

EcoLogic Environmental Consultants, LLC 864 Windsor Court Santa Barbara, CA 93111 805-964-7597

November 18, 2022

Elizabeth Bisbey-Kuehn New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816

Subject:Application to Modify Permit Number 6362-R2Harvest Four Corners, LLC – Buena Vista Compressor Station

Dear Ms. Bisbey-Kuehn:

On behalf of Harvest Four Corners, LLC (H4C), EcoLogic Environmental Consultants, LLC is submitting this application to modify the Buena Vista Compressor Station, currently operating under New Source Review Permit 6362-R2 issued on October 31, 2018. The purpose of this application is to modify the option to install and operate either a 1,347 hp Waukesha 7042GL or a 1,215 hp Waukesha 5790GL engine in each of the three slots currently approved for Waukesha 7042GL engines. Instead of the option of installing Waukesha 7042GL engines or Waukesha 5790 GL engines, a new option of installing Waukesha 7042GL engines or Caterpillar 3516 TALE engines is being pursued. This application for significant permit revision is submitted under Section 20.2.72.219.D(1) of the New Mexico Administrative Code (NMAC).

Enclosed are two copies of the permit application and a check for \$500 to cover the permit filing fee.

If you have any questions, or require additional information, please contact Monica Smith of H4C at (505) 632-4625 or <u>msmith@harvestmidstream.com</u>.

Sincerely,

EcoLogic Environmental Consultants, LLC

Walter H Kalultu

Walter H. Konkel III Principal

Enclosures Check for Filing Fee and Buena Vista Compressor Station Significant Revision Application

cc: Monica Smith, H4C

This Page Intentionally Left Blank

NEW MEXICO 20.2.72 NMAC APPLICATION TO MODIFY PERMIT NUMBER 6362-R2

BUENA VISTA COMPRESSOR STATION

Submitted By:

HARVEST FOUR CORNERS, LLC 1755 Arroyo Drive Bloomfield, New Mexico 87413

Prepared By:

EcoLogic Environmental Consultants, LLC 864 Windsor Court Santa Barbara, CA 93111-1037

November 2022

This Page Intentionally Left Blank

Table of Contents

Introduction

Section 1:	General Information
Section 2:	Tables
Section 3:	Application Summary
Section 4:	Process Flow Sheet
Section 5:	Plot Plan Drawn to Scale
Section 6:	All Calculations
Section 7:	Information Used to Determine Emissions
Section 8:	Map(s)
Section 9:	Proof of Public Notice
Section 10:	Written Description of the Routine Operations of the Facility
Section 11:	Source Determination
Section 12:	PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
Section 13:	Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
Section 14:	Operational Plan to Mitigate Emissions
Section 15:	Alternative Operating Scenarios
Section 16:	Air Dispersion Modeling
Section 17:	Compliance Test History
Section 18:	Addendum for Streamline Applications
Section 19:	Requirements for the Title V (20.2.70 NMAC) Program
Section 20:	Other Relevant Information
Section 21:	Addendum for Landfill Applications
Section 22:	Certification Page

This Page Intentionally Left Blank

Introduction

The Buena Vista Compressor Station currently operates under a construction permit issued by the NMAQB, 6362-R2, issued October 31, 2018. The permit approves operation of the following emission sources: three Waukesha 7042GL or three Waukesha 5790GL natural gas-fired compressor engines (Units 1a-3a and 1b-3b), two condensate storage tanks (Units T1 and T2) and ancillary equipment.

The proposed modification is to change the allowed compressor engine configuration from three Waukesha 7042GL or three Waukesha 5790GL natural gas-fired compressor engines (Units 1a-3a and 1b-3b) to three Waukesha 7042GL compressor engines or three Caterpillar G3516LE compressor engines (Units 1a-3a and 1b-3b). The project will result in an increase in NOx and CO emissions and a decrease in VOC emissions.

This Page Intentionally Left Blank

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions for other permits.

This application is submitted as (check all that apply):
□ Request for a No Permit Required Determination (no fee) Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Construction Status: □ Not Constructed X Existing Permitted (or NOI) Facility □ Existing Non-permitted (or NOI) Facility Minor Source: 🗆 a NOI 20.2.73 NMAC 🕱 20.2.72 NMAC application or revision 🗆 20.2.72.300 NMAC Streamline application Title V Source: 🗆 Title V (new) 🗆 Title V renewal 🗆 TV minor mod. 🗆 TV significant mod. TV Acid Rain: 🗆 New 🗆 Renewal PSD Major Source: PSD major source (new) I minor modification to a PSD source I a PSD major modification

Acknowledgements:

X I acknowledge that a pre-application meeting is available to me upon request. 🗆 Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

X \$500 NSR application Filing Fee enclosed OR 🗆 The full permit fee associated with 10 fee points (required w/ streamline applications).

x Check No.: 240 in the amount of \$500.00

X I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page. X I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-2/. □ This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the low level citation under which this application is being submitted: 20.2.72.219.D(1) NMAC NMAC

(e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

		AI # if known (see 1 st 3 to 5 #s of permit	Updating		
Sec	tion 1-A: Company Information		Permit/NOI #: 6362-R2		
1	Facility Name:	Plant primary SIC Code (4 digits): 1389			
Buena Vista Compressor Station		Plant NAIC code (6 digits): 213112			
a	a Facility Street Address (If no facility street address, provide directions from a prominent landmark): See Section 1-D.4				
2	Plant Operator Company Name: Harvest Four Corners, LLC	Phone/Fax: 505-632-46	600 / 505-632-4782		

a	Plant Operator Address: 1775 Arroyo Drive, Bloomfield, NM 87413	
b	Plant Operator's New Mexico Corporate ID or Tax ID: 76-0451075	
3	Plant Owner(s) name(s): Same as #2 above	Phone/Fax: Same as #2 above
а	Plant Owner(s) Mailing Address(s): Same as #2 above	
4	Bill To (Company): Same as #2 above	Phone/Fax: Same as #2 above
a	Mailing Address: Same as #2 above	E-mail: Same as #2 above
5	□ Preparer: X Consultant: Walter Konkel III, EcoLogic Environmental Consultants, LLC	Phone/Fax: 805-964-7597
а	Mailing Address: <u>864</u> Windsor Court, Santa Barbara, CA 93111	E-mail: wkonkel@elogicllc.com
6	Plant Operator Contact: Monica Smith	Phone/Fax: 505-632-4625 / 505-632-4782
a	Address: Same as #2 above	E-mail: monica.smith@harvestmidstream.com
7	Air Permit Contact: Same as #2 above	Title: Environmental Specialist
a	E-mail: Same as #6a above	Phone/Fax: Same as #6 above
b	Mailing Address: Same as #2a above	
с	The designated Air permit Contact will receive all official correspond	ence (i.e. letters, permits) from the Air Quality Bureau.

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? \mathbf{X} Yes \Box No	1.b If yes to question 1.a, is it currently operating in New Mexico? X Yes □ No		
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application?	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application?		
3	Is the facility currently shut down? \Box Yes \mathbf{X} No	If yes, give month and year of shut down (MM/YY):		
4	Was this facility constructed before 8/31/1972 and continuously operated s	since 1972? 🗆 Yes 🕱 No		
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since $8/31/1972$? \Box Yes \Box No \overline{X} N/A			
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? X Yes □ No	If yes, the permit No. is: P-275-M1		
7	Has this facility been issued a No Permit Required (NPR)? □ Yes X No	If yes, the NPR No. is:		
8	Has this facility been issued a Notice of Intent (NOI)? □ Yes 🗴 No	If yes, the NOI No. is:		
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? X Yes □ No	If yes, the permit No. is: 6362-R2		
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? □ Yes X No	If yes, the register No. is:		

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)				
a	Current	Current Hourly: 1.25 MMcf/hr ^(a) Daily: 30 MMscf/day ^(a) Annually: 10,950 MMscf/yr ^(a)			
b	Proposed	Proposed Hourly: 1.25 MMcf/hr ^(a) Daily: 30 MMscf/day ^(a) Annually: 10,950 MMscf/yr ^(a)			
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)				

a	Current	Hourly: 1.25 MMcf/hr ^(a)	Daily: 30 MMscf/day ^(a)	Annually: 10,950 MMscf/yr ^(a)
b	Proposed	Hourly: 1.25 MMcf/hr ^(a)	Daily: 30 MMscf/day ^(a)	Annually: 10,950 MMscf/yr ^(a)

^(a) Station capacity is a direct function of available horsepower. The throughput is therefore dependent on atmospheric temperature, gas temperature, atmospheric pressure, gas pressure, relative humidity and gas quality, as well as other factors. The "capacity" expressed in the application is a nominal quantity, neither an absolute maximum nor an average. The actual throughput will vary from the nominal amount.

Section 1-D: Facility Location Information

1	Section: 32	Range: 8W	Township: 24N	County: San Juan		Elevation (ft): 7,004
2	UTM Zone: \Box 12 or $\mathbf{\overline{X}}$ 13			Datum: 🗆 NAD 27	□ NAD 8	33 🕱 WGS 84
a	UTM E (in meters, to nearest 10 meters): 257,570 m			UTM N (in meters, to nearest	t 10 meters):	4,017,800 m
b	AND Latitude	(deg., min., sec.):	36° 16' 29.1"	Longitude (deg., min., se	c.): -107º 4	1' 56.2"
3	Name and zip o	code of nearest No	ew Mexico town: Nageezi,	NM 87037		
4	US Hwy 550 to guard at the int	mile point 116.6	. Turn left (east) on oilfiel ue on the main road for 1.3	d road. Drive 0.7 miles. T	hen procee	omfield, NM, drive south on ed straight through the cattle ve 0.6 miles east/southeast.
5	The facility is ~	~ 2 (distance) mile	es east-northeast (direction) of Nageezi, NM (nearest	town).	
6	(specify): State	of New Mexico	,	ueblo □ Federal BLM □ F		—
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: None; Navajo tribal lands; San Juan County, Rio Arriba County, Sandoval County					
8	20.2.72 NMAC applications only : Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see <u>www.env.nm.gov/aqb/modeling/class1areas.html</u>)? □ Yes X No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers:					
9	Name nearest (Class I area: San H	edro Parks Wilderness Are	ea		
10	Shortest distant	ce (in km) from fa	cility boundary to the boundary	ndary of the nearest Class I	area (to the	nearest 10 meters): 69.340 km
11	Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: $\sim 3,700$ m					
12	Method(s) used to delineate the Restricted Area: Fencing " Restricted Area " is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.					
13	Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? \Box Yes \mathbf{X} No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.					
14	Will this facilit	y operate in conju		ated parties on the same pr		No Yes

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24	(days/week): 7	$(\frac{\text{weeks}}{\text{year}}): 52$	$\left(\frac{\text{hours}}{\text{year}}\right)$: 8,760	
2	Facility's maximum daily operating schedule (if less	s than $24 \frac{\text{hours}}{\text{day}}$)? Start: N/A	□AM □PM	End: N/A	□AM □PM
3	Month and year of anticipated start of construction:	N/A			

Buena Vista Compressor Station

4	Month and year of anticipated construction completion: N/A		
5	Month and year of anticipated startup of new or modified facility: N/A		
6	Will this facility operate at this site for more than one year? \mathbf{X} Yes \Box No		

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? \Box Yes \mathbf{X} No If yes, specify:			
а	a If yes, NOV date or description of issue: N/A			NOV Tracking No: N/A
b	Is this application in response to any issue listed in 1-F, 1 or 1a above	? 🗆 Yes	X No If Y	Ves, provide the 1c & 1d info below:
c	c Document Title: N/A Date: N/	Ą	-	ment # (or nd paragraph #): N/A
d	d Provide the required text to be inserted in this permit: N/A			
2	Is air quality dispersion modeling or modeling waiver being submitte	d with this	applicatio	on? XYes □No
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? 🗆 Yes 🕱 No			
4	Will this facility be a source of federal Hazardous Air Pollutants (HA	P)? X Yes	□ No	
a	aIf Yes, what type of source? \Box Major ($\Box \ge 10$ tpy of any single HOR X Minor ($\Box < 10$ tpy of any single H			tpy of any combination of HAPS) 25 tpy of any combination of HAPS)
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? □ Yes X No			
	If yes, include the name of company providing commercial electric power to the facility: <u>N/A</u>			
a	a Commercial power is purchased from a commercial utility company site for the sole purpose of the user.	which spe	cifically o	does not include power generated on

Section 1-G: Streamline Application (This

(This section applies to 20.2.72.300 NMAC Streamline applications only)

□ I have filled out Section 18, "Addendum for Streamline Applications." 🛛 N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Travis Jones		Phone: 713-289-2630	
а	a R.O. Title: EH&S Manager R.O. e-mail: trjones@harvestmidstream.com			
b	R. O. Address: 1111 Travis Street, Houston, TX 77002			
2	Alternate Responsible Official Phone: TBD (20.2.70.300.D.2 NMAC): TBD Phone: TBD			
а	a A. R.O. Title: TBD A. R.O. e-mail: TBD			
b	A. R. O. Address: TBD			
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): N/A			
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): Hilcorp Energy Company			
а	Address of Parent Company: 1111 Travis Street, Houston, TX 770	02		

5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): N/A
6	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations: N/A
7	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers:
	Yes: Colorado (80 km); Southern Ute Tribe (80 km); Jicarilla Apache Tribe (25.9 km); Ute Mountain Ute Tribe (80 km); and Navajo Tribal Lands – checkerboard area (1.25 km)

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-toto 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

X CD/DVD attached to paper application

secure electronic transfer. Air Permit Contact Name

Phone number _____

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible

format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

This Page Intentionally Left Blank

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition Type (CI, SI,	Replacing Unit
Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	4SLB, 4SRB, 2SLB) ⁴	No.
1.	Reciprocating Internal	Waadaadaa	7042GL	C-11661/2	1,480 hp	1,347 hp	6/20/1995	N/A	20200202	X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	4CL D	
1a	Combustion Engine	Waukesha	/0420L	(Pkg. X00102)	1,400 lip	1,547 lip	6/20/1995	1a	20200202	□ To Be Modified □ To be Replaced	4SLB	N/A
11	Reciprocating Internal		3516	TDD	1 2 4 0 1	1 210 1	TBD	N/A		□ Existing (unchanged) □ To be Removed	ACL D	
1b	Combustion Engine	Caterpillar	TALE	TBD	1,340 hp	1,219 hp	TBD	1b	20200202	X New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	N/A
	Reciprocating Internal			C-12097/3			08/01/1996	N/A		X Existing (unchanged)		
2a	Combustion Engine	Waukesha	7042GL	(Pkg. X00239)	1,480 hp	1,347 hp	08/01/1996	2a	20200202	□ New/Additional □ Replacement Unit	4SLB	N/A
			2516	(119.110020))						□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed		+
2b	Reciprocating Internal	Caterpillar	3516	TBD	1,340 hp	1,219 hp	TBD	N/A	20200202	X New/Additional	4SLB	N/A
	Combustion Engine	_	TALE		-	-	TBD	2b		□ To Be Modified □ To be Replaced		
3a	Reciprocating Internal	Waukesha	7042GL	C-11100/4	1,480 hp	1,347 hp	3/28/1994	N/A	20200202	X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	4SLB	N/A
Ja	Combustion Engine	Waukesha	/0420L	(Pkg 70889)	1,480 lip	1,547 np	3/28/1994	3a	20200202	□ To Be Modified □ To be Replaced	43LD	IN/A
	Reciprocating Internal		3516				TBD	N/A		□ Existing (unchanged) □ To be Removed		
3b	Combustion Engine	Caterpillar	TALE	TBD	1,340 hp	1,219 hp	TBD	3b	20200202	X New/Additional	4SLB	N/A
			mille							□ To Be Modified □ To be Replaced X Existing (unchanged) □ To be Removed		-
SSM	Compressors & Associated	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000299	□ New/Additional □ Replacement Unit	N/A	N/A
	Piping (SSM)						N/A	N/A		□ To Be Modified □ To be Replaced		
T1	Condensate Storage Tank	Cimmaron Tank	N/A	2209	400 bbl	400 bbl	12/1/1980	N/A	40400311-	X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
11	Condensate Storage Tank	Company	IN/A	2209	400 001	400 001	12/1/1980	N/A	12	□ To Be Modified □ To be Replaced	IN/A	IN/A
							TBD	N/A	40400311-	X Existing (unchanged)		
T2	Condensate Storage Tank	TBD	N/A	N/A	400 bbl	400 bbl	TBD	N/A	12	□ New/Additional □ Replacement Unit	N/A	N/A
										□ To Be Modified □ To be Replaced X Existing (unchanged) □ To be Removed		-
F1	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	□ New/Additional □ Replacement Unit	N/A	N/A
							N/A	N/A		□ To Be Modified □ To be Replaced		
N/1				NT/A			N/A	N/A	21000200	X Existing (unchanged) \Box To be Removed		N T/A
M1	Malfunctions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000299	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
										□ Existing (unchanged) □ To be Removed		
										□ New/Additional □ Replacement Unit		
										□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed		
										Existing (unchanged) To be Removed New/Additional Replacement Unit		
										□ To Be Modified □ To be Replaced		
										\Box Existing (unchanged) \Box To be Removed		
										□ New/Additional □ Replacement Unit		
										□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed		
										□ New/Additional □ Replacement Unit		
										□ To Be Modified □ To be Replaced		
										 □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit 		
										□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced		

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see

http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf . TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Source Description	Manufacturer -	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
F		Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	
			45	20.2.72.202.B(5) NMAC		X Existing (unchanged) \Box To be Removed
Produced water Storage Talik			bbl	Insignificant Activity List Item #1		 New/Additional Replacement Unit To Be Modified To be Replaced
Truck Loading -			N/A			X Existing (unchanged) \Box To be Removed
Condensate			N/A	Insignificant Activity List Item #1		 New/Additional Replacement Unit To Be Modified To be Replaced
Truck Loading -			N/A	20.2.72.202.B(5) NMAC		X Existing (unchanged)
Produced water			N/A	Insignificant Activity List Item #1		 New/Additional Replacement Unit To Be Modified To be Replaced
			N/A	20.2.72.202.B(5) NMAC		X Existing (unchanged)
Pig Receiver			N/A			 New/Additional Replacement Unit To Be Modified To be Replaced
				· ·		X Existing (unchanged) To be Removed
Waste Water Storage Tank						 New/Additional To Be Modified To be Replaced
						X Existing (unchanged) Image: The proceeding of the pr
Lube Oil Storage Tank						 New/Additional To Be Modified To be Replaced
				<u> </u>		X Existing (unchanged) To be Removed
Used Lube Oil Storage Tank			-			□ New/Additional □ Replacement Unit
			gai	Insignmeant Activity List tem #5		 To Be Modified To be Replaced Existing (unchanged) To be Removed
						□ New/Additional □ Replacement Unit
						□ To Be Modified □ To be Replaced
						□ Existing (unchanged) □ To be Removed
	l l					 New/Additional To Be Modified To be Replaced
						Existing (unchanged) To be Removed
						 New/Additional Replacement Unit
						□ To Be Modified □ To be Replaced
						□ Existing (unchanged) □ To be Removed
	ŀ					□ New/Additional □ Replacement Unit
						□ To Be Modified □ To be Replaced
						□ Existing (unchanged) □ To be Removed
						□ New/Additional □ Replacement Unit
						□ To Be Modified □ To be Replaced
						□ Existing (unchanged) □ To be Removed
	l l					 New/Additional To Be Modified To be Replaced
	Condensate Truck Loading - Produced water Pig Receiver Waste Water Storage Tank Lube Oil Storage Tank	Produced Water Storage Tank Truck Loading - Condensate Truck Loading - Produced water Pig Receiver Waste Water Storage Tank Lube Oil Storage Tank	Source Description Manufacturer Serial No. Produced Water Storage Tank Truck Loading - Condensate Truck Loading - Produced water Produced water Pig Receiver Waste Water Storage Tank Lube Oil Storage Tank Image: Contensate Contensate Image: Contensate I	Source DescriptionManufacturerSerial No.Capacity UnitsProduced Water Storage Tank45Produced Water Storage TankTruck Loading - CondensateTruck Loading - Produced waterProduced waterProduced waterPig ReceiverWaste Water Storage TankLube Oil Storage TankLube Oil Storage TankStorage Tank	Source DescriptionManufacturerModel No.Max CapacityInsignificant Activity citation (e.g. IA List Item #1.a)Produced Water Storage Tank4520.2.72.202.B(5) NMACProduced Water Storage Tank4520.2.72.202.B(5) NMACTruck Loading - CondensateN/AInsignificant Activity List Item #1Truck Loading - Produced waterN/A1nsignificant Activity List Item #1Truck Loading - 	Source DescriptionManufacturerModel No.Max Capacity UnitsInsignificant Activity citation (e.g. IA List Item #1.a)Manufactureina? Reconstruction?Produced Water Storage TankA520.2.72.202.B(5) NMACOate of Installation /Construction?Produced Water Storage TankA4520.2.72.202.B(5) NMACInsignificant Activity List Item #1Truck Loading - CondensateAN/AInsignificant Activity List Item #1Insignificant Activity List Item #1Truck Loading - Produced waterAN/AInsignificant Activity List Item #1Insignificant Activity List Item #1Pig ReceiverAN/AInsignificant Activity List Item #1Insignificant Activity List Item #1Pig ReceiverAN/AInsignificant Activity List Item #1Insignificant Activity List Item #1Waste Water Storage TankAN/AInsignificant Activity List Item #1Insignificant Activity List Item #1Uable Oil Storage TankAS0020.2.72.202.B(2) NMACInsignificant Activity List Item #5Used Lube Oil Storage TankAS0020.2.72.202.B(2) NMACInsignificant Activity List Item #5

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
N/A						

¹ List each control device on a separate line. For each control device, list all emission units controlled by the control device.

Table 2-D: Maximum Emissions (under normal operating conditions)

□ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	С	0	V						PM	[10 ¹	PM	2.5 ¹	Н	$_2$ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr										
Totals	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	-	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	N	Ox	С	0	VC)C	SC	Эx	PI	M^1	PM	[10 ¹	PM	2.5 ¹	Н	$_{2}S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1a	4.45	19.51	7.87	34.46	2.97	13.00	5.85E-03	2.56E-02	9.94E-02	0.44	9.94E-02	0.44	9.94E-02	0.44	-	-	-	-
1b	5.38	23.55	7.98	34.97	2.77	12.13	5.86E-03	2.57E-02	9.95E-02	0.44	9.95E-02	0.44	9.95E-02	0.44	-	-	-	-
2a	4.45	19.51	7.87	34.46	2.97	13.00	5.85E-03	2.56E-02	9.94E-02	0.44	9.94E-02	0.44	9.94E-02	0.44	-	-	-	-
2b	5.38	23.55	7.98	34.97	2.77	12.13	5.86E-03	2.6E-02	9.95E-02	0.44	9.95E-02	0.44	9.95E-02	0.44	-	-	-	-
3a	4.45	19.51	7.87	34.46	2.97	13.00	5.85E-03	2.56E-02	9.94E-02	0.44	9.94E-02	0.44	9.94E-02	0.44	-	-	-	-
3b	5.38	23.55	7.98	34.97	2.77	12.13	5.86E-03	2.57E-02	9.95E-02	0.44	9.95E-02	0.44	9.95E-02	0.44	-	-	-	-
SSM	-	-	-	-	Not specified	35.60	-	-	-	-	-	-	-	-	-	-	-	-
T1 ²	-	-	-	-	Not specified	143.50	-	-	-	-	-	-	-	-	-	-	-	-
$T2^2$	-	-	-	-	with T1	with T1	-	-	-	-	-	-	-	-	-	-	-	-
F1	-	-	-	-	2.13	9.34	-	-	-	-	-	-	-	-	-	-	-	-
M1	-	-	-	-	Not specified	10.00	-	-	-	-	-	-	-	-	-	-	-	-
Totals ³	16.13	70.64	23.95	104.90	11.04	237.45	1.76E-02	7.70E-02	0.30	1.31	0.30	1.31	0.30	1.31	-	-	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

² Operating Permit (P275) currently distinguishes the condensate (hydrocarbon) tank working and breathing (W/B) losses (units T1 and T2) from flash emissions (T1 (flash), T2 (flash). With this application, the W/B losses are aggregated with the flash emissions under one emission limit (7.6 tpy W/B losses + 136.4 tpy flash emissions = **143.5 tpy total VOC emissions**). The aggregated total emissions are brought forward from the current permit.

³ The worst-case PTE is shown, and is based on operation of the highest emitting engines.

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

□ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

U.s. 4 N.c		Ox	C	0	VC)C	S	Ox	P	M^2	PM	110 ²	PM	2.5^{2}	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SSM ³	-	-	-	-	not specified	35.6	-	-	-	-	-	-	-	-	-	-	-	-
M-1	-	-	-	-	not specified	10.0	-	-	-	-	-	-	-	-	-	-	1	-
Totals	-	-	-	-	not specified	45.60	-	-	-	-	-	-	-	-	-	-	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

² The SSM emission rate is brought forward from Operating Permit P275.

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List I oxic Air Pollutants (IAPs) and Hazardous Air Pollutants (HAPs) in Table 2-1. List all rugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "" sumbel and on significant figures.

	l and on significant fig Serving Unit		Ox	C	0	V	DC	SC	Ox	P	М	PN	110	PM	12.5	\Box H ₂ S of	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
,	Tetele																
	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
1a	1a	V	Ν	22	700	125			153	1.02
1b	1b	V	Ν	22	965	124			159	1.00
2a	2a	V	Ν	22	700	125			153	1.02
2b	2b	V	Ν	22	965	124			159	1.00
3a	3a	V	Ν	22	700	125			153	1.02
3b	3b	V	Ν	22	965	124			159	1.00

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs		ldehyde or □ TAP	n-He X HAP o	exane or 🗆 TAP	Provide P Name	Here	Name	Pollutant e Here or 🛛 TAP	Name	Pollutant e Here or 🛛 TAP	Name	Pollutant e Here or 🛛 TAP	Nam	Pollutant e Here or 🛛 TAP	Name	Pollutant e Here or 🗆 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1a	1a	0.5	2.3	0.5	2.2	-	-												
1b	1b	0.4	1.9	0.5	2.0	-	-												
2a	2a	0.5	2.3	0.5	2.2	-	-												
2b	2b	0.4	1.9	0.5	2.0	-	-												
3a	3a	0.5	2.3	0.5	2.2	-	-												
3b	3b	0.4	1.9	0.5	2.0	-	-												
SSM	SSM	-	0.5	-	-	-	0.5												
T1, T2	T1, T2	-	4.2	-	-	-	3.8	The T1, T2	aggregate	ed condensa	te tank sou	rce includes	tank work	ng & breat	ning losses	and flash er	nissions (in	cluding inle	et separator
Т3	Т3	-	-	-	-	-	-												
L1	L1	4.6	0.1	-	-	3.5	-												
L2	L2	-	-	-	-	-	-												
F1	F1	-	0.1	-	-	-	0.1												
P1	P1	-	-	-	-	-	-												
M1	M1	-	0.1	-	-	-	0.1												
Totals ¹		6.22	12.1	1.5	6.6	3.6	4.6												

¹ The emission totals represent the worst-case PTE that occur with the operation of the three optional Waukesha 7042GLs (units 1a, 2a, & 3a).

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial, pipeline quality natural gas, residue		Specif	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	gas, raw/field natural gas, residue (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
1a	Natural Gas	Field natural gas	900 Btu/scf	11,056 scfh	96.85 MMscf/yr	-	-
1b	Natural Gas	Field natural gas	900 Btu/scf	11,075 scfh	97.01 MMscf/yr	-	-
2a	Natural Gas	Field natural gas	900 Btu/scf	11,056 scfh	96.85 MMscf/yr	-	-
2b	Natural Gas	Field natural gas	900 Btu/scf	11,075 scfh	97.01 MMscf/yr	-	-
3a	Natural Gas	Field natural gas	900 Btu/scf	11,056 scfh	96.85 MMscf/yr	-	-
3b	Natural Gas	Field natural gas	900 Btu/scf	11,075 scfh	97.01 MMscf/yr	-	-

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

package.					Vapor	Average Stor	age Conditions	Max Stora	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
T1, T2	40400311	Condensate	Mixed hydrocarbons	6	65.6853	67.36	5.5749	80.79	7.1986
Т3	40400315	Produced Water	Produced water w/trace of hydrocarbons	Insignifican	nt source				
Τ4	40400313	Waste Water	Waste water w/trace of hydrocarbons	Insignifican	nt source				
T5, T6, T7	40400313	Lube Oil	Lubrication Oil	Insignifican	nt source				
T8, T9, T10	40400313	Used Lube Oil	Used Lubrication Oil	Insignifican	nt source				

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored		Roof Type (refer to Table 2-	Cap	acity	Diameter (M)	Vapor Space		llor ble VI-C)	Paint Condition (from Table VI-	Annual Throughput (gal/yr)	Turn- overs (per year)
			LR below)	LR below)	(bbl)	(M ³)	· · ·	(M)	Roof	Shell	C)		
T1, T2		Condensate	N/A	FX	400	63.6	3.7	3.1	OT	ОТ	Good	378,084	22.5
Т3		Produced Water	N/A	FX	45	7.2	Insignificant	source					
T4		Waste Water	N/A	FX	100	15.9	Insignificant	source					
T5, T6, T7		Lube Oil	N/A	FX	12	1.9	Insignificant	source					
T8, T9, T10		Used Lube Oil	N/A	FX	11.9	1.9	Insignificant	source					

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, W	/elded Tank Seal Type	Seal Type, Riv	Roof, Shell Color	Paint Condition	
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B : Weather shield	B : Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$		BL : Black				
					OT: Other (specify)	

	Materi	al Processed		Material Produced				
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)	
Low pressure natural gas	C1-C6+	Gas	10,950 mmscfy ¹	High pressure natural gas	C1-C6+	Gas	10,950 mmscfy ¹	
Condensate	Mixed HC	Liquid	378,084 gal/yr ¹	Hydrocarbon (HC) liquid	Mixed HC	Liquid	378,084 gal/yr ¹	
Produced water	H2O + Mixed HC	Liquid	159,600 gal/yr ¹	Produced water	H2O + Mixed HC	Liquid	159,600 gal/yr ¹	
		ect function of available horsepower. Sactors. The values expressed above a						

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
N/A									

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
N/A								

Table 2-P: Green House Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box:

□ By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Unit No.		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²								Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3									
	mass GHG	6010.45	0.01	0.11										6010.6	-
1a	CO ₂ e	6010.45	3.38	2.83										-	6016.7
1b	mass GHG	5662.37	0.01	0.11										5662.5	-
10	CO ₂ e	5662.37	3.18	2.67										-	5668.2
2a	mass GHG	6010.45	0.01	0.11										6010.6	-
∠a	CO ₂ e	6010.45	3.38	2.83										-	6016.7
2b	mass GHG	5662.37	0.01	0.11										5662.5	-
20	CO ₂ e	5662.37	3.18	2.67										-	5668.2
3a	mass GHG	6010.45	0.01	0.11										6010.6	-
Ja	CO ₂ e	6010.45	3.38	2.83										-	6016.7
3b	mass GHG	5662.37	0.01	0.11										5662.5	-
30	CO ₂ e	5662.37	3.18	2.67										-	5668.2
SSM	mass GHG	2.91	-	119.73		Includes pig 1	Includes pig receiving, reciprocating compressor venting, pneumatic devices, and pneumatic pumps.							122.6	-
55IVI	CO ₂ e	2.91	-	2993.34										-	2996.3
T1 & T2	mass GHG	0.04		19.71		Includes aggr	egated GHG	from the tank	flash emissio	ns from both	of the conden	sate storage ta	inks	19.8	-
11 a 12	CO ₂ e	0.04	-	492.75		and inlet sepa	and inlet separator (S1) flash emissions.							-	492.8
T3	mass GHG	0.00	-	0.00										0.0	-
15	CO ₂ e	0.00	-	0.00										-	0.0
L1	mass GHG	0.00	-	0.00										0.0	-
LI	CO ₂ e	0.00	-	0.00										-	0.0
L2	mass GHG	0.00	-	0.00										0.0	-
L2	CO ₂ e	0.00	-	0.00										-	0.0
F1	mass GHG	0.17	-	7.14										7.3	-
1.1	CO ₂ e	0.17	-	178.52										-	178.7
M1	mass GHG	0.26	-	10.74										11.0	-
111	CO ₂ e	0.26	-	268.38										-	268.6
	mass GHG													0.0	-
	CO ₂ e													-	0.0
Te4-16	mass GHG	18,034.8	0.03	157.66										18,192	-
Total ⁶	CO ₂ e	18,034.8	10.1	3,941.5										-	21,986.4

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

⁶ Total Emission Rates (tpy) = worst case emissions from three compressor engines (3 x Waukesha 7042GL RICE)

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **<u>Process</u>** <u>Summary</u> shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Application Summary

The Harvest Four Corners, LLC (Harvest) Buena Vista Compressor Station (Buena Vista) currently operates under construction permit 6362-R2, issued on October 31, 2018; and Title V operating permit P275, dated June 19, 2018, as revised through P275-M1 (for facility ownership change). This application for a significant permit revision is submitted under Section 20.2.72.219.D(1) of the New Mexico Administrative Code (NMAC).

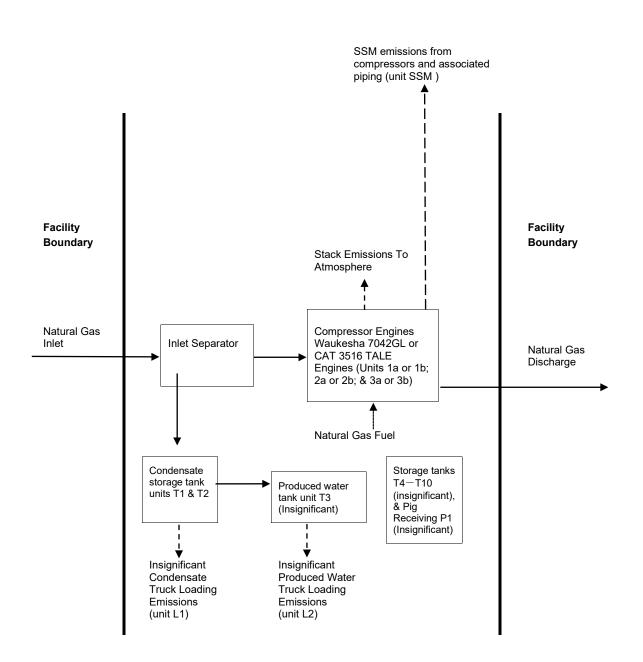
The Buena Vista facility compresses pipeline quality natural gas for transport through natural gas pipelines. The permitted equipment at the facility currently includes 3 Waukesha 7042GL compressor engines (Units 1a, 2a and 3a) or three Waukesha 5790GL compressor engines (Units 1b, 2b and 3b) and two condensate storage tanks. In addition to the regulated equipment, the facility includes exempt/insignificant organic liquid storage tanks and fugitive emissions. The applicable regulation is 20.2.72 New Mexico Administrative Code (NMAC). The lowest level regulatory citation is 20.2.72.219.D(1) NMAC.

The following permit changes are requested:

• Modify the option to install and operate either a 1,347 hp Waukesha 7042GL or a 1,215 hp Waukesha 5790GL engine in each of the three slots currently approved for Waukesha 7042GL engines. Instead of the option of installing Waukesha 7042GL engines or Waukesha 5790 GL engines, a new option of installing Waukesha 7042GL engines or Caterpillar 3516 TALE engines is being pursued.

Process Description

Buena Vista is a production gathering field compressor station that pressurizes natural gas for transport through natural gas pipelines. The facility is authorized to operate continuously.

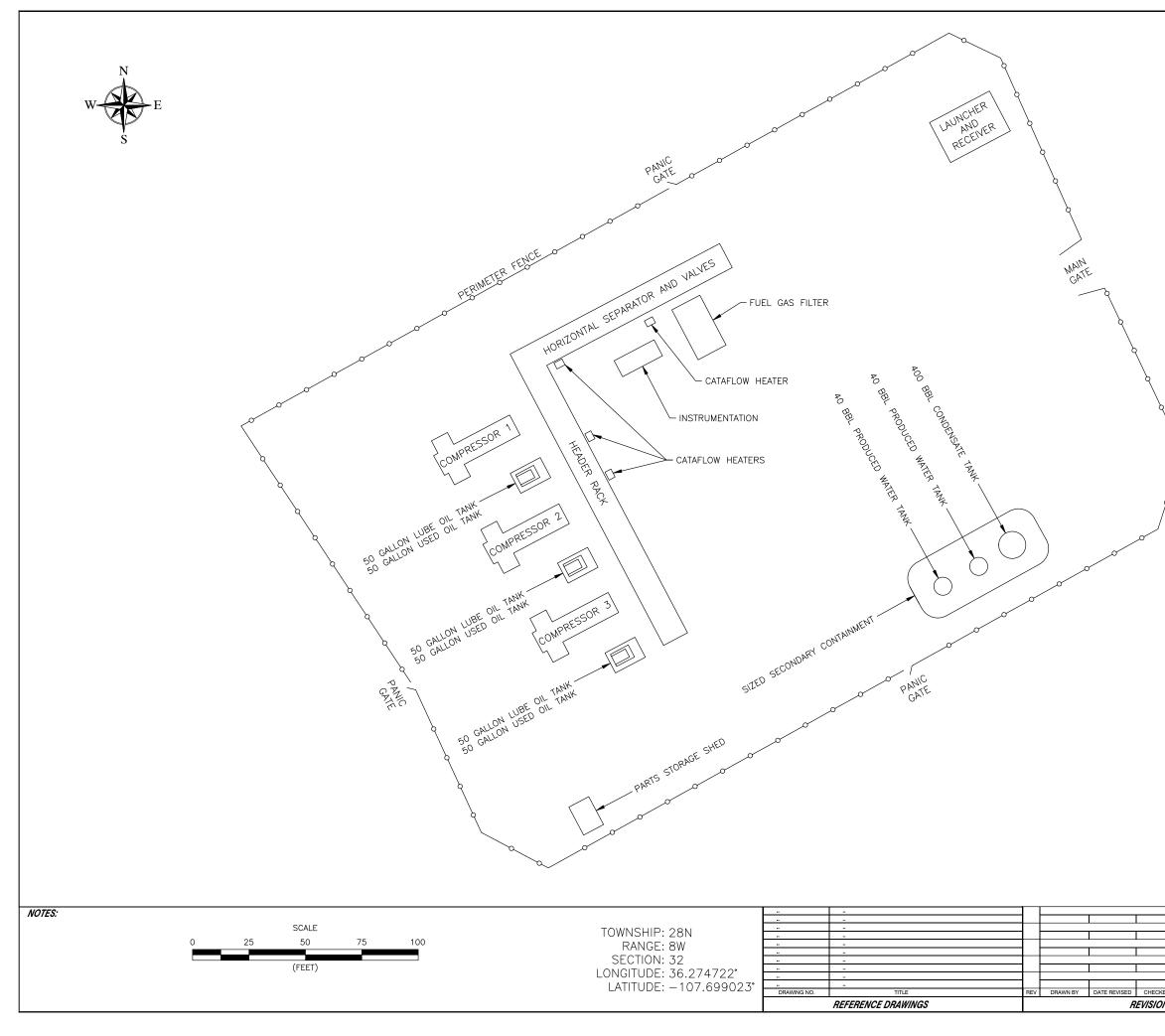

Startup, Shutdown and Maintenance Emissions (SSM)

Except for facility compressor and piping blowdown events identified in Tables 2-E and 2-F in application Section 2, there are no SSM emissions in excess of those identified for steady-state operation. Discussions justifying this conclusion are provided in Section 6. The only SSM emissions are of volatile organic compounds (VOC).

Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.


This Page Intentionally Left Blank

Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is provided in this section. Please see the following page.

			HAMI	HARVEST MIDSTREAM						
				BUENA VISTA COMPRESSOR STATION BASIC PLOT PLAN						
			SAN JUAN	l			NEW	MEXICO		
			DRAWN BY	T. GOOSSEN	SCALE: NONE	A.F.E.:				
		0	CHECKED BY	M.S.						
CKED BY	PROJECT ENG.	APPROVED BY	PROJECT ENG.	M.S.	BNIV	-P11-00	11			
	PHOJECT ENG.	APPHOVED BY	APPROVED BY			-1 11-00				
ONS			DATE ISSUED	10/7/2022				0		

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; **and**
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Engines

NO_x, CO, and VOC emissions from the engines were calculated from manufacturer's data. The SO₂ and particulate emissions were calculated using AP-42 emission factors from Table 3.2-2. HAP emissions were calculated using GRI-HAPCalc 3.0. All emissions were calculated assuming each engine operates at full site capacity for 8,760 hours per year.

The engines startup with no load and a rich fuel mixture. As a result, emissions are minimized. Because the engines take only minutes to reach operating temperature, emissions during startup are not expected to exceed the steady-state allowable limits. Similarly, emissions during shutdown do not exceed the steadystate allowable limits, because fuel and air flow cease within seconds of shutdown. Emissions due to scheduled maintenance are negligible as the engines are not in operation during maintenance.

SSM Emissions

SSM blowdown emissions from the compressors and piping associated with the facility occur when high pressure gas is used to purge air from the system prior to startup. Also, after shutdowns, high pressure gas is released to atmosphere as a safety precaution.

VOC and HAP emissions from blowdowns of the compressors and piping associated with the station were calculated from the quantity of gas vented during each event, the composition of the gas, and the number of events. The quantity of gas vented during each event was determined by Harvest engineering. The composition of the gas was determined from a recent extended gas analysis. For each unit, the annual number of blowdown events were estimated based on historical operations. A safety factor was incorporated because emissions from each blowdown event are dependent on the composition of the gas in the pipeline and because the number of blowdowns in a year may vary. Use of the safety factor is also designed to ensure an adequate emissions limit, which includes emissions from other miscellaneous startup, shutdown and maintenance activities.

The SSM emissions identified in this application are routine or predictable startup/shutdown and scheduled maintenance, and do not include malfunctions or upsets.

No modifications are being made to the SSM emissions. Permitted VOC emissions are carried forward and not revised.

Storage Tanks

Emissions from the condensate storage tanks were calculated using TANKS 4.0.9d for working-breathing losses and VMG Symmetry for flash emissions with the currently permitted (post-flash) condensate throughput of 9,002 barrels per year. Note that the Symmetry model run also includes flash gas emissions from the slug receiver inlet separator.

The produced water tank emissions of VOC and HAP were calculated using emission factors from the Colorado Department of Public Health and Environment (CDPHE) and Texas Commission on Environmental Quality (TCEQ), and the maximum produced water throughput. As the VOC emission rate from the produced water storage tank is less than 0.5 tpy, the produced water storage tank is an NSR exempt source in accordance with 20.2.72.202.B(5) NMAC, and an insignificant source under the Title V Insignificant Activity list, Item #1.

For the remaining tanks, the following assumptions were made:

- Residual oil #6 was used as an estimate for lubrication oil. As the vapor pressure of residual oil #6 is less than 0.2 psia, the tanks containing lubrication oil are NSR exempt sources under 20.2.72.202.B(2) NMAC, and insignificant sources under Title V Insignificant Activity list, Item #5; and
- The wastewater storage tank liquid composition is assumed to be 99% water and 1% residual oil. As the vapor pressure of residual oil is less than 0.2 psia, the wastewater storage tank is an exempt source under 20.2.72.202.B(2) NMAC, and an insignificant source under Title V Insignificant Activity list, Item #5.

Due to the nature of operations, startup and shutdown emissions from the storage tanks are assumed to be accounted for in the calculations discussed above. Emissions due to maintenance are negligible as the units are not in operation during maintenance.

No changes are being made to the storage tanks or their operation. Emissions from the tanks are carried forward and not revised.

Truck Loading – Condensate

VOC emissions from truck loading of condensate were calculated using the AP-42 emission factor from Section 5.2 and data provided by Harvest. HAP emissions were calculated from the composition of the condensate as determined from TANKS 4.0 results.

Due to the nature of the source, it is estimated that SSM emissions from truck loading are accounted for in the calculations; therefore, there are no SSM emissions associated with the truck loading. No SSM maintenance activities are performed during the truck loading.

Based on the potential to emit, condensate truck loading is an exempt source in accordance with 20.2.72.202.B(5) NMAC (VOC emissions are less than 0.5 tons per year). No modifications are being made to the storage tanks or their operation. Permitted criteria pollutant and HAP emissions are carried forward and not revised.

Truck Loading - Produced Water

The VOC emissions from truck loading of produced water were calculated using the AP-42 emissions factor identified in Section 5.2-1. The data used to calculate the emission factor was obtained assuming the liquid was pure water.

Due to the nature of the source, it is estimated that SSM emissions from truck loading are accounted for in the calculations; therefore, there are no SSM emissions associated with truck loading. No SSM maintenance activities are performed during the truck loading.

Based on the potential to emit, produced water truck loading is an exempt source in accordance with 20.2.72.202.B(5) NMAC (VOC emissions are less than 0.5 tons per year). No modifications are being made to truck loading operations. Permitted criteria pollutant and HAP emissions are carried forward and not revised.

Equipment Leaks - Fugitive Emissions

Fugitive VOC and HAP emissions from equipment leaks were calculated using emission factors from Table 2.4 of the 1995 Protocol for Equipment Leak Emission Estimates published by the Environmental Protection Agency (EPA) and the gas stream composition obtained from a recent extended gas analysis. Emissions were calculated assuming the equipment operates 8,760 hours per year.

Due to the nature of the source, it is estimated that SSM emissions from the equipment are accounted for in the calculations. No modifications are being made to the equipment leak fugitives. Permitted criteria pollutant and HAP emissions are carried forward and not revised.

Malfunctions

Malfunction emissions were set at 10.0 tons of VOC per year to account for emissions that may occur during upsets and malfunctions (including, but not limited to, unscheduled blowdowns and relief valve releases). Based on the gas release rate associated with the set annual VOC emission rate, HAP emissions are calculated using a recent extended gas analysis. Note the malfunction emissions include the venting of gas only, and no combustion emissions.

No changes to currently permitted malfunction emissions are proposed. Permitted VOC emissions are carried forward and not revised.

GRI-HAPCalc[®] 3.0 Engines Report

	· · · ·	SSOR STATION STA COMPRES IDARD	SSOR STATIC	nsignificant and are treated as zero.	
	Engine Unit				
ι	Jnit Name: CAT 3516				
	Hours of Operation:	8,760	Yearly		
	Rate Power:	1,219	hp		
	Fuel Type:	FIELD GAS			
	Engine Type:	4-Stroke, Lear	n Burn		
	Emission Factor Set:	FIELD > EPA	> LITERATUF	RE	
	Additional EF Set:	-NONE-			
		Calc	ulated Emis	s <u>sions</u> (ton/yr)	
	Chemical Name	Em	issions	Emission Factor	Emission Factor Set
	HAPs				
	Formaldehyde		1.9793	0.16830000 g/bhp-hr	GRI Literature
	Benzene		0.0612	0.00520000 g/bhp-hr	GRI Literature
	Toluene		0.0247	0.00210000 g/bhp-hr	GRI Literature
	Xylenes(m,p,o)		0.0165	0.00140000 g/bhp-hr	GRI Literature
	Total		2.0817		

Compressor Blowdown Emissions Calculations

Unit Number: SSM

Description: Compressor & Piping Associated With Station

Throughput

3 # of units	Number of units
145 events/yr/unit	Blowdowns per year per unit
6,442 scf/event	Gas loss per blowdown
2,792,607 scf/yr	Annual gas loss

Harvest Four Corners, LLC Harvest Four Corners, LLC Harvest Four Corners, LLC # of units x events/yr/unit x scf/ever

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutants	Factors,	Rates,
	lb/scf	tpy
VOC	2.548E-02	35.58
Benzene	1.853E-05	2.59E-02
Ethylbenzene	8.395E-07	1.17E-03
n-Hexane	3.239E-04	4.52E-01
2,2,4-Trimethlypentane (Isooctane)	5.811E-06	8.11E-03
Toluene	1.627E-05	2.27E-02
Xylene	4.198E-06	5.86E-03

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
	%	lb/lb-mole	lb/scf
Carbon dioxide	0.5742	44.01	6.661E-04
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	4.0195	28.01	2.967E-03
Methane	64.7125	16.04	2.736E-02
Ethane	12.0347	30.07	9.538E-03
Propane	11.3402	44.09	1.318E-02
Isobutane	1.4244	58.12	2.182E-03
n-Butane	3.7038	58.12	5.674E-03
Isopentane	0.7949	72.15	1.512E-03
n-Pentane	0.7318	72.15	1.392E-03
Cyclopentane	0.0220	70.14	4.067E-05
n-Hexane	0.1426	86.17	3.239E-04
Cyclohexane	0.0316	84.16	7.010E-05
Other hexanes	0.3246	86.18	7.373E-04
Heptanes	0.0649	100.20	1.714E-04
Methylcyclohexane	0.0409	98.19	1.059E-04
2,2,4-Trimethlypentane (Isooctane)	0.0022	100.21	5.811E-06
Benzene	0.0090	78.11	1.853E-05
Toluene	0.0067	92.14	1.627E-05
Ethylbenzene	0.0003	106.17	8.395E-07
Xylenes	0.0015	106.17	4.198E-06
C8+ Heavies	0.0180	110.00	5.219E-05
Total	100.0003		
Total VOC			2.548E-02

Gas stream composition obtained from the Buena Vista extended gas analysis dated Nov. 29, 2021. Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.4 scf/lb-mole

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

CO₂, CH₄, and N₂O exhaust emissions were calculated using emission factors from 40 Code of Federal Regulations (CFR), Part C, Tables C-1 & C-2 and the combustion source higher heating value (HHV) design heat rates.

The SSM and malfunction CO_2 and CH_4 emissions from blowdown events were calculated from the annual blowdown volumes and gas composition.

The flash emissions of CO_2 and CH_4 from the condensate storage tanks were calculated from the throughput and emissions stream composition data in the Symmetry output file.

There are no GHG emissions associated with the truck loading operations.

CO₂ and CH₄ from equipment leaks (fugitive emissions) were calculated using the TOC emission factors and the facility gas stream composition.

The reciprocating compressor CO₂ and CH₄ emissions were calculated using a combination of equations W-26 & W-36 (from Subpart W).

CH₄ from gas-driven pneumatic device emissions and non-routine emissions were calculated from the facility CH₄ gas stream composition using the emission factors and baseline CH₄ content from the API Compendium, Section 5.6.1, Table 5-15. CO₂ gas-driven pneumatic device emissions and non-routine emissions were calculated from the CH₄ emissions and facility gas stream CO₂ composition.

			Faci	lity Total Emiss	sions	
Sources		CO2,	N2O,	CH4,	GHG,	CO2e,
		tpy	tpy	tpy	tpy	tpy
Engine & Turbine Exhaust		18,031.36	3.40E-02	0.34	18,031.7	18049.98
SSM Blowdowns		0.93		38.20	39.13	955.96
Reciprocating Compressor Venting*		1.02		42.08	43.10	1052.91
Pigging*		0.01		0.52	0.54	13.10
Equipment Leaks		0.17		7.14	7.31	178.69
Natural Gas Pneumatic Device Venting*		0.91		37.34	38.25	934.44
Natural Gas Driven Pneumatic Pump Venting*		0.04		1.59	1.63	39.85
Malfunctions		0.26		10.74	11.00	268.65
Separators & Storage Tanks (Flash Emissions)		0.04		19.71	19.75	492.79
-	Total	18,034.75	3.40E-02	157.66	18,192.45	21,986.37

* GHG emissions are aggregated with SSM in application Table 2P reporting.

Engine & Turbine Exhaust Emissions

Unit		E	mission Factor	ſS	Emission Rates			
Numbers	Description	CO2,	N2O,	CH4,	CO2,	N2O,	CH4,	
		kg/MMBtu	kg/MMBtu	kg/MMBtu	tpy	tpy	tpy	
1a (1b)	Wauk 7042GL (worst-case)	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	
2a (2b)	Wauk 7042GL (worst-case)	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	
3a (3b)	Wauk 7042GL (worst-case)	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	
	Total				18,031.36	3.40E-02	3.40E-01	

The emissions factors are taken from 40 CFR 98, Subpart C, Tables C-1 & C-2

Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton

				LHV	H	HV
Unit			Operating	Design	Design	Fuel
Numbers	Description	Fuel Types	Times,	Heat Rates,	Heat Rates,	Usages,
			hr/yr	MMBtu/hr	MMBtu/hr	MMBtu/yr
1a (1b)	Wauk 7042GL (worst-case)	Nat. Gas	8,760	10.58	11.76	102,979
2a (2b)	Wauk 7042GL (worst-case)	Nat. Gas	8,760	10.58	11.76	102,979
3a (3b)	Wauk 7042GL (worst-case)	Nat. Gas	8,760	10.58	11.76	102,979

The fuel types and operating times are provided by Harvest for the RICE with the highest design heat rate (i.e., units 1b, 2b, and 3b). The LHV design heat rates are taken from manufacturers data

HHV Design Heat Rates (MMBtu/hr) = LHV Design Heat Rates (MMBtu/hr) / 0.9 LHV/HHV HHV Fuel Usages (MMBtu/yr) = HHV Design Heat Rates (MMBtu/hr) x hr/yr

SSM Blowdown Emissions

Unit		Total	CO2 Emission	CH4 Emission	Emission Rates		6
Numbers	Description	Gas Losses,	Factors,	Factors,	CO2,	N2O,	CH4,
		scf/yr	lb/scf	lb/scf	tpy	tpy	tpy
SSM	SSM Blowdowns	2,792,607	0.0007	0.0274	0.93	-	38.20

The annual blowdown volumes are calculated from data provided by Harvest

The CO2 and CH4 emission factors are calculated from the facility extended gas analysis Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Reciprocating Compressor Venting Emissions

Unit		Emission Rates				
Numbers	Description	CO2,	N2O,	CH4,		
		tpy	tpy	tpy		
NA	Blowdown Valve Leakage	0.10	-	4.02		
NA	Rod Packing Emissions	0.93	-	38.06		
NA	Isolation Valve Leakage	0.00	-	0.00		
	Total	1.02	-	42.08		

Operating or standby mode - includes blowdown valve leakage through blowdown vent stack

Operating mode - includes rod packing emissions

Non-operating depressurized mode - includes isolation valve leakage through open blowdown vents (without blind flanges) Rod packing gas emissions assume 4 cylinders per compressor

A combination of equations W-26 & W-36 (Subpart W) is used to calculate reciprocating compressor emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rates (tpy) = # x scf/hr x hr/yr x (CO2 Mole Percent (%) / 100) x CO2 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rates (tpy) = # x scf/hr x hr/yr x (CH4 Mole Percent (%) / 100) x CH4 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

Unit		Number of	Gas	Operating	CO2 Mole	CH4 Mole	CO2	CH4
Numbers	Description	Compressors	Emissions,	Times,	Percents,	Percents,	Density,	Density,
		#	scf/hr	hr/yr	%	%	kg/scf	kg/scf
NA	Blowdown Valve Leakage	1	33.5	8,760	0.57	64.71	0.0526	0.0192
NA	Rod Packing Emissions	1	317.2	8,760	0.57	64.71	0.0526	0.0192
NA	Isolation Valve Leakage	1	10.5	0	0.57	64.71	0.0526	0.0192

The number of compressors is provided by Harvest

Blowdown valve leakage (33.5 scf/hr) and rod packing emissions occur in operating mode

Blowdown valve leakage (10.5 scf/hr) occurs in standby pressurized mode

Emission factors are the three year rolling average (2012-2014) of all measurements in the [now] Harvest Four Corners, LLC compressor fleet located at natural gas processing plants

The operating times (the average operating times for all station compressors combined) are provided by Harvest

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The CO2 & CH4 densities (kg/scf) are taken from Subpart W, Paragraph 98.233(v)

Pig Launcher & Receiver Emissions

Unit		Total	CO2 Emission	CH4 Emission		Emission Rates		
Numbers	Description	Gas Losses,	Factors,	Factors,	CO2,	N2O,	CH4,	
		scf/yr	lb/scf	lb/scf	tpy	tpy	tpy	
P1	Pig Receiver	38,280	0.0007	0.0274	0.01	-	0.52	
	Total				0.01	-	0.52	

The annual blowdown volumes are calculated from data provided by Harvest

The CO2 and CH4 emission factors are calculated from the facility extended gas analysis

Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Equipment Leaks Emissions

Unit				Emission Rates	3
Numbers	Description		CO2,	N2O,	CH4,
			tpy	tpy	tpy
NA	Valves		0.1	-	5.5
NA	Connectors		0.0	-	0.7
NA	Open-Ended Lines		0.0	-	0.4
NA	Pressure Relief Valves		0.0	-	0.6
		Total	0.2	-	7.1

A combination of equations W-31 & W-36 (Subpart W) is used to calculate uncombusted CO2 & CH4 emissions As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rate (tpy) = # x scf/hr/component x (CO2 Content (mole %) / 100) x hr/yr x CO2 Density (kg/scf) x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rate (tpy) = # x scf/hr/component x (CH4 Content (mole %) / 100) x hr/yr x CH4 Density (kg/scf) x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

			Emission					
Unit		Number of	Factors,	CO2	CH4	Operating	CO2	CH4
Numbers	Description	Components,	scf/hr	Contents,	Contents,	Times,	Density,	Density,
		#	/component	mole %	mole %	hr/yr	kg/scf	kg/scf
NA	Valves	378	0.121	0.57	64.71	8,760	0.0526	0.0192
NA	Connectors	339	0.017	0.57	64.71	8,760	0.0526	0.0192
NA	Open-Ended Lines	103	0.031	0.57	64.71	8,760	0.0526	0.0192
NA	Pressure Relief Valves	25	0.193	0.57	64.71	8,760	0.0526	0.0192

The number of sources are calculated based on the number of compressors and dehydrators at the station (see criteria pollutant and HAP equipment leaks calculations)

The emission factors are taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The operating times are provided by Harvest (default is the entire year)

The CO2 & CH4 densities are taken from Subpart W, Paragraph 98.233(v)

Natural Gas Pneumatic Device Venting Emissions

Unit		Number	Emission	Operating		Emission Rate	es
Numbers	Description	of Devices,	Factors,	Times,	CO2,	N2O,	CH4,
		#	scf/hr/device	hr/yr	tpy	tpy	tpy
NA	Continuous High Bleed Pneumatic Devices	0	37.3	8,760	0.00	-	0.00
NA	Intermittent Bleed Pneumatic Devices	23	13.5	8,760	0.91	-	37.17
NA	Continuous Low Bleed Pneumatic Devices	1	1.39	8,760	0.00	-	0.17
	Total				0.91	-	37.34

The number of devices and operating times are provided by Harvest

The emission factors are taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

Equation W-1 (Subpart W) is used to calculate CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions in addition to CO2e emissions, it is necessary to divide by the global warming potentials CO2 Emission Rates (tpy) = # x scf/hr/device x (CO2 Content (mole %) / 100) x CO2 Conversion Factors (tonne CO2e/scf) x hr/yr x (2,204.6 lb/tonne / 2,000 lb/ton) / CO2 Global Warming Potentials (tonne CO2e/tonne CO2)

x (2,204.6 lb/tonne / 2,000 lb/ton) / CO2 Global Warming Potentials (tonne CO2e/tonne CO2) CH4 Emission Rates (tpy) = # x scf/hr/device x (CH4 Contents (mole %) / 100) x CH4 Conversion Factors (tonne CO2e/scf) x hr/yr

x (2,204.6 lb/tonne / 2,000 lb/ton) / CH4 Global Warming Potentials (tonne CO2e/tonne CH4)

				CO2	CH4	CO2 Global	CH4 Global
				Conversion	Conversion	Warming	Warming
Unit		CO2	CH4	Factors,	Factors,	Potentials,	Potentials,
Numbers	Description	Contents,	Contents,	tonne CO2e	tonne CO2e	tonne CO2e	tonne CO2e
		mole %	mole %	/scf	/scf	/tonne CO2	/tonne CH4
NA	Continuous High Bleed Pneumatic Devices	0.57	64.71	5.262E-05	4.790E-04	1	25
NA	Continuous Low Bleed Pneumatic Devices	0.57	64.71	5.262E-05	4.790E-04	1	25
NA	Intermittent Bleed Pneumatic Devices	0.57	64.71	5.262E-05	4.790E-04	1	25

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The conversion factors are taken from Subpart W, Paragraph 98.233(a)

The global warming potentials are taken from 40 CFR Part 98, Table A-1

Natural Gas Driven Pneumatic Pump Venting Emissions

Emission Rates

Unit		Number	Emission	Operating		Emission Rate	S
Number	Description	of Pumps,	Factor,	Time,	CO2,	N2O,	CH4,
		#	scf/hr/pump	hr/yr	tpy	tpy	tpy
NA	Pneumatic Pump Venting	1	13.3	8.760	0.04	-	1.59

The number of pumps is provided by Harvest

The emission factor is taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The operating time is provided by Harvest (default is the entire year)

Equation W-2 (Subpart W) is used to calculate CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions in addition to CO2e emissions, it is necessary to divide by the global warming potentials CO2 Emission Rate (tpy) = $\# x \operatorname{scf/hr/pump} x$ (CO2 Content (mole %) / 100) x CO2 Conversion Factor (tonne CO2e/scf) x hr/yr

x (2,204.6 lb/tonne / 2,000 lb/ton) / CO2 Global Warming Potentials (tonne CO2e/tonne CO2)

CH4 Emission Rate (tpy) = # x scf/hr/pump x (CH4 Content (mole %) / 100) x CH4 Conversion Factor (tonne CO2e/scf) x hr/yr x (2 204 6 lb/tonne / 2 000 lb/ton) / CH4 Clobal W/arming Potentials (tonne CO2e/tonne CH4)

x (2,204.6 lb/tonne / 2,000 lb/ton) / CH4 Global Warming Potentials (tonne CO2e/tonne CH4)

				CO2	CH4	CO2 Global	CH4 Global
				Conversion	Conversion	Warming	Warming
Unit		CO2	CH4	Factor,	Factor,	Potential,	Potential,
Number	Description	Content,	Content,	tonne CO2e	tonne CO2e	tonne CO2e	tonne CO2e
		mole %	mole %	/scf	/scf	/tonne CO2	/tonne CH4
NA	Pneumatic Pump Venting	0.57	64.71	5.262E-05	4.790E-04	1	25

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The conversion factors are taken from Subpart W, Paragraph 98.233(a)

The operating time is provided by Harvest (the default is the entire year)

The global warming potentials are taken from 40 CFR Part 98, Table A-1

Malfunction Emissions

Unit		Total Component	VOC Component	CO2 Weight %	CH4 Weight %		Emission Rate	es
Number	Description	Weight,	Weight,	of Total,	of Total,	CO2,	N2O,	CH4,
		lb/lb-mole	lb/lb-mole	%	%	tpy	tpy	tpy
M1	Malfunctions	25.05	9.67	1.01	41.44	0.26	-	10.74

The total & VOC component weights and CO2 & CH4 weight % of totals are calculated from the facility extended gas analysis

The VOC emission rate is estimated (see calculations workbook)

CO2 Emission Rate (tpy) = VOC Emission Rate (tpy) x (Total Component Weight (lb/lb-mole) / VOC Component Weight (lb-lb-mole)) x (CO2 Weight % of Total (%) / 100)

CH4 Emission Rate (tpy) = VOC Emission Rate (tpy) x (Total Component Weight (lb/lb-mole) / VOC Component Weight (lb-lb-mole)) x (CH4 Weight % of Total (%) / 100)

Separators & Storage Tanks (Flash Emissions)

Unit		Emission Rates		Operating	g Emission Rates		S
Number	Description	CO2,	CH4,	Time,	CO2,	N2O,	CH4,
		pph	pph	hr/yr	tpy	tpy	tpy
S1	Separator	0.00E+00	1.31	8,760	0.00	-	5.74
T1, T2	Condensate Tanks	1.00E-02	3.19	8,760	4.38E-02	-	13.97
	Total				0.04	-	19.71

Short-term emission rates (pph) are taken from Symmetry output

The operating times are provided by Harvest

Emission Rate (tpy) = Emission Rate (pph) x Operating Time (hr/yr) / 2,000 lb/ton

Gas Stream Composition

				Weight	
	Mole	Molecular	Component	Percent	Emission
Components	Percents,	Weights,	Weights,	of Total,	Factors,
	%	lb/lb-mole	lb/lb-mole	%	lb/scf
Carbon Dioxide	0.5742	44.01	0.25	1.0090	0.0007
Hydrogen Sulfide	0.0000	34.07	0.00	0.0000	0.0000
Nitrogen	4.0195	28.01	1.13	4.4951	0.0030
Methane	64.7125	16.04	10.38	41.4430	0.0274
Ethane	12.0347	30.07	3.62	14.4487	0.0095
Propane	11.3402	44.09	5.00	19.9627	0.0132
IsoButane	1.4244	58.12	0.83	3.3053	0.0022
Normal Butane	3.7038	58.12	2.15	8.5947	0.0057
IsoPentane	0.7949	72.15	0.57	2.2899	0.0015
Normal Pentane	0.7318	72.15	0.53	2.1081	0.0014
Cyclopentane	0.0220	70.14	0.02	0.0616	0.0000
n-Hexane	0.1426	86.17	0.12	0.4906	0.0003
Cyclohexane	0.0316	84.16	0.03	0.1062	0.0001
Other Hexanes	0.3246	86.18	0.28	1.1169	0.0007
Heptanes	0.0649	100.20	0.07	0.2596	0.0002
Methylcyclohexane	0.0409	98.19	0.04	0.1603	0.0001
2,2,4-Trimethylpentane	0.0022	100.21	0.00	0.0088	0.0000
Benzene	0.0090	78.11	0.01	0.0281	0.0000
Toluene	0.0067	92.14	0.01	0.0246	0.0000
Ethylbenzene	0.0003	106.17	0.00	0.0013	0.0000
Xylenes	0.0015	106.17	0.00	0.0064	0.0000
C8+ heavies	0.0180	110.00	0.02	0.0791	0.0001
Total	100.0003		25.05	100.0000	0.0660
VOC			9.67		0.0255

Gas stream composition obtained from the Buena Vista extended gas analysis dated Nov. 29, 2021. Component Weights (lb/lb-mole) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole) Weight Percent of Total (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole) Emission Factors (lb/scf) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole) / 379.4 scf/lb-mole

Flash Gas Stream Composition

	Component	Component
	Mass	Mass
Component	Emissions,	Emissions,
	lb/hr	tpy
Carbon dioxide	0.0100	0.0438
Nitrogen	0.0000	0.0000
Methane	3.1900	13.9722
Ethane	1.7100	7.4898
Propane	1.6000	7.0080
Isobutane	1.8700	8.1906
n-Butane	4.2800	0.0000
Isopentane	2.1100	0.0000
n-Pentane	1.3900	0.0000
Cyclopentane	0.0700	0.0000
n-Hexane	0.8000	3.5040
Cyclohexane	0.2500	1.0950
n-Heptane	0.3500	1.5330
Methylcyclohexane	0.1400	0.6132
2,2,4-Trimethylpentane	0.0000	0.0000
Benzene	0.0800	0.3504
Toluene	0.0000	0.0000
Ethylbenzene	0.0100	0.0438
o-Xylene	0.0000	0.0000
m-Xylene	0.0100	0.0438
n-Octane	0.0800	0.3504
n-Nonane	0.0200	0.0876
n-Decane	0.0000	0.0000
n-Undecane	0.0000	0.0000
n-Dodecane	0.0000	0.0000
Total (All gas)	17.9700	44.24
Total VOC:	13.0600	22.73
Total Non-VOC:	4.9100	21.51

Flashed gas emission rates based on VMG Symmetry program output (lb/hr). tpy = (lb/hr x 8760 hr/yr) / 2000 lb/ton

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- ☑ If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- \Box If an older version of AP-42 is used, include a complete copy of the section.
- X If an EPA document or other material is referenced, include a complete copy.
- \Box Fuel specifications sheet.
- □ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Engine Exhaust Emissions Calculations

Unit Number:	1b, 2b, 3b
Description:	Caterpillar 3516 TALE
Type:	Four Stroke Lean Burn

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower	Calculations
------------	--------------

7,004 ft above MSL	Elevation	
1,340 hp	Nameplate hp	Mfg. data
1,219 hp	NMAQB Site-rated hp	NMAQB Procedure # 02.002-00 (loss of 3% for every 1,000 ft over 4,000 ft)
1,206 hp	Mfg. Site-rated hp	Caterpillar GERP Data Sheet

Engine Specifications

1,400	rpm	Engine rpm
4,210	cu in	Engine displacement

Fuel Consumption

8,175 Btu/hp-hr	Brake specific fuel consumption	Mfg. data
9.97 MMBtu/hr	Hourly fuel consumption	Btu/hp-hr x NMAQB site-rated hp / 1
900 Btu/scf	Field gas heating value	Nominal heat content
11,075 scf/hr	Hourly fuel consumption	MMBtu/hr x 1,000,000 / Btu/scf
<mark>8,760</mark> hr/yr	Annual operating time	Harvest Four Corners, LLC
87,313 MMBtu/yr	Annual fuel consumption	MMBtu/hr x hr/yr
97.01 MMscf/yr	Annual fuel consumption	scf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

Pollutants	Emission Factors,	Uncontrolled Emission Rates,		
	g/hp-hr	pph	tpy	
NOX	2.00	5.38	23.55	
CO	2.97	7.98	34.97	
VOC	1.03	2.77 12.13		

Emission factors taken from Caterpillar GERP data sheet

Per the manfacturer, VOC = NMNEHC + HCHO.

Uncontrolled Emission Rates (pph) = g/hp-hr x NMAQB Site-rated hp / 453.59 g/lb Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Pollutants	Emission	I Incontrolled E	mission Rates,
Pollularits	Factors,	Uncontrolled E	mission Rales,
	lb/MMBtu	pph	tpy
SO2	5.88E-04	5.86E-03	2.57E-02
PM	9.99E-03	9.95E-02	4.36E-01
PM10	9.99E-03	9.95E-02	4.36E-01
PM2.5	9.99E-03	9.95E-02	4.36E-01

Emission factors taken from AP-42, Table 3.2-2

Particulate factors include both filterable and condensible emissions

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

965 °F	Stack exit temperature	Mfg. data
7469 acfm	Stack flowrate	Mfg. data
1.00 ft	Stack exit diameter	Harvest Four Corners, LLC
0.79 ft^2	Stack exit area	3.1416 x ((ft / 2) ^2)
158.50 fps	Stack exit velocity	acfm / ft^2 / 60 sec/min
22.00 ft	Stack height	Harvest Four Corners, LLC

1,000,000

Mfg. data Mfg. data

G3516

GAS ENGINE SITE SPECIFIC TECHNICAL DATA
Buena Vista

1400

SCAC

130

210

ΤA

2.0

21

JW+OC, AC

LOW EMISSION

ADEM3

ASWC

8

GAS COMPRESSION APPLICATION ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOx EMISSION LEVEL (g/bhp-hr NOx): SET POINT TIMING:

RATING STRATEGY: FUEL SYSTEM

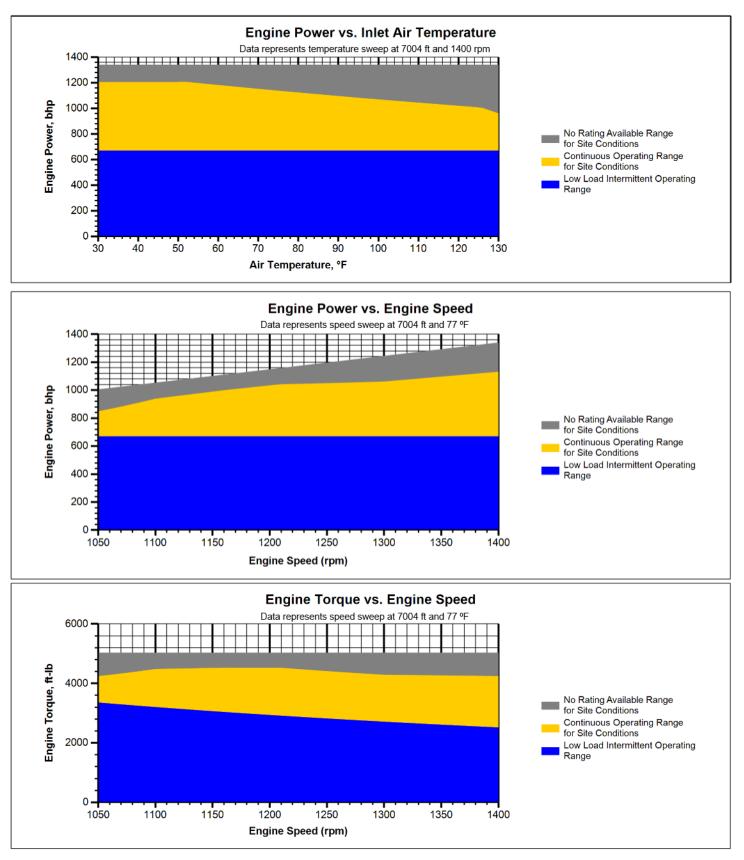
SITE CONDITIONS:

STANDARD HPG IMPCO WITH AIR FUEL RATIO CONTROL

FUEL FUEL PRESSURE RANGE(psig): (See note 1) FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:

Buena Vista 35.0-40.0 37.1 1293 7004 77 1340 bhp@1400rpm

9197


			MAXIMUM RATING		TING AT N	
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(2)	bhp	1206	1131	848	670
INLET AIR TEMPERATURE		°F	52	77	77	77
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	8175	8236	8532	8884
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	8974	9041	9366	9753
AIR FLOW (@inlet air temp, 14.7 psia) (WET)		ft3/min	2484	2447	1851	1491
AIR FLOW (WET)	(4)(5)	lb/hr	11556	10848	8210	6611
FUEL FLOW (60°F, 14.7 psia)		scfm	127	120	93	77
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	62.5	59.2	46.6	38.2
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	°F	965	965	965	967
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)		ft3/min	7469	7014	5317	4295
EXHAUST GAS MASS FLOW (WET)	(8)(5)	lb/hr	12058	11322	8578	6914
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(9)(10)	g/bhp-hr	2.00	2.00	2.00	2.00
co	(9)(10)	g/bhp-hr	2.97	3.01	3.15	3.29
THC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	2.02	2.05	2.14	2.23
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	1.18	1.19	1.25	1.30
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bhp-hr	0.87	0.88	0.92	0.95
HCHO (Formaldehyde)	(9)(10)	g/bhp-hr	0.16	0.16	0.16	0.17
CO2	(9)(10)	g/bhp-hr	571	575	594	618
EXHAUST OXYGEN	(9)(12)	% DRY	7.4	7.4	7.3	7.2
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	44664	42950	35989	31922
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	4959	4761	4014	3543
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	6661	6405	5367	4761
HEAT REJ. TO AFTERCOOLER (AC)	(13)(14)	Btu/min	8759	8759	4686	2362

COOLING SYSTEM SIZING CRITERIA TOTAL JACKET WATER CIRCUIT (JW+OC) 57124 Btu/min (14)TOTAL AFTERCOOLER CIRCUIT (AC) (14)(15) Btu/min A cooling system safety factor of 0% has been added to the cooling system sizing criteria.

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Refer to product O&M manual for details on additional lower load capability. No overload permitted at rating shown.

For notes information consult page three. ***WARNINGS ISSUED FOR THIS RATING CONSULT PAGE 3***

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Buena Vista

Note:

At site conditions of 7004 ft and 77°F inlet air temp., constant torque can be maintained down to 1050 rpm. The minimum speed for loading at these conditions is 1050 rpm.

CATERPILIAR®

G3516

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Buena Vista

NOTES:

1. Fuel pressure range specified is to the engine fuel pressure regulator. Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

3. Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site ambient temperature.

4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.

5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

6. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.

7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ±6 %.

9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5 .

13. Heat rejection values are nominal. Tolerances, based on treated water, are ±10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

WARNING(S):

1. The lower heating value of the fuel is higher than or equal to 1050 Btu/scf and lower than 1400 Btu/scf. The lower heating value of the fuel is higher than the known capabilities of the air fuel ratio control system. To achieve part load NOx emissions, manual adjustment of the air fuel ratio control settings may be required. May require on-site adjustment or tuning of the fuel system and up to two 7E-1569 valve washers per carburetor mixer to lean out part load operating points.

RECOMMENDED ACTION

For additional information please contact your Caterpillar engine dealer.

