

Mosaic Potash Carlsbad Inc. PO Box 71[°] 1361 Potash Mines Road Carlsbad, NM 88221 (575) 628-6200 Fax (575) 887-0589 www.mosaicco.com

December 27, 2022

CERTIFIED MAIL: 7019 2970 0000 3887 2144

New Mexico Environment Department Air Quality Bureau Permit Program Manager 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505-1816

RECEIVED

JAN 2 0 2023

Air Quality Bureau

RE:

Mosaic Potash Carlsbad, Inc.

NSR Significant Permit Revision Application

Dear Permit Program Manager:

Mosaic Potash Carlsbad Inc. (Mosaic) is submitting the enclosed significant permit application revision under 20.2.72.219.D NMAC to accomplish the following:

- 1) Replace the existing Primary Ore Crusher with two new Impact Roll Crushers. The new Impact Roll Crushers will be vented to the existing Lang Crusher (STK5a) baghouse, and while there will be a slight increase in the fugitive particulate matter potential emissions (<1 lb/hr for PM₁₀ and PM_{2.5}) due to the related upstream and downstream impacts in the Crushing Circuit, no changes to the allowable emissions in the permit are being requested. Mosaic will not be making changes to the existing baghouse or associated stack that would impact the existing dispersion characteristics. A PSD applicability summary has been prepared for this project showing that this modification is not a major modification.
- 2) Add the ability for Mosaic to utilize a slag/grit abrasive blasting material in addition to the existing permitted garnet, olivine, and/or staurolite materials. Note that there will not be any changes to the blasting throughput limit, allowable blasting timeframes, or potential emissions. The more conservative (i.e., higher) garnet emission factor is being used to represent both garnet and slag/grit usage.
- 3) Change the diesel-fired engine (GEN1) that is currently reflected in the air permit to a "worst-case" engine since this air compressor engine is leased and replaced by the rental company once every 6 months. The intent of permitting the worst-case engine is to allow the rental company to change-out the engine as needed without requiring a permit modification. This engine is used to power an air compressor at various locations at the site. Enclosed is a modeling analysis for gaseous pollutants (NO2, CO, and SO2) using the "worst-case" engine emissions. Note that annual emissions will be included in the existing stack CAPs.
- 4) Add a second air compressor diesel-fired engine (GEN2) to the permit. Worst-case potential emissions have been calculated based on 8,760 hr/yr of operation and annual emissions will be included in the existing stack CAPs. This engine has also been included in the enclosed modeling analysis, and similar to GEN1, the intent of permitting the worst-case engine is to allow the rental company to change-out the engine as needed without requiring a permit modification.

With all of the changes requested above, Mosaic is not requesting any changes to the facility's current stack CAPs.

If you have any questions or need additional information, please contact me at 575-628-6267 or via e-mail at Haskins.Hobson@mosaicco.com.

Sincerely,

Haskins Hobson, P.E.

Senior Environmental Engineer

Harlius Holson, P. E.

cc: Joseph Kimbrell, NMED AQB

Enclosures: NSR Significant Permit Revision Application (UA1, UA2, UA3, UA4)

EPD AQB Disclosure Form

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

For Department use only:

RECEIVED

JAN 2 0 2023

Air Quality Bureau

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions for other permits.

This application is submitted as (check all that apply):

Request for a No Permit Required Determination (no fee)

☐ Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required).				
Construction Status: 🗆 Not Constructed X Existing Permitted (or NOI) Facility 🗆 Existing Non-permitted (or NOI) Facility				
Minor Source: □ a NOI 20.2.73 NMAC X 20.2.72 NMAC application or revision □ 20.2.72.300 NMAC Streamline application				
Title V Source: □ Title V (new) □ Title V renewal □ TV minor mod. □ TV significant mod. TV Acid Rain: □ New □ Renewal				
PSD Major Source: ☐ PSD major source (new) ☐ minor modification to a PSD source ☐ a PSD major modification				
Acknowledgements:				
X I acknowledge that a pre-application meeting is available to me upon request. Title V Operating, Title IV Acid Rain, and NPR				
applications have no fees.				
X \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline				
applications).				
X Check No.: 199543 in the amount of \$500				
X I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched				
(except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.				
X I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-2/ .				
☐ This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this				
application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has				
been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information:				
www.env.nm.gov/air-quality/small-biz-eap-2/.)				
Citation: Please provide the low level citation under which this application is being submitted: 20.2.72.219.D NMAC				

(e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 - Facility Information

Sec	tion 1-A: Company Information	3 to 5 #s of permit IDEA ID No.): 196	Permit/NOI #:0495- M14-R3
1	Facility Name: Mosaic Potash Carlsbad Inc.	Plant primary SIC Code (4 digits): 1474	
Triosaic I otasii Carisbad Inc.	Hosaic I dush curiodat Inci	Plant NAIC code (6 digits): 212391	
a	Facility Street Address (If no facility street address, provide directions from a prominent landmark): 1361 Potash Mines Road, Carlsbad, NM 88220		
2	Plant Operator Company Name: Mosaic Potash Carlsbad Inc.	Phone/Fax: (575) 628-	6200 / (575) 887-0589
a	Plant Operator Address: 1361 Potash Mines Road, Carlsbad, NM 8	8220	

b	Plant Operator's New Mexico Corporate ID or Tax ID: CRS # 02-357860-00-2		
3	Plant Owner(s) name(s): Mosaic Potash Carlsbad Inc.	Phone/Fax: (575) 628-6200 / (575) 887-0589	
a	Plant Owner(s) Mailing Address(s): 1361 Potash Mines Road, Carlsbad,	NM 88220	
4	Bill To (Company): Mosaic Potash Carlsbad Inc.	Phone/Fax: (575) 628-6200 / (575) 887-0589	
a	Mailing Address: P.O. Box 71, Carlsbad, NM 88220	E-mail: Haskins.Hobson@mosaicco.com	
5	Preparer: X Consultant: Claire Booth	Phone/Fax: (352) 328-5764	
a	Mailing Address: 1496 Conestoga Circle, Steamboat Springs, CO 80487	E-mail: claire@arrayenvironmental.com	
6	Plant Operator Contact: Paul Gill	Phone/Fax: (575) 628-6207 / (575) 887-0589	
a	Address: P.O. Box 71, Carlsbad, NM 88220	E-mail: Paul.Gill@mosaicco.com	
7	Air Permit Contact: Haskins Hobson	Title: Senior Environmental Engineer	
a	E-mail: Haskins.Hobson@mosaicco.com	Phone/Fax: (575) 628-6267 / (575) 887-0589	
b	Mailing Address: P.O. Box 71, Carlsbad, NM 88220		
с	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.		

