

August 12, 2022

Melinda Owens New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

RE: New Source Review Permit Application Zia Hills Central Facility – NSR-7746

ConocoPhillips Company

Dear Ms. Owens:

ConocoPhillips Company is submitting the attached application modification of the referenced NSR Permit. The proposed changes are discussed in Section 3. The electronic files will be provided via email or Accellion. Please contact me at 865-850-2007 or etullos@pei-tx.com should you have any questions.

Sincerely,

Evan Tullos Vice President

ZIA HILLS CENTRAL FACILITY LEA COUNTY, NEW MEXICO NEW SOURCE REVIEW PERMIT APPLICATION

PREPARED FOR:

JARRET AIRHART

SENIOR ENVIRONMENTAL ENGINEER

JULY 2022

ZIA HILLS CENTRAL FACILITY

NEW SOURCE REVIEW PERMIT APPLICATION

Table of Contents

Section 1	Facility Information
Section 2	Application Tables
Section 3	Application Summary
Section 4	Process Flow Sheet
Section 5	Plot Plan
Section 6	Calculations
Section 7	Information Used to Determine Emissions
Section 8	Map(s)
Section 9	Proof of Public Notice
Section 10	WriItten Description of Operations
Section 11	Source Determination
Section 12	PSD Determination
Section 13	Determination of State & Federal Regulations
Section 14	Operational Plan to Mitigate Emissions
Section 15	Alternative Operating Scenarios
Section 16	Air Dispersion Modeling
Section 17	Compliance Test History
Section 18	Addendum for Streamline Applications
Section 19	Requirements for Title V Program
Section 20	Other Relevant Information
Section 21	Addendum for Landfill Applications
Section 22	Certification
Section 23	Universal Application 4

Section 1 Facility Information

ConocoPhillips Company Zia Hills Central Facility July 2022

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

For Department use only:

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions.

This application is submitted as (check all that apply): Request for a No Permit Required Determination (no fee)
□ Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required).
Construction Status: \square Not Constructed \square Existing Permitted (or NOI) Facility \square Existing Non-permitted (or NOI) Facility
Minor Source: ☐ a NOI 20.2.73 NMAC ☐ 20.2.72 NMAC application or revision ☐ 20.2.72.300 NMAC Streamline application
Title V Source: ☐ Title V (new) ☐ Title V renewal ☐ TV minor mod. ☐ TV significant mod. ☐ TV Acid Rain: ☐ New ☐ Renewal
PSD Major Source: ☐ PSD major source (new) ☐ minor modification to a PSD source ☐ a PSD major modification

Acknowledgements:

- ☑ I acknowledge that a pre-application meeting is available to me upon request. Title V Operating, Title IV Acid Rain, and NPR applications have no fees.
- ☑ \$500 NSR application Filing Fee enclosed OR The full permit fee associated with 10 fee points (required w/ streamline applications).
- ☑ Check No.: 1349 in the amount of \$500
- ☑ I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page. ☑ I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-2/. This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.219.D.1 NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	3 to 5 #s of permit IDEA ID No.):	Updating Permit/NOI #: 7746		
Facility Name: Zia Hills Central Facility		Plant primary SIC Code (4 digits): 1311			
		Plant NAIC code (6 digits): 211120			
a	a Facility Street Address (If no facility street address, provide directions from a prominent landmark):				
2	Plant Operator Company Name: ConocoPhillips Company	Phone/Fax: (832) 486-2	2000		
a	a Plant Operator Address: 935 N. Eldridge Parkway; Houston, TX 77079				
b	Plant Operator's New Mexico Corporate ID or Tax ID: 73-0400345				

3	Plant Owner(s) name(s): ConocoPhillips Company	Phone/Fax: (832) 486-2000				
a	a Plant Owner(s) Mailing Address(s): 935 N. Eldridge Parkway; Houston, TX 77079					
4	Bill To (Company): ConocoPhillips Company	Phone/Fax: (832) 486-2000				
a	Mailing Address: 935 N. Eldridge Parkway; Houston, TX 77079	E-mail: jarrett.airhart@conocophillips.com				
5	□ Preparer: ☑ Consultant: Evan Tullos - PEI	Phone/Fax: (865) 850-2007				
a	Mailing Address: 1414 W. Sam Houston Pkwy N, Suite 160; Houston, TX 77043	E-mail: etullos@pei-tx.com				
6	Plant Operator Contact: Jarrett Airhart	Phone/Fax: (575) 748-6975				
a	Address: 2208 W. Main St.; Artesia, NM 88210	E-mail: jarrett.airhart@conocophillips.com				
7	Air Permit Contact: Jarrett Airhart	Title: Environmental Advisor				
a	E-mail: jarrett.airhart@conocophillips.com	Phone/Fax: (575) 748-6975				
b	Mailing Address:					
c	The designated Air permit Contact will receive all official correspondence	e (i.e. letters, permits) from the Air Quality Bureau.				

Section 1-B: Current Facility Status

	tion 1 B. Eurrene 1 demey Status	
1.a	Has this facility already been constructed? ☑ Yes ☐ No	1.b If yes to question 1.a, is it currently operating in New Mexico? ✓ Yes □ No
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? ☐ Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ✓ Yes □ No
3	Is the facility currently shut down? ☐ Yes ☑ No	If yes, give month and year of shut down (MM/YY):
4	Was this facility constructed before 8/31/1972 and continuously operated s	since 1972? ☐ Yes ☑ No
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMA□Yes □No □N/A	C) or the capacity increased since 8/31/1972?
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☐ Yes ☑ No	If yes, the permit No. is: P-
7	Has this facility been issued a No Permit Required (NPR)? ☐ Yes ☑ No	If yes, the NPR No. is:
8	Has this facility been issued a Notice of Intent (NOI)? ☐ Yes ☑No	If yes, the NOI No. is:
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ✓ Yes □ No	If yes, the permit No. is: 7746
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? ☐ Yes ☑No	If yes, the register No. is:

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)						
a	a Current Hourly: 563 BBL/3.3 MMSCF Daily: 13500 BBL /80 MMSCF Annually: 4.93 MMBBL/29.2 BSCF						
b	Proposed Hourly: 771 BBL/5 MMSCF Daily: 18503 BBL /120 MMSCF Annually: 6.57 MMBBL/43.8 BSCF						
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)						
a	a Current Hourly: 563 BBL/3.3 MMSCF Daily: 13500 BBL /80 MMSCF Annually: 4.93 MMBBL/29.2 BSCF						
b	b Proposed Hourly: 771 BBL/5 MMSCF Daily: 18503 BBL /120 MMSCF Annually: 6.57 MMBBL/43.8 BSCF						

Section 1-D: Facility Location Information

			uon muu mauon			
1	Section: 19	Range: 32E	Township: 26S	County: Lea	Elevation (ft): 3173	
2	UTM Zone:	12 or 2 13		Datum: ☐ NAD 27 ☐ NAD	0 83	
a	a UTM E (in meters, to nearest 10 meters): 621600			UTM N (in meters, to nearest 10 meters)): 3543600	
b	b AND Latitude (deg., min., sec.): 32° 01' 19" Longitude (deg., min., sec.): -103° 42' 45"					
3	Name and zip code of nearest New Mexico town: Malaga - 88263					
4	30.3 mi. to L or	g Instructions fron RM 652E (Farmo L into site area.	m nearest NM town (attacl to Mkt.). Drive 17 mi. to	n a road map if necessary): From M continue onto J-1/Orla Rd. Drive 2.	alaga, drive S on Hwy 285 for 0 mi. to L on Battle Axe Rd.	
5	The facility is 2	4.9 (distance) mil	les SE (direction) of Malag	ga (nearest town).		
6	Status of land at facility (check one): ☐ Private ☐ Indian/Pueblo ☑ Federal BLM ☐ Federal Forest Service ☐ Other (specify)					
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Eddy, Lea					
8	20.2.72 NMAC applications only : Will the property on which the facility is proposed to be constructed or operated be					
9	Name nearest C	Class I area: Carls	bad Caverns			
10	Shortest distance	e (in km) from fa	cility boundary to the bour	ndary of the nearest Class I area (to t	he nearest 10 meters): 64.61	
11	lands, including	mining overburd	len removal areas) to neare	ions (AO is defined as the plant site est residence, school or occupied str		
12	"Restricted Ar continuous wall that would requ	ea" is an area to vis, or other continire special equipm	uous barriers approved by nent to traverse. If a large	tively precluded. Effective barriers the Department, such as rugged phy property is completely enclosed by ablic roads cannot be part of a Restr	vsical terrain with steep grade fencing, a restricted area	
13	Does the owner Yes No A portable stati one location or	operator intend to onary source is no that can be re-ins	o operate this source as a pot a mobile source, such as talled at various locations,	oortable stationary source as defined an automobile, but a source that car such as a hot mix asphalt plant that	l in 20.2.72.7.X NMAC? n be installed permanently at	
14			nction with other air regulanit number (if known) of the	ated parties on the same property? ne other facility?	⊠ No □ Yes	

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating (hours day): 24	(days/week): 7	$(\frac{\text{weeks}}{\text{year}}): 52$	$(\frac{\text{hours}}{\text{year}})$: 8760	
2	Facility's maximum daily operating schedule (if le	ss than $24 \frac{\text{hours}}{\text{day}}$)? Start:	□AM □PM	End:	□AM □PM
3	Month and year of anticipated start of construction	: Upon receipt of permit			
4	Month and year of anticipated construction comple	etion: 3-5 months following r	receipt of permit		
5	Month and year of anticipated startup of new or me	odified facility: 3-5 months f	following receipt of	of permit	
6	Will this facility operate at this site for more than of	one year? ☑ Yes □ N	O		

Section 1-F: Other Facility Information

1	Are there any current Notice of V	Violations (NOV), compliance orders, or any other compliance or enforcement issues related
1	to this facility? ☐ Yes ☑ No	If yes, specify:

a	If yes, NOV date or description of issue:		NO	OV Tracking No:
b	Is this application in response to any issue listed in 1-F, 1 or	¹ 1a above? ☐ Yes	∃No If Yes, p	provide the 1c & 1d info below:
c	Document Title:	Date:	Requirement page # and p	
d	Provide the required text to be inserted in this permit:			
2	Is air quality dispersion modeling or modeling waiver being	submitted with this	application?	☑ Yes □ No
3	Does this facility require an "Air Toxics" permit under 20.2	.72.400 NMAC & 2).2.72.502, Ta	bles A and/or B? ☐ Yes ☑ No
4	Will this facility be a source of federal Hazardous Air Pollu	tants (HAP)? Z Ye	s □ No	
a	If Yes, what type of source? \Box Major (\Box \geq 10 tpy of any OR \Box Minor (\Box <10 tpy of any			of any combination of HAPS) of any combination of HAPS)
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? ☐ Yes	☑ No		
	If yes, include the name of company providing commercial	electric power to the	facility:	
a	Commercial power is purchased from a commercial utility site for the sole purpose of the user.	company, which spe	cifically does	not include power generated on
Sec	tion 1-G: Streamline Application (Th	uis section applies to 2	0.2.72.300 NM	AC Streamline applications only)
Sect (Title	☐ I have filled out Section 18, "Addendum for Streamline tion 1-H: Current Title V Information - F V-source required information for all applications submitted pu 4/0.2.79 NMAC (Major PSD/NNSR applications) and/or 20.2.7	Required for all rsuant to 20.2.72 NM	application	is not a Streamline application.) s from TV Sources
Sect (Title	tion 1-H: Current Title V Information - F V-source required information for all applications submitted pu 4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.7 Responsible Official (R.O.)	Required for all rsuant to 20.2.72 NM	application	is not a Streamline application.) s from TV Sources nstruction Permits), or
Sect (Title 20.2.7	tion 1-H: Current Title V Information - F V-source required information for all applications submitted pu 4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.7	Required for all rsuant to 20.2.72 NM	Application AC (Minor Co	is not a Streamline application.) s from TV Sources nstruction Permits), or
Sect (Title 20.2.7)	tion 1-H: Current Title V Information - F V-source required information for all applications submitted pu 4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.7 Responsible Official (R.O.) (20.2.70.300.D.2 NMAC):	Required for all rsuant to 20.2.72 NM 0 NMAC (Title V))	Application AC (Minor Co	is not a Streamline application.) s from TV Sources nstruction Permits), or
Sect (Title 20.2.7	tion 1-H: Current Title V Information - F V-source required information for all applications submitted pu 4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.7 Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): R.O. Title: R. O. Address: Alternate Responsible Official	Required for all rsuant to 20.2.72 NM 0 NMAC (Title V))	Application AC (Minor Co	is not a Streamline application.) s from TV Sources nstruction Permits), or
Sect (Title 20.2.7) 1 a b	tion 1-H: Current Title V Information - F V-source required information for all applications submitted pu 4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.7 Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): R.O. Title:	Required for all rsuant to 20.2.72 NM 0 NMAC (Title V))	Application AC (Minor Co	is not a Streamline application.) s from TV Sources nstruction Permits), or
Sect (Title 20.2.7) 1 a b	tion 1-H: Current Title V Information - F V-source required information for all applications submitted pu 4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.7 Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): R.O. Title: R. O. Address: Alternate Responsible Official (20.2.70.300.D.2 NMAC):	Required for all rsuant to 20.2.72 NM 0 NMAC (Title V)) R.O. e-mail	Application AC (Minor Co	is not a Streamline application.) s from TV Sources nstruction Permits), or
Sect (Title 20.2.7) 1 a b 2	tion 1-H: Current Title V Information - FV-source required information for all applications submitted pu 4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.7 Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): R.O. Title: R. O. Address: Alternate Responsible Official (20.2.70.300.D.2 NMAC): A. R.O. Title: A. R.O. Address: Company's Corporate or Partnership Relationship to any oth have operating (20.2.70 NMAC) permits and with whom the relationship):	Required for all rsuant to 20.2.72 NM 0 NMAC (Title V)) R.O. e-mail A. R.O. e-mail er Air Quality Permeter applicant for this p	Phone ail:	is not a Streamline application.) s from TV Sources nstruction Permits), or e: names of any companies that rporate or partnership
Sect (Title 20.2.7 1 a b 2 a b	tion 1-H: Current Title V Information - F V-source required information for all applications submitted pu 4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.7 Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): R.O. Title: R. O. Address: Alternate Responsible Official (20.2.70.300.D.2 NMAC): A. R.O. Title: A. R. O. Address: Company's Corporate or Partnership Relationship to any oth have operating (20.2.70 NMAC) permits and with whom the	Required for all rsuant to 20.2.72 NM 0 NMAC (Title V)) R.O. e-mail A. R.O. e-mail er Air Quality Permeter applicant for this p	Phone ail:	is not a Streamline application.) s from TV Sources nstruction Permits), or e: names of any companies that rporate or partnership
Sect (Title 20.2.7 1 a b 2 a b 3	tion 1-H: Current Title V Information - FV-source required information for all applications submitted pu 4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.7 Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): R.O. Title: R. O. Address: Alternate Responsible Official (20.2.70.300.D.2 NMAC): A. R.O. Title: A. R. O. Address: Company's Corporate or Partnership Relationship to any oth have operating (20.2.70 NMAC) permits and with whom the relationship): Name of Parent Company ("Parent Company" means the process of	Required for all rsuant to 20.2.72 NM 0 NMAC (Title V)) R.O. e-mail A. R.O. e-mail er Air Quality Permeter applicant for this p	Phone ail:	is not a Streamline application.) s from TV Sources nstruction Permits), or e: names of any companies that rporate or partnership
Sect (Title 20.2.7) 1 a b 2 a b 3	tion 1-H: Current Title V Information - FV-source required information for all applications submitted pu 4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.7 Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): R.O. Title: R. O. Address: Alternate Responsible Official (20.2.70.300.D.2 NMAC): A. R.O. Title: A. R.O. Title: A. R. O. Address: Company's Corporate or Partnership Relationship to any oth have operating (20.2.70 NMAC) permits and with whom the relationship): Name of Parent Company ("Parent Company" means the prepermitted wholly or in part.):	Required for all rsuant to 20.2.72 NM 0 NMAC (Title V)) R.O. e-mail A. R.O. e-m er Air Quality Perm e applicant for this p	Phone ail:	is not a Streamline application.) s from TV Sources nstruction Permits), or :: :: names of any companies that rporate or partnership it owns the company to be
1 Sect (Title 20.2.7) 1 a b 2 a b 3 4	V-source required information for all applications submitted pu 4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.7 Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): R.O. Title: R. O. Address: Alternate Responsible Official (20.2.70.300.D.2 NMAC): A. R.O. Title: A. R. O. Address: Company's Corporate or Partnership Relationship to any oth have operating (20.2.70 NMAC) permits and with whom the relationship): Name of Parent Company ("Parent Company" means the prepermitted wholly or in part.): Address of Parent Company: Names of Subsidiary Companies ("Subsidiary Companies" in the prepermital of the preper	Required for all rsuant to 20.2.72 NM 0 NMAC (Title V)) R.O. e-mail A. R.O. e-m There Air Quality Perm e applicant for this publicant for the original product of the contacts familiar with the contact wit	Phone Phone Phone ail: ittee (List the ermit has a conganization than branches, div	is not a Streamline application.) s from TV Sources nstruction Permits), or :: :: names of any companies that rporate or partnership it owns the company to be risions or subsidiaries, which are tions:

states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which

7

ones and provide the distances in kilometers:

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- 1) One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

☐ CD/DVD attacl	hed to pap	er appli	ication
-----------------	------------	----------	---------

☑ secure electronic transfer. Air Permit Contact Name Evan Tullos

Email etullos@pei-tx.com

Phone number <u>(865)</u> 850-2007

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If **air dispersion modeling** is required by the application type, include the **NMED Modeling Waiver** and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling **summary report only** should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible

format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

Section 1: General Facility Information

Section 2: Tables

Section 3: Application Summary
Section 4: Process Flow Sheet
Section 5: Plot Plan Drawn to Scale

Section 6: All Calculations

Section 7: Information Used to Determine Emissions

Section 8: Map(s)

Section 9: Proof of Public Notice

Section 10: Written Description of the Routine Operations of the Facility

Section 11: Source Determination

Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application

Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation

Section 14: Operational Plan to Mitigate Emissions

Section 15: Alternative Operating Scenarios

Section 16: Air Dispersion Modeling Section 17: Compliance Test History

Section 18: Addendum for Streamline Applications (streamline applications only)

Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)

Section 20: Other Relevant Information

Section 21: Addendum for Landfill Applications

Section 22: Certification Page

Section 2 Application Tables

	Table 2-A: Regulated Emission Sources										
	Unit and stack numbering must correspond throughout the application package. Equipment that qualifies for an exemption under										
20.2.72.2	0.2.72.202.B NMAC should be included in Table 2-B Note: Equipment options are not authorized.										
Unit		Manufacturer/Make		Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-	RICE Ignition	For Each Piece of Equipment, Check Onc	
Number ¹	Source Description	/Model	Serial#	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	Type (CI, SI, 4SLB, 2SLB) ⁴		
ENG1	4SLB RICE –	Caterpillar 3516J	N6W00861	1380 HP	1380 HP	10/1/2018	CAT1	20200254	4SLB	☐ Existing (unchanged) ☐ To be Removed New/Additional Replacement Unit	
	Sales/Gas Lift					2018	ENG1			☐ To Be Modified ☐ To be Replaced	
ENG1	4SLB RICE – Sales/Gas Lift	Caterpillar 3606A4	TBD	1875 HP	1875 HP	TBD TBD	CAT1 ENG1	20200254	4SLB	□ Existing (unchanged) To be Removed New/Additional ☑ Replacement Unit □ To Be Modified To be Replaced	
	4SLB RICE –					10/1/2018	CAT2			☐ Existing (unchanged) ☐ Existing (unchanged) ☐ To be Removed	
ENG2	Sales/Gas Lift	Caterpillar 3606A4	JFE01170	1875 HP	1875 HP	2018	ENG2	20200254	4SLB	New/Additional Replacement Unit ☑ To Be Modified To be Replaced	
	4SLB RICE –	- 44				11/1/2018	CAT3			☐ Existing (unchanged) To be Removed	
ENG3	Sales/Gas Lift	Caterpillar 3606A4	JFE01205	1875 HP	1875 HP	2019	ENG3	20200254	4SLB	New/Additional Replacement Unit ☑ To Be Modified To be Replaced	
	4SLB RICE –	- 44				TBD	CAT5			☐ Existing (unchanged) To be Removed	
ENG4	Sales/Gas Lift	Caterpillar 3606A4	TBD	1875 HP	1875 HP	TBD	ENG5	20200254	4SLB	✓ New/Additional Replacement Unit□ To Be Modified To be Replaced	
ENG	4SLB RICE –	C 4 211 2000AA	IEE01100	1075 HD	1075 HD	10/1/2018	CAT5	20200254	4CL D	☐ Existing (unchanged) To be Removed	
ENG5	Sales/Gas Lift	Caterpillar 3606A4	JFE01188	1875 HP	1875 HP	2019	ENG5	20200254	4SLB	New/Additional Replacement Unit ☑ To Be Modified To be Replaced	
ENG6	4SLB RICE –	Catama 111 - 2 2 2 2 4 4	IEE01204	1075 HD	1975 IID	11/1/2018	CAT6	20200254	4SLB	Existing (unchanged) To be Removed New/Additional Replacement Unit	
ENGO	Sales/Gas Lift	Caterpillar 3606A4	JFE01204	1875 HP	1875 HP	2019	ENG6	20200234	4SLB	New/Additional Replacement Unit ☑ To Be Modified To be Replaced	
ENG7	4SLB RICE –	Catamillar 2606 A A	JFE01745	1875 HP	1875 HP	3/1/2020	CAT7	20200254	4SLB	☐ Existing (unchanged) To be Removed New/Additional Replacement Unit	
ENG/	Sales/Gas Lift	Caterpillar 3606A4	JFE01/43	18/3 HP	18/3 HP	2020	ENG7	20200234	4SLB	✓ To Be Modified To be Replaced	
ENG8	4SLB RICE –	Caterpillar 3606A4	JFE01728	1875 HP	1875 HP	12/1/2019	CAT8	20200254	4SLB	☐ Existing (unchanged) To be Removed New/Additional Replacement Unit	
LNG6	Sales/Gas Lift	Caterpinal 3000A4	JTE01/26	10/5111	10/5 111	2020	ENG8	20200234	TOLD	✓ To Be Modified To be Replaced	
ENG9	4SLB RICE –	Caterpillar 3606A4	TBD	1875 HP	1875 HP	TBD	CAT9	20200254	4SLB	 □ Existing (unchanged) □ New/Additional To be Removed □ Replacement Unit 	
LINGS	Sales/Gas Lift	Caterpinar 5000711	TDD	10/5 111	1075 111	TBD	ENG9	20200234	ISED	☐ To Be Modified To be Replaced	
ENG10	4SLB RICE –	Caterpillar 3606A4	TBD	1875 HP	1875 HP	TBD	CAT10	20200254	4SLB	 □ Existing (unchanged) □ New/Additional To be Removed Replacement Unit 	
LINGIO	Sales/Gas Lift	Catcipinal 3000A4	TDD	10/5111	10/3 111	TBD	ENG10	20200234	TOLD	☐ To Be Modified To be Replaced	
ENG11	4SLB RICE –	Caterpillar 3606A4	TBD	1875 HP	1875 HP	TBD	CAT11	20200254	4SLB	 □ Existing (unchanged) □ New/Additional To be Removed □ Replacement Unit 	
LNGII	Sales/Gas Lift	Caterpinal 3000A4	TDD	10/5111	10/5 111	TBD	ENG11	20200234	TOLD	☐ To Be Modified To be Replaced	
ENG12	4SLB RICE –	Caterpillar 3606A4	TBD	1875 HP	1875 HP	TBD	CAT12	20200254	4SLB	 □ Existing (unchanged) □ New/Additional To be Removed □ Replacement Unit 	
ENGIZ	Sales/Gas Lift	Caterpinal 3000A4	עמו	10/3111	10/3111	TBD	ENG12	20200234	TOLD	☐ To Be Modified To be Replaced	
OT1	Condensate Tank	Long Industries	5-18-025-	1000 BBL	1000 BBL	2018	FL2/FL3	40400311	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit	
011	Condensate Falls	Long mausures	005	1000 BBL	1000 BBL	2018	FL2/FL3	40400311	14/74	☐ To Be Modified To be Replaced	
OT2	Condensate Tank	Long Industries	5-18-025-	1000 BBL	1000 BBL	2018	FL2/FL3	40400311	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit	
012	Condensate Tallk	Long mausines	006	1000 BBL	1000 BBL	2018	FL2/FL3	-10700311	1 N/ PA	☐ To Be Modified To be Replaced	

Unit		Manufacturer/Make		Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-	RICE Ignition		
Number ¹	Source Description	/Model	Serial#	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	Type (CI, SI, 4SLB, 2SLB) ⁴	For Each Piece of Equipment, Check (Onc
ОТ3	Condensate Tank	Long Industries	5-18-025-	1000 BBL	1000 BBL	2018	FL2/FL3	40400311	N/A	☐ Existing (unchanged) To be Removed New/Additional Replacement Unit	
			007			2018	FL2/FL3			☑ To Be Modified To be Replaced	
OT4	Condensate Tank	Long Industries	5-18-025- 008	1000 BBL	1000 BBL	2018	FL2/FL3 FL2/FL3	40400311	N/A	✓ Existing (unchanged) To be Removed New/Additional Replacement Unit	
	0.00 0 .00					2018				☐ To Be Modified To be Replaced ☐ Existing (unchanged) To be Removed	
OT5	Off-Specification Condensate Tank	Long Industries	5-18-029- 002	1000 BBL	1000 BBL	2018	FL2/FL3 FL2/FL3	40400311	N/A	New/Additional Replacement Unit ☐ To Be Modified To be Replaced	
	Produced Water		5-18-037-			2018	FL2/FL3			☑ Existing (unchanged) To be Removed	
WT1	Tank	Long Industries	009	1000 BBL	1000 BBL	2018	FL2/FL3	40400315	N/A	New/Additional Replacement Unit ☐ To Be Modified To be Replaced	
XV/TO	Produced Water	r r1	5-18-027-	1000 DDI	1000 DDI	2018	FL2/FL3	40.4002.15	N T/A	☑ Existing (unchanged) To be Removed	
WT2	Tank	Long Industries	010	1000 BBL	1000 BBL	2018	FL2/FL3	40400315	N/A	New/Additional Replacement Unit ☐ To Be Modified To be Replaced	
WT3	Produced Water	Long Industries	5-18-027-	1000 BBL	1000 BBL	2018	FL2/FL3	40400315	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit	
W13	Tank	Long maustries	011	1000 BBL	1000 BBL	2018	FL2/FL3	/FL3	IN/A	To Be Modified To be Replaced	
WT4	Produced Water	Long Industries	5-18-027-	1000 BBL	1000 BBL	2018	FL2/FL3		N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit	
W 14	Tank	Long maustries	012	1000 BBL	1000 BBL	2018	FL2/FL3	40400313	IN/A	To Be Modified To be Replaced	
WT5	Produced Water	Long Industries	5-18-027-	1000 BBL	1000 BBL	2018	FL2/FL3	40400315	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit	
W13	Tank	Long maustries	013	1000 BBL	1000 BBL	2018	FL2/FL3	40400313	IV/A	☐ To Be Modified To be Replaced	
WT6	Produced Water	Long Industries	5-18-027-	1000 BBL	1000 BBL	2018	FL2/FL3	40400315	N/A	✓ Existing (unchanged) To be Removed New/Additional Replacement Unit	
W10	Tank	Long maustries	014	1000 BBL	1000 BBL	2018	FL2/FL3	40400313	IV/A	☐ To Be Modified To be Replaced	
WT7	Produced Water	Long Industries	5-18-027-	1000 BBL	1000 BBL	2018	FL2/FL3	40400315	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit	
W 1 /	Tank	Long maustries	015	1000 BBL	1000 BBL	2018	FL2/FL3	40400313	IV/A	☐ To Be Modified To be Replaced	
WT8	Produced Water	Long Industries	5-18-027-	1000 BBL	1000 BBL	2018	FL2/FL3	40400315	N/A	✓ Existing (unchanged) To be Removed New/Additional Replacement Unit	
W 10	Tank	Long maustries	016	1000 BBL	1000 BBL	2018	FL2/FL3	40400313	TV/A	☐ To Be Modified To be Replaced	
GB1	Gun Barrel	Long Industries	5-20-097-	1000 BBL	1000 BBL	2021	FL2/FL3	31000107	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit	
GB1	Gun Barrer	Long maustres	001	1000 BBL	1000 BBL	2021	FL2/FL3	31000107	TV/A	☐ To Be Modified To be Replaced	
GB2	Gun Barrel	Long Industries	5-21-036-5-	1000 BBL	1000 BBL	2021	FL2/FL3	31000107	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit	
GDZ	Guil Bullet	Long maastres	18-126-001	1000 BBE	1000 BBL	2021	FL2/FL3	31000107	14/21	☐ To Be Modified To be Replaced	
ST1	Slop Tank	Long Industries	5-18-028-	1000 BBL	1000 BBL	2018	FL2/FL3	40400311	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit	
	orep runn	2015 111401100	003	-000 BBL	- COO BBD	2018	FL2/FL3	.0.30311	1.71	☐ To Be Modified To be Replaced	
ST2	Slop Tank	Long Industries	5-18-028-	1000 BBL	1000 BBL	2018	FL2/FL3	40400311	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit	
512	Stop Tank	Long mausures	004	1000 DDL	1000 DDL	2018	FL2/FL3	10 100511	1 1/ /1	☐ To Be Modified To be Replaced	
FL1	Flare	Zeeco	31707-001	27	27	2021	N/A	31000160	N/A	✓ Existing (unchanged) To be Removed New/Additional Replacement Unit	
1121	1 1410	2000	51/0/-001	MMscfd	MMscfd	2021	FL1	31000100	11/71	☐ To Be Modified To be Replaced	

Unit		Manufacturer/Make		Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-	RICE Ignition	
Number ¹	Source Description	/Model	Serial#	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	Type (CI, SI, 4SLB, 2SLB) ⁴	For Each Piece of Equipment, Check Onc
STAB1	Stabilizer Heater	Flameco	1803-861	3.5 MMBtu/hr	3.5 MMBtu/hr	2018 2018	N/A STAB1	31000404	N/A	 ☑ Existing (unchanged) To be Removed New/Additional Replacement Unit □ To Be Modified To be Replaced
STAB2	Stabilizer Heater	Flameco	1803-858	3.5 MMBtu/hr	3.5 MMBtu/hr	2018 2018	N/A STAB2	31000404	N/A	 ☑ Existing (unchanged) New/Additional □ To Be Modified To be Removed Replacement Unit □ To Be Modified
STAB3	Stabilizer Heater	Flameco	1710-882	3.5 MMBtu/hr	3.5 MMBtu/hr	2018 2018	N/A STAB3	31000404	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit □ To Be Modified To be Replaced
LH1	Line Heater	JW Williams	W03967458-	1 MMBtu/hr	1 MMBtu/hr	2014 2020	N/A LH1	31000404	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit □ To Be Modified To be Replaced
SSM	SSM Emissions	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	31088811	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit □ To Be Modified To be Replaced
FUG	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A Post-2015	N/A N/A	31088811	N/A	□ Existing (unchanged) To be Removed New/Additional Replacement Unit □ To Be Modified To be Replaced
RB1	Glycol Reboiler	Flameco	1803-852	0.5 MMBtu/hr	0.5 MMBtu/hr	2018 2018	N/A RB1	31000228	N/A	 ☑ Existing (unchanged) New/Additional □ To Be Modified To be Removed Replacement Unit □ To Be Modified
DEHY1	TEG Dehydrator	Valerus	SCOP-0	21 MMscfd	21 MMscfd	2018 2018	COND1/RB1	31000227	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit □ To Be Modified To be Replaced
RB2	Glycol Reboiler	Flameco	1803-850	0.5 MMBtu/hr	0.5 MMBtu/hr	2018 2018	N/A RB2	31000228	N/A	 ☑ Existing (unchanged) New/Additional □ To Be Modified To be Removed Replacement Unit □ To Be Modified
DEHY2	TEG Dehydrator	Valerus	SCOP45-0	21 MMscfd	21 MMscfd	2018 2018	COND2/RB2 RB2	31000227	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit ☐ To Be Modified To be Replaced
RB3	Glycol Reboiler	Flameco	1803-854	0.75 MMBtu/hr	0.75 MMBtu/hr	2018 2018	N/A RB3	31000228	N/A	 ☑ Existing (unchanged) To be Removed New/Additional Replacement Unit □ To Be Modified To be Replaced
DEHY3	TEG Dehydrator	Valerus	SCOP34-0	41 MMscfd	41 MMscfd	2018 2018	COND3/RB3 RB3	31000227	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit □ To Be Modified To be Replaced
RB4	Glycol Reboiler	Flameco	1803-713	0.75 MMBtu/hr	0.75 MMBtu/hr	2018 2018	N/A RB4	31000228	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit □ To Be Modified To be Replaced
DEHY4	TEG Dehydrator	Valerus	SCOP47-0	41 MMscfd	41 MMscfd	2018 2018	COND4/RB4 RB4	31000227	N/A	 ☑ Existing (unchanged) To be Removed New/Additional Replacement Unit □ To Be Modified To be Replaced

Unit		Manufacturer/Make		Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-	RICE Ignition	
Number ¹	Source Description	/Model	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	Type (CI, SI, 4SLB, 2SLB) ⁴	For Each Piece of Equipment, Check Onc
VRT1	Vapor Recovery	N/A	N/A	N/A	N/A	2020	VRU1/VRU2	N/A	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit
VKII	Tower	IN/A	IN/A	IV/A	IV/A	2020	FL2/FL3	IN/A	IN/A	☐ To Be Modified To be Replaced
VRU1	Vapor Recovery	AIR MAC	18317-101	N/A	N/A	2020	FL2/FL3	N/A	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit
VKUI	Unit (Electric)	AIR MAC	1831/-101	N/A	N/A	2020	N/A	IN/A	IN/A	To Be Modified To be Replaced
VRU2	Vapor Recovery	AID MAG	10421 101	N/A	N/A	2022	FL2/FL3	N/A	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit
VRU2	Unit (Redundant)	AIR MAC	18421-101	N/A	N/A	2022	N/A	N/A	N/A	New/Additional Replacement Unit □ To Be Modified To be Replaced
110112	Vapor Recovery	DI d	RD80D2204	27/4	27/4	2022	FL2/FL3	27/4	27/4	☐ Existing (unchanged) To be Removed
VRU3	Unit (Redundant)	Platinum	3	N/A	N/A	2022	N/A	N/A	N/A	☑ New/Additional Replacement Unit □ To Be Modified To be Replaced
WID GVV	Water Degas		A154-	27/4	37/4	2020	VRU1/VRU2	37/1	27/1	☑ Existing (unchanged) To be Removed
WDGV1	Vessel	Cameron	4113342	N/A	N/A	2020	FL2/FL3	N/A	N/A	New/Additional Replacement Unit ☐ To Be Modified To be Replaced
O.Y.G.I	Overhead Gas	****	*******	27/4	37/4	2014	VRU1/VRU2	27/1	27/1	☑ Existing (unchanged) To be Removed
OHS1	Scrubber	K&K	V17510-A	N/A	N/A	2018	FL2/FL3	N/A	N/A	New/Additional Replacement Unit ☐ To Be Modified To be Replaced
		_				2/2022	N/A			☑ Existing (unchanged) To be Removed
FL2	Flare	Zeeco	31707-001	3 MMscfd	3 MMscfd	2/2022	FL2	31000160	N/A	New/Additional Replacement Unit ☐ To Be Modified To be Replaced
						2/2022	N/A			☑ Existing (unchanged) To be Removed
FL3	Flare	Zeeco	TBD	3 MMscfd	3 MMscfd	2/2022	FL3	31000160	N/A	New/Additional Replacement Unit ☐ To Be Modified To be Replaced
	Malfunction					N/A	N/A			☑ Existing (unchanged) To be Removed
MF	Emissions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	New/Additional Replacement Unit ☐ To Be Modified To be Replaced
1		to unit numbers in the n	L					l	l	10 be wounted 10 be replaced

Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set. "4SLB" means four stroke lean burn engine, "4SRB" means four stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Exempted Equipment (20.2.72 NMAC)

All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 5, Calculations. Unit & stack numbering must be consistent throughout the application package.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity Capacity Units	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ¹ Date of Installation /Construction ¹	For Each Piece of Equipment, Check Onc
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced Existing (unchanged) To be Removed
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced Existing (unchanged) To be Removed
							New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced Existing (unchanged) To be Removed
							New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced Existing (unchanged) To be Removed
							New/Additional Replacement Unit To Be Modified To be Replaced
							New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced

¹ Specify date(s) required to determine regulatory applicability.

Form Revision: 7/18/2019 Table 2-B: Page 1 Printed 8/2/2022 8:31 AM

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
FL1	Flare	2022	VOC/HAP	HP Gas (Compressor downtime, blowdowns and starter vents)	98	Manufacturer
COND1	BTEX Condenser	2018	VOC/HAP	DEHY1	33	Promax
COND2	BTEX Condenser	2018	VOC/HAP	DEHY2	33	Promax
COND3	BTEX Condenser	2018	VOC/HAP	DEHY3	33	Promax
COND4	BTEX Condenser	2018	VOC/HAP	DEHY4	33	Promax
RB1	Glycol Reboiler	2018	VOC/HAP	DEHY1	98	Engineering Design
RB2	Glycol Reboiler	2018	VOC/HAP	DEHY2	98	Engineering Design
RB3	Glycol Reboiler	2018	VOC/HAP	DEHY3	98	Engineering Design
RB4	Glycol Reboiler	2018	VOC/HAP	DEHY4	98	Engineering Design
VRU1	Vapor Recovery Unit	2020	VOC/HAP	OT1-OT5, ST1-ST2, GB1-GB2, WT1-WT8, WDGV1, OHS1	100	Engineering Design
CAT1	Catalyst	TBD	CO, VOC, HCOH, HAP	ENG1	78.1, 25.5, 78.95, 25.5	Manufacturer
CAT2	Catalyst	2018	CO, VOC, HCOH, HAP	ENG2	25.5 78.1, 25.5, 78.95, 25.5	Manufacturer
CAT3	Catalyst	2019	CO, VOC, HCOH, HAP	ENG3	25.5 78.1, 25.5, 78.95, 25.5	Manufacturer
CAT4	Catalyst	2019	CO, VOC, HCOH, HAP	ENG5	25.5 78.1, 25.5, 78.95, 25.5	Manufacturer
CAT5	Catalyst	2019	CO, VOC, HCOH, HAP	ENG6	25.5 78.1, 25.5, 78.95, 25.5	Manufacturer
CAT6	Catalyst	2020	CO, VOC, HCOH, HAP	ENG7	78.1, 25.5, 78.95,	Manufacturer
CAT7	Catalyst	2019	CO, VOC, HCOH, HAP	ENG8	25.5 78.1, 25.5, 78.95, 25.5	Manufacturer
CAT8	Catalyst	2019	CO, VOC, HCOH, HAP	ENG5	25.5 78.1, 25.5, 78.95, 25.5	Manufacturer
CAT9	Catalyst	TBD	CO, VOC, HCOH, HAP	ENG6	25.5 78.1, 25.5, 78.95, 25.5	Manufacturer
CAT10	Catalyst	TBD	CO, VOC, HCOH, HAP	ENG7	78.1, 25.5, 78.95,	Manufacturer
CAT11	Catalyst	TBD	CO, VOC, HCOH, HAP	ENG8	25.5 78.1, 25.5, 78.95, 25.5	Manufacturer
CAT12	Catalyst	TBD	CO, VOC, HCOH, HAP	ENG7	78.1, 25.5, 78.95, 25.5	Manufacturer
FL2	Flare	2022	VOC/HAP	OT1-OT5, ST1-ST2, GB1-GB2, WT1-WT8, WDGV1, OHS1	98	Manufacturer
FL3	Flare	2022	VOC/HAP	OT1-OT5, ST1-ST2, GB1-GB2, WT1-WT8, WDGV1, OHS1	98	Manufacturer
VRU2	Vapor Recovery Unit	2019	VOC/HAP	OT1-OT5, ST1-ST2, GB1-GB2, WT1-WT8_WDGV1_OHS1	100	Engineering Design
¹ List each co	ontrol device on a separate line. For each control device, list all	emission units	controlled by the control device	2.		

Table 2-D: Maximum Emissions (Consider federally enforceable controls under normal operating conditions)

This table must be filled out

Maximum Federally Enforceable Emissions are the emissions at maximum capacity with only federally enforceable methods of reducing emissions. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum facility capacity without pollution controls for 8760 hours per year. Account for federally enforcable controls, such as an NSPS or MACT regulation. Consider federally enforceable controls due to permitting. List Hazardous Air Pollutants (HAP) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

IIn:4 No	N	Ox	C	0	V(OC	S	Ox	PM	[10 ¹	PM	2.5 ¹	Н	$_{2}S$	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	1.52	6.66	7.33	32.11	3.86	16.92	0.13	0.58	0.12	0.51	0.12	0.51	-		0.0	0.0
ENG2	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
ENG3	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65	-		0.0	0.0
ENG4	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
ENG5	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
ENG6	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
ENG7	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
ENG8	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
ENG9	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
ENG10	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
ENG11	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
ENG12	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
OT1					40.27	141.11										
OT2					40.27	141.11										
OT3					40.27	141.11										
OT4					40.27	141.11										
OT5					433.53	1519.11										
WT1					0.98	4.29										
WT2					0.98	4.29										
WT3					0.98	4.29										
WT4					0.98	4.29										
WT5					0.98	4.29										
WT6					0.98	4.29										
WT7					0.98	4.29										
WT8					0.98	4.29										
GB1					32.96	144.37										
GB2					32.96	144.37										
ST1					1.91	8.37										
ST2					1.91	8.37										
FL1	0.04	0.18	0.08	0.35	0.06	0.28	0.00	0.01	0.00	0.00	0.00	0.00				
STAB1	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.03	0.14				
STAB2	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.03	0.14				
FUG					3.127982	13.70056										

Form Revision: 7/18/2019 Table 2-D: Page 1 Printed 8/2/2022 8:31 AM

Table 2-D: Maximum Emissions (Consider federally enforceable controls under normal operating conditions)

This table must be filled out

Maximum Federally Enforceable Emissions are the emissions at maximum capacity with only federally enforceable methods of reducing emissions. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum facility capacity without pollution controls for 8760 hours per year. Account for federally enforcable controls, such as an NSPS or MACT regulation. Consider federally enforceable controls due to permitting. List Hazardous Air Pollutants (HAP) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	C	0	V(OC	SO	Ox	PM	[10 ¹	PM	2.5 ¹	Н	$_{2}S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
DEHY1					20.77	90.98										
RB1	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.01	0.04	1		-	
DEHY2					20.77	90.98										
RB2	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.01	0.04	-			
LH1	0.12	0.53	0.10	0.45	0.01	0.03	0.00	0.00	0.01	0.04	0.01	0.04				
OHS	-			-	1915.31	6711.24			-		-	-	1		-	
WDGV1					344.06	1205.59										
FL2	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.00	-		-	
FL3	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.00	1		-	
RB3	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.01	0.06	1	-	1	
DEHY3	-			-	36.30	158.98			-		-		-		-	
RB4	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.01	0.06	-			
DEHY4	1			1	36.30	158.98		-	1		1	1	1	-	1	
STAB3	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.03	0.14	-			
VRT	-			-	434.02	1520.81			-						-	
Totals	17.3	76.0	133.9	586.7	3540.2	12625.6	2.0	8.8	1.9	8.3	1.9	8.3				

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source.

Form Revision: 7/18/2019 Table 2-D: Page 2 Printed 8/2/2022 8:31 AM

Table 2-E: Requested Allowable Emissions

Enter an allowable emission limit for each piece of equipment with either an uncontrolled emission rate greater than 1 lb/hr or 1 ton per year (tpy) or a controlled emission rate of any amount. For H2S please represent all emissions even if they are less than 1 lb/hr and 1 tpy. If selecting combustion SSM emissions, enter lb/hr and tpy values. If selecting up to 10 tpy of Malfunction VOC emissions, enter tpy values. Combustion emissions from malfunction events are not authorized under this permit. Fill all cells in this table with the emissions in lb/hr and tpy, or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Total the emissions from all equipment in the Totals row. Add additional rows as necessary. Unit & stack numbering must be consistent throughout the application package. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

	N	Ox	C	(O	V	OC	S	Ox	PM	[10 ¹	PM	[2.5 ¹	Н	₂ S	L	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG2	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG3	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG4	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG5	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG6	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG7	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG8	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG9	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG10	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG11	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG12	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
OT1							Emis	sions repres	ented at FL2	2/FL3						
OT2							Emis	sions repres	ented at FL2	2/FL3						
OT3							Emis	sions repres	ented at FL2	2/FL3						
OT4								sions repres								
OT5								sions repres								
WT1								sions repres								
WT2								sions repres								
WT3								sions repres								
WT4								sions repres								
WT5								sions repres								
WT6								sions repres								
WT7								ssions repres								
WT8								sions repres								
GB1	Emissions represented at FL2/FL3 Emissions represented at FL2/FL3															
GB2											_					_
ST1								sions repres								
ST2							Emis	sions repres	ented at FL2	2/FL3						
FL1 (Normal)	0.04	0.18	0.08	0.35	0.06	0.28	0.00	0.01	0.00	0.00	0.00	0.00	0.0	0.0		

Table 2-E: Requested Allowable Emissions

Enter an allowable emission limit for each piece of equipment with either an uncontrolled emission rate greater than 1 lb/hr or 1 ton per year (tpy) or a controlled emission rate of any amount. For H2S please represent all emissions even if they are less than 1 lb/hr and 1 tpy. If selecting combustion SSM emissions, enter lb/hr and tpy values. If selecting up to 10 tpy of Malfunction VOC emissions, enter tpy values. Combustion emissions from malfunction events are not authorized under this permit. Fill all cells in this table with the emissions in lb/hr and tpy, or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Total the emissions from all equipment in the Totals row. Add additional rows as necessary. Unit & stack numbering must be consistent throughout the application package. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

Unit No.	NO	Ox	C	0	V(OC	SC	Ox	PM	[10 ¹	PM	2.51	Н	₂ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr								
FL2 (Normal)	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	1	
FL3 (Normal)	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.00	0.0	0.0		
STAB1	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.03	0.14	0.0	0.0		
STAB2	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.03	0.14	0.0	0.0		
STAB3	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.03	0.14				
FUG					3.13	13.70							0.0	0.0		
DEHY1					0.34	1.47							0.0	0.0		
RB1	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.01	0.04	0.0	0.0		
DEHY2					0.34	1.47							0.0	0.0		
RB2	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.01	0.04	0.0	0.0		
LH1	0.12	0.53	0.10	0.45	0.01	0.03	0.00	0.00	0.01	0.04	0.01	0.04	0.0	0.0		
Malfunction						10.00										
RB3	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.01	0.06				
DEHY3					0.59	2.58										
RB4	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.01	0.06				
DEHY4					0.59	2.58										
Totals	12.10	53.01	21.86	95.77	31.31	147.13	1.37	6.00	1.33	5.84	1.33	5.84	0.00	0.00		

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source.

Form Revision: 7/18/2019 Table 2-E: Page 2 Printed 8/2/2022 8:31 AM

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications

(https://www.env.nm.gov/agb/permit/agb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

(nttps://www		Ox		O	V(Ox		M ²		110 ²		(2.5^2)		₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FL1	199.18	6.20	397.63	12.37	309.29	9.62	0.00	0.00	8.55	0.27	8.55	0.27	8.55	0.27	-	-	-	-
FL2/FL3	14.18	1.51	28.30	3.02	67.56	7.26	0.00	0.00	0.36	0.04	0.36	0.04	0.36	0.04	-	-	-	-
SSM						10.00									-	-	-	-
Totals	213.35	7.71	425.93	15.39	376.85	26.88	0.00	0.00	8.91	0.30	8.91	0.30	8.91	0.30	-	-	-	-

For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

Form Revision: 6/14/2019Table 2-F: Page 1

Printed 8/2/2022 8:31 AM

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

☑ I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	C	0	V	OC	SO	Ox	P	M	PM	110	PM	12.5	H ₂ S or	r Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
,	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions.

Stack Type (Engine,			Height Above	Temp.	Flow Rate	Velocity	
Turbine, Flare, ECD, or Thermal Oxidizer Etc.)	Serving Unit Number(s) from Table 2-A	Orientation (H-Horizontal V=Vertical)	Ground (ft)	(F)	(acfs)	(ft/sec)	Inside Diameter (ft)
Engine	ENG1	Vertical	29.6	809	200	91.7	1.7
Engine	ENG2	Vertical	29.6	809	200	91.7	1.7
Engine	ENG3	Vertical	29.6	809	200	91.7	1.7
Engine	ENG4	Vertical	29.6	809	200	91.7	1.7
Engine	ENG5	Vertical	29.6	809	200	91.7	1.7
Engine	ENG6	Vertical	29.6	809	200	91.7	1.7
Engine	ENG7	Vertical	29.6	809	200	91.7	1.7
Engine	ENG8	Vertical	29.6	809	200	91.7	1.7
Engine	ENG9	Vertical	29.6	809	200	91.7	1.7
Engine	ENG10	Vertical	29.6	809	200	91.7	1.7
Engine	ENG11	Vertical	29.6	809	200	91.7	1.7
Engine	ENG12	Vertical	29.6	809	200	91.7	1.7
Flare	FL1 (Normal)	Vertical	70.0	832	0.1	65.6	1.0
Heater	STAB1	Vertical	30.0	700	11	8.0	1.9
Heater	STAB2	Vertical	30.0	700	10.8	8.0	1.9
Heater	STAB3	Vertical	30.0	700	11	8.0	1.9
Heater	RB1	Vertical	20.0	700	1.4	3.9	1.0
Heater	RB2	Vertical	20.0	700	1	3.9	1.0
Heater	LH1	Vertical	15.0	700	3.1	19.3	0.67
Flare	FL2 (Normal)	Vertical	35.0	832	0	65.6	1.0
Flare	FL3 (Normal)	Vertical	35.0	832	0.1	65.6	1.0
Heater	RB3	Vertical	20.0	700	2	6.8	1.0
Heater	RB4	Vertical	20.0	700	2.4	6.8	1.0

Table 2-I: Emission Rates for HAPs

HAP In the table below, report the potential emission rate for each HAP from each regulated emission unit listed in Table 1, only if the entire facility emits the HAP. For each such emission unit, HAP shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAP shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA. Include tank-flashing emissions estimates of HAP in this table. For each HAP listed, fill all cells in this table with the emission numbers or a "symbol. A "-" symbol indicates that emissions of this pollutant are not expected, or the pollutant is emitted in a quantity less than the threshold amounts described above. Add additional rows as necessary.

