

May 6, 2022

UPS Tracking #1Z1AE0570218769627

Attn: Ms. Kirby Olson Major Source Program Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505

Re: Initial Title V Operating Permit Application (Update) Wildcat Compressor Station Agency Interest No. 38056 XTO Energy Inc.

Dear Ms. Olson,

XTO Energy Inc. is submitting this updated initial Title V Operating Permit application for the Wildcat Compressor Station. The Wildcat Compressor Station is currently authorized under NSR Permit No. 7474-M2. The electronic files will be provided via email or secure file transfer.

If you have any questions concerning this application, please contact me at 346-259-5873 or at james.barron@exxonmobil.com.

Sincerely,

James Barron Environmental & Regulatory Advisor XTO Energy Inc.

cc: Joe Landry, Environmental Advisor—Air Quality, XTO Energy, Inc. Brett Zogas, Managing Consultant, Trinity Consultants, Inc.

Enclosures

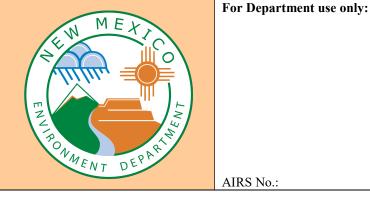
WILDCAT COMPRESSOR STATION Eddy County, NM Initial Title V Operating Permit Application (Update)

PREPARED FOR: JAMES BARRON ENVIRONMENTAL & REGULATORY ADVISOR XTO ENERGY INC. 5/6/2022

WILDCAT COMPRESSOR STATION Initial Title V Operating Permit Application (Update)

Table of Contents

Tab 1	UA1 Form - Company and Facility Information
Tab 2	UA2 Form - Application Tables
Tab 3	Section 3 - Application Summary
Tab 4	Section 4 - Process Flow Sheet
Tab 5	Section 5 - Plot Plan Drawn To Scale
Tab 6	Section 6 - All Calculations
Tab 7	Section 7 - Information Used To Determine Emissions
Tab 8	Section 8 - Map(s)
Tab 9	Section 9 - Proof of Public Notice
Tab 10	Section 10 - Written Description of the Routine Operations of the Facility
Tab 11	Section 11 -Source Determination
Tab 12	Section 12 - PSD Applicability Determination for All Sources
Tab 13	Section 13 - Determination of State & Federal Air Quality Regulations
Tab 14	Section 14 - Operational Plan to Mitigate Emissions
Tab 15	Section 15 - Alternative Operating Scenarios
Tab 16	Section 16 - Air Dispersion Modeling
Tab 17	Section 17 - Compliance Test History
Tab 18	Section 18 - Addendum for Streamline Applications (Not Applicable)
Tab 19	Section 19 - Requirements for Title V Program
Tab 20	Section 20 - Other Relevant Information
Tab 21	Section 21 - Addendum for Landfill Applications (Not Applicable)
Tab 22	Section 22 - Certification
Tab 23	Section 23 - UA4


Tab 1

UA1 Form - Company and Facility Information

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions for other permits.

This application is submitted as (check all that apply):
□ Request for a No Permit Required Determination (no fee) **Updating** an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Construction Status: □ Not Constructed Existing Permitted (or NOI) Facility □ Existing Non-permitted (or NOI) Facility Minor Source: □ a NOI 20.2.73 NMAC □ 20.2.72 NMAC application or revision □ 20.2.72.300 NMAC Streamline application Title V Source: ☐ Title V (new) ☐ Title V renewal ☐ TV minor mod. ☐ TV significant mod. TV Acid Rain: □ New □ Renewal PSD Major Source: □ PSD major source (new) □ minor modification to a PSD source □ a PSD major modification

Acknowledgements:

I acknowledge that a pre-application meeting is available to me upon request. I Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

□ \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications).

□ Check No.: in the amount of

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page. I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-2/. □ This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the low level citation under which this application is being submitted: 20.2.70.200.A NMAC (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sect	tion 1-A: Company Information	AI # if known (see 1st3 to 5 #s of permitUpdatingIDEA ID No.): 38056Permit/NOI #:				
1	Facility Name: Wildcat Compressor Station	Plant primary SIC Code (4 digits): 1311				
1		Plant NAIC code (6 digits): 211120				
a	Facility Street Address (If no facility street address, provide directions from	n a prominent landmark): See 1-D.4.				
2	Plant Operator Company Name: XTO Energy Inc.	Phone/Fax: (346) 259-5873				
а	Plant Operator Address: 22777 Springwoods Village Parkway, W4.6B.376	6, Spring, TX 77389				

b	Plant Operator's New Mexico Corporate ID or Tax ID: 1522747	
3	Plant Owner(s) name(s): XTO Energy Inc.	Phone/Fax: (346) 259-5873
a	Plant Owner(s) Mailing Address(s): 22777 Springwoods Village Parkway	, W4.6B.376, Spring, TX 77389
4	Bill To (Company): XTO Energy Inc.	Phone/Fax: (346) 259-5873
a	Mailing Address: 22777 Springwoods Village Parkway, W4.6B.376, Spring, TX 77389	E-mail: james.barron@exxonmobil.com
5	 ☑ Preparer: Brett Zogas ☑ Consultant: Trinity Consultants Inc. 	Phone/Fax: (512) 826-6435
a	Mailing Address: 1800 W Loop S, Ste. 1000, Houston, TX 77027	E-mail: brett.zogas@trinityconsultants.com
6	Plant Operator Contact: James Barron	Phone/Fax: (346) 259-5873
a	Address: 22777 Springwoods Village Parkway, W4.6B.376, Spring, TX 77389	E-mail: james.barron@exxonmobil.com
7	Air Permit Contact: James Barron	Title: Environmental Advisor & Regulatory Advisor
a	E-mail: james.barron@exxonmobil.com	Phone/Fax: (346) 259-5873
b	Mailing Address: 22777 Springwoods Village Parkway, W4.6B.376, Springwoods Village Parkway, Springwoods Village Parkway, W4.6B.376, Springwoods Village Parkway, Springwoods Village Parkway, W4.6B.376, Sprin	ng, TX 77389
c	The designated Air permit Contact will receive all official correspondence	(i.e. letters, permits) from the Air Quality Bureau.

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? ☑ Yes □ No	1.b If yes to question 1.a, is it currently operatingin New Mexico?☑ Yes□ No
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? □ Yes □ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ☑ Yes □ No
3	Is the facility currently shut down? \Box Yes \blacksquare No	If yes, give month and year of shut down (MM/YY):
4	Was this facility constructed before 8/31/1972 and continuously operated s	since 1972? □ Yes ☑ No
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMA \Box Yes \Box No \Box N/A	C) or the capacity increased since 8/31/1972?
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? □ Yes ☑ No	If yes, the permit No. is:
7	Has this facility been issued a No Permit Required (NPR)? □ Yes ☑ No	If yes, the NPR No. is:
8	Has this facility been issued a Notice of Intent (NOI)? Yes No	If yes, the NOI No. is:
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑ Yes □ No	If yes, the permit No. is: 7474-M2
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? □ Yes ☑ No	If yes, the register No. is:

Section 1-C: Facility Input Capacity & Production Rate

1	What is the	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)										
a	Current	Hourly: 27.3 barrels; 10 MMscf	Daily: 656 barrels; 240 MMscf	Annually: 239,581 barrels; 87.6 Bscf								
b	Proposed	Hourly: 27.3 barrels; 10 MMscf	Daily: 656 barrels; 240 MMscf	Annually: 239,581 barrels; 87.6 Bscf								
2	What is the	facility's maximum production rate, sp	pecify units (reference here and list capacities in	Section 20, if more room is required)								
a	Current	Hourly: 27.3 barrels; 10 MMscf	Daily: 656 barrels; 240 MMscf	Annually: 239,581 barrels; 87.6 Bscf								

b	Proposed Hourly: 27.3 barrels; 10 MMscf Daily: 65				656 barrels; 240 MMscfAnnually: 239,581 barrels; 87.							
Sect	tion 1-D:	Facility Loca	tion Inform	ation								
1	Section: 21	Range: 31E	Township: 24S		County: Eddy		Elev	vation (ft): 3,508				
2	UTM Zone:	□ 12 or ☑ 13	□ 12 or ☑ 13 □ Datum: □ NAD 27 □ NAD 83 ☑ WGS 8					☑ WGS 84				
a	UTM E (in n	neters, to nearest 10 meter	rs): 615190		UTM N (in meters, to r	earest 10 met	ers): 3563	3480				
b	AND Latitu	de (deg., min., sec.):	: 32° 12' 07"		Longitude (deg., min	n., sec.): -1	03° 46' 4	.0"				
3	Name and zip code of nearest New Mexico town: Malaga - 88263											
4	Detailed Driving Instructions from nearest NM town (attach a road map if necessary): From Malaga, head W on Duarte Rd. for 1.3 mi. to R on McDonald Rd. Drive 11.2 mi. to R on Twin Wells Rd. Drive 2.0 mi. to L on Buck Jackson Rd, then 4.8 mi. to site on L.											
5	The facility is 17 (distance) miles E (direction) of Malaga (nearest town).											
6	Status of lar (specify)	nd at facility (check	one): 🗆 Private 🗆	Indian/Pu	ieblo 🗹 Federal BLM	□ Federa	l Forest S	Service 🗆 Other				
7								NMAC) of the property				
8	closer than www.env.nm.g	50 km (31 miles) to gov/aqb/modeling/class1a	o other states, Be	rnalillo (County, or a Class I ar	ea (see		*				
9	Name neare	st Class I area: Texa	as (22.4 kilometer	s)								
10			acility boundary to	o the bour	ndary of the nearest Cl	ass I area (to the neares	st 10 meters): Carlsbad				
11	lands, inclue	ding mining overbur	den removal areas) to neare								
1 Section: 21 Range: 31E Township: 24S County: Eddy Elevation (ft): 3,508 2 UTM Zone: 12 or 12 13 Datum: NAD 27 NAD 83 10 WGS 84 a UTM E (in meters, to nearest 10 meters): 615190 UTM N (in meters, to nearest 10 meters): 3563480 AND Latitude (deg., min., sec.): 32° 12' 07" Longitude (deg., min., sec.): -103° 46' 40" 3 Name and zip code of nearest New Mexico town: Malaga - 88263 AD tatitude (deg., min., sec.): -103° 46' 40" 4 Detailed Driving Instructions from nearest NM town (attach a road map if necessary): From Malaga, head W on Duarte Rd for 1.3 mi. to R on McDonald Rd. Drive 11.2 mi. to R on Twin Wells Rd. Drive 2.0 mi. to L on Buck Jackson Rd, then 4.8 mi. to site on L. 5 The facility is 17 (distance) miles E (direction) of Malaga (nearest town). 6 Status of land at facility (check one): □ Private □ Indian/Pueblo I Federal BLM □ Federal Forest Service □ Other (specify) 7 List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the prope on which the facility is proposed to be constructed or operated: Eddy County, Lea County 8 wew ent amgovadphrodeling/class tareak.html)? If Yes □ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: 9 Name nearest Class I area: Texas (22.4 kilometers) Image onty = Nubic tha facinis or operat	errain with steep grade g, a restricted area area.											
13	□ Yes ☑ No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job site											
14		5 1 5		e	1	ne property	? 🖂] No 📋 Yes				
		1	``````````````````````````````````````	'	•							

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24	$\left(\frac{\text{days}}{\text{week}}\right)$: 7	$(\frac{\text{weeks}}{\text{year}}): 52$	$\left(\frac{\text{hours}}{\text{year}}\right)$: 8,760					
2	Facility's maximum daily operating schedule (if less than $24 \frac{hours}{day}$)?Start: $\square AM$ $\square PM$ End: $\square A$ $\square PM$								
3	Month and year of anticipated start of construction: Already started								
4	Month and year of anticipated construction completion	on: Train 1 completed 12/11/2	019. Train 2 c	completed 4/6/2022.					
5	Month and year of anticipated startup of new or mod $4/6/2022$.	lified facility: Train 1 complete	ed 12/11/2019	. Train 2 completed					
6	Will this facility operate at this site for more than on	e year? ☑ Yes □ No							

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? Yes No If yes, specify:										
a	If yes, NOV date or description of issue:			NOV Tracking No:							
b											
с	Document Title:	Date:	1 1	nent # (or nd paragraph #):							
d	Provide the required text to be inserted in this permit:										
2	Is air quality dispersion modeling or modeling waiver bein	g submitted with this	applicatio	n? □Yes 🗹 No							
3	Does this facility require an "Air Toxics" permit under 20. No	2.72.400 NMAC & 2	0.2.72.502	, Tables A and/or B? □Yes ☑							
4	Will this facility be a source of federal Hazardous Air Poll	utants (HAP)? 🗹 Ye	s 🗆 No								
a	If Yes, what type of source? \blacksquare Major ($\blacksquare \ge 10$ tpy of aOR \Box Minor ($\Box < 10$ tpy of an			25 tpy of any combination of HAPS) 5 tpy of any combination of HAPS)							
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? □ Yes	s 🗹 No									
	If yes, include the name of company providing commercia	l electric power to the	e facility: _								
a	Commercial power is purchased from a commercial utility site for the sole purpose of the user.	v company, which spo	ecifically d	loes not include power generated on							

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1 □ I have filled out Section 18, "Addendum for Streamline Applications." ☑ N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): David Scott		Phone: (832) 625-8746			
a	R.O. Title: General Manager Permian Delaware BU	R.O. e-mail: david.r.scott@exxonmobil.com				
b	R. O. Address: 22777 Springwoods Village Parkway, Spring, TX	77389				
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): Rick Cannon	Phone: (575) 988-7138				
a	A. R.O. Title: Production Manager, Delaware Basin BU	A. R.O. e-mail: rick.e.cannon@exxonmobil.com				
b	A. R. O. Address: 3194 E Greene St., Carlsbad, NM 88220					
3	Company's Corporate or Partnership Relationship to any other Air have operating (20.2.70 NMAC) permits and with whom the applic relationship):		v 1			
4	Name of Parent Company ("Parent Company" means the primary r permitted wholly or in part.): ExxonMobil	name of the organiza	tion that owns the company to be			
a	Address of Parent Company: 22777 Springwoods Village Parkway	, Spring, TX 77389				
5	Names of Subsidiary Companies ("Subsidiary Companies" means of wheely or in part, by the company to be permitted.): XTO		hes, divisions or subsidiaries, which are			
6	Telephone numbers & names of the owners' agents and site contact	ts familiar with plan	t operations: See Section 1-A.6 and 7			

	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes:
	Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other
7	states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which
	ones and provide the distances in kilometers: Texas (22.2 kilometers)

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

□ CD/DVD attached to paper application

Secure electronic transfer. Air Permit Contact Name James Barron

Email james.barron@exxonmobil.com

Phone number (346) 259-5873

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible

format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Tab 2 UA2 Form - Application Tables

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. Equipment exemptions under 2.72.202 NMAC do not apply to 20.2.73 NMAC. Identify process equipment that is used to reroute emissions back into the process or sales pipeline in Table 2-A, such as a VRU, VRT, ULPS, Flashing Vessel, or Blowcase.

					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One		Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
ENG1	Natural Gas Compressor Engine	Caterpillar	G3616	ZZY00803	5000	5000	6/22/2018 1/31/2020	ENG1 CAT1	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG2	Natural Gas Compressor Engine	Caterpillar	G3616	ZZY00809	5000	5000	7/5/2018 7/15/2019	ENG2 CAT2	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG3	Natural Gas Compressor Engine	Caterpillar	G3616	ZZY00797	5000	5000	6/14/2018 2/3/2020	ENG3 CAT3	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG4	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG4 CAT4	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG5	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG5 CAT5	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG6	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG6 CAT6	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG7	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG7 CAT7	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG8	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG8 CAT8	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG9	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG9 CAT9	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG11	Natural Gas Compressor Engine	Caterpillar	3516J TA	N6W01025	1380	1380	11/1/2018 12/11/2019	ENG11 CAT11	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG12	Natural Gas Compressor Engine	Caterpillar	3516J TA	N6W01015	1380	1380	11/3/2018 12/11/2019	ENG12 CAT12	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG10	Natural Gas Compressor Engine	Caterpillar	G3606T A	TBD	1775	1775	TBD TBD	ENG10 CAT10	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG13	Natural Gas Compressor Engine	Caterpillar	G3306T A	TBD	203	203	TBD TBD	ENG13 CAT13	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SRB	N/A
HTR1	Fuel Line Heater	Wenco Energy Corp	SB20- 12H	1118-936	0.75 MMBtu/hr	0.75 MMBtu/hr	2019 N/A	TBD HTR1	31000228	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	N/A	N/A
RB1	Glycol Regenator Heater	Flameco	N/A	N/A	2.0 MMBtu/hr	2.0 MMBtu/hr	2019 N/A	N/A RB1	31000404	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	N/A	N/A
RB2	Glycol Regenator Reboiler	Flameco	N/A	N/A	2.0 MMBtu/hr	2.0 MMBtu/hr	2019 N/A	N/A RB2	31000404	 To Be Modified 	 To be Removed Replacement Unit To be Replaced 	N/A	N/A
RB3	Glycol Regenator Reboiler	N/A	N/A	N/A	2.0 MMBtu/hr	2.0 MMBtu/hr	TBD N/A	N/A RB3	31000404	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	N/A	N/A
HTR2	Fuel Line Heater	N/A	N/A	N/A	0.75 MMBtu/hr	0.75 MMBtu/hr	TBD N/A	N/A HTR2	31000228	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	N/A	N/A
HTR3	Fuel Line Heater	N/A	N/A	N/A	1.5 MMBtu/hr	1.5 MMBtu/hr	TBD N/A	N/A HTR3	31000228	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	N/A	N/A

Unit Number ¹	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of Construction/ Reconstruction ²	Controlled by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of)	Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
										 Existing (unchanged) 	To be Removed		
FL1	Flare 1	Tornado	N/A	14278-A	70 mmscfd	70 mmscfd	2019	N/A	31000205	New/Additional	Replacement Unit	N/A	N/A
							2019	FL1		 To Be Modified Existing (unchanged) 	 To be Replaced To be Removed 		
FL2	Flare 2	Tornado	N/A	14278-В	70 mmscfd	70 mmscfd	2019	N/A	31000205	New/Additional	Replacement Unit	N/A	N/A
							2019	FL2		 To Be Modified Existing (unchanged) 	To be Replaced To be Removed		
FL3	Flare 3	Tornado	TBD	TBD	70 mmscfd	70 mmscfd	TBD TBD	N/A FL3	31000205	New/Additional	Replacement Unit	N/A	N/A
			TK-5052							 To Be Modified Existing (unchanged) 	 To be Replaced To be Removed 		
SKT1	Skim Tank	Palmer	ST-	N/A	1000 bbl	1000 bbl	2019	FL1-FL3	40400311	New/Additional	Replacement Unit	N/A	N/A
			1830250				2019	FL1-FL3		 To Be Modified Existing (unchanged) 	To be Replaced To be Removed		
SKT2	Skim Tank (Backup)	TBD	TBD	N/A	1000 bbl	1000 bbl	TBD	FL1-FL3	40400311	New/Additional	Replacement Unit	N/A	N/A
			TK-5054				TBD	FL1-FL3		 To Be Modified Existing (unchanged) 	 To be Replaced To be Removed 		
OT1	Condensate Tank	Palmer	ST-	N/A	500 bbl	500 bbl	2019	FL1-FL3	40400311	New/Additional	Replacement Unit	N/A	N/A
			1830252 TK-5062				2019	FL1-FL3		To Be Modified	To be Replaced To be Removed		
OT2	Condensate Tank	Palmer	ST-	N/A	500 bbl	500 bbl	2019	FL1-FL3	40400311	 Existing (unchanged) New/Additional 	 Replacement Unit 	N/A	N/A
			1830254				2019	FL1-FL3		 To Be Modified 	To be Replaced		
OT3	Condensate Tank	Palmer	TK-5063 ST-	N/A	500 bbl	500 bbl	2019	FL1-FL3	40400311	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
			1830256				2019	FL1-FL3		 To Be Modified 	To be Replaced		
OT4	Condensate Tank	Palmer	TK-5064 ST-	N/A	500 bbl	500 bbl	2019	FL1-FL3	40400311	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
014	Condensate Tank	I annei	1830251	10/14	500 001	500 001	2019	FL1-FL3	40400511	 To Be Modified 	 To be Replaced 	IVA	10/14
WT1	Produced Water	Dolmor	TK-5051	NI/A	500 bbl	500 hbl	2019	FL1-FL3	40400315	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	NI/A	NI/A
WII	Tank	Palmer	ST- 1830253	N/A	500 bbl	500 bbl	2019	FL1-FL3	40400313	 To Be Modified 	 Replacement Unit To be Replaced 	N/A	N/A
WT2	Produced Water	Dalaran	TK-5053 ST-	NI/A	500 bbl	500 bbl	2019	FL1-FL3	40400315	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
W12	Tank	Palmer	51- 1830255	N/A	500 bbi	500 bbi	2019	FL1-FL3	40400315	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	N/A	IN/A
UDUI	Low Pressure		SB20-	C-5010	125 110	105 100	2019	FL1-FL3		Existing (unchanged)	To be Removed	27/4	27/1
VRU1	Separator VRU #1	Tamrotor	12H	FE02502683 4	125 HP	125 HP	2019	FL1-3	N/A	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	N/A	N/A
	Low Pressure		SB20-	C-5020			2019	FL1-FL3		 Existing (unchanged) 	To be Removed		
VRU2	Separator VRU	Tamrotor	12H	FE02502683	125 HP	125 HP	2019	FL1-3	N/A	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	N/A	N/A
	Backup			1	80	80	2019	COND1		 Existing (unchanged) 	To be Removed		
DEHY1	TEG Dehydrator with Condenser	N/A	N/A	N/A	80 MMscfd	80 MMscfd	2019	FL1-FL3	31000227	New/Additional	Replacement Unit	N/A	N/A
										 To Be Modified Existing (unchanged) 	To be Replaced To be Removed		
DEHY2	TEG Dehydrator with Condenser	N/A	N/A	N/A	80 MMscfd	80 MMscfd	2019	COND2	31000227	New/Additional	Replacement Unit	N/A	N/A
							2019	FL1-FL3		 To Be Modified Existing (unchanged) 	To be Replaced To be Removed		
DEHY3	TEG Dehydrator	N/A	N/A	N/A	80 MMaafd	80 MMaafd	TBD	COND3	31000227	New/Additional	Replacement Unit	N/A	N/A
	with Condenser				MMscfd	MMscfd	TBD	FL1-FL3		 To Be Modified Existing (undergoal) 	To be Replaced To be Removed		
LPS	Low Pressure	N/A	N/A	N/A	N/A	N/A	2019	FL1-FL3	N/A	 Existing (unchanged) New/Additional 	 Replacement Unit 	N/A	N/A
	Separator						2019	FL1-FL3		To Be Modified	To be Replaced		
LOAD	Condensate Truck	N/A	N/A	N/A	656 BOPD	656 BOPD	N/A	N/A	40400250	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
	Loading		L				N/A	N/A		 To Be Modified 	To be Replaced		
FUG	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
							N/A	N/A		 To Be Modified 	To be Replaced	- // • •	
SSM	SSM Activities	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
55111	55	1.,,11	1.771	1.771	1.7/1	1.771	N/A	N/A		To Be Modified	To be Replaced		1.7/11
MALFU	MALFUNTION	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31089911	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
NCTION	EMISSIONS	11/21	18/24	11/24	1 N/ PA	18/24	N/A	N/A	51088811	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	18/74	18/25

¹ Unit numbers must correspond to unit numbers in the previous NOI unless a complete cross reference table of all units in both NOIs is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set. ⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at

http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5) Insignificant Activity citation (e.g. IA List	Date of Manufacture /Reconstruction ² Date of Installation	For Each Piece of I	Equipment, Check Onc
			Serial No.	Capacity Units	Item #1.a)	/Construction ²		
ROAD	Haul Road Emissions	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
			N/A	N/A	20.2.72.202.B.5	N/A		To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. The permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. Flares, Enclosed Combustion Devices, Catalytic Converters and Air Fuel Ratio (AFR) Controllers shall be reported on Table 2-C. For each AFR, note whether the AFR are aftermarket or integral to the engine.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
FL1	Flare 1	TBD	VOC, HAP	Facility Inlet, OT1-OT4, WT1-WT2, SKTK1/SKTK2, LPS, DEHY1-3	98	Engineering Est.
FL2	Flare 2	TBD	VOC, HAP	Facility Inlet, OT1-OT4, WT1-WT2, SKTK1/SKTK2, LPS, DEHY1-3	98	Engineering Est.
FL3	Flare 3	TBD	VOC, HAP	Facility Inlet, OT1-OT4, WT1-WT2, SKTK1/SKTK2, LPS, DEHY1-3	98	Engineering Est.
VRU1	Low Pressure Separator VRU #1	2019	VOC, HAPs	LPS	98	Engineering Est.
VRU2	Low Pressure Separator VRU Backup	2019	VOC, HAPs	LPS	98	Engineering Est.
COND1- COND3	BTEX Condenser	2019	VOC, HAP	DEHY1-DEHY3	98	Engineering Est.
CAT1-9, CAT11-12	Engine Catalysts	2019	CO, VOC, HAP	ENG1-9, ENG11-12	CO-85, VOC/HAP-73	Engineering Est.
¹ List each con	ntrol device on a separate line. For each control device, list all er	nission units c	ontrolled by the control device.			

Table 2-D: Maximum Emissions (under normal operating conditions)

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-1. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

	N	Ox	C	0	V	OC	S	Dx	P	M	PM	[10 ¹	PM	2.5 ¹	Н	2S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG2	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG3	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG4	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG5	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG6	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG7	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG8	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG9	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG11	1.90	8.33	8.91	39.04	6.06	26.56	0.14	0.59	0.12	0.53	0.12	0.53	0.12	0.53	-	-	-	-
ENG12	1.90	8.33	8.91	39.04	6.06	26.56	0.14	0.59	0.12	0.53	0.12	0.53	0.12	0.53	-	-	-	-
HTR1	0.11	0.50	0.10	0.42	0.01	0.03	0.01	0.04	0.01	0.04	0.01	0.04	0.01	0.04	-	-	-	-
RB1	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
RB2	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
RB3	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
FL1-FL3 Pilot	0.67	2.94	1.34	5.86	0.98	4.29	0.01	0.02	0.03	0.13	0.03	0.13	0.03	0.13	-	-	-	-
FL1-FL3							Emissions	are not rou	ited to flai	e in unco	ntrolled so	cenario.						
Norm FL1-FL3																		
SSM							Emissions	are not rou	ited to flai	re in unco	ntrolled so	cenario.						
SKT1	-	-	-	-	13.83	60.58	-	-	-	-	-	-	-	-	-	-	-	-
SKT2	-	-	-	-	13.83	60.58	-	-	-	-	-	-	-	-	-	-	-	-
OT1	-	-	-	-	128.38	290.48	-	-	-	-	-	-	-	-	-	-	-	-
OT2	-	-	-	-	128.38	290.48	-	-	-	-	-	-	-	-	-	-	-	-
OT3	-	-	-	-	128.38	290.48	-	-	-	-	-	-	-	-	-	-	-	-
OT4	-	-	-	-	128.38	290.48	-	-	-	-	-	-	-	-	-	-	-	-
WT1	-	-	-	-	0.50	2.20	-	-	-	-	-	-	-	-	-	-	-	-
WT2	-	-	-	-	0.50	2.20	-	-	-	-	-	-	-	-	-	-	-	-
DEHY1	-	-	-	-	29.63	129.79	-	-	-	-	-	-	-	-	-	-	-	-
DEHY2	-	-	-	-	29.63	129.79	-	-	-	-	-	-	-	-	-	-	-	-
DEHY3	-	-	-	-	29.63	129.79	-	-	-	-	-	-	-	-	-	-	-	-
LPS	-	-	-	-	343.16	173.88	-	-	-	-	-	-	-	-	-	-	-	-
LOAD	-	-	-	-	62.76	10.28	-	-	-	-	-	-	-	-	-	-	-	-
FUG	-	-	-	-	4.87	21.33	-	-	-	-	-	-	-	-	-	-	-	-
SSM	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
ROAD	-	-	-	-	-	-	-	-	0.15	0.02	0.15	0.02	0.15	0.02	-	-	-	-
	40.71	105.04	202 (1	1412.07	1102.01	2501.15	4.02	10.54			2.02	16.72	2.02	16.72				
Totals	42.71	187.06	322.61	1413.05	1183.91	2504.46	4.23	18.54	-	-	3.82	16.73	3.82	16.73	-	-	-	-

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	N	Ox	С	0	VO	DC	S	Ox	PN	M ¹	PM	[10 ¹	PM2	2.5 ¹	Н	$_2S$	L	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG2	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG3	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG4	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG5	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG6	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG7	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG8	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG9	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG11	1.90 8.33 1.34 5.86 1.64 7.17 0.14 0.59 0.12 0.53 0.12 0.53 0.12 0.53 - - - 1.00 8.22 1.24 5.86 1.64 7.17 0.14 0.59 0.12 0.53 0.12 0.53 0.12 0.53 - - - -											-						
ENG12												-						
HTR1	0.11	0.50	0.10	0.42	0.01	0.03	0.01	0.04	0.01	0.04	0.01	0.04	0.01	0.04	-	-	-	-
RB1	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
RB2	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
RB3	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
FL1-FL3 Pilot	0.67	2.94	1.34	5.86	0.98	4.29	0.01	0.02	0.03	0.13	0.03	0.13	0.03	0.13	-	-	-	-
FL1-FL3	2.09	8.84	4.17	17.64	12.76	34.07	0.22	0.94	0.04	0.17	0.04	0.17	0.04	0.17	_	_	_	_
Norm	2.07	0.04	7.17	17.04	12.70	54.07	0.22					0.17	0.04	0.17				
SKT1									•	esented at								
SKT2									-	sented at								
OT1									· ·	esented at								
OT2									^	esented at								
OT3									<u>^</u>	esented at								
OT4									^	sented at								
WT1	Emissions Represented at FL1-FL3																	
WT2	Emissions Represented at FL1-FL3 Emissions Represented at FL1-FL3																	
DEHY1									•									
DEHY2									-	esented at								
DEHY3								Emissi	ons Repre	esented at	FL1-FL3							

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	N	Ox	C	0	V	DC	S	Ox	PI	M^1	PM	[10 ¹	PM2	2.5 ¹	Н	₂ S	Le	ead
Omt No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
LPS								Emissi	ons Repre	esented at	FL1-FL3							
LOAD	-	-	-	-	62.76	10.28	-	-	-	-	-	-	-	-	-	-	-	-
FUG	-	-	-	-	4.87	21.33	-	-	-	-	-	-	-	-	-	-	-	-
ROAD	-	-	-	-	-	-	-	-	0.15	0.02	0.15	0.02	0.15	0.02	-	-	-	-
Totals	44.80	195.90	54.44	237.81	119.49	236.96	4.45	19.48	4.01	16.92	4.01	16.92	4.01	16.92	-	-	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/apb/nermit/apb. nol html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

(https://www.env.nn	n.gov/aq0/ N			0		DC	S			M^2		10^2		2.5^2		$_2S$	Ιı	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	2.5 ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SSM				, i		10.00	10/111	ton/yr	10/111	ton/yr	10/111	ton/yr	10/111	tonyr	10/111	ton/yr	10/111	ton/yr
	-	-	-	-	-		2 10	0.05	15.00	0.10	15.00	0.10	15.00	0.10				
FL1-FL3 SSM	387.69	4.97	773.97	9.92	727.00	10.99	3.18	0.05	15.88	0.19	15.88	0.19	15.88	0.19	-	-	-	-
MALFUNCTION	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
Tatala	387.7	5.0	774.0	9.9	727.0	31.0	3.2	0.0	15.9	0.2	15.9	0.2	15.9	0.2				
Totals	387.7	5.0	//4.0	9.9	121.0	31.0	3.2	0.0	15.9	0.2	15.9	0.2	15.9	0.2				

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

□ I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit		Ox	C	0	V	DC	SO	Dx	P	М	PN	110	PM	[2.5	\Box H ₂ S of	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
,	Totals:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions.