Section 1-B: Current Facility Status

~~~	tion 1-B. Current Facinity Status		
1.a	Has this facility already been constructed? <b>X</b> Yes No	1.b If yes to question 1.a, is it currently operating in New Mexico? X Yes No	
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? Yes X No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application?  X Yes No	
3	Is the facility currently shut down? Yes X No	If yes, give month and year of shut down (MM/YY): N/A	
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? X Yes No		
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972?  X Yes No N/A		
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? <b>X</b> Yes No	If yes, the permit No. is: P039-R3-M1	
7	Has this facility been issued a No Permit Required (NPR)? Yes X No	If yes, the NPR No. is: N/A	
8	Has this facility been issued a Notice of Intent (NOI)? Yes X No	If yes, the NOI No. is: N/A	
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? <b>X</b> Yes No	If yes, the permit No. is: 0495-M14-R3	
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)?  Yes X No	If yes, the register No. is: N/A	

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)				
a	Current	Hourly: See NSR 0495-M14; Table 104.A	Daily: See NSR 0495-M14; Table 104.A	Annually: See NSR 0495-M14; Table 104.A	
b	Proposed	Hourly: See Table 2-A in this application	Daily: See Table 2-A in this application	Annually: See Table 2-A in this application	
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)				
a	Current	Hourly: See NSR 0495-M14; Table 104.A	Daily: See NSR 0495-M14; Table 104.A	Annually: See NSR 0495-M14; Table 104.A	

b	Proposed	Hourly: See Table 2-A in this application	Daily: See Table 2-A in this application	Annually: See Table 2-A in this application
---	----------	-------------------------------------------	------------------------------------------	---------------------------------------------

**Section 1-D: Facility Location Information** 

Sect	IUII 1-D. I	acinty Luca	uon miormation		
1	Section: 12	Range: 29E	Township: 22S	County: Eddy	Elevation (ft): <b>3,220</b>
2	UTM Zone:	12 or <b>X</b> 13		Datum: NAD 27 NAD 8	83 <b>X</b> WGS 84
a	UTM E (in meters, to nearest 10 meters): 600070		UTM N (in meters, to nearest 10 meters):	3586900	
b	AND Latitude	(deg., min., sec.):	32°24'53" N	Longitude (deg., min., sec.): 103°50	6'9" W
3	Name and zip o	code of nearest Ne	ew Mexico town: Carlsbac	i, NM 88220	
4				h a road map if necessary): From Lov 14 miles. The plant is on the east sid	
5	The facility is 1	16 miles East of (	Carlsbad, NM.		
6	The facility is		Private and Federal BLN	A land.	rest Service X Other (specify)
7		•	ribes, and counties within ed to be constructed or op	a ten (10) mile radius (20.2.72.203 perated: <b>Eddy County</b>	.B.2 NMAC) of the property
8	20.2.72 NMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see <a href="https://www.env.nm.gov/aqb/modeling/class1areas.html">www.env.nm.gov/aqb/modeling/class1areas.html</a> )? X Yes No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: Carlsbad Caverns, a Class I area, is located 48 km from the facility.			all with corresponding	
9	Name nearest Class I area: Carlsbad Caverns				
10	Shortest distance	ce (in km) from fa	cility boundary to the bour	ndary of the nearest Class I area (to the	e nearest 10 meters): 48 km
11				ions (AO is defined as the plant site in est residence, school or occupied struc	
	Method(s) used and around th		Restricted Area: Fencing a	round the surface facilities and rug	ged physical terrain within
12	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.  Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC?				
13	Yes X No A portable station on elocation or	ionary source is not that can be re-ins	ot a mobile source, such as talled at various locations,	an automobile, but a source that can such as a hot mix asphalt plant that is	be installed permanently at s moved to different job sites.
14			nction with other air regul nit number (if known) of th	ated parties on the same property? ne other facility?	⊠ No □ Yes

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility <b>maximum</b> operating (hours/day): 24	$(\frac{\text{days}}{\text{week}})$ : 7	$(\frac{\text{weeks}}{\text{year}})$ : 52	( <u>hours</u> ): <b>8,760</b>	
2	Facility's maximum daily operating schedule (if less	than $24 \frac{hours}{day}$ )? Start: <b>N/A</b>	AM PM	End: N/A	□AM □PM
3	Month and year of anticipated start of construction: I	March 2023 (new crusher)			
4	Month and year of anticipated construction completion: April 2023 (new crusher)				
5	Month and year of anticipated startup of new or mod	ified facility: April 2023 (new	crusher)		
6	Will this facility operate at this site for more than one	e year? X Yes No			

**Section 1-F: Other Facility Information** 

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? Yes X No If yes, specify:		
a	If yes, NOV date or description of issue:		NOV Tracking No:
ь	Is this application in response to any issue listed in 1-F, 1 o	r 1a above? Yes	X No If Yes, provide the 1c & 1d info below:
С	Document Title:	Date:	Requirement # (or page # and paragraph #):
d	Provide the required text to be inserted in this permit:		
2	Is air quality dispersion modeling or modeling waiver being	g submitted with this	application? X Yes No
3	Does this facility require an "Air Toxics" permit under 20.2	2.72.400 NMAC & 20	0.2.72.502, Tables A and/or B? Yes <b>X</b> No
4	Will this facility be a source of federal Hazardous Air Pollu	tants (HAP)? X Yes	No
a	If Yes, what type of source? Major ( $\geq 10$ tpy of any OR X Minor ( $\leq 10$ tpy of any		_ 1, ,
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? Yes	X No	
	If yes, include the name of company providing commercial	electric power to the	facility:
a	Commercial power is purchased from a commercial utility site for the sole purpose of the user.	company, which spe	cifically does not include power generated on

#### **Section 1-G: Streamline Application** (This section applies to 20.2.72.300 NMAC Streamline applications only)

I have filled out Section 18, "Addendum for Streamline Applications." X N/A (This is not a Streamline application.)

### Section 1-H: Current Title V Information - Required for all applications from TV Sources (Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or

	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): <b>Paul Gill</b>	Phone: (575) 628-6207	
a	R.O. Title: General Manager	R.O. e-mail: Paul.Gill@mosaicco.com	
b	b R. O. Address: 1361 Potash Mines Road, Carlsbad, NM 88220		
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): <b>Jim Johnson</b>	Phone: (575) 628-6490	
a	A. R.O. Title: Senior Mill Manager	A. R.O. e-mail: Jim.Johnson@mosaicco.com	
b	b A. R. O. Address: 1361 Potash Mines Road, Carlsbad, NM 88220		
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): N/A		
ļ	Name of Parent Company ("Parent Company" means the primary permitted wholly or in part.): <b>The Mosaic Company</b>	name of the organization that owns the company to be	
a	Address of Parent Company: 101 East Kennedy Blvd., Suite 250	0, Tampa, FL 33602	
	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): <b>N/A</b>		
	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations: <b>John Anderson</b> , (575) 628-6367		

7

Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: **45 km north of Texas** 

### **Section 1-I – Submittal Requirements**

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

#### **Hard Copy Submittal Requirements:**

- 1) One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and **must be double sided**. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

#### Electronic files sent by (check one):

CD/DIID	1 1.		1
$(1)/1)\sqrt{1}$	attached to	naner ani	nlication
CD/D/D	attached to	paper ap	piicution

X secure electronic transfer. Air Permit Con	tact Name Claire Booth
	Email <u>claire@arrayenvironmental.com</u>
	Phone number (352) 328-5764

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.** 

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If **air dispersion modeling** is required by the application type, include the **NMED Modeling Waiver** and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling **summary report only** should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
  - a. one additional CD copy for US EPA,
  - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
  - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

#### **Electronic Submittal Requirements** [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible

format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

#### **Table of Contents**

#### The following application sections are being provided as part of this NSR Significant Permit Revision:

**Section 1:** General Facility Information

**Section 2:** Tables

Section 3: Application Summary
Section 4: Process Flow Sheet

**Section 5:** Plot Plan Drawn to Scale

**Section 6:** All Calculations

**Section 7:** Information Used to Determine Emissions

Section 8: Map(s)

**Section 9: Proof of Public Notice** 

Section 10: Written Description of the Routine Operations of the Facility

**Section 11:** Source Determination

Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application

Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation

**Section 14: Operational Plan to Mitigate Emissions** 

**Section 15:** Alternative Operating Scenarios

Section 16: Air Dispersion Modeling
Section 17: Compliance Test History
Section 20: Other Relevant Information

**Section 22:** Certification Page

#### The following application sections are not being provided as part of this NSR Significant Permit Revision:

Section 18: Addendum for Streamline Applications (streamline applications only)

(This is not a Streamline Application.)

Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)

(This is not a Title V Application.)

Section 21: Addendum for Landfill Applications

(This is not a Landfill Application.)

Table 2-A: Regulated Emission Sources
Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit Number ¹	Source Description	Make	Model#	Serial#	Manufact- urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of Construction/	Controlled by Unit # Emissions vented to	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB,	Replacing Unit No.
Nash Plant	Hoist #1	NI II	N/A	N/A	400 tph	400 +1-	Reconstruction ²	Stack# None	30588801	X Existing (unchanged)   To be Removed  Replacement Unit	2SLB) ⁴	N/A
(FUG1)	Hoist #1	Nordberg	N/A	IV/A	400 tpn	400 tph	1950	None	30388801	☐ To Be Modified ☐ To be Replaced	N/A	N/A
Nash Plant (FUG2)	Screening	Mosaic Built Multiple Equip. Mfrs.	N/A	N/A	250 tph	250 tph	1997	None None	30588801	X Existing (unchanged)	N/A	N/A
LANG Hoist	No. 2 Langbeinite Hoist	Mosaic Built/Norberg	N/A	N/A	729 tph	729 tph	-	CON4	30502299	X Existing (unchanged)  To be Removed New/Additional Replacement Unit	N/A	N/A
(STK4/FUG3,25,26)	and Coarse Ore Bin	Hoist	IV/A	IVA	729 tpii	729 tpii	1940, converted 1999	STK4	30302299	☐ To Be Modified ☐ To be Replaced	IV/A	IV/A
LANG Crusher (STK5a/FUG27,28)	Langbeinite Raw Ore Crusher	Mosaic Built Multiple Equip. Mfgs	N/A	N/A	372 tph	372 tph	1999	CON5a STK5a	30502201	□ Existing (unchanged) □ To be Removed     □ New/Additional □ Replacement Unit     X To Be Modified □ To be Replaced	N/A	N/A
LANG Fine Ore Bin	Langbeinite Fine Ore Bin	Mosaic Built	N/A	N/A	825 tph	825 tph		CON5b	30502299	Existing (unchanged)    To be Removed     New/Additional    Replacement Unit	N/A	N/A
(STK5b/FUG29)	· ·					•	1999	STK5b		X To Be Modified   To be Replaced		
LANG Dryer (STK6/FUG30)	Langbeinite Dryer	Burner: Fives North American	4213-112- 7X8GGO	N/A	Burner: 90 MMBtu/hr; 225	Burner: 90 MMBtu/hr; 225 tph		CON6	30502201	X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
		American	/12387		tph throughput	throughput	1999 (dryer); 2018 (burner)	STK6		☐ To Be Modified ☐ To be Replaced  X Existing (unchanged) ☐ To be Removed		
S&L Boiler (STK20)	Steam Boiler for storage and loading	Cleaver Brooks	250- 150ST	10507	2.5 MMBtu/hr	2.5 MMBtu/hr	2008	None STK20	10200603	New/Additional	N/A	N/A
S&L Loadout 4	-							None		X Existing (unchanged)   To be Removed		
(FUG9)	No. 4 Railcar Loadout	Mosaic Built	N/A	N/A	300 tph	300 tph	1955	None	30588801	□ New/Additional     □ Replacement Unit       □ To Be Modified     □ To be Replaced	N/A	N/A
S&L Loadout 5 (FUG10)	No. 5 Railcar Loadout	Mosaic Built	N/A	N/A	300 tph	300 tph	1955	None None	30588801	X Existing (unchanged)	N/A	N/A
S&L Truck Loadout	N 27 11 1 .	N ( 4 3 1 1	27/4	27/4	200 - 1	200 . 1		None	20500001	X Existing (unchanged)   To be Removed	27/4	27/4
(FUG12)	No. 2 Truck Loadout	Not Available	N/A	N/A	300 tph	300 tph	1984	None	30588801	□ New/Additional     □ Replacement Unit       □ To Be Modified     □ To be Replaced	N/A	N/A
S&L Dispatch (FUG31,32)	Dispatch	Not Available	N/A	N/A	400 tph	400 tph	1940	None None	30588801	X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
LANG Screens	Langbeinite Product	Mosaic Built Multiple	27/4	27/4	257 . 1	257.1		CON7	30502299	X Existing (unchanged)   To be Removed	27/4	27/4
(STK7/FUG30)	Screening	Equip. Mfrs.	N/A	N/A	257 tph	257 tph	1999	STK7	30302299	□ New/Additional     □ Replacement Unit       □ To Be Modified     □ To be Replaced	N/A	N/A
GRAN Dryer 10a (STK10ab-	Langbeinite (K-Mag)	North American	4213-60 LEX	N/A	Burner: 60 MMBtu/hr; 250	Burner: 60 MMBtu/hr; 250 tph		CON10a	30502201	X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
CON10a/FUG33)	Granulation Dryer		Burner		tph throughput	throughput	1997	STK10ab		☐ To Be Modified ☐ To be Replaced		
GRAN Process Ventilation 10b	Granulation Screens, Raymond Mill, material	Mosaic Built Multiple	N/A	N/A	250 tph	250 tph		CON10b	30502299	X Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A
(STK10ab- CON10b/FUG33)	handling	Equip. Mfrs.	1 1/11	1011	250 tpii	250 tpii	1997/2008	STK10ab	30302233	☐ To Be Modified ☐ To be Replaced	1 1/12	
GRAN Process Ventilation 10c	Granulation Second	Mosaic Built Multiple	N/A	N/A	125 tph	125 tph		CON14	30502299	X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
(STK14/FUG24)	Raymond Mill Circuit	Equip. Mfrs.	IN/A	N/A	123 tpii	123 tpii	9/2012	STK14	30302299	□ To Be Modified □ To be Replaced	N/A	IN/A
Dispatch Transfer Tower	K-Mag and Granulation Dispatch Transfer Tower; Dispatch to	Mosaic Built Multiple	N/A	N/A	400 tph	400 tph		CON11	30502299	X Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A
(STK11/FUG32)	Storage Belt	Equip. Mfrs.	14/21	1071	400 tpii	400 tpii	1940; 2014; 2021 (CON11)	STK11	30302277	☐ To Be Modified ☐ To be Replaced	14/21	14/21
S&L Warehouse 1	Warehouse 1	N/A	N/A	N/A	100 tph	100 tph		None	30588801	X Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A
(FUG6)							1940	None		☐ To Be Modified ☐ To be Replaced		
S&L Warehouse 2	Warehouse 2; Dispatch to	N/A	N/A	N/A	400 tph	400 tph	-	None	30588801	X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
(FUG8)	Storage Belt						1955; 2014	None		☐ To Be Modified ☐ To be Replaced		
S&L Warehouse 3	Warehouse 3	N/A	N/A	N/A	400 tph	400 tph		None	30588801	X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
(FUG11)					· · · · · · · · · · · · · · · · · · ·		1995	None		☐ To Be Modified ☐ To be Replaced		

					Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model#	Serial #	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack#	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
Paved Roads (FUG								None		X Existing (unchanged)   To be Removed		
22,47,48,49,51,57,58,59 ,62,63,64,65,67)	Paved Haul Roads	N/A	N/A	N/A	N/A	N/A	N/A	None	30588801	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
Railcar Offloading	Loading from Railcar to	N/A	N/A	N/A	85 tph	85 tph		None	30588801	X Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A
(FUG43)	Truck/Front Loader				•	•	2013	None		☐ To Be Modified ☐ To be Replaced		
GRAN Reclaim	Material Handling from Warehouses/Railcar							None		X Existing (unchanged)   To be Removed		
(FUG44)	Unloading to Granulation Circuit	N/A	N/A	N/A	85 tph	85 tph	2013	None	30502299	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
KW DI II	Material Handling from							None		X Existing (unchanged)   To be Removed		
K-Mag Rehandling (FUG50)	Warehouses/Railcar Unloading to LANG Circuit	N/A	N/A	N/A	85 tph	85 tph	2013	None	30502299	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
Brine Circuit	Brine Circuit Material	N/A	N/A	N/A	100 tph	100 tph		None	30502299	X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
(FUG52)	Handling	N/A	IN/A	IN/A	100 tpii	100 tpii	2013	None	30302299	☐ To Be Modified ☐ To be Replaced	IN/A	IN/A
Permanent Abrasive	Stationary Abrasive	27/4	27/4	37/4				None	20500001	☐ Existing (unchanged) ☐ To be Removed	27/4	27/4
Blasting (FUG20)	Blasting	N/A	N/A	N/A	1,000 lb/hr	1,000 lb/hr each;	1960	None	30588801	□ New/Additional     □ Replacement Unit       X To Be Modified     □ To be Replaced	N/A	N/A
Portable Abrasive					each; 300 tpy total	300 tpy		None		☐ Existing (unchanged) ☐ To be Removed		
Blasting (FUG40)	Portable Abrasive Blasting	N/A	N/A	N/A		total	2011	None	30588801	□ New/Additional □ Replacement Unit X To Be Modified □ To be Replaced	N/A	N/A
Reagent	Reagent Material Handling	27/1	27/1	37/4				None	20502200	X Existing (unchanged)   To be Removed	27/1	27/1
(FUG60, FUG61)	and Wind Erosion	N/A	N/A	N/A	5 tph	5 tph	1953	None	30502299	□ New/Additional     □ Replacement Unit       □ To Be Modified     □ To be Replaced	N/A	N/A
TMA	Material Handling at the Tailings Management	N/A	N/A	N/A	50 tph	50 tph		None	30588801	X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
(FUG66)	Area (TMA)	IV/A	IN/A	IN/A	эо ци	50 tpii	2019	None	30366601	☐ To Be Modified ☐ To be Replaced	IN/A	IN/A
GDF1	Gasoline Dispensing Facility at the Auto Shop	Tessenderlo Kerley, Inc.	N/A	17031B	4,136	4,136	2017 (replacement tank)	None	40600499	X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
ODI I	(NLT1; CS8269)	ressenaerio reerrej, me.		17031B	gallons	gallons	2018 (replacement tank)	None	10000177	☐ To Be Modified ☐ To be Replaced		
CDF2	Gasoline Dispensing	CCF 1	27/4	001806	500 11	500 11		None	40.000.400	X Existing (unchanged)   To be Removed	27/4	27/4
GDF2	Facility at Laguna Grande (LG1)	SC Fuels	N/A	001806	500 gallons	500 gallons	2011 (tank)	None	40600499	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
	Diesel Engine						≥2006	None		☐ Existing (unchanged) ☐ To be Removed		
GEN1	(air compressor)	Varies	Varies	Varies	≤ 224 hp	≤ 224 hp	Varies	None	20200102	□ New/Additional □ Replacement Unit X To Be Modified (worst-case) □ To be Replaced	CI	N/A
GEN2	Diesel Engine	Varies	Varies	Varies	≤ 535 hp	≤ 535 hp	≥2014	None	20200102	□ Existing (unchanged) □ To be Removed	CI	N/A
	(air compressor)	varies	v at ics	varies	≥ 333 np	≥ 233 up	Varies	None	20200102	X New/Additional	CI	IN/A
WH1 to Granulation Reclaim Belt	WH1 to Granulation	N/A	N/A	N/A	85 tph	85 tph		None	30502299	X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
(included in FUG6)	Reclaim Belt ond to unit numbers in the previ				·	·	2023	None	30302299	☐ To Be Modified ☐ To be Replaced	IN/A	IN/A

(Introduct in PCOO)

1 'Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

2 Specify dates required to determine regulatory applicability.

3 To properly account for power conversions efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

4 SLB* means four stroke lean burn engine, "4SRB* means four stroke rich burn engine, "2SLB* means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

#### Table 2-B: Insignificant Activities (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html ), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Olit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Freee of Equipment, Check Onc
QA/QC Lab	OA/OC Lab Easting and	N/A	N/A	N/A	20.2.72.202.B.5		☐ Existing (unchanged) ☐ To be Removed
Equipment	QA/QC Lab Equipment	N/A	N/A	N/A	IA List Item #1.a & 1.b	Unknown	X New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
Warehouse Screener and	Warehouse Screener and Stacker	Rental unit	Rental Unit	400 tph	20.2.72.202.B.5		X Existing (unchanged)   To be Removed
Stacker	with Diesel Engines	Kentai unit	Rental Unit	400 tph	IA List Item #1.a	2020	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
CS9105	Starch Storage Bin	Shop built	N/A	25	20.2.72.202.B.5		X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
C59105	Starch Storage Bin	Shop bulk	N/A	tph	IA List Item #1.a	Unknown	☐ To Be Modified ☐ To be Replaced
Railcar	Railcar Transloader	Rental unit	Rental Unit	225	20.2.72.202.B.5		X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
Transloader	Kancai Transioadei	Kentai unit	Rental Unit	tph	IA List Item #1.a	2020	☐ To Be Modified ☐ To be Replaced
WLT1	Storage and Loading (West)	Shop built	N/A	36,375	20.2.72.202.B.2		X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
(CS7253)	DeDusting Tank	Shop built	N/A	gallons	IA List Item #5	1999	☐ To Be Modified ☐ To be Replaced
WLT2	Storage and Loading (East)	Shop built	N/A	36,375	20.2.72.202.B.2		X Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
(CS7257)	DeDusting Tank	Shop built	N/A	gallons	IA List Item #5	2000	☐ To Be Modified ☐ To be Replaced
NLT2	No. 2 Diesel Tank	at 1 %	N/A	4,000	20.2.72.202.B.2		X Existing (unchanged)   To be Removed
(CS8270)	(Off-Highway) (Auto Shop)	Shop built	N/A	gallons	IA List Item #5	2005	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
NLT3	No. 2 Diesel Tank	Shop built	N/A	1,000	20.2.72.202.B.2		X Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
(CS8268)	(On-Highway) (Auto Shop)	Shop built	N/A	gallons	IA List Item #5	2005	☐ To Be Modified ☐ To be Replaced
NLT4	Used/Waste Oil Tank	G1 1 1/4	N/A	4,000	20.2.72.202.B.2		X Existing (unchanged)   To be Removed
(CS8272)	(Auto Shop)	Shop built	N/A	gallons	IA List Item #5	2005	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
NLT5	No. 2 Diesel Tank	Ch h16	N/A	500	20.2.72.202.B.2		X Existing (unchanged)   To be Removed  Removed
(CS8267)	(Sand Yard)	Shop built	N/A	gallons	IA List Item #5	Unknown	☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced
LLT1	V Man Da Duntina Tank	Ch h16	N/A	42,000	20.2.72.202.B.2		X Existing (unchanged)   To be Removed
(CS10704)	K-Mag DeDusting Tank	Shop built	N/A	gallons	IA List Item #5	2009	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
LG2	No. 2 Diesel Tank	SC Fuels	N/A	500	20.2.72.202.B.2		X Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
1.02	(Laguna Grande)	SC rueis	001807	gallons	IA List Item #5	2011	☐ To Be Modified ☐ To be Replaced
CU057-1	Hydraulic Oil Tank	Shop built	N/A	6,000	20.2.72.202.B.2		X Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
CU037-1	(No. 5 Shaft)	Shop bulk	N/A	gallons	IA List Item #5	1988	☐ To Be Modified ☐ To be Replaced
CU057-2	No. 2 Diesel (Bulk) Tank	Shop built	N/A	15,000	20.2.72.202.B.2		X Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
CU037-2	(No. 5 Shaft)	Shop bulk	N/A	gallons	IA List Item #5	1978	☐ To Be Modified ☐ To be Replaced
CU057-3	No. 2 Diesel (Surge) Tank	Shop built	N/A	500	20.2.72.202.B.2		X Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
C0037-3	(No. 5 Shaft)	Shop bulk	N/A	gallons	IA List Item #5	1985	☐ To Be Modified ☐ To be Replaced
CU057-4	Used/Waste Oil Tank	Shop built	N/A	5,000	20.2.72.202.B.2		X Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
CU037-4	(No. 5 Shaft)	Snop built	N/A	gallons	IA List Item #5	1997	☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

### **Table 2-C: Emissions Control Equipment**

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight) ²	Method used to Estimate Efficiency
CON4	Donaldson/Torit 232RFW10 Baghouse with oval shaped filter bags and rotating cleaning arm with pulsing air	2012	TSP, PM ₁₀ , PM _{2.5}	LANG Hoist (STK4)	Est. 99.0+ ²	Engineering Judgment
CON5a	Donaldson/Torit 232RFT8 Baghouse with oval shaped filter bags and rotating cleaning arm with pulsing air	1999	TSP, $PM_{10}$ , $PM_{2.5}$	LANG Crusher (STK5a)	99.7%	Manufacturer
CON5b	Donaldson/Torit 156RFT8 Baghouse with oval shaped filter bags and rotating cleaning arm with pulsing air	2012	$TSP, PM_{10}, PM_{2.5}$	LANG Fine Ore Bin (STK5b)	Est. 99.0+ ²	Engineering Judgment
CON6	Cyclone upstream of scrubber and Mikropul Variable Throat Venturi Scrubber, Type SVS	1999	TSP, PM ₁₀ , PM _{2.5}	LANG Dryer (STK6)	99.5% (cyclone + scrubber)	Manufacturer
CON7	Donaldson/Torit 484RFW12 Baghouse with oval shaped filter bags and rotating cleaning arm with pulsing air	1999	$TSP, PM_{10}, PM_{2.5}$	LANG Screens (STK7)	99.7%	Manufacturer
CON10a	Cyclone upstream of scrubber and Mikropul High Efficiency Scrubber, Type SVS, Size 60/150 Variable Throat Venturi Scrubber	2008	TSP, PM ₁₀ , PM _{2.5}	GRAN Dryer 10a (STK10ab)	99.6% (cyclone + scrubber)	Manufacturer
CON10b	Cyclone upstream of scrubber and Monsanto CCS Collision Venturi Scrubber	1997	$TSP, PM_{10}, PM_{2.5}$	GRAN Process Ventilation 10b (STK10ab)	Est. 99.0+ ²	Engineering Judgment
CON11 (future)	Donaldson Torit 92RP Baghouse with rugged pleat and oval- shapped filter bags and rotating cleaning arm with pulsing air	Not installed yet	$TSP, PM_{10}, PM_{2.5}$	Dispatch Transfer Tower (STK11)	Est. 99.0+ ²	Engineering Judgment
CON11 (current)	Donaldson/Torit 156RFT10 Baghouse with oval shaped filter bags and rotating cleaning arm with pulsing air	2002	TSP, PM ₁₀ , PM _{2.5}	Dispatch Transfer Tower (STK11)	Est. 99.0+ ²	Engineering Judgment
CON14	Siemens/Wheelabrator Baghouse, Size 1515 Model 120 TA-SB Series 6P Jet III High Pressure Continuous Automatic Pulse Type	2012	$TSP, PM_{10}, PM_{2.5}$	GRAN Process Ventilation 10c (STK14)	99.98%	Manufacturer
-3,4	Donaldson/Torit Dalmatic Collector, Model DLMV 15/15, Type H	2015	TSP, PM ₁₀ , PM _{2.5}	#19 Dispatch Belt (CS9655)	Est. 99.0+ ²	Engineering Judgment
3, 4	Donaldson/Torit Dalmatic Collector, Model DLMV 15/15, Type H	2015	TSP, $PM_{10}$ , $PM_{2.5}$	#2 Warehouse Shuttle Belt (CS7415)	Est. 99.0+ ²	Engineering Judgment
3, 4	Scientific Dust Collectors, Reverse Pulse Bin Vent Filter, Model SPJ-12-X4B6BV	2013	TSP, PM ₁₀ , PM _{2.5}	Premium Product Bin (CS9061)	Est. 99.0+ ²	Engineering Judgment
3	Scientific Dust Collectors, Reverse Pulse Bin Vent Filter, Model SPJ-9-X4B6BV	2010	TSP, PM ₁₀ , PM _{2.5}	No. 4 Loadout Fines Bin (CS7446)	99.99%	Manufacturer
_3	Scientific Dust Collectors, Reverse Pulse Bin Vent Filter, Model SPJ-9-X4B6BV	2011	TSP, PM ₁₀ , PM _{2.5}	No. 5 Loadout Fines Bin (CS7350)	0.9999	Manufacturer

¹ List each control device on a separate line. For each control device, list all emission units controlled by the control device.

² The control efficiencies are typical, nominal values and can vary.

³ These bin vents/dust collectors were installed as per Condition A606.A in Title V Permit No. P039-M3, which allows the installation of additional or more effective fugitive controls that do not result in an increase in stack emission limits, fugitive emissions, or an increase in ambient impacts without 20.2.72 NMAC permitting.

⁴ No emissions reduction credits are being taken for these dust collectors in the fugitive emission calculations.

#### Table 2-D: Maximum Emissions (under normal operating conditions)

#### X This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	NO		C	O	V	OC		Ox	PN	$\mathbf{M}^1$	PM	[10 ¹	PM	2.51	Н	$_{2}S$		ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr								
				_														
				_														
Totals																		

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Form Revision: 6/14/2019 Table 2-D: Page 1 Printed 11/30/2022 3:40 PM

### **Table 2-E: Requested Allowable Emissions**

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

** ***	N	Ox	C	0	V	OC	S	Ox	P	M ¹	PM	[10 ¹	PM	[2.5 ¹	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Stack CAP Emissions																		
LANG Hoist (STK4)									0.75	CAP	0.75	CAP	0.75	CAP	-		-	
LANG Crusher (STK5a)									1.0	CAP	1.0	CAP	1.0	CAP			-	
LANG Fine Ore Bin (STK5b)									1.0	CAP	1.0	CAP	1.0	CAP	-		-	
LANG Dryer (STK6)	5.0	CAP	8.0	CAP	0.48	CAP	0.053	0.23	21.5	CAP	21.5	CAP	21.5	CAP				
LANG Screens (STK7)									4.0	CAP	4.0	CAP	4.0	CAP	-		-	
GRAN Dryer 10a & GRAN Process Ventilation 10b (STK10ab)	3.0	CAP	5.0	CAP	0.32	CAP	0.035	0.15	17.0	CAP	17.0	CAP	17.0	CAP	-		-	
Dispatch Transfer Tower (STK11)									1.0	CAP	1.0	CAP	1.0	CAP	-	-	-	
GRAN Process Ventilation 10c (STK14)									2.5	CAP	2.5	CAP	2.5	CAP				
S&L Boiler (STK20)	0.4	CAP	0.2	CAP	0.013	CAP	0.0040	0.018	0.02	CAP	0.02	CAP	0.02	CAP	-	-	1	
GDF1 & GDF2					0.19	0.82												
Diesel Engine (GEN1) (worst-case)	1.88	CAP	1.73	CAP	0.099	CAP	0.0036	0.016	0.099	CAP	0.099	CAP	0.099	CAP	-	-	-	
Diesel Engine (GEN2) (worst-case)	0.35	CAP	3.08	CAP	0.17	CAP	0.0062	0.027	0.018	CAP	0.018	CAP	0.018	CAP				
Total Stack CAP Emissions ²	10.6	70	18.0	115	1.3	6.0	0.10	0.44	48.9	175	48.9	175	48.9	175				
Fugitive Emissions as Stack Emis	ssions who	en Baghou	ises are N	ot Opera	ting													
LANG Hoist (STK4)									0.39	CAP	0.19	CAP	0.054	CAP				
LANG Crusher (STK5a)									0.24	CAP	0.13	CAP	0.031	CAP				
LANG Fine Ore Bin (STK5b)									0.18	CAP	0.086	CAP	0.024	CAP				
LANG Screens (STK7)									0.64	CAP	0.46	CAP	0.27	CAP				
Dispatch Transfer Tower (STK11)									0.60	CAP	0.29	CAP	0.083	CAP				
GRAN Process Ventilation 10c (STK14)		1							0.072	CAP	0.038	CAP	0.0094	CAP			-	
Total Fugitive Emissions as Stack Emissions ^{2,3}	-	-					_		2.12	CAP	1.19	CAP	0.47	CAP				_

Unit No.	N	Ox	C	О	V	OC	S	Ox	P	$\mathbf{M}^1$	PM	110 ¹	PM	[2.5 ¹	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr								
Fugitive Emissions																		
Nash Plant Hoist (FUG1)									0.74	3.25	0.36	1.59	0.10	0.45				
Nash Plant Screening (FUG2)									0.80	3.49	0.40	1.74	0.052	0.23				
LANG Hoist (FUG3)									0.33	1.44	0.16	0.70	0.045	0.20				
S&L Warehouse 1 (Coating On) ⁴ (FUG6)									0.54	2.43	0.19	0.87	0.031	0.14				
S&L Warehouse 1 (Coating Off) ⁵ (FUG6)									1.17	2.43	0.49	0.87	0.076	0.14				
S&L Warehouse 2 (Coating On) ⁴ (FUG8)									1.12	5.12	0.40	1.88	0.068	0.32				
S&L Warehouse 2 (Coating Off) ⁵ (FUG8)									3.74	3.12	1.67	1.00	0.35	0.32				
S&L Loadout 4 (Coating On) ⁴ (FUG9)		1		-		-		-	0.72	3.41	0.50	2.37	0.28	1.32		-		-1
S&L Loadout 4 (Coating Off) ⁵ (FUG9)		1							3.78	3.41	2.62	2.37	1.46	1.32				
S&L Loadout 5 (Coating On) ⁴ (FUG10)									0.29	1.38	0.17	0.79	0.070	0.33				
S&L Loadout 5 (Coating Off) ⁵ (FUG10)									1.51	1.38	0.87	0.79	0.36	0.33				
S&L Warehouse 3  (Coating On) ⁴ (FUG11)									1.55	6.96	0.62	2.78	0.13	0.58				
S&L Warehouse 3  (Coating Off) ⁵ (FUG11)									3.39	6.96	1.50	2.78	0.30	0.58				
S&L Truck Loadout (Coating On) ⁴ (FUG12)									0.29	1.00	0.14	0.64	0.040	0.10				
S&L Truck Loadout  (Coating Off) ⁵ (FUG12)									0.58	1.29	0.29	0.64	0.081	0.18				
Permanent Abrasive Blasting (FUG20)									13.20	1.98	3.12	0.47	0.31	0.047				
Paved Roads (FUG22)									0.36	1.27	0.092	0.32	0.0092	0.032				

YV*4 NV.	N	Ox	C	0	V	OC	S	Ox	P!	$\mathbf{M}^1$	PM	[10 ¹	PM	[2.5 ¹	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr								
GRAN Process Ventilation 10c (Baghouse On) ⁴ (FUG24)									0.018	0.47	0.0089	0.25	0.0024	0.063				
GRAN Process Ventilation 10c (Baghouse Off) ⁵ (FUG24)									0.090	0.17	0.047	0.23	0.012	0.005				
LANG Hoist (Baghouse On) ⁴ (FUG25)									0.086	0.38	0.042	0.19	0.012	0.053	-			
LANG Hoist (Baghouse Off) ⁵ (FUG25)									0.16	0.50	0.080	0.15	0.023	0.033	-			
LANG Hoist (Baghouse On) ⁴ (FUG26)				ı					0.016	0.099	0.0080	0.048	0.0023	0.014	-	1		
LANG Hoist (Baghouse Off) ⁵ (FUG26)									0.33		0.16		0.045		-	-		
LANG Crusher (Baghouse On) ⁴ (FUG27)									0.22	0.99	0.11	0.48	0.030	0.14				
LANG Crusher (Baghouse Off) ⁵ (FUG27)									0.37	0.55	0.18	0.10	0.051	0.11				
LANG Crusher (Baghouse On) ⁴ (FUG28)									5.54	24.30	2.80	12.20	0.19	0.83				
LANG Crusher (Baghouse Off) ⁵ (FUG28)									5.63	24.30	2.85	12.20	0.20	0.83				
LANG Fine Ore Bin (Baghouse On) ⁴ (FUG29)	1			1	1		-		0.47	2.09	0.23	1.02	0.065	0.29	1	1	1	
LANG Fine Ore Bin (Baghouse Off) ⁵ (FUG29)				-					0.65	2.09	0.32	1.02	0.090	0.27	1	-	-	
LANG Dryer; LANG Screens (Baghouse On) ⁴ (FUG30)				1		-		-	1.48	6.55	1.07	4.71	0.62	2.73	1	ı		
LANG Dryer; LANG Screens (Baghouse Off) ⁵ (FUG30)									2.12	0.55	1.53	4./1	0.89	2.13		-		
S&L Dispatch (Coating On) ⁴ (FUG31)									1.24	5.56	0.61	2.72	0.17	0.77				
S&L Dispatch (Coating Off) ⁵ (FUG31)									2.70	5.50	1.32	2.12	0.37	0.//				

	N	Ox	C	0	V	OC	SO	Ox	P	M ¹	PM	10 ¹	PM	[2.5 ¹	Н	,S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Dispatch Transfer Tower (Baghouse and Coating On) ⁴ (FUG32)				1		-		-	0.024	0.16	0.012	0.077	0.0033	0.022	-	1		
Dispatch Transfer Tower (Baghouse and Coating Off) ⁵ (FUG32)	-				-		-		0.63		0.31		0.087			1	-	
GRAN Process Vent 10b; GRAN Dryer 10a (Baghouses and Coating On) ⁴ (FUG33)									0.27	1.24	0.15	0.68	0.056	0.26				
GRAN Process Vent 10b; GRAN Dryer 10a (Baghouses and Coating Off) ⁵ (FUG33)	-			1	-				1.08		0.54		0.17			1		
Portable Abrasive Blasting (FUG40)									13.20	1.98	3.12	0.47	0.31	0.047				
Railcar Offloading (material handling) (FUG43)									0.048	0.21	0.023	0.10	0.0066	0.029		-		
GRAN Reclaim (material handling) (FUG44)									0.25	1.10	0.12	0.54	0.027	0.12				
Railcar Offloading (haul road to WHs) (FUG47)				-1					0.053	0.19	0.013	0.048	0.0013	0.0048		-		
GRAN Reclaim (haul road) (FUG48)									0.074	0.26	0.019	0.067	0.0019	0.0067				
K-Mag Rehandling (haul road) (FUG49)	-				-	_	-	_	0.25	0.89	0.064	0.23	0.0064	0.023	_	-	-	
K-Mag Rehandling (material handling) (FUG50)						-	-	-	0.16	0.70	0.080	0.35	0.022	0.098	-	-	-	
Brine Circuit (haul road) (FUG51)				-					0.037	0.13	0.0095	0.034	0.00095	0.0034		-		
Brine Circuit (material handling) (FUG52)				1		-		-	1.08	4.74	0.53	2.34	0.15	0.66		1		-
General Hauling between WH2 and WH3 (FUG57)				-					0.012	0.042	0.0030	0.011	0.00030	0.0011		-		
Railcar Offloading (haul road to GRAN Reclaim) (FUG58)				1	-	-	-	-	0.15	0.52	0.037	0.13	0.0037	0.013	-	1	-	
Railcar Offloading (haul road to K- Mag Rehandling) (FUG59)							-		0.014	0.05097	0.00367	0.01299	0.00037	0.001299			-	
Reagent (material handling, wind erosion at pile) (FUG60)				-					0.14	0.61	0.070	0.31	0.011	0.047		1		
Reagent (material handling at grate) (FUG61)									0.0084	0.037	0.0041	0.018	0.0012	0.0051				
Reagent (hauling) (FUG62)									0.0049	0.017	0.0012	0.0044	0.00012	0.00044		-		

Unit No.	N	Ox	C	O	V	OC	S	Ox	P	$M^1$	PM	110 ¹	PM	[2.5 ¹	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr								
General Hauling between WH1 and WH2 (FUG63)		-		-					0.012	0.042	0.0030	0.011	0.00030	0.0011		-		
Potash Hauling (railcar unloading to Brine Circuit) (FUG64)									0.18	0.62	0.045	0.16	0.0045	0.016				
Potash Hauling (WH1, WH2, or WH3 to Brine Circuit) (FUG65)									0.10	0.36	0.026	0.092	0.0026	0.0092				
TMA (material handling) (FUG66)	1		-		ı		-		0.33	1.45	0.17	0.72	0.047	0.20	-		1	
TMA (hauling) (FUG67)					-				3.02	10.70	0.77	2.73	0.077	0.27			-	
Total Fugitives (Baghouses and Coating On) ⁴		1		1			-		48.43	98.51	16.31	44.00	2.96	10.57		1		
Total Fugitives (Baghouses and Coating Off) ⁵									62.48	90.51	24.02	44.90	5.76	10.56				

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

 Form Revision: 6/14/2019
 Table 2-E: Page 5
 Printed 11/30/2022 3:40 PM

² The sum of all stack emissions from each unit must meet the facility wide stack CAP TPY emissions limit for NOx, CO, VOC, TSP, PM10, and PM2.5, including "fugitive emissions as stack emissions."

³ Includes emission units and their "fugitive emissions as stack emissions" while units are operating without baghouse control for up to 175 hours per rolling 12-month total per unit. These emissions would normally be pulled into the stack at ventilation pickup points when the baghouses are operating and must be counted toward the stack cap TPY emission limit.

⁴ The lb/hr values are based on normal operation (i.e., baghouses on and coating on; Case 1). Mosaic is allowed to operate 175 hrs/yr without the baghouses and coating on; therefore, the ton/yr values are based on 175 hrs/yr of operation without the baghouses or coating and 8,585 (8,760-175) hrs/yr of normal operation.

⁵ The lb/hr values are based on worst case operation (i.e., baghouses off and coating off; Case 3). Mosaic is allowed to operate 175 hrs/yr without the baghouses and coating on; therefore, the ton/yr values are based on 175 hrs/yr of operation without the baghouses or coating and 8,585 (8,760-175) hrs/yr of normal operation.

#### Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

X This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.73.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications

(https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	C	0	V	OC	SO	Ox	P	M ²	PM	$10^2$	PM	$(2.5^2)$	Н	I ₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr								
Totals																		

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

Form Revision: 6/14/2019 Table 2-F: Page 1 Printed 11/30/2022 3:40 PM

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

### Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

☐ I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

,	Serving Unit	N	Ox	C	CO CO	V	OC	S	Ox	P	M	PM	110	PM	12.5	□ H ₂ S or	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
STK10ab	CON10a CON10b	3.0	CAP	5.0	CAP	0.32	CAP	0.035	0.15	17.0	CAP	17.0	CAP	17.0	CAP		
,	Totals:																

Form Revision: 5/29/2019 Table 2-G: Page 1 Printed 11/30/2022 3:40 PM

### **Table 2-H: Stack Exit Conditions**

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation (H-Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside	
Number	from Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	<b>(F)</b>	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)	
STK4	CON4 (LANG Hoist)	V	No	42.17	86	137	117	0.9	16.5	2.67	
STK5a	CON5a (LANG Crusher)	V	Yes	30	99	165	138	0.6	33.7	2.46	
STK5b	CON5b (LANG Fine Ore Bin)	Н	No	83	71	111	99	1.4	36.1	1.98	
STK6	CON6 (LANG Dryer)	V	No	160	140	1,394	905	16.4	36.4	6.98	
STK7	CON7 (LANG Screens)	V	Yes	158	133	528	416	0.3	28.8	4.88	
STK10ab	CON10a, CON10b (GRAN Dryer 10a, GRAN Process Ventilation 10b)	V	No	145	140	1,899	1,249	15.9	50.6	6.92	
STK11	CON11 (Dispatch Transfer Tower)	V	No	20	101	49	41	0.8	29.5	1.46	
STK14	CON14 (GRAN Process Ventilation 10c)	V	No	70	143	66	50.0	2.1	17.8	2.20	
STK20	S&L Boiler	V	No	38	420	0.34	0.17	16.0	0.63	0.83	
GEN1	GEN1 (diesel engine)	V	No	3.5	850	7.2	7.2	0	146.4	0.25	
GEN2	GEN2 (diesel engine)	V	No	3.5	910	22.2	22.2	0	152.8	0.43	

**Form Revision:** 11/18/2016 Table 2-H: Page 1 Printed 12/19/2022 5:32 PM

### Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total HAPs		Hexane X HAP or □ TAP		Provide Pollutant Name Here □ HAP or □ TAP		Provide Pollutant Name Here □ HAP or □ TAP			Pollutant Here or   TAP	Name	Pollutant Here or   TAP	Provide Pollutant Name Here P   HAP or  TAF		Provide Pollutant Name Here □ HAP or □ TAP		Provide Pollutant Name Here HAP or  TAP	
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
	K6 Dryer)	0.16	0.72	0.16	0.68														
	(10ab (Dryer)	0.11	0.48	0.10	0.45														
	K20 Boiler)	0.0045	0.020	0.0043	0.019														
GD	DF1	0.018	0.077	0.0017	0.0073														
GD	DF2	0.0036	0.016	0.00034	0.0015														
	Engine EN1)	0.0080	0.035																
	Engine EN2)	0.014	0.062																
Tota	als:	0.32	1.41	0.27	1.16														

Form Revision: 10/9/2014 Table 2-I: Page 1 Printed 11/30/2022 3:40 PM

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur	Fuel Source: purchased commercial,		Spec	cify Units		
Unit No.	Diesel, ultra low sulfur diesel, Natural Gas, Coal, )	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Higher Heating Value	Maximum Hourly Usage	Maximum Annual Usage	% Sulfur	% Ash
STK6 (LANG Dryer)	Natural Gas	Commercial Pipeline	1,040 Btu/scf	0.087 MMscf/hr (based on burner rating)	758 MMscf/yr (based on max burner rating and 8,760 hr/yr)	Commercial Pipeline	0
STK10ab (GRAN Dryer)	Natural Gas	Commercial Pipeline	1,040 Btu/scf	0.058 MMscf/hr (based on burner rating)	505 MMscf/yr (based on max burner rating and 8,760 hr/yr)	Commercial Pipeline	0
STK20 (S&L Boiler)	Natural Gas	Commercial Pipeline	1,040 Btu/scf	0.0024 MMscf/hr (based on burner rating)	21 MMscf/yr (based on max burner rating and 8,760 hr/yr)	Commercial Pipeline	0
GEN1	ULSD	Purchased	138,000 Btu/gal	16.6 gal/hr (based on worst-case)	145,416 gal/yr (based on worst-case hourly fuel usage and 8,760 hr/yr)	0.0015%	0
GEN2	ULSD	Purchased	138,000 Btu/gal	28.6 gal/hr (based on worst-case)	250,536 gal/yr (based on worst-case hourly fuel usage and 8,760 hr/yr)	0.0015%	0

Form Revision: 9/20/2016 Table 2-J: Page 1 Printed 11/30/2022 3:40 PM

#### Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

tinoughout the appreciation package					Vapor	Average Stora	ge Conditions	Max Storage	Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
Auto Shop (NLT1; CS8269)	3050229	Unleaded Gasoline	Petroleum Distillate	6.4	N/A	Ambient	9	Ambient	9
Laguna Grande Lake Facility (LG1; Serial No. 001806)	3050229	Unleaded Gasoline	Petroleum Distillate	6.4	N/A	Ambient	9	Ambient	9

### Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M = 42.0 gal

Tank No.	Date Installed	Materials Stored		Roof Type (refer to Table 2-	Сара	acity	Diameter (M)	Vapor Space		olor ble VI-C)	Paint Condition (from Table	Annual Throughput	Turn- overs
			LR below)	LR below)	(bbl)	(M ³ )	()	(M)	Roof	Shell	VI-C)	(gal/yr)	(per year)
Auto Shop (NLT1; CS8269)	2018 (replacement tank)	Unleaded Gasoline (RVP = 9)	Welded Tank	FX	98	15.6	2.4	Unknown	MG	MG	Good	49,632	12
Laguna Grande Lake Facility (LG1; Serial No. 001806)	2011	Unleaded Gasoline (RVP = 9)	Welded Tank	Horizontal Tank	12	1.9	1.2	N/A	WH	WH	Good	10,000	20
				_									

Form Revision: 7/8/2011 Table 2-L: Page 1 Printed 11/30/2022 3:40 PM

### Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Rive	Seal Type, Riveted Tank Seal Type				
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good		
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor		
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)			
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray			
					MG: Medium Gray	]		
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$a^3 = 42.0 \text{ gal}$				BL: Black	ļ		
					OT: Other (specify)			

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Materi	al Processed	Material Produced						
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)		Chemical Composition	Phase	Quantity (specify units)		
LANG	Langbeinite Ore - various mixtures of K, Mg, Ca, Na salts and other elements including O, S, Cl	Solid	6,387,500 tpy (based on 17,500 tons/day)	K-Mag & Granulation	97% K2SO4*2(MgSO4)	Solid	3,504,000 tpy (based on 400 tons/hour)		

### **Table 2-N: CEM Equipment**

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
There are no CEM	As employed at this facility.								

Form Revision: 7/8/2011 Table 2-N: Page 1 Printed 11/30/2022 3:40 PM

#### **Table 2-O: Parametric Emissions Measurement Equipment**

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
CON6	Scrubber pressure drop ¹	At scrubber pressure drop gauge	Inches H2O	0-30"	Monthly	Clean and calibrate	Log entry	Daily
CON10a	Scrubber pressure drop ¹	At scrubber pressure drop	Inches H2O	0-30"	Monthly	Clean and calibrate	Log entry	Daily
CON10b	Scrubber pressure drop ¹	At scrubber pressure drop gauge	Inches H2O	0-30"	Monthly	Clean and calibrate	Log entry	Daily
CON6	Scrubber dust cyclone valves	At dust cyclone valves	Yes or No	Valve operating freely	As necessary	Clean out valves	Log entry	Daily
CON10a	Scrubber dust cyclone valves	At dust cyclone valves	Yes or No	Valve operating freely	As necessary	Clean out valves	Log entry	Daily
CON10b	Scrubber dust cyclone valves	At dust cyclone valves	Yes or No	Valve operating freely	As necessary	Clean out valves	Log entry	Daily
CON6	Scrubber salt concentration	At scrubber effluent tank	TDS	0-3%	As necessary	Adjust freshwater makeup	Log entry	Daily
CON10a	Scrubber salt concentration	At scrubber effluent tank	TDS	0-3%	As necessary	Adjust freshwater makeup	Log entry	Daily
CON10b	Scrubber salt concentration	At scrubber effluent tank	TDS	0-3%	As necessary	Adjust freshwater makeup	Log entry	Daily
CON4	Baghouse pressure drop	At baghouse presure drop gauge	Inches H2O	0.2-3"	Monthly	Clean and calibrate	Log entry	Daily
CON5a	Baghouse pressure drop	At baghouse presure drop gauge	Inches H2O	0.2-3"	Monthly	Clean and calibrate	Log entry	Daily
CON5b	Baghouse pressure drop	At baghouse presure drop gauge	Inches H2O	0.2-3"	Monthly	Clean and calibrate	Log entry	Daily
CON7	Baghouse pressure drop	At baghouse presure drop gauge	Inches H2O	1-5"	Monthly	Clean and calibrate	Log entry	Daily
CON11	Baghouse pressure drop	At baghouse presure drop gauge	Inches H2O	0.2-3"	Monthly	Clean and calibrate	Log entry	Daily
CON14	Baghouse pressure drop	At baghouse presure drop gauge	Inches H2O	0.5-7"	Monthly	Clean and calibrate	Log entry	Daily
CON4 ²	Baghouse cleaning arm	At baghouse cleaning arm/chains	Yes or No	Operating correctly	As necessary	Repair and/or replace	Log entry	Daily
CON5a	Baghouse cleaning arm/chains	At baghouse cleaning arm/chains	Yes or No	Operating correctly	As necessary	Repair and/or replace	Log entry	Daily
CON5b	Baghouse cleaning arm/chains	At baghouse cleaning arm/chains	Yes or No	Operating correctly	As necessary	Repair and/or replace	Log entry	Daily
CON7	Baghouse cleaning arm/chains	At baghouse cleaning arm/chains	Yes or No	Operating correctly	As necessary	Repair and/or replace	Log entry	Daily
CON11	Baghouse cleaning arm/chains	At baghouse cleaning arm/chains	Yes or No	Operating correctly	As necessary	Repair and/or replace	Log entry	Daily
CON14	Baghouse cleaning air jets	At baghouse	Yes or No	Operating correctly	As necessary	Repair and/or replace	Log entry	Daily
CON4	Baghouse visible emissions	At appropriate VE observation location	Opacity	No visible emissions	As necessary	Replace bags	Log entry	Once per daylight shift
CON5a	Baghouse visible emissions	At appropriate VE observation location	Yes or No	No visible emissions	As necessary	Replace bags	Log entry	Once per daylight shift
CON5b	Baghouse visible emissions	At appropriate VE observation location	Yes or No	No visible emissions	As necessary	Replace bags	Log entry	Once per daylight shift
CON7	Baghouse visible emissions	At appropriate VE observation location	Yes or No	No visible emissions	As necessary	Replace bags	Log entry	Once per daylight shift
CON11	Baghouse visible emissions	At appropriate VE observation location	Yes or No	No visible emissions	As necessary	Replace bags	Log entry	Once per daylight shift
CON14	Baghouse visible emissions	At appropriate VE observation location	Yes or No	No visible emissions	As necessary	Replace bags	Log entry	Once per daylight shift

Minimum average pressure drop is established by stack testing.

² Since the cleaning arm/chains are not visible for CON4, a whisker switch shall alarm if it is not tripped by the cleaning arm/chain movement, signaling that the cleaning arm/chain is not operating.

#### **Table 2-P:** Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box 

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	<b>CH</b> ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²				<b>Total</b> <b>GHG</b> Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs 1	1	298	25	22,800	footnote 3					
STK6	mass GHG	46,112	0.087	0.87						46,113	
(LANG Dryer)	CO ₂ e	46,112	25.9	21.7							46,160
STK10ab	mass GHG	30,742	0.058	0.58						30,742	
(GRAN Dryer)	CO ₂ e	30,742	17.3	14.5							30,773
STK20	mass GHG	1,281	0.0024	0.024						1,281	
(S&L Boiler)	CO ₂ e	1,281	0.72	0.60							1,282
GEN1	mass GHG	1,636	0.013	0.07						1,636	
GENI	CO ₂ e	1,636	4.0	1.7							1,642
GEN2	mass GHG	2,819	0.0229	0.114						2,819	
GEN2	CO ₂ e	2,819	6.81	2.86						_	2,828
Total	mass GHG	82,590	0	2						82,592	
Total	CO ₂ e	82,590	55	41							82,686

GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

Form Revision: 5/3/2016 Table 2-P: Page 1 Printed 11/30/2022 3:40 PM

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

## **Section 3**

## **Application Summary**

_____

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, debottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The Process Summary shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

_____

This NSR Significant Permit Revision application is being submitted under 20.2.72.219.D NMAC to:

- 1) Replace the existing Primary Ore Crusher with two new Impact Roll Crushers. The new Impact Roll Crushers will be vented to the existing Lang Crusher (STK5a) baghouse, and while there will be a slight increase in the fugitive particulate matter potential emissions (<1 lb/hr for PM₁₀ and PM_{2.5}) due to the related upstream and downstream impacts in the Crushing Circuit, no changes to the allowable emissions in the permit are being requested. Mosaic will not be making changes to the existing baghouse or associated stack that would impact the existing dispersion characteristics. A PSD applicability summary has been prepared for this project showing that this modification is not a major modification.
- 2) Add the ability for Mosaic to utilize a slag/grit abrasive blasting material in addition to the existing permitted garnet, olivine, and/or staurolite materials. Note that there will not be any changes to the blasting throughput limit, allowable blasting timeframes, or potential emissions. The more conservative (i.e., higher) garnet emission factor is being used to represent both garnet and slag/grit usage.
- 3) Change the diesel-fired engine (GEN1) that is currently reflected in the air permit to a "worst-case" engine since this air compressor engine is leased and replaced by the rental company once every 6 months. The intent of permitting the worst-case engine is to allow the rental company to change-out the engine as needed without requiring a permit modification. This engine is used to power an air compressor at various locations at the site. Enclosed is a modeling analysis for gaseous pollutants (NO₂, CO, and SO₂) using the "worst-case" engine emissions. Note that annual emissions will be included in the existing stack CAPs.
- 4) Add a second air compressor diesel-fired engine (GEN2) to the permit. Worst-case potential emissions have been calculated based on 8,760 hr/yr of operation and annual emissions will be included in the existing stack CAPs. This engine has also been included in the enclosed modeling analysis, and similar to GEN1, the intent of permitting the worst-case engine is to allow the rental company to change-out the engine as needed without requiring a permit modification.

Saved Date: 11/30/2022

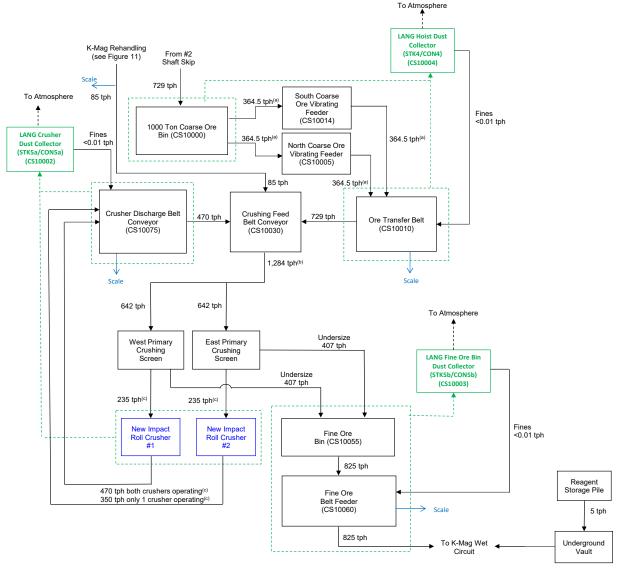
## **Section 4**

Mosaic Potash Carlsbad, Inc.

## **Process Flow Sheet**

A <u>process flow sheet</u> and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

The new Impact Roll Crushers only affect the LANG Hoist, LANG Crushing, and LANG Fine Ore Bin Circuits, so the updated process flow sheet showing these circuits is enclosed as **Figure 1**. The new equipment is shown in blue font.


Process flow diagrams are not necessary for the engines and abrasive blasting.

All other process flow diagrams for the existing equipment are provided for permit application completeness.

- Figure 1 LANG Hoist, LANG Crushing and LANG Fine Ore Bin Circuits
- Figure 2 LANG Screening Circuit
- Figure 3 Granulation Plant
- Figure 4 Nash Plant (formerly "Cuttings Circuit")
- Figure 5 Dispatch
- Figure 6 No. 4 Railcar Loadout
- Figure 7 No. 5 Railcar Loadout
- Figure 8 Truck Loadout
- Figure 9 Railcar Offloading
- Figure 10 Brine Circuit and Potash Hauling
- Figure 11 K-Mag Rehandling

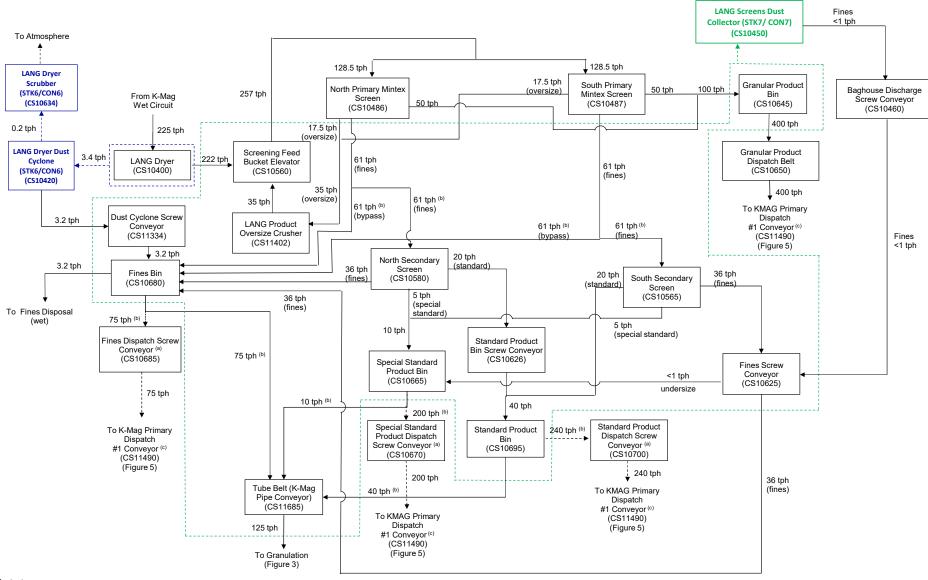


Figure 1
LANG Hoist, LANG Crushing, and LANG Fine Ore Bin Circuits
Mosaic Potash Carlsbad, Inc.



#### Footnotes:

⁽a) 550 tph is the maximum throughput that each vibrating feeder can process individually (i.e., only if one feeder goes down). However, the worst case operating scenario is represented above such that we are accounting for all of the material hoisted going through both feeders at the same time.


⁽b) The Crushing Feed Belt Conveyor throughput has been increased to include all of the K-Mag Rehandling material being added to the belt at the same time as the other streams. The throughput also includes an increase in the recycle stream based on more recent high and low ore grade throughput estimates as a result of the new Impact Roll Crushers project.

⁽c) The max design capacity of the new Impact Roll Crushers is 350 tph each; however, the crusher throughput is limited by the Primary Crushing Screens and the Crusher Discharge Belt Conveyor. Therefore, 470 by is the max throughput rate when only one crusher is in operation. While no physicial changes to the upstream and downstream capacity constraints will occur as part of this project, the tph throughputs have been updated based on more recent high and low ore grade throughput estimates.

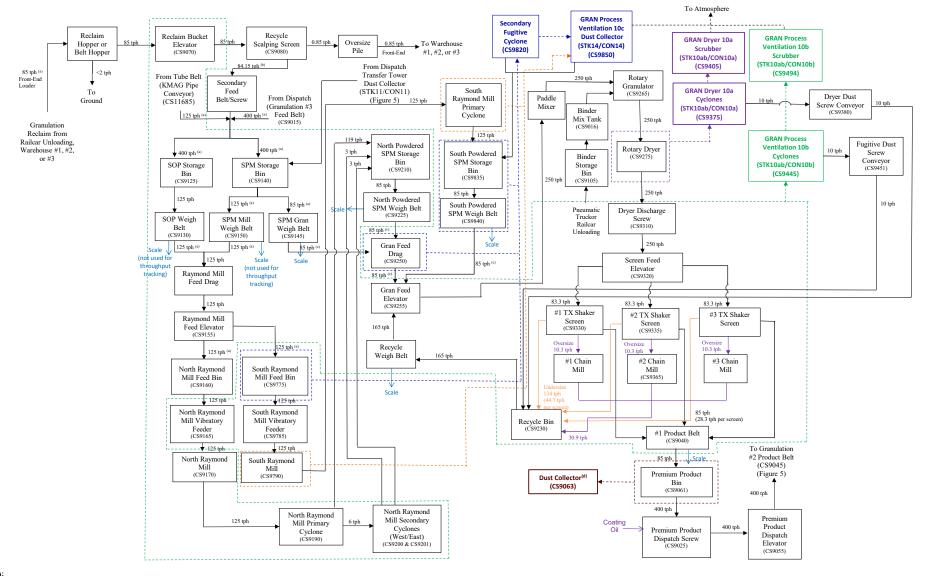


Figure 2 LANG Screening Circuit Mosaic Potash Carlsbad, Inc.

To Atmosphere



#### Footnotes


⁽a) To be used when the Tube Belt is not operating.

⁽b) Only one contributes to the total throughput at a time.

⁽c) Only one product (i.e., Standard, Special Standard, Fines, or Granular) can be transferred to Dispatch at a time.



Figure 3
Granulation Plant
Mosaic Potash Carlsbad, Inc.



#### Footnotes:

- (a) Only one contributes to the total throughput at a time. The worst-case emissions estimates are based on the maximum throughput moving through each piece of equipment even though some of the equipment can only operate on an "either/or" basis.
- (b) When the Granulation Reclaim material is introduced into the system, the maximum throughput after the Secondary Feed Belt (CS9075) will not exceed 400 tph.

⁽c) Throughput contributions to the dryer are based on material from the SPM Gran Weigh Belt (CS9145), the North Powdered SPM Weigh Belt (CS9235). The throughputs represented in this flow diagram are based on maximum hourly throughputs even though not all of these sources can contribute the maximum amount to the dryer at the same time. The maximum dryer thoughput of 250 tph will not be exceeded with the four source contributions.

⁽d) This dust collector was installed as per Condition A606.A in Title V Permit P039-M3, which allows the installation of additional or more effective fugitive controls that do not result in an increase in stack emission limits, fugitive emissions, or an increase in ambient impacts without 20.2.72 NMAC construction permitting. No emissions reduction credits are being taken for this dust collector in the fugitive emission calculations.



Figure 4
Nash Plant (formerly "Cuttings Circuit")
Mosaic Potash Carlsbad, Inc.

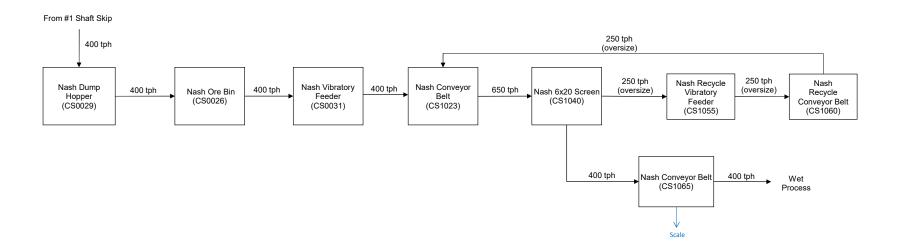
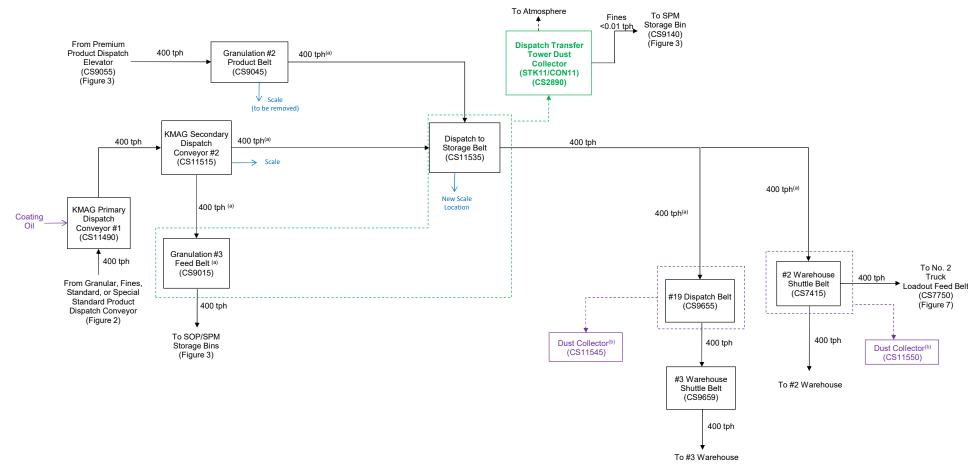
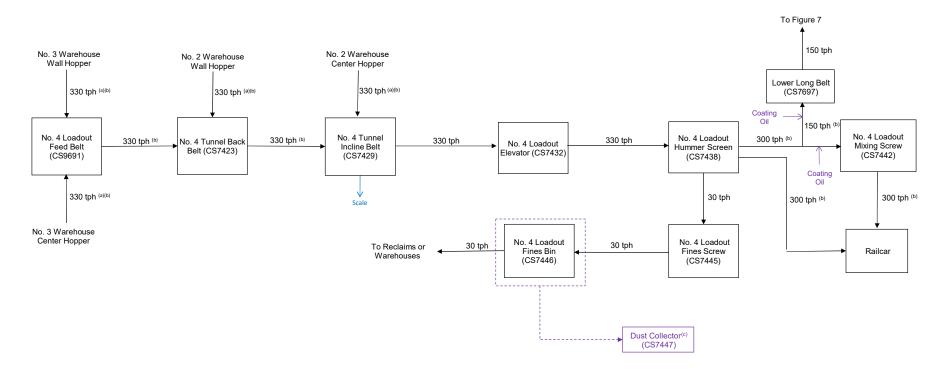






Figure 5
Dispatch
Mosaic Potash Carlsbad, Inc.




(a) Only one contributes to the total throughput at a time.

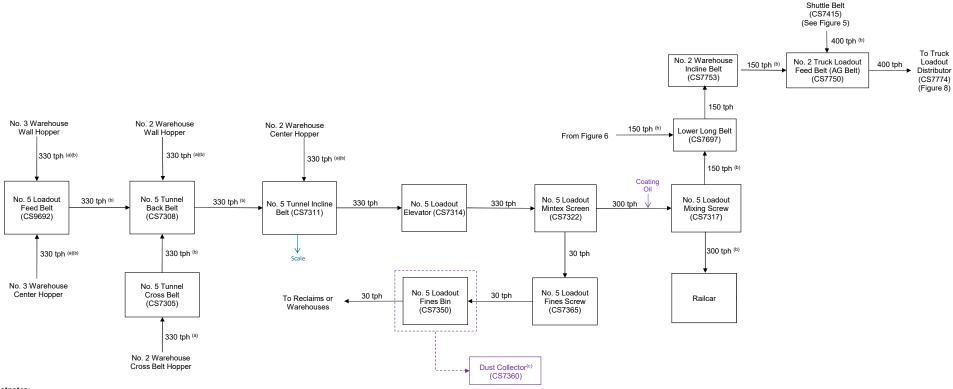
(b) These dust collectors were installed as per Condition A606.A in Title V Permit P039-M3, which allows the installation of additional or more effective fugitive controls that do not result in an increase in stack emission limits, fugitive emissions, or an increase in ambient impacts without 20.2.72 NMAC construction permitting. No emissions reduction credits are being taken for this dust collector in the fugitive emission calculations.



Figure 6 No. 4 Railcar Loadout Mosaic Potash Carlsbad, Inc.



Footnotes:


(a) Only the No. 2 Warehouse Hoppers or the No. 3 Warehouse Hoppers contribute to the total throughput at a time. Even though the hoppers within a warehouse can operate simultaneously, each one can not move more than the max throughput shown on this flow diagram.

^(b) Only one contibutes to the total throughput at a time.

⁽e) This bin vent dust collector was installed as per Condition A606.A in Title V Permit P039-M3, which allows the installation of additional or more effective fugitive controls that do not result in an increase in stack emission limits, fugitive emissions, or an increase in ambient impacts without 20.2.72 NMAC construction permitting.



Figure 7 No. 5 Railcar Loadout Mosaic Potash Carlsbad, Inc.



- (a) Only the No. 2 Warehouse Hoppers or the No. 3 Warehouse Hoppers contribute to the total throughput at a time. Even though the hoppers within a warehouse can operate simultaneously, each one can not move more than the max throughput shown on this flow diagram.
- (b) Only one contibutes to the total throughput at a time.
- (c) This bin vent dust collector was installed as per Condition A606.A in Title V Permit P039-M3, which allows the installation of additional or more effective fugitive controls that do not result in an increase in stack emission limits, fugitive emissions, or an increase in ambient impacts without 20.2.72 NMAC construction permitting.

From No. 2 Warehouse



### Figure 8 Truck Loadout Mosaic Potash Carlsbad, Inc.

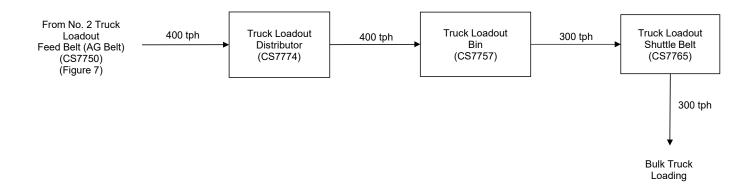





Figure 9
Railcar Offloading (formerly "Railcar Unloading")
Mosaic Potash Carlsbad, Inc.

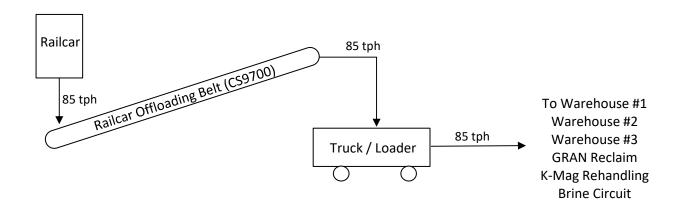





Figure 10
Brine Circuit and Potash Hauling
Mosaic Potash Carlsbad, Inc.

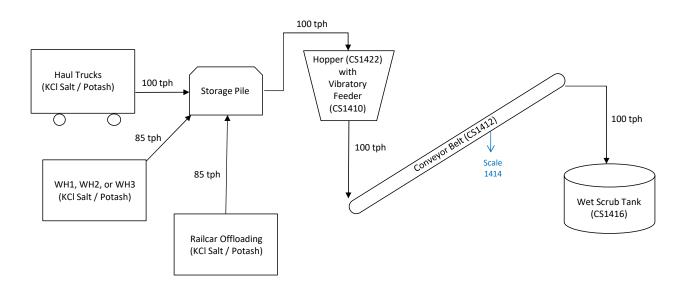
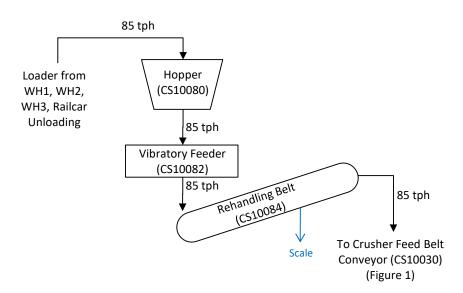



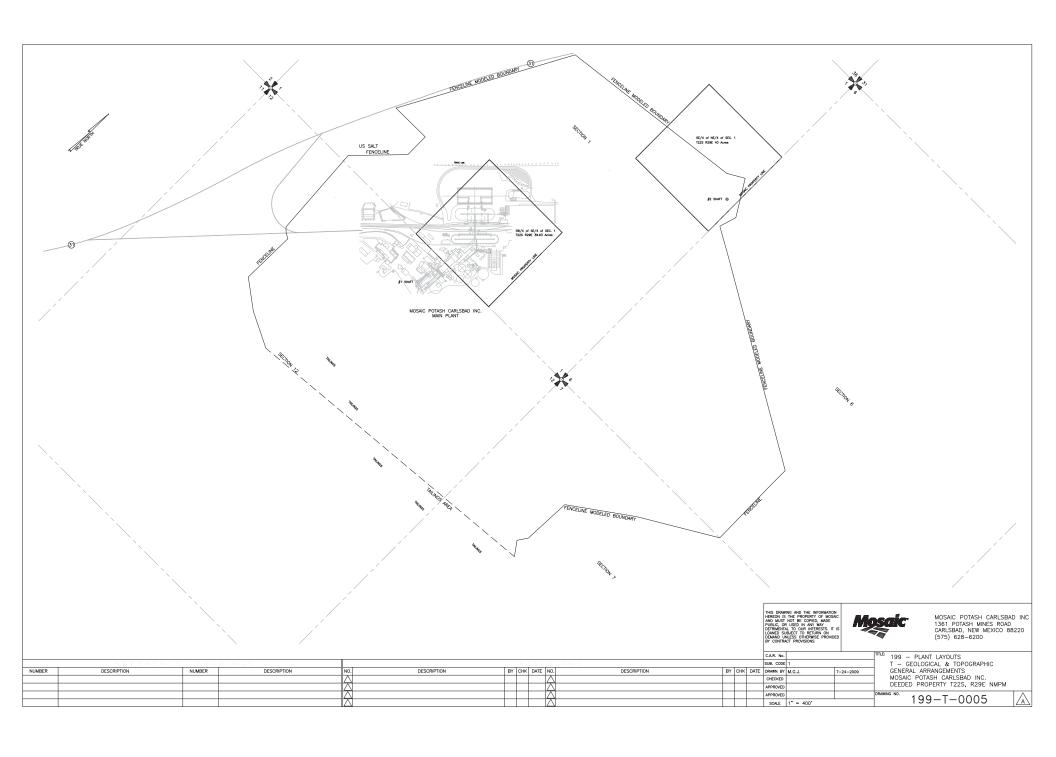


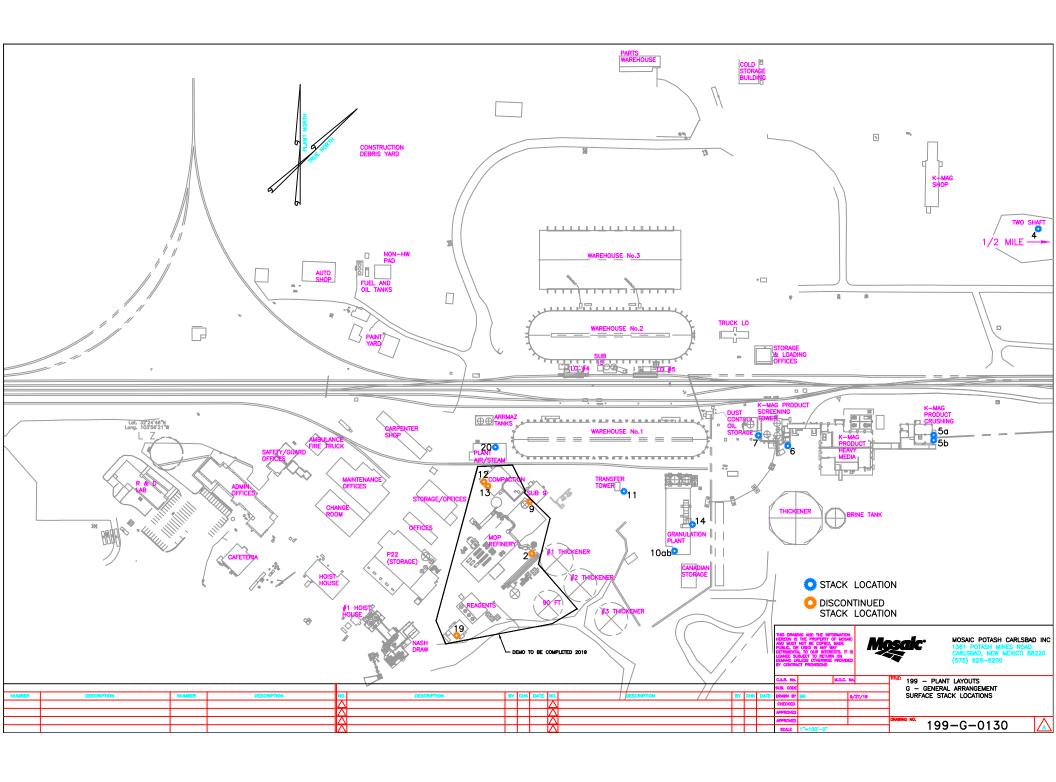

Figure 11
K-Mag Rehandling (formerly "K-Mag Reclaim")
Mosaic Potash Carlsbad, Inc.



## **Section 5**

### **Plot Plan Drawn To Scale**


A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.


_____

Please see the enclosed drawings:

- 199-T-0005
- 199-G-0130

Form-Section 5 last revised: 8/15/2011 Section 5, Page 1 Saved Date: 11/30/2022





## **Section 6**

### **All Calculations**

_____

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

**Glycol Dehydrator Calculations**: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

### **Significant Figures:**

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

**B.** At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

**Control Devices:** In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the

application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

_____

Enclosed with this NSR Significant Permit Revision application are the following emission calculation tables. The tables in **bold** are the tables with emission changes that are the result of the proposed modifications described in this significant permit application. All the other tables that are not bolded are being provided for permit application completeness. There are no changes to any of the previously provided emission estimates for the unaffected stack and fugitive sources.

### • Stack Emissions:

- o Table of Contents
- o Table 1 − PM, NOx, and CO Stack Emissions
- o Table 2 Summary of SO₂, VOC, and HAP Stack Emissions
- o Table 3 SO₂, VOC, and HAP Emissions from the LANG Dryer (STK6)
- o Table 4 SO₂, VOC, and HAP Emissions from the GRAN Dryer (STK10ab)
- o Table 5 SO₂, VOC, and HAP Emissions from the S&L Boiler (STK20)
- o Table 6 "Worst-Case" GEN1 Emissions
- o Table 7 "Worst-Case" GEN2 Emissions
- o Table 8 GDF1 and GDF2 VOC and HAP Emissions
- o EPA TANKS Printout GDF1 Emissions
- o EPA TANKS Printout GDF2 Emissions

### • Fugitive Emissions:

- PSD Applicability Summary (Impact Roll Crusher Project)
- Table of Contents
- Table 1 LANG Hoist Circuit Fugitive Emissions (Impact Roll Crusher Project)
- o Table 2 LANG Crushing Circuit Fugitive Emissions (Impact Roll Crusher Project)
- o Table 3 LANG Fine Ore Bin Circuit Fugitive Emissions (Impact Roll Crusher Project)
- Table 4 LANG Screening Circuit
- Table 5 Granulation Plant (Two Raymond Mills)
- o Table 6 Second Raymond Mill Circuit in the Granulation Plant
- Table 7 Nash Plant (formerly "Cuttings Circuit")
- o Table 8 Dispatch With Coating
- o Table 9 Dispatch No Coating
- o Table 10 Nos. 1, 2, and 3 Warehouses Aggregate Handling With Coating
- o Table 11 Nos. 1, 2, and 3 Warehouses Aggregate Handling No Coating
- o Table 12 No. 4 Railcar Loadout With Coating
- o Table 13 No. 4 Railcar Loadout No Coating
- o Table 14 No. 5 Railcar Loadout With Coating
- o Table 15 No. 5 Railcar Loadout No Coating
- o Table 16 Truck Loadout With Coating
- o Table 17 Truck Loadout No Coating
- o Table 18 Nos. 1, 2, and 3 Warehouses Material Handling
- O Table 19 Nos. 1, 2, and 3 Warehouses Hauling
- o Table 20 Main Haul Road
- **Output** Table 21 Abrasive Blasting Fugitive Emissions
- o Table 22 Railcar Offloading Material Handling
- o Table 23 Railcar Offloading Hauling
- o Table 24 Granulation Reclaim Material Handling
- o Table 25 Granulation Reclaim Hauling
- o Table 26 K-Mag Rehandling Material Handling
- o Table 27 K-Mag Rehandling Hauling
- o Table 28 Brine Circuit Material Handling
- o Table 29 Brine Circuit Hauling
- o Table 30 Reagent Material Handling
- o Table 31 Reagent Hauling
- o Table 32 Reagent Wind Erosion
- o Table 33 Potash Material Handling

- o Table 34 Potash Hauling
- o Table 35 TMA Material Handling
- $\circ \quad Table \ 36-TMA-Hauling$
- o Table 37 Fugitive Emission Control Efficiencies
- o Table 38 Material Handling Emission Factors
- Table 39 Summary of Fugitive Emissions
- o Table 40 Fugitive Emissions as Stack Emissions
- o Figure 1 Controlled Emission Factors



### Table of Contents Stack Emission Calculations Mosaic Potash Carlsbad, Inc.

Table Number	Description	Stack Source IDs
1	PM, NOx, and CO Permitted Stack Emissions	STK4, STK5a, STK5b, STK6, STK7, STK10ab, STK11, STK14, STK20
2	Summary of SO ₂ , VOC, and HAP Stack Emissions	STK6, STK10ab, STK20
3	SO ₂ , VOC, and HAP Emissions from the LANG Dryer	STK6
4	SO ₂ , VOC, and HAP Emissions from the GRAN Dryer	STK10ab
5	SO ₂ , VOC, and HAP Emissions from the S&L Boiler	STK20
6	Diesel Engine GEN1 - Worst-Case Emissions	GEN1
7	Diesel Engine GEN2 - Worst-Case Emissions	GEN2
8	GDF1 and GDF2 - VOC and HAP Emissions	GDF1, GDF2
EPA TANKS 4.0.9d	VOC Emissions from Auto Shop Gasoline Tank	GDF1
Printouts	VOC Emissions from Lake Compound Gasoline Tank	GDF2



Table 1
PM, NOx, and CO Stack Emissions
Mosaic Potash Carlsbad, Inc.

Emissions Unit	Stack ID/Control ID	Control Device		mum Allowable Emissions ^(a)		mum Allowable Emissions ^(a)	Permitted Maximum Allowable CO Stack Emissions ^(a)		
			lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
LANG Hoist	STK4/CON4	Baghouse	0.75	CAP					
LANG Crusher	STK5a/CON5a	Baghouse	1.0	CAP					
LANG Fine Ore Bin	STK5b/CON5b	Baghouse	1.0	CAP					
LANG Dryer	STK6/CON6	Scrubber	21.5	CAP	5.0	CAP	8.0	CAP	
LANG Screens	STK7/CON7	Baghouse	4.0	CAP					
GRAN Dryer 10a; GRAN Process Vent. 10b	STK10ab/CON10ab	Scrubber	17.0	CAP	3.0	CAP	5.0	CAP	
Dispatch Transfer Tower	STK11/CON11	Baghouse	1.0	CAP					
GRAN Process Vent. 10c	STK14/CON14	Baghouse	2.5	CAP					
S&L Boiler	STK20		0.02	CAP	0.4	CAP	0.2	CAP	
Diesel Engine	GEN1		0.099	CAP	1.88	CAP	1.73	CAP	
Diesel Engine	GEN2		0.0180	CAP	0.35	CAP	3.08	CAP	
	Total Stack Emissions =				10.6	70	18.0	115	

⁽a) Based on NSR Permit No. 495-M14 and Title V Permit No. P039-R3-M1. Note that emissions less than 1 lb/hr are shown in Table 106.A of both permits with a "<" sign.



# $\label{eq:Table 2} \mbox{Summary of SO$_2$, VOC, and HAP Stack Emissions} \\ \mbox{Mosaic Potash Carlsbad, Inc.}$

Emission Unit	Stack ID	Pollutant	Maximum Hourly Emissions (lb/hr)	Maximum Annual Emissions (TPY)
		SO ₂	0.052	0.23
LANG Dryer ^(a)	STK6	VOC	0.48	2.08
		HAP	0.16	0.72
		$SO_2$	0.035	0.15
GRAN Dryer ^(b)	STK10ab	VOC	0.32	1.39
		HAP	0.11	0.48
		SO ₂	0.0040	0.018
S&L Boiler ^(c)	STK20	VOC	0.013	0.058
		HAP	0.0045	0.020
		SO ₂	0.0036	0.016
Worst-Case Diesel Engine ^(d)	GEN1	VOC	0.099	0.43
		HAP	0.0080	0.035
		$SO_2$	0.0062	0.027
Worst-Case Diesel Engine ^(e)	GEN2	VOC	0.17	0.73
		HAP	0.014	0.062
Auto Shop Gasoline Tank ^(f)	GDF1	VOC	0.16	0.68
Auto Shop Gasoline Tank ^(g)	GDF2	0.032	0.14	
Tot	al SO₂ Stack	0.10	0.44	
Tota	al VOC Stack	1.26	5.52	
Tota	al HAP Stack	0.30	1.31	

### Footnotes:

^(a) See Table 3.

^(b) See Table 4.

^(c) See Table 5.

^(d) See Table 6.

^(e) See Table 7.

 $^{^{(\}mathrm{f})}$  See the TANKS 4.0.9d printout or GDF1.

^(g) See the TANKS 4.0.9d printout or GDF2.



 $\label{eq:so2} Table~3\\ SO_2,~VOC,~and~HAP~Emissions~from~the~LANG~Dryer~(STK6)\\ Mosaic~Potash~Carlsbad,~Inc.$ 

Pollutant		ission Factors (lb/MMscf)	Ref.	Maximum Hourly Emissions ^(a) (lb/hr)	Maximum Annual Emissions ^(b) (TPY)
Criteria Pollutants				, ,	, ,
SO ₂		0.6	1	0.052	0.23
VOC		5.5	1	0.48	2.08
Hazardous Air Pollutants (HAPs)					
2-Methylnapthalene		2.4E-05	2	2.1E-06	9.1E-06
3-Methylchloranthrene	<	1.8E-06	2	1.6E-07	6.8E-07
7,12-Dimethylbenz(a)anthracene	<	1.6E-05	2	1.4E-06	6.1E-06
Acenaphthene	<	1.8E-06	2	1.6E-07	6.8E-07
Acenaphthylene	<	1.8E-06	2	1.6E-07	6.8E-07
Anthracene	<	2.4E-06	2	2.1E-07	9.1E-07
Arsenic		2.0E-04	2	1.7E-05	7.6E-05
Benzene		2.1E-03	2	1.8E-04	8.0E-04
Benz(a)anthracene	<	1.8E-06	2	1.6E-07	6.8E-07
Benzo(a)pyrene	<	1.2E-06	2	1.0E-07	4.5E-07
Benzo(b)fluoranthene	<	1.8E-06	2	1.6E-07	6.8E-07
Benzo(g,h,i)perylene	<	1.2E-06	2	1.0E-07	4.5E-07
Benzo(k)fluoranthene	<	1.8E-06	2	1.6E-07	6.8E-07
Beryllium	<	1.2E-05	2	1.0E-06	4.5E-06
Cadmium		1.1E-03	2	9.5E-05	4.2E-04
Chromium (total)		1.4E-03	2	1.2E-04	5.3E-04
Chrysene	<	1.8E-06	2	1.6E-07	6.8E-07
Cobalt		8.4E-05	2	7.3E-06	3.2E-05
Dibenzo(a,h)anthracene	<	1.2E-06	2	1.0E-07	4.5E-07
Dichlorobenzene		1.2E-03	2	1.0E-04	4.5E-04
Fluoranthene		3.0E-06	2	2.6E-07	1.1E-06
Fluorene		2.8E-06	2	2.4E-07	1.1E-06
Formaldehyde		7.5E-02	2	6.5E-03	2.8E-02
Hexane		1.8E+00	2	1.6E-01	6.8E-01
Indeno(1,2,3-cd)pyrene	<	1.8E-06	2	1.6E-07	6.8E-07
Lead		5.0E-04	1	4.3E-05	1.9E-04
Manganese		3.8E-04	2	3.3E-05	1.4E-04
Mercury		2.6E-04	2	2.3E-05	9.9E-05
Naphthalene		6.1E-04	2	5.3E-05	2.3E-04
Nickel		2.1E-03	2	1.8E-04	8.0E-04
Phenanathrene		1.7E-05	2	1.5E-06	6.4E-06
Pyrene		5.0E-06	2	4.3E-07	1.9E-06
Selenium	<	2.4E-05	2	2.1E-06	9.1E-06
Toluene		3.4E-03	2	2.9E-04	1.3E-03
Highest Single HAP (Hexane)				0.16	0.68
Total HAPs				0.16	0.72

Maximum Heat Input = 90 MMBtu/hr Higher Heating Value = 1,040 MMBtu/MMscf

### References:

- 1 Emission factor from AP-42, Table 1.4-2 (7/98).
- 2 Emission factor from AP-42, Tables 1.4-3 and 1.4-4 (7/98). For non-detect values, the detection limit was used.

⁽a) Maximum Hourly Emissions (lb/hr) = (Maximum Heat Input [MMBtu/hr]) / (Higher Heat Value [MMBtu/MMscf]) x (Emission Factor [lb/MMscf])

⁽b) Based on operating 8,760 hours per year.



Table 4 SO₂, VOC, and HAP Emissions from the GRAN Dryer (STK10ab) Mosaic Potash Carlsbad, Inc.

Pollutant		ission Factor (lb/MMscf)	Ref.	Maximum Hourly Emissions ^(a) (lb/hr)	Maximum Annual Emissions ^(b) (TPY)
Criteria Pollutants					
SO ₂		0.6	1	0.035	0.15
VOC		5.5	1	0.32	1.39
Hazardous Air Pollutants (HAPs)					
2-Methylnapthalene		2.4E-05	2	1.4E-06	6.1E-06
3-Methylchloranthrene	<	1.8E-06	2	1.0E-07	4.5E-07
7,12-Dimethylbenz(a)anthracene	<	1.6E-05	2	9.2E-07	4.0E-06
Acenaphthene	<	1.8E-06	2	1.0E-07	4.5E-07
Acenaphthylene	<	1.8E-06	2	1.0E-07	4.5E-07
Anthracene	<	2.4E-06	2	1.4E-07	6.1E-07
Arsenic		2.0E-04	2	1.2E-05	5.1E-05
Benzene		2.1E-03	2	1.2E-04	5.3E-04
Benz(a)anthracene	<	1.8E-06	2	1.0E-07	4.5E-07
Benzo(a)pyrene	<	1.2E-06	2	6.9E-08	3.0E-07
Benzo(b)fluoranthene	<	1.8E-06	2	1.0E-07	4.5E-07
Benzo(g,h,i)perylene	<	1.2E-06	2	6.9E-08	3.0E-07
Benzo(k)fluoranthene	<	1.8E-06	2	1.0E-07	4.5E-07
Beryllium	<	1.2E-05	2	6.9E-07	3.0E-06
Cadmium		1.1E-03	2	6.3E-05	2.8E-04
Chromium (total)		1.4E-03	2	8.1E-05	3.5E-04
Chrysene	<	1.8E-06	2	1.0E-07	4.5E-07
Cobalt		8.4E-05	2	4.8E-06	2.1E-05
Dibenzo(a,h)anthracene	<	1.2E-06	2	6.9E-08	3.0E-07
Dichlorobenzene		1.2E-03	2	6.9E-05	3.0E-04
Fluoranthene		3.0E-06	2	1.7E-07	7.6E-07
Fluorene		2.8E-06	2	1.6E-07	7.1E-07
Formaldehyde		7.5E-02	2	4.3E-03	1.9E-02
Hexane		1.8E+00	2	1.0E-01	4.5E-01
Indeno(1,2,3-cd)pyrene	<	1.8E-06	2	1.0E-07	4.5E-07
Lead		5.0E-04	1	2.9E-05	1.3E-04
Manganese		3.8E-04	2	2.2E-05	9.6E-05
Mercury		2.6E-04	2	1.5E-05	6.6E-05
Naphthalene		6.1E-04	2	3.5E-05	1.5E-04
Nickel		2.1E-03	2	1.2E-04	5.3E-04
Phenanathrene		1.7E-05	2	9.8E-07	4.3E-06
Pyrene		5.0E-06	2	2.9E-07	1.3E-06
Selenium	<	2.4E-05	2	1.4E-06	6.1E-06
Toluene		3.4E-03	2	2.0E-04	8.6E-04
Highest Single HAP (Hexane)				0.10	0.45
Total HAPs				0.11	0.48

Maximum Heat Input = 60 MMBtu/hr Higher Heating Value = 1,040 MMBtu/MMscf

### References:

- 1 Emission factor from AP-42, Table 1.4-2 (7/98).
- 2 Emission factor from AP-42, Tables 1.4-3 and 1.4-4 (7/98). For non-detect values, the detection limit was used.

⁽a) Maximum Hourly Emissions (lb/hr) = (Maximum Heat Input [MMBtu/hr]) / (Higher Heat Value [MMBtu/MMscf]) x (Emission Factor [lb/MMscf])

⁽b) Based on operating 8,760 hours per year.



 $\label{eq:so2} Table~5\\ SO_2,~VOC,~and~HAP~Emissions~from~the~S\&L~Boiler~(STK20)\\ Mosaic~Potash~Carlsbad,~Inc.$ 

Pollutant		ission Factor	Ref.	Maximum Hourly Emissions ^(a)	Maximum Annual Emissions ^(b)
		(lb/MMscf)		(lb/hr)	(TPY)
Criteria Pollutants					
SO ₂			3	0.0040	0.018
VOC		 5.5	1	0.013	
VOC		5.5	'	0.013	0.058
Hazardous Air Pollutants (HAPs)					
2-Methylnapthalene		2.4E-05	2	5.8E-08	2.5E-07
3-Methylchloranthrene	<	1.8E-06	2	4.3E-09	1.9E-08
7,12-Dimethylbenz(a)anthracene	<	1.6E-05	2	3.8E-08	1.7E-07
Acenaphthene	<	1.8E-06	2	4.3E-09	1.9E-08
Acenaphthylene	<	1.8E-06	2	4.3E-09	1.9E-08
Anthracene	<	2.4E-06	2	5.8E-09	2.5E-08
Arsenic		2.0E-04	2	4.8E-07	2.1E-06
Benzene		2.1E-03	2	5.0E-06	2.2E-05
Benz(a)anthracene	<	1.8E-06	2	4.3E-09	1.9E-08
Benzo(a)pyrene	<	1.2E-06	2	2.9E-09	1.3E-08
Benzo(b)fluoranthene	<	1.8E-06	2	4.3E-09	1.9E-08
Benzo(g,h,i)perylene	<	1.2E-06	2	2.9E-09	1.3E-08
Benzo(k)fluoranthene	<	1.8E-06	2	4.3E-09	1.9E-08
Beryllium	<	1.2E-05	2	2.9E-08	1.3E-07
Cadmium		1.1E-03	2	2.6E-06	1.2E-05
Chromium (total)		1.4E-03	2	3.4E-06	1.5E-05
Chrysene	<	1.8E-06	2	4.3E-09	1.9E-08
Cobalt		8.4E-05	2	2.0E-07	8.8E-07
Dibenzo(a,h)anthracene	<	1.2E-06	2	2.9E-09	1.3E-08
Dichlorobenzene		1.2E-03	2	2.9E-06	1.3E-05
Fluoranthene		3.0E-06	2	7.2E-09	3.2E-08
Fluorene		2.8E-06	2	6.7E-09	2.9E-08
Formaldehyde		7.5E-02	2	1.8E-04	7.9E-04
Hexane		1.8E+00	2	4.3E-03	1.9E-02
Indeno(1,2,3-cd)pyrene	<	1.8E-06	2	4.3E-09	1.9E-08
Lead		5.0E-04	1	1.2E-06	5.3E-06
Manganese		3.8E-04	2	9.1E-07	4.0E-06
Mercury		2.6E-04	2	6.3E-07	2.7E-06
Naphthalene		6.1E-04	2	1.5E-06	6.4E-06
Nickel		2.1E-03	2	5.0E-06	2.2E-05
Phenanathrene		1.7E-05	2	4.1E-08	1.8E-07
Pyrene		5.0E-06	2	1.2E-08	5.3E-08
Selenium	<	2.4E-05	2	5.8E-08	2.5E-07
Toluene		3.4E-03	2	8.2E-06	3.6E-05
Highest Single HAP (Hexane)				0.0043	0.019
Total HAPs				0.0045	0.020

Maximum Heat Input = 2.5 MMBtu/hr Higher Heating Value = 1,040 MMBtu/MMscf

### References:

- 1 Emission factor from AP-42, Table 1.4-2 (7/98).
- 2 Emission factor from AP-42, Tables 1.4-3 and 1.4-4 (7/98). For non-detect values, the detection limit was used.
- 3 Emissions from the boiler manufacturer's data (Cleaver-Brooks).

⁽a) Maximum Hourly Emissions (lb/hr) = (Maximum Heat Input [MMBtu/hr]) / (Higher Heat Value [MMBtu/MMscf]) x (Emission Factor [lb/MMscf])

^(b) Based on operating 8,760 hours per year.



## Table 6 Diesel-Fired Engine (GEN1) - Worst-Case Engine Emissions Mosaic Potash Carlsbad, Inc.

### Worst-Case GEN1 Emission Factors

		Emission Factors			
Pollutant	EPA Tier 3 (2006-2010) (≥130 kW to <225 kW)	EPA Tier 3 (2007-2011) (≥75 kW to <130 kW)	EPA Tier 3 (2008-2011) (≥56 kW to <75 kW)	Units	Source
NOx	0.00625	0.00625	0.00734	lb/hp-hr	EPA Non-Road Diesel Tier 3 Standards; CARB Memo
CO	0.00575	0.00822	0.00822	lb/hp-hr	EPA Non-Road Diesel Tier 3 Standards
PM (assumed equal to PM ₁₀ and PM _{2.5} )	0.000329	0.00049	0.00066	lb/hp-hr	EPA Non-Road Diesel Tier 3 Standards
SOx	0.000030	0.000030	0.000030	lb SO ₂ /lb diesel	Mass Balance; Sulfur content (ULSD) = 15 ppm (max)
VOC (as NMHC)	0.000329	0.00033	0.00039	lb/hp-hr	EPA Non-Road Diesel Tier 3 Standards; CARB Memo
HAPs	0.000027	0.000027	0.000027	lb/hp-hr	AP-42, Table 3.3-2; converted from lb/MMBtu based on 7,000 Btu/hp- hr

### Worst-Case GEN1 Emission Calculations

				Max Size in EPA	May		Maximum Hourly Emissions						Operating	Maximum Annual Emissions					
Unit Name	Worst-Case Model Year	Manufacturer, Model, Serial No.	Diesel Standard Ranges (kW)	Diesel Standard Ranges (hp)	•	(gal/hr)	NOx (lb/hr)	CO (lb/hr)	PM (lb/hr)	SO ₂ (lb/hr)	VOC (lb/hr)	HAPs (lb/hr)	Schedule (hr/yr)	NOx (tpy)	CO (tpy)	PM (tpy)	SO ₂ (tpy)	VOC (tpy)	HAPs (tpy)
	EPA Tier 3 (2006-2010) (≥130 kW to <225 kW)	Varies	224	300	Diesel	16.6	1.88	1.73	0.099	0.0036	0.099	0.0080	8,760	8.22	7.57	0.43	0.016	0.43	0.035
Diesel Engine (GEN1)	EPA Tier 3 (2007-2011) (≥75 kW to <130 kW)	Varies	129	173	Diesel	9.8	1.08	1.42	0.085	0.0021	0.057	0.0046	8,760	4.73	6.23	0.37	0.0093	0.25	0.020
	EPA Tier 3 (2008-2011) (≥56 kW to <75 kW)	Varies	74	99	Diesel	6.1	0.73	0.82	0.065	0.0013	0.038	0.0026	8,760	3.19	3.57	0.29	0.0058	0.17	0.012
				1	Norst-Case I	Emissions =	1.88	1.73	0.099	0.0036	0.099	0.0080		8.22	7.57	0.43	0.016	0.43	0.035



## Table 7 Diesel-Fired Engine (GEN2) - Worst-Case Engine Emissions Mosaic Potash Carlsbad, Inc.

### Worst-Case GEN2 Emission Factors

Pollutant	Emission Factor	Units	Source
NOx	0.00066	lb/hp-hr	EPA Non-Road Diesel Tier 4 Standards; CARB Memo
CO	0.0058	lb/hp-hr	EPA Non-Road Diesel Tier 4 Standards
PM (assumed equal to PM ₁₀ and PM _{2.5} )	0.000033	lb/hp-hr	EPA Non-Road Diesel Tier 4 Standards
SOx	0.000030	lb SO ₂ /lb diesel	Mass Balance; Sulfur content (ULSD) = 15 ppm (max)
VOC (as NMHC)	0.00031	lb/hp-hr	EPA Non-Road Diesel Tier 4 Standards; CARB Memo
HAPs	0.000027	lb/hp-hr	AP-42, Table 3.3-2; converted from lb/MMBtu based on 7,000 Btu/hp-hr

### Worst-Case GEN2 Emission Calculations

			Engine	Engine				Max Fuel		Max	imum Hou	ırly Emissi	ions		Operating		Max	cimum Ann	ual Emiss	ions	
Unit Name	Engine Manufacturer	Worst-Case Model Year	Model Number	Serial Number	(hp)	(kW)	Fuel Type	Usage (gal/hr)	NOx (lb/hr)	CO (lb/hr)	PM (lb/hr)	SO ₂ (lb/hr)	VOC (lb/hr)	HAPs (lb/hr)	Schedule (hr/yr)	NOx (tpy)	CO (tpy)	PM (tpy)	SO ₂ (tpy)	VOC (tpy)	HAPs (tpy)
Diesel Engine (GEN2)	Varies	2014+	Varies	Varies	535	399	Diesel	28.6	0.35	3.08	0.018	0.0062	0.17	0.014	8,760	1.54	13.48	0.077	0.027	0.73	0.062
			•		•	W	orst-Case E	missions =	0.35	3.08	0.018	0.0062	0.17	0.014	-	1.54	13.48	0.077	0.027	0.73	0.062



### Table 8 Mosaic Potash Carlsbad, Inc. GDF1 and GDF2 - VOC and HAP Emissions

Table 1: Maximum VOC Emissions

Emission Unit	Tank Size	Maximum Gasoline	Maximum VOC Emissions				
Emission Unit	(gal)		Total Losses (ton/yr)	Total Losses (lb/hr)			
GDF1	4,136	66,500	0.68	0.16			
GDF2	500	00,500	0.14	0.03			