Stack No.	Unit No.(s)	Total	HAPs		ldehyde HAP		dehyde IAP		olein HAP	Provide Name Here		Name Here	Pollutant AP	Name Here	Pollutant e AP	Name Here	Pollutant e AP	Name Here	Pollutant e AP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	ENG1	0.35	1.54	0.17	0.72	0.11	0.50	0.07	0.31										
ENG2	ENG2	0.35	1.54	0.17	0.72	0.11	0.50	0.07	0.31										
ENG3	ENG3	0.35	1.54	0.17	0.72	0.11	0.50	0.07	0.31										
ENG4	ENG5	0.35	1.54	0.17	0.72	0.11	0.50	0.07	0.31										
ENG5	ENG6	0.35	1.54	0.17	0.72	0.11	0.50	0.07	0.31										
ENG6	ENG6	0.35	1.54	0.17	0.72	0.11	0.50	0.07	0.31										
ENG7	ENG7	0.35	1.54	0.17	0.72	0.11	0.50	0.07	0.31										
ENG8	ENG5	0.35	1.54	0.17	0.72	0.11	0.50	0.07	0.31										
ENG9	ENG6	0.35	1.54	0.17	0.72	0.11	0.50	0.07	0.31 0.31										
ENG10	ENG10	0.35	1.54	0.17	0.72	0.11	0.50	0.07											
ENG11	ENG11	0.35	1.54	0.17	0.72	0.11	0.50	0.07	0.31	0.31									
ENG11	ENG11	0.35	0.35 1.54 0.17 0.72 0.11 0.50 0.07 0.31																
OT1	FL1								Emissi	ions repres	ented at F	L2/FL3							
OT2	FL1									ions repres									
OT3	FL1								Emissi	ions repres	ented at F	L2/FL3							
OT4	FL1								Emissi	ions repres	ented at F	L2/FL3							
OT5	FL1									ions repres									
WT1	FL1									ions repres									
WT2	FL1								Emissi	ions repres	ented at F	L2/FL3							
WT3	FL1									ions repres									
WT4	FL1									ions repres									
WT5	FL1									ions repres									
WT6	FL1		Emissions represented at FL2/FL3																
WT7	FL1									ions repres									
WT8	FL1									ions repres									
GB1	FL1									ions repres									
GB2	FL1									ions repres									
ST1	FL1								Emissi	ions repres	ented at F	L2/FL3							

Stack No.	Unit No.(s)	Total	HAPs		ldehyde HAP		dehyde IAP		olein HAP	Name Here	Pollutant : AP	Provide Name Here H		Name Here	Pollutant e AP	Name Here	Pollutant • AP	Name Her	Pollutant e AP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ST2	FL1								Emissi	ons repres	ented at F	L2/FL3							
FL1	FL1	6.48	0.21																
STAB1	STAB1	0.01	0.03																
STAB2	STAB2	0.01	0.03																
FUG	FUG	0.09	0.39																
DEHY1	DEHY1	0.03	0.15																
RB1	RB1	0.0	0.0																
DEHY2	DEHY2	0.03	0.15																
RB2	RB2	0.0	0.0																
LH1	LH1	0.00	0.01																
FL2/FL3	FL2/FL3	2.2	0.3																
MF	MF	0.00	0.00																
STAB3	STAB3	0.0	0.0																
DEHY3	DEHY3	0.06	0.26																
RB3	RB3	0.0	0.0																
DEHY4	DEHY4	0.06	0.26																_
RB4	RB4	0.0	0.0								_								
Tot	als:	13.21	20.22	2.0	8.7	1.4	6.0	0.8	3.7										

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage (scf)	Annual Usage (MMscf)	% Sulfur	% Ash
ENG1	Natural Gas	Treated Field Gas	1262	11794	103.3	0	0
ENG2	Natural Gas	Treated Field Gas	1262	11794	103.3	0	0
ENG3	Natural Gas	Treated Field Gas	1262	11794	103.3	0	0
ENG4	Natural Gas	Treated Field Gas	1262	11794	103.3	0	0
ENG5	Natural Gas	Treated Field Gas	1262	11794	103.3	0	0
ENG6	Natural Gas	Treated Field Gas	1262	11794	103.3	0	0
ENG7	Natural Gas	Treated Field Gas	1262	11794	103.3	0	0
ENG8	Natural Gas	Treated Field Gas	1262	11794	103.3	0	0
ENG9	Natural Gas	Treated Field Gas	1262	11794	103.3	0	0
ENG10	Natural Gas	Treated Field Gas	1262	11794	103.3	0	0
ENG11	Natural Gas	Treated Field Gas	1262	11794	103.3	0	0
ENG12	Natural Gas	Treated Field Gas	1262	11794	103.3	0	0
FL1	Natural Gas	Treated Field Gas	1262	230	2.0	0	0
STAB1	Natural Gas	Treated Field Gas	1262	2773	24.3	0	0
STAB2	Natural Gas	Treated Field Gas	1262	2773	24.3	0	0
RB1	Natural Gas	Process Gas from Dehydrator	2585.7	357	3.1	0	0
RB2	Natural Gas	Process Gas from Dehydrator	2586	357	3.1	0	0
LH1	Natural Gas	Treated Field Gas	1262	792	6.9	0	0
FL2	Natural Gas	Treated Field Gas	1262	360	3.2	0	0

Form Revision: 9/20/2016 Table 2-J: Page 1 Printed 8/2/2022 8:31 AM

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage (scf)	Annual Usage (MMscf)	% Sulfur	% Ash
FL3	Natural Gas	Treated Field Gas	1262	360	3.2	0	0
STAB3	Natural Gas	Treated Field Gas	1262	2773	24.3	0	0
RB3	Natural Gas	Process Gas from Dehydrator	2580	628	5.5	0	0
RB4	Natural Gas	Process Gas from Dehydrator	2580	628	5.5	0	0

Form Revision: 9/20/2016 Table 2-J: Page 2 Printed 8/2/2022 8:31 AM

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stora	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
OT1-OT4	40400311	Condensate	Condensate	6.28	52.12	98.75	11.70	108.77	13.28
OT5	40400311	Condensate	Condensate	6.03	50.67	97.51	11.97	107.64	13.53
ST1-ST2	40400311	Slop Oil/Water	Oily Water	6.33	47.35	109.97	8.02	120.10	8.99
WT1-WT8	40400315	Produced Water	Produced Water	8.22	28.26	109.83	11.12	119.96	12.30

Form Revision: 7/8/2011 Table 2-K: Page 1 Printed 8/2/2022 8:31 AM

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Unit and stack numbering must correspond throughout the application package.

Tank No.	Date Installed	Materials Stored	Roof Type	Seal Type	Capacity (bbl)	Diameter (M)	Vapor Space	Co	lor	Separator Pressure	Annual Throughput	Turn- overs
					()	()	(M)	Roof	Shell	(psia)	(gal/yr)	(per year)
			Vertical - Fixed Roof (FX)	Select one								
OT1	2018	Condensate	FX	N/A	1,000	4.7	9.1	Green	Green	91.28	68,984,910	1642.5
OT2	2018	Condensate	FX	N/A	1,000	4.7	9.1	Green	Green	91.28	68,984,910	1642.5
OT3	2018	Condensate	FX	N/A	1,000	4.7	9.1	Green	Green	91.28	68,984,910	1642.5
OT4	2018	Condensate	FX	N/A	1,000	4.7	9.1	Green	Green	91.28	68,984,910	1642.5
OT5	2018	Off-Specification Condensate	FX	N/A	1,000	6.6	4.7	Green	Green	60.28	9,095,520	216.6
GB1	2021	Produced Water/Condensate	FX	N/A	1,000	4.7	9.1	Green	Green	14.28	233,331,710	5555.5
GB2	2021	Produced Water/Condensate	FX	N/A	1,000	4.7	9.1	Green	Green	14.28	233,331,710	5555.5
ST1	2018	Slop Oil	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	1,945,193	46.3
ST2	2018	Slop Oil	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	1,945,193	46.3
WT1	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,043,618	1358.2
WT2	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,043,618	1358.2
WT3	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,043,618	1358.2
WT4	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,043,618	1358.2
WT5	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,043,618	1358.2
WT6	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,043,618	1358.2
WT7	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,043,618	1358.2
WT8	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,043,618	1358.2

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

		<u> </u>				
Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Rive	eted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$^{3} = 42.0 \text{ gal}$				BL: Black	
					OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Materi	al Processed		N	Iaterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Natural Gas	Hydrocarbon Gas	Gas	120 MMSCFD	Natural Gas	Hydrocarbon Gas	Gas	120 MMSCFD
Oil (Oil Inlet)	Hydrocarbon Liquids	Liquid	18503 BOPD	Oil (Tank Throughput)	Hydrocarbon Liquids	Liquid	18503 BOPD
Produced Water (Inlet to GB)	Hydrocarbon Liquids	Liquid	30068 BWPD	Produced Water (Inlet to GB)	Hydrocarbon Liquids	Liquid	30068 BWPD

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
	Not applicable								

Form Revision: 7/8/2011 Table 2-N: Page 1 Printed 8/2/2022 8:31 AM

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
	Not applicable							

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit.

Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs 1	1	298	25	22,800	footnote 3						
ENC1	mass GHG	8237.99	0.01	0.14							8238	
ENG1	CO ₂ e	8237.99	4.28	3.59								8246
ENG2	mass GHG	8237.99	0.01	0.14							8238	
ENG2	CO ₂ e	8237.99	4.28	3.59								8246
ENG3	mass GHG	8237.99	0.01	0.14							8238	
ENGS	CO ₂ e	8237.99	4.28	3.59								8246
ENG4	mass GHG	8237.99	0.01	0.14							8238	
ENG4	CO ₂ e	8237.99	4.28	3.59								8246
ENG5	mass GHG	8237.99	4.28	0.14							8242	
ENGS	CO ₂ e	8237.99	4.28	3.59								8246
ENG6	mass GHG	8237.99	4.28	0.14							8242	
ENGO	CO ₂ e	8237.99	4.28	3.59								8246
ENG7	mass GHG	8237.99	4.28	0.14							8242	
LITO	CO ₂ e	8237.99	4.28	3.59								8246
ENG8	mass GHG	8237.99	4.28	0.14							8242	
LITGO	CO ₂ e	8237.99	4.28	3.59								8246
ENG9	mass GHG	8237.99	4.28	0.14							8242	
LINGS	CO ₂ e	8237.99	4.28	3.59								8246
ENG10	mass GHG	8237.99	4.28	0.14							8242	
21,010	CO ₂ e	8237.99	4.28	3.59								8246
ENG11	mass GHG	8237.99	4.28	0.14							8242	
21,011	CO ₂ e	8237.99	4.28	3.59								8246
ENG12	mass GHG	8237.99	4.28	0.14							8242	
	CO ₂ e	8237.99	4.28	3.59								8246
FL1	mass GHG	148.75	-	0.00							149	
(Pilot)	CO ₂ e	148.75	-	0.06							1551	149
FL1	mass GHG	4734.12	-	19.75							4754	5220
	CO ₂ e	4734.12	-	493.68							222	5228
FL2	mass GHG	232.82	-	0.00							233	222
(Pilot)	CO ₂ e	232.82	-	0.10							222	233
FL3	mass GHG	232.82	-	0.00							233	222
(Pilot)	CO ₂ e	232.82	-	0.10							2072	233
FL2/ FL3	mass GHG	2070.12	-	1.43							2072	2106
rls	CO ₂ e	2070.12	- 0.00	35.64 0.03							1794	2106
STAB1	mass GHG	1793.57	0.00								1/94	1705
	CO ₂ e	1793.57	1.01	0.85								1795

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit.

Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \square By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²						Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs 1	1	298	25	22,800	footnote 3							
STAB2	mass GHG	1793.57	0.00	0.03								1794	
STADE	CO ₂ e	1793.57	1.01	0.85									1795
STAB3	mass GHG	1793.57	0.00	0.03								1794	
STADS	CO2e	1793.57	1.01	0.85									1795
FUG	mass GHG	-	-	17.63								18	
100	CO ₂ e	-	-	440.71									441
RB1	mass GHG	256.22	0.00	0.00								256	
KD1	CO2e	256.22	0.14	0.12									256
RB2	mass GHG	256.22	0.00	0.00								256	
KD2	CO ₂ e	256.22	0.14	0.12									256
RB3	mass GHG	384.34	0.00	0.01								384	
КВС	CO2e	384.34	0.22	0.18									385
RB4	mass GHG	384.34	0.00	0.01								384	
	CO ₂ e	384.34	0.22	0.18									385
DEHY1	mass GHG	0.99	-	0.61								2	
DEIIII	CO2e	0.99	-	15.29									16
DEHY2	mass GHG	0.99	-	0.61								2	
221112	CO ₂ e	0.99	-	15.29									16
DEHY3	mass GHG	0.03	-	1.08								1	
DEIII	CO2e	0.03	-	27.01									27
DEHY4	mass GHG	0.03	-	1.08								1	
	CO ₂ e	0.03	-	27.01									27
LH1	mass GHG	512.45	0.00	0.01								512	
	CO2e	512.45	0.29	0.24									513
Total	mass GHG											105291	
1 CIVID (CL	CO ₂ e	No. 4 4				5. 1 5. T.11. A 1 . C	40 CED + 0			1 1- 40 CED (10 to		114608

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a**mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3 Application Summary

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **Process Summary** shall include a brief description of the facility and its processes.

Startup, Shutdown, and Maintenance (SSM) routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

ConocoPhillips Company (COP) is submitting this New Source Review (NSR) permit application for the Zia Hills Central Facility in accordance with 20.2.72.202.D.1 NMAC. COP plans to make the following changes:

1. Replace existing Caterpillar 3516J engine (ENG1) with a Caterpillar 3606A4 engine. This replacement is being made to ensure compliance with 20.2.50 NMAC.

- 2. Add five (5) Caterpillar 3606A4 engines (ENG4, ENG9, ENG10, ENG11, ENG12).
- 3. Update fugitive emissions (FUG) to account for new engines.
- 4. Increase SSM VOC emissions to ten (10) tons per year.
- 5. Add a third vapor recovery unit (VRU3)

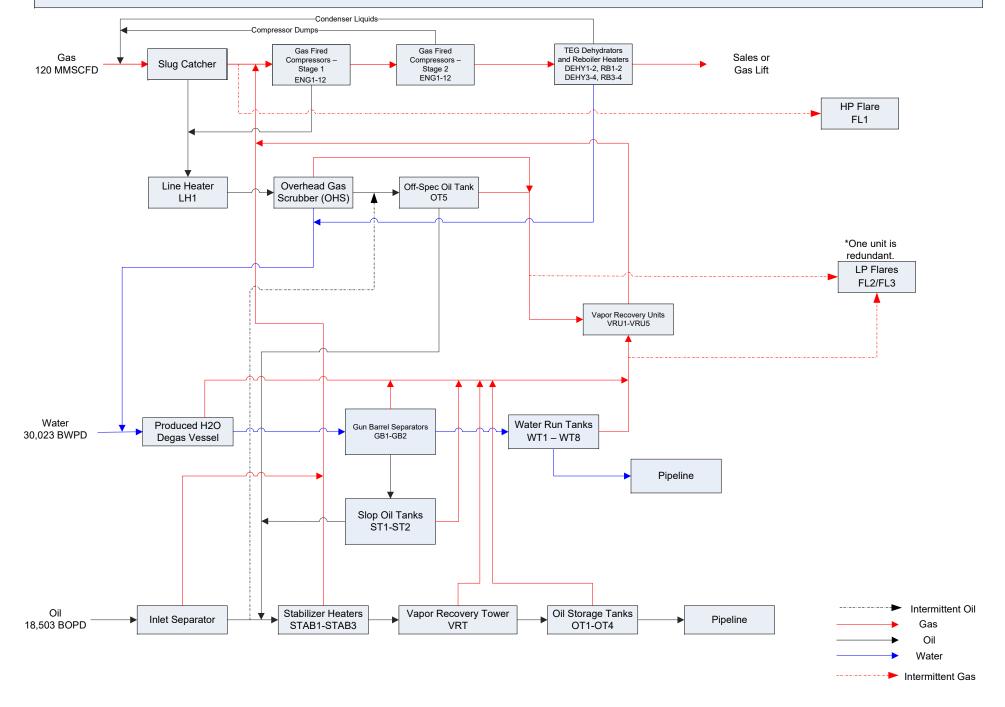
Oil, gas, and water flow separately into the site. Gas is dehydrated then reinjected for gas lift or compressed to the sales line. Oil is stabilized then temporarily stored in tanks before being sold via pipeline. Water is processed, then temporarily stored before being shipped offsite via pipeline. A detailed process description is provided in Section 10.

Emissions associated with low pressure compressor or VRU downtime are represented at FL-2 and FL-3 and included with normal operations. Emissions associated with engine maintenance (blowdown and starter vents) are routed to FL-1 and included with SSM emissions. Ten (10) tons of VOC emissions related to miscellaneous SSM activities and ten (10) tons related to malfunctions are also included.

Form-Section 3 last revised: 8/15/2011 Section 3, Page 1 Saved Date: 8/10/2022

Section 4 Process Flow Sheet

Section 4


Process Flow Sheet

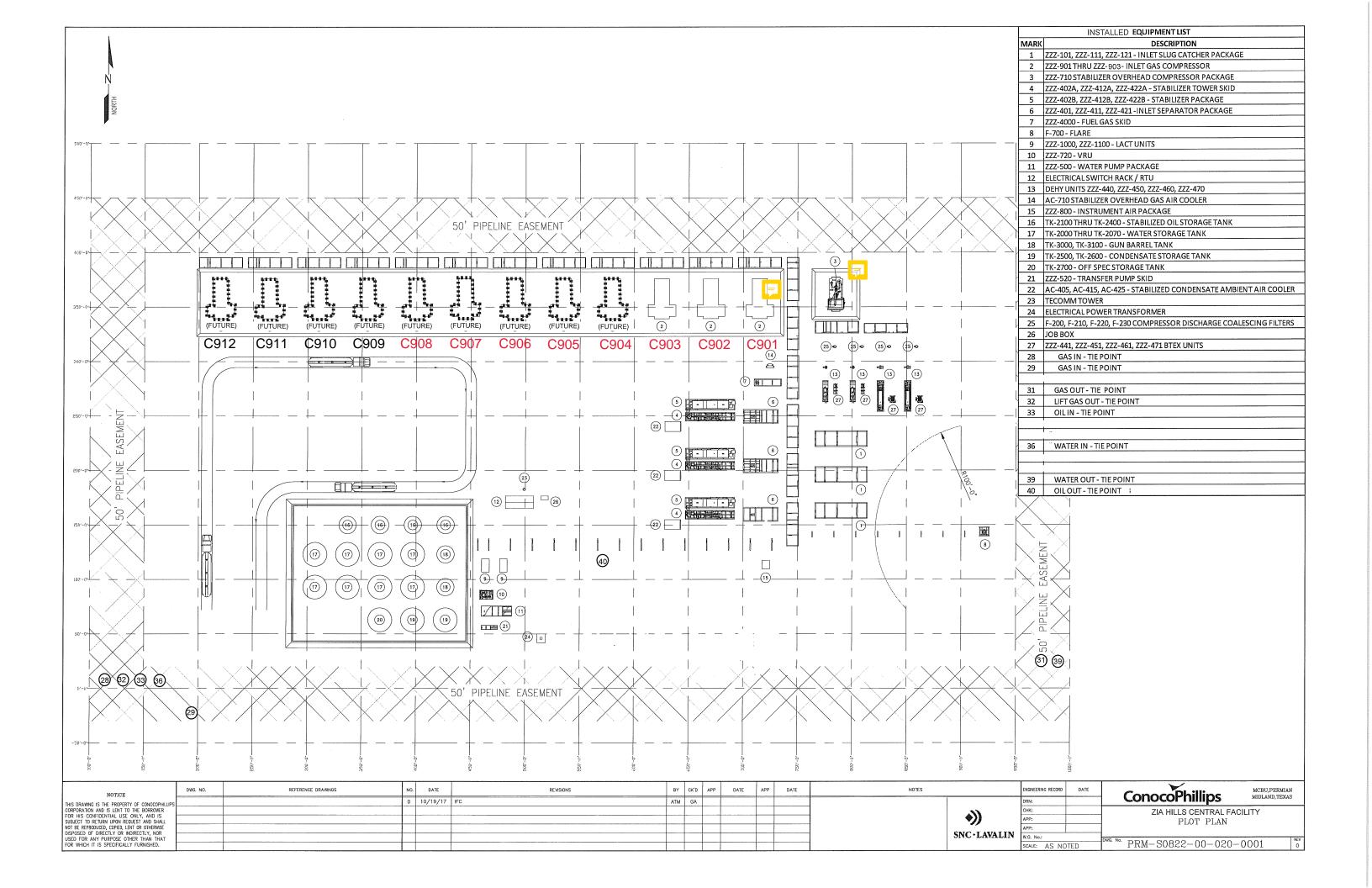
A process flow sheet	and/or block	diagram	indicating	the	individual	equipment,	all	emission	points	and	types	of	control
applied to those points.	The unit num	bering sy	stem shoul	ld be	consistent	throughout	this	application	n.				

A process flow sheet is provided.

Form-Section 4 last revised: 8/15/2011 Section 4, Page 1 Saved Date: 7/29/2022

Zia Hills Central Facility Process Flow Diagram

Section 5 Plot Plan


Section 5

Plot Plan Drawn To Scale

A plot plan drawn to scale showing emissions points, roads, structures, tanks, and fences of property owned, leased, or un-	der
direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The section 1-D.12 is a control of the applicant.	The
unit numbering system should be consistent throughout this application.	

A plot plan is provided.

Form-Section 5 last revised: 8/15/2011 Section 5, Page 1 Saved Date: 7/29/2022

Section 6 Calculations

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

- **B.** At least 5 significant figures shall be retained in all intermediate calculations.
- C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:
 - (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
 - (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
 - (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
 - (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

Form-Section 6 last revised: 5/3/16 Section 6, Page 1 Saved Date: 7/29/2022

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Heater (LH1)

Emission rates for NOx, CO, VOC, PM, and HAP were calculated using AP-42 factors for external natural gas combustion sources, Table 1.4-1 and 1.4-2. PM₁₀ and PM_{2.5} emissions are set equal to PM emissions as a conservative measure. SO₂ emissions were calculated based on the units' fuel consumption and a maximum sulfur content of 5 gr/100 scf.

Stabilizer Heaters (STAB1-STAB3)

Stabilizer heater combustion emissions for NOx, CO, VOC, PM, and HAP were calculated using AP-42 factors for external natural gas combustion sources, Table 1.4-1 and 1.4-2. PM_{10} and $PM_{2.5}$ emissions are set equal to PM emissions as a conservative measure. SO_2 emissions were calculated based on the units' fuel consumption and a maximum sulfur content of 5 gr/100 scf. Note that only two of the stabilizers will be operated at any given time.

Oil Storage Tanks (OT1-OT4)

Flashing, working and breathing losses were estimated using Promax, assuming a maximum hourly throughput of based on a production rate of 18,503 BOPD. VRU1-VRU3 are used to capture tank vapors. During VRU downtime (263 hours), flares (FL2/FL3) with a control efficiency of 98% are used to reduce tank emissions. Oil is piped offsite.

Slop Oil Storage Tanks (ST1-ST2)

Flashing, working and breathing losses were estimated using Promax, assuming a throughput of 254 BOPD. VRU1-VRU3 are used to capture tank vapors. During VRU downtime (263 hours), flares (FL2/FL3) with a control efficiency of 98% are used to reduce tank emissions. Oil is routed to the inlet of the stabilizers.

Off-Specification Oil Storage Tank (OT5)

Flashing, working, and breathing losses were estimated using Promax. COP assumed a throughput of 593 BOPD per tank. VRU1-VRU3 are used to capture tank vapors. During VRU downtime (263 hours), flares (FL2/FL3) with a control efficiency of 98% are used to reduce tank emissions. Oil is returned to the stabilizers for further treatment.

Gun Barrel Separators (GB1-GB2)

Flashing and working and breathing emissions from the oil storage tanks were estimated using Promax, assuming a throughput of 30,023 BWPD. VRU1-VRU3 are used to capture tank vapors. During VRU downtime (263 hours), flares (FL2/FL3) with a control efficiency of 98% are used to reduce tank emissions. Water then flows to the water tanks, while any residual oil flows to ST1-ST2.

Water Tanks (WT1-WT8)

Working and breathing losses from all tanks were estimated using Promax, assuming a throughput of 30,023 BWPD. Flashing occurs in the gun barrel separators. VRU1-VRU3 are used to capture tank vapors. During VRU downtime (263 hours), flares (FL2/FL3) with a control efficiency of 98% are used to reduce tank emissions. Water is piped offsite.

High Pressure Flare (FL1)

The flare uses a continuously lit pilot. Emission rates for NO_x and CO are calculated using factors from TNRCC. H_2S , SO_2 and VOC emissions were calculated based on the gas analysis. Emission rates for NO_x and CO are calculated using factors from TNRCC. H_2S , SO_2 and VOC emissions were calculated based on the gas analysis. A VOC control efficiency of 98% was used.

Low Pressure Flares (FL2/FL3)

This is a redundant flare system. The flares use a continuously lit pilot. Emission rates for NO_x and CO are calculated using factors from TNRCC. H_2S , SO_2 and VOC emissions were calculated based on the gas analysis. Emission rates for NO_x and CO are calculated using factors from TNRCC. H_2S , SO_2 and VOC emissions were calculated based on the gas analysis. A VOC control efficiency of 98% was used.

Fugitives (FUG)

Fugitives for the facility were calculated in EPA/API average emission factors.

Compressor Engines (ENG1-ENG12)

Emission factors used for the engines are a combination of manufacturer's data and AP-42 Section 3.2 emission factors. SO₂ emissions were calculated based on the units' fuel consumption and a maximum sulfur content of 5 grains per 100 standard cubic feet (5 gr/100 scf).

Triethylene Glycol Dehydrators (DEHY1-DEHY4, RB1-RB4)

There are two (2) dehydrators processing approximately 21 MMscfd (DEHY1-DEHY2) each and two (2) dehydrators processing approximately 41 MMscfd (DEHY3-DEHY4). The dehydrators utilize flash tanks and condensers to minimize emissions. Flash tank vapors and any vapors remaining after the condenser are used as fuel in the glycol regeneration heaters (RB1-RB4). Emissions were estimated using Promax.

Emission rates for NOx, CO, VOC, PM, and HAP from RB1-RB4 were calculated using AP-42 factors for external natural gas combustion sources, Table 1.4-1 and 1.4-2. PM_{10} and $PM_{2.5}$ emissions are set equal to PM emissions as a conservative measure. SO_2 emissions were calculated based on the units' fuel consumption and a maximum sulfur content of 5 gr/100 scf. Emissions were conservatively based on the assumption the higher Btu gas from the condenser was burned 8,760 hours per year.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

- 1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.
- **2.** GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 Mandatory Greenhouse Gas Reporting.
- 3. Emissions from routine or predictable start up, shut down, and maintenance must be included.
- **4.** Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **short** tons per year and represent each emission unit's Potential to Emit (PTE).
- **5.** All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.
- **6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following ☑ By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009
 or most recent version.
- Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 Mandatory Greenhouse Reporting requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Form-Section 6 last revised: 5/3/16 Section 6, Page 4 Saved Date: 7/29/2022

ZIA HILLS CENTRAL FACILITY

Facility Emissions Summary

CATERPILLAR 3606A4 ULB ENGINE EN CATERPILLAR 3606A4 ULB ENGINE EN CATERPILLAR 3606A4 ULB ENGINE EN	G1	NUMBER ENG1	lb/hr	TPY	lb/hr	TPY	11. //	TDM/	** **	mm.	116/6				
CATERPILLAR 3606A4 ULB ENGINE EN		ENG1				***	lb/hr	TPY	lb/hr TPY		lb/hr	TPY	lb/hr	TPY	TPY
	G2	ENGI	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.35	1.54	8,246
CATERPILLAR 3606A4 ULB ENGINE EN		ENG2	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.35	1.54	8,246
	G3	ENG3	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.35	1.54	8,246
CATERPILLAR 3606A4 ULB ENGINE EN	G4	ENG4	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.35	1.54	8,246
CATERPILLAR 3606A4 ULB ENGINE EN	G5	ENG5	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.35	1.54	8,246
CATERPILLAR 3606A4 ULB ENGINE EN	G6	ENG6	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.35	1.54	8,246
CATERPILLAR 3606A4 ULB ENGINE EN	G7	ENG7	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.35	1.54	8,246
CATERPILLAR 3606A4 ULB ENGINE EN	G8	ENG8	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.35	1.54	8,246
CATERPILLAR 3606A4 ULB ENGINE EN	G9	ENG9	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.35	1.54	8,246
CATERPILLAR 3606A4 ULB ENGINE ENG	10	ENG10	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.35	1.54	8,246
CATERPILLAR 3606A4 ULB ENGINE ENG	11	ENG11	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.35	1.54	8,246
CATERPILLAR 3606A4 ULB ENGINE ENG	12	ENG12	1.24	5.43	2.48	10.86	3.24	14.21	0.17	0.74	0.15	0.65	0.35	1.54	8,246
FLARE 1: INLET GAS GAS (INCLUDING PILOT AND INTERMITTENT GAS)	1	FL1	199.22	6.37	397.71	12.72	309.36	9.91	0.00	0.01	8.55	0.27	6.48	0.21	5,377
CONDENSATE STORAGE TANKS: 1000 BBL OT1-	OT4	FL2/FL3						Emiss	sions repres	ented at FL2	/FL3.				
OFF-SPECIFICATION CONDENSATE TANK O'	5	FL2/FL3		Emissions represented at FL2/FL3.											
GUN BARREL SEPARATORS: 1000 BBL GB1-	GB2	FL2/FL3		Emissions represented at FL2/FL3.											
PRODUCED WATER TANKS: 1000 BBL WT1-	WT8	FL2/FL3	Emissions represented at FL2/FL3.												
SLOP OIL TANKS: 1000 BBL ST1-	ST2	FL2/FL3	Emissions represented at FL2/FL3.												
OVERHEAD GAS SCRUBBER OS	H1	FL2/FL3						Emiss	sions repres	ented at FL2	/FL3.				
WATER DEGAS VESSEL WD	SV1	FL2/FL3						Emiss	sions repres	ented at FL2	/FL3.				
FLARE 2: LP GAS (INCLUDING PILOT AND INTERMITTENT GAS)	2	FL2	14.24	1.79	28.43	3.56	67.66	7.70	0.00	0.02	0.36	0.04	2.22	0.24	2,339
FLARE 3: LP GAS (PILOT ONLY) - REDUNDANT FOR FLARE 2	3	FL3	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.01	233
STABILIZER HEATER (3.5 MMBTU/HR) STA	В1	STAB1	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.01	0.03	1,795
STABILIZER HEATER (3.5 MMBTU/HR) STA	B2	STAB2	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.01	0.03	1,795
STABILIZER HEATER (3.5 MMBTU/HR) STA	В3	STAB3	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.01	0.03	1,795
TRIETHYLENE GLYCOL DEHYDRATOR ² DEI	Y1	RB1	-	_	-	1	0.34	1.47	-	1	-		0.03	0.15	16
GLYCOL REGENERATOR (0.5 MMBTU/HR)	1	RB1	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.00	0.01	256
TRIETHYLENE GLYCOL DEHYDRATOR ² DEF	Y2	RB2		_	-	-	0.34	1.47	-	-	-		0.03	0.15	16
GLYCOL REGENERATOR (0.5 MMBTU/HR)	2	RB2	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.00	0.01	256
TRIETHYLENE GLYCOL DEHYDRATOR ² DEF	Y3	RB3	-	_	-	1	0.59	2.58	_	-	-		0.06	0.26	27
GLYCOL REGENERATOR (0.75 MMBTU/HR)	3	RB3	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.00	0.01	385
TRIETHYLENE GLYCOL DEHYDRATOR ² DEF	Y4	RB4				-	0.59	2.58	-	1	-		0.06	0.26	27
GLYCOL REGENERATOR (0.75 MMBTU/HR)	4	RB4	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.00	0.01	385
LINE HEATER (1.0 MMBTU/HR)	1	LH1	0.12	0.53	0.10	0.45	0.01	0.03	0.00	0.00	0.01	0.04	0.00	0.01	513
FUGITIVE EMISSIONS: EQUIPMENT LEAKS FUGI	IVES	FUGITIVES		_		1	3.13	13.70	-	1	-		0.09	0.39	441
SSM VENTING ACTIVITIES SS	А	SSM	-	-	1	1	1	10.00		1	-		1	-	
MALFUNCTIONS M	3	MF		_		1	_	10.00	-	1	-		_	-	

	NO	Ox	C	О		OC ES HAPs)	S	O_2	PM_1	0 & 2.5	HA	APs .	CO ₂ e	
FACILITY EMISSIONS	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	TPY	Ī
	230.41	82.44	457.72	154.61	421.13	230.84	2.04	8.95	10.84	8.73	13.21	20.22	114,608	Ī

A "--" symbol indicates the pollutant is not accounted for using the AECT or not emitted.

2 Any vapors remaining from dehydration following the condenser are burned in the reboiler. VOC emissions are illustrated at the dehydrator for illustrative purposes.

ZIA HILLS CENTRAL FACILITY

Uncontrolled Facility Emissions Summary

Seminorman programment program	SOURCE DESCRIPTION	UNIT NUMBER	STACK	N	Ox	C	О		VOC (INCLUDES HAPs)		O ₂	PM _{10 & 2.5}		HAPs	
Personal Personal Person	SOURCE DESCRIPTION	CIVIT NOMBER	NUMBER	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
No. Part	CATERPILLAR 3516 ULB ENGINE	ENG1	ENG1	1.52	6.66	7.33	32.11	3.86	16.92	0.13	0.58	0.12	0.51	1.44	6.29
Personal P	CATERPILLAR 3606A4 ULB ENGINE	ENG2	ENG2	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.03	4.53
Part	CATERPILLAR 3606A4 ULB ENGINE	ENG3	ENG3	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.03	4.53
New Personal Accordance (1978) (197	CATERPILLAR 3606A4 ULB ENGINE	ENG4	ENG4	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.03	4.53
Part	CATERPILLAR 3606A4 ULB ENGINE	ENG5	ENG5	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.03	4.53
Company	CATERPILLAR 3606A4 ULB ENGINE	ENG6	ENG6	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.03	4.53
Part	CATERPILLAR 3606A4 ULB ENGINE	ENG7	ENG7	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.03	4.53
Part	CATERPILLAR 3606A4 ULB ENGINE	ENG8	ENG8	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.03	4.53
Company	CATERPILLAR 3606A4 ULB ENGINE	ENG9	ENG9	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.03	4.53
Composition	CATERPILLAR 3606A4 ULB ENGINE	ENG10	ENG10	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.03	4.53
Personant	CATERPILLAR 3606A4 ULB ENGINE	ENG11	ENG11	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.03	4.53
Controlled Transform Control C	CATERPILLAR 3606A4 ULB ENGINE	ENG12	ENG12	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.03	4.53
Control	CONDENSATE STORAGE TANK: 1000 BBL	OT1	FL1			-		40.27	141.11	-				1.39	4.86
CONTRINATE STORACE TANKS 1000 BILL OTHER STORACE TANKS 1000 B	CONDENSATE STORAGE TANK: 1000 BBL	OT2	FL1					40.27	141.11	-				1.39	6.07
Part	CONDENSATE STORAGE TANK: 1000 BBL	OT3	FL1					40.27	141.11	-				1.39	6.07
Monther Mont		OT4	FL1			-		40.27	141.11	-				1.39	6.07
Company	OFF-SPECIFICATION CONDENSATE TANK: 1000 BBL	OT5	FL1			-		433.53	1519.11	-	-			19.19	67.24
Production materials	GUN BARREL SEPARATORS: 1000 BBL	GB1	FL1					32.96	144.37	-				2.08	9.13
PRODUCTIO WATER TANNS: 1000 BRIL ROCAL DIVATER TANNS: 1000 BRI	GUN BARREL SEPARATORS: 1000 BBL	GB2	FL1			-		32.96	144.37	-	-			2.08	9.13
PRODUCEID WATER TANNS: 1000 BIR. WITH 11 1-0 1-0 1-0 1-0 1-0 1-0 1-0 1-0 1-0	PRODUCED WATER TANKS: 1000 BBL	WT1	FL1					0.98	4.29					0.13	0.58
PRODUCTIO WATER TANNS 1000 BBL. WITH BELLEY MATER	PRODUCED WATER TANKS: 1000 BBL	WT2	FL1	-	-	-	-	0.98	4.29	-		-	-	0.13	0.58
PRODUCED WATER TANNS: 100 BBL WITS FILE PLAN PART OF THE PRODUCED WATER TANNS: 100 BBL WITS FILE PLAN PART OF THE	PRODUCED WATER TANKS: 1000 BBL	WT3	FL1			-		0.98	4.29	-				0.13	0.58
PRODUCED WATER TANKS 100 BBL WITE PILL PART PART PART PART PART PART PART PART	PRODUCED WATER TANKS: 1000 BBL	WT4	FL1	-	-	-	-	0.98	4.29	-		-	-	0.13	0.58
PRODUCTIO WATER TANNS: 1000 BIR. WITS FILL FILL	PRODUCED WATER TANKS: 1000 BBL	WT5	FL1	-	-	-	-	0.98	4.29	-		-	-	0.13	0.58
PRODUCED WATER TANNS: 1000 BRI. 1811 1811 1811 1811 1811 1811 1811 18	PRODUCED WATER TANKS: 1000 BBL	WT6	FL1	-	-	-	-	0.98	4.29	-		-	-	0.13	0.58
SUPPOIL TANNS 1000 BR. STI 1 FL1 2 191 8.57 5 191 8.57 5 191 10.00	PRODUCED WATER TANKS: 1000 BBL	WT7	FL1			-		0.98	4.29	-				0.13	0.58
SEPORITANNES 1000 BBL ST2 FL1 7-0	PRODUCED WATER TANKS: 1000 BBL	WT8	FL1		-	-	-	0.98	4.29	-				0.13	0.58
HARE::PILOTONIY FLARE::PILOTONIY FLARE::	SLOP OIL TANKS: 1000 BBL	STI	FL1		-	-	-	1.91	8.37	-				0.11	0.46
FLAKE 2 PILOT ONLY FLAKE 3 PILOT ONLY FLAKE 4 PILOT ONLY FLAKE 4 PILOT ONLY FLAKE 4 PILOT ONLY FLAKE 5 PILOT ONLY FLAKE	SLOP OIL TANKS: 1000 BBL	ST2	FL1			-		1.91	8.37	-				0.11	0.46
FLARES: PILOT ONLY FLARES: PILOT	FLARE 1: PILOT ONLY	FL1	FL1	0.04	0.18	0.08	0.35	0.06	0.28	0.00	0.01	0.00	0.00	0.00	0.01
STABILIZER - HEATER I (25 MMBTU/HR) STABI STABI O42 1.86 0.36 1.56 0.02 0.10 0.00 0.01 0.03 0.14 0.01 0.03 STABILIZER - HEATER I (25 MMBTU/HR) STAB2 STAB2 0.42 1.86 0.36 1.56 0.02 0.10 0.00 0.01 0.03 0.14 0.01 0.03 STABILIZER - HEATER I (25 MMBTU/HR) STAB3 STAB3 0.42 1.86 0.36 1.56 0.02 0.10 0.00 0.01 0.03 0.01 0.03 0.14 0.01 0.03 STABILIZER - HEATER I (25 MMBTU/HR) STAB3 STAB3 0.42 1.86 0.36 1.56 0.02 0.10 0.00 0.01 0.00 0.01 0.03 0.14 0.01 0.03 0.01 0.03 0.01 0.03 0.04 0.01 0.03 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.01 0.03 0.04 0.00 0.01 0.04 0.00 0.01 0.03 0.04 0.00 0.01 0.03 0.04 0.00 0.01 0.03 0.00 0.01 0.04 0.00 0.01 0.03 0.00 0.01 0.04 0.00 0.01 0.03 0.00 0.01 0.04 0.00 0.01 0.03 0.00 0.01 0.04 0.00 0.01 0.03 0.00 0.01 0.04 0.00 0.01 0.03 0.00 0.01 0.04 0.00 0.01 0.03 0.00 0.01 0.04 0.00 0.01 0.03 0.00 0.00 0.01 0.04 0.00 0.01 0.03 0.00 0.01 0.04 0.00 0.01 0.03 0.00 0.01 0.04 0.00 0.01 0.03 0.00 0.01 0.04 0.00 0.01 0.03 0.00 0.01 0.04 0.00 0.01 0.03 0.00 0.01 0.04 0.00 0.01 0.03 0.00 0.01 0.01 0.04 0.00 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.01	FLARE 2: PILOT ONLY	FL2	FL2	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.01
STABILIZER - HEATER 1 (3.5 MMBTU/HR) STAB2 STAB2 0.42 1.86 0.36 1.56 0.02 0.10 0.00 0.01 0.03 0.14 0.01 0.03 0.03 0.04 0.00 0.00 0.00 0.00 0.00	FLARE 3: PILOT ONLY	FL3	FL3	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.01
STABILIZER - HEATER 1 (3.5 MMBTU/HR) STABS STABS 0.42 1.86 0.36 1.56 0.02 0.10 0.00 0.01 0.03 0.14 0.01 0.03 1 0.14 0.01 0.03 1 0.14 0.01 0.03 1 0.14 0.01 0.03 1 0.14 0.01 0.03 1 0.14 0.01 0.03 1 0.14 0.01 0.03 1 0.14 0.01 0.03 1 0.14 0.01 0.03 1 0.14 0.01 0.03 1 0.14 0.01 0.03 1 0.04 0.03 1 0.04 0.03 1 0.04 0.05 1 0.04 0.05 1 0.04 0.05 1 0.05 1 0.04 0.05 1	STABILIZER - HEATER 1 (3.5 MMBTU/HR)	STAB1	STAB1	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.01	0.03
TRIETHYLENE GLYCOL DEHYDRATOR DEHY1 RB1 RB1 0.12 0.54 0.10 0.46 0.01 0.03 0.00 0.00 0.01 0.04 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY2 RB2 CB1 0.12 0.54 0.10 0.46 0.01 0.03 0.00 0.00 0.01 0.04 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY2 RB2 CB1 0.12 0.54 0.10 0.46 0.01 0.03 0.00 0.00 0.00 0.01 0.04 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY3 RB3 CB2 CB1 0.12 0.54 0.10 0.46 0.01 0.03 0.00 0.00 0.00 0.01 0.04 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY3 RB3 CB3 0.12 0.54 0.10 0.46 0.01 0.46 0.01 0.03 0.00 0.00 0.01 0.04 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY3 RB3 CB3 0.19 0.11 0.10 0.10 0.46 0.01 0.04 0.00 0.00 0.01 0.04 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 CB1 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 CB1 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 CB1 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 CB1 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 CB1 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 CB1 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 CB1 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY3 CB1 0.19 0.19 0.10 0.10 0.01 0.01 0.01 0.0	STABILIZER - HEATER 1 (3.5 MMBTU/HR)	STAB2	STAB2	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.01	0.03
CHYCOL REGENERATOR (0.5 MMBTU/HR) RB1 RB1 0.12 0.54 0.10 0.46 0.01 0.03 0.00 0.00 0.01 0.04 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY2 RB2 RB3 0.12 0.54 0.10 0.46 0.01 0.46 0.01 0.03 0.00 0.00 0.01 0.04 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY3 RB3 RB3 0.19 0.10 0.54 0.10 0.46 0.01 0.03 0.00 0.00 0.01 0.04 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY3 RB3 RB3 0.19 0.10 0.46 0.01 0.46 0.01 0.03 0.00 0.00 0.01 0.04 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 RB4 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 LINE HEATER (1.0 MMBTU/HR) LH1 1.H1 0.12 0.53 0.10 0.45 0.01 0.03 0.00 0.00 0.01 0.04 0.00 0.01 OVERHEAD GAS SCRUBBER OSH1 FL2/FL3 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.00 0.00	STABILIZER - HEATER 1 (3.5 MMBTU/HR)	STAB3	STAB3	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.01	0.03
TRIETHYLENE GLYCOL DEHYDRATOR DEHY2 RB2 RB2 0.12 0.54 0.10 0.46 0.01 0.03 0.00 0.00 0.01 0.04 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY3 RB3 RB3 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 TRIETHYLENE GLYCOL DEHYDRATOR DEHY3 RB3 RB3 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 RB4 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 RB4 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 RB4 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 RB4 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 RB4 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 RB4 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY3 RB3 RB3 RB3 RB3 RB3 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY3 RB3 RB3 RB3 RB3 RB3 RB3 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.00 0.00	TRIETHYLENE GLYCOL DEHYDRATOR	DEHY1	RB1	-	-		-	20.77	90.98		-	-	-	4.34	19.01
CHYCOL REGENERATOR (0.5 MMBTU/HR) RB2 RB3 RB3 C	GLYCOL REGENERATOR (0.5 MMBTU/HR)	RB1	RB1	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.00	0.01
TRIETHYLENE GLYCOL DEHYDRATOR DEHY3 RB3 RB3 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB3 RB3 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.00 0.01 0.06 0.00 0.01 LINE HEATER (1.0 MMBTU/HR) LH1 LH1 0.12 0.53 0.10 0.45 0.01 0.04 0.00 0.00 0.01 0.06 0.00 0.01 UNE HEATER (1.0 MMBTU/HR) F12/F13 0-0 0-0 0.04 0.04 0.00 0.00 0.00 0.01 0.04 0.00 VERHEAD GAS SCRUBBER OSH1 F12/F13 0-0 0-0 0-0 0.04 0.00 0.00 0.01 0.04 0.00 VAPOR RECOVERY TOWER VYT VYT VYT VYT VYT VYT 0-0 0-0 0-0 0.00 0.00 0.00 0.00 0.00 0	TRIETHYLENE GLYCOL DEHYDRATOR	DEHY2	RB2	-	-	-	-	20.77	90.98		-	-	-	4.34	19.01
CLYCOL REGENERATOR (0.75 MMBTU/HR) RB3 RB3 RB3 CL9 CL9 CL9 CL9 CL9 CL9 CL9 CL	GLYCOL REGENERATOR (0.5 MMBTU/HR)	RB2	RB2	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.00	0.01
TRIETHYLENE GLYCOL DEHYDRATOR DEHY4 RB4 RB4 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.01 0.06 0.00 0.01 0.04 0.00 0.00 0.01 0.04 0.00 0.00	TRIETHYLENE GLYCOL DEHYDRATOR	DEHY3	RB3	-			-	36.30	158.98		-	-	-	7.58	33.22
CLYCOL REGENERATOR (0.75 MMBTU/HR) RB4 RB4 0.19 0.81 0.16 0.68 0.01 0.04 0.00 0.00 0.01 0.06 0.00 0.01 0.01 0.01	GLYCOL REGENERATOR (0.75 MMBTU/HR)	RB3	RB3	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.00	0.01
LINE HEATER (LOMMBTU/HR) LI-HI LI-HI 0.12 0.53 0.10 0.45 0.01 0.03 0.00 0.00 0.01 0.04 0.00 0.01 0.01 0.02 0.02 0.02 0.02 0.00 0.01 0.04 0.00 0.01 0.02 0.02 0.02 0.02 0.02 0.02	TRIETHYLENE GLYCOL DEHYDRATOR	DEHY4	RB4	-			-	36.30	158.98		-	-	-	7.58	33.22
OVERHEAD GAS SCRUBBER OSH1 F12/F13 1915.31 671.24 40.92 143.39 WATER DEGAS VESSEL WDGV1 F12/F13 344.06 1205.59 22.12 77.49 VAPOR RECOVERY TOWER VRT VKT 434.02 1520.81 16.97 59.47	GLYCOL REGENERATOR (0.75 MMBTU/HR)	RB4	RB4	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.00	0.01
WATER DEGAS VESSEL WDGV1 F12/F13 344,06 1205.9 1 - 16.97 59.47 VAPOR RECOVERY TOWER VRT VRT 434,02 1520.81 1 - 16.97 59.47	LINE HEATER (1.0 MMBTU/HR)	LH1	LH1	0.12	0.53	0.10	0.45	0.01	0.03	0.00	0.00	0.01	0.04	0.00	0.01
VAPOR RECOVERY TOWER VRT VRT 434.02 1520.81 16.97 59.47	OVERHEAD GAS SCRUBBER	OSH1	FL2/FL3	_	_	_	_	1915.31	6711.24	_		_	_	40.92	143.39
	WATER DEGAS VESSEL	WDGV1	FL2/FL3	-			-	344.06	1205.59			-	-	22.12	77.49
FUGITIVE EMISSIONS EQUIPMENT LEAKS FUGITIVES FUGITIVES 313 1370 000 0.300	VAPOR RECOVERY TOWER	VRT	VRT	_	_		_	434.02	1520.81			-		16.97	59.47
5.15 15.76 0.09 0.39	FUGITIVE EMISSIONS: EQUIPMENT LEAKS	FUGITIVES	FUGITIVES					3.13	13.70					0.09	0.39

	NOx		со		VOC (INCLUDES HAPs)		SO ₂		PM _{10 & 2.5}		HAPs	
FACILITY EMISSIONS	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Lindototto	17.3	76.0	133.9	586.7	3540.2	12625.6	2.0	8.8	1.9	8.3	147.0	555.6

A -"-" symbol indicates the pollutant is not accounted for using the AECT or not emitted.

ZIA HILLS CENTRAL FACILITY

Inlet Oil Analysis

Component	Mole %	Weight %
H2S	0.0000	0.0000
Nitrogen	0.0300	0.0062
Methane	6.8080	0.8122
Carbon Dioxide	0.0480	0.0157
Ethane	5.0090	1.1201
Propane	6.5520	2.1486
i-Butane	1.8700	0.8083
n-Butane	5.7170	2.4712
i-Pentane	2.7740	1.4884
n-Pentane	3.9660	2.1280
i-Hexane	2.9530	1.8925
n-Hexane	2.9620	1.8983
2,2,4-Trimethylpentane	0.0500	0.0425
Cyclohexane	0.0000	0.0000
Benzene	0.1840	0.1069
i-Heptane	6.4575	4.8121
n-Heptane	2.7675	2.0623
Toluene	0.8700	0.5961
n-Octane	10.8900	9.2511
Ethylbenzene	0.2160	0.1705
meta-Xylene	1.0540	0.8322
n-Nonane	7.2780	6.9419
C10+	31.5440	60.3948
TEG	0.0000	0.0000
Water	0.0000	0.0000
Methanol	0.0000	0.0000
Total	100.00	100.00

Molecular Weight	134.46
Btu Content (Btu/scf)	7162.19
Non-Methane Hydrocarbons (Weight %)	99.17
VOCs (Weight %)	98.05
HAPs (Weight %)	3.65

¹Data obatained from analysis.

ZIA HILLS CENTRAL FACILITY

Inlet Gas Analysis

Component	Mole %	Weight %
H2S	0.0000	0.0000
Nitrogen	1.1690	1.5057
Methane	76.6590	56.5462
Carbon Dioxide	0.0890	0.1801
Ethane	12.2200	16.8951
Propane	5.6960	11.5487
i-Butane	0.8340	2.2288
n-Butane	1.8350	4.9040
i-Pentane	0.4200	1.3933
n-Pentane	0.4760	1.5791
i-Hexane	0.1190	0.4715
n-Hexane	0.0850	0.3368
2,2,4-Trimethylpentane	0.0000	0.0000
Cyclohexane	0.0390	0.1509
Benzene	0.0050	0.0180
i-Heptane	0.0890	0.4100
n-Heptane	0.0330	0.1520
Toluene	0.0090	0.0381
n-Octane	0.0950	0.4990
Ethylbenzene	0.0010	0.0049
meta-Xylene	0.0150	0.0732
n-Nonane	0.0440	0.2595
C10+	0.0680	0.8050
TEG	0.0000	0.0000
Water	0.0000	0.0000
Methanol	0.0000	0.0000
Total	100.00	100.00

Molecular Weight	21.75
Btu Content (Btu/scf)	1294.36
Non-Methane Hydrocarbons (Weight %)	41.77
VOCs (Weight %)	24.87
HAPs (Weight %)	0.47

¹Data obatained from analysis.

ZIA HILLS CENTRAL FACILITY

Stabilizer Heater Emissions

Capacity Field Gas

Input heat rate / fuel heat value

8760 hrs/yr operation

STAB1 - STAB3 Emission unit number(s): Source description: Stabilizer Heaters

Fuel Consumption and Stack	k Parameters
Input heat rate:	2.50

Fuel Consumption and Stack Pa	arameters	
Input heat rate:	3.50	MMBtu/hr
Fuel heat value:	1262.0	Btu/scf
Fuel rate:	2773.4	scf/hr
Annual fuel usage:	24.3	MMscf/yr
Stack height:	30	ft
Stack diameter:	1.94	ft
Stack diameter:	23.25	in
Exhaust temp (Tstk):	700	°F
Air Flow:	36053.9	ft3/hr
Total Flow:	38827.3	ft3/hr
Stack Area:	2.95	ft2
Raw Velocity:	3.66	ft/sec
Stack Velocity Coefficient:	2.19	
Exhaust velocity:	8.01	ft/sec
•		

Emission Rates

Uncontrolled Heater Emissions

NOx ¹	CO^1	VOC^1	SO_2^{1}	PM^1	
100.00	84.00	5.50	0.60	7.60	lb/MMscf
0.42	0.36	0.02	0.00	0.03	lb/hr
1.86	1.56	0.10	0.01	0.14	tpy (8760 hrs)

Hexane ¹	
2.23	lb/MMscf
0.01	lb/hr
0.03	tpy (8760 hrs)

		CH_4 as		N_2O as	Total		
CO_2	CH4	CO_2e^2	N_2O	CO_2e^2	CO_2e2		
117.00	0.002	0.055	0.0002	0.066		lb/MMbtu	
409.49	0.008	0.19	0.001	0.23	409.91	lb/hr	
1793.57	0.03	0.85	0.003	1.01	1795.42	tpv (8760 hrs)	

¹ USEPA AP-42, Section 1.4-1 and 2. Factors are converted to lb/MMBtu and adjusted for site Btu content.