Stack	Serving Unit Number(s)	Orientation	Rain Caps	Height Above	Temp.	Flow	v Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
ENG1	ENG1	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG2	ENG2	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG3	ENG3	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG4	ENG4	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG5	ENG5	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG6	ENG6	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG7	ENG7	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG8	ENG8	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG9	ENG9	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG11	ENG11	V	No	20	997	152.75	Unknown	Unknown	194.49	1.00
ENG12	ENG12	V	No	20	997	152.75	Unknown	Unknown	194.49	1.00
HTR1	HTR1	V	N	15	800	5.05	Unknown	Unknown	6.43	0.75
RB1	RB1	V	N	15	800	13.47	Unknown	Unknown	7.62	1.00
RB2	RB2	V	N	15	800	13.47	Unknown	Unknown	7.62	1.00
RB3	RB3	V	N	15	800	13.47	Unknown	Unknown	7.62	1.00
FL1	FL1	V	No	145	1832	0.11	Unknown	Unknown	65.60	0.83
FL2	FL2	V	No	145	1832	0.11	Unknown	Unknown	65.60	0.83
FL3	FL3	V	No	145	1832	0.11	Unknown	Unknown	65.60	0.83

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Formal I HA TA	P or 🗆	n-He ☑ HA TA	P or 🗆	Ben Ø HA TA			dehyde or 🗆 TAP		Here		Here	Name	Pollutant e Here or 🗆 TAP	Name	Pollutant e Here or 🛛 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	ENG1	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG2	ENG2	0.53	2.33	0.4	2.0	-	-	-	1	0.1	0.4								
ENG3	ENG3	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG4	ENG4	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG5	ENG5	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG6	ENG6	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG7	ENG7	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG8	ENG8	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG9	ENG9	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG11	ENG11	0.36	1.56	0.3	1.4	-	-	-	-	0.0	0.1								
ENG12	ENG12	0.36	1.56	0.3	1.4	-	-	-	-	0.0	0.1								
HTR1	HTR1	2.16E-03	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
RB1	RB1	0.01	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
RB2	RB2	0.01	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
RB3	RB3	0.01	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
FL1-FL3 Pilot	FL1-FL3 Pilot	0.01	0.03	-	-	0.0	0.0	3.9E-04	1.7E-03	-	-								
FL1-FL3 Norm	FL1-FL3 Norm	0.6	1.8	-	-	0.4	0.9	0.1	0.4	-	-								
FL1-FL3 SSM	FL1-FL3 SSM	17.0	0.3	-	-	13.9	0.2	0.7	0.0	-	-								
FL1-FL3	DEHY1				Emissie	ons Repres	ented at F	L1-FL3											
FL1-FL3	DEHY2				Emissie	ons Repres	ented at F	L1-FL3											
FL1-FL3	DEHY3				Emissi	ons Repres	ented at F	L1-FL3											

Stack No.	Unit No.(s)		HAPs	☑ HA	ldehyde .P or □ AP	☑ HA	exane P or □ AP	🗹 HA	zene .P or □ AP		dehyde or 🗆 TAP		Pollutant Here)r 🗆 TAP	Provide Name HAP (Here	Name	Pollutant e Here or 🗆 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FL1-FL3	SKT1				Emissie	ons Repres	sented at F	L1-FL3											
FL1-FL3	SKT2				Emissie	ons Repres	sented at F	L1-FL3											
FL1-FL3	OT1				Emissie	ons Repres	sented at F	L1-FL3											
FL1-FL3	OT2				Emissie	ons Repres	sented at F	L1-FL3											
FL1-FL3	OT3				Emissie	ons Repres	sented at F	L1-FL3											
FL1-FL3	OT4				Emissie	ons Repres	sented at F	L1-FL3											
FL1-FL3	WT1				Emissie	ons Repres	sented at F	L1-FL3											
FL1-FL3	WT2				Emissie	ons Repres	sented at F	L1-FL3											
FL1-FL3	LPS				Emissie	ons Repres	sented at F	L1-FL3											
N/A	LOAD	2.6	0.4	-	-	-	-	-	-	-	-								
N/A	FUG	0.3	1.4	-	-	0.3	1.1	0.0	0.1	-	-								
N/A	SSM	-	-	-	-	-	-	-	-	-	-								
ROAD	ROAD	-	-	-	-	-	-	-	-	-	-								
Tot	als:	26.0	28.1	4.7	20.5	14.6	2.4	0.9	0.5	0.8	3.6								

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value (btu/scf)	Hourly Usage (scf)	Annual Usage (mmscf)	% Sulfur	% Ash
ENG1	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG2	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG3	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG4	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG5	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG6	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG7	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG8	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG9	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG11	Natural Gas	Field Gas	1158	10440.9	91.46	Negligible	0
ENG12	Natural Gas	Field Gas	1158	10440.9	91.46	Negligible	0
HTR1	Natural Gas	Field Gas	1158	588.7	5.16	Negligible	0
RB1	Natural Gas	Field Gas	1158	1570.0	13.75	Negligible	0
RB2	Natural Gas	Field Gas	1158	1570.0	13.75	Negligible	0
RB3	Natural Gas	Field Gas	1158	1570.0	13.75	Negligible	0
FL1	Natural Gas	Field Gas	1158	1270.8	11.13	Negligible	0
FL2	Natural Gas	Field Gas	1158	1270.8	11.13	Negligible	0
FL3	Natural Gas	Field Gas	1158	1270.8	11.13	Negligible	0

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
SKT1	40400311	Produced Water	Produced Water	8.2	53	72.59	11.20	81.88	12.88
SKT2	40400311	Produced Water	Produced Water	8.2	53	72.59	11.20	81.88	12.88
OT1	40400311	Condensate	Condensate	6.6	55	66.49	8.66	75.67	10.09
OT2	40400311	Condensate	Condensate	6.6	55	66.49	8.66	75.67	10.09
OT3	40400311	Condensate	Condensate	6.6	55	66.49	8.66	75.67	10.09
OT4	40400311	Condensate	Condensate	6.6	55	66.49	8.66	75.67	10.09
WT1	40400315	Produced Water	Produced Water	8.2	0	85.02	11.18	94.20	12.83
WT2	40400315	Produced Water	Produced Water	8.2	0	85.02	11.18	94.20	12.83

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	d Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Cap	acity	Diameter (M)	Vapor Space	Co (from Ta	llor ble VI-C)	Paint Condition (from Table VI-	Annual Throughput (gal/yr)	Turn- overs (per year)
			LK below)	LK below)	(bbl)	(M ³)		(M)	Roof	Shell	C)	(gal/yr)	(per year)
SKT1	2019	Produced Water	N/A	FX	1000 bbl	1,590	4.75	9.1	Tan	Tan	Good	3,409,921	81
SKT2	TBD	Produced Water	N/A	FX	1000 bbl	1,590	4.75	9.1	Tan	Tan	Good	3,409,921	81
OT1	2019	Condensate	N/A	FX	500 bbl	795	3.66	4.9	Tan	Tan	Good	2,515,601	120
OT2	2019	Condensate	N/A	FX	500 bbl	795	3.66	4.9	Tan	Tan	Good	2,515,601	120
OT3	2019	Condensate	N/A	FX	500 bbl	795	3.66	4.9	Tan	Tan	Good	2,515,601	120
OT4	2019	Condensate	N/A	FX	500 bbl	795	3.66	4.9	Tan	Tan	Good	2,515,601	120
WT1	2019	Produced Water	N/A	FX	500 bbl	795	3.66	4.9	Tan	Tan	Good	3,294,962	157
WT2	2019	Produced Water	N/A	FX	500 bbl	795	3.66	4.9	Tan	Tan	Good	3,294,962	157

Roof Type Seal Type, Welded Tank Seal Type			Seal Type, Rive	Roof, Shell Color	Paint Condition	
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$^{3} = 42.0$ gal				BL : Black	
					OT: Other (specify)]

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

	Materia	al Processed			Material Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Mixed Hydrocarbons	Oil (BOPD)	Liquid	656	Mixed Hydrocarbons	Oil (BOPD)	Liquid	656
	Produced Water (BWPD)	Liquid	430		Produced Water (BWPD)	Liquid	430
	Natural Gas (MMSCFD)	Gas	240		Natural Gas (MMSCFD)	Gas	240

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
	Pollutant(s)	Pollutant(s) Manufacturer Image: Image	Pollutant(s)ManufacturerModel No.II	Pollutant(s)ManufacturerModel No.Serial No.Image: Serial No. <td>Pollutan(s)ManufacturerModel No.Serial No.Sample FrequencyII<t< td=""><td>Pollutant(s)ManufacturerModel No.Serial No.Sample Prequence Prequence TimeIII</td><td>Pollutan(s)ManufacturerModel No.Serial No.Sample Prequency TimeAveraging TimeRangeIII<t< td=""><td>Pollutant(s)ManufacturerModel No.Serial No.Sample FrequencyAveraging TimeRangeSensitivityII<</td></t<></td></t<></td>	Pollutan(s)ManufacturerModel No.Serial No.Sample FrequencyII <t< td=""><td>Pollutant(s)ManufacturerModel No.Serial No.Sample Prequence Prequence TimeIII</td><td>Pollutan(s)ManufacturerModel No.Serial No.Sample Prequency TimeAveraging TimeRangeIII<t< td=""><td>Pollutant(s)ManufacturerModel No.Serial No.Sample FrequencyAveraging TimeRangeSensitivityII<</td></t<></td></t<>	Pollutant(s)ManufacturerModel No.Serial No.Sample Prequence Prequence TimeIII	Pollutan(s)ManufacturerModel No.Serial No.Sample Prequency TimeAveraging TimeRangeIII <t< td=""><td>Pollutant(s)ManufacturerModel No.Serial No.Sample FrequencyAveraging TimeRangeSensitivityII<</td></t<>	Pollutant(s)ManufacturerModel No.Serial No.Sample FrequencyAveraging TimeRangeSensitivityII<

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must c	orrespond throughout the	application package	Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
N/A								

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \square By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
ENG1	mass GHG	22160.71	0.04	0.37							22161.1	
2			11.028704	9.2522682								22181.0
ENG2	mass GHG	22160.71	0.04	0.37							22161.1	
	CO ₂ e	22160.71	11.03	9.25							 	22181.0
ENG3	mass GHG	22160.71	0.04	0.37			 				 22161.1	22101.0
			11.028704	9.2522682							 221 (1.1	22181.0
ENG4	mass GHG	22160.71	0.04	0.37							22161.1	22101.0
	CO ₂ e	22160.71	11.03	9.25 0.37							221 (1 1	22181.0
ENG5	mass GHG	22160.71	0.04	0.37 9.2522682				1			 22161.1	22191.0
											22161.1	22181.0
ENG6	mass GHG CO ₂ e	22160.71 22160.71	0.04	0.37 9.25			-				 22161.1	22181.0
	2	22160.71	0.04	0.37							22161.1	22181.0
ENG7	CO ₂ e			9.2522682							 22101.1	22181.0
	mass GHG	22160.714	0.04	0.37							22161.1	22101.0
ENG8	CO ₂ e	22160.71	11.03	9.25							22101.1	22181.0
	mass GHG	22160.71	0.04	0.37							22161.1	22101.0
ENG9	CO ₂ e			9.2522682			 				22101.1	22181.0
	mass GHG	6716.00	0.01	0.12							6716.1	22101.0
ENG11	CO ₂ e	6716.00	3.48	2.92							 0/10.1	6722.4
	mass GHG	6716.00	0.01	0.12							6716.1	0722.4
ENG12	CO ₂ e	6716	3.4800165	2.9194769							 0/10.1	6722.4
	mass GHG	519.93	0.00	0.31							520.2	0722.1
HTR1	CO ₂ e	519.93	0.22	7.76							02012	527.9
	mass GHG	1386.47	0.00	0.83							1387.3	02119
RB1	CO ₂ e		0.5755123	20.692649							100/10	1407.7
	mass GHG	1386.47	0.00	0.83							1387.3	
RB2	CO ₂ e	1386.47	0.58	20.69								1407.7
DDA	mass GHG	1386.47	0.00	0.83							1387.3	
RB3	CO ₂ e		0.5755123	20.692649								1407.7
	mass GHG	6326.12	0.01	6.34							6332.5	
FL1	CO ₂ e	6326.12	2.66	158.55				1				6487.3
EF A	mass GHG	6326.12	0.01	6.34							6332.5	
FL2	CO ₂ e	6326.1213	2.6571832	158.55006								6487.3
EL 2	mass GHG	6326.12	0.01	6.34							6332.5	
FL3	CO ₂ e	6326.12	2.66	158.55								6487.3
Tetal	mass GHG	236,536	0	25			 				236,562	
Total	CO ₂ e	236,536	116	635								237,287

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a mass basis is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

⁶ For Heaters/Boilers, CO₂ CH4, N2O emissions calculated according to §98.233(z)(1) and (2).

Tab 3Section 3 - Application Summary

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The <u>Process</u> <u>Summary</u> shall include a brief description of the facility and its processes.

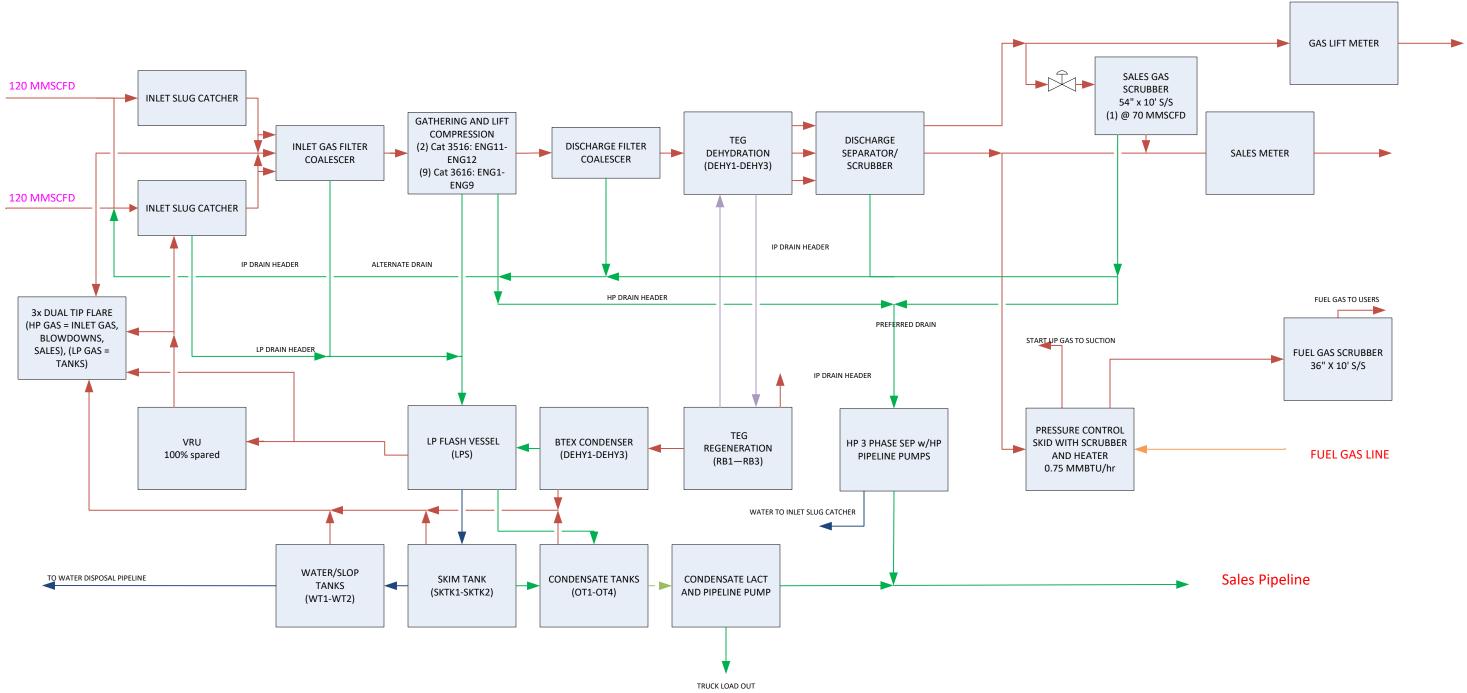
<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

XTO Energy Inc. (XTO) is submitting this updated initial Title V Operating permit application to the New Mexico Environmental Department (NMED) for the Wildcat Compressor Station. This application is submitted under section 20.2.70.200.A of the New Mexico Administrative Code (NMAC).

The Wildcat Compressor Station is a typical compressor station with natural gas engines, dehydration, storage tanks, and flares. The facility is currently authorized under New Source Review (NSR) Permit 7474-M2, issued on February 11, 2022. XTO is submitting this updated application to reflect the current issuance of NSR Permit 7474-M2.

Routine SSM combustion emissions are included with the regular emissions of the facility. SSM emissions from equipment maintenance are routed to either the low pressure or high-pressure flare header (FL1/FL2/FL3). SSM-related VOC emissions (tank landings, cleanings, pigging, compressor blowdowns, equipment blowdowns, etc.) are included at a rate of 10 tons per year per NMAQB guidance. Further detailed calculations are included in the application.

Tab 4 Section 4 - Process Flow Sheet

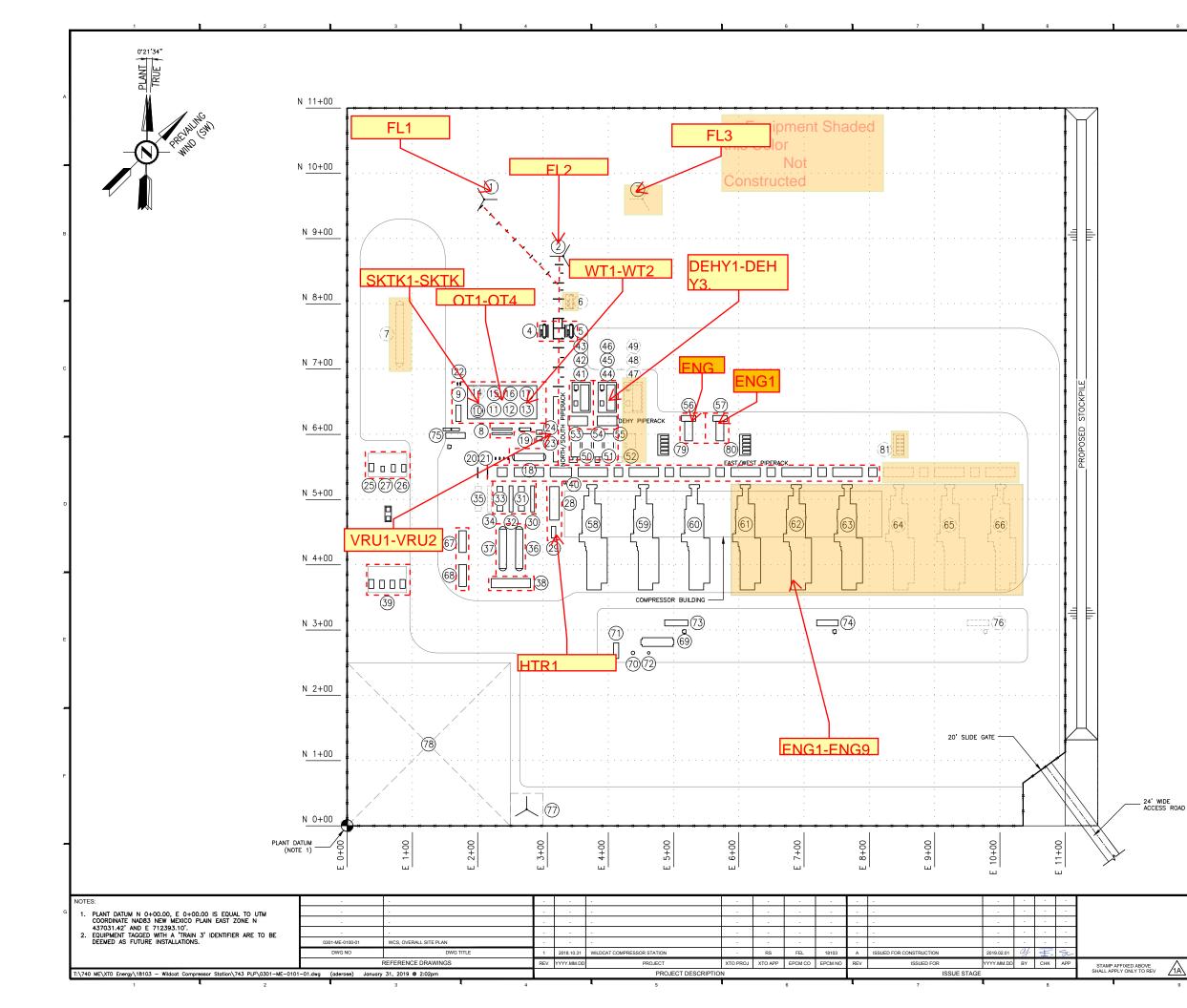

Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow diagram is included.

XTO DELAWARE BASIN WILDCAT COMPRESSOR STATION


Tab 5Section 5 - Plot Plan Drawn To Scale

Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is included.

	LEGEND:	
	1. FL-1505 TR. 1 HP/LP FLARE 2. FL-2505 TR. 2 HP/LP FLARE	A
	3. FL-3505 TR. 3 HP/LP FLARE (FUTURE) 4. PK-1501 TR. 1 FLARE KNOCKOUT SKID 5. PK-2501 TR. 2 FLARE KNOCKOUT SKID	
	 PK-3501 TR. 3 FLARE KNOCKOUT SKID (FUTURE) TK-5071 NGL STORAGE (FUTURE) 	Ļ
	8. P-5072/73 NGL PIPELINE PUMPS 9. PK-5074 LACT UNIT 10. TK-5051 SKIM TANK	
	11. TK-5052 PRODUCED WATER TANK 12. TK-5053 CONDENSATE TANK 13. TK-5054 CONDENSATE TANK	
	14. TK-5061 SKIM TANK (FUTURE) 15. TK-5062 PRODUCED WATER TANK 16. TK-5063 CONDENSATE TANK	в
	17. TK–5064 CONDENSATE TANK 18. PV–5001 L.P. 3–PHASE SEPARATOR 19. PV–5041 H.P. 3–PHASE SEPARATOR	
	20. P–5002/03 CONDENSATE TRANSFER PUMPS 21. P–5004/05 WATER TRANSFER PUMPS	
	22. P-5066/67 PRODUCED WATER PIPELINE PUMPS 23. C-5010 VAPOR RECOVERY UNIT 24. C-5020 VAPOR RECOVERY UNIT	F
	25. PL-4003 SALES GAS PIG LAUNCHER 26. PL-4012/13 LIFT GAS PIG LAUNCHERS 27. PL-4014 CONDENSATE PIG LAUNCHER	
	28. PK-7001 FUEL GAS SCRUBBER SKID 29. PK-7004 LINE HEATER 30. F-1001 TR. 1 INLET GAS FILTER COALESCER	с
	31. PK-1001A TR. 1 INLET FILTER SKID 32. F-2001 TR. 2 INLET GAS FILTER COALESCER 33. PK-2001A TR.2 INLET FILTER SKID	
	34. F–3001 TR. 3 INLET GAS FILTER COALESCER (FUTURE) 35. PK–3001A TR. 3 INLET FILTER SKID (FUTURE)	
	36. PV-0031 TR. 1 INLET SLUG CATCHER 37. PV-0041 TR. 2 INLET SLUG CATCHER 38. PK-0100 INLET HEADER SKID	╞
	39. PR-0011/12/13/14 INLET PIG RECEIVERS 40. PV-1700 TR. 1&2 HP FLARE HEADER BLOWCASE 41. PK-1420 TR. 1 TEG REGEN SKID REBOILER	
	42. PK-1430 TR. 1 BTEX SKID 43. TK-1421 TR. 1 GLYCOL MAKE-UP TANK 44. PK-2420 TR. 2 TEG REGEN SKID REBOILER	
	45. PK-2430 TR. 2 BTEX SKID 46. TK-2421 TR. 2 GLYCOL MAKE-UP TANK 47. PK-3420 TR. 3 TEG REGEN SKID REBOILER (FUTURE)	D
	48. PK-3430 TR. 3 BTEX SKID (FUTURE) 49. TK-3421 TR. 3 GLYCOL MAKE-UP TANK (FUTURE) 50. PK-1410 TR. 1 DEHY/DISCHARGE SKID	
	51. PK-2410 TR. 2 DEHY/DISCHARGE SKID 52. PK-3410 TR. 3 DEHY/DISCHARGE SKID (FUTURE)	L
	53. PK-1400 TR. 1 OUTLET FILTER SKID 54. PK-2400 TR. 2 OUTLET FILTER SKID 55. PK-3400 TR. 3 OUTLET FILTER SKID (FUTURE)	
	56. C-1040 3 STG. GAS SUPPLEMENTAL COMPRESSOR. 1 57. C-1050 3 STG. GAS SUPPLEMENTAL COMPRESSOR. 2 58. C-1010 TR. 1 4 STG. GAS COMPRESSOR 1	
	59. C-1020 TR. 1 4 STG. GAS COMPRESSOR 2 60. C-1030 TR. 1 4 STG. GAS COMPRESSOR 3 61. C-2010 TR. 2 4 STG. GAS COMPRESSOR 1	Е
	62. C-2020 TR. 2 4 STG. GAS COMPRESSOR 2 63. C-2030 TR. 2 4 STG. GAS COMPRESSOR 3 64. C-3010 TR. 3 4 STG. GAS COMPRESSOR 1 (FUTURE)	
	65. C–3020 TR. 3 4 STG. GAS COMPRESSOR 2 (FUTURE) 66. C–3030 TR. 3 4 STG. GAS COMPRESSOR 3 (FUTURE) 67. PK–4002 LIFT GAS SCRUBBER SKID	
	68. PK-4020 SALES GAS SCRUBBER SKID 69. PK-6001 INSTRUMENT AIR SKID 70. PV-6002 INSTRUMENT AIR RECEIVER	F
	71. PV-6003 START AIR VOLUME TANK 72. PV-6004 INSTRUMENT AIR WET TANK 73. PDC-1000 TR. 1 MCC BUILDING	
	74. PDC-2000 TR. 2 MCC BUILDING 75. PDC-4000 MCC BUILDING	F
	76. PDC–3000 TR. 3 MCC BUILDING (FUTURE) 77. SCADA TOWER 78. SUB STATION	
)AD	79. TK–1601/02/03/04/05 TR. 1 DAY TANKS 80. TK–2601/02/03/04/05 TR. 2 DAY TANKS 81. TK–3601/02/03/04/05 TR. 3 DAY TANKS (FUTURE)	
	<u>GRAPHIC SCALE</u>	╞
	0 50 FT 100 FT	
	XTO FACILITY: WILDCAT COMPRESSOR STATION	
	WILDCAT COMPRESSOR STATION FACILITY PLOT	G
	ENERGY PLAN	

SCALE: 1/64"=1' DWG: 0301-ME-0101-01

REV: 1A

Tab 6Section 6 - All Calculations

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

XTO Energy Inc.

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Caterpillar 3616TA (E-1 to E-9) and 3516TA (E-11 to E-12)

Emission factors for nitrogen oxides (NOx), carbon monoxide (CO), formaldehyde, and volatile organic compounds (VOC) are based on manufacturer's data. Emissions of particulate matter (PM/PM_{10} and $PM_{2.5}$) were calculated using AP-42 Table 3.2-3 factors. PM_{10} and $PM_{2.5}$ emissions are set equal to PM emissions. SO₂ emissions are based on the units' fuel consumption and an H2S content of 5 grains per 100 standard cubic feet (5 gr/100 scf). Hazardous Air Pollutants (HAPs) except for formaldehyde were calculated using AP-42 factors.

Line Heater (HTR1) and Glycol Regenerator Heaters (RB1 to RB3)

Emissions of NOx, CO, VOC, HAP, and $PM/PM_{10}/PM_{2.5}$ are based on AP-42, Chapter 1, Tables 1.4-1, 1.4-2, and 1.4-3 emission factors. PM_{10} and $PM_{2.5}$ emissions are set equal to PM emissions. SO₂ emissions are based on the unit's fuel consumption and a maximum H2S content of 5 grains per 100 standard cubic feet (5 gr/100 scf).

SSM/Emergency Flares (FL1 – FL3)

The facility will use three (3) dual-tip flares. NOx and CO emissions are based on factors from the Texas Commission on Environmental Quality (TCEQ) publication RG-360A/11. VOC emissions were calculated using a material balance and the manufacturer's guaranteed destruction efficiency (98%). Since gas can be routed to any or all of the flares, they are illustrated as one combine emission point. The flares have a control efficiency of 98%, with manufacturer documentation provided in Section 7 of the application. SSM activities routed to the flares could include process vessel purging and maintenance blowdowns for process equipment, high pressure gas flaring, and low pressure separator gas during VRU downtime. Tank vapors and 2% of the low pressure separator gas not collected by the VRU are continuously routed to the low pressure side of the flare.

Triethylene Glycol Dehydrators (DEHY1-DEHY3)

Emissions from the dehydrators are calculated using BR&E ProMax simulation software. Flash tank vapors are routed back to mixing with the inlet gas. Each dehydrator is equipped with a condenser. Condensed liquids are routed to the skim tank and any remaining gas is burned at the low-pressure side of flares FL1-FL3.

Storage Tanks (SKT1-SKT2, OT1-OT4, WT1-WT2)

Flashing, working and breathing emissions from the skim tank, oil tanks, and water tanks were calculated using BR&E ProMax simulation software. Emissions from the tanks are controlled using the low-pressure side of flares FL1-FL3. The simulation reports are included in Section 7.

Truck Loading (LOAD)

Uncontrolled emissions from oil loading of trucks were calculated using Equation 1 of AP-42 Section 5.2. Maximum slop oil loading rates are calculated using 656 BOPD. Relevant portions of AP-42 Section 5.2 are included in Section 7. Oil truck loading will be uncontrolled.

Piping Component Fugitive Emissions (FUG)

Facility fugitive emissions were calculated using TCEQ's "Air Permit Technical Guidance for Chemical Sources – Fugitive Guidance" document, and conservatively assumed component counts. Relevant portions of the TCEQ document are included in Section 7.

Startup, Shutdown, and Maintenance (SSM)

SSM emissions not routed to the flare system were assumed equal to the flat 10 tpy of VOC per State guidance. Specific SSM emissions include small equipment blowdowns, tank emptying and refilling, tank roof landing, and miscellaneous activities. Other SSM emissions are routed to the flare and calculated in accordance with the flare methodology above.