		Total =	0.82	0.19			

Table 2: Gasoline HAP Constituents

Constituent	% by weight ^(b)
Benzene	0.35
n-Hexane	1.07
Toluene	3.59
o,m,p-Xylene	0.69
Ethylbenzene	0.18
2,2,4-Trimethylpentane	5.40

Table 3: Maximum HAP Emissions^(c)

Fmission Unit	Emission Unit Benzene		n-Hexane Toluene				Xyl	Xylene		Ethylbenzene		2,2,4-Trimethylpentane		Total HAPs	
Zimosion omit	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	
GDF1	0.0024	0.00054	0.0073	0.0017	0.025	0.0056	0.0047	0.0011	0.0012	0.00028	0.037	0.0084	0.077	0.018	
GDF2	0.00048	0.00011	0.0015	0.00034	0.0050	0.0011	0.00096	0.00022	0.00025	0.000057	0.0075	0.0017	0.016	0.0036	
Total	0.0028	0.00065	0.0088	0.0020	0.030	0.0067	0.0056	0.0013	0.0015	0.00034	0.044	0.010	0.093	0.021	

### Footnotes:

^(a) Based on the EPA TANKS 4.0.9d printouts.

⁽b) Based on the maximum of the SPECIATE 5.0 database HAP percentages for non-ethanol gasoline (2009 sampling data, profile no. 8762, gasoline headspace vapor, data quality "A") and 10% ethanol gasoline (2009 sampling data, profile no. 8763, gasoline headspace vapor, data quality "A").

 $^{^{(}c)}$  Based on applying the gasoline HAP constituent percentages in Table 2 to the total tank VOC emissions in Table 1.

### **TANKS 4.0.9d**

### **Emissions Report - Detail Format Tank Indentification and Physical Characteristics**

Identification

GDF1 (AS1) Carlsbad New Mexico User Identification: City: State:

Company: Type of Tank: Description:

Mosaic Potash Carlsbad Vertical Fixed Roof Tank Unleaded Gasoline Tank at the Auto Shop

Tank Dimensions
Shell Height (ft):

11.00 Diameter (ft):
Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons):
Turnovers: 8.00 11.00 9.00 4,136.14 12.09 Net Throughput(gal/yr): Is Tank Heated (y/n): 50,000.00

Ν

**Paint Characteristics** 

Shell Color/Shade: Shell Condition Gray/Medium Good Gray/Medium Roof Color/Shade: Roof Condition: Good

**Roof Characteristics** 

Cone Type: Height (ft)

0.67 Slope (ft/ft) (Cone Roof) 0.17

**Breather Vent Settings** 

Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03

Meterological Data used in Emissions Calculations: Roswell, New Mexico (Avg Atmospheric Pressure = 12.73 psia)

TANKS 4.0 Report Page 2 of 6

### TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

### GDF1 (AS1) - Vertical Fixed Roof Tank Carlsbad, New Mexico

			ily Liquid Su perature (de		Liquid Bulk Temp	k		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 9)	All	72.26	58.28	86.25	63.90	5.8375	4.4571	7.5404	67.0000			92.00	Option 4: RVP=9, ASTM Slope=3

### TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

### GDF1 (AS1) - Vertical Fixed Roof Tank Carlsbad, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb):	900.3733
Vapor Space Volume (cu ft):	111.7569
Vapor Density (lb/cu ft):	0.0685
Vapor Space Expansion Factor:	0.5437
Vented Vapor Saturation Factor:	0.5925
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	111.7569
Tank Diameter (ft):	8.0000
Vapor Space Outage (ft):	2.2233
Tank Shell Height (ft):	11.0000
Average Liquid Height (ft): Roof Outage (ft):	9.0000 0.2233
Roof Outage (Cone Roof)	0.2233
Roof Outage (ft):	0.2233
Roof Height (ft): Roof Slope (ft/ft):	0.1670
Shell Radius (ft):	4.0000
	1.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0685
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	67.0000
Surface Temperature (psia):	5.8375
Daily Avg. Liquid Surface Temp. (deg. R):	531.9348
Daily Average Ambient Temp. (deg. F):	60.8167
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	523.5667
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof): Daily Total Solar Insulation	0.6800
Factor (Btu/sqft day):	1,810.0000
racor (Staroqit day).	1,010.0000
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.5437
Daily Vapor Temperature Range (deg. R):	55.9424
Daily Vapor Pressure Range (psia):	3.0833
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia):	5.8375
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	4.4571
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	7.5404
Daily Avg. Liquid Surface Temp. (deg R):	531.9348
Daily Min. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R):	517.9492 545.9204
Daily Ambient Temp. Range (deg. R):	29.8333
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.5925
Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	5.8375
Vapor Space Outage (ft):	2.2233
vapor opaso datago (iv).	2.2200
Working Losses (lb):	465.6089
Vapor Molecular Weight (lb/lb-mole):	67.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	5.8375 50.000.0000
Annual Net Throughput (gal/yr.): Annual Turnovers:	12.0886
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	4,136.1448
Maximum Liquid Height (ft):	11.0000
Tank Diameter (ft):	8.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	1,365.9822
* /	

### TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

**Emissions Report for: Annual** 

GDF1 (AS1) - Vertical Fixed Roof Tank Carlsbad, New Mexico

	Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions			
Gasoline (RVP 9)	465.61	900.37	1,365.98			

### **TANKS 4.0.9d**

### **Emissions Report - Detail Format Tank Indentification and Physical Characteristics**

Identification

GDF2 (LC1) Carlsbad New Mexico User Identification: City: State: Company: Type of Tank: Description:

Mosaic Potash Carlsbad Horizontal Tank Unleaded Gasoline Tank at the Lake Compound

Tank Dimensions
Shell Length (ft):
Diameter (ft):
Volume (gallons):
Turnovers: 6.20 3.80 500.00 33.00 16,500.00

Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):

Paint Characteristics Shell Color/Shade:

White/White Shell Condition

Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03

Meterological Data used in Emissions Calculations: Roswell, New Mexico (Avg Atmospheric Pressure = 12.73 psia)

TANKS 4.0 Report Page 2 of 6

### TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

### GDF2 (LC1) - Horizontal Tank Carlsbad, New Mexico

		Da Tem	ily Liquid Su perature (de	urf. eg F)	Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 9)	All	63.26	55.73	70.78	60.84	4.9146	4.2369	5.6768	67.0000			92.00	Option 4: RVP=9, ASTM Slope=3

### TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

### GDF2 (LC1) - Horizontal Tank Carlsbad, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb):	150.2033
Vapor Space Volume (cu ft):	44.7867
Vapor Density (lb/cu ft):	0.0587
Vapor Space Expansion Factor:	0.2341
Vented Vapor Saturation Factor:	0.6689
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	44.7867
Tank Diameter (ft):	3.8000
Effective Diameter (ft):	5.4784
Vapor Space Outage (ft): Tank Shell Length (ft):	1.9000 6.2000
	0.2000
Vapor Density	0.0507
Vapor Density (lb/cu ft):	0.0587
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	67.0000
Surface Temperature (psia):	4 9146
Daily Avg. Liquid Surface Temp. (deg. R):	522.9287
Daily Average Ambient Temp. (deg. F):	60.8167
Ideal Gas Constant R	00.0101
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	520.5067
Tank Paint Solar Absorptance (Shell):	0.1700
Daily Total Solar Insulation	4 040 0000
Factor (Btu/sqft day):	1,810.0000
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.2341
Daily Vapor Temperature Range (deg. R):	30.0956
Daily Vapor Pressure Range (psia):	1.4398 0.0600
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	4.9146
Vapor Pressure at Daily Minimum Liquid	4.5140
Surface Temperature (psia):	4.2369
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	5.6768
Daily Avg. Liquid Surface Temp. (deg R):	522.9287
Daily Min. Liquid Surface Temp. (deg R):	515.4048
Daily Max. Liquid Surface Temp. (deg R):	530.4526
Daily Ambient Temp. Range (deg. R):	29.8333
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.6689
Vapor Pressure at Daily Average Liquid:	10110
Surface Temperature (psia):	4.9146 1.9000
Vapor Space Outage (ft):	1.9000
Working Losses (lb):	129.3599
Vapor Molecular Weight (lb/lb-mole):	67.0000
Vapor Pressure at Daily Average Liquid	07.0000
Surface Temperature (psia):	4.9146
Annual Net Throughput (gal/yr.):	16,500.0000
Annual Turnovers:	33.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	3.8000
Working Loss Product Factor:	1.0000
Total Losses (lb):	279.5631

### TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

**Emissions Report for: Annual** 

GDF2 (LC1) - Horizontal Tank Carlsbad, New Mexico

	Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions			
Gasoline (RVP 9)	129.36	150.20	279.56			



### PSD Applicability Summary Impact Roll Crusher Project Mosaic Potash Carlsbad

	New or	Stack or Fugitive		Potential Emission Rate (ton/yr) ¹				
Unit ID	nit ID Existing Source? Change		Change Description	TSP	PM ₁₀	PM _{2.5}		
xisting Potent	ial Emissions for	Potentially Impacte	d Sources ²					
STK4	Existing	Stack	No Changes	3.29	3.29	3.29		
STK4	Existing	Fugitives as Stack	s Stack No Changes		0.017	0.0047		
STK5a	Existing	Stack	No Changes	4.38	4.38	4.38		
STK5a	Existing	Fugitives as Stack	Crusher Change; Increased Utilization	0.016	0.0088	0.0021		
STK5b	Existing	Stack	No Changes	4.38	4.38	4.38		
STK5b	Existing	Fugitives as Stack	Increased Utilization	0.015	0.0071	0.0020		
FUG3	Existing	Fugitive	Fugitive No Changes		0.70	0.20		
FUG25	Existing	Fugitive	Fugitive No Changes		0.19	0.05		
FUG26	Existing	Fugitive	Fugitive No Changes		0.05	0.01		
FUG27	Existing	Fugitive	9		0.38	0.11		
FUG28	Existing		Fugitive Crusher Change; Increased Utilization		10.50	0.71		
FUG29	Existing	Fugitive	Increased Utilization	20.81 2.08	1.02	0.29		
10023	LAISTING	Tota	12.11	12.08	12.05			
Indification Po	ntential Emission	ns for Potentially Imp						
STK4	Existing	Stack	No Changes	3.29	3.29	3.29		
STK4	Existing	Fugitives as Stack	No Changes	0.034	0.017	0.0047		
STK5a	Existing	Stack	No Changes	4.38	4.38	4.38		
STK5a	Existing	Fugitives as Stack	Crusher Change; Increased Utilization	0.021	0.011	0.003		
STK5b	Existing	Stack	No Changes	4.38	4.38	4.38		
STK5b	Existing	Fugitives as Stack	Increased Utilization	0.015	0.007	0.002		
FUG3	Existing	Fugitive	No Changes	1.44	0.70	0.20		
FUG25	Existing	Fugitive	No Changes	0.38	0.19	0.05		
FUG26	Existing	Fugitive	No Changes	0.10	0.05	0.01		
FUG27	Existing	Fugitive	Increased Utilization	0.99	0.49	0.14		
FUG28	Existing	Fugitive	Crusher Change; Increased Utilization	24.27	12.25	0.83		
FUG29	Existing	Fugitive	Increased Utilization	2.09	1.02	0.29		
. 0 0 2 3	2,11041119		lification Potential Emissions (Stack-only) ³	12.12	12.08	12.05		
	Tota	al Modification-Only	0.0051	0.0027	0.00067			
		PSD MA.	IOR STATIONARY SOURCE EMISSION RATE	250	250	250		
			PSD Applicable?	No	No	No		

### Footnotes:

¹ Only particulate matter emissions are emitted by these potentially impacted sources. Also, the pollutant emission rate for the stack sources are based on the hourly emission limits multiplied by 8,760 hr/yr and divided by 2,000 lb/ton. Note that the stack sources are subject to an annual Stack CAP and there are no inidividual tpy limits for these sources.

² Since physical changes are occuring to the existing crushers in FUG29, which are vented to STK5a, this analysis is based on potential emissions from all potentially impacted upstream and downstream sources.

³ Because Mosaic Potash Carlsbad is not one of the 28 named categories and has facility-wide potential stack emissions less than 250 tpy, it is a PSD minor stationary source. Therefore, PSD applicability is based on whether the modification constitutes a major stationary source by itself (i.e., stack emission increases associated with the modification are greater than 250 tpy). Note that Mosaic Potash Carlsbad is not one of the named source categories or subject to a category covered by Sections 111 or 112 of the Clean Air Act, so fugitive emissions are not included in the PSD applicability evaluation.



# Table of Contents Fugitive Emission Calculations Mosaic Potash Carlsbad Inc.

Table Number	Description	Fugitive IDs
1	LANG Hoist Circuit	FUG3, 25, 26
2	LANG Crushing Circuit	FUG27, 28
3	LANG Fine Ore Bin Circuit	FUG29
4	LANG Screening Circuit	FUG30
5	Granulation Plant (Two Raymond Mills)	FUG33
6	Second Raymond Mill Circuit in the Granulation Plant	FUG24
7	Nash Plant (formerly "Cuttings Circuit")	FUG1, 2
8, 9	Dispatch - With Coating and No Coating	FUG8, 11, 31, 32, 33
10, 11	Warehouses - Aggregate Handling - With Coating and No Coating	FUG6, 8, 11
12, 13	No. 4 Railcar Loadout - With Coating and No Coating	FUG9
14, 15	No. 5 Railcar Loadout - With Coating and No Coating	FUG10
16, 17	Truck Loadout - With Coating and No Coating	FUG12
18, 19	Warehouses - Material Handling and Hauling	FUG6, 8, 11, 57, 63
20	Main Haul Road	FUG22
21	Abrasive Blasting	FUG20, 40
22, 23	Railcar Offloading (formerly "Railcar Unloading") - Material Handling and Hauling	FUG43, 47, 58, 59
24, 25	Granulation Reclaim - Material Handling and Hauling	FUG44, 48
26, 27	K-Mag Rehandling (formerly "K-Mag Reclaim") - Material Handling and Hauling	FUG49, 50
28, 29	Brine Circuit - Material Handling and Hauling	FUG51, 52
30, 31, 32	Reagent - Material Handling, Hauling, and Wind Erosion	FUG60, 61, 62
33, 34	Potash - Material Handling and Hauling	FUG64, 65
35, 36	TMA - Material Handling and Hauling	FUG66, 67
37	Fugitive Emission Control Efficiencies	N/A
38	Material Handling Emission Factors	N/A
39	Summary of Fugitive Emissions	N/A
40	Fugitive Emissions as Stack Emissions	N/A



# Table 1 LANG Hoist Circuit Potential Fugitive Emissions - Modified Mosaic Potash Carlsbad Inc.

					ĺ				Baghouse-CON-	4 Operational							Bag	house-CO	N4 not Operat	ional					
Unit No. Stac	k No. Mater	Process/Source Description	Maxir Throug		Emission Factor	Control Equipment /	Unit Control Efficiency ^(c)	Total Control Efficiency ^(d)	Maxim TSI Emissi	P		imum A ₁₀ ssions	Maximum PM _{2.5} Emissions	Control Equipmen	Co	nit To ntrol Con tency ^(c) Efficie	rol	Maxi TS Emis	SP	P	ximum M ₁₀ issions	Maxii PM Emiss	2.5		m Total Annual missions ^(h) PM ₁₀ PM _{2.5}
			(TPH)	(TPY)	Category ^(b)	Measure	(%)	(%)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e) (TPY) ^(f)	Measure	(	%) (%	) (	lb/hr) ^(e)	(TPY) ^(g)	(lb/hr) ^(e)	(TPY) ^(g)	(lb/hr) ^(e)	(TPY) ^(g)	(TPY)	(TPY) (TPY)
LANG Hoist FU	IG25 LANG		729	6,387,500	Conveyor Transfer Point	Ventilation Capture Full Equip. Enclosure	95 95	99.8	4.1E-03	1.8E-02	2.0E-03	8.6E-03	5.7E-04 2.4E-03	Ventilation Ca Full Equip. En	losure	95 95	0 :	3.2E-02	7.2E-03	4.0E-02	3.5E-03	1.1E-02	9.9E-04	2.5E-02	1.2E-02 3.4E-03
LANG Hoist FU	IG25 LANG	2	365	3,193,750	Conveyor Transfer Point	Full Equip. Enclosure	95	95.0	4.1E-02	1.8E-01	2.0E-02	8.6E-02	5.7E-03 2.4E-02	Full Equip. En	losure	95 95	0 4	l.1E-02	3.6E-03	2.0E-02	1.8E-03	5.7E-03	5.0E-04	1.8E-01	8.8E-02 2.5E-02
LANG Hoist FU	IG25 LANG		365	3,193,750	Conveyor Transfer Point	Full Equip. Enclosure	95	95.0	4.1E-02	1.8E-01	2.0E-02	8.6E-02	5.7E-03 2.4E-02	Full Equip. En	losure	95 95	0 4	l.1E-02	3.6E-03	2.0E-02	1.8E-03	5.7E-03	5.0E-04	1.8E-01	8.8E-02 2.5E-02
LANG Hoist FU	IG26 LANG		365	3,193,750	Conveyor Transfer Point	Ventilation Capture Partial Equip. Enclosure	95 80	99.0	8.2E-03	3.5E-02	4.0E-03	1.7E-02	1.1E-03 4.9E-03	Ventilation Ca Partial Equip. E		80 80	0	.6E-01	1.4E-02	8.0E-02	7.0E-03	2.3E-02	2.0E-03	5.0E-02	2.4E-02 6.8E-03
LANG Hoist FU	IG26 LANG		365	3,193,750	Conveyor Transfer Point	Ventilation Capture Partial Equip. Enclosure	95 80	99.0	8.2E-03	3.5E-02	4.0E-03	1.7E-02	1.1E-03 4.9E-03	Ventilation Ca Partial Equip. E		80 80	0	.6E-01	1.4E-02	8.0E-02	7.0E-03	2.3E-02	2.0E-03	5.0E-02	2.4E-02 6.8E-03
LANG Hoist FU	JG3 LANG		729	6,387,500	Conveyor Transfer Point	Partial Equip. Enclosure	80	80.0	3.3E-01	1.4E+00	1.6E-01	6.9E-01	4.5E-02 1.9E-01	Partial Equip. E	closure	80 80	0 :	3.3E-01	2.9E-02	1.6E-01	1.4E-02	4.5E-02	4.0E-03	1.4E+00	7.0E-01 2.0E-01
							tive Emissions Operational)		0.43	1.85	0.21	0.90	0.060 0.26		tal Fugitive En ON4 not Opera			0.82	0.072	0.40	0.035	0.11	0.0099	1.92	0.94 0.27
					·										ives as Stack Ei ON4 not Opera			0.39	0.034	0.19	0.017	0.054	0.0047		

(a) Based on operating 8,760 hours per year.

(b) Uncontrolled emission factors in lbs/ton for screening, tertiary crushing, fines screening, and conveyor transfer points obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug. 2004.

Particle Size (µm)	Tertiary Crushing	Screening	Conveyor Transfer Point	Fines Screening
2.5	0.00044	0.00059	0.00031	0.044
10	0.0024	0.0087	0.0011	0.072
30	0.0038	0.017	0.0022	0.094

⁽d) Total Control Efficiency (%) =  $100\% - 100\% \times 10^{-10}$  (1 - Control Efficiency (%), 1/00) x (1 - Control Efficiency

⁽e) Maximum Fugitive Emission Rate (lb/hr) = (Maximum Throughput [TPH]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽f) Maximum Fugitive Emission Rate (TPY) = {(Maximum Throughput [TPY]) - (Annual Hours of Baghouse Downtime [hrs/yr]) x (Maximum Hourly Throughput [TPH])} x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100) Annual Hours of Baghouse Downtime = 175 hrs/yr

As a worst-case scenario, it was assumed that all 175 hrs/yr of baghouse downtime is used. Therefore, the maximum annual throughput was subtracted by the maximum throughput during the 175 hrs/yr of baghouse downtime. (g) Maximum Fugitive Emission Rate (TPY) = (Annual Hours of Baghouse Downtime [hrs/yr]) x (Maximum Hourly Throughput [TPH]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

⁽h) Maximum Total Annual Fugitive Emissions (TPY) = (Total Fugitive Emissions CON4 not Operational [TPY]) + (Total Fugitive Emissions CON4 Operational [TPY])

⁽i) Fugitives as Stack Emissions (lb/hr) = (Total Fugitive Emissions CON4 not Operational [lb/hr]) - (Total Fugitive Emissions CON4 Operational [lb/hr])

⁽i) Fugitives as Stack Emissions (TPY) = (Fugitives as Stack Emissions [lb/hr]) x (Annual Hours of Baghouse Downtime [hrs/yr]) / (2000 lbs/ton)



# Table 2 LANG Crushing Circuit Potential Fugitive Emissions - Modified Mosaic Potash Carlsbad Inc.

									Baghouse-CC	ON5a Operation	nal						Baghouse-CON	5a not Operati	onal					
Unit No.	Stack No.	Material Processed	Process/Source Description	Maximum Throughput ^(a)	Emission Factor	Control Equipment /	Unit Control Efficiency ^(c)	Total Control Efficiency ^(d)		imum SP ssions	Maxii PM Emiss	I ₁₀	P	cimum M _{2.5} ssions	Uni Control Contr Equipment / Efficier	ol Control	T	imum SP ssions	P	cimum M ₁₀ ssions	Maxi PM Emis	I _{2.5}		im Total Annual missions ^(h) PM ₁₀ PM _{2.5}
- 101				(TPH) (TPY)	Category ^(b)	Measure	(%)	(%)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	Measure (%	(%)	(lb/hr) ^(e)	(TPY) ^(g)	(lb/hr) ^(e)	(TPY) ^(g)	(lb/hr) ^(e)	(TPY) ^(g)	(TPY)	(TPY) (TPY)
LANC Crushe	FUG27	LANG Ore	Crusher Feed Belt Conveyor (at Tower 2 recycle point) (CS10030)	470 4,117,200	Conveyor Transfer Point	Partial Equip. Enclosure	80	80.0	2.1E-01	9.3E-01	1.0E-01	4.5E-01	2.9E-02	1.3E-01	Partial Equip. Enclosure 80	80.0	2.1E-01	1.8E-02	1.0E-01	9.0E-03	2.9E-02	2.6E-03	9.4E-01	4.6E-01 1.3E-01
LANC Crushe	FUG27	LANG Ore	Crusher Discharge Belt Conveyor (Drop 1) (CS10075)	235 2,058,600	Conveyor Transfer Point	Partial Equip, Enclosure	95 85	99.25	4.0E-03	1.7E-02	1.9E-03	8.3E-03	5.5E-04	2.4E-03	Ventilation Capture 0 Partial Equip. Enclosure 85	83.0	7.9E-02	6.9E-03	3.9E-02	3.4E-03	1.1E-02	9.6E-04	2.4E-02	1.2E-02 3.3E-03
LANC Crushe		LANG Ore	Crusher Discharge Belt Conveyor (Drop 2) (CS10075)	235 2,058,600	Conveyor Transfer Point	Ventilation Capture Partial Equip. Enclosure	95 85	99.25	4.0E-03	1.7E-02	1.9E-03	8.3E-03	5.5E-04	2.4E-03	Ventilation Capture 0 Partial Equip. Enclosure 85	85.0	7.9E-02	6.9E-03	3.9E-02	3.4E-03	1.1E-02	9.6E-04	2.4E-02	1.2E-02 3.3E-03
LANC Crushe		LANG Ore	West Primary Crushing Screen (CS10040)	642 5,623,920	Screening	Partial Equip. Enclosure	75	75.0	2.8E+00	1.2E+01	1.4E+00	6.0E+00	9.4E-02	4.0E-01	Partial Equip. Enclosure75	75.0	2.8E+00	2.4E-01	1.4E+00	1.2E-01	9.4E-02	8.3E-03	1.2E+01	6.1E+00 4.1E-01
LANC Crushe	FUG28	LANG Ore	East Primary Crushing Screen (CS10041)	642 5,623,920	Screening	Partial Equip. Enclosure	75	75.0	2.8E+00	1.2E+01	1.4E+00	6.0E+00	9.4E-02	4.0E-01	Partial Equip. Enclosure75	75.0	2.8E+00	2.4E-01	1.4E+00	1.2E-01	9.4E-02	8.3E-03	1.2E+01	6.1E+00 4.1E-01
LANC Crushe	FUG28	LANG Ore	New Impact Roll Crusher #1	235 2,058,600	Tertiary Crushing	Ventilation Capture Full Equip. Enclosure	95 95	99.8	2.2E-03	9.6E-03	1.4E-03	6.1E-03	2.6E-04	1.1E-03	Ventilation Capture 0 Full Equip. Enclosure 95	95.0	4.5E-02	3.9E-03	2.8E-02	2.5E-03	5.2E-03	4.6E-04	1.4E-02	8.5E-03 1.6E-03
LANC Crushe	FUG28	LANG Ore	New Impact Roll Crusher #2	235 2,058,600	Tertiary Crushing	Ventilation Capture Full Equip. Enclosure	95 95	99.8	2.2E-03	9.6E-03	1.4E-03	6.1E-03	2.6E-04	1.1E-03	Ventilation Capture 0 Full Equip. Enclosure 95	95.0	4.5E-02	3.9E-03	2.8E-02	2.5E-03	5.2E-03	4.6E-04	1.4E-02	8.5E-03 1.6E-03
							ive Emissions Operational)		5.76	24.74	2.90	12.47	0.22	0.94	Total Fugitive Emiss (CON5a not Operati		6.00	0.52	3.03	0.27	0.25	0.022	25.26	12.73 0.97
Footnote	_														Fugitives as Stack Emis (CON5a not Operati		0.24	0.021	0.13	0.011	0.031	0.0027		

## Footnotes:

⁽b) Uncontrolled emission factors in lbs/ton for screening, tertiary crushing, fines screening, and conveyor transfer points obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug. 2004.

Particle Size (µm)	Tertiary Crushing	Screening	Conveyor Transfer Point	Fines Screening
2.5	0.00044	0.00059	0.00031	0.044
10	0.0024	0.0087	0.0011	0.072
30	0.0038	0.017	0.0022	0.094

⁽c) Control efficiencies are based on best engineering judgment and have been approved by NMED. See Table 105.C in NSR Permit No. 0495-M14.

Page I of I

⁽a) Based on operating 8,760 hours per year.

⁽d) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

⁽e) Maximum Fugitive Emission Rate (lb/hr) = (Maximum Throughput [TPH]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽f) Maximum Fugitive Emission Rate (TPY) = {(Maximum Throughput [TPY]) - (Annual Hours of Baghouse Downtime [hrs/yr]) x (Maximum Hourly Throughput [TPH])} x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

Annual Hours of Baghouse Downtime = 175 hrs/yr

As a worst-case scenario, it was assumed that all 175 hrs/yr of baghouse downtime is used. Therefore, the maximum annual throughput was subtracted by the maximum throughput during the 175 hrs/yr of baghouse downtime.

⁽B) Maximum Fugitive Emission Rate (TPY) = (Annual Hours of Baghouse Downtime [hrs/yr]) x (Maximum Hourly Throughput [TPH]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

⁽h) Maximum Total Annual Fugitive Emissions (TPY) = (Total Fugitive Emissions CON5a not Operational [TPY]) + (Total Fugitive Emissions CON5a Operational [TPY])

⁽i) Fugitives as Stack Emissions (lb/hr) = (Total Fugitive Emissions CON5a not Operational [lb/hr]) - (Total Fugitive Emissions CON5a Operational [lb/hr])

⁽i) Fugitives as Stack Emissions (TPY) = (Fugitives as Stack Emissions [lb/hr]) x (Annual Hours of Baghouse Downtime [hrs/yr]) / (2000 lbs/ton)



# Table 3 LANG Fine Ore Bin Circuit Potential Fugitive Emissions - Modified Mosaic Potash Carlsbad Inc.

									Baghouse-C	ON5b Operatio	nal						Ba	ghouse-CON	15b Not Operati	ional						
Unit No. Stack No.	Material Processed	Process/Source Description		aximum oughput ^(a)	Emission Factor	Control Equipment /	Unit Control Efficiency ^(c)	Total Control Efficiency ^(d)	1	ximum FSP issions	PI	imum M ₁₀ ssions	P	ximum M _{2.5} issions	Control Equipment /	Unit Control Efficiency ^(c)	Total Control Efficiency ^(d)	Т	kimum SP issions	P!	imum M ₁₀ ssions	P!	kimum M _{2.5} issions	Maxi TSP	num Total Emissions ⁽ PM ₁₀	
			(TPH)	(TPY)	Category ^(b)	Measure	(%)	(%)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	Measure	(%)	(%)	(lb/hr) ^(e)	(TPY) ^(g)	(lb/hr) ^(e)	(TPY) ^(g)	(lb/hr) ^(e)	(TPY) ^(g)	(TPY)	(TPY)	(TPY)
LANG Fine FUG29 Ore Bin	LANG Ore	Fine Ore Bin (Drop 1) (CS10055)	407	3,565,320	Conveyor Transfer Point	Ventilation Capture Full Equip. Enclosure	95 95	99.8	2.3E-03	9.8E-03	1.1E-03	4.8E-03	3.2E-04	1.4E-03	Ventilation Capture Full Equip. Enclosure	95	95.0	4.6E-02	4.0E-03	2.2E-02	2.0E-03	6.3E-03	5.5E-04	1.4E-02	6.8E-03	1.9E-03
LANG Fine Ore Bin FUG29	LANG Ore	Fine Ore Bin (Drop 2) (CS10055)	407	3,565,320	Conveyor Transfer Point	Ventilation Capture Full Equip. Enclosure	95 95	99.8	2.3E-03	9.8E-03	1.1E-03	4.8E-03	3.2E-04	1.4E-03	Ventilation Capture Full Equip. Enclosure	95	95.0	4.6E-02	4.0E-03	2.2E-02	2.0E-03	6.3E-03	5.5E-04	1.4E-02	6.8E-03	1.9E-03
LANG Fine Ore Bin FUG29	LANG Ore	Fine Ore Belt Feeder (CS10060)	825	7,227,000	Conveyor Transfer Point	Ventilation Capture Full Equip. Enclosure	95 95	99.8	4.6E-03	2.0E-02	2.3E-03	9.7E-03	6.4E-04	2.8E-03	Ventilation Capture Full Equip. Enclosure	95	95.0	9.3E-02	8.1E-03	4.5E-02	4.0E-03	1.3E-02	1.1E-03	2.8E-02	1.4E-02	3.9E-03
LANG Fine Ore Bin FUG29	LANG Ore	To K-Mag Wet Circuit	825	7,227,000	Conveyor Transfer Point	Partial Equip. Enclosure	75	75.0	4.6E-01	2.0E+00	2.3E-01	9.7E-01	6.4E-02	2.8E-01	Partial Equip. Enclosure	75	75.0	4.6E-01	4.1E-02	2.3E-01	2.0E-02	6.4E-02	5.6E-03	2.0E+00	9.9E-01	2.8E-01
₹ootnotes:							tive Emissions Operational)		0.47	2.03	0.23	0.99	0.065	0.28		itive Emissions ot Operational)		0.65	0.057	0.32	0.028	0.090	0.0078	2.09	1.02	0.29
					_											Stack Emissions ⁽ⁱ ot Operational)	i)	0.18	0.015	0.086	0.0075	0.024	0.0021			

(b) Uncontrolled emission factors in lbs/ton for screening, tertiary crushing, fines screening, and conveyor transfer points obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug. 2004.

Particle	Tertiary	C	Conveyor Transfer	Fines
Size (µm)	Crushing	Screening	Point	Screening
2.5	0.00044	0.00059	0.00031	0.044
10	0.0024	0.0087	0.0011	0.072
30	0.0038	0.017	0.0022	0.094

⁽c) Control efficiencies are based on best engineering judgment and have been approved by NMED. See Table 105.C in NSR Permit No. 0495-M14.
(d) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

⁽e) Maximum Fugitive Emission Rate (lb/hr) = (Maximum Throughput [TPH]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽f) Maximum Fugitive Emission Rate (TPY) = {(Maximum Throughput [TPY]) - (Annual Hours of Baghouse Downtime [hrs/yr]) x (Maximum Hourly Throughput [TPH])} x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

Annual Hours of Baghouse Downtime = 175 hrs/yr

As a worst-case scenario, it was assumed that all 175 hrs/yr of baghouse downtime is used. Therefore, the maximum annual throughput was subtracted by the maximum throughput during the 175 hrs/yr of baghouse downtime.

⁽g) Maximum Fugitive Emission Rate (TPY) = (Annual Hours of Baghouse Downtime [hrs/yr]) x (Maximum Hourly Throughput [TPH]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

⁽h) Maximum Total Annual Fugitive Emissions (TPY) = (Total Fugitive Emissions CON5b not Operational [TPY]) + (Total Fugitive Emissions CON5b Operational [TPY])

Fugitives as Stack Emissions (lb/hr) = (Total Fugitive Emissions CON5b not Operational [lb/hr]) - (Total Fugitive Emissions CON5b Operational [lb/hr])
 Fugitives as Stack Emissions (TPY) = (Fugitives as Stack Emissions (Ib/hr]) x (Annual Hours of Baghouse Downtime [hrs/yr]) / (2000 lbs/ton)



Table 4 LANG Screening Circuit Fugitive Material Handling Emissions Mosaic Potash Carlsbad, Inc.

							Unit	Total	Baghouse-Co Maxi	ON7 Operation	al Max	mum	Maxir	num		Unit	Total	Baghouse-CON Maxis		al Maxi	mum	Maxi	mum			
nit Stack No.	Material Processed	Process/Source Description	Maxii		Emission Factor	Control	Control	Control	TS	SP .	PN	I ₁₀	PM	2.5	Control	Control	Control	TS	P	PM	I ₁₀	PM	I _{2.5}	Maximum TSP	Total Annual I	
No. Stack No.		- Toccomposite Description	Throug (TPH)	(TPY)	Category ^(b)	Equipment / Measure	Efficiency ^(c) (%)	Efficiency ^(d) (%)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(c)	(TPY) ^(f)	Equipment / Measure	Efficiency ^(c) I (%)	Efficiency ^(d) (%)	(lb/hr) ^(c)		(lb/hr) ^(e)	(TPY) ^(g)	(lb/hr) ^(e)		(TPY)	PM ₁₀ (TPY)	PM _{2.5} (TPY)
ng Dryer FUG30	K-Mag	K-Mag Dryer (CS10400)	225	1,971,000	Conveyor Transfer Point	Ventilation Capture k Full Equip. Enclosure	95 95	99.8	1.3E-03	5.4E-03	6.2E-04	2.7E-03	1.7E-04	7.5E-04	Ventilation Capture k Full Equip. Enclosure	95 95	99.8	1.3E-03	1.1E-04	6.2E-04	5.4E-05	1.7E-04	1.5E-05	5.5E-03	2.7E-03	7.7E-04
g Dryer FUG30	K-Mag	K-Mag Dryer Dust Cyclone (CS10420)	3.4	29,784	Conveyor Transfer Point	Ventilation Capture k Full Equip. Enclosure	95 95	99.8	1.9E-05	8.2E-05	9.3E-06	4.0E-05	2.6E-06	1.1E-05	Ventilation Capture ^k Full Equip. Enclosure	95 95	99.8	1.9E-05	1.7E-06	9.3E-06	8.2E-07	2.6E-06	2.3E-07	8.4E-05	4.1E-05	1.2E-05
g Dryer FUG30	K-Mag	Baghouse Discharge Screw Conveyor (CS10460)	1	8,760	Conveyor Transfer Point	Full Equip. Enclosure	95	95.0	1.1E-04	4.8E-04	5.5E-05	2.4E-04	1.6E-05	6.7E-05	Full Equip. Enclosure	95	95.0	1.1E-04	9.8E-06	5.5E-05	4.8E-06	1.6E-05	1.4E-06	4.9E-04	2.4E-04	6.8E-05
Mag FUG30 ening	K-Mag	Dust Cyclone Screw Conveyor (CS11334)	3.2	28,032	Conveyor Transfer Point	Ventilation Capture Full Equip. Enclosure	95 95	99.8	1.8E-05	7.7E-05	8.8E-06	3.8E-05	2.5E-06	1.1E-05	Ventilation Capture Full Equip. Enclosure	95	95.0	3.6E-04	3.1E-05	1.8E-04	1.5E-05	5.0E-05	4.4E-06	1.1E-04	5.3E-05	1.5E-05
Mag FUG30	K-Mag	Screening Feed Bucket Elevator (CS10560)	257	2,251,320	Conveyor Transfer Point	Ventilation Capture Full Equip. Enclosure	95 95	99.8	1.4E-03	6.2E-03	7.1E-04	3.0E-03	2.0E-04	8.6E-04	Ventilation Capture Full Equip. Enclosure	95	95.0	2.9E-02	2.5E-03	1.4E-02	1.2E-03	4.0E-03	3.5E-04	8.7E-03	4.3E-03	1.2E-03
Mag FUG30	K-Mag	North Primary Mintex Screen (CS10486)	128.5	1,125,660	Fines Screening	Full Equip. Enclosure	95	95.0	6.0E-01	2.6E+00	4.6E-01	2.0E+00	2.9E-01	1.2E+00	Full Equip. Enclosure	95	95.0	6.0E-01	5.3E-02	4.6E-01	4.0E-02	2.9E-01	2.5E-02	2.6E+00	2.0E+00	1.3E+00
Mag FUG30	K-Mag	South Primary Mintex Screen (CS10487)	128.5	1,125,660	Fines Screening	Full Equip. Enclosure	95	95.0	6.0E-01	2.6E+00	4.6E-01	2.0E+00	2.9E-01	1.2E+00	Full Equip. Enclosure	95	95.0	6.0E-01	5.3E-02	4.6E-01	4.0E-02	2.9E-01	2.5E-02	2.6E+00	2.0E+00	1.3E+00
Mag FUG30	K-Mag	K-Mag Product Oversize Crusher (CS11402)	35	306,600	Tertiary Crushing	Ventilation Capture Full Equip. Enclosure	95 95	99.8	3.3E-04	1.4E-03	2.1E-04	9.0E-04	3.9E-05	1.7E-04	Ventilation Capture Full Equip. Enclosure	95	95.0	6.7E-03	5.9E-04	4.2E-03	3.7E-04	7.8E-04	6.8E-05	2.0E-03	1.3E-03	2.3E-04
Mag FUG30	K-Mag	South Secondary Screen (CS10565)	61	534,360	Fines Screening	Ventilation Capture Full Equip. Enclosure	95 95	99.8	1.4E-02	6.2E-02	1.1E-02	4.7E-02	6.8E-03	2.9E-02	Ventilation Capture Full Equip. Enclosure	95	95.0	2.9E-01	2.5E-02	2.2E-01	1.9E-02	1.4E-01	1.2E-02	8.7E-02	6.6E-02	4.1E-02
Mag FUG30	K-Mag	North Secondary Screen (CS10580)	61	534,360	Fines Screening	Ventilation Capture Full Equip. Enclosure	95 95	99.8	1.4E-02	6.2E-02	1.1E-02	4.7E-02	6.8E-03	2.9E-02	Ventilation Capture Full Equip. Enclosure	95	95.0	2.9E-01	2.5E-02	2.2E-01	1.9E-02	1.4E-01	1.2E-02	8.7E-02	6.6E-02	4.1E-02
fag FUG30	K-Mag	Fines Screw Conveyor (CS10625)	37	324,120	Conveyor Transfer Point	Ventilation Capture Full Equip. Enclosure	95 95	99.8	2.1E-04	8.9E-04	1.0E-04	4.4E-04	2.9E-05	1.2E-04	Ventilation Capture Full Equip. Enclosure	95	95.0	4.2E-03	3.6E-04	2.0E-03	1.8E-04	5.8E-04	5.0E-05	1.3E-03	6.1E-04	1.7E-04
Mag FUG30	K-Mag	Standard Product Bin Screw Conveyor (CS10626)	20	175,200	Conveyor Transfer Point	Ventilation Capture Full Equip. Enclosure	95 95	99.8	1.1E-04	4.8E-04	5.5E-05	2.4E-04	1.6E-05	6.7E-05	Ventilation Capture Full Equip. Enclosure	95	95.0	2.2E-03	2.0E-04	1.1E-03	9.6E-05	3.1E-04	2.7E-05	6.8E-04	3.3E-04	9.4E-05
Mag FUG30 ening	K-Mag	Granular Product Bin (CS10645)	100	876,000	Conveyor Transfer Point	Ventilation Capture Full Equip. Enclosure	95 95	99.8	5.6E-04	2.4E-03	2.7E-04	1.2E-03	7.8E-05	3.3E-04	Ventilation Capture Full Equip. Enclosure	95	95.0	1.1E-02	9.8E-04	5.5E-03	4.8E-04	1.6E-03	1.4E-04	3.4E-03	1.7E-03	4.7E-04
fag FUG30	K-Mag	Granular Product Dispatch Belt (CS10650)	400	3,504,000	Conveyor Transfer Point	Partial Equip. Enclosure	80	80.0	1.8E-01	7.7E-01	8.8E-02	3.8E-01	2.5E-02	1.1E-01	Partial Equip. Enclosure	80	80.0	1.8E-01	1.6E-02	8.8E-02	7.7E-03	2.5E-02	2.2E-03	7.9E-01	3.9E-01	1.1E-01
Mag FUG30 ening	K-Mag	Special Standard Product Bin (CS10665)	10	87,600	Conveyor Transfer Point	Ventilation Capture Full Equip. Enclosure	95 95	99.8	5.6E-05	2.4E-04	2.7E-05	1.2E-04	7.8E-06	3.3E-05	Ventilation Capture Full Equip. Enclosure	95	95.0	1.1E-03	9.8E-05	5.5E-04	4.8E-05	1.6E-04	1.4E-05	3.4E-04	1.7E-04	4.7E-05
Mag FUG30	K-Mag	Tube Belt (K-Mag Pipe Conveyor) (CS11685)	125	1,095,000	Conveyor Transfer Point	Ventilation Capture Full Equip. Enclosure	95 95	99.8	7.0E-04	3.0E-03	3.4E-04	1.5E-03	9.7E-05	4.2E-04	Ventilation Capture Full Equip. Enclosure	95	95.0	1.4E-02	1.2E-03	6.9E-03	6.0E-04	1.9E-03	1.7E-04	4.2E-03	2.1E-03	5.9E-04
flag FUG30	K-Mag	Special Standard Product Dispatch Screw Conveyor (CS10670)	200	1,752,000	Conveyor Transfer Point	Full Equip. Enclosure	95	95.0	2.2E-02	9.7E-02	1.1E-02	4.7E-02	3.1E-03	1.3E-02	Full Equip. Enclosure	95	95.0	2.2E-02	2.0E-03	1.1E-02	9.6E-04	3.1E-03	2.7E-04	9.8E-02	4.8E-02	1.4E-02
flag FUG30	K-Mag	Fines Bin (CS10680)	197	1,727,472	Conveyor Transfer Point	Ventilation Capture Full Equip. Enclosure	95 95	99.8	1.1E-03	4.8E-03	5.4E-04	2.3E-03	1.5E-04	6.6E-04	Ventilation Capture Full Equip. Enclosure	95	95.0	2.2E-02	1.9E-03	1.1E-02	9.5E-04	3.1E-03	2.7E-04	6.7E-03	3.3E-03	9.3E-04
Mag FUG30 ning	K-Mag	To Fines Disposal Wet	3.2	28,032	Conveyor Transfer Point	Full Equip. Enclosure	95	95.0	3.6E-04	1.5E-03	1.8E-04	7.6E-04	5.0E-05	2.1E-04	Full Equip. Enclosure	95	95.0	3.6E-04	3.1E-05	1.8E-04	1.5E-05	5.0E-05	4.4E-06	1.6E-03	7.7E-04	2.2E-04
fag FUG30	K-Mag	Fines Dispatch Screw Conveyor (CS10685)	75	657,000	Conveyor Transfer Point	Full Equip. Enclosure	95	95.0	8.4E-03	3.6E-02	4.1E-03	1.8E-02	1.2E-03	5.0E-03	Full Equip. Enclosure	95	95.0	8.4E-03	7.4E-04	4.1E-03	3.6E-04	1.2E-03	1.0E-04	3.7E-02	1.8E-02	5.1E-03
lag FUG30	K-Mag	Standard Product Bin (CS10695)	40	350,400	Conveyor Transfer Point	Ventilation Capture Full Equip. Enclosure	95 95	99.8	2.2E-04	9.7E-04	1.1E-04	4.7E-04	3.1E-05	1.3E-04	Ventilation Capture Full Equip. Enclosure	95	95.0	4.5E-03	3.9E-04	2.2E-03	1.9E-04	6.2E-04	5.4E-05	1.4E-03	6.6E-04	1.9E-04
Mag FUG30	K-Mag	Standard Product Dispatch Screw Conveyor (CS10700)	240	2,102,400	Conveyor Transfer Point	Full Equip. Enclosure	95	95.0	2.7E-02	1.2E-01	1.3E-02	5.7E-02	3.7E-03	1.6E-02	Full Equip. Enclosure	95	95.0	2.7E-02	2.4E-03	1.3E-02	1.2E-03	3.7E-03	3.3E-04	1.2E-01	5.8E-02	1.6E-02
							gitive Emissions Operational)		1.48	6.36	1.07	4.58	0.62	2.66		itive Emissions t Operational)		2.12	0.19	1.53	0.13	0.89	0.078	6.55	4.71	2.73
					L										W 60	tack Emissions ^(i,j)										

Page 1 of 2



# Table 4 LANG Screening Circuit Fugitive Material Handling Emissions Mosaic Potash Carlsbad, Inc.

Based on operating 8,760 hours per year.

(b) Uncontrolled emission factors in lbs/ton for screening, tertiary crushing, fines screening, and conveyor transfer points obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug. 2004. See Table 38 for more details.

Particle Size (µm)	Tertiary Crushing	Screening	Conveyor Transfer Point	Fines Screening	
2.5	0.00044	0.00059	0.00031	0.044	
10	0.0024	0.0087	0.0011	0.072	
30	0.0038	0.017	0.0022	0.094	

10 0.0038 0.017 0.0022 0.094

30 0.0038 0.017 0.0022 0.094

10 0.0038 0.017 0.0022 0.094

10 0.0038 0.017 0.0022 0.094

10 0.0038 0.017 0.0022 0.094

10 0.0038 0.017 0.0022 0.094

10 0.0038 0.017 0.0022 0.094

10 0.0038 0.017 0.0022 0.094

10 0.0038 0.017 0.0022 0.094

10 0.0038 0.017 0.0022 0.094

10 0.0038 0.017 0.0022 0.094

10 0.0038 0.017 0.0022 0.0038

10 0.0038 0.017 0.0022

10 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038

Page 2 of 2 December 2022



Table 5
Granulation Plant (Two Raymond Mills) Fugitive Material Handling Emissions
Mosaic Potash Carlsbad, Inc.

									Scrubbe	r-CON10a an	d CON10b Op	perational			
						F		Unit	Total		imum		imum		imum
Unit	Stack No.	Material	Process/Source Description		kimum	Emission Factor	Control	Control	Control		SP		M ₁₀		A _{2.5}
No.	Stack 110.	Processed	Trocess/Source Description		ighput ^(a)	Category ^(b)	Equipment /	Efficiency ^(c)	Efficiency ^(d)		ssions		ssions	-	ssions
				(TPH)	(TPY)	5.7	Measure	(%)	(%)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)
GRAN Process Vent. 10b	FUG33	K-Mag	SPM Storage Bin (CS9140)	400	3,504,000	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	2.2E-03	9.8E-03	1.1E-03	4.8E-03	3.1E-04	1.4E-03
GRAN Process Vent. 10b	FUG33	K-Mag	SOP Storage Bin ^(h) (CS9125)	400	3,504,000	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	2.2E-03	9.8E-03	1.1E-03	4.8E-03	3.1E-04	1.4E-03
GRAN Process Vent. 10b	FUG33	K-Mag	SOP Weigh Belt (CS9130)	125	1,095,000	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	7.0E-04	3.1E-03	3.4E-04	1.5E-03	9.7E-05	4.3E-04
GRAN Process Vent. 10b	FUG33	K-Mag	SPM Mill Weigh Belt (CS9150)	125	1,095,000	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	7.0E-04	3.1E-03	3.4E-04	1.5E-03	9.7E-05	4.3E-04
GRAN Process Vent. 10b	FUG33	K-Mag	SPM Gran Weigh Belt (CS9145)	85	744,600	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	4.8E-04	2.1E-03	2.3E-04	1.0E-03	6.6E-05	2.9E-04
GRAN Process Vent. 10b	FUG33	K-Mag	Raymond Mill Feed Drag (CS9245)	125	1,095,000	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	7.0E-04	3.1E-03	3.4E-04	1.5E-03	9.7E-05	4.3E-04
GRAN Process Vent. 10b	FUG33	K-Mag	Raymond Mill Feed Elevator (CS9155)	125	1,095,000	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	7.0E-04	3.1E-03	3.4E-04	1.5E-03	9.7E-05	4.3E-04
GRAN Process Vent. 10b	FUG33	K-Mag	North Raymond Mill Feed Bin (CS9160)	125	1,095,000	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	7.0E-04	3.1E-03	3.4E-04	1.5E-03	9.7E-05	4.3E-04
GRAN Process Vent. 10b	FUG33	K-Mag	North Raymond Mill Vibratory Feeder (CS9165)	125	1,095,000	Conveyor Transfer Point	Full Equip. Enclosure	95	95.0	1.4E-02	6.2E-02	6.9E-03	3.0E-02	1.9E-03	8.5E-03
GRAN Process Vent. 10b	FUG33	K-Mag	North Raymond Mill (CS9170)	125	1,095,000	Tertiary Crushing	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	1.2E-03	5.2E-03	7.5E-04	3.3E-03	1.4E-04	6.1E-04
GRAN Process Vent. 10b	FUG33	K-Mag	North Raymond Mill Primary Cyclone (CS9190)	125	1,095,000	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	7.0E-04	3.1E-03	3.4E-04	1.5E-03	9.7E-05	4.3E-04
GRAN Process Vent. 10b	FUG33	K-Mag	North Raymond Mill Secondary Cyclones (West/East) (CS9200 & CS9201)	6	52,560	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	3.4E-05	1.5E-04	1.6E-05	7.2E-05	4.7E-06	2.0E-05
GRAN Process Vent. 10b	FUG33	K-Mag	North Powdered SPM Storage Bin (CS9210)	125	1,095,000	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	7.0E-04	3.1E-03	3.4E-04	1.5E-03	9.7E-05	4.3E-04
GRAN Process Vent. 10b	FUG33	K-Mag	North Powdered SPM Weigh Belt (CS9225)	85	744,600	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	4.8E-04	2.1E-03	2.3E-04	1.0E-03	6.6E-05	2.9E-04
GRAN Process Vent. 10b	FUG33	K-Mag	Gran Feed Drag (CS9250)	85	744,600	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	4.8E-04	2.1E-03	2.3E-04	1.0E-03	6.6E-05	2.9E-04



Table 5
Granulation Plant (Two Raymond Mills) Fugitive Material Handling Emissions
Mosaic Potash Carlsbad, Inc.

									Scrubber	r-CON10a an	d CON10b O _I	perational			
						Emission		Unit	Total		imum		imum		imum
Unit	Stack No.	Material	Process/Source Description		cimum	Emission Factor	Control	Control	Control		SP		M ₁₀		A _{2.5}
No.	Stack 110.	Processed	Trocess/Source Description		ighput ^(a)	Category ^(b)	Equipment /	Efficiency ^(c)	Efficiency ^(d)		ssions		ssions		ssions
				(TPH)	(TPY)		Measure	(%)	(%)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)
GRAN Process Vent. 10b	FUG33	K-Mag	Recycle Weigh Belt (CS9235)	165	1,445,400	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	9.3E-04	4.1E-03	4.5E-04	2.0E-03	1.3E-04	5.6E-04
GRAN Process Vent. 10b	FUG33	K-Mag	Gran Feed Elevator (CS9255)	250	2,190,000	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	1.4E-03	6.2E-03	6.9E-04	3.0E-03	1.9E-04	8.5E-04
GRAN Process Vent. 10b	FUG33	K-Mag	Paddle Mixer (CS9260)	250	2,190,000	Conveyor Transfer Point	Full Equip. Enclosure	95	95.0	2.8E-02	1.2E-01	1.4E-02	6.0E-02	3.9E-03	1.7E-02
GRAN Dryer 10a	FUG33	GRAN	Rotary Granulator (CS9265)	250	2,190,000	Conveyor Transfer Point	Ventilation capture ^(g) Partial Equip. Enclosure	70 80	94.0	3.4E-02	1.5E-01	1.7E-02	7.2E-02	4.7E-03	2.0E-02
GRAN Dryer 10a	FUG33	GRAN	Rotary Dryer (CS9275)	250	2,190,000	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	1.4E-03	6.2E-03	6.9E-04	3.0E-03	1.9E-04	8.5E-04
GRAN Process Vent. 10b	FUG33	GRAN	Dryer Discharge Screw (CS9310)	250	2,190,000	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	1.4E-03	6.2E-03	6.9E-04	3.0E-03	1.9E-04	8.5E-04
GRAN Process Vent. 10b	FUG33	GRAN	Screen Feed Elevator (CS9320)	250	2,190,000	Conveyor Transfer Point	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	1.4E-03	6.2E-03	6.9E-04	3.0E-03	1.9E-04	8.5E-04
GRAN Process Vent. 10b	FUG33	GRAN	#1 TX Shaker Screen ⁽ⁱ⁾ (CS9330)	83.3	730,000	Fines Screening	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	2.0E-02	8.6E-02	1.5E-02	6.6E-02	9.3E-03	4.1E-02
GRAN Process Vent. 10b	FUG33	GRAN	#2 TX Shaker Screen ⁽ⁱ⁾ (CS9335)	83.3	730,000	Fines Screening	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	2.0E-02	8.6E-02	1.5E-02	6.6E-02	9.3E-03	4.1E-02
GRAN Process Vent. 10b	FUG33	GRAN	#3 TX Shaker Screen ⁽ⁱ⁾ (CS9340)	83.3	730,000	Fines Screening	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	2.0E-02	8.6E-02	1.5E-02	6.6E-02	9.3E-03	4.1E-02
GRAN Process Vent. 10b	FUG33	GRAN	#1 Chain Mill (CS9360; CS9361 East / CS9362 West)	10.3	90,228	Tertiary Crushing	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	9.8E-05	4.3E-04	6.2E-05	2.7E-04	1.1E-05	5.0E-05
GRAN Process Vent. 10b	FUG33	GRAN	#2 Chain Mill (CS9365; CS9366 East / CS9367 West)	10.3	90,228	Tertiary Crushing	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	9.8E-05	4.3E-04	6.2E-05	2.7E-04	1.1E-05	5.0E-05
GRAN Process Vent. 10b	FUG33	GRAN	#3 Chain Mill (CS9370; CS9371 East / CS9372 West)	10.3	90,228	Tertiary Crushing	Ventilation capture ^(g) Full Equip. Enclosure	95 95	99.8	9.8E-05	4.3E-04	6.2E-05	2.7E-04	1.1E-05	5.0E-05
GRAN Dryer 10a	FUG33	GRAN	Dryer Dust Screw Conveyor (CS9380)	10	87,600	Conveyor Transfer Point	Full Equip. Enclosure	95	95.0	1.1E-03	4.9E-03	5.5E-04	2.4E-03	1.6E-04	6.8E-04
GRAN Process Vent. 10b	FUG33	GRAN	Fugitive Dust Screw Conveyor (CS9451)	10	87,600	Conveyor Transfer Point	Full Equip. Enclosure	95	95.0	1.1E-03	4.9E-03	5.5E-04	2.4E-03	1.6E-04	6.8E-04

Page 2 of 3 December 2022



Table 5
Granulation Plant (Two Raymond Mills) Fugitive Material Handling Emissions
Mosaic Potash Carlsbad, Inc.

									Scrubbe	r-CON10a an	d CON10b O _l	perational			
Unit No.	Stack No.	Material Processed	Process/Source Description		kimum Ighput ^(a)	Emission Factor Category ^(b)	Control Equipment /	Unit Control Efficiency ^(c)	Total Control Efficiency ^(d)	T	imum SP ssions	PM	mum A ₁₀ sions	PN	imum A _{2.5} ssions
				(TPH)	(TPY)	Category	Measure	(%)	(%)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)
GRAN Process	FUG33	GRAN	Recycle Bin	185	1,620,600	Conveyor	Ventilation capture ^(g)	95	99.8	1.0E-03	4.6E-03	5.1E-04	2.2E-03	1.4E-04	6.3E-04
Vent. 10b	r0033	GRAN	(CS9230)	163	1,020,000	Transfer Point	Full Equip. Enclosure	95	99.8	1.0E-03	4.0E-03	3.1E-04	2.2E-03	1.4E-04	0.3E-04
GRAN			#1 Product Belt			Conveyor	Ventilation capture(g)	95							
Process Vent. 10b	FUG33	GRAN	(CS9040)	85	744,600	Transfer Point	Full Equip. Enclosure	95	99.8	4.8E-04	2.1E-03	2.3E-04	1.0E-03	6.6E-05	2.9E-04
GRAN Process Vent. 10b	FUG33	GRAN	Premium Product Bin (CS9061)	85	744,600	Conveyor Transfer Point	Full Equip. Enclosure	95	95.0	9.6E-03	4.2E-02	4.7E-03	2.0E-02	1.3E-03	5.8E-03
GRAN Process	FUG33	GRAN	Premium Product Dispatch Screw	400	3,504,000	Conveyor	Full Equip. Enclosure	95	99.5	4.5E-03	2.0E-02	2.2E-03	9.6E-03	6.2E-04	2.7E-03
Vent. 10b			(CS9025)			Transfer Point	Product Coating	90							
GRAN Process Vent. 10b	FUG33	GRAN	Premium Product Dispatch Elevator (CS9055)	400	3,504,000	Conveyor Transfer Point	Full Equip. Enclosure Product Coating	95	99.50	4.5E-03	2.0E-02	2.2E-03	9.6E-03	6.2E-04	2.7E-03
							Total Fugi	tive Emissions		0.18	0.77	0.10	0.45	0.044	0.19

(b) Uncontrolled emission factors in lbs/ton for screening, tertiary crushing, fines screening, and conveyor transfer points obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug. 2004. See Table 38 for more details.

Particle Size (µm)	Tertiary Crushing	Screening	Conveyor Transfer Point	Fines Screening
2.5	0.00044	0.00059	0.00031	0.044
10	0.0024	0.0087	0.0011	0.072
30	0.0038	0.017	0.0022	0.094

⁽c) Control efficiencies are based on best engineering judgment and have been approved by NMED. See Table 37 for a description of each type of control.

Page 3 of 3

⁽a) Based on operating 8,760 hours per year.

 $^{^{(}d)} \ \ Total\ Control\ Efficiency\ (\%) = 100\% \ -100\% \ x\ (1\ -Control\ Efficiency\ (\%)_1\ /\ 100) \ x\ (1\ -Control\ Efficiency\ (\%)_2\ /\ 100) \ x\ (1\ -Control\ Efficiency\ (\%)_3\ /\ 100)$ 

⁽e) Maximum Fugitive Emission Rate (lb/hr) = (Maximum Throughput [tons/hr]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽f) Maximum Fugitive Emission Rate (ton/yr) = (Maximum Throughput [tons/yr]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

⁽g) The Second Raymond Mill is vented to a different baghouse with a maximum of 175 hrs/yr of baghouse downtime. See Table 6 for estimated fugitive emissions from the South Raymond Mill circuit.

⁽b) Worst-case emissions are generated via material going through the SOP Storage Bin and then into the North Raymond Mill. See the corresponding flow diagram for more information.

⁽⁹⁾ No more than 250 tph can go through any one screen or all three screens operating together. Since these screens are exactly the same, we are showing the emissions as if each screen was processing a third of the total throughput for simplicity. However, each screen can process more than a third. Changing the throughput for each screen without changing the total throughput for all three screens (i.e., 250 tph) will not affect the total emissions from this circuit.



# Table 6 Second Raymond Mill Circuit in the Granulation Plant Fugitive Material Handling Emissions Mosaic Potash Carlsbad, Inc.

										Baghouse-CO	N14 Operation	nal							Baghouse-CO	N14 not Operat	ional						
Uni	t	Material		Max	ximum	Emission	Control	Unit Control	Total Control	Maxi TS	imum SP		imum M ₁₀	Maxi PN		Control	Unit Control	Total Control		cimum CSP		timum M ₁₀	Maxi PN		Maximum '	Γotal Annual I	missions ^(h)
No.		Processed	Process/Source Description	Throu	ughput ^(a)	Factor	Equipment /	Efficiency(c)	Efficiency ^(d)	Emis	ssions	Emi	ssions	Emis	sions	Equipment /	Efficiency(c)	Efficiency ^(d)	Em	issions	Emi	issions	Emis	sions	TSP	$PM_{10}$	PM _{2.5}
	-			(TPH)	(TPY)	Category ^(b)	Measure	(%)	(%)	(lb/hr) ^(e)	(TPY)(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	Measure	(%)	(%)	(lb/hr) ^(e)	(TPY)(g)	(lb/hr) ^(e)	(TPY)(g)	(lb/hr) ^(e)	(TPY)(g)	(TPY)	(TPY)	(TPY)
GRA Proce Vent.	ess FUG24	K-Mag	South Raymond Mill Feed Bin (CS9775)	125	1,095,000	Conveyor Transfer Point	Ventilation capture Full Equip. Enclosure	95 95	99.8	7.0E-04	3.1E-03	3.4E-04	1.5E-03	9.7E-05	4.3E-04	Ventilation capture Full Equip. Enclosure	95	95.0	1.4E-02	6.2E-02	6.9E-03	3.0E-02	1.9E-03	8.5E-03	6.5E-02	3.2E-02	8.9E-03
GRA Proce Vent.	ess FUG24	K-Mag	South Raymond Mill Vibratory Feeder (CS9785)	125	1,095,000	Conveyor Transfer Point	Full Equip. Enclosure	95	95.0	1.4E-02	6.2E-02	6.9E-03	3.0E-02	1.9E-03	8.5E-03	Full Equip. Enclosure	95	95.0	1.4E-02	6.2E-02	6.9E-03	3.0E-02	1.9E-03	8.5E-03	1.2E-01	6.0E-02	1.7E-02
GRA Proce Vent.	ess FUG24	K-Mag	South Raymond Mill (CS9790)	125	1,095,000	Tertiary Crushing	Ventilation capture Full Equip. Enclosure	95 95	99.8	1.2E-03	5.2E-03	7.5E-04	3.3E-03	1.4E-04	6.1E-04	Ventilation capture Full Equip. Enclosure	95	95.0	2.4E-02	1.0E-01	1.5E-02	6.6E-02	2.8E-03	1.2E-02	1.1E-01	6.9E-02	1.3E-02
GRA Proce Vent.	ess FUG24	K-Mag	South Raymond Mill Primary Cyclone (CS9810)	125	1,095,000	Conveyor Transfer Point	Ventilation capture Full Equip. Enclosure	95 95	99.8	7.0E-04	3.1E-03	3.4E-04	1.5E-03	9.7E-05	4.3E-04	Full Equip. Enclosure	95	95.0	1.4E-02	6.2E-02	6.9E-03	3.0E-02	1.9E-03	8.5E-03	6.5E-02	3.2E-02	8.9E-03
GRA Proce Vent.	ess FUG24	K-Mag	South Powdered SPM Storage Bin (CS9835)	125	1,095,000	Conveyor Transfer Point	Ventilation capture Full Equip. Enclosure	95 95	99.8	7.0E-04	3.1E-03	3.4E-04	1.5E-03	9.7E-05	4.3E-04	Ventilation capture Full Equip. Enclosure	95	95.0	1.4E-02	6.2E-02	6.9E-03	3.0E-02	1.9E-03	8.5E-03	6.5E-02	3.2E-02	8.9E-03
GRA Proce Vent.	ess FUG24	K-Mag	South Powdered SPM Weigh Belt (CS9840)	85	744,600	Conveyor Transfer Point	Ventilation capture Full Equip. Enclosure	95 95	99.8	4.8E-04	2.1E-03	2.3E-04	1.0E-03	6.6E-05	2.9E-04	Ventilation capture Full Equip. Enclosure	95	95.0	9.6E-03	4.2E-02	4.7E-03	2.0E-02	1.3E-03	5.8E-03	4.4E-02	2.2E-02	6.1E-03
								gitive Emissions 4 Operational)		0.018	0.078	0.0089	0.039	0.0024	0.011		gitive Emissions not Operational)		0.090	0.39	0.047	0.21	0.012	0.052	0.47	0.25	0.063
Frater																	Stack Emissions ⁽ⁱ not Operational)	i.j)	0.072	0.0063	0.038	0.0033	0.0094	0.00083			

(a) The worst-case emissions are generated when all 125 tph of material goes through the North Raymond Mill, which is represented in Table 5.

Discontrolled emission factors in Ibs/ton for screening, tertiary crushing, fines screening, and conveyor transfer points obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug, 2004. See Table 38 for more details.

Particle Size (µm)	Tertiary Crushing	Screening	Conveyor Transfer Point	Fines Screening
2.5	0.00044	0.00059	0.00031	0.044
10	0.0024	0.0087	0.0011	0.072
30	0.0038	0.017	0.0022	0.094

(c) Control efficiencies are based on best engineering judgment and have been approved by NMED. See Table 37 for a description of each type of control.
(d) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)
(e) Maximum Fugitive Emission Rate (lb/hr) = (Maximum Throughput [TPH]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

(9) Maximum Fugitive Emission Rate (TPY) = (Annual Hours of Baghouse Downtime [hrs/yr]) x (Maximum Hourly Throughput [TPH]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

Maximum Total Annual Fugitive Emissions (TPY) = (Total Fugitive Emissions CON14 not Operational [TPY]) + (Total Fugitive Emissions CON14 Operational [TPY])

Fugitives as Stack Emissions (Ib/hr) = (Total Fugitive Emissions CON14 not Operational [Ib/hr]) - (Total Fugitive Emissions CON14 Operational [Ib/hr])

Fugitives as Stack Emissions (TPY) = (Fugitives as Stack Emissions [Ib/hr]) x (Annual Hours of Baghouse Downtime [hrs/yr]) / (2000 lbs/ton)

⁽a) Maximum Fugitive Emission Rate (19TY) = {(Maximum Throughput [TPY]) - (Annual Hours of Baghouse Downtime [hrs/yr]) x (Maximum Hourly Throughput [TPH])} x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

Annual Hours of Baghouse Downtime = 175 hrs/yr

As a worst-case scenario, it was assumed that all 175 hrs/yr of baghouse downtime is used. Therefore, the maximum annual throughput was subtracted by the maximum throughput during the 175 hrs/yr of baghouse downtime.



Table 7 Nash Plant (formerly "Cuttings Circuit") Fugitive Material Handling Emissions Mosaic Potash Carlsbad, Inc.

Unit No.	Stack No.	Material Processed	Process/Source Description		imum ghput ^(a)	Emission Factor  Category ^(b)	Control Equipment /	Unit Control Efficiency ^(c)	Total Control Efficiency ^(d)	Maxi TS Emis	SP	PN	imum M ₁₀ ssions	PN	mum I _{2.5}
				(TPH)	(TPY)	- 0,	Measure	(%)	(%)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)
#1 Hoist	FUG1	Cuttings	Nash Dump Hopper (CS0029)	400	3,504,000	Conveyor Transfer Point	Partial Equip Enclosure	75	75.0	0.22	0.98	0.110	0.48	0.031	0.14
#1 Hoist	FUG1	Cuttings	Nash Ore Bin (CS0026)	400	3,504,000	Conveyor Transfer Point	Full Equip Enclosure	95	95.0	0.045	0.20	0.022	0.096	0.0062	0.027
#1 Hoist	FUG1	Cuttings	Nash Vibratory Feeder (CS0031)	400	3,504,000	Conveyor Transfer Point	Partial Equip Enclosure	80	80.0	0.18	0.79	0.088	0.39	0.025	0.11
#1 Hoist	FUG1	Cuttings	Nash Conveyor Belt (CS1023)	650	5,694,000	Conveyor Transfer Point	Partial Equip Enclosure	80	80.0	0.29	1.3	0.14	0.63	0.040	0.18
							TO	TAL FUG1 Emis	ssions	0.74	3.25	0.36	1.59	0.10	0.45
Screening	FUG2	Cuttings	Nash 6x20 Screen (CS1040)	650	5,694,000	Screening	Full Equip Enclosure	95	95.0	0.6	2.5	0.28	1.2	0.019	0.08
Screening	FUG2	Cuttings	Nash Recycle Vibratory Feeder (CS1055)	250	2,190,000	Conveyor Transfer Point	Full Equip Enclosure	95	95.0	0.028	0.123	0.0138	0.060	0.0039	0.017
Screening	FUG2	Cuttings	Nash Stationary Recycle Conveyor (CS1060)	250	2,190,000	Conveyor Transfer Point	Full Equip Enclosure	95	95.0	0.028	0.123	0.0138	0.060	0.0039	0.017
Screening	FUG2	Cuttings	Nash Conveyor Belt (CS1065)	400	3,504,000	Conveyor Transfer Point	Partial Equip Enclosure	80	80.0	0.18	0.79	0.088	0.39	0.025	0.11
							TO	ΓAL FUG2 Emis	ssions	0.80	3.49	0.40	1.74	0.052	0.23
							Total Fugi	tive Emissions		1.54	6.74	0.76	3.33	0.15	0.68

(b) Uncontrolled emission factors in lbs/ton for screening, tertiary crushing, fines screening, and conveyor transfer points obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug, 2004. See Table 38 for more details.

Particle Size	Tertiary	Screening	Conveyor Transfer Point	Fines
(µm)	Crushing	Screening	Conveyor Transfer Form	Screening
2.5	0.00044	0.00059	0.00031	0.044
10	0.0024	0.0087	0.0011	0.072
30	0.0038	0.017	0.0022	0.094

⁽c) Control efficiencies are based on best engineering judgment and have been approved by NMED. See Table 37 for a description of each type of control.

⁽a) Based on operating 8,760 hours per year.

 $^{^{(}d)} Total \ Control \ Efficiency \ (\%)_{2} \ / \ 100) \ x \ (1 - Control \ Efficiency \ (\%)_{1} \ / \ 100) \ x \ (1 - Control \ Efficiency \ (\%)_{2} \ / \ 100) \ x \ (1 - Control \ Efficiency \ (\%)_{3} \ / \ 100)$ 

⁽e) Maximum Fugitive Emission Rate (lb/hr) = (Maximum Throughput [tons/hr]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽f) Maximum Fugitive Emission Rate (ton/yr) = (Maximum Throughput [tons/yr]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)



# Table 8 Dispatch Fugitive Material Handling Emissions - With Coating Mosaic Potash Carlsbad, Inc.

											Baghouse-CO	N11 Operation									N11 not Operati							
					Mar	ximum	Emission	Control	Unit Control	Total Control		imum 'SP		ximum PM ₁₀		timum M _{2.5}	Control	Unit Control	Total Control		cimum 'SP		ximum PM ₁₀	Maxii PM		Maximum '	Fotal Annual	Emissions(i)
Unit No.	Stack No.	Material	Location	Process/Source Description		xımum ghput ^(a,h)	Factor	Control Equipment /	Efficiency ^(c)	Efficiency ^(d)		SP issions		issions		vi _{2.5} ssions	Equipment /	Efficiency ^(c)	Efficiency ^(d)		issions		rivi ₁₀ nissions	Emiss		TSP	$PM_{10}$	PM _{2.5}
No.		Processed		•	(TPH)	(TPY)	Category ^(b)	Measure	(%)	(%)	(lb/hr) ^(e)		(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	Measure	(%)	(%)	(lb/hr) ^(e)	(TPY) ^(g)	(lb/hr) ^(e)		(lb/hr) ^(e)	(TPY) ^(g)	(TPY)	(TPY)	(TPY)
		K-Mag		WW D' D' II	(1111)	(111)		1.7eusure	(/0)	(70)	(10/111)	(111)	(10/111)	(111)	(10/111)	(111)		(70)	(70)	(10/111)	(111)	(10/111)	(111)	(15/111)	(111)	(111)	(11.1)	(111)
S&L Dispate	r FUG31	(Standard, Specia Standard, Granula		K-Mag Primary Dispatch Conveyor #1	400	3,504,000	Conveyor Transfer	Partial Equip. Enclosure	50	50.0	4.5E-01	1.9E+00	2.2E-01	9.4E-01	6.2E-02	2.7E-01	Partial Equip. Enclosure	50	50.0	4.5E-01	3.9E-02	2.2E-01	1.9E-02	6.2E-02	5.4E-03	2.0E+00	9.6E-01	2.7E-01
		Fines)	,	(CS11490)			Point			-							=		-									
		K-Mag (Standard, Specia	ı	K-Mag Secondary Dispatch			Conveyor																					
S&L Dispate	r FUG31	Standard, Granula		Conveyor #2 (CS11515)	400	3,504,000	Transfer Point	Partial Equip. Enclosure	50	50.0	4.5E-01	1.9E+00	2.2E-01	9.4E-01	6.2E-02	2.7E-01	Partial Equip. Enclosure	50	50.0	4.5E-01	3.9E-02	2.2E-01	1.9E-02	6.2E-02	5.4E-03	2.0E+00	9.6E-01	2.7E-01
		Fines) K-Mag		(6511515)				Ventilation Capture	95								Ventilation Capture	0										
Dispatch Transfer	FUG32	(Standard, Specia		Granulation #3 Feed Belt	400	3,504,000	Conveyor Transfer	Partial Equip. Enclosure	50	97.5	2.2E-02	9.7E-02	1.1E-02	4.7E-02	3.1E-03	1.3E-02	Partial Equip. Enclosure	50	50.0	4.5E-01	3.9E-02	2.2E-01	1.9E-02	6.2E-02	5.4E-03	1.4E-01	6.6E-02	1.9E-02
Tower	10032	Standard, Granula Fines)	,	(CS9015)		3,201,000	Point	Turum Equip. Enclosure		- 77.5	2.22.02	7.72.02	1112 02	1.72 02	3.12 03	1.52 02	- I araa Equip. Enclosure			1.32 01	3.92 02	2.22 01	1.72 02	0.22 02	3.12.03		0.02.02	1.72 02
								Total Standard, Special Sta		lar, Fines K-							Total Standard, Special Standa		, Fines K-Mag									
								Mag to Gran Fugitive Emissi		,	9.2E-01	4.0E+00	4.5E-01	1.9E+00	1.3E-01	5.5E-01	to Granulat Fugitive Emissio			1.3E+00	1.2E-01	6.6E-01	5.8E-02	1.9E-01	1.6E-02	4.1E+00	2.0E+00	5.6E-01
								(CON11 O		•							(CON11 not C		'									
GRAN	FILEDA	W. W. (D. )	o Li Ni	Granulation #2 Product Belt	400	2 504 000	Conveyor	B diff i F i	50	05.0	4.55.00	1.05.01	2.25.02	0.45.02	6 2E 02	2.75.02	D. C.I.P. C. P. I.	50	95.0	4.50.00	2.05.02	2.25.02	1.05.02	C 2E 02	5.45.04	2.05.01	0.65.02	2.75.02
Process Vent 10b	ruuss	K-Mag (Premium	Granulation Plant	(CS9045)	400	3,504,000	Transfer Point	Partial Equip. Enclosure Product Coating	90	95.0	4.5E-02	1.9E-01	2.2E-02	9.4E-02	6.2E-03	2.7E-02	Partial Equip. Enclosure  Product Coating	50 90	- 95.0	4.5E-02	3.9E-03	2.2E-02	1.9E-03	6.2E-03	5.4E-04	2.0E-01	9.0E-02	2.7E-02
Disconti							Conveyor	Ventilation Capture	95								Ventilation Capture	0										
Dispatch Transfer	FUG32	K-Mag (Premium	) Transfer Tower	Dispatch to Storage Belt (CS11535)	400	3,504,000	Transfer	Full Equip. Enclosure	95	100.0	2.2E-04	9.7E-04	1.1E-04	4.7E-04	3.1E-05	1.3E-04	Full Equip. Enclosure	95	99.5	4.5E-03	3.9E-04	2.2E-03	1.9E-04	6.2E-04	5.4E-05	1.4E-03	6.6E-04	1.9E-04
Tower				(CS11555)			Point	Product Coating	90	-							Product Coating	90										
S&L				#2 Warehouse Shuttle Belt			Conveyor			=							_		=									
Warehouse 2	FUG8	K-Mag (Premium	Warehouse #2	(CS7415)	400	3,504,000	Transfer Point	Partial Bldg. Enclosure	70	97.0	2.7E-02	1.2E-01	1.3E-02	5.7E-02	3.7E-03	1.6E-02	Partial Bldg. Enclosure	70	97.0	2.7E-02	2.4E-03	1.3E-02	1.2E-03	3.7E-03	3.3E-04	1.2E-01	5.8E-02	1.6E-02
							1 om	Product Coating	90								Product Coating	90										
S&L	FUG8	K-Mag (Premium	Warehouse #2	To #2 Warehouse	400	3,504,000	Conveyor Transfer	Partial Bldg. Enclosure	70	97.0	2.7E-02	1.2E-01	1.3E-02	5.7E-02	3.7E-03	1.6E-02	Partial Bldg. Enclosure	70	97.0	2.7E-02	2.4E-03	1.3E-02	1.2E-03	3.7E-03	3.3E-04	1.2E-01	5.8E-02	1.6E-02
Warehouse 2			,			-,,	Point	Product Coating	90	-							Product Coating	90										
								Total Premium K-M	lag to Warehou	ıse #2							Total Premium K-Ma	g to Warehou	ise #2									
								Fugitive Emissi	ions w/ Coating		9.9E-02	4.3E-01	4.9E-02	2.1E-01	1.4E-02	5.9E-02	Fugitive Emissio	ns w/ Coating		1.0E-01	9.1E-03	5.1E-02	4.4E-03	1.4E-02	1.3E-03	4.3E-01	2.1E-01	6.0E-02
		7.11						(CON11 O	perational)								(CON11 not O	perational)										
S&L Dispate	FUG21	K-Mag (Standard, Specia	K-Mag Plant	K-Mag Primary Dispatch Conveyor #1	400	3,504,000	Conveyor Transfer	Dortical Favoire Freedomine	50	90.5	8.5E-02	3.7E-01	4.2E-02	1.8E-01	1.2E-02	5.1E-02	Doutiel Favin Englesses	50	90.5	8.5E-02	7.5E-03	4.2E-02	3.7E-03	1.2E-02	1.0E-03	3.7E-01	1.8E-01	5.2E-02
S&L Dispate	1 10031	Standard, Granula Fines)	r, K-iviag riain	(CS11490)	400	3,304,000	Point	Partial Equip. Enclosure Product Coating ^(l)	81	90.5	6.JE-02	3./E-01	4.2E-02	1.6E-01	1.2E-02	3.1E-02	Partial Equip. Enclosure  Product Coating ^(l)	81	- 90.5	6.3E-02	7.3E-03	4.2E-02	3./E-03	1.2E-02	1.0E-05	3./E-01	1.8E-01	5.2E-02
		K-Mag		K-Mag Secondary Dispatch			Conveyor	1 Toduct Coating	01								1 roduct Coating	01										
S&L Dispate	r FUG31	(Standard, Specia Standard, Granula		Conveyor #2	400	3,504,000	Transfer	Partial Equip. Enclosure	50	90.5	8.5E-02	3.7E-01	4.2E-02	1.8E-01	1.2E-02	5.1E-02	Partial Equip. Enclosure	50	90.5	8.5E-02	7.5E-03	4.2E-02	3.7E-03	1.2E-02	1.0E-03	3.7E-01	1.8E-01	5.2E-02
		Fines)	••	(CS11515)			Point	Product Coating ^(l)	81	<u>-</u>							Product Coating ^(l)	81										
Dispatch		K-Mag (Standard, Specia	ı	Dispatch to Storage Belt			Conveyor	Ventilation Capture	95	-							Ventilation Capture	0	_									
Transfer Tower	FUG32	Standard, Granula		(CS11535)	400	3,504,000	Transfer Point	Full Equip. Enclosure	95	99.95	4.3E-04	1.8E-03	2.1E-04	9.0E-04	5.9E-05	2.5E-04	Full Equip. Enclosure	95	99.1	8.5E-03	7.5E-04	4.2E-03	3.7E-04	1.2E-03	1.0E-04	2.6E-03	1.3E-03	3.6E-04
10,101		Fines) K-Mag						Product Coating ⁽¹⁾	81								Product Coating ⁽¹⁾	81										
S&L	FUG8	(Standard, Specia		#2 Warehouse Shuttle Belt	400	3,504,000	Conveyor Transfer	Partial Bldg. Enclosure	70	94.3	5.1E-02	2.2E-01	2.5E-02	1.1E-01	7.1E-03	3.0E-02	Partial Bldg. Enclosure	70	94.3	5.1E-02	4.5E-03	2.5E-02	2.2E-03	7.1E-03	6.2E-04	2.2E-01	1.1E-01	3.1E-02
Warehouse 2		Standard, Granula Fines)	ī,	(CS7415)		- ,	Point	Product Coating ⁽¹⁾	81	-							Product Coating ^(I)	81	-									
COT		K-Mag					Conveyor																					
S&L Warehouse 2	FUG8	(Standard, Specia Standard, Granula	Warehouse #2	To #2 Warehouse	400	3,504,000	Transfer	Partial Bldg. Enclosure	70	94.3	5.1E-02	2.2E-01	2.5E-02	1.1E-01	7.1E-03	3.0E-02	Partial Bldg. Enclosure	70	94.3	5.1E-02	4.5E-03	2.5E-02	2.2E-03	7.1E-03	6.2E-04	2.2E-01	1.1E-01	3.1E-02
		Fines)					Point	Product Coating ^(l)	81								Product Coating ^(l)	81	Y									
								Total Standard, Special Sta Mag to Wa		iar, Fines K-	2.5E 01	1.25.00	1.2E 01	5 OF A1	2.0E.02	1.05.01	Total Standard, Special Standa to Wareh		, rmes K-Mag	2.05.61	2 5E 02	1 4E 6:	1.25.02	2 OF 02	2 4E 02	1.25.00	5 OF 01	1.7E.0:
								Fugitive Emissi	ions w/ Coating	g	2.7E-01	1.2E+00	1.3E-01	5.8E-01	3.8E-02	1.6E-01	Fugitive Emissio	ns w/ Coating		2.8E-01	2.5E-02	1.4E-01	1.2E-02	3.9E-02	3.4E-03	1.2E+00	5.9E-01	1.7E-01
								(CON11 O	perational)								(CON11 not C	perational)										

Page 1 of 2



# Table 8 Dispatch Fugitive Material Handling Emissions - With Coating Mosaic Potash Carlsbad, Inc.

										]	Baghouse-CON1								I		11 not Operati	onal						
Tinis		Matarial			Max	imum	Emission	Control		Total Control	Maxim TSI		Maxi PM		Maximum PM _{2.5}		Un Control Con		Total Control	Max T			ximum PM ₁₀	Maxi PM		Maximum	Total Annua	al Emissions ⁽ⁱ⁾
Unit No.	Stack No.	Material Processed	Location	Process/Source Description		ghput ^(a,h)	Factor	Equipment /		ficiency ^(d)	Emissi		Emis		Emissions		Equipment / Efficie		Efficiency ^(d)	Emi			issions	Emis		TSP	$PM_{10}$	PM _{2.5}
- 14-					(TPH)	(TPY)	Category ^(b)	Measure	(%)	(%)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e) (TF	PY) ^(f)	Measure (%	6)	(%)	(lb/hr) ^(e)	(TPY) ^(g)	(lb/hr) ^(e)	(TPY) ^(g)	(lb/hr) ^(e)	(TPY) ^(g)	(TPY)	(TPY)	(TPY)
		K-Mag		K-Mag Primary Dispatch			Conveyor																					
S&L Dispatch	FUG31	(Standard, Special Standard, Granular,	K-Mag Plant	Conveyor #1	400	3,504,000	Transfer	Partial Equip. Enclosure	50	90.5	8.5E-02	3.7E-01	4.2E-02	1.8E-01	1.2E-02 5.1	E-02	Partial Equip. Enclosure 50	0	90.5	8.5E-02	7.5E-03	4.2E-02	3.7E-03	1.2E-02	1.0E-03	3.7E-01	1.8E-01	5.2E-02
•		Fines)	_	(CS11490)			Point	Product Coating ^(l)	81								Product Coating ^(l) 8	1										
		K-Mag		K-Mag Secondary Dispatch			Conveyor																					
S&L Dispatch	FUG31	(Standard, Special	K-Mag Plant	Conveyor #2	400	3,504,000	Transfer	Partial Equip. Enclosure	50	90.5	8.5E-02	3.7E-01	4.2E-02	1.8E-01	1.2E-02 5.1	E-02	Partial Equip. Enclosure 50	0	90.5	8.5E-02	7.5E-03	4.2E-02	3.7E-03	1.2E-02	1.0E-03	3.7E-01	1.8E-01	5.2E-02
		Standard, Granular, Fines)	9	(CS11515)			Point	Product Coating ⁽¹⁾	81								Product Coating ^(l) 8											
Diment		K-Mag					C	Ventilation Capture	95								Ventilation Capture 0											
Dispatch Transfer	FUG32	(Standard, Special	Transfer Tower	Dispatch to Storage Belt	400	3,504,000	Conveyor Transfer	Full Equip. Enclosure		100.0	4.3E-04	1.8E-03	2.1E-04	9.0E-04	5.9E-05 2.5	E-04	Full Equip. Enclosure 9:	5	99.1	8.5E-03	7.5E-04	4.2E-03	3.7E-04	1.2E-03	1.0E-04	2.6E-03	1.3E-03	3.6E-04
Tower		Standard, Granular, Fines)		(CS11535)		-,,	Point	Product Coating ^(l)	81								Product Coating ^(l) 8											
		K-Mag					_	1 roduct Coating									riodaet coating	-										
S&L	FUG8	(Standard, Special	Warehouse #2	#19 Dispatch Belt	400	3,504,000	Conveyor Transfer	Partial Bldg. Enclosure	70	94.3	5.1E-02	2.2E-01	2.5E-02	1.1E-01	7.1E-03 3.0	F-02	Partial Bldg. Enclosure 70	n	94.3	5.1E-02	4.5E-03	2.5E-02	2.2E-03	7.1E-03	6.2E-04	2.2E-01	1.1E-01	3.1E-02
Warehouse 2	1000	Standard, Granular,	warehouse #2	(CS9655)	400	3,204,000	Point	Product Coating ^(l)	81	74.5	J.1L-02	2.2101	2.515-02	1.12-01	7.112-03 3.0	7L-02	Product Coating ^(I) 8:		74.5	J.1L-02	4.5L-05	2.5102	2.2103	7.12-03	0.2L-04	2.2101	1.1L-01	J.112-02
		Fines) K-Mag							70																			
S&L	FUG11	(Standard, Special	Warehouse #3	#3 Warehouse Shuttle Belt	400	3,504,000	Conveyor Transfer	Partial Equip. Enclosure Partial Bldg. Enclosure		98.3	1.5E-02	6.6E-02	7.5E-03	3.2E-02	2.1E-03 9.1	E 02	Partial Equip. Enclosure 70 Partial Bldg. Enclosure 70		98.3	1.5E-02	1.3E-03	7.5E-03	6.6E-04	2.1E-03	1.9E-04	6.7E-02	2.25.02	9.3E-03
Warehouse 3	rodii	Standard, Granular,	warehouse #3	(CS9659)	400	3,304,000	Point	-	81	90.3	1.3E-02	0.0E-02	7.3E-03	3.2E-02	2.1E-03 9.1	E-03			90.3	1.3E-02	1.3E-03	7.3E-03	0.0E-04	2.1E-03	1.9E-04	0.7E-02	3.3E-02	9.3E-03
		Fines) K-Mag						Product Coating(1)	81								Product Coating ⁽¹⁾ 8:	ı										
S&L	FUG11	(Standard, Special	Warehouse #3	To #3 Warehouse	400	3,504,000	Conveyor Transfer	Partial Bldg. Enclosure	70	94.3	5.1E-02	2.2E-01	2.5E-02	1.1E-01	7.1E-03 3.0	VE 02	Partial Bldg. Enclosure 70	0	94.3	5.1E-02	4.5E-03	2.5E-02	2.2E-03	7.1E-03	6.2E-04	2.2E-01	1.1E-01	3.1E-02
Warehouse 3	rugii	Standard, Granular,	warenouse #3	10#3 warenouse	400	3,304,000	Point	-		94.3	5.1E-02	2.2E-01	2.3E-02	1.1E-01	7.1E-03 3.0	DE-02			94.3	5.1E-02	4.3E-03	2.3E-02	2.2E-03	7.1E-03	6.2E-04	2.2E-01	1.1E-01	3.1E-02
		Fines)						Product Coating ⁽¹⁾ Total Standard, Special St	81	Fince V							Product Coating ⁽¹⁾ 8:  Total Standard, Special Standard, Gr		noe V Mog									
									andard, Grandiar, r arehouse #3	rines ix-	205.01	1.25.00	1.45.01	( IT 01	105.00		to Warehouse #3		nes K-Mag	2.05.01	2 (7) 02	1.55.01	1.25.02	4.17.02	2 (7.02	1.25.00	( AE 01	1.05.01
									ions w/ Coating		2.9E-01	1.2E+00	1.4E-01	6.1E-01	4.0E-02 1.7	E-01	Fugitive Emissions w/ C			3.0E-01	2.6E-02	1.5E-01	1.3E-02	4.1E-02	3.6E-03	1.3E+00	6.2E-01	1.8E-01
								(CON11 C	perational)								(CON11 not Operation	onal)										
GRAN	FILESA	W.M. (D. 11.)	a Li N	Granulation #2 Product Belt	400	2 504 000	Conveyor	Botto to Bot	50	05.0	4.55.02	1.05.01	2.25.02	0.45.02	(25.02 2.7	TF 02	D. C. D. L. C.	0	05.0	4.5E.00	2.05.02	2.25.02	1.05.02	6.25.02	5.45.04	2.05.01	0 CE 02	2.75.02
Process Vent. 10b	FUG33	K-Mag (Premium)	Granulation Plan	(CS9045)	400	3,504,000	Transfer Point	Partial Equip. Enclosure		95.0	4.5E-02	1.9E-01	2.2E-02	9.4E-02	6.2E-03 2.7	7E-02	Partial Equip. Enclosure 50		95.0	4.5E-02	3.9E-03	2.2E-02	1.9E-03	6.2E-03	5.4E-04	2.0E-01	9.6E-02	2.7E-02
								Product Coating	90								Product Coating 90											
Dispatch				Dispatch to Storage Belt			Conveyor	Ventilation Capture	95								Ventilation Capture 0											
Transfer Tower	FUG32	K-Mag (Premium)	Transfer Tower	(CS11535)	400	3,504,000	Transfer Point	Full Equip. Enclosure		99.98	2.2E-04	9.7E-04	1.1E-04	4.7E-04	3.1E-05 1.3	SE-04	Full Equip. Enclosure 9:		99.5	4.5E-03	3.9E-04	2.2E-03	1.9E-04	6.2E-04	5.4E-05	1.4E-03	6.6E-04	1.9E-04
								Product Coating	90								Product Coating 90	)										
S&L	*****		***	#19 Dispatch Belt			Conveyor																					
Warehouse 2	FUG8	K-Mag (Premium)	Warehouse #2	(CS9655)	400	3,504,000	Transfer Point	Partial Bldg. Enclosure		97.0	2.7E-02	1.2E-01	1.3E-02	5.7E-02	3.7E-03 1.6	6E-02	Partial Bldg. Enclosure 70		97.0	2.7E-02	2.4E-03	1.3E-02	1.2E-03	3.7E-03	3.3E-04	1.2E-01	5.8E-02	1.6E-02
							Tonk	Product Coating	90								Product Coating 90											
S&L				#3 Warehouse Shuttle Belt			Conveyor	Partial Equip. Enclosure	70								Partial Equip. Enclosure 70											
Warehouse 3	FUG11	K-Mag (Premium)	Warehouse #3	(CS9659)	400	3,504,000	Transfer Point	Partial Bldg. Enclosure		99.1	8.1E-03	3.5E-02	4.0E-03	1.7E-02	1.1E-03 4.8	8E-03	Partial Bldg. Enclosure 70		99.1	8.1E-03	7.1E-04	4.0E-03	3.5E-04	1.1E-03	9.8E-05	3.5E-02	1.7E-02	4.9E-03
							1 OIIIt	Product Coating	90								Product Coating 90	0										
S&L							Conveyor																					
Warehouse 3	FUG11	K-Mag (Premium)	Warehouse #3	To #3 Warehouse	400	3,504,000	Transfer Point	Partial Bldg. Enclosure		97.0	2.7E-02	1.2E-01	1.3E-02	5.7E-02	3.7E-03 1.6	6E-02	Partial Bldg. Enclosure 70		97.0	2.7E-02	2.4E-03	1.3E-02	1.2E-03	3.7E-03	3.3E-04	1.2E-01	5.8E-02	1.6E-02
							Point	Product Coating	90								Product Coating 90	0										
								Total Premium K-M	1ag to Warehouse #3	3							Total Premium K-Mag to W	arehouse #	#3									
									sion w/ Coating		1.1E-01	4.6E-01	5.2E-02	2.3E-01	1.5E-02 6.4	IE-02	Fugitive Emission w/ C			1.1E-01	9.8E-03	5.5E-02	4.8E-03	1.5E-02	1.3E-03	4.7E-01	2.3E-01	6.5E-02
								(CON11 C	perational)								(CON11 not Operation	onal)										
								Total l	Dispatch								Total Dispatch											
									ions w/ Coating		1.69	7.26	0.83	3.55	0.23	.00	Fugitive Emissions w/ C			2.14	0.19	1.05	0.092	0.30	0.026	7.45	3.64	1.03
								(CON11 C	perational)								(CON11 not Operation	onal)										
							•				-			-						-		-				1		
																	Fugitives as Stack Emiss											

(a) Based on operating 8,760 hours per year.

Decontrolled emission factors in Ibs/ton for screening, tertiary crushing, fines screening, and conveyor transfer points obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug, 2004. See Table 38 for more details.

Particle Size (µm)	Tertiary Crushing	Screening	Conveyor Transfer Point	Fines Screening
2.5	0.00044	0.00059	0.00031	0.044
10	0.0024	0.0087	0.0011	0.072
30	0.0038	0.017	0.0022	0.094

- (c) Control efficiencies are based on best engineering judgment and have been approved by NMED. See Table 37 for a description of each type of control.
- (d) Total Control Efficiency (%) = 100% 100% x (1 Control Efficiency (%)₁ / 100) x (1 Control Efficiency (%)₂ / 100) x (1 Control Efficiency (%)₃ / 100)
- (e) Maximum Fugitive Emission Rate (lb/hr) = (Maximum Throughput [TPH]) x (Emission Factor [lb/ton]) x (1 Total Control Efficiency [%] / 100)
- (h) Maximum Fugitive Emission Rate (TPY) = {(Maximum Throughput [TPY]) (Annual Hours of Baghouse Downtime [hrs/yr]) x (Maximum Hourly Throughput [TPH])} x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 Total Control Efficiency [%] / 100)

  Annual Hours of Baghouse Downtime = 175 hrs/yr
- As a worst-case scenario, it was assumed that all 175 hrs/yr of baghouse downtime is used. Therefore, the maximum annual throughput was subtracted by the maximum throughput during the 175 hrs/yr of baghouse downtime.
- (9) Maximum Fugitive Emission Rate (TPY) = (Annual Hours of Baghouse Downtime [hrs/yr]) x (Maximum Hourly Throughput [TPH]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 Total Control Efficiency [%] / 100)
- (h) The simultaneous operation of sending Premium K-Mag to Warehouse #1, sending K-Mag to the Granulation Plant, and sending Granular to Warehouse #3 creates the worst-case emissions scenario. (i) Maximum Total Annual Fugitive Emissions (TPY) = (Total Fugitive Emissions CON11 not Operational [TPY]) + (Total Fugitive Emissions CON11 Operational [TPY])
- (B/hr) Fugitives as Stack Emissions (Ib/hr) = (Total Fugitive Emissions CON11 not Operational [Ib/hr]) (Total Fugitive Emissions CON11 Operational [Ib/hr])
- (k) Fugitives as Stack Emissions (TPY) = (Fugitives as Stack Emissions [lb/hr]) x (Annual Hours of Baghouse Downtime [hrs/yr]) / (2000 lbs/ton)
- (1) Product coating control efficiency is estimated to be 90%, but Warehouse Nos. 2 and 3 store Special Standard K-Mag (animal feed), which is not coated. Approximately 10% of the product dispatched to Warehouse Nos. 2 and 3 is Special Standard K-Mag; therefore, the coating provides a control efficiency of [90% x (100% 10%)] = 81%.

Page 2 of 2 December 2022



# Table 9 Dispatch Fugitive Material Handling Emissions - No Coating Mosaic Potash Carlsbad, Inc.

										Baghouse-CON	11 Onerational								Raghouse-CO	N11 not Operat	tional						
								Unit	Total		rimum		kimum	Max	imum		Unit	Total		imum		ximum	Maxi	num		m . 1	r · · · (i)
Unit Contain	Material				Iaximum	Emission	Control	Control	Control		TSP		$M_{10}$		A _{2.5}	Control	Control	Control		SP		PM ₁₀	PM			Total Annual	Emissions
No. Stack N	No. Processed	Location	Process/Source Description	Thre	oughput ^(a,h)	Factor	Equipment /	Efficiency ^(c)	Efficiency ^(d)	Em	issions	Em	issions	Emi	ssions	Equipment /	Efficiency ^(c)	Efficiency ^(d)	Emi	ssions	Em	issions	Emis	ions	TSP	$PM_{10}$	PM _{2.5}
				(TPH)	(TPY)	Category ^(b)	Measure	(%)	(%)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	Measure	(%)	(%)	(lb/hr) ^(e)	(TPY)(g)	(lb/hr) ^(e)	(TPY) ^(g)	(lb/hr) ^(e)	(TPY) ^(g)	(TPY)	(TPY)	(TPY)
	K-Mag (Standard, Speci	al.	K-Mag Primary Dispatch			Conveyor																					
S&L Dispatch FUG3	Standard, Fines, a		Conveyor #1	400	3,504,000	Transfer	Partial Equip. Enclosure	50	50.0	4.5E-01	1.9E+00	2.2E-01	9.4E-01	6.2E-02	2.7E-01	Partial Equip. Enclosure	50	50.0	4.5E-01	3.9E-02	2.2E-01	1.9E-02	6.2E-02	5.4E-03	2.0E+00	9.6E-01	2.7E-01
	Granular)		(CS11490)			Point																					
	K-Mag		K-Mag Secondary Dispatch			Conveyor																					
S&L Dispatch FUG3	<ol> <li>(Standard, Speci Standard, Fines, a</li> </ol>		Conveyor #2	400	3,504,000	Transfer	Partial Equip. Enclosure	50	50.0	4.5E-01	1.9E+00	2.2E-01	9.4E-01	6.2E-02	2.7E-01	Partial Equip. Enclosure	50	50.0	4.5E-01	3.9E-02	2.2E-01	1.9E-02	6.2E-02	5.4E-03	2.0E+00	9.6E-01	2.7E-01
	Granular)		(CS11515)			Point																					
Dispatch	K-Mag		G 1.: "2.E 1.E 1.			Conveyor	Ventilation Capture	95								Ventilation Capture	0										
Transfer FUG32	<ol> <li>(Standard, Speci Standard, Fines, a</li> </ol>		Granulation #3 Feed Belt (CS9015)	400	3,504,000	Transfer	Partial Equip. Enclosure	50	97.5	2.2E-02	9.7E-02	1.1E-02	4.7E-02	3.1E-03	1.3E-02	Partial Equip. Enclosure	50	50.0	4.5E-01	3.9E-02	2.2E-01	1.9E-02	6.2E-02	5.4E-03	1.4E-01	6.6E-02	1.9E-02
Tower	Granular)		(00,013)			Point																					
							Total Standard, Special Standa		nes K-Mag to							Total Standard, Special St		ar, Fines K-									
							Granulati Fugitive Emission			9.2E-01	4.0E+00	4.5E-01	1.9E+00	1.3E-01	5.5E-01	Mag to Gran	ulation Plant		1.3E+00	1.2E-01	6.6E-01	5.8E-02	1.9E-01	1.6E-02	4.1E+00	2.0E+00	5.6E-01
							(CON11 O _I										Operational)	ıg									