 $^{2\,}$ 40 CFR 98 Emission Factors. Global warming potential of 25 for CH4 and 298 for N20.

ZIA HILLS CENTRAL FACILITY

Line Heater Emissions

Capacity Field Gas

Input heat rate / fuel heat value

8760 hrs/yr operation

Emission unit number(s): LH1

Source description: Line Heater

Fuel Consum	ntion on	d Ctacle	Daramatara
Fuel Consum	ption an	a Stack	Parameters

Input heat rate:	1.00	MMBtu/hr
Fuel heat value:	1262.0	Btu/scf
Fuel rate:	792.4	scf/hr
Annual fuel usage:	6.9	MMscf/yr
Stack height:	15	ft
Stack diameter:	0.67	ft
Stack diameter:	8.00	in
Exhaust temp (Tstk):	700	°F
Air Flow:	10301.1	ft3/hr
Total Flow:	11093.5	ft3/hr
Stack Area:	0.35	ft2
Raw Velocity:	8.83	ft/sec
Stack Velocity Coefficient	2.19	
Exhaust velocity:	19.32	ft/sec

Emission Rates

Uncontrolled Heater Emissions

NOx^1	CO^1	VOC^1	SO_2^{1}	PM^1	
100.00	84.00	5.50	0.60	7.60	lb/MMscf
0.12	0.10	0.01	0.00	0.01	lb/hr
0.53	0.45	0.03	0.00	0.04	tpy (8760 hrs)
_					

Hexane¹
2.23 lb/MMscf
0.00 lb/hr
0.01 tpy (8760 hrs)

GHG Emissions

			CH_4 as		N_2O as	Total		
	CO_2	CH4	CO_2e^2	N_2O	CO_2e^2	CO_2e2		
-	117.00	0.002	0.055	0.0002	0.066		lb/MMbtu	
	117.00	0.002	0.06	0.000	0.07	117.12	lb/hr	
	512.45	0.01	0.24	0.001	0.29	512.98	tpy (8760 hrs)	

 $^{1\ \} USEPA\ AP-42, Section\ 1.4-1\ and\ 2.\ Factors\ are\ converted\ to\ lb/MMBtu\ and\ adjusted\ for\ site\ Btu\ content.$

 $^{2\ \ 40\} CFR\ 98\ Emission\ Factors.\ Global\ warming\ potential\ of\ 25\ for\ CH4\ and\ 298\ for\ N20.$

ZIA HILLS CENTRAL FACILITY

Glycol Reboiler (RB1-RB2) Emissions

Emission unit number(s): RB1-RB2

Source description: Glycol Reboiler Heaters - 0.5 MMBtu/hr each

Fuel Consumption and S	tack Param	eters
Heat Rate:	0.50	MMBt11/hr

Heat Kate:	0.50	MMBtu/hr	
Fuel heat value:	2586	Btu/scf	Promax (Post-condenser gas)
Fuel rate:	356.8	scf/hr	Post-condenser and Flash Drum Gas to Reboiler
Annual fuel usage:	3.1	MMscf/yr	8760 hrs/yr operation
Stack height:	20	ft	
Stack diameter:	1.00	ft	
Stack diameter:	12.00	in	
Exhaust temp (Tstk):	700	°F	
Air Flow:	4638.6	ft3/hr	
Total Flow:	4995.4	ft3/hr	40 CFR 60 Appendix A Method 19 Table 19-2
Stack Area:	0.79	ft2	F Factor (scf/MMBtu) * (MMBtu/hr) / (60 min/hr) / (60 sec/min)
Raw Velocity:	1.77	ft/sec	
Stack Velocity Coefficient	2.19		Calculated - Exhaust flow / cross sectional area of stack
Exhaust velocity:	3.87	ft/sec	

Uncontrolled Heater Emissions

	NOx ¹	CO^1	VOC^1	SO_2^{-1}	PM^1		
Ī	100.00	84.00	5.50	0.60	7.60	lb/MMscf	
	0.12	0.10	0.01	0.00	0.01	lb/hr	
	0.54	0.46	0.03	0.00	0.04	tpy (8760 hrs)	

Hexane ¹	
4.56	lb/MMscf
0.00	lb/hr
0.01	tpy (8760 hrs)

GHG Emissions

			CH_4 as		N_2O as	Total		
	CO_2	CH4	CO_2e^2	N_2O	CO_2e^2	CO_2e2		
-	117.00	0.002	0.055	0.0002	0.066		lb/MMbtu	
	58.50	0.001	0.03	0.000	0.03	58.56	lb/hr	
	256.22	0.00	0.12	0.000	0.14	256.49	tpy (8760 hrs)	

 $^{1\ \} USEPA\ AP-42, Section\ 1.4-1\ and\ 2.\ Factors\ are\ converted\ to\ lb/MMBtu\ and\ adjusted\ for\ site\ Btu\ content.$

 $^{2\ \ 40\} CFR\ 98\ Emission\ Factors.\ Global\ warming\ potential\ of\ 25\ for\ CH4\ and\ 298\ for\ N20.$

ZIA HILLS CENTRAL FACILITY

Glycol Reboiler (RB3-RB4) Emissions

Emission unit number(s): RB3-RB4

Source description: Glycol Reboiler Heaters - 0.75 MMBtu/hr each

Fuel Consumption and	Stack Parameters
----------------------	------------------

Heat Rate:	0.75	MMBtu/hr	
Fuel heat value:	2580	Btu/scf	Promax (Post-condenser gas)
Fuel rate:	628.1	scf/hr	Post-condenser and Flash Drum Gas to Reboiler
Annual fuel usage:	5.5	MMscf/yr	8760 hrs/yr operation
Stack height:	20	ft	
Stack diameter:	1.00	ft	
Stack diameter:	12.00	in	
Exhaust temp (Tstk):	700	°F	
Air Flow:	8165.9	ft3/hr	
Total Flow:	8794.1	ft3/hr	40 CFR 60 Appendix A Method 19 Table 19-2
Stack Area:	0.79	ft2	F Factor (scf/MMBtu) * (MMBtu/hr) / (60 min/hr) / (60 sec/min)
Raw Velocity:	3.11	ft/sec	
Stack Velocity Coefficient	2.19		Calculated - Exhaust flow / cross sectional area of stack

Exhaust velocity: 6.81 ft/sec

Uncontrolled Heater Emissions

NOx^1	CO^1	VOC^1	$SO_2^{\ 1}$	PM^1		
100.00	84.00	5.50	0.60	7.60	lb/MMscf	
0.19	0.16	0.01	0.00	0.01	lb/hr	
0.81	0.68	0.04	0.00	0.06	tpv (8760 hrs)	

Hexane ¹	
4.55	lb/MMscf
0.00	lb/hr
0.01	tpy (8760 hrs)

			$\mathrm{CH_4}$ as		N_2O as	Total		
GHG Emissions	CO_2	CH4	CO_2e^2	N_2O	CO_2e^2	CO_2e2		
	117.00	0.002	0.055	0.0002	0.066		lb/MMbtu	
	87.75	0.002	0.04	0.000	0.05	87.84	lb/hr	
	384.34	0.01	0.18	0.001	0.22	384.73	tpy (8760 hrs)	

¹ USEPA AP-42, Section 1.4-1 and 2. Factors are converted to lb/MMBtu and adjusted for site Btu content.

 $^{2\ \ 40\} CFR\ 98\ Emission\ Factors.\ Global\ warming\ potential\ of\ 25\ for\ CH4\ and\ 298\ for\ N20.$

ZIA HILLS CENTRAL FACILITY

Engine Emissions

Emission Unit Designation Source Description Type	ENG1-ENG12 Caterpillar 360 Turbocharged	3
Rated Output	1,875	hp, per manufacturer
Site Elevation, ft	3,173	ft, per topographic map
Altitude Deration Factor	1.00	3% per 1000' over 4000' for turbocharged engines
Altitude Derated Output	1,875	hp
Maximum Design Heat Input	14.8838	MMBtu/hr, site derated
Fuel Gas Heating Value	1,262.0	Btu/scf, analysis
Fuel Consumption	7938	Btu/hp-hr, per manufacturer at 75% load
Hourly Fuel Consumption	11794	scf/hr, site derated
Annual Fuel Consumption	103.3	MMscf/yr, site derated
Fuel Sulfur Content	50	gr/Mscf, estimated
Operating Time	8760	hrs/year

Stack Height	29.6	ft, CSI measurement
Exhaust Gas Velocity	91.7	ft/sec, calculated
Exhaust Temp	809	°F, manufacturer
Stack Inside Diameter	1.67	ft, CSI measurement
Exhaust Gas Flow	11998	cfm, manufacturer

				Control	Permit		Emissio	n Rate		
	Pollutant	nt Emission Factor		Efficiency	Limit	Uncontrolled		Controlled		Notes
				(%)	g/hp-hr	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
×	NO_x	0.30	g/hp-hr		0.30	1.24	5.43	1.24	5.43	1
tant	CO	2.74	g/hp-hr	78.10%	0.60	11.33	49.61	2.48	10.86	1
ollu	VOC	0.94	g/hp-hr	25.53%	0.70	3.89	17.02	2.89	12.67	1
ria F	VOC		Includ	ling Aldehydes	0.785	4.82	21.13	3.24	14.21	1
Criteria Pollutants	SO_2	14.29	lb/MMscf		-	0.17	0.74	0.17	0.74	2
	PM_{10}	9.91E-03	lb/MMBtu		-	0.15	0.65	0.15	0.65	3
	Formaldehyde	0.19	g/hp-hr	78.95%	0.0400	0.79	3.44	0.17	0.72	1
HAP	Acetaldehyde	8.36E-03	lb/MMBtu	25.53%	-	0.15	0.67	0.11	0.50	3
/H	Acrolein	5.14E-03	lb/MMBtu	25.53%	-	0.09	0.41	0.07	0.31	3
		-		Total HAP	-	1.03	4.53	0.35	1.54	3
	CO2	455	g/hp-hr		-	1881	8238	-	-	1
	CH4	0.0022	lb/MMBtu		-	0.03	0.14	-	-	3
GHG	CH4 as CO2e	25	GWP		-	-	3.59	-	-	3
	N2O	0.0002	lb/MMBtu		-	0.003	0.01	-	-	3
	N2O as CO2e	298	GWP		-	-	4.28	-	-	3

Notes:

¹ Manufacturer engine specifications. AP-42 factors were adjusted for heat content. VOC and HCOH use stack test data with a 15% and 25% safety factors, respectively.

 $^{^2}$ Fuel Sulfur Content (50 gr/Mscf) / 7000 (gr/lb) x 1000 (Mscf/MMscf) * 64 lb/lb-mol SO₂/32 lb/lb-mol S

³ USEPA AP-42 Ch. 3.2 Natural Gas-fired Reciprocating Engines

 $^{^{\}rm 4}$ 40 CFR 98 Emission Factors. Global warming potential of 25 for CH4 and 298 for N20.

ZIA HILLS CENTRAL FACILITY

HP FLARE (FL1) EMISSIONS SUMMARY

Stream Source	NOx		со		Total VOC (Includes Total HAPs)		SO ₂		PM _{10 & 2.5}		Total HAPs	
Stream Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Flare Pilot	0.04	0.18	0.08	0.35	0.06	0.28	0.00	0.01	0.00	0.00	0.00	0.01
Inlet Gas Flaring	199.18	6.20	397.63	12.37	309.29	9.62	0.00	0.00	8.55	0.27	6.48	0.20
Total Emissions	199.22	6.37	397.71	12.72	309.36	9.91	0.00	0.01	8.55	0.27	6.48	0.21
Normal Operations (Including Pilot)	0.04	0.18	0.08	0.35	0.06	0.28	0.00	0.01	0.00	0.00	0.00	0.01
Intermittent Gas (Inlet Gas)	199.18	6.20	397.63	12.37	309.29	9.62	0.00	0.00	8.55	0.27	6.48	0.20

ZIA HILLS CENTRAL FACILITY HP GAS TO FL1 DURING COMPRESSOR DOWNTIME

Component	Mole %	Weight %
H2S	0.0000	0.0000
Nitrogen	1.1606	1.5030
Methane	76.1429	56.4681
Carbon Dioxide	0.0885	0.1800
Ethane	12.1685	16.9145
Propane	5.7056	11.6306
i-Butane	0.8436	2.2666
n-Butane	1.8689	5.0216
i-Pentane	0.4372	1.4582
n-Pentane	0.5008	1.6703
i-Hexane	0.1319	0.5254
n-Hexane	0.0965	0.3843
2,2,4-Trimethylpentane	0.0000	0.0001
Cyclohexane	0.0443	0.1722
Benzene	0.0056	0.0204
i-Heptane	0.1060	0.4908
n-Heptane	0.0392	0.1814
Toluene	0.0107	0.0454
n-Octane	0.0865	0.4568
Ethylbenzene	0.0009	0.0042
meta-Xylene	0.0120	0.0587
n-Nonane	0.0175	0.1038
C10+	0.0000	0.0000
TEG	0.0000	0.0000
Water	0.5324	0.4434
Methanol	0.0000	0.0000
Total	100.00	100.00

Molecular Weight	21.63
Btu Content (Btu/scf)	1282.93
Non-Methane Hydrocarbons (Weight %)	41.41
VOCs (Weight %)	24.49
HAPs (Weight %)	0.51

¹Data obtained from Promax.

ZIA HILLS CENTRAL FACILITY

HP FLARE (FL1) - PILOT & PURGE GAS EMISSIONS

Pilot Fuel + Purge Gas	5520	SCF/Day	
Duration	8760	Hours/Year	
Flared	Yes	(Yes/No)	
Vented	No	(Yes/No)	
Heating Value	1262.0	Btu/SCF (Fuel Gas Analysis)	
, and the second se		•	

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO2	33.96	148.75
CH4	0.00	0.00
CH4 as CO2e	0.01	0.06
CO^1	0.08	0.35
NOx^1	0.04	0.18
VOCs ²	0.06	0.28
HAPs ²	0.00	0.01
$SO_2^{\ 3}$	0.00	0.01
H2S ³	0.00	0.00

 $^{^{1}\ \}text{The CO}\ \text{and NOx}\ \text{emission factors}\ \text{of }0.2755\ \text{and}\ 0.138\ \text{lb/MMBtu}\ \text{are based}\ \text{on TCEQ}\ \text{document}\ \text{RG-}360\text{A}/11\ \text{(February 2012)}$

 $^{^2}$ VOC example calculation: SCF/day * 14.7 / 10.73 / 528 * VOC Wt % * Gas MW

 $^{^3}$ H2S example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

ZIA HILLS CENTRAL FACILITY INLET GAS FLARING EMISSIONS

Total Gas Production - SCF/Day	27,000,000
Total Gas Production - SCF/Hr	1,125,000
Total Gas Production - SCF/Year	70,000,000
Heating Value - BTU/SCF	1282.93

^{*} Inlet gas flaring during compressor downtime, blowdowns and starter vents.

Component	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO^1	397.63	12.37
NOx ¹	199.18	6.20
VOCs ²	309.29	9.62
SO_2^{3}	0.00	0.00
HAP^2	6.48	0.20
$PM_{10 \& 2.5}^{00000000000000000000000000000000000$	8.55	0.27

 $^{^{1}}$ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012)

 $^{^2}$ VOC example calculation: SCF/day * 14.7 / 10.73 / 528 * VOC weight % * Gas MW

 $^{^3}$ H2S/SO2 example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

 $^{^4}$ PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

ZIA HILLS CENTRAL FACILITY

FLARE (FL1) - GHG EMISSIONS SUMMARY

1) $E_{a,CH4} = V_a *$	$X_{CH4} * [(1- \eta)* Z$	$Z_L + Z_U$	=	1,066,000.03	SCF/Yr		Source	Annual Volume
Va =	70,000,000.00						Inlet	70000000
$X_{CH4} =$	0.761	HP Gas						
N =	0.98							
$Z_{L} =$	1.00							70000000
$Z_U =$	0.00							
2) E _{a,CO2} (unco	mbusted) = V _a *	* X _{CO2}	=	61,942.00	SCF/Yr			
Va =	70,000,000.00							
$X_{CO2} =$	0.0009	HP Gas						
3) E _{a,CO2} (comb	usted) = Σ (η *	Va * Yj * Rj * Z	$Z_{\rm L}$)					
N =	0.98							
	70,000,000.00		Rj =		$E_{a, CO2} =$			
$Y_J =$	Methane	0.7614	1	Inlet	52,234,001.49			
	Ethane	0.1217	2		16,695,192.82			
	Propane	0.0571	3		11,742,222.93			
	Butane	0.0271	4		7,443,117.11			
	Pentane +	0.0149	5		5,107,105.70			
$Z_{L} =$	1.00				93,221,640	SCF/Yr		
3) E _{s,n} = <u>E_{a,n} * (</u>	459.67 + T _s) * P _s	a.						
	$.67 + T_a$) * P_s							
, ,	1,066,000.03		=	933,041.85	SCF/Yr			
	93,283,582.04		=	81,648,671	SCF/Yr			
Ts =	60.00	°F						
Ta =	76.70	°F (Midland	, AP-42)					
Ps =	14.70							
Pa =	13.28	Midland, Al	P-42					
4) $Mass_{s,i} = E_{s,i}$								
$E_{s,i}$ (CH4) =								
$E_{s,i}$ (CO2) =								
p_i (CH4) =	0.0192	kg/ft3	=	17.91	metric tons			
p_i (CO2) =	0.0526	kg/ft3	=	4294.72	metric tons			
,	+ (CH ₄ X GWP	*	short tons	CO ₂ e				
CO2 =	4294.72	=	4734.12	4734.12				
CH4 =	17.91	=	19.75	493.68				
CH4 GWP =	25			5227.80				

 $^{^{*}}$ V_{a} is the sum of gas routed to the flare.

BATTLESHIP CENTRAL FACILITY 40 CFR 60.18 Verification (Flare 1)

	Tip Velocity Calculations		
Flare Tip Diameter	12	Inches	
Flare Tip Diameter	1.00	ft	
Area of Flare Tip	0.785	ft ²	
Gas Flow Rate	27,000,000	SCFD	
Gas Flow Rate	1,125,000	SCF/Hr	
Gas Flow Rate	312.50	SCF/Sec	
Maximum Tip Velocity	397.89	ft/Sec	
Heating Value	> 1000	BTU/SCF	

ZIA HILLS CENTRAL FACILITY

LP FLARE (FL2/FL3) EMISSIONS SUMMARY

Stream Source	N	Ox	C	0		VOC Total HAPs)	Se	O_2	PM_1	0 & 2.5	Total	HAPs
Sueam Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	ТРҮ
Flare 2 Pilot	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.01
Flare 3 Pilot	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.01
Overhead Gas Scrubber (VRU Downtime)	9.28	0.98	18.52	1.95	38.31	4.03	0.00	0.00	0.27	0.03	0.82	0.09
Vapor Recovery Tower (VRU Downtime)	1.38	0.14	2.75	0.29	8.68	0.91	0.00	0.00	0.02	0.00	0.34	0.04
Water Degas Vessel (VRU Downtime)	1.24	0.13	2.47	0.26	6.88	0.72	0.00	0.00	0.03	0.00	0.44	0.05
Oil Tank Vapors (VRU Downtime)	0.54	0.06	1.07	0.11	3.22	0.34	0.00	0.00	0.01	0.00	0.11	0.01
Off-Specification Oil Tank Vapors (VRU Downtime)	1.38	0.14	2.75	0.29	8.67	0.91	0.00	0.00	0.02	0.00	0.38	0.04
Gun Barrel Vapors (VRU Downtime)	0.26	0.03	0.53	0.06	1.32	0.17	0.00	0.00	0.01	0.00	0.08	0.01
Slop Tank Tank Vapors (VRU Downtime)	0.02	0.00	0.03	0.00	0.08	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Water Tank Vapors (VRU Downtime)	0.04	0.00	0.08	0.01	0.16	0.02	0.00	0.00	0.00	0.00	0.02	0.00
Facility Shutdown (60 days) (Tank Breathing Vapors)	0.04	0.02	0.09	0.05	0.25	0.14	0.00	0.00	0.00	0.00	0.01	0.00
Total Emissions	14.30	2.06	28.55	4.11	67.76	8.14	0.01	0.03	0.36	0.04	2.22	0.25
Normal Operations (Pilots Only)	0.13	0.55	0.25	1.10	0.20	0.89	0.01	0.03	0.00	0.00	0.00	0.02
Intermittent Gas (VRU Downtime/Shutdown)	14.18	1.51	28.30	3.02	67.56	7.26	0.00	0.00	0.36	0.04	2.22	0.24

ZIA HILLS CENTRAL FACILITY

LP FLARES (FL2/FL3) - PILOT & PURGE GAS EMISSIONS

Pilot Fuel + Purge Gas	8640	SCF/Day	
Duration	8760	Hours/Year	
Flared	Yes	(Yes/No)	
Vented	No	(Yes/No)	
Heating Value	1262.0	Btu/SCF (Gas Analysis)	
		,	

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO2	53.16	232.82
CH4	0.00	0.00
CH4 as CO2e	0.02	0.10
CO ¹	0.13	0.55
NOx ¹	0.06	0.27
VOCs ²	0.10	0.44
$HAPs^2$	0.00	0.01
SO_2^3	0.00	0.02
H2S ³	0.00	0.00

 $^{^{1}\ \}text{The CO}\ \text{and NOx}\ \text{emission factors}\ \text{of }0.2755\ \text{and}\ 0.138\ \text{lb/MMBtu}\ \text{are based}\ \text{on TCEQ}\ \text{document}\ \text{RG-}360\text{A}/11\ \text{(February 2012)}$

 $^{^2}$ VOC example calculation: SCF/day * 14.7 / 10.73 / 528 * VOC Wt % * Gas MW

 $^{^3}$ H2S example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

ZIA HILLS CENTRAL FACILITY

FLARE (FL2-FL3) - GHG EMISSIONS SUMMARY

1) $E_{a,CH4} = V_a * X_{CH}$	₄ * [(1- η)* Z _L + Z	-U	=	76,959.02	SCF/Yr		Source	Annual Volume
Va =	10,070,794.04						OHS	7404195
$X_{CH4} =$	0.382	OHS Scrubber					VRT	684176
N =	0.98						WDG	825996
$Z_L =$	1.00						OT1-OT4	265500
$Z_U =$	0.00						OT5	671883
							ST-ST2	8,660
2) E _{a,CO2} (uncombu	$sted$) = $V_a * X_{CO}$	2	=	8,840.44	SCF/Yr		GB1-GB2	151058
Va =	10,070,794.04						WT1-WT8	59326
$X_{CO2} =$	0.0009	OHS Scrubber						10070794
3) E _{a,CO2} (combuste	ed) = Σ (η * Va * `	Yj * Rj * Z _L)						
N =	0.98							
$V_a =$	10,070,794.04		Rj =		$E_{a, CO2} =$			
$Y_J =$	Methane	0.3821	1	OHS Scrubber	3,770,991.75			
	Ethane	0.2038	2	OHS Scrubber	4,023,210.64			
	Propane	0.3218	3	VRT	9,528,957.23			
	Butane	0.3186	4	VRT	12,576,361.59			
	Pentane +	0.2205	5		10,882,431.01			
$Z_L =$	1.00				40,781,952	SCF/Yr		
3) E _{s.n} = <u>E_{a.n}</u> * (459.	67 + T _s) * P _a							
(459.	67 + T _a) * P _s							
$E_{a,n}(CH4) =$	76,959.02		=	67,360.21	SCF/Yr			
., .	40,790,792.67		=	35,703,110	SCF/Yr			
Ts =	60.00	°F						
Ta =	76.70	°F (Midland, AI	P-42)					
Ps =	14.70							
Pa =	13.28	Midland, AP-42	2					
4) Mass _{s,i} = E _{s,i} * ρ _i	* 10 ³							
$E_{s,i}$ (CH4) =	67,360.21							
$E_{s,i}$ (CO2) =	35,703,110.3	5						
p_i (CH4) =	0.0192	kg/ft3	=	1.29	metric tons			
p_i (CO2) =	0.0526	kg/ft3	=	1877.98	metric tons			
5) CO ₂ e = CO ₂ + (C	CH ₄ X GWP)		short tons	CO₂e				
CO2 =	1877.98	=	2070.12	2070.12				
CH4 =	1.29	=	1.43	35.64				
CH4 GWP =	25			2105.76				

um of gas routed to the flare.

BATTLESHIP CENTRAL FACILITY 40 CFR 60.18 Verification (Flare 2)

	Tip Velocity Calculations	
Flare Tip Diameter	12	Inches
Flare Tip Diameter	1.00	ft
Area of Flare Tip	0.785	ft^2
Gas Flow Rate	27,000,000	SCFD
Gas Flow Rate	1,125,000	SCF/Hr
Gas Flow Rate	312.50	SCF/Sec
Maximum Tip Velocity	397.89	ft/Sec
Heating Value	> 1000	BTU/SCF

BATTLESHIP CENTRAL FACILITY 40 CFR 60.18 Verification (Flare 3)

	Tip Velocity Calculations		
Flare Tip Diameter	12	Inches	
Flare Tip Diameter	1.00	ft	
Area of Flare Tip	0.785	ft ²	
Gas Flow Rate	27,000,000	SCFD	
Gas Flow Rate	1,125,000	SCF/Hr	
Gas Flow Rate	312.50	SCF/Sec	
Maximum Tip Velocity	397.89	ft/Sec	
Heating Value	> 1000	BTU/SCF	

ZIA HILLS CENTRAL FACILITY OVERHEAD SCRUBBER GAS

Component	Mole %	Weight %
H2S	0.0000	0.0000
Nitrogen	0.2615	0.2181
Methane	38.2090	18.2460
Carbon Dioxide	0.0878	0.1150
Ethane	20.3823	18.2433
Propane	19.6881	25.8421
i-Butane	3.7143	6.4262
n-Butane	8.3270	14.4065
i-Pentane	1.8030	3.8722
n-Pentane	2.0102	4.3172
i-Hexane	0.4948	1.2693
n-Hexane	0.3678	0.9434
2,2,4-Trimethylpentane	0.0001	0.0003
Cyclohexane	0.1600	0.4009
Benzene	0.0207	0.0482
i-Heptane	0.4142	1.2355
n-Heptane	0.1620	0.4833
Toluene	0.0434	0.1191
n-Octane	0.4290	1.4588
Ethylbenzene	0.0043	0.0135
meta-Xylene	0.0595	0.1882
n-Nonane	0.1069	0.4080
C10+	0.0000	0.0002
TEG	0.0000	0.0000
Water	3.2540	1.7449
Methanol	0.0000	0.0000
Total	100.00	100.00
Molecular Weight		33.59
Rty Content (Rty /ccf)		1009 74

Molecular Weight	33.59
Btu Content (Btu/scf)	1908.74
Non-Methane Hydrocarbons (Weight %)	79.68
VOCs (Weight %)	61.43
HAPs (Weight %)	1.31

¹Data obatained from Promax.

ZIA HILLS CENTRAL FACILITY

OVERHEAD GAS SCRUBBER (OHS) EMISSIONS

Component	Uncontrolled Stream		Controlled Stream (Normal Operations)		Controlled Stream (VRU Downtime - 100% Flared)		
	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	6.800	5.440	23.826	0.000	0.000	6.800	0.715
Methane	568.860	455.088	1993.287	0.000	0.000	11.377	1.196
Carbon Dioxide	3.585	2.868	12.563	0.000	0.000	3.585	0.377
Ethane	568.776	455.021	1992.992	0.000	0.000	11.376	1.196
Propane	805.689	644.551	2823.133	0.000	0.000	16.114	1.694
i-Butane	200.351	160.281	702.029	0.000	0.000	4.007	0.421
n-Butane	449.157	359.326	1573.847	0.000	0.000	8.983	0.944
i-Pentane	120.724	96.579	423.017	0.000	0.000	2.414	0.254
n-Pentane	134.599	107.680	471.637	0.000	0.000	2.692	0.283
i-Hexane	39.573	31.658	138.662	0.000	0.000	0.791	0.083
n-Hexane	29.413	23.530	103.062	0.000	0.000	0.588	0.062
2,2,4-Trimethylpentane	0.009	0.007	0.031	0.000	0.000	0.000	0.000
Cyclohexane	12.499	9.999	43.796	0.000	0.000	0.250	0.026
Benzene	1.502	1.202	5.263	0.000	0.000	0.030	0.003
i-Heptane	38.518	30.815	134.968	0.000	0.000	0.770	0.081
n-Heptane	15.067	12.054	52.795	0.000	0.000	0.301	0.032
Toluene	3.713	2.971	13.011	0.000	0.000	0.074	0.008
n-Octane	45.482	36.385	159.367	0.000	0.000	0.910	0.096
Ethylbenzene	0.420	0.336	1.470	0.000	0.000	0.008	0.001
meta-Xylene	5.867	4.693	20.557	0.000	0.000	0.117	0.012
n-Nonane	12.721	10.177	44.574	0.000	0.000	0.254	0.027
C10+	0.007	0.006	0.025	0.000	0.000	0.000	0.000
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	54.403	43.522	190.628	0.000	0.000	54.403	5.719
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Component	Un	Uncontrolled Stream		Controlled Stream (Normal Operations)		Controlled Stream (VRU Downtime - 100% Flared)	
	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
VOC TOTAL	1915.31	1532.25	6711.24	0.00	0.00	38.31	4.03
HAP TOTAL	40.92	32.74	143.39	0.00	0.00	0.82	0.09

 $^{^{1}} Uncontrolled\ emissions\ estimated\ using\ Promax.\ Tank\ vapors\ are\ controlled\ using\ a\ redundant\ VRU\ system\ and\ FL2/FL3.\ Maximum\ hourly\ rates\ include\ a\ 25\%\ operational\ safety\ factor.$

VRU Collection Efficiency	100%
VRU Downtime	3.0%
Downtime Hours	263
Flare Destruction Efficiency	98%

 $^{^2 \} Controlled \ Emissions * (1 - VRU \ Efficiency) * (1 - Flare \ Destruction \ Efficiency)$

³ Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours

ZIA HILLS CENTRAL FACILITY

OVERHEAD GAS SCRUBBER (OHS) TO FLARE DURING VRU1/VRU2 DOWNTIME

Total Gas Production - SCF/Day	676,182
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	35,218
Total Gas Production - SCF/Year	7,404,195
Duration - Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF	1908.7

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO^1	18.52	1.95
NOx ¹	9.28	0.98
SO ₂ ²	0.00	0.00
H2S ²	0.00	0.00
PM _{10 & 2.5} ³	0.27	0.03

 $^{^{\}rm 1}$ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012)

 $^{^2\,}H2S/SO2\,example\,calculation: SCF/day*14.7\,/\,10.73\,/\,528*H2S\,Wt\%*Gas\,MW.\,SO2\,is\,calculated\,assuming\,MW\,\,ratio\,of\,64.07:34.08.$

 $^{^3}$ PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

ZIA HILLS CENTRAL FACILITY VAPOR RECOVERY TOWER GAS

Component	Mole %	Weight %
H2S	0.0000	0.0000
Nitrogen	0.0000	0.0000
Methane	0.4429	0.1299
Carbon Dioxide	0.0237	0.0191
Ethane	13.1225	7.2140
Propane	32.1836	25.9460
i-Butane	8.6427	9.1841
n-Butane	23.2143	24.6683
i-Pentane	6.2015	8.1803
n-Pentane	7.1048	9.3718
i-Hexane	2.5344	3.9931
n-Hexane	1.8830	2.9667
2,2,4-Trimethylpentane	0.0124	0.0258
Cyclohexane	0.0000	0.0000
Benzene	0.1124	0.1606
i-Heptane	2.1358	3.9126
n-Heptane	0.6613	1.2114
Toluene	0.1763	0.2970
n-Octane	0.9242	1.9301
Ethylbenzene	0.0160	0.0311
meta-Xylene	0.0707	0.1373
n-Nonane	0.2200	0.5158
C10+	0.0001	0.0005
TEG	0.0000	0.0000
Water	0.3174	0.1045
Methanol	0.0000	0.0000
Total	100.00	100.00

Molecular Weight	54.70
Btu Content (Btu/scf)	3071.12
Non-Methane Hydrocarbons (Weight %)	99.75
VOCs (Weight %)	92.53
HAPs (Weight %)	3.62

¹Data obatained from Promax.

ZIA HILLS CENTRAL FACILITY

VAPOR RECOVERY TOWER (VRT) EMISSIONS

Component	Uno	ontrolled Strea	m	Controlled Stream Controlled (Normal Operations) (VRU Downtime -			
	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Methane	0.609	0.487	2.135	0.000	0.000	0.012	0.001
Carbon Dioxide	0.089	0.072	0.313	0.000	0.000	0.089	0.009
Ethane	33.837	27.070	118.566	0.000	0.000	0.677	0.071
Propane	121.699	97.360	426.435	0.000	0.000	2.434	0.256
i-Butane	43.078	34.462	150.944	0.000	0.000	0.862	0.091
n-Butane	115.706	92.565	405.434	0.000	0.000	2.314	0.243
i-Pentane	38.369	30.696	134.447	0.000	0.000	0.767	0.081
n-Pentane	43.958	35.167	154.031	0.000	0.000	0.879	0.092
i-Hexane	18.729	14.984	65.628	0.000	0.000	0.375	0.039
n-Hexane	13.915	11.132	48.759	0.000	0.000	0.278	0.029
2,2,4-Trimethylpentane	0.121	0.097	0.425	0.000	0.000	0.002	0.000
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.753	0.602	2.639	0.000	0.000	0.015	0.002
i-Heptane	18.352	14.682	64.306	0.000	0.000	0.367	0.039
n-Heptane	5.682	4.546	19.910	0.000	0.000	0.114	0.012
Toluene	1.393	1.114	4.881	0.000	0.000	0.028	0.003
n-Octane	9.053	7.243	31.722	0.000	0.000	0.181	0.019
Ethylbenzene	0.146	0.117	0.511	0.000	0.000	0.003	0.000
meta-Xylene	0.644	0.515	2.257	0.000	0.000	0.013	0.001
n-Nonane	2.419	1.935	8.477	0.000	0.000	0.048	0.005
C10+	0.002	0.002	0.008	0.000	0.000	0.000	0.000
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	0.490	0.392	1.718	0.000	0.000	0.490	0.052
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Component	Uncontrolled Stream			d Stream Operations)		ed Stream ne - 100% Flared)	
	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
VOC TOTAL	434.02	347.22	1520.81	0.00	0.00	8.68	0.91
HAP TOTAL	16.97	13.58	59.47	0.00	0.00	0.34	0.04

 $^{^{1}} Uncontrolled\ emissions\ estimated\ using\ Promax.\ Tank\ vapors\ are\ controlled\ using\ a\ redundant\ VRU\ system\ and\ FL2/FL3.\ Maximum\ hourly\ rates\ include\ a\ 25\%\ operational\ safety\ factor.$

VRU Collection Efficiency	100%
VRU Downtime	3.0%
Downtime Hours	263
Flare Destruction Efficiency	98%

 $^{^2 \} Controlled \ Emissions * (1 - VRU \ Efficiency) * (1 - Flare \ Destruction \ Efficiency)$

³ Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU

ZIA HILLS CENTRAL FACILITY

VAPOR RECOVERY TOWER GAS (VRT) TO FLARE DURING VRU1/VRU2 DOWNTIME

Total Gas Production - SCF/Day (Includes flashing/W&B)	62,482
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	3,254
Total Gas Production - SCF/Year	684,176
Duration -Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF (Promax - Highest of Flash/W&B)	3071.1

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO ¹	2.75	0.29
NOx ¹	1.38	0.14
SO ₂ ²	0.00	0.00
H2S ²	0.00	0.00
PM _{10 & 2.5}	0.02	0.00

 $^{^1}$ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012) 2 H2S/SO2 example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07-34.08.

 $^{^3}$ PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

ZIA HILLS CENTRAL FACILITY WATER DEGAS VESSEL GAS

Component	Mole %	Weight %
H2S	0.0000	0.0000
Nitrogen	0.0859	0.0558
Methane	18.8701	7.0203
Carbon Dioxide	0.0768	0.0784
Ethane	13.3100	9.2813
Propane	16.4005	16.7713
i-Butane	4.1890	5.6464
n-Butane	11.6963	15.7654
i-Pentane	4.2536	7.1171
n-Pentane	5.4251	9.0771
i-Hexane	2.5303	5.0567
n-Hexane	2.0511	4.0991
2,2,4-Trimethylpentane	0.0159	0.0422
Cyclohexane	0.0000	0.0001
Benzene	0.0684	0.1239
i-Heptane	2.6480	6.1532
n-Heptane	0.8613	2.0015
Toluene	0.1860	0.3973
n-Octane	1.3295	3.5219
Ethylbenzene	0.0214	0.0527
meta-Xylene	0.0969	0.2385
n-Nonane	0.3373	1.0032
C10+	0.0002	0.0014
TEG	0.0000	0.0000
Water	15.5462	6.4950
Methanol	0.0000	0.0000
Total	100.00	100.00
261 1 777 1		10.12
Molecular Weight		43.12
Btu Content (Btu/scf)	(TAT 1 1 0/)	2286.17
Non-Methane Hydrocarbo	ons (Weight %)	86.35
VOCs (Weight %)		77.07
HAPs (Weight %)		4.95

¹Data obatained from Promax.

Calculations: Page 27

ZIA HILLS CENTRAL FACILITY

WATER DEGAS VESSEL (WDGV1) EMISSIONS

Component	Un	controlled Stre	eam	Controlled Stream (Normal Operations) Controlled Str			
	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.249	0.199	0.873	0.000	0.000	0.249	0.026
Methane	31.341	25.073	109.819	0.000	0.000	0.627	0.066
Carbon Dioxide	0.350	0.280	1.226	0.000	0.000	0.350	0.037
Ethane	41.435	33.148	145.188	0.000	0.000	0.829	0.087
Propane	74.873	59.898	262.353	0.000	0.000	1.497	0.157
i-Butane	25.207	20.166	88.326	0.000	0.000	0.504	0.053
n-Butane	70.382	56.305	246.618	0.000	0.000	1.408	0.148
i-Pentane	31.773	25.418	111.332	0.000	0.000	0.635	0.067
n-Pentane	40.523	32.419	141.994	0.000	0.000	0.810	0.085
i-Hexane	22.575	18.060	79.101	0.000	0.000	0.451	0.047
n-Hexane	18.300	14.640	64.123	0.000	0.000	0.366	0.038
2,2,4-Trimethylpentane	0.189	0.151	0.661	0.000	0.000	0.004	0.000
Cyclohexane	0.000	0.000	0.001	0.000	0.000	0.000	0.000
Benzene	0.553	0.442	1.938	0.000	0.000	0.011	0.001
i-Heptane	27.470	21.976	96.255	0.000	0.000	0.549	0.058
n-Heptane	8.936	7.148	31.310	0.000	0.000	0.179	0.019
Toluene	1.774	1.419	6.216	0.000	0.000	0.035	0.004
n-Octane	15.723	12.578	55.093	0.000	0.000	0.314	0.033
Ethylbenzene	0.235	0.188	0.825	0.000	0.000	0.005	0.000
meta-Xylene	1.065	0.852	3.731	0.000	0.000	0.021	0.002
n-Nonane	4.479	3.583	15.693	0.000	0.000	0.090	0.009
C10+	0.006	0.005	0.021	0.000	0.000	0.000	0.000
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	28.996	23.197	101.601	0.000	0.000	28.996	3.048
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Component	Uncontrolled Stream			ed Stream Operations)		ed Stream ne - 100% Flared)	
	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
VOC TOTAL	344.06	275.25	1205.59	0.00	0.00	6.88	0.72
HAP TOTAL	22.12	17.69	77.49	0.00	0.00	0.44	0.05

 $^{^1}$ Uncontrolled emissions estimated using Promax. Tank vapors are controlled using a redundant VRU system and FL2/FL3. Maximum hourly rates include a 25% operational safety factor.

VRU Collection Efficiency	100%
VRU Downtime	3.0%
Downtime Hours	263
Flare Destruction Efficiency	98%

 $^{^2 \} Controlled \ Emissions * (1 - VRU \ Efficiency) * (1 - Flare \ Destruction \ Efficiency)$

³ Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours

ZIA HILLS CENTRAL FACILITY

WATER DEGAS VESSEL (WDGV1) TO FLARE DURING VRU1/VRU2 DOWNTIME

Total Gas Production - SCF/Day (Includes flashing/W&B)	75,433
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	3,929
Total Gas Production - SCF/Year	825,996
Duration -Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF (Promax - Highest of Flash/W&B)	2286.2

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO ¹	2.47	0.26
NOx ¹	1.24	0.13
SO ₂ ²	0.00	0.00
H2S ²	0.00	0.00
PM _{10 & 2.5}	0.03	0.00

 $^{^1}$ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012) 2 H2S/SO2 example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07-34.08.

 $^{^3}$ PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

ZIA HILLS CENTRAL FACILITY STORAGE TANK EMISSIONS SUMMARY

Emission Unit	Unit Description	Tank Controlled (Yes/No)	Control Type	Material Throughput (bbls/day)	Material Type (Oil/Produced Water)	VOC (lb/hr)	VOC (TPY)
OT1	Condensate Storage Tank	Yes	Flare	4500	OIL	0.81	0.08
OT2	Condensate Storage Tank	Yes	Flare	4500	OIL	0.81	0.08
ОТ3	Condensate Storage Tank	Yes	Flare	4500	OIL	0.81	0.08
OT4	Condensate Storage Tank	Yes	Flare	4500	OIL	0.81	0.08
OT5	Off-Spec Condensate Storage Tank	Yes	Flare	593	OIL	8.67	0.91
GB1	Water Gun Barrel	Yes	Flare	15221	WATER	0.66	0.09
GB2	Water Gun Barrel	Yes	Flare	15221	WATER	0.66	0.09
ST1	Slop Tank	Yes	Flare	127	OIL	0.04	0.01
ST2	Slop Tank	Yes	Flare	127	OIL	0.04	0.01
WT1	Water Storage Tank	Yes	Flare	3721	WATER	0.02	0.00
WT2	Water Storage Tank	Yes	Flare	3721	WATER	0.02	0.00
WT3	Water Storage Tank	Yes	Flare	3721	WATER	0.02	0.00
WT4	Water Storage Tank	Yes	Flare	3721	WATER	0.02	0.00
WT5	Water Storage Tank	Yes	Flare	3721	WATER	0.02	0.00
WT6	Water Storage Tank	Yes	Flare	3721	WATER	0.02	0.00
WT7	Water Storage Tank	Yes	Flare	3721	WATER	0.02	0.00
WT8	Water Storage Tank	Yes	Flare	3721	WATER	0.02	0.00
	13.44	1.45					

 $[\]overline{\ }$ Since the vapor recovery unit captures 100% of the gas, normal operations are not represented here. During VRU downtime, tank vapors are routed to the flare.

Calculations: Page 30

ZIA HILLS CENTRAL FACILITY

CONDENSATE STORAGE TANKS (OT1-OT4) - EMISSIONS SUMMARY

Emission Component	Uncont	rolled W&B	Stream	Uncont	rolled Flash	Stream	Stro Controlled B VRU - Norma		Controlled B	eam y Flare - VRU ntime
	Max lb/hr	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Methane	0.037	0.030	0.130	0.075	0.060	0.263	0.000	0.000	0.002	0.000
Carbon Dioxide	0.018	0.015	0.065	0.012	0.010	0.042	0.000	0.000	0.030	0.003
Ethane	10.778	8.622	37.764	4.741	3.793	16.614	0.000	0.000	0.310	0.033
Propane	32.992	26.394	115.604	17.464	13.971	61.195	0.000	0.000	1.009	0.106
i-Butane	10.017	8.014	35.100	6.220	4.976	21.793	0.000	0.000	0.325	0.034
n-Butane	25.883	20.706	90.693	16.728	13.382	58.614	0.000	0.000	0.852	0.090
i-Pentane	8.073	6.458	28.288	5.557	4.446	19.471	0.000	0.000	0.273	0.029
n-Pentane	9.018	7.215	31.601	6.368	5.094	22.313	0.000	0.000	0.308	0.032
i-Hexane	3.633	2.907	12.731	2.714	2.172	9.511	0.000	0.000	0.127	0.013
n-Hexane	2.690	2.152	9.427	2.017	1.613	7.067	0.000	0.000	0.094	0.010
2,2,4-Trimethylpentane	0.021	0.017	0.073	0.018	0.014	0.062	0.000	0.000	0.001	0.000
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.098	0.079	0.345	0.109	0.087	0.382	0.000	0.000	0.004	0.000
i-Heptane	3.149	2.519	11.033	2.660	2.128	9.320	0.000	0.000	0.116	0.012
n-Heptane	0.963	0.770	3.374	0.823	0.659	2.885	0.000	0.000	0.036	0.004
Toluene	0.177	0.142	0.622	0.202	0.162	0.707	0.000	0.000	0.008	0.001
n-Octane	1.348	1.079	4.725	1.312	1.049	4.596	0.000	0.000	0.053	0.006
Ethylbenzene	0.018	0.015	0.064	0.021	0.017	0.074	0.000	0.000	0.001	0.000
meta-Xylene	0.078	0.063	0.274	0.093	0.075	0.327	0.000	0.000	0.003	0.000
n-Nonane	0.272	0.218	0.954	0.350	0.280	1.228	0.000	0.000	0.012	0.001
C10+	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	0.000	0.000	0.001	0.068	0.054	0.238	0.000	0.000	0.068	0.007
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Component	Uncont	rolled W&B	Stream	Uncont	trolled Flash	Stream	Stream Controlled By Redundant VRU - Normal Operations		Stream Controlled By Flare - VRU Downtime	
	Max lb/hr	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
VOC TOTAL	98.43	78.75	344.91	62.66	50.12	219.55	0.00	0.00	3.22	0.34
HAP TOTAL	3.08	2.47	10.81	2.46	1.97	8.62	0.00	0.00	0.11	0.01

¹ Uncontrolled emissions estimated using Promax. Tank vapors are controlled using a redundant VRU system and FL2/FL3. Maximum hourly rates include a 25% operational safety factor.

VRU Collection Efficiency	100%
VRU Downtime	3.0%
VRU Downtime (Hours)	263
Flare Destruction Efficiency	98%

 $^{^2\} Controlled\ Emissions * (1 - VRU\ Efficiency) * (1 - Flare\ Destruction\ Efficiency) * (1 - Flare\ Destruction\ Efficiency) * (2 - Flare\ Destruction\ Efficiency) * (3 - Flare\ Destruction\ Efficiency) * (4 - Flare\ Destruction\ Efficiency) * (5 - Flare\ Destruction\ Efficiency) * (6 - Flare\ Destruction\ Efficiency) * (6 - Flare\ Destruction\ Efficiency) * (7 - Flare\ Destruction\ Efficiency) * (8 - Flare\ Destruction\ Efficiency) * (8$

 $^{^{3}}$ Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours.

ZIA HILLS CENTRAL FACILITY

CONDENSATE STORAGE TANK (OT1-OT4) VAPORS TO FLARE DURING VRU DOWNTIME

Total Gas Production - SCF/Day (Includes flashing/W&B)	24,247
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	1,263
Total Gas Production - SCF/Year	265,500
Duration -Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF (Promax - Highest of Flash/W&B)	3080.2

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO ¹	1.07	0.11
NOx ¹	0.54	0.06
SO ₂ ²	0.00	0.00
H2S ²	0.00	0.00
PM _{10 & 2.5} ³	0.01	0.00

 $^{^1\ \}text{The CO}\ \text{and NOx}\ \text{emission factors}\ \text{of } 0.2755\ \text{and}\ 0.138\ \text{lb/MMBtu}\ \text{are based}\ \text{on TCEQ}\ \text{document}\ \text{RG-360A/11}\ \text{(February 2012)}$

 $^{^2~}H2S/SO2~example~calculation: SCF/day*14.7~/~10.73~/~528*H2S~Wt\%*Gas~MW.~SO2~is~calculated~assuming~MW~ratio~of~64.07:34.08.$

 $^{^3}$ PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

ZIA HILLS CENTRAL FACILITY

OFF-SPEC OIL STORAGE TANK (OT5) - EMISSIONS SUMMARY

Component	Uncont	rolled W&B	Stream	Uncont	rolled Flash	Stream Controlled By Redundant VRU - Normal Operations		Redundant Controlled By Flare - VRU Operations Downtime		
	Max lb/hr	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.000	0.000	0.000	0.022	0.018	0.078	0.000	0.000	0.022	0.002
Methane	0.098	0.079	0.344	5.578	4.463	19.546	0.000	0.000	0.114	0.012
Carbon Dioxide	0.005	0.004	0.018	0.082	0.065	0.286	0.000	0.000	0.087	0.009
Ethane	2.317	1.853	8.118	25.666	20.533	89.934	0.000	0.000	0.560	0.059
Propane	6.243	4.995	21.877	92.965	74.372	325.749	0.000	0.000	1.984	0.209
i-Butane	1.922	1.538	6.734	38.842	31.073	136.102	0.000	0.000	0.815	0.086
n-Butane	4.662	3.729	16.335	104.563	83.650	366.388	0.000	0.000	2.184	0.230
i-Pentane	1.424	1.139	4.989	39.401	31.521	138.060	0.000	0.000	0.816	0.086
n-Pentane	1.596	1.277	5.593	47.259	37.807	165.596	0.000	0.000	0.977	0.103
i-Hexane	0.503	0.402	1.762	17.436	13.949	61.097	0.000	0.000	0.359	0.038
n-Hexane	0.375	0.300	1.312	13.552	10.841	47.485	0.000	0.000	0.279	0.029
2,2,4-Trimethylpentane	0.001	0.001	0.003	0.035	0.028	0.122	0.000	0.000	0.001	0.000
Cyclohexane	0.095	0.076	0.333	4.426	3.540	15.507	0.000	0.000	0.090	0.010
Benzene	0.013	0.011	0.046	0.700	0.560	2.451	0.000	0.000	0.014	0.001
i-Heptane	0.437	0.350	1.533	18.839	15.071	66.010	0.000	0.000	0.386	0.041
n-Heptane	0.159	0.127	0.558	7.141	5.713	25.023	0.000	0.000	0.146	0.015
Toluene	0.030	0.024	0.104	1.772	1.417	6.208	0.000	0.000	0.036	0.004
n-Octane	0.371	0.297	1.301	20.184	16.147	70.724	0.000	0.000	0.411	0.043
Ethylbenzene	0.003	0.003	0.011	0.204	0.164	0.716	0.000	0.000	0.004	0.000
meta-Xylene	0.037	0.030	0.130	2.468	1.974	8.647	0.000	0.000	0.050	0.005
n-Nonane	0.076	0.061	0.267	5.798	4.638	20.315	0.000	0.000	0.117	0.012
C10+	0.000	0.000	0.000	0.004	0.003	0.014	0.000	0.000	0.000	0.000
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	0.000	0.000	0.000	1.653	1.322	5.792	0.000	0.000	1.653	0.174
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Component	Uncont	rolled W&B	Stream	Uncont	trolled Flash	Stream		eam y Redundant al Operations	Controlled B	eam y Flare - VRU ntime
	Max lb/hr	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
VOC TOTAL	17.95	14.36	62.89	415.59	332.47	1456.22	0.00	0.00	8.67	0.91
HAP TOTAL	0.46	0.37	1.61	18.73	14.98	65.63	0.00	0.00	0.38	0.04

 $^{^{1}}$ Uncontrolled emissions estimated using Promax. Tank vapors are controlled using a redundant VRU system and FL2/FL3. Maximum hourly rates include a 25% operational safety factor.

VRU Collection Efficiency	100%
VRU Downtime	3%
VRU Downtime (Hours)	263
Flare Destruction Efficiency	98%

 $^{^2\} Controlled\ Emissions* (1 - VRU\ Efficiency)* (1 - Flare\ Destruction\ Efficiency)$

 $^{^3}$ Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours.

