

NSR PERMIT NO. 4111-M2 APPLICATION FOR PERMIT MODIFICATION

SANDOVAL COUNTY PUBLIC WORKS SANDOVAL COUNTY LANDFILL

Rio Rancho, New Mexico

March | 2023 Parkhill Project # 04011122

For Department use only:

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

This application is submitted as (check all that apply): Request for a No Permit Required Determination (no fee)

Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). **Construction Status:** Not Constructed Existing Permitted (or NOI) Facility Existing Non-permitted (or NOI) Facility Minor Source: a NOI 20.2.73 NMAC 20.2.72 NMAC application or revision 20.2.72.300 NMAC Streamline application Title V Source: Title V (new) Title V renewal TV minor mod. TV significant mod. TV Acid Rain: New Renewal minor modification to a PSD source PSD Major Source: PSD major source (new) a PSD major modification

Acknowledgements:

 \square I acknowledge that a pre-application meeting is available to me upon request. Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

☑ \$500 NSR application Filing Fee enclosed OR The full permit fee associated with 10 fee points (required w/ streamline applications).

☑ Check No.: 90747 in the amount of \$500.00

 \blacksquare I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page. \blacksquare I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-2/.

This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.219.D(1)(a) NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information Facility Name: Senderal Country Londfill	AI # 3 to 5 #s of permitUpdatingIDEA ID No.): 3752Permit/NOI #:4111-M2Plant primary SIC Code (4 digits): 4953			
1	Sandoval County Landfill	Plant NAIC code (6 digits): 562212			
а	Facility Street Address (If no facility street address, provide directions from 2708 Iris Rd. NE, Rio Rancho, NM 87144	n a prominent landmark)	:		
2	Plant Operator Company Name: Sandoval County Landfill	Phone/Fax: 505.867.08	14/505.771.3323		
а	Plant Operator Address: 2708 Iris Rd. NE, Rio Rancho, NM 87144				
b	Plant Operator's New Mexico Corporate ID or Tax ID: 85-6000244				

3	Plant Owner(s) name(s): Sandoval County	Phone/Fax: 505.867.0814/505.771.3323						
a	Plant Owner(s) Mailing Address(s): 2708 Iris Rd. NE, Rio Rancho, NM 87144							
4	Bill To (Company): Sandoval County Department of Public Works	Phone/Fax: 505.867.0814/505.771.3323						
a	Mailing Address: 2708 Iris Rd. NE, Rio Rancho, NM 87144	E-mail: cperea@sandovalcountynm.gov						
5	Preparer: Consultant: Parkhill	Phone/Fax: 505.867.6990/505.867.6991						
a	Mailing Address: 333 Rio Rancho Blvd NE, Suite 400, Rio Rancho, NM 87124	E-mail: <u>ayuhas@parkhill.com/</u> mkingsly@parkhill.com						
6	Plant Operator Contact: Christopher Perea, Landfill Manager	Phone/Fax: 505.867.0814/505.771.3323						
a	Address: 2708 Iris Rd. NE, Rio Rancho, NM 87144	E-mail: cperea@sandovalcountynm.gov						
7	Air Permit Contact: Christopher Perea	Title: Landfill Manager						
a	E-mail: cperea@sandovalcountynm.gov	Phone/Fax: 505.867.0814/505.771.3323						
b	Mailing Address: 2708 Iris Rd. NE, Rio Rancho, NM 87144							
c	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.							

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? 🗹 Yes No	1.b If yes to question 1.a, is it currently operating in New Mexico? ☑ Yes No				
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? Yes No				
3	Is the facility currently shut down? Yes Z No	If yes, give month and year of shut down (MM/YY): N/A				
4	Was this facility constructed before 8/31/1972 and continuously operated s	since 1972? 🗹 Yes No				
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972?					
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☑ Yes No	If yes, the permit No. is: P-243L-R2				
7	Has this facility been issued a No Permit Required (NPR)? Yes ☑ No	If yes, the NPR No. is: N/A				
8	Has this facility been issued a Notice of Intent (NOI)? Yes 🗹 No	If yes, the NOI No. is: N/A				
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑ Yes No	If yes, the permit No. is: 4111-M2				
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? Yes ☑ No	If yes, the register No. is: N/A				

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)							
a	a Current Hourly: N/A Daily: N/A Annually: N/A							
b	b Proposed Hourly: N/A Daily: N/A Annually: N/A							
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)							
a	a Current Hourly: N/A Daily: N/A		Annually: N/A					
b	Proposed	Hourly: N/A	Daily: N/A	Annually: N/A				

Section 1-D: Facility Location Information

1	Section: 33 , 34	Range: 3 E	Township: 13N	County: Sandova	al	Elevation (ft): 5313				
2	UTM Zone:	12 or 🗹 13		Datum: NA	AD 27 NAD 8	83 🗹 WGS 84				
a	UTM E (in meter	rs, to nearest 10 meter	rs): 352,220 m	UTM N (in meters,	to nearest 10 meters):	3,907,750 m				
b	AND Latitude	(deg., min., sec.):	: 35° 18' 07.41"	Longitude (deg.,	min., sec.): 106° 3	7' 31.40"				
3	Name and zip o	code of nearest N	ew Mexico town: Rio Ran	cho, NM 87144						
4	Detailed Driving Instructions from nearest NM town (attach a road map if necessary): The Sandoval County Landfill is located at 2708 Iris Road NE, Rio Rancho, NM. From I-25, take exit 242 (NM 550) west to NM 528 and travel south 3.6 miles to the intersection of NM 528 and Idalia Road, turn right and travel approximately 2.5 miles to the site entrance.									
5	The facility is f	f ive miles west of	f Bernalillo, NM.							
6	(specify) Own	at facility (check of an and a stand of the	County			est Service 🗹 Other				
7	on which the f include: Bern Village of Los include: Sandi	acility is propos a lillo County, C Ranchos de All ia (4 miles±); Sat	ed to be constructed or op City of Albuquerque, City buquerque. Indian Land nta Ana (5 miles±); Zia (7	perated: Municipa of Rio Rancho, T s (Pueblos or Rese miles±); San Feli	alities and count The Town of Bern ervations) within pe (9 miles±).	nalillo, Village of Corrales, 10 miles± of the Facility				
8	closer than 50	km (31 miles) to ling-publications	o other states, Bernalillo (County, or a Class	l area (see <u>www.e</u>	constructed or operated be env.nm.gov/air- th corresponding distances				
9	Name nearest (Class I area: Band	delier National Monumen	t						
10	Shortest distant	ce (in km) from f	acility boundary to the bou	ndary of the neares	t Class I area (to the	e nearest 10 meters): 48.8 km				
11	lands, including	g mining overbur		est residence, schoo	ol or occupied struc	nclusive of all disturbed eture: The nearest occupied				
12	structure is located approximately 65 meters from the facility property boundary. Method(s) used to delineate the Restricted Area: Continuous Fencing "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.									
13	Yes V N A portable stati	Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC?								
14	Will this facilit	y operate in conj	unction with other air regul mit number (if known) of t	ated parties on the		🗹 No 🗌 Yes				

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 9	$(\frac{\text{days}}{\text{week}})$: 6	$(\frac{\text{weeks}}{\text{year}})$: 52	$(\frac{\text{hours}}{\text{year}})$: 2,745			
2	Facility's maximum daily operating schedule (if less	⊠AM PM	End: 4:00	□AM ☑PM			
3	Month and year of anticipated start of construction: N/A						
4	Month and year of anticipated construction completion: N/A						
5	Month and year of anticipated startup of new or modified facility: N/A						
6	Will this facility operate at this site for more than on	e year? 🗹 Yes No					

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? Yes 🗹 No If yes, specify:							
a	If yes, NOV date or description of issue: N/A NOV Tracking No: N/A							
b	Is this application in response to any issue listed in 1-F, 1 of	or 1a above? Yes	☑ No If Y	Yes, provide the 1c & 1d info below:				
с	Document Title: N/A		ment # (or nd paragraph #):					
d	Provide the required text to be inserted in this permit:							
2	Is air quality dispersion modeling or modeling waiver bein	g submitted with this	applicatio	n? Yes No				
3	Does this facility require an "Air Toxics" permit under 20.2	2.72.400 NMAC & 2	0.2.72.502	2, Tables A and/or B? Yes No				
4	Will this facility be a source of federal Hazardous Air Pollu	utants (HAP)? Yes	No					
a	If Yes, what type of source?Major (≥ 10 tpy of anORMinor (<10 tpy of an			tpy of any combination of HAPS) 5 tpy of any combination of HAPS)				
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? Yes							
	If yes, include the name of company providing commercial	l electric power to the	facility: _					
a	Commercial power is purchased from a commercial utility site for the sole purpose of the user.	company, which spe	cifically o	loes not include power generated on				

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1	I have filled out Section 18, "Addendum for Streamline Applications."	☑ N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) Mark Hatzenbuhler (20.2.70.300.D.2 NMAC):	Pho	one: 505.771.8500					
а	R.O. Title: Director of Public Works	R.O. e-mail: mhatzenb	mhatzenbuhler@sandovalcountynm.gov					
b	B. O. Address: 2708 Iris Rd. NE, Rio Rancho, NM 87144							
2	Alternate Responsible Official Christopher Perea (20.2.70.300.D.2 NMAC):	Pho	one: 505.867.0814					
а	A. R.O. Title: Landfill Manager	A. R.O. e-mail: cperea	@sandovalcountynm.gov					
b	A. R. O. Address: 2708 Iris Rd. NE, Rio Rancho, NM 87144							
3	Company's Corporate or Partnership Relationship to any other Air have operating (20.2.70 NMAC) permits and with whom the applic relationship): None							
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): N/A							
а	Address of Parent Company: N/A							
5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): N/A							
6	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations: Christopher Perea. 505.867.0814							

Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: Yes. Bernalillo County, Sandia Pueblo (6.4 km), Santa Ana Pueblo (8.0 km), Zia Pueblo (11.3 km), San Felipe Pueblo (14.5 km), Jemez Pueblo (29.0 km), Santo Domingo Pueblo (29.0 km), Laguna Pueblo (30.6 km), Cochiti Pueblo (38.6 km), Isleta Pueblo (38.6 km), and San Ildefonso Pueblo (78.9 km).

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-toto 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application

secure electronic transfer. Air Permit Contact Name_____, Email_____ Phone number _____.

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.

- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Sandoval County Landfill NSR Application for Permit Modification

Table of Contents

Section 1:	General	Facility Information				
Section 2:	Tables					
Section 3:	Applicat	ion Summary				
Attachment 3.1:		New Source Review Permit No. 4111-M2				
Section 4:		Flow Sheet				
Section 5:		n Drawn to Scale				
Section 6:	All Calc					
Appendi		Uncontrolled Emissions, Emission Unit 1				
Appendi		Controlled Emissions, Emission Units 1, 2, 5, and 6				
Appendi		Uncontrolled Emissions, Emission Unit 2				
Appendi		Wind Erosion Emissions Calculations, Emission Unit 2				
Appendi		NMOC Emissions Estimate, Emission Unit 3				
Appendi		Uncontrolled Emissions, Emission Units 5 and 6				
Appendi		LandGEM Output (Inventory Tab)				
Appendi		Petroleum Hydrocarbon Landfarm Emissions, PCS Tracking Sheet				
Appendi		Initial Notification/Notification of Compliance Status Report for Gasoline Dispensing				
тррени	A 0.71	Facilities – (In compliance with 40 CFR 63.11111(c)				
Appendi	x 6.10:	TANKS 4.0.9d Output for SCLF Gasoline Storage Tank				
Section 6.a:	Green H	ouse Gas Emissions				
Appendi	x 6.a.1:	RY 2021 E-GGRT GHG Summary Report				
Section 7:	Informa	tion Used to Determine Emissions				
Attachm	ent 7.1:	Manufacturer Specification Sheets				
Attachm	ent 7.2:	Sections of AP-42 Used in this Application				
Attachm	ent 7.3	NMED AQB Lists of Insignificant and Trivial Activities				
Attachm		MSDSs for No. 2 Diesel and Gasoline (All Grades)				
Attachm		Parts Washer Solvent and Motor Oil MSDS				
Section 8:	Map(s)					
Section 9:		Public Notice				
Section 10:		Description of the Routine Operations of the Facility				
Section 11:		Determination				
Section 12:	PSD Apj (Not App	plicability Determination for All Sources & Special Requirements for a PSD Application <i>licable</i>)				
Section 13:	Discussio	on Demonstrating Compliance with Each Applicable State & Federal Regulation				
Section 14:	Operatio	onal Plan to Mitigate Emissions				
Section 15:	Alternat	ive Operating Scenarios				
Section 16:	Air Disp	ersion Modeling				
Attachm		UA4 Modeling Form				
Section 17:	Complia	nce Test History				
Section 18:	Addendu included)	um for Streamline Applications (streamline applications only) (<i>Not Applicable, not</i>				
Section 19: Applicable)	Require	ments for the Title V (20.2.70 NMAC) Program (Title V applications only) (Not				
Section 20:	Other R	elevant Information				

Section 21: Addendum for Landfill Applications

Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

					Manufact- urer's Rated	Requested Permitted	rmitted		Source		RICE Ignition										
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.									
1	Disposal Route and	N/A	N/A	N/A	N/A	N/A	N/A ⁵	N/A	30502504	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A									
1	Access Roads	1.771	11/71	10/74	11/11	11/11	N/A ⁵	N/A					x To Be Modified	10/11	11/21						
1	Auxiliary Roads	N/A	N/A	N/A	N/A	N/A	N/A ⁵	N/A	30502504	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A									
1	Auxiliary Roads	IN/A	11/74	IN/A	11/74	IN/A	N/A ⁵	N/A	50502504	x To Be Modified	IN/A	IN/A									
2	General Landfill	N/A	N/A	N/A	N/A	N/A	N/A ⁵	N/A	30502504	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A									
2	Operations	IN/A	IN/A	IN/A	IN/A	IN/A	N/A ⁵	N/A	30302304	x To Be Modified	10/A	11/24									
3	Landfill Gas	N/A	N/A	N/A	N/A	N/A	N/A ⁵	N/A	50400201	x Existing (unchanged)	N/A	N/A									
3		IN/A	IN/A	IN/A	IN/A	IN/A	N/A ⁵	N/A		50400201	50400201	□ To Be Modified □ To be Replaced	IN/A	IN/A							
4	Petroleum Hydrocarbon	N/A	N/A	N/A	N/A	N/A	N/A ⁵	N/A	50410310	x Existing (unchanged)	N/A	N/A									
7	Landfarm	IN/A	IN/A	IN/A	IN/A	IN/A	2006 ⁶	N/A	50410510	□ To Be Modified □ To be Replaced	IN/A	IN/A									
5	Crusher/Shredder	N/A	N/A	N/A	80 Ton/HR	20 Ton/UD	2008	N/A	30502003	x Existing (unchanged)	CI	N/A									
5	Operations ⁷	IN/A	IN/A	IN/A	80 I 011/ HK	80 I 011/HK	2009	N/A	50410513	□ To Be Modified □ To be Replaced	CI	IN/A									
6	Portable Rock	Lokotrack	LT1213S	TBD	415 HP	415 HP	2019	N/A	30502003	Existing (unchanged) To be Removed x New/Additional Replacement Unit	CI	N/A									
0	Crusher (rental) ⁸	Lokotrack	L112135	IBD	413 HP	413 HP	2019	N/A	30302003	30302003	30302003	30302003	30302003	30302003	30302003	30302003	50502003	30302003	□ To Be Modified □ To be Replaced	CI	IN/A
										Existing (unchanged)											
										New/Additional Replacement Unit To Be Modified To be Replaced											
										$\Box \text{ Existing (unchanged)} \Box \text{ To be Removed}$											
									1	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced											

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

⁵ Facility has operated with Emission Units 1, 2, and 3 since its construction in 1972.

⁶ The operation of a Petroleum Hydrocarbon Landfarm has been approved with the facility's initial Title V Operating Permit (1/29/08), but the site has not accepted any contaminated soils to date.

⁷ The Rock Crusher/Waste Shredder is defined by two different SCC codes: Aggregate Processing and Waste Shredding.

⁸ The Portable rock Crusher is a temporary rental unit covered under the Technical Revision Rules described in 20.2.72.219.B(1)(b) NMAC.

Table 2-B: Insignificant Activities (20.2.70 NMAC)ORExempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-content/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit	Same Description	M 6 4	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	
Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Piece of Equipment, Check One
2	Diesel Storage Tank	N/A	N/A	Vapor Pressure $< 0.2 \text{ psi}^1$	20.2.72.202.B.2.a NMAC	N/A	x Existing (unchanged)
2	Dieser Storage Talik	IN/A	N/A	Fuel Capacity < 25,000 gallons	IA List Item #8	N/A	□ To Be Modified □ To be Replaced
2	Cold Solvent Parts Washer	ZEP	N/A	Vapor Pressure $< 0.2 \text{ psi}^1$	20.2.72.202.B.2.a NMAC	N/A	x Existing (unchanged)
2	(3 each)	ZEP	N/A	Solvent Storage < 500 gallons	IA List Item #5	N/A	□ To Be Modified □ To be Replaced
2	Vehicle Maintenance	N/A	N/A	Vapor Pressure < 0.2 psi ¹	20.2.72.202.B.2.a NMAC	N/A	x Existing (unchanged)
2	venicie Maintenance	N/A	N/A	Storage Volume < 500 gallons	IA List Item #5	N/A	To Be Modified To be Replaced
2	Waste Oil Storage	N/A	N/A	Vapor Pressure < 0.2 psi ¹	20.2.72.202.B.2.a NMAC	N/A	x Existing (unchanged) To be Removed New/Additional Replacement Unit
2	waste Off Storage	N/A	N/A	Vapor Pressure < 0.2 psi ¹	IA List Item #5	N/A	To Be Modified To be Replaced
2		NI/A	N/A	Emissions << 0.5 tons/yr	20.2.72.202.B.2.a NMAC	N/A	x Existing (unchanged)
2	Waste Oil Heaters	N/A	N/A	Design Rate < 1,000,000 Btu/hr	IA List Item #5	N/A	New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit
							□ To Be Modified □ To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit
							□ To Be Modified □ To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit
							□ To Be Modified □ To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit
							To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit
							□ To Be Modified □ To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
1	Watering	N/A	Fugitive Dust Emissions	1,2	60%	AQB Guidance
2	Pavement	N/A	Fugitive Dust Emissions	1	95%	AQB Guidance
3	Chip Seal / Cold Millings	N/A	Fugitive Dust Emissions	1	85%	AQB Guidance
						ļ
¹ List each control	device on a separate line. For each control device, list all e	mission units c	controlled by the control device.			

Table 2-D: Maximum Emissions (under normal operating conditions)

□ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	C	0	VOC	2,3,4,5	S	Ox	PI	M ¹	PM	[10 ¹	PM	2.5 ¹	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	-	-	-	-	-	-	-	-	221.52	242.86	59.80	65.56	5.98	6.56	-	-	-	-
2	6.85	4.54	1.48	0.98	0.14	0.59	0.45	0.30	114.18	52.41	31.14	14.37	4.08	2.21	-	-	-	-
3	-	-	-	-	0.33	1.44	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	5.23	22.92	-	-	-	-	-	-	-	-	-	-	-	-
5	5.71	4.34	1.23	0.93	4.91E-03	3.73E-03	0.38	0.29	4.28	2.87	1.66	1.16	0.80	0.60	-	-	-	-
6	0.27	0.06	2.39	0.52	0.13	0.028	-	-	8.40	2.42	3.09	0.89	3.09	0.89	-	-	-	-
Totals	12.84	8.94	5.10	2.43	5.84	24.98	0.83	0.58	348.39	300.55	95.69	81.97	13.96	10.26				

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

² Potential VOC emissions from Unit 2 represent evaporative losses from fuel storage and dispensing, and VOCs from diesel engine exhaust calculated in Section 6, Table 6.7.

³ Potential VOC emissions from Unit 3 from landfill gas (LFG) generation are estimated for 2022 from waste deposited through December 31, 2021 (see Table 6.8).

⁴ Potential VOC emissions from Unit 4 include HAP emissions (see Table 6.7)

⁵ Potential VOC emissions from Unit 5 from diesel engine operation include HAP emissions (see Table 6.7).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	N	Ox	С	0	VC	OC	S	Ox	P	M ¹	PM	[10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	-	-	-	-	-	-	-	-	61.43	67.29	16.58	18.17	1.66	1.82	-	-	-	-
2	6.85	4.54	1.48	0.98	0.14	0.59	0.45	0.30	46.15	21.96	12.80	6.18	1.93	1.10	-	-	-	-
3	-	-	-	-	0.33	1.44	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	5.23	22.9	-	-	-	-	-	-	-	-	-	-	-	-
5	5.71	4.34	1.23	0.93	4.91E-03	3.73E-03	0.38	0.29	4.28	2.87	1.66	1.16	0.80	0.60	-	-	-	-
6	0.27	0.059	2.39	0.52	0.13	0.028	-	-	0.98	0.21	0.39	0.085	0.082	0.018	-	-	-	-
Totals	12.84	8.94	5.10	2.43	5.84	24.98	0.83	0.58	112.84	92.33	31.44	25.59	4.47	3.53				

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

X This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scheduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	С	0	V	DC	S	Ox	PI	M ²	PM	(10 ²	PM	2.5 ²	Н	₂ S	Le	ead
Unit 100.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr								
																		
Totals																		

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

²Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

X I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

<i></i>	Serving Unit	N	Ox	C	0	V	OC	S	Ox	Р	М	PN	110	PM	12.5	\Box H ₂ S or	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
1	2	V	Yes	5.10	935.10	4.09	unk	unk	45.07	0.17
2	2	Н	Yes	10.40	952.70	43.26	unk	unk	57.35	0.49
3	5	V	Yes	10.94	900.35	40.88	unk	unk	64.26	0.45
4	6	Н	No	10.75	unk	unk	unk	unk	306.6	0.42

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

	Unit No.(s)	Total	-	Provide Name	Pollutant Here	Provide Name	Pollutant e Here or 🗆 TAP	Provide Name	Pollutant Here	Name		Provide Name	Here	Name	Pollutant Here or 🗆 TAP	Provide Name HAP 0	Here	Name Here	Pollutant e 🛛 r 🗆 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tot	als:																		

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial, pipeline quality natural gas, residue		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	gas, raw/field natural gas, resource (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
2	No. 2 Diesel (Chipper)	Purchased Commercial	129,500 btu/gallon	11 gallon/hour	15,840 gallon/yr	< 0.0015	< 0.01
2	No. 2 Diesel (Compost Screen)	Purchased Commercial	129,500 btu/gallon	1 gallon/hour	48 gallon/yr	< 0.0015	< 0.01
5	No. 2 Diesel (Crusher/Shredder)	Purchased Commercial	129,500 btu/gallon	10 gallon/hour	15,200 gallon/yr	< 0.0015	< 0.01
6	No. 2 Diesel (Rental Crusher)	Purchased Commercial	129,500 btu/gallon	6.34 gallon/hour	2,738 gallon/yr	< 0.0015	< 0.01

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stora	age Conditions	Max Storag	e Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
1	20200306	Unleaded Gasoline	Unleaded Gasoline	6.10	68.00	55.15	3.60	55.59	3.60

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Сар	acity	Diameter (M)	Vapor Space	Co (from Ta	lor ble VI-C)	Paint Condition (from Table	Annual Throughput	Turn- overs
			LR below)	LR below)	(bbl)	(M ³)		(M)	Roof	Shell	VI-C)	(gal/yr)	(per year)
1	2009	Unleaded Gasoline	N/A	FX	471	75	3.05	unk	Red	Red	Good	200,000	10.11

Table 2-L2:	Liquid Storage	e Tank Data Codes	Reference Table
-------------	----------------	-------------------	------------------------

Roof Type	Seal Type, We	lded Tank Seal Type	Seal Type, Rive	ted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$^{3} = 42.0$ gal				BL: Black	
					OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Materi	al Processed	Material Produced				
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
2	mass GHG	168.71	4.54	0.00	0.00	0.00					173.25	
2	CO ₂ e	168.71	1,351.96	0.00	0.00	0.00						1,520.67
3	mass GHG	0.00	0.00	4,017.50	0.00	0.00					4,017.50	
3	CO ₂ e	0.00	0.00	100,437.50	0.00	0.00						100,437.50
5	mass GHG	161.41	4.34	0.00	0.00	0.00					165.75	
3	CO ₂ e	161.41	1,293.42	0.00	0.00	0.00						1,454.82
6	mass GHG	103.26	0.06	0.00	0.00	0.00					103.32	
U	CO ₂ e	103.26	17.60	0.00	0.00	0.00						120.86
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											i I
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											i I
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO2e											
Total	mass GHG	433.39	8.94	4,017.50	0.00	0.00					4,459.82	
Total	CO ₂ e	433.39	2,662.97	100,437.50	0.00	0.00						103,533.86

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a mass basis is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Sandoval County Landfill

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **<u>Process</u>** Summary shall include a brief description of the facility and its processes.

Startup, Shutdown, and Maintenance (SSM) routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/agb/permit/app.form.html) for more detailed instructions on SSM emissions

(http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

The Sandoval County Landfill (SCLF) currently operates under the Title V Permit No. P243L-R2 (issued 09/28/2018) and New Source Review Permit No. 4111-M2 (issued 01/15/2021). SCLF is submitting this Application for Significant Permit Revision of NSR Permit 4111-M2 in accordance with the provisions of 20.2.72.219.D NMAC.

The SCLF is a municipal solid waste and special waste landfill owned by Sandoval County, NM, and is operated by the Sandoval County Department of Public Works. The facility has been in operation as a landfill since at least 1972 and is permitted to dispose of municipal solid waste, construction and demolition (C&D) debris, wastewater treatment plant sludge, and petroleum contaminated soils. The facility also operates an in-vessel composting system for organic wastes and offers facilities for the collection of source-separated recyclable materials. The Landfill encompasses $178 \pm acres$, and the primary features of the site layout are defined as follows:

- Unit I includes the "old landfill" and perimeter zones, and this area will be closed in compliance with the currently approved Closure Plan.
- Unit II includes the lined landfill Cells 1, 2, and 3, as well as the Phase I composting area.
- Unit III includes lined landfill Cells 4, 5, 6, and 7, which represent the currently active disposal area.
- Unit IV includes 31 ± acres of lined landfill Cells. Operations in Unit IV are projected not to commence until after the 5-year term of the current SCLF Title V Permit.
- The landfill operations center includes a scalehouse, inbound/outbound scales, waste receiving facilities, a county vehicle fueling area, and a public convenience center.

Sandoval County

Sandoval County Landfill

March 7, 2023 Rev 0

On January 15, 2021, the New Mexico Environmental Department (NMED) Air Quality Bureau (AQB) issued New Source Review (NSR) Permit No. 4111-M2 to SCLF as a significant revision to include a Portable Rock Crusher (Rental), utilized for size reduction of concrete and/or asphalt delivered to the facility. The revised NSR Permit will be incorporated into the new Title V Operating Permit upon approval by AQB (i.e., P243LR3). A copy of current NSR Permit (No. 4111-M2) is provided as **Attachment 3.1**. The Portable Rock Crusher (Rental) is considered support equipment for air permitting purposes. The Portable Rock Crusher operates to recycle concrete and asphalt for the application of a base course on facility haul roads to control fugitive dust emissions. The unit is rented for short periods (2 months per year) and operated no more than 432 hours during the rental period. Also, as conditioned by NSR Permit 4111-M2, the Portable Rock Crusher (Rental) cannot be operated concurrently with the Unit 5 Crusher/Shredder or the Unit 2 Woodchipper. SCLF conducts waste acceptance operations at the landfill operations center, located at the northwest corner of the landfill property (**Figure 5.1, Section 5**).

The operations center is strategically located to reduce the distance traveled by commercial and private vehicles, thereby reducing emissions from vehicle traffic. The operations center consists of an inbound and outbound scale, a scalehouse/office, an employee lounge, and a public convenience center. The convenience center provides a suitable location for private citizens to dispose of wastes away from the active disposal area and consists of unloading positions for recyclable materials and a tipping floor for waste placement and compaction. Waste is pushed from the tipping floor pit into two 40 yd³ roll-off containers, which are transported to the active disposal area when filled.

The following measures are taken to mitigate source emissions during startups, shutdowns, and emergencies for landfill operations that have the potential to emit pollutants of concern (e.g., particulates, NMOCs, HAPs, VOCs). Landfill operations associated with the emission of particulate matter (e.g., TSP, PM10, and PM2.5) consist of vehicle travel on paved and unpaved landfill roads, general landfill operations (e.g., heavy equipment operations, wind erosion), the Crusher/Shredder, and the Portable Rock Crusher (Rental). The measures taken to mitigate excessive fugitive particulate emissions during startups, shutdowns, and emergencies include a CAT® 730C2 articulated water truck (6,000-gallon capacity) which serves as the site's primary water truck and is used daily when the landfill is operational. A GMC® water truck (2,000-gallon capacity) serves as a backup in the event the primary water truck is not operational.

Sandoval County Landfill

ATTACHMENT 3.1 NSR Permit No. 4111-M2

MICHELLE LUJAN GRISHAM GOVERNOR

> HOWIE C. MORALES LT. GOVERNOR

New Mexico ENVIRONMENT DEPARTMENT

525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov

JAMES C. KENNEY CABINET SECRETARY

JENNIFER J. PRUETT DEPUTY SECRETARY

AIR QUALITY BUREAU NEW SOURCE REVIEW PERMIT Issued under 20.2.72 NMAC

<u>Certified Mail No:</u> <u>Return Receipt Requested</u>

NSR Permit No: Facility Name:

Facility Owner/Operator: Mailing Address:

TEMPO/IDEA ID No: AIRS No:

Permitting Action: Source Classification:

Facility Location:

County:

Air Quality Bureau Contact Main AQB Phone No.

Liz Bisbey-Kuehn Bureau Chief Air Quality Bureau 4111-M2 Sandoval County Landfill

Sandoval County 2708 Iris Road, NE Rio Rancho, NM 87144

3752-PRN20200001 35 0430055

Significant Permit Revision Minor, TV Major by rule

352,220 m E by 3,907,750 m N, Zone 13; Datum WGS84 Sandoval

Urshula Bajracharya (505) 476-4300

Date

TABLE OF CONTENTS

Part A	FACILITY SPECIFIC REQUIREMENTS	A3
A100	Introduction	A3
A101	Permit Duration (expiration)	A3
A102	Facility: Description	A3
A103	Facility: Applicable Regulations	A4
A104	Facility: Regulated Sources	A5
A105	Facility: Control Equipment	
A106	Facility: Allowable Emissions	
A107	Facility: Allowable Startup, Shutdown, & Maintenance (SSM) and M	alfunction
Emissi	ons	A7
A108	Facility: Allowable Operations	A7
A109	Facility: Reporting Schedules	
A110	Facility: Fuel and Fuel Sulfur Requirements – Not Required	
A111	Facility: 20.2.61 NMAC Opacity	
EQUIPM	ENT SPECIFIC REQUIREMENTS	A9
Oil and C	as Industry	
A200	Oil and Gas Industry – Not Required	A9
	ion Industry - Aggregate	
A300	Construction Industry – Aggregate – Not Required	
	ion Industry – Asphalt	
A400	Construction Industry – Asphalt – Not Required	
Construct	ion Industry - Concrete	
A500	Construction Industry – Concrete – Not Required	
	eneration Industry	
A600	Power Generation Industry – Not Required	
	ste Disposal (Landfills) Industry	
A700	Solid Waste Disposal (Landfills) Industry- Not Required	
A701	General Landfill Operations and NMOC Emissions	
A702	Haul Road Operations	
A703	Landfill Gas Collection System – Not Required	A15
A704	Enclosed Landfill Gas Flare (NMOC Emissions Control) - Not Required	A15
A705	Petroleum Contaminated Soils Landfarm	A15
A706	Engines	
A707	Tanks:	A17

PART B GENERAL CONDITIONS (Attached)

PART C MISCELLANEOUS: Supporting On-Line Documents; Definitions; Acronyms (Attached)

PART A FACILITY SPECIFIC REQUIREMENTS

A100 Introduction

A. This permit, NSR 4111-M2, supersedes all portions of Air Quality Permit 4111-M1, issued March 13, 2017, except portions requiring compliance tests. Compliance test conditions from previous permits, if not completed, are still in effect, in addition to compliance test requirements contained in this permit.

A101 <u>Permit Duration (expiration)</u>

A. The term of this permit is permanent unless withdrawn or cancelled by the Department.

A102 Facility: Description

- A. The function of the facility is to dispose of municipal solid waste (MSW) and wastewater treatment plant sludge; process petroleum contaminated soils (PCS); shred logs, stumps, green waste, and woody construction and demolition debris for composting; crush scrap concrete and asphalt debris to produce road basecourse; and shred or crush MSW and other wastes to facilitate compaction within the landfill disposal cells.
- B. This facility is located within the city limits of Rio Rancho, New Mexico, in Sandoval County. The facility is located off of Idalia Road, approximately 2.5 miles west of NM 528.
- C. Public access shall be restricted at the landfill property boundary.
- D. This modification consists of addition and operation of portable rock crusher for a limited annual duration of time. The facility is proposing to rent a rock crusher for a period not to exceed 432 hours per year from the date of issuance of this permit.
- E. Table 102.A and Table 102.B show the total potential emission rates (PER) from this facility for information only. This is not an enforceable condition and excludes emissions from Minor NSR exempt activities per 20.2.72.202 NMAC.

Table 102.A. Total Totential Emission Rate (TER) from Entire Facility							
Pollutant	Emissions (tons per year)						
Nitrogen Oxides (NOx)	8.9						
Carbon Monoxide (CO)	2.4						
Volatile Organic Compounds (VOC) ¹	25.6						
Sulfur Dioxide (SO ₂)	0.6						

Table 102.A: Total Potential Emission Rate (PER) from Entire Facility

Pollutant	Emissions (tons per year)
Particulate Matter 10 microns or less (PM ₁₀)	24.6
Particulate Matter $(PM)^2$	88.5
Particulate Matter 2.5 microns or less (PM _{2.5})	3.5
Non-methane Organic Compounds (NMOC in Mg/yr in 2022)	27.85
Greenhouse Gas (GHG) as CO ₂ e	76,943

Table 102.A: Total Potential Emission Rate (PER) from Entire Facility

1. VOC total includes emissions from Fugitives

2. PM is a regulated pollutant per 20.2.70 NMAC, Title V. No ambient air quality standards apply to PM.

Table 102.B: Total Potential Emissions Rate (PER) for *Hazardous Air Pollutants (HAPs) that exceed 1.0 ton per year

Pollutant	Emissions (tons per year)
Toluene	1.4
Total HAPs ^{**}	24.5

* HAP emissions are already included in the VOC emission total.

** The total HAP emissions may not agree with the sum of individual HAPs because only individual HAPs greater than 1.0 ton per year are listed here.

A103 Facility: Applicable Regulations

A. The permittee shall comply with all applicable sections of the requirements listed in Table 103.A.

Table 103.A: Applicable Requirements

Applicable Requirements	Federally Enforceable	Unit No.
20.2.1 NMAC General Provisions	X	Entire facility
20.2.3 NMAC Ambient Air Quality Standards	Х	Entire facility
20.2.7 NMAC Excess Emissions	Х	Entire facility
20.2.60 NMAC Open Burning	Х	Entire facility
20.2.61 NMAC Smoke and Visible Emissions	X	2B, 2C, 5D and 6
20.2.64 NMAC Municipal Solid Waste Landfills	X	Entire Facility
20.2.70 NMAC Operating Permits	X	Entire facility
20.2.71 NMAC Operating Permit Emission Fees	Х	Entire facility
20.2.72 NMAC Construction Permit	Х	Entire facility
20.2.73 NMAC Notice of Intent and Emissions Inventory Requirements	Х	Entire facility
20.2.75 NMAC Construction Permit Fees	X	Entire facility
20.2.77 NMAC New Source Performance Standards	Х	Units subject to 40 CFR 60
20.2.82 NMAC Maximum Achievable Control		
Technology Standards for Source Categories of	Х	Units subject to 40 CFR 63
HAPs		
40 CFR 50 National Ambient Air Quality Standards	X	Entire facility

Table 103.A: Applicable Requirements

Applicable Requirements	Federally Enforceable	Unit No.
40 CFR 60, Subpart A, General Provisions	Х	Entire facility
40 CFR 60, Subpart Cf and XXX	Х	Entire facility
40 CFR 60, Subpart IIII	Х	5D
40 CFR 63, Subpart A, General Provisions	Х	Units subject to 40 CFR 63
40 CFR 63, Subpart CCCCCC	Х	T1
40 CFR 63, Subpart ZZZZ	Х	2B and 2C
40 CFR 82, Protection of Stratospheric Ozone	Х	Entire Facility

A104 Facility: Regulated Sources

A. Table 104.A lists the emission units authorized for this facility. Emission units identified as exempt activities (as defined in 20.2.72.202 NMAC) and/or equipment not regulated pursuant to the Act are not included.

	Source Description	Make	Model	Serial No.	Construction/ Reconstruction Date	Manufacture Date	Manufacturer Rated Capacity /Permitted Capacity
1	Fugitives - Disposal Route, Access and Auxiliary Roads	Not Applicable (NA)	NA	NA	1972	NA	2745 h/y
2A	General Landfill Operations	NA	NA	NA	1972	NA	2745 h/y
2B	Diesel Powered Compost Screen	Fecon	96	05231	01-JAN-06	01-JAN-06	48 hp / 48 hp
2C	Diesel Powered Wood Chipper	Morbark	3600 Wood Chipper	182-1124	18-JAN-05	01-JUN-04	455 hp / 455 hp
3	Landfill Gas Emissions ²	NA	NA	NA	NA	NA	8760 h/y
4	Petroleum Hydrocarbon Landfarm (PCS) ³	NA	NA	NA	TBD	NA	850 yd ³ / 850 yd ³
5A	Rock Crusher/ Waste Shredder Operations	NA	NA	NA	01-JAN-09	01-DEC-08	80 tons/h / 80 tons/h
5B	Front End Loader in Crusher Area	NA	NA	NA	NA	NA	80 tons/h / 80 tons/h
5C	Stockpiling for Crusher	NA	NA	NA	NA	NA	80 tons/h / 80 tons/h
5D	Diesel CI Engine	Doppstadt	DW3060S A	W093073 24-823- D38048	01-JAN-09	01-DEC-08	430 hp / 430 hp
6	Portable Rock Crusher (Rental)	Lokotrack	LT1213S	TBD	2019	2019	415 hp / 415 hp

Table 104.A: Regulated Sources List

NSR Permit No. 4111-M2

- 1. All TBD (to be determined) units and like-kind engine replacements must be evaluated for applicability to NSPS and MACT requirements.
- 2. The facility operates up to 2745 h/y (as shown in Unit 2A), but landfill gas emissions occur continuously.
- 3. The PCS landfarm has not accepted any waste at this time, so the volume is not known. The 850 yd³ figure is an initial design assessment based on the Table 106.A. allowable limits for HAPs.

A105 Facility: Control Equipment

A. Table 105 lists all the pollution control equipment required for this facility. Each emission point is identified by the same number that was assigned to it in the permit application.

 Table 105: Control Equipment List:

Control Equipment Unit No.	Control Description	Pollutant being controlled	Control for Unit Number(s) ¹
Not required	Watering	Fugitive dust (particulate matter) emissions	1 and 2
Not required	Basecourse applications and watering	Fugitive dust (particulate matter) emissions to achieve 80% control	1 and 2A
Not required	Chip seal, sweeping, and watering	Fugitive dust (particulate matter) emissions to achieve 85% control	1 and 2A
Not required	Pavement and sweeping	Fugitive dust (particulate matter) emissions to achieve 95% control	1 and 2A

1. Control for unit number refers to a unit number from the Regulated Equipment List

A106 Facility: Allowable Emissions

A. The following Section lists the emission units and their allowable emission limits. (40 CFR 50; 40 CFR 60, Subparts A, IIII, Cf and XXX; 40 CFR 63, Subparts A, CCCCCC, and ZZZZ; and 20.2.72.210.A and B.1 NMAC).

Table 106.A: Allowable Emissions

Unit No.	NO _x ¹ pph	NO _x ¹ tpy	CO pph	CO tpy	VOC pph	VOC tpy	SO ₂ pph	SO ₂ tpy	PM ₁₀ pph	PM ₁₀ tpy	PM _{2.} 5 pph	PM _{2.} 5 tpy
1	-	-	-	-	-	-	-	-	14.5	16.1	1.5	1.6
2A	-	-	-	-	-	-	-	-	6.2	7.5	1.3	1.3
2C and 2B ³	6.9	4.5	1.5	1.0	<	<	<	<	<	<	<	<
3	-	-	_	-	<	1.4	-	-	-	-	_	-

NSR Permit No. 4111-M2

Unit No.	NO _x ¹ pph	NO _x ¹ tpy	CO pph	CO tpy	VOC pph	VOC tpy	SO ₂ pph	SO ₂ tpy	PM ₁₀ pph	PM ₁₀ tpy	PM _{2.} 5 pph	PM _{2.} 5 tpy
4	-	-	-	-	5.3	23.6	-	-	-	-	-	-
5A. 5B, 5C	-	-	-	-	-	-	-	-	1.4	1.0	<	<
5D	5.7	4.3	1.2	0.9	<	<	<	<	<	<	<	<
6	0.3	0.06	2.4	0.5	0.1	0.03	-	-	0.4	0.1	0.08	0.02

1 Nitrogen dioxide emissions include all oxides of nitrogen expressed as NO2

2 For Title V facilities, the Title V annual fee assessments are based on the sum of allowable tons per year emission limits in Sections A106 and A107.

3 Unit 2C emissions include 0.6 pph NO₂ from Unit 2B (Unit 2B is limited to 48 hours/year per Condition A706.A). "-" indicates the application represented emissions of this pollutant are not expected.

"<" indicates that the application represented the uncontrolled mass emission rates are less than 1.0 pph or 1.0 tpy for this emissions unit and this air pollutant. The Department determined that allowable mass emission limits were not required for this unit and this pollutant.

"*" indicates hourly emission limits are not appropriate for this operating situation.

4 To report excess emissions for sources with no pound per hour and/or ton per year emission limits, see condition B110.F.

A107 <u>Facility: Allowable Startup, Shutdown, & Maintenance (SSM) and Malfunction</u> <u>Emissions</u>

A. Separate allowable SSM emission limits are not required for this facility since the SSM emissions are predicted to be less than the limits established in Table 106A. The permittee shall maintain records in accordance with Condition B109.C.

A108 Facility: Allowable Operations

A. Operating Hours.

Requirement: This facility, including all permitted equipment and related activities such as truck traffic involving movement of landfill materials, shall occur between the operational hours of 7:00 am and 4:00 pm, Monday through Saturday, for a maximum of 2745 hours/calendar year. Site maintenance and construction activities, including application of daily cover, may extend beyond the hours that the landfill is open to receive waste. In addition, the Landfill may operate outside scheduled operating hours to accommodate site preparation, inclement weather conditions, special projects, internal operations/projects, waste transfer operations, internal operations, monitoring, and other special conditions.

Monitoring: Daily, the permittee shall record the hours of operation of the facility.

Recordkeeping: Each month, the permittee shall calculate the monthly rolling 12-month total hours. The permittee shall record the start and end times on each day of operation.

Reporting: The permittee shall report in accordance with Section B110.

A109 Facility: Reporting Schedules

A. The permittee shall report according to the Specific Conditions and General Conditions of this permit.

A110 Facility: Fuel and Fuel Sulfur Requirements – Not Required

A111 Facility: 20.2.61 NMAC Opacity

A. 20.2.61 NMAC Opacity Limit (Units 2B, 2C, 5D, and 6)

Requirement: Visible emissions from all emission stacks of all compression ignition engines (Units 2B, 2C, 5D, and 6) shall not exceed an opacity of 20 percent in accordance with the requirements at 20.2.61.110.A NMAC.

Monitoring: As compression ignition engines used for processing landfill materials, and as engines that operate on a limited basis, the permittee shall, at least once during any calendar year that the unit is operated and no less frequently than once every 5 years regardless of unit operation, measure opacity during steady state operation on each unit for a minimum of 10 minutes in accordance with the procedures of 40 CFR 60, Appendix A, Method 9. The permittee shall also measure opacity on a unit's emissions stack anytime when visible emissions are observed during steady state operation.

- (a) Visible emissions observations shall be conducted over a 10-minute period during operation after completion of startup mode in accordance with the procedures at 40 CFR 60, Appendix A, Reference Method 22 (EPA Method 22). If no visible emissions are observed, no further action is required.
- (b) If any visible emissions are observed during completion of the EPA Method 22 observation, subsequent opacity observations shall be conducted over a 10-minute period, in accordance with the procedures at EPA Method 9 as required by 20.2.61.114 NMAC.

For the purposes of this condition, *Startup mode* is defined as the startup period that is described in the facility's startup plan.

Recordkeeping: The permittee shall keep records in accordance with the requirements of Section B109 and as follows:

- (a) For any visible emissions observations conducted in accordance with EPA Method 22, record the information on the form referenced in EPA Method 22, Section 11.2.
- (b) For any opacity observations conducted in accordance with the requirements of EPA Method 9, record the information on the form referenced in EPA Method 9, Sections 2.2 and 2.4.

Reporting: The permittee shall report in accordance with Section B110.

EQUIPMENT SPECIFIC REQUIREMENTS

OIL AND GAS INDUSTRY

A200 Oil and Gas Industry – Not Required

CONSTRUCTION INDUSTRY - AGGREGATE

A300 Construction Industry – Aggregate – Not Required

CONSTRUCTION INDUSTRY – ASPHALT

A400 Construction Industry – Asphalt – Not Required

CONSTRUCTION INDUSTRY - CONCRETE

A500 <u>Construction Industry – Concrete – Not Required</u>

POWER GENERATION INDUSTRY

A600 Power Generation Industry – Not Required

SOLID WASTE DISPOSAL (LANDFILLS) INDUSTRY

A700 Solid Waste Disposal (Landfills) Industry- Not Required

A. This section has common equipment related to most Landfill Operations

A701 General Landfill Operations and NMOC Emissions

A. Setback Distance and Restriction on Moving Emission Sources: The permittee was required to reduce some haul road and other activities near the northern property boundary to meet the PM2.5 PSD increment to issue NSR permit number 4111-M1. Therefore, any change in the parameters used for this modeling, including moving regulated sources of air emissions, such as haul roads, shall be submitted to the Department for review. Upon the Department's request, the permittee shall submit

NSR Permit No. 4111-M2

additional modeling for review by the Department. Results of that review may require a permit modification (20.2.72.210.A NMAC).

B. 40 CFR 60, Subparts XXX and Cf (Entire Facility)

Requirement: The landfill shall comply with all applicable requirements of Subpart A of 40 CFR 60 and all specific requirements in Subpart XXX of 40 CFR 60.760 through 40 CFR 60.769. The landfill shall also comply with any/all applicable specific requirements in Subpart Cf of 40 CFR 60.31f through 40 CFR 60.41f.

Monitoring: The permittee shall comply with the applicable monitoring requirements of 40 CFR 60.766 and 40 CFR 60.37f.

Recordkeeping: The permittee shall comply with the applicable recordkeeping requirements of 40 CFR 60.768 and 40 CFR 60.39f.

Reporting: The permittee shall comply with the reporting requirements of 40 CFR 60.767 and 40 CFR 60.38f.

C. Particulate Matter Control – Landfill (Entire Facility)

Requirement: Compliance with the allowable particulate matter emissions limits in Table 106.A shall be demonstrated by watering active areas of the landfill to control particulate matter emissions. The permittee shall control fugitive dust by spreading water onto the active areas of the landfill at least once a day during the landfill access hours, or as necessary to control fugitive dust emissions. This condition is pursuant to 20.2.70.302.A(1) NMAC. The frequency of water application may be reduced when precipitation, residual moisture, or freezing temperatures occur to the extent that these conditions suppress fugitive dust as effectively as the application of water.

Monitoring: The permittee shall watch for the presence of visible dust and monitor the frequency, quantity, and location(s) of the water application, or equivalent control measures.

Recordkeeping: The permittee shall keep readily accessible, on-site records of the daily watering activities in accordance with Section B109 of this permit. The permittee shall make a daily record of each time the control activity is applied or if none is required due to precipitation, residual moisture, or freezing temperatures that eliminate the need for water application. The record shall include the date, time, name of the person making the entry, and the quantity and description of the control material that was applied and where.

Reporting: The permittee shall submit reports of the daily watering logs in accordance with Section B110 of this permit.

D. NMOC Emissions – Waste Acceptance Rates and Design Capacity (Unit 3)

Requirement: The permittee shall verify parameters used in the NMOC calculations. This condition is pursuant to 20.2.70.302.A(1) NMAC, 20.2.64 NMAC, and 40 CFR 60.762 (Subpart XXX, standards for air emissions).

Monitoring: The permittee shall monitor the waste acceptance rates and design capacity at the landfill.

Recordkeeping: The permittee shall keep readily accessible, on-site records of the maximum design capacity, current amount of solid waste in-place, and the year-by-year waste acceptance

rate in accordance with Section B109 of this permit.

Reporting: The permittee shall meet any applicable reporting as required in 40 CFR 60, Subpart XXX (Condition A701.B).

E. NMOC Emission Rate (Unit 3)

Requirement The permittee shall recalculate the NMOC emission rate annually using the procedures specified in 40 CFR 60 Subpart 60.764 (Subpart XXX, test methods and procedures) until such time as the calculated NMOC emission rate is equal to or greater than 34 megagrams (Mg) per year or the landfill is closed. If the annual NMOC emission rate upon recalculation is equal to or greater than 34 Mg per year, the landfill owner/operator shall install a collection and control system in compliance with 40 CFR 60.762(b)(2) and notify the Air Quality Bureau Permitting Section. This condition is pursuant to 20.2.70.302.A(1) NMAC, 20.2.64 NMAC, and 40 CFR 60.762(b).

Monitoring: The permittee shall monitor and recalculate the NMOC emission rate annually. **Recordkeeping:** The permittee shall keep readily accessible, on-site records of the annual reports of NMOC calculated emissions in accordance with Section B109 of this permit.

Reporting: The permittee shall meet any applicable reporting as required in 40 CFR 60, Subpart XXX (Condition A701.B).

F. Crushing/Shredding Operations – Hours of Operation (Units 5A, 5B, and 5C)

Requirement: The crusher/shredder and associated activities, Units 5A, 5B, and 5C, are restricted to operate no more than 1520 hours per year. These hours shall reflect those as required for the diesel engine component of this unit (Unit 5D) per Condition A706.A. Any/all monitoring, recordkeeping, and reporting that overlaps (happens concurrently) with the requirements of Condition A706.A, shall be kept as one record.

Monitoring: The permittee shall monitor the on/off status of the crusher/shredder.

Recordkeeping: The permittee shall make a record of the on/off status of the crusher/shredder. At a minimum, the operator shall monitor and record the date, the time, and the on/off status of the crusher/shredder using the resettable hour meter installed on the crusher/shredder. Each calendar month, the permittee shall calculate the monthly total for the hours in which the crusher/shredder operates. The permittee shall calculate the monthly rolling 12-month total hours for the crusher/shredder.

Reporting: The permittee shall maintain a summary of the hours of operation for the crusher/shredder for each calendar day. At a minimum, the summary shall include the date, the production start and end time, and the total number of hours of operation. The permittee shall maintain the ability to provide information to the Department, in electronic or paper format, within 24 hours of the request, or longer if so authorized by the Department.

- G. Crusher/Shredder (Unit 5A): The permittee shall keep documentation on site that shows the manufacturer's maximum rated throughput rate for the crusher/shredder in Unit 5A, under all configurations, does not exceed 80 tons per hour.
- H. Storage Piles (Unit 5C): Stockpiles shall be maintained to minimize fugitive particulate matter emissions to the atmosphere. Water applications (Condition A701.C), use of

tarps or other physical devices and techniques, stockpile physical profile, stockpile placement (location) within the landfill boundaries, or other standard industry practices shall all be considered in minimizing fugitive dust. When requested by the Department, the permittee shall indicate what practices are being implemented.

I. Equipment: The permittee shall maintain a list of all equipment associated with this permit at all times. All changes to the list shall be reported to the Department by notifying the Department in accordance with the equipment substitution notification process (according to the General Conditions at B110.C). Substitution of non-combustion equipment is authorized provided the replacement equipment is functionally equivalent and has the same or lower process capacity as the piece of equipment it is replacing in the most recent permit. The Department shall be notified using the Equipment Substitution Form provided by the Department within fifteen (15) days of equipment substitutions (General Conditions at B110.C).

A702 Haul Road Operations

A. Unpaved Roads (Units 1 and 2A)

Requirement: Unpaved traffic areas and haul roads within the facility boundaries, including the landfill operations area shall be watered <u>or</u> treated by application of basecourse to control particulate emissions. The permittee shall control fugitive dust by spreading water onto unpaved truck traffic areas and haul roads at least once a day during the landfill access hours (54 hours per week), or as necessary to control fugitive dust emissions. The frequency of water application may be reduced when precipitation, residual moisture, or freezing temperatures occur to the extent that these conditions suppress fugitive dust as effectively as the application of water.

Monitoring: The permittee shall watch for the presence of visible dust and monitor the frequency, quantity, and location(s) of the water application or equivalent control measure.

Recordkeeping: The permittee shall keep readily accessible, on-site records of the daily watering activities in accordance with Section B109 of this permit. The permittee shall make a daily record of each time the control activity is applied or if none is required due to precipitation, residual moisture, or freezing temperatures that eliminate the need for water application. The record shall include the date, time, name of the person making the entry, and the quantity and description of the control measure and where it is applied.

Reporting: The permittee shall submit reports of the daily watering logs in accordance with Section B110 of this permit.

B. Recycled Basecourse Roads (Units 1 and 2A)

Requirement: Traffic areas and haul roads within the facility boundaries, including landfill operations areas, where recycled basecourse has been applied, shall be watered to control particulate emissions. The permittee shall control fugitive dust by spreading water onto traffic areas and haul roads, where recycled basecourse has been applied, at least once a day during the landfill access hours (54 hours per week), or as necessary to control fugitive dust emissions. The frequency of water application may be reduced when precipitation, residual moisture, or

freezing temperatures occur to the extent that these conditions suppress fugitive dust as effectively as the application of water.

Monitoring: The permittee shall watch for the presence of visible dust and monitor the frequency, quantity, and location(s) of the water application.

Recordkeeping: The permittee shall keep readily accessible, on-site records of the daily watering activities, including any road maintenance or repairs, in accordance with Section B109 of this permit. The permittee shall make a daily record of each time the control activity is applied or if none is required due to precipitation, residual moisture, or freezing temperatures that eliminate the need for water application. The record shall include the date, time, name of the person making the entry, and the quantity and description of the control measure and where it is applied.

Reporting: The permittee shall submit reports of the daily watering logs in accordance with Section B110 of this permit.

C. Chip Sealed Roads (Units 1 and 2A)

Requirement: Traffic areas and roads within the facility boundaries, including landfill operations areas, where chip seal (a mixture of asphalt cement and rock that form a hardened surface) has been applied, shall be swept and watered to control particulate emissions. If sweeping is not sufficient alone to control dust, watering shall be implemented to control dust as appropriate. The permittee shall control fugitive dust by cleaning chip seal roads as necessary during the landfill access hours (54 hours per week), to control fugitive dust emissions. The frequency of water application or sweeping may be reduced when precipitation, residual moisture, or freezing temperatures occur to the extent that these conditions suppress fugitive dust as effectively as the application of water or sweeping.

Monitoring: The permittee shall watch for the presence of visible dust and monitor the frequency and location(s) of the sweeping.

Recordkeeping: The permittee shall keep readily accessible, on-site records of the cleaning activities, including any road maintenance or repairs, in accordance with Section B109 of this permit. The permittee shall make a daily record of each time the control activity is performed or if none is required due to precipitation, residual moisture, or freezing temperatures that eliminate the need for water application or sweeping. The record shall include the date, time, name of the person making the entry, and a description of the control measure and where it is applied.

Reporting: The permittee shall submit reports of the sweeping and watering activities in accordance with Section B110.

D. Paved Roads (Units 1 and 2A)

Requirement: Paved traffic areas and haul roads within the facility boundaries, including landfill operations areas, shall be swept to control particulate emissions. The permittee shall control fugitive dust by cleaning paved roads as necessary during the landfill access hours (54 hours per week), to control fugitive dust emissions. The frequency of sweeping may be reduced when precipitation, residual moisture, or freezing temperatures occur to the extent that these conditions suppress fugitive dust as effectively as sweeping.

Monitoring: The permittee shall watch for the presence of visible dust and monitor the

frequency and location(s) of the sweeping.

Recordkeeping: The permittee shall keep readily accessible, on-site records of the cleaning activities, including any road maintenance or repairs, in accordance with Section B109 of this permit. The permittee shall make a daily record of each time the control activity is performed or if none is required due to precipitation, residual moisture, or freezing temperatures that eliminate the need for sweeping. The record shall include the date, time, name of the person making the entry, and a description of the control measure and where it is applied.

Reporting: The permittee shall submit reports of the sweeping activity in accordance with Section B110 of this permit.

E. Traffic Limits – Refuse Delivery and Miscellaneous Vehicles (Units 1 and 2A)

Requirement: The cumulative daily distance traveled by refuse delivery vehicles and miscellaneous vehicular traffic using landfill disposal and operation routes shall not exceed the following cumulative vehicle miles traveled (VMT), used to determine particulate matter emissions:

- 1) 146.6 VMT per day (44,708 VMT per year) on unpaved roads;
- 2) 180.1 VMT per day (54,941 VMT per year) on chip seal roads; and
- 3) 83.1 VMT per day (25,343 VMT per year) on paved roads.

Monitoring: The permittee shall monitor the total number of VMT on the unpaved roads, on the chip seal roads, and on the paved roads of the disposal route and operation routes per day.

Recordkeeping: The permittee shall keep daily records of the total number of VMT on the unpaved roads, on the chip seal roads, and on the paved roads of the disposal route and operation routes per day in accordance with Section B109 of this permit.

Reporting: Maintain records on-site.

F. Traffic Limit - Front End Loader (Unit 5B)

Requirement: The cumulative daily distance traveled by the front end loader, Unit 5B, in the crusher/shredder area, shall not exceed 1.04 vehicle miles traveled (VMT) per day (318 VMT per year), used to determine particulate matter emissions.

Monitoring: The permittee shall monitor the total number of VMT for the front end loader per day.

Recordkeeping: The permittee shall keep daily records of the total number of VMT for the front end loader in accordance with Section B109 of this permit.

Reporting: Maintain records on-site.

A703 Landfill Gas Collection System – Not Required

A704 Enclosed Landfill Gas Flare (NMOC Emissions Control) – Not Required

A705 Petroleum Contaminated Soils Landfarm

- A. Hazardous Air Pollutants (HAP) The Petroleum Contaminated Soils (PCS) Landfarm (Unit 4) HAP emissions shall be less than 25 tons per year (tpy) of aggregate HAPs and 10 tpy of any individual HAP. PCS received by the landfill shall have a laboratory analysis for total petroleum hydrocarbon (TPH - Diesel, Motor Oil, and Gasoline Range Organics), and Benzene, Toluene, Ethyl benzene, and Xylene (BTEX).
- B. Operations Petroleum Contaminated Soils (PCS) Landfarm (Unit 4)

Requirement: The permittee shall not exceed the emission limits in Table 106.A and the limits in Condition A705.A.

Monitoring: The permittee shall monitor the total amount of PCS received and the associated concentration of TPH and BTEX based on the analytical analysis for each PCS profile. Profile is defined as an identification sheet for one specific remediation project that meets the landfill's acceptance criterion. PCS received may involve multiple truck loads or shipments.

The permittee shall calculate semi-annually the HAP emissions from PCS consistent with the methodologies presented in Section 6 of the permit application. Calculations for individual BTEX emissions shall be based on the highest concentration of the individual HAP as determined from the analytical test results associated with the PCS profile. For PCS remediation projects with volumes less than 100 cubic yards, the results of the single laboratory sample will be considered the high concentration.

Recordkeeping: The permittee shall record the total amount (cubic yards or tons) of PCS received for each profile and the associated concentration (ppm or Mg/kg) of TPH and BTEX.

For each PCS profile, the permittee shall maintain scale records documenting the amount of PCS deposited at the Landfarm and laboratory analytical results documenting the HAP concentrations. The permittee shall also maintain records of HAP emissions calculations.

Records shall be maintained on-site and made available within 24 hours upon request. Scale records and Waste Profile Sheets with Laboratory Analysis are also subject to Department review and copying upon written notice and/or on-site inspection.

Reporting: As required by this facility's Title V permit, the permittee shall report semiannually a summary of the HAP emissions calculations.

A706 Engines

A. Hours of Operation: Diesel Engines (Units 2C, 2B, and 5D)Requirement: Compliance with the allowable emissions limits in Table 106.A shall be

NSR Permit No. 4111-M2

demonstrated as follows: The diesel engines which power the wood chipper (Unit 2C), the compost screen (Unit 2B), and the crusher/shredder (Unit 5D), are restricted to operate no more than:

- 1) 1440 hours per year for Unit 2C,
- 2) 48 hours per year for Unit 2B, and
- 3) 1520 hours per year for Unit 5D,

based on a monthly rolling 12-month total (for each engine), as specified in the permit application.

Monitoring: The permittee shall monitor the on/off status of each of Unit 2C, Unit 2B, and Unit 5D diesel engines by recording the startup time and subsequent shut-down time of each engine.

Recordkeeping: The permittee shall make a record of the on/off times for each diesel engine.

Unit 5D (crusher/shredder engine): The operator shall utilize the hour meter installed on Unit 5D to facilitate the recording of date, time, and on/off status of Unit 5D.

Each calendar month, the permittee shall calculate the monthly total for the hours in which each diesel engine operates. The permittee shall calculate the monthly rolling 12-month total hours for each diesel engine.

Reporting: The permittee shall maintain a summary of the hours of operation for each diesel engine for each calendar day. At a minimum, the summary shall include the date, the start and end time, and the total number of hours of operation. The permittee shall maintain the ability to provide information to the Department in electronic or paper format, within 24 hours of the request, or longer if so authorized by the Department.

B. 40 CFR 60, Subpart IIII (Unit 5D)

Requirement: The unit is subject to 40 CFR 60, Subparts A and IIII and shall comply with the notification requirements in Subpart A and the specific requirements of Subpart IIII, including the standards in §60.4204.

Monitoring: The permittee shall comply with all applicable monitoring requirements in 40 CFR 60, Subpart A and Subpart IIII, including but not limited to 60.4211.

Recordkeeping: The permittee shall comply with all applicable recordkeeping requirements in 40 CFR 60, Subpart A and Subpart IIII, including but not limited to 60.4214.

Reporting: The permittee shall comply with all applicable reporting requirements in 40 CFR 60, Subpart A and Subpart IIII, including but not limited to 60.4214.

C. 40 CFR 63, Subpart ZZZZ (Units 2B and 2C)

Requirement: The units are subject to 40 CFR 63, Subpart ZZZZ and the permittee shall comply with all applicable requirements of Subpart A and Subpart ZZZZ, including applicable emission limitations and operating limitations cited under §63.6603, including Table 2d. Unit 5D shall meet ZZZZ by meeting NSPS IIII (see Condition A706.B)

Monitoring: The permittee shall comply with all applicable monitoring requirements of 40 CFR 63, Subpart A and Subpart ZZZZ.

Recordkeeping: The permittee shall comply with all applicable recordkeeping requirements of 40 CFR 63, Subpart A and Subpart ZZZZ, including but not limited to 63.6655 and 63.10. **Reporting:** The permittee shall comply with all applicable reporting requirements of 40 CFR 63, Subpart A and ZZZZ, including but not limited to 63.6645, 63.6650, 63.9, and 63.10.

D. Hours of Operation: Portable Diesel Engine (Unit 6)

Requirements: Compliance with the allowable emissions limits in Table 106.A shall be demonstrated as follows:

- The Unit 6 engine shall be limited to operating for no more than a total of 432 hours per calendar year. The emissions in Table 106.A are based on Unit 6 operating 9 hours per day at 6 days per week for a period not to exceed 8 weeks in a calendar year. The total of 432 hours/calendar year shall not be exceeded; and
- 2) Units 2C and 5D shall not be operated simultaneously with Unit 6.

Monitoring: The permittee shall monitor the on/off status of Unit 6 by recording the startup time and subsequent shut-down time of the engine.

Recordkeeping: The permittee shall make a record of the on/off times for the diesel engine, using a Department-approved recording system or recordkeeping form, similar to that used for other facility engines (Condition A706.A). The records shall not indicate any simultaneous operation of Unit 6 with Unit 2C or with Unit 5D.

The permittee shall keep a cumulative record of the total hours in which the engine operates until the 432 hour limit per calendar year has been reached.

Reporting: The permittee shall maintain a summary of the hours of operation for the engine for each calendar day. At a minimum, the summary shall include the date, the start and end time, and the total number of hours of operation. The permittee shall maintain the ability to provide information to the Department in electronic or paper format, within 24 hours of the request, or longer if so authorized by the Department.

A707 <u>Tanks:</u>

A. NESHAP (MACT) - 40 CFR 63 Subpart CCCCCC (Unit T-1)

Requirement: Unit T-1 is subject to the requirements in 40 CFR 63, Subparts A and CCCCCC, §63.11111(c) of as a Gasoline Dispensing Facility (GDF) with throughput of greater than 10,000 gal/month, but less than 100,000 gal / month.

- 1) The permittee shall not allow gasoline to be handled in a manner that would result in vapor releases to the atmosphere for extended periods of time. Measures to be taken include, but are not limited to, the requirements listed in §63.11111(c).
- 2) No notifications are required for Unit T-1, however, the permittee shall have records available within 24 hours of a request by the Administrator to document fuel throughput.

Monitoring: As required by Subparts A and CCCCCC.

Recordkeeping: The permittee shall maintain monthly fuel throughput records in accordance with §63.11117(d) of 40 CFR 63, Subpart CCCCCC, and in accordance with Section B109.

Reporting: The permittee shall report as required by 40 CFR 63, Subparts A and CCCCCC, and

NSR Permit No. 4111-M2

in accordance with Section B110.

PART B GENERAL CONDITIONS (Attached)

PART C MISCELLANEOUS: Supporting On-Line Documents; Definitions; Acronyms (Attached)

AIR QUALITY BUREAU NEW SOURCE REVIEW PERMIT Issued under 20.2.72 NMAC

GENERAL CONDITIONS AND MISCELLANEOUS

TABLE OF CONTENTS

Part B	GENERAL CONDITIONS	B2
B100	Introduction	B2
B101	Legal	B2
B102	Authority	B3
B103	Annual Fee	B3
B104	Appeal Procedures	B3
B105	Submittal of Reports and Certifications	B4
B106	NSPS and/or MACT Startup, Shutdown, and Malfunction Operations	B4
B107	Startup, Shutdown, and Maintenance Operations	B5
B108	General Monitoring Requirements	B5
B109	General Recordkeeping Requirements	
B110	General Reporting Requirements	B9
B111	General Testing Requirements	B11
B112	Compliance	B14
B113	Permit Cancellation and Revocation	B15
B114	Notification to Subsequent Owners	B15
B115	Asbestos Demolition	B16
B116	Short Term Engine Replacement	B16
Part C	MISCELLANEOUS	C1
C100	Supporting On-Line Documents	C1
C101	Definitions	C1
C102	Acronyms	C3

PART B GENERAL CONDITIONS

B100 Introduction

A. The Department has reviewed the permit application for the proposed construction/modification/revision and has determined that the provisions of the Act and ambient air quality standards will be met. Conditions have been imposed in this permit to assure continued compliance. 20.2.72.210.D NMAC, states that any term or condition imposed by the Department on a permit is enforceable to the same extent as a regulation of the Environmental Improvement Board.

B101 Legal

- A. The contents of a permit application specifically identified by the Department shall become the terms and conditions of the permit or permit revision. Unless modified by conditions of this permit, the permittee shall construct or modify and operate the Facility in accordance with all representations of the application and supplemental submittals that the Department relied upon to determine compliance with applicable regulations and ambient air quality standards. If the Department relied on air quality modeling to issue this permit, any change in the parameters used for this modeling shall be submitted to the Department for review. Upon the Department's request, the permittee shall submit additional modeling for review by the Department. Results of that review may require a permit modification. (20.2.72.210.A NMAC)
- B. Any future physical changes, changes in the method of operation or changes in restricted area may constitute a modification as defined by 20.2.72 NMAC, Construction Permits. Unless the source or activity is exempt under 20.2.72.202 NMAC, no modification shall begin prior to issuance of a permit. (20.2.72 NMAC Sections 200.A.2 and E, and 210.B.4)
- C. Changes in plans, specifications, and other representations stated in the application documents shall not be made if they cause a change in the method of control of emissions or in the character of emissions, will increase the discharge of emissions or affect modeling results. Any such proposed changes shall be submitted as a revision or modification. (20.2.72 NMAC Sections 200.A.2 and E, and 210.B.4)
- D. The permittee shall establish and maintain the property's Restricted Area as identified in plot plan submitted with the application. (20.2.72 NMAC Sections 200.A.2 and E, and 210.B.4)
- E. Applications for permit revisions and modifications shall be submitted to:

Program Manager, Permits Section New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505

F. The owner or operator of a source having an excess emission shall, to the extent practicable, operate the source, including associated air pollution control equipment, in a manner consistent with good air pollutant control practices for minimizing emissions. (20.2.7.109 NMAC). The establishment of allowable malfunction emission limits does not supersede this requirement.

B102 <u>Authority</u>

- A. This permit is issued pursuant to the Air Quality Control Act (Act) and regulations adopted pursuant to the Act including Title 20, Chapter 2, Part 72 of the New Mexico Administrative Code (NMAC), (20.2.72 NMAC), Construction Permits and is enforceable pursuant to the Act and the air quality control regulations applicable to this source.
- B. The Department is the Administrator for 40 CFR Parts 60, 61, and 63 pursuant to the delegation and exceptions of Section 10 of 20.2.77 NMAC (NSPS), 20.2.78 NMAC (NESHAP), and 20.2.82 NMAC (MACT).

B103 Annual Fee

- A. The Department will assess an annual fee for this Facility. The regulation 20.2.75 NMAC set the fee amount at \$1,500 through 2004 and requires it to be adjusted annually for the Consumer Price Index on January 1. The current fee amount is available by contacting the Department or can be found on the Department's website. The AQB will invoice the permittee for the annual fee amount at the beginning of each calendar year. This fee does not apply to sources which are assessed an annual fee in accordance with 20.2.71 NMAC. For sources that satisfy the definition of "small business" in 20.2.75.7.F NMAC, this annual fee will be divided by two. (20.2.75.11 NMAC)
- B. All fees shall be remitted in the form of a corporate check, certified check, or money order made payable to the "NM Environment Department, AQB" mailed to the address shown on the invoice and shall be accompanied by the remittance slip attached to the invoice.

B104 Appeal Procedures

A. Any person who participated in a permitting action before the Department and who is adversely affected by such permitting action, may file a petition for hearing before the Environmental Improvement Board. The petition shall be made in writing to the Environmental Improvement Board within thirty (30) days from the date notice is given of the Department's action and shall specify the portions of the permitting action to which the petitioner objects, certify that a copy of the petition has been mailed or hand-delivered and attach a copy of the permitting action for which review is sought. Unless a timely request for hearing is made, the decision of the Department shall be final. The petition shall be copied simultaneously to the Department upon receipt of the appeal notice. If the petitioner is not the applicant or permittee, the petitioner shall mail or hand-deliver a copy of the petition to the applicant or permittee. The Department shall certify the administrative record to the board. Petitions for a hearing shall be sent to: (20.2.72.207.F NMAC)

For Mailing: Administrator, New Mexico Environmental Improvement Board P.O. Box 5469 Santa Fe, NM 87502-5469

For Hand Delivery: Administrator, New Mexico Environmental Improvement Board 1190 St. Francis Drive, Harold Runnels Bldg. Santa Fe, New Mexico 87505

B105 Submittal of Reports and Certifications

- A. Stack Test Protocols and Stack Test Reports shall be submitted electronically to <u>Stacktest.AQB@state.nm.us</u> or as directed by the Department.
- B. Excess Emission Reports shall be submitted as directed by the Department. (20.2.7.110 NMAC)
- C. Routine reports shall be submitted to the mailing address below, or as directed by the Department:

Manager, Compliance and Enforcement Section New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505

B106 NSPS and/or MACT Startup, Shutdown, and Malfunction Operations

A. If a facility is subject to a NSPS standard in 40 CFR 60, each owner or operator that installs and operates a continuous monitoring device required by a NSPS regulation shall comply with the excess emissions reporting requirements in accordance with 40 CFR 60.7(c), unless specifically exempted in the applicable subpart.

NSR Permit No. 4111M2

- B. If a facility is subject to a NSPS standard in 40 CFR 60, then in accordance with 40 CFR 60.8(c), emissions in excess of the level of the applicable emission limit during periods of startup, shutdown, and malfunction shall not be considered a violation of the applicable emission limit unless otherwise specified in the applicable standard.
- C. If a facility is subject to a MACT standard in 40 CFR 63, then the facility is subject to the requirement for a Startup, Shutdown and Malfunction Plan (SSM) under 40 CFR 63.6(e)(3), unless specifically exempted in the applicable subpart.

B107 Startup, Shutdown, and Maintenance Operations

A. The establishment of permitted startup, shutdown, and maintenance (SSM) emission limits does not supersede the requirements of 20.2.7.14.A NMAC. Except for operations or equipment subject to Condition B106, the permittee shall establish and implement a plan to minimize emissions during routine or predictable start up, shut down, and scheduled maintenance (SSM work practice plan) and shall operate in accordance with the procedures set forth in the plan. (SSM work practice plan) (20.2.7.14.A NMAC)

B108 General Monitoring Requirements

- A. These requirements do not supersede or relax requirements of federal regulations.
- B. The following monitoring requirements shall be used to determine compliance with applicable requirements and emission limits. Any sampling, whether by portable analyzer or EPA reference method, that measures an emission rate over the applicable averaging period greater than an emission limit in this permit constitutes noncompliance with this permit. The Department may require, at its discretion, additional tests pursuant to EPA Reference Methods at any time, including when sampling by portable analyzer measures an emission rate greater than an emission limit in this permit; but such requirement shall not be construed as a determination that the sampling by portable analyzer does not establish noncompliance with this permit and shall not stay enforcement of such noncompliance based on the sampling by portable analyzer.
- C. If the emission unit is shutdown at the time when periodic monitoring is due to be completed, the permittee is not required to restart the unit for the sole purpose of conducting the monitoring. Using electronic or written mail, the permittee shall notify the Department's Compliance and Enforcement Section of a delay in emission tests prior to the deadline for completing the tests. Upon recommencing operation, the permittee shall submit pre-test notification(s) to the Department's Compliance and Enforcement Section and Enforcement's Compliance and Enforcemen

NSR Permit No. 4111M2

- D. The requirement for monitoring during any monitoring period is based on the percentage of time that the unit has operated. However, to invoke the monitoring period exemption at B108.D(2), hours of operation shall be monitored and recorded.
 - (1) If the emission unit has operated for more than 25% of a monitoring period, then the permittee shall conduct monitoring during that period.
 - (2) If the emission unit has operated for 25% or less of a monitoring period then the monitoring is not required. After two successive periods without monitoring, the permittee shall conduct monitoring during the next period regardless of the time operated during that period, except that for any monitoring period in which a unit has operated for less than 10% of the monitoring period, the period will not be considered as one of the two successive periods.
 - (3) If invoking the monitoring **period** exemption in B108.D(2), the actual operating time of a unit shall not exceed the monitoring period required by this permit before the required monitoring is performed. For example, if the monitoring period is annual, the operating hours of the unit shall not exceed 8760 hours before monitoring is conducted. Regardless of the time that a unit actually operates, a minimum of one of each type of monitoring activity shall be conducted during any five-year period.
- E. For all periodic monitoring events, except when a federal or state regulation is more stringent, three test runs shall be conducted at 90% or greater of the unit's capacity as stated in this permit, or in the permit application if not in the permit, and at additional loads when requested by the Department. If the 90% capacity cannot be achieved, the monitoring will be conducted at the maximum achievable load under prevailing operating conditions except when a federal or state regulation requires more restrictive test conditions. The load and the parameters used to calculate it shall be recorded to document operating conditions and shall be included with the monitoring report.
- F. When requested by the Department, the permittee shall provide schedules of testing and monitoring activities. Compliance tests from previous NSR and Title V permits may be re-imposed if it is deemed necessary by the Department to determine whether the source is in compliance with applicable regulations or permit conditions.
- G. If monitoring is new or is in addition to monitoring imposed by an existing applicable requirement, it shall become effective 120 days after the date of permit issuance. For emission units that have not commenced operation, the associated new or additional monitoring shall not apply until 120 days after the units commence operation. All pre-existing monitoring requirements incorporated in this permit shall continue to apply from the date of permit issuance.
- H. Unless otherwise indicated by Specific Conditions or regulatory requirements, all instrumentation used for monitoring in accordance with applicable requirements including emission limits, to measure parameters including but not limited to flow, temperature, pressure and chemical composition, or used to continuously monitor

emission rates and/or other process operating parameters, shall be subject to the following requirements:

- (1) The owner or operator shall install, calibrate, operate and maintain monitoring instrumentation (monitor) according to the manufacturer's procedures and specifications and the following requirements.
 - (a) The monitor shall be located in a position that provides a representative measurement of the parameter that is being monitored.
 - (b) At a minimum, the monitor shall complete one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period.
 - (c) At a minimum, the monitor shall be spanned to measure the normal range +/-5% of the parameter that is being monitored.
 - (d) At least semi-annually, perform a visual inspection of all components of the monitor for physical and operational integrity and all electrical connections for oxidation and galvanic corrosion.
 - (e) Recalibrate the monitor in accordance with the manufacturer's procedures and specifications at the frequency specified by the manufacturer, or every two years, whichever is less.
- (2) Except for malfunctions, associated repairs, and required quality assurance or control activities (including calibration checks and required zero and span adjustments), the permittee shall operate and maintain all monitoring equipment at all times that the emissions unit or the associated process is operating.
- (3) The monitor shall measure data for a minimum of 90 percent of the time that the emissions unit or the associated process is in operation, based on a calendar monthly average.
- (4) The owner or operator shall maintain records in accordance with Section B109 to demonstrate compliance with the requirements in B108H (1)-(3) above, as applicable.

B109 General Record keeping Requirements

- A. The permittee shall maintain records to assure and verify compliance with the terms and conditions of this permit and any other applicable requirements that become effective after permit issuance. The minimum information to be included in these records is as follows:
 - (1) Records required for testing and sampling:
 - (a) equipment identification (include make, model and serial number for all tested equipment and emission controls)
 - (b) date(s) and time(s) of sampling or measurements
 - (c) date(s) analyses were performed

- (d) the qualified entity that performed the analyses
- (e) analytical or test methods used
- (f) results of analyses or tests
- (g) operating conditions existing at the time of sampling or measurement
- (2) Records required for equipment inspections and/or maintenance required by this permit:
 - (a) equipment identification number (including make, model and serial number)
 - (b) date(s) and time(s) of inspection, maintenance, and/or repair
 - (c) date(s) any subsequent analyses were performed (if applicable)
 - (d) name of the person or qualified entity conducting the inspection, maintenance, and/or repair
 - (e) copy of the equipment manufacturer's or the owner or operator's maintenance or repair recommendations (if required to demonstrate compliance with a permit condition)
 - (f) description of maintenance or repair activities conducted
 - (g) all results of any required parameter readings
 - (h) a description of the physical condition of the equipment as found during any required inspection
 - (i) results of required equipment inspections including a description of any condition which required adjustment to bring the equipment back into compliance and a description of the required adjustments
- B. Except as provided in the Specific Conditions, records shall be maintained on-site or at the permittee's local business office for a minimum of two (2) years from the time of recording and shall be made available to Department personnel upon request. Sources subject to 20.2.70 NMAC "Operating Permits" shall maintain records on-site for a minimum of five (5) years from the time of recording.
- C. Unless otherwise indicated by Specific Conditions, the permittee shall keep the following records for malfunction emissions and routine or predictable emissions during startup, shutdown, and scheduled maintenance (SSM):
 - (1) The owner or operator of a source subject to a permit shall establish and implement a plan to minimize emissions during routine or predictable startup, shutdown, and scheduled maintenance through work practice standards and good air pollution control practices. This requirement shall not apply to any affected facility defined in and subject to an emissions standard and an equivalent plan under 40 CFR Part 60 (NSPS), 40 CFR Part 63 (MACT), or an equivalent plan under 20.2.72 NMAC - Construction Permits, 20.2.70 NMAC - Operating Permits, 20.2.74 NMAC -

Permits - Prevention of Significant Deterioration (PSD), or 20.2.79 NMAC - Permits - Nonattainment Areas. The permittee shall keep records of all sources subject to the plan to minimize emissions during routine or predictable SSM and shall record if the source is subject to an alternative plan and therefore, not subject to the plan requirements under 20.2.7.14.A NMAC.

- (2) If the facility has allowable SSM emission limits in this permit, the permittee shall record all SSM events, including the date, the start time, the end time, a description of the event, and a description of the cause of the event. This record also shall include a copy of the manufacturer's, or equivalent, documentation showing that any maintenance qualified as scheduled. Scheduled maintenance is an activity that occurs at an established frequency pursuant to a written protocol published by the manufacturer or other reliable source. The authorization of allowable SSM emissions does not supersede any applicable federal or state standard. The most stringent requirement applies.
- (3) If the facility has allowable malfunction emission limits in this permit, the permittee shall record all malfunction events to be applied against these limits. The permittee shall also include the date, the start time, the end time, and a description of the event. **Malfunction means** any sudden and unavoidable failure of air pollution control equipment or process equipment beyond the control of the owner or operator, including malfunction during startup or shutdown. A failure that is caused entirely or in part by poor maintenance, careless operation, or any other preventable equipment breakdown shall not be considered a malfunction. (20.2.7.7.E NMAC) The authorization of allowable malfunction emissions does not supersede any applicable federal or state standard. The most stringent requirement applies. This authorization only allows the permittee to avoid submitting reports under 20.2.7 NMAC for total annual emissions that are below the authorized malfunction emission limit.
- (4) The owner or operator of a source shall meet the operational plan defining the measures to be taken to mitigate source emissions during malfunction, startup or shutdown. (20.2.72.203.A(5) NMAC)

B110 General Reporting Requirements

(20.2.72 NMAC Sections 210 and 212)

- A. Records and reports shall be maintained on-site or at the permittee's local business office unless specifically required to be submitted to the Department or EPA by another condition of this permit or by a state or federal regulation. Records for unmanned sites may be kept at the nearest business office.
- B. The permittee shall notify the Department's Compliance Reporting Section using the current Submittal Form posted to NMED's Air Quality web site under Compliance and Enforcement/Submittal Forms in writing of, or provide the Department with (20.2.72.212.A and B):

- the anticipated date of initial startup of each new or modified source not less than thirty (30) days prior to the date. Notification may occur prior to issuance of the permit, but actual startup shall not occur earlier than the permit issuance date;
- (2) after receiving authority to construct, the equipment serial number as provided by the manufacturer or permanently affixed if shop-built and the actual date of initial startup of each new or modified source within fifteen (15) days after the startup date; and
- (3) the date when each new or modified emission source reaches the maximum production rate at which it will operate within fifteen (15) days after that date.
- C. The permittee shall notify the Department's Permitting Program Manager, in writing of, or provide the Department with (20.2.72.212.C and D):
 - (1) any change of operators or any equipment substitutions within fifteen (15) days of such change;
 - (2) any necessary update or correction no more than sixty (60) days after the operator knows or should have known of the condition necessitating the update or correction of the permit.
- D. Results of emission tests and monitoring for each pollutant (except opacity) shall be reported in pounds per hour (unless otherwise specified) and tons per year. Opacity shall be reported in percent. The number of significant figures corresponding to the full accuracy inherent in the testing instrument or Method test used to obtain the data shall be used to calculate and report test results in accordance with 20.2.1.116.B and C NMAC. Upon request by the Department, CEMS and other tabular data shall be submitted in editable, MS Excel format.
- E. The permittee shall submit reports of excess emissions in accordance with 20.2.7.110.A NMAC.
- F. Allowable Emission Limits for Excess Emissions Reporting for Flares and Other Regulated Sources with No Pound per Hour (pph) and/or Ton per Year (tpy) Emission Limits.
 - (1) When a flare has no allowable pph and/or tpy emission limits in Sections A106 and/or A107, the authorized allowable emissions include only the combustion of pilot and/or purge gas. Compliance is demonstrated by limiting the gas stream to the flare to only pilot and/or purge gas.
 - (2) For excess emissions reporting as required by 20.2.7 NMAC, the allowable emission limits are 1.0 pph and 1.0 tpy for each regulated air pollutant (except for H2S) emitted by that source as follows:
 - (a) For flares, when there are no allowable emission limits in Sections A106 and/or A107.

- (b) For regulated sources with emission limits in Sections A106 or A107 represented by the less than sign ("<").
- (c) For regulated sources that normally would not emit any regulated air pollutants, including but not limited to vents, pressure relief devices, connectors, etc.
- (3) For excess emissions reporting as required by 20.2.7 NMAC for H2S, the allowable limits are 0.1 pph and 0.44 tpy for each applicable scenario addressed in paragraph (2) above.

B111 General Testing Requirements

Unless otherwise indicated by Specific Conditions or regulatory requirements, the permittee shall conduct testing in accordance with the requirements in Sections B111A, B, C, D and E, as applicable.

A. Initial Compliance Tests

The permittee shall conduct initial compliance tests in accordance with the following requirements:

- (1) Initial compliance test requirements from previous permits (if any) are still in effect, unless the tests have been satisfactorily completed. Compliance tests may be re-imposed if it is deemed necessary by the Department to determine whether the source is in compliance with applicable regulations or permit conditions. (20.2.72 NMAC Sections 210.C and 213)
- (2) Initial compliance tests shall be conducted within sixty (60) days after the unit(s) achieve the maximum normal production rate. If the maximum normal production rate does not occur within one hundred twenty (120) days of source startup, then the tests must be conducted no later than one hundred eighty (180) days after initial startup of the source.
- (3) The default time period for each test run shall be **at least** 60 minutes and each performance test shall consist of three separate runs using the applicable test method. For the purpose of determining compliance with an applicable emission limit, the arithmetic mean of results of the three runs shall apply. In the event that a sample is accidentally lost or conditions occur in which one of the three runs must be discontinued because of forced shutdown, failure of an irreplaceable portion of the sample train, extreme meteorological conditions, or other circumstances, beyond the owner or operator's control, compliance may, upon the Department approval, be determined using the arithmetic mean of the results of the two other runs.
- (4) Testing of emissions shall be conducted with the emissions unit operating at 90 to 100 percent of the maximum operating rate allowed by the permit. If it is not possible to test at that rate, the source may test at a lower operating rate

- (5) Testing performed at less than 90 percent of permitted capacity will limit emission unit operation to 110 percent of the tested capacity until a new test is conducted.
- (6) If conditions change such that unit operation above 110 percent of tested capacity is possible, the source must submit a protocol to the Department within 30 days of such change to conduct a new emissions test.
- B. EPA Reference Method Tests

The test methods in Section B111.B(1) shall be used for all initial compliance tests and all Relative Accuracy Test Audits (RATAs), and shall be used if a permittee chooses to use EPA test methods for periodic monitoring. Test methods that are not listed in Section B111.B(1) may be used in accordance with the requirements at Section B111.B(2).

- (1) All compliance tests required by this permit shall be conducted in accordance with the requirements of CFR Title 40, Part 60, Subpart A, General Provisions, and the following EPA Reference Methods as specified by CFR Title 40, Part 60, Appendix A:
 - (a) Methods 1 through 4 for stack gas flowrate
 - (b) Method 5 for particulate matter (PM)
 - (c) Method $6C SO_2$
 - (d) Method 7E for NO_X (test results shall be expressed as nitrogen dioxide (NO_2) using a molecular weight of 46 lb/lb-mol in all calculations (each ppm of NO/NO_2 is equivalent to 1.194 x 10-7 lb/SCF)
 - (e) Method 9 for visual determination of opacity
 - (f) Method 10 for CO
 - (g) Method 19 for particulate, sulfur dioxide and nitrogen oxides emission rates. In addition, Method 19 may be used in lieu of Methods 1-4 for stack gas flowrate. The permittee shall provide a contemporaneous fuel gas analysis (preferably on the day of the test, but no earlier than three months prior to the test date) and a recent fuel flow meter calibration certificate (within the most recent quarter) with the final test report.
 - (h) Method 7E or 20 for Turbines per §60.335 or §60.4400
 - (i) Method 22 for visual determination of fugitive emissions from material sources and smoke emissions from flares
 - (j) Method 25A for VOC reduction efficiency
 - (k) Method 29 for Metals
 - (1) Method 30B for Mercury from Coal-Fired Combustion Sources Using Carbon Sorbent Traps
 - (m) Method 201A for filterable PM_{10} and $PM_{2.5}$

- (n) Method 202 for condensable PM
- (o) Method 320 for organic Hazardous Air Pollutants (HAPs)
- (2) Permittees may propose test method(s) that are not listed in Section B111.B(1). These methods may be used if prior approval is received from the Department.
- C. Periodic Monitoring and Portable Analyzer Requirements for the Determination of Nitrogen Oxides, Carbon Monoxide, and Oxygen Concentrations in Emissions from Reciprocating Engines, Combustion Turbines, Boilers, and Process Heaters

Periodic emissions tests (periodic monitoring) shall be conducted in accordance with the following requirements:

- (1) Periodic emissions tests may be conducted in accordance with EPA Reference Methods or by utilizing a portable analyzer. Periodic monitoring utilizing a portable analyzer shall be conducted in accordance with the requirements of the current version of ASTM D 6522. However, if a facility has met a previously approved Department criterion for portable analyzers, the analyzer may be operated in accordance with that criterion until it is replaced.
- (2) The default time period for each test run shall be **at least** 20 minutes.

Each performance test shall consist of three separate runs. The arithmetic mean of results of the three runs shall be used to determine compliance with the applicable emission limit.

- (3) Testing of emissions shall be conducted in accordance with the requirements at Section B108.E.
- (4) During emissions tests, pollutant and diluent concentration shall be monitored and recorded. Fuel flow rate shall be monitored and recorded if stack gas flow rate is determined utilizing Reference Method 19. This information shall be included with the test report furnished to the Department.
- (5) Stack gas flow rate shall be calculated in accordance with Reference Method 19 utilizing fuel flow rate (scf) determined by a dedicated fuel flow meter and fuel heating value (Btu/scf). The permittee shall provide a contemporaneous fuel gas analysis (preferably on the day of the test, but no earlier than three months prior to the test date) and a recent fuel flow meter calibration certificate (within the most recent quarter) with the final test report. Alternatively, stack gas flow rate may be determined by using EPA Reference Methods 1-4.
- (6) The permittee shall submit a notification and protocol for periodic emissions tests upon the request of the Department.
- D. Initial Compliance Test and RATA Procedures

Permittees required to conduct initial compliance tests and/or RATAs shall comply with the following requirements:

NSR Permit No. 4111M2

- (1) The permittee shall submit a notification and test protocol to the Department's Program Manager, Compliance and Enforcement Section, at least thirty (30) days before the test date and allow a representative of the Department to be present at the test. Proposals to use test method(s) that are not listed in Section B111.B(1) (if applicable) shall be included in this notification.
- (2) Contents of test notifications, protocols and test reports shall conform to the format specified by the Department's Universal Test Notification, Protocol and Report Form and Instructions. Current forms and instructions are posted to NMED's Air Quality web site under Compliance and Enforcement Testing.
- (3) The permittee shall provide (a) sampling ports adequate for the test methods applicable to the facility, (b) safe sampling platforms, (c) safe access to sampling platforms and (d) utilities for sampling and testing equipment.
- (4) Where necessary to prevent cyclonic flow in the stack, flow straighteners shall be installed
- E. General Compliance Test Procedures

The following requirements shall apply to all initial compliance and periodic emissions tests and all RATAs:

- (1) Equipment shall be tested in the "as found" condition. Equipment may not be adjusted or tuned prior to any test for the purpose of lowering emissions, and then returned to previous settings or operating conditions after the test is complete.
- (2) The stack shall be of sufficient height and diameter and the sample ports shall be located so that a representative test of the emissions can be performed in accordance with the requirements of EPA Reference Method 1 or the current version of ASTM D 6522, as applicable.
- (3) Test reports shall be submitted to the Department no later than 30 days after completion of the test.

B112 Compliance

A. The Department shall be given the right to enter the facility at all reasonable times to verify the terms and conditions of this permit. Required records shall be organized by date and subject matter and shall at all times be readily available for inspection. The permittee, upon verbal or written request from an authorized representative of the Department who appears at the facility, shall immediately produce for inspection or copying any records required to be maintained at the facility. Upon written request at other times, the permittee shall deliver to the Department paper or electronic copies of any and all required records maintained on site or at an off-site location. Requested records shall be copied and delivered at the permittee's expense within three business days from receipt of request unless the Department allows additional time. Required records may include records required by permit and other information necessary to

demonstrate compliance with terms and conditions of this permit. (NMSA 1978, Section 74-2-13)

- B. A copy of the most recent permit(s) issued by the Department shall be kept at the permitted facility or (for unmanned sites) at the nearest company office and shall be made available to Department personnel for inspection upon request. (20.2.72.210.B.4 NMAC)
- C. Emissions limits associated with the energy input of a Unit, i.e. lb/MMBtu, shall apply at all times unless stated otherwise in a Specific Condition of this permit. The averaging time for each emissions limit, including those based on energy input of a Unit (i.e. lb/MMBtu) is one (1) hour unless stated otherwise in a Specific Condition of this permit or in the applicable requirement that establishes the limit.

B113 Permit Cancellation and Revocation

- A. The Department may revoke this permit if the applicant or permittee has knowingly and willfully misrepresented a material fact in the application for the permit. Revocation will be made in writing, and an administrative appeal may be taken to the Secretary of the Department within thirty (30) days. Appeals will be handled in accordance with the Department's Rules Governing Appeals From Compliance Orders.
- B. The Department shall automatically cancel any permit for any source which ceases operation for five (5) years or more, or permanently. Reactivation of any source after the five (5) year period shall require a new permit. (20.2.72 NMAC)
- C. The Department may cancel a permit if the construction or modification is not commenced within two (2) years from the date of issuance or if, during the construction or modification, work is suspended for a total of one (1) year. (20.2.72 NMAC)

B114 Notification to Subsequent Owners

- A. The permit and conditions apply in the event of any change in control or ownership of the Facility. No permit modification is required in such case. However, in the event of any such change in control or ownership, the permittee shall notify the succeeding owner of the permit and conditions and shall notify the Department's Program Manager, Permits Section of the change in ownership within fifteen (15) days of that change. (20.2.72.212.C NMAC)
- B. Any new owner or operator shall notify the Department's Program Manager, Permits Section, within thirty (30) days of assuming ownership, of the new owner's or operator's name and address. (20.2.73.200.E.3 NMAC)

B115 Asbestos Demolition

A. Before any asbestos demolition or renovation work, the permittee shall determine whether 40 CFR 61 Subpart M, National Emissions Standards for Asbestos applies. If required, the permittee shall notify the Department's Program Manager, Compliance and Enforcement Section using forms furnished by the Department.

B116 Short Term Engine Replacement

- A. The following Alternative Operating Scenario (AOS) addresses engine breakdown or periodic maintenance and repair, which requires the use of a short term replacement engine. The following requirements do not apply to engines that are exempt per 20.2.72.202.B(3) NMAC. Changes to exempt engines must be reported in accordance with 20.2.72.202.B NMAC. A short term replacement engine may be substituted for any engine allowed by this permit for no more than 120 days in any rolling twelve month period per permitted engine. The compliance demonstrations required as part of this AOS are in addition to any other compliance demonstrations required by this permit.
 - (1) The permittee may temporarily replace an existing engine that is subject to the emission limits set forth in this permit with another engine regardless of manufacturer, model, and horsepower without modifying this permit. The permittee shall submit written notification to the Department within 15 days of the date of engine substitution according to condition B110.C(1).
 - (a) The potential emission rates of the replacement engine shall be determined using the replacement engine's manufacturer specifications and shall comply with the existing engine's permitted emission limits.
 - (b) The direction of the exhaust stack for the replacement engine shall be either vertical or the same direction as for the existing engine. The replacement engine's stack height and flow parameters shall be at least as effective in the dispersion of air pollutants as the modeled stack height and flow parameters for the existing permitted engine. The following equation may be used to show that the replacement engine disperses pollutants as well as the existing engine. The value calculated for the replacement engine on the right side of the equation shall be equal to or greater than the value for the existing engine on the left side of the equation. The permitting page of the Air Quality Bureau website contains a spreadsheet that performs this calculation.

$\frac{\text{EXISTING ENGINE}}{[(g) \text{ x } (h1)] + [(v1)^2/2] + [(c) \text{ x } (T1)]} <= \frac{[(g) \text{ x } (h2)] + [(v2)^2/2] + [(c) \text{ x } (T2)]}{q2}$

Where

 $g = gravitational constant = 32.2 \text{ ft/sec}^2$

h1 = existing stack height, feet

v1 = exhaust velocity, existing engine, feet per second

- c = specific heat of exhaust, 0.28 BTU/lb-degree F
- T1 = absolute temperature of exhaust, existing engine = degree F + 460

q1 = permitted allowable emission rate, existing engine, lbs/hour

h2 = replacement stack height, feet

v2 = exhaust velocity, replacement engine, feet per second

T2 = absolute temperature of exhaust, replacement engine = degree F + 460

q2 = manufacturer's potential emission rate, replacement engine, lbs/hour

The permittee shall keep records showing that the replacement engine is at least as effective in the dispersion of air pollutants as the existing engine.

- (c) Test measurement of NOx and CO emissions from the temporary replacement engine shall be performed in accordance with Section B111 with the exception of Condition B111A(2) and B111B for EPA Reference Methods Tests or Section B111C for portable analyzer test measurements. Compliance test(s) shall be conducted within fifteen (15) days after the unit begins operation, and records of the results shall be kept according to section B109.B. This test shall be performed even if the engine is removed prior to 15 days on site.
 - i. These compliance tests are not required for an engine certified under 40CFR60, subparts IIII, or JJJJ, or 40CFR63, subpart ZZZZ if the permittee demonstrates that one of these requirements causes such engine to comply with all emission limits of this permit. The permittee shall submit this demonstration to the Department within 48 hours of placing the new unit into operation. This submittal shall include documentation that the engine is certified, that the engine is within its useful life, as defined and specified in the applicable requirement, and shall include calculations showing that the applicable emissions standards result in compliance with the permit limits.
 - These compliance tests are not required if a test was conducted by portable analyzer or by EPA Method test (including any required by 40CFR60, subparts IIII and JJJJ and 40CFR63, subpart ZZZZ) within the last 12 months. These previous tests are valid only if conducted at the same or lower elevation as the existing engine location prior to commencing operation as a temporary replacement. A copy of the test results shall be kept according to section B109.B.

- (d) Compliance tests for NOx and CO shall be conducted if requested by the Department in writing to determine whether the replacement engine is in compliance with applicable regulations or permit conditions.
- (e) Upon determining that emissions data developed according to B116.A.1(c) fail to indicate compliance with either the NOx or CO emission limits, the permittee shall notify the Department within 48 hours. Also within that time, the permittee shall implement one of the following corrective actions:
 - i. The engine shall be adjusted to reduce NOx and CO emissions and tested per B116.A.1(c) to demonstrate compliance with permit limits.
 - ii. The engine shall discontinue operation or be replaced with a different unit.
- (2) Short term replacement engines, whether of the same manufacturer, model, and horsepower, or of a different manufacturer, model, or horsepower, are subject to all federal and state applicable requirements, regardless of whether they are set forth in this permit (including monitoring and recordkeeping), and shall be subject to any shield afforded by this permit.
- (3) The permittee shall maintain a contemporaneous record documenting the unit number, manufacturer, model number, horsepower, emission factors, emission test results, and serial number of any existing engine that is replaced, and the replacement engine. Additionally, the record shall document the replacement duration in days, and the beginning and end dates of the short term engine replacement.
- (4) The permittee shall maintain records of a regulatory applicability determination for each replacement engine (including 40CFR60, subparts IIII and JJJJ and 40CFR63, subpart ZZZZ) and shall comply with all associated regulatory requirements.
- B. Additional requirements for replacement of engines at sources that are major as defined in regulation 20.2.74 NMAC, <u>Permits Prevention of Significant</u> <u>Deterioration</u>, section 7.AG. For sources that are major under PSD, the total cumulative operating hours of the replacement engine shall be limited using the following procedure:
- (1) Daily, the actual emissions from the replacement engine(s) of each pollutant regulated by this permit for the existing engine shall be calculated and recorded.
- (2) The sum of the total actual emissions since the commencement of operation of the replacement engine(s) shall not equal or exceed the significant emission rates in Table 2 of 20.2.74 NMAC, section 502 for the time that the replacement engine is located at the facility.
- C. All records required by this section shall be kept according to section B109.

PART C MISCELLANEOUS

C100 Supporting On-Line Documents

- A. Copies of the following documents can be downloaded from NMED's web site under Compliance and Enforcement or requested from the Bureau.
 - (1) Excess Emission Form (for reporting deviations and emergencies)
 - (2) Universal Stack Test Notification, Protocol and Report Form and Instructions

C101 **Definitions**

- A. **"Daylight"** is defined as the time period between sunrise and sunset, as defined by the Astronomical Applications Department of the U.S. Naval Observatory. (Data for one day or a table of sunrise/sunset for an entire year can be obtained at http://aa.usno.navy.mil/. Alternatively, these times can be obtained from a Farmer's Almanac or from http://www.almanac.com/rise/).
- B. **"Decommission"** and **"Decommissioning"** applies to units left on site (not removed) and is defined as the complete disconnecting of equipment, emission sources or activities from the process by disconnecting all connections necessary for operation (i.e. piping, electrical, controls, ductwork, etc.).
- C. **"Exempt Sources"** and **"Exempt Activities"** is defined as those sources or activities that are exempted in accordance with 20.2.72.202 NMAC. Note; exemptions are only valid for most 20.2.72 NMAC permitting actions.
- D. **"Fugitive Emission"** means those emissions which could not reasonably pass through a stack, chimney, vent, or other functionally equivalent opening.
- E. **"Insignificant Activities"** means those activities which have been listed by the department and approved by the administrator as insignificant on the basis of size, emissions or production rate. Note; insignificant activities are only valid for 20.2.70 NMAC permitting actions.
- F. "Malfunction" for the requirements under 20.2.7 NMAC, means any sudden and unavoidable failure of air pollution control equipment or process equipment beyond the control of the owner or operator, including malfunction during startup or shutdown. A failure that is caused entirely or in part by poor maintenance, careless operation, or any other preventable equipment breakdown shall not be considered a malfunction. (20.2.7.7.E NMAC)
- G. **"Natural Gas"** is defined as a naturally occurring fluid mixture of hydrocarbons that contains 20.0 grains or less of total sulfur per 100 standard cubic feet (SCF) and is either composed of at least 70% methane by volume or has a gross calorific value of between 950 and 1100 Btu per standard cubic foot. (40 CFR 60.631)

- H. **"Natural Gas Liquids"** means the hydrocarbons, such as ethane, propane, butane, and pentane, that are extracted from field gas. (40 CFR 60.631)
- I. **"National Ambient air Quality Standards"** means, unless otherwise modified, the primary (health-related) and secondary (welfare-based) federal ambient air quality standards promulgated by the US EPA pursuant to Section 109 of the Federal Act.
- J. "Night" is the time period between sunset and sunrise, as defined by the Astronomical Applications Department of the U.S. Naval Observatory. (Data for one day or a table of sunrise/sunset for an entire year can be obtained at http://aa.usno.navy.mil/. Alternatively, these times can be obtained from a Farmer's Almanac or from http://www.almanac.com/rise/).
- K. "Night Operation or Operation at Night" is operating a source of emissions at night.
- L. "NO2" or "Nitrogen dioxide" means the chemical compound containing one atom of nitrogen and two atoms of oxygen, for the purposes of ambient determinations. The term "nitrogen dioxide," for the purposes of stack emissions monitoring, shall include nitrogen dioxide (the chemical compound containing one atom of nitrogen and two atoms of oxygen), nitric oxide (the chemical compound containing one atom of nitrogen atom of nitrogen and one atom of oxygen), and other oxides of nitrogen which may test as nitrogen dioxide and is sometimes referred to as NOx or NO₂. (20.2.2 NMAC)
- M. "NOx" see NO_2
- N. "**Paved Road**" is a road with a permanent solid surface that can be swept essentially free of dust or other material to reduce air re-entrainment of particulate matter. To the extent these surfaces remain solid and contiguous they qualify as paved roads: concrete, asphalt, chip seal, recycled asphalt and other surfaces approved by the Department in writing.
- O. **"Potential Emission Rate"** means the emission rate of a source at its maximum capacity to emit a regulated air contaminant under its physical and operational design, provided any physical or operational limitation on the capacity of the source to emit a regulated air contaminant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its physical and operational design only if the limitation or the effect it would have on emissions is enforceable by the department pursuant to the Air Quality Control Act or the federal Act.
- P. "**Restricted Area**" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.