GRAN			G 13 (0) 1 (1)			Conveyor																					
	3 K-Mag (Premiur	n) Granulation Plan	Granulation #2 Product Belt (CS9045)	400	3,504,000	Transfer	Partial Equip. Enclosure	50	50.0	4.5E-01	1.9E+00	2.2E-01	9.4E-01	6.2E-02	2.7E-01	Partial Equip. Enclosure	50	50.0	4.5E-01	3.9E-02	2.2E-01	1.9E-02	6.2E-02	5.4E-03	2.0E+00	9.6E-01	2.7E-01
10b			(05/015)			Point	Product Coating	0								Product Coating	0										
Dispatch						Conveyor	Ventilation Capture	95								Ventilation Capture	0										
Transfer FUG32	2 K-Mag (Premiur	n) Transfer Tower	Dispatch to Storage Belt (CS11535)	400	3,504,000	Transfer	Full Equip. Enclosure	95	99.8	2.2E-03	9.7E-03	1.1E-03	4.7E-03	3.1E-04	1.3E-03	Full Equip. Enclosure	95	95.0	4.5E-02	3.9E-03	2.2E-02	1.9E-03	6.2E-03	5.4E-04	1.4E-02	6.6E-03	1.9E-03
Tower			(0011000)			Point	Product Coating	0								Product Coating	0										
COX			"2 W. 1 GL1 D.1.			Conveyor	Ventilation Capture									Ventilation Capture											
S&L Warehouse 2 FUG8	8 K-Mag (Premiur	n) Warehouse #2	#2 Warehouse Shuttle Belt (CS7415)	400	3,504,000	Transfer	Partial Bldg. Enclosure	70	70.0	2.7E-01	1.2E+00	1.3E-01	5.7E-01	3.7E-02	1.6E-01	Partial Bldg. Enclosure	70	70.0	2.7E-01	2.4E-02	1.3E-01	1.2E-02	3.7E-02	3.3E-03	1.2E+00	5.8E-01	1.6E-01
			(==,)			Point	Product Coating	0								Product Coating	0										
S&L FILE						Conveyor																					
Warehouse 2 FUG8	8 K-Mag (Premiur	n) Warehouse #2	To #2 Warehouse	400	3,504,000	Transfer	Partial Bldg. Enclosure	70	70.0	2.7E-01	1.2E+00	1.3E-01	5.7E-01	3.7E-02	1.6E-01	Partial Bldg. Enclosure	70	70.0	2.7E-01	2.4E-02	1.3E-01	1.2E-02	3.7E-02	3.3E-03	1.2E+00	5.8E-01	1.6E-01
						Point	Product Coating	0								Product Coating	0										
							Total Premium K-M	ag to Warehouse	#2							Total Premium K-M	ag to Warehou	se #2									
							Fugitive Emission			9.9E-01	4.3E+00	4.9E-01	2.1E+00	1.4E-01	5.9E-01	Fugitive Emissio		ıg	1.0E+00	9.1E-02	5.1E-01	4.4E-02	1.4E-01	1.3E-02	4.3E+00	2.1E+00	6.0E-01
	** **						(CON11 O _I	berational)								(CON11 not	Operational)										
	K-Mag (Standard, Speci	al	K-Mag Primary Dispatch			Conveyor																					
S&L Dispatch FUG3	Standard, Granul		Conveyor #1 (CS11490)	400	3,504,000	Transfer Point	Partial Equip. Enclosure	50	50.0	4.5E-01	1.9E+00	2.2E-01	9.4E-01	6.2E-02	2.7E-01	Partial Equip. Enclosure	50	50.0	4.5E-01	3.9E-02	2.2E-01	1.9E-02	6.2E-02	5.4E-03	2.0E+00	9.6E-01	2.7E-01
	Fines)		(C311490)			roilit	Product Coating	0								Product Coating	0										
	K-Mag , (Standard, Speci	al	K-Mag Secondary Dispatch			Conveyor																					
S&L Dispatch FUG3	Standard, Granul		Conveyor #2 (CS11515)	400	3,504,000	Transfer Point	Partial Equip. Enclosure	50	50.0	4.5E-01	1.9E+00	2.2E-01	9.4E-01	6.2E-02	2.7E-01	Partial Equip. Enclosure	50	50.0	4.5E-01	3.9E-02	2.2E-01	1.9E-02	6.2E-02	5.4E-03	2.0E+00	9.6E-01	2.7E-01
	Fines)		(C311313)			1 Ollit	Product Coating	0								Product Coating	0										
Dispatch	K-Mag (Standard, Speci	al	Dispatch to Storage Belt			Conveyor	Ventilation Capture	95								Ventilation Capture	0										
Transfer FUG32 Tower	Standard, Granul		(CS11535)	400	3,504,000	Transfer Point	Full Equip. Enclosure	95	99.8	2.2E-03	9.7E-03	1.1E-03	4.7E-03	3.1E-04	1.3E-03	Full Equip. Enclosure	95	95.0	4.5E-02	3.9E-03	2.2E-02	1.9E-03	6.2E-03	5.4E-04	1.4E-02	6.6E-03	1.9E-03
101101	Fines) K-Mag					Tom	Product Coating	0								Product Coating	0										
S&L	(Standard Speci	al	#2 Warehouse Shuttle Belt			Conveyor	Ventilation Capture				4.40					Ventilation Capture											
Warehouse 2 FUG8	Standard, Granul		(CS7415)	400	3,504,000	Transfer Point	Partial Bldg. Enclosure	70	70.0	2.7E-01	1.2E+00	1.3E-01	5.7E-01	3.7E-02	1.6E-01	Partial Bldg. Enclosure	70	70.0	2.7E-01	2.4E-02	1.3E-01	1.2E-02	3.7E-02	3.3E-03	1.2E+00	5.8E-01	1.6E-01
	Fines) K-Mag					· omt	Product Coating	0								Product Coating	0										
S&L PUGG	(Standard Speci	al	T. #2.W/ 1	40.0	2.504.000	Conveyor	D CIDIL D I	70	70.0	2.75.01	1.25.00	1.25.61	5.70.01	2.75.02	1.00.01	n cinii n i	70	70.0	2.75.61	2.45.02	1.25.61	1.25.02	2.75.02	2.25.02	1.00.00	5.0E.05	1.00.01
Warehouse 2 FUG8	Standard, Granul		To #2 Warehouse	400	3,504,000	Transfer Point	Partial Bldg. Enclosure	70	70.0	2.7E-01	1.2E+00	1.3E-01	5.7E-01	3.7E-02	1.6E-01	Partial Bldg. Enclosure	70	70.0	2.7E-01	2.4E-02	1.3E-01	1.2E-02	3.7E-02	3.3E-03	1.2E+00	5.8E-01	1.6E-01
	Fines)						Product Coating	0	** **							Product Coating	0										
							Total Standard, Special Standa Wareho		nes K-Mag to							Total Standard, Special St Mag to W	andard, Granul arehouse #2	ar, Fines K-									
							Fugitive Emission			1.4E+00	6.2E+00	7.1E-01	3.0E+00	2.0E-01	8.6E-01	Fugitive Emission		ıg	1.5E+00	1.3E-01	7.3E-01	6.4E-02	2.1E-01	1.8E-02	6.3E+00	3.1E+00	8.7E-01
							(CON11 O _I	perational)									Operational)										



# Table 9 Dispatch Fugitive Material Handling Emissions - No Coating Mosaic Potash Carlsbad, Inc.

									Baghouse-CON	N11 Operationa	l							Baghouse-CO	N11 not Operat	ional				1		
								Unit Total	Ma	ximum	Ma	ximum		imum		Unit	Total	Max	imum .	Max	ximum	Maxir		Maximum	Total Annual	Fmissions(i)
Unit	Stack No. Material	Location	Process/Source Description		eximum	Emission Factor	Control	Control Control		TSP		PM ₁₀ nissions		1 _{2.5}	Control	Control	Control		SP		M ₁₀	PM				
No.	Processed	Location	1 rocess/source Description		ughput ^(a,h)	Category ^(b)	Equipment /	Efficiency ^(e) Efficiency ^(d)		nissions				sions	Equipment /		Efficiency ^(d)		ssions		issions (n)	Emiss		TSP	PM ₁₀	PM _{2.5}
	W.M.			(TPH)	(TPY)		Measure	(%) (%)	(lb/hr) ^(e)	(TPY) ⁽¹⁾	(lb/hr) ^(e)	(TPY) ⁽¹⁾	(lb/hr) ^(e)	(TPY)	Measure	(%)	(%)	(lb/hr) ^(e)	(TPY) ^(g)	(lb/hr)(c)	(TPY) ^(g)	(lb/hr) ^(e)	(TPY) ^(g)	(TPY)	(TPY)	(TPY)
	K-Mag (Standard, Specia	1	K-Mag Primary Dispatch			Conveyor																		• • • • • • • • • • • • • • • • • • • •		
S&L Dispatch	Standard, Granula		Conveyor #1 (CS11490)	400	3,504,000	Transfer Point	Partial Equip. Enclosure	50 50.0	4.5E-01	1.9E+00	2.2E-01	9.4E-01	6.2E-02	2.7E-01	Partial Equip. Enclosure	50	50.0	4.5E-01	3.9E-02	2.2E-01	1.9E-02	6.2E-02	5.4E-03	2.0E+00	9.6E-01	2.7E-01
	Fines) K-Mag		(CB11470)			Tonic	Product Coating	0							Product Coating	0										
	(Standard Specia	1	K-Mag Secondary Dispatch			Conveyor						0.450.4														
S&L Dispatch	Standard, Granula		Conveyor #2 (CS11515)	400	3,504,000	Transfer Point	Partial Equip. Enclosure	50 50.0	4.5E-01	1.9E+00	2.2E-01	9.4E-01	6.2E-02	2.7E-01	Partial Equip. Enclosure	50	50.0	4.5E-01	3.9E-02	2.2E-01	1.9E-02	6.2E-02	5.4E-03	2.0E+00	9.6E-01	2.7E-01
	Fines) K-Mag		(======)				Product Coating	0							Product Coating	0										
Dispatch Transfer	FUG32 (Standard, Specia	l Transfer Tower	Dispatch to Storage Belt	400	3,504,000	Conveyor Transfer	Ventilation Capture	95 99.8	2.2E-03	9.7E-03	1.1E-03	4.7E-03	3.1E-04	1.3E-03	Ventilation Capture	95	95.0	4.5E-02	3.9E-03	2.2E-02	1.9E-03	6.2E-03	5.4E-04	1.4E-02	6.6E-03	1.9E-03
Tower	Standard, Granula		(CS11535)	400	3,304,000	Point	Full Equip. Enclosure Product Coating	0 99.8	2.2E-03	9./E-03	1.1E-03	4./E-03	3.1E-04	1.3E-03	Full Equip. Enclosure Product Coating	95	95.0	4.3E-02	3.9E-03	2.2E-02	1.9E-03	0.2E-03	3.4E-04	1.4E-02	0.0E-03	1.9E-03
	Fines) K-Mag						Ventilation Capture	U							Ventilation Capture	U										
S&L	ELIG9 (Standard, Specia		#19 Dispatch Belt	400	3,504,000	Conveyor Transfer	Partial Bldg. Enclosure	70 70.0	2.7E-01	1.2E+00	1.3E-01	5.7E-01	3.7E-02	1.6E-01	Partial Bldg. Enclosure	70	70.0	2.7E-01	2.4E-02	1.3E-01	1.2E-02	3.7E-02	3.3E-03	1.2E+00	5.8E-01	1.6E-01
Warehouse 2	Standard, Granula Fines)	r, warehouse #2	(CS9655)	400	3,304,000	Point	Product Coating	0 70.0	2.7L-01	1.21.00	1.512-01	3.7E-01	J./L-02	1.02-01	Product Coating	0	70.0	2.7L-01	2.4L-02	1.5101	1.2102	3.7L-02	3.5L-03	1.22.00	3.0L-01	1.02-01
	K-Mag					_	Partial Equip. Enclosure	70							Partial Equip. Enclosure	70										
S&L	ELICAL (Standard, Specia		#3 Warehouse Shuttle Belt	400	3,504,000	Conveyor Transfer	Partial Bldg. Enclosure	70 91.0	8.1E-02	3.5E-01	4.0E-02	1.7E-01	1.1E-02	4.8E-02	Partial Bldg. Enclosure	70	91.0	8.1E-02	7.1E-03	4.0E-02	3.5E-03	1.1E-02	9.8E-04	3.5E-01	1.7E-01	4.9E-02
Warehouse 3	Standard, Granula Fines)	г,	(CS9659)		-,,,	Point	Product Coating	0							Product Coating	0										
	K-Mag					Conveyor		*																		
S&L	FUG11 (Standard, Specia		To #3 Warehouse	400	3,504,000	Transfer	Partial Bldg. Enclosure	70 70.0	2.7E-01	1.2E+00	1.3E-01	5.7E-01	3.7E-02	1.6E-01	Partial Bldg. Enclosure	70	70.0	2.7E-01	2.4E-02	1.3E-01	1.2E-02	3.7E-02	3.3E-03	1.2E+00	5.8E-01	1.6E-01
Warehouse 3	Standard, Granula Fines)	r,				Point	Product Coating	0							Product Coating	0										
	,						Total Standard, Special Standard	ard, Granular, Fines K-Mag to	)						Total Standard, Special Stan	ndard, Granul	ar, Fines K-									
							Wareh	ouse #3	1.5E+00	6.5E+00	7.4E-01	3.2E+00	2.1F.01	9.0E-01	Mag to War	rehouse #3		1.6E+00	1.4E-01	7.7E-01	6.7E-02	2.2E-01	1.9E-02	( 7E : 00	3.3E+00	0.25 01
							Fugitive Emissio (CON11 O		1.5E+00	0.5E±00	7.4E-01	3.2E+00	2.1E-01	9.0E-01	Fugitive Emissions (CON11 not O		ıg	1.0E+00	1.4E-01	/./E-U1	0./E-02	2.2E-01	1.9E-02	6./E+00	3.3E+00	9.2E-01
							(60.117.0	perational							(00.111 1000	эрстиновин										
GRAN Process Vent.	FUG33 K-Mag (Premium	) Granulation Plan	Granulation #2 Product Belt	400	3,504,000	Conveyor Transfer	Partial Equip. Enclosure	50 50.0	4.5E-01	1.9E+00	2.2E-01	9.4E-01	6.2E-02	2.7E-01	Partial Equip. Enclosure	50	50.0	4.5E-01	3.9E-02	2.2E-01	1.9E-02	6.2E-02	5.4E-03	2.0E+00	9.6E-01	2.7E-01
10b	1 0 0 3 3 1 1 mag (1 remain	, Granalation I had	(CS9045)	100	3,501,000	Point	Product Coating	0	1.52 01	1.72.00	2.22 01	) <u>.</u> 01	0.22 02	2.72.01	Product Coating	0	20.0	1.52 01	3.52 02	2.22 01	1.72 02	0.22 02	3.12 03	2.02.00	7.0L-01	2.715-01
Discount						C	Ventilation Capture	95							Ventilation Capture	0										
Dispatch Transfer	FUG32 K-Mag (Premium	) Transfer Tower	Dispatch to Storage Belt	400	3,504,000	Conveyor Transfer	Full Equip. Enclosure	95 99.8	2.2E-03	9.7E-03	1.1E-03	4.7E-03	3.1E-04	1.3E-03	Full Equip. Enclosure	95	95.0	4.5E-02	3.9E-03	2.2E-02	1.9E-03	6.2E-03	5.4E-04	1.4E-02	6.6E-03	1.9E-03
Tower		,	(CS11535)			Point	Product Coating	0							Product Coating	0										
						Conveyor	Ventilation Capture								Ventilation Capture											
S&L Warehouse 2	FUG8 K-Mag (Premium	) Warehouse #2	#19 Dispatch Belt (CS9655)	400	3,504,000	Transfer	Partial Bldg. Enclosure	70 70.0	2.7E-01	1.2E+00	1.3E-01	5.7E-01	3.7E-02	1.6E-01	Partial Bldg. Enclosure	70	70.0	2.7E-01	2.4E-02	1.3E-01	1.2E-02	3.7E-02	3.3E-03	1.2E+00	5.8E-01	1.6E-01
warenouse 2			(CS9033)			Point	Product Coating	0							Product Coating	0										
						Conveyor	Partial Equip. Enclosure	70							Partial Equip. Enclosure	70										
S&L Warehouse 3	FUG11 K-Mag (Premium	) Warehouse #3	#3 Warehouse Shuttle Belt (CS9659)	400	3,504,000	Transfer	Partial Bldg. Enclosure	70 91.0	8.1E-02	3.5E-01	4.0E-02	1.7E-01	1.1E-02	4.8E-02	Partial Bldg. Enclosure	70	91.0	8.1E-02	7.1E-03	4.0E-02	3.5E-03	1.1E-02	9.8E-04	3.5E-01	1.7E-01	4.9E-02
warehouse 5			(657037)			Point	Product Coating	0							Product Coating	0										
COX						Conveyor																				
Warehouse 3	FUG11 K-Mag (Premium	) Warehouse #3	To #3 Warehouse	400	3,504,000	Transfer	Partial Bldg. Enclosure	70 70.0	2.7E-01	1.2E+00	1.3E-01	5.7E-01	3.7E-02	1.6E-01	Partial Bldg. Enclosure	70	70.0	2.7E-01	2.4E-02	1.3E-01	1.2E-02	3.7E-02	3.3E-03	1.2E+00	5.8E-01	1.6E-01
						Point	Product Coating	0							Product Coating	0										
							Total Premium K-M	lag to Warehouse #3							Total Premium K-Ma	ag to Warehou	se #3									
							Fugitive Emissio (CON11 O		1.1E+00	4.6E+00	5.2E-01	2.3E+00	1.5E-01	6.4E-01	Fugitive Emission: (CON11 not C		ıg	1.1E+00	9.8E-02	5.5E-01	4.8E-02	1.5E-01	1.3E-02	4.7E+00	2.3E+00	6.5E-01
							(CONTO	регацинан							(CONTI HOLO	эрегацопат)										
							Total D		. o-	25.54	2.05	12.40	0.02	2.52	Total Dis				0.55	2.20	0.20	0.01	0.050	2/15		10
							Fugitive Emissio (CON11 O		5.95	25.54	2.91	12.49	0.82	3.53	Fugitive Emission: (CON11 not C		ıg	6.55	0.57	3.20	0.28	0.91	0.079	26.12	12.77	3.61
							(50.1110	r/							(22	r										
															Fugitives as Stack	k Emissions ^{(j,l}	3)	0.60	0.052	0.29	0.026	0.083	0.0072			
Footnotes															(CON11 not C	Operational)		0.00	0.032	0.23	0.020	0.003	0.0072			

(a) Based on operating 8,760 hours per year.

⁽b) Uncontrolled emission factors in lbs/ton for screening, tertiary crushing, fines screening, and conveyor transfer points obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug, 2004. See Table 38 for more details.

Particle Size (µm)	Tertiary Crushing	Screening	Conveyor Transfer Point	Fines Screening
2.5	0.00044	0.00059	0.00031	0.044
10	0.0024	0.0087	0.0011	0.072
30	0.0038	0.017	0.0022	0.094

As a worst-case scenario, it was assumed that all 175 hrs/yr of baghouse downtime is used. Therefore, the maximum annual throughput was subtracted by the maximum throughput during the 175 hrs/yr of baghouse downtime.

Page 2 of 2 December 2022

⁽c) Control Efficiency are based on best engineering judgment and have been approved by NMED. See Table 37 for a description of each type of control.
(d) Total Control Efficiency (%) = 100% x (1 - Control Efficiency (%), / 100) x (1 - Control Efficiency (%), / 100) x (1 - Control Efficiency (%), / 100) x (1 - Total Control Efficiency (%), / 100) x (1 - Total Control Efficiency (%), / 100)
(e) Maximum Fugitive Emission Rate (lb/hr) = (Maximum Throughput [TPH]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency (%) / 100)
(f) Maximum Fugitive Emission Rate (TPY) = {(Maximum Throughput [TPY]) - (Annual Hours of Baghouse Downtime [hrs/yr]) x (Maximum Hourly Throughput [TPH])} x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency (%) / 100)
Annual Hours of Baghouse Downtime = 175 hrs/yr

⁽g) Maximum Fugitive Emission Rate (TPY) = (Annual Hours of Baghouse Downtime [hrs/yr]) x (Maximum Hourly Throughput [TPH]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

⁽b) The simultaneous operation of sending Premium K-Mag to Warehouse #1, sending K-Mag to the Granulation Plant, and sending Granular to Warehouse #3 creates the worst-case emissions scenario.

⁽i) Maximum Total Annual Fugitive Emissions (TPY) = (Total Fugitive Emissions CON11 not Operational [TPY]) + (Total Fugitive Emissions CON11 Operational [TPY]) ⁽ⁱ⁾ Fugitives as Stack Emissions (lb/hr) = (Total Fugitive Emissions CON11 not Operational [lb/hr]) - (Total Fugitive Emissions CON11 Operational [lb/hr])

⁽k) Fugitives as Stack Emissions (TPY) = (Fugitives as Stack Emissions [lb/hr]) x (Annual Hours of Baghouse Downtime [hrs/yr]) / (2000 lbs/ton)



Table 10
Nos. 1, 2, and 3 Warehouses Fugitive Aggregate Handling Emissions - With Coating
Mosaic Potash Carlsbad, Inc.

Unit No.	Stack No.	Material Processed	Location	Process/Source Description		imum ghput ^(a)	Moisture Content ^(b)	Wind Speed ^(c)	TSP Emission Factor ^(d)	PM ₁₀ Emission Factor ^(d)	PM _{2.5} Emission Factor ^(d)	Control Equipment /	Unit Control Efficiency ^(c)	Total Control Efficiency ^(f)	T	imum SP ssions	PN	imum M ₁₀ ssions	PN	imum M _{2.5} ssions
				·	(TPH)	(TPY)	(%)	(mph)	(lb/ton)	(lb/ton)	(lb/ton)	Measure	(%)	(%)	(lb/hr) ^(g)	(TPY) ^(h)	(lb/hr) ^(g)	(TPY) ^(h)	(lb/hr) ^(g)	(TPY) ^(h)
S&L Warehouse 1	FUG6	K-Mag (Premium, Standard, Special Standard, Granular, Fines)	No. 1 Warehouse	Aggregate Handling	100	876,000	0.15	1.3	0.015	0.0073	0.0011	Partial Bldg. Enclosure  Product Coating ⁽ⁱ⁾	50	90.5	0.15	0.64	0.069	0.30	0.011	0.046
S&L Warehouse 2	FUG8	K-Mag (Premium, Standard, Special Standard, Granular, Fines)	No. 2 Warehouse	Aggregate Handling	330	2,890,800	0.15	1.3	0.015	0.0073	0.0011	Partial Bldg. Enclosure Product Coating ⁽ⁱ⁾	70 81	94.3	0.29	1.27	0.14	0.60	0.021	0.091
S&L Warehouse 3	FUG11	K-Mag (Premium, Standard, Special Standard, Granular, Fines)	No. 3 Warehouse	Aggregate Handling	330	2,890,800	0.15	1.3	0.015	0.0073	0.0011	Partial Bldg. Enclosure Product Coating ⁽ⁱ⁾	70	94.3	0.29	1.27	0.14	0.60	0.021	0.091
										7	Total Nos. 1, 2, a	and 3 Fugitive Aggregate Ha	ndling Emission	s with Coating	0.73	3.19	0.34	1.51	0.052	0.23

 $E = k (0.0032)(U/5)^{1.3}/(M/2)^{1.4}$ 

where,

E = emission factor [lb/ton]

k = particulate size multiplier [dimensionless]

= 0.74 for total suspended particulate, 0.35 for particles smaller than 10 microns, and 0.053 for particles smaller than 2.5 microns

U = mean wind speed [mph]

M = moisture content [%]

⁽a) Based on operating 8,760 hours per year.

⁽b) The average product moisture content.

⁽c) Based on using the minimum wind speed allowed by the Section 13.2.4 equation (see footnote "d" below) since this is higher than the wind speed expected in an enclosed building.

⁽d) Calculated using the following equation presented in Section 13.2.4 of AP-42, Compilation of Air Pollutant Emission Factors, November 2006.

⁽c) Control efficiencies are based on best engineering judgment and have been approved by NMED. See Table 37 for a description of each type of control.

⁽f) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

⁽b) Maximum Fugitive Emission Rate (lb/hr) = (Number of Transfer Points) x (Maximum Throughput [tons/hr]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽h) Maximum Fugitive Emission Rate (ton/yr) = (Number of Transfer Points) x (Maximum Throughput [tons/yr]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

⁽¹⁾ Product coating control efficiency is estimated to be 90%, but Warehouse Nos. 2 and 3 store Special Standard K-Mag (animal feed), which is not coated. Approximately 10% of the product dispatched to Warehouse Nos. 2 and 3 is Special Standard K-Mag; therefore, the coating provides a control efficiency of [90% x (100% - 10%)] = 81%.



Table 11 Nos. 1, 2, and 3 Warehouses Fugitive Aggregate Handling Emissions - No Coating Mosaic Potash Carlsbad Inc.

Unit No.	Stack No.	Material Processed	Location	Process/Source Description		imum ghput ^(a)	Moisture Content ^(b)	Wind Speed ^(c)	TSP Emission Factor ^(d)	PM ₁₀ Emission Factor ^(d)	PM _{2.5} Emission Factor ^(d)	Control Equipment /	Unit Control Efficiency ^(e)	Total Control Efficiency ^(f)	Maxi Ta Emis	SP	PM	ssions	PM Emis	imum A _{2.5} ssions
					(TPH)	(TPY)	(%)	(mph)	(lb/ton)	(lb/ton)	(lb/ton)	Measure	(%)	(%)	(lb/hr) ^(g)	(TPY) ^(h)	(lb/hr) ^(g)	(TPY) ^(h)	(lb/hr) ^(g)	(TPY) ^(h)
S&L Warehouse	FUG6	K-Mag (Premium, Standard, Special Standard, Granular, Fines)	No. 1 Warehouse	Aggregate Handling	100	876,000	0.15	1.3	0.015	0.0073	0.0011	Partial Bldg. Enclosure Product Coating	50	50.0	0.77	3.38	0.37	1.60	0.055	0.24
S&L Warehouse 2	FUG8	K-Mag (Premium, Standard, Special Standard, Granular, Fines)	No. 2 Warehouse	Aggregate Handling	330	2,890,800	0.15	1.3	0.015	0.0073	0.0011	Partial Bldg. Enclosure Product Coating	70	70.0	1.53	6.70	0.72	3.17	0.11	0.48
S&L Warehouse 3	FUG11	K-Mag (Premium, Standard, Special Standard, Granular, Fines)	No. 3 Warehouse	Aggregate Handling	330	2,890,800	0.15	1.3	0.015	0.0073	0.0011	Partial Bldg. Enclosure Product Coating	70	70.0	1.53	6.70	0.72	3.17	0.11	0.48
										Total Nos. 1, 2, and 3 Fugitive Aggregate Ha		andling Emissio	ons No Coating	3.83	16.78	1.81	7.93	0.27	1.20	

 $E = k (0.0032)(U/5)^{1.3}/(M/2)^{1.4}$ 

where

E = emission factor [lb/ton]

k = particulate size multiplier [dimensionless]

= 0.74 for total suspended particulate, 0.35 for particles smaller than 10 microns, and 0.053 for particles smaller than 2.5 microns

U = mean wind speed [mph]

M = moisture content [%]

⁽a) Based on operating 8,760 hours per year.

⁽b) The average product moisture content.

⁽c) Based on using the minimum wind speed allowed by the Section 13.2.4 equation (see footnote "d" below) since this is higher than the wind speed expected in an enclosed building.

⁽d) Calculated using the following equation presented in Section 13.2.4 of AP-42, Compilation of Air Pollutant Emission Factors, November 2006.

⁽e) Control efficiencies are based on best engineering judgment and have been approved by NMED. See Table 37 for a description of each type of control.

 $^{^{(}f)} \ Total \ Control \ Efficiency (\%) = 100\% \ -100\% \ x \ (1 - Control \ Efficiency (\%)_1 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_2 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_2 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Efficiency (\%)_3 \ / \ 100) \ x \ (1 - Control \ Effic$ 

⁽g) Maximum Fugitive Emission Rate (lb/hr) = (Number of Transfer Points) x (Maximum Throughput [tons/hr]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽b) Maximum Fugitive Emission Rate (ton/yr) = (Number of Transfer Points) x (Maximum Throughput [tons/yr]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)



Table 12 No. 4 Railcar Loadout Fugitive Material Handling Emissions - With Coating Mosaic Potash Carlsbad, Inc.

Unit No.	Stack No.	Material Processed	Process/Source Description		cimum ghput ^(a)	Emission Factor Category ^(b)	Control Equipment /	Unit Control Efficiency ^(c)	Total Control Efficiency ^(d)	Т	imum SP ssions	Maxi PM Emis	110	PN	mum 1 _{2.5} ssions
				(TPH)	(TPY)	Category	Measure	(%)	(%)	(lb/hr) (e)	(TPY) (f)	(lb/hr) ^(e)	(TPY) (f)	(lb/hr) ^(e)	(TPY) (f)
S&L Loadout 4	FUG9	K-Mag	No. 4 Loadout Feed Belt (CS9691)	330	2,890,800	Conveyor Transfer Point	Full Bldg Enclosure ^(g) Product Coating ^(h)	90 81	98.1	1.4E-02	6.2E-02	6.9E-03	3.0E-02	1.9E-03	8.5E-03
S&L Loadout 4	FUG9	K-Mag	No. 4 Tunnel Back Belt (CS7423)	330	2,890,800	Conveyor Transfer Point	Full Bldg Enclosure ^(g) Product Coating ^(h)	90 81	98.1	1.4E-02	6.2E-02	6.9E-03	3.0E-02	1.9E-03	8.5E-03
S&L Loadout 4	FUG9	K-Mag	No. 4 Tunnel Incline Belt (CS7429)	330	2,890,800	Conveyor Transfer Point	Full Bldg Enclosure ^(g) Product Coating ^(h)	90 81	98.1	1.4E-02	6.2E-02	6.9E-03	3.0E-02	1.9E-03	8.5E-03
S&L Loadout 4	FUG9	K-Mag	No. 4 Loadout Elevator (CS7432)	330	2,890,800	Conveyor Transfer Point	Partial Equip Enclosure Product Coating ^(h)	80 81	96.2	2.8E-02	1.2E-01	1.4E-02	6.0E-02	3.9E-03	1.7E-02
S&L Loadout 4	FUG9	K-Mag	No. 4 Loadout Hummer Screen (CS7438)	330	2,890,800	Fines Screening	Partial Equip Enclosure Partial Bldg Enclosure Product Coating ^(h)	70 70 81	98.3	5.3E-01	2.3E+00	4.1E-01	1.8E+00	2.5E-01	1.1E+00
S&L Loadout 4	FUG9	K-Mag	Lower Long Belt (CS7697)	150	1,314,000	Conveyor Transfer Point	Partial Equip Enclosure Product Coating ^(h)	50 81	90.5	3.2E-02	1.4E-01	1.6E-02	6.9E-02	4.4E-03	1.9E-02
S&L Loadout 4	FUG9	K-Mag	No. 4 Loadout Fines Screw (CS7445)	30	262,800	Conveyor Transfer Point	Full Equip Enclosure Product Coating ^(h)	95 81	99.1	6.4E-04	2.8E-03	3.1E-04	1.4E-03	8.9E-05	3.9E-04
S&L Loadout 4	FUG9	K-Mag	No. 4 Loadout Fines Bin (CS7446)	30	262,800	Conveyor Transfer Point	Ventilation Capture Full Equip Enclosure	95 95	99.8	1.7E-04	7.4E-04	8.2E-05	3.6E-04	2.3E-05	1.0E-04
S&L Loadout 4	FUG9	K-Mag	No. 4 Loadout Mixing Screw (CS7442)	300	2,628,000	Conveyor Transfer Point	Full Equip Enclosure Product Coating ^(h)	95	99.1	6.4E-03	2.8E-02	3.1E-03	1.4E-02	8.9E-04	3.9E-03
S&L Loadout 4	FUG9	K-Mag	Railcar Loading	300	2,628,000	Conveyor Transfer Point	Wind Break Product Coating ^(h)	<u>40</u> 81	88.6	7.7E-02	3.4E-01	3.8E-02	1.6E-01	1.1E-02	4.7E-02
							Т	otal Fugitive Emis	sions with Coating	0.72	3.14	0.50	2.18	0.28	1.21

⁽b) Uncontrolled emission factors in lbs/ton for tertiary crushing, fines screening, and conveyor transfer points obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, August 2004. See Table 38 for more details.

Particle Size (µm)	Tertiary Crushing	Screening	Conveyor Transfer Point	Fines Screening
2.5	0.00044	0.00059	0.00031	0.044
10	0.0024	0.0087	0.0011	0.072
30	0.0038	0.017	0.0022	0.094

⁽c) Control efficiencies based on best engineering judgment and have been approved by NMED. See Table 37 for a description of each type of control.

Page 1 of 1

⁽a) Based on the maximum production rate.

⁽d) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

⁽e) Maximum Fugitive Emission Rate (lb/hr) = (Maximum Throughput [tons/hr]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽f) Maximum Fugitive Emission Rate (ton/yr) = (Maximum Throughput [tons/yr]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

 $^{^{(}g)}$  The full building control efficiency of 90% is based on these equipment being underground within the warehouse.

⁽b) Product coating control efficiency is estimated to be 90%, but Warehouse Nos. 2 and 3 store Special Standard K-Mag (animal feed), which is not coated. Approximately 10% of the throughput to Warehouse Nos. 2 and 3 is Special Standard K-Mag; therefore, the coating provides a control efficiency of [90% x (100% - 10%)] = 81%.



Table 13
No. 4 Railcar Loadout Fugitive Material Handling Emissions - No Coating
Mosaic Potash Carlsbad, Inc.

Unit No.	Stack No.	Material Processed	Process/Source Description		imum ghput ^(a)	Emission Factor	Control Equipment /	Unit Control Efficiency ^(c)	Total Control Efficiency ^(d)	T	imum SP ssions	PN	mum I ₁₀	PN	mum I _{2.5}
				(TPH)	(TPY)	Category ^(b)	Measure	(%)	(%)	(lb/hr) (e)	(TPY) (f)	(lb/hr) (e)	(TPY) (f)	(lb/hr) (e)	(TPY) (f)
S&L Loadout 4	FUG9	K-Mag	No. 4 Loadout Feed Belt (CS9691)	330	2,890,800	Conveyor Transfer Point	Full Bldg Enclosure ^(g) Product Coating	90	90.0	7.4E-02	3.3E-01	3.6E-02	1.6E-01	1.0E-02	4.5E-02
S&L Loadout 4	FUG9	K-Mag	No. 4 Tunnel Back Belt (CS7423)	330	2,890,800	Conveyor Transfer Point	Full Bldg Enclosure ^(g) Product Coating	90	90.0	7.4E-02	3.3E-01	3.6E-02	1.6E-01	1.0E-02	4.5E-02
S&L Loadout 4	FUG9	K-Mag	No. 4 Tunnel Incline Belt (CS7429)	330	2,890,800	Conveyor Transfer Point	Full Bldg Enclosure ^(g) Product Coating	90	90.0	7.4E-02	3.3E-01	3.6E-02	1.6E-01	1.0E-02	4.5E-02
S&L Loadout 4	FUG9	K-Mag	No. 4 Loadout Elevator (CS7432)	330	2,890,800	Conveyor Transfer Point	Partial Equip Enclosure Product Coating	80	80.0	1.5E-01	6.5E-01	7.3E-02	3.2E-01	2.1E-02	9.0E-02
S&L Loadout 4	FUG9	K-Mag	No. 4 Loadout Hummer Screen (CS7438)	330	2,890,800	Fines Screening	Partial Equip Enclosure Partial Bldg Enclosure Product Coating	70 70 0	91.0	2.8E+00	1.2E+01	2.1E+00	9.4E+00	1.3E+00	5.8E+00
S&L Loadout 4	FUG9	K-Mag	Lower Long Belt (CS7697)	150	1,314,000	Conveyor Transfer Point	Partial Equip Enclosure Product Coating	50	50.0	1.7E-01	7.4E-01	8.3E-02	3.6E-01	2.3E-02	1.0E-01
S&L Loadout 4	FUG9	K-Mag	No. 4 Loadout Fines Screw (CS7445)	30	262,800	Conveyor Transfer Point	Full Equip Enclosure Product Coating	95	95.0	3.4E-03	1.5E-02	1.7E-03	7.2E-03	4.7E-04	2.0E-03
S&L Loadout 4	FUG9	K-Mag	No. 4 Loadout Fines Bin (CS7446)	30	262,800	Conveyor Transfer Point	Ventilation Capture Full Equip Enclosure	95 95	99.8	1.7E-04	7.4E-04	8.2E-05	3.6E-04	2.3E-05	1.0E-04
S&L Loadout 4	FUG9	K-Mag	No. 4 Loadout Mixing Screw (CS7442)	300	2,628,000	Conveyor Transfer Point	Full Equip Enclosure Product Coating	95	95.0	3.4E-02	1.5E-01	1.7E-02	7.2E-02	4.7E-03	2.0E-02
S&L Loadout 4	FUG9	K-Mag	Railcar Loading	300	2,628,000	Conveyor Transfer Point	Wind Break Product Coating	40	40.0	4.0E-01	1.8E+00	2.0E-01	8.7E-01	5.6E-02	2.5E-01
								Total Fugitive Emi	ssions No Coating	3.78	16.54	2.62	11.47	1.46	6.38

(b) Uncontrolled emission factors in lbs/ton for tertiary crushing, fines screening, and conveyor transfer points obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, August 2004. See Table 38 for more details.

Particle Size (µm)	Crushing	Screening	Conveyor Transfer Point	Fines Screening
2.5	0.00044	0.00059	0.00031	0.044
10	0.0024	0.0087	0.0011	0.072
30	0.0038	0.017	0.0022	0.094

⁽c) Control efficiencies based on best engineering judgment and have been approved by NMED. See Table 37 for a description of each type of control.

Page 1 of 1

⁽a) Based on the maximum production rate.

⁽d) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

⁽e) Maximum Fugitive Emission Rate (lb/hr) = (Maximum Throughput [tons/hr]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽f) Maximum Fugitive Emission Rate (ton/yr) = (Maximum Throughput [tons/yr]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

 $^{^{(}g)}$  The full building control efficiency of 90% is based on these equipment being underground within the warehouse.



Table 14
No. 5 Railcar Loadout Fugitive Material Handling Emissions - With Coating
Mosaic Potash Carlsbad, Inc.

Unit No.	Stack No.	Material Processed	Process/Source Description		ximum ughput ^(a)	Emission Factor	Control Equipment /	Unit Control Efficiency ^(c)	Total Control Efficiency ^(d)	T	imum SP ssions	Maxi PM Emis	110	PN	imum M _{2.5} ssions
			=	(TPH)	(TPY)	Category ^(b)	Measure	(%)	(%)	(lb/hr) (e)	(TPY) (f)	(lb/hr) (e)	(TPY) ^(f)	(lb/hr) (e)	(TPY) (f)
S&L Loadout 5	FUG10	K-Mag	No. 5 Loadout Feed Belt (CS9692)	330	2,890,800	Conveyor Transfer Point	Full Bldg Enclosure ^(g) Product Coating ^(h)	90 81	98.1	1.4E-02	6.2E-02	6.9E-03	3.0E-02	1.9E-03	8.5E-03
S&L Loadout 5	FUG10	K-Mag	No. 5 Tunnel Back Belt (CS7308)	330	2,890,800	Conveyor Transfer Point	Full Bldg Enclosure ^(g) Product Coating ^(h)	90	98.1	1.4E-02	6.2E-02	6.9E-03	3.0E-02	1.9E-03	8.5E-03
S&L Loadout 5	FUG10	K-Mag	No. 5 Tunnel Cross Belt (CS7305)	330	2,890,800	Conveyor Transfer Point	Full Bldg Enclosure ^(g) Product Coating ^(h)	90 81	98.1	1.4E-02	6.2E-02	6.9E-03	3.0E-02	1.9E-03	8.5E-03
S&L Loadout 5	FUG10	K-Mag	No. 5 Tunnel Incline Belt (CS7311)	330	2,890,800	Conveyor Transfer Point	Full Bldg Enclosure ^(g) Product Coating ^(h)	90 81	98.1	1.4E-02	6.2E-02	6.9E-03	3.0E-02	1.9E-03	8.5E-03
S&L Loadout 5	FUG10	K-Mag	No. 5 Loadout Elevator (CS7314)	330	2,890,800	Conveyor Transfer Point	Full Equip Enclosure Product Coating ^(h)	95 81	99.1	7.1E-03	3.1E-02	3.4E-03	1.5E-02	9.7E-04	4.3E-03
S&L Loadout 5	FUG10	K-Mag	No. 5 Loadout Mintex Screen (CS7322)	330	2,890,800	Fines Screening	Full Equip Enclosure Partial Bldg Enclosure Product Coating ^(h)	95 70 81	99.7	8.8E-02	3.9E-01	6.8E-02	3.0E-01	4.2E-02	1.8E-01
S&L Loadout 5	FUG10	K-Mag	Lower Long Belt (CS7697)	150	1,314,000	Conveyor Transfer Point	Partial Equip Enclosure Product Coating ^(h)	50 81	90.5	3.2E-02	1.4E-01	1.6E-02	6.9E-02	4.4E-03	1.9E-02
S&L Loadout 5	FUG10	K-Mag	No. 2 Warehouse Incline Belt (CS7753)	150	1,314,000	Conveyor Transfer Point	Partial Equip Enclosure Product Coating ^(h)	70 81	94.3	1.9E-02	8.4E-02	9.4E-03	4.1E-02	2.7E-03	1.2E-02
S&L Loadout 5	FUG10	K-Mag	No. 2 Truck Loadout Feed Belt (AG Belt) (CS7750)	400	3,504,000	Conveyor Transfer Point	Full Equip Enclosure Partial Bldg Enclosure Product Coating ^(h)	95 70 81	99.7	2.6E-03	1.1E-02	1.3E-03	5.5E-03	3.5E-04	1.6E-03
S&L Loadout 5	FUG10	K-Mag	No. 5 Loadout Fines Screw (CS7365)	30	262,800	Conveyor Transfer Point	Full Equip Enclosure Product Coating ^(h)	95 81	99.1	6.4E-04	2.8E-03	3.1E-04	1.4E-03	8.9E-05	3.9E-04
S&L Loadout 5	FUG10	K-Mag	No. 5 Loadout Fines Bin (CS7350)	30	262,800	Conveyor Transfer Point	Ventilation Capture Full Equip Enclosure	95 95	99.8	1.7E-04	7.4E-04	8.2E-05	3.6E-04	2.3E-05	1.0E-04
S&L Loadout 5	FUG10	K-Mag	No. 5 Loadout Mixing Screw (CS7317)	300	2,628,000	Conveyor Transfer Point	Full Equip Enclosure Product Coating ^(h)	95 81	99.1	6.4E-03	2.8E-02	3.1E-03	1.4E-02	8.9E-04	3.9E-03
S&L Loadout 5	FUG10	K-Mag	Railcar Loading	300	2,628,000	Conveyor Transfer Point	Wind Break Product Coating ^(h)	40 81	88.6	7.7E-02	3.4E-01	3.8E-02	1.6E-01	1.1E-02	4.7E-02
								ugitive Emission	s with Coating	0.29	1.27	0.17	0.73	0.070	0.31

(b) Uncontrolled emission factors in lbs/ton for tertiary crushing, fines screening, and conveyor transfer points obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, August 2004. See Table 38 for more details.

Particle Size (um)	Tertiary Crushing	Screening	Conveyor Transfer Point	Fines Screening
2.5	0.00044	0.00059	0.00031	0.044
10	0.0024	0.0087	0.0011	0.072
30	0.0038	0.017	0.0022	0.094

⁽c) Control efficiencies based on best engineering judgment and have been approved by NMED. See Table 37 for a description of each type of control.

⁽a) Based on the maximum amount of product that remains after Truck Loadout and No. 1 Railcar Loadout, which is split evenly between No. 4 Railcar Loadout and No. 5 Railcar Loadout.

⁽d) Total Control Efficiency (%) = 100% - 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

⁽e) Maximum Fugitive Emission Rate (lb/hr) = (Maximum Throughput [tons/hr]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽f) Maximum Fugitive Emission Rate (ton/yr) = (Maximum Throughput [tons/yr]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

⁽g) The full building control efficiency of 90% is based on these equipment being underground within the warehouse.

⁽h) Product coating control efficiency is estimated to be 90%, but Warehouse Nos. 2 and 3 store Special Standard K-Mag (animal feed), which is not coated. Approximately 10% of the throughput to Warehouse Nos. 2 and 3 is Special Standard K-Mag (therefore, the coating provides a control efficiency of 90% x (100% - 10%)] = 81%.



Table 15 No. 5 Railcar Loadout Fugitive Material Handling Emissions - No Coating Mosaic Potash Carlsbad, Inc.

Unit No.	Stack No.	Material Processed	Process/Source Description	Throu	ximum ighput ^(a)	Emission Factor Category ^(b)	Control Equipment /	Unit Control Efficiency ^(c)	Total Control Efficiency ^(d)	T Emis	imum SP ssions	PN Emis	imum M ₁₀ ssions	PM Emi:	imum M _{2.5} ssions
				(TPH)	(TPY)	Caregory	Measure	(%)	(%)	(lb/hr) (e)	(TPY) (f)	(lb/hr) (e)	(TPY) (f)	(lb/hr) (e)	(TPY) (f)
S&L Loadout 5	FUG10	K-Mag	No. 5 Loadout Feed Belt (CS9692)	330	2,890,800	Conveyor Transfer Point	Full Bldg Enclosure ^(g) Product Coating	90	90.0	7.4E-02	3.3E-01	3.6E-02	1.6E-01	1.0E-02	4.5E-02
S&L Loadout 5	FUG10	K-Mag	No. 5 Tunnel Back Belt (CS7308)	330	2,890,800	Conveyor Transfer Point	Full Bldg Enclosure ^(g) Product Coating	90	90.0	7.4E-02	3.3E-01	3.6E-02	1.6E-01	1.0E-02	4.5E-02
S&L Loadout 5	FUG10	K-Mag	No. 5 Tunnel Cross Belt (CS7305)	330	2,890,800	Conveyor Transfer Point	Full Bldg Enclosure ^(g) Product Coating	90	90.0	7.4E-02	3.3E-01	3.6E-02	1.6E-01	1.0E-02	4.5E-02
S&L Loadout 5	FUG10	K-Mag	No. 5 Tunnel Incline Belt (CS7311)	330	2,890,800	Conveyor Transfer Point	Full Bldg Enclosure ^(g) Product Coating	90	90.0	7.4E-02	3.3E-01	3.6E-02	1.6E-01	1.0E-02	4.5E-02
S&L Loadout 5	FUG10	K-Mag	No. 5 Loadout Elevator (CS7314)	330	2,890,800	Conveyor Transfer Point	Full Equip Enclosure Product Coating	95 0	95.0	3.7E-02	1.6E-01	1.8E-02	7.9E-02	5.1E-03	2.2E-02
S&L Loadout 5	FUG10	K-Mag	No. 5 Loadout Mintex Screen (CS7322)	330	2,890,800	Fines Screening	Full Equip Enclosure Partial Bldg Enclosure Product Coating	95 70 0	98.5	4.7E-01	2.0E+00	3.6E-01	1.6E+00	2.2E-01	9.6E-01
S&L Loadout 5	FUG10	K-Mag	Lower Long Belt (CS7697)	150	1,314,000	Conveyor Transfer Point	Partial Equip Enclosure Product Coating	50	50.0	1.7E-01	7.4E-01	8.3E-02	3.6E-01	2.3E-02	1.0E-01
S&L Loadout 5	FUG10	K-Mag	No. 2 Warehouse Incline Belt (CS7753)	150	1,314,000	Conveyor Transfer Point	Partial Equip Enclosure Product Coating	75 0	75.0	8.4E-02	3.7E-01	4.1E-02	1.8E-01	1.2E-02	5.1E-02
S&L Loadout 5	FUG10	K-Mag	No. 2 Truck Loadout Feed Belt (AG Belt) (CS7750)	400	3,504,000	Conveyor Transfer Point	Full Equip Enclosure Partial Bldg Enclosure Product Coating	95 70 0	98.5	1.3E-02	5.9E-02	6.6E-03	2.9E-02	1.9E-03	8.2E-03
S&L Loadout 5	FUG10	K-Mag	No. 5 Loadout Fines Screw (CS7365)	30	262,800	Conveyor Transfer Point	Full Equip Enclosure Product Coating	95 0	95.0	3.4E-03	1.5E-02	1.7E-03	7.2E-03	4.7E-04	2.0E-03
S&L Loadout 5	FUG10	K-Mag	No. 5 Loadout Fines Bin (CS7350)	30	262,800	Conveyor Transfer Point	Ventilation Capture Full Equip Enclosure	95 95	99.8	1.7E-04	7.4E-04	8.2E-05	3.6E-04	2.3E-05	1.0E-04
S&L Loadout 5	FUG10	K-Mag	No. 5 Loadout Mixing Screw (CS7317)	300	2,628,000	Conveyor Transfer Point	Full Equip Enclosure Product Coating	95	95.0	3.4E-02	1.5E-01	1.7E-02	7.2E-02	4.7E-03	2.0E-02
S&L Loadout 5	FUG10	K-Mag	Railear Loading	300	2,628,000	Conveyor Transfer Point	Wind Break Product Coating	40	40.0	4.0E-01	1.8E+00	2.0E-01	8.7E-01	5.6E-02	2.5E-01
								ll Fugitive Emissi	ons No Coating	1.51	6.61	0.87	3.79	0.36	1.60

(b) Uncontrolled emission factors in Ibs/ton for tertiary crushing, fines screening, and conveyor transfer points obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, August 2004. See Table 38 for more details.

Particle Size (µm)	Tertiary Crushing	Screening	Conveyor Transfer Point	Fines Screening
2.5	0.00044	0.00059	0.00031	0.044
10	0.0024	0.0087	0.0011	0.072
30	0.0038	0.017	0.0022	0.094

⁽a) Based on the maximum amount of product that remains after Truck Loadout and No. 1 Railcar Loadout, which is split evenly between No. 4 Railcar Loadout and No. 5 Railcar Loadout.

⁽⁶⁾ Control efficiencies based on best engineering judgment and have been approved by NMED. See Table 37 for a description of each type of control.
(6) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

⁽e) Maximum Fugitive Emission Rate (lb/hr) = (Maximum Throughput [tons/hr]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽⁹⁾ Maximum Fugitive Emission Rate (ton/yr) = (Maximum Throughput [tons/yr]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

 $^{^{(}g)}$  The full building control efficiency of 90% is based on these equipment being underground within the warehouse.



Table 16
Truck Loadout Fugitive Material Handling Emissions - With Coating
Mosaic Potash Carlsbad, Inc.

Unit No.	Stack No.	Material Processed	Process/Source Description		ximum 1ghput ^(a)	Emission Factor Category ^(b)	Control Equipment /	Unit Control Efficiency ^(c)	Total Control Efficiency ^(d)	T	mum SP sions	PN	mum 1 ₁₀ ssions	PN	imum M _{2.5} ssions
				(TPH)	(TPY)	Category	Measure	(%)	(%)	(lb/hr) (e)	(TPY) (f)	(lb/hr) ^(e)	(TPY) (f)	(lb/hr) (e)	(TPY) (f)
S&L Truck Loadout	FUG12	K-Mag	Truck Loadout Distributor (CS7774)	400	3,504,000	Conveyor Transfer Point	Full Equip Enclosure Product Coating(g)	95	99.1	8.5E-03	3.7E-02	4.2E-03	1.8E-02	1.2E-03	5.2E-03
S&L Truck	FUG12	K-Mag	Truck Loadout Bin	400	3,504,000	Conveyor	Full Equip Enclosure	95	99.1	8.5E-03	3.7E-02	4.2E-03	1.8E-02	1.2E-03	5.2E-03
Loadout		, and a	(CS7757)			Transfer Point	Product Coating ^(g)	81	=						
S&L Truck			Truck Loadout Shuttle Belt			Conveyor	Partial Equip Enclosure	75	=						
Loadout	FUG12	K-Mag	(CS7765)	300	2,628,000	Transfer Point	Partial Wind Break Product Coating ^(g)	20 81	96.2	2.6E-02	1.1E-01	1.3E-02	5.5E-02	3.5E-03	1.6E-02
S&L Truck Loadout	FUG12	K-Mag	Bulk Truck Loading	300	2,628,000	Conveyor Transfer Point	Partial Equip Enclosure Partial Wind Break Product Coating ^(g)	75 20 81	96.2	2.6E-02	1.1E-01	1.3E-02	5.5E-02	3.5E-03	1.6E-02
								Total Fugitive Em	issions with Coating	0.068	0.30	0.033	0.15	0.0095	0.041

⁽b) Uncontrolled emission factors in lbs/ton for tertiary crushing, fines screening, and conveyor transfer points obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, August 2004. See Table 38 for more details.

Particle Size (µm)	Tertiary Crushing	Screening	Conveyor Transfer Point	Fines Screening
2.5	0.00044	0.00059	0.00031	0.044
10	0.0024	0.0087	0.0011	0.072
30	0.0038	0.017	0.0022	0.094

⁽c) Control efficiencies based on best engineering judgment and have been approved by NMED. See Table 37 for a description of each type of control.

Page 1 of 1

 $^{^{\}rm (a)}$  Based on the maximum production rate.

⁽e) Maximum Fugitive Emission Rate (lb/hr) = (Maximum Throughput [tons/hr]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽f) Maximum Fugitive Emission Rate (tons/yr) = (Maximum Throughput [tons/yr]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

⁽g) Product coating control efficiency is estimated to be 90%, but Warehouse Nos. 2 and 3 store Special Standard K-Mag (animal feed), which is not coated. Approximately 10% of the throughput to Warehouse Nos. 2 and 3 is Special Standard K-Mag; therefore, the coating provides a control efficiency of [90% x (100% - 10%)] = 81%.



Table 17
Truck Loadout Fugitive Material Handling Emissions - No Coating
Mosaic Potash Carlsbad, Inc.

Unit No.	Stack No.	Material Processed	Process/Source Description		ximum 1ghput ^(a)	Emission Factor Category ^(b)	Control Equipment /	Unit Control Efficiency ^(c)	Total Control Efficiency ^(d)	T	mum SP ssions	PN	imum A ₁₀ ssions	PN	imum M _{2.5} ssions
				(TPH)	(TPY)	Category	Measure	(%)	(%)	(lb/hr) (e)	(TPY) (f)	(lb/hr) ^(e)	(TPY) (f)	(lb/hr) (e)	(TPY) (f)
S&L Truck Loadout	FUG12	K-Mag	Truck Loadout Distributor (CS7774)	400	3,504,000	Conveyor Transfer Point	Full Equip Enclosure Product Coating	95 0	95.0	4.5E-02	2.0E-01	2.2E-02	9.6E-02	6.2E-03	2.7E-02
S&L Truck Loadout	FUG12	K-Mag	Truck Loadout Bin (CS7757)	400	3,504,000	Conveyor Transfer Point	Full Equip Enclosure Product Coating	95 0	95.0	4.5E-02	2.0E-01	2.2E-02	9.6E-02	6.2E-03	2.7E-02
S&L Truck Loadout	FUG12	K-Mag	Truck Loadout Shuttle Belt (CS7765)	300	2,628,000	Conveyor Transfer Point	Partial Equip Enclosure Partial Wind Break Product Coating	75 20 0	80.0	1.3E-01	5.9E-01	6.6E-02	2.9E-01	1.9E-02	8.2E-02
S&L Truck Loadout	FUG12	K-Mag	Bulk Truck Loading	300	2,628,000	Conveyor Transfer Point	Partial Equip Enclosure Partial Wind Break Product Coating	75 20 0	80.0	1.3E-01	5.9E-01	6.6E-02	2.9E-01	1.9E-02	8.2E-02
								Total Fugitive E	missions No Coating	0.36	1.58	0.18	0.77	0.050	0.22

(b) Uncontrolled emission factors in lbs/ton for tertiary crushing, fines screening, and conveyor transfer points obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, August 2004. See Table 38 for more details.

Particle Size (µm)	Tertiary Crushing	Screening	Conveyor Transfer Point	Fines Screening
2.5	0.00044	0.00059	0.00031	0.044
10	0.0024	0.0087	0.0011	0.072
30	0.0038	0.017	0.0022	0.094

⁽c) Control efficiencies based on best engineering judgment and have been approved by NMED. See Table 37 for a description of each type of control.

Page 1 of 1

⁽a) Based on the maximum production rate.

Total Control Efficiency (%) =  $100\% - 100\% \times (1 - Control Efficiency (\%)_1 / 100) \times (1 - Control Efficiency (\%)_2 / 100) \times (1 - Control Efficiency (\%)_3 / 100)$ 

 $^{^{(}e)} \ \ Maximum \ Fugitive \ Emission \ Rate \ (lb/hr) = (Maximum \ Throughput \ [tons/hr]) \ x \ (Emission \ Factor \ [lb/ton]) \ x \ (1 - Total \ Control \ Efficiency \ [\%] \ / \ 100)$ 

⁽f) Maximum Fugitive Emission Rate (tons/yr) = (Maximum Throughput [tons/yr]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)



Table 18
Nos. 1, 2, and 3 Warehouses Fugitive Material Handling Emissions
Mosaic Potash Carlsbad, Inc.

Material Processed	Process / Source Description	Fugitive ID	Maximum T	Throughput	Emission ructor Control Equipment/	Unit Control Efficiency	Total Control Efficiency	Maximum TS	P Emissions	Maximum PM ₁₀ Emissions		Maximum PM _{2.5} Emissions		
	Source Description	Category		(%) ^(c)	(%) ^(d)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)			
K-Mag Rehandling Material	Truck Loading in WH1, WH2, or WH3	FUG6 or FUG8 or	85	744,600	Material Transfer	Partial Building Enclosure	50	50	0.096	0.42	0.047	0.20	0.013	0.058
GRAN Reclaim Material	Front-Loader Loading in WH1, WH2, or WH3	FUG11 (FUG11 used in model	85	744,600	Material Transfer	Partial Building Enclosure	50	50	0.096	0.42	0.047	0.20	0.013	0.058
GRAN Reclaim Oversize Material	Front-Loader Unloading in WH1, WH2, or WH3	with FUG6 control efficiency)	0.85	7,446	Material Transfer	Partial Building Enclosure	50	50	0.00096	0.0042	0.00047	0.0020	0.00013	0.00058
Off-Spec Material	Truck Unloading in WH1, WH2, or WH3	ejjiciencyj	85	744,600	Material Transfer	Partial Building Enclosure	50	50	0.096	0.42	0.047	0.20	0.013	0.058
All Material	Front-Loader Loading in WH1, WH2, or WH3	FUG6, FUG8, or FUG11 (FUG11 used in model with FUG6 control efficiency)	100	876,000	Material Transfer	Partial Building Enclosure	50	50	0.11	0.49	0.055	0.24	0.016	0.068
All Material	Front-Loader Unloading in WH1, WH2, or WH3	FUG6, FUG8, or FUG11 (FUG11 used in model with FUG6 control efficiency)	100	876,000	Material Transfer	Partial Building Enclosure	50	50	0.11	0.49	0.055	0.24	0.016	0.068
All Material	Loading the Gran Reclaim Belt in WH1	FUG6	85	744,600	Material Transfer	Partial Building Enclosure	50	50	0.096	0.42	0.047	0.20	0.013	0.058
			•					Total =	0.61	2.66	0.30	1.30	0.084	0.37

⁽b) Uncontrolled emission factors in lbs/ton obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug, 2004. See Table 38 for more details.

Particle Size (µm)	Transfer Point (lbs/ton)	Screening
2.5	0.00031	0.00059
10	0.0011	0.0087
30	0.0022	0.017

⁽c) Control efficiencies based on best engineering judgment and reflect Table 105.C in the NSR permit. See Table 37 for more details.

⁽a) Based on operating 8,760 hrs/yr.

⁽d) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

⁽e) Hourly Emission Rate (lb/hr) = (Maximum Throughput [TPH]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽¹⁾ Annual Emission Rate (TPY) = (Maximum Throughput [TPY]) x (Emission Factor [lb/ton]) / 2000 lbs/ton x (1 - Total Control Efficiency [%] / 100)



# Table 19 Nos. 1, 2, and 3 Warehouses Fugitive Hauling Emissions Mosaic Potash Carlsbad Inc.

Table 19a: Hauling Emissions Inside the No. 1 Warehouse (FUG6)

Pollutant	k (lb/VMT) ^(a)	a ^(a)	b ^(a)	Surface Material Silt Content, s (%) ^(b)	Mean Vehicle Weight, W (tons) ^(c)	Control Equipment / Measure	Unit Control Efficiency (%) ^(d)	Total Control Efficiency (%) ^(c)	Particulate Emission Factor (lb/VMT) ^(f)	VMT/hr ^(g)	Maximum Hourly Emissions (lb/hr) ^(h)	Maximum Annual Emissions (TPY) ⁽ⁱ⁾
TSP	4.9	0.7	0.45	4.8	24.0	Partial Building Enclosure	50		0.395	0.8	0.30	1.31
$PM_{10}$	1.5	0.9	0.45	4.8	24.0	Max Speed $\leq 5$ mph	88	94.0	0.101	0.8	0.076	0.33
PM _{2.5}	0.15	0.9	0.45	4.8	24.0				0.0101	0.8	0.0076	0.033

Table 19b: Hauling Emissions Inside the No. 2 Warehouse (FUG8)

Pollutant	k (lb/VMT) ^(a)	a ^(a)	b ^(a)	Surface Material Silt Content, s (%) ^(b)	Mean Vehicle Weight, W (tons) ^(c)	Control Equipment / Measure	Unit Control Efficiency (%) ^(d)	Total Control Efficiency (%) ^(c)	Particulate Emission Factor (lb/VMT) ^(f)	VMT/hr ^(g)	Maximum Hourly Emissions (lb/hr) ^(h)	Maximum Annual Emissions (TPY) ⁽ⁱ⁾
TSP	4.9	0.7	0.45	4.8	24.0	Partial Building Enclosure	70		0.237	2.5	0.59	2.59
$PM_{10}$	1.5	0.9	0.45	4.8	24.0	Max Speed $\leq 5$ mph	88	96.4	0.060	2.5	0.15	0.66
PM _{2.5}	0.15	0.9	0.45	4.8	24.0				0.0060	2.5	0.015	0.066

Table 19c: Hauling Emissions Inside the No. 3 Warehouse (FUG11)

Pollutant	k (lb/VMT) ^(a)			Control Equipment / Measure	Unit Control Efficiency (%) ^(d)	Total Control Efficiency (%) ^(c)	Particulate Emission Factor (lb/VMT) ^(f)	VMT/hr ^(j)	Maximum Hourly Emissions (lb/hr) ^(h)	Maximum Annual Emissions (TPY) ⁽ⁱ⁾		
TSP	4.9	0.7	0.45	4.8	24.0	Partial Building Enclosure	70		0.237	2.5	0.59	2.59
$PM_{10}$	1.5	0.9	0.45	4.8	24.0	Max Speed $\leq 5$ mph	88	96.4	0.060	2.5	0.15	0.66
$PM_{2.5}$	0.15	0.9	0.45	4.8	24.0				0.0060	2.5	0.015	0.066

Table 19d: Hauling Emissions Between the No. 2 and 3 Warehouse (FUG57)

Pollutant	k (lb/VMT) ^(a)	a ^(a)	b ^(a)	Surface Material Silt Content, s (%) ^(b)	Mean Vehicle Weight, W (tons) ^(c)	Control Equipment / Measure	Unit Control Efficiency (%) ^(d)	Total Control Efficiency (%) ^(c)	Particulate Emission Factor (lb/VMT) ^(f)	VMT/hr ^(j)	Maximum Hourly Emissions (lb/hr) ^(h)	Maximum Annual Emissions (TPY) ⁽ⁱ⁾
TSP	4.9	0.7	0.45	4.8	24.0	Paved Roads	99		0.0079	1.5	0.012	0.042
$PM_{10}$	1.5	0.9	0.45	4.8	24.0	Max Speed $\leq 5$ mph	88	99.9	0.0020	1.5	0.0030	0.011
$PM_{2.5}$	0.15	0.9	0.45	4.8	24.0				0.00020	1.5	0.00030	0.0011

Table 19e: Hauling Emissions Between the No. 1 and 2 Warehouse (FUG63)

Pollutant	k (lb/VMT) ^(a)	a ^(a)	b ^(a)	Surface Material Silt Content, s (%) ^(b)	Mean Vehicle Weight, W (tons) ^(c)	Control Equipment / Measure	Unit Control Efficiency (%) ^(d)	Total Control Efficiency (%) ^(c)	Particulate Emission Factor (lb/VMT) ^(f)	VMT/hr ^(j)	Maximum Hourly Emissions (lb/hr) ^(h)	Maximum Annual Emissions (TPY) ⁽ⁱ⁾
TSP	4.9	0.7	0.45	4.8	24.0	Paved Roads	99		0.0079	1.5	0.012	0.042
$PM_{10}$	1.5	0.9	0.45	4.8	24.0	Max Speed $\leq 5$ mph	88	99.9	0.0020	1.5	0.0030	0.011
PM _{2.5}	0.15	0.9	0.45	4.8	24.0	-			0.00020	1.5	0.00030	0.0011

### Footnotes

(a) From AP-42, Chapter 13.2.2 "Unpaved Roads," Table 13.2.2-2, November, 2006.

(b) From AP-42, Table 13.2.2-1 (sand and gravel processing, plant road, mean value) =

4.8 % silt content

(c) Assumed full half of the time and empty half of the time, so the mean vehicle weight is based on an average of the truck/loader loaded and empty weights.

(d) Control efficiencies based on best engineering judgment and have been approved by NMED. See Table 37 for a description of each type of control.

(e) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

(f) From AP-42, Section 13.2.2, Equation 1a, Emission Factor (lb/VMT) = [k x (s/12)^a x (W/3)^b] x [1 - Control Efficiency (%) / 100]

(g) Inside WH1: Vehicle Miles Traveled (VMT/hr) = 2 x Length of Road - one way (feet) / (5,280 feet/mi) x No. of Roundtrips per Hour (trips/hr)

Length of Road - one way (feet) = 100

No. of Roundtrips per Hour = 20

Vehicle Miles Traveled (VMT/hr) = 0.8
Inside WH2 and WH3: Vehicle Miles Traveled (VMT/hr) = 2 x Length of Road - one way (feet) / (5,280 feet/mi) x No. of Roundtrips per Hour (trips/hr)

Length of Road - one way (feet) = 100 No. of Roundtrips per Hour = 66 Vehicle Miles Traveled (VMT/hr) = 2.5

(h) Hourly Emission Rate (lb/hr) = Emission Factor (lb/VMT) x Vehicle Miles Traveled (VMT/hr).

(i) Annual Emission Rate (TPY) = Hourly Emission Rate (lb/hr) x Annual Hours of Operation (hr/yr) / (2,000 lbs/ton) x (365-P) / 365

P - no. of days w/precip. > 0.01" = 70 Annual Hours of Operation (hrs/yr) = 8,760

Between warehouses: Vehicle Miles Traveled (VMT/hr) = 2 x Length of Road - one way (feet) / (5,280 feet/mi) x No. of Roundtrips per Hour (trips/hr) Length of Road - one way (feet) = 200

No. of Roundtrips per Hour = 20 Vehicle Miles Traveled (VMT/hr) = 1.5



# Table 20 **Main Haul Road Fugitive Emissions** Mosaic Potash Carlsbad, Inc.

# Table 20a: Haul Road Emission Inputs (FUG22)

Road Description Paved customer truck loading road

Length of Haul Road (one way)	4917	feet
Truck Loadout Capacity	300	tons/hr
Average Haul Road Truck Load Capacity	25	tons
Average Haul Road Truck Empty Weight	15	tons
Mean Vehicle Weight	27.5	tons
Haul Road Surface Silt Content	4.8	%
Avg. No. of Round Trips/Hour	12	
Hours of Operation per Year	8,760	hr/yr

# Table 20b: Haul Road Emission Factors (FUG22)

	TSP	PM ₁₀	PM _{2.5}	units
$k = particle size multiplier^{(a)}$	4.9	1.5	0.15	unitless
$a = empirical constant^{(a)}$	0.7	0.9	0.9	unitless
$b = empirical constant^{(a)}$	0.45	0.45	0.45	unitless
Emission factor with no controls ^(b)	6.99	1.78	0.18	lb/VMT
Emission factor with controls ^(c)	0.016	0.0041	0.00041	lb/VMT

# Footnotes:

s - surface silt content (%) =

AP-42, Table 13.2.2-1 (Sand and gravel processing mean)

W - mean vehicle weight (tons) = 27.5

(c) Emission Factor (lb/VMT) = Uncontrolled Emission Factor (lb/VMT) x (1 - Total Control Efficiency [%] / 100)

4.8

Control Efficiency 1 (%) =

Paved Roads with Sweeping/Cleaning

Control Efficiency 2 (%) = 77 Speed Limit of 10 mph

Total Control Efficiency (%) = 99.8

# Table 20c: Haul Road Maximum Emission Calculations (FUG22)

Pollutant	Con	trolled Emiss	sions	<b>Uncontrolled Emissions</b>			
1 onutant	(g/s)	(lb/hr) ^(a)	(ton/yr) ^(b)	(g/s)	(lb/hr) ^(a)	(ton/yr) ^(b)	
TSP	0.045	0.36	1.27	19.7	156	553	
$PM_{10}$	0.012	0.092	0.32	5.0	40	141	
PM _{2.5}	0.0012	0.0092	0.032	0.50	4.0	14.1	

# **Footnotes:**

(a) PM Emissions (lb/hr) = Emission Factor (lb/VMT) x Vehicle Miles Traveled (VMT/hr)

Vehicle Miles Traveled (VMT/hr) = 22.4

(b) PM Emissions (ton/yr) = PM Emissions (lb/hr) x Annual Hours of Operation (hr/yr) / (2,000 lbs/ton) x (365-P) / 365

P - no. of days w/precip. > 0.01" = 70 AP-42, Figure 13.2.2-1

Annual Hours of Operation (hrs/yr) = 8,760

(c) Vehicle Miles Traveled (VMT/hr) = 2 x Length of Haul Road - one way (feet) / (5,280 feet/mi) x Average no. of round trips per hour (trips/hr

Average no. of round trips per hour = 12

Length of Haul Road - one way (feet) = 4,917

⁽a) From AP-42, Chapter 13.2.2 "Unpaved Roads" November, 2006.

⁽b) Emission Factor (lb/VMT) =  $k \times (s/12)^a \times (W/3)^b$ 



# Table 21 Abrasive Blasting Fugitive Emissions Mosaic Potash Carlsbad Inc.

Pollutant	Emission Factor ^(a) (lb/1000 lb abrasive)	Maximum Annual Emissions ^(b) (TPY)	Maximum Hourly Emissions ^(c) (lb/hr)
	Permanent Abrasiv	e Blasting (FUG20)	
TSP	13.2	1.98	13.20
$PM_{10}$	3.1	0.47	3.12
PM _{2.5}	0.31	0.047	0.31
	Portable Abrasive	Blasting (FUG40)	
TSP	13.2	1.98	13.20
$PM_{10}$	3.1	0.47	3.12
PM _{2.5}	0.31	0.047	0.31

# **Footnotes:**

(b) Annual Emissions (TPY) = Emission Factor (lb/1,000 lb abrasive) x Annual Abrasive Usage (lbs/yr)  $\div$  1,000  $\div$  2,000 lbs/ton  $\div$  2 (split equally between FUG20 and FUG40)

Maximum Total Annual Abrasive Usage (lbs/yr) = 600,000 Maximum Total Annual Abrasive Usage (tons/yr) = 300

⁽a) From AP-42, Section 13.2.6 Abrasive Blasting, Table 13.2.6-1 "Particulate Emission Factors for Abrasive Blasting", September 1997. Mosaic is currently permitted to use a garnet mineral abrasive but would like to use a slag abrasive material on occasion due to supplier isses. AP-42 only provides uncontrolled emission factors for abrasive blasting with sand, not slag (i.e., grit) abrasives. Slag/gritss have low silica content with low dusting potential. According to a South Coast Air Quality Management District 1988 outdoor abrasive blasting test, which is summarized in Table 4-2 of the AP-42 Section 13.2.6 Background Document, the TSP emission factor for grit blasting was 0.010 lb/lb grit, which is slightly lower than the emission factor that Mosaic is currently using for garnet (i.e., 0.0132 lb/lb garnet). Therefore, the garnet emission factors for TSP, PM₁₀, and PM_{2.5} are conservatively being used to represent both the use of garnet and slag/grit at Mosaic.

Hourly Emissions (lbs/hr) = Emission Factor (lb/1,000 lb abrasive) x Hourly Abrasive Usage (lbs/hr)  $\div$  1,000 Maximum Hourly Abrasive Usage (lbs/hr) = 1,000



# Table 22 Railcar Offloading (formerly "Railcar Unloading") Fugitive Material Handling Emissions Mosaic Potash Carlsbad Inc.

Material Processed	Process / Source Description	Fugitive ID	Maximum T	Throughput	Emission Factor Category ^(b)	Control Equipment / Measure	Unit Control Efficiency	Total Control Efficiency	Maximum TS	P Emissions	Maximum PM	I ₁₀ Emissions	Maximum PM _{2.5} Emissions	
Trocessed	Source Description		(TPH)	(TPY) ^(a)	Category	Measure	(%) ^(c)	(%) ^(d)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)
Potash Material	Railcar to Conveyor Belt		85	744,600	Conveyor	Partial Equipment Enclosure	75	95.0	0.010	0.042	0.0047	0.020	0.0013	0.0058
Fotasii Wateriai	(CS9700)	FUG43	0.5	744,000	Transfer Point	Dust Control Agent	80	93.0	0.010	0.042	0.0047	0.020	0.0013	0.0038
Potash Material	To Truck/Loader	10015	85	744,600	Conveyor Transfer Point			80.0	0.038	0.17	0.019	0.082	0.0053	0.023
								Total =	0.048	0.21	0.023	0.10	0.0066	0.029

# Footnotes:

⁽b) Uncontrolled emission factors in lbs/ton obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug, 2004. See Table 38 for more details.

Particle Size	Transfer Point	Screening
(µm)	(lbs/ton)	(lbs/ton)
2.5	0.00031	0.00059
10	0.0011	0.0087
30	0.0022	0.017

⁽e) The railcar provides inherent dust control because the material exits beneath the railcar. In addition, the material in the railcars arrives at Mosaic already coated with a dust control agent. However, because the material has been sitting in the railcars, we have reduced the approved dust coating control efficiency of 90% to 80% to be more conservative in our emission estimates.

⁽a) Based on operating 8,760 hrs/yr.

⁽d) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

⁽e) Hourly Emission Rate (lb/hr) = (Maximum Throughput [TPH]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽f) Annual Emission Rate (TPY) = (Maximum Throughput [TPY]) x (Emission Factor [lb/ton]) / 2000 lbs/ton x (1 - Total Control Efficiency [%] / 100)



# Table 23 Railcar Offloading (formerly "Railcar Unloading") Fugitive Hauling Emissions Mosaic Potash Carlsbad, Inc.

Table 23a: Railcar Offloading to the Warehouses (FUG47)

Pollutant	k (lb/VMT) ^(a)	a ^(a)	b ^(a)	Surface Material Silt Content, s (%) ^(b)	Mean Vehicle Weight, W (tons) ^(c)	Control Equipment / Measure	Unit Control Efficiency (%) ^(d)	Total Control Efficiency (%) ^(e)	Particulate Emission Factor (lb/VMT) ^(f)			Maximum Annual Emissions (TPY) ⁽ⁱ⁾
TSP	4.9	0.7	0.45	4.8	22.5	Paved Roads	99		0.015	3.6	0.053	0.19
$PM_{10}$	1.5	0.9	0.45	4.8	22.5	Max Speeds ≤ 10 mph	77	99.8	0.0037	3.6	0.013	0.048
PM _{2.5}	0.15	0.9	0.45	4.8	22.5				0.00037	3.6	0.0013	0.0048

Table 23b: Railcar Offloading to Granulation Reclaim (FUG58)

P	'ollutant	k (lb/VMT) ^(a)	a ^(a)	b ^(a)	Surface Material Silt Content, s (%) ^(b)	Mean Vehicle Weight, W (tons) ^(c)	Control Equipment / Measure	Unit Control Efficiency (%) ^(d)	Total Control Efficiency (%) ^(e)	Particulate Emission Factor (lb/VMT) ^(f)			Maximum Annual Emissions (TPY) ⁽ⁱ⁾
	TSP	4.9	0.7	0.45	4.8	24.0	Paved Roads	99		0.015	9.7	0.15	0.52
	$PM_{10}$	1.5	0.9	0.45	4.8	24.0	Max Speeds ≤ 10 mph	77	99.8	0.0039	9.7	0.037	0.13
	PM _{2.5}	0.15	0.9	0.45	4.8	24.0				0.00039	9.7	0.0037	0.013

Table 23c: Railcar Offloading to K-Mag Rehandling (FUG59)

Pollutant	k (lb/VMT) ^(a)	a ^(a)	b ^(a)	Surface Material Silt Content, s (%) ^(b)	Mean Vehicle Weight, W (tons) ^(c)	Control Equipment / Measure	Unit Control Efficiency (%) ^(d)	Total Control Efficiency (%) ^(e)	Particulate Emission Factor (lb/VMT) ^(f)			Maximum Annual Emissions (TPY) ⁽ⁱ⁾
TSP	4.9	0.7	0.45	4.8	24.0	Paved Roads	99		0.022	0.6	0.014	0.051
$PM_{10}$	1.5	0.9	0.45	4.8	24.0	Max Speeds ≤ 15 mph	66	99.7	0.0057	0.6	0.0037	0.013
PM _{2.5}	0.15	0.9	0.45	4.8	24.0				0.00057	0.6	0.00037	0.0013

## Footnotes:

Length of Road - one way (feet) = 1,670

No. of Roundtrips per Hour =

Vehicle Miles Traveled (VMT/hr) = 3.6

P - no. of days w/precip. > 0.01" = 70

Annual Hours of Operation (hrs/yr) = 8,760

Length of Road - one way (feet) = 1,500

No. of Roundtrips per Hour = 17

Vehicle Miles Traveled (VMT/hr) = 9

Length of Road - one way (feet) = 100

No. of Roundtrips per Hour = 17
Vehicle Miles Traveled (VMT/hr) = 0.6

⁽a) From AP-42, Chapter 13.2.2 "Unpaved Roads," Table 13.2.2-2, November, 2006.

⁽b) AP-42, Table 13.2.2-1 (sand and gravel processing, plant road, mean value)

⁽c) Assumed full half of the time and empty half of the time, so the mean vehicle weight is based on an average of the truck/loader loaded and empty weights.

⁽d) Based on Table 6-6 in the Western Regional Air Partnership's (WRAP) Fugitive Dust Handbook, September 7, 2006. The speed limit control efficiency is based on a linear relationship between the speed (x, mph) and the control efficiency (y, %): y = -2.2x + 99

⁽e) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

Emission Factor (lb/VMT) =  $[k \times (s/12)^a \times (W/3)^b] \times [1 - Total Control Efficiency (%) / 100]$ 

⁽g) To No. 1, No. 2, or No. 3 Warehouse: Vehicle Miles Traveled (VMT/hr) = 2 x Length of Road - one way (feet) / (5,280 feet/mi) x No. of Roundtrips per Hour (trips/hr)

⁽h) Hourly Emission Rate (lb/hr) = Emission Factor (lb/VMT) x Vehicle Miles Traveled (VMT/hr)

⁽i) Annual Emission Rate (TPY) = Hourly Emission Rate (lb/hr) x Annual Hours of Operation (hr/yr) / (2,000 lbs/ton) x (365-P) / 365

⁽i) To Granulation Reclaim: Vehicle Miles Traveled (VMT/hr) = 2 x Length of Road - one way (feet) / (5,280 feet/mi) x No. of Roundtrips per Hour (trips/hr)

⁽k) To K-Mag Rehandling: Vehicle Miles Traveled (VMT/hr) = 2 x Length of Road - one way (feet) / (5,280 feet/mi) x No. of Roundtrips per Hour (trips/hr)



# Table 24 Granulation Reclaim Fugitive Material Handling Emissions Mosaic Potash Carlsbad, Inc.

Material Processed	Process / Source Description	Fugitive ID	Maximum T	hroughput	Emission Factor Category ^(b)	Control Equipment / Measure	Unit Control Efficiency	Total Control Efficiency	Maximum TS	P Emissions	Maximum PM	I ₁₀ Emissions	Maximum PM	I _{2.5} Emissions
Trocessed	Source Description		(TPH)	(TPY) ^(a)	Category		(%) ^(c)	(%) ^(d)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)
Granulation Reclaim	Loader to Reclaim Hopper		85	744,600	Material Transfer Point	Partial Equipment Enclosure	50	50	0.096	0.42	0.047	0.20	0.013	0.058
Granulation Reclaim	Hopper or Belt to Elevator		85	744,600	Material Transfer Point	Full Equipment Enclosure	95	95	0.010	0.04	0.005	0.02	0.001	0.006
Granulation	Reclaim Bucket Elevator		85	744,600	Material Transfer	Full Equipment Enclosure	95	99.8	0.00048	0.0021	0.00023	0.0010	0.000066	0.00029
Reclaim	(CS9070)		65	744,000	Point	Ventilation Capture	95	77.0	0.00048	0.0021	0.00023	0.0010	0.000000	0.00027
Granulation Reclaim	To Ground		2	17,520	Material Transfer Point	None	0	0.0	0.00450	0.0197	0.00220	0.0096	0.000622	0.00272
Granulation Reclaim	Recycle Scalper Screen (CS9080)	FUG44	85	744,600	Material Transfer Point	Full Equipment Enclosure	95	95	0.0096	0.042	0.0047	0.020	0.0013	0.0058
Granulation Reclaim	Recycle Scalper Screen (CS9080)		85	744,600	Screening	Full Equipment Enclosure	95	95	0.072	0.32	0.037	0.16	0.0025	0.011
Granulation Reclaim	Secondary Feed Belt/Screw (CS9075)		84.15	737,154	Material Transfer Point	Partial Equipment Enclosure	70	70	0.057	0.25	0.028	0.122	0.0078	0.034
Granulation Reclaim	To Oversize Pile		0.85	7,446	Material Transfer Point	None	0	0	0.0019	0.0084	0.00094	0.0041	0.00026	0.0012
•					•			Total =	0.25	1.10	0.12	0.54	0.027	0.12

# Footnotes:

⁽b) Uncontrolled emission factors in lbs/ton obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug, 2004. See Table 38 for more details.

Particle Size	Transfer Point	Screening
(µm)	(lbs/ton)	(lbs/ton)
2.5	0.00031	0.00059
10	0.0011	0.0087
30	0.0022	0.017

⁽c) Control efficiencies based on best engineering judgment and reflect Table 105.C in the NSR permit. See Table 37 for more details.

⁽a) Based on operating 8,760 hours per year.

⁽d) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

 $^{^{(}c)}$  Hourly Emission Rate (lb/hr) = (Maximum Throughput [TPH]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽f) Annual Emission Rate (TPY) = (Maximum Throughput [TPY]) x (Emission Factor [lb/ton]) ÷ (2000 lb/ton) x (1 - Total Control Efficiency [%] / 100)



# Table 25 Granulation Reclaim Fugitive Hauling Emissions (FUG48) Mosaic Potash Carlsbad, Inc.

Pollutant	k (lb/VMT) ^(a)	a ^(a)	b ^(a)	Surface Material Silt Content, s (%) ^(b)	Mean Vehicle Weight, W (tons) ^(c)	Control Equipment / Measure	Unit Control Efficiency (%) ^(d)	Total Control Efficiency (%) ^(e)	Particulate Emission Factor (lb/VMT) ^(f)	VMT/hr ^(g)		Maximum Annual Emissions (TPY) ⁽ⁱ⁾
TSP	4.9	0.7	0.45	4.8	24.0	Paved Roads	99		0.015	4.9	0.074	0.26
$PM_{10}$	1.5	0.9	0.45	4.8	24.0	Max Speeds ≤ 10 mph	77	99.8	0.0039	4.9	0.019	0.067
$PM_{2.5}$	0.15	0.9	0.45	4.8	24.0				0.00039	4.9	0.0019	0.0067

# Footnotes:

Length of Road - one way (feet) = 750 No. of Roundtrips per Hour = 17 Vehicle Miles Traveled (VMT/hr) = 4.9

P - no. of days w/precip. > 0.01" = 70 Annual Hours of Operation (hrs/yr) = 8,760

⁽a) From AP-42, Chapter 13.2.2 "Unpaved Roads", Table 13.2.2-2, November 2006.

⁽b) AP-42, Table 13.2.2-1 (sand and gravel processing, plant road, mean value).

⁽c) Assumed full half of the time and empty half of the time, so the mean vehicle weight is based on an average of the truck/loader loaded and empty weights.

⁽d) Based on Table 6-6 in the Western Regional Air Partnership's (WRAP) Fugitive Dust Handbook, September 7, 2006. The speed limit control efficiency is based on a linear relationship between the speed (x, mph) and the control efficiency (y, %): y = -2.2x + 99. Note that these controls are intrinsic to the operations at Mosaic Potash and are not add-on controls.

⁽e) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

⁽f) Emission Factor (lb/VMT) = [k x (s/12)^a x (W/3)^b] x [1 - Total Control Efficiency (%) / 100]

⁽g) Vehicle Miles Traveled (VMT/hr) = 2 x Length of Road - one way (feet) / (5,280 feet/mi) x No. of Roundtrips per Hour (trips/hr)

⁽h) Hourly Emission Rate (lb/hr) = Emission Factor (lb/VMT) x Vehicle Miles Traveled (VMT/hr)

⁽i) Annual Emission Rate (TPY) = Hourly Emission Rate (lb/hr) x Annual Hours of Operation (hr/yr) / (2,000 lbs/ton) x (365-P) / 365



# Table 26 K-Mag Rehandling Fugitive Material Handling Emissions Mosaic Potash Carlsbad, Inc.

Material Processed	Process / Source Description	Fugitive ID	Maximum 7	Throughput	Emission Factor Category ^(b)	Control Equipment / Measure	Unit Control Efficiency	Total Control Efficiency	Maximum TS	P Emissions	Maximum PM	M ₁₀ Emissions	Maximum PM	l _{2.5} Emissions
	•		(TPH)	(TPY) ^(a)			(%) ^(c)	(%) ^(d)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)
K-Mag	Loader to Reclaim Hopper (CS10080)		85	744,600	Material Transfer Point	Partial Equipment Enclosure	50	50	0.094	0.41	0.047	0.20	0.013	0.058
K-Mag	Vibratory Feeder (CS10082)	FUG50	85	744,600	Material Transfer Point	Full Equipment Enclosure	95	95	0.0094	0.041	0.0047	0.020	0.0013	0.0058
K-Mag	Rehandling Belt (CS10084)	10030	85	744,600	Conveyor Transfer Point	Full Equipment Enclosure	95	95	0.0094	0.041	0.0047	0.020	0.0013	0.0058
K-Mag	Crusher Feed Belt (CS10030)		85	744,600	Conveyor Transfer Point	Partial Equipment Enclosure	75	75	0.047	0.20	0.023	0.10	0.0066	0.029
	_	•	•	•			•	Total =	0.16	0.70	0.079	0.35	0.022	0.098

## Footnotes:

⁽b) Uncontrolled emission factors in lbs/ton obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug, 2004. See Table 38 for more details.

Particle Size	Transfer Point
(µm)	(lbs/ton)
2.5	0.00031
10	0.0011
30	0.0022

⁽c) Control efficiencies based on best engineering judgment and reflect Table 105.C in the NSR permit. See Table 37 for more details.

⁽a) Based on operating 8,760 hours per year.

⁽d) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

⁽e) Hourly Emission Rate (lb/hr) = (Maximum Throughput [TPH]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽f) Annual Emission Rate (TPY) = (Maximum Throughput [TPY]) x (Emission Factor [lb/ton]) ÷ (2000 lb/ton) x (1 - Total Control Efficiency [%] / 100)



# Table 27 K-Mag Rehandling Fugitive Hauling Emissions (FUG49) Mosaic Potash Carlsbad, Inc.

Pollutant	k (lb/VMT) ^(a)	a ^(a)	b ^(a)	Surface Material Silt Content, s (%) ^(b)	Mean Vehicle Weight, W (tons) ^(c)	Control Equipment / Measure	Unit Control Efficiency (%) ^(d)	Total Control Efficiency (%) ^(e)	Particulate Emission Factor (lb/VMT) ^(f)	VMT/hr ^(g)	Maximum Hourly Emissions (lb/hr) ^(h)	Maximum Annual Emissions (TPY) ⁽ⁱ⁾
TSP	4.9	0.7	0.45	4.8	24.0	Paved Roads	99		0.022	11.3	0.25	0.89
$PM_{10}$	1.5	0.9	0.45	4.8	24.0	Max Speeds ≤ 15 mph	66	99.7	0.0057	11.3	0.064	0.23
PM _{2.5}	0.15	0.9	0.45	4.8	24.0				0.00057	11.3	0.0064	0.023

## Footnotes:

Length of Road - one way (feet) = 1,750 No. of Roundtrips per Hour = 17 Vehicle Miles Traveled (VMT/hr) = 11.3

P - no. of days w/precip. > 0.01" = 70 Annual Hours of Operation (hrs/yr) = 8,760

⁽a) From AP-42, Chapter 13.2.2 "Unpaved Roads", Table 13.2.2-2, November, 2006.

⁽b) AP-42, Table 13.2.2-1 (sand and gravel processing, plant road, mean value).

⁽c) Based on a loader being full half of the time and empty half of the time. A loader is used in the calculations to generate wost-case emissions since loaders require more trips and have a higher mean vehicle weight than a truck.

⁽d) Based on Table 6-6 in the Western Regional Air Partnership's (WRAP) Fugitive Dust Handbook, September 7, 2006. The speed limit control efficiency is based on a linear relationship between the speed (x, mph) and the control efficiency (y, %): y = -2.2x + 99. Note that these controls are intrinsic to the operations at Mosaic Potash and are not add-on controls.

⁽e) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)1 / 100) x (1 - Control Efficiency (%)2 / 100)

⁽f) Emission Factor (lb/VMT) = [k x (S/12)^a x (W/3)^b] x [1 - Total Control Efficiency (%) / 100]

⁽g) Vehicle Miles Traveled (VMT/hr) = 2 x Length of Road - one way (feet) / (5,280 feet/mi) x No. of Roundtrips per Hour (trips/hr)

⁽h) Hourly Emission Rate (lb/hr) = Emission Factor (lb/VMT) x Vehicle Miles Traveled (VMT/hr)

⁽i) Annual Emission Rate (TPY) = Hourly Emission Rate (lb/hr) x Annual Hours of Operation (hr/yr) / (2,000 lbs/ton) x (365-P) / 365



# Table 28 Brine Circuit Fugitive Material Handling Emissions Mosaic Potash Carlsbad, Inc.

Material Processed	Process / Source Description	Fugitive ID	Maximum T	`hroughput	Emission Factor  Category ^(b)	Control Equipment / Measure	Unit Control Efficiency	Total Control Efficiency	Maximu Emiss		Maximu Emiss	10		ım PM _{2.5} ssions
Trocesseu	Source Description	ID.	(TPH)	(TPY) ^(a)	Category	/ Weasure	(%) ^(c)	(%) ^(d)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)
KCl Salt / Potash	Haul Truck/Front Loader Unloading		100	876,000	Material Transfer Point	None	0	0	0.225	0.985	0.110	0.48	0.031	0.14
KCl Salt / Potash	Loader to Storage Pile ^(g)		100	876,000	Material Transfer Point	None	0	0	0.225	0.985	0.110	0.48	0.031	0.14
KCl Salt / Potash	Hopper with Vibratory Feeder (CS1422/CS1410)	FUG52	100	876,000	Material Transfer Point	Partial Equipment Enclosure	50	50	0.112	0.49	0.055	0.24	0.0155	0.068
KCl Salt / Potash	Conveyor Belt (CS1412)		100	876,000	Conveyor Transfer Point	Partial Equipment Enclosure	50	50	0.112	0.49	0.055	0.24	0.0155	0.068
KCl Salt / Potash	Wet Scrub Tank (CS1416)		100	876,000	Conveyor Transfer Point	Partial Equipment Enclosure	85	85	0.034	0.15	0.017	0.072	0.0047	0.020
	_							Total =	0.71	3.10	0.35	1.52	0.098	0.43

### Footnotes:

⁽b) Uncontrolled emission factors in lbs/ton obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug, 2004. See Table 38 for more details.

Particle Size	Transfer Point
(µm)	(lbs/ton)
2.5	0.00031
10	0.0011
30	0.0022

⁽c) Control efficiencies based on best engineering judgment and reflect Table 105.C in the NSR permit. See Table 37 for more details.

⁽a) Based on operating 8,760 hours per year.

⁽d) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

⁽e) Hourly Emission Rate (lb/hr) = (Maximum Throughput [TPH]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽f) Annual Emission Rate (TPY) = (Maximum Throughput [TPY]) x (Emission Factor [lb/ton]) ÷ (2000 lb/ton) x (1 - Total Control Efficiency [%] / 100)

⁽g) Brine material is naturally hygroscopic and pulls moisture out of the air. Due to the daytime/nighttime humidity cycles, any brine material that is sitting outside will absorb enough moisture to dissolve the very small particles that would otherwise become airborn; therefore, particulate emissions from the storage pile itself are not estimated.



# Table 29 Brine Circuit Fugitive Hauling Emissions Mosaic Potash Carlsbad, Inc.

Table 29a: Brine Circuit Fugitive Hauling Emissions - Haul Trucks (FUG51a)

Pollutant	k (lb/VMT) ^(a)	a ^(a)	b ^(a)	Surface Material Silt Content, s (%) ^(b)	Mean Vehicle Weight, W (tons) ^(c)	Control Equipment / Measure	Unit Control Efficiency (%) ^(d)	Total Control Efficiency (%) ^(e)	Particulate Emission Factor (lb/VMT) ^(f)		Maximum Hourly Emissions (lb/hr) ^(h)	Maximum Annual Emissions (TPY) ⁽ⁱ⁾
TSP	4.9	0.7	0.45	4.8	27.5	Paved Roads	99		0.0084	3.0	0.025	0.090
$PM_{10}$	1.5	0.9	0.45	4.8	27.5	Max Speeds $\leq 5$ mph	88	99.9	0.0021	3.0	0.0065	0.023
PM _{2.5}	0.15	0.9	0.45	4.8	27.5	•			0.00021	3.0	0.00065	0.0023

Table 29b: Brine Circuit Fugitive Hauling Emissions - Front Loaders (FUG51b)

Pollu	tant	k (lb/VMT) ^(a)	a ^(a)	b ^(a)	Surface Material Silt Content, s (%) ^(b)	Mean Vehicle Weight, W (tons) ^(c)	Control Equipment / Measure	Unit Control Efficiency (%) ^(d)	Total Control Efficiency (%) ^(e)	Particulate Emission Factor (lb/VMT) ^(f)		Maximum Hourly Emissions (lb/hr) ^(h)	Maximum Annual Emissions (TPY) ⁽ⁱ⁾
TS	SP	4.9	0.7	0.45	4.8	24.0	Paved Roads	99		0.0079	1.5	0.012	0.042
PM	I ₁₀	1.5	0.9	0.45	4.8	24.0	Max Speeds $\leq 5$ mph	88	99.9	0.0020	1.5	0.0030	0.011
PM	[ _{2.5}	0.15	0.9	0.45	4.8	24.0				0.00020	1.5	0.00030	0.0011

### Footnotes:

Length of Road - roundtrip (feet) = 4,000

No. of Roundtrips per Hour = 4

Vehicle Miles Traveled (VMT/hr)= 3.0

P - no. of days w/precip. > 0.01" = 70

Annual Hours of Operation (hrs/yr) = 8,760

(9) Front Loaders: Vehicle Miles Traveled (VMT/hr) = Roundtrip Distance (feet) / (5,280 feet/mi) x No. of Roundtrips per Hour (trips/hr)

Length of Road - roundtrip (feet) = 400

No. of Roundtrips per Hour = 2

Vehicle Miles Traveled (VMT/hr) = 1.5

⁽a) From AP-42, Chapter 13.2.2 "Unpaved Roads," Table 13.2.2-2, November, 2006.

⁽b) AP-42, Table 13.2.2-1 (sand and gravel processing, plant road, mean value).

⁽e) Assumed full half of the time and empty half of the time, so the mean vehicle weight is based on an average of the truck/loader loaded and empty weights.

⁽d) Based on Table 6-6 in the Western Regional Air Partnership's (WRAP) Fugitive Dust Handbook, September 7, 2006. The speed limit control efficiency is based on a linear relationship between the speed (x, mph) and the control efficiency (y, %): y = -2.2x + 99. Due to a higher number of pedestrians in the area, the maximum speed will be posted at 5 mph. Note that these controls are intrinsic to the operations at Mosaic Potash and are not add-on controls.

⁽e) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100)

⁽f) Emission Factor (lb/VMT) =  $[k \times (s/12)^a \times (W/3)^b] \times [1 - Total Control Efficiency (%) / 100]$ 

⁽g) Haul Trucks: Vehicle Miles Traveled (VMT/hr) = Roundtrip Distance (feet) / (5,280 feet/mi) x No. of Roundtrips per Hour (trips/hr)

⁽h) Hourly Emission Rate (lb/hr) = Emission Factor (lb/VMT) x Vehicle Miles Traveled (VMT/hr)

⁽i) Annual Emission Rate (TPY) = Hourly Emission Rate (lb/hr) x Annual Hours of Operation (hr/yr) / (2,000 lbs/ton) x (365-P) / 365



# Table 30 Reagent Fugitive Material Handling Emissions Mosaic Potash Carlsbad, Inc.

Material Processed Sou	Process / Source Description	Fugitive ID			Emission Factor Control Equipment / M	Control Equipment / Measure	Unit Control Efficiency	Total Control Efficiency	Maximum TSP Emissions		Maximum PM ₁₀ Emissions		Maximum PM _{2.5} Emissions	
Trocessed	Source Description		Category		(%) ^(c)	(%) ^(d)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)		
Reagent	Pile to Loader	FUG60	5	43,800	Material Transfer Point	Partial Equipment Enclosure	50	50	0.0056	0.025	0.0028	0.012	0.00078	0.0034
Reagent	Loader to Grate	FUG61	5	43,800	Material Transfer Point	Partial Equipment Enclosure	25	25	0.0084	0.037	0.0041	0.018	0.0012	0.0051
,								Total =	0.014	0.062	0.0069	0.030	0.0019	0.0085

## Footnotes:

⁽b) Uncontrolled emission factors in lbs/ton obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug, 2004. See Table 38 for more details.

Particle Size	Transfer Point					
(µm)	(lbs/ton)					
2.5	0.00031					
