (Unit 76)

- Six liquid storage tanks (Units T3, T30, T31, T6438, T6528 & T6529);
- Equipment leaks (Unit F1);
- Startup, shutdown and maintenance (SSM) emissions (Unit SSM); and
- Malfunction emissions (Unit M1).

Note that the facility is also equipped with a number of other miscellaneous heaters and liquid storage tanks, for which emissions are insignificant.

This application is being submitted to modify the Title V operating permit. The following equipment is being added to the permit:

• One Infab TEG mole sieve regeneration dehydrator (Units 77a & 77b)

The Kutz I portion of the plant is being retired. The following equipment is being removed from the permit:

- Three Clark HRA-8 reciprocating engines (Units 16-18);
- One Wheco heater (Unit 22);
- One Alcorn heater (Unit 23);
- One EG dehydrator (Units 24a & 24b);
- One Solar Saturn 1200 turbine (Unit 29);
- One Waukesha L5794LT or L7042GL reciprocating engine (Unit 37a or 37b);
- One cooling tower (Unit 39); and
- One condensate storage tank (Unit T6438) with its associated ejector vapor recovery unit EVRU and EVRU heater (Unit 74).

The following equipment is not part of the facility (it is located more than 0.25 miles away). It is being removed from the permit:

• One Pesco fuel gas heater (Unit 30).

Harvest Four Corners, LLC

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions for other permits.

This application is submitted as (check all that apply): □ Request for a No Permit Required Determination (no fee) □ Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Construction Status: □ Not Constructed ☑ Existing Permitted (or NOI) Facility □ Existing Non-permitted (or NOI) Facility Minor Source: □ a NOI 20.2.73 NMAC □ 20.2.72 NMAC application or revision □ 20.2.72.300 NMAC Streamline application Title V Source: □ Title V (new) □ Title V renewal □ TV minor mod. ☑ TV significant mod. TV Acid Rain: □ New □ Renewal PSD Major Source: □ PSD major source (new) □ minor modification to a PSD source □ a PSD major modification

Acknowledgements:

I acknowledge that a pre-application meeting is available to me upon request. If Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

□ \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications).

□ Check No.: XXXX in the amount of XXXX

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.
 This facility qualifies to receive assistance from the Small Business Environmental Assistance program (SBEAP) and qualifies for 50% of the normal application fee which will be verified with the Small Business Certification Form for your company.

 \Box This facility qualifies to receive assistance from the Small Business Environmental Assistance Program (SBEAP) but does not qualify for 50% of the normal application and permit fees. To see if you qualify for SBEAP assistance and for the small business certification form go to https://www.env.nm.gov/aqb/sbap/small_business_criteria.html).

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.70.300.B(2)** NMAC (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	AI # if known (see 1 st 3 to 5 #s of permit IDEA ID No.): 1158	Updating Permit/NOI #: P097-R3	
1 Facility Name: Kutz Canyon Processing Plant	Plant primary SIC Code (4 digits): 1321			
	Facility Name: Kutz Canyon Processing Plant	Plant NAIC code (6 di	Plant NAIC code (6 digits): 211130	
a	Facility Street Address (If no facility street address, provide directions See directions in Section 1-D4	s from a prominent landmark)):	
2	Plant Operator Company Name: Harvest Four Corners, LLC	Phone/Fax: (505) 632-4600 / (505) 632-4782		
a	Plant Operator Address: 1755 Arroyo Drive, Bloomfield, New Mex	ico 87413		

b	Plant Operator's New Mexico Corporate ID or Tax ID: 76-0451075			
3	Plant Owner(s) name(s): Same as #2 above	Phone/Fax: Same as #2 above		
а	Plant Owner(s) Mailing Address(s): Same as #2a above			
4	Bill To (Company): Same as #2 above	Phone/Fax: Same as #2 above		
a	Mailing Address: Same as #2a above	E-mail: N/A		
5	 Preparer: Consultant: James Newby, Cirrus Consulting, LLC 	Phone/Fax: (801) 294-3024		
а	Mailing Address: 11139 Crisp Air Drive, Colorado Springs, CO 80908	E-mail: jnewby@cirrusllc.com		
6	Plant Operator Contact: Monica Smith	Phone/Fax: (505) 632-4625 / (505) 632-4782		
а	Address: Same as #2a above	E-mail: msmith@harvestmidstream.com		
7	Air Permit Contact: Same as #6 above	Title: Environmental Specialist		
а	E-mail: Same as #6a above	Phone/Fax: Same as #6 above		
b	Mailing Address: Same as #2a above			
с	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.			

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? ☑ Yes □ No	1.b If yes to question 1.a, is it currently operating in New Mexico? ☑ Yes □ No			
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? □ Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ✓ Yes □ No			
3	Is the facility currently shut down? \Box Yes $\mathbf{\nabla}$ No	If yes, give month and year of shut down (MM/YY): N/A			
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? ☑ Yes □ No				
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since $8/31/1972$? Yes \Box No \Box N/A It is assumed this question refers to question 4 rather than question 3.				
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☑ Yes □ No	If yes, the permit No. is: P097-R3			
7	Has this facility been issued a No Permit Required (NPR)? □ Yes ☑ No	If yes, the NPR No. is: N/A			
8	Has this facility been issued a Notice of Intent (NOI)? □ Yes ☑ No	If yes, the NOI No. is: N/A			
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑ Yes □ No	If yes, the permit No. is: 301-M11			
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? □ Yes ☑ No	If yes, the register No. is: N/A			

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)				
а	Current	urrent Hourly: 9.2 MMCF & 388 bbl ^(a) Daily: 220 MMCF & 9,318 bbl ^(a) Annually: 80,300 MMCF & 3.4			
b	Proposed	Hourly: 5 MMCF & 467 bbl ^(a)	Daily: 120 MMCF & 11,215 bbl ^(a)	Annually: 43,800 MMCF & 4.1 MMbbl ^(a)	
2	2 What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)				
а	Current	Hourly: 9.2 MMCF & 388 bbl ^(a)	Daily: 220 MMCF & 9,318 bbl ^(a)	Annually: 80,300 MMCF & 3.4 MMbbl ^(a)	

b	Proposed	Hourly: 5 MMCF & 467 bbl ^(a)	Daily: 120 MMCF & 11,215 bbl ^(a)	Annually: 43,800 MMCF & 4.1 MMbbl ^(a)
---	----------	---	--	---

^(a) The station capacity is a direct function of available horsepower. The throughput is therefore dependent on atmospheric temperature and pressure, gas temperature and pressure, relative humidity and gas quality, was well as other factors. The "throughput" expressed above is a nominal quantity (with a 15 percent safety factor), neither an absolute maximum, nor an average. Actual throughput will vary from the nominal amount.

Section 1-D: Facility Location Information

1	Section: 11-14	Range: 11W	Township: 28N	County: San Juan	Elevation (ft): 5,800
2	UTM Zone: □ 12 or ☑ 13		Datum: Datu NAD 27 NAD 83 WGS 84		
а	UTM E (in meters, to nearest 10 meters): 235,315			UTM N (in meters, to nearest 10 meters):	4,062,140
b	AND Latitude	(deg., min., sec.):	36° 40' 10.8"	Longitude (deg., min., sec.): -107° 5	57' 41.9"
3	Name and zip o	code of nearest Ne	ew Mexico town: Bloomfi	eld, New Mexico 87413	
4				ich a road map if necessary): From County Road 4980 and drive 2.1 mil	
5	The facility is a	approximately 3.	5 miles south of Bloomfie	ld, New Mexico.	
6	Status of land a	nt facility (check o	one): 🗆 Private 🗆 Indian/Pu	ueblo 🗹 Federal BLM 🗆 Federal Fore	est Service
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Aztec, Bloomfield, Farmington, Navajo Tribe & San Juan County New Mexico				
8	20.2.72 NMAC applications only : Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/aqb/modeling/class1areas.html)? \Box Yes \Box No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: N/A				
9	Name nearest C	Class I area: Mesa	Verde National Park		
10	Shortest distant	ce (in km) from fa	cility boundary to the bour	ndary of the nearest Class I area (to the	nearest 10 meters): 69.54 km
11				ions (AO is defined as the plant site in est residence, school or occupied struct	
12	Method(s) used to delineate the Restricted Area: Fence "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.				
13	Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? □ Yes ☑ No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.				
14			nction with other air regul nit number (if known) of th	ated parties on the same property?	No 🗆 Yes

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $\left(\frac{\text{hours}}{\text{day}}\right)$: 24	$(\frac{\text{days}}{\text{week}})$: 7	$(\frac{\text{weeks}}{\text{year}})$: 52		$(\frac{\text{hours}}{\text{year}}): 8,760$	
2	2 Facility's maximum daily operating schedule (if less than $24 \frac{hours}{day}$)? Start: N/A				End: N/A	□AM □PM
3	3 Month and year of anticipated start of construction: N/A					
4	4 Month and year of anticipated construction completion: N/A					
5	5 Month and year of anticipated startup of new or modified facility: N/A					

6 Will this facility operate at this site for more than one year? \blacksquare Yes \Box No

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? □ Yes ☑ No If yes, specify: N/A			
а	If yes, NOV date or description of issue: N/A			NOV Tracking No: N/A
b	Is this application in response to any issue listed in 1-F, 1 of	or 1a above? 🗆 Yes	🗹 No If Y	Yes, provide the 1c & 1d info below:
c	Document Title: N/A	Date: N/A	Requirer (or page	nent # # and paragraph #): N/A
d	Provide the required text to be inserted in this permit: N/A			
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? Yes No			n? 🗆 Yes 🗹 No
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? 🗆 Yes 🗹 No			
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? ☑ Yes □ No			
а	If Yes, what type of source? \square Major ($\square \ge 10$ tpy of any single HAP OR $\square \ge 25$ tpy of any combination of HAPS) OR \square Minor ($\square < 10$ tpy of any single HAP AND $\square < 25$ tpy of any combination of HAPS)			
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? □ Yes ☑ No			
a	If yes, include the name of company providing commercial electric power to the facility: N/A Commercial power is purchased from a commercial utility company, which specifically does not include power generated on site for the sole purpose of the user.			

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1	□ I have filled out Section 18, "Addendum for Streamline Applications."	\blacksquare N/A (This is not a Streamline application.)
---	---	--

Section 1-H: Current Title V Information - Required for all applications from TV Sources (Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or

20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Travis Jones		Phone: (713) 289-2630	
a	R.O. Title: EH&S Manager	R.O. e-mail: trjones@harvestmidstream.com		
b	R. O. Address: 1111 Travis Street, Houston, Texas 77002			
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): TBD		Phone: TBD	
а	A. R.O. Title: TBD	A. R.O. e-mail: T	BD	
b	A. R. O. Address: TBD			
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): N/A			
4	Name of Parent Company ("Parent Company" means the primary r permitted wholly or in part.): Hilcorp Energy Company	name of the organiza	tion that owns the company to be	
а	Address of Parent Company: Same as #1b above			
5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): N/A			
6	Telephone numbers & names of the owners' agents and site contact	ts familiar with plan	t operations: N/A	
7	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: Yes, Colorado (\approx 37.0 km), Jicarilla Apache Tribe (\approx 49.9 km), Mountain Ute Reservation (\approx 16.1 km), Navajo Tribe (\approx 1.6 km) & Southern Ute Tribe (\approx 37.0 km)			

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-toto 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

☑ CD/DVD attached to paper application

secure electronic transfer. Air Permit Contact Name

Phone number

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling summary report only should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide

Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc,), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit Number ¹	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of Construction/ Reconstruction ²	Controlled by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
1 (Y1)	Turbine	Solar	Centaur 40	OHD09-C1224 (Skid Package	3,830 hp	3,692 hp	07/01/1975	N/A	20200201	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	NA	NA
	(Compressor)			# S3020297) OHB13-C0325			07/01/1975	1		□ To Be Modified □ To be Replaced		
2 (Y2)	Turbine (Compressor)	Solar	Centaur 40	(Skid Package	3,830 hp	3,692 hp	07/01/1975 07/01/1975	N/A 2	20200201	Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	NA	NA
	(I)			# S3020300) OHJ11-C3296			07/01/1975	Z N/A		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
3 (Y3)	Turbine (Compressor)	Solar	Centaur 40	(Skid Package	3,830 hp	3,692 hp			20200201	□ New/Additional □ Replacement Unit	NA	NA
	(Compressor)			# S3020298) OHI11-C8297			07/01/1975	3		□ To Be Modified □ To be Replaced Existing (unchanged) □ To be Removed		
4 (Y4)	Turbine	Solar	Centaur 40	(Skid Package	3,830 hp	3,692 hp	07/01/1975	N/A	20200201	Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	NA	NA
. ()	(Compressor)			# S3020291)	•,•••-r	•,•,=-r	07/01/1975	4		□ To Be Modified □ To be Replaced		
5 (VA)	Turbine	C - 1	Cantana 10	OHE10-C8845	2 9 2 0 1	2 (02 1	10/01/1975	N/A	20200201	Existing (unchanged)	NIA	NTA
5 (K4)	(Compressor)	Solar	Centaur 40	(Skid Package # 3020451)	3,830 hp	3,692 hp	10/01/1975	5	20200201	 New/Additional Replacement Unit To Be Modified To be Replaced 	NA	NA
	Turbine			OHF12-C4675			10/01/1975	N/A		Existing (unchanged)		
6 (K5)	(Compressor)	Solar	Centaur 40	(Skid Package # 3020450)	3,830 hp	3,692 hp	10/01/1975	6	20200201	 New/Additional Replacement Unit To Be Modified To be Replaced 	NA	NA
	Turbine			# 3020450) OHE10-S4226			10/01/1976	0 N/A		Existing (unchanged) To be Removed		
7 (K6)	(Compressor)	Solar	Saturn 1200	(Skid Package	1,200 hp	1,157 hp		7	20200201	New/Additional Replacement Unit	NA	NA
				# S430870) OHF10-S2522			10/01/1976	,		□ To Be Modified □ To be Replaced		
8 (K7)	Turbine	Solar	Saturn 1200	(Skid Package	1,200 hp	1,157 hp	10/01/1976	N/A	20200201	New/Additional Replacement Unit	NA	NA
- (-)	(Compressor)			# S430869)	, 1	, I	10/01/1976	8		□ To Be Modified □ To be Replaced		
16 (R4)	Reciprocating Engine	Clark	HRA-8	22369	830 hp	722 ha	Pre-1973	N/A	20200253	□ Existing (unchanged) ☑ To be Removed	2SLB	NA
10 (K4)	(Compressor)	Clark	пка-о	22309	830 np	723 hp	Pre-1973	16	20200255	 New/Additional Replacement Unit To Be Modified To be Replaced 	25LB	INA
	Reciprocating Engine						Pre-1973	N/A		□ Existing (unchanged)		
17 (R5)	(Compressor)	Clark	HRA-8	20643	830 hp	723 hp	Pre-1973	17	20200253	 New/Additional Replacement Unit To Be Modified To be Replaced 	2SLB	NA
	р: <u>с</u> . Г.						Pre-1973	N/A		□ Existing (unchanged)		
18 (R6)	Reciprocating Engine (Compressor)	Clark	HRA-8	22370	830 hp	723 hp	Pre-1973	18	20200253	New/Additional Replacement Unit	2SLB	NA
	(compressor)			OHD06-C0045				-		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
19	Turbine (Generator)	Solar	Centaur 40	(Skid Package	3,016 hp	2,907 hp	06/01/1981	N/A	20100201	New/Additional Replacement Unit	NA	NA
(Gen A)	,			# CG81584)	· 1	, I	06/01/1981	19		□ To Be Modified □ To be Replaced		
20	Turbine (Generator)	Solar	Centaur 40	OHB12-C8510 (Skid Package	3,016 hp	2,907 hp	07/01/1981	N/A	20100201	Existing (unchanged) To be Removed New/Additional Replacement Unit	NA	NA
(Gen B)	Turbine (Generator)	30141	Centaur 40	# CG81583)	5,010 np	2,907 np	07/01/1981	20	20100201	□ To Be Modified □ To be Replaced	INA	INA
22 (TT1)		****			23.1	23.1	Pre-1973	N/A		Existing (unchanged) Z To be Removed	27.1	27.1
22 (H1)	Heater	Wheco			MMBtu/hr		Pre-1973	22	31000404	 New/Additional Replacement Unit To Be Modified To be Replaced 	NA	NA
					9.57	9.57	Pre-1973	N/A		□ Existing (unchanged) ☑ To be Removed		
23 (H2)	Heater	Alcorn				9.37 MMBtu/hr	Pre-1973	23	31000404	New/Additional Replacement Unit	NA	NA
					1/IIIIIIIIIII	1/11/1D/tu/III	Pre-19/3	23		□ To Be Modified □ To be Replaced		

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit Number ¹	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³ (Specify	Requested Permitted Capacity ³ (Specify	Date of Manufacture ² Date of Construction/	Controlled by Unit # Emissions vented to	Source Classi- fication Code	For Each Piece of Eq	uipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB,	Replacing Unit No.
					Units)	Units)	Reconstruction ²	Stack #	(SCC)			2SLB) ⁴	
24	Kutz I Ethylene				110	110	Pre-1973	28		0(0)	To be Removed		
24a	Glycol Dehydrator				MMSCFD	MMSCFD	Pre-1973	24a	31000304	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	NA	NA
	Kutz I Ethylene				1.50	1.52	Pre-1973	N/A			To be Removed		
24b (H3)	Glycol Dehydrator	Parksburg			1.53	1.53			31000304	New/Additional	Replacement Unit	NA	NA
	Reboiler	_			MMBtu/hr	MMBtu/hr	Pre-1973	24b		To Be Modified	To be Replaced		
25 (114)	Mole Sieve Regen	P			8.15	8.15	1975	N/A		Existing (unchanged)	□ To be Removed	274	27.4
25 (H4)	Gas Heater	Born				MMBtu/hr	1975	25	31000404	 New/Additional To Be Modified 	Replacement Unit To be Deplaced	NA	NA
										Existing (unchanged)	 To be Replaced To be Removed 	-	
27 (H6)	Hot Oil Heater	Born			8.35	8.35	1975	N/A	31000404	New/Additional	 Replacement Unit 	NA	NA
_, (*)					MMBtu/hr	MMBtu/hr	1975	27		To Be Modified	□ To be Replaced		
					1.4	1.4	1996	N/A		Existing (unchanged)	To be Removed		
28	Plant Flare					MMBtu/hr	1996	28	31000205	□ New/Additional	Replacement Unit	NA	NA
				OHF10-S2795	WIND to III	NIND tu/III				□ To Be Modified	□ To be Replaced	-	
29 (N1)	Turbine	Solar	Saturn	(Skid Package	1,200 hp	1,157 hp	11/01/1978	N/A	20200201	 Existing (unchanged) New/Additional 	✓ To be Removed □ Replacement Unit	NA	NA
29 (111)	Turonic	50141	T-1200	# SC78947)	1,200 np	1,1 <i>57</i> пр	11/01/1978	29	20200201	 New/Additional To Be Modified 	□ To be Replaced	INA.	INA
				# BC/05 11	0.21	0.21	1999	N/A		Existing (unchanged)	☑ To be Removed		
30	Fuel Gas heater	Pesco				0.21 MMBtu/hr			31000404	New/Additional	Carl Replacement Unit	NA	NA
					WIWIDtu/III	WIWIDtu/III	1999	30		□ To Be Modified	□ To be Replaced		
22	Main Water Pump	Commine	6BTA 208-	60250062	200 hm	200 hm	1988	N/A	20200202	Existing (unchanged)	□ To be Removed	CI	NIA
32	Engine	Cummins	2100	60259963	208 hp	208 hp	2011	32	20200202	 New/Additional To Be Modified 	Replacement UnitTo be Replaced	CI	NA
	A 11 XX7 /						01/01/1970	N/A		 Existing (unchanged) 	To be Removed	1	
33	Auxiliary Water	Ford	428	441412	335 hp	335 hp			20200202	□ New/Additional	Replacement Unit	4SLB	NA
	Pump Engine				-	1	08/25/1972	33		To Be Modified	To be Replaced		
	Standby Generator	a	52.42	(2) 1 5 2 0 5	2001	2001	1995	N/A		Existing (unchanged)	□ To be Removed		
34	Engine	Caterpillar	D343	62B15287	390 hp	390 hp	1995	34	20100102	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	CI	NA
	-									Existing (unchanged)	□ To be Removed		
35a	Kutz Chaco	Pesco			140	140	1984	36	31000301	New/Additional	 Replacement Unit 	NA	NA
	Dehydrator				MMSCFD	MMSCFD	1984	35a		To Be Modified	□ To be Replaced		
	Kutz Chaco				1.75	1.75	1984	N/A		Existing (unchanged)	To be Removed		
35b	Dehydrator Reboiler	Pesco				MMBtu/hr	1984	35b	31000302	□ New/Additional	Replacement Unit	NA	NA
	,									 To Be Modified Existing (unchanged) 	 To be Replaced To be Removed 		
36	Flare	Zeeco			4	4	2002	N/A	31000205	Existing (unchanged) New/Additional	 Replacement Unit 	NA	NA
50	1 Iure	20000			MMBtu/hr	MMBtu/hr	2002	36		□ To Be Modified	To be Replaced	141	1111
	Reciprocating Engine			C-13732/1			09/2002	N/A		Existing (unchanged)	☑ To be Removed	1	
37a	(Compressor)	Waukesha	L5794LT	(Skid Package	1,445 hp	1,416 hp			20200254	□ New/Additional	Carl Replacement Unit	4SLB	NA
	(Compressor)			# 77572)			09/2002	37		□ To Be Modified	□ To be Replaced		
or 37b	Reciprocating Engine	Waukesha	L7042GL	TBD - not	1,478 hp	1,351 hp	TBD	N/A	20200254	 Existing (unchanged) New/Additional 	To be Removed	4SLB	NA
01 3/0	(Compressor)	waukesna	L/042GL	installed	1,4/8 np	1,551 np	TBD	37	20200234	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	43LB	INA

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition Type (CI, SI,	Replacing
Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	4SLB, 4SRB, 2SLB) ⁴	Unit No.
20							N/A	N/A	10 100 2 50	Existing (unchanged)		
38	Truck Loading	N/A	N/A	N/A	N/A	N/A	N/A	N/A	40400250	 New/Additional Replacement Unit To Be Modified To be Replaced 	NA	NA
								N/A		□ Existing (unchanged)		
39	Cooling Tower								31000299		NA	NA
	_							N/A		□ To Be Modified □ To be Replaced		
10								N/A		Existing (unchanged)		27.4
40	Cooling Tower							N/A	31000299	 New/Additional Replacement Unit To Be Modified To be Replaced 	NA	NA
										□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
41	Cooling Tower							N/A	31000299	New/Additional Replacement Unit	NA	NA
	8							N/A		□ To Be Modified □ To be Replaced		
					350	350	1975	N/A		Existing (unchanged)		
75	Amine Contactor				gal/min	gal/min	1975		31000305	□ New/Additional □ Replacement Unit	NA	NA
					gai/iiiii	gai/iiiii		75		□ To Be Modified □ To be Replaced		
76	Standby Generator	Kohler	8.5RES	3032042	13.4 hp	12.7 hp	05/2012	N/A	20100102	Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	4SRB	NA
70	Standby Generator	Komer	8.JKES	3032042	13.4 llp	12.7 np	05/2012	N/A	20100102	□ To Be Modified □ To be Replaced	45KD	INA
	Mala Siawa Dagan	TBD - not	TBD - not	TBD - not	20	20	TBD	28		□ Existing (unchanged) □ To be Removed		
77a	Mole Sieve Regen	installed	installed	installed					31000301	☑ New/Additional □ Replacement Unit	NA	NA
	Dehydrator	installed	installed	installed	MMSCFD	MMSCFD	TBD	77a		□ To Be Modified □ To be Replaced		
771	Mole Sieve Regen	TBD - not	TBD - not	TBD - not	1.48	1.48	TBD	N/A		□ Existing (unchanged) □ To be Removed		27.4
77b	Dehydrator Reboiler	installed	installed	installed	MMBtu/hr	MMBtu/hr	TBD	77b	31000302	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	NA	NA
							TDD			□ To Be Modified □ To be Replaced Existing (unchanged) □ To be Removed		
SSM	SSM							N/A	31000203	New/Additional Replacement Unit	NA	NA
								N/A		□ To Be Modified □ To be Replaced		
	Fugitive Equipment							N/A		Existing (unchanged)		
F1	Leaks							N/A	31000299	□ New/Additional □ Replacement Unit	NA	NA
	Lound							1		□ To Be Modified □ To be Replaced		
M1	Malfunctions							N/A	31000299	Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	NA	NA
1911	Wallanctions							N/A	51000233	□ To Be Modified □ To be Replaced	1171	11/1
	Flare Separator Liquid							N/A		Existing (unchanged)		
T3	Atmospheric Bullet				19,900 gal	19,900 gal			31000299	□ New/Additional □ Replacement Unit	NA	NA
	Tank							N/A		□ To Be Modified □ To be Replaced		
T21	Flare Separator				4 200 1	4 200 1		N/A	21000202	\blacksquare Existing (unchanged) \Box To be Removed	27.4	NT 4
T31	Liquid Storage Tank				4,200 gal	4,200 gal		N/A	31000299	 New/Additional Replacement Unit To Be Modified To be Replaced 	NA	NA
								1		Z Existing (unchanged)		
T109	Flare Separator				21,000 gal	21,000 gal		N/A	31000299	 New/Additional Replacement Unit 	NA	NA
	Liquid Storage Tank				,)		N/A		□ To Be Modified □ To be Replaced		
	Blanco-Hare							N/A		□ Existing (unchanged) ☑ To be Removed		
T6438	Condensate Storage				21,000 gal	21,000 gal		N/A	31000299	□ New/Additional □ Replacement Unit	NA	NA
	Tank							IN/A		□ To Be Modified □ To be Replaced		

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit Number ¹	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of Construction/ Reconstruction ²	Controlled by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Eq	uipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
T6528	Kutz-Dakota Condensate Storage				21.000 gal	21,000 gal		N/A	31000299	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	NA	NA
10520	Tank				21,000 gai	21,000 gai		N/A	51000277	□ To Be Modified	 To be Replaced 	1474	11/1
T(520	Kutz-Dakota				21.0001	21.0001		N/A		Existing (unchanged)	□ To be Removed		NTA
T6529	Condensate Storage Tank				21,000 gai	21,000 gal		N/A	31000299	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	NA	NA
SEP-1	Kutz-Dakota Slug				N/A			N/A		Existing (unchanged)	□ To be Removed		NIA
SEP-1	Receiver Separator				IN/A	N/A		N/A	31000303	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	NA	NA

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Un:4 Number		Manufaatuur	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Fosh Bioss of Farringsont Charles
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Piece of Equipment, Check Onc
43	Kutz I Control Heater			0.1	20.2.72.202.B(1)		Existing (unchanged) To be Removed New/Additional Replacement Unit
43	Kutz I Control Heater			MMBtu/hr	Item #1a & #1b		 New/Additional Replacement Unit To Be Modified To be Replaced
4.4				0.115	20.2.72.202.B(1)		Existing (unchanged) To be Removed
44	Kutz I Control Heater			MMBtu/hr	Item #1a & #1b		 New/Additional Replacement Unit To Be Modified To be Replaced
4.5				0.045	20.2.72.202.B(1)		Existing (unchanged)
45	Maintenance Building Heater			MMBtu/hr	Item #3		 New/Additional Replacement Unit To Be Modified To be Replaced
14				0.24	20.2.72.202.B(1)		Existing (unchanged) To be Removed
46	Generator Building Heater			MMBtu/hr	Item #3		 New/Additional Replacement Unit To Be Modified To be Replaced
				0.125	20.2.72.202.B(1)		Existing (unchanged)
47	Generator Building Heater			MMBtu/hr	Item #3		 New/Additional Replacement Unit To Be Modified To be Replaced
				0.005	20.2.72.202.B(5)		Existing (unchanged)
48	Chemical Shed Heater			MMBtu/hr	Item #3		 New/Additional Replacement Unit To Be Modified To be Replaced
				0.06	20.2.72.202.B(5)		Existing (unchanged)
49	Auxilliary Pump Heater			MMBtu/hr	Item #1a & #1b		 New/Additional Replacement Unit To Be Modified To be Replaced
				0.076	20.2.72.202.B(5)		Existing (unchanged)
50	Auxilliary Pump Heater			MMBtu/hr	Item #1a & #1b		 New/Additional Replacement Unit To Be Modified To be Replaced
	Instrumentation Building			0.012	20.2.72.202.B(5)		Existing (unchanged) To be Removed
51	Heater	·		MMBtu/hr	Item #3		New/Additional Replacement Unit Ta Ba Madified Ta ba Barlagad
	Instrumentation Building			0.005	20.2.72.202.B(5)		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed
52	Heater			MMBtu/hr	Item #3		New/Additional C Replacement Unit
				0.05	20.2.72.202.B(1)		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed
53	Office Building Heater				Item #3		New/Additional Replacement Unit
				MMBtu/hr			□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed
54	Office Building Heater			0.03	20.2.72.202.B(1)		□ New/Additional □ Replacement Unit
				MMBtu/hr	Item #3		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed
55	Office Building Heater			0.345	20.2.72.202.B(1)		Existing (unchanged) To be Removed New/Additional Replacement Unit
	Ŭ			MMBtu/hr	Item #3		□ To Be Modified □ To be Replaced
56	Maintenance Building Heater			0.032	20.2.72.202.B(1)		 Existing (unchanged) To be Removed New/Additional Replacement Unit
50	Manuelance Bunding Heater			MMBtu/hr	Item #3		□ To Be Modified □ To be Replaced

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Piece of Equipment, Check Onc
57	Cononstan Duilding Heater			0.07	20.2.72.202.B(5)		Existing (unchanged) To be Removed New/Additional Replacement Unit
57	Generator Building Heater			MMBtu/hr	Item #3		Image: New Additional Image: Replacement Unit Image: Image: New Additional Image: Replacement Unit Image:
58	South Building Heater			0.137	20.2.72.202.B(5)		Existing (unchanged) To be Removed New/Additional Replacement Unit
38	South Building Heater			MMBtu/hr	Item #3		 New/Additional Replacement Unit To Be Modified To be Replaced
59	Eine Damen Heaten			0.06	20.2.72.202.B(5)		Existing (unchanged)
59	Fire Pump Heater			MMBtu/hr	Trivial #5		 New/Additional Replacement Unit To Be Modified To be Replaced
(0)				0.08	20.2.72.202.B(5)		Existing (unchanged)
60	Air Building Heater			MMBtu/hr	Item #3		 New/Additional Replacement Unit To Be Modified To be Replaced
	The state of the s			0.012	20.2.72.202.B(1)		Existing (unchanged)
61	Tech Shop Heater			MMBtu/hr	Item #3		 New/Additional Replacement Unit To Be Modified To be Replaced
				0.145	20.2.72.202.B(1)		Existing (unchanged)
62	Tech Shop Heater			MMBtu/hr	Item #3		 New/Additional Replacement Unit To Be Modified To be Replaced
				0.205	20.2.72.202.B(1)		Existing (unchanged)
63	Office Heater			MMBtu/hr	Item #3		 New/Additional Replacement Unit To Be Modified To be Replaced
				0.001	20.2.72.202.B(5)		Existing (unchanged)
64	PGI Sampler Heater			MMBtu/hr	Item #1a & #1b		 New/Additional Replacement Unit To Be Modified To be Replaced
				0.012	20.2.72.202.B(5)		Existing (unchanged)
65	Kutz II Analyzer Heater			MMBtu/hr	Item #1a & #1b		 New/Additional Replacement Unit To Be Modified To be Replaced
				0.012	20.2.72.202.B(5)		Existing (unchanged) □ To be Removed
66	Kutz I Meter Heater			MMBtu/hr	Item #1a & #1b		 New/Additional Replacement Unit To Be Modified To be Replaced
				0.012	20.2.72.202.B(5)		Existing (unchanged) To be Removed
67	Kutz I Meter Heater			MMBtu/hr	Item #1a & #1b		 New/Additional To Be Modified To be Replaced
				0.75	20.2.72.202.B(5)		Existing (unchanged) To be Removed
68	API Separator Heater			MMBtu/hr	Item #1a & #1b		 New/Additional Replacement Unit To Be Modified To be Replaced
				0.2	20.2.72.202.B(1)		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed
69	Water Heater (propane)			0.2 MMBtu/hr	Item #3		□ New/Additional □ Replacement Unit
				0.0675	20.2.72.202.B(1)		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed
70	HVAC (propane)			0.0675 MMBtu/hr	20.2.72.202.B(1) Trivial #17		New/Additional Replacement Unit
				MMBtu/hr	1 rivial #1 /		□ To Be Modified □ To be Replaced

U	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Food Biose of Foreignment Charles
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Piece of Equipment, Check Onc
71				0.115	20.2.72.202.B(1)		 Existing (unchanged) To be Removed New/Additional Replacement Unit
/1	HVAC (propane)			MMBtu/hr	Trivial #17		 New/Additional Replacement Unit To Be Modified To be Replaced
70				0.115	20.2.72.202.B(1)		Existing (unchanged) To be Removed
72	HVAC (propane)			MMBtu/hr	Trivial #17		 New/Additional Replacement Unit To Be Modified To be Replaced
72				0.115	20.2.72.202.B(1)		Existing (unchanged)
73	HVAC (propane)			MMBtu/hr	Trivial #17		 New/Additional To Be Modified To be Replaced
74				0.51	20.2.72.202.B(5)		□ Existing (unchanged) ☑ To be Removed
74	EVRU Heater			MMBtu/hr	Item #1a & #1b		 New/Additional To Be Modified To be Replaced
				20,000	20.2.72.202.B(5)		Existing (unchanged) D To be Removed
T5	Propane Storage Tank			gal	#1.a & #1.b		 New/Additional Replacement Unit To Be Modified To be Replaced
				80,000	20.2.72.202.B(5)		Existing (unchanged)
T13	Y-Grade Storage Tank			gal	#1.a & #1.b		 New/Additional Replacement Unit To Be Modified To be Replaced
				80,000	20.2.72.202.B(5)		Existing (unchanged)
T14	Y-Grade Storage Tank			gal	#1.a & #1.b		 New/Additional Replacement Unit To Be Modified To be Replaced
				80,000	20.2.72.202.B(5)		Existing (unchanged)
T15	Propane Storage Tank			gal	#1.a & #1.b		 New/Additional Replacement Unit To Be Modified To be Replaced
				40,000	No VOC or HAP emissions		Existing (unchanged)
T16	Out-of-Service Storage Tank			gal			 New/Additional Replacement Unit To Be Modified To be Replaced
				40,000	No VOC or HAP emissions		Existing (unchanged)
T17	Out-of-Service Storage Tank			gal			 New/Additional Replacement Unit To Be Modified To be Replaced
				40,000	No VOC or HAP emissions		Existing (unchanged)
T18	Out-of-Service Storage Tank			gal			 New/Additional To Be Modified To be Replaced
				90,000	20.2.72.202.B(5)		Existing (unchanged) To be Removed
T21	Methanol Storage Tank			gal	#1.a & #1.b		 New/Additional Replacement Unit To Be Modified To be Replaced
				90,000	20.2.72.202.B(5)		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed
T22	Methanol Storage Tank			gal	#1.a & #1.b		□ New/Additional □ Replacement Unit
	Delaudenten Concenten Limite			4,200	20.2.72.202.B(5)		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed
T30	Dehydrator Separator Liquids Storage Tank				20.2.72.202.B(3) #1.a & #1.b		□ New/Additional □ Replacement Unit
	Storage Tallk			gal	#1.a & #1.b		□ To Be Modified □ To be Replaced

U	Samue Description	Manuf	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Piece of Equipment, Check Onc
T32	Oil/Water Storage Tank			10,500	20.2.72.202.B(2)		 Existing (unchanged) To be Removed New/Additional Replacement Unit
132	On/water Storage Talik			gal	Item #5		□ To Be Modified □ To be Replaced
T40	Used Oil Store on Tault			2,000	20.2.72.202.B(2)		Existing (unchanged) To be Removed New/Additional Replacement Unit
140	Used Oil Storage Tank			gal	Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
T 41				300	20.2.72.202.B(5)		Existing (unchanged) To be Removed
T41	Gasoline Storage Tank			gal	#1.a & #1.b		 New/Additional Replacement Unit To Be Modified To be Replaced
	Petroleum Solvent Storage			300	20.2.72.202.B(2)		Existing (unchanged)
T42	Tank			gal	Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
				1,000	20.2.72.202.B(2)		Existing (unchanged)
T50a	Diesel Storage Tank			gal	Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
				200	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed
T50b	Diesel Storage Tank			gal	Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
				3,000	20.2.72.202.B(2)		Existing (unchanged) To be Removed
T51	Lubrication Oil Storage Tank			gal	Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
				1,000	20.2.72.202.B(2)		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed
T52a	Glycol Storage Tank				Item #5		New/Additional Replacement Unit
				gal			□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed
T52b	Condensate Storage Tank			2,000	20.2.72.202.B(5)		New/Additional Replacement Unit
				gal	Item #5		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed
T53a	Glycol Storage Tank			8,820	20.2.72.202.B(2)		New/Additional Replacement Unit
				gal	Item #5		□ To Be Modified □ To be Replaced
T53b	Glycol Surge Tank			1,050	20.2.72.202.B(2)		Existing (unchanged) To be Removed New/Additional Replacement Unit
	5 6			gal	Item #5		□ To Be Modified □ To be Replaced
T57	Lubrication Oil Storage Tank			4,420	20.2.72.202.B(2)		Existing (unchanged) To be Removed New/Additional Replacement Unit
157	Eusification on Storage Talk			gal	Item #5		□ To Be Modified □ To be Replaced
T58b	Used Oil Storage Tank			2,940	20.2.72.202.B(2)		Existing (unchanged) To be Removed New/Additional Replacement Unit
1300	Used OII Storage Tank			gal	Item #5		□ To Be Modified □ To be Replaced
T 50				4,200	20.2.72.202.B(5)		Existing (unchanged) To be Removed
T59	Methanol Storage Tank			gal	#1.a & #1.b		 New/Additional Replacement Unit To Be Modified To be Replaced

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Piece of Equipment, Check Onc
T60	Discul Sterror Taula			1,000	20.2.72.202.B(2)		Existing (unchanged) To be Removed New/Additional Replacement Unit
100	Diesel Storage Tank			gal	Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
T61	Out of Service Storege Teals			705	No VOC or HAP emissions		Existing (unchanged) To be Removed New/Additional Replacement Unit
101	Out-of-Service Storage Tank			gal			 New/Additional Replacement Unit To Be Modified To be Replaced
T62a	A mine Min Stere of Teult			10,750	20.2.72.202.B(2)		Existing (unchanged)
162a	Amine Mix Storage Tank			gal	Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
T(2)				4,200	20.2.72.202.B(2)		Existing (unchanged)
T62b	Amine Mix Storage Tank			gal	Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
T (2	W			21,000	No VOC or HAP emissions		Existing (unchanged)
T62c	Water Storage Tank			gal			 New/Additional Replacement Unit To Be Modified To be Replaced
T (1				300	20.2.72.202.B(2)		Existing (unchanged)
T62d	Defoamer Storage Tank			gal	Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
				7,980	20.2.72.202.B(2)		Existing (unchanged)
T63	Amine Slop Tank			gal	Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
				2,920	20.2.72.202.B(2)		Existing (unchanged)
T64	Lubrication Oil Storage Tank			gal	Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
				2,940	20.2.72.202.B(2)		Existing (unchanged)
T65	Lubrication Oil Storage Tank			gal	Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
				100	20.2.72.202.B(5)		Existing (unchanged)
T81	Methanol Storage Tank			gal	#1.a & #1.b		 New/Additional Replacement Unit To Be Modified To be Replaced
				2,016	20.2.72.202.B(5)		Existing (unchanged)
T102	Filter Draining Storage Tank			gal	Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
				170	20.2.72.202.B(2)		Existing (unchanged) To be Removed
T104	Used Oil Storage Tank			gal	Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
				126,000	No VOC or HAP emissions		Image: To be Modified Image: To be Replaced Image: To be Replaced Image: To be Replaced Image: To be Replaced Image: To be Replaced
T105	Water Storage Tank			gal			 New/Additional To Be Modified To be Replaced
				229,000	No VOC or HAP emissions		■ To be Modified ■ To be Replaced ■ To be Replaced
T106	Water Storage Tank						□ New/Additional □ Replacement Unit
1100	water Storage Tallk			gal			□ To Be Modified □ To be Repla

Harvest Four Corners, LLC

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf . TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

List Specific 20.2.72.202 NMAC Exemption Date of Manufacture Max Capacity Model No. (e.g. 20.2.72.202.B.5) /Reconstruction² Unit Number Source Description Manufacturer For Each Piece of Equipment, Check Onc Insignificant Activity citation (e.g. IA List Date of Installation Serial No. **Capacity Units** Item #1.a) /Construction² **Existing (unchanged)** D To be Removed 229,000 No VOC or HAP emissions T107 Water Storage Tank New/Additional Replacement Unit gal To Be Modified □ To be Replaced **Existing (unchanged)** D To be Removed 1.050 20.2.72.202.B(2) T108 New/Additional Ambitrol Storage Tank Replacement Unit gal Item #5 To Be Modified □ To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
28	Flare	Pre-1971	VOC & HAP	77a	98	TCEQ
36	Flare	2002	VOC & HAP	35a	98	TCEQ

¹ List each control device on a separate line. For each control device, list all emission units controlled by the control device.

Table 2-D: Maximum Emissions (under normal operating conditions)

□ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

	N			0)C	SC	Ox	PI	M1	PM	[10 ¹	PM	2.5 ¹	Н	$_{2}S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr										
1	15.50	67.90	14.70	64.40	4.47	19.60	2.90E-02	1.30E-01	2.30E-01	1.01	2.30E-01	1.01	2.30E-01	1.01	-	-	2.28E-05	1.00E-04
2	15.50	67.90	14.70	64.40	4.47	19.60	2.90E-02	1.30E-01	2.30E-01	1.01	2.30E-01	1.01	2.30E-01	1.01	-	-	2.28E-05	1.00E-04
3	15.50	67.90	14.70	64.40	4.47	19.60	2.90E-02	1.30E-01	2.30E-01	1.01	2.30E-01	1.01	2.30E-01	1.01	-	-	2.28E-05	1.00E-04
4	15.50	67.90	14.70	64.40	4.47	19.60	2.90E-02	1.30E-01	2.30E-01	1.01	2.30E-01	1.01	2.30E-01	1.01	-	-	2.28E-05	1.00E-04
5	15.50	67.90	14.70	64.40	4.47	19.60	2.90E-02	1.30E-01	2.30E-01	1.01	2.30E-01	1.01	2.30E-01	1.01	-	-	2.28E-05	1.00E-04
6	15.50	67.90	14.70	64.40	4.47	19.60	2.90E-02	1.30E-01	2.30E-01	1.01	2.30E-01	1.01	2.30E-01	1.01	-	-	2.28E-05	1.00E-04
7	4.32	18.90	6.47	28.40	2.50E-01	1.10	1.10E-02	4.60E-02	8.47E-02	3.71E-01	8.47E-02	3.71E-01	8.47E-02	3.71E-01	-	-	-	-
8	4.32	18.90	6.47	28.40	2.50E-01	1.10	1.10E-02	4.60E-02	8.47E-02	3.71E-01	8.47E-02	3.71E-01	8.47E-02	3.71E-01	-	-	-	-
19	15.50	67.90	14.70	64.40	4.47	19.60	2.30E-02	1.00E-01	1.81E-01	7.92E-01	1.81E-01	7.92E-01	1.81E-01	7.92E-01	-	-	2.28E-05	1.00E-04
20	15.50	67.90	14.70	64.40	4.47	19.60	2.30E-02	1.00E-01	1.81E-01	7.92E-01	1.81E-01	7.92E-01	1.81E-01	7.92E-01	-	-	2.28E-05	1.00E-04
25	1.09	4.76	2.30E-01	1.00	4.20E-02	1.80E-01	6.00E-03	2.60E-02	6.88E-02	3.01E-01	6.88E-02	3.01E-01	6.88E-02	3.01E-01	-	-	4.53E-06	1.98E-05
27	1.11	4.88	2.30E-01	1.00	4.30E-02	1.90E-01	6.00E-03	2.70E-02	7.05E-02	3.09E-01	7.05E-02	3.09E-01	7.05E-02	3.09E-01	-	-	4.64E-06	2.03E-05
28	-	-	-	-	453.58	773.26	-	-	-	-	-	-	-	-	-	-	4.38E-05	7.48E-05
34	11.75	2.94	2.53	6.33E-01	9.59E-01	2.40E-01	7.72E-01	1.93E-01	8.26E-01	2.06E-01	8.26E-01	2.06E-01	8.26E-01	2.06E-01	-	-	-	-
35a	-	-	-	-	149.74	655.86	-	-	-	-	-	-	-	-	-	-	-	-
35b	1.94E-01	8.52E-01	1.63E-01	7.15E-01	1.07E-02	4.68E-02	1.17E-03	5.11E-03	1.48E-02	6.47E-02	1.48E-02	6.47E-02	1.48E-02	6.47E-02	-	-	9.72E-07	4.26E-06
36	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
38	-	-	-	-	-	4.42	-	-	-	-	-	-	-	-	-	-	-	-
40	-	-	-	-	-	-	-	-	1.21E-01	5.30E-01	7.62E-02	3.34E-01	-	-	-	-	-	-
41	-	-	-	-	-	-	-	-	8.41E-02	3.68E-01	5.55E-02	2.43E-01	-	-	-	-	-	-
75	-	-	-	-	5.80	25.60	-	-	-	-	-	-	-	-	-	-	-	-
76	3.00E-01	7.49E-02	4.91E-01	1.23E-01	3.91E-03	9.77E-04	7.76E-05	1.94E-05	2.56E-03	6.41E-04	2.56E-03	6.41E-04	2.56E-03	6.41E-04	-	-	-	-
77a	-	-	-	-	56.76	248.62	-	-	-	-	-	-	-	-	-	-	-	-
77b	4.29E-02	1.88E-01	4.46E-02	1.95E-01	6.46E-03	2.83E-02	8.33E-04	3.65E-03	1.25E-02	5.49E-02	1.25E-02	5.49E-02	1.25E-02	5.49E-02	-	-	8.24E-07	3.61E-06
SSM	-	-	-	-	-	28.60	-	-	-	-	-	-	-	-	-	-	-	-
F1	-	-	-	-	3.51	15.37	-	-	-	-	-	-	-	-	-	-	-	-
M1	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
Т3	-	-	-	-	1.37	6.00	-	-	-	-	-	-	-	-	-	-	-	-
T31	-	-	-	-	3.20E-01	1.40	-	-	-	-	-	-	-	-	-	-	-	-
T109	-	-	-	-	1.30	5.70	-	-	-	-	-	-	-	-	-	-	-	-

Table 2-D: Maximum Emissions (under normal operating conditions)

□ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	NO	Ox	С	0	V	DC	S	Ox	PI	M^1	PM	[10 ¹	PM	2.5^{1}	Н	$_2$ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
T6528	-	-	-	-	-	164.00	-	-	-	-	-	-	-	-	-	-	-	-
T6529	-	-	-	-	-	w/T6528	-	-	-	-	-	-	-	-	-	-	-	-
SEP-1	-	-	-	-	-	w/T6528	-	-	-	-	-	-	-	-	-	-	-	-
In the absence	e of contro	ls, the flare	es (Units 2	8 & 36) ar	e not in op	eration.												
Uncontrolled	VOC emis	sions from	n plant (in	the absenc	e of the pl	ant flare) a	re account	ted for at th	e plant fla	re (Unit 28	5).							
Totals	147.12	594.69	134.23	575.67	709.71	2098.51	1.03	1.33	3.11	10.20	3.04	9.88	2.90	9.30	-	-	2.37E-04	9.23E-04

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

	N		-	0		DC		Dx	P		PM	[10 ¹	PM	2.5 ¹	Н	$_{2}S$	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr										
1	15.50	67.90	14.70	64.40	4.47	19.60	2.90E-02	1.30E-01	2.30E-01	1.01	2.30E-01	1.01	2.30E-01	1.01	-	-	2.28E-05	1.00E-04
2	15.50	67.90	14.70	64.40	4.47	19.60	2.90E-02	1.30E-01	2.30E-01	1.01	2.30E-01	1.01	2.30E-01	1.01	-	-	2.28E-05	1.00E-04
3	15.50	67.90	14.70	64.40	4.47	19.60	2.90E-02	1.30E-01	2.30E-01	1.01	2.30E-01	1.01	2.30E-01	1.01	-	-	2.28E-05	1.00E-04
4	15.50	67.90	14.70	64.40	4.47	19.60	2.90E-02	1.30E-01	2.30E-01	1.01	2.30E-01	1.01	2.30E-01	1.01	-	-	2.28E-05	1.00E-04
5	15.50	67.90	14.70	64.40	4.47	19.60	2.90E-02	1.30E-01	2.30E-01	1.01	2.30E-01	1.01	2.30E-01	1.01	-	-	2.28E-05	1.00E-04
6	15.50	67.90	14.70	64.40	4.47	19.60	2.90E-02	1.30E-01	2.30E-01	1.01	2.30E-01	1.01	2.30E-01	1.01	-	-	2.28E-05	1.00E-04
7	4.32	18.90	6.47	28.40	2.50E-01	1.10	1.10E-02	4.60E-02	8.47E-02	3.71E-01	8.47E-02	3.71E-01	8.47E-02	3.71E-01	-	-	-	-
8	4.32	18.90	6.47	28.40	2.50E-01	1.10	1.10E-02	4.60E-02	8.47E-02	3.71E-01	8.47E-02	3.71E-01	8.47E-02	3.71E-01	-	-	-	-
19	15.50	67.90	14.70	64.40	4.47	19.60	2.30E-02	1.00E-01	1.81E-01	7.92E-01	1.81E-01	7.92E-01	1.81E-01	7.92E-01	-	-	2.28E-05	1.00E-04
20	15.50	67.90	14.70	64.40	4.47	19.60	2.30E-02	1.00E-01	1.81E-01	7.92E-01	1.81E-01	7.92E-01	1.81E-01	7.92E-01	-	-	2.28E-05	1.00E-04
25	1.09	4.76	2.30E-01	1.00	4.20E-02	1.80E-01	6.00E-03	2.60E-02	6.88E-02	3.01E-01	6.88E-02	3.01E-01	6.88E-02	3.01E-01	-	-	4.53E-06	1.98E-05
27	1.11	4.88	2.30E-01	1.00	4.30E-02	1.90E-01	6.00E-03	2.70E-02	7.05E-02	3.09E-01	7.05E-02	3.09E-01	7.05E-02	3.09E-01	-	-	4.64E-06	2.03E-05
28	4.66	7.95	33.69	57.44	9.07	15.47	5.26E-02	8.97E-02	-	-	-	-	-	-	-	-	4.38E-05	7.48E-05
34	11.75	2.94	2.53	6.33E-01	9.59E-01	2.40E-01	7.72E-01	1.93E-01	8.26E-01	2.06E-01	8.26E-01	2.06E-01	8.26E-01	2.06E-01	-	-	-	-
35a	-	-	-	-	2.00	8.80	-	-	-	-	-	-	-	-	-	-	-	-
35b	1.94E-01	8.52E-01	1.63E-01	7.15E-01	1.07E-02	4.68E-02	1.17E-03	5.11E-03	1.48E-02	6.47E-02	1.48E-02	6.47E-02	1.48E-02	6.47E-02	-	-	9.72E-07	4.26E-06
36	1.40E-01	6.15E-01	2.80E-01	1.23	5.50E-04	2.41E-03	4.66E-04	2.04E-03	-	-	-	-	-	-	-	-	3.89E-07	1.70E-06
38	-	-	-	-	-	4.42	-	-	-	-	-	-	-	-	-	-	-	-
40	-	-	-	-	-	-	-	-	1.21E-01	5.30E-01	7.62E-02	3.34E-01	-	-	-	-	-	-
41	-	-	-	-	-	-	-	-	8.41E-02	3.68E-01	5.55E-02	2.43E-01	-	-	-	-	-	-
75	-	-	-	-	5.80	25.60	-	-	-	-	-	-	-	-	-	-	-	-
76	3.00E-01	7.49E-02	4.91E-01	1.23E-01	3.91E-03	9.77E-04	7.76E-05	1.94E-05	2.56E-03	6.41E-04	2.56E-03	6.41E-04	2.56E-03	6.41E-04	-	-	-	-
77a	-	-	-	-	1.00	4.40	-	-	-	-	-	-	-	-	-	-	-	-
77b	4.29E-02	1.88E-01	4.46E-02	1.95E-01	6.46E-03	2.83E-02	8.33E-04	3.65E-03	1.25E-02	5.49E-02	1.25E-02	5.49E-02	1.25E-02	5.49E-02	-	-	8.24E-07	3.61E-06
SSM	-	-	-	-	-	28.60	-	-	-	-	-	-	-	-	-	-	-	-
F1	-	-	-	-	3.51	15.37	-	-	-	-	-	-	-	-	-	-	-	-
M1	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
T3	-	-	-	-	1.37	6.00	-	-	-	-	-	-	-	-	-	-	-	-
T31	-	-	-	-	3.20E-01	1.40	-	-	-	-	-	-	-	-	-	-	-	-
T109	-	-	-	-	1.30	5.70	-	-	-	-	-	-	-	-	-	-	-	-
T6528	-	-	-	-	-	164.00	-	-	-	-	-	-	-	-	-	-	-	-
T6529	-	-	-	-	-	w/T6528	-	-	-	-	-	-	-	-	-	-	-	-

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

II	N	Ox	С	0	V	DC	SC	Ox	PI	M^1	PM	[10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SEP-1	-	-	-	-	-	w/T6528	-	-	-	-	-	-	-	-	-	-	-	-
Totals	151.93	603.26	168.20	634.33	61.70	449.44	1.08	1.42	3.11	10.20	3.04	9.88	2.90	9.30	-	-	2.38E-04	9.24E-04

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

□ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N			0		DC		Ox	P			(10^2)		2.5^{2}		2S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr										
1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
34	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
35a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
35b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
36	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
38	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
41	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
75	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
76	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
77a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
77b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SSM	-	-	-	-	-	28.60	-	-	-	-	-	-	-	-	-	-	-	-
F1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
M1	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
T3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T109	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

□ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/apb/permit/apb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	C	0	VO	C	S	Ox	PI	M^2	PM	(10 ²	PM	2.5^{2}	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr										
T6528	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T6529	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEP-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Totals	-	-	-	-	-	38.60	-	-	-	-	-	-	_	-	-	-	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

□ I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	C	0	V	OC	S	Ox	Р	M	PN	110	PM	12.5	□ H ₂ S or	r 🗹 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
28	28 & 77a	4.66	7.95	33.69	57.44	10.07	19.87	5.26E-02	8.97E-02	-	-	-	-	-	-	4.38E-05	7.48E-05
36	35a & 36	1.40E-01	6.15E-01	2.80E-01	1.23	2.00	8.80	4.66E-04	2.04E-03	-	-	-	-	-	-	3.89E-07	1.70E-06
											1						
	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
1	1	V	No	22	798	1271			267	2.46
2	2	V	No	22	798	1271			267	2.46
3	3	V	No	22	798	1271			267	2.46
4	4	V	No	22	798	1271			267	2.46
5	5	V	No	35	798	1271			267	2.46
6	6	V	No	35	798	1271			267	2.46
7	7	V	No	35	840	477			152	2.00
8	8	V	No	35	840	477			152	2.00
19	19	V	No	22	798	1271			267	2.46
20	20	V	No	22	798	1271			267	2.46
25	25	V	No	60	600	67			9	3.00
27	27	V	No	78.4	600	69			4	4.50
28	28	V	No	55	1832	1462			66	7.58
34	34	V	No	14.4	750	13			66	0.50
35b	35b	V	No	16	600	14			6	1.70
36	36	V	No	26	1832	13			66	0.76
76	76	V	No	1	1400	2			NA	NA
77b	77b	V	No	10	600	5			6	1.00

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Asstal	dohudo	Dom	zene or 🗆 TAP	Ethall	oenzene or 🗆 TAP	Forma	ldehyde or 🗆 TAP	n-Ho HAP o	exane or 🗆 TAP	Tol HAP (uene or 🗆 TAP	Xyl	enes or 🗆 TAP		Pollutant e Here or 🛛 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	1	0.3	1.5	0.1	0.6	-	-	-	-	0.1	0.6	-	0.1	-	-	-	-		
2	2	0.3	1.5	0.1	0.6	-	-	-	-	0.1	0.6	-	0.1	-	-	-	-		
3	3	0.3	1.5	0.1	0.6	-	-	-	-	0.1	0.6	-	0.1	-	-	-	-		
4	4	0.3	1.5	0.1	0.6	-	-	-	-	0.1	0.6	-	0.1	-	-	-	-		
5	5	0.3	1.5	0.1	0.6	-	-	-	-	0.1	0.6	-	0.1	-	-	-	-		
6	6	0.3	1.5	0.1	0.6	-	-	-	-	0.1	0.6	-	0.1	-	-	-	-		
7	7	0.1	0.5	-	0.2	-	-	-	-	-	0.2	-	-	-	-	-	-		
8	8	0.1	0.5	-	0.2	-	-	-	-	-	0.2	-	-	-	-	-	-		
19	19	0.3	1.2	0.1	0.5	-	-	-	-	0.1	0.5	-	-	-	-	-	-		
20	20	0.3	1.2	0.1	0.5	-	-	-	-	0.1	0.5	-	-	-	-	-	-		
25	25	0.1	0.4	-	-	-	-	-	0.1	-	-	-	0.1	-	-	-	-		
27	27	0.1	0.4	-	-	-	-	-	0.1	-	-	-	0.1	-	-	-	-		
28	28	0.7	3.1	-	-	0.1	0.3	-	-	-	0.1	0.4	2.0	0.1	0.4	-	0.1		
34	34	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
35a	35a	0.1	0.3	-	-	-	-	-	-	-	-	-	0.1	-	0.2	-	-		
35b	35b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
36	36	0.1	0.3	-	-	-	-	-	-	-	-	-	0.1	-	0.1	-	-		
38	38	-	0.3	-	-	-	-	-	-	-	-	-	0.2	-	-	-	-		
40	40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
41	41	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
75	75 76	3.3	14.4	-	-	1.3	5.8	0.3	1.2	-	-	-	-	1.3	5.9	0.3	1.5		
76	76 77a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
77a 77b	77a 77b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
SSM	SSM	-	1.2	-	-	-	0.1	-	-	-	-	-	- 0.5	-	- 0.5	-	0.2		
F1	F1	0.2	0.7	-	-	-	-	-	-	-	-	0.1	0.3	0.1	0.3	-	0.2		
M1	M1	0.2	0.4	-	_	-	_	_	_	-	_	0.1	0.2	-	0.2	-	0.1		
T3	T3	_	0.4		_	_	_	-		-		-	0.2	-	0.2	-			

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Acetal HAP o	dehyde or 🗆 TAP	Ben HAP (zene or 🗆 TAP	Ethylb	oenzene or 🗆 TAP	Forma	ldehyde or 🗆 TAP	n-He HAP (exane or 🗆 TAP	Tol HAP (uene or 🗆 TAP	Xyl 🛛 HAP o	enes or □ TAP		Pollutant e Here or 🛛 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
T31	T31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
T109	T109	-	0.1	-	-	-	-	-	-	-	-	-	0.1	-	-	-	-		
T6528	T6528	-	1.0	-	-	-	0.1	-	-	-	-	-	0.6	-	0.2	-	0.1		
T6529	T6529	-	w/T6528	-	-	-	w/T6528	-	-	-	-	-	w/T6528	-	w/T6528	-	w/T6528		
SEP-1	SEP-1	-	w/T6528	-	-	-	w/T6528	-	-	-	-	-	w/T6528	-	w/T6528	-	w/T6528		
То	tals	7.3	35.0	1.2	5.1	1.5	6.7	0.3	1.4	1.2	5.1	0.7	4.6	1.6	7.9	0.5	2.5		

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
1	Natural Gas	Residue Gas	900 Btu/scf	38.7 Mcf	338.8 MMcf	Negl.	Negl.
2	Natural Gas	Residue Gas	900 Btu/scf	38.7 Mcf	338.8 MMcf	Negl.	Negl.
3	Natural Gas	Residue Gas	900 Btu/scf	38.7 Mcf	338.8 MMcf	Negl.	Negl.
4	Natural Gas	Residue Gas	900 Btu/scf	38.7 Mcf	338.8 MMcf	Negl.	Negl.
5	Natural Gas	Residue Gas	900 Btu/scf	38.7 Mcf	338.8 MMcf	Negl.	Negl.
6	Natural Gas	Residue Gas	900 Btu/scf	38.7 Mcf	338.8 MMcf	Negl.	Negl.
7	Natural Gas	Residue Gas	900 Btu/scf	14.3 Mcf	125.0 MMcf	Negl.	Negl.
8	Natural Gas	Residue Gas	900 Btu/scf	14.3 Mcf	125.0 MMcf	Negl.	Negl.
19	Natural Gas	Residue Gas	900 Btu/scf	30.5 Mcf	266.8 MMcf	Negl.	Negl.
20	Natural Gas	Residue Gas	900 Btu/scf	30.5 Mcf	266.8 MMcf	Negl.	Negl.
25	Natural Gas	Residue Gas	900 Btu/scf	9.1 Mcf	79.3 MMcf	Negl.	Negl.
27	Natural Gas	Residue Gas	900 Btu/scf	9.3 Mcf	81.3 MMcf	Negl.	Negl.
28	Natural Gas	Residue Gas	1,097 Btu/scf	87.7 Mcf	299.0 MMcf	Negl.	Negl.
34	Diesel	Diesel	138,000 Btu/gal	19.3 gal	9,650 gal	Negl.	Negl.
35b	Natural Gas	Residue Gas	900 Btu/scf	1.9 Mcf	17.0 MMcf	Negl.	Negl.
36	Natural Gas	Residue Gas	1,308 Btu/scf	0.8 Mcf	6.8 MMcf	Negl.	Negl.
76	Natural Gas	Residue Gas	900 Btu/scf	0.13 Mcf	0.07 MMcf	Negl.	Negl.
77b	Natural Gas	Residue Gas	900 Btu/scf	1.6 Mcf	14.4 MMcf	Negl.	Negl.

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Storag	e Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
T2	31000299	Lean Oil	Lean Oil	Exempt sour	ce				
Т3	31000299	Flare Separator Liquids	Flare Separator Liquids	5.75	66.54	58.54	1.97	65.66	2.28
T5	31000299	Propane	Propane	Exempt sour	ce				
T13	31000299	Y-Grade	Y-Grade	Exempt sour	ce				
T14	31000299	Y-Grade	Y-Grade	Exempt sour	ce				
T15	31000299	Propane	Propane	Exempt sour	ce				
T16	31000299	Out-of-Service	Out-of-Service	For Information	tion Only				
T17	31000299	Out-of-Service	Out-of-Service	For Informat	tion Only				
T18	31000299	Out-of-Service	Out-of-Service	For Informat	tion Only				
T21	31000299	Methanol	Methanol	Exempt sour	ce				
T22	31000299	Methanol	Methanol	Exempt sour	ce				
T30	31000299	Separator Liquids	Separator Liquids	Exempt sour	ce				
T31	31000299	Flare Separator Liquids	Flare Separator Liquids	5.75	66.95	67.36	2.36	80.79	3.06
T32	31000299	Oil/Water Separator Liquid	Waste Water	Exempt sour	ce				
T40	31000299	Used Oil	Used Oil	Exempt sour	rce				
T41	31000299	Gasoline	Gasoline	Exempt sour	ce				
T42	31000299	Solvent	Solvent	Exempt sour	ce				
T50a	31000299	Diesel	Diesel	Exempt sour	ce				
T50b	31000299	Diesel	Diesel	Exempt sour	ce				
T51	31000299	Lubrication Oil	Lubrication Oil	Exempt sour	ce				
T52a	31000299	Glycol	Glycol	Exempt sour	rce				
T52b	31000299	Condensate	Glycol	Exempt sour	ce				
T53a	31000299	Glycol Storage	Glycol	Exempt sour	rce				
T53b	31000299	Glycol Surge	Glycol	Exempt sour	ce				
T54	31000299	Ambitrol	Ambitrol	Exempt sour	rce				
T56	31000299	Ambitrol	Ambitrol	Exempt sour	ce				
T57	31000299	Lubrication Oil	Lubrication Oil	Exempt sour	ce				
T58a	31000299	Lean Oil	Lean Oil	Exempt sour	ce				
T58b	31000299	Used Oil	Used Oil	Exempt sour	rce				

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stora	age Conditions	Max Storag	e Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
T59	31000299	Methanol	Methanol	Exempt sour	ce				
T60	31000299	Diesel	Diesel	Exempt sour	ce				
T61	31000299	Out-of-Service	Out-of-Service	For Informat	tion Only				
T62a	31000299	Amine Mix	50% Amine & 50% H2O	Exempt sour	ce				
T62b	31000299	Amine Mix	50% Amine & 50% H2O	Exempt sour	ce				
T62c	31000299	Water	Water	Not an emiss	sions source				
T62d	31000299	Defoamer	Defoamer	Exempt sour	ce				
Т63	31000299	Amine Slop	Amine	Exempt sour	ce				
T64	31000299	Lubrication Oil	Lubrication Oil	Exempt sour	ce				
T65	31000299	Lubrication Oil	Lubrication Oil	Exempt sour	ce				
T81	31000299	Methanol	Methanol	Exempt sour	ce				
T102	31000299	Filter Draining	Condensate	Exempt sour	ce				
T104	31000299	Used Oil	Used Oil	Exempt sour	ce				
T105	31000299	Water	Water	Not an emiss	sions source				
T106	31000299	Water	Water	Not an emiss	sions source				
T107	31000299	Water	Water	Not an emiss	sions source				
T108	31000299	Ambitrol	Ambitrol	Exempt sour	ce				
T109	31000299	Flare Separator Liquids	Flare Separator Liquids	5.75	67.64	67.36	2.36	80.79	3.06
T6528	31000299	Condensate	Condensate	5.94	66.13	67.36	2.60	80.79	3.26
T6529	31000299	Condensate	Condensate	5.94	66.13	67.36	2.60	80.79	3.26

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2-	· ·	Cap	acity	Diameter (M)	Vapor Space	Color (from Table VI-C)		Paint Condition (from Table	Annual Throughput	Turn- overs
			LR below)	LR below)	(bbl)	(M ³)	()	(M)	Roof	Shell	VI-C)	(gal/yr)	(per year)
T2		Lean Oil		Р	474		Exempt sourc	e					
Т3		Flare Separator Liquids		Р	474		2.44	1.22	WH	WH	Good	1,179,360	59.27
T5		Propane		Р	476		Exempt sourc	e					
T13		Y-Grade		Р	1,905		Exempt sourc	e					
T14		Y-Grade		Р	1,905		Exempt sourc	e					
T15		Propane		Р	1,905		Exempt sourc	e					
T16		Out-of-Service		Р	952		For Information	on Only					
T17		Out-of-Service		Р	952		For Information	on Only					
T18		Out-of-Service		Р	952		For Information	on Only					
T21		Methanol		Р	2,143		Exempt sourc	e					
T22		Methanol		Р	2,143		Exempt sourc	e					
T30		Separator Liquids		FX	210		Exempt sourc	e					
T31		Flare Separator Liquids		FX	100		2.44	1.85	MG	MG	Good	117,936	31.37
T32		Oil/Water Separator Liquid		FX	250		Exempt sourc	e					
T40		Used Oil		FX	48		Exempt sourc	e					
T41		Gasoline		FX	7		Exempt sourc	e					
T42		Solvent		FX	7		Exempt sourc	e					
T50a		Diesel		FX	24		Exempt sourc	e					
T50b		Diesel		FX	5		Exempt sourc	e					
T51		Lubrication Oil		FX	71		Exempt sourc	e					
T52a		Glycol		FX	24		Exempt sourc	e					
T52b		Condensate		FX	47		Exempt sourc	e					
T53a		Glycol Storage		FX	210		Exempt sourc	e					
T53b		Glycol Surge		FX	25		Exempt sourc	e					
T54		Ambitrol		FX	79		Exempt sourc	e					
T56		Ambitrol		FX	70		Exempt sourc	e					
T57		Lubrication Oil		FX	105		Exempt sourc	e					
T58a		Lean Oil		FX	252		Exempt sourc	e					
T58b		Used Oil		FX	70		Exempt sourc	e					
T59		Methanol		FX	100		Exempt sourc	e					
T60		Diesel		FX	24		Exempt sourc	e					
T61		Out-of-Service		FX	17		For Information	on Only	•				

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored		Roof Type (refer to Table 2- LR below)	Cap	acity	Diameter (M)	Vapor Space	Color (from Table VI-C)		Paint Condition (from Table	Annual Throughput	Turn- overs
			LR below)	LR below)	(bbl)	(M ³)	(M)		Roof Shell		VI-C)	(gal/yr)	(per year)
T62a		Amine Mix		FX	256		Exempt sourc	e					
T62b		Amine Mix		FX	100		Exempt sourc	e					
T62c		Water		FX	500		Not an emissi	ons source					
T62d		Defoamer		FX	7		Exempt sourc	e					
T63		Amine Slop		FX	190		Exempt source	e					
T64		Lubrication Oil		FX	70		Exempt source	e					
T65		Lubrication Oil		FX	70		Exempt source	e					
T81		Methanol		FX	2		Exempt sourc	e					
T102		Filter Draining		FX	48		Exempt sourc	e					
T104		Used Oil		FX	4		Exempt source	e					
T105		Water		FX	3,000		Not an emissi	ons source					
T106		Water		FX	5,452		Not an emissi	ons source					
T107		Water		FX	5,452		Not an emissi	ons source					
T108		Ambitrol		FX	25		Exempt sourc	e					
T109		Flare Separator Liquids		FX	500		4.05	3.24	MG	MG	Good	1,179,360	59.73
T6528		Condensate		FX	500		4.72	2.76	MG	MG	Good	279,742	14.16
T6529		Condensate		FX	500		4.72	2.76	MG	MG	Good	279,742	14.16

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, We	elded Tank Seal Type	Seal Type, Rive	ted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$^{3} = 42.0$ gal				BL: Black	
					OT: Other (specify)	

Table 2-M:	Materials	Processed and	Produced	(Use additional sheets as necessary.)
------------	-----------	---------------	----------	---------------------------------------

	Materi	al Processed	Material Produced						
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)		
Field Natural Gas			80,300 MMcf/yr	Residue Gas		G	Up to 120 MMcf/day		
				Y-grade		L	11,215 bbl		
The station capacity is a dire	ect function of available horse	power. The throughput is therefore	pre dependant on atmospheric te	emperature and pressure, gas temp	erature and pressure, re	lative humio	dity		
and gas quality, was well as	other factors. The "throughp	ut" expressed above is a nominal	quantity (with a 15 percent safe	ety factor), neither an absolute ma	ximum, nor an average.	Actual three	oughput		
l vary from the nominal amo	unt.								