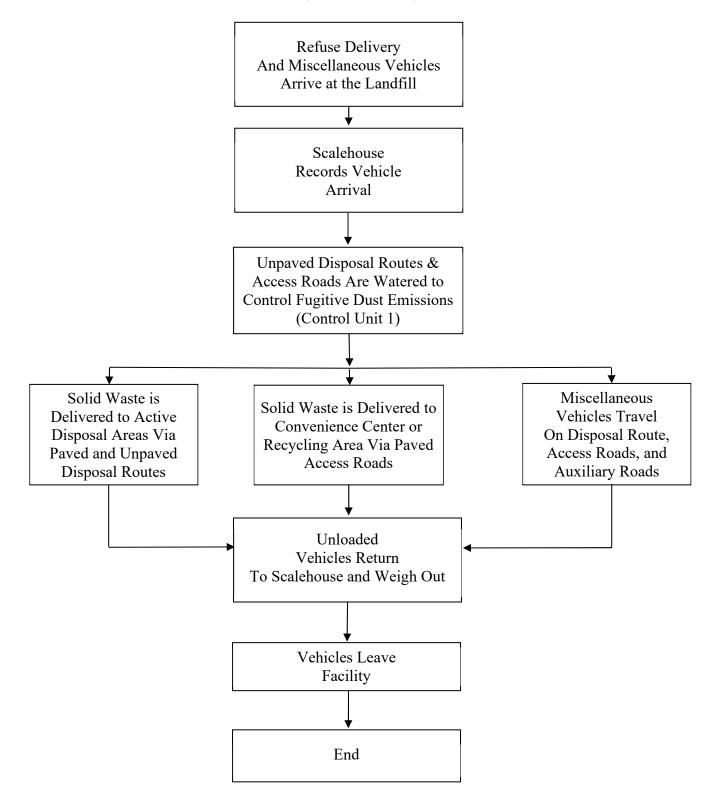
- Q. "Shutdown" for requirements under 20.2.72 NMAC, means the cessation of operation of any air pollution control equipment, process equipment or process for any purpose, except routine phasing out of batch process units.
- R. "SSM" for requirements under 20.2.7 NMAC, means routine or predictable startup, shutdown, or scheduled maintenance.
 - (1) **"Shutdown"** for requirements under 20.2.7 NMAC, means the cessation of operation of any air pollution control equipment or process equipment.
 - (2) **"Startup"** for requirements under 20.2.7 NMAC, means the setting into operation of any air pollution control equipment or process equipment.
- S. "**Startup**" for requirements under 20.2.72 NMAC, means the setting into operation of any air pollution control equipment, process equipment or process for any purpose, except routine phasing in of batch process units.

C102 Acronyms

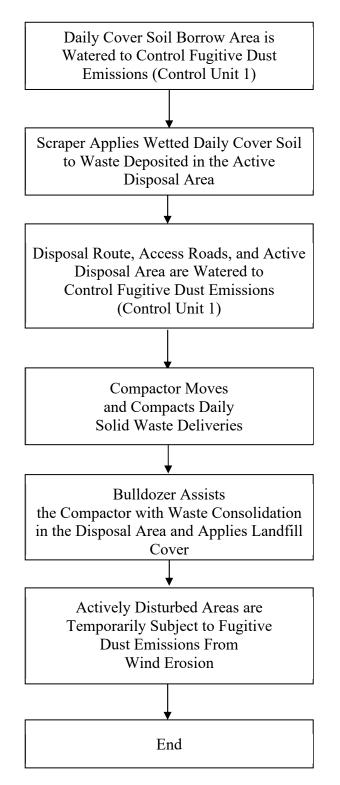
2SLB	
4SLB	
	actual cubic feet per minute
	air fuel ratio
	EPA Air Pollutant Emission Factors
	Air Quality Bureau
	Air Quality Control Region
-	American Society for Testing and Materials
	British thermal unit
CAA	Clean Air Act of 1970 and 1990 Amendments
CEM	continuous emissions monitoring
cfh	cubic feet per hour
cfm	cubic feet per minute
CFR	Code of Federal Regulation
CI	compression ignition
СО	carbon monoxides
	continuous opacity monitoring system
EIB	Environmental Improvement Board
EPA	United States Environmental Protection Agency
gr/100 cf	grains per one hundred cubic feet
gr/dscf	grains per dry standard cubic foot
GRI	Gas Research Institute
HAP	hazardous air pollutant
hp	horsepower
H ₂ S	hydrogen sulfide
IC	internal combustion
KW/hr	kilowatts per hour

	pounds per million British thermal unit	
	Maximum Achievable Control Technology	
	million cubic feet per hour	
MMscf	million standard cubic feet	
N/A	not applicable	
NAAQS	National Ambient Air Quality Standards	
NESHAP	National Emission Standards for Hazardous Air Pollutants	
NG	natural gas	
	natural gas liquids	
NMAAQS	New Mexico Ambient Air Quality Standards	
NMAC	New Mexico Administrative Code	
NMED	New Mexico Environment Department	
NMSA	New Mexico Statues Annotated	
NOx	nitrogen oxides	
NSCR	non-selective catalytic reduction	
NSPS	New Source Performance Standard	
NSR	New Source Review	
PEM	parametric emissions monitoring	
	ticulate matter (equivalent to TSP, total suspended particulate)	
	particulate matter 10 microns and less in diameter	
pph		
ppmv	parts per million by volume	
	Prevention of Significant Deterioration	
RATA	Relative Accuracy Test Assessment	
RICE	reciprocating internal combustion engine	
	revolutions per minute	
scfm	standard cubic feet per minute	
SI	spark ignition	
SO ₂	sulfur dioxide	
SSM	Startup Shutdown Maintenance (see SSM definition)	
TAP	Toxic Air Pollutant	
TBD	to be determined	
THC	total hydrocarbons	
	Total Suspended Particulates	
tpy	tons per year	
	ultra low sulfur diesel	
USEPA	United States Environmental Protection Agency	
	Universal Transverse Mercator Coordinate system	
	TMHUniversal Transverse Mercator Horizonta	
	Universal Transverse Mercator Vertical	
	volatile hazardous air pollutant	

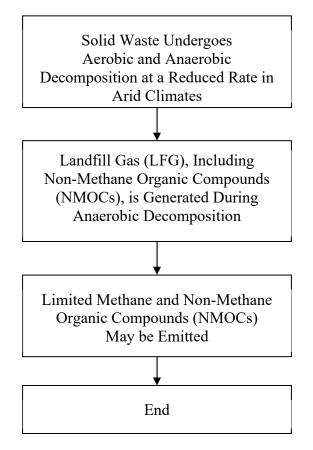
Section 4


Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.


Five process flow sheets are included in this section. Each of these flow sheets corresponds to an emission unit at SCLF.

- Emission Unit No. 1: Disposal Routes, Access Roads, Auxiliary Roads
 - Emission Unit 1 is comprised of potential particulate emissions from vehicle travel on paved and unpaved landfill roads (disposal route, access roads, auxiliary roads), as well as vehicle travel on paved surfaces within the convenience center. Figure 4.1 presents a process flow diagram for potential emissions from these operations.
- Emission Unit No. 2: General Landfill Operations
 - General landfill operations include activities associated with waste disposal, as well as potential fugitive emissions from wind erosion on actively disturbed areas. Figure 4.2 presents a process flow diagram for potential emissions from landfill operations.
- Emission Unit No. 3: Landfill Gas
 - Uncontrolled emissions of non-methane organic compounds (NMOCs) may be generated due to anaerobic decomposition of municipal solid waste (MSW). Figure 4.3 presents a process flow diagram for potential emissions of NMOCs.
- Emission Unit No. 4: Petroleum Hydrocarbon Land Farm
 - Figure 4.4 presents a process flow diagram for potential emissions from the petroleum hydrocarbon land farm.
- Emission Unit No. 5: Crusher/Shredder Operations
 - Figure 4.5 presents a process flow diagram for potential emissions from crusher/shredder operations.
- Emission Unit No. 6: Portable Rock Crusher Operations (Rental)
 - Figure 4.6 presents a process flow diagram for potential emissions from Portable Rock Crusher (Rental) operations.


Figure 4.1 Disposal Route, Access Roads, and Auxiliary Roads Process Flow Diagram (Emission Unit 1)

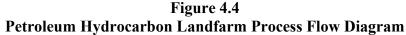


Figure 4.2 General Landfill Operations Process Flow Diagram (Emission Unit 2)

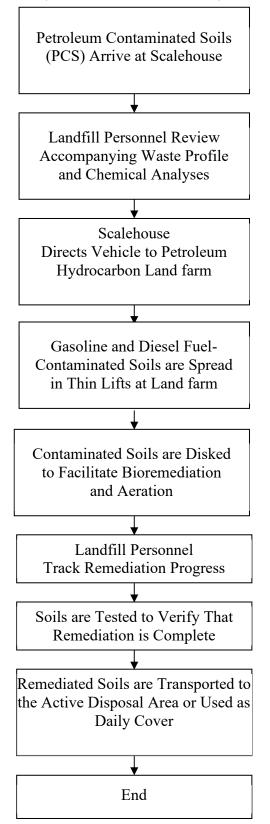
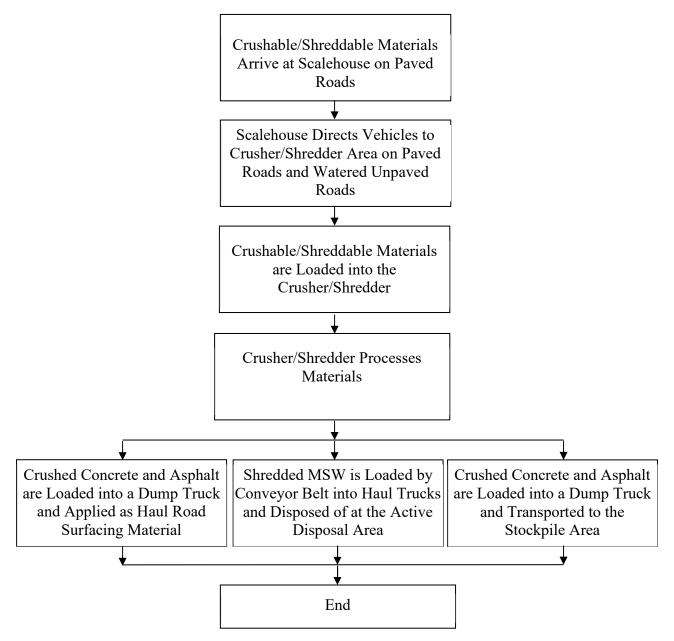


Figure 4.3 Landfill Gas Process Flow Diagram (Emission Unit 3)



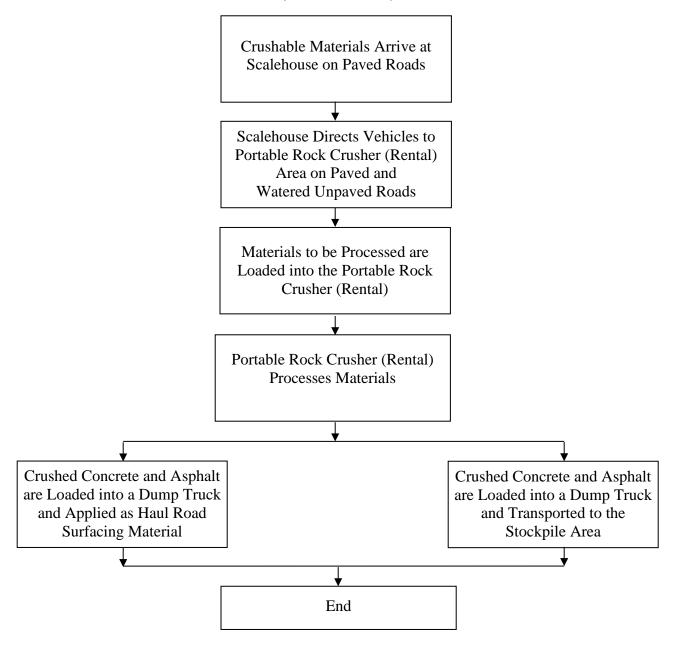
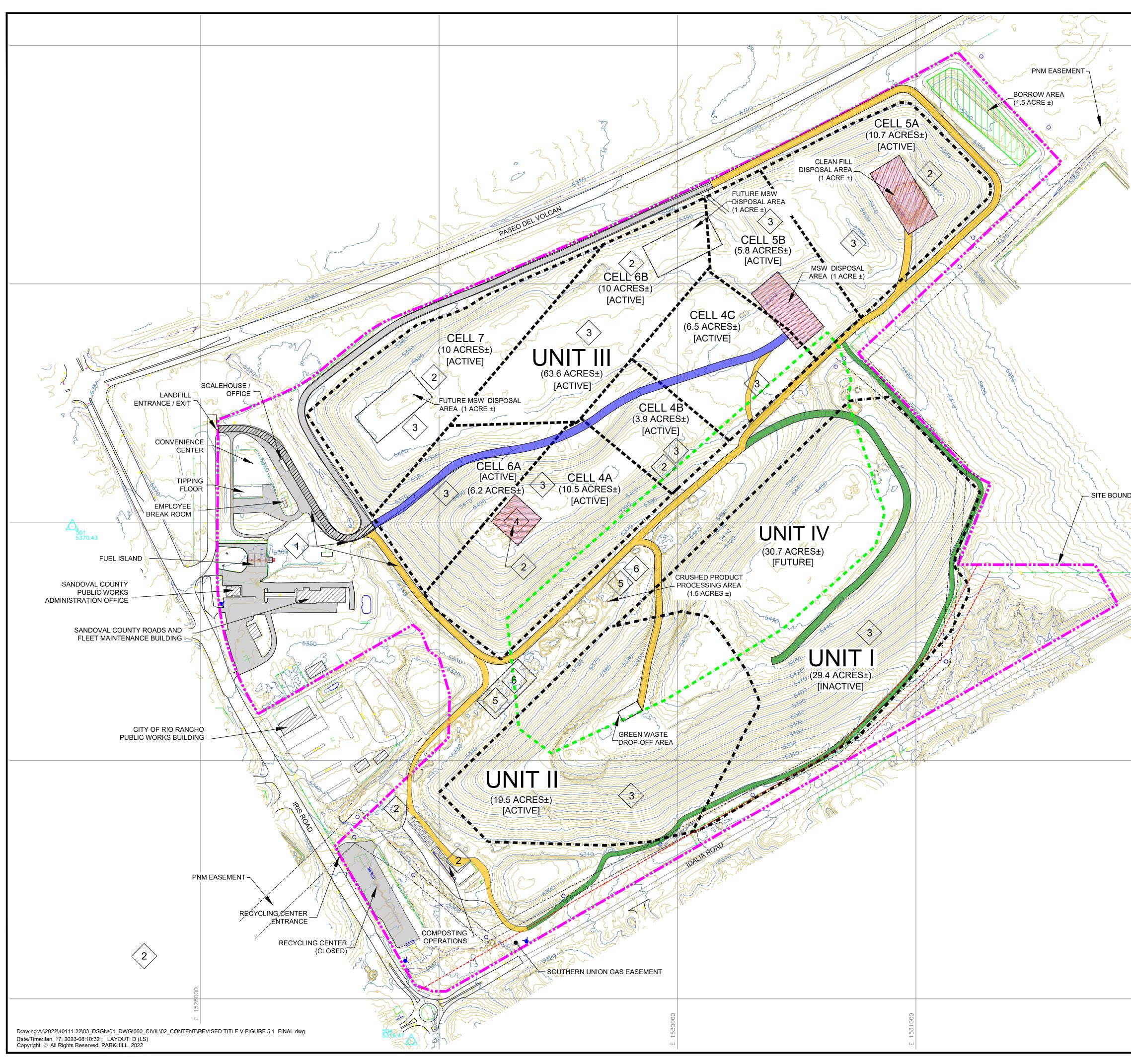

(Emission Unit 4 – Inactive)

Figure 4.5 Crusher/ Shredder Process Flow Diagram (Emission Unit 5)

Figure 4.6 Portable Rock Crusher (Rental) Process Flow Diagram (Emission Unit 6)


Sandoval County Landfill

Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A scaled map (Plot Plan) of the Sandoval County Landfill is included in this section. It is designated as **Figure 5.1** and denotes the six emission units, fences, on-site roads, structures, property line, etc.

	N 1570000	LEGEND	
			PROPERTY LINE UNIT BOUNDARY (EXISTING) CELL BOUNDARY FENCE LINE
			PNM UTILITY EASEMENT BOUNDARY
`		5410	GAS CO. UTILITY EASEMENT BOUNDARY
			2' CONTOUR (EXISTING)
		$\langle \rangle$	EXISTING STRUCTURES
			ADDITIONAL AREAS SUBJECT TO WIND EROSION
			ASPHALT (95% CONTROL)
			AUXILIARY ROADS (0% CONTROL) UNPAVED DISPOSAL ROUTE (60% CONTROL)
	N 1569000		UNPAVED ACCESS ROADS (60% CONTROL)
			ASPHALT DISPOSAL ROUTE (95% CONTROL)
		3	EMISSIONS UNIT
		¥	FIRE HYDRANT
		505 5371.17	CONTROL
		EM	IISSION UNITS
		DISPOSAL	ROUTE, PAVED ROADS,
		GENERAL	ESS ROADS LANDFILL OPERATIONS: CELL CTION, FILL FACE OPERATIONS, WIND
			ON DISTURBED AREAS GAS EMISSIONS FROM WASTE
		3 LANDFILL	
	N 1568000		IM HYDROCARBON LANDFARM
	505 5371.17	5 CRUSHER,	/SHREDDER
		6 PORTABLE	E ROCK CRUSHER (RENTAL)
	<u>NO</u> SI FR	TE INFRASTRUCTURE AND TO	DPOGRAPHY BASED ON MAPPING COMPILED ACQUIRED ON JANUARY 17TH, 2022.
	N 1567000		
			A NORTH
			0 200' 400'
			PLOT PLAN
			ANDOVAL COUNTY LANDFILL RIO RANCHO, NEW MEXICO
	N 1566000	Par	222 Pio Poncho Rhyd. NE
1532000		DATE: 01/17/2023	Fax: 505-867-6991CAD: REVISED TITLE V FIG.dwgPROJECT #: 40111.22
لتا 1-		DRAWN BY: DMI APPROVED BY: MWK	REVIEWED BY: ANY FIGURE 5.1

Section 6 All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/forms/) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowable Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-GLYCalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.

2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed.
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; **and**
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless of if the applicant takes credit for the reduction in emissions. The applicant could indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Sandoval County

6.0 Calculations

This Section describes the methods used to calculate potential fugitive emissions of particulate matter (TSP, PM_{10} , and $PM_{2.5}$), non-methane organic compounds (NMOCs), hazardous air pollutants (HAPs), and volatile organic compounds (VOCs) from each area source (Unit) at the Sandoval County Landfill (SCLF). **Table 6.1** summarizes fugitive dust emission rate estimates from landfill sources and activities, demonstrating that the site is not a major source for these emissions. Tables 6.5 - 6.7 summarize estimated NMOC, VOC and HAP emissions.

6.1 Disposal Routes, Access Roads, and Auxiliary Roads – Emission Unit No. 1

The disposal route, access roads, and auxiliary roads currently consist of paved areas and temporary graded roadways (**Figure 5.1, Section 5**). Vehicles traveling on these roads have the potential to generate fugitive dust emissions. Cumulatively, potential fugitive dust emissions from vehicular traffic have been designated as **Emission Unit 1**. Unpaved road surfaces are watered daily as a routine basis for dust control.

To account for anticipated increases in waste receipts, a conservative escalator of 5% per year was applied to the calculations used to estimate total vehicle miles traveled for refuse delivery, Green Waste delivery, and Convenience Center drop off vehicles. It is assumed that the flow of miscellaneous vehicles will remain constant. This Section provides emission rate estimates for the following categories:

- 1. Refuse Delivery Vehicles Delivery of solid waste along the disposal route (i.e., from the site entrance to the active disposal area) typically occurs in one of three vehicle types:
 - a. Light/medium vehicles (residential haulers)
 - b. Large commercial vehicles (dump trucks, rear loaders, side loaders, front loaders, roll-offs, compactors)
 - c. Semi-trucks (tractor trailers)
- 2. Green Waste Delivery Vehicles Delivery of green waste along the green waste drop off route (i.e., from site entrance to Green Waste Drop off Area) typically occurs in large pickups with trailers.
- 3. Miscellaneous Vehicles Employee vehicles (i.e., Public Works trucks, utility vehicles) travel on the disposal route, access roads, and auxiliary roads.
- 4. Convenience Center The majority of incoming light/medium vehicles (i.e., residential haulers) are diverted to the Convenience Center (Figure 5.1, Section 5).

6.1.1 Emissions from Refuse Delivery Vehicles

Potential fugitive dust emissions from municipal solid waste (MSW) delivery vehicles can occur along the disposal route (**Figure 5.1, Section 5**). Vehicles that travel on the MSW disposal route include the three types of refuse delivery vehicles, as well as a CAT® 730C2 articulated water truck (6,000-gallon capacity). The water truck currently applies an average of 25,000 gallons of water per day to the unpaved disposal route, access roads, daily cover soil borrow area, and the active disposal area.

Two separate equations, derived from AP-42, Section 13.2.2, Unpaved Roads (November 2006), were used for estimating long-term emissions (tons/yr) and short-term emissions (lbs/hr) for vehicle travel on landfill roads. The mathematical equations for both emissions estimates are similar; however, the equation used for estimating long-term emissions includes precipitation as a factor when estimating the annual emission rate. Input variables for both equations include:

- AP-42 default empirical constants.
- AP-42 default average surface material silt content.
- Weighted average vehicle weight.
- The number of days with at least 0.01 inches of precipitation per year (long-term emission equation only) obtained from AP-42.

According to the guidance provided in AP-42, Section 13.2.2, the equations are not intended to be used to calculate separate emission factors for multiple vehicle types simultaneously. Therefore, an "average" refuse delivery vehicle was determined based on the different types of refuse delivery vehicles that travel on the disposal route and their frequency of travel. The information below contains data provided by SCLF, as well as conservative assumptions made in order to perform representative calculations:

- The number of days per year with at least 0.01 inches of precipitation is 70 for the Rio Rancho, NM area (AP-42, Figure 13.2.2-1).
- The length of the disposal route is approximately 1.11 miles (round trip).
- The disposal route is comprised of approximately 902 feet (one-way) of pavement, approximately 2,025 feet (one-way) of unpaved road.
- There is an average of 154 round trips/day.
- The maximum operating days of 304 days/yr will occur during a leap year (e.g., 2024) containing 262 weekdays and 52 Saturdays minus ten holidays.
- The average refuse delivery vehicle weighs 15.21 tons (weighted average).

Detailed emissions calculations for refuse delivery vehicle travel on the paved and unpaved portions of the disposal route are provided in **Appendix 6.1**. **Table 6.1** shows the total estimated amount of refuse delivery vehicle emissions, both controlled and uncontrolled. **Table 6.2** presents an example of the methodology used to develop the "average" delivery vehicle for the three types of refuse delivery vehicles, as well as the water truck for the paved portion of the disposal route. This information was used to calculate the potential uncontrolled TSP, PM₁₀, and PM_{2.5} emissions for the "average" vehicle traveling on the disposal route. The same methodology was used to calculate the potential uncontrolled TSP, PM₁₀, and PM_{2.5} emissions for the "average" vehicle traveling on the disposal route. The same methodology was used to calculate the potential uncontrolled TSP, PM₁₀, and PM_{2.5} emissions for the "average" vehicle traveling on the disposal route. The same methodology was used to calculate the potential uncontrolled TSP, PM₁₀, and PM_{2.5} emissions for the "average" vehicle traveling on the Unit I, Unit II, green waste, convenience center, recycling center and miscellaneous vehicle. Detailed information for vehicles traveling on each route is provided in **Appendix 6.1**.

TABLE 6.1 - Summary of Potential Fugitive Dust Emission

Sandoval County Landfill

Emission Unit No.	Description	Source Type	Pollutant	Maximum/Uncontrolled Air Pollutant Emission Rate		Actual/Con Pollutant Rat	Emission
				(tons/year)	(lbs/hr)	(tons/year)	(lbs/hr)
1	Disposal Route, Access Ro	ads, and Auxi	liary Roads				
	Refuse Delivery Vehicles (Paved)			56.83	51.40	2.84	2.57
	MSW Refuse Delivery Vehicles (Unpaved)			127.09	114.95	50.84	45.98
	Green Waste Drop-Off Area Vehicle Operations (Paved)			6.89	6.24	0.34	0.31
	Green Waste Drop-Off Area Vehicle Operations (Unpaved)	Area	TSP	20.92	18.92	8.37	7.57
	Convenience Center Vehicles (Paved)	Alea	151	18.75	16.96	0.94	0.85
	Miscellaneous Vehicles (Paved)			3.34	3.54	0.17	0.18
	Miscellaneous Vehicles (Access Roads - Unpaved)			8.73	9.25	3.49	3.70
	Miscellaneous Vehicles (Auxiliary Roads - Unpaved)			0.30	0.27	0.30	0.27
			Unit Total	242.86	221.52	67.29	61.43
	Refuse Delivery Vehicles (Paved)			15.34	13.88	0.77	0.69
	MSW Refuse Delivery Vehicles (Unpaved)			34.31	31.03	13.72	12.41
	Green Waste Drop-Off Area Vehicle Operations (Paved)			1.86	1.68	0.093	0.084
	Green Waste Drop-Off Area Vehicle Operations (Unpaved)		D) (5.65	5.11	2.26	2.04
	Convenience Center Vehicles (Paved)	Area	ea PM ₁₀	5.06	4.58	0.25	0.23
	Miscellaneous Vehicles (Paved)			0.90	0.95	0.045	0.048
	Miscellaneous Vehicles (Access Roads - Unpaved)			2.36	2.50	0.94	1.00
	Miscellaneous Vehicles (Auxiliary Roads - Unpaved)			0.08	0.074	0.08	0.074
	······································		Unit Total	65.56	59.80	18.17	16.58
	Refuse Delivery Vehicles (Paved)			1.53	1.39	0.077	0.069
	MSW Refuse Delivery Vehicles (Unpaved)			3.43	3.10	1.37	1.24
	Green Waste Drop-Off Area Vehicle Operations (Paved)			0.19	0.17	0.009	0.008
	Green Waste Drop-Off Area Vehicle Operations (Taved)		PM _{2.5}	0.56	0.51	0.23	0.20
	Convenience Center Vehicles (Paved)	Area		0.51	0.46	0.025	0.023
	Miscellaneous Vehicles (Paved)			0.090	0.095	0.0045	0.0048
	Miscellaneous Vehicles (Access Roads - Unpaved)			0.24	0.25	0.09	0.10
	Miscellaneous Vehicles (Auxiliary Roads - Unpaved)			0.008	0.007	0.008	0.007
	wiscenarious veneres (Auxinary Roads - Onpaved)		Unit Total		5.98	1.82	1.66
2	General Landf	ill Operations	Onit Total	0.30	5.70	1.02	1.00
2	Scraper ⁽²⁾	in Operations	1	39.89	105.93	15.95	42.37
	Compactor			4.31	3.15	1.72	1.26
	Bulldozer	Area	TSP	1.44	3.15	0.57	1.20
	Wind Erosion	Alca	151	6.45	1.47	3.38	0.77
	Diesel Exhaust Particulate Emissions ⁽⁴⁾			0.43	0.48	0.32	0.48
	Diesel Exhaust Particulate Emissions		Unit Total	52.41	114.18	21.96	46.15
	Scraper ⁽²⁾			10.93	28.96	4.37	11.58
				0.85	0.62	0.34	0.25
	Compactor Bulldozer	A	PM ₁₀	0.85	0.62	0.34	0.25
		Area	F 1 VI ₁₀				
	Wind Erosion (4)			1.98	0.45	1.04	0.24
	Diesel Exhaust Particulate Emissions ⁽⁴⁾		Link Tet 1	0.32	0.48	0.32	0.48
	~ (?)		Unit Total	14.37	31.14	6.18	12.80
	Scraper ⁽²⁾			1.09	2.90	0.44	1.16
	Compactor	<u> </u>	DM	0.45	0.33	0.18	0.13
	Bulldozer	Area	PM _{2.5}	0.15	0.33	0.060	0.13
	Wind Erosion (1)			0.20	0.045	0.104	0.024
	Diesel Exhaust Particulate Emissions ⁽⁴⁾			0.32	0.48	0.32	0.48
			Unit Total	2.21	4.08	1.10	1.93

TABLE 6.1 (cont.) - Summary of Potential Fugitive Dust Emission

	Sandoval County Lan	dfill					
Emission Unit No.	Description	Source Type	Pollutant	Maximum/Uncontrolled Air Pollutant Emission Rate		Actual/Controlled A Pollutant Emission Rate ⁽¹⁾	
				(tons/year)	(lbs/hr)	(tons/year)	(lbs/hr)
5	Crusher/Shr	edder					
	Front End Loader			1.64	2.66	1.64	2.66
	Crusher/Shredder Operations ⁽³⁾	Area	TSP	0.53	0.69	0.53	0.69
	Crushed Product Stockpiling	Alca	131	0.40	0.53	0.40	0.53
	Diesel Exhaust Particulate Emissions ⁽⁴⁾			0.31	0.40	0.31	0.40
			Unit Total	2.87	4.28	2.87	4.28
	Front End Loader			0.44	0.72	0.44	0.72
	Crusher/Shredder Operations ⁽³⁾	Area	PM10	0.22	0.29	0.22	0.29
	Crushed Product Stockpiling	Area	r 1 v1 10	0.19	0.25	0.19	0.25
	Diesel Exhaust Particulate Emissions ⁽⁴⁾			0.31	0.40	0.31	0.40
			Unit Total	1.16	1.66	1.16	1.66
	Front End Loader			0.044	0.072	0.044	0.072
	Crusher/Shredder Operations ⁽³⁾	Area	PM _{2.5}	0.22	0.29	0.22	0.29
	Crushed Product Stockpiling	Area	F 1 v 1 _{2.5}	0.029	0.038	0.029	0.038
	Diesel Exhaust Particulate Emissions ⁽⁴⁾			0.31	0.40	0.31	0.40
			Unit Total	0.60	0.80	0.60	0.80
6	Rental Cru	sher					
	Diesel Exhaust Particulate Emissions ⁽⁴⁾	Area	TSP	0.0030	0.014	0.0030	0.014
	Total Fugitives for Crushing, Screening, and Truck Loading	Alca	151	2.41	8.39	0.21	0.96
			Unit Total	2.42	8.40	0.21	0.98
	Diesel Exhaust Particulate Emissions ⁽⁴⁾	Area	PM ₁₀	0.0030	0.014	0.0030	0.014
	Total Fugitives for Crushing, Screening, and Truck Loading	Alca	r ₁₀	0.89	3.08	0.082	0.38
			Unit Total	0.89	3.09	0.085	0.39
	Diesel Exhaust Particulate Emissions ⁽⁴⁾	Area	PM _{2.5}	0.0030	0.014	0.0030	0.014
	Total Fugitives for Crushing, Screening, and Truck Loading	Area	1 1912.5	0.89	3.08	0.015	0.069
			Unit Total	0.89	3.09	0.018	0.082

Notes:

(1) Fugitive dust emissions from Emission Units 1 and 2 are controlled consistent with the following AQB-approved control efficiencies:

Pavement - 95% control
 Water - 60% control

▶ Water & Basecourse - 80% control

(2) Includes Scraper Travel, Loading, and Unloading

(3) Includes Loading, Crushing, Conveyor Transport, and Truck Loading

(4) Diesel exhaust particulate emissions calculated using AP-42 Chapter 3, Section 3.3, Table 3.3-1. Data obtained from Table 6.7. AP-42 does not provide guidance for calculating TSP and PM_{2.5} emissions from diesel exhaust. Therefore, as noted in Table 6.7, all exhaust particulate matter is assumed to be $\leq 1 \mu m$ in size. Consistent with the previous AQBapproved Permit Application, emissions estimates for TSP and $PM_{2.5}$ are assumed equal to those for PM_{10} .

n

Vehicle Type	Vehicle Weight (tons)	Proportion of Average Round Trips (Per Day)	Applied Vehicle Weight (tons)
Large Pickup	1.9	9.5%	0.18
Pickup w/ Trailer	2.7	25.6%	0.69
Dump Truck Single Axle			0.66
Dump Truck Dual Axle	19.4	2.6%	0.51
Roll Off	19.4	30.2%	5.85
Side Loader	21.6	0.2%	0.042
Rear Loader	22.2	5.7%	1.25
Front Loader	21.6	2.2%	0.47
Compactor	21.6	1.7%	0.36
20' Semi-truck	25.5	0.004%	0.0011
25 ' Semi-truck	26.7	3.0%	0.79
28' Semi-truck	27.1	0.0%	0.0023
40' Semi-truck	33.8	0.55%	0.19
42' Semi-truck	34.3	5.53%	1.90
48' Semi-truck	36.8	0.10%	0.035
Water Truck	38.6	6.3%	2.29
Total (weighted avera	ige)	100.0%	15.21

Table 6.2 – Refuse Delivery Vehicle Specifications Sandoval County Landfill

C 4

6.1.2 Emissions from Convenience Center Vehicles

The purpose of the Convenience Center is to provide a suitable location for self-haulers to dispose of waste, and to reduce the amount of fugitive dust emissions generated by these vehicles on the disposal route. The Convenience Center consists of unloading positions for customer vehicles, a 2' deep concrete tipping floor onto which self-haul waste is placed and compacted, and two 40 yd³ roll-off containers located at the end of the tipping floor. Self-haul waste is first placed on the tipping floor by customers as directed by landfill personnel. The waste is then compacted and pushed from the tipping floor by a front-end loader into 40 yd³ roll-off containers positioned in a partial tunnel located at the end of the push-pit. As the roll-off containers are filled, they are transported to the active disposal area.

Emissions from Convenience Center vehicles were calculated separately because all traffic to and from the Convenience Center travels exclusively over paved surfaces. The traffic to the Convenience Center is comprised solely of residential vehicles, weighing approximately 1.83 tons (average), apart from the roll-off transport trucks which are accounted for in the refuse delivery vehicles traffic. The equations used to estimate emissions from these vehicles are obtained from AP-42, Section 13.2.2, Unpaved Roads (November 2006). The volume of traffic diverted to the Convenience Center is recorded daily at the Scalehouse as vehicles arrive

at the landfill daily. The information below contains data provided by SCLF, as well as conservative assumptions that were made to perform representative calculations:

- The number of days per year with at least 0.01 inches of precipitation is 70 for the Rio Rancho, NM area (AP-42, Figure 13.2.2-1).
- The average round trip distance for a Convenience Center vehicle is approximately 0.32 miles.
- Approximately 42,911 vehicles use the Convenience Center annually.
- All travel to/from the Convenience Center is on pavement.
- The average Convenience Center delivery vehicle weighs 1.83 tons.
- The average operating year consists of 304 days.
- The Convenience Center operates for 9 hours/day Monday Saturday.

Detailed emissions calculations for Convenience Center vehicle travel on paved surfaces are provided in **Appendix 6.1. Table 6.1** shows the total amount of Convenience Center vehicle emissions, both controlled and uncontrolled.

6.1.3 Emissions from Miscellaneous Vehicles

Additional vehicles that travel on the disposal route, paved roads, access roads, and auxiliary roads include miscellaneous vehicles such as landfill utility vehicles and public works trucks. The equations used for estimating potential fugitive dust emissions from these vehicles are the same equations used for refuse delivery vehicles. As with refuse delivery vehicles, an "average" miscellaneous vehicle was developed based on the different types of miscellaneous vehicles that travel on landfill roads and their frequency of travel. The information below contains data provided by SCLF, as well as conservative assumptions that were made in order to perform representative calculations:

- The number of days per year with at least 0.01 inches of precipitation is 70 for the Rio Rancho, NM area (AP-42, Figure 13.2.2-1).
- The weighted average round trip for the "average" miscellaneous vehicle on pavement is approximately 1.53 miles.
- The weighted average round trip for the "average" miscellaneous vehicle on the unpaved access roads is approximately 4.00 miles.
- The average travel distance for a Public Works truck, a miscellaneous vehicle, on the unpaved auxiliary roads is approximately 1.07 miles.
- There is an average of 9 round trips/day for the "average" miscellaneous vehicle.
- The average operating year consists of 304 days.
- The average miscellaneous vehicle weight is 1.06 tons (weighted average).

Table 6.3 presents projected data for the two typical types of miscellaneous vehicles. This information was used to calculate the uncontrolled TSP, PM_{10} , and $PM_{2.5}$ emissions for the average miscellaneous vehicle traveling on landfill access roads. Detailed emissions calculations for miscellaneous vehicle travel on the paved and unpaved portions of the disposal route, landfill access roads, and auxiliary roads are provided in

Appendix 6.1. Table 6.1 shows the total amount of miscellaneous vehicle emissions, both controlled and uncontrolled.

Vehicle Type	Vehicle Weight (tons)	Proportion of Average Round Trips (Per Day)	Applied Vehicle Weight (tons)
Utility Vehicles	1.0	88.9%	0.89
Public Works Trucks	1.5	11.1%	0.17
	2.5	100.0%	1.06

Table 6.3 – Miscellaneous Vehicle SpecificationsSandoval County Landfill

6.1.4 Fugitive Dust Control Measures

During routine operations, the Landfill typically applies over 700,000 gallons of water per month on average in order to reduce the amount of fugitive dust emissions. A CAT® 730C2 articulated water truck (6,000gallon capacity) makes an average of 9 trips per day and applies over 25,000 gallons of water per day on average to the unpaved portions of landfill roads, the daily cover soil borrow area, and the active disposal area. Consistent with existing New Mexico Environment Department (NMED) Air Quality Bureau (AQB) policy, an overall water control efficiency of 60% was applied to unpaved roads, a watered control efficiency of 80% may be applied to roads which have had cold millings (recycled basecourse) applied (when utilized), a swept and watered control efficiency of 85% may be applied to roads which are constructed of chip seal (when utilized). No control efficiency was applied to vehicle travel on auxiliary roads. Detailed calculations for fugitive dust control efficiencies applied to the disposal route and access roads are provided in **Appendix 6.2**.

6.2 General Landfill Operations – Emission Unit 2

General landfill operations have been designated as Emission Unit 2. General landfill operations include solid waste disposal at the active disposal area (see **Figure 5.1, Section 5**) and daily cover application. Emission rate estimates from each of these activities/processes are detailed below.

6.2.1 Disposal Area and Daily Cover Operations

Potential fugitive dust emissions from disposal area operations result primarily from the daily operations of heavy equipment such as scrapers, compactors, and bulldozers. Scrapers are used to excavate soil to deliver soil to the active disposal area for daily cover. Compactors consolidate waste at the active disposal area. Bulldozers assist the compactors by positioning waste so it can be easily consolidated, and apply cover material. Heavy equipment operations emissions were calculated using SCLF operating logs for each piece of equipment. Where applicable, running time hours (operating hours plus idle time) were converted to actual operating hours (i.e., hours that the vehicle has the potential to create fugitive emissions) by applying an operating efficiency to the running time of each piece of equipment. Average scraper weights and capacities were obtained from the Caterpillar® Performance Handbook, Edition 48 (Caterpillar® 2019).

6.2.1A Scraper Operations

Scraper operations involve scraper travel to and from loading (daily cover soil borrow area) and unloading locations (active disposal area), as well as the loading and unloading processes themselves. Each of these

Sandoval County

Sandoval County Landfill

three processes is a potential source of fugitive dust emissions. Guidance for estimating emission rates for these processes was obtained from AP-42, Sections 13.2.2, 11.9, and 13.2.4.

The scraper travels between the daily cover soil borrow area and the disposal area (see Figure 5.1, Section 5). Due to the dynamic nature of the active disposal area, the maximum travel distance is conservatively used for emissions calculations. Emissions from scraper travel are estimated using the same equations for vehicle travel on the disposal route (Section 6.1.1) and utilize the following information:

- The number of days per year with at least 0.01 inches of precipitation is 70 for the Rio Rancho, NM area (AP-42, Figure 13.2.2-1).
- The maximum scraper round trip is distance is approximately 1.32 miles.
- There is an average of 20 round trips/day.
- The average operating year consists of 304 days.
- The average scraper weight (loaded and unloaded) is 47.92 tons.

Detailed emissions calculations for scraper travel are provided in **Appendix 6.3**. **Table 6.1** shows the total amount of emissions from scraper travel, both controlled and uncontrolled.

Emissions from scraper loading at the daily cover soil borrow area were estimated using guidance provided in AP-42, Section 11.9 Western Surface Coal Mining (October 1998). The emission factor for TSP emissions is listed in Table 11.9-4 as 0.058 lbs/ton. To calculate the PM₁₀ and PM_{2.5} emission factor for scraper loading, a ratio of the values of the empirical constant (k) for PM₁₀, PM_{2.5}, and TSP (AP-42, Section 13.2.2) was applied to the TSP emission factor (ETSP) of 0.058 lbs/ton as follows:

- PM_{10} Emission Factor (EPM₁₀) = (kPM10/kTSP) x (ETSP) = (1.5/4.9) x (0.058 lbs/ton)
- PM_{10} Emission Factor (EPM_{10}) = (0.31) x (0.058 lbs/ton) = 0.02 lbs/ton
- PM_{2.5} Emission Factor (EPM_{2.5}) = (kPM2.5/kTSP) x (ETSP) = (0.15/4.9) x (0.058 lbs/ton)
- PM_{2.5} Emission Factor (EPM_{2.5}) = (0.031) x (0.058 lbs/ton) = 0.002 lbs/ton

The TSP, PM_{10} , and $PM_{2.5}$ emission factors were then applied to the total calculated mass of soil moved per year. These calculations were performed using information provided by SCLF, including an estimate of 20 scraper trips/day (loads/day), an average scraper capacity of 20.7 yd³, and an operating year of 304 days. The total mass of soil loaded per year is estimated to be 151,027 tons. The controlled and uncontrolled emissions from scraper loading are provided in **Table 6.1**, and detailed emissions calculations for scraper loading are provided in **Appendix 6.3**.

Emissions from scraper unloading at the disposal area were estimated using guidance provided by AP-42, Section 13.2.4, Aggregate Handling and Storage Piles (November 2006). These calculations were performed using the same information provided by SCLF for scraper loading and an operating year of 304 days. The total mass of soil unloaded per year is the same as the mass of soil loaded (151,027 tons). The controlled and uncontrolled emissions from scraper unloading are provided in **Table 6.1**. Detailed emissions calculations for scraper unloading, as well as the cumulative emissions from all scraper operations, are provided in **Appendix 6.3**.

6.2.1B Compactor Operations

Compactor operations involve consolidation of waste at the active disposal area. From guidance provided in AP-42, Section 13.2.3, Heavy Construction Operations (January 1995), Table 13.2.3-1, potential fugitive dust emissions from compactor operations were calculated by using the bulldozer emission equation in AP-42, Table 11.9-1. Calculated emission factors were then applied to the total annual operating hours for the compactor. It was conservatively assumed that the compactor makes contact with all of the waste at the active disposal area. Calculations were performed using the following information:

- The average operating year consists of 304 days.
- The average operating day is 9 hours/day.

The controlled and uncontrolled emissions from compactor operations are provided in **Table 6.1**, and detailed compactor emissions calculations are provided in **Appendix 6.3**.

6.2.1.C Bulldozer Operations

Bulldozer operations involve assisting the compactor at the active disposal area by positioning waste for the compactor and assisting with landfill cover application. Potential fugitive dust emissions from bulldozer operations were calculated using an equation in AP-42, Table 11.9-1. Calculated emission factors were then applied to the total annual operating hours for the bulldozer. Calculations were performed using the following information:

- The average operating year consists of 304 days.
- The average operating day is 3 hours/day.

The controlled and uncontrolled emissions from bulldozer operations are provided in **Table 6.1**, and detailed bulldozer emissions calculations are provided in **Appendix 6.3**.

6.2.2 Fugitive Dust Control Measure

Fugitive dust control measures are employed during the operating day in order reduce emissions during normal operations. A control efficiency of 60% was applied to scraper travel on roads that have water applied daily. The bulldozer and compactor operate 100% of the time within the active disposal area, which is watered regularly. Water is also applied to the daily cover soil borrow area during scraper loading. The control efficiency for operations occurring in the active disposal area and daily cover soil stockpile area is 60%. Table 6.1 summarizes the controlled/uncontrolled fugitive dust emissions resulting from heavy equipment operation during active disposal area operations and daily cover application. Detailed calculations for fugitive dust control efficiencies applied to these operations are provided in Appendix 6.2.

6.2.3 Dust Emissions from Wind Erosion on Disturbed Areas

Based on guidance provided in AP-42, Section 13.2.5, Industrial Wind Erosion (November 2006), only those areas of the Landfill actively disturbed by facility operations (e.g., disposal routes, access roads, auxiliary roads, active disposal area, daily cover soil borrow area, and crushed material stockpile) were included in the acreage for which potential fugitive dust emissions attributable to wind erosion were calculated. Wind erosion emissions from approximately $16.99\pm$ acres of actively disturbed areas were estimated. A control efficiency of 60% for fugitive dust emissions due to wind erosion was applied to the unpaved portion of the MSW disposal route, landfill access roads, daily cover soil borrow area, and the active disposal area. For the purposes of wind erosion estimates, auxiliary roads, the petroleum

Sandoval County

Sandoval County Landfill

hydrocarbon soils landfarm, crushing/shredding area, clean fill area, and green waste area (**Figure 5.1**, **Section 5**) are conservatively assumed to have a control efficiency of zero.

Wind erosion emissions were estimated by use of emission factors provided in AP-42, Section 11.9. The emission factor for TSP emissions is listed in Table 11.9-4 as 0.38 tons/acre/yr. To calculate the PM_{10} and $PM_{2.5}$ emission factor for wind erosion, a ratio of the values of the empirical constant (k) for PM_{10} , $PM_{2.5}$, and TSP (AP-42, Section 13.2.2) were applied to the TSP emission factor (ETSP) of 0.38 tons/acre/yr as follows:

- PM_{10} Emission Factor (EPM_{10}) = (kPM_{10}/kTSP) x (ETSP) = (1.5/4.9) x (0.38 tons/acre/yr).
- PM_{10} Emission Factor (EPM₁₀) = (0.31) x (0.38 tons/acre/yr) = 0.12 tons/acre/yr.
- $PM_{2.5}$ Emission Factor (EPM_{2.5}) = (kPM_{2.5}/kTSP) x (ETSP) = (0.15/4.9) x (0.38 tons/acre/yr).
- $PM_{2.5}$ Emission Factor (EPM_{2.5}) = (0.031) x (0.38 tons/acre/yr) = 0.012 tons/acre/yr.

The total uncontrolled and controlled fugitive dust emissions due to wind erosion are summarized in **Table 6.1**. Detailed calculations for fugitive dust emissions due to wind erosion, as well as applied control efficiencies, are provided in **Appendix 6.4**.

6.3 Landfill Gas Generation

Solid waste is subject to aerobic and anaerobic decomposition that results in the generation of landfill gas (LFG). The rate of LFG generation is a function of the composition, moisture content, age, temperature, pH, and alkalinity of the refuse, nutrient supply, etc. Methane (CH₄) and carbon dioxide (CO₂) are the primary constituents of LFG, generated in approximately equal proportions. Typically, LFG also contains a very small proportion (<0.04%) of non-methane organic compounds (NMOCs). The uncontrolled emissions of NMOCs from the Landfill are designated Emission Unit 3.

The EPA model LandGEM (Landfill Gas Emissions Model), Version 3.03 (USEPA, June 2020) was used to calculate total LFG and NMOC emission rates for the Landfill. The Model estimates emissions resulting from the biodegradation of refuse in landfills and is recommended by EPA for use in developing estimates for state inventories. The Model uses a first-order decay rate equation, and estimates annual emissions over any period specified by the user. The period specified for SCLF is 1972 (the first year of waste acceptance) through 2028, end of proposed Title V permit applicability.

The Model contains default values for the potential methane generation capacity of the refuse (Lo) and the methane generation rate constant (k) that, in the absence of site-specific data, are intended to reflect typical landfill emissions. The Model also contains a default value for NMOC concentrations (CNMOC) for landfills both with and without codisposal of hazardous waste. All Model parameters may also be set to user-specified values. The following values were input into LandGEM to estimate total LFG generation rates and emissions of NMOCs from the landfill:

- Methane Generation Rate Constant, $k = 0.02 \text{ yr}^{-1}$ (CAA default for arid regions).
- Potential Methane Generation Capacity of Refuse, $Lo = 170 \text{ m}^3/\text{Mg}$ refuse (CAA default).
- NMOC Concentration, $CNMOC = 4,000 \text{ ppm}_v$ as hexane (CAA default).
- Landfill Type = No codisposal (i.e., no landfilling of hazardous waste).
- The site is treated as active (i.e., accepting waste) for the years 1972 2028.
- The composition of LFG is modeled as 50% methane and 50% carbon dioxide (CAA defaults).

Sandoval County

Sandoval County Landfill

March 7, 2023 Rev 0

Wastes received at SCLF are comprised of degradable and non-degradable portions (e.g., construction & demolition debris). No waste screening data (i.e., type and volume) are available for 1972-1990, and 1992-1993. Based on information provided by SCLF, the waste types included in the incoming waste stream for 1991 and 1994-2009 were indicative of waste accepted for disposal from 1972-1990 and from 1992-1993. Therefore, an average non-degradable waste acceptance rate of approximately 80% (see **Table 6.4**) by volume was calculated for 1991 and 1994 – 2009, and then applied to the calculated average waste acceptance rate for 1972-1990 and 1992-1993.

Since January 1, 2005, source-separated green wastes have been diverted from the incoming solid waste stream for processing at the site's in-vessel composting operation. As allowed by NSPS, actual waste screening data were used to subtract the non-degradable portion (i.e., construction and demolition debris) from the waste stream for years 1991 and 1994 – 2021. Green waste diverted for composting was subtracted from the degradable portion of the waste stream for years 2005-2021.

LFG emissions for the years 2022 through 2028 were estimated based upon projected waste acceptance rates through the end of 2028. To produce conservative results, projected waste acceptance rates were calculated by applying a 5% annual escalator to the annual average waste receipts between 2016 and 2021. Modeling output for NMOC emission rates is provided in **Appendix 6.5**. The Model indicates that the NMOC emission rate in 2028 from waste deposited through 2028 is approximately 28.48 Mg/yr (31.39 tons/yr). This NMOC emission rate is also provided in **Section 21**, **Part 21-B**.

Year	Total Receipts (Gate Yards)	Putrescible Waste (Gate Yards)	Non-putrescible/ Diverted Waste (Gate Yards)	Megagrams Putrescible Waste (calculated)
1991	278,853	39,085	239,768	4,191
1994	330,000	74,500	255,500	6,759
1995	346,915	54,557	292,358	8,910
1996	385,394	132,806	252,588	20,156
1997	393,935	57,963	335,972	7,724
1998	432,270	60,302	371,967	6,933
1999	396,900	81,923	314,978	9,020
2000	467,016	83,728	383,288	9,548
2001	171,218	97,561	73,658	11,827
2002	541,872	93,812	448,060	12,756
2003	484,276	105,085	379,191	13,948
2004	510,760	105,655	405,105	13,497
2005	479,566	41,607	437,959	7,934
2006	684,678	52,489	632,189	10,251
2007	803,588	80,642	722,946	13,717
2008	652,397	67,637	584,760	12,095
2009	474,221	56,129	418,092	11,012
Totals	7,833,859	1,285,481	6,548,379	180,278
Year	Total Receipts (Short tons)	Total Receipts (Megagrams)	Non-putrescible/ Diverted Waste (Megagrams)	Putrescible Waste (Megagrams)
2010	120,638	109,441	84,095	25,346
2011	108,963	98,849	89,425	9,424
2012	121,718	110,421	101,953	8,468
2013	117,193	106,316	83,710	22,606
2014	123,449	111,991	106,762	5,229
2015	125,099	113,488	108,033	5,455
2016	187,730	170,306	162,337	7,969
2017	165,947	150,545	142,465	8,080
2018	189,593	171,996	161,860	10,136
2019	187,238	169,860	159,177	10,683
2020	196,456	178,222	166,931	11,292
2021	190,408	172,735	163,053	9,682
Total	1,834,432	1,664,170	1,529,801	134,370

Table 6.4 – Documented Annual Waste Acceptance Rates Sandoval County Landfill

A summary of Model output, representing the projected annual LFG and uncontrolled NMOC emission rates for years 2022 through 2028, is presented in **Table 6.5**. For emissions inventory purposes, the data in **Table 6.5** are presented under the conservative assumption that all LFG generated is emitted, and that no LFG controls (i.e., a collection system with LFG routed to a flare) are operational.

Table 6.5 – Projected Annual Landfill Gas and NMOC Generation Rates
Emission Unit 3
Sandoval County Landfill

Year	Estimated Total LFG Emissions (scfm)	Estimated NMOC Emissions (Mg/yr)	Estimated NMOC Emissions (tons/yr)	Estimated NMOC Emissions (lb/hr)
2022	115.8	24.7	27.2	6.21
2023	118.2	25.2	27.8	6.35
2024	120.9	25.8	28.4	6.48
2025	123.7	26.4	29.0	6.62
2026	126.7	27.0	29.7	6.78
2027	130.0	27.7	30.5	6.96
2028	133.5	28.5	31.3	7.15

6.4 Petroleum Hydrocarbon Landfarm – Emission Unit 4

SCLF is permitted to accept petroleum contaminated soils (PCS) for treatment via landfarming. The petroleum hydrocarbon landfarm has been designated as Emission Unit 4. The PCS accepted for treatment would be transported to a designated area at the site (see **Figure 5.1, Section 5**), applied as a thin layer and disked to enhance bioremediation.

Consistent with the requirements of 20.9.8.15 NMAC of the New Mexico Solid Waste Rules, PCS require bioremediation prior to disposal or beneficial use as daily cover. Benzene, toluene, ethyl benzene, and xylene (BTEX) are the main constituents of concern in PCS that have the potential to volatilize, and are considered volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). PCS samples are required to be collected at a frequency of one sample per 100 yd³ and analyzed for total petroleum hydrocarbon (TPH) using EPA Method 8015 and BTEX via EPA Method 8021 (or approved equivalents).

Each shipment of PCS must be approved by SCLF and issued an approved profile number prior to acceptance. Each shipment must be accompanied by a non-hazardous waste manifest (or approved equivalent) containing the approved profile number and the corresponding laboratory analytical data. **Section 6.6.4** of this Application provides additional discussion and example calculations for potential HAP emissions from PCS remediation.

6.5 Crusher/Shredder Operations – Emission Unit 5

Crusher/Shredder operations have been designated as Emission Unit 5, and include loading of the Crusher/Shredder, processing of the loaded material, and unloading of the material into 28-foot semi-trucks using an attached conveyor belt. Crusher/Shredder operations also include application and stockpiling of the crushed material for future use, and emissions from the diesel engine that powers the Crusher/Shredder. Emission rate estimates from each of these activities/processes are detailed below.

6.5.1 Crusher/Shredder Loading, Materials Processing, and Unloading

Potential fugitive dust emissions from crushing/shredding operations result primarily from the daily operations of heavy equipment such as front-end loaders and 28-foot semi-trucks. The front-end loader is used to load the materials to be processed into the Crusher/Shredder, and the 28-foot semi-trucks haul these materials for disposal or application to facility roads for maintenance and dust control. Emissions are estimated using the maximum hourly throughput capabilities of the Crusher/Shredder (i.e., 80 tons/hour).

The Crusher/Shredder is loaded by a front-end loader at one of the three projected operations areas (see **Figure 5.1, Section 5**). Emissions from Crusher/Shredder loading are estimated using values from AP-42, section 11.19.2, Table 11.19.2-2, and utilize the following information:

- The Crusher/Shredder has a maximum throughput rate of 80 tons/hour.
- The Crusher/Shredder operates an average of 5 hours/day.
- The average operating year consists of 304 days.

The uncontrolled TSP, PM_{10} , and $PM_{2.5}$ emissions from Crusher/Shredder loading are provided in **Table 6.1**. Detailed emissions calculations for Crusher/Shredder Unloading are provided in **Appendix 6.6**.

Emissions from materials processing (i.e., crushing) are estimated using guidance provided in AP-42, Section 11.19.2 Crushed Stone Processing and Pulverized Minerals Processing (August 2004). The emission factor for TSP emissions during crushing is listed in Table 11.19.2-2 as 0.0054 lbs/ton, and PM_{10} emissions are listed at 0.0024 lb/ton. A $PM_{2.5}$ emissions factor is not provided in this section of AP-42. However, as previously approved by NMED AQB, in the absence of a published $PM_{2.5}$ emissions factor in AP-42, a factor equal to the factor provided for PM_{10} is used for $PM_{2.5}$.

The TSP, PM_{10} , and $PM_{2.5}$ emission factors were then applied to the maximum throughput of 80 tons/hour. The uncontrolled TSP, PM_{10} , and $PM_{2.5}$ emissions from materials processing operations are provided in **Table 6.1**, and detailed emissions calculations for Materials Processing are provided in **Appendix 6.6**.

Emissions from Crusher/Shredder Unloading consist of conveyor belt transport and dump truck loading. These emissions are estimated using guidance provided by AP-42, Section 11.19.2, Crushed Stone Processing and Pulverized Minerals Processing (August 2004). These calculations are based on a maximum throughput of 80 tons/hour. The uncontrolled TSP, PM₁₀, and PM_{2.5} emissions from Crusher/Shredder Unloading are provided in **Table 6.1**. Detailed emissions calculations for Crusher/Shredder Unloading are provided in **Appendix 6.6**.

6.5.2 Crushed Product Stockpiling

Emissions from crushed material stockpiling at the Crushed Product Processing Area (**Figure 5.1, Section 5**) are estimated using guidance provided in AP-42, Section 13.2.4, "Aggregate Handling and Storage Piles" (November 2006). These calculations are based on information provided by SCLF, including an estimate of approximately 5 hours of operation per day, maximum throughput of 80 tons/hour, and an operating year of 304 days. The maximum total mass of stockpiled crushed product is estimated to be approximately 121,600 tons/year.

The uncontrolled TSP, PM_{10} , and $PM_{2.5}$ emissions from crushed material stockpiling are provided in **Table 6.1**. Detailed emissions calculations for Crusher/Shredder Stockpiling, as well as the cumulative uncontrolled emissions from all Crusher/ Shredder operations, are provided in **Appendix 6.6**.

6.5.3 Front-End Loader Operations

Front-End Loader (FEL) operations involve transport and loading of materials to be processed into the Crusher/Shredder. Guidance provided in AP-42, Section 13.2.2, Unpaved Roads (November 2006) were used to determine total fugitive dust emissions produced per mile of FEL travel (to calculate an emissions factor). Calculated emission factors were then applied to the total annual distance traveled by the FEL. Calculations are performed using the following information:

- The average operating year consists of 304 days.
- The average operating day is approximately 5 hours/day.
- The FEL has a bucket capacity of 4 yd^3 .
- The FEL travel distance is approximately 200 feet/round trip
- The FEL travels approximately 576 miles/year.

The uncontrolled TSP, PM_{10} , and $PM_{2.5}$ emissions from FEL operations are provided in **Table 6.1**, and detailed FEL emissions calculations are provided in **Appendix 6.6**.

6.6 Portable Rock Crusher (Rental) Material Processing and Unloading Operations

Potential fugitive dust emissions from the Portable Rock Crusher (Rental) operations result primarily from the crushing and screening functions of the Unit. Emissions are estimated using the maximum hourly throughput capabilities of the Portable Rock Crusher (Rental) (i.e., 275 tons/hour). The Portable Rock Crusher is also equipped with a wet suppression system, and both controlled and uncontrolled emission factors are utilized to estimate total emissions.

The Portable Rock Crusher (Rental) is operated at one of the three projected operations areas (**Figure 5.1**, **Section 5**). Emissions from the Portable Rock Crusher (Rental) operation, screening and unloading are estimated using values from AP-42, section 11.19.2, Table 11.19.2-2, and utilize the following information:

- The Portable Rock Crusher (Rental) has a maximum throughput rate of 275 tons/hour.
- The Portable Rock Crusher (Rental) operates an average of 9 hours/day, 6 days/week for an 8-week period, and not to exceed 432 operating hours per year.

The uncontrolled and controlled TSP, PM₁₀, and PM_{2.5} emissions from the Portable Rock Crusher (Rental) are provided in **Table 6.1** and detailed emission calculations are provided in **Appendix 6.6**.

Emissions from materials processing (i.e., crushing and screening) are estimated using guidance provided in AP-42, Section 11.19.2 Crushed Stone Processing and Pulverized Minerals Processing (August 2004). The TSP, PM₁₀, and PM_{2.5} emission factors for tertiary crushing and screening were then applied to the maximum throughput of 275 tons/hour. The uncontrolled and controlled TSP, PM₁₀, and PM_{2.5} emissions from materials processing operations from the Portable Rock Crusher (Rental) are provided in **Table 6.1**, and detailed emissions calculations for materials Processing are provided in **Appendix 6.6**.

6.7 Hazardous Air Pollutant (HAP) Sources

The purpose of the information provided in this Section is to demonstrate that the Sandoval County Landfill (SCLF) is not a major source for hazardous air pollutants (HAPs) subject to Section 112(r) of the Clean Air Act (CAA).

6.7.1 Potential HAP Emissions from Landfill Gas

On March 26, 2020, the EPA published a Final Rule for a maximum achievable control technology (MACT) standard for municipal solid waste landfills that applies to both major HAP sources and area sources (Federal Register, Vol. 85, No. 59). Section 112(a) of the CAA defines a major source as "any stationary source or group of stationary sources that emits or has the potential to emit, considering controls, in the aggregate, 10 tons per year or more of any individual hazardous air pollutant or 25 tons per year or more of any combination of hazardous air pollutants." Section 112(a) of the CAA also defines an area source as "any stationary source of hazardous air pollutants that is not a major source."

The MACT standard for landfills is published in 40 CFR 63 Subpart AAAA, [National Emission Standards for Hazardous Air Pollutants (NESHAP): Municipal Solid Waste Landfills] March 26, 2020. NESHAP applies to area source landfills if they:

- Have accepted waste since November 8, 1987 (or have additional capacity for waste deposition), and.
- Are a major source of HAP, or
- Are collocated with a major source of HAP, or
- Have a design capacity equal to or greater than 2.5 million megagrams (Mg) and 2.5 million cubic meters (m³) and have estimated uncontrolled emissions of 50 Mg/yr NMOC or more.
- Include a bioreactor.

Although SCLF meets the design capacity criteria, calculated NMOC emission rates are well below the 50 Mg/yr threshold identified in the NESHAP, the facility does not operate a bioreactor, is not a major source, and is not collocated with a major source. The EG/NSPS require landfills that meet the design capacity criteria to periodically calculate uncontrolled NMOC emissions. If an area source landfill that currently has estimated uncontrolled emissions less than 50 Mg/yr increases to 50 Mg/yr in the future, it will become subject to the NESHAP at that time."

Potential NMOC emissions calculated by EPA LandGEM Model (Version 3.03) are estimated to be less than 28.5 Mg/yr through the year 2028, end of proposed Title V permit applicability (see **Appendix 6.5**).

The LandGEM Model also estimates emissions of 27 hazardous air pollutants (HAPs), which are a subset of NMOCs, and are potentially present in landfill gas. The user defined data input into the Model generates a concentration output for each individual landfill HAP (**Appendix 6.7**). **Table 6.6** presents a summary of the projected uncontrolled emissions of the 27 HAPs (as calculated by LandGEM) in year 2028 for projected waste deposited through 2027. As shown in **Table 6.6**, total (cumulative) HAP emissions of 0.96 tons/year from landfill gas are considerably less than even the MACT standard of 10 tons/year for any individual HAP. Pursuant to the instructions provided for **Table 2-I**, HAP emissions from landfill gas were not provided because no individual HAP exceeded its associated "deminimus" threshold value listed in part 112(g) of the CAA.

Table 6.6 – 2028 Estimated Landfill Gas HAP Emissions Emission Unit 3 Sandoval County Landfill

НАР	Uncontrolled Emissions (tons/yr)
1,1,1-Trichloroethane (methyl chloroform) - HAP	5.82E-03
1,1,2,2-Tetrachloroethane - HAP/VOC	1.68E-02
1,1-Dichloroethane (ethylidene dichloride) - HAP/VOC	2.16E-02
1,1-Dichloroethene (vinylidene chloride) - HAP/VOC	1.76E-03
1,2-Dichloroethane (ethylene dichloride) - HAP/VOC	3.69E-03
1,2-Dichloropropane (propylene dichloride) - HAP/VOC	1.85E-03
Acrylonitrile - HAP/VOC	3.04E-02
Benzene - No or Unknown Co-disposal - HAP/VOC	1.35E-02
Carbon disulfide - HAP/VOC	4.01E-03
Carbon tetrachloride - HAP/VOC	5.59E-05
Carbonyl sulfide - HAP/VOC	2.67E-03
Chlorobenzene - HAP/VOC	2.56E-03
Chloroethane (ethyl chloride) - HAP/VOC	7.62E-03
Chloroform - HAP/VOC	3.25E-04
Dichlorobenzene - (HAP for para isomer/VOC)	2.81E-03
Dichloromethane (methylene chloride) - HAP	1.08E-01
Ethylbenzene - HAP/VOC	4.44E-02
Ethylene dibromide - HAP/VOC	1.71E-05
Hexane - HAP/VOC	5.17E-02
Mercury (total) - HAP	5.29E-06
Methyl ethyl ketone - HAP/VOC	4.65E-02
Methyl isobutyl ketone - HAP/VOC	1.73E-02
Perchloroethylene (tetrachloroethylene) - HAP	5.58E-02
Toluene - No or Unknown Co-disposal - HAP/VOC	3.27E-01
Trichloroethylene (trichloroethene) - HAP/VOC	3.34E-02
Vinyl chloride - HAP/VOC	4.15E-02
Xylenes - HAP/VOC	1.16E-01
Total HAP Emissions	0.96

Notes:

Adapted from LandGEM output provided in Appendix 6.7

HAP emissions are likely overestimates for New Mexico (arid) landfills

6.7.2 Potential HAP Emissions from General Landfill Operations

Equipment in Unit 2 (General Landfill Operations) is used as part of routine Landfill operations to facilitate waste reduction and green waste recovery. A Morbark 3600® portable woodchipper is used to grind woody feedstocks to a compostable size. A portable, 9-foot-diameter Fecon® screen is used on an as-needed basis to separate the larger portions of finished (digested) compost from marketable material. The woodchipper and compost screen are designed to be towed about the site as-needed; and are powered by 455-and 48-hp diesel engines, respectively.

Long and short-term HAP emissions from the exhaust produced by the diesel engines that power the woodchipper and compost screen are calculated using a "pounds per million Btu" (lb/MMBtu) factor. The lower heating value of No. 2 diesel (129,500 Btu/gallon) entered into **Table 2-J** is multiplied by the fuel usage per hour of the woodchipper and compost screen, and then multiplied by the number of hours each is operated per year. The factors used for this calculation are obtained from AP-42, Table 3.3-2.

According to AP-42, the short-term (lb/hr) HAP emissions factor is derived from only two test engines, and should be used for order of magnitude comparison only. **Table 6.7** provides estimated HAP emissions from each diesel-fueled engine at SCLF. Pursuant to the instructions provided in **Table 2-I**, HAP emissions from these engines were not provided because they did not exceed their respective deminimus threshold values listed in part 112(g) of the CAA for individual HAPs.

Table 6.7 – Estimated Diesel-Powered Equipment Emissions Emission Units 2 and 5 Sandoval County Landfill

			U	U	nit 5		
Source		Compos	st Screen	Wood	Chipper	Crusher	/Shredder
Operating Hours/Ye	ear (max)	48		1,440		1,520	
Gallons/hour			1		11	10	
MMBtu/Gallon ^{1,2}		0.1	295	0.1	295	0.	1295
Pollutant	Emiss. Factor (lb/MMBtu) ³	<u>lb/hr</u>	<u>tpy⁴</u>	<u>lb/hr</u>	<u>tpy</u> ⁴	<u>lb/hr</u>	<u>tpy⁴</u>
NOx	4.41	0.571	0.014	6.28	4.52	5.71	4.34
СО	0.950	0.123	0.003	1.35	0.97	1.23	0.935
SO _x	0.290	0.038	0.001	0.413	0.30	0.376	0.285
PM ₁₀	0.310	0.040	0.001	0.442	0.32	0.401	0.305
CO ₂	164	21.238	0.510	233.62	168.20	212.38	161.41
HAP ^{7,8}	Emiss. Rate (lb/MMBtu) ⁵	<u>lb/hr</u>	<u>tpy⁴</u>	<u>lb/hr</u>	<u>tpy⁴</u>	<u>lb/hr</u>	<u>tpy</u> ⁴
Benzene (HAP/VOC)	9.33E-04	1.21E-04	2.90E-06	1.33E-03	9.57E-04	1.21E-03	9.18E-04
Toluene (HAP/VOC)	4.09E-04	5.30E-05	1.27E-06	5.83E-04	4.19E-04	5.30E-04	4.03E-04
Xylenes (HAP/VOC)	2.85E-04	3.69E-05	8.86E-07	4.06E-04	2.92E-04	3.69E-04	2.80E-04
Total BTEX		2.11E-04	5.06E-06	2.32E-03	1.67E-03	2.11E-03	1.60E-03
1,3-Butadiene (HAP)	3.91E-05	5.06E-06	1.22E-07	5.57E-05	4.01E-05	5.06E-05	3.85E-05
Formaldehyde (HAP)	1.18E-03	1.53E-04	3.67E-06	1.68E-03	1.21E-03	1.53E-03	1.16E-03
Acetaldehyde (HAP)	7.67E-04	9.93E-05	2.38E-06	1.09E-03	7.87E-04	9.93E-04	7.55E-04
Acrolein (HAP)	9.25E-05	1.20E-05	2.87E-07	1.32E-04	9.49E-05	1.20E-04	9.10E-05
Naphthalene (HAP)	8.48E-05	1.10E-05	2.64E-07	1.21E-04	8.70E-05	1.10E-04	8.35E-05
Total HAPs		4.91E-04	1.18E-05	5.40E-03	3.89E-03	4.91E-03	3.73E-03

NOTES:

As directed by AP-42, Section 3.3, assessment of diesel combustion emissions is best performed based on fuel used (lb/MMBtu/hr)

1. Lower heating value for low-sulfur diesel is 129,500 Btu/gallon = 0.1295 MMBtu/gallon

2. MMBtu = Million Metric British Thermal Units = 1,000,000 Btu

3. lb/MMBtu/hr emissions factors published in AP-42, Section 3.3, Table 3.3.1

4. Tons/year emissions determined by multiplying hourly emissions by hours of operation/year and dividing by 2000

5. lb/MMBtu/hr emissions factors published in AP-42, Section 3.3, Table 3.3.2

6. PM_{10} = particulate matter less than or equal to 10µm aerodynamic diameter. All particulate matter is assumed to be ≤ 1 µm.

7. Factors based on uncontrolled levels of 2 diesel engines

8. Hazardous Air Pollutant listed in section 112(g) of the Act

Sandoval County

Sandoval County Landfill

Compost feedstocks (chipped green waste, woody C&D debris, horse manure, dewatered sludge) are mixed using a truck-mounted EnviroPro EP-26® compost mixer prior to placement in composting digesters. The mixer itself does not have a combustion source; it is driven by a power-take-off (PTO) drive attached to a Mack AMI 300-hp diesel yard jockey, which is used on an as-needed basis to mix feedstocks for composting, and to position equipment/materials within the Composting Operations Area (Figure 5.1, Section 5). The exhaust emissions from this vehicle are considered trivial combustion emissions from a mobile source and are not required to be provided in this Application (Trivial Activities List, Item #4).

6.7.3 Potential HAP Emissions from Crusher/Shredder and Portable Rock Crusher (Rental) Operations – Emission Units 5 and 6

The Crusher/Shredder (Emission Unit 5) is designed to be towed about the site as needed and is powered by a 430 hp diesel engine. Using AP-42 emissions factors for NOx, SOx, CO, CO2, PM_{10} and HAP, emissions from this diesel-powered engine were calculated and included in **Table 6.7**.

Long and short-term HAP emissions from the exhaust produced by the diesel engine that powers the Crusher/Shredder are calculated using a "pounds per million Btu" (lb/MMBtu) factor. The lower heating value of No. 2 diesel (129,500 btu/gallon) in **Table 2-J** is multiplied by the fuel usage per hour of the Crusher/Shredder, and then multiplied by the number of hours the Crusher/Shredder is operated per year. The factors used for this calculation are provided in AP-42, Table 3.3-2. According to AP-42, the short-term (lbs/hr) HAP emissions factor is derived from only two test engines, and should be used for order of magnitude comparison only. Pursuant to the instruction provided for **Table 2.I**, HAP/VOC emissions from Crusher/Shredder activity were not provided because they do not exceed their respective deminimus threshold values listed in part 112(g) of the CAA.

The facility has obtained a modification to New Source Review (NSR) permit Number 4111-M1 (as NSR Permit 4111-M2) to operate a Portable Rock Crusher (Rental) on a periodic annual basis. The unit is permitted for use on-site for a period not to exceed: 9 hours per day, 6 days per week, and 8 weeks in a year.

The Portable Rock Crusher (Rental) (Emission Unit 6) is also designed to be towed about the site as needed. HAP emissions from the exhaust produced by the Rental Rock Crusher diesel engine are calculated using EPA's Tier 4 Exhaust Emission Standards for a 415hp/310kW diesel-powered engine. Emission factors (g/kW-hr) for VOCs/HAPs, NOx, and CO, based off No. 2 diesel, are multiplied by engine power rating for the Portable Rock Crusher (Rental) and multiplied by annual operating hours. A conservative HAP emission was calculated assuming all non-methane hydrocarbon emissions are considered HAPs for the purpose of this section. Using EPA's Tier 4 Emission Standards for NOx, CO, VOCs/HAPs and PM₁₀, emissions from the Portable Rock Crusher (Rental) engine were calculated and are provided as **Table 6.8**.

Table 6.8 – Estimated Diesel-Powered Portable Rock Crusher (Rental) Emissions Emission Unit 6 Sandoval County Landfill

	Portable Rock Crusher (Rental) (Metso LT1213S)									
Parameter	Emission Factor (g/kW-hr)	Rated Power Class ¹	Engine Power Rating (kW)	hr/yr²	Emissions (lb/hr)	Emissions (tons/yr)				
Hydrocarbons (VOCs)	0.19				0.13	0.028				
NOx	0.4				0.27	0.059				
СО	3.5	$130 \le kW \le 560$	310	432	2.39	0.52				
PM (TSP, PM_{10} , and $PM_{2.5}$)	0.02			_	0.014	0.003				
CO ₂ ¹	699.5				478.07	103.26				
Individual HAPs	Emission Factor (lb/MMBtu/hr)	Gallons/hour ⁴	MMBtu/gal	hr/yr²	Emissions (lb/hr)	Emissions (tons/yr)				
Benzene (HAP/VOC)	9.33E-04				7.66E-04	1.65E-04				
Toluene (HAP/VOC)	4.09E-04				3.36E-04	7.25E-05				
Xylenes (HAP/VOC)	2.85E-04				2.34E-04	5.05E-05				
1,3-Butadene (HAP)	3.91E-05	() (0.1205	422	3.21E-05	6.93E-06				
Formaldehyde (HAP)	1.18E-03	6.34	0.1295	432	9.69E-04	2.09E-04				
Acetaldehyde (HAP)	7.67E-04				6.30E-04	1.36E-04				
Acrolein (HAP)	9.25E-05				7.59E-05	1.64E-05				
Naphthalene (HAP)	8.48E-05				6.96E-05	1.50E-05				
Total HAPs					3.11E-03	6.72E-04				

NOTES:

g = grams

kW = kilowatt

¹ As defined in 40 CFR 1039.101 Table 2

² The Portable rRock cCrusher (Rental) is intended to be operated no greater than 9 hours per day, 6 days a week (equal to operating hours) for a period not to exceed 8 weeks (2 months) and cannot operate concurrently with Unit 5 Crusher/Shredder.
³ Emission factor from AP-42 Section 3.3. CO² not listed in Tier 4 Exhaust Emission Standards.

⁴ As specified in Metso Lokotrack product specifications.

6.7.4 Potential HAP Emissions from Petroleum Contaminated Soils

SCLF has not accepted any shipments of PCS to-date, and speciated laboratory analytical data are not available to estimate BTEX emissions. Therefore, for the purpose of estimating emissions from the PCS landfarm, it is conservatively assumed that 100% of the potential emissions from remediation of PCS are emitted as HAPs according to the following NMED AQB-approved methodologies:

For Total HAPs

 $M_{HAPs} = [(C_{TOT})(M_{PCS})(V_{LF})]/(1 \times 10^6)$

where:

 $M_{HAPs} = mass of HAPs$ emitted from each PCS shipment

C_{TOT} = sum of highest individual BTEX concentrations in remediation project

 $M_{PCS} = mass of PCS$ in each shipment

 V_{LF} = % of HAPs volatilized during landfarm treatment = 100% = 1

 $1 \ge 10^6 =$ conversion factor

For Individual HAPs

 $M_{HAPs} = [(C_s)(M_{PCS})(V_{LF})]/(1 \times 10^6)$

where:

 M_{HAPs} = mass of HAPs emitted from each PCS shipment

 C_{s} = the highest individual BTEX concentrations for the remediation project from the laboratory samples provided

 M_{PCS} = mass of PCS in each shipment

 V_{LF} = % of HAPs volatilized during landfarm treatment = 100% = 1

 $1 \ge 10^6 =$ conversion factor

SCLF will electronically track the highest individual BTEX parameter concentrations from each remediation project and mass of each inbound PCS shipment using the above methodology. This AQB-approved approach provides a very conservative indicator of HAP emissions; and SCLF will track the accumulated daily volume of PCS accepted, by approved profile number, by using a spreadsheet similar to the one provided as **Appendix 6.8**. These potential emissions are not included in **Table 2-I**, as they do not have the potential to exceed their individual threshold values identified in Section 112(g) of the Act. SCLF will track total HAP emissions from PCS such that, on an annual basis, emissions do not exceed 10 tons/year for any individual HAP; or 25 tons/year of aggregate HAPs on a site-wide basis. This includes HAP emissions from landfill gas (Unit 3), diesel exhaust emissions (Units 2, 5, and 6), and evaporative fuel tank losses (Unit 2), which are considered constant, and account for 1.57 tons/year of HAP emissions (Appendix 6.8). A cumulative HAP emission rate of 22.92 tons/year has been conservatively estimated for emissions from remediation of PCS, bringing the maximum estimated site-wide HAP emission rate to 24.5 tons/year.

Total potential cumulative HAP emissions from SCLF are:

• General Landfill Operations (Unit 2):	0.586 tons/year
• Landfill Gas (Unit 3):	0.960 tons/year
• Remediation of PCS (Unit 4):	up to 22.92 tons/year
• Crusher/Shredder Operations (Unit 5):	0.004 tons/year
• Portable Rock Crusher (Rental) (Unit 6)	0.028 tons/year
• Total potential HAP emissions estimate:	24.5 tons/year

Based on the data provided in **Table 6.6 - Table 6.8**, and the above discussion, SCLF is not a major source for HAPs (either individually or in the aggregate), as defined in Section 112(r) of the Clean Air Act.

6.8 Potential Volatile Organic Compound (VOC) Emissions

Potential VOC emissions at SCLF occur from fuel storage and dispensing, landfill gas generation, remediation of petroleum contaminated soils (PCS), and diesel engine exhaust.

6.8.1 **Potential VOC Emissions from Fuel Storage and Dispensing**

Gasoline and diesel storage and vehicle fueling activities are conducted at SCLF for on-site and Countyowned vehicles. Emissions from diesel storage and dispensing are negligible, as the vapor pressures associated with No. 2 diesel fuel are very low (< 0.2 psi), and are exempt from calculations requirements under item #5 of AQB's List of Insignificant Activities. Evaporative losses from the storage and dispensing of unleaded gasoline for use in County-owned fleet vehicles have been estimated using EPA's most recent version of software (Ver. 4.0.9d). To maintain the conservative nature of this Application, the total evaporative losses produced by these calculations are included in the total VOC emission rate estimates for Unit 2 (General Landfill Operations), as the evaporative losses are not speciated by TANKS. Potential VOC emissions from fueling at SCLF are estimated to be 0.582 tons/year using a conservative fuel throughput of 200,000 gallons/year. This throughput volume subjects the SCLF fueling operation to the requirements of 40 CFR 63 subpart CCCCCC (§63.11111(c)). EPA and NMED AQB have been provided notice of the compliance status of the fueling operation in compliance with §63.11124(a). A copy of this notice is provided as **Appendix 6.9**, and the output generated by TANKS is included as **Appendix 6.10**.

6.8.2 Potential VOC Emissions from Landfill Gas

The LandGEM model used to calculate potential HAP and NMOC emissions at SCLF from landfill gas also estimates total potential VOC emissions from the facility. Total potential VOC emissions in 2028, produced by projected waste deposited in the landfill through 2027, are estimated to be 1.44 tons/year. The individual VOCs potentially emitted are summarized in **Table 6.9**.

Table 6.9 – Estimated Landfill Gas VOC Emissions for 2028 Emission Unit 3 Sandoval County Landfill

VOC	Uncontrolled Emissions (tons/yr)
1,1,2,2-Tetrachloroethane – HAP/VOC	1.68E-02
1,1-Dichloroethane (ethylidene dichloride) – HAP/VOC	2.16E-02
1,1-Dichloroethene (vinylidene chloride) – HAP/VOC	1.76E-03
1,2-Dichloroethane (ethylene dichloride) – HAP/VOC	3.69E-03
1,2-Dichloropropane (propylene dichloride) – HAP/VOC	1.85E-03
2-Propanol (isopropyl alcohol) - VOC	2.73E-01
Acrylonitrile – HAP/VOC	3.04E-02
Benzene – No or Unknown Co-disposal – HAP/VOC	1.35E-02
Bromodichloromethane - VOC	4.62E-02
Butane - VOC	2.64E-02
Carbon disulfide – HAP/VOC	4.01E-03
Carbon tetrachloride – HAP/VOC	5.59E-05
Carbonyl sulfide – HAP/VOC	2.67E-03
Chlorobenzene – HAP/VOC	2.56E-03
Chloroethane (ethyl chloride) – HAP/VOC	7.62E-03
Chloroform – HAP/VOC	3.25E-04
Chloromethane - VOC	5.51E-03
Dichlorobenzene – (HAP for para isomer/VOC)	2.81E-03
Dichlorofluoromethane - VOC	2.43E-02
Dimethyl sulfide (methyl sulfide) - VOC	4.40E-02
Ethanol - VOC	1.13E-01
Ethyl mercaptan (ethanethiol) - VOC	1.30E-02
Ethylbenzene – HAP/VOC	4.44E-02
Ethylene dibromide – HAP/VOC	1.71E-05
Fluorotrichloromethane - VOC	9.49E-03
Hexane – HAP/VOC	5.17E-02
Methyl ethyl ketone – HAP/VOC	4.65E-02
Methyl isobutyl ketone – HAP/VOC	1.73E-02
Methyl mercaptan - VOC	1.09E-02
Pentane - VOC	2.16E-02
Propane - VOC	4.41E-02
t-1,2-Dichloroethene - VOC	2.47E-02
Toluene – No or Unknown Co-disposal – HAP/VOC	3.27E-01
Trichloroethylene (trichloroethene) – HAP/VOC	3.34E-02
Vinyl chloride – HAP/VOC	4.15E-02
Xylenes – HAP/VOC	1.16E-01
Total Potential VOC Emissions	1.44

NOTES:

Adapted from LandGEM output provided in Appendix 6.7

VOC emissions are likely overestimates for New Mexico (arid) landfills

6.8.3 **Potential VOC Emissions from Diesel Engine Operations**

Potential VOC emissions from the Crusher/Shredder (Unit 5), Portable Rock Crusher (Rental) (Unit 6), woodchipper, and compost screen activity (Unit 2) are produced by the diesel engines that power these pieces of equipment. These emissions have been identified as HAPs, but are not included in **Table 2-I**, as they do not exceed their individual threshold values listed in Section 112(g) of the Clean Air Act. General landfill operations (Unit 2) include the woodchipper and compost screen included in **Table 6.7**, and the fuel tank discussed in section **6.7.1**. The on-site Crusher/Shredder (Unit 5) VOC emissions are included in **Table 6.8**.

6.8.4 Potential VOC Emissions from PCS Remediation

Potential VOC emissions from the remediation of petroleum contaminated soils are emitted during the volatilization of hydrocarbons from the contaminated soils. Total VOC emissions from PCS remediation will not exceed 22.92 tons/year and SCLF will track the accumulated daily volume of PCS accepted, by approved profile number, by using a spreadsheet like the one provided as **Appendix 6.8**. VOC emissions from the remediation of PCS at SCLF consist of Benzene, Toluene, Ethylbenzene and Xylene.

The potential VOC emissions from SCLF are:

• General Landfill Operations (Unit 2):	0.586 tons/year
• Landfill Gas (Unit 3):	1.44 tons/year
• Remediation of PCS (Unit 4):	up to 22.92 tons/year
• Crusher/Shredder Operations (Unit 5):	0.002 tons/year
• Portable Rock Crusher (Rental) (Unit 6)	0.028 tons/year
• Total potential VOC emissions estimate:	24.98 tons/year

These VOC emission estimates are also included in Section 2, Tables 2-D and 2-E.

6.9 Additional Emissions During Startup, Shutdown, and Routine Maintenance

Table 2-F, which is reserved for requesting additional allowances for potential emissions during startup, shutdown, and routine maintenance (SSM), has been left blank for this Application. Additional emissions allowances for SSM emissions are not being requested for this facility, as none of the processes which take place at the Landfill produces an excess amount of emissions during SSM. Following is a description of measures to be taken to mitigate source emissions during SSM for Landfill operations that have the potential to emit pollutants of concern (e.g., particulates, NMOCs, HAPs, VOCs).

6.9.1 Particulates

Landfill operations associated with the emission of particulate matter (e.g., TSP, PM₁₀, and PM_{2.5}) consist of vehicle travel on paved and unpaved landfill roads, and general landfill operations (e.g., heavy equipment operations, wind erosion). The measures taken to mitigate excessive fugitive particulate emissions during startups, shutdowns, and emergencies consist of a backup water truck that is available on-site. A CAT® 730C2 articulated water truck (6,000-gallon capacity) serves as the site's primary dust suppression mode and is used daily when the landfill is operational. A GMC® water truck (2,000-gallon capacity) serves as a backup in the event the primary water truck is not operational.

6.9.2 NMOCs

Municipal solid waste (MSW) decomposition produces landfill gas (LFG), which typically contains a small amount (i.e. <0.04%) of non-methane organic compounds (NMOCs). Currently, there is no provision to mitigate NMOC emissions during startup, shutdown, or emergencies. NMOC generation from MSW decomposition is a continual process that is not subject to "malfunction", and is not started up or shut down at will.

6.9.3 VOC/HAP Emissions

Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) could potentially occur from the landfarming of petroleum contaminated soils (PCS), the decomposition of municipal solid waste (MSW), fuel storage activities, and from the operation of diesel-powered equipment. The Sandoval County Landfill is permitted to accept PCS impacted with diesel and gasoline residues for treatment via landfarming. At this time, there is no provision to mitigate VOC/HAP emissions from PCS remediation during startup, shutdown, or emergencies, as remediation is a continual process that cannot be started up or shut down at will.

Municipal solid waste (MSW) decomposition produces landfill gas (LFG), which typically contains a small amount VOCs/HAPs. At this time, there is no provision to mitigate VOC/HAP emissions during startup, shutdown, or emergencies, as MSW decomposition is a continual process that does not malfunction, and is not started up or shut down at will.

The operation of diesel-powered equipment at SCLF is performed on an as-needed basis, and equipment is shut down when not in use or undergoing maintenance. The internal emissions control equipment installed on the powerplants of this equipment is designed to function while the equipment is running, and is not necessary when it is not being used. Potential excess HAP emissions from diesel powered portable equipment are possible if a malfunction were to occur in the individual engine. In the event of malfunction, a backup piece of equipment would be used, or specific operations suspended while the malfunctioning unit was being repaired.

6.9.4 Fuel Storage and Dispensing Activities

Gasoline and diesel storage and vehicle fueling activities are conducted at SCLF for on-site and County owned vehicles. Emissions from diesel storage and dispensing are negligible, as the vapor pressures associated with No. 2 diesel fuel are very low (< 0.2 psi), and are exempt from calculations requirements by Insignificant Activities List Item #5 (Attachment 7.3). Evaporative losses from the storage and dispensing of unleaded gasoline for use in County owned fleet vehicles have been estimated using EPA's most recent version of TANKS software (Ver. 4.0.9d). Excess emissions during filling of the fuel tanks are accounted for by TANKS, and in the event of an on-site emergency, the fueling operation will be temporarily shut down. The output generated by TANKS for calendar year 2021 using actual fuel throughput is included as Appendix 6.10.

6.10 References

Caterpillar® Performance Handbook, Edition 49, Caterpillar®, Inc., Peoria, Illinois, 2019.

Metso Corporation Lokotrack Product Specifications, Metso Corporation, Tampere, Finland, 2019.

LandGEM (Landfill Gas Emissions Model), Version 3.03, Control Technology Center, US Environmental Protection Agency, Research Triangle Park, NC, 27711, and Office of Research and Development, Washington, DC 20460, May 2005.

AP-42: Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, Fifth Edition, Office of Air Quality Planning and Standards/Office of Air and Radiation, US Environmental Protection Agency, Research Triangle Park, NC 27711, December 2003; September, October, and November 1998; January 1995; and September 1991, November 2006.

Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures, EPA - 450/2 - 92 - 004, Office of Air Quality Planning and Standards, US Environmental Protection Agency, Research Triangle Park, NC, September 1992.

Heating Values of Hydrogen and Fuels, Essom Co. Ltd, (http://www.essom.com/backend/data-file/engineer/engin21_1.pdf)

Emissions Testing of Volatile Organic Compounds from the Greenwaste Composting at the Modesto Compost Facility in the San Joaquin Valley, California Integrated Waste Management Board, October 31, 2007 (Updated May, 2008), Publication #442-07-009

Sandoval County Landfill

APPENDIX 6.1 UNCONTROLLED EMISSIONS EMISSION UNIT 1 Refuse Delivery Vehicles Green Waste Drop-Off Vehicles Convenience Center Vehicles Miscellaneous Vehicles

LANDFILL OPERATING HOURS

Purpose:

Total Operating Days Per Week:	
Total operating days per week (Monday through Saturday) =	6 days/week
Operating Days Per Year (2021):	
The number of operational weekdays =	262 days/yr
Number of operational Saturdays =	52 days/yr
Total number of holidays per year =	10 days/yr (based on Landfill Data)
Total operating days per year (actual) = (total number of weekdays per year) + (total number of Saturdays per year)
Total operating days per year (actual) = 250 + 52=	304 days/yr
Actual Operating Hours Per Year (2021):	
Operating hours per day (Monday through Saturday: 7:00 a.m. to 4:00 p.m.) =	9 hrs/day
Maximum operating hours per year = (total operating days per year) x (Operating hours per day) =	2,736 hrs/yr

REFUSE DELIVERY VEHICLE OPERATIONS (DISPOSAL ROUTE - PAVED)

Purpose: The purpose of this calculation is to estimate the potential fugitive dust emissions from Refuse Delivery Vehicle travel on the paved portion of the Disposal Route. This item covers traffic from the Landfill Entrance to the beginning of the watered dirt MSW Haul route en-route to the working. face

Methodology: According to guidance presented in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006), the emission estimate equations are not intended to be used to calculate a separate emission factor for each type of vehicle. Therefore, an "average" Refuse Delivery Vehicle has been calculated based on the different types of Refuse Delivery Vehicles that travel on the Disposal Route and the frequency of travel.

The following data and information were used to estimate long-term and short-term emissions:

Average Number of Disposal Route Round Trips Per Day:

Vehicle Type	Operating Days Per Year	Cumulative Traffic Count ⁽¹⁾ (round trips per year)	Average Round Trips Per Day ⁽²⁾
Light Auto		0	0.00
Large Pickup		4,450	14.6
Auto w/ Trailer		0	0.00
Van w/ Trailer		0	0.00
Pickup w/ Trailer		11,968	39.37
Dump Truck Single Axle		3,209	10.56
Dump Truck Dual Axle		1,228	4.04
Roll Off		14,119	46.44
Side Loader		90	0.30
Rear Loader	304	2,645	8.70
Front Loader		1,010	3.32
Compactor		777	2.56
20' Semi-truck		2	0.007
25' Semi-truck		1,381	4.54
28' Semi-truck		4	0.013
40' Semi-truck		259	0.85
42' Semi-truck		2,581	8.49
45' Semi-truck		45	0.15
Water Truck		2,928	9.63
TOTAL		46,696	153.61

(1) Based on SCLF 2021 traffic monitoring records

⁽²⁾ Average Round Trips Per Day = (cumulative traffic count)/(operating days per year)

Cumulative Traffic Count (round trips per year) =

Average number of Disposal Route round trips per day =

46.696 round trips/vear 154 round trips/day

2,736 hrs/yr

Weighted Average Vehicle Weight (W):

(based on the proportion of average round trips per day)

Vehicle Type	Vehicle Weight ⁽¹⁾ (tons)	Proportion of Average Round Trips Per Day ⁽²⁾	Applied Vehicle Weight ⁽³⁾ (tons)
Large Pickup	1.9	9.5%	0.18
Pickup w/ Trailer	2.7	25.6%	0.69
Dump Truck Single Axle	9.6	6.9%	0.66
Dump Truck Dual Axle	19.4	2.6%	0.51
Roll Off	19.4	30.2%	5.85
Side Loader	21.6	0.2%	0.042
Rear Loader	22.2	5.7%	1.25
Front Loader	21.6	2.2%	0.47
Compactor	21.6	1.7%	0.36
20' Semi-truck	25.5	0.004%	0.0011
25 ' Semi-truck	26.7	3.0%	0.79
28' Semi-truck	27.1	0.0%	0.0023
10' Semi-truck	33.8	0.55%	0.19
12' Semi-truck	34.3	5.53%	1.90
48' Semi-truck	36.8	0.10%	0.035
Water Truck (4)	38.6	6.3%	2.42
TOTAL		100.0%	15.34

Notes:

(1) Based on Landfill data

(2) Proportion of Average Round Trips Per Day = [(cumulative traffic count)/(total)] X [100%]

⁽³⁾ Applied Vehicle Weight = (vehicle weight)(proportion of average number of round trips per day)

⁽⁴⁾ Water Truck vehicle weight = (vehicle empty weight) + [(0.5)(density water)(capacity)/ (2,000 lbs/ton)] Vehicle empty weight (CAT®730C2) =

rater rater formere melgine (remere empty melgine) - [(e.e)(denerg) mater)(eapaeling)/	
Vehicle empty weight (CAT [®] 730C2) =	26.15 tons (Caterpillar® Handbook, June 2019)
Density water =	8.30 lbs/gal
Water Truck capacity =	6000 gals
Water Truck Vehicle Weight =	38.60 tons
Weighted average vehicle weight (W) =	15.34 tons
Total Vehicle Miles Traveled (VMT) Per Year:	
One-way Disposal Route length (from Landfill Entrance to edge of pavement) =	902 feet
One-way Disposal Route length (from Landfill Entrance to edge of pavement) =	0.17 miles
Miles per round trip = (2)(one-way Disposal Route length) =	0.34 mi/round trip
Cumulative Traffic Count =	46,696 round trips/yr
Total VMT per year = (miles per round trip)(cumulative traffic count) =	15,954 VMT/yr
In order to account for anticipated increases in Refuse Delivery Vehicle traffic over a 6-year pr applied to the total VMT per year via the following method:	eriod, a conservative escalator of 5% per year was
Estimated percent annual increase in total VMT=	5.00 %/yr
Estimated total VMT per year = (1.05) ⁶ (total VMT per year)	21,381 VMT/yr
Operating Hours Per Year:	
Average operating hours per day (see "Landfill Operating Hours") =	9 hrs/day
Operating days per year =	304 days/yr

Operating days per year = Operating hours per year = (average operating hrs/day)(operating days/year) =

REFUSE DELIVERY VEHICLE OPERATIONS (DISPOSAL ROUTE - PAVED) (Uncontrolled Long-Term Emissions)

Long-term (tons/yr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (2) was used to estimate long-term emissions

(AP-42, 13.2.2, equation (2))

TSP

4.90

6.40

0.70

0.45

15.34

70.00

k =

s =

a =

b =

W =

p =

Long-Term Emissions Equation:

E_{ext} =

[(k)(s/12)^a(W/3)^b] [(365-p)/365]

 E_{ext} = annual size-specific emission factor extrapolated for natural mitigation (lbs/VMT) Where: k = particle size multiplier (dimensionless)

s = surface material silt content (%) AP-42, Table 13.2.2-1

- a = empirical constant (dimensionless)
- b = empirical constant (dimensionless)
- W = mean vehicle weight (tons)
- p = number of days per year with at least 0.01 inches of precipitation (AP-42, Figure 13.2.2-1)

(E_{PM2.5(lbs/yr)})/(2,000 lbs/ton) =

TSP, $\text{PM}_{\rm 10}$ and $\text{PM}_{\rm 2.5}$ Emission Factors:

E _{TSP} =	$[(4.9)(6.4/12)^{0.7}(15.4/3)^{0.45}]$ [(365-70)/365] =	5.32 lbs/VMT
E _{PM10} =	[(1.5)(6.4/12) ^{0.9} (15.4/3) ^{0.45}] [(365-70)/365] =	1.44 lbs/VMT
E _{PM2.5} =	[(0.15)(6.4/12) ^{0.9} (15.4/3) ^{0.45}] [(365-70)/365] =	0.14 lbs/VMT
TSP, PM ₁₀ and	PM _{2.5} Long-Term Emissions:	
E _{TSP(lbs/yr)} =	(E _{TSP})(estimated total VMT/yr) =	113,656.53 lbs/yr
E _{TSP(tons/yr)} =	(E _{TSP(lbs/yr)})/(2,000 lbs/ton) =	56.83 tons/yr (uncontrolled)
E _{PM10(lbs/yr)} =	(E _{PM10})(estimated total VMT/yr) =	30,682.40 lbs/yr
E _{PM10(tons/yr)} =	(E _{PM10(lbs/yr)})/(2,000 lbs/ton) =	15.34 tons/yr (uncontrolled)
E _{PM2.5(lbs/yr)} =	(E _{PM2.5})(estimated total VMT/yr) =	3,068.24 lbs/yr

REFUSE DELIVERY VEHICLE OPERATIONS (DISPOSAL ROUTE - PAVED) (Uncontrolled Short-Term Emissions)

Short term (lbs/hr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (1a) was used to estimate short-term emissions:

Short-Term Emissions Equation:

E_{PM2.5(tons/yr)}=

E =	(k)(s/12) ^a (W/3) ^b	(AP-42,13.2.2	.2, equation (1	a))					
Where: E = size-specific emission factor (lbs/VMT)		Т	SP	1 Г	PM	10	1 [PM ₂	2.5
k = particle size multiplie	er (dimensionless)	k = 4.90		1	k =	1.50		k =	0.15
s = surface material silt content (%) AP-42, Table 13.2.2-1		s =	6.40	1	s =	6.40		s =	6.40
a = empirical constant (dimensionless)		a =	0.70	1 [a =	0.90		a =	0.90
b = empirical constant (dimensionless)		b =	0.45	1	b =	0.45		b =	0.45
W = mean vehicle weight (tons)		W =	15.34		W =	15.34		W =	15.34
TSP, PM ₁₀ and PM _{2.5} Er E_{TSP} =		6.58	lbs/V	MT					

E_{PM10}= (1.5)(6.4/12)^{0.9}(11.6/3)^{0.45} =

 $(0.15)(6.4/12)^{0.9}(11.6/3)^{0.45} =$ E_{PM2.5}=

TSP, $\text{PM}_{\rm 10}$ and $\text{PM}_{\rm 2.5}$ Short-Term Emissions:

E _{TSP(lbs/yr)} =	(E _{TSP})(estimated total VMT/yr) =
E _{TSP(lbs/hr)} =	(E _{TSP(lbs/yr)})/(operating hours/yr) =
E _{PM10(lbs/yr)} =	(E _{PM10})(estimated total VMT/yr) =
E _{PM10(lbs/hr)} =	(E _{PM10(lbs/yr)})/(operating hours/yr) =
E _{PM2.5(lbs/yr)} =	(E _{PM2.5})(estimated total VMT/yr) =
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(operating hours/yr) =

5	.32 lbs/VMT
1	.44 lbs/VMT

PM₁₀

k =

s =

a =

b =

W =

р=

1.50

6.40

0.90

0.45

15.34

70.00

PM_{2.5}

k =

s =

a =

b =

W =

p =

0.15

6.40

0.90

0.45

15.34

70.00

113,656.53	lbs/yr
56.83	tons/yr (uncontrolled)
30,682.40	lbs/yr
15.34	tons/yr (uncontrolled)
3,068.24	lbs/yr
1.53	tons/yr (uncontrolled)

1.78 lbs/VMT

0.18 lbs/VMT

140,625.87	lbs/yr
51.40	lbs/hr (uncontrolled)
37,962.97	lbs/yr
13.88	lbs/hr (uncontrolled)
3,796.30	lbs/yr
1.39	lbs/hr (uncontrolled)

REFUSE DELIVERY VEHICLE OPERATIONS (MSW DISPOSAL ROUTE - UNPAVED)

Purpose: The purpose of this calculation is to estimate the potential fugitive dust emissions from Refuse Delivery Vehicle travel on the unpaved portion of the Disposal Route. The unpaved portion of the Disposal Route extends from the end of paved MSW Disposal Route to the active Disposal Area in Cell 4C, and is watered on a regular basis.

Methodology: According to guidance presented in EPA AP-42, Section 13.2.2, Unpaved Roads (November 2006), the emission estimate equations are not intended to be used to calculate a separate emission factor for each type of vehicle. Therefore, an "average" MSW Refuse Delivery Vehicle has been calculated based on the different types of MSW Refuse Delivery Vehicles that travel on the MSW Disposal Route and the frequency of travel.