10	0.0011					
30	0.0022					

⁽c) Control efficiencies based on best engineering judgment and reflect Table 105.C in the NSR permit. See Table 37 for more details.

⁽a) Based on operating 8,760 hours per year.

⁽d) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

⁽e) Hourly Emission Rate (lb/hr) = (Maximum Throughput [TPH]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽f) Annual Emission Rate (TPY) = (Maximum Throughput [TPY]) x (Emission Factor [lb/ton]) ÷ (2000 lb/ton) x (1 - Total Control Efficiency [%] / 100)



#### Table 31 Reagent Fugitive Hauling Emissions (FUG62) Mosaic Potash Carlsbad, Inc.

Pollutant	k (lb/VMT) ^(a)	a ^(a)	b ^(a)	Surface Material Silt Content, b (%) ^(b)	Mean Vehicle Weight, W (tons) ^(c)	Control Equipment / Measure	Unit Control Efficiency (%) ^(d)	Total Control Efficiency (%) ^(c)	Particulate Emission Factor (lb/VMT) ^(f)	VMT/hr ^(g)	Maximum Hourly Emissions (lb/hr) ^(h)	Maximum Annual Emissions (TPY) ⁽ⁱ⁾
TSP	4.9	0.7	0.45	4.8	24.0	Paved Roads	99		0.015	0.32	0.0049	0.017
$PM_{10}$	1.5	0.9	0.45	4.8	24.0	Max Speeds ≤ 10 mph	77	99.8	0.0039	0.32	0.0012	0.0044
$PM_{2.5}$	0.15	0.9	0.45	4.8	24.0				0.00039	0.32	0.00012	0.00044

#### Footnotes:

Length of Road - one way (feet) = 850

No. of Roundtrips per Hour = 1

Vehicle Miles Traveled (VMT/hr) = 0.32

(h) Hourly Emission Rate (lb/hr) = Emission Factor (lb/VMT) x Vehicle Miles Traveled (VMT/hr)

(i) Annual Emission Rate (TPY) = Hourly Emission Rate (lb/hr) x Annual Hours of Operation (hr/yr) / (2,000 lbs/ton) x (365-P) / 365

P - no. of days w/precip. > 0.01" = 70 Annual Hours of Operation (hrs/yr) = 8,760

⁽a) From AP-42, Chapter 13.2.2 "Unpaved Roads", Table 13.2.2-2, November 2006.

⁽b) AP-42, Table 13.2.2-1 (sand and gravel processing, plant road, mean value).

⁽c) Assumed full half of the time and empty half of the time, so the mean vehicle weight is based on an average of the loader loaded and empty weights.

⁽d) Based on Table 6-6 in the Western Regional Air Partnership's (WRAP) Fugitive Dust Handbook, September 7, 2006. The speed limit control efficiency is based on a linear relationship between the speed (x, mph) and the control efficiency (y, %): y = -2.2x + 99. Note that these controls are intrinsic to the operations at Mosaic Potash and are not add-on controls.

⁽e) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

^(f) Emission Factor (lb/VMT) =  $[k \times (s/12)^a \times (W/3)^b] \times [1 - Total Control Efficiency (%) / 100]$ 

⁽g) Vehicle Miles Traveled (VMT/hr) = 2 x Length of Road - one way (feet) / (5,280 feet/mi) x No. of Roundtrips per Hour (trips/hr)



#### Table 32 Reagent Stockpile Fugitive Wind Erosion Emissions (FUG60) Mosaic Potash Carlsbad, Inc.

Pollutant	Fastest Mile (mph) ^(a)	Fastest Mile (m/sec)	Number of Active Disturbances per Hour, N ^(b)	Number of Active Disturbances per Year, N ^(b)	Particle Size Multiplier, k ^(c)	Kallonness	u ¹⁰⁺ (m/s) ^(e)	Friction Velocity, u* (m/s) ^(f)	Threshold Velocity u _t (m/s) ^(g)	P _i (g/m ² ) ^(h)	Emission Factor (g/m²) ⁽ⁱ⁾	Active Surface Area (m²) ^(j)	Maximum Hourly Emissions (lb/hr) ^(k)	Maximum Annual Emissions (TPY)
TSP	52	23.2	1.0	8,760	1	0.3	27.2	1.44	1.23	8.2	8.16	7.4	0.13	0.59
$PM_{10}$	52	23.2	1.0	8,760	0.5	0.3	27.2	1.44	1.23	8.2	4.08	7.4	0.067	0.29
PM _{2.5}	52	23.2	1.0	8,760	0.075	0.3	27.2	1.44	1.23	8.2	0.61	7.4	0.010	0.044

#### Footnotes:

⁽a) The fastest mile of wind speed data measured near Paduca (approximately 20.5 miles SE of Mosaic) based on 2-minute wind speed averages. Using this maximum wind speed value as an average for the entire year greatly over-predicts the annual emissions.

⁽b) This hourly value is based on 1 loader trip per hour and the annual value is based on the hourly number multiplied by 24 hours a day and 365 days per year.

⁽c) Based on AP-42, Section 13.2.5, from table on page 13.2.5-3. For TSP (30μm), k=1.0. For PM₁₀ (<10μm), k=0.5. For PM_{2.5} (<2.5μm), k=0.075.

⁽d) The surface roughness is obtained from AP-42 Table 13.2.5-2 and is based on an average of the uncrusted coal pile (0.3 cm) and scoria (roadbed material) (0.3 cm) values, which is the most representative of the reagent material.

⁽e) The fastest mile corrected to the fastest mile of reference anemometer (10m) for each period between the disturbances. The anemometer in Paduca is at 6 m (20 ft).

⁽f) The equation used to calculate the friction velocity assumes a typical roughness height of 0.5 cm for open terrain. Equation: u* = 0.053(u^{10*}) (Equation 4 in AP-42 Section 13.2.5.).

⁽g) Based on an average of the uncrusted coal pile and scoria (roadbed material) threshold velocities from Table 13.2.5-2 in AP-42, which is the most representative of the reagent material.

⁽b)  $P_i$  is the erosion potential function for a dry exposed surface.  $P_i = 58 (u^* - u_t)^2 + 25 (u^* - u_t)$ . (Equation 3 in AP-42 Section 13.2.5.).  $P_i = 0$  if  $u^*$  is less than or equal to  $u_t$ .

⁽i) The emission factor equation is based on Equation 2 in AP-42, Section 13.2.5.

⁽i) The average dimensions of the pile are roughly 100 ft in diameter by 10 ft high; however, only 1% of the pile will be actively disturbed. The surface area is calculated using the following equation:  $S = PI * r * (sq. rt. (r^2 + h^2))$ 

⁽k) Based on multiplying the emission factor in g/m² by the active surface area in m² and then converting to pounds based on 453.6 g/lb.



Table 33

Potash Fugitive Material Handling Emissions
Mosaic Potash Carlsbad, Inc.

Unit Name	Unit No.	Process/Source Description		mum ghput ^(a)	TSP Emission Factor	PM ₁₀ Emission Factor	PM _{2.5} Emission Factor	Control Equipment	Unit Control Efficiency	Total Control Efficiency		um TSP sions	Maximum PM ₁₀ Emissions			ım PM _{2.5} ssions
			(TPH)	(TPY)	(lb/ton) ^(b)	(lb/ton) ^(b)	(lb/ton) ^(b)	Measure	(%) ^(c)	(%) ^(d)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)	(lb/hr) ^(e)	(TPY) ^(f)
Scenario 1 - Haulin	g Between	Railcar Offloading ^{(g}	and the B	rine Circuit												
Unloading at the Brine Circuit	FUG52	Truck/Loader Unloading	85	744,600	0.0022	0.0011	0.00031	None	0	0	0.187	0.82	0.0935	0.41	0.0264	0.12
	•						Total Mate	rial Handling E	missions for	Scenario 1 =	0.19	0.82	0.094	0.41	0.026	0.12
Scenario 2 - Haulin	g Between	the Warehouses and	the Brine (	Circuit												
Loading in Nos. 1, 2, or 3 Warehouses	FUG6, FUG8, or FUG11	Truck/Loader Loading ^(h)	85	744,600	0.0022	0.0011	0.00031	Partial Building Enclosure	70	70	0.056	0.25	0.028	0.12	0.0079	0.035
Unloading at the Brine Circuit	FUG52	Truck/Loader Unloading ⁽ⁱ⁾	85	744,600	0.0022	0.0011	0.00031	None	0	0	0.187	0.82	0.0935	0.41	0.0264	0.12
			•		•		Total Mate	rial Handling E	missions for	Scenario 2 =	0.24	1.06	0.12	0.53	0.034	0.15
								Total Materia	al Handling I	Emissions ^(j) =	0.43	1.88	0.22	0.94	0.061	0.27

#### Footnotes:

⁽a) Based on operating 8,760 hours per year. The 85 TPH maximum throughput is based on the maximum rate that material can be moved from Railcar Offloading (formerly Railcar Unloading), which was set equal to the maximum rate that potash material will be moved from the warehouses for consistent tracking purposes. No changes were made to the currently permitted Brine Circuit capacity of 100 tph, Warehouse 1 capacity of 100 tph, Warehouse 2 capacity of 400 tph, or Warehouse 3 capacity of 400 tph as listed in Table 104.A (Regulated Equipment List) of the current NSR permit.

⁽b) Uncontrolled emission factors in lbs/ton for transfer points are obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug. 2004. The emission factors have been interpolated for the corresponding particle sizes (see Table 38 for more details). These material handling emission factors represent transfer points in the AP-42 table, but are the most representative emission factors for this type of loading and unloading operation, relative to aggregate handling, since only a small amount of dust forms from brine handling. These emission factors are also more conservative than the truck loading (conveyor, crushed stone) and unloading (fragmented stone) emission factors in the same AP-42 table. In addition, these emission factors are being used to maintain consistency with the existing permitted Brine Circuit emissions.

⁽c) Control efficiencies reflect the approved control efficiencies as listed in Tables 105.B and 105.C of the NSR and Title V permits.

⁽d) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

⁽e) Hourly Emission Rate (lb/hr) = (Maximum Throughput [TPH]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽f) Annual Emission Rate (TPY) = (Maximum Throughput [TPY]) x (Emission Factor [lb/ton]) / (2000 lbs/ton) x (1 - Total Control Efficiency [%] / 100)

⁽g) Material handling emissions associated with offloading material from the railcars (formerly under Railcar Unloading) are already included in the permit.

⁽h) Material handling emissions associated with unloading in WH1, WH2, and WH3 are already included in the permit.

⁽i) Even though material handling emissions associated with unloading at the Brine Circuit are already in the permit, Mosaic requested the flexibility to unload material that originates from the railcar or warehouses at the same time as unloading material that originates from the currently permitted trucked in material. Therefore, additional material handling emissions are included in the table above.

⁽i) Mosaic requested the flexibility to move material under each scenario at the same time; therefore, the emissions for each scenario are summed. Given the assumptions that went into the individual calculations, this summation represents the worst-case emissions



# Table 34 Potash Fugitive Hauling Emissions Mosaic Potash Carlsbad, Inc.

Pollutant	k (lb/VMT) ^(a)	a ^(a)	b ^(a)	Surface Material Silt Content, b (%) ^(b)	Mean Vehicle Weight, W (tons) ^(c)	Control Equipment / Measure ^(d)	Unit Control Efficiency (%) ^(e)	Total Control Efficiency (%) ^(f)	Controlled Particulate Emission Factor (lb/VMT) ^(g)	VMT/hr ^(h)	Maximum Hourly Emissions (lb/hr) ⁽ⁱ⁾	Maximum Annual Emissions (TPY) ^(j)
Scenario 1 - Haulii	ng Between Rai	lcar Offloadi	ng ^(k) and th	ne Brine Circuit (FUG64)								
TSP	4.9	0.7	0.45	4.8	24.0	Paved Roads	99		0.0079	22.2	0.18	0.62
$PM_{10}$	1.5	0.9	0.45	4.8	24.0	Max Speed ≤ 5 mph	88	99.9	0.0020	22.2	0.045	0.16
$PM_{2.5}$	0.15	0.9	0.45	4.8	24.0				0.00020	22.2	0.0045	0.016
Scenario 2 - Haulii	ng Between the	Warehouses ⁽	1) and the B	Brine Circuit (FUG65)								
TSP	4.9	0.7	0.45	4.8	24.0	Paved Roads	99		0.0079	12.9	0.10	0.36
$PM_{10}$	1.5	0.9	0.45	4.8	24.0	Max Speed ≤ 5 mph	88	99.9	0.0020	12.9	0.026	0.092
PM _{2.5}	0.15	0.9	0.45	4.8	24.0				0.00020	12.9	0.0026	0.0092
,									Total TSP Hau	ling Emissions =	0.28	0.98
									Total PM ₁₀ Hauling Emissions =		0.071	0.25
									Total PM _{3.5} Hau	ling Emissions =	0.0071	0.025

#### Footnotes:

⁽h) Vehicle Miles Traveled (VMT/hr) = No. of Trips per Hour (trips/hr) x Length of Road (one-way, feet) x 2 ÷ (5,280 feet/mi)

Scenario No.	Activity	Material Throughput Rate (TPH)	One-Way Length of Road (feet/trip)	Maximum <u>Truck</u> Trips per Hour (trips/hr) ^(m)	Maximum Truck Miles Traveled (VMT/hr)	Maximum <u>Loader</u> Trips per Hour (trips/hr) ^(m)	Maximum Loader Miles Traveled (VMT/hr)	Maximum Vehicle Miles Traveled (VMT/hr) ⁽ⁿ⁾
Scenario 1	Truck/Loader from Railcar Offloading to the Brine Circuit	85	3,450	5.7	7.4	17.0	22.2	22.2
Scenario 2	Truck/Loader from WH1, WH2, or WH3 to the Brine Circuit	85	2,000	5.7	4.3	17.0	12.9	12.9

Note that these roundtrip distances are based on the worst-case distance a truck or loader would have to travel in order to maximize the emissions. In most instances, access points that are closer together that minimize distance, hauling time, and emissions will be used.

P - no. of days w/ precip. > 0.01" = 70 Annual Hours of Operation (hrs/yr) = 8,760

8,760

From AP-42 Figure 13.2.2-1, Mean number of days with 0.01 inch or more of precipitation in United States, November 2006.

⁽a) From AP-42, Chapter 13.2.2 "Unpaved Roads," Table 13.2.2-2, November, 2006.

⁽b) From AP-42, Table 13.2.2-1 (sand and gravel processing, plant road, mean value).

⁽c) Assumed full half of the time and empty half of the time, so the mean vehicle weight is based on an average of the truck and loader loaded and empty weights. For the haul truck, the loaded weight is 30 tons and the empty weight is 15 tons for a mean weight of 22.5 tons. For the loader, the loaded weight is 26.5 tons and the empty weight is 21.5 tons for a mean weight of 24.0 tons. The maximum mean vehicle weight is used in the calculations to maximize the emissions.

⁽d) Based on Table 6-6 in the Western Regional Air Partnership's (WRAP) Fugitive Dust Handbook, September 7, 2006. The speed limit control efficiency is based on a linear relationship between the speed (x, mph) and the control efficiency (y, %): y = -2.2x + 99. Note that these controls are approved controls at the facility.

⁽e) Control efficiencies reflect the approved control efficiencies as listed in Tables 105.B and 105.C of the NSR and Title V permits.

⁽f) Total Control Efficiency (%) = 100% - 100% x (1 - Control Efficiency (%)₁ / 100) x (1 - Control Efficiency (%)₂ / 100) x (1 - Control Efficiency (%)₃ / 100)

⁽g) From AP-42, Section 13.2.2, Equation 1a, Emission Factor (lb/VMT) = [k x (s/12)^a x (W/3)^b] x [1 - Control Efficiency (%) / 100]

⁽i) Hourly Emission Rate (lb/hr) = Emission Factor (lb/VMT) x Maximum Vehicle Miles Traveled (VMT/hr)

⁽¹⁾ Annual Emission Rate (TPY) = Hourly Emission Rate (lb/hr) x Annual Hours of Operation (hr/yr) / (2,000 lbs/ton). Multiply this value by (365-P) / 365 to account for precipitation for outside hauling.

⁽k) Railcar Offloading is formerly referred to as Railcar Unloading.

⁽¹⁾ Hauling emissions from Railcar Offloading (formerly Railcar Unloading) to the warehouses are already included in the permit.

⁽m) Based on a loader capacity of 5 tons and a haul truck capacity of 15 tons.

⁽n) Based on the worst-case miles traveled by either a haul truck or loader.



# Table 35 TMA Fugitive Material Handling Emissions Mosaic Potash Carlsbad, Inc.

Material	Process /	Fugitive ID	Maximum T	Throughput	Emission Factor	Control Equipment /	Unit Control Efficiency ^(d)	Total Control	Maximum T	SP Emissions	Maximum PM	M ₁₀ Emissions	Maximum PM	I _{2.5} Emissions
Processed	Source Description	J	ТРН	TPY ^(a)	Category ^(b)	Measure ^(c)	(%)	Efficiency ^(e) (%)	(lb/hr) ^(f)	(TPY) ^(g)	(lb/hr) ^(f)	(TPY) ^(g)	(lb/hr) ^(f)	(TPY) ^(g)
Scenario 1 - Hau	ling Between the Warehouses	and the TMA												
Misc. Material	Loading between WH2 and WH3	FUG8	50	438,000	Material Transfer	Wind Break	40.0	40.0	0.066	0.29	0.033	0.14	0.0093	0.041
Misc. Material	Unloading at TMA	FUG66	50	438,000	Material Transfer	None	0.0	0.0	0.11	0.48	0.055	0.24	0.016	0.068
						To	otal Emissions	(Scenario 1) =	0.18	0.77	0.088	0.39	0.025	0.11
Scenario 2 - Hau	lling Between Railcar Offload	ling and the TM	A									•		
Misc. Material	Loading at Railcar Offloading	FUG43	50	438,000	Material Transfer	None	0.0	0.0	0.11	0.48	0.055	0.24	0.016	0.068
Misc. Material	Unloading at TMA	FUG66	50	438,000	Material Transfer	None	0.0	0.0	0.11	0.48	0.055	0.24	0.016	0.068
						Te	otal Emissions	(Scenario 2) =	0.22	0.96	0.11	0.48	0.031	0.14
Scenario 3 - Hau	ling Between Truck Loadout	and the TMA												
Misc. Material	Unloading near Truck Loadout	FUG12	50	438,000	Material Transfer	None	0.0	0.0	0.11	0.48	0.055	0.24	0.016	0.068
Misc. Material	Loading near Truck Loadout	FUG12	50	438,000	Material Transfer	None	0.0	0.0	0.11	0.48	0.055	0.24	0.016	0.068
Misc. Material	Unloading at TMA	FUG66	50	438,000	Material Transfer	None	0.0	0.0	0.11	0.48	0.055	0.24	0.016	0.068
	Total Emissions (Scenario 3) =										0.17	0.72	0.047	0.20

#### Footnotes:

⁽b) Uncontrolled emission factors in lbs/ton obtained from Section 11.19.2 of AP-42, Compilation of Air Pollutant Emission Factors, Aug, 2004. See Table 38 for more details.

Particle Size (µm)	Transfer Point (lbs/ton)
2.5	0.00031
10	0.0011
30	0.0022

⁽c) Unit controls include only equipment or building controls, no add-on controls, that are inherent to the design and location of the equipment.

⁽a) Based on 8,760 hours a year, which is a highly unlikely scenario.

 $^{^{(}d)}$  Capture efficiencies are based on best engineering judgment and reflect Table 105.C in the NSR permit.

⁽e) Total Control Efficiency (%) =  $100\% \times (1 - \text{Unit Control Efficiency (\%)}_1 / 100) \times (1 - \text{Unit Control Efficiency (\%)}_2 / 100)$ 

⁽f) Hourly Emission Rate (lb/hr) = (Maximum Throughput [TPH]) x (Emission Factor [lb/ton]) x (1 - Total Control Efficiency [%] / 100)

⁽g) Annual Emission Rate (TPY) = (Maximum Throughput [TPY]) x (Emission Factor [lb/ton]) ÷ (2000 lb/ton) x (1 - Total Control Efficiency [%] / 100)



# Table 36 TMA Fugitive Hauling Emissions (FUG67) Mosaic Potash Carlsbad, Inc.

Pollutant	k (lb/VMT) ^(a)	a ^(a)	b ^(a)	Surface Material Silt Content, S (%) ^(b)	Mean Vehicle Weight, W (tons) ^(c)	Control Equipment / Measure	Unit Control Efficiency (%) ^(d)	Total Control Efficiency (%) ^(e)	Emission Factor (lb/VMT) ^(f)	VMT/hr ^(g)	Maximum Hourly Emissions (lb/hr) ^(h)	Maximum Annual Emissions (TPY) ⁽ⁱ⁾
Scenario 1 - H	auling Between	the Wareh	ouses and t	the TMA								
TSP	4.9	0.7	0.45	4.8	24.0				0.2941	10.34	3.04	10.77
$PM_{10}$	1.5	0.9	0.45	4.8	24.0	Paved Roads	62.7	95.5	0.0750	10.34	0.78	2.74
$PM_{2.5}$	0.15	0.9	0.45	4.8	24.0	Max Speeds $\leq 5$ mph	88.0	93.3	0.00750	10.34	0.078	0.27
Scenario 2 - H	auling Between	Railcar Of	floading ar	nd the TMA								
TSP	4.9	0.7	0.45	4.8	24.0				0.323	9.39	3.03	10.74
$PM_{10}$	1.5	0.9	0.45	4.8	24.0	Paved Roads	59.1	95.1	0.082	9.39	0.77	2.74
$PM_{2.5}$	0.15	0.9	0.45	4.8	24.0	Max Speeds ≤ 5 mph	88.0	93.1	0.0082	9.39	0.077	0.27
Scenario 3 - H	auling Between	Truck Loa	dout and t	he TMA ^(j)								
TSP	4.9	0.7	0.45	4.8	24.0				0.387	7.81	3.02	10.70
$PM_{10}$	1.5	0.9	0.45	4.8	24.0	Paved Roads	51.0	94.1	0.099	7.81	0.77	2.73
PM _{2.5}	0.15	0.9	0.45	4.8	24.0	Max Speeds $\leq 5$ mph	88.0	9 <del>4</del> .1	0.0099	7.81	0.077	0.27

#### Footnotes:

⁽g) Vehicle miles traveled (VMT/hr) = 2 x Length of haul road - one way (feet) / (5,280 feet/mi) x Maximum no. of round trips per hour (trips/hr). Even though loaders and/or haul trucks can move the material, loaders are used in the emission calculations because they require more trips, which results in higher emission rates.

C			
Scen	Trio	1	1

Maximum length of road - one way (feet) =	2,730
Maximum no. of round trips per hour =	10.0
Vehicle Miles Traveled (VMT/hr)=	10.34
Scenario 2:	
Maximum length of road - one way (feet) =	2,480
Maximum no. of round trips per hour =	10.0
Vehicle Miles Traveled (VMT/hr)=	9.39
Scenario 3:	
Maximum length of road - one way (feet) =	2,062
Maximum no. of round trips per hour =	10.0
Vehicle Miles Traveled (VMT/hr)=	7.81

⁽h) Hourly Emission Rate (lb/hr) = Emission Factor (lb/VMT) x Vehicle Miles Traveled (VMT/hr)

P - no. of days w/precip. > 0.01" = 70 Annual Hours of Operation (hrs/yr) = 8,76

⁽a) From AP-42, Chapter 13.2.2 "Unpaved Roads", Table 13.2.2-2, November, 2006.

⁽b) AP-42, Table 13.2.2-1 (sand and gravel processing, plant road, mean value).

⁽c) Assumed full half of the time and empty half of the time, so the mean vehicle weight is based on an average of the loaded and empty weights. Either loaders and/or haul trucks can move the material, but loaders were chosen for the emission calculations due to their higher average vehicle weight, which results in higher emission rates.

⁽d) Based on Table 6-6 in the Western Regional Air Partnership's (WRAP) Fugitive Dust Handbook, September 7, 2006. The speed limit control efficiency is based on a linear relationship between the speed (x, mph) and the control efficiency (y, %): y = -2.2x + 99. Note that these controls are intrinsic to the operations at Mosaic and are not add-on controls. Since a portion of the road will remain unpaved (i.e., 1,000 feet), the paved control efficiency of 99% has been adjusted based on the percentage of road that is paved and assuming no control efficiency for the unpaved portion.

⁽e) Total Control Efficiency (%) = 100% - 100% x (1 - Unit Control Efficiency (%), / 100) x (1 - Unit Control Efficiency (%), / 100)

⁽f) Emission Factor (lb/VMT) = [k x (S/12)^a x (W/3)^b] x [1 - Inherent Control Efficiency (%) / 100]

⁽¹⁾ Annual Emission Rate (ton/yr) = Hourly Emission Rate (lb/hr) x Annual Hours of Operation (hr/yr) / (2,000 lbs/ton) x (365-P) / 365

⁽i) Most of the material from Truck Loadout that breaks grade is returned to the warehouses and not the TMA. However, we are representing the movement of material from Truck Loadout to the TMA in these calculations because it yields worst-case emission rates.



# Table 37 Fugitive Emission Control Efficiencies Mosaic Potash Carlsbad, Inc.

Type of Fugitive Dust Control	Description	Control Efficiency ^(a)
Ventilation Capture	An active pick-up point that vents to a control device.	100 to 95%
Full Equipment Enclosure	Equipment or transfer points that are completely enclosed (e.g., gravity feed pipes, tube belt conveyors).	95%
Partial Equipment Enclosure	Equipment or transfer points that are partially enclosed (e.g., hoods covering belts).	50-85%
Full Building Enclosure	A building that has no openings to the atmosphere (e.g., no open doors or windows).	90%
Limited Building Enclosure	A building that has a door or a window opening to the atmosphere, but no cross ventilation (e.g., one open door or one window, or one panel missing).	80%
Partial Building Enclosure	A building with several openings to the atmosphere (e.g., open doors, open windows, missing panels).	70%
Wind Break	A three-sided wind screen.	40%
Product Coating	Application of coating compound to the product prior to dispatch. (per CAV # MOS-0196-0701).	80 to 90%
Fully Enclosed Fines Bin with bin vent filter	S&L Loadout 4 Undersize Bin (per CAV # MOS-0196-0701). Replaces undersized discharge pipe with enclosed screw conveyor to an enclosed storage bin with vent sock.	99.99% (emissions calculated at 95%)

#### Footnotes

⁽a) When multiple controls are used on a fugitive emission point, an overall control efficiency was determined as follows:  $[1-[(1-0.95)]] \times 100 = 99.8\%$ .



# Table 38 Material Handling Emission Factors Mosaic Potash Carlsbad, Inc.

Particle Size	Controlled Emission Factors (lbs/ton)										
(µm)	Tertiary Crus	hing	Screening	5	Transfer Poi	int	Fines Screen	ing			
2.5	0.00010	(1)	0.000050	(1)	0.000013	(1)	0.00136	(2)			
10	0.00054	(1)	0.00074	(1)	0.000046	(1)	0.0022	(1)			
100	0.0012	(1)	0.0022	(1)	0.00014	(1)	0.0036	(1)			
30	0.00086	(3)	0.00147	(3)	0.00009	(3)	0.00287	(2)			
PM ₁₀ Control	77.5	(5)	91.5	(5)	95.8	(5)	96.9	(5)			
Efficiency		. /		` /		( )		. ,			
Particle Size			Uncontroll	ed Emis	sion Factors (lbs.	/ton)					
(µm)	Tertiary Crus	hing	Screening	5	Transfer Poi	int	Fines Screen	ing			
2.5	0.00044	(4)	0.00059	(4)	0.00031	(4)	0.044	(4)			
10	0.0024	(1)	0.0087	(1)	0.00110	(1)	0.072	(1)			
100	0.0054	(1)	0.025	(1)	0.0030	(1)	0.30	(1)			
30	0.0038	(6)	0.017	(6)	0.0022	(6)	0.094	(6)			

#### References:

- (1) From AP-42, Table 11.19.2-2.
- (2) Calculated from  $PM_{10}$  and  $PM_{100}$  interpolation: y = m * ln(x) + b, where x is particle size and y is emission factor. See Figure 1.

m = 0.00061 b = 0.00080

(3) Calculated from  $PM_{100}$ ,  $PM_{10}$  and  $PM_{2.5}$  interpolation: y = m * ln(x) + b, where x is particle size and y is emission factor. See Figure 1.

	Tertiary Crushing	Screening	Transfer Point
$\mathbf{m} =$	0.00030	0.00059	0.000035
h =	-0.00016	-0.00054	-0.000025

- (4) Calculated using the control efficiency for  $PM_{10}$ . This approach is the same as used in AP-42 to calculate  $PM_{100}$  values from the  $PM_{10}$  control efficiencies for Tertiary Crushing, Screening, and Transfer Points.  $PM_{2.5}$  uncontrolled =  $PM_{2.5}$  controlled / (1  $PM_{10}$  Control Efficiency [%] / 100).
- (5)  $PM_{10}$  control efficiency =  $(PM_{10}$  uncontrolled  $PM_{10}$  controlled) /  $PM_{10}$  uncontrolled x 100
- (6) Calculated using the control efficiency for  $PM_{10}$ . This approach is the same as used in AP-42 to calculate  $PM_{100}$  values from the  $PM_{10}$  control efficiency.  $PM_{30}$  uncontrolled =  $PM_{30}$  controlled / (1  $PM_{10}$  Control Efficiency [%] / 100).



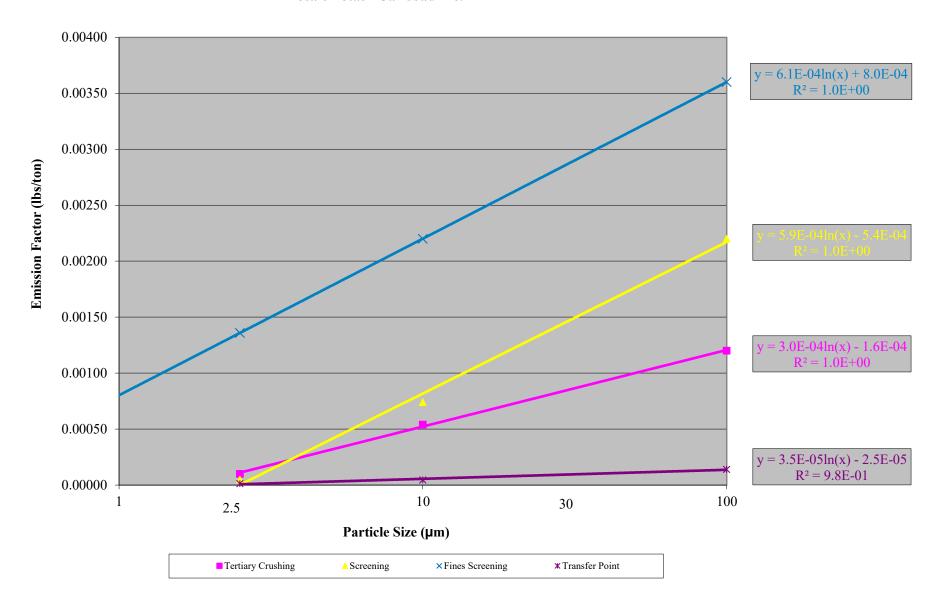
Table 39 Summary of Fugitive Emissions Mosaic Potash Carlsbad, Inc.

								Hourly	Fugitive E	missions (lb/l	nr)					Annual Fu	gitive Emissio	ons (TPY) -
	Scrubber	Baghouse	Fugitive		Case 1			Case 2	- ng-t	(	Case 3			Case 4		-	5 hrs/yr of b	` '
Fugitive Source Description	ID	ID	ID	(With Raghe	ouses & With	(Coating)	(With Bac	ghouses & No	Coating)	(No Bagh	ouses and N	o Coating)	(No Bagh	ouses & Witl	h Coating)		ating down ti	0
				TSP	PM ₁₀	PM _{2.5}												
LANG Hoist		CON4	FUG25	8.61E-02	4.21E-02	1.19E-02	8.61E-02	4.21E-02	1.19E-02	1.64E-01	8.02E-02	2.27E-02	1.64E-01	8.02E-02	2.27E-02	3.84E-01	1.88E-01	5.31E-02
LANG Hoist		CON4	FUG26	1.64E-02	8.02E-03	2.27E-03	1.64E-02	8.02E-03	2.27E-03	3.28E-01	1.60E-01	4.53E-02	3.28E-01	1.60E-01	4.53E-02	9.91E-02	4.85E-02	1.37E-02
LANG Hoist		CON4	FUG3	3.28E-01	1.60E-01	4.53E-02	1.44E+00	7.03E-01	1.99E-01									
LANG Crusher		CON5a	FUG27	2.19E-01	1.07E-01	3.03E-02	2.19E-01	1.07E-01	3.03E-02	3.70E-01	1.81E-01	5.11E-02	3.70E-01	1.81E-01	5.11E-02	9.92E-01	4.85E-01	1.37E-01
LANG Crusher		CON5a	FUG28	5.54E+00	2.80E+00	1.89E-01	5.54E+00	2.80E+00	1.89E-01	5.63E+00	2.85E+00	1.99E-01	5.63E+00	2.85E+00	1.99E-01	2.43E+01	1.22E+01	8.30E-01
LANG Fine Ore Bin		CON5b	FUG29	4.73E-01	2.31E-01	6.54E-02	4.73E-01	2.31E-01	6.54E-02	6.48E-01	3.17E-01	8.96E-02	6.48E-01	3.17E-01	8.96E-02	2.09E+00	1.02E+00	2.89E-01
LANG Dryer; LANG Screens	CON6	CON7	FUG30	1.48E+00	1.07E+00	6.19E-01	1.48E+00	1.07E+00	6.19E-01	2.12E+00	1.53E+00	8.89E-01	2.12E+00	1.53E+00	8.89E-01	6.55E+00	4.71E+00	2.73E+00
GRAN Process Vent. 10b;																		
GRAN Dryer 10a	CON10ab		FUG33	2.66E-01	1.47E-01	5.64E-02	1.08E+00	5.43E-01	1.68E-01	1.08E+00	5.43E-01	1.68E-01	2.66E-01	1.47E-01	5.64E-02	1.24E+00	6.76E-01	2.57E-01
GRAN Process Vent. 10c		CON14	FUG24	1.78E-02	8.89E-03	2.44E-03	1.78E-02	8.89E-03	2.44E-03	8.97E-02	4.72E-02	1.19E-02	8.97E-02	4.72E-02	1.19E-02	4.71E-01	2.46E-01	6.27E-02
S&L Dispatch			FUG31	1.24E+00	6.07E-01	1.72E-01	2.70E+00	1.32E+00	3.73E-01	2.70E+00	1.32E+00	3.73E-01	1.24E+00	6.07E-01	1.72E-01	5.56E+00	2.72E+00	7.69E-01
Dispatch Transfer Tower		CON11	FUG32	2.38E-02	1.16E-02	3.29E-03	3.15E-02	1.54E-02	4.35E-03	6.30E-01	3.08E-01	8.70E-02	4.76E-01	2.33E-01	6.58E-02	1.57E-01	7.69E-02	2.17E-02
S&L Warehouse 1 (Aggregate Handling)			FUG6	1.47E-01	6.94E-02	1.05E-02	7.72E-01	3.65E-01	5.53E-02	7.72E-01	3.65E-01	5.53E-02	1.47E-01	6.94E-02	1.05E-02	6.97E-01	3.30E-01	4.99E-02
S&L Warehouse 1 (Hauling)			FUG6	2.99E-01	7.62E-02	7.62E-03	1.31E+00	3.34E-01	3.34E-02									
S&L Warehouse 1 (Material Handling)			FUG6	9.56E-02	4.68E-02	1.32E-02	4.19E-01	2.05E-01	5.77E-02									
S&L Warehouse 1 - TOTAL			FUG6	5.41E-01	1.92E-01	3.13E-02	1.17E+00	4.88E-01	7.61E-02	1.17E+00	4.88E-01	7.61E-02	5.41E-01	1.92E-01	3.13E-02	2.43E+00	8.68E-01	1.41E-01
S&L Warehouse 2 (Dispatch)			FUG8	2.35E-01	1.15E-01	3.13E-02 3.25E-02	1.62E+00	7.92E-01	2.24E-01	1.62E+00	7.92E-01	2.24E-01	2.35E-01	1.15E-01	3.13E-02 3.25E-02	1.15E+00	5.62E-01	1.41E-01 1.59E-01
S&L Warehouse 2 (Aggregate Handling)			FUG8	2.91E-01	1.37E-01	2.08E-02	1.53E+00	7.23E-01	1.10E-01	1.53E+00	7.23E-01	1.10E-01	2.91E-01	1.37E-01	2.08E-02	1.13E+00 1.38E+00	6.53E-01	9.89E-01
S&L Warehouse 2 (Hauling)			FUG8	5.92E-01	1.51E-01	1.51E-02	2.59E+00	6.61E-01	6.61E-02									
S&L Warehouse 2 (Material Handling)			FUG8	0.00E+00	0.01E-01 0.00E+00	0.01E-02 0.00E+00												
S&L Warehouse 2 - TOTAL			FUG8	1.12E+00	4.03E-01	6.83E-02	3.74E+00	1.67E+00	3.48E-01	3.74E+00	1.67E+00	3.48E-01	1.12E+00	4.03E-01	6.83E-02	5.12E+00	1.88E+00	3.24E-01
S&L Warehouse 3 (Dispatch)			FUG11	1.02E-01	4.98E-02	1.41E-02	7.02E-01	3.43E-01	9.70E-02	7.02E-01	3.43E-01	9.70E-02	1.02E-01	4.03E-01 4.98E-02	1.41E-02	4.98E-01	2.44E-01	6.89E-02
			FUG11	2.91E-01	1.37E-01	2.08E-02	1.53E+00	7.23E-01	9.70E-02 1.10E-01	1.53E+00	7.23E-01	9.70E-02 1.10E-01	2.91E-01	1.37E-01	2.08E-02	1.38E+00	6.53E-01	9.89E-02
S&L Warehouse 3 (Aggregate Handling) S&L Warehouse 3 (Hauling)			FUG11	5.92E-01	1.57E-01 1.51E-01	1.51E-02	5.92E-01	1.51E-01	1.10E-01 1.51E-02	5.92E-01	1.51E-01	1.10E-01 1.51E-02	5.92E-01	1.57E-01 1.51E-01	1.51E-02	2.59E+00	6.61E-01	6.61E-02
S&L Warehouse 3 (Material Handling)			FUG11	5.69E-01	2.79E-01	7.86E-02	2.49E+00	1.22E+00	3.44E-01									
S&L Warehouse 3 - TOTAL			FUG11	1.55E+00	6.17E-01	1.29E-01	3.39E+00	1.50E+00	3.00E-02	3.39E+00	1.50E+00	3.00E-02	1.55E+00	6.17E-01	1.29E-01	6.96E+00	2.78E+00	5.78E-01
S&L Truck Loadout			FUG11	2.88E-01	1.43E-01	4.05E-02	5.80E-01	2.86E-01	8.07E-02	5.80E-01	2.86E-01	8.07E-02	2.88E-01	1.43E-01	4.05E-02	1.29E+00	6.41E-01	1.81E-01
S&L Loadout 4			FUG12 FUG9	7.18E-01	4.98E-01	2.77E-01	3.78E+00	2.62E+00	1.46E+00	3.78E+00	2.62E+00	1.46E+00	7.18E-01	4.98E-01	2.77E-01	3.41E+00	2.37E+00	1.32E+00
S&L Loadout 5			FUG10	2.90E-01	1.66E-01	6.97E-02	1.51E+00	8.66E-01	3.64E-01		8.66E-01	3.64E-01	2.90E-01	1.66E-01	6.97E-02	1.38E+00	7.89E-01	3.31E-01
Nash Plant Hoist			FUG10 FUG1	7.42E-01	3.63E-01	1.03E-01	7.42E-01	3.63E-01	1.03E-01	1.51E+00 7.42E-01	3.63E-01	1.03E-01	7.42E-01	3.63E-01	1.03E-01	3.25E+00	1.59E+00	3.31E-01 4.49E-01
			FUG1	7.42E-01 7.97E-01		5.17E-02	3.49E+00		2.27E-01									
Nash Plant Screening				7.97E-01 3.59E-01	3.98E-01		7.97E-01 3.59E-01	3.98E-01			3.98E-01	9.16E-03	3.59E-01	3.98E-01			1.74E+00	
Main Haul Road			FUG22 FUG20	1.32E+01	9.16E-02 3.12E+00	9.16E-03 3.12E-01	1.32E+01	9.16E-02 3.12E+00	9.16E-03 3.12E-01	3.59E-01	9.16E-02	3.12E-01	1.32E+01	9.16E-02 3.12E+00	9.16E-03 3.12E-01	1.27E+00 1.98E+00	3.24E-01 4.68E-01	3.24E-02 4.68E-02
Permanent Abrasive Blasting			FUG20 FUG40							1.32E+01	3.12E+00		1					
Portable Abrasive Blasting				1.32E+01	3.12E+00	3.12E-01	1.98E+00	4.68E-01	4.68E-02									
Railcar Offloading (material handling)			FUG43	4.78E-02	2.34E-02	6.61E-03	2.09E-01	1.02E-01	2.89E-02									
GRAN Reclaim (material handling)			FUG44	2.51E-01	1.24E-01	2.72E-02	1.10E+00	5.44E-01	1.19E-01									
Railcar Offloading (haul road)			FUG47	5.27E-02	1.34E-02	1.34E-03 1.88E-03	5.27E-02	1.34E-02	1.34E-03	5.27E-02	1.34E-02	1.34E-03	5.27E-02	1.34E-02	1.34E-03	1.86E-01	4.75E-02	4.75E-03
GRAN Reclaim (haul road)			FUG48 FUG49	7.38E-02	1.88E-02	6.42E-03	7.38E-02	1.88E-02	1.88E-03	7.38E-02	1.88E-02 6.42E-02	1.88E-03 6.42E-03	7.38E-02	1.88E-02	1.88E-03	2.61E-01	6.66E-02	6.66E-03
K-Mag Rehandling (haul road)				2.52E-01	6.42E-02		2.52E-01	6.42E-02	6.42E-03	2.52E-01			2.52E-01	6.42E-02	6.42E-03	8.92E-01	2.27E-01	2.27E-02
K-Mag Rehandling (material handling)			FUG50	1.59E-01	7.95E-02	2.24E-02	6.96E-01	3.48E-01	9.81E-02									
Brine Circuit (haul road)			FUG51a	2.54E-02	6.48E-03	6.48E-04	9.00E-02	2.29E-02	2.29E-03									
Brine Circuit (haul road)			FUG51b	1.20E-02	3.05E-03	3.05E-04	4.23E-02	1.08E-02	1.08E-03									
Brine Circuit (material handling)			FUG52	1.08E+00	5.34E-01	1.51E-01	4.74E+00	2.34E+00	6.60E-01									
General Hauling between WH2 and WH3			FUG57	1.20E-02	3.05E-03	3.05E-04	4.23E-02	1.08E-02	1.08E-03									
Railcar Offloading (haul road to GRAN Reclaim)			FUG58	1.46E-01	3.72E-02	3.72E-03	5.17E-01	1.32E-01	1.32E-02									
Railcar Offloading (haul road to K-Mag Rehandling)			FUG59	1.44E-02	3.67E-03	3.67E-04	5.10E-02	1.30E-02	1.30E-03									
Reagent (material handling, wind erosion at pile)			FUG60	1.40E-01	6.97E-02	1.08E-02	6.11E-01	3.05E-01	4.74E-02									
Reagent (material handling at grate)			FUG61	8.43E-03	4.13E-03	1.17E-03	3.69E-02	1.81E-02	5.11E-03									
Reagent (hauling)			FUG62	4.87E-03	1.24E-03	1.24E-04	1.72E-02	4.39E-03	4.39E-04									
General Hauling between WH1 and WH2			FUG63	1.20E-02	3.05E-03	3.05E-04	4.23E-02	1.08E-02	1.08E-03									
Potash Hauling (Railcar Offloading to Brine Circuit)			FUG64	1.75E-01	4.47E-02	4.47E-03	6.21E-01	1.58E-01	1.58E-02									
Potash Hauling (WH1, WH2,or WH3 to Brine Circuit)			FUG65	1.02E-01	2.59E-02	2.59E-03	3.60E-01	9.17E-02	9.17E-03									
TMA (material handling)			FUG66	3.30E-01	1.65E-01	4.65E-02	1.45E+00	7.23E-01	2.04E-01									
TMA (hauling)			FUG67	3.02E+00	7.70E-01	7.70E-02	1.07E+01	2.73E+00	2.73E-01									
Fugitive Emission Totals				48.4	16.3	3.0	60.3	22.8	5.3	62.5	24.0	5.8	50.4	17.4	3.4	98.5	44.9	10.6

Note that the gray rows above represent a portion of the emission unit total and should not be double-counted.



Table 40
Fugitive Emissions as Stack Emissions
Mosaic Potash Carlsbad, Inc.


Baghouse ID	Source Description	Current TSP/PM ₁₀ /PM _{2.5} Permit Limits	Estimated Fugitive Emissions as Stack Emissions (lb/hr) ^(a)				
		(lb/hr)	TSP	$PM_{10}$	PM _{2.5}		
CON4	LANG Hoist	0.75	0.39	0.19	0.054		
CON5a	LANG Crusher	1	0.24	0.13	0.031		
CON5b	LANG Fine Ore Bin	1	0.18	0.086	0.024		
CON7	LANG Screens	4	0.64	0.46	0.27		
CON11	Dispatch Transfer Tower	1	0.60	0.29	0.083		
CON14	GRAN Process Vent. 10c	2.5	0.072	0.038	0.0094		

# **Footnotes:**

^(a) Estimated additional fugitive emissions due to turning off the baghouse during process operations for a maximum of 175 hr/yr. These are emissions that would normally be pulled into the stack at ventilation pickup points when the baghouses are operating and must be counted toward the stack cap ton per year emission limits.



Figure 1 Controlled Emission Factors for Crushed Stone Processing Operations Mosaic Potash Carlsbad Inc.



# **Section 6.a Green House Gas Emissions**

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

_____

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

# **Calculating GHG Emissions:**

- 1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.
- **2.** GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 Mandatory Greenhouse Gas Reporting.
- 3. Emissions from routine or predictable start up, shut down, and maintenance must be included.
- **4.** Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **short** tons per year and represent each emission unit's Potential to Emit (PTE).
- **5.** All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.
- **6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following  $\Box$  By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

## **Sources for Calculating GHG Emissions:**

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.
- Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

# **Global Warming Potentials (GWP):**

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

#### **Metric to Short Ton Conversion:**

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 Mandatory Greenhouse Reporting requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

-----

Please see Table 2-P in the enclosed UA2 tables.

# **Section 7**

# **Information Used To Determine Emissions**

### **Information Used to Determine Emissions shall include the following:**

	If manufacturer data are used, include specifications for emissions units and control equipment, including control
	efficiencies specifications and sufficient engineering data for verification of control equipment operation, including
	design drawings, test reports, and design parameters that affect normal operation.
	If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one
	being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions
	of the unit being permitted and the unit represented in the test report significantly effect emission rates.
X	If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy
	of the page containing the emissions factors, and clearly mark the factors used in the calculations.
	If an older version of AP-42 is used, include a complete copy of the section.
X	If an EPA document or other material is referenced, include a complete copy.
	Fuel specifications sheet.
	If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a
	disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method
	used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)),
	accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any
	assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Please see the enclosed information, which serves as the basis for the emission calculations:

- Emission factors for material transfer points are based on AP-42, Chapter 11.19.2 "Crushed Stone Processing and Pulverized Mineral Processing," August 2004. Copies of the following are included:
  - o Table 11.19.2-2 from AP-42
  - Material Handling Emission Factors (Mosaic-created table showing the resulting interpolation of AP-42 data to obtain the PM30 (i.e., TSP) emission factors as well as other emission factors where AP-42 has data gaps)
  - Figure 1: Controlled Emission Factors for Crushed Stone Processing Operations (Mosaic-created figure that is used in the emission factor interpolation)
- Abrasive blasting emissions are based on AP-42, Chapter 13.2.6 "Abrasive Blasting," September 1997 and a South Coast Air Quality Management District 1988 outdoor abrasive blasting test that is summarized in Table 4-2 of the AP-42 Section 13.2.6 Background Document.
- Engines:
  - United States Environmental Protection Agency (U.S. EPA) Nonroad Compression-Ignition Engines: Exhaust Emission Standards (EPA-420-B-16-022), March 2016.
  - California Air Resources Board (CARB) Policy: CARB Emission Factors for CI Diesel Engines Percent HC in Relation to NMHC + NOx, June 28, 2004.
- Haul road emissions are based on AP-42, Chapter 13.2.2 "Unpaved Roads," November 2006. Copies of the following are included:
  - o Table 13.2.2-1 from AP-42
  - o Table 13.2.2-2 from AP-42
  - o Figure 13.2.2-1 from AP-42
- Control efficiencies used in the hauling calculations are based on the Western Regional Air Partnership's (WRAP) Fugitive Dust Handbook, September 7, 2006. A copy of Chapter 6, Unpaved Roads, is provided.

Saved Date: 11/30/2022

- Aggregate handling emissions are based on AP-42, Chapter 13.2.4 "Aggregate Handling and Storage Piles," November 2006. Copies of the following are included:
  - Table 13.2.4-1 from AP-42
  - Pages 3-4 from AP-42, which contain the emission factor description and equation, particle size multiplier table, and the range of source conditions for the equation.
- Wind erosion emissions are based on AP-42, Chapter 13.2.5 "Industrial Wind Erosion," November 2006. Because a predictive equation is used to estimate emissions, a copy of the entire section is included, which includes detailed descriptions of each of the variables and assumptions.

Table 11.19.2-2 (English Units). EMISSION FACTORS FOR CRUSHED STONE PROCESSING OPERATIONS (lb/Ton)^a

Source b	Total Particulate Matter ^{r,s}	EMISSION FACTOR RATING	Total PM-10	EMISSION FACTOR RATING	Total PM-2.5	EMISSION FACTOR RATING
Primary Crushing (SCC 3-05-020-01)	ND		$\mathrm{ND}^{\mathrm{n}}$		$\mathrm{ND}^{\mathrm{n}}$	
Primary Crushing (controlled) (SCC 3-05-020-01)	ND		$\mathrm{ND}^{\mathrm{n}}$		$\mathrm{ND}^{\mathrm{n}}$	
Secondary Crushing (SCC 3-05-020-02)	ND		$ND^n$		$ND^n$	
Secondary Crushing (controlled) (SCC 3-05-020-02)	ND		ND ⁿ		ND ⁿ	
(SCC 3-050030-03)	$0.0054^{\rm d}$	Е	0.0024°	С	$ND^n$	
Tertiary Crushing (controlled) (SCC 3-05-020-03)	0.0012 ^d	Е	0.00054 ^p	С	0.00010 ^q	Е
Fines Crushing (SCC 3-05-020-05)	0.0390 ^e	Е	0.0150 ^e	Е	ND	
Fines Crushing (controlled) (SCC 3-05-020-05)	$0.0030^{\rm f}$	Е	0.0012 ^f	Е	0.000070 ^q	Е
Screening (SCC 3-05-020-02, 03)	0.025°	Е	$0.0087^{l}$	С	ND	
Screening (controlled) (SCC 3-05-020-02, 03)	$0.0022^{d}$	Е	0.00074 ^m	С	0.000050 ^q	Е
Fines Screening (SCC 3-05-020-21)	$0.30^{g}$	Е	0.072 ^g	Е	ND	
Fines Screening (controlled) (SCC 3-05-020-21)	$0.0036^{g}$	Е	0.0022 ^g	Е	ND	
Conveyor Transfer Point (SCC 3-05-020-06)	0.0030 ^h	Е	0.00110 ^h	D	ND	
Conveyor Transfer Point (controlled) (SCC 3-05-020-06)	$0.00014^{i}$	Е	4.6 x 10 ⁻⁵ⁱ	D	1.3 x 10 ^{-5q}	Е
Wet Drilling - Unfragmented Stone (SCC 3-05-020-10)	ND		8.0 x 10 ^{-5j}	Е	ND	
Truck Unloading -Fragmented Stone (SCC 3-05-020-31)	ND		1.6 x 10 ^{-5j}	Е	ND	
Truck Loading - Conveyor, crushed stone (SCC 3-05-020-32)	ND		0.00010 ^k	Е	ND	

- a. Emission factors represent uncontrolled emissions unless noted. Emission factors in lb/Ton of material of throughput. SCC = Source Classification Code. ND = No data.
- b. Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent, and the same facilities operating wet suppression systems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over of the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. Visual observations from each source under normal operating conditions are probably the best indicator of which emission factor is most appropriate. Plants that employ substandard control measures as indicated by visual observations should use the uncontrolled factor with an appropriate control efficiency that best reflects the effectiveness of the controls employed.
- c. References 1, 3, 7, and 8
- d. References 3, 7, and 8

# Material Handling Emission Factors Mosaic Potash Carlsbad, Inc.

		Controlled Emission Factors (lbs/ton)												
Particle Size (µm)	Tertiary Crushi	Screening		Conveyor Tran Point	sfer	Fines Screening								
2.5	0.00010	(1)	0.000050	(1)	0.000013	(1)	0.0014	(2)						
10	0.00054	(1)	0.00074	(1)	0.000046	(1)	0.0022	(1)						
100	0.0012	(1)	0.0022	(1)	0.00014	(1)	0.0036	(1)						
30	0.00086	(3)	0.0015	(3)	0.000094	(3)	0.0029	(2)						
PM-10 Control Efficiency	77.5	(5)	91.5	(5)	95.8	(5)	96.9	(5)						

		Uncontrolled Emission Factors (lbs/ton)										
Particle Size (µm)	Tertiary Crushing Screening			Conveyor Tran Point	sfer	Fines Screening						
2.5	0.00044	(4)	0.00059	(4)	0.00031	(4)	0.044	(4)				
10	0.0024	(1)	0.0087	(1)	0.0011	(1)	0.072	(1)				
100	0.0054	(1)	0.025	(1)	0.0030	(1)	0.30	(1)				
30	0.0038	(6)	0.017	(6)	0.0022	(6)	0.094	(6)				

#### Footnotes:

- (1) From AP-42, Table 11.19.2-2.
- (2) Calculated from PM-10 and PM-100 interpolation: y = m * ln(x) + b, where x is particle size and y is emission factor. See Figure 1.

Fines Screening

 $\begin{array}{ll} m = & 0.00061 \\ b = & 0.00080 \end{array}$ 

(3) Calculated from PM-100, PM-10 and PM-2.5 interpolation: y = m * ln(x) + b, where x is particle size and y is emission factor. See Figure 1.

- (4) Calculated using the control efficiency for PM-10. This approach is the same as used in AP-42 to calculate PM-100 values from the PM-10 control efficiencies for Tertiary Crushing, Screening, and Conveyor Transfer Points. PM-2.5 uncontrolled = PM-2.5 controlled / (1 PM-10 Control Efficiency [%] / 100)
- $(5) \quad PM-10 \ control \ efficiency = (PM-10 \ uncontrolled \ \ PM-10 \ controlled) \ / \ PM-10 \ uncontrolled \ x \ 100 \ A \ begin{picture}(100,0) \put(0,0){\ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0) \ (0,0$
- (6) Calculated using the control efficiency for PM-10. This approach is the same as used in AP-42 to calculate PM-100 values from the PM-10 control efficiency. PM-30 uncontrolled = PM-30 controlled / (1 PM-10 Control Efficiency [%] / 100)

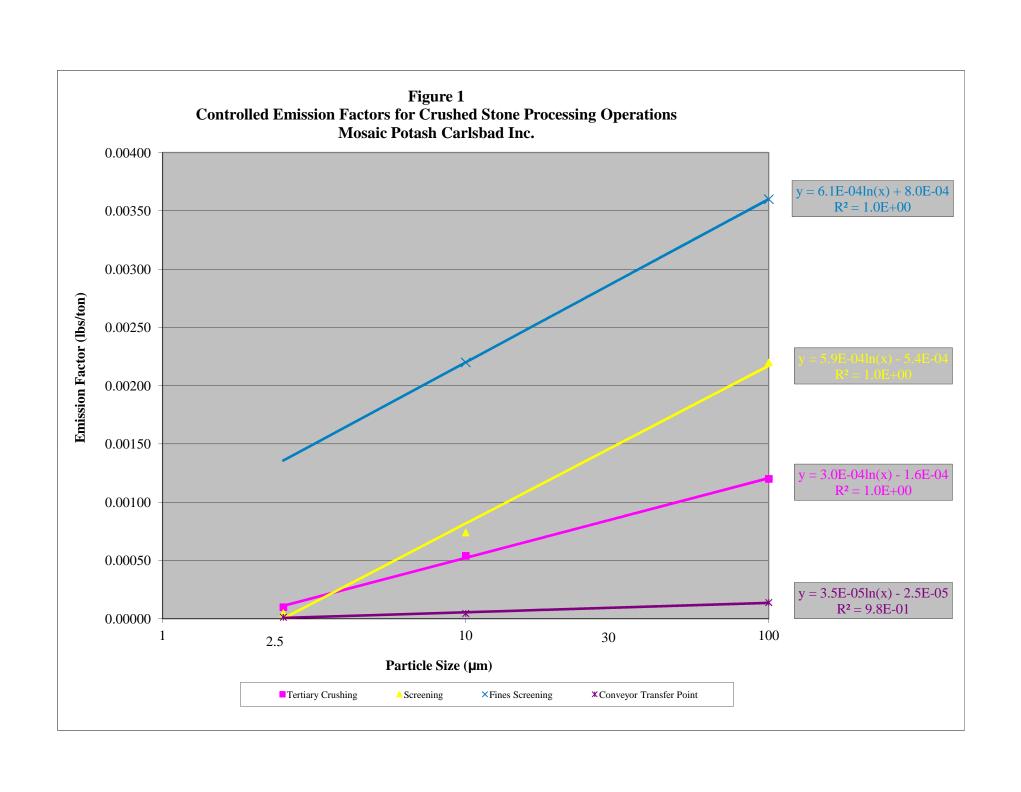



TABLE 4-2. (continued)

					Time weighted		Emission	
				Particle size	average	Data	factor,	
Reference	Type of operation	Type of		fraction,	concentration,	quality	mass/source	
document	tested	abrasive	Sampler location	μmA ^b	mg/m ³	rating	extent	Comments
WhiteMetal Inc., 1987	Outdoor blasting of steel panels coated	30-60 mesh (0.59-0.25	5 ft (1.5 m) downwind	TSP	257.61	NR	N/A	Hi-vols installed downwind of dry blasting operation to demonstrate control
		mm) silica sand	50 ft (15 m) downwind	TSP	45.99	NR	N/A	effectiveness of "Jet Stripper"; no sampling time or process data reported
			100 ft (30 m) downwind	TSP	6.18	NR	N/A	
			200 ft (61 m) downwind					
			500 ft (152 m) downwind	TSP	2.71	NR	N/A	
				TSP	0.90	NR	N/A	
South Coast Air Quality Management	Outdoor abrasive blasting	Sand	In ventilation system duct	TP	N/A	D	0.041 lb/lb sand	Emission factors determined by source test of an uncontrolled indoor blasting operation using a quasi-stack technique; original test
District, 1988		Grit		TP	N/A	D	0.010 lb/lb	report not available
,							grit	
		Shot		TP	N/A	D	0.004 lb/lb	
							shot	
		Other		TP	N/A	D	0.010 lb/lb abrasive	
Kinsey et al., 1995	Blasting of molded steel panels, painted, cleaned, or rusted	30-50 mesh silica sand	40 ft (12 m) downwind	TP, < 10, < 2.5	See Reference 1	A	See Table 4-4	Emission factors determined by source tests in low speed wind tunnel using standard test methods for total particulate, particle size distribution, and iron and 10 HAP metals
NEESA 2-161, 1990	Enclosed blasting of aircraft parts	Plastic	Fabric filter stack	TP	3.61	NR	N/A	Fabric filter-controlled plastic media blast room. No process data. Chromium conc. of 0.00187 mg/m³ and Cr ⁺⁶ conc. of 0.00095 mg/m³
Hunter Schlesser Sandblasting, 1993	Enclosed blasting of motor shields and handrails	Glass beads	Fabric filter stack	TP	2.3	NR	N/A	Fabric filter-controlled glass bead blast room. No process data.
Poly Engineering, 1990	Enclosed blasting of unspecified parts	Garnet	Fabric filter stack	TP	126	С	0.00069 lb/lb garnet	1,740 lb/hr of abrasive used to blast 700 lb/hr of parts

^aFrom references listed in Table 4-1. N/A = not available or not applicable. NR = not rated. ^bTP = total particulate matter. RP = respirable particulate matter ( $\leq 3.5 \mu mA$ ) as determined using a 10-mm nylon cyclone followed by a 37-mm filter cassette. TSP = total suspended particulate matter ( $\leq 30-50 \mu mA$ ) as determined by a high volume air sampler.

# 13.2.6 Abrasive Blasting

# 13.2.6.1 General¹⁻²

Abrasive blasting is the use of abrasive material to clean or texturize a material such as metal or masonry. Sand is the most widely used blasting abrasive. Other abrasive materials include coal slag, smelter slags, mineral abrasives, metallic abrasives, and synthetic abrasives. Industries that use abrasive blasting include the shipbuilding industry, automotive industry, and other industries that involve surface preparation and painting. The majority of shipyards no longer use sand for abrasive blasting because of concerns about silicosis, a condition caused by respiratory exposure to crystalline silica. In 1991, about 4.5 million tons of abrasives, including 2.5 million tons of sand, 1 million tons of coal slag, 500 thousand tons of smelter slag, and 500 thousand tons of other abrasives were used for domestic abrasive blasting operations.

# 13.2.6.2 Process Description¹⁻⁹

Abrasive blasting systems typically include three essential components: an abrasive container (i. e., blasting pot); a propelling device; and a blasting nozzle or nozzles. The exact equipment used depends to a large extent on the specific application and type(s) of abrasive.

Three basic methods can be used to project the abrasive towards the surface being cleaned: air pressure; centrifugal wheels; or water pressure. Air blast (or dry) systems use compressed air to propel the abrasive using either a suction-type or pressure-type process. Centrifugal wheel systems use a rotating impeller to mechanically propel the abrasive by a combination of centrifugal and inertial forces. Finally, the water (or wet) blast method uses either air pressure or water pressure to propel an abrasive slurry towards the cleaned surface.

Abrasive materials used in blasting can generally be classified as sand, slag, metallic shot or grit, synthetic, or other. The cost and properties associated with the abrasive material dictate its application. The following discusses the general classes of commonly used abrasives.

Silica sand is commonly used for abrasive blasting where reclaiming is not feasible, such as in unconfined abrasive blasting operations. Sand has a rather high breakdown rate, which can result in substantial dust generation. Worker exposure to free crystalline silica is of concern when silica sand is used for abrasive blasting.

Coal and smelter slags are commonly used for abrasive blasting at shipyards. Black BeautyTM, which consists of crushed slag from coal-fired utility boilers, is a commonly used slag. Slags have the advantage of low silica content, but have been documented to release other contaminants, including hazardous air pollutants (HAP), into the air.

Metallic abrasives include cast iron shot, cast iron grit, and steel shot. Cast iron shot is hard and brittle and is produced by spraying molten cast iron into a water bath. Cast iron grit is produced by crushing oversized and irregular particles formed during the manufacture of cast iron shot. Steel shot is produced by blowing molten steel. Steel shot is not as hard as cast iron shot, but is much more durable. These materials typically are reclaimed and reused.

Synthetic abrasives, such as silicon carbide and aluminum oxide, are becoming popular substitutes for sand. These abrasives are more durable and create less dust than sand. These materials typically are reclaimed and reused.

Other abrasives include mineral abrasives (such as garnet, olivine, and staurolite), cut plastic, glass beads, crushed glass, and nutshells. As with metallic and synthetic abrasives, these other abrasives are generally used in operations where the material is reclaimed. Mineral abrasives are reported to create significantly less dust than sand and slag abrasives.

The type of abrasive used in a particular application is usually specific to the blasting method. Dry blasting is usually done with sand, metallic grit or shot, aluminum oxide (alumina), or silicon carbide. Wet blasters are operated with either sand, glass beads, or other materials that remain suspended in water.

# 13.2.6.3 Emissions And Controls 1,3,5-11

#### Emissions —

Particulate matter (PM) and particulate HAP are the major concerns relative to abrasive blasting. Table 13.2.6-1 presents total PM emission factors for abrasive blasting as a function of wind speed. Higher wind speeds increase emissions by enhanced ventilation of the process and by retardation of coarse particle deposition.

Table 13.2.6-1 also presents fine particulate emission factors for abrasive blasting. Emission factors are presented for PM-10 and PM-2.5, which denote particles equal to or smaller than 10 and 2.5 microns in aerodynamic diameter, respectively. Emissions of PM of these size fractions are not significantly wind-speed dependent. Table 13.2.6-1 also presents an emission factor for controlled emissions from an enclosed abrasive blasting operation controlled by a fabric filter; the blasting media was 30/40 mesh garnet.

Limited data from Reference 3 give a comparison of total PM emissions from abrasive blasting using various media. The study indicates that, on the basis of tons of abrasive used, total PM emissions from abrasive blasting using grit are about 24 percent of total PM emissions from abrasive blasting with sand. The study also indicates that total PM emissions from abrasive blasting using shot are about 10 percent of total PM emissions from abrasive blasting with sand.

Hazardous air pollutants, typically particulate metals, are emitted from some abrasive blasting operations. These emissions are dependent on both the abrasive material and the targeted surface.

## Controls —

A number of different methods have been used to control the emissions from abrasive blasting. Theses methods include: blast enclosures; vacuum blasters; drapes; water curtains; wet blasting; and reclaim systems. Wet blasting controls include not only traditional wet blasting processes but also high pressure water blasting, high pressure water and abrasive blasting, and air and water abrasive blasting. For wet blasting, control efficiencies between 50 and 93 percent have been reported. Fabric filters are used to control emissions from enclosed abrasive blasting operations.

Table 13.2.6-1. PARTICULATE EMISSION FACTORS FOR ABRASIVE BLASTING^a

# EMISSION FACTOR RATING: E

Source	Particle size	Emission factor, lb/1,000 lb abrasive
Sand blasting of mild steel panels ^b (SCC 3-09-002-02)	Total PM 5 mph wind speed 10 mph wind speed 15 mph wind speed PM-10 ^c PM-2.5 ^c	27 55 91 13 1.3
Abrasive blasting of unspecified metal parts, controlled with a fabric filter ^d (SCC 3-09-002-04)	Total PM	0.69

a One lb/1,000 lb is equal to 1 kg/Mg. Factors represent uncontrolled emissions, unless noted. SCC = Source Classification Code.

## References For Section 13.2.6

- 1. C. Cowherd and J. Kinsey, *Development Of Particulate And Hazardous Emission Factors For Outdoor Abrasive Blasting*, EPA Contract No. 68-D2-0159, Midwest Research Institute, Kansas City, MO, June 1995.
- 2. Written communication from J. D. Hansink, Barton Mines Corporation, Golden, CO, to Attendees of the American Waterways Shipyard Conference, Pedido Beach, AL, October 28, 1991.
- 3. South Coast Air Quality Management District, *Section 2: Unconfined Abrasive Blasting*, Draft Document, El Monte, CA, September 8, 1988.
- 4. A. W. Mallory, "Guidelines For Centrifugal Blast Cleaning", *J. Protective Coatings And Linings*, *1*(1), June 1984.
- 5. B. Baldwin, "Methods Of Dust-Free Abrasive Blast Clearing", *Plant Engineering*, 32(4), February 16, 1978.
- 6. B. R Appleman and J. A. Bruno, Jr., "Evaluation Of Wet Blast Cleaning Units", *J. Protective Coatings And Linings*, *2*(8), August 1985.

b Reference 10.

^c Emissions of PM-10 and PM-2.5 are not significantly wind-speed dependent.

^d Reference 11. Abrasive blasting with garnet blast media.

- 7. M. K. Snyder and D. Bendersky, *Removal Of Lead-Based Bridge Paints*, NCHRP Report 265, Transportation Research Board, Washington, DC, December 1983.
- 8. J. A. Bruno, "Evaluation Of Wet Abrasive Blasting Equipment", *Proceedings Of The 2nd Annual International Bridge Conference*, Pittsburgh, PA, June 17-19, 1985.
- 9. J. S. Kinsey, *Assessment Of Outdoor Abrasive Blasting*, Interim Report, EPA Contract No. 68-02 4395, Work Assignment No. 29, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 11, 1989.
- 10. J. S. Kinsey, S. Schliesser, P. Murowchick, and C. Cowherd, *Development Of Particulate Emission Factors For Uncontrolled Abrasive Blasting Operations*, EPA Contract No. 68-D2-0159, Midwest Research Institute, Kansas City, MO, February 1995.
- 11. Summary Of Source Test Results, Poly Engineering, Richmond, CA, Bay Area Air Quality Management District, San Francisco, CA, November 19, 1990.
- 12. Emission Factor Documentation For AP-42 Section 13.2.6, Abrasive Blasting, Final Report, Midwest Research Institute, Cary, NC, September 1997.



# Nonroad Compression-Ignition Engines: Exhaust Emission Standards

	Rated Power (kW)	Tier	Model Year	NMHC (g/kW-hr)	NMHC + NOx (g/kW-hr)	NOx (g/kW-hr)	PM (g/kW-hr)	CO (g/kW-hr)	Smoke ^a (Percentage)	Useful Life (hours /years) ^b	Warranty Period (hours /years) b
		1	2000- 2004	-	10.5	-	1.0	8.0			
	kW < 8	2	2005- 2007	1	7.5	-	0.80	8.0		3,000/5	1,500/2
		4	2008+	-	7.5	-	0.40 °	8.0			
	0.4114	1	2000- 2004	-	9.5	-	0.80	6.6			
	8 ≤ kW < 19	2	2005- 2007	-	7.5	-	0.80	6.6		3,000/5	1,500/2
		4	2008+	-	7.5	-	0.40	6.6			
		1	1999- 2003	-	9.5	-	0.80	5.5			
	19 ≤ kW < 37	2	2004- 2007	-	7.5	-	0.60	5.5		5,000/7 d	3,000/5 e
	- 01	4	2008- 2012	-	7.5	-	0.30	5.5			
			2013+	-	4.7	-	0.03	5.5			
	37 ≤ kW < 56	1	1998- 2003	-	-	9.2	-	-			
		2	2004- 2007	-	7.5	-	0.40	5.0			
Federal		3 f	2008- 2011	-	4.7	-	0.40	5.0	20/15/50		
rederai		4 (Option 1) ^g	2008- 2012	-	4.7	-	0.30	5.0	20/10/00		
		4 (Option 2) ^g	2012	-	4.7	-	0.03	5.0			
		4	2013+	-	4.7	-	0.03	5.0			
		1	1998- 2003	-	-	9.2	-	-			
		2	2004- 2007	-	7.5	-	0.40	5.0		8,000/10	3,000/5
	56 ≤ kW < 75	3	2008- 2011	1	4.7	-	0.40	5.0			
		4	2012- 2013 ^h	-	4.7	-	0.02	5.0			
			2014+ i	0.19	-	0.40	0.02	5.0			
		1	1997- 2002	-	-	9.2	-	-			
	75	2	2003- 2006	-	6.6	-	0.30	5.0			
	75 ≤ kW < 130	3	2007- 2011	-	4.0	-	0.30	5.0			
		4	2012- 2013 ^h	-	4.0	-	0.02	5.0			
			2014+	0.19	-	0.40	0.02	5.0			

	Rated Power (kW)	Tier	Model Year	NMHC (g/kW-hr)	NMHC + NOx (g/kW-hr	NOx (g/kW-hr	PM (g/kW-hr	CO (g/kW-hr)	Smoke ^a (Percentage)	Useful Life (hours /years) b	Warranty Period (hours /years) b
		1	1996- 2002	1.3 ^j	-	9.2	0.54	11.4			
		2	2003- 2005	-	6.6	-	0.20	3.5			
	130 ≤ kW < 225	3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	1	4.0	-	0.02	3.5			
			2014+ i	0.19	-	0.40	0.02	3.5			
		1	1996- 2000	1.3 ^j	-	9.2	0.54	11.4			
		2	2001- 2005	-	6.4	-	0.20	3.5			
	225 ≤ kW < 450	3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5			
			2014+ i	0.19	-	0.40	0.02	3.5			
	450 ≤ kW < 560	1	1996- 2001	1.3 ^j	-	9.2	0.54	11.4			
Federal		2	2002- 2005	-	6.4	-	0.20	3.5	20/15/50	8,000/10	3,000/5
		3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5			
			2014+ i	0.19	-	0.40	0.02	3.5			
		1	2000- 2005	1.3 ^j	-	9.2	0.54	11.4			
	560 ≤ kW	2	2006- 2010	•	6.4	-	0.20	3.5			
	< 900	4	2011- 2014	0.40	-	3.5	0.10	3.5			
			2015+ i	0.19	-	3.5 ^k	0.04 1	3.5			
		1	2000- 2005	1.3 ^j	-	9.2	0.54	11.4			
	kW > 900	2	2006- 2010	-	6.4	-	0.20	3.5			
		4	2011- 2014	0.40	-	3.5 ^k	0.10	3.5			
			2015+ i	0.19	-	3.5 ^k	0.04 1	3.5			

Notes on following page.

#### Notes:

- For Tier 1, 2, and 3 standards, exhaust emissions of nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC), and non-methane hydrocarbons (NMHC) are measured using the procedures in 40 Code of Federal Regulations (CFR) Part 89 Subpart E. For Tier 1, 2, and 3 standards, particulate matter (PM) exhaust emissions are measured using the California Regulations for New 1996 and Later Heavy-Duty Off-Road Diesel Cycle Engines.
- For Tier 4 standards, engines are tested for transient and steady-state exhaust emissions using the procedures in 40 CFR Part 1039 Subpart F. Transient standards do not apply to engines below 37 kilowatts (kW) before the 2013 model year, constant-speed engines, engines certified to Option 1, and engines above 560 kW.
- Tier 2 and later model naturally aspirated nonroad engines shall not discharge crankcase emissions into the atmosphere unless these emissions are permanently routed into the exhaust. This prohibition does not apply to engines using turbochargers, pumps, blowers, or superchargers.
- In lieu of the Tier 1, 2, and 3 standards for NOX, NMHC + NOX, and PM, manufacturers may elect to participate in the averaging, banking, and trading (ABT) program described in 40 CFR Part 89 Subpart C.
- a Smoke emissions may not exceed 20 percent during the acceleration mode, 15 percent during the lugging mode, and 50 percent during the peaks in either mode. Smoke emission standards do not apply to single-cylinder engines, constant-speed engines, or engines certified to a PM emission standard of 0.07 grams per kilowatt-hour (g/kW-hr) or lower. Smoke emissions are measured using procedures in 40 CFR Part 86 Subpart I.
- **b** Useful life and warranty period are expressed hours and years, whichever comes first.
- c Hand-startable air-cooled direct injection engines may optionally meet a PM standard of 0.60 g/kW-hr. These engines may optionally meet Tier 2 standards through the 2009 model years. In 2010 these engines are required to meet a PM standard of 0.60 g/kW-hr.
- d Useful life for constant speed engines with rated speed 3,000 revolutions per minute (rpm) or higher is 5 years or 3,000 hours, whichever comes first.

- e Warranty period for constant speed engines with rated speed 3,000 rpm or higher is 2 years or 1,500 hours, whichever comes first.
- f These Tier 3 standards apply only to manufacturers selecting Tier 4 Option 2. Manufacturers selecting Tier 4 Option 1 will be meeting those standards in lieu of Tier 3 standards.
- g A manufacturer may certify all their engines to either Option 1 or Option 2 sets of standards starting in the indicated model year. Manufacturers selecting Option 2 must meet Tier 3 standards in the 2008-2011 model years.
- h These standards are phase-out standards. Not more than 50 percent of a manufacturer's engine production is allowed to meet these standards in each model year of the phase out period. Engines not meeting these standards must meet the final Tier 4 standards.
- i These standards are phased in during the indicated years. At least 50 percent of a manufacturer's engine production must meet these standards during each year of the phase in. Engines not meeting these standards must meet the applicable phase-out standards.
- **j** For Tier 1 engines the standard is for total hydrocarbons.
- **k** The NOx standard for generator sets is 0.67 g/kW-hr.
- I The PM standard for generator sets is 0.03 g/kW-hr.

## Citations: Code of Federal Regulations (CFR) citations:

- 40 CFR 89.112 = Exhaust emission standards
- 40 CFR 1039.101 = Exhaust emission standards for after 2014 model year
- 40 CFR 1039.102 = Exhaust emission standards for model year 2014 and earlier
- 40 CFR 1039 Subpart F = Exhaust emissions transient and steady state test procedures
- 40 CFR 86 Subpart I = Smoke emission test procedures
- 40 CFR 1065 = Test equipment and emissions measurement procedures

# Policy: CARB Emission Factors for CI Diesel Engines – Percent HC in Relation to NMHC + NOx

# Policy

When the non-methane hydrocarbon (NMHC) and nitrogen oxide (NOx) emission factor is combined, assume a breakdown of 5% and 95%, respectively.

## **Effective date**

June 28, 2004

# **Definitions**

The following is a list of associated definitions.

- *CI Engine* Compression Ignition Engine is an internal combustion engine with operating characteristics significantly similar to the theoretical diesel combustion cycle.
- *HC* Organic compound consistently entirely of hydrogen and carbon.
- *NMHC* Non-Methane Hydrocarbon is the sum of all hydrocarbon air pollutants except methane.
- *NOx* Nitrogen Oxides are compounds of nitric oxide (NO), nitrogen dioxide (NO₂), and other oxides of nitrogen, which are typically created during combustion processes.

## Contact

Randy Frazier, x4672

# Document Control

Version	Revised By	Description	Date
1.1	HL	New Policy: CARB Emission Factors – Percent HC in Relation to NMHC + NOx	06/28/04
1.2	MCL	Mapping of Policy	3/13/08

# Approval

Name & Title	Signature	Date
Brian Bateman, Director of Engineering	Signed by Brian Bateman	2/28/2008

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS^a

	Road Use Or	Plant	No. Of	Silt Conte	ent (%)
Industry	Surface Material	Sites	Samples	Range	Mean
Copper smelting	Plant road	1	3	16 - 19	17
Iron and steel production	Plant road	19	135	0.2 - 19	6.0
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	4.8
	Material storage area	1	1	-	7.1
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10
	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3
	Haul road to/from pit	1	12	3.9 - 9.7	5.8
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4
	Plant road	2	2	4.9 - 5.3	5.1
	Scraper route	3	10	7.2 - 25	17
	Haul road (freshly graded)	2	5	18 - 29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills	Disposal routes	4	20	2.2 - 21	6.4

^aReferences 1,5-15.

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

	Industria	al Roads (Equa	ation 1a)	Public	c Roads (Equation 1b)		
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*	
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0	
a	0.9	0.9	0.7	1	1	1	
b	0.45	0.45	0.45	-	-	-	
С	ı	1	-	0.2	0.2	0.3	
d	-	-	-	0.5	0.5	0.3	
Quality Rating	В	В	В	В	В	В	

^{*}Assumed equivalent to total suspended particulate matter (TSP)

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

		Mean Vehicle Weight		Mean Vehicle Speed		Mean	Surface Moisture	
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %	
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4-17ª	0.03-13	
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13	

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model  23 . The emission factor also varies with aerodynamic size range

[&]quot;-" = not used in the emission factor equation

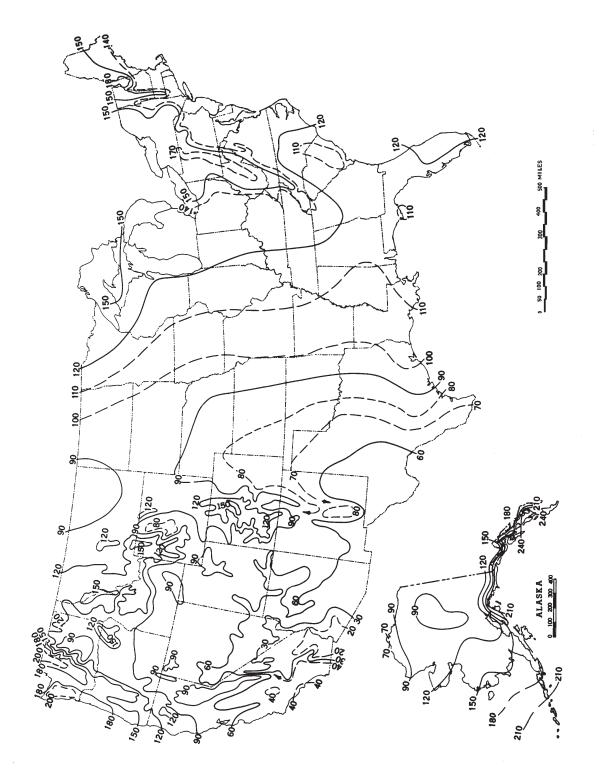



Figure 13.2.2-1. Mean number of days with 0.01 inch or more of precipitation in United States.

# **WRAP Fugitive Dust Handbook**



# **Prepared for:**

Western Governors' Association 1515 Cleveland Place, Suite 200 Denver, Colorado 80202

Prepared by:

Countess Environmental 4001 Whitesail Circle Westlake Village, CA 91361 (WGA Contract No. 30204-111)

September 7, 2006

# TABLE OF CONTENTS

Preface	
Executive Su	ımmary
Chapter 1.	Introduction
Chapter 2.	Agricultural Tilling
Chapter 3.	Construction and Demolition
Chapter 4.	Materials Handling
Chapter 5.	Paved Roads
Chapter 6.	Unpaved Roads
Chapter 7.	Agricultural Wind Erosion
Chapter 8.	Open Area Wind Erosion
Chapter 9.	Storage Pile Wind Erosion
Chapter 10.	Agricultural Harvesting
Chapter 11	Mineral Products Industry
Chapter 12	Abrasive Blasting
Chapter 13	Livestock Husbandry
Chapter 14	Miscellaneous Minor Fugitive Dust Sources
Glossary	
Appendix A.	Emission Quantification Techniques
Appendix B.	Estimated Costs of Fugitive Dust Control Measures
Appendix C.	Methodology for Calculating Cost-Effectiveness of Fugitive Dust Control

Measures

Appendix D. Fugitive PM10 Management Plan

# Chapter 6. Unpaved Roads

6.1	Characterization of Source Emissions	6-1
6.2	Emission Estimation: Primary Methodology	6-1
6.3	Emission Estimation: Alternate Methodology for Non-Farm Roads	6-6
6.4	Emission Estimation: Alternative Methodology for Farm Roads	6-7
6.5	Demonstrated Control Techniques	6-8
6.6	Regulatory Formats	6-14
6.7	Compliance Tools	6-16
6.8	Sample Cost-Effectiveness Calculation	6-16
6.9	References	6-18

## 6.1 Characterization of Source Emissions

When a vehicle travels on an unpaved surface such as an unpaved road or unpaved parking lot, the force of the wheels on the road surface causes pulverization of surface material. Particles are lifted and dropped from the rolling wheels, and the road surface is exposed to strong air currents in turbulent shear with the surface. The turbulent wake behind the vehicle continues to act on the road surface after the vehicle has passed. The quantity of dust emissions from a given segment of unpaved road varies linearly with the volume of traffic. Field investigations also have shown that emissions depend on source parameters that characterize the condition of a particular road and the associated vehicle traffic. Characterization of these source parameters allow for "correction" of emission estimates to specific road and traffic conditions present on public and industrial roadways.

# 6.2 Emission Estimation: Primary Methodology¹⁻²⁶

This section was adapted from Section 13.2.2 of EPA's *Compilation of Air Pollutant Emission Factors (AP-42)*. Section 13.2.2 was last updated in December 2003.

Dust emissions from unpaved roads have been found to vary directly with the fraction of silt (particles smaller than 75 micrometers [µm] in physical diameter) in the road surface materials. The silt fraction is determined by measuring the proportion of loose dry surface dust that passes a 200-mesh screen using the ASTM-C-136 method. A summary of this method is contained in Appendix C of AP-42. Table 6-1 summarizes measured silt values for industrial unpaved roads. Table 6-2 summarizes measured silt values for public unpaved roads. It should be noted that the ranges of silt content for public unpaved roads vary over two orders of magnitude. Therefore, the use of data from this table can potentially introduce considerable error. Use of this data is strongly discouraged when it is feasible to obtain locally gathered data.

Since the silt content of a rural dirt road will vary with geographic location, it should be measured for use in projecting emissions. As a conservative approximation, the silt content of the parent soil in the area can be used. Tests, however, show that road silt content is normally lower than in the surrounding parent soil, because the fines are continually removed by the vehicle traffic, leaving a higher percentage of coarse particles. Other variables are important in addition to the silt content of the road surface material. For example, at industrial sites, where haul trucks and other heavy equipment are common, emissions are highly correlated with vehicle weight. On the other hand, there is far less variability in the weights of cars and pickup trucks that commonly travel publicly accessible unpaved roads throughout the United States. For those roads, the moisture content of the road surface material may be more dominant in determining differences in emission levels between a hot desert environment and a cool moist location.

Table 6-1. Typical Silt Content Values of Surface Material on Industrial Unpaved Roads^a

	Road use or				
	surface	Plant	No. of	Silt conte	ent (%)
Industry	material	sites	samples	Range	Mean
Copper smelting	Plant road	1	3	16-19	17
Iron and steel production	Plant road	19	135	0.2-19	6.0
Sand and gravel processing	Plant road	1	3	4.1-6.0	4.8
	Material storage area	1	1	_	7.1
Stone quarry and processing	Plant road	2	10	2.4-16	10
, , , ,	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	Service road	1	8	2.4-7.1	4.3
	Haul road to/from pit	1	12	3.9-9.7	5.8
Western surface coal mining	Haul road to/from pit	3	21	2.8-18	8.4
	Plant road	2	2	4.9-5.3	5.1
	Scraper route	3	10	7.2-25	17
	Haul road (freshly graded)	2	5	18-29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills	Disposal routes	4	20	2.2-21	6.4

^a References 1, 5-15.

Table 6-2. Typical Silt Content Values of Surface Material on Public Unpaved Roads^a

	Road use or surface	Plant	No. of	Silt con	tent (%)
Industry	material	sites	samples	Range	Mean
Publicly accessible	Gravel/crushed limestone	9	46	0.1-15	6.4
roads	Dirt (i.e., local material compacted, bladed, and crowned)	8	24	0.83-68	11

^a References 1, 5-16.

# 6.2.1 Emission Factors

The PM10 emission factors presented below are the outcomes from stepwise linear regressions of field emission test results of vehicles traveling over unpaved surfaces. For vehicles traveling on unpaved surfaces at industrial sites, PM10 emissions are estimated from the following empirical equation:

$$E = 1.5 (s/12)^{0.9} (W/3)^{0.45}$$
 (1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, PM10 emissions may be estimated from the following equation:

$$E = \frac{1.8 (s/12)^{1.8} (S/30)^{0.5}}{(M/0.5)^{0.2}} - C$$
 (1b)

where

E = PM10 emission factor (lb/VMT) s = surface material silt content (%)

W = mean vehicle weight (tons)

M = surface material moisture content (%)

S = mean vehicle speed (mph)

C =emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is 1 lb/VMT = 281.9 g/VKT. Equations 1a and 1b have a quality rating of B if applied within the ranges of source conditions that were tested in developing the equations shown in Table 6-3.

Table 6-3. Range of Source Conditions Used in Developing Equations 1a and 1b

	Mean v weig			Mean spe	vehicle eed	Mean	Surface moisture
Emission factor	Surface silt content, %	Mg	ton	km/hr	mph	No. of wheels	content, %
Industrial roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4-17 ^a	0.03-13
Public roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces, mostly performed in the 1980s. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. Factors influencing how fast a road dries are discussed in Section 6.5 below. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The PM2.5/PM10 ratio for fugitive dust from vehicles traveling on unpaved roads is 0.1.²³ The PM2.5 and PM10 emission factors for the exhaust, brake wear, and tire wear of a 1980's vehicle fleet (C) are shown in Table 6-4. They were obtained from EPA's MOBILE6.2 model.²⁴

Table 6-4. Emission Factors for 1980's Vehicle Fleet Exhaust, Brake Wear, and Tire Wear

Particle size	C, Emission factor for exhaust, brake wear, and tire wear (lb/VMT)
PM2.5	0.00036
PM10	0.00047

A PM10 emission factor for the resuspension of fugitive dust from unpaved shoulders created by the wake of high-profile vehicles such as tractor-trailers traveling on paved roads at high speed has been developed by Desert Research Institute (DRI). A discussion of the emissions estimation methodology for fugitive dust originating from unpaved shoulders is presented in Chapter 14.

### 6.2.2 Source Extent

It is important to note that the vehicle-related source conditions refer to the average weight, speed, and number of wheels for all vehicles traveling the road. For example, if 98% of the traffic on the road are 2-ton cars and trucks while the remaining 2% consists of 20-ton trucks, then the mean weight is 2.4 tons. More specifically, Equations 1a and 1b are not intended to be used to calculate a separate emission factor for each vehicle class within a mix of traffic on a given unpaved road. That is, in the example, one should not determine one factor for the 2-ton vehicles and a second factor for the 20-ton trucks. Instead, only one emission factor should be calculated that represents the "fleet" average of 2.4 tons for all vehicles traveling the road. Moreover, to retain the quality ratings when addressing a group of unpaved roads, it is necessary that reliable correction parameter values be determined for the road in question. The field and laboratory procedures for determining road surface silt and moisture contents are given in Appendices C.1 and C.2 of AP-42. Vehicle-related parameters should be developed by recording visual observations of traffic. In some cases, vehicle parameters for industrial unpaved roads can be determined by reviewing maintenance records or other information sources at the facility.

In the event that site-specific values for correction parameters cannot be obtained, then default values may be used. In the absence of site-specific silt content information, an appropriate mean value from Tables 6-1 and 6-2 may be used as a default value, but the quality rating of the equation is reduced by two letters. Because of significant differences found between different types of road surfaces and between different areas of the country, use of the default moisture content value of 0.5 percent in Equation 1b is discouraged. The quality rating should be downgraded two letters when the default moisture content value is used. It is assumed that readers addressing industrial roads have access to the information needed to develop average vehicle information for their facility.

# 6.2.3 Natural Mitigation

The effect of routine watering to control emissions from unpaved roads is discussed below in Section 6.5. However, all roads are subject to some natural mitigation because of rainfall and other precipitation. The Equation 1a and 1b emission factors can be extrapolated to annual average uncontrolled conditions (but including natural mitigation) under the simplifying assumption that annual average emissions are inversely proportional to the number of days with measurable (more than 0.254 mm [0.01 inch]) precipitation:

