

9400 Holly Ave NE, Bldg 3, Ste 300, Albuquerque, NM 87122 / P 505.266.6611 / trinityconsultants.com

June 23, 2021

Permit Programs Manager NMED Air Quality Bureau 525 Camino de los Marquez Suite 1 Santa Fe, NM 87505-1816

Application for Title V Renewal and Significant Modification— Durango Midstream, LLC — Empire Abo Compressor Station

Permit Programs Manager:

Durango Midstream, LLC is submitting this application for a Title V Renewal and Significant Modification for its existing Empire Abo Compressor Station. This submittal is pursuant to 20.2.70.300.B.2 NMAC and 20.2.70.404.C.(1)(a) NMAC, which requires a Title V application to be submitted at least twelve months prior to the expiration of the current permit. Title V Permit P073-R3M2 expires on June 27, 2022.

The format and content of this application are consistent with the Bureau's current policy regarding Title V applications; it is a complete application package using the most current application forms. Enclosed is one hard copy and one working copy of the application, including an original certification page, one disk containing the electronic files, and an application check. Please feel free to contact me at (505) 266-6611 or by email at aerenstein@trinityconsultants.com if you have any questions regarding this application. Alternatively, you may contact Mary Taylor with Durango Midstream, LLC at (346) 224-2459 or by email at MTaylor@durangomidstream.com.

Sincerely,

Adam Erenstein
Manager of Consulting Services

Cc: Mary Taylor (Durango Midstream, LLC) Trinity Project File 213201.0091

June 2021; Revision 0

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

For Department use only:

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

See Section 1-I for submittal instructions for other permits.

This application is submitted as (check all that apply):

Request for a No Permit Required Determination (no fee)

Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required).
Construction Status: 🗆 Not Constructed 💆 Existing Permitted (or NOI) Facility 🗆 Existing Non-permitted (or NOI) Facility
Minor Source: ☐ a NOI 20.2.73 NMAC ☐ 20.2.72 NMAC application or revision ☐ 20.2.72.300 NMAC Streamline application
Title V Source: ☐ Title V (new) ☑ Title V renewal ☐ TV minor mod. ☑ TV significant mod. TV Acid Rain: ☐ New ☐ Renewal
PSD Major Source: ☐ PSD major source (new) ☐ minor modification to a PSD source ☐ a PSD major modification
Acknowledgements:
☑ I acknowledge that a pre-application meeting is available to me upon request. ☑ Title V Operating, Title IV Acid Rain, and NPR
applications have no fees.
□ \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamlin
applications).
☐ Check No.: in the amount of
☑ I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched
(except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.
☐ This facility qualifies to receive assistance from the Small Business Environmental Assistance program (SBEAP) and qualifies for
50% of the normal application and permit fees. Enclosed is a check for 50% of the normal application fee which will be verified with
the Small Business Certification Form for your company.
☐ This facility qualifies to receive assistance from the Small Business Environmental Assistance Program (SBEAP) but does not
qualify for 50% of the normal application and permit fees. To see if you qualify for SBEAP assistance and for the small business
certification form go to https://www.env.nm.gov/aqb/sbap/small_business_criteria.html).
Citation: Please provide the low level citation under which this application is being submitted: 20.2.70.300.B.(2) NMAC and
20.2.70.404.C.(1)(a) NMAC
(e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is

Section 1 – Facility Information

20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Sec	tion 1-A: Company Information	Al No.: 191	P146-R3				
1	Facility Name: Empire Abo Compressor Station	Plant primary SIC Code (4 digits): 1311					
1		Plant NAIC code (6 dig	gits): 211130				
a	Facility Street Address (If no facility street address, provide directions from a prominent landmark): From Artesia, travel 10 miles E on Hwy 82. Turn right on CR 225 and travel approximately 3.6 miles to plant.						
2	Plant Operator Company Name: Frontier Field Services, LLC Phone/Fax: (346) 224-2459						
a	Plant Operator Address: 10077 Grogans Mill Road, Suite 300, The Woodla	ands, Texas 77380					
b	Plant Operator's New Mexico Corporate ID or Tax ID: 2343077						

3	Plant Owner(s) name(s): Durango Midstream, LLC	Phone/Fax: (346) 224-2459							
a	Plant Owner(s) Mailing Address(s): 10077 Grogans Mill Road, Suite 300, The Woodlands, Texas 77380								
4	Bill To (Company): Durango Midstream, LLC	Phone/Fax: (346) 224-2459							
a	Mailing Address: 10077 Grogans Mill Road, Suite 300, The Woodlands, Texas 77380	E-mail: MTaylor@durangomidstream.com							
5	☑ Preparer: Adam Erenstein ☑ Consultant: Trinity Consultants	Phone/Fax: (505) 266-6611							
a	Mailing Address: 9400 Holly Ave., Building 3, Suite 300, Albuquerque, NM 87122	E-mail: aerenstein@trinityconsultants.com							
6	Plant Operator Contact: John Prentiss	Phone/Fax: 575-677-5108							
a	Address: 1001 Conoco Road, Maljamar, NM 88264	E-mail: JPrentiss@durangomidstream.com							
7	Air Permit Contact: Mary Taylor	Title: Environmental Manager							
a	E-mail: MTaylor@durangomidstream.com	Phone/Fax: (346) 224-2459							
b	Mailing Address: 10077 Grogans Mill Road, Suite 300, The Woodlands, T	Sexas 77380							
c	The designated Air permit Contact will receive all official correspondence	(i.e. letters, permits) from the Air Quality Bureau.							

Section 1-B: Current Facility Status

	cion i Di Cuitent i ucinty status							
1.a	Has this facility already been constructed? ☑ Yes ☐ No	1.b If yes to question 1.a, is it currently operating in New Mexico? ✓ Yes □ No						
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? ☐ Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ✓ Yes □ No						
3	Is the facility currently shut down? ☐ Yes ☑ No	If yes, give month and year of shut down (MM/YY): N/A						
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? ☑ Yes ☐ No							
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAGING ■No ■N/A	C) or the capacity increased since 8/31/1972?						
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☑Yes □ No	If yes, the permit No. is: P- P146-R3						
7	Has this facility been issued a No Permit Required (NPR)? ☐ Yes ☑ No	If yes, the NPR No. is: N/A						
8	Has this facility been issued a Notice of Intent (NOI)? ☐ Yes ☑ No	If yes, the NOI No. is: N/A						
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☐ Yes ☐ No	If yes, the permit No. is: 0126-M10						
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? ☐ Yes ☑ No	If yes, the register No. is: N/A						

Section 1-C: Facility Input Capacity & Production Rate

1	What is the	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)									
a	Current	Hourly: 8.33 MMscf	Annually: 73,000 MMscf								
b	Proposed	Hourly: 1.04 MMscf	Daily: 25 MMscf Annually: 9125 MMscf								
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)										
a	Current	Hourly: 8.33 MMscf	Daily: 200 MMscf	Annually: 73,000 MMscf							
h	Proposed	Hourly: 1.04 MMscf	Daily: 25 MMscf	Annually: 9125 MMscf							

Section 1-D: Facility Location Information

Beet	ion 1-D. Ta	acmity Loca	uon minoi mauon					
1	Section: 003	Range: 27E	Township: 18S	County: Ed	ldy		Elevation (ft): 3,560	
2	UTM Zone:	☐ 12 or ☑ 13		Datum:	□ NAD 27	□ NAD 8	33 ☑ WGS 84	
a	a UTM E (in meters, to nearest 10 meters): 569,350 m				meters, to nearest	t 10 meters): 3	3,626,690	
b	AND Latitude ((deg., min., sec.):	32° 46′ 34"N	Longitude	(deg., min., se	c.): 104° 1:	5' 34"W	
3	Name and zip o	code of nearest Ne	ew Mexico town: Artesia, N	M 88210				
4			om nearest NM town (attach nd travel approximately 3.6			From Arte	sia, travel 10 miles E on	
5	The facility is 1	10 miles east of A	rtesia, NM.					
6	(specify)		one): ☑ Private ☐ Indian/P					
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Loco Hills Community; Artesia, NM; Eddy County, NM							
8	than 50 km (31	miles) to other st	y: Will the property on wh ates, Bernalillo County, or NMAC) If yes, list all with	a Class I are	ea (see www.env	.nm.gov/aqb/1		
9	Name nearest C	Class I area: Carls	bad Caverns					
10	Shortest distance	ce (in km) from fa	acility boundary to the bour	dary of the	nearest Class I	area (to the	nearest 10 meters): 68.9 km	
11			neter of the Area of Operati den removal areas) to neare					
12	"Restricted Ar continuous wal that would requ	rea" is an area to sals, or other continuire special equip	Restricted Area: Fence which public entry is effect uous barriers approved by nent to traverse. If a large ified with signage only. Pu	the Departm property is c	ent, such as ru completely enc	gged physi losed by fe	ical terrain with steep grade encing, a restricted area	
13	Does the owner ☐ Yes ☑ No A portable statione location or	r/operator intend to o ionary source is no that can be re-ins	to operate this source as a proof of a mobile source, such as talled at various locations,	ortable station an automobsuch as a ho	onary source a ile, but a sourc t mix asphalt p	s defined in the that can lolant that is	n 20.2.72.7.X NMAC? be installed permanently at a moved to different job sites.	
14	•		nction with other air regulanit number (if known) of the	•		operty?	⊠ No □ Yes	

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating (hours/day): 24	$\left(\frac{\text{days}}{\text{week}}\right)$: 7	$(\frac{\text{weeks}}{\text{year}})$: 52	$(\frac{\text{hours}}{\text{year}})$: 8760				
2	Facility's maximum daily operating schedule (if less	□AM □PM	End: N/A	□AM □PM				
3	Month and year of anticipated start of construction: N/A, In operation.							
4	Month and year of anticipated construction completion: N/A, In operation.							
5	Month and year of anticipated startup of new or modified facility: N/A, In operation.							
6	Will this facility operate at this site for more than on	ne year? ☑ Yes □ No						

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? Yes No If yes, specify: N/A					
a	If yes, NOV date or description of issue: N/A	NOV Tracking No: N/A				

b	Is this application in response to any issue listed in 1-F, 1 or 1a above? \square Yes \square No If Yes, provide the 1c & 1d info below:									
С	Document	Date: N/A	Requirement # (or							
	Title: N/A	Bate. 1 (//1	page # and paragraph #): N/A							
d	Provide the required text to be inserted in this permit: N/A									
2	Is air quality dispersion modeling or modeling waiver being	g submitted with this	application? ☐ Yes ☑ No							
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? ☐ Yes ☑ No									
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? ☑ Yes ☐ No									
a	If Yes, what type of source? \square Major ($\square \ge 10$ tpy of an									
а	OR ☑ Minor (☑ <10 tpy of an	y single HAP ANI	✓ <25 tpy of any combination of HAPS)							
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? ☐ Yes	₃ ☑ No								
	If yes, include the name of company providing commercial	electric power to the	facility:							
		1								
a	Commercial power is purchased from a commercial utility	company, which spe	ecifically does not include nower generated on							
	site for the sole purpose of the user.		g							
	1 1 3									

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1 □ I have filled out Section 18, "Addendum for Streamline Applications." ☑ N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources (Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or

	4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMA						
1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Darin B. Kennard	Phone:346-351-2790					
a	R.O. Title: Vice President & GM	R.O. e-mail: DKennard@durangomidstream.com					
b	R. O. Address: 10077 Grogans Mill Road, Suite 300, The Woodlan	nds, Texas 77380					
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): N/A	Phone: N/A					
a	A. R.O. Title: N/A	A. R.O. e-mail: N/A					
b	A. R. O. Address: N/A						
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): N/A						
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): N/A						
a	Address of Parent Company: N/A						
5	Names of Subsidiary Companies ("Subsidiary Companies" means owned, wholly or in part, by the company to be permitted.): N/A	organizations, branches, divisions or subsidiaries, whi	ich are				
6	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations: Mary Taylor – (346) 224-2459 Darin Kennard – (346) 351-2790						
7	Affected Programs to include Other States, local air pollution control Will the property on which the facility is proposed to be constructed states, local pollution control programs, and Indian tribes and puebones and provide the distances in kilometers: N/A	ed or operated be closer than 80 km (50 miles) from ot					

June 2021; Revision 0

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- 1) One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

☑ CD/DVD attached to paper application	
☐ secure electronic transfer. Air Permit Con	tact Name
	Email
	Phone number

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If **air dispersion modeling** is required by the application type, include the **NMED Modeling Waiver** and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling **summary report only** should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible

format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc,), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

Section 1: General Facility Information

Section 2: Tables

Section 3: Application Summary
Section 4: Process Flow Sheet
Section 5: Plot Plon Drown to Sec

Section 5: Plot Plan Drawn to Scale

Section 6: All Calculations

Section 7: Information Used to Determine Emissions

Section 8: Map(s)

Section 9: Proof of Public Notice

Section 10: Written Description of the Routine Operations of the Facility

Section 11: Source Determination

Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application

Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation

Section 14: Operational Plan to Mitigate Emissions

Section 15: Alternative Operating Scenarios

Section 16: Air Dispersion Modeling Section 17: Compliance Test History

Section 18: Addendum for Streamline Applications (streamline applications only)

Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)

Section 20: Other Relevant Information

Section 21: Addendum for Landfill Applications

Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

	_				Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
E4-310	4SLB RICE	Caterpillar	3516TALE	WPW01012	1340 hp	1340 hp	3/12/2009 9/13/2011	Catalyst-1 Catalyst-1	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	4SLB	E4-1
E4-311	4SLB RICE	Caterpillar	3516TALE	WPW01965	1340 hp	1340 hp	3/12/2009 9/13/2011	Catalyst-2 Catalyst-2	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	4SLB	E4-2
E4-312	4SLB RICE	Caterpillar	3516TALE	WPW01801	1340 hp	1340 hp	11/1/2007 10/21/2020	Catalyst-3 Catalyst-3	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	E4-3
E4-313	4SLB RICE	Caterpillar	3516TALE	WPW02341	1340 hp	1340 hp	8/11/2008 10/15/2020	Catalyst-4 Catalyst-4	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	E4-4
E4-314	4SLB RICE	Caterpillar	3516TALE	WPW02867	1340 hp	1340 hp	4/3/2009 9/1/2011	Catalyst-5 Catalyst-5	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	N/A
E4-315	4SLB RICE	Caterpillar	3516TALE	WPW02870	1340 hp	1340 hp	4/3/2009 9/13/2011	Catalyst-6 Catalyst-6	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	N/A
E4-316	4SLB RICE	Caterpillar	3516	TBD	1380 hp	1380 hp	TBD TBD	Catalyst-7 Catalyst-7	20200254	□ Existing (unchanged)	4SLB	N/A
E4-317	4SLB RICE	Caterpillar	3516	TBD	1380 hp	1380 hp	TBD TBD	Catalyst-8 Catalyst-8	20200254	□ Existing (unchanged)	4SLB	N/A
FUG40	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	31088811	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
D-2301 (North Flare)	Flare Pilot	Callidus Tech Flare Tip	N/A	N/A	0.32 MMBtu/hr (Pilot/Purge)	0.32 MMBtu/hr (Pilot/Purge)	4/1/2004 Unknown	N/A N/A	31000215	□ Existing (unchanged)	N/A	N/A
D-2302 (South Flare)	Flare Pilot	Callidus Tech Flare Tip	N/A	N/A	0.32 MMBtu/hr (Pilot/Purge)	0.32 MMBtu/hr (Pilot/Purge)	1/20/2004 Unknown	N/A N/A	31000215	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
V2-1104-C	Condensate Storage Tank	BAT	N/A	5822	300 bbl	300 bbl	February-21 3/3/2021	TO2	40400311	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A

					Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial#	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equ	uipment, Check One	RICE Ignition	Replacing Unit No.
V2-1104-D	Condensate Storage	BAT	N/A	5820	300 bbl	300 bbl	February-21	TO2	40400311		☐ To be Removed☐ Replacement Unit	N/A	N/A
	Tank						3/3/2021	TO2			☐ To be Replaced		
V2-1104-E	Condensate Storage Tank	BAT	N/A	5824	300 bbl	300 bbl	February-21 3/3/2021	TO2	40400311	□ New/Additional □	☐ To be Removed☐ Replacement Unit☐ To be Replaced	N/A	N/A
712 110 1 E	Condensate Storage	D	27/4	5005	200111	200111	February-21	TO2			To be Removed	27/4	27/4
V2-1104-F	Tank	BAT	N/A	5825	300 bbl	300 bbl	3/3/2021	TO2	40400311		☐ Replacement Unit ☐ To be Replaced	N/A	N/A
1/2 1104 G	G: TF 1	27/4	27/4	TDD	400111	400111	8/1/2005	TO2	40400211		☑ To be Removed	27/4	27/4
V2-1104-G	Storage Tank	N/A	N/A	TBD	400 bbl	400 bbl	Unknown	TO2	40400311		Replacement Unit To be Replaced	N/A	N/A
T 1	T 11 1 4	N/A	N/A	DT/A	165,123	165,123	N/A	TO2	40.4002.50		To be Removed	3.T/A	NT/A
L1	Truck Loadout	N/A	N/A	N/A	bbl/yr	bbl/yr	N/A	TO2	40400250		☐ Replacement Unit ☐ To be Replaced	N/A	N/A
DEHY1	TEC Debuduetes	Eutomon	N/A	N/A	25 MMscfd	25 MMscfd	2015	TO1	31000227		To be Removed	NI/A	N/A
DEHYI	TEG Dehydrator	Exterran	N/A	IN/A	23 Miniscia	23 MINISCIA	2015	TO1	31000227		☐ Replacement Unit ☐ To be Replaced		N/A
DEHY2	TEG Dehydrator	Exterran	N/A	N/A	25 MMscfd	25 MMscfd	TBD	TO1	31000227		To be Removed Replacement Unit	NI/A	N/A
DEH I Z	1 EG Denydrator	Exterrail	N/A	IN/A	23 Miniscia	23 IVIIVISCIU	TBD	TO1	31000227		To be Replaced	IN/A	IN/A
DEHY3	TEG Dehydrator	Exterran	N/A	N/A	200 MMscfd	200 MMscfd	TBD	TO1	31000227		☐ To be Removed ☐ Replacement Unit	N/A	N/A
DEIII3	TEG Denydrator	Exterrail	IV/A	IN/A	200 Miniscia	200 Miniscia	TBD	TO1	31000227		To be Replaced	IN/A	IN/A
AMINE1	Amine Unit	TBD	N/A	N/A	200 MMscfd	200 MMscfd	TBD	AGI or D-2302	31000227	0 0 /	☐ To be Removed ☐ Replacement Unit	N/A	N/A
AMINEI	Annie Ont	TDD	IV/A	IV/A	200 WIVISCIA	200 Miniscia	TBD	AGI or D-2302	31000227		To be Replaced	IV/A	IV/A
H1	Heater	TBD	N/A	N/A	75	75 MMBtu/hr	TBD	N/A	31000228	0 (0)	☐ To be Removed ☐ Replacement Unit	N/A	N/A
111	Heater	TDD	14/11	14/71	MMBtu/hr	/3 WIIWIDtu/III	TBD	N/A	31000220		To be Replaced	14/14	14/14
H2	Heater	TBD	N/A	N/A	75	75 MMBtu/hr	TBD	N/A	31000228	0 (0)	To be Removed Replacement Unit	N/A	N/A
112	Heater	TDD	14/11	14/71	MMBtu/hr	/3 WIIWIDtu/III	TBD	N/A	31000220	☐ To Be Modified ☐	To be Replaced	1071	14/11
Н3	Heater	TBD	N/A	N/A	10 MMscfd	10 MMscfd	TBD	N/A	31000228	0 (0)	☑ To be Removed Replacement Unit	N/A	N/A
115	Tieutei	TDD	1071	1071	10 WINDOIG	10 Ministra	TBD	N/A	31000220	☐ To Be Modified ☐	To be Replaced	17/11	1071
H4	Heater	TBD	N/A	0505-669	0.8	0.8	TBD	N/A	31000228		To be Removed Replacement Unit	N/A	N/A
			*		MMBtu/hr	MMBtu/hr	4/5/2021	N/A		☑ To Be Modified	☐ To be Replaced	*	*
TO1	Thermal Oxidizer	Kimark	N/A	151334	5.4	5.4	1/20/2020	N/A	31088811		☐ To be Removed☐ Replacement Unit	N/A	N/A
				101001	MMBtu/hr	MMBtu/hr	3/3/2021	N/A		☑ To Be Modified	☐ To be Replaced		1 77.1
TO2	Thermal Oxidizer	Edge	N/A	N/A	0.28	0.28	TBD	N/A	31088811		To be Removed Replacement Unit	N/A	N/A
102	- I Jimai Gillaizei	2050			MMBtu/hr	MMBtu/hr	TBD	N/A			☐ To be Replaced	1771	1,,11

Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities (20.2.70 NMAC) **OR** Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at

http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number		Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	
Omt Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Piece of Equipment, Check Onc
V6-1103-2	#1 Gasoline Bullet Tank			42171	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
V 0-1103-2	(out of service)			Gallons	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V6-1103-1	#2 Gasoline Bullet Tank			42126	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
V 0-1103-1	(out of service)			Gallons	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V6-1102-2	#3 Gasoline Bullet Tank			53728	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
V 0-1102-2	(out of service)			Gallons	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V6-1102-1	#4 Gasoline Bullet Tank			53608	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
V 0-1102-1	(out of service)			Gallons	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V6-1101-5	#5 Gasoline Bullet Tank			61229	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
V0-1101-3	(out of service)			Gallons	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V6-1101-4	#6 Purchased Propane Bullet			59120	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
VO-1101- 4	Tank			Gallons	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V6-1101-3	#7 Gasoline Bullet Tank			43624	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
10 1101 5	" Gusonie Buiet Tunk			Gallons	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V6-1101-2	#8 Gasoline Bullet Tank			43488	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
10 1101 2	"O Gusonne Bunet Tunk			Gallons	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V6-1101-1	#9 Gasoline Bullet Tank			63052	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
70 1101 1	") Gusonne Bunet Tunk			Gallons	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-400	Methanol Storage Tank			1000	20.2.72.202.B NMAC		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
.2 .00	menimer storage runn			Gallons	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-1800-1	North Process Drain Tank			210	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
12 1000 1	(out of service)			bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-1800-2	South Process Drain Tank			500	20.2.72.202.B.2.a NMAC		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
72 1000-2	South Freeds Diam Tank			bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-1304	Wastewater Tank			210	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
,2 1307	Wastewater rank			bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-1400-1	South Raw Water Storage Tank			5000	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
¥ 2-1 -1 00-1	Bouin Raw Water Biorage Tallk			bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced

Durango Midstream, LLC/Frontier Field Service	es, LLC Em	Empire Abo Compressor Station
---	------------	-------------------------------

	<u> </u>				•		**
II '/ N	S. D. M	M. C.	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	E E I B' CE ' (CI I O
Unit Number	Source Description	Manufacturer -	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Piece of Equipment, Check Onc
V2-1400-2	North Raw Water Storage Tank			5000	Not a source of regulated pollutants		 ☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
V Z-1400-Z	North Raw Water Storage Tank			bbls	IA List Item #1.a		 □ New/Additional □ To Be Modified □ To be Replaced
V2-1500-1	RO Water			210	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
V 2-1300-1	KO water			bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-1500-2	RO Water			210	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
V 2-1300-2	NO Water			bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-310-1	East Lube Oil Tank			322	20.2.72.202.B.2.a NMAC		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
V 2-310-1	East Ease Off Talik			bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-310-2	West Lube Oil Tank			322	20.2.72.202.B.2.a NMAC		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
V Z-310-2	West Edde Off Talik			bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-309	#9 Engine J. W. Tank			210	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
V 2 30)	") Eligino 3. W. Tulik			bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-2701	Amine Day Tank			1500	20.2.72.202.B.2.a NMAC		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
V 2-2701	Annie Bay Tank			Gallons	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-2700-1	North Amine Storage Tank			280	20.2.72.202.B.2.a NMAC		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
72 2700 1	Trottii Tiiliille Storage Talik			bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-2800-2	South Amine Storage Tank			185	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
	(out of service)			bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-300	Main Engine J.W. Tank			210	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
. = • • •				bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-2700-2	South Amine Storage Tank			195	Not a source of regulated pollutants		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
1227002	(out of service)			bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-1104-1	South (Dirty) Slop Oil Tank			387	20.2.72.202.B.2.a NMAC		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
	()/			bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
L-2	Produced Water Loading	<u></u>		5131	20.2.72.202.B.5 NMAC		 □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
				bbls/yr	IA List Item #1.a		☑ To Be Modified ☐ To be Replaced
HAUL	Unpaved Haul Road Emissions	<u> </u>		N/A	20.2.72.202.B.5 NMAC		☐ Existing (unchanged) ☐ To be Removed ☑ New/Additional ☐ Replacement Unit
11102				N/A	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-1104-G	Produced Water Tank	BAT		210	20.2.72.202.B.5 NMAC		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
,2110.0		2	5816	bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced
V2-1104-H	Produced Water Tank	BAT		210	20.2.72.202.B.5 NMAC		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
, 2 110 . 11		2.11	5818	bbls	IA List Item #1.a		☐ To Be Modified ☐ To be Replaced

Revision #0

Application Date: June 2021

Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
Catalyst-1	Oxidation Catalyst	TBD	CO, HCHO, VOC	E4-310	70% CO, 50% VOC, 90% HCHO	Vendor Data
Catalyst-2	Oxidation Catalyst	TBD	CO, HCHO, VOC	E4-311	70% CO, 50% VOC, 90% HCHO	Vendor Data
Catalyst-3	Oxidation Catalyst	TBD	CO, HCHO, VOC	E4-312	70% CO, 50% VOC, 90% HCHO	Vendor Data
Catalyst-4	Oxidation Catalyst	TBD	CO, HCHO, VOC	E4-313	70% CO, 50% VOC, 90% HCHO	Vendor Data
Catalyst-5	Oxidation Catalyst	TBD	CO, HCHO, VOC	E4-314	70% CO, 50% VOC, 90% HCHO	Vendor Data
Catalyst-6	Oxidation Catalyst	TBD	CO, HCHO, VOC	E4-315	70% CO, 50% VOC, 90% HCHO	Vendor Data
TO-1	Thermal Oxidizer	44258	VOC, HAP, H2S	DEHY1	98%	Mfg. Data
TO-2	Thermal Oxidizer	TBD	VOC, HAP, H2S	V2-1104-C through F, L-1	98%	Mfg. Data
D-2302 (South Flare)	Emergency Flare	Unknown	VOC, HAP, H2S	SSM &MALF	98%	Mfg. Data

List each control device on a separate line. For each control device, list all emission units controlled by the control device.