The following data and information were used to estimate long-term and short-term emissions:

Average Number of MSW Disposal Route Round Trips Per Day:

Vehicle Type	Operating Days For This Route	Cumulative Traffic Count ⁽¹⁾ (round trips along this route)	Average Round Trips Per Day ⁽²⁾
Light Auto		0	0.00
Large Pickup		4,450	14.64
Auto w/ Trailer		0	0.00
Van w/ Trailer		0	0.00
Pickup w/ Trailer		11,968	39.37
Dump Truck Single Axle		3,209	10.56
Dump Truck Dual Axle		1,228	4.04
Roll Off		14,119	46.44
Side Loader		90	0.30
Rear Loader	304	2,645	8.70
Front Loader		1,010	3.32
Compactor		777	2.56
20' Semi-truck		2	0.007
25' Semi-truck		1,381	4.54
28' Semi-truck		4	0.013
40' Semi-truck		259	0.85
42' Semi-truck		2,581	8.49
45' Semi-truck		45	0.15
Water Truck		2,928	9.63
TOTAL		46,696	153.61

Notes:

(1) Based on SCLF 2021 traffic monitoring records

(2) Average Round Trips Per Day = (cumulative traffic count)/(operating days on this route)

Cumulative Traffic Count (round trips in 2021 along this route) =

Average number of MSW Disposal Route round trips per day =

46,696 round trips/year 154 round trips/day

Weighted Average Vehicle Weight (W):

(based on the proportion of average round trips per day)

Vehicle Type	Vehicle Weight ⁽¹⁾ (tons)	Proportion of Average Round Trips Per Day ⁽²⁾	Applied Vehicle Weight ⁽³⁾ (tons)
Large Pickup	1.9	9.5%	0.18
Pickup w/ Trailer	2.7	25.6%	0.69
DT Single Axel	9.6	6.9%	0.66
DT Dual Axel	19.4	2.6%	0.51
Roll Off	19.4	30.2%	5.85
Side Loader	21.6	0.2%	0.042
Rear Loader	22.2	5.7%	1.25
Front Loader	21.6	2.2%	0.47
Compactor	21.6	1.7%	0.36
20' Semi-truck	25.5	0.004%	0.0011
25 ' Semi-truck	26.7	3.0%	0.790
28' Semi-truck	27.1	0.009%	0.0023
40' Semi-truck	33.8	0.55%	0.19
42' Semi-truck	34.3	5.53%	1.90
48' Semi-truck	36.8	0.10%	0.035
Water Truck (4)	36.5	6.3%	2.29
TOTAL		100.0%	15.21

Notes:

(1) Based on Landfill data

(2) Proportion of Average Round Trips Per Day = [(cumulative traffic count)/(total)] X [100%]

(3) Applied Vehicle Weight = (vehicle weight)(proportion of average round trips per day) (4)

(4) Water Truck vehicle weight = (vehicle empty weight) + [(0.5)(density water)(capacity)/ (2,000 lbs/	/ton)]
Vehicle empty weight (CAT [®] 730C2) =	26.15 tons (Caterpillar® Handbook, June 2019)
Density water =	8.30 lbs/gal
Water Truck capacity =	5,000 gals
Water Truck Vehicle Weight =	36.53 tons
Weighted average vehicle weight (W) =	15.21 tons
Total Vehicle Miles Traveled (VMT) Per Year:	
Total one-way MSW Disposal Route length (from paved disposal route to MSW Disposal Area) =	2,025 feet
Total one-way MSW Disposal Route length (from paved disposal route to MSW Disposal Area) =	0.38 miles
Miles per round trip = (2)(distance from edge of pavement to MSW Disposal Area) =	0.77 mi/round trip
Cumulative Traffic Count =	46,696 round trips/yr
Total VMT per year = (miles per round trip)(cumulative traffic count) =	35,818 VMT/yr
In order to account for anticipated increases in MSW Refuse Delivery Vehicle traffic over a 6-year p was applied to the total VMT per year via the following method:	period, a conservative escalator of 5% per year
Estimated percent annual increase in total VMT=	5.00 %/yr
Estimated total VMT per year = (1.05) ⁶ (total VMT per year)	47,999 VMT/yr
Operating Hours Per Year:	
Average operating hours per day (see "Landfill Operating Hours") =	9 hrs/day
Operating days per year =	304 days/yr
Operating hours per year = (average operating hrs/day)(operating days/year) =	2,736 hrs/yr

REFUSE DELIVERY VEHICLE OPERATIONS (MSW DISPOSAL ROUTE - UNPAVED)

(Uncontrolled Long-Term Emissions)

Long-term (tons/yr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (2) was used to estimate longterm emissions

(AP-42, 13.2.2, equation (2))

k =

s =

a =

b =

W =

p =

TSP

4.90

6.40

0.70

0.45

15.21

70.00

PM₁₀

k =

s =

a =

b =

W =

p =

0.18 lbs/VMT

1.50

6.40

0.90

0.45

15.21

70.00

PM_{2.5}

k =

s =

a =

b =

W =

p =

0.15

6.40

0.90

0.45

15.21

70.00

Long-Term Emissions Equation:

[(k)(s/12)^a(W/3)^b] [(365-p)/365]

E_{ext} = annual size-specific emission factor extrapolated for natural mitigation (lbs/VMT)

Where:

E_{ext} =

k = particle size multiplier (dimensionless) s = surface material silt content (%) AP-42, Table 13.2.2-1

- a = empirical constant (dimensionless)
- b = empirical constant (dimensionless)
- W = mean vehicle weight (tons)
- p = number of days per year with at least 0.01 inches of precipitation (AP-42, Figure 13.2.2-1)

TSP, PM_{10} and $PM_{2.5}$ Emission Factors:

, 10	2.5	
E _{TSP} =	$[(4.9)(6.4/12)^{0.7}(14.7/3)^{0.45}]$ [(365-70)/365] =	5.30 lbs/VMT
E _{PM10} =	[(1.5)(6.4/12) ^{0.9} (14.7/3) ^{0.45}] [(365-70)/365] =	1.43 lbs/VMT
E _{PM2.5} =	[(0.15)(6.4/12) ^{0.9} (14.7/3) ^{0.45}] [(365-70)/365] =	0.14 lbs/VMT
TSP, PM ₁₀ and	d PM _{2.5} Long-Term Emissions:	
E _{TSP(lbs/yr)} =	(E _{TSP})(estimated total VMT/yr) =	254,184.17 lbs/yr
E _{TSP(tons/yr)} =	(E _{TSP(lbs/yr)})/(2,000 lbs/ton) =	127.09 tons/yr (uncontrolled)
E _{PM10(lbs/yr)} =	(EPM ₁₀)(estimated total VMT/yr) =	68,618.85 lbs/yr
E _{PM10(tons/yr)} =	(E _{PM10(lbs/yr)})/(2,000 lbs/ton) =	34.31 tons/yr (uncontrolled)
E _{PM2.5(lbs/yr)} =	(EPM _{2.5})(estimated total VMT/yr) =	6,861.88 lbs/yr
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(2,000 lbs/ton) =	3.43 tons/yr (uncontrolled)

REFUSE DELIVERY VEHICLE OPERATIONS (MSW DISPOSAL ROUTE - UNPAVED) (Uncontrolled Short-Term Emissions)

Short term (lbs/hr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (1a) was used to estimate shortterm emissions

Short-Term Emissions Equation:

E =	(k)(s/12) ^a (W/3) ^b	(AP-42,13.2.2.2, equation (1a))						
Where:								
E = size-specific	emission factor (lbs/VMT)	TS	TSP			PM _{2.5}		
k = particle size	nultiplier (dimensionless)	k =	4.90	k =	1.50	k =	0.15	
s = surface mate	rial silt content (%) AP-42, Table 13.2.2-1	s =	6.40	s =	6.40	s =	6.40	
a = empirical cor	istant (dimensionless)	a =	0.70	a =	0.90	a =	0.90	
b = empirical cor	istant (dimensionless)	b =	0.45	b =	0.45	b =	0.45	
W = mean vehicle weight (tons)		W =	15.21	W =	15.21	W =	15.21	
TSP, PM ₁₀ and I	PM _{2.5} Emission Factors:							
E _{TSP} =	$(4.9)(6.4/12)^{0.7}(14.7/3)^{0.45} =$		6.55 li	os/VMT				
E _{PM10} =	(1.5)(6.4/12) ^{0.9} (14.7/3) ^{0.45} =		1.77 🛙	os/VMT				

$(0.15)(6.4/12)^{0.9}(14.7/3)^{0.45} =$ E_{PM2.5}=

TSP, PM_{10} and $PM_{2.5}$ Short-Term Emissions:

E _{TSP(lbs/yr)} =	(E _{TSP})(estimated total VMT/yr) =	314,499.06 lbs/yr
E _{TSP(lbs/hr)} =	(E _{TSP(lbs/yr)})/(operating hours/yr) =	114.95 lbs/hr (uncontrolled)
E _{PM10(lbs/yr)} =	(EPM ₁₀)(estimated total VMT/yr) =	84,901.29 lbs/yr
E _{PM10(lbs/hr)} =	(E _{PM10(lbs/yr)})/(operating hours/yr) =	31.03 lbs/hr (uncontrolled)
E _{PM2.5(lbs/yr)} =	(EPM _{2.5})(estimated total VMT/yr) =	8,490.13 lbs/yr
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(operating hours/yr) =	3.10 lbs/hr (uncontrolled)

GREEN WASTE DELIVERY VEHICLE OPERATIONS (GREEN WASTE DROP OFF ROUTE - Paved)

Purpose: The purpose of this calculation is to estimate the potential fugitive dust emissions from Green Waste Delivery Vehicle travel on the Paved entryway and paved portion of the Green Waste Drop Off Route. The paved portion of the Green Waste Drop Off Route extends from the facility entrance to the edge of pavement, is paved, and is swept as necessary.

Methodology: The vehicles that utilize the Green Waste Drop Off Route range from light autos to large pickups with trailers. An "average" Green Waste Delivery Vehicle weight has been conservatively estimated as the weight of the heaviest vehicle traveling (e.g., large pickup with trailer) on the Green Waste Drop Off Route. Emissions calculations are based on guidance presented in EPA AP-42, Section 13.2.2, Unpaved Roads (November 2006).

The following data and information were used to estimate long-term and short-term emissions:

Average Number of Disposal Route Round Trips Per Day:

Vehicle Type	Operating Days Per Year	Cumulative Traffic Count ⁽¹⁾ (round trips per year)	Average Round Trips Per Day ⁽²⁾		
Large Pickup	304	0	0.00		
Pickup w/ Trailer	504	12,720	41.84		
TOTAL		12,720	41.84		

Notes

(1) Based on SCLF 2021 traffic monitoring records

⁽²⁾ Average Round Trips Per Day = (cumulative traffic count)/(operating days per year)

Cumulative Traffic Count (round trips per year) =

Average number of Green Waste Drop Off Route round trips per day =

12,720 round trips/year 42 round trips/day

304 davs/vr

Weighted Average Vehicle Weight:

Vehicle Type	Vehicle Weight ⁽¹⁾ (tons)	Proportion of Average Round Trips Per Day ⁽²⁾	Applied Vehicle Weight ⁽³⁾ (tons)
Large Pickup	1.9	0.0%	0.00
Pickup w/ Trailer	2.7	100.0%	2.70
TOTAL		100.0%	2.70

Average vehicle weight (W) =

Operating days per year =

2.70 tons (based on Landfill data)

PM₄

1.50

6.40

0.90

0.45

2.70

70.00

k =

s =

a =

b :

W =

p =

Total Vehicle Miles Traveled (VMT) Per Year (Green Waste Drop Off Route):	
Total one-way Disposal Route length (from landfill entrance to the edge of unpaved access road) =	878 feet
Total one-way Disposal Route length (from landfill entrance to the edge of unpaved access road)) =	0.17 miles
Miles per round trip = (2)(distance from landfill entrance to the edge of unpaved access road)) =	0.33 mi/round trip
Cumulative Traffic Count =	12,720 round trips/yr
Total VMT per year = (miles per round trip)(cumulative traffic count) =	4,230 VMT/yr
In order to account for anticipated increases in Green Waste Drop Off Area Vehicle traffic over a 6-year pe the following method:	riod, a conservative escalator of 5% per year was applied to the total VMT per year via
Estimated percent annual increase in total VMT=	5.00 %/yr
Estimated total VMT per year = (1.05) ⁶ (total VMT per year)	5,669 VMT/yr
Operating Hours Per Year:	
Average operating hours per day (see "Landfill Operating Hours") =	9 hrs/day

Operating hours per year = (average operating hrs/day)(operating days/year) = 2,736 hrs/yr

GREEN WASTE DELIVERY VEHICLE OPERATIONS (GREEN WASTE DROP OFF ROUTE - Paved) (Uncontrolled Long-Term Emissions)

(AP-42, 13.2.2, equation (2))

TSP

k =

s =

a =

b=

W =

p =

4 90

6.40

0.70

0.45

2.70

70.00

Long-term (tons/yr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (2) was used to estimate long-term emissions

Long-Term Emissions Equation:

[(k)(s/12)^a(W/3)^b] [(365-p)/365]

E_{ext} = annual size-specific emission factor extrapolated for natural mitigation (lbs/VMT)

Where:

E_{ext} =

- k = particle size multiplier (dimensionless)
- s = surface material silt content (%) AP-42, Table 13.2.2-1
- a = empirical constant (dimensionless)
- b = empirical constant (dimensionless)
- W = mean vehicle weight (tons)
- p = number of days per year with at least 0.01 inches of precipitation (AP-42, Figure 13.2.2-1)

TSP, PM₁₀ and PM_{2.5} Emission Factors:

E _{TSP} =	$[(4.9)(6.4/12)^{0.7}(2.7/3)^{0.45}] \ [(365-70)/365] =$	2.43 lbs/VMT
E _{PM10} =	[(1.5)(6.4/12) ^{0.9} (2.7/3) ^{0.45}] [(365-70)/365] =	0.66 lbs/VMT
E _{PM2.5} =	[(0.15)(6.4/12) ^{0.9} (2.7/3) ^{0.45}] [(365-70)/365] =	0.07 lbs/VMT

TSP, PM₁₀ and PM_{2.5} Long-Term Emissions: (E_{TSP})(estimated total VMT/yr) = E_{TSP(lbs/yr)} =

E _{TSP(tons/yr)} =	(E _{TSP(lbs/yr)})/(2,000 lbs/ton) =
E _{PM10(lbs/yr)} =	(EPM ₁₀)(estimated total VMT/yr) =
E _{PM10(tons/yr)} =	(E _{PM10(lbs/yr)})/(2,000 lbs/ton) =
E _{PM2.5(lbs/yr)} =	(EPM _{2.5})(estimated total VMT/yr) =
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(2,000 lbs/ton) =

13,789.45 lbs/yr
6.89 tons/yr (uncontrolled)
3,722.56 lbs/yr
1.86 tons/yr (uncontrolled)
372.26 lbs/yr
0.19 tons/yr (uncontrolled)

PM₂

0.15

6.40

0.90

0.45

2.70

70.00

k =

s

а

b

W =

p =

GREEN WASTE DELIVERY VEHICLE OPERATIONS (GREEN WASTE DROP OFF ROUTE - Paved) (Uncontrolled Short-Term Emissions)

Short term (lbs/hr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (1a) was used to estimate short-term emissions:

Short-Term Emissions Equation:

E =	(k)(s/12) ^a (W/3) ^b	(AP-42,13.2.2.2, equa	ition (1a))					
Where:								
E = size-specific e	E = size-specific emission factor (lbs/VMT)		TSP		PM ₁₀		PM _{2.5}	
k = particle size m	nultiplier (dimensionless)	k =	4.90	ŀ	= 1.50		k =	0
s = surface mater	ial silt content (%) AP-42, Table 13.2.2-1	s =	6.40	5	= 6.40		s =	6
a = empirical cons	stant (dimensionless)	a =	0.70	a	= 0.90		a =	0
b = empirical cons	stant (dimensionless)	b =	0.45	t	= 0.45		b =	0
W = mean vehicle	e weight (tons)	W =	2.70	W	= 2.70		W =	2
TSP, PM ₁₀ and P	M _{2.5} Emission Factors:							

E _{TSP} =	$(4.9)(6.4/12)^{0.7}(2.7/3)^{0.45} =$
E _{PM10} =	$(1.5)(6.4/12)^{0.9}(2.7/3)^{0.45} =$
E _{PM2.5} =	(0.15)(6.4/12) ^{0.9} (2.7/3) ^{0.45} =

TSP, PM_{10} and $\text{PM}_{2.5}$ Short-Term Emissions:

E _{TSP(lbs/yr)} =	(E _{TSP})(estimated total VMT/yr) =
E _{TSP(lbs/hr)} =	(E _{TSP(lbs/yr)})/(operating hours/yr) =
E _{PM10(lbs/yr)} =	(EPM ₁₀)(estimated total VMT/yr) =
E _{PM10(lbs/hr)} =	(E _{PM10(lbs/yr)})/(operating hours/yr) =
E _{PM2.5(lbs/yr)} =	(EPM _{2.5})(estimated total VMT/yr) =
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(operating hours/yr) =

W =	2.70		VV =	2.70	W =	2.70
					-	
		11 0	A 17			
	3.01	IDS/				

0.15 6.40 0.90 0.45

0.81 lbs/VMT

0.081 lbs/VMT

17,061.52	lbs/yr
6.24	lbs/hr (uncontrolled)
4,605.88	lbs/yr
1.68	lbs/hr (uncontrolled)
460.59	lbs/yr
0.17	lbs/hr (uncontrolled)

GREEN WASTE DELIVERY VEHICLE OPERATIONS (GREEN WASTE DROP OFF ROUTE - UNPAVED)

Purpose: The purpose of this calculation is to estimate the potential fugitive dust emissions from Green Waste Delivery Vehicle travel on the unpaved portion of the Green Waste Drop Off Route extends from the edge of basecourse to the Green Waste Drop Off Area and is watered on a regular basis.

Methodology: The vehicles that utilize the Green Waste Drop Off Route range from light autos to large pickups with trailers. An "average" Green Waste Delivery Vehicle weight has been conservatively estimated as the weight of the heaviest vehicle traveling (e.g., large pickup with trailer) on the Green Waste Drop Off Route. Emissions calculations are based on guidance presented in EPA AP-42, Section 13.2.2, Unpaved Roads (November 2006).

The following data and information were used to estimate long-term and short-term emissions:

Average Number of Disposal Route Round Trips Per Day:

Vehicle Type	Operating Days Per Year	Cumulative Traffic Count ⁽¹⁾ (round trips per year)	Average Round Trips Per Day ⁽²⁾
Large Pickup	304	0	0.00
Pickup w/ Trailer	304	12,720	41.84
TOTAL		12,720	41.84

Notes:

(1) Based on SCLF 2021 traffic monitoring records

(2) Average Round Trips Per Day = (cumulative traffic count)/(operating days per year)

Cumulative Traffic Count (round trips per year) =

Average number of Green Waste Drop Off Route round trips per day =

12,720 round trips/year 41.84 round trips/day

Weighted Average Vehicle Weight:

Vehicle Type	Vehicle Weight ⁽¹⁾ (tons)	Proportion of Average Round Trips Per Day ⁽²⁾	Applied Vehicle Weight ⁽³⁾ (tons)
Large Pickup	1.9	0.0%	0.00
Pickup w/ Trailer	2.7	100.0%	2.70
TOTAL		100.0%	2.70

Average vehicle weight (W) =

2.70 tons (based on Landfill data)

PM₄₀

1 50

6.40

0.90

0.45

2.70

70.00

k=

s =

a =

b

W =

p =

olod (VMT) Por Voar (G stel Vehiele Miles Tr

Total Vehicle Miles Traveled (VMT) Per Year (Green Waste Drop Off Route):		
Total one-way Disposal Route length (from edge of pavement to Green Waste Drop Off Area) =	2,664 feet	
Total one-way Disposal Route length (from edge of pavement to Green Waste Drop Off Area) =	0.50 miles	
Miles per round trip = (2)(distance from edge of pavement to Green Waste Drop Off Area) =	1.01 mi/round trip	
Cumulative Traffic Count =	12,720 round trips/yr	
Total VMT per year = (miles per round trip)(cumulative traffic count) =	12,836 VMT/yr	
In order to account for anticipated increases in Green Waste Drop Off Area Vehicle traffic over a 6-year pr applied to the total VMT per year via the following method:	eriod, a conservative escalator of 5% per year was	;
Estimated percent annual increase in total VMT=	5.00 %/yr	
Estimated total VMT per year = (1.05) ⁶ (total VMT per year)	17,201 VMT/yr	
Operating Hours Per Year:		
Average operating hours per day (see "Landfill Operating Hours") =	9 hrs/day	
Operating days per year =	304 days/yr	
Operating hours per year = (average operating hrs/day)(operating days/year) =	2,736 hrs/yr	

GREEN WASTE DELIVERY VEHICLE OPERATIONS (GREEN WASTE DROP OFF ROUTE - UNPAVED) (Uncontrolled Long-Term Emissions)

(AP-42, 13.2.2, equation (2))

TSE

4 90

6.40

0.70

0.45

2.70

70.00

1,129.49 lbs/yr

0.56 tons/yr (uncontrolled)

k =

s =

a

b:

W =

p =

Long-term (tons/yr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (2) was used to estimate long-term emissions

Long-Term Emissions Equation:

[(k)(s/12)^a(W/3)^b] [(365-p)/365]

- E_{ext} = annual size-specific emission factor extrapolated for natural mitigation (lbs/VMT)
- Where:

E_{PM2.5(lbs/yr)}=

E_{PM2.5(tons/yr)}=

E_{ext} =

- k = particle size multiplier (dimensionless)
- s = surface material silt content (%) AP-42, Table 13.2.2-1
- a = empirical constant (dimensionless)
- b = empirical constant (dimensionless)
- W = mean vehicle weight (tons)
- p = number of days per year with at least 0.01 inches of precipitation (AP-42, Figure 13.2.2-1)

(EPM_{2.5})(estimated total VMT/yr) =

(E_{PM2.5(lbs/yr)})/(2,000 lbs/ton) =

TSP, PM₁₀ and PM_{2.5} Emission Factors:

E _{TSP} =	$[(4.9)(6.4/12)^{0.7}(2.7/3)^{0.45}] \ [(365-70)/365] =$	2.43 lbs/VMT
E _{PM10} =	[(1.5)(6.4/12) ^{0.9} (2.7/3) ^{0.45}] [(365-70)/365] =	0.66 lbs/VMT
E _{PM2.5} =	[(0.15)(6.4/12) ^{0.9} (2.7/3) ^{0.45}] [(365-70)/365] =	0.066 lbs/VMT
TSP, PM ₁₀ and	PM _{2.5} Long-Term Emissions:	
E _{TSP(lbs/yr)} =	(E _{TSP})(estimated total VMT/yr) =	41,839.52 lbs/yr
E _{TSP(tons/yr)} =	(E _{TSP(lbs/yr)})/(2,000 lbs/ton) =	20.92 tons/yr (uncontrolled)
E _{PM10(lbs/yr)} =	(EPM ₁₀)(estimated total VMT/yr) =	11,294.88 lbs/yr
E _{PM10(tons/yr)} =	(E _{PM10(lbs/yr)})/(2,000 lbs/ton) =	5.65 tons/yr (uncontrolled)

PM₂

0.15

6.40

0.90

0.45

2.70

70.00

k =

s =

a =

b :

W =

p =

GREEN WASTE DELIVERY VEHICLE OPERATIONS (GREEN WASTE DROP OFF ROUTE - UNPAVED) (Uncontrolled Short-Term Emissions)

(AP-42,13.2.2.2, equation (1a))

Short term (lbs/hr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (1a) was used to estimate short-term emissions:

Short-Term Emissions Equation:

E = Where:

E_{TSP} =

- E = size-specific emission factor (lbs/VMT)
- k = particle size multiplier (dimensionless)
- s = surface material silt content (%) AP-42, Table 13.2.2-1

(k)(s/12)^a(W/3)^b

(4.9)(6.4/12)^{0.7}(2.7/3)^{0.45} =

- a = empirical constant (dimensionless)
- b = empirical constant (dimensionless)
- W = mean vehicle weight (tons)

TSP, $\ensuremath{\mathsf{PM}_{10}}$ and $\ensuremath{\mathsf{PM}_{2.5}}$ Emission Factors:

TS	P	1	PI	N ₁₀	1	PN	1 _{2.5}
k =	4.90		k =	1.50		k =	0.15
s =	6.40		s =	6.40		s =	6.40
a =	0.70		a =	0.90		a =	0.90
b =	0.45		b =	0.45		b =	0.45
W =	2.70		W =	2.70		W =	2.70

3.01 lbs/VMT

0.081 lbs/VMT

0.81 lbs/VMT

 $E_{PM10} =$ (1.5)(6.4/12)^{0.9}(2.7/3)^{0.45} =

 $E_{PM2.5}$ = (0.15)(6.4/12)^{0.9}(2.7/3)^{0.45} =

TSP, PM_{10} and $\text{PM}_{2.5}$ Short-Term Emissions:

E _{TSP(Ibs/yr)} =	(E _{TSP})(estimated total VMT/yr) =
E _{TSP(lbs/hr)} =	(E _{TSP(lbs/yr)})/(operating hours/yr) =
E _{PM10(lbs/yr)} =	(EPM ₁₀)(estimated total VMT/yr) =
E _{PM10(lbs/hr)} =	(E _{PM10(lbs/yr)})/(operating hours/yr) =
E _{PM2.5(lbs/yr)} =	(EPM _{2.5})(estimated total VMT/yr) =
E _{PM2.5(tons/yr)} =	$(E_{PM2.5(lbs/yr)})/(operating hours/yr) =$

51,767.54	lbs/yr
18.92	lbs/hr (uncontrolled)
13,975.02	lbs/yr
5.11	lbs/hr (uncontrolled)
1,397.50	lbs/yr
0.51	lbs/hr (uncontrolled)

A:2022/40111.22/03_DSGN103_REPT105_AIR-QUALITYINSR-MOD-2022/DRAFT-WORKING/FINAL_FILESIA-4111-SCLF-UA2_Sec6-Calib-FINAL-2023-01-09.xlsGreen Waste Vehicles (60%)

CONVENIENCE CENTER VEHICLE OPERATIONS (PAVED)

Purpose: The purpose of this calculation is to estimate the potential fugitive dust emissions from Convenience Center Vehicle travel on the paved road leading from the Landfill Entrance to the Convenience Center, and out the Landfill Exit.

As with Refuse Delivery Vehicles, a "weighted average" Convenience Center Vehicle weight has been calculated based on the different types of Convenience Center Vehicles that travel on paved surfaces within the Landfill Operations Area and the frequency of travel. Methodology:

The following data and information were used to estimate long-term and short-term emissions:

Average Number of Round Trips Per Day:

Vehicle Type	Operating Days Per Year	Cumulative Traffic Count ⁽¹⁾ (round trips per year)	Average Round Trips Per Day ⁽²⁾
Light Auto		3,949	12.99
Large Pickup		38,673	127.21
Auto w/ Trailer	304	289	0.95
Van w/ Trailer		0	0.00
Pickup w/ Trailer		0	0.00
TOTAL		42,911	141.15

Notes:

⁽¹⁾ Based on SCLF 2021 traffic monitoring records

⁽²⁾ Average Round Trips Per Day = (Convenience Center Traffic Count)/(operating days per year)

Convenience Center Traffic Count (round trips per year) = Average number of Convenience Center round trips per day = 42.911 round trips/vr 141 round trips/day

Weighted Average Vehicle Weight (W):

(based on the proportion of average round trips per day)

Vehicle Type	Vehicle Weight ⁽¹⁾ (tons)	Proportion of Average Round Trips Per Day ⁽²⁾	Applied Vehicle Weight ⁽³⁾ (tons)
Light Auto	1.225	9.2%	0.11
Large Pickup	1.9	90.1%	1.71
Auto w/ Trailer	1.45	0.7%	0.010
TOTAL		100.0%	1.83
Notes:			

(1) Based on Landfill data

(2) Proportion of Average Round Trips Per Day = [(convenience center traffic count)/(total)] X [100%] (3) Applied Vehicle Weight = (vehicle weight)(proportion of average round trips per day)

Weighted Average Vehicle Weight (W) =

Total Vehicle Miles Traveled (VMT) Per Year:

Miles per round trip = (from Landfill Entrance to Convenience Center, and out Landfill Exit) = Total VMT per year = (miles per round trip)(convenience center traffic count) =

1 83 tons 13,686 VMT/yr

5.00 %/vr 18,341 VMT/yr

0.32 mi/round trip

9 hours/day

304 days/yr

2,736 hrs/yr

In order to account for anticipated increases in Convenience Center traffic over a 5-year period, a conservative escalator of 5% per year was applied to the total VMT per year via the following method:

Estimated percent annual increase in total VMT =

Estimated total VMT per year = (1.05)⁶(Total VMT per year) =

Operating Hours per Year:

Operating Hours =

Long-Term Emissions Equation:

Operating days per year = Operating hours per year = (average operating hrs/day)(operating days/year) =

CONVENIENCE CENTER VEHICLE OPERATIONS (PAVED) (Uncontrolled Long-Term Emissions)

Long-term (tons/yr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (2) was used to estimate longm emissio

E _{ext} = [(k)(s/12) ^s (W/3) ^b] [(365-p)/365]	(AP-42, 13.2.2, equation (2))	
E _{ext} = annual size-specific emission factor extrapolated for natural mitigation (lbs/VMT)		
Where:	TSP PM ₁₀	PM _{2.5}
k = particle size multiplier (dimensionless)	k = 4.90 k = 1.5	i0 k = 0.15
s = surface material silt content (%) AP-42, Table 13.2.2-1	s = 6.40 s = 6.4	0 s = 6.40
a = empirical constant (dimensionless)	a = 0.70 a = 0.9	00 a = 0.90
b = empirical constant (dimensionless)	b = 0.45 b = 0.4	b = 0.45
W = mean vehicle weight (tons)	W = 1.83 W = 1.8	3 W = 1.83
p = number of days per year with at least 0.01 inches of precipitation	p = 70.00 p = 70.0	00 p = 70.00
TSP , PM ₁₀ and PM _{2.5} Emission Factors: $E_{TSP} =$ $[(4.9)(6.4/12)^{0.7}(1.8/3)^{0.45}]$ $[(365-70)/365] =$ $E_{PM10} =$ $[(1.5)(6.4/12)^{0.9}(1.8/3)^{0.45}]$ $[(365-70)/365] =$ $E_{PM2.5} =$ $[(0.15)(6.4/12)^{0.9}(1.8/3)^{0.45}]$ $[(365-70)/365] =$	2.04 lbs/VMT 0.55 lbs/VMT 0.055 lbs/VMT	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	37,493.22 lbs/yr 18.75 tons/yr (uncontrolled) 10,121.56 lbs/yr 5.06 tons/yr (uncontrolled) 1,012.16 lbs/yr 0.51 tons/yr (uncontrolled)	

CONVENIENCE CENTER VEHICLE OPERATIONS (PAVED) (Uncontrolled Short-Term Emissions)

Short-term (lbs/hr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (1a) is used to estimate short-term emissions:

Short-Term Emissions Equation:

E = (k)(s/12)^a(W/3)^b

(AP-42,13.2.2.2, equation (1a))

E = size-specific emission factor (lbs/VMT)	TS	8P	PM	10	Γ	PM	2.5
k = particle size multiplier (dimensionless)	k =	4.90	k =	1.50		k =	0.15
s = surface material silt content (%) AP-42, Table 13.2.2-1	s =	6.40	s =	6.40		s =	6.40
a = empirical constant (dimensionless)	a =	0.70	a =	0.90		a =	0.90
b = empirical constant (dimensionless)	b =	0.45	b =	0.45		b =	0.45
W = mean vehicle weight (tons)	W =	1.83	W =	1.83		VV =	1.83

TSP, PM_{10} and $PM_{2.5}$ Emission Factors:

E _{TSP} =	(4.9)(6.4/12) ^{0.7} (1.8/3) ^{0.45}	=
E _{PM10} =	(1.5)(6.4/12) ^{0.9} (1.8/3) ^{0.45}	=
E _{PM2.5} =	(0.15)(6.4/12) ^{0.9} (1.8/3) ^{0.45}	=

2.53 lbs/VMT

0.68 lbs/VMT

0.068 lbs/VMT

TSP, PM ₁₀ and	PM _{2.5} Short-Term Emissions:
E _{TSP(lbs/yr)} =	(E _{TSP})(estimated total VMT/yr) =

E _{TSP(lbs/hr)} =	(E _{TSP(lbs/yr)})/(operating hours/yr) =
E _{PM10(lbs/yr)} =	(E _{PM10})(estimated total VMT/yr) =
E _{PM10(lbs/hr)} =	(E _{PM10(lbs/yr)})/(operating hours/yr) =
E _{PM2.5(lbs/yr)} =	(E _{PM2.5})(estimated total VMT/yr) =
E _{PM2.5(tons/yr)} =	$(E_{PM2.5(lbs/yr)})/(operating hours/yr) =$

46,389.91	lbs/yr
16.96	lbs/hr (uncontrolled)
12,523.29	lbs/yr
4.58	lbs/hr (uncontrolled)
4.58 1,252.33	, ,

MISCELLANEOUS VEHICLE OPERATIONS (DISPOSAL ROUTE - PAVED)

The purpose of this calculation is to estimate the potential fugitive dust emissions from Miscellaneous Vehicle travel on the paved portion of the Disposal Route. Purpose:

As with Refuse Delivery Vehicles, a "weighted average" Miscellaneous Vehicle weight has been calculated based on the different types of Miscellaneous Vehicles that travel on the paved portion of the Disposal Route and the frequency of travel. Methodology:

The following data and information were used to estimate long-term and short-term emissions:

Average Number of Disposal Route Round Trips Per Day:

Vehicle Type	Operating Days Per Year	Average Round Trips Per Day ⁽¹⁾ 8		
Utility Vehicles	304	8		
Public Works Trucks	304	1		
TOTAL	-	9		

(1) Based on Landfill data

Note:

Total round trips per day =

9 round trips/day

1.06 tons

4,040 feet 0.77 miles 8,080 feet

1.53 miles

Weighted Average Vehicle Weight: (based on the proportion of average round trips per day)

	Vehicle Weight ⁽¹⁾ (tons)	Proportion of Average Round Trips Per Day ⁽²⁾	Applied Vehicle Weight ⁽³⁾ (tons)
Utility Vehicles	1.0	88.9%	0.89
Public Works Trucks	1.5	11.1%	0.17
	2.5	100.0%	1.06

Notes: (1) Based on Landfill data

(2) Proportion of Average Round Trips Per Day = [(average round trips per day)/(total round trips per day)] X [100%]

(3) Applied Vehicle Weight = (vehicle weight)(proportion of average round trips per day)

Weighted average vehicle weight (W) =

Weighted Average Round Trip Distance:

Utility Vehicle one-way travel distance on pavement =
Public Works Truck one-way travel distance on pavement =
Utility Vehicle round trip travel distance on pavement =
Public Works Truck round trip travel distance on pavement =

Vehicle Type	Average Round Trips Per Day	Proportion of Average Round Trips Per Day	Distance Traveled Per Round Trip (mi)	Weighted Average Round Trip Distance ⁽¹⁾ (mi)
Utility Vehicles	8	88.9%	1.53	1.36
Public Works Trucks	1	11.1%	1.53	0.170
TOTAL	9	100.0%	-	1.53

Notes:

⁽¹⁾ Weighted average round trip distance = (proportion of round trips per day)(distance traveled per round trip)

Weighted average round trip distance =	1.53 miles/trip
Operating Hours Per Year:	
Average operating hours per day (see "Landfill Operating Hours") =	9 hrs/day
Operating days per year =	304 days/yr
Operating hours per year = (average operating hrs/day)(operating days/year) =	2,736 hrs/yr

Total Vehicle Miles Traveled (VMT) Per Year:

Total VMT per year = (operating days per year)(total round trips per day)(weighted average round trip distance) Total VMT per vear = 4.187 VMT/vr

MISCELLANEOUS VEHICLE OPERATIONS (DISPOSAL ROUTE - PAVED) (Uncontrolled Long-Term Emissions)

Long-term (tons/yr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (2) was used to estimate long-term emissions:

Long-Term Emissions Equation:

E_{ext} = [(k)(s/12)^a(W/3)^b] [(365-p)/365]

E_{ext} = annual size-specific emission factor extrapolated for natural mitigation (lbs/VMT)

k = particle size multiplier (dimensionless)

s = surface material silt content (%) AP-42, Table 13.2.2-1

a = empirical constant (dimensionless)

b = empirical constant (dimensionless) W = mean vehicle weight (tons)

p = number of days per year with at least 0.01 inches of precipitation

(AP-42, Figure 13.2.2-1)

(AP-42,13.2.2.2,	equation (2))
------------------	---------------

TS	8P	PM	N ₁₀	1	PM _{2.5}	
k =	4.90	k =	1.50		k =	0.15
s =	6.40	s =	6.40		s =	6.40
a =	0.70	a =	0.90		a =	0.90
b =	0.45	b =	0.45		b =	0.45
W =	1.06	W =	1.06		W =	1.06
n =	70.00	n =	70.00	1	n =	70.00

TSP, PM₁₀ and PM_{2.5} Emission Factors:

E _{TSP} =	[(4.9)(6.4/12) ^{0.7} (1.5/3) ^{0.45}]	[(365-70)/365] =	1.59 lbs/VMT
E _{PM10} =	[(1.5)(6.4/12) ^{0.9} (1.5/3) ^{0.45}]	[(365-70)/365] =	0.43 lbs/VMT
E _{PM2.5} =	[(0.15)(6.4/12) ^{0.9} (1.5/3) ^{0.45}]	[(365-70)/365] =	0.04 lbs/VMT
TSP, PM ₁₀ and	PM _{2.5} Long-Term Emissions:		
E _{TSP(Ibs/yr)} =	(E _{TSP})(total VMT/yr) =		6,673.90 lbs/yr
E _{TSP(tons/yr)} =	(E _{TSP(lbs/yr)})/(2,000 lbs/ton) =		3.34 tons/yr (uncontrolled)
E _{PM10(lbs/yr)} =	(E _{PM10})(total VMT/yr) =		 1,801.67 lbs/yr
E _{PM10(tons/yr)} =	(E _{PM10(lbs/yr)})/(2,000 lbs/ton) =		0.90 tons/yr (uncontrolled)
E _{PM2.5(lbs/yr)} =	(E _{PM2.5})(total VMT/yr) =		 180.17 lbs/yr
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(2,000 lbs/ton) =		0.090 tons/yr (uncontrolled)

MISCELLANEOUS VEHICLE OPERATIONS (DISPOSAL ROUTE - PAVED) (Uncontrolled Short-Term Emissions)

(AP-42,13.2.2.2, equation (1a))

Short-term (lbs/hr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (1a) is used to estimate short-term emissions:

Short-Term Emissions Equation:

E = (k)(s/12)^a(W/3)^b

E = size-specific emission factor (lbs/VMT)

k = particle size multiplier (dimensionless)

s = surface material silt content (%) AP-42, Table 13.2.2-1 a = empirical constant (dimensionless)

b = empirical constant (dimensionless)

W = mean vehicle weight (tons)

TSP, PM₁₀ and PM_{2.5} Emission Factors:

E _{TSP} =	(4.9)(6.4/12) ^{0.7} (1.5/3) ^{0.45}	=
E _{PM10} =	(1.5)(6.4/12) ^{0.9} (1.5/3) ^{0.45}	=

E_{PM2.5}= (0.15)(6.4/12)^{0.9}(1.5/3)^{0.45}

=

TSP, PM_{10} and $\text{PM}_{2.5}$ Short-Term Emissions:

ETSP(Ibs/yr) =	(E _{TSP})(total VMT/yr) =
E _{TSP(lbs/hr)} =	(E _{TSP(lbs/yr)})/(operating hours/yr) =
E _{PM10(lbs/yr)} =	(E _{PM10})(total VMT/yr) =
E _{PM10(lbs/hr)} =	(E _{PM10(lbs/yr)})/(operating hours/yr) =
E _{PM2.5(lbs/yr)} =	(E _{PM2.5})(total VMT/yr) =
E _{PM2.5(tons/yr)} =	$(E_{PM2.5(lbs/yr)})/(operating hours/yr) =$

ſ	TS	SP	PI	И ₁₀	PN	A _{2.5}
ſ	k =	4.90	k =	1.50	k =	0.15
ſ	s =	6.40	s =	6.40	s =	6.40
ſ	a =	0.70	a =	0.90	a =	0.90
ľ	b =	0.45	b =	0.45	b =	0.45
ſ	W =	1.50	W =	1.50	W =	1.50

2.31 lbs/VMT

0.62 lbs/VMT

0.062 lbs/VMT

9,672.20	lbs/yr
3.54	lbs/hr (uncontrolled)
2,611.08	lbs/yr
0.95	lbs/hr (uncontrolled)
261.11	lbs/yr
0.095	lbs/hr (uncontrolled)

MISCELLANEOUS VEHICLE OPERATIONS (ACCESS ROADS - UNPAVED)

Purpose: The purpose of this calculation is to estimate the potential fugitive dust emissions from Miscellaneous Vehicle travel on the unpaved Access Roads which are watered on a regular basis.

Methodology:

As with Refuse Delivery Vehicles, a "weighted average" Miscellaneous Vehicle weight has been calculated based on the different types of Miscellaneous Vehicles that travel on the unpaved Access Roads and the frequency of travel.

The following data and information were used to estimate long-term and short-term emissions:

Average Number of Access Road Round Trips Per Day:

Vehicle Type	Operating Days Per Year	Average Round Trips Per Day ⁽¹⁾	
Utility Vehicles	304	8	
Public Works Trucks	304	1	
TOTAL		9	

Note: (1) Based on Landfill data

Total round trips per day =

9 round trips/day

10,573 feet

21,146 feet

2.00 miles

4.00 miles

Weighted Average Vehicle Weight:

(based on the proportion of average round trips per day)

	Vehicle Weight ⁽¹⁾ (tons)	Proportion of Average Round Trips Per Day ⁽²⁾	Applied Vehicle Weight (tons)
Utility Vehicles	1.0	88.9%	0.89
Public Works Trucks	1.5	11.1%	0.17
	2.5	100.0%	1.06

Notes: (1) Based on Landfill data

(2) Proportion of Average Round Trips Per Day = [(average round trips per day)/(total round trips per day)] X [100%]

⁽³⁾ Applied Vehicle Weight = (vehicle weight)(proportion of average round trips per day)

Weighted average vehicle weight (W) = 1.1 tons

Weighted Average Round Trip Distance:

Utility Vehicle one-way travel distance =

Public Works Truck one-way travel distance = Utility Vehicle round trip travel distance =

Public Works Truck round trip travel distance =

Vehicle Type	Average Round Trips Per Day	Proportion of Average Round Trips Per Day	Distance Traveled Per Round Trip (mi)	Weighted Average Trip Distance ⁽¹⁾ (mi)
Utility Vehicles	8	88.9%	4.00	3.56
Public Works Trucks	1	11.1%	4.00	0.44
TOTAL	9	100.0%		4.00
Notes:				

Notes:

⁽¹⁾ Weighted average round trip distance = (proportion of round trips per day)(distance traveled per round trip)

Operating Hours Per Year:

Average operating hours per day (see "Landfill Operating Hours") =

Operating days per year = 304 days/yr Operating hours per year = (average operating hrs/day)(operating days/year) = 2,736 hrs/yr

Total Vehicle Miles Traveled (VMT) Per Year:

Total VMT per year = (operating days per year)(average round trips per day)(weighted average round trip distance) Total VMT per year = 10,957 VMT/yr

MISCELLANEOUS VEHICLE OPERATIONS (ACCESS ROADS - UNPAVED) (Uncontrolled Long-Term Emissions)

Long-term (tons/yr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (2) was used to estimate long-term emissions:

Long-Term Emissions Equation:

E_{ext} = [(k)(s/12)^a(W/3)^b] [(365-p)/365]

E_{ext} = annual size-specific emiss. factor extrapolated for natural mitigation (lbs/VMT)

k = particle size multiplier (dimensionless)

s = surface material silt content (%) AP-42, Table 13.2.2-1

a = empirical constant (dimensionless) b = empirical constant (dimensionless)

W = mean vehicle weight (tons)

 p = number of days per year with at least 0.01 inches of precipitation (AP-42, Figure 13.2.2-1)
 TSP
 PM₁₀

 k =
 4.90
 k =

(AP-42,13.2.2.2, equation (2))

9 hrs/day

к =	4.90	к =	1.50	к =	0.15
s =	6.40	s =	6.40	s =	6.40
a =	0.70	a =	0.90	a =	0.90
b =	0.45	b =	0.45	b =	0.45
W =	1.06	W =	1.06	W =	1.06
p =	70.00	p =	70.00	p =	70.00

PM_{2.5}

TSP, PM₁₀ and PM_{2.5} Emission Factors:

E

Е

Е

ISP PM., and PM.,	l ong-Term Emissions		
= _{PM2.5} =	[(0.15)(6.4/12) ^{0.9} (1.5/3) ^{0.45}]	[(365-70)/365] =	0.043 lbs/VMT
= PM10 =	[(1.5)(6.4/12) ^{0.9} (1.5/3) ^{0.45}]	[(365-70)/365] =	0.43 lbs/VMT
E _{TSP} =	[(4.9)(6.4/12) ^{0.7} (1.5/3) ^{0.45}]	[(365-70)/365] =	1.59 lbs/VMT

TSP, PM₁₀ and PM_{2.5} Long-Term Emissions:

E _{TSP(Ibs/yr)} =	(E _{TSP})(total VMT/yr) =	17,466.13 lbs/yr
E _{TSP(tons/yr)} =	(E _{TSP(lbs/yr)})/(2,000 lbs/ton) =	8.73 tons/yr (uncontrolled)
E _{PM10(lbs/yr)} =	(E _{PM10})(total VMT/yr) =	4,715.11 lbs/yr
E _{PM10(tons/yr)} =	(E _{PM10(lbs/yr)})/(2,000 lbs/ton) =	2.36 tons/yr (uncontrolled)
E _{PM2.5(lbs/yr)} =	(EPM _{2.5})(total VMT/yr) =	471.51 lbs/yr
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(2,000 lbs/ton) =	0.24 tons/yr (uncontrolled)

MISCELLANEOUS VEHICLE OPERATIONS (ACCESS ROADS - UNPAVED) (Uncontrolled Short-Term Emissions)

Short-term (lbs/hr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (1a) is used to estimate short-term emissions:

Short-Term Emissions Equation:

E =	(k)(s/12) ^a (W/3) ^b

=

=

E = size-specific emission factor (lbs/VMT) k = particle size multiplier (dimensionless)

s = surface material silt content (%) AP-42, Table 13.2.2-1

(4.9)(6.4/12)^{0.7}(1.5/3)^{0.45}

(1.5)(6.4/12)^{0.9}(1.5/3)^{0.45}

(0.15)(6.4/12)^{0.9}(1.5/3)^{0.45} =

a = empirical constant (dimensionless)

b = empirical constant (dimensionless) W = mean vehicle weight (tons)

E_{TSP} =

E_{PM10} =

E_{PM2.5} =

TSP, PM₁₀ and PM_{2.5} Emission Factors:

T	SP	PI	И ₁₀	PM _{2.5}	
k =	4.90	k =	1.50	k =	0.15
s =	6.40	s =	6.40	s =	6.40
a =	0.70	a =	0.90	a =	0.90
b =	0.45	b =	0.45	b =	0.45
W =	1.50	W =	1.50	W =	1.50

2.31 lbs/VMT

(AP-42,13.2.2.2, equation (1a))

0.62 lbs/VMT

0.062 lbs/VMT

TSP, PM_{10} and $PM_{2.5}$ Short-Term Emissions:

E _{TSP(Ibs/yr)} =	(E _{TSP})(total VMT/yr) =
E _{TSP(lbs/hr)} =	(E _{TSP(Ibs/yr)})/(operating hours/yr) =
E _{PM10(lbs/yr)} =	(E _{PM10})(total VMT/yr) =
E _{PM10(lbs/hr)} =	(E _{PM10(lbs/yr)})/(operating hours/yr) =
E _{PM2.5(lbs/yr)} =	(E _{PM2.5})(total VMT/yr) =
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(operating hours/yr) =

25,312.91	lbs/yr
9.25	lbs/hr (uncontrolled)
6,833.40	lbs/yr
2.50	lbs/hr (uncontrolled)
683.34	lbs/yr
0.25	lbs/hr (uncontrolled)

MISCELLANEOUS VEHICLE OPERATIONS (AUXILIARY ROADS - UNPAVED)

The purpose of this calculation is to estimate the potential fugitive dust emissions from Public Works Truck travel on unpaved Auxiliary Roads. Purpose: The Auxiliary Roads are only driven upon by Public Works Trucks. These roads are unpaved and no dust control is applied. Emissions calculations are based Methodology: on guidance presented in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). The following data and information were used to estimate long-term and short-term emissions:

Average Number of Auxiliary Road Round Trips Per Day:	
Average round trips per day =	1 round trips/day (based on Landfill data)
Weighted Average Vehicle Weight:	
Average vehicle weight (W) =	1.50 tons (based on Landfill data)
Travel Distance:	
Travel distance =	5,650 feet
Travel distance =	1.07 miles
Utility Vehicle round trip travel distance =	11,300 feet
Public Works Truck round trip travel distance =	2.14 miles
Operating Hours Per Year:	
Average operating hours per day (see "Landfill Operating Hours") =	9 hrs/day
Operating days per year =	304 days/yr
Operating hours per year = (average operating hrs/day)(operating days/year) =	2,736 hrs/yr
Total Vehicle Miles Traveled (VMT) Per Year:	
Total VMT per year = (operating days per year)(average round trips per day)(round trip	distance)
Total VMT per year =	325 VMT/yr

MISCELLANEOUS VEHICLE OPERATIONS (AUXILIARY ROADS - UNPAVED) (Uncontrolled Long-Term Emissions)

Long-term (tons/yr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (2) was used to estimate long-term emissions:

Long-Term Emissions Equation:

E_{ext} =

(AP-42,13.2.2.2, equation (2)) TSP

k =

s =

a =

b =

W =

p =

4.90

6.40

0.70

0.45

1.50

70.00

PM₁₀

k =

s =

a =

b =

W =

p =

1.50

6.40

0.90

0.45

1.50

70.00

E_{ext} = annual size-specific emission factor extrapolated for natural mitigation (lbs/VMT)

[(k)(s/12)^a(W/3)^b] [(365-p)/365]

k = particle size multiplier (dimensionless)

s = surface material silt content (%) AP-42, Table 13.2.2-1

a = empirical constant (dimensionless)

b = empirical constant (dimensionless)

W = mean vehicle weight (tons)

p = number of days per year with at least 0.01 inches of precipitation (AP-42, Figure 13.2.2-1)

TSP, PM_{10} and $PM_{2.5}$ Emission Factors:

E _{TSP} =	$[(4.9)(6.4/12)^{0.7}(1.5/3)^{0.45}]$ [(365-70)/365] =	1.87 lbs/VMT
E _{PM10} =	[(1.5)(6.4/12) ^{0.9} (1.5/3) ^{0.45}] [(365-70)/365] =	0.50 lbs/VMT
E _{PM2.5} =	$[(0.15)(6.4/12)^{0.9}(1.5/3)^{0.45}]$ [(365-70)/365] =	0.050 lbs/VMT

TSP, PM_{10} and $PM_{2.5}$ Long-Term Emissions:

E _{TSP(lbs/yr)} =	(E _{TSP})(total VMT/yr) =	607.36 lbs/yr
E _{TSP(tons/yr)} =	(E _{TSP(lbs/yr)})/(2,000 lbs/ton) =	0.30 tons/yr (uncontrolled)
E _{PM10(lbs/yr)} =	(E _{PM10})(total VMT/yr) =	163.96 lbs/yr
E _{PM10(tons/yr)} =	(E _{PM10(lbs/yr)})/(2,000 lbs/ton) =	0.08 tons/yr (uncontrolled)
E _{PM2.5(lbs/yr)} =	(EPM _{2.5})(total VMT/yr) =	16.40 lbs/yr
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(2,000 lbs/ton) =	0.008 tons/yr (uncontrolled)

PM_{2.5}

k =

s =

a =

b =

W =

p =

0.15

6.40 0.90

0.45

1.50

70.00

MISCELLANEOUS VEHICLE OPERATIONS (AUXILIARY ROADS - UNPAVED) (Uncontrolled Short-Term Emissions)

Short-term (lbs/hr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (1a) is used to estimate short-term emissions:

Short-Term Emissions Equation:

E =	(k)(s/12) ^a (W/3) ^b	(AP-42,13.2.2	2.2, equation (1	a))				
E = size-specific emi	ssion factor (Ibs/VMT)	TS	P	PM	10	1	PM ₂	.5
k = particle size multi	iplier (dimensionless)	k =	4.90	k =	1.50		k =	0.15
s = surface material s	silt content (%) AP-42, Table 13.2.2-1	s =	6.40	s =	6.40		s =	6.40
a = empirical constar	nt (dimensionless)	a =	0.70	a =	0.90		a =	0.90
b = empirical constar	nt (dimensionless)	b =	0.45	b =	0.45		b =	0.45
W = mean vehicle we	eight (tons)	W =	1.50	W =	1.50		W =	1.50
TSP, PM ₁₀ and PM _{2.6} $E_{TSP} =$	Emission Factors: $(4.9)(6.4/12)^{0.7}(1.5/3)^{0.45} =$		2.31 lb	s/VMT				
E _{PM10} =	(1.5)(6.4/12) ^{0.9} (1.5/3) ^{0.45} =		0.62 lb	s/VMT				
E _{PM2.5} =	$(0.15)(6.4/12)^{0.9}(1.5/3)^{0.45}$ =		0.062 lb	s/VMT				

TSP, PM₁₀ and PM_{2.5} Short-Term Emissions:

E _{TSP(lbs/yr)} =	(E _{TSP})(total VMT/yr) =	751.48 lbs/yr
E _{TSP(lbs/hr)} =	(E _{TSP(lbs/yr)})/(operating hours/yr) =	0.27 lbs/hr (uncontrolled)
E _{PM10(lbs/yr)} =	(E _{PM10})(total VMT/yr) =	202.87 lbs/yr
E _{PM10(lbs/hr)} =	(E _{PM10(lbs/yr)})/(operating hours/yr) =	0.074 lbs/hr (uncontrolled)
E _{PM2.5(lbs/yr)} =	(EPM _{2.5})(total VMT/yr) =	20.29 lbs/yr
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(operating hours/yr) =	0.007 lbs/hr (uncontrolled)

Sandoval County Landfill

APPENDIX 6.2

CONTROLLED EMISSIONS

EMISSION UNITS 1, 2, 5, AND 6

APPENDIX 6.2 Itemized Summary of Vehicle Emissions <u>Purpose</u>:

Controlled fugitive dust emissions have been estimated by using the following equation: Controlled emissions = (uncontrolled emissions)(1 - control efficiency)

	Uncont	trolled	Control	Actual/C	ontrolled
Emissions	tons/yr	lbs/hr	Efficiency (%)	tons/yr	lbs/hr
Refuse Delive	ry Vehicle O	perations (D)isposal Route - P	aved)	
TSP Long-Term Emissions	56.83		95	2.84	
TSP Short-Term Emissions		51.40	95		2.57
PM ₁₀ Long-Term Emissions	15.34		95	0.77	
PM ₁₀ Short-Term Emissions		13.88	95		0.69
PM _{2.5} Long-Term Emissions	1.53		95	0.077	
PM _{2.5} Short-Term Emissions		1.39	95		0.069
MSW Refuse Deliv	very Vehicle	Operations	(Disposal Route -	Unpaved)	
TSP Long-Term Emissions	127.09		60	50.84	
TSP Short-Term Emissions		114.95	60		45.98
PM ₁₀ Long-Term Emissions	34.31		60	13.72	
PM ₁₀ Short-Term Emissions		31.03	60		12.41
PM _{2.5} Long-Term Emissions	3.43		60	1.37	
PM _{2.5} Short-Term Emissions		3.10	60		1.24
Green Waste Drop-	Off Area Veh	icle Operati	ions (Disposal Ro	ute - Paved)	
TSP Long-Term Emissions	6.89		95	0.34	
TSP Short-Term Emissions		6.24	95		0.31
PM ₁₀ Long-Term Emissions	1.86		95	0.093	
PM ₁₀ Short-Term Emissions		1.68	95		0.084
PM _{2.5} Long-Term Emissions	0.19		95	0.0093	
PM _{2.5} Short-Term Emissions		0.17	95		0.0084
Green Waste Drop-O	ff Area Vehio	cle Operatio	ns (Disposal Rou	te - Unpaved))
TSP Long-Term Emissions	20.92		60	8.37	
TSP Short-Term Emissions		18.92	60		7.57
PM ₁₀ Long-Term Emissions	5.65		60	2.26	
PM ₁₀ Short-Term Emissions		5.11	60		2.04
PM _{2.5} Long-Term Emissions	0.56		60	0.23	
PM _{2.5} Short-Term Emissions		0.51	60		0.20

APPENDIX 6.2 (continued) Itemized Summary of Vehicle Emissions Sandoval County Landfill

	Sandoval	Sandoval County Landfill							
Emissions	Uncon	trolled	Control	Actual/C	Controlled				
Emissions	tons/yr	lbs/hr	Efficiency	tons/yr	lbs/hr				
Convenience Center Vehicle Operations (Paved)									
TSP Long-Term Emissions	18.75		95	0.94					
TSP Short-Term Emissions		16.96	95		0.85				
PM ₁₀ Long-Term Emissions	5.06		95	0.25					
PM ₁₀ Short-Term Emissions		4.58	95		0.23				
PM _{2.5} Long-Term Emissions	0.51		95	0.025					
PM _{2.5} Short-Term Emissions		0.46	95		0.023				
Miscellaneou	is Vehicle Op	oerations (Di	sposal Route - Pa	ved)					
TSP Long-Term Emissions	3.34		95	0.167					
TSP Short-Term Emissions		3.54	95		0.177				
PM ₁₀ Long-Term Emissions	0.90		95	0.045					
PM ₁₀ Short-Term Emissions		0.95	95		0.048				
PM _{2.5} Long-Term Emissions	0.090		95	0.0045					
PM _{2.5} Short-Term Emissions		0.095	95		0.0048				
Miscellaneou	s Vehicle Op	erations (Ac	cess Roads - Unp	aved)					
TSP Long-Term Emissions	8.73		60	3.49					
TSP Short-Term Emissions		9.25	60		3.70				
PM ₁₀ Long-Term Emissions	2.36		60	0.94					
PM ₁₀ Short-Term Emissions		2.50	60		1.00				
PM _{2.5} Long-Term Emissions	0.24		60	0.09					
PM _{2.5} Short-Term Emissions		0.25	60		0.100				
Miscellaneous Vehicle Operations (Auxiliary Roads - Unpaved)									
TSP Long-Term Emissions	0.30		0	0.30					
TSP Short-Term Emissions		0.27	0		0.27				
PM ₁₀ Long-Term Emissions	0.08		0	0.08					
PM ₁₀ Short-Term Emissions		0.074	0		0.074				
PM _{2.5} Long-Term Emissions	0.008		0	0.008					
PM _{2.5} Short-Term Emissions		0.0074	0		0.0074				

APPENDIX 6.2 (continued) Itemized Summary of Vehicle Emissions Sandoval County Landfill

Sandoval County Landfill							
Emissions	Uncont		Control	Actual/C	Controlled		
	tons/yr	lbs/hr	Efficiency	tons/yr	lbs/hr		
Scraper Travel Emissions (Disposal Route - Unpaved)							
TSP Long-Term Emissions	35.48		60	14.19			
TSP Short-Term Emissions		96.27	60		38.51		
PM ₁₀ Long-Term Emissions	9.58		60	3.83			
PM ₁₀ Short-Term Emissions		25.99	60		10.40		
PM _{2.5} Long-Term Emissions	0.96		60	0.38			
PM _{2.5} Short-Term Emissions		2.60	60		1.04		
	Scraper I	Loading Emi	issions				
TSP Long-Term Emissions	4.38		60	1.75			
TSP Short-Term Emissions		9.60	60		3.84		
PM ₁₀ Long-Term Emissions	1.34		60	0.54			
PM ₁₀ Short-Term Emissions		2.94	60		1.18		
PM _{2.5} Long-Term Emissions	0.13		60	0.05			
PM _{2.5} Short-Term Emissions		0.29	60		0.12		
	Scraper U	nloading En	nissions				
TSP Long-Term Emissions	0.025		60	0.0100			
TSP Short-Term Emissions		0.055	60		0.022		
PM ₁₀ Long-Term Emissions	0.012		60	0.0047			
PM ₁₀ Short-Term Emissions		0.026	60		0.010		
PM _{2.5} Long-Term Emissions	0.0018		60	0.00072			
PM _{2.5} Short-Term Emissions		0.0039	60		0.0016		
	Compa	ctor Operat	ions				
TSP Long-Term Emissions	4.31		60	1.72			
TSP Short-Term Emissions		3.15	60		1.26		
PM ₁₀ Long-Term Emissions	0.854		60	0.34			
PM ₁₀ Short-Term Emissions		0.62	60		0.25		
PM _{2.5} Long-Term Emissions	0.452		60	0.18			
PM _{2.5} Short-Term Emissions		0.33	60		0.13		
Bulldozer Operations							
TSP Long-Term Emissions	1.44		60	0.57			
TSP Short-Term Emissions		3.15	60		1.26		
PM ₁₀ Long-Term Emissions	0.28		60	0.11			
PM ₁₀ Short-Term Emissions		0.62	60		0.25		
PM _{2.5} Long-Term Emissions	0.15		60	0.060			
PM _{2.5} Short-Term Emissions		0.33	60		0.13		
		0.55	00		0.15		

APPENDIX 6.2 (continued) Itemized Summary of Vehicle Emissions

	Sanuovai	v						
Emissions	Uncon	trolled	Control	Actual/Controlled				
Emissions	tons/yr	lbs/hr	Efficiency	tons/yr	lbs/hr			
Front End Loader								
TSP Long-Term Emissions	1.64		0	1.64				
TSP Short-Term Emissions		2.66	0		2.66			
PM ₁₀ Long-Term Emissions	0.44		0	0.44				
PM ₁₀ Short-Term Emissions		0.72	0		0.72			
PM _{2.5} Long-Term Emissions	0.044		0	0.044				
PM _{2.5} Short-Term Emissions		0.072	0		0.072			
Crusher/Shredder Lo	ading, Crushi	ng, Conveyo	r Transport, and	Truck Loadi	ng			
TSP Long-Term Emissions	0.53		0	0.53				
TSP Short-Term Emissions		0.69	0		0.69			
PM ₁₀ Long-Term Emissions	0.22		0	0.22				
PM ₁₀ Short-Term Emissions		0.29	0		0.29			
PM _{2.5} Long-Term Emissions	0.22		0	0.22				
PM _{2.5} Short-Term Emissions		0.29	0		0.29			
	Crushed F	roduct Stoc	kpiling					
TSP Long-Term Emissions	0.40		0	0.40				
TSP Short-Term Emissions		0.53	0		0.53			
PM ₁₀ Long-Term Emissions	0.19		0	0.19				
PM ₁₀ Short-Term Emissions		0.25	0		0.25			
PM _{2.5} Long-Term Emissions	0.029		0	0.029				
PM _{2.5} Short-Term Emissions		0.038	0		0.038			
	Rental Crush	er Fugitive	Emissions					
TSP Long-Term Emissions	2.41			0.21				
TSP Short-Term Emissions		8.39	Controlled		0.96			
PM ₁₀ Long-Term Emissions	0.89		Emission Factors	0.082				
PM ₁₀ Short-Term Emissions		3.08	Prescribed by		0.38			
PM _{2.5} Long-Term Emissions	0.89		AP-42, Section	0.015				
PM _{2.5} Short-Term Emissions	0.02	3.08	11.19.2	0.012	0.069			
1 1012.5 SHOTE I CHII EHHISSIOHS		5.00			0.009			

Sandoval County Landfill

Sandoval County Landfill

APPENDIX 6.3

UNCONTROLLED EMISSIONS

EMISSION UNIT 2

Scraper

Compactor

Bulldozer

SCRAPER OPERATIONS (ACCESS ROAD - UNPAVED)

The purpose of this calculation is to estimate the potential fugitive dust emissions from three different Scraper processes: Purpose:

- ► Scraper Travel along the Disposal Route between the Daily Cover Soil Borrow Area and the Disposal Area.
- Scraper Loading at the Daily Cover Soil Borrow Area
- Scraper Unloading at the Disposal Area
- Methodology: Emissions estimates for each process involve the application of guidance from three (3) separate sections of EPA AP-42:
 - Scraper Travel -- Section 13.2.2 (Unpaved Roads, November, 2006)
 - ▶ Scraper Loading -- Section 11.9 (Western Surface Coal Mining, October, 1998)
 - ► Scraper Unloading -- Section 13.2.4 (Aggregate Handling and Storage Piles, November, 2006)

The following data and information were used to estimate long-term and short-term emissions from Scraper Travel on the Disposal Route.

Vehicle Miles Traveled (VMT) Per Round Trip on Disposal Route: Average number of round trips per day = 20 round trips/day (based on Landfill data) 3,472 feet (From borrow area to disposal area) One-way trip distance = One-way trip distance = 0.66 miles Miles per round trip = (2)(one-way trip distance) = 1.32 mi/round trip Total Vehicle Miles Traveled (VMT) Per Year: Operating days per year = 304 days/yr Total VMT per year = (average number of round trips/day)(miles/round trip)(operating days per year) = 7,996 VMT/yr Mean Vehicle Weight (W): Scraper weight includes average empty average weight of Scraper + 1/2 weight of soil (Scraper is empty for 1/2 of round trip) Scraper average empty weight (CAT 623G, CAT 615C, CAT 623F scrapers used one at a time)= 35.50 tons (Caterpillar® Handbook, 2019) 20.70 yd³ (Caterpillar[®] Handbook, 2019) Average Scraper soil load = Soil density = 1.20 tons/yd³ (Material Densities standards) Soil weight per Scraper load = (average Scraper load)(soil density) = 24.84 tons Mean vehicle weight = (Scraper empty weight) + (0.5)(soil weight per Scraper load) = 47.92 tons **Operating Hours Per Year:** Operating efficiency = 100% (based on Landfill data) Operating hours per day = 3 hrs/day (based on Landfill data) Operating days per year = 304 days/yr Operating hours per year = (operating efficiency)(operating hrs/day)(operating days/yr) = 912 hrs/yr

SCRAPER TRAVEL (ACCESS ROAD - UNPAVED) (Uncontrolled Long-Term Emissions)

Long-term (tons/yr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). The Scraper collects soil at the Daily Cover Soil Borrow Area and deposits it at the Disposal Area for use as daily cover. Equation (2) was used to estimate long-term emissions:

Long-Term Emissions Equation:

Long-lerm Emissions Equation:								
E _{ext} =	[(k)(s/12) ^a (W/3) ^b] [(365-p)/365]	(AP-42, 13.2.2, equation (2))						
E _{ext} =	annual size-specific emission factor extrapolated for natural mitigation (lbs/VM	T)						
Where:		TSI	P	PM	10	PM	2.5]
k = particle size	multiplier (dimensionless)	k =	4.90	k =	1.50	k =	0.15	
s = surface mate	erial silt content (%) AP-42, Table 13.2.2-1	s =	6.40	s =	6.40	s =	6.40	
a = empirical co	nstant (dimensionless)	a =	0.70	a =	0.90	a =	0.90	
b = empirical co	nstant (dimensionless)	b =	0.45	b =	0.45	b =	0.45	
W = mean vehic	cle weight (tons)	VV =	47.92	VV =	47.92	W =	47.92	
p = number of d	ays per year with at least 0.01 inches of precipitation	p =	70.00	p =	70.00	p =	70.00	
	Ire 13.2.2-1) $PM_{2.5}Emission Factors:$ $[(4.9)(6.4/12)^{0.7}(45.8/3)^{0.45}][(365-70)/365] =$ $[(1.5)(6.4/12)^{0.9}(45.8/3)^{0.45}][(365-70)/365] =$ $[(0.15)(6.4/12)^{0.9}(45.8/3)^{0.45}][(365-70)/365] =$	2.40	lbs/VMT lbs/VMT lbs/VMT					
$\begin{split} \textbf{TSP, PM}_{10} & \textbf{and} \\ \textbf{E}_{\text{TSP}(\text{lbs/yr})} = \\ \textbf{E}_{\text{TSP}(\text{tons/yr})} = \\ \textbf{E}_{\text{PM10}(\text{lbs/yr})} = \\ \textbf{E}_{\text{PM10}(\text{tons/yr})} = \\ \textbf{E}_{\text{PM2},5(\text{lbs/yr})} = \\ \textbf{E}_{\text{PM2},5(\text{tons/yr})} = \end{split}$	$\begin{array}{l} \textbf{PM}_{2.6} \textbf{Long-Term Emissions:} \\ (E_{TSP})(total VMT/yr) = \\ (E_{TSP(lbs/yr)})'(2,000 lbs/ton) = \\ (E_{PM10})(total VMT/yr) = \\ (E_{PM10(lbs/yr)})'(2,000 lbs/ton) = \\ (E_{PM2.5})(total VMT/yr) = \\ (E_{PM2.5}(lbs/yr))'(2,000 lbs/ton) = \\ \end{array}$	19,156.96 9.58 1,915.70	tons/yr (uncont lbs/yr tons/yr (uncont	rolled)				

SCRAPER TRAVEL (ACCESS ROAD - UNPAVED) (Uncontrolled Short-Term Emissions)

Short-term (lbs/hr) fugitive dust emissions were estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (1a) was used to estimate short-term emissions:

Short-Term Emissions Equation:

E =	$[(k)(s/12)^{a}(W/3)^{b}]$	(AP-42,13.2.2.	2, equation (1a	a))				
E = size-specific e	emission factor (Ibs/VMT)	TS	TSP		PM ₁₀		PM _{2.5}	
k = particle size multiplier (dimensionless)			4.90	k =	1.50	k =	0.15	
s = surface materi	ial silt content (%) AP-42, Table 13.2.2-1	s =	6.40	s =	6.40	s =	6.40	
a = empirical cons	stant (dimensionless)	a =	0.70	a =	0.90	a =	0.90	
b = empirical cons	stant (dimensionless)	b =	0.45	b =	0.45	b =	0.45	
W = mean vehicle weight (tons)		W =	47.92	W =	47.92	W =	47.92	
TSP, PM ₁₀ and P! E _{TSP} =	$M_{2.5} \text{ Emission Factors:} $ $(4.9)(6.4/12)^{0.7}(45.8/3)^{0.45} =$	10.98	lbs/VMT					
E _{PM10} =	(1.5)(6.4/12) ^{0.9} (45.8/3) ^{0.45} =	2.96	lbs/VMT					

E _{PM2.5} =	$(0.15)(6.4/12)^{0.9}(45.8/3)^{0.45} =$	0.30 lbs/VMT
ISP, PWI ₁₀ and	PM _{2.5} Short-Term Emissions:	
E _{TSP(Ibs/yr)} =	(E _{TSP})(total VMT/yr) =	87,801.63 lbs/yr
E _{TSP(lbs/hr)} =	(E _{TSP(lbs/yr)})/(operating hours/yr) =	96.27 lbs/hr (uncontrolled)
E _{PM10(lbs/yr)} =	(E _{PM10})(total VMT/yr) =	23,702.68 lbs/yr
E _{PM10(lbs/hr)} =	(E _{PM10(lbs)})/(operating hours/yr) =	25.99 lbs/hr (uncontrolled)
E _{PM2.5(lbs/yr)} =	(E _{PM2.5})(total VMT/yr) =	2,370.27 lbs/yr
E _{PM12.5lbs/hr)} =	(E _{PM2.5(lbs)})/(operating hours/yr) =	2.60 lbs/hr (uncontrolled)

SCRAPER LOADING (Uncontrolled Emissions)

TSP, PM₁₀, and PM_{2.5} Emission Factors:

The uncontrolled fugitive dust emissions for Scraper Loading at the Daily Cover Soil Borrow Area was estimated through application of emission factors presented in AP-42, Section 11.9, Western Surface Coal Mining (October, 1998), Table 11.9-4, under the source heading "Topsoil Removal By Scraper".

E_{TSP} =

The emission factors for PM₁₀ and PM₂₅ were calculated by applying the ratio of the PM₁₀, PM₂₅ and TSP particle size multiplier (k) values, obtained from AP-42, Table 13.2.2-2, to the TSP emission factor of 0.058 lbs/ton of soil loaded.

0.058 lbs/ton of soil loaded (Table 11.9-4)

E _{PM10} =	(1.5/4.9)(E _{TSP}) = (.31)(0.058) =	0.02 lbs/ton of soil loaded		
E _{PM2.5} =	(0.15/4.9)(E _{TSP}) = (.031)(0.058) =	0.002 lbs/ton of soil loaded		
Mass of Soil L	baded Per Year:			
Number of Scra	per loads per day =	20 loads/day (based on Landfill data)		
Scraper capacit	y =	20.70 yd ³ /load (based on Landfill data)		
Soil density =		1.20 tons/yd ³ (Material Densities standards)		
Mass of soil loa	ded per day = (number of Scraper loads/day)(Scraper capacity)(soil	density)		
Mass of soil loa	ded per day =	497 tons/day		
Operating days	per year =	304 days/yr		
Mass of soil loa	ded per year = (mass of soil loaded/day)(operating days/yr) =	151,027 tons/yr		

TSP, PM₁₀ and PM_{2.5} Emissions (Long-Term and Short-Term):

101, 1 m ₁₀ and	1 m _{2.5} Emissions (Long Term and Onort Term).	
E _{TSP(lbs/yr)} =	(E _{TSP})(mass of soil loaded/yr) =	8,759.58 lbs/yr
E _{TSP(tons/yr)} =	(E _{TSP(lbs/yr)})/(2,000 lbs/ton) =	4.38 tons/yr (uncontrolled)
E _{TSP(lbs/hr)} =	(E _{TSP(lbs/yr)})/(operating hrs/yr) =	9.60 lbs/hr (uncontrolled)
E _{PM10(lbs/yr)} =	(E _{PM10})(mass of soil loaded/yr) =	2,681.50 lbs/yr
E _{PM10(tons/yr)} =	(E _{PM10(lbs/yr)})/(2,000 lbs/ton) =	1.34 tons/yr (uncontrolled)
E _{PM10(lbs/hr)} =	(E _{PM10(lbs/yr)})/(operating hrs/yr) =	2.94 lbs/hr (uncontrolled)
E _{PM2.5(lbs/yr)} =	(E _{PM2.5})(mass of soil loaded/yr) =	268.15 lbs/yr
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(2,000 lbs/ton) =	0.13 tons/yr (uncontrolled)
E _{PM2.5(lbs/hr)} =	(E _{PM2.5(lbs/yr)})/(operating hrs/yr) =	0.29 lbs/hr (uncontrolled)

SCRAPER UNLOADING (Uncontrolled Emissions)

AP-42, Section 13.2.4, Aggregate Handling and Storage Piles (November, 2006) provides guidance for batch drop operations for Scraper Unloading at the Soil Stockpile Area or Disposal Area. Equation (1) from Section 13.2.4 is used to calculate TSP, PM₁₀, and PM_{2.5}.

Emissions Equ	lation:			
E =	(k)(0.0032)(U/5) ^{1.3} (M/2) ^{1.4}			(AP-42,13.2.4.3, equation (1))
E = size-specific	c emission factor (Ibs/ton of material unload	ed)		
k = particle size	multiplier (dimensionless):	k _{TSP} =	0.74	(AP-42, 13.2.4.3)
		k _{PM10} =	0.35	(AP-42, 13.2.4.3)
		k _{PM2.5} =	0.053	(AP-42, 13.2.4.3)
Where:				
U = mean wind	speed (mph) =		7.58	(Albuquerque International Sunport, 2008-2015 Average)
M = soil moistur	e content (%) =		12.00	(AP-42, Table 13.2.4-1 value for MSW Landfill Cover material)
TSP, PM ₁₀ and PM _{2.5} Emission Factors: $E_{TSP} = \frac{(0.74)(0.0032)(11.0/5)^{1.3}}{(12/2)^{1.4}} = \\ E_{PM10} = \frac{(0.35)(0.0032)(11.0/5)^{1.3}}{(12/2)^{1.4}} = \\ E_{PM2.5} = \frac{(0.053)(0.0032)(11.0/5)^{1.3}}{(12/2)^{1.4}} = $			0.00033 lbs/ton of s 0.00016 lbs/ton of s 0.000024 lbs/ton of s	oil unloaded
	oaded/yr = mass of soil loaded/yr = PM _{2.5} Emissions (Long-Term and Short-T (E _{TSP})(mass of soil unloaded/yr) =	ferm):	151,027 tons/yr 49.95 lbs/yr	
E _{TSP(tons/yr)} =	(E _{TSP(lbs/yr)})/(2,000 lbs/ton) =		0.025 tons/yr (ur	ncontrolled)

E _{TSP(lbs/yr)} =	(E _{TSP})(mass of soil unloaded/yr) =
E _{TSP(tons/yr)} =	(E _{TSP(lbs/yr)})/(2,000 lbs/ton) =
E _{TSP(lbs/hr)} =	(E _{TSP(lbs/yr)})/(operating hrs/yr) =
E _{PM10(lbs/yr)} =	(E _{PM10})(mass of soil unloaded/yr) =
E _{PM10(tons/yr)} =	(E _{PM10(lbs/yr)})/(2,000 lbs/ton) =
E _{PM10(lbs/hr)} =	(E _{PM10(lbs/yr)})/(operating hrs/yr) =
E _{PM2.5(lbs/yr)} =	(E _{PM2.5})(mass of soil unloaded/yr) =
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(2,000 lbs/ton) =
E _{PM2.5(lbs/hr)} =	(E _{PM2.5(lbs/yr)})/(operating hrs/yr) =

49.95 lbs/yr
0.025 tons/yr (uncontrolled)
0.055 lbs/hr (uncontrolled)
23.63 lbs/yr
0.012 tons/yr (uncontrolled)
0.026 lbs/hr (uncontrolled)
3.58 lbs/yr
0.0018 tons/yr (uncontrolled)
0.0039 lbs/hr (uncontrolled)

SCRAPER OPERATIONS EMISSIONS SUMMARY

(Total Uncontrolled TSP, PM_{10} , and $PM_{2.5}$ Emissions)

Scraper Travel Emissions (Disposal Route - Recycled Basecourse):	
TSP Long-Term Emissions	35.48 tons/yr (uncontrolled)
TSP Short-Term Emissions	96.27 lbs/hr (uncontrolled)
PM ₁₀ Long-Term Emissions	9.58 tons/yr (uncontrolled)
PM ₁₀ Short-Term Emissions	25.99 lbs/hr (uncontrolled)
PM _{2.5} Long-Term Emissions	0.96 tons/yr (uncontrolled)
PM _{2.5} Short-Term Emissions	2.60 lbs/hr (uncontrolled)
Total Scraper Loading Emissions:	
TSP Long-Term Emissions	4.38 tons/yr (uncontrolled)
TSP Short-Term Emissions	9.60 lbs/hr (uncontrolled)
PM ₁₀ Long-Term Emissions	1.34 tons/yr (uncontrolled)
PM ₁₀ Short-Term Emissions	2.94 lbs/hr (uncontrolled)
PM _{2.5} Long-Term Emissions	0.13 tons/yr (uncontrolled)
PM _{2.5} Short-Term Emissions	0.29 lbs/hr (uncontrolled)
Total Scraper Unloading Emissions:	
TSP Long-Term Emissions	0.025 tons/yr (uncontrolled)
TSP Short-Term Emissions	0.055 lbs/hr (uncontrolled)
PM ₁₀ Long-Term Emissions	0.012 tons/yr (uncontrolled)
PM ₁₀ Short-Term Emissions	0.026 lbs/hr (uncontrolled)
PM _{2.5} Long-Term Emissions	0.002 tons/yr (uncontrolled)
PM ₂₅ Short-Term Emissions	0.004 lbs/hr (uncontrolled)

Total Scraper Emissions:

TSP Long-Term Emissions TSP Short-Term Emissions

PM₁₀ Long-Term Emissions PM₁₀ Short-Term Emissions

PM_{2.5} Long-Term Emissions PM_{2.5} Short-Term Emissions

39.89 tons/yr (uncontrolled) 105.93 lbs/hr (uncontrolled)

10.93 tons/yr (uncontrolled) 28.96 lbs/hr (uncontrolled)

1.09 tons/yr (uncontrolled) 2.90 lbs/hr (uncontrolled)

COMPACTOR OPERATIONS

(Uncontrolled Emissions)

Purpose: The purpose of this calculation is to estimate the potential fugitive dust emissions from Compactor operations within the Disposal Area.

Methodology:

According to AP-42, Section 13.2.3, Heavy Construction Operations (January 1995), Table 13.2.3-1, emissions for TSP and PM₁₀ are to be estimated by use of the bulldozer emission factor equations provided in AP-42, Section 11.9, Western Surface Coal Mining (October 1998), Table 11.9-1:

DISPOSAL AREA OPERATIONS

Emissions Equations:

Emissions Equ	(M) ^{1.2}	(AP-42, Table 11.9-1)			
E _{PM15} =	(1.0)(s) ^{1.5} (M) ^{1.4}	(AP-42, Table 11.9-1)			
E _{PM10} =	(0.75)(E _{PM15})	(AP-42, Table 11.9-1)			
E _{PM10} =	(0.75)(s) ^{1.5} (M) ^{1.4}				
E _{PM2.5} =	(0.105)(E _{TSP})	(AP-42, Table 11.9-1)			
Where:					
E = size-specifie	c emission factor (lbs/hr of operat	ion)			
s = material silt	content (%) =		9.00 % (assumed for MSW cover AP-42, Table 13.2.4-1)		
M = material mo	pisture content (%) =		12.00 % (assumed for MSW cover AP-42, Table 13.2.4-	1)	
TSP, PM ₁₀ , and	PM _{2.5} Emission Factors:				
E _{TSP} =	[(5.7)(9) ^{1.2}]/[(12) ^{1.3}] =		3.15 lbs/hr		
E _{PM10} =	[(0.75)(9) ^{1.5}]/[(12) ^{1.4}] =		0.62 lbs/hr		
E _{PM2.5} =	$(0.105)[(5.7)(9)^{1.2}]/[(12)^{1.3}] =$		0.33 lbs/hr		
Operating Hou	rs Per Year:				
Operating efficie	ency =		100% (based on Landfill data)		
Operating hours	s/day =		9 hrs/day (based on Landfill data)		
Operating days	per year =		304 days/yr		
Operating hours	s per year = (operating efficiency)	(operating hrs/day)(operating days/yr)			
Operating hours per year =			2,736 hrs/yr		
TSP, PM ₁₀ and	PM _{2.5} Emissions (Long-Term a	nd Short-Term):			
E _{TSP(lbs/yr)} =	(E _{TSP})(operating hours per yea	ar) =	8,612.84 lbs/yr		
E _{TSP(tons/yr)} =	$(E_{TSP(lbs/yr})/(2,000 lbs/ton) =$		4.31 tons/yr (uncontrolled)		
E _{TSP(lbs/hr)} =	(E _{TSP(lbs/yr)})/(operating hrs/yr) =		3.15 lbs/hr (uncontrolled)		
E _{PM10(lbs/yr)} =	(E _{PM10})(operating hours per ye	ear) =	1,708.78 lbs/yr		
E _{PM10(tons/yr)} =	(E _{PM10(lbs/yr)})/(2,000 lbs/ton) =		0.85 tons/yr (uncontrolled)		
E _{PM10(lbs/hr)} =	(E _{PM10(lbs/yr)})/(operating hrs/yr)	=	0.62 lbs/hr (uncontrolled)		
_					

904.35 lbs/yr

0.45 tons/yr (uncontrolled)

0.33 lbs/hr (uncontrolled)

 $(E_{PM2.5})$ (operating hours per year) =

(E_{PM2.5(lbs/yr)})/(2,000 lbs/ton) =

 $(E_{PM2.5(lbs/yr)})/(operating hrs/yr) =$

E_{PM2.5(lbs/yr)}=

E_{PM2.5(tons/yr)}=

E_{PM2.5(lbs/hr)}=

BULLDOZER OPERATIONS

(Uncontrolled Emissions)

Purpose: The purpose of this calculation is to estimate the potential fugitive dust emissions from bulldozer operations:

Disposal Area Operations - The bulldozer assists the compactor within the Disposal Area by positioning waste such that it can be easily accessed by the compactor. Based on Landfill data, this operation is performed for 3 hrs/day.

Methodology: Emissions for TSP and PM₁₀ from bulldozer operations were estimated by use of the emission factor equations provided in AP-42, Section 11.9, Western Surface Coal Mining (October 1998), Table 11.9-1:

DISPOSAL AREA OPERATIONS

Emissions Equ	ations:		
E _{TSP} =	(5.7)(s) ^{1.2} (M) ^{1.3}	(AP-42, Table 11.9-1)	
E _{PM15} =	(1.0)(s) ^{1.5} (M) ^{1.4}	(AP-42, Table 11.9-1)	
E _{PM10} =	(0.75)(E _{PM15})	(AP-42, Table 11.9-1)	
E _{PM10} =	(0.75)(s) ^{1.5} (M) ^{1.4}		
E _{PM2.5} =	(0.105)(E _{TSP})	(AP-42, Table 11.9-1)	
Where:			
•	emission factor (lbs/hr of operatio	n)	
s = material silt			9.00 % (assumed for MSW cover AP-42, Table 13.2.4-1)
M = material mo	isture content (%) =		12.00 % (assumed for MSW cover AP-42, Table 13.2.4-1)
TSP, PM ₁₀ , and	PM _{2.5} Emission Factors:		
E _{TSP} =	$[(5.7)(9)^{1.2}]/[(12)^{1.3}] =$		3.15 lbs/hr
E _{PM10} =	$[(0.75)(9)^{1.5}]/[(12)^{1.4}] =$		0.62 lbs/hr
E _{PM2.5} =	$(0.105)[(5.7)(9)^{1.2}]/[(12)^{1.3}] =$		0.33 lbs/hr
•			
Operating Hou			
Operating efficie	•		100% (based on Landfill data)
Operating hours	•		3 hrs/day (based on Landfill data)
Operating days			304 days/yr
Operating hours	per year = (operating efficiency)(o	perating hrs/day)(operating days)	912 hrs/yr
Operating nours	per year -		312 11/5/yi
TSP, PM ₁₀ and	PM _{2.5} Emissions (Long-Term and	I Short-Term):	
E _{TSP(lbs/yr)} =	(E _{TSP})(operating hours per year)		2,870.95 lbs/yr
E _{TSP(tons/yr)} =	(E _{TSP(lbs/yr)})/(2,000 lbs/ton) =		1.44 tons/yr (uncontrolled)
E _{TSP(lbs/hr)} =	(E _{TSP(lbs/yr)})/(operating hrs/yr) =		3.15 lbs/hr (uncontrolled)
E _{PM10(lbs/yr)} =	(E _{PM10})(operating hours per year)) =	569.59 lbs/yr
E _{PM10(tons/yr)} =	(E _{PM10(lbs/yr)})/(2,000 lbs/ton) =		0.28 tons/yr (uncontrolled)
E _{PM10(lbs/hr)} =	(E _{PM10(lbs/yr)})/(operating hrs/yr) =		0.62 lbs/hr (uncontrolled)
E _{PM2.5(lbs/yr)} =	(E _{PM2.5})(operating hours per year) =	301.45 lbs/yr
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(2,000 lbs/ton) =		0.15 tons/yr (uncontrolled)
E _{PM2.5(lbs/hr)} =	$(E_{PM2.5(lbs/yr)})/(operating hrs/yr) =$		0.33 lbs/hr (uncontrolled)

APPENDIX 6.4

WIND EROSION EMISSIONS CALCULATIONS

EMISSION UNIT 2

APPENDIX 6.4 WIND EROSION EMISSIONS CALCULATIONS

Purpose:

<u>Purpose</u> :	The purpose of this calculation is to estimate the potential uncontrolled and controlled fugitive dust emissions due to wind erosion from actively disturbed areas at the Landfill.			
<u>Methodology</u> :	TSP, PM_{10} , and $PM_{2.5}$ emissions due to wind erosion are estim Section 11.9 (Table 11.9-4) and Section 13.2.2.2:	ssions due to wind erosion are estimated through application of emission factors presented in AP-42, 4) and Section 13.2.2.2:		
TSP, PM ₁₀ , and	PM _{2.5} Emission Factors:			
The emission fac	ctor for TSP is obtained from AP-42, Section 11.9 (Table 11.9-4)	and Section 13.2.2.2:		
E _{TSP} =	E _{TSP} = 0.38 tons/acre/yr (Table 11.9-4)			
The emission fac	ctors for PM_{10} and $PM_{2.5}$ are calculated by applying the ratio of th	$e\ PM_{0,}PM_{2.5}$ and TSP particle size multiplier (k) values, obtained from		
AP-42, Section 1	13.2.2.2, to the TSP emission factor of 0.380 tons/acre:			
E _{PM10} =	(1.5/4.9)(E _{TSP}) = (1.5/4.9)(0.38 tons/acre) =	0.12 tons/acre/yr		
E _{PM2.5} =	(0.15/4.9)(E _{TSP}) = (0.15/4.9)(0.38 tons/acre) =	0.012 tons/acre/yr		
Example Calcul	lations:			
0	dust emissions from actively disturbed areas are estimated utili , as illustrated in the following example calculations:	zing the acreage of the disturbed area and the TSP, $PW_{\!\!\!\!\!\!}$ and $PM_{\!\!\!\!2.5}$		

Example disturbed area = MSW Disposal Route (Unpaved):

The acreage for the unpaved MSW Disposal Route, is calculated by multiplying the total road length by the average road width of 32 ft., and then dividing by $43,560 \text{ ft}^2/\text{acre}$. The acreage for access roads and auxiliary roads was determined using AutoCAD software.

Estimated Unpav	red MSW Disposal Route length =	1,884 feet
Estimated Unpav	1.38 acres	
► Example: MS	V Disposal Route (Unpaved) uncontrolled TSP, PM _{rn} and PM ₂₅ Emissior	ne.
E _{TSP(tons/vr)} =	(0.38 tons/acre/yr)(1.03 acres) =	0.53 tons/yr (uncontrolled)
TSP(tons/yr) -	(5.50 tor)/(2.000 lbs/ton)/(8.760 brs/tr)	0.130 lbs/br (uncontrolled)

trolled)
ontrolled)
trolled)
ontrolled)
trolled)
1

Based on guidance provided in AP-42, Section 13.2.5, Industrial Wind Erosion (November, 2006), only those areas of the Landfill that are actively disturbed by facility operations were included in the acreage for which potential fugitive dust emissions attributable to wind erosion were calculated. Fugitive dust emissions due to wind erosion on disturbed areas are based on wind erosion potentially occurring 24 hrs/day, 365 days/yr, and are summarized in **Table 6.4.1**.

Controlled Emissions

An overall sweeping and watering control efficiency of 95% (based on NMED AQB guidance) was applied to the following disturbed area:

 MSW Disposal Route (Paved) 	2.97 ac
An overall watering control efficiency of 60% (based on NMED AQB guidance) was	applied to the following disturbed areas:
 Disposal Route (unpaved) 	1.38 ac
 Access Roads (Unpaved) 	4.89 ac
Disposal Area	1.00 ac
Daily Cover Soil Borrow Area	1.50 ac

Example Calculations:

Controlled fugitive dust emissions are estimated by using the following equation: Controlled emissions = (uncontrolled emissions)(1 - control efficiency)

► Example: MSW Disposal Route (Paved) controlled TSP, PM₁₀, and PM _{2.5} Emissions:

E _{TSP(tons/yr)} = (1.05 tons/yr)(1 - (95/100)) =	0.056 tons/yr (controlled)
E _{TSP(lbs/hr)} = (0.2 lbs/hr)(1 - (95/100)) =	0.0129 lbs/hr (controlled)
E _{PM10(tons/yr)} = (0.3 tons/yr)(1 - (95/100)) =	0.017 tons/yr (controlled)
E _{PM10(lbs/hr)} = (0.07 lbs/hr)(1 - (95/100)) =	0.0039 lbs/hr (controlled)
E _{PM2.5(tons/yr)} = (0.03 tons/yr)(1 - (95/100)) =	0.0017 tons/yr (controlled)
E _{PM2.5(lbs/hr)} = (0.007 lbs/hr)(1 - (95/100)) =	0.00039 lbs/hr (controlled)

The controlled fugitive dust emissions due to wind erosion on actively disturbed areas are summarized inTable 6.5.1.

Uncontrolled Emissions

Water is applied to the following areas for fugitive dust control on an as-needed basis. However, for emissions calculations, a conservative water control efficiency of zero was applied to these areas:

►	Auxiliary Roads (Unpaved)	2.59 ac
►	Clean Fill	1.00 ac
►	Green Waste	1.00 ac
►	Petroleum Hydrocarbon Landfarm	0.50 ac
►	Crushing/Shredding Area	0.15 ac

Uncontrolled fugitive dust emissions due to wind erosion on actively disturbed areas are also summarized inTable 6.4.1.