$$E_{\text{ext}} = E[(365 - P)/365] \tag{2}$$

where.

 $E_{ext}$  = annual size-specific emission factor extrapolated for natural mitigation (lb/VMT)

E = emission factor from Equation 1a or 1b

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation

Maps showing the geographical distribution of "wet" days on an annual basis for the United States based on meteorological records on a monthly basis are available in the Climatic Atlas of the United States. Alternative sources include other Department of Commerce publications such as local climatological data summaries. The National Climatic Data Center (NCDC) offers several products that provide hourly precipitation data. In particular, NCDC offers a Solar and Meteorological Surface Observation Network 1961-1990 (SAMSON) CD-ROM, which contains 30 years worth of hourly meteorological data for first-order National Weather Service locations. Whatever meteorological data are used, the source of that data and the averaging period should be clearly specified.

Equation 2 provides an estimate that accounts for precipitation on an annual average basis for the purpose of inventorying emissions. It should be noted that Equation 2 does not account for differences in the temporal distributions of the rain events, the quantity of rain during any event, or the potential for the rain to evaporate from the road surface. In the event that a finer temporal and spatial resolution is desired for inventories of public unpaved roads, estimates can be based on a more complex set of assumptions. These assumptions include:

- 1. The moisture content of the road surface material is increased in proportion to the quantity of water added;
- 2. The moisture content of the road surface material is reduced in proportion to the Class A pan evaporation rate;
- 3. The moisture content of the road surface material is reduced in proportion to the traffic volume; and
- 4. The moisture content of the road surface material varies between the extremes observed in the area.

The CHIEF Web site (www.epa.gov/ttn/chief/ap42/ch13/related/c13s02-2) has a file that contains a spreadsheet program for calculating emission factors that are temporally and spatially resolved. Information required for use of the spreadsheet program includes monthly Class A pan evaporation values, hourly meteorological data for precipitation, humidity and snow cover, vehicle traffic information, and road surface material information.

It is emphasized that the simple assumption underlying Equation 2 and the more complex set of assumptions underlying the use of the procedure which produces a finer temporal and spatial resolution have not been verified in any rigorous manner. For this reason, the quality ratings for either approach should be downgraded one letter from the rating that would be applied to Equation 1.

# 6.3 Emission Estimation: Alternate Methodology for Non-Farm Roads

This section was adapted from Section 7.10 of CARB's Emission Inventory Methodology. Section 7.10 was last updated in August 1997.

This source category provides estimates of the entrained geologic particulate matter emissions that result from vehicular travel over non-agricultural unpaved roads. The emissions are estimated separately for three major unpaved road categories: city and county roads, U.S. forests and park roads, and Bureau of Land Management (BLM) and Bureau of Indian Affairs (BIA) roads. The emissions result from the mechanical disturbance of the roadway and the vehicle generated air turbulence effects. Agricultural unpaved road estimates are computed in a separate methodology; see Section 6.4.

#### 6.3.1 Emission Factor

The PM10 emission factor used for estimates of geologic dust emissions from vehicular travel on unpaved roads is based on work performed by UC Davis²⁸ and the Desert Research Institute.²⁹ The emission factor used for all unpaved roads statewide is 2.27 lbs PM10/VMT.³⁰ Because the emission measurements were performed in California, this emission factor was used by CARB to replace the previous generic emission factor provided in EPA's AP-42 document.³¹ The new emission factor is slightly smaller than the factors derived with the AP-42 methodology. The PM2.5/PM10 ratio for unpaved road dust is 0.1.²³

## 6.3.2 Source Extent (Activity Level)

For the purpose of estimating emissions, it is assumed that the unpaved road dust emissions are primarily related to the vehicle miles traveled (VMT) on the roads. State highway data are used to estimate unpaved road miles for each roadway category in each county. It is assumed that 10 daily VMT (DVMT) are traveled on unpaved city and county roads as well as U.S. forest and parks roads and BLM and BIA roads. Road mileage, if needed, can be simply computed by dividing the annual VMT values by 3650 (which is 10 DVMT x 365 days).

Daily activity on unpaved roads occurs primarily during daylight hours. Activity is assumed to be the same each day of the week. Monthly activity varies by county and is based on estimates of monthly rainfall in each county. This is to reflect that during wet months there is less unpaved road traffic, and there are also lower emissions per mile of road when the road soils have a higher moisture content. Unpaved road growth is tied to on-road VMT growth for many counties. For other counties, growth is set to zero and VMT is not used.

## 6.3.3 Assumptions and Limitations

CARB's methodology is subject to the following assumptions and limitations:

- 1. This methodology assumes that all unpaved roads emit the same levels of PM10 per VMT during all times of the year for all vehicles and conditions.
- 2. It is assumed that all unpaved roads receive 10 VMT per day.
- 3. This methodology assumes that no controls are used on the roads.
- 4. It is assumed that the emission factors derived in a test county are applicable to the rest of California.

# 6.4 Emission Estimation: Alternative Methodology for Farm Roads

This section was adapted from Section 7.11 of CARB's Emission Inventory Methodology. Section 7.11 was last updated in August 1997.

This source category provides estimates of the entrained geologic particulate matter emissions that result from vehicular travel over unpaved roads on agricultural lands. The emissions result from the mechanical disturbance of the roadway and the vehicle generated air turbulence effects. This emission factor used is oriented towards dust emissions from light duty vehicle use, but the activity data implicitly include some larger vehicle use for harvest and other operations.

#### 6.4.1 Emission Factor

The PM10 emission factor used for estimates of geologic dust emissions from vehicular travel on unpaved roads is based on work performed by UC Davis²⁸ and the Desert Research Institute.²⁹ The emission factor used for all unpaved roads statewide is 2.27 lbs PM10/VMT.³⁰ Because the emission measurements were performed in California, this emission factor was used by CARB to replace the previous generic emission factor provided in EPA's AP-42 document.³¹ CARB's emission factor is slightly smaller than the factors derived with the AP-42 methodology. The PM2.5/PM10 ratio for unpaved road dust is 0.1.²³

#### 6.4.2 Source Extent (Activity Level)

For the purpose of estimating emissions, it is assumed that the unpaved road dust emissions are primarily related to the vehicle miles traveled (VMT) on the roads. In 1976 an informal survey was made of several county agricultural commissioners in the San Joaquin Valley, who estimated that each 40 acres of cultivated land receives approximately 175 vehicle passes per year on the unpaved farm roads. This value of 4.28 VMT/acre-year has been used in the past by CARB to calculate emissions from unpaved farm roads. CARB is now proposing the following estimates of source extent for unpaved farm roads for different crops: 0.38 VMT/acre-year for grapes, 0.40 VMT/acre-year for cotton, and 1.23 VMT/acre-year for citrus.³³

The crop acreage data used to estimate the road dust emissions are from the state agency summary of crop acreage harvested. The acreage estimates do not include pasture lands because it is thought that the quantity of vehicular travel on these lands is minimal. Daily activity on unpaved roads occurs primarily during daylight hours. Activity is assumed to be the same each day of the week. Monthly activity varies by county and is based on estimates of monthly rainfall in each county. This is to reflect that during wet months there is less unpaved road traffic, and there are also lower emissions per mile of road when the road soils have a higher moisture content. Unpaved road growth for farm roads is based on agricultural crop acreage or agricultural production. This value is set to zero for many counties.

#### 6.4.3 Assumptions and Limitations

CARB's methodology is subject to the following assumptions and limitations:

- 1. This methodology assumes that all unpaved farm roads emit the same levels of PM10 per VMT during all times of the year for all vehicles and conditions.
- 2. It is assumed that all unpaved farm roads receive 175 VMT per 40 acres per year for all crops and cultivation practices.
- 3. This methodology assumes that no controls are used on the roads.
- 4. It is assumed that the emission factors derived in the test area are applicable to the rest of California.
- 5. This methodology assumes that unpaved road travel associated with pasture lands is negligible.

## 6.5 Demonstrated Control Techniques

A wide variety of options exist to control emissions from unpaved roads. Options fall into the following three groupings:

- 1. <u>Vehicle restrictions</u> that limit the speed, weight or number of vehicles on the road
- 2. <u>Surface improvement</u> by measures such as (a) paving or (b) adding gravel or slag to a dirt road
- 3. <u>Surface treatment</u> such as watering or treatment with chemical dust suppressants

Available control options span broad ranges in terms of cost, efficiency, and applicability. For example, traffic controls provide moderate emission reductions (often at little cost) but are difficult to enforce. Although paving is highly effective, its high initial cost is often prohibitive. Furthermore, paving is not feasible for industrial roads subject to very heavy vehicles and/or spillage of material in transport. Watering and chemical suppressants, on the other hand, are potentially applicable to most industrial roads at moderate to low costs. However, these require frequent reapplication to

maintain an acceptable level of control. Chemical suppressants are generally more costeffective than water but not in cases of temporary roads (which are common at mines, landfills, and construction sites). In summary, then, one needs to consider not only the type and volume of traffic on the road but also how long the road will be in service when developing control plans.

<u>Vehicle restrictions</u>. These measures seek to limit the amount and type of traffic present on the road, or to lower the mean vehicle speed. For example, many industrial plants have restricted employees from driving on plant property and have instead instituted bussing programs. This eliminates emissions due to employees traveling to/from their worksites. Although the heavier average vehicle weight of the busses increases the base emission factor, the decrease in vehicle-miles-traveled results in a lower overall emission rate.

Surface improvements. Control options in this category alter the road surface. As opposed to "surface treatments" discussed below, improvements are relatively "permanent" and do not require periodic retreatment. The most obvious surface improvement is paving an unpaved road. This option is quite expensive and is probably most applicable to relatively short stretches of unpaved road with at least several hundred vehicle passes per day. Furthermore, if the newly paved road is located near unpaved areas or is used to transport material, it is essential that the control plan address routine cleaning of the newly paved road surface. The control efficiencies achievable by paving can be estimated by comparing emission factors for unpaved and paved road conditions. The predictive emission factor equation for paved roads, given in Chapter 5, requires estimation of the silt loading on the traveled portion of the paved surface, which in turn depends on whether the pavement is periodically cleaned. Unless curbing is to be installed, the effects of vehicle excursion onto unpaved shoulders (berms) also must be taken into account in estimating the control efficiency of paving.

Other surface improvement methods involve covering the road surface with another material that has a lower silt content. Examples include placing gravel or slag on a dirt road. The control efficiency can be estimated by comparing the emission factors obtained using the silt contents before and after improvement. The silt content of the road surface should be determined after 3 to 6 months rather than immediately following placement. Control plans should address regular maintenance practices, such as grading, to retain larger aggregate on the traveled portion of the road.

<u>Surface treatments</u>. These measures refer to control options that require periodic reapplication. Treatments fall into the two main categories of:

- (a) wet suppression (i.e., watering, possibly with surfactants or other additives), which keeps the road surface wet to control emissions, and
- (b) chemical stabilization that attempts to change the physical characteristics of the surface.

The necessary reapplication frequency varies from minutes or hours for plain water under summertime conditions to several weeks or months for chemical dust suppressants.

Wet Suppression. Watering increases the moisture content, which in turn causes particles to conglomerate and reduces their likelihood of becoming suspended when vehicles pass over the surface. The control efficiency depends on how fast the road dries after water is added. This in turn depends on: (a) the amount (per unit road surface area) of water added during each application; (b) the period of time between applications; (c) the weight, speed and number of vehicles traveling over the watered road during the period between applications; and (d) meteorological conditions (temperature, wind speed, cloud cover, etc.) that affect evaporation during the period. Figure 6-1 presents a simple bilinear relationship between the instantaneous control efficiency due to watering and the resulting increase in surface moisture. The moisture ratio "M" (i.e., the x-axis in Figure 6-1) is found by dividing the surface moisture content of the watered road by the surface moisture content of the uncontrolled road. As the watered road surface dries, both the ratio M and the predicted instantaneous control efficiency (i.e., the y-axis in the figure) decrease. The figure shows that between the uncontrolled moisture content (M = 1) and a value twice as large (M = 2), a small increase in moisture content results in a large increase in control efficiency. Beyond that, control efficiency grows slowly with increased moisture content.

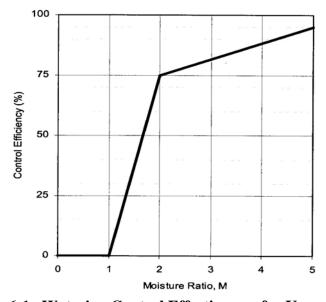



Figure 6-1. Watering Control Effectiveness for Unpaved Travel Surfaces

Given the complicated nature of how the road dries, characterization of emissions from watered roadways is best done by collecting road surface material samples at various times between water truck passes. AP-42 Appendices C.1 and C.2 present the recommended sampling and analysis procedures, respectively, for determining the surface/bulk dust loading. The moisture content measured can then be associated with a control efficiency by use of Figure 6-1. Samples that reflect average conditions during the watering cycle can take the form of either a series of samples between water applications or a single sample at the midpoint. It is essential that samples be collected during periods with active traffic on the road. Finally, because of different evaporation rates, it is recommended that samples be collected at various times during the year. If

only one set of samples is to be collected, these must be collected during hot, summertime conditions.

When developing watering control plans for roads that do not yet exist, it is strongly recommended that the moisture cycle be established by sampling similar roads in the same geographic area. If the moisture cycle cannot be established by similar roads using established watering control plans, the more complex methodology used to estimate the mitigation of rainfall and other precipitation can be used to estimate the control provided by routine watering. An estimate of the maximum daytime Class A pan evaporation (based upon daily evaporation data published in the monthly Climatological Data for the state by the National Climatic Data Center) should be used to insure that adequate watering capability is available during periods of highest evaporation. Hourly precipitation values are replaced by the equivalent inches of precipitation resulting fro watering. One inch of precipitation is equivalent to an application of 5.6 gallons of water per square yard of road. Information on the long term average annual evaporation and on the percentage that occurs between May and October is available in the Climatic Atlas. 16 This methodology should be used only for prospective analyses and for designing watering programs for existing roadways. The quality rating of an emission factor for a watered road that is based on this methodology should be downgraded two letters. Periodic road surface samples should be collected and analyzed to verify the efficiency of the watering program.

Chemical Dust Suppressants. As opposed to wet suppression (i.e., watering), chemical dust suppressants have much less frequent reapplication requirements. These materials suppress emissions by changing the physical characteristics of the existing road surface material. Many chemical dust suppressants applied to unpaved roads form a hardened surface that binds particles together. After several applications, a treated unpaved road often resembles a paved road except that the surface is not uniformly flat. Because the improved surface results in more grinding of small particles, the silt content of loose material on a highly controlled surface may be substantially higher than when the surface was uncontrolled. For this reason, the models presented as Equations 1a and 1b cannot be used to estimate emissions from chemically stabilized roads. Should the road be allowed to return to an uncontrolled state with no visible signs of large-scale cementing of material, the Equation 1a and 1b emission factors could then be used to obtain conservatively high emission estimates.

The control effectiveness of chemical dust suppressants appears to depend on: (a) the dilution rate used in the mixture; (b) the application rate (volume of solution per unit road surface area); (c) the time between applications; (d) the size, speed and amount of traffic during the period between applications; and (e) meteorological conditions (rainfall, freeze/thaw cycles, etc.) during the period. Other factors that affect the performance of chemical dust suppressants include other traffic characteristics (e.g., cornering, track-out from unpaved areas) and road characteristics (e.g., bearing strength, grade). The variability in these factors and differences between individual dust control products make the control efficiencies of chemical dust suppressants difficult to estimate. Past field testing of emissions from controlled unpaved roads has shown that chemical dust

suppressants provide a PM10 control efficiency of about 80% when applied at regular intervals of 2 weeks to 1 month.

Petroleum resin products historically have been the dust suppressants (besides water) most widely used on industrial unpaved roads. Figure 6-2 presents a method to estimate average control efficiencies associated with petroleum resins applied to unpaved roads. The following items should be noted:

- 1. The term "ground inventory" represents the total volume (per unit area) of petroleum resin concentrate (not solution) applied since the start of the dust control season.
- 2. Because petroleum resin products must be periodically reapplied to unpaved roads, the use of a time-averaged control efficiency value is appropriate. Figure 6-2 presents control efficiency values averaged over two common application intervals, 2 weeks and 1 month. Other application intervals will require interpolation.
- 3. Note that zero efficiency is assigned until the ground inventory reaches 0.05 gallon per square yard (gal/yd²). Requiring a minimum ground inventory ensures that one must apply a reasonable amount of chemical dust suppressant to a road before claiming credit for emission control. Recall that the ground inventory refers to the amount of petroleum resin concentrate rather than the total solution.

As an example of the application of Figure 6-2, suppose that Equation 1a was used to estimate a PM10 emission factor of 7.1 lb/VMT from a particular road. Also, suppose that, starting on May 1, the road is treated with 0.221 gal/yd² of a solution (1 part petroleum resin to 5 parts water) on the first of each month through September. The average controlled PM10 emission factors calculated from Figure 6-2 are shown in Table 6-5.

Besides petroleum resins, other newer dust suppressants have also been successful in controlling emissions from unpaved roads. Specific test results for those chemicals, as well as for petroleum resins and watering, are provided in References 18 through 21.

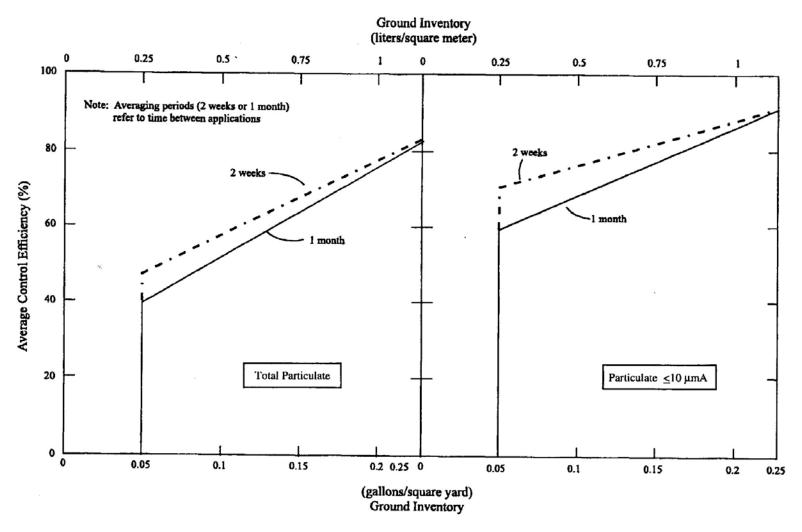



Figure 6-2. Average TSP and PM10 Control Efficiencies for Two Common Application Intervals

Table 6-5. Average Controlled PM10 Emission Factors for Specific Conditions

Period	Ground inventory, gal/yd ²	Average control efficiency, % ^a	Average controlled PM10 emission factor, lb/VMT
May	0.037	0	7.1
June	0.073	62	2.7
July	0.11	68	2.3
August	0.15	74	1.8
September	0.18	80	1.4

^a From Figure 6-2. Zero efficiency assigned if ground inventory is less than 0.05 gal/yd².

1 lb/VMT = 281.9 g/VKT. 1 gal/yd² =  $4.531 \text{ L/m}^2$ .

Table 6-6 summarizes tested control measures and reported control efficiencies for measures that reduce the generation of fugitive dust from unpaved roads.

Table 6-6. Control Efficiencies for Control Measures for Unpaved Roads^{36, 37}

Control measure	PM10 control efficiency	References/Comments
Limit maximum speed on unpaved roads to 25 miles per hour	44%	Assumes linear relationship between PM10 emissions and vehicle speed and an uncontrolled speed of 45 mph.
Pave unpaved roads and unpaved parking areas	99%	Based on comparison of paved road and unpaved road PM10 emission factors.
Implement watering twice a day for industrial unpaved road	55%	MRI, April 2001
Apply dust suppressant annually to unpaved parking areas	84%	CARB April 2002

# 6.6 Regulatory Formats

Fugitive dust control options have been embedded in many regulations for state and local agencies in the WRAP region. Regulatory formats specify the threshold source size that triggers the need for control application. Example regulatory formats downloaded from the Internet for several local air quality agencies in the WRAP region are presented in Table 6-7. The website addresses for obtaining information on fugitive dust regulations for local air quality districts within California, for Clark County, NV, and for Maricopa County, AZ, are as follows:

- Districts within California: www.arb.ca.gov/drdb/drdb.htm
- Clark County, NV: www.co.clark.nv.us/air_quality/regs.htm
- Maricopa County, AZ: www.maricopa.gov/envsvc/air/ruledesc.asp

**Table 6-7. Example Regulatory Formats for Unpaved Roads** 

Control Measure	Goal	Threshold	Agency
Requires annual treatment of unpaved public roads beginning in 1998 and continuing for each of 8 years thereafter by implementing one of the following: paving at least one mile with typical roadway material, applying chemical stabilizers to at least two miles to maintain stabilized surface, implementing at least one of the following on at least three miles of road surface: installing signage at 1/4 mile intervals limiting speed to 15 mph, installing speed control devices every 500 ft, or maintaining roadway to limit speed to 15 mph		Set applicability standard: unpaved road must be more than 50 ft wide at all points or must not be within 25 ft of property line, or have more than 20 vehicle trips per day. All roads with average daily traffic greater than average of all unpaved roads within its jurisdiction must be treated	SCAQMD Rule 1186 9/10/1999
Control measures implemented by June 1, 2003: pave, apply dust palliative, or other	Complies with stabilization standard: limit visible dust emissions to 20% opacity, limit silt loading to 0.33 oz/ft2, and limit silt content to 6%	All unpaved roads with vehicular traffic 150 vehicles or more per day	Clark County Hydrographic Basins 212, 216, 217 Sect. 91 Air Quality Reg. 06/22/2000
Limit vehicle speed =15mph and </=20 trips/day; BACM: watering, paving, apply/maintain gravel, asphalt, or dust suppressant; Dust control plan for construction site roads</td <td>Limit VDE to 20% opacity; limit silt loading to 0.33oz/ft^2, limit silt content to 6%</td> <td>Construction site roads, inactive/active; limiting vehicle speed and trips is alternative to stabilization requirement and max number of trips each day in control plan (also number of vehicles, earthmoving equip, etc.); for roads with &gt;/=150 vehicles/day implement BACM by 06/10/2004; same for &gt;/=250 vehicles day (existing roads by 06/10/2000)</td> <td>Maricopa County Rules 310 and 310.01 04/07/2004 and 02/16/2000</td>	Limit VDE to 20% opacity; limit silt loading to 0.33oz/ft^2, limit silt content to 6%	Construction site roads, inactive/active; limiting vehicle speed and trips is alternative to stabilization requirement and max number of trips each day in control plan (also number of vehicles, earthmoving equip, etc.); for roads with >/=150 vehicles/day implement BACM by 06/10/2004; same for >/=250 vehicles day (existing roads by 06/10/2000)	Maricopa County Rules 310 and 310.01 04/07/2004 and 02/16/2000

## 6.7 Compliance Tools

Compliance tools assure that the regulatory requirements, including application of dust controls, are being followed. Three major categories of compliance tools are discussed below.

Record keeping: A compliance plan is typically specified in local air quality rules and mandates record keeping of source operation and compliance activities by the source owner/operator. The plan includes a description of how a source proposes to comply with all applicable requirements, log sheets for daily dust control, and schedules for compliance activities and submittal of progress reports to the air quality agency. The purpose of a compliance plan is to provide a consistent reasonable process for documenting air quality violations, notifying alleged violators, and initiating enforcement action to ensure that violations are addressed in a timely and appropriate manner.

<u>Site inspection</u>: This activity includes (1) review of compliance records, (2) proximate inspections (sampling and analysis of source material), and (3) general observations. An inspector can use photography to document compliance with an air quality regulation.

On-site monitoring: EPA has stated that "An enforceable regulation must also contain test procedures in order to determine whether sources are in compliance." Monitoring can include observation of visible plume opacity, surface testing for crust strength and moisture content, and other means for assuring that specified controls are in place.

Table 6-8 summarizes the compliance tools that are applicable for unpaved roads.

Table 6-8. Compliance Tools for Unpaved Roads

F					
Record keeping	Site inspection/monitoring				
Road map; traffic volumes, speeds, and	Observation of water truck operation and				
patterns; dust suppression equipment and	inspection of sources of water;				
maintenance records; frequencies, amounts,	observation of dust plume opacity				
times, and rates for watering and dust	exceeding a standard; counting of traffic				
suppressants (type); use of water surfactants;	volumes; surface material sampling and				
calculated control efficiencies; regrading,	analysis for silt and moisture contents;				
graveling, or paving of unpaved road segments;	real-time portable monitoring of PM.				
control equipment downtime and maintenance					
records; meteorological log.					

# 6.8 Sample Cost-Effectiveness Calculation

This section is intended to demonstrate how to select a cost-effective control measure for fugitive dust originating from unpaved roads. A sample cost-effectiveness calculation is presented below for a specific control measure (watering) to illustrate the procedure. The sample calculation includes the entire series of steps for estimating uncontrolled emissions (with correction parameters and source extent), controlled emissions, emission reductions, control costs, and control cost-effectiveness values for PM10 and PM2.5. In

selecting the most advantageous control measure for unpaved roads, the same procedure is used to evaluate each candidate control measure (utilizing the control measure specific control efficiency and cost data), and the control measure with the most favorable cost-effectiveness and feasibility characteristics is identified.

# Sample Calculation for Unpaved Roads at an Industrial Facility

Step 1. Determine source activity and control application parameters.

Road length (mile)	2
Vehicles/day Vehicles/day	100
Wet days/year	20
Number of 8-hour workdays/year	260
Number of emission days/yr (workdays without rain)	240
Control Measure	Watering
Control Application/Frequency	Twice daily*
Economic Life of Control System (year)	10
Control Efficiency	55%
* No origination a south	

^{*} No nighttime traffic.

The number of vehicles per day, wet days per year, workdays per year, and the economic life of the control measure are assumed values for illustrative purposes. Watering has been chosen as the applied control measure. The control application/frequency and control efficiency are default values provided by MRI, 2001. 35

<u>Step 2. Calculate PM10 Emission Factor.</u> The PM10 emission factor is calculated from the AP-42 equation utilizing the appropriate correction parameters.

$$E (Ib/VMT) = 1.5 (s/12)^{0.9} (W/3)^{0.45}$$

s—silt content (%) 15 W—vehicle weight (tons) 15

E = 3.8 lb/VMT

Step 3. Calculate Uncontrolled PM Emissions. The PM10 emission factor (calculated in Step 2) is multiplied by the number of vehicles per day, by the road length and by the number of emission days per year (see activity data) and divided by 2,000 lb/ton to compute the annual PM10 emissions, as follows:

Annual PM10 emissions = (EF x Vehicles/day x Miles x Emission days/yr) / 2,000 Annual PM10 emissions =  $(3.8 \times 100 \times 2 \times 240) / 2,000 = 91 \text{ tons}$ 

Annual PM2.5 emissions =  $0.1 \times PM10 \times PM10 = 0.1 \times PM10 \times PM10 = 0.1 \times PM10 = 0.1$ 

<u>Step 4. Calculate Controlled PM Emissions.</u> The controlled PM emissions (i.e., the PM emissions remaining after control) are equal to the uncontrolled emissions (calculated above in Step 3) multiplied by the percentage that uncontrolled emissions are reduced, as follows:

Controlled emissions = Uncontrolled emissions x (1 - Control Efficiency).

For this example, we have selected watering as our control measure. Based on a control efficiency estimate of 55% for the application of water to unpaved roads, the annual controlled emissions estimate are calculated to be:

Annual Controlled PM10 emissions =  $(91 \text{ tons}) \times (1 - 0.55) = 41 \text{ tons}$ Annual Controlled PM2.5 emissions =  $(9.1 \text{ tons}) \times (1 - 0.55) = 4.1 \text{ tons}$ 

#### Step 5. Determine Annual Cost to Control PM Emissions.

Capital costs (\$)	30,000
Annual Operating/Maintenance costs (\$)	8,000
Annual Interest Rate	3%
Capital Recovery Factor	0.1172
Annualized Cost (\$/yr)	11,517

The capital costs, annual operating and maintenance costs, and annual interest rate (AIR) are assumed values for illustrative purposes. The Capital Recovery Factor (CRF) is calculated from the Annual Interest Rate (AIR) and the Economic Life of the control system, as follows:

Capital Recovery Factor = AIR x 
$$(1 + AIR)$$
 Economic life  $/ (1 + AIR)$  Economic life  $- 1$  Capital Recovery Factor =  $3\% \times (1 + 3\%)^{10} / (1 + 3\%)^{10} - 1 = 0.1172$ 

The Annualized Cost is calculated by adding the product of the Capital Recovery Factor and the Capital costs to the annual Operating/Maintenance costs:

Annualized Cost = (CRF x Capital costs) + Annual Operating/Maintenance costs Annualized Cost =  $(0.1172 \times 30,000) + 8,000 = \$11,517$ 

<u>Step 6. Calculate Cost Effectiveness.</u> Cost effectiveness is calculated by dividing the annualized cost by the emissions reduction. The emissions reduction is determined by subtracting the controlled emissions from the uncontrolled emissions:

Cost effectiveness = Annualized Cost/ (Uncontrolled emissions - Controlled emissions)

Cost effectiveness for PM10 emissions = \$11,517 / (91 - 41) = \$231/tonCost effectiveness for PM2.5 emissions = \$11,517 / (9.1 - 4.1) = \$2,306/ton

#### 6.9 References

- 1. Cowherd, C. Jr., et al., 1974. Development of Emission Factors for Fugitive Dust Sources, EPA-450/3-74-037, U. S. EPA, Research Triangle Park, NC, June.
- 2. Dyck, R.J., Stukel, J.J., 1976. Fugitive Dust Emissions from Trucks on Unpaved Roads, Envir. Sci. & Tech., 10(10):1046-1048, October.
- 3. McCaldin, R.O., Heidel, K.J., 1978. *Particulate Emissions from Vehicle Travel over Unpaved Roads*, presented at APCA Assoc. Meeting, Houston, TX, June.
- 4. Cowherd, C. Jr., et al., 1979. Iron and Steel Plant Open Dust Source Fugitive Emission Evaluation, EPA-600/2-79-013, U. S. EPA, Cincinnati, OH, May.
- 5. Muleski, G., 1991. *Unpaved Road Emission Impact*, Arizona Department of Environmental Quality, Phoenix, AZ, March 1991.

- 6. MRI, 1998. *Emission Factor Documentation for AP-42, Section 13.2.2, Unpaved Roads, Final Report*, Midwest Research Institute, Kansas City, MO, September.
- 7. Cuscino, T. Jr., *et al.*, 1979. *Taconite Mining Fugitive Emissions Study*, Minnesota Pollution Control Agency, Roseville, MN, June.
- 8. MRI, 1984. *Improved Emission Factors for Fugitive Dust from Western Surface Coal Mining Sources*, 2 Volumes, EPA Contract No. 68-03-2924, Office of Air Quality Planning and Standards, U. S. EPA, Research Triangle Park, NC.
- 9. Cuscino, T. Jr., et al., 1983. Iron and Steel Plant Open Source Fugitive Emission Control Evaluation, EPA-600/2-83-110, U. S. EPA, Cincinnati, OH, October.
- 10. MRI, 1983. Size Specific Emission Factors for Uncontrolled Industrial and Rural Roads, EPA Contract No. 68-02-3158, Midwest Research Institute, Kansas City, MO, September.
- 11. Cowherd, C. Jr., Englehart, P., 1985. *Size Specific Particulate Emission Factors for Industrial and Rural Roads*, EPA-600/7-85-038, U. S. EPA, Cincinnati, OH, September.
- 12. MRI, 1987. *PM10 Emission Inventory of Landfills in the Lake Calumet Area*, EPA Contract 68-02-3891, Work Assignment 30, Midwest Research Institute, Kansas City, MO, September.
- 13. MRI, 1988. *Chicago Area Particulate Matter Emission Inventory Sampling and Analysis*, EPA Contract No. 68-02-4395, Work Assignment 1, Midwest Research Institute, Kansas City, MO, May.
- 14. ES, 1987. *PM10 Emissions Inventory Data for the Maricopa and Pima Planning Areas*, EPA Contract No. 68-02-3888, Engineering-Science, Pasadena, CA, January.
- 15. MRI, 1992. *Oregon Fugitive Dust Emission Inventory*, EPA Contract 68-D0-0123, Midwest Research Institute, Kansas City, MO, January.
- 16. *Climatic Atlas of the United States*, U. S. Department Of Commerce, Washington, DC, June 1968.
- 17. National Climatic Data Center, *Solar and Meteorological Surface Observation Network 1961-1990*; 3 Volume CD-ROM. Asheville, NC, 1993.
- 18. Cowherd, C. Jr. *et al.*, 1988. *Control of Open Fugitive Dust Sources*, EPA-450/3-88-008, U. S. EPA, Research Triangle Park, NC, September.
- 19. Muleski, G.E. et al., 1984. Extended Evaluation of Unpaved Road Dust Suppressants in the Iron and Steel Industry, EPA-600/2-84-027, U.S. EPA, Cincinnati, OH, February.

- 20. Cowherd, C. Jr., Kinsey, J.S., 1986. *Identification, Assessment and Control of Fugitive Particulate Emissions*, EPA-600/8-86-023, U.S. EPA, Cincinnati, OH, August.
- 21. Muleski, G.E., Cowherd, C. Jr., 1986. Evaluation of the Effectiveness of Chemical Dust Suppressants on Unpaved Roads, EPA-600/2-87-102, U.S. EPA, Cincinnati, OH, November.
- 22. MRI, 1992. Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures, EPA-450/2-92-004, Office Of Air Quality Planning and Standards, U.S. EPA, Research Triangle Park, NC, September.
- 23. MRI, 2006. Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Emission Factors, prepared for the WRAP by Midwest Research Institute, Project No. 110397, February 1.
- 24. Technical Memorandum from P. Hemmer, E.H. Pechan & Associates, Inc., Durham, NC to B. Kuykendal, U.S. EPA, Research Triangle Park, NC, August, 21, 2003.
- 25. USEPA, 2002. *MOBILE6 User Guide*, United States Environmental Protection Agency, Office of Transportation and Air Quality. EPA420-R-02-028, October.
- 26. Technical Memorandum from G. Muleski, Midwest Research Institute, Kansas City, MO, to B. Kuykendal, U. S. EPA, Research Triangle Park, NC, Subject "Unpaved Roads," September 27, 2001.
- 27. Technical Memorandum from W. Kuykendal, U.S. EPA, to File, Subject "Decisions on Final AP-42 Section 13.2.2 Unpaved Roads," November 24, 2003.
- 28. Flocchini, R. et al., 1994. Evaluation of the Emission of PM Particulates from Unpaved 10 Roads in the San Joaquin Valley, Final Report, University of California, Davis, Air Quality Group, Crocker Nuclear Laboratory, April.
- 29. Gillies, J. et al., 1996. Effectiveness Demonstration of Fugitive Dust Control Methods for Public Unpaved Roads and Unpaved Shoulders on Paved Roads, Final Report, Desert Research Institute, December.
- 30. Gaffney, P., 1997. Entrained Dust from Unpaved Road Travel, Emission Estimation Methodology, Background Document, California Air Resources Board, September.
- 31. USEPA, 1995. *Compilation of Air Pollutant Emission Factors*, AP-42, Section 13.2.2, Fifth Edition, January.
- 32. Bill Roddy, Fresno County Air Pollution Control District, personal communication to CARB, 1976.
- 33. Gaffney, P., 2005. *Agricultural Dust Emissions: Summary of Sources and Processes*, WRAP Fugitive Dust Control Workshop, Palm Springs, CA, May 10-11.
- 34. California Agricultural Statistics Service, 1996. 1993 acreage extracted from agricultural commissioner's reports. Sacramento, CA, December.

- 35. Gaffney, P.H., 1997. Agricultural Land Preparation: Geologic Particulate Matter Emission Estimates, Background Document, California Air Resources Board, September.
- 36. MRI, April 2001. Particulate Emission Measurements from Controlled Construction Activities, EPA/600/R-01/031.
- 37. CARB, April 2002. Evaluation of Air Quality Performance Claims for Soil-Sement Dust Suppressant.
- 38. Sierra Research, 2003. *Final BACM Technological and Economic Feasibility Analysis*, prepared for the San Joaquin Valley Unified APCD, March.

Table 13.2.4-1. TYPICAL SILT AND MOISTURE CONTENTS OF MATERIALS AT VARIOUS INDUSTRIES^a

			Silt Content (%)		Moist	ure Content	(%)	
	No. Of		No. Of			No. Of		
Industry	Facilities	Material	Samples	Range	Mean	Samples	Range	Mean
Iron and steel production	9	Pellet ore	13	1.3 - 13	4.3	11	0.64 - 4.0	2.2
		Lump ore	9	2.8 - 19	9.5	6	1.6 - 8.0	5.4
		Coal	12	2.0 - 7.7	4.6	11	2.8 - 11	4.8
		Slag	3	3.0 - 7.3	5.3	3	0.25 - 2.0	0.92
		Flue dust	3	2.7 - 23	13	1		7
		Coke breeze	2	4.4 - 5.4	4.9	2	6.4 - 9.2	7.8
		Blended ore	1	_	15	1		6.6
		Sinter	1	_	0.7	0		
		Limestone	3	0.4 - 2.3	1.0	2	ND	0.2
Stone quarrying and processing	2	Crushed limestone	2	1.3 - 1.9	1.6	2	0.3 - 1.1	0.7
		Various limestone products	8	0.8 - 14	3.9	8	0.46 - 5.0	2.1
Taconite mining and processing	1	Pellets	9	2.2 - 5.4	3.4	7	0.05 - 2.0	0.9
		Tailings	2	ND	11	1		0.4
Western surface coal mining	4	Coal	15	3.4 - 16	6.2	7	2.8 - 20	6.9
		Overburden	15	3.8 - 15	7.5	0		
		Exposed ground	3	5.1 - 21	15	3	0.8 - 6.4	3.4
Coal-fired power plant	1	Coal (as received)	60	0.6 - 4.8	2.2	59	2.7 - 7.4	4.5
Municipal solid waste landfills	4	Sand	1	_	2.6	1		7.4
		Slag	2	3.0 - 4.7	3.8	2	2.3 - 4.9	3.6
		Cover	5	5.0 - 16	9.0	5	8.9 - 16	12
		Clay/dirt mix	1		9.2	1		14
		Clay	2	4.5 - 7.4	6.0	2	8.9 - 11	10
		Fly ash	4	78 - 81	80	4	26 - 29	27
		Misc. fill materials	1		12	1	_	11

^a References 1-10. ND = no data.

#### 13.2.4.3 Predictive Emission Factor Equations

Total dust emissions from aggregate storage piles result from several distinct source activities within the storage cycle:

- 1. Loading of aggregate onto storage piles (batch or continuous drop operations).

- Educing of aggregate onto storage piles (batch of continuous drop operations).
   Equipment traffic in storage area.
   Wind erosion of pile surfaces and ground areas around piles.
   Loadout of aggregate for shipment or for return to the process stream (batch or continuous). drop operations).

Either adding aggregate material to a storage pile or removing it usually involves dropping the material onto a receiving surface. Truck dumping on the pile or loading out from the pile to a truck with a front-end loader are examples of batch drop operations. Adding material to the pile by a conveyor stacker is an example of a continuous drop operation.

The quantity of particulate emissions generated by either type of drop operation, per kilogram (kg) (ton) of material transferred, may be estimated, with a rating of A, using the following empirical expression:¹¹

(1)

E = k(0.0016) 
$$\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}$$
 (kg/megagram [Mg])

E = k(0.0032) 
$$\frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}$$
 (pound [lb]/ton)

where:

E = emission factor

k = particle size multiplier (dimensionless)

U = mean wind speed, meters per second (m/s) (miles per hour [mph])

M = material moisture content (%)

The particle size multiplier in the equation, k, varies with aerodynamic particle size range, as follows:

Aerodynamic Particle Size Multiplier (k) For Equation 1						
$< 30 \ \mu m$ $< 15 \ \mu m$ $< 10 \ \mu m$ $< 5 \ \mu m$ $< 2.5 \ \mu m$						
$0.74$ $0.48$ $0.35$ $0.20$ $0.053^a$						

^a Multiplier for < 2.5 μm taken from Reference 14.

The equation retains the assigned quality rating if applied within the ranges of source conditions that were tested in developing the equation, as follows. Note that silt content is included, even though silt content does not appear as a correction parameter in the equation. While it is reasonable to expect that silt content and emission factors are interrelated, no significant correlation between the 2 was found during the derivation of the equation, probably because most tests with high silt contents were conducted under lower winds, and vice versa. It is recommended that estimates from the equation be reduced 1 quality rating level if the silt content used in a particular application falls outside the range given:

Ranges Of Source Conditions For Equation 1				
Wind Speed				
Silt Content (%)	Moisture Content (%)	m/s	mph	
0.44 - 19	0.25 - 4.8	0.6 - 6.7	1.3 - 15	

To retain the quality rating of the equation when it is applied to a specific facility, reliable correction parameters must be determined for specific sources of interest. The field and laboratory procedures for aggregate sampling are given in Reference 3. In the event that site-specific values for

#### 13.2.5 Industrial Wind Erosion

# 13.2.5.1 General¹⁻³

Dust emissions may be generated by wind erosion of open aggregate storage piles and exposed areas within an industrial facility. These sources typically are characterized by nonhomogeneous surfaces impregnated with nonerodible elements (particles larger than approximately 1 centimeter [cm] in diameter). Field testing of coal piles and other exposed materials using a portable wind tunnel has shown that (a) threshold wind speeds exceed 5 meters per second (m/s) (11 miles per hour [mph]) at 15 cm above the surface or 10 m/s (22 mph) at 7 m above the surface, and (b) particulate emission rates tend to decay rapidly (half-life of a few minutes) during an erosion event. In other words, these aggregate material surfaces are characterized by finite availability of erodible material (mass/area) referred to as the erosion potential. Any natural crusting of the surface binds the erodible material, thereby reducing the erosion potential.

#### 13.2.5.2 Emissions And Correction Parameters

If typical values for threshold wind speed at 15 cm are corrected to typical wind sensor height (7 - 10 m), the resulting values exceed the upper extremes of hourly mean wind speeds observed in most areas of the country. In other words, mean atmospheric wind speeds are not sufficient to sustain wind erosion from flat surfaces of the type tested. However, wind gusts may quickly deplete a substantial portion of the erosion potential. Because erosion potential has been found to increase rapidly with increasing wind speed, estimated emissions should be related to the gusts of highest magnitude.

The routinely measured meteorological variable that best reflects the magnitude of wind gusts is the fastest mile. This quantity represents the wind speed corresponding to the whole mile of wind movement that has passed by the 1 mile contact anemometer in the least amount of time. Daily measurements of the fastest mile are presented in the monthly Local Climatological Data (LCD) summaries. The duration of the fastest mile, typically about 2 minutes (for a fastest mile of 30 mph), matches well with the half-life of the erosion process, which ranges between 1 and 4 minutes. It should be noted, however, that peak winds can significantly exceed the daily fastest mile.

The wind speed profile in the surface boundary layer is found to follow a logarithmic distribution:

$$u(z) = \frac{u*}{0.4} \ln \frac{z}{z_0} \qquad (z > z_0)$$
 (1)

where:

u = wind speed, cm/s

u* = friction velocity, cm/s

z =height above test surface, cm

z_o = roughness height, cm 0.4 = von Karman's constant, dimensionless

The friction velocity ( $u^*$ ) is a measure of wind shear stress on the erodible surface, as determined from the slope of the logarithmic velocity profile. The roughness height ( $z_0$ ) is a measure of the roughness of the exposed surface as determined from the y intercept of the velocity profile, i. e., the height at which the wind speed is zero. These parameters are illustrated in Figure 13.2.5-1 for a roughness height of 0.1 cm.

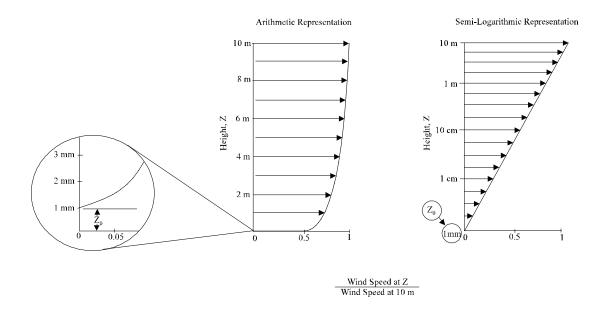



Figure 13.2.5-1. Illustration of logarithmic velocity profile.

Emissions generated by wind erosion are also dependent on the frequency of disturbance of the erodible surface because each time that a surface is disturbed, its erosion potential is restored. A disturbance is defined as an action that results in the exposure of fresh surface material. On a storage pile, this would occur whenever aggregate material is either added to or removed from the old surface. A disturbance of an exposed area may also result from the turning of surface material to a depth exceeding the size of the largest pieces of material present.

## 13.2.5.3 Predictive Emission Factor Equation⁴

The emission factor for wind-generated particulate emissions from mixtures of erodible and nonerodible surface material subject to disturbance may be expressed in units of grams per square meter  $(g/m^2)$  per year as follows:

Emission factor = 
$$k \sum_{i=1}^{N} P_i$$
 (2)

where:

k = particle size multiplier

N = number of disturbances per year

 $P_i$  = erosion potential corresponding to the observed (or probable) fastest mile of wind for the ith period between disturbances,  $g/m^2$ 

The particle size multiplier (k) for Equation 2 varies with aerodynamic particle size, as follows:

Aerodynamic Particle Size Multipliers For Equation 2				
30 μm <15 μm <10 μm <2.5 μm				
1.0	0.6	0.5	0.075 ^a	

 $^{^{\}mbox{\scriptsize a}}$  Multiplier for < 2.5 um taken from Reference 11.

This distribution of particle size within the under 30 micrometer (µm) fraction is comparable to the distributions reported for other fugitive dust sources where wind speed is a factor. This is illustrated, for example, in the distributions for batch and continuous drop operations encompassing a number of test aggregate materials (see Section 13.2.4).

In calculating emission factors, each area of an erodible surface that is subject to a different frequency of disturbance should be treated separately. For a surface disturbed daily, N=365 per year, and for a surface disturbance once every 6 months, N=2 per year.

The erosion potential function for a dry, exposed surface is:

$$P = 58 (u^* - u_t^*)^2 + 25 (u^* - u_t^*)$$

$$P = 0 \text{ for } u^* \le u_t^*$$
(3)

where:

u* = friction velocity (m/s)

 $u_t$  = threshold friction velocity (m/s)

Because of the nonlinear form of the erosion potential function, each erosion event must be treated separately.

Equations 2 and 3 apply only to dry, exposed materials with limited erosion potential. The resulting calculation is valid only for a time period as long or longer than the period between disturbances. Calculated emissions represent intermittent events and should not be input directly into dispersion models that assume steady-state emission rates.

For uncrusted surfaces, the threshold friction velocity is best estimated from the dry aggregate structure of the soil. A simple hand sieving test of surface soil can be used to determine the mode of the surface size distribution by inspection of relative sieve catch amounts, following the procedure described below.

# FIELD PROCEDURE FOR DETERMINATION OF THRESHOLD FRICTION VELOCITY (from a 1952 laboratory procedure published by W. S. Chepil):

- 1. Prepare a nest of sieves with the following openings: 4 mm, 2 mm, 1 mm, 0.5 mm, and 0.25 mm. Place a collector pan below the bottom (0.25 mm) sieve.
- 2. Collect a sample representing the surface layer of loose particles (approximately 1 cm in depth, for an encrusted surface), removing any rocks larger than about 1 cm in average physical diameter. The area to be sampled should be not less than 30 cm by 30 cm.
- 3. Pour the sample into the top sieve (4-mm opening), and place a lid on the top.
- 4. Move the covered sieve/pan unit by hand, using a broad circular arm motion in the horizontal plane. Complete 20 circular movements at a speed just necessary to achieve some relative horizontal motion between the sieve and the particles.
- 5. Inspect the relative quantities of catch within each sieve, and determine where the mode in the aggregate size distribution lies, i. e., between the opening size of the sieve with the largest catch and the opening size of the next largest sieve.
- 6. Determine the threshold friction velocity from Table 13.2.5-1.

The results of the sieving can be interpreted using Table 13.2.5-1. Alternatively, the threshold friction velocity for erosion can be determined from the mode of the aggregate size distribution using the graphical relationship described by Gillette.⁵⁻⁶ If the surface material contains nonerodible elements that are too large to include in the sieving (i. e., greater than about 1 cm in diameter), the effect of the elements must be taken into account by increasing the threshold friction velocity.¹⁰

Table 13.2.5-1 (Metric Units). FIELD PROCEDURE FOR DETERMINATION OF THRESHOLD FRICTION VELOCITY

Tyler Sieve No.	Opening (mm)	Midpoint (mm)	u _t * (cm/s)
5	4		
9	2	3	100
16	1	1.5	76
32	0.5	0.75	58
60	0.25	0.375	43

Threshold friction velocities for several surface types have been determined by field measurements with a portable wind tunnel. These values are presented in Table 13.2.5-2.

Table 13.2.5-2 (Metric Units). THRESHOLD FRICTION VELOCITIES

	Threshold Friction			Threshold Wind Velocity At 10 m (m/s)		
Material	Velocity (m/s)	Roughness Height (cm)	$z_{o} = Act$	$z_0 = 0.5 \text{ cm}$		
Overburden ^a	1.02	0.3	21	19		
Scoria (roadbed material) ^a	1.33	0.3	27	25		
Ground coal (surrounding coal pile) ^a	0.55	0.01	16	10		
Uncrusted coal pile ^a	1.12	0.3	23	21		
Scraper tracks on coal pile ^{a,b}	0.62	0.06	15	12		
Fine coal dust on concrete pad ^c	0.54	0.2	11	10		

^a Western surface coal mine. Reference 2.

The fastest mile of wind for the periods between disturbances may be obtained from the monthly LCD summaries for the nearest reporting weather station that is representative of the site in question. These summaries report actual fastest mile values for each day of a given month. Because the erosion potential is a highly nonlinear function of the fastest mile, mean values of the fastest mile are inappropriate. The anemometer heights of reporting weather stations are found in Reference 8, and should be corrected to a 10-m reference height using Equation 1.

To convert the fastest mile of wind  $(u^+)$  from a reference anemometer height of 10 m to the equivalent friction velocity  $(u^*)$ , the logarithmic wind speed profile may be used to yield the following equation:

$$u^* = 0.053 \ u_{10}^+$$
 (4)

where:

u* = friction velocity (m/s)

 $\mathbf{u}_{10}^{^{+}}$  = fastest mile of reference anemometer for period between disturbances (m/s)

This assumes a typical roughness height of 0.5 cm for open terrain. Equation 4 is restricted to large relatively flat piles or exposed areas with little penetration into the surface wind layer.

If the pile significantly penetrates the surface wind layer (i. e., with a height-to-base ratio exceeding 0.2), it is necessary to divide the pile area into subareas representing different degrees of exposure to wind. The results of physical modeling show that the frontal face of an elevated pile is exposed to wind speeds of the same order as the approach wind speed at the top of the pile.

^b Lightly crusted.

^c Eastern power plant. Reference 3.

For 2 representative pile shapes (conical and oval with flattop, 37-degree side slope), the ratios of surface wind speed  $(u_s)$  to approach wind speed  $(u_r)$  have been derived from wind tunnel studies. The results are shown in Figure 13.2.5-2 corresponding to an actual pile height of 11 m, a reference (upwind) anemometer height of 10 m, and a pile surface roughness height  $(z_0)$  of 0.5 cm. The measured surface winds correspond to a height of 25 cm above the surface. The area fraction within each contour pair is specified in Table 13.2.5-3.

Table 13.2.5-3. SUBAREA DISTRIBUTION FOR REGIMES OF u_s/u_r^a

	Percent Of Pile Surface Area			
Pile Subarea	Pile A	Pile B1	Pile B2	Pile B3
0.2a	5	5	3	3
0.2b	35	2	28	25
0.2c	NA	29	NA	NA
0.6a	48	26	29	28
0.6b	NA	24	22	26
0.9	12	14	15	14
1.1	NA	NA	3	4

a NA = not applicable.

The profiles of  $u_s/u_r$  in Figure 13.2.5-2 can be used to estimate the surface friction velocity distribution around similarly shaped piles, using the following procedure:

1. Correct the fastest mile value (u⁺) for the period of interest from the anemometer height (z) to a reference height of 10 m u₁₀ using a variation of Equation 1:

$$u_{10}^{+} = u^{+} \frac{\ln (10/0.005)}{\ln (z/0.005)}$$
 (5)

where a typical roughness height of 0.5 cm (0.005 m) has been assumed. If a site-specific roughness height is available, it should be used.

2. Use the appropriate part of Figure 13.2.5-2 based on the pile shape and orientation to the fastest mile of wind, to obtain the corresponding surface wind speed distribution  $(u_s^+)$ 

$$u_s^+ = \frac{(u_s)}{u_r} \qquad u_{10}^+ \tag{6}$$

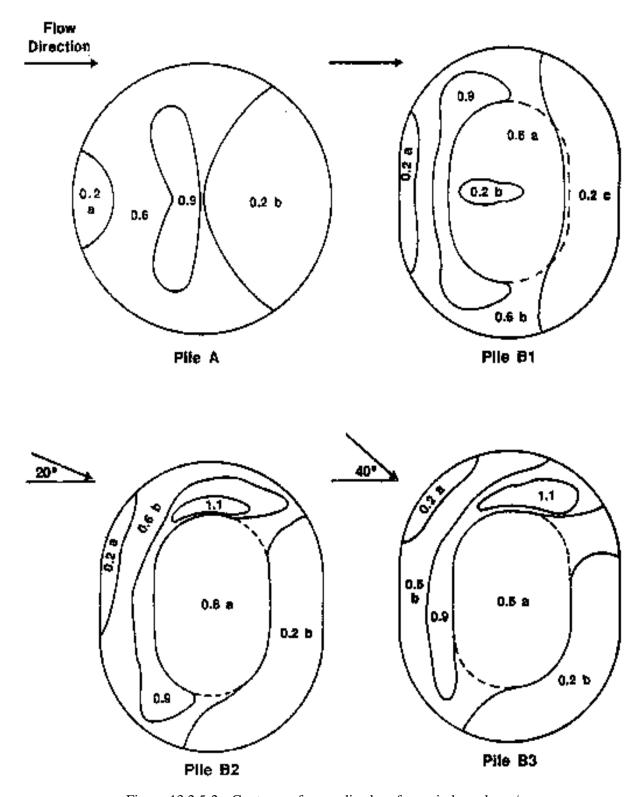



Figure 13.2.5-2. Contours of normalized surface windspeeds,  $\mathbf{u_s}/\mathbf{u_r}$ .

3. For any subarea of the pile surface having a narrow range of surface wind speed, use a variation of Equation 1 to calculate the equivalent friction velocity (u*):

$$u^* = \frac{0.4u_S^+}{\frac{25}{\ln 0.5}} = 0.10u_S^+ \tag{7}$$

From this point on, the procedure is identical to that used for a flat pile, as described above.

Implementation of the above procedure is carried out in the following steps:

- 1. Determine threshold friction velocity for erodible material of interest (see Table 13.2.5-2 or determine from mode of aggregate size distribution).
- 2. Divide the exposed surface area into subareas of constant frequency of disturbance (N).
- 3. Tabulate fastest mile values (u⁺) for each frequency of disturbance and correct them to 10 m (u⁺) using Equation 5.5
- 4. Convert fastest mile values (u₁₀) to equivalent friction velocities (u*), taking into account (a) the uniform wind exposure of nonelevated surfaces, using Equation 4, or (b) the nonuniform wind exposure of elevated surfaces (piles), using Equations 6 and 7.
- 5. For elevated surfaces (piles), subdivide areas of constant N into subareas of constant  $u^*$  (i. e., within the isopleth values of  $u_s/u_r$  in Figure 13.2.5-2 and Table 13.2.5-3) and determine the size of each subarea.
- 6. Treating each subarea (of constant N and u*) as a separate source, calculate the erosion potential (P_i) for each period between disturbances using Equation 3 and the emission factor using Equation 2.
- 7. Multiply the resulting emission factor for each subarea by the size of the subarea, and add the emission contributions of all subareas. Note that the highest 24-hour (hr) emissions would be expected to occur on the windiest day of the year. Maximum emissions are calculated assuming a single event with the highest fastest mile value for the annual period.

The recommended emission factor equation presented above assumes that all of the erosion potential corresponding to the fastest mile of wind is lost during the period between disturbances. Because the fastest mile event typically lasts only about 2 minutes, which corresponds roughly to the half-life for the decay of actual erosion potential, it could be argued that the emission factor overestimates particulate emissions. However, there are other aspects of the wind erosion process that offset this apparent conservatism:

- 1. The fastest mile event contains peak winds that substantially exceed the mean value for the event.
- 2. Whenever the fastest mile event occurs, there are usually a number of periods of

slightly lower mean wind speed that contain peak gusts of the same order as the fastest mile wind speed.

Of greater concern is the likelihood of overprediction of wind erosion emissions in the case of surfaces disturbed infrequently in comparison to the rate of crust formation.

#### 13.2.5.4 Example 1: Calculation for wind erosion emissions from conically shaped coal pile

A coal burning facility maintains a conically shaped surge pile 11 m in height and 29.2 m in base diameter, containing about 2000 megagrams (Mg) of coal, with a bulk density of 800 kilograms per cubic meter ( $kg/m^3$ ) (50 pounds per cubic feet [ $lb/ft^3$ ]). The total exposed surface area of the pile is calculated as follows:

Coal is added to the pile by means of a fixed stacker and reclaimed by front-end loaders operating

$$S = \pi r \sqrt{r^2 + h^2}$$

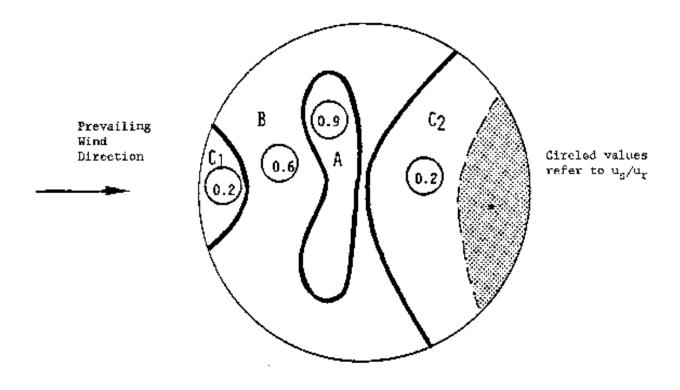
$$= 3.14(14.6)\sqrt{(14.6)^2 + (11.0)^2}$$

$$= 838 m^2$$

at the base of the pile on the downwind side. In addition, every 3 days 250 Mg (12.5 percent of the stored capacity of coal) is added back to the pile by a topping off operation, thereby restoring the full capacity of the pile. It is assumed that (a) the reclaiming operation disturbs only a limited portion of the surface area where the daily activity is occurring, such that the remainder of the pile surface remains intact, and (b) the topping off operation creates a fresh surface on the entire pile while restoring its original shape in the area depleted by daily reclaiming activity.

Because of the high frequency of disturbance of the pile, a large number of calculations must be made to determine each contribution to the total annual wind erosion emissions. This illustration will use a single month as an example.

Step 1: In the absence of field data for estimating the threshold friction velocity, a value of 1.12 m/s is obtained from Table 13.2.5-2.


Step 2: Except for a small area near the base of the pile (see Figure 13.2.5-3), the entire pile surface is disturbed every 3 days, corresponding to a value of N = 120 per year. It will be shown that the contribution of the area where daily activity occurs is negligible so that it does not need to be treated separately in the calculations.

Step 3: The calculation procedure involves determination of the fastest mile for each period of disturbance. Figure 13.2.5-4 shows a representative set of values (for a 1-month period) that are assumed to be applicable to the geographic area of the pile location. The values have been separated into 3-day periods, and the highest value in each period is indicated. In this example, the anemometer height is 7 m, so that a height correction to 10 m is needed for the fastest mile values. From Equation 5,

$$u_{10}^{+} = u_{7}^{+} \left( \frac{\ln (10/0.005)}{\ln (7/0.005)} \right)$$

$$u_{10}^{+} = 1.05 \ u_{7}^{+}$$

Step 4: The next step is to convert the fastest mile value for each 3-day period into



 $\star$  A portion of  $\mathsf{G}_2$  is disturbed daily by reclaiming activities.

			Pile	Pile Surface			
	Area ID	$\frac{u_s}{u_r}$	X	Are	a (m²)		
-	A	0.9	12		101		
	В	0.6	48		402		
	$c_1 + c_2$	0.2	40		335		
				Total	838		

Figure 13.2.5-3. Example 1: Pile surface areas within each wind speed regime.

# Local Climatological Data Monthly Summary Wind

	Wind						
	Wind						
				Fastest Mile			
	Resultant Dir.	Resultant Speed M.P.H.	Average Speed M.P.H.	Speed M.P.H.	Direction		Date
_	13	14	15	16	17		22
	30 01 10 13 12 20 29 29 22 14 29 17 21 10 01 33 27 32 24 22 32 29 07 34 31 30 30 30 30 30 30 30 30 30 30 30 30 30	5.3 10.5 2.4 11.0 11.3 11.1 19.6 10.9 3.0 14.6 22.3 7.9 7.7 4.5 6.7 13.7 11.2 4.3 9.3 7.5 10.3 17.1 2.4 5.9 11.3 12.1 8.3 8.2	6.9 10.6 6.0 11.4 11.9 19.0 19.8 11.2 8.1 15.1 23.3 13.5 15.5 9.6 8.8 13.8 11.5 5.8 10.2 7.8 10.6 17.3 8.5 8.8 11.7 12.2 8.5 8.3	9 14 10 16 15 29 30 17 15 23 31 23 18 22 13 15 16 16 16 16 17 16 16 17 16 16 17 16 16 17 17 18 18 18 18 18 18 18 18 18 18	36 01 02 13 11 30 30 30 13 12 29 17 18 13 11 36 34 31 35 24 20 32 13 02 32 32 32 32 32 32 32 32 32 32 32 32 32		1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
	33	5.0	6.6	10	32		29
	34 29	3.1 4.9	5.2 5.5	9 8	31 25		30 31
_	27	7.7	For the 1				- 11
	30	3.3	11.1	31	29		
				Date	e: 11		

Figure 13.2.5-4. Example daily fastest miles wind for periods of interest.

equivalent friction velocities for each surface wind regime (i. e.,  $u_g/u_r$  ratio) of the pile, using Equations 6 and 7. Figure 13.2.5-3 shows the surface wind speed pattern (expressed as a fraction of the approach wind speed at a height of 10 m). The surface areas lying within each wind speed regime are tabulated below the figure.

The calculated friction velocities are presented in Table 13.2.5-4. As indicated, only 3 of the periods contain a friction velocity which exceeds the threshold value of 1.12 m/s for an uncrusted coal pile. These 3 values all occur within the  $u_s/u_r = 0.9$  regime of the pile surface.

Table 13.2.5-4 (Metric And English Units). EXAMPLE 1: CALCULATION OF FRICTION VELOCITIES

	u ₇ ⁺ u ₁₀ ⁺		ı+ 10	u	$* = 0.1u^{+} \text{ (m/s)}$	(s)	
3-Day Period	mph	m/s	mph	m/s	u _s /u _r : 0.2	u _s /u _r : 0.6	u _s /u _r : 0.9
1	14	6.3	15	6.6	0.13	0.40	0.59
2	29	13.0	31	13.7	0.27	0.82	1.23
3	30	13.4	32	14.1	0.28	0.84	1.27
4	31	13.9	33	14.6	0.29	0.88	1.31
5	22	9.8	23	10.3	0.21	0.62	0.93
6	21	9.4	22	9.9	0.20	0.59	0.89
7	16	7.2	17	7.6	0.15	0.46	0.68
8	25	11.2	26	11.8	0.24	0.71	1.06
9	17	7.6	18	8.0	0.16	0.48	0.72
10	13	5.8	14	6.1	0.12	0.37	0.55

Step 5: This step is not necessary because there is only 1 frequency of disturbance used in the calculations. It is clear that the small area of daily disturbance (which lies entirely within the  $u_s/u_r=0.2$  regime) is never subject to wind speeds exceeding the threshold value.

Steps 6 and 7: The final set of calculations (shown in Table 13.2.5-5) involves the tabulation and summation of emissions for each disturbance period and for the affected subarea. The erosion potential (P) is calculated from Equation 3.

For example, the calculation for the second 3-day period is:

$$P = 58(u^* - u_t^*)^2 + 25(u^* - u_t^*)$$

$$P_2 = 58(1.23 - 1.12)^2 + 25(1.23 - 1.12)$$

$$= 0.70 + 2.75 = 3.45 \text{ g/m}^2$$

Pile Surface  $u^* - u_t^*$ Area kPA u* (m/s)  $P (g/m^2)$ (m²)3-Day Period (m/s)ID (g) 2 3.45 170 1.23 0.11 Α 101 3 0.15 5.06 1.27 A 101 260 4 0.19 1.31 6.84 A 101 350 **TOTAL** 780

Table 13.2.5-5 (Metric Units). EXAMPLE 1: CALCULATION OF PM-10 EMISSIONS^a

The emissions of particulate matter greater than 10  $\mu$ m (PM-10) generated by each event are found as the product of the PM-10 multiplier (k = 0.5), the erosion potential (P), and the affected area of the pile (A).

As shown in Table 13.2.5-5, the results of these calculations indicate a monthly PM-10 emission total of 780 g.

#### 13.2.5.5 Example 2: Calculation for wind erosion from flat area covered with coal dust

A flat circular area 29.2 m in diameter is covered with coal dust left over from the total reclaiming of a conical coal pile described in the example above. The total exposed surface area is calculated as follows:

$$s = \frac{\pi}{4} d^2 = 0.785 (29.2)^2 = 670 m^2$$

This area will remain exposed for a period of 1 month when a new pile will be formed.

Step 1: In the absence of field data for estimating the threshold friction velocity, a value of 0.54 m/s is obtained from Table 13.2.5-2.

Step 2: The entire surface area is exposed for a period of 1 month after removal of a pile and N = 1/yr.

Step 3: From Figure 13.2.5-4, the highest value of fastest mile for the 30-day period (31 mph) occurs on the 11th day of the period. In this example, the reference anemometer height is 7 m, so that a height correction is needed for the fastest mile value. From Step 3 of the previous example,  $u_{10}^+ = 1.05 \ u^+$ , so that  $u^+ = 1.05 \ u^+$ , so that  $u^+ = 1.05 \ u^+$ , so that  $u^+ = 1.05 \ u^+$ .

Step 4: Equation 4 is used to convert the fastest mile value of 14.6 m/s (33 mph) to an equivalent friction velocity of 0.77 m/s. This value exceeds the threshold friction velocity from Step 1 so that erosion does occur.

<u>Step 5</u>: This step is not necessary, because there is only 1 frequency of disturbance for the entire source area.

^a Where  $u_t^* = 1.12$  m/s for uncrusted coal and k = 0.5 for PM-10.

Steps 6 and 7: The PM-10 emissions generated by the erosion event are calculated as the product of the PM-10 multiplier (k = 0.5), the erosion potential (P) and the source area (A). The erosion potential is calculated from Equation 3 as follows:

$$P = 58(u^* - u_t^*)^2 + 25(u^* - u_t^*)$$

$$P = 58(0.77 - 0.54)^2 + 25(0.77 - 0.54)$$

$$= 3.07 + 5.75$$

$$= 8.82 \text{ g/m}^2$$

Thus the PM-10 emissions for the 1-month period are found to be:

$$E = (0.5)(8.82 \text{ g/m}^2)(670 \text{ m}^2)$$
$$= 3.0 \text{ kg}$$

References For Section 13.2.5

- 1. C. Cowherd, Jr., "A New Approach To Estimating Wind Generated Emissions From Coal Storage Piles", Presented at the APCA Specialty Conference on Fugitive Dust Issues in the Coal Use Cycle, Pittsburgh, PA, April 1983.
- 2. K. Axtell and C. Cowherd, Jr., *Improved Emission Factors For Fugitive Dust From Surface Coal Mining Sources*, EPA-600/7-84-048, U. S. Environmental Protection Agency, Cincinnati, OH, March 1984.
- 3. G. E Muleski, "Coal Yard Wind Erosion Measurement", Midwest Research Institute, Kansas City, MO, March 1985.
- 4. Update Of Fugitive Dust Emissions Factors In AP-42 Section 11.2 Wind Erosion, MRI No. 8985-K, Midwest Research Institute, Kansas City, MO, 1988.
- 5. W. S. Chepil, "Improved Rotary Sieve For Measuring State And Stability Of Dry Soil Structure", *Soil Science Society Of America Proceedings*, *16*:113-117, 1952.
- 6. D. A. Gillette, *et al.*, "Threshold Velocities For Input Of Soil Particles Into The Air By Desert Soils", *Journal Of Geophysical Research*, 85(C10):5621-5630.
- 7. Local Climatological Data, National Climatic Center, Asheville, NC.
- 8. M. J. Changery, *National Wind Data Index Final Report*, HCO/T1041-01 UC-60, National Climatic Center, Asheville, NC, December 1978.
- 9. B. J. B. Stunder and S. P. S. Arya, "Windbreak Effectiveness For Storage Pile Fugitive Dust Control: A Wind Tunnel Study", *Journal Of The Air Pollution Control Association*, 38:135-143, 1988.
- 10. C. Cowherd, Jr., *et al.*, *Control Of Open Fugitive Dust Sources*, EPA 450/3-88-008, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 1988.

11. C. Cowherd, Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors. Prepared by Midwest Research Institute for Western Governors Association, Western Regional Air Partnership, Denver, CO, February 1, 2006.

Saved Date: 11/30/2022

# **Section 8**

# Map(s)

 $\underline{\mathbf{A}\ \mathbf{map}}$  such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north		
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads		
Topographic features of the area	Facility property boundaries		
The name of the map	The area which will be restricted to public access		
A graphical scale			

______

Please see the enclosed quad map.

TOWER HILL SOUTH QUADRANGLE UNITED STATES NEW MEXICO-EDDY CO. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY 7.5 MINUTE SERIES (TOPOGRAPHIC) 640000 FEET 103° 52′ 30″ \$2° 30′ 32° 30′ 1 *3158T 27′ 30″ Mosaic Potash Carlsbad Inc. PRODUCED BY THE INITED STATES GEOLOGICAL SURVEY SCALE 1:24 000 ROAD LEGEND NEW MEXICO MiLES 4000 5000 6000 7000 8000 9000 10 000 1000 2000 3000 FEET KILOMETERS QUADRANGLE LOCATION 0 METERS 1000 CONTOUR INTERVAL 10 FEET Interstate Route U.S. Route State Route 3 1 Illinois Camp SE
2 Tower Hill North
3 Williams Sink
4 Indian Flats
5 Livingston Ridge
6 Loving
7 Remuda Basin
8 8 Los Medanos move the projection lines as shown by dashed corner ticks (9 meters south and 46 meters east)

There may be private inholdings within the boundaries of any Federal and State Reservations shown on this map PROVISIONAL MAP Produced from original TOWER HILL SOUTH, NEW MEXICO manuscript drawings. Infor-PROVISIONAL EDITION 1985 mation shown as of date of THIS MAP COMPLIES WITH NATIONAL MAP ACCURACY STANDARDS FOR SALE BY U.S. GEOLOGICAL SURVEY, DENVER, COLORADO 80225 OR RESTON, VIRGINIA 22092 All marginal data and lettering generated and positioned by automated type placement procedures field check. 32103-D8-TF-024 Land lines have not been established in area ADJOINING 7.5' QUADRANGLE NAMES NOTE: These complimentary copies are sent for your review and comment. Mark any corrections or comments on one copy and return using the enclosed envelope. If no comments, both copies may be retained for your use. Information you

provide will aid in future updating or revision of this map.

Address_

Signature_

Saved Date: 11/30/2022

# **Section 9**

### **Proof of Public Notice**

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

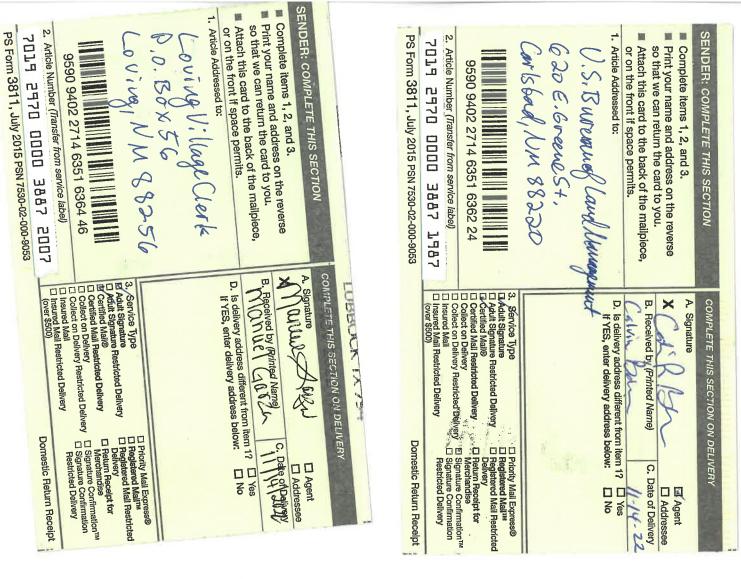
X I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

**Technical Revision** public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:


- 1. X A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. X A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g. post office, library, grocery, etc.)
- 3. X A copy of the property tax record (20.2.72.203.B NMAC).
- 4. X A sample of the letters sent to the owners of record.
- 5. X A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. X A sample of the public notice posted and a verification of the local postings.
- 7. X A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. X A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. **X** A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. **X** A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. **X** A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.



### **Proof of Notification Delivery Confirmations**

### UA3, Section 9.1

See the following pages for proof of delivery confirmations for the notification letters. Copies of the actual letters and certified mail receipts are provided in Sections 9.4 and 9.5.



7019

Sent To U.

un esaa

2970

aherso

\$0.60

Total Postage and মুচ্ছুঃ ুড়

11/08/2022

Adult Signature Restricted Delivery \$

Adult Signature Required

Return Receipt (hardcopy)
Return Receipt (electronic)
Certified Mail Restricted Delivery

0000

3887

Certified Mail Fee

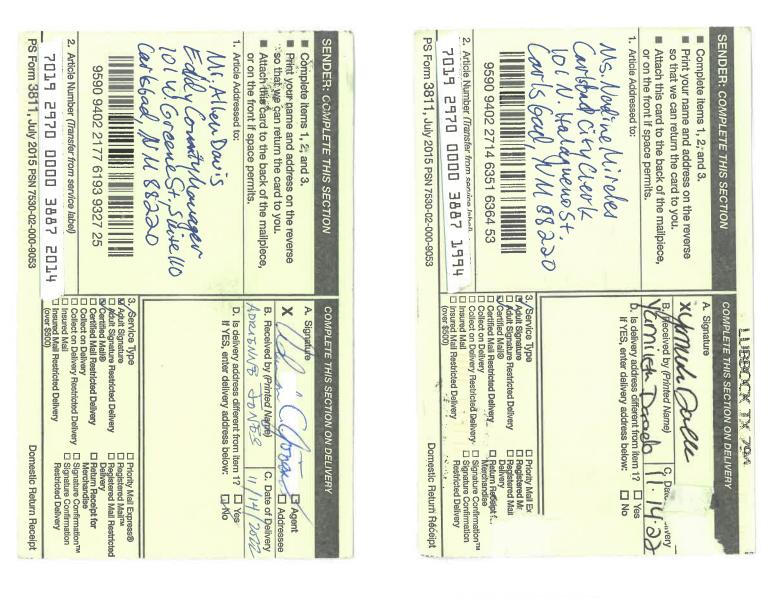
Extra Services & Fees (check box, add fee a saprantate)

\$0.00

Postmark~

0615

1987


Domestic Mail Only

CERTIFIED MAIL® RECEIPT

U.S. Postal Service

For delivery information, visit our website at www.usps.com.





2970

Total Postage and Fees

0000

☐ Adult Signature Required Certified Mail Restricted Delivery Return Receipt (electronic) extra Services & Fees (check box,

Return Receipt (hardcopy)

and fee # Cop Cop and

3.25

100 671

\$0.00

\$0,00

Adult Signature Restricted Delivery

\$0.60

11/08/2022

3887

Pertified Mail Fee

\$4.00

Carl short

MD 88220

1994

Domestic Mail Only

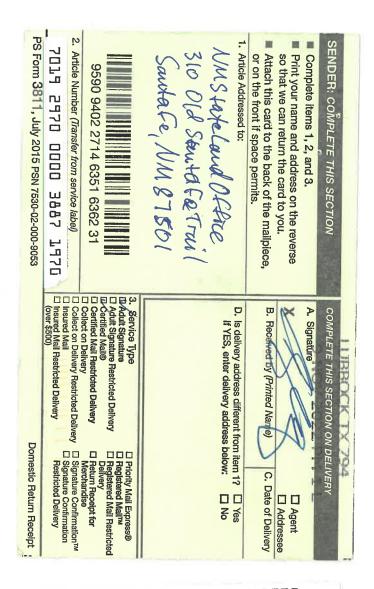
CERTIFIED MAIL® RECEIPT

U.S. Postal Service

For delivery information, visit our website at www.usps.com®

7019


ing or PO Box Ne Les


Clerk

88220

See Reverse for Instructions

PS Form 3800, April 2015 PSN 7530-02-000-9047