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
N/A									

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
28	Presence of pilot flame	At pilot flame		N/A	As Required	As Required	Thermocouple	N/A
36	Presence of pilot flame	At pilot flame		N/A	As Required	As Required	Thermocouple	N/A

Table 2-P:Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N_2O ton/yr	CH ₄ ton/yr	SF ₆ ton∕yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
1	mass GHG	20,508.26	3.87E-02	3.87E-01							20,508.68	-
1	CO ₂ e	20,508.26	11.52	9.66							-	20,529.44
2	mass GHG	20,508.26	3.87E-02	3.87E-01							20,508.68	-
2	CO ₂ e	20,508.26	11.52	9.66							-	20,529.44
3	mass GHG	20,508.26	3.87E-02	3.87E-01							20,508.68	-
3	CO ₂ e	20,508.26	11.52	9.66							-	20,529.44
4	mass GHG	20,508.26	3.87E-02	3.87E-01							20,508.68	-
4	CO ₂ e	20,508.26	11.52	9.66							-	20,529.44
5	mass GHG	20,508.26	3.87E-02	3.87E-01							20,508.68	-
5	CO ₂ e	20,508.26	11.52	9.66							-	20,529.44
6	mass GHG	20,508.26	3.87E-02	3.87E-01							2.05E+04	-
0	CO ₂ e	20,508.26	11.52	9.66							-	20,529.44
7	mass GHG	7,555.67	1.42E-02	1.42E-01							7,555.83	-
/	CO ₂ e	7,555.67	4.24	3.56							-	7,563.48
8	mass GHG	7,555.67	1.42E-02	1.42E-01							7,555.83	-
0	CO ₂ e	7,555.67	4.24	3.56							-	7,563.48
19	mass GHG	16,133.92	3.04E-02	3.04E-01							16,134.25	-
19	CO ₂ e	16,133.92	9.06	7.60							-	16,150.58
20	mass GHG	16,133.92	3.04E-02	3.04E-01							16,134.25	-
20	CO ₂ e	16,133.92	9.06	7.60							-	16,150.58
25	mass GHG	4,629.98	8.73E-03	8.73E-02							4,630.08	-
23	CO ₂ e	4,629.98	2.60	2.18							-	4,634.76
27	mass GHG	4,743.60	8.94E-03	8.94E-02							4,743.70	-
21	CO ₂ e	4,743.60	2.66	2.24							-	4,748.50
28	mass GHG	20,357.91	3.61E-02	108.01							20,465.96	-
20	CO ₂ e	20,357.91	10.75	2,700.30							-	23,068.96
34	mass GHG	108.34	8.79E-04	4.39E-03							108.35	-
34	CO ₂ e	108.34	2.62E-01	1.10E-01							-	108.71

Table 2-P:Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	${ m SF_6}$ ton/yr	PFC/HFC ton/yr ²								Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3									
35a	mass GHG	417.37		3.39										420.76	-
55a	CO ₂ e	417.37		84.67										-	502.04
35b	mass GHG	994.17	1.87E-03	1.87E-02										994.19	-
550	CO ₂ e	994.17	5.58E-01	4.68E-01										-	995.19
36	mass GHG	548.45	9.25E-04											548.45	-
50	CO ₂ e	548.45	2.76E-01											-	548.73
38	mass GHG													0.00	-
38	CO ₂ e													-	0.00
40	mass GHG													0.00	-
40	CO ₂ e													-	0.00
41	mass GHG													0.00	-
71	CO ₂ e													-	0.00
75	mass GHG	17,991.65		37.15										18,028.80	-
15	CO ₂ e	17,991.65		928.63										-	18,920.28
76	mass GHG	4.28	8.07E-06	8.07E-05										4.28	-
70	CO ₂ e	4.28	2.40E-03	2.02E-03										-	4.28
77a	mass GHG	51.33		4.41E-01										51.77	-
//a	CO ₂ e	51.33		11.02										-	62.35
77b	mass GHG	842.60	1.59E-03	1.59E-02										842.62	-
//0	CO2e	842.60	4.73E-01	3.97E-01										-	843.47
SSM	mass GHG	8.35		142.67										151.02	-
55141	CO2e	8.35		3,566.67										-	3,575.03
F1	mass GHG	86.18		1,473.60	Equipment lea	ks includes c	ompressor	venting, p	neumatic c	levices, and	d non-rout	ine emissic	ons.	1,559.78	-
	CO2e	86.18		36,839.89										-	36,926.07
M1	mass GHG	2.92		49.88										52.80	-
1011	CO2e	2.92		1,247.03										-	1,249.95
Т3	mass GHG													0.00	-
15	CO2e													-	0.00

Table 2-P:Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \square By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

	11	5				1 2						
		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton∕yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
T31	mass GHG										0.00	-
151	CO2e										-	0.00
T109	mass GHG										0.00	-
1109	CO2e										-	0.00
T6528	mass GHG	1.38		14.83							16.21	-
10520	CO2e	1.38		370.68							-	372.06
T6529	mass GHG	w/T6528		w/T6528							0.00	-
10527	CO2e	w/T6528		w/T6528							-	0.00
SEP-1	mass GHG	w/T6528		w/T6528							0.00	-
SEI I	CO2e	w/T6528		w/T6528							-	0.00
	mass GHG											
	CO2e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
Totals	mass GHG		3.80E-01	1,833.38							223,051.01	-
1 otulis	CO ₂ e	221,217.24	113.30	45,834.58							-	267,165.13

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The <u>Process</u> <u>Summary</u> shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Application Summary

The HFC Kutz Canyon Processing Plant currently operates under a construction permit issued by the New Mexico Air Quality Bureau (NMAQB), 0301-M8-R3, dated February 20, 2015 and a Title V operating permit, P097-R2, dated December 19, 2012.

The facility is currently approved by the Title V operating permit to operate the following equipment/sources:

- Six Solar Centaur 40 turbines (Units 1-6);
- Three Solar Saturn 1200 turbines (Units 7, 8 & 29);
- Three Clark HRA-8 reciprocating engines (Units 16-18);
- Two Solar Centaur 3016 turbines (Units 19 & 20);
- One Wheco heater (Unit 22);
- One Alcorn heater (Unit 23);
- One EG dehydrator (Units 24a & 24b);
- One Born glycol heater (Unit 25);
- One Born hot oil heater (Unit 27);
- One plant flare (Unit 28);
- One Pesco fuel gas heater (Unit 30);
- One Cummins 6BTA 208-2100 reciprocating fire pump engine (Unit 32);
- One Ford 428 reciprocating standby fire pump engine (Unit 33);

- One Caterpillar D343 reciprocating standby generator engine (Unit 34)
- One TEG dehydrator (Units 35a & 35b);
- One Zeeco flare (Unit 36);
- One Waukesha L5794LT or L7042GL reciprocating engine (Unit 37a or 37b);
- Truck loading (Unit 38);
- Three cooling towers (Units 39-41);
- One amine contactor (Unit 75);
- One Kohler 8.5RES reciprocating standby generator (Unit 76)
- Six liquid storage tanks (Units T3, T30, T31, T6438, T6528 & T6529);
- Equipment leaks (Unit F1);
- SSM emissions (Unit SSM); and
- Malfunction emissions (Unit M1).

Note that the facility is also equipped with a number of other miscellaneous heaters and liquid storage tanks, for which emissions are insignificant.

This application is being submitted to modify the Title V operating permit. The following equipment is being added to the permit:

• One Infab TEG mole sieve regeneration dehydrator (Units 77a & 77b)

The Kutz I portion of the plant is being retired. The following equipment is being removed from the permit:

- Three Clark HRA-8 reciprocating engines (Units 16-18);
- One Wheco heater (Unit 22);
- One Alcorn heater (Unit 23);
- One EG dehydrator (Units 24a & 24b);
- One Solar Saturn 1200 turbine (Unit 29);
- One Waukesha L5794LT or L7042GL reciprocating engine (Unit 37a or 37b);
- One cooling tower (Unit 39); and
- One condensate storage tank (Unit T6438) with its associated EVRU and EVRU heater (Unit 74).

The following equipment is not part of the facility (it is located more than 0.25 miles away). It is being removed from the permit:

• One Pesco fuel gas heater (Unit 30).

The applicable regulation is 20.2.70 New Mexico Administrative Code (NMAC). The lowest level regulatory citation is 20.2.70.300.B(2) NMAC.

There are no modifications in this application to de-bottleneck impacts or change the facility's major/minor status (both prevention of significant deterioration [PSD] & Title V).

Process Description

The Kutz Canyon Processing Plant is a natural gas processing facility designed to remove ethane and heavier hydrocarbons from natural gas. The Kutz I Plant, which is being retired (and removed from the permit), has been used to remove the heavier hydrocarbons using a refrigerated lean oil absorption process. The Kutz II Plant removes the heavier hydrocarbons using a cryogenic process. A process flow diagram is provided in Section 4.

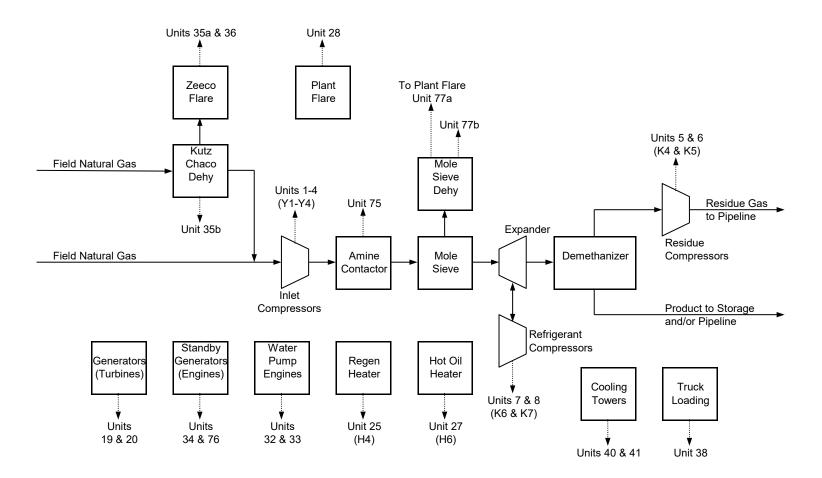
Note that with the continuing decline in natural gas production in the San Juan Basin, it is no longer economically viable to operate all equipment at the Kutz Canyon Processing Plant. Thus, HFC will discontinue operation of the Kutz I lean oil plant portion of the facility.

Startup, Shutdown and Maintenance Emissions

For the reciprocating engines, heaters, dehydrators (still vents and reboilers), flares, truck loading, cooling towers, amine contactor, equipment leaks (valves, connectors, seals, etc.), and storage tanks, it is concluded there are no SSM emissions in excess of those identified for steady-state operation as seen in Section 2, Table 2-E. Discussions justifying this conclusion are provided in Section 6.

SSM emissions from turbines, compressors, and piping associated with the facility were calculated from the quantity of gas vented during each event, the composition of the gas, and the number of events. The number of blowdowns events were estimated based on historical operations. A safety factor was included.

This Page Intentionally Left Blank

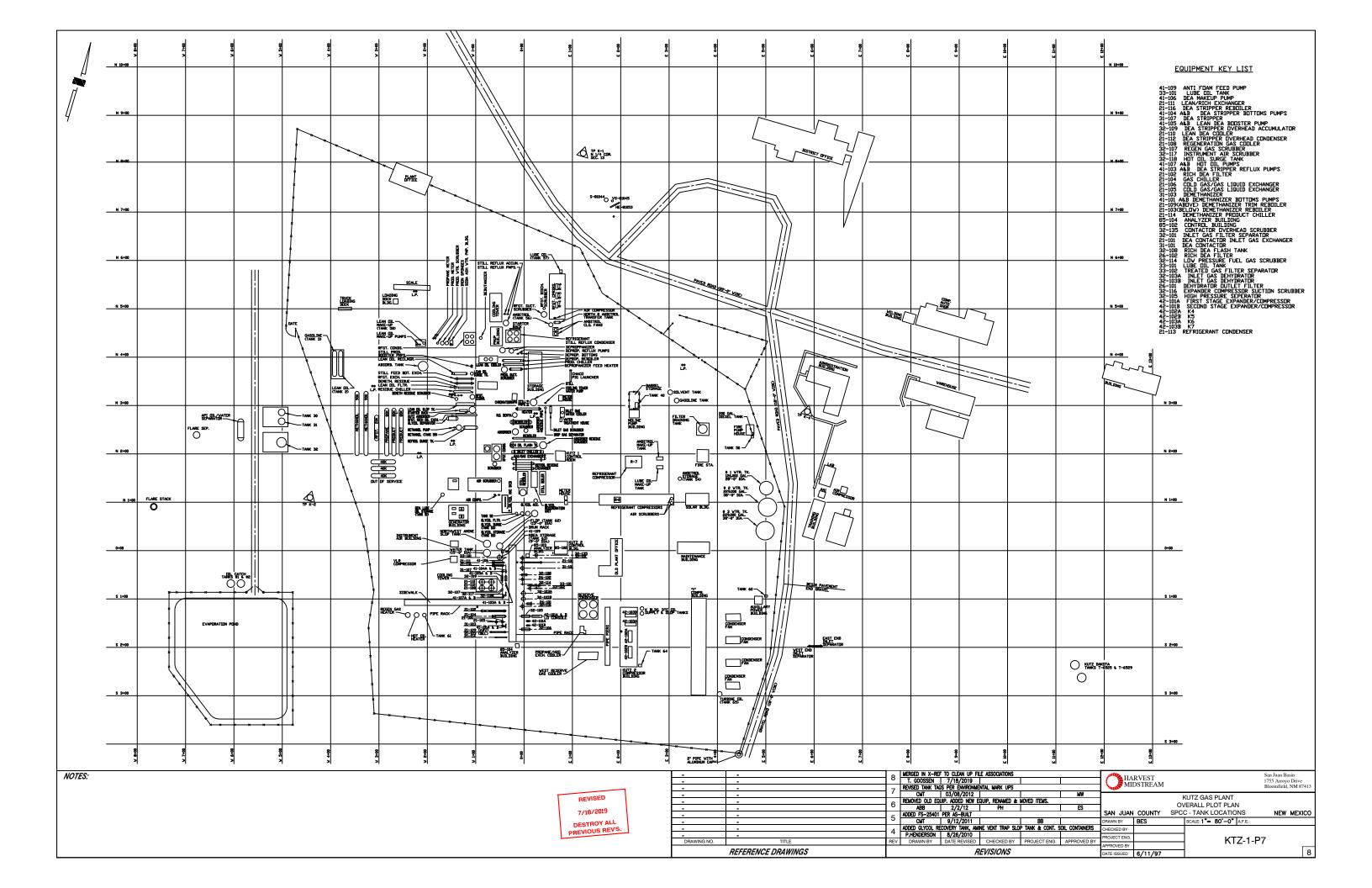

Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow diagram is provided in this section. Please see the following page.

Kutz Canyon Processing Plant Process Flow Diagram



Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is provided in this section. Please see the following page.

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; **and**
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

Harvest Four Corners, LLC

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Note that the hydrogen sulfide (H_2S) content of the natural gas at the station is non-detect. Therefore, it was assumed there are no H_2S emissions associated with any of the equipment. Also note that even if H_2S was present, H_2S emissions from the combustion of natural gas would be negligible. H_2S is converted to SO₂ during combustion.

Turbines

The nitrogen oxides (NO_x) , carbon monoxide (CO), volatile organic compounds (VOC), and sulfur dioxide (SO_2) emissions from the turbines (Units 1-8, 19 & 20) were calculated using stack test and manufacturer's data as identified in previous applications. Particulate emissions were calculated using the AP-42 emission factor from Table 3.1-2a. Hazardous air pollutant (HAP) emissions were calculated using GRI-HAPCalc 3.0. Emissions were calculated assuming each turbine operates at full site capacity for 8,760 hours per year.

The turbines at the station startup with no load and a rich fuel mixture. As a result, emissions are minimized. Because the turbines take only minutes to reach operating temperature, emissions during startup are not expected to exceed the steady-state allowable limits. Similarly, emissions during shutdown do not exceed the steady-state allowable limits, because fuel and air flow cease within seconds of shutdown. Emissions due to scheduled maintenance are negligible as the turbines are not in operation during maintenance.

No modifications are being made to the turbines or their operation. Emissions from the turbines are carried forward and not revised.

Turbine, Compressor and Piping SSM

SSM emissions from the Solar Centaur 40 turbines (Units 1a-6a), Solar Centaur 3016 turbines (Units 7a, 8a, 19a & 20a), compressors, and associated piping are vented to the atmosphere. Note that the compressors associated with Units 7 & 8 are not purged, so there are no SSM emissions from these compressors. Units 19 & 20 are generators, so there are no associated compressors.

SSM emissions from the turbines result from the blowdown of motive gas used to drive turbine components during startups and shutdowns. SSM emissions from the compressors occur when high pressure gas is used to purge air from the compressors and associated piping prior to startups. This gas is then vented to atmosphere. Also, after shutdowns, high pressure gas in the compressors and associated piping is released to atmosphere as a safety precaution.

SSM emissions from blowdown of the turbines, compressors and piping associated with the plant were calculated from the quantity of gas vented during each event, the composition of the gas, and the number of events. The quantity of gas vented during each event was determined by HFC engineering. The composition of the gas was determined from extended gas analyses. For each unit, the annual number of blowdown events were estimated based on historical operations. A safety factor was added because VOC and HAP emissions from each blowdown event are dependent on the composition of the gas in the pipeline and because the number of blowdowns in a year may vary. Experience indicates the composition of the gas is likely to vary. The use of the safety factor is also designed to ensure an adequate emissions limit, which includes emissions from other miscellaneous startup, shutdown and maintenance activities.

Consistent with other facilities, it is requested SSM emissions from the turbines, compressors and associated piping be permitted under a single facility-wide emissions limit.

SSM emissions are carried forward and not revised.

Reciprocating Engines

All emissions from the Caterpillar D343 standby generator engine were calculated using AP-42 emission factors from Tables 3.3-1 and 3.3-2. Criteria pollutant emissions from the Kolher 8.5RES standby generator engine were calculated used AP-42 emission factors from Table 3.2-3. HAP emissions from the Kohler generator were calculated using GRI-HAPCalc 3.0. Emissions were calculated assuming the engines operates at full site capacity for 500 hours per year.

The engine starts up with no load and a rich fuel mixture. As a result, emissions are minimized. Because the engine takes only minutes to reach operating temperature, emissions during startup do not exceed the steady-state allowable limits. Similarly, emissions during shutdown do not exceed the steady-state allowable limits, because fuel and air flow cease within seconds of shutdown. Emissions due to scheduled maintenance are negligible as the engines are not in operation during maintenance.

No modifications are being made to the engine or its operation. Emissions from the engine are carried forward and not revised.

Heaters

The criteria pollutant emissions from the natural gas-fired heaters (Units 25, 27, 43, 44, 49, 50, 60 & 64-68) were calculated using AP-42 emission factors from Section 1.4. HAP emissions were calculated using GRI-HAPCalc 3.0. Emissions were calculated assuming each heater and reboiler operates at full site capacity for 8,760 hours per year. Note that Units 43, 44, 49, 50, 60 & 64-68 are exempt sources in accordance with 20.2.72.202(B) NMAC and insignificant sources in accordance with Insignificant Activity Citation #'s 1a & 1b. Combined emissions from each heater type for each pollutant are less than 0.5 tons per year.

The heaters and reboilers (uncontrolled) startup with less fuel input than during steady-state operation, so emissions are lower than during steady-state operation. During shutdown, the fuel supply stops quickly, but air flow may not, causing the continued formation of NO_X . Even so, with no fuel, NO_X formation should be less than during steady-state operation. Emissions due to scheduled maintenance are negligible as the units are not in operation.

No modifications are being made to the heaters or their operation. Emissions from the heaters are carried forward and not revised.

Dehydrators

Unit 35a still vent emissions are controlled by the Zeeco flare (Unit 36). Unit 77a still vent emissions are controlled by the plant flare (Unit 28). VOC and HAP emissions from the dehydrators were calculated using GRI-GLYCalc 4.0. The control efficiencies of the flares were estimated to be 95 percent. It is assumed the dehydrators operate at design capacity for 8,760 hours per year. To allow for variations in dehydrator inlet gas compositions, the emissions identified in the Section 2 tables include a safety factor.

During startup, the dehydrator reboilers are brought up to temperature before allowing glycol into the absorbers. This prevents excess VOC and HAP from collecting in the glycol stream and there are no excess startup emissions above those expected during steady-state operation. Also, the dehydrators are not turned on until the flares are in operation. During shutdown, the reboilers are shut down in conjunction with the gas flow and glycol circulation. Again, this prevents excess VOC and HAP from collecting in the glycol stream and there are no excess shutdown emissions above those expected during steady-state operation. Also, the flares are not shut down while dehydrators are in operation. Emissions due to scheduled maintenance are negligible; either the units are not in operation during maintenance or maintenance is limited to tasks for which there are no excess emissions.

No modifications are being made to the dehydrators or their operation. Emissions from the dehydrators are carried forward and not revised.

Dehydrator Reboilers

Criteria pollutant emissions from Unit 35b were calculated using AP-42 emission factors from Section 1.4. HAP emissions were calculated using GRI-HAPCalc 3.0. Emissions were calculated assuming the reboiler operates at full site capacity for 8,760 hours per year.

The NO_X and CO emission factors for Unit 77b were identified from an Enertek letter dated August 19, 1994. The VOC and SO₂ emission factors were identified from an InFab letter dated July 22, 1998. The particulate and lead emissions were calculated using AP-42 emission factors from Table 1.4-2. HAP emissions were calculated using GRI-HAPCalc 3.0. All emissions were calculated assuming the reboiler operates 8,760 hours per year.

The reboilers (uncontrolled) startup with less fuel input than during steady-state operation, so emissions are lower than during steady-state operation. During shutdown, the fuel supply stops quickly, but air flow may not, causing the continued formation of NO_X. Even so, with no fuel, NO_X formation should be less than during steady-state operation. Emissions due to scheduled maintenance are negligible as the units are not in operation.

No modifications are being made to the reboiler or their operation. Emissions from the reboilers are carried forward and not revised.

Flares

Emissions from the plant flare (Unit 28) were calculated based on historical pilot gas throughput and actual flare throughput volumes. The NO_X , and CO emissions from the flare were calculated using Texas Commission on Environmental Quality (TCEQ) emission factors. SO_2 and lead emissions were calculated using the AP-42 emissions factors from Table 1.4-2. VOC emissions were calculated from the gas composition and throughput. HAP emissions were calculated using GRI-HAPCalc 3.0. To allow for variations in inlet gas composition, a safety factor was applied to the historic average flow rates used to calculate emissions.

The NO_X, and CO emissions from the Zeeco flare (Unit 36) were calculated using TCEQ emission factors. SO₂, VOC, and lead emissions were calculated using AP-42 emissions factors from Table 1.4-2. The flow rates were identified from manufacturer's data and the GRI-GLYCalc 4.0 output file. The heat contents were calculated from data in the GRI-GLYCalc 4.0 output file. Note that VOC and HAP emissions from the dehydrator are accounted for in the dehydrator emissions calculations, rather than the flare emissions calculations.

There are no excess SSM emissions associated with operation of the flares. The flares do not require warm-up periods. Equipment is not turned on unless the flares are in operation and the flares are not shut down while equipment is in operation. No maintenance is conducted on the flares while they are in operation.

No modifications are being made to the flares or their operation. Emissions from the flares are carried forward and not revised.

Truck Loading

VOC emissions from truck loading (Unit 38) were calculated using the AP-42 emission factor from Section 5.2 and data provided by HFC. HAP emissions were calculated from the composition of the condensate as determined from the TANKS 4.0 results.

Due to the nature of the source, it is estimated there are no startup or shutdown emissions associated with truck loading. No maintenance is conducted during truck loading operations.

Emissions from truck loading are carried forward and not revised.

Cooling Towers

TSP emissions from the cooling towers (Units 40 & 41) were calculated using AP-42 emission factors from Section 13.4 and data provided by HFC. The PM_{10} emissions factors were calculated from the TSP emission factors using the "Frisbie" paper equation.

Due to the nature of the source, it is estimated there are no startup or shutdown emissions associated with the cooling towers. No maintenance is conducted while the cooling towers are in operation.

No modifications are being made to the cooling tower equipment or operations. Emissions from the cooling towers are carried forward and not revised.

Amine Contactor

Amine contactor (Unit 75) VOC and HAP emissions were calculated using AMINECalc 1.0. The emissions calculations were based on an amine circulation rate of 350 gpm. To allow for variations in inlet gas composition, the emissions identified in the Section 2 tables include a safety factor.

It is estimated there are no additional SSM emissions.

No modifications are being made to the amine contactor or its operation. Emissions from the amine contactor are carried forward and not revised.

Equipment Leaks

Fugitive emissions from equipment leaks (F1), valves, flanges, seals, etc., were calculated using emission factors from the 1995 Protocol for Equipment Leak Emission Estimates published by the Environmental Protection Agency (EPA). Note that propane loading rack emissions are included as fugitive emissions.

Due to the nature of the source, it is estimated that SSM emissions from valves, connectors, seals, etc. are accounted for in the calculations.

Emissions from equipment leaks are carried forward and not revised.

Malfunctions

Malfunction (Unit M1) emissions were set at 10.0 tons of VOC per year to account for emissions that may occur during upsets and malfunctions (including, but not limited to, unscheduled blowdowns and relief valve release). Based on the gas release rate associated with the set emission rate, HAP emissions were determined from the gas composition. Note that these malfunction emissions include the venting of gas only, not combustion emissions.

Malfunction emissions are carried forward and not revised.

Storage Tanks

Emissions from the condensate storage tanks (Units T6528 & T6529) were calculated using TANKS 4.0.9d for working-breathing losses and Promax 3.2 for flash emissions. Emissions were calculated using the condensate (post-flash) throughput of 13,321 barrels per year. The ProMax model run includes flash gas emissions from the slug receiver inlet separator, as have the previous tank flash model runs.

Where necessary, the working/breathing losses for the remaining tanks were calculated using TANKS 4.0.d.9. The following assumptions were made:

• Residual oil #6 was used to estimate lean, oil/water, used oil and lubrication oil emissions. As the vapor pressure of residual oil is less than 0.2 pounds per square inch absolute (psia), the tanks containing lean oil, oil/water, used oil, and lubrication oil were assumed to be exempt and insignificant;

- The flashed condensate composition as identified from the ProMax output files was used to estimate flare separator liquids emissions;
- As propane and y-grade are stored in pressure vessels, there are no VOC or HAP emissions from these units;
- As Units T21 & T22 are pressure vessels, there are no VOC emissions from the methane stored in these tanks;
- Gasoline (RVP 13) was used to estimate gasoline tank emissions;
- Distillate fuel oil #2 was used to estimate diesel fuel emissions. As the vapor pressure of distillate fuel oil #2 is less than 0.2 pounds per square inch absolute (psia), the tanks containing diesel fuel were assumed to be exempt and insignificant.
- Jet kerosene was used to estimate petroleum solvent emissions. As the vapor pressure of jet kerosene is less than 0.2 psia, the tank containing petroleum solvent was assumed to be exempt and insignificant;
- As the vapor pressures of EG and TEG are less than 0.2 psia, the tanks containing EG and TEG are exempt and insignificant;
- As the vapor pressures of ethylene glycol and propylene glycol are less than 0.2 psia, the tanks containing Ambitrol are exempt and insignificant. Note that Ambitrol is an inhibited ethylene or propylene glycol coolant containing ethylene or propylene glycol, water and less than 5% dipotassium hydrogen phosphate;
- As the vapor pressure of methyldiethanolamine (MDEA) is less than 0.2 psia, the tanks containing amine, amine/water, or defoamer are exempt and insignificant; and
- The natural gasoline liquid composition identified in HAPCalc 3.0 was used to estimate hydrocarbon emissions from the tank containing dehydrator separator liquids (the tank is estimated to contain 99 percent water and one percent hydrocarbons).

The VOC emission rate from the gasoline storage tank (Unit T41) is 647.56 pounds per year. As such, it is an exempt and insignificant source.

The combined VOC emission rate from the methanol storage tanks (Units T59 & T81) are 209.9 pounds per year. As such, they are exempt and insignificant sources.

Due to the nature of operations, startup and shutdown emissions (working/breathing losses) from the storage tanks are assumed to be accounted for in the TANKS 4.0.9d program used to calculate emissions. Due to the nature of the source, it is assumed there are no excess startup or shutdown emissions associated with flashing of the condensate. Emissions due to maintenance are negligible as the units are not in operation.

No changes are being made to these tanks or their operation. Emissions from the tanks are carried forward and not revised.

Turbine Exhaust Emissions Calculations

Unit Number: 1-6 (Y1-Y4, K4 & K5) Description: Solar Centaur 40

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower Calculations

5,800	ft above MSL
3,830	hp
3,692	hp

Fuel Consumption

9,429 Btu/hp-hr 34.81 MMBtu/hr 900 Btu/scf 38,680 scf/hr 8,760 hr/yr 304,952 MMBtu/yr 338.84 MMscf/yr Elevation Nameplate hp Mfg. Site-rated hp

Brake specific fuel consumption Hourly fuel consumption Field gas heating value Hourly fuel consumption Annual operating time Annual fuel consumption Annual fuel consumption

Steady-State Emission Rates

NOX 15.50 67.9 CO 14.70 64.4	Pollutants Uncontrolled Emission Rates								
CO 14.70 64.4	pph tpy								
	15.50 67.90								
VOC 4.47 100	14.70 64.40								
VUC 4.47 19.0	4.47 19.60								
SO2 2.90E-02 1.30E	2.90E-02 1.30E-01								

Mfg. data Previous Application

Mfg. data Btu/hp-hr x Mfg. site-rated hp / 1,000,000 Nominal heat content MMBtu/hr x 1,000,000 / Btu/scf Harvest Four Corners, LLC MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000

NOX emissions taken from previous applications (based on Kutz stack test data [10% safety factor added]) CO emissions taken from previous applications (based on manufacturers data [300% safety factor added]) VOC emissions taken from previous applications (based on manufacturers data [500% safety factor added]) SO2 emissions taken from previous applications (derived from pipeline standard sulfur concentration

[0.25 gr H2S/100 scf] and fuel consumption [10% safety factor added])

Pollutants	Emission Factors,	Uncontrolled E	mission Rates,
	lb/MMBtu	pph	tpy
PM	6.60E-03	2.30E-01	1.01E+00
PM10	6.60E-03	2.30E-01	1.01E+00
PM2.5	6.60E-03	2.30E-01	1.01E+00

Emission factors taken from AP-42, Table 3.1-2a

Uncontrolled Emission Rates (pph) = Ib/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

798 °F	Exhaust temperature	Previous a
76253 cfm	Stack flowrate	Previous a
2.46 ft	Stack diameter	Harvest Fo
4.75 ft^2	Stack exit area	3.1416 x (
267.4 fps	Stack velocity	acfm / ft^2
22.0 ft	Stack height (Units 1-4)	Harvest Fo
35.0 ft	Stack height (Units 5 & 6)	Harvest Fo

Previous application Previous application Harvest Four Corners, LLC 3.1416 x ((ft / 2) ^2) acfm / ft^2 / 60 sec/min Harvest Four Corners, LLC Harvest Four Corners, LLC

Turbine Exhaust Emissions Calculations

Unit Number:	7 & 8 (K6 & K7)
Description:	Solar Saturn T1200

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower Calculations

5,800	ft above	MSL
1,200	hp	
1,157	hp	

Fuel Consumption

11,098	Btu/hp-hr
12.84	MMBtu/hr
900	Btu/scf
14,267	scf/hr
8,760	hr/yr
112,482	MMBtu/yr
124.98	MMscf/yr

Elevation Nameplate hp Mfg. Site-rated hp

Brake specific fuel consumption Hourly fuel consumption Field gas heating value Hourly fuel consumption Annual operating time Annual fuel consumption Annual fuel consumption

Steady-State Emission Rates

pph tpy NOX 4.32 18.90 CO 6.47 28.40 VOC 2.50E-01 1.10 SO2 1.10E-02 4.60E-02	Pollutants	Uncontrolled Emission Rates,	
CO 6.47 28.40 VOC 2.50E-01 1.10		pph	tpy
VOC 2.50E-01 1.10	NOX	4.32	18.90
	00	6.47	28.40
SO2 1.10E-02 4.60E-02	VOC	2.50E-01	1.10
	SO2	1.10E-02	4.60E-02

Mfg. data Previous Application

Mfg. data Btu/hp-hr x Mfg. site-rated hp / 1,000,000 Nominal heat content MMBtu/hr x 1,000,000 / Btu/scf Harvest Four Corners, LLC MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000

NOX emissions taken from previous applications (based on Lybrook RC-6 stack test data [10% safety factor added]) CO emissions taken from previous applications (based on manufacturers data [300% safety factor added]) VOC emissions taken from previous applications (based on manufacturers data [400% safety factor added]) SO2 emissions taken from previous applications (derived from pipeline standard sulfur concentration

[0.25 gr H2S/100 scf] and fuel consumption [10% safety factor added])

Pollutants	Emission Factors, lb/MMBtu	Uncontrolled E	mission Rates, tpv
PM	6.60E-03	8.47E-02	3.71E-01
PM10	6.60E-03	8.47E-02	3.71E-01
PM2.5	6.60E-03	8.47E-02	3.71E-01

Emission factors taken from AP-42, Table 3.1-2a

Uncontrolled Emission Rates (pph) = Ib/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

ure

Previous application Previous application Harvest Four Corners, LLC 3.1416 x ((ft / 2) ^2) acfm / ft^2 / 60 sec/min Harvest Four Corners, LLC

Turbine Exhaust Emissions Calculations

Unit Number:	19 & 20 (Gen A & Gen B)
Description:	Solar Centaur 40

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower	Calculations
------------	--------------

5,800	ft above	MSL
3,016	hp	
2,907	hp	

Fuel Consumption

9,429 Btu/hp-hr 27.41 MMBtu/hr 900 Btu/scf 30,456 scf/hr 8,760 hr/yr 240,113 MMBtu/yr 266.79 MMscf/yr

Elevation Nameplate hp Mfg. Site-rated hp

Brake specific fuel consumption Hourly fuel consumption Field gas heating value Hourly fuel consumption Annual operating time Annual fuel consumption Annual fuel consumption

Steady-State Emission Rates

pph	tpy
	••• }
15.50	67.90
14.70	64.40
4.47	19.60
2.30E-02	1.00E-01
	15.50 14.70 4.47

Mfg. data **Previous Application**

Mfg. data Btu/hp-hr x Mfg. site-rated hp / 1,000,000 Nominal heat content MMBtu/hr x 1,000,000 / Btu/scf Harvest Four Corners, LLC MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000

NOX emissions taken from previous applications (based on Kutz Y4 stack test data [10% safety factor added]) CO emissions taken from previous applications (based on manufacturers data [300% safety factor added]) VOC emissions taken from previous applications (based on manufacturers data [500% safety factor added]) SO2 emissions taken from previous applications (derived from pipeline standard sulfur concentration

[0.25 gr H2S/100 scf] and fuel consumption [10% safety factor added])

Pollutants	Emission Factors, lb/MMBtu	Uncontrolled E	mission Rates, tov
PM	6.60E-03	1.81E-01	7.92E-01
PM10	6.60E-03	1.81E-01	7.92E-01
PM2.5	6.60E-03	1.81E-01	7.92E-01

Emission factors taken from AP-42, Table 3.1-2a

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

798 °F	Exhaust temperature
76253 cfm	Stack flowrate
2.46 ft	Stack diameter
4.75 ft^2	Stack exit area
267.4 fps	Stack exit velocity
22.0 ft	Stack height

Previous application Previous application Harvest Four Corners, LLC 3.1416 x ((ft / 2) ^2) acfm / ft^2 / 60 sec/min Harvest Four Corners, LLC

<u>GRI-HAPCalc[®] 3.0</u> <u>Turbine Report</u>

Facility ID:	KUTZ		Notes:		
Operation Typ	e: GAS PLA	NT			
Facility Name: KUTZ CANYON PROCESSING PLANT					
User Name:	Harvest F	our Corners, LLC			
Units of Measu	ure: U.S. STAN	IDARD			
These emissions ar	e indicated on the	e report with a "0".	ed insignificant and are treated as ze are represented on the report with "(
Turbine Unit					
Unit Name: UNITS	\$1-6				
Hours	of Operation:	8,760 Yearly			
Rate F	ower:	3692 hp			
Fuel T	vpe:	NATURAL GAS			
	ion Factor Set:	FIELD > EPA > LITERAT	URE		
	onal EF Set:	-NONE-			
		Calculated Em	issions (ton/yr)		
Chemica	l Name	Emissions	Emission Factor	Emission Factor	
HAPs					
Formaldehy	de	0.6033	0.01693680 g/bhp-hr	GRI Field	
Acetaldehyd	le	0.6175	0.01733570 g/bhp-hr	GRI Field	
1,3-Butadie	ne	0.0022	0.00006160 g/bhp-hr	GRI Field	
Acrolein		0.0093	0.00026000 g/bhp-hr	GRI Field	
Propional		0.0308	0.00086500 g/bhp-hr	GRI Field	
Propylene C	Dxide	0.0044	0.00012480 g/bhp-hr	EPA	
n-Nitrosodin	nethylamine	0.0000	0.00000100 g/bhp-hr	EPA	
Bonzono		0.0102	0.00053840 a/bbp.br	CPI Field	

01	10.10.21		1- 0.0	Dogo 1 of 5	
	Cobalt	0.0001	0.00000160 g/bhp-hr	GRI Field	
	Nickel	0.0002	0.00000610 g/bhp-hr	GRI Field	
	Manganese	0.0006	0.00001750 g/bhp-hr	GRI Field	
	Chromium	0.0002	0.00000560 g/bhp-hr	EPA	
	Chromium	0.0003	0.00000820 g/bhp-hr	GRI Field	
	Phosphorous	0.0023	0.00006520 g/bhp-hr	GRI Field	
	Beryllium	0.0000	0.00000010 g/bhp-hr	GRI Field	
	Chrysene	0.0000	0.00000100 g/bhp-hr	GRI Field	
	Phenanthrene	0.0000	0.00000050 g/bhp-hr	GRI Field	
	Biphenyl	0.0118	0.00033050 g/bhp-hr	GRI Field	
	2-Methylnaphthalene	0.0000	0.00000130 g/bhp-hr	GRI Field	
	Naphthalene	0.0003	0.00000760 g/bhp-hr	GRI Field	
	n-Nitrosomorpholine	0.0000	0.00000100 g/bhp-hr	EPA	
	Phenol	0.0039	0.00011010 g/bhp-hr	GRI Field	
	n-Hexane	0.0536	0.00150580 g/bhp-hr	GRI Field	
	2,2,4-Trimethylpentane	0.0572	0.00160530 g/bhp-hr	GRI Field	
	Xylenes(m,p,o)	0.0443	0.00124410 g/bhp-hr	GRI Field	
	Ethylbenzene	0.0037	0.00010330 g/bhp-hr	EPA	
	Toluene	0.0146	0.00041100 g/bhp-hr	GRI Field	
	Benzene	0.0192	0.00053840 g/bhp-hr	GRI Field	
	n-Nitrosodimethylamine	0.0000	0.00000100 g/bhp-hr	EPA	
	Propylene Oxide	0.0044	0.00012480 g/bhp-hr	EPA	
	Propional	0.0308	0.00086500 g/bhp-hr	GRI Field	
	Acrolein	0.0093	0.00026000 g/bhp-hr	GRI Field	
	1,3-Butadiene	0.0022	0.00006160 g/bhp-hr	GRI Field	
	Acetaldehyde	0.6175	0.01733570 g/bhp-hr	GRI Field	
	Formaldehyde	0.6033	0.01693680 g/bhp-hr	GRI Field	

	Arsenic	0.0000	0.0000060	g/bhp-hr	GRI Field
	Selenium	0.0000	0.0000030	g/bhp-hr	GRI Field
	Cadmium	0.0000	0.0000020	g/bhp-hr	GRI Field
	Mercury	0.0001	0.00000270	g/bhp-hr	GRI Field
	Lead	0.0001	0.00000340	g/bhp-hr	GRI Field
Total		1.4800			
<u>Crit</u>	teria Pollutants				
	PM	1.1343	0.03184680	g/bhp-hr	EPA
	СО	75.0947	2.10828420	g/bhp-hr	GRI Field
	NMHC	6.9057	0.19387800	g/bhp-hr	GRI Field
	NMEHC	0.4292	0.01205010	g/bhp-hr	EPA
	NOx	44.6006	1.25216290	g/bhp-hr	GRI Field
	SO2	0.0366	0.00102720	g/bhp-hr	GRI Field
<u>Oth</u>	er Pollutants				
	Methane	35.1627	0.98719230	g/bhp-hr	GRI Field
	Acetylene	0.2552	0.00716540	g/bhp-hr	GRI Field
	Ethylene	0.4970	0.01395450	g/bhp-hr	GRI Field
	Ethane	5.3458	0.15008370	g/bhp-hr	GRI Field
	Propane	0.5699	0.01600000	g/bhp-hr	GRI Field
	Isobutane	0.1710	0.00480000	g/bhp-hr	GRI Field
	Butane	0.1852	0.00520000	g/bhp-hr	GRI Field
	Trimethylamine	0.0000	0.00000070	g/bhp-hr	EPA
	Cyclopentane	0.0588	0.00165110	g/bhp-hr	GRI Field
	Butyrald/Isobutyraldehyde	0.0477	0.00134000	g/bhp-hr	GRI Field
	n-Pentane	2.8905	0.08115000	g/bhp-hr	GRI Field
	Cyclohexane	0.2181	0.00612400	g/bhp-hr	GRI Field
	Methylcyclohexane	0.3146	0.00883120	g/bhp-hr	GRI Field
	n-Octane	0.1136	0.00318890	g/bhp-hr	GRI Field
	1,3,5-Trimethylbenzene	0.1069	0.00300000	g/bhp-hr	GRI Field
	n-Nonane	0.0190	0.00053260	g/bhp-hr	GRI Field
	CO2	16,861.8987	473.39811550	g/bhp-hr	EPA
	Vanadium	0.0000	0.00000070	g/bhp-hr	GRI Field
	Copper	0.0007	0.00002050	g/bhp-hr	GRI Field
	Molybdenum	0.0007	0.00002030	g/bhp-hr	GRI Field
	Barium	0.0008	0.00002290	g/bhp-hr	GRI Field

Unit Name: UNITS19&20

Hours of Operation:	8,760	Yearly
Rate Power:	2907	hp
Fuel Type:	NATURAL GA	S
Emission Factor Set:	FIELD > EPA	> LITERATURE
Additional EF Set:	-NONE-	

Calculated Emissions (ton/yr)

<u>Chemical Name</u> HAPs	Emissions	Emission Factor	Emission Factor Set
Formaldehyde	0.4750	0.01693680 g/bhp-hr	GRI Field
Acetaldehyde	0.4862	0.01733570 g/bhp-hr	GRI Field
1,3-Butadiene	0.0017	0.00006160 g/bhp-hr	GRI Field
Acrolein	0.0073	0.00026000 g/bhp-hr	GRI Field
Propional	0.0243	0.00086500 g/bhp-hr	GRI Field

	Propylene Oxide	0.0035	0.00012480		EPA
	n-Nitrosodimethylamine	0.0000	0.00000100	g/bhp-hr	EPA
	Benzene	0.0151	0.00053840	0	GRI Field
	Toluene	0.0115	0.00041100	g/bhp-hr	GRI Field
	Ethylbenzene	0.0029	0.00010330	g/bhp-hr	EPA
	Xylenes(m,p,o)	0.0349	0.00124410	g/bhp-hr	GRI Field
	2,2,4-Trimethylpentane	0.0450	0.00160530	g/bhp-hr	GRI Field
	n-Hexane	0.0422	0.00150580	g/bhp-hr	GRI Field
	Phenol	0.0031	0.00011010	g/bhp-hr	GRI Field
	n-Nitrosomorpholine	0.0000	0.00000100	g/bhp-hr	EPA
	Naphthalene	0.0002	0.00000760	g/bhp-hr	GRI Field
	2-Methylnaphthalene	0.0000	0.00000130	g/bhp-hr	GRI Field
	Biphenyl	0.0093	0.00033050	g/bhp-hr	GRI Field
	Phenanthrene	0.0000	0.0000050	g/bhp-hr	GRI Field
	Chrysene	0.0000	0.00000100	g/bhp-hr	GRI Field
	Beryllium	0.0000	0.00000010	g/bhp-hr	GRI Field
	Phosphorous	0.0018	0.00006520	g/bhp-hr	GRI Field
	Chromium	0.0002	0.00000820	g/bhp-hr	GRI Field
	Chromium	0.0002	0.00000560	g/bhp-hr	EPA
	Manganese	0.0005	0.00001750	g/bhp-hr	GRI Field
	Nickel	0.0002	0.00000610	g/bhp-hr	GRI Field
	Cobalt	0.0000	0.00000160	g/bhp-hr	GRI Field
	Arsenic	0.0000	0.0000060		GRI Field
	Selenium	0.0000	0.0000030		GRI Field
	Cadmium	0.0000	0.0000020		GRI Field
	Mercury	0.0001	0.00000270		GRI Field
	Lead	0.0001	0.00000340		GRI Field
Total		1.1653		3,	
		1.1000			
<u>Crit</u>	<u>teria Pollutants</u>				
	PM	0.8932	0.03184680	g/bhp-hr	EPA
	CO	59.1279	2.10828420	g/bhp-hr	GRI Field
	NMHC	5.4374	0.19387800	g/bhp-hr	GRI Field
	NMEHC	0.3380	0.01205010	g/bhp-hr	EPA
	NOx	35.1175	1.25216290	g/bhp-hr	GRI Field
	SO2	0.0288	0.00102720	g/bhp-hr	GRI Field
Oth	ner Pollutants				
	Methane	27.6863	0.09710220	a/bbp.br	GRI Field
			0.98719230		
	Acetylene	0.2010	0.00716540		GRI Field GRI Field
	Ethylana		0.01395450	0/000-00	GRI FIEIQ
	Ethylene	0.3914	0.45000070	0	
	Ethane	4.2092	0.15008370	g/bhp-hr	GRI Field
	Ethane Propane	4.2092 0.4487	0.01600000	g/bhp-hr g/bhp-hr	GRI Field GRI Field
	Ethane Propane Isobutane	4.2092 0.4487 0.1346	0.01600000 0.00480000	g/bhp-hr g/bhp-hr g/bhp-hr	GRI Field GRI Field GRI Field
	Ethane Propane Isobutane Butane	4.2092 0.4487 0.1346 0.1458	0.01600000 0.00480000 0.00520000	g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr	GRI Field GRI Field GRI Field GRI Field
	Ethane Propane Isobutane Butane Trimethylamine	4.2092 0.4487 0.1346 0.1458 0.0000	0.01600000 0.00480000 0.00520000 0.00000070	g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr	GRI Field GRI Field GRI Field GRI Field EPA
	Ethane Propane Isobutane Butane Trimethylamine Cyclopentane	4.2092 0.4487 0.1346 0.1458 0.0000 0.0463	0.01600000 0.00480000 0.00520000 0.00000070 0.00165110	g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr	GRI Field GRI Field GRI Field GRI Field EPA GRI Field
	Ethane Propane Isobutane Butane Trimethylamine Cyclopentane Butyrald/Isobutyraldehyde	4.2092 0.4487 0.1346 0.1458 0.0000 0.0463 0.0376	0.01600000 0.00480000 0.00520000 0.00000070 0.00165110 0.00134000	g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr	GRI Field GRI Field GRI Field GRI Field EPA GRI Field GRI Field
	Ethane Propane Isobutane Butane Trimethylamine Cyclopentane Butyrald/Isobutyraldehyde n-Pentane	4.2092 0.4487 0.1346 0.1458 0.0000 0.0463	0.01600000 0.00480000 0.00520000 0.00000070 0.00165110 0.00134000 0.08115000	g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr	GRI Field GRI Field GRI Field GRI Field EPA GRI Field
	Ethane Propane Isobutane Butane Trimethylamine Cyclopentane Butyrald/Isobutyraldehyde n-Pentane Cyclohexane	4.2092 0.4487 0.1346 0.1458 0.0000 0.0463 0.0376 2.2759 0.1718	0.01600000 0.00480000 0.00520000 0.0000070 0.00165110 0.00134000 0.08115000 0.00612400	g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr	GRI Field GRI Field GRI Field GRI Field EPA GRI Field GRI Field
	Ethane Propane Isobutane Butane Trimethylamine Cyclopentane Butyrald/Isobutyraldehyde n-Pentane Cyclohexane Methylcyclohexane	4.2092 0.4487 0.1346 0.1458 0.0000 0.0463 0.0376 2.2759 0.1718 0.2477	0.01600000 0.00480000 0.00520000 0.0000070 0.00165110 0.00134000 0.08115000 0.00612400 0.00883120	g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr	GRI Field GRI Field GRI Field EPA GRI Field GRI Field GRI Field GRI Field GRI Field
	Ethane Propane Isobutane Butane Trimethylamine Cyclopentane Butyrald/Isobutyraldehyde n-Pentane Cyclohexane Methylcyclohexane n-Octane	4.2092 0.4487 0.1346 0.1458 0.0000 0.0463 0.0376 2.2759 0.1718 0.2477 0.0894	0.01600000 0.00480000 0.00520000 0.0000070 0.00165110 0.00134000 0.08115000 0.00612400 0.00883120 0.00318890	g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr	GRI Field GRI Field GRI Field EPA GRI Field GRI Field GRI Field GRI Field
	Ethane Propane Isobutane Butane Trimethylamine Cyclopentane Butyrald/Isobutyraldehyde n-Pentane Cyclohexane Methylcyclohexane	4.2092 0.4487 0.1346 0.1458 0.0000 0.0463 0.0376 2.2759 0.1718 0.2477	0.01600000 0.00480000 0.00520000 0.0000070 0.00165110 0.00134000 0.08115000 0.00612400 0.00883120	g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr	GRI Field GRI Field GRI Field EPA GRI Field GRI Field GRI Field GRI Field GRI Field
	Ethane Propane Isobutane Butane Trimethylamine Cyclopentane Butyrald/Isobutyraldehyde n-Pentane Cyclohexane Methylcyclohexane n-Octane	4.2092 0.4487 0.1346 0.1458 0.0000 0.0463 0.0376 2.2759 0.1718 0.2477 0.0894	0.01600000 0.00480000 0.00520000 0.0000070 0.00165110 0.00134000 0.08115000 0.00612400 0.00883120 0.00318890	g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr	GRI Field GRI Field GRI Field EPA GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field
	Ethane Propane Isobutane Butane Trimethylamine Cyclopentane Butyrald/Isobutyraldehyde n-Pentane Cyclohexane Methylcyclohexane n-Octane 1,3,5-Trimethylbenzene	4.2092 0.4487 0.1346 0.1458 0.0000 0.0463 0.0376 2.2759 0.1718 0.2477 0.0894 0.0841	0.01600000 0.00480000 0.00520000 0.0000070 0.00165110 0.00134000 0.08115000 0.00612400 0.00883120 0.00318890 0.00300000	g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr	GRI Field GRI Field GRI Field EPA GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field

Vanadium	0.0000	0.00000070 g/bhp-hr	GRI Field
Copper	0.0006	0.00002050 g/bhp-hr	GRI Field
Molybdenum	0.0006	0.00002030 g/bhp-hr	GRI Field
Barium	0.0006	0.00002290 g/bhp-hr	GRI Field

Unit Name: UNITS7&8

Hours of Operation:	8,760	Yearly
Rate Power:	1157	hp
Fuel Type:	NATURAL GA	AS
Emission Factor Set:	FIELD > EPA	> LITERATURE
Additional EF Set:	-NONE-	

Calculated Emissions (ton/yr)

Chemical Name	Emissions	Emission Factor	Emission Factor Set
HAPs_			
Formaldehyde	0.1891	0.01693680 g/bhp-hr	GRI Field
Acetaldehyde	0.1935	0.01733570 g/bhp-hr	GRI Field
1,3-Butadiene	0.0007	0.00006160 g/bhp-hr	GRI Field
Acrolein	0.0029	0.00026000 g/bhp-hr	GRI Field
Propional	0.0097	0.00086500 g/bhp-hr	GRI Field
Propylene Oxide	0.0014	0.00012480 g/bhp-hr	EPA
n-Nitrosodimethylamine	0.0000	0.00000100 g/bhp-hr	EPA
Benzene	0.0060	0.00053840 g/bhp-hr	GRI Field
Toluene	0.0046	0.00041100 g/bhp-hr	GRI Field
Ethylbenzene	0.0012	0.00010330 g/bhp-hr	EPA
Xylenes(m,p,o)	0.0139	0.00124410 g/bhp-hr	GRI Field
2,2,4-Trimethylpentane	0.0179	0.00160530 g/bhp-hr	GRI Field
n-Hexane	0.0168	0.00150580 g/bhp-hr	GRI Field
Phenol	0.0012	0.00011010 g/bhp-hr	GRI Field
n-Nitrosomorpholine	0.0000	0.00000100 g/bhp-hr	EPA
Naphthalene	0.0001	0.00000760 g/bhp-hr	GRI Field
2-Methylnaphthalene	0.0000	0.00000130 g/bhp-hr	GRI Field
Biphenyl	0.0037	0.00033050 g/bhp-hr	GRI Field
Phenanthrene	0.0000	0.0000050 g/bhp-hr	GRI Field
Chrysene	0.0000	0.00000100 g/bhp-hr	GRI Field
Beryllium	0.0000	0.00000010 g/bhp-hr	GRI Field
Phosphorous	0.0007	0.00006520 g/bhp-hr	GRI Field
Chromium	0.0001	0.00000820 g/bhp-hr	GRI Field
Chromium	0.0001	0.00000560 g/bhp-hr	EPA
Manganese	0.0002	0.00001750 g/bhp-hr	GRI Field
Nickel	0.0001	0.00000610 g/bhp-hr	GRI Field
Cobalt	0.0000	0.00000160 g/bhp-hr	GRI Field
Arsenic	0.0000	0.00000060 g/bhp-hr	GRI Field
Selenium	0.0000	0.00000030 g/bhp-hr	GRI Field
Cadmium	0.0000	0.00000020 g/bhp-hr	GRI Field
Mercury	0.0000	0.00000270 g/bhp-hr	GRI Field
Lead	0.0000	0.00000340 g/bhp-hr	GRI Field
tal	0.4639	. .	
riteria Pollutants			
PM	0.3555	0.03184680 g/bhp-hr	EPA
СО	23.5332	2.10828420 g/bhp-hr	GRI Field
NMHC	2.1641	0.19387800 g/bhp-hr	GRI Field

	NMEHC	0.1345	0.01205010	g/bhp-hr	EPA
	NOx	13.9770	1.25216290	g/bhp-hr	GRI Field
	SO2	0.0115	0.00102720	g/bhp-hr	GRI Field
<u>Ot</u>	her Pollutants				
	Methane	11.0193	0.98719230	g/bhp-hr	GRI Field
	Acetylene	0.0800	0.00716540	g/bhp-hr	GRI Field
	Ethylene	0.1558	0.01395450	g/bhp-hr	GRI Field
	Ethane	1.6753	0.15008370	g/bhp-hr	GRI Field
	Propane	0.1786	0.01600000	g/bhp-hr	GRI Field
	Isobutane	0.0536	0.00480000	g/bhp-hr	GRI Field
	Butane	0.0580	0.00520000	g/bhp-hr	GRI Field
	Trimethylamine	0.0000	0.0000070	g/bhp-hr	EPA
	Cyclopentane	0.0184	0.00165110	g/bhp-hr	GRI Field
	Butyrald/Isobutyraldehyde	0.0150	0.00134000	g/bhp-hr	GRI Field
	n-Pentane	0.9058	0.08115000	g/bhp-hr	GRI Field
	Cyclohexane	0.0684	0.00612400	g/bhp-hr	GRI Field
	Methylcyclohexane	0.0986	0.00883120	g/bhp-hr	GRI Field
	n-Octane	0.0356	0.00318890	g/bhp-hr	GRI Field
	1,3,5-Trimethylbenzene	0.0335	0.00300000	g/bhp-hr	GRI Field
	n-Nonane	0.0059	0.00053260	g/bhp-hr	GRI Field
	CO2	5,284.1866	473.39811550	g/bhp-hr	EPA
	Vanadium	0.0000	0.0000070	g/bhp-hr	GRI Field
	Copper	0.0002	0.00002050	g/bhp-hr	GRI Field
	Molybdenum	0.0002	0.00002030	g/bhp-hr	GRI Field
	Barium	0.0003	0.00002290	g/bhp-hr	GRI Field

Engine Exhaust Emissions Calculations

Unit Number: 34 Description: Caterpillar D343 Standby Generator (Diesel)

Horsepower Calculations

5,800 ft above MSL	Elevation	
390 hp	Nameplate hp	Mfg. data
Fuel Consumption		
19.30 gal/hr	Hourly fuel consumption	Mfg. data
138,000 Btu/gal	Field gas heating value	Nominal heat content
2.66 MMBtu/hr	Hourly fuel consumption	gal/hr x Btu/gal / 1,000,000 Btu/MMBtu
500 hr/yr	Annual operating time	Harvest Four Corners, LLC
9,650 gal/yr	Hourly fuel consumption	gal/hr x hr/yr
1,332 MMBtu/yr	Annual fuel consumption	MMBtu/hr x hr/yr

Steady-State Emission Rates

Pollutants	Emission Factors,	Uncontrolled E	mission Rates,
	lb/MMBtu	pph	tpy
NO2	4.41	11.75	2.94
CO	9.50E-01	2.53	6.33E-01
VOC	3.60E-01	9.59E-01	2.40E-01
SO2	2.90E-01	7.72E-01	1.93E-01
PM	3.10E-01	8.26E-01	2.06E-01
PM10	3.10E-01	8.26E-01	2.06E-01
PM2.5	3.10E-01	8.26E-01	2.06E-01
Acetaldehyde	7.67E-04	2.04E-03	5.11E-04
Benzene	9.33E-04	2.48E-03	6.21E-04
Formaldehyde	1.18E-03	3.14E-03	7.86E-04
Naphthalene	8.48E-05	2.26E-04	5.65E-05
Toluene	4.09E-04	1.09E-03	2.72E-04
Xylene	2.85E-04	7.59E-04	1.90E-04

Emission factors taken from AP-42, Tables 3.3-1 & 3.3-2

Uncontrolled Emission Rates (pph) = Ib/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

750 °F	Stack exit temperature	Estimated from Shell Offshore Inc. application submitted to EPA Region 10
777 acfm	Stack flowrate	fps x ft^2 x 60 sec/min
0.50 ft	Stack exit diameter	Harvest Four Corners, LLC
0.20 ft^2	Stack exit area	3.1416 x ((ft / 2) ^2)
65.94 fps	Stack exit velocity	Estimated from Shell Offshore Inc. application submitted to EPA Region 10
14.40 ft	Stack height	Harvest Four Corners, LLC

Engine Exhaust Emissions Calculations

Unit Number:	76
Description:	Kohler 8.5RES Standby Generator

Horsepower Calculations

ft above MSL	Elevation	
hp	Nameplate hp	Mfg. data
hp	Site-rated hp	NMAQB Procedure # 02.002-00 (loss of 3% for every 1,000 ft over 4,000 ft
hp	Site-rated hp	Mfg. data (loss of 3% for every 1,000 ft over 500 ft)
tion		
MMBtu/hr	Hourly fuel consumption	Mfg. data
Btu/scf	Field gas heating value	Nominal heat content
scf/hr	Hourly fuel consumption	MMBtu/hr x 1,000,000 / Btu/scf
hr/yr	Annual operating time	Harvest Four Corners, LLC
MMBtu/yr	Annual fuel consumption	MMBtu/hr x hr/yr
MMscf/yr	Annual fuel consumption	scf/hr x hr/yr / 1,000,000
	hp hp ion MMBtu/hr Btu/scf scf/hr hr/yr MMBtu/yr	hpNameplate hphpSite-rated hphpSite-rated hphpSite-rated hptionImage: Site-rated hptionImage: Site-ra

Steady-State Emission Rates

Pollutants	Emission Factors,	Uncontrolled E	mission Rates,
	lb/MMBtu	pph	tpy
NO2	2.27	3.00E-01	7.49E-02
CO	3.72	4.91E-01	1.23E-01
VOC	2.96E-02	3.91E-03	9.77E-04
SO2	5.88E-04	7.76E-05	1.94E-05
PM	1.94E-02	2.56E-03	6.41E-04
PM10	1.94E-02	2.56E-03	6.41E-04
PM2.5	1.94E-02	2.56E-03	6.41E-04

Emission factors taken from AP-42, Table 3.2-3

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

1400 °F 115 acfm NA ft NA fps 1.00 ft

Stack exit temperature Stack flowrate Stack exit diameter Stack exit velocity Stack height

Mfg. data Mfg. data Mfg. data Mfg. data Harvest Four Corners, LLC

ft) t)

GRI-HAPCalc[®] 3.0 Engines Report

	Facility ID:	KUTZ			Notes:	
	Operation Type:	GAS PLAN	т			
	Facility Name:			SSING PLANT		
	User Name:	Harvest Fo	our Corners, L	LC		
	Units of Measure:	U.S. STAN	DARD			
7	Emissions less than 5.00 These emissions are ind Emissions between 5.00 Engine Unit	icated on the	report with a "0".			
	Jnit Name: 8.5RES					
	Hours of C	Operation:	500	Yearly		
	Rate Powe	er:	13	hp		
	Fuel Type	:	FIELD GAS			
	Engine Ty	pe:	4-Stroke, Rich	h Burn		
	Emission I	Factor Set:	FIELD > EPA	> LITERATURE		
	Additional	EF Set:	-NONE-			
			Calc	ulated Emissi	ons (ton/yr)	

	<u>Chemical Name</u>	Emissions	Emission Factor	Emission Factor Set
H	IAPs_			
	Formaldehyde	0.0003	0.04188340 g/bhp-hr	GRI Field
	Methanol	0.0000	0.00666670 g/bhp-hr	GRI Field
	Benzene	0.0002	0.02210000 g/bhp-hr	GRI Field
	Toluene	0.0001	0.00710000 g/bhp-hr	GRI Field
	Xylenes(m,p,o)	0.0000	0.00170000 g/bhp-hr	GRI Field
	Naphthalene	0.0000	0.00027540 g/bhp-hr	GRI Field
	2-Methylnaphthalene	0.0000	0.00005050 g/bhp-hr	GRI Field
	Acenaphthylene	0.0000	0.00001890 g/bhp-hr	GRI Field
	Acenaphthene	0.0000	0.00001090 g/bhp-hr	GRI Field
	Dibenzofuran	0.0000	0.00000570 g/bhp-hr	GRI Field
	Fluorene	0.0000	0.00001720 g/bhp-hr	GRI Field
	Anthracene	0.0000	0.00000400 g/bhp-hr	GRI Field
	Phenanthrene	0.0000	0.00003210 g/bhp-hr	GRI Field
	Fluoranthene	0.0000	0.00001260 g/bhp-hr	GRI Field
	Pyrene	0.0000	0.00000860 g/bhp-hr	GRI Field
	Benz(a)anthracene	0.0000	0.00000180 g/bhp-hr	GRI Field
	Chrysene	0.0000	0.00000220 g/bhp-hr	GRI Field
	Benzo(b)fluoranthene	0.0000	0.00000220 g/bhp-hr	GRI Field
	Benzo(k)fluoranthene	0.0000	0.00000220 g/bhp-hr	GRI Field
	Benzo(g,h,i)perylene	0.0000	0.00000070 g/bhp-hr	GRI Field
То	tal	0.0006		
С	riteria Pollutants			
	СО	0.0650	9.08349210 g/bhp-hr	GRI Field
	NMEHC	0.0019	0.26396820 g/bhp-hr	GRI Field
	NOx	0.0539	7.52654670 g/bhp-hr	GRI Field
04/19/2021	09:51:19	GRI-HAPCalc 3.	0	Page 1 of 2

Other Pollutants

Methane	0.0070	0.98000000 g/bhp-hr	GRI Field
Ethylene	0.0009	0.12666670 g/bhp-hr	GRI Field
Ethane	0.0022	0.30666670 g/bhp-hr	GRI Field
Propylene	0.0002	0.02400000 g/bhp-hr	GRI Field
Propane	0.0007	0.09600000 g/bhp-hr	GRI Field

Heater Exhaust Emissions Calculations

Unit Number:	25 (H4)
Description:	Born Regenerator Gas Mole Seive Heater

Fuel Consumption

nsump	lion	
8.15	MMBtu/hr	Capacity
900	Btu/scf	Field gas heating value
9,056	scf/hr	Hourly fuel consumption
8,760	hr/yr	Annual operating time
71,394	MMBtu/yr	Annual fuel consumption
79.33	MMscf/yr	Annual fuel consumption

Mfg. data Nominal heat content MMBtu/hr x 1,000,000 / Btu/scf Harvest Four Corners, LLC MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

Pollutants	Uncontrolled E	mission Rates, tov
NOX	1.09	4.76
CO	2.30E-01	1.00
VOC	4.20E-02	1.80E-01
SO2	6.00E-03	2.60E-02

NOX emissions taken from previous applications (based on AP-42, Table 1.4-2 [100 lb NOX/MMcf] plus 20% safety factor) CO emissions taken from previous applications (based on AP-42, Table 1.4-2 [21 lb CO/MMcf] plus 20% safety factor) VOC emissions taken from previous applications (based on AP-42, Table 1.4-3 [5.8 lb TOC/MMcf] plus 20% safety factor

[assumed 34% methane])

SO2 emissions taken from previous applications (based on AP-42, Table 1.4-2 [0.6 lb SO2/MMcf] plus 10% safety factor)

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
PM	7.60	6.88E-02	3.01E-01
PM10	7.60	6.88E-02	3.01E-01
PM2.5	7.60	6.88E-02	3.01E-01
Lead	5.00E-04	4.53E-06	1.98E-05

Emission factors taken from AP-42, Table 1.4-2

Uncontrolled Emission Rates (pph) = Ib/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

Exhaust temperature	Mfg. data
Stack flowrate	Mfg. data
Stack exit diameter	Harvest Four Corners, LLC
Stack exit area	3.1416 x ((ft / 2) ^2)
Stack exit velocity	acfm / ft^2 / 60 sec/min
Stack height	Harvest Four Corners, LLC
	Stack flowrate Stack exit diameter Stack exit area Stack exit velocity

Heater Exhaust Emissions Calculations

Unit Number:	27 (H6)
Description:	Born Hot Oil Heater

Fuel Consumption

nsumption	
8.35 MMBtu/hr	Capacity
900 Btu/scf	Field gas heating value
9,278 scf/hr	Hourly fuel consumption
8,760 hr/yr	Annual operating time
73,146 MMBtu/yr	Annual fuel consumption
81.27 MMscf/yr	Annual fuel consumption

Mfg. data Nominal heat content MMBtu/hr x 1,000,000 / Btu/scf Harvest Four Corners, LLC MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

Pollutants	Uncontrolled Emission Rates,		
	pph	tpy	
NOX	1.11	4.88	
CO	2.30E-01	1.00	
VOC	4.30E-02	1.90E-01	
SO2	6.00E-03	2.70E-02	

NOX emissions taken from previous applications (based on AP-42, Table 1.4-2 [100 lb NOX/MMcf] plus 20% safety factor) CO emissions taken from previous applications (based on AP-42, Table 1.4-2 [21 lb CO/MMcf] plus 20% safety factor) VOC emissions taken from previous applications (based on AP-42, Table 1.4-3 [5.8 lb TOC/MMcf] plus 20% safety factor [assumed 34% methane])

SO2 emissions taken from previous applications (based on AP-42, Table 1.4-2 [0.6 lb SO2/MMcf] plus 10% safety factor)

Pollutants	Emission Factors,	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
PM	7.60	7.05E-02	3.09E-01
PM10	7.60	7.05E-02	3.09E-01
PM2.5	7.60	7.05E-02	3.09E-01
Lead	5.00E-04	4.64E-06	2.03E-05

Emission factors taken from AP-42, Table 1.4-2

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

600 °F	Exhaust temperature	Mfg. data
4,121 acfm	Stack flowrate	Mfg. data
4.5 ft	Stack exit diameter	Harvest Four Corners, LLC
15.90 ft^2	Stack exit area	3.1416 x ((ft / 2) ^2)
4.32 fps	Stack exit velocity	acfm / ft^2 / 60 sec/min
78.4 ft	Stack height	Harvest Four Corners, LLC

Heater Exhaust Emissions Calculations

Unit Number:	35b
Description:	Chaco Dehy Reboiler - Pesco

Fuel Consumption

nsumption	
1.75 MMBtu/hr	Capacity
900 Btu/scf	Field gas heating value
1,944 scf/hr	Hourly fuel consumption
<mark>8,760</mark> hr/yr	Annual operating time
15,330 MMBtu/yr	Annual fuel consumption
17.03 MMscf/yr	Annual fuel consumption

Mfg. data Nominal heat content MMBtu/hr x 1,000,000 / Btu/scf Harvest Four Corners, LLC MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

Pollutants	Emission Factors,	Uncontrolled Emission Rates	
	lb/MMscf	pph	tpy
NOX	100	1.94E-01	8.52E-01
СО	84	1.63E-01	7.15E-01
VOC	5.5	1.07E-02	4.68E-02
SO2	0.6	1.17E-03	5.11E-03
PM	7.60	1.48E-02	6.47E-02
PM10	7.60	1.48E-02	6.47E-02
PM2.5	7.60	1.48E-02	6.47E-02
Lead	5.00E-04	9.72E-07	4.26E-06

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2

Uncontrolled Emission Rates (pph) = Ib/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

600	°F
831	acfm
1.7	ft
2.27	ft^2
6.10	fps
16.0	ft

Exhaust temperature Stack flowrate Stack exit diameter Stack exit area Stack exit velocity Stack height

Mfg. data fps x ft^2 x 60 sec/min Harvest Four Corners, LLC 3.1416 x ((ft / 2) ^2) Estimated from Enertek & Infab reboiler data Harvest Four Corners, LLC

Heater Exhaust Emissions Calculations

Unit Number: 77b Description: Mole Sieve Dehy Reboiler

Fuel	Consumption	

- 1,648 scf/hr 900 Btu/scf 1.48 MMBtu/hr 8,760 hr/yr 12,993 MMBtu/yr 14.44 MMscf/yr
- Hourly fuel consumption Field gas heating value Capacity Annual operating time Annual fuel consumption Annual fuel consumption

Mfg. data (Infab) Nominal heat content MMBtu/hr x 1,000,000 / Btu/scf Harvest Four Corners, LLC MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/day	pph	tpy
NOX	1.03	4.29E-02	1.88E-01
СО	1.07	4.46E-02	1.95E-01
VOC	0.16	6.46E-03	2.83E-02
SO2	0.02	8.33E-04	3.65E-03

NOX emission factor taken from August 1994 Enertek Letter

CO, TOC and SO2 emission factors taken from July 1998 InFab Letter

50% of TOC emissions are assumed to be VOC emissions, consistent with AP-42, Table 1.4-2 Uncontrolled Emission Rates (pph) = lb/day / 24 hr/day

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
PM	7.60	1.25E-02	5.49E-02
PM10	7.60	1.25E-02	5.49E-02
PM2.5	7.60	1.25E-02	5.49E-02
Lead	5.00E-04	8.24E-07	3.61E-06

Emission factors taken from AP-42, Table 1.4-2

Uncontrolled Emission Rates (pph) = lb/MMscf x (scf/hr / 1,000,000)

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

600	°F		
287.46	cfm		
1.00	ft		
0.79	ft^2		
6.1	fps		
10.0	ft		

Exhaust temperature Stack flowrate Stack diameter Stack exit area Stack velocity Stack height Mfg. data (Enertek & InFab) fps x ft^2 x 60 sec/min Mfg. data (InFab) 3.1416 x ((ft / 2) ^2) Mfg. data (Enertek & InFab) Mfg. data (InFab)

<u>GRI-HAPCalc[®] 3.0</u> External Combustion Devices Report

Facility ID:	KUTZ	Notes:
Operation Type:	GAS PLANT	
Facility Name:	KUTZ CANYON PROCESSING PLANT	
User Name:	Harvest Four Corners, LLC	
Units of Measure:	U.S. STANDARD	
	E-09 tons (or tonnes) per year are considered insignicated on the report with a "0".	nificant and are treated as zero.

Emissions between 5.00E-09 and 5.00E-05 tons (or tonnes) per year are represented on the report with "0.0000".