Table 2-D: Maximum Emissions (under normal operating conditions)

☐ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-1. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

TI *4 NI	N	Ox	C	0	V	OC	S	Ox	PI	M ¹	PM	110 ¹	PM	[2.5 ¹	Н	$_2$ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
E4-310	4.43	19.41	5.55	24.32	1.74	7.62	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-311	4.43	19.41	5.55	24.32	1.74	7.62	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-312	4.43	19.41	5.55	24.32	1.74	7.62	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-313	4.43	19.41	5.55	24.32	1.74	7.62	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	1	-
E4-314	4.43	19.41	5.55	24.32	1.74	7.62	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-315	4.43	19.41	5.55	24.32	1.74	7.62	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	1	-
FUG40	ı	-	-	-	3.85	16.86	-	-	-	-	-	-	-	-	1.22E-01	5.34E-01	-	-
D-2302 (South Flare)	0.090	0.39	0.18	0.79	-	-	0.0092	0.040	-	-	-	-	-	-	4.57E-06	2.00E-05	-	-
V2-1104-C	_	_	_	_	2.45	10.74	_	_	-	-	_	_	_	_	3.81E-06	1.67E-05	-	-
V2-1104-D	-	-	-	-	2.45	10.74	_	-	_	-	_	_	_	_	3.81E-06	1.67E-05	-	_
V2-1104-E	_	_	-	_	2.45	10.74	_	-	_	_	_	-	_	-	3.81E-06	1.67E-05	_	_
V2-1104-F	-	-	-	-	11.06	48.45	-	-	-	-	-	-	-	-		3.30E-04	-	-
L1																		
DEHY1																		
H4																		
TO1																		
TO2																		
Totals	26.68	116.84	33.50	146.74	32.70	143.22	0.86	3.76	0.61	2.65	0.61	2.65	0.61	2.65	0.1220	0.534	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

Unit No.	N	Ox	C	O	V	OC	SO	Ox	P	M	PN	110	PM	12.5	Н	₂ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
E4-310	4.43	19.41	1.67	7.30	0.62	2.70	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-311	4.43	19.41	1.67	7.30	0.62	2.70	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	1	-
E4-312	4.43	19.41	1.67	7.30	0.62	2.70	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	1	-
E4-313	4.43	19.41	1.67	7.30	0.62	2.70	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-314	4.43	19.41	1.67	7.30	0.62	2.70	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-315	4.43	19.41	1.67	7.30	0.62	2.70	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
FUG40	-	-	-	-	3.85	16.86	-	-	-	-	-	-	-	-	0.12	0.53	-	-
D-2302 (South Flare)	0.090	0.39	0.18	0.79	-	-	0.0092	0.040	-	-	-	-	-	-	4.57E-06	2.00E-05	-	-
V2-1104-C ¹	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
V2-1104-D ¹	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
V2-1104-E ¹	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
V2-1104-F ¹	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEHY1 ²	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H4	0.082	0.36	0.069	0.30	0.0045	0.020	0.012	0.051	0.58	2.55	0.0062	0.027	0.0062	0.027	-	-	-	-
TO1	0.55	2.42	0.46	2.03	0.48	2.11	23.8568	104.493	0.042	0.18	0.042	0.18	0.042	0.18	0.25	1.11	-	-
TO2	0.038	0.17	0.032	0.14	0.16	0.72	0.012	0.053	0.0029	0.013	0.0029	0.013	0.0029	0.013	9.41E-05	4.12E-04	-	-
Totals	27.35	119.78	10.74	47.04	8.20	35.90	24.74	108.36	1.23	5.40	0.66	2.88	0.66	2.88	0.38	1.64	-	-

Gunbarrel (Unit V2-1104-BA), tank (Units V2-1104-C to F), and loading (Unit L-1) emissions are controlled by a combustor. Controlled emissions are considered under Unit TO2.

² Emissions from the dehydator condensers (Units DEHY1 and DEHY2) are controlled by a combustor and emissions from the dehydrator flash tanks are recycled to the inlet. Controlled condenser emissions are considered under Unit TO1.

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

☐ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed

instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

instructions. Numbers shall be e	N(С		V		SO	Ox	PI	M^2	PM	10^2	PM	(2.5^2)	Н	$_2$ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SSM D-2302 (South Flare)	242.88	1.00	484.87	2.00	478.97	1.98	3490.64	14.40	-	-	-	-	-	-	37.09	0.15	-	-
MALF D-2302 (South Flare)	242.00	10.00	404.07	10.00	4/8.9/	10.00	3490.04	10.00	-	-	-	-	-	-	37.09	10.00	-	-
Totals	242.88	11.00	484.87	12.00	478.97	11.98	3490.64	24.40	-	-	-	-	-	-	37.09	10.15	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

Form Revision: 5/3/2016 Table 2-F: Page 1 Printed 6/22/2021 3:12 PM

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

□ I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

G. LN	Serving Unit	N	Ox	C	0	V	OC	S	Ox	P	M	PN	110	PN	12.5	□ H ₂ S o	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
	Totals:											_		_			

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

G. IN.	Serving Unit Number(s) from	Orientation	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Stack Number	Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
E4-310	E4-310	V	No	35	854	7644	-	-	162.2	1.00
E4-311	E4-311	V	No	35	854	7644	-	-	162.2	1.00
E4-312	E4-312	V	No	35	854	7644	-	-	162.2	1.00
E4-313	E4-313	V	No	35	854	7644	-	-	162.2	1.00
E4-314	E4-314	V	No	35	854	7644	-	-	162.2	1.00
E4-315	E4-315	V	No	35	854	7644	-	-	162.2	1.00
H4	H4	V	No	30	600	5	-	-	25.1	2.50
TO1	DEHY1	V	No	55	1150	257	-	-	27.74	3.50
TO2	V2-1104-C through F	V	No	55	1150	257	-	-	27.74	3.50
D-2302 (South Flare)	D-2302/ South Flare	V	No	115	1832	41737	-	-	65.6	28.46

Revision #0

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs		or 🗆 TAP		ldehyde or 🗆 TAP		olein or 🗆 TAP					
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr					
Catalyst-1	E4-310	0.23	1.02	0.074	0.32	0.085	0.37	0.052	0.23					
Catalyst-2	E4-311	0.23	1.02	0.074	0.32	0.085	0.37	0.052	0.23					
Catalyst-3	E4-312	0.23	1.02	0.074	0.32	0.085	0.37	0.052	0.23					
Catalyst-4	E4-313	0.23	1.02	0.074	0.32	0.085	0.37	0.052	0.23					
Catalyst-5	E4-314	0.23	1.02	0.074	0.32	0.085	0.37	0.052	0.23					
Catalyst-6	E4-315	0.23	1.02	0.074	0.32	0.085	0.37	0.052	0.23					
FUG40	FUG40	0.32	1.42	-	-	-	-	-	-					
D-2302	D-2302 (South Flare)	1	ı	-	1	1	-	1	-					
TO2	V2-1104-C ¹	-	-	-	-	-	-	-	-					
TO2	V2-1104-D ¹	-	-	-	-	-	-	-	-					
TO2	V2-1104-E ¹	-	-	-	-	-	-	-	-					
TO2	V2-1104-F ¹	-	-	-	-	-	-	-	-					
TO2	L1 ¹	-	-	-	-	-	-	-	-					
TO1	DEHY1 ²	-	-	-	-	-	-	-	-					
H4	H4	0.0011	0.0049	-	1	-	-	1	-					
TO1	TO1	0.16	0.68	-	1	-	-	1	-					
TO1	TO2	0.0092	0.040	-	1	-	-	1	-					
D-2302/ South Flare	SSM	13.25	0.05	-	1	-	-	1	-					
D-2302/ South Flare	MALF	13.23	8.00	-	-	-	-	-	-				·	
Tank (Units V2-1104-C to I	otals:	15.14	16.31	0.44	1.94	0.51	2.22	0.31	1.37					

¹ Tank (Units V2-1104-C to E), and loading (Unit L-1) emissions are controlled by a combustor. Controlled emissions are considered under Unit TO2.

² Emissions from the dehydator condenser (Unit DEHY1) are controlled by a combustor and emissions from the dehydrator flash tank are recycled to the inlet. Controlled condenser emissions are considered under Unit TO1.

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial, pipeline quality natural gas, residue gas,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value (Btu/scf)	Hourly Usage (scf/hr)	Annual Usage (MMscf/yr)	% Sulfur (gr/100scf)	% Ash
E4-310	Natural Gas	Pipeline Quality Natural Gas	1020	9910.75	86.82	5	-
E4-311	Natural Gas	Pipeline Quality Natural Gas	1020	9910.75	86.82	5	-
E4-312	Natural Gas	Pipeline Quality Natural Gas	1020	9910.75	86.82	5	-
E4-313	Natural Gas	Pipeline Quality Natural Gas	1020	9910.75	86.82	5	-
E4-314	Natural Gas	Pipeline Quality Natural Gas	1020	9910.75	86.82	5	-
E4-315	Natural Gas	Pipeline Quality Natural Gas	1020	9910.75	86.82	5	-
D-2302 (South Flare)	Natural Gas	Pipeline Quality Natural Gas	1020	320.00	2.80	5	-
H4	Natural Gas	Pipeline Quality Natural Gas	1020	816.00	7.15	5	-
TO1	Natural Gas	Pipeline Quality Natural Gas	1020	225.00	1.97	5	-
TO2	Natural Gas	Pipeline Quality Natural Gas	1020	225.00	1.97	5	-

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
V2-1140-C	40400311	Condensate	Condensate	5.84	96.90	74.02	21.44	74.02	21.44
V2-1140-D	40400311	Condensate	Condensate	5.84	96.90	74.02	21.44	74.02	21.44
V2-1140-E	40400311	Condensate	Condensate	5.84	96.90	74.02	21.44	74.02	21.44
V2-1140-F	40400311	Condensate	Condensate	5.84	96.90	74.02	21.44	74.02	21.44

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M = 42.0 gal

Tank No.	Date Installed	Materials Stored	Materials Stored	Materials Stored	Seal Type (refer to Table 2	Roof Type (refer to Table 2-	Сар	oacity	Diameter (M)	Vapor Space	Co (from Ta	olor able VI-C)	Paint Condition (from Table VI-	Annual Throughput	Turn- overs
			LR below)	LR below)	(bbl)	(M^3)		(M)	Roof	Shell	(C)	(gal/yr)	(per year)		
V2-1140-C	2021	Condensate	N/A	VFR	300	64	3.7	2.3	WT	WT	Good	24,026,294	1906.85		
V2-1140-D	2021	Condensate	N/A	VFR	300	64	3.7	2.3	WT	WT	Good	24,026,294	1906.85		
V2-1140-E	2021	Condensate	N/A	VFR	300	64	3.7	2.3	WT	WT	Good	24,026,294	1906.85		
V2-1140-F	2021	Condensate	N/A	VFR	300	64	3.7	2.3	WT	WT	Good	24,026,294	1906.85		

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

		1 8				
Roof Type	Seal Type, V	Velded Tank Seal Type	Seal Type, Riv	eted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	teal Liquid-mounted resilient seal Vapor-mounted resilient seal Seal Type		WH: White	Good	
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$a^3 = 42.0 \text{ gal}$				BL: Black	
					OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Materi	ial Processed		N	Material Produced					
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)			
Wet Gas	Wet Natural Gas	Gas	25 MMSCFD	Dehydrated Natural Gas	Natural Gas	Gas	25 MMSCFD			
				Condensate	Condensate	Liquid	2288219 bbl/yr			
				Produced Water	Produced Water	Liquid	18370 bbl/yr			

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
	There is no CEM equipment present at the facility.								

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time			
	There is no PEM equipment present at the facility.										

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²				Total GHG Mass Basis ton/yr	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs 1	1	298	25	22,800	footnote 3					
E4-310	mass GHG	5179.14	0.0098	0.098						5179.25	
E4-310	CO ₂ e	5179.14	2.91	2.44							5184.49
E4-311	mass GHG	5179.14	0.0098	0.098						5179.25	
E4-311	CO ₂ e	5179.1434	2.91	2.44							5184.49
E4-312	mass GHG	5179.14	0.0098	0.098						5179.25	
E4-312	CO ₂ e	5179.14	2.91	2.44							5184.49
E4-313	mass GHG	5179.14	0.0098	0.098						5179.25	
E4-313	CO ₂ e	5179.14	2.91	2.44							5184.49
E4-314	mass GHG	5179.14	0.0098	0.098						5179.25	
E4-314	CO ₂ e	5179.14	2.91	2.44							5184.49
E4-315	mass GHG	5179.14	0.0098	0.098						5179.25	
E4-313	CO ₂ e	5179.14	2.91	2.44							5184.49
D-2302	mass GHG	0.16	2.97E-07	2.97E-06						0.16	
(South	CO ₂ e	0.16	8.85E-05	7.42E-05							0.16
Н4	mass GHG	409.89	0.0008	0.008						409.90	
114	CO ₂ e	409.89	0.23	0.1931							410.31
TO1	mass GHG	2766.74	5.21E-03	0.0077						2766.76	
101	CO ₂ e	2766.74	1.55	0.19							2768.49
TO2	mass GHG	81.46	0.0002	0.002						81.46	
	CO ₂ e	81.46	0.05	0.04							81.55
SSM/	mass GHG	9883.86	0.0186	0.186						9884.07	
MALF	CO2e	9883.86	5.55	4.66							9894.07
Total	mass GHG	44216.97	0.083	0.79						44217.84	
	CO ₂ e	44216.97	24.83	19.72		able A-1 of 40 CFR					44261.53

TGWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

June 2021; Revision 0

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The Process Summary shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

The Empire Abo facility is currently permitted under NSR permit No. 0126-M10 and Title V Permit No. P-146-R3.

Durango Midstream, LLC (Durango) is submitting this application for a renewal and Significant Modification of Title V operating permit P-146-R3. The Significant Modification will reflect recent revision to NSR 0126-M10 which was submitted to NMED on June 16, 2021. This submittal is pursuant to 20.2.70.300.B.(2) NMAC and 20.2.70.404.C.(1)(a) NMAC.

This application seeks to incorporate the following changes:

Summary of Permitting Actions to be Incorporated

Permit	Date Issued	Application Type	Changes
NSR # 0126-M10- R1	TBD (submitted 6/16/2021)	NSR Significant Revision	Removal of equipment associated with gas plant operations and addition of other equipment; update source emissions to reflect new equipment and methodologies.
NSR # 0126-M10	6/25/2020	NSR Significant Revision	Removal and addition of equipment; update source emissions to reflect new equipment and methodologies; increase annual capacity of facility to 20,440 MMscf/yr. A decrease in total emissions to a level below the PSD threshold makes the makes facility a minor PSD source as a result of this revision.
NSR #0126- M9-R7	1/23/2020	PSD Admin Revision	Like-kind engine replacement
NSR #0126- M9-R6	6/25/2019	PSD Admin Revision	• Remove multiple units from permit, including SRU/incinerator; Units removed: E4-R3; ER-R4; E4-5; E4-6; E4-P1; E4-P2; G10-2800; G10-1000-1; G2-1501-1; G2-1501-3; G2-1501-4; G2-1501-5; SRU/incinerator; AM1; AM2; CT1; MSD
NSR #0126- M9-R5	4/9/2019	PSD Admin Revision	Change of owner name from AKA Energy Group LLC to Durango Permian LLC

Durango Midstream, LLC/ Frontier Field Services, LLC

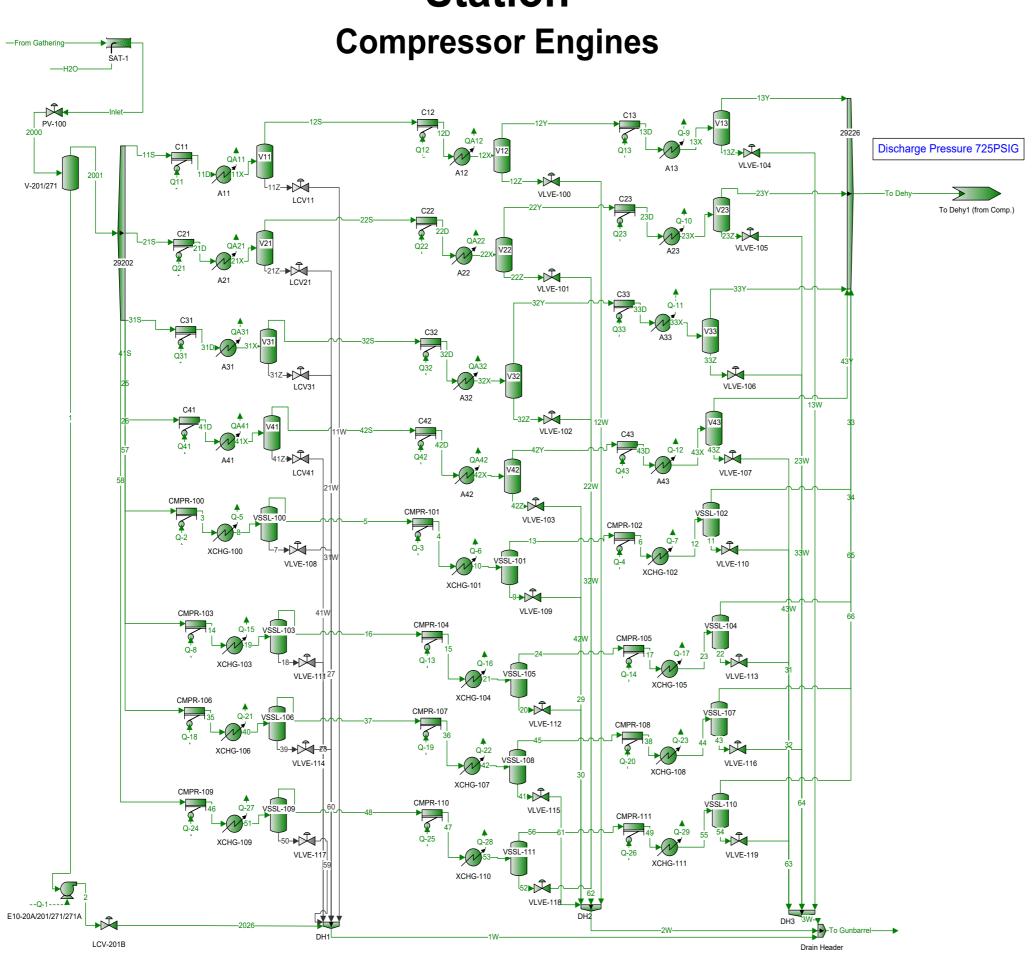
Empire Abo Compressor Station

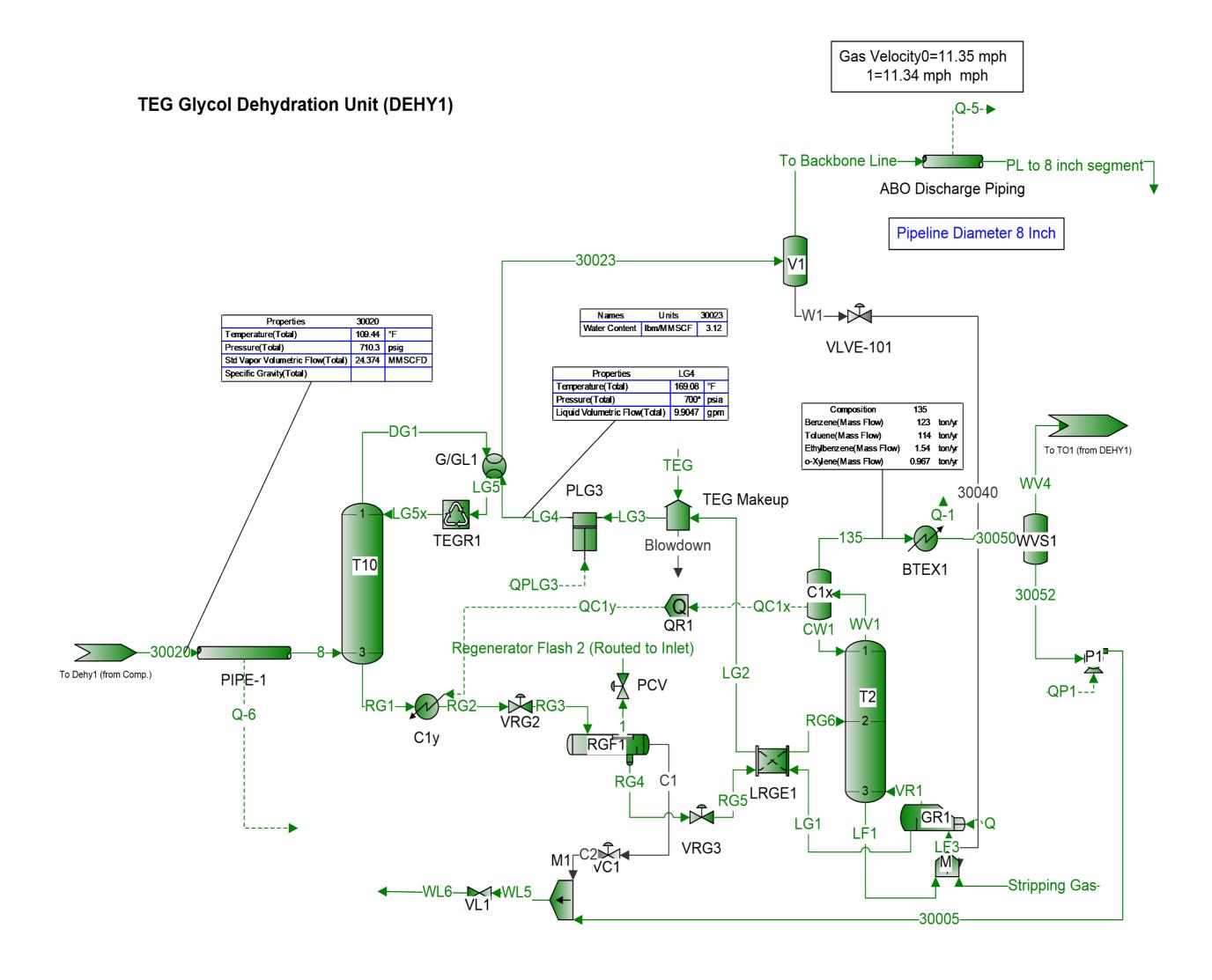
June 2021; Revision 0

P0146-R3- M1	3/29/2019	Title V Amendment	Change of ownership to Durango Midstream LLC; change R.O
NSR #0126- M9-R4	4/28/2018	PSD Admin Revision	Like-kind engine replacement