ZIA HILLS CENTRAL FACILITY

OFF-SPEC STORAGE TANK (OT5) VAPORS TO FLARE DURING VRU DOWNTIME

Total Gas Production - SCF/Day (Includes flashing/W&B)	61,359
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	3,196
Total Gas Production - SCF/Year	671,883
Duration -Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF (Promax - Highest of Flash/W&B)	3124.5

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO ¹	2.75	0.29
NOx ¹	1.38	0.14
SO ₂ ²	0.00	0.00
H2S ²	0.00	0.00
$PM_{10 \& 2.5}^{3}$	0.02	0.00

 $^{^{1}}$ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012)

 $^{^2~}H2S/SO2~example~calculation:~SCF/day~^*14.7~/~10.73~/~528~^*H2S~Wt\%~^*Gas~MW.~SO2~is~calculated~assuming~MW~ratio~of~64.07:34.08.$

 $^{^3}$ PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

ZIA HILLS CENTRAL FACILITY

SLOP OIL TANKS (ST1-T2) - EMISSIONS SUMMARY

Component	Uncontrolled	W&B Stream			Controlled By Redundant VRU - Normal Operations			
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Methane	0.082	0.359	0.000	0.000	0.000	0.000	0.002	0.000
Carbon Dioxide	0.003	0.015	0.000	0.000	0.000	0.000	0.003	0.000
Ethane	0.573	2.508	0.000	0.000	0.000	0.000	0.011	0.002
Propane	1.017	4.452	0.000	0.000	0.000	0.000	0.020	0.003
i-Butane	0.300	1.313	0.000	0.000	0.000	0.000	0.006	0.001
n-Butane	0.807	3.536	0.000	0.000	0.000	0.000	0.016	0.002
i-Pentane	0.348	1.523	0.000	0.000	0.000	0.000	0.007	0.001
n-Pentane	0.434	1.900	0.000	0.000	0.000	0.000	0.009	0.001
i-Hexane	0.229	1.005	0.000	0.000	0.000	0.000	0.005	0.001
n-Hexane	0.185	0.809	0.000	0.000	0.000	0.000	0.004	0.000
2,2,4-Trimethylpentane	0.002	0.007	0.000	0.000	0.000	0.000	0.000	0.000
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.004	0.017	0.000	0.000	0.000	0.000	0.000	0.000
i-Heptane	0.247	1.083	0.000	0.000	0.000	0.000	0.005	0.001
n-Heptane	0.079	0.348	0.000	0.000	0.000	0.000	0.002	0.000
Toluene	0.012	0.053	0.000	0.000	0.000	0.000	0.000	0.000
n-Octane	0.125	0.545	0.000	0.000	0.000	0.000	0.002	0.000
Ethylbenzene	0.002	0.007	0.000	0.000	0.000	0.000	0.000	0.000
meta-Xylene	0.007	0.030	0.000	0.000	0.000	0.000	0.000	0.000
n-Nonane	0.026	0.113	0.000	0.000	0.000	0.000	0.001	0.000
C10+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	0.001	0.003	0.000	0.000	0.000	0.000	0.001	0.000
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Component	Uncontrolled	W&B Stream	Uncontrolled Flash Stream		Stream Controlled By Redundant VRU - Normal Operations		Stream Controlled By Flare - VRU Downtime	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
VOC TOTAL	3.82	16.74	0.00	0.00	0.00	0.00	0.08	0.01
HAP TOTAL	0.21	0.92	0.00	0.00	0.00	0.00	0.00	0.00

 $^{^{1}} Uncontrolled emissions estimated using Promax. Tank vapors are controlled using a redundant VRU system and FL2/FL3. Maximum hourly rates include a 25% operational safety factor. \\$

VRU Collection Efficiency	100%
VRU Downtime	3%
VRU Downtime (Hours)	263
Flare Destruction Efficiency	98%

 $^{^2}$ Controlled Emissions = Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

 $^{^3}$ Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours.

ZIA HILLS CENTRAL FACILITY SLOP TANK GAS TO FLARE DURING NORMAL OPERATION

Total Gas Production - SCF/Day (Includes W&B from water tanks)	791
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	41
Total Gas Production - SCF/Year	8,660
Duration -Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF (Promax)	2907.5

Component	Emission Rate (1b/hr)	Emission Rate (TPY)
CO ¹	0.03	0.00
NOx ¹	0.02	0.00
SO ₂ ²	0.00	0.00
H2S ²	0.00	0.00
PM _{10 & 2.5} ³	0.00	0.00

 $^{^1\ \}text{The CO and NOx emission factors of } 0.2755\ \text{and } 0.138\ \text{lb/MMBtu}\ \text{are based on TCEQ document RG-360A/11 (February 2012)}$

 $^{^2\,}H2S/SO2\,example\,calculation: SCF/day*14.7\,/\,10.73\,/\,528*H2S\,Wt\%*Gas\,MW.\,SO2\,is\,calculated\,assuming\,MW\,ratio\,of\,64.07:34.08.$

 $^{^3}$ PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

ZIA HILLS CENTRAL FACILITY

GUN BARREL SEPARATORS (GB1-GB2) - EMISSIONS SUMMARY

Component		Uncontrolled W&B Unco		Uncontrolled Flash Stream		eam y Redundant al Operations	Stro Controlled By Down	,
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.006	0.026	0.002	0.007	0.000	0.000	0.007	0.001
Methane	1.545	6.767	0.219	0.961	0.000	0.000	0.035	0.005
Carbon Dioxide	0.085	0.374	0.003	0.012	0.000	0.000	0.088	0.012
Ethane	3.497	15.316	0.308	1.351	0.000	0.000	0.076	0.010
Propane	10.346	45.315	0.578	2.530	0.000	0.000	0.218	0.029
i-Butane	5.508	24.127	0.199	0.874	0.000	0.000	0.114	0.015
n-Butane	15.216	66.647	0.562	2.461	0.000	0.000	0.316	0.041
i-Pentane	6.419	28.115	0.257	1.125	0.000	0.000	0.134	0.018
n-Pentane	8.014	35.100	0.328	1.437	0.000	0.000	0.167	0.022
i-Hexane	4.241	18.577	0.184	0.804	0.000	0.000	0.088	0.012
n-Hexane	3.327	14.573	0.149	0.653	0.000	0.000	0.070	0.009
2,2,4-Trimethylpentane	0.033	0.142	0.002	0.007	0.000	0.000	0.001	0.000
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.106	0.466	0.005	0.020	0.000	0.000	0.002	0.000
i-Heptane	4.798	21.017	0.224	0.981	0.000	0.000	0.100	0.013
n-Heptane	1.516	6.638	0.073	0.319	0.000	0.000	0.032	0.004
Toluene	0.314	1.373	0.014	0.063	0.000	0.000	0.007	0.001
n-Octane	2.474	10.838	0.128	0.562	0.000	0.000	0.052	0.007
Ethylbenzene	0.038	0.165	0.002	0.008	0.000	0.000	0.001	0.000
meta-Xylene	0.170	0.745	0.009	0.038	0.000	0.000	0.004	0.000
n-Nonane	0.652	2.855	0.037	0.160	0.000	0.000	0.014	0.002
C10+	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	4.397	19.258	0.237	1.036	0.000	0.000	4.633	0.609
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Component		lled W&B eam	Uncontrolled Flash Stream Controlled By Redundant Stream VRU - Normal Operations Downtime		Controlled By Redundant		y Flare - VRU	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
VOC TOTAL	63.17	276.70	2.75	12.04	0.00	0.00	1.32	0.17
HAP TOTAL	3.99	17.47	0.18	0.79	0.00	0.00	0.08	0.01

 $^{^1\,}Uncontrolled\,emissions\,estimated\,using\,Promax.\,Tank\,vapors\,are\,controlled\,using\,a\,redundant\,VRU\,system\,and\,FL2/FL3.$

VRU Collection Efficiency	100%
VRU Downtime	3%
VRU Downtime (Hours)	263
Flare Destruction Efficiency	98%

² Controlled Emissions = Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

 $^{^{3}}$ Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours.

ZIA HILLS CENTRAL FACILITY

GUN BARREL VAPORS TO FLARE DURING VRU DOWNTIME

Total Gas Production - SCF/Day (Includes gun barrel flashing/W&B)	13,795
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	719
Total Gas Production - SCF/Year	151,058
Duration -Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF (Promax - Highest of Flash/W&B)	2672.4

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO ¹	0.53	0.06
NOx ¹	0.26	0.03
SO ₂ ²	0.00	0.00
H2S ²	0.00	0.00
$PM_{10 \& 2.5}^{3}$	0.01	0.00

 $^{^{1}}$ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012)

 $^{^2}$ H2S/SO2 example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

 $^{^3}$ PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

ZIA HILLS CENTRAL FACILITY

PRODUCED WATER TANKS (WT1-WT8) - EMISSIONS SUMMARY

Component			Uncontrolled Flash Stream		Controlled E	eam By Redundant al Operations	Controlled B	eam y Flare - VRU ntime
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.004	0.017	0.000	0.000	0.000	0.000	0.004	0.001
Methane	1.133	4.963	0.000	0.000	0.000	0.000	0.023	0.003
Carbon Dioxide	0.103	0.452	0.000	0.000	0.000	0.000	0.103	0.014
Ethane	1.920	8.409	0.000	0.000	0.000	0.000	0.038	0.005
Propane	2.479	10.859	0.000	0.000	0.000	0.000	0.050	0.007
i-Butane	0.456	1.996	0.000	0.000	0.000	0.000	0.009	0.001
n-Butane	2.248	9.847	0.000	0.000	0.000	0.000	0.045	0.006
i-Pentane	0.597	2.614	0.000	0.000	0.000	0.000	0.012	0.002
n-Pentane	0.464	2.032	0.000	0.000	0.000	0.000	0.009	0.001
i-Hexane	0.285	1.249	0.000	0.000	0.000	0.000	0.006	0.001
n-Hexane	0.129	0.564	0.000	0.000	0.000	0.000	0.003	0.000
2,2,4-Trimethylpentane	0.001	0.003	0.000	0.000	0.000	0.000	0.000	0.000
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.141	0.617	0.000	0.000	0.000	0.000	0.003	0.000
i-Heptane	0.152	0.666	0.000	0.000	0.000	0.000	0.003	0.000
n-Heptane	0.039	0.170	0.000	0.000	0.000	0.000	0.001	0.000
Toluene	0.459	2.009	0.000	0.000	0.000	0.000	0.009	0.001
n-Octane	0.035	0.154	0.000	0.000	0.000	0.000	0.001	0.000
Ethylbenzene	0.058	0.252	0.000	0.000	0.000	0.000	0.001	0.000
meta-Xylene	0.280	1.226	0.000	0.000	0.000	0.000	0.006	0.001
n-Nonane	0.005	0.024	0.000	0.000	0.000	0.000	0.000	0.000
C10+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	5.827	25.521	0.000	0.000	0.000	0.000	5.827	0.766
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Component	Uncontrolled	Uncontrolled W&B Stream		Uncontrolled Flash Stream		eam By Redundant al Operations	Controlled By	eam y Flare - VRU ntime
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
VOC TOTAL	7.83	34.28	0.00	0.00	0.00	0.00	0.16	0.02
HAP TOTAL	1.07	4.67	0.00	0.00	0.00	0.00	0.02	0.00

 $^{^{1}}$ Uncontrolled emissions estimated using Promax. Tank vapors are controlled using a redundant VRU system and FL2/FL3.

VRU Collection Efficiency	100%
VRU Downtime	3%
VRU Downtime (Hours)	263
Flare Destruction Efficiency	98%

² Controlled Emissions = Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

 $^{^3}$ Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours.

ZIA HILLS CENTRAL FACILITY

WATER TANK VAPORS (WT1-WT8) TO FLARE - COMBUSTION EMISSIONS

Total Gas Production - SCF/Day (Includes W&B from water tanks)	5418
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	282
Total Gas Production - SCF/Year	59,326
Duration -Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF (Promax)	1065.03

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO^1	0.08	0.01
NOx ¹	0.04	0.00
SO ₂ ²	0.00	0.00
H2S ²	0.00	0.00
PM _{10 & 2.5} ³	0.00	0.00

 $^{^1\,\}mathrm{The~CO~and~NOx~emission~factors~of~0.2755~and~0.138~lb/MMB tu~are~based~on~TCEQ~document~RG-360A/11~(February~2012)}$

 $^{^2\,}H2S/SO2\,example\,calculation: SCF/day * 14.7 \ / \ 10.73 \ / \ 528 * H2S\,Wt\% * Gas\,MW.\,SO2 is calculated assuming\,MW ratio of 64.07:34.08.$

 $^{^3}$ PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

ZIA HILLS CENTRAL FACILITY

TEG DEHYDRATOR: TOTAL EMISSIONS - PER DEHYDRATOR (DEHY1-DEHY2)

Component	Emis	Still Column ssions Stream 12)	Emis (Promax Strea	er Still Column ssions m VOC to Fuel as-2)		enser Vapors Glycol Reboiler	Flash Tank Emissions (Stream 509)		Flash Tank Emissions Controlled by Glycol Reboiler (Stream 509)		Total Combined Uncontrolled Dehydrator Emissions	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Nitrogen	0.0007	0.0032	0.0007	0.0032	0.0007	0.0032	0.0514	0.2251	0.0514	0.2251	0.0521	0.2283
Methane	0.3402	1.4902	0.3399	1.4886	0.0068	0.0298	6.6423	29.0934	0.1328	0.5819	6.9825	30.5836
Carbon Dioxide	0.0797	0.3492	0.0792	0.3469	0.0792	0.3469	0.1458	0.6387	0.1458	0.6387	0.2255	0.9879
Ethane	0.8707	3.8137	0.8670	3.7974	0.0173	0.0759	4.6381	20.3149	0.0928	0.4063	5.5088	24.1286
Propane	1.5541	6.8069	1.5350	6.7232	0.0307	0.1345	4.1699	18.2640	0.0834	0.3653	5.7240	25.0710
i-Butane	0.4043	1.7709	0.3934	1.7232	0.0079	0.0345	0.7904	3.4619	0.0158	0.0692	1.1947	5.2328
n-Butane	1.6268	7.1254	1.5630	6.8461	0.0313	0.1369	2.0873	9.1426	0.0417	0.1829	3.7141	16.2680
i-Pentane	0.7303	3.1985	0.6679	2.9252	0.0134	0.0585	0.5668	2.4826	0.0113	0.0497	1.2971	5.6811
n-Pentane	1.0129	4.4365	0.9036	3.9577	0.0181	0.0792	0.6518	2.8549	0.0130	0.0571	1.6647	7.2913
i-Hexane	0.4502	1.9717	0.3560	1.5592	0.0071	0.0312	0.1735	0.7601	0.0035	0.0152	0.6237	2.7317
n-Hexane	0.4105	1.7980	0.3015	1.3207	0.0060	0.0264	0.1225	0.5366	0.0025	0.0107	0.5330	2.3346
2,2,4-Trimethylpentane	0.0003	0.0015	0.0002	0.0007	0.0000	0.0000	0.0001	0.0003	0.0000	0.0000	0.0004	0.0017
Cyclohexane	0.6486	2.8410	0.4227	1.8513	0.0085	0.0370	0.0665	0.2913	0.0013	0.0058	0.7151	3.1323
Benzene	0.6579	2.8816	0.4147	1.8164	0.0083	0.0363	0.0116	0.0506	0.0002	0.0010	0.6695	2.9323
i-Heptane	0.4945	2.1658	0.2941	1.2883	0.0059	0.0258	0.1146	0.5021	0.0023	0.0100	0.6091	2.6679
n-Heptane	0.2213	0.9692	0.1127	0.4937	0.0023	0.0099	0.0377	0.1653	0.0008	0.0033	0.2590	1.1345
Toluene	1.5845	6.9402	0.5931	2.5980	0.0119	0.0520	0.0143	0.0627	0.0003	0.0013	1.5988	7.0029
n-Octane	0.5010	2.1943	0.1265	0.5542	0.0025	0.0111	0.0484	0.2118	0.0010	0.0042	0.5493	2.4061
Ethylbenzene	0.1094	0.4790	0.0196	0.0859	0.0004	0.0017	0.0006	0.0026	0.0000	0.0001	0.1100	0.4816
meta-Xylene	1.4202	6.2206	0.2337	1.0237	0.0047	0.0205	0.0074	0.0324	0.0001	0.0006	1.4276	6.2530
n-Nonane	0.0768	0.3366	0.0087	0.0380	0.0002	0.0008	0.0040	0.0175	0.0001	0.0003	0.0808	0.3541
C10+	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TEG	0.2486	1.0889	0.0000	0.0000	0.0000	0.0000	0.0001	0.0006	0.0000	0.0000	0.2487	1.0895
Water	54.4380	238.4385	0.3987	1.7463	0.3987	1.7463	0.0546	0.2391	0.0546	0.2391	54.4926	238.6776
Methanol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Component		Still Column sions Stream 12)	Emis (Promax Strea			h lank Emissions		Emissions by Glycol Stream 509)	Uncontrolled	Total Combined Uncontrolled Dehydrator Emissions		
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
VOC Total	11.90	52.14	7.95	34.81	0.16	0.70	8.87	38.84	0.18	0.78	20.77	90.98
HAP Total	4.18	18.32	1.56	6.85	0.03	0.14	0.16	0.69	0.00	0.01	4.34	19.01

UNCONTROLLED EMISSIONS SUMMARY	lb/hr	TPY
NMNEVOC (Includes TOTAL HAPs)	20.77	90.98
TOTAL HAPs	4.34	19.01

BURNER CONTROLLED EMISSIONS SUMMARY	lb/hr	TPY
NMNEVOC (Includes TOTAL HAPs)	0.34	1.47
TOTAL HAPs	0.03	0.15
BENZENE	0.01	0.04
N-HEXANE	0.01	0.05

^{*} Dehydrator vapors are routed to the glycol reboiler, which controls VOC/HAP emissions by 98%.

ZIA HILLS CENTRAL FACILITY

TEG DEHYDRATOR: TOTAL EMISSIONS - PER DEHYDRATOR (DEHY3-DEHY4)

Component		Still Column sions Stream 12)	Emis (Promax Strea	er Still Column ssions m VOC to Fuel s-1)	Post-Conde Controlled By	nser Vapors Glycol Reboiler	Flash Tank Emissions (Stream 403)		Flash Tank Emissions Controlled by Glycol Reboiler (Stream 403)		Total Combined Uncontrolled Dehydrator Emissions	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Nitrogen	0.0013	0.0057	0.0013	0.0057	0.0013	0.0057	0.0911	0.3991	0.0911	0.3991	0.0924	0.4047
Methane	0.6018	2.6358	0.6011	2.6329	0.0120	0.0527	11.7319	51.3858	0.2346	1.0277	12.3337	54.0216
Carbon Dioxide	0.1409	0.6172	0.1399	0.6127	0.0028	0.0123	0.2577	1.1287	0.0052	0.0226	0.3986	1.7459
Ethane	1.5281	6.6932	1.5215	6.6643	0.0304	0.1333	8.1666	35.7696	0.1633	0.7154	9.6947	42.4628
Propane	2.7120	11.8787	2.6789	11.7334	0.0536	0.2347	7.3278	32.0956	0.1466	0.6419	10.0398	43.9744
i-Butane	0.7035	3.0814	0.6847	2.9991	0.0137	0.0600	1.3881	6.0799	0.0278	0.1216	2.0916	9.1613
n-Butane	2.8338	12.4118	2.7235	11.9290	0.0545	0.2386	3.6695	16.0724	0.0734	0.3214	6.5032	28.4842
i-Pentane	1.2678	5.5528	1.1603	5.0822	0.0232	0.1016	0.9965	4.3647	0.0199	0.0873	2.2643	9.9175
n-Pentane	1.7514	7.6712	1.5639	6.8498	0.0313	0.1370	1.1449	5.0149	0.0229	0.1003	2.8964	12.6861
i-Hexane	0.7792	3.4127	0.6173	2.7038	0.0123	0.0541	0.3052	1.3370	0.0061	0.0267	1.0844	4.7497
n-Hexane	0.7092	3.1061	0.5221	2.2870	0.0104	0.0457	0.2156	0.9445	0.0043	0.0189	0.9248	4.0506
2,2,4-Trimethylpentane	0.0006	0.0025	0.0003	0.0013	0.0000	0.0000	0.0001	0.0005	0.0000	0.0000	0.0007	0.0030
Cyclohexane	1.1271	4.9369	0.7363	3.2250	0.0147	0.0645	0.1175	0.5148	0.0024	0.0103	1.2447	5.4517
Benzene	1.1513	5.0428	0.7257	3.1787	0.0145	0.0636	0.0205	0.0898	0.0004	0.0018	1.1718	5.1326
i-Heptane	0.8542	3.7414	0.5100	2.2340	0.0102	0.0447	0.2021	0.8851	0.0040	0.0177	1.0563	4.6265
n-Heptane	0.3816	1.6714	0.1953	0.8553	0.0039	0.0171	0.0666	0.2915	0.0013	0.0058	0.4482	1.9630
Toluene	2.7707	12.1357	1.0401	4.5555	0.0208	0.0911	0.0254	0.1112	0.0005	0.0022	2.7961	12.2469
n-Octane	0.8609	3.7706	0.2189	0.9586	0.0044	0.0192	0.0854	0.3740	0.0017	0.0075	0.9463	4.1446
Ethylbenzene	0.1914	0.8383	0.0345	0.1510	0.0007	0.0030	0.0010	0.0046	0.0000	0.0001	0.1924	0.8429
meta-Xylene	2.4844	10.8816	0.4108	1.7993	0.0082	0.0360	0.0131	0.0576	0.0003	0.0012	2.4975	10.9391
n-Nonane	0.1319	0.5776	0.0150	0.0657	0.0003	0.0013	0.0071	0.0309	0.0001	0.0006	0.1389	0.6084
C10+	0.0001	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0004
TEG	0.4555	1.9952	0.0000	0.0000	0.0000	0.0000	0.0002	0.0010	0.0000	0.0000	0.4557	1.9962
Water	108.7842	476.4746	0.6967	3.0518	0.6967	3.0518	0.1054	0.4616	0.1054	0.4616	108.8895	476.9362
Methanol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Component		Still Column sions Stream 12)	Emis (Promax Strea	er Still Column ssions m VOC to Fuel s-1)	Post-Conde	denser Vapors y Glycol Reboiler Flash Tank Emissions (Stream 403)			Flash Tank Emissions Controlled by Glycol Reboiler (Stream 403)		Total Combined Uncontrolled Dehydrator Emissions	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
VOC Total	20.71	90.71	13.84	60.61	0.28	1.21	15.59	68.27	0.31	1.37	36.30	158.98
HAP Total	7.31	32.01	2.73	11.97	0.05	0.24	0.28	1.21	0.01	0.02	7.58	33.22

UNCONTROLLED EMISSIONS	lb/hr	TPY
Total VOCs	36.30	158.98
Total HAPs	7.58	33.22

BURNER CONTROLLED EMISSIONS	lb/hr	TPY
NMNEVOC (Includes TOTAL HAPs)	0.59	2.58
TOTAL HAPs	0.06	0.26
BENZENE	0.01	0.07
N-HEXANE	0.02	0.08

 $^{^\}star$ Dehydrator vapors are routed to the glycol reboiler, which controls VOC/HAP emissions by 98%.

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY FUGITIVE EMISSIONS

		Estimated	**	Emission	T . 11/00	Total	T 1 CYY4	VOC Er	nissions	HAPs E	missions	CH4 En	nissions
Component Type	Service	Components Count	Hours Operation	Factors (lb/hr)	Total VOC Weight %	HAPs Weight %	Total CH4 Weight %	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
	Gas/Vapor	490	8760	0.0099207	24.49%	0.51%	56.55%	1.19	5.21	0.02	0.11	2.75	12.04
Valves	Light Oil	147	8760	0.0055115	98.05%	3.65%	0.81%	0.79	3.48	0.03	0.13	0.01	0.03
vaives	Heavy Oil		8760	0.0000185	98.05%	3.65%	0.81%	0.00	0.00	0.00	0.00	0.00	0.00
	Water/Light Oil	118	8760	0.0002161	0.98%	0.04%	0.01%	0.00	0.00	0.00	0.00	0.00	0.00
	Gas/Vapor		8760	0.0052910	24.49%	0.51%	56.55%	0.00	0.00	0.00	0.00	0.00	0.00
Pump Seals	Light Oil	4	8760	0.0286598	98.05%	3.65%	0.81%	0.11	0.49	0.00	0.02	0.00	0.00
rump sears	Heavy Oil		8760	0.0286598	98.05%	3.65%	0.81%	0.00	0.00	0.00	0.00	0.00	0.00
	Water/Light Oil	4	8760	0.0000529	0.98%	0.04%	0.01%	0.00	0.00	0.00	0.00	0.00	0.00
Connectors	Gas/Vapor	1470	8760	0.0004409	24.49%	0.51%	56.55%	0.16	0.70	0.00	0.01	0.37	1.61
	Light Oil	441	8760	0.0004630	98.05%	3.65%	0.81%	0.20	0.88	0.01	0.03	0.00	0.01
	Heavy Oil		8760	0.0000165	98.05%	3.65%	0.81%	0.00	0.00	0.00	0.00	0.00	0.00
	Water/Light Oil	354	8760	0.0002425	0.98%	0.04%	0.01%	0.00	0.00	0.00	0.00	0.00	0.00
	Gas/Vapor	49	8760	0.0044092	24.49%	0.51%	56.55%	0.05	0.23	0.00	0.00	0.12	0.54
Open-ended	Light Oil		8760	0.0030864	98.05%	3.65%	0.81%	0.00	0.00	0.00	0.00	0.00	0.00
Lines	Heavy Oil		8760	0.0003086	98.05%	3.65%	0.81%	0.00	0.00	0.00	0.00	0.00	0.00
	Water/Light Oil		8760	0.0005512	0.98%	0.04%	0.01%	0.00	0.00	0.00	0.00	0.00	0.00
	Gas/Vapor	490	8760	0.0008598	24.49%	0.51%	56.55%	0.10	0.45	0.00	0.01	0.24	1.04
Flanges	Light Oil	147	8760	0.0002425	98.05%	3.65%	0.81%	0.03	0.15	0.00	0.01	0.00	0.00
1 1111600	Heavy Oil		8760	0.0000009	98.05%	3.65%	0.81%	0.00	0.00	0.00	0.00	0.00	0.00
	Water/Light Oil	118	8760	0.0000064	0.98%	0.04%	0.01%	0.00	0.00	0.00	0.00	0.00	0.00
	Gas/Vapor	49	8760	0.0194005	24.49%	0.51%	56.55%	0.23	1.02	0.00	0.02	0.54	2.35
Other:	Light Oil	15	8760	0.0165345	98.05%	3.65%	0.81%	0.24	1.07	0.01	0.04	0.00	0.01
	Heavy Oil		8760	0.0000071	98.05%	3.65%	0.81%	0.00	0.00	0.00	0.00	0.00	0.00
	Water/Light Oil	12	8760	0.0308644	0.98%	0.04%	0.01%	0.00	0.02	0.00	0.00	0.00	0.00

	GAS		LIQUID			
Pollutant	lb/hr	tpy	lb/hr	tpy		
VOC	1.74	7.61	1.39	6.09		
HAPs	0.04	0.16	0.05	0.23		
CH4	4.01	17.58	0.01	0.05		

EMISSIONS SUMMARY								
Pollutant	lb/hr	tpy						
VOC	3.13	13.70						
HAPs	0.09	0.39						
CH4	4.02	17.63						

ZIA HILLS CENTRAL FACILITY SSM EMISSIONS SUMMARY

Unit Identification SSM Activity Description	SSM Activity Description	NOx		CO Total VOC (Includes Total H.			SO ₂		PM _{10 & 2.5}		Total HAPs		
	55M Activity Description	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
SSM	SSM Venting Activities	_	-		-	-	10.00	-	-	-	-	-	-

Section 7 Information Used to Determine Emissions

Section 7

Information Used To Determine Emissions

<u>Information Used to Determine Emissions</u> shall include the following:

- ☐ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- ☐ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- ☐ If an older version of AP-42 is used, include a complete copy of the section.
- ☐ If an EPA document or other material is referenced, include a complete copy.
- ☐ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Supporting documentation is provided.

Number: 6030-20030119-006A

Artesia Laboratory 200 E Main St. Artesia, NM 88210 Phone 575-746-3481

Mar. 24, 2020

Chris Chapman Conoco Phillips 15 W London Rd. Loving, NM 88256

Field: Station Name: ZHCF (Fuel Gas Main)

Station Number: 11907001 Station Location: Conoco

Sample Point: Fuel Gas Meter Number: CC#A054207SM

Formation: Spot County: Lea

Analyzed: 03/24/2020 09:08:17 by User1

Sample Of: M. Charley
Sample Of: Gas Spot

Sample Date: 03/11/2020 09:47

Sample Conditions: 141 psia, @ 79 °F Ambient: 50 °F

Effective Date: 03/11/2020 09:47
Method: GPA-2261M
Cylinder No: 5030-02011

Instrument: 6030_GC2 (Agilent 7890B) Last Inst. Cal.: 03/02/2020 9:09 AM

Analytical Data

Components	Un-normalized Mol %	Mol. %	Wt. %	GPM at 14.65 psia		
Hydrogen Sulfide	0.000	0.00001	0.000		GPM TOTAL C2+	6.405
Nitrogen	1.253	1.25037	1.596		GPM TOTAL C3+	3.107
Methane	75.349	75.19110	54.975		GPM TOTAL iC5+	0.534
Carbon Dioxide	0.914	0.91208	1.829			
Ethane	12.382	12.35605	16.933	3.298		
Propane	6.221	6.20796	12.476	1.707	* VOC Wt% =	24.667
Iso-butane	0.838	0.83624	2.215	0.273		
n-Butane	1.887	1.88305	4.988	0.593		
Iso-pentane	0.403	0.40216	1.322	0.147		
n-Pentane	0.434	0.43309	1.424	0.157		
Hexanes Plus	0.529	0.52789	2.242	0.230		
	100.210	100.00000	100.000	6.405		
Calculated Physical	Properties	Tota		C6+		
Relative Density Real	Gas	0.7603	}	3.2176		
Calculated Molecular	Weight	21.94		93.19		
Compressibility Factor	r	0.9961				
GPA 2172 Calculatio	n:					
Calculated Gross BT	U per ft ³ @ 14.65 ps	sia & 60°F				
Real Gas Dry BTU		1284	ļ	5113		
Water Sat. Gas Base	BTU	1262	<u>:</u>	5024		
Ideal, Gross HV - Dry	at 14.65 psia	1279.4		5113.2		
Ideal, Gross HV - Wet	•	1257.0)	5023.7		
Comments: H2S Fig	ald Content 0.1 nnm					

Comments: H2S Field Content 0.1 ppm

Mcf/day 1206

Caly Haten

Hydrocarbon Laboratory Manager

Quality Assurance: The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality

assurance, unless otherwise stated.

Loving, NM 88256

Certificate of Analysis

Number: 6030-20030067-001A

Artesia Laboratory 200 E Main St. Artesia, NM 88210 Phone 575-746-3481

Chris Chapman
Conoco Phillips
15 W London Rd.

Field:

Station Name: Zia Hills 19 BTF 2A

Station Number: 11933090 Station Location: Conoco Sample Point: Bulk Seperator Meter Number: CC#A754382SM

Formation:

County: Lea

Sampled By: Chris Chapman
Sample Of: Gas Spot
Sample Date: 03/06/2020 03:43
Sample Conditions: 166 psig, @ 120 °F
Method: GPA 2286

Method: GPA 2286 Cylinder No: 5030-00454

Analyzed: 03/10/2020 15:51:48 by User1

Mar. 10, 2020

Analytical Data

			Allalyti	oui butu
Components	Mol. %	Wt. %	GPM at 14.65 psia	
Hydrogen Sulfide	NIL	NIL		
Nitrogen	1.169	1.512		
Methane	76.659	56.770		
Carbon Dioxide	0.089	0.181		
Ethane	12.220	16.962	3.262	
Propane	5.696	11.594	1.566	
Iso-Butane	0.834	2.238	0.272	
n-Butane	1.835	4.923	0.577	
Iso-Pentane	0.420	1.399	0.154	
n-Pentane	0.476	1.585	0.172	
i-Hexanes	0.119	0.464	0.048	
n-Hexane	0.085	0.343	0.035	
Benzene	0.005	0.017	0.001	
Cyclohexane	0.039	0.149	0.013	
i-Heptanes	0.089	0.384	0.037	
n-Heptane	0.033	0.151	0.015	
Toluene	0.009	0.040	0.003	
i-Octanes	0.083	0.407	0.038	
n-Octane	0.012	0.064	0.006	
Ethylbenzene	0.001	0.003	NIL	
Xylenes	0.015	0.073	0.006	
i-Nonanes	0.032	0.170	0.016	
n-Nonane	0.012	0.069	0.007	
Decanes Plus	0.068	0.502	0.045	
	100.000	100.000	6.273	

Number: 6030-20030067-001A

Artesia Laboratory 200 E Main St. Artesia, NM 88210 Phone 575-746-3481

Chris Chapman Conoco Phillips 15 W London Rd.

Loving, NM 88256

Field: Station Name: Zia Hills 19 BTF 2A

Station Number: 11933090 Station Location: Conoco Sample Point: Bulk Seperator Meter Number: CC#A754382SM

Formation:

County: Lea

Sampled By: Chris Chapman
Sample Of: Gas Spot
Sample Date: 03/06/2020 03:43
Sample Conditions:166 psig, @ 120 °F

Method: GPA 2286 Cylinder No: 5030-00454

Analyzed: 03/10/2020 15:51:48 by User1

Mar. 10, 2020

Calculated Physical Properties	Total	C10+
Calculated Molecular Weight	21.66	158.45
GPA 2172 Calculation:		
Calculated Gross BTU per ft ³ @ 14.65 p	sia & 60°F	
Real Gas Dry BTU	1290.8	8522.0
Water Sat. Gas Base BTU	1268.2	8341.1
Relative Density Real Gas	0.7506	5.4710
Compressibility Factor	0.9962	
Ideal, Gross HV - Wet	1263.4	NIL
Ideal, Gross HV - Dry at 14.65 psia	1285.9	NIL
Net BTU Dry Gas - real gas	1172	
Net BTU Wet Gas - real gas	1151	

Comments: H2S Field Content 0 ppm

WO #23055147

CalgAttu

Hydrocarbon Laboratory Manager

Quality Assurance: The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality

assurance, unless otherwise stated.

Number: 5030-20030490-001A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Andy Hartman SPL-Artesia 200 E Main St Artesia, NM 88210

Station Name: ZIA HILLS 19 BTF 2A

Method: GPA 2103M Cylinder No: 5030-35098

Analyzed: 03/18/2020 07:52:12 by User1

Mar. 19, 2020

Sampled By: CHRIS CHAPMAN
Sample Of: Oil Spot
Sample Date: 03/10/2020 13:00
Sample Conditions: 311 psig, @ 136 °F

Analytical Data

Components	Mol. %	Wt. %	L.V. %
The state accounts and the state of	2000	Herasar	0875.50
Hydrogen Sulfide	NIL	NIL	NIL
Nitrogen	0.030	0.006	0.006
Methane	6.808	0.781	1.950
Carbon Dioxide	0.048	0.015	0.014
Ethane	5.009	1.077	2.265
Propane	6.552	2.066	3.052
Iso-Butane	1.870	0.777	1.034
n-Butane	5.717	2.376	3.047
Iso-Pentane	2.774	1.431	1.715
n-Pentane	3.966	2.046	2.430
i-Hexanes	2.953	1.806	2.034
n-Hexane	2.962	1.825	2.059
2,2,4-Trimethylpentane	0.050	0.041	0.044
Benzene	0.184	0.103	0.087
Heptanes	9.225	6.610	7.196
Toluene	0.870	0.573	0.492
Octanes	10.890	8.895	9.432
Ethylbenzene	0.216	0.164	0.141
Xylenes	1.054	0.800	0.684
	7.278	6.675	6.924
Nonanes C10			
	5.304	6.454	6.076
C11	3.646	4.873	4.526
C12	3.087	4.497	4.127
C13	2.715	4.281	3.892
C14	2.285	3.876	3.492
C15	2.020	3.669	3.285
C16	1.613	3.123	2.806
C17	1.405	2.888	2.584
C18	1.310	2.851	2.538
C19	0.992	2.277	2.004
C20	0.884	2.136	1.873
C21	0.805	2.042	1.783
C22	0.655	1.740	1.515
C23	0.566	1.571	1.395
C24	0.526	1.524	1.319
C25	0.427	1.289	1.112
C26	0.417	1.308	1.162
C27	0.370	1.204	1.069
C28	0.304	1.025	0.879
C29	0.275	0.960	0.821
C30 Plus	1.938	8.345	7.136
030 1 103		-	
	100.000	100.000	100.000

Number: 5030-20030490-001A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Andy Hartman Mar. 19, 2020

SPL-Artesia 200 E Main St Artesia, NM 88210

 Station Name: ZIA HILLS 19 BTF 2A
 Sampled By:
 CHRIS CHAPMAN

 Method:
 GPA 2103M
 Sample Of:
 Oil
 Spot

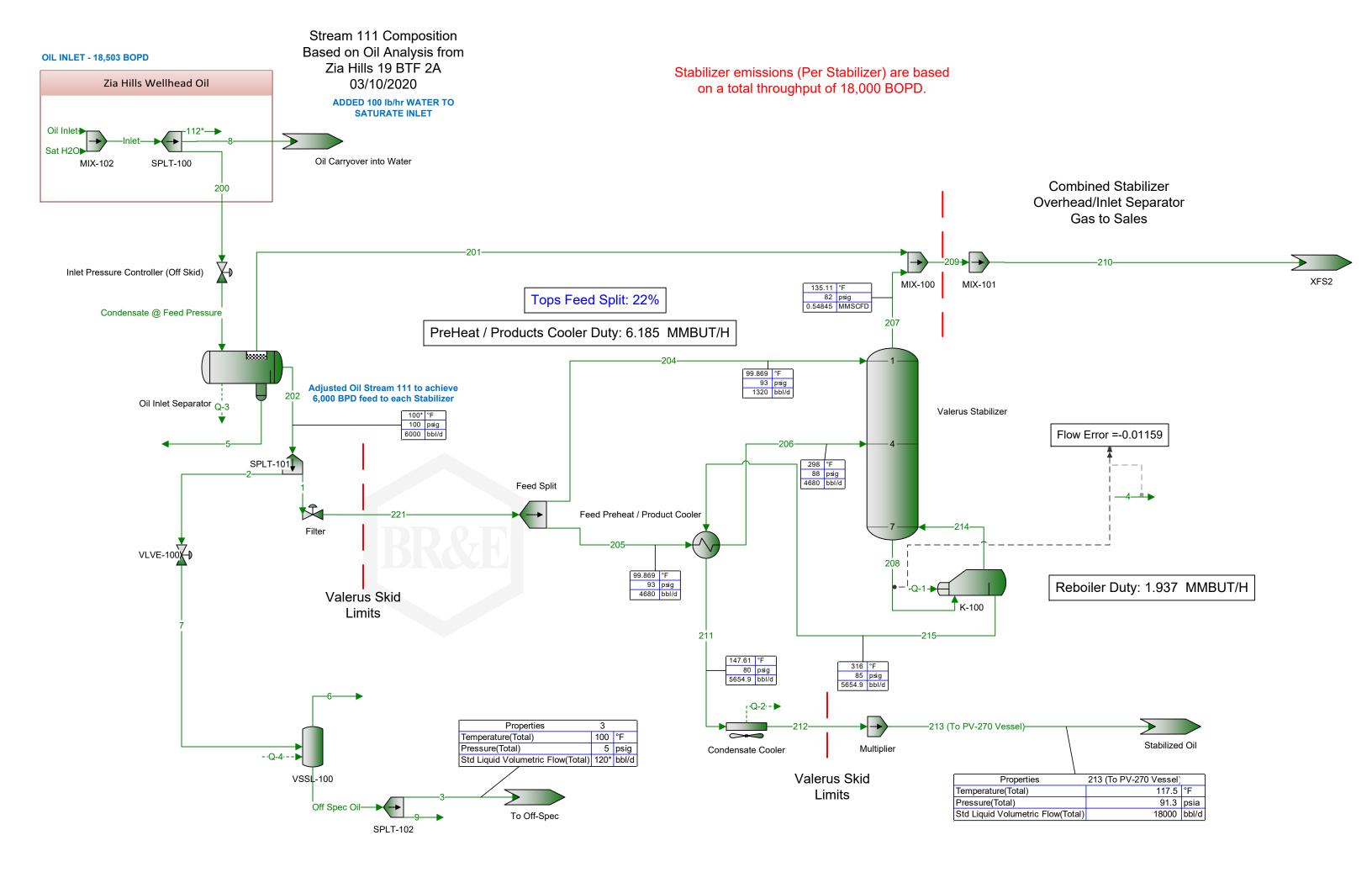
 Cylinder No:
 5030-35098
 Sample Date:
 03/10/2020 13:00

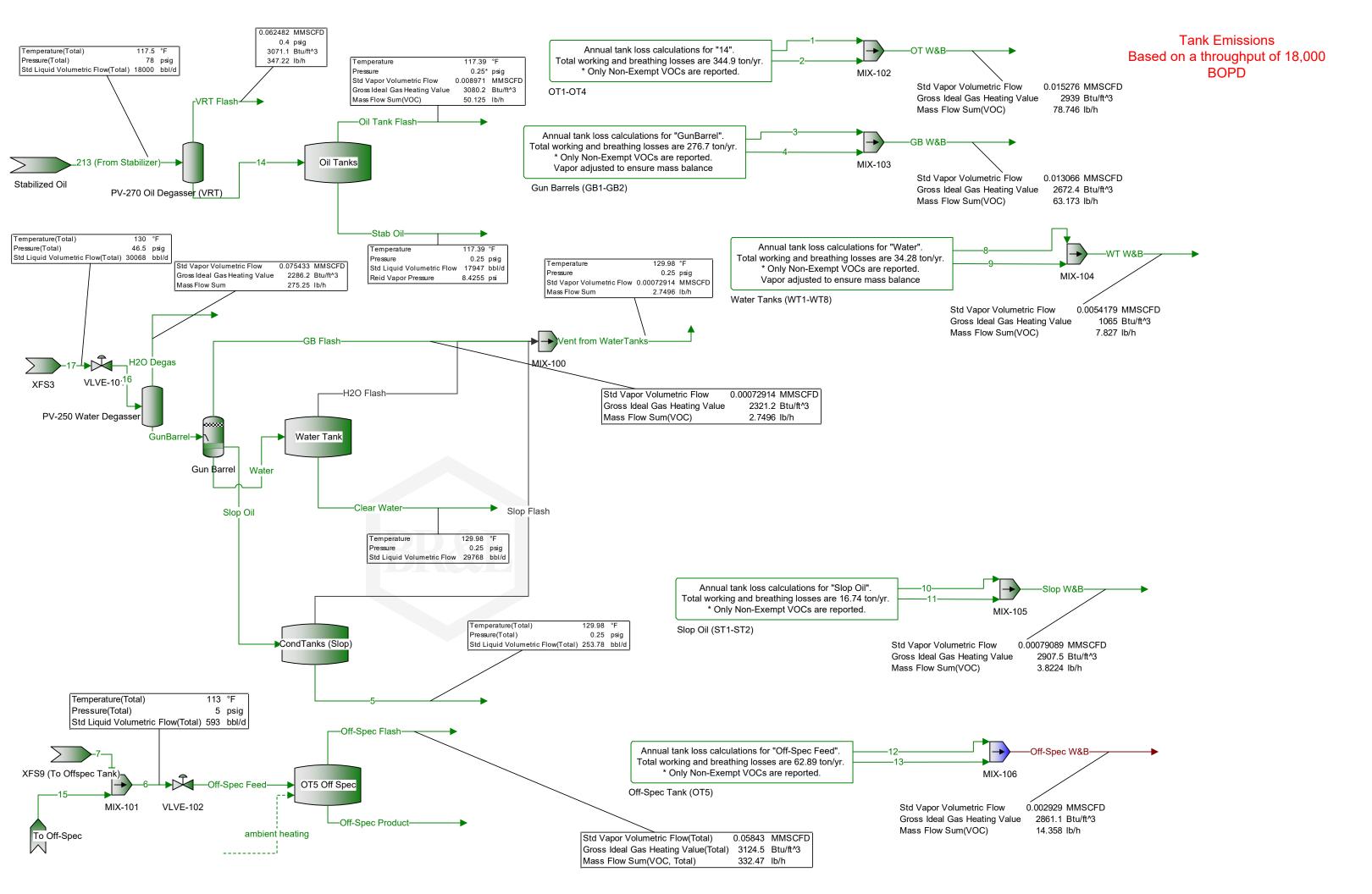
 Analyzed:
 03/18/2020 07:52:12 by User1
 Sample Conditions: 311 psig, @ 136 °F

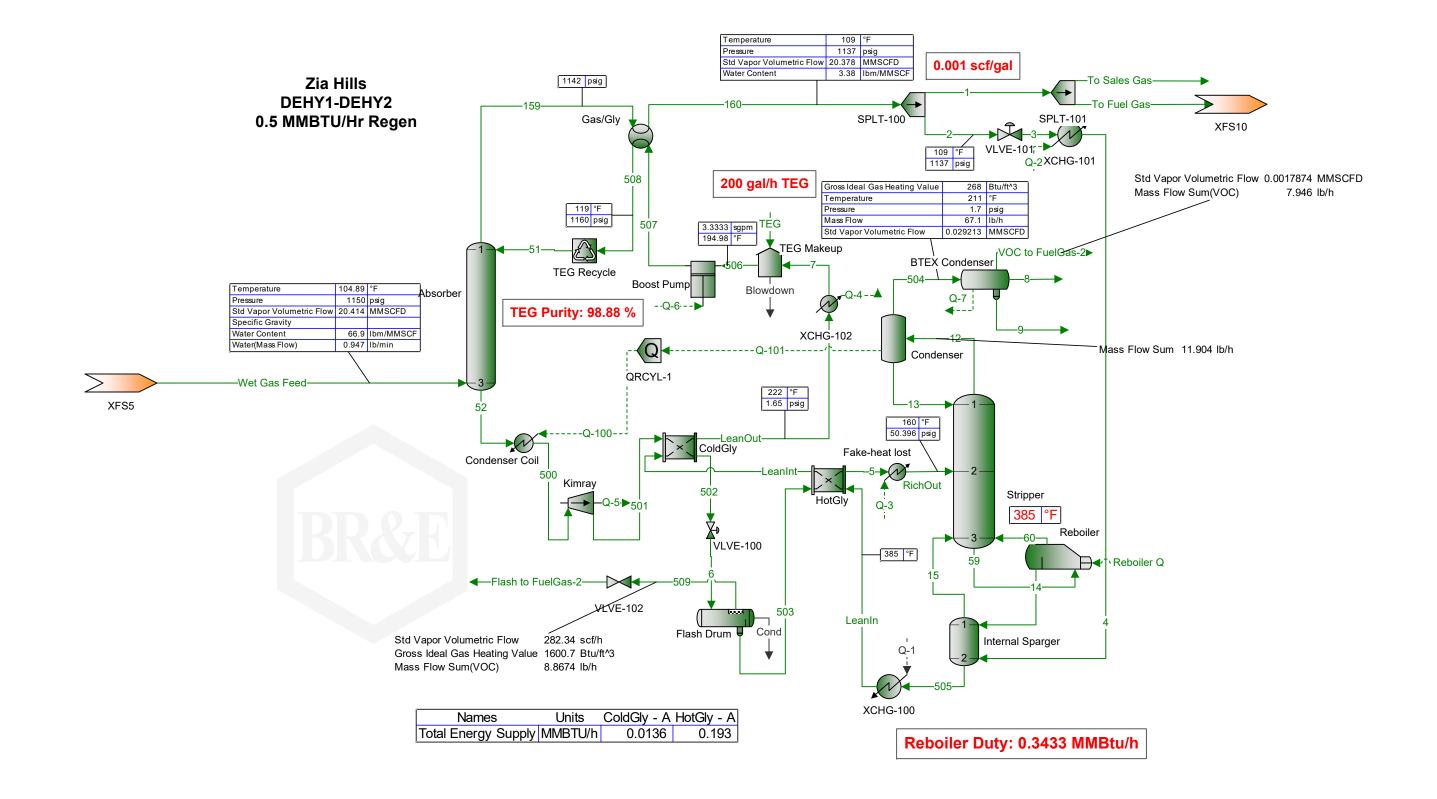
Calculated Physical Properties	Total	C30+
Specific Gravity at 60°F	0.7492	0.8912
API Gravity at 60°F	57.368	27.279
Molecular Weight	139.849	503.498
Pounds per Gallon (in Vacuum)	6.246	7.430
Pounds per Gallon (in Air)	6.239	7.422
Cu. Ft. Vapor per Gallon @ 14.696 psia	16.950	5.600

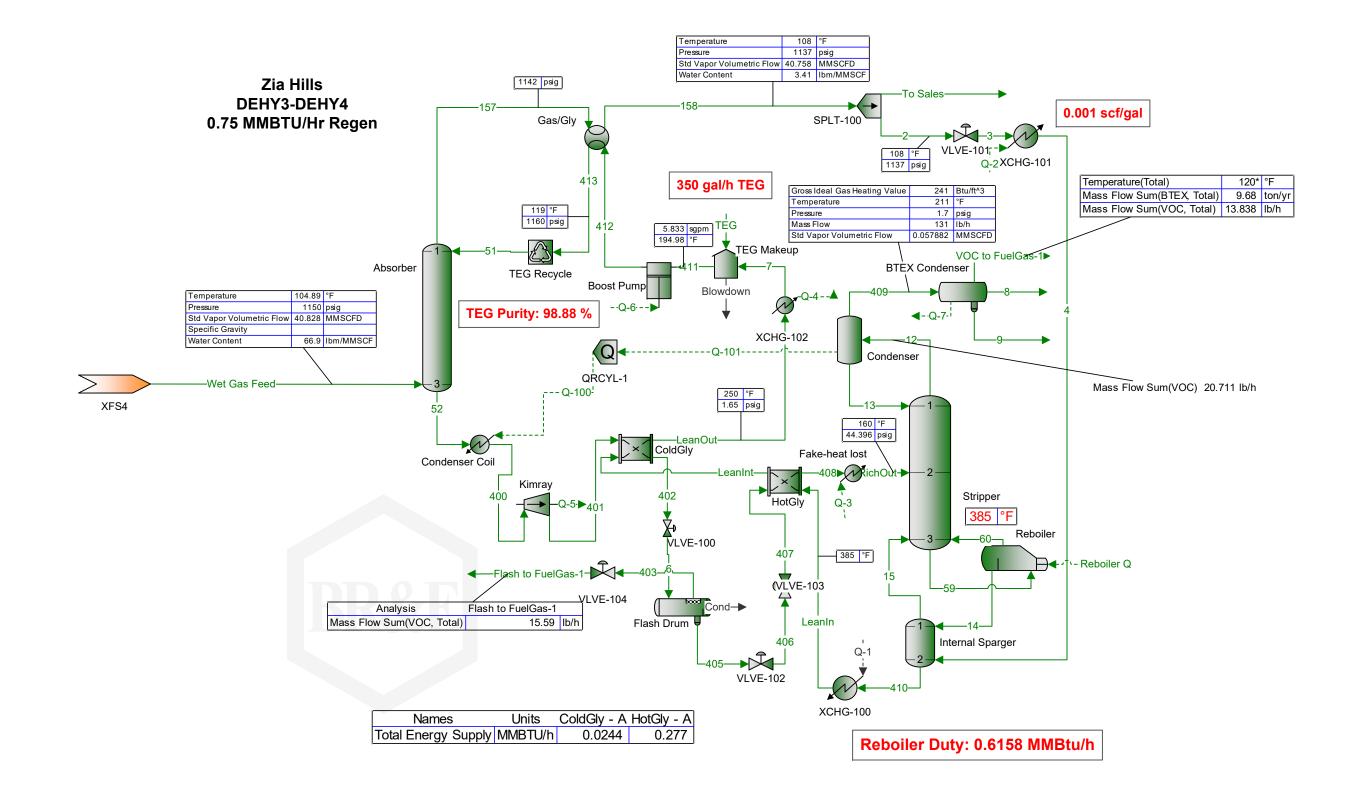
Comments: Field/System: Delaware Basin

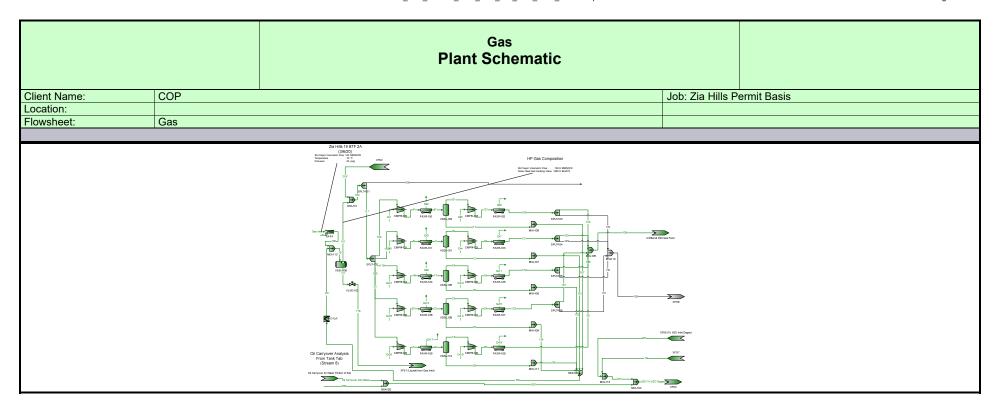
Sample Point: Oil dump upstream of meter (low point bleed upstream of Coriolis)


Brille &


Hydrocarbon Laboratory Manager


Quality Assurance: The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.