Haul Road Fugitive Emissions

Fugitive haul road emissions were calculated using Equations 1a and 2 of AP-42 Section 13.2.2. Relevant portions of AP-42 Section 13.2.2 are included in Section 7.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons. 1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

WILDCAT COMPRESSOR STATION

FACILITY EMISSIONS SUMMARY

					EMISSIONS SU	JMMARY TAB	LE								
EMISSION SOURCE DESCRIPTION	FACILITY IDENTIFICATION	STACK NUMBER	N	Ox	C	20		OC DES HAPs)	s	O ₂	PM	10 & 2.5	H	APs	CO2e
	NUMBER		lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	ТРҮ
Caterpillar G3616 Natural Gas Compressor Engine	ENG1	ENG1	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG2	ENG2	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG3	ENG3	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG4	ENG4	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG5	ENG5	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG6	ENG6	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG7	ENG7	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG8	ENG8	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG9	ENG9	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar 3516J TA Natural Gas Compressor Engine	ENG11	ENG11	1.90	8.33	1.34	5.86	1.64	7.17	0.14	0.59	0.12	0.53	0.36	1.56	6722
Caterpillar 3516J TA Natural Gas Compressor Engine	ENG12	ENG12	1.90	8.33	1.34	5.86	1.64	7.17	0.14	0.59	0.12	0.53	0.36	1.56	6722
Fuel Line Heater (0.75 MMBtu/hr)	HTR1	HTR1	0.11	0.50	0.10	0.42	0.01	0.03	0.01	0.04	0.01	0.04	0.002	0.01	528
Glycol Regenator Heater (2.0 MMBtu/hr)	RB1	RB1	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.006	0.03	1408
Glycol Regenator Reboiler (2.0 MMBtu/hr)	RB2	RB2	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.006	0.03	1408
Glycol Regenator Reboiler (2.0 MMBtu/hr)	RB3	RB3	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.006	0.03	1408
Total Flare Pilot/Purge Emissions	FL1-FL3 Pilot	FL1-FL3 Pilot	0.67	2.94	1.34	5.86	0.98	4.29	0.01	0.02	0.03	0.13	0.01	0.03	3519
Total Flare Normal Operations	FL1-FL3 Norm	FL1-FL3 Norm	2.09	8.84	4.17	17.64	12.76	34.07	0.22	0.94	0.04	0.17	0.62	1.78	9712
Total Flare SSM	FL1-FL3 SSM	FL1-FL3 SSM	387.69	4.97	773.97	9.92	727.00	10.99	3.18	0.05	15.88	0.19	16.96	0.27	6232
TEG Dehydrator with Condenser	DEHY1	FL1-FL3						Emiss	sions Represe	nted at FL1-F	L3				
TEG Dehydrator with Condenser	DEHY2	FL1-FL3						Emiss	sions Represe	nted at FL1-F	L3				
TEG Dehydrator with Condenser	DEHY3	FL1-FL3						Emiss	sions Represe	nted at FL1-F	L3				
Skim Tank	SKT1	FL1-FL3						Emiss	sions Represe	nted at FL1-F	L3				
Skim Tank (Backup)	SKT2	FL1-FL3						Emiss	sions Represe	nted at FL1-F	L3				
Condensate Tank	OT1	FL1-FL3						Emiss	sions Represe	nted at FL1-F	L3				
Condensate Tank	OT2	FL1-FL3						Emiss	sions Represe	nted at FL1-F	L3				

WILDCAT COMPRESSOR STATION

FACILITY EMISSIONS SUMMARY

				1	EMISSIONS SU	JMMARY TAB	LE								
EMISSION SOURCE DESCRIPTION	FACILITY IDENTIFICATION	STACK NUMBER	N	Ox	C	20	V((INCLUE	OC DES HAPs)	s	D ₂	PM	0 & 2.5	н	APs	CO2e
	NUMBER		lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	ТРҮ
Condensate Tank	OT3	FL1-FL3						Emiss	ions Represei	nted at FL1-Fl	L3				
Condensate Tank	OT4	FL1-FL3						Emiss	ions Represei	nted at FL1-Fl	L3				
Produced Water Tank	WT1	FL1-FL3						Emiss	ions Represei	nted at FL1-Fl	L3				
Produced Water Tank	WT2	FL1-FL3						Emiss	ions Represei	nted at FL1-Fl	L3				
low Pressure Separator	LPS	FL1-FL3						Emiss	ions Represer	nted at FL1-Fl	L3				
Condensate Truck Loading	LOAD	N/A	-	-	-	-	62.76	10.28	-	-	-	-	2.57	0.42	-
Pugitive Emissions	FUG	N/A	-	-	-	-	4.87	21.33	-	-	-	-	0.33	1.42	-
SM Activities	SSM	N/A	-	-	-	-	-	10.00	-	-	-	-	-	-	-
ROAD EMISSIONS	ROAD	ROAD	-	-	-	-	-	-	-	-	0.15	0.02	-	-	-
MALFUNCTION EMISSIONS	MALFUNCTION	MALFUNCTIO N	-	-	-	-	-	10.00	-	-	-	-	-	-	-
							X	OC	[1		1		
				Ox	0		(INCLUE	DES HAPs)		O ₂		0 & 2.5		APs	CO2e
TOTAL FACILITY WIDE EM	SSIONS	·	1b/hr 432.49	TPY 200.87	1b/hr 828.41	TPY 247.74	1b/hr 846.49	TPY 267.95	1b/hr 7.63	TPY 19.52	1b/hr 19.89	TPY 17.12	1b/hr 26.01	TPY 28.14	TPY 237,288

WILDCAT COMPRESSOR STATION

Methodology for Burner Calculations

Burner Emission Calculations

AP 42 Emission Factors: Tables 1.4-1, 1.4-2, & 1.4-3

Emission Rate_x (lb/hr) = Burner Rating (MMBTU/hr) * EF_x (lb/MMSCF) / 1020 (Btu/scf) * Heating Value of Fuel Gas (BTU/SCF) / 1020 (Btu/scf) + 25%

Annual Emission Rate_x (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

Mass Balance - SO₂ & H₂S Calculations

H₂S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * H₂S_{WEIGHT %} * (1 - DRE)

P = Pressure (psia), V = Fuel Consumed in a hour (ft³/hr), 10.73 = Ideal Gas Constant, T = Temperature (°R)

Uncontrolled H₂S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * H₂S_{WEIGHT %}

SO2 Emission Rate (lb/hr) = Uncontrolled H2S Mass Rate (lb/hr) * SO2 Conversion Efficiency * (MW of SO2 (lb/lb-mol) / MW of H2S (lb/lb-mol))

Annual Emission Rate (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

MW_{GAS} = Molecular Weight of the Gas, H₂S_{WEIGHT} = Weight Percent of the H₂S in the Fuel Gas, DRE = Burner Combustion Efficiency of H₂S

WILDCAT COMPRESSOR STATION

Methodology for Engine Calculations

Engine Emission Calculations

Manufacturer's Data or NSPS Subpart JJJJ Limit Calculations

Emission Rate_X (lb/hr) = Emission Factor_X (g/hp-hr) * Rated hp / 453.6 (g/lb)

Annual Emission Rate_X (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

AP 42 Emission Factors

 $Emission Rate_{X} (lb/hr) = Fuel Consumption (MMBTU/hp-hr) * EF_{X} (lb/MMBTU) * Rated hp$

Annual Emission Rate_{χ} (TPY) = Emission Rate_{χ} (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

WILDCAT COMPRESSOR STATION

Methodology for Flare Calculations

Flare Calculations

VOC Flare Calculations - Uses the Ideal Gas Law for Mixtures

The mass flow rate of VOCs to the flare were modeled using Promax. The mass rate was then reduced by the destruction efficiency of the flare (98%).

NOx & CO Calculations - TCEQ Emission Factors Used

NOx (lb/day) = Heating Value (BTU/ft³) * EF (lb/MMBTU) * V (ft³/Day) / 10^{6} (BTU/MMBTU)

CO (lb/day) = Heating Value (BTU/ft³) * EF (lb/MMBTU) * V (ft³/Day) / 10⁶ (BTU/MMBTU)

COEF = 0.5496 or 0.2755, NOxEF = 0.138, EF = Emission Factor, V = Volume of Gas in a Day

SO2 & H2S Calculations - Mass Balance

H₂S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * H₂S_{WEIGHT %} * (1 - DRE)

P = Pressure (psia), V = Fuel Consumed in a hour (ft³/hr), 10.73 = Ideal Gas Constant, T = Temperature (°R)

Uncontrolled H₂S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * H₂S_{WEIGHT %}

SO₂ Emission Rate (lb/hr) = Uncontrolled H₂S Mass Rate (lb/hr) * SO₂ Conversion Efficiency * (MW of SO₂ (lb/lb-mol) / MW of H₂S (lb/lb-mol))

Annual Emission Rate (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

 MW_{GAS} = Molecular Weight of the Gas, $H_2S_{WEIGHT\%}$ = Weight Percent of the H_2S in Gas Stream, DRE = Flare Destruction Efficiency of H_2S

XTO ENERGY, INC. WILDCAT COMPRESSOR STATION COMPRESSOR ENGINES

									Uı	ncontrolle	d Emissio	ns Calc	ulation	s											
					Ma	anufacti	urer's D	ata		AP-42 Facto	nrs														
							p-hr ²	utu		lb/MMBtu					lb/h	r ⁵						tpy ⁵			
Source ID	Unit Description	Annual Hours	Rated HP	MMbtu/hp- hr ¹ (HHV)	NOx	со		нсно	SO ₂	PM _{10 & 2.5}	Acetal- dehyde	NOx	со	voc	нсно		PM _{10 & 2.5}	Acetal- dehyde	NOx	со	voc	нсно	SO ₂	PM _{10 & 2.5}	Acetal- dehyde
ENG1	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	0.30	3.05	1.27	0.15	0.01121	0.01006	0.00836	4.13	33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG2	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	0.30	3.05	1.27	0.15	0.01121	0.01006	0.00836	4.13	33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG3	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	0.30	3.05	1.27	0.15	0.01121	0.01006	0.00836	4.13	33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG4	Engine Caterpillar G3616													14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG5	Caterpillar G3616 Solution Solution <td>33.62</td> <td>14.32</td> <td>1.65</td> <td>0.43</td> <td>0.39</td> <td>0.32</td> <td>18.11</td> <td>147.26</td> <td>62.72</td> <td>7.24</td> <td>1.88</td> <td>1.69</td> <td>1.40</td>												33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG6	Caterpillar G3616												33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG7	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	0.30	3.05	1.27	0.15	0.01121	0.01006	0.00836	4.13	33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG8	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	0.30	3.05	1.27	0.15	0.01121	0.01006	0.00836	4.13	33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG9	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	0.30	3.05	1.27	0.15	0.01121	0.01006	0.00836	4.13	33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG11	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008762	0.50	2.93	1.56	0.40	0.01121	0.01006	0.00836	1.90	8.91	6.06	1.22	0.14	0.12	0.10	8.33	39.04	26.56	5.33	0.59	0.53	0.44
ENG12	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008762	0.50	2.93	1.56	0.40	0.01121	0.01006	0.00836	1.90	8.91	6.06	1.22	0.14	0.12	0.10	8.33	39.04	26.56	5.33	0.59	0.53	0.44
	ed on the Fuel Consumption Rate nission factor (g/hp-hr) includes H				-	o Report (3 100% Lo	ad.																	
³ SO ₂ Emissio	ons were calculated using the emis	sion factor fro	m Table 3.2	1-2										Total F	mission	s Per Pol	llutant (TPY	n	NOx	со	voc	нсно	SO2	PM _{10 & 2.5}	Acetal- dehyde
	n Factor = 7.71E-05 lb/MMBTU + 7													Totall				·	179.60	1403.38	617.59	75.84	18.13	16.26	13.51
³ 25% safety f	actor was added to NOx on all eng	gines. 25% safe	ty factor w	as added to VOC o	n 3516. VO	C lb/hr ra	tes include	e acetaldehy	de emissions	s.															

XTO ENERGY, INC. WILDCAT COMPRESSOR STATION

COMPRESSOR ENGINES	

										Co	ontrolle	ed Emi	ssions Cal	culations	;													
								м	lanufacti (w/ co	urer's D ontrol)	ata		AP-42 Fact	ors	1													
					Cont	rol Effici	ency (%)		• •	p-hr ²			lb/MMBt	1 ³				1b/	hr ⁴						tp	y		
Source ID	Unit Description	Annual Hours	Rated HP	MMbtu/hp- hr ¹ (HHV)	со	voc	нсон	NOx	со	VOC ²	нсно	SO ₂	PM _{10 & 2.5}	Acetal- dehyde	NOx	со	voc	нсно	SO ₂	PM _{10 & 2.5}	Acetal- dehyde	NOx	со	voc	нсно	SO ₂	PM _{10 & 2.5}	Acetal- dehyde
ENG1	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG2	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG3	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG4	Gas Compressor Engine														4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG5	44 Gas Compressor Engine 8760 5000 0.007664 85.0 73.0 73.0 0.30 0.46 0.34 0.04 0.0112 0.01006 0.00 Catornillar C3616 Natural Catornillar C361														4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG6	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG7	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG8	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG9	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG11	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008762	85.0	73.0	73.0	0.50	0.44	0.42	0.11	0.0112	0.01006	0.00836	1.90	1.34	1.64	0.33	0.14	0.12	0.03	8.33	5.86	7.17	1.44	0.59	0.53	0.12
ENG12	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008762	85.0	73.0	73.0	0.50	0.44	0.42	0.11	0.0112	0.01006	0.00836	1.90	1.34	1.64	0.33	0.14	0.12	0.03	8.33	5.86	7.17	1.44	0.59	0.53	0.12
	servatively based on the Fuel Consur mission factor (g/hp-hr) includes HCI																											
³ SO ₂ Emissi	ons were calculated using the emissio	on factor from T	able 3.2-2														T-1-1	F		ollutant (TP		NOx	со	voc	нсно	SO ₂	PM _{10 & 2.5}	Acet- aldehyde

⁴PM Emission Factor = 7.71E-05 lb/MMBTU + 7.71E-05 lb/MMBTU + 9.91E-03 lb/MMBTU = 0.01006 lb/MMBTU

525% safety factor was added to NOx on all engines. 25% safety factor was added to VOC on 3516. VOC lb/hr rates include acetaldehyde emissions.

Total Emissions Per Pollutant (TPY)

179.60 210.51 166.75 20.48 18.13

16.26

3.65

XTO ENERGY, INC. WILDCAT COMPRESSOR STATION COMPRESSOR ENGINES

					Gree	enhouse	Gas Emi	ssions C	alculati	ons								
					Engine Data		FR 98 tors ²											
					g/hp-hr	lb/M	MBtu			lb/hr					tj	ру		
Source ID	Unit Description	Annual Hours	Rated HP	MMbtu/hp- hr ¹ (HHV)	CO2	CH4	N ₂ O	CO2	CH4	N ₂ O	CH ₄ as CO2e	N ₂ O as CO2e	CO2	CH4	N ₂ O	CH ₄ as CO2e	N ₂ O as CO2e	Total CO2e
ENG1	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG2	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG3	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG4	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG5	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG6	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG7	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG8	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG9	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG11	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008762	504	0.002205	0.000221	1533.33	0.0267	0.0027	0.67	0.79	6716.00	0.12	0.01	2.92	3.48	6722.40
ENG12	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008762	504	0.002205	0.000221	1533.33	0.0267	0.0027	0.67	0.79	6716.00	0.12	0.01	2.92	3.48	6722.40
¹ HHV is based	l on the Fuel Consumption Rate @ 75% :	Load from the	e Gas Engir	e Rating Pro Report			1											
² Warming pote	ential for CH4 is 25. N2O is 298.		0	- *						Total	Emission	s (TPY)				Tota	al CO2e	
																213	3073.76	
															r			

WILDCAT COMPRESSOR STATION

HEATERS - BURNER CALCULATIONS & EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

							CRITERIA	& REGULA	TED POLL	UTANTS	EMISS	IONS								
								P-42 Factors ¹ lb/MMBtu					lb/hr ²					tpy2		
Source	ID Fuel C Strea	Gas	Fuel Gas HHV (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr)		со	VOC	SO ₂	PM _{10 & 2.5}	NOx	со	VOC	SO ₂	PM _{10 & 2.5}	NOx	со	VOC	SO ₂	PM _{10 & 2.5}
HTR	.1 3. Fuel	Gas	1,274	8,760	0.75	0.10	0.08	0.01	0.01	0.01	0.11	0.10	0.01	0.01	0.01	0.50	0.42	0.03	0.04	0.04
RB	3. Fuel	Gas	1,274	8,760	2.00	0.10	0.08	0.01	0.01	0.01	0.31	0.26	0.02	0.03	0.02	1.34	1.13	0.07	0.12	0.10
RB2	3. Fuel	Gas	1,274	8,760	2.00	0.10	0.08	0.01	0.01	0.01	0.31	0.26	0.02	0.03	0.02	1.34	1.13	0.07	0.12	0.10
RB	3. Fuel	Gas	1,274	8,760	2.00	0.10	0.08	0.01	0.01	0.01	0.31	0.26	0.02	0.03	0.02	1.34	1.13	0.07	0.12	0.10
•				<u> </u>			L	l	L	<u> </u>		1		<u> </u>	<u> </u>		1	ı	1	
¹ Source: SO2 - 5 g		ors fro	m AP-42, Chap	oter 1, Tables 1	.4-1, 1.4-2 and 1.4-3,	converted from l	b/MMscf to lb/M	Mbtu by dividing	by 1,020 Btu/scf	per AP-42, C	napter 1 gu	idance).		Tota	ıl (tpy)	NOx	СО	VOC	SO ₂	PM _{10 & 2.5}
² Burners	- 25% Safety I	actor												1012	ц (гру)	4.53	3.80	0.25	0.39	0.34

WILDCAT COMPRESSOR STATION

HEATERS - BURNER CALCULATIONS & EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

						HAZA	RDOUS AIR H	OLLUTANTS	(HAP) EN	IISSION	5								
							P-42 Factors ¹ lb/MMBtu					lb/hr²					tpy ²		
Source ID	Promax Stream	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr)	Benzene	Toluene	N- Hexane	НСНО	Dichloro benzene	Benzene	Toluene	N- Hexane	нсно	Dichloro benzene	Benzene	Toluene	N- Hexane	нсно	Dichloro benzene
HTR1	3. Fuel Gas	1,274	8760	0.75	<0.001	0.00	<0.001	<0.001	<0.001	<0.001	0.01	<0.001	<0.001						
RB1	RB1 3. Fuel Gas 1,274 8760 2.00 2.1E-06 3.3E-06 1.8E-03 7.4E-05 1.2E-06 <0.001													<0.001	<0.001	<0.001	0.02	0.00	<0.001
RB2														<0.001	<0.001	<0.001	0.02	0.00	<0.001
RB3	3. Fuel Gas	1,274	8760	2.00	2.1E-06	3.3E-06	1.8E-03	7.4E-05	1.2E-06	<0.001	<0.001	0.01	<0.001	<0.001	<0.001	<0.001	0.02	0.00	<0.001
		1	1				I	1			1			1		1			
¹ Source: Emi SO2 - 5 gr/100		om AP-42, Chap	oter 1, Tables 1	.4-1, 1.4-2 and 1.4-3,	converted from l	b/MMscf to lb/MI	Mbtu by dividing	by 1,020 Btu/scf (per AP-42, C	hapter 1 gu	idance).		al Indivi		Benzene	Toluene	N- Hexane	нсно	Dichloro benzene
² Burners - 25%	% Safety Factor											I	HAPS (tp	7)	0.00	0.00	0.08	0.00	0.00
													al Combi IAPS (tp		0.09				

WILDCAT COMPRESSOR STATION

HEATERS - BURNER CALCULATIONS & EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

Source	HTR1	RB1	RB2	RB3	
Burner Rating (btu/hr)	750000	2000000	2000000	2000000	
Gross Heating Value (btu/scf)	1273.9	1273.9	1273.9	1273.9	
3" eclipse air mixer: (Air/Gas Ratio) ¹	5/1	5/1	5/1	5/1	
Stack Temperature (°F)	1000	1000	1000	1000	
Stack Diameter (ft)	1	1.5	1.5	1.5	
Stack Height (ft)	20	20	20	20	
Fuel Consumption (scf/hr)	589	1570	1570	1570	
Fuel Consumption (scf/day)	14130	37680	37680	37680	
Fuel Consumption (mmscf/year)	5	14	14	14	
Air Injection Rate (scf/hr)	5887	15700	15700	15700	
Total exhaust flow rate @ STP (scf/hr)	6476	17270	17270	17270	
Total exhaust flow rate @ STP (scf/sec)	2	5	5	5	
Total exhaust flow rate @ 1000 °F (acf/hr)	18183	48488	48488	48488	
Total exhaust flow rate @ 1000 °F (acf/sec)	5.05	13	13	13	
Exhaust Stack Exit Velocity @ STP (ft/sec)	2.29	3	3	3	
Exhaust Stack Exit Velocity @ 1000 °F (ft/sec)	6.43	8	8	8	
Total CH4 (ton/yr) ²	0.31	0.83	0.83	0.83	
Total N2O (ton/yr) ²	0.001	0.002	0.002	0.002	
Total CO2 (ton/yr) ²	520	1386	1386	1386	
Total CO2e (ton/yr) ²	527.90	1408	1408	1408	

Promax Stream Name	3. Fuel Gas
Component	Mass Frac
Triethylene Glycol	0.00
Carbon Dioxide	0.00
Nitrogen	0.02
Methane	0.57
Ethane	0.18
Propane	0.13
Isobutane	0.02
n-Butane	0.05
Isopentane	0.01
n-Pentane	0.01
n-Hexane	0.00
Cyclohexane	0.00
i-C6	0.00
i-C7	0.00
Methylcyclohexane	0.00
Octane	0.00
Nonane	0.00
Benzene	0.00
Toluene	0.00
Ethylbenzene	0.00
o-Xylene	0.00
Hydrogen Sulfide	0.00
Water	0.00
2,2,4-Trimethylpentane	0.00
Decanes Plus	0.00

¹ Air/Gas Ratio is based on the Manufacturer's Data of XTO's typical burner installations

² GHG emissions source is 40 CFR § 98.233 (n), 40 CFR § 98.233(v) for CH4 and CO2 mass emissions, 40 CFR § 98.233(z) for N2O mass emissions,

WILDCAT COMPRESSOR STATION

STORAGE TANK EMISSIONS SUMMARY

							VOC EMI	ISSIONS SUN	IMARY										
								Wo	Uncontrollec rking & Breathin				Uncontrolled Flash Losses			Uncont Total En		Contro Total Err	
Unit Number	Source Description	Material Type (Oil/Produced Water)	Number of Tanks in Category	Controlled by Unit #	Control Efficiency (%)	Promax Stream Liquid Material	Material Throughput (bbls/day)	Promax Stream (Hrly)	Promax Stream (Annual)	Lb/hr	ТРҮ	Promax Stream (Hrly)	Promax Stream (Annual)	Lb/hr	ТРҮ	Lb/hr	ТРҮ	Lb/hr	ТРҮ
SKT1	Skim Tank	Produced Water	2	FL1-FL3	98	14. Skim Tank Inlet	222.43	8. Skim Tank W&B	8. Skim Tank W&B	4.83	21.13	6. Skim Tank Flash Gas	6. Skim Tank Flash Gas	9.01	39.44	13.83	60.58	0.28	1.21
SKT2	Skim Tank (Backup)	Produced Water	2	FL1-FL3	98	14. Skim Tank Inlet	222.43	8. Skim Tank W&B	8. Skim Tank W&B	4.83	21.13	6. Skim Tank Flash Gas	6. Skim Tank Flash Gas	9.01	39.44	13.83	60.58	0.28	1.21
OTI	Condensate Tank	Condensate	4	FL1-FL3	98	11. Condensate Sales Liquid	164.10	10. Condensate Tank W&B	10. Condensate Tank W&B	3.53	15.48	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	124.84	275.00	128.38	290.48	2.57	5.81
OT2	Condensate Tank	Condensate	4	FL1-FL3	98	11. Condensate Sales Liquid	164.10	10. Condensate Tank W&B	10. Condensate Tank W&B	3.53	15.48	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	124.84	275.00	128.38	290.48	2.57	5.81
OT3	Condensate Tank	Condensate	4	FL1-FL3	98	11. Condensate Sales Liquid	164.10	10. Condensate Tank W&B	10. Condensate Tank W&B	3.53	15.48	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	124.84	275.00	128.38	290.48	2.57	5.81
OT4	Condensate Tank	Condensate	4	FL1-FL3	98	11. Condensate Sales Liquid	164.10	10. Condensate Tank W&B	10. Condensate Tank W&B	3.53	15.48	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	124.84	275.00	128.38	290.48	2.57	5.81
WT1	Produced Water Tank	Produced Water	2	FL1-FL3	98	12. Produced Water Liquid	214.94	9. Water Tank W&B	9. Water Tank W&B	0.50	2.20	5. Water Tank Flash Gas	5. Water Tank Flash Gas	0.00	0.00	0.50	2.20	0.01	0.04
WT2	Produced Water Tank	Produced Water	2	FL1-FL3	98	12. Produced Water Liquid	214.94	9. Water Tank W&B	9. Water Tank W&B	0.50	2.20	5. Water Tank Flash Gas	5. Water Tank Flash Gas	0.00	0.00	0.50	2.20	0.01	0.04
			Storage Tank E	missions						24.79	108.58			517.39	1178.89	542.18	1287.46	10.84	25.75

XTO ENERGY, INC. WILDCAT COMPRESSOR STATION OIL TRUCK LOADING LOSSES - UNCONTROLLED

Truck Loading Loss	es Calculations							
Promax Stream Production	11. Condensate Sa	ales Liquid						
Promax Stream Emissions	10. Condensate T	ank W&B						
Controlled/Uncontrolled	UNCONTRC	OLLED						
Operating Schedule ^c	120	Day/Year						
Condensate Production	656	bbls/Day						
Promax Repo	rt Results							
LL= 12.46 * SPM/1	[* (1-EFF/100)							
e e e e e e e e e e e e e e e e e e e	Saturation Factor (S) =	0.	.6					
Average True Vapor Pressure	of liquid loaded (P) ^a =	8.0	66					
Max True Vapor Pressure	of liquid loaded (P) ^a =	10.	.09					
Average Temperature of bulk liquid le	rage Temperature of bulk liquid loaded in Rankin $(T)^a =$ 526.16525.24							
Max Temperature of bulk liquid le		535 54.						
	Molecular Weight (M) ^a =							
Control Efficiency * Collec	2 , , ,	(
	$cbon Content (\%wt)^a =$	99.						
	$VOC \text{ Content } (wt\%)^a =$	47 79						
	HAP Conent $(wt\%)^a =$							
Average Uncontrolled LL (lb Total HC		0.20						
Average Uncontrolled LL (lb VOC		0.20						
	Max Uncontrolled LL (lb Total HC / bbl Throughput) ^b = (0) Max Uncontrolled LL (lb VOC / bbl Throughput) ^b = (0)							
	Estimated Throughput (bbls/Year) =							
	Truck Loading Rate (bbls/hour) =							
Estimated # of Loads (Approx	8 1 1	21 37						
	,	11 /1						
Total Hydrocarbon Emissions		lb/hr	TPY					
		67.86	11.11					
Total VOC Emissions		lb/hr	TPY					
		62.76	10.28					
Total HAP Emissions		lb/hr	TPY					
		2.57	0.42					

XTO ENERGY, INC. WILDCAT COMPRESSOR STATION OIL TRUCK LOADING LOSSES - UNCONTROLLED

Component		Total Speciated Emitted During I	
	Mass Fraction ^d	lb/hr ^d	ton/yr
Triethylene Glycol	0.00	0.00	0.00
Carbon Dioxide	0.02	0.01	0.00
Nitrogen	0.00	0.00	0.00
Methane	0.22	0.15	0.02
Ethane	7.29	4.95	0.81
Propane	24.91	16.91	2.77
Isobutane	8.33	5.66	0.93
n-Butane	26.27	17.83	2.92
Isopentane	8.70	5.90	0.97
n-Pentane	10.35	7.02	1.15
n-Hexane	2.97	2.02	0.33
Cyclohexane	0.27	0.18	0.03
i-C6	4.18	2.84	0.47
i-C7	4.58	3.11	0.51
Methylcyclohexane	0.14	0.10	0.02
Octane	0.85	0.57	0.09
Nonane	0.09	0.06	0.01
Benzene	0.32	0.21	0.04
Toluene	0.26	0.18	0.03
Ethylbenzene	0.01	0.01	0.00
o-Xylene	0.05	0.04	0.01
Hydrogen Sulfide	0.00	0.00	0.00
Water	0.00	0.00	0.00
2,2,4-Trimethylpentane	0.18	0.12	0.02
Decanes Plus	0.00	0.00	0.00
Total HC	99.98	67.86	11.11
Total VOC	92.47	62.76	10.28
Total HAP	3.79	2.57	0.42
Heating Value (Btu/scf)	3068.60	3068.60	3068.60
Molecular Weight (lb/lbmol)	54.60	54.60	54.60
SO2 Emissions (lb/hr)	N/A	N/A	N/A
Operating Hours (hr/yr)	N/A	N/A	2880
Mass Flow	N/A	67.86 lb/hr	11.11 ton/yr
Volumetric Flow (scf/hr)	N/A	471.63	77.24
Heat Release (MMBtu/hr)	N/A	1.45	0.24

Footnotes:

^a Values were obtained from Promax.

^b Loading emissions include total hydrocarbons as calculated using AP-42, Section 5.2.

Condensate tanks are only trucked out when transfer to pipeline is unavailable.

d The component speciation was obtained from Promax Stream " and multiplied by the total hydrocarbon emissions. (VOC =

0.12 lb/hr * 0.00 wt% VOC = 0.00 lb/hr)

e Loading emissions are uncontrolled.