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Buena Vista

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000	Fuel Makeup:	Buena Vista
Methane	CH4	64.7125	64.7123	Unit of Measure:	English
Ethane	C2H6	12.0347	12.0347		
Propane	C3H8	11.3402	11.3402	Calculated Fuel Properties	
Isobutane	iso-C4H10	1.4244	1.4244	Caterpillar Methane Number:	37.1
Norbutane	nor-C4H10	3.7038	3.7038		
Isopentane	iso-C5H12	0.7949	0.7949	Lower Heating Value (Btu/scf):	1293
Norpentane	nor-C5H12	0.7538	0.7538	Higher Heating Value (Btu/scf):	1420
Hexane	C6H14	0.5078	0.5078	WOBBE Index (Btu/scf):	1391
Heptane	C7H16	0.1128	0.1128		
Nitrogen	N2	4.0195	4.0195	THC: Free Inert Ratio:	20.77
Carbon Dioxide	CO2	0.5742	0.5742	Total % Inerts (% N2, CO2, He):	4.59%
Hydrogen Sulfide	H2S	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Carbon Monoxide	CO	0.0000	0.0000		
Hydrogen	H2	0.0000	0.0000	Compressibility Factor:	0.995
Oxygen	02	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	13.35
Helium	HE	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	15.44
Neopentane	neo-C5H12	0.0000	0.0000	Specific Gravity (Relative to Air):	0.865
Octane	C8H18	0.0217	0.0217	opositio oranty (notativo to hity).	0.000
Nonane	C9H20	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.265
Ethylene	C2H4	0.0000	0.0000	r der opeenie riedt (datio (rt).	1.200
Propylene	C3H6	0.0000	0.0000		
TOTAL (Volume %)		100.0003	100.0000		

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

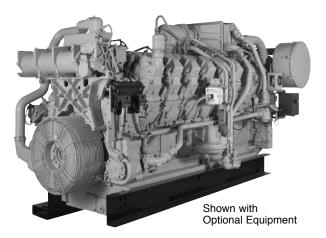
Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

WARNING(S):


1. The lower heating value of the fuel is higher than or equal to 1050 Btu/scf and lower than 1400 Btu/scf. The lower heating value of the fuel is higher than the known capabilities of the air fuel ratio control system. To achieve part load NOx emissions, manual adjustment of the air fuel ratio control settings may be required. May require on-site adjustment or tuning of the fuel system and up to two 7E-1569 valve washers per carburetor mixer to lean out part load operating points.

RECOMMENDED ACTION

For additional information please contact your Caterpillar engine dealer.

G3516 LE Gas Petroleum Engine

858-999 bkW 1150-1340 bhp 1200-1400 rpm

FEATURES

Engine Design

- Proven reliability and durability
- Ability to burn a wide spectrum of gaseous fuels
- Robust diesel strength design prolongs life and lowers owning and operating costs
- Broad operating speed range

Emissions

Meets U.S. EPA Spark Ignited Stationary NSPS Emissions for 2007/8

Lean Burn Engine Technology

Lean-burn engines operate with large amounts of excess air. The excess air absorbs heat during combustion reducing the combustion temperature and pressure, greatly reducing levels of NOx. Lean-burn design also provides longer component life and excellent fuel consumption.

Advanced Digital Engine Management

ADEM A3 control system providing integrated ignition, speed governing, protection, and controls, including detonation-sensitive variable ignition timing. ADEM A3 has improved: user interface, display system, shutdown controls, and system diagnostics.

Ease of Operation

Side covers on block allow for inspection of internal components

Full Range of Attachments

Large variety of factory-installed engine attachments reduces packaging time

Testing

Every engine is full-load tested to ensure proper engine performance.

2.0 g/bhp-hr NOx (NTE)

CAT® ENGINE SPECIFICATIONS

V-16, 4-Stroke-Cycle

Governor and Protection Electronic (ADEM [™] A3) Combustion Low Emission (Lean Burn) Engine Weight, net dry (approx) 8015 kg (17,670 lb) Power Density	Bore170 mm (6.7 in.)Stroke190 mm (7.5 in.)Displacement69 L (4210 cu. in.)AspirationTurbocharged-AftercooledDigital Engine Management
Jacket Water 200.6 L (53 gal) Aftercooler Circuit 17 L (4.5 gal) Lube Oil System (refill) 424 L (112 gal)	Governor and Protection Electronic (ADEM [™] A3) Combustion Low Emission (Lean Burn) Engine Weight, net dry (approx) 8015 kg (17,670 lb) Power Density

Gas Engine Rating Pro

GERP is a PC-based program designed to provide site performance capabilities for Cat[®] natural gas engines for the gas compression industry. GERP provides engine data for your site's altitude, ambient temperature, fuel, engine coolant heat rejection, performance data, installation drawings, spec sheets, and pump curves.

Product Support Offered Through Global Cat Dealer Network

More than 2,200 dealer outlets

Cat factory-trained dealer technicians service every aspect of your petroleum engine

Cat parts and labor warranty

Preventive maintenance agreements available for repairbefore-failure options

 $S{\boldsymbol{\cdot}} O{\boldsymbol{\cdot}} S^{\text{sm}}$ program matches your oil and coolant samples against Caterpillar set standards to determine:

- Internal engine component condition
- Presence of unwanted fluids
- Presence of combustion by-products
- Site-specific oil change interval

Over 80 Years of Engine Manufacturing Experience Over 60 years of natural gas engine production

Ownership of these manufacturing processes enables Caterpillar to produce high quality, dependable products.

- Cast engine blocks, heads, cylinder liners, and flywheel housings
- Machine critical components
- Assemble complete engine

Web Site

For all your petroleum power requirements, visit www.catoilandgas.cat.com.

G3516 LE GAS PETROLEUM ENGINE

858-999 bkW (1150-1340 bhp)

STANDARD EQUIPMENT

Air Inlet System

Air cleaner - intermediate-duty with service indicator

Control System A3 ECU Air-fuel ratio control

Cooling System Thermostats and housing Jacket water pump Aftercooler water pump Aftercooler core for sea-air atmosphere Aftercooler thermostats and housing

Exhaust System Watercooled exhaust manifolds

Flywheels & Flywheel Housings SAE No. 00 flywheel SAE No. 00 flywheel housing SAE standard rotation

Fuel System Gas pressure regulator Natural gas carburetor

OPTIONAL EQUIPMENT

Air Inlet System Remote air inlet adapters Precleaner

Charging System Battery chargers Charging alternators

Cooling System

Aftercooler core Thermostatic valve Temperature switch Connections Expansion and overflow tank Water level switch gauge

Exhaust System

Flexible fittings Elbows Flange Flange and exhaust expanders Rain cap Mufflers

Fuel System

Low pressure gas conversions Propane gas valve and jet kits Fuel filter

Instrumentation

PL1000 communications modules

Ignition System A3 ECU

Instrumentation PL1000 Advisor panel

Lubrication System

Crankcase breather — top mounted Oil cooler Oil filter — RH Oil bypass filter Oil pan — shallow Oil sampling valve Turbo oil accumulator

Mounting System Rails, engine mounting — 254 mm (10 in)

Protection System Electronic shutoff system Gas shutoff valve

General Paint — Cat yellow Vibration damper and guard — dual 484 mm (23 in)

Lubrication System

Oil bypass filter removal and oil pan accessories Sump pump Air prelube pump Manual prelube pump Lubricating oil

Mounting System

Rails Vibration isolators

Power Take-Offs

Front accessory drives Auxiliary drive shafts and pulleys Front stub shaft Pulleys

Protection System

Explosion relief valves, status control box interconnect wiring harness

Starting System

Air starting motor Air pressure regulator Air silencer Electric air start controls Electric starting motors — dual 24-volt Starting aids Battery sets (24-volt dry), cables, and rack

General

Flywheel intertia weight Guard removal Engine barring group Premium 8:1 pistons Premium cylinder heads

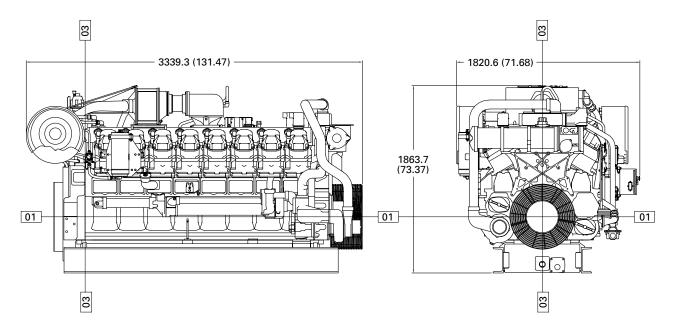
G3516 LE GAS PETROLEUM ENGINE

858-999 bkW (1150-1340 bhp)

TECHNICAL DATA

G3516 LE Gas Petroleum Engine

Fuel System		2 g NOx NTE Rating DM8618-01	2 g NOx NTE Rating DM8620-01
Engine Power @ 100% Load @ 75% Load	bkW (bhp) bkW (bhp)	999 (1340) 749 (1004)	858 (1150) 643 (862)
Engine Speed Max Altitude @ Rated Torque	rpm	1400	1200
and 38°C (100°F) Speed Turndown @ Max Altitude,	m (ft)	304.8 (1000)	1219.2 (4000)
Rated Torque, and 38°C (100°F)	%	25	9.2
SCAC Temperature	°C (°F)	54 (130)	54 (130)
Emissions* NOx CO CO ₂ VOC**	g/bkW-hr (g/bhp-hr) g/bkW-hr (g/bhp-hr) g/bkW-hr (g/bhp-hr) g/bkW-hr (g/bhp-hr)	2.68 (2) 2.49 (1.86) 632 (471) 0.35 (0.26)	2.68 (2) 2.35 (1.75) 624 (466) 0.4 (0.3)
Fuel Consumption*** @ 100% Load @ 75% Load	MJ/bkW-hr (Btu/bhp-hr) MJ/bkW-hr (Btu/bhp-hr)	10.48 (7405) 10.79 (7628)	10.36 (7324) 10.76 (7605)
Heat Balance Heat Rejection to Jacket Water @ 100% Load @ 75% Load	bkW (Btu/mn) bkW (Btu/mn)	741 (42,123) 616.7 (35,075)	639 (36,343) 554 (31,480)
Heat Rejection to Aftercooler @ 100% Load @ 75% Load	bkW (Btu/mn) bkW (Btu/mn)	167.8 (9546) 108.6 (6179)	131.9 (7509) 72.2 (4108)
Heat Rejection to Exhaust @ 100% Load LHV to 25° C (77° F) @ 75% Load	bkW (Btu/mn)	837.8 (47,643)	694.6 (39,536)
LHV to 25° C (77° F)	bkW (Btu/mn)	630.4 (35,848)	524.1 (29,806)
Exhaust System Exhaust Gas Flow Rate @ 100% Load	m³/min (cfm)	217.0 (7663)	182.9 (6460)
 @ 75% Load Exhaust Stack Temperature @ 100% Load @ 75% Load 	m ³ /min (cfm) °C (°F) °C (°F)	163.8 (5785) 467.22 (873) 467.22 (873)	138.9 (4905) 452.2 (846) 450.5 (843)
Intake System			
Air Inlet Flow Rate @ 100% Load @ 75% Load	m ³ /min (scfm) m ³ /min (scfm)	80.6 (2847) 60.8 (2147)	69.5 (2453) 52.8 (1864)
Gas Pressure	kPag (psig)	241.5-275.8 (35-40)	241.5-275.8 (35-40)


*at 100% load and speed, all values are listed as not to exceed

**Volatile organic compounds as defined in U.S. EPA 40 CFR 60, subpart JJJJ

***ISO 3046/1

858-999 bkW (1150-1340 bhp)

GAS PETROLEUM ENGINE

DIMENSIONS						
Length	mm (in.)	3339.3 (131.47)				
Width	mm (in.)	1820.6 (71.68)				
Height	mm (in.)	1863.7 (73.37)				
Shipping Weight	kg (lb)	8015 (17,670)				

Note: General configuration not to be used for installation. See general dimension drawings for detail (drawing #289-2971).

Dimensions are in mm (inches).

RATING DEFINITIONS AND CONDITIONS

Engine performance is obtained in accordance with SAE J1995, ISO3046/1, BS5514/1, and DIN6271/1 standards.

Transient response data is acquired from an engine/ generator combination at normal operating temperature and in accordance with ISO3046/1 standard ambient conditions. Also in accordance with SAE J1995, BS5514/1, and DIN6271/1 standard reference conditions. **Conditions:** Power for gas engines is based on fuel having an LHV of 33.74 kJ/L (905 Btu/cu ft) at 101 kPa (29.91 in. Hg) and 15° C (59° F). Fuel rate is based on a cubic meter at 100 kPa (29.61 in. Hg) and 15.6° C (60.1° F). Air flow is based on a cubic foot at 100 kPa (29.61 in. Hg) and 25° C (77° F). Exhaust flow is based on a cubic foot at 100 kPa (29.61 in. Hg) and stack temperature.

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication. CAT, CATERPILLAR, their respective logos, ADEM, "Caterpillar Yellow" and the "Power Edge" trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

Performance Numbers: DM8618-01, DM8620-01 LEHW0036-00 (11-09) Supersedes LEHW6046-02 ©2009 Caterpillar All rights reserved.

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^{d}	0.6	А
TOC	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

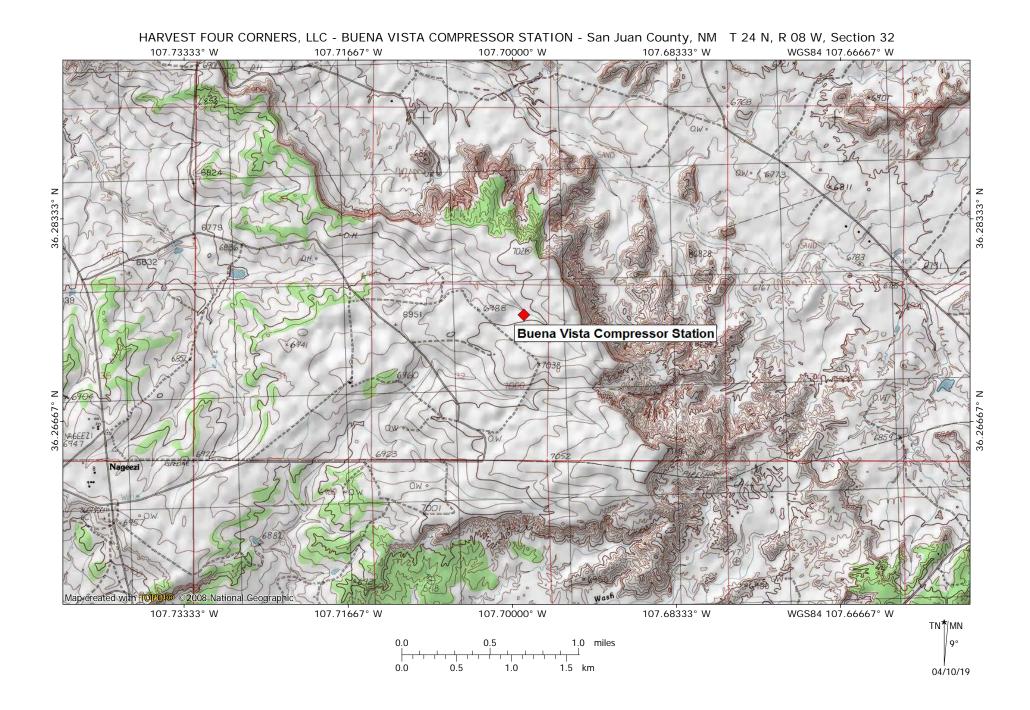
^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by 16. To convert from $lb/10^6$ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

- ^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.
- ^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM_{10} , $PM_{2.5}$ or PM_1 emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO_2 . Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO_2 emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO_2 emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhou	se Gases	
NO _x ^c 90 - 105% Load	4.08 E+00	В
NO _x ^c <90% Load	8.47 E-01	В
CO ^c 90 - 105% Load	3.17 E-01	С
CO ^c <90% Load	5.57 E-01	В
$\mathrm{CO_2}^{\mathrm{d}}$	1.10 E+02	А
SO ₂ ^e	5.88 E-04	А
TOC ^f	1.47 E+00	А
Methane ^g	1.25 E+00	С
VOC ^h	1.18 E-01	С
PM10 (filterable) ⁱ	7.71 E-05	D
PM2.5 (filterable) ⁱ	7.71 E-05	D
PM Condensable ^j	9.91 E-03	D
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ^k	<4.00 E-05	Е
1,1,2-Trichloroethane ^k	<3.18 E-05	Е
1,1-Dichloroethane	<2.36 E-05	Е
1,2,3-Trimethylbenzene	2.30 E-05	D
1,2,4-Trimethylbenzene	1.43 E-05	С
1,2-Dichloroethane	<2.36 E-05	Е
1,2-Dichloropropane	<2.69 E-05	Е
1,3,5-Trimethylbenzene	3.38 E-05	D
1,3-Butadiene ^k	2.67E-04	D
1,3-Dichloropropene ^k	<2.64 E-05	Е
2-Methylnaphthalene ^k	3.32 E-05	С
2,2,4-Trimethylpentane ^k	2.50 E-04	С
Acenaphthene ^k	1.25 E-06	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINESa(SCC 2-02-002-54)


Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A topographic map of the area around the facility is provided in this section. Please see the following page.

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. X A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC).
- 2. X A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.).
- 3. $\mathbf{\overline{x}}$ A copy of the property tax record (20.2.72.203.B NMAC).
- 4. X A sample of the letters sent to the owners of record.
- 5. X A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. X A sample of the public notice posted and a verification of the local postings.
- 7. X A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. X A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. X A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. X A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. X A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

San Juan County is classified as an "A" county, according to the New Mexico Department of Finance and Administration. As such, according to 20.2.72.203.B(1)(a) NMAC, public notice must be provided by certified mail to the owners of record within one hundred (100) feet of the property on which the facility is located.

Table 1 identifies the landowners within 100 feet of the property on which the Buena Vista Compressor Station is located, that received public notice letters of the proposed permit modification. Landowner information was obtained from the County Assessor's Office Geographical Information Systems (GIS) website at:

https://webmaps.sjcounty.net/portal/apps/webappviewer/index.html?id=e970ec2c29e74b37b8440dfe364c 3dbf. Please see the attached maps and property owner listing.

Table 1

Landowner(s) Receiving Public Notice Letters Within 100 Feet of the Property on Which the Buena Vista Compressor Station is Located						
State of New Mexico						

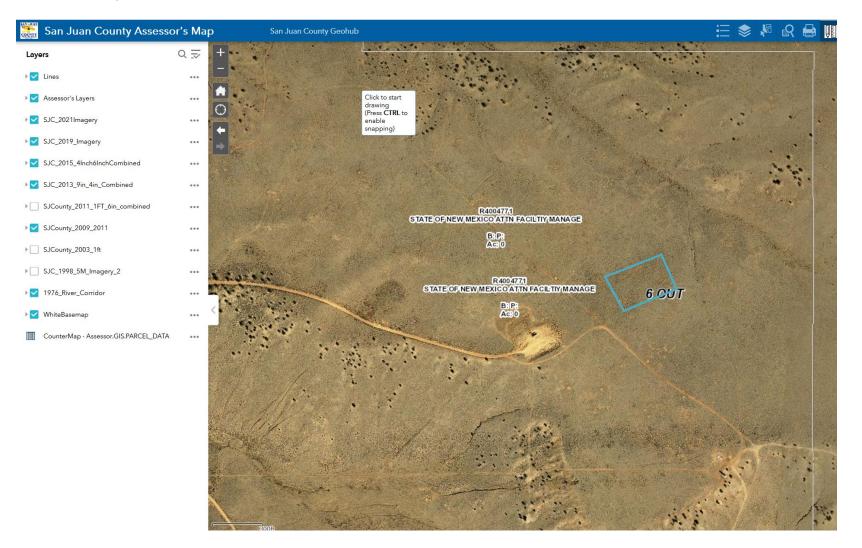
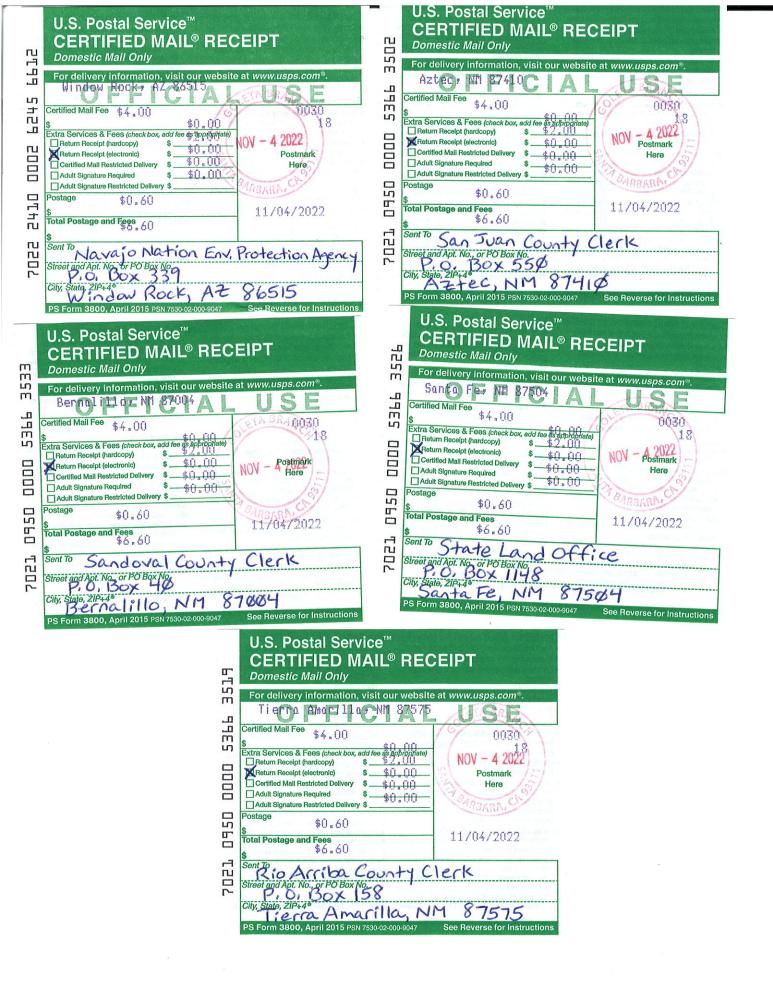

20.2.72.203.B(2) NMAC requires public notice be provided by certified mail to all municipalities and counties in which the facility is located, and to municipalities, counties and Indian Tribes within a 10 mile radius of the property on which the facility is located.

Table 2 identifies the counties, municipalities and tribes located within ten miles of the Buena Vista Compressor Station that received public notice letters.

Table 2					
Municipalities, Counties and Tribes Within 10	Viles of the				
Buena Vista Compressor Station Receiving Pu	blic Notice Letters				
Municipalities	Addressed to				
None					
Counties	Addressed to				
San Juan County	County Clerk				
Rio Arriba County	County Clerk				
Sandoval County	County Clerk				
Tribes	Addressed to				
Navajo Nation – Air Quality Program	Program Supervisor				

Landscape aerial of fenceline/landowners (close in

Buena Vista Compressor Station location in San Juan County, T-24N, R-08W, Section 32. Public notice is provided to parcel owners within 100 feet of the facility fenceline.


landscape aerial of location - zoomed out

Buena Vista Compressor Station location in San Juan County, T-24N, R-08W, Section 32.

32-8 #2 CDP - Neighboring Parcels within 100 feet

t ∍ls - No	Labels (Quarter Sections	Quarter Sections	RegionalHighway	s-US Lakes	Rivers Aztec City Li		Bloom	nfield City Limits	Farmington City L	imits Kirtland_To	ownLimits	ts Aztec C
Option	ns 🔻 Filt	ter by map extent	Q Zoom to ⊠C	lear selection C	Refresh								
OBJE	CTID 🔺	PARCELNO	ShapeArea	Shape	OBJECTID	ACCOUN	ITNO PARCELN	IB	NAME1	NAME2	ADDRESS	CITYSTA	TEZIP
1474		2088188888888	49,038,661.44		43,579	R400477	1 2088188	888888	STATE OF NEW MEXICO ATTN FACILTIY MANAGE		PO BOX 6850 SANTA FE, NM 87502		
1474		2088188888888	49,038,661.44		43,654	R400477	1 2088188	888888	STATE OF NEW MEXICO ATTN FACILTIY MANAGE		PO BOX 6850	SANTA F 87502	E, NM

1111 Travis Street Houston, TX 77002 Phone: 713/209-2400 Fax: 713/209-2478 harvestmidstream.com

November 4, 2022

CERTIFIED MAIL 7021 0950 0000 5366 3526 RETURN RECEIPT REQUESTED

State Land Office P.O. Box 1148 Santa Fe, NM 87504

Dear Madam/Sir,

According to New Mexico Environment Department (NMED) air quality regulations, Harvest Four Corners, LLC must announce its intent to submit an application to revise the air quality permit for its Buena Vista Compressor Station. The expected date of application submittal to the Air Quality Bureau is during the week of November 14, 2022.

The exact location of the facility, known as the Buena Vista Compressor Station, is latitude 36 deg, 16 min, 29 sec and longitude -107 deg, 41 min, 56 sec, approximately 2.5 miles east of the intersection of Highway 550 and Indian Service Route 459, near Nageezi in San Juan County.

The proposed modification is to change the allowed compressor engine configuration from three Waukesha 7042GL or three Waukesha 5790GL natural gas-fired compressor engines to three Waukesha 7042GL compressor engines or three Caterpillar G3516LE compressor engines.

The station's estimated maximum quantities of any regulated air contaminants will be as follows in pounds per hour and tons per year and may change slightly during the course of the Department's review:

	Pounds Per Hour	Tons Per Year
Nitrogen Oxides (NO _X)	16.1	70.6
Carbon Monoxide (CO)	24.0	104.9
Volatile Organic Compounds (VOCs)	11.0	237.5
Particulate Matter Less Than 10 Microns (PM ₁₀)	0.3	1.3
Particulate Matter Less Than 2.5 Microns (PM _{2.5})	0.3	1.3
Total Sum of all Hazardous Air Pollutants (HAPs)	6.2	12.1
Green House Gas Emissions as Total CO ₂ e	N/A	21986.4

The standard and maximum operating schedules for the station will be 24 hours per day, 7 days per week, and a maximum of 52 weeks per year.

If you have any comments about the construction or operation of this facility, and want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525

State Land Office November 4, 2022 Page 2

Camino de los Marquez, Suite 1; Santa Fe, New Mexico, 87505-1816; 505-476-4300; 1-800-224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments or questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attencion

Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor de comunicarse con la oficina de Calidad de Aire al teléfono 505-476-5557.

Sincerely,

Walter H. Konhelter for

Monica Smith Environmental Specialist Harvest Four Corners, LLC 1755 Arroyo Drive Bloomfield, NM 87413

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discrimination Coordinator identified above or visit our website at https://www.env.nm.gov/NMED/EJ/index.html to learn how and where to file a complaint of discrimination.

1111 Travis Street Houston, TX 77002 Phone: 713/209-2400 Fax: 713/209-2478 harvestmidstream.com

November 4, 2022

CERTIFIED MAIL 7021 0950 0000 5366 3533 RETURN RECEIPT REQUESTED

Sandoval County Clerk Post Office Box 40 Bernalillo, New Mexico 87004

Dear Madam/Sir,

According to New Mexico Environment Department (NMED) air quality regulations, Harvest Four Corners, LLC must announce its intent to submit an application to revise the air quality permit for its Buena Vista Compressor Station. The expected date of application submittal to the Air Quality Bureau is during the week of November 14, 2022.

The exact location of the facility, known as the Buena Vista Compressor Station, is latitude 36 deg, 16 min, 29 sec and longitude -107 deg, 41 min, 56 sec, approximately 2.5 miles east of the intersection of Highway 550 and Indian Service Route 459, near Nageezi in San Juan County.

The proposed modification is to change the allowed compressor engine configuration from three Waukesha 7042GL or three Waukesha 5790GL natural gas-fired compressor engines to three Waukesha 7042GL compressor engines or three Caterpillar G3516LE compressor engines.

The station's estimated maximum quantities of any regulated air contaminants will be as follows in pounds per hour and tons per year and may change slightly during the course of the Department's review:

	Pounds Per Hour	Tons Per Year
Nitrogen Oxides (NO _X)	16.1	70.6
Carbon Monoxide (CO)	24.0	104.9
Volatile Organic Compounds (VOCs)	11.0	237.5
Particulate Matter Less Than 10 Microns (PM ₁₀)	0.3	1.3
Particulate Matter Less Than 2.5 Microns (PM _{2.5})	0.3	1.3
Total Sum of all Hazardous Air Pollutants (HAPs)	6.2	12.1
Green House Gas Emissions as Total CO ₂ e	N/A	21986.4

The standard and maximum operating schedules for the station will be 24 hours per day, 7 days per week, and a maximum of 52 weeks per year.

If you have any comments about the construction or operation of this facility, and want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525

Sandoval County Clerk November 4, 2022 Page 2

Camino de los Marquez, Suite 1; Santa Fe, New Mexico, 87505-1816; 505-476-4300; 1-800-224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments or questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attencion

Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor de comunicarse con la oficina de Calidad de Aire al teléfono 505-476-5557.

Sincerely,

Walter H. Konhelter for

Monica Smith Environmental Specialist Harvest Four Corners, LLC 1755 Arroyo Drive Bloomfield, NM 87413

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, <u>nd.coordinator@state.nm.us</u>. If you believe that you have been discrimination Coordinator identified above or visit our website at <u>https://www.env.nm.gov/NMED/EJ/index.html</u> to learn how and where to file a complaint of discrimination.

1111 Travis Street Houston, TX 77002 Phone: 713/209-2400 Fax: 713/209-2478 harvestmidstream.com

November 4, 2022

CERTIFIED MAIL 7021 0950 0000 5366 3502 RETURN RECEIPT REQUESTED

San Juan County Clerk Post Office Box 550 Aztec, New Mexico 87410

Dear Madam/Sir,

According to New Mexico Environment Department (NMED) air quality regulations, Harvest Four Corners, LLC must announce its intent to submit an application to revise the air quality permit for its Buena Vista Compressor Station. The expected date of application submittal to the Air Quality Bureau is during the week of November 14, 2022.

The exact location of the facility, known as the Buena Vista Compressor Station, is latitude 36 deg, 16 min, 29 sec and longitude -107 deg, 41 min, 56 sec, approximately 2.5 miles east of the intersection of Highway 550 and Indian Service Route 459, near Nageezi in San Juan County.

The proposed modification is to change the allowed compressor engine configuration from three Waukesha 7042GL or three Waukesha 5790GL natural gas-fired compressor engines to three Waukesha 7042GL compressor engines or three Caterpillar G3516LE compressor engines.

The station's estimated maximum quantities of any regulated air contaminants will be as follows in pounds per hour and tons per year and may change slightly during the course of the Department's review:

	Pounds Per Hour	Tons Per Year
Nitrogen Oxides (NO _X)	16.1	70.6
Carbon Monoxide (CO)	24.0	104.9
Volatile Organic Compounds (VOCs)	11.0	237.5
Particulate Matter Less Than 10 Microns (PM ₁₀)	0.3	1.3
Particulate Matter Less Than 2.5 Microns (PM _{2.5})	0.3	1.3
Total Sum of all Hazardous Air Pollutants (HAPs)	6.2	12.1
Green House Gas Emissions as Total CO ₂ e	N/A	21986.4

The standard and maximum operating schedules for the station will be 24 hours per day, 7 days per week, and a maximum of 52 weeks per year.

If you have any comments about the construction or operation of this facility, and want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525

San Juan County Clerk November 4, 2022 Page 2

Camino de los Marquez, Suite 1; Santa Fe, New Mexico, 87505-1816; 505-476-4300; 1-800-224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments or questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attencion

Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor de comunicarse con la oficina de Calidad de Aire al teléfono 505-476-5557.

Sincerely,

Walter H. Konhelter for

Monica Smith Environmental Specialist Harvest Four Corners, LLC 1755 Arroyo Drive Bloomfield, NM 87413

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at https://www.env.nm.gov/NMED/EJ/index.html to learn how and where to file a complaint of discrimination.

1111 Travis Street Houston, TX 77002 Phone: 713/209-2400 Fax: 713/209-2478 harvestmidstream.com

November 4, 2022

CERTIFIED MAIL 7021 0950 0000 5366 3519 RETURN RECEIPT REQUESTED

Rio Arriba County Clerk Post Office Box 158 Tierra Amarilla, New Mexico 87575

Dear Madam/Sir,

According to New Mexico Environment Department (NMED) air quality regulations, Harvest Four Corners, LLC must announce its intent to submit an application to revise the air quality permit for its Buena Vista Compressor Station. The expected date of application submittal to the Air Quality Bureau is during the week of November 14, 2022.

The exact location of the facility, known as the Buena Vista Compressor Station, is latitude 36 deg, 16 min, 29 sec and longitude -107 deg, 41 min, 56 sec, approximately 2.5 miles east of the intersection of Highway 550 and Indian Service Route 459, near Nageezi in San Juan County.

The proposed modification is to change the allowed compressor engine configuration from three Waukesha 7042GL or three Waukesha 5790GL natural gas-fired compressor engines to three Waukesha 7042GL compressor engines or three Caterpillar G3516LE compressor engines.

The station's estimated maximum quantities of any regulated air contaminants will be as follows in pounds per hour and tons per year and may change slightly during the course of the Department's review:

	Pounds Per Hour	Tons Per Year
Nitrogen Oxides (NO _X)	16.1	70.6
Carbon Monoxide (CO)	24.0	104.9
Volatile Organic Compounds (VOCs)	11.0	237.5
Particulate Matter Less Than 10 Microns (PM ₁₀)	0.3	1.3
Particulate Matter Less Than 2.5 Microns (PM _{2.5})	0.3	1.3
Total Sum of all Hazardous Air Pollutants (HAPs)	6.2	12.1
Green House Gas Emissions as Total CO ₂ e	N/A	21986.4

The standard and maximum operating schedules for the station will be 24 hours per day, 7 days per week, and a maximum of 52 weeks per year.

If you have any comments about the construction or operation of this facility, and want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525

Rio Arriba County Creek November 4, 2022 Page 2

Camino de los Marquez, Suite 1; Santa Fe, New Mexico, 87505-1816; 505-476-4300; 1-800-224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments or questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attencion

Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor de comunicarse con la oficina de Calidad de Aire al teléfono 505-476-5557.

Sincerely,

Walter H. Konhelter for

Monica Smith Environmental Specialist Harvest Four Corners, LLC 1755 Arroyo Drive Bloomfield, NM 87413

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at https://www.env.nm.gov/NMED/EJ/index.html to learn how and where to file a complaint of discrimination.

1111 Travis Street Houston, TX 77002 Phone: 713/209-2400 Fax: 713/209-2478 harvestmidstream.com

November 4, 2022

CERTIFIED MAIL 7022 2410 0002 6245 6612 RETURN RECEIPT REQUESTED

Navajo Nation Environmental Protection Agency Post Office Box 339 Window Rock, AZ 86515

Dear Madam/Sir,

According to New Mexico Environment Department (NMED) air quality regulations, Harvest Four Corners, LLC must announce its intent to submit an application to revise the air quality permit for its Buena Vista Compressor Station. The expected date of application submittal to the Air Quality Bureau is during the week of November 14, 2022.

The exact location of the facility, known as the Buena Vista Compressor Station, is latitude 36 deg, 16 min, 29 sec and longitude -107 deg, 41 min, 56 sec, approximately 2.5 miles east of the intersection of Highway 550 and Indian Service Route 459, near Nageezi in San Juan County.

The proposed modification is to change the allowed compressor engine configuration from three Waukesha 7042GL or three Waukesha 5790GL natural gas-fired compressor engines to three Waukesha 7042GL compressor engines or three Caterpillar G3516LE compressor engines.

The station's estimated maximum quantities of any regulated air contaminants will be as follows in pounds per hour and tons per year and may change slightly during the course of the Department's review:

	Pounds Per Hour	Tons Per Year
Nitrogen Oxides (NO _X)	16.1	70.6
Carbon Monoxide (CO)	24.0	104.9
Volatile Organic Compounds (VOCs)	11.0	237.5
Particulate Matter Less Than 10 Microns (PM ₁₀)	0.3	1.3
Particulate Matter Less Than 2.5 Microns (PM _{2.5})	0.3	1.3
Total Sum of all Hazardous Air Pollutants (HAPs)	6.2	12.1
Green House Gas Emissions as Total CO ₂ e	N/A	21986.4

The standard and maximum operating schedules for the station will be 24 hours per day, 7 days per week, and a maximum of 52 weeks per year.

If you have any comments about the construction or operation of this facility, and want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525

Navajo Nation Environmental Protection Agency November 4, 2022 Page 2

Camino de los Marquez, Suite 1; Santa Fe, New Mexico, 87505-1816; 505-476-4300; 1-800-224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments or questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attencion

Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor de comunicarse con la oficina de Calidad de Aire al teléfono 505-476-5557.

Sincerely,

Walter H. Konhelter for

Monica Smith Environmental Specialist Harvest Four Corners, LLC 1755 Arroyo Drive Bloomfield, NM 87413

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at https://www.env.nm.gov/NMED/EJ/index.html to learn how and where to file a complaint of discrimination.

LOCAL NEWS

CALENDAR OF EVENTS

The San Juan College Charity Bowl Sale takes place from 9 a.m. to 5 p.m. Thursday, Nov. 17, and Friday, Nov. 18 in the 9000 meeting rooms of the Henderson Fine Arts Center on the college campus, 4601 College Blvd. in Farmington. Each bowl is \$10 and comes with a fill-up of soup from Mary's Kitchen. Proceeds benefit Tres Rios Habitat for Humanity. Call 505-566-3464.

Historian Aaron Roth will deliver a free Zoom presentation on the history of the Long Walk, the internment of Navajo and Mescalero Apache people at Bosque Redondo, and the movement to establish the Bosque Redondo Monument & Museum at 6 p.m. Thursday, Nov. 17, at the Bloomfield Cultural Center, 333 S. 1st St. Free. Free. Call 505-632-8315.

The Drag Me Back to Dino's drag show takes place at 7:30 p.m. Thursday, Nov. 17, at Dino's Mart and Hideaway, 405 County Road 390 on Crouch Mesa. Admission is limited to those 21 and older. Call 505-632-5132.