Powered By SURECHEM


Zia Hills 19 BTF 2A (3/6/20) Std Vapor Volumetric Flow 120 MMSCFD Temperature 70 °F **HP Gas Composition** XFS2 Pressure 53 psig 120.9 MMSCFD Std Vapor Volumetric Flow Gross Ideal Gas Heating Value 1282.9 Btu/ft^3 218* SPLT-101 MIX-101 + i Q-5 CMPR-102 CMPR-100 FAXR-100 FAXR-102 VSSL-102 SPLT-103 124 128 MIX-106 104 Unfiltered Wet Gas Feed SPLT-104 Q-4 CMPR-103 FAXR-101 FAXR-103 VSSL-101 MIX-113 MIX-105 MIX-110 MIX-107 SPLT-102__119 VSSL-100 102 130 107 SPLT-105 Q-12 CMPR-104 Q-10 CMPR-105 FAXR-104 FAXR-105 VSSL-106 127 VLVE-102 131 MIX-108 132 XFS6 Q-13 SPLT-106 116 Q-14 CMPR-107 133 FAXR-107 FAXR-106 RCYL-1 VSSL-108 MIX-109 XFS8 (To H2O Inlet Degas) ı-Q-17----Q-18 CMPR-109 XFS7 Oil Carryover Analysis FAXR-108 FAXR-109 VSSL-110 From Tank Tab (Stream 8) MIX-100 MIX-111 XFS1 (Liquids from Gas Inlet) Oil Carryover for Water Portion of Site Oil Carryover into Water-─302 (To H2O Degas) MIX-112 XFS3 MIX-104 MIX-102

Process Streams Report All Streams Tabulated by Total Phase

Client Name:	COP	Job: Zia Hills	Permit Basis
.ocation:			
lowsheet:	Gas		

Connections

	Gas Inlet	Oil Carryover into Water	101	218*	
From Block		Oil Carryover for Water Portion of Site	VSSL-100	XFS2	
To Block	SAT-1	MIX-102	MIX-101	MIX-101	

S	tr	eam C	omposition

Our carri Composition									
	Gas Inlet Oil Carryover 101 218*								
		into Water							
Mole Fraction	%	%	%	%					
H2S	0 *	0	0	0					
Nitrogen	1.169 *	0.0298893	1.1606	0.153889					
Methane	76.659 *	6.78289	76.1429	34.9049					
Carbon Dioxide	0.089 *	0.047823	0.0884886	0.244792					
Ethane	12.22 *	4.99052	12.1685	24.2384					
Propane	5.696 *	6.52783	5.70565	23.8282					
i-Butane	0.834 *	1.8631	0.84357	3.84229					
n-Butane	1.835 *	5.69591	1.86894	8.02812					
i-Pentane	0.42 *	2.76377	0.437218	1.23868					
n-Pentane	0.476 *	3.95137	0.500804	1.29479					
i-Hexane	0.119 *	2.94211	0.131898	0.391083					
n-Hexane	0.085 *	2.95107	0.0964683	0.286745					
2,2,4-Trimethylpentane	0 *	0.0498156	1.67683E-05	0.0018947					
Cyclohexane	0.039 *	0	0.0442664	0					
Benzene	0.005 *	0.183321	0.00564755	0.0170893					
i-Heptane	0.089 *	6.43368	0.105963	0.324792					
n-Heptane	0.033 *	2.75729	0.0391656	0.102146					
Toluene	0.009 *	0.866791	0.0106505	0.0268622					
n-Octane	0.095 *	10.8498	0.0865156	0.150248					
Ethylbenzene	0.001 *	0.215203	0.000865146	0.00257783					
meta-Xylene	0.015 *	1.05011	0.0119624	0.0114369					
n-Nonane	0.044 *	7.25116	0.0175104	0.0373379					
C10+	0.068 *	31.4277	9.10574E-07	3.65315E-05					
TEG	0 *	0	0	0					
Water	0 *	0.368842	0.532437	0.873662					
Methanol	0 *	0	0	0					

	0.114	0::0	404	040*	
	Gas Inlet	Oil Carryover into Water	101	218*	
Malan Flaur	Uh va a I /la		lle see a l /le	lla usa a 17la	
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	
H2S	0 *	0	0	0	
Nitrogen	154.025 *	0.00729054	154.062	0.449812	
Methane	10100.4 *	1.65447	10107.5	102.026	
Carbon Dioxide	11.7264 *	0.0116649	11.7463	0.715521	
Ethane	1610.08 *	1.21728	1615.29	70.8482	
Propane	750.493 *	1.59225	757.387	69.6492	
i-Butane	109.886 *	0.454444	111.978	11.2309	
n-Butane	241.776 *	1.38933	248.089	23.4659	
i-Pentane	55.3383 *	0.674132	58.0378	3.62062	
n-Pentane	62.7167 *	0.96381	66.4784	3.78463	
i-Hexane	15.6792 *	0.717633	17.5086	1.14312	
n-Hexane	11.1994 *	0.71982	12.8055	0.838147	
2,2,4-Trimethylpentane	0 *	0.0121509	0.00222588	0.00553814	
Cyclohexane	5.13856 *	0	5.87608	0	
Benzene	0.658789 *	0.0447153	0.749676	0.0499514	
i-Heptane	11.7264 *	1.56929	14.066	0.949358	
n-Heptane	4.34801 *	0.672553	5.19897	0.298569	
Toluene	1.18582 *	0.211426	1.41379	0.0785173	
n-Octane	12.517 *	2.64647	11.4844	0.43917	
Ethylbenzene	0.131758 *	0.0524919	0.114842	0.00753493	

^{*} User Specified Values

Process Streams Report All Streams Tabulated by Total Phase

COP Job: Zia Hills Permit Basis Client Name:

Location: Flowsheet: Gas

	Gas Inlet	Oil Carryover into Water	101	218*	
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	
meta-Xylene	1.97637 *	0.256141	1.58793	0.0334297	·
n-Nonane	5.79734 *	1.76869	2.32439	0.109138	
C10+	8.95953 *	7.66576	0.000120873	0.00010678	
TEG	0 *	0	0	0	
Water	0 *	0.0899672	70.6775	2.55369	
Methanol	0 *	0	0	0	

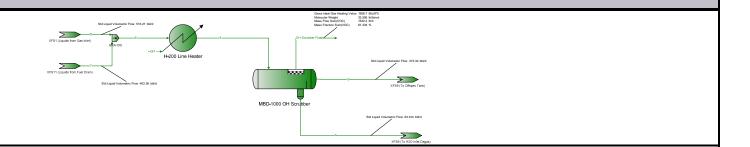
	Gas Inlet	Oil Carryover	101	218*	·
Mass Fraction	%	into Water %	%	%	
H2S	0 *	0	0	0	·
Nitrogen	1.50574 *	0.00624688	1.50297	0.127856	
Methane	56.5462 *	0.811833	56.4681	16.6076	
Carbon Dioxide	0.180097 *	0.0157023	0.180026	0.319516	
Ethane	16.8951 *	1.11956	16.9145	21.6159	
Propane	11.5487 *	2.14756	11.6306	31.1628	
i-Butane	2.22883 *	0.807904	2.26655	6.6234	
n-Butane	4.90397 *	2.46994	5.02157	13.839	
i-Pentane	1.39331 *	1.48769	1.45824	2.65055	
n-Pentane	1.57908 *	2.12695	1.67032	2.77062	
i-Hexane	0.471519 *	1.89157	0.52544	0.999541	
n-Hexane	0.3368 *	1.89734	0.3843	0.732871	
2,2,4-Trimethylpentane	0.5500	0.0424542	8.85453E-05	0.00641894	
Cyclohexane	0.150917 *	0.0424342	0.172219	0.00041034	
Benzene	0.0179579 *	0.106834	0.0203929	0.0395903	
i-Heptane	0.410049 *	4.80968	0.490834	0.965229	
n-Heptane	0.152041 *	2.06129	0.181419	0.303561	
Toluene	0.0381288 *	0.595849	0.0453644	0.0734059	
n-Octane	0.498962 *	9.24652	0.456848	0.509016	
Ethylbenzene	0.00488147 *	0.170456	0.00424593	0.0081168	
meta-Xylene	0.0732221 *	0.83176	0.0587088	0.0360113	
n-Nonane	0.259476 *	6.93845	0.103818	0.142028	
C10+	0.804951 *	60.3648	1.0837E-05	0.000278938	
TEG	0.004001	0	0	0.000270000	
Water	0 *	0.049575	0.443417	0.466802	
Methanol	0 *	0	0	0	

	Gas Inlet	Oil Carryover	101	218*	
Mass Flow	lb/h	into Water lb/h	lb/h	lb/h	
H2S	0 *	0	0	0	•
Nitrogen	4314.76 *	0.204233	4315.81	12.6008	
Methane	162036 *	26.5417	162149	1636.75	
Carbon Dioxide	516.075 *	0.513365	516.948	31.4897	
Ethane	48413.6 *	36.6024	48570.2	2130.34	
Propane	33093.4 *	70.2115	33397.5	3071.22	
i-Butane	6386.82 *	26.4133	6508.43	652.764	
n-Butane	14052.5 *	80.7512	14419.5	1363.89	
i-Pentane	3992.59 *	48.6378	4187.35	261.223	
n-Pentane	4524.94 *	69.5377	4796.33	273.056	
i-Hexane	1351.16 *	61.8422	1508.81	98.509	
n-Hexane	965.114 *	62.0307	1103.52	72.2276	
2,2,4-Trimethylpentane	0 *	1.38798	0.254259	0.632613	
Cyclohexane	432.458 *	0	494.528	0	
Benzene	51.4592 *	3.4928	58.5585	3.9018	
i-Heptane	1175.01 *	157.246	1409.44	95.1275	
n-Heptane	435.679 *	67.3911	520.947	29.9172	
Toluene	109.26 *	19.4804	130.264	7.23446	
n-Octane	1429.8 *	302.302	1311.84	50.1657	
Ethylbenzene	13.9881 *	5.5728	12.1922	0.799946	

^{*} User Specified Values
? Extrapolated or Approximate Values

Process Streams Report All Streams Tabulated by Total Phase Client Name: COP Job: Zia Hills Permit Basis Location: Flowsheet: Gas

	Gas Inlet	Oil Carryover into Water	101	218*	
Mass Flow	lb/h	lb/h	lb/h	lb/h	
meta-Xylene	209.821 *	27.1932	168.583	3.54907	,
n-Nonane	743.539 *	226.843	298.114	13.9975	
C10+	2306.62 *	1973.54	0.0311186	0.0274905	
TEG	0 *	0	0	0	
Water	0 *	1.62078	1273.27	46.0054	
Methanol	0 *	0	0	0	

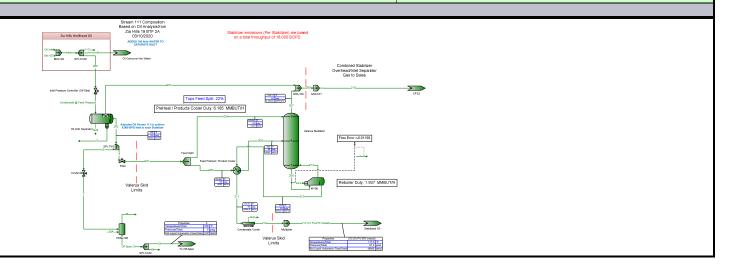

Stream Properties						
Property	Units	Gas Inlet	Oil Carryover into Water	101	218*	
Temperature	°F	70 *		67.3211	123.843	
Pressure	psig	53 *		50	82	
Mole Fraction Vapor	%	99.8169	9.61004	100	100	
Mole Fraction Light Liquid	%	0.183077	90.39	0	0	
Mole Fraction Heavy Liquid	%	0	0	0	0	
Molecular Weight	lb/lbmol	21.7486	134.035	21.632	33.7172	
Mass Density	lb/ft^3	0.258788	16.6976	0.246487	0.539971	
Molar Flow	lbmol/h	13175.8	24.3918	13274.3	292.297	
Mass Flow	lb/h	286554	3269.36	287151	9855.43	
Vapor Volumetric Flow	ft^3/h	1.1073E+06	195.798	1.16497E+06	18251.8	
Liquid Volumetric Flow	gpm	138052	24.4112	145243	2275.54	
Std Vapor Volumetric Flow	MMSCFD	120 *	0.222151	120.898	2.66213	
Std Liquid Volumetric Flow	sgpm	1617.44	8.75	1620.89	44.9566	
Compressibility		0.980238	0.143412	0.982289	0.950298	
Specific Gravity				0.746898	1.16417	
API Gravity						
Enthalpy	Btu/h	-4.53974E+08	-2.78357E+06	-4.61294E+08	-1.18957E+07	
Mass Enthalpy	Btu/lb	-1584.25	-851.411	-1606.45	-1207.02	
Mass Cp	Btu/(lb*°F)	0.480234	0.517517	0.477931	0.464138	
Ideal Gas CpCv Ratio		1.24075	1.03727	1.24284	1.15071	
Dynamic Viscosity	cP			0.010447	0.0101298	
Kinematic Viscosity	cSt			2.64592	1.17114	
Thermal Conductivity	Btu/(h*ft*°F)			0.0168885	0.0152588	
Surface Tension	lbf/ft					
Net Ideal Gas Heating Value	Btu/ft^3	1175.35	6661.67	1164.54	1777.4	
Net Liquid Heating Value	Btu/lb	20443.3	18713.2	20360	19870.2	
Gross Ideal Gas Heating Value	Btu/ft^3	1294.36	7135.96	1282.93	1940	
Gross Liquid Heating Value	Btu/lb	22520.3	20056	22437.4	21700.7	

Remarks

OH/LH **Plant Schematic**

Client Name: COP Job: Zia Hills Permit Basis Location:

OH/LH Flowsheet:


		Al	Streams Report Streams ted by Total Phase			
Client Name:	COP			Job: Zia Hill	s Permit Basis	
Location:						
Flowsheet:	OH/LH					
		_				
			nnections			,
		OH Scrubbe Flash				
From Block		MBD-1000 O	1			
To Block						
				·		
		Stream	n Composition			
		OH Scrubbe				
Mole Fraction		Flash %				
H2S			0			
Nitrogen		0.2615				
Methane Carbon Dioxide		38.20 0.087782				
Ethane		20.382				
Propane		19.688				
i-Butane		3.7143				
n-Butane		8.3269				
i-Pentane		1.80				
n-Pentane i-Hexane		2.0102 0.49481				
n-Hexane		0.49461				
2,2,4-Trimethylper	ntane	8.21503E-0				
Cyclohexane		0.16002				
Benzene		0.020718				
i-Heptane		0.4142				
n-Heptane Toluene		0.16202				
n-Octane		0.043425 0.42903				
Ethylbenzene		0.0042581				
meta-Xylene		0.059544	3			
n-Nonane		0.10687				
C10+		2.96273E-0				
TEG Water		2.47407E-0 3.2539				
Methanol		3.2338	0			
Wichiano						
		OH Scrubbe Flash	r			
Molar Flow		lbmol/h	0			
H2S Nitrogen		0.19418	0			
Methane		28.367				
Carbon Dioxide		0.065173				
Ethane		15.132				
Propane		14.617				
i-Butane		2.7576				
n-Butane i-Pentane		6.1822 1.3386				
n-Pentane		1.4924				
i-Hexane		0.36736				
n-Hexane		0.27304	9			
2,2,4-Trimethylper	ntane	6.09913E-0	5			
Cyclohexane		0.11881				
Benzene		0.015381 0.30752	9			
i-Heptane n-Heptane		0.30752				
Toluene		0.032240				
n-Octane		0.3185				
Ethylbenzene		0.003161	4			
meta-Xylene		0.044207	8			

		All S	reams Report treams by Total Phase		
Client Name:	COP			Job: Zia Hills Permit	Basis
Location:					
Flowsheet:	OH/LH				
	•				
		OH Scrubber			
		Flash			
Molar Flow		Ibmol/h			
n-Nonane		0.0793477			·
C10+		2.19964E-05			
TEG		1.83684E-09			
Water					
		2.41585			
Methanol		0			
		OH Scrubber			
		Flash			
Mass Fraction		%			
H2S		0			
Nitrogen		0.218097			
Methane		18.246			
Carbon Dioxide		0.114997			
Ethane		18.2433			
Propane		25.8421			
i-Butane		6.42616			
n-Butane		14.4065			
i-Pentane		3.87217			
n-Pentane		4.31722			
i-Hexane		1.26927			
n-Hexane		0.943397			
2,2,4-Trimethylpe	antana	0.000279327			
	entane				
Cyclohexane		0.400894 0.0481723			
Benzene					
i-Heptane		1.23545			
n-Heptane		0.483269			
Toluene		0.119102			
n-Octane		1.4588			
Ethylbenzene		0.0134565			
meta-Xylene		0.188171			
n-Nonane		0.408019			
C10+		0.000227046			
TEG		1.10595E-08			
Water		1.74495			
Methanol		0			
		OH Scrubber			
		Flash			
Mass Flow		lb/h			
H2S		0			
Nitrogen		5.43975			
Methane		455.088			
Carbon Dioxide		2.86824			
Ethane		455.021			
		644.551			
Propane i-Butane		160.281			
n-Butane		359.326			
i-Pentane		96.5792			
n-Pentane		107.68			
i-Hexane		31.658			
n-Hexane		23.5301			
2,2,4-Trimethylpe	entane	0.00696694			
Cyclohexane		9.99904			
Benzene		1.20151			
i-Heptane		30.8145			
n-Heptane		12.0536			
Toluene		2.97063			
n-Octane		36.3852			
Ethylbenzene		0.33563			
meta-Xylene		4.69333			
o.a Aylono		7.00000			

			All S	reams Report treams _{by Total Phase}			
Client Name:	COP				Job: Zia Hi	lls Permit Basis	
Location:	COP				JOD. ZIA FII	IIS PEITIIL DASIS	
Flowsheet:	OH/LH						
i lowsheet.	OTI/LIT				_		
			OH Scrubber				
			Flash				
Mass Flow			lb/h				
n-Nonane			10.1767				
C10+			0.00566295				
TEG			2.75844E-07				
Water			43.5223				
Methanol			0				
			Stream	Properties			
Property		Units	OH Scrubber				
. roporty		• · · · · ·	Flash				
Temperature		°F	124.829				
Pressure		psig	46.5				
Mole Fraction Vapor	•	%	100				
Mole Fraction Light I		%	0				
Mole Fraction Heavy	/ Liauid	%	0				
Molecular Weight	,	lb/lbmol	33.5946				
Mass Density		lb/ft^3	0.330287				
Molar Flow		lbmol/h	74.2436				
Mass Flow		lb/h	2494.19				
Vapor Volumetric Flo	ow	ft^3/h	7551.58				
Liquid Volumetric Flo	ow	gpm	941.496				
Std Vapor Volumetri		MMSCFD	0.676182				
Std Liquid Volumetri	c Flow	sgpm	11.1539				
Compressibility		- U	0.96969				
Specific Gravity			1.15994				
API Gravity							
Enthalpy		Btu/h	-3.13251E+06				
Mass Enthalpy		Btu/lb	-1255.93				
Mass Cp		Btu/(lb*°F)	0.459978				
Ideal Gas CpCv Rat	io		1.15066				
Dynamic Viscosity		cР	0.0101396				
Kinematic Viscosity		cSt	1.91651				
Thermal Conductivit	У	Btu/(h*ft*°F)	0.0153116				
Surface Tension		lbf/ft					
Net Ideal Gas Heatir		Btu/ft^3	1747.96				
Net Liquid Heating V		Btu/lb	19601.9				
Gross Ideal Gas Hea		Btu/ft^3	1908.74				
Gross Liquid Heating	g Value	Btu/lb	21418.5				
Remarks					<u></u>		

Stabilizer Plant Schematic

Client Name: COP Job: Zia Hills Permit Basis
Location: Flowsheet: Stabilizer

Simulation Initiated on 12/14/2020 8:00:31 AM Z			MM_GAS_18M	I_OIL_30M_WAT_12.11.20.pmx			Page 1 of 3
			All St	reams Report treams _{by Total Phase}			
Client Name:	COP				Job: Zia Hil	ls Permit Basis	
Location:	001				COD. ZIG I III	io i omini Baolo	
Flowsheet:	Stabilizer						
			Conn	ections			
		0"		ections			
From Block			Inlet 				
To Block			 (-102				
TO DIOCK		IVIIZ	-102				
		Oil	Inlet	omposition			
Mole Fraction		(%				
H2S			0 *				
Nitrogen			0.03 *				
Methane			6.808 *				
Carbon Dioxide			0.048 * 5.009 *		-		
Ethane Propane							
i-Butane			6.552 * 1.87 *				
n-Butane			5.717 *				
i-Pentane			2.774 *				
n-Pentane			3.966 *				
i-Hexane			2.953 *				
n-Hexane			2.962 *				
2,2,4-Trimethylpen	tane		0.05 *				
Cyclohexane			0 *				
Benzene			0.184 *				
i-Heptane			6.4575 *				
n-Heptane			2.7675 *				
Toluene			0.87 *				
n-Octane Ethylbenzene			10.89 * 0.216 *				
meta-Xylene			1.054 *				
n-Nonane			7.278 *				
C10+			31.544 *				
TEG			0 *				
Water			0 *				
Methanol			0 *				
Molar Flow			Inlet nol/h				
H2S Nitrogen			.449816 *				
Methane			102.078 *				
Carbon Dioxide).719705 *				
Ethane			75.1043 *				
Propane			98.2398 *				
i-Butane			28.0385 *				
n-Butane			85.7199 *				
i-Pentane			41.593 *				
n-Pentane			59.4657 *				
i-Hexane			44.2769 *				
n-Hexane	tono		44.4118 * 749693 *				
2,2,4-Trimethylpent Cyclohexane	lane		0.749693 * 0 *				
Benzene			2.75887 *				
i-Heptane			96.8229 *				
n-Heptane			41.4955 *				
Toluene			13.0447 *				
n-Octane			163.283 *				
Ethylbenzene			3.23867 *				
meta-Xylene			15.8035 *				
n-Nonane			109.125 *				
C10+			472.966 *				

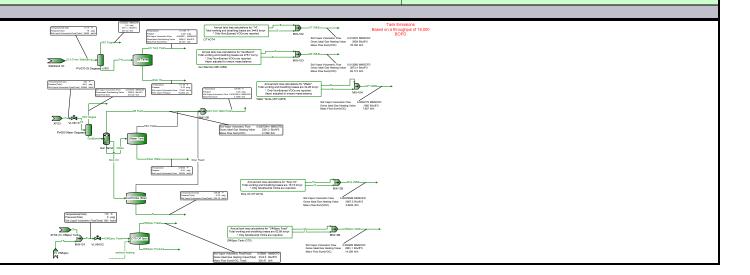
TEG

Water

0

0 *

		All St	reams Report treams by Total Phase		
Client Name:	COP			Job: Zia Hills Permit	Basis
Location:					
Flowsheet:	Stabilizer				
				•	
		Oil Inlet			
Molar Flow		lbmol/h			
Methanol		0 *			
		Oil Inlet			
Mass Fraction		%			
H2S		0 *			
Nitrogen		0.00624998 *			
Methane		0.812235 *			
Carbon Dioxide		0.0157101 *			
Ethane		1.12011 *			
Propane		2.14863 *			
i-Butane		0.808305 *			
n-Butane		2.47116 *			
i-Pentane		1.48842 *			
n-Pentane		2.12801 *			
i-Hexane		1.89251 *			
n-Hexane		1.89828 *			
2,2,4-Trimethylpent	ane	0.0424752 *			
Cyclohexane		0 *			
Benzene		0.106887 *			
i-Heptane		4.81207 *			
n-Heptane		2.06232 *			
Toluene		0.596144 *			
n-Octane		9.25111 *			
Ethylbenzene		0.17054 *			
meta-Xylene		0.832172 *			
n-Nonane		6.9419 *			
C10+		60.3948 *			
TEG		0 *			
Water		0 *			
Methanol		0 *			
		Oil Inlet			
Mass Flow		lb/h			
H2S		0 *			
Nitrogen		12.6009 *			
Methane		1637.59 *			
Carbon Dioxide		31.6739 *			
Ethane		2258.31 *			
Propane		4331.94 *			
i-Butane		1629.66 *			
n-Butane		4982.23 *			
i-Pentane		3000.88 *			
n-Pentane		4290.37 *			
i-Hexane		3815.58 *			
n-Hexane		3827.2 *			
2,2,4-Trimethylpent	ane	85.6363 *			
Cyclohexane		0 * 215.5 *			
Benzene		215.5 ^ 9701.84 *			
i-Heptane n-Heptane		4157.93 *			
n-нерtane Toluene		4157.93 [*] 1201.91 *			
n-Octane		18651.6 *			
Ethylbenzene		343.834 *			
meta-Xylene		1677.78 *			
n-Nonane		13995.9 *			
C10+		121765 *			
TEG		0 *			
Water		0 *			
Methanol		0 *			
			1		1


		Process Streams Report All Streams Tabulated by Total Phase		
Client Name:	COP		Job: Zia Hil	ls Permit Basis
Location:				
Flowsheet:	Stabilizer			
Flowsheet:	Stabilizer			

	Stream Properties						
Property	Units	Oil Inlet					
Temperature	°F	136 *				·	
Pressure	psig	311 *					
Mole Fraction Vapor	%	0					
Mole Fraction Light Liquid	%	100					
Mole Fraction Heavy Liquid	%	0					
Molecular Weight	lb/lbmol	134.465					
Mass Density	lb/ft^3	45.3738					
Molar Flow	lbmol/h	1499.39					
Mass Flow	lb/h	201615					
Vapor Volumetric Flow	ft^3/h	4443.41					
Liquid Volumetric Flow	gpm	553.984					
Std Vapor Volumetric Flow	MMSCFD	13.6558					
Std Liquid Volumetric Flow	sgpm	539.662 *					
Compressibility		0.150342					
Specific Gravity		0.727509					
API Gravity		53.668					
Enthalpy	Btu/h	-1.71062E+08					
Mass Enthalpy	Btu/lb	-848.461					
Mass Cp	Btu/(lb*°F)	0.524535					
Ideal Gas CpCv Ratio		1.03688					
Dynamic Viscosity	cP	0.533165					
Kinematic Viscosity	cSt	0.73356					
Thermal Conductivity	Btu/(h*ft*°F)	0.0658427					
Surface Tension	lbf/ft	0.00131309 ?)				
Net Ideal Gas Heating Value	Btu/ft^3	6686.33					
Net Liquid Heating Value	Btu/lb	18723					
Gross Ideal Gas Heating Value	Btu/ft^3	7162.19					
Gross Liquid Heating Value	Btu/lb	20066					

Tanks **Plant Schematic**

Client Name: COP Job: Zia Hills Permit Basis Location:

Flowsheet: Tanks

Process Streams Report All Streams

Tabulated by Total Phase

Client Name: COP Job: Zia Hills Permit Basis
Location:
Flowsheet: Tanks

Connections

	• • • • • • • • • • • • • • • • • • • •				
	GB Flash	GB W&B	GunBarrel	H2O Degas	H2O Flash
From Block	Gun Barrel	MIX-103	PV-250 Water Degasser	PV-250 Water Degasser	Water Tank
To Block	MIX-100		Gun Barrel		MIX-100

Stream Composition

ou out a composition							
Mole Fraction	GB Flash %	GB W&B	GunBarrel %	H2O Degas %	H2O Flash %		
H2S	0	0	0	0	.,		
Nitrogen	0.067256	0.0145048	8.62577E-07	0.0859483			
Methane	17.0895	6.71301	0.000399213	18.8701			
Carbon Dioxide	0.0800697	0.135414	2.24546E-05	0.076795			
Ethane	12.8152	8.10625	0.000482067	13.31			
Propane	16.3622	16.3544	0.000972572	16.4005			
i-Butane	4.28612	6.60609	0.000445857	4.18903			
n-Butane	12.0769	18.2484	0.00174454	11.6963			
i-Pentane	4.44505	6.20147	0.00133418	4.25363			
n-Pentane	5.68184	7.74226	0.00213271	5.42509			
i-Hexane	2.66203	3.43057	0.00210605	2.53027			
n-Hexane	2.16009	2.69131	0.00227959	2.05115			
2,2,4-Trimethylpentane	0.0168183	0.019837	4.48939E-05	0.0159442			
Cyclohexane	3.40358E-05	4.28778E-05	4.44499E-08	3.23008E-05			
Benzene	0.0720498	0.0949127	0.000162114	0.0683821			
i-Heptane	2.79226	3.33795	0.00559591	2.64797			
n-Heptane	0.908591	1.05424	0.00249215	0.861342			
Toluene	0.196153	0.237174	0.000812923	0.185959			
n-Octane	1.4031	1.50989	0.0105137	1.32951			
Ethylbenzene	0.0225967	0.0247782	0.000210264	0.0214121			
1 M 1	0.400040	0.444747	0.00400070	0.000000			

0.111717

0.354242

17.0115

0

0.000124083

9.52633E-12

0.00102878

0.00721575

2.00021E-06

0.031776

99.9282

0

0.0968838

0.000226239

2.73177E-11

0.337291

15.5462

0

0.102249

0.355988

16.4037

0

0.000238183

2.87599E-11

Molar Flow	GB Flash Ibmol/h	GB W&B lbmol/h	GunBarrel Ibmol/h	H2O Degas Ibmol/h	H2O Flash Ibmol/h
H2S	0	0	0	0	0
Nitrogen	5.38441E-05	0.000208091	0.000208091	0.00711862	0
Methane	0.0136816	0.0963074	0.0963074	1.5629	0
Carbon Dioxide	6.41025E-05	0.0019427	0.00541702	0.00636051	0
Ethane	0.0102596	0.116295	0.116295	1.10239	0
Propane	0.0130993	0.234626	0.234626	1.35837	0
i-Butane	0.0034314	0.0947735	0.10756	0.346954	0
n-Butane	0.00966855	0.261798	0.420859	0.968742	0
i-Pentane	0.00355864	0.0889686	0.321861	0.352304	0
n-Pentane	0.00454879	0.111073	0.514501	0.44933	0
i-Hexane	0.00213118	0.0492163	0.50807	0.209568	0
n-Hexane	0.00172934	0.0386105	0.549937	0.169885	0
2,2,4-Trimethylpentane	1.34644E-05	0.000284589	0.0108303	0.00132057	0
Cyclohexane	2.72485E-08	6.15141E-07	1.07232E-05	2.6753E-06	0
Benzene	5.76819E-05	0.00136165	0.0391088	0.00566371	0
i-Heptane	0.00223544	0.0478875	1.34998	0.219316	0
n-Heptane	0.000727404	0.0151245	0.601213	0.0713402	0
Toluene	0.000157037	0.00340259	0.196112	0.015402	0
n-Octane	0.0011233	0.0216614	2.53635	0.110116	0
Ethylbenzene	1.80906E-05	0.000355478	0.0507248	0.00177345	0
meta-Xylene	8.18589E-05	0.00160273	0.248186	0.00802435	0
n-Nonane	0.000284998	0.0050821	1.74075	0.0279359	0
C10+	1.90686E-07	1.78014E-06	7.66575	1.87381E-05	0
TEG	2.30247E-14	1.36668E-13	0.000482537	2.26258E-12	0

^{*} User Specified Values

meta-Xylene

n-Nonane

C10+

TEG

Water

Methanol

H2O Flash

lbmol/h

0

lbmol/h

1.28761

Molar Flow

Water

Methanol

Process Streams Report All Streams

Tabulated by Total Phase

lbmol/h

0.244053

lbmol/h

24107

0

Client Name: COP Job: Zia Hills Permit Basis Location:

lbmol/h

0.0131326

Flowsheet: Tanks

GB Flash GB W&B GunBarrel H2O Degas

Methanol	0	0	0	0	0
Mass Fraction	GB Flash	GB W&B	GunBarrel %	H2O Degas %	H2O Flash %
H2S	0	0	0	0	
Nitrogen	0.0428697	0.00801803	1.33325E-06	0.0558363	
Methane	6.23814	2.1251	0.000353364	7.02034	
Carbon Dioxide	0.0801804	0.117599	5.45254E-05	0.0783778	
Ethane	8.76795	4.80984	0.000799786	9.28133	
Propane	16.4169	14.2305	0.00236627	16.7713	
i-Butane	5.6684	7.57666	0.00142983	5.64637	
n-Butane	15.9717	20.9294	0.00559462	15.7654	
i-Pentane	7.29725	8.82907	0.00531115	7.11708	
n-Pentane	9.32764	11.0227	0.00848998	9.07714	
i-Hexane	5.21975	5.83366	0.0100138	5.05666	
n-Hexane	4.23555	4.57655	0.010839	4.09915	
2,2,4-Trimethylpentane	0.0437129	0.0447137	0.000282949	0.0422367	
Cyclohexane	6.51767E-05	7.12076E-05	2.06405E-07	6.3042E-05	
Benzene	0.128057	0.146296	0.000698687	0.123872	
i-Heptane	6.36628	6.60005	0.0309381	6.15321	
n-Heptane	2.07156	2.08452	0.0137783	2.00154	
Toluene	0.411234	0.43122	0.00413273	0.397348	
n-Octane	3.64683	3.40338	0.0662637	3.52193	
Ethylbenzene	0.0545859	0.051909	0.00123167	0.0527174	
meta-Xylene	0.246998	0.234041	0.0060263	0.238532	
n-Nonane	1.03888	0.896533	0.0510626	1.00321	
C10+	0.00139526	0.000630369	0.451375	0.00135074	
TEG	9.82726E-11	2.82299E-11	1.65735E-05	9.5137E-11	
Water	6.72414	6.04748	99.3289	6.495	

0

0

Mass Flow	GB Flash lb/h	GB W&B lb/h	GunBarrel lb/h	H2O Degas Ib/h	H2O Flash lb/h
H2S	0	0	0	0	0
Nitrogen	0.00150836	0.00582933	0.00582933	0.199417	0
Methane	0.219487	1.54501	1.54501	25.0728	0
Carbon Dioxide	0.00282112	0.0854974	0.2384	0.279923	0
Ethane	0.308497	3.49689	3.49689	33.1479	0
Propane	0.577622	10.346	10.346	59.898	0
i-Butane	0.199441	5.50844	6.25162	20.1658	0
n-Butane	0.561958	15.2163	24.4613	56.3054	0
i-Pentane	0.256751	6.41898	23.2219	25.4183	0
n-Pentane	0.32819	8.01381	37.1206	32.4186	0
i-Hexane	0.183655	4.24123	43.7831	18.0596	0
n-Hexane	0.149026	3.32728	47.391	14.6399	0
2,2,4-Trimethylpentane	0.00153802	0.0325081	1.23713	0.150847	0
Cyclohexane	2.29322E-06	5.17699E-05	0.000902462	0.000225152	0
Benzene	0.00450564	0.106361	3.05486	0.442403	0
i-Heptane	0.223995	4.79842	135.27	21.9759	0
n-Heptane	0.0728873	1.5155	60.2427	7.14843	0
Toluene	0.0144691	0.313509	18.0695	1.41911	0
n-Octane	0.128313	2.47435	289.724	12.5784	0
Ethylbenzene	0.00192059	0.0377393	5.3852	0.188278	0
meta-Xylene	0.00869055	0.170154	26.3487	0.851905	0
n-Nonane	0.0365525	0.651805	223.26	3.58292	0
C10+	4.90918E-05	0.000458296	1973.54	0.00482411	0
TEG	3.45769E-12	2.05239E-11	0.0724641	3.39778E-10	0
Water	0.236587	4.39669	434294	23.1966	0
Methanol	0	0	0	0	0

^{*} User Specified Values

0

		Process Streams Report All Streams Tabulated by Total Phase		
Client Name:	COP		Job: Zia Hil	ls Permit Basis
Location:				
Flowsheet:	Tanks			

Stream Properties								
Property	Units	GB Flash	GB W&B	GunBarrel	H2O Degas	H2O Flash		
Temperature	°F	129.98	115.838	129.979	129.979			
Pressure	psig	0.25 *	-4.45234	1	1 *	0.25		
Mole Fraction Vapor	%	100	100	0	100			
Mole Fraction Light Liquid	%	0	0	0.0704329	0			
Mole Fraction Heavy Liquid	%	0	0	99.9296	0			
Molecular Weight	lb/lbmol	43.9487	50.6767	18.124	43.1208			
Mass Density	lb/ft^3	0.0951934	0.073365	61.3961	0.0985872			
Molar Flow	lbmol/h	0.0800585	1.43464	24124.3	8.28245	0		
Mass Flow	lb/h	3.51847	72.7028	437228	357.146	0		
Vapor Volumetric Flow	ft^3/h	36.9612	990.974	7121.44	3622.64	0		
Liquid Volumetric Flow	gpm	4.60816	123.55	887.868	451.653	0		
Std Vapor Volumetric Flow	MMSCFD	0.000729142	0.0130661	219.715	0.0754334	0		
Std Liquid Volumetric Flow	sgpm	0.0128573	0.248954	875.658	1.32172	0		
Compressibility		0.988601	0.989541	0.000667101	0.988427			
Specific Gravity		1.51744	1.74974	0.984404	1.48885			
API Gravity				10.2584				
Enthalpy	Btu/h	-4596.83	-88997.9	-2.94225E+09	-466612	0		
Mass Enthalpy	Btu/lb	-1306.49	-1224.13	-6729.33	-1306.5			
Mass Cp	Btu/(lb*°F)	0.440934	0.426904	0.978945	0.442039			
Ideal Gas CpCv Ratio		1.11482	1.10152	1.32073	1.11698			
Dynamic Viscosity	cР	0.00942896	0.00871405	0.522559	0.00948946			
Kinematic Viscosity	cSt	6.18352	7.41498	0.531342	6.00897			
Thermal Conductivity	Btu/(h*ft*°F)	0.0127395	0.0110089	0.368365	0.0129481			
Surface Tension	lbf/ft			0.00456398				
Net Ideal Gas Heating Value	Btu/ft^3	2130.93	2458.45	6.01563	2098.35			
Net Liquid Heating Value	Btu/lb	18199.7	18209.1	-927.684	18269.3			
Gross Ideal Gas Heating Value	Btu/ft^3	2321.21	2672.36	56.7071	2286.17			
Gross Liquid Heating Value	Btu/lb	19843.1	19811.2	133.706	19922.6			

Tanks

Flowsheet:

Process Streams Report All Streams Tabulated by Total Phase COP Job: Zia Hills Permit Basis Client Name:

Location:

Connections							
	Off-Spec Feed Off-Spec W&B Oil Tank Flash Flash						
From Block	VLVE-102	OT5 Off Spec	MIX-106	Oil Tanks	MIX-102		
To Block	OT5 Off Spec						

Stream Composition								
	Off-Spec Feed	Off-Spec Flash	Off-Spec W&B	Oil Tank Flash	OT W&B			
Mole Fraction	%	%	%	%	%			
H2S	0	0	0	0	0			
Nitrogen	0.00133646	0.00987814	0.000823055	2.19112E-05	2.03884E-06			
Methane	0.596766	4.33599	1.52162	0.380314	0.110668			
Carbon Dioxide	0.00327569	0.0231535	0.0283802	0.0220826	0.0199533			
Ethane	1.60299	10.6439	19.166	12.8067	17.0961			
Propane	4.8347	26.2894	35.2209	32.1668	35.6869			
i-Butane	2.02569	8.33327	8.2257	8.69102	8.22053			
n-Butane	6.35935	22.4333	19.9515	23.3747	21.2405			
i-Pentane	3.20463	6.80977	4.90895	6.25543	5.33707			
n-Pentane	4.57375	8.16799	5.50368	7.16839	5.9621			
i-Hexane	2.6084	2.52307	1.45132	2.55826	2.01099			
n-Hexane	2.61557	1.96096	1.08122	1.90073	1.48917			
2,2,4-Trimethylpentane	0.0120447	0.00380599	0.0017522	0.0124845	0.00875628			
Cyclohexane	1.0282	0.655733	0.280982	0	0			
Benzene	0.156792	0.111679	0.0420998	0.113486	0.0601427			
i-Heptane	5.64643	2.34439	1.08595	2.1559	1.49888			
n-Heptane	2.87694	0.888699	0.395545	0.667444	0.458394			
Toluene	0.918598	0.239792	0.0804716	0.177953	0.0918291			
n-Octane	18.8498	2.20335	0.80871	0.93264	0.563015			
Ethylbenzene	0.236682	0.0240132	0.00744192	0.016161	0.008179			
meta-Xylene	3.14522	0.289864	0.087107	0.0713942	0.0351589			
n-Nonane	12.7993	0.563694	0.148	0.221923	0.101266			
C10+	25.7362	0.000198436	2.08395E-05	0.000108533	3.19234E-05			
TEG	2.92523E-06	1.02584E-08	9.95326E-12	0	0			
Water	0.167271	1.14413	0.00186588	0.306067	0.000399623			
Methanol	0	0	0	0	0			

	Off-Spec Feed	Off-Spec	Off-Spec W&B	Oil Tank Flash	OT W&B
Molar Flow	lbmol/h	Flash Ibmol/h	lbmol/h	lbmol/h	lbmol/h
H2S	0	0	0	0	0
Nitrogen	0.00063938	0.000633735	2.64694E-06	2.15825E-07	3.41961E-08
Methane	0.2855	0.278177	0.00489353	0.00374609	0.00185615
Carbon Dioxide	0.00156713	0.00148542	9.12706E-05	0.000217513	0.000334664
Ethane	0.766887	0.68286	0.0616377	0.126146	0.286741
Propane	2.31297	1.6866	0.11327	0.316843	0.598552
i-Butane	0.969112	0.534623	0.0264538	0.0856066	0.137878
n-Butane	3.04239	1.43921	0.0641639	0.230241	0.356253
i-Pentane	1.53313	0.436882	0.0157871	0.061616	0.0895151
n-Pentane	2.18813	0.524019	0.0176998	0.0706087	0.0999984
i-Hexane	1.24789	0.161868	0.00466744	0.0251989	0.0337291
n-Hexane	1.25132	0.125806	0.0034772	0.0187222	0.0249769
2,2,4-Trimethylpentane	0.00576231	0.000244174	5.63505E-06	0.000122973	0.000146863
Cyclohexane	0.491904	0.0420687	0.000903635	0	0
Benzene	0.075011	0.0071648	0.000135393	0.00111784	0.00100873
i-Heptane	2.70132	0.150405	0.00349239	0.0212356	0.0251398
n-Heptane	1.37636	0.0570147	0.00127207	0.00657433	0.00768833
Toluene	0.439468	0.0153839	0.000258796	0.00175284	0.00154019
n-Octane	9.01798	0.141356	0.00260081	0.00918651	0.00944308
Ethylbenzene	0.113231	0.00154057	2.39332E-05	0.000159186	0.000137181
meta-Xylene	1.50471	0.0185963	0.000280136	0.000703233	0.000589697
n-Nonane	6.12334	0.0361639	0.000475966	0.00218594	0.00169847

^{*} User Specified Values

Process Streams Report All Streams Tabulated by Total Phase

COP Job: Zia Hills Permit Basis Client Name: Location: Flowsheet:

Tanks

	Off-Spec Feed	Off-Spec	Off-Spec W&B	Oil Tank Flash	OT W&B
		Flash			
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
C10+	12.3125	1.27307E-05	6.70198E-08	1.06905E-06	5.3543E-07
TEG	1.39947E-06	6.58127E-10	3.20096E-14	0	0
Water	0.0800244	0.0734022	6.00065E-06	0.00301476	6.70261E-06
Methanol	0	0	0	0	0

	Off-Spec Feed	Off-Spec	Off-Spec W&B	Oil Tank Flash	OT W&B
	Oil-Spec Feed	Flash	Oil-Spec Wab	Oli Talik Flasii	OT WAS
Mass Fraction	%	%	%	%	%
H2S	0	0	0	0	0
Nitrogen	0.000275462	0.00494693	0.000455058	1.11876E-05	1.09589E-06
Methane	0.070439	1.24352	0.481782	0.111203	0.034065
Carbon Dioxide	0.00106069	0.0182162	0.024651	0.0177133	0.0168492
Ethane	0.35464	5.72155	11.3743	7.01878	9.86354
Propane	1.56857	20.7239	30.6526	25.8528	30.1941
i-Butane	0.866269	8.65869	9.43598	9.207	9.16768
n-Butane	2.71953	23.3093	22.8871	24.7624	23.6878
i-Pentane	1.70116	8.78326	6.9902	8.22604	7.38838
n-Pentane	2.42795	10.5351	7.83708	9.42661	8.25364
i-Hexane	1.65385	3.88693	2.46842	4.01822	3.32515
n-Hexane	1.6584	3.02097	1.83895	2.98543	2.46232
2,2,4-Trimethylpentane	0.010123	0.00777206	0.00395029	0.0259927	0.0191916
Cyclohexane	0.636679	0.986562	0.466717	0	0
Benzene	0.0901111	0.155949	0.0649037	0.161572	0.0901398
i-Heptane	4.16283	4.19953	2.14762	3.9374	2.88178
n-Heptane	2.12102	1.59193	0.782247	1.21898	0.881317
Toluene	0.622737	0.394976	0.146338	0.298849	0.162345
n-Octane	15.8424	4.49937	1.82322	1.94175	1.23399
Ethylbenzene	0.184878	0.0455748	0.0155933	0.031272	0.0166609
meta-Xylene	2.45681	0.550137	0.182519	0.138149	0.0716199
n-Nonane	12.0781	1.29245	0.374635	0.518778	0.249205
C10+	48.75	0.000913284	0.000105889	0.000509281	0.000157695
TEG	3.23214E-06	2.754E-08	2.95005E-11	0	0
Water	0.0221718	0.368478	0.000663432	0.100499	0.000138137
Methanol	0	0	0	0	0

	Off-Spec Feed	Off-Spec	Off-Spec W&B	Oil Tank Flash	OT W&B
Mass Flow	lb/h	Flash lb/h	lb/h	lb/h	lb/h
H2S	0	0	0	0	0
Nitrogen	0.0179112	0.0177531	7.41498E-05	6.04599E-06	9.5795E-07
Methane	4.58012	4.46264	0.0785043	0.0600966	0.0297773
Carbon Dioxide	0.0689684	0.0653725	0.00401677	0.00957265	0.0147284
Ethane	23.0596	20.533	1.85339	3.79309	8.62202
Propane	101.992	74.3718	4.99471	13.9714	26.3935
i-Butane	56.3269	31.0735	1.53755	4.97565	8.01375
n-Butane	176.83	83.6502	3.72935	13.3821	20.7062
i-Pentane	110.614	31.5205	1.13902	4.44552	6.45841
n-Pentane	157.871	37.8074	1.27702	5.09433	7.21476
i-Hexane	107.537	13.9491	0.402218	2.17152	2.90661
n-Hexane	107.833	10.8414	0.299649	1.61339	2.15239
2,2,4-Trimethylpentane	0.65822	0.0278916	0.000643684	0.014047	0.016776
Cyclohexane	41.3984	3.54048	0.0760495	0	0
Benzene	5.85925	0.559656	0.0105758	0.0873165	0.078794
i-Heptane	270.677	15.0709	0.349945	2.12785	2.51905
n-Heptane	137.914	5.71298	0.127464	0.65876	0.770386
Toluene	40.4919	1.41745	0.0238451	0.161504	0.14191
n-Octane	1030.11	16.1469	0.297086	1.04936	1.07867
Ethylbenzene	12.0212	0.163555	0.00254087	0.0169	0.0145638
meta-Xylene	159.748	1.97428	0.0297406	0.0746588	0.0626051
n-Nonane	785.349	4.63821	0.0610451	0.280358	0.217838

^{*} User Specified Values

* Extrapolated or Approximate Values

Process Streams Report All Streams Tabulated by Total Phase Client Name: COP Location: Flowsheet: Tanks Process Streams Report All Streams Tabulated by Total Phase Job: Zia Hills Permit Basis

	Off-Spec Feed	Off-Spec Flash	Off-Spec W&B	Oil Tank Flash	OT W&B
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
C10+	3169.84	0.00327751	1.72542E-05	0.000275226	0.000137846
TEG	0.000210162	9.88329E-08	4.80698E-12	0	0
Water	1.44166	1.32236	0.000108103	0.0543118	0.000120749
Methanol	0	0	0	0	0

Stream Properties								
Property	Units	Off-Spec Feed	Off-Spec	Off-Spec W&B	Oil Tank Flash	OT W&B		
			Flash					
Temperature	°F	109.773	133.834	107.642	117.392	108.771		
Pressure	psig	0.25 *	0.25	6.92431	0.25 *	6.9024		
Mole Fraction Vapor	%	9.15079	100	100	100	100		
Mole Fraction Light Liquid	%	90.8492	0	0	0	0		
Mole Fraction Heavy Liquid	%	0	0	0	0	0		
Molecular Weight	lb/lbmol	135.913	55.9378	50.6673	54.865	52.1174		
Mass Density	lb/ft^3	3.13063	0.121155	0.172674	0.122324	0.177296		
Molar Flow	lbmol/h	47.8412	6.41552	0.321599	0.985	1.67723		
Mass Flow	lb/h	6502.24	358.871	16.2946	54.042	87.413		
Vapor Volumetric Flow	ft^3/h	2076.98	2962.07	94.366	441.794	493.035		
Liquid Volumetric Flow	gpm	258.948	369.297	11.7651	55.0808	61.4693		
Std Vapor Volumetric Flow	MMSCFD	0.435719	0.0584302	0.002929	0.00897101	0.0152756		
Std Liquid Volumetric Flow	sgpm	17.305	1.27097	0.0614084	0.194869	0.324784		
Compressibility		0.0962622	0.982235	0.97474	0.981378	0.973504		
Specific Gravity			1.93139	1.74941	1.89434	1.79948		
API Gravity								
Enthalpy	Btu/h	-5.49403E+06	-336177	-15793.1	-50899.9	-83903		
Mass Enthalpy	Btu/lb	-844.944	-936.765	-969.225	-941.857	-959.845		
Mass Cp	Btu/(lb*°F)	0.502737	0.435315	0.423146	0.426377	0.423599		
Ideal Gas CpCv Ratio		1.03809	1.0894	1.10321	1.09345	1.09996		
Dynamic Viscosity	cP		0.00850935	0.00842384	0.00831063	0.00835329		
Kinematic Viscosity	cSt		4.38463	3.04552	4.24132	2.94129		
Thermal Conductivity	Btu/(h*ft*°F)		0.0115743	0.0110096	0.0109302	0.010869		
Surface Tension	lbf/ft							
Net Ideal Gas Heating Value	Btu/ft^3	6765.41	2883.07	2636.94	2841.34	2709.49		
Net Liquid Heating Value	Btu/lb	18739.3	19404.1	19594.6	19498.2	19573.7		
Gross Ideal Gas Heating Value	Btu/ft^3	7250.77	3124.54	2861.08	3080.22	2939.01		
Gross Liquid Heating Value	Btu/lb	20094.5	21042.5	21273.7	21150.8	21245.2		