External Combustion Devices

Unit Name: BORN1

Hours of Operation:	8,760	Yearly
Heat Input:	8.15	MMBtu/hr
Fuel Type:	NATURAL GA	AS
Device Type:	HEATER	
Emission Factor Set:	FIELD > EPA	> LITERATURE
Additional EF Set:	-NONE-	

Calculated Emissions (ton/yr)

	Chemical Name	Emissions	Emission Factor	Emission Factor Set
HA	APs_			
	3-Methylchloranthrene	0.0000	0.000000018 lb/MMBtu	EPA
	7,12-Dimethylbenz(a)anthracene	0.0000	0.0000000157 lb/MMBtu	EPA
	Formaldehyde	0.0301	0.0008440090 lb/MMBtu	GRI Field
	Methanol	0.0344	0.0009636360 lb/MMBtu	GRI Field
	Acetaldehyde	0.0263	0.0007375920 lb/MMBtu	GRI Field
	1,3-Butadiene	0.0122	0.0003423350 lb/MMBtu	GRI Field
	Benzene	0.0267	0.0007480470 lb/MMBtu	GRI Field
	Toluene	0.0363	0.0010163310 lb/MMBtu	GRI Field
	Ethylbenzene	0.0754	0.0021128220 lb/MMBtu	GRI Field
	Xylenes(m,p,o)	0.0471	0.0013205140 lb/MMBtu	GRI Field
	2,2,4-Trimethylpentane	0.1014	0.0028417580 lb/MMBtu	GRI Field
	n-Hexane	0.0502	0.0014070660 lb/MMBtu	GRI Field
	Phenol	0.0000	0.0000001070 lb/MMBtu	GRI Field
	Styrene	0.0742	0.0020788960 lb/MMBtu	GRI Field
	Naphthalene	0.0000	0.0000005100 lb/MMBtu	GRI Field
	2-Methylnaphthalene	0.0000	0.0000001470 lb/MMBtu	GRI Field
	Acenaphthylene	0.0000	0.0000000670 lb/MMBtu	GRI Field
	Biphenyl	0.0000	0.0000004730 lb/MMBtu	GRI Field
	Acenaphthene	0.0000	0.0000000900 lb/MMBtu	GRI Field
	Fluorene	0.0000	0.000000800 lb/MMBtu	GRI Field
	Anthracene	0.0000	0.000000870 lb/MMBtu	GRI Field
	Phenanthrene	0.0000	0.0000000600 lb/MMBtu	GRI Field
	Fluoranthene	0.0000	0.0000000900 lb/MMBtu	GRI Field
	Pyrene	0.0000	0.000000830 lb/MMBtu	GRI Field
	Benz(a)anthracene	0.0000	0.000000870 lb/MMBtu	GRI Field
	Chrysene	0.0000	0.0000001170 lb/MMBtu	GRI Field
04/14/2021	18:48:14	GRI-HAPCalc 3.0		Page 1 of 7

Benzo(a)pyrene	0.0000	0.000000700 lb/MMBtu	GRI Field
Benzo(b)fluoranthene	0.0000	0.0000001500 lb/MMBtu	GRI Field
Benzo(k)fluoranthene	0.0000	0.000007600 lb/MMBtu	GRI Field
Benzo(g,h,i)perylene	0.0000	0.000002600 lb/MMBtu	GRI Field
Indeno(1,2,3-c,d)pyrene	0.0000	0.0000001200 lb/MMBtu	GRI Field
Dibenz(a,h)anthracene	0.0000	0.0000001030 lb/MMBtu	GRI Field
Lead	0.0000	0.0000004902 lb/MMBtu	EPA
Total	0.5143		
Criteria Pollutants			
VOC	0.1925	0.0053921569 lb/MMBtu	EPA
PM	0.2660	0.0074509804 lb/MMBtu	EPA
PM, Condensible	0.1995	0.0055882353 lb/MMBtu	EPA
PM, Filterable	0.0665	0.0018627451 lb/MMBtu	EPA
CO	1.1553	0.0323636360 lb/MMBtu	GRI Field
NMHC	0.3045	0.0085294118 lb/MMBtu	EPA
NOx	3.4632	0.0970167730 lb/MMBtu	GRI Field
SO2	0.0210	0.0005880000 lb/MMBtu	EPA
Other Pollutants			
Dichlorobenzene	0.0000	0.0000011765 lb/MMBtu	EPA
Methane	0.3756	0.0105212610 lb/MMBtu	GRI Field
Acetylene	0.4998	0.0140000000 lb/MMBtu	GRI Field
Ethylene	0.0338	0.0009476310 lb/MMBtu	GRI Field
Ethane	0.0939	0.0026312210 lb/MMBtu	GRI Field
Propylene	0.0837	0.0023454550 lb/MMBtu	GRI Field
Propane	0.0381	0.0010686280 lb/MMBtu	GRI Field
Isobutane	0.0523	0.0014640770 lb/MMBtu	GRI Field
Butane	0.0491	0.0013766990 lb/MMBtu	GRI Field
Cyclopentane	0.0404	0.0011304940 lb/MMBtu	GRI Field
Pentane	0.1238	0.0034671850 lb/MMBtu	GRI Field
n-Pentane	0.0508	0.0014221310 lb/MMBtu	GRI Field
Cyclohexane	0.0328	0.0009183830 lb/MMBtu	GRI Field
Methylcyclohexane	0.0786	0.0022011420 lb/MMBtu	GRI Field
n-Octane	0.1019	0.0028538830 lb/MMBtu	GRI Field
1,2,3-Trimethylbenzene	0.1222	0.0034224540 lb/MMBtu	GRI Field
1,2,4-Trimethylbenzene	0.1222	0.0034224540 lb/MMBtu	GRI Field
1,3,5-Trimethylbenzene	0.1222	0.0034224540 lb/MMBtu	GRI Field
n-Nonane	0.1307	0.0036604170 lb/MMBtu	GRI Field
CO2	4,199.6471	117.6470588235 lb/MMBtu	EPA

Unit Name: BORN2

Hours of Operation:	8,760	Yearly	
Heat Input:	8.35	MMBtu/hr	
Fuel Type:	NATURAL GAS		
Device Type:	HEATER		
Emission Factor Set:	FIELD > EPA	> LITERATURE	
Additional EF Set:	-NONE-		

Calculated Emissions (ton/yr)

Chemical Name

Emissions Emission Factor

Emission Factor Set

<u>HAPs</u>

<u>HAPS</u>			
3-Methylchloranthrene	0.0000	0.000000018 lb/MMBtu	EPA
7,12-Dimethylbenz(a)anthracene	0.0000	0.000000157 lb/MMBtu	EPA
Formaldehyde	0.0309	0.0008440090 lb/MMBtu	GRI Field
Methanol	0.0352	0.0009636360 lb/MMBtu	GRI Field
Acetaldehyde	0.0270	0.0007375920 lb/MMBtu	GRI Field
1,3-Butadiene	0.0125	0.0003423350 lb/MMBtu	GRI Field
Benzene	0.0274	0.0007480470 lb/MMBtu	GRI Field
Toluene	0.0372	0.0010163310 lb/MMBtu	GRI Field
Ethylbenzene	0.0773	0.0021128220 lb/MMBtu	GRI Field
Xylenes(m,p,o)	0.0483	0.0013205140 lb/MMBtu	GRI Field
2,2,4-Trimethylpentane	0.1039	0.0028417580 lb/MMBtu	GRI Field
n-Hexane	0.0515	0.0014070660 lb/MMBtu	GRI Field
Phenol	0.0000	0.0000001070 lb/MMBtu	GRI Field
Styrene	0.0760	0.0020788960 lb/MMBtu	GRI Field
Naphthalene	0.0000	0.0000005100 lb/MMBtu	GRI Field
2-Methylnaphthalene	0.0000	0.0000001470 lb/MMBtu	GRI Field
Acenaphthylene	0.0000	0.000000670 lb/MMBtu	GRI Field
Biphenyl	0.0000	0.0000004730 lb/MMBtu	GRI Field
Acenaphthene	0.0000	0.000000900 lb/MMBtu	GRI Field
Fluorene	0.0000	0.000000800 lb/MMBtu	GRI Field
Anthracene	0.0000	0.000000870 lb/MMBtu	GRI Field
Phenanthrene	0.0000	0.000000600 lb/MMBtu	GRI Field
Fluoranthene	0.0000	0.000000900 lb/MMBtu	GRI Field
Pyrene	0.0000	0.000000830 lb/MMBtu	GRI Field
Benz(a)anthracene	0.0000	0.000000870 lb/MMBtu	GRI Field
Chrysene	0.0000	0.0000001170 lb/MMBtu	GRI Field
Benzo(a)pyrene	0.0000	0.0000000700 lb/MMBtu	GRI Field
Benzo(b)fluoranthene	0.0000	0.0000001500 lb/MMBtu	GRI Field
Benzo(k)fluoranthene	0.0000	0.000007600 lb/MMBtu	GRI Field
Benzo(g,h,i)perylene	0.0000	0.000002600 lb/MMBtu	GRI Field
Indeno(1,2,3-c,d)pyrene	0.0000	0.0000001200 lb/MMBtu	GRI Field
Dibenz(a,h)anthracene	0.0000	0.0000001030 lb/MMBtu	GRI Field
Lead	0.0000	0.0000004902 lb/MMBtu	EPA
Total	0.5272		
Criteria Pollutants			
VOC	0.1972	0.0053921569 lb/MMBtu	EPA
PM	0.1972	0.0074509804 lb/MMBtu	EPA
PM, Condensible	0.2044	0.0055882353 lb/MMBtu	EPA
PM, Filterable	0.0681	0.0018627451 lb/MMBtu	EPA
CO	1.1836	0.0323636360 lb/MMBtu	GRI Field
NMHC	0.3119	0.0085294118 lb/MMBtu	EPA
NOX	3.5482	0.0970167730 lb/MMBtu	GRI Field
SO2	0.0215	0.0005880000 lb/MMBtu	EPA
302	0.0210		
Other Dellutente			
Other Pollutants	0.0000		
Dichlorobenzene	0.0000	0.0000011765 lb/MMBtu	EPA CBI Field
Methane	0.3848	0.0105212610 lb/MMBtu	GRI Field
Acetylene	0.5120	0.0140000000 lb/MMBtu	GRI Field
Ethylene Ethane	0.0347	0.0009476310 lb/MMBtu	GRI Field
	0.0962 0.0858	0.0026312210 lb/MMBtu 0.0023454550 lb/MMBtu	GRI Field GRI Field
Propylene	0.0858	0.0023454550 lb/MMBtu	GRI Field
Propane	0.0391	0.001000200 ID/IVIIVIBLU	GRI FIEID

lsobutane	0.0535	0.0014640770 lb/MMBtu	GRI Field
Butane	0.0504	0.0013766990 lb/MMBtu	GRI Field
Cyclopentane	0.0413	0.0011304940 lb/MMBtu	GRI Field
Pentane	0.1268	0.0034671850 lb/MMBtu	GRI Field
n-Pentane	0.0520	0.0014221310 lb/MMBtu	GRI Field
Cyclohexane	0.0336	0.0009183830 lb/MMBtu	GRI Field
Methylcyclohexane	0.0805	0.0022011420 lb/MMBtu	GRI Field
n-Octane	0.1044	0.0028538830 lb/MMBtu	GRI Field
1,2,3-Trimethylbenzene	0.1252	0.0034224540 lb/MMBtu	GRI Field
1,2,4-Trimethylbenzene	0.1252	0.0034224540 lb/MMBtu	GRI Field
1,3,5-Trimethylbenzene	0.1252	0.0034224540 lb/MMBtu	GRI Field
n-Nonane	0.1339	0.0036604170 lb/MMBtu	GRI Field
CO2	4,302.7059	117.6470588235 lb/MMBtu	EPA

Unit Name: REBOILER#1

Hours of Operation:	8,760	Yearly
Heat Input:	1.75	MMBtu/hr
Fuel Type:	NATURAL GA	AS
Device Type:	BOILER	
Emission Factor Set:	FIELD > EPA	> LITERATURE
Additional EF Set:	-NONE-	

Calculated Emissions (ton/yr)

Chemical Name	Emissions	Emission Factor	Emission Factor Set
<u>HAPs</u>			
3-Methylchloranthrene	0.0000	0.000000018 lb/MMBtu	EPA
7,12-Dimethylbenz(a)anthracene	0.0000	0.0000000157 lb/MMBtu	EPA
Formaldehyde	0.0027	0.0003522500 lb/MMBtu	GRI Field
Methanol	0.0033	0.0004333330 lb/MMBtu	GRI Field
Acetaldehyde	0.0022	0.0002909000 lb/MMBtu	GRI Field
1,3-Butadiene	0.0000	0.0000001830 lb/MMBtu	GRI Field
Benzene	0.0000	0.0000062550 lb/MMBtu	GRI Field
Toluene	0.0000	0.0000053870 lb/MMBtu	GRI Field
Ethylbenzene	0.0000	0.0000000720 lb/MMBtu	GRI Field
Xylenes(m,p,o)	0.0000	0.0000010610 lb/MMBtu	GRI Field
2,2,4-Trimethylpentane	0.0002	0.0000323000 lb/MMBtu	GRI Field
n-Hexane	0.0025	0.0003214790 lb/MMBtu	GRI Field
Phenol	0.0000	0.000000950 lb/MMBtu	GRI Field
Naphthalene	0.0000	0.0000002950 lb/MMBtu	GRI Field
2-Methylnaphthalene	0.0000	0.0000000700 lb/MMBtu	GRI Field
Acenaphthylene	0.0000	0.0000000550 lb/MMBtu	GRI Field
Biphenyl	0.0000	0.0000011500 lb/MMBtu	GRI Field
Acenaphthene	0.0000	0.000000800 lb/MMBtu	GRI Field
Fluorene	0.0000	0.0000000700 lb/MMBtu	GRI Field
Anthracene	0.0000	0.000000750 lb/MMBtu	GRI Field
Phenanthrene	0.0000	0.000000550 lb/MMBtu	GRI Field
Fluoranthene	0.0000	0.000000800 lb/MMBtu	GRI Field
Pyrene	0.0000	0.000000750 lb/MMBtu	GRI Field
Benz(a)anthracene	0.0000	0.000000750 lb/MMBtu	GRI Field
Chrysene	0.0000	0.0000001000 lb/MMBtu	GRI Field
Benzo(a)pyrene	0.0000	0.000000600 lb/MMBtu	GRI Field

Benzo(b)fluoranthene	0.0000	0.0000001350 lb/MMBtu	GRI Field
Benzo(k)fluoranthene	0.0000	0.0000004400 lb/MMBtu	GRI Field
Benzo(g,h,i)perylene	0.0000	0.0000001500 lb/MMBtu	GRI Field
Indeno(1,2,3-c,d)pyrene	0.0000	0.0000001000 lb/MMBtu	GRI Field
Dibenz(a,h)anthracene	0.0000	0.000000950 lb/MMBtu	GRI Field
Lead	0.0000	0.0000004902 lb/MMBtu	EPA
Total	0.0109		
Criteria Pollutants			
VOC	0.0413	0.0053921569 lb/MMBtu	EPA
PM	0.0571	0.0074509804 lb/MMBtu	EPA
PM, Condensible	0.0428	0.0055882353 lb/MMBtu	EPA
PM, Filterable	0.0143	0.0018627451 lb/MMBtu	EPA
СО	0.2355	0.0307275000 lb/MMBtu	GRI Field
NMHC	0.0654	0.0085294118 lb/MMBtu	EPA
NOx	0.6765	0.0882553330 lb/MMBtu	GRI Field
SO2	0.0045	0.0005880000 lb/MMBtu	EPA
Other Pollutants			
Dichlorobenzene	0.0000	0.0000011765 lb/MMBtu	EPA
Methane	0.0451	0.0058790650 lb/MMBtu	GRI Field
	0.0431		Ortificia
Acetylene	0.0409	0.0053314000 lb/MMBtu	GRI Field
Acetylene Ethylene			
•	0.0409	0.0053314000 lb/MMBtu	GRI Field
Ethylene	0.0409 0.0040	0.0053314000 lb/MMBtu 0.0005264000 lb/MMBtu	GRI Field GRI Field
Ethylene Ethane	0.0409 0.0040 0.0129	0.0053314000 lb/MMBtu 0.0005264000 lb/MMBtu 0.0016804650 lb/MMBtu	GRI Field GRI Field GRI Field
Ethylene Ethane Propylene	0.0409 0.0040 0.0129 0.0072	0.0053314000 lb/MMBtu 0.0005264000 lb/MMBtu 0.0016804650 lb/MMBtu 0.0009333330 lb/MMBtu	GRI Field GRI Field GRI Field GRI Field
Ethylene Ethane Propylene Propane	0.0409 0.0040 0.0129 0.0072 0.0092	0.0053314000 lb/MMBtu 0.0005264000 lb/MMBtu 0.0016804650 lb/MMBtu 0.0009333330 lb/MMBtu 0.0012019050 lb/MMBtu	GRI Field GRI Field GRI Field GRI Field GRI Field
Ethylene Ethane Propylene Propane Butane	0.0409 0.0040 0.0129 0.0072 0.0092 0.0106	0.0053314000 lb/MMBtu 0.0005264000 lb/MMBtu 0.0016804650 lb/MMBtu 0.0009333330 lb/MMBtu 0.0012019050 lb/MMBtu 0.0013866350 lb/MMBtu	GRI Field GRI Field GRI Field GRI Field GRI Field
Ethylene Ethane Propylene Propane Butane Cyclopentane	0.0409 0.0040 0.0129 0.0072 0.0092 0.0106 0.0003	0.0053314000 lb/MMBtu 0.0005264000 lb/MMBtu 0.0016804650 lb/MMBtu 0.0009333330 lb/MMBtu 0.0012019050 lb/MMBtu 0.0013866350 lb/MMBtu 0.0000405000 lb/MMBtu	GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field
Ethylene Ethane Propylene Propane Butane Cyclopentane Pentane	0.0409 0.0040 0.0129 0.0072 0.0092 0.0106 0.0003 0.0158	0.0053314000 lb/MMBtu 0.0005264000 lb/MMBtu 0.0016804650 lb/MMBtu 0.0009333330 lb/MMBtu 0.0012019050 lb/MMBtu 0.0013866350 lb/MMBtu 0.0000405000 lb/MMBtu 0.0020656400 lb/MMBtu	GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field
Ethylene Ethane Propylene Propane Butane Cyclopentane Pentane n-Pentane	0.0409 0.0040 0.0129 0.0072 0.0092 0.0106 0.0003 0.0158 0.0153	0.0053314000 lb/MMBtu 0.0005264000 lb/MMBtu 0.0016804650 lb/MMBtu 0.0009333330 lb/MMBtu 0.0012019050 lb/MMBtu 0.0013866350 lb/MMBtu 0.0000405000 lb/MMBtu 0.0020656400 lb/MMBtu	GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field
Ethylene Ethane Propylene Propane Butane Cyclopentane Pentane n-Pentane Cyclohexane	0.0409 0.0040 0.0129 0.0072 0.0092 0.0106 0.0003 0.0158 0.0153 0.0003	0.0053314000 lb/MMBtu 0.0005264000 lb/MMBtu 0.0016804650 lb/MMBtu 0.0009333330 lb/MMBtu 0.0012019050 lb/MMBtu 0.0013866350 lb/MMBtu 0.0000405000 lb/MMBtu 0.0020656400 lb/MMBtu 0.0020000000 lb/MMBtu	GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field
Ethylene Ethane Propylene Propane Butane Cyclopentane Pentane n-Pentane Cyclohexane Methylcyclohexane	0.0409 0.0040 0.0129 0.0072 0.0092 0.0106 0.0003 0.0158 0.0153 0.0003 0.0013	0.0053314000 lb/MMBtu 0.0005264000 lb/MMBtu 0.0016804650 lb/MMBtu 0.0009333330 lb/MMBtu 0.0012019050 lb/MMBtu 0.0013866350 lb/MMBtu 0.0000405000 lb/MMBtu 0.0020656400 lb/MMBtu 0.0020000000 lb/MMBtu 0.0000451000 lb/MMBtu	GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field

Unit Name: REBOILER#2

Hours of Operation:	8,760	Yearly
Heat Input:	1.48	MMBtu/hr
Fuel Type:	NATURAL GA	AS
Device Type:	BOILER	
Emission Factor Set:	FIELD > EPA	> LITERATURE
Additional EF Set:	-NONE-	

Calculated Emissions (ton/yr)

<u>Chemical Name</u> HAPs	Emissions	Emission Factor	Emission Factor Set
3-Methylchloranthrene	0.0000	0.000000018 lb/MMBtu	EPA
7,12-Dimethylbenz(a)anthracene	0.0000	0.000000157 lb/MMBtu	EPA
Formaldehyde	0.0023	0.0003522500 lb/MMBtu	GRI Field
Methanol	0.0028	0.0004333330 lb/MMBtu	GRI Field

	Acetaldehyde	0.0019	0.0002909000 lb/MMBtu	GRI Field
	1,3-Butadiene	0.0000	0.0000001830 lb/MMBtu	GRI Field
	Benzene	0.0000	0.0000062550 lb/MMBtu	GRI Field
	Toluene	0.0000	0.0000053870 lb/MMBtu	GRI Field
	Ethylbenzene	0.0000	0.0000000720 lb/MMBtu	GRI Field
	Xylenes(m,p,o)	0.0000	0.0000010610 lb/MMBtu	GRI Field
	2,2,4-Trimethylpentane	0.0002	0.0000323000 lb/MMBtu	GRI Field
	n-Hexane	0.0021	0.0003214790 lb/MMBtu	GRI Field
	Phenol	0.0000	0.000000950 lb/MMBtu	GRI Field
	Naphthalene	0.0000	0.0000002950 lb/MMBtu	GRI Field
	2-Methylnaphthalene	0.0000	0.000000700 lb/MMBtu	GRI Field
	Acenaphthylene	0.0000	0.000000550 lb/MMBtu	GRI Field
	Biphenyl	0.0000	0.0000011500 lb/MMBtu	GRI Field
	Acenaphthene	0.0000	0.000000800 lb/MMBtu	GRI Field
	Fluorene	0.0000	0.000000700 lb/MMBtu	GRI Field
	Anthracene	0.0000	0.000000750 lb/MMBtu	GRI Field
	Phenanthrene	0.0000	0.000000550 lb/MMBtu	GRI Field
	Fluoranthene	0.0000	0.000000800 lb/MMBtu	GRI Field
	Pyrene	0.0000	0.000000750 lb/MMBtu	GRI Field
	Benz(a)anthracene	0.0000	0.000000750 lb/MMBtu	GRI Field
	Chrysene	0.0000	0.0000001000 lb/MMBtu	GRI Field
	Benzo(a)pyrene	0.0000	0.000000600 lb/MMBtu	GRI Field
	Benzo(b)fluoranthene	0.0000	0.0000001350 lb/MMBtu	GRI Field
	Benzo(k)fluoranthene	0.0000	0.0000004400 lb/MMBtu	GRI Field
	Benzo(g,h,i)perylene	0.0000	0.0000001500 lb/MMBtu	GRI Field
	Indeno(1,2,3-c,d)pyrene	0.0000	0.0000001000 lb/MMBtu	GRI Field
	Dibenz(a,h)anthracene	0.0000	0.000000950 lb/MMBtu	GRI Field
	2.200.2(4,)4.1.1.1.400.1.0			
	Lead	0.0000	0.0000004902 lb/MMBtu	EPA
т	Lead		0.0000004902 lb/MMBtu	EPA
	Lead	0.0000	0.0000004902 lb/MMBtu	EPA
	Lead	0.0000		
	Lead otal iteria Pollutants VOC	0.0000 0.0093 0.0350	0.0053921569 lb/MMBtu	EPA
	Lead otal iteria Pollutants VOC PM	0.0000 0.0093 0.0350 0.0483	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu	EPA EPA
	Lead otal iteria Pollutants VOC PM PM, Condensible	0.0000 0.0093 0.0350 0.0483 0.0362	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu	EPA EPA EPA
	Lead otal iteria Pollutants VOC PM PM, Condensible PM, Filterable	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu	EPA EPA EPA EPA
	Lead iteria Pollutants VOC PM PM, Condensible PM, Filterable CO	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu	EPA EPA EPA EPA GRI Field
	Lead teria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.092 0.0553	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.0085294118 lb/MMBtu	EPA EPA EPA GRI Field EPA
	Lead otal iteria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOx	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.0085294118 lb/MMBtu 0.0882553330 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field
	Lead teria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.092 0.0553	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.0085294118 lb/MMBtu	EPA EPA EPA GRI Field EPA
	Lead otal iteria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOx	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.0085294118 lb/MMBtu 0.0882553330 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field
<u>Cr</u>	Lead otal iteria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOx	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.0085294118 lb/MMBtu 0.0882553330 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field
<u>Cr</u>	Lead iteria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOx SO2	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.0085294118 lb/MMBtu 0.0882553330 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field
<u>Cr</u>	Lead teria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOx SO2 her Pollutants	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721 0.0038	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.0882594118 lb/MMBtu 0.0882553330 lb/MMBtu 0.0005880000 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field EPA
<u>Cr</u>	Lead otal iteria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOx SO2 her Pollutants Dichlorobenzene	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721 0.0038	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.0882553330 lb/MMBtu 0.0005880000 lb/MMBtu 0.0005880000 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field EPA
<u>Cr</u>	Lead teria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOx SO2 her Pollutants Dichlorobenzene Methane	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721 0.0038 0.0000 0.0381	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.0085294118 lb/MMBtu 0.0882553330 lb/MMBtu 0.0005880000 lb/MMBtu 0.0005880000 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field EPA GRI Field
<u>Cr</u>	Lead teria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOx SO2 her Pollutants Dichlorobenzene Methane Acetylene	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721 0.0038 0.0000 0.0381 0.0346	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.0882553330 lb/MMBtu 0.0005880000 lb/MMBtu 0.0005880000 lb/MMBtu 0.0058790650 lb/MMBtu 0.0053314000 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field EPA GRI Field GRI Field
<u>Cr</u>	Lead otal iteria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOx SO2 her Pollutants Dichlorobenzene Methane Acetylene Ethylene	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721 0.0038 0.0000 0.0381 0.0346 0.0034	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.0882553330 lb/MMBtu 0.005880000 lb/MMBtu 0.0005880000 lb/MMBtu 0.0058790650 lb/MMBtu 0.0053314000 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field EPA GRI Field GRI Field GRI Field
<u>Cr</u>	Lead teria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOx SO2 her Pollutants Dichlorobenzene Methane Acetylene Ethylene Ethylene	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721 0.0038 0.0000 0.0381 0.0346 0.0034 0.0034 0.0109	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.085294118 lb/MMBtu 0.0882553330 lb/MMBtu 0.0005880000 lb/MMBtu 0.00058790650 lb/MMBtu 0.0053314000 lb/MMBtu 0.0005264000 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field GRI Field GRI Field GRI Field GRI Field
<u>Cr</u>	Lead teria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOX SO2 her Pollutants Dichlorobenzene Methane Acetylene Ethylene Ethylene Ethane Propylene	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721 0.0038 0.0000 0.0381 0.0346 0.0034 0.0109 0.0061	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.085294118 lb/MMBtu 0.0882553330 lb/MMBtu 0.005880000 lb/MMBtu 0.0058790650 lb/MMBtu 0.0053314000 lb/MMBtu 0.0016804650 lb/MMBtu 0.0016804650 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field EPA EPA GRI Field GRI Field GRI Field GRI Field
<u>Cr</u>	Lead teria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOx SO2 POLIUTANTS Dichlorobenzene Methane Acetylene Ethylene Ethylene Propylene Propane	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721 0.0038 0.0000 0.0381 0.0346 0.0034 0.0034 0.0109 0.0061 0.0078	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.085294118 lb/MMBtu 0.0882553330 lb/MMBtu 0.0005880000 lb/MMBtu 0.0005880000 lb/MMBtu 0.0053314000 lb/MMBtu 0.0005264000 lb/MMBtu 0.0016804650 lb/MMBtu 0.000933330 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field EPA GRI Field GRI Field GRI Field GRI Field GRI Field
<u>Cr</u>	Lead teria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOx SO2 her Pollutants Dichlorobenzene Methane Acetylene Ethylene Ethylene Ethylene Propylene Propane Butane	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721 0.0038 0.0000 0.0381 0.0346 0.0034 0.0034 0.0109 0.0061 0.0078 0.0090	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.085294118 lb/MMBtu 0.0882553330 lb/MMBtu 0.005880000 lb/MMBtu 0.0058790650 lb/MMBtu 0.005264000 lb/MMBtu 0.0016804650 lb/MMBtu 0.0016804650 lb/MMBtu 0.0012019050 lb/MMBtu 0.0013866350 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field EPA EPA GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field
<u>Cr</u>	Lead teria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOX SO2 her Pollutants Dichlorobenzene Methane Acetylene Ethylene Ethylene Ethylene Ethane Propylene Propane Butane Cyclopentane	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721 0.0038 0.0000 0.0381 0.0346 0.0034 0.0034 0.0034 0.0001 0.0061 0.0078 0.0090 0.0003	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.085294118 lb/MMBtu 0.0882553330 lb/MMBtu 0.005880000 lb/MMBtu 0.0058790650 lb/MMBtu 0.0053314000 lb/MMBtu 0.005264000 lb/MMBtu 0.0016804650 lb/MMBtu 0.0012019050 lb/MMBtu 0.0013866350 lb/MMBtu 0.00013866350 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field EPA EPA GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field
<u>Cr</u>	Lead teria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOx SO2 her Pollutants Dichlorobenzene Methane Acetylene Ethylene Ethylene Ethylene Propylene Propane Butane Cyclopentane Pentane	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721 0.0038 0.0000 0.0381 0.0346 0.0034 0.0034 0.0034 0.0109 0.0061 0.0078 0.0090 0.0003 0.0003 0.0134	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.085294118 lb/MMBtu 0.0882553330 lb/MMBtu 0.0005880000 lb/MMBtu 0.0005880000 lb/MMBtu 0.0053314000 lb/MMBtu 0.005264000 lb/MMBtu 0.0016804650 lb/MMBtu 0.0012019050 lb/MMBtu 0.0013866350 lb/MMBtu 0.0003405000 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field EPA EPA GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field
<u>Cr</u>	Lead teria Pollutants VOC PM PM, Condensible PM, Filterable CO NMHC NOx SO2 her Pollutants Dichlorobenzene Methane Acetylene Ethylene Ethylene Ethylene Ethane Propylene Propane Butane Cyclopentane Pentane n-Pentane	0.0000 0.0093 0.0350 0.0483 0.0362 0.0121 0.1992 0.0553 0.5721 0.0038 0.0000 0.0381 0.0346 0.0034 0.0034 0.0109 0.0061 0.0078 0.0090 0.0003 0.0090 0.0003 0.0134 0.0130	0.0053921569 lb/MMBtu 0.0074509804 lb/MMBtu 0.0055882353 lb/MMBtu 0.0018627451 lb/MMBtu 0.0307275000 lb/MMBtu 0.085294118 lb/MMBtu 0.0882553330 lb/MMBtu 0.005880000 lb/MMBtu 0.0058790650 lb/MMBtu 0.0053314000 lb/MMBtu 0.005264000 lb/MMBtu 0.0016804650 lb/MMBtu 0.0012019050 lb/MMBtu 0.0013866350 lb/MMBtu 0.0013866350 lb/MMBtu 0.0020656400 lb/MMBtu 0.0020656400 lb/MMBtu	EPA EPA EPA GRI Field EPA GRI Field EPA EPA GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field GRI Field

n-Octane	0.0003	0.0000506000 lb/MMBtu	GRI Field
n-Nonane	0.0000	0.0000050000 lb/MMBtu	GRI Field
CO2	762.6353	117.6470588235 lb/MMBtu	EPA

```
GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES
Case Name: Kutz TEG Dehydrator (Unit 35)
File Name: C:\1 - Office\1 - Cirrus\1-Projects\1 - Harvest\1 - Permiting\4 - Title
V\2 - Kutz\1 - Application\Harvest - Kutz - GRI-GLYCalc (Unit 35).ddf
    Date: April 14, 2021
DESCRIPTION:
  _____
   Description: Unit 35
               Capacity: 140 MMSCFD
               Gas Sample Pulled 08/12/2020
   Annual Hours of Operation: 8760.0 hours/yr
WET GAS:
 _____
    Temperature:
                   125.00 deg. F
    Pressure:
                   575.00 psig
                Wet Gas Water Content: Saturated
              Component
                                    Conc.
                                  (vol %)
    ----- -----
                    Carbon Dioxide
                                    1.8251

        Nitrogen
        0.3113

        Methane
        85.5219

                          Ethane
Propane
                                    7.2812
                                     2.9445
                        Isobutane 0.5286
                         n-Butane
                                    0.7552
                       Isopentane
n-Pentane
                                     0.2099
                      n-Pentane 0.1406
Cyclopentane 0.0085
                         n-Hexane
                                    0.0552
                      Cyclohexane
                                      0.0207
                     Other Hexanes
Heptanes
                                    0.1212
0.0536
                 Methylcyclohexane
                                     0.0752
            2,2,4-Trimethylpentane
                                      0.0037
                          Benzene
                                     0.0074
                          Toluene
                                    0.0494
                      Ethylbenzene
                                     0.0012
                                      0.0150
                          Xylenes
```

C8+ Heavies 0.0706

DRY GAS: _____ Flow Rate: 140.0 MMSCF/day Water Content: 3.0 lbs. H20/MMSCF LEAN GLYCOL: _____ Glycol Type: TEG Water Content: 0.7 wt% H20 Flow Rate: 16.9 gpm PUMP: _____ Glycol Pump Type: Electric/Pneumatic FLASH TANK: _____ Flash Control: Combustion device Flash Control Efficiency: 95.00 % Temperature: 130.0 deg. F Pressure: 60.0 psig REGENERATOR OVERHEADS CONTROL DEVICE: _____ Control Device: Condenser Temperature: 60.0 deg. F Pressure: 12.4 psia Control Device: Combustion Device Destruction Efficiency: 95.0 % Excess Oxygen:5.0 %Ambient Air Temperature:70.0 deg. F

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Kutz TEG Dehydrator (Unit 35)
File Name: C:\1 - Office\1 - Cirrus\1-Projects\1 - Harvest\1 - Permiting\4 - Title
V\2 - Kutz\1 - Application\Harvest - Kutz - GRI-GLYCalc (Unit 35).ddf
Date: April 14, 2021

DESCRIPTION:

Description: Unit 35 Capacity: 140 MMSCFD Gas Sample Pulled 08/12/2020

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0742	1.782	0.3252
Ethane	0.0874	2.097	0.3827
Propane	0.1382	3.318	0.6055
Isobutane	0.0372	0.894	0.1631
n-Butane	0.0620	1.489	0.2718
Isopentane	0.0077	0.185	0.0338
n-Pentane	0.0113	0.270	0.0493
Cyclopentane	0.0015	0.035	0.0064
n-Hexane	0.0022	0.053	0.0096
Cyclohexane	0.0029	0.068	0.0125
Other Hexanes	0.0053	0.128	0.0233
Heptanes	0.0016	0.039	0.0072
Methylcyclohexane	0.0060	0.145	0.0264
2,2,4-Trimethylpentane	0.0001	0.001	0.0002
Benzene	0.0058	0.140	0.0255
Toluene	0.0200	0.480	0.0877
Ethylbenzene	0.0002	0.004	0.0008
Xylenes	0.0032	0.076	0.0139
C8+ Heavies	0.0001	0.003	0.0005

Total	Emissions	0.4670	11.208	2.0454
Total Hydrocarbon	Emissions	0.4670	11.208	2.0454
Total VOC	Emissions	0.3054	7.329	1.3375
Total HAP	Emissions	0.0315	0.755	0.1378
Total BTEX	Emissions	0.0292	0.701	0.1279

UNCONTROLLED REGENERATOR EMISSIONS

Component lbs/hr lbs/day tons/yr

Component	lbs/hr	lbs/day	tons/yr
Methane	1.5052	36.126	6.5929
Ethane	1.8676	44.823	8.1803
Propane	3.9606	95.056	17.3476
Isobutane	1.4955	35.893	6.5505
n-Butane	3.0848	74.035	13.5113
Isopentane	1.1310	27.143	4.9536
n-Pentane	1.0009	24.022	4.3840
Cyclopentane	0.2961	7.107	1.2970
n-Hexane	0.8547	20.513	3.7436
Cyclohexane	1.4936	35.847	6.5422
ej ezenekane	11.000	55.617	019122
Other Hexanes	1.3694	32.865	5.9978
Heptanes	1.8842	45.220	8.2527
Methylcyclohexane	7.1434	171.441	31.2880
2,2,4-Trimethylpentane	0.0619	1.486	0.2711
Benzene	4.2958	103.099	18.8156
Toluene	47.8441	1148.258	209.5572
Ethylbenzene	1.8946	45.470	8.2982
Xylenes	34.3230	823.753	150.3349
C8+ Heavies	26.3561	632.547	115.4399
	20.5501		
Total Emissions	141.8626	3404.703	621.3583
Total Hydrocarbon Emissions	141.8626	3404.703	621.3583
Total VOC Emissions	138.4897	3323.754	606.5851
Total HAP Emissions	89.2741	2142.578	391.0206
Total BTEX Emissions	88.3575	2120.580	387.0058

FLASH GAS EMISSIONS				
Component		lbs/hr	lbs/day	tons/yr
	Methane	0.6987	16.769	3.0603

0.2882	6.916	1.2622
0.2273	5.455	0.9955
0.0605	1.453	0.2652
0.0955	2.291	0.4182
0.0313	0.752	0.1372
0.0228	0.547	0.0999
0.0021	0.049	0.0090
		0.0263
0.0242	0.580	0.1058
	0.329	0.0600
	0.553	0.1009
	0.021	0.0039
0.0020	0.047	0.0085
0.0149	0.358	0.0653
0.0004	0.009	0.0016
		0.0186
0.0222		0.0974
1.5493	37.184	6.7861
1.5493	37.184	6.7861
0.5625	13.500	2.4637
0.0339	0.813	0.1484
0.0215	0.515	0.0941
	0.2273 0.0605 0.0955 0.0313 0.0228 0.0021 0.0115 0.0060 0.0242 0.0137 0.0230 0.0009 0.0020 0.0149 0.0004 0.0043 0.0022 1.5493 0.5625 0.0339	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	13.9738	335.370	61.2050
Ethane	5.7633	138.320	25.2434
Propane	4.5457	109.097	19.9102
Isobutane	1.2108	29.060	5.3034
n-Butane	1.9095	45.828	8.3637
Isopentane	0.6264	15.033	2.7436
n-Pentane	0.4561	10.946	1.9977
Cyclopentane	0.0410	0.985	0.1797
n-Hexane	0.2304	5.529	1.0090
Cyclohexane	0.1200	2.879	0.5254
Other Hexanes	0.4832	11.597	2.1165
Heptanes	0.2741	6.579	1.2007
Methylcyclohexane	0.4607	11.056	2.0177

2,2,4-Trimethylpentane	0.0178	0.426	0.0778
Benzene	0.0390	0.937	0.1709
Toluene	0.2983	7.159	1.3065
Ethylbenzene	0.0072	0.173	0.0316
Xylenes	0.0851	2.042	0.3726
C8+ Heavies	0.4445	10.669	1.9471
Total Emissions	30.9869	743.685	135.7225
Total Hydrocarbon Emissions	30.9869	743.685	135.7225
Total VOC Emissions	11.2498	269.995	49.2740
Total HAP Emissions	0.6777	16.265	2.9683
Total BTEX Emissions	0.4296	10.310	1.8815

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.7729	18.550	3.3854
Ethane	0.3755	9.013	1.6449
Propane	0.3655	8.773	1.6010
Isobutane	0.0978	2.346	0.4282
n-Butane	0.1575	3.781	0.6900
Isopentane	0.0390	0.937	0.1710
n-Pentane	0.0341	0.818	0.1492
Cyclopentane	0.0035	0.084	0.0154
n-Hexane	0.0137	0.329	0.0601
Cyclohexane	0.0088	0.212	0.0388
Other Hexanes	0.0295	0.708	0.1291
Heptanes	0.0153	0.368	0.0672
Methylcyclohexane	0.0291	0.697	0.1273
2,2,4-Trimethylpentane	0.0009	0.023	0.0041
Benzene	0.0078	0.187	0.0340
Toluene	0.0349	0.838	0.1530
Ethylbenzene	0.0005	0.013	0.0024
Xylenes	0.0074	0.178	0.0325
C8+ Heavies	0.0223	0.536	0.0979
Total Emissions	2.0163	48.392	8.8316
Total Hydrocarbon Emissions	2.0163	48.392	8.8316
Total VOC Emissions	0.8679	20.829	3.8012
Total HAP Emissions	0.0653	1.568	0.2862
Total BTEX Emissions	0.0507	1.216	0.2220

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane	67.7980	3.3854	95.01
Ethane	33.4237	1.6449	95.08
Propane	37.2579	1.6010	95.70
Isobutane	11.8538	0.4282	96.39
n-Butane	21.8750	0.6900	96.85
Isopentane	7.6972	0.1710	97.78
n-Pentane	6.3817	0.1492	97.66
Cyclopentane	1.4767	0.0154	98.96
n-Hexane	4.7527	0.0601	98.74
Cyclohexane	7.0676	0.0388	99.45
	0 1142	0 1201	00 41
Other Hexanes	8.1143	0.1291	98.41
Heptanes	9.4534	0.0672	99.29
Methylcyclohexane	33.3057 0.3489	0.1273 0.0041	99.62 98.82
2,2,4-Trimethylpentane Benzene	18.9865	0.0041	98.82
Denzene	10.9005	0.0540	99.02
Toluene	210.8636	0.1530	99.93
Ethylbenzene	8.3297	0.0024	99.97
Xylenes	150.7074	0.0325	99.98
C8+ Heavies	117.3870	0.0979	99.92
Total Emissions	757.0808	8.8316	98.83
Total Hydrocarbon Emissions	757.0808	8.8316	98.83
Total VOC Emissions	655.8591	3.8012	99.42
Total HAP Emissions	393.9889	0.2862	99.93
Total BTEX Emissions	388.8873	0.2220	99.94

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

EQUIPMENT REPORTS:

CONDENSER AND COMBUSTION DEVICE

Condenser Outlet Temperature:		deg. F
Condenser Pressure:	12.40	psia
Condenser Duty:	4.12e-002	MM BTU/hr
Hydrocarbon Recovery:	10.67	bbls/day
Produced Water:	70.94	bbls/day
Ambient Temperature:	70.00	deg. F
Excess Oxygen:	5.00	%
Combustion Efficiency:	95.00	%
Supplemental Fuel Requirement:	4.12e-002	MM BTU/hr

Component	Emitted	Destroyed
Methane	4.93%	95.07%
Ethane	4.68%	95.32%
Propane	3.49%	96.51%
Isobutane	2.49%	97.51%
n-Butane	2.01%	97.99%
Teoportano	0 69%	00 22%
Isopentane	0.68%	99.32%
n-Pentane	1.13%	98.87%
Cyclopentane	0.49%	99.51%
n-Hexane	0.26%	99.74%
Cyclohexane	0.19%	99.81%
Other Hexanes	0.39%	99.61%
Heptanes	0.09%	99.91%
Methylcyclohexane	0.08%	99.92%
2,2,4-Trimethylpentane	0.09%	99.91%
Benzene	0.14%	99.86%
Toluene	0.04%	99.96%
Ethylbenzene	0.01%	99.99%
Xylenes	0.01%	99.99%
C8+ Heavies	0.00%	100.00%

ABSORBER

Calculated Absorber Stages: 4.94 Specified Dry Gas Dew Point: 3.00 lbs. H20/MMSCF Temperature: 125.0 deg. F Pressure: 575.0 psig Dry Gas Flow Rate: 140.0000 MMSCF/day Glycol Losses with Dry Gas: 3.5686 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 179.66 lbs. H20/MMSCF Calculated Lean Glycol Recirc. Ratio: 0.98 gal/lb H20

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	1.66%	98.34%
Carbon Dioxide	99.91%	0.09%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.98%	0.02%
Propane	99.96%	0.04%
Isobutane	99.94%	0.06%
n-Butane	99.93%	0.07%
Isopentane	99.92%	0.08%
n-Pentane	99.91%	0.09%
Cyclopentane	99.63%	0.37%
n-Hexane	99.85%	0.15%
Cyclohexane	99.40%	0.60%
Other Hexanes	99.88%	0.12%
Heptanes	99.74%	0.26%
Methylcyclohexane	99.33%	0.67%
2,2,4-Trimethylpentane	99.88%	0.12%
Benzene	95.12%	4.88%
Toluene	93.12%	6.88%
Ethylbenzene	90.29%	9.71%
Xylenes	85.94%	14.06%
C8+ Heavies	98.55%	1.45%

FLASH TANK

Flash Control: Combustion device Flash Control Efficiency: 95.00 % Flash Temperature: 130.0 deg. F Flash Pressure: 60.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	99.98%	0.02%
Carbon Dioxide	56.92%	43.08%
Nitrogen	8.85%	91.15%
Methane	9.72%	90.28%
Ethane	24.47%	75.53%

Propane	46.56%	53.44%
Isobutane	55.26%	44.74%
n-Butane	61.77%	38.23%
Isopentane	64.53%	35.47%
n-Pentane	68.85%	31.15%
Cyclopentane	87.89%	12.11%
n-Hexane	78.88%	21.12%
Cyclohexane	92.80%	7.20%
Other Hexanes	74.18%	25.82%
Heptanes	87.36%	12.64%
Methylcyclohexane	94.18%	5.82%
2,2,4-Trimethylpentane	78.04%	21.96%
Benzene	99.14%	0.86%
Toluene	99.43%	0.57%
Ethylbenzene	99.66%	0.34%
Xylenes	99.78%	0.22%
C8+ Heavies	98.54%	1.46%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	6.05%	93.95%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.77%	99.23%
n-Pentane	0.73%	99.27%
Cyclopentane	0.57%	99.43%
n-Hexane	0.63%	99.37%
Cyclohexane	3.45%	96.55%
Other Hexanes	1.35%	98.65%
Heptanes	0.57%	99.43%
Methylcyclohexane	4.25%	95.75%

2,2,4-Trimethylpentane	1.92%	98.08%
Benzene	5.04%	94.96%
Toluene	7.95%	92.05%
Ethylbenzene	10.45%	89.55%
Xylenes	12.97%	87.03%
C8+ Heavies	12.20%	87.80%

STREAM REPORTS:

WET GAS STREAM

Temperature: 125.00 deg. F		
Pressure: 589.70 psia		
Flow Rate: 5.86e+006 scfh		
Component	Conc.	Loading
		(lb/hr)
Water	3.79e-001	1.05e+003
Carbon Dioxide	1.82e+000	1.24e+004
Nitrogen	3.10e-001	1.34e+003
Methane	8.52e+001	2.11e+005
Ethane	7.25e+000	3.37e+004
Propane	2.93e+000	2.00e+004
Isobutane	5.27e-001	4.72e+003
n-Butane	7.52e-001	6.75e+003
Isopentane	2.09e-001	2.33e+003
n-Pentane	1.40e-001	1.56e+003
Cyclopentane	8.47e-003	9.17e+001
n-Hexane	5.50e-002	7.31e+002
Cyclohexane	2.06e-002	2.68e+002
Other Hexanes	1.21e-001	1.61e+003
Heptanes	5.34e-002	8.26e+002
Methylcyclohexane	7.49e-002	1.14e+003
2,2,4-Trimethylpentane	3.69e-003	6.50e+001
Benzene	7.37e-003	8.89e+001
Toluene	4.92e-002	7.00e+002
Ethylbenzene	1.20e-003	1.96e+001
Xylenes	1.49e-002	2.45e+002

C8+ Heavies 7.03e-002 1.85e+003

Total Components 100.00 3.02e+005

DRY GAS STREAM _____ Temperature: 125.00 deg. F Pressure: 589.70 psia Flow Rate: 5.83e+006 scfh Component Conc. Loading (vol%) (lb/hr) Water 6.32e-003 1.75e+001 Carbon Dioxide 1.82e+000 1.23e+004 Nitrogen 3.11e-001 1.34e+003 Methane 8.55e+001 2.11e+005 Ethane 7.28e+000 3.37e+004 Propane 2.94e+000 2.00e+004 Isobutane 5.28e-001 4.72e+003 n-Butane 7.55e-001 6.74e+003 Isopentane 2.10e-001 2.33e+003 n-Pentane 1.40e-001 1.56e+003 Cyclopentane 8.47e-003 9.13e+001 n-Hexane 5.51e-002 7.30e+002 Cyclohexane 2.06e-002 2.66e+002 Other Hexanes 1.21e-001 1.60e+003 Heptanes 5.35e-002 8.24e+002 Methylcyclohexane 7.47e-002 1.13e+003 2,2,4-Trimethylpentane 3.70e-003 6.49e+001 Benzene 7.04e-003 8.45e+001 Toluene 4.60e-002 6.52e+002 Ethylbenzene 1.08e-003 1.77e+001 Xylenes 1.29e-002 2.10e+002 C8+ Heavies 6.96e-002 1.82e+003 ----- -----Total Components 100.00 3.01e+005

LEAN GLYCOL STREAM

Temperature: 125.00 deg. F Flow Rate: 1.69e+001 gpm

Component Loading Conc. (wt%) (lb/hr) ----- -----TEG 9.92e+001 9.43e+003 Water 7.00e-001 6.66e+001 Carbon Dioxide 1.17e-011 1.11e-009 Nitrogen 1.07e-013 1.02e-011 Methane 5.47e-018 5.20e-016 Ethane 3.79e-008 3.60e-006 Propane 3.64e-009 3.46e-007 Isobutane 8.54e-010 8.12e-008 n-Butane 1.30e-009 1.24e-007 Isopentane 9.29e-005 8.83e-003 n-Pentane 7.70e-005 7.32e-003 Cyclopentane 1.78e-005 1.69e-003 n-Hexane 5.74e-005 5.45e-003 Cyclohexane 5.61e-004 5.33e-002 Other Hexanes 1.97e-004 1.87e-002 Heptanes 1.14e-004 1.08e-002 Methylcyclohexane 3.33e-003 3.17e-001 2,2,4-Trimethylpentane 1.28e-005 1.21e-003 Benzene 2.40e-003 2.28e-001 Toluene 4.35e-002 4.13e+000 Ethylbenzene 2.33e-003 2.21e-001 Xylenes 5.38e-002 5.12e+000 C8+ Heavies 3.85e-002 3.66e+000 ----- -----Total Components 100.00 9.51e+003

RICH GLYCOL STREAM

Temperature: 125.00 deg. F Pressure: 589.70 psia Flow Rate: 1.93e+001 gpm NOTE: Stream has more than one phase. Component Conc. Loading (wt%) (lb/hr) TEG 8.78e+001 9.39e+003 Water 1.03e+001 1.10e+003

Water 1.03e+001 1.10e+003 Carbon Dioxide 1.04e-001 1.11e+001 Nitrogen 9.48e-004 1.01e-001

Methane 1.45e-001 1.55e+001 Ethane 7.14e-002 7.63e+000 Propane 7.96e-002 8.51e+000 Isobutane 2.53e-002 2.71e+000 n-Butane 4.67e-002 4.99e+000 Isopentane 1.65e-002 1.77e+000 n-Pentane 1.37e-002 1.46e+000 Cyclopentane 3.17e-003 3.39e-001 n-Hexane 1.02e-002 1.09e+000 Cyclohexane 1.56e-002 1.67e+000 Other Hexanes 1.75e-002 1.87e+000 Heptanes 2.03e-002 2.17e+000 Methylcyclohexane 7.41e-002 7.92e+000 2,2,4-Trimethylpentane 7.56e-004 8.09e-002 Benzene 4.27e-002 4.56e+000 Toluene 4.89e-001 5.23e+001 Ethylbenzene 1.99e-002 2.12e+000 Xylenes 3.70e-001 3.95e+001 C8+ Heavies 2.85e-001 3.05e+001 ----- -----Total Components 100.00 1.07e+004

FLASH TANK OFF GAS STREAM

_____ Temperature: 130.00 deg. F Pressure: 74.70 psia Flow Rate: 5.25e+002 scfh Component Conc. Loading (vol%) (lb/hr)----- -----Water 7.92e-001 1.97e-001 Carbon Dioxide 7.86e+000 4.78e+000 Nitrogen 2.39e-001 9.24e-002 Methane 6.30e+001 1.40e+001 Ethane 1.39e+001 5.76e+000 Propane 7.46e+000 4.55e+000 Isobutane 1.51e+000 1.21e+000 n-Butane 2.38e+000 1.91e+000 Isopentane 6.28e-001 6.26e-001 n-Pentane 4.57e-001 4.56e-001 Cyclopentane 4.23e-002 4.10e-002

n-Hexane 1.93e-001 2.30e-001 Cyclohexane 1.03e-001 1.20e-001 Other Hexanes 4.06e-001 4.83e-001 Heptanes 1.98e-001 2.74e-001 Methylcyclohexane 3.39e-001 4.61e-001 2,2,4-Trimethylpentane 1.12e-002 1.78e-002 Benzene 3.61e-002 3.90e-002 Toluene 2.34e-001 2.98e-001 Ethylbenzene 4.91e-003 7.20e-003 Xylenes 5.80e-002 8.51e-002 C8+ Heavies 1.89e-001 4.45e-001 Total Components 100.00 3.61e+001

FLASH TANK GLYCOL STREAM

Temperature: 130.00 deg. F Flow Rate: 1.92e+001 gpm Conc. Loading (wt%) (lb/hr) Component TEG 8.81e+001 9.39e+003 Water 1.03e+001 1.10e+003 Carbon Dioxide 5.93e-002 6.32e+000 Nitrogen 8.42e-005 8.97e-003 Methane 1.41e-002 1.51e+000 Ethane 1.75e-002 1.87e+000 Propane 3.72e-002 3.96e+000 Isobutane 1.40e-002 1.50e+000 n-Butane 2.90e-002 3.08e+000 Isopentane 1.07e-002 1.14e+000 n-Pentane 9.46e-003 1.01e+000 Cyclopentane 2.79e-003 2.98e-001 n-Hexane 8.07e-003 8.60e-001 Cyclohexane 1.45e-002 1.55e+000 Other Hexanes 1.30e-002 1.39e+000 Heptanes 1.78e-002 1.90e+000 Methylcyclohexane 7.00e-002 7.46e+000 2,2,4-Trimethylpentane 5.92e-004 6.31e-002 Benzene 4.25e-002 4.52e+000 Toluene 4.88e-001 5.20e+001

Ethylbenzene 1.99e-002 2.12e+000 Xylenes 3.70e-001 3.94e+001 C8+ Heavies 2.82e-001 3.00e+001 Total Components 100.00 1.07e+004

FLASH GAS EMISSIONS

_____ Flow Rate: 1.98e+003 scfh Control Method: Combustion Device Control Efficiency: 95.00 Component Conc. Loading (vol%) (lb/hr) Water 5.97e+001 5.61e+001 Carbon Dioxide 3.91e+001 8.97e+001 Nitrogen 6.32e-002 9.24e-002 Methane 8.35e-001 6.99e-001 Ethane 1.84e-001 2.88e-001 Propane 9.87e-002 2.27e-001 Isobutane 2.00e-002 6.05e-002 n-Butane 3.15e-002 9.55e-002 Isopentane 8.32e-003 3.13e-002 n-Pentane 6.06e-003 2.28e-002 Cyclopentane 5.61e-004 2.05e-003 n-Hexane 2.56e-003 1.15e-002 Cyclohexane 1.37e-003 6.00e-003 Other Hexanes 5.37e-003 2.42e-002 Heptanes 2.62e-003 1.37e-002 Methylcyclohexane 4.49e-003 2.30e-002 2,2,4-Trimethylpentane 1.49e-004 8.88e-004 Benzene 4.79e-004 1.95e-003 Toluene 3.10e-003 1.49e-002 Ethylbenzene 6.50e-005 3.60e-004 Xylenes 7.68e-004 4.25e-003 C8+ Heavies 2.50e-003 2.22e-002 ----- -----. Total Components 100.00 1.47e+002

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 2.24e+004 scfh Component Conc. Loading (vol%) (1b/hr)Water 9.71e+001 1.03e+003 Carbon Dioxide 2.43e-001 6.32e+000 Nitrogen 5.42e-004 8.97e-003 Methane 1.59e-001 1.51e+000 Ethane 1.05e-001 1.87e+000 Propane 1.52e-001 3.96e+000 Isobutane 4.35e-002 1.50e+000 n-Butane 8.97e-002 3.08e+000 Isopentane 2.65e-002 1.13e+000 n-Pentane 2.35e-002 1.00e+000 Cyclopentane 7.14e-003 2.96e-001 n-Hexane 1.68e-002 8.55e-001 Cvclohexane 3.00e-002 1.49e+000 Other Hexanes 2.69e-002 1.37e+000 Heptanes 3.18e-002 1.88e+000 Methylcyclohexane 1.23e-001 7.14e+000 2,2,4-Trimethylpentane 9.16e-004 6.19e-002 Benzene 9.30e-002 4.30e+000 Toluene 8.78e-001 4.78e+001 Ethylbenzene 3.02e-002 1.89e+000 Xylenes 5.47e-001 3.43e+001 C8+ Heavies 2.62e-001 2.64e+001 ----- -----Total Components 100.00 1.18e+003

CONDENSER PRODUCED WATER STREAM

Temperature: 60.00 deg. F Flow Rate: 2.07e+000 gpm

Component	Conc. (wt%)	Loading (lb/hr)	(ppm)
Water Carbon Dioxide	9.99e+001		999144. 523.
	1.42e-006		<i>929</i> . 0.
Methane	5.35e-004	5.54e-003	5.

Ethane 9.02e-004 9.34e-003 9. Propane 7.58e-004 7.85e-003 8. Isobutane 1.21e-004 1.25e-003 1. n-Butane 2.88e-004 2.98e-003 3. Isopentane 2.78e-005 2.88e-004 0. n-Pentane 4.58e-005 4.74e-004 0. Cyclopentane 5.24e-005 5.42e-004 1. n-Hexane 8.52e-006 8.81e-005 0. Cyclohexane 7.74e-005 8.01e-004 1. Other Hexanes 1.57e-005 1.62e-004 0. Heptanes 3.85e-006 3.99e-005 0. Methylcyclohexane 8.30e-005 8.59e-004 1. 2,2,4-Trimethylpentane 8.11e-008 8.40e-007 0. Benzene 6.26e-003 6.48e-002 63. Toluene 1.99e-002 2.06e-001 199. Ethylbenzene 1.56e-004 1.62e-003 2. Xylenes 3.99e-003 4.13e-002 40. C8+ Heavies 6.13e-008 6.34e-007 0. ----- ------Total Components 100.00 1.04e+003 1000000.

CONDENSER RECOVERED OIL STREAM

_____ Temperature: 60.00 deg. F Flow Rate: 3.11e-001 gpm Component Conc. Loading (wt%) (lb/hr) _____ ____ Water 2.80e-002 3.71e-002 Carbon Dioxide 1.42e-001 1.88e-001 Nitrogen 1.19e-004 1.58e-004 Methane 1.13e-002 1.49e-002 Ethane 8.36e-002 1.11e-001 Propane 8.97e-001 1.19e+000 Isobutane 5.66e-001 7.50e-001 n-Butane 1.39e+000 1.84e+000 Isopentane 7.37e-001 9.76e-001 n-Pentane 5.85e-001 7.75e-001 Cyclopentane 2.01e-001 2.66e-001 n-Hexane 6.12e-001 8.11e-001 Cyclohexane 1.08e+000 1.44e+000

Other Hexanes 9.54e-001 1.26e+000 Heptanes 1.40e+000 1.85e+000 Methylcyclohexane 5.30e+000 7.02e+000 2,2,4-Trimethylpentane 4.59e-002 6.08e-002 Benzene 3.11e+000 4.11e+000 Toluene 3.57e+001 4.72e+001 Ethylbenzene 1.43e+000 1.89e+000 Xylenes 2.58e+001 3.42e+001 C8+ Heavies 1.99e+001 2.64e+001

CONDENSER VENT STREAM

Temperature: 60.00 deg. F		
Pressure: 12.40 psia		
Flow Rate: 1.52e+002 scfh		
Component	Conc.	Loading
	(vol%)	(lb/hr)
Water	2.11e+000	1.52e-001
Carbon Dioxide	3.18e+001	5.59e+000
Nitrogen	7.87e-002	8.80e-003
Methane	2.32e+001	1.48e+000
Ethane	1.46e+001	1.75e+000
Propane	1.57e+001	2.76e+000
Isobutane	3.21e+000	7.45e-001
n-Butane	5.35e+000	1.24e+000
Isopentane	5.35e-001	1.54e-001
n-Pentane	7.82e-001	2.25e-001
Cyclopentane	1.05e-001	2.93e-002
n-Hexane	1.28e-001	4.40e-002
Cyclohexane		
Other Hexanes	3.09e-001	1.06e-001
Heptanes	8.20e-002	3.28e-002
Methylcyclohexane		
2,2,4-Trimethylpentane		
	3.73e-001	
	1.09e+000	
Ethylbenzene	8.80e-003	3.73e-003
Xylenes	1.50e-001	6.34e-002

C8+ Heavies 3.43e-003 2.33e-003

Total Components 100.00 1.51e+001

COMBUSTION DEVICE OFF GAS STREAM

-----Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 5.00e+000 scfh Component Conc. Loading (vol%) (lb/hr) Methane 3.51e+001 7.42e-002 Ethane 2.20e+001 8.74e-002 Propane 2.38e+001 1.38e-001 Isobutane 4.86e+000 3.72e-002 n-Butane 8.10e+000 6.20e-002 Isopentane 8.11e-001 7.71e-003 n-Pentane 1.18e+000 1.13e-002 Cyclopentane 1.58e-001 1.46e-003 n-Hexane 1.94e-001 2.20e-003 Cyclohexane 2.57e-001 2.85e-003 Other Hexanes 4.69e-001 5.32e-003 Heptanes 1.24e-001 1.64e-003 Methylcyclohexane 4.65e-001 6.02e-003 2,2,4-Trimethylpentane 3.62e-003 5.45e-005 Benzene 5.65e-001 5.82e-003 Toluene 1.65e+000 2.00e-002 Ethylbenzene 1.33e-002 1.87e-004 Xylenes 2.27e-001 3.17e-003 C8+ Heavies 5.19e-003 1.17e-004 ----- -----Total Components 100.00 4.67e-001

```
GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES
Case Name: Kutz TEG Dehydrator (Unit 77)
File Name: C:\1 - Office\1 - Cirrus\1-Projects\1 - Harvest\1 - Permiting\4 - Title
V\2 - Kutz\1 - Application\Harvest - Kutz - GRI-GLYCalc (Unit 77).ddf
    Date: April 14, 2021
DESCRIPTION:
  _____
   Description: Unit 77
               Capacity: 20 MMSCFD
               Gas Sample Pulled 08/12/2020
   Annual Hours of Operation: 8760.0 hours/yr
WET GAS:
 _____
    Temperature:
                  60.00 deg. F
    Pressure:
                  460.00 psig
                Wet Gas Water Content: Saturated
              Component
                                    Conc.
                                  (vol %)
    ----- -----
                    Carbon Dioxide
                                    1.8251

        Nitrogen
        0.3113

        Methane
        85.5219

                          Ethane
Propane
                                    7.2812
                                     2.9445
                        Isobutane 0.5286
                         n-Butane
                                    0.7552
                       Isopentane
n-Pentane
                                     0.2099
                      n-Pentane 0.1406
Cyclopentane 0.0085
                         n-Hexane
                                    0.0552
                      Cyclohexane
                                      0.0207
                     Other Hexanes
Heptanes
                                    0.1212
0.0536
                 Methylcyclohexane
                                     0.0752
            2,2,4-Trimethylpentane
                                      0.0037
                                     0.0074
                          Benzene
                          Toluene
                                    0.0494
                      Ethylbenzene
                                     0.0012
                                      0.0150
                          Xylenes
```

C8+ Heavies 0.0706

DRY GAS: _____ Flow Rate: 20.0 MMSCF/day Water Content: 2.1 lbs. H2O/MMSCF LEAN GLYCOL: _____ Glycol Type: TEG Water Content: 1.5 wt% H20 Flow Rate: 2.0 gpm PUMP: _____ Glycol Pump Type: Electric/Pneumatic FLASH TANK: _____ Flash Control: Combustion device Flash Control Efficiency: 95.00 % Temperature: 50.0 deg. F Pressure: 52.0 psig REGENERATOR OVERHEADS CONTROL DEVICE: _____ Control Device: Condenser Temperature: 60.0 deg. F Pressure: 12.4 psia Control Device: Combustion Device Destruction Efficiency: 95.0 % Excess Oxygen:5.0 %Ambient Air Temperature:70.0 deg. F

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Kutz TEG Dehydrator (Unit 77)
File Name: C:\1 - Office\1 - Cirrus\1-Projects\1 - Harvest\1 - Permiting\4 - Title
V\2 - Kutz\1 - Application\Harvest - Kutz - GRI-GLYCalc (Unit 77).ddf
Date: April 14, 2021

DESCRIPTION:

Description: Unit 77 Capacity: 20 MMSCFD Gas Sample Pulled 08/12/2020

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0114		0.0500
Ethane	0.0209	0.502	0.0915
Propane	0.0254	0.610	0.1113
Isobutane	0.0072	0.173	0.0315
n-Butane	0.0117	0.281	0.0513
Isopentane	0.0014	0.034	0.0062
n-Pentane	0.0024	0.057	0.0103
Cyclopentane	0.0003	0.006	0.0012
n-Hexane	0.0004	0.011	0.0019
Cyclohexane	0.0006	0.013	0.0025
Other Hexanes	0.0011	0.027	0.0049
Heptanes	0.0004	0.009	0.0017
Methylcyclohexane	0.0013	0.031	0.0057
2,2,4-Trimethylpentane	<0.0001	<0.001	0.0001
Benzene	0.0012	0.028	0.0051
Toluene	0.0047	0.112	0.0204
Ethylbenzene	<0.0001	0.001	0.0002
Xylenes	0.0007	0.016	0.0030
C8+ Heavies	<0.0001	<0.001	<0.0001

Total	Emissions	0.0911	2.185	0.3988
Total Hydrocarbon	Emissions	0.0911	2.185	0.3988
Total VOC	Emissions	0.0587	1.410	0.2573
Total HAP	Emissions	0.0070	0.168	0.0307
Total BTEX	Emissions	0.0066	0.157	0.0287

UNCONTROLLED REGENERATOR EMISSIONS

Component lbs/hr lbs/dav tons/vr

Component	lbs/hr	lbs/day	tons/yr
Methane	0.2330	5.593	1.0207
Ethane	0.4696	11.271	2.0569
Propane	0.9423	22.616	4.1273
Isobutane	0.4330	10.393	1.8967
n-Butane	0.9292	22.302	4.0700
Isopentane	0.4116	9.878	1.8027
n-Pentane	0.3535	8.485	1.5485
Cyclopentane	0.1022	2.453	0.4477
n-Hexane	0.3532	8.477	1.5470
Cyclohexane	0.5904	14.170	2.5861
Other Hexanes	0.5572	13.374	2.4407
Heptanes	0.9025	21.660	3.9530
Methylcyclohexane	3.2007	76.816	14.0189
2,2,4-Trimethylpentane	0.0302	0.725	0.1324
Benzene	1.8326	43.983	8.0269
Toluene	23.1667	556.002	101.4703
Ethylbenzene	0.9779	23.469	4.2831
Xylenes	15.8561	380.548	69.4499
C8+ Heavies	5.0281	120.674	22.0230
Total Emissions	56.3703	1352.887	246.9018
Total Hydrocarbon Emissions	56.3703	1352.887	246.9018
Total VOC Emissions	55.6676	1336.023	243.8243
Total HAP Emissions	42.2168	1013.204	184.9097
Total BTEX Emissions	41.8334	1004.001	183.2303

FLASH GAS EMISSIONS				
Component		lbs/hr	lbs/day	tons/yr
	Methane	0.0892	2.140	0.3906

Ethane	0.0367	0.882	0.1609
Propane	0.0264	0.634	0.1158
Isobutane	0.0065	0.156	0.0285
n-Butane	0.0096	0.230	0.0420
Isopentane	0.0029	0.069	0.0125
n-Pentane	0.0021	0.049	0.0090
Cyclopentane	0.0001	0.003	0.0006
n-Hexane	0.0008	0.020	0.0037
Cyclohexane	0.0003	0.008	0.0015
Other Hexanes	0.0019	0.045	0.0082
Heptanes	0.0008	0.020	0.0036
Methylcyclohexane	0.0012	0.030	0.0054
2,2,4-Trimethylpentane	0.0001	0.001	0.0003
Benzene	0.0001	0.003	0.0005
Toluene	0.0007	0.017	0.0031
Ethylbenzene	<0.0001	<0.001	0.0001
Xylenes	0.0001	0.003	0.0006
C8+ Heavies	0.0010	0.025	0.0046
Total Emissions	0.1807	4.337	0.7915
Total Hydrocarbon Emissions	0.1807	4.337	0.7915
Total VOC Emissions	0.0548	1.314	0.2399
Total HAP Emissions	0.0019	0.045	0.0082
Total BTEX Emissions	0.0010	0.023	0.0042

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.7837	42.809	7.8126
Ethane Propane	0.7349 0.5287	17.638 12.688	3.2188 2.3155
Isobutane	0.1299	3.118	0.5691
n-Butane	0.1917	4.602	0.8398
Isopentane	0.0572	1.372	0.2505
n-Pentane	0.0411	0.986	0.1799
Cyclopentane	0.0027	0.064	0.0117
n-Hexane	0.0169	0.406	0.0742
Cyclohexane	0.0070	0.167	0.0305
Other Hexanes Heptanes	0.0376 0.0165	0.902 0.397	0.1646 0.0724
Methylcyclohexane	0.0248	0.596	0.1088

2,2,4-Trimethylpentane	0.0012	0.028	0.0051
Benzene	0.0022	0.053	0.0097
Toluene	0.0140	0.335	0.0612
Ethylbenzene	0.0003	0.006	0.0011
Xylenes	0.0028	0.066	0.0121
C8+ Heavies	0.0209	0.502	0.0916
Total Emissions	3.6140	86.735	15.8292
Total Hydrocarbon Emissions	3.6140	86.735	15.8292
Total VOC Emissions	1.0954	26.289	4.7977
Total HAP Emissions	0.0373	0.895	0.1634
Total BTEX Emissions	0.0192	0.461	0.0841

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Mathana			
Methane	0.1006	2.415	0.4406
Ethane	0.0576	1.383	0.2525
Propane	0.0518	1.244	0.2271
Isobutane	0.0137	0.329	0.0600
n-Butane	0.0213	0.511	0.0933
Isopentane	0.0043	0.102	0.0187
n-Pentane	0.0044	0.106	0.0193
Cyclopentane	0.0004	0.010	0.0017
n-Hexane	0.0013	0.031	0.0056
Cyclohexane	0.0009	0.022	0.0040
Other Hexanes	0.0030	0.072	0.0131
Heptanes	0.0012	0.029	0.0053
Methylcyclohexane	0.0025	0.061	0.0112
2,2,4-Trimethylpentane	0.0001	0.002	0.0003
Benzene	0.0013	0.030	0.0056
Toluene	0.0054	0.129	0.0235
Ethylbenzene	0.0001	0.001	0.0003
Xylenes	0.0001	0.020	0.0036
C8+ Heavies	0.0011	0.025	0.0046
			0.0040
Total Emissions	0.2718	6.522	1.1903
Total Hydrocarbon Emissions	0.2718	6.522	1.1903
Total VOC Emissions	0.1135	2.724	0.4971
Total HAP Emissions	0.0089	0.213	0.0389
Total BTEX Emissions	0.0075	0.180	0.0329

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane	8.8333	0.4406	95.01
Ethane	5.2757	0.2525	95.21
Propane	6.4428	0.2271	96.48
Isobutane	2.4658	0.0600	97.57
n-Butane	4.9099	0.0933	98.10
Isopentane	2.0531	0.0187	99.09
n-Pentane	1.7284	0.0193	98.88
Cyclopentane	0.4593	0.0017	99.62
n-Hexane	1.6212	0.0056	99.65
Cyclohexane	2.6166	0.0040	99.85
	2 6052	0 01 21	00 50
Other Hexanes	2.6053	0.0131	99.50
Heptanes	4.0254	0.0053	99.87
Methylcyclohexane	14.1277	0.0112	99.92
2,2,4-Trimethylpentane	0.1375	0.0003	99.77
Benzene	8.0366	0.0056	99.93
Toluene	101.5315	0.0235	99.98
Ethylbenzene	4.2842	0.0003	99.99
Xylenes	69.4620	0.0036	99.99
C8+ Heavies	22.1146	0.0046	99.98
Total Emissions	262.7310	1.1903	99.55
Total Hydrocarbon Emissions	262.7310	1.1903	99.55
Total VOC Emissions	248.6220	0.4971	99.80
Total HAP Emissions	185.0730	0.0389	99.98
Total BTEX Emissions	183.3143	0.0329	99.98

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

EQUIPMENT REPORTS:

CONDENSER AND COMBUSTION DEVICE

Condenser Outlet Temperature:		deg. F
Condenser Pressure:	12.40	psia
Condenser Duty:	8.06e-003	MM BTU/hr
Hydrocarbon Recovery:	4.40	bbls/day
Produced Water:	1.63	bbls/day
Ambient Temperature:	70.00	deg. F
Excess Oxygen:	5.00	%
Combustion Efficiency:	95.00	%
Supplemental Fuel Requirement:	8.06e-003	MM BTU/hr

Component	Emitted	Destroyed
Methane	4.90%	95.10%
Ethane	4.45%	95.55%
Propane	2.70%	97.30%
Isobutane	1.66%	98.34%
n-Butane	1.26%	98.74%
Isopentane	0.34%	99.66%
n-Pentane	0.67%	99.33%
Cyclopentane	0.26%	99.74%
n-Hexane	0.12%	99.88%
Cyclohexane	0.10%	99.90%
Other Hexanes	0.20%	99.80%
Heptanes	0.04%	99.96%
Methylcyclohexane	0.04%	99.96%
2,2,4-Trimethylpentane	0.04%	99.96%
Benzene	0.06%	99.94%
Toluene	0.02%	99.98%
Ethylbenzene	0.00%	100.00%
Xylenes	0.00%	100.00%
C8+ Heavies	0.00%	100.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages:	1.25
Calculated Dry Gas Dew Point:	1.50 lbs. H2O/MMSCF
Temperature:	60.0 deg. F

Pressure:	460.0	psig
Dry Gas Flow Rate:	20.0000	MMSCF/day
Glycol Losses with Dry Gas:	0.0157	lb/hr
Wet Gas Water Content:	Saturated	
Calculated Wet Gas Water Content:	30.03	lbs. H20/MMSCF
Calculated Lean Glycol Recirc. Ratio:	5.02	gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	4.98%	95.02%
Carbon Dioxide	99.89%	0.11%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.97%	0.03%
Propane	99.95%	0.05%
Isobutane	99.92%	0.08%
n-Butane	99.88%	0.12%
Isopentane	99.86%	0.14%
n-Pentane	99.82%	0.18%
Cyclopentane	99.20%	0.80%
n-Hexane	99.65%	0.35%
Cyclohexane	98.44%	1.56%
Other Hexanes	99.74%	0.26%
Heptanes	99.22%	0.78%
Methylcyclohexane	98.01%	1.99%
2,2,4-Trimethylpentane	99.66%	0.34%
Benzene	85.55%	14.45%
Toluene	76.82%	23.18%
Ethylbenzene	65.06%	34.94%
Xylenes	54.68%	45.32%
C8+ Heavies	98.09%	1.91%

FLASH TANK Flash Control: Combustion device Flash Control Efficiency: 95.00 % Flash Temperature: 50.0 deg. F Flash Pressure: 52.0 psig Left in Removed in Component Glycol Flash Gas

	100 00%	0 00%
Water	100.00%	0.00%
Carbon Dioxide	72.85%	27.15%
Nitrogen	11.68%	88.32%
Methane	11.55%	88.45%
Ethane	38.99%	61.01%
Propane	64.06%	35.94%
Isobutane	76.92%	23.08%
n-Butane	82.89%	17.11%
Isopentane	87.86%	12.14%
n-Pentane	89.64%	10.36%
Cyclopentane	97.47%	2.53%
n-Hexane	95.45%	4.55%
Cyclohexane	98.87%	1.13%
Other Hexanes	93.75%	6.25%
Heptanes	98.21%	1.79%
Methylcyclohexane	99.26%	0.74%
2,2,4-Trimethylpentane	96.34%	3.66%
Benzene	99.89%	0.11%
Toluene	99.94%	0.06%
Ethylbenzene	99.98%	0.02%
Xylenes	99.98%	0.02%
C8+ Heavies	99.64%	0.36%
	22.001/0	0.20/0

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water Carbon Dioxide Nitrogen Methane	41.39% 0.00% 0.00% 0.00%	58.61% 100.00% 100.00% 100.00%
Ethane	0.00%	100.00%
Propane Isobutane n-Butane Isopentane n-Pentane	0.00% 0.00% 0.57% 0.56%	100.00% 100.00% 100.00% 99.43% 99.44%
Cyclopentane	0.51%	99.49%

n-Hexane	0.52%	99.48%
Cyclohexane	3.24%	96.76%
Other Hexanes	1.07%	98.93%
Heptanes	0.51%	99.49%
Methylcyclohexane	4.03%	95.97%
2,2,4-Trimethylpentane	1.56%	98.44%
Benzene	5.01%	94.99%
Toluene	7.90%	92.10%
Ethylbenzene	10.40%	89.60%
Xylenes	12.90%	87.10%
C8+ Heavies	12.05%	87.95%

STREAM REPORTS:

WET GAS STREAM

Temperature: Pressure: 4	74.70 psia		
Flow Rate: 8.34	e+005 scfh		
Com	ponent		Loading
		(vol%)	(lb/hr)
	Water	6.33e-002	2.51e+001
	Carbon Dioxide	e 1.82e+000	1.76e+003
	Nitroger	3.11e-001	1.92e+002
	Methane	e 8.55e+001	3.01e+004
	Ethane	2.28e+000	4.81e+003
	Propane	2.94e+000	2.85e+003
	Isobutane	e 5.28e-001	6.75e+002
	n-Butane	e 7.55e-001	9.64e+002
		e 2.10e-001	
	n-Pentane	e 1.41e-001	2.23e+002
	Cyclopentane	e 8.49e-003	1.31e+001
	n-Hexane	e 5.52e-002	1.05e+002
	Cyclohexane	2.07e-002	3.83e+001
	Other Hexanes	1.21e-001	2.29e+002
	Heptanes	5.36e-002	1.18e+002
Met	hylcyclohexane	7.52e-002	1.62e+002

2,2,4-Trimethylpentane 3.70e-003 9.29e+000 Benzene 7.40e-003 1.27e+001 Toluene 4.94e-002 1.00e+002 Ethylbenzene 1.20e-003 2.80e+000 Xylenes 1.50e-002 3.50e+001 C8+ Heavies 7.06e-002 2.64e+002 Total Components 100.00 4.31e+004

DRY GAS STREAM

Temperature: 60.00 deg. F		
Pressure: 474.70 psia		
Flow Rate: 8.33e+005 scfh		
Component	Conc.	Loading
		(lb/hr)
Water	3.15e-003	1.25e+000
Carbon Dioxide	1.82e+000	1.76e+003
Nitrogen	3.11e-001	1.92e+002
Methane	8.55e+001	3.01e+004
Ethane	7.28e+000	4.81e+003
Propane	2.94e+000	2.85e+003
Isobutane	5.28e-001	6.74e+002
n-Butane	7.55e-001	9.63e+002
Isopentane	2.10e-001	3.32e+002
•	1.40e-001	
Cyclopentane	8.43e-003	1.30e+001
n-Hexane	5.50e-002	1.04e+002
Cyclohexane	2.04e-002	3.77e+001
Other Hexanes		
	5.32e-002	
Methylcyclohexane	7.37e-002	1.59e+002
2,2,4-Trimethylpentane		
	6.33e-003	
Toluene	3.80e-002	7.68e+001
Ethylbenzene		
Xylenes	8.20e-003	1.91e+001
C8+ Heavies		
Total Components	100.00	4.30e+004

LEAN GLYCOL STREAM _____ Temperature: 60.00 deg. F Flow Rate: 1.99e+000 gpm Component Conc. Loading (wt%) (lb/hr) _____ ____ TEG 9.80e+001 1.10e+003 Water 1.50e+000 1.68e+001 Carbon Dioxide 1.75e-011 1.96e-010 Nitrogen 1.24e-013 1.38e-012 Methane 6.06e-018 6.78e-017 Ethane 5.08e-008 5.68e-007 Propane 5.35e-009 5.99e-008 Isobutane 1.51e-009 1.69e-008 n-Butane 2.49e-009 2.78e-008 Isopentane 2.11e-004 2.36e-003 n-Pentane 1.77e-004 1.98e-003 Cyclopentane 4.71e-005 5.27e-004 n-Hexane 1.66e-004 1.86e-003 Cyclohexane 1.77e-003 1.97e-002 Other Hexanes 5.37e-004 6.01e-003 Heptanes 4.13e-004 4.62e-003 Methylcyclohexane 1.20e-002 1.34e-001 2,2,4-Trimethylpentane 4.27e-005 4.78e-004 Benzene 8.63e-003 9.66e-002 Toluene 1.78e-001 1.99e+000 Ethylbenzene 1.02e-002 1.14e-001 Xylenes 2.10e-001 2.35e+000 C8+ Heavies 6.16e-002 6.89e-001 ----- -----Total Components 100.00 1.12e+003

RICH GLYCOL STREAM Temperature: 60.00 deg. F Pressure: 474.70 psia Flow Rate: 2.17e+000 gpm NOTE: Stream has more than one phase.