TABLE 6.4.1 - Itemized Summary of Wind Erosion Emissions

Sandoval County Landfill

Number of hours per year =		8,760				U	ncontrolle	d Emissio	ns				Cont	trolled Emis	sions		
Type of Disturbed Area	Area (acres)	TSP Emission Factor, E _{TSP} (tons/acre/yr)	Factor, E _{PM10}	PM _{2.5} Emission Factor, E _{PM2.5} (tons/acre/yr)	TSP (tons/yr)	TSP (lbs/hr)	PM ₁₀ (tons/yr)	PM ₁₀ (lbs/hr)	PM _{2.5} (tons/yr)	PM _{2.5} (lbs/hr)	Applied Control Efficiency (%)	TSP (tons/yr)	TSP (lbs/hr)	PM ₁₀ (tons/yr)	PM ₁₀ (lbs/hr)	PM _{2.5} (tons/yr)	PM _{2.5} (lbs/hr)
Disposal Route (Paved)	2.97	0.38	0.12	0.012	1.13	0.26	0.35	0.08	0.03	0.008	95	0.056	0.013	0.017	0.004	0.0017	0.00039
Disposal Route (unpaved)	1.38	0.38	0.12	0.012	0.53	0.12	0.16	0.04	0.02	0.004	60	0.21	0.05	0.06	0.01	0.006	0.001
Access Roads (unpaved)	4.89	0.38	0.12	0.012	1.86	0.42	0.57	0.13	0.06	0.013	60	0.74	0.17	0.23	0.05	0.02	0.005
Auxiliary Roads (unpaved)	2.59	0.38	0.12	0.012	0.99	0.23	0.30	0.07	0.03	0.007	0	0.99	0.23	0.30	0.07	0.03	0.007
Disposal Area	1.00	0.38	0.12	0.012	0.38	0.09	0.12	0.03	0.01	0.003	60	0.15	0.03	0.05	0.01	0.005	0.001
Daily Cover Soil Borrow Area	1.50	0.38	0.12	0.012	0.57	0.13	0.17	0.04	0.02	0.004	60	0.23	0.05	0.07	0.02	0.007	0.002
Green Waste	1.00	0.38	0.12	0.012	0.38	0.09	0.12	0.03	0.01	0.00	0	0.4	0.1	0.1	0.0	0.01	0.00
Clean Fill	1.00	0.38	0.12	0.012	0.38	0.09	0.12	0.03	0.01	0.003	0	0.4	0.1	0.1	0.03	0.01	0.003
Petroleum Hydrocarbon Landfarm	0.50	0.38	0.12	0.012	0.19	0.04	0.06	0.01	0.01	0.001	0	0.19	0.04	0.06	0.01	0.01	0.001
Crushing/Shredding Area	0.15	0.38	0.12	0.012	0.06	0.01	0.02	0.00	0.002	0.0004	0	0.06	0.01	0.02	0.004	0.002	0.0004
TOTALS	16.99				6.45	1.47	1.98	0.45	0.20	0.045		3.38	0.77	1.04	0.24	0.104	0.024

Note:

Wind erosion estimates were calculated using revised (November, 2006) AP-42 k values for TSP and PM_{10} ; where $k_{TSP} = 4.9$, $k_{PM10} = 1.5$ and $k_{PM2.5} = 0.15$

Sandoval County Landfill

APPENDIX 6.5

NMOC EMISSIONS ESTIMATE

EMISSION UNIT 3

(LandGEM Modeling Outputs)

Summary Report

Landfill Name or Identifier: Sandoval County Landfill

Date: Thursday, May 26, 2022

Description/Comments:

About LandGEM:

First-Order Decomposition Rate Equation:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0,1}^{1} k L_o \left(\frac{M_i}{10}\right) e^{-kt_{ij}}$$

Where,

 Q_{CH4} = annual methane generation in the year of the calculation (m^3 /year) i = 1-year time increment

n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

k = methane generation rate (year⁻¹)

 L_0 = potential methane generation capacity (m^3/Mg)

 $\begin{array}{l} M_i = \text{mass of waste accepted in the i}^{th} \ \text{year} \ (Mg \) \\ t_{ij} = \text{age of the } j^{th} \ \text{section of waste mass } M_i \ \text{accepted in the i}^{th} \ \text{year} \\ (decimal \ years \ , \ e.g., \ 3.2 \ years) \end{array}$

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfillg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

Input Review

LANDFILL CHARACTERISTICS		
Landfill Open Year	1972	
Landfill Closure Year (with 80-year limit)	2028	
Actual Closure Year (without limit)	2028	
Have Model Calculate Closure Year?	No	
Waste Design Capacity		megagrams
MODEL PARAMETERS		
Methane Generation Rate, k	0.020	year ⁻¹
Potential Methane Generation Capacity, L ₀	170	m ³ /Mg
NMOC Concentration	4,000	ppmv as hexa
Methane Content	50	% by volume

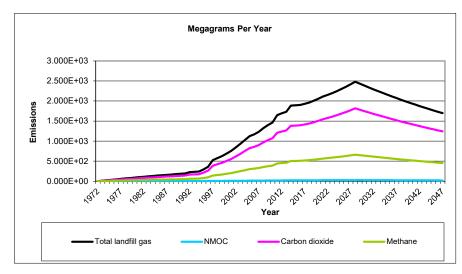
GASES / POLLUTANTS SELECTED				
Gas / Pollutant #1:	Total landfill gas			
Gas / Pollutant #2:	NMOC			
Gas / Pollutant #3:	Carbon dioxide			
Gas / Pollutant #4:	Methane			

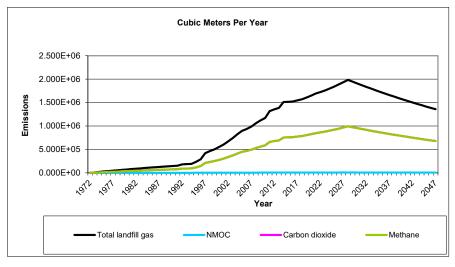
WASTE ACCEPTANCE RATES

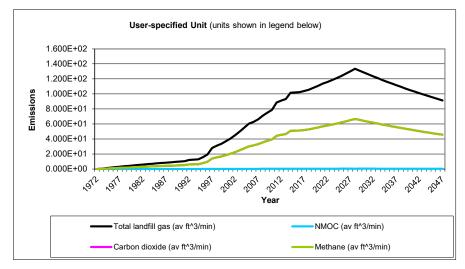
Year	Waste Acc	cepted	Waste-In-Place			
rear	(Mg/year)	(short tons/year)	(Mg)	(short tons)		
1972	1,435	1,579	0	0		
1973	1,435	1,579	1,435	1,579		
1974	1,435	1,579	2,870	3,157		
1975	1,435	1,579	4,305	4,736		
1976	1,435	1,579	5,740	6,314		
1977	1,435	1,579	7,175	7,893		
1978	1,435	1,579	8,610	9,471		
1979	1,435	1,579	10,045	11,050		
1980	1,435	1,579	11,480	12,628		
1981	1,435	1,579	12,915	14,207		
1982	1,435	1,579	14,350	15,785		
1983	1,435	1,579	15,785	17,364		
1984	1,435	1,579	17,220	18,942		
1985	1,435	1,579	18,655	20,521		
1986	1,435	1,579	20,090	22,099		
1987	1,435	1,579	21,525	23,678		
1988	1,435	1,579	22,960	25,256		
1989	1,435	1,579	24,395	26,835		
1990	1,435	1,579	25,830	28,413		
1991	4,191	4,610	27,265	29,992		
1992	1,435	1,579	31,456	34,602		
1993	1,435	1,579	32,891	36,180		
1994	6,759	7,435	34,326	37,759		
1995	8,910	9,801	41,085	45,194		
1996	20,156	22,172	49,995	54,995		
1997	7,724	8,496	70,151	77,166		
1998	6,933	7,626	77,875	85,663		
1999	9,020	9,922	84,808	93,289		
2000	9,548	10,503	93,828	103,211		
2001	11,827	13,010	103,376	113,714		
2002	12,756	14,032	115,203	126,723		
2003	13,948	15,343	127,959	140,755		
2004	13,497	14,847	141,907	156,098		
2005	7,934	8,727	155,404	170,944		
2006	10,251	11,276	163,338	179,672		
2007	13,717	15,089	173,589	190,948		
2008	12,095	13,305	187,306	206,037		
2009	11,012	12,113	199,401	219,341		
2010	25,346	27,881	210,413	231,454		
2011	9,424	10,366	235,759	259,335		

hexane

WASTE ACCEPTANCE RATES (Continued)


Year	Waste Acc	cepted	Waste-In-Place			
	(Mg/year)	(short tons/year)	(Mg)	(short tons)		
2012	8,468	9,315	245,183	269,701		
2013	22,606	24,867	253,651	279,016		
2014	5,229	5,752	276,257	303,883		
2015	5,455	6,001	281,486	309,635		
2016	7,969	8,766	286,941	315,635		
2017	8,080	8,888	294,910	324,401		
2018	10,136	11,150	302,990	333,289		
2019	10,683	11,751	313,126	344,439		
2020	11,292	12,421	323,809	356,190		
2021	9,682	10,650	335,101	368,611		
2022	10,473	11,521	344,783	379,261		
2023	10,997	12,097	355,256	390,782		
2024	11,547	12,702	366,253	402,879		
2025	12,124	13,337	377,800	415,580		
2026	12,730	14,003	389,924	428,917		
2027	13,367	14,704	402,655	442,920		
2028	0	0	416,022	457,624		
2029	0	0	416,022	457,624		
2030	0	0	416,022	457,624		
2031	0	0	416,022	457,624		
2032	0	0	416,022	457,624		
2033	0	0	416,022	457,624		
2034	0	0	416,022	457,624		
2035	0	0	416,022	457,624		
2036	0	0	416,022	457,624		
2037	0	0	416,022	457,624		
2038	0	0	416,022	457,624		
2039	0	0	416,022	457,624		
2040	0	0	416,022	457,624		
2041	0	0	416,022	457,624		
2042	0	0	416,022	457,624		
2043	0	0	416,022	457,624		
2044	0	0	416,022	457,624		
2045	0	0	416,022	457,624		
2046	0	0	416,022	457,624		
2047	0	0	416,022	457,624		
2048	0	0	416,022	457,624		
2049	0	0	416,022	457,624		
2050	0	0	416,022	457,624		
2051	0	0	416,022	457,624		


	Gas / Pol	lutant Default Param	User-specified Pollutant Parameters:			
		Concentration		Concentration		
	Compound	(ppmv)	Molecular Weight	(ppmv)	Molecular Weight	
Gases	Total landfill gas		0.00			
	Methane Carbon dioxide		16.04 44.01			
	NMOC	4,000	86.18			
	1,1,1-Trichloroethane	4,000	00.10			
	(methyl chloroform) -					
	HAP	0.48	133.41			
	1,1,2,2-	0.10				
	Tetrachloroethane -					
	HAP/VOC	1.1	167.85			
	1,1-Dichloroethane					
	(ethylidene dichloride) -					
	HAP/VOC	2.4	98.97			
	1,1-Dichloroethene					
	(vinylidene chloride) -					
	HAP/VOC	0.20	96.94			
	1,2-Dichloroethane					
	(ethylene dichloride) -	A 44				
	HAP/VOC	0.41	98.96			
	1,2-Dichloropropane					
	(propylene dichloride) - HAP/VOC	0.18	112.00			
	2-Propanol (isopropyl	0.10	112.99			
	alcohol) - VOC	50	60.11			
	Acetone	7.0	58.08			
	Acrylonitrile - HAP/VOC	6.3	53.06			
	Benzene - No or					
	Unknown Co-disposal -					
	HAP/VOC	1.9	78.11			
	Benzene - Co-disposal -					
ts	HAP/VOC	11	78.11			
Pollutants	Bromodichloromethane -	0.4	100.00			
Iluí	VOC Butane - VOC	<u>3.1</u> 5.0	163.83 58.12			
Ъ	Carbon disulfide -	5.0	00.12			
	HAP/VOC	0.58	76.13			
	Carbon monoxide	140	28.01			
	Carbon tetrachloride -	110	20.01			
	HAP/VOC	4.0E-03	153.84			
	Carbonyl sulfide -					
	HAP/VOC	0.49	60.07			
	Chlorobenzene -					
	HAP/VOC	0.25	112.56			
	Chlorodifluoromethane	1.3	86.47			
	Chloroethane (ethyl					
	chloride) - HAP/VOC	1.3	64.52			
	Chloroform - HAP/VOC	0.03	119.39			
	Chloromethane - VOC	1.2	50.49			
	Dichlorobenzene - (HAP					
	for para isomer/VOC)	0.21	147			
		0.21				
	Dichlorodifluoromethane	16	120.91			
	Dichlorofluoromethane -					
	VOC	2.6	102.92			
	Dichloromethane					
	(methylene chloride) -					
	HAP	14	84.94			
	Dimethyl sulfide (methyl					
	sulfide) - VOC	7.8	62.13			
	Ethane	890	30.07			
	Ethanol - VOC	27	46.08		1	


Pollutant Parameters (Continued)

	Gas / Poll	utant Default Parai	User-specified Pollutant Parameters:		
	Commonweil	Concentration	Molocularité	Concentration	Molesular
	Compound Ethyl mercaptan	(ppmv)	Molecular Weight	(ppmv)	Molecular Weight
	(ethanethiol) - VOC	2.3	62.13		
	Ethylbenzene -	2.3	02.13		
	HAP/VOC	4.6	106.16		
	Ethylene dibromide -	4.0	100.10		
	HAP/VOC	1.0E-03	187.88		
	Fluorotrichloromethane -	1.02-03	107.00		
	VOC	0.76	137.38		
	Hexane - HAP/VOC	6.6	86.18		
	Hydrogen sulfide	36	34.08		
	Mercury (total) - HAP	2.9E-04	200.61		
	Methyl ethyl ketone -	2.50-04	200.01		
	HAP/VOC	7.1	72.11		
	Methyl isobutyl ketone -	7.1	72.11		
	HAP/VOC	1.9	100.16		
		1.9	100.10		
	Methyl mercaptan - VOC	2.5	48.11		
	Pentane - VOC	3.3	72.15		
	Perchloroethylene	٥.٥	12.10		
	(tetrachloroethylene) -				
	(tetrachioroethylene) - HAP	3.7	165.83		
	Propane - VOC	11	44.09		
	t-1,2-Dichloroethene -		00.04		
	VOC	2.8	96.94		
	Toluene - No or				
	Unknown Co-disposal -				
	HAP/VOC	39	92.13		
	Toluene - Co-disposal -				
	HAP/VOC	170	92.13		
	Trichloroethylene				
ŝ	(trichloroethene) -				
Pollutants	HAP/VOC	2.8	131.40		
Int	Vinyl chloride -				
0	HAP/VOC	7.3	62.50		
ш.	Xylenes - HAP/VOC	12	106.16		

Graphs

<u>Results</u>

Year		Total landfill gas		NMOC		
rear	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
972	0	0	0	0	0	0
973	1.208E+01	9.671E+03	6.498E-01	1.387E-01	3.868E+01	2.599E-03
974	2.391E+01	1.915E+04	1.287E+00	2.746E-01	7.660E+01	5.147E-03
975	3.552E+01	2.844E+04	1.911E+00	4.078E-01	1.138E+02	7.644E-03
976	4.689E+01	3.755E+04	2.523E+00	5.384E-01	1.502E+02	1.009E-02
1977	5.804E+01	4.648E+04	3.123E+00	6.664E-01	1.859E+02	1.249E-02
1978	6.897E+01	5.523E+04	3.711E+00	7.918E-01	2.209E+02	1.484E-02
979	7.968E+01	6.380E+04	4.287E+00	9.148E-01	2.552E+02	1.715E-02
980	9.018E+01	7.221E+04	4.852E+00	1.035E+00	2.888E+02	1.941E-02
981	1.005E+02	8.045E+04	5.406E+00	1.154E+00	3.218E+02	2.162E-02
982	1.106E+02	8.853E+04	5.948E+00	1.269E+00	3.541E+02	2.379E-02
983	1.204E+02	9.645E+04	6.480E+00	1.383E+00	3.858E+02	2.592E-02
984	1.301E+02	1.042E+05	7.002E+00	1.494E+00	4.168E+02	2.801E-02
985	1.396E+02	1.118E+05	7.513E+00	1.603E+00	4.473E+02	3.005E-02
986	1.490E+02	1.193E+05	8.014E+00	1.710E+00	4.771E+02	3.206E-02
987	1.581E+02	1.266E+05	8.505E+00	1.815E+00	5.063E+02	3.402E-02
988	1.670E+02	1.337E+05	8.986E+00	1.918E+00	5.350E+02	3.595E-02
989	1.758E+02	1.408E+05	9.458E+00	2.018E+00	5.631E+02	3.783E-02
990	1.844E+02	1.477E+05	9.921E+00	2.117E+00	5.906E+02	3.968E-02
991	1.928E+02	1.544E+05	1.037E+01	2.214E+00	6.176E+02	4.150E-02
992	2.243E+02	1.796E+05	1.207E+01	2.575E+00	7.183E+02	4.827E-02
993	2.319E+02	1.857E+05	1.248E+01	2.663E+00	7.428E+02	4.991E-02
994	2.394E+02	1.917E+05	1.288E+01	2.748E+00	7.668E+02	5.152E-02
1995	2.915E+02	2.334E+05	1.569E+01	3.347E+00	9.338E+02	6.274E-02
1996	3.607E+02	2.889E+05	1.941E+01	4.142E+00	1.155E+03	7.764E-02
1997	5.232E+02	4.190E+05	2.815E+01	6.007E+00	1.676E+03	1.126E-01
1998	5.779E+02	4.627E+05	3.109E+01	6.635E+00	1.851E+03	1.244E-01
1999	6.248E+02	5.003E+05	3.362E+01	7.173E+00	2.001E+03	1.345E-01
2000	6.883E+02	5.512E+05	3.703E+01	7.903E+00	2.205E+03	1.481E-01
2001	7.551E+02	6.046E+05	4.062E+01	8.669E+00	2.418E+03	1.625E-01
2002	8.396E+02	6.723E+05	4.517E+01	9.640E+00	2.689E+03	1.807E-01
2003	9.304E+02	7.450E+05	5.006E+01	1.068E+01	2.980E+03	2.002E-01
2004	1.029E+03	8.242E+05	5.538E+01	1.182E+01	3.297E+03	2.215E-01
2005	1.123E+03	8.989E+05	6.040E+01	1.289E+01	3.596E+03	2.416E-01
2006	1.167E+03	9.346E+05	6.279E+01	1.340E+01	3.738E+03	2.512E-01
2007	1.230E+03	9.851E+05	6.619E+01	1.412E+01	3.941E+03	2.648E-01
2008	1.321E+03	1.058E+06	7.109E+01	1.517E+01	4.232E+03	2.844E-01
2009	1.397E+03	1.119E+06	7.516E+01	1.604E+01	4.474E+03	3.006E-01
2010	1.462E+03	1.171E+06	7.866E+01	1.679E+01	4.683E+03	3.146E-01
2011	1.646E+03	1.318E+06	8.858E+01	1.890E+01	5.273E+03	3.543E-01
2012	1.693E+03	1.356E+06	9.109E+01	1.944E+01	5.423E+03	3.644E-01
2013	1.731E+03	1.386E+06	9.312E+01	1.987E+01	5.544E+03	3.725E-01
014	1.887E+03	1.511E+06	1.015E+02	2.166E+01	6.043E+03	4.061E-01
015	1.893E+03	1.516E+06	1.019E+02	2.174E+01	6.065E+03	4.075E-01
2016	1.902E+03	1.523E+06	1.023E+02	2.184E+01	6.092E+03	4.093E-01
2017	1.931E+03	1.546E+06	1.039E+02	2.217E+01	6.186E+03	4.156E-01
2018	1.961E+03	1.570E+06	1.055E+02	2.251E+01	6.281E+03	4.220E-01
2019	2.007E+03	1.608E+06	1.080E+02	2.305E+01	6.430E+03	4.320E-01
2020	2.058E+03	1.648E+06	1.107E+02	2.362E+01	6.591E+03	4.428E-01
2021	2.112E+03	1.691E+06	1.136E+02	2.425E+01	6.765E+03	4.545E-01

		Total landfill gas		NMOC		
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
2022	2.152E+03	1.723E+06	1.158E+02	2.470E+01	6.892E+03	4.630E-01
2023	2.197E+03	1.759E+06	1.182E+02	2.523E+01	7.037E+03	4.728E-01
2024	2.246E+03	1.799E+06	1.209E+02	2.579E+01	7.195E+03	4.834E-01
2025	2.299E+03	1.841E+06	1.237E+02	2.639E+01	7.363E+03	4.947E-01
2026	2.355E+03	1.886E+06	1.267E+02	2.704E+01	7.544E+03	5.069E-01
2027	2.416E+03	1.935E+06	1.300E+02	2.774E+01	7.738E+03	5.199E-01
2028	2.481E+03	1.986E+06	1.335E+02	2.848E+01	7.945E+03	5.338E-01
2029	2.431E+03	1.947E+06	1.308E+02	2.792E+01	7.788E+03	5.233E-01
2029	2.383E+03	1.908E+06	1.282E+02	2.736E+01	7.634E+03	5.129E-01
2030	2.336E+03	1.871E+06	1.257E+02	2.682E+01	7.483E+03	5.028E-01
2032	2.290E+03	1.834E+06	1.237E+02	2.629E+01	7.334E+03	4.928E-01
2032	2.245E+03	1.797E+06	1.208E+02	2.577E+01	7.189E+03	4.830E-01
2033	2.200E+03	1.762E+06	1.184E+02	2.526E+01	7.047E+03	4.735E-01
2034	2.156E+03	1.727E+06	1.160E+02	2.476E+01	6.907E+03	4.641E-01
2035						
	2.114E+03	1.693E+06	1.137E+02	2.427E+01	6.771E+03	4.549E-01
2037	2.072E+03	1.659E+06	1.115E+02	2.379E+01	6.636E+03	4.459E-01
2038	2.031E+03	1.626E+06	1.093E+02	2.332E+01	6.505E+03	4.371E-01
2039	1.991E+03	1.594E+06	1.071E+02	2.286E+01	6.376E+03	4.284E-01
2040	1.951E+03	1.562E+06	1.050E+02	2.240E+01	6.250E+03	4.199E-01
2041	1.913E+03	1.532E+06	1.029E+02	2.196E+01	6.126E+03	4.116E-01
2042	1.875E+03	1.501E+06	1.009E+02	2.152E+01	6.005E+03	4.035E-01
2043	1.838E+03	1.472E+06	9.887E+01	2.110E+01	5.886E+03	3.955E-01
2044	1.801E+03	1.442E+06	9.691E+01	2.068E+01	5.769E+03	3.876E-01
2045	1.766E+03	1.414E+06	9.499E+01	2.027E+01	5.655E+03	3.800E-01
2046	1.731E+03	1.386E+06	9.311E+01	1.987E+01	5.543E+03	3.724E-01
2047	1.696E+03	1.358E+06	9.127E+01	1.948E+01	5.433E+03	3.651E-01
2048	1.663E+03	1.331E+06	8.946E+01	1.909E+01	5.326E+03	3.578E-01
2049	1.630E+03	1.305E+06	8.769E+01	1.871E+01	5.220E+03	3.508E-01
2050	1.598E+03	1.279E+06	8.595E+01	1.834E+01	5.117E+03	3.438E-01
2051	1.566E+03	1.254E+06	8.425E+01	1.798E+01	5.016E+03	3.370E-01
2052	1.535E+03	1.229E+06	8.258E+01	1.762E+01	4.916E+03	3.303E-01
2053	1.505E+03	1.205E+06	8.095E+01	1.727E+01	4.819E+03	3.238E-01
2054	1.475E+03	1.181E+06	7.935E+01	1.693E+01	4.724E+03	3.174E-01
2055	1.446E+03	1.158E+06	7.777E+01	1.660E+01	4.630E+03	3.111E-01
2056	1.417E+03	1.135E+06	7.623E+01	1.627E+01	4.538E+03	3.049E-01
2057	1.389E+03	1.112E+06	7.472E+01	1.595E+01	4.449E+03	2.989E-01
2058	1.361E+03	1.090E+06	7.324E+01	1.563E+01	4.360E+03	2.930E-01
2059	1.334E+03	1.069E+06	7.179E+01	1.532E+01	4.274E+03	2.872E-01
2060	1.308E+03	1.047E+06	7.037E+01	1.502E+01	4.189E+03	2.815E-01
2061	1.282E+03	1.027E+06	6.898E+01	1.472E+01	4.107E+03	2.759E-01
2062	1.257E+03	1.006E+06	6.761E+01	1.443E+01	4.025E+03	2.705E-01
2063	1.232E+03	9.864E+05	6.627E+01	1.414E+01	3.946E+03	2.651E-01
2064	1.207E+03	9.668E+05	6.496E+01	1.386E+01	3.867E+03	2.598E-01
2065	1.184E+03	9.477E+05	6.368E+01	1.359E+01	3.791E+03	2.547E-01
2066	1.160E+03	9.289E+05	6.242E+01	1.332E+01	3.716E+03	2.497E-01
2067	1.137E+03	9.105E+05	6.118E+01	1.306E+01	3.642E+03	2.447E-01
2068	1.115E+03	8.925E+05	5.997E+01	1.280E+01	3.570E+03	2.399E-01
2069	1.093E+03	8.748E+05	5.878E+01	1.254E+01	3.499E+03	2.351E-01
2009	1.071E+03	8.575E+05	5.762E+01	1.229E+01	3.430E+03	2.305E-01
2070	1.050E+03	8.405E+05	5.648E+01	1.205E+01	3.362E+03	2.303E-01 2.259E-01
2071	1.029E+03	8.239E+05	5.536E+01	1.181E+01	3.296E+03	2.259E-01 2.214E-01

Veer		Total landfill gas		NMOC		
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
2073	1.009E+03	8.076E+05	5.426E+01	1.158E+01	3.230E+03	2.170E-01
2074	9.886E+02	7.916E+05	5.319E+01	1.135E+01	3.166E+03	2.127E-01
2075	9.690E+02	7.759E+05	5.213E+01	1.112E+01	3.104E+03	2.085E-01
2076	9.498E+02	7.605E+05	5.110E+01	1.090E+01	3.042E+03	2.044E-01
2077	9.310E+02	7.455E+05	5.009E+01	1.069E+01	2.982E+03	2.004E-01
2078	9.125E+02	7.307E+05	4.910E+01	1.048E+01	2.923E+03	1.964E-01
2079	8.945E+02	7.163E+05	4.813E+01	1.027E+01	2.865E+03	1.925E-01
2080	8.768E+02	7.021E+05	4.717E+01	1.007E+01	2.808E+03	1.887E-01
2081	8.594E+02	6.882E+05	4.624E+01	9.867E+00	2.753E+03	1.850E-01
2082	8.424E+02	6.745E+05	4.532E+01	9.672E+00	2.698E+03	1.813E-01
2083	8.257E+02	6.612E+05	4.443E+01	9.480E+00	2.645E+03	1.777E-01
2084	8.094E+02	6.481E+05	4.355E+01	9.292E+00	2.592E+03	1.742E-01
2085	7.933E+02	6.353E+05	4.268E+01	9.108E+00	2.541E+03	1.707E-01
2086	7.776E+02	6.227E+05	4.184E+01	8.928E+00	2.491E+03	1.674E-01
2087	7.622E+02	6.104E+05	4.101E+01	8.751E+00	2.441E+03	1.640E-01
2088	7.471E+02	5.983E+05	4.020E+01	8.578E+00	2.393E+03	1.608E-01
2089	7.323E+02	5.864E+05	3.940E+01	8.408E+00	2.346E+03	1.576E-01
2090	7.178E+02	5.748E+05	3.862E+01	8.242E+00	2.299E+03	1.545E-01
2091	7.036E+02	5.634E+05	3.786E+01	8.078E+00	2.254E+03	1.514E-01
2092	6.897E+02	5.523E+05	3.711E+01	7.918E+00	2.209E+03	1.484E-01
2093	6.760E+02	5.413E+05	3.637E+01	7.762E+00	2.165E+03	1.455E-01
2094	6.626E+02	5.306E+05	3.565E+01	7.608E+00	2.122E+03	1.426E-01
2095	6.495E+02	5.201E+05	3.495E+01	7.457E+00	2.080E+03	1.398E-01
2096	6.367E+02	5.098E+05	3.425E+01	7.310E+00	2.039E+03	1.370E-01
2097	6.241E+02	4.997E+05	3.358E+01	7.165E+00	1.999E+03	1.343E-01
2098	6.117E+02	4.898E+05	3.291E+01	7.023E+00	1.959E+03	1.316E-01
2099	5.996E+02	4.801E+05	3.226E+01	6.884E+00	1.920E+03	1.290E-01
2100	5.877E+02	4.706E+05	3.162E+01	6.748E+00	1.882E+03	1.265E-01
2101	5.761E+02	4.613E+05	3.099E+01	6.614E+00	1.845E+03	1.240E-01
2102	5.647E+02	4.522E+05	3.038E+01	6.483E+00	1.809E+03	1.215E-01
2103	5.535E+02	4.432E+05	2.978E+01	6.355E+00	1.773E+03	1.191E-01
2104	5.425E+02	4.344E+05	2.919E+01	6.229E+00	1.738E+03	1.168E-01
2105	5.318E+02	4.258E+05	2.861E+01	6.105E+00	1.703E+03	1.144E-01
2106	5.213E+02	4.174E+05	2.804E+01	5.985E+00	1.670E+03	1.122E-01
2107	5.109E+02	4.091E+05	2.749E+01	5.866E+00	1.637E+03	1.100E-01
2108	5.008E+02	4.010E+05	2.695E+01	5.750E+00	1.604E+03	1.078E-01
2109	4.909E+02	3.931E+05	2.641E+01	5.636E+00	1.572E+03	1.056E-01
2110	4.812E+02	3.853E+05	2.589E+01	5.524E+00	1.541E+03	1.036E-01
2111	4.717E+02	3.777E+05	2.538E+01	5.415E+00	1.511E+03	1.015E-01
2112	4.623E+02	3.702E+05	2.487E+01	5.308E+00	1.481E+03	9.949E-02

Year	Carbon dioxide			Methane		
	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)
972	0	0	0	0	0	0
973	8.851E+00	4.835E+03	3.249E-01	3.226E+00	4.835E+03	3.249E-01
974	1.753E+01	9.575E+03	6.433E-01	6.388E+00	9.575E+03	6.433E-01
975	2.603E+01	1.422E+04	9.555E-01	9.487E+00	1.422E+04	9.555E-01
976	3.437E+01	1.877E+04	1.261E+00	1.253E+01	1.877E+04	1.261E+00
1977	4.254E+01	2.324E+04	1.561E+00	1.550E+01	2.324E+04	1.561E+00
978	5.055E+01	2.761E+04	1.855E+00	1.842E+01	2.761E+04	1.855E+00
979	5.840E+01	3.190E+04	2.143E+00	2.128E+01	3.190E+04	2.143E+00
980	6.609E+01	3.611E+04	2.426E+00	2.409E+01	3.611E+04	2.426E+00
981	7.363E+01	4.023E+04	2.703E+00	2.684E+01	4.023E+04	2.703E+00
982	8.103E+01	4.426E+04	2.974E+00	2.953E+01	4.426E+04	2.974E+00
983	8.827E+01	4.822E+04	3.240E+00	3.217E+01	4.822E+04	3.240E+00
984	9.538E+01	5.210E+04	3.501E+00	3.476E+01	5.210E+04	3.501E+00
985	1.023E+02	5.591E+04	3.756E+00	3.730E+01	5.591E+04	3.756E+00
986	1.092E+02	5.964E+04	4.007E+00	3.979E+01	5.964E+04	4.007E+00
987	1.159E+02	6.329E+04	4.252E+00	4.222E+01	6.329E+04	4.252E+00
988	1.224E+02	6.687E+04	4.493E+00	4.461E+01	6.687E+04	4.493E+00
989	1.288E+02	7.038E+04	4.729E+00	4.696E+01	7.038E+04	4.729E+00
990	1.351E+02	7.383E+04	4.960E+00	4.925E+01	7.383E+04	4.960E+00
991	1.413E+02	7.720E+04	5.187E+00	5.150E+01	7.720E+04	5.187E+00
992	1.644E+02	8.979E+04	6.033E+00	5.990E+01	8.979E+04	6.033E+00
993	1.700E+02	9.285E+04	6.239E+00	6.194E+01	9.285E+04	6.239E+00
994	1.754E+02	9.585E+04	6.440E+00	6.394E+01	9.585E+04	6.440E+00
995	2.137E+02	1.167E+05	7.843E+00	7.787E+01	1.167E+05	7.843E+00
996	2.644E+02	1.444E+05	9.705E+00	9.636E+01	1.444E+05	9.705E+00
997	3.835E+02	2.095E+05	1.408E+01	1.398E+02	2.095E+05	1.408E+01
998	4.235E+02	2.314E+05	1.555E+01	1.544E+02	2.314E+05	1.555E+01
999	4.579E+02	2.502E+05	1.681E+01	1.669E+02	2.502E+05	1.681E+01
2000	5.045E+02	2.756E+05	1.852E+01	1.839E+02	2.756E+05	1.852E+01
2001	5.534E+02	3.023E+05	2.031E+01	2.017E+02	3.023E+05	2.031E+01
2002	6.154E+02	3.362E+05	2.259E+01	2.243E+02	3.362E+05	2.259E+01
2003	6.819E+02	3.725E+05	2.503E+01	2.485E+02	3.725E+05	2.503E+01
2004	7.544E+02	4.121E+05	2.769E+01	2.749E+02	4.121E+05	2.769E+01
2005	8.227E+02	4.494E+05	3.020E+01	2.998E+02	4.494E+05	3.020E+01
006	8.553E+02	4.673E+05	3.140E+01	3.117E+02	4.673E+05	3.140E+01
007	9.016E+02	4.926E+05	3.310E+01	3.286E+02	4.926E+05	3.310E+01
800	9.684E+02	5.290E+05	3.555E+01	3.529E+02	5.290E+05	3.555E+01
009	1.024E+03	5.593E+05	3.758E+01	3.731E+02	5.593E+05	3.758E+01
010	1.071E+03	5.853E+05	3.933E+01	3.905E+02	5.853E+05	3.933E+01
011	1.207E+03	6.592E+05	4.429E+01	4.398E+02	6.592E+05	4.429E+01
012	1.241E+03	6.779E+05	4.555E+01	4.522E+02	6.779E+05	4.555E+01
013	1.268E+03	6.930E+05	4.656E+01	4.623E+02	6.930E+05	4.656E+01
014	1.383E+03	7.554E+05	5.076E+01	5.040E+02	7.554E+05	5.076E+01
015	1.388E+03	7.581E+05	5.094E+01	5.058E+02	7.581E+05	5.094E+01
016	1.394E+03	7.615E+05	5.116E+01	5.080E+02	7.615E+05	5.116E+01
017	1.415E+03	7.732E+05	5.195E+01	5.159E+02	7.732E+05	5.195E+01
018	1.437E+03	7.851E+05	5.275E+01	5.238E+02	7.851E+05	5.275E+01
019	1.471E+03	8.038E+05	5.400E+01	5.362E+02	8.038E+05	5.400E+01
020	1.508E+03	8.238E+05	5.535E+01	5.496E+02	8.238E+05	5.535E+01
2021	1.548E+03	8.456E+05	5.681E+01	5.641E+02	8.456E+05	5.681E+01

Vaar		Carbon dioxide		Methane		
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
2022	1.577E+03	8.615E+05	5.788E+01	5.747E+02	8.615E+05	5.788E+01
023	1.610E+03	8.797E+05	5.911E+01	5.869E+02	8.797E+05	5.911E+01
024	1.646E+03	8.993E+05	6.043E+01	6.000E+02	8.993E+05	6.043E+01
2025	1.685E+03	9.204E+05	6.184E+01	6.141E+02	9.204E+05	6.184E+01
2026	1.726E+03	9.430E+05	6.336E+01	6.292E+02	9.430E+05	6.336E+01
2027	1.771E+03	9.673E+05	6.499E+01	6.453E+02	9.673E+05	6.499E+01
2028	1.818E+03	9.932E+05	6.673E+01	6.626E+02	9.932E+05	6.673E+01
2029	1.782E+03	9.735E+05	6.541E+01	6.495E+02	9.735E+05	6.541E+01
2030	1.747E+03	9.542E+05	6.411E+01	6.366E+02	9.542E+05	6.411E+01
2031	1.712E+03	9.353E+05	6.284E+01	6.240E+02	9.353E+05	6.284E+01
2032	1.678E+03	9.168E+05	6.160E+01	6.116E+02	9.168E+05	6.160E+01
2033	1.645E+03	8.986E+05	6.038E+01	5.995E+02	8.986E+05	6.038E+01
2034	1.612E+03	8.809E+05	5.918E+01	5.877E+02	8.809E+05	5.918E+01
035	1.580E+03	8.634E+05	5.801E+01	5.760E+02	8.634E+05	5.801E+01
036	1.549E+03	8.463E+05	5.686E+01	5.646E+02	8.463E+05	5.686E+01
2037	1.519E+03	8.296E+05	5.574E+01	5.534E+02	8.296E+05	5.574E+01
2038	1.488E+03	8.131E+05	5.463E+01	5.425E+02	8.131E+05	5.463E+01
2039	1.459E+03	7.970E+05	5.355E+01	5.317E+02	7.970E+05	5.355E+01
2040	1.430E+03	7.812E+05	5.249E+01	5.212E+02	7.812E+05	5.249E+01
2041	1.402E+03	7.658E+05	5.145E+01	5.109E+02	7.658E+05	5.145E+01
2042	1.374E+03	7.506E+05	5.043E+01	5.008E+02	7.506E+05	5.043E+01
2043	1.347E+03	7.358E+05	4.944E+01	4.909E+02	7.358E+05	4.944E+01
2044	1.320E+03	7.212E+05	4.846E+01	4.811E+02	7.212E+05	4.846E+01
2045	1.294E+03	7.069E+05	4.750E+01	4.716E+02	7.069E+05	4.750E+01
2046	1.268E+03	6.929E+05	4.656E+01	4.623E+02	6.929E+05	4.656E+01
2047	1.243E+03	6.792E+05	4.563E+01	4.531E+02	6.792E+05	4.563E+01
2048	1.219E+03	6.657E+05	4.473E+01	4.441E+02	6.657E+05	4.473E+01
2049	1.194E+03	6.526E+05	4.384E+01	4.353E+02	6.526E+05	4.384E+01
2050	1.171E+03	6.396E+05	4.298E+01	4.267E+02	6.396E+05	4.298E+01
2051	1.148E+03	6.270E+05	4.213E+01	4.183E+02	6.270E+05	4.213E+01
2052	1.125E+03	6.146E+05	4.129E+01	4.100E+02	6.146E+05	4.129E+01
2053	1.103E+03	6.024E+05	4.047E+01	4.019E+02	6.024E+05	4.047E+01
2054	1.081E+03	5.905E+05	3.967E+01	3.939E+02	5.905E+05	3.967E+01
2055	1.059E+03	5.788E+05	3.889E+01	3.861E+02	5.788E+05	3.889E+01
2056	1.038E+03	5.673E+05	3.812E+01	3.785E+02	5.673E+05	3.812E+01
2057	1.018E+03	5.561E+05	3.736E+01	3.710E+02	5.561E+05	3.736E+01
2058	9.977E+02	5.451E+05	3.662E+01	3.636E+02	5.451E+05	3.662E+01
2059	9.780E+02	5.343E+05	3.590E+01	3.564E+02	5.343E+05	3.590E+01
2060	9.586E+02	5.237E+05	3.519E+01	3.494E+02	5.237E+05	3.519E+01
2061	9.396E+02	5.133E+05	3.449E+01	3.425E+02	5.133E+05	3.449E+01
2062	9.210E+02	5.032E+05	3.381E+01	3.357E+02	5.032E+05	3.381E+01
2063	9.028E+02	4.932E+05	3.314E+01	3.290E+02	4.932E+05	3.314E+01
2064	8.849E+02	4.834E+05	3.248E+01	3.225E+02	4.834E+05	3.248E+01
065	8.674E+02	4.739E+05	3.184E+01	3.161E+02	4.739E+05	3.184E+01
2066	8.502E+02	4.645E+05	3.121E+01	3.099E+02	4.645E+05	3.121E+01
2067	8.334E+02	4.553E+05	3.059E+01	3.037E+02	4.553E+05	3.059E+01
068	8.169E+02	4.463E+05	2.998E+01	2.977E+02	4.463E+05	2.998E+01
069	8.007E+02	4.374E+05	2.939E+01	2.918E+02	4.374E+05	2.939E+01
2070	7.848E+02	4.288E+05	2.881E+01	2.860E+02	4.288E+05	2.881E+01
071	7.693E+02	4.203E+05	2.824E+01	2.804E+02	4.203E+05	2.824E+01
2072	7.541E+02	4.119E+05	2.768E+01	2.748E+02	4.119E+05	2.768E+01

Year		Carbon dioxide		Methane		
rear	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
2073	7.391E+02	4.038E+05	2.713E+01	2.694E+02	4.038E+05	2.713E+01
2074	7.245E+02	3.958E+05	2.659E+01	2.641E+02	3.958E+05	2.659E+01
2075	7.102E+02	3.880E+05	2.607E+01	2.588E+02	3.880E+05	2.607E+01
2076	6.961E+02	3.803E+05	2.555E+01	2.537E+02	3.803E+05	2.555E+01
2077	6.823E+02	3.727E+05	2.504E+01	2.487E+02	3.727E+05	2.504E+01
2078	6.688E+02	3.654E+05	2.455E+01	2.438E+02	3.654E+05	2.455E+01
2079	6.556E+02	3.581E+05	2.406E+01	2.389E+02	3.581E+05	2.406E+01
2080	6.426E+02	3.510E+05	2.359E+01	2.342E+02	3.510E+05	2.359E+01
2081	6.298E+02	3.441E+05	2.312E+01	2.296E+02	3.441E+05	2.312E+01
2082	6.174E+02	3.373E+05	2.266E+01	2.250E+02	3.373E+05	2.266E+01
2083	6.052E+02	3.306E+05	2.221E+01	2.206E+02	3.306E+05	2.221E+01
2084	5.932E+02	3.240E+05	2.177E+01	2.162E+02	3.240E+05	2.177E+01
2085	5.814E+02	3.176E+05	2.134E+01	2.119E+02	3.176E+05	2.134E+01
2086	5.699E+02	3.113E+05	2.092E+01	2.077E+02	3.113E+05	2.092E+01
2087	5.586E+02	3.052E+05	2.050E+01	2.036E+02	3.052E+05	2.050E+01
2088	5.476E+02	2.991E+05	2.010E+01	1.996E+02	2.991E+05	2.010E+01
2089	5.367E+02	2.932E+05	1.970E+01	1.956E+02	2.932E+05	1.970E+01
2090	5.261E+02	2.874E+05	1.931E+01	1.917E+02	2.874E+05	1.931E+01
2091	5.157E+02	2.817E+05	1.893E+01	1.879E+02	2.817E+05	1.893E+01
2092	5.055E+02	2.761E+05	1.855E+01	1.842E+02	2.761E+05	1.855E+01
2093	4.955E+02	2.707E+05	1.819E+01	1.806E+02	2.707E+05	1.819E+01
2094	4.856E+02	2.653E+05	1.783E+01	1.770E+02	2.653E+05	1.783E+01
2095	4.760E+02	2.601E+05	1.747E+01	1.735E+02	2.601E+05	1.747E+01
2096	4.666E+02	2.549E+05	1.713E+01	1.701E+02	2.549E+05	1.713E+01
2097	4.574E+02	2.499E+05	1.679E+01	1.667E+02	2.499E+05	1.679E+01
2098	4.483E+02	2.449E+05	1.646E+01	1.634E+02	2.449E+05	1.646E+01
2099	4.394E+02	2.401E+05	1.613E+01	1.602E+02	2.401E+05	1.613E+01
2100	4.307E+02	2.353E+05	1.581E+01	1.570E+02	2.353E+05	1.581E+01
2101	4.222E+02	2.306E+05	1.550E+01	1.539E+02	2.306E+05	1.550E+01
2102	4.138E+02	2.261E+05	1.519E+01	1.508E+02	2.261E+05	1.519E+01
2103	4.056E+02	2.216E+05	1.489E+01	1.478E+02	2.216E+05	1.489E+01
2104	3.976E+02	2.172E+05	1.459E+01	1.449E+02	2.172E+05	1.459E+01
2105	3.897E+02	2.129E+05	1.431E+01	1.420E+02	2.129E+05	1.431E+01
2106	3.820E+02	2.087E+05	1.402E+01	1.392E+02	2.087E+05	1.402E+01
2107	3.745E+02	2.046E+05	1.374E+01	1.365E+02	2.046E+05	1.374E+01
108	3.670E+02	2.005E+05	1.347E+01	1.338E+02	2.005E+05	1.347E+01
2109	3.598E+02	1.965E+05	1.321E+01	1.311E+02	1.965E+05	1.321E+01
2110	3.527E+02	1.927E+05	1.294E+01	1.285E+02	1.927E+05	1.294E+01
111	3.457E+02	1.888E+05	1.269E+01	1.260E+02	1.888E+05	1.269E+01
2112	3.388E+02	1.851E+05	1.244E+01	1.235E+02	1.851E+05	1.244E+01

Sandoval County Landfill

APPENDIX 6.6 UNCONTROLLED EMISSIONS EMISSION UNITS 5 AND 6 Crusher/ Shredder Operations Crushed Product Stockpiling Front End Loader Operations Portable Rock Crusher (Rental) Fugitive Emission Estimates

CRUSHER/SHREDDER OPERATIONS

Purpose: The purpose of this calculation is to estimate the potential fugitive dust emissions from three different Crusher/Shredder related processes:

- Crusher/Shredder Loading, Crushing, Conveyor Transport, and Truck Loading
- Crushed Product Stockpiling
- Crushed Product Transport

These calculation estimates are based on a maximum Crusher/Shredder throughput of 80 tons per hour at 5 hours per day. The Crusher/Shredder will be utilized to reduce concrete, asphalt, C&D waste and MSW throughout its life.

Methodology: Emissions estimates for each process involve the application of guidance from three (3) separate sections of EPA AP-42:

- Crusher/Shredder Loading, Crushing, Conveyor Transport and Truck Loading -- Section 11.19.2 (Crushed Stone Processing, Aug. 2004)
 - Crushed Product Stockpiling. -- Section 13.2.4 (Aggregate Handling and Storage Piles, November 2006)
- Crushed Product Transport -- Section 13.2.2 (Unpaved Roads, November 2006)

Crusher/Shredder Loading, Crushing, Conveyor Transport, and Truck Loading

The TSP, PM₁₀ and PM_{2.5} emissions rates which follow represent the total combined emissions rates for Crusher/Shredder Loading, Crushing, Conveyor Transport, and Truck Loading based on a maximum material throughput of **80 tons/hour**.

Crusher/Shredder Loading TSP, PM_{10} and $PM_{2.5}$ Emission Factors:

E _{TSP} =	0.0000336	pounds/ton	0.0027 lbs/hr*
E _{PM10} =	0.000016	pounds/ton	0.0013 lbs/hr
E _{PM2.5} =	0.000016	pounds/ton	0.0013 lbs/hr**

Crushing TSP, PM_{10} and $PM_{2.5}$ Emission Factors:

E _{TSP} =	0.0054 pounds/ton	0.43 lbs/hr
E _{PM10} =	0.0024 pounds/ton	0.19 lbs/hr
E _{PM2.5} =	0.0024 pounds/ton	0.19 lbs/hr*

Conveyor Transport TSP, PM₁₀ and PM_{2.5} Emission Factors:

E _{TSP} =	0.0030	pounds/ton	0.24 lbs/hr
E _{PM10} =	0.00110	pounds/ton	0.088 lbs/hr
E _{PM2.5} =	0.00110	pounds/ton	0.088 lbs/hr**

Truck Loading TSP, PM₁₀ and PM_{2.5} Emission Factors:

E _{TSP} =	0.00021 pounds/ton	0.017 lbs/hr*
E _{PM10} =	0.00010 pounds/ton	0.008 lbs/hr
E _{PM2.5} =	0.00010 pounds/ton	0.008 lbs/hr**

*AP-42 does not specify emissions estimates for TSP from Crusher Loading. Following the instructions in AP-42 (1995) Section 11.19.2, Table 11.19.2-2, footnote c, TSP is calculated by multiplying the respective PM_{10} rate by 2.1.

^{**} For calculation purposes, the emission rates for PM₂₅ from Crusher/Shredder Loading, Unloading, Crushing and Conveyor Transport are conservatively estimated to be equal to PM₁₀ emissions rates.

Operating Hours Per Year:

Operating efficiency =	100% (based on Landfill data)			
Operating hours per day =	5 hrs/day (based on Landfill data)			
Operating days per year =	304 days/yr			
Operating hours per year = (operating efficiency)(operating hrs/day)(operating days)				
Operating hours per year =	1,520 hrs/yr			

Crusher/Shredder Loading, Crushing, Conveyor Transport, and Truck Loading combined TSP, PM_{10} and $PM_{2.6}$ Emissions (Long-Term and Short-Term):

E _{TSP(lbs/yr)} =	(E _{TSP})(operating hours per year) =	1,051.06 lbs/yr
E _{TSP(tons/yr)} =	(E _{TSP(lbs/yr)})/(2,000 lbs/ton) =	0.53 tons/yr (uncontrolled)
E _{TSP(lbs/hr)} =	(E _{TSP(lbs/yr)})/(operating hrs/yr) =	0.69 lbs/hr (uncontrolled)
E _{PM10(lbs/yr)} =	(E _{PM10})(operating hours per year) =	439.71 lbs/yr
E _{PM10(tons/yr)} =	(E _{PM10(lbs/yr)})/(2,000 lbs/ton) =	0.22 tons/yr (uncontrolled)
	(E _{PM10(lbs/yr)})/(operating hrs/yr) =	0.29 lbs/hr (uncontrolled)
E _{PM2.5(lbs/yr)} =	(E _{PM2.5})(operating hours per year) =	439.71 lbs/yr
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(2,000 lbs/ton) =	0.22 tons/yr (uncontrolled)
E _{PM2.5(lbs/hr)} =	(E _{PM2.5(lbs/yr)})/(operating hrs/yr) =	0.29 lbs/hr (uncontrolled)

CRUSHER/SHREDDER PRODUCT STOCKPILING (Uncontrolled Emissions)

AP-42, Section 13.2.4, Aggregate Handling and Storage Piles (November, 2006) and AP-42 Table 11.9-4 provides guidance for emissions produced by batch drop operations at the Crushed Product Stockpile. Equation (1) from Section 13.2.4 is used to calculate TSP, PM₁₀, and PM_{2.5} emissions.

Emissions Equation:		
$E = \frac{(k)(0.0032)(U/5)^{1.3}}{(M/2)^{1.4}}$		(AP-42,13.2.4.3, equation (1))
E = size-specific emission factor (lbs/ton of materi	ial unloaded)	
k = particle size multiplier (dimensionless):	k _{TSP} =	0.74 (AP-42, 13.2.4.3)
	k _{PM10} =	0.35 (AP-42, 13.2.4.3)
	k _{PM2.5} =	0.053 (AP-42, 13.2.4.3)
Where:		
U = mean wind speed (mph) =		11.00 (Air Quality Bureau Default)
M = material moisture content (%) =		2.00 (Air Quality Bureau Default)
TSP, PM ₁₀ and PM _{2.5} Emission Factors: $E_{TSP} = \frac{(0.74)(0.0032)(11.0/5)^{1.3}}{(2.0/2)^{1.4}} =$		0.0066 lbs/ton of material unloaded
$E_{PM10} = \frac{(0.35)(0.0032)(11.0/5)^{1.3}}{(2.0/2)^{1.4}} =$		0.0031 lbs/ton of material unloaded
$E_{PM2.5} = \frac{(0.053)(0.0032)(11.0/5)^{1.3}}{(2.0/2)^{1.4}} =$		0.00047 lbs/ton of material unloaded
Assumption:		

Mass of material handled/yr = mass of material crushed/yr = (80 tons/hour)(operating hours/year operation) =

TSP, PM₁₀ and PM_{2.5} Emissions (Long-Term and Short-Term):

E _{TSP(lbs/yr)} =	(E _{TSP})(mass of material unloaded/yr) =
E _{TSP(tons/yr)} =	(E _{TSP(lbs/yr)})/(2,000 lbs/ton) =
E _{TSP(lbs/hr)} =	(E _{TSP(lbs/yr)})/(operating hrs/yr) =
E _{PM10(lbs/yr)} =	(E _{PM10})(mass of material unloaded/yr) =
E _{PM10(tons/yr)} =	(E _{PM10(lbs/yr)})/(2,000 lbs/ton) =
E _{PM10(lbs/hr)} =	(E _{PM10(lbs/yr)})/(operating hrs/yr) =
E _{PM2.5(lbs/yr)} =	(E _{PM2.5})(mass of material unloaded/yr) =
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(2,000 lbs/ton) =
E _{PM2.5(lbs/hr)} =	(E _{PM2.5(lbs/yr)})/(operating hrs/yr) =

121,600 tons/yr

802.54	lbs/yr
0.40	tons/yr (uncontrolled)
0.53	lbs/hr (uncontrolled)
379.58	lbs/yr
0.19	tons/yr (uncontrolled)
0.25	lbs/hr (uncontrolled)
57.48	lbs/yr
0.029	tons/yr (uncontrolled)
0.038	lbs/hr (uncontrolled)

CRUSHER/SHREDDER OPERATIONS EMISSIONS SUMMARY (Total Uncontrolled TSP, PM₁₀, and PM_{2.5} Emissions)

TSP Long-Term Emissions	0.0020 tons/yr (uncontrol
TSP Short-Term Emissions	0.0027 lbs/hr (uncontrolle
PM ₁₀ Long-Term Emissions	0.0010 tons/yr (uncontrol
PM ₁₀ Short-Term Emissions	0.0013 lbs/hr (uncontrolle
PM _{2.5} Long-Term Emissions	0.0010 tons/yr (uncontrol
PM _{2.5} Short-Term Emissions	0.0013 lbs/hr (uncontrolle
Crucking Emissions	
Crushing Emissions TSP Long-Term Emissions	0.33 tons/yr (uncontrol
TSP Short-Term Emissions	0.43 lbs/hr (uncontrolle
PM ₁₀ Long-Term Emissions	0.15 tons/yr (uncontrol
PM ₁₀ Short-Term Emissions	0.19 lbs/hr (uncontrolle
PM _{2.5} Long-Term Emissions	0.15 tons/yr (uncontrol
PM _{2.5} Short-Term Emissions	0.19 lbs/hr (uncontrolle
-	
Conveyor Transport Emissions	
TSP Long-Term Emissions	0.18 tons/yr (uncontrol
TSP Short-Term Emissions	0.24 lbs/hr (uncontrolle
PM ₁₀ Long-Term Emissions	0.067 tons/yr (uncontrol
PM ₁₀ Short-Term Emissions	0.088 lbs/hr (uncontrolle
PM _{2.5} Long-Term Emissions	0.067 tons/yr (uncontrol
PM _{2.5} Short-Term Emissions	0.088 lbs/hr (uncontrolle
Truck Loading Emissions	
TSP Long-Term Emissions	0.013 tons/yr (uncontrol
TSP Short-Term Emissions	0.017 lbs/hr (uncontrolle
PM ₁₀ Long-Term Emissions	0.006 tons/yr (uncontrol
PM ₁₀ Short-Term Emissions	0.008 lbs/hr (uncontrolle
PM _{2.5} Long-Term Emissions	0.006 tons/yr (uncontrol
PM _{2.5} Short-Term Emissions	0.008 lbs/hr (uncontrolle
Crushed Product Stockpiling Emissions	
TSP Long-Term Emissions	0.40 tons/yr (uncontrol
TSP Short-Term Emissions	0.53 lbs/hr (uncontrolle
PM ₁₀ Long-Term Emissions	0.19 tons/yr (uncontrol
PM ₁₀ Short-Term Emissions	0.25 lbs/hr (uncontrolle
PM _{2.5} Long-Term Emissions PM _{2.5} Short-Term Emissions	0.029 tons/yr (uncontrol 0.038 lbs/hr (uncontrolle
Total Crusher/Shredder Process Emissions:	
TSP Long-Term Emissions	0.93 tons/yr (uncontrol
TSP Short-Term Emissions	1.22 lbs/hr (uncontrolle
PM ₁₀ Long-Term Emissions	0.41 tons/yr (uncontrol
PM ₁₀ Long-Term Emissions PM ₁₀ Short-Term Emissions	0.54 lbs/hr (uncontrol
	0.04 105/11 (0100101010
PM _{2.5} Long-Term Emissions	0.25 tons/yr (uncontrol
2.3 3	

	FRONT END LOADER OPERATIONS (CRUS	HER/SHREDDER AREA - UNPAVED)				
Purpose:	The purpose of this calculation is to estimate the potential fugitive dust emissions from Front End Loader travel within the unpaved Crushing Area					
<u>Methodology</u> :	The Crushing Area is only driven upon by the Front End Loader. This area is unpaved and no dust control is applied. Emissions calculations are based on guidance presented in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006).					
The following data a	and information were used to estimate long-term and short-term emissions:					
Average Number o	f Crushing Area Round Trips Per Day:					
Average round trips	per day =	10 round trips/hour (based on Landfill data)				
Operating days per	year =	304 operating days per year (Days, Count From Tracking Sheet)				
Total Vehicle Miles	s Traveled (VMT) Per Year:					
Total VMT per year	= (operating days per year)(average round trips per day)(round trip distance)					
Total VMT per year	=	576 VMT/yr Total VMT per day = 1.89 VMT/day				
Round Trip Travel	Distance:					
Travel distance =		200 feet				
Travel distance =		0.04 miles				
Mean Vehicle Weig	jht (W):					
Loader weight includ	des average empty average weight of Loader + 1/2 weight of material (bucket	is empty for 1/2 of round trip)				
Front-end Loader er	mpty weight (average) =	13.99 tons based on landfill data)				
Average bucket load	1 =	4.00 yd ³ (based on Landfill data)				
material density =		1.90 tons/yd ³ (Material Densities Standard)				
Weight per bucket lo	oad = (average load)(material density) =	7.59 tons				
Mean vehicle weigh	t = (loader empty weight) + (0.5)(material weight per bucket load) =	17.78 tons				
Operating Hours P	er Year:					
Average operating h	nours per day (see "Landfill Operating Hours") =	5 hrs/day				
Operating days per year =		304 days/yr				

FRONT END LOADER OPERATIONS (CRUSHER/SHREDDER AREA - UNPAVED) (Uncontrolled Long-Term Emissions)

1,520 hrs/yr

PM₁₀

1.50

6.40

0.90

0.45

17.78

70.00

k =

s =

a =

b =

W =

p =

(AP-42,13.2.2.2, equation (2))

4.90

6.40

0.70

0.45

17.78

70.00

5.68 lbs/VMT

1.53 lbs/VMT

0.15 lbs/VMT

TSP

k =

s =

a =

b =

W =

p =

Long-term (tons/yr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (2) was used to estimate long-term emissions:

Long-Term Emissions Equation:

$E_{ext} = [(k)(s/12)^{a}(W/3)^{b}] [(365-p)/365]$

Operating hours per year = (average operating hrs/day)(operating days/year) =

 $\mathsf{E}_{\mathsf{ext}}$ = annual size-specific emission factor extrapolated for natural mitigation (lbs/VMT)

- k = particle size multiplier (dimensionless)
- s = surface material silt content (%) AP-42, Table 13.2.2-1
- a = empirical constant (dimensionless)

b = empirical constant (dimensionless) W = mean vehicle weight (tons)

w = mean vehicle weight (tons)

p = number of days per year with at least 0.01 inches of precipitation (AP-42, Figure 13.2.2-1)

TSP, PM₁₀ and PM_{2.5} Emission Factors:

E _{TSP} =	[(4.9)(6.4/12) ^{0.7} (17.8/3) ^{0.45}] [(365-70)/365] =
E _{PM10} =	[(1.5)(6.4/12) ^{0.9} (17.8/3) ^{0.45}] [(365-70)/365] =

 $E_{PM2.5}$ = [(0.15)(6.4/12)^{0.9}(17.8/3)^{0.45}] [(365-70)/365] =

TSP, PM_{10} and $\text{PM}_{2.5}$ Long-Term Emissions:

E _{TSP(lbs/yr)} =	(E _{TSP})(total VMT/yr) =	3,270.61 lbs/yr		
E _{TSP(tons/yr)} =	(E _{TSP(lbs/yr)})/(2,000 lbs/ton) =	1.64 tons/yr (uncontrolled)		
E _{PM10(lbs/yr)} =	(E _{PM10})(total VMT/yr) =	882.92 lbs/yr		
E _{PM10(tons/yr)} =	(E _{PM10(lbs/yr)})/(2,000 lbs/ton) =	0.44 tons/yr (uncontrolled)		
E _{PM2.5(lbs/yr)} =	(EPM _{2.5})(total VMT/yr) =	88.29 lbs/yr		
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(2,000 lbs/ton) =	0.044 tons/yr (uncontrolled)		

 $\begin{array}{c|c}
PM_{2.5} \\
\hline k = 0.15 \\
s = 6.40 \\
a = 0.90 \\
\hline b = 0.45 \\
W = 17.78
\end{array}$

p =

70.00

FRONT END LOADER OPERATIONS (CRUSHER/SHREDDER AREA - UNPAVED) (Uncontrolled Short-Term Emissions)

Short-term (lbs/hr) fugitive dust emissions have been estimated through guidance provided in EPA AP-42, Section 13.2.2, Unpaved Roads (November, 2006). Equation (1a) is used to estimate short-term emissions:

Short-Term Emissions Equation:

(k)(s/12)^a(W/3)^b

F	=			
-	-			

(AP-42,13.2.2.2, equation (1a))

E = size-specific emission factor (lbs/VMT)		T	TSP		PM ₁₀		PM _{2.5}		2.5
k = particle size multiplier (dimensionless)		k =	4.90		k =	1.50		k =	0.15
s = surface materia	al silt content (%) AP-42, Table 13.2.2-1	s =	6.40		s =	6.40		s =	6.40
a = empirical constant (dimensionless)		a =	0.70		a =	0.90		a =	0.90
b = empirical constant (dimensionless)		b =	0.45		b =	0.45		b =	0.45
W = mean vehicle weight (tons)		W =	17.78		W =	17.78		W =	17.78
TSP, PM ₁₀ and PM _{2.8} Emission Factors:									
E _{TSP} =	$(4.9)(6.4/12)^{0.7}(17.8/3)^{0.45}$ =	7.03 lbs/VMT							

E _{PM10} =	$(1.5)(6.4/12)^{0.9}(17.8/3)^{0.45} =$	1.90 lbs/VMT
E _{PM2.5} =	$(0.15)(6.4/12)^{0.9}(17.8/3)^{0.45} =$	0.19 lbs/VMT

TSP, PM_{10} and $PM_{2.5}$ Short-Term Emissions:

E _{TSP(lbs/yr)} =	(E _{TSP})(total VMT/yr) =	4,046.69 lbs/yr		
E _{TSP(lbs/hr)} =	$(E_{TSP(lbs/yr)})/(operating hours/yr) =$	2.66 lbs/hr (uncontrolled)		
E _{PM10(lbs/yr)} =	(E _{PM10})(total VMT/yr) =	1,092.43 lbs/yr		
E _{PM10(lbs/hr)} =	(E _{PM10(lbs/yr)})/(operating hours/yr) =	0.72 lbs/hr (uncontrolled)		
E _{PM2.5(lbs/yr)} =	(EPM _{2.5})(total VMT/yr) =	109.24 lbs/yr		
E _{PM2.5(tons/yr)} =	(E _{PM2.5(lbs/yr)})/(operating hours/yr) =	0.072 lbs/hr (uncontrolled)		

APPENDIX 6.6 Sandoval County Landfill

Rental Crusher Fugitive Emissions Estimates

Metso Lokotrack LT1213S Impact Crusher with screen

Crushing estimates (tertiary, uncontrolled)											
Pollutant	Factor (lb/ton)	PPH	TPY	Notes							
TSP	0.0054	1.49	0.43								
PM10	0.0024	0.66									
PM2.5	0.0024	0.66		No factor given, using PM10 factor							
1112.0	0.0024	0.00	0.10								
		Crushing E	stimates (tertiary,	controlled)							
Pollutant	Factor (lb/ton)	PPH	TPY	Notes							
TSP	0.0012	0.330	0.071								
PM10	0.0005	0.149	0.032								
PM2.5	0.0001	0.028	0.006								
		Screenin	g Estimates (unco	ontrolled)							
Pollutant	Factor (lb/ton)	PPH	TPY	Notes							
TSP	0.025	6.88									
PM10	0.009	2.39	0.69								
PM2.5	0.009	2.39	0.69	No factor given, using PM10 factor							
			ing Estimates (cor	,							
Pollutant	Factor (lb/ton)	PPH	ТРҮ	Notes							
TSP	0.0022	0.605	0.131								
PM10	0.0007	0.204	0.044								
PM2.5	0.0001	0.014	0.003								
			 Conveyor, crush 								
Pollutant	Factor (lb/ton)	PPH	ТРҮ	Notes							
TSP	0.0001	0.028		No factor given, using PM10 factor							
PM10	0.0001	0.028									
PM2.5	0.0001	0.028	0.006	No factor given, using PM10 factor							
	Total			nd loading (<i>controlled</i>):							
Pollutant		lb/hr	ton/yr								
TSP		0.963									
PM10		0.380	0.082								
PM2.5		0.069	0.015								
	Total f	-	• •	loading (<i>uncontrolled</i>):							
Pollutant		lb/hr	ton/yr								
TSP		8.39									
PM10		3.08									
PM2.5		3.08	0.89								
NOTES:											

NOTES:

Maximum throughput: 250 metric tons/hour (275 short tons/hour)

TPY estimates assumes 2 month (8 week) rental operating 9 hr/day 6 days /week (432 hours)

Fugitive emission rates obtained from AP-42 Section 11.19.2, Table 11.19.2-2

PPH = pounds per hour (lb/hr)

TPY=[PPH*(9 hr/day)*(6 days/wk)*(8 wk rental)]/2,000 lb/ton

Crusher is equipped with a wet suppression system, therefore controlled factors from AP-42 are used.

Sandoval County Landfill

APPENDIX 6.7 LandGEM Output (Inventory Tab)

INVENTORY

Landfill Name or Identifier: Sandoval County Landfill

Enter year of emissions inventory:

2028

• • • • • •	Emission Rate								
Gas / Pollutant	(Mg/year)	(m³/year)	(av ft ³ /min)	(ft ³ /year)	(short tons/year)				
Total landfill gas	2.481E+03	1.986E+06	1.335E+02	7.015E+07	2.729E+03				
Methane	6.626E+02	9.932E+05	6.673E+01	3.507E+07	7.288E+02				
Carbon dioxide	1.818E+03	9.932E+05	6.673E+01	3.507E+07	2.000E+03				
NMOC	2.848E+01	7.945E+03	5.338E-01	2.806E+05	3.133E+01				
1,1,1-Trichloroethane (methyl chloroform) - HAP	5.291E-03	9.534E-01	6.406E-05	3.367E+01	5.820E-03				
1,1,2,2-Tetrachloroethane - HAP/VOC	1.525E-02	2.185E+00	1.468E-04	7.716E+01	1.678E-02				
1,1-Dichloroethane (ethylidene dichloride) - HAP/VOC	1.962E-02	4.767E+00	3.203E-04	1.684E+02	2.159E-02				
1,1-Dichloroethene (vinylidene chloride) - HAP/VOC	1.602E-03	3.973E-01	2.669E-05	1.403E+01	1.762E-03				
1,2-Dichloroethane (ethylene dichloride) - HAP/VOC	3.352E-03	8.144E-01	5.472E-05	2.876E+01	3.687E-03				
1,2-Dichloropropane (propylene dichloride) - HAP/VOC	1.680E-03	3.575E-01	2.402E-05	1.263E+01	1.848E-03				
2-Propanol (isopropyl alcohol) - VOC	2.483E-01	9.932E+01	6.673E-03	3.507E+03	2.731E-01				
Acetone	3.359E-02	1.390E+01	9.342E-04	4.910E+02	3.695E-02				
Acrylonitrile - HAP/VOC	2.762E-02	1.251E+01	8.408E-04	4.419E+02	3.038E-02				
Benzene - No or Unknown Co-disposal - HAP/VOC	1.226E-02	3.774E+00	2.536E-04	1.333E+02	1.349E-02				
Benzene - Co-disposal - HAP/VOC	7.098E-02	2.185E+01	1.468E-03	7.716E+02	7.808E-02				
Bromodichloromethane - VOC	4.196E-02	6.158E+00	4.137E-04	2.175E+02	4.615E-02				
Butane - VOC	2.401E-02	9.932E+00	6.673E-04	3.507E+02	2.641E-02				
Carbon disulfide - HAP/VOC	3.648E-03	1.152E+00	7.741E-05	4.069E+01	4.013E-03				
Carbon monoxide	3.240E-01	2.781E+02	1.868E-02	9.821E+03	3.564E-01				
Carbon tetrachloride - HAP/VOC	5.084E-05	7.945E-03	5.338E-07	2.806E-01	5.592E-05				
Carbon tetrachlonde - HAP/VOC Carbonyl sulfide - HAP/VOC	2.432E-03	9.733E-01	6.540E-05	3.437E+01	2.675E-03				
Chlorobenzene - HAP/VOC	2.325E-03	4.966E-01	3.337E-05	1.754E+01	2.557E-03				
Chlorodifluoromethane	9.287E-03	2.582E+00	1.735E-04	9.119E+01	1.022E-02				
Chloroethane (ethyl chloride) - HAP/VOC	6.930E-03	2.582E+00	1.735E-04	9.119E+01	7.623E-02				
Chloroform - HAP/VOC	2.959E-04	5.959E-02	4.004E-06	2.104E+00	3.255E-04				
Chloromethane - VOC	5.006E-03	2.384E+00	1.602E-04	8.418E+00	5.506E-03				
Dichlorobenzene - (HAP for para isomer/VOC) Dichlorodifluoromethane	2.550E-03 1.598E-01	4.171E-01 3.178E+01	2.803E-05 2.135E-03	1.473E+01 1.122E+03	2.805E-03 1.758E-01				
Dichlorofluoromethane - VOC	2.211E-02		3.470E-04						
		5.164E+00		1.824E+02	2.432E-02				
Dichloromethane (methylene chloride) - HAP	9.824E-02	2.781E+01	1.868E-03	9.821E+02	1.081E-01				
Dimethyl sulfide (methyl sulfide) - VOC	4.004E-02	1.549E+01	1.041E-03	5.471E+02	4.404E-02				
Ethane	2.211E+00	1.768E+03	1.188E-01	6.243E+04	2.432E+00				
Ethanol - VOC	1.028E-01	5.363E+01	3.603E-03	1.894E+03	1.131E-01				
Ethyl mercaptan (ethanethiol) - VOC	1.181E-02	4.569E+00	3.070E-04	1.613E+02	1.299E-02				
Ethylbenzene - HAP/VOC	4.034E-02	9.137E+00	6.139E-04	3.227E+02	4.438E-02				
Ethylene dibromide - HAP/VOC	1.552E-05	1.986E-03	1.335E-07	7.015E-02	1.707E-05				
Fluorotrichloromethane - VOC	8.626E-03	1.510E+00	1.014E-04	5.331E+01	9.488E-03				
Hexane - HAP/VOC	4.699E-02	1.311E+01	8.808E-04	4.630E+02	5.169E-02				
Hydrogen sulfide	1.014E-01	7.151E+01	4.805E-03	2.525E+03	1.115E-01				
Mercury (total) - HAP	4.806E-06	5.760E-04	3.870E-08	2.034E-02	5.287E-06				
Methyl ethyl ketone - HAP/VOC	4.230E-02	1.410E+01	9.476E-04	4.980E+02	4.653E-02				
Methyl isobutyl ketone - HAP/VOC	1.572E-02	3.774E+00	2.536E-04	1.333E+02	1.729E-02				
Methyl mercaptan - VOC	9.937E-03	4.966E+00	3.337E-04	1.754E+02	1.093E-02				
Pentane - VOC	1.967E-02	6.555E+00	4.404E-04	2.315E+02	2.164E-02				
Perchloroethylene (tetrachloroethylene) - HAP	5.069E-02	7.349E+00	4.938E-04	2.595E+02	5.576E-02				
Propane - VOC	4.007E-02	2.185E+01	1.468E-03	7.716E+02	4.408E-02				
t-1,2-Dichloroethene - VOC	2.242E-02	5.562E+00	3.737E-04	1.964E+02	2.467E-02				
Toluene - No or Unknown Co-disposal - HAP/VOC	2.968E-01	7.747E+01	5.205E-03	2.736E+03	3.265E-01				
Toluene - Co-disposal - HAP/VOC	1.294E+00	3.377E+02	2.269E-02	1.192E+04	1.423E+00				
Trichloroethylene (trichloroethene) - HAP/VOC	3.040E-02	5.562E+00	3.737E-04	1.964E+02	3.344E-02				
Vinyl chloride - HAP/VOC	3.769E-02	1.450E+01	9.743E-04	5.121E+02	4.146E-02				
Xylenes - HAP/VOC	1.052E-01	2.384E+01	1.602E-03	8.418E+02	1.158E-01				

APPENDIX 6.8

PETROLEUM HYDROCARBON LANDFARM SHIPMENT TRACKING

AND

EMISSIONS ESTIMATION SPREADSHEET

EMISSION UNIT 4

Form-Section 6 last revised: 5/3/16 Section 6, Page 37

APPENDIX 6.8 Sandoval County Landfill PCS HAPs Emissions Calculation Sheet

										Reportin	g Period	1/1/23	То	12/30/23
												Emissions		
Date	Profile #	Description	TPH ppm	Benzene (ppm)	Toluene (ppm)	Ethyl benzene (ppm)	Xylene (ppm)	Total BTEX (ppm)	Soil Tons	Total Benzene (tons)	Total Toluene (tons)	Total Ethyl- benzene (tons)	Total Xylene (tons)	Total BTEX Emissions (tons)
			0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00
								0.00		0.00	0.00	0.00	0.00	0.00
								0.00		0.00	0.00	0.00	0.00	0.00
								0.00		0.00	0.00	0.00	0.00	0.00
								0.00		0.00	0.00	0.00	0.00	0.00
								0.00		0.00	0.00	0.00	0.00	0.00
								0.00		0.00	0.00	0.00	0.00	0.00
								0.00		0.00	0.00	0.00	0.00	0.00
								0.00		0.00	0.00	0.00	0.00	0.00
								0.00		0.00	0.00	0.00	0.00	0.00
	Totals*								0.00	0.00	0.00	0.00	0.00	0.00

TOTAL HAP EMISSIONS (tons/year)

Total HAP Emissions from Unit 2 (Table 6.7) = constant =	0.59 tons
Total HAP Emissions from Unit 3 (Table 6.6) = constant =	0.96 tons
Total HAP Emissions from Unit 5 (Table 6.7) = constant =	0.004 tons
Total HAP Emissions from PCS Remediation (Unit 4) = Variable =	22.92 tons
Total HAP Emissions from Unit 6 (Table 6.8) = constant =	0.028 tons
Maximum Target Total HAP =	24.50 tons

INDIVIDUAL HAP EMISSIONS								
Benzene Emission from Unit 2 (Table 6.7) = constant =	9.60E-04 tons							
Benzene Emission from Unit 3 (Table 6.6) = constant =	1.35E-02 tons							
Benzene Emission from Unit 5 (Table 6.7) = constant =	9.18E-04 tons							
Benzene Emission from Unit 6 (Table 6.8) = constant =	2.80E-02 tons							
Benzene from PCS = variable =	0.0E+00 tons							
Total Benzene Emissions	4.34E-02 tons							
Toluene Emission from Unit 2 (Table 6.7) = constant =	4.21E-04 tons							
Toluene Emission from Unit 3 (Table 6.6) = constant =	3.27E-01 tons							
Toluene Emission from Unit 5 (Table 6.7) = constant =	4.03E-04 tons							
Toluene Emission from Unit 6 (Table 6.8) = constant =	2.80E-02 tons							
Toluene from PCS = variable =	0.0E+00 tons							
Total Toluene Emissions	3.56E-01 tons							

INDIVIDUAL HAP EMISSIONS

Ethylbenzene Emissions from Unit 2 = constant =	0.0E+00 tons
Ethylbenzene Emissons from Unit 3 (Table 6.6) = con	4.40E-02 tons
Ethylbenzene Emissions from Unit 5 = constant =	0.0E+00 tons
Ethylbenzene Emissions from Unit 6 = constant =	0.0E+00 tons
Ethylbenzene Emissions from PCS = variable =	0.0E+00 tons
Total Ethylbenzene =	4.40E-02 tons
Xylene Emissions from Unit 2 (Table 6.7) = constant =	2.93E-04 tons
Xylene Emissions from Unit 3 (Table 6.6) = constant =	1.16E-01 tons
Xylene Emissions from Unit 5 (Table 6.7) = constant =	2.80E-04 tons
Xylene Emissions from Unit 6 (Table 6.8) = constant =	2.80E-02
Xylene from PCS = variable =	0.0E+00 tons
Total Xylene =	1.44E-01 tons
Target Total Per HAP =	9.50 tons/yr

APPENDIX 6.9

Initial Notification/Notification of Compliance Status Report for Gasoline Dispensing Facilities In compliance with

40 CFR 63.11111(c)

Form-Section 6 last revised: 5/3/16 Section 6, Page 38

Initial Notification/Notification of Compliance Status Report for Gasoline Dispensing Facilities

<u>Applicable Rule</u>: 40 CFR Part 63, Subpart CCCCCC — National Emission Standards for Hazardous Air Pollutants for Area Source Category: Gasoline-Dispensing Facilities and 40 CFR Part 63, Subpart A — National Emission Standards for Hazardous Air Pollutants for Source Categories, Subpart A — General Provisions. Initial notification is being made in accordance with section 63.9(b).

Note: Initial notification reports for existing sources are due not later than May 9, 2008, or within 120 calendar days after the source becomes subject to the relevant standard. Sources may also use the application for approval of construction or reconstruction under section 63.5(d) to fulfill the initial notification requirement. If you are a new or reconstructed major source, you must also include information required under 63.5(d) and 63.9(b)(5)— the Application for Approval of Construction or Reconstruction. You may use the Application for Approval of Construction and Reconstruction as your initial notification. (section 63.5(d)(1)(ii)).

SECTION I GENERAL INFORMATION

Check the appropriate box: Initial Notification Only Initial Notification/Notification of Compliance Status Compliance Notification (previously submitted form as Initial Notification only and am now in compliance)

Print or type the following information for each facility for which you are making notification: (section 63.9(b)(2)(i)-(ii))

Operating Permit Number (optional) Facility I.D. Number (optional)								
Title V Operating Permit No. P24	1 3 L	N/A						
Responsible Official's Name/Title								
Robert M. Sanchez, Assistant D	irector of Solid Waste							
Street Address								
2708 Iris Rd. NE								
City	State	ZIP Code						
Rio Rancho	NM	87144						
Facility Name (if different from Res	sponsible Official's Name)							
Sandoval County Landfill								
Facility Street Address (If different	than Responsible Official's	s Street Address)						
2708 Iris Rd. NE, Rio Rancho, N	M 87144							
Facility Local Contact Name	Title	Phone (optional)						
Robert M. Sanchez	Assistant Dire	ctor of Solid Waste (505) 867-0814						
City	State	ZIP Code						
Rio Rancho	NM	87144						

SECTION II APPLICABILITY AND COMPLIANCE STATUS

Initial the box beside the correct answer to the following questions.

Yes	Rms	A1. Is your facility a "gasoline-dispensing facility"? Gasoline-dispensing facility means any
No		stationary facility that dispenses gasoline directly into the fuel tank of a motor vehicle.
Yes	Rms	A2. Does your facility receive and dispense any type of gasoline other than aviation gasoline?
No		A2. Does your facility receive and dispense any type of gasoline other than aviation gasoline?

If you answer "No" to either of the above questions and can support your answer, then you are not subject to the control requirements listed below; however, you must still complete Sections III and IV and mail as directed. If prior to January 10, 2008, your facility is meeting the control requirements of C1, C2, and C3, as applicable, under an enforceable State, local, or tribal rule or permit, then this notification is not required to be submitted.

Yes	R M.S	 C1. Do you require that gasoline be handled in a manner that restricts vapor releases to the atmosphere for extended periods of time? Measures to be taken include, but are not limited to, the following: (1) Minimize gasoline spills (2) Clean up spills as expeditiously as practicable 						
No		 (3) Cover all open gasoline containers and all gasoline storage tank fill-pipes with a gasketed seal when not in use (4) Minimize gasoline sent to open-waste collection systems that collect and transport gasoline to reclamation and recycling devices, such as oil/water separators. 						
Yes	RMS	C2. If the monthly gasoline throughput of your facility is greater than or equal to 10,000 gallons per month, is submerged filling (as specified in section 63.11117(b)) currently used for all gasoline						
No		storage tanks having a capacity of greater than or equal to 250 gallons?						
Yes		C3. If the monthly gasoline throughput of your facility is greater than or equal to 100,000 gallons per month, is vapor-balanced filling (as specified in section 63.11118(b)) currently used for all gasoline storage tanks except						
No	R MS	 (1) Tanks constructed on or before January 10, 2008, with a capacity of less than 2,000 gallons (2) Tanks constructed after January 10, 2008, with a capacity of less than 250 gallons (3) Tanks equipped with floating roofs, or the equivalent? 						
		any of the above control questions, you must						

If you answer no to any of the above control questions, you must:

1) Complete this notification and mail as directed.

2) Before January 10, 2011, existing sources must comply with all the control questions. This means that you are able to answer yes to each control question. Also, fill out and resubmit this report before January 10, 2011, to notify us that you are now in compliance with subpart CCCCCC.

SECTION III SOURCE DESCRIPTION

Briefly describe the source. (section 63.9(b)(2)(iv))

Provide (at least) information on the number and capacity of gasoline storage tanks and the average monthly gasoline throughput.

The Sandoval County Landfill Operates one underground 20,000-gallon unleaded gasoline dispensing/storage

tank. Average monthly throughput for the unleaded fuel tank is approximately 13,300 gallons. The fueling

station is designated for use by Sandoval County-owned vehicles only (i.e., law enforcement, County roads

maintenance vehicles, landfill maintenance vehicles, etc.).

SECTION IV CERTIFICATION

Name of Responsible Official (Print or Type)	Title	Date (mp/dd/yy)
Robert M. Sanchez	Assista	nt Director of Solid Waste $9/2/10$
Signature of Responsible Official		
Right M Sanche	ACIT	Director of Solid Waster 9/2/10

Submit Initial Notification/Notification of Compliance Status Form as follows:

(Note: Title V permit applications can be used in lieu of an initial notification provided the same information is contained in the permit application as required by this rule (63.9(a)).

a. New Mexico Air Quality Bureau, Compliance Reporting Section, 1301 Siler Road, Building B, Santa Fe, NM 87507 and

b. EPA Region VI Director, Air, Pesticides and Toxics, 1445 Ross Avenue, Dallas, TX 75202-2733 and

c. Keep a copy for your records.

Sandoval County Landfill

APPENDIX 6.10

TANKS v. 4.0.9d Outputs for SCLF Gasoline Storage Tank

(Reporting Year 2021)

TANKS 4.0.9d Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	SCPW No Lead UST Albuquerque New Mexico Sandoval County Public Works Horizontal Tank Sandoval County Public Works Unleaded fuel tank. Dyed and clear diesel tanks on-site do not require breathing loss calculations.
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	37.73 10.00 19,783.00 9.14 185,112.39 N Y
Paint Characteristics Shell Color/Shade: Shell Condition	Red/Primer Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

SCPW No Lead UST - Horizontal Tank Albuquerque, New Mexico

			ily Liquid Su perature (de		Liquid Bulk Temp	K		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 7.8)	All	55.59	55.59	55.59	55.15	3.5959	3.5959	3.5959	68.0000			92.00	Option 4: RVP=7.8, ASTM Slope=3

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

SCPW No Lead UST - Horizontal Tank Albuquerque, New Mexico

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Gasoline (RVP 7.8)	1,077.71	0.00	1,077.71

TANKS 4.0 Report

Sandoval County Landfill

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas</u> <u>Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO_2e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

Sources for Calculating GHG Emissions:

• Manufacturer's Data

• AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html

• EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

The Greenhouse gas emissions for SCLF are estimated to be approximately 103,534 tons/year (93,925 Mg/yr) CO2e. Methane emissions from solid waste (Unit 3) are estimated at 100,437 tons/year (91,115 Mg/yr) CO2e, and the sum of combustion sources (CO₂ and NOx) from Units 2, 5, and 6 are estimated to be 1,521 tons/year (1,379 Mg/yr), 1,455 tons/year (1,319 Mg/yr), and 121 tons/year (110 Mg/yr) CO2e, respectively. Section 2, Table 2-P summarizes these estimated GHG emissions from the site.

Tables 6.7 and **6.8** were used to determine GHG Emissions (CO₂ and NOx) from combustion sources at SCLF. Greenhouse gas emissions for SCLF were calculated using the EPA Electronic Greenhouse Gas Reporting Tool (e-GGRT). The e-GGRT is a web-based system that the EPA has developed to support reporting under the 40 CFR 98 Mandatory Reporting of Greenhouse Gases (GHG). The e-GGRT utilizes user inputted facility-specific data and Subpart HH equations to calculate GHG emissions that are electronically reported directly to the EPA. **Appendix 6a.1** provides the GHG Summary Report generated by the e-GGRT that was utilized in determining GHG emissions from waste deposited at SCLF since 1972. The equations utilized by the e-GGRT are explained in greater detail in 40 CFR 98, Subpart HH (Green House Gas Emissions from Municipal Solid Waste Landfills).

SCLF is not subject to the requirements of 20.2.74 NMAC (PSD) as the facility is not a new or existing PSD source.

APPENDIX 6a.1

RY-2021 E-GGRT GHG Summary Report

Submit Receipt

Your facility's annual GHG report has been successfully submitted to EPA and certified. The facility's representatives and agents will receive an email confirmation.

Annual Report Submission

Facility Name: Sandoval County Landfill Address: 2708 Iris Road NE, Rio Rancho NM 87144 Reporting Year: 2021 Submitted Date: Thu Feb 24 10:39:35 EST 2022 Certification Date: Thu Feb 24 14:48:22 EST 2022 Submitted By: Perea, Christopher Confirmation Number: 344137-314062

Certification Statement:

The designated representative or alternate designated representative must sign (i.e., agree to) this certification statement. If you are an agent and you click on "SUBMIT", you are not agreeing to the certification statement, but are submitting the certification statement on behalf of the designated representative or alternate designated representative who is agreeing to the certification statement. An agent is only authorized to make the electronic submission on behalf of the designated representative, not to sign (i.e., agree to) the certification statement.

Facility Name:Sandoval County Landfill Facility Identifier:532057 Facility Reporting Year:2021 Facility Location: Address: 2708 Iris Road NE City: Rio Rancho State: NM Postal Code: 87144

Facility Site Details:

CO2 equivalent emissions from facility subparts C-II, SS, and TT (metric tons):82,004.5 CO2 equivalent emissions from supplier subparts LL-QQ (metric tons):0 Biogenic CO2 emissions from facility subparts C-II, SS, and TT (metric tons):0 Cogeneration Unit Emissions Indicator:N GHG Report Start Date:2021-01-01 GHG Report End Date:2021-12-31 Description of Changes to Calculation Methodology: Plant Code Indicator:N Primary NAICS Code:562212 Second Primary NAICS Code:

Parent Company Details:

Parent Company Name:COUNTY OF SANDOVAL NEW MEXICO Address:1500 Idalia Road, Bernalillo, NM 87004 Percent Ownership Interest:100

Subpart HH: Municipal Solid Waste Landfills

Gas Information Details

Gas Name	Methane
Gas Quantity	3,280.18 (Metric Tons)
Own Result?	

Landfill Details

Is the landfill open?	Y
Estimated Year LandFill Closure	2055
Starting Year for Accepting Waste	1972
First year of emissions reporting	2010
Leachate recirculation was used during the reporting year	Ν
Typical frequency of use for leachate recirculation system	Not used for the past 10 years
Scales are present at the landfill in the reporting year	Y
Does the landfill have a landfill gas collection system?	Ν
Passive vents and/or flares are present	Ν
Landfill Capacity	10015456 (Metric Tons)
Total surface area of the landfill containing waste	455267.80 (Square Meters)
Covertype Details	Other soil mixture

Aeration Details

Aeration Blower Capacity	()
Landfill Fraction Affected by Aeration	()
Aeration Blower Operations Hours	()
Other MCF Factors	
Additional Description	

Current Waste Disposal Quantity Determination Details

First Year to Current Year Annual Waste Quantity Method

Reporting Year	2021
Total Annual Waste Disposal Quantity	165417.34 (Metric Tons)
	Used scales to weigh loads before off-loading and either used scales to weigh individual loads after off- loading or used representative tare vehicle/container weights
Annual Waste Disposal	165417.34 (Metric Tons)

51 PM	GHG Summary Report
Quantity	
Reporting Year	2020
Total Annual Waste Disposal Quantity	171284.54 (Metric Tons)
Method Used to Determine Quantity	Used scales to weigh loads before off-loading and either used scales to weigh individual loads after off- loading or used representative tare vehicle/container weights
Annual Waste Disposal	171284.54 (Metric Tons)
Quantity Reporting Year	2019
Total Annual Waste	
Disposal Quantity	163017 (Metric Tons)
Method Used to Determine Quantity	Used scales to weigh loads before off-loading and either used scales to weigh individual loads after off- loading or used representative tare vehicle/container weights
Annual Waste Disposal Quantity	163017 (Metric Tons)
Reporting Year	2018
Total Annual Waste Disposal Quantity	164797.53 (Metric Tons)
Method Used to Determine Quantity	Used scales to weigh loads before off-loading and either used scales to weigh individual loads after off- loading or used representative tare vehicle/container weights
Annual Waste Disposal Quantity	164797.53 (Metric Tons)
Reporting Year	2017
Total Annual Waste Disposal Quantity	143710.5638 (Metric Tons)
Method Used to Determine Quantity	Used scales to weigh loads before off-loading and either used scales to weigh individual loads after off- loading or used representative tare vehicle/container weights
Annual Waste Disposal Quantity	143710.5638 (Metric Tons)
Reporting Year	2016
Total Annual Waste Disposal Quantity	164570.7 (Metric Tons)
Method Used to Determine Quantity	Used scales to weigh loads before off-loading and either used scales to weigh individual loads after off- loading or used representative tare vehicle/container weights
Annual Waste Disposal Quantity	164570.7 (Metric Tons)
Reporting Year	2015
Total Annual Waste Disposal Quantity	107076.5 (Metric Tons)
Method Used to Determine Quantity	Used scales to weigh loads before off-loading and either used scales to weigh individual loads after off- loading or used representative tare vehicle/container weights
Annual Waste Disposal Quantity	107076.5 (Metric Tons)
Reporting Year	2014
Total Annual Waste Disposal Quantity	107667.9 (Metric Tons)
Method Used to Determine Quantity	Used scales to weigh loads before off-loading and either used scales to weigh individual loads after off- loading or used representative tare vehicle/container weights
Annual Waste Disposal Quantity	107667.90 (Metric Tons)
Reporting Year	2013
Total Annual Waste Disposal Quantity	99470 (Metric Tons)
Method Used to Determine Quantity	Used scales to weigh loads before off-loading and either used scales to weigh individual loads after off- loading or used representative tare vehicle/container weights
Annual Waste Disposal	99470 (Metric Tons)
Quantity Reporting Year	2012
Total Annual Waste Disposal Quantity	101413 (Metric Tons)
Method Used to Determine Quantity	Used scales to weigh loads before off-loading and either used scales to weigh individual loads after off- loading or used representative tare vehicle/container weights
Annual Waste Disposal Quantity	101413 (Metric Tons)
Reporting Year	2011
Total Annual Waste Disposal Quantity	90110 (Metric Tons)
Method Used to Determine Quantity	Used scales to weigh loads before off-loading and either used scales to weigh individual loads after off- loading or used representative tare vehicle/container weights
Annual Waste Disposal	90110 (Metric Tons)
Quantity	
Quantity Reporting Year	2010

Disposal Quantity	
Method Used to	Used scales to weigh loads before off-loading and either used scales to weigh individual loads after off-
Determine Quantity	loading or used representative tare vehicle/container weights
Annual Waste Disposal Quantity	94453 (Metric Tons)

<u>Waste Type Detail</u> Year Waste	s T					
rear waste Disposed	2021					
Missing data procedure used?	N					
Number of Times Substituted						
	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
Waste Type Details	Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste)	0.4901	0.31	0.5	0.02
	Modified bulk MSW	bulk C&D waste	0.4723	0.08	0.5	0.02
	Modified bulk MSW	inerts	0.0376	0	0.5	0
Year Waste Disposed	2020					
Missing data procedure used?	N					
Number of Times Substituted						
	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
	Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste)	0.51269641		0.5	0.02
Waste Type Details	Modified bulk MSW	bulk C&D waste	0.42492494	95 0.08	0.5	0.02
	Modified bulk MSW	inerts	0.06237863	77 0	0.5	0
Year Waste Disposed	2019					
Missing data procedure used?	N					
Si occuare asca.						
Number of Times Substituted						
Number of Times	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
Number of Times Substituted		Waste Type bulk MSW waste (excluding inerts and C&D waste)	Weight			
Number of Times	Option Modified	bulk MSW waste (excluding inerts	Weight	Carbon Value	Dissimilated	
Number of Times Substituted	Option Modified bulk MSW Modified	bulk MSW waste (excluding inerts and C&D waste)	Weight 0.5032	Carbon Value 0.31	Dissimilated 0.5	Rate 0.02
Number of Times Substituted Waste Type Details Year Waste	Option Modified bulk MSW Modified bulk MSW Modified	bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste	Weight 0.5032 0.4578	Carbon Value 0.31 0.08	Dissimilated 0.5 0.5	Rate 0.02
Number of Times Substituted Waste Type Details	Option Modified bulk MSW Modified bulk MSW Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste	Weight 0.5032 0.4578	Carbon Value 0.31 0.08	Dissimilated 0.5 0.5	Rate 0.02
Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times	Option Modified bulk MSW Modified bulk MSW Modified bulk MSW 2018	bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste	Weight 0.5032 0.4578	Carbon Value 0.31 0.08	Dissimilated 0.5 0.5	Rate 0.02
Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times	Option Modified bulk MSW Modified bulk MSW Modified bulk MSW 2018	bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste	Weight 0.5032 0.4578 0.0390 Percent by	Carbon Value 0.31 0.08	Dissimilated 0.5 0.5	Rate 0.02 0.02 0
Number of Times Substituted Waste Type Details Vear Waste Disposed Missing data procedure used? Number of Times Substituted	Option Modified bulk MSW Modified bulk MSW Dolified bulk MSW 2018 N	bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste inerts	Weight 0.5032 0.4578 0.0390	Carbon Value 0.31 0.08 0 Degradable Organic	Dissimilated 0.5 0.5 0.5 Fraction Of DOC	Rate 0.02 0.02 0
Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted	Option Modified bulk MSW Modified bulk MSW 2018 N Option Modified	bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste inerts Waste Type bulk MSW waste (excluding inerts	Weight 0.5032 0.4578 0.0390 Percent by Weight	Carbon Value 0.31 0.08 0 Degradable Organic Carbon Value	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated	Rate 0.02 0.02 0 Decay Rate
Number of Times Substituted Waste Type Details Vear Waste Disposed Missing data procedure used? Number of Times Substituted	Option Modified bulk MSW Modified bulk MSW 2018 N Option Modified bulk MSW Modified	bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste inerts Waste Type bulk MSW waste (excluding inerts and C&D waste)	Weight 0.5032 0.4578 0.0390 Percent by Weight 0.4539424 0.4906690	Carbon Value 0.31 0.08 0 Degradable Organic Carbon Value 0.31	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5	Rate 0.02 0.02 0 0 Decay Rate 0.02
Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Waste Type Details	Option Modified bulk MSW Modified bulk MSW 2018 N Option Modified bulk MSW Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste inerts Waste Type bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste	Weight 0.5032 0.4578 0.0390 Percent by Weight 0.4539424 0.4906690	Carbon Value 0.31 0.08 0 Degradable Organic Carbon Value 0.31 0.08	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5 0.5	Rate 0.02 0.02 0 0 Decay Rate 0.02
Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times	Option Modified bulk MSW Modified bulk MSW 2018 N Option Modified bulk MSW Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste inerts Waste Type bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste	Weight 0.5032 0.4578 0.0390 Percent by Weight 0.4539424 0.4906690	Carbon Value 0.31 0.08 0 Degradable Organic Carbon Value 0.31 0.08	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5 0.5	Rate 0.02 0.02 0 0 Decay Rate 0.02
Number of Times Substituted Waste Type Details Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Waste Type Details Year Waste Disposed Missing data	Option Modified bulk MSW Modified bulk MSW 2018 N Option Modified bulk MSW Modified bulk MSW Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste inerts Waste Type bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste	Weight 0.5032 0.4578 0.0390 Percent by Weight 0.4539424 0.4906690	Carbon Value 0.31 0.08 0 Degradable Organic Carbon Value 0.31 0.08	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5 0.5	Rate 0.02 0.02 0 0 0 0 0 0 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times	Option Modified bulk MSW Modified bulk MSW 2018 N Option Modified bulk MSW Modified bulk MSW Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste inerts Waste Type bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste	Weight 0.5032 0.4578 0.0390 Percent by Weight 0.4539424 0.4906690	Carbon Value 0.31 0.08 0 Degradable Organic Carbon Value 0.31 0.08	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5 0.5	Rate 0.02 0.02 0 0 Decay Rate 0.02

GHG Summary Report	

51 PM		GHC	Summary Re			
	Modified bulk MSW	bulk C&D waste	0.5547	0.08	0.5	0.02
	Modified bulk MSW	inerts	0.0428	0	0.5	0
Year Waste Disposed	2016					
Missing data procedure used?	N					
Number of Times Substituted						
	Option	Waste Type		Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
Waste Type Details	Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste)		0.31	0.5	0.02
Maste Type Details	Modified bulk MSW	bulk C&D waste	0.49	0.08	0.5	0.02
	Modified bulk MSW	inerts	0.17	0	0.5	0
Year Waste Disposed	2015					
Missing data procedure used?	N					
Number of Times Substituted						
	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
	Modified bulk MSW	inerts	0.046529126	50	0.5	0
Waste Type Details	Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste)	0.30258695	0.31	0.5	0.02
	Modified bulk MSW	bulk C&D waste	0.650883924	10.08	0.5	0.02
Year Waste Disposed	2014	·				•
Missing data procedure used?	N					
Number of Times						
Substituted	Option	Waste Type	Percent by	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay
	Modified bulk MSW	inerts	Weight 0.054426175		0.5	Rate 0
Waste Type Details	bulk 115W					
waste Type Details	Modified	bulk MSW waste (excluding inerts	0.289814205	50.31	0.5	0.02
waste Type Details	bulk MSW Modified	bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste	0.289814205 0.65575962		0.5	0.02
Year Waste	bulk MSW	and C&D waste)				
Year Waste Disposed Missing data	bulk MSW Modified bulk MSW	and C&D waste)				
Year Waste Disposed Missing data procedure used? Number of Times	bulk MSW Modified bulk MSW 2013	and C&D waste)				
Year Waste Disposed Missing data procedure used? Number of Times	bulk MSW Modified bulk MSW 2013	and C&D waste)	0.65575962 Percent by	0.08 Degradable Organic	0.5 Fraction Of DOC	0.02
Year Waste Disposed Missing data procedure used? Number of Times	bulk MSW Modified bulk MSW 2013 N Option Modified	and C&D waste	0.65575962 Percent by Weight	0.08	0.5	0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted	bulk MSW Modified bulk MSW 2013 N Option Modified bulk MSW Modified	and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts	0.65575962 Percent by Weight 0.013773	0.08 Degradable Organic Carbon Value	0.5 Fraction Of DOC Dissimilated	Decay Rate
Year Waste Disposed	bulk MSW Modified bulk MSW 2013 N Option Modified bulk MSW Modified bulk MSW	and C&D waste) bulk C&D waste Waste Type inerts	0.65575962 Percent by Weight 0.013773 0.300925	0.08 Degradable Organic Carbon Value 0	Fraction Of DOC Dissimilated 0.5	Decay Rate
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details	bulk MSW Modified bulk MSW 2013 N Option Modified bulk MSW Modified bulk MSW	and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts and C&D waste)	0.65575962 Percent by Weight 0.013773 0.300925	0.08 Degradable Organic Carbon Value 0 0.31	Fraction Of DOC Dissimilated 0.5 0.5	0.02 Decay Rate 0 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Waste Type Details Year Waste Disposed Missing data	bulk MSW Modified bulk MSW 2013 N Option Modified bulk MSW Modified bulk MSW	and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts and C&D waste)	0.65575962 Percent by Weight 0.013773 0.300925	0.08 Degradable Organic Carbon Value 0 0.31	Fraction Of DOC Dissimilated 0.5 0.5	0.02 Decay Rate 0 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times	bulk MSW Modified bulk MSW 2013 N Option Modified bulk MSW Modified bulk MSW Modified bulk MSW	and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts and C&D waste)	0.65575962 Percent by Weight 0.013773 0.300925	0.08 Degradable Organic Carbon Value 0 0.31	Fraction Of DOC Dissimilated 0.5 0.5	0.02 Deca) Rate 0 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted	bulk MSW Modified bulk MSW 2013 N Option Modified bulk MSW Modified bulk MSW Modified bulk MSW	and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts and C&D waste)	0.65575962 Percent by Weight 0.013773 0.300925 0.685302 Percent by	0.08 Degradable Organic Carbon Value 0 0.31 0.08 Degradable Organic	Fraction Of DOC Dissimilated 0.5 0.5 0.5 Fraction Of DOC	0.02 Decay Rate 0 0.02 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted	bulk MSW Modified bulk MSW 2013 N Option Modified bulk MSW Modified bulk MSW Modified bulk MSW 2012 N 2012 N Option Modified	and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste	0.65575962 Percent by Weight 0.013773 0.300925 0.685302 Percent by Weight	0.08 Degradable Organic Carbon Value 0 0.31 0.08	0.5 Fraction Of DOC Dissimilated 0.5 0.5 0.5	Decay Rate 0 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted	bulk MSW Modified bulk MSW 2013 N Option Modified bulk MSW Modified bulk MSW Modified bulk MSW 2012 N Option	and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste Waste Type Waste Type	0.65575962 Percent by Weight 0.013773 0.300925 0.685302 0.685302 Percent by Weight 0.015462	0.08 Degradable Organic Carbon Value 0 0.31 0.08 Degradable Organic Carbon Value	Fraction Of DOC Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated	Decay Rate 0 0.02 0.02 0.02 0.02

1						
	bulk MSW					
Year Waste Disposed	2011					
Missing data procedure used?	Ν					
Number of Times Substituted						
	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
Waste Type Details	Modified bulk MSW	inerts	0.009399623	0	0.5	0
waste Type Details	Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste)	0.828320941	0.31	0.5	0.02
	Modified bulk MSW	bulk C&D waste	0.162279436	0.08	0.5	0.02
Year Waste Disposed	2010					
Missing data procedure used?	N					
Number of Times Substituted						
	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
Wasta Tupa Dataila	Modified bulk MSW	inerts	0.02106868	0	0.5	0
Waste Type Details	Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste)	0.680317194	0.31	0.5	0.02
	Modified bulk MSW	bulk C&D waste	0.298614126	0.08	0.5	0.02

Historical Waste Disposal Quantity Estimation Details

Method used to determine the annual waste quantity for any prior years

Were scales used to determine the annual waste quantity

Reporting Year	2009
Total Annual Waste Disposal Quantity	193477 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	193477 (Metric Tons)
Reporting Year	2008
Total Annual Waste Disposal Quantity	275175 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	275175 (Metric Tons)
Reporting Year	2007
Total Annual Waste Disposal Quantity	338402 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	338402 (Metric Tons)
Reporting Year	2006
Total Annual Waste Disposal Quantity	317940 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	317940 (Metric Tons)
Reporting Year	2005
Total Annual Waste Disposal Quantity	206045 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	206045 (Metric Tons)
Reporting Year	2004
Total Annual Waste Disposal Quantity	228816 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	228816 (Metric Tons)
Reporting Year	2003
Total Annual Waste Disposal Quantity	213449 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	213449 (Metric Tons)
Reporting Year	2002
Total Annual Waste Disposal Quantity	256151 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	256151 (Metric Tons)
Reporting Year	2001
Total Annual Waste Disposal Quantity	262727 (Metric Tons)
Method Used to Determine Quantity	other

Ν

Annual Waste Disposal Quantity Reporting Year	262727 (Metric Tons) 2000
Total Annual Waste Disposal Quantity	197305 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	197305 (Metric Tons)
Reporting Year	1999
Total Annual Waste Disposal Quantity	172609 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	172609 (Metric Tons)
Reporting Year	1998
Total Annual Waste Disposal Quantity	201997 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	201997 (Metric Tons)
Reporting Year	1997
Total Annual Waste Disposal Quantity	188363 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	188363 (Metric Tons)
Reporting Year	1996
Total Annual Waste Disposal Quantity	152452 (Metric Tons)
Method Used to Determine Quantity Annual Waste Disposal Ouantity	other 152452 (Metric Tone)
	152452 (Metric Tons) 1995
Reporting Year	
Total Annual Waste Disposal Quantity	67131 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	67131 (Metric Tons) 1994
Reporting Year	
Total Annual Waste Disposal Quantity	96613 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	96613 (Metric Tons)
Reporting Year	1993
Total Annual Waste Disposal Quantity	96613 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	96613 (Metric Tons)
Reporting Year	1992
Total Annual Waste Disposal Quantity	96613 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	96613 (Metric Tons)
Reporting Year	1991
Total Annual Waste Disposal Quantity	87455 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	87455 (Metric Tons)
Reporting Year	1990
Total Annual Waste Disposal Quantity	37577 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	37577 (Metric Tons)
Reporting Year	1989
Total Annual Waste Disposal Quantity	39583 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	39583 (Metric Tons)
Reporting Year	1988
Total Annual Waste Disposal Quantity	43293 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	43293 (Metric Tons)
Reporting Year	1987
Total Annual Waste Disposal Quantity	41232 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	41232 (Metric Tons)
Reporting Year	1986
Total Annual Waste Disposal Quantity	38745 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	38745 (Metric Tons)
Reporting Year	1985
Total Annual Waste Disposal Quantity	36838 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	36838 (Metric Tons)
Reporting Year	1984
Total Annual Waste Disposal Quantity	34552 (Metric Tons)

Annual Waste Disposal Quantity	34552 (Metric Tons)
Reporting Year	1983
Total Annual Waste Disposal Quantity	32376 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	32376 (Metric Tons)
Reporting Year	1982
Total Annual Waste Disposal Quantity	30704 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	30704 (Metric Tons)
Reporting Year	1981
Total Annual Waste Disposal Quantity	28718 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	28718 (Metric Tons)
Reporting Year	1980
Total Annual Waste Disposal Quantity	26834 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	26834 (Metric Tons)
Reporting Year	1979
Total Annual Waste Disposal Quantity	25389 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	25389 (Metric Tons)
Reporting Year	1978
Total Annual Waste Disposal Quantity	23865 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	23865 (Metric Tons)
Reporting Year	1977
Total Annual Waste Disposal Quantity	22077 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	22077 (Metric Tons)
Reporting Year	1976
Total Annual Waste Disposal Quantity	20849 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	20849 (Metric Tons)
Reporting Year	1975
Total Annual Waste Disposal Quantity	19410 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	19410 (Metric Tons)
Reporting Year	1974
Total Annual Waste Disposal Quantity	18061 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	18061 (Metric Tons)
Reporting Year	1973
Total Annual Waste Disposal Quantity	17039 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	17039 (Metric Tons)
Reporting Year	1972
Total Annual Waste Disposal Quantity	15849 (Metric Tons)
Method Used to Determine Quantity	other
Annual Waste Disposal Quantity	15849 (Metric Tons)

Waste Type Details

Year Waste Disposed	2009					
Missing data procedure used?	N					
Number of Times Substituted						
	Option	Waste Type		Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
Waste Type Details	Modified bulk MSW	inerts	0.036443608	0	0.5	0
waste Type Details	Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste)	0.104425849	0.31	0.5	0.02
	Modified bulk MSW	bulk C&D waste	0.859130543	0.08	0.5	0.02
Year Waste Disposed	2008					
Missing data procedure used?	N					
Number of Times						

Substituted	<u> </u>		Percent by	Degradable Organic	Fraction Of DOC	Deer
	Option	Waste Type	Weight	Carbon Value	Dissimilated	Deca [.] Rate
Waste Type Details	Modified bulk MSW	inerts	0.041133824	0	0.5	0
Maste Type Details	Modified bulk MSW waste (excluding bulk MSW and C&D waste) Modified bulk MSW bulk C&D waste 2007		0.089223222	0.31	0.5	0.02
		bulk C&D waste	0.869642954	0.08	0.5	0.02
Year Waste Disposed	2007					
Missing data procedure used?	N					
Number of Times Substituted						
	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Deca [.] Rate
	Modified bulk MSW	inerts	0.081131317	0	0.5	0
Waste Type Details	Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste)	0.08554914	0.31	0.5	0.02
	Modified bulk MSW	bulk C&D waste	0.833319543	0.08	0.5	0.02
Year Waste Disposed	2006				<u>.</u>	
Missing data	N					
procedure used? Number of Times Substituted						
	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Deca Rate
	Modified	inerts	0.006652198		0.5	0
Waste Type Details	bulk MSW Modified	bulk MSW waste (excluding inerts	0.060819652	0.31	0.5	0.02
	bulk MSW Modified bulk MSW	and C&D waste) bulk C&D waste		0.08	0.5	0.02
Year Waste	2005					
Disposed Missing data	N					
procedure used? Number of Times						
Substituted	 		1		-	
						_
	Option	Waste Type		Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Deca [.] Rate
Nasta Tuna Dataila	Option Modified bulk MSW	Waste Type inerts		Carbon Value		
Waste Type Details	Modified bulk MSW Modified	inerts bulk MSW waste (excluding inerts	Weight	Carbon Value	Dissimilated	Rate
Waste Type Details	Modified bulk MSW Modified bulk MSW Modified	inerts	Weight 0.000349438	Carbon Value 0 0.31	Dissimilated	Rate 0
Year Waste	Modified bulk MSW Modified bulk MSW	inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0.000349438 0.082986726	Carbon Value 0 0.31	Dissimilated 0.5 0.5	Rate 0 0.02
Year Waste Disposed Missing data	Modified bulk MSW Modified bulk MSW Modified bulk MSW	inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0.000349438 0.082986726	Carbon Value 0 0.31	Dissimilated 0.5 0.5	0
Year Waste Disposed Missing data procedure used? Number of Times	Modified bulk MSW Modified bulk MSW Modified bulk MSW 2004	inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0.000349438 0.082986726	Carbon Value 0 0.31	Dissimilated 0.5 0.5	Rate 0 0.02
Year Waste Disposed Missing data procedure used? Number of Times	Modified bulk MSW Modified bulk MSW Modified bulk MSW 2004	inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0.000349438 0.082986726 0.916663836 Percent by	Carbon Value 0 0.31 0.08 Degradable Organic	Dissimilated 0.5 0.5 0.5 Fraction Of DOC	Rate 0 0.02 0.02
Year Waste Disposed Missing data procedure used? Number of Times	Modified bulk MSW Modified bulk MSW Modified bulk MSW 2004 N Option Modified	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste	Weight 0.000349438 0.082986726 0.916663836 Percent by Weight	Carbon Value 0 0.31 0.08 Degradable Organic Carbon Value	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated	Rate 0 0.02 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted	Modified bulk MSW Modified bulk MSW Modified bulk MSW 2004 N Option Modified bulk MSW Modified	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts	Weight 0.000349438 0.082986726 0.916663836 Percent by Weight 0.003614258	Carbon Value 0 0.31 0.08 Degradable Organic Carbon Value 0	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5	Rate 0 0 0.02 0.02 Deca Rate 0
Year Waste Disposed Missing data procedure used? Number of Times Substituted	Modified bulk MSW Modified bulk MSW 2004 N Option Modified bulk MSW Modified bulk MSW	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0.000349438 0.082986726 0.916663836 Percent by Weight 0.003614258 0.062849626	Carbon Value 0 0.31 0.08 Degradable Organic Carbon Value 0 0.31	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5 0.5	Rate 0 0.02 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted	Modified bulk MSW Modified bulk MSW 2004 N Option Modified bulk MSW Modified bulk MSW	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts	Weight 0.000349438 0.082986726 0.916663836 Percent by Weight 0.003614258	Carbon Value 0 0.31 0.08 Degradable Organic Carbon Value 0 0.31	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5	Rate 0 0.02 0.02 0.02 Decca Rate 0
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Waste Type Details	Modified bulk MSW Modified bulk MSW 2004 N Option Modified bulk MSW Modified bulk MSW	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0.000349438 0.082986726 0.916663836 Percent by Weight 0.003614258 0.062849626	Carbon Value 0 0.31 0.08 Degradable Organic Carbon Value 0 0.31	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5 0.5	Rate 0 0.02 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Waste Type Details Year Waste Disposed Missing data	Modified bulk MSW Modified bulk MSW 2004 N Option Modified bulk MSW Modified bulk MSW	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0.000349438 0.082986726 0.916663836 Percent by Weight 0.003614258 0.062849626	Carbon Value 0 0.31 0.08 Degradable Organic Carbon Value 0 0.31	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5 0.5	Rate 0 0.02 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0 0.02
Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted	Modified bulk MSW Modified bulk MSW 2004 N Option Modified bulk MSW Modified bulk MSW Modified bulk MSW	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0.000349438 0.082986726 0.916663836 Percent by Weight 0.003614258 0.062849626	Carbon Value 0 0.31 0.08 Degradable Organic Carbon Value 0 0.31	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5 0.5	Rate 0 0.02 0.02 0.02 0 0 0 0 0 0 0 0.02