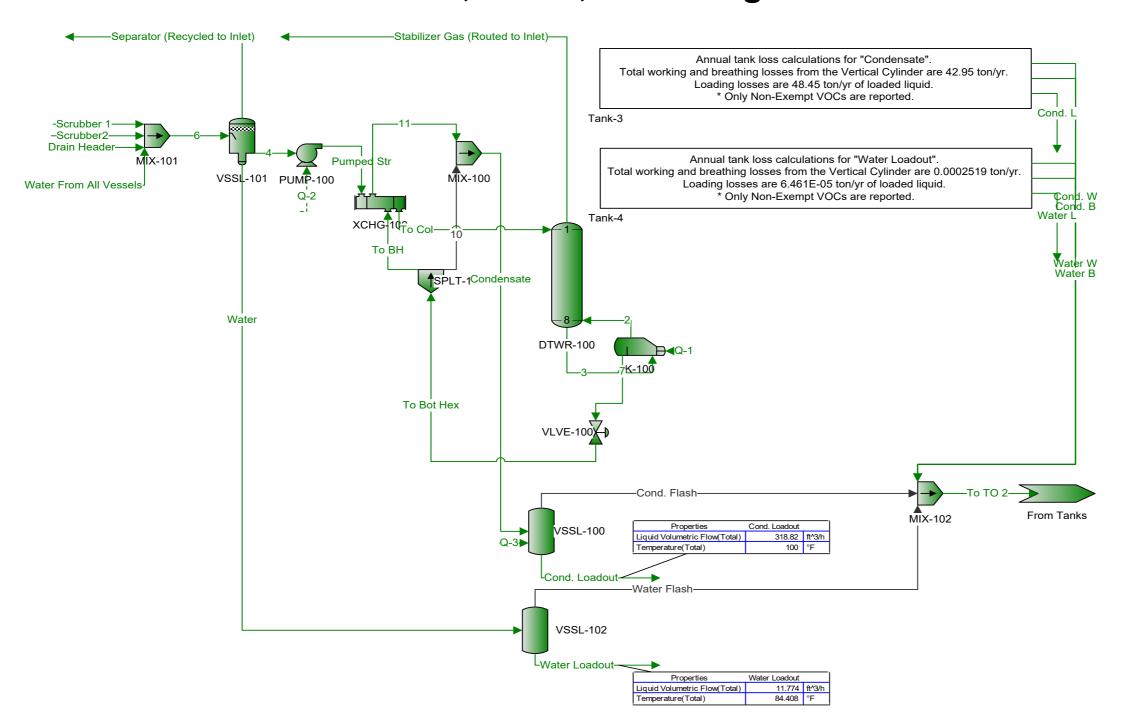
June 2021; Revision 0

Section 4

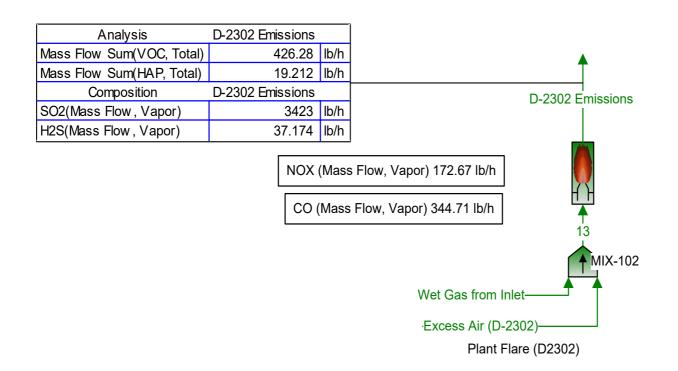

Process Flow Sheet

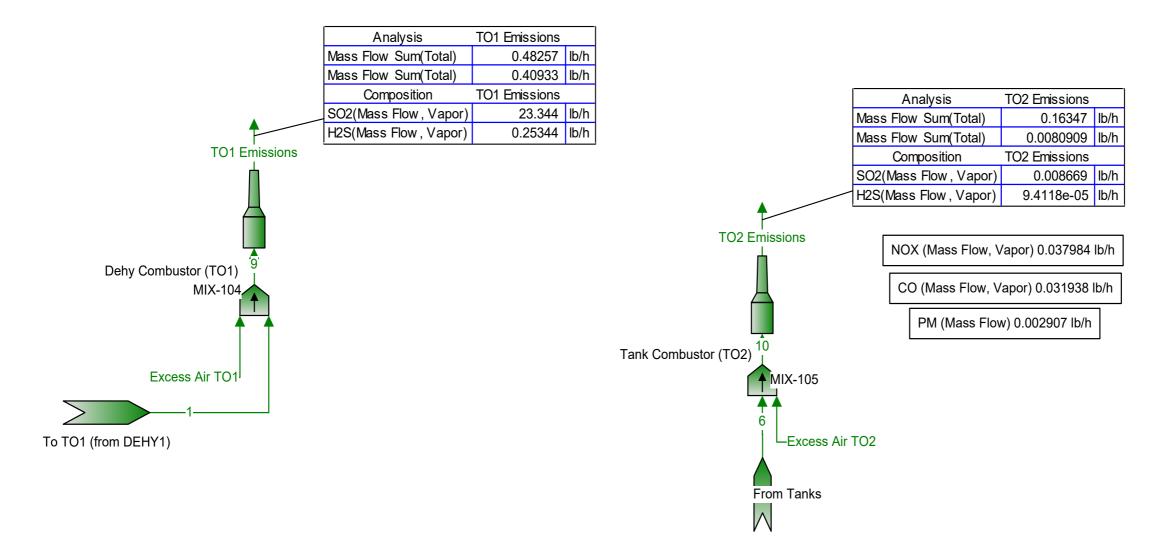

A <u>process flow sheet</u> and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.
A process flow diagram is attached.

Form-Section 4 last revised: 8/15/2011 Section 4, Page 1 Saved Date: 6/22/2021



Empire Abo Compressor Station





Stabilizer, Tanks, & Loading

Flares and Thermal Oxidizers

Section 5

June 2021; Revision 0

Saved Date: 6/22/2021

Plot Plan Drawn to Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is attached.

Form-Section 5 last revised: 8/15/2011 Section 5, Page 1

Section 6

June 2021; Revision 0

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

- A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.
- **B.** At least 5 significant figures shall be retained in all intermediate calculations.
- C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:
 - (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
 - (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
 - (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
 - (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

Form-Section 6 last revised: 5/3/16 Section 6, Page 1 Saved Date: 6/22/2021

Durango Midstream, LLC/

Frontier Field Services, LLC Empire Abo Compressor Station

mpire Abo Compressor Station June 2021; Revision 0

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Compressor Engines (Units E4-310 to E4-315)

The engines operating at the facility will include Caterpillar 3516TA engines. These engines will compress inlet gas and send the gas to the TEG dehydration units. All engines have been updated to incorporate new emission factors and catalyst control guarantees from equipment manufacturers and vendors. AP-42 emission factors are also used to quantify HAP and PM emissions. A fuel sulfur content of 5 gr/100 scf is assumed to calculated engine SO_2 emissions.

Facility-Wide Fugitive Emissions (Unit FUG40)

Facility-wide fugitive emissions are calculated using the most recent count of fugitive components based on the new and remaining equipment at the facility and with gas and liquid compositions derived from a ProMax simulation used to quantify emissions at the facility.

Emergency Flare (Unit D-2302 (South Flare), SSM, and MALF)

The emergency flare will combust inlet gas and the operation of other facility equipment will not occur during SSM flaring events.

Storage Tanks (Units V2-1104-C through F)

Three liquids analyses for the drain header and scrubbers and associated throughputs were used to quantify tank emissions using BR&E ProMax. These liquids will be processed by stabilizer prior to entering the tanks. Because all liquids are stabilized, there are no flash emission associated with the tanks, only working and breathing emissions. All overhead emissions from these units are sent to a thermal oxidizer and are represented under Unit TO2.

Condensate and Produced Water Loading (Units L1 and L2)

Condensate and produced water loading emissions are calculated using BR&E ProMax. Produced water loading emissions are considered and exempt source pursuant to 20.2.72.202.B(5) NMAC. Loading emissions are sent to a thermal oxidizer and are represented under Unit TO2.

TEG Dehydrator (Unit DEHY1)

TEG dehydrator emissions are calculated using a BR&E ProMax simulation designed to incorporate the operating parameters will be used at the facility. Flash tank overhead emissions are routed to the inlet. Regenerator emissions are controlled by a condenser. Condenser overhead emissions are sent to a thermal oxidizer and are represented under Unit TO1.

Heater (Unit H4)

Emissions from heaters installed at the facility are calculated using emission factors from AP-42 Section 1.4. HAP emissions are calculated using GRI HAPCalc.

TEG Dehydrator Thermal Oxidizer (Unit TO1)

Unit TO1 will combust gas from the TEG dehydrator condenser. The TO is conservatively represented as having a VOC, HAP, and H₂S destruction efficiency of 98%.

Tanks, and Loading Thermal Oxidizer (Unit TO2)

Unit TO2 combusts gas from tank and loading emissions. The TO is conservatively represented as having a VOC, HAP and H_2S destruction efficiency of 98%.

Haul Road Emissions (Exempt per 20.2.72.202.B(5) NMAC)

Haul trucks will be utilized at this facility to transport condensate and produced water off-site. The emission calculations provided in this section demonstrate that these activities will generate less than 0.5 tpy of PM emissions. This activity is therefore considered exempt and is not a regulated source of emissions.

Section 6.a Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

June 2021; Revision 0

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

- 1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.
- **2.** GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 Mandatory Greenhouse Gas Reporting.
- 3. Emissions from routine or predictable start up, shut down, and maintenance must be included.
- **4.** Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **short** tons per year and represent each emission unit's Potential to Emit (PTE).
- **5.** All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.
- **6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.
- Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 Mandatory Greenhouse Reporting requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Compressor Station Emission Summary

Maximum Emissions

Unit No.	Description	N	Ox	С	0	VC	OC	SC	Ox	P	М	PN	110	PN	12.5	H	₂ S	Le	ead
Unit No.	Description	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
E4-310	Compressor Engine	4.43	19.41	5.55	24.32	1.74	7.62	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-311	Compressor Engine	4.43	19.41	5.55	24.32	1.74	7.62	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-312	Compressor Engine	4.43	19.41	5.55	24.32	1.74	7.62	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-313	Compressor Engine	4.43	19.41	5.55	24.32	1.74	7.62	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-314	Compressor Engine	4.43	19.41	5.55	24.32	1.74	7.62	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-315	Compressor Engine	4.43	19.41	5.55	24.32	1.74	7.62	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
FUG40	Facility-Wide Fugitives	-	-	-	-	3.85	16.86	-	-	-	-	-	-	-	-	0.12	0.53	-	-
D-2302/ South Flare	Emergency Flare Pilot	0.090	0.39	0.18	0.79	-	-	0.0092	0.040	-	-	-	-	-	-	4.57E-06	2.00E-05	-	-
V2-1104-C ¹	Condensate Tank	-	-	-	-	2.45	10.74	-	-	-	-	-	-	-	-	3.81E-06	1.67E-05	-	-
V2-1104-D ¹	Condensate Tank	-	-	-	-	2.45	10.74	-	-	-	-	-	-	-	-	3.81E-06	1.67E-05	-	-
V2-1104-E ¹	Condensate Tank	-	-	-	-	2.45	10.74	-	-	-	-	-	-	-	-	3.81E-06	1.67E-05	-	-
V2-1104-F ¹	Condensate Tank	-	-	-	-	2.45	10.74	-	-	-	-	-	-	-	-	3.81E-06	1.67E-05	-	-
L1	Condensate Loading	-	-	-	-	11.06	48.45	-	-	-	-	-	-	-	-	7.53E-05	3.30E-04	-	-
DEHY1 ²	TEG Dehydrator	-	-	_	-	24.13	105.68	-	-	-	-	-	-	-	-	12.6722	55.504	-	-
H4	Heater	0.082	0.36	0.069	0.30	0.0045	0.020	0.012	0.051	0.58	2.55	0.0062	0.027	0.0062	0.027	-	-	-	-
TO1	Thermal Oxidizer	0.023	0.099	0.019	0.083	-	-	0.0032	0.014	0.0017	0.0075	0.0017	0.0075	0.0017	0.0075	-	-	-	-
TO2	Thermal Oxidizer	0.023	0.099	0.019	0.083	-	-	0.0032	0.014	0.0017	0.0075	0.0017	0.0075	0.0017	0.0075	-	-	-	-
SSM (D-2302)	SSM Flaring	242.88	1.00	484.87	2.00	478.97	1.98	3490.64	14.40	-	-	-	-		-	37.09	0.15	-	-
MALF (D-2302)	MALF Flaring	242.00	10.00	404.07	10.00	410.91	10.00	3490.04	10.00	-	-	-	-	-	-	37.08	10.00	-	-
T	otals	269.68	128.40	518.48	159.20	538.26	271.64	3491.51	28.24	1.19	5.21	0.62	2.70	0.62	2.70	49.88	66.19	-	-

Requested Allowable Emissions

							Requ	ested Allow	abie Emissi	ons									
Unit No.	Description	N(Ox	C	:0	V	OC	S	Ox	Р	M	PN	110	PM	12.5	H ₂	₂ S	Le	ead
Offit NO.	Description	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
E4-310	Compressor Engine	4.43	19.41	1.67	7.30	0.62	2.70	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-311	Compressor Engine	4.43	19.41	1.67	7.30	0.62	2.70	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-312	Compressor Engine	4.43	19.41	1.67	7.30	0.62	2.70	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-313	Compressor Engine	4.43	19.41	1.67	7.30	0.62	2.70	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-314	Compressor Engine	4.43	19.41	1.67	7.30	0.62	2.70	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	-	-
E4-315	Compressor Engine	4.43	19.41	1.67	7.30	0.62	2.70	0.14	0.62	0.10	0.44	0.10	0.44	0.10	0.44	-	-	1	-
FUG40	Facility-Wide Fugitives	-	-	-	-	3.85	16.86	-	-	-	-	-	-	-	-	0.12	0.53	-	-
D-2302/ South Flare	Emergency Flare Pilot	0.090	0.39	0.18	0.79	-	-	0.0092	0.040	-	-	-	-	-	-	4.57E-06	2.00E-05	-	-
V2-1104-C ¹	Condensate Tank	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
V2-1104-D ¹	Condensate Tank	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
V2-1104-E ¹	Condensate Tank	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
V2-1104-F ¹	Condensate Tank	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
L1	Condensate Loading	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
DEHY1 ²	TEG Dehydrator	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H4	Heater	0.082	0.36	0.069	0.30	0.0045	0.020	0.012	0.051	0.58	2.55	0.0062	0.027	0.0062	0.027	-	-	-	-
TO1	Thermal Oxidizer	0.55	2.42	0.464	2.03	0.48	2.11	23.86	104.49	0.042	0.184	0.0419	0.184	0.0419	0.184	0.25	1.11	1	-
TO2	Thermal Oxidizer	0.038	0.17	0.032	0.14	0.16	0.72	0.0121	0.053	0.0029	0.013	0.0029	0.013	0.0029	0.013	9.41E-05	4.12E-04	-	-
SSM (D-2302/ South Flare)	SSM Flaring		1.00		2.00		1.98		14.40	-	-	-	-	-	-		0.15	-	-
MALF (D-2302/ South Flare)	MALF Flaring	242.88	10.00	484.87	10.00	478.97	10.00	3490.64	10.00	-	-	-	-	-	-	37.09	10.00	-	-
T	otals	270.22	130.79	495.61	59.04	487.17	47.88	3515.38	132.76	1.23	5.40	0.66	2.88	0.66	2.88	37.46	11.80	-	-

¹ Condesate tanks (Units V2-1104-C to F) and loading (Unit L-1) emissions are controlled by a combustor. Controlled emissions are considered under Unit TO2.

² Emissions from the dehydator condenser (Unit DEHY1) are controlled by a combustor and emissions from the dehydrator flash tanks are recycled to the inlet. Controlled condenser emissions are considered under Unit TO1.

Compressor Engines

E4-310 and E4-315 Source Description: Natural Gas Engines

Manufacturer: Caterpillar Model: 3516 TALE

4-Stroke Lean-Burn Engine Type:

Control

Method: Oxidation Catalyst

Specifications

1400 rpm Catalyst Data 1340 Max Capacity (hp) hp Site Capacity (hp) 1340 hp Catalyst Data

Fuel Consumption

BSFC (LHV): 7544 Btu/hp-hr Mfg. Spec. 1020 Btu/scf Pipeline Gas Fuel Heat Value Heat input 10.11 MMBtu/hr Calculated Mscf/hr Calculated Fuel consumption 9.91 Fuel consumption 0.0099 MMscf/hr Calculated Fuel consumption 86.82 MMscf/yr Calculated

Emission Calculations Uncontrolled

NO _X	CO	VOC 1	SO ₂	PM ₁₀ 2	PM _{2.5} 3	Total HAPs	Formaldehyde	Acetaldehyde	Acrolein	Benzene	Ethylbenzene	n-Hexane	Toluene	Xylene	Units	Comments
1.50	1.88	0.31		0.034			0.25								g/bhp-hr	Manufacturer's Data
			50												gr S/Mscf	Pipeline Specification
				0.010	0.010			0.0084	0.0051	4.40E-04	3.97E-05	1.10E-03	4.08E-04	1.84E-04	lb/MMBtu	From AP-42 Table 3.2-3
								0.0084	0.0051	0.0004	0.0000	0.0011	0.0004	0.0002	lb/MMBtu	Scaled Emissions (EF *1020/Fuel Heat Value)
4.43	5.55	1.74	0.14	0.10	0.10	0.90	0.74	0.085	0.052	0.0044	4.01E-04	0.0111	0.0041	0.0019	lb/hr	Calculated hourly emission rate
19.41	24.32	7.62	0.62	0.44	0.44	3.93	3.23	0.37	0.23	0.019	0.0018	0.0487	0.018	0.0081	tpy	Annual emission rate (hrs/yr) = 8760

Emission Calculations Controlled

NO _X	СО	VOC1	SO ₂	PM ₁₀ 2	PM _{2.5} 3	Total HAPs	Formaldehyde	Acetaldehyde	Acrolein	Benzene	Ethylbenzene	n-Hexane	Toluene	Xylene	Units	Comments
1.50	0.56	0.16					0.025								g/bhp-hr	Catalyst Data
	70%	50%					90%								DRE %	Catalyst Data
			50												gr S/Mscf	Pipeline Specification
				0.010	0.010			0.0084	0.0051	4.40E-04	3.97E-05					From AP-42 Table 3.2-3
								0.0084	0.0051	4.40E-04	3.97E-05	1.10E-03	4.08E-04	1.84E-04	lb/MMBtu	Scaled Emissions (EF *1020/Fuel Heat Value)
4.43	1.67	0.62	0.14	0.10	0.10	0.23	0.07	0.085	0.052	0.0044	4.01E-04	1.11E-02	0.0041	0.0019	lb/hr	Calculated hourly emission rate
19.41	7.30	2.70	0.62	0.44	0.44	1.02	0.32	0.37	0.23	0.019	0.0018	0.0487	0.018	0.0081	tpy	Annual emission rate (hrs/yr) = 8760

- Notes:

 1. VOC emissions include aldehydes per NMED guidance / AECTool.

 1. VOC emissions include aldehydes per NMED guidance / AECTool.
- 2. PM₁₀ = AP-42 PM₁₀ (filterable) + PM (condensable).
- 3. PM_{2.5} = AP-42 PM_{2.5} (filterable) + PM (condensable).

GHG Emission Calculations (Uncontrolled)

CO ₂	N ₂ O	CH₄	Units	Comments
53.06	0.0001	0.001	kg/MMBtu	From 40 CFR Part 98, Subpart C
1,182.45	0.0022	0.022	lb/hr	Calculated hourly emission rate
5,179.14	0.0098	0.098	tpy	Annual emission rate (hrs/yr) = 8760

Fugitive Emissions

Source: Fugitives Source ID: FUG

Gas Service	Number of	Factor	Total Emissions			
Fugitive Component Type	Components	(lb/hr/source)	(lbs/hr)	(tons/yr)		
Valves	523	0.0099	1.510	6.61		
Pump Seals	6	0.0053	0.009	0.04		
Connectors	1192	0.0004	0.153	0.67		
Flanges	149	0.0009	0.037	0.16		
Open-Ended Lines	0	0.0044	0.000	0.00		
Other	16	0.0194	0.090	0.40		
		Total	1.799	7.88		

Light Oil Service	Number of	Factor	Total Em	issions
	Components	(lb/hr/source)	(lbs/hr)	(tons/yr)
Valves	259	0.0055	1.427	6.25
Pump Seals	11	0.0287	0.315	1.38
Connectors	611	0.0005	0.283	1.24
Flanges	32	0.0002	0.008	0.03
Open-Ended Lines	0	0.0031	0.000	0.00
Other	1	0.0165	0.017	0.07
		Total	2.050	8.98

Gas Service Speciation	Stream Weight %	Emissions (lb/hr)	Emissions (tons/yr)
H2S	1.97%	0.122	0.534
Benzene	0.31%	0.019	0.084
Toluene	0.24%	0.015	0.064
E-Benzene	0.0039%	0.000	0.001
Xylene	0.03%	0.002	0.009
n-Hexane	0.46%	0.029	0.125
Total VOC	29.10%	1.799	7.881

Light Liq. Service	Stream Weight %	Emissions	Emissions
Speciation	(4)	(lb/hr)	(tons/yr)
H2S	0.000%	0.00000	0.00000
Benzene	5.39%	0.11046	0.484
Toluene	0.00%	0.00000	0.000
E-Benzene	0.98%	0.02018	0.088
Xylene	1.62%	0.03320	0.145
n-Hexane	4.69%	0.09621	0.421
Total VOC	100.00%	2.04992	8.979

Total Fugitive Emissions	Emissions (lb/hr)	(tons/yr)
H2S	0.12	0.53
Benzene	0.13	0.57
Toluene	0.015	0.064
E-Benzene	0.020	0.089
Xylene	0.035	0.15
n-Hexane	0.12	0.55
Total VOC	3.85	16.86

Notes:

- (1) Emission factors are EPA/API average emission factors, for oil and gas production operations, issued August 1995, for fugitive components
- (2) Component counts are estimates based on similar facilities.
- (3) Natural gas speciation based on facility natural gas analysis.
- (4) Light Liquid BTEX speciation based facility separator oil analysis.

679.52

0.001

0.01

680.22 tpy

Annual emission rate (hrs/yr) =

8

Emergency Flare

Emission Units: D-2302 (South	riale), SSN	n, and MALF									
Fuel Data											
Flare Pilot	200	scf/hr	Design								
	0.0002	MMscf/hr									
	1020	Btu/scf	Pipeline Ga	as, HHV							
	0.20	MMBtu/hr	-								
Purge Gas	120	scf/hr									
90		MMscf/hr									
		Btu/scf	Pipeline Ga	as. HHV							
		MMBtu/hr	i ipeline de	13, THTV							
Flared Gas - Short Term	24.8	MMscf/day	ProMax Inle	et Gas Flow	V						
Tiarea Gas - Ghort Tenn		MMscf/hr	Effective ho			/day ÷ 24 hr	day				
		Btu/scf	Inlet Gas fr			day · Z+ iii	rday				
	•	MMBtu/hr				Effective b	ourly flow rate.				
Flared Gas - Annual	8.3		Annual hou		•	Lilective	ourly now rate.				
Tarea Gas - Annaar		MMscf/yr	Engineering	•	1		0.27	,			
Total	1408.3	MMBtu/hr	Pilot + Flar	ed gas							
Stack Baramatara											
Stack Parameters	98%		Control Effi	iciency of V	OC, HAP, H	H₂S					
	1000	°C	Exhaust ter	-	,		Per NMAQB guid	elines			
		m/sec	Exhaust ve	•			Per NMAQB guid				
	115		Flare heigh	•			Ü				
Pilot and Purge Gas only											
i not and Furge Gas offly	16.04	a/mol	Pilot gas m	olecular wo	eight.		Mol. wt. of metha	ne the domin	nant species		
		-	_		grit						
	22,848	cai/sec	Heat releas	se (q)			MMBtu/hr * 10 ⁶ *		3600 sec/nr		
	18,456		q _n		(D)		$q_n = q(1-0.048(M))$	vv))			
	0.1359	m	Effective st	ack diamet	er (D)		$D = (10^{-6} q_n)^{1/2}$				
Pilot and Flared Gas											
, not and that ou out	24.29	a/mol	Flared gas	molecular v	weiaht		Volume weighted	l mol. wt. of a	Il components		
	9.86E+07	-	Heat releas				MMBtu/hr * 10 ⁶ *				
7.53E+07 q				(4)			$q_n = q(1-0.048)M$		0000 000/111		
	8.6752	m	Effective st	ack diamet	er (D)		$D = (10^{-6} q_n)^{1/2}$	**, ,			
					(- /		(- 111)				
Emission Rates											
Pilot and Purge Gas											
	NOx	CO	VOC	H₂S	SO ₂	HAP	Units				
	0.1380	0.2755					lb/MMBtu	_	TNRCC RG-109 (h	igh Btu; other)	
				3.6E-04			lb H ₂ S/Mscf		Purchased sweet n	atural gas fuel, 0.25 g	gr H₂S/100scf
				1.1E-04			lb H₂S/hr		H ₂ S rate * fuel usaç	je	
					0.0071		lb S/Mscf		Purchased sweet n	atural gas fuel, 5 gr S	5/100scf
					0.0046		lb SO ₂ /hr		SO ₂ rate * fuel usag		
	100%	100%		100%	100%		%		Safety Factor		
	0.2760	0.5510					lb/MMBtu		Unit emission rate v	vith Safety Factor	
	0.090	0.18					lb/hr	٦	Ib/MMBtu * MMBtu/	•	
Pilot & Purge Only	0.000	0.10	_	4.6E-06	0.0092		lb/hr			S; 100% conversion	to SO ₂
Table UA2-D and E	0.39	0.79	_	2.0E-05	0.040		tpy		8760 hrs/yr		_
Flared Gas											
	NOx	со	voc	H ₂ S	SO ₂	HAP	Units	_			
	0.1380	0.2755					lb/MMBtu		TNRCC RG-109 (h	igh Btu; other)	
			19,158.94	1,854.40		530.15	lb/hr		ProMax		
	194.30	387.90					lb/hr	_	lb/MMBtu * MMBtu/		
Total - Flared, Pilot, & Purge	194.39	388.08	383.18	37.09	3,490.64	10.60	lb/hr	_		ions at maximum rate	e would include only VOC ar
Gas	0.80	1.60	1.58	0.15	14.40	0.04	tpy		H2S		
	NO	00	V00		20		1124				
	NOx	CO	VOC	H ₂ S	SO ₂	HAP	Units	\neg			
SSM without Safety Factor	194.30 0.80	387.90 1.60	383.18 1.58	37.09 0.15	3490.64 14.40	10.6 0.04	lb/hr		Emissions not inclu	ding Safety factor	
	0.80	1.00	1.50	0.15	14.40	0.04	tpy	1			
Requested SSM	242.88	484.87	478.97	37.09	3490.64	13.25	lb/hr	1	NOx, VOC SSM sat	ety factor	25%
Table UA2-F	1.00	2.00	1.98	0.15	14.40	0.05	tpy		CO SSM Safety fac	tor	25%
GHG Emissions											
Pilot and Purgo Coo	60	N O	СП	CO -	Units	Commen	te				
Pilot and Purge Gas	CO ₂ 53.06	N₂O 0.0001	CH₄ 0.001	CO ₂ e			t s CFR Part 98, St	ıhnart ∩			
		7.20E-05	7.20E-04	38.22	lb/hr		d hourly emissic				
	38.18 0.16						a nouny emissionissionission rate (hrs		Ω		
	0.16	2.97E-07	2.97E-06	0.16	tpy	Annual en	noorunate (IIIS	5/ YI <i>)</i> —	8		
Flared Gas	CO2	N ₂ O	СН₄	CO ₂ e	Units	Commen	ts				
area aus	53.06	0.0001	0.001	J J 26			CFR Part 98, Si	Jbpart C			
	1.65E+05	0.310	3.10	1.65E+05	•		d hourly emission	-			
	679.52	0.001	0.01	680.22			nission rate (hrs		8		
	0/33/						The second secon	—			

Condensate Tanks

Unit: V2-1140-C, D, E, & F

Material: Condensate

General Tank Information

Facility Design Number of Tanks 4 Facility Design Volume 300 bbl Volume 12,600 gal **Facility Design Facility Design** Diameter 12 ft **Facility Design** Height 15 ft Facility Condensate Throughput 6,269.09 average bbl/day **Engineer Estimate** Facility Throughput 2,288,219 bbl/yr **Engineer Estimate** Facility Throughput 96,105,177 gal/yr **Engineer Estimate**

Turnovers 1,906.8 turnovers/yr/tank Turnovers = Tank throughput/Volume

Uncontrolled Emissions¹

VOCs	Unit	Note
42.95	tpy	Working and Breathing Emissions
-	tpy	Flash Emissions
42.95	tpy	Total uncontrolled emissions
10.74	tpy	Total uncontrolled emissions per tank

H₂S	Unit	Note
6.68E-05	tpy	Working and Breathing Emissions
-	tpy	Flash Emissions
6.68E-05	tpy	Total uncontrolled emissions
1.67E-05	tpy	Total uncontrolled emissions per tank

HAPs	Working & Bre	athing Losses	Flash Losses
HAFS	tį	ру	tpy
n-Hexane	1.	23	-
Benzene	0.	80	-
2,2,4-TMP	0.0	016	-
Toluene	0.00	E+00	-
Ethylbenzene	0.0	021	-
Xylenes	0.037		-
Total HAPs	2.10 tpy		
Total HAPs per Tank	0.53	tpy	

Notes:

¹ Emissions are routed to a thermal oxidizer. Controlled emissions are represented under Unit TO2.