Cowboy Karaoke with DJ Justin Hogue will be presented at 8 p.m. Thursday, Nov. 17, at the Wooden Nickel, 900 W. Broadway Ave. in Bloomfield. Call 505-632-2457.

A Thanksgiving lunch will be held at 11:30 a.m. Friday, Nov. 18, at the Bonnie Dallas Senior Center, 109 E. La Plata St. in Farmington. Lunch is \$3 for those 60 and older, \$3 for those 59 and younger. Call 505-599-1380.

Business After Hours, presented by the Farmington Chamber of Commerce, takes place at 5 p.m. Friday, Nov. 18, at J.A. Jewelers & Co., 2909 E. 20th St. in Farmington. Admission is \$5 or a donation of a coat for a child with proceeds benefiting the Coats for Kids program. **Julie & the Boyz** perform at 6 p.m. Friday, Nov. 18, at No Worries Sports Bar & Grill, 1298 W. Navajo St. in Farmington. Call 505-436-2657.

The San Juan College Orchestra performs at 7 p.m. Friday, Nov. 18, at the Henderson Performing Arts Center Performance Hall on the college campus,

Teun Fetz leads the San Juan College Orchestra in its end-of-semester concert at in the Henderson Performing Arts Center Performance Hall on the college campus in Farmington. DAILY TIMES FILE PHOTO

4601 College Blvd. in Farmington. Tickets are \$8 for adults, \$6 for students and seniors. Call 505-566-3465.

The Fool's Gold Band performs at 8 p.m. Friday, Nov. 18, and Saturday, Nov. 19, at Dino's Mart and Hideaway, 405 County Road 390 on Crouch Mesa. Call 505-632-5132.

Variety Express performs at 8:30 p.m. Friday, Nov. 18, and Saturday, Nov. 19, at SunRay Park & Casino, 39 County Road 5568 between Farmington and Bloomfield. Call 505-566-1205.

Dennis Yazzie and the Night Breeze Band will perform at 9 p.m. Friday, Nov. 18, and Saturday, Nov. 19, and 6 to 10 p.m. Sunday, Nov. 20, at the Wooden Nickel, 900 W. Broadway Ave. in Bloomfield. Call 505-632-2457. **The Turkey Trot and Gobble Wobble** will take place at 9 a.m. Saturday, Nov. 19, in Orchard Plaza at the corner of Main Street and Orchard Avenue in downtown Farmington. The event includes 5k and 2-mile runs. Registration ranges from \$20 to \$30. Call 505-599-1184.

The St. John's New and Used Sale takes place from 9 a.m. to 2 p.m. Saturday, Nov. 19, at St. John's Episcopal Church, 312 N. Orchard Ave. in Farmington. The event features homemade crafts, jellies, books by local authors and more. Free. Call 505-716-1350.

The Kelly Green Craft Fair takes place from 9 a.m. to 3 p.m. Saturday, Nov. 19, at McGee Park, 41 County Road 5568 between Farmington and Bloomfield. Admission is \$1. Call 505-486-1515. Stuff the Bus, an annual food-donation event benefitting the ECHO food bank, will take place from 9 a.m. to 3 p.m. Saturday, Nov. 19, outside Albertson's grocery store at 4909 E. Main St. in Farmington. Residents are asked to donate food for needy families. Call 505-325-3541.

A talk about the benefits of bees to humans will take place at 11 a.m. Saturday, Nov. 19, at the Farmington Museum at Gateway Park, 3041 E. Main St., with a New Mexico State University extension staff member. Free. Call 505-599-1174.

Dance Night takes place at 6 p.m. Saturday, Nov. 19, at the Bonnie Dallas Senior Center activities room at 208 N. Wall St. in Farmington. The event features live music and dancing. Admission is \$3. Call 505-599-1380.

Cuarenta Y Cinco performs at 7 p.m. Saturday, Nov. 19, at No Worries Sports Bar and Grill, 1298 W. Navajo St. in Farmington. Admission is \$25. Call 505-215-0697.

Comedy Night takes place at 8 p.m. Saturday, Nov. 19, at SunRay Park & Casino, 39 County Road 5568 between Farmington and Bloomfield, with performances by Sam Ridley and Joel Brill. Tickets are \$25 for dinner and the show. Call 505-566-1205. The Laughter at the Edge comedy show returns at 9 p.m. Saturday, Nov. 19, to the Cedar Bow Comedy Club at the Northern Edge Casino, 2752 Navajo Route 36 in Upper Fruitland, with performances by Joshua Fournier and Eric Trevizo. No cover, but admission is limited to those 21 and older. Call 505-728-0337. The Tuesday Morning Birders group meets at 9 a.m. Tuesday, Nov. 22 at the Riverside Nature Center in Animas Park off Browning Parkway in Farmington. Participation is free to experienced and novice birders. Free. Call 505-599-1422.

The B.L.A.S.T. after-school program takes place at 4 p.m. Tuesday, Nov. 22, at the Bloomfield Public Library, 333 S. 1st St. Free. Call 505-632-8315.

Line dancing classes are offered at 6 p.m. Tuesday, Nov. 22, at the Sycamore Park Community Center, 1051 Sycamore St. Free.

Trivia Night takes place at 6 p.m. Tuesday, Nov. 22, at Clancy's Irish Pub and Cantina, 2701 E. 20th St. Call 505-325-8176.

Morning Storytime takes place at 10:30 a.m. Wednesday, Nov. 23, at the Bloomfield Public Library, 333 S. 1st St. in Bloomfield. Free. Call 505-632-8315. A Brown Bag Birding session will be held at noon Wednesday, Nov. 23, at the Riverside Nature Center in Animas Park off Browning Parkway in Farmington. Participants are invited to bring lunch and join the center staff in the observation room to watch wildlife. Free. Call 505-599-1422.

Singo Bingo takes place at 6:30 p.m. Wednesday, Nov. 23, at Traegers Bar, 5170 College Blvd., Suite 106 in Farmington. Call 505-278-8568. Jose Villareal performs at 7 p.m. Wednesday, Nov. 23, at Clancy's Irish Cantina, 2701 E. 20th St. in Farmington. Free. Call 505-325-8176. Mike Easterling can be reached at 505-564-4610 or most or ling@drilke

505-564-4610 or measterling@dailytimes.com. Support local journalism with a digital subscription: http://bit.ly/2I6TU0e.

New Mexico begins certification process for midterm election

Morgan Lee

ASSOCIATED PRESS

SANTA FE, N.M. - Midterm election results were certified Tuesday by at least three county commissions in New Mexico at the start of a once-routine process that in some locations has become a focal point for those voicing distrust in voting systems. Among the decisions, Otero County's three county commissioners voted unanimously to certify Nov. 8 election results at a meeting in Alamogordo after a briefing by the county's top elections official. The Otero County commission in June initially refused to certify primary election results while citing distrust of voting systems used to tally the vote even though County Clerk Robyn Holmes said there were no problems. The commission reversed course on a 2-1 vote to certify the primary after Secretary of State Maggie Toulouse Oliver successfully petitioned the state Supreme Court to issue an order directing the local board to certify.

On Tuesday, Otero County Commission Chairwoman Vickie Marquardt commended the work of local election officials in the midterm election.

She said she still believes there are election problems in the U.S. but noted that county commissioners have limited oversight authority under New Mexico state law. Attempts to delay primary results in a handful of New Mexico counties earlier this year have brought new scrutiny to a process that typically takes place quietly in the weeks after Election Day.

Partisan officials are involved in certifying elections in most states, someoffice. Griffin and his attorney in the case could not immediately be reached for comment.

Griffin, a founder of the Cowboys for Trump, a group that has staged horseback parades to spread Trump's conservative message, said his vote agains certification of the primary was based on his "gut feeling," but he didn't cite any specific discrepancies in the vote tally. In the midterm election, voters in staunchly conservative Otero County favored Republican candidates by wide margins in statewide races for governor, attorney general and secretary of state. Democrats won every statewide elected office on the ballot and flipped a congressional seat in southern New Mexico. Preliminary elections results show more than 60% of Otero County voters cast ballots for Republican candidate for Secretary of State Audrey Trujillo, who aligned her campaign with a coalition that seeks large-scale changes to elections administration.

"We're basically like notaries," Marquardt said. "The county commission cannot remove the voting machines, we cannot demand a hand recount. ... And I know that you guys wish that it was in our authority. But it's not."

Commissioners in Socorro and Curry counties also voted unanimously to certify local election results.

Most of the state's 33 counties have until Friday to review any election discrepancies presented by county clerks and vote on certification. Those decisions are typically followed by a review of the state canvassing board, automatic recounts in close races and a post-election audit. thing experts worry about after nearly two years of conspiracy theories falsely claiming the 2020 presidential election was stolen from former President Donald Trump. There is no evidence of widespread fraud or manipulated voting machines, and reviews in battleground states confirmed Democrat Joe Biden's win.

In Otero County in June, the dissenting vote against certification came from Couy Griffin, who was removed from office in September and barred from public office by a state judge for engaging in insurrection at the U.S. Capitol on Jan. 6, 2021.

The state Supreme Court on Tuesday declined to hear an appeal by Griffin of his removal and banishment from public

NOTICE OF AIR QUALITY PERMIT APPLICATION

Harvest Four Corners, LLC announces the submittal of an application to the New Mexico Environment Department to revise the air quality permit for one of its natural gas compressor stations. The expected date of application submittal to the Air Quality Bureau is during the week of November 14, 2022.

The exact location of the facility, known as the Buena Vista Compressor Station, is latitude 36 deg, 16 min, 29 sec and longitude -107 deg, 41 min, 56 sec, approximately 2.5 miles east of the intersection of Highway 550 and Indian Service Route 459, near Nageezi in San Juan County.

The proposed modification is to change the allowed compressor engine configuration from three Waukesha 7042GL or three Waukesha 5790GL natural gas-fired compressor engines to three Waukesha 7042GL compressor engines or three Caterpillar G3516LE compressor engines. The station's estimated maximum quantities of any regulated air contaminants will be as follows in pounds per hour and tons per year and may change slightly during the course of the Department's review:

Pounds Per Hour Tons Per Year

	rounds rei mou	Tons Fer Tear
Nitrogen Oxides (NOX)	<u>16.1</u>	<u>70.6</u>
Carbon Monoxide (CO)	24.0	104.9
Volatile Organic Compounds (VOCs)	<u>11.0</u>	237.5
Particulate Matter Less Than 10 Microns (PM10)	<u>0.3</u>	<u>1.3</u>
Particulate Matter Less Than 2.5 Microns (PM2.5)	<u>0.3</u>	<u>1.3</u>
Total Sum of all Hazardous Air Pollutants (HAPs)	<u>6.2</u>	<u>12.1</u>
Green House Gas Emissions as Total CO2e	<u>N/A</u>	<u>21986.4</u>

The standard and maximum operating schedules for the station will be 24 hours per day, 7 days per week, and a maximum of 52 weeks per year The owner and/or operator of the facility is:

Harvest Four Corners, LLC 1755 Arroyo Drive Bloomfield, New Mexico 87413

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www. env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, PO. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.mn.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to tracecomplaint of file a complaint of discrimination.

Griffin

Continued from Page 1A

Clause.

Mathew's decision also disqualified Griffin from holding any elected office in the future.

Griffin was arrested on Jan. 8, 2021 and convicted March 22 of knowingly entering or remaining in any restricted building or grounds without lawful authority. He was sentenced to 14 days of time served and ordered to pay \$500 in restitution and a \$3,000 fine. He was also ordered to complete community service and one year of supervised release.

The case to remove Griffin from his seat on the Otero County Commission was brought by Marco White of Santa Fe County, Mark Mitchell of Los Alamos County and Leslie Lakind of Santa Fe County, alongside The Citizens for Responsibility and Ethics in Washington (CREW).

They were joined by several activist groups including Common Cause New Mexico, the NAACP and the National Council of Jewish Women.

In a 42-page "finding of fact" filed in the appeal, White, Mitchell and Lakind point to Griffin's actions and words as reason to uphold Mathew's original decision in the case.

The three plaintiffs also asked the court to expedite the appeal in an emer-

gency filing.

"This is an affirmation that Section 3 of the 14th Amendment can and should be enforced against all the January 6th insurrectionists who took an oath to defend the Constitution, whether they are current or former officeholders," CREW Senior Vice President and Chief Counsel Donald Sherman said in statement.

"Today is an important day for our democracy."

Just days before the dismissal of his appeal, Griffin appeared at the Otero County Commission meeting Nov. 10, during which he declared himself the "duly elected and legitimate county commissioner of District 2" to a round of applause from audience members.

Otero County Commission Chair Vickie Marquardt was forced to clear the Commission chambers after an argument between Griffin and Commissioner Stephanie DuBois - appointed by Gov. Michelle Lujan Grisham to fill Griffin's former seat - erupted.

Griffin, during the public comment period, used the 3-minute opportunity to call Democrat DuBois a "loser" several times, pointing to her failure to achieve election in seven previous races, and the most recent loss of her appointed seat for which she was seeking election to Republican Amy Barela.

Jessica Onsurez can be reached at jonsurez@gannett.com or on Twitter at @JussGREAT.

public notices/legals email: legals@daily-times.com or call: 505.564.4566

Public Notices

Legal Notices 🛛 🗸 Legal Notices	Legal Notices	Legal Notices	Legal Notices	Legal Notices
STATE OF NEW MEXICO	ELEVENTH JUDICIAL DISTRICT COUF	RT	ELEVENTH JUDICIAL DISTRICT COL	JRT COUNTY OF SAN JUAN
COUNTY OF SAN JUAN ELEVENTH JUDICIAL DISTRICT COURT	COUNTY OF SAN JUAN STATE OF NEW MEXICO		STATE OF NEW MEXICO	
No. D-1116-CV-2021-01209	CASE NO.: D-1116-PB-2022-103 IN THE MATTER OF THE ESTATE OF		IN THE MATTER OF THE ESTATE OF	F DONNA LANIER.
WILMINGTON SAVINGS FUND SOCIETY, FSB, AS TRUSTEE OF STANWICH MORTGAGE LOAN TRUST M,	RONALD LEROY GRIM, DECEASED NOTICE TO		CASE NO.: D-1116-PB-2022-12	
Plaintiff, vs	NOTICE IS HEREBY GIVEN that the Personal Representative of this F	e undersigned has been appointed state. All persons having claims		<u>D CREDITORS</u> ne undersigned has been appointed
AARON ARELLANO AND DEPARTMENT OF THE TREASURY -	against this estate are required to	present their claims within four (4)	Personal Representative of this	Estate. All persons having claims present their claims within four (4)
INTERNAL REVENUE SERVICE, Defendants.	claims will be forever barred. Claim	t publication of this notice, or the ms must be presented either to the ive at the address listed below, or	months after the date of the fir	st publication of this notice, or the sims must be presented either to the
NOTICE IS HEREBY GIVEN that on January 4, 2023, at the	Thed with the 11th Judicial Distr	address: 103 S. Oliver, Aztec, NM	undersigned Personal Representa	ative at the address listed below or District Court of San Juan County,
hour of 12:30 PM, the undersigned Special Master, or his	87410. DATED: October 27, 2022	address. 105 5, Officer, Aztec, Nin	New Mexico, located at the follo New Mexico 87410.	owing address: 103 S. Oliver, Aztec,
designee, will, at the entrance of the, at, sell all of the rights, title, and interests of the above-named Defendants,	DATED. OCIODEI 27, 2022	/s/Rebecca Waybourn		tivo
in and to the hereinafter described real property to the highest bidder for cash. The property to be sold is located		Rebecca Waybourn Personal Representative	Harry Lanier, Personal Representat c/o The Risley Law Firm, P.C.	live
at 20 Road 3450, Flora Vista, New Mexico 87415, and is more particularly described as follows:		Personal Representative c/o The Risley Law Firm, P.C. 2705 Rabbitbrush Drive	2705 Rabbitbrush Drive. Farmington, NM 87402	
That part of the Northeast Quarter of the Southeast Quarter	#5476195, The Daily Times, Nov. 10	Farmington, NM 87402 , 17, 24, 2022	505-326-1776 #5469736, The Daily Times, Nov. 3,	, 10, 17, 2022
(NE/4SE/4) of Section Fifteen (15) in Township Thirty (30) North of Range Twelve (12) West, N.M.P.M., San Juan Coun-	STATE OF NEW MEXICO		NOTICE	- Martine and the second second second
ty, New Mexico, described as follows: BEGINNING at a point which is South 89°55' West 435.0 feet,	COUNTY OF SAN JUAN 11th JUDICIAL DISTRICT	Mexico Environment Departm	nent for an air quality General	s its intent to apply to the New I Construction Permit, (GCP-Oil
thence North 36°57' West 236.0 feet, thence North 11°59'	COURT	and Gas). The name of this faci	ility is Nageezi CLF. mittal of our Registration for a	an air quality permit to the Air
East 95.0 feet, thence North 26°41' West 25.16 feet from the Southeast corner of said NE/4SE/4;	IN THE MATTER OF THE	Quality Bureau is November 20)22.	
THENCE North 57°14' East 90.0 feet; THENCE North 26°42' West 186.33 feet:	ESTATE OF NADEAN LICHLITER,	The exact initial location of t	cording to New Mexico air quali he_facility is/will be "UTM Zone	e 13, UTM Easting 250,110 m E,
THENCE North 56°56' East 64.0 feet; THENCE South 40°58' East 52.0 feet;	Deceased. No. D-1116-PB-2022-00096	UTM Northing 4,018,040 m N of Nageezi in San Juan county	" The approximate location of v. The standard operating sche	this site is 2.6 miles Northwest dule of this facility will be con-
THENCE South 59°53' East 110.0 feet;	NOTICE TO CREDITORS NOTICE IS HEREBY GIVEN	tinuous.	air contaminant will be less than	
THENCE South 19°04' East 63.0 feet; THENCE South 57°14' West 219.0 feet;	that DOUGLAS BLAINE			Tons per year (TPY)
THENCE North 26°41' West 25.14 feet to the point of beginning,	LICHLITER, has been ap- pointed Personal Represen-	1. Nitrogen Oxides (NOx) 2. Carbon Monoxide (CO)		95 95
including any improvements, fixtures, and attachments,	tative of this Estate. All per- sons having claims against	3. Volatile Organic Compounds 4. Particulate Matter (PM10)	s (VOC) (stack)	95 25
such as, but not limited to, mobile homes, (hereinafter the "Property"). If there is a conflict between the legal descrip-	this estate are required to present their claims within	5. Particulate Matter (PM2.5) 6. Sulfur Dioxide (SO2)		25 95
tion and the street address, the legal description shall con- trol.	four (4) months after the	7. Hydrogen Sulfide (H2S)	11 · · · · (· · • =)	25
The foregoing sale will be made to satisfy a foreclosure judgment rendered by this Court in the above-entitled and	date of the first publication of this Notice or the claims	8. Any one (1) Hazardous Air P 9. Sum of all Hazardous Air Pol	ollutant (HAP) llutants (HAPs)	<10 <25
numbered cause on October 6, 2022, being an action to	will be forever barred. Claims must be presented ei-	The owner and/or operator of		
foreclose a mortgage on the Property. Plaintiff's judgment is in the amount of \$124,142.59, and the same bears interest	ther to Brandt Thrower Law	Shiprock Midstream, LLC DBA	Whiptail Midstream	
at the rate of 3.9900% per annum, accruing at the rate of \$13.57 per diem. The Court reserves entry of final judgment	Firm, P.C., Attorney for Es- tate, 412 W. Arrington St.,	15 W. 6th Street, Suite 2901 Tulsa, OK 74119		
against Defendant, Aaron Arellano, for the amount due af- ter foreclosure sale, including interest, costs, and fees as	Farmington, New Mexico 87401 or filed with the 11th	If you have any questions or and want your comments to be	comments about construction e made	or operation of above facility,
may be assessed by the Court. Plaintiff has the right to bid	Judicial District Court, 103 South Oliver Dr., Aztec, NM	as a part of the permit review	process, you must submit your	comments in writing to the ad-
at the foregoing sale in an amount equal to its judgment, and to submit its bid either verbally or in writing. Plaintiff	87410.	New Mexico Environment Dep		
may apply all or any part of its judgment to the purchase price in lieu of cash.	BRANDT THROWER	Air Quality Bureau Permit Sect 525 Camino de los Marquez, Su	ion uite 1	
In accordance with the Court's decree, the proceeds of sale	Attorney for Estate 412 W. Arrington St.	Santa Fe, New Mexico, 87505 Phone (505) 476-4300		
are to be applied first to the costs of sale, including the Spe- cial Master's fees, and then to satisfy the above-described	Farmington, New Mexico	Fax (505) 476-4375	a may ba submittad yarbally	
judgment, including interest, with any remaining balance to be paid unto the registry of the Court in order to satisfy any	87401 (505) 325-4575	Other comments and question Please refer to the company	name and site name, as used i	n this notice or send a copy of
future adjudication of priority lienholders. NOTICE IS FURTHER GIVEN that in the event that the Proper-	#5463658, Daily Times, Oct. 27, Nov.3,10, 2022	permit Registration at the time		ent may not have received the
ty is not sooner redeemed, the undersigned Special Master	STATE OF NEW MEXICO		Attención	amento del Medio Ambiente de
will, as set forth above, offer for sale and sell the Property to the highest bidder for cash or equivalent, for the purpose	COUNTY OF SAN JUAN ELEVENTH JUDICIAL	Nuevo México, acerca de las	emisiones producidas por un e	establecimiento en esta área. Si
of satisfying, in the adjudged order of priorities, the judg- ment and decree of foreclosure described herein, together	DISTRICT COURT No. D-1116-CV-2022-00572	372-8373.		con esa oficina al teléfono 505-
with any additional costs and attorney's fees, including the costs of advertisement and publication for the foregoing	NOTICE OF PENDENCY OF	NMED does not discriminate o	Notice of Non-Discrimination on the basis of race, color, natio	onal origin, disability, age or sex
sale, and, reasonable receiver and Special Master's fees in an	ACTION MONICA GURULE and	in the administration of its pro	ograms or activities, as required	l by applicable laws and regula- efforts and receipt of inquiries
amount to be fixed by the Court. The amount of the judg- ment due is \$124,142.59, plus interest to and including date	JOSEPH A. GURULE, Plaintiffs,	concerning non-discrimination	requirements implemented by	/ 40 C.F.R. Part 7, including Title
of sale in the amount of \$2,116.92, for a total judgment of \$126,259.51.	v.	the Age Discrimination Act of	1975, Title IX of the Education	the Rehabilitation Act of 1973;
The foregoing sale may be postponed and rescheduled at the discretion of the Special Master, and is subject to all tax-	SAFECO INSURANCE COM-	#5478273 11/10/2022		
es, utility liens and other restrictions and easements of re-	PANY OF AMERICA, A LIBERTY MUTUAL COMPA-		E OF AIR QUALITY PERMIT APPLI nounces the submittal of an app	CATION olication to the New Mexico En-
cord, and subject to a one (1) month right of redemption held by the Defendant(s) upon entry of an order approving	NY, Defendants.	vironment Department to rev	ise the air quality permit for or	ne of its natural gas compressor Air Quality Bureau is during the
sale, and subject to the entry of an order of the Court approving the terms and conditions of sale.	TO: Zachary Mose	week of November 14, 2022		
Witness my hand this 28th day of October, 2022. /s/ David Washburn	YOU ARE HEREBY NOTIFIED that the above-entitled ac-	36 deg, 16 min, 29 sec and lo	ngitude -107 deg, 41 min, 56 se	Compressor Station, is latitude ec, approximately 2.5 miles east
DAVID WASHBURN, Special Master	tion has been filed in the San Juan County District	of the intersection of Highwa County.	y 550 and Indian Service Route	e 459, near Nageezi in San Juan
8100 Wyoming Blvd NE Suite M-4, Box 272	Court by Monica and Joseph Gurule, the general object	The proposed modification is		ssor engine configuration from gas-fired compressor engines to
Albuquerque, NM 87113 Telephone: (505) 318-0300	thereof being a Complaint	three Waukesha 7042GL com		rpillar G3516LE compressor engines to
E-mail: sales@nsi.legal	for Damages as a Result of Personal Injury.			ed air contaminants will be as
#5469536, Daily Times,Nov. 3, 10, 17, 24, 2022 NOTICE	Unless you file and serve a pleading or motion in re-			ge slightly during the course of
DJR Operating, LLC announces its intent to apply to the	sponse to the Complaint in said cause on or before 30	Nitrogen Oxides (NOX)	Pounds Per Ho	
New Mexico Environment Department for an air quality General Construction Permit, GCP-Oil and Gas. The name of	days after the last publica-	Carbon Monoxide (CO)	16.1 24.0	70.6 104.9
this facility is the Betonnie Tsosie N15-2308. The expected date of the submittal of our registration form to the Air	tion date, judgment by de- fault will be entered against	Volatile Organic Compounds (Particulate Matter Less Than 10	VOCs) 11.0 0 Microns (PM10) 0.3	237.5 1.3

Quality Bureau is November 11, 2022. This notice is a requirement according to New Mexico air quality regulations. The exact location of facility is/will be UTM Zone 13, UTM Easting 259,797, UTM Northing 4,011,882. The approximate location of this site is 4.7 miles southeast of Nageezi in San Juan County. The standard operating schedule of this facili-ty will be continuous. Air emissions of any regulated air contaminant from each

facility will be less than or equal to:

facility will be less than of equal to.	
	Tons per year (TPY)
1. Nitrogen Oxides (NOx)	95
2. Carbon Monoxide (CÓ)	95
3. Volatile Organic Compounds (VOC)(sta	ck) 95
4. Particulate Matter (PM10)	25
5. Particulate Matter (PM2.5)	25
6. Sulfur Dioxide (SO2)	95
7. Hydrogen Sulfide (H2S)	25
8. Any one (1) Hazardous Air Pollutant (F	AP) <10
Sum of all Hazardous Air Pollutant (HA	.Ps) <25
The owner and/or operator of the Plants	is:
DJR Operating, LLC	
1 Road 3263	
Aztec, NM 87410	

If you have any questions or comments about construction or operation of above facility, and want your comments to be made as a part of the permit review process, you must submit your comments in writing to the address below: New Mexico Environment Department

Air Quality Bureau Permit Section 525 Camino de los Marquez, Suite 1,Santa Fe, New Mexico, 87505

Phone (505) 476-4300

Other comments and questions may be submitted verbally. Please refer to the company name and site name, as used in this notice or send a copy of this notice along with your comments, since the Department may not have received the permit Registration at the time of this notice.

Attención Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por fa-vor comuníquese con esa oficina al teléfono 505-372-8373.

Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning nondiscrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non)discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Ka thryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at www.env.nm.gov/non-employe e-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination. #5481646, Daily Times, Nov 10, 2022

/ou.

you. Plaintiff's Attorney is Jack L. Fortner of FORTNER & BECKSTEAD, LLC at 1390 E. 20th, Farmington, New Mexico; (505) 326-1817, and the Court's address is 851 Andrea Drive, Farmington, NM 87401. #5464811, Daily Times, Oct

#5464811, Daily Times, Oct 27, Nov 3, 10, 2022

Looking for a Garage Sale?

Check your local classified listings everyday!

Particulate Matter Less Than 2.5 Microns (PM2.5 0.3 Total Sum of all Hazardous Air Pollutants (HAPs) 6.2 Green House Gas Emissions as Total CO2e N/A

The standard and maximum operating schedules for the station will be 24 hours per day, 7 days per week, and a maximum of 52 weeks per year.

The owner and/or operator of the facility is: Harvest Four Corners, LLC 1755 Arroyo Drive Bloomfield, New Mexico 87413

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your com-ments in writing to this address: Permit Programs Manager; New Mexico Environment De-partment; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_

1.3

21986.4

12.1

permits.html. Other comments and questions may be submitted verbally. Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit re-view process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regula-tions. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Sec-tion 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any equections about this notice or any of NMED's non-discrimination programs policies or proquestions about this notice or any of NMED's non-discrimination programs, policies or pro-cedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non -employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination discrimination. #5478878, Daily Times, Nov. 10 2022

Jobcase **FIND THE BEST TALENT TODAY!** Your one-stop-shop for posting local and national jobs. * LocaliQ

Get started at jobs.usatoday.com

NOTICE

Harvest Four Corners, LLC announces its intent to apply to the New Mexico Environment Department (NMED) for an air quality permit modification for its natural gas compressor station known as the **Buena Vista Compressor Station**. The expected date of application submittal to the Air Quality Bureau is during the week of November 14, 2022.

The exact location of the facility, known as the Buena Vista Compressor Station, is latitude 36 deg, 16 min, 29 sec and longitude -107 deg, 41 min, 56 sec, approximately 2.5 miles east of the intersection of Highway 550 and Indian Service Route 459, near Nageezi in San Juan County.

Harvest proposes to change the allowed compressor engine configuration from three Waukesha 7042GL or three Waukesha 5790GL natural gas-fired compressor engines to three Waukesha 7042GL compressor engines or three Caterpillar G3516LE compressor engines. No other changes to the permit are requested.

The station's estimated maximum quantities of any regulated air contaminants will be as follows in pounds per hour and tons per year and may change slightly during the course of the Department's review:

	Pounds Per Hour	Tons Per Year
Nitrogen Oxides (NO _X)	16.1	70.6
Carbon Monoxide (CO)	24.0	104.9
Volatile Organic Compounds (VOCs)	11.0	237.5
Particulate Matter Less Than 10 Microns (PM ₁₀)	0.3	1.3
Particulate Matter Less Than 2.5 Microns (PM _{2.5})	0.3	1.3
Total Sum of all Hazardous Air Pollutants (HAPs)	6.2	12.1
Green House Gas Emissions as Total CO ₂ e	N/A	21986.4

The standard and maximum operating schedules of the facility will be from midnight to midnight, 7 days per week, and a maximum of 52 weeks per year.

The owner and/or operator of the facility is: Harvest Four Corners, LLC, 1755 Arroyo Drive, Bloomfield, NM 87413

If you have any comments about the construction or operation of this facility, and want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico, 87505-1816; 505-476-4300; 1-800-224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments or questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attencion

Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor de comunicarse con la oficina de Calidad de Aire al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, <u>nd.coordinator@state.nm.us</u>. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at <u>https://www.env.nm.gov/NMED/EJ/index.html</u> to learn how and where to file a complaint of discrimination.

General Posting of Notices – Certification

I, <u>Monica Smith</u>, the undersigned, certify that on November 10, 2022, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in San Juan County, State of New Mexico on the following dates:

1. Buena Vista Facility Entrance	November 10, 2022
2. Blanco Post Office, Blanco, NM 87412	November 10, 2022
3. Bloomfield Post Office, Bloomfield, NM 87413	November 10, 2022
4. Bloomfield Public Library, Bloomfield, NM 87413	November 10, 2022

Signed this <u>11th</u> day of <u>November</u> , <u>2022</u> ,

Monicasmat

Signature

11/11/2022

Date

Monica Smith Printed Name

Environmental	Specialist -	Harvest	Four	Corners,	LLC
Title					

Walter Konkel

From:	Walter Konkel
Sent:	Friday, November 11, 2022 11:21
То:	skelly@americangeneralmedia.com
Subject:	Request for Public Service Announcement
Attachments:	Harvest - Buena Vista - November 2022 - NSR - Public Service Announcement.pdf

Mr. Kelly - Harvest Four Corners is submitting an air quality permit application to the New Mexico Air Quality Bureau to revise the permit for their Buena Vista Compressor Station.

On behalf of Harvest, I am requesting a Public Service Announcement for the project in accordance with New Mexico air quality regulation NMAC 20.2.72.203.B.(5).

Please provide Proof of Performance to me at this email address. The PSA is attached to this email.

Please let me know if you have any questions.

Thank you for your assistance.

Walter Konkel

EcoLogic Environmental Consultants, LLC (805) 964-7597 (office) (805) 284-4430 (mobile)

PUBLIC SERVICE ANNOUNCEMENT

Harvest Four Corners LLC, announces its intent to apply to the New Mexico Environment Department for a revision to its air quality permit for the Buena Vista Compressor Station, located at latitude 36 deg, 16 min, 29 sec and longitude -107 deg, 41 min, 56 sec, approximately 2.5 miles east of the intersection of Highway 550 and Indian Service Route 459, near Nageezi in San Juan County.

The proposed permit revision is to change the allowed compressor engine configuration from three Waukesha 7042GL or three Waukesha 5790GL natural gas-fired compressor engines to three Waukesha 7042GL compressor engines or three Caterpillar G3516LE compressor engines.

Public notices were posted at the following locations:

Posting Location	Date of Posting
1. Buena Vista Facility Entrance	November 10, 2022
2. Blanco Post Office, Blanco, NM 87412	November 10, 2022
3. Bloomfield Post Office, Bloomfield, NM 87413	November 10, 2022
4. Bloomfield Public Library, Bloomfield, NM 87413	November 10, 2022

The owner and/or operator of the facility is:

Harvest Four Corners, LLC 1755 Arroyo Drive Bloomfield, NM 87413

Questions and comments regarding this notice may be directed to:

Program Manager, New Source Review New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816 (505) 476-4300 or (800) 224-7009 https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html

<u>Submittal of Public Service Announcement – Certification</u>

I, <u>Walter Konkel III</u>, the undersigned, certify that on November 11, 2022, submitted a public service announcement to KENN 1390 AM that serves San Juan and Rio Arriba counties, in the state of New Mexico, in which the source is or is proposed to be located and that KENN 1390 AM DID NOT RESPOND.

Signed this <u>18th</u> day of <u>November</u>, <u>2022</u>,

Walter H Konhelter

Signature

<u>11/18/2022</u> Date

<u>Walter H. Konkel III</u> Printed Name

<u>Consultant – EcoLogic Environmental Consultants, LLC</u> Title

Section 10

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The Buena Vista Compressor Station compresses natural gas for midstream natural gas gathering (i.e., prior to entering a gas processing plant) using natural gas-fired reciprocating engines to drive gas compressors.

Natural gas, mixed hydrocarbon (condensate) and produced water streams are received from the gathering fields through pipelines from independent producers. The natural gas and condensate-produced water mixture passes through a facility inlet separator as it enters the facility. Within the separator, an internal pressure drop allows the natural gas to separate from the liquids. The natural gas is routed to the compressors. The pressurized gas then exits the facility for transport via pipeline to a downstream processing facility. A portion of the gas is used as fuel for the compressor engines.

The mixed condensate and produced water liquid is piped to a vertical fixed roof liquid storage tank. Upon initial entry of the mixed condensate-produced water liquid into the tank, the entrained gas (including VOC) expands rapidly, "flashing" the gas upon depressurization. In the condensate storage tank, the mixture of post-flashed "stable" condensate and produced water separates, with the condensate floating to the top of the column and the produced water settling to the bottom of the column. The stabilized condensate is stored in the condensate tank until it is transported offsite via tanker truck. Produced water storage tank, where it is stored until it is transported offsite via tanker truck.

A waste water storage tank collects storm water runoff and small amounts of heavy hydrocarbon residues resulting from any drips or spills that may occur from machinery, where it is stored until transport offsite via tanker truck. The hydrocarbon residues are of low volatility. The lube oil and used lube oil tanks store heavy hydrocarbon machinery oils, also with low volatility.

Other emission sources include: startups, shutdowns and routine maintenance (SSM) from the compressors and piping (Unit SSM), and fugitive emissions from process piping (valves, flanges, seals, etc.).

The facility is authorized to operate continuously.

This Page Intentionally Left Blank

Section 11

Source Determination

(Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC)

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination</u> <u>Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

Buena Vista Compressor Station (a production field natural gas gathering and boosting station)

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

🗹 Yes 🗆 No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

🗹 Yes 🗆 No

<u>Contiguous or Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

🗹 Yes 🗆 No

C. Make a determination:

- ✓ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- □ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

This Page Intentionally Left Blank

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review</u> <u>Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - **X** a minor PSD source before and after this modification (if so, delete C and D below).
 - \square a major PSD source before this modification. This modification will make this a PSD minor source.
 - \Box an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - an existing PSD Major Source that has had a major modification requiring a BACT analysis
 - a new PSD Major Source after this modification.
- B. This facility is not one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are not significant under PSD for any pollutant. The "project" emissions listed below only result from changes described in this permit application, thus no emissions from other revisions or modifications, past or future to this facility. Also, specifically discuss whether this project results in "de-bottlenecking", or other associated emissions resulting in higher emissions. The project emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]:
 - a. NOx: +12.1 TPY
 - b. CO: +1.5 TPY
 - c. VOC: 0.0 TPY
 - d. SOx: 0.0 TPY
 - e. PM: 0.0 TPY
 - f. PM10: 0.0 TPY
 - g. PM2.5: 0.0 TPY
 - h. Fluorides: 0.0 TPY
 - i. Lead: 0.0 TPY
 - j. Sulfur compounds (listed in Table 2): 0.0 TPY
 - k. GHG: 0.0 TPY

This Page Intentionally Left Blank

Section 12.B

Special Requirements for a PSD Application

(Submitting under 20.2.74 NMAC)

<u>Prior</u> to Submitting a PSD application, the permittee shall:

- □ Submit the BACT analysis for review prior to submittal of the application. No application will be ruled complete until the final determination regarding BACT is made, as this determination can ultimately affect information to be provided in the application. A pre-application meeting is recommended to discuss the requirements of the BACT analysis.
- □ Submit a modeling protocol prior to submitting the permit application. [Except for GHG]
- Submit the monitoring exemption analysis protocol prior to submitting the application. **[Except for GHG]**

For PSD applications, the permittee shall also include the following:

- Documentation containing an analysis on the impact on visibility. [Except for GHG]
- Documentation containing an analysis on the impact on soil. [Except for GHG]
- Documentation containing an analysis on the impact on vegetation, including state and federal threatened and endangered species. **[Except for GHG]**
- Documentation containing an analysis on the impact on water consumption and quality. [Except for GHG]
- Documentation that the federal land manager of a Class I area within 100 km of the site has been notified and provided a copy of the application, including the BACT and modeling results. The name of any Class I Federal area located within one hundred (100) kilometers of the facility.

Not applicable, not a PSD source.