Modified bulk MSW	inerts	0.003972846	0	0.5	0
Modified	bulk MSW waste (excluding inerts and C&D waste)	0.070007355	0.31	0.5	0.02
Modified	bulk C&D waste	0.926019799	0.08	0.5	0.02
2002		<u> </u>	I		
N					
Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
Modified bulk MSW	inerts			0.5	0
Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste)	0.058258605	0.31	0.5	0.02
Modified bulk MSW	bulk C&D waste	0.932867723	0.08	0.5	0.02
2001		•	•		
N					
1					
Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC	Decay Rate
Modified	inerts	0	0	0.5	0
Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste)	0.070445748	0.31	0.5	0.02
Modified bulk MSW	bulk C&D waste	0.929554252	0.08	0.5	0.02
2000		·		<u>.</u>	
N					
N					
N Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	
Option Modified	Waste Type inerts				Decay Rate
Option Modified bulk MSW Modified		Weight	Carbon Value	Dissimilated	Rate
Option Modified bulk MSW	inerts bulk MSW waste (excluding inerts	Weight 0	Carbon Value 0 0.31	Dissimilated 0.5	Rate 0
Option Modified bulk MSW Modified bulk MSW Modified	inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0 0.076931654	Carbon Value 0 0.31	Dissimilated 0.5 0.5	Rate 0 0.02
Option Modified bulk MSW Modified bulk MSW Modified bulk MSW	inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0 0.076931654	Carbon Value 0 0.31	Dissimilated 0.5 0.5	Rate 0 0.02
Option Modified bulk MSW Modified bulk MSW Modified bulk MSW 1999	inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0 0.076931654	Carbon Value 0 0.31	Dissimilated 0.5 0.5	0
Option Modified bulk MSW Modified bulk MSW Modified bulk MSW 1999	inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0 0.076931654 0.923068346 Percent by	Carbon Value 0 0.31 0.08 Degradable Organic	Dissimilated 0.5 0.5 0.5 Fraction Of DOC	Rate 0 0.02 0.02
Option Modified bulk MSW Modified bulk MSW 1999 N Option Modified	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste	Weight 0 0.076931654 0.923068346	Carbon Value 0 0.31 0.08	Dissimilated 0.5 0.5 0.5	Rate 0 0.02 0.02
Option Modified bulk MSW Modified bulk MSW 1999 N Option Modified bulk MSW Modified	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste Waste Type	Weight 0 0.076931654 0.923068346 Percent by Weight	Carbon Value 0 0.31 0.08 Degradable Organic Carbon Value 0	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated	Rate 0 0.02 0.02 Deca Rate
Option Modified bulk MSW Modified bulk MSW 1999 N Option Modified bulk MSW	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts	Weight 0 0.076931654 0.923068346 Percent by Weight 0	Carbon Value 0 0.31 0.08 Degradable Organic Carbon Value 0 0.31	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5	Rate 0 0.02 0.02 0.02 Decay Rate 0
Option Modified bulk MSW Modified bulk MSW 1999 N Option Modified bulk MSW Modified bulk MSW	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0 0.076931654 0.923068346 Percent by Weight 0 0.096055246	Carbon Value 0 0.31 0.08 Degradable Organic Carbon Value 0 0.31	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5 0.5	Rate 0 0.02 0.02 0.02 0.02 0 0 0 0 0 0 0.02
Option Modified bulk MSW Modified bulk MSW Modified bulk MSW N Option Modified bulk MSW Modified bulk MSW	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0 0.076931654 0.923068346 Percent by Weight 0 0.096055246	Carbon Value 0 0.31 0.08 Degradable Organic Carbon Value 0 0.31	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5 0.5	Rate 0 0.02 0.02 0.02 0.02 0 0 0 0 0 0 0.02
Option Modified bulk MSW Modified bulk MSW Modified bulk MSW N Option Modified bulk MSW Modified bulk MSW Modified bulk MSW	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0 0.076931654 0.923068346 Percent by Weight 0 0.096055246	Carbon Value 0 0.31 0.08 Degradable Organic Carbon Value 0 0.31	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5 0.5	Rate 0 0.02 0.02 0.02 0 0 0 0 0 0 0 0 0
Option Modified bulk MSW Modified bulk MSW Modified bulk MSW N Option Modified bulk MSW Modified bulk MSW Modified bulk MSW	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste Waste Type inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0 0.076931654 0.923068346 Percent by Weight 0 0.096055246	Carbon Value 0 0.31 0.08 Degradable Organic Carbon Value 0 0.31	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated 0.5 0.5	Rate 0 0.02 0.02 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0.02
	bulk MSW Modified bulk MSW 2002 N 2002 N Option Modified bulk MSW Modified bulk MSW 2001 N 2001 N Option Modified bulk MSW Modified bulk MSW Modified bulk MSW	bulk MSW Inerts Modified bulk MSW waste (excluding inerts and C&D waste) Modified bulk C&D waste 2002 N Option Waste Type Modified inerts Modified bulk MSW waste (excluding inerts bulk MSW Modified bulk C&D waste (excluding inerts and C&D waste) Modified bulk C&D waste (excluding inerts bulk MSW Modified bulk C&D waste 2001 N Option Waste Type Modified bulk C&D waste 2001 N Option Waste Type Modified bulk C&D waste 2001 N Option Waste Type Modified bulk MSW waste (excluding inerts bulk MSW Modified bulk MSW waste (excluding inerts and C&D waste) Modified bulk MSW waste (excluding inerts and C&D waste) Modified bulk MSW waste (excluding inerts and C&D waste) Modified bulk C&D waste Modified bulk C&D waste Modified bulk C&D waste	bulk MSW Inerts 0.003972846 Modified bulk MSW waste (excluding inerts 0.070007355 Modified bulk C&D waste) 0.926019799 2002 N	bulk MSWInerts0.003972846 0Modified bulk MSW and C&D waste0.0700073550.31Modified bulk MSWbulk C&D waste0.9260197990.082002NOptionWaste TypePercent by WeightDegradable Organic Carbon ValueModified bulk MSWinerts0.0088736720Modified bulk MSWbulk C&D waste0.9328677230.08Modified bulk MSWbulk C&D waste0.9328677230.08Z001Vaste TypePercent by WeightDegradable Organic Carbon ValueNDotate C&D waste0.9328677230.08Z001NSector Carbon Value0.9328677230.08DoptionWaste TypePercent by WeightDegradable Organic Carbon ValueNSector Carbon Value0.9328677230.08Z001Sector Carbon Value0.9328677230.08NSector Carbon Value0.0080.008OptionWaste TypePercent by WeightDegradable Organic Carbon ValueModified bulk MSWinerts00Modified bulk MSWbulk MSW waste (excluding inerts and C&D waste)0.0704457480.31Modified bulk MSWbulk C&D waste0.9295542520.08Z000Sector Carbon Value0.9295542520.08	bulk MSWinerts0.0039/2846 00.5Modified bulk MSWbulk MSW waste (excluding inerts and C&D waste)0.0700073550.310.5Modified bulk MSWbulk C&D waste0.9260197990.080.52002NOption Modified bulk MSWWaste TypePercent by WeightDegradable Organic Carbon ValueFraction Of DOC DissimilatedModified bulk MSWinerts0.00887367200.5Modified bulk MSWbulk MSW waste (excluding inerts and C&D waste)0.0582586050.310.5Modified bulk MSWbulk C&D waste0.9328677230.080.5Z001NOption Modified bulk MSW waste (excluding inerts bulk MSW0.09328677230.080.5Option Modified bulk MSW0.9328677230.080.5Option Modified bulk MSW0.9328677230.080.5Option Modified bulk MSW0.000.5Option Modified bulk MSW0.000.5Modified WeightDegradable Organic Carbon ValueFraction Of DOC DissimilatedN000.50.5Option Modified bulk MSW waste (excluding inerts bulk MSW0.0704457480.310.5Modified bulk MSWbulk C&D waste0.9295542520.080.5Z000

51 PM		GAC	Summary Re	port		
	Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste)	0.081209127	0.31	0.5	0.02
	Modified bulk MSW	bulk C&D waste	0.918790873	0.08	0.5	0.02
/ear Waste Disposed	1997			•		
Missing data procedure used?	N					
Number of Times Substituted						
Substituted	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
	Modified bulk MSW	inerts	0	0	0.5	0
Waste Type Details	Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste)	0.149912669	0.31	0.5	0.02
	Modified bulk MSW	bulk C&D waste	0.850087331	.0.08	0.5	0.02
Year Waste Disposed	1996					
Missing data procedure used?	N					
Number of Times Substituted						
	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
	Modified bulk MSW	inerts	0	0	0.5	0
Waste Type Details	Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste)	0.145842626	0.31	0.5	0.02
	Modified bulk MSW	bulk C&D waste	0.854157374	0.08	0.5	0.02
Year Waste Disposed	1995					
Missing data procedure used?	N					
Number of Times Substituted						
Substituted	Option	Waste Type		Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
Nacto Tuno Dotaila	Modified bulk MSW	inerts	0	0	0.5	0
Waste Type Details	Modified bulk MSW	bulk MSW waste (excluding inerts and C&D waste)	1	0.31	0.5	0.02
	Modified bulk MSW	bulk C&D waste	0	0.08	0.5	0.02
Year Waste Disposed	1994					
Missing data procedure used?	N					
Number of Times Substituted						
	Option	Waste Type	Percent by	Degradable Organic	Fraction Of DOC	Decay
	Modified	Waste Type inerts	Percent by Weight 0	Degradable Organic Carbon Value 0	Fraction Of DOC Dissimilated 0.5	Decay Rate 0
Waste Type Details			Weight	Carbon Value	Dissimilated	Rate
Waste Type Details	Modified bulk MSW Modified	inerts bulk MSW waste (excluding inerts	Weight Ó	Carbon Value 0 0.31	Dissimilated 0.5	Rate 0
Year Waste	Modified bulk MSW Modified bulk MSW Modified	inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0 0.178402492	Carbon Value 0 0.31	Dissimilated 0.5 0.5	Rate 0 0 0.02
Year Waste Disposed Missing data	Modified bulk MSW Modified bulk MSW Modified bulk MSW	inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0 0.178402492	Carbon Value 0 0.31	Dissimilated 0.5 0.5	Rate 0 0 0.02
Year Waste Disposed Missing data procedure used? Number of Times	Modified bulk MSW Modified bulk MSW Modified bulk MSW 1993	inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0 0.178402492	Carbon Value 0 0.31	Dissimilated 0.5 0.5	Rate 0 0 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted	Modified bulk MSW Modified bulk MSW Modified bulk MSW 1993	inerts bulk MSW waste (excluding inerts and C&D waste)	Weight 0 0.178402492 0.821597508 Percent by	Carbon Value 0 0.31 0.08 Degradable Organic	Dissimilated 0.5 0.5 0.5 Fraction Of DOC	Rate 0 0.02 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted	Modified bulk MSW Modified bulk MSW Modified bulk MSW 1993	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste	Weight 0 0.178402492 0.821597508	Carbon Value 0 0.31 0.08	Dissimilated 0.5 0.5 0.5	Rate 0 0.02 0.02
Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details	Modified bulk MSW Modified bulk MSW Modified bulk MSW 1993 N Option Modified	inerts bulk MSW waste (excluding inerts and C&D waste) bulk C&D waste Waste Type	Weight 0 0.178402492 0.821597508 Percent by Weight	Carbon Value 0 0.31 0.08 Degradable Organic Carbon Value 0	Dissimilated 0.5 0.5 0.5 Fraction Of DOC Dissimilated	Rate 0 0.02 0.02 0.02

51 PM				GHC	G Summary Re	port			
Year Waste	bulk MSW								
Disposed	1992								
Missing data procedure used?	N								
Number of Times Substituted									
	Option	Waste Ty	/pe		Percent by Weight	Degradab Carbon Va	le Organic	Fraction Of DOC Dissimilated	Decay Rate
	Modified	inerts			0		alue	0.5	0
Waste Type Details	bulk MSW Modified		W waste (exclu	ding inerts	0.178402492	0.31		0.5	0.02
	bulk MSW Modified	and C&D	/		0.821597508			0.5	0.02
Year Waste	bulk MSW	DUIK CAL	J waste		0.821397308	0.08		0.5	0.02
Disposed	1991								
Missing data procedure used?	N								
Number of Times Substituted									
	Option	Waste Ty	/pe		Percent by Weight	Degradab Carbon Va	le Organic alue	Fraction Of DOC Dissimilated	Decay Rate
	Modified bulk MSW	inerts			0	0		0.5	0
Waste Type Details	Modified		W waste (exclu	ding inerts	0.241655709	0.31		0.5	0.02
	bulk MSW Modified	and C&D	,		0.758344291			0.5	0.02
Year Waste	bulk MSW				0.730311231	0.00		0.0	0.02
Disposed Missing data	1990								
vision of Times	N								
Substituted			-						
Nacto Typo Dotaile	Option	Waste Type	Percent by Weight	Degrad Value	able Organic C	Carbon	Fraction O Dissimilate		Decay Rate
Waste Type Details	Bulk Waste	Bulk waste	1	0.2			0.5		0.02
Year Waste Disposed	1989	•					1		
Missing data	N								
procedure used? Number of Times									
Substituted		Waste	Percent by	Degrad	able Organic C	arbon	Fraction O	f DOC	Decay
Waste Type Details	Option Bulk	Туре	Weight	Value			Dissimilate		Rate
	Waste	Bulk waste	1	0.2			0.5		0.02
Year Waste Disposed	1988								
Missing data procedure used?	N								
Number of Times Substituted									
	Option	Waste Type	Percent by Weight	Degrad Value	able Organic C	Carbon	Fraction O Dissimilate		Decay Rate
Waste Type Details	Bulk	Bulk waste		0.2			0.5		Rate 0.02
Year Waste	Waste								
Disposed Missing data	1987								
vision of Times	N								
Substituted							1		
Waste Tune Details	Option	Waste Type	Percent by Weight	Degrad Value	able Organic C	Carbon	Fraction O Dissimilate		Decay Rate
Waste Type Details	Bulk Waste	Bulk waste	1	0.2			0.5		0.02
Year Waste Disposed	1986	1		I					

	Option	Waste	Percent by	Degradable Organic Carbon	Fraction Of DOC	Decay
Waste Type Details	' Bulk Waste	Type Bulk waste	Weight 1	Value 0.2	Dissimilated 0.5	Rate 0.02
Year Waste	1985					
Disposed Missing data	N					
procedure used? Number of Times						
Substituted						
Waste Type Details	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
waste type betans	Bulk Waste	Bulk waste	1	0.2	0.5	0.02
Year Waste Disposed	1984					
Missing data procedure used?	N					
Number of Times Substituted						
Substituted	Option	Waste	Percent by	Degradable Organic Carbon	Fraction Of DOC	Decay
Waste Type Details	Bulk	Type Bulk waste	Weight 1	Value 0.2	Dissimilated 0.5	Rate 0.02
Year Waste	Waste		-			0.02
Disposed Missing data	1983					
procedure used?	N					
Number of Times Substituted						
Waata Tirra Data!	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
Waste Type Details						
,.	Bulk Waste	Bulk waste	1	0.2	0.5	0.02
Year Waste		Bulk waste	1	0.2	0.5	0.02
Year Waste Disposed Missing data	Waste	Bulk waste	1	0.2	0.5	0.02
Year Waste Disposed Missing data procedure used? Number of Times	Waste 1982	Bulk waste	1	0.2	0.5	0.02
Year Waste Disposed	Waste 1982 N		<u> </u>			
Year Waste Disposed Missing data procedure used? Number of Times Substituted	Waste 1982 N Option	Bulk waste	1 Percent by Weight	0.2 Degradable Organic Carbon Value	0.5 Fraction Of DOC Dissimilated	
Year Waste Disposed Missing data procedure used? Number of Times	Waste 1982 N	Waste	Percent by Weight	Degradable Organic Carbon	Fraction Of DOC	Decay
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste	Waste 1982 N Option Bulk	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data	Waste 1982 N Option Bulk Waste	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times	Waste 1982 N Option Bulk Waste 1981	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed	Waste 1982 N Option Bulk Waste 1981 N	Waste Type Bulk waste	Percent by Weight 1	Degradable Organic Carbon Value 0.2	Fraction Of DOC Dissimilated 0.5	Decay Rate 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times	Waste 1982 N Option Bulk Waste 1981 N Option	Waste Type Bulk waste Waste Type	Percent by Weight 1 Percent by Weight	Degradable Organic Carbon Value 0.2 Degradable Organic Carbon Value	Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated	Decay Rate 0.02 Decay Rate
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted	Waste 1982 N Option Bulk Waste 1981 N	Waste Type Bulk waste	Percent by Weight 1 Percent by Weight	Degradable Organic Carbon Value 0.2 Degradable Organic Carbon	Fraction Of DOC Dissimilated 0.5 Fraction Of DOC	Decay Rate 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed	Waste 1982 N Option Bulk Waste 1981 N Option Bulk	Waste Type Bulk waste Waste Type	Percent by Weight 1 Percent by Weight	Degradable Organic Carbon Value 0.2 Degradable Organic Carbon Value	Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated	Decay Rate 0.02 Decay Rate
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted	Waste I982 N Option Bulk Waste I981 N Option Bulk Waste	Waste Type Bulk waste Waste Type	Percent by Weight 1 Percent by Weight	Degradable Organic Carbon Value 0.2 Degradable Organic Carbon Value	Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated	Decay Rate 0.02 Decay Rate
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times	Waste 1982 N Option Bulk Waste 1981 N Option Bulk Waste 1980	Waste Type Bulk waste Waste Type	Percent by Weight 1 Percent by Weight	Degradable Organic Carbon Value 0.2 Degradable Organic Carbon Value	Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated	Decay Rate 0.02 Decay Rate
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times	Waste 1982 N Option Bulk Waste 1981 N Option Bulk Waste 1980	Waste Type Bulk waste Type Bulk waste Type Bulk waste	Percent by Weight 1 Percent by Weight 1 Percent by	Degradable Organic Carbon Value 0.2 Degradable Organic Carbon Value 0.2 Degradable Organic Carbon	Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated 0.5 Fraction Of DOC	Decay Rate 0.02 Decay Rate 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used?	Waste 1982 N Option Bulk Waste 1981 N Option Bulk Waste 1980 N Option Bulk Coption Bulk	Waste Type Bulk waste Type Bulk waste	Percent by Weight 1 Percent by Weight 1 Percent by Weight	Degradable Organic Carbon Value 0.2 Degradable Organic Carbon Value 0.2	Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated 0.5	Decay Rate 0.02 Decay Rate 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details	Waste I982 N Option Bulk Waste I981 N Option Bulk Waste I980 N Option Bulk Waste	Waste Type Bulk waste Type Bulk waste Type Bulk waste Type Waste Type	Percent by Weight 1 Percent by Weight 1 Percent by Weight	Degradable Organic Carbon Value 0.2 Degradable Organic Carbon Value 0.2 0.2	Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated Fraction Of DOC	Decay Rate 0.02 Decay Rate 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details	Waste I982 N Option Bulk Waste I981 N Option Bulk Waste I980 N Option Bulk Waste I980	Waste Type Bulk waste Type Bulk waste Type Bulk waste Type Waste Type	Percent by Weight 1 Percent by Weight 1 Percent by Weight	Degradable Organic Carbon Value 0.2 Degradable Organic Carbon Value 0.2 0.2	Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated Fraction Of DOC	Decay Rate 0.02 Decay Rate 0.02
Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details	Waste I982 N Option Bulk Waste I981 N Option Bulk Waste I980 N Option Bulk Waste	Waste Type Bulk waste Type Bulk waste Type Bulk waste Type Waste Type	Percent by Weight 1 Percent by Weight 1 Percent by Weight	Degradable Organic Carbon Value 0.2 Degradable Organic Carbon Value 0.2 0.2	Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated Fraction Of DOC	Decay Rate 0.02 Decay Rate 0.02

51 PM						
	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
	Bulk Waste	Bulk waste	-	0.2	0.5	0.02
Year Waste	1978		<u>ı</u>	I	I	I
Disposed Missing data						
procedure used? Number of Times	N					
Substituted						
Waste Type Details	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
waste Type Details	Bulk Waste	Bulk waste	1	0.2	0.5	0.02
Year Waste Disposed	1977		·			
Missing data procedure used?	N					
Number of Times Substituted						
	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
Waste Type Details	Bulk Waste	Bulk waste		0.2	0.5	0.02
Year Waste Disposed	1976	I	1			I
Missing data	N					
procedure used? Number of Times						
Substituted	Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
Waste Type Details	Bulk Waste	Bulk waste	-	0.2	0.5	0.02
Year Waste	1975		<u> </u>			
Dicnocod						
Missing data procedure used?	N					
Missing data procedure used? Number of Times	N					
Missing data procedure used? Number of Times Substituted	N Option	Waste Type	Percent by Weight	Degradable Organic Carbon Value	Fraction Of DOC Dissimilated	Decay Rate
Missing data procedure used? Number of Times Substituted		Waste Type Bulk waste	Weight			
Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste	Option Bulk	Туре	Weight	Value	Dissimilated	Rate
Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data	Option Bulk Waste	Туре	Weight	Value	Dissimilated	Rate
Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times	Option Bulk Waste 1974	Туре	Weight	Value	Dissimilated	Rate
Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times	Option Bulk Waste 1974 N	Type Bulk waste	Weight 1	Value 0.2	Dissimilated 0.5	Rate 0.02
Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted	Option Bulk Waste 1974 N Option	Type Bulk waste Waste Type	Veight 1 Percent by Weight	Value 0.2 Degradable Organic Carbon Value	Dissimilated 0.5 Fraction Of DOC Dissimilated	Rate 0.02 Decay Rate
Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details	Option Bulk Waste 1974 N	Type Bulk waste	Veight 1 Percent by Weight	Value 0.2 Degradable Organic Carbon	Dissimilated 0.5 Fraction Of DOC	Rate 0.02
Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed	Option Bulk Waste 1974 N Option Bulk	Type Bulk waste Waste Type	Veight 1 Percent by Weight	Value 0.2 Degradable Organic Carbon Value	Dissimilated 0.5 Fraction Of DOC Dissimilated	Rate 0.02 Decay Rate
Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data	Option Bulk Waste 1974 N Option Bulk Waste	Type Bulk waste Waste Type	Veight 1 Percent by Weight	Value 0.2 Degradable Organic Carbon Value	Dissimilated 0.5 Fraction Of DOC Dissimilated	Rate 0.02 Decay Rate
Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times	Option Bulk Waste 1974 N Option Bulk Waste 1973	Type Bulk waste Waste Type	Veight 1 Percent by Weight	Value 0.2 Degradable Organic Carbon Value	Dissimilated 0.5 Fraction Of DOC Dissimilated	Rate 0.02 Decay Rate
Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted	Option Bulk Waste 1974 N Option Bulk Waste 1973	Type Bulk waste Waste Type Bulk waste	Weight 1 Percent by Weight 1 Percent by	Value 0.2 Degradable Organic Carbon Value 0.2 Degradable Organic Carbon Value Degradable Organic Carbon	Dissimilated 0.5 Fraction Of DOC Dissimilated 0.5 Fraction Of DOC	Rate 0.02 Decay Rate 0.02
Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted	Option Bulk Waste 1974 N Option Bulk Waste 1973 N Option Bulk	Type Bulk waste Waste Type Bulk waste	Weight 1 Percent by Weight 1 Percent by Weight	Value 0.2 Degradable Organic Carbon Value 0.2	Dissimilated 0.5 Fraction Of DOC Dissimilated 0.5	Rate 0.02 Decay Rate 0.02
Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details	Option Bulk Waste 1974 N Option Bulk Waste 1973 N	Type Bulk waste Waste Type Bulk waste Bulk waste Waste Type	Weight 1 Percent by Weight 1 Percent by Weight	Value 0.2 Degradable Organic Carbon Value 0.2 Degradable Organic Carbon Value Degradable Organic Carbon Value	Dissimilated 0.5 Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated	Rate 0.02 Decay Rate 0.02
Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details	Option Bulk Waste 1974 N Option Bulk Waste I973 N Option Bulk Waste	Type Bulk waste Waste Type Bulk waste Bulk waste Waste Type	Weight 1 Percent by Weight 1 Percent by Weight	Value 0.2 Degradable Organic Carbon Value 0.2 Degradable Organic Carbon Value Degradable Organic Carbon Value	Dissimilated 0.5 Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated	Rate 0.02 Decay Rate 0.02
Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted	Option Bulk Waste 1974 N Option Bulk Waste 1973 N Option Bulk Waste 1972	Type Bulk waste Waste Type Bulk waste Bulk waste Waste Type	Weight 1 Percent by Weight 1 Percent by Weight	Value 0.2 Degradable Organic Carbon Value 0.2 Degradable Organic Carbon Value Degradable Organic Carbon Value	Dissimilated 0.5 Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated	Rate 0.02 Decay Rate 0.02
Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste Disposed Missing data procedure used? Number of Times Substituted Waste Type Details Year Waste	Option Bulk Waste 1974 N Option Bulk Waste 1973 N Option Bulk Waste 1972	Type Bulk waste Waste Type Bulk waste Bulk waste Waste Type	Weight 1 Percent by Weight 1 Percent by Weight	Value 0.2 Degradable Organic Carbon Value 0.2 Degradable Organic Carbon Value Degradable Organic Carbon Value	Dissimilated 0.5 Fraction Of DOC Dissimilated 0.5 Fraction Of DOC Dissimilated	Rate 0.02 Decay Rate 0.02

		Waste				
Wo	orking Capacity Det	ails				
	Were working capaci	ties used to	determine	waste disposal qu	Jantities	N

Tipping Receipt Details

Were tipping receipts or company records used to determine waste disposal quantities	Y
Start Year	1991
End Year	2009

Method used for estimating all annual waste quantities that are not determined with the methods above

Method #2: Use the estimated population served by the landfill in each year, the values for national average per capita waste generation, and fraction of generated waste disposed of in solid waste disposal sites (Equation HH-2).

Method Start Year	1972
Method End Year	1990

Historical Estimation Population Details Reporting Year 1990

Reporting Year	1990
Estimated Population Served by Landfill	59513
Reporting Year	1989
Estimated Population Served by Landfill	56774
Reporting Year	1988
Estimated Population Served by Landfill	54116
Reporting Year	1987
Estimated Population Served by Landfill	51540
Reporting Year	1986
Estimated Population Served by Landfill	49045
Reporting Year	1985
Estimated Population Served by Landfill	46631
Reporting Year	1984
Estimated Population Served by Landfill	44298
Reporting Year	1983
Estimated Population Served by Landfill	42046
Reporting Year	1982
Estimated Population Served by Landfill	39876
Reporting Year	1981
Estimated Population Served by Landfill	
Reporting Year	1980
Estimated Population Served by Landfill	35779
Reporting Year	1979
Landfill	33852
Reporting Year	1978
Estimated Population Served by Landfill	
Reporting Year	1977
Estimated Population Served by Landfill	
Reporting Year	1976
Estimated Population Served by Landfill	
Reporting Year	1975
Estimated Population Served by Landfill	20939
Reporting Year	1974
Estimated Population Served by Landfill	
Reporting Year	1973
Estimated Population Served by Landfill	23999
Ι	

	1972
Estimated Population Served by Landfill	22641
Historical landfill Capacity	
IReason	Waste receipt records for years prior to 1991 were not available, and the estimated population of the service area was known.

Methane Generation and Emissions For Landfills Without LFG Collection Systems

Gas Collection Systems Details

Methane Generation Equation HH5	3280.18 (Metric Tons)
Is Override Indicator?	N

Equation HH-1 Details:

The fraction of CH4 in landfill gas (F), is it based on a measured value or default value	default
Fraction by volume of CH4 in landfill gas	0.5
An MCF value other than the default of 1 was used	N
Annual MCF Value	1.0

Annual Modeled Methane Generation	3644.65 (Metric Tons)
Annual Modeled Methane Generation User Overrided value?	N

e-GGRT Reporting Year Comparison Report Carbon Dioxide Equivalent (CO2e) Quantities

RY2021 Version 1 Report Compared to Other Certified Reports

- Facility: Sandoval County Landfill
- Address: 2708 Iris Road NE Rio Rancho, NM 87144

GHGRP ID: 532057

IMPORTANT: This report presents data contained on this annual report: RY2021 Version 1

as compared to data contained on the most recently SUBMITTED AND CERTIFIED annual reports for each

of the other reporting years.

In order to provide a consistent time-series for each facility's CO2e quantities across reporting years, the EPA plans to publish CO2e values using the "Adjusted Values"? in the table below. CO2e values submitted for prior reporting years (see "Submitted Values"?) will continue to be made publicly available. The "Adjusted Values"? will not replace or alter the values that facilities reported for those years, will be clearly marked as recalculated, and are intended to enable unbiased comparison of CO2e quantities across years.

	RY2016 v1	RY2017 v1	RY2018 v1	RY2019 v1	RY2020 v1	RY2021 v1
	(mtons CO2e)					
	Complete, certified					
AS SUBMITTED (basis)	(SAR)	(SAR)	(AR4)	(12.11.14 Final Rule)	(12.11.14 Final Rule)	(12.11.14 Final Rule)
Direct emissions in CO2e (C-II, SS-TT)***	68,113.8	70,299.0	72,517.0	75,486.0	78,654.3	82,004.5
Biogenic CO2 emissions (C-II, SS-TT)	0.0	0.0	0.0	0.0	0.0	0.0
CO2 received for injection (UU)	N/A	N/A	N/A	N/A	N/A	N/A
CO2 sequestered (RR)	N/A	N/A	N/A	N/A	N/A	N/A
CO2e from products supplied (LL-QQ)* **	0.0	0.0	0.0	0.0	0.0	0.0
ADJUSTED (basis)	(12.11.14 Final Rule)					
Direct emissions in CO2e (C-II, SS-TT)****	68,113.8	70,299.0	72,517.0	75,486.0	78,654.2	82,004.5
Biogenic CO2 emissions (C-II, SS-TT)	0.0	0.0	0.0	0.0	0.0	0.0
CO2 received for injection (UU)	N/A	N/A	N/A	N/A	N/A	N/A
CO2 sequestered (RR)	N/A	N/A	N/A	N/A	N/A	N/A
CO2e from products supplied (LL-QQ)* ** ****	0.0	0.0	0.0	0.0	0.0	0.0

*Negative numbers may result from the quantity of exports exceeding the quantity of imports.

**In some cases the CO2e quantity from a supplier may be Confidential Business Information (CBI) and will not be published.

***Under Subpart L. emissions are calculated using the GWPs as updated in the 12.11.14 Final Rule in all reporting years

****Facilities in subparts I, T, OO and QQ may have reported gases that did not appear on Table A-1 of Part 98 until 2015. In that case, EPA intends to assign these gases the appropriate chemical-specific or default GWPs and re-calculate the facilities' CO2e emissions for reporting years 2011 through 2014 for publication purposes. This chart does not reflect these additional adjustments.

Basis Definitions:

(SAR) means that the CO2e value was calculated using the GWPs published in the final rule that established the Greenhouse Gas Reporting Program (74 FR 5626, October 30, 2009). Most of these GWPs were drawn from the IPCC Second Assessment Report, though some, such as the GWPs for NF3 and several HFEs, were drawn from the IPCC Fourth Assessment Report.

(AR4) means that the CO2e value was calculated using the GWPs as updated by the final rule, "2013 Revisions to the Greenhouse Gas Reporting Rule and Final Confidentiality Determinations for New or Substantially Revised Data Elements"? (78 FR 71904, November 29, 2013). Most of these GWPs were drawn from the IPCC Fourth Assessment Report.

(12.11.14 Final Rule) means that the CO2e value was calculated using GWPs as updated by the final rule, "Greenhouse Gas Reporting Program: Addition of Global Warming Potentials to the General Provisions and Amendments and Confidentiality Determinations for Fluorinated Gas Production"? (79 FR 73750, December 11, 2014). These amendments added chemical-specific or default GWPs for fluorinated GHGs that had not been assigned chemical-specific GWPs by the previous rules.

e-GGRT Reporting Year Comparison Report Metric Tons of Greenhouse Gases by Subpart RY2021 Version 1 Report Compared to Other Certified Reports

Facility: Sandoval County Landfill

Address: 2708 Iris Road NE Rio Rancho, NM 87144

GHGRP ID: 532057

IMPORTANT: This report presents data contained on this annual report: RY2021 Version 1 as compared to data contained on the most recently SUBMITTED AND CERTIFIED annual reports for each of the other reporting years.

	RY2016 v1	RY2017 v1	RY2018 v1	RY2019 v1	RY2020 v1	RY2021 v1
	(mtons)	(mtons)	(mtons)	(mtons)	(mtons)	(mtons)
	Complete, certified and sent					
Subpart HH						
Methane	2,724.55	2,811.96	2,900.68	3,019.44	3,146.17	3,280.18

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted, and the unit represented in the test report significantly effect emission rates.
- \boxtimes If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- If an older version of AP-42 is used, include a complete copy of the section.
- ☐ If an EPA document or other material is referenced, include a complete copy.
- \boxtimes Fuel specifications sheet.
- □ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

7.0 Introduction

Multiple sources of equipment and activity-specific data, equations and emissions factors were used in determining potential emissions for SCLF. Information used to determine emissions is outlined in the following sections and attachments.

7.1 Manufacturer Data

Available manufacturer data were used in determining emissions rates from heavy equipment operations at the facility. Data from the Caterpillar Performance Handbook (Edition 49, 2019), Doppstadt, Inc. specification sheets, Metso Lokotrack Product Specifications, John Deere specifications sheets, and diesel fuel manufacturers were used to determine particulate emissions from typical landfill operations. **Attachment 7.1** provides copies of manufacturer specifications used in this Application, as well as standard densities used to determine machinery loading masses.

7.2 EPA Emission Factors and AP-42

The most recent version of the Environmental Protection Agency's Emissions Factors and AP-42 (5th edition, 1995) were used in determining particulate emissions for this Application. Pages containing relevant equations, emissions factors, and tables are included in **Attachment 7.2**. Additionally, Section 11.19.2 (1/95) of AP-42 4th Edition (1985) was used to determine portions of the TSP emissions from the Crusher/Shredder and Portable Rock Crusher (Rental), and that section is included in **Attachment 7.2** in its entirety.

7.3 Other Modeling and Emission Determination

No computer models were used to determine particulate emissions at SCLF. VOC/HAP emissions that can potentially occur from the remediation of petroleum contaminated soils (PCS) have been estimated as demonstrated in **Section 6** using the most recent AQB-approved mass-balance method. This approach is demonstrated in **Section 6.6.3**, and an example PCS shipment tracking sheet which continually calculates HAP emissions due to landfarming of PCS is provided as **Appendix 6.8**. No PCS have been accepted at SCLF to-date to determine the actual HAP emission rate or individual HAP concentrations for PCS remediation.

EPA LandGEM (Landfill Gas Emissions Model), Version 3.03 (USEPA, May, 2020) was used to calculate total LFG and NMOC emission rates. The Model estimates emissions resulting from the biodegradation of refuse in landfills and is recommended by EPA for use in developing estimates for state inventories. The Model uses a first-order decay rate equation, and estimates annual emissions over any time period specified by the user. The time period specified for SCLF was 1972 (the first year of waste acceptance) through 2028. This conservative timeframe was selected to project emissions estimates for the anticipated 18-month Permit review/issuance period, as well as the remaining Permit term.

One underground, double-wall, fiberglass storage tank for unleaded gasoline is used at SCLF. The tank stores approximately 20,000 gallons, with an annual throughput of approximately $200,000\pm$ gallons. VOC emissions from fueling activities have been calculated using the latest version of EPA's Storage Tank Emissions Calculation Software (TANKS ver. 4.0.9d). Tank characteristics have been entered into **Table 2-L**, and **Appendix 6.10** provides the TANKS output files using available fuel/tank data.

Based on the data provided in **Tables 2-K**, **2-L**, **2-M**, **6.7**, **6.8**, and the above information, SCLF is not a major source for HAPs (either individually or in the aggregate), as defined in Section 112(r) of the Clean Air Act. Individual HAP emissions were not specified in **Table 2-I**, as none of the values calculated exceeded its associated de minimis level listed in the US EPA document "De Minimis Rates Specified in Proposed 40 CFR Part 63, Subpart B", EPA-453/R-93-035 or de minimis levels established under subsequent rule making for 112(g).

Air Dispersion Modeling has also been performed for the new emissions rates and source locations calculated for the 2022 SCLF Permit Renewal Application. Air dispersion modeling results are provided in **Section 16** (Air Dispersion Modeling) using the UA4 form and demonstrate compliance with applicable regulations, specifically 40 CFR 50 (National Ambient Air Quality Standards); 40 CFR 52 (Prevention of Significant Deterioration); and 20.2.3 NMAC (New Mexico Ambient Air Quality Standards).

7.4 Insignificant Activities and Equipment

Several activities at SCLF are considered "insignificant" or "trivial". Consistent with 20.2.70.300.D(6) NMAC, this Section evaluates the insignificance of each activity utilizing guidance furnished by NMED Air Quality Bureau (AQB). Specifically, AQB has developed a List of Insignificant Activities (dated March

Form-Section 7 last revised: 8/15/2011 Section 7, Page 2

Sandoval County

Sandoval County Landfill

March 7, 2023 Rev 0

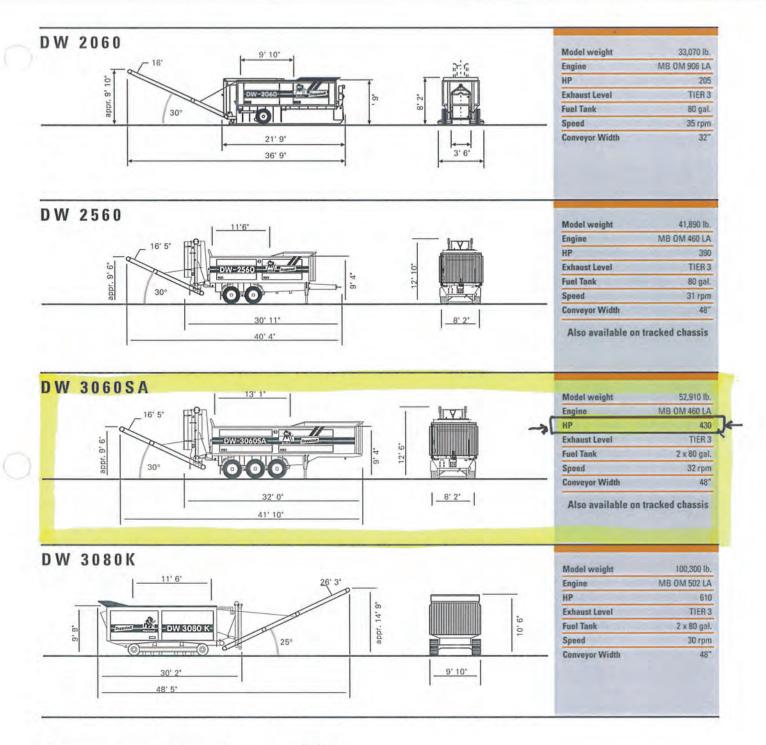
24, 2005), and a List of Trivial Activities (dated September 15, 2008) which list activities and equipment that are considered insignificant or trivial on the basis of size, emissions, or production rate. Section 2, Table 2-B provides a list of these activities, and a copy of each List is provided in Attachment 7.3.

Diesel Fuel Storage Tank – In addition to the 20,000-gallon unleaded gasoline storage tank, Sandoval County owns and operates a 20,000-gallon diesel fuel underground storage tank. The tank is constructed of double-walled fiberglass, and stores both conventional and dyed diesel fuels (12,000 and 8,000 gallons, respectively). The tank is used solely for fueling County-owned vehicles, and is located at the Landfill Operations Center Fuel Islands (**Figure 5.1, Section 5**). Item #5 of the List of Insignificant Activities (**Attachment 7.3**) requires that the vapor pressure of a stored liquid be <10 mm Hg (i.e., <0.2 psi). As shown on the Material Safety Data Sheet (MSDS) for No. 2 diesel (**Attachment 7.4**), the vapor pressure for the stored fuel is 0.009 psia at 21°C, considerably less than the 0.2 psi threshold value. Item #8 of the List of Insignificant Activities requires that the tank have a storage capacity of less than 25,000 gallons.

Cold Solvent Parts Washers – Two cold solvent parts washer machines are located at the County Fleet & Maintenance Building, and one machine is located at the City of Rio Rancho Public Works Building maintenance shop. The machines are used to clean various equipment parts in conjunction with routine vehicle/equipment maintenance and repair. The units are self-contained; are equipped with re-circulating pumps and filters; and each has a solvent storage capacity of less than 55 gallons.

The solvent used at the Sandoval County Fleet & Maintenance Building is ZEP® DYNA 143TM Parts Washer Degreaser. The Rio Rancho maintenance shop uses a ManTechTM solvent called ThermaFlush®. Emissions from each cold solvent parts washer are considered insignificant due to the low vapor pressure of the stored liquid. As shown on the MSDSs included in **Attachment 7.5**, the vapor pressure for each solvent is 0.3 mm Hg and 0.7 mm Hg, respectively, considerably less than the 10 mm Hg threshold specified in Item #5 of the List of Insignificant Activities.

Waste Oil Storage – Used (waste) oil derived from the servicing of County and Landfill heavy equipment and light service vehicles is temporarily stored at the site until it can be used to heat the County Fleet & Maintenance Building. Emissions from waste oil storage are considered insignificant due to the low vapor pressure of the stored liquid. As shown on the MSDS included in **Attachment 7.5**, the vapor pressure for motor oil is <0.01 mm Hg at 100°C, considerably less than the 10 mm Hg threshold specified in Item #5 of the List of Insignificant Activities.


Waste Oil Heaters – Four waste oil heaters are located in the Sandoval County Fleet & Maintenance Building. These heaters are used solely for heating the building for personnel comfort, and each has a maximum design rating of 175,000 Btu/hr. Because the combined heating value of these heaters is well below 1,000,000 BTU/hr (1 MMBtu/hr), this activity is considered insignificant per Item #4 of the List of Insignificant Activities. This is also an insignificant activity due to the low vapor pressure of motor oil (i.e.,<0.01 mm Hg).

Vehicle Maintenance Fluids Storage – Motor oil, antifreeze, hydraulic oil, automatic transmission fluid, and lubricating grease are stored and used at SCLF. These materials exhibit vapor pressures considerably less than the 0.2 psi threshold value specified in Item #5 of the List of Insignificant Activities. Therefore, storage of these materials is also considered an insignificant activity.

ATTACHMENT 7.1

- Doppstadt 3060SA Specifications Sheet
- Metso Lokotrack LT1213 Product Specifications
- 2019 Caterpillar Performance Handbook Sections
 - John Deere 544 Wheel Loader Specifications
- Komatsu WA-250 Wheel Loader Specifications
- Heating Values of Hydrogen and Fuels (Essom Co. Ltd.)
 - Material Density Standards

Doppstadt 3060SA Specifications Sheet

SHRED. SCREEN. GRIND.

DoppstadtUS

1057 Jaycox Rd. Avon, OH 44011 440.937.3225 phone 440.937.3411 fax sales@doppstadtus.com

www.doppstadtus.com

ume avvil specifications subject to technical autoistions. The specifications are approximate, illustrations and descriptions might include options that are not port of the standard aquipment

Metso Lokotrack LT1213 Product Specifications

Lokotrack[®] Mobile crushing & screening plants

Making the big difference to our customers

Lokotrack LT1110

The Lokotrack[®] LT1110[™] is our most compact impactor plant on tracks. The LT1110 is commonly used for crushing medium hard rocks and for recycling. It can crush any recycled material from asphalt to concrete and bricks. The Nordberg® NP1110M[™] impact crusher always provides high capacity and a high reduction rate.

Lokotrack LT1110 is built around the powerful Nordberg NP1110M impact crusher from the proven NP series. The crusher is specially designed for mobile applications, and features a large feed

opening and robust construction for long-lasting, reliable operation. The Lokotrack LT1110 always features high-guality blow bars as standard.

The highly advanced Metso IC[™] process control system controls and adjusts all key parameters in the process for optimum crushing results. By controlling the feeder and crusher it gets the best performance out of the LT1110.

An additional screen module with a return **conveyor** allows the Lokotrack LT1110 to produce a calibrated end product with just a single unit. The new engine module and hydraulic system provide more power for the crusher and enable lower fuel consumption.

Features

Feed opening

"Since we installed our Lokotrack LT1110 and ST3.5, we have processed 200,000 tons of rock. What our Metso Lokotrack system has done so far is unbelievable and we are just getting started." Angelo Fish Director Southern Land Company, Tennessee, USA

Lokotrack LT1213

The Lokotrack[®] LT1213[™] is a fully-equipped mobile impactor plant that combines mobility, high capacity and flexibility in applications. The CAT® diesel engine secures crushing power and high-quality blow bars put the final touches on performance. The LT1213 can operate as a primary or secondary unit.

Lokotrack LT1213 is easy to operate. The new radial side conveyor, hydraulic locking on the long main conveyor and feed hopper walls are examples of innovations used in the LT1213. The LT1213 can be finetuned for aggregate, quarry or recycling applications with features like a vibrating grizzly or pan feeder under the crusher.

The LT1213 features an advanced gearbox as

standard. The Metso gearbox provides the most efficient crusher drive system on the market with assisted start and brake. An optimized hydraulic circuit with an independent fan and stand-by function gives up to 20% lower fuel consumption and more power for the crusher.

The crusher service rotation is carried out by a 24V hydraulic power pack. New tools are provided to help change the blow bars and breaker plates. Special attention is paid to access to the service locations and trouble-free material flow. The stand-by function helps to save fuel and reduce noise when idling.

0

Features

Feed opening

"After starting asphalt recycling with Lokotrack LT1213 impactor plant, we have verified a fuel consumption of 24 liters (6.3 Gl) per hour, which is much less than with our older and smaller impactor plant." Karl-Werner Bierbrauer **Managing Director** Bierbrauer & Sohn, Germany

Lokotrack[®] LT1213 & LT1213S Mobile crushing & screening plants

Lokotrack LT1213 & LT1213S The desired impact

Metso Lokotrack LT1213S is fully equipped mobile impactor plant with high capacity screen and return conveyor. LT1213 has the same features and options available but no screen nor return conveyor. The crushing plants have been built around powerful Caterpillar C13 diesel engine and capacity is provided by the refreshed NP1213M impact crusher. Lokotrack LT1213 and LT1213S can be transported as a single unit on a low bed trailer.

Flexibility in applications

er.

New radial return conveyor makes Lokotrack LT1213S easy to operate in closed and open circuits. The conveyor turns hydraulically. Lokotrack LT1213S has the brand new dual slope screen to provide high on board screening capacity. The screening unit can be docked in a few minutes. Both Lokotracks are designed to operate together with other Lokotrack mobile crushing and screening plants. LT1213 and LT1213S can be fine tuned for aggregate, quarry or recycling applications with features like vibrating grizzly or pan feeder under the crush-

Energy saving built-in

Lokotrack LT1213 and LT1213S have advanced gearbox as a standard. The Metso gearbox provides the most efficient crusher drive system on the market with assisted start and brake. Optimized hydraulic circuit with independent fan and stand-by function gives up to 20% lower fuel consumption and more power for the crusher.

metso

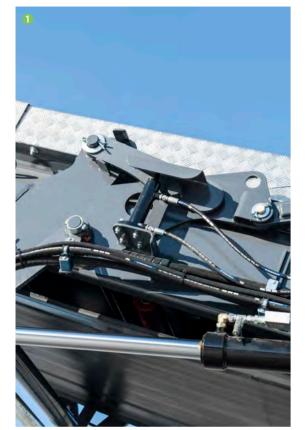
Safe to operate and maintain

The crusher service rotation is done by 24V hydraulic power pack. New tools are provided to help changing the blow bars and breaker plates. Special attention is being paid on access to the service locations and trouble free material flow. Stand-by function helps to save fuel and reduce noise when idling.

Profitable crushing for different customers

Fast set up is important when crushing plants are moving regularly. Lokotrack LT1213 and LT1213S are ready for crushing only few moments after arriving onsite. Any tools or cranes are not required. IC700 control system with single button start and stop makes the Lokotrack easy to use. Parameters for different sites can be stored and even setting can be optionally adjusted from control display. Lokotrack LT1213 and LT1213S come always with high quality blow bars for efficient crushing. Operation and service DVD with scheduled maintenance, equipment protection plan and extended warranty maximize the availability and profitability.

LOKOTRACK LT1213 & LT12135



High quality blow bars as a standard

Lokotrack LT1213 & LT1213S:

- The excellent capacity is a combination of high performance and reliability
- The efficient power transmission provides up to 20% lower fuel consumption
- Compact dimensions and easy set-up gives superior mobility
- New features like service rotation provides easy and safe operation

LOKOTRACK LT1213 & LT1213S

No tools are required for set-up.
 Dual slope screen enables efficient & accurate separation.
 Metso gearbox and direct drive enable efficient crushing.
 Return conveyor always on board in LT12135.

Lokotrack LT1	213		
Nordberg NP121	3M impact crusher		
	Rotor dimensions	1 300 x 1 200 mm	51 1/5" x 47 1/5"
Feed hopper			
	Standard	6 m ³	8 yd³
	With extensions	9 m ³	12 yd ³
	Loading height	3 800 mm	12'6"
Feeder			
	Width	1 100 mm	43 1/3"
	Length	4 200 mm	13'9"
Main conveyor			
	Width	1 200 mm	47"
	Discharge height*	4 000 mm	13'2"
Engine			
	Caterpillar C13	310 kW	415 hp
Transport dimer			
	Length* Width Height Weight*	16 850 mm 2 980 mm 3 600 mm 45 tons	55' 3" 9' 9" 11' 9" 99 000 lbs

* = Dimensions with a long main conveyor, magnetic separator, side conveyor and feed hopper extensions

The Lokotrack LT1213S is easily transportable on a trailer.

LOKOTRACK LT1213 & LT1213S

Lokotrack LT12	13S		
Nordberg NP121	3M impact crusher		
f	Rotor dimensions	1 300 x 1 200 mm	51 1/5" x 47 1/5"
Screen DS16-36			
	Area	5.75 m ²	6.9 yd ²
Feed hopper			
	Standard	6 m³	8 yd³
	With extensions	9 m ³	12 yd ³
	Loading height	3 800 mm	12'6"
Feeder			
	Width	1 100 mm	43 1/3"
	Length	4 200 mm	13′9″
Main conveyor			
	Width	1 200 mm	47″
	Discharge height	3 100 mm	10'2"
Engine			
	Caterpillar C13	310 kW	415 hp
Transport dimens	sions		
	Length Width Height Weight**	19 400 mm 3 200 mm 3 600 mm 55 tons	63'7" 10'6" 11'9" 121 000 lbs

** = Dimensions with all options

LOKOTRACK LT1213 & LT12135

Metso Corporation, Lokomonkatu 3, P.O.Box 306, FI-33101 Tampere, Finland, tel. +358 20 484 142, fax +358 20 484 143 www.metso.com

Metso, Lokotrack, Nordberg, Barmac and, Trellex are trademarks or registered trademarks of Metso Corporation or its subsidiaries or affiliates. *Other names and brands may be claimed as the property of others. *Caterpillar and CAT are registered trademarks of Caterpillar Inc.

2019 Caterpillar Performance Handbook Sections

Wheel Tractor-Scrapers (cont'd)

	Product Ident.		Horse- power	Capacity Struck/	Approx. Shipping		Dimens	ions m (ft)		Tire Size (Standard) & ply rating	Turning
Model	No. Prefix	Years Built	Max/ Rated	Heaped m ³ (yd ³)	Weight kg (lb)	Length	Width	Height	Width of Tread	Tractor & Scraper	Circle m (ft)
DW21 &	8W	51-55	225/*	11.5/15	24 790	12.37	3.53	3.28	2.13	24.0 × 29-24	10.67
No. 21 Scraper	8			(15/20)	(54,650)	(40'7")	(11'7")	(10'9")	(7'0")		(35'0")
DW21C &	58C	55-58	300/*	14/19	26 610	12.67	3.58	3.35	2.24	29.5 × 29-22	11.00
No. 470 Scraper	69C			(18/25)	(58,670)	(41'7")	(11'9")	(11'0")	(7'4")		(36'0")
DW21D &	85E	58-58	320/*	14/19	26 310	12.78	3.58	3.35	2.24	29.5 × 29-22	11.00
No. 470 Scraper	86E			(18/25)	(58,010)	(41'11")	(11'9")	(11'0")	(7'4")		(36'0")
DW21G &	85E	58-60	345/*	14.9/20.6	27 210	12.78	3.58	3.48	2.24	29.5 × 29-28	11.00
No. 470 Scraper	86E			(19.5/27)	(59,980)	(41'11")	(11'9")	(11'5")	(7'4")		(36'0")
611	6SZ	99-03	265	11	23 900	12.02	3.27	3.24	2.06	29.5R25	10.2
				(15)	(52,640)	(39'5")	(10'9")	(10'8")	(6'9")		(33'5")
613A	71M	69-76	/150	8.4	13 334	9.67	2.44	2.85	1.89	18.0 × 25-12	9.04
				(11)	(29,395)	(31'9")	(8'0")	(9'4.5")	(6'2.5")		(29'8")
613B	38W	76-84	/150	8.4	14 155	9.78	2.44	2.85	1.89	18.0 × 25-12	8.94
				(11)	(31,210)	(32'1")	(8'0")	(9'4.5")	(6'2.5")		(29'4")
613C		84-93	175	8.4	14 670	10.0	2.44	3.06	1.89	18.00-25,	8.9
				(11)	(32,340)	(32'9")	(8'0")	(10'0")	(6'2.5")	16 PR (E-2)	(29'4")
613C Series II	8LJ	93-08	175	6.8/8.4	15 264	10.14	2.44	3.01	1.80	23.5R25*	9.0
				(8.9/11)	(33,650)	(33'3")	(8'0")	(9'10")	(5'11")		(29'6")
613G	ESB	08-10	181	6.8/8.4	16 887	10.41	2.43	3.01	1.80	23.5R25★	9.0
	_			(8.9/11)	(37,229)	(34'2")	(8'0")	(9'11")	(5'11")		(29'6")
615	46Z	81-87	/250	12.23	23 400	11.6	3.048	3.590	2.21	26.5-25,	9.63
				(16)	(51,590)	(38'1")	(10'0")	(11'8")	(7'3")	26 PR (E-2)	(31'7")
615C		87-93	265	12.23	23 860	11.6	3.048	3.59	2.21	26.5-25,	9.63
				(16)	(52,600)	(38'1")	(10'0")	(11'9")	(7'3")	26 PR (E-2)	(31'7")
615C Series II	9XG	93-08	265	11/13	25 605	11.6	3.05	3.5	2.1	29.5R25★	10.8
				(14/17)	(56,450)	(38'1")	(10'0")	(11'0")	(6'9")		(35'6")
619B DD	89E	59-60	/225	. ,	(117) 117				()	Turbocharged,	Electric sta
DD	90E									Turbochargeo	
619C PS	61F	60-66	280/250	10.8/14	21 550	11.05	3.30	3.76	2.00	26.5 × 29-22	9.14
DD	62F			(14/18)	(47,500)	(36'3")	(10'11")	(12'2")	(6'7")		(30'0")
619**	43F	64-65	/250	15.3/12.6	27 400	11.89	3.60	3.45	2.30	26.5 × 29-26	10.20
				(20/16.5)	(60,390)	(40'0")	(11'10")	(11'4")	(7'7")		(33'6")
621	43H	65-72	/300	10.7/15.3	28 400	12.00	3.60	3.45	2.19	29.5 × 29-22	11.50
	-			(14/20)	(62,600)	(39'5")	(11'10")	(11'4")	(7'3")		(37'8")
621	23H	65-74	/300	10.7/15.3	24 900	11.60	3.50	3.40	2.10	29.5 × 29-22	13.00
	-			(14/20)	(55,000)	(38'1")	(11'7")	(11'2")	(6'10")		(42'6")
621B	45P	73-86	/330	10.7/15.3	30 205	12.7	3.45	3.63	2.21	29.5-29,	11.10
				(14/20)	(66,590)	(41'7")	(11'4")	(11'11")	(7'3")	28 PR (E-3)	(36'6")
621E	6AB	86-93	/330	10.7/15.3	30 480	12.93	3.47	3.71	2.21	33.25-29,	10.9
	2PD	00 00	,	(14/20)	(67,195)	(42'5")	(11'4")	(12'2")	(7'3")	26 PR (E-3)	(35'8")

*Maximum HP only available.

**Johnson Manufacturing Company built the J619 Elevating Scraper for Caterpillar in 1964.

Wheel Tractor-Scrapers (cont'd)

	Product		Horse-	Capacity	Approx.		Dimens	ions m (ft)		Tire Size (Standard) &	. .
ldent. No. Model Prefix		Years Built	power Max/ Rated	Struck/ Heaped m³ (yd³)	Shipping Weight kg (lb)	Length	Width	Height	Width of Tread	ply rating Tractor & Scraper	Turning Circle m (ft)
621F	4SK	93-00	330	10.7/15.3	32 090	12.93	3.47	3.71	2.21	33.25-29	10.2
	-			(14/20)	(70,740)	(42'5")	(11'4")	(12'2")	(7'3")	★★ (E-2/E-3)	(33'5")
621G	ALP	00-03	330/365	10.7/15.3	32 250	12.93	3.47	3.71	2.20	33.25R29	11.7
				(14/20)	(71,090)	(42'5")	(11'4")	(12'2")	(7'3")		(38'5")
621G	CEN	03-05	330/365	12/17	32 563	12.93	3.47	3.71	2.20	33.25R29	11.7
0210	02.1		000,000	(15.7/22)	(71,790)	(42'5")	(11'4")	(12'2")	(7'3")	00.201.20	(38'5")
621G	DBB	05-10	330/365	12/17	33 995	12.88	3.58	3.71	2.23	33.25R29	11.7
02.0	222		000,000	(15.7/22)	(74,946)	(42'3")	(11'9")	(12'3")	(7'4")	★★ (E-3)	(38'5")
				(10.77 EE)	() 1,010)	(120)	(110)	(120)	Tractor		(000)
									2.20		
									(7'3")		
									Scraper		
621H	DBK	10-13	407	13/18.4	36 185	14.02	3.57	4.03	2.29	33.25R29	11.8
02111	EAZ	10-13	407	(17.1/24)	(79,787)	(45'10")	(11' 7 ")	(13'2")	(7'5")	★★ (E-3)	(38'7")
	EAZ			(17.1/24)	(/9,/0/)	(4510)	(117)	(132)	Tractor	★★ (E-3)	(307)
									2.28		
									(7'4")		
600	52U	72-74	/300	16.8	29 900	11.90	2 50	3.70	Scraper 2.20	29.5 × 29-28	13.70
623	520	/2-/4	/300				3.50			29.5 X 29-28	
C00D	400	70.00	(000	(22)	(66,000)	(39'0")	(11'7")	(12'1")	(7'3")	00 5 00	(44'11")
623B	46P	73-86	/330	16.8	32 546	12.5	3.55	3.81	2.18	29.5-29,	8.90
			(000	(22)	(71,750)	(41'1")	(11'8")	(12'6")	(7'2")	28 PR (E-2)	(29'4")
623E	6CB	86-89	/330	16.8	33 317	12.61	3.55	3.81	2.21	29.5-29,	10.9
				(22)	(73,450)	(41'4")	(11'8")	(12'6")	(7'3")	34 PR (E-2)	(35'9")
623E	6YF	89-93	/365	13.8/17.6	35 290	12.61	3.55	3.94	2.18	29.5R25	10.9
				(18/23)	(77,800)	(41'4")	(11'8")	(12'11")	(7'2")		(35'8")
623F	6BK	93-98	365	13.8/17.6	35 305	12.61	3.55	3.94	2.18	29.5-29,	10.9
				(18/23)	(77,830)	(41'4")	(11'8")	(12'11")	(7'2")	34 PR (E-2)	(35'8")
623F Series II	5EW	98-00	365	13.8/17.6	37 122	13.28	3.55	3.55	2.21	33.25-R29	8.6
				(18/23)	(81,840)	(43'7")	(11'8")	(11'8")	(7'3")	★★ (E-2)	(28'5")
623G	ARW	00-02	330/365	13.8/17.6	37 120	13.21	3.55	3.68	2.2	33.25R29	10.9
				(18/23)	(81,840)	(43'4")	(11'8")	(12'1")	(7'3")		(35'8")
623G	CES	03-05	330/365	13.8/17.6	37 120	13.21	3.55	3.68	2.2	33.25R29	10.9
				(18/23)	(81,840)	(43'4")	(11'8")	(12'1")	(7'3")		(35'8")
623G	DBC	05-10	330/365	13.8/17.6	37 510	13.17	3.58	3.71	2.23	33.25R29	12.0
				(18/23)	(82,695)	(43'2")	(11'9")	(12'3")	(7'4")	★★ (E-3)	(39'4")
									Tractor		
									2.20		
									(7'3")		
									Scraper		
623H	DBF	10-13	407	14.4/17.6	39 937	13.77	3.57	3.77	2.29	33.25R29	11.8
	EJD			(18.8/23)	(88,061)	(45'2")	(11'7")	(12'3")	(7'5")	★★ (E-3)	(38'7")
									Tractor		
									2.28		
									(7'4")		
									Scraper		

John Deere 544 Wheel Loader Specifications

S P E C I F I C A T I O N S

GINE	544G	624G	644G
Туре	John Deere 6059T with altitude-	John Deere 6068T with altitude-	John Deere 6076A with altitude-
, <u>,</u>	compensating turbocharger	compensating turbocharger	compensating turbocharger; aftercooled
Rated power		145 SAE net hp (108 kW)	170 SAE net hp (127 kW)
	125 SAE gross hp (94 kW) @ 2,200 rpm	150 SAE gross hp (112 kW) @ 2,200 rpm	178 SAE gross hp (133 kW) @ 2,200 rpm
Cylinders		6	6
Displacement		414 cu. in. (6.785 L)	466 cu. in. (7.636 L)
Maximum net torque		456 lbft. (618 Nm) @ 1,300 rpm	598 lbft. (811 Nm) @ 1,300 rpm
Lubrication		pressure system with full-flow spin-on	pressure system with full-flow spin-on
	filter and cooler	filter and cooler	filter and cooler
Fuel consumption, typical		2.6 to 4.8 gal./hr. (9.8 to 18.2 L/h)	3.0 to 5.9 gal./hr. (11.3 to 22.3 L/h)
Cooling fan		blower	blower
Electrical system		12 volt with 95-amp alternator	12 volt with 95-amp alternator
Battery (one 12 volt)		reserve capacity: 160 min., 625 CCA	reserve capacity: 160 min., 925 CCA
Air cleaner		dual safety element dry type; restriction	dual safety element dry type; restriction
	indicator for service	indicator for service	indicator for service
ANSMISSION Type	torque converter nower shift	torque converter – power shift	torque converter – power shift
Controls		low-effort electronically controlled auto-	low-effort electronically controlled auto-
Controls	matic shift and quick-shift button	matic shift and quick-shift button	matic shift and quick-shift button
	Forward Reverse	Forward Reverse	Forward Reverse
Travel speeds*	mph (km/h) mph (km/h)	mph (km/h) mph (km/h)	mph (km/h) mph (km/h)
Gear 1		$\begin{array}{ccc} mpn (km/n) & mpn (km/n) \\ 4.5 (7.3) & 4.5 (7.3) \end{array}$	4.4(7.0) $4.4(7.0)$
Gear 2		7.2 (11.6) $7.2 (11.6)$	7.0 (11.2) 7.0 (11.2)
Gear 3		15.2 (24.5) $15.2 (24.5)$	13.7 (22.0) 13.7 (22.0)
Gear 4		23.0 (37.3)	21.5 (34.6)
	tires; 644G is equipped with 23.5-25 tires.	x	</td
LES/BRAKES			
Final drives	heavy-duty planetary, mounted inboard	heavy-duty planetary, mounted inboard	heavy-duty planetary, mounted inboard
Differentials (choice of)	conventional front and rear – Standard;	conventional front and rear – Standard;	conventional front and rear – Standard;
Differentials (choice of)	hydraulic lock front, conventional rear –	hydraulic lock front, conventional rear –	hydraulic lock front, conventional rear
	Optional; NoSPIN front, conventional rear –	Optional; NoSPIN front, conventional rear –	Optional; NoSPIN front, conventional rear
	Optional; hydraulic lock front and rear –	Optional; hydraulic lock front and rear –	Optional; hydraulic lock front and rear
	Optional; front axle disconnect – Optional	Optional; front axle disconnect – Optional	Optional; front axle disconnect – Option
Rear axle oscillation		26 degrees, stop to stop	26 degrees, stop to stop
Maximum rise and fall, single wheel		32.8 in. (833 mm)	36.6 in. (929 mm)
Brakes (conform to SAE J1473, ISO3450)	× ,	× /	· · · · ·
Service brakes	inboard-mounted hydraulic wet disc,	inboard-mounted hydraulic wet disc,	inboard-mounted hydraulic wet disc,
	bathed in cooling oil, long life self-	bathed in cooling oil, long life self-	bathed in cooling oil, long life self-
	adjusting	adjusting	adjusting
Parking brake	automatically spring applied, hydraulically	automatically spring applied, hydraulically	automatically spring applied, hydraulicall
	released, disc and caliper type, attached	released, disc and caliper type, attached	released, disc and caliper type, attached
	to transmission output shaft	to transmission output shaft	to transmission output shaft
DRAULIC SYSTEM/STEERING			
Pump (loader and steering)	gear-type, open-center system	gear-type, open-center system	gear-type, open-center system
Maximum flow	46.3 gpm (175 L/min.) @ 600 psi (4137 kPa)	61 gpm (231 L/min.) @ 600 psi (4137 kPa)	69.5 gpm (263 L/min.) @ 600 psi (4137 kP
	and 2,200 rpm	and 2,200 rpm	and 2,200 rpm
Pressure	loader relief 2,750 psi (18 961 kPa)	loader relief 2,800 psi (19 306 kPa)	loader relief 3,000 psi (20 685 kPa)
	steering relief 2,650 psi (18 270 kPa)	steering relief 2,650 psi (18 270 kPa)	steering relief 2,650 psi (18 270 kPa)
	two-function valve with single lever and	two-function valve with single lever and	two-function valve with single lever and
	control lever lockout	control lever lockout	control lever lockout
Hydraulic cycle times			
Raise		5.8 sec.	6.2 sec.
Dump		1.7 sec.	1.8 sec.
		3.5 sec. (float down) / 3.5 sec. (power down)	3.5 sec. (float down) / 3.9 sec. (power down
	with 2.25 cu. yd. $(1.7 m^3)$ excavating bucket	with 2.63 cu. yd. (2.0 m^3) excavating bucket	with 3.25 cu. yd. (2.5 m ³) excavating buck
Lift at ground level With coupler		26,938 lb. (12 217 kg)	33,886 lb. (15 368 kg)
		25,589 lb. (11 605 kg)	32,524 lb. (14 750 kg)
Lift at maximum height With coupler		14,143 lb. (6414 kg)	19,823 lb. (8990 kg)
Steering (conforms to SAE J1511)	1, 472 ID. (3212 Kg)	13,817 lb. (6266 kg)	19,020 lb. (8626 kg)
Type	power fully hydraulic	power, fully hydraulic	power, fully hydraulic
Relief valve setting	2.650 psi (18.270 kPa)	2,650 psi (18 270 kPa)	2,650 psi (18 270 kPa)
Articulation angle		80-degree arc (40 degrees each direction)	80-degree arc (40 degrees each direction
Turning radius (measured to centerlin	a	ob-degree are (40 degrees each direction)	ob-degree are (40 degrees each direction
of outside tire)		16 ft. 10.5 in. (5.14 m)	17 ft. 11 in. (5.46 m)
RES			(5.10)
Choice of	15.5-25, 12 PR L2 / 17.5-25, 12 PR L2 /	17.5-25, 12 PR L2 / 17.5-25, 12 PR L3 /	20.5-25, 12 PR L2 / 20.5-25, 16 PR L2 /
	17.5-25, 12 PR L2 / 17.5-25, 12 PR L2 / 17.5-25, 12 PR L3 / 20.5-25, 12 PR L2 /	20.5-25, 12 PR L2 / 17.5-25, 12 PR L3 / 20.5-25, 12 PR L2 / 20.5-25, 12 PR L3 /	20.5-25, 12 PR L2 / 20.5-25, 16 PR L2 / 20.5-25, 16 PR L3 / 23.5-25, 12 PR L2 /
	20.5-25, 12 PR L3 / 20.5-25, 16 PR L3 /	20.5-25, 12 FK L2 / 20.5-25, 12 FK L5 / 20.5-25, 16 PR L3 / 17.5-25, Radial, One	23.5-25, 16 PR L3 / 23.5-25, 20 PR L3 /
	17.5-25, Radial, One Star L2 equivalent /	Star L2 equivalent / 17.5-25, Radial, One	20.5-25, Radial, One Star L3 equivalent
	17.5-25, Radial, One Star L2 equivalent /	Star L3 equivalent / 17.3-25, Radial, One Star L3 equivalent / 20.5-25, Radial, One	20.5-25, Radial, One Star L2 equivalent 20.5-25, Radial, One Star L2 equivalent
	20.5-25, Radial, One Star L2 equivalent /	Star L2 equivalent / 20.5-25, Radial, One	23.5-25, Radial, One Star L2 equivalent
	20.5-25, Radial, One Star L2 equivalent / 20.5-25, Radial, One Star L3 equivalent	Star L2 equivalent / 20.5-25, Radial, One Star L3 equivalent	20.0-20, Radial, One Stal LS equivalent
15.5-25 tires (one- or three-piece wheels)	20.5-25, Raulai, Olle Star LS equivalent	Star LS equivalent	
Tread width			
Width over tires			
Change in vertical height			
	···· ·································		
17.5-25 tires	76.38 in (1940 mm)	81.1 in (2060 mm)	
17.5-25 tires Tread width		81.1 in. (2060 mm) 100.3 in. (2549 mm)	
17.5-25 tires		81.1 in. (2060 mm) 100.3 in. (2549 mm) – 2.36 in. (– 60 mm)	