Component Conc. Loading

(wt%) (lb/hr) ----- -----TEG 9.10e+001 1.10e+003 Water 3.37e+000 4.06e+001 Carbon Dioxide 1.63e-001 1.96e+000 Nitrogen 1.15e-003 1.39e-002 Methane 1.68e-001 2.02e+000 Ethane 1.00e-001 1.20e+000 Propane 1.22e-001 1.47e+000 Isobutane 4.68e-002 5.63e-001 n-Butane 9.31e-002 1.12e+000 Isopentane 3.91e-002 4.71e-001 n-Pentane 3.29e-002 3.97e-001 Cyclopentane 8.75e-003 1.05e-001 n-Hexane 3.09e-002 3.72e-001 Cyclohexane 5.13e-002 6.17e-001 Other Hexanes 4.99e-002 6.01e-001 Heptanes 7.67e-002 9.24e-001 Methylcyclohexane 2.79e-001 3.36e+000 2,2,4-Trimethylpentane 2.65e-003 3.19e-002 Benzene 1.60e-001 1.93e+000 Toluene 2.09e+000 2.52e+001 Ethylbenzene 9.07e-002 1.09e+000 Xylenes 1.51e+000 1.82e+001 C8+ Heavies 4.77e-001 5.74e+000 ----- -----Total Components 100.00 1.20e+003

FLASH TANK OFF GAS STREAM

Temperature: 50.00 deg. F Pressure: 66.70 psia Flow Rate: 6.40e+001 scfh Component Conc. Loading (vol%) (lb/hr) Water 2.07e-002 6.28e-004 Carbon Dioxide 7.18e+000 5.32e-001 Nitrogen 2.60e-001 1.23e-002 Methane 6.60e+001 1.78e+000 Ethane 1.45e+001 7.35e-001

Propane 7.11e+000 5.29e-001

Isobutane 1.33e+000 1.30e-001 n-Butane 1.96e+000 1.92e-001 Isopentane 4.70e-001 5.72e-002 n-Pentane 3.38e-001 4.11e-002 Cyclopentane 2.25e-002 2.66e-003 n-Hexane 1.17e-001 1.69e-002 Cyclohexane 4.90e-002 6.95e-003 Other Hexanes 2.59e-001 3.76e-002 Heptanes 9.79e-002 1.65e-002 Methylcyclohexane 1.50e-001 2.48e-002 2,2,4-Trimethylpentane 6.05e-003 1.17e-003 Benzene 1.68e-002 2.21e-003 Toluene 8.99e-002 1.40e-002 Ethylbenzene 1.46e-003 2.62e-004 Xylenes 1.54e-002 2.76e-003 C8+ Heavies 7.28e-002 2.09e-002 ----- -----Total Components 100.00 4.16e+000

FLASH TANK GLYCOL STREAM

_____ Temperature: 50.00 deg. F Flow Rate: 2.16e+000 gpm Component Conc. Loading (wt%) (lb/hr) ----- -----TEG 9.13e+001 1.10e+003 Water 3.39e+000 4.06e+001 Carbon Dioxide 1.19e-001 1.43e+000 Nitrogen 1.35e-004 1.62e-003 Methane 1.94e-002 2.33e-001 Ethane 3.91e-002 4.70e-001 Propane 7.85e-002 9.42e-001 Isobutane 3.61e-002 4.33e-001 n-Butane 7.74e-002 9.29e-001 Isopentane 3.45e-002 4.14e-001 n-Pentane 2.96e-002 3.56e-001 Cyclopentane 8.56e-003 1.03e-001 n-Hexane 2.96e-002 3.55e-001 Cyclohexane 5.09e-002 6.10e-001 Other Hexanes 4.69e-002 5.63e-001

Heptanes 7.56e-002 9.07e-001 Methylcyclohexane 2.78e-001 3.34e+000 2,2,4-Trimethylpentane 2.56e-003 3.07e-002 Benzene 1.61e-001 1.93e+000 Toluene 2.10e+000 2.52e+001 Ethylbenzene 9.10e-002 1.09e+000 Xylenes 1.52e+000 1.82e+001 C8+ Heavies 4.76e-001 5.72e+000 Total Components 100.00 1.20e+003

FLASH GAS EMISSIONS

Flow Rate: 2.33e+002 scfh Control Method: Combustion Device Control Efficiency: 95.00

Component Conc. Loading (vol%) (1b/hr)----- -----Water 6.03e+001 6.68e+000 Carbon Dioxide 3.83e+001 1.04e+001 Nitrogen 7.12e-002 1.23e-002 Methane 9.04e-001 8.92e-002 Ethane 1.99e-001 3.67e-002 Propane 9.75e-002 2.64e-002 Isobutane 1.82e-002 6.50e-003 n-Butane 2.68e-002 9.59e-003 Isopentane 6.45e-003 2.86e-003 n-Pentane 4.63e-003 2.05e-003 Cyclopentane 3.09e-004 1.33e-004 n-Hexane 1.60e-003 8.47e-004 Cyclohexane 6.72e-004 3.48e-004 Other Hexanes 3.55e-003 1.88e-003 Heptanes 1.34e-003 8.27e-004 Methylcyclohexane 2.06e-003 1.24e-003 2,2,4-Trimethylpentane 8.30e-005 5.83e-005 Benzene 2.30e-004 1.10e-004 Toluene 1.23e-003 6.99e-004 Ethylbenzene 2.01e-005 1.31e-005 Xylenes 2.11e-004 1.38e-004 C8+ Heavies 9.99e-004 1.05e-003 ----- -----

Total Components 100.00 1.72e+001

REGENERATOR OVERHEADS STREAM _____ Temperature:212.00 deg. FPressure:14.70 psia Flow Rate: 7.45e+002 scfh Conc. Loading Component (vol%) (lb/hr) Water 6.73e+001 2.38e+001 Carbon Dioxide 1.65e+000 1.43e+000 Nitrogen 2.95e-003 1.62e-003 Methane 7.40e-001 2.33e-001 Ethane 7.95e-001 4.70e-001 Propane 1.09e+000 9.42e-001 Isobutane 3.79e-001 4.33e-001 n-Butane 8.14e-001 9.29e-001 Isopentane 2.90e-001 4.12e-001 n-Pentane 2.50e-001 3.54e-001 Cyclopentane 7.42e-002 1.02e-001 n-Hexane 2.09e-001 3.53e-001 Cyclohexane 3.57e-001 5.90e-001 Other Hexanes 3.29e-001 5.57e-001 Heptanes 4.59e-001 9.03e-001 Methylcyclohexane 1.66e+000 3.20e+000 2,2,4-Trimethylpentane 1.35e-002 3.02e-002 Benzene 1.19e+000 1.83e+000 Toluene 1.28e+001 2.32e+001 Ethylbenzene 4.69e-001 9.78e-001 Xylenes 7.61e+000 1.59e+001 C8+ Heavies 1.50e+000 5.03e+000 ----- -----Total Components 100.00 8.16e+001

CONDENSER PRODUCED WATER STREAM

Temperature: 60.00 deg. F Flow Rate: 4.75e-002 gpm

Component

Conc. Loading

(wt%) (lb/hr) (ppm) ----- ------Water 9.99e+001 2.38e+001 999030. Carbon Dioxide 6.07e-002 1.44e-002 607. Nitrogen 1.22e-006 2.91e-007 0. Methane 4.04e-004 9.60e-005 4. Ethane 1.06e-003 2.52e-004 11. 7. Propane 6.85e-004 1.63e-004 Isobutane 1.15e-004 2.72e-005 1. n-Butane 2.67e-004 6.35e-005 3. Isopentane 2.51e-005 5.96e-006 0. n-Pentane 4.70e-005 1.12e-005 0. Cyclopentane 4.64e-005 1.10e-005 0. n-Hexane 8.36e-006 1.99e-006 0. Cyclohexane 7.50e-005 1.78e-005 1. Other Hexanes 1.62e-005 3.86e-006 0. Heptanes 4.39e-006 1.04e-006 0. Methylcyclohexane 8.84e-005 2.10e-005 1. 2,2,4-Trimethylpentane 9.55e-008 2.27e-008 0. Benzene 6.12e-003 1.46e-003 61. Toluene 2.28e-002 5.43e-003 228. Ethylbenzene 1.86e-004 4.43e-005 2. Xylenes 4.24e-003 1.01e-003 42. C8+ Heavies 2.47e-008 5.88e-009 0. _ _ _ _ Total Components 100.00 2.38e+001 1000000.

CONDENSER RECOVERED OIL STREAM

Temperature: 60.00 deg. F Flow Rate: 1.28e-001 gpm

 Component
 Conc.
 Loading (wt%)

 Water
 3.14e-002
 1.71e-002

 Water
 3.14e-001
 9.28e-002

 Carbon Dioxide
 1.70e-001
 9.28e-002

 Nitrogen
 1.35e-004
 7.36e-005

 Methane
 8.29e-003
 4.53e-003

 Ethane
 9.40e-002
 5.14e-002

 Propane
 7.94e-001
 4.34e-001

 Isobutane
 5.29e-001
 2.89e-001

 n-Butane
 1.27e+000
 6.95e-001

Isopentane 7.01e-001 3.83e-001 n-Pentane 5.61e-001 3.06e-001 Cyclopentane 1.77e-001 9.69e-002 n-Hexane 6.30e-001 3.44e-001 Cyclohexane 1.06e+000 5.79e-001 Other Hexanes 9.79e-001 5.35e-001 Heptanes 1.64e+000 8.95e-001 Methylcyclohexane 5.81e+000 3.17e+000 2,2,4-Trimethylpentane 5.48e-002 3.00e-002 Benzene 3.31e+000 1.81e+000 Toluene 4.22e+001 2.31e+001 Ethylbenzene 1.79e+000 9.77e-001 Xylenes 2.90e+001 1.58e+001 C8+ Heavies 9.20e+000 5.03e+000 ----- -----Total Components 100.00 5.47e+001

CONDENSER VENT STREAM

_____ Temperature: 60.00 deg. F Pressure: 12.40 psia Flow Rate: 3.09e+001 scfh Component Conc. Loading (vol%) (lb/hr) ----- -----Water 2.11e+000 3.09e-002 Carbon Dioxide 3.69e+001 1.32e+000 Nitrogen 6.79e-002 1.55e-003 Methane 1.75e+001 2.28e-001 Ethane 1.71e+001 4.18e-001 Propane 1.42e+001 5.08e-001 Isobutane 3.04e+000 1.44e-001 n-Butane 4.95e+000 2.34e-001 Isopentane 4.81e-001 2.82e-002 n-Pentane 8.02e-001 4.71e-002 Cyclopentane 9.25e-002 5.28e-003 n-Hexane 1.25e-001 8.79e-003 Cyclohexane 1.64e-001 1.12e-002 Other Hexanes 3.20e-001 2.24e-002 Heptanes 9.32e-002 7.60e-003 Methylcyclohexane 3.26e-001 2.61e-002

2,2,4-Trimethylpentane 2.81e-003 2.61e-004 Benzene 3.65e-001 2.32e-002 Toluene 1.24e+000 9.33e-002 Ethylbenzene 1.05e-002 9.06e-004 Xylenes 1.59e-001 1.37e-002 C8+ Heavies 1.38e-003 1.91e-004 Total Components 100.00 3.18e+000

COMBUSTION DEVICE OFF GAS STREAM

Temperature:	1000.00	deg.	F
Pressure:	14.70	psia	
Flow Rate:	9.41e-001	scfh	

Component	Conc. (vol%)	Loading (lb/hr)
Ethane Propane Isobutane	2.87e+001 2.80e+001 2.32e+001 4.99e+000 8.13e+000	2.09e-002 2.54e-002 7.19e-003
Cyclopentane	1.32e+000 1.52e-001 2.06e-001	2.35e-003 2.64e-004 4.40e-004
Methylcyclohexane 2,2,4-Trimethylpentane	1.53e-001 5.36e-001	3.80e-004 1.30e-003 1.31e-005
Ethylbenzene	2.61e-001 2.26e-003	4.53e-005 6.87e-004 9.55e-006

Plant Flare Emissions Calculations

Unit Number:	28
Description:	Plant Flare

Blowdown Gas Stream

Harvest I
Harvest I
scf/hr x E
Harvest I
MMscf/yı

Steady-State Emission Rates

Pollutants	Emission Factors,	Uncontrolled E	mission Rates,
	lb/MMBtu	pph	tpy
NOX	0.0485	4.66	7.95
CO	0.3503	33.69	57.44

Harvest Four Corners, LLC Harvest Four Corners, LLC scf/hr x Btu/scf / 1,000,000 Harvest Four Corners, LLC MMscf/yr x Btu/scf

Emission factors taken from Texas Commission on Environmental Quality (TCEQ) January 2010 document

"Technical Supplement 4: Flares" for steam-assisted units combusting high-Btu waste streams (>1000 Btu/scf) Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = lb/MMBtu x MMBtu/yr / 2,000 lb/ton

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
SO2	0.6	5.26E-02	8.97E-02
Lead	5.00E-04	4.38E-05	7.48E-05

Emission factors taken from AP-42, Table 1.4-2

Uncontrolled Emission Rates (pph) = lb/MMscf x (scf/hr / 1,000,000)

Uncontrolled Emission Rates (tpy) = lb/MMscf x MMscf/yr / 2,000 lb/ton

PM, PM10 and PM2.5 emissions are assumed to be negligible, as the flare is smokeless

	Emission			Control		
Pollutants	Factors,	Uncontrolled E	mission Rates,	Efficiencies,	Controlled Er	nission Rates,
	lb/scf	pph	tpy	%	pph	tpy
VOC	5.17E-03	453.58	773.26	98	9.07	15.47

Emission factors are calculated from the gas composition (see table below)

Uncontrolled Emission Rates (pph) = g/hp-hr x Site-rated hp / 453.59 g/lb

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Control efficiency taken from Texas Commission on Environmental Quality (TCEQ) January 2010 document "Technical Supplement 4: Flares"

Controlled Emission Rates (pph) = Uncontrolled Emission Rates (pph) x (1 - (% / 100)) Controlled Emission Rates (tpy) = Uncontrolled Emission Rates (tpy) x (1 - (% / 100))

Exhaust Parameters

1,832	°F
7.58	ft
65.62	fps
55.00	ft

Flare Effective Diameter

18.74 lb/lb-mole 1461.57 scfm 6,732,956 cal/sec 5,334,048 cal/sec 2.31 meters Exhaust temperature Effective stack diameter Stack velocity Stack height

Molecular weight Flowrate Gross heat release Effective heat release (q_n) Effective stack diameter NMAQB Calculated per NMAQB guidelines NMAQB Harvest Four Corners, LLC

Weighted average (see table below) scf/hr / 60 min/hr scfm x Btu/scf x 252 cal/Btu / 60 sec/min cal/sec x (1-(0.048 x (MW^0.5))) (0.000001 x cal/sec[q_n])^0.5

Plant Flare Emissions Calculations

Unit Number: 28 Description: Plant Flare

Gas Stream Composition

						Calculated
	Mole	Molecular	Component	Emission	Heat	Heat
Components	Percents,	Weights,	Weights,	Factors,	Contents,	Contents,
	%	lb/lb-mole	lb/lb-mole	lb/scf	Btu/scf	Btu/scf
Carbon dioxide	2.0003	44.01	8.80E-01	2.32E-03	0.00	0.00E+00
Hydrogen sulfide	0.0000	34.07	0.00E+00	0.00E+00	637.02	0.00E+00
Nitrogen	0.4390	28.01	1.23E-01	3.24E-04	0.00	0.00E+00
Methane	88.8787	16.04	1.43E+01	3.76E-02	1,009.70	8.97E+02
Ethane	5.0367	30.07	1.51E+00	3.99E-03	1,768.70	8.91E+01
Propane	2.0945	44.09	9.23E-01	2.43E-03	2,517.20	5.27E+01
IsoButane	0.3862	58.12	2.24E-01	5.92E-04	3,252.60	1.26E+01
n-Butane	0.5501	58.12	3.20E-01	8.43E-04	3,262.00	1.79E+01
IsoPentane	0.2031	72.15	1.47E-01	3.86E-04	3,999.70	8.12E+00
n-Pentane	0.1444	72.15	1.04E-01	2.75E-04	4,008.70	5.79E+00
Cyclopentane	0.0000	70.14	0.00E+00	0.00E+00	3,763.70	0.00E+00
n-Hexane	0.0451	86.17	3.89E-02	1.02E-04	4,756.10	2.15E+00
Cyclohexane	0.0213	84.16	1.79E-02	4.72E-05	4,481.60	9.55E-01
Other hexanes	0.0855	86.18	7.37E-02	1.94E-04	4,756.10	4.07E+00
Heptanes	0.0590	100.20	5.91E-02	1.56E-04	5,502.80	3.25E+00
Methylcyclohexane	0.0229	98.19	2.25E-02	5.93E-05	5,215.90	1.19E+00
Isooctane	0.0034	100.21	3.41E-03	8.98E-06	5,500.00	1.87E-01
Benzene	0.0086	78.11	6.72E-03	1.77E-05	3,741.90	3.22E-01
Toluene	0.0082	92.14	7.56E-03	1.99E-05	4,474.80	3.67E-01
Ethylbenzene	0.0001	106.17	1.06E-04	2.80E-07	5,222.10	5.22E-03
Xylenes	0.0014	106.17	1.49E-03	3.92E-06	5,208.00	7.29E-02
C8+ heavies	0.0115	110.00	1.27E-02	3.33E-05	5,500.00	6.33E-01
Tota	100.0000		18.74	4.94E-02		1,096.83
VOC	,			5.17E-03		

Gas stream composition obtained from Kutz I extended gas analysis dated 08/04/2011

Until the Kutz I Plant is shut down and a contemporary representative gas sample is available, previous calculations are brought forward Component Weights (lb/lb-mole) = (% / 100) * Molecular Weights (lb/lb-mole)

Emission Factors (lb/scf) = (% / 100) * Molecular Weights (lb/lb-mole) / 379.4 scf/lb-mole

Unit Number:	<mark>36</mark>
Description:	Chaco Dehy Flare
	 .

0.70 MMBtu/hr

4.60 MMscf/yr

6,113.52 MMBtu/yr

1,329 Btu/scf

152 scf/hr 0.20 MMBtu/hr

1,788.97 MMBtu/yr

1,344 Btu/scf

100 scf/hr

1,003.38 MMBtu/yr

1,145 Btu/scf

Supplemental Fuel Gas Stream 1332.5 Btu/scf

677.0 scf/hr

1,145 Btu/scf

300 Btu/scf

0.0 scf/hr

0.00 MMBtu/hr

0.00 MMscf/yr

0.00 MMBtu/yr

0.11 MMBtu/hr

0.88 MMscf/yr

1.33 MMscf/yr

Condenser Vent Stream

Pilot Gas Stream

Note: The data on this worksheet applies to each individual emissions unit identified above.

Operating Time

8,760 hr/yr

Flash Tank Off Gas Stream 525 scf/hr

Annual operating time

Hourly flowrate Hourly heat rate Annual flowrate Annual heat rate Calculated heat content

Hourly flowrate Hourly heat rate Annual flowrate Annual heat rate Calculated heat content

Hourly flowrate Hourly heat rate Annual flowrate Annual heat rate Calculated heat content

Heat content (B_{dehy}) Hourly flowrate (Q_{dehy}) Heat content (B_{fuel}) Heat content (B_{mix}) Hourly flowrate (Q_{fuel}) Hourly Flowrate Annual Flowrate Harvest Four Corners, LLC

GRI-GLYCalc scf/hr x Btu/scf / 1,000,000 scf/hr x hr/yr / 1,000,000 MMBtu/hr x hr/yr Calculated from GRI-GLYCalc results (see gas stream composition table below)

GRI-GLYCalc scf/hr x Btu/scf / 1,000,000 scf/hr x hr/yr / 1,000,000 MMBtu/hr x hr/yr Calculated from GRI-GLYCalc results (see gas stream composition table below)

Estimated scf/hr x Btu/scf / 1,000,000 scf/hr x hr/yr / 1,000,000 MMBtu/hr x hr/yr Calculated from GRI-GLYCalc results (see gas stream composition table below)

Calculated from GLYCalc results Calculated from GLYCalc results Calculated from GLYCalc results Minimum required $Q_{fuel} = Q_{dehy} * (B_{mix} - B_{dehy})/(B_{fuel} - B_{mix})$ scf/hr x Btu/scf / 1,000,000 scf/hr x hr/yr / 1,000,000 MMBtu/hr x hr/yr

Note: Supplemental fuel is only required if the heat content of the combined streams from the regenerator still vent, condenser vent and/or flash tank off-gas streams are less than 300 Btu/scf.

Combined Stream

777 scf/hr 1.02 MMBtu/hr 6.81 MMscf/yr 8,905.88 MMBtu/yr 1,308 Btu/scf Hourly Flowrate Hourly Flowrate Annual Flowrate Annual Flowrate Heat content Sum of all streams Sum of all streams Sum of all streams Sum of all streams Weighted average of all streams

Unit Number: 36 Description: Chaco Dehy Flare

Steady-State Emission Rates

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/MMBtu	pph	tpy
NOX	0.1380	1.40E-01	6.15E-01
CO	0.2755	2.80E-01	1.23

Emissions are calculated using all the gas streams

Emission factors (lb/MMBtu) from the Texas Commission on Environmental Quality (TCEQ) January 2010 document "Technical Supplement 4: Flares" for unassisted units combusting high-Btu waste streams (>1000 Btu/scf)

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = lb/MMBtu x MMBtu/yr / 2,000 lb/ton

Allowable emissions are brought forward from previous permitting

Steady-State Emission Rates Continued

Pollutants	Emission Factors,	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
VOC	5.5	5.50E-04	2.41E-03
SO2	0.6	4.66E-04	2.04E-03
Lead	5.00E-04	3.89E-07	1.70E-06

Emission factors taken from AP-42, Table 1.4-2

Uncontrolled Emission Rates (pph) = Ib/MMscf x (scf/hr / 1,000,000)

Uncontrolled Emission Rates (tpy) = lb/MMscf x MMscf/yr / 2,000 lb/ton

VOC emissions are calculated using only the pilot and supplemental fuel gas streams. VOC emissions from the regenerator still vent, condenser vent, and/or flash tank off-gas streams are included with the dehydrator emissions SO2 and lead emissions are calculated using all the gas streams

PM, PM10 and PM2.5 emissions are assumed to be negligible, as the flare is smokeless

Flare Effective Diameter

27.46 lb/lb-mole	Molecular weight	Weighted aver
12.95 scfm	Flowrate	scf/hr / 60 min
71,166 cal/sec	Gross heat release	scfm x Btu/scf
53,264 cal/sec	Effective heat release (q _n)	cal/sec x (1-(0
0.23 meters	Effective stack diameter	(0.000001 x ca

Exhaust Parameters

1,832 °F 0.76 ft 65.62 fps 26.00 ft Exhaust temperature Effective stack diameter Stack velocity Stack height Weighted average scf/hr / 60 min/hr scfm x Btu/scf x 252 cal/Btu / 60 sec/min cal/sec x (1-(0.048 x (MW^0.5))) (0.000001 x cal/sec[q_n])^0.5

NMAQB Calculated per NMAQB guidelines NMAQB Harvest Four Corners, LLC

Unit Number: 36 Description: Chaco Dehy Flare

Gas Stream Compositions

Flash Tank Off Gas Stream Composition					
					Calculated
	Mole	Molecular	Component	Heat	Heat
Components	Percents,	Weights,	Weights,	Contents,	Contents,
	%	lb/lb-mole	lb/lb-mole	Btu/scf	Btu/scf
Water	7.92E-01	18.02	0.14	0.00	0.00
Carbon dioxide	7.86E+00	44.01	3.46	0.00	0.00
Hydrogen sulfide	0.00E+00	34.07	0.00	637.02	0.00
Nitrogen	2.39E-01	28.01	0.07	0.00	0.00
Methane	6.30E+01	16.04	10.11	1,009.70	636.11
Ethane	1.39E+01	30.07	4.18	1,768.70	245.85
Propane	7.46E+00	44.09	3.29	2,517.20	187.78
IsoButane	1.51E+00	58.12	0.88	3,252.60	49.11
n-Butane	2.38E+00	58.12	1.38	3,262.00	77.64
IsoPentane	6.28E-01	72.15	0.45	3,999.70	25.12
n-Pentane	4.57E-01	72.15	0.33	4,008.70	18.32
Cyclopentane	4.23E-02	70.14	0.03	3,763.70	1.59
n-Hexane	1.93E-01	86.17	0.17	4,756.10	9.18
Cyclohexane	1.03E-01	84.16	0.09	4,481.60	4.62
Other hexanes	4.06E-01	86.18	0.35	4,756.10	19.31
Heptanes	1.98E-01	100.20	0.20	5,502.80	10.90
Methylcyclohexane	3.39E-01	98.19	0.33	5,215.90	17.68
Isooctane	1.12E-02	100.21	0.01	5,500.00	0.62
Benzene	3.61E-02	78.11	0.03	3,741.90	1.35
Toluene	2.34E-01	92.14	0.22	4,474.80	10.47
Ethylbenzene	4.91E-03	106.17	0.01	5,222.10	0.26
Xylenes	5.80E-02	106.17	0.06	5,208.00	3.02
C8+ heavies	1.89E-01	110.00	0.21	5,500.00	10.40
Tot	al 100.0405		25.98		1,329.32

Gas stream compositions are obtained from GRI-GLYCalc 4.0

Component Weights (lb/lb-mole) = (% / 100) * Molecular Weights (lb/lb-mole)

Unit Number: 36 Description: Cha

otion: Chaco Dehy Flare

Condenser Vent Stream Composition					
					Calculated
	Mole	Molecular	Component	Heat	Heat
Components	Percents,	Weights,	Weights,	Contents,	Contents,
	%	lb/lb-mole	lb/lb-mole	Btu/scf	Btu/scf
Water	2.11E+00	18.02	0.38	0.00	0.00
Carbon dioxide	3.18E+01	44.01	14.00	0.00	0.00
Hydrogen sulfide	0.00E+00	34.07	0.00	637.02	0.00
Nitrogen	7.87E-02	28.01	0.02	0.00	0.00
Methane	2.32E+01	16.04	3.72	1,009.70	234.25
Ethane	1.46E+01	30.07	4.39	1,768.70	258.23
Propane	1.57E+01	44.09	6.92	2,517.20	395.20
IsoButane	3.21E+00	58.12	1.87	3,252.60	104.41
n-Butane	5.35E+00	58.12	3.11	3,262.00	174.52
IsoPentane	5.35E-01	72.15	0.39	3,999.70	21.40
n-Pentane	7.82E-01	72.15	0.56	4,008.70	31.35
Cyclopentane	1.05E-01	70.14	0.07	3,763.70	3.95
n-Hexane	1.28E-01	86.17	0.11	4,756.10	6.09
Cyclohexane	1.70E-01	84.16	0.14	4,481.60	7.62
Other hexanes	3.09E-01	86.18	0.27	4,756.10	14.70
Heptanes	8.20E-02	100.20	0.08	5,502.80	4.51
Methylcyclohexane	3.07E-01	98.19	0.30	5,215.90	16.01
Isooctane	2.39E-03	100.21	0.00	5,500.00	0.13
Benzene	3.73E-01	78.11	0.29	3,741.90	13.96
Toluene	1.09E+00	92.14	1.00	4,474.80	48.78
Ethylbenzene	8.80E-03	106.17	0.01	5,222.10	0.46
Xylenes	1.50E-01	106.17	0.16	5,208.00	7.81
C8+ heavies	3.43E-03	110.00	0.00	5,500.00	0.19
Total	100.0943		37.80		1,343.56

Gas stream compositions are obtained from GRI-GLYCalc 4.0

Component Weights (lb/lb-mole) = (% / 100) * Molecular Weights (lb/lb-mole)

Unit Number: 36 Description: Cha

ption: Chaco Dehy Flare

Dry Gas Stream Composition					
					Calculated
	Mole	Molecular	Component	Heat	Heat
Components	Percents,	Weights,	Weights,	Contents,	Contents,
	%	lb/lb-mole	lb/lb-mole	Btu/scf	Btu/scf
Water	6.32E-03	18.02	0.00	0.00	0.00
Carbon dioxide	1.82E+00	44.01	0.80	0.00	0.00
Hydrogen sulfide	0.00E+00	34.07	0.00	637.02	0.00
Nitrogen	3.11E-01	28.01	0.09	0.00	0.00
Methane	8.55E+01	16.04	13.71	1,009.70	863.29
Ethane	7.28E+00	30.07	2.19	1,768.70	128.76
Propane	2.94E+00	44.09	1.30	2,517.20	74.01
IsoButane	5.28E-01	58.12	0.31	3,252.60	17.17
n-Butane	7.55E-01	58.12	0.44	3,262.00	24.63
IsoPentane	2.10E-01	72.15	0.15	3,999.70	8.40
n-Pentane	1.40E-01	72.15	0.10	4,008.70	5.61
Cyclopentane	8.47E-03	70.14	0.01	3,763.70	0.32
n-Hexane	5.51E-02	86.17	0.05	4,756.10	2.62
Cyclohexane	2.06E-02	84.16	0.02	4,481.60	0.92
Other hexanes	1.21E-01	86.18	0.10	4,756.10	5.75
Heptanes	5.35E-02	100.20	0.05	5,502.80	2.94
Methylcyclohexane	7.47E-02	98.19	0.07	5,215.90	3.90
Isooctane	3.70E-03	100.21	0.00	5,500.00	0.20
Benzene	7.04E-03	78.11	0.01	3,741.90	0.26
Toluene	4.60E-02	92.14	0.04	4,474.80	2.06
Ethylbenzene	1.08E-03	106.17	0.00	5,222.10	0.06
Xylenes	1.29E-02	106.17	0.01	5,208.00	0.67
C8+ heavies	6.96E-02	110.00	0.08	5,500.00	3.83
Total	99.9640		19.53		1,145.41

Gas stream compositions are obtained from GRI-GLYCalc 4.0

Component Weights (lb/lb-mole) = (% / 100) * Molecular Weights (lb/lb-mole)

GRI-HAPCalc[®] 3.0 Flares Report

Facility ID:	KUTZ	Notes:
Operation Type:	GAS PLANT	
Facility Name:	KUTZ CANYON PROCESSING PLANT	
User Name:	Harvest Four Corners, LLC	
Units of Measure:	U.S. STANDARD	

Note: Emissions less than 5.00E-09 tons (or tonnes) per year are considered insignificant and are treated as zero. These emissions are indicated on the report with a "0".

Emissions between 5.00E-09 and 5.00E-05 tons (or tonnes) per year are represented on the report with "0.0000". Note: The molecular weights of ethane and propane were used to calculate emissions for NMHC and NMEHC, respectively. Note: The value for total reduced sulfur (TRS) includes sulfur from all sulfur-containing species except SO2.

Flare Unit			
Unit Name: DEHY			
Hours of Operation:	8,760 Yearly	Efficiency:	95.00 %
Volume:	677.00 scf/hr	Volume Gas to Pilot:	100.000 scf/hr
Gas Heat Value:	1,308.00 Btu/scf (HHV)	Pilot Gas Sulfur Content:	0.00 grains/100scf
Flare Design:	OTHER		

<u>Chemical Name</u>	Mole %
NMHC	28.9998
NMEHC	15.8148
Benzene	0.0983
Toluene	0.3773
Ethylbenzene	0.0052
Xylenes(m,p,o)	0.0702
n-Hexane	0.1625
2,2,4-Trimethylpentane	0.0085
Total Reduced Sulfur	0.0000
Hydrogen Sulfide	0.0000
Carbon Disulfide	0.0000
Carbonyl Sulfide	0.0000

Calculated Emissions (ton/yr)

	Chemical Name	Emissions
HAPs_		
	Formaldehyde	0.0012
	Benzene	0.0300
	Toluene	0.1358
	Ethylbenzene	0.0022
	Xylenes(m,p,o)	0.0291
	2,2,4-Trimethylpentane	0.0038
	n-Hexane	0.0547
Total		0.2568

<u>Criteria</u>	Pollutants			
	CO		1.0701	
	NMHC		3.4073	
	NMEHC		2.7250	
	NOx		0.5782	
Unit Name: PLANT				
Hours of Operation:	8,760	Yearly	Efficiency:	95.00 %
Volume:	87,694.00	scf/hr	Volume Gas to Pilot:	100.000 scf/hr
Gas Heat Value:	1,097.00	Btu/scf (HHV)	Pilot Gas Sulfur Content:	0.00 grains/100scf
Flare Design:	STEAM ASSIS	TED		

User Concentration Inputs

Chemical Name	Mole %
NMHC	8.6820
NMEHC	3.6453
Benzene	0.0086
Toluene	0.0082
Ethylbenzene	0.0001
Xylenes(m,p,o)	0.0014
n-Hexane	0.0451
2,2,4-Trimethylpentane	0.0034
Total Reduced Sulfur	0.0000
Hydrogen Sulfide	0.0000
Carbon Disulfide	0.0000
Carbonyl Sulfide	0.0000

Calculated Emissions (ton/yr)

	<u>Chemical Name</u>	Emissions
<u>HAPs</u>		
	Formaldehyde	0.1181
	Benzene	0.3400
	Toluene	0.3824
	Ethylbenzene	0.0054
	Xylenes(m,p,o)	0.0752
	2,2,4-Trimethylpentane	0.1966
	n-Hexane	1.9671
Total		3.0848
<u>Criteria Po</u>	<u>ollutants</u>	
	СО	147.6030
	NMHC	132.1290
	NMEHC	81.3610
	NOx	20.4788

Truck Loading Emissions Calculations

Unit Number: 38 Description: Truck Loading from T3, T31, T109, T-6528 & T-6529

Emission Factor

0.60	Saturation factor, S	AP-42, Table 5.2-1 (submerged loading & dedicated service)
3.0628 psia	True vapor pressure of liquid, P	TANKS 4.0 output file
66.95 lb/lb-mole	Molecular weight of vapors, M	TANKS 4.0 output file
67.36 °F	Temperature of liquid	TANKS 4.0 output file
527.03 °R	Temperature of liquid, T	°F + 459.67
2.91 lb/10 ³ gal	Emission factor, L	AP-42, Section 5.2, Equation 1
-		$L = 12.46 \frac{SPM}{T}$

Production Rate

3,036.25 10^3 gal/yr

Maximum annual production rate

Harvest Four Corners, LLC

Steady-State Emission Rates

	Uncontrolled			
	Emission			
Pollutant	Rates,			
	tpy			
VOC	4.42			
Potential Emission Rate $(tpy) = Ib/$				

Potential Emission Rate (tpy) = lb/10^3 gal x 10^3 gal/yr / 2,000 lb/ton

		Uncontrolled
	Percent	Emission
Pollutants	of VOC,	Rates,
	%	tpy
Benzene	0.5340	2.36E-02
Ethylbenzene	0.0537	2.37E-03
n-Hexane	3.9623	1.75E-01
Isooctane	0.0416	1.84E-03
Toluene	0.8413	3.72E-02
o-Xylene	0.3483	1.54E-02

Percent of VOC calculated from the T6528 & T6529 TANKS 4.0 results

Percent of VOC (%) = 100 x Pollutant Emission Rate (lb/yr) / Total VOC Emission Rate (lb/yr) Short-term Emission Rate (lb/hr) not appropriate for emissions based on annual average throughputs

Cooling Tower Emissions Calculations

Unit Number:	40
Description:	Cooling Tower

Note: The data on this worksheet applies to each individual emissions unit identified above.

Dissolved Solids

2,270 ppmw	Water solids content by wieght
533 gal/min	Water circulation rate
8,760 hr/yr	Annual operating time

Harvest Four Corners, LLC Harvest Four Corners, LLC Harvest Four Corners, LLC

Steady-State Emission Rates

		Flow		Drift Solids		
Pollutants	Drift,	Rates,	TDS,	Emitted,	Uncontrolled E	mission Rates,
	gal drift/gal	gal/hr	lb/gal drift	%	pph	tpy
TSP	2.00E-04	31,980	0.0189	100.00	1.21E-01	5.30E-01
PM10	2.00E-04	31,980	0.0189	62.96	7.62E-02	3.34E-01

Cooling tower is an induced draft, counter flow tower

Drift is taken from AP-42, Table 13.4-1

Flow Rate (gal/hr) = gal/min x 60 min/hr

Total dissolved solids (TDS) are calculated as follows:

TDS (lb/gal drift) = ppmw x density_{H20} / 1,000,000

TSP emissions are calculated assuming all dissolved solids in the drift are emitted as TSP (Drift Solids Emitted = 100) PM10 emissions are calculated using the following equation (a curve fit for the results in Figure 1 of the "Frisbie" paper) to estimate the percentage of drift particulate matter that evaporates as PM10:

Drift Solids Emitted (%) = exp((TDS-16916) / -3535.5)

PM2.5 emissions are assumed to be negligable

Uncontrolled Emission Rates (pph) = gal drift/gal x gal/hr x lb/gal drift x (% / 100)

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Cooling Tower Emissions Calculations

Unit Number:	41
Description:	Cooling Tower

Note: The data on this worksheet applies to each individual emissions unit identified above.

Dissolved Solids

2,100 ppmw	Water solids content by wieght
400 gal/min	Water circulation rate
8,760 hr/yr	Annual operating time

Harvest Four Corners, LLC Harvest Four Corners, LLC Harvest Four Corners, LLC

Steady-State Emission Rates

		Flow		Drift Solids		
Pollutants	Drift,	Rates,	TDS,	Emitted,	Uncontrolled E	mission Rates,
	gal drift/gal	gal/hr	lb/gal drift	%	pph	tpy
TSP	2.00E-04	24,000	0.0175	100.00	8.41E-02	3.68E-01
PM10	2.00E-04	24,000	0.0175	66.06	5.55E-02	2.43E-01

Cooling tower is an induced draft tower

Drift is taken from AP-42, Table 13.4-1

Flow Rate $(gal/hr) = gal/min \times 60 min/hr$

Total dissolved solids (TDS) are calculated as follows: TDS (lb/gal drift) = ppmw x density_{H2O} / 1,000,000

TSP emissions are calculated assuming all dissolved solids in the drift are emitted as TSP (Drift Solids Emitted = 100) PM10 emissions are calculated using the following equation (a curve fit for the results in Figure 1 of the "Frisbie" paper) to estimate the percentage of drift particulate matter that evaporates as PM10:

Drift Solids Emitted (%) = exp((TDS-16916) / -3535.5)

PM2.5 emissions are assumed to be negligable

Uncontrolled Emission Rates (pph) = gal drift/gal x gal/hr x lb/gal drift x (% / 100)

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Project Name:	Kutz 2021 TV mod AmineCalc EU 75 Kutz amine unit EU 75 PTE Gas Sample Pulled 8/12/20
Model:	Gas Model
Amine:	MDEA
Lean Amine Pressure:	559.000 [psia]
Lean Amine Temperature:	112.000 [F]
Lean Amine Flowrate:	350.000 [gal/min]
Lean Amine Weight:	49.100 [%]
H2S Loading:	0.000 [mol/mol]
CO2 Loading:	0.042 [mol/mol]
Emission Control Efficiency	100.000
Operating Hours/Day:	24 [hours/day]
Operating Days/Year:	365 [days/year]
Gas Feed Pressure:	564.000 [psia]
Gas Feed Temperature:	81.200 [F]
Gas Feed Flowrate:	83.500 [MMSCFD]
Number of Trays in Column:	22
Flash Tank Pressure:	74.000 [psia]
H2S CO2 MDEA H2O N2 O2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 Hexanes Heptanes Octanes Nonanes C10+ MeSH EtSH Benzene Toluene Ethylbenzene Xylenes n-C6 224Trimeth	0.00000 [%] 1.82510 [%] 0.00000 [%] 0.31130 [%] 0.00000 [%] 85.52190 [%] 7.28120 [%] 2.94450 [%] 0.52860 [%] 0.75520 [%] 0.15040 [%] 0.15040 [%] 0.12880 [%] 0.07060 [%] 0.00000 [%] 0.00000 [%] 0.00000 [%] 0.00000 [%] 0.00740 [%] 0.00120 [%] 0.01500 [%] 0.05520 [%] 0.00370 [%]

Page 2----- AMINECalc Stream Results

Stream 1 Gas Feed to Absorber

Component H2S CO2 MDEA H2O N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5	Mol Fraction 0.000000 0.018250 0.000000 0.003110 0.855220 0.072810 0.029450 0.005290 0.007550 0.002100 0.001410	<pre>[lb/h] 0.000 7363.985 0.000 0.000 799.503 125787.600 20072.950 11904.070 2816.810 4024.319 1388.448 930.042</pre>	<pre>[ton/yr] 0.000 32253.710 0.000 0.000 3501.761 550940.300 87918.050 52138.950 12337.420 17626.220 6081.301 4073.515</pre>
C1	0.855220	125787.600	550940.300
C3	0.029450	11904.070	52138.950
n-C5	0.001410	930.042	4073.515
Hexanes	0.001500	1188.281	5204.582
Heptanes	0.001290	1183.260	5182.591
Octanes	0.000710	739.380	3238.427
Benzene	0.000070	52.995	232.114
Toluene	0.000490	417.306	1827.770
Ethylbenzene	0.000010	11.680	51.159
Xylenes	0.000150	146.002	639.480
n-C6	0.000550	436.124	1910.193
224Trimeth	0.000040	38.749	169.719
Total:	1.000000	179301.500	785327.200
Pressure Temperature	564.000 [psia] 81.200 [F]		
iemper acure	81.200 [F]		

Page 3----- AMINECalc Stream Results Stream 2 Rich Amine From Absorber Component Mol Fraction [lb/h] [ton/yr] H2S 0.000 0.000000 0.000 C02 5503.895 0.020720 24106.650 89950.840 92834.560 0.193 63.853 MDEA 0.125040 393978.000 406608.500 H20 0.853490 N2 0.000000 0.845 C1 0.000660 279.673 C2 0.000060 11.444 50.125

C3	0.000020		5.621	24.619
i-C4	0.000000		0.059	0.259
n-C4	0.000000		0.084	0.369
i-C5	0.000000		0.042	0.182
n-C5	0.000000		0.028	0.122
Hexanes	0.000000		0.195	0.853
Heptanes	0.000000		0.050	0.217
Octanes	0.000000		0.057	0.248
Benzene	0.000000		1.482	6.491
Toluene	0.000000		2.190	9.592
Ethylbenzene	0.000000		0.298	1.307
Xylenes	0.000000		0.613	2.684
n-C6	0.000000		0.114	0.500
224Trimeth	0.000000		0.002	0.007
Total:	1.000000		188375.600	825071.200
Pressure Temperature	564.000 104.757	[psia] [F]		

Page 4----- AMINECalc Stream Results

Stream 3 Flash Gas Vent Flow from Flash Tank

	Control	led	Uncontro	olled
Component	[lb/h]	[ton/yr]	[lb/h]	[ton/yr]
H2S	0.000	0.000	0.000	0.000
C02	0.930	4.074	0.930	4.074
MDEA	0.000	0.000	0.001	0.003
H20	0.000	0.000	0.926	4.058
N2	0.000	0.000	0.180	0.788
C1	0.000	0.000	55.373	242.530
C2	0.000	0.000	9.765	42.771
C3	0.000	0.000	4.920	21.550
i-C4	0.000	0.000	0.059	0.257
n-C4	0.000	0.000	0.084	0.367
i-C5	0.000	0.000	0.041	0.181
n-C5	0.000	0.000	0.028	0.121
Hexanes	0.000	0.000	0.186	0.813
Heptanes	0.000	0.000	0.049	0.215
Octanes	0.000	0.000	0.055	0.243
Benzene	0.000	0.000	0.156	0.685
Toluene	0.000	0.000	0.847	3.710
Ethylbenzene	0.000	0.000	0.034	0.150
Xylenes	0.000	0.000	0.270	1.184
n-C6	0.000	0.000	0.106	0.464

224Trimeth	0.000	0.000	0.002	0.007
Total:	0.930	4.074	74.013	324.171
Pressure Temperature	-	psia] F]		

Page 5			• AMINECalc Stream Results
Stream 4	Rich Amine Feed to	Regenerator	
Component	Mol Fraction	[lb/h]	[ton/yr]
H2S	0.00000	0.000	0.000
C02	0.020730	5502.964	24102.570
MDEA	0.125120	89950.840	393978.000
H20	0.854050	92833.630	406604.400
N2	0.00000	0.013	0.057
C1	0.000090	8.481	37.145
C2	0.000010	1.679	7.352
C3	0.00000	0.701	3.069
i-C4	0.00000	0.000	0.001
n-C4	0.00000	0.001	0.002
i-C5	0.00000	0.000	0.001
n-C5	0.00000	0.000	0.001
Hexanes	0.00000	0.009	0.040
Heptanes	0.00000	0.001	0.002
Octanes	0.00000	0.001	0.006
Benzene	0.00000	1.326	5.807
Toluene	0.00000	1.343	5.882
Ethylbenzene	0.00000	0.264	1.157
Xylenes	0.00000	0.343	1.501
n-C6	0.00000	0.008	0.036
224Trimeth	0.00000	0.000	0.000
Total:	1.000000	188301.600	824747.000
Pressure	74.000 [psia]		
Temperature	104.757 [F]		

Page 6----- AMINECalc Stream Results

Stream 5 Acid Gas Flow from Regenerator

	Control	led	Uncontro	olled
Component	[lb/h]	[ton/yr]	[lb/h]	[ton/yr]
H2S	0.000	0.000	0.000	0.000
C02	4107.752	17991.650	4107.752	17991.650
MDEA	0.000	0.000	0.000	0.000
H20	0.000	0.000	0.000	0.000
N2	0.000	0.000	0.013	0.057
C1	0.000	0.000	8.481	37.145
C2	0.000	0.000	1.679	7.352
C3	0.000	0.000	0.701	3.069
i-C4	0.000	0.000	0.000	0.001
n-C4	0.000	0.000	0.001	0.002
i-C5	0.000	0.000	0.000	0.001
n-C5	0.000	0.000	0.000	0.001
Hexanes	0.000	0.000	0.009	0.040
Heptanes	0.000	0.000	0.001	0.002 3.997 pph
Octanes	0.000	0.000	0.001	0.006 17.505 tpy
Benzene	0.000	0.000	1.326	5.807
Toluene	0.000	0.000	1.343	5.882
Ethylbenzene	0.000	0.000	0.264	1.157
Xylenes	0.000	0.000	0.343	1.501
n-C6	0.000	0.000	0.008	0.036
224Trimeth	0.000	0.000	0.000	0.000
Total:	4107.752	17991.650	4121.922	18053.710
Pressure		sia]		
Temperature	N/A [F]		

Page 7----- AMINECalc Stream Results

Stream 6 Lean Amine from Regenerator

Component H2S	Mol Fraction 0.000000	[lb/h] 0.000	[ton/yr] 0.000
C02	0.005320	1395.212	6110.926
MDEA	0.126610	89951.130	393979.300
H20	0.868070	93248.730	408422.500
N2	0.000000	0.000	0.000
C1	0.00000	0.000	0.000
C2	0.000000	0.000	0.000
C3	0.000000	0.000	0.000
i-C4	0.00000	0.000	0.000
n-C4	0.00000	0.000	0.000
i-C5	0.00000	0.000	0.000

n-C5	0.000000		0.000	0.000
Hexanes	0.000000		0.000	0.000
Heptanes	0.000000		0.000	0.000
Octanes	0.000000		0.000	0.000
Benzene	0.000000		0.000	0.000
Toluene	0.000000		0.000	0.000
Ethylbenzene	0.000000		0.000	0.000
Xylenes	0.000000		0.000	0.000
n-C6	0.000000		0.000	0.000
224Trimeth	0.000000		0.000	0.000
Total:	1.000000		184595.100	808512.700
Pressure Temperature	559.000 112.000	[psia] [F]		

Page 8----- AMINECalc Stream Results Stream 7 Sweet Gas Flow from Absorber Component Mol Fraction [1b/h] [ton/yr] H2S 0.000000 0.000 0.000 C02 0.008130 3255.303 14257.980 MDEA 0.000000 0.288 1.263 H20 0.002530 414.169 1814.028 N2 0.003140 799.309 3500.916 C1 125723.700 0.861830 550660.600 C2 0.073370 20061.510 87867.920 С3 0.029670 11898.450 52114.330 i-C4 0.005330 2816.751 12337.160 n-C4 0.007610 4024.235 17625.850 i-C5 0.002120 1388.407 6081.118 4073.393 n-C5 0.001420 930.014 Hexanes 0.001520 1188.086 5203.729 5182.373 Heptanes 0.001300 1183.210 **Octanes** 0.000710 739.323 3238.179 Benzene 0.000070 51.513 225.623 415.116 1818.178 Toluene 0.000500 Ethylbenzene 0.000010 11.382 49.851 Xylenes 0.000150 145.389 636.795 n-C6 0.000560 436.010 1909.691 224Trimeth 0.000040 38.748 169.712 768768.700 Total: 1.000000 175521.000 Pressure 559.000 [psia]

Temperature 113.969 [F]

Turbine & Compressor Blowdown Emissions Calculations

Unit Number: SSM (Units 1-4) Description: Turbine & Compressor Blowdowns (SSM)

Throughput

agnpat		
4	# of units	Number of
86	events/yr/unit	Blowdowns
1,006	scf/event	Gas loss p
11,600	scf/event	Gas loss p
4,315,286	scf/yr	Annual gas

Number of units Blowdowns per year per unit Gas loss per blowdown (compressor) Gas loss per blowdown (turbine) Annual gas loss Williams Four Corners LLC Williams Four Corners LLC Williams Four Corners LLC Williams Four Corners LLC # of units x events/yr/unit x [scf/event (compressor) + scf/event (turbine)]

Emission Rates

Pollutants	Emission Factors, Ib/scf	Uncontrolled, Emission Rates, tpy
VOC	7.248E-03	15.64
Benzene	1.523E-05	3.29E-02
Ethylbenzene	3.358E-06	7.25E-03
n-Hexane	1.254E-04	2.71E-01
Isooctane	9.773E-06	2.11E-02
Toluene	1.200E-04	2.59E-01
Xylene	4.198E-05	9.06E-02

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents.	Weights,	Factors.
e sin penene	%	lb/lb-mole	lb/scf
Carbon dioxide	1.8251	44.01	2.117E-03
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.3113	28.01	2.298E-04
Methane	85.5219	16.04	3.616E-02
Ethane	7.2812	30.07	5.771E-03
Propane	2.9445	44.09	3.422E-03
Isobutane	0.5286	58.12	8.098E-04
n-Butane	0.7552	58.12	1.157E-03
Isopentane	0.2099	72.15	3.992E-04
n-Pentane	0.1406	72.15	2.674E-04
Cyclopentane	0.0085	70.14	1.571E-05
n-Hexane	0.0552	86.17	1.254E-04
Cyclohexane	0.0207	84.16	4.592E-05
Other hexanes	0.1212	86.18	2.753E-04
Heptanes	0.0536	100.20	1.416E-04
Methylcyclohexane	0.0752	98.19	1.946E-04
Isooctane	0.0037	100.21	9.773E-06
Benzene	0.0074	78.11	1.523E-05
Toluene	0.0494	92.14	1.200E-04
Ethylbenzene	0.0012	106.17	3.358E-06
Xylenes	0.0150	106.17	4.198E-05
C8+ Heavies	0.0706	110.00	2.047E-04
Total	100.0000		
Total VOC			7.248E-03

Gas stream composition from Kutz Inlet extended gas analysis sampled 08/12/2020 Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.4 scf/lb-mole

Turbine & Compressor Blowdown Emissions Calculations

Unit Number: SSM (Units 5 & 6) Description: Turbine & Compressor Blowdowns (SSM)

Throughput

2 # of units	Number of u
85.58 events/yr/unit	Blowdowns p
895 scf/event	Gas loss per
11,600 scf/event	Gas loss per
2,138,644 scf/yr	Annual gas l

Jumber of units Blowdowns per year per unit Gas loss per blowdown (compressor) Gas loss per blowdown (turbine) Annual gas loss Williams Four Corners LLC Williams Four Corners LLC Williams Four Corners LLC Williams Four Corners LLC # of units x events/yr/unit x [scf/event (compressor) + scf/event (turbine)]

Emission Rates

Pollutants	Emission Factors, Ib/scf	Uncontrolled, Emission Rates, tpy
VOC	7.248E-03	7.75
Benzene	1.523E-05	1.63E-02
Ethylbenzene	3.358E-06	3.59E-03
n-Hexane	1.254E-04	1.34E-01
Isooctane	9.773E-06	1.05E-02
Toluene	1.200E-04	1.28E-01
Xylene	4.198E-05	4.49E-02

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
	%	lb/lb-mole	lb/scf
Carbon dioxide	1.8251	44.01	2.117E-03
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.3113	28.01	2.298E-04
Methane	85.5219	16.04	3.616E-02
Ethane	7.2812	30.07	5.771E-03
Propane	2.9445	44.09	3.422E-03
Isobutane	0.5286	58.12	8.098E-04
n-Butane	0.7552	58.12	1.157E-03
Isopentane	0.2099	72.15	3.992E-04
n-Pentane	0.1406	72.15	2.674E-04
Cyclopentane	0.0085	70.14	1.571E-05
n-Hexane	0.0552	86.17	1.254E-04
Cyclohexane	0.0207	84.16	4.592E-05
Other hexanes	0.1212	86.18	2.753E-04
Heptanes	0.0536	100.20	1.416E-04
Methylcyclohexane	0.0752	98.19	1.946E-04
Isooctane	0.0037	100.21	9.773E-06
Benzene	0.0074	78.11	1.523E-05
Toluene	0.0494	92.14	1.200E-04
Ethylbenzene	0.0012	106.17	3.358E-06
Xylenes	0.0150	106.17	4.198E-05
C8+ Heavies	0.0706	110.00	2.047E-04
Total	100.0000		
Total VOC			7.248E-03

Gas stream composition from Kutz Inlet extended gas analysis sampled 08/12/2020 Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.4 scf/lb-mole

Turbine & Compressor Blowdown Emissions Calculations

Unit Number: SSM (Units 7 & 8) Description: Turbine Blowdowns (SSM)

Throughput

3		
2	# of units	
85.58	events/yr/unit	
0	scf/event	
3,600	scf/event	
616,176	scf/yr	4

Number of units Blowdowns per year per unit Gas loss per blowdown (compressor) Gas loss per blowdown (turbine) Annual gas loss Williams Four Corners LLC Williams Four Corners LLC Williams Four Corners LLC Williams Four Corners LLC # of units x events/yr/unit x [scf/event (compressor) + scf/event (turbine)]

Emission Rates

Pollutants	Emission Factors,	Uncontrolled, Emission Rates,
VOC	lb/scf 7.248E-03	tpy 2.23
Benzene	1.523E-05	4.69E-03
Ethylbenzene	3.358E-06	1.03E-03
n-Hexane	1.254E-04	3.86E-02
Isooctane	9.773E-06	3.01E-03
Toluene	1.200E-04	3.70E-02
Xylene	4.198E-05	1.29E-02

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents.	Weights,	Factors.
e compensation de la compensatio	%	lb/lb-mole	lb/scf
Carbon dioxide	1.8251	44.01	2.117E-03
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.3113	28.01	2.298E-04
Methane	85.5219	16.04	3.616E-02
Ethane	7.2812	30.07	5.771E-03
Propane	2.9445	44.09	3.422E-03
Isobutane	0.5286	58.12	8.098E-04
n-Butane	0.7552	58.12	1.157E-03
Isopentane	0.2099	72.15	3.992E-04
n-Pentane	0.1406	72.15	2.674E-04
Cyclopentane	0.0085	70.14	1.571E-05
n-Hexane	0.0552	86.17	1.254E-04
Cyclohexane	0.0207	84.16	4.592E-05
Other hexanes	0.1212	86.18	2.753E-04
Heptanes	0.0536	100.20	1.416E-04
Methylcyclohexane	0.0752	98.19	1.946E-04
Isooctane	0.0037	100.21	9.773E-06
Benzene	0.0074	78.11	1.523E-05
Toluene	0.0494	92.14	1.200E-04
Ethylbenzene	0.0012	106.17	3.358E-06
Xylenes	0.0150	106.17	4.198E-05
C8+ Heavies	0.0706	110.00	2.047E-04
Total	100.0000		
Total VOC			7.248E-03

Gas stream composition from Kutz Inlet extended gas analysis sampled 08/12/2020 Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.4 scf/lb-mole

Turbine & Compressor Blowdown Emissions Calculations

Unit Number: SSM (Units 19 & 20) Description: Turbine Blowdowns (SSM)

Throughput

2	# of units
85.58	events/yr/unit
0	scf/event
4,800	scf/event
21,568	scf/yr
	85.58 0

Number of units Blowdowns per year per unit Gas loss per blowdown (compressor) Gas loss per blowdown (turbine) Annual gas loss Williams Four Corners LLC Williams Four Corners LLC Williams Four Corners LLC Williams Four Corners LLC # of units x events/yr/unit x [scf/event (compressor) + scf/event (turbine)]

Emission Rates

Pollutants	Emission Factors, Ib/scf	Uncontrolled, Emission Rates, tpy
VOC	7.248E-03	2.98
Benzene	1.523E-05	6.26E-03
Ethylbenzene	3.358E-06	1.38E-03
n-Hexane	1.254E-04	5.15E-02
Isooctane	9.773E-06	4.01E-03
Toluene	1.200E-04	4.93E-02
Xylene	4.198E-05	1.72E-02

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
	%	lb/lb-mole	lb/scf
Carbon dioxide	1.8251	44.01	2.117E-03
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.3113	28.01	2.298E-04
Methane	85.5219	16.04	3.616E-02
Ethane	7.2812	30.07	5.771E-03
Propane	2.9445	44.09	3.422E-03
Isobutane	0.5286	58.12	8.098E-04
n-Butane	0.7552	58.12	1.157E-03
Isopentane	0.2099	72.15	3.992E-04
n-Pentane	0.1406	72.15	2.674E-04
Cyclopentane	0.0085	70.14	1.571E-05
n-Hexane	0.0552	86.17	1.254E-04
Cyclohexane	0.0207	84.16	4.592E-05
Other hexanes	0.1212	86.18	2.753E-04
Heptanes	0.0536	100.20	1.416E-04
Methylcyclohexane	0.0752	98.19	1.946E-04
Isooctane	0.0037	100.21	9.773E-06
Benzene	0.0074	78.11	1.523E-05
Toluene	0.0494	92.14	1.200E-04
Ethylbenzene	0.0012	106.17	3.358E-06
Xylenes	0.0150	106.17	4.198E-05
C8+ Heavies	0.0706	110.00	2.047E-04
Total	100.0000		
Total VOC			7.248E-03

Gas stream composition from Kutz Inlet extended gas analysis sampled 08/12/2020 Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.4 scf/lb-mole

Equipment Leaks Emissions Calculations

Unit Number:

Description: Valves, Connectors, Seals & Open-Ended Lines

Steady-State Emission Rates

F1

	Number of	Emission	Emission	-	olled TOC
Equipment	Components,	Factors,	Factors,	Emissio	n Rates,
	# of sources	kg/hr/source	lb/hr/source	pph	tpy
Valves	1800	0.0045	0.0099	17.82	78.05
Connectors	5400	0.0002	0.0004	2.38	10.41
Pump Seals	11	0.0024	0.0053	0.06	0.25
Compressor Seals	36	0.0088	0.0194	0.70	3.05
Pressure Relief Valves	65	0.0088	0.0194	1.26	5.51
Open-Ended Lines	360	0.0020	0.0044	1.58	6.94
-	Total			23.79	104.22

Number of components based on TriHydro Kutz II component count for Sep. 2016 KKK/HH reporting

Emission factors taken from the EPA "1995 Protocol for Equipment Leak Emission Estimates"

Emission factors (lb/hr/source) = Emission factors (kg/hr/source) x 2.2 lb/kg

Uncontrolled TOC Emission Rates (pph) = lb/hr/source x # of sources

Uncontrolled TOC Emission Rates (tpy) = Uncontrolled TOC Emission Rates (pph) x 8,760 hr/yr / 2,000 lb/ton

Components	Mole Percents,	Molecular Weights,	Component Weights,	Weight Percent of TOC,	Uncontrolled E	mission Rates,
	%	lb/lb-mole	lb/lb-mole	%	pph	tpy
Carbon dioxide	1.8251	44.010				
Hydrogen sulfide	0.0000	34.070				
Nitrogen	0.3113	28.013				
Methane	85.5219	16.043	1372.028	73.522		
Ethane	7.2812	30.070	218.946	11.732		
Propane	2.9445	44.097	129.844	6.958	1.66E+00	7.25E+00
Isobutane	0.5286	58.123	30.724	1.646	3.92E-01	1.72E+00
n-Butane	0.7552	58.123	43.894	2.352	5.60E-01	2.45E+00
Isopentane	0.2099	72.150	15.144	0.812	1.93E-01	8.46E-01
n-Pentane	0.1406	72.150	10.144	0.544	1.29E-01	5.67E-01
Cyclopentane	0.0085	70.134	0.596	0.032	7.60E-03	3.33E-02
n-Hexane	0.0552	86.177	4.757	0.255	6.07E-02	2.66E-01
Other hexanes	0.0207	86.177	1.784	0.096	2.27E-02	9.96E-02
Cyclohexane	0.1212	84.161	10.200	0.547	1.30E-01	5.70E-01
Heptanes	0.0536	100.204	5.371	0.288	6.85E-02	3.00E-01
Methylcyclohexane	0.0752	98.188	7.384	0.396	9.41E-02	4.12E-01
Isooctane	0.0037	114.231	0.423	0.023	5.39E-03	2.36E-02
Benzene	0.0074	78.114	0.578	0.031	7.37E-03	3.23E-02
Toluene	0.0494	92.141	4.552	0.244	5.80E-02	2.54E-01
Ethylbenzene	0.0012	106.167	0.127	0.007	1.62E-03	7.11E-03
Xylenes	0.0150	106.167	1.593	0.085	2.03E-02	8.89E-02
C8+ Heavies	0.0706	114.231	8.065	0.432	1.03E-01	4.50E-01
Total	100.0000		1866.153			
Total VOC				14.746	3.51	15.37

Gas stream composition from Kutz Inlet extended gas analysis sampled 08/12/2020

Component Weights (lb/lb-mole) = (% / 100) * Molecular Weights (lb/lb-mole)

Weight Percent of TOC (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole)

Uncontrolled Emission Rates (pph) = Total Uncontrolled TOC Emission Rate (pph) x (% / 100)

Uncontrolled Emission Rates (tpy) = Total Uncontrolled TOC Emission Rate (tpy) x (% / 100)

Malfunction Emissions Data and Calculations

Unit Number:	M1
Description:	Malfunctions

Emission Rates

Pollutants	Weight Percents, %	Uncontrolled Emission Rates, tpy
VOC		10.00
Benzene	2.102E-01	2.10E-02
Ethylbenzene	4.633E-02	4.63E-03
n-Hexane	1.730E+00	1.73E-01
Isooctane	1.348E-01	1.35E-02
Toluene	1.655E+00	1.66E-01
Xylene	5.791E-01	5.79E-02

Weight percents calculated from gas composition (see table below)

Uncontrolled Emission Rates (tpy) = VOC Emission Rate (tpy) x (% / 100)

Gas Composition

Components	Mole Percents, %	Molecular Weights, Ib/lb-mole	Component Weights, Ib/Ib-mole	Weight Percent, %
Carbon dioxide	1.8251	44.01		70
Hydrogen sulfide	0.0000	34.07		
Nitrogen	0.3113	28.01		
Methane	85.5219	16.04		
Ethane	7.2812	30.07		
Propane	2.9445	44.09	1,2982	4.721E+01
Isobutane	0.5286	58.12	0.3072	1.117E+01
n-Butane	0.7552	58.12	0.4389	1.596E+01
Isopentane	0.2099	72.15	0.1514	5.507E+00
n-Pentane	0.1406	72.15	0.1014	3.689E+00
Cyclopentane	0.0085	72.13	0.0060	2.168E-01
n-Hexane	0.0552	86.17	0.0000	1.730E+00
Cyclohexane	0.0552	84.16	0.0478	6.335E-01
Other hexanes	0.1212	86.18	0.1045	3.798E+00
Heptanes	0.0536	100.20	0.0537	1.953E+00
Methylcyclohexane	0.0752	98.19	0.0738	2.685E+00
Isooctane	0.0037	100.21	0.0037	2.083E+00 1.348E-01
Benzene	0.0074	78.11	0.0058	2.102E-01
Toluene	0.0494	92 14	0.0058	1.655E+00
	0.0494	92.14 106.17	0.0455	4.633E-02
Ethylbenzene Xylenes	0.0012	106.17	0.0013	4.633E-02 5.791E-01
C8+ Heavies	0.0706	110.00	0.0159	2.824E+00
Co+ Heavies Total	100.0000	110.00	0.0777	2.0240+00
Total Total VOC	100.0000		2.7501	
			2.7301	

Gas stream composition from Kutz Inlet extended gas analysis sampled 08/12/2020

Component Weights (lb/lb-mole) = (% / 100) x Molecular Weights (lb/lb-mole)

Weight Percents (%) = 100 x Component Weights (lb/lb-mole) / Total VOC Weight (lb/lb-mole)

Storage Tank Emissions Data and Calculations

Unit Number: T6528 & T6529 Description: Storage Tanks (with flash emissions)

Emission Rates

NOTE: Emissions shown are combined emissions for both tanks

Source	0	Breathing ses,	Flash Losses,	Total Losses,
	lb/yr	tpy	tpy	tpy
T6528 & T6529				
VOC	6,149.92	3.07	18.37	21.44
Benzene	32.84	1.64E-02	9.79E-02	1.14E-01
Ethylbenzene	3.30	1.65E-03	8.19E-03	9.84E-03
n-Hexane	243.68	1.22E-01	4.71E-01	5.93E-01
Isooctane	2.56	1.28E-03	5.35E-03	6.63E-03
Toluene	51.74	2.59E-02	1.46E-01	1.72E-01
Xylene	21.42	1.07E-02	4.73E-02	5.80E-02

Emissions based on an allowable condensate throughput of 13,321 bbl/yr

It is estimated each tank will hold half the condensate

Working/breathing losses are calculated using TANKS 4.0

Flash emissions are calculated using ProMax

Composition of Post Flash Condensate (for use in TANKS 4)

	Speciated	Mass
	Mass	Percent,
Component	Fraction	Of VOC,
		%
Nitrogen	3.15E-07	
Carbon Dioxide	1.11E-04	
Methane	2.30E-04	
Ethane	2.10E-03	
Propane	8.03E-03	
Isobutane	5.59E-03	0.9625
n-Butane	1.29E-02	1.6934
Isopentane	1.61E-02	1.6115
n-Pentane	1.79E-02	1.7965
n-Hexane	2.66E-02	2.6688
Isohexane	3.28E-02	3.2892
Heptane	1.54E-01	15.3914
Octane	2.36E-01	23.6472
Nonane	1.81E-01	18.1327
Decane	2.17E-01	21.7241
Benzene	5.81E-03	0.5820
Ethylbenzene	5.95E-03	0.5964
2,2,4-Trimethylpentane	8.79E-04	0.0881
Toluene	3.16E-02	3.1650
o-Xylene	4.64E-02	4.6512
VOC Total	9.976E-01	100.0000

Speciated Mass Fraction is obtained from ProMax output, "Condensate Truck Loading" Mas Fraction VOC Total = Sum of Propane Through C10 Mass Fractions

Mass Percent of VOC (%) = 100 x Component Mass Fraction / VOC Total Mass Fraction

Propane Mass Percent of VOC is included with the n-butane and isobutane (even distribution)

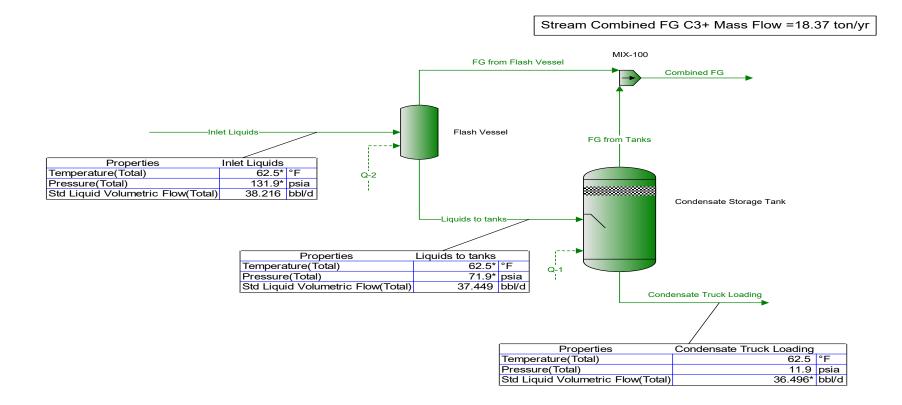
Copyright © BRE Group, Ltd. 2002-2013. All Rights Reserved.