This Page Intentionally Left Blank

Section 13

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. For example, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

State Regulations:

Statt Reg		Applies?	Unit(s)	Justification:
<u>State</u> <u>Regulation</u> Citation	Title	Enter Yes or No	or Facility	(You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	This regulation is applicable because it establishes procedures for protecting confidential information, procedures for seeking a variance, NMAQB's authority to require sampling equipment, severability, and the effective date for conformance with the NMACs, and prohibits the violation of other requirements in attempting to comply with the NMACs. Although this regulation is applicable, it does not impose any specific
				requirements.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	This is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentrations of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation is applicable because it prohibits excess emissions unless proper notification procedures are followed.
20.2.23 NMAC	Fugitive Dust Control	No	N/A	This regulation is not applicable because the facility does not operate fugitive dust sources in areas requiring a mitigation plan in accordance with 40 CFR Part 51.930
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This regulation is not applicable because the facility is not equipped with external gas burning equipment which have heat input rates exceeding the trigger level (one million MMBtu/year) established by the regulation (see 20.2.33.108 NMAC).
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This regulation is not applicable because the facility does not burn oil (see 20.2.34.6 NMAC).
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	This regulation is not applicable because the facility is not a natural gas processing plant (see 20.2.35.6 NMAC).
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	No	N/A	These regulations were repealed by the Environmental Improvement Board.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	This regulation is not applicable because the facility does not store hydrocarbons containing hydrogen sulfide, nor is there a tank battery storing hydrocarbon liquids with a capacity greater than or equal to 65,000 gallons (see 20.2.38.112 NMAC).
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This regulation is not applicable because the facility is not equipped with a sulfur recovery plant (see 20.2.39.6 NMAC).
20.2.50 NMAC	Oil and Gas Sector – Ozone Precursor Pollutants	Yes	Facility	This regulation is applicable as it establishes emission standards for volatile organic compounds (VOC) and oxides of nitrogen (NOx) for oil and gas production, processing, compression, and transmission sources.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	RICE 1a/1b, 2a/2b, & 3a/3b	This regulation is applicable because the facility is equipped with stationary combustion sources. Emissions from these combustion sources are limited to less than 20% opacity (see 20.2.61.109 NMAC).
20.2.70 NMAC	Operating Permits	Yes	Facility	This regulation is applicable because the facility is a major source of CO and VOC emissions (see 20.2.70.200 NMAC).
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This regulation is applicable because the facility is subject to 20.2.70 NMAC (see 20.2.71.6 NMAC).
20.2.72 NMAC	Construction Permits	Yes	Facility	This regulation is applicable because the facility has potential emission rates (PER) greater than 10 pph or 25 tpy for pollutants subject to a state or federal ambient air quality standards (does not include VOCs or HAPs).

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The Notice of Intent requirements of this regulation were fulfilled with the construction permit application. The emissions inventory portion of this regulation is applicable since the facility is a Title V major source (see 20.2.73.300.B(1) & (2)).
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	This regulation is not applicable because the facility is not a PSD major source.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation is applicable because the facility is subject to 20.2.72 NMAC and it establishes the fee schedule associated with the filing of construction permits (see 20.2.75.6 NMAC).
20.2.77 NMAC	New Source Performance	Yes	Fugitive Emission Compone nts	This regulation is applicable because it adopts by reference the federal NSPS codified in 40 CFR 60 (see 20.2.77.6 NMAC). The facility is subject to 40 CFR 60, subparts A and OOOOa.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	This regulation is not applicable because it incorporates by reference the NESHAPs codified under 40 CFR 61 (see 20.2.78.6 NMAC). The facility is not subject to 40 CFR 61.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	This regulation is not applicable because the facility is neither located in nor has a significant impact on a nonattainment area (see 20.2.79.6 NMAC).
20.2.80 NMAC	Stack Heights	Yes	Facility	This regulation is applicable because it establishes guidelines for the selection of an appropriate stack height for the purpose of atmospheric dispersion modeling (see 20.2.80.6 NMAC).
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	RICE 1a, 2a & 3a; Potentiall y applies to RICE 1a, 2b & 3b	This regulation is applicable because it adopts by reference the federal MACT Standards for source categories codified in 40 CFR 63 (see 20.2.82.6 NMAC). The facility RICE are subject to 40 CFR 63, Subparts A and ZZZZ.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 50	NAAQS	Yes	Facility	This regulation is applicable because it applies to all sources in the state of New Mexico.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	Fugitive emission compone nts	This regulation is applicable because another 40 CFR Part 60 subpart applies to the fugitive emissions at the facility (NSPS Subpart OOOOa).
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This regulation is not applicable because there are no electric utility steam generating units at the facility.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	This regulation is not applicable because there are no steam generating units at the facility.
40 CFR 60.40c, Subpart De	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	This regulation is not applicable because there are no steam generating units at the facility.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	This regulation is not applicable because the storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 40,000 gallons (see §60.110a(a)).
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, or Modification Commenced After July 23, 1984	No	N/A	This regulation is not applicable because all storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 75 cubic meters (19,812 gallons) or they have a capacity between 75 and 151 cubic meters (40,000 gallons) and store a liquid with a maximum true vapor pressure less than 15.0 kPa (2.2 psi) (see §60.110b(a) & §60.110b(b))).

<u>Federal</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	This regulation is not applicable because there are no stationary combustion turbines at the facility.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	This regulation is not applicable because the facility is not an onshore natural gas processing plant as defined by the subpart (see $60.630(a)(1)$). Natural gas processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both (see 60.631).
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing : SO ₂ Emissions	No	N/A	This regulation is not applicable because the facility is not a natural gas processing plant as defined by the subpart. It is not equipped with a sweetening unit (see §60.640(a)).
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No	N/A	This regulation is not applicable because the facility is not equipped with "affected" sources that commenced construction, modification or reconstruction after August 23, 2011 and on or before September 18, 2015: gas wells, centrifugal or reciprocating compressors, pneumatic controllers, and storage vessels (see §60.5365). Note that the facility is not a natural gas processing plant as defined by the subpart (see §60.5430). Commenced construction means a continuous program of fabrication, erection or installation (see §60.2). Modification means any physical change in or change in the method of operation of an existing facility which increases emissions or results in new emissions (see §60.2). The following, by themselves, are not modifications: routine maintenance, repair or replacement, production increase without capital expenditure, increase in hours of operation, addition of emission controls, or the relocation or change in ownership of an existing facility (see §60.14). Reconstruction means the replacement of components of an existing facility such that the fixed capital cost of the new components exceeds 50 % of the fixed capital cost required to construct a comparable entirely new facility. Fixed capital cost means the capital needed to provide all the depreciable components (see §60.15).

Federal <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	Fugitive emission component s	The regulation is applicable because the facility is equipped with one or more "affected" sources that commenced construction, modification or reconstruction after September 18, 2015: gas wells, centrifugal or reciprocating compressors, pneumatic controllers, storage vessels, pneumatic pumps, and equipment leaks (see §60.5365a). In general, this regulation may apply if existing affected equipment is replaced or new affected equipment is installed. Affected sources at the facility were permitted and installed after the September 18, 2015 regulatory applicability date; therefore, the applicability of the subpart was triggered. The applicability of the regulation includes the fugitive emissions components at the facility. For the purpose of the fugitive components monitoring requirements specified by the regulation, "modification" of a compressor station includes the addition of (or replacement of) a compressor with a larger unit (greater total horsepower) (see §60.5365a(j)). Note that the facility is not a natural gas processing plant as defined by the subpart (see §60.5430a). See the definitions of construction, modification, and reconstruction referenced in Subpart OOOO above.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	NA	This regulation is not applicable because the facility is not equipped with stationary compression ignition (CI) internal combustion engines (ICE) that commenced construction after July 11, 2005 and were manufactured after April 1, 2006 (see §60.4200(a)(2)(i)). For the purpose of this subpart, construction commences on the date the engine is ordered by the owner or operator (see §60.4200(a)).
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	No	N/A	This regulation is not applicable because the facility is not equipped with spark ignition (SI) internal combustion engines (ICE) constructed, modified, or reconstructed after June 12, 2006. Installed units 1a, 2a and 3a were constructed prior to the applicability date and have not been modified or reconstructed. The regulatory applicability to units 1b, 2b and 3b will be evaluated upon their installation. See the definitions of construction, modification, and reconstruction referenced in Subpart OOOO below.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	This regulation is not applicable because there are no electric generating units at the facility.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	This regulation is not applicable because there are no electric generating units at the facility.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	These regulations are not applicable as the facility is not a municipal solid waste landfill.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	This regulation is not applicable because no other 40 CFR Part 61 subparts apply (see §61.01(c)).

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	This regulation is not applicable because there are no stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, or incinerate or dry wastewater treatment plant sludge at the facility.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	This regulation is not applicable because there are no sources at the facility that operate in volatile hazardous air pollutant (VHAP) service.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	RICE 1a, 2a & 3a; Potentially applies to RICE 1b, 2b & 3b	This regulation applies because 40 CFR 63 subpart ZZZZ is applicable.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	No	N/A	This regulation is not applicable because the facility is not equipped with affected equipment, as defined under the regulation. The facility is a production field facility located prior to the point of custody transfer, and an area source of HAP. Only aggregated HAP emissions from glycol dehydration units are included in an area HAP source determination. The regulation applies only to dehydrators at an area source of HAP (see §63.760(b)(2)). There are no dehydrators at the facility.
MACT 40 CFR 63 Subpart HHH	National Emission Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities	No	N/A	This regulation is not applicable because the facility is not a natural gas transmission and storage facility as defined by the subpart. A compressor station that transports natural gas prior to the point of custody transfer or to a natural gas processing plant (if present) are not considered a part of the natural gas transmission and storage source category (see §63.1270(a)).
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	This regulation is not applicable because the facility is an area HAP source as defined by the subpart (see §63.7480) and is not equipped with boilers and process heaters. For natural gas production facilities, only the HAP emissions from dehydrators and storage vessels with the potential for flash emissions are aggregated for a major source determination (see §63.7575).
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	This regulation is not applicable because there are no coal- or oil-fired electric utility steam generating units (EGUs) at the facility.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	RICE 1a, 2a & 3a; Potentially applies to RICE 1b, 2b & 3b	This regulation is applicable because the facility is equipped with affected sources under the regulation. The station is an area source of HAP as defined by the subpart. For production field facilities, only aggregated HAP emissions from engines, turbines, dehydrators, and storage vessels with the potential for flash emissions are taken into consideration in determining the HAP area/major source determination (see §63.6675). As defined at §63.6585(c), the station is an area source of HAP. Under §63.6590(a)(1)(iii), a stationary RICE located at an area source of HAP is considered an "existing" unit if construction or reconstruction commenced before June 12, 2006. ("Construction" does not include the reinstallation of an existing engine at another location.) Installed RICE units 1a, 2a & 3a are each 4-stroke, lean burn (4SLB) spark ignition (SI) RICE with a site rating of more than 500 hp, constructed prior to December 19, 2002. Therefore, they are "existing" engines under the regulation. Under the provisions of §63.6603(a) for existing RICE, the maintenance and operating standards in Table 2d, row #8 are applicable, including oil and filter change and inspection of spark plugs, all hoses and belts every 2,160 hours of operating time or annually, whichever comes first. Engine startups and idle times are minimized in accordance with the regulation. The applicability of the regulation to RICE units 1b, 2b and 3b will be evaluated upon their installation.
40 CFR 64	Compliance Assurance Monitoring	No	N/A	This regulation is not applicable because no equipment at the facility requires a control device to achieve compliance with emission limits or standards where pre control emissions equal or exceed the major source threshold (100 tons per year). (see §64.2(a)).
40 CFR 68	Chemical Accident Prevention	No	N/A	This regulation is not applicable because the facility does not store any of the identified toxic and flammable substances in quantities exceeding the applicability thresholds (see §68.10(a), §68.115(a), and §68.130 Tables 1-4).
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	This regulation is not applicable because the facility does not generate commercial electric power or electric power for sale.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	This regulation is not applicable because the facility does not generate commercial electric power or electric power for sale.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	This regulation is not applicable because the facility does not generate commercial electric power or electric power for sale.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	This regulation is not applicable because the facility does not generate commercial electric power or electric power for sale.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	This regulation is not applicable because the facility does not produce, transform, destroy, import, or export ozone-depleting substances (see §82.1(b),); does not service motor vehicle air conditioning units (see §82.30(b)); and does not sell, distribute, or offer for sale or distribution any product that contains ozone-depleting substances (see §82.64).

Section 14

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

- ☑ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ✓ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

This Page Intentionally Left Blank

Section 15

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

Not applicable, as there are no alternative operating scenarios at this facility.

This Page Intentionally Left Blank

Section 16

Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC). See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	Х
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

- $\hfill\square$ See attached, approved modeling waiver for all pollutants from the facility.
- ☑ See attached, approved modeling **waiver for some** pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.
- □ Attached in UA4 is a **modeling report for some** pollutants from the facility.
- \Box No modeling is required.

This section contains an air quality dispersion modeling report for the modified Buena Vista Compressor Station. The modeling was performed in accordance with NMAQB procedures and requirements and demonstrates that the facility emissions do not cause or contribute to any exceedance of any ambient air quality standard for nitrogen dioxide (NO2) and carbon monoxide (CO). The NMAQB granted a request for waiver from dispersion modeling of volatile organic compounds (VOC), particulate matter less than 10 microns in diameter (PM10), particulate matter less than 2.5 microns in diameter (PM2.5) and sulfur dioxide (SO2) emissions.

Air Dispersion Modeling Report Harvest Four Corners, LLC Buena Vista Compressor Station

Introduction

This report documents the dispersion modeling techniques used to assess air quality impacts from the Harvest Four Corners, LLC (H4C) Buena Vista Compressor Station. The analysis evaluates compliance with applicable National Ambient Air Quality Standards (NAAQS), New Mexico Ambient Air Quality Standards (NMAAQS) and allowable Prevention of Significant Deterioration (PSD) increment consumption. Nitrogen dioxide (NO₂) and carbon monoxide (CO) impacts from the facility are evaluated. Modeling is not required for VOC emissions, and as SO₂ and particulate emissions are below the threshold for modeling, a modeling waiver was obtained for these pollutants.

The analysis is conducted in accordance with the approved protocol, dated October 27, 2022 and the *New Mexico Air Quality Bureau Air Dispersion Modeling Guidelines, Revised July 2022.*

The analysis demonstrates emissions from the Buena Vista Compressor Station will not cause or contribute to an exceedance of the applicable federal and state standards.

Applicant and Consultant Information

Applicant information is as follows:

Applicant:	Harvest Four Corners, LLC
Facility:	Buena Vista Compressor Station
Current Permit:	6362-R2, dated October 31, 2018

Consultant information is as follows:

Company:EcoLogic Environmental Consultants, LLCContact:Walter KonkelPhone Number:805-964-7597Email:wkonkel@elogicllc.com

Facility Operations and Description

The Buena Vista Compressor Station is equipped to compress natural gas. The air quality permit approves operation of the following emission sources: three Waukesha 7042GL natural gas-fired reciprocating engines (Units 1a-3a) or three Waukesha 5790GL natural gas-fired reciprocating engines (Units 1b-3b). The proposed modification is to replace the three Waukesha 5790GL engines (Units 1b-3b) with three Caterpillar 3516LE engines (Units 1b-3b).

The facility is located in Section 32, Range 8 West, Township 24 North, at approximately 257,570 meters Easting, 4,017,800 meters Northing, Zone 13, North American Datum 1983 (NAD83), at an elevation of approximately 7,004 feet above mean sea level. The facility is in a rural area of southeastern San Juan County.

Air Quality Standards

Table 1 identifies the applicable significant impact levels (SIL), NAAQS and NMAAQS:

	SIL, NAAQS and NNIAAQS										
	Averaging	SIL	NAAQS	NMAAQS							
Pollutant	Period	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$							
NO ₂	1-Hour	7.52	188.03								
NO_2	Annual	1.0	99.66	94.02							
CO	1-Hour	2,000	40,069.6	14,997.5							
CO	8-Hour	500	10,303.6	9,960.1							

Table 1
SIL, NAAQS and NMAAQS

The high-eighth-high daily maximum 1-hour NO_2 concentration is used to evaluate compliance with the NAAQS. Demonstration of compliance with 1-hour NO_2 standard is automatically a demonstration of compliance with the 24-hour NMAAQS; therefore, modeling of the 24-hour NO_2 standard was not performed.

The CO NAAQS are not to be exceeded more than once per year. The CO NMAAQS are not to be exceeded. Therefore, compliance with the CO NMAAQS will demonstrate compliance with the CO NAAQS.

The facility is located in Air Quality Control Region 014, an attainment area for all pollutants; therefore, non-attainment modeling impacts will not be considered.

The Buena Vista Compressor Station will continue to be a PSD minor source (permitted NO₂, VOC, SO₂ and particulate emissions will not exceed 250 tons per year). Table 2 identifies the allowable increment.

Table 2

Allowable PSD Increment										
Pollutant	Averaging	Area	Allowable Increment							
	Period	Туре	$(\mu g/m^3)$							
NO ₂	Annual	Class II	25							

As there are no Class I areas located within 50 kilometers of the facility, modeling of PSD increment consumption at nearby Class I areas is not included in this analysis.

Dispersion Model

Harvest Four Corners, LLC

Both significant and cumulative impact modeling was conducted using the latest version of the AMS/EPA Regulatory Model (AERMOD). The Beeline Software BEEST for Windows modeling manager was used to prepare the input files and manage processing. Environmental Protection Agency (EPA) recommended defaults were used. As the station is in a rural area, urban area modeling was not conducted.

Facility Sources

The following Buena Vista Compressor Station sources were included in the modeling evaluation: three Caterpillar G3516LE natural gas-fired reciprocating engines (Units 1b-3b). The Caterpillar G3516LE compressor engines have higher NOx and CO emissions compared to the Waukesha 7042GL engines and are expected to result in higher modeled concentrations.

Modeling was conducted using emission rates calculated from manufacturer's data as identified in the application. All engines were modeled using the NOx and CO pound per hour emission rates identified in the permit application. All sources were assumed to operate 8,760 hours per year. Modeling was conducted using stack parameters provided by the manufacturer and H4C, as identified in the application.

There are no startup, shutdown and maintenance (SSM) emissions associated with the emission sources.

Significant impact modeling was conducted using the Caterpillar 3516LE natural gas-fired reciprocating engines. The NAAQS and NMAAQS cumulative impact modeling was also conducted using all reciprocating engines at the site.

PSD increment consumption modeling was conducted using all facility sources, as they will all be installed after the AQCR 014 NO_2 minor source baseline date.

The location of the station and sources were identified from the facility plot plan provided in Section 5 of the application. The coordinate system used to reference both source and receptor locations was of the Universal Transverse Mercator (UTM) convention (NAD83).

Google Earth estimates the average facility elevation at approximately 7,012 feet above mean sea level. The terrain elevation data obtained from National Elevation Dataset (NED) data (1/3 arc-second), taken from the United States Geological Survey (USGS) website, indicates the average facility elevation is approximately 7,004 feet above mean sea level. As the facility is graded and essentially flat, the base elevation of each emission source was set equal to 7,004 feet above mean sea level.

The modeled Buena Vista Compressor Station source locations, parameters, and emission rates are provided in Table 6 at the end of this report. A plot showing the locations of the modeled sources in relation to the fence line and structures is provided as Figure 1 at the end of this report.

Neighboring Sources

Neighboring sources were provided by the NMAQB and include all sources within 25 kilometers of the facility and all sources between 25 and 50 kilometers from the facility that are permitted to emit 1,000 pounds per hour or more. All sources provided by the NMAQB were included in the modeling, no changes were made to the data.

Table 7 provided with this report identifies the modeled neighboring source locations, parameters and emission rates.

Receptor Selection

A Cartesian grid with variable receptor spacing was used to evaluate significant impacts around the facility. The grid contained receptors with 50-meter spacing along the fence line and from the fence line out to at least 500 meters, 100-meter spacing from the 500 meters beyond the fence line out to at least 1,000 meters, and 500-meter spacing from 1,000 meters beyond the fence line out to at least 3,000 meters. In order to fully define the 1-hour NO_2 SIA, additional receptors with 1,000 meter spacing were extended out 15,000 meters from the facility.

Cumulative impact modeling was conducted using all receptors from the grid defined in the paragraphs above where there were significant impacts.

The coordinate system used to reference receptor locations was of the UTM convention (NAD83). Terrain elevation data were obtained from the most recent United States Geological Survey National Elevation Dataset (NED) data with 1/3 arc-second resolution. The AERMOD Terrain Preprocessor (AERMAP) was used to calculate the receptor elevations and terrain maximums. The domain used to calculate terrain maximums was sufficient to identify all terrain nodes that create a slope greater than or equal to 10 percent.

Building Downwash

The EPA Building Profile Input Program-Prime (BPIP-Prime) was used to evaluate structures for building downwash impacts. All structures close enough (of sufficient height and/or width) to produce downwash effects from the stacks were included in the evaluation.

Google Earth estimates the average facility elevation at approximately 7,012 feet above mean sea level. The terrain elevation data obtained from National Elevation Dataset (NED) data (1/3 arc-second), taken from the United States Geological Survey (USGS) website, indicates the average facility elevation is approximately 7,004 feet above mean sea level. As the facility is graded and essentially flat, the base elevation of each structure was set equal to 7,004 feet above mean sea level.

A plot showing the locations of the structures in relation to the sources and fence line is provided as Figure 1 at the end of this report. The structure heights, elevations and locations are shown in Table 8. The BPIP-Prime input and output files are available on the CD.

Meteorological Data

Modeling was conducted using Bloomfield meteorological data collected during 2015-2019. The data were obtained from the NMAQB web site. The profile base elevation was set at 1,713 meters above mean sea level. These data are considered representative of the site as they are closest to the Buena Vista Compressor Station.

NO_X to NO₂ Conversion

 NO_X impacts were converted to NO_2 impacts using the Ambient Ratio Method 2 (ARM2). ARM2 provides estimates of representative equilibrium ratios of NO_2/NO_x based on ambient levels of NO_2 and NO_x derived from national data from the EPA's Air Quality System. The national defaults for ARM2 were used including a minimum ambient NO_2/NO_x ratio of 0.5 and a maximum ambient NO_2/NO_x ratio of 0.9.

Methodology

The modeling was conducted in accordance with this protocol and the *New Mexico Air Quality Bureau Air Dispersion Modeling Guidelines, Revised July 2022*. First, NO₂ and CO emissions from the three Buena Vista compressor engines were modeled to determine the SIA.

CO Impacts

As CO 1-hour and 8-hour average impacts were all less than the SILs, no additional CO modeling was conducted.

NO₂ Impacts

As NO₂ 1-hour and annual average impacts exceeded the SILs, cumulative NO₂ impacts for comparison with the NAAQS and NMAAQS were determined. NO₂ 1-hour average impacts were determined using all Buena Vista sources plus background concentrations.

Where NO₂ annual average cumulative impacts from Buena Vista Compressor Station sources and monitored background concentration exceeded the NAAQS, NMAAQS or PSD increment, cumulative impacts were determined using Buena Vista sources plus neighboring sources.

Results

Significant Impact Area Modeling

SIA modeling was conducted using the three Buena Vista Caterpillar G3516LE compressor engines. Two model runs were required, one for annual NO₂ and 1-hour and 8-hour CO (for evaluating impacts for each year of meteorological data). Another SIA model run was performed for 1-hour NO₂ (for evaluating impacts averaged over five years). For all short-term averages, the SIA were determined using first-high impacts.

The SIA for 1-hour average NO_2 impacts extended out approximately 14 km from the center of the station. The largest SIA for annual average NO_2 impacts extended out approximately 1,400 meters from the center of the station and was associated with the 2017 meteorological data.

There were no significant CO impacts. The highest modeled high-first-high CO 1-hour average impact was $325.36 \ \mu\text{g/m}^3$ and the highest modeled high-first-high CO 8-hour average impact was $183.96 \ \mu\text{g/m}^3$. These concentrations occurred during 2015.

Isopleths plots of the NO₂ significant impact areas are provided in Figures 2-7 at the end of this report.

Cumulative Impact Modeling (NAAQS and NMAAQS)

To evaluate compliance with the NAAQS and NMAAQS, cumulative NO_2 impacts were determined using Buena Vista sources and a background concentration. A representative 1-hour NO_2 background concentration was used for the 1-hour NO_2 compliance demonstration as described above. The modeled 1-hour high impacts are summarized in Table 3 below. The identified 1-hour average impact is the modeled high-eighth-high daily maximum 1-hour NO_2 concentration at the indicated receptor.

	Cumulative 1-Hour NO ₂ Impacts (NAAQS and NMAAQS)										
			Modeled	Modeled H8H							
	Location	Location	H8H 1-hour	1-hour Impact +	NAAQS	Percent of	NMAAQS				
Pollutant	UTMX	UTMY	Impact	Background	$(\mu g/m^3)$	NAAQS	$(\mu g/m^3)$				
	(m)	(m)	$(\mu g/m^3)$	$(\mu g/m^3)$		(%)					
NO ₂	257,700	4,017,750	103.36	164.76	188	87.6					

 Table 3

 Cumulative 1-Hour NO2 Impacts (NAAOS and NMAAOS)

The modeled annual average NO₂ impacts are summarized in Table 4 below. The Bloomfield annual average NO₂ concentration of 18.5 μ g/m³ was used for the NAAQS and NMAAQS compliance demonstration.

Cumulative Annual Average NO_2 impacts (NAAQS and NMAAQS)											
Pollutant	Year	Location UTMX (m)	Location UTMY (m)	Modeled Annual Average Impact (μg/m ³)	Modeled Annual Impact + Background (µg/m ³)	NAAQS (µg/m ³)	NMAAQS (µg/m ³)	Percent of NMAAQS (%)			
NO ₂	2015	257,610.80	4,017,826.45	5.59	24.09	100	94.02	25.6			
NO ₂	2016	257,619.20	4,017,787.70	5.67	24.17	100	94.02	25.7			
NO ₂	2017	257,500.00	4,017,700.00	13.77	32.27	100	94.02	34.3			
NO ₂	2018	257,619.20	4,017,787.70	6.08	24.58	100	94.02	26.1			
NO ₂	2019	257,619.20	4,017,787.70	6.24	24.74	100	94.02	26.3			

 Table 4

 Cumulative Annual Average NO₂ Impacts (NAAOS and NMAAOS)

The highest modeled annual NO₂ impacts occurred at the facility fenceline or within several hundred meters of the fenceline; therefore, additional model runs were not needed to ensure the modeled high values were identified.

Cumulative Impact Modeling (PSD Increment)

To evaluate compliance with allowable PSD increment consumption, cumulative NO₂ impacts were initially determined using all Buena Vista sources and background concentrations. As shown in Table 4 above, this method demonstrates compliance with the allowable PSD increment consumption for all years modeled except 2017. For 2017, cumulative NO₂ impacts were determined using all Buena Vista sources and all increment consuming neighboring New Mexico sources located within 25 km of the station.

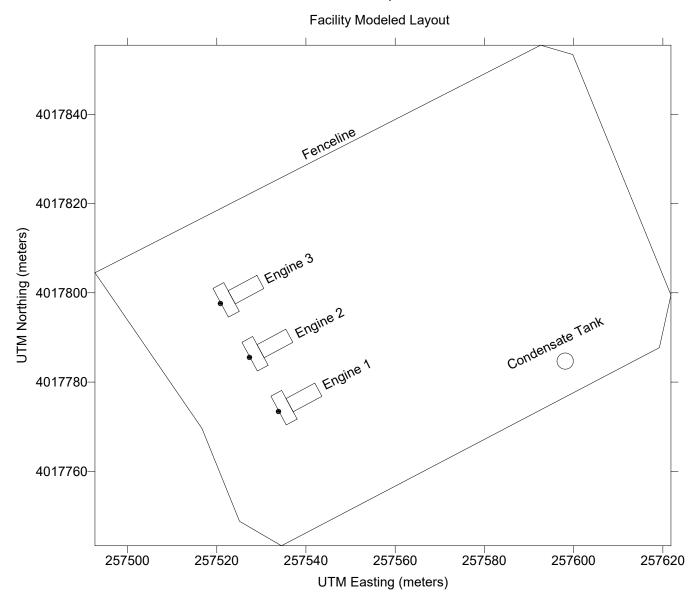
The modeled high impacts and a comparison with allowable PSD increment consumption are identified in Table 5 below.

	Cumulative NO2 Impacts (PSD Increment)										
	Modeled										
		Location	Location	Annual Average	Allowable	Percent of					
Pollutant	Year	UTMX	UTMY	Impact	Increment	Increment					
		(m)	(m)	$(\mu g/m^3)$	$(\mu g/m^3)$	(%)					
NO ₂	2015	257,610.80	4,017,826.45	24.09 ¹	25	96.4					
NO ₂	2016	257,619.20	4,017,787.70	24.17 ¹	25	96.7					
NO ₂	2017	257,500.00	4,017,700.00	14.58 ²	25	58.3					
NO ₂	2018	257,619.20	4,017,787.70	24.58 ¹	25	98.3					
NO ₂	2019	257,619.20	4,017,787.70	24.74 ¹	25	99.0					
1 Total imm	aat haaad ar	Duono Visto soumo	as plus appual backer	and accontration							

Table 5	
Cumulative NO2 Impacts (PSD In	ncrement)

1-Total impact based on Buena Vista sources plus annual background concentration

² - Total impact based on Buena Vista sources and surrounding New Mexico increment consuming sources.

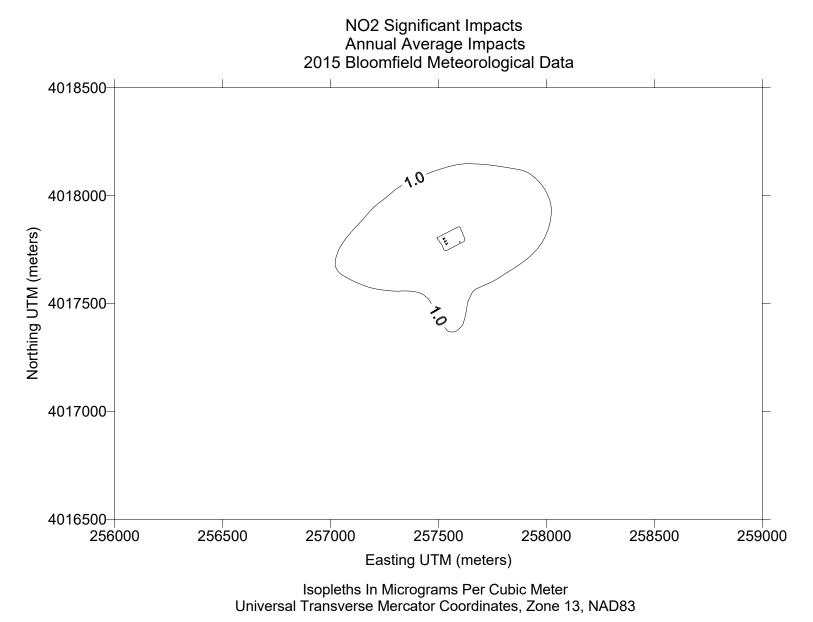

The highest modeled annual NO₂ impacts occurred at the facility fenceline or within several hundred meters of the fenceline; therefore, additional model runs were not needed to ensure the modeled high values were identified.

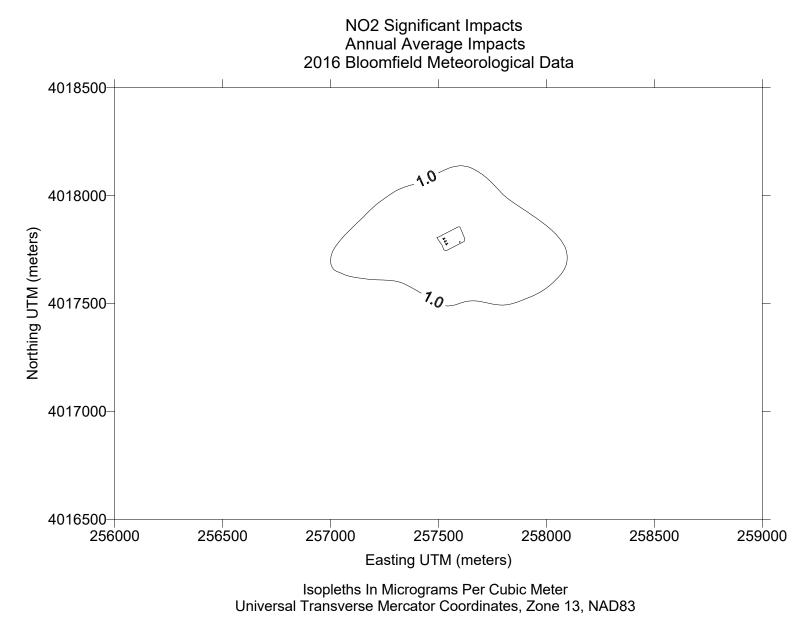
All model input and output files are available on the CD provided with this report. The README.TXT file (on the CD) identifies the contents of each zipped file.

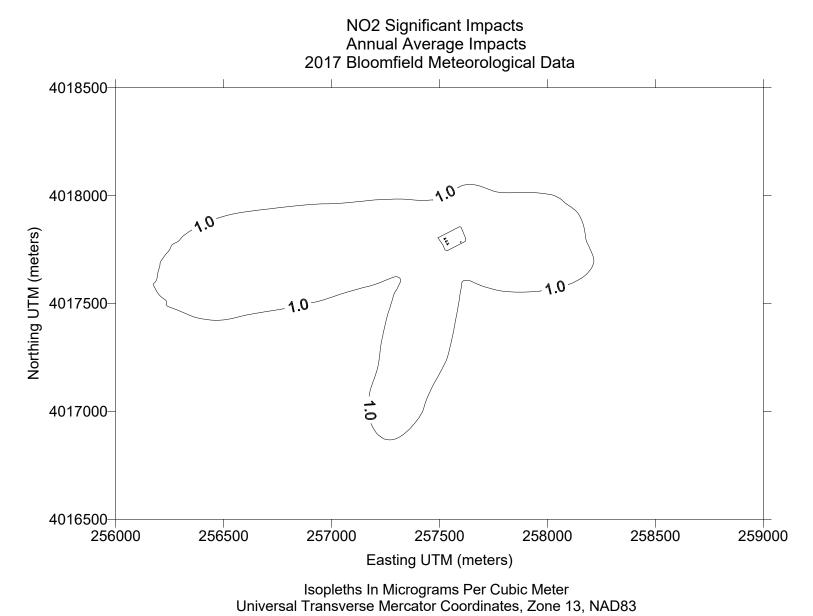
Summary/Conclusions

The analysis demonstrates NO_2 and CO emissions from the Buena Vista Compressor Station will not cause or contribute to an exceedance of the applicable federal and state standards. The modeling requirements are satisfied and a permit can be issued.