Process Streams Report All Streams Tabulated by Total Phase COP Job: Zia Hills Permit Basis Client Name: Location: Flowsheet: Tanks

Connections							
	Slop Flash	Slop Oil	Slop W&B	VRT Flash	WT W&B		
From Block	CondTanks (Slop)	Gun Barrel	MIX-105	PV-270 Oil Degasser (VRT)	MIX-104		
To Block	MIX-100	CondTanks (Slop)					

Stream Composition								
Mole Fraction	Slop Flash %	Slop Oil %	Slop W&B %	VRT Flash %	WT W&B %			
H2S		0	0	0	0			
Nitrogen		9.4997E-05	0.00584083	3.32787E-05	0.0232231			
Methane		0.0707509	5.88411	0.442856	11.8741			
Carbon Dioxide		0.000674947	0.0900435	0.0236817	0.393854			
Ethane		0.248941	21.9326	13.1225	10.7332			
Propane		0.975436	26.5467	32.1836	9.45139			
i-Butane		0.568184	5.94045	8.64273	1.31803			
n-Butane		2.19814	15.9949	23.2143	6.50235			
i-Pentane		1.82945	5.55168	6.20151	1.3905			
n-Pentane		2.97122	6.92417	7.10485	1.08109			
i-Hexane		2.96596	3.06477	2.53445	0.556234			
n-Hexane		3.22609	2.46874	1.88298	0.251195			
2,2,4-Trimethylpentane		0.0637917	0.0172019	0.0123681	0.00106692			
Cyclohexane		6.1361E-05	3.11632E-05	0	4.99906E-05			
Benzene		0.113537	0.0572865	0.112423	0.303072			
i-Heptane		7.94391	2.84073	2.13575	0.255014			
n-Heptane		3.54111	0.912202	0.661253	0.0650759			
Toluene		0.908508	0.150564	0.176294	0.836797			
n-Octane		14.9583	1.25522	0.924201	0.0515824			
Ethylbenzene		0.277721	0.0169848	0.0160142	0.0912432			
meta-Xylene		1.38644	0.0749222	0.0707467	0.443393			
n-Nonane		10.27	0.231493	0.21997	0.00709997			
C10+		45.2347	0.000104262	0.000107881	2.88564E-05			
TEG		1.53347E-08	1.4397E-13	0	3.73597E-11			
Water		0.246989	0.0392862	0.31736	54.3704			
Methanol		0	0	0	0			

Molar Flow	Slop Flash Ibmol/h	Slop Oil Ibmol/h	Slop W&B Ibmol/h	VRT Flash lbmol/h	WT W&B lbmol/h
H2S	0	0	0	0	0
Nitrogen	0	1.60988E-05	5.07207E-06	2.28305E-06	0.000138148
Methane	0	0.0119899	0.00510966	0.0303816	0.0706359
Carbon Dioxide	0	0.000114381	7.81922E-05	0.00162466	0.00234292
Ethane	0	0.0421871	0.0190458	0.900258	0.0638486
Propane	0	0.165303	0.0230527	2.20792	0.0562236
i-Butane	0	0.096288	0.00515858	0.592925	0.00784059
n-Butane	0	0.37251	0.0138897	1.59259	0.0386807
i-Pentane	0	0.31003	0.00482098	0.425448	0.0082717
n-Pentane	0	0.503521	0.00601283	0.48742	0.0064311
i-Hexane	0	0.50263	0.00266139	0.173873	0.00330888
n-Hexane	0	0.546713	0.00214381	0.12918	0.00149429
2,2,4-Trimethylpentane	0	0.0108105	1.49378E-05	0.000848499	6.34678E-06
Cyclohexane	0	1.03986E-05	2.70616E-08	0	2.9738E-07
Benzene	0	0.0192407	4.97466E-05	0.00771264	0.00180289
i-Heptane	0	1.34622	0.00246684	0.146521	0.001517
n-Heptane	0	0.600099	0.00079214	0.0453646	0.000387118
Toluene	0	0.153961	0.000130747	0.0120945	0.00497787
n-Octane	0	2.53492	0.00109001	0.0634038	0.000306849
Ethylbenzene	0	0.0470643	1.47493E-05	0.00109864	0.00054278
meta-Xylene	0	0.234954	6.50611E-05	0.0048535	0.00263762
n-Nonane	0	1.74042	0.000201024	0.0150908	4.22357E-05

Process Streams Report All Streams Tabulated by Total Phase

COP Job: Zia Hills Permit Basis Client Name: Location: Flowsheet:

Tanks

	Slop Flash	Slop Oil	Slop W&B	VRT Flash	WT W&B
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
C10+	0	7.66575	9.05394E-08	7.40103E-06	1.71659E-07
TEG	0	2.5987E-09	1.25021E-16	0	2.22242E-13
Water	0	0.0418563	3.41155E-05	0.0217722	0.323434
Methanol	0	0	0	0	0
		·	·	·	

	Slop Flash	Slop Oil	Slop W&B	VRT Flash	WT W&B
Mass Fraction	%	%	%	%	%
H2S		0	0	0	0
Nitrogen		1.54759E-05	0.00317069	1.70441E-05	0.0230168
Methane		0.00660059	1.82922	0.12989	6.73954
Carbon Dioxide		0.000172741	0.0767914	0.0190546	0.613252
Ethane		0.0435308	12.7797	7.21405	11.4184
Propane		0.250135	22.684	25.946	14.7451
i-Butane		0.192049	6.69075	9.18405	2.71035
n-Butane		0.74298	18.0151	24.6683	13.3712
i-Pentane		0.767592	7.76188	8.18028	3.54943
n-Pentane		1.24665	9.68078	9.37185	2.75962
i-Hexane		1.48638	5.11793	3.99307	1.69589
n-Hexane		1.61674	4.1226	2.96668	0.765864
2,2,4-Trimethylpentane		0.0423759	0.0380771	0.0258297	0.00431183
Cyclohexane		3.00314E-05	5.08228E-05	0	0.00014885
Benzene		0.0515745	0.0867127	0.160551	0.837567
i-Heptane		4.62903	5.51593	3.91263	0.90406
n-Heptane		2.06346	1.77125	1.21139	0.230703
Toluene		0.486799	0.268828	0.296975	2.72784
n-Octane		9.93657	2.77849	1.93011	0.208465
Ethylbenzene		0.171463	0.0349427	0.0310833	0.34272
meta-Xylene		0.855976	0.154136	0.137318	1.66543
n-Nonane		7.65996	0.575342	0.515798	0.0322173
C10+		67.724	0.000520153	0.00050778	0.00026284
TEG		1.3392E-08	4.18966E-13	0	1.98496E-10
Water		0.0258761	0.013715	0.104529	34.6546
Methanol		0	0	0	0

	Slop Flash	Slop Oil	Slop W&B	VRT Flash	WT W&B
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
H2S	0	0	0	0	0
Nitrogen	0	0.000450981	0.000142086	6.3956E-05	0.00386999
Methane	0	0.192347	0.0819715	0.487396	1.13317
Carbon Dioxide	0	0.00503383	0.0034412	0.0715004	0.103111
Ethane	0	1.26852	0.57269	27.0699	1.91987
Propane	0	7.28916	1.01652	97.3596	2.47922
i-Butane	0	5.59647	0.299828	34.4621	0.455713
n-Butane	0	21.6511	0.8073	92.5649	2.2482
i-Pentane	0	22.3683	0.347828	30.6956	0.596793
n-Pentane	0	36.3284	0.433818	35.1668	0.463996
i-Hexane	0	43.3143	0.229347	14.9836	0.285144
n-Hexane	0	47.1132	0.184743	11.1321	0.128771
2,2,4-Trimethylpentane	0	1.23487	0.00170632	0.0969228	0.000724983
Cyclohexane	0	0.000875141	2.27749E-06	0	2.50273E-05
Benzene	0	1.50293	0.0038858	0.602449	0.140827
i-Heptane	0	134.894	0.247182	14.6817	0.152007
n-Heptane	0	60.131	0.079374	4.54562	0.03879
Toluene	0	14.1857	0.0120468	1.11437	0.458653
n-Octane	0	289.56	0.124511	7.24252	0.035051
Ethylbenzene	0	4.99658	0.00156586	0.116637	0.0576242
meta-Xylene	0	24.9439	0.00690721	0.515272	0.280023
n-Nonane	0	223.218	0.0257824	1.93547	0.00541695
C10+	0	1973.54	2.33093E-05	0.00190539	4.41934E-05
TEG	0	3.90255E-07	1.87748E-14	0	3.33747E-11

^{*} User Specified Values

0

Tanks

Flowsheet:

Methanol

Process Streams Report All Streams Tabulated by Total Phase

Job: Zia Hills Permit Basis COP Client Name: Location:

Slop Flash Slop Oil Slop W&B VRT Flash WT W&B **Mass Flow** lb/h lb/h lb/h lb/h lb/h 0.754052 0.0006146 0.392232 5.82676 Water 0

0

0

0

0

Stream Properties						
Property	Units	Slop Flash	Slop Oil	Slop W&B	VRT Flash	WT W&B
Temperature	°F		129.98	120.098	117.471	119.957
Pressure	psig	0.25	0.25	0.627361	0.4 *	-10.1858
Mole Fraction Vapor	%		0	100	100	100
Mole Fraction Light Liquid	%		100	0	0	0
Mole Fraction Heavy Liquid	%		0	0	0	0
Molecular Weight	lb/lbmol		171.957	51.6044	54.6964	28.2646
Mass Density	lb/ft^3		47.3456	0.117482	0.123293	0.0141758
Molar Flow	lbmol/h	0	16.9466	0.0868383	6.86039	0.594872
Mass Flow	lb/h	0	2914.09	4.48123	375.239	16.8138
Vapor Volumetric Flow	ft^3/h	0	61.5492	38.1439	3043.47	1186.09
Liquid Volumetric Flow	gpm	0	7.67367	4.7556	379.446	147.876
Std Vapor Volumetric Flow	MMSCFD	0	0.154343	0.00079089	0.0624818	0.00541787
Std Liquid Volumetric Flow	sgpm	0	7.4018	0.0167824	1.35531	0.0567735
Compressibility			0.00777717	0.983252	0.981286	0.998211
Specific Gravity			0.759125	1.78177	1.88852	0.975903
API Gravity			47.7497			
Enthalpy	Btu/h	0	-2.39215E+06	-4316.65	-353862	-44667.4
Mass Enthalpy	Btu/lb		-820.891	-963.273	-943.033	-2656.59
Mass Cp	Btu/(lb*°F)		0.509887	0.430278	0.426509	0.435943
Ideal Gas CpCv Ratio			1.02908	1.09891	1.09374	1.19239
Dynamic Viscosity	cP		0.931193	0.00857016	0.00832192	0.0107647
Kinematic Viscosity	cSt		1.22783	4.55403	4.21371	47.4061
Thermal Conductivity	Btu/(h*ft*°F)		0.0685956	0.0116044	0.0109504	0.0130651
Surface Tension	lbf/ft		0.0016009			
Net Ideal Gas Heating Value	Btu/ft^3		8502.72	2680.17	2832.85	955.535
Net Liquid Heating Value	Btu/lb		18615.9	19561.3	19499.9	12369.6
Gross Ideal Gas Heating Value	Btu/ft^3		9092.77	2907.5	3071.12	1065.03
Gross Liquid Heating Value	Btu/lb		19918.1	21233.5	21153.4	13840.1

Process Streams Report All Streams **Tabulated by Total Phase** Client Name: COP Job: Zia Hills Permit Basis Location: Flowsheet: **Tanks** Connections 2 9 11 13 From Block To Block MIX-102 MIX-103 MIX-104 MIX-105 MIX-106 Stream Composition 2 9 11 13 Mole Fraction % % % % H2S O 0 0 2.03884E-06 0.0232231 0.00584083 0.000823055 Nitrogen 0.0145048 Methane 0.110668 6.71301 11.8741 5.88411 1.52162 Carbon Dioxide 0.0199533 0.135414 0.393854 0.0900435 0.0283802 Ethane 17.0961 8.10625 10.7332 21.9326 19.166 Propane 35.6869 16.3544 9.45139 26.5467 35.2209 i-Butane 8.22053 6.60609 1.31803 5.94045 8.2257 n-Butane 21.2405 18.2484 6.50235 15.9949 19.9515 i-Pentane 5.33707 6.20147 1.3905 5.55168 4.90895 n-Pentane 5.9621 7.74226 1.08109 6.92417 5.50368 3.43057 0.556234 3.06477 i-Hexane 2.01099 1.45132 1.48917 2.69131 0.251195 2.46874 1.08122 n-Hexane 2,2,4-Trimethylpentane 0.00875628 0.019837 0.00106692 0.0172019 0.0017522 Cyclohexane 0 4.28778E-05 4.99906E-05 3.11632E-05 0.280982 0.0601427 0.0949127 0.303072 0.0420998 Benzene 0.0572865 i-Heptane 1.49888 3.33795 0.255014 2.84073 1.08595 n-Heptane 0.458394 1.05424 0.0650759 0.912202 0.395545 Toluene 0.0918291 0.237174 0.836797 0.150564 0.0804716 n-Octane 0.563015 1.50989 0.0515824 1.25522 0.80871 Ethylbenzene 0.008179 0.0247782 0.0912432 0.0169848 0.00744192 meta-Xylene 0.0351589 0.111717 0.443393 0.0749222 0.087107 0.101266 0.354242 0.00709997 0.231493 n-Nonane 0.148 C10+ 0.000124083 2.88564E-05 0.000104262 2.08395E-05 3.19234E-05 9.95326E-12 3.73597E-11 TFG 0 9.52633E-12 1.4397E-13 0.000399623 0.00186588 Water 17.0115 54.3704 0.0392862 Methanol 0 Λ 0 0 0 11 13 **Molar Flow** lbmol/h lbmol/h lbmol/h lbmol/h lbmol/h H2S 0 0 0 0 0 1.91096E-09 4.26252E-06 1.59858E-05 1.81055E-06 3.39744E-07 Nitrogen Methane 0.000103726 0.00197275 0.00817366 0.00182396 0.000628103 Carbon Dioxide 1.87018E-05 3.97942E-05 0.000271112 2.79118E-05 1.17149E-05 Ethane 0.0160238 0.00238218 0.00738827 0.00679868 0.00791143 Propane 0.0334486 0.00480607 0.00650594 0.00822898 0.0145386 i-Butane 0.00770493 0.00194133 0.000907277 0.00184143 0.00339544 n-Butane 0.0199083 0.00536265 0.00447595 0.00495812 0.00823568 0.00182243 0.000957163 0.00172092 0.00500232 0.00202634 i-Pentane n-Pentane 0.00558815 0.00227522 0.000744177 0.00214636 0.00227183 0.00188486 0.00100814 0.000599083 i-Hexane 0.000382888 0.000950021 0.00139577 0.000790895 0.000172912 0.000765262 0.000446312 n-Hexane 2,2,4-Trimethylpentane 8.20708E-06 5.82949E-06 7.3442E-07 5.33225E-06 7.2328E-07 0.000115985 1.26005E-08 3.44114E-08 9.66001E-09 Cyclohexane 0 Benzene 5.63704E-05 2 7892F-05 0.000208622 1.77577E-05 1 73782F-05 i-Heptane 0.00140487 0.000980924 0.000175541 0.000880572 0.000448262 n-Heptane 0.000429643 0.000309809 4.47955E-05 0.000282765 0.000163275 Toluene 8.60695E-05 6.96984E-05 0.000576016 4.66719E-05 3.32175E-05 0.000389095 n-Octane 0.000527702 0.000443711 3.55072E-05 0.000333823 Ethylbenzene 7.666E-06 7.28157E-06 6.2808E-05 5.26498E-06 3.07191E-06 3.29537E-05 3.28303E-05 0.000305213 2.32245E-05 3.59565E-05 meta-Xylene n-Nonane 9.49148E-05 0.000104101 4.88732E-06 7.17584E-05 6.10921E-05 C10+ 2.99212E-08 3.64643E-08 1.98635E-08 3.23193E-08 8.60225E-09 **TEG** 0 2.7995E-15 2.57168E-14 4.46281E-17 4.10855E-15 Water 3.74558E-07 0.00499917 0.0374263 1.2178E-05 7.70206E-07

^{*} User Specified Values

13

lbmol/h

11

lbmol/h

Process Streams Report All Streams

Tabulated by Total Phase

4

lbmol/h

9

lbmol/h

Client Name: COP Job: Zia Hills Permit Basis Location:

2

lbmol/h

Flowsheet: Tanks

Molar Flow

Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
Methanol	0 *	0 *	0 *	0 *	0 *
	2	4	9	11	13
Mass Fraction	%	%	%	%	%
H2S	0	0	0	0	0
Nitrogen	1.09589E-06	0.00801803	0.0230168	0.00317069	0.000455058
Methane	0.034065	2.1251	6.73954	1.82922	0.481782
Carbon Dioxide	0.0168492	0.117599	0.613252	0.0767914	0.024651
Ethane	9.86354	4.80984	11.4184	12.7797	11.3743
Propane	30.1941	14.2305	14.7451	22.684	30.6526
i-Butane	9.16768	7.57666	2.71035	6.69075	9.43598
n-Butane	23.6878	20.9294	13.3712	18.0151	22.8871
i-Pentane	7.38838	8.82907	3.54943	7.76188	6.9902
n-Pentane	8.25364	11.0227	2.75962	9.68078	7.83708
i-Hexane	3.32515	5.83366	1.69589	5.11793	2.46842
n-Hexane	2.46232	4.57655	0.765864	4.1226	1.83895
2,2,4-Trimethylpentane	0.0191916	0.0447137	0.00431183	0.0380771	0.00395029
Cyclohexane	0	7.12076E-05	0.00014885	5.08228E-05	0.466717
Benzene	0.0901398	0.146296	0.837567	0.0867127	0.0649037
i-Heptane	2.88178	6.60005	0.90406	5.51593	2.14762
n-Heptane	0.881317	2.08452	0.230703	1.77125	0.782247
Toluene	0.162345	0.43122	2.72784	0.268828	0.146338
n-Octane	1.23399	3.40338	0.208465	2.77849	1.82322
Ethylbenzene	0.0166609	0.051909	0.34272	0.0349427	0.0155933
meta-Xylene	0.0716199	0.234041	1.66543	0.154136	0.182519
n-Nonane	0.249205	0.896533	0.0322173	0.575342	0.374635
C10+	0.000157695	0.000630369	0.00026284	0.000520153	0.000105889
TEG	0	2.82299E-11	1.98496E-10	4.18966E-13	2.95005E-11
Water	0.000138137	6.04748	34.6546	0.013715	0.000663432
Methanol	0	0	0	0	0
		_			
	2	4	9	11	13
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
H2S	0 *	0 *	0 *	0 *	0 *
Nitrogen	5.35326E-08 *	0.000119408 *	0.000447818 *	5.07196E-05 *	9.5174E-06 *
Methane	0.00166403 *	0.0316478 *	0.131126 *	0.0292608 *	0.0100763 *
Carbon Dioxide	0.000823058 *	0.00175132 *	0.0119315 *	0.00122838 *	0.000515568 *
Ethane	0.48182 *	0.07163 *	0.222158 *	0.20443 *	0.237889 *
Propane	1.47494 *	0.211927 *	0.286883 *	0.362862 *	0.64109 *
i-Butane	0.447828 *	0.112834 *	0.0527329 *	0.107028 *	0.197351 *
n-Butane	1.15711 *	0.311689 *	0.260152 *	0.288177 *	0.478676 *
i-Pentane	0.360911 *	0.131486 *	0.0690581 *	0.124162 *	0.146198 *
n-Pentane	0.403178 *	0.164154 *	0.0536915 *	0.154857 *	0.16391 *
i-Hexane	0.162429 *	0.0868771 *	0.0329955 *	0.0818684 *	0.0516262 *
n-Hexane	0.120281 *	0.0681557 *	0.0149008 *	0.0659467 *	0.0384611 *
2,2,4-Trimethylpentane	0.000937483 *	0.000665894 *	8.38917E-05 *	0.000609095 *	8.26192E-05 *
Cyclohexane	0.000001400	1.06045E-06 *	2.89604E-06 *	8.12982E-07 *	0.00976123 *
Benzene	0.0044032 *	0.0021787 *	0.0162958 *	0.00138709 *	0.00135744 *
i-Heptane	0.140771 *	0.0982905 *	0.0175895 *	0.088235 *	0.0449167 *
n-Heptane	0.043051 *	0.0310434 *	0.0044886 *	0.0283336 *	0.0163605 *
Toluene	0.0079303 *	0.0064219 *	0.0530732 *	0.00430027 *	0.0030606 *
n-Octane	0.0602786 *	0.0506845 *	0.00405593 *	0.00430027	0.0030000
Ethylbenzene	0.0002780	0.000773048 *	0.00403393	0.000558957 *	0.000326129 *
meta-Yylene	0.000013001	0.000773040	0.00000001		0.000320129

meta-Xylene

n-Nonane

C10+

TEG

Water

Methanol

0.00348543

9.38769E-06

4.2041E-13

0.0900614

0

0.0133515

0.0324029

0.000626824

5.11385E-06

3.86197E-12

0.674245

0

0.00349853

7.70317E-06

6.74777E-06

0.0121733

0

0

0

0.00381732

0.00783537

2.21464E-06

6.16994E-13 1.38755E-05

0

0.00246562

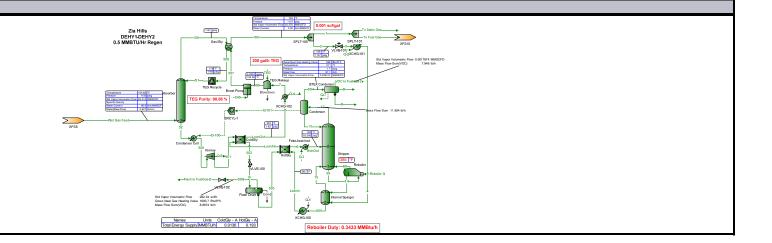
0.00920339

8.32057E-06

6.70193E-15

0.00021939

^{*} User Specified Values


Process Streams Report All Streams Tabulated by Total Phase Client Name: COP Job: Zia Hills Permit Basis Location: Flowsheet: Tanks

	Stream Properties						
Property	Units	2	4	9	11	13	
Temperature	°F	108.771	115.838	119.957	120.098	107.642	
Pressure	psig	6.9024	-4.45234	-10.1858	0.627361	6.92431	
Mole Fraction Vapor	%	100	100	100	100	100	
Mole Fraction Light Liquid	%	0	0	0	0	0	
Mole Fraction Heavy Liquid	%	0	0	0	0	0	
Molecular Weight	lb/lbmol	52.1174	50.6767	28.2646	51.6044	50.6673	
Mass Density	lb/ft^3	0.177296	0.073365	0.0141758	0.117482	0.172674	
Molar Flow	lbmol/h	0.0937279	0.029387	0.0688358	0.0309981	0.0412785	
Mass Flow	lb/h	4.88485	1.48924	1.94561	1.59964	2.09147	
Vapor Volumetric Flow	ft^3/h	27.552	20.299	137.249	13.616	12.1122	
Liquid Volumetric Flow	gpm	3.43505	2.53079	17.1115	1.69758	1.5101	
Std Vapor Volumetric Flow	MMSCFD	0.000853638	0.000267646	0.00062693	0.000282319	0.000375949	
Std Liquid Volumetric Flow	sgpm	0.0181497	0.00509955	0.00656957	0.00599071	0.007882	
Compressibility		0.973504	0.989541	0.998211	0.983252	0.97474	
Specific Gravity		1.79948	1.74974	0.975903	1.78177	1.74941	
API Gravity							
Enthalpy	Btu/h	-4688.7	-1823.03	-5168.7	-1540.89	-2027.1	
Mass Enthalpy	Btu/lb	-959.845	-1224.13	-2656.59	-963.273	-969.225	
Mass Cp	Btu/(lb*°F)	0.423599	0.426904	0.435943	0.430278	0.423146	
Ideal Gas CpCv Ratio		1.09996	1.10152	1.19239	1.09891	1.10321	
Dynamic Viscosity	cP	0.00835329	0.00871405	0.0107647	0.00857016	0.00842384	
Kinematic Viscosity	cSt	2.94129	7.41498	47.4061	4.55403	3.04552	
Thermal Conductivity	Btu/(h*ft*°F)	0.010869	0.0110089	0.0130651	0.0116044	0.0110096	
Surface Tension	lbf/ft						
Net Ideal Gas Heating Value	Btu/ft^3	2709.49	2458.45	955.535	2680.17	2636.94	
Net Liquid Heating Value	Btu/lb	19573.7	18209.1	12369.6	19561.3	19594.6	
Gross Ideal Gas Heating Value	Btu/ft^3	2939.01	2672.36	1065.03	2907.5	2861.08	
Gross Liquid Heating Value	Btu/lb	21245.2	19811.2	13840.1	21233.5	21273.7	

20MM Plant Schematic

Client Name: COP Job: Zia Hills Permit Basis Location:

20MM Flowsheet:

Process Streams Report All Streams Tabulated by Total Phase

Client Name:	COP	Job: Zia Hil	s Permit Basis
Location:			
Flowsheet:	20MM		

Connections

	12	509		
From Block	Stripper	Flash Drum		
To Block	Condenser	VLVE-102		

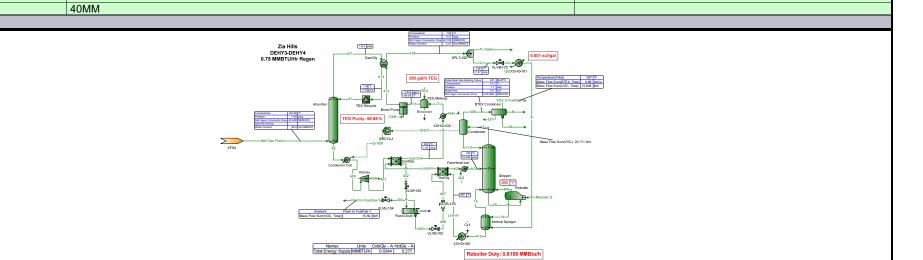
Stream	C	omposition
12		509

Mole Fraction	%	%	
H2S	76	0	-
	0.000803374	0.246557	
Nitrogen			
Methane	0.654634	55.6499	
Carbon Dioxide	0.055924	0.445319	
Ethane	0.893845	20.7317	
Propane	1.08789	12.7099	
i-Butane	0.21472	1.82775	
n-Butane	0.863968	4.82689	
i-Pentane	0.312427	1.0559	
n-Pentane	0.433351	1.21422	
i-Hexane	0.161242	0.270655	
n-Hexane	0.147039	0.191092	
2,2,4-Trimethylpentane	9.00798E-05	7.02772E-05	
Cyclohexane	0.237901	0.106225	
Benzene	0.259989	0.0198927	
i-Heptane	0.152329	0.153755	
n-Heptane	0.068164	0.0506156	
Toluene	0.530836	0.0208747	
n-Octane	0.135379	0.0568974	
Ethylbenzene	0.0317974	0.000747026	
meta-Xylene	0.412932	0.00936857	
n-Nonane	0.0184956	0.00417628	
C10+	1.46258E-07	5.4529E-10	
TEG	0.0511016	0.00011579	
Water	93.2751	0.407346	
Methanol	0	0	
	12	509	
Molar Flow	lhmol/h	lhmol/h	

12	509	
lbmol/h	lbmol/h	
0	0	
2.60263E-05	0.00183444	
0.0212077	0.414047	
0.00181173	0.00331327	
0.0289573	0.154248	
0.0352437	0.0945643	
0.00695612	0.0135989	
0.0279894	0.035913	
0.0101215	0.00785613	
0.014039	0.00903408	
0.00522366	0.00201373	
0.00476353	0.00142176	
2.91825E-06	5.22877E-07	
0.00770713	0.000790332	
0.00842267	0.000148006	
0.00493489	0.00114397	
0.00220826	0.00037659	
0.0171971	0.000155312	
0.00438578	0.000423328	
0.00103012	5.55803E-06	
0.0133775	6.97041E-05	
0.00059919	3.10724E-05	
4.73822E-09	4.05707E-12	
0.0016555	8.61504E-07	
3.02177	0.00303074	
	Ibmol/h	Ibmol/h

^{*} User Specified Values

		All St	reams Report treams by Total Phase		
Client Name:	COP			Job: Zia Hills	Permit Basis
Location:	201414				
Flowsheet:	20MM				
Molar Flow		12 Ibmol/h	509 Ibmol/h		
Methanol		0	0		
Wichiano			J		
		12	509		
Mass Fraction		%	%		
H2S		0	0		
Nitrogen		0.00107406	0.251909		
Methane		0.501202	32.5608		
Carbon Dioxide		0.117459	0.714788		
Ethane		1.2827	22.736		
Propane		2.28942	20.4408		
i-Butane		0.595603	3.87453		
n-Butane		2.39653	10.2322 2.77851		
i-Pentane n-Pentane		1.07577 1.49215	2.77851 3.19512		
i-Hexane		0.663141	0.850665		
n-Hexane		0.604728	0.600599		
2,2,4-Trimethylpenta	ane	0.000491072	0.000292785		
Cyclohexane		0.955528	0.326052		
Benzene		0.969202	0.0566722		
i-Heptane		0.728454	0.561907		
n-Heptane		0.325968	0.184978		
Toluene		2.33423	0.0701488		
n-Octane		0.738021	0.237043		
Ethylbenzene		0.161108	0.00289252		
meta-Xylene		2.0922	0.0362756		
n-Nonane C10+		0.113211 1.79703E-06	0.0195355 5.1201E-09		
TEG		0.366244	0.000634196		
Water		80.1956	0.000634196		
Methanol		0	0.207040		
Wictiano			J		
		12	509		
Mass Flow		lb/h	lb/h		
H2S		0	0		
Nitrogen		0.000729086	0.0513888		
Methane		0.340224	6.64233		
Carbon Dioxide		0.0797333	0.145815		
Ethane		0.870717	4.6381		
Propane		1.55409	4.16987		
i-Butane		0.404305	0.790396		
n-Butane i-Pentane		1.6268 0.730252	2.08734 0.56681		
n-Pentane		1.01289	0.651798		
i-Hexane		0.450151	0.173534		
n-Hexane		0.410499	0.122521		
2,2,4-Trimethylpenta	ane	0.000333347	5.97274E-05		
Cyclohexane		0.648628	0.066514		
Benzene		0.65791	0.011561		
i-Heptane		0.494486	0.114628		
n-Heptane		0.221272	0.0377351		
Toluene		1.58451	0.0143102		
n-Octane		0.500981	0.0483562		
Ethylbenzene		0.109363	0.000590068		
meta-Xylene n-Nonane		1.42022 0.0768491	0.00740013 0.00398519		
n-Nonane C10+		0.0768491 1.21985E-06	1.04449E-09		
TEG		0.248612	0.000129375		
Water		54.438	0.0545996		
Methanol		0	0		
			-		


		Process Streams Report All Streams Tabulated by Total Phase		
Client Name:	COP		Job: Zia Hil	ls Permit Basis
Location:				
Flowsheet:	20MM			

	Stream Properties							
Property	Units	12	509					
Temperature	°F	241.127	117.653					
Pressure	psig	1.69595	56.3959					
Mole Fraction Vapor	%	100	100					
Mole Fraction Light Liquid	%	0	0					
Mole Fraction Heavy Liquid	%	0	0					
Molecular Weight	lb/lbmol	20.9535	27.4183					
Mass Density	lb/ft^3	0.042086	0.315219					
Molar Flow	lbmol/h	3.23963	0.744021					
Mass Flow	lb/h	67.8816	20.3998					
Vapor Volumetric Flow	ft^3/h	1612.93	64.7163					
Liquid Volumetric Flow	gpm	201.092	8.06852					
Std Vapor Volumetric Flow	MMSCFD	0.0295053	0.00677626					
Std Liquid Volumetric Flow	sgpm	0.151907	0.1029					
Compressibility		0.992744	0.978484					
Specific Gravity		0.72347	0.946683					
API Gravity								
Enthalpy	Btu/h	-318318	-27938.3					
Mass Enthalpy	Btu/lb	-4689.32	-1369.54					
Mass Cp	Btu/(lb*°F)	0.459002	0.473309					
Ideal Gas CpCv Ratio		1.26217	1.18481					
Dynamic Viscosity	cP	0.013162	0.0106168					
Kinematic Viscosity	cSt	19.5237	2.10263					
Thermal Conductivity	Btu/(h*ft*°F)	0.0159473	0.0168891					
Surface Tension	lbf/ft							
Net Ideal Gas Heating Value	Btu/ft^3	205.196	1460.98					
Net Liquid Heating Value	Btu/lb	2835.25	20113.8					
Gross Ideal Gas Heating Value	Btu/ft^3	267.439	1600.7					
Gross Liquid Heating Value	Btu/lb	3962.54	22048.2					

Flowsheet:

40MM Plant Schematic

Client Name: COP Job: Zia Hills Permit Basis Location:

Process Streams Report All Streams Tabulated by Total Phase

Job: Zia Hills Permit Basis Client Name: COP Location: Flowsheet: 40MM

Connections									
	Flash to FuelGas-1	403							
From Block	VLVE-104	BTEX Condenser	XFS4	Stripper	Flash Drum				
To Block			Absorber	Condenser	VLVE-104				

	Stream C	omposition			
	Flash to FuelGas-1	VOC to FuelGas-1	Wet Gas Feed	12	403
Mole Fraction	%	%	%	%	%
H2S	0	0	0	0	0
Nitrogen	0.247825	0.0134976	1.14861	0.000721405	0.247825
Methane	55.7256	10.9264	75.8576	0.584396	55.7256
Carbon Dioxide	0.446186	0.926817	0.0924998	0.0498828	0.446186
Ethane	20.6956	14.7552	12.4942	0.791736	20.6956
Propane	12.6629	17.7148	6.09011	0.958174	12.6629
i-Butane	1.81986	3.43521	0.897487	0.188571	1.81986
n-Butane	4.81083	13.6637	1.96223	0.759562	4.81083
i-Pentane	1.05245	4.6895	0.43224	0.27375	1.05245
n-Pentane	1.20924	6.32055	0.484971	0.378186	1.20924
i-Hexane	0.269913	2.08883	0.119039	0.14086	0.269913
n-Hexane	0.190677	1.76679	0.083046	0.128204	0.190677
2,2,4-Trimethylpentane	7.0297E-05	0.000750636	3.79441E-05	7.84493E-05	7.0297E-05
Cyclohexane	0.10642	2.55115	0.0347627	0.20865	0.10642
Benzene	0.0199963	2.70919	0.00487954	0.229626	0.0199963
i-Heptane	0.153671	1.48429	0.0793935	0.132808	0.153671
n-Heptane	0.0506167	0.568267	0.0264143	0.0593314	0.0506167
Toluene	0.0210025	3.2916	0.00676282	0.468481	0.0210025
n-Octane	0.0569598	0.558699	0.0366352	0.11741	0.0569598
Ethylbenzene	0.000752193	0.0946966	0.000349828	0.0280868	0.000752193
meta-Xylene	0.00943264	1.12831	0.00437546	0.364569	0.00943264
n-Nonane	0.00418925	0.0341243	0.00365128	0.0160172	0.00418925
C10+	2.0627E-08	1.3769E-09	1.12035E-10	5.29776E-06	2.0627E-08
TEG	0.000114276	1.47061E-08	0	0.0472563	0.000114276
Water	0.445753	11.2776	0.140692	94.0736	0.445753
Methanol	0	0	0	0	0

	Flash to	VOC to	Wet Gas Feed	12	403
	FuelGas-1	FuelGas-1			
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
H2S	0	0	0	0	0
Nitrogen	0.00325229	4.62886E-05	51.4906	4.63058E-05	0.00325229
Methane	0.731304	0.037471	3400.6	0.0375114	0.731304
Carbon Dioxide	0.00585543	0.00317843	4.14664	0.0032019	0.00585543
Ethane	0.271595	0.0506014	560.098	0.0508203	0.271595
Propane	0.166179	0.0607512	273.011	0.0615037	0.166179
i-Butane	0.0238826	0.0117807	40.2332	0.012104	0.0238826
n-Butane	0.0631341	0.0468583	87.9643	0.0487551	0.0631341
i-Pentane	0.0138117	0.0160822	19.3768	0.0175716	0.0138117
n-Pentane	0.0158692	0.0216757	21.7406	0.0242752	0.0158692
i-Hexane	0.00354215	0.00716342	5.33635	0.00904156	0.00354215
n-Hexane	0.00250232	0.00605904	3.72284	0.00822919	0.00250232
2,2,4-Trimethylpentane	9.2253E-07	2.57423E-06	0.00170098	5.03554E-06	9.2253E-07
Cyclohexane	0.00139659	0.00874893	1.55836	0.0133929	0.00139659
Benzene	0.000262418	0.0092909	0.218743	0.0147394	0.000262418
i-Heptane	0.00201667	0.00509021	3.55911	0.00852477	0.00201667
n-Heptane	0.000664259	0.00194881	1.18412	0.00380839	0.000664259
Toluene	0.000275622	0.0112882	0.303168	0.030071	0.000275622
n-Octane	0.000747501	0.001916	1.64231	0.00753636	0.000747501
Ethylbenzene	9.87127E-06	0.000324752	0.0156823	0.00180285	9.87127E-06
meta-Xylene	0.000123787	0.00386942	0.196146	0.0234011	0.000123787

^{*} User Specified Values

Process Streams Report All Streams Tabulated by Total Phase

COP Job: Zia Hills Permit Basis Client Name: Location: Flowsheet:

40MM

	Flash to	VOC to	Wet Gas Feed	12	403
Molar Flow	FuelGas-1 Ibmol/h	FuelGas-1 lbmol/h	lbmol/h	lbmol/h	lbmol/h
n-Nonane	5.49768E-05	0.000117026	0.163682	0.00102812	5.49768E-05
C10+	2.70695E-10	4.72193E-12	5.0224E-09	3.40055E-07	2.70695E-10
TEG	1.49968E-06	5.0433E-11	0	0.00303331	1.49968E-06
Water	0.00584976	0.0386755	6.30705	6.03844	0.00584976
Methanol	0	0	0	0	0
	Flash to FuelGas-1	VOC to FuelGas-1	Wet Gas Feed	12	403

	Flash to	VOC to	Wet Gas Feed	12	403
Mana Frantian	FuelGas-1 %	FuelGas-1 %	%	%	%
Mass Fraction					
H2S	0	0	0	0	0
Nitrogen	0.253504	0.0077193	1.48316	0.00098106	0.253504
Methane	32.6436	3.57852	56.0944	0.455123	32.6436
Carbon Dioxide	0.717026	0.832715	0.187645	0.106573	0.717026
Ethane	22.7232	9.05774	17.3172	1.15571	22.7232
Propane	20.3892	15.9473	12.3785	2.05112	20.3892
i-Butane	3.86236	4.07616	2.40447	0.532067	3.86236
n-Butane	10.2102	16.2131	5.25705	2.14317	10.2102
i-Pentane	2.77271	6.90735	1.43749	0.958811	2.77271
n-Pentane	3.18577	9.30978	1.61285	1.3246	3.18577
i-Hexane	0.849336	3.67486	0.472848	0.589278	0.849336
n-Hexane	0.600005	3.10831	0.329876	0.536332	0.600005
2,2,4-Trimethylpentane	0.000293214	0.00175049	0.000199787	0.000435025	0.000293214
Cyclohexane	0.32704	4.38324	0.134855	0.852457	0.32704
Benzene	0.0570347	4.32029	0.0175689	0.870742	0.0570347
i-Heptane	0.562263	3.03633	0.3667	0.64603	0.562263
n-Heptane	0.185201	1.16248	0.122001	0.28861	0.185201
Toluene	0.0706617	6.19161	0.0287222	2.09548	0.0706617
n-Octane	0.237583	1.30289	0.192896	0.651074	0.237583
Ethylbenzene	0.00291597	0.205244	0.00171193	0.144755	0.00291597
meta-Xylene	0.0365668	2.44549	0.0214119	1.87893	0.0365668
n-Nonane	0.0196193	0.08935	0.0215858	0.0997271	0.0196193
C10+	1.9391E-07	7.23682E-09	1.32952E-09	6.62116E-05	1.9391E-07
TEG	0.000626642	4.50863E-08	0	0.34451	0.000626642
Water	0.29323	4.14777	0.116832	82.2734	0.29323
Methanol	0	0	0	0	0

	Flash to	VOC to	Wet Gas Feed	12	403
	FuelGas-1	FuelGas-1			
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
H2S	0	0	0	0	0
Nitrogen	0.0911077	0.0012967	1442.43	0.00129718	0.0911077
Methane	11.7319	0.601126	54554	0.601776	11.7319
Carbon Dioxide	0.257695	0.139881	182.492	0.140914	0.257695
Ethane	8.16659	1.52154	16841.6	1.52812	8.16659
Propane	7.32777	2.67886	12038.6	2.71204	7.32777
i-Butane	1.38811	0.68472	2338.44	0.703514	1.38811
n-Butane	3.66949	2.72351	5112.68	2.83375	3.66949
i-Pentane	0.996496	1.16031	1398.01	1.26777	0.996496
n-Pentane	1.14495	1.56387	1568.56	1.75142	1.14495
i-Hexane	0.305246	0.61731	459.862	0.779159	0.305246
n-Hexane	0.215638	0.52214	320.817	0.709153	0.215638
2,2,4-Trimethylpentane	0.000105379	0.000294051	0.194301	0.000575202	0.000105379
Cyclohexane	0.117536	0.736305	131.151	1.12714	0.117536
Benzene	0.0204979	0.72573	17.0865	1.15132	0.0204979
i-Heptane	0.202074	0.510049	356.629	0.854198	0.202074
n-Heptane	0.06656	0.195275	118.651	0.381608	0.06656
Toluene	0.0253954	1.04008	27.9334	2.7707	0.0253954
n-Octane	0.0853859	0.218862	187.598	0.860867	0.0853859
Ethylbenzene	0.00104798	0.0344773	1.66491	0.191399	0.00104798
meta-Xylene	0.0131419	0.410797	20.8239	2.48438	0.0131419

ProMax 5.0.20259.0 Copyright © 2002-2020 BRE Group, Ltd.

Licensed to Portnoy Environmental, Inc. and Affiliates

meta-Xylene
* User Specified Values
? Extrapolated or Approximate Values

Process Streams Report All Streams Tabulated by Total Phase Client Name: COP Job: Zia Hills Permit Basis Location: Flowsheet: 40MM

	Flash to FuelGas-1	VOC to FuelGas-1	Wet Gas Feed	12	403
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
n-Nonane	0.00705106	0.0150092	20.9931	0.131862	0.00705106
C10+	6.969E-08	1.21566E-09	1.29301E-06	8.75468E-05	6.969E-08
TEG	0.000225211	7.57368E-09	0	0.455521	0.000225211
Water	0.105385	0.69675	113.623	108.784	0.105385
Methanol	0	0	0	0	0

Stream Properties								
Property	Units	Flash to FuelGas-1	VOC to FuelGas-1	Wet Gas Feed	12	403		
Temperature	°F	116.916	120 *	104.894	239.989	117.943		
Pressure	psig	45 *	1.69595	1150	1.69595	56.3959		
Mole Fraction Vapor	%	100	100	99.9807	100	100		
Mole Fraction Light Liquid	%	0	0	0.019314	0	0		
Mole Fraction Heavy Liquid	%	0	0	0	0	0		
Molecular Weight	lb/lbmol	27.3859	48.9829	21.6945	20.5992	27.3859		
Mass Density	lb/ft^3	0.262759	0.119886	5.27625	0.0414445	0.314659		
Molar Flow	lbmol/h	1.31233	0.34294	4482.87	6.41884	1.31233		
Mass Flow	lb/h	35.9394	16.7982	97253.8	132.223	35.9394		
Vapor Volumetric Flow	ft^3/h	136.777	140.119	18432.4	3190.36	114.217		
Liquid Volumetric Flow	gpm	17.0527	17.4693	2298.06	397.759	14.24		
Std Vapor Volumetric Flow	MMSCFD	0.0119522	0.00312337	40.8283	0.0584604	0.0119522		
Std Liquid Volumetric Flow	sgpm	0.181346	0.0583568	549.96	0.292596	0.181346		
Compressibility		0.981998	0.984934	0.789478	0.992674	0.978576		
Specific Gravity		0.945565	1.69125		0.711235	0.945565		
API Gravity								
Enthalpy	Btu/h	-49289.8	-17298.9	-1.57033E+08	-634125	-49289.8		
Mass Enthalpy	Btu/lb	-1371.47	-1029.81	-1614.67	-4795.89	-1371.47		
Mass Cp	Btu/(lb*°F)	0.47151	0.41031	0.699038	0.45894	0.47353		
Ideal Gas CpCv Ratio		1.1852	1.11047	1.23235	1.26798	1.18495		
Dynamic Viscosity	cP	0.0105907	0.00902183		0.0131465	0.0106259		
Kinematic Viscosity	cSt	2.51621	4.69794		19.8027	2.10816		
Thermal Conductivity	Btu/(h*ft*°F)	0.0168284	0.0115704		0.0159715	0.0169098		
Surface Tension	lbf/ft							
Net Ideal Gas Heating Value	Btu/ft^3	1458.93	2383.39	1171.85	180.454	1458.93		
Net Liquid Heating Value	Btu/lb	20109.2	18275.7	20431.2	2424.61	20109.2		
Gross Ideal Gas Heating Value	Btu/ft^3	1598.51	2580.18	1290.73	241.251	1598.51		
Gross Liquid Heating Value	Btu/lb	22043.9	19800.6	22511	3544.65	22043.9		

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G3606A4-COP

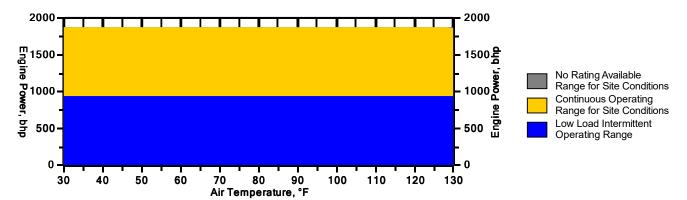
GAS COMPRESSION APPLICATION

1000 RATING STRATEGY: STANDARD ENGINE SPEED (rpm): COMPRESSION RATÍO: 7.6 RATING LEVEL: CONTINUOUS AFTERCOOLER TYPE: SCAC FUEL SYSTEM: GAV AFTERCOOLER TYPE:
AFTERCOOLER - STAGE 2 INLET (°F):
AFTERCOOLER - STAGE 1 INLET (°F):
JACKET WATER OUTLET (°F):
ASPIRATION:
COOLING SYSTEM:
CONTROL SYSTEM:
EXHAUST MANIFOLD: WITH AIR FUEL RATIO CONTROL 130 174 SITE CONDITIONS: 190 Gas Analysis FUEL: FUEL PRESSURE RANGE(psig): (See note 1)
FUEL METHANE NUMBER:
FUEL LHV (Btu/scf):
ALTITUDE(ft): 58.0-70.3 TA JW+1AC, OC+2AC 59.2 ADEM4 1115 DRY 3000 COMBUSTION: INLET AIR TEMPERATURE(°F): LOW EMISSION 105 NOx EMISSION LEVEL (g/bhp-hr NOx): STANDARD RATED POWER: 1875 bhp@1000rpm 0.3 SET POINT TIMING: 17

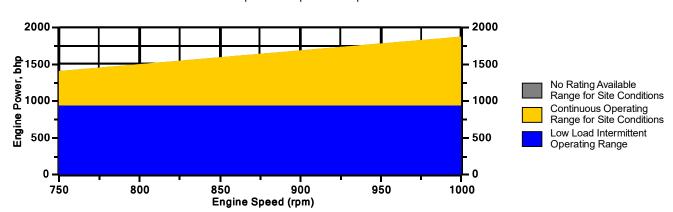
			MAXIMUM	_	TING AT M	
			RATING	INLET A	IR TEMPE	RATURE
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN	(2)	bhp	1875	1875	1406	938
INLET AIR TEMPERATURE		°F	105	105	105	105
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	6916	6916	7196	7773
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	7629	7629	7938	8575
AIR FLOW (@inlet air temp, 14.7 psia) (WET	(4)(5)	ft3/min	5020	5020	3813	2618
AIR FLOW (WET	(4)(5)	lb/hr	21153	21153	16071	11034
FUEL FLOW (60°F, 14.7 psia)		scfm	194	194	151	109
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	103.1	103.1	79.5	56.6
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	°F	809	809	879	956
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET	(8)(5)	ft3/min	11988	11988	9621	7001
EXHAUST GAS MASS FLOW (WET	(8)(5)	lb/hr	21775	21775	16556	11383
EMISSIONS DATA - ENGINE OUT	1					
NOx (as NO2)	(9)(10)	g/bhp-hr	0.30	0.30	0.30	0.30
CO	(9)(10)	g/bhp-hr	2.74	2.74	2.74	2.74
THC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	4.66	4.66	4.81	5.11
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	1.75	1.75	1.80	1.91
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bhp-hr	0.94	0.94	0.97	1.03
HCHO (Formaldehyde)	(9)(10)	g/bhp-hr	0.19	0.19	0.20	0.22
CO2	(9)(10)	g/bhp-hr	455	455	471	511
EXHAUST OXYGEN	(9)(12)	% DRY	11.3	11.3	11.1	10.7
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	23557	23557	18900	15630
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	5781	5781	5677	5483
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	11673	11673	10795	9354
HEAT REJ. TO A/C - STAGE 1 (1AC)	(13)(14)	Btu/min	19020	19020	9866	3118
HEAT REJ. TO A/C - STAGE 2 (2AC)	(13)(14)	Btu/min	8202	8202	5034	2461
COOLING SYSTEM SIZING CRITERIA	1					
TOTAL JACKET WATER CIRCUIT (JW+1AC)	(14)(15)	Btu/min	45884			
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)	(14)(15)	Btu/min	22620			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.		•	•			

CONDITIONS AND DEFINITIONS

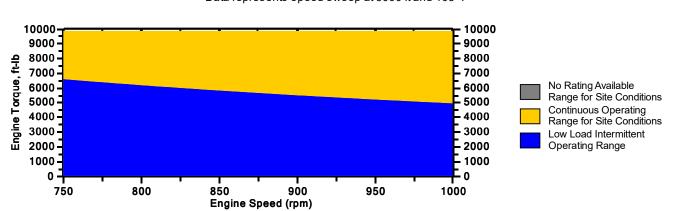
Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.


For notes information consult page three

GAS COMPRESSION APPLICATION


Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 3000 ft and 1000 rpm


Engine Power vs. Engine Speed

Data represents speed sweep at 3000 ft and 105 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 3000 ft and 105 °F

Note: At site conditions of 3000 ft and 105°F inlet air temp., constant torque can be maintained down to 750 rpm. The minimum speed for loading at these conditions is 750 rpm.