### 1970 3887 7019 2970 0000 Total Postage and Fees. 85 Certified Mail Fee Sent To Extra Services & Fees (check box, add fee For delivery information, visit our website at www.usps.com® City, State, Adult Signature Restricted Delivery \$ Certified Mail Restricted Delivery Return Receipt (electronic) U.S. Postal Service PS Form 3800, April 2015 PSN 7530 Adult Signature Required Domestic Mail Only CERTIFIED MAIL® RECEIPT \$4,00 õ \$0.60 sutate Irai \$3.25 \$0.00 \$0.00 8750 See Reverse for Instructions 1970BY2622 STON SBAD Postmank Here



### **Public Notice Posting Locations**

### UA3, Section 9.2

- 1. Facility Main Entrance: 1361 Potash Mines Road, Carlsbad, NM 88220
- 2. Carlsbad National Bank: 202 W. Stevens Street, Carlsbad, NM 88220
- 3. La Tienda Thriftway: 1301 S. Canal Street, Carlsbad, NM 88220
- 4. U.S. Post Office: 301 N. Canyon Street, Carlsbad, NM 88220



### Tax Assessment Report for Eddy County Land Parcels Surrounding Mosaic Potash Carlsbad, Inc.

### UA3, Section 9.3

The table below presents all of the owners of record for the land parcels within a ½ mile of the Mosaic Potash Carlsbad, Inc property. Per NMED's Public Notice Guidelines (version 7/19/2022), Mosaic's "property boundary" is based on the restricted area around the main facility, not the boundary of the larger property (e.g., tailings).

Legal Description	Parcel No.	Property Owners on Record
T22S, R29E, Section 1	4-174-127-457-198;	Mosaic Potash Carlsbad, Inc.
1223, R29E, Section 1	4-174-127-327-462	Wosaic Potasii Carisbau, iiic.
T22S, R29E, Section 2	4-173-127-262-264	State of New Mexico
T21S, R29E, Section 36	4-174-126-264-261	State of New Mexico
T21S, R30E, Section 31	4-175-126-285-264	Bureau of Land Management (BLM)
T22S, R29E, Section 1	4-174-127-261-264	BLM
T22S, R30E, Section 6	4-176-127-268-264	BLM
T22S, R29E, Section 11	4-173-128-459-264	BLM
T22S, R29E, Section 12	4-174-128-261-264	BLM
T22S, R30E, Section 7	4-175-128-268-263	BLM
T22S, R30E, Section 5	4-176-127-267-264	State of New Mexico
T22S, R30E, Section 8	4-176-128-267-263	State of New Mexico

The tax assessment reports for these parcels are provided in the following pages.

December 2022

¹ Eddy County is classified as "B-High" per the 2022 county classifications.

**Eddy Assessor** 

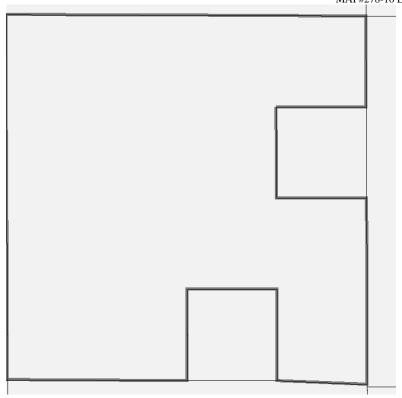
**BUREAU OF LAND MANAGEMENT** 

**Account: R051843** 

Parcel: 4-174-127-261-264

Tax Area: CO_NR - CARLSBAD-

OUT (Nonresidential)


Situs Address:

Acres: 0.000

### **Value Summary**

### **Legal Description**

Value By:	Market	Override	Quarter: NE S: 1 T: 22S R: 29E Quarter: NW S: 1 T: 22S R: 29E Quarter: SW S: 1 T: 22S R: 29E Quarter: SE S: 1 T: 22S R: 29E SECS 1, 3-15, 17-
Land (1)	\$2,505	N/A	25, 26-31, 33-35 ALL SECTIONS 3,4,5,6,7,8,9,10,12,13
Total	\$2,505	\$2,505	14,15,17,18,19,20,21,22,23,24,27,28 29,30,31,33,34,35 N/2NE, SWNE, N/2SE, SESE, W/2 SEC 1 N/2N/2, S/2NWSE, N/2SWNE, SENE, NESE,
			S/2S/2 SEC 11 ALL (LESS NWNW) SEC 25 SE, SW, W/2NW SEC 26
			MAP#278-10 FXFMPT



### **Public Remarks**

**Entry Date** Model Remark

### **Land Occurrence 1**

9200 - EXEMPT NON-RESIDENTIAL LAND Property Code Land Code 141_4_5 - Grazing E Federal - 4.5

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
9200	EXEMPT NON-RESIDENTIAL LAND	\$2,505	\$835	NA	NA
Total		\$2,505	\$835	NA	NA

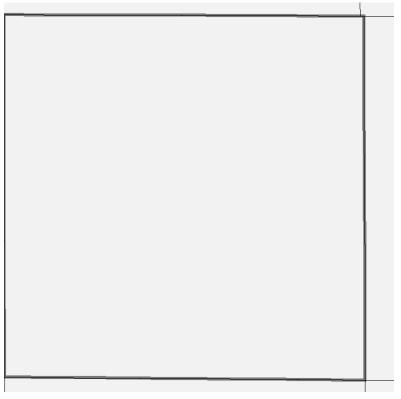
**Eddy Assessor** 

**STATE OF NEW MEXICO** 

**Account: R052269** 

Parcel: 4-173-127-262-264

310 OLD SANTA FE TRAIL SANTA FE, NM 87504 Tax Area: CO_NR - CARLSBAD-OUT (Nonresidential)


Situs Address:

Acres: 0.000

Va	lue	Su	mm	ary
----	-----	----	----	-----

### **Legal Description**

Value By:	Market	Override	Quarter: NE S: 2 T: 22S R: 29E Quarter: NW S: 2 T: 22S R: 29E Quarter: SW S: 2 T: 22S R: 29E Quarter: SE S: 2 T: 22S R: 29E ALL MAP# 278-2
Land (1)	\$2,862	N/A	LOC E OF CARLSBAD EXEMPT
Total	\$2,862	\$2,862	



### **Land Occurrence 1**

Property Code 9200 - EXEMPT NON-RESIDENTIAL LAND

Land Code

153_4_5 - Grazing E NM - 4.5

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
9200	EXEMPT NON-RESIDENTIAL LAND	\$2,862	\$954	NA	NA
Total		\$2,862	\$954	NA	NA

**Eddy Assessor** 

### MOSAIC POTASH CARLSBAD INC

PO BOX 71 CARLSBAD, NM 88221-0071

# Account: R055089 (INACTIVE)

Tax Area: CO_NR - CARLSBAD-OUT (Nonresidential)
Acres: 0.000

Parcel: 4-174-127-327-462

Situs Address: 1362 POTASH MINES ROAD CARLSBAD, 88220

### **Legal Description**

Quarter: SE S: 1 T: 22S R: 29E SWSE

### **Public Remarks**

Entry Date Model Remark

08/26/2016 STATE ASSESSED - FOR INFORMATION PURPOSES ONLY

 $06/03/2020 \hspace{35pt} \mathsf{DEACTIVATE} \hspace{0.1cm} \mathsf{ACCT} \hspace{0.1cm} \#C200350$ 

BOOK 257 PG 320

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
Total		\$0	\$0	NA	NA

**Eddy Assessor** 

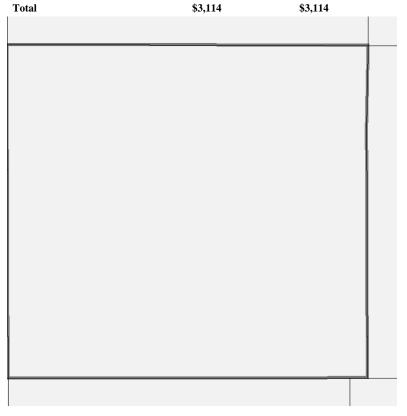
BUREAU OF LAND MANAGEMENT

**Account: R094690** 

Parcel: 4-175-126-285-264

Tax Area: CO_NR - CARLSBAD-

OUT (Nonresidential)


Situs Address:

Acres: 0.000

Value Summar
--------------

### **Legal Description**

Value By:	Market	Override	Quarter: NE S: 31 T: 21S R: 30E Quarter: NW S: 31 T: 21S R: 30E Quarter: SW S: 31 T: 21S R: 30E Quarter: SE S: 31 T: 21S R: 30E ALL
Land (1)	\$3,114	N/A	MAP# 207-31 LOC E OF CARLSBAD EXEMPT



### **Land Occurrence 1**

Property Code

9200 - EXEMPT NON-RESIDENTIAL LAND

Land Code

141_4_5 - Grazing E Federal - 4.5

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
9200	EXEMPT NON-RESIDENTIAL LAND	\$3,114	\$1,038	NA	NA
Total		\$3,114	\$1,038	NA	NA

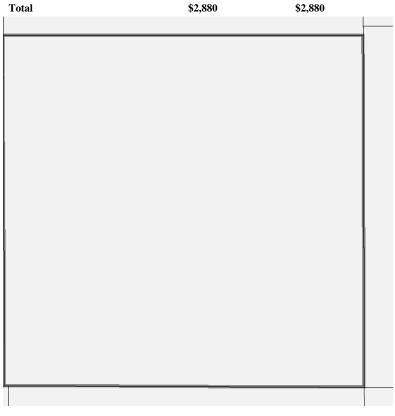
**Eddy Assessor** 

**STATE OF NEW MEXICO** 

**Account: R094734** 

Parcel: 4-174-126-264-261

310 OLD SANTA FE TRAIL SANTA FE, NM 87504 Tax Area: CO_NR - CARLSBAD-OUT (Nonresidential)


Situs Address:

Acres: 0.000

Value Summary	V	alu	e Su	mm	arv	7
---------------	---	-----	------	----	-----	---

### **Legal Description**

Value By:	Market	Override	Quarter: NE S: 36 T: 21S R: 29E Quarter: NW S: 36 T: 21S R: 29E Quarter: SW S: 36 T: 21S R: 29E ALL
Land (1)	\$2,880	N/A	MAP# 206-36 LOC E OF CARLSBAD EXEMPT



### **Land Occurrence 1**

Property Code

9200 - EXEMPT NON-RESIDENTIAL LAND

Land Code

153_4_5 - Grazing E NM - 4.5

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
9200	EXEMPT NON-RESIDENTIAL LAND	\$2,880	\$960	NA	NA
Total		\$2,880	\$960	NA	NA

**Eddy Assessor** 

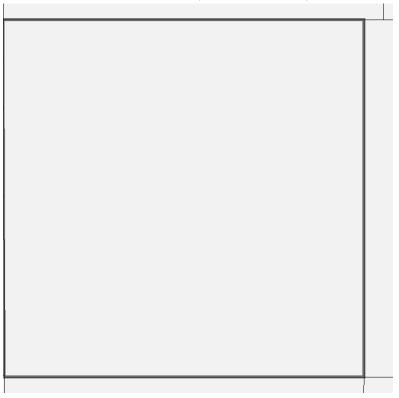
**BUREAU OF LAND MANAGEMENT** 

**Account: R094783** 

Parcel: 4-176-127-268-264

Tax Area: CO_NR - CARLSBAD-

Situs Address:


OUT (Nonresidential)

POTASH MINES ROAD

Acres: 0.000

### **Legal Description**

Value By:	Market	Override	Quarter: NE S: 6 T: 22S R: 30E Quarter: NW S: 6 T: 22S R: 30E Quarter: SW S: 6 T: 22S R: 30E Quarter: SE S: 6 T: 22S R: 30E ALL MAP# 279-6
Land (1)	\$2,934	N/A	LOC E 1434 POTASH MINES RD EXEMPT
Total	\$2,934	\$2,934	



### **Land Occurrence 1**

9200 - EXEMPT NON-RESIDENTIAL LAND Property Code Land Code 141_4_5 - Grazing E Federal - 4.5

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
9200	EXEMPT NON-RESIDENTIAL LAND	\$2,934	\$978	NA	NA
Total		\$2,934	\$978	NA	NA

**Eddy Assessor** 

**BUREAU OF LAND MANAGEMENT** 

**Account: R094784** 

Parcel: 4-175-128-268-263

Tax Area: CO_NR - CARLSBAD-

OUT (Nonresidential)

Situs Address:

Acres: 0.000

Value Summai	rv
--------------	----

### **Legal Description**

Value By:	Market	Override	Quarter: NE S: 7 T: 22S R: 30E Quarter: NW S: 7 T: 22S R: 30E Quarter: SW S: 7 T: 22S R: 30E Quarter: SE S: 7 T: 22S R: 30E ALL MAP# 279-7
Land (1)	\$2,928	N/A	LOC E OF CARLSBAD EXEMPT
Total	\$2,928	\$2,928	

Total	\$2,928	\$2,928
		1
		1
		- 1
		- 1
		1
		- 1
		- 1
		- 1
		- 1
		I .
		1
		I
		I

### **Land Occurrence 1**

9200 - EXEMPT NON-RESIDENTIAL LAND Property Code Land Code 141_4_5 - Grazing E Federal - 4.5

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
9200	EXEMPT NON-RESIDENTIAL LAND	\$2,928	\$976	NA	NA
Total		\$2.928	\$976	NA	NA

**Eddy Assessor** 

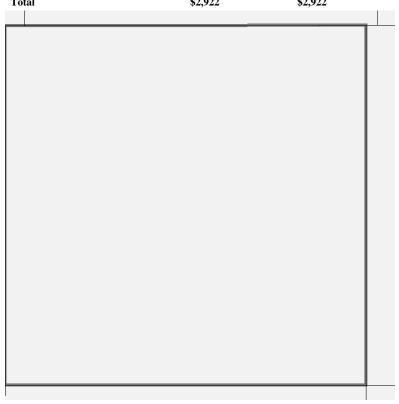
**STATE OF NEW MEXICO** 

**Account: R094809** 

Parcel: 4-176-127-267-264

310 OLD SANTA FE TRAIL SANTA FE, NM 87504

Tax Area: CO_NR - CARLSBAD-OUT (Nonresidential)


Situs Address:

Acres: 0.000

Valu	ıe Sumı	mary
------	---------	------

### **Legal Description**

Value By:	Market	Override	Quarter: NE S: 5 T: 22S R: 30E Quarter: NW S: 5 T: 22S R: 30E Quarter: SW S: 5 T: 22S R: 30E Quarter: SE S: 5 T: 22S R: 30E ALL MAP# 279-5
Land (1)	\$2,922	N/A	LOC E OF CARLSBAD EXEMPT
Total	\$2,922	\$2,922	



### **Land Occurrence 1**

9200 - EXEMPT NON-RESIDENTIAL LAND Property Code Land Code 153_4_5 - Grazing E NM - 4.5

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
9200	EXEMPT NON-RESIDENTIAL LAND	\$2,922	\$974	NA	NA
Total		\$2,922	\$974	NA	NA

**Eddy Assessor** 

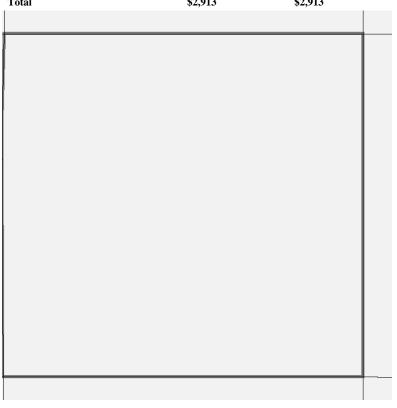
**STATE OF NEW MEXICO** 

**Account: R094810** 

Parcel: 4-176-128-267-263

310 OLD SANTA FE TRAIL SANTA FE, NM 87504

Tax Area: CO_NR - CARLSBAD-OUT (Nonresidential)


Situs Address:

Acres: 0.000

Value Summary
---------------

### **Legal Description**

Value By:	Market	Override	Quarter: NE S: 8 T: 22S R: 30E Quarter: NW S: 8 T: 22S R: 30E Quarter: SW S: 8 T: 22S R: 30E Quarter: SE S: 8 T: 22S R: 30E ALL MAP# 279-8
Land (1)	\$2,913	N/A	LOC E OF CARLSBAD EXEMPT
Total	\$2,913	\$2,913	



### **Land Occurrence 1**

9200 - EXEMPT NON-RESIDENTIAL LAND Property Code Land Code 153_4_5 - Grazing E NM - 4.5

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
9200	EXEMPT NON-RESIDENTIAL LAND	\$2,913	\$971	NA	NA
Total		\$2.913	\$971	NA	NA

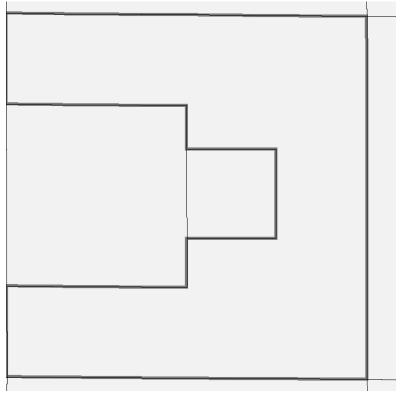
**Eddy Assessor** 

BUREAU OF LAND MANAGEMENT **Account: R094832** 

Parcel: 4-173-128-459-264

Tax Area: CO_NR - CARLSBAD-

OUT (Nonresidential)


Situs Address:

Acres: 0.000

### **Value Summary**

### **Legal Description**

Value By:	Market	Override	Quarter. 5 W 5. 11 1. 225 R. 27L Quarter. 5L 5. 11 1. 225 R. 27L N2N2,
Land (1)	\$1,962		N2SWNE, SENE, S2S2, NESE, S2NWSE MAP# 278-11 LOC E OF CARLSBAD EXEMPT
Total	\$1,962	\$1,962	CARLSDAD EAENIF I



### **Land Occurrence 1**

Property Code

9200 - EXEMPT NON-RESIDENTIAL LAND

Land Code

141_4_5 - Grazing E Federal - 4.5

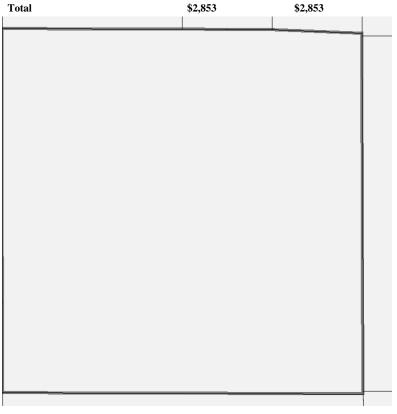
Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
9200	EXEMPT NON-RESIDENTIAL LAND	\$1,962	\$654	NA	NA
Total		\$1,962	\$654	NA	NA

**Eddy Assessor** 

BUREAU OF LAND MANAGEMENT **Account: R094833** 

Parcel: 4-174-128-261-264

Tax Area: CO_NR - CARLSBAD-OUT (Nonresidential)


Situs Address:

Acres: 0.000

**Value Summary** 

**Legal Description** 

Value By:	Market	Override	Quarter: NE S: 12 T: 22S R: 29E Quarter: NW S: 12 T: 22S R: 29E Quarter: SW S: 12 T: 22S R: 29E Quarter: SE S: 12 T: 22S R: 29E ALL
Land (1)	\$2,853	N/A	MAP# 278-12 LOC E OF CARLSBAD EXEMPT



### **Land Occurrence 1**

Property Code

9200 - EXEMPT NON-RESIDENTIAL LAND

Land Code

141_4_5 - Grazing E Federal - 4.5

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
9200	EXEMPT NON-RESIDENTIAL LAND	\$2,853	\$951	NA	NA
Total		\$2,853	\$951	NA	NA

**Eddy Assessor** 

### MOSAIC POTASH **CARLSBAD INC**

PO BOX 71 CARLSBAD, NM 88221-0071 **Account: R094855** 

Tax Area: CO_NR - CARLSBAD-OUT (Nonresidential)

Acres: 0.000

Parcel: 4-174-127-457-198

Situs Address:

### **Legal Description**

Quarter: NE S: 1 T: 22S R: 29E SENE MAP# 278-1.2 #2 SHAFT LOC E OF CARLSBAD STATE ASSESSED

### **Public Remarks**

**Entry Date** 

Model Remark

08/26/2016 STATE ASSESSED - FOR INFORMATION PURPOSES ONLY

BOOK 257 PG 320

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
Total		\$0	\$0	NA	NA



### Sample of the Letters Sent to the Owners of Record

### UA3, Section 9.4

See the following pages for copies of the letters that were sent to the State of New Mexico and the Bureau of Land Management (BLM), which are the only property owners located within  $\frac{1}{2}$  mile of the facility. Also enclosed are the certified mail receipts.



Mosaic Potash Carlsbad Inc. PO Box 71 1361 Potash Mines Road Carlsbad, NM 88221

(575) 628-6200 Fax (575) 887-0589 www.mosaicco.com

November 8, 2022

CERTIFIED MAIL: 7019 2970 0000 3887 1970

New Mexico State Land Office 310 Old Santa Fe Trail Santa Fe, NM 87501

To whom it may concern,

In accordance with New Mexico air quality regulations, **Mosaic Potash Carlsbad Inc.** is announcing its intent to submit a significant permit revision application to the New Mexico Environment Department (NMED) to modify the current NSR permit to replace the existing Primary Ore Crusher with two Impact Roll Crushers, allowing the flexibility to utilize slag/grit material in its abrasive blasting operations, and to permit two worst-case diesel engines.

Fugitive  $PM_{10}$  and  $PM_{2.5}$  potential emissions associated with the Impact Roll Crusher project will increase less than two (2) tons per year (tpy) and less than one (1) lb/hr. Stack emissions will increase; however, Mosaic is not requesting any changes to the allowable emission rates in the permit.

The expected date of application submittal to the Air Quality Bureau will be in October 2022.

The exact location of the Mosaic Potash Carlsbad, Inc. facility is 1361 Potash Mines Road, Carlsbad, NM 88220. The facility is located approximately 16 miles E. of Carlsbad in Eddy County, New Mexico.

The estimated facility-wide maximum quantities of regulated air contaminants after this significant permit revision will be as follows, which may change slightly during the course of the Department's review:

### **Total Facility Emissions (Stack and Fugitives)**

Pollutant	Pounds per hour (pph)	Tons per year (tpy)
PM ₁₀	76	175
PM _{2.5}	56	175
NOx	12	70
со	20	115
SO ₂	0.5	1.0
VOC	2.0	6
Total HAPs	0.5	1.5
TAPs		_
GHG (CO₂e)		83,000

The standard and maximum operating schedule of the facility is 24 hours a day, 7 days a week, 52 weeks a year.

The owner and operator of this facility is:

Mosaic Potash Carlsbad Inc. 1361 Potash Mines Road Carlsbad, NM 88221

If you have any comments about the proposed modifications and want your comments to be made as a part of the permit review process, please submit your comments in writing to the address below:

Permit Program Manager
New Mexico Environment Department
Air Quality Bureau
525 Camino de los Marquez, Suite 1
Santa Fe, New Mexico 87505-1816
(505) 476-4300
1-800-224-7009

https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html

Other comments and questions may be submitted verbally.

Please refer to the company and facility name as used in this notice, or send a copy of this notice along with your comments, since the Department may not have received the permit application at the time of this notice. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

### **Attención**

Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor de comunicarse con la oficina de Calidad de Aire al teléfono 505-476-5557.

### **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non- discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at https://www.env.nm.gov/NMED/EJ/index.html to learn how and where to file a complaint of discrimination.

Sincerely,

Haskins Hobson, P.E.

Senior Environmental Engineer

Harkins Holson, P.E.

Mosaic Potash Carlsbad Inc.



PO Box 71 1361 Potash Mines Road Carlsbad, NM 88221-0071

# NM State Land Office 310 Old Santa Fe Trail Santa Fe, NM 875D1

CERTIFIED MAIL®	757 288 0000 0589 197 Cot Can 2000 0589	CERTIF  Domestic M  For delivery in  Certified Mail Fee  \$ Extra Services & Fo  Return Receipt (n  Return Re	Des (check box, add fee as appropriate) ardcopy) \$ ectronic) \$ tricted Delivery \$ equired \$ estricted Delivery \$ estricted Delivery \$ extracted Delivery \$ e	
SENDER: COMPLETE TH		TION	COMPLETE THIS SECTION  A. Signature	
Complete items 1, 2, and Print your name and add	ress on	the reverse	X	☐ Agent ☐ Addressee

- Print your name and so that we can return the card to you.
- Attach this card to the back of the mailplece, or on the front if space permits.
- 1. Article Addressed to:

NMS tate Land Office 310 Old Stanta Fe Trail SantaFe, NM 87501



9590 9402 2714 6351 6362 31

2. Article Number (Transfer from service label)

7019 2970 0000 3887 1970

PS Form 3811, July 2015 PSN 7530-02-000-9053

- B. Received by (Printed Name)
- C. Date of Delivery

- if YES, enter delivery address below:

- Service Type
- ☐ Adult Signature
  ☐ Adult Signature Restricted Delivery
  ☐ Certified Mail®
- Certified Mail Restricted Delivery
- ☐ Collect on Delivery
- ☐ Collect on Delivery Restricted Delivery
- ☐ Insured Mail
  ☐ Insured Mail Restricted Delivery (over \$500)

- □ Priority Mall Express®
  □ Registered Mall™
  □ Registered Mall Restricted Delivery
- ☐ Return Receipt for Merchandise
  ☐ Signature Confirmation™
  ☐ Signature Confirmation
- Restricted Delivery

Domestic Return Receipt



Mosaic Potash Carlsbad Inc. PO Box 71 1361 Potash Mines Road Carlsbad, NM 88221 (575) 628-6200 Fax (575) 887-0589 www.mosaicco.com

November 8, 2022

CERTIFIED MAIL: 7019 2970 0000 3887 1987

U.S. Bureau of Land Management Carlsbad Field Office Field Manager 620 E. Greene Street Carlsbad, NM 88220

Dear Field Manager,

In accordance with New Mexico air quality regulations, **Mosaic Potash Carlsbad Inc.** is announcing its intent to submit a significant permit revision application to the New Mexico Environment Department (NMED) to modify the current NSR permit to replace the existing Primary Ore Crusher with two Impact Roll Crushers, allowing the flexibility to utilize slag/grit material in its abrasive blasting operations, and to permit two worst-case diesel engines.

Fugitive PM₁₀ and PM_{2.5} potential emissions associated with the Impact Roll Crusher project will increase less than two (2) tons per year (tpy) and less than one (1) lb/hr. Stack emissions will increase; however, Mosaic is not requesting any changes to the allowable emission rates in the permit.

The expected date of application submittal to the Air Quality Bureau will be in November 2022.

The exact location of the Mosaic Potash Carlsbad, Inc. facility is 1361 Potash Mines Road, Carlsbad, NM 88220. The facility is located approximately 16 miles E. of Carlsbad in Eddy County, New Mexico.

The estimated facility-wide maximum quantities of regulated air contaminants after this significant permit revision will be as follows, which may change slightly during the course of the Department's review:

**Total Facility Emissions (Stack and Fugitives)** 

Pollutant	Pounds per hour (pph)	Tons per year (tpy)
PM ₁₀	76	175
PM _{2.5}	56	175
NOx	12	70
СО	20	115
SO ₂	0.5	1.0
VOC	2.0	6
Total HAPs	0.5	1.5
TAPs		
GHG (CO₂e)		83,000

The standard and maximum operating schedule of the facility is 24 hours a day, 7 days a week, 52 weeks a year.

The owner and operator of this facility is:

Mosaic Potash Carlsbad, Inc. 1361 Potash Mines Road Carlsbad, NM 88221

If you have any comments about the proposed modifications and want your comments to be made as a part of the permit review process, please submit your comments in writing to the address below:

Permit Program Manager
New Mexico Environment Department
Air Quality Bureau
525 Camino de los Marquez, Suite 1
Santa Fe, New Mexico 87505-1816
(505) 476-4300
1-800-224-7009
https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html

Other comments and questions may be submitted verbally.

Please refer to the company and facility name as used in this notice, or send a copy of this notice along with your comments, since the Department may not have received the permit application at the time of this notice. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

### Attención

Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor de comunicarse con la oficina de Calidad de Aire al teléfono 505-476-5557.

### **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non- discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at https://www.env.nm.gov/NMED/EJ/index.html to learn how and where to file a complaint of discrimination.

Sincerely,

Haskins Hobson, P.E.

Senior Environmental Engineer Mosaic Potash Carlsbad, Inc.

taskius Holison, P.E.



PO Box 71 1361 Potash Mines Road Carlsbad, NM 88221-0071

U.S. Bureau of Land Management Carkbad Field Office 620 E. Greene St. Carkbad, NM &8220

CER CER 119 297	U.S. Postal Service  CERTIFIED MAIL® RECE  Domestic Mail Only  For delivery information, visit our website at  Certified Mall Fee  \$  Extra Services & Fees (check box, add fee as appropriate)  Return Receipt (leactronic)  Certified Mall Restricted Delivery \$  Adult Signature Required  Adult Signature Restricted Delivery \$  Total Postage  \$  Sent To  Street and Apt. No., or PO Box No.  City, State ZiP+49  PS Form 3800, April 2015 PSN 7530-02-000-9047.	Postmark Here
-----------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------

PS Form 3800, April :	2015 PSN 7530-02-000-9047 See Reverse	for Instructions
		Ť
SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DE	LIVERY
■ Complete items 1, 2, and 3.  ■ Print your name and address on the reverse so that we can return the card to you.  ■ Attach this card to the back of the mailpiece, or on the front if space permits.  1. Article Addressed to:  U.S. Bureauef Landluneger  6 20 E. GreeneSt.  Carlsbad, NM 88220	A. Signature  X  B. Received by (Printed Name)  D. Is delivery address different from in the tree of t	☐ Agent ☐ Addressee ☐ C. Date of Delivery  tem 17 ☐ Yes ☐ No
9590 9402 2714 6351 6362 24  2. Article Number (Transfer from service label) 7019 2970 0000 3887 1987	□ Adult Signature     □ Adult Signature Restricted Delivery     □ Certified Mail®     □ Certified Mail Restricted Delivery     □ Collect on Delivery     □ Collect on Delivery Restricted Delivery	☐ Priority Mail Express®☐ Registered Mail™☐ Registered Mail Restricted Delivery☐ Return Receipt for Merchandise☐ Signature Confirmation™☐ Signature Confirmation Restricted Delivery
PS Form 3811, July 2015 PSN 7530-02-000-9053	Do	mestic Return Receipt



# Sample of the Letters Sent to Counties, Municipalities, and Indian Tribes UA3, Section 9.5

See the following pages for copies of the letters that were sent to the City of Carlsbad, Village of Loving, and Eddy County, which are the only counties and municipalities located within 10-mile radius of the facility. Note that there are no Indian tribes located within this area. Also enclosed are the certified mail receipts.



Mosaic Potash Carlsbad Inc. PO Box 71 1361 Potash Mines Road Carlsbad, NM 88221 (575) 628-6200 Fax (575) 887-0589 www.mosaicco.com

November 8, 2022

CERTIFIED MAIL: 7019 2970 0000 3887 1994

Ms. Nadine Mireles City of Carlsbad Clerk 101 N. Halagueno Street Carlsbad, NM 88221

Dear Ms. Mireles,

In accordance with New Mexico air quality regulations, **Mosaic Potash Carlsbad Inc.** is announcing its intent to submit a significant permit revision application to the New Mexico Environment Department (NMED) to modify the current NSR permit to replace the existing Primary Ore Crusher with two Impact Roll Crushers, allowing the flexibility to utilize slag/grit material in its abrasive blasting operations, and to permit two worst-case diesel engines.

Fugitive PM₁₀ and PM_{2.5} potential emissions associated with the Impact Roll Crusher project will increase less than two (2) tons per year (tpy) and less than one (1) lb/hr. Stack emissions will increase; however, Mosaic is not requesting any changes to the allowable emission rates in the permit.

The expected date of application submittal to the Air Quality Bureau will be in November 2022.

The exact location of the Mosaic Potash Carlsbad, Inc. facility is 1361 Potash Mines Road, Carlsbad, NM 88220. The facility is located approximately 16 miles E. of Carlsbad in Eddy County, New Mexico.

The estimated facility-wide maximum quantities of regulated air contaminants after this significant permit revision will be as follows, which may change slightly during the course of the Department's review:

### **Total Facility Emissions (Stack and Fugitives)**

Pollutant	Pounds per hour (pph)	Tons per year (tpy)
PM ₁₀	76	175
PM _{2.5}	56	175
NOx	12	70
со	20	115
SO ₂	0.5	1.0
VOC	2.0	6
Total HAPs	0.5	1.5
TAPs		
GHG (CO₂e)		83,000

The standard and maximum operating schedule of the facility is 24 hours a day, 7 days a week, 52 weeks a year.

The owner and operator of this facility is:

Mosaic Potash Carlsbad, Inc. 1361 Potash Mines Road Carlsbad, NM 88221

If you have any comments about the proposed modifications and want your comments to be made as a part of the permit review process, please submit your comments in writing to the address below:

Permit Program Manager
New Mexico Environment Department
Air Quality Bureau
525 Camino de los Marquez, Suite 1
Santa Fe, New Mexico 87505-1816
(505) 476-4300
1-800-224-7009
https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html

Other comments and questions may be submitted verbally.

Please refer to the company and facility name as used in this notice, or send a copy of this notice along with your comments, since the Department may not have received the permit application at the time of this notice. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

### **Attención**

Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor de comunicarse con la oficina de Calidad de Aire al teléfono 505-476-5557.

### **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non- discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at https://www.env.nm.gov/NMED/EJ/index.html to learn how and where to file a complaint of discrimination.

Sincerely,

Haskins Hobson, P.E.

Senior Environmental Engineer

shins Holson, P.E.

Mosaic Potash Carlsbad, Inc.



PO Box 71 1361 Potash Mines Road Carlsbad, NM 88221-0071

Ms. Nadine Mireles Carlsbad City Clerk 101 N. Halagueno St. Carlsbad, NM 88220

CERTIFIED MAIL®	7019 2970 0000 3867 1994	7019 2970 0000 3887 1994	U.S. Postal Service  CERTIFIED MAIL® RECEIPT  Domestic Mail Only  For delivery information, visit our website at www.usps.com®.  Certified Mail Fee  \$  Extra Services & Fees (check box, add fee as appropriate)  Return Receipt (hardcopy)  Return Receipt (leatronic)  Certified Mail Restricted Delivery  Adult Signature Required  Adult Signature Restricted Delivery \$  Postage  \$  Total Postage and Fees  \$  Sent Down Mail No., or PO Box No.  City, Sate, ZiP+4  City, Sate, ZiP+4  City, Sate, ZiP+4  Control of See Reverse for Instructions

## SENDER: COMPLETE THIS SECTION

- Complete items 1, 2, and 3.
- Print your name and address on the reverse so that we can return the card to you.
- Attach this card to the back of the mailpiece, or on the front if space permits.
- 1. Article Addressed to:

Ms. Nortine Mireles Carlobad City Clev L 101 N. Halagueno St.

9590 9402 2714 6351 6364 53

2. Article Number (Transfer from service label)

7019 2970 0000 3887 1994

### COMPLETE THIS SECTION ON DELIVERY

- A. Signature
- X

- □ Agent ☐ Addressee
- B. Received by (Printed Name)
- C. Date of Delivery
- D. Is delivery address different from item 1? If YES, enter delivery address below:

- Service Type
- Adult Signature

  Adult Signature Restricted Delivery

- Certified Mail®
  Certified Mail Restricted Delivery
  Collect on Delivery
- ☐ Collect on Delivery Restricted Delivery
- ☐ Insured Mall
  ☐ Insured Mail Restricted Delivery (over \$500)
- ☐ Priority Mail Express®
  ☐ Registered Mail™
- ☐ Registered Mail Restricted
  Delivery
- ☐ Return Receipt for Merchandise
- ☐ Signature Confirmation™☐ Signature Confirmation Restricted Delivery
- Domestic Return Receipt

PS Form 3811, July 2015 PSN 7530-02-000-9053



Mosaic Potash Carlsbad Inc. PO Box 71 1361 Potash Mines Road Carlsbad, NM 88221 (575) 628-6200 Fax (575) 887-0589 www.mosaicco.com

November 8, 2022

CERTIFIED MAIL: 7019 2970 0000 3887 2007

Loving Village Clerk P.O. Box 56 Loving, NM 88256

To whom it may concern,

In accordance with New Mexico air quality regulations, **Mosaic Potash Carlsbad Inc.** is announcing its intent to submit a significant permit revision application to the New Mexico Environment Department (NMED) to modify the current NSR permit to replace the existing Primary Ore Crusher with two Impact Roll Crushers, allowing the flexibility to utilize slag/grit material in its abrasive blasting operations, and to permit two worst-case diesel engines.

Fugitive PM₁₀ and PM_{2.5} potential emissions associated with the Impact Roll Crusher project will increase less than two (2) tons per year (tpy) and less than one (1) lb/hr. Stack emissions will increase; however, Mosaic is not requesting any changes to the allowable emission rates in the permit.

The expected date of application submittal to the Air Quality Bureau will be in November 2022.

The exact location of the Mosaic Potash Carlsbad, Inc. facility is 1361 Potash Mines Road, Carlsbad, NM 88220. The facility is located approximately 16 miles E. of Carlsbad in Eddy County, New Mexico.

The estimated facility-wide maximum quantities of regulated air contaminants after this significant permit revision will be as follows, which may change slightly during the course of the Department's review:

**Total Facility Emissions (Stack and Fugitives)** 

Pollutant	Pounds per hour (pph)	Tons per year (tpy)
PM ₁₀	76	175
PM _{2.5}	56	175
NOx	12	70
СО	20	115
SO ₂	0.5	1.0
VOC	2.0	6
Total HAPs	0.5	1.5
TAPs		
GHG (CO₂e)		83,000

The standard and maximum operating schedule of the facility is 24 hours a day, 7 days a week, 52 weeks a year.

The owner and operator of this facility is:

Mosaic Potash Carlsbad, Inc. 1361 Potash Mines Road Carlsbad, NM 88221

If you have any comments about the proposed modifications and want your comments to be made as a part of the permit review process, please submit your comments in writing to the address below:

Permit Program Manager
New Mexico Environment Department
Air Quality Bureau
525 Camino de los Marquez, Suite 1
Santa Fe, New Mexico 87505-1816
(505) 476-4300
1-800-224-7009
https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html

Other comments and questions may be submitted verbally.

Please refer to the company and facility name as used in this notice, or send a copy of this notice along with your comments, since the Department may not have received the permit application at the time of this notice. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

### **Attención**

Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor de comunicarse con la oficina de Calidad de Aire al teléfono 505-476-5557.

### **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non- discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at https://www.env.nm.gov/NMED/EJ/index.html to learn how and where to file a complaint of discrimination.

Sincerely,

Haskins Hobson, P.E.

Senior Environmental Engineer Mosaic Potash Carlsbad, Inc.

Hashins Holson P.E.

Loving Village Clerk P.O. Box 56 Loving, NM 88256

SENDER: COMPLETE THIS SECTION  Complete items 1, 2, and 3.  Print your name and address on the reverse so that we can return the card to you.  Attach this card to the back of the mailpiece, or on the front if space permits.  Article Addressed to:  Loving Village Clerk  O. Box 56  Loving, NM & 8256	A. Signature  X
9590 9402 2714 6351 6364 46  2. Article Number ( <i>Transfer from service label</i> )	3. Service Type  □ Adult Signature □ Adult Signature Restricted Delivery □ Certified Mail Restricted Delivery □ Collect on Delivery □ Collect on Delivery □ Insured Mail Restricted Delivery □ Return Receipt for Merchandise □ Signature Confirmation □ Signature Confirmation □ Restricted Delivery
7019 2970 0000 3887 2007 PS Form 3811, July 2015 PSN 7530-02-000-9053	(over \$500)  Domestic Return Receipt
CER Domes	Postal Service [™] ETIFIED MAIL® RECEIPT Stic Mail Only EVERY Information, visit our website at www.usps.com®.





Mosaic Potash Carlsbad Inc. PO Box 71 1361 Potash Mines Road Carlsbad, NM 88221 (575) 628-6200 Fax (575) 887-0589 www.mosaicco.com

November 8, 2022

CERTIFIED MAIL: 7019 2970 0000 3887 2014

Mr. Allen Davis Eddy County Manager 101 W. Greene Street, Suite 110 Carlsbad, NM 88220

Dear Mr. Davis,

In accordance with New Mexico air quality regulations, **Mosaic Potash Carlsbad Inc.** is announcing its intent to submit a significant permit revision application to the New Mexico Environment Department (NMED) to modify the current NSR permit to replace the existing Primary Ore Crusher with two Impact Roll Crushers, allowing the flexibility to utilize slag/grit material in its abrasive blasting operations, and to permit two worst-case diesel engines.

Fugitive PM₁₀ and PM_{2.5} potential emissions associated with the Impact Roll Crusher project will increase less than two (2) tons per year (tpy) and less than one (1) lb/hr. Stack emissions will increase; however, Mosaic is not requesting any changes to the allowable emission rates in the permit.

The expected date of application submittal to the Air Quality Bureau will be in November 2022.

The exact location of the Mosaic Potash Carlsbad, Inc. facility is 1361 Potash Mines Road, Carlsbad, NM 88220. The facility is located approximately 16 miles E. of Carlsbad in Eddy County, New Mexico.

The estimated facility-wide maximum quantities of regulated air contaminants after this significant permit revision will be as follows, which may change slightly during the course of the Department's review:

**Total Facility Emissions (Stack and Fugitives)** 

Pollutant	Pounds per hour (pph)	Tons per year (tpy)
PM ₁₀	76	175
PM _{2.5}	56	175
NOx	12	70
со	20	115
SO ₂	0.5	1.0
VOC	2.0	6
Total HAPs	0.5	1.5
TAPs		-
GHG (CO₂e)		83,000

The standard and maximum operating schedule of the facility is 24 hours a day, 7 days a week, 52 weeks a year.

The owner and operator of this facility is:

Mosaic Potash Carlsbad, Inc. 1361 Potash Mines Road Carlsbad, NM 88221

If you have any comments about the proposed modifications and want your comments to be made as a part of the permit review process, please submit your comments in writing to the address below:

Permit Program Manager
New Mexico Environment Department
Air Quality Bureau
525 Camino de los Marquez, Suite 1
Santa Fe, New Mexico 87505-1816
(505) 476-4300
1-800-224-7009
https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html

Other comments and questions may be submitted verbally.

Please refer to the company and facility name as used in this notice, or send a copy of this notice along with your comments, since the Department may not have received the permit application at the time of this notice. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

### **Attención**

Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor de comunicarse con la oficina de Calidad de Aire al teléfono 505-476-5557.

### **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non- discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at <a href="https://www.env.nm.gov/NMED/EJ/index.html">https://www.env.nm.gov/NMED/EJ/index.html</a> to learn how and where to file a complaint of discrimination.

Sincerely,

Haskins Hobson, P.E.

Senior Environmental Engineer Mosaic Potash Carlsbad, Inc.

Laskins Holsen, P.E.



PO Box 71 1361 Potash Mines Road Carlsbad, NM 88221-0071

Mr. Allen Davis Eddy County Manager 101 W. Greene St., Suitello Carlstad, NM 88220

U.S. Postal Service CERTIFIED MAIL® RECEIPT  Domestic Mail Only  For delivery information, visit our website at www.usps.com®.  Certified Mail Fee  Certified Mail Fee  Return Receipt (hardcopy)  Return Receipt (hardcopy)  Return Receipt (slactronic)  Return Receipt (slactronic
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DEL	IVERY
<ul> <li>Complete items 1, 2, and 3.</li> <li>Print your name and address on the reverse so that we can return the card to you.</li> <li>Attach this card to the back of the mailpiece, or on the front if space permits.</li> <li>Article Addressed to:</li> <li>Mf. Albert Davis</li> <li>Eddy County Manager</li> <li>101 W. Greene St. Saite 110</li> <li>Cas 66ad, NM 88220</li> </ul>	A. Signature  X  B. Received by (Printed Name)  D. Is delivery address different from ite If YES, enter delivery address below	Age Add C. Date of D m 1? Yes w: No
9590 9402 2177 6193 9327 25  2. Article Number ( <i>Transfer from service label</i> )	☐ Adult Signature ☐ Adult Signature Restricted Delivery ☐ Certified Mail® ☐ Certified Mail Restricted Delivery ☐ Collect on Delivery ☐ Collect on Delivery ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	Priority Mail Exp Registered Mail ¹ Registered Mail ¹ Delivery Return Receipt f Merchandise Signature Confir Signature Confir Restricted Delive
7019 2970 0000 3887 2014	(over \$500)	

PS Form 3811, July 2015 PSN 7530-02-000-9053

Domestic Return Receipt

☐ Priority Mail Express®

□ Priority Mall Express®
□ Registered Mail™
□ Registered Mail Restricted
Delivery
□ Return Receipt for
Merchandise
□ Signature Confirmation™
□ Signature Confirmation
Restricted Delivery

□ Agent □ Addressee C. Date of Delivery

S SECTION ON DELIVERY



## Sample of the Public Notice Posted and a Verification of the Local Postings

## UA3, Section 9.6

See the following pages for a sample of the public notice that was posted, a photo of the public notice posting at the facility's main entrance, and the signed notice certification document.

## **NOTICE**

In accordance with New Mexico air quality regulations, **Mosaic Potash Carlsbad Inc.** is announcing its intent to submit a significant permit revision application to the New Mexico Environment Department (NMED) to modify the current NSR permit to replace the existing Primary Ore Crusher with two Impact Roll Crushers, allowing the flexibility to utilize slag/grit material in its abrasive blasting operations, and to permit two worst-case diesel engines.

Fugitive PM10 and PM2.5 potential emissions associated with the Impact Roll Crusher project will increase less than two (2) tons per year (tpy) and less than one (1) lb/hr. Stack emissions will increase; however, Mosaic is not requesting any changes to the allowable emission rates in the permit.

The expected date of application submittal to the Air Quality Bureau will be in October 2022.

The exact location of the Mosaic Potash Carlsbad, Inc. facility is 1361 Potash Mines Road, Carlsbad, NM 88220. The facility is located approximately 16 miles E. of Carlsbad in Eddy County, New Mexico.

The estimated facility-wide maximum quantities of regulated air contaminants after this significant permit revision will be as follows, which may change slightly during the course of the Department's review:

## TOTAL FACILITY EMISSIONS (Stack and Fugitives)

Pollutant	Pounds per hour (pph)	Tons per year (tpy)
$PM_{10}$	76	175
PM _{2.5}	56	175
NOx	12	70
СО	20	115
$SO_2$	0.5	1.0
VOC	2.0	6
Total HAPs	0.5	1.5
TAPs		
GHG (CO ₂ e)		83,000

The standard and maximum operating schedule of the facility is 24 hours a day, 7 days a week, 52 weeks a year.

The owner and operator of this facility is:

Mosaic Potash Carlsbad, Inc. 1361 Potash Mines Road Carlsbad, NM 88221

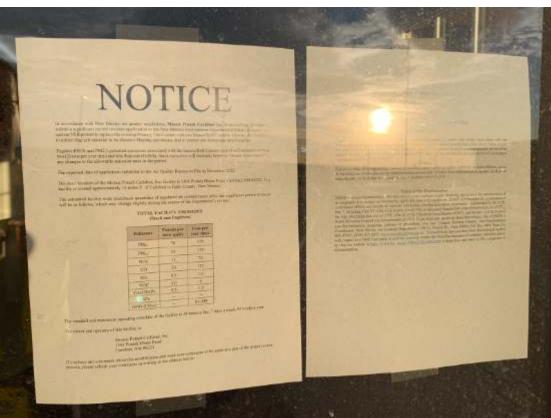
If you have any comments about this modification and want your comments to be made as a part of the permit review process, please submit your comments in writing to the address below:

Permit Program Manager
New Mexico Environment Department
Air Quality Bureau
525 Camino de los Marquez, Suite 1
Santa Fe, New Mexico 87505-1816
(505) 476-4300
1-800-224-7009
https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html

Other comments and questions may be submitted verbally.

Please refer to the company and facility name as used in this notice, or send a copy of this notice along with your comments, since the Department may not have received the permit application at the time of this notice. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

## Attención


Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor de comunicarse con la oficina de Calidad de Aire al teléfono 505-476-5557.

### **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at <a href="https://www.env.nm.gov/NMED/EJ/index.html">https://www.env.nm.gov/NMED/EJ/index.html</a> to learn how and where to file a complaint of discrimination.

## Facility Main Entrance – Posted 11/28/2022





## **General Posting of Notices – Certification**

I, Husking Hobson, the undersigned, certify that on Was 29/20 posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the City of Carlsbad of Eddy County, State of New Mexico on the following dates:
<ol> <li>Facility Main Entrance: 11/28/2022</li> <li>Carlsbad National Bank: 11/29/2022</li> <li>La Tienda Thriftway: 11/28/2022</li> <li>U.S. Post Office: 11/29/2022</li> </ol>
Signed this 29th day of November, 2022,
Hayleins Holson Signature  11/29/2022 Date
Haskins Hobson Printed Name
Servior Environ mental Engineer Title



## <u>Table of the Noticed Citizens, Counties, Municipalities, and Tribes</u>

## UA3, Section 9.7

Citizens	Counties	Municipalities	Tribes
BLM	Eddy	City of Carlsbad	N/A
State of New Mexico		Village of Loving	



## Copy of the Public Service Announcement (PSA) and Proof of Submittal

## UA3, Section 9.8

Enclosed is a copy of the invoice from Carlsbad Radio, Inc. as well as the signed PSA certification document.

The public service announcement included the following text:

In accordance with New Mexico air quality regulations, **Mosaic Potash Carlsbad Inc.** is announcing its intent to submit a significant permit revision application to the New Mexico Environment Department (NMED) to modify the current NSR permit to replace the existing Primary Ore Crusher with two Impact Roll Crushers, allowing the flexibility to utilize slag/grit material in its abrasive blasting operations, and to permit two worst-case diesel engines.

Fugitive PM₁₀ and PM_{2.5} potential emissions associated with the Impact Roll Crusher project will increase less than two (2) tons per year (tpy) and less than one (1) lb/hr. Stack emissions will increase; however, Mosaic is not requesting any changes to the allowable emission rates in the permit.

The expected date of application submittal to the Air Quality Bureau will be in October 2022.

The exact location of the Mosaic Potash Carlsbad, Inc. facility is 1361 Potash Mines Road, Carlsbad, NM 88220. The facility is located approximately 16 miles E. of Carlsbad in Eddy County, New Mexico.

The estimated facility-wide maximum quantities of regulated air contaminants after this significant permit revision will be as follows, which may change slightly during the course of the Department's review:

**Total Facility Emissions (Stack and Fugitives)** 

Pollutant	Pounds per hour (pph)	Tons per year (tpy)
PM ₁₀	76	175
PM _{2.5}	56	175
NOx	12	70
СО	20	115
SO ₂	0.5	1.0
VOC	2.0	6
Total HAPs	0.5	1.5
TAPs		
GHG (CO₂e)		83,000

The standard and maximum operating schedule of the facility is 24 hours a day, 7 days a week, 52 weeks a year.



The owner and operator of this facility is:

Mosaic Potash Carlsbad Inc. 1361 Potash Mines Road Carlsbad, NM 88221

If you have any comments about the proposed modifications and want your comments to be made as a part of the permit review process, please submit your comments in writing to the address below:

Permit Program Manager
New Mexico Environment Department
Air Quality Bureau
525 Camino de los Marquez, Suite 1
Santa Fe, New Mexico 87505-1816
(505) 476-4300
1-800-224-7009
https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html

Other comments and questions may be submitted verbally.

Please refer to the company and facility name as used in this notice, or send a copy of this notice along with your comments, since the Department may not have received the permit application at the time of this notice. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

## Attención

Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor de comunicarse con la oficina de Calidad de Aire al teléfono 505-476-5557.

## **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non- discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at <a href="https://www.env.nm.gov/NMED/EJ/index.html">https://www.env.nm.gov/NMED/EJ/index.html</a> to learn how and where to file a complaint of discrimination.

Public notices with more information have been posted at the Carlsbad National Bank at 202 W. Stevens St., Albertsons at 202 W. Church St., and the U.S. Post Office at 301 N. Canyon St. Any comments can be directed to the New Mexico Environmental Department, Air Quality Bureau, at 525 Camino de Los Marquez, Suite 1, Santa Fe, New Mexico 87505.

From: <u>Deborah Thomas</u>

To: <u>Hobson, Haskins - Carlsbad</u>

Subject: Re: Mosaic Potash Carlsbad - Radio Public Service Announcement Request

**Date:** Friday, December 09, 2022 2:55:55 PM

**CAUTION-EXTERNAL EMAIL:** Do not click links or attachments unless you know the content is safe. If unsure, click the Phish Alert button or contact the Global Service Desk.

Ok, I will get it over to the production team. I won't be able to get this on air until Tuesday if that's ok.

I will run it 1 time on all four of our stations and the cost is \$500.

On Fri, Dec 9, 2022 at 1:04 PM Hobson, Haskins < Haskins. Hobson@mosaicco.com > wrote:

Debbie,

Mosaic Potash Carlsbad would like to run the following Public Service Announcement once on all four <u>radio stations</u> in your network.

Mosaic Potash Carlsbad, Inc. is located approximately sixteen (16) miles east of Carlsbad in Eddy County, New Mexico at 1361 Potash Mines Road. This facility is a potash mine principally operated by General Manager Clint Prier.

Per a provision of the New Mexico Environment Department regulations, Mosaic Potash Carlsbad, Inc. announces its intent to apply for a modification to its New Source Review or NSR permit. The permit modification consists of the following three changes:

- 1. replacing the existing Primary Ore Crusher with two Impact Roll Crushers;
- 2. allowing the flexibility to utilize slag/grit material in its abrasive blasting operations; and
- 3. permitting two worst-case diesel engines.

Fugitive particulate matter potential emissions associated with the Impact Roll Crusher project will increase less than two (2) tons per year and less than one (1) pound per hour. Stack emissions will increase; however, Mosaic is not requesting any changes to the allowable emission rates in the permit.

Mosaic Potash Carlsbad has posted public notices with more information about these

## permit revisions at:

- Carlsbad National Bank at 202 West Stevens Street;
- La Tienda Thriftway at 1301 South Canal Street; and
- the U.S. Post Office at 301 North Canyon Street.

Any comments about this permit revision can be directed to the New Mexico Environmental Department, Air Quality Bureau, at 525 Camino de Los Marquez, Suite 1, Santa Fe, New Mexico 87505.

If you can run these PSAs before the end of December, that would be helpful. If you can scan in the affidavit and send it to me in PDF format by e-mail, that will also be helpful. If you have any questions, just let me know.

Happy Holidays!

Haskins Hobson, P.E.

North America Environmental Team

Mosaic Potash Carlsbad

575-628-6267 (office)

575-361-8939 (cell)

__

Thanks so much! **Debbie Thomas debbie@carlsbadradio.com**Carlsbad Radio

575-887-7563

Carlsbad Radio does not discriminate on the basis of race or ethnicity. Any provisions in any order or agreement for advertising that purports to discriminate on the basis of race of ethnicity is void.



## <u>Submittal of Public Service Announcement – Certification</u>

submitted a public service announcement to Carlsbad, Eddy County, New Mexico, in wh	the undersigned, certify that on 20/202 Carlsbad Radio, Inc. that serves the City ich the source is or is proposed to be located a AT IT WOULD AIR THE ANNOUNCEMEN
Signed this 16th day of Pecember,	2002
Haylein Holson Signature	12/16/22 Date
Haskim Hobson Printed Name	x
Sr. Env. Engineer	



## Copy of the Classified or Legal Ad or Affidavit of Publication UA3, Section 9.9

Enclosed is a copy of the classified ad affidavit of publication.

Final Publication Date 12/14/2022

Ad Number GCI0988357-01 & GCI0988357-02

Publication
Carlsbad Current Argus

Special Requests

Please email 1 affidavit for each ad. (Same ad ran in Main & Classifieds). Thanks!

Market El Paso, TX

Delivery Method

Email

Number of Affidavits Needed 1 of each ad

Customer Name

Mosaic Potash Carlsbad Envir. Dept.

Customer Phone Number 575-628-6267

Customer Address 1361 Potash Mines Rd, Carlsbad, NM 88220-8958

Account Number (If Known)
AP-571350

Customer Email
Haskins.Hobson@mosaicco.com

Your Name Leah K Leahy

Email Address

lleahy@localiq.com

## CURRENT-ARGUS

## AFFIDAVIT OF PUBLICATION

Ad No. GCI0988357

MOSAIC POTASH CARLSBAD ENVIR DEPT 1361 POTASH MINES RD CARLSBAD, NM 88220 ATTN

I, a legal clerk of the Carlsbad Current-Argus, a newspaper published daily at the City of Carlsbad, in said county of Eddy, state of New Mexico and of general paid circulation in said county; that the same is a duly qualified newspaper under the laws of the State wherein legal notices and advertisements may be published; that the printed notice attached hereto was published in the regular and entire edition of said newspaper and not in supplement thereof on the date as follows, to wit:

12/14/2022

Legal Clerk

Subscribed and sworn before me this 14th of December, 2022

State of WI, County of Brown NOTARY PUBLIC

My Commission Expires

Amount: \$530.52 Ad#: GCl0988357-01 P O : PUBLIC NOTICE # of Affidavits :1 KATHLEEN ALLEN Notary Public State of Wisconsin

## NOTICE OF AIR QUALITY PERMIT APPLICATION

In accordance with New Mexico air quality regulations, **Mosaic Potash Carlsbad Inc.** is announcing its intent to submit a significant permit revision application to the New Mexico Environment Department (NMED) to modify the current NSR permit to replace the existing Primary Ore Crusher with two Impact Roll Crushers, allowing the flexibility to utilize slag/grit material in its abrasive blasting operations, and to permit two worst-case diesel engines.

Fügitive PM10 and PM2.5 potential emissions associated with the Impact Roll Crusher project will increase less than two (2) tons per year (tpy) and less than one (1) lb/hr. Stack emissions will increase; however, Mosaic is not requesting any changes to the allowable emission rates in the permit.

The expected date of application submittal to the Air Quality Bureau will be in December 2022.

The exact location of the Mosaic Potash Carlsbad, Inc. facility is 1361 Potash Mines Road, Carlsbad, NM 88220. The facility is located approximately 16 miles E. of Carlsbad in Eddy County, New Mexico.

The estimated facility-wide maximum quantities of regulated air contaminants after this significant permit revision will be as follows, which may change slightly during the course of the Department's review:

## TOTAL FACILITY EMISSIONS (Stack and Fugitives)

Pollutant	Pounds per hour (pph)	Tons per year (tpy)
PM10	76	175
PM2.5	56	175
NOx	12	70
СО	20	115
SO2	0.5	1.0
VOC	2.0	6
Total HAPs	0.5	1.5
TAPs		
GHG (CO2e)		83,000

The standard and maximum operating schedule of the facility is 24 hours a day, 7 days a week, 52 weeks a year.

The owner and operator of this facility is:

Mosaic Potash Carlsbad Inc. 1361 Potash Mines Road Carlsbad, NM 88221

If you have any comments about the proposed modifications and want your comments to be made as a part of the permit review process, please submit your comments in writing to the address below:

Permit Program Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816 (505) 476-4300 1-800-224-7009

https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html

Other comments and questions may be submitted verbally.

Please refer to the company and facility name as used in this notice, or send a copy of this notice along with your comments, since the Department may not have received the permit application at the time of this notice. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

### Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

## Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non- discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at https://www.env.nm.gov/NMED/EJ/index.html to learn how and where to file a complaint of discrimination.



classifieds.currentargus.com

- Classifieds Phone: 800.433.0088
- Classifieds Email: dassificate@currentargus.com Classifieds Email: classifieds@currentargus.com
  Public Notices/Legals Email: legals@currentargus.com







## NOTICE OF AIR QUALITY PERMIT APPLICATION

In accordance with New Maxion air quality regulations. Mosale Potash Cartebad Inc. is announcing its intent to submit a algrificant permit revision application to the New Mexico Environment Department (MMED) to modify the current NSR permit to replace the existing Primary Ore Crusher with two Impact Roll Crushers, allowing the flexibility to utilize slag/grit material in its abrasive blasting operations, and to permit two worst-case diesel engines.

Fugitive PM10 and PM2.5 potantial emissions associated with the impact Roll Crusher project will increase less than two (2) zone per year (tpy) and less than one (1) lb/lir. Stack omissions will increase; however, Mosaic is not requesting any changes to the allowable emission rates in the permit.

The expected date of application submittal to the Air Quality Bureau will be in December 2022,

The exact location of the Mosaic Potash Carlsbad, Inc. facility is 1361 Potash Mines Road, Carlsbad, NM 88220, The facility is located approximately 16 miles E. of Carisbad in Eddy County, New Medico.

The estimated facility-wide maximum quantities of regulated air contaminants after this significant permit revision will be as follows, which may change slightly during the course of the Department's review:

### **TOTAL FACILITY EMISSIONS** (Stack and Fugitives)

Pollutant	Pounds per hour (pph)	Tons per year (tpy)
PM10	76	175
PM2.5	56	175
NOs	12	70
00	20	115
802	0.5	1.0
VOC	2.0	ő
Total HAPs	0.5	1.5
TAPs	-	pis we
GHG (CO2e)	- 1	83,000

The standard and maximum operating schedule of the facility is 24 hours a day, 7 days a week, 52 weeks a year.

The owner and operator of this facility is:

Mosaic Potash Carisbad Inc. 1361 Potash Mines Road Carlsbad, NM 88221

If you have any comments about the proposed modifications and want your comments to be made as a part of the permit review process, please submit your comments in writing to the address below:

Perint Program Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Sangi Fe, New Mexico 97505-1818 (505):470-4300 1-909-224-7000

https://www.env.nm.gov/aqis/permit/aqb_draft_permits.html

Other comments and questions may be submitted verbally.

Please refer to the company and facility name as used in this notice, or send a copy of this notice along with your comments, since the Department may not have received the permit application at the time of this notice. Please include a legible return mailing address with your comments. Once the Department has performed a prefirminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.208 NMAC. This regulation can be found in the "Permits" section of this web site.

### Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo Médop, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuniquese con esa oficina al tatéfono 505-478-5557.

## Notice of Non-Discrimination.

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NIMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil flights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975. Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Politicion Control Act Amendments of 1972, lifyou have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, you may contact Kristine Pintado, Non-Discrimination Caprdinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fs. NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at https://www.env.mr.gov/NNED/EJ/index.html to learn how and where to file a complaint of discrimination.

PRO IN T OF I NOT B M ders pers esta sons esta thea first cond the liver later to sent sign of 1 filed Edd; ed # Gree 88.2; King of 1 filed 10 fi E. NOT 45-3 prov 5ept ed b 07-8 200; anne Cour fect filed 201; 4554 14, 2

dir the

\$

er.



## Copy of the Display Ad or Affidavit of Publication UA3, Section 9.10

Enclosed is a copy of the display ad affidavit of publication.

Final Publication Date 12/14/2022

Ad Number GCI0988357-01 & GCI0988357-02

Publication
Carlsbad Current Argus

Special Requests

Please email 1 affidavit for each ad. (Same ad ran in Main & Classifieds). Thanks!

Market El Paso, TX

Delivery Method

Email

Number of Affidavits Needed 1 of each ad

Customer Name

Mosaic Potash Carlsbad Envir. Dept.

Customer Phone Number 575-628-6267

Customer Address 1361 Potash Mines Rd, Carlsbad, NM 88220-8958

Account Number (If Known)
AP-571350

Customer Email
Haskins.Hobson@mosaicco.com

Your Name Leah K Leahy

Email Address

lleahy@localiq.com

## CURRENT-ARGUS

## AFFIDAVIT OF PUBLICATION

Ad No. GCI0988357

MOSAIC POTASH CARLSBAD ENVIR DEPT 1361 POTASH MINES RD CARLSBAD, NM 88220 ATTN

I, a legal clerk of the Carlsbad Current-Argus, a newspaper published daily at the City of Carlsbad, in said county of Eddy, state of New Mexico and of general paid circulation in said county; that the same is a duly qualified newspaper under the laws of the State wherein legal notices and advertisements may be published; that the printed notice attached hereto was published in the regular and entire edition of said newspaper and not in supplement thereof on the date as follows, to wit:

12/14/2022

Legal Clerk

Subscribed and sworn before me this 14th of December, 2022

State of WI, County of Brown NOTARY PUBLIC

My Commission Expires

Amount: \$759.76 Ad#: GCl0988357-02 P O : PUBLIC NOTICE

# of Affidavits:1

KATHLEEN ALLEN Notary Public State of Wisconsin

## NOTICE OF AIR QUALITY PERMIT APPLICATION

In accordance with New Mexico air quality regulations, **Mosaic Potash Carlsbad Inc.** is announcing its intent to submit a significant permit revision application to the New Mexico Environment Department (NMED) to modify the current NSR permit to replace the existing Primary Ore Crusher with two Impact Roll Crushers, allowing the flexibility to utilize slag/grit material in its abrasive blasting operations, and to permit two worst-case diesel engines.

Fugitive PM10 and PM2.5 potential emissions associated with the Impact Roll Crusher project will increase less than two (2) tons per year (tpy) and less than one (1) lb/hr. Stack emissions will increase; however, Mosaic is not requesting any changes to the allowable emission rates in the permit.

The expected date of application submittal to the Air Quality Bureau will be in December 2022.

The exact location of the Mosaic Potash Carlsbad, Inc. facility is 1361 Potash Mines Road, Carlsbad, NM 88220. The facility is located approximately 16 miles E. of Carlsbad in Eddy County, New Mexico.

The estimated facility-wide maximum quantities of regulated air contaminants after this significant permit revision will be as follows, which may change slightly during the course of the Department's review:

## TOTAL FACILITY EMISSIONS (Stack and Fugitives)

Pollutant	Pounds per hour (pph)	Tons per year (tpy)
PM10	76	175
PM2.5	56	175
NOx	12	70
CO	20	115
SO2	0.5	1.0
VOC	2.0	6
Total HAPs	0.5	1.5
TAPs		
GHG (CO2e)		83,000

The standard and maximum operating schedule of the facility is 24 hours a day, 7 days a week, 52 weeks a year.

The owner and operator of this facility is:

Mosaic Potash Carlsbad Inc. 1361 Potash Mines Road Carlsbad, NM 88221

If you have any comments about the proposed modifications and want your comments to be made as a part of the permit review process, please submit your comments in writing to the address below:

Permit Program Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816 (505) 476-4300 1-800-224-7009

https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html

Other comments and questions may be submitted verbally.

Please refer to the company and facility name as used in this notice, or send a copy of this notice along with your comments, since the Department may not have received the permit application at the time of this notice. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

### Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

## Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non- discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at https://www.env.nm.gov/NMED/EJ/index.html to learn how and where to file a complaint of discrimination.

# Wednesday, December 14, 2022 URRENT-ARGUS

## Jaguar

Air Quality Permit A

Section-Page-Zone(s):

Agency:

GCI0988357-02

Insertion Nur

Color Type:

Size:

Ad Number:

Description:

**Mosaic Potash US** 

Continued from Page 1A

Jaguars are known to dwell in northwest M the petition read, but lack genetic diversity and peded by climate change.

Expanding their range in the U.S. and reintroducing the cats would help restore its population, argued the

"Restoring the jaguar to a small part of its historic range in the U.S. would enrich our southwestern ecosystems, genetically bolster jaguars in Mexico, and show that we love life on earth, even in its fiercest manifestations," said Michael Robinson with the Center for Biological Diversity.

Gila National Forest in southern New Mexico was proven to have ideal jaguar habitat, the petition argued, and would be suitable for reintroduction with abundant deer, elk and javelina the cat could prey

Robinson pointed to reintroduction programs that proved successful in Argentina, involving a public planning process to include local communities and

He said a return of the jaguar's presence in the U.S. would benefit the broader ecosystem, as the species already supported the evolution of prey. He pointed to the mule deer which Robinson said developed ears that can swivel to detect the camouflaged predator.

"Because all life is connected in ways that humans only partly understand, I truly believe that jaguar reintroduction will benefit the long-term sustainability of all living beings in the Southwest," Robinson said.

The petition called for the federal government or restore critical habitat designations in New Mexico and add lands in the region for a total area of about 14.6 million acres used for restoring the species in four areas between the two states.

Connecting the protected lands in New Mexico and Arizona along the international border and reintroducing jaguars there would allow known populations in Mexico to travel north and breed to increase genetic diversity, the petition argued.

That would entail introducing jaguars to habitat along New Mexico's western border to Arizona in an area within Gila National Forest north of Silver City, the petition read, along with smaller areas in New Mexico's southwest corner.

The petition also sought to add lands in Arizona to the east of Phoenix and in the mountains to the north around Flagstaff and Prescott.

Evidence of jaguars in North America dated back to some of the continent's earliest indigenous peoples, the petition read, and the animal's place in spiritual teachings of Pueblo peoples in northern New Mexico, Navajo tribes and the Apache.

"Pueblo peoples throughout northern New Mexico and Arizona regarded the jaguar as one of several supernatural avatars who served as mentors in hunting," the petition read.

It was in the early 20th Century when the U.S. government began killing jaguars to protect local livestock production, hindering its survival and evolution.

That was a wrong the Center argued must be rectified by designating lands in the U.S. for the jaguar to thrive and reintroducing them.

"Notwithstanding the government's deplorable consistency in hindering jaguar conservation, the passage of laws and their enforcement has led policies and practices regarding jaguars to evolve," read the pet-

And despite its listing under the Endangered Species Act, and the federal government setting aside about 764,000 acres for habitat in 2014, the jaguar still struggled to grow in numbers, the petition read, and stronger action was needed.

"The U.S. Fish and Wildlife Service can do far better," read the petition. "The geography, history, and bifor a new approach to jaguar conservation."

In a statement following the court decision to remove New Mexico lands from jaguar habitat, New Mexico Farm and Livestock Bureau Chief Executive Officer Chris Smith said the species survival in the U.S. was unrealistic and efforts to restore its numbers

ology pertaining to the jaguar, as well as the law, argue would only add regulatory burden to the livestock in-

"This is a species that is heavily reliant on different climates other than the arid southwest," he said. 'We're not opposed to conservation by any means. We're an important part of that, but we also have to be smart about it."

## NOTICE OF AIR QUALITY PERMIT APPLICATION

In accordance with New Mexico air quality regulations, Mosaic Potash Carlsbad Inc. is announcing its intent to submit a significant permit revision application to the New Mexico Environment Department (NMED) to modify the current NSR permit to replace the existing Primary Ore Crusher with two Impact Roll Crushers, allowing the flexibility to utilize slag/grit material in its abrasive blasting operations, and to permit two worst-case diesel engines.

Fugitive PM10 and PM2.5 potential emissions associated with the Impact Roll Crusher project will increase less than two (2) tons per year (tpy) and less than one (1) lb/hr. Stack emissions will increase; however, Mosaic is not requesting any changes to the

The expected date of application submittal to the Air Quality Bureau will be in December 2022.

The exact location of the Mosaic Potash Carlsbad, Inc. facility is 1361 Potash Mines Road, Carlsbad, NM 88220. The facility is located approximately 16 miles E. of Carlsbad in Eddy County, New Mexico.

The estimated facility-wide maximum quantities of regulated air contaminants after this significant permit revision will be as follows, which may change slightly during the course of the Department's review:

## **TOTAL FACILITY EMISSIONS**

(Stack and Fugitives)

Pollutant	Pounds per hour (pph)	Tons per year (tpy)
PM10	76	175
PM2.5	56	175
NOx	12	70
CO	20	115
SO2	0.5	1.0
VOC	2.0	6
Total HAPs	0.5	1.5
TAPs		
GHG (CO2e)		83,000

The standard and maximum operating schedule of the facility is 24 hours a day, 7 days a week, 52 weeks a year.

The owner and operator of this facility is:

Mosaic Potash Carlsbad Inc. 1361 Potash Mines Road Carlsbad, NM 88221

If you have any comments about the proposed modifications and want your comments to be made as a part of the permit review process, please submit your comments in writing to the address below:

> Permit Program Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816 (505) 476-4300 1-800-224-7009

https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html

Other comments and questions may be submitted verbally

Please refer to the company and facility name as used in this notice, or send a copy of this notice along with your comments, since the Department may not have received the permit application at the time of this notice. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

## Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

## **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non- discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at https://www.env.nm.gov/NMED/EJ/index.html to learn how and where to file a complaint of discrimination.

## **Obituaries**

## TODAY'S OBITUARIES AND DEATH NOTICES

Name Garriott, Valeri Ann (Sessom) Mendoza, Jr., Adan Olivas

Nyrkkanen, Scott W.

Age Town, State Carlsbad Carlsbad 60 Carlsbad

**Death Date Arrangements** 10-Dec West Funeral Home

11-Dec West Funeral Homre 09-Dec Denton-Wood Funeral Home

 * Additional information in display obituaries Obituaries appear in print and online at www.currentargus.com/obituaries



## May you find peace in this time of sorrow.

Scan the QR code for \$10 off your next order on FTD.com. **Promo Code: PEACE10** 





## **Carlsbad Current Argus.**

## **Customer service**

To view important information online related to your subscription, visit aboutyoursubscription.currentargus.com. You can also manage your subscription at account.currentargus.com. Contact the Carlsbad Current-Argus for questions or to report issues via email at CarlsbadCurrentArgus@gannett.com or 1-866-990-2635.

## Operating hours are:

• Monday-Friday: 8:00 a.m.-5:00 p.m.

• Saturday: 7:00 a.m.-11:00 a.m. with limited support for Digital • Sunday: 7:00 a.m.-11:00 a.m.

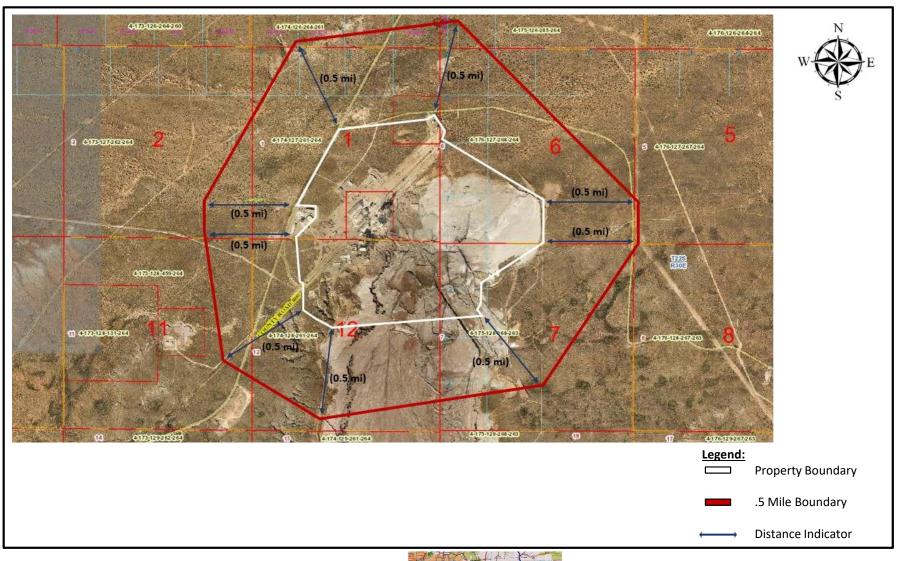
Full access print and digital subscriptions Subscribe and save today by visiting currentargus.com/subscribe.

## **Corrections and clarifications**

Our goal is to promptly correct errors. Email us at accuracy@ currentargus.com to report a mistake or call 575-628-5501. Describe the error, where you saw it, the date, page number, or the URL

Contact us	
Customer Service	1-866-990-2635
News Director	Jessica Onsurez   575-628-553
Advertising	1-800-473-0088
Obituaries	1-800-473-0088

## **Postal information**


The Carlsbad Current-Argus, USPS# 090-860, ISSN# 1522-5763, is published 5 days per week excluding Monday, Saturday, Memorial Day, Independence Day, Labor Day, Christmas Day (observed) and New Year's Day (observed) by Gannett Media Corp, 620 S. Main St., Carlsbad, NM 88221. Periodicals postage paid at Carlsbad, NM and additional mailing offices. Postmaster: Please send address changes to Customer Service. PO Box 5830, Augusta, GA 30916.



## **Land Owners of Record Map**

## UA3, Section 9.11

Enclosed is a map showing the facility boundary and the surrounding area in which owners of record were notified by mail.



## O

## Mosaic Potash Carlsbad NSR Sig Rev

0.5 Mile Public Notice Boundary



FIGURE

1

### Notes

Source: Sidwell's Portico via Eddy County NM County Assessor, November 2022 All locations are approximate.

## **Section 10**

## Written Description of the Routine Operations of the Facility

A written description of the routine operations of the facility. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

______

The Mosaic Potash facility is a potash mine and mill that produces fertilizer products from langbeinite ore. The major processes associated with the facility are mining, crushing, screening, granulation, leaching, drying, storing, and loading. The facility consists of an underground mine and surface mill capable of processing 17,500 tpd of langbeinite ore and 9,600 tpd of cuttings. The plant operates 24 hours per day, 365 days per year. Additional process details are provided in the following paragraphs.

Langbeinite Process – Langbeinite (LANG, aka K-Mag) ore is hoisted 900 feet from the underground mine to the surface at a maximum rate of 17,500 tpd and emptied into a bin. The bin discharges raw ore onto a belt conveyor that transports the ore one-half mile to a crushing circuit. In the crushing circuit, raw ore is screened and the undersized material goes to a fine ore bin while the oversized material is sent to an impact crusher and then rescreened. The fine ore bin discharges material onto a fine ore belt for transport to the wet processing circuit where impurities are removed from the ore. Reagents are used to separate the desired langbeinite from the impurities. The dry reagent is hauled to the plant where it is slurried and added to the wet process stream. After the wet circuit, the langbeinite material is dewatered over a belt filter and then dried in a rotary dryer. The dried langbeinite is sized by several screens in a screening tower, and the various size grades are dispatched to warehouses and sold as either granular, standard, or special standard K-Mag.

**Langbeinite Granulation Process** – Approximately 30-50% of the langbeinite product is transferred to a granulation circuit for further processing. This material is finely ground in two Raymond Mills and injected into a rotating drum granulator with binder material to form uniform, BB-sized granules that are then dried in a rotary dryer. The dried product is sized by screening, and the optimal sized product is dispatched to a warehouse. Over and undersized product is recycled through the granulation circuit.

Nash Plant (formerly "Cuttings Circuit") – Cuttings are hoisted from the underground mine to the surface at a maximum rate of 9,600 tpd and processed in one of the old Muriate circuits, which is referred to as the Nash Plant. The cuttings are emptied into a bin that discharges onto a belt, which transports the ore to a screening circuit. The material is screened and all the oversized material gets crushed and recycled back to the belt that feeds the screen, while the appropriately-sized material gets slurried and pumped to the tailings pile.

Storage and Loading – Langbeinite product is stored in two main warehouses (Warehouse Nos. 2 and 3). Approximately 95% of the products are shipped by rail from two loadouts (S&L Loadout Nos. 4 and 5) and the remaining ~5% is loaded into trucks at one truck loadout (S&L Truck Loadout). Warehouse No. 1 remains in use as surplus storage.

## **Section 11**

## **Source Determination**

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

## A. Identify the emission sources evaluated in this section (list and describe):

- Nash Plant Hoist and Screening (FUG1,2)
- LANG Hoist (STK4-CON4/FUG3,25,26)
- LANG Crusher (STK5a-CON5a/FUG27,28)
- LANG Fine Ore Bin (STK5b-CON5b/FUG29)
- LANG Dryer (STK6-CON6/FUG30)
- LANG Screens (STK7-CON7/FUG30)
- GRAN Dryer 10a (STK10ab-CON10a/FUG33)
- GRAN Process Ventilation 10b (STK10ab-CON10b/FUG33)
- GRAN Process Ventilation 10c (STK14-CON14/FUG24)
- Dispatch Transfer Tower (STK11-CON11/FUG32)
- S&L Boiler (STK20)
- S&L Warehouse 1 (FUG6)
- S&L Warehouse 2 (FUG8)
- S&L Warehouse 3 (FUG11)
- S&L Loadout 4 (FUG9)
- S&L Loadout 5 (FUG10)
- S&L Truck Loadout (FUG12)
- S&L Dispatch (FUG31,32)
- Railcar Offloading (FUG43)
- GRAN Reclaim (FUG44)
- K-Mag Rehandling (FUG50)
- Brine Circuit (FUG52)
- Reagent (FUG60,61)
- Potash Hauling (FUG64,65)
- TMA (FUG66)
- Permanent Abrasive Blasting (FUG20)
- Portable Abrasive Blasting (FUG40)
- Paved Roads (FUG22,47,48,49,51,57,58,59,62,63,64,65,67)
- Gasoline Dispensing Facilities 1 and 2 (GDF1, GDF2)
- Diesel Engines (GEN1, GEN2)

## B. Apply the 3 criteria for determining a single source:

	facility, OR sur	es belong to the same 2-digit industrial grouping rounding or associated sources that belong to ties for this source.
	X Yes	□ <b>No</b>
Common Ownership or Cownership or control as this		nding or associated sources are under common
	X Yes	□ <b>No</b>