Harvest Four Corners, LLC Buena Vista Compressor Station


Universal Transverse Mercator Coordinates, Zone 13, NAD83


NO2 Significant Impacts Maximum 1st-Highest 1-Hour Impacts Averaged Over Five Years 2015-2019 Bloomfield Meteorological Data 4030000 + 7,5 4025000-·0 Northing UTM (meters) 4020000 4015000-7.5 4010000-4005000 245000 250000 255000 260000 265000 270000 Easting UTM (meters)


Harvest Four Corners, LLC – Buena Vista Compressor Station Isopleth Plot of AERMOD Output


Isopleths In Micrograms Per Cubic Meter Universal Transverse Mercator Coordinates, Zone 13, NAD83

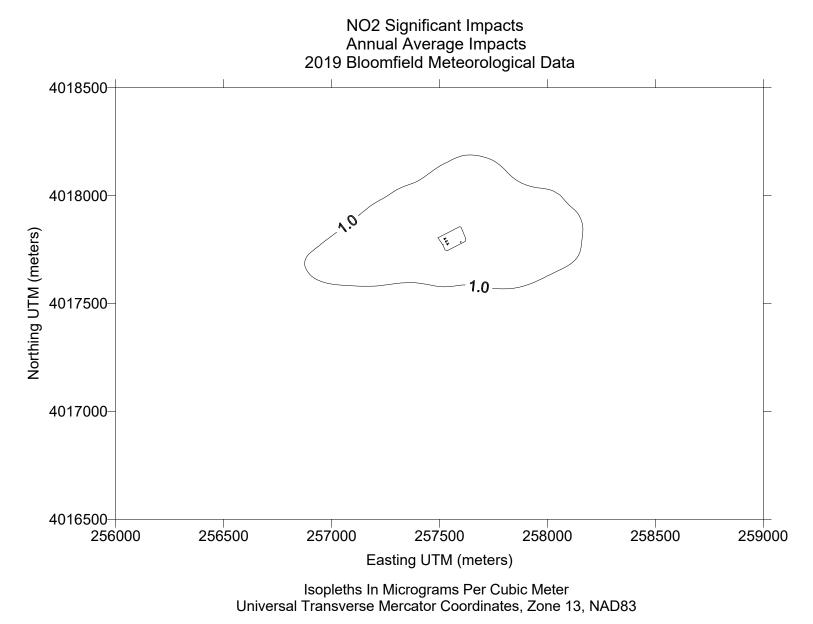

Figure 2

Table 6Buena Vista Compressor StationFacility Point Source Locations, Parameters and Emission Rates

	Modeled												
Unit	Source	Release		Source				Stack	Stack	Exit	Stack	NOX	CO
Number	Name	Туре	FLAT	Description	X-Coord.	Y-Coord.	Elevation	Height	Temp.	Velocity	Diameter	Emissions	Emissions
					(m)	(m)	(ft)	(ft)	(°F)	(ft/sec)	(ft)	(lb/hr)	(lb/hr)
1	ENGINE1			Caterpillar G3516LE #1	257533.83	4017773.39	7004	22.00	965.00	158.50	1.00	5.380E+00	7.980E+00
2	ENGINE2			Caterpillar G3516LE #2	257527.33	4017785.52	7004	22.00	965.00	158.50	1.00	5.380E+00	7.980E+00
3	ENGINE3			Caterpillar G3516LE #3	257520.82	4017797.60	7004	22.00	965.00	158.50	1.00	5.380E+00	7.980E+00

Source	Source				Stack		Exit	Stack	NOx
ID	Description	X-Coord.	Y-Coord.	Elevation	Height	Temperature	Velocity	Diameter	Emissions
		(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	(g/sec)
32517E1	Neigboring Source	257674.57	4016928.2	2139.57	1.800	572.600	15.000	0.100	2.898E-01
34819E1	Neigboring Source	256290.42	4017811.7	2116.97	2.130	845.930	36.880	0.090	1.260E-01
34819E2	Neigboring Source	256297.95	4017818.7	2117.01	2.130	845.930	36.880	0.090	1.260E-01
34696E1	Neigboring Source	256251.88	4017181.1	2115.66	4.820	722.040	35.270	0.150	1.890E-01
34605E1	Neigboring Source	256187.05	4016729.3	2107.35	4.820	722.040	35.270	0.150	1.887E-01
34892E1	Neigboring Source	256074.69	4015605.5	2103.91	4.570	874.820	26.120	0.200	3.024E-01
34892E2	Neigboring Source	256082.22	4015612.5	2103.97	3.050	1018.710	62.450	0.080	2.772E-02
34892E3	Neigboring Source	256075.44	4015616.1	2103.93	3.050	1018.710	62.450	0.080	2.772E-02
34892E4	Neigboring Source	256067.84	4015614	2103.86	3.050	1018.710	62.450	0.080	2.772E-02
36499E16	Neigboring Source	258316.01	4014799.3	2093.63	6.860	806.480	34.810	0.400	1.764E-01
36499E17	Neigboring Source	258323.54	4014806.3	2093.55	6.860	806.480	34.810	0.400	1.764E-01
36499E18	Neigboring Source	258317	4014810	2093.05	6.770	740.370	71.380	0.250	6.804E-01
36499E19	Neigboring Source	258309	4014808	2092.93	6.770	740.370	71.380	0.250	6.804E-01
36499E20	Neigboring Source	258305	4014801	2093.42	6.770	740.370	71.380	0.250	6.804E-01
36499E21	Neigboring Source	258306.57	4014792.7	2093.80	6.770	768.710	59.410	0.250	5.544E-01
33163E1	Neigboring Source	258842.64	4014556.2	2099.06	6.400	722.040	35.080	0.250	2.898E-01
33163E11	Neigboring Source	258850.17	4014563.2	2099.04	7.000	730.000	28.000	0.300	1.386E-01
36553C2	Neigboring Source	256993.97	4013629.1	2089.16	18.290	1273.000	20.000	3.750	0.000E+00
36553E3	Neigboring Source	257001.51	4013636.1	2089.20	4.880	832.590	40.170	0.250	1.764E-01
36553E4	Neigboring Source	256994.72	4013639.7	2089.21	4.880	790.930	40.970	0.150	2.520E-01
36553E6	Neigboring Source	256987.13	4013637.6	2089.19	4.570	725.370	47.490	0.260	5.166E-01
36553E13	Neigboring Source	256984.54	4013622.5	2089.13	4.880	422.040	3.050	0.300	1.512E-02
36553E26	Neigboring Source	256991.49	4013617.5	2089.14	4.880	422.040	3.050	0.300	1.512E-02
36553E28	Neigboring Source	257000	4013619	2089.14	4.880	422.040	3.050	0.300	1.512E-02
36553E30	Neigboring Source	257006	4013626	2089.14	4.880	422.040	3.050	0.300	1.512E-02
36553E32	Neigboring Source	257005	4013635	2089.19	4.880	422.040	3.050	0.300	1.512E-02
36553E62	Neigboring Source	256998	4013641	2089.22	4.880	422.040	3.050	0.300	1.512E-02
36553E61	Neigboring Source	256988.84	4013641.4	2089.20	8.380	813.710	36.670	0.360	3.528E-01
36553E27	Neigboring Source	256987.22	4013616.6	2089.12	4.880	422.040	3.050	0.300	1.512E-02
36553E29	Neigboring Source	256997.62	4013615	2089.12	4.880	422.040	3.050	0.300	1.512E-02
36553E31	Neigboring Source	257006.46	4013621.1	2089.14	4.880	422.040	3.050	0.300	1.512E-02
36537E3	Neigboring Source	255473.1	4013756	2067.87	4.500	690.000	20.000	0.200	1.285E+00
36537E4	Neigboring Source	255480.64	4013763	2067.87	7.000	730.000	28.000	0.300	4.914E-02
40427E31	Neigboring Source	252279.29	4017574.1	2101.96	4.570	1085.930	50.290	0.150	1.172E-01
40427E32	Neigboring Source	252281.65	4017584.8	2102.09	4.570	952.590	34.750	0.250	2.117E-01
40427E33	Neigboring Source	252275.96	4017594.4	2102.87	4.570	878.150	42.670	0.080	2.520E-02
40427E34	Neigboring Source	252265.03	4017597.7	2103.76	4.570	878.150	42.670	0.080	2.520E-02

Source	Source				Stack		Exit	Stack	NOx
ID	Description	X-Coord.	Y-Coord.	Elevation	Height	Temperature	Velocity	Diameter	Emissions
		(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	(g/sec)
40427E35	Neigboring Source	252254.65	4017592.5	2104.27	4.570	878.150	42.670	0.080	2.520E-02
40427E37	Neigboring Source	252250.52	4017581.4	2104.22	7.920	1273.000	20.000	1.220	5.292E-02
40427E38	Neigboring Source	252255.14	4017570.3	2103.71	7.920	1273.000	20.000	1.220	5.292E-02
36593E15	Neigboring Source	254795.69	4013253.5	2081.38	8.530	806.480	59.040	0.300	3.528E-01
36593E65	Neigboring Source	254792.45	4013231.4	2081.26	8.530	806.480	59.040	0.300	3.528E-01
34655E1	Neigboring Source	262272.22	4014691.5	2135.85	1.800	572.600	15.000	0.100	2.905E-01
38980E1	Neigboring Source	261986.91	4021467.1	2125	6.10	790.93	40.93	0.150	1.008E-01
38980E2	Neigboring Source	261994.45	4021474.2	2126	7.62	1273.00	20.00	1.220	5.279E-01
38980E6	Neigboring Source	261987.66	4021477.7	2125	6.10	816.48	35.81	0.200	1.512E-01
38980E7	Neigboring Source	261980.07	4021475.6	2125	6.10	816.48	35.81	0.200	1.512E-01
38980E8	Neigboring Source	261975.83	4021468.7	2125	1.83	588.71	1.55	0.200	1.260E-02
38980E10	Neigboring Source	261977.48	4021460.6	2125	6.10	794.82	52.85	0.300	3.490E-01
38980E12	Neigboring Source	261984.43	4021455.6	2126	6.10	772.59	28.82	0.300	8.694E-02
38980E13	Neigboring Source	261993.11	4021456.7	2126	6.10	816.48	35.81	0.200	1.512E-01
38980E14	Neigboring Source	261998.82	4021463.7	2126	6.10	1018.71	35.14	0.100	1.386E-02
35198C1	Neigboring Source	263272.09	4016297.7	2106	6.10	1273.00	20.00	20.806	5.466E-02
35198E1	Neigboring Source	263279.63	4016304.7	2106	4.57	1075.93	26.12	0.200	2.772E-01
40393E1	Neigboring Source	251463.79	4016723.3	2092	7.92	922.04	2.74	1.220	5.418E-02
40393E2	Neigboring Source	251471.33	4016730.3	2092	7.92	922.04	2.74	1.220	5.418E-02
40393E3	Neigboring Source	251464.54	4016733.8	2092	7.92	922.04	2.74	1.220	6.300E-03
40393E4	Neigboring Source	251456.95	4016731.7	2091	4.57	952.59	34.75	0.250	2.117E-01
40393E5	Neigboring Source	251452.7	4016724.8	2091	4.57	952.59	34.75	0.250	2.117E-01
40393E6	Neigboring Source	251454.36	4016716.7	2091	4.57	1018.71	62.48	0.080	1.638E-02
40393E7	Neigboring Source	251461.31	4016711.7	2091	4.57	1018.71	62.48	0.080	1.638E-02
37750E23	Neigboring Source	252667.86	4012392.4	2050	6.40	790.93	35.94	0.340	6.892E-01
37750E24	Neigboring Source	252674.81	4012387.5	2050	7.62	1273.00	20.00	20.806	8.820E-03
37750E25	Neigboring Source	252683.49	4012388.6	2050	7.62	1273.00	20.00	20.806	8.820E-03
37750E26	Neigboring Source	252689.2	4012395.5	2050	7.62	1273.00	20.00	20.806	8.820E-03
37750E27	Neigboring Source	252688.63	4012404.7	2051	7.62	1273.00	20.00	20.806	8.820E-03
37750E28	Neigboring Source	252681.8	4012411.2	2051	5.49	809.82	16.43	0.240	5.166E-02
37750E29	Neigboring Source	252672.16	4012411.3	2050	3.96	725.37	42.03	0.120	2.772E-02
37750E30	Neigboring Source	252664.9	4012404.6	2050	3.96	725.37	42.03	0.120	2.772E-02
40432E29	Neigboring Source	250359.98	4016729	2069	4.57	1085.93	50.29	0.150	1.172E-01
40432E30	Neigboring Source	250362.34	4016739.7	2070	4.57	1085.93	50.29	0.150	1.172E-01
40432E31	Neigboring Source	250356.65	4016749.3	2071	4.57	1085.93	50.29	0.150	1.172E-01
40432E32	Neigboring Source	250345.72	4016752.5	2071	4.57	878.15	42.67	0.080	2.520E-02
40432E33	Neigboring Source	250335.34	4016747.3	2071	4.57	878.15	42.67	0.080	2.520E-02

Source	Source				Stack		Exit	Stack	NOx
ID	Description	X-Coord.	Y-Coord.	Elevation	Height	Temperature	Velocity	Diameter	Emissions
		(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	(g/sec)
40432E34	Neigboring Source	250331.2	4016736.2	2070	4.57	878.15	42.67	0.080	2.520E-02
40432E37	Neigboring Source	250335.83	4016725.1	2069	7.92	1273.00	20.00	1.220	5.292E-02
40432E38	Neigboring Source	250347	4016720	2068	7.92	1273.00	20.00	1.220	5.292E-02
34248E1	Neigboring Source	249922.22	4019094.4	2112	4.82	722.04	35.27	0.150	1.071E-01
38839E1	Neigboring Source	252691.23	4011181.8	2058	6.10	816.48	35.83	0.200	3.515E-01
38839E2	Neigboring Source	252698.76	4011188.8	2058	6.10	772.59	28.82	0.300	8.820E-02
38839E3	Neigboring Source	252691.98	4011192.3	2058	6.10	816.48	35.83	0.200	1.525E-01
38839E4	Neigboring Source	252684.38	4011190.2	2058	6.10	816.48	35.83	0.200	1.525E-01
38839E5	Neigboring Source	252680.14	4011183.3	2058	6.10	816.48	35.83	0.200	1.525E-01
38839E10	Neigboring Source	252681.79	4011175.2	2058	1.83	588.71	1.55	0.200	1.260E-03
38839E11	Neigboring Source	252688.74	4011170.2	2058	7.62	1273.00	20.00	1.220	9.324E-02
38839E7	Neigboring Source	252697.42	4011171.4	2058	6.10	790.93	40.96	0.150	1.021E-01
38839E6	Neigboring Source	252703.13	4011178.3	2058	6.10	1018.71	35.16	0.100	1.386E-02
34057E8	Neigboring Source	261212.48	4025491.8	2194	6.71	643.71	46.24	0.300	5.544E-01
34057E10	Neigboring Source	261213.23	4025502.3	2195	6.71	643.71	46.24	0.310	5.544E-01
34057E12	Neigboring Source	261205.63	4025500.2	2194	6.71	643.71	46.24	0.310	5.544E-01
37693E1	Neigboring Source	252213.64	4011035.5	2049	7.62	722.04	35.08	0.250	1.777E-01
37693E3	Neigboring Source	252221.18	4011042.5	2048	4.88	366.48	1.74	0.300	1.260E-02
37693E4	Neigboring Source	252214.39	4011046.1	2048	4.57	725.37	47.49	0.260	3.541E-01
37693E5	Neigboring Source	252206.79	4011044	2048	7.62	806.48	59.04	0.300	1.777E-01
37693E15	Neigboring Source	252211.15	4011024	2049	6.10	1273.00	20.00	20.806	8.820E-03
40322E1	Neigboring Source	249442.96	4013920.8	2074	6.13	1273.00	20.00	1.220	7.560E-03
40322E2	Neigboring Source	249450.5	4013927.8	2074	6.13	1273.00	20.00	1.220	7.560E-03
40322E3	Neigboring Source	249443.71	4013931.4	2074	4.82	795.93	15.54	0.210	8.946E-02
40322E4	Neigboring Source	249436.12	4013929.3	2074	5.52	746.48	24.99	0.240	3.200E-01
40322E37	Neigboring Source	249430.81	4013931.2	2074	4.51	919.82	8.01	0.210	2.142E-02
40322E38	Neigboring Source	249426.68	4013920.1	2074	4.51	919.82	8.01	0.210	2.142E-02
34523E1	Neigboring Source	261367.94	4026002.8	2227	4.82	722.04	35.27	0.150	2.104E-01
34523E2	Neigboring Source	261375.47	4026009.8	2227	2.13	927.59	35.05	0.090	6.847E-02
37765E4	Neigboring Source	251417.33	4010427.1	2059	4.88	366.48	1.74	0.300	1.260E-02
37765E20	Neigboring Source	251424.86	4010434.1	2059	6.10	1273.00	20.00	20.806	1.512E-02
37765E21	Neigboring Source	251418.08	4010437.7	2059	6.10	1273.00	20.00	20.806	1.512E-02
37765E22	Neigboring Source	251410.48	4010435.6	2059	6.10	1273.00	20.00	20.806	1.512E-02
37765E23	Neigboring Source	251406.24	4010428.7	2059	6.10	1273.00	20.00	20.806	1.512E-02
37765E28	Neigboring Source	251407.89	4010420.6	2059	4.88	366.48	1.74	0.300	1.260E-02
37765E29	Neigboring Source	251414.84	4010415.6	2059	4.88	366.48	1.74	0.300	1.260E-02
37765E30	Neigboring Source	251423.52	4010416.7	2059	4.88	366.48	1.74	0.300	1.260E-02

Source	Source				Stack		Exit	Stack	NOx
ID	Description	X-Coord.	Y-Coord.	Elevation	Height	Temperature	Velocity	Diameter	Emissions
		(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	(g/sec)
37765E31	Neigboring Source	251429.23	4010423.7	2059	4.88	366.48	1.74	0.300	1.260E-02
37765E51	Neigboring Source	251420.98	4010413.1	2059	4.88	832.59	40.17	0.250	1.777E-01
37765E52	Neigboring Source	251429.82	4010419.2	2059	8.38	813.71	36.67	0.360	3.541E-01
37765E53	Neigboring Source	251432.17	4010429.9	2059	4.57	725.37	47.49	0.260	5.153E-01
40137E1	Neigboring Source	260097.6	4007942.1	2083	6.13	1273.00	20.00	1.220	6.300E-03
40137E2	Neigboring Source	260105.14	4007949.1	2083	6.13	1273.00	20.00	1.220	6.300E-03
40137E3	Neigboring Source	260098.35	4007952.6	2084	3.51	848.15	24.08	0.210	7.686E-02
40137E4	Neigboring Source	260090.75	4007950.5	2084	3.51	848.15	24.08	0.210	7.686E-02
40137E5	Neigboring Source	260086.51	4007943.6	2083	4.51	846.48	8.84	0.210	5.166E-02
40137E6	Neigboring Source	260088.16	4007935.5	2083	4.51	846.48	8.84	0.210	5.166E-02
40137E7	Neigboring Source	260095.11	4007930.5	2082	3.51	773.15	70.41	0.210	3.402E-01
40137E8	Neigboring Source	260103.8	4007931.7	2082	3.51	582.04	20.73	0.210	3.780E-03
40137E9	Neigboring Source	260109.51	4007938.6	2083	3.51	582.04	20.73	0.210	3.780E-03
40137E32	Neigboring Source	260081.31	4007941.4	2083	4.51	1010.37	8.84	0.210	8.946E-02
40137E33	Neigboring Source	260085.94	4007930.2	2083	4.51	1010.37	8.84	0.210	8.946E-02
40368E1	Neigboring Source	261056.44	4007946.4	2109	7.92	1273.00	20.00	1.220	3.906E-02
40368E2	Neigboring Source	261063.97	4007953.4	2109	7.92	1273.00	20.00	1.220	3.906E-02
40368E3	Neigboring Source	261057.19	4007956.9	2109	4.57	928.15	117.96	0.150	2.117E-01
40368E4	Neigboring Source	261049.59	4007954.9	2109	4.57	989.82	49.68	0.150	1.172E-01
40368E5	Neigboring Source	261045.35	4007948	2109	4.57	1000.93	45.72	0.080	1.638E-02
40368E6	Neigboring Source	261047	4007939.8	2109	4.57	1000.93	45.72	0.080	1.638E-02
40368E7	Neigboring Source	261053.95	4007934.8	2109	3.66	582.04	17.83	0.100	3.780E-03
40368E8	Neigboring Source	261062.63	4007936	2109	3.66	582.04	17.83	0.100	3.780E-03
37835E1	Neigboring Source	250343.63	4009929.7	2028	6.10	1273.00	20.00	20.806	1.512E-02
37835E2	Neigboring Source	250351.16	4009936.7	2029	6.10	1273.00	20.00	20.806	1.512E-02
37835E3	Neigboring Source	250344.38	4009940.2	2028	6.10	1273.00	20.00	20.806	1.512E-02
37835E4	Neigboring Source	250336.78	4009938.2	2028	6.10	1273.00	20.00	20.806	1.512E-02
37835E5	Neigboring Source	250332.54	4009931.3	2028	4.88	832.59	40.17	0.250	1.777E-01
37835E6	Neigboring Source	250334.19	4009923.1	2027	8.38	813.71	36.67	0.360	3.541E-01
37835E7	Neigboring Source	250341.14	4009918.1	2027	4.57	725.37	47.49	0.260	5.153E-01
37835E9	Neigboring Source	250349.82	4009919.3	2028	4.88	366.48	1.74	0.300	1.260E-02
37835E10	Neigboring Source	250355.53	4009926.2	2028	4.88	366.48	1.74	0.300	1.260E-02
37835E11	Neigboring Source	250354.97	4009935.4	2029	4.88	366.48	1.74	0.300	1.260E-02
37835E12	Neigboring Source	250348.13	4009941.9	2029	4.88	366.48	1.74	0.300	1.260E-02
	Neigboring Source	250338.5	4009941.9	2028	4.88	366.48	1.74	0.300	1.260E-02
	Neigboring Source	250331.24	4009935.3	2028	4.88	366.48	1.74	0.300	1.512E-02
37835E15	Neigboring Source	250330.46	4009925.2	2027	4.88	366.48	1.74	0.300	1.512E-02

Source	Source				Stack		Exit	Stack	NOx
ID	Description	X-Coord.	Y-Coord.	Elevation	Height	Temperature	Velocity	Diameter	Emissions
		(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	(g/sec)
37835E16	Neigboring Source	250336.87	4009917.2	2027	4.88	366.48	1.74	0.300	1.512E-02
37835E17	Neigboring Source	250347.28	4009915.6	2027	4.88	366.48	1.74	0.300	1.512E-02
37835E18	Neigboring Source	250356.12	4009921.7	2028	4.88	366.48	1.74	0.300	1.890E-02
37835E19	Neigboring Source	250358.47	4009932.4	2029	4.88	366.48	0.63	0.160	1.260E-03
34037E1	Neigboring Source	267236.8	4012505.3	2214	6.40	722.04	34.78	0.250	3.024E-01
34037E5	Neigboring Source	267244.34	4012512.3	2214	9.14	730.00	28.00	0.300	5.179E-02
34037E6	Neigboring Source	267237.55	4012515.9	2214	9.14	730.00	28.00	0.300	5.179E-02
36466C1	Neigboring Source	251598.37	4008445.9	2053	18.00	1273.00	20.00	20.806	2.520E-02
36466E7	Neigboring Source	251599.12	4008456.4	2053	3.05	582.04	21.03	0.200	3.780E-03
33642E1	Neigboring Source	246780.66	4022196.9	2070	4.82	722.04	35.27	0.150	1.134E-01
33642E5	Neigboring Source	246788.2	4022203.9	2070	4.82	722.04	35.27	0.150	1.134E-01
34636E1	Neigboring Source	261954.58	4006815.4	2093	4.82	722.04	35.27	0.150	1.890E-01
36607E1	Neigboring Source	247699.69	4010263.8	1993	4.88	832.59	40.17	0.250	1.777E-01
36607E2	Neigboring Source	247707.23	4010270.8	1993	8.38	813.71	36.67	0.360	3.541E-01
36607E3	Neigboring Source	247700.44	4010274.4	1994	4.57	725.37	47.49	0.260	5.153E-01
36607E32	Neigboring Source	247692.94	4010251.3	1993	6.10	1273.00	20.00	2.632	1.777E-01
36607E33	Neigboring Source	247703.34	4010249.8	1992	6.10	1273.00	20.00	2.632	1.777E-01
36607E34	Neigboring Source	247712.18	4010255.9	1992	6.10	1273.00	20.00	2.632	1.777E-01
36607E35	Neigboring Source	247714.54	4010266.5	1993	6.10	1273.00	20.00	2.632	1.777E-01
39542E1	Neigboring Source	264197.03	4007266	2122	5.33	588.71	1.40	0.250	7.560E-03
39542E2	Neigboring Source	264204.57	4007273	2122	7.16	533.15	1.95	0.150	3.780E-03
39542E3	Neigboring Source	264197.78	4007276.5	2122	7.16	533.15	1.95	0.150	3.780E-03
39542E4	Neigboring Source	264190.18	4007274.4	2122	7.16	533.15	1.95	0.150	3.780E-03
39542E5	Neigboring Source	264185.94	4007267.5	2122	5.33	588.71	1.40	0.250	7.560E-03
39542E6	Neigboring Source	264187.59	4007259.4	2122	5.33	588.71	1.40	0.250	7.560E-03
39542E7	Neigboring Source	264194.54	4007254.4	2122	5.33	588.71	1.40	0.250	7.560E-03
39542E8	Neigboring Source	264203.23	4007255.6	2123	7.16	533.15	1.95	0.150	3.780E-03
39542E9	Neigboring Source	264208.94	4007262.5	2122	7.16	533.15	1.95	0.150	3.780E-03
39542E10	Neigboring Source	264208.37	4007271.7	2122	7.16	533.15	1.95	0.150	3.780E-03
39542E11	Neigboring Source	264201.54	4007278.2	2122	7.16	533.15	1.95	0.150	3.780E-03
39542E12	Neigboring Source	264191.9	4007278.2	2122	7.16	533.15	1.95	0.150	3.780E-03
39542E13	Neigboring Source	264184.64	4007271.6	2122	4.51	848.15	67.36	0.210	1.512E-01
39542E14	Neigboring Source	264183.86	4007261.5	2122	4.51	848.15	67.36	0.210	1.512E-01
39542E15	Neigboring Source	264190.28	4007253.5	2122	4.51	582.04	21.85	0.200	3.780E-03
39542E16	Neigboring Source	264200.68	4007251.9	2123	4.51	582.04	21.85	0.200	3.780E-03
39542E17	Neigboring Source	264209.52	4007258	2123	3.51	1010.37	24.38	0.150	4.410E-02
39542E18	Neigboring Source	264211.88	4007268.7	2122	3.51	1010.37	24.38	0.150	4.410E-02

Source	Source				Stack		Exit	Stack	NOx
ID	Description	X-Coord.	Y-Coord.	Elevation	Height	Temperature	Velocity	Diameter	Emissions
		(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	(g/sec)
39542E19	Neigboring Source	264206.19	4007278.3	2122	2.01	1273.00	20.00	1.220	1.260E-02
39542E20	Neigboring Source	264195.26	4007281.6	2122	2.01	1273.00	20.00	1.220	1.260E-02
39542E24	Neigboring Source	264184.87	4007276.4	2122	4.51	773.15	76.32	0.210	6.438E-01
39541E1	Neigboring Source	263781.67	4006809.6	2118	5.33	588.71	0.25	0.150	7.560E-03
39541E2	Neigboring Source	263789.21	4006816.7	2119	7.16	533.15	1.95	0.150	3.780E-03
39541E3	Neigboring Source	263782.42	4006820.2	2119	7.16	533.15	1.95	0.150	3.780E-03
39541E4	Neigboring Source	263774.83	4006818.1	2118	7.16	533.15	1.95	0.150	3.780E-03
39541E5	Neigboring Source	263770.59	4006811.2	2118	5.33	588.71	0.25	0.150	7.560E-03
39541E6	Neigboring Source	263772.24	4006803.1	2118	5.33	588.71	0.25	0.150	7.560E-03
39541E7	Neigboring Source	263779.19	4006798.1	2118	5.33	588.71	0.25	0.150	7.560E-03
39541E8	Neigboring Source	263787.87	4006799.2	2118	7.16	533.15	1.95	0.150	3.780E-03
39541E10	Neigboring Source	263793.58	4006806.2	2118	7.16	533.15	1.95	0.150	3.780E-03
39541E11	Neigboring Source	263793.01	4006815.3	2119	7.16	533.15	1.95	0.150	3.780E-03
39541E12	Neigboring Source	263786.18	4006821.8	2119	7.16	533.15	1.95	0.150	3.780E-03
39541E13	Neigboring Source	263776.54	4006821.9	2118	3.51	848.15	67.36	0.150	1.525E-01
39541E14	Neigboring Source	263769.28	4006815.2	2118	3.51	848.15	67.36	0.150	1.525E-01
39541E15	Neigboring Source	263768.5	4006805.2	2118	3.51	572.59	21.85	0.150	3.780E-03
39541E16	Neigboring Source	263774.92	4006797.1	2118	3.51	572.59	21.85	0.150	3.780E-03
39541E17	Neigboring Source	263785.32	4006795.6	2118	3.51	1010.37	24.38	0.150	4.410E-02
39541E18	Neigboring Source	263794.16	4006801.7	2118	3.51	1010.37	24.38	0.150	4.410E-02
39541E19	Neigboring Source	263796.52	4006812.4	2119	2.01	1273.00	20.00	1.220	1.260E-02
39541E30	Neigboring Source	263790.84	4006822	2119	2.01	1273.00	20.00	1.220	1.260E-02
39541E31	Neigboring Source	263779.91	4006825.2	2119	3.51	775.93	64.62	0.150	3.213E-01
39541E9	Neigboring Source	263769.52	4006820	2118	7.16	533.15	1.95	0.150	3.780E-03
34046E1	Neigboring Source	244868.57	4017297.9	2096	7.00	730.00	28.00	0.300	1.171E-01
34046E2	Neigboring Source	244876.11	4017304.9	2096	2.13	927.59	35.05	0.090	6.847E-02
34046E5	Neigboring Source	244869.32	4017308.4	2096	6.00	1273.00	20.00	4.652	3.742E-01
39510E1	Neigboring Source	264829.83	4007319.2	2128	2.99	848.15	15.00	0.090	1.512E-01
39510E2	Neigboring Source	264837.36	4007326.2	2128	2.99	848.15	15.00	0.090	1.512E-01
39510E3	Neigboring Source	264830.58	4007329.7	2128	2.99	582.04	15.00	0.090	7.560E-03
39510E4	Neigboring Source	264822.98	4007327.6	2128	2.99	582.04	15.00	0.090	7.560E-03
39510E5	Neigboring Source	264818.74	4007320.7	2128	2.99	1034.82	38.16	0.090	2.268E-02
39510E6	Neigboring Source	264820.39	4007312.6	2128	2.99	1034.82	38.16	0.090	2.268E-02
39510E10	Neigboring Source	264841.17	4007324.9	2128	7.00	730.00	28.00	0.300	1.008E-02
39510E11	Neigboring Source	264834.33	4007331.4	2128	7.00	730.00	28.00	0.300	1.008E-02
39510E12	Neigboring Source	264824.7	4007331.4	2128	7.00	730.00	28.00	0.300	1.008E-02
39510E13	Neigboring Source	264817.44	4007324.8	2128	7.00	730.00	28.00	0.300	1.008E-02

Source	Source				Stack		Exit	Stack	NOx
ID	Description	X-Coord.	Y-Coord.	Elevation	Height	Temperature	Velocity	Diameter	Emissions
		(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	(g/sec)
39510E14	Neigboring Source	264816.66	4007314.7	2128	7.00	730.00	28.00	0.300	1.008E-02
39510E15	Neigboring Source	264823.08	4007306.7	2128	7.00	730.00	28.00	0.300	1.008E-02
39510E17	Neigboring Source	264833.48	4007305.1	2128	18.00	1273.00	20.00	20.806	2.520E-03
39510E18	Neigboring Source	264842.32	4007311.2	2128	18.00	1273.00	20.00	20.806	2.520E-03
39456E1	Neigboring Source	263739.42	4006509.3	2115	3.51	864.26	36.27	0.120	3.150E-02
39456E2	Neigboring Source	263746.96	4006516.3	2116	3.51	864.26	36.27	0.120	3.150E-02
39456E3	Neigboring Source	263740.17	4006519.9	2116	3.51	864.26	36.27	0.120	3.150E-02
39456E4	Neigboring Source	263732.58	4006517.8	2116	7.00	730.00	28.00	0.300	6.300E-03
39456E18	Neigboring Source	263751.33	4006505.8	2115	3.05	552.59	25.02	0.300	5.292E-02
39456E20	Neigboring Source	263750.76	4006515	2115	3.35	582.04	17.31	0.150	3.780E-03
39456E21	Neigboring Source	263743.93	4006521.5	2116	3.35	582.04	17.31	0.150	3.780E-03
39456E19	Neigboring Source	263734.29	4006521.6	2116	3.35	582.04	17.31	0.150	3.780E-03
32999E1	Neigboring Source	270768.33	4018709.3	2062	4.82	722.04	35.27	0.150	1.887E-01
32999E2	Neigboring Source	270775.87	4018716.3	2062	2.13	927.59	35.05	0.090	6.048E-02
40042E1	Neigboring Source	263778.96	4005675.3	2108	4.51	797.04	14.63	0.210	6.300E-02
40042E2	Neigboring Source	263786.5	4005682.3	2108	4.51	797.04	14.63	0.210	6.300E-02
40042E3	Neigboring Source	263779.71	4005685.8	2109	4.51	797.04	14.63	0.210	6.300E-02
40042E4	Neigboring Source	263772.11	4005683.7	2109	4.51	1010.37	8.84	0.210	8.820E-02
40042E5	Neigboring Source	263767.87	4005676.8	2108	4.51	1010.37	8.84	0.210	8.820E-02
40042E6	Neigboring Source	263769.52	4005668.7	2108	4.51	833.71	9.45	0.210	3.780E-02
40042E7	Neigboring Source	263776.47	4005663.7	2108	4.51	833.71	9.45	0.210	3.780E-02
40042E8	Neigboring Source	263785.16	4005664.9	2108	3.51	582.04	21.70	0.210	3.780E-03
40042E9	Neigboring Source	263790.87	4005671.8	2108	3.51	582.04	21.70	0.210	3.780E-03
40042E26	Neigboring Source	263790.3	4005681	2108	6.13	1273.00	20.00	1.220	6.300E-03
40042E27	Neigboring Source	263783.47	4005687.5	2109	6.13	1273.00	20.00	1.220	6.300E-03
24120E1	Neigboring Source	271807.1	4019852.2	2034	3.66	991.48	25.18	0.150	2.772E-01
24120E5	Neigboring Source	271814.63	4019859.3	2034	3.66	991.48	25.18	0.150	2.772E-01
37095E1	Neigboring Source	247815.5	4007222.5	2026	6.40	722.04	35.08	0.250	2.934E-01
1014E6	Neigboring Source	271303.28	4012684.2	2170	9.14	671.48	35.05	1.220	6.678E-01
1014E5	Neigboring Source	271303.28	4012684.2	2170	9.14	671.48	35.05	1.220	6.678E-01
34598E1	Neigboring Source	267173.57	4006769	2096	4.82	722.04	35.27	0.150	2.092E-01
38979E1	Neigboring Source	272223.54	4019284.7	2037	1.83	588.71	1.55	0.200	1.260E-02
38979E2	Neigboring Source	272231.07	4019291.7	2037	6.10	794.82	52.85	0.300	3.528E-01
38979E3	Neigboring Source	272224.29	4019295.3	2037	6.10	772.59	28.82	0.300	8.820E-02
38979E4	Neigboring Source	272216.69	4019293.2	2036	6.10	816.48	35.81	0.200	1.537E-01
38979E5	Neigboring Source	272212.45	4019286.3	2036	6.10	1018.71	35.14	0.100	1.386E-02
38979E6	Neigboring Source	272214.1	4019278.1	2036	6.10	816.48	35.81	0.200	1.537E-01

Source	Source				Stack		Exit	Stack	NOx
ID	Description	X-Coord.	Y-Coord.	Elevation	Height	Temperature	Velocity	Diameter	Emissions
		(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	(g/sec)
38979E8	Neigboring Source	272221.05	4019273.2	2037	6.10	790.93	40.93	0.150	1.021E-01
38979E11	Neigboring Source	272229.73	4019274.3	2038	7.62	1273.00	20.00	1.220	5.279E-01
38979E7	Neigboring Source	272235.44	4019281.3	2038	6.10	816.48	35.81	0.200	1.537E-01
34542E1	Neigboring Source	271995.93	4014298.9	2156	6.71	644.26	46.45	0.310	3.925E-01
34542E10	Neigboring Source	272003.47	4014306	2156	6.71	644.26	46.45	0.310	5.544E-01
34542E11	Neigboring Source	271996.68	4014309.5	2156	6.71	644.26	46.45	0.310	5.544E-01
34542E12	Neigboring Source	271989.09	4014307.4	2156	6.71	644.26	46.45	0.310	5.544E-01
34542E13	Neigboring Source	271984.85	4014300.5	2156	6.71	644.26	46.45	0.310	5.544E-01
24516E2	Neigboring Source	271982.96	4014154.1	2158	6.40	607.04	57.30	0.240	6.174E-01
24516E3	Neigboring Source	271990.5	4014161.1	2158	3.05	333.15	12.19	0.200	2.520E-03
24516E7	Neigboring Source	271983.71	4014164.6	2158	7.62	723.15	55.17	0.240	6.980E-01
24516E8	Neigboring Source	271976.12	4014162.5	2158	3.66	1005.37	32.31	0.100	3.780E-02
33040C1	Neigboring Source	272070.28	4011621.5	2149	6.00	1273.00	20.00	6.579	7.434E-01
33040E12	Neigboring Source	272071.03	4011632.1	2149	6.55	722.04	35.08	0.250	1.764E-01
33097E1	Neigboring Source	241640.31	4017161.1	2062	4.82	722.04	35.27	0.150	2.092E-01
34637E1	Neigboring Source	242069.58	4023010.4	2096	4.82	722.04	35.27	0.150	2.092E-01
32988C2	Neigboring Source	273839.33	4014746.9	2116	9.14	1273.00	20.00	2.632	9.324E-02
32988C3	Neigboring Source	273832.54	4014750.5	2116	9.14	1273.00	20.00	2.632	9.324E-02
32988E1	Neigboring Source	273824.94	4014748.4	2116	6.71	722.04	35.08	0.250	5.922E-02
32988E2	Neigboring Source	273820.7	4014741.5	2116	4.57	833.71	60.94	0.100	5.292E-02
32988E3	Neigboring Source	273822.35	4014733.3	2116	3.05	1018.71	62.47	0.080	2.772E-02
32988E26	Neigboring Source	273829.3	4014728.3	2116	4.57	853.71	28.00	0.080	5.040E-02
32216E1	Neigboring Source	271899.17	4008902.7	2206	4.82	722.04	35.27	0.150	0.000E+00
32216E11	Neigboring Source	271906.7	4008909.8	2207	6.00	1273.00	20.00	3.604	2.268E-01
32216E13	Neigboring Source	271899.92	4008913.3	2207	4.82	722.04	35.27	0.150	0.000E+00
35174E1	Neigboring Source	274614.41	4012210.4	2096	7.01	806.48	59.04	0.300	3.528E-01
35174E6	Neigboring Source	274621.94	4012217.4	2096	7.32	737.04	45.93	0.400	2.268E-01
35174E12	Neigboring Source	274615.16	4012221	2096	7.01	806.48	59.04	0.300	3.528E-01
35174E13	Neigboring Source	274607.56	4012218.9	2096	7.01	806.48	59.04	0.300	3.528E-01
35174E14	Neigboring Source	274603.32	4012212	2096	7.32	737.04	45.93	0.400	2.268E-01
35174E18	Neigboring Source	274604.97	4012203.8	2096	6.40	722.04	35.08	0.250	1.764E-01
35174E19	Neigboring Source	274611.92	4012198.9	2096	6.40	722.04	35.08	0.250	1.764E-01
38026E1	Neigboring Source	268750.62	4003777.8	2093	4.51	772.59	28.80	0.300	1.764E-01
38026E2	Neigboring Source	268758.16	4003784.9	2093	4.51	740.37	49.56	0.300	1.361E+00
38026E3	Neigboring Source	268751.37	4003788.4	2093	5.52	790.93	16.00	0.240	1.865E-01
38026E4	Neigboring Source	268743.78	4003786.3	2092	1.92	593.71	27.02	0.550	3.780E-03
38026E6	Neigboring Source	268739.54	4003779.4	2092	7.00	730.00	28.00	0.300	1.134E-02