XTO ENERGY INC. WILDCAT COMPRESSOR STATION FLARE 1-3 EMISSION SUMMARY

						F	lare Emis	sions Su	mmary T	able								
<u> </u>	Stream Source	N	Ox	с	0		VOC Fotal HAPs)	S	02	PM	0 & 2.5	Total	HAPs	CO2e	n-He	exane	Ben	zene
Stream Source	Stream Source	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
	FL1 Pilot/Purge	0.22	0.98	0.45	1.95	0.33	1.43	0.00	0.01	0.01	0.04	0.00	0.01	1172.86	0.00	0.01	0.00	0.00
FL1-FL3 Pilot	FL2 Pilot / Purge	0.22	0.98	0.45	1.95	0.33	1.43	0.00	0.01	0.01	0.04	0.00	0.01	1172.86	0.00	0.01	0.00	0.00
	FL3 Pilot / Purge	0.22	0.98	0.45	1.95	0.33	1.43	0.00	0.01	0.01	0.04	0.00	0.01	1172.86	0.00	0.01	0.00	0.00
	PW Tank Vapors	0.00	0.01	0.01	0.03	0.02	0.09	0.00	0.00	0.00	0.00	0.00	0.02	18.90	0.00	0.01	0.00	0.01
	Skim Tank Vapors	0.09	0.38	0.17	0.75	0.55	2.42	0.00	0.01	0.00	0.01	0.03	0.15	419.81	0.02	0.10	0.00	0.02
FL1-FL3 Norm	Oil Tank Vapors	1.63	6.85	3.26	13.68	10.27	23.24	0.01	0.03	0.03	0.13	0.42	0.91	7378.46	0.33	0.65	0.04	0.11
	Low Presure Separator Vapors Normal Operation	0.03	0.12	0.06	0.23	0.13	0.53	0.00	0.00	0.00	0.00	0.00	0.02	141.10	0.00	0.01	0.00	0.00
	DEHY1-3 Still Column Vapors	0.34	1.48	0.67	2.95	1.78	7.79	0.20	0.88	0.01	0.03	0.16	0.68	1753.51	0.04	0.17	0.07	0.31
	Low Presure Separator Vapors VRU Downtime	1.46	0.64	2.92	1.28	6.73	2.95	0.02	0.01	0.04	0.02	0.19	0.08	783.87	0.14	0.06	0.02	0.01
FL1-FL3 SSM	HP Flare Blowdowns	0.17	0.08	0.33	0.17	0.24	0.12	0.00	0.00	0.01	0.00	0.00	0.00	100.25	0.00	0.00	0.00	0.00
	Inlet Gas Flaring	386.06	4.25	770.72	8.48	720.02	7.92	3.16	0.03	15.83	0.17	16.76	0.18	5348.35	13.78	0.15	0.72	0.01
Total	Total Emissions	389.78	13.81	778.15	27.57	739.75	45.06	3.40	0.98	15.92	0.37	17.58	2.05	15944.25	14.32	1.15	0.86	0.47
FL1-FL3 Pilot	Total Flare Pilot/Purge Emissions	0.67	2.94	1.34	5.86	0.98	4.29	0.01	0.02	0.03	0.13	0.01	0.03	3518.58	0.01	0.03	0.00	0.00
FL1-FL3 Norm	Total Flare Normal Operations	2.09	8.84	4.17	17.64	12.76	34.07	0.22	0.94	0.04	0.17	0.62	1.78	9711.78	0.40	0.93	0.11	0.45
FL1-FL3 SSM	Total Flare SSM	387.69	4.97	773.97	9.92	727.00	10.99	3.18	0.05	15.88	0.19	16.96	0.27	6232.47	13.92	0.21	0.75	0.02
FL1-FL3 HP	High Pressure Gas Flaring (No Pilot)	387.69	4.97	773.97	9.92	727.00	10.99	3.18	0.05	15.88	0.19	16.96	0.27	6232.47	13.92	0.21	0.75	0.02
FL1-FL3 LP	Low Pressure Gas Flaring (No Pilot)	2.09	8.84	4.17	17.64	12.76	34.07	0.22	0.94	0.04	0.17	0.62	1.78	9711.78	0.40	0.93	0.11	0.45

WILDCAT COMPRESSOR STATION FLARE 1-3 HOURLY EMISSIONS WINTER SEASON - NORMAL OPERATIONS

<table-container> nerror nerror nerror norm norm norm norm <</table-container>									FLARE	1-3 HOURLY - NO	ORMAL OPERATI	ONS									
<table-container> Image <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></table-container>																					
Image Image </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Uncaptured</th> <th>Maximum Hourly</th> <th>Emission Rates an</th> <th>nd Composition to</th> <th>Flare^{a,b}</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Criter</th> <th>ia Pollutant Emi[,]</th> <th>ssions from</th> <th>n Flare</th>							Uncaptured	Maximum Hourly	Emission Rates an	nd Composition to	Flare ^{a,b}							Criter	ia Pollutant Emi [,]	ssions from	n Flare
Image Image <			SSM		HP Flare	LP Flare		Oil Tan	k Vapors	Skim Ta	nk Vapors	PW Tan	k Vapors	Low Pres Sep ^d				íl — — — — — — — — — — — — — — — — — — —	[!		
Image Image <t< th=""><th>Stream</th><th></th><th></th><th></th><th>Pilot/Purge^c</th><th>Pilot/Purge^c</th><th></th><th>Flash</th><th>W&B</th><th>Flash</th><th>W&B</th><th>Flash</th><th>W&B</th><th>Vapors (VRU On)</th><th>Total</th><th>D ()</th><th>Total</th><th>1</th><th> </th><th>1</th><th></th></t<>	Stream				Pilot/Purge ^c	Pilot/Purge ^c		Flash	W&B	Flash	W&B	Flash	W&B	Vapors (VRU On)	Total	D ()	Total	1		1	
insideinitial <t< th=""><th>Promax Stream Name</th><th></th><th>1. LP Separator Gas</th><th></th><th></th><th></th><th>Cond Vapors to</th><th>Flash Losses</th><th></th><th></th><th></th><th></th><th></th><th>1. LP Separator Gas</th><th></th><th></th><th></th><th>Component</th><th>Emission Rate</th><th></th><th>En Fact</th></t<>	Promax Stream Name		1. LP Separator Gas				Cond Vapors to	Flash Losses						1. LP Separator Gas				Component	Emission Rate		En Fact
Commonial Comm	Component	(lb/hr)	(lb/hr)	(1b/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(1b/hr)	(1b/hr)	(1b/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(%)	(lb/hr)	П	(lb/hr)	1	
NewN	Triethylene Glycol	0.00	0.00	0.72	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.72	98%	0.01	NO _X	390.45	0.138	lb/
ImageMath	Carbon Dioxide																276.89		779.48	0.2755	lb,
Image10000	Nitrogen																				
Prime <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																					
Image11111										017.0		0100									_
network100101101101101101101101101101101101101101101101sheat101sheat101 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>lb,</td></th<>																					lb,
Image <td></td> <td>H₂S</td> <td>0.04</td> <td></td> <td></td>																		H ₂ S	0.04		
n-hour10010710001001000<																		I			- ·
orbain or																				re DRE	-
Order <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>98%</td><td></td></th<>																				98%	
Ísác10.1010.1010.1010.00																				<u> </u>	-
HCT10.310.310.310.40.0<			0.0.0							0103									I	10.00%	(8
MedyMedyMot <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td><u> </u></td><td>-</td></th<>															-					<u> </u>	-
nome Name Name Name000 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>98%</td><td></td></th<>																				98%	
Neare00 <td></td> <td><u> </u></td> <td>-</td>																				<u> </u>	-
Interare1001001001001001001000																				98%	
Toiner1000.00																24075		/ L		<u> </u>	1
Influences0.000.000.000.000.000.000.000.000.000.01 <td></td> <td>I was to t</td> <td></td> <td>04.00</td> <td>a</td>																		I was to t		04.00	a
modyindex																			0		
Hydnog Sufface0.000.010.000.010.00																			101		-
Mater 0.00 0.11 4.00 0.00 0.84 0.00 0.41 0.10 0.00 0.01 0.00 8.97 2.2-Trinedby/log 0.00 0.44 4.902 0.01 0.00 0.01 0.01 0.01 0.01 9.95 1.01 Deceme Film 0.00 0.01 0.00 0.01 0.01 0.01 9.95 0.00 Total 54.2 498.57 1.94.07 7.96 1.14 1.50 9.95 1.13 9.96 9.84 1.414 1.50 9.55 1.010 9.75 1.18 9.75 1.52 Total VC 1.22 9.544 30.01 2.012 2.004 9.568 1.565 0.00 0.10 2.105.5 1.567																					
12.4-finally DecamPing0.00 </td <td></td> <td>r are operation</td> <td>Brious</td> <td>0.00</td> <td><u>a</u></td>																		r are operation	Brious	0.00	<u>a</u>
Decense Time0.000.000.0010.00 </td <td></td> <td>1</td> <td></td> <td></td> <td></td>																		1			
Ind VC122354.4369.11369.1237.1437.8047.9147.0777.07 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td></td><td>98%</td><td></td><td>1</td><td></td><td></td><td></td></th<>								0.00				0.00				98%		1			
India IAP 0.09 9.44 88.66 0.24 1.13 7.69 1.16 0.51 0.00 0.25 0.19 97.05 1.25 baing Value (Bthylen) 127.80 127.80 127.90 127.90 127.90 127.90 28.02 0.00 28.05 127.50 <t< td=""><td>Total</td><td>53.62</td><td>489.37</td><td>124397.16</td><td>140.87</td><td>73.96</td><td>116.47</td><td>540.06</td><td>15.29</td><td>20.02</td><td>10.02</td><td>0.00</td><td>1.27</td><td>9.79</td><td>125867.89</td><td></td><td>4573.47</td><td>1</td><td></td><td></td><td></td></t<>	Total	53.62	489.37	124397.16	140.87	73.96	116.47	540.06	15.29	20.02	10.02	0.00	1.27	9.79	125867.89		4573.47	1			
Instituty 127.90 127.90 127.90 127.90 127.90 127.90 290.72 908.60 908.60 2322.01 0.00 21.04 121.40 138.41 LaterLut Weight (fluftum) 21.30 37.23 21.38 22.38 23.28 45.00 57.00	Total VOC	12.22	336.44	36001.12	32.11	16.86	88.90	499.38	14.14	18.01	9.65	0.00	1.00	6.73	37036.54		740.73	1			
Operating (hty/hung) 21.38 37.23 22.66 21.38 21.38 43.23 54.60 55.40 55.90 58.94 0.00 48.87 57.23 perating (hurn, (hy/r)) 10.00 87.6 22 57.60 87.60 87.60 87.60 87.60 87.60 87.60 77.84 sea flow (hy/r) 55.22 4.58.0 (h).7 54.00 57.00 15.29 20.02 10.02 0.00 127 97.97 22867.83 all and tric (hy/r) 97.23 3.85 17.73 16.23 14.88 64.49 0.00 9.86 97.67 22887.43 at Release (MMBiu/hy) 12 10.81 10.87 2.48 10.83 10.22 10.21 0.00 9.86 97.67 22887.43 at Release (MMBiu/hy) 10.47 10.47 0.41 0.00 0.00 0.01 10.41 10.41 0.01 0.01 0.04 0.06 0.03 0.00 0.02 10.83 <t< th=""><th>Total HAP</th><th>0.09</th><th>9.64</th><th>838.06</th><th>0.24</th><th>0.13</th><th>7.69</th><th>20.48</th><th>0.58</th><th>1.16</th><th>0.51</th><th>0.00</th><th>0.25</th><th>0.19</th><th>879.03</th><th></th><th>17.58</th><th>1</th><th></th><th></th><th></th></t<>	Total HAP	0.09	9.64	838.06	0.24	0.13	7.69	20.48	0.58	1.16	0.51	0.00	0.25	0.19	879.03		17.58	1			
Image (up/n) 1,000 876 2 57.60 <t< td=""><td>Heating Value (Btu/scf)</td><td>1,273.90</td><td>2,124.36</td><td>1,342.81</td><td>1273.90</td><td>1273.90</td><td>2390.72</td><td>3068.60</td><td>3068.60</td><td>2908.87</td><td>3232.20</td><td>0.00</td><td>2160.54</td><td>2124.36</td><td>1348.41</td><td></td><td></td><td>1</td><td></td><td></td><td></td></t<>	Heating Value (Btu/scf)	1,273.90	2,124.36	1,342.81	1273.90	1273.90	2390.72	3068.60	3068.60	2908.87	3232.20	0.00	2160.54	2124.36	1348.41			1			
Image Number Num Num Number Number Number Number Number Number Number	Molecular Weight (lb/lbmol)	21.38	37.23	22.66	21.38	21.38	43.23	54.60	54.60	53.09	58.94	0.00	48.87	37.23							
olumenta Barw (cpf/h) 992 4,988 2,083,33 2,200 1,313 1,020 3,733 102.5 143.08 64.49 0,00 9.86 99.76 208284.63 teat Release (MMBtu/h) 112 10.60 2,7753 3.18 1.67 2.40 11.5 0.30 0.02 0.01 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01	Operating Hours (hr/yr)	1,000	876	22	8760	8760	8760	8760	8760	8760	8760	8760	8760	7884							
Image (MMBuyhn) 1	Mass Flow (lb/hr)																				
Control of the second																					
(h)hr) $(h)hr)$ Total NO0.172.92770.720.880.440.073.170.090.110.060.000.000.03990.5Total SO0.000.023.160.000.070.010.060.000.000.003.10Total FMay0.010.023.160.010.010.000.000.000.003.10Total FMay0.010.0415.830.020.010.010.000.000.000.0015.85Total FMay0.010.0415.830.020.010.010.020.000.000.000.001.58Total FMay0.010.1415.780.000.010.150.010.020.010.021.58Total FMay0.010.1415.780.000.010.020.010.000.001.58Total FMay0.010.1415.780.000.010.020.010.000.001.58Total FMay0.010.010.050.010.020.010.000.001.58Total FMay0.010.010.050.010.020.010.000.001.58Tota	Heat Release (MMBtu/hr)	1.21	10.60	2,797.53	3.18	1.67	2.44	11.52	0.33	0.42	0.21	0.00	0.02	0.21	2829.34	1					
(h)hr) $(h)hr)$ Total NO0.172.92770.720.880.440.073.170.090.110.060.000.000.03990.5Total SO0.000.023.160.000.070.010.060.000.000.003.10Total FMay0.010.023.160.010.010.000.000.000.003.10Total FMay0.010.0415.830.020.010.010.000.000.000.0015.85Total FMay0.010.0415.830.020.010.010.020.000.000.000.001.58Total FMay0.010.1415.780.000.010.150.010.020.010.021.58Total FMay0.010.1415.780.000.010.020.010.000.001.58Total FMay0.010.1415.780.000.010.020.010.000.001.58Total FMay0.010.010.050.010.020.010.000.001.58Total FMay0.010.010.050.010.020.010.000.001.58Tota							Combus	ion Emissions fro	m Flare							1					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(1b/hr)	(lb/hr)	(1b/hr)	(lb/hr)	(lb/hr)				(1b/hr)	(lb/hr)	(lb/hr)	(1b/hr)	(lb/hr)	(lb/hr)	1					
Total SQ:0.000.0023.160.000.000.000.000.000.000.003.40Total PM ₁₀ 0.010.0415.330.020.010.010.030.000.000.000.000.0015.95Total PM ₁₀ 0.140.530.020.010.010.030.000.000.000.000.0015.95Total PM ₁₀ 0.246.7372.020.640.341.789.990.280.610.000.000.000.0015.95Total PM ₁₀ 0.000.1916.760.000.040.150.010.010.010.0115.95Total PM ₁₀ (sip)0.000.011.570.000.000.001.0015.95Total PM ₁₀ (sip)0.000.011.570.000.000.000.001.011.05Total PM ₁₀ (sip)0.000.011.570.000.000.000.001.021.011.02Total PM ₁₀ (sip)0.000.011.670.000.000.000.000.001.42Total PM ₁₀ (sip)0.000.020.010.000.000.000.001.42Total PM ₁₀ (sip)0.000.020.010.000.000.000.001.42Total PM ₁₀ (sip)0.000.010.000.000.000.000.011.62Total Co0.000.011.63 <td< td=""><td>Total NO,</td><td>0.17</td><td></td><td>386.06</td><td>0.44</td><td>0.23</td><td></td><td>1.59</td><td>0.04</td><td>0.06</td><td>0.03</td><td>0.00</td><td>0.00</td><td>0.03</td><td>390.45</td><td>1</td><td></td><td></td><td></td><td></td><td></td></td<>	Total NO,	0.17		386.06	0.44	0.23		1.59	0.04	0.06	0.03	0.00	0.00	0.03	390.45	1					
Total SQ:0.000.0023.160.000.000.000.000.000.000.003.40Total PM ₁₀ 0.010.0415.330.020.010.010.030.000.000.000.000.0015.95Total PM ₁₀ 0.140.530.020.010.010.030.000.000.000.000.0015.95Total PM ₁₀ 0.246.7372.020.640.341.789.990.280.610.000.000.000.0015.95Total PM ₁₀ 0.000.1916.760.000.040.150.010.010.010.0115.95Total PM ₁₀ (sip)0.000.011.570.000.000.001.0015.95Total PM ₁₀ (sip)0.000.011.570.000.000.000.001.011.05Total PM ₁₀ (sip)0.000.011.570.000.000.000.001.021.011.02Total PM ₁₀ (sip)0.000.011.670.000.000.000.000.001.42Total PM ₁₀ (sip)0.000.020.010.000.000.000.001.42Total PM ₁₀ (sip)0.000.020.010.000.000.000.001.42Total PM ₁₀ (sip)0.000.010.000.000.000.000.011.62Total Co0.000.011.63 <td< td=""><td>Total CO</td><td>0.33</td><td>2.92</td><td>770.72</td><td>0.88</td><td>0.46</td><td>0.67</td><td>3.17</td><td>0.09</td><td>0.11</td><td>0.06</td><td>0.00</td><td>0.01</td><td>0.06</td><td>779.48</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Total CO	0.33	2.92	770.72	0.88	0.46	0.67	3.17	0.09	0.11	0.06	0.00	0.01	0.06	779.48						
Total PM ₂₅ 0.01 0.04 15.83 0.02 0.01 0.03 0.00 0.00 0.00 0.00 15.95 Total PM ₂₅ 0.24 6.73 72.02 0.64 0.34 1.78 9.99 0.28 0.36 0.19 0.00 0.02 0.13 74.73 Total PM ₂₆ (ip) 0.00 0.19 16.76 0.00 0.01 0.00 0.00 0.02 0.13 74.73 Total PM ₂₆ (ip) 0.00 0.17 0.01 0.01 0.00 0.00 1.02 1.03 0.00 1.03 74.73 Total PM ₂₆ (ip) 0.00 0.01 0.00 0.00 0.00 1.03 74.73 Total PM ₂₆ (ip) 0.00 0.01 0.00 0.01 0.00 0.00 1.03 74.73 Total PM ₂₆ (ip) 0.00 0.00 0.00 0.00 0.00 0.00 1.43 1.43 1.43 1.43 1.40 1.40 1.40 1.43 1.43 <t< td=""><td>Total SO₂</td><td>0.00</td><td>0.02</td><td>3.16</td><td>0.00</td><td>0.00</td><td>0.20</td><td>0.01</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>3.40</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Total SO ₂	0.00	0.02	3.16	0.00	0.00	0.20	0.01	0.00	0.00	0.00	0.00	0.00	0.00	3.40						
Total VOC (slip) 0.24 6.73 720.02 0.64 0.34 1.78 9.99 0.28 0.36 0.19 0.00 0.02 0.13 740.73 Total HAP (slip) 0.00 0.19 1.676 0.00 0.015 0.11 0.02 0.01 0.00 0.00 1.58 Total HAP (slip) 0.00 0.02 0.01 0.00 0.00 1.43 Total HAP (slip) 0.00 0.02 0.01 0.00 0.00 1.43 Total Pacace (slip) 0.00 0.02 0.01 0.02 0.01 0.00 0.00 1.43 Total C1(H4 0.66 0.02 0.03 0.00 0.00 0.00 0.00 0.00 Total C2 0.01 0.05 0.01 0.00 0.0			0.04	15.83	0.02	0.01	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	15.95						
Total HAP (slip) 0.00 0.19 16.76 0.00 0.01 0.01 0.02 0.01 0.00 0.00 17.58 Total -H-cane (slip) 0.00 0.44 13.78 0.00 0.00 0.02 0.01 0.00 0.00 13.28 Total Encare (slip) 0.00 0.02 0.01 0.00 0.00 10.32 10.01 0.00 0.00 10.32 Total Encare (slip) 0.00 0.02 0.01 0.00 0.00 0.00 10.32 Total Encare (slip) 0.00 0.02 0.01 0.00 0.00 0.00 10.32 Total Encare (slip) 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total Columna 0.65 91.329 1.20 0.63 0.01 0.00 0.00 0.00 0.00 0.01 10.21 Total Columna 0.01 1.20 0.01 0.00 0.00 0.00 0.00	Total PM25	0.01	0.04	15.83	0.02	0.01	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	15.95						
Total Heam (filip) 0.00 0.14 13.78 0.00 0.00 0.02 0.01 0.02 0.01 0.00 0.00 14.32 Total Benzene (filip) 0.00 0.02 0.72 0.00	Total VOC (slip)	0.24	6.73	720.02	0.64	0.34	1.78	9.99	0.28	0.36	0.19	0.00	0.02	0.13	740.73						
Total Benzenc (slip) 0.00 0.02 0.07 0.00 0.03 0.00<		0.00	0.19	16.76	0.00	0.00	0.15	0.41	0.01	0.02	0.01	0.00	0.00	0.00	17.58						
Total Benzenc (slip) 0.00 0.02 0.07 0.00 0.03 0.00<	Total n-Hexane (slip)	0.00	0.14	13.78	0.00	0.00	0.04	0.32	0.01	0.02	0.01	0.00	0.00	0.00	14.32						
Total CI, 0.46 0.56 913.29 1.20 0.63 0.01 0.00 0.00 0.00 0.00 916.22 Total N_O 0.000 0.01 1.36 0.00 0.00 0.00 0.00 0.00 1.37 Total CO_ 189 1.77 463.19 464 347 47 65 31 - 4 36 468,175	1 1/		0.02		0.00	0.00	0.07	0.03		0.00	0.00	0.00	0.00	0.00	0.86						
Total N-O 0.000 0.01 1.36 0.00 0.00 0.00 0.00 0.00 0.00 1.37 Total CO2 189 1.775 463,197 496 261 399 1,675 47 65 31 4 36 468,175																					
Total CO2 189 1.775 463,197 4496 261 399 1.675 447 65 31 4 36 468,175		-													-						
													4								
	1 otal CO ₂																				

^b Tank emissions determined in ProMax are calculated at the maximum daily liquid surface temperature.

^cPilot fuel gas emissions are conservatively calculated based on observed flowrates

^dControlled Emissions Were Calculated by the Following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

*Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H25 to SO2.

f Blowdowns are estimated to be @ 952 SCF per blowdown. XTO conservatively estimates 1000 blowdowns per year and 1 blowdown per hour

g XTO conservatively estimates 46 MMscf of inlet gas flaring per year \otimes 2.08 MMscf/hr max rate

h GHG emissions source is 40 CFR § 98.233 (n), 40 CFR § 98.233(v) for CH4 and CO2 mass emissions, 40 CFR § 98.233(z) for N2O mass emissions.

WILDCAT COMPRESSOR STATION FLARE 1-3 ANNUAL EMISSIONS WINTER SEASON - NORMAL OPERATIONS

5g																	
as Pilot/Purge																	
as Pilot/Purge						Composition to Fl								Criteri	ia Pollutant Emi	ssions from	Flare ^e
15. HPF Pilo	SSM	HP Flare LP Flare	DEHY1-3 Still Column	Oil Tanl	k Vapors	Skim Tar	ik Vapors	PW Tanl	c Vapors	Low Pres Sep ^d					Emission Rate		
	HP Flare Low Pres Sepd Inlet Blowdownsf Flash (VRU Off) Flarin	Pilot/Purgec Pilot/Purgec	Vapors	Flash	W&B	Flash	W&B	Flash	W&B	Flash (VRU On)	Total Vapors to Flare	Destruction	Total Flare Exhaust		Emission Rate		
	17. HPF Blowdowns Gas 19. Inlet	5. HPF Pilot / Purge Gas	13. BTEX Cond Vapors to Combustion	7. Condensate Tank Flash Gas	10. Condensate Tank W&B	6. Skim Tank Flash Gas	8. Skim Tank W&B	5. Water Tank Flash Gas	9. Water Tank W&B	1. LP Separator Gas	(uncontrolled)	Efficiency	(controlled)	Component		Emission Factor	Emiss Factor
	(ton/yr) (ton/yr) (ton/		(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(%)	(ton/yr)		(ton/yr)		
	0.00 0.00 0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	98%	0.00	NO _X	16.74	0.138	lb/M
	0.06 0.28 3.0		7.59	0.39	0.01	0.19	0.09	0.00	0.04	0.05	13.95	0%	13.95	CO	33.43	0.2755	lb/M
	0.43 0.29 19.8		0.07	0.04	0.00	0.02	0.00	0.00	0.00	0.05	35.94	0%	35.94	SO ₂	1.01		-
	15.25 28.20 708.		31.99	14.74	0.15	2.51	0.12	0.00	0.03	5.08	1341.78	98%	26.84	PM ₁₀	0.49	7.60	lb/M
	4.96 36.86 240. 3.54 58.26 188.		76.38	95.98 321.63	4.88	4.20 13.88	0.69 6.05	0.00	0.07	6.64 10.49	645.39 879.89	98%	12.91	PM25	0.49	7.60	lb/M lb/M
			136.19		16.68			0.00				98%	17.60	N ₂ O H ₂ S	0.03	0.00022	
	0.56 13.80 33.8 1.28 37.45 85.1		22.65 94.10	103.88 307.14	5.58 17.59	6.08 20.71	4.19	0.00	0.07	2.48	212.67 628.86	98% 98%	4.25	1125	0.01	-	-
	0.27 10.47 23.2		94.10 31.85	307.14 97.03	5.82	20.71 8.59	4.75	0.00	0.36	6.74 1.89	628.86	98% 98%	12.58 3.87	Inev	or Controls / Fla		1
	0.27 10.47 23.		43.29	97.03	5.82 6.93	8.59	4.75	0.00	0.20	2.19	234.42	98% 98%	3.87		or Controls / Fla lection Efficiency		
	0.28 12.16 27.1 0.04 2.99 7.5		43.29 8.47	30.30	6.93	3.56	5.77	0.00	0.27	0.54	234.42 58.76	98% 98%			Operations)	98.0%	
	0.04 2.99 7.5		2.74	30.30	0.18	0.41	0.18	0.00	0.26	0.06	8.28	98%	1.18		Downtime		
	0.00 0.34 0.7 0.07 4.44 10.5	0.00	2.74 13.20	3.44 44.29	2.80	4.91	2.32	0.00	0.05	0.06	8.28	98% 98%	0.17		perations)	10.0%	(876
	0.07 4.44 10.3		13.20	44.29	2.80	6.39	2.32	0.00	0.27	0.89	95.40	98%	1.72	-	ction Efficiency		
	0.00 0.15 0.3		0.66	1.56	0.10	0.20	0.08	0.00	0.05	0.03	3.24	96%	0.06		Ction Efficiency C4+	98%	
	0.00 1.00 3.0		0.72	10.51	0.57	1.48	0.55	0.00	0.81	0.18	19.05	98%	0.38				
	0.00 1.00 3.0		0.72	1.33	0.57	0.20	0.55	0.00	0.81	0.18	2.27	98% 98%	0.38		ction Efficiency C3	98%	
	0.00 0.12 0.5		15.58	5.26	0.08	0.20	0.07	0.00	0.11	0.02	23.36	98%	0.03	I	0		1
	0.00 0.35 0.4		8.33	4.26	0.18	0.54	0.22	0.00	0.38	0.09	14.90	98%	0.47				1
	0.00 0.01 0.0		0.10	0.12	0.01	0.02	0.01	0.00	0.01	0.00	0.30	98%	0.30	H2S molecular SO2 molecular		34.08 64.06	
	0.00 0.09 0.1		0.88	1.00	0.03	0.14	0.05	0.00	0.08	0.02	2.46	98%	0.05	Molar Volume		379.484	-
	0.00 0.01 0.0		0.33	0.02	0.00	0.00	0.00	0.00	0.00	0.02	0.54	98%	0.03	Flare Operatir		8760	
	0.00 1.36 0.0		4.28	2.39	0.00	1.86	0.70	0.00	1.02	0.24	11.93	0%	11.93	Flare Operatir	ng Hours	8760	1
	0.00 0.19 0.5		0.35	1.97	0.12	0.25	0.10	0.00	0.05	0.03	3.68	98%	0.07				
	0.00 0.00 0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00				
	26.81 214.35 1368		510.16	1213.56	66.96	87.67	43.87	0.00	5.56	38.58	4516.83	-	150.92				
	6.11 147.36 396.		389.37	1100.00	61.91	78.89	42.27	0.00	4.40	26.52	2467.29	-	49.35				
	0.05 4.22 9.2		33,70	42.91	2.54	5.09	2.25	0.00	1.08	0.76	103.46		2.07				
	1273.90 2124.36 1342		2390.72	2934.58	3068.60	2908.87	3232.20	0.00	2160.54	2124.36	1866.57						
	21.38 37.23 22.6		43.23	52.22	54.60	53.09	58.94	0.00	48.87	37.23							
	1000 876 22		8760	8760	8760	8760	8760	8760	8760	7884							
0.00	26.81 214.35 1368	0.00	510.16	1213.56	66.96	87.67	43.87	0.00	5.56	38.58	4516.83						
	0.95 4.37 45.8		8.96	32.88	0.93	1.25	0.56	0.00	0.09	0.79	130.01						
68 27898.43	1212.21 9282.13 61543	27898.43 14646.68	21412.63	96490.37	2856.01	3645.95	1826.03	0.00	186.53	1670.78	242673.43						
	· ·																
r) (ton/yr)	(ton/yr) (ton/yr) (ton/	(ton/yr) (ton/yr)	Combustio (ton/yr)	n Emissions from (ton/yr)	Flare (ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)						
	0.08 0.64 4.2		1.48	(tonyyr) 6.66	0.20	0.25	0.13	0.00	0.01	0.12	(tonyyr) 16.74						
	0.08 0.04 4.2		2.95	13.29	0.20	0.25	0.13	0.00	0.01	0.12	33.43						
	0.00 0.01 0.0		0.88	0.03	0.39	0.30	0.23	0.00	0.03	0.23	1.01						
	0.00 0.01 0.0		0.88	0.03	0.00	0.01	0.01	0.00	0.00	0.00	0.49						
	0.00 0.02 0.1		0.03	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.49						
	0.12 2.95 7.9		7.79	22.00	1.24	1.58	0.00	0.00	0.00	0.53	49.35						
	0.12 2.95 7.9		0.67	22.00	0.05	0.10	0.85	0.00	0.09	0.53	49.35						
	0.00 0.00																
				0.02				0100		0100	0100						
	100.25 783.87 5348	2307.27 1211.31	1752.66	7170.65	207.82	285.64	134.18	0.00	18.90	141.10	19,461.99						
5	0.00 0.06 0.1 0.00 0.01 0.0 0.23 0.24 10.4 0.000 0.00 0.0 94.49 777.48 5095 100.25 783.87 5348	7	0.00 0.00 7 2174.55 1141.64	0.00 0.00 0.31 5.27 2.77 0.24 0.00 0.00 0.00 7 2174.55 1141.64 1746.02	0.00 0.00 0.31 0.11 5.27 2.77 0.24 0.17 0.00 0.00 0.01 0.01 7 2174.55 1141.64 1746.02 7163.25	0.00 0.00 0.31 0.11 0.00 5.27 2.77 0.24 0.17 0.00 0.00 0.00 0.00 0.01 0.00 7 2174.55 1141.64 1746.02 7163.25 207.70	0.00 0.00 0.31 0.11 0.00 0.01 5.27 2.77 0.24 0.17 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.02 7 2174.55 1141.64 1746.02 7163.25 207.70 285.14	0.00 0.00 0.31 0.11 0.00 0.01 0.01 5.27 2.77 0.24 0.17 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7 2174.55 1141.64 1746.02 7163.25 207.70 285.14 134.10	0.00 0.00 0.31 0.11 0.00 0.01 0.01 0.00 5.27 2.77 0.24 0.17 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 7 2174.55 1141.64 1746.02 7163.25 207.70 285.14 134.10 0.00	0.00 0.00 0.31 0.11 0.00 0.01 0.01 0.00 0.01 5.27 2.77 0.24 0.17 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 7 2174.55 1141.64 1746.02 7163.25 207.70 285.14 134.10 0.00 18.89	0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 5.27 2.77 0.24 0.17 0.00 0.02 0.00 0.00 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 7 2174.55 1141.64 1746.02 7163.25 207.70 285.14 134.10 0.00 18.89 139.95	0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 <th< td=""><td>0.00 0.00 0.31 0.11 0.00 0.01 0.00 0.01 0.00 0.47 5.27 5.27 0.24 0.17 0.00 0.02 0.00 0.00 0.04 19.03 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 7 2174.55 1141.64 1746.02 7163.25 207.70 285.14 134.10 0.00 18.89 139.95 18978.36</td><td>0.00 0.00 0.31 0.11 0.00 0.01 0.01 0.00 0.47 5.27 5.27 0.24 0.17 0.00 0.02 0.00 0.00 0.04 19.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 7 2174.55 1141.64 1746.02 7163.25 207.70 285.14 134.10 0.00 18.89 139.95 18978.36</td><td>0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.47 5.27 5.27 0.24 0.17 0.00 0.02 0.00 0.00 0.04 19.3 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 7 2174.53 114.64 1746.32 207.70 285.14 134.10 0.00 18.89 139.95 18978.36</td><td>0.00 0.01 0.11 0.00 0.01 0.00 0.01 0.00 0.01 5.27 5.27 0.24 0.17 0.00 0.02 0.00 0.00 0.04 19.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 7 2174.53 114.64 1746.02 7163.25 207.70 285.14 134.10 0.00 18.89 139.95 18978.36</td><td>0.00 0.01 0.11 0.00 0.01 0.00 0.01 0.00 0.01 5.27 5.27 0.24 0.17 0.00 0.02 0.00 0.00 0.04 19.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 7 2174.53 114.64 1746.32 207.70 285.14 134.10 0.00 18.89 139.95 18978.36</td></th<>	0.00 0.00 0.31 0.11 0.00 0.01 0.00 0.01 0.00 0.47 5.27 5.27 0.24 0.17 0.00 0.02 0.00 0.00 0.04 19.03 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 7 2174.55 1141.64 1746.02 7163.25 207.70 285.14 134.10 0.00 18.89 139.95 18978.36	0.00 0.00 0.31 0.11 0.00 0.01 0.01 0.00 0.47 5.27 5.27 0.24 0.17 0.00 0.02 0.00 0.00 0.04 19.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 7 2174.55 1141.64 1746.02 7163.25 207.70 285.14 134.10 0.00 18.89 139.95 18978.36	0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.47 5.27 5.27 0.24 0.17 0.00 0.02 0.00 0.00 0.04 19.3 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 7 2174.53 114.64 1746.32 207.70 285.14 134.10 0.00 18.89 139.95 18978.36	0.00 0.01 0.11 0.00 0.01 0.00 0.01 0.00 0.01 5.27 5.27 0.24 0.17 0.00 0.02 0.00 0.00 0.04 19.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 7 2174.53 114.64 1746.02 7163.25 207.70 285.14 134.10 0.00 18.89 139.95 18978.36	0.00 0.01 0.11 0.00 0.01 0.00 0.01 0.00 0.01 5.27 5.27 0.24 0.17 0.00 0.02 0.00 0.00 0.04 19.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 7 2174.53 114.64 1746.32 207.70 285.14 134.10 0.00 18.89 139.95 18978.36

^b Tank emissions determined in ProMax are calculated at the maximum daily liquid surface temperature.