Produced Water Tanks (Exempt Per 20.2.72.202.b(5) NMAC)

Unit: V2-1140-G & V2-1140-H Material: Produced Water Tanks

General Tank Information

2 Facility Design Number of Tanks Volume Facility Design 210 bbl Facility Design Volume 8,820 gal 10 ft Facility Design Diameter Height 15 ft Facility Design **Engineer Estimate Facility Condensate Throughput** 50.33 average bbl/day **Facility Throughput** 18,370 bbl/yr **Engineer Estimate** Facility Throughput 771,535 gal/yr **Engineer Estimate**

Turnovers 43.7 turnovers/yr/tank Turnovers = Tank throughput/Volume

Uncontrolled Emissions 1

VOCs	Unit	Note
2.52E-04	tpy	Working and Breathing Emissions
-	tpy	Flash Emissions
2.52E-04	tpy	Total uncontrolled emissions
1.26E-04	tpy	Total uncontrolled emissions per tank

H ₂ S	Unit	Note
0.0031	tpy	Working and Breathing Emissions
<u>-</u>	tpy	Flash Emissions
0.0031	tpy	Total uncontrolled emissions
0.0015	tpy	Total uncontrolled emissions per tank

HAPs	Working & Breathing Losses	Flash Losses
ПАРЗ	tpy	tpy
n-Hexane	9.84E-09	-
Benzene	7.46E-05	-
2,2,4-TMP	3.91E-11	-
Toluene	0.00E+00	-
Ethylbenzene	1.07E-07	-
Xylenes	1.30E-07	-
Total HAPs	7.48E-05 tpy	
Total HAPs per Tank	3.74E-05 tpy	

Notes

¹ Emissions are routed to a thermal oxidizer. Controlled emissions are represented under Unit TO2.

Truck Loading

Unit: L1 & L2

Description: Condensate and Water Loading

Condensate Loading (Unit L1)

Pollutant	Loading Emissions			
Pollutant	lb/hr	tpy		
VOC	11.06	48.45		
H ₂ S	7.53E-05	3.30E-04		

Pollutant	Loading Emissions		
Poliutant	lb/hr	tpy	
n-Hexane	0.32	1.38	
Benzene	0.206	0.90	
2,2,4-TMP	0.0042	0.0183	
Toluene	0.00	0.00	
Ethylbenzene	0.0053	0.0232	
Xylenes	0.0095	0.042	
Total HAPs	0.54	2.37	

Produced Water Loading (Unit L2) (Exempt Per 20.2.72.202.b(5) NMAC)

Dellutent	Loading Emissions		
Pollutant	lb/hr	tpy	
VOC	1.48E-05	6.46E-05	
H ₂ S	7.86E-04	3.44E-03	

Pollutant	Loading Emissions		
Pollutarit	lb/hr	tpy	
n-Hexane	5.77E-10	2.53E-09	
Benzene	4.37E-06	1.91E-05	
2,2,4-TMP	2.29E-12	1.00E-11	
Toluene	0.00E+00	0.00E+00	
Ethylbenzene	6.26E-09	2.74E-08	
Xylenes	7.59E-09	3.32E-08	
Total HAPs	4.38E-06	1.92E-05	

TEG Dehydrator Emissions

Emission Units: DEHY1

Source Description: Triethylene Glycol Dehydrator Condenser

Manufacturer: Kimray 45015

Glycol Pump Type Gas

Maximum Flowrate:25 MMSCFDOutlet Gas Dewpoint:7 lb H20/MMscf

Glycol Recirculation Rate: 7.5 gpm (maximum pump rate)

Control Device: Condenser & Thermal Oxidizer

		Uncontrolled Emission Rates per Unit ¹			
	Pollutant	Cond	enser	Flash Tank	
		(lb/hr)	(tpy)	(lb/hr)	(tpy)
	VOC	24.13	105.68	-	=
	H ₂ S	12.67	55.50	-	-
	CO ₂	2.33	10.20	-	-
	CH₄	21.04	92.14	-	-
	CO ₂ e	528.23	2313.64	-	-
	n-Hexane	0.51	2.23	-	-
	Benzene	5.56	24.35	-	-
_	2,2,4-TMP	0.00	0.00	-	-
HAP	Toluene	1.67	7.31	-	-
▮∸	Ethylbenzene	0.006	0.024	-	-
	Xylenes	0.053	0.23	-	-
	Total HAP	7.79	34.14	-	-

Notes:

¹ Emissions from the dehydrator flash tanks are routed to the inlet. Condenser overheads are controlled by a thermal oxidizer. Controlled emissions are represented under Unit TO1. Emissions from the Regenerator are routed to the inlet.

Heater

Emission unit number(s): H4

Source description: Mole Seive Regenerator Heater

Fuel consumption			
Input heat rate:	0.80	MMBtu/hr	Engineer Estimate
Fuel heat value:	1,020	Btu/scf	Heat value of fuel
Fuel rate:	0.82	Mscf/hr	Input heat rate / Fuel heat value
Annual fuel usage:	7.1	MMscf/yr	

Reboiler Stack Exhaust Parameters				
Exhaust temp:	600	°F	Eng. estimate	
Stack height:	30	ft	Measured Stack Height	
Stack diameter:	2.5	ft	Measured Stack Diameter	
F Factor:	10610	wscf/MMBtu	F factor-40 CFR 60 Appx A Method 19	
Exhaust flow:	141	scfm	Heat input * F factor/60	
Site Elevation:	3,560	ft MSL	USGS 7.5 minute quadrangle	
Standard Pressure:	29.92	in Hg	·	
Pressure at Elevation:	26.26	in Hg	Hess, Introduction to Theoretical Meteorology, eqn. 6.8	
Standard Temperature:	520	R -		
Exhaust flow:	329	acfm	Va = Vs*(Ps/Pa)*(Ta/Ts)	
Exhaust velocity:	1.12	ft/sec	Exhaust flow / stack area	

Emission Rates Per Unit

NOx	CO	VOC	SO ₂ ¹	PM^2	Total HAPs ³	Units	
100	84	5.5		7.6		lb/MMscf	Unit emission rates from AP-42 Table 1.4-1 & 2
100	84	5.5		7.6		lb/MMscf	Emission Factor Adjusted for heat value
			50			gr Total Sulfur/Mscf	Pipeline specification
0.082	0.069	0.0045	0.012	0.0062	0.0011	lb/hr	Unit emissions * Input heat rate
0.36	0.30	0.020	0.051	0.027	0.0049	tpv	

 $^{^{1}\}text{SO}_{2}$ emissions are calculated based on fuel consumption and fuel H $_{2}\text{S}$ concentration of 200 gr/Mscf.

Greenhouse Gas Emissions

	CO_2	N ₂ O	CH₄	CO ₂ e		
-	53.06	0.0001	0.001		kg/MMBtu	40 CFR 98 Tables C-1 and C-2
	1	298	25		GWP	40 CFR 98 Table A-1
	409.9	0.00077	0.0077		tons/yr ⁵	
	409.9	0.230	0.193	410.3	tons/yr CO ₂ e ⁶	

⁵GHG ton/yr = EF (kg/MMBtu) * Reboiler Fuel consumption (MMBtu/hr) * 1tonne/1000kg * Hours of operation (hr/yr) * 1.1023ton/tonne +Flash Gas GHG ton/yr CH₄ ton/yr = EF (kg/MMBtu) * Reboiler Fuel consumption (MMBtu/hr) * 1tonne/1000kg * Hours of operation (hr/yr) * 1.1023ton/tonne + 2% x Flash Gas CH₄ ton/yr ⁶tons/yr CO2e = ton/yr * GWP

²⁰⁰ gr S/1000 scf x fuel scf/hr x 1 lb/7000 gr x 64 lb SO_2 / 32 lb S = lb/hr SO_2

SO₂ calculation assumes 100% conversion of fuel elemental sulfur to SO₂.

²Assumes PM (Total) = TSP = PM-10 = PM-2.5

³HAPs are from GRI HAPCalc 3.01

Thermal Oxidizer

Emission unit number(s): Source description: Streams Controlled:	TO1 Thermal C Glycol Del	Oxidizer nydrator Conde	enser Overhe	eads					
Maximum Input Parameters									
Heat Value of Combusted Gas	1218	Btu/scf	ProMax (St	ream 3)					
Gas Flow Rate	20.6	Mscfd	ProMax (St	ream 3)					
Input Heat Rate:	5.40	MMBtu/hr	Manufactur	er Specifica	itions				
Total VOC Mass Flow Rate from Condenser	24.13	lb/hr	ProMax (St	ream 3)					
Total H ₂ S Mass Flow Rate from Condenser	12.67	lb/hr	ProMax (St	ream 3)					
Total HAP Mass Flow Rate from Condenser	7.79	lb/hr	ProMax (St	ream 3)					
Exhaust Parameters (F-factor method)									
Heat Rate:	5.63	MMBtu/hr	Condenser	Input + Pilo	t Input				
Exhaust temp (Tstk):	1150	°F	Manufactur	er Specifica	tions				
Exhaust flow	257.4	cfs	Manufactur	er Specifica	itions				
Stack diameter:	3.5	ft	Manufactur	er Specifica	tions				
Stack height:	54.5	ft	Manufactur	er Specifica	tions				
Exhaust velocity:	27.7	ft/sec		er Specifica					
Fuel Data									
Themal Oxidizer Pilot		5 scf/hr	Engineer E	stimate					
		4 MMscf/hr							
		0 Btu/scf 3 MMBtu/hr	Pipeline Ga	as, HHV					
Francisco Pates (Pilat Only)									
Emission Rates (Pilot Only)	NOx	СО	VOC 1	SO ₂ ²	H ₂ S ²	PM ³	HAP		
	100	84	-	-	-	7.6		lb/MMscf	AP-42 Table 1.4-1 & 2
	0.0980	0.0824	-	-	-	0.0075	-	lb/MMBtu	
	-	-	-	50	-	-	-	gr S/Mscf	
		-	-	-	-	-	-	lb/hr	_Mass Flow Rate
	0.023	0.019	-	0.0032	-	0.0017	-	lb/hr	
- · · · - · · · · · · · · · · · · · · ·	0.099	0.083	-	0.014	-	0.0075	-	tpy	8760 hrs
Emission Rates (Process Gas & Pilot)		0.0	1	20 2	2	3	1		
	NOx	CO	VOC ¹	SO ₂ ²	H ₂ S ²	PM ³	HAP 1	II. /B 45.4	- AD 40 Table 4 4 4 0 0
	100	84	-	-	-	7.6	-		AP-42 Table 1.4-1 & 2
	0.0980	0.0824	- 2/113	-	- 12.67	0.0075	- 7.79	lb/hr	AP-42 Table 1.4-1, Footnote a Mass Flow Rate
	0.55	0.46	24.13 0.48	23.86	0.25	0.042	0.16	lb/hr	INIASS FIOW INALE
	2.42	2.03	2.11	104.49	1.11	0.184	0.18	tpy	8760 hrs
	_							-1- 7	

Greenhouse Gas Emissions

CO ₂	N ₂ O	CH₄	CO₂e	_
53.06	0.0001	0.001		kg/MMBtu 40 CFR 98 Tables C-1 and C-2
1	298	25		GWP 40 CFR 98 Table A-1
2766.74	0.0052	0.052		tons/yr ⁴
2766.74	1.55	1.30	2769.60	tons/yr CO ₂ e ⁵

⁴GHG ton/yr = EF (kg/MMBtu) * Reboiler Fuel consumption (MMBtu/hr) * 1tonne/1000kg * Hours of operation (hr/yr) * 1.1023ton/tonne +Flash Gas GHG ton/yr CH₄ ton/yr = EF (kg/MMBtu) * Reboiler Fuel consumption (MMBtu/hr) * 1tonne/1000kg * Hours of operation (hr/yr) * 1.1023ton/tonne + 2% x Flash Gas CH₄ ton/yr ⁵tons/yr CO2e = ton/yr * GWP

 $^{^1}$ The thermal oxidizer is 98% efficient for combustion of VOC and HAP. 2 H₂S is combusted with a 98% efficiency. 100% of combusted H₂S is converted to SO₂.

³ PM (Total) = TSP = PM-10 = PM-2.5

Thermal Oxidizer

Emission unit number(s): Source description: Streams Controlled:	TO2 Thermal C Condensa	oxidizer te Tanks, Wat	er Tanks, Loa	ading					
Maximum Input Parameters Heat Value of Combusted VOC Gas Produced	3318 1.15	Btu/scf Mscfd	ProMax (St ProMax (St	,					
Input Heat Rate:	0.16	MMBtu/hr	Calculated (,	e * Gas Pro	duced / 24 l	hrs per da	у)	
Total VOC Mass Flow Rate	8.17	lb/hr	ProMax (St	ream 6)					
Total H2S Mass Flow Rate	0.00	lb/hr	ProMax (St	•					
Total HAP Mass Flow Rate	0.46	lb/hr	ProMax (St	,					
Exhaust Parameters (F-factor method)									
Heat Rate:	0.39	MMBtu/hr	Gunbarrel,	Tanks, Loa	ding Heat li	nput and Pi	lot Input		
Exhaust temp (Tstk):	1150	°F	Manufactur			•	·		
Exhaust flow	257.4	cfs	Manufactur	er Specifica	ations				
Stack diameter:	3.5	ft	Manufactur	er Specifica	ations				
Stack height:	54.5	ft	Manufactur	•					
Exhaust velocity:	27.7	ft/sec	Manufactur	•					
Fuel Data									
Themal Oxidizer Pilot		5 scf/hr	Engineer Es	stimate					
		5 MMscf/hr	Discouling a Co						
		0 Btu/scf 3 MMBtu/hr	Pipeline Ga	s, HHV					
Emission Rates (Pilot Only)									
Emission rates (Filet Smy)	NOx	CO	VOC 1	SO ₂ ²	H ₂ S ²	PM ³	HAP		
	100	84	-	-	-	7.6	-	lb/MMscf	AP-42 Table 1.4-1 & 2
	0.0980	0.0824	-	-	-	0.0075	-		AP-42 Table 1.4-1, Footnote a
	-	-	-	50	-	-	-	gr S/Mscf	
	-	-	-	-	-	-	-	lb/hr	_Mass Flow Rate
	0.023	0.019	-	0.0032	-	0.0017	-	lb/hr	0700 1
Emission Rates (Process Gas & Pilot)	0.099	0.083	-	0.014	-	0.0075	-	tpy	8760 hrs
Ellission Rates (Flocess Gas & Filot)	NOx	СО	VOC 1	SO ₂ ²	H ₂ S ²	PM ³	цар ¹		
	100	84	VOC 1		H ₂ S	7.6	HAP 1	lb/MMscf	_ AP-42 Table 1.4-1 & 2
	0.0980	0.0824	-	-	-	7.6 0.0075	-		AP-42 Table 1.4-1 & 2 AP-42 Table 1.4-1, Footnote a
	0.0000	0.0024		_		3.0073	- 40	15/1VIIVIDIU	7.1 -12 rabio 1.1-1, roothote a

8.17

0.16

0.72

0.012

0.053

4.71E-03

9.41E-05

4.12E-04

0.0029

0.013

0.46

0.009

0.040

lb/hr

lb/hr

tpy

Mass Flow Rate

8760 hrs

0.032

0.14

0.038

0.17

Greenhouse Gas Emissions

	CO_2	N_2O	CH₄	CO ₂ e	_
-	53.06	0.0001	0.001		kg/MMBtu 40 CFR 98 Tables C-1 and C-2
	1	298	25		GWP 40 CFR 98 Table A-1
					4
	81.46	0.0002	0.002		tons/yr ⁴
	81.46	0.05	0.04	81.55	tons/yr CO₂e ⁵

⁴GHG ton/yr = EF (kg/MMBtu) * Reboiler Fuel consumption (MMBtu/hr) * 1tonne/1000kg * Hours of operation (hr/yr) * 1.1023ton/tonne +Flash Gas GHG ton/yr CH₄ ton/yr = EF (kg/MMBtu) * Reboiler Fuel consumption (MMBtu/hr) * 1tonne/1000kg * Hours of operation (hr/yr) * 1.1023ton/tonne + 2% x Flash Gas CH₄ ton/yr ⁵tons/yr CO2e = ton/yr * GWP

¹ The thermal oxidizer is 98% efficient for combustion of VOC and HAP.

 $^{^2}$ H₂S is combusted with a 98% efficiency. 100% of combusted H₂S is converted to SO₂.

 $^{^{3}}$ PM (Total) = TSP = PM-10 = PM-2.5

Unpaved Haul Road (Exempt Per 20.2.72.202.b(5) NMAC)

Haul	Input Information
Unit(s):	HAUL
Description:	Unpaved haul road emissions

L. IDd									
	Input Data								
Empty vehicle weight ¹	16	tons							
Load weight ²	26.6	tons							
Loaded vehicle ³	42.6	tons							
Mean vehicle weight⁴	29.32	tons							
Oil & Water Throughput	1369	bbl/day							
Loadout volume	499535	bbl/yr							
Vehicle size	180	bbl							
Vehicle frequency ⁵	8	vehicles/day							
Round-trip distance	0.2	mile/trip							
Truck Size:	7560	gal							
Filling Time:	0.75	Nominal							
Oil Loadout Spots	1	Assumed							
Trip frequency ⁶	1.3	trips/hour							
Trip frequency ⁷	2776	trips/yr							
Surface silt content ⁸	4.8	%							
Annual wet days ⁹	70	days/yr							
Vehicle miles traveled ¹⁰	0.27	mile/hr							
Vehicle miles traveled	555.2	miles/yr							

Emission Factors and Constants											
Parameter	PM ₃₀	PM ₁₀	PM _{2.5}								
k, lb/VMT ¹¹ a, lb/VMT ¹¹ b, lb/VMT ¹¹	4.9	1.5	0.15								
a, lb/VMT ¹¹	0.70	0.90	0.90								
b, lb/VMT ¹¹	0.45	0.45	0.45								
Hourly FF. lb/VMT ¹²	7.20	1.83	0.18								
Annual EF, lb/VMT ¹³	5.82	1.48	0.15								

Emission Calculations for Particulate Matter										
PM ₃₀	PM ₁₀	PM _{2.5}								
1.92	0.49	0.049	lb/hr ¹⁴							
1.61	0.41	0.041	ton/yr ¹⁵							

¹ Empty vehicle weight includes driver and occupants and full fuel load.

² Cargo, transported materials, etc. (Density (lb/gal) *7560 gal truck/ 2000lb/ton)

³ Loaded vehicle weight = Empty + Load Size

⁴ Mean Vehicle weight = (Loaded Weight + Empty Weight) / 2

⁵ Vehicles per day = Loadout volume / Truck size

⁶ Trips per hour = Total loadout spots / Loading time

⁷ Trips per year = Total throughput (bbl/yr) / Truck size (bbl)