Simulation Report

Project: 2018-03-13 Kutz Dakota PTE.pmx

Licensed to Williams Midstream Natural Gas Liquids, Inc. and Customer's Org.

Client Name: Williams Location: Kutz Dakota Job: Tank Flash PTE Model


ProMax Filename: S:\Environmental\Flash Emission Estimates\Kutz Dakota\2018-03-13 PTE\2018-03-13 Kutz Dakota PTE.pmx ProMax Version: 3.2.13330.0 Simulation Initiated: 3/14/2018 1:31:09 PM

Bryan Research & Engineering, Inc.

Chemical Engineering Consultants P.O. Box 4747 Bryan, Texas 77805 Office: (979) 776-5220 FAX: (979) 776-4818 mailto:sales@bre.com http://www.bre.com/

Report Navigator can be activated via the ProMax Navigator Toolbar. An asterisk (*), throughout the report, denotes a user specified value. A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.

Kutz Dakota Condensate Flash PTE

Process Streams		Combined FG	Condensate Truck Loading	Inlet Liquids	Liquids to tanks
Composition Phase: Total	Status: From Block: To Block:	Solved MIX-100	Solved Condensate Storage Tank	Solved Flash Vessel	Solved Flash Vessel Condensate Storage Tank
Mass Fraction	TO BIOOK.				Condensate Storage Failt
Nitrogen		0.00428063	3.14903E-07	0.000110910*	1.39130E-05
Methane		0.336631	0.000230307	0.00892225*	0.00300368
Carbon Dioxide		0.0313841	0.000111089	0.000919122*	0.000554429
Ethane		0.210717	0.00209782	0.00748815*	0.00580178
Propane Isobutane		0.177301 0.0445515	0.00803043 0.00558603	0.0124041* 0.00659282*	0.0115999 0.00646209
n-Butane		0.0704597	0.0128772	0.0143650*	0.0142093
Isopentane		0.0317820	0.0160762	0.0164820*	0.0165193
n-Pentane		0.0257881	0.0179212	0.0181245*	0.0182039
Isohexane		0.0186699	0.0328119	0.0324465*	0.0327013
n-Hexane		0.0106921	0.0266230	0.0262114*	0.0264349
2,2,4-Trimethylpentane Benzene		0.000121454 0.00222334	0.000878845 0.00580612	0.000859276* 0.00571355*	0.000867528 0.00576277
Heptane		0.0192047	0.153539	0.150068*	0.151517
Toluene		0.00331913	0.0315732	0.0308432*	0.0311438
Octane		0.00875445	0.235895	0.230026*	0.232332
Ethylbenzene		0.000185993	0.00594941	0.00580049*	0.00585880
o-Xylene		0.00107427	0.0463981	0.0452270*	0.0456832
Nonane		0.00208199	0.180884	0.176265*	0.178051
Decane Mass Flow		0.000776894	0.216711 lb/h	0.211131* lb/h	0.213279 lb/h
Nitrogen		0.0430468	0.000119394	0.0431662*	0.00536034
Methane		3.38522	0.000119394	3.47254*	1.15724
Carbon Dioxide		0.315604	0.0421186	0.357723*	0.213608
Ethane		2.11901	0.795378	2.91439*	2.23529
Propane		1.78297	3.04469	4.82767*	4.46916
Isobutane		0.448018	2.11791	2.56593*	2.48969
n-Butane		0.708556	4.88230	5.59085*	5.47449
Isopentane		0.319606	6.09518	6.41479*	6.36449
n-Pentane Isohexane		0.259330 0.187748	6.79472 12.4404	7.05404* 12.6282*	7.01353 12.5990
n-Hexane		0.107748	10.0940	10.2015*	10.1848
2,2,4-Trimethylpentane		0.00122136	0.333209	0.334430*	0.334238
Benzene		0.0223583	2.20136	2.22371*	2.22026
Heptane		0.193126	58.2134	58.4065*	58.3761
Toluene		0.0333777	11.9708	12.0042*	11.9989
Octane		0.0880363	89.4381	89.5261*	89.5120
Ethylbenzene o-Xylene		0.00187038 0.0108031	2.25568 17.5916	2.25755* 17.6024*	2.25726 17.6006
Nonane		0.0209369	68.5813	68.6022*	68.5988
Decane		0.00781259	82.1646	82.1724*	82.1711
Mole Fraction					
Nitrogen		0.00420223	1.22240E-06	0.0004*	5.21825E-05
Methane		0.577061	0.00156113	0.05619*	0.0196722
Carbon Dioxide					0.00132364
Ethane		0.0196111	0.000274489	0.00211*	
		0.192717	0.00758667	0.02516*	0.0202727
Propane		0.192717 0.110574	0.00758667 0.0198036	0.02516* 0.02842*	0.0202727 0.0276394
		0.192717	0.00758667	0.02516*	0.0202727
Propane Isobutane n-Butane Isopentane		0.192717 0.110574 0.0210794 0.0333378 0.0121141	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301	0.02516* 0.02842* 0.01146* 0.02497* 0.02308*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565
Propane Isobutane n-Butane Isopentane n-Pentane		0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0240565 0.0265098
Propane Isobutane n-Butane Isopentane n-Pentane Isohexane		0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240665 0.0265098 0.0285098
Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane		0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804* 0.03073*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0398705 0.0322304
Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpentane		0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804* 0.03073* 0.00076*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0398705 0.0322304 0.000797955
Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane		0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804* 0.03073*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240665 0.0265098 0.0398705 0.0322304 0.000797555 0.00775147
Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpentane Benzene		0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642 0.00808297	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804* 0.03073* 0.00076*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0398705 0.0322304 0.000797955 0.00775147 0.158875 0.0355140
Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane		0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.000527072 0.000920653 0.00210762	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642 0.00808297 0.166627 0.0372631 0.0224567	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804* 0.03073* 0.0076* 0.00739* 0.15131*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240665 0.0265098 0.0398705 0.0322304 0.000797955 0.00775147 0.158875 0.0355140 0.213700
Propane Isobutane n-Butane Isopentane Isohexane n-Hexane 2.2.4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene		0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.000527072 0.000990653 0.00210762 4.81786E-05	0.00758667 0.0198036 0.0104511 0.0240924 0.0224301 0.0270109 0.0414048 0.0335951 0.000836642 0.00886297 0.166627 0.0372631 0.224567 0.00609388	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804* 0.03073* 0.00076* 0.00739* 0.15131* 0.03382* 0.20345* 0.20345*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0398705 0.0322304 0.000797555 0.00775147 0.158875 0.0355140 0.213700 0.00579826
Propane Isobutane n-Butane Isopentane Isohexane n-Pentane 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene		0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92398E-05 0.000782756 0.000527072 0.000990653 0.00210762 4.81786E-05 0.000278274	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.008836642 0.008836642 0.008836842 0.166627 0.166627 0.0372631 0.224567 0.00609388 0.0475248	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.03804* 0.03073* 0.0076* 0.00739* 0.15131* 0.03842* 0.20345* 0.00352* 0.04304*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0398705 0.0322304 0.000797955 0.00775147 0.158875 0.0355140 0.213700 0.00579826 0.00452111
Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.00527072 0.000990653 0.00210762 4.81786E-05 0.000278274 0.00024824	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642 0.00808297 0.166627 0.0372631 0.224567 0.0060388 0.0475248 0.0475248	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804* 0.03073* 0.00076* 0.00739* 0.15131* 0.03882* 0.20345* 0.00552* 0.04304* 0.13885*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.038705 0.038705 0.0322304 0.000775147 0.158875 0.0355140 0.213700 0.00579826 0.04552111 0.145861
Propane Isobutane n-Butane Isopentane Isohexane n-Pentane 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene		0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92398-05 0.000782756 0.000527072 0.000990653 0.00210762 4.81786E-05 0.000278274	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.008836642 0.008836642 0.008836842 0.166627 0.166627 0.0372631 0.224567 0.00609388 0.0475248	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.03804* 0.03073* 0.0076* 0.00739* 0.15131* 0.03842* 0.20345* 0.00352* 0.04304*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0398705 0.0322304 0.000797555 0.00775147 0.158875 0.0355140 0.213700 0.00579826
Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.000782756 0.000210762 4.81786E-05 0.000210762 4.81786E-05 0.000218274 0.000446420 0.000150159	$\begin{array}{c} 0.00758667\\ 0.0198036\\ 0.0104511\\ 0.0240924\\ 0.0224301\\ 0.0270109\\ 0.0414048\\ 0.0335951\\ 0.000836642\\ 0.00808297\\ 0.166627\\ 0.0372631\\ 0.224567\\ 0.00609388\\ 0.0475248\\ 0.153366\\ 0.165628\\ \end{array}$	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.03804* 0.03073* 0.00076* 0.00739* 0.15131* 0.20345* 0.20345* 0.20345* 0.04304* 0.13885* 0.14992*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0388705 0.0328304 0.000797955 0.00775147 0.158875 0.0355140 0.0355140 0.0355140 0.0355141 0.0355141 0.0355141 0.157826
Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2.2.4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Process Streams		0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.000782756 0.000278274 0.000278274 0.000248640 0.000150159 Combined FG	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642 0.00808297 0.166627 0.0372631 0.0224567 0.00372631 0.224567 0.00609388 0.0475248 0.153366 0.165628 Condensate Truck Loading	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804* 0.03073* 0.00076* 0.00739* 0.15131* 0.0385* 0.20345* 0.04304* 0.14385* 0.14992*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0398705 0.0322304 0.00077955 0.00775147 0.158875 0.0357147 0.158875 0.03579826 0.0452111 0.145861 0.157496 Liquids to tanks
Propane Isobutane n-Butane Isopentane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Process Streams Properties	Status:	0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.000782756 0.00027072 0.00090653 0.000210762 4.81786E-05 0.000218274 0.000466420 0.000150159 Combined FG Splwed	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642 0.00886297 0.166627 0.0372631 0.224567 0.0372631 0.224567 0.00609388 0.0475248 0.165628 Condensate Truck Loading	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.03804* 0.03073* 0.00076* 0.00739* 0.15131* 0.20345* 0.20345* 0.20345* 0.04304* 0.13885* 0.14992*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0398705 0.0322304 0.000797955 0.00775147 0.158875 0.0355140 0.0355140 0.0452111 0.145861 0.157496 Liquids to tanks
Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2.2.4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Process Streams	From Block:	0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.000782756 0.000278274 0.000278274 0.000248640 0.000150159 Combined FG	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642 0.00808297 0.166627 0.0372631 0.0224567 0.00372631 0.224567 0.00609388 0.0475248 0.153366 0.165628 Condensate Truck Loading	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03073* 0.0076* 0.00739* 0.15131* 0.0382* 0.20345* 0.00352* 0.04304* 0.13885* 0.14992* Inlet Liquids	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0388705 0.0322304 0.0398705 0.0322304 0.0398705 0.0375147 0.158875 0.0355140 0.213700 0.00579826 0.0452111 0.145861 0.145861 0.145864 0.158862 0.0240665 0.0240665 0.0240665 0.0240665 0.0240665 0.0240665 0.0240665 0.0240665 0.0240665 0.0240665 0.000797955 0.00775147 0.15875 0.00579826 0.0452111 0.145864 0.145864 0.15875 0.025784 0.04597844 0.04597844 0.0459784 0.0459844000000000000000000000000000000000
Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Process Streams Phase: 10.81	From Block: To Block:	0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.000782756 0.00027072 0.00090653 0.000210762 4.81786E-05 0.000218274 0.000466420 0.000150159 Combined FG Splwed	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642 0.00886297 0.166627 0.0372631 0.224567 0.0372631 0.224567 0.00609388 0.0475248 0.165628 Condensate Truck Loading	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804* 0.03073* 0.00076* 0.00739* 0.15131* 0.03345* 0.20345* 0.04304* 0.14992* Inlet Liquids	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0398705 0.0328304 0.000797955 0.00775147 0.158875 0.0355140 0.0355140 0.0355140 0.0355140 0.0452111 0.158875 0.0452111 0.157496 Liquids to tanks
Propane Isobutane n-Butane Isopentane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpentane Benzene Heptane Heptane Cotane Ethylbenzene o-Xylene Nonane Decane Process Streams Properties Phase: Total Property	From Block: To Block: Units	0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.000782756 0.000278274 0.00021867 4.81786E-05 0.000278274 0.000446420 0.000150159 Combined FG Soluce MiX-100 	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642 0.00808297 0.166627 0.00808297 0.166627 0.0037631 0.224567 0.00609388 0.0475248 0.0475248 0.0475248 0.155366 0.165628 Condensate Truck Loading Spluch Condensate Storage Tank	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03604* 0.03073* 0.00076* 0.00739* 0.15131* 0.03382* 0.20345* 0.04304* 0.13885* 0.04304* 0.13885* 0.14992* Inlet Liquids Scipcd 	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0256988 0.0398705 0.0322304 0.000797955 0.00775147 0.158875 0.0355140 0.213700 0.00579826 0.0452111 0.145861 0.157496 Liquids to tanks Solved Flash Vessel Condensate Storage Tank
Propane Isobutane n-Butane Isopentane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpentane Benzene Heptane Cotane Ethylbenzene o-Xylene Nonane Decane Process Streams Properties Phase: 10101 Property Temperature	From Block: To Block: Units °F	0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.000782756 0.000278274 0.000210762 4.81786E-05 0.000218274 0.000446420 0.000150159 Combined FG Splvs.0 MiX-100 - 60.1535	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.00886642 0.00808297 0.166627 0.0372631 0.224567 0.008082897 0.166628 0.0475248 0.0475248 0.165628 Condensate Truck Loading Solved Condensate Storage Tank - Condensate Storage Tank -	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804* 0.03073* 0.00076* 0.00739* 0.15131* 0.00382* 0.20345* 0.20345* 0.04304* 0.13885* 0.14992* Inlet Liquids Scived Flash Vessel	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0398705 0.0328304 0.0398705 0.03775147 0.158875 0.0355140 0.213700 0.00579826 0.0452111 0.15875 0.00579826 0.0452111 0.157496 Liquids to tanks Solved Flash Vessel Condensate Storage Tank
Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Process Streams Properties Phase: Total Property Temperature Pressure	From Block: To Block: Units °F psia	0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.00527072 0.000990653 0.00210762 4.81786E-05 0.000278274 0.000278274 0.000278274 0.000446420 0.000150159 Combined FG Scilve 6 MiX-100 60.1535 11.9	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642 0.00808297 0.166627 0.0372631 0.224567 0.00603388 0.0475248 0.165628 Condensate Truck Loading Shired Condensate Storage Tank - -	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804* 0.03073* 0.00076* 0.00739* 0.15131* 0.0382* 0.20345* 0.04304* 0.13885* 0.14992* Inlet Liquids Solved - Flash Vessel 62.5* 131.9*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.025098 0.0398705 0.0322304 0.000797955 0.00775147 0.158875 0.0355140 0.213700 0.00579826 0.0452111 0.145861 0.157496 Liquids to tanks Salved Flash Vessel Condensate Storage Tank 62.5* 71.9*
Propane Isobutane n-Butane Isopentane Isopentane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpentane Benzene Heptane Heptane Cotane Ethylbenzene o-Xylene Nonane Decane Process Streams Properties Phase: Total Property Temperature Pressure Molecular Weight	From Block: To Block: Units °F psia Ib/Ibmol	0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.000782756 0.000527072 0.000990653 0.00210762 4.81786E-05 0.00210762 4.81786E-05 0.000278274 0.000446420 0.000150159 Combined FG Solved MIX-100 - 60.1535 11.9 27.5004	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642 0.00808297 0.166627 0.0372631 0.0224567 0.0372631 0.0224567 0.0372631 0.224567 0.00609388 0.0475248 0.165628 Condensate Truck Loading Soluce Condensate Storage Tank - - -	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03604* 0.03073* 0.00076* 0.00739* 0.15131* 0.03382* 0.20345* 0.00552* 0.04304* 0.13885* 0.14992* Inlet Liquids Scipcol Flash Vessel	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0398705 0.0328304 0.000797955 0.00775147 0.158875 0.0355140 0.213700 0.00579826 0.0452111 0.145861 0.157496 Liquids to tanks Solver Flash Vessel Condensate Storage Tank 62.5* 71.9*
Propane Isobutane n-Butane Isopentane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpentane Benzene Heptane Cotane Ethylbenzene o-Xylene Nonane Decane Process Streams Properties Phase: 10101 Property Temperature Pressure Molecular Weight Mass Density	From Block: To Block: Units °F psia Ib/Ibmol Ib/ft^3	0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.000782756 0.000210762 4.81786E-05 0.000210762 4.81786E-05 0.000210762 4.81786E-05 0.000210762 4.81786E-05 0.000210762 4.81786E-05 0.000210765 4.81786E-05 0.000210765 4.81786E-05 0.000210765 4.81786E-05 0.000150159 Combined FG Shive 0 MIX-100 60.1535 11.9 27.5004 0.0588881	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642 0.00886297 0.166627 0.0372631 0.224567 0.0372631 0.224567 0.00609388 0.0475248 0.165628 Condensate Truck Loading Shived Condensate Storage Tank - Condensate Storage Tank	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804* 0.03073* 0.00076* 0.00739* 0.15131* 0.00382* 0.20345* 0.20345* 0.20345* 0.20345* 0.20345* 0.20345* 0.20345* 0.14992* Inlet Liquids Fish Vessel 62.5* 131.9* 62.5* 131.9*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0388705 0.0328304 0.000779755 0.00775147 0.158875 0.0355140 0.0452111 0.158875 0.0355140 0.0452111 0.157496 Liquids to tanks Solved Flash Vessel Condensate Storage Tank 62.5* 71.9* 105.068 44.4464
Propane Isobutane n-Butane Isopentane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpentane Benzene Heptane Cotane Ethylbenzene o-Xylene Nonane Decane Process Streams Properties Phase: 10101 Property Temperature Pressure Molecular Weight Mass Density	From Block: To Block: Units °F psia Ib/Ibmol	0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.000782756 0.000210762 4.81786E-05 0.000278274 0.000278274 0.000278274 0.00046420 0.000150159 Combined FG Shive 6 Mix-100 - - 60.1535 11.9 27.5004 0.0589881 0.365675	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642 0.00808297 0.166627 0.0372631 0.0224567 0.0372631 0.0224567 0.0372631 0.224567 0.00609388 0.0475248 0.165628 Condensate Truck Loading Soluce Condensate Storage Tank - - -	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804* 0.03073* 0.00076* 0.00739* 0.15131* 0.0382* 0.20345* 0.20325* 0.20345* 0.2035* 0.2	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0256098 0.0398705 0.0322304 0.000775147 0.158875 0.0355140 0.213700 0.00579826 0.0452111 0.145861 0.157496 Liquids to tanks Solved Flash Vessel Condensate Storage Tank 62.5 ⁺ 71.9 ⁺ 105.068 44.4464 3.66693
Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2.2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Octane Ethylbenzene o-Xylene Process Streams Properties Phase: Total Property Temperature Pressure MolaceLlar Weight Mass Density Molar Flow	From Block: To Block: Units °F psia Ib/Ibmol Ib/ft^3 Ibmol/h	0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.000782756 0.000210762 4.81786E-05 0.000210762 4.81786E-05 0.000210762 4.81786E-05 0.000210762 4.81786E-05 0.000210762 4.81786E-05 0.000210765 4.81786E-05 0.000210765 4.81786E-05 0.000210765 4.81786E-05 0.000150159 Combined FG Shive 0 MIX-100 60.1535 11.9 27.5004 0.0588881	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642 0.00808297 0.166627 0.0372631 0.224567 0.00603388 0.0475248 0.165628 Condensate Truck Loading Shired Condensate Storage Tank - - -	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804* 0.03073* 0.00076* 0.00739* 0.15131* 0.00382* 0.20345* 0.20345* 0.20345* 0.20345* 0.20345* 0.20345* 0.20345* 0.14992* Inlet Liquids Fish Vessel 62.5* 131.9* 62.5* 131.9*	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0388705 0.0328304 0.000797955 0.00775147 0.158875 0.0355140 0.0452111 0.158875 0.0355140 0.0452111 0.157496 Liquids to tanks Solved Flash Vessel Condensate Storage Tank 62.5° 71.9° 105.068 44.4464
Propane Isobutane n-Butane Isopentane Isopentane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Process Streams Properties Phase: Total Property Temperature Pressure Molecular Weight Mass Density Molar Flow Mass Flow Liquid Volumetric Flow	From Block: To Block: Units °F psia Ib/Ibmol Ib/ft^3 Ibmol/h Ib/h gpm	0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00595795 0.00341208 2.92399E-05 0.000782756 0.000782756 0.000782756 0.000210762 4.81786E-05 0.000210762 4.81786E-05 0.000278274 0.00046420 0.000150159 Combined FG Solvett MIX-100 - 501535 11.9 27.5004 0.0589881 0.365675 10.0562	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642 0.00808297 0.166627 0.0372631 0.224567 0.00603388 0.0475248 0.165628 Condensate Truck Loading Shired Condensate Storage Tank - - -	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03073* 0.00076* 0.00739* 0.15131* 0.0382* 0.20345* 0.00552* 0.04304* 0.13885* 0.14992* Flash Vessel 50100 525* 131.9* 101.031 32.0712 3.85228 389.200	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0256988 0.0398705 0.0322304 0.000797955 0.0355140 0.00775147 0.158875 0.0355140 0.213700 0.00579826 0.0452111 0.145861 0.157496 Liquids to tanks Solved Flash Vessel Condensate Storage Tank 62.5 ⁺ 71.9 ⁺ 105.068 44.4464 3.66693 385.276 1.08073
Propane Isobutane n-Butane Isopentane Isopentane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpentane Benzene Heptane Cotane Ethylbenzene o-Xylene Nonane Decane Process Streams Properties Phase: Total Property Temperature Pressure Molecular Weight Mass Density Molar Flow Mass Flow Liquid Volumetric Flow	From Block: To Block: Units °F ppia lb/lbmol lb/ft^3 lbmol/h lb/n gpm sgpm ft^3/h	0.192717 0.110574 0.0210794 0.0333378 0.0121141 0.00982944 0.00555795 0.00341208 2.92399E-05 0.000782756 0.000782756 0.000278274 0.000246720 0.00046420 0.000456420 0.00045657 10.00555 11.9 27.5004 0.0589881 0.366675 10.0562 21.2544	0.00758667 0.0198036 0.0104511 0.0240924 0.0242301 0.0270109 0.0414048 0.0335951 0.000836642 0.00808297 0.166627 0.0372631 0.224567 0.00372631 0.224567 0.00609388 0.0475248 0.153366 0.165628 Condensate Truck Loading Solved Condensate Storage Tank - - 5 5 11.9 108.743 44.6758 3.48660 379.144	0.02516* 0.02842* 0.01146* 0.02497* 0.02308* 0.02538* 0.03804* 0.03073* 0.00076* 0.00739* 0.15131* 0.0336* 0.20345* 0.20345* 0.20345* 0.20345* 0.4304* 0.13855* 0.14992* Inlet Liquids 501/04 Flash Vessel 62.5* 131.9* 101.031 32.0712 3.85228 389.200 1.51300	0.0202727 0.0276394 0.0116816 0.0256862 0.0240565 0.0265098 0.0388705 0.0328304 0.00077955 0.00775147 0.158875 0.0355140 0.0452111 0.145861 0.0452111 0.145861 0.157496 Liquids to tanks Solveri Flash Vessel Condensate Storage Tank 62.5 [°] 71.9 [°] 105.068 44.4464 3.66693 385.276 1.08073

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

Identification	
User Identification:	Kutz T6528 & T 6529 (Condensate)
City:	Bloomfield
State:	New Mexico
Company:	Harvest Four Corners, LLC
Type of Tank:	Vertical Fixed Roof Tank
Description:	21,000 Gallon Condensate Storage Tanks
Tank Dimensions	
Shell Height (ft):	15.00
Diameter (ft):	15.50
Liquid Height (ft) :	14.00
Avg. Liquid Height (ft):	7.00
Volume (gallons):	19,761.25
Turnovers:	14.16
Net Throughput(gal/yr):	279,742.00
Is Tank Heated (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition	Good
Roof Color/Shade:	Gray/Medium
Roof Condition:	Good
Roof Characteristics	
Туре:	Dome
Height (ft)	0.00
Radius (ft) (Dome Roof)	15.50
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Kutz T6528 & T 6529 (Condensate) - Vertical Fixed Roof Tank Bloomfield, New Mexico

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
/ixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Condensate	All	67.36	53.93	80.79	59.23	2.6041	1.9903	3.2569	66.1317			110.69	
2,2,4-Trimethylpentane (isooctane)						0.7338	0.4989	1.0546	114.2300	0.0009	0.0004	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.4274	0.9846	2.0237	78.1100	0.0058	0.0053	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						29.9357	23.3576	34.6684	58.1230	0.0169	0.3258	58.12	Option 1: VP60 = 26.1 VP70 = 31.31
Decane (-n)						0.0395	0.0291	0.0536	142.2900	0.2172	0.0055	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1396	0.0876	0.2162	106.1700	0.0060	0.0005	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.7600	0.5088	1.1128	100.2000	0.1868	0.0913	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.3100	1.6303	3.2059	86.1700	0.0267	0.0396	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Iso-Butane						43.3083	34.4026	53.8185	58.1230	0.0096	0.2679	58.12	Option 1: VP60 = 38.14 VP70 = 45.16
Isopentane						11.8640	8.7212	15.5743	72.1500	0.0161	0.1229	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
Nonane (-n)						0.0784	0.0568	0.1080	128.2600	0.1813	0.0091	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1769	0.1254	0.2493	114.2300	0.2365	0.0269	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						8.0308	5.9649	10.6537	72.1500	0.0180	0.0927	72.15	Option 3: A=27691, B=7.558
Toluene						0.4136	0.2726	0.6120	92.1300	0.0317	0.0084	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Xylenes (mixed isomers)						0.1165	0.0728	0.1813	106.1700	0.0465	0.0035	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Kutz T6528 & T 6529 (Condensate) - Vertical Fixed Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb):	1,927.9090
Vapor Space Volume (cu ft):	1,710.1435
Vapor Density (lb/cu ft):	0.0305
Vapor Space Expansion Factor:	0.2283
Vented Vapor Saturation Factor:	0.4443
· · · · · · · · · · · · · · · · · · ·	
Tank Vapor Space Volume:	4 740 4405
Vapor Space Volume (cu ft):	1,710.1435
Tank Diameter (ft):	15.5000
Vapor Space Outage (ft): Tank Shell Height (ft):	9.0632 15.0000
	7.0000
Average Liquid Height (ft):	1.0632
Roof Outage (ft):	1.0032
Roof Outage (Dome Roof)	
Roof Outage (ft):	1.0632
Dome Radius (ft):	15.5000
Shell Radius (ft):	7.7500
Vapor Density	
Vapor Density Vapor Density (lb/cu ft):	0.0305
Vapor Molecular Weight (lb/lb-mole):	66.1317
Vapor Pressure at Daily Average Liquid	00.1011
Surface Temperature (psia):	2.6041
Daily Avg. Liquid Surface Temp. (deg. R):	527.0322
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	00.1012
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518,9042
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	0.0000
Vapor Space Expansion Factor:	0.2283
Daily Vapor Temperature Range (deg. R):	53.7176
Daily Vapor Pressure Range (psia):	1.2666
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	2 60 4 1
Surface Temperature (psia):	2.6041
Vapor Pressure at Daily Minimum Liquid	1 0003
Surface Temperature (psia):	1.9903
Vapor Pressure at Daily Maximum Liquid	3.0560
Surface Temperature (psia):	3.2569
Daily Avg. Liquid Surface Temp. (deg R):	527.0322
Daily Min. Liquid Surface Temp. (deg R):	513.6028
Daily Max. Liquid Surface Temp. (deg R):	540.4617
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.4443
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	2.6041
Vapor Space Outage (ft):	9.0632
Working Losses (Ib):	1,147.0469

Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liguid	66.1317
Surface Temperature (psia):	2.6041
Annual Net Throughput (gal/yr.):	279,742.0000
Annual Turnovers:	14.1600
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	19,761.2500
Maximum Liquid Height (ft):	14.0000
Tank Diameter (ft):	15.5000
Working Loss Product Factor:	1.0000
Total Losses (lb):	3,074.9559

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Kutz T6528 & T 6529 (Condensate) - Vertical Fixed Roof Tank Bloomfield, New Mexico

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Condensate	1,147.05	1,927.91	3,074.96				
Iso-Butane	307.33	516.54	823.87				
Butane (-n)	373.75	628.18	1,001.93				
Isopentane	140.96	236.92	377.87				
Pentane (-n)	106.37	178.78	285.15				
Hexane (-n)	45.45	76.39	121.84				
Heptane (-n)	104.68	175.93	280.61				
Octane (-n)	30.85	51.85	82.70				
Nonane (-n)	10.48	17.61	28.09				
Decane (-n)	6.33	10.64	16.96				
Benzene	6.13	10.29	16.42				
Ethylbenzene	0.61	1.03	1.65				
2,2,4-Trimethylpentane (isooctane)	0.48	0.80	1.28				
Toluene	9.65	16.22	25.87				
Xylenes (mixed isomers)	4.00	6.72	10.71				

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

Identification	
User Identification:	Kutz Tank T-3 flare separator liquids
City:	Bloomfield
State:	New Mexico
Company:	Williams Four Corners LLC
Type of Tank:	Horizontal Tank
Description:	19,900-gal flare separator liquids
Description.	19,900-gai hare separator liquids
Tank Dimensions	
Shell Length (ft):	52.90
Diameter (ft):	8.00
Volume (gallons):	19,900.00
Turnovers:	59.27
Net Throughput(gal/yr):	1,179,473.00
Is Tank Heated (y/n):	N
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	White/White
Shell Condition	Good
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	-0.03
Fressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Kutz Tank T-3 flare separator liquids - Horizontal Tank Bloomfield, New Mexico

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
/ixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Kutz condensate 12-07-17	All	58.54	51.41	65.66	56.17	1.9661	1.6914	2.2796	66.5407			110.69	
2,2,4-Trimethylpentane (isooctane)						0.5710	0.4627	0.6998	114.2300	0.0009	0.0004	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.1212	0.9158	1.3637	78.1100	0.0058	0.0055	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Decane (-n)						0.0322	0.0274	0.0381	142.2900	0.2172	0.0059	142.29	Option 1: VP50 = .026411 VP60 = .033211
Ethylbenzene						0.1031	0.0800	0.1318	106.1700	0.0060	0.0005	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.5852	0.4708	0.7232	100.2000	0.1868	0.0925	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						1.8417	1.5232	2.2130	86.1700	0.0267	0.0416	86.17	Option 2: A=6.876, B=1171.17, C=224.41
i-butane						25.4371	22.2191	29.0475	58.1300	0.0096	0.2072	58.13	Option 1: VP50 = 21.583 VP60 = 26.098
Isopentane						9.6953	8.1871	11.4350	72.1500	0.0161	0.1322	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
n-butane						25.4371	22.2191	29.0475	58.1300	0.0169	0.3647	58.13	Option 1: VP50 = 21.583 VP60 = 26.098
Nonane (-n)						0.0632	0.0533	0.0754	128.2600	0.1813	0.0097	128.26	Option 1: VP50 = .051285 VP60 = .065278
Octane (-n)						0.1406	0.1170	0.1697	114.2300	0.2365	0.0281	114.23	Option 1: VP50 = .112388 VP60 = .145444
Pentane (-n)						6.6165	5.6308	7.7408	72.1500	0.0180	0.1006	72.15	Option 3: A=27691, B=7.558
Toluene						0.3154	0.2512	0.3929	92.1300	0.0316	0.0084	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Xylene (-o)						0.0674	0.0519	0.0868	106.1700	0.0465	0.0027	106.17	Option 2: A=6.998, B=1474.679, C=213.69

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Kutz Tank T-3 flare separator liquids - Horizontal Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Standing Losses (Ib):	1,097.1322
Vapor Space Volume (cu ft):	1,693.6586
Vapor Density (lb/cu ft):	0.0235
Vapor Space Expansion Factor:	0.1069
Vented Vapor Saturation Factor:	0.7058
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,693.6586
Tank Diameter (ft):	8.0000
Effective Diameter (ft):	23.2187
Vapor Space Outage (ft):	4.0000
Tank Shell Length (ft):	52.9000
Vapor Density	
Vapor Density (lb/cu ft):	0.0235
Vapor Molecular Weight (lb/lb-mole):	66.5407
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.9661
Daily Avg. Liquid Surface Temp. (deg. R):	518.2062
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	00.1012
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	515.8442
Tank Paint Solar Absorptance (Shell):	0.1700
Daily Total Solar Insulation	0.1100
Factor (Btu/sqft day):	1,765.3167
Manage One of Francisco Frankrig	
Vapor Space Expansion Factor	0 1060
Vapor Space Expansion Factor:	0.1069
Daily Vapor Temperature Range (deg. R):	28.5089
Daily Vapor Pressure Range (psia):	0.5883
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	1 0661
Surface Temperature (psia):	1.9661
Vapor Pressure at Daily Minimum Liquid	1.6914
Surface Temperature (psia):	1.0914
Vapor Pressure at Daily Maximum Liquid	2 2706
Surface Temperature (psia):	2.2796
Daily Avg. Liquid Surface Temp. (deg R):	518.2062
Daily Min. Liquid Surface Temp. (deg R):	511.0790
Daily Max. Liquid Surface Temp. (deg R):	525.3334
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.7058
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	1.9661
Vapor Space Outage (ft):	4.0000
Working Losses (lb):	2,471.8602
Vapor Molecular Weight (lb/lb-mole):	66.5407
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.9661
Annual Net Throughput (gal/yr.):	1,179,473.0000
Annual Turnovers:	59.2700
Turnover Factor:	0.6728
	0.0720

TANKS 4.0 Report

Tank Diameter (ft):	8.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	3,568.9924

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Kutz Tank T-3 flare separator liquids - Horizontal Tank Bloomfield, New Mexico

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Kutz condensate 12-07-17	2,471.86	1,097.13	3,568.99				
i-butane	512.06	227.28	739.34				
2,2,4-Trimethylpentane (isooctane)	1.05	0.47	1.52				
Benzene	13.65	6.06	19.71				
Heptane (-n)	228.65	101.49	330.14				
Toluene	20.88	9.27	30.14				
Octane (-n)	69.54	30.87	100.41				
Ethylbenzene	1.29	0.57	1.86				
Xylene (-o)	6.56	2.91	9.47				
Nonane (-n)	23.98	10.64	34.62				
Decane (-n)	14.64	6.50	21.13				
n-butane	901.39	400.08	1,301.47				
Isopentane	326.77	145.04	471.81				
Pentane (-n)	248.61	110.34	358.95				
Hexane (-n)	102.80	45.63	148.43				

Page 1 of 6

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Kutz Tank T-31 flare separator liquids Bloomfield New Mexico Williams Four Corners LLC Vertical Fixed Roof Tank 4200-gal flare separator liquids
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	11.00 8.00 10.00 5.00 3,760.00 31.37 117,936.01 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Medium Good Gray/Medium Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.00 0.06
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Kutz Tank T-31 flare separator liquids - Vertical Fixed Roof Tank Bloomfield, New Mexico

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Kutz condensate 12-07-17	All	67.36	53.93	80.79	59.23	2.3580	1.7874	3.0634	66.9481			110.69	
2,2,4-Trimethylpentane (isooctane)						0.7338	0.4989	1.0546	114.2300	0.0009	0.0005	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.4274	0.9846	2.0237	78.1100	0.0058	0.0058	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Decane (-n)						0.0395	0.0291	0.0536	142.2900	0.2172	0.0060	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1396	0.0876	0.2162	106.1700	0.0060	0.0006	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.7600	0.5088	1.1128	100.2000	0.1868	0.0996	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.3100	1.6303	3.2059	86.1700	0.0267	0.0432	86.17	Option 2: A=6.876, B=1171.17, C=224.41
i-butane						29.9323	23.3587	37.8099	58.1300	0.0096	0.2020	58.13	Option 1: VP60 = 26.098 VP70 = 31.306
Isopentane						11.8640	8.7212	15.5743	72.1500	0.0161	0.1341	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
n-butane						29.9323	23.3587	37.8099	58.1300	0.0169	0.3556	58.13	Option 1: VP60 = 26.098 VP70 = 31.306
Nonane (-n)						0.0784	0.0568	0.1080	128.2600	0.1813	0.0100	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1769	0.1254	0.2493	114.2300	0.2365	0.0293	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						8.0308	5.9649	10.6537	72.1500	0.0180	0.1012	72.15	Option 3: A=27691, B=7.558
Toluene						0.4136	0.2726	0.6120	92.1300	0.0316	0.0092	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Xylene (-o)						0.0921	0.0570	0.1446	106.1700	0.0465	0.0030	106.17	Option 2: A=6.998, B=1474.679, C=213.69

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Kutz Tank T-31 flare separator liquids - Vertical Fixed Roof Tank Bloomfield, New Mexico

Annual Emission Coloculations	
Annual Emission Calcaulations Standing Losses (Ib):	400.1384
Vapor Space Volume (cu ft):	305.7817
Vapor Density (lb/cu ft):	0.0279
Vapor Space Expansion Factor:	0.2261
Vented Vapor Saturation Factor:	0.5681
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	305.7817
Tank Diameter (ft):	8.0000
Vapor Space Outage (ft):	6.0833
Tank Shell Height (ft):	11.0000
Average Liquid Height (ft):	5.0000
Roof Outage (ft):	0.0833
toof Outage (Cone Roof)	0.0833
Roof Outage (ft):	0.0000
Roof Height (ft): Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	4.0000
	4.0000
'apor Density Vapor Density (lb/cu ft):	0.0279
Vapor Molecular Weight (Ib/Ib-mole):	66.9481
Vapor Pressure at Daily Average Liquid	00.0401
Surface Temperature (psia):	2.3580
Daily Avg. Liquid Surface Temp. (deg. R):	527.0322
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.9042
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation Factor (Btu/sqft day):	1,765.3167
apor Space Expansion Factor	0.2261
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R):	53.7176
Daily Vapor Pressure Range (psia):	1.2760
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	2.3580
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	1.7874
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	3.0634
Daily Avg. Liquid Surface Temp. (deg R):	527.0322
Daily Min. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R):	513.6028 540.4617
Daily Ambient Temp. Range (deg. R):	27.9250
	21.3200
ented Vapor Saturation Factor Vented Vapor Saturation Factor:	0.5681
Vapor Pressure at Daily Average Liquid:	0.0001
Surface Temperature (psia):	2.3580
Vapor Space Outage (ft):	6.0833
Vorking Losses (Ib):	443.2720
Vapor Molecular Weight (lb/lb-mole):	66.9481
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	2.3580
Annual Net Throughput (gal/yr.):	117,936.0096
Annual Turnovers:	31.3660
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	3,760.0000
Maximum Liquid Height (ft):	10.0000
Tank Diameter (ft):	8.0000
Working Loss Product Factor:	1.0000
otal Losses (Ib):	843.4104
otai 200000 (ID).	043.4104

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Kutz Tank T-31 flare separator liquids - Vertical Fixed Roof Tank Bloomfield, New Mexico

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Kutz condensate 12-07-17	443.27	400.14	843.41
i-butane	89.55	80.83	170.38
n-butane	157.63	142.29	299.92
Isopentane	59.43	53.64	113.07
Pentane (-n)	44.84	40.48	85.32
Hexane (-n)	19.16	17.30	36.46
2,2,4-Trimethylpentane (isooctane)	0.20	0.18	0.38
Benzene	2.58	2.33	4.91
Heptane (-n)	44.13	39.84	83.97
Toluene	4.07	3.67	7.74
Octane (-n)	13.01	11.74	24.74
Ethylbenzene	0.26	0.23	0.49
Xylene (-o)	1.33	1.20	2.53
Nonane (-n)	4.42	3.99	8.41
Decane (-n)	2.67	2.41	5.08

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: Kutz Tank T-109 (flare separator li	
	quids)
City: Bloomfield	
State: New Mexico	
Company: Williams Four Corners LLC	
Type of Tank: Vertical Fixed Roof Tank	
Description: 21,000-gal flare separator liquids t	ank
Tank Dimensions	
Shell Height (ft): 20.00	
Diameter (ft): 13.30	
Liquid Height (ft) : 19.00	
Avg. Liquid Height (ft): 9.50	
Volume (gallons): 19,746.00	
Turnovers: 59.73	
Net Throughput(gal/yr): 1,179,360.06	
Is Tank Heated (y/n): N	
Paint Characteristics	
Shell Color/Shade: Gray/Medium	
Shell Condition Good	
Roof Color/Shade: Gray/Medium	
Roof Condition: Good	
Roof Characteristics	
Type: Cone	
Height (ft) 0.00	
Slope (ft/ft) (Cone Roof) 0.06	
Breather Vent Settings	

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Kutz Tank T-109 (flare separator liquids) - Vertical Fixed Roof Tank Bloomfield, New Mexico

			ily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
/ixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Kutz condensate 12-07-17	All	67.36	53.93	80.79	59.23	2.3575	1.7870	3.0628	66.9500			110.69	
2,2,4-Trimethylpentane (isooctane)						0.7338	0.4989	1.0546	114.2300	0.0009	0.0005	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.4274	0.9846	2.0237	78.1100	0.0058	0.0058	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Decane (-n)						0.0395	0.0291	0.0536	142.2900	0.2172	0.0060	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1396	0.0876	0.2162	106.1700	0.0060	0.0006	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.7600	0.5088	1.1128	100.2000	0.1868	0.0996	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.3100	1.6303	3.2059	86.1700	0.0267	0.0432	86.17	Option 2: A=6.876, B=1171.17, C=224.41
i-butane						29.9323	23.3587	37.8099	58.1300	0.0096	0.2021	58.13	Option 1: VP60 = 26.098 VP70 = 31.306
Isopentane						11.8640	8.7212	15.5743	72.1500	0.0161	0.1341	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
n-butane						29.9323	23.3587	37.8099	58.1300	0.0169	0.3555	58.13	Option 1: VP60 = 26.098 VP70 = 31.306
Nonane (-n)						0.0784	0.0568	0.1080	128.2600	0.1813	0.0100	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1769	0.1254	0.2493	114.2300	0.2365	0.0293	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						8.0308	5.9649	10.6537	72.1500	0.0180	0.1012	72.15	Option 3: A=27691, B=7.558
Toluene						0.4136	0.2726	0.6120	92.1300	0.0316	0.0092	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Xylene (-o)						0.0921	0.0570	0.1446	106.1700	0.0465	0.0030	106.17	Option 2: A=6.998, B=1474.679, C=213.69

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Kutz Tank T-109 (flare separator liquids) - Vertical Fixed Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb):	1,461.1697
Vapor Space Volume (cu ft):	1,478.0028
Vapor Density (lb/cu ft):	0.0279
Vapor Space Expansion Factor:	0.2261
Vented Vapor Saturation Factor:	0.4293
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,478.0028
Tank Diameter (ft):	13.3000
Vapor Space Outage (ft):	10.6385
Tank Shell Height (ft):	20.0000
Average Liquid Height (ft):	9.5000
Roof Outage (ft):	0.1385
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.1385
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	6.6500
Vapor Density	
Vapor Density (lb/cu ft):	0.0279
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	66.9500
Surface Temperature (psia):	2.3575
Daily Avg. Liquid Surface Temp. (deg. R):	527.0322
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	56.1542
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.9042
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof): Daily Total Solar Insulation	0.6800
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.2261
Daily Vapor Temperature Range (deg. R):	53.7176
Daily Vapor Pressure Range (psia):	1.2757
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid	2.3575
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	1.7870
Surface Temperature (psia):	3.0628
Daily Avg. Liquid Surface Temp. (deg R):	527.0322
Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	513.6028
Daily Mar. Liquid Surface Temp. (deg R):	540.4617
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.4293
Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	2.3575
Vapor Space Outage (ft):	10.6385
vapor opade outage (it).	10.0000

Working Losses (Ib):	2,964.7853
Vapor Molecular Weight (lb/lb-mole):	66.9500
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	2.3575
Annual Net Throughput (gal/yr.):	1,179,360.0614
Annual Turnovers:	59.7265
Turnover Factor:	0.6690
Maximum Liquid Volume (gal):	19,746.0000
Maximum Liquid Height (ft):	19.0000
Tank Diameter (ft):	13.3000
Working Loss Product Factor:	1.0000
Total Losses (lb):	4,425.9549

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Kutz Tank T-109 (flare separator liquids) - Vertical Fixed Roof Tank Bloomfield, New Mexico

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
n-butane	1,053.94	519.43	1,573.37
Isopentane	397.54	195.92	593.46
Pentane (-n)	299.99	147.85	447.84
Hexane (-n)	128.18	63.17	191.36
2,2,4-Trimethylpentane (isooctane)	1.34	0.66	2.01
Benzene	17.27	8.51	25.79
Heptane (-n)	295.21	145.49	440.71
Toluene	27.22	13.41	40.63
Octane (-n)	87.00	42.88	129.88
Ethylbenzene	1.73	0.85	2.58
Xylene (-o)	8.91	4.39	13.30
Nonane (-n)	29.56	14.57	44.12
Decane (-n)	17.85	8.79	26.64
Kutz condensate 12-07-17	2,964.79	1,461.17	4,425.95
i-butane	599.04	295.23	894.27

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

Identification User Identification: City: State: Company: Type of Tank: Description:	Kutz Tank T41 (Gasoline) Bloomfield New Mexico Williams Four Corners LLC Vertical Fixed Roof Tank 300 Gallon Unleaded Gasoline Storage Tank
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	5.00 3.50 4.00 2.00 300.00 12.00 3,600.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Red/Primer Good Red/Primer Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.00 0.06
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Kutz Tank T41 (Gasoline) - Vertical Fixed Roof Tank Bloomfield, New Mexico

		Tem	aily Liquid S perature (de	eg F)	Liquid Bulk Temp	Vapo	or Pressure	u /	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 13)	All	71.00	54.97	87.02	60.49	8.4947	6.3187	11.2237	62.0000			92.00	Option 4: RVP=13, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Kutz Tank T41 (Gasoline) - Vertical Fixed Roof Tank Bloomfield, New Mexico

nnual Emission Calcaulations	
tanding Losses (Ib):	602.4199
Vapor Space Volume (cu ft):	29.2142
Vapor Density (lb/cu ft):	0.0925
Vapor Space Expansion Factor:	1.4459
Vented Vapor Saturation Factor:	0.4225
ank Vapor Space Volume:	
Vapor Space Volume (cu ft):	29.2142
Tank Diameter (ft):	3.5000
Vapor Space Outage (ft):	3.0365
Tank Shell Height (ft):	5.0000
Average Liquid Height (ft):	2.0000
Roof Outage (ft):	0.0365
pof Outage (Cone Roof)	0.0005
Roof Outage (ft):	0.0365
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	1.7500
apor Density	
Vapor Density (lb/cu ft):	0.0925
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	62.0000
Surface Temperature (psia):	8.4947
Daily Avg. Liquid Surface Temp. (deg. R):	530.6665
Daily Average Ambient Temp. (deg. F):	56.1542
deal Gas Constant R	50.1542
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	520.1642
Tank Paint Solar Absorptance (Shell):	0.8900
Tank Paint Solar Absorptance (Boof):	0.8900
Daily Total Solar Insulation	0.0500
Factor (Btu/sqft day):	1,765.3167
raciór (biu/sqir day).	1,705.5107
apor Space Expansion Factor	1.4459
Vapor Space Expansion Factor:	64.0977
Daily Vapor Temperature Range (deg. R):	
Daily Vapor Pressure Range (psia):	4.9050
Breather Vent Press. Setting Range(psia): /apor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia):	8.4947
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	6.3187
Surface Temperature (psia):	11.2237
	530.6665
Daily Avg. Liquid Surface Temp. (deg R):	
Daily Min. Liquid Surface Temp. (deg R):	514.6421
Daily Max. Liquid Surface Temp. (deg R):	546.6909
Daily Ambient Temp. Range (deg. R):	27.9250
, , , ,	
ented Vapor Saturation Factor	
	0.4225
nted Vapor Saturation Factor	0.4225

Vapor Space Outage (ft):	3.0365
Working Losses (lb):	45.1435
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liguid	62.0000
Surface Temperature (psia):	8.4947
Annual Net Throughput (gal/yr.):	3,600.0000
Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	300.0000
Maximum Liquid Height (ft):	4.0000
Tank Diameter (ft):	3.5000
Working Loss Product Factor:	1.0000
Total Losses (lb):	647.5634

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Kutz Tank T41 (Gasoline) - Vertical Fixed Roof Tank Bloomfield, New Mexico

	Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions			
Gasoline (RVP 13)	45.14	602.42	647.56			

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Kutz Tank T59 (Methanol) Bloomfield New Mexico Williams Four Corners LLC Vertical Fixed Roof Tank 4,510 Gallon Methanol Storage Tank
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	12.00 8.00 11.00 5.50 4,510.00 5.00 22,550.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Aluminum/Diffuse Good Aluminum/Diffuse Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.00 0.06
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Kutz Tank T59 (Methanol) - Vertical Fixed Roof Tank Bloomfield, New Mexico

			aily Liquid Si perature (de		Liquid Bulk Temp	Vapor Pressure (psia)		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methyl alcohol	All	65.98	53.54	78.42	58.75	1.7365	1.1730	2.5166	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Kutz Tank T59 (Methanol) - Vertical Fixed Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb):	161.6741
Vapor Space Volume (cu ft):	330.9144
Vapor Density (lb/cu ft):	0.0099
Vapor Space Expansion Factor:	0.2179
Vented Vapor Saturation Factor:	0.6227
Fank Vapor Space Volume:	
Vapor Space Volume (cu ft):	330.9144
Tank Diameter (ft):	8.0000
Vapor Space Outage (ft):	6.5833
Tank Shell Height (ft):	12.0000
Average Liquid Height (ft):	5.5000
Roof Outage (ft):	0.0833
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0833
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	4.0000
/apor Density	
Vapor Density (lb/cu ft):	0.0099
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	32.0400
Surface Temperature (psia):	1.7365
Daily Avg. Liquid Surface Temp. (deg. R):	525.6478
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	56.1542
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.4242
Tank Paint Solar Absorptance (Shell):	0.6000
Tank Paint Solar Absorptance (Roof):	0.6000
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.2179
Daily Vapor Temperature Range (deg. R):	49.7633
Daily Vapor Pressure Range (psia):	1.3437
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia):	1.7365
Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia):	1,1730
Vapor Pressure at Daily Maximum Liquid	1.1750
Surface Temperature (psia):	2.5166
Daily Avg. Liquid Surface Temp. (deg R):	525.6478
Daily Min. Liquid Surface Temp. (deg R):	513.2069
Daily Max. Liquid Surface Temp. (deg R):	538.0886
	27.9250
Daily Ambient Temp. Range (deg. R):	
Daily Ambient Temp. Range (deg. R):	
	0.6227
ented Vapor Saturation Factor	0.6227

Vapor Space Outage (ft):	6.5833
Working Losses (lb):	29.8718
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	32.0400
Surface Temperature (psia):	1.7365
Annual Net Throughput (gal/yr.):	22,550.0000
Annual Turnovers:	5.0000
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	4,510.0000
Maximum Liquid Height (ft):	11.0000
Tank Diameter (ft):	8.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	191.5459

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Kutz Tank T59 (Methanol) - Vertical Fixed Roof Tank Bloomfield, New Mexico

	Losses(lbs)				
Components	Working Loss	Breathing Loss	Total Emissions		
Methyl alcohol	29.87	161.67	191.55		

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Kutz Tank T81 (Methanol) Bloomfield New Mexico Williams Four Corners LLC Horizontal Tank 100 Gallon Methanol Storage Tank
Tank Dimensions	
Shell Length (ft):	5.00
Diameter (ft):	3.00
Volume (gallons):	100.00
Turnovers:	4.00
Net Throughput(gal/yr):	400.00
Is Tank Heated (y/n): Is Tank Underground (y/n):	N N
is rank onderground (y/n).	N .
Paint Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition	Good
Proother Vent Settinge	
Breather Vent Settings Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03
	0.00

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

file://C:\Program Files\Tanks409d\summarydisplay.htm

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Kutz Tank T81 (Methanol) - Horizontal Tank Bloomfield, New Mexico

Mixture/Component	Month		ily Liquid Su perature (de Min.		Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Methyl alcohol	All	67.36	53.93	80.79	59.23	1.8115	1.1881	2.6951	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Kutz Tank T81 (Methanol) - Horizontal Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb):	17.8285
Vapor Space Volume (cu ft):	22.5114
Vapor Density (lb/cu ft):	0.0103
Vapor Space Expansion Factor:	0.2419
Vented Vapor Saturation Factor:	0.8741
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	22.5114
Tank Diameter (ft):	3.0000
Effective Diameter (ft):	4.3713
Vapor Space Outage (ft): Tank Shell Length (ft):	1.5000 5.0000
Vener Density	
Vapor Density Vapor Density (lb/cu ft):	0.0103
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.8115
Daily Avg. Liquid Surface Temp. (deg. R):	527.0322
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	56.1542
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.9042
Tank Paint Solar Absorptance (Shell):	0.6800
Daily Total Solar Insulation Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.2419
Daily Vapor Temperature Range (deg. R):	53.7176
Daily Vapor Pressure Range (psia):	1.5070
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.8115
Vapor Pressure at Daily Minimum Liquid	1 1001
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	1.1881
Surface Temperature (psia):	2.6951
Daily Avg. Liquid Surface Temp. (deg R):	527.0322
Daily Min. Liquid Surface Temp. (deg R):	513.6028
Daily Max. Liquid Surface Temp. (deg R):	540.4617
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.8741
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	1.8115
Vapor Space Outage (ft):	1.5000
	0.5500
	0.5528 32.0400
Working Losses (lb):	
Vapor Molecular Weight (lb/lb-mole):	32.0400
	1.8115

TANKS 4.0 Report

Annual Turnovers:	4.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	3.0000
Working Loss Product Factor:	1.0000

18.3813

Total Losses (lb):

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Kutz Tank T81 (Methanol) - Horizontal Tank Bloomfield, New Mexico

	Losses(lbs)				
Components	Working Loss	Breathing Loss	Total Emissions		
Methyl alcohol	0.55	17.83	18.38		

Mfg. data

MMBtu/hr x hr/yr

MMBtu/hr x 1,000,000 / Btu/scf

Harvest Four Corners, LLC

scf/hr x hr/yr / 1,000,000 Nominal heat content

Unit Number:	43
Description:	Kutz I Control Heater (Natural Gas) (Exempt & Insignificant)

Fuel Consumption

0.100 MMBtu/hr	Capacity
111 scf/hr	Hourly fuel consumption
<mark>8,760</mark> hr/yr	Annual operating time
876 MMBtu/yr	Annual fuel consumption
0.97 MMscf/yr	Annual fuel consumption
900 Btu/scf	Field gas heating value

Steady-State Emission Rates

Pollutants	Emission Factors,	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
NOX	100	1.11E-02	4.87E-02
СО	84	9.33E-03	4.09E-02
VOC	5.5	6.11E-04	2.68E-03
SO2	0.6	6.67E-05	2.92E-04
TSP	7.60	8.44E-04	3.70E-03
PM10	7.60	8.44E-04	3.70E-03
PM2.5	7.60	8.44E-04	3.70E-03
Lead	5.00E-04	5.56E-08	2.43E-07

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Mfg. data

MMBtu/hr x hr/yr

MMBtu/hr x 1,000,000 / Btu/scf

Harvest Four Corners, LLC

scf/hr x hr/yr / 1,000,000 Nominal heat content

Unit Number: 44 Kutz I Control Heater (Natural Gas) (Exempt & Insignificant) Description:

Fuel Consumption 0.

isampuon	
0.115 MMBtu/hr	Capacity
128 scf/hr	Hourly fuel consumption
<mark>8,760</mark> hr/yr	Annual operating time
1,007 MMBtu/yr	Annual fuel consumption
1.12 MMscf/yr	Annual fuel consumption
900 Btu/scf	Field gas heating value

Steady-State Emission Rates

Pollutants	Emission Factors,	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
NOX	100	1.28E-02	5.60E-02
CO	84	1.07E-02	4.70E-02
VOC	5.5	7.03E-04	3.08E-03
SO2	0.6	7.67E-05	3.36E-04
TSP	7.60	9.71E-04	4.25E-03
PM10	7.60	9.71E-04	4.25E-03
PM2.5	7.60	9.71E-04	4.25E-03
Lead	5.00E-04	6.39E-08	2.80E-07

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2

Uncontrolled Emission Rates (pph) = Ib/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Mfg. data

MMBtu/hr x hr/yr

MMBtu/hr x 1,000,000 / Btu/scf

Harvest Four Corners, LLC

scf/hr x hr/yr / 1,000,000 Nominal heat content

Unit Number:	49
Description:	Auxilliary Pump Heater (Natural Gas) (Exempt & Insignificant)

Fuel Consumption

lounpion	
0.060 MMBtu/hr	Capacity
67 scf/hr	Hourly fuel consumption
<mark>8,760</mark> hr/yr	Annual operating time
526 MMBtu/yr	Annual fuel consumption
0.58 MMscf/yr	Annual fuel consumption
900 Btu/scf	Field gas heating value

Steady-State Emission Rates

Pollutants	Emission Factors,	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
NOX	100	6.67E-03	2.92E-02
CO	84	5.60E-03	2.45E-02
VOC	5.5	3.67E-04	1.61E-03
SO2	0.6	4.00E-05	1.75E-04
TSP	7.60	5.07E-04	2.22E-03
PM10	7.60	5.07E-04	2.22E-03
PM2.5	7.60	5.07E-04	2.22E-03
Lead	5.00E-04	3.33E-08	1.46E-07

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Mfg. data

MMBtu/hr x hr/yr

MMBtu/hr x 1,000,000 / Btu/scf

Harvest Four Corners, LLC

scf/hr x hr/yr / 1,000,000 Nominal heat content

Unit Number:50Description:Auxilliary Pump Heater (Natural Gas) (Exempt & Insignificant)

Fuel Consumption

loumption	
0.076 MMBtu/hr	Capacity
84 scf/hr	Hourly fuel consumption
8,760 hr/yr	Annual operating time
666 MMBtu/yr	Annual fuel consumption
0.74 MMscf/yr	Annual fuel consumption
900 Btu/scf	Field gas heating value

Steady-State Emission Rates

Pollutants	Emission Factors.	Lincontrolled E	mission Rates.
Follutarits	,		,
	lb/MMscf	pph	tpy
NOX	100	8.44E-03	3.70E-02
CO	84	7.09E-03	3.11E-02
VOC	5.5	4.64E-04	2.03E-03
SO2	0.6	5.07E-05	2.22E-04
TSP	7.60	6.42E-04	2.81E-03
PM10	7.60	6.42E-04	2.81E-03
PM2.5	7.60	6.42E-04	2.81E-03
Lead	5.00E-04	4.22E-08	1.85E-07

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Mfg. data

MMBtu/hr x hr/yr

MMBtu/hr x 1,000,000 / Btu/scf

Harvest Four Corners, LLC

scf/hr x hr/yr / 1,000,000 Nominal heat content

Unit Number:	60
Description:	Air Building Heater (Natural Gas) (Exempt & Insignificant)

Fuel Consumption

naumption	
0.080 MMBtu/hr	Capacity
89 scf/hr	Hourly fuel consumption
8,760 hr/yr	Annual operating time
701 MMBtu/yr	Annual fuel consumption
0.78 MMscf/yr	Annual fuel consumption
900 Btu/scf	Field gas heating value

Steady-State Emission Rates

Pollutants	Emission Factors,	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
NOX	100	8.89E-03	3.89E-02
CO	84	7.47E-03	3.27E-02
VOC	5.5	4.89E-04	2.14E-03
SO2	0.6	5.33E-05	2.34E-04
TSP	7.60	6.76E-04	2.96E-03
PM10	7.60	6.76E-04	2.96E-03
PM2.5	7.60	6.76E-04	2.96E-03
Lead	5.00E-04	4.44E-08	1.95E-07

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Mfg. data

MMBtu/hr x hr/yr

MMBtu/hr x 1,000,000 / Btu/scf

Harvest Four Corners, LLC

scf/hr x hr/yr / 1,000,000 Nominal heat content

Unit Number:	64
Description:	PGI Sampler Heater (Natural Gas) (Exempt & Insignificant)

Fuel Consumption

loumption	
0.001 MMBtu/hr	Capacity
1.11 scf/hr	Hourly fuel consumption
8,760 hr/yr	Annual operating time
8.76 MMBtu/yr	Annual fuel consumption
0.01 MMscf/yr	Annual fuel consumption
900 Btu/scf	Field gas heating value

Steady-State Emission Rates

Pollutants	Emission Factors,	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
NOX	100	1.11E-04	4.87E-04
СО	84	9.33E-05	4.09E-04
VOC	5.5	6.11E-06	2.68E-05
SO2	0.6	6.67E-07	2.92E-06
TSP	7.60	8.44E-06	3.70E-05
PM10	7.60	8.44E-06	3.70E-05
PM2.5	7.60	8.44E-06	3.70E-05
Lead	5.00E-04	5.56E-10	2.43E-09

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Unit Number:	65-67
Description:	Kutz II Analyzer Heater & Kutz I Meter Heaters (Natural Gas) (Exempt & Insignificant)

Note: The data on this worksheet applies to each individual emissions unit identified above.

Fuel Cor	sump	tion
	0.012	MMB

8

Jamp		
0.012	MMBtu/hr	Capacity
13	scf/hr	Hourly fuel consumption
8,760	hr/yr	Annual operating time
105	MMBtu/yr	Annual fuel consumption
0.12	MMscf/yr	Annual fuel consumption
900	Btu/scf	Field gas heating value

Mfg. data MMBtu/hr x 1,000,000 / Btu/scf Harvest Four Corners, LLC MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000 Nominal heat content

Steady-State Emission Rates

Pollutants	Emission Factors, lb/MMscf	Uncontrolled Emission Rates		
NOX	100	1.33E-03	5.84E-03	
СО	84	1.12E-03	4.91E-03	
VOC	5.5	7.33E-05	3.21E-04	
SO2	0.6	8.00E-06	3.50E-05	
TSP	7.60	1.01E-04	4.44E-04	
PM10	7.60	1.01E-04	4.44E-04	
PM2.5	7.60	1.01E-04	4.44E-04	
Lead	5.00E-04	6.67E-09	2.92E-08	

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2

Uncontrolled Emission Rates (pph) = Ib/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Unit Number:	68
Description:	API Separator Heater (Natural Gas) (Exempt & Insignificant)

Fuel Consumption 0.

Journphon	
0.750 MMBtu/hr	Capacity
833 scf/hr	Hourly fuel consumption
8,760 hr/yr	Annual operating time
6,570 MMBtu/yr	Annual fuel consumption
7.30 MMscf/yr	Annual fuel consumption
900 Btu/scf	Field gas heating value

Mfg. data MMBtu/hr x 1,000,000 / Btu/scf Harvest Four Corners, LLC MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000 Nominal heat content

Steady-State Emission Rates

Pollutants	Emission Factors,	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
NOX	100	8.33E-02	3.65E-01
CO	84	7.00E-02	3.07E-01
VOC	5.5	4.58E-03	2.01E-02
SO2	0.6	5.00E-04	2.19E-03
TSP	7.60	6.33E-03	2.77E-02
PM10	7.60	6.33E-03	2.77E-02
PM2.5	7.60	6.33E-03	2.77E-02
Lead	5.00E-04	4.17E-07	1.83E-06

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2

Uncontrolled Emission Rates (pph) = Ib/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Harvest Four Corners, LLC

Carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) exhaust emissions were calculated using emission factors from 40 Code of Federal Regulations (CFR), Part C, Tables C-1 & C-2 and the turbine, engine, heater, and reboiler higher heating value (HHV) design heat rates.

The SSM CO_2 and CH_4 emissions from the turbines, compressors and associate piping were calculated from the annual blowdown volumes and gas composition.

Centrifugal compressor CO₂ and CH₄ emissions were calculated using a combination of equations W-26 & W-36 (from Subpart W).

Dehydrator CO2 and CH4 emissions were calculated using GRI-GLYCalc.

Amine contactor CO2 and CH4 emissions were calculated using AMINECalc.

The plant and dehydrator flare GHG emissions were calculated using the Subpart W methodology.

CO₂ and CH₄ equipment leaks emissions were calculated using the TOC emission factors and gas stream composition. CH₄ gas-driven pneumatic device emissions and non-routine emissions were calculated from the facility CH₄ gas stream composition using the emission factors and baseline CH₄ content from the API Compendium, Section 5.6.1, Table 5-15. CO₂ gas-driven pneumatic device emissions and non-routine emissions were calculated from the CH₄ emissions and facility CO₂ gas stream composition.

There are no GHG emissions associated with the cooling tower and truck loading operations.

Malfunction (Unit M1) emissions were set at 10.0 tons of VOC per year to account for emissions that may occur during upsets and malfunctions. Based on the gas release rate associated with the set annual VOC emission rate, CO_2 and CH_4 emissions were calculated using a recent extended gas analysis.