Pilot fuel gas emissions are conservatively calculated based on observed flowrates

Controlled Emissions Were Calculated by the Following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

Blowdowns are estimated to be @ 952 SCF per blowdown. XTO conservatively estimates 1000 blowdowns per year and 1 blowdown per hour

g XTO conservatively estimates 46 MMscf of inlet gas flaring per year © 2.08 MMscf/hr max rate h GHG emissions source is 40 CFR § 98 233 (n), 40 CFR § 98.233(v) for CH4 and CO2 mass emissions, 40 CFR § 98.233(z) for N2O mass emissions

WILDCAT COMPRESSOR STATION

HPF FLARE BLOWDOWN GAS ROUTED TO FLARE (EXAMPLE CALCULATION)

$ \begin{array}{llllllllllllllllllllllllllllllllllll$		X _{CH4} * [(1- η)*	$Z_{I} + Z_{II}$	=	10,823.63	SCF/Yr		Source	Annual Volume
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·		2L · 20]		10,025.05	501/11			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-						- F	17.1111 Diowaowiis	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$Z_{U} = 0.00$ $T_{U} = 0.00$ $T_{U} = 0.00$ $T_{U} = 0.00$ $T_{U} = 0.0024$ $T_{U} = 0.0024$ $T_{U} = 0.98$ $T_{u} = 0.98$ $T_{u} = 0.98$ $T_{u} = 0.98$ $T_{u} = 0.5687$ $T = 530.357.77$ $F = 100$ $T_{U} = 0.1321$ $T_{U} = 0.1321$ $T_{U} = 0.0686$ $T_{U} = 0.0272$ $T_{U} = 0.0027$ $T_{U} = 0.0272$ $T_{U} = 0.0027$ $T_{U} = 0.$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Z _L =	1.00						Total	951,570.00
$V_{a} = 951,570.00$ $X_{CO2} = 0.0024$ $V_{CO2} = 0.98$ $V_{a} = 951,570.00$ $Rj = E_{a,CO2} = F_{a,CO2} = F_{a,$	Z _U =	0.00							
$V_{a} = 951,570.00$ $X_{CO2} = 0.0024$ $V_{CO2} = 0.98$ $V_{a} = 951,570.00$ $Rj = E_{a,CO2} = F_{a,CO2} = F_{a,$	2) E _{s.CO2} (uncoi	nbusted) = V	* X _{CO2}	=	2,263.40	SCF/Yr			
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Va =	951,570.00							
	$X_{CO2} =$	0.0024							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3) E _{s,CO2} (comb	usted) = $\Sigma (\eta)$	* Va * Yj * Rj * 1	Z _L)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N =	0.98							
Ethane Propane0.1848 0.13212 $344,742.93$ $369,691.37$ 137 Butane Pentane +0.0686 0.02724 $255,859.14$ $126,664.32$ $Z_L =$ 1.001,627,315.54SCF/Yrsssi = E_{si} * $\rho_i * 10^3$ (CO4) = $1,627,315.54$ SCF/Yrsss = E_{si} * $\rho_i * 10^3$ (CO2) = $kg/ft3$ =0.21metric tons (CO2) =short tonsCO2e $kg/ft3$ = $2e = CO_2 + (CH_4 X GWP)$ short tons 94.49 CO2e 94.49 CO2e 94.49 CH4 =0.21=0.235.73									
Propane Butane Pentane +0.13213 $369,691.37$ $255,859.14$ $126,664.32$ $Z_L =$ 0.00725126,664.32 $1,627,315.54$ SCF/Yr $ss_{s,i} = E_{s,i} * \rho_i * 10^3$ (CH4) =0.0192kg/ft3= $(CQ2) =$ 0.0192kg/ft3=0.21metric tons metric tons $(CO2) =$ 0.0526kg/ft3=0.21metric tons $_2e = CO_2 + (CH_4 X GWP)$ short tonsCO_2e 94.49CO_2e 94.49CO_2e 94.49 $CH4 =$ 0.21=0.235.73	Y _J =								
But ane Pentane +0.0686 0.02724255,859.14 126,664.32 $Z_L =$ 1.001,627,315.54SCF/Yr $ss_{s,i} = E_{s,i} * \rho_i * 10^3$ (CH4) =0.823.63 (CO2) =(CO2) =1,629,578.94 (CH4) =(CH4) =0.0192kg/ft3=0.0526kg/ft3=0.21 $_2e = CO_2 + (CH_4 X GWP)$ CO2 =short tons 94.49CO2e 94.49CH4 =0.21=0.235.72=94.4994.4994.49CH4 =0.21=0.235.73									
Pentane + 0.0272 5 126,664.32 $Z_L =$ 1.00 1,627,315.54 SCF/Yr sss_si = E_{s,i} * $\rho_1 * 10^3$ (CH4) = 10,823.63 (CO2) = 1,629,578.94 (CD4) = 0.0192 kg/ft3 = 0.21 metric tons (CH4) = 0.0526 kg/ft3 = 0.21 metric tons $_2e = CO_2 + (CH_4 X GWP)$ short tons CO2e CO2e 85.72 metric tons CO2 = 85.72 = 94.49 94.49 CO2e Stort tons CO2e CO4 = 0.21 = 0.23 5.73 Stort tons CO2e Stort tons CO2e		-							
$Z_L =$ 1,627,315.54 SCF/Yr sss_si = E_{s,i} * $\rho_i * 10^3$ (CH4) = 10,823.63 (CD2) = 1,629,578.94 (CH4) = (CH4) = 0.0192 kg/ft3 = 0.21 (CD2) = 0.0526 kg/ft3 = 85.72 $_2e = CO_2 + (CH_4 X GWP)$ short tons CO_2e CO2 = 85.72 = 94.49 CH4 = 0.21 = 0.23 5.73						,			
$ss_{s,i} = E_{s,i} * \rho_i * 10^3$ (CH4) = 10,823.63 (CO2) = 1,629,578.94 (CH4) = 0.0192 kg/ft3 = 0.21 metric tons (CO2) = 0.0526 kg/ft3 = 85.72 metric tons $s_{2}e = CO_2 + (CH_4 X GWP) \qquad \text{short tons} CO_2e$ CO2 = 85.72 = 94.49 94.49 CH4 = 0.21 = 0.23 5.73			0.0272	5		,			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Z_L =$	1.00				1,627,315.54	SCF/Yr		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4) Mass _{s,i} = $E_{s,i}$	$* \rho_i * 10^3$							
(CH4) = 0.0192 kg/ft3 = 0.21 metric tons (CO2) = 0.0526 kg/ft3 = 85.72 metric tons $_2e = CO_2 + (CH_4 X GWP)$ short tons CO_2e CO2 = 85.72 = 94.49 CH4 = 0.21 = 0.23 5.73									
$\begin{aligned} & (CO2) = & 0.0526 & kg/ft3 & = & 85.72 & metric tons \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & $									
$\begin{array}{llllllllllllllllllllllllllllllllllll$	p _i (CH4) =		0.	=		metric tons			
CO2 = 85.72 = 94.49 94.49 $CH4 =$ 0.21 = 0.23 5.73	$p_i(CO2) =$	0.0526	kg/ft3	=	85.72	metric tons			
CH4 = 0.21 = 0.23 5.73			P)	short tons	CO ₂ e				
			=	94.49					
CH/T 05 100 21	CH4 =	0.21	=	0.23	5.73				
Gwr = 25 100.21	CH4 GWP =	25			100.21				

XTO ENERGY INC. WILDCAT COMPRESSOR STATION DEHYDRATOR 1-3 VAPORS ROUTED TO LOW PRESSURE FLARE

VOC/HAP Emissions for Dehydration Units (DEHY1 - DEHY3) - Routed to Low Pressure Flare Criteria Pollutant Emissions Combustion Device(s) ^b Uncontrolled Maximum Hourly Emission Rates and Composition to Combustion Device(s) Stream DEHY1-3 Still Column Emissions Total Combustion Device(s) Total Vapors to Combustion Device(s) Destruction Efficiency Emission Emission Emission (Uncontrolled) Component Rate 13. BTEX Cond Vapors to Combustion Combustion Exhaust (controlled) Factor Factor Unit Promax Stream Name Component (1b/hr) (ton/yr) (1b/hr) (ton/yr) (%) (1b/hr)(ton/yr) (lb/hr) NO_X Triethylene Glycol 0.00 5.23E-08 0.00 0.00 98% 0.00 0.00 0.34 0.138 lb/MMBtu Carbon Dioxide 7.59 7.59 0% 1.73 7.59 co 0.67 0.2755 lb/MMBtu Nitrogen 0.02 0.07 0.02 0.07 0% 0.02 0.07 SO₂ 0.20 Methane 7.30 31.99 7.30 31.99 98% 0.15 0.64 PM₁₀ 0.01 7.60 lb/MMscf PM2.5 Ethane 17.44 76.38 17.44 76.38 98% 0.35 1.53 0.01 7.60 lb/MMscf 31.09 136.19 31.09 136.19 98% 0.62 2.72 N₂O 0.00 0.00022 lb/MMBtu Propane H₂S Isobutane 22.65 22.65 98% 0.10 0.45 0.00 n-Butane 21.48 94.10 21.48 94.10 98% 0.43 1.88 0.15 31.85 31.85 0.64 Isopentane 7.27 98% Combustion Device Destruction 98% 9.88 43.29 9.88 43.29 98% 0.20 0.87 Efficiency C4+ n-Pentane n-Hexane 1.93 8.47 1.93 8.47 98% 0.04 0.17 Combustion Device Efficiency C3 98% 2.74 0.63 2.74 98% Cyclohexane 0.63 0.01 0.05 3.01 13.20 3.01 13.20 98% 0.06 0.26 i-C6 i-C7 2.34 10.25 2.34 10.25 98% 0.05 0.20 34.08 H2S molecular weight Methylcyclohexane 0.15 0.66 0.15 0.66 98% 0.00 0.01 O2 molecular weight 64.06 0.16 0.16 98% 0.00 0.01 Octane 0.72 0.72 Molar Volume (scf/lbmol) 379.484 0.01 0.03 0.01 0.03 98% 0.00 0.00 Nonane ombustor Operating Hour Benzene 3.56 15.58 3.56 15.58 98% 0.07 0.31 Toluene 1.90 8.33 1.90 8.33 98% 0.04 0.17 Ethylbenzene 0.02 0.10 0.02 0.10 98% 0.00 0.00 0.20 0.88 0.20 0.88 98% 0.00 0.02 o-Xylene Hydrogen Sulfide 0.11 0.47 0.11 0.47 98% 0.00 0.01 Water 0.98 4.28 0.98 4.28 0% 0.98 4.28 0.35 0.08 0.00 0.01 2,2,4-Trimethylpentane 0.08 98% 0.35 Decanes Plus 0.00 7 79E-06 0.00 0.00 98% 0.00 0.00 Total 116.47 510.16 116.47 510.16 5.00 21.91 ---7.79 Total VOC 88.90 389.37 88.90 389.37 ---1.78 7.80 34.17 7.80 34.17 0.16 0.68 Total HAP Heating Value (Btu/scf) 2,390.72 2,390.72 2390.72 2390.72 Molecular Weight (lb/lbmol) 43.23 43.23 Operating Hours (hr/yr) 8,760 8,760 ss Flow 116.47 lb/h 510.16 ton/yr 116.47 lb/hr 510.16 ton/yr olumetric Flow 1,022 scf/hr 9 MMscf/yr 1,022 scf/hr 9 MMscf/yr Heat Release (MMBtu/hr) 2 44 MMBtu/hr 21.412.63 MMBtu/yr 2 44 MMBtu/hr 21.412.63 MMBtu/yr from Combustion D Combustion Emi ce(s) (lb/hr) (ton/yr) (1b/hr) (ton/yr) Total NO_x 0.34 1.48 0.34 1.48 Total CO 0.67 2.95 0.67 2.95 Total SO 0.20 0.88 0.20 0.88 Total PM₁₀ 0.008 0.03 0.01 0.03 Total PM2 5 0.01 0.03 0.01 0.03 Total VOC (slip) 1.78 7.79 1.78 7.79 Total HAP (slip) 0.16 0.68 0.16 0.68 Total n-Hexane (slip) 0.04 0.17 0.04 0.17 Total Benzene (slip) 0.07 0.31 0.07 0.31 Total CH4 0.05 0.24 0.05 0.24 Large Glycol Unit - MACT HH Check Total N₂O 0.001 0.01 0.00 0.01 # of Units 3 Limit Total CO₂ 398.63 1,746.02 398.63 1,746.02 8,179 Flow per Dehy 85,000 SCF/Day Total CO2e 0.10 400.35 1,753.51 400.35 1,753.51 Benzene Emissions 1 ton/vr Footnotes: Uncontrolled stream properties determined via ProMax Plare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2 Flash tank emissions are routed back to inlet slug catcher.

WILDCAT COMPRESSOR STATION

ROAD EMISSIONS

Total Suspended Particle Emis	sions
$E = k(sL/2)^{a}(W/3)^{b}$	
a	0.7
b	0.45
k	4.9
Silt %	4.8
Vehicle Weight (tons)	28
E (lbs/VMT)	7.05
Rain Days	70
E-Annual (lbs/VMT)	5.70
Truckloads per year	210
Driving Distance Per Load (ft)	1000
Annual Distance (miles)	40
Control Efficiency - 15 MPH Limit	0.44
Emissions (lbs/hr)	0.60
Emissions (tpy)	0.06

PM ₁₀ Emissions	
$E = k(sL/2)^{a}(W/3)^{b}$	
a	0.9
b	0.45
k	1.5
Silt %	4.8
Vehicle Weight (tons)	28
E (lbs/VMT)	1.80
Rain Days	70
E-Annual (lbs/VMT)	1.45
Truckloads per day	210
Driving Distance Per Load (ft)	1000
Annual Distance (miles)	40
Control Efficiency - 15 MPH Limit	0.44
Emissions (lbs/hr)	0.15
Emissions (tpy)	0.02

PM _{2.5} Emissions	
$E = k(sL/2)^{a}(W/3)^{b}$	
a	0.9
b	0.45
k	0.15
Silt %	4.8
Vehicle Weight (tons)	28
E (lbs/VMT)	0.18
Rain Days	70
E-Annual (lbs/VMT)	0.15
Truckloads per day	210
Driving Distance Per Load (ft)	1000
Annual Distance (miles)	40
Control Efficiency - 15 MPH Limit	0.44
Emissions (lbs/hr)	0.02
Emissions (tpy)	0.00

Emissions (lbs/hr) = Driving Distance (ft)/ 5280 * E (lbs/VMT) Emissions (tpy) = Annual Distance * E / 2000

References:

EPA. "Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources," Section 13.2.2 AP-42, Ofice of Air Quality Planning and Standards, Research Triangle Park, NC. 5th edition (11/2006).

XTO ENERGY, INC. WILDCAT COMPRESSOR STATION FUGITIVE EMISSIONS - VOCs

. .			Estimated		.	Total VOC		Emissions	
Component Type	Service	Control (%)	Components Count	Hours	Factors ^a (lb/hr/source)	Weight % ^b	lb/hour	lb/year	tons/year
	Gas/Vapor		720	8760	0.00992080	29.75%	2.12	18614.13	9.31
Valves	Light Oil		236	8760	0.00551156	97.81%	1.27	11145.24	5.57
valves	Heavy Oil			8760	0.00001852	97.81%	0.00	0.00	0.00
	Water/Light Oil		153	8760	0.00021605	97.81%	0.03	283.24	0.14
	Gas/Vapor			8760	0.00529109	29.75%	0.00	0.00	0.00
	Light Oil		15	8760	0.02866009	97.81%	0.42	3683.60	1.84
Pump Seals	Heavy Oil			8760	0.00113000	97.81%	0.00	0.00	0.00
	Water/Light Oil		10	8760	0.00005291	97.81%	0.00	4.53	0.00
	Gas/Vapor		1440	8760	0.00044092	29.75%	0.19	1654.59	0.83
~ ·	Light Oil		472	8760	0.00046297	97.81%	0.21	1872.40	0.94
Connectors	Heavy Oil			8760	0.00001653	97.81%	0.00	0.00	0.00
	Water/Light Oil		306	8760	0.00024251	97.81%	0.07	635.85	0.32
	Gas/Vapor		720	8760	0.00085980	29.75%	0.18	1613.22	0.81
Flanges H V	Light Oil		236	8760	0.00024251	97.81%	0.06	490.39	0.25
	Heavy Oil		0	8760	0.0000086	97.81%	0.00	0.00	0.00
	Water/Light Oil		153	8760	0.00000639	97.81%	0.00	8.38	0.00
	Gas/Vapor		72	8760	0.00440925	29.75%	0.09	827.29	0.41
Open-ended	Light Oil			8760	0.00308647	97.81%	0.00	0.00	0.00
Lines	Heavy Oil			8760	0.00030865	97.81%	0.00	0.00	0.00
	Water/Light Oil			8760	0.00055116	97.81%	0.00	0.00	0.00
	Gas/Vapor		10	8760	0.01940068	29.75%	0.06	505.57	0.25
01	Light Oil			8760	0.01653467	97.81%	0.00	0.00	0.00
Other:	Heavy Oil			8760	0.00007055	97.81%	0.00	0.00	0.00
	Water/Light Oil		5	8760	0.03086472	97.81%	0.15	1322.32	0.66
		Enterior	Comment	-		lh <i>i</i> ha	lleferrer	70%	1
		Emission	Component			lb/hr	lb/year	TPY	
		Tota	I VOC			4.87	42660.75	21.33	

XTO ENERGY, INC. WILDCAT COMPRESSOR STATION FUGITIVE EMISSIONS - VOCs

			Contro	olled	VOC Emissi	ons			
Component Type	Service	Control (%)	Estimated Components Count	Hours	Factors ^a (lb/hr/source)	Total VOC Weight % ^b	V lb/hour	OC Emissions lb/year	tons/year
	Gas/Vapor		720	8760	0.009921	29.75%	2.12	18.614	9.31
	Light Oil		236	8760	0.005512	97.81%	1.27	11,145	5.57
Valves	Heavy Oil		0	8760	0.000019	97.81%	0.00	0	0.00
	Water/Light Oil		153	8760	0.000216	97.81%	0.03	283	0.14
	Gas/Vapor		0	8760	0.005291	29.75%	0.00	0	0.00
D C 1	Light Oil		15	8760	0.028660	97.81%	0.42	3,684	1.84
Pump Seals	Heavy Oil		0	8760	0.001130	97.81%	0.00	0	0.00
	Water/Light Oil		10	8760	0.000053	97.81%	0.00	5	0.00
	Gas/Vapor		1440	8760	0.000441	29.75%	0.19	1,655	0.83
Commontoria	Light Oil		472	8760	0.000463	97.81%	0.21	1,872	0.94
Connectors	Heavy Oil		0	8760	0.000017	97.81%	0.00	0	0.00
	Water/Light Oil		306	8760	0.000243	97.81%	0.07	636	0.32
	Gas/Vapor		720	8760	0.000860	29.75%	0.18	1,613	0.81
Flamaca	Light Oil		236	8760	0.000243	97.81%	0.06	490	0.25
Flanges	Heavy Oil		0	8760	0.000001	97.81%	0.00	0	0.00
	Water/Light Oil		153	8760	0.000006	97.81%	0.00	8	0.00
	Gas/Vapor		72	8760	0.004409	29.75%	0.09	827	0.41
Open-ended	Light Oil		0	8760	0.003086	97.81%	0.00	0	0.00
Lines	Heavy Oil		0	8760	0.000309	97.81%	0.00	0	0.00
	Water/Light Oil		0	8760	0.000551	97.81%	0.00	0	0.00
	Gas/Vapor		10	8760	0.019401	29.75%	0.06	506	0.25
Other:	Light Oil		0	8760	0.016535	97.81%	0.00	0	0.00
Other.	Heavy Oil		0	8760	0.000071	97.81%	0.00	0	0.00
	Water/Light Oil		5	8760	0.030865	97.81%	0.15	1,322	0.66

Emission Component	lb/hr	lb/year	TPY
Controlled VOC Emissions	4.87	42,661	21.33

Footnotes:

^a Factors are taken from EPA Document EPA-453/R-095-017, November 1995, Table 2-4

^bGas/Vapor analysis based on inlet gas. Liquid Analysis based on liquid from condensate from Low Pressure Separator

XTO ENERGY, INC. WILDCAT COMPRESSOR STATION FUGITIVE EMISSIONS - HAPs

<u> </u>	Estimated			Total HAPs Weight % ^b	Emissions			
Component Type	Service	Service Components Count	Hours Factors		lb/hour	lb/year	tons/year	
	Gas/Vapor	720	8760	0.00992080	0.84%	0.060	524.326	0.262
Valves	Light Oil	236	8760	0.00551156	11.04%	0.144	1258.113	0.629
valves	Heavy Oil	0	8760	0.00001852	11.04%	0.000	0.000	0.000
	Water/Light Oil	153	8760	0.00021605	11.04%	0.004	31.973	0.016
	Gas/Vapor	0	8760	0.00529109	0.84%	0.000	0.000	0.000
Dumm Carls	Light Oil	15	8760	0.02866009	11.04%	0.047	415.817	0.208
Pump Seals	Heavy Oil	0	8760	0.00113000	11.04%	0.000	0.000	0.000
	Water/Light Oil	10	8760	0.00005291	11.04%	0.000	0.512	0.000
	Gas/Vapor	1440	8760	0.00044092	0.84%	0.005	46.607	0.023
Compositors	Light Oil	472	8760	0.00046297	11.04%	0.024	211.363	0.106
Connectors	Heavy Oil	0	8760	0.00001653	11.04%	0.000	0.000	0.000
	Water/Light Oil	306	8760	0.00024251	11.04%	0.008	71.776	0.036
	Gas/Vapor	720	8760	0.00085980	0.84%	0.005	45.442	0.023
Elener	Light Oil	236	8760	0.00024251	11.04%	0.006	55.357	0.028
Flanges	Heavy Oil	0	8760	0.0000086	11.04%	0.000	0.000	0.000
	Water/Light Oil	153	8760	0.00000639	11.04%	0.000	0.946	0.000
	Gas/Vapor	72	8760	0.00440925	0.84%	0.003	23.303	0.012
Open-ended	Light Oil	0	8760	0.00308647	11.04%	0.000	0.000	0.000
Lines	Heavy Oil	0	8760	0.00030865	11.04%	0.000	0.000	0.000
	Water/Light Oil	0	8760	0.00055116	11.04%	0.000	0.000	0.000
	Gas/Vapor	10	8760	0.01940068	0.84%	0.002	14.241	0.007
Other:	Light Oil	0	8760	0.01653467	11.04%	0.000	0.000	0.000
Other:	Heavy Oil	0	8760	0.00007055	11.04%	0.000	0.000	0.000
	Water/Light Oil	5	8760	0.03086472	11.04%	0.017	149.268	0.075

Emission Component	lb/hr	lb/year	TPY
Gas/Vapor	0.07	653.92	0.33
Oil	0.25	2195.13	1.10
Total HAPs	0.33	2849.04	1.42
Benzene	0.01	129.08	0.06
n-Hexane	0.25	2195.82	1.10

Footnotes:

^a Factors are taken from EPA Document EPA-453/R-095-017, November 1995, Table 2-4

^b HAP WT% taken from samples for Inlet Separator Liquid and Inlet Separator Gas.

Tab 7

Section 7 - Information Used To Determine Emissions

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- ☑ If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- \Box If an older version of AP-42 is used, include a complete copy of the section.
- ☑ If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

The Wildcat Compressor Station gas inlet composition was simulated using oil and gas samples entering a tank battery that will flow into the station. The PLU Brush Draw 18 No. 104H hydrocarbon sample was used to estimate emissions and sales gas compositions for the Poker Lake Unit 18 Twin Wells Ranch Tank Battery (GCP-O&G-8579). The PLU 18 Brushy Draw No. 104H analysis is representative of the hydrocarbons from the surrounding wells and batteries. The sales gas composition from this battery was used as the inlet gas composition for the station.

All supporting documentation is provided in this section.