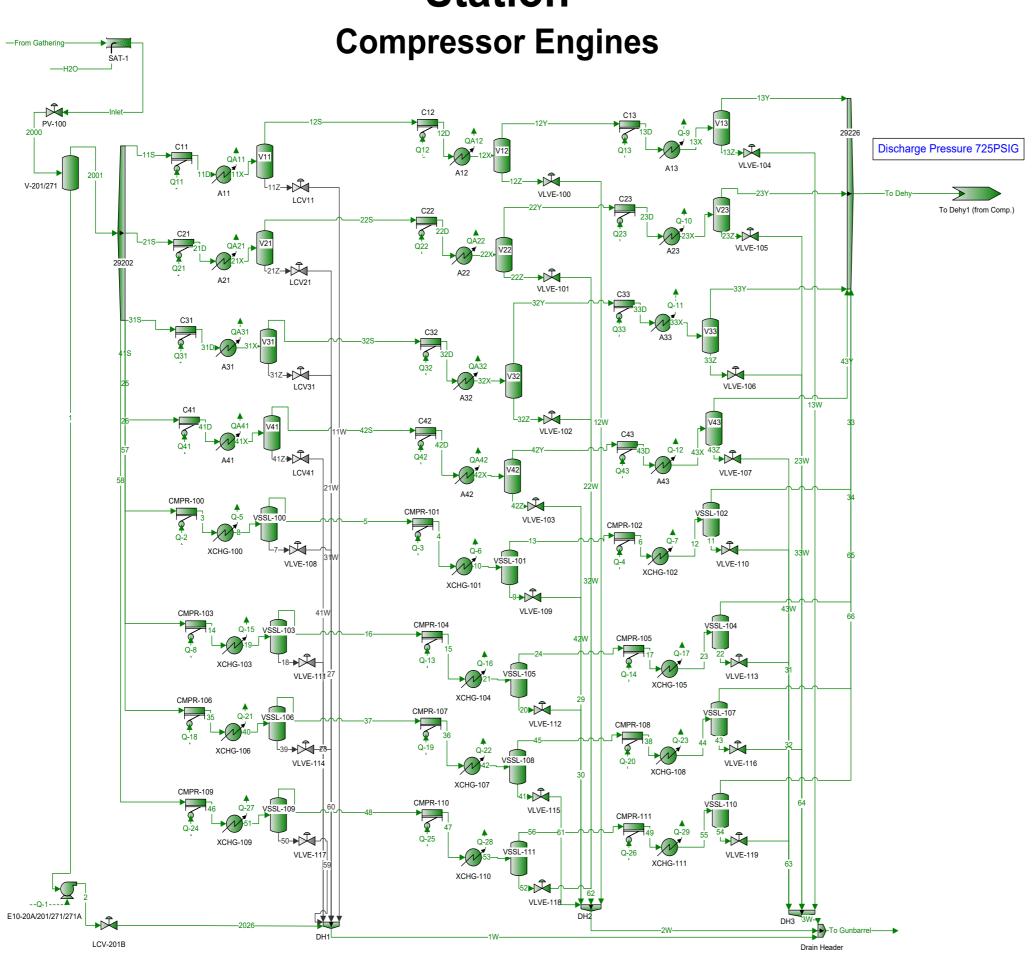
⁸ AP-42 Table 13.2.2-1

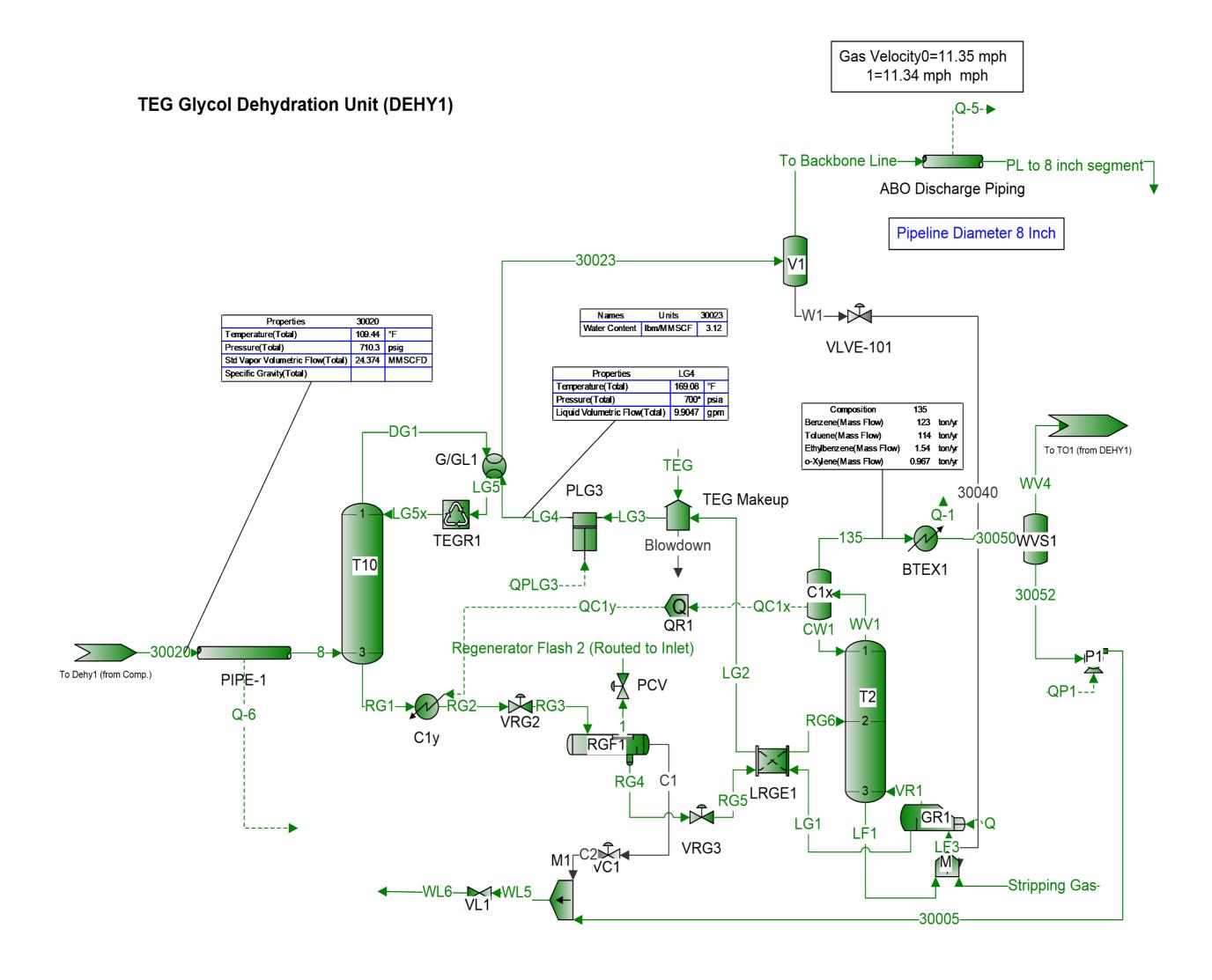
⁹ Per NMED Guidance

¹⁰ VMT/hr = Vehicle Miles Traveled per hour= Trips per hour * Segment Length

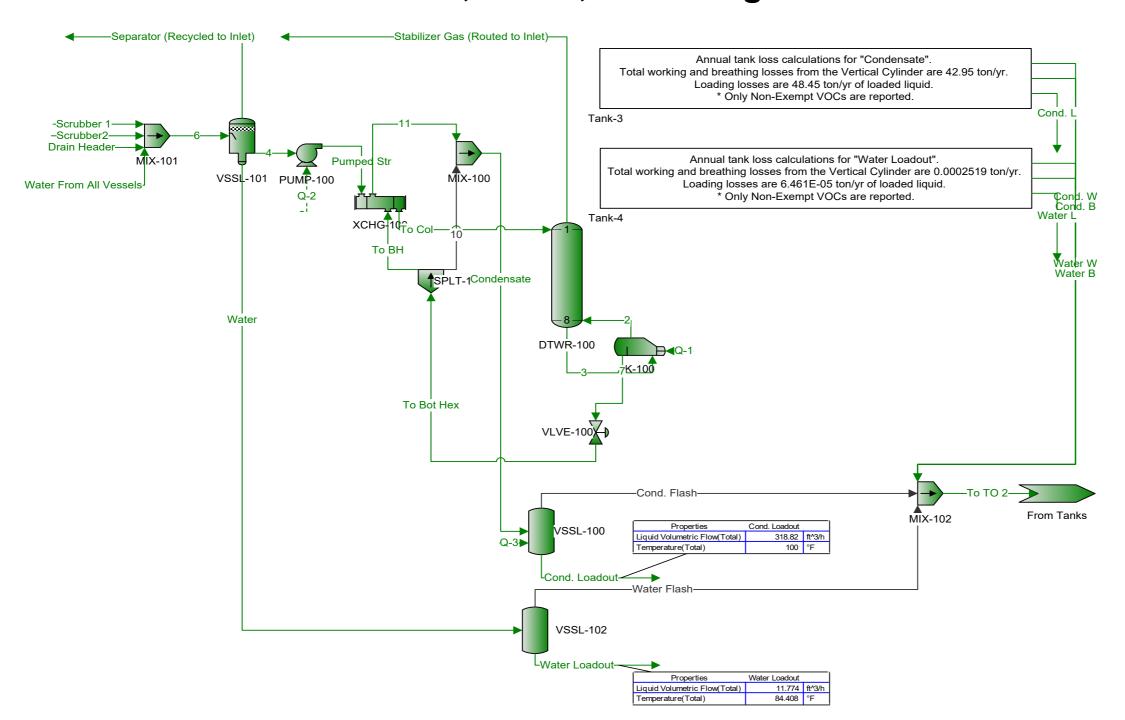
¹¹ Table 13.2.2-2, Industrial Roads

¹² AP-42 13.2.2, Equation 1a

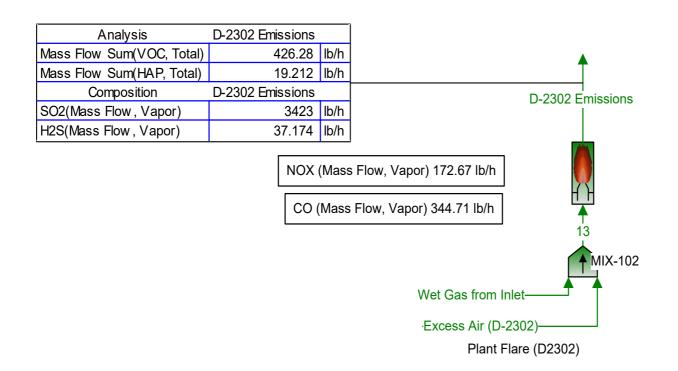

¹³ AP-42 13.2.2, Equation 2

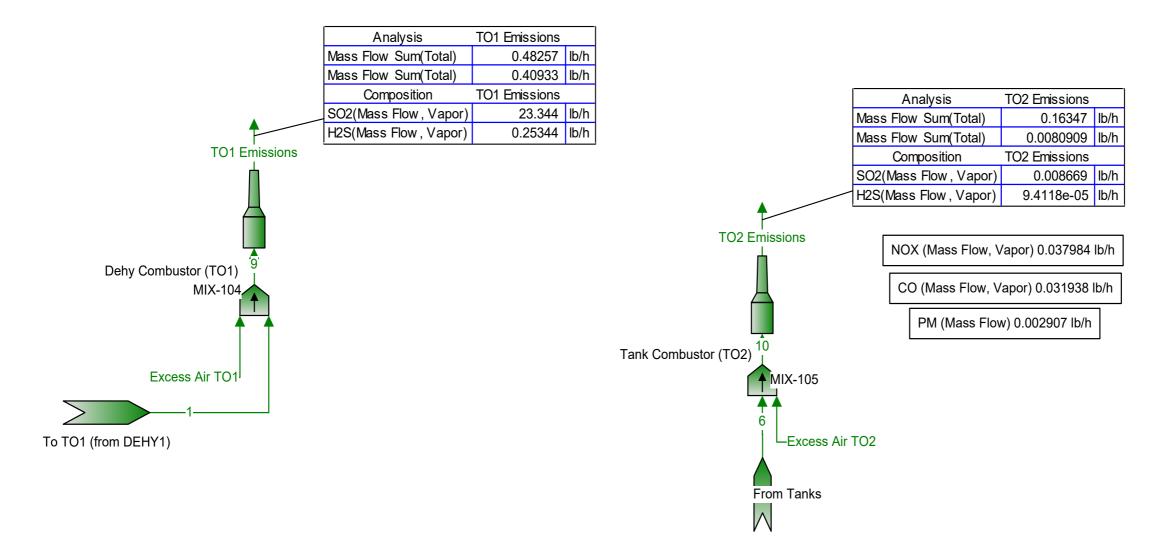

¹⁴ lb/hr = Hourly EF (lb/VMT) * VMT (mile/hr)

¹⁵ ton/yr = Annual EF (lb/VMT) * VMT (mile/hr) * Hours of operation (hr/yr)



Empire Abo Compressor Station





Stabilizer, Tanks, & Loading

Flares and Thermal Oxidizers

Section 7

June 2021; Revision 0

Saved Date: 6/22/2021

Information Used to Determine Emissions

<u>Information Used to Determine Emissions</u> shall include the following:

- If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- ☐ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- ☐ If an older version of AP-42 is used, include a complete copy of the section.
- ☑ If an EPA document or other material is referenced, include a complete copy.
- ☐ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Compressor Engines (Units E4-310 to E4-315)

- Engine manufacturer data
- AP-42 Section 3.2
- Catalyst vendor data

Facility-Wide Fugitive Emissions (Unit FUG40)

- Gas and liquids analyses derived from BR&E ProMax
- Facility fugitive component counts

Emergency Flares (Units D-2302, SSM, and MALF)

- Gas analyses derived from BR&E ProMax
- TNRCC flare emission factors

Storage Tanks (Units V2-1104-C through F)

- Liquids analyses for drain header and scrubbers
- BR&E ProMax simulation

Condensate and Produced Water Loading (Units L1 and L2)

- Liquids analyses for drain header and scrubbers
- BR&E ProMax simulation

TEG Dehydrator (Units DEHY1)

- Inlet gas analysis
- BR&E ProMax simulation

Heater (Unit H4)

- AP-42 Section 1.4
- GRI-HAPCalc 3.0

Thermal Oxidizers (Units TO1 and TO2)

- AP-42 Section 1.4
- Manufacturer specifications
- BR&E ProMax simulation

Unpaved Haul Roads

AP-42 Section 3.2.2

ME inc.

MECHANICAL EQUIPMENT INC.

May 3, 2021

Durango Permian 2002 Timberloch Place, Ste 110 The Woodlands, TX 77380

Attention: Darin Kennard

Reference: MEI Quote #21-04-5418

Catalyst Efficiencies – MEQGT1.0/ONT

Darin,

Per your request, I am sending you the information regarding the reduction efficiency of the catalysts that you have installed at Abo compressor station.

The Make and Model of the catalyst is a MEQGT-1.0/ONT.

The catalyst will be installed in a Caterpillar 3516TALE:

BHP: 1340 RPM: 1400

Exhaust Temp: 854 Deg F Exhaust Flow: 7644 cfm

The catalyst mentioned above are guaranteed to meet or exceed the following efficiencies:

70% reduction of CO 50% reduction of VOC 90% reduction of HCHO

If you need any additional information please do not hesitate to contact Mechanical Equipment, Inc. at your earliest convenience and we will be more than happy to assist you. Thank you for your continued business.

Kind Regards, Kevin Fikes

G3516 LE **NON-CURRENT**

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Exterran 121045 Frontier Field Services 3516

CATERPILLAR®

GAS COMPRESSION APPLICATION

1400 FUEL SYSTEM: **HPG IMPCO** ENGINE SPEED (rpm): COMPRESSION RATÍO: 8:1 WITH AIR FUEL RATIO CONTROL AFTERCOOLER WATER INLET (°F): 130 **SITE CONDITIONS:**

JACKET WATER OUTLET (°F): 210 FUEL: Gas Analysis COOLING SYSTEM: FUEL PRESSURE RANGE(psig): JW+OC, AC 35.0-40.0 IGNITION SYSTEM: FUEL METHANE NUMBER: EIS 90.7 **EXHAUST MANIFOLD: ASWC** FUEL LHV (Btu/scf): 907 COMBUSTION: Low Emission ALTITUDE(ft): 3200 NOx EMISSION LEVEL (g/bhp-hr NOx): MAXIMUM INLET AIR TEMPERATURE(°F): 1.5 100

SET POINT TIMING: NAMEPLATE RATING: 33.0 1340 bhp@1400rpm

			MAXIMUM RATING		AT MAXIMU	
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER	(1)	bhp	1340	1340	1005	670
INLET AIR TEMPERATURE		°F	100	100	100	100
ENGINE DATA	1					
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7544	7544	7805	8285
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8374	8374	8663	9195
AIR FLOW	(3)(4)	lb/hr	12793	12793	9894	6262
AIR FLOW WET (77°F, 14.7 psia)	(3)(4)	scfm	2885	2885	2231	1412
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	69.9	69.9	55.0	39.1
EXHAUST STACK TEMPERATURE	(6)	°F	854	854	840	842

ft3/min

lb/hr

7644

13283

7644

13283

5847

10275

3734

6531

EMISSIONS DATA	1					
NOx (as NO2)	(8)	g/bhp-hr	1.50	1.50	1.50	1.50
CO	(8)	g/bhp-hr	1.88	1.88	1.96	1.89
THC (mol. wt. of 15.84)	(8)	g/bhp-hr	3.06	3.06	3.39	3.59
NMHC (mol. wt. of 15.84)	(8)	g/bhp-hr	0.46	0.46	0.51	0.54
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.31	0.31	0.34	0.36
HCHO (Formaldehyde)	(8)	g/bhp-hr	0.25	0.25	0.28	0.30
CO2	(8)	g/bhp-hr	490	490	507	538
EXHAUST OXYGEN	(10)	% DRY	8.3	8.3	8.0	7.8

(7)(4)

(7)(4)

HEAT REJECTION]					
HEAT REJ. TO JACKET WATER (JW)	(11)	Btu/min	41273	41273	34512	29683
HEAT REJ. TO ATMOSPHERE	(11)	Btu/min	5313	5313	4428	3543
HEAT REJ. TO LUBE OIL (OC)	(11)	Btu/min	6526	6526	5457	4693
HEAT REJ. TO AFTERCOOLER (AC)	(11)(12)	Btu/min	13788	13788	9320	3302

HEAT EXCHANGER SIZING CRITERIA					
TOTAL JACKET WATER CIRCUIT (JW+OC)	(12)	Btu/min	53232		
TOTAL AFTERCOOLER CIRCUIT (AC) (12)(13) Btu/min 14477					
A cooling system safety factor of 0% has been added to the heat exchanger sizing criteria					

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

EXHAUST GAS FLOW (@ stack temp, 14.5 psia)

EXHAUST GAS MASS FLOW

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO_x) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION^a

	N	O _x ^b		СО
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	A	84	В
Uncontrolled (Post-NSPS) ^c	190	A	84	В
Controlled - Low NO _x burners	140	A	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	C	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	A	24	C
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10 ⁶ scf to kg/10⁶ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10 ⁶ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.

b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO_X emission factor. For

tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.

NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	A
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	E
N ₂ O (Controlled-low-NO _X burner)	0.64	E
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^{-d}	0.6	A
TOC	11	В
Methane	2.3	В
VOC	5.5	С

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO₂.

Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION $^{\rm a}$

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylchloranthrene ^{b, c}	<1.8E-06	E
	7,12-Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	E
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	E
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	E
120-12-7	Anthracene ^{b,c}	<2.4E-06	E
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	E
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	E
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	E
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	Е
205-82-3	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	Е
106-97-8	Butane	2.1E+00	Е
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	Е
25321-22-6	Dichlorobenzene ^b	1.2E-03	Е
74-84-0	Ethane	3.1E+00	E
206-44-0	Fluoranthene ^{b,c}	3.0E-06	E
86-73-7	Fluorene ^{b,c}	2.8E-06	Е
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	Е
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	Е
91-20-3	Naphthalene ^b	6.1E-04	E
109-66-0	Pentane	2.6E+00	E
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES^a (SCC 2-02-002-54)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating			
Criteria Pollutants and Greenhouse	e Gases				
NO _x ^c 90 - 105% Load	4.08 E+00	В			
NO _x ^c <90% Load	8.47 E-01	В			
CO ^c 90 - 105% Load	3.17 E-01	С			
CO ^c <90% Load	5.57 E-01	В			
CO_2^d	1.10 E+02	A			
SO ₂ ^e	5.88 E-04	A			
TOC ^f	1.47 E+00	A			
Methane ^g	1.25 E+00	C			
VOC^h	1.18 E-01	C			
PM10 (filterable) ⁱ	7.71 E-05	D			
PM2.5 (filterable) ⁱ	7.71 E-05	D			
PM Condensable ^j	9.91 E-03	D			
Trace Organic Compounds					
1,1,2,2-Tetrachloroethane ^k	<4.00 E-05	E			
1,1,2-Trichloroethane ^k	<3.18 E-05	E			
1,1-Dichloroethane	<2.36 E-05	E			
1,2,3-Trimethylbenzene	2.30 E-05	D			
1,2,4-Trimethylbenzene	1.43 E-05	C			
1,2-Dichloroethane	<2.36 E-05	E			
1,2-Dichloropropane	<2.69 E-05	E			
1,3,5-Trimethylbenzene	3.38 E-05	D			
1,3-Butadiene ^k	2.67E-04	D			
1,3-Dichloropropene ^k	<2.64 E-05	E			
2-Methylnaphthalene ^k	3.32 E-05	С			
2,2,4-Trimethylpentane ^k	2.50 E-04	С			
Acenaphthenek	1.25 E-06	С			

United States Environmental Protection Agency Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711

EPA-453/R-95-017 November 1995

Air

⊕ EPA

Protocol for Equipment Leak Emission Estimates

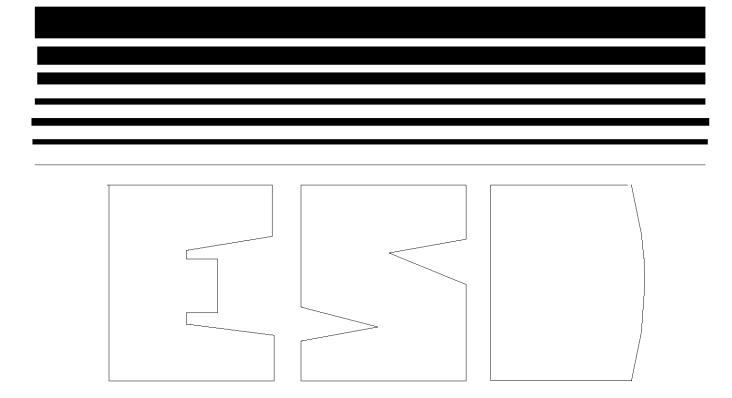


TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

Equipment Type	Service ^a	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

October 2000 RG-109 (Draft)

Air Permit Technical Guidance for Chemical Sources:

Flares and Vapor Oxidizers

Barry R. McBee, Chairman
R. B. "Ralph" Marquez, Commissioner
John M. Baker, Commissioner

Jeffrey A. Saitas, P.E., Executive Director

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Commission would appreciate acknowledgment.

Copies of this publication are available for public use through the Texas State Library, other state depository libraries, and the TNRCC Library, in compliance with the state depository law. For more information on TNRCC publications call (512)239-0028 or visit our Web site at:

htt:www.tnrcc.state.tx.us/publications

Published and distributed by:
Texas Natural Resource Conservation Commission
P.O. Box 13087
Austin, Texas 78711-3087

The TNRCC is an equal opportunity/affirmative action employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex, disability, age, sexual orientation or veteran status. In compliance with the Americans with Disabilities Act, this document may be requested in alternate formats by contacting the TNRCC at (512)239-0028, Fax 239-4488, or 1-800-RELAY-TX (TDD), or by writing P.O. Box 13087, Austin, TX 78711-3087.

Technical Disclaimer

This document is intended as guidance to explain the specific requirements for new source review permitting of flares and vapor oxidizers; it does not supersede or replace any state or federal law, regulation, or rule. References to abatement equipment technologies are not intended to represent minimum or maximum levels of Best Available Control Technology (BACT). Determinations of BACT are made on a case-by-case basis as part of the New Source Review of permit applications. BACT determinations are always subject to adjustment in consideration of specific process requirements, air quality concerns, and recent developments in abatement technology. Additionally, specific health effects concerns may indicate stricter abatement than required by the BACT determination.

The represented calculation methods are intended as an aid in the completion of acceptable submittals; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data.

These guidelines are applicable as of this document's publication date but are subject to revision during the permit application preparation and review period. It is the responsibility of the applicants to remain abreast of any guideline or regulation developments that may affect their industries.

The electronic version of this document may not contain attachments or forms (such as the PI-1, Standard Exemptions, or tables) that can be obtained electronically elsewhere on the TNRCC Web site.

The special conditions included with these guidelines are for purposes of example only. Special conditions included in an actual permit are written by the reviewing engineer to address specific permit requirements and operating conditions.

TABLE OF CONTENTS

Vapor Oxidizers Chapter 3—State and Federal Permitting Requirements Preconstruction Authorization General Regulation Applicability Chapter 4—Best Available Control Technology BACT for Flares BACT for Vapor Oxidizers 1 Chapter 5—Emission Factors, Efficiencies, and Calculations Flares: Introduction 1 Flare Emission Factors 1 Flare Destruction Efficiencies 1 Sample Calculations 2 Vapor Oxidizers 2 Chapter 6—Example Permit Conditions 2 General 3 Flares 3 Enclosed Flares or Vapor Oxidizers 3 References 3 References 3 References 3 Attachment A—General Control Device Requirements, 40 CFR § 60.18 3 Attachment B—Typical Refinery Flare Data	Chapt	er 2—Types of Flare and Oxidizer Systems
Chapter 3—State and Federal Permitting Requirements Preconstruction Authorization General Regulation Applicability Chapter 4—Best Available Control Technology BACT for Flares BACT for Vapor Oxidizers 1 Chapter 5—Emission Factors, Efficiencies, and Calculations Flares: Introduction 1 Flare Emission Factors 1 Flare Destruction Efficiencies 1 Sample Calculations 2 Vapor Oxidizers 2 Chapter 6—Example Permit Conditions 2 General 3 Flares 3 Enclosed Flares or Vapor Oxidizers 3 Vapor Oxidizers 3 References 3 Glossary 3 Attachment A—General Control Device Requirements, 40 CFR § 60.18 3 Attachment B—Typical Refinery Flare Data		Flares
Preconstruction Authorization General Regulation Applicability Chapter 4—Best Available Control Technology BACT for Flares BACT for Vapor Oxidizers 1 Chapter 5—Emission Factors, Efficiencies, and Calculations Flares: Introduction 1 Flare Emission Factors 1 Flare Destruction Efficiencies 1 Sample Calculations 2 Vapor Oxidizers 2 Chapter 6—Example Permit Conditions 2 General 3 Flares 3 Enclosed Flares or Vapor Oxidizers 3 Vapor Oxidizers 3 References 3 References 3 Glossary 3 Attachment A—General Control Device Requirements, 40 CFR § 60.18 3 Attachment B—Typical Refinery Flare Data		Vapor Oxidizers
General Regulation Applicability Chapter 4—Best Available Control Technology BACT for Flares BACT for Vapor Oxidizers 1 Chapter 5—Emission Factors, Efficiencies, and Calculations Flares: Introduction 1 Flare Emission Factors 1 Flare Destruction Efficiencies 1 Sample Calculations 2 Vapor Oxidizers 2 Chapter 6—Example Permit Conditions 2 General 3 Flares 3 Enclosed Flares or Vapor Oxidizers 3 Vapor Oxidizers 3 References 3 Glossary 3 Attachment A—General Control Device Requirements, 40 CFR § 60.18 3 Attachment B—Typical Refinery Flare Data 4	Chapt	er 3—State and Federal Permitting Requirements
Chapter 4—Best Available Control Technology BACT for Flares BACT for Vapor Oxidizers Chapter 5—Emission Factors, Efficiencies, and Calculations Flares: Introduction Flare Emission Factors Flare Destruction Efficiencies Sample Calculations Vapor Oxidizers Chapter 6—Example Permit Conditions General Flares General Flares 3 Enclosed Flares or Vapor Oxidizers 3 References 3 References 3 Attachment A—General Control Device Requirements, 40 CFR § 60.18 3 Attachment B—Typical Refinery Flare Data		Preconstruction Authorization
BACT for Flares BACT for Vapor Oxidizers Chapter 5—Emission Factors, Efficiencies, and Calculations Flares: Introduction Flare Emission Factors Flare Destruction Efficiencies Sample Calculations Vapor Oxidizers Chapter 6—Example Permit Conditions General Flares Sample Calculations Vapor Oxidizers 3 Enclosed Flares or Vapor Oxidizers 3 Enclosed Flares or Vapor Oxidizers 3 References Glossary Attachment A—General Control Device Requirements, 40 CFR § 60.18 3 Attachment B—Typical Refinery Flare Data		General Regulation Applicability
BACT for Vapor Oxidizers	Chapt	er 4—Best Available Control Technology
Chapter 5—Emission Factors, Efficiencies, and Calculations Flares: Introduction Flare Emission Factors Flare Destruction Efficiencies Sample Calculations Vapor Oxidizers Chapter 6—Example Permit Conditions General Flares Sanclosed Flares or Vapor Oxidizers Vapor Oxidizers 3 Enclosed Flares or Vapor Oxidizers 3 References Glossary Attachment A—General Control Device Requirements, 40 CFR § 60.18 3 Attachment B—Typical Refinery Flare Data		BACT for Flares
Flares: Introduction		BACT for Vapor Oxidizers
Flare Emission Factors1Flare Destruction Efficiencies1Sample Calculations2Vapor Oxidizers2Chapter 6—Example Permit Conditions2General3Flares3Enclosed Flares or Vapor Oxidizers3Vapor Oxidizers3References3Glossary3Attachment A—General Control Device Requirements, 40 CFR § 60.183Attachment B—Typical Refinery Flare Data4	Chapt	er 5—Emission Factors, Efficiencies, and Calculations
Flare Destruction Efficiencies		Flares: Introduction
Sample Calculations		Flare Emission Factors
Vapor Oxidizers		Flare Destruction Efficiencies
Chapter 6—Example Permit Conditions		Sample Calculations
General		Vapor Oxidizers
Flares	Chapt	er 6—Example Permit Conditions
Enclosed Flares or Vapor Oxidizers		General
Vapor Oxidizers		Flares
References		Enclosed Flares or Vapor Oxidizers
Glossary		Vapor Oxidizers
Attachment A—General Control Device Requirements, 40 CFR § 60.18 3 Attachment B—Typical Refinery Flare Data	Refere	ences3
Attachment B—Typical Refinery Flare Data4	Gloss	ary3
**	Attach	•
Attachment C—Typical Acid Gas Flare Data4		mont D. Typical Definery Flore Data

Table 1. Applicable TNRCC Regulations 6
Table 2. Flare Pilot Requirements
Table 3. BACT, Sampling, and Monitoring Guidelines for Vapor Oxidizers 16
Table 4. Flare Factors
Table 5. 99.5 Percent DRE Flare Factors
Table 6. Waste Stream Constituents in Mole Percent
Table 7. Estimation of Average Mass Flow Rates
Table 8. Emission Rates
Table 9. Estimation of Net Heat Releases
Table 10. Estimation of Volume Average Molecular Weight

Chapter 2—Types of Flare and Oxidizer Systems

This document provides guidance for two classes of vapor combustion control devices: flares and vapor oxidizers. While there may be some overlap between the two, flares have generally been treated separately by the EPA and the TNRCC, in large part because flares have an open flame and often cannot be sampled, so emissions are estimated based on the results of flare testing performed in the early 1980s. Each of the two classes will be dealt with separately in each of the chapters of this document.