Contiguous or Adjacent: with this source.	Surrounding or	associated sources are contiguous or adjacent
	X Yes	□ <b>No</b>

## C. Make a determination:

- X The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- ☐ The source, as described in this application, **does not** constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

## Section 12

## Section 12.A **PSD Applicability Determination for All Sources**

(Submitting under 20.2.72, 20.2.74 NMAC)

A PSD applicability determination for all sources. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the EPA New Source Review Workshop Manual to determine if the revision is subject to PSD review.

	TD1 .	C '1		•
Α.	This	tacı.	lity	1S:

- X a minor PSD source before and after this modification (if so, delete C and D below).  $\square$  a major PSD source before this modification. This modification will make this a PSD minor an existing PSD Major Source that has never had a major modification requiring a BACT analysis. an existing PSD Major Source that has had a major modification requiring a BACT analysis □ a new PSD Major Source after this modification.
- B. This facility is not one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are not significant. The "project" emissions listed below include changes described in this permit application. The project stack emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]:

a. **NOx:** 9.8 tpy (GEN1 and GEN2 PTE) b. **CO**: 21.0 tpy (GEN1 and GEN2 PTE) c. VOC: 1.2 tpy (GEN1 and GEN2 PTE) d. SOx: 0.04 tpy (GEN1 and GEN2 PTE)

e. PM: 0.54 tpy (GEN1, GEN2, STK5a Fugitives as Stack, and STK5b Fugitives as Stack PTE) f. **PM10:** 0.53 tpy (GEN1, GEN2, STK5a Fugitives as Stack, and STK5b Fugitives as Stack PTE)

g. **PM2.5**: 0.51 tpy (GEN1, GEN2, STK5a Fugitives as Stack, and STK5b Fugitives as Stack PTE)

h. Fluorides: N/A (not emitted) Lead: N/A (not emitted) i.

Sulfur compounds (listed in Table 2): N/A (not emitted) j.

k. GHG: 4,455 tpy (GEN1 and GEN2 PTE)

- C. Netting is not required because this project is not significant.
- D. BACT is not required for this modification, as this application is a minor modification.
- E. If this is an existing PSD major source, or any facility with emissions greater than 250 TPY (or 100 TPY for 20.2.74.501 Table 1 – PSD Source Categories), determine whether any permit modifications are related, or could be considered a single project with this action, and provide an explanation for your determination whether a PSD modification is triggered. N/A

## **Section 13**

## **Determination of State & Federal Air Quality Regulations**

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

## **Required Information for Specific Equipment:**

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

## Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

## Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

## **Regulatory Citations for Emission Standards:**

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

## **Federally Enforceable Conditions:**

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

Form-Section 13 last revised: 5/29/2019 Section 13, Page 1 Saved Date: 11/30/2022

Saved Date: 11/30/2022

STATE REGU- LATIONS CITATION	Title	Appli es? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	See Section 16 of this application.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This applies since the facility and individual pieces of equipment are subject to emissions limits in the current permit.
20.2.19 NMAC	Potash, Salt, or Sodium Sulfate Processing Equipment	Yes	Facility, except haul roads, S&L Boiler, GEN1, GEN2, GDF1, GDF2, and Abrasive Blasting	This applies only to the potash processing equipment.
20.2.23 NMAC	Fugitive Dust Control	No		This does not apply because the facility is a permitted facility and is not located in an area subject to a mitigation plan pursuant to 40 CFR 51.930.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No		This facility does not have new or existing gas burning equipment with a heat input of greater than 1,000,000 million British Thermal Units per year per unit.  Note: "New gas burning equipment" means gas burning equipment, the construction or modification of which is commenced after February 17, 1972.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No		The facility does not have any oil burning equipment with a heat input of greater than 1,000,000 million British Thermal Units.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No		This facility is not a natural gas processing plant.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A		These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	No		This facility is not a petroleum production or processing facility or hydrocarbon storage facility.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No		This facility is not a sulfur recovery plant.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	S&L Boiler, GEN1, GEN2	This regulation, which limits opacity to 20%, applies to the S&L Boiler since this equipment is not subject to another state regulation that limits particulate matter such as 20.2.19 NMAC (see 20.2.61.109 NMAC).
20.2.70 NMAC	Operating Permits	Yes	Facility	This regulation applies since the facility's potential to emit (PTE) of CO, TSP, PM10, and PM2.5 is greater than 100 tpy. Mosaic's HAPs are less than 10 tpy for a single HAP and less than 25 tpy for combined HAPs, so Mosaic is an area source of HAPs.  Note that this facility is not one of those listed at 20.2.70.7(2)(a) through (aa), so only stack emissions are used to determine PTE.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This facility is subject to 20.2.70 NMAC and is in turn subject to 20.2.71 NMAC.
20.2.72 NMAC	Construction Permits	Yes	Facility	This facility is subject to 20.2.72 NMAC and the current NSR Permit number is 495-M13-R1.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	This facility is required to submit Emissions Inventory Reporting per 20.2.73.300 NMAC because it is a Title V Major Source as defined at 20.2.70.7.R NMAC.

STATE REGU- LATIONS CITATION	Title	Appli es? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No		This facility does not have emissions in excess of the PSD 250 tpy threshold and this modification does not trigger PSD. In addition, the source is not one of the listed sources.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This is an NSR significant permit revision application, so it is subject to construction permit filing fees.
20.2.77 NMAC	New Source Performance	No		No equipment at the site is subject to a 40 CFR 60 subpart.
20.2.78 NMAC	Emission Standards for HAPS	No		This facility does not emit hazardous air pollutants that are subject to the requirements of 40 CFR Part 61.
20.2.79 NMAC	Permits – Nonattainment Areas	No		This facility is not located in a non-attainment area, nor does it currently affect an adjacent non-attainment area.
20.2.80 NMAC	Stack Heights	Yes	STK4, STK5a, STK5b, STK6, STK7, STK10, STK11, STK14	The stacks at Mosaic do not exceed good engineering practice or employ dispersion techniques.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	GDF1, GDF2	This regulation applies since the Gasoline Dispensing Operations at Mosaic are subject to 40 CFR Part 63, Subpart CCCCCC.

## **Example of a Table for Applicable FEDERAL REGULATIONS (Note: This is not an exhaustive list):**

FEDERAL REGU- LATIONS CITATION	Title	Applies ? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	This applies to the Mosaic facility since the facility is subject to 20.2.70 and 20.2.72, NMAC.
NSPS 40 CFR 60, Subpart A	General Provisions	No		No equipment at the site is subject to a 40 CFR 60 subpart.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No		This facility does not have any electric utility steam generating units.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No		This facility does not have any industrial, commercial, or institutional steam generating units.

FEDERAL REGU- LATIONS CITATION	Title	Applies ? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No		This facility does not have any small industrial, commercial, or institutional steam generating units.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No		This subpart does not apply because the only tank over 40,000 gallons at the facility contains a glycerin dedusting product for K-Mag. All of the petroleum liquid storage tanks on-site are under 40,000 gallons, including the storage and loading dedusting tanks that use petroleum products.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984			Tanks WLT1, WLT2, and LLT1 have capacities greater than 75 cubic meters and were constructed after July 23, 1984, but these tanks are exempt from these requirements because the true vapor pressures are less than 3.5 kPa.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No		This facility does not have any stationary gas turbines.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No		This facility is not an onshore natural gas processing plant.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions	No		This facility is not an onshore natural gas processing facility.
NSPS 40 CFR Part 60, Subpart OOO	Standards of Performance for Nonmetallic Mineral Processing Plants	No		This subpart applies to non-metallic mineral processing plants. Except for sodium compounds (NaCl) this facility does not process any of the "nonmetallic minerals" defined in 60.671, definitions. EPA intentionally left out potash facilities from being subject to NSPS OOO or UUU.  On October 6, 1998, EPA made the determination that Mosaic Potash (formerly IMC Kalium) is not subject to either NSPS UUU or OOO.
NSPS 40 CFR Part 60, Subpart UUU	Standards of Performance for Calciners and Dryers in Mineral Industries	No		Mosaic does not process any of the minerals listed in the definition of "Mineral Processing Plant" 60.731.  On October 6, 1998, EPA made the determination that Mosaic Potash (formerly IMC Kalium) is not subject to either NSPS UUU or OOO.

FEDERAL REGU- LATIONS CITATION	Title	Applies ? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR Part 60, Subpart IIII	Standards of Performance for Stationary Compression Ignition Internal Combustion Engines	Yes	GEN1, GEN2	
NSPS 40 CFR Part 60, Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	No		This facility does not have any stationary spark ignition internal combustion engines.
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No		This facility is not a crude oil or natural gas production, transmission, or distribution facility.
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	No		This facility is not a crude oil or natural gas facility.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No		This facility does not have any electric generating units.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No		This facility does not have any electric utility generating units.
NSPS 40 CFR 60, Subparts WWW,	Standards of performance for Municipal Solid	No		This facility is not a municipal solid waste landfill.

FEDERAL REGU- LATIONS CITATION	Title	Applies ? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
XXX, Cc, and Cf	Waste (MSW) Landfills			
NESHAP 40 CFR 61 Subpart A	General Provisions	No		No units at the facility are subject to 40 CFR 61.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No		This facility does not process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, or incinerate or dry wastewater treatment plant sludge.
NESHAP 40 CFR 61, Subpart M	National Emission Standard for Asbestos	Yes	Entire Facility	There is regulated asbestos-containing material (RACM) at this facility and Mosaic is following the Asbestos NESHAP accordingly.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No		This facility does not have the following sources intended to operate in volatile hazardous air pollutant (VHAP) service: pumps, compressors, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, and control devices or systems required by this subpart.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	GDF1, GDF2	Applies since 40 CFR 63, Subpart CCCCCC applies.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	No		This facility is not an oil and natural gas production facility.
MACT 40 CFR 63 Subpart HHH		No		This facility is not an owner or operator of a natural gas transmission and storage facility.
NESHAP 40 CFR 63, Subpart ZZZZ	National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines	Yes	GEN1, GEN2	
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No		This facility is not subject because it is not a major source of HAP.

FEDERAL REGU- LATIONS CITATION	Title	Applies ? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No		This facility is not subject because it does not own or operate a coal-fired electric utility generating unit (EGU) or an oil-fired EGU.
NESHAP 40 CFR 63, Subpart CCCCCC	National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities	Yes	GDF1, GDF2	The unleaded gasoline dispensing operations at the Auto Shop and Laguna Grande are subject to §63.1111(b) on account of their monthly throughputs being less than 10,000 gallons of gasoline. As such, Mosaic only has to comply with the following GDF requirements in §63.1116:  a. Minimize gasoline spills; b. Clean up spills as expeditiously as practicable; c. Cover all open gasoline containers and all gasoline storage tank fill-pipes with a gasketed seal when not in use; and, d. Minimize gasoline sent to open waste collection systems that collect and transport gasoline to reclamation and recycling devices, such as oil/water separators.
40 CFR 64	Compliance Assurance Monitoring	Yes	CON4 CON5a CON5b CON6 CON7 CON10a CON10b CON11 CON14	Note that there are no notification or reports required.  Per 64.2(a)(1)(2)&(3), all emission units controlled with a baghouse or scrubber are subject to CAM and include: LANG Hoist (STK4/CON4), LANG Crusher (STK5a/CON5a), LANG Fine Ore Bin (STK5b/CON5b), LANG Dryer (STK6/CON6), LANG Screens (STK7/CON7), GRAN Dryer 10a (STK10ab/CON10a), GRAN Process Ventilation 10b (STK10ab/CON10b), Dispatch Transfer Tower (STK11/CON11), and GRAN Process Ventilation 10c (STK14/CON14).  None of the units are large pollutant-specific emissions units (PSEUs) with allowable after controlled emissions of less than 100 tpy.
40 CFR 68	Chemical Accident Prevention	No		Mosaic does not have more than a threshold quantity of a regulated substance under §68.115, so this does not apply.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No		This facility is not a listed source under the Acid Rain Program.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No		This facility is not a listed source under the Acid Rain Program.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No		This facility is not a listed source under the Acid Rain Program.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No		This facility is not a listed source under the Acid Rain Program.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	Yes	Auto Shop	The facility is subject to 40 CFR 82, Subparts B and F.

Saved Date: 11/30/2022

## **Section 14**

## **Operational Plan to Mitigate Emissions**

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

fies that it has
lefining the
by
pon request.
his box and
1

- X NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an Operational Plan to Mitigate Source Emissions During Malfunction, Startup, or Shutdown defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- X Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

______

The above-listed operational plans required for 20.2.72 NMAC sources have been developed and are available upon request.

# **Section 15**

# **Alternative Operating Scenarios**

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: <a href="https://www.env.nm.gov/aqb/permit/aqb_pol.html">https://www.env.nm.gov/aqb/permit/aqb_pol.html</a>. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

This facility is authorized to operate continuously 8,760 hours per year, and equipment controlled with baghouses are each allowed to operate without baghouse control for up to 175 hours per year. Operating without baghouse control for 175 hours per year is not a requirement but an option to prevent the baghouse bags from breaking during wet conditions. The facility could operate the entire year controlling emissions with the baghouses. The facility is also allowed to operate 175 hours per year without the coating system operating.

For the diesel-fired engines (GEN1 and GEN2), Mosaic is representing "worst-case" engine emissions in this permit application and in the associated air dispersion modeling with the intent of allowing Mosaic to change out the engine with an equivalent or better engine without having to submit revised modeling or an air permit application.

# **Section 16**

# **Air Dispersion Modeling**

- 1) Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<a href="http://www.env.nm.gov/aqb/permit/app_form.html">http://www.env.nm.gov/aqb/permit/app_form.html</a>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	X
See #1 above. <b>Note:</b> Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

#### Check each box that applies:

☐ See attached, approved modeling waiver for all pollutants from the facility.
X See attached, approved modeling waiver for some pollutants from the facility.
☐ Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.
X Attached in UA4 is a modeling report for some pollutants from the facility.
□ No modeling is required.

# **Universal Application 4**

# **Air Dispersion Modeling Report**

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	16-A: Identification				
1	Name of facility:	Mosaic Potash Carlsbad, Inc.			
2	Name of company:	Mosaic Potash Carlsbad, Inc.			
3	Current Permit number:	NSR 0495-M14-R3			
4	Name of applicant's modeler:	Eric Farstad, CTEH LLC			
5	Phone number of modeler:	303-915-0807			
6	E-mail of modeler:	efarstad@cteh.com			

16	16-B: Brief						
1	Was a modeling protocol submitted and approved?	Yes⊠	No□				
2	Why is the modeling being done? To show compliance with the NAAQS, NMAAQS, and PSD Increment associated with addition of two worst-case engines (GEN1 and GEN2).  Other (describe below)						
	Describe the permit changes relevant to the modeling.						
3	Mosaic added a diesel-fired engine (GEN1) as part of a 2020 permit modification. The engine compressor that is used at various locations at the site. At the time the 2020 permit modification submitted, the New Mexico Environment Department (NMED), Air Quality Bureau (AQB) dispersion modeling requirements for the engine. Since the GEN1 engine is leased and is reproduced a company every 6 months, Mosaic is permitting a "worst-case" engine to avoid having to recompany's replacement engine every 6 months. As part of this permitting, AQB requested a gaseous air pollutants using the "worst-case" GEN1 engine that may be used at the facility.	ation application granted a waived by the rependent the renter amount of the modeling analysis.	n was ver from ental al lysis for				

	second "worst-case" diesel-fired air compressor engine (GE powered air compressor, which provides compressed air to In accordance with the approved modeling protocol, the redioxide (SO ₂ ), and carbon monoxide (CO).	the entire facility, needs replace	ment.	·		
4	What geodetic datum was used in the modeling?		NAD83			
5	How long will the facility be at this location?		Greater than	one year		
6	Is the facility a major source with respect to Prevention of Sigr	ignificant Deterioration (PSD)? Yes□ No⊠				
7	Identify the Air Quality Control Region (AQCR) in which the	AQCR) in which the facility is located 155				
	List the PSD baseline dates for this region (minor or major, as appropriate).					
8	NO ₂ Minor - 3/16/1988					
0	SO ₂	Minor - 7/28/1978				
	PM ₁₀					
	PM _{2.5}					
	Provide the name and distance to Class I areas within 50 km of	the facility (300 km for PSD pern	nits).			
9	Carlsbad Caverns National Park; 48 km					
10	Is the facility located in a non-attainment area? If so describe b	elow	Yes□	No⊠		
	Not Applicable					
11	Describe any special modeling requirements, such as streamlin	e permit requirements.				
Not Applicable – no special modeling requirements have been applied.						

16-	C: Modeling H	listory of Facility				
		Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).				
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments		
	СО	NSR Permit No. 0495-M10	November 19, 2010	SIL		
	NO ₂	NSR Permit No. 0495-M10	November 19, 2010	NAAQS/NMAAQS		
1	SO ₂	NSR Permit No. 0495-M10	November 19, 2010	SIL		
	H ₂ S	Not applicable				
	PM _{2.5}	NSR Permit No. 0495-M12- R3	August 30, 2017	NAAQS		
	PM ₁₀	NSR Permit No. 0495-M10	November 19, 2010	NAAQS		
	Lead	Not applicable				
	Ozone (PSD only)	Not applicable				
	NM Toxic Air Pollutants (20.2.72.402 NMAC)	Not applicable				
	D 17 1 11					

10-	10-D: Modering performed for this application							
For each pollutant, indicate the modeling performed and submitted with this application.  Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulati analysis were also performed.								
	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.		
	CO							
	NO ₂							
1	$SO_2$	$\boxtimes$						
	$H_2S$							
	PM2.5				$\boxtimes$			
	PM10				$\boxtimes$			
	Lead							
	Ozone							
	State air toxic(s) (20.2.72.402 NMAC)					×		

# 16-E: New Mexico toxic air pollutants modeling – N/A List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application.

2	List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required.						
	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor	

16-F: Modeling options					
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□		
	AERMOD Version 22112, with regulatory default options				

16-	16-G: Surrounding source modeling					
1	Date of surroundi	ng source retrieval	February 15, 2022			
	If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed.					
2	AQB Source ID	Description of Corrections				
	38899XXX	Source from the XTO Energy Husky plant were removed with AQB approval because the facility was never constructed and the air permit was cancelled.				

16-	16-H: Building and structure downwash						
1	How many buildings are present at the facility?	42					
2	How many above ground storage tanks are present at the facility?  There are several above ground storage tanks located at the facility. Approximately 10,						
3	Was building downwash modeled for all buildings and tanks? If not explain why below. Yes□ No⊠						
	All buildings located close to a distance of 5L from any modeled emission source were included in the modeling and could affect downwash parameters in the model.						
4	Building comments	No comments					

# 16-I: Receptors and modeled property boundary

1

"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility.

Describe the fence or other physical barrier at the facility that defines the restricted area.

	The restricted area is defined by fencing, gates, and fenceposts.							
2	Receptors must l Are there public			cessible roads in the re restricted area?	stricted area.		Yes□	No⊠
3	Are restricted are	Are restricted area boundary coordinates included in the modeling files?						No□
	Describe the rec	eptor grids an	d their spacin	g. The table below may	y be used, adding row	s as need	ed.	
	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility	Comme	Comments	
	Boundary	Boundary	50 m			Around fenceline		
4	Tight	Square	100 m		3,000 m	From center of facility sources		y sources
	Fine	Square	250 m	3,000 m	7,000 m			
	Class I	Single Point	N/A	48 km		One receptor located at close boundary of Carlsbad Caverns National Park		
	Describe receptor							
5	50-meter spacing, 137 total fenceline receptors							
	Describe the PSI	O Class I area	receptors.					
6	One PSD class I area receptor was placed on the close boundary (relative to Mosaic Potash). This receptor is 48 kilometers from the facility.							

16-	16-J: Sensitive areas						
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes□	No⊠				
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠				

# 16-K: Modeling Scenarios Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3). Gaseous emission sources are assumed to operate continuously.

2

3

OLM

Other:

describe and justify the ratios used below.

NO2 was modeled using default ARM2 parameters.

Were default NO₂/NO_X ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not

Describe the NO₂ modeling.

Yes⊠

No□

	Which scenario produces the highest concentrations? Why?  N/A											
2												
3	Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.)						Yes□	No⊠				
4	If so, describe factors for each group of sources. List the sources in each group before the factor table for that group. (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting easier.) Sources: N/A											
	Hour of Day	Factor	Hour of Day	Factor								
	1		13									
	2		14									
	3		15									
	4		16									
	5		17									
_	6		18						1			
5	7		19						1			
	8		20									
	9		21									
	10		22									
	11		23						+ +			
	12		24									
	If hourly, v	If hourly, variable emission rates were used that were not described above, describe them below.										
	N/A											
6	Were differ	rent emiss	ion rates u	sed for sho	ort-term ar	nd annual	modeling?	If so descr	ibe below.	Yes□	No⊠	
16-	-L: NO ₂	Mode	eling									
	Which type Check all t	es of NO ₂	modeling	were used:	?							
	⊠	ARM2	1									
1		100% 1	$NO_X$ to $NO_X$	O ₂ conversi	on							
		PVMR	M									

	N/A
4	Describe the design value used for each averaging period modeled.
	1-hour: High eighth high Annual: Other (Describe):

Highest annual average of 5 years of meteorological data

	0	8	, a							
16-	M: Part	iculate Ma	tter Modeling	-N/A	4					
	Select the pollutants for which plume depletion modeling was used.									
1		PM2.5								
		PM10								
		None-								
2	Describe the	particle size distr	ibutions used. Include th	ne source	of information.					
2										
3	Does the facility emit at least 40 tons per year of NO _X or at least 40 tons per year of SO ₂ ?  Sources that emit at least 40 tons per year of NO _X or at least 40 tons per year of SO ₂ are considered to emit significant amounts of precursors and must account for secondary formation of PM2.5.  Yes□  No□									
4	Was secondary PM modeled for PM2.5?  Yes□  Yes□					No□				
	If MERPs w below.	ere used to accoun	nt for secondary PM2.5	fill out th	e information below. If anothor	er method was use	ed describe			
5	NO _X (ton/yr	)	SO ₂ (ton/yr)		[PM2.5] _{annual}	[PM2.5] _{24-hour}				

16-	-N: Setback Distances – N/A
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.

16-O: PSD Increment and Source IDs						
1	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-I should match the ones in the modeling files. Do these match? If not, provide a cross-reference table between unit numbers if they do not match below.	Yes⊠	No□			

	Unit Number in UA-2			Unit Numb	ber in Modeling Fi	les	
						_	
2	The emission rates in the Ta these match? If not, explain		ald match the	ones in the r	nodeling files. Do	Yes⊠	No□
3	Have the minor NSR exempt sources or Title V Insignificant Activities" (Table 2-B) sources been modeled?  No ☑						No⊠
	Which units consume increr						
	All gaseous emission source			1	1		
4	Unit ID	$NO_2$	S	$O_2$	PM10		PM2.5
4	STK6 (Lang Dryer)	X	2	X	N/A		N/A
	STK10ab (Gran Dryer)	X	2	N/A			N/A
	S&L Boiler (STK20)	X	2	X	N/A		N/A
	GEN1 (diesel engine)	X	2	X	N/A		N/A
	GEN2 (diesel engine)	X	2	X	N/A		N/A
5	PSD increment description for sources. (for unusual cases, i.e., baseline unit expanded emissions after baseline date).  PSD increment modeled for NO2						
6	Are all the actual installation This is necessary to verify the how increment consumption	Yes⊠	No□				
	·						

16-P: Flare Modeling – N/A								
1	For each flare or flaring scenario, complete the following							
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)				

16	-Q: Volume and Related Sources – N/A		
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines?  If not please explain how increment consumption status is determined for the missing installation dates below.	Yes□	No□
2	Describe the determination of sigma-Y and sigma-Z for fugitive sources.		
3	Describe how the volume sources are related to unit numbers.  Or say they are the same.		

	Describe any open pits.
4	
	Describe emission units included in each open pit.
5	

A summary of model input parameters is provided in **Attachment A**.

16-	16-R: Background Concentrations						
		Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data that was used.  No ☒					
	CO: N/A						
	NO ₂ : <b>N/A</b>						
1	PM2.5: <b>N/A</b>						
	PM10: N/A						
	$SO_2$ : $N/A$						
	Other:						
	Comments:	Included nearby NO2 sources in the model in lieu of adding background pe protocol.	r the approved	modeling			
2	Were backgro	ound concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠			
	Not applicable						

16-S: Meteorological Data						
1	Was NMED provided meteorological data used? If so select the station used.  Carlsbad  2014-2018 OS Dataset	Yes⊠	No□			
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discu handled, how stability class was determined, and how the data were processed.	ss how missing	data were			
2	N/A					

16-	16-T: Terrain									
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□							
2	What was the source of the terrain data?									
2	NED 10 m data from: NED_13_n33w104.tif, NED_13_n33w105.tif									

16	-U: Modeling Files							
	Describe the modeling files: See below							
	File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)					
	CO_Sigimpact	CO	ROI/SIA					
	NO2_Sigimpact	NO ₂	ROI/SIA					
	SO2_Sigimpact	SO ₂	ROI/SIA					
1	Mosaic_Potash_NO2	NO ₂	Cumulative AAQS/Class I & II PSD Inc					

16-	V: PSD New or Major Modification Applications – N/A		
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis.  Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No□
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring exemption.	uction monitorin	g or
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.		
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□

16-W: Modeling Results									
1	If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so describe below.	Yes□	No⊠						
2	Identify the maximum concentrations from the modeling analysis. Rows may be modified, ad as necessary.	ded and remo	oved from the table below						

Pollutant, Time Period	Modeled Facility Concentration	Modeled Concentration with Surrounding	Secondary PM	Background Concentration	Cumulative Concentration	Value of Standard	Percent of		Location	
and Standard	(μg/m3)	Sources (µg/m3)	(μg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	Standard	UTM E (m)	UTM N (m)	Elevation (ft)
CO, 1-hr, SIL	221.4	N/A	N/A	N/A	N/A	2,000	11%	599509	3586920	984
CO, 8-hr, SIL	79.2	N/A	N/A	N/A	N/A	500	16%	599543	3586956	985
SO ₂ , 1-hr, SIL	0.45	N/A	N/A	N/A	N/A	7.8	6%	599509	3586920	984
SO ₂ , 3-hr, SIL	0.30	N/A	N/A	N/A	N/A	25	1%	599454	3586694	981
SO ₂ , 24-hr, SIL	0.07	N/A	N/A	N/A	N/A	5	1%	599609	3587030	986
SO ₂ , Annual, SIL	0.006	N/A	N/A	N/A	N/A	1	1%	599609	3587080	986
NO ₂ , 1-hr SIL	105.32	N/A	N/A	N/A	N/A	7.52	1400%	599513	3586466	978
NO ₂ , 24-hr SIL	20.15	N/A	N/A	N/A	N/A	5	403%	599609	3587030	986
NO ₂ , Annual SIL	1.8	N/A	N/A	N/A	N/A	1	180%	599609	3587080	986
NO ₂ , 1-hr, NAAQS	3.04	179.1*	N/A	N/A	179.1*	188.03	95%	595250	3593950	1026
NO ₂ , Annual, NAAQS	0.02	11.6	N/A	N/A	11.6	99.66	12%	596000	3582200	937
NO ₂ , Annual, NMAAQS	0.02	11.6	N/A	N/A	11.6	94.02	12%	596000	3582200	937

Pollutant, Time Period and Standard	Modeled Facility	Modeled Concentration with	Secondary	Background	Cumulative	Value of	Percent		Location	
	Concentration (µg/m3)	Surrounding Sources (µg/m3)	PM (μg/m3)	Concentration (µg/m3)	Concentration (µg/m3)	Standard (µg/m3)	of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
NO ₂ , Annual, PSD Class I SIL	0.0002	N/A	N/A	N/A	N/A	0.1	0.2%	558441.75	3561665.18	1247
NO ₂ , Annual, PSD Class II	0.02	11.5	N/A	N/A	11.6	25	46%	596000	3582200	937

^{*} This is the maximum modeled value in the model domain but is outside the SIA for NO₂. The highest modeled value inside the SIA is 127.9 µg/m³

NO₂ model contour plots are given in **Attachment B**.

# 16-X: Summary/conclusions

1

A statement that modeling requirements have been satisfied and that the permit can be issued.

This modeling analysis has shown that the facility meets all applicable modeling standards and demonstrates that the permit may be issued based on the modeling results.

## Attachment A

 $\label{eq:Table A-1} \textbf{Mosaic NO}_{x} \ \text{and SO}_{2} \ \textbf{Emission Unit Stack Parameters}$ 

Emission		UTM Lo	ocation ^(a)	Stack Height	Stack Temperature	Stack Exit Velocity	Stack Diameter
Unit Description	Modeled Source ID	UTM-X (m)	UTM-Y (m)	(ft)	(°F)	(ft/s)	(ft)
Lang Dryer	STK6	600142.0	3587090.0	160	153	21.9	6.98
Gran Dryer	STK10AB	600146.6	3586960.1	145	140	50.5	6.92
S&L Boiler	STK20	599976.5	3586886.6	38	420	0.63	0.83
Diesel Engine	GEN1	599808.5	3586885.5	3.5	850	146.4	0.25
Diesel Engine	GEN2	599950.7	3586875.9	3.5	910	152.8	0.43

⁽a) Universal Transverse Mercator Coordinates, North American Datum 83 (NAD83)

Table A-2 Mosaic NO_X and SO₂ Emission Unit Emission Rates

Emission Unit Description	Modeled Source ID	SO₂ Emi	SO₂ Emissions ^(a)		NO _x Emissions ^(a)	
Description	Source 15	(lbs/hr)	(tpy)	(lbs/hr)	(tpy)	(lbs/hr)
Lang Dryer	STK6	N/A – below SIL	N/A – below SIL	5.0	21.9	N/A – below SIL
Gran Dryer	STK10AB	N/A – below SIL	N/A – below SIL	3.0	13.1	N/A – below SIL
S&L Boiler	STK20	N/A – below SIL	N/A – below SIL	0.4	1.8	N/A – below SIL
Diesel Engine	GEN1	0.004	0.016	1.88	8.22	1.73
Diesel Engine	GEN2	0.006	0.03	0.35	1.54	3.08

⁽a) Emissions for GEN1 and GEN2 represent worst-case emissions from potential engines that may be used at the facility at these locations.

# Attachment B - NO₂ Concentration Plots

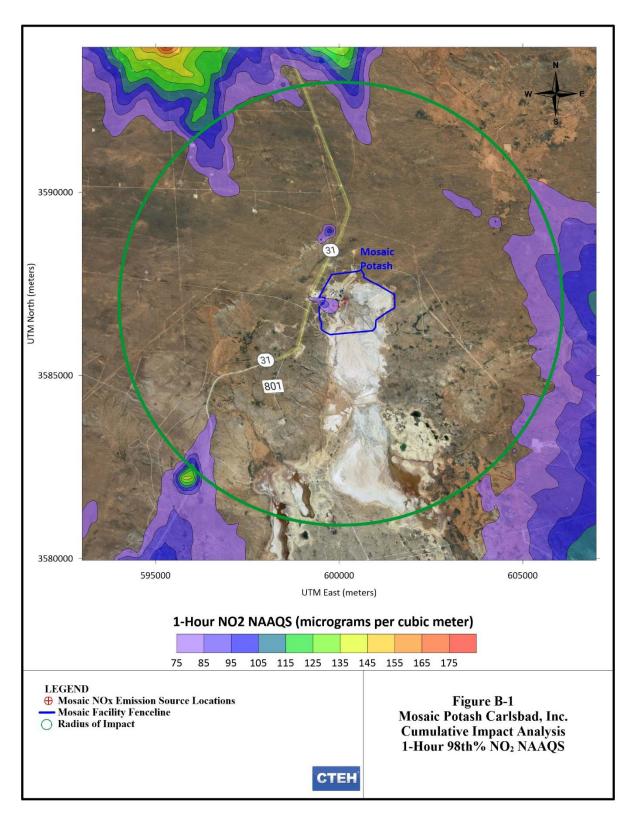



Figure B-1 shows a plot of cumulative 1-hour NO₂ concentrations for comparison to the NAAQS. The highest modeled concentration is located north of the Mosaic Potash facility and outside the significant impact area (SIA) which is represented in Figure B-1 by the green circle.

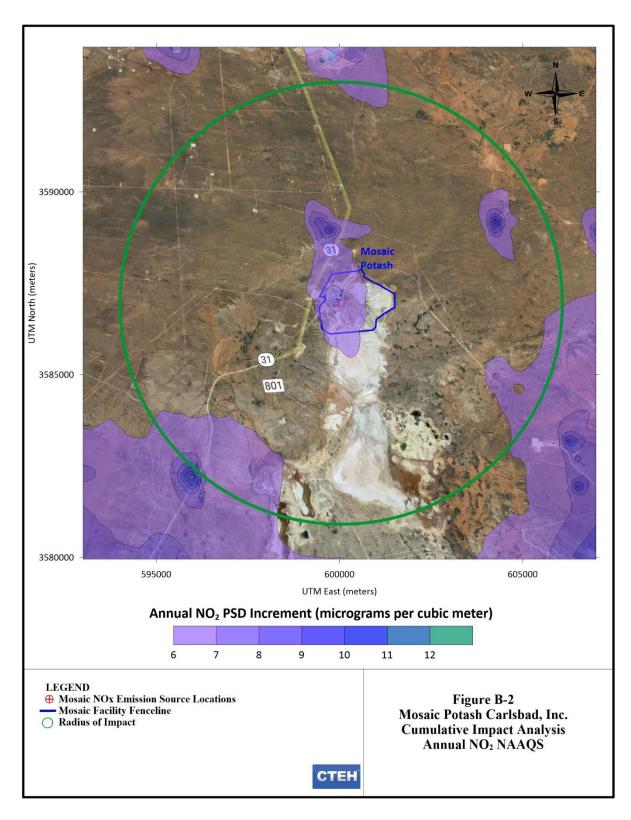



Figure B-2 shows a plot of cumulative annual NO₂ concentrations for comparison to the NAAQS. The highest modeled concentration is located southeast of the Mosaic Potash facility and outside the significant impact area (SIA) which is represented in Figure B-2 by the green circle.

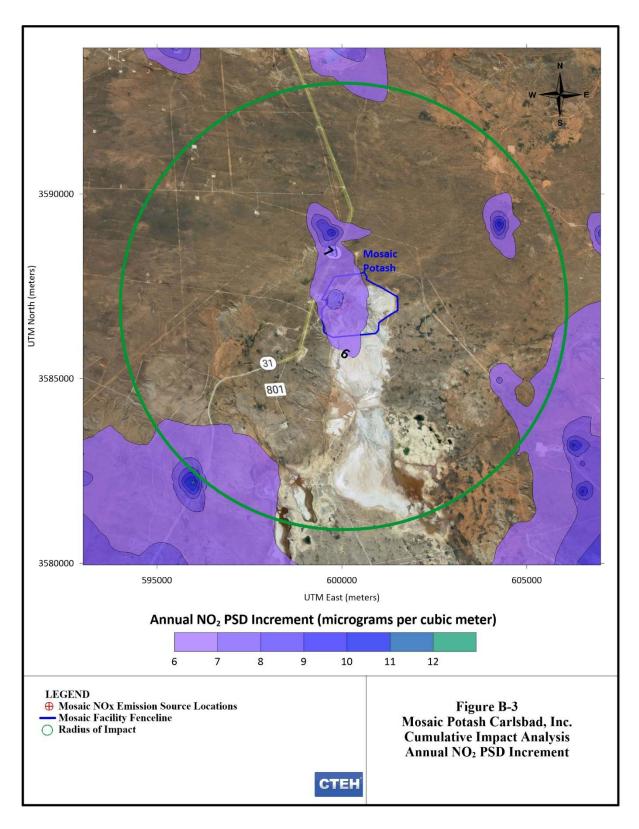



Figure B-3 shows a plot of cumulative annual  $NO_2$  concentrations for comparison to the PSD increment. The highest modeled concentration is located southwest of the Mosaic Potash facility and outside the significant impact area (SIA) which is represented in Figure B-3 by the green circle.

New Mexico Environment Department Air Quality Bureau Modeling Section 525 Camino de Los Marquez - Suite 1 Santa Fe, NM 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb/



#### For Department use only:

Approved by: Sufi Mustafa

Date: 2/7/2022

# **Air Dispersion Modeling Waiver Request Form**

This form must be completed and submitted with all air dispersion modeling waiver requests.

If an air permit application requires air dispersion modeling, in some cases the demonstration that ambient air quality standards and Prevention of Significant Deterioration (PSD) increments will not be violated can be satisfied with a discussion of previous modeling. The purpose of this form is to document and streamline requests to certify that previous modeling satisfies all or some of the current modeling requirements. The criteria for requesting and approving modeling waivers is found in the Air Quality Bureau Modeling Guidelines. Typically, only construction permit applications submitted per 20.2.72, 20.2.74, or 20.2.79 NMAC require air dispersion modeling. However, modeling is sometimes also required for a Title V permit application.

A waiver may be requested by e-mailing this completed form in **MS Word** format to the modeling manager, sufi.mustafa@state.nm.us.

This modeling waiver is not valid if the emission rates in the application are higher than those listed in the approved waiver request.

Section 1 and Table 1: Contact and facility information:

Contact name	Haskins Hobson
E-mail Address:	Haskins.Hobson@mosaicco.com
Phone	(575) 628-6267
Facility Name	Mosaic Potash Carlsbad Inc.
Air Quality Permit Number(s)	NSR Permit No. 0495-M14, Title V Permit No. P039-R3-M1
Agency Interest Number (if	0196
known)	0190
Latitude and longitude of	32°24′53" N; 103°56′9" W
facility (decimal degrees)	32 24 33 N; 103 30 9 W

General Comments: (Add introductory remarks or comments here, including the purpose of and type of permit application.)

Mosaic Potash Carlsbad Inc. (Mosaic) is submitting this modeling waiver request for a significant permit revision to NSR Permit No. 0495-M14 to replace the existing Primary Ore Crusher with two new Impact Roll Crushers. The new Impact Roll Crushers will be vented to the existing Lang Crusher (STK5a) baghouse, and while there will be a slight increase in the fugitive particulate matter potential emissions (<1 lb/hr for PM₁₀ and PM_{2.5}) due to the related upstream and downstream impacts in the Crushing Circuit, no changes to the allowable emissions in the permit are being requested. In addition, Mosaic will not be making changes to the existing baghouse or associated stack that would impact the existing dispersion characteristics.

In addition to the new Impact Roll Crushers, Mosaic is permitting a worst-case air compressor engine (GEN1) as part of this application. Since this emission source has not been modeled before, gaseous pollutant modeling for  $NO_2$ , CO, and  $SO_2$  will be performed and submitted with the permit application.

#### Section 2 – List All Regulated Pollutants from the Entire Facility - Required

In Table 2, below, list all regulated air pollutants emitted from your facility, except for New Mexico Toxic Air Pollutants, which are listed in Table 6 of this form. All pollutants emitted from the facility must be listed regardless if a modeling waiver is requested for that pollutant or if the pollutant emission rate is subject to the proposed permit changes.

Table 2: Air Pollutant summary table (Check all that apply. Include all pollutants emitted by the facility):

Pollutant	Pollutant is	Pollutant does not	Stack	Pollutant is	Pollutant is	A modeling	Modeling for
	not emitted	increase in emission	parameters	new to the	increased at	waiver is	this pollutant
	at the facility	rate at any emission unit	or stack	permit, but	any	being	will be
	and	(based on levels	location	already	emission	requested	included in
	modeling or	currently in the permit)	has	emitted at	unit (based	for this	the permit
	waiver are	and stack parameters	changed.	the facility.	on levels	pollutant.	application.
	not required.	are unchanged.			currently in		
		Modeling or waiver are			the permit).		
		not required.					
CO							X (GEN1)
$NO_2$							X (GEN1)
$SO_2$							X (GEN1)
PM10						X	
PM2.5						X	
$H_2S$	X						
Reduced	X						
S							
O ₃ (PSD	X						
only)							
Pb	X						

#### Section 3: Facility wide pollutants, other than NMTAPs, with very low emission rates

The Air Quality Bureau has performed generic modeling to demonstrate that small sources, as listed in Appendix 2 of this form, do not need computer modeling. After comparing the facility's emission rates for various pollutants to Appendix 2, please list in Table 3 the pollutants that do not need to be modeled because of very low emission rates.

Section 3 Comments. (If you are not requesting a waiver for any pollutants based on their low emission rate, then note that here. You do not need to complete the rest of Section 3 or Table 3.)

Mosaic is not requesting a waiver for any pollutants based on 'very low emission rates'.

Table 3: List of Pollutants with very low facility-wide emission rates

	Requested Allowable Emission	Release Type	Waiver Threshold
Pollutant	Rate From Facility	(select "all from stacks >20 ft"	(from appendix 2)
	(pounds/hour)	or "other")	(lb/hr)

#### Section 4: Pollutants that have previously been modeled at equal or higher emission rates

List the pollutants and averaging periods in Table 4 for which you are requesting a modeling waiver based on previous modeling for this facility. The previous modeling reports that apply to the pollutant must be submitted with the modeling waiver request. Request previous modeling reports from the Modeling Section of the Air Quality Bureau if you do not have them and believe they exist in the AQB modeling file archive or in the permit folder.

Section 4 Comments. (If you are not asking for a waiver based on previously modeled pollutants, note that here. You do not need to complete the rest of section 4 or table 4.)

Table 4: List of previously modeled pollutants (facility-wide emission rates)

Pollutant		Proposed facility- wide emission rate (pounds/hour)	emission rate (pounds/hour)	Proposed minus modeled emissions (lb/hr)	Modeled percent of standard or increment	Year modeled
* No allow	able emission increas	es are being request	ed.			

**Section 4, Table 5: Questions about previous modeling:** 

Question		N
	Yes	INC
Was AERMOD used to model the facility?	X	<u> </u>
Did previous modeling predict concentrations less than 95% of each air quality standard and PSD increment?	X	L
Were all averaging periods modeled that apply to the pollutants listed above?	X	
Were all applicable startup/shutdown/maintenance scenarios modeled?	X	
Did modeling include all sources within 1000 meters of the facility fence line that now exist?	X	
Did modeling include background concentrations at least as high as current background concentrations?	X	
If a source is changing or being replaced, is the following equation true for all pollutants for which the waiver	X	
is requested? (Attach calculations if applicable.)		
EXISTING SOURCE REPLACMENT SOURCE		
q1 q2		
Where		
$g = gravitational constant = 32.2 ft/sec^2$		
h1 = existing stack height, feet		
v1 = exhaust velocity, existing source, feet per second		
c = specific heat of exhaust, 0.28 BTU/lb-degree F		
T1 = absolute temperature of exhaust, existing source = degree F + 460		
q1 = emission rate, existing source, lbs/hour		
h2 = replacement stack height, feet		
v2 = exhaust velocity, replacement source, feet per second		
T2 = absolute temperature of exhaust, replacement source = degree F + 460		
q2 = emission rate, replacement source, lbs/hour		

you checked "no" for any of the questions, provide an explanation for why you think the previous modeling may	still be
sed to demonstrate compliance with current ambient air quality standards.	

#### Section 5: Modeling waiver using scaled emission rates and scaled concentrations

At times it may be possible to scale the results of modeling one pollutant and apply that to another pollutant. If the analysis for the waiver gets too complicated, then it becomes a modeling review rather than a modeling waiver, and applicable modeling fees will be charged for the modeling. Plume depletion, ozone chemical reaction modeling, post-processing, and unequal pollutant ratios from different sources are likely to invalidate scaling.

If you are not scaling previous results, note that here. You do not need to complete the rest of section 5.

To demonstrate compliance with standards for a pollutant describe scenarios below that you wish the modeling section to consider for scaling results.

i for seaming results.				
Mosaic is not scaling previous results.				

#### Section 6: New Mexico Toxic air pollutants – 20.2.72.400 NMAC

Modeling must be provided for any New Mexico Toxic Air Pollutant (NMTAP) with a facility-wide controlled emission rate in excess of the pound per hour emission levels specified in Tables A and B at 20.2.72.502 NMAC - Toxic Air Pollutants and Emissions. An applicant may use a stack height correction factor based on the release height of the stack for the purpose of determining whether modeling is required. See Table C - Stack Height Correction Factor at 20.2.72.502 NMAC. Divide the emission rate for each release point of a NMTAP by the correction factor for that release height and add the total values together to determine the total adjusted pound per hour emission rate for that NMTAP. If the total adjusted pound per hour emission rate is lower than the emission rate screening level found in Tables A and B, then modeling is not required.

In Table 6, below, list the total facility-wide emission rates for each New Mexico Toxic Air Pollutant emitted by the facility. The table is pre-populated with common examples. Extra rows may be added for NMTAPS not listed or for NMTAPS emitted from multiple stack heights. NMTAPS not emitted at the facility may be deleted, left blank, or noted as 0 emission rate. Toxics previously modeled may be addressed in Section 5 of this waiver form. For convenience, we have listed the stack height correction factors in Appendix 1 of this form.

Section 6 Comments. (If you are not requesting a waiver for any NMTAPs then note that here. You do not need to complete the rest of section 6 or Table 6.)

Mosaic is not requesting a waiver for any NMTAPs.

Form Version: 5/6/2018 Page 4 of 6 Printed: 12/18/2018

### Table 6: New Mexico Toxic Air Pollutants emitted at the facility

If requesting a waiver for any NMTAP, all NMTAPs from this facility must be listed in Table 3 regardless if a modeling waiver is requested for that pollutant or if the pollutant emission rate is subject to the proposed permit changes.

Pollutant	Requested Allowable Emission Rate (pounds/hour)	Hojoht	Correction	Allowable Emission Rate Divided by Correction Factor	Emission Rate Screening Level (pounds/hour)
Ammonia					1.20
Asphalt (petroleum) fumes					0.333
Carbon black					0.233
Chromium metal					0.0333
Glutaraldehyde					0.0467
Nickel Metal					0.0667
Wood dust (certain hard woods as beech & oak)					0.0667
Wood dust (soft wood)					0.333
(add additional toxics if they are present)					

### Section 7: Approval or Disapproval of Modeling Waiver

The AQB air dispersion modeler should list each pollutant for which the modeling waiver is approved, the reasons why, and any other relevant information. If not approved, this area may be used to document that decision.

The change in emissions from roller crushers are routed to the bag house. The bag house emissions are not changing; therefore, modeling analyses can be waived at this time for crusher changes.

Form Version: 5/6/2018 Page 5 of 6 Printed: 12/18/2018

Appendix 1: Stack Height Release Correction Factor (adapted from 20.2.72.502 NMAC)

Release Height in Meters	Correction Factor
0 to 9.9	1
10 to 19.9	5
20 to 29.9	19
30 to 39.9	41
40 to 49.9	71
50 to 59.9	108
60 to 69.9	152
70 to 79.9	202
80 to 89.9	255
90 to 99.9	317
100 to 109.9	378
110 to 119.9	451
120 to 129.9	533
130 to 139.9	617
140 to 149.9	690
150 to 159.9	781
160 to 169.9	837
170 to 179.9	902
180 to 189.9	1002
190 to 199.9	1066
200 or greater	1161

Appendix 2. Very small emission rate modeling waiver requirements

Modeling is waived if emissions of a pollutant for the entire facility (including haul roads) are below the amount:

Pollutant	If all emissions come from stacks 20	If not all emissions come from	
	feet or greater in height and there are	stacks 20 feet or greater in height, or	
	no horizontal stacks or raincaps	there are horizontal stacks, raincaps,	
	(lb/hr)	volume, or area sources (lb/hr)	
CO	50	2	
H ₂ S (Pecos-Permian Basin)	0.1	0.02	
H ₂ S (Not in Pecos-Permian Basin)	0.01	0.002	
Lead	No waiver	No waiver	
$NO_2$	2	0.025	
PM2.5	0.3	0.015	
PM10	1.0	0.05	
$SO_2$	2	0.025	
Reduced sulfur (Pecos-Permian	0.033	No waiver	
Basin)			
Reduced sulfur (Not in Pecos-	No waiver	No waiver	
Permian Basin)			

Form Version: 5/6/2018 Page 6 of 6 Printed: 12/18/2018

# **Section 17**

# **Compliance Test History**

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history.

The last five (5) tests are shown in the table below. Additional test history is available upon request.

**Compliance Test History Table** 

Unit No.	Test Description	Test Date
	Biennial testing in accordance with EPA test methods for PM (TSP).	7/9/2021
	Biennial testing in accordance with EPA test methods for PM (TSP).	10/23/2019
STK4-CON4	Annual testing in accordance with EPA test methods for PM (TSP).	8/31/2017
	Annual testing in accordance with EPA test methods for PM (TSP).	6/19/2016
	Annual testing in accordance with EPA test methods for PM (TSP).	3/4-5/2015
	Biennial testing in accordance with EPA test methods for PM (TSP).	7/12/2021
	Biennial testing in accordance with EPA test methods for PM (TSP).	7/31/2019
STK5a-CON5a	Annual testing in accordance with EPA test methods for PM (TSP).	8/22-23/2017
	Annual testing in accordance with EPA test methods for PM (TSP).	6/17-18/2016
	Annual testing in accordance with EPA test methods for PM (TSP).	3/13/2015
	Biennial testing in accordance with EPA test methods for PM (TSP).	1/12/2022
	Biennial testing in accordance with EPA test methods for PM (TSP).	8/1/2019
STK5b-CON5b	Annual testing in accordance with EPA test methods for PM (TSP).	8/3/2017
	Annual testing in accordance with EPA test methods for PM (TSP).	9/24/2016
	Annual testing in accordance with EPA test methods for PM (TSP).	3/18/2015
	Five-year testing in accordance with EPA test methods for NOx and CO.	5/19/2022
	Biennial testing in accordance with EPA test methods for PM (TSP).	5/27/2021
STK6-CON6	Biennial testing in accordance with EPA test methods for PM (TSP).	8/15/2019
	Annual testing in accordance with EPA test methods for PM (TSP).	6/26/2017
	Tested in accordance with EPA test methods for NOx, CO, and PM (TSP).	12/7/2016

	Annual testing in accordance with EPA test methods for PM (TSP).	8/7/2015		
	Biennial testing in accordance with EPA test methods for PM (TSP).	11/17/2021		
	Biennial testing in accordance with EPA test methods for PM (TSP).	8/15/2019		
STK7-CON7	Annual testing in accordance with EPA test methods for PM (TSP).	7/24-25/2017		
	Annual testing in accordance with EPA test methods for PM (TSP).	7/23/2016		
	Annual testing in accordance with EPA test methods for PM (TSP).	3/24/2015		
	Biennial testing in accordance with EPA test methods for PM (TSP).	8/17/2021		
	Biennial testing in accordance with EPA test methods for PM (TSP).	5/6/2020		
STK10ab-CON10ab	Supplemental testing to increase alarms.	4/4/2018		
	Annual testing in accordance with EPA test methods for PM (TSP).	5/23/2017		
	Tested in accordance with EPA test methods for NOx, CO, and PM (TSP).	9/29/2016		
	Biennial testing in accordance with EPA test methods for PM (TSP).	3/16/2022		
	Biennial testing in accordance with EPA test methods for PM (TSP).	10/24/2019		
STK11-CON11	Annual testing in accordance with EPA test methods for PM (TSP).	8/24/2017		
	Annual testing in accordance with EPA test methods for PM (TSP).	7/21/2016		
	Annual testing in accordance with EPA test methods for PM (TSP).	10/28/2015		
	Five-year testing in accordance with EPA test methods for PM (TSP).	8/19/2020		
	Not tested in 2019. Monitoring exemption since operated <10% of the monitoring period.			
STK14-CON14	Not tested in 2018. Monitoring exemption since operated <10% of the monitoring period.			
	Not tested in 2017. Monitoring exemption since operated <10% of the monitoring period.			
	Not tested in 2016. Monitoring exemption since operated <10% of the mon	nitoring period.		

# Section 18 - Not a Streamline Application

# **Addendum for Streamline Applications**

Do not print this section unless this is a streamline application.

Streamline Applications do not require a complete application. Submit Sections 1-A, 1-B, 1-D, 1-F, 1-G, 2-A, 2-C thru L, Sections 3 thru 8, Section 13, Section 18, Section 22, and Section 23 (Certification). Other sections may be required at the discretion of the Department. 20.2.72.202 NMAC Exemptions do not apply to Streamline sources. 20.2.72.219 NMAC revisions and modifications do not apply to Streamline sources, thus 20.2.72.219 type actions require a complete new application submittal. Please do not print sections of a streamline application that are not required.

18	-B: Streamline Applicability Criteria	Answer (yes/no)
1	Does the source category for this facility meet one of those listed in the following table? (20.2.72.301.A NMAC)  20.2.72.501 Table 2 – Permit Streamlining Source Class Categories  1. Reciprocating internal combustion engines including portable or temporary engines 2. Turbines	□ Yes □ No
2	If this facility is a compressor station, does it meet the definition of a "Compressor station" below? (20.2.72.301.D NMAC)  "Compressor station" means a facility whose primary function is the extraction of crude oil, natural gas, or water from the earth with compressors, or movement of any fluid, including crude oil or natural gas, or products refined from these substances through pipelines or the injection of natural gas or CO2 back into the earth using compressors. A compressor station may include engines to generate power in conjunction with the other functions of extraction, injection or transmission and may contain emergency flares. A compressor station may have auxiliary equipment which emits small quantities of regulated air contaminants, including but not limited to, separators, de-hydration units, heaters, treaters and storage tanks, provided the equipment is located within the same property boundaries as the compressor engine (underline added). (20.2.72.301.A NMAC)	□ Yes □ No
3	Will the source operate in compliance with all applicable state and federal regulations, including federal new source performance standards incorporated by 20.2.77 NMAC and permit conditions? (20.2.72.305.B NMAC)	□Yes □No
4	Will the fuel combusted at this facility be produced natural gas, sweet natural gas, liquid petroleum gas, or fuel gas containing 0.1 grain of total sulfur or less per dry standard cubic foot; or refinery grade diesel or No. 2 fuel oil that is not a blend containing waste oils or solvents and contains less than 0.3% by weight sulfur? (20.2.72.306 NMAC)	□Yes □No

5	Will all spark ignited gas-fired or any compression ignited dual fuel-fired engine which operates with a non-selective catalytic converter be equipped and operated with an automatic air-fuel ratio (AFR) controller which maintains AFR in the range required to minimize NOx emissions, as recommended by the manufacturer? (20.2.72.306 NMAC)	□Yes □No
6	Has payment of <u>all</u> fees that are specified in 20.2.75 NMAC (Construction Permit Fees), as payable at the time the application is submitted, been included with the application package? (20.2.72.302.15 NMAC)	□Yes □No
7	Is the answer to each of the above questions, #1 through #6, 'Yes'?	□Yes
	If the answer to <b>this</b> question is "No", this facility does <u>not</u> qualify for a streamline permit.	□No
8	Will the facility, either before or after construction or modification, have a total potential to emit of any regulated air contaminant ² greater than 200 tons per year (tpy) of any one regulated air pollutant (CO, NOx, SO2, or VOC)? (20.2.72.301.B.2 NMAC);	□ Yes
	"Potential to emit" or "potential emissions" means the maximum capacity of a stationary source to emit a regulated air contaminant under its physical and operational design. Any physical or operational limitation on the capacity of the source to emit a regulated air contaminant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored, or processed, shall be treated as part of its design if the limitations or the effect it would have on emissions is federally enforceable. Secondary emissions do not count in determining the potential to emit of a stationary source.	
9	Is the facility a "major stationary source" as defined in 20 NMAC 2.74? (20.2.72.301.B.1 NMAC)	□ Yes
10	Is this source subject 20.2.78 NMAC, other than 40CFR61 Subpart M National Emission Standard for Asbestos? (20.2.72.301.B.3 NMAC)	□ Yes
11	Is this a source of potential air toxic emissions (20 NMAC 2.72. 400-499)? (20.2.72.301.B.3 NMAC)	□ Yes
12	Will the reciprocating internal combustion (IC) engines and/or turbines be located at a petroleum refinery, chemical manufacturing plant, bulk gasoline terminal, natural gas processing plant, or at any facility containing sources in addition to IC engines and/or turbines for which an air quality permit is required through state or federal air quality regulations in the absence of the (IC) engines and/or turbines? (20.2.72.301.B.4 NMAC)	□ Yes □ No
13	Will the proposed facility be located within any of the 20.2.72.301.B.5 exclusion areas specified in the Air Dispersion Modeling Guidelines ¹ , Table: <u>Areas Where Streamline Permits Are Prohibited?</u> (20.2.72.301.B.5 NMAC) <a href="http://www.env.nm.gov/aqb/modeling">http://www.env.nm.gov/aqb/modeling</a>	□ Yes
14	Will the proposed facility's impact area intersect any of the areas specified in the Air Dispersion Modeling Guidelines ¹ , Table: Areas Where Streamline Permits Are Prohibited? (20.2.72.301.B.5 NMAC) <a href="http://www.env.nm.gov/aqb/modeling">http://www.env.nm.gov/aqb/modeling</a>	□Yes □No □N/A
15	Is the answer to each of the above questions, #8 through #14, 'No'?	
	If the answer to <b>this</b> question is "No", this facility does <u>not</u> qualify for a streamline permit.	□Yes □No

² The potential to emit for nitrogen dioxide shall be based on total oxides of nitrogen

¹ The Air Dispersion Modeling Guidelines contain a section on streamline permitting. The table mentioned above can be found within those guidelines at <a href="http://www.env.nm.gov/aqb/modeling">http://www.env.nm.gov/aqb/modeling</a>

18-	C: Streamline Location Restrictions	Answer (yes/no)	Identify: Name and Distance (km)		
1	Will the distance from the nearest property boundary to the nearest school, residence, office building or occupied structure, excluding the immediate facility complex be greater than one (1.0) km? (20.2.72.301.B.6.a NMAC)	□Yes □No			
2	Will the distance from the nearest property boundary to the nearest state park, Class II wilderness or wildlife refuge, historic park, state recreation area be greater than three (3.0) km? (20.2.72.301.B.6.b NMAC)  The <u>Air Dispersion Modeling Guidelines¹</u> , Table: <u>List Of State Parks, Class II</u> Wilderness Areas, Class II National Wildlife Refuge, National Historic Parks, State	□Yes □No			
	Recreation Areas, and Class I Areas contains a list of most of these areas in New Mexico, but may not include new areas designated since the modeling guidelines were published.				
3	Will the distance from the nearest property boundary to the nearest community with a population of more than 20,000 people be greater than three (3.0) km? (20.2.72.301.B.6 NMAC).b	□Yes □No			
4	Will the distance from the nearest property boundary to the nearest community with a population of more than 40,000 people be greater than 10 km? (20.2.72.301.B.6.c NMAC)	□Yes □No			
5	Will the distance from the nearest property boundary to the nearest Class I area be greater than 30 km? (20.2.72.301.B.6.d NMAC)  The <u>Air Dispersion Modeling Guidelines</u> ¹ , Table: <u>List Of State Parks, Class II</u> Wilderness Areas, Class II National Wildlife Refuge, National Historic Parks, State  Recreation Areas, and Class I Areas contains a list of most of these areas in New  Mexico, but may not include new areas designated since the modeling guidelines were published.	□Yes □No			
6	Will the distance from the nearest property boundary to Bernalillo County be greater than 15 km? (20.2.72.301.B.7 NMAC)	□Yes □No	-NA-		
7	Is the answer to all of the above question yes or N/A?  If the answer to <b>this</b> question is " <b>No</b> ", this facility does <u>not</u> qualify for a streamline permit.	□Yes □No	-NA-		
1 T	¹ The Air Dispersion Modeling Guidelines contain a section on streamline permitting. The table mentioned above can be found				

¹ The Air Dispersion Modeling Guidelines contain a section on streamline permitting. The table mentioned above can be found within those guidelines at <a href="http://www.env.nm.gov/aqb/modeling">http://www.env.nm.gov/aqb/modeling</a>.

18-D	: Source Category Determination		
1	Is the total potential to emit of each regulated contaminant from all sources at the facility less than 40 tpy?	□ Yes □ No	<ul> <li>If the answers to this question is "Yes", the facility qualifies for a 20.2.72.301.D.1 NMAC streamline permit.</li> <li>Public notice is not required, 20.2.72.303.A NMAC.</li> <li>Modeling is not required, 20.2.72.301.D NMAC.</li> <li>If "Yes", leave the remainder of this table blank.</li> </ul>
2	Is the total potential to emit of each regulated contaminant from all emission sources at the facility less than 100 tons per year (tpy) <b>AND</b> the impact on ambient air from all sources at the facility less than the ambient significance levels in 20.2.72.500 NMAC?	☐ Yes ☐ No	<ul> <li>If the answer to this question is "Yes", the facility qualifies for a 20.2.72.301.D.2 NMAC streamline permit.</li> <li>Public notice is not required, 20.2.72.303.A NMAC.</li> <li>Modeling is required in accordance with 20.2.72.301.D.2 NMAC</li> <li>If "Yes", leave the remainder of this table blank.</li> </ul>

3.a	Is the total potential to emit of each regulated contaminant from all emission sources at the facility less than 200 tons per year (tpy) AND the maximum modeled ambient impact from the total potential emissions at the facility less than 50 percent of each applicable PSD increment, state and federal ambient air quality standards?	☐ Yes ☐ No	<ul> <li>If the answers to these questions (3.a, 3.b, 3.c, and 3.d) are all "Yes", the facility qualifies for a 20.2.72.301.D.3 NMAC streamline permit.</li> <li>Public notice is required in accordance with</li> </ul>
3.b	Are there no adjacent sources emitting the same regulated air contaminant(s) as the source within 2.5 km of the modeled nitrogen dioxide (NO2) impact area?	□ Yes □ No	<ul> <li>NMAC 20.2.72.303 NMAC.</li> <li>Modeling is required in accordance with 20.2.72.301.D.3 NMAC</li> <li>If the answers to questions 1, 2, and any of questions in question 3 (3.a, 3.b, 3.c, or 3.d) are</li> </ul>
3.c	Is the "sum of the potential emissions for oxides of nitrogen from all adjacent sources" (SUM) within 15 km of the NO2 impact area (SUM15) less than 740 tpy?	□ Yes □ No	"No", this facility does not qualify for a streamline permit.
3.d	Is the "sum of the potential emissions for oxides of nitrogen from all adjacent sources" (SUM) within 25 km of the NO2 impact area (SUM25) less than 1540 tpy?	□ Yes □ No	

Note: All modeling demonstrations have the option of demonstrating compliance with 20.2.72.301.D.3 NMAC. All public notices are required to comply with the public notice requirements of a NMAC20.2.72.301.D.3 facility.

18-E: Submittals					
1	If a facility is required to submit a modeling analysis to demonstrate compliance with NMAC 20.2.72.300-399, use the Department's most current version of the Departments Air Dispersion Modeling Guidelines, and include a copy of the modeling in the application. A copy of the most current version of the guidelines can be obtained at the following web address: <a href="http://www.env.nm.gov/aqb/modeling">http://www.env.nm.gov/aqb/modeling</a> .				
2	<b>Public Notice:</b> Per 20.2.72.303.A NMAC, public notice is only required for sources subject to NMAC 20.2.72.301.D Public notice submittals shall consist of the following:				
	1. Proof of Public Notice				
	2. Include a copy of the certified letter receipts (Field office & Federal Land Managers) (20.2.72.206.A.7, 302.A & 302.12)				
	3. A copy of the letters sent to the appropriate federal land manager if the source will locate within 50 km of a boundary of a Class I area (302.A.2)				
	4. A statement stating a complete copy of the application and public notice has been provided to the Departments field or district office nearest the source (302.A.1)				
	5. The location where the public notice has been posted on the site (303.B.2)				
	6. A copy of the classified or legal ad and its affidavit of publication (303.B.1)				

# Section 19 - Not a Title V Application

# **Requirements for Title V Program**

Do not print this section unless this is a Title V application.

#### Who Must Use this Attachment:

- * Any major source as defined in 20.2.70 NMAC.
- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See <a href="http://www.env.nm.gov/aqb/index.html">http://www.env.nm.gov/aqb/index.html</a>. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this item here.

### 19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this item here.

#### **19.2 - Compliance Status** (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this item here.

19.3 -	<b>Continued Compliance</b>	(20.2.70.300.D.10.c NMAC
	Provide a statement that your f	facility will continue to be in

Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement.

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this item here.

#### 19.4 - Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)

You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this item here.

### 19.5 - Stratospheric Ozone and Climate Protection

In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners).

1.	Does your facility have any air conditioners	or refrigeration equipment that uses (	CFCs, l	HCFCs or o	ther ozone-deple	eting
	substances?	□ Yes		□ No		

2. Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 lbs?

☐ Yes ☐ No

(If the answer is yes, describe the type of equipment and how many units are at the facility.)

- 3. Do your facility personnel maintain, service, repair, or dispose of any motor vehicle air conditioners (MVACs) or appliances ("appliance" and "MVAC" as defined at 82. 152)? ☐ **Yes** ☐ **No**
- 4. Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through G.)

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this item here.

#### 19.6 - Compliance Plan and Schedule

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

#### A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.

**B.** Compliance plan: (20.2.70.300.D.11.B NMAC)

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

#### C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

#### **D.** Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC)

A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

#### **E.** Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

**NOTE**: The Acid Rain program has additional forms. See <a href="http://www.env.nm.gov/aqb/index.html">http://www.env.nm.gov/aqb/index.html</a>. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this item here.

#### 19.7 - 112(r) Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this item here.

#### 19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.)

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this item here.

#### 19.9 - Responsible Official

Provide the Responsible Official as defined in 20.2.70.7.AD NMAC:

# **Section 20**

# **Other Relevant Information**

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

______

None.

Form-Section 20 last revised: 8/15/2011 Section 20, Page 1 Saved Date: 11/30/2022

# Section 21 - Not a Landfill Application

# Addendum for Landfill Applications

Do not print this section unless this is a landfill application.

Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: <a href="https://www3.epa.gov/airtoxics/landfill/landflpg.html">https://www3.epa.gov/airtoxics/landfill/landflpg.html</a>

NM Solid Waste Bureau Website: <a href="https://www.env.nm.gov/swb/">https://www.env.nm.gov/swb/</a>

21-A: Municipal Solid Waste Landfill Information						
1	How long will the landfill be operated?					
2	Maximum operational hours per year:					
3	Landfill Operating hours (open to	o the public) M-F:	Sat.		Sun.	
4	To determine to what NSPS and modified, or reconstructed as def				hat the landfill was constructed,	
5	Landfill Design Capacity. Enter all 3	Tons:	Megagrams (Mg	g):	Cubic meters:	
6	Landfill NMOC Emission Rate (NSPS XXX)	Less than 34 Mg/year	using Tiers 1 to	Equal to or Tiers 1 to 3	Greater than 34 Mg/year using	
	Landfill NMOC Emission Rate (NSPS XXX)	Less than 500 ppm using Tier 4		Equal to or Greater than 500 ppm using Tie.		
	Landfill NMOC Emission Rate (NSPS WWW)	Less than 50 Mg/yr		Equal to or Greater than 50 Mg/yr		
7	Annual Waste Acceptance Rate:					
8	Is Petroleum Contaminated Soil Accepted?  If so, what is the annual acceptance rate?					
9	NM Solid Waste Bureau (SWB)	) Permit No.: SWB Permit D			te:	
10	Describe the NM Solid Waste Bureau Permit, Status, and Type of waste deposited at the landfill.					
11	Describe briefly any process(es)	or any other operations cor	nducted at the land	dfill.		

# 21-B: NMOC Emissions Determined Pursuant to 40 CFR 60, Subparts WWW or XXX Enter the regulatory citation of all Tier 1, 2, 3, and/or 4 procedures used to determine NMOC emission rates and the date(s) that each Tier procedure was conducted. In Section 7 of the application, include the input data and results. 1 Tier 1 equations (e.g. LandGEM): 2 Tier 2 Sampling: 3 Tier 3 Rate Constant: 4 Tier 4 Surface Emissions Monitoring: 5 Attach all Tier Procedure calculations, procedures, and results used to determine the Gas Collection and Control System (GCCS) requirements.

Facilities that have a landfill GCCS must complete Section 21-C.

21-C: Landfill Gas Collection and Control System (GCCS) Design Plan				
1	Was the GCCS design certified by a Professional Engineer?			
2	Attach a copy of the GCCS Design Plan and enter the submittal date of the Plan pursuant to the deadlines in either NSPS WWW or NSPS XXX. The NMOC applicability threshold requiring a GCCS plan is 50Mg/yr for NSPS WWW and 34 Mg/yr or 500 ppm for NSPS XXX.			
3	Is/Was the GCCS planned to be operational within 30 months of reporting NMOC emission rates equal to or greater than 50 Mg/yr, 34 Mg/yr, or 500 ppm pursuant to the deadlines specified in NSPS WWW or NSPS XXX?			
4	Does the GCCS comply with the design and operational requirements found at 60.752, 60.753, and 69.759 (NSPS WWW) or at 60.762, 60.763, and 60.769 (NSPS XXX)?			
5	Enter the control device(s) to which the landfill gas will be/is routed such as an open flare, enclosed combustion device, boiler, process heater, or other.			
6	Do the control device(s) meet the operational requirements at 60.752 and 60.756 (NSPS WWW) or 60.762, 60.763, 60.766 (NSPS XXX)?			

# **Section 22: Certification**

Company Name: Mosaic Potash Carlsbad Inc.		
I,, hereby certify that the information and as accurate as possible, to the best of my knowledge and professional exp		ation are true
Signed this 6 day of January, 2023, upon my oath or affin	rmation, before a notary of the State	of
*Signature	Jan. 6/23 Date	
Printed Name	General Mana	ger
Scribed and sworn before me on this day of Janua Ry	<u> 2023.</u>	XICO C FERS 091379 6 9, 2024
My authorization as a notary of the State of New Mexico	expires on the	RY PUBLI RY PUBLI OREZ MEY Number 1
day of June, 2024.  Notary's Signature	1 - 6 - 23 Date	STATE OF NOTAL IRMA FLC Commission My Commission
IRma Florez-Meyers Notary's Printed Name		

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.



# Air Permit Application Compliance History Disclosure Form

Pursuant to Subsection 74-2-7(S) of the New Mexico Air Quality Control Act ("AQCA"), NMSA §§ 74-2-1 to -17, the New Mexico Environment Department ("Department") may deny any permit application or revoke any permit issued pursuant to the AQCA if, within ten years immediately preceding the date of submission of the permit application, the applicant met any one of the criteria outlined below. In order for the Department to deem an air permit application administratively complete, or issue an air permit for those permits without an administrative completeness determination process, the applicant must complete this Compliance History Disclosure Form as specified in Subsection 74-2-7(P). An existing permit holder (permit issued prior to June 18, 2021) shall provide this Compliance History Disclosure Form to the Department upon request.

Permi	ttee/Applicant Company Name		Expected Application Submittal Da	te	
Mosaic Potash Carlsbad			1/18/2023		
Permittee/Company Contact P		Phone	Email		
Haskins Hobson		(575) 628-6267	Haskins.Hobson@mosaicco.com		
Withir	the 10 years preceding the expected date	e of submittal of the appli	cation, has the permittee or applicant:		
1	Knowingly misrepresented a material fact	Knowingly misrepresented a material fact in an application for a permit?			
2	Refused to disclose information required by the provisions of the New Mexico Air Quality Control Act?			☐ Yes ⊠ No	
3	Been convicted of a felony related to environmental crime in any court of any state or the United States?			☐ Yes ☒ No	
4	Been convicted of a crime defined by state or federal statute as involving or being in restraint of trade, price fixing, bribery, or fraud in any court of any state or the United States?				
5a	Constructed or operated any facility for which a permit was sought, including the current facility, without the required air quality permit(s) under 20.2.70 NMAC, 20.2.72 NMAC, 20.2.74 NMAC, 20.2.79 NMAC, or 20.2.84 NMAC?				
5b	If "No" to question 5a, go to question 6.  If "Yes" to question 5a, state whether each facility that was constructed or operated without the required air quality permit met at least one of the following exceptions:  a. The unpermitted facility was discovered after acquisition during a timely environmental audit that was authorized by the Department; or  b. The operator of the facility estimated that the facility's emissions would not require an air permit, and			☐ Yes ☐ No	
	the operator of the facility estimated that the facility is emissions would not require an air permit, and the operator applied for an air permit within 30 calendar days of discovering that an air permit was required for the facility.				
6	Had any permit revoked or permanently sor the United States?	suspended for cause unde	r the environmental laws of any state	☐ Yes ⊠ No	
7	For each "yes" answer, please provide an	explanation and documer	ntation.		