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springwoods Village Pkwy. Spring, Texas 77389

Sample: PLU 18 Brushy Draw Tank Battery No. 104H First Stage Separator Spot Gas Sample @ 130 psig & 109 °F

Date Sampled: 08/20/2019

Job Number: 192971.001

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	1.177	
Carbon Dioxide	0.114	
Methane	73.146	
Ethane	12.878	3.529
Propane	6.712	1.895
Isobutane	0.928	0.311
n-Butane	2.317	0.748
2-2 Dimethylpropane	0.013	0.005
Isopentane	0.541	0.203
n-Pentane	0.647	0.240
Hexanes	0.552	0.233
Heptanes Plus	<u>0.975</u>	0.432
Totals	100.000	7.596

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.565	(Air=1)
Molecular Weight	102.78	
Gross Heating Value	5475	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.804	(Air=1)
Compressibility (Z)	0.9953	
Molecular Weight	23.18	
Gross Heating Value		
Dry Basis	1405	BTU/CF
Saturated Basis	1381	BTU/CF

*Hydrogen Sulfide tested on location by: Stain Tube Method (GPA 2377) Results: Stain Tube Method (GPA 2377) Results: Stain Tube Method (GPA 2377)

Base Conditions: 15.025 PSI & 60 Deg F

Sampled By: (14) R. Perez Analyst: NG Processor: RG Cylinder ID: T-1897 Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286				
TOTAL REPORT				

		GPM		WT %
COMPONENT	MOL %	GPIN		< 0.001
Hydrogen Sulfide*	< 0.001			
Nitrogen	1.177			1.423
Carbon Dioxide	0.114			0.216
Methane	73.146	0 500		50.631
Ethane	12.878	3.529		16.708
Propane	6.712	1.895		12.770
Isobutane	0.928	0.311		2.327
n-Butane	2.317	0.748		5.811
2,2 Dimethylpropane	0.013	0.005		0.040
Isopentane	0.541	0.203		1.684
n-Pentane	0.647	0.240		2.014
2,2 Dimethylbutane	0.008	0.003		0.030
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.050	0.021		0.186
2 Methylpentane	0.167	0.071		0.621
3 Methylpentane	0.087	0.036		0.323
n-Hexane	0.240	0.101		0.892
Methylcyclopentane	0.095	0.034		0.345
Benzene	0.016	0.005		0.054
Cyclohexane	0.122	0.043		0.443
2-Methylhexane	0.034	0.016		0.147
3-Methylhexane	0.038	0.018		0.164
2,2,4 Trimethylpentane	0.000	0.000		0.000
Other C7's	0.093	0.000		0.398
n-Heptane	0.087	0.041		0.376
Methylcyclohexane	0.117	0.041		0.496
Toluene	0.026	0.040		0.490
Other C8's	0.020	0.009		0.103
	0.045	0.055		0.552
n-Octane				-
Ethylbenzene	0.004	0.002		0.018
M & P Xylenes	0.021	0.008		0.096
O-Xylene	0.006	0.002		0.027
Other C9's	0.080	0.042		0.436
n-Nonane	0.023	0.013		0.127
Other C10's	0.037	0.022		0.226
n-Decane	0.007	0.004		0.043
Undecanes (11)	0.008	<u>0.005</u>		<u>0.051</u>
Totals	100.000	7.596		100.000
Computed Real Charact	eristics of Total Sampl	е		
			(Air=1)	
			. /	
Molecular Weight		- 23.18		
Gross Heating Value		0		
Drv Basis		- 1405	BTU/CF	
Saturated Basis -		1381	BTU/CF	
		1001	5.0/01	

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

Sample: PLU 18 Brushy Draw Tank Battery No. 104H First Stage Separator

Spot Gas Sample @ 130 psig & 109 °F

Date Sampled: 08/20/2019

Job Number: 192971.001

GLYCALC FORMAT

COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.114		0.216
Hydrogen Sulfide	< 0.001		< 0.001
Nitrogen	1.177		1.423
Methane	73.146		50.631
Ethane	12.878	3.529	16.708
Propane	6.712	1.895	12.770
Isobutane	0.928	0.311	2.327
n-Butane	2.330	0.753	5.851
Isopentane	0.541	0.203	1.684
n-Pentane	0.647	0.240	2.014
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.240	0.101	0.892
Cyclohexane	0.122	0.043	0.443
Other C6's	0.312	0.132	1.160
Heptanes	0.347	0.150	1.430
Methylcyclohexane	0.117	0.048	0.496
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.016	0.005	0.054
Toluene	0.026	0.009	0.103
Ethylbenzene	0.004	0.002	0.018
Xylenes	0.027	0.011	0.123
Octanes Plus	<u>0.316</u>	<u>0.165</u>	<u>1.657</u>
Totals	100.000	7.596	100.000

Real Characteristics Of Octanes Plus:

Specific Gravity	4.212	(Air=1)
Molecular Weight	121.44	
Gross Heating Value	6478	BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity	0.804	(Air=1)
Compressibility (Z)	0.9953	
Molecular Weight	23.18	
Gross Heating Value		
Dry Basis	1405	BTU/CF
Saturated Basis	1381	BTU/CF

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springwoods Village Pkwy. Spring, Texas 77389

Sample: PLU 18 Brushy Draw Tank Battery No. 104H First Stage Separator Hydrocarbon Liquid Sampled @ 130 psig & 109 °F

Date Sampled: 08/21/19

Job Number: 192971.002

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.038	0.007	0.007
Carbon Dioxide	0.011	0.003	0.003
Methane	2.990	0.839	0.323
Ethane	2.773	1.228	0.562
Propane	4.351	1.985	1.293
Isobutane	1.270	0.688	0.497
n-Butane	4.521	2.360	1.771
2,2 Dimethylpropane	0.060	0.038	0.029
Isopentane	2.401	1.454	1.168
n-Pentane	3.658	2.196	1.779
2,2 Dimethylbutane	0.043	0.030	0.025
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.322	0.219	0.187
2 Methylpentane	1.363	0.937	0.792
3 Methylpentane	0.817	0.552	0.475
n-Hexane	2.668	1.817	1.550
Heptanes Plus	<u>72.715</u>	<u>85.647</u>	<u>89.539</u>
Totals:	100.000	100.000	100.000

Specific Gravity	0.8139	(Water=1)
°API Gravity	42.35	@ 60°F
Molecular Weight	182.7	
Vapor Volume	13.79	CF/Gal
Weight	6.78	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.7786	(Water=1)
°API Gravity	50.25	@ 60°F
Molecular Weight	148.4	
Vapor Volume	16.24	CF/Gal
Weight	6.49	Lbs/Gal

Base Conditions: 15.025 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

Sampled By: (14) Perez Analyst: ANB Processor: ANBdjv Cylinder ID: W-0360

David Dannhaus 361-661-7015

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.011	0.003	0.003
Nitrogen	0.038	0.007	0.007
Methane	2.990	0.839	0.323
Ethane	2.773	1.228	0.562
Propane	4.351	1.985	1.293
Isobutane	1.270	0.688	0.497
n-Butane	4.580	2.398	1.800
Isopentane	2.401	1.454	1.168
n-Pentane	3.658	2.196	1.779
Other C-6's	2.545	1.737	1.478
Heptanes	9.560	6.545	6.040
Octanes	12.413	9.427	8.953
Nonanes	6.689	5.986	5.716
Decanes Plus	40.652	61.509	66.494
Benzene	0.199	0.092	0.105
Toluene	0.947	0.525	0.588
E-Benzene	0.143	0.091	0.102
Xylenes	1.561	0.998	1.117
n-Hexane	2.668	1.817	1.550
2,2,4 Trimethylpentane	<u>0.551</u>	0.474	<u>0.424</u>
Totals:	100.000	100.000	100.000
Characteristics of Total Sample:			
Specific Gravity		0.7786	(Water=1)
°API Gravity		50.25	@ 60°F
Molecular Weight		148.4	
Vapor Volume		16.24	CF/Gal
Weight		6.49	Lbs/Gal

Characteristics of Decanes (C10) Plus:

Specific Gravity	0.8417 (Water=1)
Molecular Weight	242.7

Characteristics of Atmospheric Sample:

°API Gravity	47.21	@ 60°F
Reid Vapor Pressure Equivalent (D-6377)	8.87	psi

QUALITY CONTROL CHECK					
Sampling Conditions Test Samples					
Cylinder Number		W-0360*			
Pressure, PSIG		129			
Temperature, °F		109			

* Sample used for analysis

FESCO, Ltd.

COMPONENT	Mol %	LiqVol %	Wt %
Nitrogen	0.038	0.007	0.007
Carbon Dioxide	0.011	0.003	0.003
Methane	2.990	0.839	0.323
Ethane	2.773	1.228	0.562
Propane	4.351	1.985	1.293
Isobutane	1.270	0.688	0.497
n-Butane	4.521	2.360	1.771
2,2 Dimethylpropane	0.060	0.038	0.029
Isopentane	2.401	1.454	1.168
n-Pentane	3.658	2.196	1.779
2,2 Dimethylbutane	0.043	0.030	0.025
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.322	0.219	0.187
2 Methylpentane	1.363	0.937	0.792
3 Methylpentane	0.817	0.552	0.475
n-Hexane	2.668	1.817	1.550
Methylcyclopentane	1.487	0.872	0.844
Benzene	0.199	0.092	0.105
Cyclohexane	2.289	1.290	1.298
2-Methylhexane 3-Methylhexane	0.973	0.749	0.657
2,2,4 Trimethylpentane	0.915 0.551	0.696 0.474	0.618 0.424
Other C-7's	1.228	0.900	0.424
n-Heptane	2.668	2.039	1.802
Methylcyclohexane	4.080	2.716	2.700
Toluene	0.947	0.525	0.588
Other C-8's	6.033	4.759	4.482
n-Octane	2.301	1.952	1.771
E-Benzene	0.143	0.091	0.102
M & P Xylenes	1.196	0.768	0.856
O-Xylene	0.365	0.230	0.261
Other C-9's	4.872	4.293	4.146
n-Nonane	1.817	1.693	1.570
Other C-10's	4.786	4.634	4.557
n-decane	1.297	1.319	1.244
Undecanes(11)	4.689	4.658	4.646
Dodecanes(12)	3.489	3.745	3.787
Tridecanes(13)	3.466	3.988	4.088
Tetradecanes(14)	2.807	3.459	3.594
Pentadecanes(15)	2.412	3.184	3.348
Hexadecanes(16)	1.869	2.638	2.797
Heptadecanes(17)	1.594	2.378	2.546
Octadecanes(18)	1.461	2.296	2.472
Nonadecanes(19)	1.275	2.086	2.260
Eicosanes(20)	1.015	1.727	1.882
Heneicosanes(21)	0.866	1.549	1.698
Docosanes(22)	0.743	1.385	1.527
Tricosanes(23)	0.635	1.228	1.362
Tetracosanes(24)	0.560	1.123	1.250
Pentacosanes(25)	0.500	1.039	1.162
Hexacosanes(26)	0.453 0.419	0.975 0.935	1.096
Heptacosanes(27) Octacosanes(28)	0.340	0.935	1.055 0.889
Nonacosanes(29)	0.340	0.732	0.832
Triacontanes(30)	0.281	0.692	0.789
Hentriacontanes Plus(31+)	<u>5.388</u>	<u>14.955</u>	<u>17.614</u>
Total	100.000	100.000	100.000

Page 3 of 3

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springwoods Village Pkwy. Spring, Texas 77389 Date Sampled: 08/21/19

Date Analyzed: 09/09/19

Sample: PLU 18 Brushy Draw Tank Battery No. 104H

Job Number: J192971

FLASH LIBERATION OF HYDROCARBON LIQUID						
Separator HC Liquid Stock Tank						
Pressure, psig	130	0				
Temperature, °F	109	70				
Density of Separator HC Liquid (g/cc)	0.7597					
Gas Oil Ratio (1)		66.1				
Gas Specific Gravity (2)		1.269				

STOCK TANK FLUID PROPERTIES				
Shrinkage Recovery Factor (3)	0.9411			
Density of Stock Tank HC Liquid (g/cc @ 60 °F)	0.7910			
Oil API Gravity at 60 °F	47.21			

Quality Control Check						
Sampling Conditions Test Sample						
Cylinder No.		W-0360*				
Pressure, psig	130	129				
Temperature, °F	109	109				

(1) - Scf of flashed vapor per barrel of stock tank oil

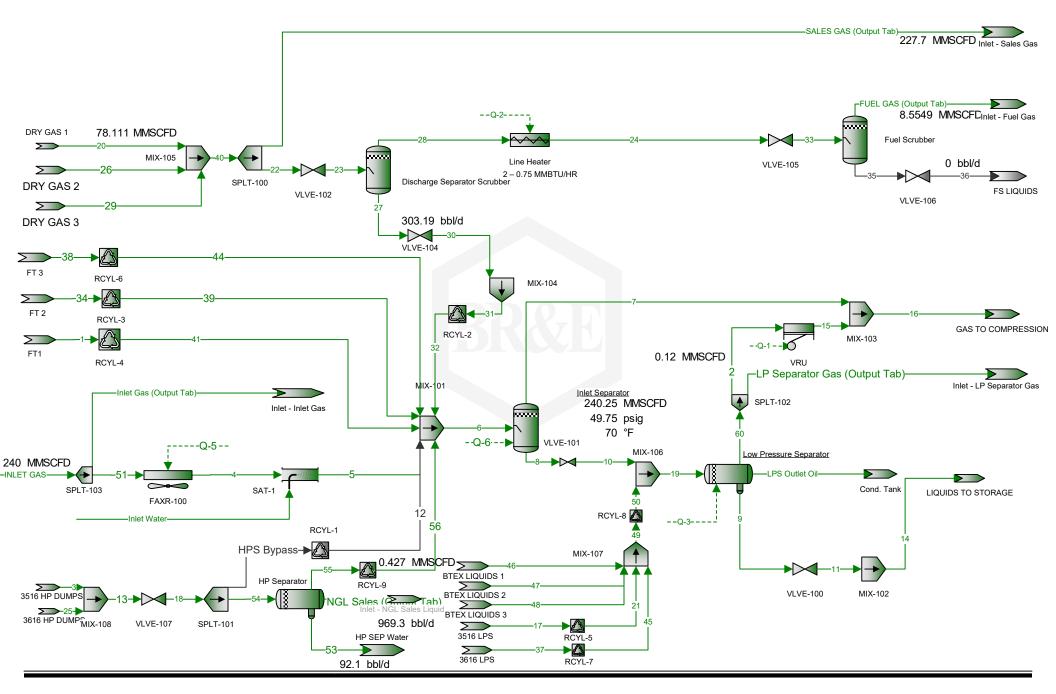
(2) - Air = 1.000

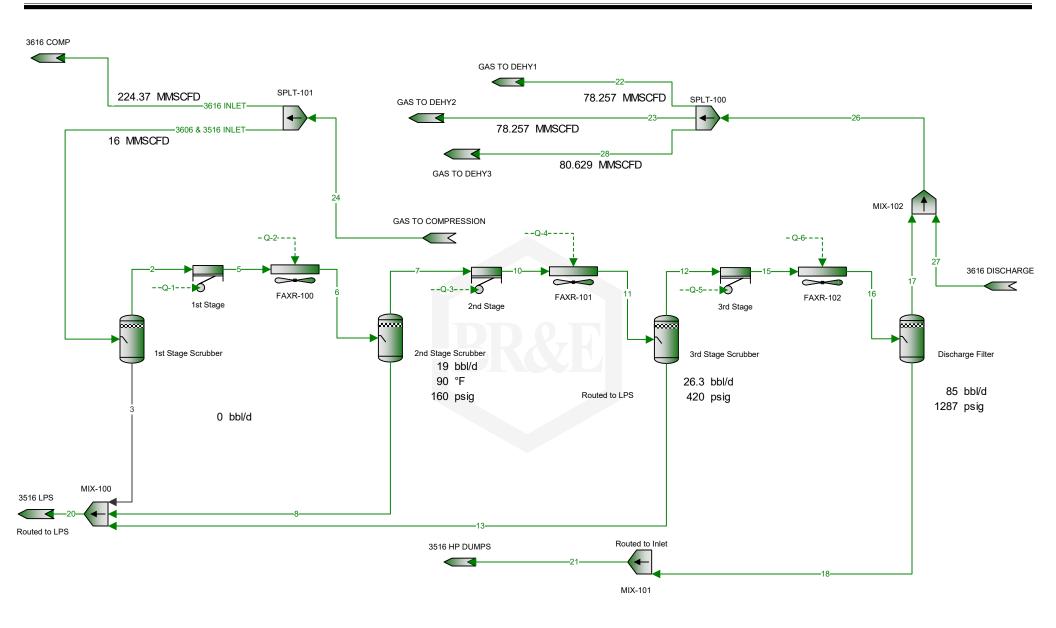
(3) - Fraction of first stage separator liquid

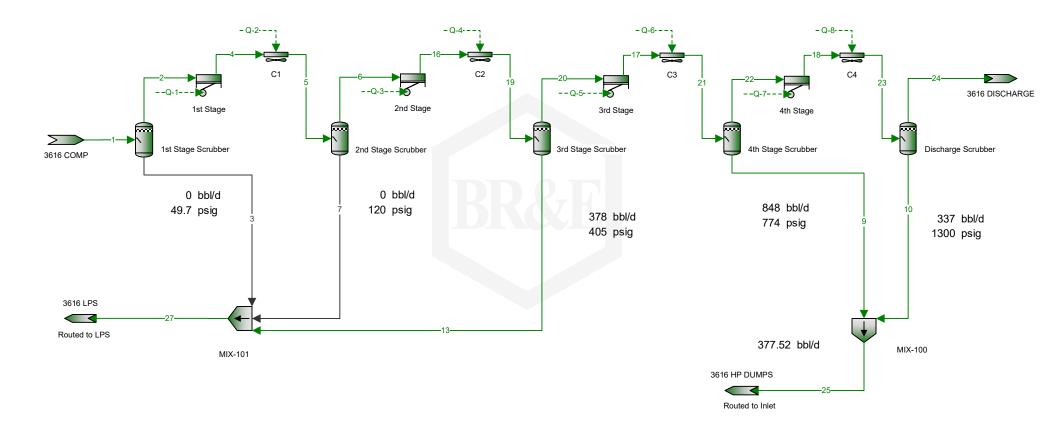
Analyst: R.E.

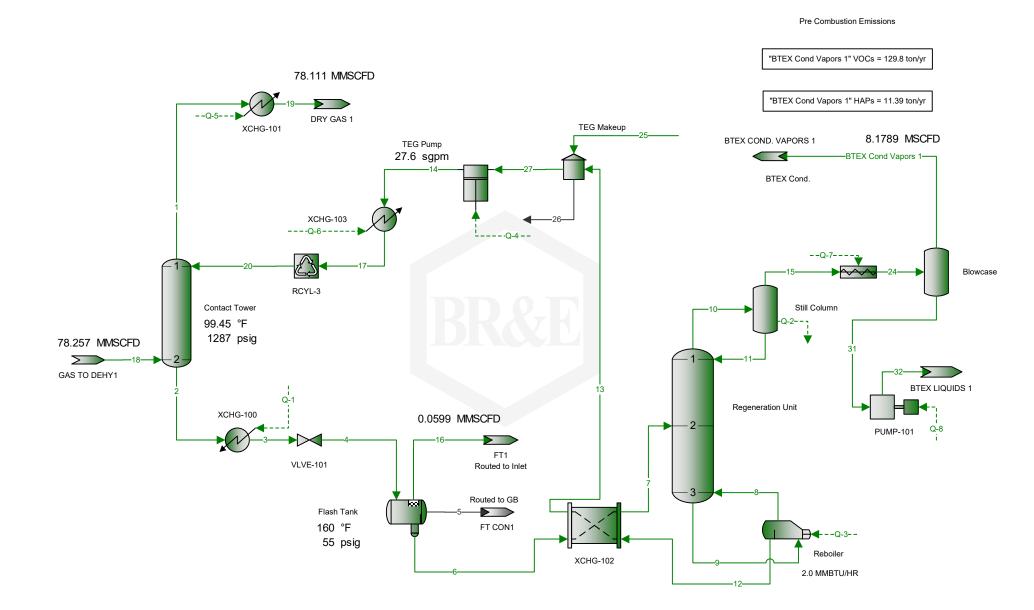
Base Conditions: 15.025 PSI & 60 °F

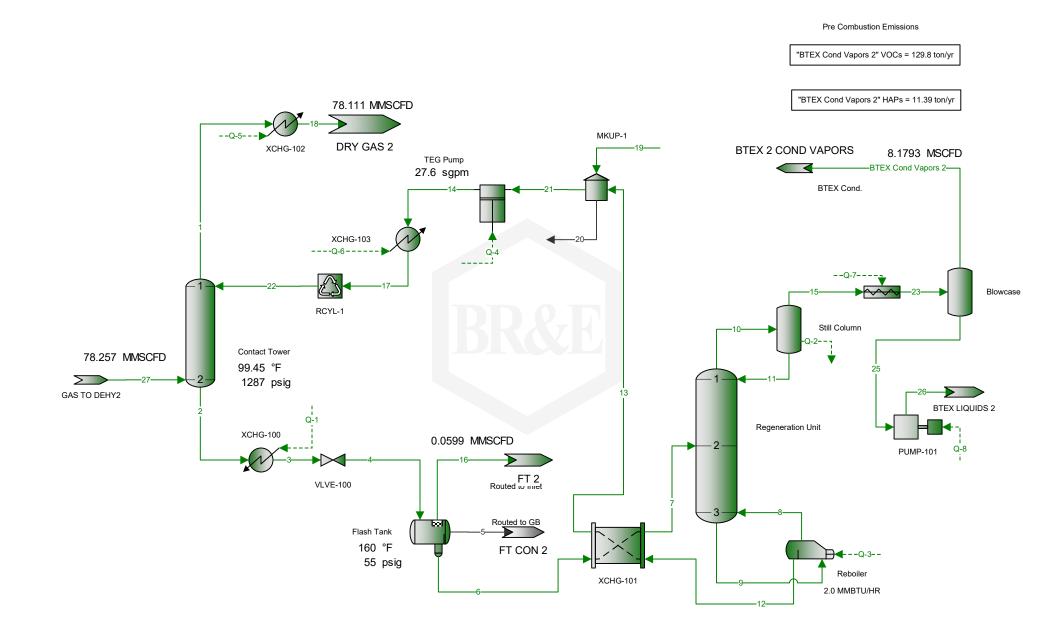
Certified: FESCO, Ltd. - Alice, Texas

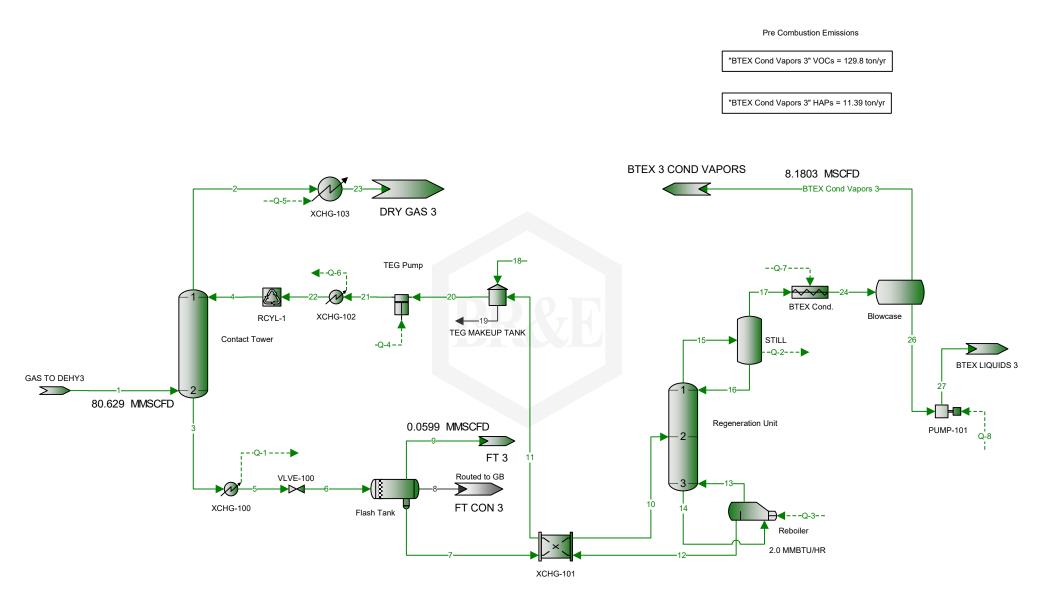

David Dannhaus 361-661-7015

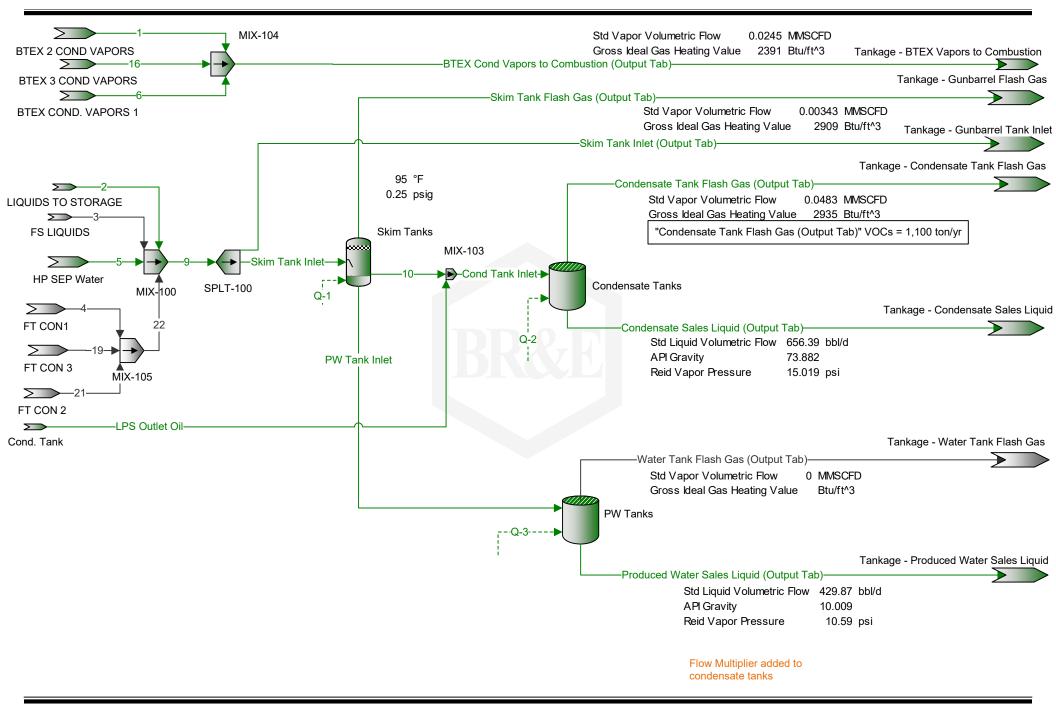

		Ρ	Sales Iant Schematic		
Client Name:	XTO ENERGY INC			Job: DELAWAR	E DEVELOPMENT
Location:	PLU 18 Twin Wells Ra	anch TB			
Flowsheet:	Sales				
		HP Gas	> 5	Contrived Sales Cas USA 7 Baury 3 USA 7 Baury 3 Contrived Sales Cas USA 7 Baury 3 Series	et to Wildcat CS
		VRT Gas Vapor			

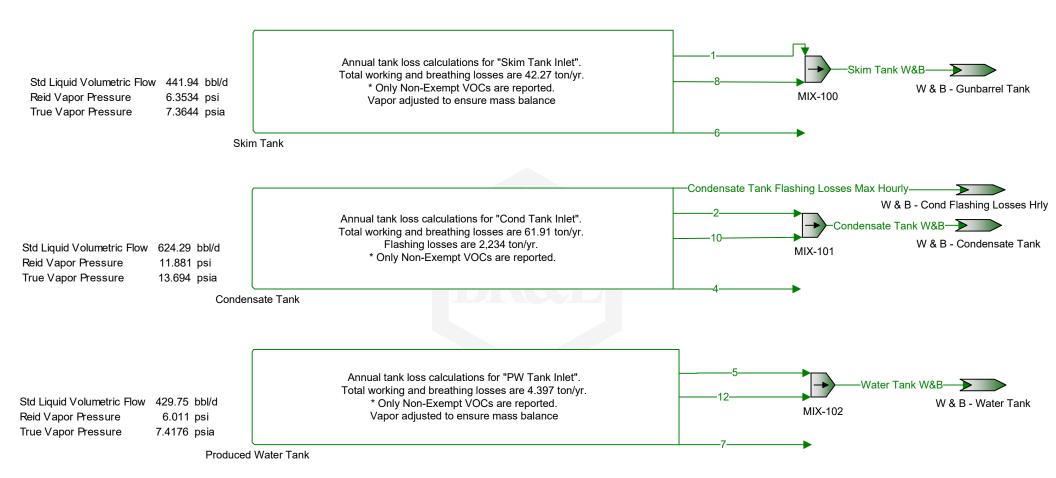

		All St	eams Report reams y Total Phase		
Client Name:	XTO ENERGY I			Job: DELA	WARE DEVELOPMENT
Location:	PLU 18 Twin We	ells Ranch TB			
Flowsheet:	Sales				
			ections		
		Combined			
From Diack		Sales Gas			
From Block To Block		VSSL-100			
TO BIOCK					
		Stroom C	omposition		
		Combined Sales Gas			
Mole Fraction		%			
Carbon Dioxide		0.111969			
Nitrogen		1.15886			
Methane Ethane		72.1455			
Propane		7.0447			
Isobutane		0.967756			
n-Butane		2.45017			
Isopentane		0.552886			
n-Pentane		0.653966			
n-Hexane		0.169468			
Cyclohexane		0.0179833			
i-C6 i-C7		0.227721 0.293879			
Methylcyclohexar	חפ	0.00943582			
Octane		0.0925583			
Nonane		0.0182404			
Benzene		0.0112688			
Toluene		0.0161728			
Ethylbenzene		0.000923916			
o-Xylene H2S		0.00788571			
Water		0.923509			
2,2,4-Trimethylpe	entane	0.0108863			
Decanes Plus		3.78831E-05			
Mass Fraction		Combined Sales Gas %			
Carbon Dioxide		0.215587			
Nitrogen		1.42028			
Methane		50.6359			
Ethane		17.2509			
Propane		13.5905			
Isobutane		2.46086			
n-Butane Isopentane		<u> </u>			
n-Pentane		2.06425			
n-Hexane		0.638923			
Cyclohexane		0.0662143			
i-Č6		0.858549			
i-C7		1.28832			
Methylcyclohexar	ne	0.0405329			
Octane		0.46256			
Nonane Benzene		0.10235			
Toluene		0.0385099			
Ethylbenzene		0.00429134			
o-Xylene		0.0366269			
H2S		0.00134473			
Water		0.727882			
2,2,4-Trimethylpe	entane	0.0544044			
Decanes Plus		0.000402248			

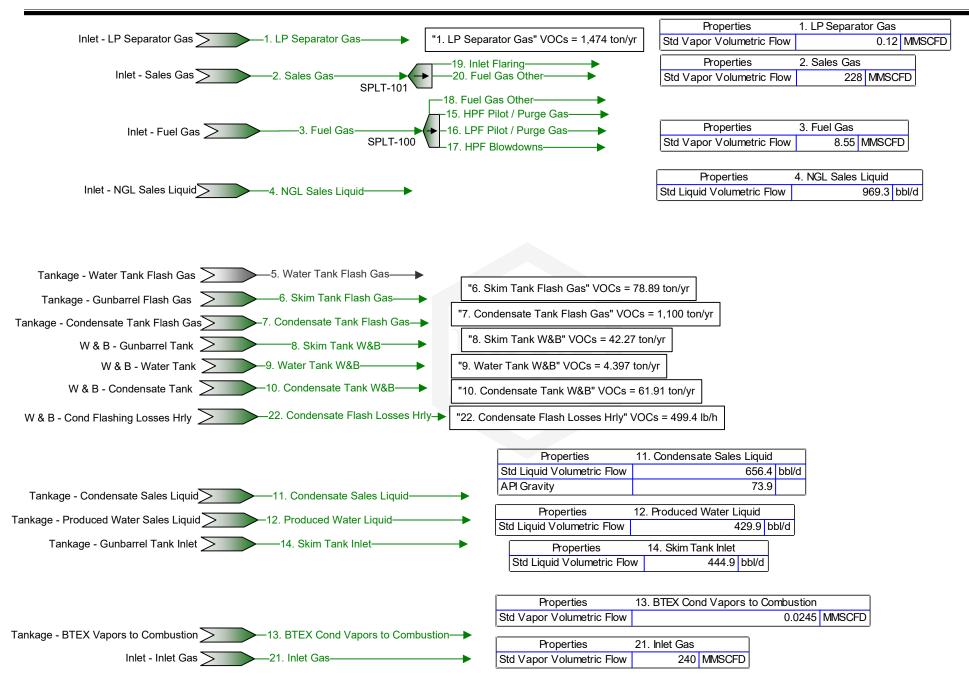

* User Specified Values ? Extrapolated or Approximate Values


				reams Report treams by Total Phase				
Client Name: X1	TO ENERGY	NC				Job: DEL	VELOPMENT	
		ells Ranch TB					 	
	ales							
Mass Flow			Combined Sales Gas Ib/h					
Carbon Dioxide			328.277					
Nitrogen			2162.68					
Methane			77103.8					
Ethane			26268.1					
Propane			20694.4					
Isobutane			3747.17					
n-Butane			9487.09					
Isopentane			2657.42					
n-Pentane			3143.26					
n-Hexane			972.895					
Cyclohexane			100.825					
i-Ĉ6			1307.32					
i-C7			1961.74					
Methylcyclohexane			61.7199					
Octane			704.345					
Nonane			155.849					
Benzene			58.6393					
Toluene			99.2708					
Ethylbenzene			6.53446					
o-Xylene			55.7722					
H2Ś			2.04764					
Water			1108.35					
2,2,4-Trimethylpentane			82.8421					
Decanes Plus			0.612507					
				Properties				
Property		Units	Combined Sales Gas					
Temperature		°F	104.086					
Pressure		psig	95					
Molecular Weight		lb/lbmol	22.8571					
Mass Flow	L	lb/h	152271					
Std Liquid Volumetric Fl		sgpm	831.818					
Std Vapor Volumetric Fl		MMSCFD	60.6737					
Gross Ideal Gas Heatin	g value	Btu/ft^3	1343.73		<u> </u>			
Remarks								