Combustion Control Devices NOT Discussed. This document will not cover permitting of RCRA or BIF units because the requirements for these units often go beyond the requirements for state air permitting. Incinerators used to treat solid wastes are covered in another technical guidance document, *Incinerators*. Guidance for combustion control devices associated with spray paint booths, coatings operations, and semiconductor facilities should be obtained by calling the TNRCC New Source Review Permits Division at (512) 239-1250.

Flares

Flare systems generally are open-flame control devices used for disposing of waste gas streams during both routine process and emergency or upset conditions. In addition to simple, unassisted flares, typical smokeless flare systems include, but are not limited to, the following:

- *Enclosed Flares/Vapor Combustors*. Enclosed flares are used in disposing of waste gas streams in instances where a visible flame is unacceptable. Applications include chemical processing, petroleum refining and production, and municipal waste gas treatment. These may be referred to as vapor combustors and can have more than one burner in the stack.
- Steam-Assisted Flares. Steam-assisted flares are used in disposing of low-pressure waste gas streams when steam is available and practical to minimize smoking from the flare. Applications are similar to those of enclosed flares. Flares might also be assisted with natural gas if readily available on site; these flares would undergo a case-by-case review.
- Air-Assisted Flares. Air-assisted flares are used in disposing of low-pressure waste gas streams when practical or when steam utilities are not available to minimize smoking from the flare. Applications include chemical processing, petroleum refining and production, and pipeline transportation.
- *Sonic Flares.* Sonic flares are used in disposing of high-pressure waste gas streams. Applications include gas production, pipeline transportation, and treatment plants.

• *Multipoint Flare Systems*. Multipoint flare systems are used in disposing of both high- and low-pressure waste gas streams. Multiple burner tips in conjunction with a staged control system provide for controlled combustion. Applications are similar to those of air-assisted flares.

Vapor Oxidizers

These devices generally do not have an open flame but have an exhaust stack which allows for sampling and monitoring of exhaust emissions. The most common type, thermal, relies on the combustion heat of the waste gas and assist fuel (if required) to oxidize the waste gas air contaminants. Other types include:

- *Recuperative*. In this case, the waste gas is directed to a heat exchanger to be preheated by the exhaust gas, to minimize the need for additional assist fuel. Recuperative oxidizers are considered a subset of thermal oxidizers in this document.
- Regenerative. Combustion takes place in a chamber with a heat sink, such as ceramic saddles, which retains the heat of combustion, allowing for combustion of more dilute vapor streams (which have a low heat of combustion) at a lower cost. These units generally have multiple chambers, which allow for the preheat of one chamber by exhaust gases while combustion takes place in another chamber.
- *Catalytic*. Combustion takes place over a catalyst that allows for combustion at a lower temperature (in the range of 600 to 800°F as opposed to greater than 1400°F for many thermal oxidizers). Catalytic oxidizers function best with a waste stream with constant flow and composition.

Chapter 5—Emission Factors, Efficiencies, and Calculations

This chapter provides detailed instructions for the calculations necessary to verify BACT and estimate emissions from flares and vapor oxidizers. Flares must be checked to determine whether they will satisfy the flow and thermal requirements of 40 CFR § 60.18, and their emissions are determined by the use of emission factors. Example calculations are provided for these flare calculations.

Oxidizer emissions are determined by using previous sampling results or emission factors from the manufacturer or AP-42. These calculations are very similar to the flare calculations and are only discussed in general terms.

Flares: Introduction

Although emissions from emergency flares are not included in a permit when it is issued, emissions should be estimated for both routine process flares and emergency flares. Sometimes, emissions of routine pilot gas combustion may be included in an issued permit for emergency flares (although not required).

In this section, the *flare* emission factors and destruction efficiencies are presented first. This information is followed by sample *calculations* that demonstrate how to ensure that the requirements of 40 CFR \S 60.18 are satisfied and how to estimate emissions from a flare. Flare data in Attachment B (typical refinery flare) will be used as a basis in most of the following calculations. Flare data in Attachment C (acid gas flare) will be used as a basis in the example calculations for SO₂ emissions.

Flare Emission Factors

The usual flare destruction efficiencies and emission factors are provided in Table 4. The high-Btu waste streams referred to in the table have a heating value greater than 1,000 Btu/scf.

Flare Destruction Efficiencies

Claims for destruction efficiencies greater than those listed in Table 4 will be considered on a case-by-case basis. The applicant may make one of the three following demonstrations to justify the higher destruction efficiency: (1) general method, (2) 99.5 percent justification, or (3) flare stack sampling.

Waste Stream	Destruction/R	Destruction/Removal Efficiency (DRE)			
VOC	98 percent (ger	98 percent (generic) 99 percent for compounds containing no more than 3 carbons that contain no elements other than carbon and hydrogen in addition to the following compounds: methanol, ethanol, propanol, ethylene oxide and propylene oxide			
	contain no elen				
H_2S	98 percent				
NH ₃	case by case				
СО	case by case				
Air Contaminants	Emission Fact	Emission Factors			
thermal NO _x	steam-assist:	high Btu low Btu	0.0485 lb/MMBtu 0.068 lb/MMBtu		
	other:	high Btu low Btu	0.138 lb/MMBtu 0.0641 lb/MMBtu		
fuel NO _x	NO _x is 0.5 wt p	percent of inlet	NH ₃ , other fuels case by case		
СО	steam-assist:	high Btu low Btu	0.3503 lb/MMBtu 0.3465 lb/MMBtu		
	other:	high Btu low Btu	0.2755 lb/MMBtu 0.5496 lb/MMBtu		
PM	none, required to be smokeless				
SO_2	100 percent S i	100 percent S in fuel to SO ₂			

^{*}The only exeption of this is if inorganics might be emitted from the flare. In the case of landfills, the AP-42 PM factor may be used. In other cases, the emissions should be based on the composition of the waste stream routed to the flare.

Manley gas testing,

INC.

P.O. DRAWER 193 OFFICE(432)367-3024

FAX(432)367-1166

ODESSA, TEXAS 79760 E-MAIL: MANLEYGAST@AOL.COM

CHARGE..... 151 - 0 REC. NO.

3 12736 DATE SAMPLED..... 03-16-15 DATE RUN..... 03-18-15 EFFEC. DATE..... 03-01-15

STATION NO. ... 633001

TEST NUMBER..

PRODUCER FRONTIER FIELD SERVICES

SAMPLE NAME.... #2 INLET

TYPE: COMPOSITE

RECEIVED FROM.. FRONTIER FIELD SERVICES LLC - ABO

FLOWING PRESSURE 32.4 PSIA

FLOWING TEMPERATURE 62 F

SAMPLED BY: F

CYLINDER NO. ...

FRACTIONAL ANALYSIS CALCULATED @ 14.650 PSIA AND 60F

	MOL%	GPM	
		(REAL)	
HYDROGEN SULFIDE	1.487	*	
NITROGEN	2.167		
CARBON DIOXIDE	2.381		
METHANE	66.433		
ETHANE	14.674	3.920	H2S PPMV = 14870
PROPANE	7.552	2.079	And the state of t
ISO-BUTANE	0.935	0.305	
NOR-BUTANE	2.317	0.729	
ISO-PENTANE	0.586	0.214	'Z' FACTOR (DRY) = 0.9954
NOR-PENTANE	0.576	0.209	'Z' FACTOR (WET) = 0.9950
HEXANES +	0.892	0.389	
			26 LB. R.V.P. = 1.232
TOTALS	100.000	7.845	

..CALCULATED SPECIFIC GRAVITIES..

.. CALCULATED GROSS HEATING VALUES...

REAL, DRY 0.8363

BTU/CF - REAL, DRY 1321

REAL, WET 0.8329

BTU/CF - REAL, WET 1298

DISTRIBUTION AND REMARKS:

N

ANALYZED BY: AW

** R **

APPROVED:

MANLEY GAS TESTING INC. 120 DOCK ROAD - ODESSA, TEXAS-432-367-3024

A SAMPLE OF 633001 FFS - INLET #2 (3/16/15)

CAPILLARY EXTENDED C-6+ ANALYSIS (NORMALIZED TO 100%)

(NORMALIZED TO 100%) PAGE NO. 1

COMPONENT	MOL%	WT%
NEOHEXANE		0.377 3.781 10.021 5.666 11.070 0.131 6.749 0.000 0.027 6.807
2,3DMC4+CYC5	4.731	3.781
2MPENTANE	10.911	10.021
3MPENTANE	6.170 12.051	5.666
3MPENTANE	12.051	11.070
2.2 DMPENTANE	0.122	0.131
MCYCLOPENTANE	7.524	6.749
2,4 DMPENTANE	0.000	0.000
2,2 DMPENTANE MCYCLOPENTANE 2,4 DMPENTANE 2,2,3 TMBUTANE BENZENE 3,3 DMPENTANE CYCLOHEXANE	0.025	0.027
BENZENE	8.177	6.807
3,3 DMPENTANE	0.042	0.045
CYCLOHEXANE	9.035	8.104
2MHEXANE	1.498	1.600
2,3 DMPENTANE	1.036	1.106
3MHEXANE	1.793	1.915
2MHEXANE	3.588	3.755
		3.569
MCYCLOHEXANE	5.774	6.042
2,2DMHEXANE	0.664	0.808
2,3,3TMPENTANE	0.020	0.025
MCYCLOHEXANE 2,2DMHEXANE 2,3,3TMPENTANE TOLUENE 2,3DMHEXANE 2M3EPENTANE 2MHEPTANE	6.191	6.079
2,3DMHEXANE	0.140	0.171
2M3EPENTANE	0.052	0.063
2MHEPTANE	1.442	1.755
4MHEPTANE	0.244	0.297
3,4DMHEXANE	0.087	0.106
3MHEPTANE	0.779	0.948
TRIMCYCPENTANES (GROUPED)	0.126	0.151
DIMCYCHEXANES (GROUPED)	1.313	1.572
N-OCTANE	1.115	1.357
2,3,5TRIMHEXANE	0.049	0.067
2,2,4TRIMHEXANE	0.119	0.162
2,2DIMHEPTANE	0.024	0.033
		0.050
2,5DIMHEPTANE	0.044 0.000	0.060 0.000
I-NONANE	0.042	0.057
E-CYCHEXANE	0.598	0.716
3,3DIMHEPTANE	0.338	0.289
2,6DIMHEPTANE	0.059	0.080
E-BENZENE	0.113	0.128
2,3DIMHEPTANE	0.055	0.075
M-XYLENE	0.967	1.094
P-XYLENE	0.271	0.306
3,4DIMHEPTANE	0.221	0.302
3EHEPTANE	0.051	0.070
The state of the s		

MANLEY GAS TESTING INC. 120 DOCK ROAD - ODESSA, TEXAS-432-367-3024

A SAMPLE OF 633001 FFS - INLET #2 (3/16/15)

CAPILLARY EXTENDED C-6+ ANALYSIS

(NORMALIZED TO 100%) PAGE NO. 2

CONDONENT	WOT 0	*****			
COMPONENT	MOL %	WT%			
	0.054				
4MOCTANE		0.347			
3MOCTANE	0.126	0.172			
O-XYLENE	0.170	0.192			
IC4CYCPENTANE	0.076	0.103			
N-NONANE	0.569	0.778			
I-DECANE	0.100	0.152			
1E1MCYC6		0.153			
IC3BENZENE		0.351			
2,3DMOCTANE		1.079			
3EOCTANE	1.632	2.474			
NC4CYCC6		0.400			
NC3BENZENE		0.434			
M+P E-TOLUENE		0.946			
O-E-TOLUENE		0.668			
2,2DMOCTANE	0.322	0.592			
TERTBUTYLBENZENE		0.170			
		0.095			
1,3,5TMBENZENE	0.074	1 TO 10 10 10 10 10 10 10 10 10 10 10 10 10			
3,6DMOCTANE	0.175	0.265			
IC4BENZENE		0.835			
N-DECANE	0.440	0.667			
	0.000	0.000			
UNKNOWN C-6'S	0.000	0.000			
UNKNOWN C-7'S	0.000	0.000			
UNKNOWN C-8'S	0.022	0.027			
	0.834	1.140			
UNK C10'S THRU C14'S		0.374			
	0.000	0.000			
UNK C17'S THRU C20'S	0.000	0.000			
TOTAL	100.000	100.000			
			========		
COMPONENT GROUPINGS (PARAFFINS-NAPTHENES-AROMATICS)					

	MOL%	WT%	* C6+ CHARACTERIZATION
TOTAL C-6'S	23.411 8.123 4.832 4.418 0.206 0.000	52.575 24.269 9.716 6.432 6.634 0.374 0.000	MOL.WEIGHT = 93.830 SP.GRAVITY = 3.2397 BTU/FT3(DRY) = 4984.962 BTU/FT3(WET) = 4899.101 CU.FT./GAL = 25.048 GAL/CU.FT. = 0.039923 MOL% C6+ AROMATICS = 18.538
TOTAL C-17 THRU C-20	0.000	0.000	
TOTAL	100.000	100.000	

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Frontier Field Services, LLC 2002 Timberloch Place, Suite 110 The Woodlands, Texas 77380

Sample: Empire Abo Compressor Station Gas Liberated from Separator Water From 22 psig & 91 °F to 0 psig & 70 °F

Date Sampled: 08/21/2019 Job Number: 192952.001

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	2.800	
Nitrogen	6.876	
Carbon Dioxide	34.608	
Methane	29.650	
Ethane	6.959	1.916
Propane	4.064	1.153
Isobutane	1.427	0.481
n-Butane	2.430	0.789
2-2 Dimethylpropane	0.759	0.298
Isopentane	2.370	0.892
n-Pentane	2.628	0.981
Hexanes	0.444	0.188
Heptanes Plus	<u>4.985</u>	<u>1.981</u>
Totals	100.000	8.678

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.378	(Air=1)
Molecular Weight	96.91	
Gross Heating Value	5017	BTU/CF

Specific Gravity	1.337	(Air=1)
Compressibility (Z)	0.9905	
Molecular Weight	38.36	
Gross Heating Value		
Dry Basis	1202	BTU/CF
Saturated Basis	1182	BTU/CF

^{*}Hydrogen Sulfide tested in laboratory by: Stain Tube Method (GPA 2377)

Results: 1761.0 Gr/100 CF, 28000 PPMV or 2.800 Mol %

Base Conditions: 15.025 PSI & 60 Deg F

Sampled By: (16) NV Certified: FESCO, Ltd. - Alice, Texas

Analyst: NG Processor: KV Cylinder ID: WF-3S

David Dannhaus 361-661-7015

FESCO, Ltd. Job Number: 192952.001

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286 TOTAL REPORT

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	2.800	C.	2.488
Nitrogen	6.876		5.021
Carbon Dioxide	34.608		39.704
Methane	29.650		12.398
Ethane	6.959	1.916	5.455
Propane	4.064	1.153	4.672
Isobutane	1.427	0.481	2.162
n-Butane	2.430	0.789	3.682
2,2 Dimethylpropane	0.759	0.298	1.428
Isopentane	2.370	0.892	4.457
n-Pentane	2.628	0.981	4.943
2,2 Dimethylbutane	0.000	0.000	0.000
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.068	0.029	0.153
2 Methylpentane	0.094	0.040	0.211
3 Methylpentane	0.074	0.031	0.166
n-Hexane	0.208	0.088	0.467
Methylcyclopentane	0.108	0.038	0.237
Benzene	1.377	0.397	2.804
Cyclohexane	0.220	0.077	0.482
2-Methylhexane	0.074	0.035	0.193
3-Methylhexane	0.104	0.049	0.272
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.179	0.080	0.463
n-Heptane	0.245	0.116	0.640
Methylcyclohexane	0.263	0.109	0.673
Toluene	0.777	0.268	1.866
Other C8's	0.562	0.269	1.615
n-Octane	0.243	0.128	0.724
Ethylbenzene	0.085	0.034	0.235
M & P Xylenes	0.201	0.080	0.556
O-Xylene	0.051	0.020	0.141
Other C9's	0.231	0.121	0.760
n-Nonane	0.157	0.091	0.525
Other C10's	0.000	0.000	0.000
n-Decane	0.058	0.037	0.215
Undecanes (11)	0.050	<u>0.032</u>	0.192
Totals	100.000	8.678	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity 1.337	(Air=1)
Compressibility (Z) 0.9905	
Molecular Weight 38.36	
Gross Heating Value	
Dry Basis 1202	BTU/CF
Saturated Basis 1182	BTU/CF

Leaders in Petroleum Analytical Services www.pantechs.com

Analytical Report

10/3/2019

Customer:	Durango Midstream, LLC	Order:	O2019-889
Location:	Abo Station	Received:	9/25/2019
Description:	Durango Midstream Abo Station Liquid Samples	Contact:	Ed McCasland

REPORT DISTRIBUTION:

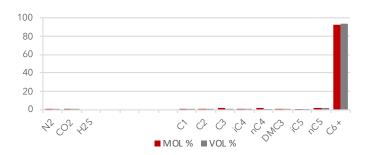
Bobby Mallett

All data reported in this Analytical Report is in compliance with the test method(s) performed as of the date noted above. The validity and integrity of this report will remain intact as long as it is accompanied by this page and reproduced in full. Any datafile (e.g. .txt, .csv, etc.) produced which is associated with the results in this report shall be considered for convenience only and does not supercede this report as the official test results. We reserve the right to return to you any unused samples received if we consider so necessary (e.g., samples identified as hazardous waste).

We appreciate you choosing Pantechs Laboratories. If you have any questions concerning this report, please feel free to contact us at any time.

Order Analysis List

Count	Group	Site	Sample Point/Source	Method	Item	Onsite H2S
2	- O2019-889					
2	Liquid					
2	Hydrocarbon					
1		N/A	Closed Drain Header	GPA 2186	NGLEXT	
1		N/A	#2 Inlet Scrubber	GPA 2186	NGLEXT	



EXTENDED LIQUID/NGL FRACTIONAL ANALYSIS

SAMPLE ID	
Customer	Durango Midstream, LLC
Operator	Durango Midstream, LLC
Location	Abo Station
Site	N/A
Sample Point/Source	Closed Drain Header
Pressure	24 psig
Temperature	N/A
Atm. Temp	82 F
Sample Date	09/25/19
Sample Time	11:00:00 AM
Sampled By	Pantechs/DCB
Analysis Date	10/02/19
ContainerID	PL1871

COMPONENT	SYM	MOL %	VOL %	WT%
Nitrogen	N2	0.0243	0.0065	0.0069
Carbon Dioxide	CO2	0.0563	0.0233	0.0250
*Hydrogen Sulfide	H2S	0.0000	0.0000	0.0000
Methane	C1	0.0741	0.0304	0.0120
Ethane	C2	0.5570	0.3606	0.1696
Propane	C3	1.5949	1.0634	0.7120
i-Butane	iC4	0.5027	0.3981	0.2960
n-Butane	nC4	1.9771	1.5085	1.1637
neo-Pentane	DMC3	0.0005	0.0004	0.0004
i-Pentane	iC5	1.3105	1.1599	0.9572
n-Pentane	nC5	1.9317	1.6947	1.4116
**Hexanes+	C6+	91.9709	93.7542	95.2456
	Totals:	100.0000	100.0000	100.0000

RELATIVE CONCENTRATION

Relativie Density, 60/60	0.7574

SPECIFIC GRAVITY

Absolute at 100F, psia 16.0 Equivalent Reid, psi 14.8

SCF/GALLON OF LIQUID Ideal Gas, 14.65 psia & 60F 24.356 Real Gas, 14.65 psia & 60F 21.209

MOLECULAR WEIGHT	
Molar Mass	98.754

CALCULATIONS / METHODS

G (2002 (110110) (111211	.020
Pressure Base, PSIA	14.65
Temp Base, DEG F	60
Ideal/Real Gas	Real
Method(s)	ASTM D8003, GPA 2103

APPLICABLE CURRENT GPA & ASTM METHODS, PROCEDURES, AND CONSTANTS ARE USED

REMARKS / COMMENTS / OTHER

Value of "0.000" interpreted as below detectable limit (BDL), unless otherwise stated below.