Source	Source				Stack		Exit	Stack	NOx
ID	Description	X-Coord.	Y-Coord.	Elevation	Height	Temperature	Velocity	Diameter	Emissions
		(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	(g/sec)
38026E7	Neigboring Source	268741.19	4003771.3	2092	7.00	730.00	28.00	0.300	1.134E-02
38026E12	Neigboring Source	268748.14	4003766.3	2092	4.51	772.59	28.80	0.300	8.820E-02
38026E13	Neigboring Source	268756.82	4003767.4	2093	4.51	740.37	49.56	0.300	6.804E-01
38026E14	Neigboring Source	268762.53	4003774.4	2093	1.92	593.71	27.02	0.550	3.780E-03
38026E16	Neigboring Source	268761.96	4003783.6	2093	1.92	593.71	27.02	0.550	3.780E-03
38026E18	Neigboring Source	268755.13	4003790	2093	1.92	593.71	27.02	0.550	3.780E-03
38026E20	Neigboring Source	268745.49	4003790.1	2092	1.92	593.71	27.02	0.550	3.780E-03
38026E21	Neigboring Source	268738.23	4003783.4	2092	7.00	730.00	28.00	0.300	1.134E-02
38026E22	Neigboring Source	268737.45	4003773.4	2092	7.00	730.00	28.00	0.300	1.134E-02
38026E23	Neigboring Source	268743.87	4003765.3	2092	7.00	730.00	28.00	0.300	1.134E-02
38026E24	Neigboring Source	268754.27	4003763.8	2093	7.00	730.00	28.00	0.300	1.134E-02
38026E25	Neigboring Source	268763.11	4003769.9	2093	7.00	730.00	28.00	0.300	1.134E-02
38026E19	Neigboring Source	268765.47	4003780.6	2093	1.92	593.71	27.02	0.550	3.780E-03
38026E15	Neigboring Source	268759.79	4003790.2	2093	1.92	593.71	27.02	0.550	3.780E-03
38026E17	Neigboring Source	268748.86	4003793.4	2092	1.92	593.71	27.02	0.550	3.780E-03
38153E1	Neigboring Source	266940.38	4001782.1	2098	6.10	725.93	23.22	0.240	8.064E-02
38153E2	Neigboring Source	266947.92	4001789.1	2098	1.83	588.71	1.55	0.200	7.686E-02
38153E3	Neigboring Source	266941.13	4001792.7	2098	6.10	790.93	41.06	0.150	1.021E-01
38153E4	Neigboring Source	266933.53	4001790.6	2098	6.10	848.71	15.14	0.200	2.646E-02
38153E5	Neigboring Source	266929.29	4001783.7	2098	6.71	644.26	46.63	0.310	5.620E-01
38153E7	Neigboring Source	266930.95	4001775.5	2098	7.62	1273.00	20.00	1.220	1.537E-01
38153E20	Neigboring Source	266937.89	4001770.6	2098	2.29	582.04	5.58	0.200	3.780E-03
38153E21	Neigboring Source	266946.58	4001771.7	2098	2.29	582.04	5.58	0.200	3.780E-03
38153E22	Neigboring Source	266952.29	4001778.6	2098	2.29	582.04	5.58	0.200	3.780E-03
38153E23	Neigboring Source	266951.72	4001787.8	2098	2.29	582.04	5.58	0.200	3.780E-03
38153E24	Neigboring Source	266944.89	4001794.3	2098	2.29	582.04	5.58	0.200	3.780E-03
38153E25	Neigboring Source	266935.25	4001794.4	2098	2.29	582.04	5.58	0.200	3.780E-03
38153E26	Neigboring Source	266927.99	4001787.7	2098	2.29	582.04	5.58	0.200	3.780E-03
36717C1	Neigboring Source	269890.36	4003823.3	2118	7.62	1273.00	20.00	1.220	9.072E-02
36717E1	Neigboring Source	269897.9	4003830.4	2118	1.83	588.71	1.55	0.200	1.512E-02
36717E2	Neigboring Source	269891.11	4003833.9	2118	1.83	588.71	1.55	0.200	9.324E-02
36717E3	Neigboring Source	269883.51	4003831.8	2118	1.83	588.71	1.55	0.510	8.820E-03
36717E4	Neigboring Source	269879.27	4003824.9	2118	6.10	772.59	28.82	0.300	8.694E-02
36717E6	Neigboring Source	269880.92	4003816.8	2118	6.10	1018.71	35.14	0.100	1.386E-02
36717E8	Neigboring Source	269887.87	4003811.8	2118	2.90	583.15	14.88	0.300	8.568E-02
36717E7	Neigboring Source	269896.56	4003812.9	2118	6.71	644.26	46.60	0.310	5.620E-01
36717E5	Neigboring Source	269902.27	4003819.9	2118	6.10	790.93	40.93	0.150	1.008E-01

						ΙΙΙ			
Source	Source				Stack		Exit	Stack	NOx
ID	Description	X-Coord.	Y-Coord.	Elevation	Height	Temperature	Velocity	Diameter	Emissions
		(m)	(m)	(m)	(m)	'(K)	(m/s)	(m)	(g/sec)
31054E1	Neigboring Source	273455.79	4007468.4	2216	4.82	722.04	35.27	0.150	2.092E-01
33686E1	Neigboring Source	275279.54	4010098.1	2146	4.57	874.82	26.12	0.200	3.024E-01
33686E2	Neigboring Source	275287.08	4010105.1	2146	3.05	1018.71	62.45	0.080	2.772E-02
33686E3	Neigboring Source	275280.29	4010108.6	2146	3.05	1018.71	62.45	0.080	2.772E-02
33686E4	Neigboring Source	275272.69	4010106.5	2146	3.05	1018.71	62.45	0.080	2.772E-02
37568E1	Neigboring Source	276679.97	4014660.2	2064	4.51	806.48	59.04	0.300	3.830E-01
37568E2	Neigboring Source	276687.5	4014667.2	2064	4.51	725.93	24.17	0.300	9.576E-02
37568E3	Neigboring Source	276680.72	4014670.8	2064	6.10	1018.71	35.17	0.100	1.638E-02
37568E4	Neigboring Source	276673.12	4014668.7	2064	4.51	783.15	38.86	0.120	2.772E-02
37568E5	Neigboring Source	276668.88	4014661.8	2064	6.10	790.93	22.80	0.200	6.930E-02
37568E6	Neigboring Source	276670.53	4014653.6	2063	6.10	790.93	22.80	0.200	6.930E-02
37568E7	Neigboring Source	276677.48	4014648.7	2063	6.10	790.93	22.80	0.200	6.930E-02
37568E19	Neigboring Source	276684.47	4014672.4	2064	6.71	380.37	28.00	0.150	3.780E-03
37568E20	Neigboring Source	276674.84	4014672.5	2064	6.71	380.37	28.00	0.150	3.780E-03
37568E21	Neigboring Source	276667.58	4014665.8	2064	6.71	380.37	28.00	0.150	3.780E-03
37568E22	Neigboring Source	276666.8	4014655.8	2064	6.71	380.37	28.00	0.150	3.780E-03
37568E23	Neigboring Source	276673.21	4014647.7	2063	6.71	380.37	28.00	0.150	3.780E-03
37568E24	Neigboring Source	276683.62	4014646.2	2063	6.71	380.37	28.00	0.150	3.780E-03
37568E25	Neigboring Source	276692.46	4014652.3	2063	7.62	1273.00	20.00	1.220	1.386E-02
38978E14	Neigboring Source	258846.82	3998395.5	2059	4.51	806.48	59.04	0.300	3.830E-01
38978E15	Neigboring Source	258853.24	3998387.5	2059	4.51	725.93	24.17	0.300	9.576E-02
38978E16	Neigboring Source	258863.64	3998385.9	2059	6.10	1018.71	35.17	0.100	1.638E-02
38978E17	Neigboring Source	258872.48	3998392	2059	4.51	783.15	38.86	0.120	2.772E-02
38978E18	Neigboring Source	258874.84	3998402.7	2059	6.10	790.93	22.80	0.200	6.930E-02
38978E19	Neigboring Source	258869.15	3998412.3	2059	6.10	790.93	22.80	0.200	6.930E-02
38978E20	Neigboring Source	258858.22	3998415.6	2059	6.10	790.93	22.80	0.200	6.930E-02
38978E21	Neigboring Source	258847.83	3998410.4	2059	6.10	790.93	22.80	0.200	6.930E-02
38978E23	Neigboring Source	258843.7	3998399.3	2059	7.62	1273.00	20.00	1.220	8.820E-03
38978E24	Neigboring Source	258848.33	3998388.1	2059	7.62	1273.00	20.00	1.220	8.820E-03
32836E1	Neigboring Source	273715.21	4006747.8	2187	2.13	927.59	43.13	0.090	1.121E-01
1146E1	Neigboring Source	253329.61	4038372.8	1979	6.71	723.15	34.35	1.040	6.930E-01
1146E16	Neigboring Source	253329.61	4038372.8	1979	6.10	737.59	25.57	0.660	6.930E-01
32498E1	Neigboring Source	276726.08	4007636.8	2197	4.82	722.04	35.27	0.150	1.890E-01
38649E1	Neigboring Source	270883.26	3999429.4	2067	4.51	772.59	28.80	0.300	8.820E-02
38649E29	Neigboring Source	270889.45	3999419	2068	7.62	1273.00	20.00	1.220	6.804E-02
38649E30	Neigboring Source	270895.16	3999426	2068	7.62	1273.00	20.00	1.220	6.804E-02
33079E1	Neigboring Source	278458.84	4008031.6	2176	2.44	833.71	38.25	0.120	2.457E-01

Source	Source				Stack		Exit	Stack	NOx
ID	Description	X-Coord.	Y-Coord.	Elevation	Height	Temperature	Velocity	Diameter	Emissions
		(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	(g/sec)
33079E4	Neigboring Source	278466.38	4008038.6	2176	4.82	722.04	35.27	0.150	6.300E-02
33079E5	Neigboring Source	278459.59	4008042.2	2176	4.82	1000.37	3014.59	0.150	1.008E-01
33079E6	Neigboring Source	278452	4008040.1	2176	2.13	927.59	35.05	0.090	6.300E-02
28102E1	Neigboring Source	234385.78	4020566	1962	1.83	469.82	28.00	0.610	1.726E-02
28102E2	Neigboring Source	234393.32	4020573	1962	1.83	747.59	0.87	0.610	2.772E-01
37827E1	Neigboring Source	253305.12	4041585.1	1924	4.57	995.93	65.96	0.150	3.906E-01
37827E2	Neigboring Source	253312.65	4041592.1	1924	4.57	995.93	65.96	0.150	3.906E-01
40450E1	Neigboring Source	280153.4	4007953.6	2119	7.92	922.04	2.74	1.220	6.426E-02
40450E2	Neigboring Source	280160.93	4007960.6	2119	7.92	922.04	2.74	1.220	6.426E-02
40450E3	Neigboring Source	280154.15	4007964.2	2119	7.92	922.04	2.74	1.220	6.300E-03
40450E4	Neigboring Source	280146.55	4007962.1	2119	4.57	1085.93	50.29	0.150	1.058E-01
40450E5	Neigboring Source	280142.31	4007955.2	2119	4.57	952.59	34.75	0.250	2.117E-01
40450E6	Neigboring Source	280143.96	4007947	2119	4.57	922.04	121.01	0.080	7.686E-02
40450E7	Neigboring Source	280150.91	4007942.1	2118	4.57	922.04	121.01	0.080	7.686E-02
38965E1	Neigboring Source	274586.3	3999797.4	2108	4.51	806.48	59.04	0.300	3.830E-01
38965E2	Neigboring Source	274593.83	3999804.4	2108	4.51	725.93	24.17	0.300	9.576E-02
38965E3	Neigboring Source	274587.05	3999807.9	2109	6.10	1018.71	35.17	0.100	1.638E-02
38965E4	Neigboring Source	274579.45	3999805.9	2109	6.10	816.48	35.84	0.200	1.663E-01
38965E7	Neigboring Source	274576.86	3999790.8	2108	7.62	1273.00	20.00	1.220	1.260E-02
38965E10	Neigboring Source	274583.81	3999785.8	2108	6.71	380.37	28.00	0.150	3.780E-03
38965E13	Neigboring Source	274592.49	3999787	2108	6.71	380.37	28.00	0.150	3.780E-03
38965E14	Neigboring Source	274598.2	3999793.9	2108	6.71	380.37	28.00	0.150	3.780E-03
38965E15	Neigboring Source	274597.64	3999803.1	2108	6.71	380.37	28.00	0.150	3.780E-03
38965E12	Neigboring Source	274590.8	3999809.6	2108	6.10	816.48	35.84	0.200	1.663E-01

				Base	Release	Init.	Initial Vert.	NOx
Volume		X-Coord.	Y-Coord.	Elevation	Height	Horizontal	Dimension	Emissions
Source ID	Source Description	(m)	(m)	(m)	(m)	(m)	(m)	(g/sec)
34819E4	Neigboring Source	256,284	4,017,820	2117.03	1.00	0.47	0.9	7.6E-03
34819E5	Neigboring Source	256,279	4,017,813	2117.03	1.00	0.47	0.9	7.6E-03
36553E12	Neigboring Source	256,981	4,013,625	2089.13	4.88	0.47	0.9	8.8E-03
40427E1	Neigboring Source	252266.8	4017582	2102.99	3.66	0.47	0.9	1.0E-02
40427E2	Neigboring Source	252274.34	4017589	2102.73	3.66	0.47	0.9	1.0E-02
40427E3	Neigboring Source	252267.55	4017593	2103.34	3.66	0.47	0.9	1.0E-02
40427E4	Neigboring Source	252259.96	4017591	2103.79	3.66	0.47	0.9	1.0E-02
40427E5	Neigboring Source	252255.71	4017584	2103.85	7.62	0.47	0.9	3.8E-03
40427E20	Neigboring Source	252257.37	4017575	2103.63	7.62	0.47	0.9	3.8E-03
40427E21	Neigboring Source	252264.32	4017571	2103.07	7.62	0.47	0.9	3.8E-03
40427E22	Neigboring Source	252273	4017572	2102.40	7.62	0.47	0.9	3.8E-03
40427E23	Neigboring Source	252278.71	4017579	2102.10	7.62	0.47	0.9	3.8E-03
40427E24	Neigboring Source	252278.14	4017588	2102.44	7.62	0.47	0.9	3.8E-03
40427E25	Neigboring Source	252271.31	4017594	2103.16	7.62	0.47	0.9	3.8E-03
40427E26	Neigboring Source	252261.67	4017594	2103.82	7.62	0.47	0.9	3.8E-03
40427E27	Neigboring Source	252254.41	4017588	2104.09	7.62	0.47	0.9	3.8E-03
40427E28	Neigboring Source	252253.63	4017578	2103.93	7.62	0.47	0.9	3.8E-03
40427E29	Neigboring Source	252260.05	4017570	2103.38	7.62	0.47	0.9	3.8E-03
40427E30	Neigboring Source	252270.45	4017568	2102.56	7.62	0.47	0.9	3.8E-03
40393E8	Neigboring Source	251469.99	4016713	2091.37	3.66	0.47	0.9	1.0E-02
40393E9	Neigboring Source	251475.7	4016720	2091.85	3.66	0.47	0.9	1.0E-02
40393E10	Neigboring Source	251475.13	4016729	2092.17	3.66	0.47	0.9	1.0E-02
40393E11	Neigboring Source	251468.3	4016735	2092.01	3.66	0.47	0.9	1.0E-02
40393E12	Neigboring Source	251458.66	4016736	2091.56	3.66	0.47	0.9	1.0E-02
40393E13	Neigboring Source	251451.4	4016729	2091.19	7.62	0.47	0.9	6.3E-03
40393E14	Neigboring Source	251450.62	4016719	2091.05	7.62	0.47	0.9	6.3E-03
40393E15	Neigboring Source	251457.04	4016711	2091.07	7.62	0.47	0.9	6.3E-03
40393E16	Neigboring Source	251467.44	4016709	2091.32	7.62	0.47	0.9	6.3E-03
40393E17	Neigboring Source	251476.28	4016715	2091.68	7.62	0.47	0.9	6.3E-03
40393E18	Neigboring Source	251478.64	4016726	2092.17	7.62	0.47	0.9	6.3E-03
40393E19	Neigboring Source	251472.95	4016736	2092.23	7.62	0.47	0.9	6.3E-03
40393E20	Neigboring Source	251462.02	4016739	2091.74	7.62	0.47	0.9	6.3E-03
40393E21	Neigboring Source	251451.64	4016734	2091.23	7.62	0.47	0.9	6.3E-03
40393E22	Neigboring Source	251447.51	4016723	2090.99	7.62	0.47	0.9	6.3E-03
40393E23	Neigboring Source	251452.13	4016711	2090.97	7.62	0.47	0.9	6.3E-03
40393E24	Neigboring Source	251463.31	4016706	2091.21	7.62	0.47	0.9	6.3E-03
40393E25	Neigboring Source	251475.15	4016710	2091.54	7.62	0.47	0.9	6.3E-03
40393E26	Neigboring Source	251481.21	4016722	2092.05	7.62	0.47	0.9	6.3E-03

				Base	Release	Init.	Initial Vert.	NOx
Volume		X-Coord.	Y-Coord.	Elevation	Height	Horizontal	Dimension	Emissions
Source ID	Source Description	(m)	(m)	(m)	(m)	(m)	(m)	(g/sec)
40393E27	Neigboring Source	251477.96	4016734	2092.43	7.62	0.47	0.9	6.3E-03
37750E9	Neigboring Source	252678.04	4012410	2050.26	4.57	0.47	0.9	1.5E-02
37750E10	Neigboring Source	252670.45	4012407	2049.88	4.57	0.47	0.9	6.3E-03
37750E32	Neigboring Source	252664.12	4012395	2049.81	4.57	0.47	0.9	1.5E-02
37750E33	Neigboring Source	252670.54	4012387	2049.60	4.57	0.47	0.9	1.5E-02
37750E34	Neigboring Source	252680.94	4012385	2049.51	4.57	0.47	0.9	1.5E-02
37750E35	Neigboring Source	252689.78	4012391	2049.71	4.57	0.47	0.9	1.5E-02
37750E36	Neigboring Source	252692.14	4012402	2050.59	4.57	0.47	0.9	1.5E-02
37750E37	Neigboring Source	252686.45	4012411	2050.78	4.57	0.47	0.9	1.5E-02
37750E38	Neigboring Source	252675.52	4012415	2050.06	4.57	0.47	0.9	1.5E-02
37750E39	Neigboring Source	252665.14	4012409	2049.77	4.57	0.47	0.9	1.5E-02
37750E41	Neigboring Source	252661.01	4012398	2049.85	4.57	0.47	0.9	1.5E-02
37750E42	Neigboring Source	252665.63	4012387	2049.64	4.57	0.47	0.9	1.5E-02
37750E44	Neigboring Source	252676.81	4012382	2049.46	4.57	0.47	0.9	1.5E-02
37750E43	Neigboring Source	252688.65	4012386	2049.54	4.57	0.47	0.9	1.5E-02
37750E40	Neigboring Source	252694.71	4012397	2050.50	4.57	0.47	0.9	1.5E-02
40432E1	Neigboring Source	250347.49	4016737	2070.05	3.66	0.47	0.9	9.8E-03
40432E2	Neigboring Source	250355.03	4016744	2070.52	3.66	0.47	0.9	9.8E-03
40432E3	Neigboring Source	250348.24	4016747	2070.81	3.66	0.47	0.9	9.8E-03
40432E4	Neigboring Source	250340.64	4016745	2070.75	3.66	0.47	0.9	9.8E-03
40432E5	Neigboring Source	250336.4	4016738	2070.31	7.62	0.47	0.9	3.2E-03
40432E6	Neigboring Source	250338.05	4016730	2069.61	7.62	0.47	0.9	3.2E-03
40432E7	Neigboring Source	250345	4016725	2068.87	7.62	0.47	0.9	3.2E-03
40432E8	Neigboring Source	250353.69	4016727	2069.02	7.62	0.47	0.9	3.2E-03
40432E9	Neigboring Source	250359.4	4016733	2069.72	7.62	0.47	0.9	3.2E-03
40432E10	Neigboring Source	250358.83	4016743	2070.37	7.62	0.47	0.9	3.2E-03
40432E11	Neigboring Source	250352	4016749	2070.88	7.62	0.47	0.9	3.2E-03
40432E12	Neigboring Source	250342.36	4016749	2071.01	7.62	0.47	0.9	3.2E-03
40432E13	Neigboring Source	250335.1	4016743	2070.57	7.62	0.47	0.9	3.2E-03
40432E14	Neigboring Source	250334.32	4016732	2069.87	7.62	0.47	0.9	3.2E-03
40432E15	Neigboring Source	250340.74	4016724	2068.88	7.62	0.47	0.9	3.2E-03
40432E16	Neigboring Source	250351.14	4016723	2068.63	7.62	0.47	0.9	3.2E-03
37693E6	Neigboring Source	252202.55	4011037	2048.38	4.88	0.47	0.9	1.3E-03
40322E5	Neigboring Source	249431.87	4013922	2073.59	7.01	0.47	0.9	1.1E-02
40322E6	Neigboring Source	249433.53	4013914	2073.40	7.01	0.47	0.9	1.1E-02
40322E7	Neigboring Source	249440.48	4013909	2073.36	7.01	0.47	0.9	1.1E-02
40322E8	Neigboring Source	249449.16	4013910	2073.45	7.01	0.47	0.9	1.1E-02
40322E9	Neigboring Source	249454.87	4013917	2073.63	7.01	0.47	0.9	3.8E-03

				Base	Release	Init.	Initial Vert.	NOx
Volume		X-Coord.	Y-Coord.	Elevation	Height	Horizontal	Dimension	Emissions
Source ID	Source Description	(m)	(m)	(m)	(m)	(m)	(m)	(g/sec)
40322E10	Neigboring Source	249454.3	4013927	2073.83	7.01	0.47	0.9	3.8E-03
40322E11	Neigboring Source	249447.47	4013933	2073.97	7.01	0.47	0.9	3.8E-03
40322E12	Neigboring Source	249437.83	4013933	2073.96	7.01	0.47	0.9	3.8E-03
40322E13	Neigboring Source	249430.57	4013926	2073.73	7.01	0.47	0.9	3.8E-03
40322E14	Neigboring Source	249429.79	4013916	2073.42	7.01	0.47	0.9	3.8E-03
40322E15	Neigboring Source	249436.21	4013908	2073.31	7.01	0.47	0.9	3.8E-03
40322E16	Neigboring Source	249446.61	4013907	2073.38	7.01	0.47	0.9	3.8E-03
40322E17	Neigboring Source	249455.45	4013913	2073.55	7.01	0.47	0.9	3.8E-03
40322E18	Neigboring Source	249457.81	4013924	2073.77	7.01	0.47	0.9	3.8E-03
40322E19	Neigboring Source	249452.12	4013933	2074.00	7.01	0.47	0.9	3.8E-03
40322E20	Neigboring Source	249441.19	4013936	2074.09	7.01	0.47	0.9	3.8E-03
37765E32	Neigboring Source	251428.67	4010433	2059.41	1.00	0.47	0.9	1.5E-02
37765E33	Neigboring Source	251421.83	4010439	2059.32	1.00	0.47	0.9	1.5E-02
37765E34	Neigboring Source	251412.2	4010439	2059.33	1.00	0.47	0.9	1.5E-02
37765E35	Neigboring Source	251404.94	4010433	2059.23	1.00	0.47	0.9	1.5E-02
37765E36	Neigboring Source	251404.16	4010423	2059.12	4.88	0.47	0.9	1.9E-02
37765E37	Neigboring Source	251410.58	4010415	2059.14	4.88	0.47	0.9	1.3E-03
40137E10	Neigboring Source	260108.94	4007948	2083.32	7.01	0.47	0.9	1.1E-02
40137E11	Neigboring Source	260102.11	4007954	2083.77	7.01	0.47	0.9	1.1E-02
40137E12	Neigboring Source	260092.47	4007954	2083.87	7.01	0.47	0.9	1.1E-02
40137E13	Neigboring Source	260085.21	4007948	2083.54	7.01	0.47	0.9	1.1E-02
40137E14	Neigboring Source	260084.43	4007938	2083.02	7.01	0.47	0.9	7.6E-03
40137E15	Neigboring Source	260090.85	4007930	2082.50	7.01	0.47	0.9	7.6E-03
40137E16	Neigboring Source	260101.25	4007928	2082.24	7.01	0.47	0.9	7.6E-03
40137E17	Neigboring Source	260110.09	4007934	2082.55	7.01	0.47	0.9	7.6E-03
40137E18	Neigboring Source	260112.45	4007945	2083.13	7.01	0.47	0.9	7.6E-03
40137E19	Neigboring Source	260106.76	4007954	2083.73	7.01	0.47	0.9	7.6E-03
40137E20	Neigboring Source	260095.83	4007958	2084.04	7.01	0.47	0.9	7.6E-03
40137E21	Neigboring Source	260085.45	4007952	2083.80	7.01	0.47	0.9	7.6E-03
40368E9	Neigboring Source	261068.34	4007943	2109.01	3.66	0.47	0.9	8.8E-03
40368E10	Neigboring Source	261067.78	4007952	2108.93	3.66	0.47	0.9	8.8E-03
40368E11	Neigboring Source	261060.94	4007959	2108.85	3.66	0.47	0.9	8.8E-03
40368E12	Neigboring Source	261051.31	4007959	2108.76	3.66	0.47	0.9	8.8E-03
40368E13	Neigboring Source	261044.05	4007952	2108.66	7.62	0.47	0.9	6.3E-03
40368E14	Neigboring Source	261043.27	4007942	2108.69	7.62	0.47	0.9	6.3E-03
40368E15	Neigboring Source	261049.69	4007934	2108.96	7.62	0.47	0.9	6.3E-03
40368E16	Neigboring Source	261060.09	4007932	2109.11	7.62	0.47	0.9	6.3E-03
40368E17	Neigboring Source	261068.93	4007938	2109.06	7.62	0.47	0.9	6.3E-03

				Base	Release	Init.	Initial Vert.	NOx
Volume		X-Coord.	Y-Coord.	Elevation	Height	Horizontal	Dimension	Emissions
Source ID	Source Description	(m)	(m)	(m)	(m)	(m)	(m)	(g/sec)
40368E18	Neigboring Source	261071.28	4007949	2108.98	7.62	0.47	0.9	6.3E-03
40368E19	Neigboring Source	261065.6	4007959	2108.89	7.62	0.47	0.9	6.3E-03
40368E20	Neigboring Source	261054.67	4007962	2108.80	7.62	0.47	0.9	6.3E-03
36466E5	Neigboring Source	251605.91	4008453	2053.30	1.00	0.47	0.9	2.5E-02
36607E21	Neigboring Source	247692.84	4010272	1993.81	4.88	0.47	0.9	1.3E-02
36607E22	Neigboring Source	247688.6	4010265	1993.52	4.88	0.47	0.9	1.3E-02
36607E23	Neigboring Source	247690.25	4010257	1993.09	4.88	0.47	0.9	1.3E-02
36607E24	Neigboring Source	247697.2	4010252	1992.73	4.88	0.47	0.9	1.3E-02
36607E25	Neigboring Source	247705.89	4010253	1992.56	4.88	0.47	0.9	1.3E-02
36607E26	Neigboring Source	247711.6	4010260	1992.73	4.88	0.47	0.9	1.5E-02
36607E27	Neigboring Source	247711.03	4010270	1993.21	4.88	0.47	0.9	1.5E-02
36607E28	Neigboring Source	247704.2	4010276	1993.73	4.88	0.47	0.9	1.5E-02
36607E29	Neigboring Source	247694.56	4010276	1994.00	4.88	0.47	0.9	1.5E-02
36607E30	Neigboring Source	247687.3	4010269	1993.75	4.88	0.47	0.9	1.9E-02
36607E31	Neigboring Source	247686.52	4010259	1993.24	4.88	0.47	0.9	1.3E-03
39510E7	Neigboring Source	264827.34	4007308	2127.71	5.94	0.47	0.9	1.1E-02
39510E8	Neigboring Source	264836.02	4007309	2127.82	5.94	0.47	0.9	1.1E-02
39510E9	Neigboring Source	264841.73	4007316	2127.93	5.94	0.47	0.9	1.1E-02
39456E5	Neigboring Source	263728.33	4006511	2115.44	5.94	0.47	0.9	3.9E-02
39456E6	Neigboring Source	263729.99	4006503	2115.72	5.94	0.47	0.9	3.9E-02
39456E7	Neigboring Source	263736.94	4006498	2115.88	5.94	0.47	0.9	3.9E-02
39456E8	Neigboring Source	263745.62	4006499	2115.59	5.94	0.47	0.9	3.9E-02
37568E16	Neigboring Source	276686.16	4014650	2062.90	1.00	0.47	0.9	3.8E-03
37568E17	Neigboring Source	276691.87	4014657	2063.12	1.00	0.47	0.9	3.8E-03
37568E18	Neigboring Source	276691.31	4014666	2063.60	1.00	0.47	0.9	3.8E-03
38978E1	Neigboring Source	258859.99	3998400	2059.22	3.05	0.47	0.9	3.1E-02
38978E2	Neigboring Source	258867.53	3998407	2059.23	3.05	0.47	0.9	3.1E-02
38978E3	Neigboring Source	258860.74	3998411	2059.33	3.05	0.47	0.9	3.1E-02
38978E4	Neigboring Source	258853.14	3998408	2059.37	3.05	0.47	0.9	3.1E-02
38978E5	Neigboring Source	258848.9	3998402	2059.34	3.05	0.47	0.9	3.1E-02
38978E6	Neigboring Source	258850.55	3998393	2059.25	3.05	0.47	0.9	3.1E-02
38978E7	Neigboring Source	258857.5	3998388	2059.12	3.05	0.47	0.9	3.1E-02
38978E8	Neigboring Source	258866.19	3998390	2059.05	3.05	0.47	0.9	3.1E-02
38978E9	Neigboring Source	258871.9	3998396	2059.06	3.05	0.47	0.9	3.1E-02
38978E10	Neigboring Source	258871.33	3998406	2059.18	3.05	0.47	0.9	3.1E-02
38978E11	Neigboring Source	258864.5	3998412	2059.34	3.05	0.47	0.9	3.1E-02
38978E12	Neigboring Source	258854.86	3998412	2059.39	3.05	0.47	0.9	3.1E-02
38978E13	Neigboring Source	258847.6	3998406	2059.40	3.05	0.47	0.9	3.1E-02

				Base	Release	Init.	Initial Vert.	NOx
Volume		X-Coord.	Y-Coord.	Elevation	Height	Horizontal	Dimension	Emissions
Source ID	Source Description	(m)	(m)	(m)	(m)	(m)	(m)	(g/sec)
38649E10	Neigboring Source	270890.79	3999436	2067.73	1.00	0.47	0.9	1.4E-02
38649E23	Neigboring Source	270884.01	3999440	2067.25	1.00	0.47	0.9	1.4E-02
38649E24	Neigboring Source	270876.41	3999438	2067.07	1.00	0.47	0.9	1.4E-02
38649E25	Neigboring Source	270872.17	3999431	2067.01	1.00	0.47	0.9	1.4E-02
38649E26	Neigboring Source	270873.82	3999423	2066.99	1.00	0.47	0.9	1.4E-02
38649E27	Neigboring Source	270880.77	3999418	2067.21	1.00	0.47	0.9	1.6E-02
33079E7	Neigboring Source	278447.75	4008033	2176.01	1.00	0.47	0.9	3.8E-02
40450E8	Neigboring Source	280159.59	4007943	2118.45	3.66	0.47	0.9	8.8E-03
40450E9	Neigboring Source	280165.3	4007950	2118.63	3.66	0.47	0.9	8.8E-03
40450E10	Neigboring Source	280164.74	4007959	2118.98	3.66	0.47	0.9	8.8E-03
40450E11	Neigboring Source	280157.9	4007966	2119.28	3.66	0.47	0.9	8.8E-03
40450E12	Neigboring Source	280148.27	4007966	2119.31	3.66	0.47	0.9	8.8E-03
40450E13	Neigboring Source	280141.01	4007959	2119.13	3.66	0.47	0.9	8.8E-03
40450E14	Neigboring Source	280140.23	4007949	2118.78	7.62	0.47	0.9	6.3E-03
40450E15	Neigboring Source	280146.64	4007941	2118.46	7.62	0.47	0.9	6.3E-03
40450E16	Neigboring Source	280157.05	4007940	2118.36	7.62	0.47	0.9	6.3E-03
40450E17	Neigboring Source	280165.89	4007946	2118.49	7.62	0.47	0.9	6.3E-03
40450E18	Neigboring Source	280168.24	4007956	2118.85	7.62	0.47	0.9	6.3E-03
40450E19	Neigboring Source	280162.56	4007966	2119.29	7.62	0.47	0.9	6.3E-03
40450E20	Neigboring Source	280151.63	4007969	2119.44	7.62	0.47	0.9	6.3E-03
40450E21	Neigboring Source	280141.24	4007964	2119.30	7.62	0.47	0.9	6.3E-03
40450E22	Neigboring Source	280137.11	4007953	2118.96	7.62	0.47	0.9	6.3E-03
40450E23	Neigboring Source	280141.74	4007942	2118.50	7.62	0.47	0.9	6.3E-03
40450E24	Neigboring Source	280152.91	4007937	2118.30	7.62	0.47	0.9	6.3E-03
40450E25	Neigboring Source	280164.75	4007941	2118.34	7.62	0.47	0.9	6.3E-03
40450E26	Neigboring Source	280170.81	4007952	2118.67	7.62	0.47	0.9	6.3E-03
40450E27	Neigboring Source	280167.56	4007964	2119.20	7.62	0.47	0.9	6.3E-03
40450E28	Neigboring Source	280156.46	4007971	2119.54	7.62	0.47	0.9	6.3E-03
38965E5	Neigboring Source	274575.21	3999799	2108.05	1.00	0.47	0.9	3.8E-03
38965E6	Neigboring Source	274581.17	3999810	2108.70	1.00	0.47	0.9	3.8E-03

Table 8

Buena Vista Compressor Station Structure Dimensions, Elevations and Locations

Caterpillar 3516LE RICE [ENG#1]								
-					Length:	24	ft	
					Width:	11		
					Height:	11		
					Elevation	7004	ft	
Distance	Direction	Distance	Direction	Х	Y	Х	Y	
(ft)	(deg)	(m)	(deg)	(m)	(m)	(easting)	(northing)	
N/A	N/A	N/A	N/A	N/A	N/A		4017804.50	
-80.00	208.2392	-24.38	208.24	21.48	11.54		4017816.04	
148.00	298.2392	45.11	298.24	21.34	-39.74		4017776.30	
24.00	28.2392	7.32	28.24	6.44	3.46		4017779.76	
11.00	298.2392	3.35	298.24	1.59	-2.95		4017776.80	
24.00	208.2392	7.32	208.24	-6.44	-3.46		4017773.34	
11.00	118.2392	3.35	118.24	-1.59	2.95		4017776.30	
24.00	28.2392	7.32	28.24	6.44	3.46	257541.97	4017779.76	
Caterpillar 35	16LE Fan Housing [FAN	l#1]					_	
					Length:	24		
					Width:	9		
					Height:	15		
					Elevation	7004	π	
Distance	Direction	Distance	Direction	Х	Y	Х	Y	
(ft)	(deg)	(m)	(deg)	(m)	(m)	(easting)	(northing)	
N/A	N/A	N/A	N/A	N/A	N/A		4017804.50	
-80.00	208.24	-24.38	208.24	21.48	11.54		4017816.04	
153.20	298.24	46.70	298.24	22.09	-41.14		4017774.90	
12.00	298.24	3.66	298.24	1.73	-3.22		4017771.68	
9.00	208.24	2.74	208.24	-2.42	-1.30		4017770.38	
24.00 9.00	118.24 28.24	7.32 2.74	118.24 28.24	-3.46 2.42	6.44		4017776.82	
9.00 12.00	298.24	2.74	20.24 298.24	2.42 1.73	1.30		4017778.12 4017774.90	
12.00	290.24	3.00	290.24	1.73	-3.22	257530.20	4017774.90	
Caterpillar 35	16LE RICE [ENG#2]				Longth	24	4	
					Length: Width:	24 11		
					Height:	11		
					Elevation	7004		
						7004	it it	
Distance	Direction	Distance	Direction	Х	Y	Х	Y	
(ft)	(deg)	(m)	(deg)	(m)	(m)	(easting)	(northing)	
N/A	N/A	N/A	N/A	N/A	N/A		4017804.50	
-80.00	208.2392	-24.38	208.24	21.48	11.54		4017816.04	
103.00	298.2392	31.39	298.24	14.85	-27.66	257529.04		
24.00	28.2392	7.32	28.24	6.44	3.46		4017791.84	
11.00	298.2392	3.35	298.24	1.59	-2.95		4017788.89	
24.00	208.2392	7.32	208.24	-6.44	-3.46		4017785.43	
11.00	118.2392	3.35	118.24	-1.59	2.95	257529.04	4017788.38 4017791.84	
24.00	28.2392	7.32	28.24	6.44	3.46	201030.48	4017791.84	

Table 8

Buena Vista Compressor Station Structure Dimensions, Elevations and Locations

Caterpillar 3516LE Fan Housing [FAN#2]								
•					Length:	24	ft	
					Width:	9	ft	
					Height:	15	ft	
					Elevation	7004	ft	
Distance	Direction	Distance	Direction	х	Y	Х	Y	
(ft)	(deg)	(m)	(deg)	(m)	(m)	(easting)	(northing)	
N/A	N/A	N/A	N/A	N/A	N/A		4017804.50	
-80.00	208.24	-24.38	208.24	21.48	11.54		4017816.04	
108.20	298.24	32.98	298.24	15.60	-29.05		4017786.98	
12.00	298.24	3.66	298.24	1.73	-3.22		4017783.76	
9.00	208.24	2.74	208.24	-2.42	-1.30		4017782.46	
24.00	118.24	7.32	118.24	-3.46	6.44		4017788.91	
9.00	28.24	2.74	28.24	2.42	1.30		4017790.21	
12.00	298.24	3.66	298.24	1.73	-3.22	257529.79	4017786.98	
Caternillar 35	516LE RICE [EN	NG#31						
outerpinal of					Length:	24	ft	
					Width:	11	ft	
					Height:	11	ft	
					Elevation	7004	ft	
Distance	Dina atia n	Distance	Dinastian	х	Y	х	Y	
Distance	Direction	Distance	Direction		r (m)			
(ft) N/A	(deg) N/A	(m) N/A	(deg) N/A	(m) N/A	(III) N/A	(easting)	(northing) 4017804.50	
	208.24	-24.38	208.24	N/A 21.48	11.54		4017804.50	
-80.00 58.00	208.24	-24.38	208.24	21.40 8.36	-15.57		4017810.04	
24.00	296.24	7.32	298.24	6.44	3.46		4017803.92	
11.00	298.24	3.35	20.24	1.59	-2.95		4017803.92	
24.00	208.24	7.32	298.24	-6.44	-2.95		4017797.51	
11.00	118.24	3.35	118.24	-0.44 -1.59	2.95		4017800.46	
24.00	28.24	7.32	28.24	6.44	3.46		4017803.92	
24.00	20.24	1.52	20.24	0.44	0.40	201020.00	4017000.02	
Caterpillar 35	516LE Fan Hou	sing [FAN#3]						
					Length:	24		
					Width:		ft	
					Height:	15		
					Elevation	7004	ft	
Distance	Direction	Distance	Direction	Х	Y	Х	Y	
(ft)	(deg)	(m)	(deg)	(m)	(m)	(easting)	(northing)	
N/A	N/A	N/A	N/A	N/A	N/A		4017804.50	
-80.00	208.24	-24.38	208.24	21.48	11.54	257514.18	4017816.04	
63.20	298.24	19.26	298.24	9.11	-16.97	257523.30	4017799.07	
12.00	298.24	3.66	298.24	1.73	-3.22	257525.03	4017795.84	
9.00	208.24	2.74	208.24	-2.42	-1.30	257522.61	4017794.55	
24.00	118.24	7.32	118.24	-3.46	6.44	257519.15	4017800.99	
9.00	28.24	2.74	28.24	2.42	1.30	257521.57	4017802.29	
12.00	298.24	3.66	298.24	1.73	-3.22	257523.30	4017799.07	