Client Name:			All St	reams Report Treams by Total Phase	Job:		1 ago 1 on 12			
Client Name: Location:		ELAWARE DIVISION Job: /ildcat Compressor Station								
Flowsheet:	Output									
	•									
			Conn	ections						
			1. LP Separator Gas	2. Sales Gas	3. Fuel Gas	4. NGL Sales Liquid	5. Water Tank Flash Gas			
From Block			Inlet - LP Separator Gas	Inlet - Sales Gas	Inlet - Fuel Gas	Inlet - NGL Sales Liquid	Tankage - Water Tank			
To Block				SPLT-101	SPLT-100		Flash Gas 			
			Ctroom C							
			1. LP	omposition 2. Sales Gas	3. Fuel Gas	4. NGL Sales	5. Water Tank			
Mass Fraction			Separator Gas %	2. Sales Gas	3. Fuel Gas	Liquid	Flash Gas %			
Triethylene Glycol			1.49937E-09	0.000577059	2.50479E-05	1.4835E-15	70			
Carbon Dioxide			0.128465	0.220014	0.237859	0.030462				
Nitrogen			0.133554	1.45276	1.61036	0.0141495				
Methane			13.154	51.7828	56.8725	2.46124				
Ethane			17.1985	17.5988	18.4841	5.57047				
Propane Isobutane			27.1804 6.43707	<u>13.7859</u> 2.47407	13.2145 2.07482	<u>11.9902</u> 4.0639				
n-Butane			17.4738	6.21986	4.78439	13.467				
Isopentane			4.88667	1.7002	1.00621	6.45743				
n-Pentane			5.67425	1.98555	1.0596	9.08517				
n-Hexane			1.39319	0.553915	0.152889	5.89567				
Cyclohexane			0.158407	0.0549354	0.0137626	0.693663				
i-C6 i-C7			2.07018 2.30479	0.773009 0.996078	0.264882 0.179257	6.56134 17.0167				
Methylcyclohexane			0.0700094	0.0282317	0.00389946	0.648652				
Octane			0.465398	0.225614	0.0146104	10.2544				
Nonane			0.0572251	0.0233224	0.000538551	2.56757				
Benzene			0.245463	0.0291061	0.00898304	0.35046				
Toluene			0.19267	0.0373838	0.00526183	1.05975				
Ethylbenzene			0.0055545	0.0016919	0.000107779	0.0967535				
o-Xylene Hydrogen Sulfide			0.0440768 0.0025171	0.0121902 0.00134946	0.000649821 0.00140693	0.870511 0.000525606				
Water			0.634565	0.00321692	0.0034911	0.0208257				
2,2,4-Trimethylpenta	ane		0.0891646	0.0394093	0.00589431	0.81902				
Decanes Plus			4.24095E-05	9.77871E-06	6.7711E-08	0.00404189				
			1. LP Separator Gas	2. Sales Gas	3. Fuel Gas	4. NGL Sales Liquid	5. Water Tank Flash Gas			
Mole Fraction Triethylene Glycol			% 3.71735E-10	% 8.7071E-05	% 3.56664E-06	% 6.16905E-16	%			
Carbon Dioxide			0.108681	0.113279	0.115572	0.043225				
Nitrogen			0.177504	1.1751	1.22924	0.0315427				
Methane			30.5285	73.1408	75.8072	9.58089				
Ethane			21.2955	13.262	13.1449	11.569				
Propane			22.9497	7.0841	6.40819	16.9807				
Isobutane n-Butane			4.12348	0.964529 2.42484	0.763339	4.3664 14.4694				
Isopentane			<u>11.1934</u> 2.52175	0.53397	0.298221	5.58924				
n-Pentane			2.92818	0.623586	0.314047	7.86369				
n-Hexane			0.601927	0.145648	0.0379378	4.27241				
Cyclohexane			0.070079	0.0147909	0.00349685	0.514716				
i-C6			0.894424	0.203257	0.0657278	4.7548				
i-C7 Methylcyclohexane			0.856391	0.225249 0.00651528	0.0382542	10.6053 0.412557				
Octane			0.0265475	0.00651528	0.00273506	5.60608				
Nonane			0.0166123	0.00412043	8.97907E-05	1.25017				
Benzene			0.117	0.00844329	0.00245915	0.280184				
Toluene			0.0778559	0.00919366	0.00122117	0.718264				
Ethylbenzene			0.00194797	0.000361109	2.17086E-05	0.0569125				
o-Xylene			0.0154577	0.0026018	0.000130886	0.512053				

* User Specified Values ? Extrapolated or Approximate Values

Client Name:	DELAWARE DI						
Location:	Wildcat Compre				Job:		
Flowsheet:	Output						
TIOWSHEEL.	Output						
Mala Francisco			1. LP Separator Gas	2. Sales Gas	3. Fuel Gas	4. NGL Sales Liquid	5. Water Tank Flash Gas
Mole Fraction			%	%	%	%	%
Hydrogen Sulfide			0.00274983	0.000897208	0.000882758	0.000963101	
Water			1.31145	0.00404617	0.00414382	0.0721906	
2,2,4-Trimethylpent	ane		0.0290627	0.00781752	0.00110341	0.447757	
Decanes Plus			1.02933E-05	1.44445E-06	9.43872E-09	0.00164544	
			1. LP Separator Gas	2. Sales Gas	3. Fuel Gas	4. NGL Sales Liquid	5. Water Tank Flash Gas
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Triethylene Glycol			7.33751E-09	3.26908	0.0050311	1.2341E-13	
Carbon Dioxide			0.628672	1246.4	47.7762	2.53408	
Nitrogen			0.653577	8230.02	323.455	1.17707	
Methane			64.3723	293354	11423.3	204.747	
Ethane			84.1648	99698.4	3712.7	463.398	
Propane			133.013	78098.1	2654.25	997.448	
Isobutane			31.5013	14015.8	416.746	338.069	
n-Butane			85.5122	35235.9	960.987	1120.29	
Isopentane			23.914	9631.77	202.106	537.182	
n-Pentane			27.7683	11248.3	212.831	755.78	
n-Hexane			6.81788	3137.97	30.7091	490.451	
Cyclohexane			0.7752	311.213	2.76434	57.7046	
i-Ĉ6			10.1309	4379.15	53.2039	545.827	
i-C7			11.279	5642.86	36.0054	1415.59	
Methylcyclohexane			0.342607	159.935	0.783241	53.9602	
Octane			2.27753	1278.12	2.93463	853.048	
Nonane			0.280044	132.123	0.108173	213.592	
Benzene			1.20123	164.888	1.80432	29.1541	
Toluene			0.942877	211.782	1.05688	88.1586	
Ethylbenzene			0.0271822	9.58472	0.0216483	8.04875	
o-Xylene			0.2157	69.0584	0.130522	72.4163	
Hydrogen Sulfide			0.012318	7.64477	0.282595	0.0437243	
Water			3.10539	18.2241	0.701219	1.73245	
2,2,4-Trimethylpent	ane		0.436348	223.256	1.18392	68.1328	
Decanes Plus			0.000207541	0.0553971	1.36003E-05	0.336238	
			Stream	Properties			
Desertes		Line Mar					5 Mat 7
Property		Units	1. LP Separator Gas	2. Sales Gas	3. Fuel Gas	4. NGL Sales Liquid	5. Water Tank Flash Gas
Temperature		°F	70	93.262	76.247	95.6601	

Property	onits	Separator Gas	2. Sales Gas	5. Fuel Gas	Liquid	Flash Gas
Temperature	°F	70	93.262	76.247	95.6601	
Pressure	psig	15	1272	120	400	0.25
Molecular Weight	lb/lbmol	37.2321	22.6592	21.3835	62.4485	
Mass Flow	lb/h	489.373	566507	20085.9	8318.83	0
Std Liquid Volumetric Flow	sgpm	2.10511	3129.35	114.846	28.2713	0
Std Vapor Volumetric Flow	MMSCFD	0.119709	227.701	8.55492	1.21323	0
Gross Ideal Gas Heating Value	Btu/ft^3	2124.36	1342.81	1273.9	3471.21	

Remarks

Г

			All S	reams Report treams by Total Phase					
Client Name:	DELAWARE DI				Job:				
Location: Flowsheet:	Wildcat Compre Output	ssor Station							
Tiowsneet.	Output								
			Conn	ections					
			6. Skim Tank	7. Condensate	8. Skim Tank	9. Water Tank	10.		
			Flash Gas	Tank Flash Gas	W&B	W&B	Condensate Tank W&B		
From Block			Tankage -	Tankage -	W & B -	W & B - Water	W & B -		
			Gunbarrel Flash Gas	Condensate Tank Flash Gas	Gunbarrel Tank	Tank	Condensate Tank		
To Block									
						1			
			Stream C	omposition					
Mara Frantian			6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B		
Mass Fraction Triethylene Glycol			% 1.31371E-08	% 2.81993E-09	% 3.23825E-09	% 6.95864E-08	% 1.81679E-12		
Carbon Dioxide			0.213369	0.0317358	0.207499	0.742571	0.0196511		
Nitrogen			0.0220164	0.00346877	0.000804474	0.00204849	0.000129488		
Methane			2.86434	1.21476	0.266323	0.54656	0.218436		
Ethane			4.78644	7.90902	1.56742	1.28189	7.29306		
Propane			15.8342	26.5032	13.8011	3.33052	24.908		
Isobutane			6.93129	8.56002	9.56053	1.28564	8.33381		
n-Butane Isopentane			23.6206 9.80086	25.3088 7.99565	30.4462 10.823	6.41461 3.56208	26.2733 8.69585		
n-Pentane			12.4907	9.51155	13.161	4.80499	10.3499		
n-Hexane			4.05657	2.49711	3.63405	4.69159	2.97119		
Cyclohexane			0.46334	0.283416	0.413235	0.905412	0.270021		
i-C6			5.5966	3.6492	5.27757	4.81868	4.18332		
i-C7			7.28632	4.19069	6.14025	17.1514	4.57869		
Methylcyclohexane Octane			0.229513 1.69289	0.128212 0.866198	0.187921 1.25635	0.812115 14.5797	0.143244 0.846333		
Nonane			0.232799	0.109463	0.157815	1.93128	0.0935544		
Benzene			0.66459	0.433403	0.610465	6.3949	0.316731		
Toluene			0.617068	0.350752	0.507093	5.87941	0.261977		
Ethylbenzene			0.0197943	0.0103003	0.0148597	0.178023	0.00764576		
o-Xylene			0.159164	0.0819955	0.118198	1.43986	0.0517031		
Hydrogen Sulfide Water			0.00425728 2.12471	0.00142588 0.19693	0.00616394 1.60322	0.045084 18.2867	0.000868944 6.40215E-05		
2,2,4-Trimethylpenta	ane		0.288308	0.19693	0.238768	0.913389	0.182472		
Decanes Plus			0.000188213	8.17191E-05	0.000115006	0.00148858	6.17235E-05		
			6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B		
Mole Fraction			%	%	%	%	%		
Triethylene Glycol Carbon Dioxide			4.6439E-09 0.257371	9.80629E-10 0.0376583	1.27085E-09 0.277871	2.26456E-08 0.824601	6.60559E-13 0.0243803		
Nitrogen			0.041721	0.00646646	0.00169247	0.00357372	0.00243803		
Methane			9.47824	3.95436	0.978391	1.66502	0.743448		
Ethane			8.45021	13.736	3.07213	2.08346	13.2431		
Propane			19.0623	31.3878	18.4456	3.69122	30.8419		
Isobutane n Butana			6.33062	7.69114	9.69425	1.08101	7.82887		
n-Butane Isopentane			21.5736 7.21123	22.7398 5.78738	30.8721 8.84086	5.39362 2.41283	24.6814 6.58083		
n-Pentane			9.19038	6.88462	10.7506	3.25474	7.83261		
n-Hexane			2.49891	1.51326	2.48532	2.66066	1.88255		
Cyclohexane			0.292261	0.175865	0.28938	0.52577	0.175183		
i-C6			3.44759	2.21142	3.60932	2.73273	2.65055		
i-C7			3.86017	2.18407	3.61147	8.3652	2.49495		
Methylcyclohexane			0.124089	0.0681924	0.112797	0.404222	0.0796572		
Octane Nonane			0.786733 0.0963565	0.396005	0.648201 0.0725184	6.23772 0.735906	0.404543 0.0398279		
* User Specified Values				5.0.19050.0	0.0720104		to Esso Exploration, Inc.		

* User Specified Values ? Extrapolated or Approximate Values

Licensed to Esso Exploration, Inc.

			All S	reams Report treams by Total Phase			
	LAWARE DI				Job:		
	dcat Compre	ssor Station					
Flowsheet: Out	put						
				1	1		
Mole Fraction			6. Skim Tank Flash Gas %	7. Condensate Tank Flash Gas %	8. Skim Tank W&B %	9. Water Tank W&B %	10. Condensate Tank W&B %
Benzene			0.451659	0.289756	0.460594	4.001	0.221397
Toluene			0.355522	0.198801	0.324355	3.1185	0.155246
Ethylbenzene			0.00989767	0.0050667	0.00824904	0.0819497	0.00393222
o-Xylene			0.0795861	0.0403336	0.0656149	0.662812	0.0265909
Hydrogen Sulfide			0.00663126	0.00218489	0.0106591	0.0646493	0.00139213
Water			6.26084	0.570859	5.24478	49.6076	0.000194036
2,2,4-Trimethylpentane			0.133985	0.0743707	0.12319	0.390781	0.0872207
Decanes Plus			6.51325E-05	2.78199E-05	4.41846E-05	0.00047424	2.19696E-05
			6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Triethylene Glycol			2.62944E-09	7.81313E-09	3.24336E-10	8.83193E-10	2.77731E-13
Carbon Dioxide			0.0427066	0.0879296	0.0207827	0.00942474	0.00300405
Nitrogen			0.00440666	0.00961083	8.05745E-05	2.59995E-05	1.97947E-05
Methane			0.573307	3.3657	0.0266744	0.00693696	0.033392
Ethane			0.958023	21.9134	0.156989	0.0162698	1.11488
Propane			3.16928	73.4318	1.38229	0.0422712	3.80765
Isobutane			1.38732	23.7171	0.957563	0.0163175	1.27398
n-Butane			4.72774	70.1224	3.04943	0.0814145	4.01637
Isopentane			1.96168	22.1534	1.08401	0.04521	1.32932
n-Pentane			2.50007	26.3534	1.31817	0.0609852	1.58218
n-Hexane			0.811938	6.9187	0.363979	0.0595459	0.454203
Cyclohexane			0.0927392	0.785254	0.0413888	0.0114915	0.0412778
i-C6			1.12018	10.1107	0.528591	0.0611588	0.639499
i-C7			1.45838	11.611	0.614995	0.217686	0.699938
Methylcyclohexane			0.0459378	0.355234	0.0188218	0.0103074	0.0218976
Octane Nonane			0.338837	2.39995	0.125833	0.185046	0.129378
			0.0465956	0.303286	0.0158064 0.0611429	0.0245118 0.0811643	0.0143016
Benzene Toluene			0.13302	0.971822	0.0611429	0.0811643	0.0484183 0.0400482
Ethylbenzene			0.0039619	0.0285388	0.00148832	0.0746217	0.0400482
o-Xylene			0.0318572	0.0285388	0.00148852	0.00225948	0.00790379
Hydrogen Sulfide			0.000852111	0.00395065	0.000617368	0.000572208	0.000132834
Water			0.425268	0.545629	0.160576	0.232096	9.78688E-06
2,2,4-Trimethylpentane			0.057706	0.450718	0.0239145	0.0115928	0.0278943
Decanes Plus			3.76715E-05	0.000226417	1.15188E-05	1.88931E-05	9.43559E-06
			0.101102.00	U.UUULLUTII			000002.00
Disementar		Unite		Properties	0 Objection	O Weter Tari	10
Property		Units	6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B
Temperature		°F	95	75.67	81.8849	94.2043	75.6718
Pressure		psig	0.25	0.25	-3.09538	-11.1246	-0.62369
Molecular Weight		lb/lbmol	53.0853	52.2225	58.9351	48.8711	54.6007
Mass Flow		lb/h	20.0154	277.068	10.0158	1.2692	15.2869
Std Liquid Volumetric Flo		sgpm	0.0703477	1.01761	0.0337696	0.00355076	0.0552557
Std Vapor Volumetric Flo		MMSCFD	0.00343395	0.0483207	0.0015478	0.000236529	0.00254992
Gross Ideal Gas Heating	Value	Btu/ft^3	2908.87	2934.58	3232.2	2160.54	3068.6

Remarks

			Process Str All St Tabulated b				
	WARE DI				Job:		
Location: Wildca Flowsheet: Output		ssor Station					
			Conn	ections			
			11.	12. Produced	13. BTEX	14. Skim Tank	15. HPF Pilot /
			Condensate Sales Liquid	Water Liquid	Cond Vapors to	Inlet	Purge Gas
From Block			Tankage - Condensate Sales Liquid	Tankage - Produced Water Sales Liquid	Combustion Tankage - BTEX Vapors to Combustion	Tankage - Gunbarrel Tank Inlet	SPLT-100
To Block							
			Stream C	omposition			
			11. Condensate Sales Liquid	12. Produced Water Liquid	13. BTEX Cond Vapors to	14. Skim Tank Inlet	15. HPF Pilot / Purge Gas
Mass Fraction			%	%	Combustion %	%	%
Triethylene Glycol			6.00616E-07	0.0169937	1.02602E-08	0.0166051	2.50479E-05
Carbon Dioxide			0.000230545	0.0002222	1.48784	0.000908929	0.237859
Nitrogen			2.42576E-06	6.1297E-07	0.0146045	6.95542E-05	1.61036
Methane Ethane			0.00311937	0.000163547	6.27127	0.00922533	56.8725
Propane			0.129875 1.55008	0.000383582 0.000996594	14.9711 26.6951	0.0165949 0.0645571	18.4841 13.2145
Isobutane			1.25422	0.000384704	4.44054	0.0368004	2.07482
n-Butane			5.5013	0.00191945	18.4457	0.148602	4.78439
Isopentane			4.36488	0.00106588	6.24253	0.104264	1.00621
n-Pentane			6.90558	0.0014378	8.48606	0.161224	1.0596
n-Hexane Cyclohexane			6.56877 0.930456	0.00140387 0.000270927	1.66001 0.536803	0.145986	0.152889 0.0137626
i-C6			6.60355	0.00144189	2.58681	0.148094	0.264882
i-C7			23.4931	0.00513223	2.0085	0.516595	0.179257
Methylcyclohexane			1.04541	0.000243009	0.128461	0.0229268	0.00389946
Octane Nonane			23.2745 9.67662	0.00514843 0.00215086	0.141649 0.00562091	0.50785 0.210839	0.0146104 0.000538551
Benzene			1.13089	0.00215086	3.05387	0.0280128	0.00898304
Toluene			3.17732	0.00337474	1.63274	0.0713339	0.00526183
Ethylbenzene			0.287163	0.000135014	0.0191214	0.00631059	0.000107779
o-Xylene			2.80862	0.00148729	0.172272	0.0617857	0.000649821
Hydrogen Sulfide			3.0261E-05	1.34905E-05	0.092223	2.79327E-05	0.00140693
Water 2,2,4-Trimethylpentane			0.0018354	99.9513 0.000273314	0.838573 0.0685916	97.6724 0.0273828	0.0034911 0.00589431
Decanes Plus			0.0438344	9.79309E-06	1.52624E-06	0.000954583	6.7711E-08
			11. Condensate Sales Liquid	12. Produced Water Liquid	13. BTEX Cond Vapors to	14. Skim Tank Inlet	15. HPF Pilot / Purge Gas
Mole Fraction			%	%	Combustion %	%	%
Triethylene Glycol			3.67003E-07	0.00203944	2.95358E-09	0.00202947	3.56664E-06
Carbon Dioxide			0.0004807	9.09936E-05	1.4615	0.000379066	0.115572
Nitrogen			7.94598E-06	3.94355E-07	0.0225376	4.55711E-05	1.22924
Methane Ethane			0.0178427 0.396342	0.000183733 0.000229907	16.8994 21.5239	0.0105546 0.0101295	75.8072 13.1449
Propane			3.22568	0.000229907	21.5239	0.0101295	6.40819
Isobutane			1.98014	0.000119288	3.30278	0.011621	0.763339
n-Butane			8.68536	0.000595179	13.7195	0.0469261	1.76021
Isopentane			5.55147	0.000266252	3.7404	0.0265239	0.298221
n-Pentane			8.78286	0.000359156	5.08468	0.0410141	0.314047
n-Hexane Cyclohexane			6.99464 1.01451	0.0002936 5.8018E-05	0.832747 0.275739	0.0310928 0.00450279	0.0379378 0.00349685
i-C6			7.03168	0.000301553	1.29768	0.0315417	0.0657278
i-C7			21.5144	0.000923089	0.866527	0.0946248	

* User Specified Values ? Extrapolated or Approximate Values

Licensed to Esso Exploration, Inc.

				reams Report			
			-	treams by Total Phase			
Client Name:	DELAWARE DI				Job:		
Location:	Wildcat Compre	ssor Station					
Flowsheet:	Output						
			44	40 Deciderand	13. BTEX	44 Ohim Taul	15. HPF Pilot /
			11. Condensate Sales Liquid	12. Produced Water Liquid	Cond Vapors to Combustion	14. Skim Tank Inlet	Purge Gas
Mole Fraction			%	%	%	%	%
Methylcyclohexane			0.977015	4.46054E-05	0.0565599	0.00428573	0.000849247
Octane			18.697	0.000812296	0.0536076	0.0816005	0.00273506
Nonane			6.92331	0.00030224	0.00189461	0.0301723	8.97907E-05
Benzene			1.32852	0.000934659	1.69013	0.00658219	0.00245915
Toluene			3.16435	0.000660106	0.766061	0.0142098	0.00122117
Ethylbenzene			0.248206	2.29197E-05	0.00778618	0.00109099	2.17086E-05
o-Xylene			2.42759	0.000252481	0.0701487	0.0106816	0.000130886
Hydrogen Sulfide			8.14775E-05	7.13396E-06	0.116981	1.5043E-05	0.000882758
Water			0.00934877	99.9911	2.01227	99.509	0.00414382
2,2,4-Trimethylpenta	ine		1.00299	4.31222E-05	0.0259587	0.00439982	0.00110341
Decanes Plus			0.0262213	1.15056E-06	4.30115E-07	0.000114214	9.43872E-09
			11.	12. Produced Water Liquid	13. BTEX	14. Skim Tank	15. HPF Pilot /
			Condensate Sales Liquid	water Liquid	Cond Vapors to	Inlet	Purge Gas
			Sales Liquid		Combustion		
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Triethylene Glycol			3.92692E-05	1.0657	1.19504E-08	1.0657	3.52856E-05
Carbon Dioxide			0.0150734	0.0139344	1.73295	0.0583342	0.335078
Nitrogen			0.0001586	3.84402E-05	0.0170105	0.00446393	2.26855
Methane			0.203949	0.0102563	7.30441	0.592073	80.1176
Ethane			8.49143	0.0240549	17.4375	1.06505	26.039
Propane			101.346	0.0624978	31.093	4.14322	18.6156
Isobutane			82.0029	0.0241253	5.17208	2.36182	2.92285
n-Butane			359.684	0.120371	21.4844	9.53715	6.73989
Isopentane			285.383	0.0668429	7.27094	6.69158	1.41747
n-Pentane			451.498	0.0901664	9.88408	10.3472	1.49269
n-Hexane Cyclohexane			429.477 60.8348	0.0880384 0.0169902	1.93348 0.625238	9.36925 1.32509	0.215378 0.0193877
i-C6			431.751	0.0904231	3.01296	9.50453	0.373146
i-C7			1536.02	0.321849	2.33938	33.1546	0.252524
Methylcyclohexane			68.3506	0.0152394	0.149624	1.47142	0.00549326
Octane			1521.73	0.322865	0.164985	32.5934	0.020582
Nonane			632.673	0.134884	0.00654691	13.5315	0.000758669
Benzene			73.9395	0.25404	3.55697	1.79783	0.0126546
Toluene			207.739	0.211635	1.90172	4.57815	0.00741246
Ethylbenzene			18.7752	0.00846688	0.0222715	0.405008	0.000151831
o-Xylene			183.632	0.0932702	0.200652	3.96535	0.000915419
Hydrogen Sulfide			0.00197852	0.000846007	0.107416	0.0017927	0.00198198
Water			0.120002	6268.08	0.976722	6268.53	0.004918
2,2,4-Trimethylpenta	ine		81.6322	0.0171399	0.0798915	1.75741	0.00830345
Decanes Plus			2.86596	0.000614138	1.77768E-06	0.0612643	9.53861E-08
			Stream	Properties			
Property		Units	11. Condensate Sales Liquid	12. Produced Water Liquid	13. BTEX Cond Vapors to	14. Skim Tank Inlet	15. HPF Pilot / Purge Gas
			Sauce Tidana		Combustion		

tion 60 75.3749 0 0.25	
0 0.25	5 120
.2301 18.354	4 21.3835
6.474 6417.91	1 140.872
59479 12.9753	0.805474
5385 3.18469	0.06
00 72 73 2600	9 1273.9
1	59479 12.9753 45385 3.18469 90.72 73.2699

Remarks

* User Specified Values ? Extrapolated or Approximate Values

		Process Streams Report All Streams Tabulated by Total Phase		
Client Name:	DELAWARE DI	/ISION	Job:	
Location:	Wildcat Compre	ssor Station		
Flowsheet:	Output			

			All St	reams Report reams y Total Phase			
Client Name:	DELAWARE DI	VISION			Job:		
Location:	Wildcat Compre	ssor Station					
Flowsheet:	Output						
			0				
				ections	40 Evel 0	40 1-1-1	
			16. LPF Pilot / Purge Gas	17. HPF Blowdowns	18. Fuel Gas Other	19. Inlet Flaring	20. Fuel Gas Other
From Block			SPLT-100	SPLT-100	SPLT-100	SPLT-101	SPLT-101
To Block							
			Stream C	omposition			
Mass Fraction			16. LPF Pilot / Purge Gas	17. HPF Blowdowns	18. Fuel Gas Other	19. Inlet Flaring	20. Fuel Gas Other
Triethylene Glycol			% 2.50479E-05	% 2.50479E-05	% 2.50479E-05	% 0.000577059	% 0.000577059
Carbon Dioxide			0.237859	0.237859	0.237859	0.220014	0.220014
Nitrogen			1.61036	1.61036	1.61036	1.45276	1.45276
Methane			56.8725	56.8725	56.8725	51.7828	51.7828
Ethane			18.4841	18.4841	18.4841	17.5988	17.5988
Propane Isobutane			<u>13.2145</u> 2.07482	13.2145 2.07482	13.2145 2.07482	13.7859 2.47407	13.7859 2.47407
n-Butane			4.78439	4.78439	4.78439	6.21986	6.21986
Isopentane			1.00621	1.00621	1.00621	1.7002	1.7002
n-Pentane			1.0596	1.0596	1.0596	1.98555	1.98555
n-Hexane			0.152889	0.152889	0.152889	0.553915	0.553915
Cyclohexane i-C6			0.0137626	0.0137626 0.264882	0.0137626 0.264882	0.0549354 0.773009	0.0549354 0.773009
i-C0			0.204882	0.204882	0.204882	0.996078	0.996078
Methylcyclohexane			0.00389946	0.00389946	0.00389946	0.0282317	0.0282317
Octane			0.0146104	0.0146104	0.0146104	0.225614	0.225614
Nonane			0.000538551	0.000538551	0.000538551	0.0233224	0.0233224
Benzene Toluene			0.00898304 0.00526183	0.00898304 0.00526183	0.00898304 0.00526183	0.0291061 0.0373838	0.0291061 0.0373838
Ethylbenzene			0.000107779	0.000107779	0.000107779	0.0016919	0.0016919
o-Xylene			0.000649821	0.000649821	0.000649821	0.0121902	0.0121902
Hydrogen Sulfide			0.00140693	0.00140693	0.00140693	0.00134946	0.00134946
Water			0.0034911	0.0034911	0.0034911	0.00321692	0.00321692
2,2,4-Trimethylpenta Decanes Plus	ine		0.00589431	0.00589431 6.7711E-08	0.00589431	0.0394093 9.77871E-06	0.0394093 9.77871E-06
Decanes Plus			6.7711E-08	0.7711E-06	6.7711E-08	9.77671E-06	9.77671E-06
Mole Fraction			16. LPF Pilot / Purge Gas %	17. HPF Blowdowns %	18. Fuel Gas Other %	19. Inlet Flaring %	20. Fuel Gas Other %
Triethylene Glycol			3.56664E-06	3.56664E-06	3.56664E-06	8.7071E-05	8.7071E-05
Carbon Dioxide			0.115572	0.115572	0.115572	0.113279	0.113279
Nitrogen			1.22924	1.22924	1.22924	1.1751	1.1751
Methane			75.8072	75.8072	75.8072	73.1408	73.1408
Ethane			75.8072 13.1449	75.8072 13.1449	75.8072 13.1449	13.262	13.262
			75.8072	75.8072	75.8072		
Ethane Propane			75.8072 13.1449 6.40819	75.8072 13.1449 6.40819 0.763339 1.76021	75.8072 13.1449 6.40819 0.763339 1.76021	13.262 7.0841 0.964529 2.42484	13.262 7.0841 0.964529 2.42484
Ethane Propane Isobutane n-Butane Isopentane			75.8072 13.1449 6.40819 0.763339 1.76021 0.298221	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221	13.262 7.0841 0.964529 2.42484 0.53397	13.262 7.0841 0.964529 2.42484 0.53397
Ethane Propane Isobutane n-Butane Isopentane n-Pentane			75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047	13.262 7.0841 0.964529 2.42484 0.53397 0.623586	13.262 7.0841 0.964529 2.42484 0.53397 0.623586
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane			75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane			75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685	13.262 7.0841 0.964529 2.42484 0.53397 0.623586	13.262 7.0841 0.964529 2.42484 0.53397 0.623586
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane			75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0057278 0.0382542	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane			75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0657278 0.0382542 0.000849247	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0057278 0.0382542 0.000849247	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.00657278 0.0382542 0.000849247	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249 0.00651528	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249 0.00651528
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane			75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0657278 0.0382542 0.00849247 0.000273506	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0057278 0.0382542 0.00849247 0.00273506	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.00657278 0.0382542 0.00849247 0.00273506	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249 0.00651528 0.0447546	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249 0.00651528 0.0447546
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane			75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0657278 0.0382542 0.00849247 0.00273506 8.97907E-05	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0657278 0.0382542 0.00849247 0.00273506 8.97907E-05	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0657278 0.0382542 0.00849247 0.00273506 8.97907E-05	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249 0.00651528 0.0447546 0.00412043	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249 0.00651528 0.0447546 0.00412043
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene			75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0657278 0.0382542 0.00849247 0.00273506 8.97907E-05 0.00245915	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0657278 0.0382542 0.00849247 0.00273506 8.97907E-05 0.00245915	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0657278 0.0382542 0.000849247 0.00273506 8.97907E-05 0.00245915	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249 0.00651528 0.0447546 0.00412043 0.00844329	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249 0.00651528 0.0447546 0.00412043 0.00844329
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane			75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0657278 0.0382542 0.00849247 0.00273506 8.97907E-05	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0657278 0.0382542 0.00849247 0.00273506 8.97907E-05	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0657278 0.0382542 0.00849247 0.00273506 8.97907E-05	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249 0.00651528 0.0447546 0.00412043	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249 0.00651528 0.0447546 0.00412043
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene o-Xylene			75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0657278 0.00382542 0.000849247 0.00273506 8.97907E-05 0.00245915 0.00122117 2.17086E-05 0.000130886	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.00349685 0.00357278 0.00382542 0.000849247 0.00273506 8.97907E-05 0.00245915 0.00122117 2.17086E-05 0.000130886	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0657278 0.00382542 0.000849247 0.00273506 8.97907E-05 0.00245915 0.00122117 2.17086E-05 0.000130886	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249 0.00651528 0.0447546 0.00412043 0.00412043 0.00919366 0.000361109 0.0026018	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249 0.00651528 0.0447546 0.00412043 0.0044329 0.00919366 0.000361109 0.0026018
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene			75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0657278 0.00382542 0.000849247 0.00273506 8.97907E-05 0.00245915 0.00122117 2.17086E-05	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0657278 0.00382542 0.000849247 0.00273506 8.97907E-05 0.00245915 0.00122117 2.17086E-05	75.8072 13.1449 6.40819 0.763339 1.76021 0.298221 0.314047 0.0379378 0.00349685 0.0057278 0.00382542 0.000849247 0.00273506 8.97907E-05 0.00245915 0.00122117 2.17086E-05	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249 0.00651528 0.0447546 0.00412043 0.00844329 0.00919366 0.000361109	13.262 7.0841 0.964529 2.42484 0.53397 0.623586 0.145648 0.0147909 0.203257 0.225249 0.00651528 0.0447546 0.00412043 0.00844329 0.00919366 0.000361109