28/25/25 min 7.2 to: (1950 mm) 55.4 to: (2170 mm) Construction 4.80 to: (1960 mm) 55.4 to: (2170 mm) Construction 4.80 to: (1960 mm) 55.4 to: (2170 mm) Construction 4.80 to: (1960 mm) 55.4 to: (2170 mm) Construction 4.80 to: (220 mm) 55.4 to: (2170 mm) Construction 7.2 to: (216 mm) 55.4 to: (2170 mm) Construction 7.2 to: (216 mm) 55.4 to: (2170 mm) Construction 7.2 to: (216 mm) 55.4 to: (2170 mm) Construction 7.2 to: (216 mm) 55.4 to: (2170 mm) Construction 7.2 to: (216 mm) 55.4 to: (2170 mm) Construction 7.2 to: (216 mm) 55.4 to: (2170 mm) Construction 7.2 to: (216 mm) 55.4 to: (2170 mm) Construction 7.2 to: (216 mm) 55.4 to: (2170 mm) Construction 7.2 to: (216 mm) 55.4 to: (2170 mm) Construction 7.2 to: (216 mm) 55.4 to: (2170 mm) Construction 7.2 to: (216 mm) 55.4 to: (2170 mm) Construction 7.2 to: (216 mm) 116.2 to: (2170 mm) Construction 116.2 to: (2170 mm) 116.2 to: (2170 mm) <th>RES (continued)</th> <th>544G</th> <th>624G</th> <th>644G</th> <th></th> <th></th> <th></th> <th></th> <th></th>	RES (continued)	544G	624G	644G					
With Nort rise. 96.35 in. (A28 rm) 97.3 in. (A28 rm) 107.6 in. (A22 rm) The advance 4.2 din (-6 din m) -2.2 m, -5.1 mail -2.2 m, -5.1 mail The advance -3.2 m, -5.1 mail -3.2 m, -5.1 mail -3.2 m, -5.1 mail The advance -3.2 m, -5.1 mail -3.2 m, -5.1 mail -3.2 m, -5.1 mail The advance -3.5 m, 12.20 mail -3.5 m, 12.20 mail -3.5 m, 12.20 mail The advance -3.5 m, 12.20 mail -3.5 m, 12.20 mail -3.5 m, 12.20 mail With overt tise -3.5 m, 12.20 mail -3.5 m, 12.20 mail -3.5 m, 12.20 mail Stage 12 eV 14 -3.5 m, 12.20 mail -3.5 m, 12.20 mail -3.5 m, 12.20 mail Stage 12 eV 14 -3.5 m, 12.20 mail -3.5 m, 12.20 mail -3.5 m, 12.20 mail Decketaba -3.6 m, 12.20 mail -3.5 m, 12.20 mail -3.5 m, 12.5 m, 12.5 m Decketaba -3.6 m, 12.20 m	20.5-25 tires								
Charge is vertical length -1.50 m, Fe 6 mm 0 -1.60 m, Fe 6 mm 23.52, Mail Lines									
201-55, Solial ins:									
Train with		+ 2.00 in. (+ 66 mm)	U	– 2.0 in. (-	· 51 mm)				
Wildlin ver ites				854 in (2	170 mm)				
Change in vertical height = 34 in. (-62 mm) Stability = 35 in. (-25 mm) Change in vertical height =									
Trade witch									
Width over tiss									
Change in vertral height									
PARTIES (13.) 6.57 gal. (28.1) 7.5 gal. (28.1) Cooling yeards 5.57 gal. (28.1) 20 qt. (25.1) 20 qt. (25.1) Digits hubication, including full-form 0 qt. (9.1) 20 qt. (25.1) 20 qt. (25.1) Digits hubication, including veltor 0 qt. (9.1) 20 qt. (26.1) 20 qt. (26.1) Prove shift transmission, including veltor 0 qt. (9.1) 20 qt. (26.1) 20 qt. (26.1) Differentials 90 qt. (9.1) 30 qt. (26.4) 20 qt. (26.4) Differentials 90 qt. (9.1) 30 qt. (26.4) 20 qt. (26.4) Differentials 90 qt. (9.1) 30 qt. (26.4) 20 qt. (15.1) EVENDS WT BURDENT 10 ft. 35 in. (53.7 m) 10 ft. 40 in. (23.0 m) 10 ft. 27 in. (23.0 m) Control denance -11 ft. 12 in. (23.0 m) 12 ft. 2.6 in. (32.7 m) 12 ft. 2.6 in. (32.7 m) Control denance -11 ft. 12 m. (20 mm) 33.5 degree 35 degree 36 degree Control denance -12 ft. 2.6 in. (32.7 m) 12 ft. 2.6 in. (32.7 m) 12 ft. 2.6 in. (32.7 m) 12 ft. 2.6 in. (32.7 m) Control denance -12 ft. 2.6 in. (32.7 m) 12 ft. 2.6 in. (32.					2/65 mm)				
Fact lask vit ground level noise 57.6 g. µl. (284 L) 25 ql. (2.4 L) 20 ql. (218 L) Star (2.4 L) 20 ql. (21 L) 20 ql. (22 L) 20 ql. (21 L) Weight function, including million with function, including million 10 ql. (9.1) 25 ql. (2.4 L) 30 ql. (2.8 L) Weight function, including million 21 ql. (11 L) 30 ql. (2.8 L) 30 ql. (2.8 L) 30 ql. (2.8 L) Been million 21 ql. (11 L) 30 ql. (2.8 L) 30 ql. (2.8 L) 30 ql. (2.8 L) Been million 20 ql. (12 L) 30 ql. (2.8 L) 30 ql. (2.8 L) Been million 30 ql. (2.8 L) 30 ql. (2.8 L) 30 ql. (2.8 L) Been million 11 fl. 10.4 in (3.6 2 m) 12 ql. (1.8 L) 30 ql. (2.8 L) Beight for to op of and acange 11 fl. 3.1 in (3.5 m) 11 fl. 10.4 in (3.6 2 m) 12 fl. 3.2 in (3.7 m) Di leight for to night form cattelline of font act. 51 nl. (1.8 m) 30 sl. (3.1 m) 11 fl. 4.3 m. (1.8 m) Bill ging depti for to night form cattelline of font act. 51 nl. (3.2 m) 22 fl. (2.8 m) 22 fl. (3.1 m) Bill ging depti for night form cattelline of font act. 51 nl. (3.8 m) 30 sl. (3.2 m) 22 fl. (3 l) Bill ging depti for night font ging depti font g	<u> </u>		••••	0					
Cooling system Sol qc (2 k1) 30 qc (2 k1) 30 qc (2 k1) Sign Labitization, including lab.low Orq. (9 k1) 25 qc (2 k1) 30 qc (2 k1) Sign Labitization, including lab.low Orq. (9 k1) 25 qc (2 k1) 30 qc (2 k1) Differentials Orq. (9 k1) 20 qc (10 l) 20 qc (10 l) 20 qc (10 l) Differentials Orq. (9 k1) 20 qc (10 l) 20 qc (10 l) 20 qc (10 l) Differentials Orq. (10 k1) 20 qc (10 l) 20 qc (10 l) 20 qc (10 l) Overall height 11 ft . 53 in (3.52 m) 11 ft . 20 m (3.23 m) 11 ft . 20 m (3.24 m) Differentials Sign (16 k1) 11 ft . 20 m (3.20 m) 11 ft . 20 m (3.20 m) Differentials Sign (16 k2 m) 12 ft . 32 m (4.23 m) 11 ft . 20 m (3.20 m) Differentials Sign (16 k2 m) 12 ft . 32 m (4.23 m) 11 ft . 20 m (3.20 m) Overall height for order and chance 11 ft . 20 m (3.27 m) 12 ft . 32 m (4.23 m) 12 ft . 32 m (4.23 m) Vecchase Sign (10 m) mice 12 ft . 10 m (10 mm) 12 ft . 10 m (4.23 m) 12 ft . 10 m (4.23 m) Sign dopth Int . 20 m (4.25 m (4.25 m) Sign (10 m (4.25 m) Sign (10		57.6 col (219.1)	65.7 gpl (240 L)	75 gpl (29	4 I.)				
Largine bildwatter, including with a service inclin service including with a service including with a service incl									
Prover shift transmission, including vertical carted periods in the spectral transmission including vertical carted periods in the spectral transmission including vertical carted periods in the spectral background of the spectral backgr	Engine lubrication, including full-flow	• • •	10 qu (10 1)	00 411 (201	0 2)				
Prover shift transmission, including vertical carted periods in the spectral transmission including vertical carted periods in the spectral transmission including vertical carted periods in the spectral background of the spectral backgr	spin-on filter	20 qt. (19 L)	20 qt. (19 L)	25 qt. (24	L)				
Differentials Durt (191) 30 qt. (28.4 L) Pront. 20 qt. (191) 30 qt. (28.4 L) Didde hydraulic reservoir. 20 qt. (191) 30 qt. (28.4 L) Didde hydraulic reservoir. 10 qt. (76.1) 10 qt. (76.1) O verail height. 11 ft. 5.3 in. (3.5 m) 10 ft. 9.9 in. (3.3 m) 10 ft. 4.9 in. (3.6 m) O verail height. 9 ft. 2 in. (2.7 m) 10 ft. 9.9 in. (3.3 m) 10 ft. 4.4 in. (3.1 m) O verail height. 9 ft. 2 in. (2.7 m) 10 ft. 4.4 in. (3.1 m) 10 ft. 4.4 in. (3.1 m) O verail height. 11 ft. 1.0 in. (3.6 m) 10 ft. 4.4 in. (3.1 m) 10 ft. 4.4 in. (3.1 m) O verail height. 11 ft. 1.0 in. (3.6 m) 10 in. (4.8 m) 10 in. (4.8 m) S degrees 5.5 degrees 5.5 degrees 5.6 degrees 5.6 degrees Maximum backet angle. 5.3 degrees 5.1 degrees<									
Front Bor Bor </td <td></td> <td>10 qt. (9.5 L)</td> <td>12 qt. (11 L)</td> <td>15 qt. (14</td> <td>L)</td> <td></td> <td></td> <td></td> <td></td>		10 qt. (9.5 L)	12 qt. (11 L)	15 qt. (14	L)				
Non- 20 gl. (19 L) 20 gl. (19 L) 20 gl. (19 L) 20 gl. (19 L) Loader bydnaking reservoir. S9 gl. (76 L) 108 gl. (10 L) 20 gl. (11 L) 20 gl. (13 L) Composition of the set of call and canopy. 10 ft. 4.8 in. (3.17 m) Composition of extrature 1.4 J. in. (2.37 m) 17 ft. (4.33 mm) 10 ft. 4.4 in. (1.41 m) 19 st. (300 mm) 12 ft. 3.21 m. (2.43 mm) 10 ft. 4.4 in. (1.41 m) Composition feature 1.4 in. (200 mm) 55.6 degrees 55.6 degrees 56.6 los (68 mm) 12 ft. (3.17 m) 12 ft. 5.1 m. (3.17 m) Digging depto- 4 in. (101 mm) 12 ft. 5.1 m. (3.28 m) 12 ft. 5.1 m. (3.28 m) 12 ft. 5.1 m. (3.26 m) 12 ft. 5.1 m. (3.26 m) Digging depto- 4 in. (101 mm) 2.6 degrees 56.0 degrees 52.6 degrees 52.6 degrees 52.6 degrees 52.6 degrees 52.6 degrees 52.6 (ft. 20 m) 52.6 ft. (20 m) 52.6 ft. (20 m) 52.6 ft. (21 m)		20 at (10 I)	20 at (28 I)	20 at (28	4.1.)				
Lander Dystaulic reservoir Boj (i, 75.1) 106 (g, (102.1) 2.0 (g, (113.1) Eventors WH MURKET 11 ft, 5.3 in, (3.52 m) 11 ft, 10.4 in, (3.62 m) 12 ft, 2.2 in, (3.4 m) Oriend Linght 11 ft, 10.4 in, (3.62 m) 12 ft, 2.2 in, (3.4 m) 10 ft, 9.9 in, (3.30 m) 11 ft, 2.7 m, (3.4 m) Oriend Linght 11 ft, 10.7 m 9.7 m, (3.7 m) 9.7 m, (3.7 m) 9.7 m, (3.7 m) 9.7 m, (3.7 m) 9.7 m, (3.6 m) 10 ft, 9.9 in, (3.30 m) 11 ft, 2.7 m, (3.4 m) Oriend Linght from centerline of front axie. 57 m, (149 mm) 9.6 sin, (130 mm) 2.6 in, (300 mm) 126 in, (300 mm) 126 in, (300 mm) 2.6 sin, (40 mm) 2.6 sin, (40 mm) 2.6 sin, (6 mm) 2.6 si									
Sections State									
Overall begit 11 ft. 5.3 in. (3.52 m) 11 ft. 10.4 in. (3.62 m) 12 ft. 3.2 in. (3.74 m) Origin deptito to top of cahaat 97 ft. 2.1n. (2.77 m) 97.5 .91. (2.94 m) 10 ft. 9.2 n. (3.30 m) 11 ft. 2.7 n. (3.8 m) Origin deptito to top of cahaat 97 ft. 2.1n. (2.73 m) 97.6 .21 m. (3.74 m) 10 ft. 9.2 n. (3.30 m) 11 ft. 2.7 n. (3.8 m) 10 ft. 9.2 n. (3.30 m) 10 ft. 9.2 n. (3.40 m) Outcant desance 14.7 [n. (3.3 mm) 13 ft. (2.0 m) 19 in. (848 m) 10 ft. (3.0 m) 10 ft. (3.0 m) 10 ft. (4.0 m) Outgatito to thing prin, fully raised 12 ft. 2.5 in. (3.57 m) 12 ft. 2.5 in. (3.57 m) 13 ft. 1.9 m. (4.0 m) 2.6 kin. (680 m) 13 ft. 1.9 m. (4.0 m) 2.6 kin. (88 m) 13 ft. 1.9 m. (4.0 m) 2.6 kin. (88 m) 600 cm ft/gr		1 \ /	1 ()	1 、	,				
Begin to top of cab and canopy		11 ft 5 3 in (2 52 m) 11 ft 10 4 in (3.62)	m) 12 ft 3 2 i	n (3.74 m)			~	
Billegist to top of exhaust 9 9 2.1 nr. (2.29 m) 10 6.4 km. (3.16 m) Or control dearance 14.4 Jr. (7.37 mm) 9 6.7 m. (4.85 mm) 19 in. (4.85 mm) 19 in. (4.85 mm) Musclessace 114 in. (2000 mm) 114 in. (2000 mm) 12.5 m. (3.53 mm) 12.6 in. (3.200 mm) 12.5 m. (3.230 mm) 12.6 in. (3.200 mm) Musclessace 12.7 m. (1.01 mm) 5.5 degrees 5.5 degrees 5.5 degrees 5.6 m. (1.5 mm) 5.5 m. (1.5 mm) 5.6 m. (1.5 mm) 5.5 degrees 5.2 m. (2.9 mm) 5.7 m. (2.9 mm) 5.6 m. (1.5 mm) 5.6 m. (1.				'	· /			\sim	$\neg \uparrow$
Scalar State of the set of the	- · · · · · · · · · · · · · · · · · · ·) 10 ft. 9.9 in. (3.30 r	, ,	. ,			L.	
	• Height to top of exhaust	9 ft. 2 in. (2.79 m)	9 ft. 7.9 in. (2.94 m	10 ft. 4.4 i	n. (3.16 m)			de	
	Ground clearance		17 in. (433 mm)	19 in. (483	3 mm)	Radio Antenna		ALCON Y	
Wheelbase 114 in. (2900 mm) 15.8 degrees 5.3 degrees Open projection 35.3 degrees 5.3 degrees 5.6 degrees Open projection 12 fr. 2.6 in. (3.72 m) 12 fr. 2.6 in. (3.80 mm) 13 fr. 1.9 in. (4.0 m) As we backet Information bow and on page 18. Executing w/ Executing w					, i			V	50° max
Maximum bucket angle 55.3 degrees 55.8 degrees 55.8 degrees 55.8 degrees Dump height S5.8 degrees 55.8 degrees 55.8 degrees 55.8 degrees Dump height It (101 mm) 26.8 ln (.38 m m) 21.8 l. 9.3 ln (.3.89 m) 26.8 ln (.64 m) CB EUCET INFORMATION (PIP-OI) Stockning w Stockning				· · · ·	Ý 🔼			7 //	X
 Dump height, fully raised, 12 ft. 2.6 in. (3.7 m) Dinging depth, fully raised, 12 ft. 2.6 in. (3.7 m) A see Bucket Information below and on page 18. CBUCKET INFORMATION (PILCO) Stockpilling with Stockpilling with Stockp			119.3 in. (3030 mm) 126 in. (32)	200 mm)				`
Instruction	Maximum bucket angle	55.3 degrees	55.8 degrees	55 degrees					
Instruction	H Dump height			A					A
Digging depth Lin. (101 mm) 2 in. (52 mm) 2.68 in. (68 mm) A see Backet Information below and on page 18. Stockpling wf Stockpling wf </td <td></td> <td></td> <td>12 ft 0.3 in (3.80 r)</td> <td>13 ± 10</td> <td>n (4.0 m)</td> <td></td> <td></td> <td></td> <td>40.1</td>			12 ft 0.3 in (3.80 r)	13 ± 10	n (4.0 m)				40.1
A See Backet Information below and on page 18. GB EUCLET INFORMATION (2IN-GD) Bucket TypoSite Stackpilling w/ Data Signed (2) Stackpilling w/ Data Signe(2) Stackpilling w/ Data Signe(2)				,	. ,			$\overline{\langle + \rangle}$	
Stockpoling wf Topping Load, 45 of th	U Digging depth	4 in. (101 mm)	2 in. (52 mm)	2.68 in. (6	8 mm) –				
Stockylling w/ Departs (problem) Stockylling w/ Billow Type/Size Stockylling w/ Billow Type/Size Stockylling w/ Stockylling stockylling w/ Stockylling w/ Stockylling w/ Stockylling stocky	▲ See Bucket Information below and	on page 18.							
Stockpilling wf Basted stockpilling wf	4G BUCKET INFORMATION (PIN-ON)		F						
Bucket Types Size		Stockniling w/ Stockn	ilina w/o Stocknilina w/		Excavating w/	Excavating w/o	Excavating w/		Multi-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bucket Type/Size								
				2.88 (2.2)	2 38 (1 8)	2 25 (1 7)	2.5 (1.9)	2 63 (2 0)	2 13 (1 6)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Canacity struck SAE in our vd. (m3)								
Topping load, straight, mib, ligh				2.51 (1.92)	1.99 (1.52)	1.88 (1.44)		2.26 (1.73)	1.77 (1.35)
Tipping Load, 45-degree dump, 7-H (2,13m) elaratine, in Sale 5 (1477) Sale 3 (1474) Sale 3 (1474) Sale 3 (1477) Beach, 45-degree dump, 44 beight, in n, (mm),	Bucket width, in in. (m)	100.4 (2.55) 100.4 (2.55) 100.4 (2.55)	2.51 (1.92) 100.4 (2.55)	1.99 (1.52) 100.4 (2.55)	1.88 (1.44) 100.4 (2.55)	100.4 (2.55)	2.26 (1.73) 100.4 (2.55)	1.77 (1.35) 100.4 (2.55)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bucket width, in in. (m) Breakout force, SAE J732C, in I b. (kN)	100.4 (2.55) 100.4 (20,569 (91.5) 22,207	2.55) 100.4 (2.55) (98.8) 22,110 (98.4)	2.51 (1.92) 100.4 (2.55) 20,430 (90.9)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5)	1.88 (1.44) 100.4 (2.55) 24,030 (106.9)	100.4 (2.55) 23,942 (106.5)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1)	1.77 (1.35) 100.4 (2.55) 20,682 (93.8)
Reach. 45-degree dump. full height, in (, rm),	Bucket width, in in. (m) Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in Ib. (kg) Tipping load, 40-degree full turn, SAE, in Ib. (kg)	20,569 (91.5) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810)	2.51 (1.92) 100.4 (2.55) 20,430 (90.9) 18,841 (8546)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737)	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996)	100.4 (2.55) 23,942 (106.5) 19,791 (8977)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678)	1.77 (1.35) 100.4 (2.55) 20,682 (93.8) 17,556 (7963)
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \text{ or all length}, \text{int}, -1, (\text{m}), \dots, (\text{m}), $	Bucket width, in in. (m) Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in Ib. (kg) Tipping load, 40-degree full turn, SAE, in Ib. (kg) Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477)	2.51 (1.92) 100.4 (2.55) 20,430 (90.9) 18,841 (8546) 15,933 (7227)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409)	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349)	1.77 (1.35) 100.4 (2.55) 20,682 (93.8) 17,556 (7963) 14,806 (6716)
Lader clearance circle, bucket in carry position, in 37-9 (11.51) 37-7 (11.4e) 37-7 (11.4e) 37-9 (11.51) 27-7 (11.4f) 37-5 (11.44) 37-7 (11.4f) 37-7 (11.4f) </td <td>Bucket width, in in. (m). Breakout force, SAE J732C, in Ib. (kN) Tipping load, Straight, in Ib. (kg) Tipping load, 40-degree full turn, SAE, in Ib. (kg) Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm).</td> <td>100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 58.15 (1477) 58.03 (</td> <td>2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474)</td> <td>2.51 (1.92) 100.4 (2.55) 20,430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477)</td> <td>1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453)</td> <td>1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449)</td> <td>100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449)</td> <td>2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453)</td> <td>1.77 (1.35) 100.4 (2.55) 20,682 (93.8) 17,556 (7963) 14,806 (6716) 50.3 (1277)</td>	Bucket width, in in. (m). Breakout force, SAE J732C, in Ib. (kN) Tipping load, Straight, in Ib. (kg) Tipping load, 40-degree full turn, SAE, in Ib. (kg) Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm).	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 58.15 (1477) 58.03 (2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474)	2.51 (1.92) 100.4 (2.55) 20,430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453)	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453)	1.77 (1.35) 100.4 (2.55) 20,682 (93.8) 17,556 (7963) 14,806 (6716) 50.3 (1277)
tin. (m) 37-9 (11.51) 37-7 (11.46) 37-9 (11.51) 27-9 (11.51) 27-5 (11.44) 37-5 (11.44)	Bucket width, in in. (m) Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in Ib. (kg) Tipping load, 40-degree full turn, SAE, in Ib. (kg) Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm) Reach, 45-degree dump, full height, in in. (mm) Dump clearance, 45 degree, full height, in in. (mm)	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 58.15 (1477) 58.03 (40.6 (1030) 39.2 (107.2 (2724) 109.8 (2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 35) 39.2 (995) 2788) 109.8 (2788)	2.51 (1.92) 100.4 (2.55) 20,430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776)	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776)	1.77 (1.35) 100.4 (2.55) 20,682 (93.8) 17,556 (7963) 14,806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636)
Operating weight, in b. (kg)24.02 (10 808)23.82 (10 806)23.83 (10 866)23.83 (10 866)23.83 (10 866)23.83 (10 866)23.83 (10 866)23.83 (10 866)23.83 (10 866)23.83 (10 866)23.83 (1	Bucket width, in in. (m). Breakout force, SAE J732C, in Ib. (kN). Tipping load, straight, in Ib. (kg) Tipping load, 40-degree full turn, SAE, in Ib. (kg). Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm). Reach, 45-degree dump, full height, in in. (mm). Dump clearance, 45 degree, full height, in in. (mm). Overall length, in ftin. (m).	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 58.15 (1477) 58.03 (40.6 (1030) 39.2 (107.2 (2724) 109.8 (2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 35) 39.2 (995) 2788) 109.8 (2788)	2.51 (1.92) 100.4 (2.55) 20,430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776)	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776)	1.77 (1.35) 100.4 (2.55) 20,682 (93.8) 17,556 (7963) 14,806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636)
**Allea ditachments ordered through John Deere dealers. Loader operating information is based on machine with all standard equipment; 17.5-25, 12 PR L2 tires; two rear counterweights; ROPS cab; 175-1b. (79 kg) operator; and full fuel tank. This information is affected by tire size, ballast, and different attachments. Adjustments to operating weights and tipping loads for 2.25 cu. yd. (1.7 m³) excavating bucket Adjustments to operating weights and tipping loads for 2.25 cu. yd. (1.7 m ³) excavating bucket Adjustments to operating weights and tipping loads for 2.25 cu. yd. (1.7 m ³) excavating bucket Adjustments to operating weight and tipping loads for 2.25 cu. yd. (1.7 m ³) excavating bucket Tipping Load, 40- loaders with Operating weight Tipping Load, Straight Degree Full Turn, SAE 15.5-25, 12 PR L2 tires with CaCl ₂ + 194 lb. (- 88 kg) - 137 lb. (- 62 kg) - 119 lb. (- 54 kg) 17.5-25, 12 PR L2 tires with CaCl ₂ + 756 lb. (+ 343 kg) + 1,199 lb. (+ 544 kg) - 1,036 lb. (- 470 kg) 17.5-25, 12 PR L3 tires with CaCl ₂ + 1,180 lb. (+ 535 kg) + 1,658 lb. (+ 752 kg) + 1,431 lb. (+ 649 kg) 17.5-25, 12 PR L3 tires with out CaCl ₂ + 1,312 lb. (+ 60 kg) + 93 lb. (+ 42 kg) + 799 lb. (+ 36 kg) 17.5-25, Radial, One Star L2 equivalent tires with out CaCl ₂ + 1,559 lb. (+ 707 kg) + 1,925 lb. (+ 121 kg) + 229 lb. (+ 104 kg) 17.5-25, Radial, One Star L2 equivalent tires with CaCl ₂ + 1,559 lb. (+ 1707 kg) + 1,925 lb. (+ 873 kg) + 1,662 lb. (+ 754 kg) 20.5-25, 12 PR L2 tires with CaCl ₂ + 1,085 lb. (+ 428 kg) + 558 lb. (+ 233 kg) + 481 lb. (+ 218 kg) 20.5-25, 12 PR L2 tires with CaCl ₂ + 1,085 lb. (+ 428 kg) + 763 lb. (+ 346 kg) + 6577 lb. (+ 228 kg) 20.5-25, 12 PR L3 tires with CaCl ₂ + 2,906 lb. (+ 1318 kg) + 3,323 lb. (+ 1507 kg) + 2,669 lb. (+ 1301 kg) 20.5-25, 12 PR L3 tires with CaCl ₂ + 2,906 lb. (+ 1318 kg) + 3,323 lb. (+ 1507 kg) + 2.78 lb. (- 126 kg) Bucket teeth	Bucket width, in in. (m) Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in Ib. (kg) Tipping load, 40-degree full turn, SAE, in Ib. (kg) Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm) Reach, 45-degree dump, full height, in in. (mm) Dump clearance, 45 degree, full height, in in. (mm) Overall length, in ftin. (m) Loader clearance circle, bucket in carry position, in	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 58.15 (1477) 58.03 (40.6 (1030) 39.2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.1	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 95) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97)	2.51 (1.92) 100.4 (2.55) 20,430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96)	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98)	1.77 (1.35) 100.4 (2.55) 20,682 (93.8) 17,556 (7963) 14,806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08)
Leader operating information is based on machine with all standard equipment; 17.5-25, 12 PR L2 tires; two rear counterweights; ROPS cab; 175-b. (79 kg) operator; and full fuel tank. This information is affected by tire size, balast, and different attachments. 413 ADJUSTMENTS TO OPERATING WEIGHTS FOR PIN-ON BUCKETS Adjustments to operating weights and tipping loads for 2.25 cu. yd. (1.7 m ³) excavating bucket Add (+) or deduct (-) lb. (kg) as indicated for loaders with Operating Weight Tipping Load, Straight Degree Full Turn, SAE 15.5-25, 12 PR L2 tires with to CaCl ₂ + 194 lb. (+ 88 kg) - 137 lb. (- 62 kg) - 119 lb. (-54 kg) 17.5-25, 12 PR L2 tires with CaCl ₂ + 756 lb. (+ 343 kg) + 1,199 lb. (+ 544 kg) - 1,036 lb. (-470 kg) 17.5-25, 12 PR L3 tires with CaCl ₂ + 1,180 lb. (+ 535 kg) + 1,658 lb. (+ 752 kg) + 1,431 lb. (+ 649 kg) 17.5-25, 12 PR L3 tires with CaCl ₂ + 1,312 lb. (+ 60 kg) + 93 lb. (+ 42 kg) + 79 lb. (+ 36 kg) 17.5-25, Radial, One Star L2 equivalent tires without CaCl ₂ + 379 lb. (+ 172 kg) + 267 lb. (+ 121 kg) + 229 lb. (+ 104 kg) 17.5-25, Radial, One Star L2 equivalent tires with CaCl ₂ + 1,559 lb. (+ 707 kg) + 1,925 lb. (+ 873 kg) + 1,662 lb. (+ 754 kg) 20.5-25, 12 PR L2 tires with CaCl ₂ + 2,615 lb. (+ 1186 kg) + 3,117 lb. (+ 1414 kg) + 2,692 lb. (+ 121 kg) 20.5-25, 12 PR L2 tires with CaCl ₂ + 1,085 lb. (+ 1186 kg) + 3,323 lb. (+ 1507 kg) + 2,869 lb. (+ 1301 kg) 20.5-25, 12 PR L3 tires with CaCl ₂ + 2,906 lb. (+ 1318 kg) + 3,323 lb. (+ 1507 kg) + 2,869 lb. (+ 1301 kg) ROPS canopy in lieu of ROPS cab + 2,200 lb. (- 145 kg) - 302 lb. (- 137 kg) - 278 lb. (- 126 kg) Bucket teeth + 2,40 lb. (- 167 kg) - 3,078 lb. (- 1406 kg) - 278 lb. (- 124 kg) Deduct two rear counterweights 1,076 hb. (- 787 kg) - 3,078 lb. (- 1406 kg) - 2,188 lb. (-1446 kg)	Bucket width, in in. (m). Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in lb. (kg) Tipping load, 40-degree full turn, SAE, in lb. (kg) Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm). Reach, 45-degree dump, full height, in in. (mm) Dump clearance, 45 degree, full height, in in. (mm) Overall length, in ftin. (m). Loader clearance circle, bucket in carry position, in ftin. (m). Operating weight, in lb. (kg).	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 58.15 (1477) 58.03 (40.6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.1 37-9 (11.51) 37-7 (1 24,092 (10 928) 23,828	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 95) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10.808) 23,947 (10 662)	2.51 (1.92) 100.4 (2.55) 20,430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24,311 (11.027)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10.856)	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47)	1.77 (1.35) 100.4 (2.55) 20,682 (93.8) 17,556 (7963) 14,806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54)
41 AJJUSTMENTS TO OPERATING WEIGHTS FOR PIN-ON BUCKETS Add (+) or deduct (-) lb. (kg) as indicated for loaders with Tipping Load, Straight Tipping Load, 40- Degree Full Tum, SAE 15.5-25, 12 PR L2 tires without CaCl2 + 194 lb. (-88 kg) - 137 lb. (- 62 kg) - 119 lb. (- 54 kg) 15.5-25, 12 PR L2 tires with CaCl2 + 756 lb. (+ 343 kg) + 1,199 lb. (+ 544 kg) - 1,036 lb. (-470 kg) 17.5-25, 12 PR L2 tires with CaCl2 + 1,180 lb. (+ 535 kg) + 1,658 lb. (+ 752 kg) + 1,431 lb. (+ 649 kg) 17.5-25, 12 PR L3 tires without CaCl2 + 1,312 lb. (+ 60 kg) + 93 lb. (+ 42 kg) + 79 lb. (+ 36 kg) 17.5-25, 12 PR L3 tires with CaCl2 + 1,312 lb. (+ 595 kg) + 1,750 lb. (+ 794 kg) + 1,512 lb. (+ 686 kg) 17.5-25, Radial, One Star L2 equivalent tires without CaCl2 + 1,559 lb. (+ 707 kg) + 1,925 lb. (+ 873 kg) + 1,662 lb. (+ 754 kg) 20.5-25, 12 PR L3 tires without CaCl2 + 1,559 lb. (+ 707 kg) + 1,925 lb. (+ 873 kg) + 1,662 lb. (+ 754 kg) 20.5-25, 12 PR L2 tires with CaCl2 + 794 lb. (+ 360 kg) + 3,117 lb. (+ 141 kg) + 2,692 lb. (+ 121 kg) 20.5-25, 12 PR L3 tires without CaCl2 + 1,085 lb. (+ 1186 kg) + 3,117 lb. (+ 141 kg) + 2,692 lb. (+ 121 kg) 20.5-25, 12 PR L3 tires without CaCl2 + 2,906 lb. (+ 1318 kg) + 3,323 lb. (+ 1507 kg) <td< td=""><td>Bucket width, in in. (m). Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in Ib. (kg) Tipping load, 40-degree full turn, SAE, in Ib. (kg) Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm). Reach, 45-degree dump, full height, in in. (mm). Dump clearance, 45 degree, full height, in in. (mm). Overall length, in ftin. (m). Loader clearance circle, bucket in carry position, in ftin. (m). Operating weight, in Ib. (kg).</td><td>100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 58.15 (1477) 58.03 (40.6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.1 37-9 (11.51) 37-7 (1 24,092 (10 928) 23,828</td><td>2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 95) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10.808) 23,947 (10 662)</td><td>2.51 (1.92) 100.4 (2.55) 20,430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24,311 (11.027)</td><td>1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10.856)</td><td>1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44)</td><td>100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44)</td><td>2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47)</td><td>1.77 (1.35) 100.4 (2.55) 20,682 (93.8) 17,556 (7963) 14,806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54)</td></td<>	Bucket width, in in. (m). Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in Ib. (kg) Tipping load, 40-degree full turn, SAE, in Ib. (kg) Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm). Reach, 45-degree dump, full height, in in. (mm). Dump clearance, 45 degree, full height, in in. (mm). Overall length, in ftin. (m). Loader clearance circle, bucket in carry position, in ftin. (m). Operating weight, in Ib. (kg).	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 58.15 (1477) 58.03 (40.6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.1 37-9 (11.51) 37-7 (1 24,092 (10 928) 23,828	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 95) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10.808) 23,947 (10 662)	2.51 (1.92) 100.4 (2.55) 20,430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24,311 (11.027)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10.856)	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47)	1.77 (1.35) 100.4 (2.55) 20,682 (93.8) 17,556 (7963) 14,806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54)
Adjustments to operating weights and tipping loads for 2.25 cu. yd. (1.7 m³) excavating bucketAdd (+) or deduct (-) lb. (kg) as indicated forTipping Load, StraightDegree Full Turn, SAEloaders withOperating WeightTipping Load, StraightDegree Full Turn, SAE15.5-25, 12 PR L2 tires without $CaCl_2 =$ +756 lb. (+ 343 kg)+ 1,199 lb. (- 62 kg)- 119 lb. (- 54 kg)17.5-25, 12 PR L2 tires with $CaCl_2 =$ +756 lb. (+ 343 kg)+ 1,199 lb. (+ 544 kg)- 1,036 lb. (- 470 kg)17.5-25, 12 PR L2 tires with $CaCl_2 =+$ + 1,180 lb. (+ 535 kg)+ 1,658 lb. (+ 752 kg)+ 1,431 lb. (+ 649 kg)17.5-25, 12 PR L3 tires with $CaCl_2 =+$ + 1,312 lb. (+ 60 kg)+ 93 lb. (+ 42 kg)+ 79 lb. (+ 36 kg)17.5-25, Radial, One Star L2 equivalenttires without $CaCl_2 =+$ + 1,372 lb. (+ 60 kg)+ 1,750 lb. (+ 794 kg)17.5-25, Radial, One Star L2 equivalenttires without $CaCl_2 =+$ + 1,559 kb)+ 1,925 lb. (+ 794 kg)+ 1,512 lb. (+ 686 kg)17.5-25, Radial, One Star L2 equivalenttires without $CaCl_2 =+$ + 1,559 lb. (+ 707 kg)+ 1,925 lb. (+ 873 kg)+ 1,662 lb. (+ 754 kg)20.5-25, 12 PR L2 tires without $CaCl_2 =++$ + 1,559 lb. (+ 707 kg)+ 1,925 lb. (+ 873 kg)+ 1,662 lb. (+ 754 kg)20.5-25, 12 PR L2 tires with $CaCl_2 =+++$ + 1,660 kg)+ 3,117 lb. (+ 1414 kg)+ 2,692 lb. (+ 121 kg)20.5-25, 12 PR L3 tires without $CaCl_2 =++++++++++++++++++++++++++++++++++$	Bucket width, in in. (m) Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in Ib. (kg) Tipping load, 40-degree full turn, SAE, in Ib. (kg) Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm) Reach, 45-degree dump, full height, in in. (mm) Dump clearance, 45 degree, full height, in in. (mm) ∪overall length, in ftin. (m) Loader clearance circle, bucket in carry position, in ftin. (m) Operating weight, in Ib. (kg) *Audiary spillguard is dealer installed. The spillguard is pr *Allied attachments ordered through John Deere dealers.	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 46,06 (1030) 39,2 (9 107.2 (2724) 109.8 23-1.8 (7.06) 22-10.1 37-9 (11.51) 37-7 (1 24,092 (10 928) 23,828 imarily intended to prevent spill	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 35) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10.808) 23,947 (10.662) age of loose material. However, i	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24,311 (11.027) t does increase bucket	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10.856) t capacity.	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17,556 (7963) 14,806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24,601 (11 15
Add (+) or deduct (-) lb. (kg) as indicated forThe constraint of the transformation of transformation of transformation of the transformation of trans	Bucket width, in in. (m) Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in Ib. (kg) Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm) Reach, 45-degree dump, full height, in in. (mm) Overall length, in ftin. (m) Loader clearance circle, bucket in carry position, in ftin. (m) Operating weight, in Ib. (kg) *Auxiliary spillguard is dealer installed. The spillguard is pr *Allied attachments ordered through John Deere dealers. Loader operating information is based on machine with all star	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 58,15 (1477) 58,03 (40.6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.1 23-1.8 (7.06) 22-10.1 24,092 (10 928) 23,828 imarily intended to prevent spill dard equipment; 17.5-25, 12 PF	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 35) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10.808) 23,947 (10.662) age of loose material. However, i	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24,311 (11.027) t does increase bucket	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10.856) t capacity.	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 15)
loaders withOperating WeightTipping Load, StraightDegree Full Turn, SAE15.5-25, 12 PR L2 tires without $CaCl_2 = 194$ lb. (-88 kg) -137 lb. (-62 kg) -119 lb. (-54 kg)15.5-25, 12 PR L2 tires with $CaCl_2 = 156$ lb. ($+343$ kg) $+1,199$ lb. ($+544$ kg) $-1,036$ lb. (-470 kg)17.5-25, 12 PR L2 tires with $CaCl_2 = 156$ lb. ($+343$ kg) $+1,199$ lb. ($+544$ kg) $-1,036$ lb. (-470 kg)17.5-25, 12 PR L3 tires with $CaCl_2 = 118$ lb. ($+608$ kg) $+1,658$ lb. ($+752$ kg) $+1,431$ lb. ($+649$ kg)17.5-25, 12 PR L3 tires with $CaCl_2 = 118$ lb. ($+608$ kg) $+93$ lb. ($+422$ kg) $+79$ lb. ($+36$ kg)17.5-25, Radial, One Star L2 equivalent $+1,750$ lb. ($+794$ kg) $+1,512$ lb. ($+686$ kg)17.5-25, Radial, One Star L2 equivalent $+1,559$ lb. ($+707$ kg) $+1,925$ lb. ($+873$ kg) $+1,662$ lb. ($+754$ kg)17.5-25, 12 PR L2 tires without $CaCl_2 = 1750$ lb. ($+707$ kg) $+1,925$ lb. ($+873$ kg) $+1,662$ lb. ($+754$ kg)17.5-25, Radial, One Star L2 equivalent $+1,925$ lb. ($+873$ kg) $+1,662$ lb. ($+754$ kg)17.5-25, Radial, One Star L2 equivalent $+1,925$ lb. ($+873$ kg) $+1,662$ lb. ($+754$ kg)20.5-25, 12 PR L2 tires without $CaCl_2 = 177$ kg $+3,117$ lb. ($+1414$ kg) $+2,692$ lb. ($+121$ kg)20.5-25, 12 PR L2 tires with $CaCl_2 = 177$ kg $+763$ lb. ($+346$ kg) $+657$ lb. ($+298$ kg)20.5-25, 12 PR L3 tires with $CaCl_2 = 177$ kg $+763$ lb. ($+346$ kg) $+657$ lb. ($+1221$ kg)20.5-25, 12 PR L3 tires with $CaCl_2 = 177$ kg $+763$ lb. ($+1374$ kg) $+2,869$ lb. ($+1301$ kg)20.5-25, 12 PR L3 ti	Bucket width, in in. (m) Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in Ib. (kg) Tipping load, 40-degree full turn, SAE, in Ib. (kg) Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm) Reach, 45-degree dump, full height, in in. (mm) Voerall length, in ftin. (m) Loader clearance circle, bucket in carry position, in ftin. (m) Operating weight, in Ib. (kg). *Auxiliary spillguard is dealer installed. The spillguard is pr *Auxiliary spillguard is dealer installed. The spillguard is pr	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 58,15 (1477) 58,03 (40.6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.1 37-9 (11.51) 37-7 (1 24,092 (10 928) 23,828 imarily intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 35) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10 808) 23,947 (10 662) age of loose material. However, it L2 tires; two rear counterweights	2.51 (1.92) 100.4 (2.55) 20,430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24.311 (11 027) t does increase buckt ROPS cab; 175-lb. (7	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,252 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10 856) t capacity. 9 kg) operator; and 1	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 15)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Bucket width, in in. (m) Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in lb. (kg) Tipping load, 40-degree full turn, SAE, in lb. (kg) Reach, 45-degree dump, 7-ft, (2.13 m) clearance, in in. (mm) Reach, 45-degree dump, full height, in in. (mm) Overall length, in ftin. (m) Loader clearance circle, bucket in carry position, in ftin. (m) Operating weight, in lb. (kg) *Audilary spillguard is dealer installed. The spillguard is pr *Audilary spillgu	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 58,15 (1477) 58,03 (40.6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.1 37-9 (11.51) 37-7 (1 24,092 (10 928) 23,828 imarily intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 35) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10 808) 23,947 (10 662) age of loose material. However, it L2 tires; two rear counterweights	2.51 (1.92) 100.4 (2.55) 20,430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24.311 (11 027) t does increase buckt ROPS cab; 175-lb. (7	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10 856) t capacity. 9 kg) operator; and 1 ucket	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) ull fuel tank. This inform	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) hation is affected by tim	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17,556 (7963) 14,806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24,601 (11 15
17.5-25, 12 PR L2 tires with $CaCl_2$ + 1,180 lb. (+ 535 kg)+ 1,658 lb. (+ 752 kg)+ 1,431 lb. (+ 649 kg)17.5-25, 12 PR L3 tires without $CaCl_2$ + 132 lb. (+ 60 kg)+ 93 lb. (+ 42 kg)+ 79 lb. (+ 36 kg)17.5-25, 12 PR L3 tires with $CaCl_2$ + 1,312 lb. (+ 595 kg)+ 1,750 lb. (+ 794 kg)+ 1,512 lb. (+ 686 kg)17.5-25, Radial, One Star L2 equivalent+ 1,570 lb. (+ 172 kg)+ 267 lb. (+ 121 kg)+ 229 lb. (+ 104 kg)17.5-25, Radial, One Star L2 equivalent+ 1,559 lb. (+ 707 kg)+ 1,925 lb. (+ 873 kg)+ 1,662 lb. (+ 754 kg)17.5-25, 12 PR L2 tires without $CaCl_2$ + 794 lb. (+ 360 kg)+ 558 lb. (+ 253 kg)+ 481 lb. (+ 218 kg)20.5-25, 12 PR L2 tires without $CaCl_2$ + 2,615 lb. (+ 1186 kg)+ 3,117 lb. (+ 1414 kg)+ 2,692 lb. (+ 1221 kg)20.5-25, 12 PR L3 tires without $CaCl_2$ + 2,615 lb. (+ 1186 kg)+ 3,117 lb. (+ 346 kg)+ 657 lb. (+ 298 kg)20.5-25, 12 PR L3 tires without $CaCl_2$ + 2,060 lb. (+ 1318 kg)+ 3,323 lb. (+ 1507 kg)+ 2,869 lb. (+ 1301 kg)20.5-25, 12 PR L3 tires with $CaCl_2$ + 2,006 lb. (+ 131 kg)- 302 lb. (- 137 kg)- 278 lb. (- 126 kg)20.5-25, 12 PR L3 tires with $CaCl_2$ + 2,006 lb. (+ 148 kg)- 3,978 lb. (- 1804 kg)- 3,188 lb. (- 1446 kg)	Bucket width, in in. (m) Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in Ib. (kg) Tipping load, 40-degree full turn, SAE, in Ib. (kg) Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm) Reach, 45-degree dump, full height, in in. (mm) Dump clearance, 45 degree, full height, in in. (mm) Overall length, in ftin. (m) Loader clearance circle, bucket in carry position, in ftin. (m) Operating weight, in Ib. (kg) *Audilary spillguard is dealer installed. The spillguard is pr **Allied attachments ordered through John Deere dealers. Loader operating information is based on machine with all star 4G ADJUSTMENTS TO OPERATING WEIGHTS Adjustments to operating weights an Add (+) or deduct (−) Ib. (kg) as indicated for	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 58,15 (1477) 58,03 (40.6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.1 37-9 (11.51) 37-7 (1 24,092 (10 928) 23,828 imarily intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS d tipping loads for	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 35) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10 808) 23,947 (10 662) age of loose material. However, i L2 tires; two rear counterweights 2.25 cu. yd. (1.7 m ³)	2.51 (1.92) 100.4 (2.55) 20,430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24,311 (11 027) does increase bucke ROPS cab; 175-lb. (7 excavating b	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19.262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10 856) t capacity. 9 kg) operator; and 1	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) ull fuel tank. This inform Tipping Load, 40	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) hation is affected by tir	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 15)
17.5-25, 12 PR L3 tires without $CaCl_2 =+ 132$ lb. (+ 60 kg)+ 93 lb. (+ 42 kg)+ 79 lb. (+ 36 kg)17.5-25, 12 PR L3 tires with $CaCl_2 =+ 1,312$ lb. (+ 595 kg)+ 1,750 lb. (+ 794 kg)+ 1,512 lb. (+ 686 kg)17.5-25, Radial, One Star L2 equivalent+ 1,520 lb. (+ 172 kg)+ 267 lb. (+ 121 kg)+ 229 lb. (+ 104 kg)17.5-25, Radial, One Star L2 equivalent+ 1,559 lb. (+ 707 kg)+ 1,925 lb. (+ 873 kg)+ 1,662 lb. (+ 754 kg)17.5-25, Radial, One Star L2 equivalent+ 1,559 lb. (+ 707 kg)+ 1,925 lb. (+ 873 kg)+ 1,662 lb. (+ 754 kg)20.5-25, 12 PR L2 tires without $CaCl_2 =+ 794$ lb. (+ 360 kg)+ 558 lb. (+ 253 kg)+ 481 lb. (+ 218 kg)20.5-25, 12 PR L2 tires without $CaCl_2 =+ 2,615$ lb. (+ 1186 kg)+ 3,117 lb. (+ 1414 kg)+ 2,692 lb. (+ 1221 kg)20.5-25, 12 PR L3 tires without $CaCl_2 =+ 2,615$ lb. (+ 148 kg)+ 3,323 lb. (+ 507 kg)+ 657 lb. (+ 298 kg)20.5-25, 12 PR L3 tires without $CaCl_2 =+ 2,906$ lb. (+ 131 kg)+ 3,323 lb. (+ 1307 kg)+ 2,869 lb. (+ 1301 kg)20.5-25, 12 PR L3 tires without $CaCl_2 =+ 2,906$ lb. (+ 131 kg)+ 3,023 lb. (- 137 kg)- 278 lb. (- 126 kg)20.5-25, 12 PR L3 tires with $CaCl_2 =+ 2,906$ lb. (+ 145 kg)- 3,978 lb. (- 1804 kg)- 3,188 lb. (- 1446 kg)	Bucket width, in in. (m) Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in Ib. (kg) Tipping load, 40-degree full turn, SAE, in Ib. (kg) Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm) Reach, 45-degree dump, full height, in in. (mm) Overall length, in ftin. (m) Loader clearance circle, bucket in carry position, in ftin. (m) Operating weight, in Ib. (kg) 'Auxilary spillguard is dealer installed. The spillguard is pr *Auxilary spillguard is pr *Auxilary spillguard is pr	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 40.6 (1030) 39,2 (9 107.2 (2724) 109.8 23-1.8 (7.06) 22-10.7 24,092 (10.928) 23,828 imarily intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS d tipping loads for Operating Weight 194 lb. (- 88 kg)	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 95) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10 808) 23,947 (10 662) age of loose material. However, i L2 tires; two rear counterweights 2.25 cu. yd. (1.7 m ³) <i>Tipping</i>	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24,311 (11 027) does increase bucke ROPS cab; 175-lb. (7 excavating b Load, Straight	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27.7.4 (11.47) 23,393 (10.856) t capacity. 9 kg) operator; and 1 ucket	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) will fuel tank. This inform Tipping Load, 40 Degree Full Turn,	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) hation is affected by tir SAE	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 15)
17.5-25, 12 PR L3 tires with $CaCl_2$	Bucket width, in in. (m)	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 40.6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.7 23-1.8 (7.06) 22-10.7 24,092 (10.928) 23,828 imarily intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS d tipping loads for Operating Weight 194 lb. (- 88 kg) + 756 lb. (+ 343 kg)	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 35) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10 808) 23,947 (10 662) age of loose material. However, i L2 tires; two rear counterweights 2.25 cu. yd. (1.7 m ³) Tipping - 137 11 + 1,199	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24.311 (11.027) t does increase buckt ROPS cab; 175-lb. (7 excavating b <i>Load, Straight</i> 0. (- 62 kg) lb. (+ 544 kg)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10.856) t capacity. 9 kg) operator; and f	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) iull fuel tank. This inform Tipping Load, 40 Degree Full Turn, - 119 lb. (- 54 kg - 1,036 lb. (- 470)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) hation is affected by tir 	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 15)
17.5-25, Radial, One Star L2 equivalent tires without $CaCl_2$	Bucket width, in in. (m). Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in Ib. (kg). Tipping load, 40-degree full turn, SAE, in Ib. (kg). Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm). Reach, 45-degree dump, full height, in in. (mm). Dump clearance, 45 degree, full height, in in. (mm). Loader clearance circle, bucket in carry position, in ftin. (m). Doperating weight, in Ib. (kg). *Auxiliary spillguard is dealer installed. The spillguard is pr *Auxiliary spillguard is dealer installed. The spillguard is pr spillguard is dealer installed. The spillguard is dealer installed.	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 40.6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.7 37-9 (11.51) 37-7 (1 24,092 (10 928) 23,828 imarily intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS d tipping loads for Operating Weight 194 Ib. (- 88 kg) + 756 Ib. (+ 343 kg) + 1,180 Ib. (+ 535 kg	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 35) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10 808) 23,947 (10 662) age of loose material. However, i L2 tires; two rear counterweights 2.25 cu. yd. (1.7 m3) <i>Tipping</i> - 137 II + 1,199) + 1,658	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24.311 (11 027) t does increase buckt ROPS cab; 175-lb. (7 excavating b <i>Load, Straight</i> 0. (- 62 kg) lb. (+ 544 kg) lb. (+ 752 kg)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,252 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10.856) t capacity. 9 kg) operator; and 1 ucket	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) <i>Tipping Load, 40</i> <i>Degree Full Turn,</i> - 119 lb. (- 54 kţ - 1,036 lb. (- 477 + 1,431 lb. (+ 64	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) hation is affected by tir sAE g) D kg) 9 kg)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 15)
tires without $CaCl_2$	Bucket width, in in. (m) Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in Ib. (kg) Tipping load, 40-degree full turn, SAE, in Ib. (kg) Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm) Reach, 45-degree dump, full height, in in. (mm) Overall length, in ftin. (m) Loader clearance circle, bucket in carry position, in ftin. (m) Operating weight, in Ib. (kg) *Auxilary spillguard is dealer installed. The spillguard is pr *Auxilary spillguard is pr *Auxilary spillguard is	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 58,15 (1477) 58,03 (40,6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.1 37-9 (11.51) 37-7 (1 24,092 (10 928) 23,828 marily intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS d tipping loads for Operating Weight 194 lb. (- 88 kg) + 756 lb. (+ 343 kg) + 1,180 lb. (+ 535 kg + 1,32 lb. (+ 60 kg)	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10 808) 23,947 (10 662) age of loose material. However, i L2 tires; two rear counterweights 2.25 cu. yd. (1.7 m3) <i>Tipping</i> - 137 II + 1,199) + 1,658 + 93 Ib.	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24.311 (11 027) t does increase buckt ROPS cab; 175-lb. (7 excavating b <i>Load, Straight</i> 0. (- 62 kg) lb. (+ 542 kg) lb. (+ 752 kg) (+ 42 kg)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10 856) t capacity. 9 kg) operator; and 1	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) Will fuel tank. This inform Tipping Load, 40 Degree Full Turn, - 119 lb. (- 54 kg - 1,036 lb. (- 47) + 1,431 lb. (+ 64 + 79 lb. (+ 36 kg	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) mation is affected by tir sAE g) 0 kg) 9 kg)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 15)
17.5-25, Radial, One Star L2 equivalent+ 1,925 lb. (+ 707 kg)+ 1,925 lb. (+ 873 kg)+ 1,662 lb. (+ 754 kg)20.5-25, 12 PR L2 tires without CaCl2+794 lb. (+ 360 kg)+ 558 lb. (+ 253 kg)+ 481 lb. (+ 218 kg)20.5-25, 12 PR L2 tires without CaCl2+794 lb. (+ 360 kg)+ 558 lb. (+ 253 kg)+ 481 lb. (+ 218 kg)20.5-25, 12 PR L2 tires with CaCl2+794 lb. (+ 1186 kg)+ 3,117 lb. (+ 1414 kg)+ 2,692 lb. (+ 1221 kg)20.5-25, 12 PR L3 tires with CaCl2+7,085 lb. (+ 442 kg)+ 763 lb. (+ 346 kg)+ 657 lb. (+ 298 kg)20.5-25, 12 PR L3 tires with CaCl2+2,906 lb. (+ 1318 kg)+ 3,323 lb. (+ 1507 kg)+ 2,869 lb. (+ 1301 kg)20.5-25, 12 PR L3 tires with CaCl2+2,906 lb. (+ 1318 kg)+ 3,323 lb. (+ 1507 kg)+ 2,869 lb. (+ 1301 kg)20.5-25, 12 PR L3 tires with CaCl2+2,906 lb. (+ 145 kg)- 302 lb. (- 137 kg)- 278 lb. (- 126 kg)Bucket teeth+240 lb. (+ 109 kg)- 295 lb. (- 134 kg)- 289 lb. (- 131 kg)Deduct two rear counterweights1,736 lb. (-787 kg)- 3,978 lb. (- 1804 kg)- 3,188 lb. (- 1446 kg)	Bucket width, in in. (m) Breakout force, SAE J732C, in b. (kN) Tipping load, straight, in lb. (kg) Tipping load, 40-degree full turn, SAE, in lb. (kg) Reach, 45-degree dump, 7-ft, (2.13 m) clearance, in in. (mm) Reach, 45-degree dump, 7-ft, (2.13 m) clearance, in in. (mm) Dump clearance, 45 degree, full height, in in. (mm) Overall length, in ftin. (m) Loader clearance circle, bucket in carry position, in ftin. (m) Operating weight, in lb. (kg) *Auxiliary spillguard is dealer installed. The spillguard is pr *Akilard attachments ordered through John Deere dealers. Loader operating information is based on machine with all star 4G ADJUSTMENTS TO OPERATING WEIGHTS Adjustments to operating weights an Add (+) or deduct (-) lb. (kg) as indicated for loaders with 15.5-25, 12 PR L2 tires without CaCl ₂ 17.5-25, 12 PR L2 tires without CaCl ₂ 17.5-25, 12 PR L3 tires without CaCl ₂ 17.5-25, 12 PR L3 tires without CaCl ₂	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 58,15 (1477) 58,03 (40,6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.1 37-9 (11.51) 37-7 (1 24,092 (10 928) 23,828 imarily intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS d tipping loads for Operating Weight 194 lb. (-88 kg) + 756 lb. (+ 343 kg) + 1,310 lb. (+ 535 kg + 1,312 lb. (+ 60 kg) + 1,312 lb. (+ 595 kg	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 95) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10 808) 23,947 (10 662) age of loose material. However, i L2 tires; two rear counterweights 2.25 cu. yd. (1.7 m3) <i>Tipping</i> - 137 II + 1,199) + 1,658 + 93 Ib.	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24.311 (11 027) t does increase buckt ROPS cab; 175-lb. (7 excavating b <i>Load, Straight</i> 0. (- 62 kg) lb. (+ 542 kg) lb. (+ 752 kg) (+ 42 kg)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10 856) t capacity. 9 kg) operator; and 1	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) Will fuel tank. This inform Tipping Load, 40 Degree Full Turn, - 119 lb. (- 54 kg - 1,036 lb. (- 47) + 1,431 lb. (+ 64 + 79 lb. (+ 36 kg	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) mation is affected by tir sAE g) 0 kg) 9 kg)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 154)
tires with CaCl2+1,559 lb. (+ 707 kg)+ 1,925 lb. (+ 873 kg)+ 1,662 lb. (+ 754 kg)20.5-25, 12 PR L2 tires without CaCl2+794 lb. (+ 360 kg)+ 558 lb. (+ 253 kg)+ 481 lb. (+ 218 kg)20.5-25, 12 PR L2 tires with CaCl2+2,615 lb. (+ 1186 kg)+ 3,117 lb. (+ 1414 kg)+ 2,692 lb. (+ 1221 kg)20.5-25, 12 PR L3 tires without CaCl2+2,615 lb. (+ 442 kg)+ 763 lb. (+ 346 kg)+ 657 lb. (+ 298 kg)20.5-25, 12 PR L3 tires without CaCl2+2,906 lb. (+ 1318 kg)+ 3,323 lb. (+ 1507 kg)+ 2,869 lb. (+ 1301 kg)20.5-25, 12 PR L3 tires with CaCl2+2,906 lb. (+ 1318 kg)- 3,022 lb. (- 137 kg)- 278 lb. (- 126 kg)20.5-26, 12 PR L4 tires with CaCl2+2,906 lb. (+ 149 kg)- 295 lb. (- 134 kg)- 289 lb. (- 131 kg)20.5-27, 12 PR L3 tires with CaCl2+2,906 lb. (+ 160 kg)- 3,978 lb. (- 1804 kg)- 3,188 lb. (- 1446 kg)	Bucket width, in in. (m)	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 40.6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.7 23-1.8 (7.06) 22-10.7 23-1.8 (7.06) 22-10.7 24,092 (10.928) 23,828 imarily intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS d tipping loads for Operating Weight 194 lb. (- 88 kg) + 1,180 lb. (+ 535 kg + 1,312 lb. (+ 595 kg	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 35) 39.2 (995) 2788) 109.8 (2788) 109.8 (2788)	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24,311 (11 027) does increase bucket ROPS cab; 175-lb. (7 excavating b Load, Straight b. (+ 62 kg) lb. (+ 752 kg) lb. (+ 794 kg)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10.856) t capacity. 9 kg) operator; and 1	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) will fuel tank. This inform Tipping Load, 40 Degree Full Turn, - 119 lb. (- 54 kg - 1,036 lb. (- 47) + 1,431 lb. (+ 64 + 79 lb. (+ 36 kg + 1,512 lb. (+ 68)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) hation is affected by tir sAE g) D kg) SAE g) D kg) b 6 kg)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 154)
$20.5-25, 12 \text{ PR L2 tires without CaCl}_2+ 794 \text{ lb. } (+ 360 \text{ kg})$ $+ 558 \text{ lb. } (+ 253 \text{ kg})$ $+ 481 \text{ lb. } (+ 218 \text{ kg})$ $20.5-25, 12 \text{ PR L2 tires with CaCl}_2+ 2,615 \text{ lb. } (+ 1186 \text{ kg})$ $+ 3,117 \text{ lb. } (+ 1414 \text{ kg})$ $+ 2,692 \text{ lb. } (+ 1221 \text{ kg})$ $20.5-25, 12 \text{ PR L3 tires without CaCl}_2+ 1,085 \text{ lb. } (+ 442 \text{ kg})$ $+ 763 \text{ lb. } (+ 346 \text{ kg})$ $+ 657 \text{ lb. } (+ 298 \text{ kg})$ $20.5-25, 12 \text{ PR L3 tires with CaCl}_2+ 2,906 \text{ lb. } (+ 1318 \text{ kg})$ $+ 3,323 \text{ lb. } (+ 1507 \text{ kg})$ $+ 2,869 \text{ lb. } (+ 1301 \text{ kg})$ $20.5-25, 12 \text{ PR L3 tires with CaCl}_2+ 2,906 \text{ lb. } (+ 1318 \text{ kg})$ $+ 3,323 \text{ lb. } (+ 1507 \text{ kg})$ $+ 2,869 \text{ lb. } (+ 1301 \text{ kg})$ $20.5-25, 12 \text{ PR L3 tires with CaCl}_2+ 2,906 \text{ lb. } (+ 1318 \text{ kg})$ $- 3,02 \text{ lb. } (- 137 \text{ kg})$ $- 278 \text{ lb. } (-126 \text{ kg})$ $20.5-25, 12 \text{ PR L3 tires with CaCl}_2+ 2,906 \text{ lb. } (+ 109 \text{ kg})$ $- 295 \text{ lb. } (-134 \text{ kg})$ $- 289 \text{ lb. } (-124 \text{ kg})$ $20.5-25, 12 \text{ PR L3 tires with CaCl}_2+ 2,906 \text{ lb. } (+ 109 \text{ kg})$ $- 295 \text{ lb. } (-1804 \text{ kg})$ $- 278 \text{ lb. } (-1426 \text{ kg})$ $20.5-25, 12 \text{ PR L3 tires with CaCl}_2+ 2,906 \text{ lb. } (+ 109 \text{ kg})$ $- 295 \text{ lb. } (-1804 \text{ kg})$ $- 3,188 \text{ lb. } (-1446 \text{ kg})$	Bucket width, in in. (m) Breakout force, SAE J732C, in ib. (kN) Tipping load, straight, in lb. (kg) Reach, 45-degree dump, 7-ft, (2.13 m) clearance, in in. (mm) Reach, 45-degree dump, full height, in in. (mm) Dump clearance, 45 degree, full height, in in. (mm) Loader clearance circle, bucket in carry position, in ftin. (m) Doperating weight, in lb. (kg) *Auxiliary spillguard is dealer installed. The spillguard is pr *Auxiliary spillguard is dealer installed. The spillguard is pr Add (+) or deduct (-) lb. (kg) as indicated for loaders with 15.5-25, 12 PR L2 tires with CaCl2 17.5-25, 12 PR L3 tires without CaCl2 17.5-25, Radial, One Star L2 equivalent tires without CaCl2	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 16,008 (7261) 16,534 40.6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.7 23-1.8 (7.06) 22-10.7 24,092 (10.928) 23,828 imarily intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS d tipping loads for Operating Weight 194 lb. (- 88 kg) + 1360 lb. (+ 343 kg) + 1,312 lb. (+ 60 kg) + 1,312 lb. (+ 595 kg + 379 lb. (+ 172 kg)	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 35) 39.2 (995) 2788) 109.8 (2788) 109.8 (2788)	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24,311 (11 027) does increase bucket ROPS cab; 175-lb. (7 excavating b Load, Straight b. (+ 62 kg) lb. (+ 752 kg) lb. (+ 794 kg)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10.856) t capacity. 9 kg) operator; and 1	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) will fuel tank. This inform Tipping Load, 40 Degree Full Turn, - 119 lb. (- 54 kg - 1,036 lb. (- 47) + 1,431 lb. (+ 64 + 79 lb. (+ 36 kg + 1,512 lb. (+ 68)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) hation is affected by tir sAE g) D kg) SAE g) D kg) b 6 kg)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 154)
20.5-25, 12 PR L2 tires with CaCl2+ 2,615 lb. (+ 1186 kg) + 3,117 lb. (+ 1414 kg) + 2,692 lb. (+ 1221 kg) 20.5-25, 12 PR L3 tires without CaCl2+ 1,085 lb. (+ 442 kg) + 763 lb. (+ 346 kg) + 657 lb. (+ 298 kg) 20.5-25, 12 PR L3 tires with CaCl2+ 2,906 lb. (+ 1318 kg) + 3,323 lb. (+ 1507 kg) + 2,692 lb. (+ 1201 kg) 20.5-25, 12 PR L3 tires with CaCl2+ 2,906 lb. (+ 1318 kg) + 3,323 lb. (+ 1507 kg) + 2689 lb. (+ 1301 kg) 20.5-25, 12 PR L3 tires with CaCl2+ 2,906 lb. (+ 1318 kg) + 3,323 lb. (- 137 kg) + 2,692 lb. (+ 1301 kg) ROPS canopy in lieu of ROPS cab+ 2,400 lb. (- 145 kg) - 302 lb. (- 137 kg) - 278 lb. (- 126 kg) Bucket teeth+ 240 lb. (+ 109 kg) - 295 lb. (- 134 kg) - 289 lb. (- 131 kg) Deduct two rear counterweights 1,736 lb. (- 787 kg) - 3,978 lb. (- 1804 kg) - 3,188 lb. (- 1446 kg)	Bucket width, in in. (m) Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in Ib. (kg) Tipping load, 40-degree full turn, SAE, in Ib. (kg) Reach, 45-degree dump, 7-ft. (2.13 m) clearance, in in. (mm) Reach, 45-degree dump, full height, in in. (mm) Querall length, in ftin. (m) Loader clearance circle, bucket in carry position, in ftin. (m) Operating weight, in Ib. (kg). *Auxiliary spillguard is dealer installed. The spillguard is pr *Auxiliary spillguard is dealer. 15.5-25, 12 PR L2 tires without CaCl ₂ 17.5-25, 12 PR L3 tires with CaCl ₂ 17.5-25, Radial, One Star L2 equivalent tires without CaCl ₂ 17.5-25, Radial, One Star L2 equivalent	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 6008 (7261) 16,534 40.6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.7 37-9 (11.51) 37-7 (1 24,092 (10.928) 23,828 imarily intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS d tipping loads for Operating Weight 194 lb. (- 88 kg) + 756 lb. (+ 343 kg) + 1,180 lb. (+ 535 kg + 1,312 lb. (+ 60 kg) + 379 lb. (+ 172 kg)	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 35) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10 808) 23,947 (10 662) age of loose material. However, i L2 tires; two rear counterweights 2.25 cu. yd. (1.7 m3) 7 <i>Tipping</i> - 137 II + 1,199) + 1,658 + 93 Ib.) + 1,750 + 267 II	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24,311 $(11 027)$ it does increase bucket ROPS cab; 175-lb. (7) excavating b Load, Straight 5. $(- 62 \text{ kg})$ lb. $(+ 524 \text{ kg})$ lb. $(+ 752 \text{ kg})$ (+ 42 kg) lb. $(+ 794 \text{ kg})$ b. $(+ 121 \text{ kg})$	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10.856) t capacity. 9 kg) operator; and 1 ucket	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) iull fuel tank. This inform Tipping Load, 40 Degree Full Turn, – 119 lb. (– 54 kg – 1,036 lb. (– 474 + 79 lb. (+ 36 kg + 1,512 lb. (+ 68 + 229 lb. (+ 104	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) mation is affected by tin SAE g) D kg) 9 kg)) 6 kg) kg)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 15)
20.5-25, 12 PR L3 tires with CaCl2+ 2,906 lb. (+ 1318 kg) + 3,323 lb. (+ 1507 kg) + 2,869 lb. (+ 1301 kg) ROPS canopy in lieu of ROPS cab320 lb. (- 145 kg) - 302 lb. (- 137 kg) - 278 lb. (- 126 kg) Bucket teeth+ 240 lb. (+ 109 kg) - 295 lb. (- 134 kg) - 289 lb. (- 131 kg) Deduct two rear counterweights1,736 lb. (- 787 kg) - 3,978 lb. (- 1804 kg) - 3,188 lb. (- 1446 kg)	 Bucket width, in in. (m)	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 18,914 (8579) 19,469 16,008 (7261) 16,534 58,15 (1477) 58,03 (40,6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.7 24,092 (10 928) 23,828 marally intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS d tipping loads for Operating Weight 194 lb. (- 88 kg) + 756 lb. (+ 343 kg) + 1,180 lb. (+ 535 kg + 1,312 lb. (+ 60 kg) + 379 lb. (+ 172 kg) + 1,559 lb. (+ 707 kg	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 395) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10 808) 23,947 (10 662) age of loose material. However, i L2 tires; two rear counterweights 2.25 cu. yd. (1.7 m3) <i>Tipping</i> - 137 lt + 1,199 9) + 1,658 + 93 lb. 9) + 1,750 + 267 lt 9) + 1,925	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24.311 (11027) toes increase buckt ROPS cab; 175-lb. $(7$ excavating b Load, Straight b. $(+ 62 \text{ kg})$ lb. $(+ 752 \text{ kg})$ (+ 42 kg) lb. $(+ 754 \text{ kg})$ lb. $(+ 794 \text{ kg})$ c. $(+ 121 \text{ kg})$ lb. $(+ 873 \text{ kg})$	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10.856) t capacity. 9 kg) operator; and 1	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) iull fuel tank. This inform Tipping Load, 40 Degree Full Turn, – 119 lb. (– 54 kg + 1,036 lb. (– 470 + 1,431 lb. (+ 64 kg + 1,512 lb. (+ 68 kg + 229 lb. (+ 104 + 1,662 lb. (+ 75	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) mation is affected by tir sAE g) 0 kg) 9 kg)) 6 kg) 4 kg)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 15)
ROPS canopy in lieu of ROPS cab	Bucket width, in in. (m) Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in lb. (kg) Tipping load, 40-degree full turn, SAE, in lb. (kg) Reach, 45-degree dump, 7-ft, (2.13 m) clearance, in in. (mm) Reach, 45-degree dump, full height, in in. (mm) Queral length, in ftin. (m) Loader clearance circle, bucket in carry position, in ftin. (m) Operating weight, in lb. (kg) *Audilary spillguard is dealer installed. The spillguard is pr *Audilary spillguard is dealer installed. The spillguard is pr to preating information is based on machine with all star Add (+) or deduct (-) lb. (kg) as indicated for loaders with 15.5-25, 12 PR L2 tires with CaCl ₂ 17.5-25, Radial, One Star L2 equivalent tires with CaCl ₂ 20.5-25, 12 PR L2 tires without CaCl ₂ 20.5-25, 12 PR L2 tires without CaCl ₂	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 58,15 (1477) 58,03 (40,6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.1 23-1.8 (7.06) 22-10.1 24,092 (10 928) 23,828 marily intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS d tipping loads for Operating Weight 194 lb. (- 88 kg) + 756 lb. (+ 343 kg) + 1,180 lb. (+ 535 kg + 1,312 lb. (+ 60 kg) + 1,379 lb. (+ 172 kg) + 1,559 lb. (+ 707 kg + 794 lb. (+ 360 kg)	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10 808) 23,947 (10 662) age of loose material. However, i L2 tires; two rear counterweights 2.25 cu. yd. (1.7 m3) <i>Tipping</i> - 137 II + 1,199) + 1,658 + 93 Ib.) + 1,750 + 267 II) + 1,925 + 558 II	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24.311 (11027) does increase bucke ROPS cab; 175-lb. $(7$ excavating b Load, Straight b. $(+ 524 \text{ kg})$ lb. $(+ 752 \text{ kg})$ lb. $(+ 754 \text{ kg})$ lb. $(+ 794 \text{ kg})$ b. $(+ 873 \text{ kg})$ b. $(+ 873 \text{ kg})$ b. $(+ 873 \text{ kg})$	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27.7.4 (11.47) 23,394 (10.856) t capacity. 9 kg) operator; and 1 ucket	1.88 (1.4) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) will fuel tank. This inform Tipping Load, 40 Degree Full Turn, - 119 lb. (- 54 k; - 1,036 lb. (- 477) 1,431 lb. (+ 68 + 229 lb. (+ 104) + 1,662 lb. (+ 75 + 481 lb. (+ 218)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) mation is affected by tir sAE g) 0 kg) 9 kg) 9 kg) 9 kg) 9 kg) 9 kg) 4 kg) kg)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 154)
Bucket teeth + 240 lb. (+ 109 kg) - 295 lb. (- 134 kg) - 289 lb. (- 131 kg) Deduct two rear counterweights - 1,736 lb. (- 787 kg) - 3,978 lb. (- 1804 kg) - 3,188 lb. (- 1446 kg)	 Bucket width, in in. (m)	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 6008 (7261) 16,534 6008 (7261) 16,534 6008 (7261) 16,534 6001 (7261) 16,534 6001 (7261) 19,469 723-18 (7.06) 22,102 73-9 (11.51) 37-7 (1 24,092 (10.928) 23,828 imarily intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS d tipping loads for Operating Weight 194 lb. (- 88 kg) + 156 lb. (+ 343 kg) + 1,312 lb. (+ 60 kg) + 1,312 lb. (+ 60 kg) + 1,312 lb. (+ 595 kg + 1379 lb. (+ 172 kg) + 1,559 lb. (+ 707 kg + 2,615 lb. (+ 1186 k + 1,085 lb. (+ 442 kg	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 35) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10 808) 23,947 (10 662) age of loose material. However, i L2 tires; two rear counterweights 2.25 cu. yd. (1.7 m³) 7 7 7 1 1 1 1 1 1 1 1	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24,311 (11 027) i does increase bucker ROPS cab; 175-lb. (7) excavating b Load, Straight b. (+ 62 kg) lb. (+ 752 kg) (+ 42 kg) lb. (+ 794 kg) b. (+ 873 kg) b. (+ 873 kg) b. (+ 346 kg)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10.856) t capacity. 9 kg) operator; and 1 ucket	1.88 (1.44) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) 'ull fuel tank. This inform Tipping Load, 40 Degree Full Turn, - 119 lb. (- 54 kg - 1,036 lb. (- 47' + 1,431 lb. (+ 64 kg + 1,512 lb. (+ 68 kg + 229 lb. (+ 104 + 1,662 lb. (+ 75 + 481 lb. (+ 218 + 2,692 lb. (+ 12 + 657 lb. (+ 298	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) hation is affected by tir 	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 15)
Deduct two rear counterweights	Bucket width, in in. (m) Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in Ib. (kg) Reach, 45-degree dump, 7-ft, (2.13 m) clearance, in in. (mm) Reach, 45-degree dump, full height, in in. (mm) Neach, 45-degree dump, full height, in in. (mm) Overall length, in ftin. (m) Loader clearance, 45 degree, full height, in in. (mm) Overall length, in ftin. (m) Loader clearance circle, bucket in carry position, in ftin. (m) Operating weight, in Ib. (kg). *Auxiliary spillguard is dealer installed. The spillguard is pr *Aukilary spillguard is dealer installed. The spillguard is pr *Aukilar spillguard is dealer installed. The spillguard is pr *Aukilary spillguard is dealer installed. The spillguard is pr Adjustments to operating weights an Add (+) or deduct (-) Ib. (kg) as indicated for loaders with 15.5-25, 12 PR L2 tires without CaCl2 17.5-25, Radial, One Star L2 equivalent tires without CaCl2 20.5-25, 12 PR L3 tires without CaCl2 20.5-	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 6008 (7261) 16,534 40.6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.1 37-9 (11.51) 37-7 (1 24,092 (10.928) 23,828 imarily intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS d tipping loads for Operating Weight 194 lb. (- 88 kg) + 1,756 lb. (+ 343 kg) + 1,312 lb. (+ 60 kg) + 1,312 lb. (+ 595 kg + 1,329 lb. (+ 172 kg) + 1,559 lb. (+ 172 kg) + 1,559 lb. (+ 176 kg + 1,085 lb. (+ 442 kg + 2,906 lb. (+ 1318 k	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 35) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10 808) 23,947 (10 662) age of loose material. However, i L2 tires; two rear counterweights 2.25 cu. yd. (1.7 m³) 7 <i>Tipping</i> - 137 II + 1,199) + 1,658 + 93 Ib.) + 1,750 + 267 II) + 1,925 + 558 II g) + 3,117) + 763 II g) + 3,23	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24.311 (11.027) it does increase bucket ROPS cab; 175-lb. $(7$ excavating b Load, Straight b. $(+ 524 \text{ kg})$ lb. $(+ 752 \text{ kg})$ ($+ 42 \text{ kg}$) lb. $(+ 774 \text{ kg})$ b. $(+ 873 \text{ kg})$ b. $(+ 121 \text{ kg})$ lb. $(+ 1546 \text{ kg})$ lb. $(+ 1507 \text{ kg})$	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10.856) t capacity. 9 kg) operator; and 1 ucket	1.88 (1.4) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) iull fuel tank. This inform Tipping Load, 40 Degree Full Turn, - 119 lb. (- 54 kg - 1,036 lb. (- 474 + 1,431 lb. (+ 64 kg + 1,512 lb. (+ 68 kg + 229 lb. (+ 104 + 1,662 lb. (+ 75 + 481 lb. (+ 218 + 2,869 lb. (+ 13) + 2,869 lb. (+ 13)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) hation is affected by tir sAE g) D kg) 9 kg)) 6 kg) kg) kg) 21 kg) kg) 21 kg) kg) 01 kg)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 154)
	 Bucket width, in in. (m)	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 6,008 (7261) 16,534 6,01 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.7 37-9 (11.51) 37-7 (1 24,092 (10.928) 23,828 imarily intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS d tipping loads for Operating Weight = 194 lb. (- 88 kg) + 756 lb. (+ 343 kg) + 1,180 lb. (+ 535 kg + 1,312 lb. (+ 60 kg) + 1,312 lb. (+ 60 kg) + 1,559 lb. (+ 707 kg + 2,906 lb. (+ 1186 k + 2,906 lb. (+ 1186 k + 2,906 lb. (+ 1181 k 320 lb. (- 145 kg)	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 35) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10 808) 23,947 (10 662) age of loose material. However, i 1.2 tires; two rear counterweights 2.25 cu. yd. (1.7 m3) 7 7 7 7 7 7 1 1 1 1 1 1 1 1	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24.311 (11027) t does increase buckt ROPS cab; 175-lb. (7 excavating b Load, Straight b. (+ 62 kg) lb. (+ 752 kg) (+ 42 kg) lb. (+ 752 kg) (+ 42 kg) lb. (+ 754 kg) lb. (+ 253 kg) b. (+ 253 kg) lb. (+ 346 kg) lb. (+ 1507 kg) b. (- 137 kg)	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27-7.4 (11.47) 23,934 (10.856) t capacity. 9 kg) operator; and 1 wcket	1.88 (1.4) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) Will fuel tank. This inform Tipping Load, 40 Degree Full Turn, - 119 lb. (- 54 kg + 1,036 lb. (-47) + 1,431 lb. (+ 64 kg + 1,512 lb. (+ 68 kg + 229 lb. (+ 104) + 1,662 lb. (+ 75) + 481 lb. (+ 218) + 2,869 lb. (+ 13) - 278 lb. (- 126) - 278 lb. (- 126)	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) mation is affected by tir <i>SAE</i> g) 0 kg) 9 kg)) 6 kg) (1 kg) kg) 21 kg) kg) 0 l kg) kg) 0 l kg)	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17.556 (7963) 14.806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24.601 (11 154)
	Bucket width, in in. (m) Breakout force, SAE J732C, in Ib. (kN) Tipping load, straight, in lb. (kg) Tipping load, 40-degree full turn, SAE, in lb. (kg) Reach, 45-degree dump, 7-ft, (2.13 m) clearance, in in. (mm) Reach, 45-degree dump, full height, in in. (mm) Overall length, in ftin. (m) Loader clearance circle, bucket in carry position, in ftin. (m) Operating weight, in lb. (kg) *Auxiliary spillguard is dealer installed. The spillguard is pr *Auxiliary spillguard is dealer installed. The spillguard is pr Add (+) or deduct (-) lb. (kg) as indicated for loaders with 15.5-25, 12 PR L2 tires with CaCl ₂ 17.5-25, 12 PR L3 tires with CaCl ₂ 17.5-25, Radial, One Star L2 equivalent tires without CaCl ₂ 20.5-25, 12 PR L2 tires with CaCl ₂ 20.5-25, 12 PR L2 tires with CaCl ₂ 20.5-25, 12 PR L3 tires without CaCl ₂ 20.5-25	100.4 (2.55) 100.4 (20,569 (91.5) 22,207 18,914 (8579) 19,469 16,008 (7261) 16,534 16,008 (7261) 16,534 16,008 (7261) 16,534 40,6 (1030) 39,2 (9 107.2 (2724) 109.8 (23-1.8 (7.06) 22-10.7 24,092 (10 928) 23,828 marally intended to prevent spill dard equipment; 17.5-25, 12 PF FOR PIN-ON BUCKETS d tipping loads for Operating Weight 194 lb. (- 88 kg) + 756 lb. (+ 343 kg) + 1,180 lb. (+ 535 kg + 1,312 lb. (+ 60 kg) + 1,559 lb. (+ 707 kg + 2,615 lb. (+ 1172 kg) + 2,615 lb. (+ 1186 k + 2,906 lb. (+ 1318 k + 2,900 lb. (+ 109 kg) + 240 lb. (+ 109 kg)	2.55) 100.4 (2.55) (98.8) 22,110 (98.4) (8831) 19,423 (8810) (7500) 16,484 (7477) 1474) 58.03 (1474) 95) 39.2 (995) 2788) 109.8 (2788) (6.97) 22-10.2 (6.97) 1.46) 37-7 (11.46) (10 808) 23,947 (10 662) age of loose material. However, 1 1.2 tires; two rear counterweights 2.25 cu. yd. (1.7 m3) 7 7 7 1 1 1 1 1 1 1 1	2.51 (1.92) 100.4 (2.55) 20.430 (90.9) 18,841 (8546) 15,933 (7227) 58.15 (1477) 40.6 (1030) 107.2 (2724) 23-1.8 (7.06) 37-9 (11.51) 24.311 (11027) does increase bucke ROPS cab; 175-lb. $(7$ excavating b Load, Straight b. $(+ 524 \text{ kg})$ lb. $(+ 752 \text{ kg})$ lb. $(+ 752 \text{ kg})$ lb. $(+ 754 \text{ kg})$ lb. $(+ 754 \text{ kg})$ lb. $(+ 754 \text{ kg})$ lb. $(+ 754 \text{ kg})$ lb. $(+ 121 \text{ kg})$ lb. $(+ 123 \text{ kg})$ lb. $(+ 1507 \text{ kg})$ b. $(- 137 \text{ kg})$ b. $(- 134 \text{ kg})$	1.99 (1.52) 100.4 (2.55) 22,145 (98.5) 19,262 (8737) 16,334 (7409) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.1 (6.96) 27.7.4 (11.47) 23,394 (10.856) t capacity. 9 kg) operator; and 1 ucket	1.88 (1.4) 100.4 (2.55) 24,030 (106.9) 19,833 (8996) 16,876 (7655) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,570 (10 691) ³⁷ ³⁷ ¹¹	100.4 (2.55) 23,942 (106.5) 19,791 (8977) 16,830 (7634) 57.05 (1449) 37.2 (944) 111.8 (2839) 22-7.2 (6.89) 37-5 (11.44) 23,689 (10 745) mation is affected by tir sAE g) 0 kg) 9 kg) 0 kg 9 kg) 0 kg 9 kg) 0 kg 9 kg) 0 kg 9 kg) 0 kg 9 kg) 0 kg 9 kg 0 l kg 0	2.26 (1.73) 100.4 (2.55) 22,059 (98.1) 19,132 (8678) 16,202 (7349) 57.2 (1453) 38.6 (980) 109.3 (2776) 22-10.7 (6.98) 37-7.4 (11.47) 24,053 (10 910)	1.77 (1.35) 100.4 (2.55) 20.682 (93.8) 17,556 (7963) 14,806 (6716) 50.3 (1277) 34.7 (881) 103.8 (2636) 23-2.8 (7.08) 37-10 (11.54) 24,601 (11 158)

624G BUCKET INFORMATION (PIN-ON)

				Stockpiling w/				Excavating w/	
	Stockpiling w/	Stockpiling w/o	Stockpiling w/	Bolt-on Edge +	Excavating w/	Excavating w/o	Excavating w/	Bolt-on Edge +	Multi-
Bucket Type/Size	Bolt-on Edge	Bolt-on Edge	Spillguard *	Spillguard*	Bolt-on Edge	Bolt-on Edge	Spillguard *	Spillguard *	purpose**
Capacity, heaped SAE, in cu. yd. (m ³)		3.0 (2.3)	3.12 (2.4)	3.38 (2.6)	2.75 (2.1)	2.63 (2.0)	2.75 (2.1)	3.0 (2.3)	2.38 (1.8)
Capacity, struck SAE, in cu. yd. (m ³)		2.63 (2.0)	2.88 (2.2)	3.0 (2.3)	2.38 (1.8)	2.25 (1.7)	2.5 (1.9)	2.63 (2.0)	2.0 (1.5)
Bucket width, in in. (m)		101.8 (2.58)	101.8 (2.58)	101.8 (2.58)	101.8 (2.58)	101.8 (2.58)	101.8 (2.58)	101.8 (2.58)	101.8 (2.58)
Breakout force, SAE J732C, in Ib. (kN)		29,404 (130.8)	29,238 (130.0)	26,494 (117.8)	29,047 (129.2)	32,202 (143.2)	32,109 (142.8)	28,925 (128.6)	32,471 (144.4)
Tipping load, straight, in lb. (kg)		21,205 (9617)	21,157 (9595)	20,401 (9252)	20,758 (9414)	21,497 (9749)	21,459 (9732)	20,707 (9391)	20,013 (9079)
Tipping load, 40-degree full turn, SAE, in lb. (kg)		18,001 (8164)	17,951 (8141)	17,241 (7819)	17,572 (7969)	18,262 (8282)	18,220 (8263)	17,514 (7943)	16,908 (7668)
Reach, 45-degree dump, 7-ft. (2.13 m) clearance,	in								
in. (mm)	60.5 (1536)	59.8 (1520)	59.8 (1520)	60.5 (1536)	59.2 (1503)	58.5 (1485)	58.5 (1485)	59.2 (1503)	49.8 (1265)
Reach, 45-degree dump, full height, in in. (mm)		38.0 (966)	38.0 (966)	40.4 (1027)	37.6 (956)	35.3 (896)	35.3 (896)	37.6 (956)	28.6 (726)
 Dump clearance, 45 degree, full height, in in. (mm))109.6 (2784)	112.9 (2868)	112.9 (2868)	109.6 (2784)	112.4 (2854)	115.7 (2938)	115.7 (2938)	112.4 (2854)	111.8 (2839)
Overall length, in ftin. (m)		24-3.7 (7.41)	24-3.7 (7.41)	24-8.3 (7.52)	24-4.2 (7.42)	23-11.5 (7.3)	23-11.5 (7.3)	24-4.2 (7.42)	24-0.9 (7.34)
Loader clearance circle, bucket in carry position, ir	1								
ftin. (m)		39-2.8 (11.96)	39-2.8 (11.96)	39-5.6 (12.03)	39-3.2 (11.97)	39-0 (11.9)	39-0 (11.9)	39-3.2 (11.97)	39-1.7 (11.93)
Operating weight, in lb. (kg)		27,435 (12 442)	27,554 (12 496)	27,973 (12 686)	27,756 (12 588)	27,338 (12 398)	27,456 (12 452)	27,876 (12 642)	28,103 (12 745)
*Auxiliary spillguard is dealer installed. The spillguard is	s primarily intended to p	revent spillage of loos	e material. However,	it does increase buck	et capacity.				
**Allied attachments ordered through John Deere dealer									
Loader operating information is based on machine with all	standard equinment: 20 P	5-25 12 PR 2 tires: or	ne rear counterweight:	BOPS cab: 175-h (7)	(kg) operator: and full	fuel tank. This inform	ation is affected by tire	size hallast and diffe	rent attachments

Loader operating information is based on machine with all standard equipment; 20.5-25, 12 PR L2 tires; one rear counterweight; ROPS cab; 175-lb. (79 kg) operator; and full fuel tank. This information is affected by tire size, ballast, and different attachments.

. .

624G ADJUSTMENTS TO OPERATING WEIGHTS FOR PIN-ON BUCKETS

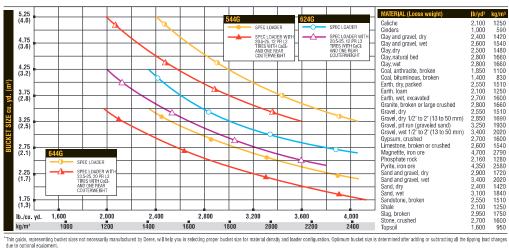
Adjustments to operatin	g weights and tipping loads for 2.63 cu.	yd. (2.0 m ³) excavating bucket	
Add (+) or deduct (-) lb. (kg) a	s indicated for		Tipping Load, 40-
loaders with	Operating Weight	Tipping Load, Straight	Degree Full Turn, SAE
17.5-25, 12 PR L2 tires w	ithout CaCl ₂ – 794 lb. (– 360 kg)	- 560 lb. (- 254 kg)	- 483 lb. (- 219 kg)
17.5-25, 12 PR L2 tires w	ith CaCl ₂ + 386 lb. (+ 175 kg)	+ 1,100 lb. (+ 499 kg)	+ 950 lb. (+ 431 kg)
17.5-25, 12 PR L3 tires w	ithout CaCl ₂ – 661 lb. (– 300 kg)	– 467 lb. (– 212 kg)	– 403 lb. (– 183 kg)
17.5-25, 12 PR L3 tires w	ith CaCl ₂ + 518 lb. (+ 235 kg)	+ 1,193 lb. (+ 541 kg)	+ 1,030 lb. (+ 467 kg)
17.5-25, Radial, One Star	L2 equivalent	-	-
tires without CaCl ₂ .	– 414 lb. (– 188 kg)	– 293 lb. (– 133 kg)	– 251 lb. (– 114 kg)
17.5-25, Radial, One Star	L2 equivalent		
tires with CaCl ₂	+ 765 lb. (+ 347 kg)	+ 1,367 lb. (+ 620 kg)	+ 1,179 lb. (+ 535 kg)
20.5-25, 12 PR L2 tires w	ith CaCl ₂ + 1,820 lb. (+ 826 kg)	+ 2,560 lb. (+ 1161 kg)	+ 2,211 lb. (+ 1003 kg)
20.5-25, 12 PR L3 tires w	ithout CaCl ₂ + 291 lb. (+ 132 kg)	+ 205 lb. (+ 93 kg)	+ 179 lb. (+ 81 kg)
20.5-25, 12 PR L3 tires w	ith CaCl ₂ + 2,112 lb. (+ 958 kg)	+ 2,765 lb. (+ 1254 kg)	+ 2,388 lb. (+ 1083 kg)
20.5-25, Radial, One Star	: L2 equivalent		
tires without CaCl ₂ .	+ 467 lb. (+ 212 kg)	+ 331 lb. (+ 150 kg)	+ 287 lb. (+ 130 kg)
20.5-25, Radial, One Star	: L2 equivalent		
tires with CaCl ₂	+ 2,288 lb. (+ 1038 kg)	+ 2,888 lb. (+ 1310 kg)	+ 2,493 lb. (+ 1131 kg)
ROPS canopy in lieu of F	ROPS cab 320 lb. (- 145 kg)	– 299 lb. (– 136 kg)	– 241 lb. (– 109 kg)
Bucket teeth	+ 240 lb. (+ 109 kg)	– 298 lb. (– 135 kg)	– 291 lb. (– 132 kg)
Deduct one rear counter	weight– 946 lb. (– 429 kg)	– 2,134 lb. (– 968 kg)	– 1,753 lb. (– 795 kg)
Add second rear counter	weight*+ 1,169 lb. (+ 530 kg)	+ 2,677 lb. (+ 1214 kg)	+ 2,196 lb. (+ 996 kg)
*Optional counterweight no	t to be used when CaCl ₂ ballast is used in the t	ires.	

644G BUCKET INFORMATION (PIN-ON)

				Stockpiling w/				Excavating w/	
	Stockpiling w/	Stockpiling w/o	Stockpiling w/	Bolt-on Edge +	Excavating w/	Excavating w/o	Excavating w/	Bolt-on Edge +	Multi-
Bucket Type/Size	Bolt-on Edge	Bolt-on Edge	Spillguard *	Spillguard *	Bolt-on Edge	Bolt-on Edge	Spillguard *	Spillguard *	purpose**
Capacity, heaped SAE, in cu. yd. (m ³)	4.0 (3.1)	3.75 (2.9)	4.0 (3.1)	4.25 (3.2)	3.5 (2.7)	3.25 (2.5)	3.5 (2.7)	3.75 (2.8)	2.75 (2.1)
Capacity, struck SAE, in cu. yd. (m ³)	3.4 (2.6)	3.2 (2.45)	3.57 (2.73)	3.78 (2.89)	2.88 (2.2)	2.75 (2.1)	3.14 (2.4)	3.25 (2.5)	2.31 (1.77)
Bucket width, in in. (m)	112.2 (2.85)	112.2 (2.85)	112.2 (2.85)	112.2 (2.85)	112.2 (2.85)	112.2 (2.85)	112.2 (2.85)	112.2 (2.85)	112.2 (2.85)
Breakout force, SAE J732C, in Ib. (kN)		37,440 (166.5)	37,346 (166.1)	33,997 (151.2)	37,284 (165.8)	41,105 (182.8)	41,012 (182.4)	37,139 (165.2)	41,720 (185.6)
Tipping load, straight, in lb. (kg)	26,264 (11 911)	27,329 (12 394)	27,298 (12 380)	26,184 (11 875)	26,883 (12 192)	27,734 (12 578)	27,708 (12 566)	26,844 (12 174)	26,731 (12 123)
Tipping load, 40-degree full turn, SAE, in lb. (kg)	22,118 (10 031)	23,161 (10 504)	23,124 (10 487)	22,032 (9992)	22,730 (10 310)	23,525 (10 669)	23,492 (10 654)	22,687 (10 289)	22,614 (10 256)
Tipping load, 35-degree turn, SAE, in lb. (kg)		23,975 (10 873)	23,937 (10 856)	22,846 (10 361)	23,543 (10 677)	24,345 (11 041)	24,314 (11 027)	23,499 (10 657)	23,417 (10 620)
Reach, 45-degree dump, 7-ft. (2.13 m) clearance, i	n								
in. (mm)	64.4 (1635)	63.8 (1622)	63.8 (1622)	64.4 (1635)	62.8 (1596)	62.2 (1580)	62.2 (1580)	62.8 (1596)	57.1 (1450)
Reach, 45-degree dump, full height, in in. (mm)	45.0 (1142)	42.7 (1086)	42.7 (1086)	45.0 (1142)	42.0 (1068)	39.8 (1011)	39.8 (1011)	42.0 (1068)	35.6 (904)
 Dump clearance, 45 degree, full height, in in. (mm) 	111.3 (2828)	114.8 (2917)	114.8 (2917)	111.3 (2828)	114.3 (2904)	117.8 (2992)	117.8 (2993)	114.3 (2904)	115.8 (2942)
Overall length, in ftin. (m)	25-10.4 (7.88)	25-5.5 (7.76)	25-5.5 (7.76)	25-10.4 (7.88)	25-5.9 (7.77)	25-1 (7.65)	25-1 (7.65)	25-5.9 (7.77)	25-0.5 (7.63)
Loader clearance circle, bucket in carry position, in									
ftin. (m)	42-0.2 (12.81)	41-9.2 (12.73)	41-9.2 (12.73)	42-0.2 (12.81)	41-9.6 (12.74)	41-6.7 (12.67)	41-6.7 (12.67)	41-9.6 (12.74)	41-6.3 (12.66)
Operating weight, in lb. (kg)	35,236 (15 980)	34,824 (15 793)	34,943 (15 847)	35,357 (16 035)	34,980 (15 864)	34,544 (15 666)	32,226 (15 720)	35,095 (15 916)	35,035 (15 889)
*Auxiliary spillguard is dealer installed. The spillguard is	primarily intended to p	revent spillage of loos	e materia l. However,	it does increase buck	et capacity.				
Dump clearance, 45 degree, full height, in in. (mm) Overall length, in ftin. (m). Loader clearance circle, bucket in carry position, in ftin. (m). Operating weight, in lb. (kg).		114.8 (2917) 25-5.5 (7.76) 41-9.2 (12.73) 34,824 (15 793)	114.8 (2917) 25-5.5 (7.76) 41-9.2 (12.73) 34,943 (15 847)	111.3 (2828) 25-10.4 (7.88) 42-0.2 (12.81) 35,357 (16 035)	114.3 (2904) 25-5.9 (7.77) 41-9.6 (12.74) 34,980 (15 864)	117.8 (2992) 25-1 (7.65) 41-6.7 (12.67)	117.8 (2993) 25-1 (7.65) 41-6.7 (12.67)	114.3 (2904) 25-5.9 (7.77) 41-9.6 (12.74)	115.8 (2942) 25-0.5 (7.63) 41-6.3 (12.66)

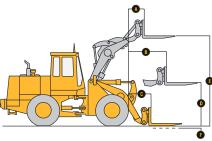
* Allied attachments ordered through John Deere dealers. Loader operating information is based on machine with all standard equipment; 23.5-25, 12 PR L2 tires; one rear counterweight; ROPS cab; 175-lb. (79 kg) operator; and full fuel tank. This information is affected by tire size, ballast, and different attachments.

644G ADJUSTMENTS TO OPERATING WEIGHTS FOR PIN-ON BUCKETS

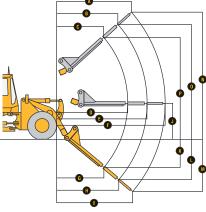

Adjustments to operating weights and tipping loads for 3.25 c	u. yd. (2.5 m ³) excavating bucket		
Add (+) or deduct (–) lb. (kg) as indicated for		Tipping Load, 35-	Tipping Load, 40-
loaders with Operating Weight	Tipping Load, Straight	Degree Turn, SAE	Degree Full Turn, SAE
20.5-25, 12 PR L2 tires without CaCl ₂ – 1,587 lb. (– 720 kg)	- 1,129 lb. (- 512 kg)	- 1,005 lb. (- 456 kg)	– 977 lb. (– 443 kg)
20.5-25, 12 PR L2 tires with CaCl ₂ + 234 lb. (+ 106 kg)	+ 1,462 lb. (+ 663 kg)	+ 1,301 lb. (+ 590 kg)	+ 1,263 lb. (+ 573 kg)
20.5-25, 16 PR L2 tires without CaCl ₂ – 1,499 lb. (– 680 kg)	– 1,067 lb. (– 484 kg)	– 950 lb. (– 431 kg)	– 922 lb. (– 418 kg)
20.5-25, 16 PR L2 tires with CaCl ₂ + 322 lb. (+ 146 kg)	+ 1,526 lb. (+ 692 kg)	+ 1,356 lb. (+ 615 kg)	+ 1,316 lb. (+ 597 kg)
20.5-25, 16 PR L3 tires without CaCl ₂ – 1,235 lb. (– 560 kg)	– 877 lb. (– 398 kg)	– 783 lb. (– 355 kg)	– 758 lb. (– 344 kg)
20.5-25, 16 PR L3 tires with CaCl ₂ + 586 lb. (+ 266 kg)	+ 1,713 lb. (+ 777 kg)	+ 1,523 lb. (+ 691 kg)	+ 1,479 lb. (+ 671 kg)
20.5-25, Radial, One Star L2 equivalent	-	-	-
tires without CaCl ₂ – 1,120 lb. (– 508 kg)	– 796 lb. (– 361 kg)	– 710 lb. (– 322 kg)	– 688 lb. (– 312 kg)
20.5-25, Radial, One Star L2 equivalent			
tires with CaCl ₂ + 701 lb. (+ 318 kg)	+ 1,795 lb. (+ 814 kg)	+ 1,596 lb. (+ 724 kg)	+ 1,550 lb. (+ 703 kg)
23.5-25, 12 PR L2 tires with CaCl ₂ + 2,396 lb. (+ 1087 kg)	+ 3,411 lb. (+ 1547 kg)	+ 3,036 lb. (+ 1,377 kg)	+ 2,945 lb. (+ 1336 kg)
23.5-25, 20 PR L3 tires without CaCl ₂ + 494 lb. (+ 224 kg)	+ 353 lb. (+ 160 kg)	+ 313 lb. (+ 142 kg)	+ 304 lb. (+ 138 kg)
23.5-25, 20 PR L3 tires with CaCl ₂ + 2,890 lb. (+ 1311 kg)	+ 3,761 lb. (+ 1706 kg)	+ 3,347 lb. (+ 1518 kg)	+ 3,250 lb. (+ 1474 kg)
ROPS canopy in lieu of ROPS cab 320 lb. (- 145 kg)	– 295 lb. (– 134 kg)	– 273 lb. (– 124 kg)	– 276 lb. (– 125 kg)
Bucket teeth+ 262 lb. (+ 119 kg)	– 326 lb. (– 148 kg)	– 322 lb. (– 146 kg)	– 320 lb. (– 145 kg)
Deduct one rear counterweight 910 lb. (- 413 kg)	– 2,068 lb. (– 938 kg)	– 1,773 lb. (– 804 kg)	– 1,700 lb. (– 771 kg)
Add second rear counterweight+ 1,422 lb. (+ 645 kg)	+ 3,258 lb. (+ 1478 kg)	+ 2,789 lb. (+ 1265 kg)	+ 2,672 lb. (+ 1212 kg)
*Optional counterweight not to be used when CaCL ballast is used in th	o tiros	-	-

*Optional counterweight not to be used when CaCl₂ ballast is used in the tires.

544G / 624G / 644G BUCKET SELECTION GUIDE*


DIMENSIONS WITH TOOL CARRIER

BUCKET



544G / 624G / 644G LOADER WITH **TOOL CARRIER AND BUCKET***

544G / 624G / 644G LOADER WITH **TOOL CARRIER AND PALLET FORK***

544G / 624G / 644G LOADER WITH TOOL CARRIER AND MATERIAL-HANDLING ARM*

*Allied attachments ordered through John Deere dealers.

ß Dump height Beight to hinge pin, fully raised12 ft. 2.6 in. (3.72 m) 12 ft 9 3 in (3 89 m) 13 ft. 1.9 in. (4.0 m) Digging depth......4 in. (101 mm) 2 in. (52 mm) 2.68 in. (68 mm) PALLET FORK 1 ft. 11.9 in. (607 mm) 2 ft. 6.3 in. (770 mm) B Maximum reach, fork level4 ft. 9.5 in. (1461 mm) 4 ft. 9.5 in. (1460 mm) 5 ft. 1.7 in. (1568 mm) C Reach, ground level2 ft. 11.9 in. (912 mm) 3 ft. 0.7 in. (932 mm) 3 ft. 1.7 in. (958 mm) Fork height, maximum reach......5 ft. 4.6 in. (1641 mm) 5 ft. 5.1 in. (1654 mm) 6 ft. 0.4 in. (1840 mm) **1** Fork height, fully raised......11 ft. 4.7 in. (3473 mm) 11 ft. 0.6 in. (3623 mm) 12 ft. 6.3 in. (3818 mm) 1.9 in. (48 mm) 3.7 in. (93 mm) MATERIAL-HANDLING ARM Reach, fully raised (extended)11 ft. 3.7 in. (3446 mm) 11 ft. 0.6 in. (3368 mm) 11 ft. 6.9 in. (3527 mm) Reach, fully raised (mid-position)9 ft. 5.8 in. (2890 mm) 9 ft. 8.3 in. (2953 mm) B 9 ft. 2.7 in. (2812 mm) C 6 ft. 5.9 in. (1979 mm) 6 ft. 10.4 in. (2092 mm) Maximum reach (retracted).....11 ft. 6.1 in. (3508 mm) 11 ft. 8.7 in. (3574 mm) D 11 ft. 6.3 in. (3512 mm) Maximum reach (mid-position)15 ft. 3.1 in. (4651 mm) Ø 15 ft. 3.3 in. (4655 mm) 15 ft. 5.7 in. (4717 mm) ß Maximum reach (extended)17 ft. 9.1 in. (5413 mm) 17 ft. 9.3 in. (5417 mm) 17 ft. 11.7 in. (5479 mm) G Reach, below ground (retracted)7 ft. 6.6 in. (2302 mm) 7 ft. 9.2 in. (2367 mm) 7 ft. 11.4 in. (2423 mm) Reach, below ground (mid-position)......9 ft. 11.9 in. (3046 mm) 0 10 ft. 8.2 in. (3257 mm) 10 ft. 10.9 in. (3324 mm) Reach, below ground (extended).....11 ft. 10 in. (3608 mm) 0 12 ft. 7.5 in. (3849 mm) 12 ft. 10.5 in. (3924 mm) Height, maximum reach......6 ft. 3.6 in. (1919 mm) 6 ft. 4.2 in. (1935 mm) 6 ft. 7.5 in. (2019 mm) Depth, below ground (retracted)......4 ft. 10.9 in. (1496 mm) ß 4 ft. 4.1 in. (1323 mm) 4 ft. 2.3 in. (1294 mm) 0 Depth, below ground (mid-position)7 ft. 5.3 in. (2286 mm) 6 ft. 8.3 in. (2040 mm) 6 ft. 6.7 in. (1998 mm) 8 ft. 3.2 in. (2519 mm) 8 ft. 1.2 in. (2468 mm) Height, fully raised (extended)......22 ft. 1.2 in. (6736 mm) 22 ft. 7.9 in. (6905 mm) 22 ft. 11 in. (6985 mm) Height, fully raised (mid-position).......20 ft. 4.6 in. (6214 mm) 20 ft. 11.3 in. (6383 mm) 21 ft. 3.3 in. (6484 mm) Height, fully raised (retracted).....17 ft. 9.9 in. (5432 mm) 18 ft. 4.5 in. (5600 mm) 18 ft. 9.7 in. (5732 mm) ▲ See Bucket Information below and on pages 20–21. 544G TOOL CARRIER INFORMATION (COUPLER AND BUCKET) General Purpose* General Purpose* Bucket Type/Size General Purpose* General Purpose* Capacity, heaped SAE.....2.63 cu. yd. (2.0 m³) 2.25 cu. yd. (1.7 m³) 2.0 cu. yd. (1.5 m³) 1.75 cu. yd. (1.4 m³) Capacity, struck SAE.....2.25 cu. vd. (1.7 m³) 1.88 cu. yd. (1.44 m³) 1.9 cu. yd. (1.45 m³) 1.5 cu. yd. (1.15 m³) Bucket width101.8 in. (2.59 m) 100.4 in. (2.55 m) 95.25 in. (2.42 m) 95.25 in. (2.42 m) Breakout force, SAE J732C.....20,342 lb. (90.5 kN) 22,407 lb. (99.7 kN) 25,223 lb. (114.4 kN) 27,166 lb. (120.8 kN) 19,002 lb. (8619 kg) 19,196 lb. (8707 kg) 19,342 lb. (8773 kg) Tipping load, 40-degree full turn, SAE.....15,607 lb. (7079 kg) 16,110 lb. (7307 kg) 16,286 lb. (7387 kg) 16,417 lb. (7446 kg) Reach, 45-degree dump, 7-ft. (2.13 m) 58.1 in. (1477 mm) 51.9 in. (1319 mm) 51.9 in. (1319 mm) Reach, 45-degree dump, full height......41.1 in. (1044 mm) 39.1 in. (992 mm) 31.77 in. (807 mm) 31.77 in. (807 mm) Dump clearance, 45 degree, full height ... 107 in. (2717 mm) 110.1 in. (2798 mm) 112.4 in. (2854 mm) 112.4 in. (2854 mm) Overall length......23 ft 2 in. (7.06 m) 22 ft. 4.8 in. (6.83 m) 22 ft. 4.8 in. (6.83 m) 22 ft. 4.8 in. (6.83 m) Loader clearance circle, bucket in carry 37 ft. 6.7 in. (11.45 m) 37 ft. 0 in. (11.28 m) 37 ft. 0 in. (11.28 m) 24,145 lb. (10 952 kg) 24,024 lb. (10 897 kg) 24,083 lb. (10 924 kg)

624G

55.8 degrees

644G

55 degrees

*Allied attachments ordered through John Deere dealers.

Loader operating information is based on machine with all standard equipment; 17.5-25, 12 PR L2 tires; two rear counterweights; ROPS cab; 175-lb. (79 kg) operator; and full fuel tank. This information is affected by tire size, ballast, and different attachments.

Adjustments to operating weights ar	ia tipping loads for 2.25				
Add (+) or deduct (–) lb. (kg) as indicated		Tipping Load,	Tipping Load,	Tipping Load,	Tipping Load,
for loaders with	Operating Weight	Bucket, Straight	Bucket, Full Turn	Fork, Straight	Fork, Full Turn
15.5-25, 12 PR L2 tires without $CaCl_2$.	– 194 lb. (– 88 kg)	– 134 lb. (– 61 kg)	– 115 lb. (– 52 kg)	– 97 lb. (– 44 kg)	– 82 lb. (– 37 kg)
15.5-25, 12 PR L2 tires with CaCl ₂		+ 1,177 lb. (+ 534 kg)	+ 1,016 lb. (+ 461 kg)	+ 836 lb. (+ 379 kg)	+ 723 lb. (+ 328 kg)
17.5-25, 12 PR L2 tires with CaCl ₂		+ 1,629 lb. (+ 739 kg)	+ 1,407 lb. (+ 638 kg)	+ 1,158 lb. (+ 525 kg)	+ 1,003 lb. (+ 455 kg
17.5-25, 12 PR L3 tires without CaCl ₂ .		+90 lb. (+ 41 kg)	+ 79 lb. (+ 36 kg)	+ 64 lb. (+ 29 kg)	+ 57 lb. (+ 26 kg)
17.5-25, 12 PR L3 tires with CaCl ₂		+ 1,720 lb. (+ 780 kg)	+ 1,486 lb. (+ 674 kg)	+ 1,222 lb. (+ 554 kg)	+ 1,056 lb. (+ 479 kg
		+ 1,720 ID. (+ 700 Kg)	+ 1,400 ID. (+ 074 Kg)	+ 1,222 ID. (+ 554 Kg)	+ 1,030 ID. (+ 479 Kg
17.5-25, Radial, One Star L2 equivalent		2(0.1) (110.1.)	227 II. (1021)	105 11 (1041)	. 1(11) (. 731.)
tires without CaCl ₂		+ 260 lb. (+ 118 kg)	+ 227 lb. (+ 103 kg)	+ 185 lb. (+ 84 kg)	+ 161 lb. (+ 73 kg)
17.5-25, Radial, One Star L2 equivalent					
tires with CaCl ₂		+ 1,890 lb. (+ 857 kg)	+ 1,632 lb. (+ 740 kg)	+ 1,345 lb. (+ 610 kg)	+ 1,162 lb. (+ 527 kg
20.5-25, 12 PR L2 tires without CaCl ₂ .	+ 794 lb. (+ 360 kg)	+ 547 lb. (+ 248 kg)	+ 474 lb. (+ 215 kg)	+ 388 lb. (+ 176 kg)	+ 335 lb. (+ 152 kg)
20.5-25, 12 PR L2 tires with CaCl ₂	+ 2,615 lb. (+ 1186 kg)	+ 3,061 lb. (+ 1388 kg)	+ 2,644 lb. (+ 1199 kg)	+ 2,178 lb. (+ 988 kg)	+ 1,883 lb. (+ 854 kg
20.5-25, 12 PR L3 tires without CaCl ₂ .	+ 1,085 lb. (+ 492 kg)	+ 750 lb. (+ 340 kg)	+ 646 lb. (+ 293 kg)	+ 530 lb. (+ 240 kg)	+ 458 lb. (+ 208 kg)
20.5-25, 12 PR L3 tires with CaCl2		+ 3,261 lb. (+ 1479 kg)	+ 2,818 lb. (+ 1278 kg)	+ 2,420 lb. (+ 1098 kg)	+ 2,093 lb. (+ 950 kg
ROPS canopy in lieu of ROPS cab		– 295 lb. (– 134 kg)	– 240 lb. (– 109 kg)	– 212 lb. (– 96 kg)	– 170 lb. (– 77 kg)
Deduct two rear counterweights		– 3,805 lb. (– 1726 kg)	-3,127 lb. $(-1418$ kg)	-2,712 lb. $(-1230$ kg)	– 2,227 lb. (– 1010 k
Deduct two rear counterweights		– 2,092 lb. (– 949 kg)	– 1,718 lb. (– 779 kg)	– 1,488 lb. (– 675 kg)	– 1,222 lb. (– 1010 k
*Optional counterweight not to be used wi			= 1,7 10 lb. (= 779 kg)	= 1,400 lb. (= 073 kg)	- 1,222 ID. (- 334 Kg
1 0	5	ule ules.			
G TOOL CARRIER INFORMATION (COUPLER	AND FORKS)				
Tine Length	48 in. (1219 mm)	54 in. (1372 mm)	60 in. (1524 mm)		
Ground to top of tine clearance	11 ft. 4.7 in. (3473 mm)	11 ft. 4.7 in. (3473 mm)	11 ft. 4.7 in. (3473 mm)		
Maximum reach with fork level	4 ft. 9.5 in. (1461 mm)	4 ft. 9.5 in. (1461 mm)	4 ft. 9.5 in. (1461 mm)		
Overall length		26 ft. 9.9 in. (7872 mm)	26 ft. 3.9 in. (8024 mm)		
Tipping load, straight (fork level, load					
centered on tine)	13 665 lb (6198 kg)	13,240 lb. (6006 kg)	12,899 lb. (5851 kg)		
Tipping load, 40-degree full turn (fork	13,005 ID. (0196 Kg)	13,240 ID. (0000 Kg)	12,099 ID. (3031 Kg)		
	11 5 41 lb (5 2 25 bm)	11 224 lb (5001 br)	10.025 lb (405(ba)		
level, load centered on tine)		11,224 lb. (5091 kg)	10,925 lb. (4956 kg)		
Operating weight		23,869 lb. (10 827 kg)	23,909 lb. (10 845 kg)		
G TOOL CARRIER INFORMATION (COUPLER	AND MATERIAL-HANDLING /	ARM)			
Boom Position	Retracted	Mid-position	Extended		
Operating load	3,795 lb. (1721 kg)	3,966 lb. (1799 kg)	2,585 lb. (1173 kg)		
Tipping load, straight		6,998 lb. (3174 kg)	6,103 lb. (2768 kg)		
Tipping load, 40-degree full turn		5,932 lb. (2691 kg)	5,171 lb. (2346 kg)		
Operating weight		23,633 lb. (10 720 kg)	23,633 lb. (10 720 kg)		
		25,005 ID: (10 / 20 Kg)	25,005 10. (10 / 20 kg)		
G TOOL CARRIER INFORMATION (COUPLER A					
Bucket Type/Size	General Purpose*	General Purpose*	General Purpose*		
Capacity, heaped SAE		2.63 cu. yd. (2.0 m ³)	2.25 cu. yd. (1.7 m ³)		
Capacity, struck SAE	2.63 cu. yd. (2.0 m ³)	2.25 cu. yd. (1.7 m ³)	1.88 cu. yd. (1.44 m ³)		
Bucket width	101.8 in. (2.59 m)	101.8 in. (2.59 m)	100.4 in. (2.55 m)		
Breakout force, SAE J732C		29,770 lb. (132.4 kN)	32,696 lb. (145.4 kN)		
Tipping load, straight		20,184 lb. (9154 kg)	21,058 lb. (9550 kg)		
Tipping load, 40-degree full turn, SAE.		17,098 lb. (7754 kg)	17,882 lb. (8110 kg)		
Reach, 45-degree dump, 7-ft. (2.13 m)		1,,000 10. (7,01 16)	1, ,002 ID. (0110 Kg)		
	50.0 in (1522 mm)	58.6 in (1490 mm)	58.2 in (1479 mm)		
clearance		58.6 in. (1489 mm)	58.2 in. (1478 mm)		
Reach, 45-degree dump, full height		36.8 in. (936 mm)	34.8 in. (884 mm)		
 Dump clearance, 45 degree, full height 		112.8 in. (2865 mm)	116 in. (2946 mm)		
Overall length		24 ft. 5.3 in. (7.45 m)	24 ft. 0.8 in. (7.34 m)		
Loader clearance circle, bucket in carry					
position	39 ft. 5.2 in. (12.02 m)	39 ft. 2.8 in. (11.96 m)	38 ft. 10.8 in. (11.86 m)		
Operating weight		27,796 lb. (12 606 kg)	27,432 lb. (12 441 kg)		
*Allied attachments ordered through John		,	,		
		inment: 20 5-25 12 PR I 2 ti	res; one rear counterweight;	ROPS cab: 175-lb (79 kg) o	perator: and full fuel ta
Loader operating information is based on m					

6246 ADJUSTMENTS TO UPERATING WEIGHTS FOR TOOL CARRIER WITH B	UCKEI			
Adjustments to operating weights and tipping loads for 2.63	3 cu. yd. (2.0 m ³) general	l-purpose bucket and 54	l-in. (1372 mm) pallet fo	ork
Add (+) or deduct (-) lb. (kg) as indicated	Tipping Load,	Tipping Load,	Tipping Load,	Tipping Load,
for loaders with Operating Weight	Bucket, Straight	Bucket, Full Turn	Fork, Straight	Fork, Full Turn
17.5-25, 12 PR L2 tires without CaCl ₂ – 794 lb. (– 360 kg)	– 536 lb. (– 243 kg)	– 461 lb. (– 209 kg)	– 386 lb. (– 175 kg)	– 335 lb. (– 152 kg)
17.5-25, 12 PR L2 tires with CaCl ₂ + 386 lb. (+ 175 kg)	+ 1,054 lb. (+ 478 kg)	+ 911 lb. (+ 413 kg)	+ 763 lb. (+ 346 kg)	+ 657 lb. (+ 298 kg)
17.5-25, 12 PR L3 tires without CaCl ₂ – 661 lb. (– 300 kg)	– 448 lb. (– 203 kg)	– 384 lb. (– 174 kg)	– 320 lb. (– 145 kg)	– 280 lb. (– 127 kg)
17.5-25, 12 PR L3 tires with CaCl ₂ + 518 lb. (+ 235 kg)	+ 1,142 lb. (+ 518 kg)	+ 988 lb. (+ 448 kg)	+ 829 lb. (+ 376 kg)	+ 714 lb. (+ 324 kg)
17.5-25, Radial, One Star L2 equivalent				
tires without CaCl ₂ –414 lb. (– 188 kg)	– 280 lb. (– 127 kg)	– 240 lb. (– 109 kg)	– 201 lb. (– 91 kg)	– 174 lb. (– 79 kg)
17.5-25, Radial, One Star L2 equivalent				
tires with CaCl ₂ + 765 lb. (+ 347 kg)	+ 1,310 lb. (+ 594 kg)	+ 1,131 lb. (+ 513 kg)	+ 948 lb. (+ 430 kg)	+ 816 lb. (+ 370 kg)
20.5-25, 12 PR L2 tires with CaCl ₂ + 1,820 lb. (+ 826 kg)	+ 2,452 lb. (+ 1112 kg)	+ 2,119 lb. (+ 961 kg)	+ 1,777 lb. (+ 806 kg)	+ 1,532 lb. (+ 695 kg)
20.5-25, 12 PR L3 tires without CaCl ₂ + 291 lb. (+ 132 kg)	+ 196 lb. (+ 89 kg)	+ 170 lb. (+ 77 kg)	+ 143 lb. (+ 65 kg)	+ 123 lb. (+ 56 kg)
20.5-25, 12 PR L3 tires with CaCl ₂ + 2,112 lb. (+ 958 kg)	+ 2,646 lb. (+ 1200 kg)	+ 2,286 lb. (+ 1037 kg)	+ 1,918 lb. (+ 870 kg)	+ 1,654 lb. (+ 750 kg)
20.5-25, Radial, One Star L2 equivalent				
tires without CaCl ₂ + 467 lb. (+ 212 kg)	+ 315 lb. (+ 143 kg)	+ 271 lb. (+ 123 kg)	+ 229 lb. (+ 104 kg)	+ 196 lb. (+ 89 kg)
20.5-25, Radial, One Star L2 equivalent				
tires with CaCl ₂ + 2,288 lb. (+ 1038 kg)	+ 2,765 lb. (+ 1254 kg)	+ 2,390 lb. (+ 1084 kg)	+ 2,004 lb. (+ 909 kg)	+ 1,728 lb. (+ 784 kg)
ROPS canopy in lieu of ROPS cab 320 lb. (– 145 kg)	– 286 lb. (– 130 kg)	– 264 lb. (– 120 kg)	– 223 lb. (– 101 kg)	– 210 lb. (– 95 kg)
Deduct one rear counterweight 946 lb. (- 429 kg)	– 2,044 lb. (– 927 kg)	– 1,678 lb. (– 761 kg)	– 1,471 lb. (– 667 kg)	– 1,211 lb. (– 549 kg)
Add second rear counterweight*+ 1,169 lb. (+ 530 kg)	+ 2,564 lb. (+ 1,163 kg)	+ 2,101 lb. (+ 953 kg)	+ 1,850 lb. (+ 839 kg)	+ 1,517 lb. (+ 688 kg)
*Optional counterweight not to be used when CaCl ₂ ballast is used in	the tires.			

624G TOOL CARRIER INFORMATION (COUPLER AND FORKS)		
Tine Length 48 in. (1219 mm)	54 in. (1372 mm)	60 in. (1524 mm)
Ground to top of tine clearance11 ft. 10.6 in. (3623 I		11 ft. 10.6 in. (3623 mm)
Maximum reach with fork level4 ft. 9.5 in. (1460 mn		4 ft. 9.5 in. (1460 mm)
Overall length25 ft. 8 in. (7823 mm	a) 26 ft. 2 in. (7975 mm)	26 ft. 8 in. (8128 mm)
Tipping load, straight (fork level, load		
centered on tine)15,222 lb. (6903 kg)	14,790 lb. (6707 kg)	14,380 lb. (6522 kg)
Tipping load, 40-degree full turn (fork		
level, load centered on tine)12,930 lb. (5864 kg)	12,560 lb. (5696 kg)	12,205 lb. (5535 kg)
Operating weight) 27,232 lb. (12 350 kg)	27,271 lb. (12 368 kg)
624G TOOL CARRIER INFORMATION (COUPLER AND MATERIAL-HANDL	ING ARM)	
Boom Position Retracted	Mid-position	Extended
Operating load4,271 lb. (1937 kg)	3,354 lb. (1521 kg)	2,573 lb. (1167 kg)
Tipping load, straight10,059 lb. (4562 kg)	7,903 lb. (3584 kg)	5,956 lb. (2701 kg)
Tipping load, 40-degree full turn	6,708 lb. (3042 kg)	5,164 lb. (2334 kg)
Operating weight		26,996 lb. (12 243 kg)
644G TOOL CARRIER INFORMATION (COUPLER AND BUCKET)	, , (),	, , , , , , , , , , , , , , , , , , , ,
Bucket Type/Size General Purpose*	General Purpose*	
Capacity, heaped SAE	$3.25 \text{ cu. yd.} (2.5 \text{ m}^3)$	
Capacity, struck SAE		
Bucket width	112.2 in. (2.85 m)	
Breakout force, SAE J732C		
Tipping load, straight		
Tipping load, 35-degree full turn, SAE22,945 lb. (11 095 kg		
Tipping load, 40-degree full turn, SAE22,147 lb. (10 440 kg		
Reach, 45-degree dump, 7-ft. (2.13 m)) 22,478 ID. (10 194 Kg)	
clearance	63.7 in. (1618 mm)	
Reach, 45-degree dump, full height	42.3 in. (1075 mm)	
	115.6 in. (2935 mm)	
▲ Dump clearance, 45 degree, full height113.0 in. (2871 mm)		
Overall length25 ft 8.3 in. (7.83 m)	25 ft. 4.5 in. (7.73 m)	
Loader clearance circle, bucket in carry	(12.72)	
position		
Operating weight) 35,384 lb. (16 047 kg)	
*Allied attachments ordered through John Deere dealers.		The second
Loader operating information is based on machine with all standard	i equipment; 23.5-25, 12 PR L2 ti	res; one rear counterweight; ROPS cab; 175-lb. (79 kg) operator; and full fuel tank.

Loader operating information is based on machine with all standard equipment; 23.5-25, 12 PR L2 tires; one rear counterweight; ROPS cab; 175-lb. (79 kg) operator; and full fuel tank. This information is affected by tire size, ballast, and different attachments.

644G ADJUSTMENTS TO OPERATING WEIGHTS FOR TOOL CARRIER WITH BUCKET
--

ADJUSTIMENTS TO OF ENATING WE	Juilly I on TOOL OAnnich	WITH DUCKLI					
Adjustments to operating weights and tipping loa	ads for 3.25 cu. yd. (2.5 m³) genera	al-purpose bucket and 60-	in. (1524 mm) pallet fork				
Add (+) or deduct (-) Ib. (kg) as indicated for		Tipping Load,	Tipping Load,	Tipping Load,	Tipping Load,	Tipping Load,	Tipping Load,
loaders with	Operating Weight	Bucket, Straight	Bucket, 35° Turn	Bucket, Full Turn	Fork, Straight	Fork, 35° Turn	Fork, Full Turn
20.5-25, 12 PR L2 tires without CaCl ₂	1,587 lb. (– 720 kg)	– 1,109 lb. (– 503 kg)	– 988 lb. (– 448 kg)	– 959 lb. (– 435 kg)	– 745 lb. (– 338 kg)	– 663 lb. (– 300 kg)	– 642 lb. (– 291 kg)
20.5-25, 12 PR L2 tires with CaCl ₂	+ 234 lb. (+ 106 kg)	+ 1,435 lb. (+ 651 kg)	+ 1,277 lb. (+ 579 kg)	+ 1,239 lb. (+ 562 kg)	+ 983 lb. (+ 446 kg)	+ 875 lb. (+ 397 kg)	+ 850 lb. (+ 386 kg)
20.5-25, 16 PR L2 tires without CaCl ₂	1,499 lb. (- 680 kg)	– 1,047 lb. (– 475 kg)	– 933 lb. (– 423 kg)	– 906 lb. (– 411 kg)	– 705 lb. (– 320 kg)	– 626 lb. (– 284 kg)	– 608 lb. (– 276 kg)
20.5-25, 16 PR L2 tires with CaCl ₂	+ 322 lb. (+ 146 kg)	+ 1,497 lb. (+ 679 kg)	+ 1,332 lb. (+ 604 kg)	+ 1,292 lb. (+ 586 kg)	+ 1,023 lb. (+ 464 kg)	+ 912 lb. (+ 414 kg)	+ 885 lb. (+ 401 kg)
20.5-25, 16 PR L3 tires without CaCl ₂	1,235 lb. (- 560 kg)	– 862 lb. (– 391 kg)	— 767 lb. (— 348 kg)	– 745 lb. (– 338 kg)	– 580 lb. (– 263 kg)	– 514 lb. (– 233 kg)	– 498 lb. (– 226 kg)
20.5-25, 16 PR L3 tires with CaCl ₂	+ 586 lb. (+ 266 kg)	+ 1,682 lb. (+ 763 kg)	+ 1,495 lb. (+ 678 kg)	+ 1,451 lb. (+ 658 kg)	+ 1,148 lb. (+ 521 kg)	+ 1,024 lb. (+ 465 kg)	+ 994 lb. (+ 451 kg)
20.5-25, Radial, One Star L2 equivalent tires	with-						
out CaCl ₂	1,120 lb. (- 508 kg)	– 783 lb. (– 355 kg)	– 697 lb. (– 316 kg)	– 677 lb. (– 307 kg)	- 524 lb. (- 237 kg)	– 463 lb. (– 210 kg)	– 450 lb. (– 204 kg)
20.5-25, Radial, One Star L2 equivalent tires							
CaCl ₂		+ 1,762 lb. (+ 799 kg)	+ 1,566 lb. (+ 710 kg)	+ 1,433 lb. (+ 650 kg)	+ 1,204 lb. (+ 546 kg)	+ 1,075 lb. (+ 488 kg)	+ 1,042 lb. (+ 473 kg)
20.5-25, 12 PR L2 tires with CaCl ₂	+ 2,396 lb. (+ 1087 kg)	+ 3,347 lb. (+ 1518 kg)	+ 2,979 lb. (+ 1351 kg)	+ 2,891 lb. (+ 1311 kg)	+ 2,283 lb. (+ 1035 kg)	+ 2,031 lb. (+ 921 kg)	+ 1,972 lb. (+ 894 kg)
23.5-25, 20 PR L3 tires without CaCl ₂		+ 344 lb. (+ 156 kg)	+ 306 lb. (+ 139 kg)	+ 298 lb. (+ 135 kg)	+ 243 lb. (+ 110 kg)	+ 218 lb. (+ 99 kg)	+ 209 lb. (+ 95 kg)
23.5-25, 20 PR L3 tires with CaCl ₂	+ 2,890 lb. (+ 1311 kg)	+ 3,691 lb. (+ 1674 kg)	+ 3,285 lb. (+ 1490 kg)	+ 3,188 lb. (+ 1446 kg)	+ 2,518 lb. (+ 1142 kg)	+ 2,242 lb. (+ 1017 kg)	+ 2,177 lb. (+ 987 kg)
ROPS canopy in lieu of ROPS cab	– 320 lb. (– 145 kg)	– 298 lb. (– 135 kg)	– 251 lb. (– 114 kg)	– 238 lb. (– 108 kg)	-201 lb. (-91 kg)	— 170 lb. (— 77 kg)	– 161 lb. (– 73 kg)
Deduct one rear counterweight	910 lb. (– 413 kg)	– 2,031 lb. (– 921 kg)	– 1,740 lb. (– 789 kg)	– 1,669 lb. (– 757 kg)	– 1,373 lb. (– 622 kg)	– 1,176 lb. (– 533 kg)	– 1,126 lb. (– 511 kg)
Add second rear counterweight*	+ 1,422 lb. (+ 645 kg)	+ 3,197 lb. (+ 1450 kg)	+ 2,736 lb. (+ 1241 kg)	+ 2,622 lb. (+ 1189 kg)	+ 2,179 lb. (+ 988 kg)	+ 1,868 lb. (+ 847 kg)	+ 1,790 lb. (+ 812 kg)
*Ontional counterweight not to be used when CaC	a hallast is used in the tires						

*Optional counterweight not to be used when CaCl₂ ballast is used in the tires. 6446 TOOL CARRIER INFORMATION (COUPLER AND FORKS)

TOOL CANNIEN INFORMATION (C	UUFLEN AND FUNKJ			
Tine Length	54 in. (1372 mm)	60 in. (1524 mm)	72 in. (1829 mm)	
Ground to top of tine clearance	e12 ft. 6.3 in. (3818 mm)	12 ft. 6.3 in. (3818 mm)	12 ft. 6.3 in. (3818 mm)	
Maximum reach with fork level	l5 ft. 1.7 in. (1568 mm)	5 ft. 1.7 in. (1568 mm)	5 ft. 1.7 in. (1568 mm)	
Overall length		27 ft. 8.3 in. (8439 mm)	28 ft. 8.3 in. (8744 mm)	
Tipping load, straight (fork leve	el, load			
centered on tine)	18,251 lb. (8277 kg)	17,755 lb. (8052 kg)	16,809 lb. (7623 kg)	
Tipping load, 35-degree turn (fe	ork			
level, load centered on tine	e)15,953 lb. (7235 kg)	15,511 lb. (7034 kg)	14,670 lb. (6653 kg)	
Tipping load, 40-degree full tur	n (fork			
level, load centered on tine	e)15,389 lb. (6979 kg)	14,963 lb. (6786 kg)	14,149 lb. (6417 kg)	
Operating weight	35,309 lb. (16 013 kg)	35,379 lb. (16 045 kg)	35,523 lb. (16 110 kg)	
644G TOOL CARRIER INFORMATION (C	OUPLER AND MATERIAL-HANDLING /	ARM)		
Boom Position	Retracted	Mid-position	Extended	

<i>I</i> (<i>t</i>) <i>u</i> (<i>t</i>) <i>u</i>	wini-position	LAICIMCH
5,640 lb. (2558 kg)	4,462 lb. (2024 kg)	3,902 lb. (1770 kg)
13,290 lb. (6027 kg)	10,518 lb. (4770 kg)	9,204 lb. (4174 kg)
11,671 lb. (5293 kg)	9,235 lb. (4188 kg)	8,077 lb. (3663 kg)
11,281 lb. (5116 kg)	8,924 lb. (4047 kg)	7,803 lb. (3539 kg)
	34,114 lb. (15 471 kg)	34,114 lb. (15 471 kg)

	544G 6	624G 64	14G		544G	624G	644G		544G	624G	644G
ENGINE				LOADER				Digital display, illuminated – Alternator			
Antifreeze, -34°F (-37°C) Coolant recovery tank Enclosed safety fan guard Muffler, vertical through hood, with curved- end exhaust stack Oil-to-water engine oil cooler Quick-release John Deere dual-stage fuel filter and water separator Turbocharger provides spark arresting Electric ether start aid Engine coolant heater, 1,000 watts, 110 volts Environmentally-friendly engine oil drain* High-capacity precleaner* Perforated engine side shields and hood* Radiator sand screen Sucker fan with convoluted grille screen* ELECTRICAL Auxiliary fused circuits for fuses (4) Auxiliary start receptacle Batteries (2), 320-min. reserve capacity, 1,250 CCA Batteries (2), 380-min. reserve capacity, 1,900 CCA Blade-type multi-fused circuits By-pass starter safety cover on starter				Boom extensions* High lift* Material weigh system* Quick coupler valve, lines, and control TIRES Single-piece wheels 15.5-25, 12 PR L2 17.5-25, 12 PR L2 17.5-25 XTLA Radial 16 PR One Star L3 20.5-25, 12 PR L3 20.5-25, 16 PR L3 20.5-25, 20 PR L3			•	voltagp – Hourmeter – Speedometer (mph/kph) – Tachometer / Gauges, illuminated – Engine coolant tempera- ture – Fuel – Transmission oil tempera- ture / Indicators – Low radiator coolant level – Engine air filter restriction – Low alternator voltage – Low transmission oil pressure – Hydraulic oil filter restric- tion – Low brake pressure – Park brake on – Ether start on (if equipped) – Low steering pressure (and secondary steer- ing activated, if equipped) – Fasten seat belt reminder – Turn signals/flashers / Built-in diagnostics for all monitors, wiring, gauges, sensors, etc. Horn, electric Conforms to SAE J994, J1446 Key start switch with electric fuel shut-off Mirrors Interior (2), 4 in. x 8 in. (100 mm x 200 mm) / Exterior (2), 7.88 in. x 11.68 in. (200 mm x 300 mm) / Con- form to SAE J985 Rear quarter vertical sliding windows Seat belt, 2 in. (51 mm), with retractors		•	•
Electrical load center for service, lockable Positive terminal battery cover		•		28L-26, 14 PR LS2 Foam-filled tires*				Conforms to SAE J388 Seat belt, 3 in. (76 mm), with retractors			
Prewired for license plate light Prewired for rotating beacon				Solid rubber tires*				Conforms to SAE J388 Slip-resistant steps and ergonomically-			
Alternator, 135 amp Battery disconnect				OPERATOR'S STATION Canopy		•	•	located handholds Conform to SAE J185		•	•
LIGHTS	171			Isolation mounted ROPS/FOPS / Integral load guard for material fork use – Con-				Steering wheel, textured, with spinner knob			•
Conform to SAE J99 Two front and two rear flashing and turn signals with guards Two front halogen driving with guards, 35,200 candlepower each	•	•	•	forms to SAE J1040C, J231, ISO3471, ISO3449 / Cup holder / Coat hooks (2) / Floormat / Left side access / Instrument cover vandal protection / Prewired for rotating beacon				Storage compartment, under seat, lockable Tilt steering Air conditioning (field installed) AM-FM stereo radio* Left platform, slip-resistant steps, and ergo- nomically-located handholds			
Two rear reflectors Two rear stop and tail Rotating beacon* Two front and two rear halogen work with guards, 35,200 candlepower each				Cab Isolation mounted ROPS/FOPS / Integral load guard for material fork use – Con- forms to SAE J1040C, J231, ISO3471, ISO3449 – Sound suppressed / Cup				Conform to SAE J185 Operator protection packages* ROPS-to-cab conversion panels* Seat backrest extension			
AXLES	171	- '		holder / Coat hooks (2) / Deluxe head-				LOADER			
Remote grease bank for rear axle Bolt-on axle seal guards* Front axle disconnect Hydraulic locking front and rear				liner / Floormat with lunch box holder / Dome and map light / Filtered fresh air intake heater/defroster, 36,000 Btu/hr. (10.5 kW) / Front two-speed and rear one-speed windshield wiper and wash				Loader boom service lock Conforms to SAE J38 BUCKETS AND ATTACHMENTS Full line of buckets, bolt-on cutting edges,	•		•
Hydraulic locking front, conventional rear NoSPIN front, conventional rear Wheel spacers for use with chains*				ers / Ťinted safety glass / Prewired for rotating beacon				wear plates, and teeth Quick coupler with full line of buckets, forks, material-handling arms, and other	-		
HYDRAULIC SYSTEM			-	Cab with air conditioning, 27,000 Btu/hr. (7.9 kW)	-			attachments*			
Hydraulic oil cooler behind radiator Hydraulic reservoir with sight gauge and		•	•	Alternator, 135 amp / Isolation mounted ROPS/FOPS / Integral load guard for				OTHER Articulation transport lock			
spin-on breather filter Return-to-dig feature		-		material fork use – Conforms to SAE J1040C, J231, ISO3471, ISO3449 – Sound suppressed / Cup holder / Coat hooks				Conforms to SAE J276 Reverse warning alarm	•	•	•
Automatic boom height control Auxiliary cylinder circuits* Auxiliary motor circuit*		_		(2) / Deluxe headliner / Floormat / Dome and map light / Filtered fresh air intake				Switchable to 97 db(A) or 111 db(A) / Conforms to SAE J994, J1446 Vandal protection			
Loader control conversion* Three-function valve, dual-lever control with auxiliary lever for third function				heater/defroster, 36,000 Btu/hr. (10.5 kW) / Front two-speed and rear one- speed windshield wiper and washers / Tinted asfetu [dec / Dewined for reter				Engine side shields / Fuel / Hydraulic reservoir / Instrument panel / Radiator / Transmission dipstick			
Three-function valve, single-lever control with auxiliary lever for third function Two-function valve with dual-lever control				Tinted safety glass / Prewired for rotat- ing beacon Ashtray	•		•	Custom paint for caustic environments* Fenders, front and rear Front frame, rear frame, and transmission			
STEERING				Deluxe suspension vinyl seat with adjustable armrests, fore-aft, backrest tilt, lumbar				Front frame, rear frame, and transmission bottom guards			
Power steering (two cylinders) and 40-degree articulation each side and rubber cushion				and height/weight Conforms to SAE J899			•	Hinged front and rear frame bottom guards* Illuminated license plate bracket			
stops			•	Deluxe suspension cloth seat with adjustable				Lift and tie-down hooks Rear counterweights with integral drawbar			
Conforms to SAE 1511 with emergency manual mode				armrests, fore-aft, backrest tilt, lumbar and height/weight				and pin Ride control system			
Secondary steering Conforms to SAE J53				Conforms to SAE J899 Electronic monitor system and audible/				SMV emblem* Transmission side frame guards			
				visible warning			-				

KEY: Standard equipment
 Optional or special equipment

22

Net engine power is with standard equipment including air cleaner, exhaust system, alternator, and cooling fan, at standard conditions per SAE 1349 and DIN 70 020, using No. 2-D fuel at 35 API gravity. No derating is required up to 10,000 ft. (3050 m) altitude. Gross power is without cooling fan. *See your John Deere dealer for further information.