Condensate tank CO₂ and CH₄ emissions were calculated from throughput and composition data in the ProMax output file.

		Faci	ility Total Emiss	sions	
Sources	CO2,	CH4,	N2O,	GHG,	CO2e,
	tpy	tpy	tpy	tpy	tpy
Engine & Turbine Exhaust Emissions (Total #2)	170,541.34	3.22	3.22E-01	170,544.88	170717.74
SSM Emissions	8.35	142.67		151.02	3575.03
Centrifugal Compressor Venting Emissions	67.75	1,158.85		1,226.61	29039.09
Heater & Boiler Exhaust Emissions	9,373.58	1.77E-01	1.77E-02	9,373.77	9383.26
Dehydrator Emissions	468.70	3.83		472.53	564.38
Reboiler Exhaust Emissions	1,836.77	3.46E-02	3.46E-03	1,836.81	1838.66
Acid Gas Removal Emissions	17,991.65	37.15		18,028.80	18920.28
Dehydrator Flare Emissions	548.45		9.25E-04	548.45	548.73
Facility Flare Emissions	20,357.91	108.01	3.61E-02	20,465.96	23068.96
Equipment Leak Emissions	4.28	73.13		77.42	1832.63
Natural Gas Pneumatic Device Venting Emissions	5.50E-01	9.39		9.94	235.30
Natural Gas Driven Pneumatic Pump Venting Emissions	13.60	232.22		245.82	5819.05
Malfunction Emissions	2.92	49.88		52.80	1249.95
Storage Tank Emissions	1.38	14.83		16.21	372.06
Total	221,217.24	1,833.38	3.80E-01	223,051.01	267,165.13

Engine & Turbine Exhaust Emissions

Unit		E	mission Factor	S		Emission Rates	6
Numbers	Description	CO2,	CH4,	N2O,	CO2,	CH4,	N2O,
		kg/MMBtu	kg/MMBtu	kg/MMBtu	tpy	tpy	tpy
1	Solar Centaur 3830	53.06	1.00E-03	1.00E-04	20,508.26	3.87E-01	3.87E-02
2	Solar Centaur 3830	53.06	1.00E-03	1.00E-04	20,508.26	3.87E-01	3.87E-02
3	Solar Centaur 3830	53.06	1.00E-03	1.00E-04	20,508.26	3.87E-01	3.87E-02
4	Solar Centaur 3830	53.06	1.00E-03	1.00E-04	20,508.26	3.87E-01	3.87E-02
5	Solar Centaur 3830	53.06	1.00E-03	1.00E-04	20,508.26	3.87E-01	3.87E-02
6	Solar Centaur 3830	53.06	1.00E-03	1.00E-04	20,508.26	3.87E-01	3.87E-02
7	Solar Saturn T1200	53.06	1.00E-03	1.00E-04	7,555.67	1.42E-01	1.42E-02
8	Solar Saturn T1200	53.06	1.00E-03	1.00E-04	7,555.67	1.42E-01	1.42E-02
19	Solar Centaur 3016	53.06	1.00E-03	1.00E-04	16,133.92	3.04E-01	3.04E-02
20	Solar Centaur 3016	53.06	1.00E-03	1.00E-04	16,133.92	3.04E-01	3.04E-02
34	Caterpillar D343 Generator	73.96	3.00E-03	6.00E-04	108.34	4.39E-03	8.79E-04
76	Kohler 8.5RES Generator	53.06	1.00E-03	1.00E-04	4.28	8.07E-05	8.07E-06
	Total				170,541.34	3.22	3.22E-01

The emissions factors are taken from 40 CFR 98, Subpart C, Tables C-1 & C-2 Emission Rates (tpy) = kg/MBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton

				LHV	H	HV
Unit			Operating	Design	Design	Fuel
Numbers	Description	Fuel Types	Times,	Heat Rates,	Heat Rates,	Usages,
			hr/yr	MMBtu/hr	MMBtu/hr	MMBtu/yr
1	Solar Centaur 3830	Nat. Gas	8,760	36.10	40.11	351,373
2	Solar Centaur 3830	Nat. Gas	8,760	36.10	40.11	351,373
3	Solar Centaur 3830	Nat. Gas	8,760	36.10	40.11	351,373
4	Solar Centaur 3830	Nat. Gas	8,760	36.10	40.11	351,373
5	Solar Centaur 3830	Nat. Gas	8,760	36.10	40.11	351,373
6	Solar Centaur 3830	Nat. Gas	8,760	36.10	40.11	351,373
7	Solar Saturn T1200	Nat. Gas	8,760	13.30	14.78	129,453
8	Solar Saturn T1200	Nat. Gas	8,760	13.30	14.78	129,453
19	Solar Centaur 3016	Nat. Gas	8,760	28.40	31.56	276,427
20	Solar Centaur 3016	Nat. Gas	8,760	28.40	31.56	276,427
34	Caterpillar D343 Generator	Diesel	500		2.66	1,332
76	Kohler 8.5RES Generator	Nat. Gas	500	0.13	0.15	73

The fuel types and operating times are provided by Harvest The LHV design heat rates are taken from manufacturers data

HV Design Heat Rates (MMBtu/hr) = LHV Design Heat Rates (MMBtu/hr) / 0.9 LHV/HHV

HHV Fuel Usages (MMBtu/yr) = HHV Design Heat Rates (MMBtu/hr) x hr/yr

SSM Emissions

Unit		Total	CO2 Emission	CH4 Emission	Emissic	on Rates
Numbers	Description	Gas Losses,	Factors,	Factors,	CO2,	CH4,
		scf/yr	lb/scf	lb/scf	tpy	tpy
SSM	SSM	7,891,674	0.0021	0.0362	8.35	142.67

The annual blowdown volumes are calculated from data provided by Harvest

The CO2 and CH4 emission factors are calculated from the facility extended gas analysis

Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Centrifugal Compressor Venting Emissions

Unit		Emission Rates			
Numbers	Description	CO2,	CH4,		
		tpy	tpy		
NA	Blowdown Valve Leakage	12.41	212.34		
NA	Oil Degassing Vents	55.34	946.52		
NA	Isolation Valve Leakage	0.00E+00	0.00E+00		
	Total	67.75	1,158.85		

Operating mode - includes blowdown valve leakage (wet and dry seal) and the oil degassing vents (wet seal)

Non-operating depressurized mode - includes isolation valve leakage (wet & dry seal) through open blowdown vents (without blind flanges) A combination of equations W-22 & W-36 (Subpart W) is used to calculate centrifugal compressor emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rates (tpy) = # x scf/hr x hr/yr x (CO2 Mole Percent (%) / 100) x CO2 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rates (tpy) = # x scf/hr x hr/yr x (CH4 Mole Percent (%) / 100) x CH4 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

Unit		Number of	Gas	Operating	CO2 Mole	CH4 Mole	CO2	CH4
Numbers	Description	Compressors	Emissions,	Times,	Percents,	Percents,	Density,	Density,
		#	scf/hr	hr/yr	%	%	kg/scf	kg/scf
NA	Blowdown Valve Leakage	8	167.4	8,760	1.83	85.52	0.0526	0.0192
NA	Oil Degassing Vents	8	746.2	8,760	1.83	85.52	0.0526	0.0192
NA	Isolation Valve Leakage	8	10.8	0	1.83	85.52	0.0526	0.0192

The number of compressors is provided by Harvest

Emission factors are the three year rolling average (2012-2014) of all measurements in the Williams compressor fleet located at natural gas processing plants

The operating times (the average operating times for all station compressors combined) is provided by Harvest

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The CO2 & CH4 densities (kg/scf) are taken from Subpart W, Paragraph 98.233(v)

Heater & Boiler Exhaust Emissions

Unit		E	mission Factor	S	Emission Rates			
Numbers	Description	CO2,	CH4,	N2O,	CO2,	CH4,	N2O,	
		kg/MMBtu	kg/MMBtu	kg/MMBtu	tpy	tpy	tpy	
25	Born Heater	53.06	1.00E-03	1.00E-04	4,629.98	8.73E-02	8.73E-03	
27	Hot Oil Heater	53.06	1.00E-03	1.00E-04	4,743.60	8.94E-02	8.94E-03	
	Total				9,373.58	1.77E-01	1.77E-02	

The emissions factors are taken from 40 CFR 98, Subpart C, Tables C-1 & C-2 Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton

				LHV	H	HV
Unit			Operating	Design	Design	Fuel
Numbers	Description	Fuel Types	Times,	Heat Rates,	Heat Rates,	Usages,
			hr/yr	MMBtu/hr	MMBtu/hr	MMBtu/yr
25	Born Heater	Nat. Gas	8,760	8.150	9.06	79,327
27	Hot Oil Heater	Nat. Gas	8,760	8.350	9.28	81,273

The fuel type and operating time are provided by Harvest

The LHV design heat rates are taken from manufacturers data

HHV Design Heat Rates (MMBtu/hr) = LHV Design Heat Rate (MMBtu/hr) / 0.9 LHV/HHV

HHV Fuel Usages (MMBtu/yr) = HHV Design Heat Rate (MMBtu/hr) x hr/yr

Dehydrator Emissions

Unit		Emissio	n Rates
Numbers	Description	CO2,	CH4,
		tpy	tpy
35a	Dehydrator (140 MMSCFD)	417.37	3.39
77a	Dehydrator (20 MMSCFD)	51.33	4.41E-01
	Total	468.70	3.83

Emission rates are taken from the GRI-GLYCalc output files

Reboiler Exhaust Emissions

Unit		E	mission Factor	S	Emission Rates			
Numbers	Description	CO2,	CH4,	N2O,	CO2,	CH4,	N2O,	
		kg/MMBtu	kg/MMBtu	kg/MMBtu	tpy	tpy	tpy	
35b	Reboiler (140 MMSCFD)	53.06	1.00E-03	1.00E-04	994.17	1.87E-02	1.87E-03	
77b	Reboiler (20 MMSCFD)	53.06	1.00E-03	1.00E-04	842.60	1.59E-02	1.59E-03	
	Total				1,836.77	3.46E-02	3.46E-03	

The emissions factors are taken from 40 CFR 98, Subpart C, Tables C-1 & C-2

Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton

					LHV		H	HV
Unit			Operating	Fuel	Fuel Heat	Fuel	Fuel	Fuel
Numbers	Description	Fuel Types	Times	Usages,	Contents,	Usages,	Usages,	Usages,
			hr/yr	scf/hr	Btu/scf	MMBtu/hr	MMBtu/hr	MMBtu/yr
35b	Reboiler (140 MMSCFD)	Nat. Gas	8,760	1,944	900	1.75	1.94	17,033
77b	Reboiler (20 MMSCFD)	Nat. Gas	8,760	1,648	900	1.48	1.65	14,436

The fuel types and operating times are provided by Harvest

The LHV fuel usages (scf/hr) are taken from manufacturer's data

The LHV fuel heat contents are estimated based on the value typically used by manufacturers

LHV Fuel Usages (MMBtu/hr) = LHV Fuel Usages (scf/hr) x Btu/scf / 1,000,000 Btu/MMBtu

HHV Fuel Usages (MMBtu/hr) = LHV Fuel Usages (MMBtu/hr) / 0.9 LHV/HHV

HHV Fuel Usages (MMBtu/yr) = HHV Fuel Usages (MMBtu/hr) x hr/yr

Acid Gas Removal Emissions

Unit		Emissio	n Rates
Numbers	Description	CO2,	CH4,
		tpy	tpy
75	Amine Unit	17,991.65	37.15

The emission rates are taken from the AmineCalc output files

Dehydrator Flare Emissions

Unit		N2O Emission	Emissic	on Rates
Numbers	Description	Factors, kɑ/MMBtu	CO2, tpv	N2O, tpv
36	Dehydrator Flare	1.00E-04	548.45	9.25E-04
	Total		548.45	9.25E-04

The N2O emission factor is obtained from Subpart W (Paragraph 98.233(z)(2)(vi))

CO2 Emission Rates (tpy) = Combustion CO2 Emissions (MMscf/yr) x 1,000,000 scf/MMscf x 0.0526 kg/cu ft x 2.2 lb/kg / 2,000 lb/ton N2O Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton

Noncombustion CO2 and CH4 emissions are accounted for in the dehydrator emissions

Unit Numbers	Description	Flare Through- puts,	HHV Heat Contents,	Flare Through- puts,	Control Efficiencies,	Combustion CO2 Emissions,
		MMscf/yr	Btu/scf	MMBtu/yr	%	MMscf/yr
36	Dehydrator Flare	6.81	1,235	8,406	98	9.48

The dehydrator flare throughputs are calculated from the GRI-GLYCalc output file (see criteria pollutant calculations)

The HHV heat contents are obtained from Subpart W (Paragraph 98.233(z)(2)(vi))

Flare Throughputs (MMBtu/yr) = MMscf/yr x 1,000,000 scf/MMscf x Btu/scf / 1,000,000 Btu/MMBtu

The control efficiencies are the default value identified by Subpart W (Paragraph 98.233(n)(4))

Combustion CO2 Emissions (MMscf/yr) = [(Control Efficiencies (%) / 100) x MMscf/yr x (CH4 Contents (mole %) / 100) x 1]

+ [(Control Efficiencies (%) / 100) x MMscf/yr x (Ethane Contents (mole %) / 100) x 2] + [(Control Efficiencies (%) / 100) x MMscf/yr x (Propane Contents (mole %) / 100) x 3]

+ [(Control Efficiencies (%) / 100) x MMsc/yr x (Poparle Contents (mole %) / 100) x 3] + [(Control Efficiencies (%) / 100) x MMsc/yr x (Butane Contents (mole %) / 100) x 4]

+ [(Control Efficiencies (%) / 100) x MMscf/yr x (Pentane+ Contents (mole %) / 100) x 5]

The numbers 1-5 in the above equation represent the number of carbon atoms found in methane through pentane, repectively.

Unit		CO2	CH4	Ethane	Propane	Butane	Pentane+
Numbers	Description	Contents,	Contents,	Contents,	Contents,	Contents,	Contents,
		mole %					
36	Dehydrator Flare	11.77	58.11	13.18	8.49	4.47	2.86

The dehydrator flare mole % (by volume) are calculated from GRI-GLYCalc output files (see table below)

	Flash Tank	Condenser		
	Off Gas	Vent	Dry Gas	Total
Gas Throughputs (scf/hr)	525	152	100	777
	Mole	Mole	Mole	Mole
Components	Percents,	Percents,	Percents,	Percents,
	%	%	%	%
Water	7.92E-01	2.11E+00	6.32E-03	9.49E-01
Carbon dioxide	7.86E+00	3.18E+01	1.82E+00	1.18E+01
Hydrogen sulfide	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nitrogen	2.39E-01	7.87E-02	3.11E-01	2.17E-01
Methane	6.30E+01	2.32E+01	8.55E+01	5.81E+01
Ethane	1.39E+01	1.46E+01	7.28E+00	1.32E+01
Propane	7.46E+00	1.57E+01	2.94E+00	8.49E+00
IsoButane	1.51E+00	3.21E+00	5.28E-01	1.72E+00
n-Butane	2.38E+00	5.35E+00	7.55E-01	2.75E+00
IsoPentane	6.28E-01	5.35E-01	2.10E-01	5.56E-01
n-Pentane	4.57E-01	7.82E-01	1.40E-01	4.80E-01
Cyclopentane	4.23E-02	1.05E-01	8.47E-03	5.02E-02
n-Hexane	1.93E-01	1.28E-01	5.51E-02	1.63E-01
Cyclohexane	1.03E-01	1.70E-01	2.06E-02	1.06E-01
Other hexanes	4.06E-01	3.09E-01	1.21E-01	3.50E-01
Heptanes	1.98E-01	8.20E-02	5.35E-02	1.57E-01
Methylcyclohexane	3.39E-01	3.07E-01	7.47E-02	2.99E-01
2,2,4-Trimethylpentane	1.12E-02	2.39E-03	3.70E-03	8.51E-03
Benzene	3.61E-02	3.73E-01	7.04E-03	9.83E-02
Toluene	2.34E-01	1.09E+00	4.60E-02	3.77E-01
Ethylbenzene	4.91E-03	8.80E-03	1.08E-03	5.18E-03
Xylenes	5.80E-02	1.50E-01	1.29E-02	7.02E-02
C8+ heavies	1.89E-01	3.43E-03	6.96E-02	1.37E-01
Total	100.0405	100.094	99.96	100.04

The dehydrator flare gas throughputs and component mole % (volume %) are taken from the GRI-GLYCalc output file

Facility Flare Emissions

CH4,	N2O,
tpy	tpy
108.01	3.61E-02
1	tpy

The N2O emission factor is obtained from Subpart W (Paragraph 98.233(z)(2)(vi))

CO2 Emission Rate (tpy) = (Noncombustion CO2 Emissions (MMscf/yr) + Combustion CO2 Emissions (MMscf/yr)) x 1,000,000 scf/MMscf x 0.0526 kg/cu ft x 2.2 lb/kg / 2,000 lb/ton

CH4 Emission Rate (tpy) = Noncombustion CH4 Emissions (MMscf/yr) x 1,000,000 scf/MMscf x 0.0192 kg/cu ft x 2.2 lb/kg / 2,000 lb/ton N2O Emission Rate (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton

		Facility				Non-		Non-
		Flare	HHV	Flare		combustion	Combustion	combustion
Unit		Through-	Heat	Through-	Control	CO2	CO2	CH4
Number	Description	put,	Content,	put,	Efficiency,	Emissions	Emissions	Emissions
		MMscf/yr	Btu/scf	MMBtu/yr	%	MMscf/yr	MMscf/yr	MMscf/yr
28	Plant Flare	299	1,097	327,951	98	5.46	346.39	5.11

The facility flare throughput is obtained from Harvest

The HHV heat content is obtained from Subpart W (Paragraph 98.233(z)(2)(vi))

Flare Throughput (MMBtu/yr) = MMscf/yr x 1,000,000 scf/MMscf x Btu/scf / 1,000,000 Btu/MMBtu

The control efficiency is the default value identified by Subpart W (Paragraph 98.233(n)(4))

Noncombustion CO2 Emissions (MMscf/yr) = MMscf/yr x (CO2 Content (mole %) / 100)

Combustion CO2 Emissions (MMscf/yr) = [(Control Efficiency (%) / 100) x MMscf/yr x (CH4 Content (mole %) / 100) x 1]

+ [(Control Efficiency (%) / 100) x MMscf/yr x (Ethane Content (mole %) / 100) x 2]

+ [(Control Efficiency (%) / 100) x MMscf/yr x (Propane Content (mole %) / 100) x 3]

+ [(Control Efficiency (%) / 100) x MMscf/yr x (Butane Content (mole %) / 100) x 4]

+ [(Control Efficiency (%) / 100) x MMscf/yr x (Pentane+ Content (mole %) / 100) x 5]

The numbers 1-5 in the above equation represent the number of carbon atoms found in methane through pentane, repectively. Noncombustion CH4 Emissions (MMscf/yr) = MMscf/yr x (1 - (Control Efficiency (%) / 100)) x (CH4 Content (mole %) / 100)

Unit		CO2	CH4	Ethane	Propane	Butane	Pentane+
Number	Description	Content,	Content,	Content,	Content,	Content,	Content,
		mole %					
28	Plant Flare	1.83	85.52	7.28	2.94	1.28	0.83

The facility flare mole % is obtained from the facility extended gas analysis

Equipment Leaks Emissions

		TOC	Emissic	on Rates
Unit		Emission		
Number	Description	Rate,	CO2,	CH4,
		tpy	tpy	tpy
F1	Equipment Leaks	104.22	4.28	73.13

The TOC emission rate is taken from the fugitive emission calculations in this application CO2 Emission Rate (tpy) = Total TOC Emission Rate (tpy) * (Weight Percent CO2 (%) / 100) CH4 Emission Rate (tpy) = Total TOC Emission Rate (tpy) * (Weight Percent CH4 (%) / 100)

Gas Driven Pneumatic Devices and Non-Routine Emissions (Gas Plants Only)

		CH4	CO2	Emission Rates	
Unit		Molecular	Molecular		
Number	Description	Weight,	Weight,	CO2,	CH4,
		lb/lb-mole	lb/lb-mole	tpy	tpy
NA	Gas Driven Devices	16.04	44.01	5.50E-01	9.39
NA	Non-Routine	16.04	44.01	13.60	232.22

CO2 Emission Rate (tpy) = Facility Production Rate (MMscf/yr) * CH4 Emission Factor (tonne/MMscf)

* [Facility CH4 Content (mole %) / Baseline CH4 Content (mole %)]

* [(Facility CO2 Content (mole %) / 100) * CO2 Molecular Weight (tonne/tonne-mole)]

/ [(Facility CH4 Content (mole %) / 100) * CH4 Molecular Weight (tonne/tonne-mole)]

* 2,204.6 lb/tonne / 2,000 lb/ton

CH4 Emission Rate (tpy) = Facility Production Rate (MMscf/yr) * CH4 Emission Factor (tonne/MMscf)

* [Facility CH4 Content (mole %) / Baseline CH4 Content (mole %)]

* 2,204.6 lb/tonne / 2,000 lb/ton

The CH4 and CO2 molecular weights are calculated from the periodic table

		Facility	CH4	Baseline	Facility	Facility
Unit		Production	Emission	CH4	CH4	CO2
Number	Description	Rate,	Factor,	Content,	Content,	Content,
		MMscf/yr	tonne/MMscf	mole %	mole %	mole %
NA	Gas Driven Devices	60,674	1.425E-04	86.8	85.5219	1.8251
NA	Non-Routine	60,674	3.524E-03	86.8	85.5219	1.8251

The production rates are provided by Harvest

The gas driven pneumatic devices CH4 emission factor and baseline CH4 content are taken from the API Compendium, Section 5.6.1, Table 5-15

The non-routine CH4 emission factor and baseline CH4 content are taken from the API Compendium, Section 5.7.3, Table 5-25 Facility CH4 and CO2 contents are obtained from the extended gas analysis

Malfunction Emissions

Unit		Emission Rates				
Number	Description	VOC,	CO2,	CH4,		
		tpy	tpy	tpy		
M1	Malfunctions	10.00	2.92	49.88		

The VOC emission rate is estimated (see calculations workbook)

CO2 Emission Rate (tpy) = VOC Emission Rate (tpy) x (Total Component Weight (lb/lb-mole) / VOC Component Weight (lb-lb-mole)) x (CO2 Weight % of Total (%) / 100)

CH4 Emission Rate (tpy) = VOC Emission Rate (tpy) x (Total Component Weight (lb/lb-mole) / VOC Component Weight (lb-lb-mole)) x (CH4 Weight % of Total (%) / 100)

		Total	VOC	CO2	CH4
Unit		Component	Component	Weight %	Weight %
Number	Description	Weight,	Weight,	of Total,	of Total,
		lb/lb-mole	lb/lb-mole	%	%
M1	Malfunctions	19.55	2.75	4.11	70.18

The total & VOC component weights and CO2 & CH4 weight % of totals are calculated from the facility extended gas analysis

Storage Tanks

Unit		Emissio	n Rates
Number	Description	CO2,	CH4,
		tpy	tpy
T6528	Condensate Storage Tank	1.38	14.83
T6529	Condensate Storage Tank	w/T6528	w/T6528
SEP-1	Slug Receiver Separator	w/T6528	w/T6528
	Total	1.38	14.83

Emission rates obtained from ProMax results

Gas Stream Composition

				Woight	
	Mole	Molecular	Component	Weight Percent	Emission
Components	Percents.	Weights,	Weights,	of Total.	Factors.
Componenta	%	lb/lb-mole	lb/lb-mole	%	lb/scf
Carbon Dioxide	1.8251	44.01	0.80	4.1091	0.0021
Hydrogen Sulfide	0.0000	34.07	0.00	0.0000	0.0000
Nitrogen	0.3113	28.01	0.09	0.4461	0.0002
Methane	85.5219	16.04	13.72	70.1757	0.0362
Ethane	7.2812	30.07	2.19	11.2006	0.0058
Propane	2.9445	44.09	1.30	6 6414	0.0034
IsoButane	0.5286	58.12	0.31	1.5717	0.0008
Normal Butane	0.7552	58.12	0.44	2.2454	0.0012
IsoPentane	0.2099	72.15	0.44	0.7747	0.0004
Normal Pentane	0.2099	72.15	0.15	0.5190	0.0004
Cyclopentane	0.0085	72.15	0.10	0.0305	0.0003
<i>,</i>		-			
n-Hexane	0.0552	86.17	0.05	0.2433	0.0001
Cyclohexane	0.0207	84.16	0.02	0.0891	0.0000
Other Hexanes	0.1212	86.18	0.10	0.5343	0.0003
Heptanes	0.0536	100.20	0.05	0.2748	0.0001
Methylcyclohexane	0.0752	98.19	0.07	0.3777	0.0002
2,2,4-Trimethylpentane	0.0037	100.21	0.00	0.0190	0.0000
Benzene	0.0074	78.11	0.01	0.0296	0.0000
Toluene	0.0494	92.14	0.05	0.2329	0.0001
Ethylbenzene	0.0012	106.17	0.00	0.0065	0.0000
Xylenes	0.0150	106.17	0.02	0.0815	0.0000
C8+ heavies	0.0706	110.00	0.08	0.3973	0.0002
Total	100.0000		19.55	100.0000	0.0515
VOC			2.75		0.0072

Gas stream composition from Kutz Inlet extended gas analysis sampled 08/12/2020

Component Weights (lb/lb-mole) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole)

Weight Percent of Total (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole)

 $Emission \ Factors \ (lb/scf) = [Mole \ Percents \ (\%) \ / \ 100] \ x \ Molecular \ Weights \ (lb/lb-mole) \ / \ 379.4 \ scf/lb-mole$

This Page Intentionally Left Blank

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- ☑ If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- \Box If an older version of AP-42 is used, include a complete copy of the section.
- \blacksquare If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NOx) AND CARBON MONOXIDE (CO)FROM NATURAL GAS COMBUSTIONa

	NO [*]		(CO
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	А	84	В
Uncontrolled (Post-NSPS) ^c	190	А	84	В
Controlled - Low NO _x burners	140	А	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	С	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	А	24	С
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from $lb/10^{6}$ scf to $kg/10^{6}$ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from $1b/10^{6}$ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable. ^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For

^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.
 ^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of

^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

1.4-5

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^{d}	0.6	А
TOC	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by 16. To convert from $lb/10^6$ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

- ^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.
- ^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM_{10} , $PM_{2.5}$ or PM_1 emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO_2 . Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO_2 emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO_2 emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

	Emission Factors ^a - Uncontrolled							
	Natural Gas-	Fired Turbines ^b	Distillate Oil-Fired Turbines ^d					
Pollutant	(lb/MMBtu) ^c (Fuel Input)	Emission Factor Rating	(lb/MMBtu) ^e (Fuel Input)	Emission Factor Rating				
$\mathrm{CO}_2^{\mathrm{f}}$	110	А	157	А				
N ₂ O	0.003 ^g	Е	ND	NA				
Lead	ND	NA	1.4 E-05	С				
SO ₂	0.94S ^h	В	1.01S ^h	В				
Methane	8.6 E-03	С	ND	NA				
VOC	2.1 E-03	D	4.1 E-04 ^j	Е				
TOC^k	1.1 E-02	В	4.0 E-03 ¹	С				
PM (condensible)	4.7 E-03 ¹	С	7.2 E-03 ¹	С				
PM (filterable)	1.9 E-03 ¹	С	4.3 E-03 ¹	С				
PM (total)	6.6 E-03 ¹	С	$1.2 \text{ E-}02^{l}$	С				

Table 3.1-2a. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSEGASES FROM STATIONARY GAS TURBINES

^a Factors are derived from units operating at high loads (≥ 80 percent load) only. For information on units operating at other loads, consult the background report for this chapter (Reference 16), available at "www.epa.gov/ttn/chief". ND = No Data, NA = Not Applicable.

^b SCCs for natural gas-fired turbines include 2-01-002-01, 2-02-002-01 & 03, and 2-03-002-02 & 03.

^c Emission factors based on an average natural gas heating value (HHV) of 1020 Btu/scf at 60°F. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by 1020. Similarly, these emission factors can be converted to other natural gas heating values.

^d SCCs for distillate oil-fired turbines are 2-01-001-01, 2-02-001-01, 2-02-001-03, and 2-03-001-02.

^e Emission factors based on an average distillate oil heating value of 139 MMBtu/ 10^3 gallons. To convert from (lb/MMBtu) to (lb/ 10^3 gallons), multiply by 139.

- ^f Based on 99.5% conversion of fuel carbon to CO₂ for natural gas and 99% conversion of fuel carbon to CO₂ for distillate oil. CO₂ (Natural Gas) [lb/MMBtu] = (0.0036 scf/Btu)(% CON)(C)(D), where % CON = weight percent conversion of fuel carbon to CO₂, C = carbon content of fuel by weight, and D = density of fuel. For natural gas, C is assumed at 75%, and D is assumed at 4.1 E+04 lb/10⁶ scf. For distillate oil, CO₂ (Distillate Oil) [lb/MMBtu] = (26.4 gal/MMBtu) (%CON)(C)(D), where C is assumed at 87%, and the D is assumed at 6.9 lb/gallon.
- ^g Emission factor is carried over from the previous revision to AP-42 (Supplement B, October 1996) and is based on limited source tests on a single turbine with water-steam injection (Reference 5).
- ^h All sulfur in the fuel is assumed to be converted to SO₂. S = percent sulfur in fuel. Example, if sulfur content in the fuel is 3.4 percent, then S = 3.4. If S is not available, use 3.4 E-03 lb/MMBtu for natural gas turbines, and 3.3 E-02 lb/MMBtu for distillate oil turbines (the equations are more accurate).
- ^j VOC emissions are assumed equal to the sum of organic emissions.
- ^k Pollutant referenced as THC in the gathered emission tests. It is assumed as TOC, because it is based on EPA Test Method 25A.
- ¹ Emission factors are based on combustion turbines using water-steam injection.

Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES^a (SCC 2-02-002-53)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhous	se Gases	
NO _x ^c 90 - 105% Load	2.21 E+00	А
NO _x ^c <90% Load	2.27 E+00	С
CO ^c 90 - 105% Load	3.72 E+00	А
CO ^c <90% Load	3.51 E+00	С
CO ₂ ^d	1.10 E+02	А
SO ₂ ^e	5.88 E-04	А
TOC ^f	3.58 E-01	С
Methane ^g	2.30 E-01	С
VOC ^h	2.96 E-02	С
PM10 (filterable) ^{i,j}	9.50 E-03	Е
PM2.5 (filterable) ^j	9.50 E-03	Е
PM Condensable ^k	9.91 E-03	Е
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ¹	2.53 E-05	С
1,1,2-Trichloroethane ¹	<1.53 E-05	Е
1,1-Dichloroethane	<1.13 E-05	Е
1,2-Dichloroethane	<1.13 E-05	Е
1,2-Dichloropropane	<1.30 E-05	Е
1,3-Butadiene ^l	6.63 E-04	D
1,3-Dichloropropene ¹	<1.27 E-05	Е
Acetaldehyde ^{l,m}	2.79 E-03	С
Acrolein ^{l,m}	2.63 E-03	С
Benzene ^l	1.58 E-03	В
Butyr/isobutyraldehyde	4.86 E-05	D
Carbon Tetrachloride ¹	<1.77 E-05	Е

E

	Gasoline Fuel (SCC 2-02-003-01, 2-03-003-01)			el Fuel 02, 2-03-001-01)	
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING
NO _x	0.011	1.63	0.031	4.41	D
СО	6.96 E-03 ^d	0.99 ^d	6.68 E-03	0.95	D
SO _x	5.91 E-04	0.084	2.05 E-03	0.29	D
PM-10 ^b	7.21 E-04	0.10	2.20 E-03	0.31	D
CO ₂ ^c	1.08	154	1.15	164	В
Aldehydes	4.85 E-04	0.07	4.63 E-04	0.07	D
TOC					
Exhaust	0.015	2.10	2.47 E-03	0.35	D
Evaporative	6.61 E-04	0.09	0.00	0.00	Е
Crankcase	4.85 E-03	0.69	4.41 E-05	0.01	Е
Refueling	1.08 E-03	0.15	0.00	0.00	Е

Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES^a

^a References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.

Classification Code. TOC = total organic compounds.
^b PM-10 = particulate matter less than or equal to 10 µm aerodynamic diameter. All particulate is assumed to be ≤ 1 µm in size.
^c Assumes 99% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.
^d Instead of 0.439 lb/hp-hr (power output) and 62.7 lb/mmBtu (fuel input), the correct emissions factors values are 6.96 E-03 lb/hp-hr (power output) and 0.99 lb/mmBtu (fuel input), respectively. This is an editorial correction. March 24, 2009

Table 3.3-2.SPECIATED ORGANIC COMPOUND EMISSIONFACTORS FOR UNCONTROLLED DIESEL ENGINES^a

Pollutant	Emission Factor (Fuel Input) (lb/MMBtu)
Benzene ^b	9.33 E-04
Toluene ^b	4.09 E-04
Xylenes ^b	2.85 E-04
Propylene 💬	2.58 E-03
1,3-Butadiene ^{b,c}	<3.91 E-05
Formaldehyde ^b	1.18 E-03
Acetaldehyde ^b	7.67 E-04
Acrolein ^b	<9.25 E-05
Polycyclic aromatic hydrocarbons (PAH)	
Naphthalene ^b	8.48 E-05
Acenaphthylene	<5.06 E-06
Acenaphthene	<1.42 E-06
Fluorene	2.92 E-05
Phenanthrene	2.94 E-05
Anthracene	1.87 E-06
Fluoranthene	7.61 E-06
Pyrene	4.78 E-06
Benzo(a)anthracene	1.68 E-06
Chrysene	3.53 E-07
Benzo(b)fluoranthene	<9.91 E-08
Benzo(k)fluoranthene	<1.55 E-07
Benzo(a)pyrene	<1.88 E-07
Indeno(1,2,3-cd)pyrene	<3.75 E-07
Dibenz(a,h)anthracene	<5.83 E-07
Benzo(g,h,l)perylene	<4.89 E-07
TOTAL PAH	1.68 E-04

^a Based on the uncontrolled levels of 2 diesel engines from References 6-7. Source Classification Codes 2-02-001-02, 2-03-001-01. To convert from lb/MMBtu to ng/J, multiply by 430.
 ^b Hazardous air pollutant listed in the *Clean Air Act*.
 ^c Based on data from 1 engine.

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T}$$
(1)

where:

 $L_{\rm L}$ = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded

- S = a saturation factor (see Table 5.2-1)
- P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Figure 7.1-5, Figure 7.1-6, and Table 7.1-2)
- M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Table 7.1-2)
- T = temperature of bulk liquid loaded, ${}^{\circ}\bar{R}$ (${}^{\circ}\bar{F}$ + 460)

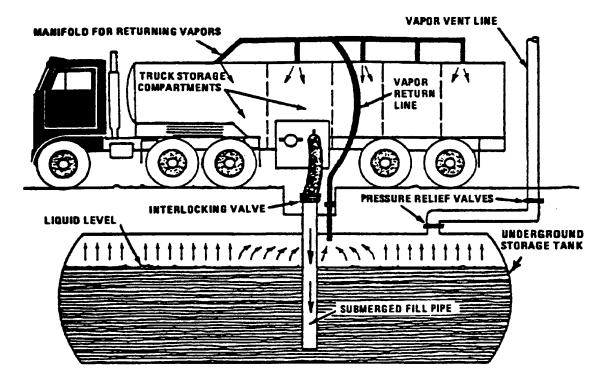


Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1.	SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID
	LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-

2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

Table 13.4-1 (Metric And English Units). PARTICULATE EMISSIONS FACTORS FOR WET COOLING TOWERS^a

	Total Liquid Drift ^b				PM-10 ^c		
Tower Type ^d	Circulating Water Flow ^b	g/daL	lb/10 ³ gal	EMISSION FACTOR RATING	g/daL ^e	lb/10 ³ gal	EMISSION FACTOR RATING
Induced Draft (SCC 3-85-001-01, 3-85-001-20, 3-85-002-01)	0.020	2.0	1.7	D	0.023	0.019	Е
Natural Draft (SCC 3-85-001-02, 3-85-002-02)	0.00088	0.088	0.073	Е	ND	ND	—

^a References 1-17. Numbers are given to 2 significant digits. ND = no data. SCC = Source Classification Code.

^b References 2,5-7,9-10,12-13,15-16. Total liquid drift is water droplets entrained in the cooling tower exit air stream. Factors are for % of circulating water flow (10^{-2} L drift/L [10^{-2} gal drift/gal] water flow) and g drift/daL (lb drift/ 10^3 gal) circulating water flow. 0.12 g/daL = 0.1 lb/ 10^3 gal; 1 daL = 10^1 L.

^c See discussion in text on how to use the table to obtain PM-10 emission estimates. Values shown above are the arithmetic average of test results from References 2,4,8, and 11-14, and they imply an effective TDS content of approximately 12,000 parts per million (ppm) in the circulating water.

^d See Figure 13.4-1 and Figure 13.4-2. Additional SCCs for wet cooling towers of unspecified draft type are 3-85-001-10 and 3-85-002-10.

^e Expressed as g PM-10/daL (lb PM-10/10³ gal) circulating water flow.

parameter for the cooling tower water (such as conductivity, calcium, chlorides, or phosphate) to that parameter for the make-up water. This estimated cooling tower TDS can be used to calculate the PM-10 emission factor as above. If neither of these methods can be used, the arithmetic average PM-10 factor given in Table 13.4-1 can be used. Table 13.4-1 presents the arithmetic average PM-10 factor calculated from the test data in References 2, 4, 8, and 11 - 14. Note that this average corresponds to an effective cooling tower recirculating water TDS content of approximately 11,500 ppm for induced draft towers. (This can be found by dividing the total liquid drift factor into the PM-10 factor.)

As an alternative approach, if TDS data are unavailable for an induced draft tower, a value may be selected from Table 13.4-2 and then be combined with the total liquid drift factor in Table 13.4-1 to determine an apparent PM-10 factor.

As shown in Table 13.4-2, available data do not suggest that there is any significant difference between TDS levels in counter and cross flow towers. Data for natural draft towers are not available.

2030 Afton Place Farmington, NM 87401 (505) 325-6622

Analysis No: HM200073 Cust No: 33700-10530

Sampled by (CO): HARVEST MID

		Well/Lease Information		
Customer Name:	HARVEST MIDSTREAM		Source:	
Well Name:	KUTZ 1 INLET		Well Flowing:	
County/State:			Pressure:	568 PSIG
Location:			Flow Temp:	75 DEG. F
Lease/PA/CA:			Ambient Temp:	DEG. F
Formation:			Flow Rate:	MCF/D
Cust. Stn. No.:			Sample Method:	
			Sample Date:	08/12/2020
			Sample Time:	8.30 AM
			Sampled By:	DANIEL MONCLOVA

Heat Trace: Remarks:

Calculated Molecular Weight = 19.5732

Analysis						
Component:	Mole%:	Unormalized %:	**GPM:	*BTU:	*SP Gravity:	
Nitrogen	0.3113	0.3139	0.0340	0.00	0.0030	
CO2	1.8251	1.8402	0.3120	0.00	0.0277	
Methane	85.5219	86.2300	14.5380	863.77	0.4737	
Ethane	7.2812	7.3415	1.9530	128.86	0.0756	
Propane	2.9445	2.9689	0.8130	74.09	0.0448	
Iso-Butane	0.5286	0.5330	0.1730	17.19	0.0106	
N-Butane	0.7552	0.7615	0.2390	24.64	0.0152	
Neopentane 2,2 dmc3	0.0000	0.0000	0.0000	0.00	0.0000	
I-Pentane	0.2099	0.2116	0.0770	8.40	0.0052	
N-Pentane	0.1406	0.1418	0.0510	5.64	0.0035	
Neohexane	0.0012	N/R	0.0010	0.06	0.0000	
2-3-Dimethylbutane	0.0082	N/R	0.0030	0.39	0.0002	
Cyclopentane	0.0085	N/R	0.0030	0.32	0.0002	
2-Methylpentane	0.0553	N/R	0.0230	2.63	0.0016	
3-Methylpentane	0.0214	N/R	0.0090	1.02	0.0006	
C6	0.0552	0.4856	0.0230	2.63	0.0016	
Methylcyclopentane	0.0351	N/R	0.0120	1.58	0.0010	
Benzene	0.0074	N/R	0.0020	0.28	0.0002	
Cyclohexane	0.0207	N/R	0.0070	0.93	0.0006	
2-Methylhexane	0.0077	N/R	0.0040	0.42	0.0003	
3-Methylhexane	0.0095	N/R	0.0040	0.52	0.0003	
2-2-4-Trimethylpentane	0.0037	N/R	0.0020	0.23	0.0001	
i-heptanes	0.0053	N/R	0.0020	0.28	0.0002	
Heptane	0.0311	N/R	0.0140	1.71	0.0011	

Methylcyclohexane	0.0752	N/R	0.0300	3.92	0.0025
Toluene	0.0494	N/R	0.0170	2.21	0.0016
2-Methylheptane	0.0211	N/R	0.0110	1.31	0.0008
4-Methylheptane	0.0088	N/R	0.0050	0.55	0.0003
i-Octanes	0.0111	N/R	0.0050	0.67	0.0004
Octane	0.0243	N/R	0.0120	1.52	0.0010
Ethylbenzene	0.0012	N/R	0.0000	0.06	0.0000
m, p Xylene	0.0139	N/R	0.0050	0.72	0.0005
o Xylene (& 2,2,4 tmc7)	0.0011	N/R	0.0000	0.06	0.0000
i-C9	0.0014	N/R	0.0010	0.09	0.0001
C9	0.0026	N/R	0.0010	0.18	0.0001
i-C10	0.0008	N/R	0.0000	0.06	0.0000
C10	0.0003	N/R	0.0000	0.02	0.0000
i-C11	0.0000	N/R	0.0000	0.00	0.0000
C11	0.0001	N/R	0.0000	0.01	0.0000
C12P	0.0001	N/R	0.0000	0.01	0.0000
Total	100.00	100.828	18.386	1146.93	0.6751

* @ 14.730 PSIA DRY & UNCORRECTED FOR COMPRESSIBILITY

**@ 14.730 PSIA & 60 DEG. F.

COMPRESSIBLITY FACTOR	(1/Z):	1.003	CYLINDER #:	6
BTU/CU.FT IDEAL:		1149.6	CYLINDER PRESSURE:	548 PSIG
BTU/CU.FT (DRY) CORRECTED FC	DR (1/Z):	1153.0	ANALYSIS DATE:	08/13/2020
BTU/CU.FT (WET) CORRECTED FO	OR (1/Z):	1132.9	ANALYIS TIME:	09:24:07 AM
DRY BTU @ 15.025:		1176.1	ANALYSIS RUN BY:	PATRICIA KING
REAL SPECIFIC GRAVITY:		0.6769		

GPM, BTU, and SPG calculations as shown above are based on current GPA constants. GPA Standard: GPA 2286-14 GC: SRI Instruments 8610 GC Method: C12+BTEX Gas

Description: Field: Meter Number: Analysis Date/Time: Date Sampled: Sample Temperature: Sample Pressure:	KUTZ 1 INLET 8/13/2020 8/12/2020 75 548	Company: WorkOrder: GPA Method: 9:24:07 Sampled By: Analyst Initials: Instrument:	HARVEST MIDSTREAM GPA 2286 DANIEL MONCLOVA PK SRI 8610
GRI GlyCalc Information			
Component Carbon Dioxide Hydrogen Sulfide Nitrogen Methane Ethane Propane Iso-Butane n-Butane Iso-Pentane n-Pentane Cyclopentane n-Hexane Cyclopentane n-Hexane Cyclohexane Other Hexanes Heptanes Methylcyclohexane 2 2 4 Trimethylpentane Benzene Toluene Ethylbenzene Xylenes C8+ Heavies Subtotal Oxygen	Mol% 1.8251 N/R 0.3113 85.5219 7.2812 2.9445 0.5286 0.7552 0.2099 0.1406 0.0085 0.0552 0.0207 0.1212 0.0536 0.0752 0.0037 0.0074 0.0012 0.0074 0.0494 0.0012 0.0150 0.0706 100.0000 N/R	Normalized Weight 4.1037 0.0000 0.4455 70.0971 11.1860 6.6337 1.5697 2.2426 0.7737 0.5183 0.0305 0.2546 0.0890 0.6205 0.2744 0.3772 0.0216 0.0295 0.2325 0.0065 0.0814 0.4120	. %
Subtotal	100.0000	100.0000	
Calculated Molecular Weigh	nt	19.5732	

QUESTAR APPLIED TECHNOLOGY

1210 D. Street, Rock Springs, Wyoming 82901 (307) 352-7292

LIMS ID: Analysis Date/Time: Analyst Initials: Instrument ID: Data File: Date Sampled:	N/A 8/9/2011 AST Instrument 1 QPC80.D 8/4/2011	7:00 AM	Description: Field: ML#: GC Method:	Kutz-I Inlet Farmington, NM 1026305 Quesbtex
Component	Mol%		Wt%	LV%
Methane	88.8787		76.0957	84.0784
Ethane	5.0367		8.0827	7.5381
Propane	2.0945		4.9291	3.2230
Isobutane	0.3862		1.1979	0.7055
n-Butane	0.5501		1.7064	0.9685
Neopentane	0.0044		0.0169	0.0094
Isopentane	0.1987		0.7650	0.4061
n-Pentane	0.1444		0.5561	0.2921
2,2-Dimethylbutane	0.0048		0.0222	0.0113
2,3-Dimethylbutane	0.0150		0.0691	0.0344
2-Methylpentane	0.0422		0.1939	0.0977
3-Methylpentane	0.0235		0.1082	0.0536
n-Hexane	0.0451		0.2073	0.1035
Heptanes	0.1234		0.6141	0.2696
Octanes	0.0093		0.0567	0.0258
Nonanes	0.0031		0.0196	6 0.0084
Decanes plus	0.0006		0.0047	0.0021
Nitrogen	0.4390		0.6563	0.2688
Carbon Dioxide	2.0003		4.6981	1.9037
Oxygen	0.0000		0.0000	0.0000
Hydrogen Sulfide	0.0000		0.0000	
Total	100.0000		100.0000	100.0000

Global Properties

Gross BTU/Real CF Sat.Gross BTU/Real CF Gas Compressibility (Z) Specific Gravity Avg Molecular Weight Propane GPM Butane GPM Gasoline GPM 26# Gasoline GPM Total GPM Base Mol%

Units

1102.6 BTU/SCF at 60°F and 14.73 psia 1084.6 BTU/SCF at 60°F and 14.73 psia 0.9973 0.6486 air=1 18.738 gm/mole 0.574024 gal/MCF 0.299039 gal/MCF 0.228108 gal/MCF 0.40131 gal/MCF 1.101391 gal/MCF 99.171 %v/v

Sample Temperature:	88 °F
Sample Pressure:	586 psig
H2SLength of Stain Tube	N/A ppm

Component	Mol%	Wt%	LV%
Benzene	0.0086	0.0359	0.0135
Toluene	0.0082	0.0405	0.0154
Ethylbenzene	0.0001	0.0008	0.0003
M&P Xylene	0.0012	0.0067	0.0026
O-Xylene	0.0002	0.0010	0.0004
2,2,4-Trimethylpentane	0.0034	0.0208	0.0096
Cyclopentane	0.0000	0.0000	0.0000
Cyclohexane	0.0213	0.0958	0.0405
Methylcyclohexane	0.0229	0.1199	0.0514

Description: Kutz-I Inlet

GRI GlyCalc Information

Component	Mol%	Wt%	LV%
Carbon Dioxide	2.0003	4.6981	1.9037
Hydrogen Sulfide	0.0000	0.0000	0.0000
Nitrogen	0.4390	0.6563	0.2688
Methane	88.8787	76.0957	84.0784
Ethane	5.0367	8.0827	7.5381
Propane	2.0945	4.9291	3.2230
Isobutane	0.3862	1.1979	0.7055
n-Butane	0.5501	1.7064	0.9685
Isopentane	0.2031	0.7819	0.4155
n-Pentane	0.1444	0.5561	0.2921
Cyclopentane	0.0000	0.0000	0.0000
n-Hexane	0.0451	0.2073	0.1035
Cyclohexane	0.0213	0.0958	0.0405
Other Hexanes	0.0855	0.3934	0.1970
Heptanes	0.0590	0.3012	0.1392
Methylcyclohexane	0.0229	0.1199	0.0514
2,2,4 Trimethylpentane	0.0034	0.0208	0.0096
Benzene	0.0086	0.0359	0.0135
Toluene	0.0082	0.0405	0.0154
Ethylbenzene	0.0001	0.0008	0.0003
Xylenes	0.0014	0.0077	0.0030
C8+ Heavies	0.0115	0.0725	0.0330
Subtotal	100.0000	100.0000	100.0000
Oxygen	0.0000	0.0000	0.0000
Total	100.0000	100.0000	100.0000

Certificate of Analysis

Number: 1030-17120331-001A

Environmental Department Williams 1755 Arroyo Drive Bloomfield, NM 87402

Station Name: Kutz Dakota Slug ReceiverMethod:GPA 2103MCylinder No:CP14Analyzed:12/11/2017 10:43:15 by RR

Sampled By: Sample Of: Liquid Spot Sample Date: 12/07/2017 11:20 Sample Conditions: 80 psig PO/Ref. No: 651377

Dec. 19, 2017

Analytical Data

Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
Nitrogen	0.040	28.013	0.011	0.807	0.010	
Methane	5.619	16.043	0.884	0.300	2.150	
Carbon Dioxide	0.211	44.010	0.004	0.817	0.081	
Ethane	2.516	30.069	0.742	0.356	1.520	
Propane	2.842	44.096	1.229	0.507	1.768	
Iso-Butane	1.146	58.122	0.653	0.563	0.846	
n-Butane	2.497	58.122	1.423	0.584	1.777	
Iso-Pentane	2.308	72.149	1.633	0.625	1.906	
n-Pentane	2.538	72.149	1.796	0.631	2.078	
i-Hexanes	3.804	84.564	3.155	0.669	3.442	
n-Hexane	3.073	86.175	2.597	0.664	2.854	
2,2,4-Trimethylpentane	0.076	114.229	0.085	0.696	0.089	
Benzene	0.739	78.112	0.566	0.884	0.467	
Heptanes	15.131	94.312	13.994	0.722	14.141	
Toluene	3.382	92.138	3.056	0.872	2.558	
Octanes	20.345	108.164	21.582	0.743	21.205	
Ethylbenzene	0.552	106.165	0.575	0.872	0.481	
Xylenes	4.304	106.165	4.480	0.871	3.754	
Nonanes	13.885	125.924	17.147	0.745	16.797	
Decanes Plus	14.992	165.284	24.301	0.803	22.076	
	100.000		100.000		100.000	
Calculated Physical Prope	erties	-	Fotal	C10+		
Specific Gravity at 60°F		0.	7297	0.8034		
API Gravity at 60°F		62	2.406	44.626		
Molecular Weight		-	.970	165.284		
Pounds per Gallon (in Vacu	um)	-	6.084	6.698		
Pounds per Gallon (in Air)			6.077	6.691		
Cu. Ft. Vapor per Gallon @	14.696 psia	22	2.641	15.378		

Hydrocarbon Laboratory Manager

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 1030-17120331-001A

Dec. 19, 2017

Environmental Department Williams 1755 Arroyo Drive Bloomfield, NM 87402

Station Name:Kutz Dakota Slug Receiver PO/Ref. No: 651377 Cylinder No: CP14 Sampled By: Sample Of: Liquid Spot Sample Date: 12/07/2017 11:20 Sample Conditions: 80 psig

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech.	Analysis Date
Shrinkage Factor	Proprietary	0.9797		SM	12/13/2017
Flash Factor	Proprietary	43.6106	Cu.Ft./STBbl.	SM	12/13/2017
Color Visual	Proprietary	Straw		SM	12/13/2017
API Gravity @ 60° F	ASTM D-4052	56.68	0	JJH	12/14/2017

Hydrocarbon Laboratory Manager The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Quality Assurance:

Page 2 of 2

Waste Stream	Destruction/Removal Efficiency (DRE)			
VOC	98 percent (gen	eric)		
	contain no elem	ents other than ounds: methan	taining no more than 3 carbons that a carbon and hydrogen in addition to the sol, ethanol, propanol, ethylene oxide and	
H_2S	98 percent			
NH ₃	case by case			
СО	case by case			
Air Contaminants	Emission Facto	ors		
thermal NO _x	steam-assist:	high Btu low Btu	0.0485 lb/MMBtu 0.068 lb/MMBtu	
	other:	high Btu low Btu	0.138 lb/MMBtu 0.0641 lb/MMBtu	
fuel NO _x	NO _x is 0.5 wt p	ercent of inlet	NH ₃ , other fuels case by case	
СО	steam-assist:	high Btu low Btu	0.3503 lb/MMBtu 0.3465 lb/MMBtu	
	other:	high Btu low Btu	0.2755 lb/MMBtu 0.5496 lb/MMBtu	
РМ	none, required to be smokeless			
SO ₂	100 percent S in			

Table 4. Flare Factors

*The only exeption of this is if inorganics might be emitted from the flare. In the case of landfills, the AP-42 PM factor may be used. In other cases, the emissions should be based on the composition of the waste stream routed to the flare.

Calculating Realistic PM₁₀ Emissions from Cooling Towers

Abstract No. 216 Session No. AM-1b

Joel Reisman and Gordon Frisbie

Greystone Environmental Consultants, Inc., 650 University Avenue, Suite 100, Sacramento, California 95825

ABSTRACT

Particulate matter less than 10 micrometers in diameter (PM_{10}) emissions from wet cooling towers may be calculated using the methodology presented in EPA's AP-42¹, which assumes that all total dissolved solids (TDS) emitted in "drift" particles (liquid water entrained in the air stream and carried out of the tower through the induced draft fan stack.) are PM_{10} . However, for wet cooling towers with medium to high TDS levels, this method is overly conservative, and predicts significantly higher PM_{10} emissions than would actually occur, even for towers equipped with very high efficiency drift eliminators (e.g., 0.0006% drift rate). Such overprediction may result in unrealistically high PM_{10} modeled concentrations and/or the need to purchase expensive Emission Reduction Credits (ERCs) in PM_{10} non-attainment areas. Since these towers have fairly low emission points (10 to 15 m above ground), over-predicting PM_{10} emission rates can easily result in exceeding federal Prevention of Significant Deterioration (PSD) significance levels at a project's fenceline. This paper presents a method for computing realistic PM_{10} emissions from cooling towers with medium to high TDS levels.

INTRODUCTION

Cooling towers are heat exchangers that are used to dissipate large heat loads to the atmosphere. Wet, or evaporative, cooling towers rely on the latent heat of water evaporation to exchange heat between the process and the air passing through the cooling tower. The cooling water may be an integral part of the process or may provide cooling via heat exchangers, for example, steam condensers. Wet cooling towers provide direct contact between the cooling water and air passing through the tower, and as part of normal operation, a very small amount of the circulating water may be entrained in the air stream and be carried out of the tower as "drift" droplets. Because the drift droplets contain the same chemical impurities as the water circulating through the tower, the particulate matter constituent of the drift droplets may be classified as an emission. The magnitude of the drift loss is influenced by the number and size of droplets produced within the tower, which are determined by the tower fill design, tower design, the air and water patterns, and design of the drift eliminators.

AP-42 METHOD OF CALCULATING DRIFT PARTICULATE

EPA's AP-42¹ provides available particulate emission factors for wet cooling towers, however, these values only have an emission factor rating of "E" (the lowest level of confidence acceptable). They are also rather high, compared to typical present-day manufacturers' guaranteed drift rates, which are on the order of 0.0006%. (Drift emissions are typically

expressed as a percentage of the cooling tower water circulation rate). AP-42 states that "a *conservatively high* PM_{10} emission factor can be obtained by (a) multiplying the total liquid drift factor by the TDS fraction in the circulating water, and (b) assuming that once the water evaporates, all remaining solid particles are within the PM_{10} range." (Italics per EPA).

If TDS data for the cooling tower are not available, a source-specific TDS content can be estimated by obtaining the TDS for the make-up water and multiplying it by the cooling tower cycles of concentration. [The cycles of concentration is the ratio of a measured parameter for the cooling tower water (such as conductivity, calcium, chlorides, or phosphate) to that parameter for the make-up water.]

Using AP-42 guidance, the total particulate emissions (PM) (after the pure water has evaporated) can be expressed as:

For example, for a typical power plant wet cooling tower with a water circulation rate of 146,000 gallons per minute (gpm), drift rate of 0.0006%, and TDS of 7,700 parts per million by weight (ppmw):

 $PM = 146,000 \text{ gpm x } 8.34 \text{ lb water/gal x } 0.0006/100 \text{ x } 7,700 \text{ lb solids}/10^6 \text{ lb water x } 60 \text{ min/hr} = 3.38 \text{ lb/hr}$

On an annual basis, this is equivalent to almost 15 tons per year (tpy). Even for a state-of-the-art drift eliminator system, this is not a small number, especially if assumed to all be equal to PM_{10} , a regulated criteria pollutant. However, as the following analysis demonstrates, only a very small fraction is actually PM_{10} .

COMPUTING THE PM₁₀ FRACTION

Based on a representative drift droplet size distribution and TDS in the water, the amount of solid mass in each drop size can be calculated. That is, for a given initial droplet size, assuming that the mass of dissolved solids condenses to a spherical particle after all the water evaporates, and assuming the density of the TDS is equivalent to a representative salt (e.g., sodium chloride), the diameter of the final solid particle can be calculated. Thus, using the drift droplet size distribution, the percentage of drift mass containing particles small enough to produce PM_{10} can be calculated. This method is conservative as the final particle is assumed to be perfectly spherical; hence as small a particle as can exist.

The droplet size distribution of the drift emitted from the tower is critical to performing the analysis. Brentwood Industries, a drift eliminator manufacturer, was contacted and agreed to provide drift eliminator test data from a test conducted by Environmental Systems Corporation (ESC) at the Electric Power Research Institute (EPRI) test facility in Houston, Texas in 1988 (Aull², 1999). The data consist of water droplet size distributions for a drift eliminator that achieved a tested drift rate of 0.0003 percent. As we are using a 0.0006 percent drift rate, it is reasonable to expect that the 0.0003 percent drift rate would produce smaller droplets, therefore,

this size distribution data can be assumed to be <u>conservative</u> for predicting the fraction of PM_{10} in the total cooling tower PM emissions.

In calculating PM₁₀ emissions the following assumptions were made:

- Each water droplet was assumed to evaporate shortly after being emitted into ambient air, into a single, solid, spherical particle.
- Drift water droplets have a density (ρ_w) of water; 1.0 g/cm³ or 1.0 * 10⁻⁶ $\mu g / \mu m^3$.
- The solid particles were assumed to have the same density (ρ_{TDS}) as sodium chloride, (i.e., 2.2 g/cm³).

Using the formula for the volume of a sphere, $V = 4\pi r^3/3$, and the density of pure water, $\rho_w = 1.0 \text{ g/cm}^3$, the following equations can be used to derive the solid particulate diameter, D_p , as a function of the TDS, the density of the solids, and the initial drift droplet diameter, D_d :

Volume of drift droplet =
$$(4/3)\pi (D_d/2)^3$$
 [2]

Mass of solids in drift droplet = (TDS)(
$$\rho_w$$
)(Volume of drift droplet) [3]

substituting,

Mass of solids in drift = (TDS)(
$$\rho_w$$
) (4/3) π (D_d/2)³ [4]

Assuming the solids remain and coalesce after the water evaporates, the mass of solids can also be expressed as:

Mass of solids =
$$(\rho_{\text{TDS}})$$
 (solid particle volume) = $(\rho_{\text{TDS}})(4/3)\pi(D_p/2)^3$ [5]

Equations [4] and [5] are equivalent:

$$(\rho_{\text{TDS}})(4/3)\pi(D_{p}/2)^{3} = (\text{TDS})(\rho_{w})(4/3)\pi(D_{d}/2)^{3}$$
 [6]

Solving for D_p:

$$D_{p} = D_{d} \left[(TDS)(\rho_{w} / \rho_{TDS}) \right]^{1/3}$$
[7]

Where,

TDS is in units of ppmw D_p = diameter of solid particle, micrometers (μm) D_d = diameter of drift droplet, μm

Using formulas [2] - [7] and the particle size distribution test data, Table 1 can be constructed for drift from a wet cooling tower having the same characteristics as our example; 7,700 ppmw TDS and a 0.0006% drift rate. The first and last columns of this table are the particle size distribution derived from test results provided by Brentwood Industries. Using straight-line interpolation for a solid particle size 10 μ m in diameter, we conclude that approximately <u>14.9</u> <u>percent</u> of the mass emissions are equal to or smaller than PM₁₀. The balance of the solid particulate are particulate greater than 10 μ m. Hence, PM₁₀ emissions from this tower would be equal to PM emissions x 0.149, or 3.38 lb/hr x 0.149 = <u>0.50 lb/hr</u>. The process is repeated in Table 2, with all parameters equal except that the TDS is 11,000 ppmw. The result is that approximately <u>5.11 percent</u> are smaller at 11,000 ppm. Thus, while total PM emissions are larger by virtue of a higher TDS, overall PM₁₀ emissions are actually <u>lower</u>, because more of the solid particles are larger than 10 μ m.

EPRI Droplet	Droplet	Droplet Mass	Particle Mass	Solid Particle	Solid Particle	EPRI % Mass
Diameter	Volume		(Solids)	Volume	Diameter	Smaller
(µm)	$\left(\mu m^3\right)$	(<i>μ</i> g) [3]	(μg)	$\left(\mu m^3\right)$	(µm)	
	[2] ¹		[4]		[7]	
10	524	5.24E-04	4.03E-06	1.83	1.518	0.000
20	4189	4.19E-03	3.23E-05	14.66	3.037	0.196
30	14137	1.41E-02	1.09E-04	49.48	4.555	0.226
40	33510	3.35E-02	2.58E-04	117.29	6.073	0.514
50	65450	6.54E-02	5.04E-04	229.07	7.591	1.816
60	113097	1.13E-01	8.71E-04	395.84	9.110	5.702
70	179594	1.80E-01	1.38E-03	628.58	10.628	21.348
90	381704	3.82E-01	2.94E-03	1335.96	13.665	49.812
110	696910	6.97E-01	5.37E-03	2439.18	16.701	70.509
130	1150347	1.15E+00	8.86E-03	4026.21	19.738	82.023
150	1767146	1.77E+00	1.36E-02	6185.01	22.774	88.012
180	3053628	3.05E+00	2.35E-02	10687.70	27.329	91.032
210	4849048	4.85E+00	3.73E-02	16971.67	31.884	92.468
240	7238229	7.24E+00	5.57E-02	25333.80	36.439	94.091
270	10305995	1.03E+01	7.94E-02	36070.98	40.994	94.689
300	14137167	1.41E+01	1.09E-01	49480.08	45.549	96.288
350	22449298	2.24E+01	1.73E-01	78572.54	53.140	97.011
400	33510322	3.35E+01	2.58E-01	117286.13	60.732	98.340
450	47712938	4.77E+01	3.67E-01	166995.28	68.323	99.071
500	65449847	6.54E+01	5.04E-01	229074.46	75.915	99.071
600	113097336	1.13E+02	8.71E-01	395840.67	91.098	100.000

 Table 1. Resultant Solid Particulate Size Distribution (TDS = 7700 ppmw)

¹ Bracketed numbers refer to equation number in text.

The percentage of PM_{10}/PM was calculated for cooling tower TDS values from 1000 to 12000 ppmw and the results are plotted in Figure 1. Using these data, Figure 2 presents predicted PM_{10} emission rates for the 146,000 gpm example tower. As shown in this figure, the PM emission rate increases in a straight line as TDS increases, however, the PM_{10} emission rate increases to a maximum at around a TDS of 4000 ppmw, and then <u>begins to decline</u>. The reason is that at higher TDS, the drift droplets contain more solids and therefore, upon evaporation, result in larger solid particles for any given initial droplet size.

CONCLUSION

The emission factors and methodology given in EPA's AP-42¹ Chapter 13.4 *Wet Cooling Towers*, do not account for the droplet size distribution of the drift exiting the tower. This is a critical factor, as more than 85% of the mass of particulate in the drift from most cooling towers will result in solid particles larger than PM_{10} once the water has evaporated. Particles larger than PM_{10} are no longer a regulated air pollutant, because their impact on human health has been shown to be insignificant. Using reasonable, conservative assumptions and a realistic drift droplet size distribution, a method is now available for calculating realistic PM_{10} emission rates from wet mechanical draft cooling towers equipped with modern, high-efficiency drift eliminators and operating at medium to high levels of TDS in the circulating water.

The second						. ,
EPRI Droplet	Droplet	Droplet Mass	Particle Mass	Solid Particle	Solid Particle	EPRI % Mass
Diameter	Volume	(μg)	(Solids)	Volume	Diameter	Smaller
(<i>µ</i> m)	$\left(\mu m^3\right)$		(μg)	$\left(\mu m^3\right)$	(<i>µ</i> m)	
()~~)		[3]	. ,	(^{µm})	. ,	
	[2] ¹		[4]		[7]	
10	524	5.24E-04	5.76E-06	2.62	1.710	0.000
20	4189	4.19E-03	4.61E-05	20.94	3.420	0.196
30	14137	1.41E-02	1.56E-04	70.69	5.130	0.226
40	33510	3.35E-02	3.69E-04	167.55	6.840	0.514
50	65450	6.54E-02	7.20E-04	327.25	8.550	1.816
60	113097	1.13E-01	1.24E-03	565.49	10.260	5.702
70	179594	1.80E-01	1.98E-03	897.97	11.970	21.348
90	381704	3.82E-01	4.20E-03	1908.52	15.390	49.812
110	696910	6.97E-01	7.67E-03	3484.55	18.810	70.509
130	1150347	1.15E+00	1.27E-02	5751.73	22.230	82.023
150	1767146	1.77E+00	1.94E-02	8835.73	25.650	88.012
180	3053628	3.05E+00	3.36E-02	15268.14	30.780	91.032
210	4849048	4.85E+00	5.33E-02	24245.24	35.909	92.468
240	7238229	7.24E+00	7.96E-02	36191.15	41.039	94.091
270	10305995	1.03E+01	1.13E-01	51529.97	46.169	94.689
300	14137167	1.41E+01	1.56E-01	70685.83	51.299	96.288
350	22449298	2.24E+01	2.47E-01	112246.49	59.849	97.011
400	33510322	3.35E+01	3.69E-01	167551.61	68.399	98.340
450	47712938	4.77E+01	5.25E-01	238564.69	76.949	99.071
500	65449847	6.54E+01	7.20E-01	327249.23	85.499	99.071
600	113097336	1.13E+02	1.24E+00	565486.68	102.599	100.000

 Table 2. Resultant Solid Particulate Size Distribution (TDS = 11000 ppmw)

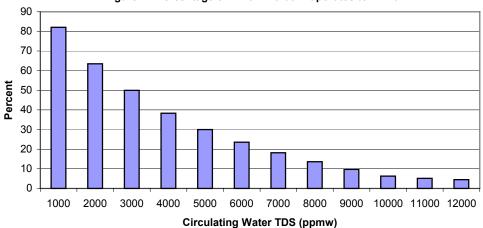
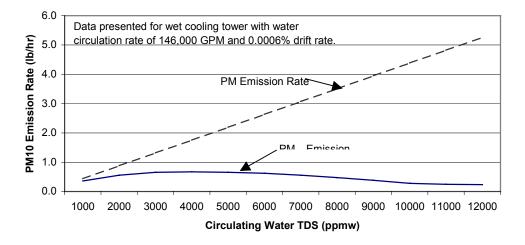



Figure 1: Percentage of Drift PM that Evaporates to PM10

Figure 2: PM₁₀ Emission Rate vs. TDS

REFERENCES

- EPA, 1995. Compilation of Air pollutant Emission Factors, AP-42 Fifth edition, Volume I: Stationary Point and Area Sources, Chapter 13.4 Wet Cooling Towers, <u>http://www.epa.gov/ttn/chief/ap42/</u>, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, January.
- 2. Aull, 1999. Memorandum from R. Aull, Brentwood Industries to J. Reisman, Greystone, December 7, 1999.

KEY WORDS

Drift Drift eliminators Cooling tower PM₁₀ emissions TDS

Equipment Type	Servicea	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

^bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

^CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

Table A-1 to Subpart A of Part 98—Global Warming Potentials

GLOBAL WARMING POTENTIALS

[100-Year Time Horizon]

Name	CAS No.	Chemical formula	Global warming potential (100 yr.)
Carbon dioxide	124-38-9	CO ₂	1
Methane	74-82-8	CH_4	°25
Nitrous oxide	10024-97-2	N ₂ O	^a 298
HFC-23	75-46-7	CHF ₃	^a 14,800
HFC-32	75-10-5	CH_2F_2	^a 675
HFC-41	593-53-3	CH ₃ F	^a 92
HFC-125	354-33-6	C_2HF_5	^a 3,500
HFC-134	359-35-3	$C_2H_2F_4$	^a 1,100
HFC-134a	811-97-2	CH ₂ FCF ₃	^a 1,430
HFC-143	430-66-0	$C_2H_3F_3$	°353
HFC-143a	420-46-2	$C_2H_3F_3$	^a 4,470
HFC-152	624-72-6	CH ₂ FCH ₂ F	53
HFC-152a	75-37-6	CH ₃ CHF ₂	^a 124
HFC-161	353-36-6	CH ₃ CH ₂ F	12
HFC-227ea	431-89-0	C ₃ HF ₇	^a 3,220
HFC-236cb	677-56-5	CH ₂ FCF ₂ CF ₃	1,340
HFC-236ea	431-63-0	CHF ₂ CHFCF ₃	1,370
HFC-236fa	690-39-1	$C_3H_2F_6$	^a 9,810
HFC-245ca	679-86-7	$C_3H_3F_5$	^a 693
HFC-245fa	460-73-1	CHF ₂ CH ₂ CF ₃	1,030
HFC-365mfc	406-58-6	CH ₃ CF ₂ CH ₂ CF ₃	794
HFC-43-10mee	138495-42-8	CF ₃ CFHCFHCF ₂ CF ₃	^a 1,640
Sulfur hexafluoride	2551-62-4	SF ₆	^a 22,800
Trifluoromethyl sulphur pentafluoride	373-80-8	SF5CF3	17,700
Nitrogen trifluoride	7783-54-2	NF ₃	17,200
PFC-14 (Perfluoromethane)	75-73-0	CF_4	^a 7,390
PFC-116 (Perfluoroethane)	76-16-4	C_2F_6	^a 12,200
PFC-218 (Perfluoropropane)	76-19-7	C_3F_8	^a 8,830
Perfluorocyclopropane	931-91-9	C-C ₃ F ₆	17,340
PFC-3-1-10 (Perfluorobutane)	355-25-9	C_4F_{10}	^a 8,860
PFC-318 (Perfluorocyclobutane)	115-25-3	C-C ₄ F ₈	^a 10,300
PFC-4-1-12 (Perfluoropentane)	678-26-2		^a 9,160
PFC-5-1-14 (Perfluorohexane, FC-72)	355-42-0		^a 9,300
PFC-9-1-18	306-94-5		7,500
HCFE-235da2 (Isoflurane)	26675-46-7	CHF ₂ OCHClCF ₃	350
HFE-43-10pccc (H-Galden 1040x, HG-11)		CHF ₂ OCF ₂ OC ₂ F ₄ OCHF ₂	1,870

HFE-125	3822-68-2 CHF ₂ OCF ₃	14,900
HFE-134 (HG-00)	1691-17-4CHF2OCHF2	6,320
HFE-143a	421-14-7CH ₃ OCF ₃	756
HFE-227ea	2356-62-9CF ₃ CHFOCF ₃	1,540
HFE-236ca12 (HG-10)	78522-47-1CHF2OCF2OCHF2	2,800
HFE-236ea2 (Desflurane)	57041-67-5CHF ₂ OCHFCF ₃	989
HFE-236fa	20193-67-3CF ₃ CH ₂ OCF ₃	487
HFE-245cb2	22410-44-2CH ₃ OCF ₂ CF ₃	708
HFE-245fa1	84011-15-4CHF ₂ CH ₂ OCF ₃	286
HFE-245fa2	1885-48-9CHF2OCH2CF3	659
HFE-254cb2	425-88-7CH ₃ OCF ₂ CHF ₂	359
HFE-263fb2	460-43-5 CF ₃ CH ₂ OCH ₃	11
HFE-329mcc2	134769-21-4CF ₃ CF ₂ OCF ₂ CHF ₂	919
HFE-338mcf2	156053-88-2CF ₃ CF ₂ OCH ₂ CF ₃	552
HFE-338pcc13 (HG-01)	188690-78-0CHF2OCF2CF2OCHF2	1,500
HFE-347mcc3 (HFE-7000)	375-03-1CH ₃ OCF ₂ CF ₂ CF ₃	575
HFE-347mcf2	171182-95-9CF ₃ CF ₂ OCH ₂ CHF ₂	374
HFE-347pcf2	406-78-0CHF ₂ CF ₂ OCH ₂ CF ₃	580
HFE-356mec3	382-34-3CH ₃ OCF ₂ CHFCF ₃	101
HFE-356pcc3	160620-20-2CH ₃ OCF ₂ CF ₂ CHF ₂	110
HFE-356pcf2	50807-77-7CHF2CH2OCF2CHF2	265
HFE-356pcf3	35042-99-0CHF2OCH2CF2CHF2	502
HFE-365mcf3	378-16-5 CF ₃ CF ₂ CH ₂ OCH ₃	11
HFE-374pc2	512-51-6CH ₃ CH ₂ OCF ₂ CHF ₂	557
HFE-449s1 (HFE-7100)	163702-07-6C ₄ F ₉ OCH ₃	297
Chemical blend	163702-08-7(CF ₃) ₂ CFCF ₂ OCH ₃	
HFE-569sf2 (HFE-7200)	163702-05-4C ₄ F ₉ OC ₂ H ₅	59
Chemical blend	163702-06-5 (CF ₃) ₂ CFCF ₂ OC ₂ H ₅	
Sevoflurane (HFE-347mmz1)	28523-86-6CH ₂ FOCH(CF ₃) ₂	345
HFE-356mm1	13171-18-1 (CF ₃) ₂ CHOCH ₃	27
HFE-338mmz1	26103-08-2CHF ₂ OCH(CF ₃) ₂	380
(Octafluorotetramethy-lene) hydroxymethyl group	NAX-(CF ₂) ₄ CH(OH)-X	73
HFE-347mmy1	22052-84-2CH ₃ OCF(CF ₃) ₂	343
Bis(trifluoromethyl)-methanol	920-66-1 (CF ₃) ₂ CHOH	195
2,2,3,3,3-pentafluoropropanol	422-05-9CF ₃ CF ₂ CH ₂ OH	42
PFPMIE (HT-70)	NACF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃	10,300

^aThe GWP for this compound is different than the GWP in the version of Table A-1 to subpart A of part 98 published on October 30, 2009.