* User Specified Values ? Extrapolated or Approximate Values

n

1

		A	SS Streams Repo Il Streams Ilated by Total Phase	ort		
Client Name:	DELAWARE DI	VISION		Job:		
Location:	Wildcat Compre	essor Station				
Flowsheet:	Output					
		16. LPF Pil Purge Ga	s Blowdowns		19. Inlet Flaring	20. Fuel Gas Other
Mole Fraction		%	%	%	%	%
2,2,4-Trimethylpentane		0.00110				0.00781752
Decanes Plus		9.43872E	-09 9.43872E-	09 9.43872E-09	1.44445E-06	1.44445E-06
Mass Flow		16. LPF Pil Purge Ga Ib/h		18. Fuel Gas S Other Ib/h	19. Inlet Flaring Ib/h	20. Fuel Gas Other Ib/h
Triethylene Glycol		1.8525E	-05 1.34307E-	05 0.00496386	0.717845	2.55124
Carbon Dioxide		0.175	916 0.127	54 47.1376		972.704
Nitrogen		1.19	099 0.8634	74 319.132	1807.2	6422.82
Methane		42.0	617 30.4	95 11270.7	64416.4	228937
Ethane		13.6	705 9.911	18 3663.08	21892.4	77806
Propane		9.77	319 7.085	62 2618.78	17149.3	60948.8
Isobutane		1.53	449 1.112	52 411.176	3077.67	10938.1
n-Butane		3.53	844 2.565	39 948.143		27498.6
Isopentane		0.744	171 0.5395	28 199.404	2115	7516.77
n-Pentane		0.783				8778.31
n-Hexane		0.113	074 0.0819	79 30.2987	689.055	2448.91
Cyclohexane		0.0101	785 0.00737	95 2.72739	68.3381	242.875
i-C6		0.195				3417.55
i-C7		0.132				4403.76
Methylcyclohexan	e	0.00288				124.815
Octane		0.0108				997.464
Nonane		0.000398				103.111
Benzene		0.00664				128.681
Toluene		0.00389	0.002821			165.278
Ethylbenzene		7.9711E				7.48005
o-Xylene		0.000480				53.8941
Hydrogen Sulfide		0.00104				5.96608
Water		0.00258				14.2223
2,2,4-Trimethylper	ntane	0.00435				174.232
Decanes Plus		5.00777E	-08 3.63066E-	08 1.34186E-05	0.0121644	0.0432327

Stream Properties								
Property	Units	16. LPF Pilot / Purge Gas	17. HPF Blowdowns	18. Fuel Gas Other	19. Inlet Flaring	20. Fuel Gas Other		
Temperature	°F	76.247	76.247	76.247	93.262	93.262		
Pressure	psig	120	120	120	1272	1272		
Molecular Weight	lb/lbmol	21.3835	21.3835	21.3835	22.6592	22.6592		
Mass Flow	lb/h	73.958	53.62	19817.4	124397	442110		
Std Liquid Volumetric Flow	sgpm	0.422874	0.306586	113.311	687.162	2442.19		
Std Vapor Volumetric Flow	MMSCFD	0.0315 *	0.0228377 *	8.44059	50 *	177.701		
Gross Ideal Gas Heating Value	Btu/ft^3	1273.9	1273.9	1273.9	1342.81	1342.81		

Remarks

		All S	reams Report treams by Total Phase			
Client Name:	DELAWARE DI	VISION		Job:		
Location:	Wildcat Compre					
Flowsheet:	Output					
		Conn	ections			
		21. Inlet Gas	22. Condensate Flash Losses Hrly			
From Block		Inlet - Inlet Gas	W & B - Cond Flashing Losses Hrly			
To Block						
					· · · · ·	
		Stream C	omposition			
		21. Inlet Gas	22. Condensate Flash Losses Hrly			
Mass Fraction	-	%	%			
Triethylene Glyco		0	1.81679E-12			
Carbon Dioxide Nitrogen		0.215589	0.0196511 0.000129488			
Methane		50.6359	0.218436			
Ethane		17.2509	7.29306			
Propane		13.5905	24.908			
Isobutane		2.46087	8.33381			
n-Butane		6.23041	26.2733			
Isopentane		1.7452	8.69585			
n-Pentane		2.06427	10.3499			
n-Hexane		0.638932	2.97119			
Cyclohexane		0.066202	0.270021 4.18332			
i-C6 i-C7		0.858545	4.16332			
Methylcyclohexan	۵	0.0405509	0.143244			
Octane		0.462569	0.846333			
Nonane		0.102348	0.0935544			
Benzene		0.0385141	0.316731			
Toluene		0.0651823	0.261977			
Ethylbenzene		0.00427315	0.00764576			
o-Xylene		0.0366469	0.0517031			
Hydrogen Sulfide		0.00134194	0.000868944			
Water	ntono	0.727883	6.40215E-05			
2,2,4-Trimethylpe Decanes Plus	IIIane	0.0544228 0.00026845	0.182472 6.17235E-05			
		0.00020043	0.172002-00			
		21. Inlet Gas	22. Condensate Flash Losses Hrly			
Mole Fraction		%	%			
Triethylene Glyco		0	6.60559E-13			
Carbon Dioxide		0.11197	0.0243803			
Nitrogen Methane		<u>1.15886</u> 72.1455	0.000252384 0.743448			
Ethane		13.1133	13.2431			
Propane		7.0447	30.8419			
Isobutane		0.96776	7.82887			
n-Butane		2.45017	24.6814			
Isopentane		0.55289	6.58083			-
n-Pentane		0.65397	7.83261			
n-Hexane		0.16947	1.88255			
Cyclohexane i-C6		0.01798 0.22772	0.175183 2.65055			
i-C7		0.29388	2.49495			
Methylcyclohexan		0.00944	0.0796572		Liconsod to Esso	

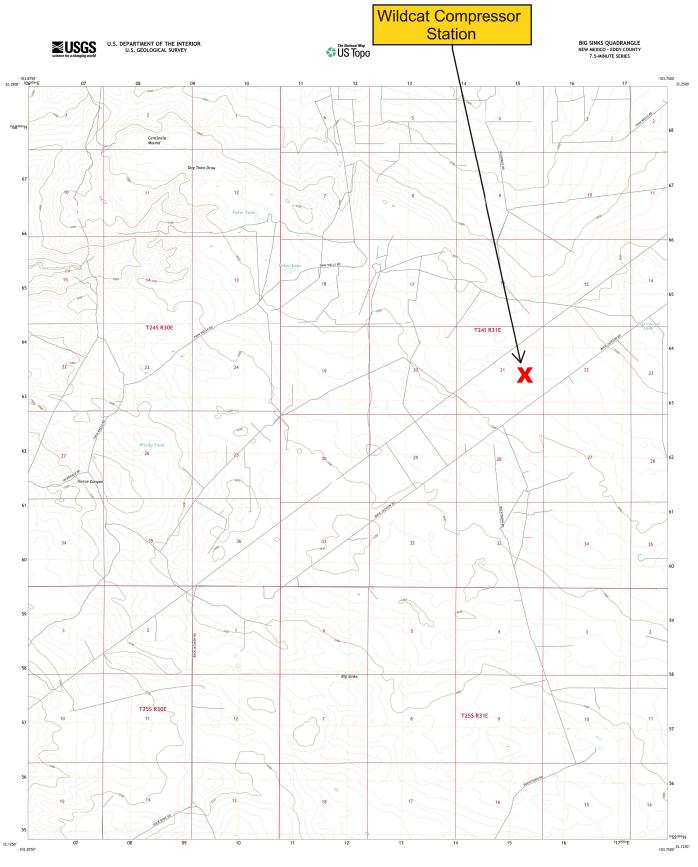
* User Specified Values ? Extrapolated or Approximate Values

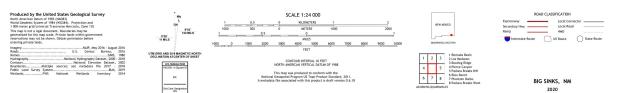
		Process Streams Report All Streams Tabulated by Total Phase					
Client Name:	DELAWARE DI	VISION			Job:	- 4	
Location:	Wildcat Compre	essor Station					
Flowsheet:	Output						
			21. Inlet Gas	22.			
				Condensate Flash Losses Hrly			
Mole Fraction			%	%			
Octane			0.09256	0.404543			
Nonane			0.01824	0.0398279			
Benzene			0.01127	0.221397			
			0.01617	0.155246			
Ethylbenzene			0.00092	0.00393222 0.0265909			
o-Xylene Hydrogen Sulfide			0.00789	0.0265909			
Water			0.92351	0.00139213			
2,2,4-Trimethylpentar	е		0.01089	0.0872207			
Decanes Plus	-		4E-05	2.19696E-05			
				· ·			
Mass Flow			21. Inlet Gas	22. Condensate Flash Losses Hrly Ib/h			
Triethylene Glycol			0	9.8117E-12			
Carbon Dioxide			1298.54	0.106127			
Nitrogen			8554.67	0.000699308			
Methane			304991	1.17967			
Ethane			103906	39.3866			
Propane			81858.6	134.517			
Isobutane			14822.3	45.0072			
n-Butane			37527.1	141.89			
Isopentane n-Pentane			10511.7	46.9624 55.8954			
n-Pentane n-Hexane			<u> </u>	16.0461			
Cyclohexane			398.749	1.45826			
i-C6			5171.19	22.5923			
i-C7			7759.84	24.7275			
Methylcyclohexane			244.246	0.773599			
Octane			2786.15	4.57067			
Nonane			616.461	0.505246			
Benzene			231.978	1.71052			
Toluene			392.606	1.41482			
Ethylbenzene			25.738	0.0412914			
o-Xylene			220.732	0.279225			
Hydrogen Sulfide Water			8.08276	0.00469278 0.000345751			
vvater 2,2,4-Trimethylpentar	0		4384.19 327.8	0.000345751			
2,2,4-1 rimetnyipentar Decanes Plus			1.61693	0.98545			
			1.01033	0.00000041		I	
			C1	Drepartica			
Dueueute		Linit-		Properties			
Property		Units	21. Inlet Gas	22. Condensate Flash Losses Hrly			
Temperature		°F	104.086	92.65			
Pressure		psig	95	5.7192			
Molecular Weight		lb/lbmol	22.8571	54.6007			
Mass Flow		lb/h	602321	540.056			
Std Liquid Volumetric		sgpm	3290.33	1.95207			
		MMSCFD	240	0.0900835			
Std Vapor Volumetric Gross Ideal Gas Heat		Btu/ft^3	1343.73	3068.6			

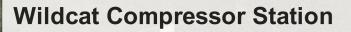
^{*} User Specified Values ? Extrapolated or Approximate Values

			cess Streams Report All Streams Tabulated by Total Phase		
Client Name:	DELAWARE DIVISION			Job:	
Location:	Wildcat Compressor Station				
Flowsheet:	Output				

Tab 8 Section 8 - Map(s)


Section 8


Map(s)


<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north			
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads			
Topographic features of the area	Facility property boundaries			
The name of the map	The area which will be restricted to public access			
A graphical scale				

A site location map and aerial image illustrating the property boundary and surrounding access roads is provided.

Legend

- 0.8km-Radius
- 😢 Wildcat Compressor Station

-

N

1 mi

Wildcat Compressor Station

Google Earth

Tab 9 Section 9 - Proof of Public Notice XTO Energy Inc.

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. \Box A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. \Box A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \Box A sample of the letters sent to the owners of record.
- 5. \Box A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. \Box A sample of the public notice posted and a verification of the local postings.
- 7. \Box A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🗆 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. \Box A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. \Box A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

Public Notice is not required for Title V permit applications.

Tab 10

Section 10 - Written Description of the Routine Operations of the Facility

Section 10

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Field gas flows into two inlet slug catchers. The site uses natural gas engines to compress the gas to 1100 to 1300 psig including nine (9) Caterpillar 3616TA engines (ENG1-ENG9) and two (2) Caterpillar 3516J engines (ENG11-ENG12). The Caterpillar engines are equipped with oxidation catalysts to reduce CO, VOC, and formaldehyde emissions.

The high pressure natural gas is dehydrated using triethylene glycol dehydration units (DEHY1-DEHY3), each handling up to 80 MMscfd each. The systems are equipped with flash tanks and condensers. Flash tank vapors are recycled in the dehydration system back to the station inlet. The glycol still vent vapors are routed to condensers. Uncondensed vapors from the condensers are routed to the low-pressure side of the flares FL1-FL3. Dehydrated gas is then transferred to a sales pipeline.

High pressure liquids generated anywhere in the system are dumped to a three phase high pressure separator (HPS) operating at 300-500 psig. Natural gas liquids (NGLs) from the high pressure separator are routed to pipeline, water routes to redundant skim tanks (SKT1/SKT2), and gas is routed back to the inlet slug catcher. Low pressure liquids generated anywhere in the system are dumped to a three phase ultra-low pressure separator (LPS). Vapors from the LPS are controlled by a VRU and routed to the flare system during VRU downtime (FL1/FL2/FL3). From the LPS, oil at approximately 15 psig is dumped to four (4) oil storage tanks (OT1-OT4), which are controlled by the flare system (FL1/FL2/FL3). Water from the LPS flows to redundant skim tanks (SKT1/SKT2). The skim tanks are arranged as a redundant system in which one unit can be used if another is down for unforeseen circumstances. Water is then dumped to two (2) water tanks (WT1-WT2). Any residual oil flows from the skim tanks into the oil storage tanks. Vapors from the water storage tanks and skim tanks are also controlled by the flare system (FL1/FL2/FL3). Oil and water are transferred via pipeline or trucked offsite.

The flare system (FL1/FL2/FL3) is also used to flare gas in the event of an emergency.

Tab 11 Section 11 -Source Determination

Section 11 Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

☑ Yes □ No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

☑ Yes □ No

<u>Contiguous or Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

☑ Yes □ No

C. Make a determination:

- ☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- □ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12 - PSD Applicability Determination for All Sources

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

This application is not for a NSR application submitted under 20.2.72 or 20.2.74 NMAC.

Section 13 - Determination of State & Federal Air Quality Regulations

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. For example, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

Example of a Table for STATE REGULATIONS:

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	If subject, this would normally apply to the entire facility. 20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC The TSP NM ambient air quality standard was repealed by the EIB effective November 30, 2018.
20.2.7 NMAC	Excess Emissions	Yes	Facility	If subject, this would normally apply to the entire facility. If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies. This would not apply to Notices of Intent since these are not permits.
20.2.23 NMAC	Fugitive Dust Control	No	Facility	 This regulation may apply if, this is an application for a notice of intent (NOI) per 20.2.73 NMAC, if the activity or facility is a fugitive dust source listed at 20.2.23.108.A NMAC, and if the activity or facility is located in an area subject to a mitigation plan pursuant to 40 CFR 51.930. http://164.64.110.134/parts/title20/20.002.0023.html As of January 2019, the only areas of the State subject to a mitigation plan per 40 CFR 51.930 are in Doña Ana and Luna Counties. Sources exempt from 20.2.23 NMAC are activities and facilities subject to a permit issued pursuant to the NM Air Quality Control Act, the Mining Act, or the Surface Mining Act (20.2.23.108.B NMAC. 20.2.23.108 APPLICABILITY: A. This part shall apply to persons owning or operating the following fugitive dust sources in areas requiring a mitigation plan in accordance with 40 CFR Part 51.930: (1) disturbed surface areas or inactive disturbed surface areas, or a combination thereof, encompassing an area equal to or greater than one acre; (2) any commercial or industrial bulk material processing, handling, transport or storage operations. B. The following fugitive dust sources are exempt from this part: (1) agricultural facilities, as defined in this part; (2) roadways, as defined in this part; (3) operations issued permits pursuant to the state of New Mexico Air Quality Control Act, Mining Act or Surface Mining Act; and (4) lands used for state or federal military activities. [20.2.23.108 NMAC - N, 01/01/2019]
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	None of the equipment has a rating greater than 1,000,000 million British Thermal Units per year.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility has no oil burning equipment.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	This facility is not a gas processing plant.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.38 NMAC	Hydrocarbon Storage Facility	Yes	OT1- OT4	The site uses a flare to comply with 20.2.38 NMAC.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	The facility does not operate a sulfur recovery plant.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	FL1-3, RB1-3, ENG1- 9, ENG11 -12, HTR1	This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares unless your equipment is subject to another state regulation that limits particulate matter such as 20.2.19 NMAC (see 20.2.61.109 NMAC).
20.2.70 NMAC	Operating Permits	Yes	Facility	The facility's potential to emit (PTE) is 100 tpy or more of any regulated air pollutant other than HAPs; and/or a HAPs PTE of 10 tpy or more for a single HAP resulting in the facility's classification as being a major source.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This facility is subject to 20.2.70 NMAC and includes numerical ton per year emission limits; therefore, this facility is subject to 20.2.71 NMAC and normally applies to the entire facility.
20.2.72 NMAC	Construction Permits	Yes	Facility	This facility is currently authorized under NSR permit 7474-M2, issued on February 11, 2022. Note: This is not an application pursuant to 20.2.72 NMAC.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The site is subject to 20.2.72 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	The facility is not a major PSD site.
20.2.75 NMAC	Construction Permit Fees	No	N/A	This is not an application pursuant to 20.2.72, 20.2.73, 20.2.74, and/or 20.2.79 NMAC.
20.2.77 NMAC	New Source Performance	Yes	Units subject to 40 CFR 60	This is a stationary source which is subject to the requirements of 40 CFR Part 60, Subparts A, OOOOa, and JJJJ.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	No units are subject to the subparts found in 40 CFR 61.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	The facility is not located in a nonattainment area.
20.2.80 NMAC	Stack Heights	No	N/A	There are no stacks to which this regulation would apply.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	Units Subject to 40 CFR 63	See regulatory discussion in Federal Regulations Citation section.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
<u>20.2.50</u> NMAC	Oil and Gas Sector – Ozone Precursor Pollutants	Yes	ENG1- ENG9; ENG11- ENG12	20.2.50.113 NMAC – Engines and Turbines The natural gas-fired spark ignition engines (ENG1-9 and ENG11-12) and are subject to the applicable requirements of this subpart.
		Yes	FUG	20.2.50.114 NMAC – Compressor Seals Each of the eleven reciprocating compressors will comply with applicable wet seal fluid degassing system emissions control requirements and applicable rod packing replacement requirements.
		Yes	FL1-3; VRU1-2	20.2.50.115 NMAC – Control Devices and Closed Vent Systems The flares (FL1-3), vapor recovery units (VRU1-2), and associated closed vent systems are subject to the requirements of this subpart.
		Yes	FUG	20.2.50.116 NMAC – Equipment Leaks and Fugitive Monitoring The piping and equipment components at the facility are subject to the applicable audio, visual, and olfactory (AVO) inspections; EPA M21 or optical gas imaging (OGI) inspections; and leak repair and replacement requirements of this subpart.
		No	N/A	20.2.50.117 NMAC – Natural Gas Well Liquid Unloading The facility is not a natural gas well; therefore, this subpart is not applicable.
		Yes	DEHY1 -3	20.2.50.118 NMAC – Glycol Dehydrators The glycol dehydrators (DEHY1-3) have a PTE of ≥ 2 tpy VOC and are subject to the requirements of this subpart.
		No	HTR1; RB1-3	20.2.50.119 NMAC – Heaters The fuel line heater (HTR1) and the glycol regenerator reboilers (RB1-3) are natural gas-fired heaters with a rated heat input < 20 MMBtu/hr; therefore, they are not subject to the requirements of this subpart.
		Yes	LOAD	20.2.50.120 NMAC – Hydrocarbon Liquid Transfers The oil/condensate truck loading (LOAD) is subject to the requirements of this subpart except for facilities meeting an exemptions at 20.2.50.120.A(1)-(3) NMAC.
		Yes	SSM	20.2.50.121 NMAC – Pig Launching and Receiving Individual pipeline pig launcher and receiver operations with $PTE \ge 1$ tpy VOC located within the property boundary and under common ownership and control is subject to the requirements of this subpart.
		Yes	FUG	20.2.50.122 NMAC – Pneumatic Controllers and Pumps Natural gas-driven pneumatic controllers or pumps are subject to the requirements of this subpart.
		Yes	OT1-4	20.2.50.123 NMAC – Storage Vessels The oil/condensate storage tanks (OT1-4) are subject to the requirements of this subpart. The skim tanks (SKT1-2) and the produced water tanks (WT1-2) have a VOC PTE less than the applicability thresholds; therefore, the storage vessels are not subject to this subpart
		No	N/A	20.2.50.124 NMAC – Well Workovers 20.2.50.125 NMAC – Small Business Facilities 20.2.50.126 NMAC – Produced Water Management Units 20.2.50.127 NMAC – Flowback Vessels & Preproduction Operations The facility is not one of the names sources in these subparts.

Example of a Table for Applicable FEDERAL REGULATIONS (Note: This is not an exhaustive list):

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	Compliance with the requirements of the NSR permit indicates compliance with NAAQS.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	Units subject to 40 CFR 60	NSPS OOOOa: ENG1-ENG9; ENG11-ENG12; FUG NSPS JJJJ: ENG1-ENG9; ENG11-ENG12
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	The facility does not operate any electric utility steam generating units.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	The facility does not operate any electric utility steam generating units.
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	The facility does not operate any electric utility steam generating units.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	The site does not contain storage tanks constructed prior to July 23, 1984.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	The hydrocarbons are stored in vessels with a design capacity less than 1,589.874 m ³ and are stored prior to custody transfer. §60.110b(d)(4)
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	The facility does not operate any stationary gas turbines.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	The facility is not a gas plant.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing : SO ₂ Emissions	No	N/A	The facility does not operate a sweetening unit.
NSPS 40 CFR Part 60 Subpart 0000	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No	N/A	The site was constructed after 9/18/15. See NSPS OOOOa discussion below.
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	ENG1- ENG9; ENG11- ENG12; FUG	The storage tanks were constructed after the applicability date of the rule; however, XTO is requesting emissions be limited by permit to less than 6 tpy. The regulation is not applicable to the storage tanks per 60.5365a(e). The site uses low-bleed pneumatic controllers which are not applicable per 60.5365a(d)(1). The gun barrels are not storage tanks. The site will be subject to leak monitoring from fugitive components per 60.5365a(j) and will comply with 60.5397a. ENG1-ENG9 and ENG11-ENG12 are reciprocating compressor engines and will comply with 60.5385a.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	ENG1- ENG9; ENG11- ENG12	 ENG1-ENG9 and ENG11-ENG12 engines are non-emergency Spark Ignition engines. ENG1-ENG9 and ENG11-ENG12 engines are manufactured after 7/1/2010 and have a maximum engine power greater than 500 HP. ENG1-ENG9 and ENG11-ENG12 engines are subject to the limitations in Table 1 per 40 CFR 60.4233(e). ENG13 engine is manufactured after 1/1/2011 and has a maximum engine power greater than 100 HP, but less than 500 HP. ENG13 engine is subject to the limitations in Table 1 per 40 CFR 60.4233(e).
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric	No	N/A	The facility does not operate any affected sources.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
	Generating Units			
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	The facility does not operate any affected sources.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	No units are subject to the subparts found in 40 CFR 61.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The facility does not operate any affected sources.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	Units Subject to 40 CFR 63	MACT HH – DEHY1-3 MACT ZZZZ – ENG1-ENG9; ENG11-ENG12
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DEHY1- 3	The facility is not a major source of HAPs as defined in §63.761. The dehydrators process more than 3 mmscfd (85,000 standard cubic meters per day); however, since benzene emissions are less than 1 tpy (0.9 Mg/year), per §63.764(e)(1) the dehydrators are exempt from the requirements of §63.764(d) except for the recordkeeping requirements in §63.774(d)(1).
MACT 40 CFR 63 Subpart HHH		No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	The facility is not a major source of HAP as defined in §63.7575 "Major source for oil and natural gas production facilities". Therefore, MACT 40 CFR 63 Subpart DDDDD does not apply.
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam	No	N/A	The facility does not operate any affected sources.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
	Generating Unit			
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	ENG1- ENG9; ENG11- ENG12	The site is a major source of HAP. ENG1-ENG9 and ENG11-ENG12 engines are 4SLB RICE engines with an engine rating greater than 500 HP subject to the limitations in 63.6600(b)-Table 2a.2.
40 CFR 64	Compliance Assurance Monitoring	No	N/A	The facility is not subject to CAM.
40 CFR 68	Chemical Accident Prevention	No	N/A	The facility does not store any chemicals above threshold quantities.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	The facility does not service, maintain, or repair equipment containing refrigerants.

Section 14 - Operational Plan to Mitigate Emissions

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

✓ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

- □ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Emissions during startup, shutdown, maintenance, and emergencies will be minimized through the site specific Startup, Shutdown, and Malfunction Plan (SSMP) as required by 40 CFR §63.6(e)(3), 20.2.70.300.D.5(g) NMAC, 20.2.72.203.A.5 NMAC, and 20.2.7.14.A NMAC.

Tab 15Section 15 - Alternative Operating Scenarios

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

XTO is not proposing any alternative operating scenarios.

Tab 16Section 16 - Air Dispersion Modeling

Section 16 Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	Х
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

□ See attached, approved modeling **waiver for all** pollutants from the facility.

□ See attached, approved modeling **waiver for some** pollutants from the facility.

□ Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.

□ Attached in UA4 is a **modeling report for some** pollutants from the facility.

☑ No modeling is required. Modeling was approved as part of issuance of NSR Permit 7474-M2 (issued February 22, 2022).

Tab 17Section 17 - Compliance Test History

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Initial compliance tests were performed on ENG1, ENG2, ENG3, ENG11, and ENG12 between March 24 and March 26, 2020. Subsequent compliance tests were performed for ENG1, ENG2, ENG3, ENG11, and ENG12 between September 2 and September 11, 2020 and between August 30 and September 1, 2021. Testing demonstrated compliance with emission limitations.

Section 18 - Addendum for Streamline Applications (Not Applicable)

Addendum for Streamline Applications

Do not print this section unless this is a streamline application.

Streamline Applications do not require a complete application. Submit Sections 1-A, 1-B, 1-D, 1-F, 1-G, 2-A, 2-C thru L, Sections 3 thru 8, Section 13, Section 18, Section 22, and Section 23 (Certification). Other sections may be required at the discretion of the Department. 20.2.72.202 NMAC Exemptions do not apply to Streamline sources. 20.2.72.219 NMAC revisions and modifications do not apply to Streamline sources, thus 20.2.72.219 type actions require a complete new application submittal. Please do not print sections of a streamline application that are not required.

This section is not applicable since this is not a Streamline Permit Application.

Section 19 - Requirements for Title V Program

Requirements for Title V Program

Do not print this section unless this is a Title V application.

Who Must Use this Attachment:

* Any major source as defined in 20.2.70 NMAC.

- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See <u>http://www.env.nm.gov/aqb/index.html</u>. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

The Wildcat Compressor Station is not subject to 40 CFR, Part 64, Compliance Assurance Monitoring (CAM); therefore, a monitoring protocol is not required with this application.

19.2 - Compliance Status (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

The sources operated at the Wildcat Compressor Station currently meet the applicable requirements as detailed in Section 13 of this Title V application.

19.3 - Continued Compliance (20.2.70.300.D.10.c NMAC)

Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement.

The Wildcat Compressor Station will continue to be in compliance with applicable requirements for which it is in compliance at the time of this permit application. In addition, the station will, in a timely manner or consistent with such schedule expressly required by the applicable requirement, comply with other applicable requirements as they come into effect during the permit term.

19.4 - Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)

You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.

XTO Energy Inc. requests the Department schedule compliance reporting to start either July 1 or January 1 in order to align with other federal reporting programs. Annual compliance certification is requested to be completed annually for the period January 1 through December 31. If this is not possible, please schedule compliance reporting to match that of NSR Permit 7474-M2.

19.5 - Stratospheric Ozone and Climate Protection

In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners).

- 1. Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozonedepleting substances? □ Yes ☑ No
- Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 lbs?
 □ Yes ☑ No

(If the answer is yes, describe the type of equipment and how many units are at the facility.)

- 3. Do your facility personnel maintain, service, repair, or dispose of any motor vehicle air conditioners (MVACs) or appliances ("appliance" and "MVAC" as defined at 82. 152)? □ Yes ☑ No
- 4. Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through G.)

The station does not produce, manufacture, transform, destroy, import, or export any stratospheric ozone-depleting substances (CFCs, HCFCs); does not maintain or service motor vehicle air conditioning units or refrigeration equipment; and does not sell, distribute, or offer for sale any product that may contain stratospheric ozone-depleting substances.

XTO Energy Inc. shall continue to maintain compliance with the conditions stipulated in 40 CFR 82, Subparts A-G of the Stratospheric Ozone Protection Program (Title VI of the Clean Air Act Amendments).

19.6 - Compliance Plan and Schedule

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.

B. Compliance plan: (20.2.70.300.D.11.B NMAC)

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC)

A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See <u>http://www.env.nm.gov/aqb/index.html</u>. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

The Wildcat Compressor Station is in compliance with all applicable requirements; consequently, a compliance plan, a compliance schedule, and a schedule of certified progress reports is not required.

The Wildcat Compressor Station is not equipped with any acid rain sources; consequently, compliance with the acid rain provisions is not required as a part of this permit application.

19.7 - 112(r) Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

The Wildcat Compressor Station is not subject to 40 CFR 68, Chemical Accident Prevention Provisions; consequently, a Risk Management Plan (RMP) is not required.

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.) Form-Section 19 last revised: 8/15/2011 Section 19, Page 3 Texas (22.4 kilometers).

19.9 - Responsible Official

See Section 1-H of this permit application.

Tab 20Section 20 - Other Relevant Information

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is provided.

Section 21 - Addendum for Landfill Applications (Not Applicable)

Addendum for Landfill Applications

Do not print this section unless this is a landfill application.

Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: <u>https://www3.epa.gov/airtoxics/landfill/landflpg.html</u>

NM Solid Waste Bureau Website: <u>https://www.env.nm.gov/swb/</u>

This is not applicable.

Tab 22Section 22 - Certification

Section 22: Certification

Company Name: XTO Energy Inc.

I, <u>David Scott</u>, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this 4^{μ} day of May, 2022, upon my oath or affirmation, before a notary of the State of

*Signature

2022

202

expires on the

David Scott Printed Name <u>General Manager Permian Delaware BU</u> Title

Scribed and sworn before me on this 4 day of 1

My authorization as a notary of the State of <u>Jexas</u>

, 2024. day of

's Signatu

MARITZA WHITE Notary Public, State of Texas Comm. Expires 04-28-2024 Notary ID 582470-8

s Printed Name

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

Tab 23 Section 23 - UA4

(Not Applicable)