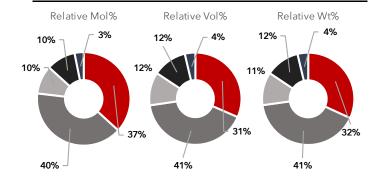
- * H2S determination by GPA 2103, concentration losses possible to collection container.
- ** Hexanes Plus Detail on Pages 2-3

HEXANES PLUS EXTENDED FRACTIONAL ANALYSIS

SAMPLE ID

Customer	Durango Midstream, LLC
Operator	Durango Midstream, LLC
Location	Abo Station
Site	N/A
Sample Point/Source	Closed Drain Header
Sample Date	09/25/19
ContainerID	PL1871

HEXANES PLUS PHYSICAL PROPERTIES


Molecular Weight	102.2700
Relative Density, 60F/60F	0.7266
Vapor Pressure, psia at 100F	1.8742

HEXANES PLUS SUMMARY

TIEXANES FLOS SOMMAN					
GRP	MOL %	VOL %	WT%	RELATIVE VOL%	
C6	25.273163	20.851840	21.105401		
C7	28.701163	27.184973	28.017219		
C8	23.879128	26.575451	26.984559		
C9	9.712329	12.277723	12.411852		
C10	2.496643	3.695129	3.596398	<u> </u>	
C11	1.391567	2.240866	2.202482	·	
C12	0.353150	0.612264	0.609085	[
C13	0.094608	0.175941	0.176576	<u> </u>	
C14	0.050662	0.100490	0.101714	1	
C15	0.014586	0.030772	0.031379	1	
C16	0.003654	0.008163	0.008281	1	
C17	0.000148	0.000345	0.000357	1	
C18	0.000099	0.000243	0.000297	-	
C19	0.000000	0.000000	0.000000	1	
C20	0.000000	0.000000	0.000000		
C21	0.000000	0.000000	0.000000	-	
C22	0.000000	0.000000	0.000000	1	
C23	0.000000	0.000000	0.000000	1	
C24	0.000000	0.000000	0.000000	-	
C24+	0.000000	0.000000	0.000000	1	

BTEX GROUP SUMMARY

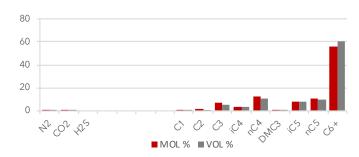
COMPOUND		MOL %	VOL %	WT %
	Benzene	9.745015	6.600417	7.707955
	Toluene	10.615735	8.604026	9.906482
	Ethylbenzene	2.608434	2.436521	2.804137
	m-Xylene+p-Xylene	2.677070	2.508679	2.877883
	o-Xylene	0.839127	0.772127	0.902074
	Totals:	26.485381	20.921770	24.198531

HEXANES PLUS DETAIL

Totals: 91.970900 93.754200 95.245600

D	COMPONENT	MOL %	VOL %	WT %	RELATIVE VOL%
5-1	2,2-Dimethylbutane	0.029725	0.030037	0.025924	
5-2	2,3-Dimethylbutane+Cyclopentane	2.912898	2.890593	2.541863	
6-3	2-Methylpentane	1.379518	1.385890	1.203762	
6-4	3-Methylpentane	0.988742	0.976556	0.862827	· 🖥
6-5	n-Hexane	2.738989	2.725896	2.390078	
5-6	Methylcyclopentane	2.529825	2.166560	2.155898	
6-7	Benzene	9.745015	6.600417	7.707955	
6-8	Cyclohexane	4.948451	4.075891	4.217094	
	Total C6 Group	25.273163	20.851840	21.105401	
7-1	2,2-Dimethylpentane	0.507308	0.574688	0.514744	.
7-2	2,4-Dimethylpentane	0.014517	0.016472	0.014706	
7-3	3,3-Dimethylpentane	0.030022	0.033038	0.030417	
7-4	2-Methylhexane	1.232274	1.385936	1.250359	
7-5	1,1-Dimethylcyclopentane+3-Methylhexane	1.958819	1.942818	1.947557	
7-6	2,3-Dimethylpentane	0.357989	0.393336	0.363273	j.
7-7	1,t3-Dimethylcyclopentane	1.079795	1.079121	1.073593	
7-8	1,c3-Dimethylcyclopentane+3-Ethylpentane	0.743532	0.747014	0.739259	
7-9	1,t2-Dimethylcyclopentane+1,c2-Dimethylcyclopentan	0.395122	0.393511	0.392885)
7-10	n-Heptane	4.196920	4.686185	4.258391	
7-11	Methylcyclohexane+1,1,3-Trimethylpentane	6.872705	6.686050	6.833097	
7-12	Toluene	10.615735	8.604026	9.906482	
7-13	Cycloheptane	0.696425	0.642778	0.692456	_
	Total C7 Group	28.701163	27.184973	28.017219	Page 2 o

ID	COMPONENT	MOL %	VOL %	WT %	RELATIVE VOL%
-1	2,5-Dimethylhexane	0.269109	0.337596	0.311277	
-2	2,4-Dimethylhexane+Ethylcyclopentane	0.268714	0.334540	0.310799	-
-3	2,2,3-Trimethylpentane	0.737705	0.897665	0.853274	
-4	2,2,4-Trimethylpentane	0.691784	0.870316	0.800185	
-5	3,3-Dimethylhexane	0.621371	0.752689	0.718685	
-6	2-Methylheptane+4-Methylheptane	0.272269	0.339785	0.314893	•
-7	2,3,4-Trimethylpentane	3.068636	3.718129	3.549468	
8-8	3-Methylheptane	0.426131	0.525887	0.492875	
-9	1,c2-Dimethylcyclohexane	2.497433	2.683504	2.837793	
-10	1-Methyl,1-Ethylcyclopentane	0.210251	0.230392	0.238890	1
-11	n-Octane	3.016295	3.739762	3.488870	
-12	1,t3-Dimethylcyclohexane	0.353150	0.385716	0.401318	_
-13	1,c3-Dimethylcyclohexane	0.895418	0.999345	1.017447	
-14	Ethylcylclohexane	2.228719	2.419708	2.532381	
-15	Ethylbenzene	2.608434	2.436521	2.804137	
-16	m-Xylene+p-Xylene	2.677070	2.508679	2.877883	
-17	o-Xylene	0.839127	0.772127	0.902074	
-18	Cyclooctane	0.469386	0.480468	0.533402]
-19	Unidentified C8's	1.728126	2.142622	1.998908	
	Total C8 Group	23.879128	26.575451	26.984559	
-1	2,2,4,4-Tetramethylpentane	0.176674	0.240129	0.229495	
-2	2,4,4-Trimethylhexane	0.090756	0.122639	0.117916	
-3	2,2,4-Trimethylhexane	0.289650	0.395849	0.376183	
-4	2,2-Dimethylheptane	0.101422	0.139587	0.131752	
-5	2,2,3-Trimethylhexane	0.141616	0.189265	0.183858	
-6	Dimethylheptane	1.119791	1.528280	1.454342	
-7	2,2,3,3-Tetramethylpentane	0.165712	0.214285	0.215182	
-8	2,3,4-Trimethylhexane	0.297255	0.393850	0.386096	
-9	3,4-Dimethylheptane	0.887320	1.186440	1.152363	
-10	Methyloctane	0.062710	0.085987	0.081417	<u> </u>
-11	1,t2,c3-Trimethylcyclohexane	0.638851	0.781584	0.816655	-
-12	1,t2,c4-Trimethylcyclohexane	0.182007	0.223032	0.232602	<u> </u>
-13	1,1,2-Trimethylcyclohexane	0.566759	0.683455	0.724521	-
-14	n-Nonane	1.262888	1.719944	1.640172	
-15	1,c2,t3-Trimethylcyclohexane	0.084930	0.101907	0.108569	
-16	1,c2,c3-Trimethylcyclohexane	0.061130	0.073350	0.078194	L.
-17	i-Propylbenzene	0.244025	0.259538	0.297045	
-18	n-Propylcyclohexane	0.468398	0.568196	0.598745	
-19	n-Propylbenzene	0.448351	0.476940	0.545660	
-20	Ethyltoluene	0.530911	0.565137	0.646120	
-21	2-Methylnonane	0.118606	0.125729	0.144309	
-22	1,2,4-Trimethylbenzene+tert-Butylbenzene	0.602509	0.630872	0.733311	
-23	tert-Butylcyclohexane	0.105570	0.121988	0.134899	
-24	Unidentified C9's	1.064488	1.449740	1.382446	
	Total C9 Group	9.712329	12.277723	12.411852	
)	COMPONENT	MOL %	VOL %	WT %	
0-1	4-Methylnonane	0.174600	0.258801	0.251597	_
0-2	1,3,5-Trimethylbenzene	0.212621	0.317591	0.306284	-
0-3	3-Ethyloctane	0.152084	0.217754	0.219090	-
0-3	3-Methylnonane	0.132004	0.173222	0.168631	-
0-4	Methylcyclooctane	0.035157	0.173222	0.049993	- T
0-5	n-Decane	0.456251	0.677735	0.657338	—
0-6 0-7	Unidentified C10's	1.348904	2.003723	1.943465	
U-/	omaentinea CTO's	1.340704	2.003/23	1.743403	_



EXTENDED LIQUID/NGL FRACTIONAL ANALYSIS

SAMPLE ID	
Customer	Durango Midstream, LLC
Operator	Durango Midstream, LLC
Location	Abo Station
Site	N/A
Sample Point/Source	#2 Inlet Scrubber
Pressure	24 psig
Temperature	N/A
Atm. Temp	82 F
Sample Date	09/25/19
Sample Time	11:15:00 AM
Sampled By	Pantechs/DCB
Analysis Date	10/02/19
ContainerID	PL1946

COMPONENT	SYM	MOL %	VOL %	WT%
Nitrogen	N2	0.0475	0.0142	0.0171
Carbon Dioxide	CO2	0.0343	0.0159	0.0194
*Hydrogen Sulfide	H2S	0.0000	0.0000	0.0000
Methane	C1	0.1566	0.0722	0.0322
Ethane	C2	1.5247	1.1085	0.5885
Propane	C 3	7.3894	5.5338	4.1828
i-Butane	iC4	3.4333	3.0539	2.5617
n-Butane	nC4	12.8124	10.9797	9.5589
neo-Pentane	DMC3	0.0512	0.0534	0.0474
i-Pentane	iC5	8.1762	8.1281	7.5725
n-Pentane	nC5	10.3405	10.1891	9.5767
**Hexanes+	C6+	56.0339	60.8512	65.8428
	Totals:	100.0000	100.0000	100.0000

RELATIVE CONCENTRATION

Relativie Density, 60/60	0.6710

SPECIFIC GRAVITY

CALCULATED VAPOR PRESSURE Absolute at 100F, psia 49.2 Equivalent Reid, psi 46.6

SCF/GALLON OF LIQUID Ideal Gas, 14.65 psia & 60F 27.369 Real Gas, 14.65 psia & 60F 25.450

MOLECULAR WEIGHT	
Molar Mass	//.904

CALCULATIONS / METHODS

Pressure Base, PSIA	14.65
Temp Base, DEG F	60
Ideal/Real Gas	Real
Method(s)	ASTM D8003, GPA 2103

APPLICABLE CURRENT GPA & ASTM METHODS, PROCEDURES, AND CONSTANTS ARE USED

REMARKS / COMMENTS / OTHER

Value of "0.000" interpreted as below detectable limit (BDL), unless otherwise stated below.

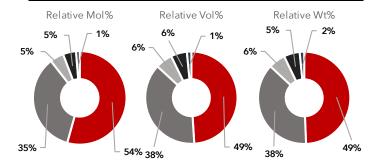
- * H2S determination by GPA 2103, concentration losses possible to collection container.
- ** Hexanes Plus Detail on Pages 2-3

HEXANES PLUS EXTENDED FRACTIONAL ANALYSIS

SAMPLE ID

Customer	Durango Midstream, LLC
Operator	Durango Midstream, LLC
Location	Abo Station
Site	N/A
Sample Point/Source	#2 Inlet Scrubber
Sample Date	09/25/19
ContainerID	PL1946

HEXANES PLUS PHYSICAL PROPERTIES

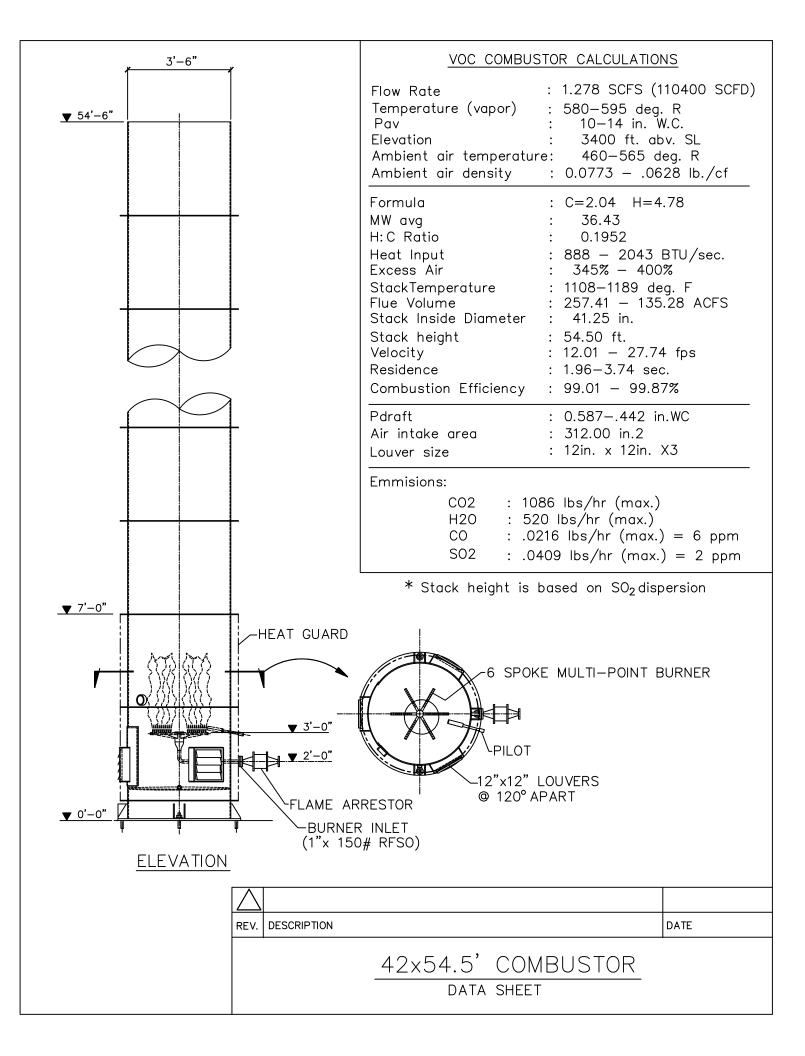

Molecular Weight	91.5420
Relative Density, 60F/60F	0.7266
Vapor Pressure, psia at 100F	3.9572

HEXANES PLUS SUMMARY

GRP	MOL %	VOL %	WT%	RELATIVE VOL%
C6	35.384943	36.443571	38.481905	
C7	14.572375	16.297897	18.283375	
C8	4.765660	6.142334	6.874168	
C9	1.054455	1.525440	1.715513	Π
C10	0.171549	0.285305	0.313248	Ī
C11	0.067389	0.121882	0.135247	1
C12	0.013867	0.027002	0.030387	-[
C13	0.002805	0.005859	0.006682	
C14	0.000857	0.001910	0.002275	
C15	0.000000	0.000000	0.000000	1
C16	0.000000	0.000000	0.000000	1
C17	0.000000	0.000000	0.000000	1
C18	0.000000	0.000000	0.000000	1
C19	0.000000	0.000000	0.000000	1
C20	0.000000	0.000000	0.000000	_
C21	0.000000	0.000000	0.000000	1
C22	0.000000	0.000000	0.000000	1
C23	0.000000	0.000000	0.000000	1
C24	0.000000	0.000000	0.000000	1
C24+	0.000000	0.000000	0.000000	-

BTEX GROUP SUMMARY

COM	POUND	MOL %	VOL %	WT %
	Benzene	4.024151	3.061278	4.034815
	Toluene	2.599175	2.366068	3.073985
	Ethylbenzene	0.354238	0.371642	0.482778
	m-Xylene+p-Xylene	0.334216	0.351765	0.455423
	o-Xylene	0.094578	0.097744	0.128918
	Totals:	7.406358	6.248497	8.175919



HEXANES PLUS DETAIL

Totals: 56.033900 60.851200 65.842800

ID	COMPONENT	MOL %	VOL %	WT %	RELATIVE VOL%
5-1	2,2-Dimethylbutane	0.133842	0.151904	0.148063]
6-2	2,3-Dimethylbutane+Cyclopentane	8.997201	10.027872	9.953152	-
6-3	2-Methyl pentane	4.184404	4.721441	4.628587	
6-4	3-Methyl pentane	2.677860	2.970581	2.962126	
6-5	n-Hexane	5.953024	6.654206	6.584926	
6-6	Methylcyclopentane	3.994937	3.842640	4.315657	
6-7	Benzene	4.024151	3.061278	4.034815	=
6-8	Cyclohexane	5.419524	5.013649	5.854579	
	Total C6 Group	35.384943	36.443571	38.481905	
7-1	2,2-Dimethylpentane	0.820427	1.043854	1.055270	
7-2	2,4-Dimethylpentane	0.020567	0.026211	0.026422	J
7-3	3,3-Dimethylpentane	0.043549	0.053826	0.056023	
7-4	2-Methylhexane	1.076426	1.359751	1.384473	
7-5	1,1-Dimethylcyclopentane+3-Methylhexane	1.873169	2.086672	2.360829	
7-6	2,3-Dimethylpentane	0.262932	0.324472	0.338154	
7-7	1,t3-Dimethylcyclopentane	0.889140	0.998019	1.120632	
7-8	1,c3-Dimethylcyclopentane+3-Ethylpentane	0.576192	0.650183	0.726220	_
7-9	1,t2-Dimethylcyclopentane+1,c2-Dimethylcyclopentan	0.295497	0.330536	0.372441	
7-10	n-Heptane	2.388673	2.995609	3.072252	
7-11	Methylcyclohexane+1,1,3-Trimethylpentane	3.562247	3.892293	4.489513	
7-12	Toluene	2.599175	2.366068	3.073985	
7-13	Cycloheptane	0.164381	0.170403	0.207161	J
	Total C7 Group	14.572375	16.297897	18.283375	Page 2 c

ID	COMPONENT	MOL %	VOL %	WT %	RELATIVE VOL%
8-1	2,5-Dimethylhexane	0.111405	0.156969	0.163389	
8-2	2,4-Dimethylhexane+Ethylcyclopentane	0.093098	0.130178	0.136520	_
8-3	2,2,3-Trimethylpentane	0.273917	0.374360	0.401667	
8-4	2,2,4-Trimethylpentane	0.239171	0.337952	0.350711	
8-5	3,3-Dimethylhexane	0.149891	0.203929	0.219768	
8-6	2-Methylheptane+4-Methylheptane	0.673341	0.943800	0.987318	
8-7	2,3,4-Trimethylpentane	0.029293	0.039864	0.042899	1
8-8	3-Methylheptane	0.100732	0.139623	0.147710	
8-9	1,c2-Dimethylcyclohexane	0.631973	0.762688	0.910250	
8-10	1-Methyl,1-Ethylcyclopentane	0.046666	0.057434	0.067270	
8-11	n-Octane	0.538797	0.750300	0.789979	
8-12	1,t3-Dimethylcyclohexane	0.062948	0.077220	0.090626	
8-13	1,c3-Dimethylcyclohexane	0.091384	0.114551	0.131669	_
8-14	Ethylcylclohexane	0.386569	0.471383	0.556805	
8-15	Ethylbenzene	0.354238	0.371642	0.482778	
8-16	m-Xylene+p-Xylene	0.334216	0.351765	0.455423	
8-17	o-Xylene	0.094578	0.097744	0.128918	
8-18	Cyclooctane	0.040199	0.046216	0.057889)
8-19	Unidentified C8's	0.513244	0.714716	0.752579	
	Total C8 Group	4.765660	6.142334	6.874168	
0 1	2.2.4.4 Tetramathulaantana	0.044740	0.070074	0.073583	
9-1	2,2,4,4-Tetramethylpentane	0.044718	0.068264		
9-2	2,4,4-Trimethylhexane	0.015893	0.024121	0.026190	- <u></u>
9-3	2,2,4-Trimethylhexane	0.074322	0.114081	0.122356	
9-4	2,2-Dimethylheptane	0.016360	0.025289	0.026898	
9-5	2,2,3-Trimethylhexane	0.019710	0.029586	0.032448	
9-6	Dimethylheptane	0.170224	0.260931	0.280252	
9-7	2,2,3,3-Tetramethylpentane	0.020645	0.029984	0.034032	
9-8	2,3,4-Trimethylhexane	0.036849	0.054836	0.060628	
9-9	3,4-Dimethylheptane	0.093253	0.140045	0.153485	
9-10	Methyloctane	0.005453	0.008398	0.008999	1
9-11	1,t2,c3-Trimethylcyclohexane	0.064117	0.088102	0.103886	
9-12	1,t2,c4-Trimethylcyclohexane	0.019944	0.027449	0.032278	
9-13	1,1,2-Trimethylcyclohexane	0.054612	0.073967	0.088461	
9-14	n-Nonane	0.106497	0.162902	0.175376	
9-15	1,c2,t3-Trimethylcyclohexane	0.007713	0.010394	0.012555	Į
9-16	1,c2,c3-Trimethylcyclohexane	0.005765	0.007770	0.009311	
9-17	i-Propylbenzene	0.021658	0.025872	0.033358	
9-18	n-Propylcyclohexane	0.034668	0.047234	0.056163	
9-19	n-Propylbenzene	0.035058	0.041886	0.054042	_
9-20	Ethyltoluene	0.041680	0.049831	0.064254	
9-21	2-Methylnonane	0.007635	0.009090	0.011751	, J
9-22	1,2,4-Trimethylbenzene+tert-Butylbenzene	0.040355	0.047458	0.062261	
9-23	tert-Butylcyclohexane	0.006544	0.008493	0.010625	J
9-24	Unidentified C9's	0.110782	0.169457	0.182321	
	Total C9 Group	1.054455	1.525440	1.715513	
ID	COMPONENT	MOL %	VOL %	WT %	
10-1	4-Methylnonane	0.013010	0.021659	0.023822	_
10-2	1,3,5-Trimethylbenzene	0.015503	0.021037	0.023022	=
10-2	3-Ethyloctane	0.010050	0.026067	0.020202	-
10-3	3-Methylnonane	0.010030	0.010102	0.018381	- <u>-</u>
10-4	Methylcyclooctane	0.007479	0.012434	0.013374	- f
	n-Decane	0.001870	0.002768	0.003313	· ·
	HEDELGHE	0.02/03/	0.040143	0.030342	
10-6 10-7	Unidentified C10's	0.095980	0.160132	0.175354	

13.2.2 Unpaved Roads

13.2.2.1 General

When a vehicle travels an unpaved road, the force of the wheels on the road surface causes pulverization of surface material. Particles are lifted and dropped from the rolling wheels, and the road surface is exposed to strong air currents in turbulent shear with the surface. The turbulent wake behind the vehicle continues to act on the road surface after the vehicle has passed.

The particulate emission factors presented in the previous draft version of this section of AP-42, dated October 2001, implicitly included the emissions from vehicles in the form of exhaust, brake wear, and tire wear as well as resuspended road surface material²⁵. EPA included these sources in the emission factor equation for unpaved public roads (equation 1b in this section) since the field testing data used to develop the equation included both the direct emissions from vehicles and emissions from resuspension of road dust.

This version of the unpaved public road emission factor equation only estimates particulate emissions from resuspended road surface material ^{23, 26}. The particulate emissions from vehicle exhaust, brake wear, and tire wear are now estimated separately using EPA's MOBILE6.2 ²⁴. This approach eliminates the possibility of double counting emissions. Double counting results when employing the previous version of the emission factor equation in this section and MOBILE6.2 to estimate particulate emissions from vehicle traffic on unpaved public roads. It also incorporates the decrease in exhaust emissions that has occurred since the unpaved public road emission factor equation was developed. The previous version of the unpaved public road emission factor equation includes estimates of emissions from exhaust, brake wear, and tire wear based on emission rates for vehicles in the 1980 calendar year fleet. The amount of PM released from vehicle exhaust has decreased since 1980 due to lower new vehicle emission standards and changes in fuel characteristics.

13.2.2.2 Emissions Calculation And Correction Parameters¹⁻⁶

The quantity of dust emissions from a given segment of unpaved road varies linearly with the volume of traffic. Field investigations also have shown that emissions depend on source parameters that characterize the condition of a particular road and the associated vehicle traffic. Characterization of these source parameters allow for "correction" of emission estimates to specific road and traffic conditions present on public and industrial roadways.

Dust emissions from unpaved roads have been found to vary directly with the fraction of silt (particles smaller than 75 micrometers [µm] in diameter) in the road surface materials. The silt fraction is determined by measuring the proportion of loose dry surface dust that passes a 200-mesh screen, using the ASTM-C-136 method. A summary of this method is contained in Appendix C of AP-42. Table 13.2.2-1 summarizes measured silt values for industrial unpaved roads. Table 13.2.2-2 summarizes measured silt values for public unpaved roads. It should be noted that the ranges of silt content vary over two orders of magnitude. Therefore, the use of data from this table can potentially introduce considerable error. Use of this data is strongly discouraged when it is feasible to obtain locally gathered data.

Since the silt content of a rural dirt road will vary with geographic location, it should be measured for use in projecting emissions. As a conservative approximation, the silt content of the parent soil in the area can be used. Tests, however, show that road silt content is normally lower than in the surrounding parent soil, because the fines are continually removed by the vehicle traffic, leaving a higher percentage of coarse particles.

Other variables are important in addition to the silt content of the road surface material. For example, at industrial sites, where haul trucks and other heavy equipment are common, emissions are highly correlated with vehicle weight. On the other hand, there is far less variability in the weights of cars and pickup trucks that commonly travel publicly accessible unpaved roads throughout the United States. For those roads, the moisture content of the road surface material may be more dominant in determining differences in emission levels between, for example a hot, desert environment and a cool, moist location.

The PM-10 and TSP emission factors presented below are the outcomes from stepwise linear regressions of field emission test results of vehicles traveling over unpaved surfaces. Due to a limited amount of information available for PM-2.5, the expression for that particle size range has been scaled against the result for PM-10. Consequently, the quality rating for the PM-2.5 factor is lower than that for the PM-10 expression.

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS $^{\rm a}$

	Road Use Or	Plant	No. Of	Silt Conte	ent (%)
Industry	Surface Material	Sites	Samples	Range	Mean
Copper smelting	Plant road	1	3	16 - 19	17
Iron and steel production	Plant road	19	135	0.2 - 19	6.0
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	4.8
	Material storage area	1	1	-	7.1
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10
	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3
	Haul road to/from pit	1	12	3.9 - 9.7	5.8
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4
	Plant road	2	2	4.9 - 5.3	5.1
	Scraper route	3	10	7.2 - 25	17
	Haul road (freshly graded)	2	5	18 - 29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills	Disposal routes	4	20	2.2 - 21	6.4

^aReferences 1,5-15.

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^a (W/3)^b$$
 (1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$
 (1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

E = size-specific emission factor (lb/VMT)

s = surface material silt content (%)

W = mean vehicle weight (tons)

M = surface material moisture content (%)

S = mean vehicle speed (mph)

C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

$$1 \text{ lb/VMT} = 281.9 \text{ g/VKT}$$

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

	Industrial Roads (Equation 1a)			Public Roads (Equation 1b)		
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0
a	0.9	0.9	0.7	1	1	1
b	0.45	0.45	0.45	-	-	-
С	ı	1	-	0.2	0.2	0.3
d		-	-	0.5	0.5	0.3
Quality Rating	В	В	В	В	В	В

^{*}Assumed equivalent to total suspended particulate matter (TSP)

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

		Mean Vehicle Weight		Mean Vehicle Speed		Mean	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4-17ª	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model 23 . The emission factor also varies with aerodynamic size range

[&]quot;-" = not used in the emission factor equation

Table 13.2.2-4. EMISSION FACTOR FOR 1980'S VEHICLE FLEET EXHAUST, BRAKE WEAR AND TIRE WEAR

Particle Size Range ^a	C, Emission Factor for Exhaust, Brake Wear and Tire Wear ^b
$PM_{2.5}$	0.00036
PM_{10}	0.00047
PM_{30}^{c}	0.00047

- ^a Refers to airborne particulate matter (PM-x) with an aerodynamic diameter equal to or less than x micrometers.
- b Units shown are pounds per vehicle mile traveled (lb/VMT).
- ^c PM-30 is sometimes termed "suspendable particulate" (SP) and is often used as a surrogate for TSP.