G3606

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G3606A4-COP

NOTES

- 1. Fuel pressure range specified is to the engine gas shutoff valve (GSOV). Additional fuel train components should be considered in pressure and flow calculations.
- 2. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.
- 3. Fuel consumption tolerance is ± 2.5% of full load data.
- 4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.
- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.
- 7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.
- 9. Emissions data is at engine exhaust flange prior to any after treatment.
- 10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.
- 11. VOCs Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ
- 12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is \pm 0.5.
- 13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.
- 14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.
- 15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.2100	0.2101		
Methane	CH4	80.5700	80.5942	Fuel Makeup:	Gas Analysis
Ethane	C2H6	11.1400	11.1433	Unit of Measure:	English
Propane	C3H8	4.4300	4.4313		_
Isobutane	iso-C4H1O	1.8100	1.8105	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.0000	0.0000	•	59.2
Isopentane	iso-C5H12	0.6000	0.6002	Caterpillar Methane Number:	59.2
Norpentane	nor-C5H12	0.0000	0.0000		
Hexane	C6H14	0.2200	0.2201	Lower Heating Value (Btu/scf):	1115
Heptane	C7H16	0.0900	0.0900	Higher Heating Value (Btu/scf):	1230
Nitrogen	N2	0.6700	0.6702	WOBBE Index (Btu/scf):	1329
Carbon Dioxide	CO2	0.1600	0.1600	,	
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	119.2
Carbon Monoxide	CO	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	0.83%
Hydrogen	H2	0.0000	0.0000	,	
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.997
Octane	C8H18	0.0500	0.0500	Stoich A/F Ratio (Vol/Vol):	11.57
Nonane	C9H20	0.0200	0.0200	Stoich A/F Ratio (Mass/Mass):	16.45
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.704
Propylene	C3H6	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.286
TOTAL (Volume %)		99.9700	99.9999	i dei Opecilic Fleat Natio (N).	1.200

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS
Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

To:

RE: NSPS Subpart JJJJ Applicability Summary

Date:

Service Order Number:	
Service Site Name:	
CSI/Compressco Unit Number:	811355
Engine Make & Model:	Caterpillar G3606A4
Engine Serial Number:	JFE01170
Engine Type:	4SLB
Engine Category:	New
OEM Rated Engine Horsepower:	1875 HP
Engine Manufacture Date:	10/01/2018
"New" Engine Subject to NSPS JJJJ?	Yes – 1.0 g/NOx, 2.0 g/CO, 0.7 g/VOC
Engine Displacement:	127.21 Liters
Engine RPM:	1,000
Fuel Type:	Natural Gas
Control Equipment:	ADEM IV / Catalytic Converter
Compressor Make & Model:	Ariel KBK/4
Number of Stages:	3
Compressor OEM Rated HP:	3680 HP
Compressor Rated Speed:	1,2000
Compressor Serial Number:	F-58275
Compressor Type:	Reciprocating
Compressor Manufacture Date:	11/01/2018
Compressor NSPS Quad O Status:	
Engine Certification:	None

Reconstruction Status: Since the date of manufacture noted above, this engine has not been modified per 40 CFR 60.14, or reconstructed per 40 CFR 60.15.

Please contact Brad Johnson with any questions regarding this information at 432-495-3242 or brad.johnson@compressor-systems.com.

NOTE: UNIT SPECIFICATIONS AND NUMBERS LISTED IN THIS DATA SHEET ARE USED FOR REFERENCE PURPOSES ONLY IN ORDER TO OBTAIN ANY PERMITS REQUIRED FOR PROVISION OF THE COMPRESSION SERVICES AT THE SERVICE SITE. NOTWITHSTANDING THE FOREGOING, THE LISTING OF THE UNIT SPECIFICATIONS AND NUMBERS ON THIS DATA SHEET SHALL NOT BE CONSTRUED AS LIMITING IN ANY WAY CONTRACTOR'S CONTRACTUAL RIGHT TO FREELY SUBSTITUTE THE UNIT BEING USED TO PROVIDE COMPRESSION AND RELATED PRODUCTION ENHANCEMENT SERVICES UNDER THE MASTER AGREEMENT AND THE APPLICABLE SERVICE ORDER AT ANY TIME, IN ITS SOLE DISCRETION, AND WITHOUT NOTICE, SO LONG AS SUCH SUBSTITUTION DOES NOT UNREASONABLY INTERFERE WITH THE PROVISION OF SUCH SERVICES OR CUSTOMER'S OPERATIONS AT THE SITE. UPON ANY SUBSTITUTION OR REPLACEMENT OF ANY UNIT USED FOR THE PROVISION OF THE COMPRESSION SERVICES, CONTRACTOR SHALL PROVIDE CUSTOMER WITH A NEW DATA SHEET REFLECTING THE APPLICABLE UNIT SPECIFICATIONS AND NUMBERS.

To:

RE: NSPS Subpart JJJJ Applicability Summary

Date:

Service Order Number:	
	7' 11'11
Service Site Name:	Zia Hills
CSI/Compressco Unit Number:	412951
Engine Make & Model:	Caterpillar G3606A4
Engine Serial Number:	JFE01205
Engine Type:	4SLB
Engine Category:	New
OEM Rated Engine Horsepower:	1875 HP
Engine Manufacture Date:	11/01/2018
"New" Engine Subject to NSPS JJJJ?	Yes – 1.0 g/NOx, 2.0 g/CO, 0.7 g/VOC
Engine Displacement:	127.2 Liters
Engine RPM:	1,000
Fuel Type:	Natural Gas
Control Equipment:	ADEM IV / Catalytic Converter
Compressor Make & Model:	KBK/4
Number of Stages:	3
Compressor OEM Rated HP:	3680 HP
Compressor Rated Speed:	1,200
Compressor Serial Number:	F-58107
Compressor Type:	Reciprocating
Compressor Manufacture Date:	11/01/2018
Compressor NSPS Quad O Status:	
Engine Certification:	None

Reconstruction Status: Since the date of manufacture noted above, this engine has not been modified per 40 CFR 60.14, or reconstructed per 40 CFR 60.15.

Please contact Brad Johnson with any questions regarding this information at 432-495-3242 or brad.johnson@compressor-systems.com.

NOTE: UNIT SPECIFICATIONS AND NUMBERS LISTED IN THIS DATA SHEET ARE USED FOR REFERENCE PURPOSES ONLY IN ORDER TO OBTAIN ANY PERMITS REQUIRED FOR PROVISION OF THE COMPRESSION SERVICES AT THE SERVICE SITE. NOTWITHSTANDING THE FOREGOING, THE LISTING OF THE UNIT SPECIFICATIONS AND NUMBERS ON THIS DATA SHEET SHALL NOT BE CONSTRUED AS LIMITING IN ANY WAY CONTRACTOR'S CONTRACTUAL RIGHT TO FREELY SUBSTITUTE THE UNIT BEING USED TO PROVIDE COMPRESSION AND RELATED PRODUCTION ENHANCEMENT SERVICES UNDER THE MASTER AGREEMENT AND THE APPLICABLE SERVICE ORDER AT ANY TIME, IN ITS SOLE DISCRETION, AND WITHOUT NOTICE, SO LONG AS SUCH SUBSTITUTION DOES NOT UNREASONABLY INTERFERE WITH THE PROVISION OF SUCH SERVICES OR CUSTOMER'S OPERATIONS AT THE SITE. UPON ANY SUBSTITUTION OR REPLACEMENT OF ANY UNIT USED FOR THE PROVISION OF THE COMPRESSION SERVICES, CONTRACTOR SHALL PROVIDE CUSTOMER WITH A NEW DATA SHEET REFLECTING THE APPLICABLE UNIT SPECIFICATIONS AND NUMBERS.

To:

RE: NSPS Subpart JJJJ Applicability Summary

Date:

Service Order Number:	
Service Site Name:	Zia Hills Central
CSI/Compressco Unit Number:	811356
Engine Make & Model:	Caterpillar G3606A4
Engine Serial Number:	JFE01188
Engine Type:	4SLB
Engine Category:	New
OEM Rated Engine Horsepower:	1875 HP
Engine Manufacture Date:	11/01/2018
"New" Engine Subject to NSPS JJJJ?	Yes – 1.0 g/NOx, 2.0 g/CO, 0.7 g/VOC
Engine Displacement:	127.2 Liters
Engine RPM:	1,000
Fuel Type:	Natural Gas
Control Equipment:	ADEM IV / Catalytic Converter
Compressor Make & Model:	Ariel KBK/4
Number of Stages:	3
Compressor OEM Rated HP:	3680 HP
Compressor Rated Speed:	1,200
Compressor Serial Number:	F-58379
Compressor Type:	Reciprocating
Compressor Manufacture Date:	12/01/2018
Compressor NSPS Quad O Status:	
Engine Certification:	None

Reconstruction Status: Since the date of manufacture noted above, this engine has not been modified per 40 CFR 60.14, or reconstructed per 40 CFR 60.15.

Please contact Brad Johnson with any questions regarding this information at 432-495-3242 or brad.johnson@compressor-systems.com.

NOTE: UNIT SPECIFICATIONS AND NUMBERS LISTED IN THIS DATA SHEET ARE USED FOR REFERENCE PURPOSES ONLY IN ORDER TO OBTAIN ANY PERMITS REQUIRED FOR PROVISION OF THE COMPRESSION SERVICES AT THE SERVICE SITE. NOTWITHSTANDING THE FOREGOING, THE LISTING OF THE UNIT SPECIFICATIONS AND NUMBERS ON THIS DATA SHEET SHALL NOT BE CONSTRUED AS LIMITING IN ANY WAY CONTRACTOR'S CONTRACTUAL RIGHT TO FREELY SUBSTITUTE THE UNIT BEING USED TO PROVIDE COMPRESSION AND RELATED PRODUCTION ENHANCEMENT SERVICES UNDER THE MASTER AGREEMENT AND THE APPLICABLE SERVICE ORDER AT ANY TIME, IN ITS SOLE DISCRETION, AND WITHOUT NOTICE, SO LONG AS SUCH SUBSTITUTION DOES NOT UNREASONABLY INTERFERE WITH THE PROVISION OF SUCH SERVICES OR CUSTOMER'S OPERATIONS AT THE SITE. UPON ANY SUBSTITUTION OR REPLACEMENT OF ANY UNIT USED FOR THE PROVISION OF THE COMPRESSION SERVICES, CONTRACTOR SHALL PROVIDE CUSTOMER WITH A NEW DATA SHEET REFLECTING THE APPLICABLE UNIT SPECIFICATIONS AND NUMBERS.

To:

RE: NSPS Subpart JJJJ Applicability Summary

Date:

Service Order Number:	
Service Site Name:	Zia Hills Central
CSI/Compressco Unit Number:	811357
Engine Make & Model:	Caterpillar G3606A4
Engine Serial Number:	JFE01204
Engine Type:	4SLB
Engine Category:	New
OEM Rated Engine Horsepower:	1875 HP
Engine Manufacture Date:	12/01/2018
"New" Engine Subject to NSPS JJJJ?	Yes – 1.0 g/NOx, 2.0 g/CO, 0.7 g/VOC
Engine Displacement:	127.2 Liters
Engine RPM:	1,000
Fuel Type:	Natural Gas
Control Equipment:	ADEM IV / Catalytic Converter
Compressor Make & Model:	Ariel KBK/4
Number of Stages:	3
Compressor OEM Rated HP:	3680 HP
Compressor Rated Speed:	1,200
Compressor Serial Number:	F-58535
Compressor Type:	Reciprocating
Compressor Manufacture Date:	01/02/2019
Compressor NSPS Quad O Status:	
Engine Certification:	None

Reconstruction Status: Since the date of manufacture noted above, this engine has not been modified per 40 CFR 60.14, or reconstructed per 40 CFR 60.15.

Please contact Brad Johnson with any questions regarding this information at 432-495-3242 or brad.johnson@compressor-systems.com.

NOTE: UNIT SPECIFICATIONS AND NUMBERS LISTED IN THIS DATA SHEET ARE USED FOR REFERENCE PURPOSES ONLY IN ORDER TO OBTAIN ANY PERMITS REQUIRED FOR PROVISION OF THE COMPRESSION SERVICES AT THE SERVICE SITE. NOTWITHSTANDING THE FOREGOING, THE LISTING OF THE UNIT SPECIFICATIONS AND NUMBERS ON THIS DATA SHEET SHALL NOT BE CONSTRUED AS LIMITING IN ANY WAY CONTRACTOR'S CONTRACTUAL RIGHT TO FREELY SUBSTITUTE THE UNIT BEING USED TO PROVIDE COMPRESSION AND RELATED PRODUCTION ENHANCEMENT SERVICES UNDER THE MASTER AGREEMENT AND THE APPLICABLE SERVICE ORDER AT ANY TIME, IN ITS SOLE DISCRETION, AND WITHOUT NOTICE, SO LONG AS SUCH SUBSTITUTION DOES NOT UNREASONABLY INTERFERE WITH THE PROVISION OF SUCH SERVICES OR CUSTOMER'S OPERATIONS AT THE SITE. UPON ANY SUBSTITUTION OR REPLACEMENT OF ANY UNIT USED FOR THE PROVISION OF THE COMPRESSION SERVICES, CONTRACTOR SHALL PROVIDE CUSTOMER WITH A NEW DATA SHEET REFLECTING THE APPLICABLE UNIT SPECIFICATIONS AND NUMBERS.

To:

RE: NSPS Subpart JJJJ Applicability Summary

Date:

Service Order Number:	
Service Site Name:	Zia Hills CF 905
CSI/Compressco Unit Number:	413049
Engine Make & Model:	Caterpillar G3606A4
Engine Serial Number:	JFE01745
Engine Type:	4SLB
Engine Category:	New
OEM Rated Engine Horsepower:	1875 HP
Engine Manufacture Date:	03/01/2020
"New" Engine Subject to NSPS JJJJ?	Yes – 1.0 g/NOx, 2.0 g/CO, 0.7 g/VOC
Engine Displacement:	127.2 liters
Engine RPM:	1,000
Fuel Type:	Natural Gas
Control Equipment:	ADEM IV / Catalytic Converter
Compressor Make & Model:	Ariel KBK/4-3
Number of Stages:	3
Compressor OEM Rated HP:	3680 HP
Compressor Rated Speed:	1,200
Compressor Serial Number:	F-62359
Compressor Type:	Reciprocating
Compressor Manufacture Date:	02/01/2020
Compressor NSPS Quad O Status:	
Engine Certification:	None

Reconstruction Status: Since the date of manufacture noted above, this engine has not been modified per 40 CFR 60.14, or reconstructed per 40 CFR 60.15.

Please contact Brad Johnson with any questions regarding this information at 432-495-3242 or brad.johnson@compressor-systems.com.

NOTE: UNIT SPECIFICATIONS AND NUMBERS LISTED IN THIS DATA SHEET ARE USED FOR REFERENCE PURPOSES ONLY IN ORDER TO OBTAIN ANY PERMITS REQUIRED FOR PROVISION OF THE COMPRESSION SERVICES AT THE SERVICE SITE. NOTWITHSTANDING THE FOREGOING, THE LISTING OF THE UNIT SPECIFICATIONS AND NUMBERS ON THIS DATA SHEET SHALL NOT BE CONSTRUED AS LIMITING IN ANY WAY CONTRACTOR'S CONTRACTUAL RIGHT TO FREELY SUBSTITUTE THE UNIT BEING USED TO PROVIDE COMPRESSION AND RELATED PRODUCTION ENHANCEMENT SERVICES UNDER THE MASTER AGREEMENT AND THE APPLICABLE SERVICE ORDER AT ANY TIME, IN ITS SOLE DISCRETION, AND WITHOUT NOTICE, SO LONG AS SUCH SUBSTITUTION DOES NOT UNREASONABLY INTERFERE WITH THE PROVISION OF SUCH SERVICES OR CUSTOMER'S OPERATIONS AT THE SITE. UPON ANY SUBSTITUTION OR REPLACEMENT OF ANY UNIT USED FOR THE PROVISION OF THE COMPRESSION SERVICES, CONTRACTOR SHALL PROVIDE CUSTOMER WITH A NEW DATA SHEET REFLECTING THE APPLICABLE UNIT SPECIFICATIONS AND NUMBERS.

To:

RE: NSPS Subpart JJJJ Applicability Summary

Date:

Service Order Number:	
Service Site Name:	Zia Hills CF 902
CSI/Compressco Unit Number:	413029
Engine Make & Model:	Caterpillar G3606A4
Engine Serial Number:	JFE01728
Engine Type:	4SLB
Engine Category:	New
OEM Rated Engine Horsepower:	1875 HP
Engine Manufacture Date:	12/01/2019
"New" Engine Subject to NSPS JJJJ?	Yes – 1.0 g/NOx, 2.0 g/CO, 0.7 g/VOC
Engine Displacement:	127.2 liters
Engine RPM:	1,000
Fuel Type:	Natural Gas
Control Equipment:	ADEM IV / Catalytic Converter
Compressor Make & Model:	Ariel KBK/4
Number of Stages:	3
Compressor OEM Rated HP:	3680 HP
Compressor Rated Speed:	1,200
Compressor Serial Number:	F-61946
Compressor Type:	Reciprocating
Compressor Manufacture Date:	11/01/2019
Compressor NSPS Quad O Status:	
Engine Certification:	None

Reconstruction Status: Since the date of manufacture noted above, this engine has not been modified per 40 CFR 60.14, or reconstructed per 40 CFR 60.15.

Please contact Brad Johnson with any questions regarding this information at 432-495-3242 or brad.johnson@compressor-systems.com.

NOTE: UNIT SPECIFICATIONS AND NUMBERS LISTED IN THIS DATA SHEET ARE USED FOR REFERENCE PURPOSES ONLY IN ORDER TO OBTAIN ANY PERMITS REQUIRED FOR PROVISION OF THE COMPRESSION SERVICES AT THE SERVICE SITE. NOTWITHSTANDING THE FOREGOING, THE LISTING OF THE UNIT SPECIFICATIONS AND NUMBERS ON THIS DATA SHEET SHALL NOT BE CONSTRUED AS LIMITING IN ANY WAY CONTRACTOR'S CONTRACTUAL RIGHT TO FREELY SUBSTITUTE THE UNIT BEING USED TO PROVIDE COMPRESSION AND RELATED PRODUCTION ENHANCEMENT SERVICES UNDER THE MASTER AGREEMENT AND THE APPLICABLE SERVICE ORDER AT ANY TIME, IN ITS SOLE DISCRETION, AND WITHOUT NOTICE, SO LONG AS SUCH SUBSTITUTION DOES NOT UNREASONABLY INTERFERE WITH THE PROVISION OF SUCH SERVICES OR CUSTOMER'S OPERATIONS AT THE SITE. UPON ANY SUBSTITUTION OR REPLACEMENT OF ANY UNIT USED FOR THE PROVISION OF THE COMPRESSION SERVICES, CONTRACTOR SHALL PROVIDE CUSTOMER WITH A NEW DATA SHEET REFLECTING THE APPLICABLE UNIT SPECIFICATIONS AND NUMBERS.

ICE CATALYST SIZING PROGRAM

rev 2.0.44 Report Date: 6/16/2022

CSI COMPRESSCO MCCOF2-4-2018C3-5435 Customer Housing Sales Person Element ERZ-1536-3-400 Project ZIA HILLS CENTRAL FAC. Contact **BRAD JOHNSON**

Engine Name Caterpillar G3606A4 - 1875bhp - 1000RPM

Engine Power	1875.0	ВНР	ACFM	11988.0	CU. FT/MIN	Exhaust 02	11.3	%
Exhaust Mass Flow	21775.0	LBS/HR	ACFH	719280	CU. FT/HR	Exhaust CO2	6.4	%
Process Temperature	809.0	F	SCFM	4920.1	CU. FT/MIN	Exhaust H20	11.6	%
Exhaust Pressure	14.5	PSI	SCFH	295207	CU. FT/HR	Exhaust N2	70.7	%
Exhaust Density	0.0303	LBS/FT^3	Std Temp	68.0	F	Max Pressure Drop	12.0	in wc
Molecular Weight	28.43	AMU	Std Pressure	14.6959	PSI	Propane in Fuel	4.43	%

ACS Part Name R14.875X35.875X3.500-400

OEM Part Name ERZ-1536-3-400 Type NG/Diesel (Lean)

Layers Modules/Layer 2 Geometry Rectangular Cell Count 400cpsi 14.875in Guard Bed 3.500in No Depth 35.875in

Open Area	6.721	ft^2	Part Volume	0.980	ft^3	Part Weight	70	lbs
Linear Velocity	1784	ft/min	Total Volume	1.960	ft^3	Total Weight	139	lbs
Pressure Drop	3.1	in wc	Space Velocity	150600	GHSV			

Inlet Emissions						
	g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd	ppmvd%O2
NOx	0.30	1.24	5.44	35.18	39.80	28.93
CO	2.74	11.33	49.64	527.81	597.07	433.98
VOC	0.94	3.89	17.03	115.01	130.10	94.56
H2CO	0.19	0.79	3.44	34.14	38.62	28.07
Target Emissions						

Target Emissions							
	min %DRE	g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd	ppmvd%O2
NOx	0.00	<0.30	<1.24	<5.44	<35.18	<39.80	<28.93
CO	78.10	<0.60	<2.48	<10.87	<115.58	<130.75	<95.03
VOC	25.53	<0.70	<2.89	<12.68	<85.64	<96.88	<70.42
H2CO	78.95	<0.04	<0.17	<0.72	<7.19	<8.13	<5.91

Emissions with Catalyst							
	%DRE	g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd	ppmvd%O2
NOx	0.00	<0.30	<1.24	<5.44	<35.18	<39.80	<28.93
CO	78.10	<0.60	<2.48	<10.87	<115.58	<130.75	<95.03
VOC	25.53	<0.70	<2.89	<12.68	<85.64	<96.88	<70.42
H2CO	78.95	<0.04	<0.17	<0.72	<7.19	<8.13	<5.91

Safety Value: 2 VOC Molecular Weight: 44.1 O2 Reference Value: 15

Caleb Hurd caleb hurd@zeeco.com 918.893.8266 Applications Engineering Manager

Mike Clinton michael clinton@zeeco.com 832.205.5144 Regional Sales Manager

Combustion Rentals & Rapid Response Group

REFERENCE: ConocoPhillips | HP & LP Elevated Flares **QUOTE #:** 2020-04173RA-01 - Rev 1

DELIVER TO: Jad Azzam | 832.486.2421 | Jad.A.Azzam@conocophillips.com

HP Flare

Design Information (Estimated):

Source	<u>HP #1</u>	<u>HP #2</u>	HP #3
Gas MW	20.5	20.5	27.0
Gas LHV (Btu/Scf)	1121	1121	1436
Max Flow Rate (MMScfd)	30	15	24
Available Pressure (psig)	35	35	35
Temperature (°F)	7	7	40

Scope of Supply:

Qty Equipment

- Skid Mounted, Guy-Supported Flare Stack
 - Corrosion Allowance = 1/16"
- 1 Multi-Jet Flare Tip (MJ)
 - Maximum Exit Velocity = Mach 1.0
- 1 **Assist Injection Ring**
- 2 HSLF Pilot w/ Type K Thermocouple
 - Duplex Thermocouple
 - Individual Fuel Gas Supply Lines
 - 100' High Temperature HEI/TC Whip
- Retractable Pilot Components 2
- Automatic Ignition/Monitoring Panel (Z-Purge)
 - Junction Box and LCP to be 316SS MOC, Nema 4X

Required Utilities:

<u>Consumer</u>	<u>Utility Type</u>	<u>Consumption</u>	<u>Supply</u>
Pilot Gas	Fuel Gas	130 Scfh	15 psig
Purge Gas*	Fuel Gas	100 Scfh	15 psig
Assist Gas	Fuel Gas	160 Scfm (Max)	15 psig
Control Panel	Electricity	10 A	120 VAC / 1 Ph

120 VAC / 1 Ph / 60 Hz

Customer Connections (Estimated, TBC by customer):

<u>Service</u>	Size	<u>Type</u>	Rating
Flare Gas	10"	RF	150#
Pilot Gas	1/2"	NPT	3000#
Assist Gas	1"	NPT	3000#

^{*}Purge gas to be oxygen free and not go to dew point at operating temperatures.

Equipment Description:

Skid Mounted, Guy-Supported Flare Stack

The stack is mounted onto a carbon steel skid that eliminates the need for a concrete foundation. The skid only needs to be set on firm, flat soil and then connected to the provided guy wires, screw anchors and tackle. The skid mounting will help minimize field installation and foundation costs.

Multi-Jet Flare Tip (MJ)

The flare tip uses multi-jet technology to break up the exiting gas to allow for more fuel and air interaction to increase smokeless flaring. Components located in the high heat zone will be made of 310SS or equivalent casting material. The tip will provide a VOC destruction efficiency of at least 98 wt%.

Assist Injection Ring

For low pressure applications and/or heavy gas compositions, an assist ring is provided for smokeless operation. The assist gas injection system utilizes compressed air or natural gas (@ 15 psig) to increase air and gas mixing in the combustion zone, which eliminates any smoke that may form in the flames. Simply opening a manual valve located at the base of the flare to the point where the smoke goes away is the only requirement.

HSLF Pilot w/ Type K Thermocouple

The premix pilot is proven to stay lit in hurricane force weather conditions. Testing has shown that a stable flame is present even in wind speeds greater than 150 mph in addition to rainfall of over 10 inches per hour. The pilot will be equipped with a Type K thermocouple for continuous monitoring of the pilot status. The pilot also meets or exceeds API 537 design requirements.

Retractable Pilot Components

For ease of service, instead of retracting the entire pilot, only the components that may need service are made retractable. This ensures that the location of the pilot with relation to the flare tip is maintained, ensuring proper ignition every time. The ignition probe and thermocouple are the only components that potentially require regular maintenance. Both components will be retractable so that maintenance can be performed without needing a shutdown of the flare or any special equipment.

Automatic Ignition/Monitoring Panel (Z-Purge)

The automatic pilot ignition and monitoring panel will continuously monitor the pilot and attempt to relight if a pilot failure signal is received. The control panel will require customer supplied electricity and also be skid mounted. A Z-Purge is included for installation in a Cl 1 Div 2 area.

LP Flare

Design Information (Estimated):

Source	<u>LP #1</u>	<u>LP #2</u>
Gas MW	48.5	48.5
Gas LHV (Btu/Scf)	2413	2413
Max Flow Rate (MMScfd)	3	1
Available Pressure (psig)	0.2	0.2
Temperature (°F)	120	120

Scope of Supply:

Qty Equipment

- 1 Self-Supported Flare Stack
 - Corrosion Allowance = 1/16"
- 1 Air Assisted Flare Tip (AF)
- 1 Velocity Seal
- 1 Air Assist Blower (VFD Compatible)
- 2 HSLF Pilot w/ Type K Thermocouple
 - Duplex Thermocouple
 - Individual Fuel Gas Supply Lines
 - 100' High Temperature HEI/TC Whip
- 2 Retractable Pilot Components
- 1 Automatic Ignition/Monitoring Panel (Z-Purge)
 - Junction Box and LCP to be 316SS MOC, Nema 4X
- 1 Group D Deflagration Arrester 12" Dia.

Required Utilities:

<u>Consumer</u>	Utility Type	<u>Consumption</u>	<u>Supply</u>
Pilot Gas	Fuel Gas	130 Scfh	15 psig
Purge Gas*	Fuel Gas	230 Scfh	15 psig
Blower	Electricity	20 hp (27 A)	480 VAC / 3 Ph / 60 Hz
Control Panel	Electricity	10 A	120 VAC / 1 Ph / 60 Hz

^{*}Purge gas to be oxygen free and not go to dew point at operating temperatures.

Customer Connections (Estimated, TBC by customer):

Service Service	Size	Type	Rating
Flare Gas	12"	RF	150#
Pilot Gas	1/2"	NPT	3000#

Equipment Description:

Self-Supported Flare Stack The stack is mounted onto a customer supplied concrete foundation to secure the system and prevent it from blowing over in high winds.

Air Assisted Flare Tip (AF)

The flare tips use multi-jet technology to break up the exiting gas to allow for more fuel and air interaction to increase smokeless flaring. An air plenum is utilized to direct low pressure air into the combustion zone for turbulent mixing. Components located in the high heat zone will be made of 310SS or equivalent casting material. The tip will provide a VOC destruction efficiency of at least 98 wt%.

Velocity Seal

An integral purge reducing velocity seal is included to reduce the quantity of purge gas to prevent oxygen ingress through the flare tip at low rates.

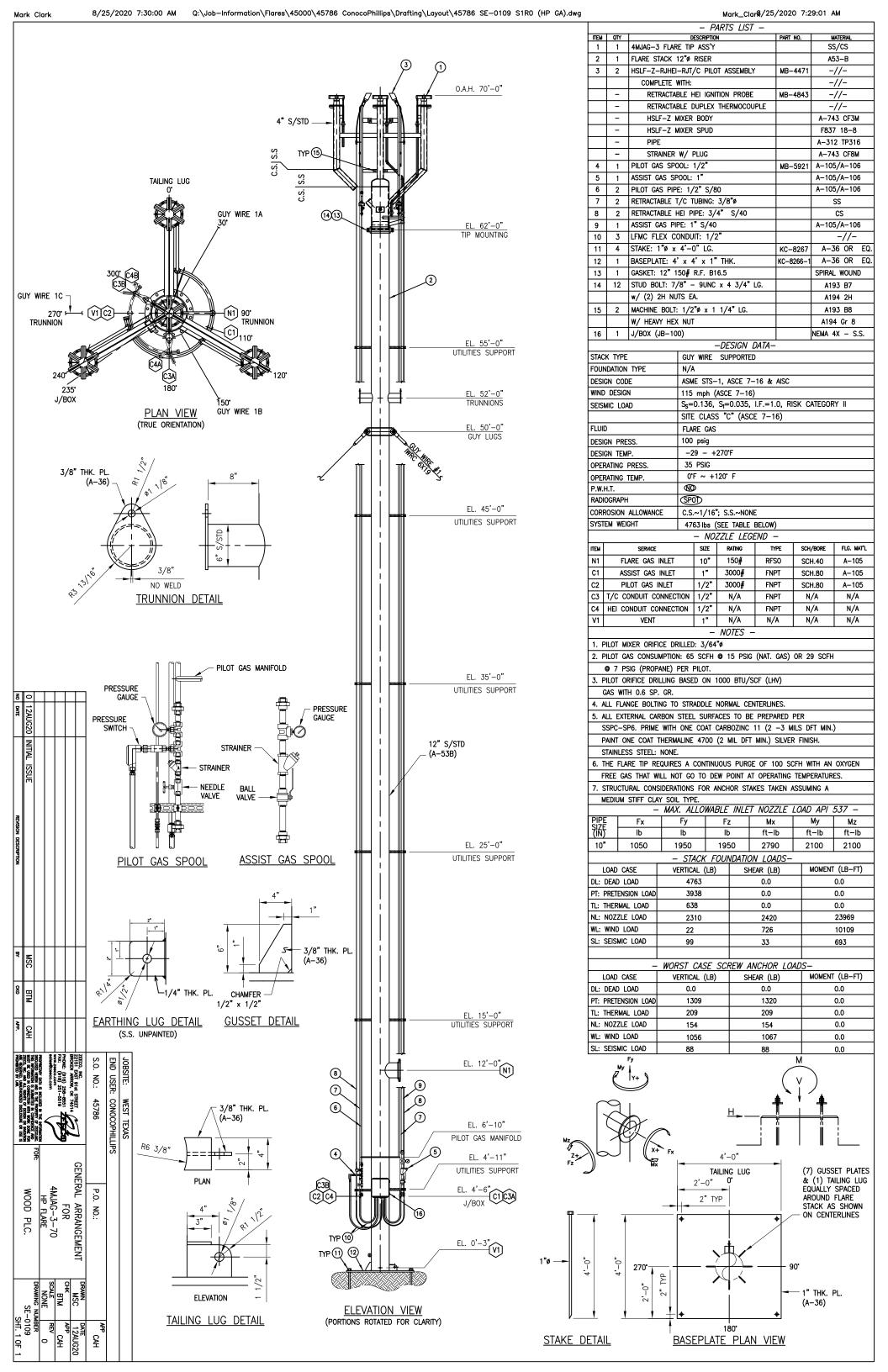
Air Assist Blower (VFD Compatible)

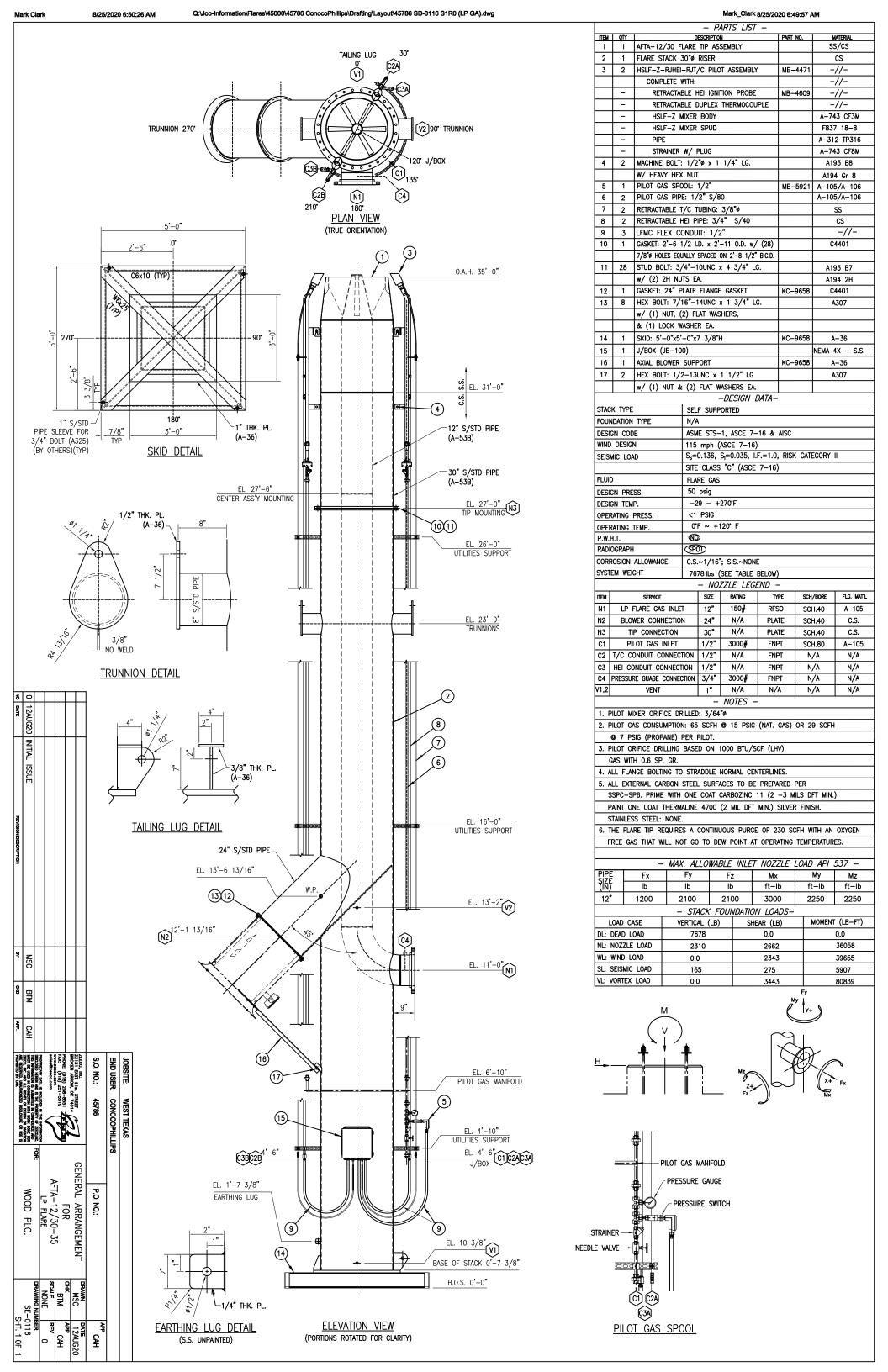
For low pressure applications and/or heavy gas compositions, an air assist blower is required for smokeless operation. The blower utilizes ambient air to increase air and gas mixing in the combustion zone, which eliminates any smoke that may form in the flames. A VFD is recommended for fine tuning of the performance of the flare. VFD and flow or pressure transmitter for automated VFD control are by others.

HSLF Pilot w/ Type K Thermocouple

The premix pilot is proven to stay lit in hurricane force weather conditions. Testing has shown that a stable flame is present even in wind speeds greater than 150 mph in addition to rainfall of over 10 inches per hour. The pilot will be equipped with a Type K thermocouple for continuous monitoring of the pilot status. The pilot also meets or exceeds API 537 design requirements.

Retractable Pilot Components


For ease of service, instead of retracting the entire pilot, only the components that may need service are made retractable. This ensures that the location of the pilot with relation to the flare tip is maintained, ensuring proper ignition every time. The ignition probe and thermocouple are the only components that potentially require regular maintenance. Both components will be retractable so that maintenance can be performed without needing a shutdown of the flare or any special equipment.


Automatic Ignition/Monitoring Panel (Z-Purge)

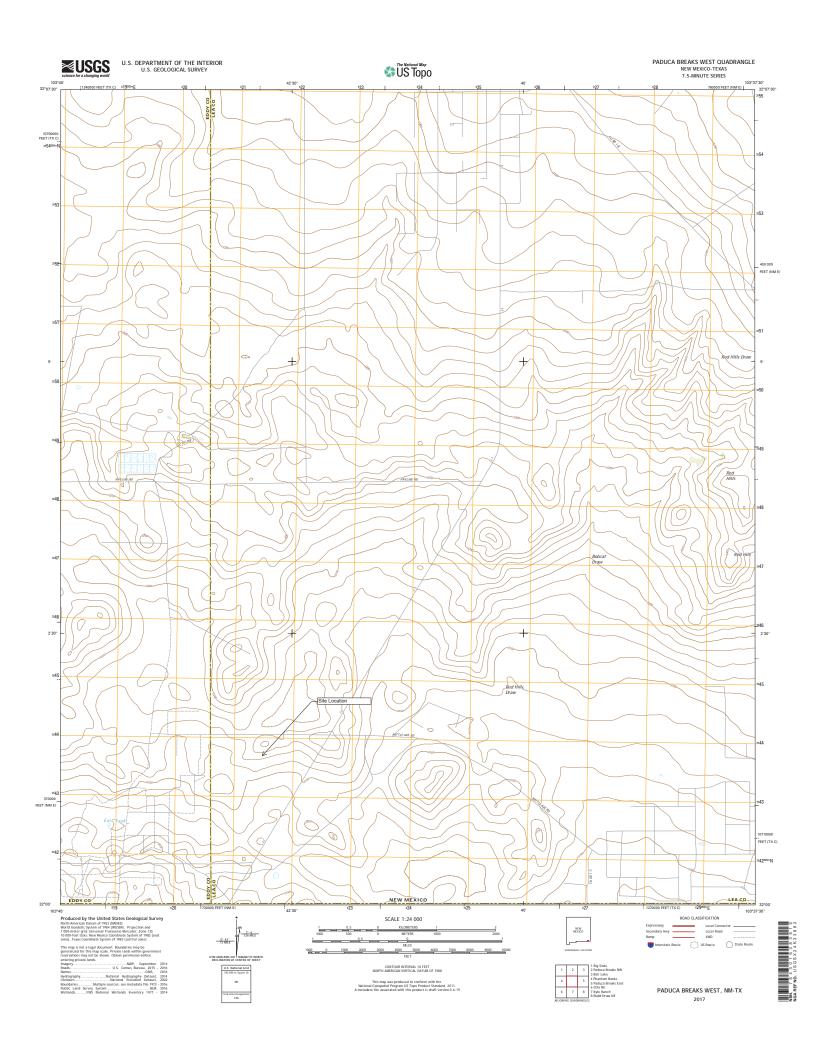
The automatic pilot ignition and monitoring panel will continuously monitor the pilot and attempt to relight if a pilot failure signal is received. The control panel will require customer supplied electricity and also be skid mounted. A Z-Purge is included for installation in a Cl 1 Div 2 area.

Group D Deflagration Arrester

Due to potential for having combustible levels of oxygen in the flare gases, an arrester is recommended to ensure that any flashback from the flare tip is stopped before it can enter into the upstream piping system.

Section 8 Map(s)

Section 8


Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A site location map and an aerial image with a 0.5 mile boundary and access roads are provided.

Form-Section 8 last revised: 8/15/2011 Section 8, Page 1 Saved Date: 7/29/2022

Section 9 Proof of Public Notice

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. ☑ A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g. post office, library, grocery, etc.)
- 3. ☑ A copy of the property tax record (20.2.72.203.B NMAC).
- 4. ☑ A sample of the letters sent to the owners of record.
- 5. A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. \(\overline{\pi} \) A sample of the public notice posted and a verification of the local postings.
- 7. A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. \(\overline{\pi}\) A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record. **SEE NOTE BELOW**

Proof of posting in the newspaper is included. All of the surrounding land is owned by the Bureau of Land Management; therefore, there are no applicable property tax records via the Lea County Assessor's website.

40

EDWARDSVILLE 132 N KANSAS ST EDWARDSVILLE, IL 62025-9998 (800) 275-8777

07/29/2022	(800) 275-8	3777	
			04:30 PM
Product	Qty	Unit Price	Price
First-Class Mail Letter			\$0.60
Trackin	b 0.50 oz elivery Da 01/2022 lail®		\$4.00
Total	7304000009	5879992	\$4.60
First-Class Mai Letter			\$0.60
Certified	lb 0.50 oz Delivery D /01/2022 Mail@ Ing #:	ate	\$4.00
Total 70	173040000	095879985	\$4.60
First-Class Ma Letter			\$0.60
Carlsbad, N Weight: 0 1 Estimated D Mon 08/	lb 0.50 oz Delivery D '01/2022	ate	
Certified M Trackin	g #:		\$4.00
Total	730400000	95879978	\$4.60
Grand Total:			\$13.80
Credit Card Ren Card Name:	mitted VISA		\$13.80

Account #: XXXXXXXXXXXXXXX333

PIN: Not Required CAPITAL ONE VISA

Chip

Approval #: 00614I

Transaction #: 365

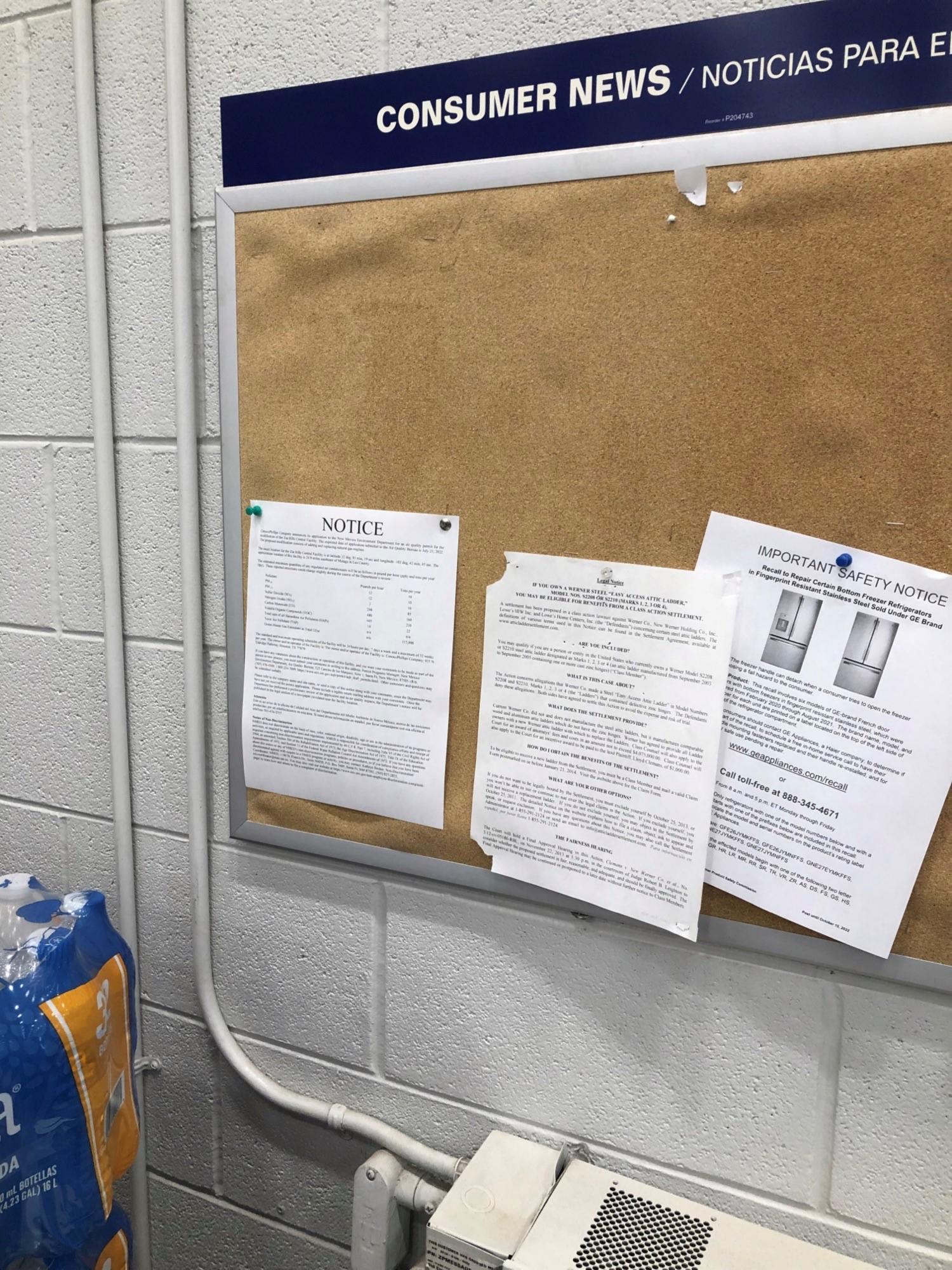
AL: VISA CREDIT

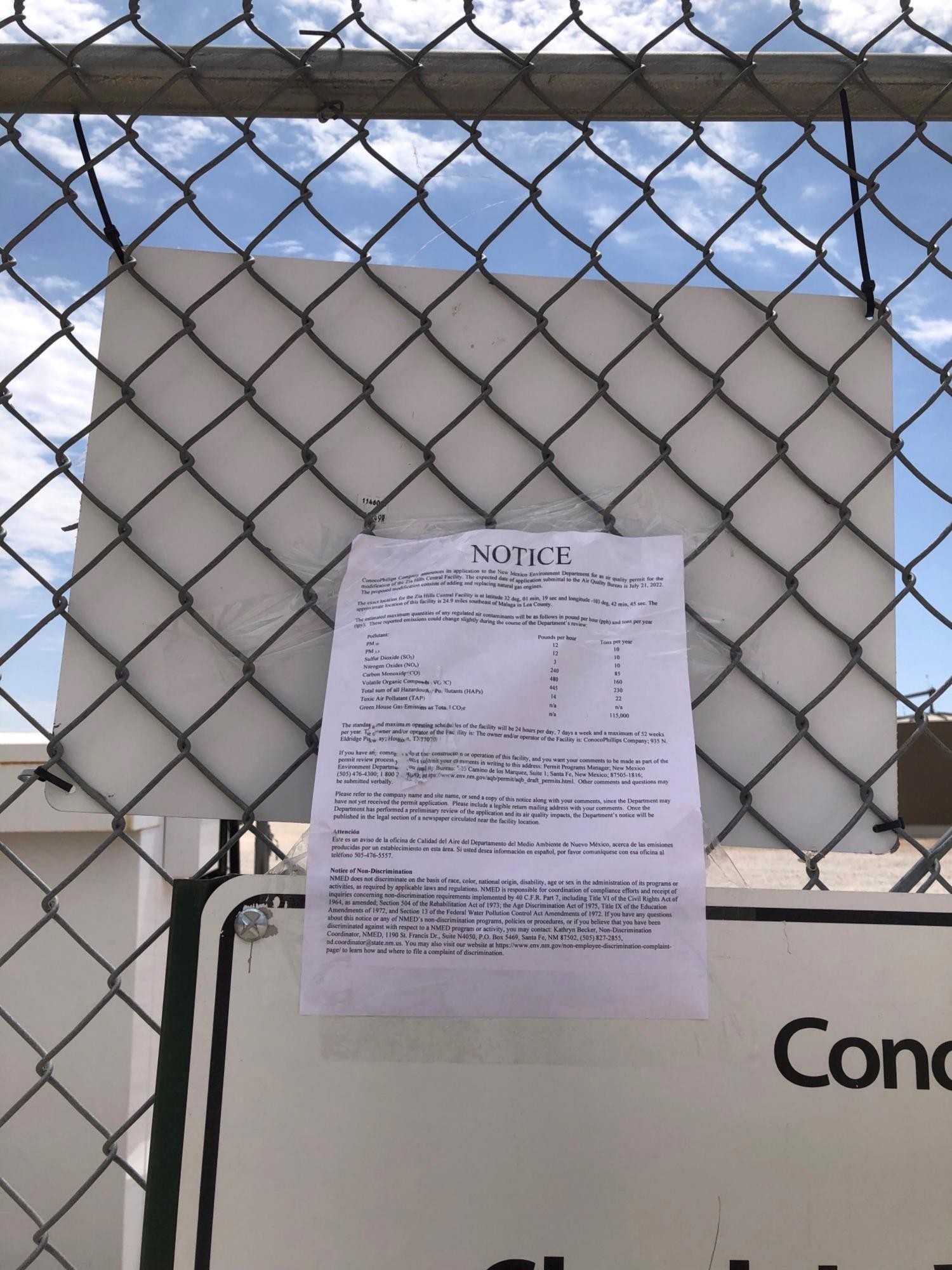
AID: A000000031010

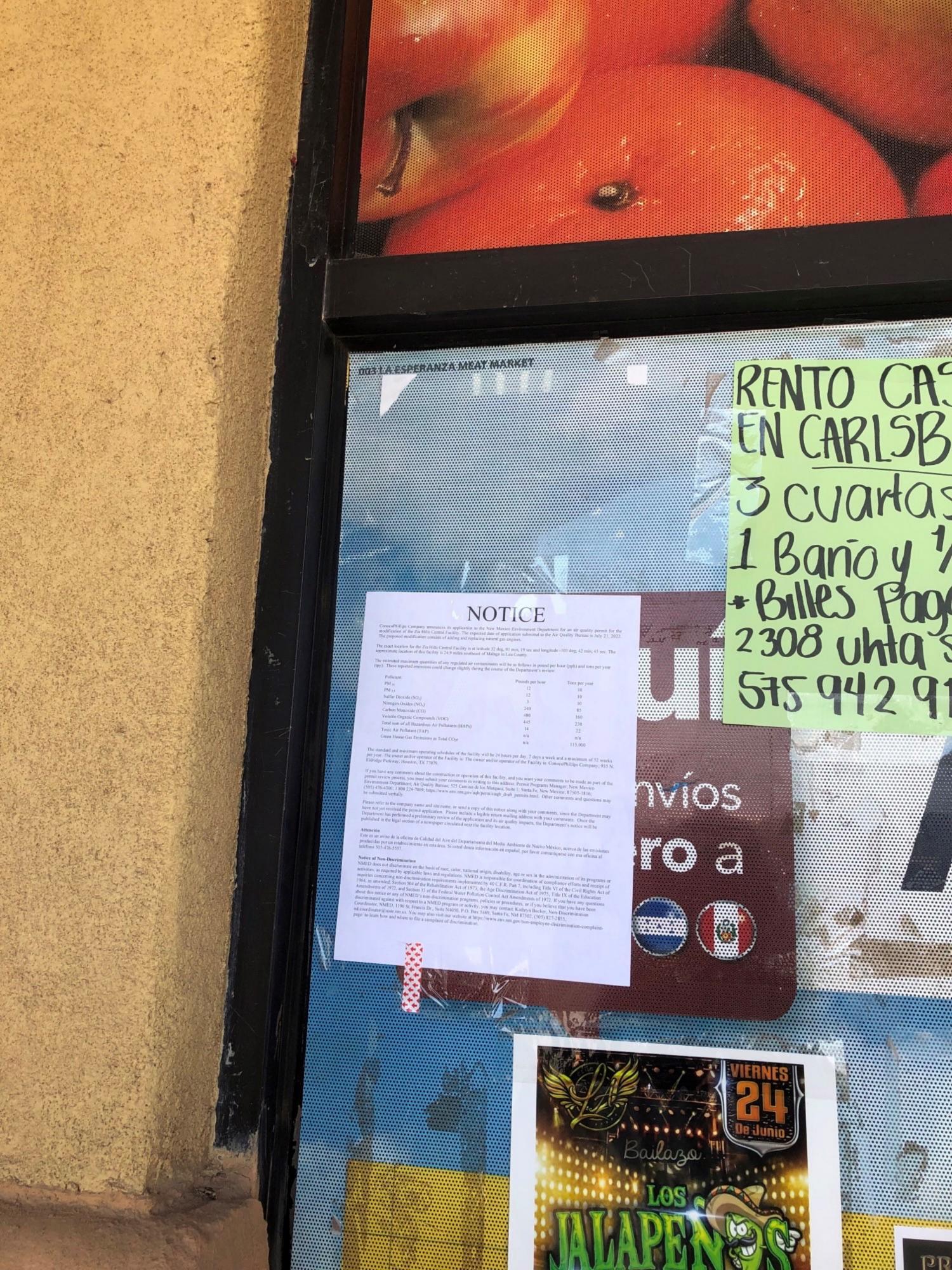
List of Places Posted

Site Location

La Esperanza Store - Hobbs


McCoys - Hobbs


Lowe's - Hobbs


General Posting of Notices – Certification

Zia Hills Central Facility

I, Jarrath AIRHART, the undersigned, certify that on OT-14-2022, a true and correct copy of the attached Public Notice was posted in the following publicly accessible and conspicuous places in Lea County, State of New Mexico on the following dates:
1. Facility entrance - ZIA CENTRAL FACILITY 2. Lowe's - Hobbs, NM 3. McCoy's - Hobbs, NM 4. LA Esperanza - Hobbs, NM
Signed this 14 day of July, 2022,
Signature 07-14-2022 Date
TARRETT AIRHART Printed Name
SENDOR ENVIronmental Engineer (onoco Phillips Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

VIRTUAL VISITS

Flu

Allergies

Sore Throat

Fever

Sinus Infections

Sports Injuries

Urinary Tract Infections

Vomiting

Diarrhea

Pinkeye

Cough/Cold

\$0 Copay

URGENT CARE

Allergic Reactions

Animal & Bug Bites

Fractured Bones & Minor Breaks

Dislocated Joints

Pediatric Ear Infections

Asthma

Minor Burns

Rashes

Sprains/Strains

Persistent Vomiting/Diarrhea

Urinary Tract Infections

\$50-75 Copay

EMERGENCY ROOM

Fainting/Head Injury with Loss

Fever in Infants Under 8 Weeks

Major Bone Breaks or Spinal

Seizures

Serious Burns

Snake Bites

Vomiting/Coughing Up Blood

\$350 Copay

Questions? Contact a member of the Benefits Department at Ext. 6696

KNOW BEFORE YOU GO!