Table C-1 to Subpart C of Part 98—Default CO₂ Emission Factors and High Heat Values for Various Types of Fuel

Fuel type	Default high heat value	Default CO ₂ emission factor
Coal and coke	mmBtu/short ton	kg CO ₂ /mmBtu
Anthracite	25.09	103.69
Bituminous	24.93	93.28
Subbituminous	17.25	97.17
Lignite	14.21	97.72
Coal Coke	24.80	113.67
Mixed (Commercial sector)	21.39	94.27
Mixed (Industrial coking)	26.28	93.90
Mixed (Industrial sector)	22.35	94.67
Mixed (Electric Power sector)	19.73	95.52
Natural gas	mmBtu/scf	kg CO ₂ /mmBtu
(Weighted U.S. Average)	1.026×10^{-3}	53.06
Petroleum products	mmBtu/gallon	kg CO ₂ /mmBtu
Distillate Fuel Oil No. 1	0.139	73.25
Distillate Fuel Oil No. 2	0.138	73.96
Distillate Fuel Oil No. 4	0.146	75.04
Residual Fuel Oil No. 5	0.140	72.93
Residual Fuel Oil No. 6	0.150	75.10
Used Oil	0.138	74.00
Kerosene	0.135	75.20
Liquefied petroleum gases (LPG) ¹	0.092	61.71
Propane ¹	0.091	62.87
Propylene ²	0.091	67.77
Ethane ¹	0.068	59.60
Ethanol	0.084	68.44
Ethylene ²	0.058	65.96
Isobutane ¹	0.099	64.94
Isobutylene ¹	0.103	68.86
Butane ¹	0.103	64.77
Butylene ¹	0.105	68.72
Naphtha (<401 deg F)	0.125	68.02
Natural Gasoline	0.110	66.88
Other Oil (>401 deg F)	0.139	76.22
Pentanes Plus	0.110	70.02

Default CO_2 Emission Factors and High Heat Values for Various Types of Fuel

Petrochemical Feedstocks	0.125	71.02
Petroleum Coke	0.143	102.41
Special Naphtha	0.125	72.34
Unfinished Oils	0.139	74.54
Heavy Gas Oils	0.148	74.92
Lubricants	0.144	74.27
Motor Gasoline	0.125	70.22
Aviation Gasoline	0.120	69.25
Kerosene-Type Jet Fuel	0.135	72.22
Asphalt and Road Oil	0.158	75.36
Crude Oil	0.138	74.54
Other fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Municipal Solid Waste	9.95 ³	90.7
Tires	28.00	85.97
Plastics	38.00	75.00
Petroleum Coke	30.00	102.41
Other fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Blast Furnace Gas	0.092×10^{-3}	274.32
Coke Oven Gas	0.599×10^{-3}	46.85
Propane Gas	2.516×10^{-3}	61.46
Fuel Gas ⁴	1.388×10^{-3}	59.00
Biomass fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Wood and Wood Residuals (dry basis) ⁵	17.48	93.80
Agricultural Byproducts	8.25	118.17
Peat	8.00	111.84
Solid Byproducts	10.39	105.51
Biomass fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Landfill Gas	0.485×10^{-3}	52.07
Other Biomass Gases	0.655×10^{-3}	52.07
Biomass Fuels—Liquid	mmBtu/gallon	kg CO₂/mmBtu
Ethanol	0.084	68.44
Biodiesel (100%)	0.128	73.84
Rendered Animal Fat	0.125	71.06
Vegetable Oil	0.120	81.55

¹The HHV for components of LPG determined at 60 °F and saturation pressure with the exception of ethylene.

 $^2 Ethylene \,HHV$ determined at 41 $^\circ F$ (5 $^\circ C)$ and saturation pressure.

³Use of this default HHV is allowed only for: (a) Units that combust MSW, do not generate steam, and are allowed to use Tier 1; (b) units that derive no more than 10 percent of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year.

 4 Reporters subject to subpart X of this part that are complying with \$98.243(d) or subpart Y of this part may only use the default HHV and the default CO₂ emission factor for fuel gas combustion under the conditions prescribed in \$98.243(d)(2)(i) and (d)(2)(i) and \$98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4.

⁵Use the following formula to calculate a wet basis HHV for use in Equation C-1: $HHV_w = ((100 - M)/100)*HHV_d$ where $HHV_w =$ wet basis HHV, M = moisture content (percent) and HHV_d = dry basis HHV from Table C-1.

[78 FR 71950, Nov. 29, 2013]

L Back to Top

Table C-2 to Subpart C of Part 98—Default CH4 and N2O Emission Factors for Various Types of Fuel

Fuel type	Default CH₄ emission factor (kg CH₄/mmBtu)	$\begin{array}{c} Default \ N_2O \ emission \ factor \ (kg \\ N_2O/mmBtu) \end{array}$
Coal and Coke (All fuel types in Table C-1)	1.1×10^{-02}	1.6×10^{-03}
Natural Gas	1.0×10^{-03}	1.0×10^{-04}
Petroleum (All fuel types in Table C-1)	3.0×10^{-03}	6.0×10^{-04}
Fuel Gas	3.0×10^{-03}	6.0×10^{-04}
Municipal Solid Waste	3.2×10^{-02}	4.2×10^{-03}
Tires	3.2×10^{-02}	4.2×10^{-03}
Blast Furnace Gas	2.2×10^{-05}	1.0×10^{-04}
Coke Oven Gas	4.8×10^{-04}	1.0×10^{-04}
Biomass Fuels—Solid (All fuel types in Table C-1, except wood and wood residuals)	3.2×10^{-02}	4.2×10^{-03}
Wood and wood residuals	7.2×10^{-03}	3.6×10^{-03}
Biomass Fuels—Gaseous (All fuel types in Table C-1)	3.2×10^{-03}	6.3×10^{-04}
Biomass Fuels—Liquid (All fuel types in Table C-1)	1.1×10^{-03}	1.1×10^{-04}

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1g of CH_4 /mmBtu.

Onshore petroleum and natural gas production	Emission factor (scf/hour/ component)
Eastern U.S.	
Population Emission Factors—All Com	ponents, Gas Service ¹
Valve	0.027
Connector	0.003
Open-ended Line	0.061
Pressure Relief Valve	0.040
Low Continuous Bleed Pneumatic Device Vents ²	1.39
High Continuous Bleed Pneumatic Device Vents ²	37.3
Intermittent Bleed Pneumatic Device Vents ²	13.5
Pneumatic Pumps ³	13.3
Population Emission Factors—All Compone	ents, Light Crude Service ⁴
Valve	0.05
Flange	0.003
Connector	0.007
Open-ended Line	0.05
Pump	0.01
Other ⁵	0.30
Population Emission Factors—All Compone	nts, Heavy Crude Service ⁶
Valve	0.0005
Flange	0.0009
Connector (other)	0.0003
Open-ended Line	0.006
Other ⁵	0.003
Western U.S.	
Population Emission Factors—All Com	ponents, Gas Service ¹
Valve	0.121
Connector	0.017
Open-ended Line	0.031
Pressure Relief Valve	0.193
Low Continuous Bleed Pneumatic Device Vents ²	1.39
High Continuous Bleed Pneumatic Device Vents ²	37.3
Intermittent Bleed Pneumatic Device Vents ²	13.5
Pneumatic Pumps ³	13.3
Population Emission Factors—All Compone	
Valve	0.05
Flange	0.003

Table W-1A of Subpart W of Part 98—Default Whole Gas Emission Factors for Onshore Petroleum and Natural Gas Production

Connector (other)	0.007
Open-ended Line	0.05
Pump	0.01
Other ⁵	0.30
Population Emission Fact	ors—All Components, Heavy Crude Service ⁶
Valve	0.0005
Flange	0.0009
Connector (other)	0.0003
Open-ended Line	0.006
Other ⁵	0.003

¹For multi-phase flow that includes gas, use the gas service emissions factors.

²Emission Factor is in units of "scf/hour/device."

³Emission Factor is in units of "scf/hour/pump."

⁴Hydrocarbon liquids greater than or equal to 20°API are considered "light crude."

⁵"Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

⁶Hydrocarbon liquids less than 20°API are considered "heavy crude."

factors. The emission factors can be adjusted based on the CH_4 content of the site-specific gas used to drive the devices if the natural gas is significantly different from the default basis. Also, if the pneumatic devices are driven with gas that contains significant quantities of CO_2 , the CH_4 emission factors can be adjusted based on the relative concentrations of CH_4 and CO_2 in the gas to estimate the CO_2 emissions.

In production, the continuous bleed, intermittent bleed, and average pneumatic device emission factors shown in Table 5-15 are taken from the 1996 GRI/EPA report (Volumes 2 and 12) (Harrison, 1996; Shires, 1996). The pneumatic device emission factors from the GRI/EPA reports were derived using vendor and/or measured data for both intermittent and continuous bleed devices. The instrument controller emission factor (pressure unspecified) is taken from a 2002 CAPP document and is based on data collected in Alberta, Canada (CAPP, 2002). Other pneumatic device emission factors such as transmitters and controllers are taken from a 2003 CAPP report (CAPP, 2003). The emission factors from the 2003 CAPP document are most appropriate for standard (high-bleed) components that were common prior to 1985 and are a function of the device operating pressure (factors are given at 140 kPa or 240 kPa, both gauge pressure).

	Emission Factor ^a ,		Uncertainty ^b]	Emission Factor ^c ,
Device Type	Original Units		(±%)	Converted to Tonnes Basis	
Production Segment				Base	ed on 78.8 mole% CH4 ^a
Continuous bleed ^a	654	scfd gas/device	40.3	3.608	tonnes/device-yr
Continuous bleed, low/no-bleed d	33.4	scfd gas/device	107	0.184	tonnes/device-yr
Continuous bleed, high-bleed ^d	896	scfd gas/device	33.1	4.941	tonnes/device-yr
Intermittent bleed ^a	323	scfd gas/device	41.2	1.782	tonnes/device-yr
Production average ^a	345	scfd CH ₄ /device	49.5	2.415	tonnes/device-yr
(if device type is unknown)					
Transmitter (140 kPag) ^e	0.12	m ³ gas/hr/device		0.56	tonnes/device-yr
Transmitter (240 kPag) ^e	0.2	m ³ gas/hr/device		0.94	tonnes/device-yr
Controller (140 kPag) ^e	0.6	m ³ gas/hr/device		2.8	tonnes/device-yr
Controller (240 kPag) ^e	0.8	m ³ gas/hr/device		3.7	tonnes/device-yr
Controller	0.1996	m ³ gas/hr/device	Uncertainty	0.9333	tonnes/device-yr
(pressure not specified) ^f			not specified		
I/P Transducer (140 kPag) ^e	0.6	m ³ gas/hr/device		2.8	tonnes/device-yr
I/P Transducer (240 kPag) ^e	0.8	m ³ gas/hr/device		3.7	tonnes/device-yr
P/P Positioner (140 kPag) ^e	0.32	m ³ gas/hr/device		1.5	tonnes/device-yr

Table 5-15. Gas-Driven Pneumatic Device CH₄ Emission Factors

Device Type		ssion Factor ^a ,	Uncertainty ^b	CH ₄ Emission Factor ^c ,	
bevice Type	Original Units		(±%)	Converted to Tonnes Basis	
Production Segment, continued		0			78.8 mole% CH ₄ ^a
P/P Positioner (240 kPag) ^e	0.5	m ³ gas/hr/device		2.3	tonnes/device-yr
I/P Positioner (140 kPag) ^e	0.4	m ³ gas/hr/device		1.9	tonnes/device-yr
I/P Positioner (240 kPag) ^e	0.6	m ³ gas/hr/device		2.8	tonnes/device-yr
Processing				Base	d on 86.8 mole% CH ₄ ^a
Continuous bleed	497,584	scf gas/device-yr	35.5	8.304	tonnes/device-yr
Piston valve operator	48	scf gas/device-yr	60.9	8.010E-04	tonnes/device-yr
Pneumatic/hydraulic valve operator	5,627	scf gas/device-yr	134	0.0939	tonnes/device-yr
Turbine valve operator	67,599	scf gas/device-yr	407	1.128	tonnes/device-yr
Processing average (if device type is unknown)	164,949	scf CH₄/plant-yr	170	3.164	tonnes/plant-yr
	7.431 ^g	scf CH ₄ /MMscf processed		1.425E-04 5.034E-0	4 tonnes/10 ⁶ scf processed 3 tonnes/10 ⁶ m ³ processed
Transmission and Storage					d on 93.4 mole% CH ₄ ^a
Continuous bleed	497,584	scf gas/device-yr	35.5	8.915	tonnes/device-yr
Pneumatic/hydraulic valve operator	5,627	scf gas/device-yr	134	0.1008	tonnes/device-yr
Turbine valve operator	67,599	scf gas/device-yr	407	1.211	tonnes/device-yr
Transmission or Storage average (if device type is unknown)	162,197	scf CH ₄ /device-yr	96.3	3.111	tonnes/device-yr
Distribution					
Pneumatic isolation valves ^h based on 93.4 mole% CH ₄	0.366	tonnes CH ₄ /device-yr		0.366	tonnes/device-yr
Pneumatic control loops ^h based on 94.4 mole% CH ₄	3.465	tonnes CH ₄ /device-yr	Uncertainty not specified	3.465	tonnes/device-yr
Distribution average (if device type is unknown) based on 94.9 mole% CH4 weighted avg.	2.941	tonnes CH₄/device-yr		2.941	tonnes/device-yr

Table 5-15. Gas-Driven Pneumatic Device CH₄ Emission Factors, continued

Footnotes and Sources:

^a Shires, T.M. and M.R. Harrison. *Methane Emissions from the Natural Gas Industry, Volume 12: Pneumatic Devices, Final Report,* GRI-94/0257.29 and EPA-600/R-96-080I, Gas Research Institute and U.S. Environmental Protection Agency, June 1996; and

Harrison, M.R., L.M. Campbell, T.M. Shires, and R.M. Cowgill. *Methane Emissions from the Natural Gas Industry, Volume 2: Technical Report, Final Report*, GRI-94/0257.1 and EPA-600/R-96-080b, Gas Research Institute and U.S. Environmental Protection Agency, June 1996. The average CH_4 concentration associated with these emission factors is provided in Table E-4.

^b Uncertainty based on 95% confidence interval converted from the 90% confidence intervals for the data used to develop the original emission factor.

^cCH₄ emission factors converted from scf or m³ are based on 60°F and 14.7 psia.

^d High-bleed devices refer to devices with leak rates greater than 6 scf/hr while low-bleed devices are 6 scf/hr or lower. Developed from data used for Volume 12 of the GRI/EPA natural gas industry CH_4 emissions study (Shires, 1996). Refer to Appendix B for the development of these emission factors.

^e Canadian Association of Petroleum Producers (CAPP), *Calculating Greenhouse Gas Emissions*, Table 1-12, Canadian Association of Petroleum Producers, Publication Number 2003-03, April 2003. Note that the emission factors provided by this source are for the total gas emitted and were converted to a CH_4 basis using the CH_4 content shown in the table. I/P refers to a device that converts electric current to pneumatic pressure. P/P refers to a device that converts pneumatic pressure to pneumatic pressure.

^fCanadian Association of Petroleum Producers (CAPP), *Estimation of Flaring and Venting Volumes from Upstream Oil and Gas Facilities*, Table 3-4, Canadian Association of Petroleum Producers, Publication Number 2002-0009, May 2002. Factor shown is based on data collected in Alberta, and was converted from a total gas basis to a CH_4 basis using the CH_4 content shown in the table.

^g Shires, T.M. and C.J. Loughran. Updated Canadian National Greenhouse Gas Inventory for 1995, Emission Factor Documentation, Technical Memorandum, August 23, 2001.

^h Derived from estimated processing pneumatic devices vented CH₄ emissions ($0.1196 \pm 133\%$ Bscf/YR) (Harrison, et al., Vol 2, 1996), and estimated annual gas processed (16,450.855 Bscf/YR (DOE, 1993)).

significantly different CH_4 content from the default basis. Also, if the facility gas contains significant quantities of CO_2 , the CH_4 emission factor can be adjusted based on the relative concentrations of CH_4 and CO_2 in the gas to estimate the CO_2 emissions.

Table 5-25. Gas Processing Segment CH4 Emission Factor for Non-RoutineActivities

Source	CH4 Emission Factor ^a , Original Units	CH ₄ Emission Factor ^b , Converted to Tonnes Basis	CH ₄ Content Basis of Factor	Uncertainty ^c (±%)
Gas	184 scf/ 10^6 scf processed	3.524E-03 tonne/10 ⁶ scf	86.8 mole %	Not available
processing		processed		
non-routine		$0.1244 \text{ tonnes}/10^6 \text{ m}^3$		
emissions		processed		

Footnotes and Sources:

^a Derived from estimated processing blowdown vented methane emissions (2.9475 Bscf/yr, [Harrison et al., Vol. 2, 1996]) and estimated annual gas processed (16,045.855 Bscf/yr [DOE, 1993]).

 6 CH₄ emission factors converted from scf or m³ are based on 60°F and 14.7 psia. The average CH₄ concentration associated with these emission factors is provided in Table E-4. The CH₄ emission factors can be adjusted based on the relative concentrations of CH₄ and CO₂ to estimate CO₂ emissions.

 $^{\rm c}$ Uncertainty based on 95% confidence interval converted from the 90% confidence intervals for the data used to develop the original emission factor.

Due to the hazards associated with H₂S, venting of sour gas is generally avoided/prohibited.

Where the sour gas stream is routed to a combustion control device, the methodologies provided in Section 4.7 should be applied.

An example is provided in Exhibit 5.33.

EXHIBIT 5.33: Sample Calculation for Processing Non-Routine Related Emissions

INPUT DATA:

A natural gas processing facility treats 20×10^6 m³ of gas per day. The facility gas has a typical CH₄ content and no CO₂. Estimate the blowdown emissions for this facility.

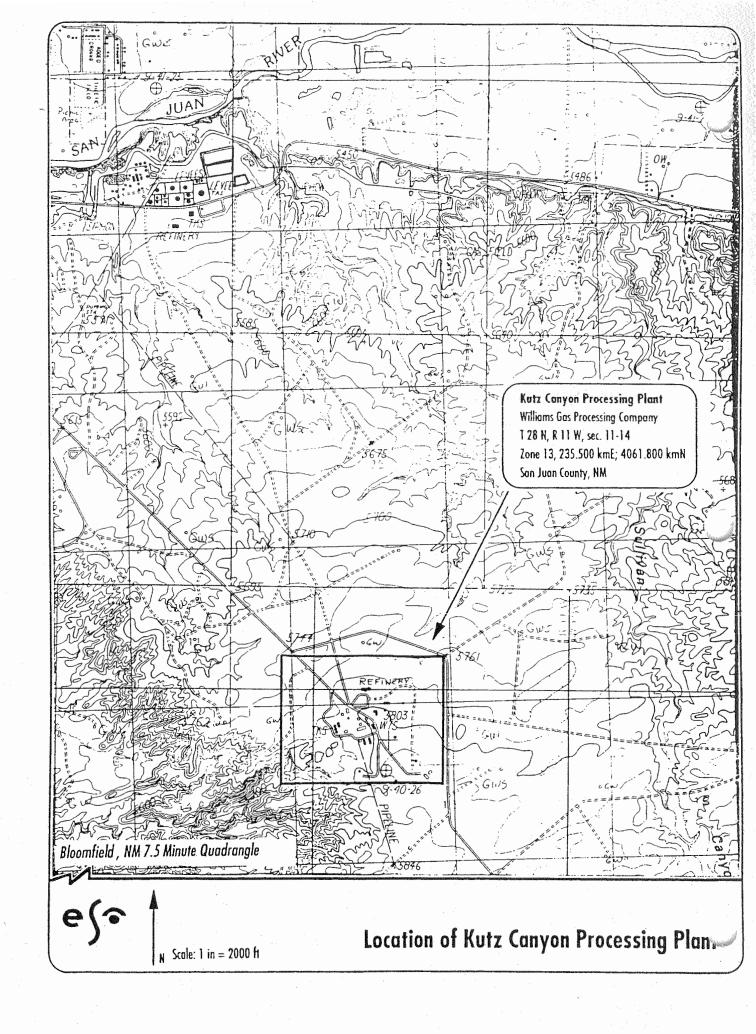
CALCULATION METHODOLOGY:

The processing plant throughput is multiplied by the emission factor presented in Table 5-25. The CH_4 emission factor is not corrected by the site CH_4 content because the composition is assumed to be consistent with the default emission factor CH_4 content.

Gas processing plant blowdowns:

 $CH_4: \frac{20 \times 10^6 \text{ m}^3}{\text{day}} \times \frac{365 \text{ days}}{\text{yr}} \times \frac{0.1244 \text{ tonnes } CH_4}{10^6 \text{ m}^3} = \underline{908 \text{ tonnes } CH_4/\text{yr}}$

This Page Intentionally Left Blank


Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A topographic map of the area around the facility is provided in this section. Please see the following page.

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

□ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. □ A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC).
- 2. \Box A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.).
- 3. \Box A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \Box A sample of the letters sent to the owners of record.
- 5. \Box A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. \Box A sample of the public notice posted and a verification of the local postings.
- 7. \Box A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. \Box A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. □ A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. □ A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. □ A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

Not applicable, since this is a Title V application.

This Page Intentionally Left Blank

Section 10

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The Kutz Canyon Processing Plant is a natural gas processing facility designed to remove ethane and heavier hydrocarbons from natural gas. With this application, the Kutz I Plant (which removes the heavier hydrocarbons using a refrigerated lean oil absorption process) is being retired and removed from the permit. The Kutz II Plant removes the heavier hydrocarbons using a cryogenic process. A process flow diagram is provided in Section 4.

The plant typically operates 8,760 hours per year.

Kutz II

The Kutz II Plant is the cryogenic turboexpander plant installed in 1975 and is supplied with inlet natural gas from the Dakota Basin and San Juan Basin Fields. Compression of the gas is provided using four Solar Centaur 3830 compressor turbines (Units 1-4).

After compression, the inlet gas is cooled and routed through an amine contactor (Unit 75), where CO_2 is removed. Rich amine from the contactor is regenerated in a still, and the still overhead stream (acid gas) vents to atmosphere. A hot oil heater (Unit 27) provides heat for the still as well as heating oil for other plant operations.

The inlet natural gas then passes through one of two mole sieve dehydration towers (one tower processes natural gas while the other cools and regenerates). The towers are regenerated using a regeneration heater (Unit 25). A fan bay is used to cool the gas (allowing liquids to be dropped out).

After passing through the mole sieve, inlet gas is routed to the turboexpander where the heavier hydrocarbons are removed. Compressed refrigerant is provided using two Solar Saturn turbines (Units 7 & 8). Product streams from the expander are routed through the demethanizer, where methane is recompressed using two Solar Centaur turbines (Units 5 & 6) and sent to the residue gas pipeline. Up to ninety percent of the ethane is removed and sent to products storage. Heat for the demethanizer is provided by a hot oil heater (Unit 27).

Liquid product from the demethanizer is cooled and stored in the appropriate tanks.

The mole sieve is regenerated using a slipstream of residue gas to heat and extract the water collected in the regenerator towers. This wet residue gas is then dehydrated in a TEG dehydrator (Unit 77a/b) before being reinjected into the residue gas sales line.

Other Equipment

The Kutz Chaco dehydrator (Unit 35a) is controlled by a Zeeco flare (Unit 36). A loading rack is used to receive propane from trucks. Condensate is hauled off-site by truck (Unit 38). The plant is also equipped with three cooling towers (Units 39-41).

Electrical power for the plant is provided using two generators. Each generator is powered using a Solar Centaur 3016 turbine (Units 19 & 20). The generators typically operate a combined 8,760 hours per year. The plant will also be equipped with two standby generators: a Caterpillar D343 (Unit 34) and a Kohler 8.5RES (Unit 76). The

Caterpillar will provide general power to the facility in the event the main generators are off-line. The Kohler will provide power to the batteries in the backup UPS system in the event the main generators are off-line and the UPS system needs charging to remain functional.

The plant is equipped with a process flare (Unit 28). Safety relief valves located at various points around the plant vent to the flare. In the case of an emergency blowdown or over pressure situation, natural gas products are vented to the flare. The plant inlet gas scrubber dump valves are also vented to the flare.

There are two emergency fire pumps located at the plant. One pump is powered by a Cummins V-504-F2 engine (Unit 32), and one is powered by a Ford Industrial 428 engine (Unit 33). The pumps only operate during emergencies and periodic maintenance.

The plant is also equipped with miscellaneous heaters and liquid storage tanks.

Section 11

Source Determination

(Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC)

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination</u> <u>Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

Kutz Canyon Processing Plant – natural gas processing plant

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

🗹 Yes 🗆 No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

🗹 Yes 🗆 No

<u>Contiguous or Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

🗹 Yes 🗆 No

C. Make a determination:

- ✓ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- □ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

This Page Intentionally Left Blank

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review</u> <u>Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - \square a minor PSD source before and after this modification (if so, delete C and D below).
 - $\hfill\square$ a major PSD source before this modification. This modification will make this a PSD minor source.
 - \Box an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - an existing PSD Major Source that has had a major modification requiring a BACT analysis
 - □ a new PSD Major Source after this modification.
- B. This facility [is or is not] one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are [significant or not significant]. [Discuss why.] The "project" emissions listed below [do or do not] only result from changes described in this permit application, thus no emissions from other [revisions or modifications, past or future] to this facility. Also, specifically discuss whether this project results in "de-bottlenecking", or other associated emissions resulting in higher emissions. The project emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]:
 - a. NOx: XX.X TPY
 - b. CO: XX.X TPY
 - c. VOC: XX.X TPY
 - d. SOx: XX.X TPY
 - e. PM: XX.X TPY
 - f. PM10: XX.X TPY
 - g. PM2.5: XX.X TPY
 - h. Fluorides: XX.X TPY
 - i. Lead: XX.X TPY
 - j. Sulfur compounds (listed in Table 2): XX.X TPY
 - k. GHG: XX.X TPY
- C. Netting [is required, and analysis is attached to this document.] OR [is not required (project is not significant)] OR [Applicant is submitting a PSD Major Modification and chooses not to net.]
- D. BACT is [not required for this modification, as this application is a minor modification.] OR [required, as this application is a major modification. List pollutants subject to BACT review and provide a full top down BACT determination.]
- E. If this is an existing PSD major source, or any facility with emissions greater than 250 TPY (or 100 TPY for 20.2.74.501 Table 1 PSD Source Categories), determine whether any permit modifications are related, or could be considered a single project with this action, and provide an explanation for your determination whether a PSD modification is triggered.

Not applicable, since this is a Title V application.

Section 12.B

Special Requirements for a PSD Application

(Submitting under 20.2.74 NMAC)

<u>Prior</u> to Submitting a PSD application, the permittee shall:

- □ Submit the BACT analysis for review prior to submittal of the application. No application will be ruled complete until the final determination regarding BACT is made, as this determination can ultimately affect information to be provided in the application. A pre-application meeting is recommended to discuss the requirements of the BACT analysis.
- □ Submit a modeling protocol prior to submitting the permit application. [Except for GHG]
- Submit the monitoring exemption analysis protocol prior to submitting the application. [Except for GHG]

For PSD applications, the permittee shall also include the following:

- Documentation containing an analysis on the impact on visibility. [Except for GHG]
- Documentation containing an analysis on the impact on soil. [Except for GHG]
- Documentation containing an analysis on the impact on vegetation, including state and federal threatened and endangered species. [Except for GHG]
- Documentation containing an analysis on the impact on water consumption and quality. [Except for GHG]
- Documentation that the federal land manager of a Class I area within 100 km of the site has been notified and provided a copy of the application, including the BACT and modeling results. The name of any Class I Federal area located within one hundred (100) kilometers of the facility.

Not applicable, as this is not a PSD application.

Section 13

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants. Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. For example, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: <u>http://cfpub.epa.gov/adi/</u>

STATE REGULATIONS APPLICABILITY CHECKLIST

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	This regulation is applicable because it establishes procedures for protecting confidential information, procedures for seeking a variance, NMAQB's authority to require sampling equipment, severability, and the effective date for conformance with the NMACs, and prohibits the violation of other requirements in attempting to comply with the NMACs.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	This is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentrations of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. These requirements are not applicable under 20.2.70 NMAC (see 20.2.3.9 NMAC).
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation is applicable because it prohibits excess emissions unless proper notification procedures are followed.
20.2.8 NMAC	Emissions Leaving New Mexico	Yes	Facility	This regulation is applicable because it establishes prohibitions on the release of pollutants that cross New Mexico State boundaries.
20.2.14 NMAC	Particulate Emissions from Coal Burning Equipment	No	N/A	This regulation is not applicable because the facility does not burn coal (see 20.2.14.6 NMAC).
20.2.18 NMAC	Oil Burning Equipment - Particulate Matter	No	N/A	This regulation is not applicable because the facility does not burn oil (see 20.2.18.6 NMAC).
20.2.31 NMAC	Coal Burning Equipment – Sulfur Dioxide	No	N/A	This regulation is not applicable because the facility does not burn coal (see 20.2.31.6 NMAC).
20.2.32 NMAC	Coal Burning Equipment – Nitrogen Dioxide,	No	N/A	This regulation is not applicable because the facility does not burn coal (see 20.2.32.6 NMAC).
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This regulation is not applicable because the heat input to external gas burning equipment at the plant does not exceed the trigger level (one million MMBtu/year) established by the regulation (see 20.2.33.108 NMAC).
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This regulation is not applicable because the facility does not burn oil (see 20.2.34.6 NMAC).
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	This regulation is not applicable because sulfur emissions from the plant are below the applicability thresholds established in the regulation (see 20.2.35.109 & 110 NMAC).
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	This regulation is not applicable because the facility does not store hydrocarbons containing hydrogen sulfide, nor is there a tank battery storing hydrocarbon liquids with a capacity greater than or equal to 65,000 gallons (see 20.2.38.109-112 NMAC).
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This regulation is not applicable because the facility is not equipped with a sulfur recovery plant (see 20.2.39.6 NMAC).
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	1-8, 19-20, 25, 27, 34, 35b, 36, 76 & 77b	This regulation is applicable because the facility is equipped with stationary combustion sources. Emissions from these combustion sources are limited to less than 20% opacity (see 20.2.61.109 NMAC). The regulation is not applicable to the Title V insignificant heaters (see 20.2.61.111.D).
20.2.70 NMAC	Operating Permits	Yes	Facility	This regulation is applicable because the facility is a Title V major source of NOX, CO, VOC, and HAPs (see 20.2.70.200 NMAC).

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This regulation is applicable because the facility is subject to 20.2.70 NMAC (see 20.2.71.109 NMAC).
20.2.72 NMAC	Construction Permits	Yes	Facility	This regulation is applicable because the facility has potential emission rates (PER) greater than 10 pph or greater than 25 tpy for pollutants subject to a state or federal ambient air quality standards (see 20.2.72.200.A NMAC).
20.2.73	NOI & Emissions Inventory	Yes	Facility	The Notice of Intent portion of this regulation does not apply because the facility is subject to 20.2.72 NMAC (see 20.2.73.200.A(4) NMAC).
NMAC	Requirements	Tes	Facility	The emissions inventory portion of this regulation is applicable since the facility is a Title V major source (see $20.2.73.300.B(1) \& (2)$ NMAC).
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	Yes	Facility	This regulation is applicable because the facility is a PSD major source, the NOX, CO and VOC potential to emit are each greater than 250 tpy (see 20.2.74.200 NMAC). Note, however, that this application is not a PSD application (it is a Title V application).
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation is applicable because the facility is subject to 20.2.72 NMAC (see 20.2.75.10 & 11 NMAC).
20.2.77 NMAC	New Source Performance	Yes	19, 20, 35a, 76 & 77a	This regulation is applicable because it adopts by reference the federal NSPS codified in 40 CFR 60. The facility is subject to 40 CFR 60, Subparts A, GG, KKK, JJJJ & OOOOa.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	This regulation is not applicable because it incorporates by reference the NESHAPs codified under 40 CFR 61. The facility is not subject to 40 CFR 61.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	This regulation is not applicable because the facility is neither located in nor has a significant impact on a nonattainment area (see 20.2.79.109 NMAC).
20.2.80 NMAC	Stack Heights	Yes	1-8, 19-20, 25, 27, 32- 34, 35b, 36, 76 & 77b	This regulation is applicable because it establishes guidelines for the selection of an appropriate stack height for the purposes of atmospheric dispersion modeling (see 20.2.80.6 NMAC).
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	25, 27, 32- 34, 35a, 76 & 77a	This regulation is applicable because it adopts by reference the federal MACT Standards for source categories codified in 40 CFR 63. The affected units at the facility are subject to 40 CFR 63, Subparts A, HH, ZZZZ & DDDDD.

Federal Regulations

Federal standards and requirements are embodied in Title 40 (Protection of the Environment), Subchapter C (Air Programs) of the CFR, Parts 50 through 99.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	This regulation applies because the facility is subject to 20.2.70, 20.2.72 and 20.2.74 NMAC.

FEDERAL REGULATIONS APPLICABILITY CHECKLIST

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 52	Approval and Promulgation of Implementation Plans	Yes	Facility	40 CFR 52.21 <i>Prevention of Significant Deterioration of Air Quality</i> is applicable because the plant is a major Prevention of Significant Deterioration source. The remainder of 40 CFR 52 is not applicable because it addresses approval and promulgation of implementation plans.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	19, 20, 35a, 76 & 77a	This regulation applies because Subparts A, GG, KKK, JJJJ & OOOOa apply. (see §60.1(a)).
NSPS 40 CFR 60, Subpart K	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After June 11, 1973, and Prior to May 19, 1978	No	N/A	This regulation is not applicable because the petroleum liquids storage tanks at the plant have capacities less than the minimum applicability threshold capacity of 40,000 gallons (see §60.110(a)). Note that the regulation does not apply to pressure vessels which are designed to operate in excess of 15 psig (see §60.111).
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	This regulation is not applicable because the storage tanks at the plant have capacities less than the minimum applicability threshold capacity of 40,000 gallons (see §60.110a(a)). Note that the regulation does not apply to pressure vessels which are designed to operate in excess of 15 psig (see §60.111a).
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, or Modification Commenced After July 23, 1984	No	N/A	This regulation is not applicable because the storage tanks at the plant have capacities less than the minimum applicability threshold capacity of 19,812 gallons, and/or were installed prior to the applicability date, and/or contain condensate prior to custody transfer (see §60.110b(a) & §60.110b(d)(4)). Note that T6528 & T6529 contain condensate prior to custody transfer. Also note that the regulation does not apply to pressure vessels which are designed to operate in excess of 15 psig (see §60.110b(d)(2)).
NSPS 40 CFR 60 Subpart GG	Standards of Performance for Stationary Gas Turbines	Yes	19 & 20	This regulation is applicable because Units 19 & 20 were constructed after the applicability date of October 3, 1977 and have a peak input load greater than the applicability threshold of 10.15 MMBtu/hr (see §60.330). They must comply with the NOX limits of §60.332 and SO2 limits of §60.333. The regulation does not apply to the remaining turbines (Units 1-8) as they were constructed before the applicability date.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:		
NSPS 40 CFR 60, Subpart KKK	Standards of Performance for Leaks of VOC from Onshore Natural Gas Processing Plant for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011	Yes	35a	This regulation is applicable because Units 35a is in VOC service and was modified after the applicability date of January 20, 1984 and before August 23, 2011 (see §60.630).		
NSPS 40 CFR 60, Subpart LLL	Standards of Performance for SO2 Emissions From Onshore Natural Gas Processing for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011	No	N/A	This regulation is not applicable because the facility is not equipped with a sweetening unit or sweetening unit followed by a sulfur recovery unit (see §60.640).		
NSPS 40 CFR 60, Subpart IIII	Standards of Performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	This regulation does not apply because the stationary CI ICE (Units 32-34) commenced construction prior to July 11, 2005 (see §60.4200(a)).		
NSPS 40 CFR 60, Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	76	This regulation applies to Unit 76. The engine must comply with the standards in §60.4231(a).		
NSPS 40 CFR 60, Subpart KKKK	Standards of Performance for Stationary Combustion Turbines	No	N/A	This regulation is not applicable because the turbines at the plant were not constructed, and have not been modified or reconstructed, after the applicability date of February 18, 2005 (see §60.4305(a)).		
NSPS 40 CFR 60, Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and on or before September 18, 2015	No	N/A	This regulation does not apply because the facility is not equipped with "affected" sources that are constructed, modified, or reconstructed after Aug 23, 2011 and on or before September 18, 2015: gas wells, centrifugal or reciprocating compressors, pneumatic controllers, and storage vessels (see §60.5365).		

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60, Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	No	77a	This regulation will apply to pneumatic controllers associated with Unit 77a since the unit was constructed after September 18, 2015 (see 60.5365a). Otherwise, this regulation does not apply because the remainder of the facility is not equipped with "affected" sources that were constructed, modified, or reconstructed after September 18, 2015: gas wells, centrifugal or reciprocating compressors, pneumatic controllers, storage vessels, pneumatic pumps, and equipment leaks (see §60.5365a).
NESHAP 40 CFR 61, Subpart A	General Provisions	No	N/A	This regulation does not apply, because none of the other 40 CFR Part 61 subparts apply (see §61.1(c)).
NESHAP 40 CFR 61, Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	This regulation does not apply as none of the equipment at the plant is in VHAP service. The provisions of this subpart apply to each of the following sources that are intended to operate in volatile hazardous air pollutant (VHAP) service: pumps, compressors, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, and control devices or systems required by this subpart (see §61.240(a)). VHAP service means a piece of equipment either contains or contacts a fluid (liquid or gas) that is at least 10 percent by weight of VHAP. VHAP means a substance regulated under this subpart for which a standard for equipment leaks of the substance has been promulgated (see §61.241).
MACT 40 CFR 63, Subpart A	General Provisions	Yes	25, 27, 32-34, 35a, 76 & 77a	This regulation applies because 40 CFR 63, Subparts HH, ZZZZ & DDDDD apply (see §63.1(b)).
MACT 40 CFR 63, Subpart M	National Emission Standard for Asbestos	No	N/A	The subpart includes standards for minimizing asbestos emissions from several operations, including demolition and renovation activities. This regulation is not applicable because there are no existing or planned activities at this facility that trigger applicability.
MACT 40 CFR 63, Subpart HH	National Emission Standards for Hazardous Air Pollutants From Oil and Natural Gas Production Facilities	Yes	35a & 77a	This regulation is applicable because the plant is equipped with dehydrators (see §63.760(b)). The dehydrators must comply with the standards in §63.765. The plant does not contain storage vessels with the potential for flashing losses or compressors or ancillary equipment in volatile HAP service as defined by the subpart, thus these portions of the regulation are not applicable (see §63.761).
MACT 40 CFR 63, Subpart HHH	National Emission Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities	No	N/A	This regulation does not apply as the facility is not a natural gas transmission and storage facility as defined by the subpart (see §63.1270(a)).
MACT 40 CFR 63, Subpart YYYY	National Emission Standards for Hazardous Air Pollutants From Stationary Combustion Turbines	No	N/A	This regulation is not applicable because none of the turbines at the plant were constructed after the applicability date of January 14, 2003 (see §63.6090(a)(1) & (b)(4)).

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:			
MACT 40 CFR 63, Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	32-34 & 76	This regulation applies because the plant is a major HAP source equipped with stationary RICE. Units 32-34 must meet the requirements of 63.6640(f). Unit 76 must meet the requirements of this subpart by meeting the requirements of 40 CFR Part 60 Subpart JJJJ, no other Part 63 requirements apply (see §63.6590(c)(6)).			
MACT 40 CFR 63, Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers & Process Heaters	Yes	25& 27	This regulation is applicable because the plant is a major HAP source equipped with process heaters as defined by the subpart (see §63.7485). The units must comply with the work practice standards in Table 3 (see §63.7500).			
MACT 40 CFR 63, Subpart CCCCCC	National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities	No	N/A	This regulation is not applicable to the gasoline storage tank because the plant is a major HAP source (see §63.11111(a)).			
MACT 40 CFR 63, Subpart JJJJJJ	National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources	No	N/A	This regulation is not applicable because it does not apply to gas fired boilers (see §63.11195(e)).			
40 CFR 64	Compliance Assurance Monitoring	No	N/A	This regulation is not applicable because Units 35a & 77a are the only units at the plant using control devices to achieve compliance with emission limits or standards where pre control emissions equal or exceed the major source threshold (see §64.2(a)). Units 35a and 77a are not subject to this regulation, as they must comply with the emission limits and standards of 40 CFR 63, Subpart HH (see 64.2(b)(1)(i)).			
40 CFR 68	Chemical Accident Prevention	No	N/A	This regulation is not applicable because the facility does not store any of the affected chemicals in quantities exceeding the thresholds (see §68.10(a)).			
40 CFR 72	Acid Rain	No	N/A	This regulation is not applicable because the facility is not an acid rain source.			
40 CFR 82	Protection of Stratospheric Ozone	No	N/A	This regulation is not applicable because the facility does not produce, manufacture, transform, destroy, import, or export ozone-depleting substances; does not maintain or service motor vehicle air conditioning units or refrigeration equipment; and does not sell, distribute, or offer for sale or distribution any product that contains ozone-depleting substances.			

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

- ✓ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ✓ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

Not applicable, as there are no alternative operating scenarios.

Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	Х
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

- \Box See attached, approved modeling waiver for all pollutants from the facility.
- \Box See attached, approved modeling waiver for some pollutants from the facility.
- □ Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- □ Attached in UA4 is a **modeling report for some** pollutants from the facility.
- \blacksquare No modeling is required.

Modeling is not required, as this is a Title V permit application. NO_X , CO, SO₂ and particulate modeling was last conducted for construction permit 0301-M9.

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permit conditions, you must submit a compliance test history. The table below provides an example.

	Compliance Test History Table	
Unit No.	Test Description	Test Date
1	Tested in accordance with operating permit for NOx, CO & VOC	09/29/2020
2	Tested in accordance with operating permit for NOx, CO & VOC	09/30/2020
3	Tested in accordance with operating permit for NOx, CO & VOC	09/29/2020
4	Tested in accordance with operating permit for NOx, CO & VOC	06/20/2018
5	Tested in accordance with operating permit for NOx, CO & VOC	09/29/2020
6	Tested in accordance with operating permit for NOx, CO & VOC	09/29/2020
7	Tested in accordance with operating permit for NOx, CO & VOC	09/30/2020
8	Tested in accordance with operating permit for NOx, CO & VOC	09/30/2020
19	Tested in accordance with operating permit for NOx, CO & VOC	12/10/2020
20	Tested in accordance with operating permit for NOx, CO & VOC	09/29/2020
34	N/A	N/A

Compliance Test History Table

Addendum for Streamline Applications

Streamline Applications do not require a complete application. Submit Sections 1-A, 1-B, 1-D, 1-F, 1-G, 2-A, 2-C thru L, Sections 3 thru 8, Section 13, Section 18, Section 22, and Section 23 (Certification). Other sections may be required at the discretion of the Department. 20.2.72.202 NMAC Exemptions do not apply to Streamline sources. 20.2.72.219 NMAC revisions and modifications do not apply to Streamline sources, thus 20.2.72.219 type actions require a complete new application submittal. Please do not print sections of a streamline application that are not required.

Not applicable, as this is not a streamline application.

Requirements for Title V Program

Who Must Use this Attachment:

* Any major source as defined in 20.2.70 NMAC.

- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

There are no sources at the plant subject to 40 CFR, Part 64, Compliance Assurance Monitoring (CAM); consequently, a monitoring protocol is not required.

19.2 - Compliance Status (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

The plant is in compliance with all applicable requirements affecting the facility. A copy of Part 1 (Permit Requirements Certification Table) of the 2020 annual compliance certification is provided in Section 20, Other Relevant Information. It identifies all the requirements of the current Title V operating permit and the methods and data used to determine compliance. It is assumed that compliance with the Title V operating permit ensures compliance with the construction permit and New Mexico regulations.

19.3 - Continued Compliance (20.2.70.300.D.10.c NMAC)

Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other

applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement.

The plant will continue to be in compliance with applicable requirements for which it is in compliance at the time of this permit application. In addition, the plant will, in a timely manner or consistent with such schedule expressly required by the applicable requirement, comply with other applicable requirements as they come into effect during the permit term.

19.4 - Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)

You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.

The submittal of compliance certifications during the five-year term of the operating permit will occur annually.

19.5 - Stratospheric Ozone and Climate Protection

In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners).

- 1. Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozonedepleting substances? □ Yes ☑ No
- Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 lbs?
 □ Yes ☑ No

(If the answer is yes, describe the type of equipment and how many units are at the facility.)

- 3. Do your facility personnel maintain, service, repair, or dispose of any motor vehicle air conditioners (MVACs) or appliances ("appliance" and "MVAC" as defined at 82. 152)? □ Yes ☑ No
- 4. Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through G). None

The plant does not produce, manufacture, transform, destroy, import, or export any stratospheric ozone-depleting substances (CFCs, HCFCs); does not maintain or service motor vehicle air conditioning units or refrigeration equipment; and does not sell, distribute, or offer for sale any product that may contain stratospheric ozone-depleting substances.

HFC shall continue to maintain compliance with the conditions stipulated in 40 CFR 82, Subparts A-G of the Stratospheric Ozone Protection Program (Title VI of the Clean Air Act Amendments).

19.6 - Compliance Plan and Schedule

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.

B. Compliance plan: (20.2.70.300.D.11.B NMAC)

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC)

A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See <u>http://www.env.nm.gov/aqb/index.html</u>. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

The plant is in compliance with all applicable requirements; consequently, a compliance plan, a compliance schedule, and a schedule of certified progress reports is not required.

The plant is not equipped with any acid rain sources; consequently, compliance with the acid rain provisions is not required as a part of this permit application.

19.7 - 112(r) Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

The plant is not subject to 40 CFR 68, Chemical Accident Prevention Provisions; consequently, a Risk Management Plan is not required.

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.)

The station is located within 80 kilometers (km) of the following states, local pollution control programs, Indian tribes and pueblos:

Colorado (~ 37.0 km) Jicarilla Apache Tribe (~ 49.9 km) Navajo Tribe (~ 1.6 km) Southern Ute Tribe (~ 37.0 km) Ute Mountain Tribe (~ 16.1 km)

19.9 - Responsible Official

Provide the Responsible Official as defined in 20.2.70.7.AD NMAC:

The responsible official for the Kutz Canyon Processing Plant is Travis Jones.

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

This section contains Part 1 (Permit Requirements Certification Table) of the 2020 annual compliance certification. Please see the following pages.

New Mexico Environment Department Air Quality Bureau Compliance and Enforcement Section 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505 Phone (505) 476-4300

Version 07.20.18

TEMPO

NMED USE ONLY

REPORTING SUBMITTAL FORM

NMED USE ONLY

Staff Admin

PLEASE NOTE: ${f \mathbb R}$ - Indicates required field

SECTION I - GENERAL COMPANY AND FACILITY INFORMATION								
	ompany Name:			D. ® Facility Name:				
	t Four Corners, LLC			Kutz Canyon Processing Plant				
	Company Address: rroyo Drive			E.1 ® Facility Address: 1755 Arroyo Drive				
B.2 ® C Bloomf		B.3 ® State: B.4 ® Zip NM 8 7	E.2 ® City: Bloomfield		E.3 ® State: E.4 ® Zip: NM 87413			
C.1 ® Co Kijun Ho	ompany Environmental Contact:	C.2 ® Title: Environmental Speciali	st	F.1 ® Facility Kijun Hong	Contact:	F.2 ® Title: Environmental Specialist		
C.3 ® P 505-632	Phone Number: 2-4475	C.4 ® Fax Number: 505-632-4782		F.3 ® Phone 505-632-4475		F.4 ® Fax Number: 505-632-4782		
	Email Address: Dharvestmidstream.com			F.5 ® Email A khong@harve	Address: estmidstream.com			
G. Resp Travis	onsible Official: (Title V onlv): Jones	H. Title: EH&S Manager		I. Phone Num 713-289-2630		J. Fax Number:		
1158	P097-R3		itle V Permit Is 9/18	sue Date: N	. NSR Permit Number:	O. NSR Permit Issue Date:		
P. Repo From:	orting Period: 11/1/19 To	: 10/31/20						
			notifications t	to the Air Ouality	Z Bureau. See https://www.e	nv.nm.gov/air-quality/notices-and-		
	ompliance-and-enforcement/ fo		nounoutono	ie une i in Quanty	Dateau Dee <u>mipen mine</u>	<u>an daandinooree and</u>		
SECTI	ON II – TYPE OF SUB	MITTAL (check one t	hat applie	es)				
A . 🖂	Title V Annual Compliand	e Permit Condition(s):	Descriptio	tion:				
A . 🖂	Certification	A109.B	submittal o	submittal of ACC				
в. 🗌	Title V Semi-Annual Monitoring Report	Permit Condition(s):	Descriptio	on:				
C . 🗌	NSPS Requirement (40CFR60)	Regulation:	Section(s)	:	Description:			
D. 🗌	MACT Requirement (40CFR63)	Regulation:	Section(s)): Description:				
E. 🗌	NinAo Requirement		Section(s)	Section(s): Description:				
F. 🗌	Permit or Notice of Inten (NOI) Requirement	Permit No. 🗌 : or NOI No. 🗌	: Condition	(s):	Description:			
G. 🗌	Requirement of an Enforcement Action	NOV No. : or SFO No. : or CD No. : or Other :		:	Description:			

SECTION III - CERTIFICATION					
After reasonable inquiry, I	Kijun Hong (Name of Certifier)	certify that the information in	n this submittal is true	e, accurate and	complete.
® Signature of Certifier:		® Title:	® Date	® Responsible Offic	ial for Title V?
		Environmental Specialist		Yes	🖂 No

Title V Report Certification Form

I. Report Type						
⊠ Annual Compliance Certification						
Semi-Annual Monitoring Report						
□ Other Specify:						
II. Identifying Information						
Facility Name: Kutz Canyon Processing Plant						
Facility Address: 1755 Arroyo Drive		State: NM		Zip	Zip: 87413	
Responsible Official (RO): Travis Jones		Phone: 713-289-2630		0	Fax: 505-632-4782	
RO Title: EH&S Manager	RO e-mail: tr	jones@harv	estmidstrea	m.co)	
Permit No.: P097-R3-M1		Date Permit Issued: 12/19/2018				
Report Due Date (as required by the permit):	11/30/2020	Permit AI	number: 1	158		
Time period covered by this Report: From: 11/1/2019			To: 10/31/2020			
III. Certification of Truth, Accuracy, and Completeness						

I am the Responsible Official indicated above. I, (Travis Jones) certify that I meet the requirements of 20.2.70.7.AD NMAC. I certify that, based on information and belief formed after reasonable inquiry, the statements and information contained in the attached Title V report are true, accurate, and complete.

Signature_____ Date: _____

Title V Annual Compliance Certification for Permits P097-R3 & P097-R3M1

Title (TV) Permit Administration Amendment

On December 19, 2018 NMED AQB issued an Administrative Amendment to Operating Permit P097-R3.

The Administrative Amendment P097-R3M1 corrected the following:

a.	Permittee is changed to	Harvest Four Corners LLC 1755 Arroyo Dr Bloomfield, NM 87413
b.	Facility Owner is	Harvest Four Corners LLC 1755 Arroyo Dr Bloomfield, NM 87413

For this Administrative Amendment (P097-R3M1), the facility can use one Annual Compliance Certification (ACC) Form which will cover both TV Permits.

Although the facility is only required to submit one ACC Form, the facility shall submit **two (2)** separate TV Report Certification Forms. Each form shall list the corresponding TV Permit number, TV Permit Issue Date and Reporting Period.

Please note that this is a one-time authorization. Submittal forms for future Administrative Revisions will be evaluated on a case by case basis.

This form can also be used for future submittals that cover only the P097-R3M1 permit.

Annual Compl	iance Certification Data for Title V Permits No. P097-R3 & P097-	R3M1			
	ty <i>continuously</i> in compliance with <i>all conditions</i> of this <i>permit</i> during the reporting period? (Did you check either "Yes" or "N/A" f <i>i</i> in response to question 3?)				
2. If you answered <i>No</i> to question 3, list <i>all</i> deviations in the <i>Deviations</i> section. For <i>all</i> Deviations that <i>produced</i> excess emissions, provide <i>only</i> a) the AOBCR EER Tracking Number.					ity compliance nents of this the
FACILITY SPECIF	IC REQUIREMENTS on (expiration)				
A. The term of this permit is five (5) years. It will expire five years from the date of issuance. Application for renewal of this permit is due twelve (12) months prior to the date of expiration. (20.2.70.300.B.2 and 302.B NMAC)				🖂 Yes	🗌 No
Methods: Submittal of a renewal application 12 months prior to expiration of this permit will demonstrate compliance with this condition. Permit P097-R3 was issued August 3, 2018, so compliance will be demonstrated with submittal of an application at least twelve months before the permit's expiration date of August 13, 2023.Permit before the permit's End DateDeviations: Unit IDCause & Description of Deviation or Tracking numberStart DateEnd Date				N/A	
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
or disapprove the rene the permit shall remain	on (expiration) nplete application for a permit renewal is submitted, consistent with 20.2.70.300 NMAC, but the wal permit before the end of the term of the previous permit, then the permit shall not expire and n in effect until the renewal permit has been issued or disapproved. (20.2.70.400.D NMAC) of a renewal application 12 months prior to expiration of this permit will demonstrate compliance	all the terms and	d conditions of	Xes	🗌 No
	August 3, 2018, so compliance will be demonstrated with submittal of an application at least twe			□ N/A	
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
A102 Facility: Descr	iption				
	ated approximately 5.0 kilometers (3.1 miles) south of Bloomfield, New Mexico in San Juan Coun	nty. (20.2.70.302	2.A(7) NMAC)		

 Provide <i>Method(s) or other information or other facts used to determine the compliance status</i> in the "Methods:" row beneath each permit condition. If you answered <i>No</i> to question 3, list <i>all</i> deviations in the <i>Deviations</i> section. For <i>all</i> Deviations that <i>produced</i> excess emissions, provide <i>only</i> a) the AQBCR EER Tracking Number. For <i>all</i> Deviations that <i>di not produce</i> excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your <i>Description</i>, whether each deviation has been previously reported to NMED. 					ity ompliance ents of this the
Methods: The facility did not relocate during the applicable period.					🗌 No
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date	□ N/A	
A103 Facility: App	icable Regulations				
A. The permittee shall comply with all applicable sections of the requirements listed in Table 103.A.					🗌 No
Methods: Semiannual reports and this ACC, along with applicable NSPS & NESHAP reports, are used to determine that the source continues to comply with applicable requirements.					
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
A103 Facility: Appl					
air quality standards s 0301-M6 and 0301-M Methods: Semiannua determine that no una	l reports and the annual emissions inventory, along with the Management of Change Request (Nuthorized equipment has been added or operated during the applicable period.	d for the facility	's NSR Permit	⊠ Yes □ N/A	🗌 No
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
A104 Facility: Regulated Sources A. Table 104.A lists the emission units authorized for this facility. Emission units identified as insignificant or trivial activities (as defined in 20.2.70.7 NMAC) and/or equipment not regulated pursuant to the Act are not included. Methods: Semiannual reports and the annual emissions inventory, along with the Management of Change Request (MOCR) procedures, are used to determine that no unauthorized equipment has been added or operated during the applicable period. Deviations: Unit ID Cause & Description of Deviation or Tracking number Start Date End Date				⊠ Yes □ N/A	□ No
A105 Facility: Contr	rol Equipment			Xes	No
	all the pollution control equipment required for this facility. Each emission point is identified ne permit application.	by the same nu	mber that was	□ N/A	

 Provide Method(s) or other information or other facts used to determine the compliance status in the "Methods:" row beneath each permit condition. If you answered No to question 3, list all deviations in the Deviations section. For all Deviations that produced excess emissions, provide only a) the AQBCR EER Tracking Number. For all Deviations that did not produce excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your Description, whether each deviation has been previously reported to NMED. 					ility compliance ments of this g the d?
	reports and the annual emissions inventory, along with the Management of Change Request (N d equipment operated with pollution control equipment during the applicable period.	AOCR) procedur	es, are used to		
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
A106 Facility: Allow	able Emissions				
	tion lists the emission units, and their allowable emission limits.				
(40 CFR 50, 40 CFR 60, Subparts A and GG, KKK, 40 CFR 63, Subparts A, HH, DDDDD, and ZZZZ, 20.2.72.210.A and B.1 NMAC; and NSR Permit 0301M9).			🛛 Yes	🗌 No	
Methods: Semiannua emissions.	reports, periodic testing and the annual emissions inventory are used to demonstrate compliance	e with the identi	fied allowable	□ N/A	
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
to control CO, VOC at	37b, only one unit shall be operated at any given time. If Unit 37b is constructed, it shall be equi nd HAP emissions. If Unit 37b is constructed, then records shall be maintained in accordance with nit. If Unit 37b is constructed then the permittee shall comply with Conditions A201.D and E of the	h B110 to show d		🖾 Yes	🗌 No
Methods: Semiannual and 37b.	reports, periodic testing and the annual emissions inventory are used to demonstrate compliance	with the operatio	n of Units 37a	□ N/A	
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
A107 Facility: Allow	able Startup, Shutdown, & Maintenance (SSM) and Malfunction Emissions				
A. The maximum allowable SSM and Malfunction emissions limits for this facility are listed in Table 107.A and were relied upon by the Department to determine compliance with applicable regulations.			🗌 Yes	🖂 No	
Methods: Semiannual reports, SSM tracking, and the annual emissions inventory are used to demonstrate compliance with the identified allowable emissions. An October 6, 2020 Excess Emissions Report was submitted in accordance with 20.2.7 NMAC.			□ N/A		
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
Malfunctions	001158-10072020-01	10/6/20	10/6/20		
	able Startup, Shutdown, & Maintenance (SSM) and Malfunction Emissions of emission limits for startup, shutdown, maintenance, and malfunction does not supersede the requ	irements to minir	nize emissions		

ACC Form Part B Permit # P097-R3 & P097-R3M1	ACC Form	Part B	Permit #	P097-R3	& P	097-R3M1
--	----------	--------	----------	---------	-----	----------

 Provide Method(s) or other information or other facts used to determine the compliance status in the "Methods:" row beneath each permit condition. If you answered No to question 3, list all deviations in the Deviations section. For all Deviations that produced excess emissions, provide only a) the AQBCR EER Tracking Number. For all Deviations that did not produce excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your Description, whether each deviation has been previously reported to NMED. 				3. Was this facil continuously in c with all requirem condition during reporting period?	ompliance ents of this the
according to Conditio	ns B101.C and B107.A.				_
Methods: The facility	operates in accordance with its SSM Plan in order to minimize emissions.			🖾 Yes	No
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date	□ N/A	
	owable Startup, Shutdown, & Maintenance (SSM) and Malfunction Emissions				
Requirement: The p demonstrate complian	Emissions for venting of gas bermittee shall perform a facility inlet gas analysis once every calendar year and complete th ce with routine and predictable startup, shutdown, and maintenance (SSM) emission limits in Tabi tion A107.C and revised)		ordkeeping to		
	nittee shall monitor the permitted routine and predictable startups and shutdowns and scheduled m	aintenance even	ts.		
Recordkeeping:					
(1) To demonstrate c	ompliance, records shall be kept of the monthly sum of total VOC emissions due to SSM events nonthly rolling 12-month total of VOC emissions due to SSM events.	during the first 1	2 months and,	🛛 Yes	No
(2) Records shall also vented in MMscf	me of total gas	□ N/A			
(3) The permittee sha in B109.C(2) to r	ne requirement				
Reporting: The perm	ittee shall report in accordance with Section B110.				
	l reports, SSM tracking, and the annual emissions inventory are used to demonstrate compliance ds are included in the applicable semiannual reports.	e with the identi	fied allowable		
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
	owable Startup, Shutdown, & Maintenance (SSM) and Malfunction Emissions				
	VOC Emissions for venting of gas				
	ermittee shall perform a facility inlet gas analysis once every calendar year and complete th ce with malfunction (M1) emission limits in Table 107.A. (NSR 0301M9, Condition A107.D and		ordkeeping to	Yes	🗌 No
Monitoring: The period	nittee shall monitor all malfunction events that result in VOC emissions including identification o ons.	f the equipment	or activity that	□ N/A	
Recordkeeping:					
ACC Form Part B Perm	it # P097-R3 & P097-R3M1		P	age 5 of 32	

Version 2/13/2019

 Provide <i>Method(s) or other information or other facts used to determine the compliance status</i> in the "Methods:" row beneath each permit condition. If you answered <i>No</i> to question 3, list <i>all</i> deviations in the <i>Deviations</i> section. For <i>all</i> Deviations that <i>produced</i> excess emissions, provide <i>only</i> a) the AQBCR EER Tracking Number. For <i>all</i> Deviations that <i>did not produce</i> excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your <i>Description</i>, whether each deviation has been previously reported to NMED. 					ity compliance nents of this the
	ompliance, records shall be kept of the monthly sum of total VOC emissions during the first 12 2-month total of VOC emissions due to malfunction events.	2 months and, th	ereafter of the		
vented in MMscf toward the permit	b be kept of the inlet gas analysis, the percent VOC of the gas based on the most recent gas anal used to calculate the VOC emissions, a description of the event, and whether the emissions result ted malfunction emission limit or whether the event is reported as excess emissions of the pound hour limits in condition B110E, if applicable), under 20.2.7 NMAC.	ing from the eve	nt will be used		
	ll record the calculated emissions and parameters used in calculations in accordance with Condition rd the start and end times of malfunction events shall not apply to the venting of known quantities		he requirement		
Reporting: The perm	ittee shall report in accordance with Section B110.				
allowable emissions.	l reports, malfunction tracking, and the annual emissions inventory are used to demonstrate of Malfunction events occurring during this monitoring period that were not used toward the permitdance with 20.2.7 NMAC				
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
	urs of Operation orized for continuous operation, except for Units 34 and 76.			🛛 Yes	🗌 No
Methods: Records of	the operating hours of Units 34 and 76 are maintained and included in the applicable semiannual	reports.			
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date	□ N/A	
A109 Facility: Reporting SchedulesA. Semi-Annual Report of monitoring activities is due within 45 days following the end of every 6-month reporting period. The six month reporting periods start on November 1 st and May 1 st of each year.					🗌 No
Methods: The initial semiannual report associated with this ACC was submitted June 12, 2020, not more than 45 days from the end of the monitoring period, April 30. The current semiannual report will be submitted by December 15.				N/A	
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
	oorting Schedules			Xes	No No
B. The Annual Comp starts on November 1 ^s	liance Certification Report is due within 30 days of the end of every 12-month reporting period. t of each year.	The 12-month re	porting period	N/A	

 Provide Method(s) or other information or other facts used to determine the compliance status in the "Methods:" row beneath each permit condition. If you answered No to question 3, list all deviations in the Deviations section. For all Deviations that produced excess emissions, provide only a) the AQBCR EER Tracking Number. For all Deviations that did not produce excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your Description, whether each deviation has been previously reported to NMED. 					3. Was this facility <i>continuously</i> in compliance with <i>all</i> requirements of this condition during the reporting period?	
Method	ls: This ACC i	s being submitted within 30 days of Nov. 1.				
Deviation	ns: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
<u>A110</u>	Facility: Fue	el and Fuel Sulfur Requirements				
А.		el Sulfur Requirements (Units 1-8, 16-20, 22, 23, 24b, 25, 27-30, 35b, 37a or 37b & 76 use Fie	· -	<i>,</i>		
		mbustion emission units shall combust only natural gas containing no more than 0.25 grains of to , the sulfur content of the fuel oil shall not exceed 0.0015% sulfur by weight.	otal sulfur per 10	0 dry standard		
Monito	ring: None. C	ompliance is demonstrated through records.				
Record	keeping:					
(1)		The permittee shall demonstrate compliance with the natural gas or fuel oil limit on total sulfur content by maintaining records of a current, valid purchase contract, tariff sheet or transportation contract for the gaseous or liquid fuel, or fuel gas analysis, specifying the allowable limit				
(2)	If fuel gas an	alysis is used, the analysis shall not be older than one year.			□ N/A	
(3)		, compliance shall be demonstrated by keeping a receipt or invoice from a commercial fuel supplier the delivery date, the fuel type delivered, the amount of fuel delivered, and the maximum sulfur c				
Reporti	ing: The perm	ittee shall report in accordance with Section B110.				
	Is: Except for nual report.	the diesel-fired emergency equipment, only natural gas is used for fuel. Fuel sulfur test results a	re included with	the applicable		
Deviation	ns: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
	20.2.61 NMA ement: Visible	2.61 NMAC Opacity AC Opacity Requirements (Units 1-8, 16-20, 22, 23, 24b, 25, 27-30, 33, 35b, 37a or 37b & 76) e emissions from each stationary combustion emission stacks shall not equal or exceed an opacity o .2.61.109 NMAC.	f 20 percent in ac	cordance with		
-		.2.01.109 INMAC.			Yes 🗌 No	0
any acc wil	e of natural gas visible emiss ordance with t l be allowed to	a fuel constitutes compliance with 20.2.61 NMAC unless opacity equals or exceeds 20% averaged sions are observed during operation other than during startup mode, opacity shall be measure the procedures at 40 CFR 60, Appendix A, Reference Method 9 (EPA Method 9) as required by 20.2 o shut down the equipment to perform maintenance/repair to eliminate the visible emissions. Follow ir, the operator shall conduct visible emission observations following startup in accordance with the startup of the startup in accordance with the startup in accordance wit	d over a 10-min .61.114 NMAC, wing completion	or the operator of equipment	□ N/A	

ACC Form Part B Permit # P097-R3 & P097-R3M1

	determine the compliance status in the "Methods:" row beneath each permit condition	n.		3. Was this facility	lionaa
2. If you answered <i>No</i> to question 3, list <i>all</i> deviations in the <i>De</i> For <i>all</i> Deviations that <i>produced</i> excess emissions, provide				<i>continuously</i> in compl with <i>all</i> requirements condition during the	
For <i>all</i> Deviations that <i>did not produce</i> excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your <i>Description</i> , whether each deviation has been previously reported to NMED.					
(a) Visible emissions observations shall be c	onducted over a 10-minute period during operation after completion ix A, Reference Method 22 (EPA Method 22). If no visible emissions				
	g completion of the EPA Method 22 observation, subsequent opacity of the procedures at EPA Method 9 as required by 20.2.61.114 NMA		ll be conducted		
For the purposes of this condition, Startup mode is	defined as the startup period that is described in the facility's startup	plan.			
Recordkeeping:					
 If any visible emissions observations were con follows: 	ducted, the permittee shall keep records in accordance with the requir	rements of Section	on B109 and as		
(a) For any visible emissions observations conducted in accordance with EPA Method 22, record the information on the form referenced in EPA Method 22, Section 11.2.					
(b) For any opacity observations conducted in accordance with the requirements of EPA Method 9, record the information on the form referenced in EPA Method 9, Sections 2.2 and 2.4.					
Reporting: The permittee shall report in accordance with Section B110.					
Methods: Except for the diesel-fired emergency equipment of the monitoring periods.	uipment, only natural gas is used for fuel. No visible emissions were	observed during	g the applicable		
Deviations: Unit ID Cause & Description of Deviation	or Tracking number	Start Date	End Date		
A111 Facility: 20.2.61 NMAC Opacity					
B. 20.2.61 NMAC Opacity Requirements (
Requirement: Visible emissions from all emission accordance with the requirements at 20.2.61.109 N	n stacks of all compression ignition engines shall not equal or exce MAC.	eed an opacity o	f 20 percent in		
during any year that the unit is operated and no less	ise compression ignition engines that operate on a limited basis, the frequently than once every 5 years regardless of unit operation, measured and the second seco	sure opacity duri	ng steady state	🛛 Yes 🗌	No
operation on each Unit for a minimum of 10 minutes in accordance with the procedures of 40 CFR 60, Appendix A, Method 9. The permittee shall also measure opacity on a Unit's emissions stack anytime when visible emissions are observed during steady state operation.					
Recordkeeping:					
(1) If any visible emissions observations were con follows:	ducted, the permittee shall keep records in accordance with the requir	rements of Section	on B109 and as		
(2) For any visible emissions observations condu	cted in accordance with EPA Method 22, record the information o	on the form refe	renced in EPA		

ACC Form Part B Permit # P097-R3 & P097-R3M1

Version 2/13/2019

 Provide Method(s) or other information or other facts used to determine the compliance status in the "Methods:" row beneath each permit condition. If you answered No to question 3, list all deviations in the Deviations section. For all Deviations that produced excess emissions, provide only a) the AQBCR EER Tracking Number. For all Deviations that did not produce excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your Description, whether each deviation has been previously reported to NMED. 				3. Was this facili continuously in c with all requirem condition during reporting period?	ompliance ents of this the
Method 22, Section	on 11.2.				
	bservations conducted in accordance with the requirements of EPA Method 9, record the inform ections 2.2 and 2.4.	ation on the form	referenced in		
Reporting: The perm	ittee shall report in accordance with Section B110.				
Methods: Applicable applicable semiannual	monitoring requirements demonstrate compliance with the opacity limit. Results from the per reports.	riodic tests are in	ncluded in the		
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
Oil and Gas IndustryA201EnginesA.MaintenanceRequirement:Compl (NSR 0301M9, CondiMonitoring:Mainten maintenance, adjustm documented as they of (1)Routine main (2)UnscheduledRecordkeeping:The permittee shall also m Reporting:Reporting:The permittee	e and Repair Monitoring (Units 16, 17, 18, and 37a/b) iance with the allowable emission limits in Table 106.A shall be demonstrated by properly main tion A201.A and revised) ance and repair shall meet the minimum manufacturer's or permittee's recommended maintenance s ent, replacement, or repair of functional components with the potential to affect the operation cour for the following events: tenance that takes a unit out of service for more than two hours during any twenty-four hour perior repairs that require a unit to be taken out of service for more than two hours in any twenty-four hour permittee shall maintain records, including dates and maintenance activities conducted in accordination a copy of the manufacturer's or permittee's recommended maintenance schedule.	schedule. Activiti n of an emission od. our period. rdance with Secti	es that involve a unit shall be ion B109. The	⊠ Yes □ N/A	□ No
	e and repair records for engines are are maintained as required and included with applicable semi				
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
Requirement: Comp monitoring period. (N	issions Test for Units 16, 17, 18 and 37a/b iance with allowable emission limits in Table 106.A shall be demonstrated by completing per SR 0301M9, Condition A201.B and revised) nittee shall test using a portable analyzer or EPA Reference Methods subject to the requirements a			⊠ Yes □ N/A	🗌 No
ACC Form Part B Perm	it # P097-R3 & P097-R3M1		Р	age 9 of 32	

Version 2/13/2019

 Provide <i>Method(s) or other information or other facts used to determine the compliance status</i> in the "Methods:" row beneath each permit condition. If you answered <i>No</i> to question 3, list <i>all</i> deviations in the <i>Deviations</i> section. For <i>all</i> Deviations that <i>produced</i> excess emissions, provide <i>only</i> a) the AQBCR EER Tracking Number. For <i>all</i> Deviations that <i>did not produce</i> excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your <i>Description</i>, whether each deviation has been previously reported to NMED. General Monitoring Requirements. Emission testing is required for NOx and CO and shall be carried out as described below. 					
Test results that d	nonstrate compliance with the CO emission limits shall also be considered to demonstrate compliance	e with the VOC e	mission limits		
	g shall be conducted as follows:				
(a)	esting frequency for Units 16, 17, and 18 shall be once per year. For Unit 37b, the testing frequency	shall be once a c	uarter.		
 (b) The monitoring period for Units 16, 17, and 18 is defined as a calendar year. For Unit 37b, the monitoring period is defined as quarterly. (2) For new units, the first test shall occur within the first monitoring period occurring after permit issuance. For existing units, the tests shall continue based on the existing testing schedule. (3) All subsequent monitoring shall occur in each succeeding monitoring period. (a) No two monitoring events shall occur closer together in time than 25% of a monitoring period. (4) Follow the General Testing Procedures of Section B111. (5) Performance testing required by 40 CFR 60, Subpart JJJJ or IIII or 40 CFR 63, Subpart ZZZZ may be used to satisfy these periodic testing requirements if they meet the requirements of this condition and are completed during the specified monitoring period. Recordkeeping: The permittee shall maintain periodic emissions test records in accordance with Section B109, B110, and B111. Methods: Periodic emissions tests were completed as required. Periodic emissions test results are maintained as required and included in the applicable semiannual reports. 					
			E ID (
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
A201 Engines C. 40 CFR 63, Subpart ZZZZ (Units 16-18, 32, 33, 34, & 37a) Requirement: These Units are subject to 40 CFR 63, Subpart ZZZZ and the permittee shall comply with all applicable requirements of Subpart A and Subpart ZZZZ. Per §63.6590(b)(3), Units 16-18 & 37a are not required to meet the requirements of Subparts A or ZZZZ, including initial notification requirements. Units 32 and 33 are existing emergency SI at a major HAP source and comply with ZZZZ by complying with 63.6625 and Table 2c, line 6. Monitoring: The permittee shall comply with all applicable monitoring requirements of 40 CFR 63, Subpart A and Subpart ZZZZ. Recordkeeping: The permittee shall comply with all applicable recordkeeping requirements of 40 CFR 63, Subpart A and Subpart ZZZZ, including but not limited to 63.6655 and 63.10. Reporting: The permittee shall comply with all applicable reporting requirements of 40 CFR 63, Subpart A and ZZZZ, including but not limited to 63.6655 and 63.10.					