It is important to note that the vehicle-related source conditions refer to the average weight, speed, and number of wheels for all vehicles traveling the road. For example, if 98 percent of traffic on the road are 2-ton cars and trucks while the remaining 2 percent consists of 20-ton trucks, then the mean weight is 2.4 tons. More specifically, Equations 1a and 1b are *not* intended to be used to calculate a separate emission factor for each vehicle class within a mix of traffic on a given unpaved road. That is, in the example, one should *not* determine one factor for the 2-ton vehicles and a second factor for the 20-ton trucks. Instead, only one emission factor should be calculated that represents the "fleet" average of 2.4 tons for all vehicles traveling the road.

Moreover, to retain the quality ratings when addressing a group of unpaved roads, it is necessary that reliable correction parameter values be determined for the road in question. The field and laboratory procedures for determining road surface silt and moisture contents are given in AP-42 Appendices C.1 and C.2. Vehicle-related parameters should be developed by recording visual observations of traffic. In some cases, vehicle parameters for industrial unpaved roads can be determined by reviewing maintenance records or other information sources at the facility.

In the event that site-specific values for correction parameters cannot be obtained, then default values may be used. In the absence of site-specific silt content information, an appropriate mean value from Table 13.2.2-1 may be used as a default value, but the quality rating of the equation is reduced by two letters. Because of significant differences found between different types of road surfaces and between different areas of the country, use of the default moisture content value of 0.5 percent in Equation 1b is discouraged. The quality rating should be downgraded two letters when the default moisture content value is used. (It is assumed that readers addressing industrial roads have access to the information needed to develop average vehicle information in Equation 1a for their facility.)

The effect of routine watering to control emissions from unpaved roads is discussed below in Section 13.2.2.3, "Controls". However, all roads are subject to some natural mitigation because of rainfall and other precipitation. The Equation 1a and 1b emission factors can be extrapolated to annual

average uncontrolled conditions (but including natural mitigation) under the simplifying assumption that annual average emissions are inversely proportional to the number of days with measurable (more than 0.254 mm [0.01 inch]) precipitation:

$$E_{\text{ext}} = E [(365 - P)/365]$$
 (2)

where:

E_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT

E = emission factor from Equation 1a or 1b

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation (see

below)

Figure 13.2.2-1 gives the geographical distribution for the mean annual number of "wet" days for the United States.

Equation 2 provides an estimate that accounts for precipitation on an annual average basis for the purpose of inventorying emissions. It should be noted that Equation 2 does not account for differences in the temporal distributions of the rain events, the quantity of rain during any event, or the potential for the rain to evaporate from the road surface. In the event that a finer temporal and spatial resolution is desired for inventories of public unpaved roads, estimates can be based on a more complex set of assumptions. These assumptions include:

- 1. The moisture content of the road surface material is increased in proportion to the quantity of water added;
- 2. The moisture content of the road surface material is reduced in proportion to the Class A pan evaporation rate;
- 3. The moisture content of the road surface material is reduced in proportion to the traffic volume; and
- 4. The moisture content of the road surface material varies between the extremes observed in the area. The CHIEF Web site (http://www.epa.gov/ttn/chief/ap42/ch13/related/c13s02-2.html) has a file which contains a spreadsheet program for calculating emission factors which are temporally and spatially resolved. Information required for use of the spreadsheet program includes monthly Class A pan evaporation values, hourly meteorological data for precipitation, humidity and snow cover, vehicle traffic information, and road surface material information.

It is emphasized that the simple assumption underlying Equation 2 and the more complex set of assumptions underlying the use of the procedure which produces a finer temporal and spatial resolution have not been verified in any rigorous manner. For this reason, the quality ratings for either approach should be downgraded one letter from the rating that would be applied to Equation 1.

13.2.2.3 Controls¹⁸⁻²²

A wide variety of options exist to control emissions from unpaved roads. Options fall into the following three groupings:

1. Vehicle restrictions that limit the speed, weight or number of vehicles on the road;

- 2. <u>Surface improvement</u>, by measures such as (a) paving or (b) adding gravel or slag to a dirt road; and
 - 3. <u>Surface treatment</u>, such as watering or treatment with chemical dust suppressants.

Available control options span broad ranges in terms of cost, efficiency, and applicability. For example, traffic controls provide moderate emission reductions (often at little cost) but are difficult to enforce. Although paving is highly effective, its high initial cost is often prohibitive. Furthermore, paving is not feasible for industrial roads subject to very heavy vehicles and/or spillage of material in transport. Watering and chemical suppressants, on the other hand, are potentially applicable to most industrial roads at moderate to low costs. However, these require frequent reapplication to maintain an acceptable level of control. Chemical suppressants are generally more cost-effective than water but not in cases of temporary roads (which are common at mines, landfills, and construction sites). In summary, then, one needs to consider not only the type and volume of traffic on the road but also how long the road will be in service when developing control plans.

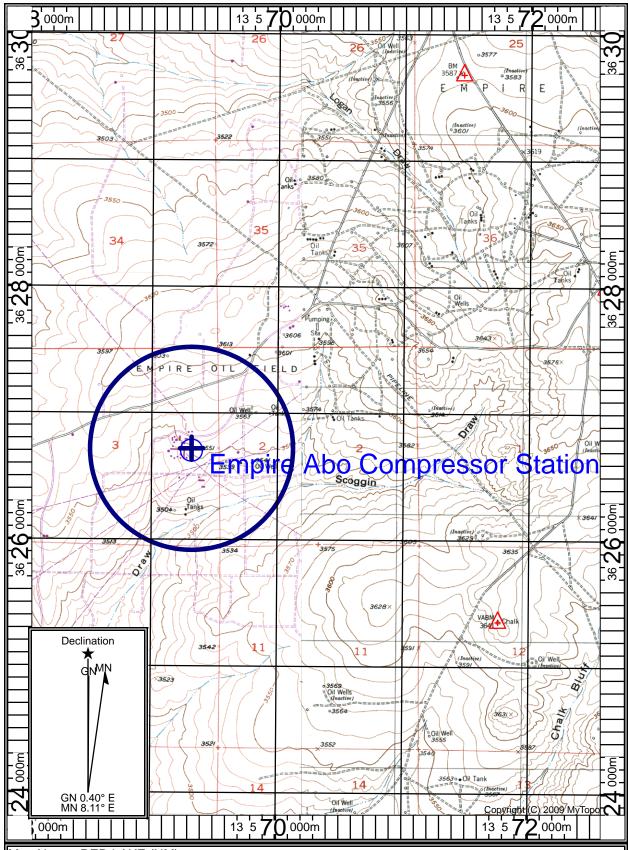
<u>Vehicle restrictions</u>. These measures seek to limit the amount and type of traffic present on the road or to lower the mean vehicle speed. For example, many industrial plants have restricted employees from driving on plant property and have instead instituted bussing programs. This eliminates emissions due to employees traveling to/from their worksites. Although the heavier average vehicle weight of the busses increases the base emission factor, the decrease in vehicle-miles-traveled results in a lower overall emission rate.

Figure 13.2.2-1. Mean number of days with 0.01 inch or more of precipitation in United States.

June 2021; Revision 0

Saved Date: 6/22/2021

Section 8


Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A topographic map is attached.

Map Name: RED LAKE (NM)

Print Date: 06/07/21 Scale: 1 inch = 2,500 ft.

Map Center: 13 0570303 E 3626925 N

Horizontal Datum: WGS84

June 2021; Revision 0

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

1.	A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
2.	A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g. post office, library, grocery, etc.)
3.	A copy of the property tax record (20.2.72.203.B NMAC).
4.	A sample of the letters sent to the owners of record.
5.	A sample of the letters sent to counties, municipalities, and Indian tribes.
6.	A sample of the public notice posted and a verification of the local postings.
7.	A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
8.	A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
9.	A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
10.	A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
11.	A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

N/A – Public Notice is not required for applications being submitted under 20.2.70 NMAC.

June 2021; Revision 0

Saved Date: 6/22/2021

Written Description of the Routine Operations of the Facility

A written description of the routine operations of the facility. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The Empire Abo Compressor Station accepts field gas which is compressed by engines to facilitate transfer to upstream facilities. Following compression, the gas will be sent to a TEG dehydration unit. Flash tank overheads will be recycled to the facility inlet. Regenerator emissions will be controlled by a condenser. Condenser overheads are combusted by a thermal oxidizer. After being processed by the dehydrators, the gas then exits the facility. Liquids that drop out of the gas during compression and dehydration are stabilized and separated and are sent to condensate and produced water storage tanks. Condensate and produced water are transported off-site via truck. Emissions from the storage tanks and loading are controlled by a second thermal oxidizer.

B.

C.

Section 11

June 2021; Revision 0

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe): See Table 2-A.

Apply the 3 criteria for determining a single source: <u>SIC Code</u> : Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.
☑ Yes □ No
<u>Common Ownership or Control</u> : Surrounding or associated sources are under common ownership or control as this source.
☑ Yes □ No
<u>Contiguous or Adjacent</u> : Surrounding or associated sources are contiguous or adjacent with this source.
☑ Yes □ No
Make a determination: The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

June 2021; Revision 0

Saved Date: 6/22/2021

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

A PSD applicability determination for all sources. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the EPA New Source Review Workshop Manual to determine if the revision is subject to PSD review.

\square	
Ц	a major PSD source before this modification. This modification will make this a PS minor source.
	an existing PSD Major Source that has never had a major modification requiring BACT analysis.
	an existing PSD Major Source that has had a major modification requiring a BAC analysis
	a new PSD Major Source after this modification.

N/A – This application is being submitted under 20.2.70 NMAC.

June 2021; Revision 0

Section 13

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

Form-Section 13 last revised: 5/29/2019 Section 13, Page 1 Saved Date: 6/22/2021

Saved Date: 6/22/2021

STATE REGULATIONS:

STATE REGULATIONS:					
STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
20.2.1 NMAC	General Provisions	Yes	Facility	This facility is authorized under P-0146-R3 and therefore, this regulation applies.	
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a SIP approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. The facility meets the maximum allowable concentrations of TSP, SO ₂ , H ₂ S, NO _x and CO under this regulation.	
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. The owner or operator will operate the source at the facility having an excess emission, to the extent practicable, including associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions. The facility will also notify the NMED of any excess emissions per 20.2.7.110 NMAC.	
20.2.22	E iii B			This regulation does not apply as this application is submitted under 20.2.70 NMAC and therefore exempt of this requirement.	
20.2.23 NMAC	Fugitive Dust Control	No	N/A	Sources exempt from 20.2.23 NMAC are activities and facilities subject to a permit issued pursuant to the NM Air Quality Control Act, the Mining Act, or the Surface Mining Act (20.2.23.108.B NMAC.	
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This facility does not have gas burning equipment with a heat input of greater than 1,000,000 million British Thermal Units per year per unit. Therefore, this regulation does not apply.	
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility does not have oil burning equipment with a heat input of greater than 1,000,000 million British Thermal Units per year per unit. Therefore, this regulation does not apply.	
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	This facility is not a natural gas processing plant. Therefore, this regulation does not apply.	
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.	
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	This regulation seeks to minimize H ₂ S emissions from hydrocarbon storage facilities. For purposes of this regulation, this facility is a new hydrocarbon storage facility, constructed after Jan. 1 1975. Standards of new tanks batteries are established in 20.2.38.112 NMAC. This facility does not have a crude oil or condensate storage capacity greater than 65,000 gallons (1547.6 bbl) and is therefore not subject to this regulation.	
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This facility is not a sulfur recovery plant. Therefore, this regulation does not apply.	
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	E4-310 to E4-315, H4 TO1, TO2, D-2302	This facility operates combustion equipment that are subject to this regulation.	
20.2.70 NMAC	Operating Permits	Yes	Facility	This facility operates under a permit issued under 20.2.70 NMAC and is therefore subject to this regulation.	
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This facility is subject to 20.2.70 NMAC and is therefore subject to this regulation.	
20.2.72 NMAC	Construction Permits	Yes	Facility	This facility is permitted under 20.2.72 and is therefor subject to this regulation.	
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	This facility is required to submit an annual emission inventory report pursuant to 20.2.73.300.A(1) NMAC. This regulation applies.	

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	The facility is a minor source for PSD purposes therefore this regulation is not applicable. source and will therefore no longer be subject to this regulation.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This application is being submitted under 20.2.72 and is therefore subject to this regulation.
20.2.77 NMAC	New Source Performance	Yes	E4-310 to E4-315	This facility is a stationary source with units that are subject to 40 CFR 60. Therefore, this regulation applies.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	This facility does not include and equipment subject to 40 CFR 61. Therefor this regulation does not apply.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	This facility is not located in a non-attainment area. Therefore, this regulation does not apply.
20.2.80 NMAC	Stack Heights	No	N/A	This regulation establishes requirements for the evaluation of stack heights and other dispersion techniques. This regulation does not apply as all stacks at the facility will follow good engineering practice.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	E4-310 to E4-315, DEHY1	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63. This facility operates units which are subject to 40 CFR 63. Therefor this regulation applies.

FEDERAL REGULATIONS:

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	This regulation defines National Ambient Air Quality Standards (NAAQS). The facility meets all applicable NAAQS for NOx, CO, SO2, H2S, PM10, and PM2.5 under this regulation.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	E4-310 to E4-315	This facility operates units which are subject to 40 CFR 60. Therefore, this regulation applies.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This facility does not include any electric utility steam generating units. Therefore, this regulation does not apply.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	This facility does not include any electric utility steam generating units. Therefore, this regulation does not apply.
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	With this modification, Units H1 and H2 are being removed and are therefore no longer subject to this regulation. Unit H4 will no longer have a throughput greater than 10 MMBtu/hr and will therefore no longer be subject. (Unit H3 is also being removed but was not subject to this regulation previously.)

Frontier Field Services, LLC **Empire Abo Compressor Station** June 2021; Revision 0 **FEDERAL** Applies? Unit(s) REGU-**Enter Yes JUSTIFICATION: LATIONS** Title or or No **Facility** CITATION Standards of Performance for Storage Vessels for Petroleum Liquids for which NSPS This facility does not have any tanks with a volume of 420,000 gallons or larger. Construction, 40 CFR 60. N/A No Reconstruction, or Therefore, this subpart does not apply. Subpart Ka Modification Commenced After May 18, 1978, and Prior to July 23, 1984 Standards of Performance for **Volatile Organic** Liquid Storage Vessels (Including NSPS Petroleum Liquid This facility does not have any storage vessels with a volume of 75 cubic meters. 40 CFR 60, N/A No Storage Vessels) for Therefor this regulation does not apply. Subpart Kb Which Construction, Reconstruction, or Modification Commenced After July 23, 1984 **NSPS** 40 CFR **Stationary Gas** This facility does not have any stationary turbines. Therefore, this regulation does No N/A **Turbines** not apply. 60.330 Subpart GG **NSPS** Leaks of VOC 40 CFR 60, from Onshore This facility is not an onshore gas plant. Therefore, this regulation does not apply. No N/A Subpart **Gas Plants** KKK Standards of **NSPS** Performance for 40 CFR Part **Onshore Natural** This facility is not an onshore gas plant. Therefore, this regulation does not apply. N/A No 60 Subpart Gas Processing: LLL SO₂ Emissions Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and **NSPS** This facility is a compressor station. Therefore, equipment leaks are not subject to Distribution for this regulation. No compressors at the facility were manufactured after 8/23/2011 40 CFR Part which N/A and before 9/19/2015. Therefore, no compressors are subject to this regulation. No 60 Subpart construction, The storage tanks were manufactured in 2021 and are not subject to this modification or 0000 regulation.. reconstruction commenced after August 23, 2011 and before

September 18, 2015

Saved Date: 6/22/2021

Empire Abo Compressor Station

June 2021; Revision 0

Saved Date: 6/22/2021

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	N/A	The compressors (Units E4-310 to E4-315) were manufactured in 2009 and are therefore not subject to this regulation. The new storage tanks being installed at the facility will have a PTE less than 6 tpy and are therefore not subject to this regulation.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	There are no compression ignition engines installed at this facility. Therefore, this regulation does not apply.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	E4-310 to E4-315	The engines and generators at this facility were manufactured in 2009 after the NSPS JJJJ date of June 12, 2006. The units are therefore subject to this regulation.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	There are no electric generating units at this facility. Therefore, this regulation does not apply.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	There are no electric generating units at this facility. Therefore, this regulation does not apply.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	This facility is not a Municipal Solid Waste Landfill. Therefore, this regulation does not apply.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	No units at this facility are subject to any of the subparts of 40 CFR 61. therefore
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	Tis facility does not process mercury. Therefore, this regulation does not apply.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks	No	N/A	This facility is not a major source of HAPs. Therefore, this regulation does not apply.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	E4-310 to E4-315, DEHY1	The compressors and TEG dehydrators at this facility are subject to subparts of 40 CFR 63. Therefore, this regulation applies.

	idstream, LLC/ eld Services, LLC	En	npire Abo (Compressor Station June 2021; Revision 0
FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DEHY1	This facility is Subject to the requirements of 40 CFR 63 Subpart HH TEG Dehydrator (Unit DEHY1) have no additional control requirements since benzene emissions for this unit are less than 0.9 megagrams per year. However, this unit is subject to HH recordkeeping and reporting.
MACT 40 CFR 63 Subpart HHH		No	N/A	This subpart applies to owners and operators of natural gas transmission and storage facilities that transport or store natural gas prior to entering the pipeline to a local distribution company or to a final end user. This facility is not a natural gas transmission facility. Therefore, this regulation does not apply.
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	This facility does not operate and major industrial, commercial, and institutional boilers & process heaters. Therefore, this regulation does not apply.
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	This facility does not operate any coal & oil fire electric utility steam generating units. Therefore, this regulation does not apply.
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	E4-310 to E4-315	The compressor engines at this facility are subject to MACT ZZZZ and will comply with this regulation by complying with the requirements of NSPS JJJJ.
40 CFR 64	Compliance Assurance Monitoring	Yes	D-2302, DEHY1 TO1	A compliance assurance monitoring plan has been established in this facilities Title V permit emergency flares, the existing dehydrator and thermal oxidizer. In the Title V revision application that will be submitted after this permit revision is issued, the CAM plan will be updates to reflect the units that will be removed and the change in facility operations.
40 CFR 68	Chemical Accident Prevention	Yes	Facility	The facility is an affected facility, as it will use flammable process chemicals such as propane at quantities greater than the thresholds. The facility will develop and maintain an RMP for these chemicals.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	This facility does not generate commercial electric power or electric power for sale. Therefore, this regulation does not apply.
Title IV – Acid Rain	Sulfur Dioxide Allowance	No	N/A	This facility does not generate commercial electric power or electric power for sale. Therefore, this regulation does not apply.

Emissions

40 CFR 73

sale. Therefore, this regulation does not apply.

Saved Date: 6/22/2021

Frontier Fie	ld Services, LLC	En	npire Abo C	Compressor Station June 2021; Revision 0
FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	This facility does not generate commercial electric power or electric power for sale. Therefore, this regulation does not apply.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	This facility does not generate commercial electric power or electric power for sale. Therefore, this regulation does not apply.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	The facility does not service, maintain, or repair equipment containing refrigerants. Therefore, this regulation does not apply.

Saved Date: 6/22/2021

June 2021; Revision 0

Saved Date: 6/22/2021

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Ø	Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
	NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an Operational Plan to Mitigate Source Emissions During Malfunction, Startup, or Shutdown defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
Ø	Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.
Sta	artup and shutdown procedures are performed according to guidelines, which dictate proper procedural sequence to minimiz

ze emissions from the facility during such activities.

Equipment located at the plant is equipped with various safety devices that aid in preventing excess emissions to the atmosphere in the event of an operational emergency. In the event of a malfunction, startup, shutdown, or scheduled maintenance in which emission rates from the facility exceed permitted allowable emissions, Durango Midstream, LLC will notify the AQB in accordance with 20.2.7 NMAC and the equipment responsible for the exceedance will be repaired as soon as possible.

June 2021; Revision 0

Saved Date: 6/22/2021

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

June 2021; Revision 0

Air Dispersion Modeling

- 1) Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	X
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

	See attached, approved modeling waiver for all pollutants from the facility.
	See attached, approved modeling waiver for some pollutants from the facility.
	Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.
	Attached in UA4 is a modeling report for some pollutants from the facility.
$\overline{\mathbf{V}}$	No modeling is required.

Modeling is not being submitted with the application pursuant to 20.2.70 NMAC. Air dispersion modeling for this facility was last submitted with the revision application of NSR Permit 0126-M10.

June 2021; Revision 0

Saved Date: 6/22/2021

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history.

Compliance Test History Table

	J	
Unit No.	Test Description	Test Date
E4-310-314	Annual Quad J Test	1/18/2021- 1/19/2021
E4-310-314	Quarterly PEA Test	4/13/2021
D-2302, TO1	Semiannual Alarm Test	1/21/2021
D-2302, TO1	Annual Method 22	3/26/2020
Dehy 1 and TO1	Semiannual control equipment inspection	11/19/2020

Form-Section 17 last revised: 8/15/2011

Section 17, Page 1

June 2021; Revision 0

Requirements for Title V Program

Who Must Use this Attachment:

- * Any major source as defined in 20.2.70 NMAC.
- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

Applicable. Units D-2302, DEHY1 and TO1 are subject to this part and has monitoring conditions specified in Operating Permit P0146-R3.

19.2 - Compliance Status (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

Based on information and belief formed after reasonable inquiry, Durango Midstream believes that the Empire Abo Compressor Station is in compliance with each applicable requirement identified in Section 13. In the event that Durango Midstream should discover new information affecting the compliance status of the facility, Durango Midstream will make appropriate notifications and/or take corrective actions. Pursuant to Condition A109.B of Permit **P0146-R3**, Durango has certified to compliance with the terms and conditions of that permit. The most recent such certification was submitted within 30 days of the end of every 12-month reporting period. The 12-month reporting period starts on February 1st of each

.3	- Continued Compliance (20.2.70.300.D.10.c NMAC)
	Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement.
	cility will continue to be in compliance with requirements for which it is in compliance at the time of this permit tion and will comply with other applicable requirements as they come into effect during the permit term.
.4	- Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)
	You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.
_	
mpl –	iance certification will be submitted annually, as required by Title V Permit P0146-R3, Condition 6.1.
_	iance certification will be submitted annually, as required by Title V Permit P0146-R3, Condition 6.1. - Stratospheric Ozone and Climate Protection
_	
_	- Stratospheric Ozone and Climate Protection In addition to completing the four (4) questions below, you must submit a statement indicating your source' compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program
- 9.5	- Stratospheric Ozone and Climate Protection In addition to completing the four (4) questions below, you must submit a statement indicating your source' compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program and Section 609 (Servicing of Motor Vehicle Air Conditioners). Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozone
- 2.5 - 1.	- Stratospheric Ozone and Climate Protection In addition to completing the four (4) questions below, you must submit a statement indicating your source' compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program and Section 609 (Servicing of Motor Vehicle Air Conditioners). Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozone depleting substances? Yes □ No Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50
- 2.5 - 1.	- Stratospheric Ozone and Climate Protection In addition to completing the four (4) questions below, you must submit a statement indicating your source' compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program and Section 609 (Servicing of Motor Vehicle Air Conditioners). Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozone depleting substances?

19.6 - Compliance Plan and Schedule

A.

Durango Midstream, LLC/

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

Saved Date: 6/22/2021

Empire Abo Compressor Station

June 2021; Revision 0

A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.

B. Compliance plan: (20.2.70.300.D.11.B NMAC)

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC)

A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

the production of the producti

No compliance plan required.

19.7 - 112(r) Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

The facility is subject to RMP requirements for NGLs.

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.)

No, the facility is not located within 80 km of any states, Bernalillo, Indian Tribes, or Pueblos.

Durango Midstream, LLC/ Frontier Field Services, LLC

Empire Abo Compressor Station

June 2021; Revision 0

Saved Date: 6/22/2021

19.9 - Responsible Official

Provide the Responsible Official as defined in 20.2.70.7.AD NMAC: Darin B. Kennard, Vice President & GM 10077 Grogans Mill Road, Suite 300, The Woodlands, Texas 77380 (346) 351-2790

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is being submitted with this application.

Form-Section 20 last revised: 8/15/2011

Section 20, Page 1

Saved Date: 6/22/2021

June 2021; Revision 0

Saved Date: 6/14/2021

Section 22: Certification

Company Name: Frontier Field Services, LLC I, Darin B. Kennard , hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience. Signed this 14 day of June, 2021, upon my oath or affirmation, before a notary of the State of **TEXAS** 6/14/2021 *Signature Date Darin B. Kennard VP & GM Title Printed Name Scribed and sworn before me on this μ day of June My authorization as a notary of the State of day of June CARLOS HERNANDEZ Notary Public, State of Texas Comm. Expires 06-11-2024 Notary ID 132517864