Seminole Express Care 3900 N Lovington Hwy Ste 550 Hobbs, NM 88240 (432) 758-6015

NOTICE

ConocoPhillips Company announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Zia Hills Central Facility. The expected date of application submittal to the Air Quality Bureau is July 21, 2022. The proposed modification consists of adding and replacing natural gas engines.

The exact location for the Zia Hills Central Facility is at latitude 32 deg, 01 min, 19 sec and longitude -103 deg, 42 min, 45 sec. The approximate location of this facility is 24.9 miles southeast of Malaga in Lea County.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

	Pounds per nour	1000
Pollutant:	12	10
	12	10
PM 10	3	10
PM 25		85
Sulfur Dioxide (SO ₂)	240	160
Nitrogen Oxides (NO _s)	480	230
Carbon Monoxide (CO)	445	22
At Lette Occapie Compounds (VOC)	14	n/a
Total sum of all Hazardous Air Pollutants (HAPs)	n/a	115,000
Toxic Air Pollutant (TAP)	n/a	115,000
TOXIC ALL LONG		

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: The owner and/or operator of the Facility is: ConocoPhillips Company; 935 N. Eldridge Parkway; Houston, TX 77079. Green House Gas Emissions as Total CO2e

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review property p permit review process, you must submit your comments in writing to this address: Permit Programs Manager, New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las em producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuniquese con esa oficina teleforo. 505, 476, 5557.

Notice of Non-Discrimination

Notice of Non-Discrimination

NMED does not discriminate on the basis of face, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Education 1964, as amended: Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1972. If you have any questions Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you believe that you have been about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (305) 827-2855.

Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502 (305) 827-2850.

The coordinator of the complaint of discrimination.

Persistent Bleeding

Major Cuts & Lacerations

of Consciousness

Loss/Change in Vision

Injury

Note: Employer m

Address: Po

YOUR RIGHTS

If you are injured in a work-related accident:

Your employer / insurer must pay all reasonable and necessary medical costs.

You may or may not have the right to choose y health care provider. If your employer / insure not given you written instructions about who ch first, call an ombudsman. In an emergency, get emergency medical care first.

If you are off work for more than 7 days, your employer / insurer must pay wage benefits to part offset your lost wages.

If you suffer "permanent impairment," you may he the right to receive partial wage benefits for a long period of time.

Ombudsmen are located at the following offices:

Albuquerque: 1-800-255-7965 1-505-841-6000

Farmington: 1-800-568-7310 1-505-599-9746

Las Cruces: 1-800-870-682 1-575-524-6246

If You Ne

Si Usted Necesi

1-866-WORK Visit our website at: www

For FREE copies of this poster and No. USE A NOTICE OF ACCIDENT FORM TO REP

EMPLOYER: You are required by law to post this po Notice of Accident forms with it. This poster without You have other rights and

> NOTICE OF ACCIDENT OR OCCUPA NOTIFICACIÓN DE ACCIDENTE in accordance with New Mexico law, Section 52-1-29, Section 52

by an occupational disease at approximately _ por enfermedad de oficio aproximadamente (timela la(s) hora(s)) el (datelf Employee's social security number:

To be completed by Employe

Form NOA-1 (9/17)

your emp Employer's Insurer / Claims Repre

800 937 7460 Name: Address: Scranton, PA Note: Employer must fill in this insurer / claims representation SUS DERI

Si se lastima en el

Su empleador / asi médicos necesario

Es posible que us escoger el provec empleador / asegu

escrito de quien e o llame a un omb

obtenga asistencii

Si usted está fuer

su empleador / a compensatorio de parcialmente la p

Si usted sufre "d el derecho a reci por un periodo d

YOUR RIGHTS If you are injured in a work-related accident:

WO

tell yo within Accid

2) assis

knov Wor

Your employer / insurer must pay all reasonable and necessary medical costs.

You may or may not have the right to choose your health care provider. If your employer / insurer has not given you written instructions about who chooses first call an employer and an emprenence get. not given you written instructions about who end first, call an ombudsman. In an emergency, get emergency medical care first.

If you are off work for more than 7 days, your employer / insurer must pay wage benefits to partially offset your lost wages.

If you suffer "permanent impairment," you may have the right to receive partial wage benefits for a longer period of time.

en are located at the following offices:

ue: Farmington: Las Cruces:
1-800-568-7310 1-800-870-6826
1-505-599-9746 1-575-524-6246 If You Need HELP

Ask for an Ombudsman

Si Usted Necesita Ayuda

Pregunte por un Ombudsman

1 8 6 6 W O D

1 - 8 6 6 - WORKOMP (1-8

USE A NOTICE OF ACCIDENT FORM TO REPORT YOUR ACCID EMPLOYER: You are required by law to post this poster where you Notice of Accident forms with it. This poster without Notice of Accident forms with a content of the conten

Property Tax Records

All of the surrounding land is owned by the Bureau of Land Management; therefore, there is no applicable property tax records via the Lea County Assessor's website.

Letters to Owners of Record and Applicable Counties, Municipalities, and Tribes

July 26, 2022

Certified Mail 7014 3040 0000 9587 9978

Tye Bryson – Field Manager Bureau of Land Management 620 E. Greene St. Carlsbad, New Mexico 88220-6292

RE: NSR Permit Application
Zia Hills Central Facility
ConocoPhillips Company

Dear Federal Official,

In accordance with the application requirements of 20.2.72 NMAC, ConocoPhillips Company is providing notification of the planned modification of the Zia Hills Central Facility on your property in Eddy County, NM. A public notice will be published in the Hobbs News Sun newspaper, at the proposed site location, and three other locations in the surrounding area. A copy of the notice is attached. Please contact Jarrett Airhart at (575) 748-6975 or jarrett.airhart@conocophillips.com should you have any questions.

Sincerely,

Evan Tullos Vice President

Attachment: Public Notice

Evan Jullon

July 26, 2022

Certified Mail 7014 3040 0000 9587 9985

Allen Davis
Eddy County Manager
101 W. Greene St.
Suite 110
Carlsbad, New Mexico 88220

RE: NSR Permit Application

Zia Hills Central Facility ConocoPhillips Company

Dear Mr. Davis,

In accordance with the application requirements of 20.2.72 NMAC, ConocoPhillips Company is providing notification of the planned modification of the Zia Hills Central Facility in Eddy County, NM. A public notice will be published in the Hobbs News Sun newspaper, at the proposed site location, and three other locations in the surrounding area. A copy of the notice is attached. Please contact Jarrett Airhart at (575) 748-6975 or jarrett.airhart@conocophillips.com should you have any questions.

Sincerely,

Evan Tullos Vice President

Attachment: Public Notice

July 26, 2022

Certified Mail 7014 3040 0000 9587 9992

Mike Gallagher Lea County Manager 100 N. Main Avenue Suite 4 Lovington, New Mexico 88260

RE: NSR Permit Application

Zia Hills Central Facility ConocoPhillips Company

Dear Mr. Gallagher,

In accordance with the application requirements of 20.2.72 NMAC, ConocoPhillips Company is providing notification of the planned modification of the Zia Hills Central Facility in Eddy County, NM. The site is within 10 miles of Lea County. A public notice will be published in the Hobbs News Sun newspaper, at the proposed site location, and three other locations in the surrounding area. A copy of the notice is attached. Please contact Jarrett Airhart at (575) 748-6975 or jarrett.airhart@conocophillips.com should you have any questions.

Sincerely,

Evan Tullos Vice President

Attachment: Public Notice

Evanfullor

Sample of Notice posted and Verification of Postings

NOTICE

ConocoPhillips Company announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Zia Hills Central Facility. The expected date of application submittal to the Air Quality Bureau is July 21, 2022. The proposed modification consists of adding and replacing natural gas engines.

The exact location for the Zia Hills Central Facility is at latitude 32 deg, 01 min, 19 sec and longitude -103 deg, 42 min, 45 sec. The approximate location of this facility is 24.9 miles southeast of Malaga in Lea County.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM_{10}	12	10
PM _{2.5}	12	10
Sulfur Dioxide (SO ₂)	3	10
Nitrogen Oxides (NO _x)	240	85
Carbon Monoxide (CO)	480	160
Volatile Organic Compounds (VOC)	445	230
Total sum of all Hazardous Air Pollutants (HAPs)	14	22
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emissions as Total CO ₂ e	n/a	115,000

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: ConocoPhillips Company; 935 N. Eldridge Parkway; Houston, TX 77079.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Noticed Citizens, Counties, Municipalities, and Tribes

Eddy County: Eddy County Manager (Allen Davis)

Lea County: Lea County Manager (Mike Gallagher)

Bureau Of Land Management: Carlsbad Field Office (Tye Bryson)

Public Service Announcement Documentation
Public Service Announcement Documentation

KATK 92.1 FM (575) 887-7000

Re: Public Service Announcement

As part of the air quality permitting process in New Mexico, applicants for certain air permits must attempt to provide notice to the public of the proposed permit action via public service announcement (PSA). The announcement is attached. Will you air the PSA? Thank you.

Evan Tullos PEI (865) 850-2007

NOTICE OF AIR QUALITY PERMIT APPLICATION

ConocoPhillips Company announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Zia Hills Central Facility. The expected date of application submittal to the Air Quality Bureau is July 21, 2022. The proposed modification consists of adding and replacing natural gas engines.

The exact location for the Zia Hills Central Facility is at latitude 32 deg, 01 min, 19 sec and longitude -103 deg, 42 min, 45 sec. The approximate location of this facility is 24.9 miles southeast of Malaga in Lea County.

The notice was posted at the facility and three other public locations including Lowes, McCoys, and La Esperanza. If you have any comments about the construction or operation of the above facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to the address below:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816 (505) 476-4300

<u>Submittal of Public Service Announcement – Certification</u>

announcement to KATK/KCDY that serves the City\Town\Village of Carlsbad and Hobbs, Eddy and Lea Counties, New Mexico, in which the source is or is proposed to be located and that the

I, <u>Evan Tullos</u>, the undersigned, certify that on 7/20/2022, submitted a public service

Station did not respond that it would air the announcement.

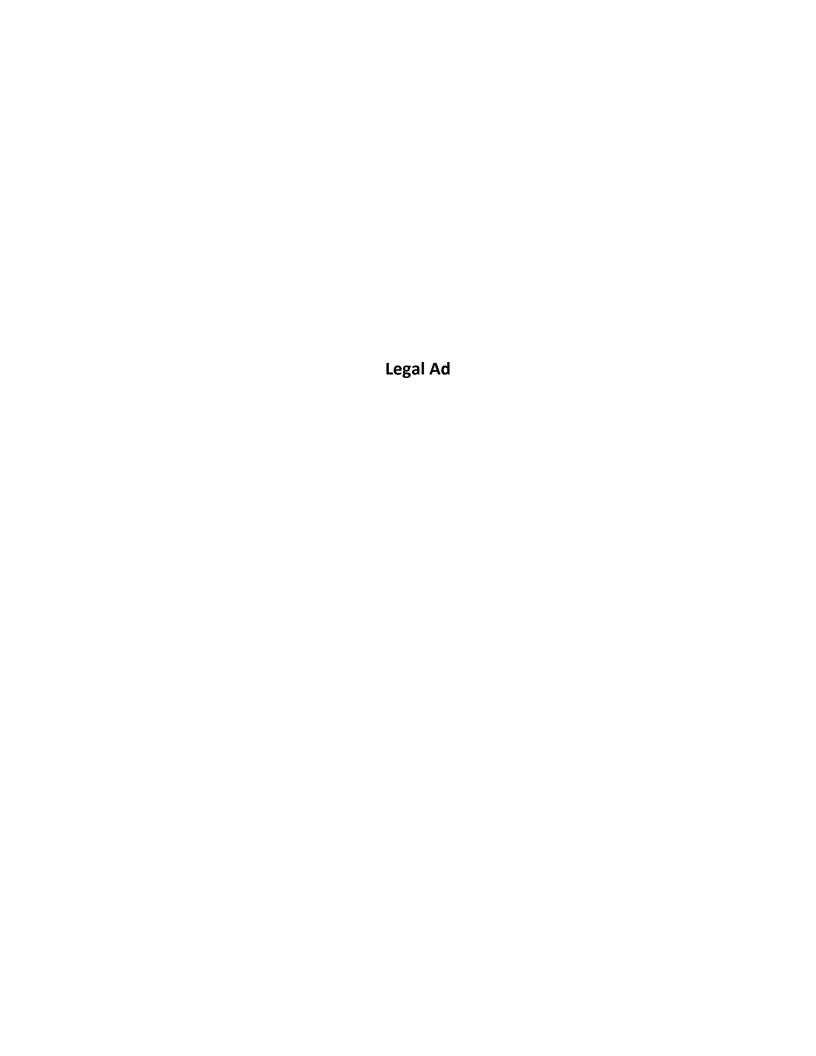
Signed this 20th day of July , 2022	
Em filler	7/20/2022
Signature	Date
Evan Tullos	
Printed Name	
Consultant for ConocoPhillips Company	
Title {APPLICANT OR RELATIONSHIP TO APPLICANT}	

Transmission Status 7/20/22, 12:59 PM

Transmission Status

Your transmission has completed.

DOC Identifier: 34319643 Fax Number: 5758877000


Recipient:

Status Classification: "Success" Status Outcome: "Success" Last Attempt Date: 07/20/2022 Last Attempt Time: 12:36:19

Pages Scheduled: 2 Pages Sent: 2 Baud Rate: 14400 Duration (in seconds): 33

Number of Retries : 1 Remote CSID : "VFD213M6N23"

Public Service Announcement.pdf

Adavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated July 13, 2022 and ending with the issue dated July 13, 2022.

Publisher

Sworn and subscribed to before me this 13th day of July 2022.

Business Manager

My commission expires January 29, 2023

(Seal)

GUSSIE BLACK Notary Public - State of New Mexico Commission # 1087526 My Comm. Expires Jan 29, 2023

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said

LEGAL NOTICE July 13, 2022

NOTICE OF AIR QUALITY PERMIT APPLICATION

ConocoPhillips Company announces its application to the New Mexico Environment Department for an a quality permit for the modification of the Zia Hills Central Facility. The expected date of application submitted to the Air Quality Bureau is July 21, 2022. The proposed modification consists of adding and replacing natural gas engines.

The exact location for the Zia Hills Central Facility is at latitude 32 deg, 01 min, 19 sec and longitude -10 deg, 42 min, 45 sec. The approximate location of this facility is 24.9 miles southeast of Malaga in Le County.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hou (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review;

Pollutant:	Pounds per hour	Tons per year
PM 10	12	10/13 per year
PM 2.5	12	10
Sulfur Dioxide (SO2)	3	10
Nitrogen Oxides (NÓx)	240	85
Carbon Monoxide (CO)	480	160
Volatile Organic Compounds (VOC)	AAF	230
Total sum of all Hazardous Air Pollutants (HAP)	3) 14	22
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emissions as Total CO2e	n/a	115,000

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: The owner and/or operator of the Facility is: ConocoPhillips Company; 935 N. Eldridge Parkway; Houston, TX 77079.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009 https://www.env.org/ach/permit/ach.dcsft.normit/sch.dcs https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2,72,206 NMAC. This regulation can be found in the "Permits" section of this web site.

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

Notice of Non-Discrimination
NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the
administration of its programs or activities, as required by applicable laws and regulations. NMED is
responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination
requirements implemented by 40 C.F.B. Part 7, including Title VI of the Civil Rights Act of 1964, as
amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the
Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of
1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or
procedures, or if you believe that you have been discriminated against with respect to a NMED program or
activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr.,
Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may
also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how
and where to file a complaint of discrimination.

67110905

00268776

EVAN TULLOS PEL 5 CARDINAL COURT EDWARDSVILLE, IL 62025

Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated July 13, 2022 and ending with the issue dated July 13, 2022.

Lan fusdell
Publisher

Sworn and subscribed to before me this 13th day of July 2022.

Business Manager

My commission expires

January 29, 2023
(Seal)

GUSSIE BLACK
Notary Public - State of New Mexico
Commission # 1087526
My Comm. Expires Jan 29, 2023

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said

NOTICE OF AIR QUALITY PERMIT APPLICATION

ConocoPhillips Company announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Zia Hills Central Facility. The expected date of application submittal to the Air Quality Bureau is July 21, 2022. The proposed modification consists of adding and replacing natural gas engines.

The exact location for the Zia Hills Central Facility is at latitude 32 deg, 01 min, 19 sec and longitude -103 deg, 42 min, 45 sec. The approximate location of this facility is 24.9 miles southeast of Malaga in Lea County.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant: PM 10	Pounds per hour	Tons per year
PM _{2.5}	12	10
Sulfur Dioxide (SO ₂)	3	10
Nitrogen Oxides (NO _x)	240	85
Carbon Monoxide (CO)	480	160
Volatile Organic Compounds (VOC)	445	230
Total sum of all Hazardous Air Pollutants (HAPs)	14	22
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emissions as Total CO2e	n/a	115,000

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: The owner and/or operator of the Facility is: ConocoPhillips Company; 935 N. Eldridge Parkway; Houston, TX 77079.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816;

(505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

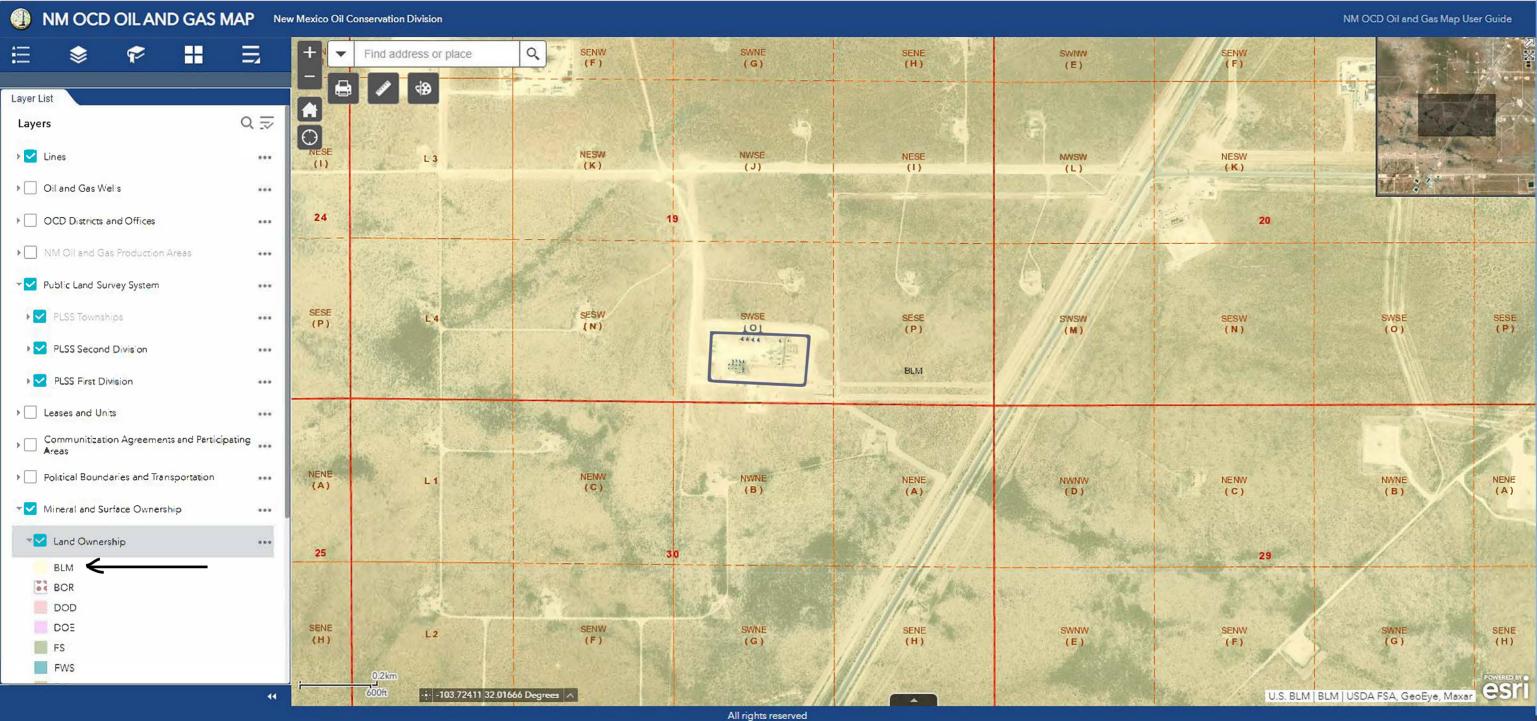
General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.


67110905

00268826

EVAN TULLOS
PEI
5 CARDINAL COURT
EDWARDSVILLE, IL 62025

Lea County Property Tax Map
The Lea County GIS system does not display
federal lands. The image provided on the
following page was obtained from the New
Mexico Oil Conservation Website which shows
surface ownership.

Section 10 WriItten Description of Operations

Written Description of the Routine Operations of the Facility

A written description of the routine operations of the facility. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Gas from well sites enter the facility through a slug catcher. The site uses natural gas engines to compress the gas for sales and gas lift, including twelve (12) Caterpillar 3606A4 engines (ENG1-ENG12). The Caterpillar engines are equipped with oxidation catalysts to reduce CO, VOC, and formaldehyde emissions. During compressor downtime or during an emergency, a flare (FL1) is used to flare high pressure gas. If two of the compressors go down, the facility is automatically shut in, limiting the volume of gas flared. Gas is dehydrated using triethylene glycol dehydration units (DEHY1-DEHY4). The glycol still vent vapors are routed to condensers. Flash tank and uncondensed vapors are burned in the glycol regenerator burners (RB1-RB4). Dehydrated gas is used for gas lift or transferred to a gas sales line.

Liquids generated from the slug catcher and compressor dumps are routed to a line heater (LH1), then to an overhead gas scrubber (OHS1). These units are used to flash the liquids and route gas to sales via by a redundant vapor recovery system (VRU1-VRU3). Water is routed to a water degassing vessel (WDGV1) and oil is routed to an oil tank (OT5) prior to being piped to the stabilizers. Vapors from both are carried to sales via VRU1-VRU3.

Oil from well sites enters the facility through inlet separators and into three (3) stabilizers (STAB1-STAB3). Gas from the stabilizer vessels is mixed with the gas from the inlet separator and routed to the inlet of the compressors. The facility is designed such that the stabilizer and inlet separator gas always flows to sales. Oil then flows to four (4) sales tanks (OT1-OT4) controlled by a VRU1-VRU3. During VRU downtime, these streams are routed a redundant flare system (FL2-FL3). Oil is shipped offsite via pipeline LACT.

Water from well sites is routed to WDGV1 then to (two (2) gun barrel separators (GB1- GB2), which skim any remaining oil from the incoming water. The water then flows to produced water tanks (WT1-WT8) for temporary storage prior to being piped offsite. Any skimmed oil is routed to two slop oil tanks (ST1-ST2). Slop oil is routed back to the stabilizer vessels. Water degas vessel, gun barrel, and slop tank vapors are controlled using VRU1-VRU3, with vapors routed to FL2-FL3 during VRU downtime. Water is piped offsite.

Form-Section 10 last revised: 8/15/2011 Section 10, Page 1 Saved Date: 7/29/2022

Section 11 Source Determination

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, Single Source Determination Guidance, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe): See Table 2A.

3. Apply the 3 criteria for determining a single source:
SIC Code: Surrounding or associated sources belong to the same 2-digit industrial
grouping (2-digit SIC code) as this facility, OR surrounding or associated sources that
belong to different 2-digit SIC codes are support facilities for this source.
☑ Yes □ No
<u>Common Ownership or Control</u> : Surrounding or associated sources are under common ownership or control as this source.
☑ Yes □ No
<u>Contiguous</u> <u>or Adjacent</u> : Surrounding or associated sources are contiguous or adjacent with this source.
\square Yes \square No
C. Make a determination:
The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
The source, as described in this application, does not constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74

following facilities or emissions sources (list and describe):

NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the

Section 12 PSD Determination

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

A PSD applicability determination for all sources. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the EPA New Source Review Workshop Manual to determine if the revision is subject to PSD review.

A.	This faci	lity is:
		a minor PSD source before and after this modification (if so, delete C and D below).
		a major PSD source before this modification. This modification will make this a PSD minor source.
		an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
		an existing PSD Major Source that has had a major modification requiring a BACT analysis

□ a new PSD Major Source after this modification.

Saved Date: 7/29/2022

Section 13 Determination of State & Federal Regulations

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column provide any information needed to determine if the regulation does or does not apply. For example, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

Form-Section 13 last revised: 5/29/2019 Section 13, Page 1 Saved Date: 7/29/2022

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	If subject, this would normally apply to the entire facility. 20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC The TSP NM ambient air quality standard was repealed by the EIB effective November 30, 2018.
20.2.7 NMAC	Excess Emissions	Yes	Facility	If subject, this would normally apply to the entire facility. If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies. This would not apply to Notices of Intent since these are not permits.
20.2.23 NMAC	Fugitive Dust Control	No	N/A	This is not a mining facility.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	None of the equipment has a rating greater than 100 MMBtu/hr.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility has no oil burning equipment.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	The facility is not a gas processing plant.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	Yes	OT1- OT4	The site is subject to 20.2.38.109 and 112. The site uses a VRU/Flare vent system to control emissions.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	The facility does not operate a sulfur recovery plant.
20.2.50 NMAC	Ozone Precursor	Yes	ENG1- 12, FUG, OT1- OT4, FUG, DEHY1- DEHY4	50.113 – ENG1-ENG12 all meet the specifications for new engines. 50.114 – Seals on compressors for ENG1-ENG12 comply with OOOOa. 50.115 – VRUs are redundant with flare backup. Any required flare retrofits, if applicable, will be done by 8/5/2023. 50.116 – Weekly AVOs are conducted and quarterly OGI inspections will begin by 8/5/2024. OGI inspections are currently conducted in accordance with OOOOa. 50.117 – There are no wells on the pad. 50.118 – The dehydrators meet the rule with 98% control. 50.119 – There are no heaters > 20 MMBtu/hr. 50.120 – The site does not load trucks. 50.121 – Pigging will be captured/controlled by 8/5/2024. 50.122 – Any remaining gas pneumatics will be replaced by 1/1/2025. 50.123 – The tanks are existing and controlled by 98%. 50.124 - There are no wells on the pad. 50.126 – This is not a produced water management unit. 50.127 - There are no wells on the pad.
20.2.70 NMAC	Operating Permits	No	N/A	The facility is a not a major source of criteria pollutants.
20.2.71 NMAC	Operating Permit Fees	No	N/A	The facility is a not a major source of criteria pollutants. Fugitive VOC emissions are not included in the source determination.
20.2.72 NMAC	Construction Permits	Yes	Facility	This application is submitted in accordance with 20.2.72.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The site is subject to the emissions inventory requirements of 20.2.73 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	The facility is not a major PSD site.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	A permit fee is included with this application.
20.2.77 NMAC	New Source Performance	No	ENG1- 12	See regulatory discussion in Federal Regulations Citation section.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	The facility does not fit into any of the source categories.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	The facility is not located in a nonattainment area.
20.2.80 NMAC	Stack Heights	No	N/A	There are no stacks to which this regulation would apply.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	ENG1- 12,, DEHY1 - DEHY4	See regulatory discussion in Federal Regulations Citation section.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	Units subject to 40 CFR 60	Applies if any other Subpart in 40 CFR 60 applies.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	The facility does not operate any electric utility steam generating units.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	The facility does not operate any electric utility steam generating units.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 60.40c, Subpart Dc	Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR 60, Subpart Ka	Tanks After May 18, 1978, and Prior to July 23, 1984	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR 60, Subpart Kb	Tanks Commenced After July 23, 1984	No	N/A	The hydrocarbons are stored prior to custody transfer.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR Part 60 Subpart LLL	Onshore Natural Gas Processing: SO ₂ Emissions	No	N/A	The facility does not operate a sweetening unit.
NSPS 40 CFR Part 60 Subpart OOOO	O&G sites after August 23, 2011 and before September 18, 2015	No	N/A	The site post-dates Subpart OOOO.
NSPS 40 CFR Part 60 Subpart OOOOa	O&G Sites After September 18, 2015	Yes	FUG, ENG1- 12	The oil and water storage tanks were constructed after the applicability date of the rule; however emissions are limited by permit to less than 6 tpy. The site uses low-bleed pneumatic controllers. The compressors comply with the requirements of §60.5385a. The site is subject to leak monitoring requirements for fugitive components specified in §60.5397a.
NSPS 40 CFR 60 Subpart IIII	Stationary Compression Ignition Internal Combustion Engines	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR Part 60 Subpart JJJJ	Stationary Spark Ignition Internal Combustion Engines	Yes	ENG1- 12	The site is subject to the emissions limitations in Table 1.
NSPS 40 CFR 60 Subpart TTTT	Greenhouse Gas Emissions for Electric Generating Units	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR 60 Subpart UUUU	Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	The facility does not operate any affected sources.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Municipal Solid Waste (MSW) Landfills	No	N/A	The facility does not operate any affected sources.
NESHAP 40 CFR 61 Subpart A	General Provisions	See Below	See Below	See regulatory discussion below.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The facility does not operate any affected sources.
NESHAP 40 CFR 61 Subpart V	Equipment Leaks (Fugitive Emission Sources)	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	Units Subject to 40 CFR 63	Applies if any other Subpart in 40 CFR 63 applies.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DEHY1- DEHY4	The site is an area sources of HAP and the dehydrators are subject to Subpart HH. Since benzene emissions are restricted to less than 1 tpy per a federally-enforceable permit; therefore, the unit is exempt from any requirements per §63.764(e)(1)(ii).
MACT 40 CFR 63 Subpart HHH		No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63 Subpart DDDDD	Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63 Subpart UUUUU	Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63 Subpart ZZZZ	RICE MACT	Yes	ENG1- 12	ENG1-12 comply with NSPS JJJJ to comply with NESHAP ZZZZ.
40 CFR 64	Compliance Assurance Monitoring	No	N/A	The facility is not a major source.
40 CFR 68	Chemical Accident Prevention	No	N/A	The facility does not store any chemicals above threshold quantities.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	The facility does not have any units subject to the Acid Rain regulations.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	The facility does not service, maintain, or repair equipment containing refrigerants.

Section 14 Operational Plan to Mitigate Emissions

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

	Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u> , <u>Shutdowns</u> , <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
✓	NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an Operational Plan to Mitigate Source Emissions During Malfunction, Startup, or Shutdown defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
✓	Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

ConocoPhillips maintains written plans to ensure procedures are following during periods of startup, shutdown, and malfunction.

Saved Date: 7/29/2022

Section 15 Alternative Operating Scenarios

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

There are no alternate operating scenarios.

Form-Section 15 last revised: 8/15/2011 Section 15, Page 1 Saved Date: 7/29/2022

Section 16 Air Dispersion Modeling

Air Dispersion Modeling

- 1) Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	X
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

	See attached, approved modeling waiver for all pollutants from the facility.
	See attached, approved modeling waiver for some pollutants from the facility.
	Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.
\checkmark	Attached in UA4 is a modeling report for some pollutants from the facility.
	No modeling is required.

Saved Date: 7/29/2022

Section 17 Compliance Test History

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Compliance Test History Table

Unit No.	Test Description	Test Date
412951	NSPS JJJJ Test	12/03/2019
811355	NSPS JJJJ Test	12/03/2019
811251	NSPS JJJJ Test	05/15/2019
811252	NSPS JJJJ Test	06/06/2019
811309	NSPS JJJJ Test	01/07/2020
811355	NSPS JJJJ Test	01/07/2020
811356	NSPS JJJJ Test	03/03/2020
811357	NSPS JJJJ Test	03/03/2020

^{*} Engines indicated compliance with NSPS JJJJ limitations.

Saved Date: 7/29/2022

Section 18 Addendum for Streamline Applications

Addendum for Streamline Applications

Do not print this section unless this is a streamline application.

Streamline Applications do not require a complete application. Submit Sections 1-A, 1-B, 1-D, 1-F, 1-G, 2-A, 2-C thru L, Sections 3 thru 8, Section 13, Section 18, Section 22, and Section 23 (Certification). Other sections may be required at the discretion of the Department. 20.2.72.202 NMAC Exemptions do not apply to Streamline sources. 20.2.72.219 NMAC revisions and modifications do not apply to Streamline sources, thus 20.2.72.219 type actions require a complete new application submittal. Please do not print sections of a streamline application that are not required.

This is not a Streamline application.

Form-Section 18 last revised: 3/9/2012 (2nd sentence) Section 18, Page 1 Saved Date: 7/29/2022

Section 19 Requirements for Title V Program

Requirements for Title V Program

Do not print this section unless this is a Title V application.

Who Must Use this Attachment:

- * Any major source as defined in 20.2.70 NMAC.
- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

This is not a Title V application.

Saved Date: 7/29/2022

Section 20 Other Relevant Information

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is provided.

Form-Section 20 last revised: 8/15/2011 Section 20, Page 2 Saved Date: 7/29/2022

Section 21 Addendum for Landfill Applications

Addendum for Landfill Applications

Do not print this section unless this is a landfill application.

Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: https://www3.epa.gov/airtoxics/landfill/landflpg.html

NM Solid Waste Bureau Website: https://www	<u>.env.nm.gov/swb/</u>	

This is not a landfill.

Form-Section 21 last revised: 10/04/2016 Section 21, Page 1 Saved Date: 7/29/2022

Section 22 Certification Company Name: PEI on behalf of ConocoPhillips

Saved Date: 8/2/2022

Section 22: Certification

I, Evan Tullos, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience. Signed this ____ day of August, 2022 ____, upon my oath or affirmation, before a notary of the State of Illinois. *Signature Date Evan Tullos Vice President Printed Name Scribed and sworn before me on this ____ day of _____, ____. My authorization as a notary of the State of <u>Illinois</u> expires on the _____ day of ______, _____ Notary's Signature Date Notary's Printed Name

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

Form-Section 22 last revised: 3/7/2016

Section 23 Universal Application 4

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	A: Identification	
1	Name of facility:	Zia Hills Central Facility
2	Name of company:	ConocoPhillips
3	Current Permit number:	7746
4	Name of applicant's modeler:	Bruce Ferguson
5	Phone number of modeler:	(601) 826-6376
6	E-mail of modeler:	bferguson@fce-engineering.com

16	-B: Brief						
1	Was a modeling protocol submitted and approved?	Yes⊠ No□					
2	Why is the modeling being done? Adding New Equipment						
3	Describe the permit changes relevant to the modeling.						
4	What geodetic datum was used in the modeling?	NAD83					
5	How long will the facility be at this location?	indefinite					
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠				
7	Identify the Air Quality Control Region (AQCR) in which the facility is located	155					
8	List the PSD baseline dates for this region (minor or major, as appropriate).						

16	-B: Brief									
	NO2			3/16/1988						
	SO2			7/28/1978						
	PM10			2/20/1979						
	PM2.5			11/13/2013						
9	Provide the name and distance	e to Class I areas within 5	0 km of	the facility (30	00 km for PSD	permits).				
	None									
10	Is the facility located in a non-	-attainment area? If so des	scribe be	elow		Yes□	No□			
10	N/A									
11	Describe any special modeling	g requirements, such as st	reamline	e permit requir	rements.					
	None									
16	Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient									
	Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).									
	Pollutant	Latest permit and mod that modeled the pollu			Date of Permit	Comments				
	СО	7746M8			2/11/22					
	NO_2	7746M8			2/11/22					
1	SO_2	7746M8			2/11/22					
	H_2S									
	PM2.5	7746M8			2/11/22					
	PM10	7746M8			2/11/22					
	Lead									
	Ozone (PSD only)									
	NM Toxic Air Pollutants (20.2.72.402 NMAC)									
<u> </u>	(
16	-D: Modeling perfo	ormed for this a	appli	cation						
	For each pollutant, indicate the Choose the most complicated analysis were also performed	he modeling performed ar I modeling applicable for	nd subm	itted with this		s assumes RO	I and cumulative			
	Pollutant		ROI	Cumulative	Culpability	Waiver	Pollutant not emitted or not			

16-	E: New	Mexico tox	xic air pollutants	modeling		N/A
1	List any Ne application		pollutants (NMTAPs) from	Tables A and B is	n 20.2.72.502 NMAC tha	t are modeled for this
2	List any NI below, if re		itted but not modeled becaus	se stack height cor	rection factor. Add additi	onal rows to the table
	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor
			·			

16	-F: Modeling options		
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□
		•	

16-	6-G: Surrounding source modeling								
1	Date of surroundi	ng source retrieval							
	sources modeled		Quality Bureau was believed to be inaccurate, describe how the changes to the surrounding source inventory were made, use the table						
	AQB Source ID	Description of Corrections							
	36802E26	Source was included in NOx inventor emissions for the source (see RS207	ory without emission rate. The application states that there are no 64 Application (6832M6).pdf)						
	37265E4	Source was included in NOx inventory without emission rate. Emissions were obtained from the application RS10585 Application (7012).pdf							
2	33175E17	Source was included in the NOx inventory without emission rate. No application was found in NMED database. The emissions were estimated using ENG6 from the same source.							
	38450E5	Source was included in NOx inventory without emission rate. Emissions were obtained from the application RS20185 Application (7845).pdf.							
	38493E6	Source was included in NOx inventory without emission rate. Emissions were obtained from the application RS20195 Application (7890).pdf.							
	28647E5		entory without emission rate. No application was found in NMED ated using emissions for heater treater 13 for the same source.						
	37916E6	Source was included in the NOx inventory without emission rate. No application was found in NMED database. The emissions were estimated using emissions for ENG3 for the same source.							
	642E3	Source was included in PM _{2.5} inventory without emission rate. Emissions were obtained from the application RS26861 Application (0597M3).pdf.							

16-	H: Buildi	ng and s	structure	downv	vash					
1	How many bui	ldings are pre	sent at the facil	lity?	None					
2	How many about the facility?	ove ground sto	orage tanks are	present at	17, no sta	cks were within the a	rea of inf	luence of the t	anks	
3	Was building d	lownwash mo	deled for all bu	ildings and	tanks? If n	ot explain why below	·.	Yes⊠	No□	
4	Building comn	nents								
4.0	I.D.	•				•				
16-	I: Recept					ndary ecluded. Effective ba				
1	continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility.									
	Describe the fe	ence or other p	hysical barrier	at the facili	ity that defi	nes the restricted area	ւ.			
	The facility is	fenced on all	sides							
2	Receptors mus Are there publi					stricted area.		Yes□	No⊠	
3	Are restricted a	area boundary	coordinates in	cluded in th	e modeling	files?		Yes⊠	No□	
	Describe the re	eceptor grids a	and their spacin	g. The table	below may	y be used, adding row	s as need	led.		
4	Grid Type	Shape	Spacing	Start distarestricted center of	area or	End distance from restricted area or center of facility	Commo	mments		
	Cartesian	Circle	50 m	0		1 km				
	Cartesian	Circle	100 m	1 km		3 km				
	Cartesian	Circle	250 m	3 km		6 km				
5	Describe recep	<u> </u>		ine.						
	50 meter spaci									
6	Describe the P	SD Class I are	ea receptors.							
	N/A									
16-	J: Sensiti	ve areas								
1		on is optional				lity? If so describe be elp determine issues r		Yes□	No⊠	
3	The modeling likely to be pul					s a public hearing. A	re there	Yes□	No⊠	

16	-K: Mo	deling	Scena	rios							
1	Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).										
2	Which scen	nario prod	uces the hi	ghest conc	centrations	? Why?					
2											
3	Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.) Yes□ No⊠										
4	(Modify or Sources:		table as ne							table for that gormatting easie	
	Hour of Day	Factor	Hour of Day	Factor							
	1		13			1		1			
	3		14 15			1		1			
	4		16								
	5		17								
	6		18								
5	7		19								
	8		20								
	9		21								
	10		22								
	11		23								
	12		24								
	If hourly, v	ariable en	nission rate	es were use	ed that wer	e not desc	ribed abov	e, describe	them below		
										_	
6	Were diffe	rent emiss	ion rates u	sed for sho	ort-term an	d annual n	nodeling?	If so descri	be below.	Yes□	No⊠

16-	L: NO ₂	Modeling								
	Which type Check all th	s of NO ₂ modeling were used? at apply.								
1	\boxtimes	ARM2								
1		100% NO _X to NO ₂ conversion								
		PVMRM								
		□ OLM								
		Other:								
2	Describe the NO ₂ modeling.									
2	Significance analysis used ARM2. Surrounding sources were included in cumulative modeling instead of adding monitored background.									
3	Were default NO₂/NO _X ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not describe and justify the ratios used below. Yes⊠ No□									
		e design value used for each averaging period modeled.								
4		n percentile as calculated by AERMOD								
		ner (Describe):								
	Highest ann	ual average of 5 years								

16-	16-M: Particulate Matter Modeling											
	Select the pollutants for which plume depletion modeling was used.											
1		□ PM2.5										
1		PM10										
	\boxtimes	None										
_	Describe th	e particle s	ize distri	ibutions u	sed. Include	the source	of	inform	ation.			
2												
3	Does the facility emit at least 40 tons per year of NO _X or at least 40 tons per year of SO ₂ ? Sources that emit at least 40 tons per year of NO _X or at least 40 tons per year of SO ₂ are considered to emit significant amounts of precursors and must account for secondary formation of PM2.5. Yes No□											
4	Was second	lary PM mo	odeled fo	or PM2.5°	?						Yes□	No⊠
	If MERPs we below.	If MERPs were used to account for secondary PM2.5 fill out the information below. If another method was used describe below.									ed describe	
	NO _X (ton/y	r)		SO ₂ (to	on/yr) [PM _{2.5}] annual [PM ₂		[PM _{2.5}] _{24-hour}					
	82.44			8.95			0.0	0018			0.0322	
5	Worst Case	MERPs So	outhwest	t Climate	Zone							
	State	County	Metric		Precursor	Emissions		Stack	MERP	MaxConc		
	Colorado	Weld Co	Annual I	PM2.5	NOx	100	00	10	10530	0.018993473		
	Colorado	Weld Co	Annual I	PM2.5	SO2	100	00	10	7359	0.027177012		
	Colorado	Weld Co	Daily PN		NOx	100	00	10	5215	0.230115712	_	
	Colorado	Weld Co	Daily PN		SO2	100		10	814	1.474874973		
					ual Emissions/1							
		[PM2.5]2	4-hour = S	IL x [NOx A	nnual Emissions	/5215 + SO2	Annı	ual Emis	sions/814	.]		

16-	-N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.

16-	O: PSD Incren	nent and Sourc	e IDs					
1		Tables 2-A, 2-B, 2-C, 2-e match? If not, provide a ow.				Yes⊠		No□
	Unit Number in UA-2			Unit Numb	er in Modeling Files	S		
2	The emission rates in the Tables 2-E and 2-F should match the ones in the modeling files. Do these match? If not, explain why below. No□							No□
3	Have the minor NSR ex been modeled?	empt sources or Title V l	Insignificant A	ctivities" (Ta	able 2-B) sources	Yes		No⊠
	Which units consume increment for which pollutants?							
4	Unit ID	NO_2	SO_2	PM10		PM2.5		
	All Units	X	X		X	X		
				1				
5	PSD increment description for sources. (for unusual Acases, i.e., baseline unit expanded emissions after baseline date).							
Are all the actual installation dates included in Table 2A of the application form, as required?								No□

16-P: Flare Modeling									
1	For each flare or flaring scenario, complete the following								
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)					
	FL1	21.63	101,051,412	8.860					
	FL2	37.98	7,200,742	2.252					
	FL3	21.63	31,802	0.157					

16-	Q: Volume and Related Sources		N/A
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing installation dates below.	Yes□	No□
2	Describe the determination of sigma-Y and sigma-Z for fugitive sources.		
3	Describe how the volume sources are related to unit numbers. Or say they are the same.		
4	Describe any open pits.		
5	Describe emission units included in each open pit.		
16-	R: Background Concentrations		
	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data that was used. CO: N/A	Yes⊠	No□
1	NO ₂ : N/A		
	PM2.5: Hobbs-Jefferson (350450019) PM10: N/A		
	SO ₂ : N/A Other:		
	Comments:		
2	Were background concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠
16-	S: Meteorological Data		
1	Was NMED provided meteorological data used? If so select the station used. Carlsbad	Yes⊠	No□
	The 5-yr onsite data processed by NMED was used.	1	1 .
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discu handled, how stability class was determined, and how the data were processed.	ss how missing	data were

16-T: Terrain								
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□					
2	What was the source of the terrain data?							
	1/3 arc second downloaded through 3 rd party vendor AERMOD View							

16-U: Modeling Files

Describe the modeling files:

The model was executed using Lakes AERMOD View. The modeling files were compressed to a zip file using the backup feature of AERMOD View. The dat folder was deleted to save space. The AERMOD file naming convention is:

- *.ADI AERMOD input file
- *.ADO AERMOD output file
- *.api AERMAP input file
- *.ast AERMAP run summary
- *.bpi BPIP input file
- *.err error output file
- *.pro BPIP output file

Plot files file have the following convention: [avg period][rank][source group].plt

Where source groups were not used the source group is ALL, for example, the 1-hr CO plot file is 01H1ALL.PLT.

NAAQS source groups will be G001, ex. 01H1G001.PLT for 1-hr H1H NAAQS group

PSD source groups will be G002, ex. 01H1G002.PLT for 1-hr H1H PSD group

Facility source group will be G003 ex. 01H1G003.PLT for 1-hr H1H zia group

File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)			
SIA\CO.zip	CO	SIA			
SIA\NOx.zip	NO2	SIA			
SIA\PM.zip	PM ₁₀ & PM _{2.5}	SIA			
SIA\SO2.zip	SO2	SIA 1-hr avg period			
SIA\SO2 Inc SILs.zip	SO2	SIA 3-hr, 24-hr and annual avg periods			
CIA\NO2.zip	NO2	cumulative			
CIA\ NO2.zip\NO2.AD\Annual PSD Design.xlsx	NO2	Excel of the PSD source group annual plot file for each year to determine maximum year of 5 years.			
CIA\PM25.zip	PM2.5	cumulative			
CIA\PM25.zip\PM25.AD\PSD 24-hr Design Value.xlsx	PM2.5	Excel of the PSD source group 24-hr H2H used to determine the highest H2H of the 5 years			
CIA\PM25.zip\PM25.AD\PSD Annual Design Value.xlsx	PM2.5	Excel of the PSD source group annual plot file for each year to determine maximum year of 5 years.			
Surrounding Sources*.pdf	NO2 & PM2.5	Applications for source corrections			
Surrounding Sources\NM*.inp	NO2 & PM2.5	MergeMaster generated surrounding source inventories			
Surrounding Sources\Texas*.*	NO2 & PM2.5	Modeling files for surrounding sources in Texas downloaded from TCEQ website			
Zia.jpg & jgw		Georeferenced plot file			
table_export.xlsx	PM2.5	MERP values downloaded from EPA MERPs View Qlik for the Southwest Climate Zone			

16-V: PSD New or Major Modification Applications								
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No□					
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□					
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.							
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.							
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□					

16-W: Modeling Results											
1	If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so describe below.										
2	Identify the	Identify the maximum concentrations from the modeling analysis. Rows may be modified, added and removed from the table below									
2	as necessar		Concentrations	mom the r	nodening an	arysis. Rows	may be m	ourred, ad	ded and reme	ved from the t	abic ociow
Pollutant, Time Period and Standard		ility	l n with ources	ources		on	Idard	ndard	Location		
		Modeled Facility Concentration (μg/m³)	Modeled Concentration with Surrounding Sources (μg/m³)	Secondary PM (μg/m³)	Background Concentration (μg/m³)	Cumulative Concentration (μg/m³)	Value of Standard (μg/m³)	Percent of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
CO 1-hr SIL		96.09031	N/A	N/A	N/A	96.09031	2000	19.2%	621660.05	3543652.75	965.29
CO 8-hr SIL		73.14555	N/A	N/A	N/A	73.14555	500	14.6%	621709.33	3543650.38	965.02
SO ₂ 1-hr SIL		5.91219	N/A	N/A	N/A	5.91219	7.9	74.8%	621660.05	3543652.75	965.29
SO ₂ 3-hr SIL		5.68792	N/A	N/A	N/A	5.68792	25	22.8%	621709.33	3543650.38	965.02
SO ₂ 24-hr SIL		2.98299	N/A	N/A	N/A	2.98299	5	59.7%	621750.00	3543650.00	964.85
SO ₂ Annual SIL		0.28862	N/A	N/A	N/A	0.28862	1	28.9%	621500.00	3543750.00	968.87
PM ₁₀ 24-hr SIL		2.61146	N/A	N/A	N/A	2.61146	5	52.2%	621750.00	3543650.00	964.85
PM ₁₀ Annual SIL		0.25267	N/A	N/A	N/A	0.25267	1	25.3%	621500.00	3543750.00	968.87
PM _{2.5} 24-hr NAAQS		3.38839	3.74476	0.0322	13.4	17.17696	35	49.1%	621800.00	3543650.00	964.65
PM _{2.5} Annual NAAQS		0.69871	1.09340	0.0018	5.9	6.9952	12	58.3%	621757.05	3543607.32	964.24
PM _{2.5} 24-hr PSD		5.67793	5.81434	0.0322	N/A	5.84654	9	65.0%	621800.00	3543650.00	964.24
PM _{2.5} Annual PSD		0.83422	1.2145	0.0018	N/A	1.2163	4	30.4%	621800.00	3543650.00	964.65
NO ₂ 1-hr NAAQS		87.88559	128.12403	N/A	N/A	128.12403	188.03	68.1%	621800.00	3543550.00	963.15
NO ₂ Annual NMAAQS		8.03038	12.85658	N/A	N/A	12.85658	94.02	13.7%	621758.61	3543648.01	964.79
NO ₂ Annual PSD		8.03038	12.85658	N/A	N/A	12.85658	25	51.4%	621758.61	3543648.01	964.79

16-X: Summary/conclusions

A statement that modeling requirements have been satisfied and that the permit can be issued.

Previous modeling was below 80% for all applicable air quality standards. Only the equipment to be added was included in the significant impact analysis. The proposed equipment was found to have insignificant impacts for CO, SO₂ and PM₁₀. No further analysis was conducted for these pollutants.

Cumulative analysis for NO₂ and PM_{2.5} was conducted with the receptors found to have significant impacts in the significant impact analysis. The entire Zia Hills Central Facility was modeled with surrounding sources within 25 km of the Zia Hills Central facility. Estimated impacts of PM2.5 included the entire Zia Hills Central facility, surrounding sources within 25 km, monitored background from the Hobbs monitor and estimates of secondary formation due to NOx and SO2 emissions from the Zia Hills Central Facility. The maximum impacts were within 50-meter grid spacing for the NOx and PM2.5 cumulative modeling. All modeled impacts were found to be below the applicable air quality standards. The facility will, therefore, not cause or contribute to an exceedance of the NAAQS or PSD increment and the permit can be issued.