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16	16-A: Identification					
1	Name of facility:	Buena Vista Compressor Station				
2	Name of company:	Harvest Four Corners, LLC				
3	Current Permit number:	6362-R2				
4	Name of applicant's modeler:	Walter Konkel III				
5	Phone number of modeler:	805-964-7597				
6	E-mail of modeler:	wkonkel@elogicllc.com				

16	16-B: Brief							
1	Was a modeling protocol submitted and approved?	Yes⊠	No□					
2	Why is the modeling being done?	Replacing Equipment						
3	Describe the permit changes relevant to the modeling. Modify the option to install and operate either a 1,347 hp Waukesha 7042GL or a 1,215 hp Waukesha 5790GL engine in each of the three slots currently approved for Waukesha 7042GL engines. Instead of the option of installing Waukesha 7042GL engines or Waukesha 5790 GL engines, a new option of installing Waukesha 7042GL engines is being pursued.							
4	What geodetic datum was used in the modeling? NAD83							
5	How long will the facility be at this location? Indefinite							
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠					

7	Identify the Air Quality Control Region (AQCR) in which the	014							
	List the PSD baseline dates for this region (minor or major, as appropriate).								
8	NO2	6/6/1989							
	Provide the name and distance to Class I areas within 50 km of the facility (300 km for PSD permits).								
9	None								
10	Is the facility located in a non-attainment area? If so describe b	pelow	Yes□	No⊠					
	Describe any special modeling requirements, such as streamlin	e permit requirements.							
11	None								

16	-C: Modeling H	listory of Facility										
	Air Quality Standards (Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers). Facility was last modeled in 2015.										
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments								
	СО											
	NO ₂											
1	SO ₂											
	H_2S											
	PM2.5											
	PM10											
	Lead											
	Ozone (PSD only)											
	NM Toxic Air Pollutants (20.2.72.402 NMAC)											

16-D: Modeling performed for this application

	0										
	For each pollutant, indicate the modeling performed and submitted with this application. Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.										
	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.					
	СО	\boxtimes									
	NO ₂	\boxtimes	\boxtimes								
1	SO ₂				\boxtimes						
	H_2S										
	PM2.5				\boxtimes						
	PM10				\boxtimes						
	Lead										
	Ozone										
	State air toxic(s) (20.2.72.402 NMAC)										

16-	16-E: New Mexico toxic air pollutants modeling										
1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application. None										
		MTAPs that are em equired. N/A	itted but not modeled becaus	se stack height cor	rection factor. Add additi	onal rows to the table					
2	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor					

16-	16-F: Modeling options									
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□							

16-	16-G: Surrounding source modeling										
1	Date of surrounding source retrieval		Eric Peters provided source retrieval on 10/31/2022								
2	sources modeled		r Quality Bureau was believed to be inaccurate, describe how the changes to the surrounding source inventory were made, use the table								
	AQB Source ID	Description of Corrections									

16-	16-H: Building and structure downwash												
1	How many buildings are present at the facility?	3 (Each engine has associated structure)											
2	How many above ground storage tanks are present at the facility?	1											
3	Was building downwash modeled for all buildings and	tanks? If not explain why below.	Yes⊠	No□									
4	Building comments												

16-	I: Recept	tors and	modeled	property bou	ndary					
1	 "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area. A fence line restricts public access to the facility 									
2	Receptors must be placed along publicly accessible roads in the restricted area. Are there public roads passing through the restricted area? Yes									
3	Are restricted	area boundar	y coordinates in	ncluded in the modeling	; files?		Yes□	No⊠		
	Describe the 1	eceptor grids	and their spacin	ng. The table below may		/s as need	led.			
4	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility	Comm	ents			
	Cartesian	Square	Multiple	Fenceline	3,000+ meters	See mo	deling report fo	r details		
5	Describe rece	ptor spacing a	long the fence	line. 50 meters		<u> </u>				
6	Describe the PSD Class I area receptors. None									

16-	-J: Sensitive areas		
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes□	No⊠
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠

16	-K: Mo	deling	g Scena	rios							
1	Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3). No alternative operating scenarios										
	Which sce	nario prod	uces the hi	ghest cond	centrations	? Why?	No alternat	ive operati	ng scenarios		
2		1						1			
3	Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.) Yes										
4		r duplicate								table for that prmatting easi	
	Hour of Day	Factor	Hour of Day	Factor							
	1		13								
	2		14								
	3		15								
	4		16								
	5		17								
	6		18								
5	7		19								
	8		20								
	9		21								
	10		22								
	11		23								
	12		24								
	If hourly,	variable en	nission rate	es were us	ed that we	re not desc	ribed abov	ve, describe	e them below		
	Were diffe	erent emiss	ion rates u	sed for sho	ort-term an	id annual r	nodeling?	If so descr	ibe below.	Yes□	No⊠

6		

16-	5-L: NO ₂ Modeling						
	Which types Check all th	s of NO ₂ modeling were use at apply.	zd?				
	\boxtimes	ARM2					
1		100% NO _X to NO ₂ conver	rsion				
		D PVMRM					
		OLM					
		Other:					
2	Describe the	e NO ₂ modeling. See attach	ed modeling report for details				
3		t NO_2/NO_X ratios (0.5 mini l justify the ratios used belo	mum, 0.9 maximum or equilibrium) used? If not w.	Yes⊠	No□		
4	Describe the	e design value used for each	averaging period modeled.				
		h eighth high e Year Annual Average	H8H used for 1-hour NO2 modeling, H1H used for CO mo	odeling			

16	-M: Particulat	e Matter Modeling					
	Select the pollutants for which plume depletion modeling was used. No plume depletion was evaluated						
1	□ PM2.5	□ PM2.5					
	□ PM10						
	□ None						
_	Describe the particle	size distributions used. Include th	ne source of information. N/A				
2							
		1 40 0000	1 40 0.000	-			
2			or at least 40 tons per year of SO ₂ ?	?			
3		ources that emit at least 40 tons per year of NO_X or at least 40 tons per year of SO_2 are onsidered to emit significant amounts of precursors and must account for secondary					
	formation of PM2.5.						
4	Was secondary PM modeled for PM2.5?				No⊠		
				Yes□	NOK		
	If MERPs were used to account for secondary PM2.5 fill out the information below. If another method was used describe						
5	below. N/A						
5	NO _X (ton/yr)	SO_2 (ton/yr)	[PM2.5] _{annual}	[PM2.5] _{24-ho}	our		

1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location. No setback distances evaluated
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling. No setback distances evaluated

16-	O: PSD Incren	nent and Sourc	e IDs				
		Tables 2-A, 2-B, 2-C, 2- e match? If not, provide a ow.				Yes□	No⊠
	Unit Number in UA-2			Unit Numb	er in Modeling Files	5	
	1			Engine1			
	2			Engine2			
	3			Engine3			
1							
1							
2		e Tables 2-E and 2-F sho	uld match the	ones in the r	nodeling files. Do	Yes⊠	No□
	these match? If not, exp	lain why below.				105	
3		empt sources or Title V I	nsignificant A	ctivities" (T	able 2-B) sources	Yes□	No⊠
	been modeled?	acrement for which pollut	antal				
		ierement for which pollut	ants:				
4	Unit ID	NO ₂	SO ₂		PM10	PM2.5	
	1-3	Х					
5				[
5	PSD increment descript	ion for sources.		All sources	s consume increment	t	

	(for unusual cases, i.e., baseline unit expanded emissions after baseline date).		
6	Are all the actual installation dates included in Table 2A of the application form, as required? This is necessary to verify the accuracy of PSD increment modeling. If not please explain how increment consumption status is determined for the missing installation dates below.	Yes⊠	No□

16-	16-P: Flare Modeling					
1	For each flare or flaring scenar	rio, complete the following Not	Applicable			
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)		

16	-Q: Volume and Related Sources Not Applicable		
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing installation dates below.	Yes□	No□
2	Describe the determination of sigma-Y and sigma-Z for fugitive sources.		
3	Describe how the volume sources are related to unit numbers. Or say they are the same.		
4	Describe any open pits.		
5	Describe emission units included in each open pit.		

16-	16-R: Background Concentrations				
1	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data that was used.	Yes⊠	No□		
	CO: Choose an item.				

	NO ₂ : Bloomfield (350450009)			
	PM2.5: Choose an item.			
	PM10: Choose an item.			
	SO ₂ : Choose an item.			
	Other:			
	Comments:			
2	Were background concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠	

1	6-S: Meteorological Data		
1	Was NMED provided meteorological data used? If so select the station used. Modeling was conducted using Bloomfield meteorological data collected during 2015-2019. The data were obtained from the NMAQB web site.	Yes⊠	No
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discu handled, how stability class was determined, and how the data were processed. N/A	iss how missing	data were

16-	16-T: Terrain					
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□			
2	What was the source of the terrain data? Terrain elevation data were obtained from the most re- Survey National Elevation Dataset (NED) data with 1/3 arc-second resolution.	cent United Stat	tes Geological			

16-	16-U: Modeling Files					
	Describe the modeling files: See modeling r	eport and README file on CD	-ROM for additional information			
	File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)			
	Buena Vista ROI_Ind Years	NO2, CO	ROI			
1	Buena Vista ROI_5yrs	NO2	ROI, Cumulative Analysis			
	Buena Vista 2017 NO2 Increment	NO2	Increment Analysis			

16-	16-V: PSD New or Major Modification Applications (Not Applicable)						
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No⊠				
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□				
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring exemption.	uction monitorin	g or				
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.						
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□				

significat	Ing Results If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so Yes□ No⊠								
2 Identify the maximum concentrations from the modeling analysis. Rows may be modified, added						d and remove	ed from the t	able below	
Pollutant, TimeModeled ConcentrationModeled ConcentrationSecondary PMBackground ConcentrationCumulative ConcentrationValue of PercentPercent ofPeriod and ConcentrationSurrounding(ug/m3)(ug/m3)Cumulative ConcentrationValue of StandardPercent of				UTME	Location TM E UTM N Elevation				
(µg/1115)	$(\mu g/m3)$				(µg/III3)	Standart	(m)	(m)	(ft)
13.77	N/A	N/A	18.5	32.27	94.02	34.3	257,500	4,017,700	
6.24	N/A	N/A	18.5	24.74 ^A	25	99.0	257,619. 2	4,017,787. 7	
103.36	N/A	N/A	61.4	164.76	188.0	87.6	257,700	4,017,750	
325.36	N/A	N/A	N/A	N/A	N/A	N/A	257559.3	4017838.5	
183.96	N/A	N/A	N/A	N/A	N/A	N/A	257550.0	4017650.0	
	Identify to as necessModeled Facility Concentration (µg/m3)13.776.24103.36 325.36	as necessary. Modeled Facility Concentration (µg/m3) Modeled Concentration surrounding Sources (µg/m3) 13.77 N/A 6.24 N/A 103.36 N/A 325.36 N/A	Identify the maximum concentrations fracility Modeled Modeled Secondary PM Surrounding PM (µg/m3) Sources µg/m3) 13.77 N/A N/A 6.24 N/A N/A 103.36 N/A N/A 325.36 N/A N/A	Identify the maximum concentrations from the modeling as necessary.Modeled Facility Concentration (µg/m3)Modeled Concentration Surrounding Sources (µg/m3)Secondary PM (µg/m3)Background Concentration (µg/m3)13.77N/AN/A18.56.24N/AN/A18.5103.36N/AN/A61.4325.36N/AN/AN/A	Identify the maximum concentrations from the modeling analysis. Rows as necessary.Modeled Facility Concentration (µg/m3)Modeled Concentration (µg/m3)Secondary PM (µg/m3)Background Concentration (µg/m3)Cumulative Concentration (µg/m3)13.77N/AN/A18.532.276.24N/AN/A18.524.74^A103.36N/AN/A61.4164.76325.36N/AN/AN/AN/A	Identify the maximum concentrations from the modeling analysis. Rows may be mod as necessary.Modeled Facility Concentration (µg/m3)Modeled Concentration (µg/m3)Secondary PM (µg/m3)Background Concentration (µg/m3)Value of Standard (µg/m3)13.77N/AN/A18.532.2794.026.24N/AN/A18.524.74^A25103.36N/AN/A61.4164.76188.0325.36N/AN/AN/AN/AN/A	Identify the maximum concentrations from the modeling analysis. Rows may be modified, added as necessary.Modeled Facility Concentration (µg/m3)Modeled Concentration (µg/m3)Secondary PM (µg/m3)Background Concentration (µg/m3)Value of Standard (µg/m3)Percent of Standard (µg/m3)13.77N/AN/A18.532.2794.0234.36.24N/AN/A18.524.74^A2599.0103.36N/AN/A61.4164.76188.087.6325.36N/AN/AN/AN/AN/AN/A	Identify the maximum concentrations from the modeling analysis. Rows may be modified, added and remove as necessary.Modeled Facility Concentration ($\mu g/m3$)Modeled PM ($\mu g/m3$)Secondary PM ($\mu g/m3$)Background Concentration ($\mu g/m3$)Value of Standard ($\mu g/m3$)Percent of Standard ($\mu g/m3$)13.77N/AN/A18.532.2794.0234.3257,5006.24N/AN/A18.524.74^A2599.02103.36N/AN/A61.4164.76188.087.6257,700325.36N/AN/AN/AN/AN/AN/AN/A	Identify the maximum concentrations from the modeling analysis. Rows may be modified, added and removed from the t as necessary.Modeled Facility Concentration ($\mu g/m3$)Modeled Secondary PM ($\mu g/m3$)Cumulative Concentration ($\mu g/m3$)Percent of Standard ($\mu g/m3$)Descendary Percent of Standard ($\mu g/m3$)Percent UTM E ($\mu g/m3$)Location UTM N (m)13.77N/AN/A18.532.2794.0234.3257,5004,017,7006.24N/AN/A18.524.74^A2599.024,017,787. 7103.36N/AN/AA164.76188.087.6257,7004,017,750325.36N/AN/AN/AN/AN/AN/AN/AN/A

Modeled CO impacts are below significant impact levels. Cumulative modeling for this pollutant was not performed.

^A Highest annual NO2 increment consumption determined by modeling Buena Vista sources and adding a background concentration.

16-	16-X: Summary/conclusions					
	A statement that modeling requirements have been satisfied and that the permit can be issued.					
1	A statement that modeling requirements have been satisfied and that the permit can be issued has been included in the permit application.					

Walter Konkel

From:	Peters, Eric, ENV <eric.peters@env.nm.gov></eric.peters@env.nm.gov>
Sent:	Thursday, October 27, 2022 10:28
То:	Walter Konkel
Cc:	Monica Smith
Subject:	RE: [EXTERNAL] Air Dispersion Modeling Protocol - Harvest Four Corners, LLC Buena Vista
	Compressor Station
Attachments:	6362R2_Buena Vista CS Air_Dispersion_Modeling_Waiver_ (October 2022).pdf

Walter, The modeling protocol is approved. The approved modeling waiver is attached. Thanks, Eric

Eric Peters, Air Dispersion Modeler New Mexico Environment Department / Air Quality Bureau 525 Camino de Los Marquez - Suite 1 / Santa Fe, NM, 87505 Phone: 505-629-5299 E-mail: <u>eric.peters@env.nm.gov</u> www.env.nm.gov

From: Walter Konkel <wkonkel@elogicllc.com>
Sent: Friday, October 7, 2022 12:22 PM
To: Peters, Eric, ENV <eric.peters@env.nm.gov>
Cc: Monica Smith <msmith@harvestmidstream.com>
Subject: [EXTERNAL] Air Dispersion Modeling Protocol - Harvest Four Corners, LLC Buena Vista Compressor Station

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Hi Eric – Please find attached an air dispersion modeling protocol for Harvest Four Corners, LLC Buena Vista Compressor Station along with a modeling waiver request for VOC, SO2, PM10 and PM2.5 emissions. I appreciate your review and comments.

Thanks,

Walter Konkel

EcoLogic Environmental Consultants, LLC (805) 964-7597 (office) (805) 284-4430 (mobile)

From: Peters, Eric, ENV <<u>eric.peters@env.nm.gov</u>>
Sent: Thursday, October 6, 2022 12:30
To: Walter Konkel <<u>wkonkel@elogicllc.com</u>>
Subject: RE: [EXTERNAL] Request for Modeling Waiver - Harvest Four Corners, LLC Buena Vista Compressor Station

Walter,

It is best to be consistent throughout the modeling review. When in doubt, use 5 years. The option to use one year is available if it is clear that will produce the highest concentration.

EcoLogic Environmental Consultants, LLC 864 Windsor Court Santa Barbara, CA 93111 805-964-7597

October 7, 2012

Eric Peters New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816

Re: Air Dispersion Modeling Protocol Harvest Four Corners LLC - Buena Vista Compressor Station

Dear Mr. Peters:

Harvest Four Corners LLC (HFC) is preparing to submit a construction permit application to the New Mexico Air Quality Bureau (NMAQB) requesting a modification to the Buena Vista Compressor Station construction permit. In support of this application, air dispersion modeling will be conducted for nitrogen dioxide (NO₂) and carbon monoxide (CO) emissions to evaluate compliance the National Ambient Air Quality Standards (NAAQS), New Mexico Ambient Air Quality Standards (NMAAQS), and Prevention of Significant Deterioration (PSD) increment consumption. This protocol outlines the proposed air dispersion modeling techniques that will be used to assess impacts surrounding the facility.

Introduction

The Buena Vista Compressor Station will be permitted to operate the following nitrogen oxides (NO_X) and CO emitting sources: three Waukesha 7042GL natural gas-fired reciprocating engines (Units 1a-3a) or three Caterpillar G3516LE natural gas-fired reciprocating engines (Units 1b-3b).

The three engines will also produce volatile organic compounds (VOC), sulfur dioxide (SO_2) and particulate emissions. However, as modeling is not required for VOC emissions, and as SO_2 and particulate emissions will be below the threshold for modeling, a modeling waiver (under separate cover) will be requested for these pollutants.

Table 1 identifies current allowable emissions, projected allowable emissions, and the change in facility emissions resulting from the modification:

Buena Vista Compressor Station Allowable Emissions						
Pollutant	Current Emissions	Projected Emissions	Emissions Change			
	(tons/yr)	(tons/yr)	(tons/yr)			
NO _X	58.5	70.6	12.1			
CO	103.4	104.9	1.5			
SO_2	0.08	0.08	0.0			
PM ₁₀	1.3	1.3	0.0			

1.3

0.0

 Table 1

 Buena Vista Compressor Station Allowable Emission

Facility

PM_{2.5}

The facility is located in Section 32, Range 8 West, Township 24 North, at approximately 257,570 meters Easting, 4,017,800 meters Northing, Zone 13, North American Datum 1983 (NAD83), at an elevation of approximately 7,004 feet above mean sea level. The facility is in a rural area of southeastern San Juan County.

Standards

Table 2 identifies the applicable significant impact levels (SIL), NAAQS and NMAAQS:

1.3

	Averaging	SIL	NAAQS	NAAQS	NMAAQS	NMAAQS
Pollutant	Period	$(\mu g/m^3)$	$(\mu g/m^3)$	(ppm)	$(\mu g/m^3)$	(ppm)
NO ₂	1-Hour	7.52	188.03	0.10		
NO ₂	Annual	1.0	99.66	0.053	94.02	0.05
СО	1-Hour	2,000	40,069.6	35	14,997.5	13.1
СО	8-Hour	500	10,303.6	9	9,960.1	8.7

Table 2SIL, NAAQS and NMAAQS

The high-eighth-high daily maximum 1-hour NO_2 concentration will be used to evaluate compliance with the NAAQS. Demonstration of compliance with 1-hour NO_2 standard is automatically a demonstration of compliance with the 24-hour NMAAQS; therefore, modeling of the 24-hour NO_2 standard will not be performed.

The CO NAAQS are not to be exceeded more than once per year. The CO NMAAQS are not to be exceeded. Therefore, compliance with the CO NMAAQS will demonstrate compliance with the CO NAAQS.

The facility is located in Air Quality Control Region 014, an attainment area for all pollutants; therefore, non-attainment modeling impacts will not be considered.

The Buena Vista Compressor Station will continue to be a PSD minor source (permitted NO_2 , VOC, SO_2 and particulate emissions will not exceed 250 tons per year). If there are significant impacts, PSD increment consumption modeling will be conducted for NO_2 . Table 3 identifies the allowable increment.

Allowable 15D Increment						
Pollutant	Averaging	Area	Allowable Increment			
	Period	Туре	$(\mu g/m^3)$			
NO ₂	Annual	Class II	25			

 Table 3

 Allowable PSD Increment

As there are no Class I areas located within 50 kilometers of the Buena Vista Compressor Station, the modeling of PSD increment consumption at nearby Class I areas will not be included in the analysis. The nearest Class I area is the San Pedro Parks Wilderness located approximately 69.3 kilometers away.

Methodology

The modeling will be conducted in accordance with this protocol and the *NMAQB Air Dispersion Modeling Guidelines, Revised July 2022.* First, emissions from all Buena Vista Compressor Station sources will be modeled to determine if there are significant impacts. For pollutant averaging periods where impacts are less than the SIL, no additional modeling will be conducted. Second, where pollutant impacts exceed the SIL, cumulative impacts for comparison with the NAAQS and NMAAQS will be determined using one of the methodologies identified in the modeling guidelines (facility impacts plus background concentrations <u>or</u> facility and neighboring source impacts). Third, where impacts exceed the SIL, cumulative impacts for comparison with allowable PSD increment consumption will be determined using facility impacts plus background concentrations <u>or</u> facility and neighboring source impacts. For all short-term averages, the SIA will be determined using first-high impacts.

Dispersion Model

Both significant and cumulative impact modeling will be conducted using the latest version of the AMS/EPA Regulatory Model (AERMOD). The Beeline Software BEEST for Windows modeling manager will be used to prepare the input files and manage processing. Environmental Protection Agency (EPA) recommended defaults will be used. As the station is in a rural area, urban area modeling will not be conducted.

Emission Sources

The following Buena Vista Compressor Station sources will be included in the modeling evaluation: three Caterpillar G3516LE natural gas-fired reciprocating engines (Units 1b-3b). The Caterpillar G3516LE compressor engines have higher NOx and CO emissions compared to the Waukesha 7042GL engines and are expected to result in higher modeled concentrations.

Modeling will be conducted using emission rates calculated from manufacturer's data as identified in the application. All sources will be assumed to operate 8,760 hours per year. Modeling will be conducted using stack parameters provided by manufacturers as identified in the application.

There are no startup, shutdown and maintenance (SSM) emissions associated with the sources.

Significant impact and NAAQS and NMAAQS cumulative impact modeling will be conducted using all facility sources.

PSD increment consumption modeling will be conducted using all Buena Vista Compressor Station sources, as they will all be installed after the AQCR 014 NO₂ minor source baseline date.

Building Downwash

The EPA Building Profile Input Program - Prime (BPIP-Prime) will be used to evaluate structures for building downwash impacts. All structures close enough (of sufficient height and/or width) to produce downwash effects from the stacks will be included in the evaluation.

Receptor Selection

A Cartesian grid with variable receptor spacing will be used to evaluate significant impacts around the facility. The grid will contain receptors with 50-meter spacing along the fence line and from the fence line out to at least 500 meters, 100-meter spacing from the 500 meters beyond the fence line out to at least 1,000 meters, and 500-meter spacing from 1,000 meters beyond the fence line out to at least 3,000 meters. If significant impact areas extend beyond 3,000 meters from the fence line, the grid will also include receptors with 1,000-meter spacing sufficient to cover the entire significant impact area.

Cumulative impact modeling will be conducted using only those receptors from the grid defined in the paragraph above for which there are significant impacts. If maximum cumulative impacts greater than or equal to 75 percent of the applicable standard are calculated at receptors located in the 100-meter, 500-meter or 1,000-meter interval portions of the grid, then refined grids with 50-meter spacing will be centered on these receptors to identify the local high. These refined grids will be large enough to identify the local high impacts.

The coordinate system used to reference receptor locations will be of the UTM convention (NAD83). Terrain elevation data will be obtained from Digital Elevation Model (DEM) files or National Elevation Dataset (NED) files with a minimum resolution of 1/3 arc second (approximately 10 meters). The AERMOD Terrain Preprocessor (AERMAP) will be used to calculate the receptor elevations and terrain maximums. The domain used to calculate terrain maximums will be sufficient to identify all terrain nodes that create a slope greater than or equal to 10 percent.

Meteorological Data

Modeling will be conducted using Bloomfield meteorological data collected during 2015-2019. The data will be obtained from the NMAQB web site. The profile base elevation will be set at 1,713 meters above mean sea level. These data are considered representative of the site as they are closest to the Buena Vista Compressor Station.

Neighboring Sources

Cumulative NO₂ and CO impacts to demonstrate compliance with the NAAQS and NMAAQS may be calculated as facility impacts plus background concentrations <u>or</u> facility impacts plus neighboring source impacts. Therefore, if NO₂ and/or CO impacts from the Buena Vista Compressor Station exceed the SIL, neighboring sources may be used to evaluate compliance with the NAAQS and NMAAQS. For NO₂ and CO NAAQS and NMAAQS modeling, neighboring sources include all sources within 25 kilometers of the facility and all sources between 25 and 50 kilometers from the facility that are permitted to emit 1,000 pounds per hour or more.

Cumulative impacts to demonstrate compliance with allowable PSD increment consumption may be calculated as facility impacts plus background concentrations or facility impacts plus neighboring source impacts. Therefore, if NO_2 impacts from the Buena Vista Compressor Station facility exceed the SIL, either neighboring sources will be used to evaluate compliance with PSD increment consumption or a monitored background value may be substituted for the modeled surrounding sources as a conservative approach to the increment consumption.

Where used, neighboring sources will be obtained from the NMAQB.

Background Concentrations

Where NO₂ and/or CO impacts exceed the SIL, cumulative impacts for comparison with the NAAQS and NMAAQS <u>may</u> be calculated as station impacts plus background concentrations as identified in the modeling guidelines. If this method is utilized, background concentrations will be obtained from the *NMAQB Air Dispersion Modeling Guidelines, Revised July 2022.* Table 4 below identifies the applicable background concentrations that will be used, if required.

Pollutant	Averaging Period	Background (µg/m ³)	Source ID
NO ₂	1-Hour	61.4	1ZB
NO ₂	Annual	18.5	1ZB
СО	1-Hour	2,148	350010023
СО	8-Hour	1,265	350010023

 Table 4

 Background Concentrations

The NO₂ data is obtained from Table 31 of the NMAQB modeling guidelines and the 1-hour background is the 98^{th} percentile concentration. Although the nearest monitoring station is Chaco Culture National Historical Park, NO₂ data are taken from the Bloomfield monitoring station as it is determined to be most representative of the project site.

The CO data are obtained from Table 30 of the NMAQB modeling guidelines and are recommended for areas outside of Albuquerque and Sunland Park.

As an alternative to the NO₂ background concentrations above, refined NO₂ background concentrations may be developed and used as described in Section 4.4.1.3 of the *New Mexico Air Quality Bureau Air Dispersion Modeling Guidelines, Revised July 2022.* From the geographically nearest (Bloomfield) full set of monitoring data, the maximum one-hour concentration that occurs during each hour of the day for each month will be determined. This will result in twelve different 24-hour profiles that will be repeated for the entire month that each represents. The most recent, complete three years of data will be used (2019-2021) and the three values for each month will be averaged and used for the background.

NO_X TO NO₂ CONVERSION

 NO_X impacts will be converted to NO_2 impacts using the Ambient Ratio Method 2 (ARM2). ARM2 provides estimates of representative equilibrium ratios of NO_2/NO_x based on ambient levels of NO_2 and NO_x derived from national data from the EPA's Air Quality System. The national defaults for ARM2 will be used

including a minimum ambient NO₂/NO_x ratio of 0.5 and a maximum ambient NO₂/NO_x ratio of 0.9. If an NO₂/NO_x ratio of less than 0.5 is used, justification will be provided. If a more refined approach such as the Ozone Limiting Method (OLM) or Plume Volume Molar Ratio Method (PVMRM) is needed to demonstrate compliance with the 1-hour NO₂ standard, it will be coordinated with the NMAQB.

We request your approval of this protocol prior to our proceeding with the modeling analysis. If you have any questions or comments, please contact me at (805) 964-7597 or by email at wkonkel@elogicllc.com. Thank you for your attention in this matter.

Sincerely,

EcoLogic Environmental Consultants, LLC

Walter H Konhelter

Walter H. Konkel III

cc: Monica Smith – Harvest Four Corners, LLC

New Mexico Environment Department Air Quality Bureau Modeling Section 525 Camino de Los Marquez - Suite 1 Santa Fe, NM 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb/

For Department use only:

Approved by: Eric Peters

Date: October 27, 2022

Air Dispersion Modeling Waiver Request Form

This form must be completed and submitted with all air dispersion modeling waiver requests.

If an air permit application requires air dispersion modeling, in some cases the demonstration that ambient air quality standards and Prevention of Significant Deterioration (PSD) increments will not be violated can be satisfied with a discussion of previous modeling. The purpose of this form is to document and streamline requests to certify that previous modeling satisfies all or some of the current modeling requirements. The criteria for requesting and approving modeling waivers is found in the Air Quality Bureau Modeling Guidelines. Typically, only construction permit applications submitted per 20.2.72, 20.2.74, or 20.2.79 NMAC require air dispersion modeling. However, modeling is sometimes also required for a Title V permit application.

A waiver may be requested by e-mailing this completed form in MS Word format to the modeling manager, <u>sufi.mustafa@state.nm.us</u>.

This modeling waiver is not valid if the emission rates in the application are higher than those listed in the approved waiver request.

on I and I able I. Contact and	I I and Table 1: Contact and facility information:				
Contact name	Walter Konkel				
E-mail Address:	wkonkel@elogicllc.com				
Phone	805-964-7597				
Facility Name	Buena Vista Compressor Station				
Air Quality Permit Number(s)	6362-R2				
Agency Interest Number (if	35662				
known)	55002				
Latitude and longitude of	36.274543, -107.699239				
facility (decimal degrees)	50.2/4545, -10/.077257				

Section 1 and Table 1: Contact and facility information:

General Comments: (Add introductory remarks or comments here, including the purpose of and type of permit application.)

Harvest Four Corners, LLC (H4C) is preparing to submit a construction permit application to modify the Buena Vista Compressor Station. The facility is currently permitted to operate the following combustion sources: three Waukesha 7042GL or three Waukesha 5790GL natural gas-fired compressor engines (Units 1a-3a and 1b-3b). The proposed modification is to change the allowed compressor engine configuration from three Waukesha 7042GL or three Waukesha 5790GL natural gas-fired compressor engines (Units 1a-3a and 1b-3b) to three Waukesha 7042GL compressor engines or three Caterpillar G3516LE compressor engines (Units 1a-3a and 1b-3b). The facility will remain a prevention of significant deterioration (PSD) minor source. The application will include a modeling analysis for nitrogen dioxide (NO2) and carbon monoxide (CO) emissions. As modeling of VOC is not required for PSD minor sources, and as the facility total sulfur dioxide (SO2) and particulate matter (PM10 and PM2.5) emission rates will remain below the thresholds for modeling, H4C requests a modeling waiver for VOC, SO2, PM10 and PM2.5.

Section 2 – List All Regulated Pollutants from the Entire Facility - Required

In Table 2, below, list all regulated air pollutants emitted from your facility, except for New Mexico Toxic Air Pollutants, which are listed in Table 6 of this form. All pollutants emitted from the facility must be listed regardless if a modeling waiver is requested for that pollutant or if the pollutant emission rate is subject to the proposed permit changes.

	able 2: All Fondtant summary table (Check an that apply. Include an pondtants emitted by the facility):						
Pollutant	Pollutant is	Pollutant does not	Stack	Pollutant is	Pollutant is	A modeling	Modeling for
	not emitted	increase in emission	parameters	new to the	increased at	waiver is	this pollutant
	at the facility	rate at any emission unit	or stack	permit, but	any	being	will be
	and	(based on levels	location	already	emission	requested	included in
	modeling or	currently in the permit)	has	emitted at	unit (based	for this	the permit
	waiver are	and stack parameters	changed.	the facility.	on levels	pollutant.	application.
	not required.	are unchanged.			currently in		
		Modeling or waiver are			the permit).		
		not required.					
CO							Χ
NO ₂							Χ
SO_2						Χ	
PM10						Χ	
PM2.5						Χ	

Table 2: Air Pollutant summary table (Check all that apply. Include all pollutants emitted by the facility):

Section 3: Facility wide pollutants, other than NMTAPs, with very low emission rates

The Air Quality Bureau has performed generic modeling to demonstrate that small sources, as listed in Appendix 2 of this form, do not need computer modeling. After comparing the facility's emission rates for various pollutants to Appendix 2, please list in Table 3 the pollutants that do not need to be modeled because of very low emission rates.

Section 3 Comments. (If you are not requesting a waiver for any pollutants based on their low emission rate, then note that here. You do not need to complete the rest of Section 3 or Table 3.)

Table 3: List of Pollutants with very low facility-wide emission rates

Pollutant	Requested Allowable Emission Rate From Facility (pounds/hour)	Release Type (select "all from stacks >20 ft" or "other")	Waiver Threshold (from appendix 2) (lb/hr)
SO2	0.02	All from stacks	2.0
PM10	0.299	All from stacks	1.0
PM2.5	0.299	All from stacks	0.3

Section 4: Pollutants that have previously been modeled at equal or higher emission rates

Not Applicable

Section 5: Modeling waiver using scaled emission rates and scaled concentrations

Not Applicable

Section 6: New Mexico Toxic air pollutants – 20.2.72.400 NMAC

Not Applicable

Form Version: 5/6/2018

Section 7: Approval or Disapproval of Modeling Waiver

The AQB air dispersion modeler should list each pollutant for which the modeling waiver is approved, the reasons why, and any other relevant information. If not approved, this area may be used to document that decision.

This waiver is granted for SO₂, PM10, and PM2.5 based on very low emission rates modeling performed by AQB in the past. NO₂ and CO modeling are expected to be included with the permit.

Appendix 1: Stack Height Release Correction Factor (adapted from 20.2.72.502 NMAC)

Release Height in Meters	Correction Factor
0 to 9.9	1
10 to 19.9	5
20 to 29.9	19
30 to 39.9	41
40 to 49.9	71
50 to 59.9	108
60 to 69.9	152
70 to 79.9	202
80 to 89.9	255
90 to 99.9	317
100 to 109.9	378
110 to 119.9	451
120 to 129.9	533
130 to 139.9	617
140 to 149.9	690
150 to 159.9	781
160 to 169.9	837
170 to 179.9	902
180 to 189.9	1002
190 to 199.9	1066
200 or greater	1161

Appendix 2. Very small emission rate modeling waiver requirements

Modeling is waived if emissions of a pollutant for the entire facility (including haul roads) are below the amount:

Pollutant	If all emissions come from stacks 20 feet or greater in height and there are no horizontal stacks or raincaps (lb/hr)	If not all emissions come from stacks 20 feet or greater in height, or there are horizontal stacks, raincaps, volume, or area sources (lb/hr)
СО	50	2
H ₂ S (Pecos-Permian Basin)	0.1	0.02
H ₂ S (Not in Pecos-Permian Basin)	0.01	0.002
Lead	No waiver	No waiver
NO ₂	2	0.025
PM2.5	0.3	0.015
PM10	1.0	0.05
SO ₂	2	0.025
Reduced sulfur (Pecos-Permian Basin)	0.033	No waiver
Reduced sulfur (Not in Pecos- Permian Basin)	No waiver	No waiver

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permit conditions, you must submit a compliance test history. The table below provides an example.

Unit No.	Test Description	Test Date
1a	Compliance test for NO_X and CO, in accordance with Operating Permit condition A201.B	December 6, 2021
2a	Compliance test for NO _X and CO, in accordance with Operating Permit condition A201.B	Did Not Operate in 2021
3a	Compliance test for NO_X and CO, in accordance with Operating Permit condition A201.B	December 6, 2021

Compliance Test History Table

Addendum for Streamline Applications

Streamline Applications do not require a complete application. Submit Sections 1-A, 1-B, 1-D, 1-F, 1-G, 2-A, 2-C thru L, Sections 3 thru 8, Section 13, Section 18, Section 22, and Section 23 (Certification). Other sections may be required at the discretion of the Department. 20.2.72.202 NMAC Exemptions do not apply to Streamline sources. 20.2.72.219 NMAC revisions and modifications do not apply to Streamline sources, thus 20.2.72.219 type actions require a complete new application submittal. Please do not print sections of a streamline application that are not required.

Not applicable, as this is not a streamline application.

Requirements for Title V Program

Who Must Use this Attachment:

* Any major source as defined in 20.2.70 NMAC.

- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

Not applicable as this is not a Title V permit application.

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

Not applicable, as no other relevant information is being provided.

Addendum for Landfill Applications

Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: <u>https://www3.epa.gov/airtoxics/landfill/landflpg.html</u>

NM Solid Waste Bureau Website: https://www.env.nm.gov/swb/

Not applicable, as the facility is not a landfill.

Certification

Company Name: <u>Harvest Four Corners, LLC</u>

I, <u>MONCA SMEEN</u>, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience. Signed this <u>ILP</u> day of <u>NOVEMOEP</u>, <u>2019</u>, upon my oath or affirmation, before a notary of the State of New Mexico.

Date

Monica Smith Printed Name Date

Environmental Specialist Title

Scribed and sworn before me on this 16 day of NOVEMBER, 2022.

My authorization as a notary of the State of New Mexico expires on the 23 day of NOVEMBER,

Notary's Signature

110/2022

Notary's Printed Name

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AD NMAC.

STATE OF NEW MEXICO NOTARY PUBLIC JENNIFER DEAL COMMISSION # 1136075 COMMISSION EXPIRES 11/23/2025

2025.