Methods: Records ==mintained demonstrating that although the Kutz Plant is a major HAP source, Unit16-18, 34 & 37 are ere constructed prior to the applicability dist. Image: The Construction of The King number Image: The Construction of The King	 Provide <i>Method(s)</i> or other information or other facts used to determine the compliance status in the "Methods:" row beneath each permit condition. If you answered <i>No</i> to question 3, list <i>all</i> deviations in the <i>Deviations</i> section. For <i>all</i> Deviations that <i>produced</i> excess emissions, provide <i>only</i> a) the AQBCR EER Tracking Number. For <i>all</i> Deviations that <i>did not produce</i> excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your <i>Description</i>, whether each deviation has been previously reported to NMED. 				the deviation.	3. Was this facility <i>continuously</i> in compliance with <i>all</i> requirements of this condition during the reporting period?
A201 Engines D. 40 CFR 63, Subpart ZZZZ (Units 37b) [To be installed units] Requirement: (1) (1) The unit will be subject to 40 CFR 63, Subparts A and ZZZZ if they meet the applicability criteria in 40 CFR 63.6590. The permittee shall comply with any applicable notification requirements in Subpart A and any specific requirements of Subpart ZZZZ. (2) Unit 37b shall not be operated at any given time as Unit 37a. If Unit 37b is constructed, it shall be equipped with a catalytic convertor to control CO, VOC and HAP emissions. If Unit 37b is constructed, then records shall be maintained in accordance with B110 to show dates and times of operation of each unit. Monitoring: The permittee shall comply with all applicable monitoring requirements of 40 CFR 63, Subpart A and Subpart ZZZZ, including but not limited to 63.6655 and 63.10. Recordkeeping: The permittee shall comply with all applicable recordkeeping requirements of 40 CFR 63, Subpart A and Subpart ZZZZ, including but not limited to 63.6655, 63.6630, 63.9, and 63.10. Methods: Unit 37b has not been installed as of the end of the compliance period. Deviation: Unit 10 Cause & Description of Deviation or Tracking number 4201 Engines End Date Action Start Date Action Fad Date Action Start Date Action Start Date Monitoring: The permittee shall compliance test in accordance w			e maintained demonstrating that although the Kutz Plant is a major HAP source, Unit16-18, 34 &	2 37a were const	tructed prior to	
D. 40 CFR 63, Subpart ZZZZ, (Units 37b) [To be installed units] Requirement: (1) The unit will be subject to 40 CFR 63, Subparts A and ZZZZ if they meet the applicability criteria in 40 CFR 63, Soby. The permittee shall complex with any applicable notification requirements in Subpart A and any specific requirements of Subpart ZZZZ. (2) Unit 37b shall not be operated at any given time as Unit 37a. If Unit 37b is constructed, it shall be equipped with a catalytic convertor to control CO, VOC and HAP emissions. If Unit 37b is constructed, then records shall be maintained in accordance with B110 to show dates and times of operation of each unit. Monitoring: The permittee shall comply with all applicable monitoring requirements of 40 CFR 63, Subpart A and Subpart ZZZZ, including but not limited to 3,6655 and 63.10. Recordkeeping: The permittee shall comply with all applicable recordkeeping requirements of 40 CFR 63, Subpart A and Subpart ZZZZ, including but not limited to 3,6655 and 63.10. Retordise: The permittee shall comply with all applicable recordkeeping requirements of 40 CFR 63, Subpart A and ZZZZ, including but not limited to 3,6655 and 63.10. Retordise: The permittee shall comply with all applicable recording requirements of 40 CFR 63, Subpart A and ZZZZ, including but not limited to 3,6655 and 63.10. Retordise: The permittee shall comply with all applicable reporting requirements of 40 CFR 63, Subpart A and ZZZZ, including but not limited to 3,6655 and 63.10. Retordise: The permittee shall comply with all applicable reporting requirements of 40 CFR 63, Subpart A and ZZZZ, including but to thim tot 3.10. Retordise: The termittee shall comply and the fiel	Deviations: Un	nit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date	
D. 40 CFR 63, Subpart ZZZZ, (Units 37b) [To be installed units] Requirement: (1) The unit will be subject to 40 CFR 63, Subparts A and ZZZZ if they meet the applicability criteria in 40 CFR 63, 6590. The permittee shall complex with any applicable nonitoring requirements of Subpart ZZZZ. (2) Unit 37b shall not be operated at any given time as Unit 37a. If Unit 37b is constructed, it shall be equipped with a catalytic convertor to control CO, VOC and HAP emissions. If Unit 37b is constructed, then records shall be maintained in accordance with B110 to show dates and times of operation of each unit. Monitoring: The permitte shall comply with all applicable monitoring requirements of 40 CFR 63, Subpart A and Subpart ZZZZ, including but not limited to 3,6655 and 63.10. Recordkeeping: The permittee shall comply with all applicable recordkeeping requirements of 40 CFR 63, Subpart A and ZZZZ, including but not limited to 3,6659, and 63.10. Retordkeeping: The permittee shall comply with all applicable recordkeeping requirements of 40 CFR 63, Subpart A and ZZZZ, including but not limited to 3,6659, 63, and 63.10. Retordkeeping: The permittee shall comply with all applicable recordkeeping requirements of 40 CFR 63, Subpart A and ZZZZ, including but not limited to 3,6659, 63, and 63.10. Retording: Monitoring: The permittee shall comply with all applicable reporting requirements of 40 CFR 63, Subpart A and ZZZZ, including but not limited to 3,6659, 63, and 63.10. Retording: Monitoring: The permittee shall complex with all applicable reporting requirements of 40 CFR 63, Subpart A and ZZZZ, including but not limited to 3,6659, 63, 6659, 63, 659, 639, and 63.10. Retording:	A 201 E .	•••••				
Requirement: (1) The unit will be subject to 40 CFR 63, Subparts A and ZZZZ if they meet the applicability criteria in 40 CFR 63, 6590. The permittee shall comply with any applicable notification requirements in Subpart A and any specific requirements of Subpart ZZZZ. (2) Unit 37b shall not be operated at any given time as Unit 37a. If Unit 37b is constructed, it shall be equipped with a catalytic convert to control CO, VOC and HAP emissions. If Unit 37b is constructed, then records shall be maintained in accordance with B110 to show dates and times of operation of each unit. Image: State			Subpart ZZZZ (Units 37b) [To be installed units]			
comply with any applicable notification requirements in Subpart A and any specific requirements of Subpart ZZZZ. (2) Unit 37b shall not be operated at any given time as Unit 37a. If Unit 37b is constructed, it shall be equipped with a catalytic convertor to control CO, VOC and HAP emissions. If Unit 37b is constructed, then records shall be maintained in accordance with B110 to show dates and times of operation of each unit. Image: State Sta						
CO, VOC and HAP emissions. If Unit 37b is constructed, then records shall be maintained in accordance with B110 to show dates and times of operation of each unit.	· /				permittee shall	
Monitoring: The permittee shall comply with all applicable monitoring requirements of 40 CFR 63, Subpart A and Subpart ZZZZ. □ No Recordkeeping: □ N/A The permittee shall comply with all applicable recordkeeping requirements of 40 CFR 63, Subpart A and Subpart ZZZZ, including but not limited to 63.6655 and 63.10. □ N/A Reporting: The permittee shall comply with all applicable reporting requirements of 40 CFR 63, Subpart A and ZZZZ, including but not limited to 63.6650, 63.9, and 63.10. □ N/A Methods: Unit 37b has not been installed as of the end of the compliance period. □ No Deviations: Unit 1D Cause & Description of Deviation or Tracking number Start Date E. Initial Compliance Test (Unit 37b) Requirement: Compliance Test (Unit 37b) Requirement: Compliance Test (Unit 37b) Start Date E Monitoring: The permittee shall perform an initial compliance test in accordance with the General Testing Requirements of Section B111. Emission limits is required for NOx and CO. No Test results that demonstrate compliance with the CO emission limits shall also be considered to demonstrate compliance with the VOC emission limits. No	CO	D, VOC and	d HAP emissions. If Unit 37b is constructed, then records shall be maintained in accordance with	•		
Recordkceping: □ N/A The permittee shall comply with all applicable recordkceping requirements of 40 CFR 63, Subpart A and Subpart ZZZZ, including but not limited to 63.6655 and 63.10. □ N/A Reporting: The permittee shall comply with all applicable reporting requirements of 40 CFR 63, Subpart A and ZZZZ, including but not limited to 63.6645, 63.6650, 63.9, and 63.10. □ N/A Methods: Unit 37b has not been installed as of the end of the compliance period. □ Implicable reporting number End Date Deviations: Unit 1D Cause & Description of Deviation or Tracking number End Date Implicable reporting requirements A201 Engines Entitial Compliance Test (Unit 37b) Implicable reporting in Table 106.A shall be demonstrated by an initial compliance test ensuring the engine is operating correctly and within desired parameters. (NSR 0301M9, Condition A201.E) Implicable reporting requirements of Section B111. Emission resting is required for NOx and CO. No Test results that demonstrate compliance with the CO emission limits shall also be considered to demonstrate compliance with the VOC emission limits. N/A		-		part ZZZZ.		Yes No
63.6655 and 63.10. Reporting: The permittee shall comply with all applicable reporting requirements of 40 CFR 63, Subpart A and ZZZZ, including but not limited to 63.6645, 63.6650, 63.9, and 63.10. Methods: Unit 37b has not been installed as of the end of the compliance period. End Date Deviations: Unit 1D Cause & Description of Deviation or Tracking number Start Date End Date A201 Engines E. Initial Compliance Test (Unit 37b) Start Date End Date Requirement: Compliance with allowable emission limits in Table 106.A shall be demonstrated by an initial compliance test ensuring the engine is operating correctly and within desired parameters. (NSR 0301M9, Condition A201.E) Image: Start Date Image: Start	0	-		•		□ N/A
63.6645, 63.6650, 63.9, and 63.10. Methods: Unit 37b has not been installed as of the end of the compliance period. Deviations: Unit ID Cause & Description of Deviation or Tracking number A201 Engines E. Initial Compliance Test (Unit 37b) Requirement: Compliance with allowable emission limits in Table 106.A shall be demonstrated by an initial compliance test ensuring the engine is operating correctly and within desired parameters. (NSR 0301M9, Condition A201.E) Monitoring: The permittee shall perform an initial compliance test in accordance with the General Testing Requirements of Section B111. Emission testing is required for NOx and CO. Test results that demonstrate compliance with the CO emission limits shall also be considered to demonstrate compliance with the VOC emission limits.			mply with all applicable recordkeeping requirements of 40 CFR 63, Subpart A and Subpart ZZZ	ZZ, including but	t not limited to	
Deviations: Unit ID Cause & Description of Deviation or Tracking number Start End Date A201 Engines E. Initial Compliance Test (Unit 37b) Requirement: Compliance with allowable emission limits in Table 106.A shall be demonstrated by an initial compliance test ensuring the engine is operating correctly and within desired parameters. (NSR 0301M9, Condition A201.E) Ves No Monitoring: The permittee shall perform an initial compliance test in accordance with the General Testing Requirements of Section B111. Emission testing is required for NOx and CO. N/A Test results that demonstrate compliance with the CO emission limits shall also be considered to demonstrate compliance with the VOC emission limits. N/A				Z, including but	t not limited to	
A201 Engines E. Initial Compliance Test (Unit 37b) Requirement: Compliance with allowable emission limits in Table 106.A shall be demonstrated by an initial compliance test ensuring the engine is operating correctly and within desired parameters. (NSR 0301M9, Condition A201.E) Monitoring: The permittee shall perform an initial compliance test in accordance with the General Testing Requirements of Section B111. Emission testing is required for NOx and CO. Test results that demonstrate compliance with the CO emission limits shall also be considered to demonstrate compliance with the VOC emission limits.	Methods: U	Unit 37b ha	s not been installed as of the end of the compliance period.			
E. Initial Compliance Test (Unit 37b) Requirement: Compliance with allowable emission limits in Table 106.A shall be demonstrated by an initial compliance test ensuring the engine is operating correctly and within desired parameters. (NSR 0301M9, Condition A201.E) Monitoring: The permittee shall perform an initial compliance test in accordance with the General Testing Requirements of Section B111. Emission testing is required for NOx and CO. Test results that demonstrate compliance with the CO emission limits shall also be considered to demonstrate compliance with the VOC emission limits.	Deviations: Un	nit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date	
E. Initial Compliance Test (Unit 37b) Requirement: Compliance with allowable emission limits in Table 106.A shall be demonstrated by an initial compliance test ensuring the engine is operating correctly and within desired parameters. (NSR 0301M9, Condition A201.E) Monitoring: The permittee shall perform an initial compliance test in accordance with the General Testing Requirements of Section B111. Emission testing is required for NOx and CO. Test results that demonstrate compliance with the CO emission limits shall also be considered to demonstrate compliance with the VOC emission limits.	4.001 E					
Monitoring: The permittee shall perform an initial compliance test in accordance with the General Testing Requirements of Section B111. Emission testing is required for NOx and CO. Test results that demonstrate compliance with the CO emission limits shall also be considered to demonstrate compliance with the VOC emission limits.	E. Initial Compliance Test (Unit 37b) Requirement: Compliance with allowable emission limits in Table 106.A shall be demonstrated by an initial compliance test ensuring the engine is					⊠ Vas □ Na
testing is required for NOx and CO. Test results that demonstrate compliance with the CO emission limits shall also be considered to demonstrate compliance with the VOC emission limits.						
					TTT. LIIIISSIOII	∐ N/A
The monitoring exemptions of Section B108 do not apply to this requirement.	Test results t	that demor	nstrate compliance with the CO emission limits shall also be considered to demonstrate compliance	e with the VOC e	mission limits.	
	The monitor	ring exemp	ptions of Section B108 do not apply to this requirement.			

ACC Form Part B Permit # P097-R3 & P097-R3M1

 Provide <i>Method(s) or other information or other facts used to determine the compliance status</i> in the "Methods:" row beneath each permit condition. If you answered <i>No</i> to question 3, list <i>all</i> deviations in the <i>Deviations</i> section. For <i>all</i> Deviations that <i>produced</i> excess emissions, provide <i>only</i> a) the AQBCR EER Tracking Number. For <i>all</i> Deviations that <i>did not produce</i> excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your <i>Description</i>, whether each deviation has been previously reported to NMED. 					liance of this
For units with g/hp-h	emission limits, the engine load shall be calculated by using the following equation:				
Load(Hp) = <u>Fue</u>	l consumption (scfh) x Measured fuel heating value (LHV btu/scf)				
Ma	nufacturer's rated BSFC (btu/bhp-hr) at 100% load or best efficiency				
Recordkeeping: The	permittee shall maintain records in accordance with the applicable Sections in B109, B110, and B	111.			
Reporting: The perm	ittee shall report in accordance with the applicable Sections in B109, B110, and B111.				
Methods: Unit 37b h	as not been installed as of the end of the compliance period.				
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
F. Requirements for Units 34 & 76 Requirement: The permittee shall limit the hours of operation of each unit to 500 hours per year or less. (NSR 0301M8, Condition A201.F, and revised) Monitoring: The permittee shall monitor the operating hours of each unit. Recordkeeping: The permittee shall record the monthly rolling 12-month total hours of operation of each unit, and shall meet the recordkeeping requirements in Section B109. Reporting: In accordance with Section B110 of this permit. Methods: Semiannual reports and the annual emissions inventory are used to demonstrate compliance with the limitations for units 34 and 76. Deviations: Unit ID Cause & Description of Deviation or Tracking number Start Date End Date] No
A201 EnginesG.40 CFR 60, Subpart JJJJ (Unit 76)Requirement: The unit is subject to 40 CFR 60, Subparts A and JJJJ and shall comply with the notification requirements in Subpart A and the specific requirements of Subpart JJJJ. The engine must comply with the standards in §60.4231(a).Monitoring: The permittee shall comply with all applicable monitoring requirements in 40 CFR 60, Subpart A and Subpart JJJJ, including but not limited to 60.4243.Recordkeeping: The permittee shall comply with all applicable recordkeeping requirements in 40 CFR 60, Subpart A and Subpart JJJJ, including but not limited to 60.4245.Reporting: The permittee shall comply with all applicable reporting requirements in 40 CFR 60, Subpart A and Subpart JJJJ, including but not limited to 60.4245.] No

ACC Form Part B Permit # P097-R3 & P097-R3M1

 Provide <i>Method(s) or other information or other facts used to determine the compliance status</i> in the "Methods:" row beneath each permit condition. If you answered <i>No</i> to question 3, list <i>all</i> deviations in the <i>Deviations</i> section. For <i>all</i> Deviations that <i>produced</i> excess emissions, provide <i>only</i> a) the AQBCR EER Tracking Number. For <i>all</i> Deviations that <i>did not produce</i> excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your <i>Description</i>, whether each deviation has been previously reported to NMED. 				3. Was this facility <i>continuously</i> in compliance with <i>all</i> requirements of this condition during the reporting period?	
Methods: Records of maintenance are retained for unit 76 in accordance with 60.4245(a)(2), and engine certification as per 60.4245(a)(3).					
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
 <u>A202</u> <u>Glvcol Dehydrators</u> <u>A</u> 40 CFR 63, Subpart HH, Kutz I EG Dehydrator, Unit 24a Requirement: The permittee shall comply with the applicable requirements for dehydrator(s) subject to 40 CFR 63.760, Subpart HH. Facility is major source of HAPs including a EG dehydrator. With the August 2012 revision of NESHAP HH, Unit 24a is now classified as an existing small dehydrator and must meet the EL_{BTEX} limit of 63.764(c)(1) by the October 15, 2015 compliance date of 63.760(f)(7). The dehydrator must comply with the standards in §63.765. Monitoring: The permittee shall comply with the monitoring requirements of 40 CFR 63.773. Recordkeeping: The permittee is subject to the recordkeeping requirements of 40 CFR 63.774. In accordance with Section B109 of this permit. Reporting: In accordance are retained for unit 76 in accordance with 60.4245(a)(2), and engine certification as per 60.4245(a)(3). Records of LDAR and flare pilot flame monitoring are maintained as required. Reports of LDAR and flare pilot flame monitoring are submitted as required, as are the NESHAP HH periodic reports. The Notification of Compliance Status Report was submitted April 7, 2016. 				⊠ Yes □ N/A	□ No
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
A202Glycol DehydratorsB.40 CFR 63, Subpart HH, Kutz Chaco Dehydrator, Unit 35aRequirement: The permittee shall comply with the applicable requirements for dehydrator(s) subject to 40 CFR 63.760, Subpart HH. Facility is major source of HAPs including this TEG dehydrator. Unit 35a is classified as an existing large dehydrator and must meet the process vent standards of 63.764(c)(1). Emissions from the Chaco Dehydrator still vent, Unit 35a, shall be routed to the Zeeco flare, Unit 36. The flare's control efficiency shall meet the requirements of 40 CFR 63, Subparts A and HH. The dehydrator must comply with the standards in §63.765.Monitoring: The permittee shall comply with the recordkeeping requirements of 40 CFR 63.774.b.10 and b.11 and with Section B109 of this permit.Reporting: The permittee shall comply with the reporting requirements of 40 CFR 63.775 and with Section B110 of this permit.				⊠ Yes □ N/A	🗌 No

 Provide <i>Method(s) or other information or other facts used to determine the compliance status</i> in the "Methods:" row beneath each permit condition. If you answered <i>No</i> to question 3, list <i>all</i> deviations in the <i>Deviations</i> section. For <i>all</i> Deviations that <i>produced</i> excess emissions, provide <i>only</i> a) the AQBCR EER Tracking Number. For <i>all</i> Deviations that <i>did not produce</i> excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your <i>Description</i>, whether each deviation has been previously reported to NMED. 					
Monitoring records d	e with this requirement are met by complying with the monitoring, recordkeeping and reporting emonstrating compliance with this requirement are maintained as required and are included in the a eriodic report, as required.				
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
C. Control Dev Requirement: Comprevised) (1) Emissions fr piping from efficiency sh (2) Emissions fr Dehydrator sh (3) Flash Tank	 C. Control Device Inspection (Units 24a, 35a) Requirement: Compliance with allowable VOC emission limits in Table 106.A shall be demonstrated by: (NSR 0301M9, Condition A202.E and revised) (1) Emissions from the Chaco Dehydrator, Unit 35a, dehydrator still vent shall be routed through a condenser to the Zeeco flare, Unit 36. The piping from the Chaco Dehydrator still vent to the Plant Process Flare shall be a closed-loop vent system with no bypass. The flare's control efficiency shall meet the requirements of 40 CFR 63, Subparts A and HH. (2) Emissions from the Kutz I EG Dehydrator, Unit 24a, dehydrator still vent shall be routed to the flare, Unit 28. The piping from the Kutz I EG Dehydrator still vent to the Plant Process Flare shall be a closed-loop vent system with no bypass. (3) Flash Tank vent VOC emissions from Units 24a and 35a shall be routed at all times to a process point that allows the off-gas to be sent to a control device, emission units 28 & 36, or recycled and recompressed. 				
	ni-annually to ensure it is operating as initially designed or in accordance with the manufacturer's	recommended pr	cocedures.	□ N/A	
Recordkeeping: (1) The permittee shall record the inspection and the results of all equipment and control device inspections chronologically, noting any maintenance or repairs needed to bring the dehydrator into compliance. (2) The permittee shall maintain a copy of the manufacturer's maintenance recommendations. Reporting: The permittee shall report in accordance with Section B110. Methods: Dehydrator control device inspection records and flash tank inspection records are included with the applicable semiannual monitoring reports. The Kutz I glycol recircuation rate records are included with the applicable semiannual monitoring reports. Dehydrtor control device inspection records, as well as the Kutz I glycol circulation rate records, are all maintained as required and are included with the applicable semiannual monitoring reports. Deviations: Unit ID Cause & Description of Deviation or Tracking number Start Date End Date					
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
A202 Glycol Dehy	drators				

 Provide Method(s) or other information or other facts used to determine the compliance status in the "Methods:" row beneath each permit condition If you answered No to question 3, list all deviations in the Deviations section. For all Deviations that produced excess emissions, provide only a) the AQBCR EER Tracking Number. For all Deviations that did not produce excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the S Please indicate in b), your Description, whether each deviation has been previously reported to NMED. 	the deviation.	3. Was this faci continuously in with all requirer condition during reporting period	compliance nents of this the	
D. Flare Testing Requirements, 40 CFR 63, Subpart HH and 20.2.61 NMAC (For Units 28 and 36) (NSR 03 revised) Requirement: In accordance with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements to conduct a performance test to demonstrate compliance with flare gas heating value and The flare shall be designed for and operated with no visible emissions, except for periods not to exceed a total of 5 min hours. Compliance with the visible emissions requirements shall be demonstrated by conducting a visible emissions Monitoring section below. Compliance with the testing requirements in this condition demonstrates compliance with the opacity limits required in 2 Monitoring: As required by 40 CFR §63.772, and the requirements at 40 CFR 63, Subpart A, §§63.7 (performance te device requirements), the permittee shall conduct a visible emissions observation in accordance with the requirement Reference Method (RM) 22. The observation period is 2 hours. Recordkeeping: The permittee shall maintain records of the flare(s) performance test results in accordance with the real and Section B109. Reporting: The permittee shall report in accordance with the requirements at 40 CFR §63.775 and Sections B110 and E Methods: Records are maintained as required, demonstrating that the Kutz Chaco flare meets the applicable NESHAP with 63.772(e)(2), Method 22 compliance determinations were completed in previous monitoring periods, and records are Notification of Compliance Status Report was submitted April 7, 2016. Deviations: Unit ID Cause & Description of Deviation or Tracking number	ments at 40 CFR l exit velocity rea nutes during any observation as s 20.2.61 NMAC. ests) and 63.11 (g ts at 40 CFR 60 quirements at 40 3111.	 §63.11(b) are quirements. 2 consecutive pecified in the general control , Appendix B, 0 CFR §63.774 In accordance 	⊠ Yes □ N/A	□ No
A202 Glvcol Dehvdrators E. 40 CFR 63, Subpart HH (Ancillary equipment) Requirement: The plant ancillary equipment between the dehydrator and the flare as defined in 40 CFR 63.761 shall comply with all applicable requirements, including the general standards of 40 CFR 63.764. The ancillary equipment between the still vent and flare are exempt, as this stream is less than 10% VHAP. Monitoring: The plant ancillary equipment between the dehydrator and the flare as defined in 40 CFR 63.761 shall comply with the monitoring requirements of 40 CFR 63.769. Recordkeeping: The plant ancillary equipment as defined in 40 CFR 63.761 shall comply with the recordkeeping requirements of 40 CFR 63.774 and in accordance with Section B109 of this permit. Reporting: The plant ancillary equipment as defined in 40 CFR 63.761 shall comply with the reporting requirements of 40 CFR 63.775 and in				🗌 No

ACC Form Part B Permit # P097-R3 & P097-R3M1	

Page 15 of 32

 Provide <i>Method(s)</i> or other information or other facts used to determine the compliance status in the "Methods:" row beneath each permit condition. If you answered <i>No</i> to question 3, list <i>all</i> deviations in the <i>Deviations</i> section. For <i>all</i> Deviations that <i>produced</i> excess emissions, provide <i>only</i> a) the AQBCR EER Tracking Number. For <i>all</i> Deviations that <i>did not produce</i> excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your <i>Description</i>, whether each deviation has been previously reported to NMED. 					3. Was this facil continuously in c with all requirem condition during reporting period?	compliance nents of this the
accorda	nce with Secti	on B110 of this permit.				
Methoo	ls: The semian	nual LDAR reports were submitted in accordance with 40 CFR 63.775(b)(5).				
Deviation	ns: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
<u>A203</u>	Tanks					
А.		tions (Unit T-6438) [with flash emissions]				
Requir	ement: (NSR	0301M9, Condition A203.A)				
1)		with the allowable emission limits for Unit T-6438 in Table 106.A shall be demonstrated by month proughput and separator pressure and by calculating emission rates as required.	ly monitoring of	the actual total		
2)		438, the permittee shall calculate the monthly rolling 12-month total, tpy VOC emission rates using the second average separator pressure, and the most recent condensate VOC analysis.	ing actual measur	ed condensate		
Monito	ring:					
1)	For Unit T-6 pressure.	438, the permittee shall monitor the monthly total condensate throughput, and at least once per	month, the upstr	eam separator		
2)	Annually the	permittee shall complete a liquids analysis of the tank condensate to determine the VOC content.			🖂 Yes	🗌 No
Record	keeping:				□ N/A	
1)	Each month t	438, the permittee shall record the monthly total condensate throughput of liquids and the mont the permittee shall use these values to calculate and record a monthly rolling 12-month total conde onth average separator pressure.				
2)	approved the as defined in	438, the permittee shall calculate the monthly rolling 12-month total VOC tpy emission rates usi rmodynamic model, such as VMGSim, etc and Tanks 4.09d; the number of hours that the EVRU condition A203.D; the actual measured condensate throughput; the actual measured average so insate VOC analysis.	ontrol system is n	on-operational		
3)	-	e shall keep records of the parameters, calculations, and VOC emission rates summarized in a table ping requirements in Section B109.	le or spreadsheet	and shall meet		
Report	ing: The perm	ittee shall report in accordance with Section B110.				
All exc	ess emissions a	and Title V deviations of allowable emission limits shall be reported according to 20.2.7 NMAC a	nd 20.2.70.302.E	(2) NMAC.		

 Provide Method(s) or other information or other facts used to determine the compliance status in the "Methods:" row beneath each permit condition. If you answered No to question 3, list all deviations in the Deviations section. For all Deviations that produced excess emissions, provide only a) the AQBCR EER Tracking Number. For all Deviations that did not produce excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your Description, whether each deviation has been previously reported to NMED. 					3. Was this facility <i>continuously</i> in comp with <i>all</i> requirement condition during the reporting period?	s of this
Methods: Records of monthly and 12-month rolling condensate throughput and separator pressure were included in the applicable monitoring reports. Records of monthly and 12-month rolling condensate throughput and separator pressure, as well as the monthly 12-month total emissions calculations, are included in the applicable monitoring reports. Liquids analyses are completed as required.						
Deviation	Deviations: Unit ID Cause & Description of Deviation or Tracking number End Date End Date					
A203 B. Requir	-	tions (Units T-6528, T-6529) [with flash emissions] 0301M9, Condition A203.B and revised)				
1)		with the allowable emission limits for Units T-6528, and T-6529 in Table 106.A shall be demonst al condensate throughputs and separator pressures and by calculating emission rates as required.	rated by monthly	monitoring of		
2)	year and 131 month average	5528 & T-6529, the values used to establish VOC emission limits in Table 106.A are 13,321 barre 9 pounds per square inch absolute. If either the monthly rolling 12-month total condensate throug ge separator pressure value is ever exceeded, the permittee shall calculate the monthly rolling 12- actual measured condensate throughput, the actual measured average separator pressure, and th	hput or the mont month total VO	hly rolling 12- C emissions in		
Monito	oring:					
1)	For Units T-(separator pre	6528 and T-6529, the permittee shall monitor the monthly total condensate throughput, and at leas ssure.	t once per month	, the upstream	Xes [] No
2)	Annually the	permittee shall complete a liquids analysis of the tank condensate to determine the VOC content.			N/A	
Record	keeping:					
1)	For Units T-6528 and T-6529, the permittee shall record the monthly total condensate throughput of liquids and the monthly average separator pressure. Each month the permittee shall use these values to calculate and record the monthly rolling 12-month total condensate throughput and the monthly rolling 12-month average separator pressure.					
2)	pressure valu permittee sha condensate th of actual emi	6528 and T-6529, if either the rolling 12-month total condensate throughput or the monthly rolli tes listed in the condition requirements are exceeded, within the 20.2.7 NMAC Excess Emissions all calculate the monthly rolling 12-month total VOC tpy emissions totals using HYSYS and Ta proughput; the actual measured average separator pressure; and the most recent condensate VOC ssion totals shall continue for Units T-6528 and T-6529 until the condensate throughput and avera- uirements are no longer exceeded and until the calculations demonstrate that the allowable emissi	initial notification nks 4.09d; the ac analysis. Month age separator pres	n deadline, the ctual measured ly calculations ssure values in		
3)		e shall keep records of the parameters, calculations, and VOC emission totals summarized in a tab- eping requirements in Section B109.	le or spreadsheet	and shall meet		

 Provide Method(s) or other information or other facts used to determine the compliance status in the "Methods:" row beneath each permit condition. If you answered No to question 3, list all deviations in the Deviations section. For all Deviations that produced excess emissions, provide only a) the AQBCR EER Tracking Number. For all Deviations that did not produce excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your Description, whether each deviation has been previously reported to NMED. 					y ompliance ents of this he
Reporting: The permittee shall report in accordance with Section B110.					
All excess emissions	and Title V deviations of allowable emission limits shall be reported according to 20.2.7 NMAC a	nd 20.2.70.302.E	E(2) NMAC.		
Methods: Records of monthly and 12-month rolling condensate throughput and separator pressure are maintained as required and are included in the applicable monitoring reports.					
Deviations: Unit ID Cause & Description of Deviation or Tracking number Start Date End Date					
A203 Tanks C. Tank Throughput (Units T-3 and T-109) [without flash emissions] Requirement: Compliance with the allowable emission limits in Table 106.A shall be demonstrated by the total condensate throughput to the unit(s) not exceeding 1,297,296 gallons per year total (30,888 barrels/year). (NSR 0301M9, Condition A203.C and revised) Monitoring: The permittee shall monitor the monthly total throughput once per month. Recordkeeping: The permittee shall record the monthly total throughput of liquids for each tank and each month the permittee shall calculate tank breathing and working losses using the USEPA Tanks program Version 4.0.9d. Emission rates computed using the same parameters, but with a different Department approved algorithm that exceed these values will not be deemed non-compliance with this permit. Records shall also be maintained in accordance with Section B109. Reporting: The permittee shall report in accordance with Section B110. Methods: Records of monthly and 12-month rolling condensate throughput and separator pressure were included in the applicable monitoring reports.					
The annual Tanks run	was submitted with the annual emissions inventory.				
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
A203 Tanks D. EVRU Operations (Unit T-6438) Requirement: To demonstrate compliance with allowable emission limits in Table 106.A, emissions from T-6438 shall be routed to and controlled by an Ejector Vapor Recovery Unit (EVRU), as required in Table 105.A (Control Equipment List). (SFO and Settlement Agreement # AQCA 09-00(CO) dated May 18, 2010) 1) The permittee shall operate and maintain the EVRU according to manufacturer's or supplier's recommendations. 2) The permittee shall install a system to continuously monitor the tank pressure. The tank Pressure Relief Valves (PRVs) shall open only to prevent damage to the system and shall be set to open at no less than 10.8 ounces per square inch of gauge pressure. Other than venting from PRVs to avoid system damage, T-6438 tank emissions shall at all times be routed to and controlled by the EVRU as a closed loop system that					□ No

 Provide <i>Method(s) or other information or other facts used to determine the compliance status</i> in the "Methods:" row beneath each permit condition. If you answered <i>No</i> to question 3, list <i>all</i> deviations in the <i>Deviations</i> section. For <i>all</i> Deviations that <i>produced</i> excess emissions, provide <i>only</i> a) the AQBCR EER Tracking Number. For <i>all</i> Deviations that <i>did not produce</i> excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your <i>Description</i>, whether each deviation has been previously reported to NMED. captures and routes tank emissions back to the process. 							
3.7 .	1		1				
include, missing	Monitoring: At least weekly, the permittee shall inspect the EVRU control system and tank PRVs for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps; broken, cracked, or otherwise damaged seals or gaskets on closure devices; and broken or missing hatches, access covers, caps, or other closure devices. In the event that a leak or defect is detected, the permittee shall repair the leak or defect as soon as practicable and in a manner that minimizes VOC emissions to the atmosphere.						
In addit	ion, the permi	ttee shall continuously monitor the following parameters:					
1)	Hours of non	-operation of the EVRU, and					
2)	Tank pressur	e.					
Record	keeping:						
1) For the purposes of calculating VOC emission rates, at any time a 100% capture efficiency is not achieved the EVRU control system shall be considered non-operational with a 0% control efficiency. EVRU control system non-operation includes any time PRVs open, any time leaks or defects are found during weekly EVRU control system inspections, and any other time when 100% of tank emissions are not captured.							
2)		e shall record all dates and times that the EVRU control system was non-operational and the re- n-operational (e.g. PRVs open).	eason(s) that the	EVRU control			
3)	The permitte	e shall continuously record the tank pressure.					
4)		the permittee shall calculate and record the monthly rolling 12-month total number of hours that efficiency and is non-operational.	t the EVRU is n	ot meeting the			
5)		the permittee shall calculate and record the monthly rolling 12-month tpy VOC emission total 203.A assuming 0% control when the EVRU control system is non-operational as defined in this c		as required by			
6)		e shall record the results of the EVRU inspections noting any defects, the date a defect is found, a nd/or maintenance performed.	and the dates and	description of			
7)	The permitte	e shall meet the recordkeeping requirements in Section B109.					
Report	ing: The perm	ittee shall report in accordance with Section B110.					
	Any emissions exceedance of the allowable emission limit in Table 106.A, shall be reported as excess emissions and Title V deviations according to 20.2.7 NMAC, 20.2.70.302.E(2) NMAC, and Condition B110.B and C.						
		weekly EVRU and tank PRV inspections are maintained as required and are included in the application in the application of tank pressure are also included in the applicable monitoring reports.	able monitoring r	eports. Record			
Deviation	s: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date			

 Provide Method(s) or other information or other facts used to determine the compliance status in the "Methods:" row beneath each permit condition. If you answered No to question 3, list all deviations in the Deviations section. For all Deviations that produced excess emissions, provide only a) the AQBCR EER Tracking Number. For all Deviations that did not produce excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your Description, whether each deviation has been previously reported to NMED. 				3. Was this facilit <i>continuously</i> in cc with <i>all</i> requirement condition during to reporting period?	ompliance ents of this
A203 Tanks E. Tank Vapor Recovery Unit (VRU) Control Device Inspection (Unit T-6438) Requirement: If a standard compressor driven VRU replaces the EVRU, then compliance with the allowable emission limits in Table 106.A shall be demonstrated by operating the vapor recovery units at all times as a closed loop system that captures and routes VOCs from tank T-6438 back to the process stream and does not vent to the atmosphere. (SFO and Settlement Agreement # AQCA 09-00(CO) dated May 18, 2010) Monitoring: At least once per month, the permittee shall inspect the vapor recovery unit for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps; broken, cracked, or otherwise damaged seals or gaskets on closure devices; and broken or missing hatches, access covers, caps, or other closure devices. In the event that a leak or defect is detected, the permittee shall repair the leak or defect as soon as practicable and in a manner that minimizes VOC and HAPs emissions to the atmosphere. When the tank emissions are vented to the atmosphere (VRU is bypassed), the permittee shall monitor: • • The actual operating parameters necessary to estimate emissions from the tank. Recordkeeping: The permittee shall record the results of the vapor recovery unit inspections chronologically, noting any maintenance or repairs that are required. The permittee shall keep records of when the tank is vented to the atmosphere (VRU is bypassed), the records shall include: • the amount of time the VRU is bypassed,					□ No
 the actual operating parameters necessary to estimate emissions from the tank. Within 15 days of venting the tank to the atmosphere (bypassing the VRU), the permittee shall calculate and record the tons of VOC emissions for each event from the tank and a monthly rolling 12-month total of VOC tpy emissions (calculated after each event). The monthly rolling 12-month VOC total shall be compared to the Tank T-6438 limit of Table A106.A. Reporting: The permittee shall report in accordance with Section B110. Methods: The alternate tank VRU has not been installed, as documented by the continuing records for the tank EVRU operations monitoring. Deviations: Unit ID Cause & Description of Deviation or Tracking number 					
A204 Heaters/Boil	ers			Ver	№ ⊺.
A. Heater Operational Inspection (Units 22, 23, 25, 27 and 30) Requirement: Compliance with the allowable emission limits in Table 106.A shall be demonstrated by proper annual inspections and maintenance of these units. (NSR 0301M9, Condition A204.A)			Yes	☐ No	

 Provide Method(s) or oth If you answered No to que For all Deviations that provide the provide the provided of the p	the deviation.	3. Was this facility <i>continuously</i> in con with <i>all</i> requirement condition during the reporting period?	npliance its of this		
Monitoring: The peri					
The permittee shall conduct operational inspections to determine that the heater(s)/boiler(s) are operating properly. The operational inspections shall include checks for indications of insufficient or excess combustion. These operational checks shall include observation of common physical indications of improper combustion, including indications specified by the heater/boiler manufacturer, and indications based on operational experience with these unit(s).					
Recordkeeping: The permittee shall maintain records of the operational inspections, including a description of the visual and other sensory observations for insufficient or excessive combustion air in accordance with Section B109. The permittee shall append a contemporaneous fuel analysis if the gas is other than natural gas. The permittee shall summarize in chronological order the results of all operational inspections noting any adjustments needed to bring the heater(s)/boiler(s) into compliance with permit conditions.					
Reporting: The perm	ittee shall report in accordance with Section B110.				
Methods: Records of	the annual heater inspections are maintained as required and are included in the applicable monitor	oring reports.			
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
A204Heaters/BoilB.MACT Subpart DDDDD, Industrial, Commercial, and Institutional Boilers and Process Heaters (Units 22, 23, 25, 27 & 30)Requirement:The units are subject to 40 CFR 63, Subpart DDDDD and the permittee shall comply with the applicable requirements of 40 CFR 63, Subpart A and Subpart DDDDD. The units must comply with the work practice standards in Table 3 (see §63.7500).Monitoring:The permittee shall comply with all applicable monitoring and testing requirements of 40 CFR 63, Subpart A and Subpart DDDD.Recordkeeping:The permittee shall comply with the applicable recordkeeping requirements of 40 CFR 63, Subpart A and Subpart DDDD.Reporting:The permittee shall comply with the applicable recordkeeping requirements of 40 CFR 63, Subpart A and Subpart DDDD.Reporting:The permittee shall comply with the applicable recordkeeping requirements of 40 CFR 63, Subpart A and Subpart DDDD.Reporting:The permittee shall comply with the applicable recordkeeping requirements of 40 CFR 63, Subpart A and Subpart DDDD.Rethods:Records of the permittee shall comply with the applicable reporting requirements of 40 CFR 63, Subpart A and Subpart DDDD.Methods:Records of the permittee shall comply applicable reporting requirements of 40 CFR 63, Subpart A and Subpart DDDD.Methods:Records of the permittee shall comply applicable reporting requirements of 40 CFR 63, Subpart A and Subpart DDDD.Methods:Records of the permittee shall comply applicable reporting requirements of 40 CFR 63, Subpart A and Subpart DDDD.Methods:Records of the permittee shall comply applicable reporting requirements of 40 CFR 63, Subpart A and Subpart DDDD.Methods:Records of the permittee					🗌 No
A205 Turbines A. Periodic Emissions Tests (Units 1-8, 19, 20, and 29) Requirement: Compliance with the allowable emission limits in Table 106.A shall be demonstrated by conducting periodic emission tests during the monitoring period. (NSR 0301M9, Condition A205.A and revised) Monitoring: The permittee shall test using a portable analyzer or EPA Reference Methods subject to the requirements and limitations of Section B108, General Monitoring Requirements. Emission testing is required for CO and NOx, and shall be carried out as described below.					🗌 No

 Provide <i>Method(s) or other information or other facts used to determine the compliance status</i> in the "Methods:" row beneath each permit condition. If you answered <i>No</i> to question 3, list <i>all</i> deviations in the <i>Deviations</i> section. For <i>all</i> Deviations that <i>produced</i> excess emissions, provide <i>only</i> a) the AQBCR EER Tracking Number. For <i>all</i> Deviations that <i>did not produce</i> excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your <i>Description</i>, whether each deviation has been previously reported to NMED. 						y mpliance nts of this ne
	esults that dem ound (VOC) en	onstrate compliance with the CO emission limits shall also be considered to demonstrate compl nission limits.	iance with the v	olatile organic		
(1)	The testing	shall be conducted as follows:				
	(a) Testing frequency shall be once per year.					
(b) The monitoring period is defined as a calendar year.						
(2)		ts, the first test shall occur within the first monitoring period occurring after permit issuance. For and on the existing testing schedule.	or existing units,	the tests shall		
(3)	All subsequ	ent monitoring shall occur in each succeeding monitoring period.				
(4)		two monitoring events shall occur closer together in time than 25% of a monitoring period. General Testing Procedures of Section B111.				
(5)		e testing required by 40 CFR 60, Subpart GG or 40 CFR 60, Subpart KKKK may be used to s if they meet the requirements of this condition and are completed during the specified monitoring	• •	eriodic testing		
the pe etc.).	riodic emission	permittee shall maintain records in accordance with Section B109, B110 and B111. The permittee s tests, including the turbine's fuel flow rate and horsepower at the time of the test, and the type of f	fuel fired (natural	l gas, field gas,		
emissi	ions rates.	lso keep records of all raw data used to determine exhaust gas flow and of all calculations used to	determine flow	rates and mass		
Repor	rting: The pern	hittee shall report in accordance with Section B109, B110, and B111.				
Meth	ods: Records of	f periodic testing of the turbines are maintained as required and are included in the applicable moni	toring reports.	1		
Deviati	ons: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
A205		Submout CC (Units 10, 20, and 20)				
 B. 40 CFR 60, Subpart GG (Units 19, 20, and 29) Requirement: Units subject to 40 CFR 60, Subpart GG and the permittee shall comply with the applicable requirements of 40 CFR 60, Subpart A and Subpart GG. These units shall comply with the NOX limits of §60.332 and SO2 limits of §60.333. Units 19, 20, and 29, nitrogen dioxide emissions shall not exceed (for Units 19 & 20, 161.91 ppmv; for Unit 29 150 ppmv) at 15 percent oxygen and on a dry basis, and the fuel burned shall not contain total sulfur in excess 0.8 percent by weight (8000 ppmw). (40 CFR 60, Subpart GG) 					☐ Yes ☐ N/A	🛛 No
Monit	toring: The per	mittee shall comply with the monitoring and testing requirements of 40 CFR 60.334 and 60.335.				
Recor	dkeeping: The	permittee shall comply with the recordkeeping requirements of 40 CFR 60.334 and 40 CFR 60.7.				

 Provide <i>Method(s) or other information or other facts used to determine the compliance status</i> in the "Methods:" row beneath each permit condition. If you answered <i>No</i> to question 3, list <i>all</i> deviations in the <i>Deviations</i> section. For <i>all</i> Deviations that <i>produced</i> excess emissions, provide <i>only</i> a) the AQBCR EER Tracking Number. For <i>all</i> Deviations that <i>did not produce</i> excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your <i>Description</i>, whether each deviation has been previously reported to NMED. 					y mpliance nts of this ne
Reporting: The perm					
	ance with EPA document EMTIC—GD-009 (March 12, 1990), no daily monitoring for fuel box, as stated in 40 CFR 60 Subpart GG, Section 60.332.	ind nitrogen is re	equired for the		
	reports are maintained as required and include fuel sulfur monitoring records. The 1 st and 3 rd quar d of the respective quarters.	ters 2020 sulfur r	nonitoring had		
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date		
Units 19 & 20	1Q 2020 fuel sulfur sampling not completed by the end of the monitoring period.	3/31/20	4/1/20		
A205 Turbines C. Generators, Units 19 and 20 (Gen A and Gen B) Requirement: The power output of each Generator (Gen A and Gen B) shall not exceed 2400 Kilowatts and only one unit shall operate at any given time with the other unit in a standby mode. (NSR 0301M9, Condition A205.C) Monitoring: The permittee shall monitor and maintain a log showing the dates, start times and shut down times, of Unit 19 & 20 and the daily maximum power output for the operating Unit. Recordkeeping: The dates, start times, shut down times, and daily maximum power outputs of Gen A and Gen B, each, shall be recorded to show compliance. Reporting: In accordance with Section B110. Methods: Records of generator operations are maintained as required and included in the monitoring reports. Deviations: Unit ID Cause & Description of Deviation or Tracking number Start Date End Date					□ No
A205 Turbines D. Maintenance and Repair Monitoring (Units 1-8, 19, 20, and 29) Requirement: Compliance with allowable emission limits in Table 106.A shall be demonstrated by following the minimum manufacturer's or permittee's recommended maintenance schedule. (NSR 0301M9, Condition A205.D) Monitoring: Maintenance and repair shall meet the minimum manufacturer's or permittee's recommended maintenance schedule. Activities that involve maintenance, adjustment, replacement, or repair of functional components with the potential to affect the operation of an emission unit shall be documented as they occur for the following events: (1) Routine maintenance that takes a unit out of service for more than two hours during any twenty-four hour period. (2) Unscheduled repairs that require a unit to be taken out of service for more than two hours in any twenty-four hour period. Recordkeeping: The permittee shall maintain records, including dates and maintenance activities conducted in accordance with Section B109. The					🗌 No

1. Provide	Method(s) or oth	er information or other facts used to determine the compliance status in the "Methods:" row beneath each permit condition	n.		3. Was this facility
2. If you answered No to question 3, list all deviations in the Deviations section. For all Deviations that produced excess emissions, provide only a) the AQBCR EER Tracking Number. For all Deviations that did not produce excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your Description, whether each deviation has been previously reported to NMED.					<i>continuously</i> in compliance with <i>all</i> requirements of this condition during the reporting period?
permittee	e shall also m	aintain a copy of the manufacturer's or permittee's recommended maintenance schedule.			
Reportir	ng: The permi	ttee shall report in accordance with Section B110.			
Methods	s: Maintenanc	e and repair records for engines are maintained as required and are included with applicable semiar	nnual monitoring	reports.	
Deviations	: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date	
	Flares				
		g Requirements 40 CFR 63, Subpart HH and 20.2.61 NMAC (Units 28 & 36)			
Require					
		e with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements at 40 CFR §63.772, flares designed and operated in accordance with the requirements at 40 CFR §63.772, flares designed at 40 CFR §63.772, flares d	•	· · · /	
	are exempt frequirements	rom the requirements to conduct a performance test to demonstrate compliance with flare gas h	neating value and	d exit velocity	
	•		1 - £ 5		
(2) The flare shall be designed for and operated with no visible emissions, except for periods not to exceed a total of 5 minutes during any 2 consecutive hours. Compliance with the visible emissions requirements shall be demonstrated by conducting a visible emissions observation as specified in the Monitoring section below.					
(3) Compliance with the testing requirements in this condition demonstrates compliance with the opacity limits required in 20.2.61 NMAC.					
Monitoring:					🛛 Yes 🗌 No
As required by 40 CFR §63.772, and the requirements at 40 CFR 63, Subpart A, §§63.7 (performance tests) and 63.11 (general control device requirements), the permittee shall conduct a visible emissions observation in accordance with the requirements at 40 CFR 60, Appendix B, Reference Method (RM) 22. The observation period is 2 hours.					□ N/A
Recordkeeping:					
The permittee shall maintain records for the flare(s) performance test results, if applicable, in accordance with any applicable requirements at 40 CFR §63.774, and with the requirements of Section B109.					
Reporting:					
The permittee shall report in accordance with any applicable requirements at 40 CFR §63.775 and the requirements of Sections B110 and B111.					
Methods: The semiannual monitoring reports include records of pilot flame monitoring.					
Deviations	: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date	
A206 Flares					

 Provide Method(s) or other information or other facts used to determine the compliance status in the "Methods:" row beneath each permit condition. If you answered No to question 3, list all deviations in the Deviations section. For all Deviations that produced excess emissions, provide only a) the AQBCR EER Tracking Number. For all Deviations that did not produce excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your Description, whether each deviation has been previously reported to NMED. 				3. Was this fac continuously in with all require condition durin reporting perio	a compliance ements of this ag the
 B. Flare Operating Requirements, 40 CFR 63, Subpart HH and 20.2.61 NMAC (Units 28 & 36) Requirement: Flares(s) shall comply with the operational requirements (including but not limited to flame presence and no visible emissions) specified by the general control device requirements at 40 CFR §63.11. Compliance with the operating requirements at 40 CFR §63.11 demonstrates compliance with the opacity limits required by 20.2.61 NMAC. Monitoring: The permittee shall monitor flare operation in accordance with the applicable requirements at 40 CFR §63.11. Recordkeeping: The permittee shall maintain records of flare operation in accordance with the applicable requirements at 40 CFR §63.11 and 63.774 and with the requirements of Section B109. Reporting: The permittee shall report in accordance with the requirements 40 CFR §63.775 and of Section B110. 				⊠ Yes □ N/A	□ No
Methods: The NESH	AP HH Periodic Reports include record of monitoring in accordance with 63.760 and 63.11.			L	
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date	l	
A206 Flares C. Flare Emissions (Units 28 & 36) Requirement: Compliance with the allowable emission limits in Table 106.A shall be demonstrated by calculating and summarizing emission rates as required in recordkeeping. For Unit 36, only facility dehydrator condenser gas outlet streams, flash tank, and flash tank relief valves shall be routed to the flares as described in Glycol Dehydrator Condition A202.C. The Plant Flare Unit 28 handles more than just the Kutz I dehydrator vent stream. Safety relief valves from plant pressure vessels and the plant inlet gas scrubber dump valves are vented to the flare. Also, the refrigerant compressors (Units 16, 17 and 18, plus Unit 37a/b) blow down to the flare during SSM events. Compliance with the allowable emission limits in Table 106.A for Unit 28 shall be demonstrated by limiting the flow to Flare 28 to 299.00 MMSCF/yr. Monitoring: A gas flowmeter and flow totalizer, equipped with a chart recorder or data logger (electronic storage), shall be installed at the inlet to each glycol dehydrator to measure and record the total standard cubic feet (scf) of gas entering the system per day (MMscf/day). The maximum flow rate into each of the following dehydrators shall be 110 and 140 MMscf/day for Units 24a and 35a.				⊠ Yes □ N/A	□ No

 Provide <i>Method(s) or other information or other facts used to determine the compliance status</i> in the "Methods:" row beneath each permit condition. If you answered <i>No</i> to question 3, list <i>all</i> deviations in the <i>Deviations</i> section. For <i>all</i> Deviations that <i>produced</i> excess emissions, provide <i>only</i> a) the AQBCR EER Tracking Number. For <i>all</i> Deviations that <i>did not produce</i> excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your <i>Description</i>, whether each deviation has been previously reported to NMED. 				
	w meter, totalizer, and if used, the inline monitor shall be operated, calibrated, and maintained as specified by the manufacturer or equivalent necessary to ensure correct and accurate readings.			
Record	lkeeping:			
(1)	The following records shall be kept:			
	Annual facility inlet extended gas analysis			
	GRI-GLYCalc output			
	• Flowmeter and flow totalizer measurements of gas entering the dehydrator in units of MMscf/day			
(2)	Annually, the permittee shall record and summarize in a table format the following.			
	• percent VOC content for the combined gas stream to the flare			
	• gas heating value (Btu/scf) for the combined gas stream to the flare			
	• the maximum hourly gas flow rate (scf/hr) calculated from GLYCalc using the maximum recorded daily volume of dehydrator inlet gas for the record year for each flare			
	• the annual total of gas sent to each flare (MMscf/yr) calculated from GLYCalc using the average recorded daily volume of dehydrator inlet gas for the record year for each flare			
(3)	Records of flowmeter, totalizer, and inline monitor certifications, calibrations, breakdowns, reasons for the breakdown, and corrective actions taken shall be maintained.			
(4)	Annually, to demonstrate compliance with emission limits, the permittee shall calculate and summarize the maximum pph emission rate, any pph emission rate exceeding the permitted limits, and the ton per year emission rates of NOx, CO, and VOC using the following information:			
	• VOC content and the gas heating value (Btu/scf) from the most recent extended gas analyses and GRI-GLYCalc output, adjusted to be representative of the combined gas stream to the flare (pilot, assist, flash tank, condenser vent, and regenerator) to ensure that the gas heating value of the combined stream is at least 300 Btu/scf. The assist gas flow rate shall be determined by calculating the necessary volume required to obtain this minimum heating value of the combined stream.			
	the emission factors used to calculate NOx and CO			
	• the maximum hourly gas flow rate (scf/hr) to the flare calculated with GRI-GLYCalc under Condition A202.A, adjusted to be representative of the combined gas stream to the flare (pilot, assist, flash tank, condenser vent, and regenerator)			
• the annual total of gas sent to the flare (MMscf/yr)				
Reporting: The permittee shall report according to Condition B110.				

 Provide Method(s) or other information or other facts used to determine the compliance status in the "Methods:" row beneath each permit condition. If you answered No to question 3, list all deviations in the Deviations section. For all Deviations that produced excess emissions, provide only a) the AQBCR EER Tracking Number. For all Deviations that did not produce excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your Description, whether each deviation has been previously reported to NMED. 					cility n compliance rements of this ng the od?
Methods: A flow meter, flow totalizer and data logger continuously record the gas flow flare emissions, including gas analyses and GLYCalc model results, are maintained as					
Deviations: Unit ID Cause & Description of Deviation or Tracking number		Start Date	End Date		
A208 Amine Unit A. Amine Recirculation Rate Reporting (Unit 75, Amine Contactor Vent) Requirement: Compliance with the allowable emission limits in Table 106.A and the pump rate capacity of 350 gallons per minute in Table 104.A shall be demonstrated by semi-annual measurement of the amine recirculation rate. (NSR 0301M9, Condition A208.A and revised) Monitoring: The permittee shall semiannually measure and record the amine recirculation rate in gallons per minute (gpm). Recordkeeping: The permittee shall keep records of the amine recirculation rate in gallons per minute (gpm) in accordance with Section B110. Reporting: The permittee shall report in accordance with Section B110. Methods: The applicable monitoring reports contains records of the amine circulation rate monitoring.			⊠ Yes □ N/A	🗌 No	
Deviations: Unit ID Cause & Description of Deviation or Tracking number		Start Date	End Date		
A209 Fugitives A. 40 CFR 60, Subpart KKK for Units 35a & Propane Refrig. Loop Requirement: Equipment and compressors in VOC or in wet gas service (as defined in 40 CFR §60.631) within process unit(s) 35a & Propane Refrig. Loop are subject to Standards of Performance for Equipment Leaks of VOC from Onshore Natural Gas Processing Plants, 40 CFR 60, Subpart KKK. The permittee shall comply with all applicable requirements in Subparts A and KKK. Monitoring: The permittee shall implement a leak detection and repair program and shall comply with the standards as specified at 40 CFR §60.632 except as provided in §60.633. Recordkeeping: The permittee shall comply with the recordkeeping requirements specified at 40 CFR §60.486 except as provided in §860.633 and 60.635. Reporting: The permittee shall comply with the reporting requirements specified at 40 CFR §60.487 except as provided in §860.633 and 60.636. Methods: The notifications and semiannual LDAR reports were submitted in accordance with KKK. The semiannual LDAR reports were monitored in accordance with 60.636. Deviations: Unit ID Cause & Description of Deviation or Tracking number A209 Fugitives			⊠ Yes □ N/A	□ No	

1. Provide Method(s) or other information or other facts used to determine the compliance status in the "Methods:" row beneath each permit condition.					
 If you answered No to question 3, list all deviations in the Deviations section. For all Deviations that produced excess emissions, provide only a) the AQBCR EER Tracking Number. 					
For al	l Deviation	ns that did	<i>not produce</i> excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. ndicate in b), your <i>Description</i> , whether each deviation has been previously reported to NMED.	condition during the reporting period?	
			Repair Program for equipment in VOC service not subject to a Federal NSPS or MACT leak detection regulation (Unit ndition A209.B and revised)		
Requirement: The permittee shall demonstrate compliance with the allowable VOC emission limit in Section A106 by meeting the following requirements:					
(1)	The pe	rmittee s	hall conduct an annual chemical analysis for VOC content of all equipment in the unit, and		
(2)	shall co	onduct ar	n annual count of all equipment in the unit;		
(3)	If the results of the chemical analysis or the equipment count have changed from the information submitted in the permit application, the permittee shall re-calculate the ton per year VOC emissions using the appropriate emissions factors to ensure the allowable emission limits are met.				
(4)	The permittee shall conduct yearly inspections of equipment in VOC service by using EPA Reference Method 21 (40 CFR 60, Appendix B) to determine the presence of leaking sources. Alternatively, the permittee may determine the presence of leaking sources by using optical gas imaging with infrared cameras.				
	(a)	For lea	aks determined using EPA Reference Method 21 (RM 21):		
		i.	The instrument shall be calibrated before each day of its use by the procedures specified in RM 21.		
		ii.	The instrument shall be calibrated with zero air (less than 10 ppm of hydrocarbon in air); and a mixture of methane or n-hexane and air at a concentration of about, but less than, 10,000 ppm methane or n-hexane	⊠ Yes □ No	
		iii.	If an instrument reading of 10,000 ppm or greater methane or n-hexane is measured, a leak is detected		
	(b)	For lea	aks determined using optical gas imaging with infrared cameras:		
		i.	The instrument shall comply with the specifications, the daily instrument checks and the leak survey requirements at 40 CFR $(i)(1) - (3)$.		
		ii.	If any emissions are imaged by the optical gas instrument, a leak is detected.		
(5)	Any lea	aks detec	eted shall be repaired within 30 days of discovery.		
For the purpose of this condition <i>equipment</i> means each pump, pressure relief device, open-ended valve or line, valve, and flange or other connector.					
For the purpose of this condition in VOC service means equipment in contact with a gas or a liquid that has a VOC content greater than 10% by weight.					
Monitoring: Once per calendar year the permittee shall complete the following monitoring:					
(1)) A chemical analysis for VOC content of all equipment in the unit.				
(2)	A count of all equipment in the unit.				
(3) an inspection of equipment in VOC service to detect leaks.					

2. If yo For	u answered <i>all</i> Deviation	(s) or other information or other facts used to determine the compliance status in the "Methods:" row beneath each permit condition. No to question 3, list all deviations in the Deviations section. ons that produced excess emissions, provide only a) the AQBCR EER Tracking Number. ons that did not produce excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your Description, whether each deviation has been previously reported to NMED.	3. Was this facility <i>continuously</i> in compliance with <i>all</i> requirements of this condition during the reporting period?	
	(a)	If a leak is detected, the permittee shall place a visible tag on the leaking component until the component has been repaired.		
	(b)	If any leaks are detected, the equipment shall be re-monitored no later than 30 days after discovery of the leak to demonstrate that it has been repaired.		
	(c)	If the leak cannot be repaired within 30 days without a process unit shutdown, it may be designated "Repair delayed," and shall be repaired before the end of the next process unit shutdown.		
(4)	An in	spection of equipment in VOC service shall also be conducted within 15 days of any maintenance or repair that affects the equipment.		
Recor	dkeepin	g: The permittee shall maintain the following records:		
(1)	equip	nent identification or description and location;		
(2)	weigh	t percent VOC for each piece of equipment.		
(3)	emiss	on factor for each piece of equipment.		
(4)	total V	/OC emissions for each unit, tons per year		
(5)	For any leaks detected the permittee shall record the:			
	(a)	date a leak is detected;		
	(b)	dates of attempts to repair;		
	(c)	designation of "Repair delayed";		
		i. reason for delay if the leak is not repaired within 30 days of leak discovery, and		
		ii. signature of authorized representative whose decision it was that repair could not be affected without a process shutdown; and		
	(d)	The date of successful leak repair shall also be recorded.		
(6)		aks determined using optical gas imaging with infrared cameras, the permittee shall keep the records of the specifications, the daily nent checks and the leak survey requirements specified at 40 CFR $60.18(i)(1) - (3)$.		
Repo	rting: Th	e permittee shall report the following in accordance with Section B110:		
(1)	The n	umber of leaking components discovered,		
(2)	The n	umber of leaking components not repaired within 30 days,		
(3)	The d	uration of the leaks that exceeded 30 days,		
(4)	Dates of process unit shutdowns; and			

 Provide <i>Method(s) or other information or other facts used to determine the compliance status</i> in the "Methods:" row beneath each permit condition. If you answered <i>No</i> to question 3, list <i>all</i> deviations in the <i>Deviations</i> section. For <i>all</i> Deviations that <i>produced</i> excess emissions, provide <i>only</i> a) the AQBCR EER Tracking Number. For <i>all</i> Deviations that <i>did not produce</i> excess emissions, provide a) The Unit ID, b) The Cause of and a Description of the Deviation, and c) the Start & End Dates of the deviation. Please indicate in b), your <i>Description</i>, whether each deviation has been previously reported to NMED. 				3. Was this facility <i>continuously</i> in compliance with <i>all</i> requirements of this condition during the reporting period?
(5) VOC emissio				
Methods: Records of the annual chemical analysis and the component inspections are maintained as required and are included in the applicable monitoring reports.				
Deviations: Unit ID	Cause & Description of Deviation or Tracking number	Start Date	End Date	

PART B General Conditions

1. Have these General Conditions been met during this reporting period?	2. Was this facility <i>continuously</i> in			
<u>Check only one box per subject heading.</u>	compliance with this requirement during the reporting period?			
Explain answers in remarks row under subject heading.				
B101 Legal	\Box Yes \boxtimes No \Box N/A – Explain Below			
REMARKS: Except as noted above (A107.A and A205.B), facility was in compliance with applicable requirements during the applic	cable period.			
B102 Authority	\boxtimes Yes \square No \square N/A – Explain Below			
REMARKS: Only the permitted owner operated the facility during the applicable period.				
B103 Annual Fee	\mathbf{X} Yes \mathbf{D} No \mathbf{D} N/A – Explain Below			
REMARKS: 2019 operating permit emission fees were paid on May 27, 2020.				
B104 Appeal Procedures	\Box Yes \Box No \boxtimes N/A – Explain Below			
REMARKS: Department action				
B105 Submittal of Reports and Certifications	\square Yes \square No \square N/A – Explain Below			
REMARKS: NSPS & NESHAP reports, semiannual reports and ACCs are submitted to the appropriate regulatory personnel.				
B106 NSPS and/or MACT Startup, Shutdown, and Malfunction Operations	\boxtimes Yes \square No \square N/A – Explain Below			
REMARKS: NSPS KKK & NESHAP HH reports were submitted in accordance with the respective regulations.				
B107 Startup, Shutdown, and Maintenance Operations	\mathbf{X} Yes \mathbf{N} No \mathbf{N} /A – Explain Below			
REMARKS: The facility is operated in accordance with the facility's SSM Plan				
B108 General Monitoring Requirements	\mathbf{X} Yes \mathbf{N} No \mathbf{N} /A – Explain Below			
REMARKS: Periodic test reports are included in the applicable semiannual reports.				
B109 General Recordkeeping Requirements	\square Yes \square No \square N/A – Explain Below			
REMARKS: Records are maintained in accordance with recordkeeping requirements.				
B110 General Reporting Requirements	\mathbf{X} Yes \mathbf{N} No \mathbf{N} /A – Explain Below			
REMARKS: Reports are submitted in accordance with reporting requirements.				
B111 General Testing Requirements	\square Yes \square No \square N/A – Explain Below			
REMARKS: Testing that occurred during the applicable period was completed in accordance with the appropriate procedures.				
B112 Compliance See No N/A - Explo				
REMARKS: Records and permits are maintained as required. Representatives have not been denied access to the facility and applicable files during the applicable period.				

ACC Form Part B Permit # P097-R3 & P097-R3M1

PART B General Conditions

B113 Permit Reopening and Revocation	Yes 🗌 No 🗌 N/A – Explain Below			
REMARKS: No communication has been received from the regulating agency to indicate that the permit has been reopened, revo	ked or revised.			
B114 Emergencies	Yes 🗌 No 🗌 N/A – Explain Below			
REMARKS: Emergencies occurring during this period were reported in accordance with 20.2.7 NMAC.				
B115 Stratospheric Ozone	\Box Yes \Box No \boxtimes N/A – Explain Below			
REMARKS: The facilility is not subject to 40CFR 82 subpart F.				
B116 Acid Rain Sources	\Box Yes \Box No \boxtimes N/A – Explain Below			
REMARKS: The facilility is not subject to 40CFR 72.				
B117 Risk Management Plan	Yes No N/A – Explain Below			
REMARKS: Certification of compliance with the facility's RMP is included with the annual compliance certification.				

This Page Intentionally Left Blank

Section 21

Addendum for Landfill Applications

Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: <u>https://www3.epa.gov/airtoxics/landfill/landflpg.html</u>

NM Solid Waste Bureau Website: https://www.env.nm.gov/swb/

Not applicable, as this facility is not a landfill.

This Page Intentionally Left Blank

Section 22

Certification

Company Name: <u>Harvest Four Corners, LLC</u>

I, IRAUS JONES, hereby certify th	hat the information and data submitted in this application are true
and as accurate as possible, to the best of my knowledge and p	rofessional expertise and experience. Signed this 22 day of
APPU, 202 (, upon my oath or affirm	nation, before a notary of the State of New Mexico.
*Signature	<u>4/22/2021</u> Date
LYLAURS JONES	ETS MANAGER
Printed Name	Title
Scribed and sworn before me on this <u>AA</u> day of <u>MM</u> My authorization as a notary of the State of New Mexico expir	
Jodi L. Bohannon	U222
Notary's Printed Name	JODI L BOHANNON Notary Public State of New Moxico My Comm. Expires 8 21/21

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AD NMAC.