Specifications and design subject to change without notice. Wherever applicable, specifications are in accordance with SAE standards. Except where otherwise noted, these specifications are based on units with all standard equipment, one rear counterwise node, index operations are based on units with all standard equipment, one rear counterwise house the counterwise the standard standard equipment, one rear counterwise the standard standa

Komatsu WA-250 Wheel Loader Specifications

WA250-6 WHEEL LOADER

SPECIFICATIONS

Model
Number of cylinders 6 Bore x stroke
Piston displacement
Governor
Horsepower
SAE J1995Gross 104 kW 140 HP
ISO 9249/SAE J1349*Net 103 kW 138 HP
Rated rpm
Fan drive method for radiator cooling
Fuel systemDirect injection
Lubrication system:
Method
Air cleaner
dust evacuator, plus dust indicator
*Net horsepower at the maximum speed of radiator cooling fan

is 100 kW 134 HP.

EPA Tier 3 and EU Stage 3A emissions certified.

Transmission:

Type Hydrostatic, 1 pump, 2 motors with speed range select Travel speed: km/h mph

Measured with 17 5-25 tires

	1st	2nd	3rd	4th
Both Forward	3.6 - 11.7	11.7	16.2	34.2
and Reverse	2.2 - 7.3	7.3	10.1	21.2

Measured with 20.5-25 tires

	1st	2nd	3rd	4th
Both Forward	4.0 - 13.0	13.0	18.0	38.0
and Reverse	2.5 - 8.1	8.1	11.2	23.6

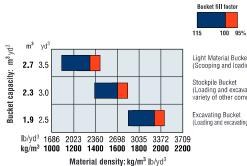
Drive system	Four-wheel drive
Front	Fixed, semi-floating
Rear	Center-pin support, semi-floating,
	24° total oscillation
Reduction gear	Spiral bevel gear
Differential gear	
Final reduction gear	Planetary gear, single reduction

Service brakesHydraulically actuated, wet disc brakes actuate on four wheels Parking brakeWet, multi-disc brake on transfer output shaft

Emergency brakeParking brake is commonly used

STEERING SYSTEM

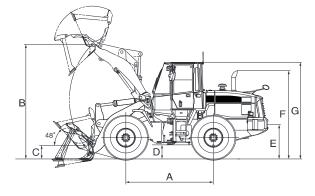
TypeFull-hydraulic power steering Minimum turning radius at


Steering system:

Hydraulic pump
Loader control:
Hydraulic pump
Type
Number of cylinders—bore x stroke: Lift cylinder .2- 130 mm x 717 mm 5.1" x 28.2" Bucket cylinder .1- 150 mm x 491 mm 5.9" x 19.3" Control valve Control positions:
BoomRaise, hold, lower, and float BucketTilt-back, hold, and dump Hydraulic cycle time (rated load in bucket)
Raise

SERVICE REFILL CAPACITIES

Cooling system	5.8 U.S. gal
Fuel tank	49.1 U.S. gal
Engine	6.1 U.S. gal
Hydraulic system	17.7 U.S. gal
Axle (each front and rear)18 ltr	4.8 U.S. gal
Torque converter and transmission	1.3 U.S. gal


JCKET SELECTION GUIDE

Light Material Bucket (Scooping and loading of light material)

Stockpile Bucket (Loading and excavating of soil, sand and a variety of other commonly handled material)

Excavating Bucket (Loading and excavating of crushed or blasted rock)

		17.5-25	tires	20.5-25	tires
	Tread	1930 mm	6'4"	1930 mm	6'4"
	Width over tires	2375 mm	7'10"	2470 mm	8'1"
А	Wheelbase	2900 mm	9'6"	2900 mm	9'6"
В	Hinge pin height, max. height	3725 mm	12'3"	3795 mm	12'5"
С	Hinge pin height, carry position	375 mm	1'3"	450 mm	1'6"
D	Ground clearance	395 mm	1'4"	465 mm	1'6"
Е	Hitch height	880 mm	2'11"	950 mm	3'1"
F	Overall height, top of the stack	2855 mm	9'4"	2925 mm	9'7"
G	Overall height, ROPS cab	3130 mm	10'3"	3200 mm	10'6"

WA250-6

Measured with 17.5-25-16PR (L2) tires, ROPS/FOPS cab

	Stockpil	e Bucket	Excavatir	ıg Bucket	Light Material Bucket
	Bolt-On Cutting Edges	Teeth	Bolt-On Cutting Edges	Teeth	Bolt-On Cutting Edges
Bucket capacity: heaped	2.3 m³	2.1 m³	1.9 m³	1.8 m³	2.7 m³
	3.0 yd³	2.7 yd³	2.5 yd³	2.4 yd³	3.5 yd³
struck	2.0 m³	1.8 m³	1.6 m³	1.5 m³	2.3 m ³
	2.6 yd³	2.4 yd³	2.1 yd³	2.0 yd³	3.0 yd³
Bucket width	2685 mm	2705 mm	2685 mm	2705 mm	2685 mm
	8'10"	8'10"	8'10"	8'10"	8'10"
Bucket weight	960 kg	865 kg	905 kg	810 kg	1050 kg
	2,116 lb	1,907 lb	1,995 lb	1,786 lb	2,315 lb
Dumping clearance, max. height and 45° dump angle*	2780 mm	2665 mm	2855 mm	2740 mm	2685 mm
	9'1"	8'9"	9'4"	9'0"	8'10"
Reach at max. height and 45° dump angle*	1055 mm	1155 mm	980 mm	1080 mm	1150 mm
	3'6"	3'9"	3'3"	3'7"	3'9"
Reach at 2130 mm (7') clearance	1535 mm	1560 mm	1495 mm	1530 mm	1580 mm
and 45° dump angle*	5'0"	5'1"	4'11"	5'0"	5'2"
Reach with arm horizontal and bucket level*	2305 mm	2450 mm	2200 mm	2345 mm	2430 mm
	7'7"	8'0"	7'3"	7'8"	8'0"
Operating height (fully raised)	4995 mm	4995 mm	4875 mm	4875 mm	5130 mm
	16'5"	16'5"	16'0"	16'0"	16'10"
Overall length	7055 mm	7200 mm	6950 mm	7095 mm	7185 mm
	23'2"	23'7"	22'10"	23'3"	23'7"
Loader clearance circle (bucket at carry, outside corner of bucket)	12060 mm	12140 mm	12030 mm	12085 mm	12220 mm
	39'7"	39'10"	39'6"	39'8"	40'1"
Digging depth: 0°	145 mm	160 mm	145 mm	160 mm	145 mm
	5.7"	6.3"	5.7"	6.3"	5.7"
10°	335 mm	375 mm	315 mm	355 mm	355 mm
	1'1"	1'3"	1'0"	1'2"	1'2"
Static tipping load: straight	11110 kg	11205 kg	11230 kg	11325 kg	10960 kg
	24,495 lb	24,705 lb	24,760 lb	24,970 lb	24,160 lb
38° full turn	9780 kg	9860 kg	9885 kg	9965 kg	9645 kg
	21,560 lb	21,740 lb	21,790 lb	21,970 lb	21,265 lb
Breakout force	121 kN	106 kN	136 kN	117 kN	108 kN
	12340 kgf	10830 kgf	13850 kgf	12010 kgf	11000 kgf
	27,210 lb	23,875 lb	30,535 lb	26,475 lb	24,250 lb
Operating weight	10965 kg	10870 kg	10910 kg	10815 kg	11055 kg
	24,170 lb	23,965 lb	24,050 lb	23,845 lb	24,370 lb

* At the end of B.O.C.

All dimensions, weights, and performance values based on SAE J732c and J742b standards.

Static tipping load and operating weight shown include lubricant, coolant, full fuel tank, ROPS cab, and operator. Machine stability and operating weight affected by counterweight, tire size, and other attachments.

Apply the following weight changes to operating weight and static tipping load.

lb kg

WEIGHT CHANGES

	Change in Operating Weight		Change in Tippin Straight			Fipping Load Full Turn		Width Over Tire		Ground Clearance		Change in Vertical Dimensions		Change in Reach	
17.5-25-16PR (L3)	55 kg	121 lb	45 kg	99 lb	35 kg	77 i b	2375 mm	7'10"	395 mm	1'4"	0 mm	0"	0 mm	0"	
20.5-25-12PR (L2)	280 kg	617 I b	215 kg	474 lb	190 kg	419 lb	2470 mm	8'1"	465 mm	1'6"	70 mm	2.8"	-70 mm	-2.8"	
20.5-25-12PR (L3)	430 kg	948 lb	325 kg	717 lb	280 kg	617 I b	2470 mm	8'1"	465 mm	1'6"	70 mm	2.8"	-70 mm	-2.8"	
Install ROPS canopy (instead of cab)	–150 kg	-331 lb	–150 kg	-331 lb	–130 kg	–287 lb									
Additional counterweight	300 kg	661 I b	580 kg	1,279 I b	510 kg	1,124 I b									

STANDARD EQUIPMENT

- 2-spool valve for boom and bucket controls
- Air conditioner
- Alternator, 60 A
- Auto shift transmission with mode
- select system
- Back-up alarm
- Back-up lamp
- Batteries, **110 Ah**/2 x 12 V
- Bucket positioner
- Counterweight
- Directional signal
- Engine, Komatsu SAA6D107E-1 diesel

- Engine shut-off system, electric
- Floor mat
- Fuel prefilter with water separator
- Hydraulic-driven fan with reverse rotation
- Lift cylinders and bucket cylinder
- Loader linkage with standard lift boom
- Main monitor panel with
- EMMS (Equipment Management Monitoring System)
- PPC fingertip control, mono lever
- Radiator mask, lattice type
- Rear defroster (electric)
- Rear view mirror

- Rear window washer and wiper
- ROPS/FOPS cab
- Seat, rigid type with reclining
- Seat belt
- Service brakes, wet disc type
- Starting motor, 4.5 kW/24 V
- Steering wheel, tiltable
- Sun visor
- Tires (17.5-25-16PR, L2 tubeless) and rims
- Transmission, 4 forward and 4 reverse

- 3-spool valve
- Additional counterweight
- AM/FM radio
- AM/FM stereo radio cassette
- Boom kick-out
- Bucket teeth (bolt-on type)
- Bucket teeth (tip type)
- Cutting edge (bolt-on type)
- Deluxe suspension seat

- ECSS (Electronically Controlled Suspension System)
- Emergency steering (SAE)
- Engine pre-cleaner with extensionFire extinguisher
- Front fenders
- High lift boom
- Limited slip differential (F&R)
- Rear full fender

Tool kit

• Vandalism protection kit

www.Komatsu.com

Printed in Japan 201303 IP.SIN

Heating Values of Hydrogen and Fuels (Essom Co. Ltd.)

HEATING VALUES OF HYDROGEN AND FUELS

Fuels	Lower Hea	ting Value (LHV) [1]	Higher He	ating Value	(HHV) [1]	Density
Gaseous Fuels @ 32 F and 1 atm	Btu/ft3 [2]		MJ/kg [4]	Btu/ft3 [2]	Btu/lb [3]	MJ/kg [4]	grams/ft3
Natural gas	983	20,267	47.141	1089	22,453	52.225	22.0
Hydrogen	290	51,682	120.21	343	61,127	142.18	2.55
Still gas (in refineries)	1458	20,163	46.898	1,584	21,905	50.951	32.8
Liquid Fuels	Btu/gal [2]	Btu/lb [3]	MJ/kg [4]	Btu/gal [2]	Btu/Ib [3]	MJ/kg [4]	grams/gal
Crude oil	129,670	18,352	42.686	138,350	19,580	45.543	3,205
Conventional gasoline	116,090	18,679	43.448	124,340	20,007	46.536	2,819
Reformulated or low-sulfur gasoline	113,602	18,211	42.358	121,848	19,533	45.433	2,830
CA reformulated gasoline	113,927	18,272	42.500	122,174	19,595	45.577	2,828
U.S. conventional diesel	128,450	18,397	42.791	137,380	19.676	45.766	3.167
Low-sulfur diesel	129,488	18,320	42.612	138,490	19,594	45.575	3,206
Petroleum naphtha	116,920	19,320	44.938	125,080	20,669	48.075	2,745
NG-based FT naphtha	111,520	19,081	44.383	119,740	20,488	47.654	2,651
Residual oil	140,353	16,968	39.466	150,110	18,147	42.210	3,752
Methanol	57,250	8,639	20.094	65,200	9,838	22.884	3,006
Ethanol	76,330	11,587	26.952	84,530	12,832	29.847	2,988
E-Diesel Additives	116,090	18,679	43.448	124,340	20,007	46.536	2,819
Liquefied petroleum gas (LPG)	84,950	20,038	46.607	91,410	21,561	50.152	1,923
Liquefied natural gas (LNG)	74,720	20,908	48.632	84,820	23,734	55.206	1,621
Dimethyl ether (DME)	68,930	12,417	28.882	75,610	13,620	31.681	2,518
Dimethoxy methane (DMM)	72,200	10,061	23.402	79,197	11,036	25.670	3,255
Methyl ester (biodiesel, BD)	119,550	16,134	37.528	127,960	17,269	40.168	3,361
Fischer-Tropsch diesel (FTD)	123,670	18,593	43.247	130,030	19,549	45.471	3,017
Liquid Hydrogen	30,500	51,621	120.07	36,020	60,964	141.80	268
Methyl tertiary butyl ether (MTBE)	93,540	15,094	35,108	101,130	16,319	37.957	2,811
Ethyl tertiary butyl ether (ETBE)	96,720	15,613	36.315	104,530	16,873	39.247	2,810
Tertiary amyl methyl ether (TAME)	100,480	15,646	36.392	108,570	16,906	39.322	2,913
Butane	94,970	19,466	45.277	103,220	21,157	49.210	2,213
Isobutane	90,060	19,287	44.862	98,560	21,108	49.096	2,118
Isobutylene	95,720	19,271	44.824	103,010	20,739	48.238	2,253
Propane	84,250	19,904	46.296	91,420	21,597	50.235	1,920
Solid Fuels	Btu/ton [2]	Btu/lb [5]	MJ/kg [4]	Btu/ton [2]	Btu/lb [5]	MJ/kg [4]	
Coal (wet basis) [6]	19,546,300	9,773	22.732	20,608,570	10,304	23.968	
Bituminous coal (wet basis) [7]	22,460,600	11,230	26.122	23,445,900	11,723	27.267	
Coking coal (wet basis)	24,600,497	12,300	28.610	25,679,670	12,840	29.865	
Farmed trees (dry basis)	16,811,000	8,406	19.551	17,703,170	8,852	20.589	
Herbaceous biomass (dry basis)	14,797,555	7,399	17.209	15,582,870	7,791	18.123	
Corn stover (dry basis)	14,075,990	7,038	16.370	14,974,460	7,487	17.415	
Forest residue (dry basis)	13,243,490	6,622	15.402	14,164,160	7,082	16.473	
Notes:	1012101100	SIGHT	INCINE	11,104,100	1 Jone	19.119	

Notes

[1] The lower heating value (also known as net calorific value) of a fuel is defined as the amount of heat released by combusting a specified quantity (initially at 25°C) and returning the temperature of the combustion products to 150°C, which assumes the latent heat of vaporization of water in the reaction products is not recovered.

The higher heating value (also known as gross calorific value or gross energy) of a fuel is defined as the amount of heat released by a specified quantity (initially at 25°C) once it is combusted and the products have returned to a temperature of 25°C, which takes into account the latent heat of vaporization of water in the combustion products.

[2] Btu = British thermal unit.

[3] The heating values for gaseous fuels in units of Btu/lb are calculated based on the heating values in units of Btu/fi3 and the corresponding fuel density values. The heating values for liquid fuels in units of Btu/lb are calculated based on heating values in units of Btu/gal and the corresponding fuel density values.

[4] The heating values in units of MJ/kg, are converted from the heating values in units of Btu/lb.

[5] For solid fuels, the heating values in units of Btu/lb are converted from the heating values in units of Btu/ton.

[6] Coal characteristics assumed by GREET for electric power production.

[7] Coal characteristics assumed by GREET for hydrogen and Fischer-Tropsch diesel production.

Material Density Standards

Material Densities from http://www.simetric.co.uk/si_materials.htm

Material - powder, ore,	Lower	Upper	Mean	Lower	Upper	Mean	Lower	Upper	Mean
solids, etc.	kg/m ³	kg/m ³	kg/m ³	lb/yd ^{3 *,**}	lb/yd3*.**	lb/yd ^{3*,**}	tons/yd3***	tons/yd3***	tons/yd3**
fa, ground	256	256	256	432	432	432	0.22	0.22	0.3
.n, lumpy	881	881	881	1485	1485	1485	0.74	0.74	0.
lum, pulverized	753	753	753	1269	1269	1269	0.63	0.63	0.
Jumina	961	961	961	1620	1620	1620	0.81	0.81	0.
luminum, oxide	1522	1522	1522	2565	2565	2565	1.28	1.28	1.
ammonia gas	0.77	0.77	0.77	1.30	1.30	1.30	0.0006	0.0006	0.00
ammonium Nitrate	730	730	730	1230	1230	1230	0.62	0.62	0.
ammonium Sulphate - dry	1130	1130	1130	1905	1905	1905	0.95	0.95	0.
Ammonium Sulphate - wet	1290	1290	1290	2174	2174	2174	1.09	1.09	1.
Andesite, solid	2771	2771	2771	4671	4671	4671	2.34	2.34	
***************************************	6696	6696	**********	***********					2
antimony, cast	***********		6696	11286	11286	11286	5.64	5.64	5.
pples	641	641	641	1080	1080	1080	0.54	0.54	0.
arsenic	5671	5671	5671	9559	9559	9559	4.78	4.78	4.
sbestos - shredded	320	400	360	539	674	607	0.27	0.34	0.
sbestos rock	1600	1600	1600	2697	2697	2697	1.35	1.35	1.
Ashes - wet	730	890	810	1230	1500	1365	0.62	0.75	0.
shes - dry	570	650	610	961	1096	1028	0.48	0.55	0.
sphalt, crushed	721	721	721	1215	1215	1215	0.61	0.61	0.
abbitt	7272	7272	7272	12257	12257	12257	6.13	6.13	6
Bagasse	120	120	120	202	202	202	0.10	0.10	0.
akelite, solid	1362	1362	1362	2296	2296	2296	1.15	1.15	1.
Baking powder	721	721	721	1215	1215	1215	0.61	0.61	0.
Barium	3780	3780	3780	6371	6371	6371	3.19	3.19	3.
ark, wood refuse	240	240	240	405	405	405	0.20	0.20	0.
arley	609	609	609	1027	1027	1027	0.51	0.51	0.
arite, crushed	2883	2883	2883	4859	4859	4859	2.43	2.43	2.
asalt, broken	1954	1954	1954	3294	3294	3294	1.65	1.65	1.
asalt, solid	3011	3011	3011	5294	5075	5075	2,54	2.54	*********
vite, crushed	1281	1281	1281	2159	2159	2159			
							1.08	1.08	<u>l</u> .
.s, castor	577	577	577	973	973	973	0.49	0.49	0,
Beans, cocoa	593	593	593	1000	1000	1000	0.50	0.50	0.
Beans, navy	801	801	801	1350	1350	1350	0.68	0.68	0.
leans, soy	721	721	721	1215	1215	1215	0.61	0.61	0.
leeswax	961	961	961	1620	1620	1620	0.81	0.81	0.
Beets	721	721	721	1215	1215	1215	0.61	0.61	0.
Bentonite	593	593	593	1000	1000	1000	0.50	0.50	0.
Bicarbonate of soda	689	689	689	1161	1161	1161	0.58	0.58	0,
Bismuth	9787	9787	9787	16497	16497	16497	8.25	8.25	8,
Bones, pulverized	881	881	881	1485	1485	1485	0.74	0.74	0.
Borax, fine	849	849	849	1431	1431	1431	0.72	0.72	0.
Bran	256	256	256	432	432	432	0.22	0.22	0,
Brewers grain	432	432	432	728	728	728	0.36	0.36	0.
Brick, common red	1922	1922	1922	3240	3240	3240	1.62	1.62	1.
Brick, fire clay	2403	2403	2403	4050	4050	4050	2.03	2.03	2.
Brick, silica	2050	2050	2050	3455	3455	3455	1.73	1.73	
Brick, chrome	2803	2803	2803	4725	4725	4725	2.36	2.36	2.
Brick, entoine Brick, magnesia					4723	4725			*********
Buckwheat	2563	2563	2563	4320 1107		************	2.16	2.16	
***************************************	657	657	657		1107	1107	0.55	0.55	0.
Butter	865	865	865	1458	1458	1458	0.73	0.73	0.
admium	8650	8650	8650	14580	14580	14580	7,29	7.29	
alcium carbide	1201	1201	1201	2024	2024	2024	1.01	1.01	1.
aliche	1442	1442	1442	2431	2431	2431	1.22	1.22	1.
arbon, solid	2146	2146	2146	3617	3617	3617	1.81	1.81	1
arbon, powdered	80	80	80	135	135	135	0.07	0.07	0.
arbon dioxide	1.98	1.98	1.98	3,34	3.34	3.34	0.0017	0.0017	0.00
arbon monoxide	1.25	1.25	1.25	2.11	2,11	2.11	0.0011	0.0011	0.00
'dboard	689	689	689	1161	1161	1161	0.58	0.58	0.
ent - clinker	1290	1540	1415	2174	2596	2385	1.09	1.30	1.
cment, Portland	1506	1506	1506	2538	2538	2538	1.07	1.30	1.
Cement, mortar	2162	2162	2162	3644	3644	3644	1.82	1.82	······
wither the the transmission of the test of	2102	2102	2102	2044	3044	2044	1.04	1.02	the second se

Material - powder, ore,	Lower	Upper	Mean	Lower	Upper	Mean	Lower	Upper	Mean
solids, etc.	kg/m ³	kg/m ³	kg/m ³	lb/yd ^{3*,**}	lb/yd ^{3*,**}	lb/yd3*,**	tons/yd3 ***	tons/yd3***	tons/yd3*
Chalk, solid	2499	2499	2499	4212	4212	4212	2.11	2.11	2
k, lumpy	1442	1442	1442	2431	2431	2431	1.22	1.22	1
.ĸ, fine	1121	1121	1121	1890	1890	1890	0.94	0.94	0
harcoal	208	208	208	351	351	351	0.18	0.18	0
hloroform	1522	1522	1522	2565	2565	2565	1.28	1.28	1
hocolate, powder	641	641	641	1080	1080	1080	0.54	0.54	0
hromic acid, flake	1201	1201	1201	2024	2024	2024	1.01	1.01	1
hromium	6856	6856	6856	11556	11556	11556	5.78	5.78	5
hromium ore	2162	2162	2162	3644	3644	3644	1.82	1.82	1
inders, furnace	913	913	913	1539	1539	1539	0.77	0.77	0
inders, Coal, ash	641	641	641	1080	1080	1080	0.54	0.54	0
lay, dry excavated	1089	1089	1089	1836	1836	1836	0.94	0.92	0
lay, wet excavated	1826	1826	1826	3078	3078	3078	1.54	1.54	
lay, dry lump	1073	1073	1073	1809	1809	1809	0.90	0.90	
	1362	1362		2296					
lay, fire	************		1362	2296	2296	2296	1.15	1.15	
lay, wet lump	1602	1602	1602		2700	2700	1.35	1.35	
lay, compacted	1746	1746	1746	2943	2943	2943	1.47	1.47	1
lover seed	769	769	769	1296	1296	1296	0.65	0.65	
oal, Anthracite, solid	1506	1506	1506	2538	2538	2538	1.27	1.27	
oal, Anthracite, broken	1105	1105	1105	1863	1863	1863	0.93	0.93	
oal, Bituminous, solid	1346	1346	1346	2269	2269	2269	1.13	1.13	
oal, Bituminous, broken	833	833	833	1404	1404	1404	0.70	0.70	
obaltite (cobolt ore)	6295	6295	6295	10611	10611	10611	5.31	5.31	
oconut, meal	513	513	513	865	865	865	0.43	0.43	(
oconut, shredded	352	352	352	593	593	593	0.30	0.30	0
offee, fresh beans	561	561	561	946	946	946	0.47	0.47	(
offee, roast beans	432	432	432	728	728	728	0.36	0.36	(
oke	570	650	610	961	1096	1028	0.48	0.55	(
oncrete, Asphalt	2243	2243	2243	3781	3781	3781	1.89	1.89	1
orete, Gravel	2403	2403	2403	4050	4050	4050	2.03	2.03	2
rete, Limestone with Portland	2371	2371	2371	3996	3996	3996	2.00	2.00	2
opper ore	1940	2590	2265	3270	4366	3818	1.63	2.18	1
opper sulfate, ground	3604	3604	3604	6075	6075	6075	3.04	3.04	
opra, medium size	529	529	529	892	892	892	0.45	0.45	
opra, meal, ground	641	641	641	1080	1080	1080	0.45	0.45	
opra, expeller cake ground	513	513	513	865	865	865	0.34	0.34	(
opra, expeller cake chopped				784	784		************	************	********
ork, solid	465	465	465	405		784	0.39	0.39	
************************************	240	240			405	405	0.20	0.20	
ork, ground	160			270	270	270	0.13	0.13	
corn, on the cob	721	721	721	1215	1215	1215	0.61	0.61	
orn, shelled	721	721	721	1215	1215	1215	0.61	0.61	(
corn, grits	673	673	673	1134	1134	1134	0.57	0.57	
ottonseed, dry, de-linted	561	561	561	946	946	946	0.47	0.47	
ottonseed, dry, not de-linted	320			539	539	539	0.27	0.27	(
ottonseed, cake, lumpy	673			1134	1134	1134	0.57	0.57	(
ottonseed, hulls	192		192	324	324	324	0.16	0.16	
ottonseed, meal	593		593	1000	1000	1000	0.50	0.50	
ottonseed, meats	641	641	641	1080	1080	1080	0.54	0.54	(
ottonwood	416	416	416	701	701	701	0.35	0.35	(
ryolite	1602	1602	1602	2700	2700	2700	1.35	1.35	
ullet	1602	1602	1602	2700	2700	2700	1.35	1.35	
ulm	753	753	753	1269	1269	1269	0.63	0.63	
olomite, solid	2899	2899		4886	4886	4886	2.44	2.44	
olomite, pulverized	737	737	737	1242	1242	1242	0.62	0.62	
olomite, lumpy	1522		1522	2565	2565	2565	1.28	1.28	
arth, loam, dry, excavated	1249			2105		2105	1.05	1.05	
arth, moist, excavated	1442	1442	1442	2431	2105 2431	2431	1.05	1.03	
arth, wet, excavated	1602	1602	1602	2401	2700	2431	1.35	1.35	
, dense	2002	2002	2002	3374	3374	3374		1.55	
an, soft loose mud							1.69	************	
	1730			2916	2916	2916	1.46	1.46	
arth, packed	1522	1522	1522	2565 1134	2565 1134	2565 1134	1.28 0.57	1.28	

Material - powder, ore,	Lower	Upper	Mean	Lower	Upper	Mean	Lower	Upper	Mean
solids, etc.	kg/m ³	kg/m ³	kg/m ³	lb/yd ^{3 *,**}	lb/yd ^{3*,**}	lb/yd ^{3*,**}	tons/yd ³ ***	tons/yd3***	tons/yd3
Imery	4005	4005	4005	6751	6751	6751	3.38		3
1	737	737	737	1242	1242	1242	0.62	0.62	0
_spar, solid	2563	2563	2563	4320	4320	4320	2.16	2.16	2
eldspar, pulverized	1233	1233	1233	2078	2078	2078	1.04	1.04	1
ertilizer, acid phosphate	961	961	961	1620	1620	1620	0.81	0.81	(
ish, scrap	721	721	721	1215	1215	1215	0.61	0.61	
ish, meal	593	593	593	1000	1000	1000	0.50	0.50	
laxseed, whole	721	721	721	1215	1215	1215	0.61	0.61	
lint - silica	1390	1390	1390	2343	2343	2343	1.17	1.17	
lour, wheat	593	593	593	1000	1000	1000	0.50	0.50	
lue dust	1450	2020	1735	2444	3405	2924	1.22	1.70	••••••
luorspar, solid	3204	3204	3204	5401	5401	5401	2.70	2.70	
luorspar, lumps	1602	1602	1602	2700	2700	2700	1.35	1.35	••••••
luorspar, pulverized	1442	1442	1442				************	************	
ullers Earth - raw or burnt				2431	2431	2431	1.22	1.22	
	570	730	650	961	1230	1096	0.48	0.62	
alena (lead ore)	7400	7600	7500	12473	12810	12642	6,24	6.41	
arbage, household rubbish	481	481	481	811	811	811	0.41	0.41	
lass - broken or cullet	1290	1940	1615	2174	3270	2722	1.09	1.63	
lass, window	2579	2579	2579	4347	4347	4347	2,17	2.17	
lue, animal, flaked	561	561	561	946	946	946	0.47	0.47	
lue, vegetable, powdered	641	641	641	1080	1080	1080	0.54	0.54	
luten, meal	625	625	625	1053	1053	1053	0.53	0.53	
neiss, bed in place	2867	2867	2867	4832	4832	4832	2.42	2.42	
neiss, broken	1858	1858	1858	3132	3132	3132	1.57	1.57	
ranite, solid	2691	2691	2691	4536	4536	4536	2.27	2.27	
anite, broken	1650	1650	1650	2781	2781	2781	1.39	1.39	
raphite, flake	641	641	641	1080	1080	1080	0.54	0.54	
ain - Maize	760	760	760	1281	1281	1281	0.64	0.64	
ain - Barley	600	600	600	1011	1011	1011	0.51	0.51	•••••
'n - Millet	760	800	780	1281	1348	1315	0.64	0.67	
n - Wheat	780	800	790	1315	1348	1332	0.66	0.67	
ravel, loose, dry	1522	1522	1522	2565	2565	2565	1.28	1.28	
ravel, with sand, natural	1922	1922	1922	3240	3240	3240	1.62	1.62	
ravel, dry 1/4 to 2 inch	1682	1682	1682	***********	**********				
ravel, wet 1/4 to 2 inch	2002		**********	2835	2835	2835	1.42	1.42	
***************************************		2002	2002	3374	3374	3374	1,69	1.69	
ummite (uranium ore)	3890	6400	5145	6557	10788	8672	3,28	5.39	
ypsum, solid	2787	2787	2787	4698	4698	4698	2.35	2.35	
ypsum, broken	1290	1600	1445	2174	2697	2436	1.09	1.35	
ypsum, crushed	1602	1602	1602	2700	2700		1.35	1.35	
ypsum, pulverized	1121	1121	1121	1890	1890	1890	0.94	0.94	
alite (salt), solid	2323	2323	2323	3916	3916	3916	1.96	1.96	
alite (salt), broken	1506	1506	1506	2538	2538	2538	1.27	1.27	
ematite (iron ore)	5095	5205	5150	8588	8773	8681	4.29	4,39	
emimorphite (zinc ore)	3395	3490	3442.5	5722	5883	5803	2.86	2.94	
ydrochloric acid 40%	1201	1201	1201	2024	2024	2024	1.01	1.01	
e, solid	919	919	919	1549	1549	1549	0.77	0.77	
e, crushed	593	593	593	1000	1000	1000	0.50	0.50	
nenite.	2307	2307	2307	3889	3889	3889	1.94	1.94	
dium	22154	22154	22154	37342	37342	37342	18.67	18.67	1
on ore - crushed - see metals table	2100	2900	2500	3540	4888	4214	1.77	2,44	
on oxide pigment	400	400	400	674	674	674	0.34	0.34	
on Pyrites	2400	2400	2400	4045	4045	4045	2.02	2.02	
on sulphate - pickling tank - dry	1200	1200	1200	2023	2023	2023	1.01	1.01	
on sulphate - pickling tank - wet	1200	1200	1200	2174	2023	2023	1.01	1.01	*******
ory	1290	1842	1290	3105				***********	********
***************************************				A REPORT OF A R	3105	3105	1.55	1.55	
aolin, green crushed	1025	1025	1025	1728	1728	1728	0.86	0.86	
aolin, pulverized	352	352	352	593	593	593	0.30	0.30	
nd, rolled - see metals table	11389	11389	11389	19197	19197	19197	9.60	9.60	
, red	3684	3684	3684	6210	6210	6210	3.10	3.10	
cad, white pigment	4085	4085	4085	6885	6885	6885	3.44	3.44	
cather	945	945	945	1593	1593	1593	0.80	0.80	
ignite, dry	801	801	801	1350	1350	1350	0.68	0.68	

Material - powder, ore,	Lower	Upper	Mean	Lower	Upper	Mean	Lower	Upper	Mean
solids, etc.	kg/m ³	kg/m ³	kg/m ³	lb/yd ^{3*,**}	lb/yd ^{3*,**}	lb/yd ^{3*,**}	tons/yd3***	tons/yd3 ***	tons/yd3
ime, quick, lump	849	849	849	1431	1431	1431	0.72	0.72	(
, quick, fine	1201	1201	1201	2024	2024	2024	1.01	1.01	
.e, stone, large	2691	2691	2691	4536	4536	4536	2.27	2.27	
ime, stone, lump	1538	1538	1538	2592	2592	2592	1.30	1.30	
ime, hydrated	481	481	481	811	811				
			**********			811	0.41	0.41	
ime, wet or mortar	1540	1540	1540	2596	2596	2596	1.30	1.30	
imonite, solid	3796	3796	3796	6398	6398	6398	3.20	3.20	
imonite, broken	2467	2467	2467	4158	4158	4158	2.08	2.08	
imestone, solid	2611	2611	2611	4401	4401	4401	2.20	2.20	
imestone, broken	1554	1554	1554	2619	2619	2619	1.31	1.31	
imestone, pulverized	1394	1394	1394	2350	2350	2350	1.17	1.17	
inseed, whole	753	753	753	1269	1269	1269	0.63	0.63	
inseed, meal	513	513	513	865	865	865	0.43	0.43	
ocust, dry	705	705	705	1188	1188			***********	
						1188	0.59	0.59	
agnesite, solid	3011	3011	3011	5075	5075	5075	2.54	2.54	
agnesium oxide	1940	1940	1940	3270	3270	3270	1.63	1.63	
agnesium sulphate, crystal	1121	1121	1121	1890	1890	1890	0.94	0.94	
agnetite, solid (iron ore)	5046	5046	5046	8505	8505	8505	4.25	4.25	
agnetite, broken	3284	3284	3284	5535	5535	5535	2.77	2.77	
alachite (copper ore)	3750	3960	3855	6321	6675	6498	3.16	3.34	
alt	336	336	336	566	566	566	0.28	0.28	
anganese, solid	7609	7609	7609	12825	12825	12825	6.41	6.41	
anganese oxide	1922	1922	1922	3240	3240	3240			
***************************************			**********				1.62	1.62	
anure	400	400	400	674	674	674	0.34	0.34	
arble, solid	2563	2563	2563	4320	4320	4320	2.16	2.16	
arble, broken	1570	1570	1570	2646	2646	2646	1.32	1,32	
arl, wet, excavated	2243	2243	2243	3781	3781	3781	1.89	1.89	
ica, solid	2883	2883	2883	4859	4859	4859	2.43	2.43	
ica, broken	1602	1602	1602	2700	2700	2700	1.35	1.35	
a - flake	520	520	520	876	876	876	0.44	0.44	
i - powder	986	986	986	1662	1662	1662	0.83	0.83	
ilk, powdered	449	449	449	757	**********		************	************	
			********	2697	757 2697	757	0.38	0.38	
olybdenum ore	1600	1600	1600		***********	2697	1.35	1.35	
ortar, wet	2403	2403	2403	4050	4050	4050	2.03	2.03	
lud, packed	1906	1906	1906	3213	3213	3213	1.61	1.61	
ud, fluid	1730	1730	1730	2916	2916	2916	1,46	1.46	
ickel ore	1600	1600	1600	2697	2697	2697	1.35	1.35	
ickel, rolled	8666	8666	8666	14607	14607	14607	7.30	7.30	
ickel silver	8442	8442	8442	14229	14229	14229	7.11	7.11	
itric acid, 91%	1506	1506	1506	2538	2538	2538	1.27	1.27	•••••
trogen				2,12				*************	
	1.26	1.26	1.26		2.12	2.12	0.0011	0.0011	0,
ak, red	705	705	705	1188	1188	1188	0,59	0.59	
ats	432	432	432	728	728	728	0.36	0.36	
ats, rolled	304	304	304	512	512	512	0,26	0.26	
il cake	785	785	785	1323	1323	1323	0.66	0.66	
l, linseed	942	942	942	1588	1588	1588	0.79	0.79	
l, petroleum	881	881	881	1485	1485	1485	0.74	0.74	
kygen	1.43	1.43	1.43	2,41	2.41	2.41	0.0012	0.0012	0.
/ster shells, ground	849	849	849	1431	1431	1431	0.0012	0.0012	
per, standard	1201	1201	1201				************		
				2024	2024	2024	1.01	1.01	
anuts, shelled	641	641	641	1080	1080	1080	0.54	0.54	
anuts, not shelled	272	272	272	458	458	458	0.23	0.23	
at, dry	400	400	400	674	674	674	0.34	0.34	
at, moist	801	801	801	1350	1350	1350	0.68	0.68	
at, wet	1121	1121	1121	1890	1890	1890	0.94	0.94	
can wood	753	753	753	1269	1269	1269	0.63	0.63	
iosphate rock, broken	1762	1762	1762	2970	2970	2970	1.48	1.48	
osphorus		2339	2339	***********			***********	************	
spilorus	2339	**********		3943	3943	3943	1.97	1.97	
J	1153	1153	1153	1943	1943	1943	0.97	0.97	
aster	849	849	849	1431	1431	1431	0.72	0.72	
atinum ore	2600	2600	2600	4382	4382	4382	2.19	2.19	
orcelain	2403	2403	2403	4050	4050	4050	2.03	2.03	

Material - powder, ore,	Lower	Upper	Mean	Lower	Upper	Mean	Lower	Upper	Mean
solids, etc.	kg/m ³	kg/m ³	kg/m ³	lb/yd ^{3*,**}	lb/yd ^{3*,**}	lb/yd ^{3*,**}	tons/yd3***	tons/yd3***	tons/yd3***
Porphyry, solid	2547	2547	2547	4293	4293	4293	2.15	2.15	2.1
'iyry, broken	1650	1650	1650	2781	2781	2781	1.39	1.39	1.3
.sh	1281	1281	1281	2159	2159	2159	1.08	1.08	1.0
Potassium chloride	2002	2002	2002	3374	3374	3374	1.69	1.69	1.6
Potatoes, white	769	769	769	1296	1296	1296	0.65	0.65	0.6
Pumice, stone	641	641	641	1080	1080	1080	0.54	0.54	0.5
Pyrite (fool's gold)	2400	5015	3707.5	4045	8453	6249	2.02	4.23	3.1
Quartz, solid	2643	2643	2643	4455	4455	4455	2.23	2.23	2.2
Quartz, lump	1554	1554	1554	2619	2619	2619	1.31	1.31	1.3
Quartz sand	1201	1201	1201	2024	2024	2024	1.01	1.01	1.0
Resin, synthetic, crushed	561	561	561	946	946	946	0.47	0.47	0.4
Rice, hulled	753	753	753	1269	1269	1269	0.63	0.63	0.6
Rice, rough	577	577	577	973	973	973	0.49	0.49	0.4
Rice grits	689	689	689	1161	1161	1161	0.49	0.58	0.5
Rip-Rap	1602	1602	1602	2700	2700	2700	1.35		
Rock - soft - excavated with shovel	1602	1780	1690	2700				1.35	1.3
Rosin					3000	2849	1.35	1.50	1.4
	1073	1073	1073	1809	1809	1809	0.90	0.90	0.9
Rubber, caoutchouc	945	945	945	1593	1593	1593	0.80	0.80	0.8
Rubber, manufactured	1522	1522	1522	2565	2565	2565	1.28	1.28	1.2
Rubber, ground scrap	481	481	481	811	811	811	0.41	0.41	0.4
Rye	705	705	705	1188	1188	1188	0.59	0.59	0.5
Salt cake	1442	1442	1442	2431	2431	2431	1.22	1.22	1.2
Salt, course	801	801	801	1350	1350	1350	0.68	0.68	0.6
Salt, fine	1201	1201	1201	2024	2024	2024	1.01	1.01	1.0
Saltpeter	1201	1201	1201	2024	2024	2024	1.01	1.01	1.0
Sand, wet	1922	1922	1922	3240	3240	3240	1.62	1.62	1.6
Sand, wet, packed	2082	2082	2082	3509	3509	3509	1.75	1.75	1.7
Sand, dry	1602	1602	1602	2700	2700	2700	1.35	1.35	1.3
Sand, loose	1442	1442	1442	2431	2431	2431	1.22	1.22	1.2
d, rammed	1682	1682	1682	2835	2835	2835	1.42	1.42	1.4
, water filled	1922	1922	1922	3240	3240	3240	1.62	1.62	1.6
Sand with Gravel, dry	1650	1650	1650	2781	2781	2781	1.39	1.39	1.3
Sand with Gravel, wet	2020	2020	2020	3405	3405	3405	1.70	1.70	1.7
Sandstone, solid	2323	2323	2323	3916	3916	3916	1.96	1.96	1.9
Sandstone, broken	1370	1450	1410	2309	2444	2377	1.15	1.22	1.1
Sawdust	210	210	210	354	354	354	0.18	0.18	0.1
Sewage, sludge	721	721	721	1215	1215	1215	0.61	0.61	0.6
Shale, solid	2675	2675	2675	4509	4509	4509	2.25	2.25	2.2
Shale, broken	1586	**********		2673	2673	2673	1.34	1.34	1.3
Shells - oyster	800	800	800	1348	1348	1348	0.67	0.67	0.6
Sinter	1600	2180	1890	2697	3675		1.35		**********
Slag, solid	2114	2180		***********		3186	************	1.84	1.5
Slag, broken	1762		2114	3563	3563	3563	1.78	1.78	1.7
Slag, crushed, 1/4 inch		1762	1762	2970	2970	2970	1.48	1.48	1.4
***************************************	1185	1185	1185	1997	1997	1997	1.00	1.00	1.0
Slag, furn. granulated	961	961	961	1620	1620	1620	0.81	0.81	0.8
Slate, solid	2691	2691	2691	4536	4536	4536	2,27	2.27	2.2
Slate, broken	1290	1450	1370	2174	2444	2309	1.09	1.22	1.1
Slate, pulverized	1362	1362	1362	2296	2296	2296	1.15	1.15	1.1
Smithsonite (zinc ore)	4300	4300	4300	7248	7248	7248	3.62	3.62	3.6
Snow, freshly fallen	160	160	160	270	270	270	0.13	0.13	0,1
Snow, compacted	481	481	481	811	811	811	0.41	0.41	0.4
Soap, solid	801	801	801	1350	1350	1350	0.68	0.68	0.6
Soap, chips	160	160	160	270 270	270	270	0.13	0.13	0.1
Soap, flakes	160	160	160	270	270	270	0.13	0.13	0.1
Soap, powdered	368	368	368	620	620	620	0.31	0.31	0.3
Soapstone tale	2400	2400	2400	4045	4045	4045	2.02	2.02	2.0
Soda Ash, heavy	1080	1080	1080	1820	1820	1820	0.91	0.91	0.9
Soda Ash, light	432	432	432	728	728	728	0.36	0.36	0.1
m	977	977	977	1647	1647	1647	0.82	0.82	0.8
soorum Aluminate, ground	1153	1153	1153	1943	1943	1943	0.02	0.82	0.9
Sodium Nitrate, ground	1201	1201	1201	2024	2024	2024	1.01	1.01	1.0
Soy beans, whole	753	753	753	1269	1269	1269	0.63	0.63	0.6

Material - powder, ore,	Lower	Upper	Mean	Lower	Upper	Mean	Lower	Upper	Mean
solids, etc.	kg/m ³	kg/m ³	kg/m ³	lb/yd3***	lb/yd ^{3*,**}	lb/yd ^{3 *,**}	tons/yd3***	tons/yd3***	tons/yd3***
Starch, powdered	561	561	561	946	946	946	0.47	0.47	0.47
e, crushed	1602	1602	1602	2700	2700	2700	1.35	1.35	1.35
ie (common, generic)	2515	2515	2515	4239	4239	4239	2.12	2.12	2.12
Sugar, brown	721	721	721	1215	1215	1215	0.61	0.61	0.61
Sugar, powdered	801	801	801	1350	1350	1350	0.68	0.68	0.68
Sugar, granulated	849	849	849	1431	1431	1431	0.72	0.72	0.72
Sugar, raw cane	961	961	961	1620	1620	1620	0.81	0.81	0.81
Sugarbeet pulp, dry	208	208	208	351	351	351	0.18	0.18	0.18
Sugarbeet pulp, wet	561	561	561	946	946	946	0.47	0.47	0.47
Sugarcane	272	272	272	458	458	458	0.23	0.23	0.23
Sulphur, solid	2002	2002	2002	3374	3374	3374	1.69	1.69	1.69
Sulphur, lump	1314	1314	1314	2215	2215	2215	1.11	1.11	1.11
Sulphur, pulverized	961	961	961	1620	1620	1620	0.81	0.81	0.81
Taconite	2803	2803	2803	4725	4725	4725	2.36	2.36	2.36
Talc, solid	2691	2691	2691	4536	4536	4536	2.27	2.27	2.27
Tale, broken	1746	1746	1746	2943	2943	2943	1.47	1.47	1.47
Tanbark, ground	881	881	881	1485	1485	1485	0.74	0.74	0.74
Tankage	961	961	961	1620	1620	1620	0.81	0.81	0.81
Tar	1153	1153	1153	1943	1943	1943	0.97	0.97	0.97
Tobacco	320	320	320	539	539	539	0.27	0.27	0.27
Trap rock, solid	2883	2883	2883	4859	4859	4859	2.43	2.43	2.43
Trap rock, broken	1746	1746	1746	2943	2943	2943	1.47	1.47	1.47
Turf	400	400	400	674	674	674	0.34	0.34	0.34
Turpentine	865	865	865	1458	1458	1458	0.73	0.73	0.73
Walnut, black, dry	609	609	609	1027	1027	1027	0.51	0.51	0.51
Water, pure	1000	1000	1000	1686	1686	1686	0.84	0.84	0.84
Water, sea (see liquids table)	1026	1026	1026	1729	1729	1729	0.86	0.86	0.86
Wheat	769	769	769	1296	1296	1296	0.65	0.65	0.65
Wheat, cracked	673	673	673	1134	1134	1134	0.57	0.57	0.57
od chips - dry - see wood table	240	520	380	405	876	641	0.20	0.44	0.32
1	1314	1314	1314	2215	2215	2215	1.11	1.11	1.0
Zinc oxide	400	400	400	674	674	674	0.34	0.34	0.34

NOTES:

*1 kg = 2.2046226218 lb **1m³ = 1.3079506193 yd³

***1 ton = 2000 lbs

Sandoval County Landfill

ATTACHMENT 7.2

Sections of AP-42 Used in this Application.

		ne Fuel 01, 2-03-003-01)		el Fuel 02, 2-03-001-01)	
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING
NOx	0.011	1.63	0.031	4.41	D
CO	6.96 E-03 ^d	0.99 ^d	6.68 E-03	0.95	D
SO _x	5.91 E-04	0.084	2.05 E-03	0.29	D
PM-10 ^b	7.21 E-04	0.10	2.20 E-03	0.31	D
CO2 ^c	1.08	154	1.15	164	В
Aldehydes	4.85 E-04	0.07	4.63 E-04	0.07	D
TOC					
Exhaust	0.015	2.10	2.47 E-03	0.35	D
Evaporative	6.61 E-04	0.09	0.00	0.00	Е
Crankcase	4.85 E-03	0.69	4.41 E-05	0.01	Е
Refueling	1.08 E-03	0.15	0.00	0.00	Е

Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES^a L

⁴ References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.
 ^b PM-10 = particulate matter less than or equal to 10 µm aerodynamic diameter. All particulate is assumed to be ≤ 1 µm in size.
 ^c Assumes 99% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.
 ^d Instead of 0.439 lb/hp-hr (power output) and 62.7 lb/mmBtu (fuel input), the correct emissions factors values are 6.96 E-03 lb/hp-hr (power output) and 0.99 lb/mmBtu (fuel input), respectively. This is an editorial correction. March 24, 2009

Table 3.3-2. SPECIATED ORGANIC COMPOUND EMISSION FACTORS FOR UNCONTROLLED DIESEL ENGINES^a

EMISSION FACTOR RATING: E

Pollutant	Emission Factor (Fuel Input) (lb/MMBtu)
Benzene ^b	9.33 E-04
Toluene ^b	4.09 E-04
Xylenes ^b	2.85 E-04
Propylene	2.58 E-03
1,3-Butadiene ^{b,c}	<3.91 E-05
Formaldehyde ^b	1.18 E-03
Acetaldehyde ^b	7.67 E-04
Acrolein ^b	<9.25 E-05
Polycyclic aromatic hydrocarbons (PAH)	
Naphthalene ^b	8.48 E-05
Acenaphthylene	<5.06 E-06
Acenaphthene	<1.42 E-06
Fluorene	2.92 E-05
Phenanthrene	2.94 E-05
Anthracene	1.87 E-06
Fluoranthene	7.61 E-06
Pyrene	4.78 E-06
Benzo(a)anthracene	1.68 E-06
Chrysene	3.53 E-07
Benzo(b)fluoranthene	<9.91 E-08
Benzo(k)fluoranthene	<1.55 E-07
Benzo(a)pyrene	<1.88 E-07
Indeno(1,2,3-cd)pyrene	<3.75 E-07
Dibenz(a,h)anthracene	<5.83 E-07
Benzo(g,h,l)perylene	<4.89 E-07
TOTAL PAH	1.68 E-04

^a Based on the uncontrolled levels of 2 diesel engines from References 6-7. Source Classification Codes 2-02-001-02, 2-03-001-01. To convert from lb/MMBtu to ng/J, multiply by 430.
 ^b Hazardous air pollutant listed in the *Clean Air Act*.
 ^c Based on data from 1 engine.

Table 11.9-1 (English Units). EMISSION FACTOR EQUATIONS FOR UNCONTROLLED OPEN DUST SOURCES

		Emissions By F	Emissions By Particle Size Range (Aerodynamic Diameter)be	odynamic Dian	neter) ^{b,c}		
		Emission Factor Equations	tor Equations	Scal	Scaling Factors		EMISSION
Operation	Material	TSP ≤30 µm	≤15 µm	≤10 µm ^d	≤2.5 µm/TSPe	Units	RATING
Blasting ^f	Coal or overburden	0.000014(A) ^{1.5}	QN	0.52	0.03	lb/blast	c_DD
Truck loading	Coal	1.16 (M) ¹²	$\frac{0.119}{(M)^{0.9}}$	0.75	0.019	Ib/ton	BBCC
Bulldozing	Coal	$\frac{78.4 (s)^{12}}{(M)^{13}}$	$\frac{18.6(s)^{1.5}}{(M)^{1.4}}$	0.75	0.022	lb/hr	CCDD
	Overburden	$\frac{5.7 (s)^{12}}{(M)^{13}}$	$\frac{1.0(s)^{15}}{(M)^{14}}$	0.75	0.105	lb/hr	BCDD
Dragline	Overburden	0.0021 (d) ^{1.1} (M) ^{0.3}	0.0021 (d) ^{0.7} (M) ^{0.3}	0.75	0.017	lb/yd ³	BCDD
Vehicle traffics							
Grading		0.040 (S) ^{2.5}	0.051 (S) ²⁰	09.0	0.031	Ib/VMT	CCDD
Active storage pile ^h (wind erosion and maintenance)	Coal	0.72 u	QN	R	QN	lb (acre)(hr)	G

<15 µm, <10 µm, and <2.5 µm, respectively. See also note below.

^b Particulate matter less than or equal to 30 µm in aerodynamic diameter is sometimes termed "suspendable particulate" and is often used as a surrogate for TSP (total suspended particulate). TSP denotes what is measured by a standard high volume sampler (see Section 13.2). "Symbols for equations:

A = horizontal area (ft²), with blasting depth \leq 70 ft. Not for vertical face of a bench.

M = material moisture content (%)

material silt content (%) S II

wind speed (mph) = n

drop height (ft) = p

mean vehicle weight (tons) = M

mean vehicle speed (mph) S II

mean number of wheels = M

7/98

	ł
(cont.).	
1-6.11	
U	L

Multiply the \$15-µm equation by this fraction to determine emissions, except as noted.

- Multiply the TSP predictive equation by this fraction to determine emissions.
- Blasting factor taken from a reexamination of field test data reported in Reference 1. See Reference 4.
- To estimate emissions from traffic on unpaved surfaces by vehicles such as haul trucks, light-to-medium duty vehicles, or scrapers in the travel mode, see the unpaved road emission factor equation in AP-42 Section 13.2.2. =11
- Coal storage pile factor taken from Reference 5. To estimate emissions on a shorter time scale (e. g., worst-case day), see the procedure presented in Section 13.2.5. 4
 - ¹ Rating applicable to mine types I, II, and IV (see Tables 11.9-5 and 11.9-6).

currently available and the information should be made known. Users should accordingly use these factors with caution and awareness of their likely Note: Section 234 of the Clean Air Act of 1990 required EPA to review and revise the emission factors in this Section (and models used to evaluate decision not to use them for regulatory applications to these sources. However, the technical consideration exists that no better alternative data are Resultant model evaluation with revised emission factors have improved model prediction for total suspended particulate (TSP); however, there is still a tendency for overprediction of particulate matter impact for PM-10, for as yet undetermined causes, prompting the Agency to make a policy limitations, the haul road emission factors were isolated to receive the most attention during these studies, as the largest contributor to emissions. ambient air quality impact), to ensure that they did not overestimate emissions from western surface coal mines. Due to resource and technical limitations. Table 11.9-4 (English And Metric Units). UNCONTROLLED PARTICULATE EMISSION FACTORS FOR OPEN DUST

Source	Material	Mine Location ^a	TSP Emission Factor ^b	Units	EMISSION FACTOR RATING
Drilling	Overburden	Any	1.3 0.59	lb/hole kg/hole	ບບ
	Coal	V	0.22 0.10	lb/holc kg/hole	ΞЭ
Topsoil removal by scraper	Topsoil	Any	0.058	Ib/ton	Е
			0.029	kg/Mg	н н
		IV	0.44 0.22	lb/ton kg/Mg	шш
Overburden replacement	Overburden	Any	0.0060	lb/ton kg/Mg	00
Truck loading by power shovel (batch drop) ^c	Overburden	Λ	0.037 0.018	Ib/ton kg/Mg	шш
Train loading (batch or continuous drop)e	Coal	Any	0.028 0.014	lb/ton kg/Mg	шш
		Ξ	0.0002	lb/ton kg/Mg	шш
Bottom dump truck unloading (batch drop) ^e	Overburden	Λ	0.002 0.001	Ib/ton kg/Mg	шш
	Coal	N	0.027 0.014	Ib/ton kg/Mg	шш
		E	0.005	lb/ton kg/Mg	шщ
		П	0.020 0.010	Ib/ton kg/Mg	шш
		1	0.014 0.0070	Ib/T kg/Mg	шш
		Any	0.066	lb/T ko/Mo	96

11.9-10

I

7/98

Source	Material	Mine Location ^a	TSP Emission Factor ^b	Units	EMISSION FACTOR RATING
End dump truck unloading (batch drop) ^c	Coal	Λ	0,007 0.004	Ib/T kg/Mg	щщ
Scraper unloading (batch drop)6	Topsoil	IV	0.04 0.02	ib/T kg/Mg	щщ
Wind crosion of exposed areas ^d	Seeded land, stripped overburden, graded overburden	Any	0.38	T (acre)(yr)	υ •
			0.85	(hectare)(vr)	C

Figure 11.9-4 and 11.9-5 present characteristics of each of these mines. See text for correct use of these "mine-specific" emission factors. The

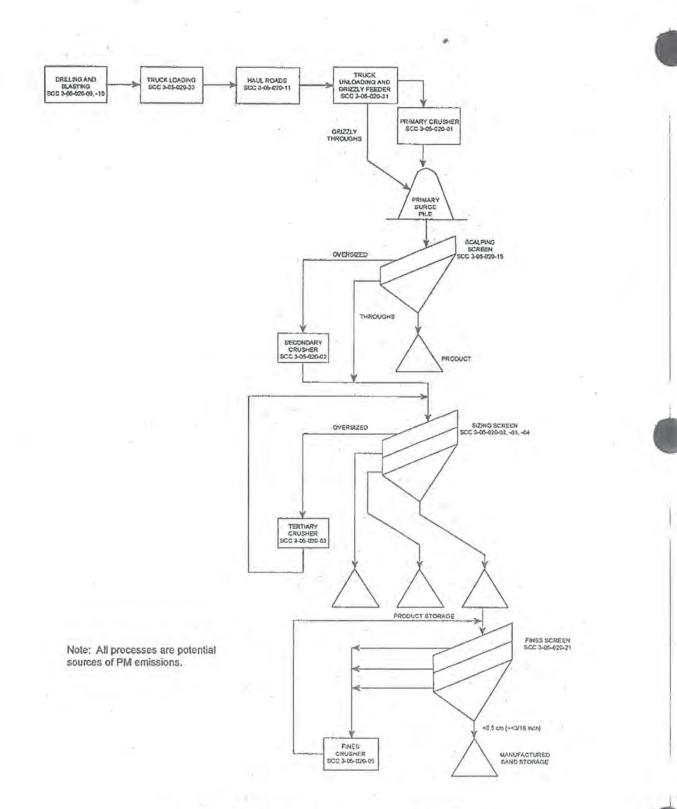
other factors (from Reference 7, except for overburden drilling from Reference 1) can be applied to any western surface coal mine. ^b Total suspended particulate (TSP) denotes what is measured by a standard high volume sampler (see Section 13.2).

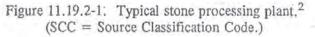
^c Predictive emission factor equations, which generally provide more accurate estimates of emissions, are presented in Chapter 13. ^d To estimate wind erosion on a shorter time scale (e. g., worst-case day), see Section 13.2.5.

11.19.2 Crushed Stone Processing

11.19.2.1 Process Description1-2

Major rock types processed by the rock and crushed stone industry include limestone, granite, dolomite, traprock, sandstone, quartz, and quartzite. Minor types include calcareous marl, marble, shell, and slate. Industry classifications vary considerably and, in many cases, do not reflect actual geological definitions.


Rock and crushed stone products generally are loosened by drilling and blasting, then are loaded by power shovel or front-end loader into large haul trucks that transport the material to the processing operations. Techniques used for extraction vary with the nature and location of the deposit. Processing operations may include crushing, screening, size classification, material handling, and storage operations. All of these processes can be significant sources of PM and PM-10 emissions if uncontrolled.


Quarried stone normally is delivered to the processing plant by truck and is dumped into a hoppered feeder, usually a vibrating grizzly type, or onto screens, as illustrated in Figure 11.19.2-1. The feeder or screens separate large boulders from finer rocks that do not require primary crushing, thus reducing the load to the primary crusher. Jaw, impactor, or gyratory crushers are usually used for initial reduction. The crusher product, normally 7.5 to 30 centimeters (3 to 12 inches) in diameter, and the grizzly throughs (undersize material) are discharged onto a belt conveyor and usually are conveyed to a surge pile for temporary storage, or are sold as coarse aggregates.

The stone from the surge pile is conveyed to a vibrating inclined screen called the scalping screen. This unit separates oversized rock from the smaller stone. The undersize material from the scalping screen is considered to be a product stream and is transported to a storage pile and sold as base material. The stone that is too large to pass through the top deck of the scalping screen is processed in the secondary crusher. Cone crushers are commonly used for secondary crushing (although impact crushers are sometimes used), which typically reduces material to about 2.5 to 10 centimeters (1 to 4 inches). The material (throughs) from the second level of the screen bypasses the secondary crusher because it is sufficiently small for the last crushing step. The output from the secondary crusher and the throughs from the secondary screen are transported by conveyor to the tertiary circuit, which includes a sizing screen and a tertiary crusher.

Tertiary crushing is usually performed using cone crushers or other types of impactor crushers. Oversize material from the top deck of the sizing screen is fed to the tertiary crusher. The tertiary crusher output, which is typically about 0.50 to 2.5 centimeters (3/16th to 1 inch), is returned to the sizing screen. Various product streams with different size gradations are separated in the screening operation. The products are conveyed or trucked directly to finished product bins, open area stockpiles, or to other processing systems such as washing, air separators, and screens and classifiers (for the production of manufactured sand).

Some stone crushing plants produce manufactured sand. This is a small-sized rock product with a maximum size of 0.50 centimeters (3/16th inch). Crushed stone from the tertiary sizing screen is sized in a vibrating inclined screen (fines screen) with relatively small mesh sizes. Oversized material is processed in a cone crusher or a hammermill (fines crusher) adjusted to produce small diameter material. The output is then returned to the fines screen for resizing.

11.19.2-2

EMISSION FACTORS

1/95

In certain cases, stone washing is required to meet particular end product specifications or demands as with concrete aggregate processing. Crushed and broken stone normally is not milled but is screened and shipped to the consumer after secondary or tertiary crushing.

11.19.2.2 Emissions And Controls1-8

Emissions of PM and PM-10 occur from a number of operations in stone quarrying and processing. A substantial portion of these emissions consists of heavy particles that may settle out within the plant. As in other operations, crushed stone emission sources may be categorized as either process sources or fugitive dust sources. Process sources include those for which emissions are amenable to capture and subsequent control. Fugitive dust sources generally involve the reentrainment of settled dust by wind or machine movement. Emissions from process sources should be considered fugitive unless the sources are vented to a baghouse or are contained in an enclosure with a forced-air vent or stack. Factors affecting emissions from either source category include the stone size distribution and surface moisture content of the stone processed; the process throughput rate; the type of equipment and operating practices used; and topographical and climatic factors.

Of geographic and seasonal factors, the primary variables affecting uncontrolled PM emissions are wind and material moisture content. Wind parameters vary with geographical location, season, and weather. It can be expected that the level of emissions from unenclosed sources (principally fugitive dust sources) will be greater during periods of high winds. The material moisture content also varies with geographic location, season, and weather. Therefore, the levels of uncontrolled emissions from both process emission sources and fugitive dust sources generally will be greater in arid regions of the country than in temperate ones, and greater during the summer months because of a higher evaporation rate.

The moisture content of the material processed can have a substantial effect on emissions. This effect is evident throughout the processing operations. Surface wetness causes fine particles to agglomerate on, or to adhere to, the faces of larger stones, with a resulting dust suppression effect. However, as new fine particles are created by crushing and attrition, and as the moisture content is reduced by evaporation, this suppressive effect diminishes and may disappear. Plants that use wet suppression systems (spray nozzles) to maintain relatively high material moisture contents can effectively control PM emissions throughout the process. Depending on the geographic and climatic conditions, the moisture content of mined rock may range from nearly zero to several percent. Because moisture content is usually expressed on a basis of overall weight percent, the actual moisture amount per unit area will vary with the size of the rock being handled. On a constant mass-fraction basis, the per-unit area moisture content varies inversely with the diameter of the rock. Therefore, the suppressive effect of the moisture depends on both the absolute mass water content and the size of the rock product. Typically, wet material contains 1.5 to 4 percent water or more.

A variety of material, equipment, and operating factors can influence emissions from crushing. These factors include (1) stone type, (2) feed size and distribution, (3) moisture content, (4) throughput rate, (5) crusher type, (6) size reduction ratio, and (7) fines content. Insufficient data are available to present a matrix of rock crushing emission factors detailing the above classifications and variables. Available data indicate that PM-10 emissions from limestone and granite processing operations are similar. Therefore, the emission factors developed from the emission data gathered at limestone and granite processing facilities are considered to be representative of typical crushed stone processing operations. Emission factors for filterable PM and PM-10 emissions from crushed stone processing operations are presented in Tables 11.19-1 (metric units) and 11.19-2 (English units).

Sourceb	Total Particulate Matter	EMISSION FACTOR RATING	Total PM-10 ^c	EMISSION FACTOR RATING
Screening (SCC 3-05-020-02,-03)	d		0.0076 ^e	C
Screening (controlled) (SCC 3-05-020-02-03)	d	·	0.00042°	C
Primary crushing (SCC 3-05-020-01)	0.00035 ^f	E	NDg	
Secondary crushing (SCC 3-05-020-02)	ND		NDg	6
Tertiary crushing (SCC 3-05-020-03)	_d		0.0012 ^h	С
Primary crushing (controlled) (SCC 3-05-020-01)	ND		NDg	
Secondary crushing (controlled) (SCC 3-05-020-02)	ND		NDg	
Tertiary crushing (controlled) (SCC 3-05-020-03)	d		0.00029 ^h	с
Fines crushing ^j (SCC 3-05-020-05)	d		0.0075	E
Fines crushing (controlled) ^j (SCC 3-05-020-05)	_d		0.0010	Е
Fines screening (SCC 3-05-020-21)	d		0.036	Е
Fines screening (controlled) ^j (SCC 3-05-020-21)	d		0.0011	E
Conveyor transfer point ^k (SCC 3-05-020-06)	d		0.00072	D
Conveyor transfer point (controlled) ^k (SCC 3-05-020-06)	_d		2.4x10 ⁻⁵	D
Wet drilling: unfragmented stone ^m (SCC 3-05-020-10)	ND		4.0x10 ⁻⁵	E
Truck unloading: fragmented stone ^m (SCC 3-05-020-31)	ND		8.0x10 ⁻⁶	. E
Truck loading-conveyor: crushed stone ⁿ (SCC 3-05-020-32)	ND		5.0x10 ⁻⁵	E

Table 11.19.2-1 (Metric Units). EMISSION FACTORS FOR CRUSHED STONE PROCESSING OPERATIONS^a

^a Emission factors represent uncontrolled emissions unless noted. Emission factors in kg/Mg of material throughput. SCC = Source Classification Code. ND = no data.

Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent and the same facilities operating wet suppression sytems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over or the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. Visual observations from each source under normal operating conditions are probably the best indicator of which emission factor is most appropriate. Plants that employ sub-standard control measures as indicated by visual observations should use the uncontrolled factor with an appropriate control efficiency that best reflects the effectiveness of the controls employed.

Although total suspended particulate (TSP) is not a measurable property from a process, some states may require estimates of TSP emissions. No data are available to make these estimates. However, relative ratios in AP-42 Sections 13.2.2 and 13.2.4 indicate that TSP emission factors may be estimated by multiplying PM-10 by 2.1.

EMISSION FACTORS

Table 11.19.2-1 (cont.).

- ^d Emission factors for total particulate are not presented pending a re-evaluation of the EPA Method 201a test data and/or results of emission testing. This re-evaluation is expected to be completed by July 1995. ^c References 9, 11, 15-16.

- ^f Reference 1. ^g No data available, but emission factors for PM-10 emission factors for tertiary crushing can be used as an upper limit for primary or secondary crushing.
 ^h References 10-11, 15-16.
 ^j Reference 12.

- k References 13-14,
- ^mReference 3.
- ⁿ Reference 4.

Sourceb	Total Particulate Matter	EMISSION FACTOR RATING	Total PM-10c	EMISSION FACTOR RATING
Screening (SCC 3-05-020-02,-03)	d		0.015 ^e	.c
Screening (controlled) (SCC 3-05-020-02-03)	d		0.00084°	C
Primary crushing (SCC 3-05-020-01)	0.00070 ^f	E	NDg	
Secondary crushing (SCC 3-05-020-02)	ND		NDg	
Tertiary crushing (SCC 3-05-020-03)	d		0.0024 ^h	C
Primary crushing (controlled) (SCC 3-05-020-01)	ND		NDg	NA
Secondary crushing (controlled) (SCC 3-05-020-02)	ND		NDg	NA
Tertiary crushing (controlled) (SCC 3-05-020-03)	-d		0.00059 ^h	C
Fines crushing ^j (SCC 3-05-020-05)	d	1 2 3	0.015	E
Fines crushing (controlled) ^j (SCC 3-05-020-05)	d		0.0020	E
Fines screening ¹ (SCC 3-05-020-21)	d T		0.071	Е
Fines screening (controlled) ^j (SCC 3-05-020-21)	d	5 E 4	0.0021	Ë
Conveyor transfer point ^k (SCC 3-05-020-06)	d		0.0014	D
Conveyor transfer point (controlled) ^k (SCC 3-05-020-06)	^d		4.8x10 ⁻⁵	D
Wet drilling: unfragmented stone ^m (SCC 3-05-020-10)	ND		8.0x10 ⁻⁵	E .
Truck unloading: fragmented stone ^m (SCC 3-05-020-31)	ND		1.6x10 ⁻⁵	E
Truck loading-conveyor: crushed stone ⁿ (SCC 3-05-020-32)	ND	1 1 1 1	0.00010	E

Table 11.19.2-2 (English Units). EMISSION FACTORS FOR CRUSHED STONE PROCESSING OPERATIONS^a

^a Emission factors represent uncontrolled emissions unless noted. Emission factors in lb/ton of material throughput. SCC = Source Classification Code. ND = no data.

^b Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent and the same facilities operating wet suppression systems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over or the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. Visual observations from each source under normal operating conditions are probably the best indicator of which emission factor is most appropriate. Plants that employ sub-standard control measures as indicated by visual observations should use the uncontrolled factor with an appropriate control efficiency that best reflects the effectiveness of the controls employed.

Although total suspended particulate (TSP) is not a measurable property from a process, some states may require estimates of TSP emissions. No data are available to make these estimates. However, relative ratios in AP-42 Sections 13.2.2 and 13.2.4 indicate that TSP emission factors may be estimated by multiplying PM-10 by 2.1.

EMISSION FACTORS

1/95

Table 11.19.2-2 (cont.).

- ^d Emission factors for total particulate are not presented pending a re-evaluation of the EPA Method 201a test data and/or results of emission testing. 'This re-evaluation is expected to be completed by July 1995.
- ^c References 9, 11, 15-16.
- f Reference 1.
- ^g No data available, but emission factors for PM-10 emission factors for tertiary crushing can be used as an upper limit for primary or secondary crushing.
- h References 10-11, 15-16.
- ^j Reference 12.
- k References 13-14.
- ^mReference 3.
- ⁿ Reference 4.

Emission factor estimates for stone quarry blasting operations are not presented here because of the sparsity and unreliability of available test data. While a procedure for estimating blasting emissions is presented in Section 11.9, Western Surface Coal Mining, that procedure should not be applied to stone quarries because of dissimilarities in blasting techniques, material blasted, and size of blast areas. Milling of fines is not included in this section as this operation is normally associated with nonconstruction aggregate end uses and will be covered elsewhere when information is adequate. Emission factors for fugitive dust sources, including paved and unpaved roads, materials handling and transfer, and wind erosion of storage piles, can be determined using the predictive emission factor equations presented in AP-42 Section 13.2.

References For Section 11.19.2

- Air Pollution Control Techniques for Nonmetallic Minerals Industry, EPA-450/3-82-014, U. S. Environmental Protection Agency, Research Triangle Park, NC, August 1982.
- Written communication from J. Richards, Air Control Techniques, P.C., to B. Shrager, MRI. March 18, 1994.
 - P. K. Chalekode et al., Emissions from the Crushed Granite Industry: State of the Art, EPA-600/2-78-021, U. S. Environmental Protection Agency, Washington, DC, February 1978.
 - T. R. Blackwood et al., Source Assessment: Crushed Stone, EPA-600/2-78-004L, U. S. Environmental Protection Agency, Washington, DC, May 1978.
 - F. Record and W. T. Harnett, Particulate Emission Factors for the Construction Aggregate Industry, Draft Report, GCA-TR-CH-83-02, EPA Contract No. 68-02-3510, GCA Corporation, Chapel Hill, NC, February 1983.
 - 6. Review Emission Data Base and Develop Emission Factors for the Construction Aggregate Industry, Engineering-Science, Inc., Arcadia, CA, September 1984.
 - C. Cowherd, Jr. et al., Development of Emission Factors for Fugitive Dust Sources, EPA-450/3-74-037, U. S. Environmental Protection Agency, Research Triangle Park, NC, June 1974.

- R. Bohn et al., Fugitive Emissions from Integrated Iron and Steel Plants, EPA-600/2-78-050, U. S. Environmental Protection Agency, Washington, DC, March 1978.
- J. Richards, T. Brozell, and W. Kirk, PM-10 Emission Factors for a Stone Crushing Plant Deister Vibrating Screen, EPA Contract No. 68-D1-0055, Task 2.84, U. S. Environmental Protection Agency, Research Triangle Park, NC, February 1992.
- J. Richards, T. Brozell, and W. Kirk, PM-10 Emission Factors for a Stone Crushing Plant Tertiary Crusher, EPA Contract No. 68-D1-0055, Task 2.84, U. S. Environmental Protection Agency, Research Triangle Park, NC, February 1992.
- W. Kirk, T. Brozell, and J. Richards, PM-10 Emission Factors for a Stone Crushing Plant Deister Vibrating Screen and Crusher, National Stone Association, Washington DC, December 1992.
- T. Brozell, J. Richards, and W. Kirk, PM-10 Emission Factors for a Stone Crushing Plant Tertiary Crusher and Vibrating Screen, EPA Contract No. 68-D0-0122, U. S. Environmental Protection Agency, Research Triangle Park, NC, December 1992.
- T. Brozell, PM-10 Emission Factors for Two Transfer Points at a Granite Stone Crushing Plant, EPA Contract No. 68-D0-0122, U. S. Environmental Protection Agency, Research Triangle Park, NC, January 1994.
- T. Brozell, PM-10 Emission Factors for a Stone Crushing Plant Transfer Point, EPA Contract No. 68-D0-0122, U. S. Environmental Protection Agency, Research Triangle Park, NC, February 1993.
- T. Brozell and J. Richards, PM-10 Emission Factors for a Limestone Crushing Plant Vibrating Screen and Crusher for Bristol, Tennessee, EPA Contract No. 68-D2-0163, U. S. Environmental Protection Agency, Research Triangle Park, NC, July 1993.
- T. Brozell and J. Richards, PM-IO Emission Factors for a Limestone Crushing Plant Vibrating Screen and Crusher for Marysville, Tennessee, EPA Contract No. 68-D2-0163, U. S. Environmental Protection Agency, Research Triangle Park, NC, July 1993.

EMISSION FACTORS

Table 11.19.2-2 (English Units). EMISSION FACTORS FOR CRUSHED STONE PROCESSING OPERATIONS (Ib/Ton)^a

Source ^b	Total Particulate Matter ^{1,5}	EMISSION FACTOR RATING	Total PM-10	EMISSION FACTOR RATING	Total PM-2.5	EMISSION FACTOR RATING
Primary Crushing (SCC 3-05-020-01)	ND		ND ⁿ		ND ⁿ	
Primary Crushing (controlled) (SCC 3-05-020-01)	ND		ND ⁿ		ND"	
Secondary Crushing (SCC 3-05-020-02)	ND		ND ⁿ		ND^{n}	
Secondary Crushing (controlled) (SCC 3-05-020-02)	ND		ND ⁿ		ND ⁿ	
Tertiary Crushing (SCC 3-050030-03)	0.0054 ^d	E	0.0024°	С	ND ^u	-
Tertiary Crushing (controlled) (SCC 3-05-020-03)	0.0012 ^d	E	0.00054 ^p	C	0.00010 ^q	E
Fines Crushing (SCC 3-05-020-05)	0.0390 ^e	E	0.0150 ^e	E	ND	
Fines Crushing (controlled) (SCC 3-05-020-05)	0.0030 ^t	E	0.0012 ^t	E	0.000070 ^q	E
Screening (SCC 3-05-020-02, 03)	0.025 ^c	E	0.00871	С	ND	
Screening (controlled) (SCC 3-05-020-02, 03)	0.0022 ^d	E	0.00074 ^m	С	0.000050 ^q	E
Fines Screening (SCC 3-05-020-21)	0.30 ^g	E	0.072 ^g	Е	ND	
Fines Screening (controlled) (SCC 3-05-020-21)	0.0036 ^g	E	0.0022 ^g	Е	ND	
Conveyor Transfer Point (SCC 3-05-020-06)	0.0030 ^h	E	0.00110 ⁿ	D	ND	
Conveyor Transfer Point (controlled) (SCC 3-05-020-06)	0.00014 ¹	E	4.6 x 10 ⁻⁵¹	D	1.3 x 10 ^{-5q}	Е
Wet Drilling - Unfragmented Stone (SCC 3-05-020-10)	ND		8.0 x 10 ^{-5j}	E	ND	
Truck Unloading -Fragmented Stone (SCC 3-05-020-31)	ND		1.6 x 10 ⁻⁵	Е	ND	
Truck Unloading - Conveyor, crushed stone (SCC 3-05-020-32)	ND		0.00010 ^k	E	ND	

a. Emission factors represent uncontrolled emissions unless noted. Emission factors in lb/Ton of material of throughput. SCC = Source Classification Code. ND = No data.

b. Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent, and the same facilities operating wet suppression systems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over of the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. Visual observations from each source under normal operating conditions are probably the best indicator of which emission factor is most appropriate. Plants that employ substandard control measures as indicated by visual observations should use the uncontrolled factor with an appropriate control efficiency that best reflects the effectiveness of the controls employed.

c. References 1, 3, 7, and 8

d. References 3, 7, and 8

Mineral Products Industry

c. Reference 4

- f. References 4 and 15
- g. Reference 4
- h. References 5 and 6
- i. References 5, 6, and 15
- j. Reference 11
- k. Reference 12
- I. References 1, 3, 7, and 8
- m. References 1, 3, 7, 8, and 15
- n. No data available, but emission factors for PM-10 for tertiary crushers can be used as an upper limit for primary or secondary crushing
- o. References 2, 3, 7, 8
- p. References 2, 3, 7, 8, and 15
- q. Reference 15
- r. PM emission factors are presented based on PM-100 data in the Background Support Document for Section 11.19.2
- s. Emission factors for PM-30 and PM-50 are available in Figures 11.19.2-3 through 11.19.2-6.

	Road Use Or	Plant	No. Of	Silt Cont	ent (%)
Industry	Surface Material	Sites	Samples	Range	Mear
Copper smelting	Plant road	1	3	16 - 19	17
Iron and steel production	Plant road	19	135	0.2 - 19	6.0
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	4.8
	Material storage area	1	1	-	7.1
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10
	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3
	Haul road to/from pit	1	12	3.9 - 9.7	5.8
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4
	Plant road	2	2	4.9 - 5.3	5.1
	Scraper route	3	10	7.2 - 25	17
	Haul road (freshly graded)	2	5	18 - 29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills	Disposal routes	4	20	2.2 - 21	6.4

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS^a

"References 1,5-15.

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^{a} (W/3)^{b}$$
 (1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{s} (S/30)^{d}}{(M/0.5)^{c}} - C$$
(1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

- E = size-specific emission factor (lb/VMT)
- s = surface material silt content (%)
- W = mean vehicle weight (tons)
- M = surface material moisture content (%)
- S = mean vehicle speed (mph)
- C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

1 lb/VMT = 281.9 g/VKT

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

		Y				
	Industria	al Roads (Equ	ation 1a)	Public	Roads (Equat	ion 1b)
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0
a	0.9	0.9	0.7	1	1	1
b	0.45	0.45	0.45	-	-	
c	1.4	1.2	4	0.2	0.2	0.3
d	-	-		0.5	0.5	0.3
Quality Rating	В	B	В	В	В	В

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

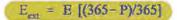
1

*Assumed equivalent to total suspended particulate matter (TSP)

"-" = not used in the emission factor equation

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b


		Mean We	/ehicle ight		Vehicle eed	Mean No. of Wheels	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph		Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1,8-260	2-290	8-69	5-43	4-17 ^a	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model²³. The emission factor also varies with aerodynamic size range

average uncontrolled conditions (but including natural mitigation) under the simplifying assumption that annual average emissions are inversely proportional to the number of days with measurable (more than 0.254 mm [0.01 inch]) precipitation:

where:

 E_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT

E = emission factor from Equation 1a or 1b

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation (see

below)

Figure 13.2.2-1 gives the geographical distribution for the mean annual number of "wet" days for the United States.

Equation 2 provides an estimate that accounts for precipitation on an annual average basis for the purpose of inventorying emissions. It should be noted that Equation 2 does not account for differences in the temporal distributions of the rain events, the quantity of rain during any event, or the potential for the rain to evaporate from the road surface. In the event that a finer temporal and spatial resolution is desired for inventories of public unpaved roads, estimates can be based on a more complex set of assumptions. These assumptions include:

1. The moisture content of the road surface material is increased in proportion to the quantity of water added;

 The moisture content of the road surface material is reduced in proportion to the Class A pan evaporation rate;

3. The moisture content of the road surface material is reduced in proportion to the traffic volume; and

4. The moisture content of the road surface material varies between the extremes observed in the area. The CHIEF Web site (http://www.epa.gov/ttn/chief/ap42/ch13/related/c13s02-2.html) has a file which contains a spreadsheet program for calculating emission factors which are temporally and spatially resolved. Information required for use of the spreadsheet program includes monthly Class A pan evaporation values, hourly meteorological data for precipitation, humidity and snow cover, vehicle traffic information, and road surface material information.

It is emphasized that the simple assumption underlying Equation 2 and the more complex set of assumptions underlying the use of the procedure which produces a finer temporal and spatial resolution have not been verified in any rigorous manner. For this reason, the quality ratings for either approach should be downgraded one letter from the rating that would be applied to Equation 1.

13.2.2.3 Controls18-22

A wide variety of options exist to control emissions from unpaved roads. Options fall into the following three groupings:

1. <u>Vehicle restrictions</u> that limit the speed, weight or number of vehicles on the road;

(2)

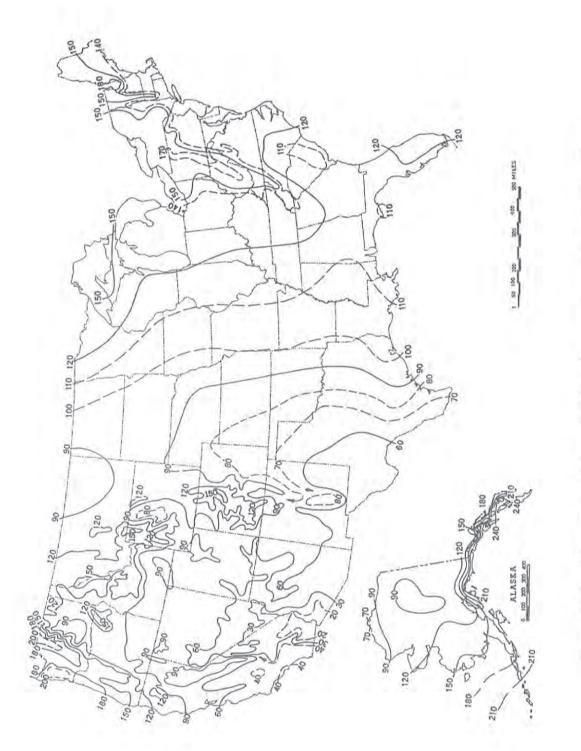
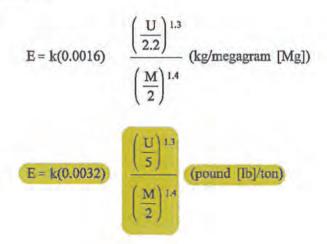


Table 13.2.4-1. TYPICAL SILT AND MOISTURE CONTENTS OF MATERIALS AT VARIOUS INDUSTRIES^a


			Silt	Silt Content (%)	()	Moist	Moisture Content (%)	(%)
Industry	No. Of Facilities	Material	No. Of Samples	Range	Mean	No. Of Samples	Range	Mean
Iron and steel production	6	Pellet ore	13.	1.3 - 13	4.3	П	0.64 - 4.0	2.2
		Lump ore	6	2.8 - 19	9.5	9	1.6 - 8.0	5.4
		Coal	12	2.0-7.7	4.6	11	2.8 - 11	4.8
		Slag	3	3.0-7.3	5.3	ę	0.25 - 2.0	0.92
		Flue dust	3	2.7-23	13	1	1	L
		Coke breeze	2	4.4 - 5.4	4.9	2	6.4 - 9.2	7.8
		Blended ore	1	1	15	1	ï	6.6
		Sinter	I	1	0.7	0	١	1
		Limestone	ñ	0.4 - 2.3	1.0	2	QN	0.2
Stone quarrying and processing	2	Crushed limestone	2	1.3 - 1.9	1.6	7	0.3 - 1.1	0.7
		Various limestone products	00	0.8 - 14	3.9	8	0.46 - 5.0	2.1
Taconite mining and processing	T	Pellets	6	2.2 - 5.4	3.4	7	0.05 - 2.0	0.9
		Tailings	2	QN	11	1	1	0.4
Western surface coal mining	4	Coal	15	3.4 - 16	6.2	7	2.8 - 20	6.9
		Overburden	15	3.8 - 15	7.5	0	I	1
		Exposed ground	n	5.1-21	15	ŝ	0.8 - 6.4	3.4
Coal-fired power plant	1	Coal (as received)	60	0.6 - 4.8	2.2	59	2.7 - 7.4	4.5
Municipal solid waste landfills	4	Sand	1	Î	2.6	-(1)	I	7.4
(Slag	2	3.0 - 4.7	3.8	2	2.3 - 4.9	3.6
		Cover	5	5.0 - 16	0.6	5	8.9 - 16	12
		Clay/dirt mix	11	1	9.2	1	1	14
		Clay	6	4.5 - 7.4	6.0	2	8.9 - 11	10
		Fly ash	4	78 - 81	80	4	26-29	27
		Misc. fill materials	1	1	12	I	I	11

13.2.4-2

EMISSION FACTORS

11/06

The quantity of particulate emissions generated by either type of drop operation, per kilogram (kg) (ton) of material transferred, may be estimated, with a rating of A, using the following empirical expression:¹¹

where:

E = emission factor

k = particle size multiplier (dimensionless)

U = mean wind speed, meters per second (m/s) (miles per hour [mph])

M = material moisture content (%)

The particle size multiplier in the equation, k, varies with aerodynamic particle size range, as follows:

	Aerodynamic Parti	cle Size Multiplier (k) For Equation 1	
$<30\mu{\rm m}$	$< 15 \mu m$	$< 10 \ \mu m$	$< 5 \ \mu m$	< 2.5 µm
0.74	0.48	0.35	0.20	0.053*

^a Multiplier for < 2.5 µm taken from Reference 14.

The equation retains the assigned quality rating if applied within the ranges of source conditions that were tested in developing the equation, as follows. Note that silt content is included, even though silt content does not appear as a correction parameter in the equation. While it is reasonable to expect that silt content and emission factors are interrelated, no significant correlation between the 2 was found during the derivation of the equation, probably because most tests with high silt contents were conducted under lower winds, and vice versa. It is recommended that estimates from the equation be reduced 1 quality rating level if the silt content used in a particular application falls outside the range given:

		Wind	Wind Speed		
Silt Content (%)	Moisture Content (%)	m/s	mph		
0.44 - 19	0.25 - 4.8	0.6 - 6.7	1.3 - 15		

To retain the quality rating of the equation when it is applied to a specific facility, reliable correction parameters must be determined for specific sources of interest. The field and laboratory procedures for aggregate sampling are given in Reference 3. In the event that site-specific values for

EMISSION FACTORS

Sandoval County Landfill

ATTACHMENT 7.3

NMED AQB Insignificant Activities List (March 24, 2005)

NMED AQB Trivial Activities List (September 15, 2008)

New Mexico Environment Department (NMED) Air Quality Bureau (AQB) Operating Permit Program List of Insignificant Activities March 24, 2005

Insignificant activities are those activities, which are listed herein by the Environment Department and approved by the Administrator of the US Environmental Protection Agency as insignificant on the basis of size, emissions or production rate. <u>Any activity for which applicable requirements</u> apply, is not insignificant, regardless of whether the activity meets the criteria listed below.

Operating permit applications submitted under 20.2.70 NMAC for sources, which include any of the following emissions units, operations or activities must provide the information required for emissions units under Subsection D.6 of 20.2.70.300 NMAC:

1.a. Any emissions unit, operation or activity that has the potential to emit no more than one (1) ton per year of any regulated air pollutant, excluding 112(b) hazardous air pollutants (see item 1.b), but including 112(r) flammable and toxic regulated pollutants that are not listed in Sections 500 - 502 of 20.2.72 NMAC. Regulated 112(r) pollutants that are listed in Sections 500 - 502 of 20.2.72 NMAC are insignificant if they are emitted in quantities less than the threshold (pound per hour) of that regulation.

1.b. Any emissions unit, operation or activity that has the potential to emit no more than the lesser of either one (1) ton per year or the de minimis level of any 112(b) hazardous air pollutants listed in the U.S. EPA document "Documentation of De Minimis Rates for Proposed 40 CFR part 63 subpart B", EPA-453/R-93-035 or de minimis levels established under subsequent rulemaking for 112(g).

2. Surface coating of equipment, including spray painting and roll coating, for sources with facility-wide total clean-up solvent and coating actual emissions of less than two (2) tons per year.

3. Fuel burning equipment which uses gaseous fuel, has a design rate less than or equal to five (5) million BTU per hour, and is used solely for heating buildings for personal comfort or for producing hot water for personal use.

4. Fuel burning equipment which uses distillate oil, has a design rate less than or equal to one (1) million BTU per hour, and is used solely for heating buildings for personal comfort or for producing hot water for personal use.

5. Any emissions unit, operation, or activity that handles or stores a liquid with a vapor pressure less than 10 mm Hg or in quantities less than 500 gallons.

NMED AQB List of Insignificant Activities

6. Portable engines and portable turbines that have a design capacity (based on sea level specifications) or a physically derated capacity less than or equal to:

200 HP engine if fueled by diesel or natural gas;
500 HP engine if fueled by gasoline;
650 HP engine if fueled by JP-4 or JP-8;
1,500 HP turbine if fueled by natural gas.

A certification of physical engine deration must accompany the portable source and be kept by the Operator or Owner. Physical deration is a result of equipment design, such as combining an engine with a compressor that has an rpm limit. Physical deration is not a result of environmental conditions such as altitude or temperature.

OR

Portable engines, portable turbines, or fixed and portable emergency generators for which the Operator or Owner can adequately demonstrate through actual test data (using EPA approved methods) or manufacturer emissions data that at maximum sea level horsepower the units produce no more that 25 tons per year nitrogen oxides (NOx). In such a case, the documentary information is to be kept with the portable engine, portable turbine, or fixed and portable emergency generator.

To be classified as emergency, a generator's sole function is to provide electrical power when power from the local utilities is interrupted.

OR

Portable Aerospace Ground Equipment (such as power generators, compressors, heaters, air conditioners, lighting units) in direct support of aircraft operations on or in the immediate vicinity of an airfield.

To be classified as portable, the engine must comply with the definition of portable source in 20.2.70 NMAC.

7. Emergency generators which on a temporary basis replaces equipment used in normal operation, and which either has an allowable emission rate or potential to emit for each fee pollutant that is equal to or less than the equipment replaced, or which does not operate for a period exceeding 500 hours per calendar year. (revised 3/4/05)

8. Emissions from fuel storage and dispensing equipment operated solely for company-owned, company-leased or company-rented vehicles, which have a capacity of less than 25,000 gallons.

New Mexico Environment Department (NMED) Air Quality Bureau (AQB) Operating Permit Program List of Trivial Activities September 15, 2008

These specific activities are established and approved by the Environment Department. These activities need not be included in an operating permit application. Similar activities may be excluded from operating permit applications with written authorization from the Department. <u>Any</u> activity for which applicable requirements apply, other than ambient air standards, is not trivial, regardless of whether the activity meets the criteria listed below.

1. Any activity that is not a source of regulated pollutants.

2. Activities that occur strictly for maintenance of grounds or buildings, including: lawn care, pest control, grinding, cutting, welding, painting, woodworking, sweeping, general repairs, janitorial activities, plumbing, re-tarring roofs, installing insulation, steam cleaning and water washing activities, and paving of roads, parking lots and other areas.

3. Activities for maintenance and repair of equipment, pollution control equipment, or motor vehicles either inside or outside of a building.

4. Combustion emissions from mobile sources, such as forklifts, courier vehicles, front loaders, graders, carts, and maintenance trucks.

5. Use of fire control equipment, including maintenance, testing, and training.

6. Use of office equipment and products, not including printers or businesses primarily involved in photographic reproduction.

7. Characterization of waste disposal sites (not waste treatment).

8. Non-anthropogenic wind blown dust.

9. Residential activities such as fireplaces, woodstoves, barbecue cookers, and emergency (backup) electrical generators.

 Routine calibration and maintenance of laboratory equipment or other analytical instruments, including gases used as part of those processes.

11. Laundry activities, except for dry cleaning and steam boilers.

12. Food service and cafeteria activities.

 Paint or non-paint materials dispensed from prepackaged aerosol cans of 16 ounce or less capacity.

14. Emissions from solid waste containers (pails, drums, and dumpsters).

NMED AQB List of Trivial Activities

15. Emissions from engine crankcase vents and equipment lubricating pumps.

16. Emissions from equipment lubricating systems (i.e., oil mist).

17. Air-conditioning units used for human comfort.

18. Ventilating units used for human comfort that do not exhaust air pollutants into the ambient air from any manufacturing/industrial or commercial process.

19. Vent emissions from sanitary sewer plumbing traps not within the boundary of publicly owned sewage treatment plant.

20. Tobacco smoking rooms and areas.

21. Portable electrical generators that can be moved without the assistance of any motorized or non-motorized vehicle, conveyance, or device from one location to another.

22. Pneumatically operated equipment.

23. Batteries and battery charging stations, except at battery manufacturing plants.

24. Storage tanks, vessels, and containers holding or storing liquid substances that will not emit any volatile organic compound (VOC) or hazardous air pollutant (HAP).

25. Storage tanks, reservoirs, and pumping and handling equipment of any size containing soaps, vegetable oil, grease, animal fat, and nonvolatile aqueous salt solutions, provided appropriate lids and covers are utilized.

26. Vents from continuous emissions monitors and other analyzers.

27. Natural gas pressure regulator vents, excluding venting at oil and gas production facilities.

28. Hand-held applicator equipment for hot-melt adhesives with no volatile organic compound (VOC) in the adhesive formulation.

29. Laser trimmers using dust collection to prevent fugitive emissions.

30. Bench-scale laboratory equipment used for physical or chemical analysis, but not lab fume hoods or vents.

31. Equipment used for quality control/assurance or inspection purposes, including sampling equipment used to withdraw materials for analysis.

NMED AQB List of Trivial Activities

32. Hydraulic and hydrostatic testing equipment.

33. Fugitive emissions related to movement of passenger vehicles, provided the emissions are not counted for applicability purposes and any required fugitive dust control plan or its equivalent is submitted.

34. Boiler water treatment operations, not including cooling towers.

35. Oxygen scavenging (de-aeration) of water.

36. Emissions from blow down of compressors and other vessels containing pipeline quality natural gas for the purpose of maintenance or due to emergency circumstances.

37. Pipeline quality natural gas emissions from safety relief valves.

Record of Changes: a) 9/15/08, Item 36 deleted due to revisions to 20.2.70 NMAC.

ATTACHMENT 7.4

SDS Sheets for No. 2 Diesel and Gasoline (all grades)

Diesel Fuel (All Types)

MSDS No. 9909

EMERGENCY OVERVIEW CAUTIONI OSHA/NFPA COMBUSTIBLE LIQUID - SLIGHT TO MODERATE IRRITANT EFFECTS CENTRAL NERVOUS SYSTEM HARMFUL OR FATAL IF SWALLOWED Moderate fire hazard. Avoid breathing vapors or mists. May cause dizziness and drowsiness. May cause moderate eye irritation and skin irritation (rash). Long-term, repeated exposure may cause skin cancer. If ingested, do NOT induce vomiting, as this may cause chemical pneumonia (fluid in the lungs).

1. CHEMICAL PRODUCT AND COMPANY INFORMATION

Hess Corporation 1 Hess Plaza Woodbridge, NJ 07095-0961

EMERGENCY TELEPHONE NUMBER (24 hrs): CHEMTREC COMPANY CONTACT (business hours): Corporate Safe MSDS INTERNET WEBSITE: www.hess.com

CHEMTREC (800) 424-9300 Corporate Safety (732) 750-6000 www.hess.com (See Environment, Health, Safety & Social Responsibility)

SYNONYMS: Ultra Low Sulfur Diesel (ULSD); Low Sulfur Diesel; Motor Vehicle Diesel Fuel; Diesel Fuel #2; Dyed Diesel Fuel; Non-Road, Locomotive and Marine Diesel Fuel; Tax-exempt Diesel Fuel

See Section 16 for abbreviations and acronyms.

2. COMPOSITION and CHEMICAL INFORMATION ON INGREDIENTS

INGREDIENT NAME (CAS No.) Diesel Fuel (68476-34-6) Naphthalene (91-20-3) CONCENTRATION PERCENT BY WEIGHT 100 Typically < 0.01

A complex mixture of hydrocarbons with carbon numbers in the range C9 and higher. Diesel fuel may be dyed (red) for tax purposes. May contain a multifunctional additive.

3. HAZARDS IDENTIFICATION

EYES

Contact with liquid or vapor may cause mild irritation.

SKIN

May cause skin irritation with prolonged or repeated contact. Practically non-toxic if absorbed following acute (single) exposure. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are repeatedly exposed.

INGESTION

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

Ingestion may cause gastrointestinal disturbances, including irritation, nausea, vomiting and dlarrhea, and central nervous system (brain) effects similar to alcohol intoxication. In severe cases, tremors, convulsions, loss of consciousness, coma, respiratory arrest, and death may occur.

Diesel Fuel (All Types)

MSDS No. 9909

INHALATION

Excessive exposure may cause irritations to the nose, throat, lungs and respiratory tract. Central nervous system (brain) effects may include headache, dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure, and death.

WARNING: the burning of any hydrocarbon as a fuel in an area without adequate ventilation may result in hazardous levels of combustion products, including carbon monoxide, and inadequate oxygen levels, which may cause unconsciousness, suffocation, and death.

CHRONIC EFFECTS and CARCINOGENICITY

Similar products produced skin cancer and systemic toxicity in laboratory animals following repeated applications. The significance of these results to human exposures has not been determined - see Section 11 Toxicological Information.

IARC classifies whole diesel fuel exhaust particulates as probably carcinogenic to humans (Group 2A), NIOSH regards whole diesel fuel exhaust particulates as a potential cause of occupational lung cancer based on animal studies and limited evidence in humans.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

Irritation from skin exposure may aggravate existing open wounds, skin disorders, and dermatitis (rash).

4. FIRST AID MEASURES

EYES

In case of contact with eyes, immediately flush with clean, low-pressure water for at least 15 min. Hold eyelids open to ensure adequate flushing. Seek medical attention.

SKIN

Remove contaminated clothing. Wash contaminated areas thoroughly with soap and water or waterless hand cleanser. Obtain medical attention if irritation or redness develops.

INGESTION

DO NOT INDUCE VOMITING. Do not give liquids. Obtain immediate medical attention. If spontaneous vomiting occurs, lean victim forward to reduce the risk of aspiration. Monitor for breathing difficulties. Small amounts of material which enter the mouth should be rinsed out until the taste is dissipated.

INHALATION

Remove person to fresh air. If person is not breathing provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

5. FIRE FIGHTING MEASURES

FLAMMABLE PROPERTIES:FLASH POINT:> 125 °F (> 52 °C) minimum PMCCAUTOIGNITION POINT:494 °F (257 °C)OSHA/NFPA FLAMMABILITY CLASS:2 (COMBUSTIBLE)LOWER EXPLOSIVE LIMIT (%):0.6UPPER EXPLOSIVE LIMIT (%):7.5

FIRE AND EXPLOSION HAZARDS

Vapors may be ignited rapidly when exposed to heat, spark, open flame or other source of ignition. When mixed with air and exposed to an ignition source, flammable vapors can burn in the open or explode in confined spaces. Being heavier than air, vapors may travel long distances to an ignition source and flash back. Runoff to sewer may cause fire or explosion hazard.

EXTINGUISHING MEDIA

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, CO2, water spray, fire fighting foam, or Halon.

Diesel Fuel (All Types)

MSDS No. 9909

LARGE FIRES: Water spray, fog or fire fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

FIRE FIGHTING INSTRUCTIONS

Small fires in the incipient (beginning) stage may typically be extinguished using handheld portable fire extinguishers and other fire fighting equipment.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied fire fighting foam.

See Section 16 for the NFPA 704 Hazard Rating.

6. ACCIDENTAL RELEASE MEASURES

ACTIVATE FACILITY'S SPILL CONTINGENCY OR EMERGENCY RESPONSE PLAN.

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible. Evaluate the direction of product travel, diking, sewers, etc. to confirm spill areas. Spills may infiltrate subsurface soil and groundwater; professional assistance may be necessary to determine the extent of subsurface impact.

Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of fire fighting foam may be useful in certain situations to reduce vapors. The proper use of water spray may effectively disperse product vapors or the liquid itself, preventing contact with ignition sources or areas/equipment that require protection.

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal - caution, flammable vapors may accumulate in closed containers. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

7. HANDLING and STORAGE

HANDLING PRECAUTIONS

Handle as a combustible liquid. Keep away from heat, sparks, and open flame! Electrical equipment should be approved for classified area. Bond and ground containers during product transfer to reduce the possibility of static-initiated fire or explosion.

Diesel fuel, and in particular low and ultra low sulfur diesel fuel, has the capability of accumulating a static electrical charge of sufficient energy to cause a fire/explosion in the presence of lower flashpoint products such as gasoline. The accumulation of such a static charge occurs as the diesel flows through pipelines, filters, nozzles and various work tasks such as tank/container filling, splash loading, tank cleaning; product sampling; tank gauging; cleaning, mixing, vacuum truck operations, switch loading, and product agitation. There is a greater potential for static charge accumulation in cold temperature, low humidity conditions.

Documents such as 29 CFR OSHA 1910.106 "Flammable and Combustible Liquids, NFPA 77 Recommended Practice on Static Electricity, API 2003 "Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents and ASTM D4865 "Standard Guide for Generation and Dissipation of Static

Diesel Fuel (All Types)

MSDS No. 9909

Electricity in Petroleum Fuel Systems" address special precautions and design requirements involving loading rates, grounding, bonding, filter installation, conductivity additives and especially the hazards associated with "switch loading." ["Switch Loading" is when a higher flash point product (such as diesel) is loaded into tanks previously containing a low flash point product (such as gasoline) and the electrical charge generated during loading of the diesel results in a static ignition of the vapor from the previous cargo (gasoline).]

Note: When conductivity additives are used or are necessary the product should achieve 25 picosiemens/meter or greater at the handling temperature.

STORAGE PRECAUTIONS

Keep away from flame, sparks, excessive temperatures and open flame. Use approved vented containers. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of Ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks".

WORK/HYGIENIC PRACTICES

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use solvents or harsh abrasive skin cleaners for washing this product from exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse. Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

8. EXPOSURE CONTROLS and PERSONAL PROTECTION

EXPOSURE LIMITS

	Exposure Limits					
Components (CAS No.)	Source	TWA/STEL	Note			
Discol Fuel (20172 51 5)	OSHA	5 mg/m, as mineral oil mist	- A			
Diesel Fuel: (68476-34-6)	ACGIH	100 mg/m ^a (as totally hydrocarbon vapor) TWA	A3, skin			
	OSHA	10 ppm TWA				
Naphthalene (91-20-3)	ACGIH	10 ppm TWA / 15 ppm STEL	A4, Skin			

ENGINEERING CONTROLS

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

EYE/FACE PROTECTION

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying.

SKIN PROTECTION

Gloves constructed of nitrile, neoprene, or PVC are recommended. Chemical protective clothing such as of E.I. DuPont TyChem®, Saranex® or equivalent recommended based on degree of exposure. Note: The resistance of specific material may vary from product to product as well as with degree of exposure. Consult manufacturer specifications for further information.

Diesel Fuel (All Types)

MSDS No. 9909

RESPIRATORY PROTECTION

A NIOSH/MSHA-approved air-purifying respirator with organic vapor cartridges or canister may be permissible under certain circumstances where airborne concentrations are or may be expected to exceed exposure limits or for odor or irritation. Protection provided by air-purifying respirators is limited. Refer to OSHA 29 CFR 1910.134, NIOSH Respirator Decision Logic, and the manufacturer for additional guidance on respiratory protection selection.

Use a positive pressure, air-supplied respirator if there is a potential for uncontrolled release, exposure levels are not known, in oxygen-deficient atmospheres, or any other circumstance where an air-purifying respirator may not provide adequate protection.

9. PHYSICAL and CHEMICAL PROPERTIES

APPEARANCE

Clear, straw-yellow liquid. Dyed fuel oil will be red or reddish-colored.

ODOR

C

Mild, petroleum distillate odor

BASIC PHYSICAL PROPERTIES

BOILING RANGE:	320 to 690 oF (160 to 366 °C)
VAPOR PRESSURE:	0.009 psia @ 70 °F (21 °C)
VAPOR DENSITY (air = 1):	> 1.0
SPECIFIC GRAVITY (H ₂ O = 1):	0.83 to 0.88 @ 60 °F (16 °C)
PERCENT VOLATILES:	100 %
EVAPORATION RATE:	Slow; varies with conditions
SOLUBILITY (H2O):	Negligible

10. STABILITY and REACTIVITY

STABILITY: Stable. Hazardous polymerization will not occur.

CONDITIONS TO AVOID and INCOMPATIBLE MATERIALS

Avoid high temperatures, open flames, sparks, welding, smoking and other ignition sources. Keep away from strong oxidizers; Viton ®; Fluorel ®

HAZARDOUS DECOMPOSITION PRODUCTS

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

11. TOXICOLOGICAL PROPERTIES

ACUTE TOXICITY

Acute dermal LD50 (rabbits): > 5 ml/kg Primary dermal irritation: extremely irritating (rabbits) Guinea pig sensitization: negative Acute oral LD50 (rats): 9 ml/kg Draize eye irritation: non-irritating (rabbits)

CHRONIC EFFECTS AND CARCINOGENICITY

Carcinogenic: OSHA: NO IARC: NO NTP: NO ACGIH: A3

Studies have shown that similar products produce skin tumors in laboratory animals following repeated applications without washing or removal. The significance of this finding to human exposure has not been determined. Other studies with active skin carcinogens have shown that washing the animal's skin with soap and water between applications reduced tumor formation.

MUTAGENICITY (genetic effects)

This material has been positive in a mutagenicity study.

Diesel Fuel (All Types)

DOT SHIPPING LABEL:

MSDS No. 9909

ECOLOGICAL INFORMATION 12.

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable, under Federal and State regulations.

13. DISPOSAL CONSIDERATIONS

Consult federal, state and local waste regulations to determine appropriate disposal options.

TRANSPORTATION INFORMATION 14.

PROPER SHIPPING NAME: HAZARD CLASS and PACKING GROUP: DOT IDENTIFICATION NUMBER:

Diesel Fuel Placard (International Only): 3. PG III NA 1993 (Domestic) UN 1202 (International) None

Use Combustible Placard if shipping in bulk domestically

15. REGULATORY INFORMATION

U.S. FEDERAL, STATE, and LOCAL REGULATORY INFORMATION

This product and its constituents listed herein are on the EPA TSCA Inventory. Any spill or uncontrolled release of this product, including any substantial threat of release, may be subject to federal, state and/or local reporting requirements. This product and/or its constituents may also be subject to other regulations at the state and/or local level. Consult those regulations applicable to your facility/operation.

CLEAN WATER ACT (OIL SPILLS)

Any spill or release of this product to "navigable waters" (essentially any surface water, including certain wetlands) or adjoining shorelines sufficient to cause a visible sheen or deposit of a sludge or emulsion must be reported immediately to the National Response Center (1-800-424-8802) as required by U.S. Federal Law. Also contact appropriate state and local regulatory agencies as required.

CERCLA SECTION 103 and SARA SECTION 304 (RELEASE TO THE ENVIRONMENT)

The CERCLA definition of hazardous substances contains a "petroleum exclusion" clause which exempts crude oil, refined, and unrefined petroleum products and any indigenous components of such. However, other federal reporting requirements (e.g., SARA Section 304 as well as the Clean Water Act if the spill occurs on navigable waters) may still apply.

SARA SECTION 311/312 - HAZARD CLASSES

ACUTE HEALTH	CHRONIC HEALTH	FIRE	SUDDEN RELEASE OF PRESSURE	REACTIVE
Х	Х	Х		

SARA SECTION 313 - SUPPLIER NOTIFICATION

This product may contain listed chemicals below the de minimis levels which therefore are not subject to the supplier notification requirements of Section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) of 1986 and of 40 CFR 372. If you may be required to report releases of chemicals listed in 40 CFR 372.28, you may contact Hess Corporate Safety If you require additional information regarding this product.

CALIFORNIA PROPOSITON 65 LIST OF CHEMICALS

This product contains the following chemicals that are included on the Proposition 65 "List of Chemicals" required by the California Safe Drinking Water and Toxic Enforcement Act of 1986:

INGREDIENT NAME (CAS NUMBER)

Diesel Engine Exhaust (no CAS Number listed)

Date Listed 10/01/1990

CANADIAN REGULATORY INFORMATION (WHMIS)

Class B, Division 3 (Combustible Liquid) and Class D, Division 2, Subdivision B (Toxic by other means)

Diesel I	Fuel (All Types)	MATERIAL SA	AFET	Y DATA	A SHEET MSDS No. 9909
16. C	THER INFORMAT	ION			
10. 0	THER INFORMAT	ION			
FIRE: REACTIVITY:		0 2 0			
Refer to h	VFPA 704 "Identification	ation of the Fire Haz	zards o	f Materia	ls" for further information
<u>HMIS® H</u>	IAZARD RATING	HEALTH: FIRE: PHYSICAL:	1* 2 0	* Chro	pnic
SUPERS	EDES MSDS DATE	ED: 02/28/2001			
	IATIONS:				
		Less than = Not Determined		eater that parts pe	
ACRONY					
ACGIH		nce of Government		NTP	National Toxicology Program
1.1.1.1	Industrial Hygienis			OPA	Oil Pollution Act of 1990
AIHA American Industrial Hygiene Association ANSI American National Standards Institute			OSHA	U.S. Occupational Safety & Health	
ANSI	(212) 642-4900	Standards Institute		PEL	Administration Permissible Exposure Limit (OSHA)
API	American Petroleu	im Institute		RCRA	Resource Conservation and Recovery
	(202) 682-8000			001	Act
GERCLA	Comprehensive El Compensation, an			REL SARA	Recommended Exposure Limit (NIOSH Superfund Amendments and
DOT	U.S. Department of			UNINA	Reauthorization Act of 1986 Title III
3.5	[General info: (80			SCBA	Self-Contained Breathing Apparatus
EPA		al Protection Agency		SPCC	Spill Prevention, Control, and
HMIS	Hazardous Materia	als Information Syst	em		Countermeasures
IARC	International Agen Cancer	cy For Research O	n	STEL	Short-Term Exposure Limit (generally 15 minutes)
MSHA		lealth Administration	1	TLV	Threshold Limit Value (ACGIH)
NFPA	National Fire Prote			TSCA	Toxic Substances Control Act
0.00.000	(617)770-3000	Contraction (Second Second O		TWA	Time Weighted Average (8 hr.)
NIOSH		of Occupational Safe		WEEL	Workplace Environmental Exposure Level (AIHA)
NOIC		Change (proposed		WHMIS	Canadian Workplace Hazardous

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

Information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

MATERIAL SAFETY DATA SHEET

Gasoline, All Grades

MSDS No. 9950

EMERGENCY OVERVIEW DANGERI

EXTREMELY FLAMMABLE - EYE AND MUCOUS MEMBRANE IRRITANT - EFFECTS CENTRAL NERVOUS SYSTEM - HARMFUL OR FATAL IF SWALLOWED - ASPIRATION HAZARD

High fire hazard. Keep away from heat, spark, open flame, and other ignition sources.

If ingested, do NOT induce vomiting, as this may cause chemical pneumonia (fluid in the lungs). Contact may cause eye, skin and mucous membrane irritation. Harmful if absorbed through the skin. Avoid prolonged breathing of vapors or mists. Inhalation may cause irritation, anesthetic effects (dizziness, nausea, headache, intoxication), and respiratory system effects.

Long-term exposure may cause effects to specific organs, such as to the liver, kidneys, blood, nervous system, and skin. Contains benzene, which can cause blood disease, including anemia and leukemia.

1. CHEMICAL PRODUCT and COMPANY INFORMATION (rev. Jan-04) Amerada Hess Corporation 1 Hess Plaza

Woodbridge, NJ 07095-0961

EMERGENCY TELEPHONE NUMBER (24 hrs): COMPANY CONTACT (business hours): MSDS Internet Website CHEMTREC (800)424-9300 Corporate Safety (732)750-6000 www.hess.com/about/environ.html

SYNONYMS: Hess Conventional (Oxygenated and Non-oxygenated) Gasoline; Reformulated Gasoline (RFG); Reformulated Gasoline Blendstock for Oxygenate Blending (RBOB); Unleaded Motor or Automotive Gasoline

See Section 16 for abbreviations and acronyms.

2. COMPOSITION and INFORMATION ON INC	GREDIENTS * (rev. Jan-04)		
INGREDIENT NAME (CAS No.)	CONCENTRATION PERCENT BY WEIGHT		
Gasoline (86290-81-5)	100		
Benzene (71-43-2)	0.1 - 4.9 (0.1 - 1.3 reformulated gasoline)		
n-Butane (106-97-8)	< 10		
Ethyl Alcohol (Ethanol) (64-17-5)	0 - 10		
Ethyl benzene (100-41-4)	< 3		
n-Hexane (110-54-3)	0.5 to 4		
Methyl-tertiary butyl ether (MTBE) (1634-04-4)	0 to 15.0		
Tertiary-amyl methyl ether (TAME) (994-05-8)	0 to 17.2		
Toluene (108-88-3)	1 - 25		
1,2,4- Trimethylbenzene (95-63-6)	< 6		
Xylene, mixed isomers (1330-20-7)	1 - 15		

A complex blend of petroleum-derived normal and branched-chain alkane, cycloalkane, alkene, and aromatic hydrocarbons. May contain antioxidant and multifunctional additives. Non-oxygenated Conventional Gasoline and RBOB do not have oxygenates (Ethanol or MTBE and/or TAME). Oxygenated Conventional and Reformulated Gasoline will have oxygenates for octane enhancement or as legally required.

MATERIAL SAFETY DATA SHEET

Gasoline, All Grades

MSDS No. 9950

3. HAZARDS IDENTIFICATION (rev. Dec-97)

EYES

Moderate irritant. Contact with liquid or vapor may cause irritation.

SKIN

Practically non-toxic if absorbed following acute (single) exposure. May cause skin irritation with prolonged or repeated contact. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are exposed repeatedly.

INGESTION

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

Ingestion may cause gastrointestinal disturbances, including irritation, nausea, vomiting and diarrhea, and central nervous system (brain) effects similar to alcohol intoxication. In severe cases, tremors, convulsions, loss of consciousness, coma, respiratory arrest, and death may occur.

INHALATION

Excessive exposure may cause irritations to the nose, throat, lungs and respiratory tract. Central nervous system (brain) effects may include headache, dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure, and death.

WARNING: the burning of any hydrocarbon as a fuel in an area without adequate ventilation may result in hazardous levels of combustion products, including carbon monoxide, and inadequate oxygen levels, which may cause unconsciousness, suffocation, and death.

CHRONIC EFFECTS and CARCINOGENICITY

Contains benzene, a regulated human carcinogen. Benzene has the potential to cause anemia and other blood diseases, including leukemia, after repeated and prolonged exposure. Exposure to light hydrocarbons in the same boiling range as this product has been associated in animal studies with systemic toxicity. See also Section 11 - Toxicological Information.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

Irritation from skin exposure may aggravate existing open wounds, skin disorders, and dermatitis (rash). Chronic respiratory disease, liver or kidney dysfunction, or pre-existing central nervous system disorders may be aggravated by exposure.

4.	FIRST AID MEASURES	(rev, Dec-97)
And a line in		

EYES

In case of contact with eyes, immediately flush with clean, low-pressure water for at least 15 min. Hold eyelids open to ensure adequate flushing. Seek medical attention.

SKIN

Remove contaminated clothing. Wash contaminated areas thoroughly with soap and water or waterless hand cleanser. Obtain medical attention if irritation or redness develops.

INGESTION

DO NOT INDUCE VOMITING. Do not give liquids. Obtain immediate medical attention. If spontaneous vomiting occurs, lean victim forward to reduce the risk of aspiration. Small amounts of material which enter the mouth should be rinsed out until the taste is dissipated.

INHALATION

Remove person to fresh air. If person is not breathing, ensure an open airway and provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

MATERIAL SAFETY DATA SHEET

Gasoline, All Grades

MSDS No. 9950

5. FIRE FIGHTING MEASURES (rev. Dec-97)

FLAMMABLE PROPERTIES:

FLASH POINT: AUTOIGNITION TEMPERATURE: OSHA/NFPA FLAMMABILITY CLASS: LOWER EXPLOSIVE LIMIT (%): UPPER EXPLOSIVE LIMIT (%): -45 °F (-43°C) highly variable; > 530 °F (>280 °C) 1A (flammable liquid) 1.4% 7.6%

FIRE AND EXPLOSION HAZARDS

Vapors may be ignited rapidly when exposed to heat, spark, open flame or other source of ignition. Flowing product may be ignited by self-generated static electricity. When mixed with air and exposed to an ignition source, flammable vapors can burn in the open or explode in confined spaces. Being heavier than air, vapors may travel long distances to an ignition source and flash back. Runoff to sewer may cause fire or explosion hazard.

EXTINGUISHING MEDIA

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, CO2, water spray, fire fighting foam, or Halon.

LARGE FIRES: Water spray, fog or fire fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

During certain times of the year and/or in certain geographical locations, gasoline may contain MTBE and/or TAME. Firefighting foam suitable for polar solvents is recommended for fuel with greater than 10% oxygenate concentration - refer to NFPA 11 "Low Expansion Foam - 1994 Edition."

FIRE FIGHTING INSTRUCTIONS

Small fires in the inciplent (beginning) stage may typically be extinguished using handheld portable fire extinguishers and other fire fighting equipment.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied fire fighting foam.

See Section 16 for the NFPA 704 Hazard Rating.

6. ACCIDENTAL RELEASE MEASURES (rev. Dec-97)

ACTIVATE FACILITY SPILL CONTINGENCY or EMERGENCY PLAN.

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible. Evaluate the direction of product travel, diking, sewers, etc. to confirm spill areas. Spills may infiltrate subsurface soil and groundwater; professional assistance may be necessary to determine the extent of subsurface impact.

Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of fire fighting foam may be useful in certain situations to reduce vapors. The proper use of water spray may effectively disperse product

MATERIAL SAFETY DATA SHEET

Gasoline, All Grades

MSDS No. 9950

vapors or the liquid itself, preventing contact with ignition sources or areas/equipment that require protection.

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up Into a waste container for reclamation or disposal - caution, flammable vapors may accumulate in closed containers. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

7. HANDLING and STORAGE (rev. Dec-97) HANDLING PRECAUTIONS

******USE ONLY AS A MOTOR FUEL****** ******DO NOT SIPHON BY MOUTH*****

Handle as a flammable liquid. Keep away from heat, sparks, and open flamel Electrical equipment should be approved for classified area. Bond and ground containers during product transfer to reduce the possibility of static-initiated fire or explosion.

Special slow load procedures for "switch loading" must be followed to avoid the static ignition hazard that can exist when higher flash point material (such as fuel oil) is loaded into tanks previously containing low flash point products (such as this product) - see API Publication 2003, "Protection Against Ignitions Arising Out Of Static, Lightning and Stray Currents.

STORAGE PRECAUTIONS

Keep away from flame, sparks, excessive temperatures and open flame. Use approved vented containers. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks".

WORK/HYGIENIC PRACTICES

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use solvents or harsh abrasive skin cleaners for washing this product from exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse. Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

8. EXPOSURE CONTROLS	and PERSON	IAL PR	OTECTI	ON (rev. Jan-04)
EXPOSURE LIMITS				All and an all and all and all and all all all all all all all all all al
Component (CAS No.)				Exposure Limits
	Source	TWA (ppm)	STEL (ppm)	Note
Gasoline (86290-81-5)	ACGIH	300	500	A3
Benzene (71-43-2)	OSHA	1	5	Carcinogen
	ACGIH	0.5	2.5	A1, skin
	USCG	1	5	
n-Bulane (106-97-8)	ACGIH	800		2003 NOIC: 1000 ppm (TWA) Aliphatic Hydrocarbon Gases Alkane (C1-C4)
Ethyl Alcohol (ethanol) (64-17-5)	OSHA	1000		
	ACGIH	1000	- 0.00V	A4
Ethyl benzene (100-41-4)	OSHA	100		
	ACGIH	100	125	A3

MATERIAL SAFETY DATA SHEET

Gasoline, All Grades

MSDS No. 9950

Component (CAS No.)	Source	TWA (ppm)	STEL (ppm)	Exposure Limits Note
n-Hexane (110-54-3)	OSHA	500		
	ACGIH	50		skin
Methyl-tertiary butyl ether [MTBE] (1634-04-4)	ACGIH	50		A3
Tertiary-amyl methyl ether [TAME] (994-05-8)	*********			None established
Toluene (108-88-3)	OSHA	200		Ceiling: 300 ppm; Peak: 500 ppm (10 min.)
	ACGIH	50	-	A4 (skin)
1,2,4- Trimethylbenzene (95-63-6)	ACGIH	25		***************************************
Xylene, mixed isomers (1330-20-7)	OSHA	100		***************************************
Contraction and the second second second	ACGIH	100	150	A4

ENGINEERING CONTROLS

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

EYE/FACE PROTECTION

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying.

SKIN PROTECTION

Gloves constructed of nitrile or neoprene are recommended. Chemical protective clothing such as that made of of E.I. DuPont Tychem ®, products or equivalent is recommended based on degree of exposure.

Note: The resistance of specific material may vary from product to product as well as with degree of exposure. Consult manufacturer specifications for further information.

RESPIRATORY PROTECTION

A NIOSH-approved air-purifying respirator with organic vapor cartridges or canister may be permissible under certain circumstances where airborne concentrations are or may be expected to exceed exposure limits or for odor or irritation. Protection provided by air-purifying respirators is limited. Refer to OSHA 29 CFR 1910.134, NIOSH Respirator Decision Logic, and the manufacturer for additional guidance on respiratory protection selection and limitations.

Use a positive pressure, air-supplied respirator if there is a potential for uncontrolled release, exposure levels are not known, in oxygen-deficient atmospheres, or any other circumstance where an air-purifying respirator may not provide adequate protection.

9. PHYSICAL and CHEMICAL PROPERTIES (rev. Jan-04)

APPEARANCE

A translucent, straw-colored or light yellow liquid

ODOR

A strong, characteristic aromatic hydrocarbon odor. Oxygenated gasoline with MTBE and/or TAME may have a sweet, ether-like odor and is detectable at a lower concentration than non-oxygenated gasoline.

ODOR THRESHOLD

	Odor Detection
Non-oxygenated gasoline:	0.5 - 0.6 ppm
Gasoline with 15% MTBE:	0.2 - 0.3 ppm
Gasoline with 15% TAME:	0.1 ppm

Odor Recognition 0.8 - 1.1 ppm 0.4 - 0.7 ppm 0.2 ppm

BASIC PHYSICAL PROPERTIES

1.1	BOILING RANGE:	85 to 437 °F (39 to 200 °C)
>C	VAPOR PRESSURE:	6.4 - 15 RVP @ 100 °F (38 °C) (275-475 mm Hg @ 68 °F (20 °C)
	VAPOR DENSITY (air = 1):	AP 3 to 4
	SPECIFIC GRAVITY (H ₂ O = 1):	0.70 0.78
	EVAPORATION RATE:	10-11 (n-butyl acetate = 1)
	PERCENT VOLATILES:	100 %

MATERIAL SAFETY DATA SHEET

Gasoline, All Grades

SOLUBILITY (H2O):

Non-oxygenated gasoline - negligible (< 0.1% @ 77 °F). Gasoline with 15% MTBE - slight (0.1 - 3% @ 77 °F); ethanol is readily soluble in water

MSDS No. 9950

10. STABILITY and REACTIVITY (rev. Dec-94)

STABILITY: Stable. Hazardous polymerization will not occur.

CONDITIONS TO AVOID

Avoid high temperatures, open flames, sparks, welding, smoking and other ignition sources

INCOMPATIBLE MATERIALS

Keep away from strong oxidizers.

HAZARDOUS DECOMPOSITION PRODUCTS

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke). Contact with nitric and sulfuric acids will form nitrocresols that can decompose violently.

11. TOXICOLOGICAL PROPERTIES (rev.	Dec-97)
ACUTE TOXICITY Acute Dermal LD50 (rabbits): > 5 ml/kg Primary dermal irritation (rabbits): slightly irritating Guinea plg sensitization: negative	Acute Oral LD50 (rat): 18.75 ml/kg Draize eye irritation (rabbits): non-irritating
CHRONIC EFFECTS AND CARCINOGENICITY Carcinogenicity:OSHA: NO IARC: YES - 2B	NTP: NO ACGIH: YES (A3)

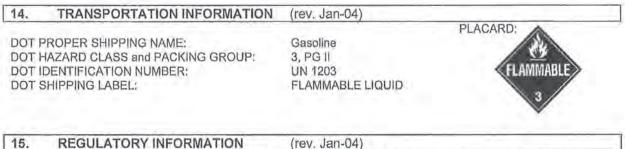
IARC has determined that gasoline and gasoline exhaust are possibly carcinogenic in humans. Inhalation exposure to completely vaporized unleaded gasoline caused kidney cancers in male rats and liver tumors in female mice. The U.S. EPA has determined that the male kidney tumors are species-specific and are irrelevant for human health risk assessment. The significance of the tumors seen in female mice is not known. Exposure to light hydrocarbons in the same boiling range as this product has been associated in animal studies with effects to the central and peripheral nervous systems, liver, and kidneys. The significance of these animal models to predict similar human response to gasoline is uncertain.

This product contains benzene. Human health studies indicate that prolonged and/or repeated overexposure to benzene may cause damage to the blood-forming system (particularly bone marrow), and serious blood disorders such as aplastic anemia and leukemia. Benzene is listed as a human carcinogen by the NTP, IARC, OSHA and ACGIH.

This product may contain methyl tertiary butyl ether (MTBE): animal and human health effects studies indicate that MTBE may cause eye, skin, and respiratory tract irritation, central nervous system depression and neurotoxicity. MTBE is classified as an animal carcinogen (A3) by the ACGIH.

12. ECOLOGICAL INFORMATION (rev. Jan-04)

Keep out of sewers, drainage areas and waterways. Report spills and releases, as applicable, under Federal and State regulations. If released, oxygenates such as ethers and alcohols will be expected to exhibit fairly high mobility in soil, and therefore may leach into groundwater. The API (www.apl.org) provides a number of useful references addressing petroleum and oxygenate contamination of groundwater.


13. DISPOSAL CONSIDERATIONS (rev. Dec-97)

Consult federal, state and local waste regulations to determine appropriate disposal options.

MATERIAL SAFETY DATA SHEET

Gasoline, All Grades

MSDS No. 9950

U.S. FEDERAL, STATE, and LOCAL REGULATORY INFORMATION

This product and its constituents listed herein are on the EPA TSCA Inventory. Any spill or uncontrolled release of this product, including any substantial threat of release, may be subject to federal, state and/or local reporting requirements. This product and/or its constituents may also be subject to other federal, state, or local regulations; consult those regulations applicable to your facility/operation.

CLEAN WATER ACT (OIL SPILLS)

Any spill or release of this product to "navigable waters" (essentially any surface water, including certain wetlands) or adjoining shorelines sufficient to cause a visible sheen or deposit of a sludge or emulsion must be reported immediately to the National Response Center (1-800-424-8802) or, if not practical, the U.S. Coast Guard with follow-up to the National Response Center, as required by U.S. Federal Law. Also contact appropriate state and local regulatory agencies as required.

CERCLA SECTION 103 and SARA SECTION 304 (RELEASE TO THE ENVIRONMENT)

The CERCLA definition of hazardous substances contains a "petroleum exclusion" clause which exempts crude oil, refined, and unrefined petroleum products and any indigenous components of such. However, other federal reporting requirements (e.g., SARA Section 304 as well as the Clean Water Act if the spill occurs on navigable waters) may still apply.

SARA	SECTION	311/312 -	HAZARD	CLASSES

ACUTE HEALTH	CHRONIC HEALTH	FIRE	SUDDEN RELEASE OF PRESSURE	REACTIVE
Х	Х	Х		

SARA SECTION 313 - SUPPLIER NOTIFICATION

This product contains the following toxic chemicals subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) of 1986 and of 40 CFR 372:

INGREDIENT NAME (CAS NUMBER)	CONCENTRATION WT. PERCENT		
Benzene (71-43-2)	0.1 to 4.9 (0.1 to 1.3 for reformulated gasoline)		
Ethyl benzene (100-41-4)	< 3		
n-Hexane (110-54-3)	0.5 to 4		
Methyl-tertiary butyl ether (MTBE) (1634-04-4)	0 to 15.0		
Toluene (108-88-3)	1 to 15		
1,2,4- Trimethylbenzene (95-63-6)	< 6		
Xylene, mixed isomers (1330-20-7)	1 to 15		

US EPA guidance documents (<u>www.epa.gov/tri</u>) for reporting Persistent Bioaccumulating Toxics (PBTs) indicate this product may contain the following deminimis levels of toxic chemicals subject to Section 313 reporting:

INGREDIENT NAME (CAS NUMBER)	CONCENTRATION - Parts per million (ppm) by weight
Polycyclic aromatic compounds (PACs)	17
Benzo (g,h,i) perylene (191-24-2)	2.55
Lead (7439-92-1)	0.079

MATERIAL SAFETY DATA SHEET

Gasoline, All Grades

MSDS No. 9950

CANADIAN REGULATORY INFORMATION (WHMIS)

Class B, Division 2 (Flammable Liquid)

Class D, Division 2A (Very toxic by other means) and Class D, Division 2B (Toxic by other means)

1	THER INFORMATI	ON (rev. Jan	-04)	_	
NFPA® H	AZARD RATING	HEALTH: FIRE: REACTIVITY:	1 3 0	Slight Serior Minim	us
HMIS® H	IAZARD RATING	HEALTH: FIRE: REACTIVITY: * CHRONIC	1* 3 0	Slight Serior Minim	US
SUPERSI	EDES MSDS DATE	D: 12/30/97			
AP = App N/A = Not	Applicable N/D	Less than == = Not Determined =		eater th parts p	
ACRONY					A MARTINE AND A MARTINE
ACGIH		nce of Governmental		TP	National Toxicology Program Oil Pollution Act of 1990
AIHA	Industrial Hygienis	s I Hygiene Associatio		PA SHA	U.S. Occupational Safety & Health
ANSI		Standards Institute	1 0	SHA	Administration
(NO)	(212)642-4900	otandardo montato	P	EL	Permissible Exposure Limit (OSHA)
API	American Petroleu	m Institute		CRA	Resource Conservation and Recovery Ac
	(202)682-8000			EL	Recommended Exposure Limit (NIOSH)
CERCLA		nergency Response	S	ARA	Superfund Amendments and
	Compensation, and				Reauthorization Act of 1986 Title III
DOT	U.S. Department o			CBA	Self-Contained Breathing Apparatus
	[General Info: (800		S	PCC	Spill Prevention, Control, and
EPA		I Protection Agency		-	Countermeasures
-IMIS ARC		als Information Syste cy For Research On	m s	TEL	Short-Term Exposure Limit (generally 15 minutes)
AINO	Cancer	by FOF Research On	т	LV	Threshold Limit Value (ACGIH)
MSHA	and the second sec	ealth Administration		SCA	Toxic Substances Control Act
NFPA	National Fire Prote			WA	Time Weighted Average (8 hr.)
	(617)770-3000			VEEL	Workplace Environmental Exposure
NIOSH	National Institute o	f Occupational Safel			Level (AIHA)
	and Health		V	VHMIS	Workplace Hazardous Materials
NOIC		Change (proposed			Information System (Canada)

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

Information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not achered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

ATTACHMENT 7.5

Parts Washer Solvent and Motor Oil MSDS Data

ZEP DYNA 143 20GL

Version 2.4

Revision Date 02/11/2016

Print Date 05/02/2016

SECTION 1. PRODUCT AND COMPANY IDENTIFICATION

Material name	4	ZEP DYNA 143 20GL	
Material number	a,	0000000000036650	
Manufacturer or supplier's	deta	ils	
Company	÷	Zep Inc.	
Address	1	1310 Seaboard Industrial Blvd., NW Atlanta, GA 30318	
Telephone		404-352-1680	

Fax CDC Information		Campliance Capicon 1 977 109 0027
For SDS Information		Compliance Services 1-877-428-9937
For a Medical Emergency	:	877-541-2016 Toll Free - All Calls Recorded
For a Transportation	:	CHEMTREC: 800-424-9300 - All Calls Recorded.
Emergency		In the District of Columbia 202-483-7616

SECTION 2. HAZARDS IDENTIFICATION

Emergency Overview

Appearance	liquid	
Colour	colourless	
Odour	solvent-like, slight	

	GHS Classification	
	Flammable liquids Aspiration hazard	: Category 4 : Category 1
	GHS Label element	
	Hazard pictograms	
	Signal word	: Danger
	Hazard statements	: H227 Combustible liquid. H304 May be fatal if swallowed and enters airways.
	Precautionary statements	 Prevention: P210 Keep away from heat/sparks/open flames/hot surfaces. No smoking. P280 Wear protective gloves/ eye protection/ face protection. Response: P301 + P310 IF SWALLOWED: Immediately call a POISON CENTER or doctor/ physician. P331 Do NOT induce vomiting. P370 + P378 In case of fire: Use dry sand, dry chemical or alcohol-resistant foam for extinction.
-		4.140

1/10

Revision Date 02/11/2016	Print Date 05/02/2016
Storage: P403 + P235 Store in a well-ventila P405 Store locked up. Disposal: Dispose of contents/container in a regulation.	
No component of this product present equal to 0.1% is identified as probable human carcinogen by IARC.	
No component of this product present equal to 0.1% is identified as a carcin	
No component of this product present equal to 0.1% is identified as a carcin	
No component of this product present equal to 0.1% is identified as a known by NTP.	
	Storage: P403 + P235 Store in a well-ventile P405 Store locked up. Disposal: Dispose of contents/container in a regulation. No component of this product present equal to 0.1% is identified as probable human carcinogen by IARC. No component of this product present equal to 0.1% is identified as a carcin carcinogen by ACGIH. No component of this product present equal to 0.1% is identified as a carcin carcinogen by ACGIH. No component of this product present equal to 0.1% is identified as a carcin carcinogen by OSHA. No component of this product present equal to 0.1% is identified as a known

SECTION 3. COMPOSITION/INFORMATION ON INGREDIENTS

Substance / Mixture : Mixture

Hazardous components

Chemical Name	CAS-No.	Concentration [%]
Distillates (petroleum), hydrotreated light	64742-47-8	>= 90 - <= 100
The exact percentages of disclosed substance	s are withheld as trade	secrets

The exact percentages of disclosed substances are withheld as trade secrets.

SECTION 4. FIRST AID MEASURES

General advice	: Move out of dangerous area. Show this safety data sheet to the doctor in attendance. Symptoms of poisoning may appear several hours later. Do not leave the victim unattended.
If inhaled	: If unconscious place in recovery position and seek medical advice. If symptoms persist, call a physician.
In case of skin contact	: Wash off immediately with plenty of water for at least 15 minutes. If on skin, rinse well with water. If on clothes, remove clothes.
In case of eye contact	 Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician. Remove contact lenses. Protect unharmed eye. Keep eye wide open while rinsing.

ZepInc

ZEP DYNA 143 20GL

Version 2.4	Revision Date 02/11/2016	Print Date 05/02/2016	
	If eye irritation persists, consult a specialist.		
If swallowed	 Keep respiratory tract clear. Do NOT induce vomiting. Never give anything by mouth to a lf symptoms persist, call a physici Take victim immediately to hospit 	ian.	

SECTION 5. FIREFIGHTING MEASURES

Dry chemical Dry sand	
Unsuitable extinguishing : High volume water jet media	
Hazardous combustion : Carbon dioxide (CO2) products Carbon monoxide Smoke	
Specific extinguishing : Use extinguishing measures that are appropriate to loc methods circumstances and the surrounding environment.	al
Further information : For safety reasons in case of fire, cans should be store separately in closed containments. Use a water spray to cool fully closed containers.	d
Special protective equipment : Wear self-contained breathing apparatus for firefighting necessary.	lf

SECTION 6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures	-	Use personal protective equipment. Ensure adequate ventilation.
Environmental precautions	:	Prevent product from entering drains. Prevent further leakage or spillage if safe to do so. If the product contaminates rivers and lakes or drains inform respective authorities.
Methods and materials for containment and cleaning up	•	Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see section 13). Keep in suitable, closed containers for disposal.

SECTION 7. HANDLING AND STORAGE

Advice on safe handling	: Avoid formation of aerosol. Do not breathe vapours/dust.
	Avoid contact with skin and eyes. For personal protection see section 8.

3/10

ZEP DYNA 143 20GL

-

Version 2.4	Revision Date 02/11/2016	Print Date 05/02/2016
	Smoking, eating and drinking sho application area.	uld be prohibited in the
	Provide sufficient air exchange ar Dispose of rinse water in accorda regulations.	
Conditions for safe storage	 No smoking. Keep container tightly closed in a place. Observe label precautions. Electrical installations / working m the technological safety standards 	naterials must comply with
Materials to avoid	: Strong oxidizing agents	

SECTION 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Components with workplace control parameters

	(Form of exposure)	Control parameters / Permissible concentration	Basis
64742-47-8	TWA	500 ppm 2,000 mg/m3	OSHA Z-1
	TWA	400 ppm 1,600 mg/m3	OSHA P0
	64742-47-8	The second se	64742-47-8 TWA 500 ppm 2,000 mg/m3 TWA 400 ppm

Hand protection Remarks	: The suitability for a specific workplace should be discussed
	with the producers of the protective gloves.
Eye protection	: Ensure that eyewash stations and safety showers are close to the workstation location. Tightly fitting safety goggles
Skin and body protection	: Impervious clothing Choose body protection according to the amount and concentration of the dangerous substance at the work place.
Hygiene measures	: When using do not eat or drink. When using do not smoke. Wash hands before breaks and at the end of workday.

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

4/10

ZEP DYNA 143 20GL Version 2.4 Revisio

: liquid	
: colourless	
: solvent-like, slight	
: No data available	
: Not applicable	
: No data available	
: 192 - 211 °C	
: 61.66 °C Method: Pensky-Martens closed cup	
: 0.14 n-Butyl Acetate = 1.0	
: 7.0 %(V)	
: 0.7 %(V)	
0.43 hPa (20 °C)	
: No data available	
: 0.79 g/cm3	
: insoluble	
: not determined	
: No data available	
: not determined	
: No data available	
: No data available	
	 colourless solvent-like, slight No data available Not applicable No data available 192 - 211 °C 61.66 °C Method: Pensky-Martens closed cup 0.14 n-Butyl Acetate = 1.0 7.0 %(V) 0.7 %(V) 0.43 hPa (20 °C) No data available 0.79 g/cm3 insoluble not determined No data available not determined No data available No data available

SECTION 10. STABILITY AND REACTIVITY

with air.
d as directed.

Version 2.4

Revision Date 02/11/2016

Print Date 05/02/2016

Zepinc

Hazardous decomposition products : Carbon oxides

SECTION 11. TOXICOLOGICAL INFORMATION

Acute toxicity

 Components:

 Distillates (petroleum), hydrotreated light:

 Acute oral toxicity
 : LD50 Rat: > 5,000 mg/kg

 Acute inhalation toxicity
 : LC50 Rat: > 4.6 mg/l

 Exposure time: 6 h

Acute dermal toxicity : LD50 Rat: > 2,000 mg/kg

Skin corrosion/irritation

Product:

Remarks: May cause skin irritation and/or dematitis.

Serious eye damage/eye irritation

Product:

Remarks: Vapours may cause irritation to the eyes, respiratory system and the skin.

Respiratory or skin sensitisation No data available Germ cell mutagenicity No data available Carcinogenicity No data available **Reproductive toxicity** No data available Distillates (petroleum), hydrotreated light: STOT - single exposure No data available STOT - repeated exposure No data available Aspiration toxicity No data available **Further information** Product:

6/10

ZEP DYNA 143 20GL

Version 2.4

Revision Date 02/11/2016

Print Date 05/02/2016

Zepinc

Remarks: Solvents may degrease the skin.

Components: Distillates (petroleum), hydrotreated light: Remarks: No data available

SECTION 12. ECOLOGICAL INFORMATION

Ecotoxicity

No data available

Persistence and degradability

No data available Bioaccumulative potential

Product:

TTOMMON	
Partition coefficient: n- octanol/water	: Remarks: No data available
Mobility in soil	
No data available	
Other adverse effects	
No data available Product:	
Regulation	40 CFR Protection of Environment; Part 82 Protection of Stratospheric Ozone - CAA Section 602 Class I Substances
Remarks	This product neither contains, nor was manufactured with a Class I or Class II ODS as defined by the U.S. Clean Air Act Section 602 (40 CFR 82, Subpt. A, App.A + B).
Additional ecological information	: No data available

Components: Distillates (petroleum), hydrotreated light :

Additional ecological : No data available information

SECTION 13. DISPOSAL CONSIDERATIONS

Disposal methods	
Waste from residues	: Dispose of in accordance with local regulations.
	Do not dispose of waste into sewer. Do not contaminate ponds, waterways or ditches with

ZEP DYNA 143 20GL

Version 2.4	Revision Date 02/11/2016	Print Date 05/02/2016
	chemical or used container.	
Contaminated packaging	: Empty remaining contents. Dispose of as unused product. Do not re-use empty containers. Do not burn, or use a cutting torch	on, the empty drum.

SECTION 14. TRANSPORT INFORMATION

Transportation Regulation: 49 CFR (USA): NOT REGULATED AS DANGEROUS GOODS OR HAZARDOUS MATERIAL

Transportation Regulation: IMDG (Vessel): NOT REGULATED AS DANGEROUS GOODS OR HAZARDOUS MATERIAL

Transportation Regulation: IATA (Cargo Air): NOT REGULATED AS DANGEROUS GOODS OR HAZARDOUS MATERIAL

Transportation Regulation: IATA (Passenger Air): NOT REGULATED AS DANGEROUS GOODS OR HAZARDOUS MATERIAL

Transportation Regulation: TDG (Canada): NOT REGULATED AS DANGEROUS GOODS OR HAZARDOUS MATERIAL

SECTION 15. REGULATORY INFORMATION

EPCRA - Emergency Planning and Community Right-to-Know Act

CERCLA Reportable Quantity

This material does not contain any components with a CERCLA RQ.

SARA 304 Extremely Hazardous Substances Reportable Quantity

This material does not contain any components with a section 304 EHS RQ.

SARA 311/312 Hazards	: Fire Hazard Acute Health Hazard
SARA 302	: No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.
SARA 313	: This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.
California Prop 65	This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other

ZEP DYNA 143 20GL

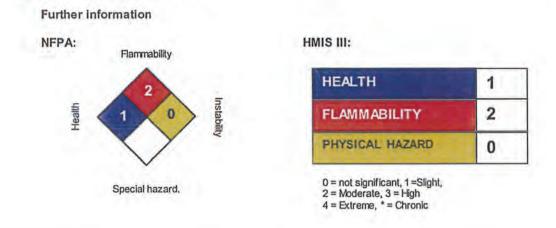
Zepinc

Version 2.4

Revision Date 02/11/2016

Print Date 05/02/2016

reproductive harm.


The components of this product are reported in the following inventories:

On TSCA Inventory
All components of this product are on the Canadian DSL
On the inventory, or in compliance with the inventory
Not in compliance with the inventory
On the inventory, or in compliance with the inventory
On the inventory, or in compliance with the inventory

Inventory Acronym and Validity Area Legend:

AICS (Australia), DSL (Canada), IECSC (China), REACH (European Union), ENCS (Japan), ISHL (Japan), KECI (Korea), NZIOC (New Zealand), PICCS (Philippines), TCSI (Taiwan), TSCA (USA)

SECTION 16. OTHER INFORMATION

OSHA GHS Label Information:

Hazard pictograms

Signal w ord Hazard statements Precautionary statements

Combustible liquid. May be fatal if sw allowed and enters airways.

Prevention: Keep aw ay from heat/sparks/open flames/hot surfaces. No smoking. Wear protective gloves/ eye protection/ face protection. Response: IF SWALLOWED: Immediately call a POISON CENTER or doctor/ physician. Do NOT induce vomiting. In case of fire: Use dry sand, dry chemical or alcohol-resistant foamfor extinction. Storage: Store in a w ell-ventilated place. Keep cool. Store locked up. Disposal: Dispose of contents/container in accordance with local regulation.

Version:	2.4
Revision Date:	02/11/2016
Print Date:	05/02/2016

1

SAFETY DATA SHEET

ZEP DYNA 143 20GL

Version 2.4

Revision Date 02/11/2016

Print Date 05/02/2016

Zeplnc

We believe the statements, technical information and recommendations contained herein are reliable, but they are given without warranty or guarantee of any kind. The information in this document applies to this specific material as supplied. It may not be valid for this material if it is used in combination with any other materials. Users should make their own investigations to determine the suitability and applicability of the information for their particular purposes. This SDS has been prepared by the Compliance Services organization supporting this manufacturer, supplier or distributor.

Zep Inc. markets products under well recognized and established brand names such as Zep®, Zep Commercial®,Zep Professional®, Enforcer®, National Chemical™, Selig™, Misty®, Next Dimension™, Petro®, i-Chem®, TimeMist®, TimeWick™, MicrobeMax®, Country Vet®, Konk®, Original Bike Spirits®, Blue Coral®, Black Magic®, Rain-X®, Niagara National™, FC Forward Chemicals®,Rexodan®, Mykal™, and a number of private labeled brands.

	Sect	ion I - Ger	eral Inform	ation		
0° -000000 0382) Issue: .08 12:00:00 AM Chemical Name & Synonyms: //A Chemical Family: liphatic/Terpene Blend Janufacturer Name:				Supercedes: 11/4/2004 12:00:00 AM Trade Name & Synonymä: PRO-POWER Formula is a mixture: [y]		
ANTEK, DIVISION OF NCH CORP. anufacturer Address:						
OX 152170 RVING, TEXAS 75015		212.2.2.2.2	2	Summer a		
repared By: HOLLAS/CHEMIST		Product Code Nu 0352	mber:	Emergency Ph 800-424-9300		
	Sectio	n II - Haz	ardous Ingre	dients		
	and the second se	STATE OF CHILDREN THREE AND	THOSE OF THE INDIV	and the second sec		
hemical Name (Ingredients) WNTHETIC ISOPARAFFINIC HYDROCARBON		Hazard IRR/COMB	TLV 5 mg/m3 \$1	PEL 5 mg/m3 \$2	STEL 10 mg/m3\$1	CAS # 64742-47-8
LIMONERE Mineral Oil Mist Vegetable Oil Mist		IRR/COMB	N/E 1	5 mg/m3 *2	N/E	5989-27-5
	Se	ction III -	Physical D	ata		
Boilin	g Point (*F):424*		and the start	Specia	tic Gravity (H ₂ 0=1):	0.82
	sity (Air=1):4.9					Colorlass Orange
	pH @ 100% :N/A le by Volume:100			Pusser		Transparent
	0 Solubility:Negligible			avapora		Non-viscous
	Section	IV - Fire	and Explosio	on Hazard		
Flash Point: 142°F					sed: p.M.C.C.	
Flammable Limits: Product LEL: 0.5%	Mixture			rosol Level (NPPA 3	UEL: 6.1%	
			-NFPA 704 Haza		007 . N/A	
[√] Foam [] Alcohol :			4-Extr	eme	Health: 2	
[√] Dry Chemical [√] Water Spr.	ay [] Other		3-High 2-Mode 1-Slig	arate Tou	mability: 2 stability: 0	
				gnificant	Special:	
Firefighters should wear a self-contain Unusual Fire and Explosion Hazards: Vapors are heavier than air and may tra floats on water. The use of water spray Care as spills may be slippery.	vel to distant and/or	low-lying sources	of ignition and f	lashback. Product m	ay produce a floatin	g fire hazard as liquid
	Sectio	on V - Heal	th and Haza	rd Data		
Threshold Limit Value: 5 mg/m ³ as Oil Mist						
	1.					
Effects of Overexposure:						
Acute: (Short Term Exposure) EYE CONTACT: Causes irritation seen as SKIN CONTACT: Causes irritation seen a scaling, and other skin effects. Prolo INHALATION: May cause respiratory irri harmful effects are expected. At high ' weakness, unconclousness, possible ane INGESTION: May cause irritation with p product into the lungs which can cause Chronic: (Long Term Exposure)	s itching and redness. nged or repeated contact tation seen as coughing vapor concentrations, i sthetic effects from ce ossible nausea, vomitir	May cause allerg tt, as from cloth g and sneezing. M. inhalation may ca antral nervous sy ng, and diarrhea.	ing wet with materi ay cause an allergi use central nervous stem depression, ar	al, may cause dryin c respiratory react system effects suc d may be fatal.	g, defatting, and c ion. At low vapor c h as headache, dizz	racking of the skin. oncentrations, no iness, drowsiness,
May cause skin and respiratory sensiti Mist poses a risk of chronic lung infl coughing are the most common symptoms. respiration and heart rates as well as increased sensivity to sunlight (phot Medical conditions aggravated by expos TARGET ORGANS: Blood-forming organs, c	ammation. This condition Aspiration may lead to a bluish discoloration osensitivity) may occur ure are pre-existing re	on is usually asy o pulmonary edema n of the skin. Ch r. espiratory and sk	mptomatic as a resu and hemorrhage and ronic skin contact in conditions such	alt of repeated smal a may be fatal. Sign may promote dermati as asthma, emphysem	l aspirations. Shor is of lung involvement is and oil acne. In a, and dermatitis.	tness of breath and nt include increased
iry Routes of Entry			-			
halation [] Ingesti	on [V] Absor	rption				
Emergency First Aid Procedures:						
Inhalation:						
Remove from the area to fresh air. If	not breathing, clear th	he airway and sta	rt mouth to mouth a	artificial respirati	on. Get immediate m	edical attention.
			1 of 3			

MATERIAL SAFETY DATA SHEET: PRO-POWER

Eye Contact:

Rinse the eyes with water. Remove any contact lenses and continue flushing with plenty of water for several minutes. Seek medical attention if irritation develops.

Skin Contact:

"fected areas with large amounts of soap and water for 15 minutes. Remove contaminated clothing and shoes. Seek medical attention if irritation W. Wash clothing and clean shoes before re-use.

Ingestion:

Give 3 to 4 glasses of water, but DO NOT induce vomiting. If vomiting occurs, give fluids again. Get immediate medical attention. Do not give anything by mouth to an unconscious or convulsing person.

Notes to Physician:

Ingestion and subsequent vomiting of this product can lead to aspiration of the product into the lungs which can cause damage and may be fatal. Depending on the amount ingested and retained as well as the toxicity of the product, gastric lavage should be considered. Keep patient's head below hips to prevent pulmonary aspiration. If comatose, a cuffed endotracheal tube will prevent aspiration. In severe cases of an allergic reaction, anaphylactic shock may occur. Have the person lie down with their legs above their chest to increase blood flow to the heart and brain. Ensure respiratory support by supplying oxygen and administer epinephrine as indicated.

Section VI - Toxicity Information

	Junes concerns en	umecura atace	a an carcino	gen or Potential Carcinog	en sj.	
1	IARC	1 1 1	TP	[] OSHA	[] ACGIH	[] Other

Total VOC Content: 100% by weight; 100% by volume, 820 g/L VOC Content acter low vapor exemption: 10% by weight; 29% by volume; 237 g/L

SYNTHETIC ISOPARAFFINIC HYDROCARBON (<3) DMSO extractables) IHL-RAT LC₅₀: >290 ppm 3. ORL-RAT LD50: >10 g/kg 3. SKN-RBT LD50: >3 g/kg 3. SKN SENSITIZER: no SKN IRRITATION: slight EYE IRRITATION: slight 3. 3..

This hydrocarbon was administered orally 5 days/week to male and female rats at 100, 500 or 1000 mg/kg for 13 weeks. An additional group was dosed with 100 mg/kg for 13 weeks followed by a 4-week recovery period. No mortalities or clinical effects were observed. Liver and kidney weights for the 500 and 1000 mg/kg exposure groups were significantly increased. After the 4-week recovery period, there were no differences in organ weights. 3.

Mineral Oil and Hydrocarbon Mists derived from highly Refined Oils and Petroleum Distillates are reported to have low acute and sub-acute toxicities in animals. Effects from single and short-term repeated exposures to high concentrations well above applicable workplace exposure levels include lung inflammatory reaction, lipoid granuloms formation, and lipoid pneumonia. In acute and sub-acute studies involving exposures to lower concentrations at or near current work place exposure levels produced no significant toxicological effects. In long term studies (up to two years), no carcinogenic effects have been reported in any animal species tented. These Petroleum Distillates are severely hydrotreated, severely solvent extracted, and/or processed by mild hydrotreatment and extraction. For this reason, they are not classified as cancer hazards. 3.

D-LIMONENE "AT LD50: 4,400 mg/kg " LD₅₀: >5,000 mg/kg 3.

: Severely irritating 7: Severely irritating

Section VII - Reactivity Data

-Stability		-Hazardous Polymerization-
(v) Stable	[] Unstable	[V] Will not occur [] May occur
Conditions to Avoid:		Conditions to Avoid:
Avoid heat, hot surf	aces, sparks, and open flames.	N/A

Incompatibility (Materials to Avoid) :

Strong exidizing agents such as Chlorine bleach and concentrated Hydrogen Perexide. Acids, clays, Aluminum Chloride, halogens, Iodine Pentafluoride, Vinyl Chloride plastics, and rubber.

Hazardous Decomposition Products: Oxides of Carbon, Smoke,

Section VIII - Spill Or Leak Procedures

Steps to be Taken if Material is Released or Spilled:

Wear appropriate protective clothing. Eliminate all sources of ignition and ventilate the area. Use only non-sparking equipment. Use care as spills may be slippery. Shut off source of lesk, Dike and contain spill. Absorb with an inert material and transfer all material into a properly labeled container for disposal. Prevent product from contaminating soil or from entering sewage and drainage systems and bodies of water. Flush area with water.

Wasta Disposal Method(s):

Dispose of in accordance with all Federal, State, and local regulations.

Neutralizing Agent:

N/A

Section IX - Special Protection Information

Required Ventilation:

Local ventilation is recommended to control exposure from operations that can generate excessive levels of mists. Local ventilation is preferred, because it p ts dispersion into work areas by controlling it at its source.

:ory Protection: R

Re. itors should be selected by and used under the direction of a trained health and safety professional following requirements found in OSHA's respirator standard (29 CFR 1910.134) and ANSI's standard for respiratory protection (288.2-1992). For concentrations above the TLV and/or PSL but less than 10 times these limits, a NIOSH approved half-facepiece respirator equipped with appropriate chemical cattridges may be used. For concentrations greater than 10 times the TLV and/or PSL, consult the NIOSH respirator decision logic found in publication No. 87-116 or ANSI 281.2-1992.

MATERIAL SAFETY DATA SHEET: PRO-POWER

Neoprene or nitrile rubber gloves should be worn. Ensure compliance with OSHA's personal protective equipment (PPS) standard for hand protection, 29 CFH 1910.138.

Eve Protection:

Safety glaases with side shields if the method of application presents the likelihood of eye contact. Ensure compliance with OSNA's Personal Protective Equipment (PPE) standard for eye and Eace protection, 29 CPR 1910.131.

rotective clothing when handling. A safety shower and an eyewash station should be available. Remove soaked clothing and shoes. Wash clothing and clean shoes before re-use.

	Section X - Storage and Handling Information
Storage Temperatura	- Storage Conditions
Max: 120°F Min: 35°F	[V] Indoors [] Outdoors [] Heated [] Refrigerated

Precautions to be Taken in Handling and Storing:

Always store material in its original container. Keep the container tightly closed when not in use. Use with caution around heat, sparks, pilot lights, static electricity, and open flame. Empty containers may contain product residues which may exhibit the hazards of the product. To avoid possible explosion, do not pressurise, cut, wold, solder, drill, grind, or expose empty containers to heat, hot surfaces, sparks, or open flames. Ground and bond container when handling near flammable vapors and all sources of ignition. Bulk Storage: For maximum product life, store indoors. Outdoor Storage Tip: Store containers on their side to help prevent water accumulation on a flat end and consequent product contamination.

Other Precautions:

Xeep out of reach of children. Read the entire label before using the product. Follow the label directions.

	Section XI - Regulate	ory Information
Chemical Name None.	CAS Number	Upper & Limit

Those Ingredients listed above are subject to the reporting requirements of 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR part 372.

Please call 1-800-527-9919 for additional information if you are a California customer. This MSDS is not intended for users in the state of California.

Section XII - References

1. Threshold Limit Values for chemical substances and physical agents and biological exposure indices, ACGIH, 2007.

OSHA PEL. Vendor's MSDS 3.

4.

Vengor's msub. Registry of toxic effects of chemical substances, CCINFOMeb, 2007. European Chemical Substances Information System (ESIS), International Uniform Chemical Information Database (IUCLID) Chemical Data Sheets. ChemADVISOR, Inc. Database Release: 2007-4. 1 ***e components of this product are in compliance with the Toxic Substances Control Act (TSCA) and are either listed on the TSCA inventory or otherwise d from listing.

e:

IR. ritant, OSHA: Occupational Safety & Health Administration, IARC: International Agency for the Research on Cancer, TOX: Toxic, NFPA: National Fire Protection Association, ppm: Parts Per Million, UEL: Upper Explosion Limit, STEL: Short-term Exposure Limit, MNN: Human, mg/m3, IKL: Inhalation, COMB: Combustible, CORR: Corrosive, MUT: Mutagenic, CARC: Carcinogenic, N/A: Not Applicable, TLV: Threshold Limit Value, N/E: Not Established, ORL: Oral, FLAM: Flammable, ASPHXY: Asphyxiant, C.O.C.: Cleveland Open Cup, PNOR: Particles Not Otherwise Regulated, LEL: Lower Explosion Limit, mg/L: Miligrams per Liter, PNOS: Particles Not Otherwise Specified, g/L: Grams per Liter, PMCC: Pensky-Martin Closed Cup, NTP: National Toxicology Program, ug/L: Micrograms per Liter, TCC: Tagliabue Closed Cup, SEV: Severe, RBT: Rabbit, INV: Intravenous, ACGIH: American Conference of Governmental Industrial Hygienists, PEL: Permissible Exposure Limit, MOD: Moderate, IPT: Intraperitoneal, gm/kg: Grams per Kilogram, C.C.C.: Cleveland Closed Cup, SKM: Skin, Miligrams per Cubic Meter, mg/kg: Miligrams per Kilogram, VOC: Volatile Organic Compound, SDT: Standard Draize Test, MSE: Mouse, GFG: Guinea Pig. Liter, THE INFORMATION CONTAINED HEREIN IS BASED ON DATA CONSIDERED ACCURATE IN LIGHT OF CURRENT FORMULATION. HOWEVER, NO WARRANTY IS EXPRESSED OR IMPLIED REGARDING THE ACCURACY OF THE DATA OF THE RESULTS TO BE OBTAINED FROM THE USE THEREOF.

MANTEK, DIVISION OF NCH CORP. assumes no responsibility for personal injury or property damage caused by the use, storage, or disposal of the product in a manner not recommended on the product label. Users assume all risks associated with such unrecommended use, storage, or disposal of the product.

©2008 NCH Corporation All rights reserved.

Material Safety Data Sheet

SECTION 1 PRODUCT AND COMPANY IDENTIFICATION

Chevron Supreme Motor Oil

Product Use: Automotive Motor Oil

Product Number(s): CPS220002, CPS220011, CPS220013, CPS220019, CPS220059, CPS220060, CPS220135, CPS220153, CPS220155 Synonyms: Chevron Supreme Motor Oil SAE 10W-30, Chevron Supreme Motor Oil SAE 10W-30 (API SL), Chevron Supreme Motor Oil SAE 10W-40, Chevron Supreme Motor Oil SAE 20W-50, Chevron Supreme Motor Oil SAE 30, Chevron Supreme Motor Oil SAE 40, Chevron Supreme Motor Oil SAE 5W-20, Chevron Supreme Motor Oil SAE 5W-30, Chevron Supreme Motor Oil SAE 5W-30 (API SL)

Company Identification

ChevronTexaco Global Lubricants 6001 Bollinger Canyon Rd, San Ramon, CA 94583 United States of America www.chevron-lubricants.com

Transportation Emergency Response CHEMTREC: (800) 424-9300 or (703) 527-3887 Health Emergency ChevronTexaco Emergency Information Center: Located in the USA. International collect calls accepted. (800) 231-0623 or (510) 231-0623 Product Information mail : lubemsds@chevrontexaco.com Product Information: (800) LUBE TEK MSDS Requests: (800) 414-6737

SECTION 2 COMPOSITION/ INFORMATION	ON INGREDIENTS	
COMPONENTS	CAS NUMBER	AMOUNT
Highly refined mineral oil (C15 - C50)	Mixture	75 - 95 %weight

SECTION 3 HAZARDS IDENTIFICATION

IMMEDIATE HEALTH EFFECTS

Eye: Not expected to cause prolonged or significant eye irritation.

Skin: Contact with the skin is not expected to cause prolonged or significant irritation. Not expected to be harmful to internal organs if absorbed through the skin.

Ingestion: Not expected to be harmful if swallowed.

Inhalation: Not expected to be harmful if inhaled. Contains a petroleum-based mineral oil. May cause respiratory irritation or other pulmonary effects following prolonged or repeated inhalation of oil mist at airborne levels above the recommended mineral oil mist exposure limit. Symptoms of respiratory irritation may include coughing and difficulty breathing.

SECTION 4 FIRST AID MEASURES

Eye: No specific first aid measures are required. As a precaution, remove contact lenses, if worn, and flush eyes with water.

Skin: No specific first aid measures are required. As a precaution, remove clothing and shoes if contaminated. To remove the material from skin, use soap and water. Discard contaminated clothing and shoes or thoroughly clean before reuse.

ngestion: No specific first aid measures are required. Do not induce vomiting, As a precaution, get medical advice,

Inhalation: No specific first aid measures are required. If exposed to excessive levels of material in the air, move the exposed person to fresh air. Get medical attention if coughing or respiratory discomfort occurs.

SECTION 5 FIRE FIGHTING MEASURES

FIRE CLASSIFICATION:

OSHA Classification (29 CFR 1910, 1200): Not classified by OSHA as flammable or combustible.

NFPA RATINGS: Health: 0 Flammability: 1 Reactivity: 0

FLAMMABLE PROPERTIES:

Flashpoint: (Cleveland Open Cup) 200 °C (392 °F) (Min)

Autoignition: No Data Available

Flammability (Explosive) Limits (% by volume in air): Lower: Not Applicable Upper: Not Applicable

EXTINGUISHING MEDIA: Use water fog, foam, dry chemical or carbon dloxide (CO2) to extinguish flames. PROTECTION OF FIRE FIGHTERS:

Fire Fighting Instructions: This material will burn although it is not easily ignited. For fires involving this material, do not enter any enclosed or confined fire space without proper protective equipment, including self-contained breathing apparatus.

Combustion Products: Highly dependent on combustion conditions. A complex mixture of airborne solids, liquids, and gases including carbon monoxide, carbon dioxide, and unidentified organic compounds will be evolved when this material undergoes combustion.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Protective Measures: Eliminate all sources of ignition in vicinity of spilled material.

Spill Management: Stop the source of the release if you can do it without risk. Contain release to prevent further contamination of soil, surface water or groundwater. Clean up spill as soon as possible, observing precautions in Exposure Controls/Personal Protection. Use appropriate techniques such as applying non-combustible absorbent materials or pumping. Where feasible and appropriate, remove contaminated soil. Place contaminated materials in disposable containers and dispose of in a manner consistent with applicable regulations.

Reporting: Report spills to local authorities and/or the U.S. Coast Guard's National Response Center at (800) 424-8802 as appropriate or required.

SECTION 7 HANDLING AND STORAGE

Precautionary Measures: Keep out of the reach of children.

General Handling Information: Avoid contaminating soll or releasing this material into sewage and drainage systems and bodies of water.

Static Hazard: Electrostatic charge may accumulate and create a hazardous condition when handling this material. To minimize this hazard, bonding and grounding may be necessary but may not, by themselves, be sufficient. Review all operations which have the potential of generating and accumulating an electrostatic charge and/or a flammable atmosphere (including tank and container filling, splash filling, tank cleaning, sampling, gauging, switch loading, filtering, mixing, agitation, and vacuum truck operations) and use appropriate mitigating procedures. For more Information, refer to OSHA Standard 29 CFR 1910.106, 'Flammable and Combustible Liquids', National Fire Protection Association (NFPA 77, 'Recommended Practice on Static Electricity', and/or the American Petroleum Institute (API) Recommended Practice 2003, 'Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents'.

Container Warnings: Container is not designed to contain pressure. Do not use pressure to empty container or it may rupture with explosive force. Empty containers retain product residue (solid, liquid, and/or vapor) and can be dangerous. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose such containers to heat, flame, sparks, static electricity, or other sources of ignition. They may explode and cause injury or death. Empty containers should be completely drained, properly closed, and promptly returned to a drum reconditioner or disposed of properly.

SECTION 8 EXPOSURE CONTROLS/PERSONAL PROTECTION

GENERAL CONSIDERATIONS:

Consider the potential hazards of this material (see Section 3), applicable exposure limits, job activities, and other substances in the work place when designing engineering controls and selecting personal protective equipment. If engineering controls or work practices are not adequate to prevent exposure to harmful levels of this material, the personal protective equipment listed below is recommended. The user should read and understand all instructions and limitations supplied with the equipment since protection is usually provided for a limited time or under certain circumstances.

ENGINEERING CONTROLS:

Use in a well-ventilated area.

PERSONAL PROTECTIVE EQUIPMENT

Eye/Face Protection: No special eye protection is normally required. Where splashing is possible, wear safety glasses with side shields as a good safety practice.

Skin Protection: No special protective clothing is normally required. Where splashing is possible, select protective clothing depending on operations conducted, physical requirements and other substances in the workplace. Suggested materials for protective gloves include: 4H (PE/EVAL), Nitrile Rubber, Silver Shield, Viton. Respiratory Protection: No respiratory protection is normally required.

If user operations generate an oll mist, determine if airborne concentrations are below the occupational exposure limit for mineral oil mist. If not, wear an approved respirator that provides adequate protection from the measured concentrations of this material. For air-purifying respirators use a particulate cartridge.

Use a positive pressure air-supplying respirator in circumstances where air-purifying respirators may not provide adequate protection.

Occupational Exposure Limits:

Component	Agency	TWA	STEL	Ceiling	Notation
Highly refined mineral oil (C15 - C50)	ACGIH	5 mg/m3	10 mg/m3		
Highly refined mineral oil (C15 - C50)	OSHA Z-1	5 mg/m3			

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Attention: the data below are typical values and do not constitute a specification.

Color: Amber Physical State: Liquid Odor: Petroleum odor pH: Not Applicable

Vapor Pressure: <0.01 mmHg @ 100 °C (212 °F)

Vapor Density (Air = 1): >1

Boiling Point: >315°C (599°F) Solubility: Soluble in hydrocarbons; insoluble in water Freezing Point: Not Applicable Specific Gravity: 0.86 - 0.9 @ 15.6°C (60.1°F) / 15.6°C (60.1°F) Viscosity: 8 cSt @ 100°C (212°F) (Min)

SECTION 10 STABILITY AND REACTIVITY

Chemical Stability: This material is considered stable under normal ambient and anticipated storage and handling conditions of temperature and pressure.

Incompatibility With Other Materials: May react with strong acids or strong oxidizing agents, such as chlorates, nitrates, peroxides, etc.

Hazardous Decomposition Products: None known (None expected) Hazardous Polymerization: Hazardous polymerization will not occur.

SECTION 11 TOXICOLOGICAL INFORMATION

IMMEDIATE HEALTH EFFECTS

https://www.cbest.chevron.com/msdsServer/controller?module=com.chevron.lubes.msds.bu... 5/9/2006

Eye Irritation: The eye irritation hazard is based on evaluation of data for similar materials or product components.

Skin Irritation: The skin irritation hazard is based on evaluation of data for similar materials or product components.

Skin Sensitization: No product toxicology data available.

Acute Dermal Toxicity: The acute dermal toxicity hazard is based on evaluation of data for similar materials or product components.

Acute Oral Toxicity: The acute oral toxicity hazard is based on evaluation of data for similar materials or product components.

Acute Inhalation Toxicity: The acute inhalation toxicity hazard is based on evaluation of data for similar materials or product components.

ADDITIONAL TOXICOLOGY INFORMATION:

This product contains petroleum base oils which may be refined by various processes including severe solvent extraction, severe hydrocracking, or severe hydrotreating. None of the oils requires a cancer warning under the OSHA Hazard Communication Standard (29 CFR 1910.1200). These oils have not been listed in the National Toxicology Program (NTP) Annual Report nor have they been classified by the International Agency for Research on Cancer (IARC) as; carcinogenic to humans (Group 1), probably carcinogenic to humans (Group 2A), or possibly carcinogenic to humans (Group 2B). These oils have not been classified by the American Conference of Governmental Industrial Hygienists (ACGIH) as; confirmed human carcinogen (A1), suspected human carcinogen (A2), or confirmed animal carcinogen with unknown relevance to humans (A3).

During use In engines, contamination of oil with low levels of cancer-causing combustion products occurs. Used motor oils have been shown to cause skin cancer in mice following repeated application and continuous exposure. Brief or intermittent skin contact with used motor oil is not expected to have serious effects in humans if the oil is thoroughly removed by washing with soap and water.

SECTION 12 ECOLOGICAL INFORMATION

ECOTOXICITY

The toxicity of this material to aquatic organisms has not been evaluated. Consequently, this material should be kept out of sewage and drainage systems and all bodies of water.

ENVIRONMENTAL FATE

This material is not expected to be readily biodegradable.

SECTION 13 DISPOSAL CONSIDERATIONS

Use material for its intended purpose or recycle if possible. Oil collection services are available for used oil recycling or disposal. Place contaminated materials in containers and dispose of in a manner consistent with applicable regulations. Contact your sales representative or local environmental or health authorities for approved disposal or recycling methods.

SECTION 14 TRANSPORT INFORMATION

The description shown may not apply to all shipping situations. Consult 49CFR, or appropriate Dangerous Goods Regulations, for additional description requirements (e.g., technical name) and mode-specific or quantity-specific shipping requirements.

DOT Shipping Description: PETROLEUM LUBRICATING OIL, NOT REGULATED AS A HAZARDOUS MATERIAL FOR TRANSPORTATION UNDER 49 CFR

Additional Information: NOT HAZARDOUS BY U.S. DOT. ADR/RID HAZARD CLASS NOT APPLICABLE.

IMO/IMDG Shipping Description: PETROLEUM LUBRICATING OIL; NOT REGULATED AS DANGEROUS GOODS FOR TRANSPORT UNDER THE IMDG CODE

ICAO/IATA Shipping Description: PETROLEUM LUBRICATING OIL; NOT REGULATED AS DANGEROUS

GOODS FOR TRANSPORT UNDER ICAO

SECTION 15 REGULATORY INFORMATION

EPCRA 311/312 CATEGORIES: 1. Immediate (Acute) Health Effects: NO

2. Delayed (Chronic) Health Effects: NO

3. Fire Hazard: NO

4. Sudden Release of Pressure Hazard: NO

5. Reactivity Hazard: NO

REGULATORY LISTS SEARCHED:

01-1=IARC Group 1	03=EPCRA 313
01-2A=IARC Group 2A	04=CA Proposition 65
01-2B=IARC Group 2B	05=MA RTK
02=NTP Carcinogen	06=NJ RTK
	07=PA RTK

No components of this material were found on the regulatory lists above,

CHEMICAL INVENTORIES:

All components comply with the following chemical inventory requirements: EINECS (European Union), ENCS (Japan), IECSC (China), KECI (Korea), PICCS (Philippines), TSCA (United States).

One or more components has been notified but may not be listed in the following chemical inventories: DSL (Canada). Secondary notification by the importer may be required.

One or more components does not comply with the following chemical Inventory requirements: AICS (Australia).

NEW JERSEY RTK CLASSIFICATION:

Under the New Jersey Right-to-Know Act L. 1983 Chapter 315 N.J.S.A. 34:5A-1 et. seq., the product is to be Identified as follows: PETROLEUM OIL (Motor oil)

WHMIS CLASSIFICATION:

This product is not considered a controlled product according to the criteria of the Canadian Controlled Products Regulations.

SECTION 16 OTHER INFORMATION

NFPA RATINGS: Health: 0 Flammability; 1 Reactivity; 0

HMIS RATINGS: Health: 1 Flammability: 1 Reactivity: 0

(0-Least, 1-Slight, 2-Moderate, 3-High, 4-Extreme, PPE:- Personal Protection Equipment Index recommendation, *- Chronic Effect Indicator). These values are obtained using the guidelines or published evaluations prepared by the National Fire Protection Association (NFPA) or the National Paint and Coating Association (for HMIS ratings).

LABEL RECOMMENDATION:

Label Category : ENGINE OIL 1

REVISION STATEMENT: This revision updates the following sections of this Material Safety Data Sheet: 1 Revision Date: 04/29/2005

ABBREVIATIONS THAT MAY HAVE BEEN USED IN THIS DOCUMENT:

TLV - Threshold Limit Value	TWA - Time Weighted Average
STEL - Short-term Exposure Limit	PEL - Permissible Exposure Limit
	CAS - Chemical Abstract Service Number
1	

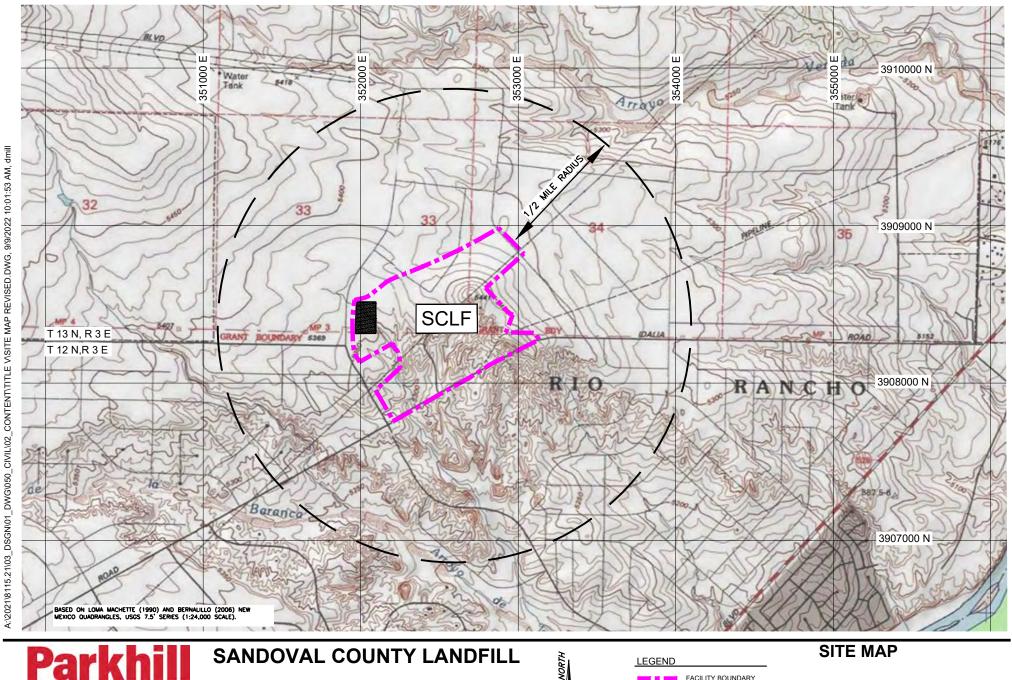
https://www.cbest.chevron.com/msdsServer/controller?module=com,chevron.lubes.msds.bu... 5/9/2006

ACGIH			Conference	of	Government	IMO/IMDG - International Maritime Dangerous Goods Code
Industria	I H	ygienists				

API - American Petroleum Institute	MSDS - Material Safety Data Sheet
CVX - ChevronTexaco	NFPA - National Fire Protection Association (USA)
DOT - Department of Transportation (USA)	NTP - National Toxicology Program (USA)
IARC - International Agency for Research on Cancer	OSHA - Occupational Safety and Health Administration

Prepared according to the OSHA Hazard Communication Standard (29 CFR 1910.1200) and the ANSI MSDS Standard (Z400.1) by the ChevronTexaco Energy Research & Technology Company, 100 Chevron Way, Richmond, California 94802.

The above information is based on the data of which we are aware and is believed to be correct as of the date hereof. Since this information may be applied under conditions beyond our control and with which we may be unfamiliar and since data made available subsequent to the date hereof may suggest modifications of the information, we do not assume any responsibility for the results of its use. This information is furnished upon condition that the person receiving it shall make his own determination of the suitability of the material for his particular purpose.


Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

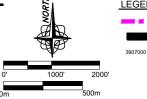

The UTM or Longitudinal coordinate system on	An indicator showing which direction is
both axes	north
A minimum radius around the plant of 0.8km (0.5	Access and haul roads
miles)	
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public
	access
A graphical scale	

Figure 8.1 is a map of the SCLF and a ¹/₂-mile radius surrounding area. **Figure 8.1** is plotted on a portion of the Bernalillo (2006) and Loma Machete (1990) 7.5-minute USGS quadrangle maps. The figure shows the facility boundary, surrounding topography, map name, graphical scale, north arrow, and the UTM scales on both axes. The area which is restricted to public access is the facility property boundary. Due to the condensed nature of the map elements required by this Section, on-site Landfill access and haul roads are shown on **Figure 5.1**, **Section 5**.

Parkhill.com

2708 IRIS RD. NE RIO RANCHO, NM 87144

FACILITY BOUNDARY PUBLIC ACCESS AREA

UTM GRID COORDINATE

Date:	09/09/2022
Project No:	8115.21
Figure:	8.1

Sandoval County Landfill

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

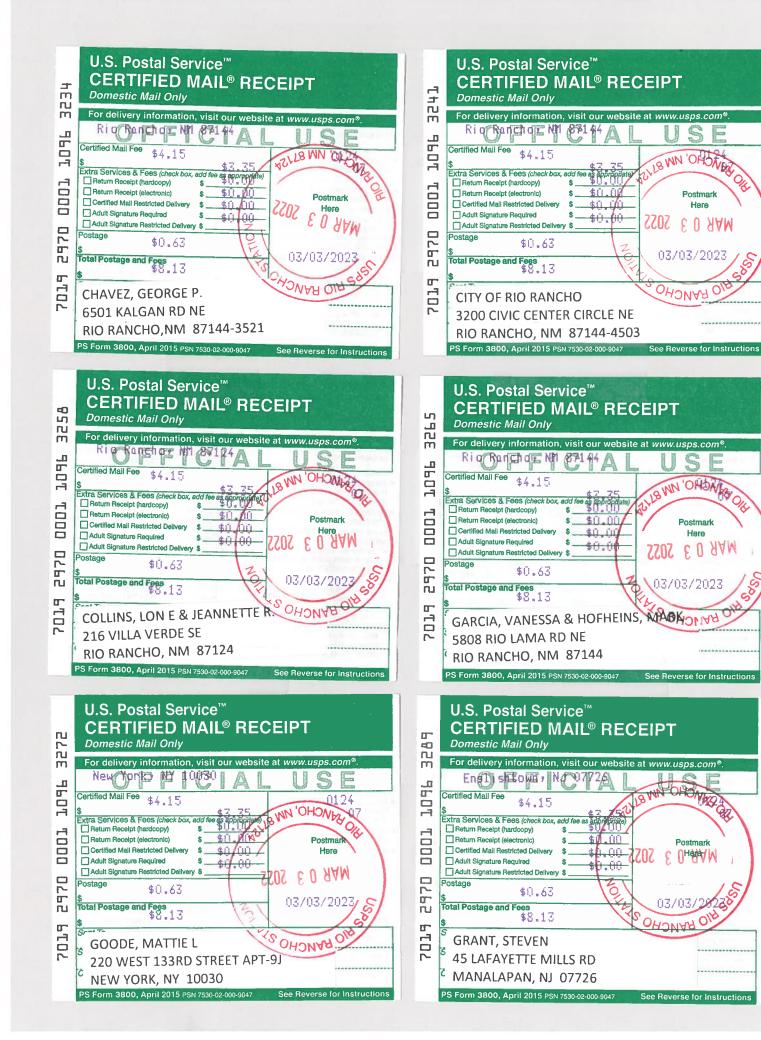
- 1. I A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. ☑ A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. \square A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \square A sample of the letters sent to the owners of record.
- 5. \square A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. \square A sample of the public notice posted and a verification of the local postings.
- 7. 🗹 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🗹 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. ☑ A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. If A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

Sandoval County

Sandoval County Landfill

In compliance with 20.2.72.219.B NMAC, notification of the public was conducted on March 2 and 3, 2023. Notice was posted in 4 publicly accessible locations, mailed to counties, municipalities, and Indian tribes within 10 miles and land owners within 100-feet of the facility boundary, published in a newspaper of local circulation, and distributed to a local radio station to be read as a public service announcement. Documentary proof of these notification activities is included in this section in the following attachments:

Attachment


<u>Contents</u>

- **9.1** Copies of Certified Letter Receipts
- **9.2** Sample of Letter Sent to Counties, Municipalities, and Indian Tribes
- 9.3 Counties, Municipalities, Tribes, and Owners of Record to Whom Notices Were Sent
- **9.4** Proof of Publication, Classified and Display Advertisements
- 9.5 Proof and Verification of Public Notice Posting
- 9.6 Property Tax Records from Sandoval County Assessor
- 9.7 Sample of letters Sent to Owners of Record
- 9.8 Copy and Documentary Proof of PSA Submittal to Local Radio Station
- 9.9 Map of Facility and Surrounding Owners of Record

ATTACHMENT 9.1

Copies of Certified Letter Receipts

U.S. Postal Service[™] **CERTIFIED MAIL® RECEIPT** m Domestic Mail Only m m For delivery information, visit our website at www.usps.com m Albuqueraues NM 87158 20 Par Pis Certified Mail Fee \$4.15 Ō -7 Extra Services & Fees (check box, add fee as appro Return Receipt (hardcopy) 10 \$£L 00 Postmark Return Receipt (electronic) \$0,00 Certified Mail Restricted Delivery £ Heite Adult Signature Reguired \$01.00 Adult Signature Restricted Delivery \$ 970 Postage \$0.63 03/03/202 Total Postage and Fees \$8.13 ที่ม OHJNIAA **U** PUBLIC SERVICE CO. OF NEW MEXICO CORPORATE HEADQUARTERS MS 1025 ALBUQUERQUE, NM 87158-0001

See Reverse for Instruction

See Reverse for Instructions

PS Form 3800, April 2015 PSN 7530-02-000-9047

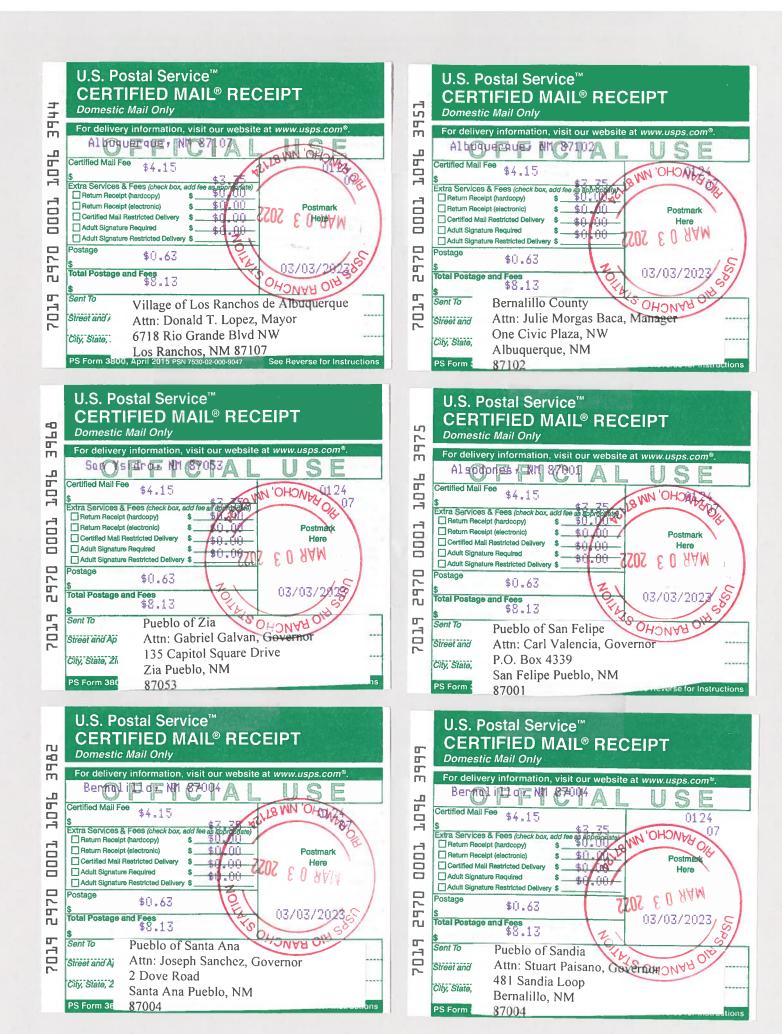
PS Form 3800, April 2015 PSN 7530-02-000-9047

See Reverse for Instructions

U.S. Postal Service[™] CERTIFIED MAIL® RECEIPT ŋ Domestic Mail Only Г For delivery information, visit our website at www.usps.com m Alboqueraues NT 87112 -0 NEW COR WAN OHM Certified Mail Fee \$4.15 ō Extra Services & Fees (check box, add fee es eponepriate Return Receipt (hardcopy) \$1 .00 Return Receipt (electronic) Postmark Certified Mail Restricted Delivery \$1.00 50 Pleter 3 Adult Signature Required \$0.00 Adult Signature Restricted Delivery \$ Postage \$0.63 \$ Total Postage and Fees \$8.13 03/03/20 HONAR O VANDERGEEST, JOHN W 8521 MOUNTAIN RD NE ALBUQUERQUE, NM 87112 PS Form 3800, April 2015 PSN 7530-02-000-9047 See Reverse for Instructions


PS Form 3800, April 2015 PSN 7530-02-000-9047

m A 2971 Г



ATTACHMENT 9.2

Sample of Letter Sent to Counties, Municipalities, and Indian Tribes

Parkhill

March 3, 2023

To whom it may concern;

Sandoval County Landfill announces its application submittal to the New Mexico Environment Department for a significant revision of the Sandoval County Landfill Air Quality Permit. Expected date of application submittal to the Air Quality Bureau is March 7, 2023.

The exact location for the Sandoval County Landfill is 2708 Iris Road, NE, Rio Rancho, NM 87124. The facility is located immediately north of the intersection of Iris and Idalia Roads, approximately 1.5 miles northwest of intersection of NM 528 and Iris Road in Sandoval County NM.

The proposed revision consists of the following

The Sandoval County Landfill is Applying for a New Source Review (NSR) Significant Permit Modification to accommodate planned modifications to the facility disposal route and other facility roadway orientation modifications, as well as changes in traffic volumes.

The estimated maximum site-wide quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM 10	31.4 pph	25.6 tpy
PM 2.5	4.5 pph	3.5 tpy
Sulfur Dioxide (SO ₂)	0.83 pph	0.58 tpy
Nitrogen Oxides (NO _x)	12.84 pph	8.94 tpy
Carbon Monoxide (CO)	5.1 pph	2.4 tpy
Volatile Organic Compounds (VOC)	5.8 pph	24.98 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	5.6 pph	24.5 tpy
Green House Gas Emissions as Total CO ₂ e	n/a	83,209 tpy

The standard and maximum operating schedule of the facility will be from 7:00 a.m. to 4:00 p.m. 6 days a week and a maximum of 52 weeks per year.

The owner and operator of the facility are:

Sandoval County Department of Public Works (Owner)	Sandoval County Landfill (Operator)
2708 Iris Rd. NE	2708 Iris Road NE
Rio Rancho, NM 87124	Rio Rancho, NM 87124

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; <u>https://coda.io/@todd-hochman-work/current-permitting-actions-under-review</u>. Other comments and questions may be submitted verbally 505.476.4300; 1.800.224.7009.

\\Data1\Projects3\2022\40111.22\04_PRCMNT\00_PASS\NSR_Mailing_Ltr_EN.docx

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505.629.3395.

Sincerely,

Sandoval County Landfill 2708 Iris Rd. NE Rio Rancho, NM 87124

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, PO Box 5469, Santa Fe, NM 87502, 505.827.2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/general/environmental-justice-in-new-mexico/ to learn how and where to file a complaint of discrimination.

Parkhill

3 de Marzo de 2023

A quien le interese;

El Relleno Sanitario del Condado de Sandoval (Sandoval County Landfill) anuncia la presentación de su solicitud ante el Departamento del Medio Ambiente de Nuevo México para una revisión significativa del Permiso relativo a la calidad del aire del Relleno Sanitario del Condado de Sandoval. La fecha prevista para la presentación de la solicitud ante la Oficina para la Calidad del Aire (Air Quality Bureau) es el 7 de marzo de 2023.

La ubicación exacta del Relleno Sanitario del Condado de Sandoval es 2708 Iris Road, NE, Rio Rancho, NM 87124. Las instalaciones se encuentran inmediatamente al norte de la intersección de Iris Road e Idalia Road, aproximadamente 1.5 millas al noroeste de la intersección de la carretera NM 528 e Iris Road en el Condado de Sandoval, NM.

Revisión propuesta:

El Relleno Sanitario del Condado de Sandoval solicita una Modificación significativa del Permiso con una Revisión de Fuente Nueva (NSR por sus siglas en inglés) para incorporar las modificaciones planeadas para la ruta de depósito de las instalaciones y otras modificaciones en la orientación de la carretera de las instalaciones, además de cambios en el volumen del tráfico.

A continuación se detallan las cantidades máximas estimadas en todo el sitio para los contaminantes regulados del aire en libras por hora (lph) y en toneladas por año (tpa), que podrán cambiar levemente durante el transcurso de la revisión del Departamento.

Contaminante:	Libras por hora	Toneladas por año
Material particulado PM 10	31.4 lph	25.6 tpa
Material particulado PM 2.5	4.5 lph	3.5 tpa
Dióxido de azufre (SO ₂)	0.83 lph	0.58 tpa
Óxidos de nitrógeno (NO _x)	12.84 lph	8.94 tpa
Monóxido de carbono (CO)	5.1 lph	2.4 tpa
Compuestos Volátiles Orgánicos	5.8 lph	24.98 tpa
Suma total de todos los contaminantes peligrosos en el aire Emisiones de gases de efecto invernadero	5.6 lph	24.5 tpa
(CO ₂ equivalente total)	n/a	83,209 tpa

El horario de funcionamiento estándar y máximo de las instalaciones será de 7:00 a.m. a 4:00 p.m. 6 días por semana y un máximo de 52 semanas por año.

El propietario y el operador de las instalaciones son:

Sandoval County Department of Public Works (Propietario)	Sandoval County Landfill (Operador)
2708 Iris Rd. NE	2708 Iris Road NE
Rio Rancho, NM 87124	Rio Rancho, NM 87124

\\Data1\Projects3\2022\40111.22\04_PRCMNT\00_PASS\NSR_Mailing_Ltr_SP.docx

Si tiene comentarios acerca de la construcción o del funcionamiento de estas instalaciones y desea que sus comentarios formen parte del proceso de revisión del permiso, deberá presentar sus comentarios por escrito al Administrador de Programas de Permisos de la Oficina para la Calidad del Aire del Departamento del Medio Ambiente de Nuevo México: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; <u>https://coda.io/@todd-hochman-work/current-permitting-actions-under-review</u>. Otros comentarios y preguntas podrán presentarse verbalmente 505.476.4300; 1.800.224.7009;.

Sírvase hacer referencia al nombre de la empresa y al nombre de las instalaciones, o envíe una copia de este aviso junto con sus comentarios ya que el Departamento podría no haber recibido aún la solicitud del permiso. Por favor, incluya con sus comentarios una dirección de retorno legible. Una vez que el Departamento haya hecho una revisión preliminar de la solicitud y de su impacto en la calidad del aire, se publicará el aviso del Departamento en la sección legal de un periódico de circulación en la zona cercana a las instalaciones.

Atención

Este es un aviso de la Oficina para la Calidad de Aire del Departamento del Medio Ambiente de Nuevo México, relativo a las emisiones producidas por instalaciones ubicadas en esa zona. Si desea recibir información en español, sírvase comunicarse con esa oficina llamando al 505.629.3395.

Sinceramente,

Sandoval County Landfill 2708 Iris Rd. NE Rio Rancho, NM 87124

Aviso de no discriminación

El Departamento del Medio Ambiente de Nuevo México (NMED por sus siglas en inglés) no discrimina por motivos de raza, color, origen nacional, discapacidad, edad o sexo en la administración de sus programas o actividades, según lo exigido por las leyes y los reglamentos correspondientes. El NMED es responsable de la coordinación de esfuerzos para el cumplimiento de las reglas y la recepción de indagaciones relativas a los requisitos de no discriminación implementados por 40 C.F.R. Parte 7, que incluye el Título VI de la Ley de Derechos Civiles de 1964, como fuera enmendado; la Sección 504 de la Ley de Rehabilitación de 1973; la Ley de Discriminación por Edad de 1975; el Título IX de las Enmiendas de Educación de 1972, y la Sección 13 de las Enmiendas a la Ley Federal de Control de la Contaminación del Agua de 1972. Si tiene preguntas sobre este aviso o sobre los programas, las normas o los procedimientos de no discriminación del NMED, o si cree que ha sido discriminado con respecto a un programa o actividad del NMED, puede comunicarse con la Coordinadora de No Discriminación: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, PO Box 5469, Santa Fe, NM 87502, 505.827.2855, nd.coordinator@state.nm.us. También puede visitar nuestro sitio web en

https://www.env.nm.gov/general/environmental-justice-in-new-mexico/ para saber cómo y dónde presentar una queja por discriminación.

ATTACHMENT 9.3

Counties, Municipalities, Tribes, and Owners of Record to Whom Notices Were Sent

ATTACHMENT 9.3 OWNERS OF RECORD, COUNTIES, MUNICIPALITIES AND INDIAN TRIBES TO WHOM NOTICE WAS MAILED SANDOVAL COUNTY LANDFILL

Counties, Municipalities and Tribes						
Entity	Contact Name	Title	Address	City	State	Zip
City of Rio Rancho	Greggory D. Hall	Mayor	3200 Civic Center NE	Rio Rancho	NM	87144
Sandoval County	Wayne Johnson	County Manager	PO Box 40	Bernalillo	NM	87004
City of Albuquerque	Tim Keller	Mayor	PO Box 1293	Albuquerque	NM	87103
Village of Corrales	James F. Fahey, Jr MD	Mayor	4324 Corrales Rd.	Corrales	NM	87048
Town of Bernalillo	Jack Torres	Mayor	PO Box 638	Bernalillo	NM	87004
Village of Los Ranchos de Albuquerque	Donald T. Lopez	Mayor	6718 Rio Grande Blvd NW	Los Ranchos	NM	87107
Bernalillo County	Julie Morgas Baca	County Manager	One Civic Plaza, NW	Albuquerque	NM	87102
Pueblo of Zia	Gabriel Galvan	Govenor	135 Capitol Square Drive	Zia Pueblo	NM	87053-6013
Pueblo of San Felipe	Carl Valencia	Govenor	P.O. Box 4339	San Felipe Pueblo	NM	87001
Pueblo of Santa Ana	Joseph Sanchez	Govenor	2 Dove Road	Santa Ana Pueblo	NM	87004
Pueblo of Sandia	Stuart Paisano	Govenor	481 Sandia Loop	Bernalillo	NM	87004
Cibola National Forest			2113 Osuna Road	Albuquerque	NM	87113-1001
Bureau of Land Management	New Mexico State Office		P.O. Box 27115	Santa Fe	NM	87502-0115
U.S. Army Corps of Engineers			82 Dam Crest Road	Pena Blanca	NM	87041-5015
Petroglyph National Monument	Attn: Visitor Services		6001 Unser Blvd. NW	Albuquerque	NM	87120

ATTACHMENT 9.3 OWNERS OF RECORD WITHIN 100 FEET TO WHOM NOTICE WAS MAILED SANDOVAL COUNTY LANDFILL

OWNER	UPC	ADDRESS	CITY	STATE	ZIP
	1016073076217*				
	1016073098298				
	1016073104292				
	1016073110288				
AMREP SOUTHWEST INC	1015073058194	409 NM HWY 528 NE	RIO RANCHO	NM	87124
	1015073063101				
	1016073165106*				
	1014071022462				
	1015072262362				
BACA, DEBRA		5194 27TH AVE NE	RIO RANCHO	NM	87144-4702
BARCENA, NORBERT	1015072510476	PO BOX 892	PLACITAS	NM	87043
BEDFORD, ALFRED J AND RECIO, ZENAIDA M	1016073141081	39 CAVEN RD	LIGONIER	PA	15658-2010
,	1016073153085				
BOWLES. ROBERT J AND NANCY MURPHY	1015072441452	4811 HARDWARE DR NE STE D-5	ALBUQUERQUE	NM	87109-2023
	1015072421441				
CARMEN SCHELL CONST CO INC AND KLINGLER, JENNY	1015073071135	204 WINGED FOOT CT SE	RIO RANCHO	NM	87124-8252
CHAVEZ, GEORGE P.	1015073051143	6501 KALGAN RD NE	RIO RANCHO	NM	87144-3521
,	1015073079100				
	1016073186108	-			
	1015072365415		RIO RANCHO		87144-4503
CITY OF RIO RANCHO	1015072352409	3200 CIVIC CENTER CIRCLE NE		NM	8/144-4503
	1015072357395	-			
	1015073326010*		DIO DANGUO	NM	97104
COLLINS, LON E & JEANNETTE R. GARCIA, VANESSA & HOFHEINS, MARK	1015072396409 1015073030167	216 VILLA VERDE SE 5808 RIO LAMA RD NE	RIO RANCHO RIO RANCHO	NM	87124 87144
, , , , , , , , , , , , , , , , , , , ,	1015073103109			NM	10030
GOODE, MATTIE L	1015073053189	220 WEST 133RD STREET APT-9J	NEW YORK	IN I	10030
GRANT, STEVEN	1015073047183	45 LAFAYETTE MILLS RD	MANALAPAN	NJ	07726
HAROLD'S GRADING & TRUCKING,INC	1016072025501	PO BOX 54	BARNALILLO	NM	87004
	1016073144057			1	
HARSH HOLDINGS, LLC	1016073102029	2525 VISTA LARGA AVE NE	ALBUQUERQUE	NM	87106-2647
MC DONALD, DONALD P & ADELE	1015073264035	26 HARTFORD AVE	STATEN ISLAND	NY	10310
NEW MEXICO DOT	1015073257083	PO BOX 1149	SANTA FE	NM	87504-1149
	1016073115280				
	1016073120275				0.54.50.0004
PUBLIC SERVICE CO. OF NEW MEXICO	1016073114225	CORPORATE HEADQUARTERS MS 1025	ALBUQUERQUE	NM	87158-0001
	1015072296483				
RUIZ DEVELOPMENT LC	1015073091104	PO BOX 66960	ALBUQUERQUE	NM	87193-6960
SALAIS, RIGBERTO & ROSA MARIE	1015073276008	5195 27TH AVE	RIO RANCHO	NM	87124
SANDOVAL COUNTY	1015073472105	PO BOX 40	BERNALILLO	NM	87004-0040
SHADY VENTURES LLC	1015072333440	9600 TENNYSON ST NE	ALBUQUERQUE	NM	87122-2282
STEPHENS PROPERTIES LP	1015073041178	171 BEAR CREEK RD	SARVER	PA	16055-9227
51Ei HENST KOFEKTIES EF	1015073035172		JARVER	FA	10055-9227
VANDERGEEST, JOHN W	1015073057148	8521 MOUNTAIN RD NE	ALBUQUERQUE	NM	87112
YI, EUNHEE NICOLE	1015072473470	1528 N EVERGREEN AVE UNIT 481	LOS ANGELES	CA	90033-1517
YOUNGBERG LLLP	1016073066001	6729 ACADEMY RD NE	ALBUQUERQUE	NM	87109-3390

^{1.} Data obtained from the Sandoval County Tax Parcel Viewer (https://sc-assessor.maps.arcgis.com/apps/Solutions/s2.html?appid= d13de383a130459ab4b0c33a8c19ba2d); and subsequent follow-up communications with the Sandoval County Assessor's Office to confirm addresses for UPC's associated with "null" data.

² UPC's returning "null" data from the online database are indicated with a "*". Contact information was provided via email by the Sandoval County Assessor's Office and/or NM DOT.

ATTACHMENT 9.4

Proof of Publication

Legal and Display Advertisements

her of homes eveneted in he	light Time on Thursday, March 30, 2023.		 NOTICE IS HEREBY GIVEN of the title and of a general 	NOTICE OF AIR QUALITY P	EDNIT ADDI ICATION	IN THE MATTER OF THE ES-
ber of homes expected to be	Public documents can be pro-		summary of the subject matter	Sandoval County Landfill announces its application		LOIS LILA BRISTER, De- ceased.
	DE SOLICITUD DE PERMISO I			Department for a significant revision of the Sandov ed date of application submittal to the Air Quality Bu	val County Landfill Air Quality Permit. Expect-	NOTICE TO CREDITORS
El Relleno Sanitario del Conda Departamento del Medio Ambien Relleno Sanitario del Condado di del Aire (Air Quality Bureau) es el	e Sandoval. La techa prevista p	punty Landfill) anuncia la pre revisión significativa del Permi ara la presentación de la solic	sentación de su solicitud ante el so relativo a la calidad del aire del itud ante la Oficina para la Calidad	The exact location for the Sandoval County Land 87124. The facility is located immediately north of proximately 1.5 miles northwest of intersection of N	the intersection of Iris and Idalia Roads, ap-	NOTICE IS HEREBY GIVEN that the undersigned has been appointed Personal Represen- tative of the Estate of Lois Lila
La ubicación exacta del Relleno : ciones se encuentran inmediatal noroeste de la intersección de la o	mente al norte de la intersecc	ión de Iris Road e Idalia Roa	io Rancho, NM 87124. Las instala- d, aproximadamente 1,5 millas al	The proposed revision consists of the following The Sandoval County Landfill is Applying for a Modification to accommodate planned modificati	New Source Review (NSR) Significant Permit	Brister (the "Decedent"). All persons having claims against the Estate of the Decedent are required to present their
Revisión propuesta:				cility roadway orientation modifications, as well as	s changes in traffic volumes.	required to present their claims within four (4) months after the date of the first publi-
El Relleno Sanitario del Conda Nueva (NSR por sus siglas el ciones y otras modificaciones tráfico.	ado de Sandoval solicita una M n inglés) para incorporar las m en la orientación de la carrete	odificación significativa del Pe odificaciones planeadas para ra de las instalaciones, adem	rmiso con una Revisión de Fuente la ruta de depósito de las instala- ás de cambios en el volumen del	Non-second second s	d may change slightly during the course of the	cation of this notice, or sixty (60) days after the date of mailing or other delivery of this notice, whichever is later, or the claims will be forever bar-
A continuación se detallan las ca por hora (lph) y en toneladas Departamento.	intidades máximas estimadas e por año (tpa), que podrán	n todo el sitio para los contami cambiar levemente durante	nantes regulados del aire en libras el transcurso de la revisión del	PM 2.5 Sulfur Dioxide (SO2) Nitrogen Oxides (NOx)	Pounds per hour Tons per year 31.4 pph 25.6 tpy 4.5 pph 3.5 tpy 0.83 pph 0.58 tpy 12.84 pph 8.94 tpy	red. Claims must be present- ed to the Personal Represen- tative's attorneys, Spangler Pacheco & Werbelow PA, P. O. Box 15698, Rio Rancho,
Contaminante: Material particulado PM 10 Material particulado PM 2.5 Dióxido de azufre (SO2) Oxidos de nitrógeno (NOx)		31.4 lph 25. 4.5 lph 3.5 0.83 lph 0.5	ieladas por año 5 tpa tpa 8 tpa 4 tpa	Carbon Monoxida (CO) Volatile Organic Compounds (VOC) Total sum of all Hazardous Air Pollutants (HAPs) Green House Gas Emissions as Total CO2e	5.1 pph 2.4 tpy 5.8 pph 24.98 tpy 5.6 pph 24.5 tpy n/a 83,209 tpy	New Mexico 87174, or filed with the Probate Court of Sandoval County, New Mexi- co, located at the following ad- dress: 1500 Idalia Fload,
Monóxido de carbono (CO) Compuestos Volátiles Orgánicos Suma total de todos los contamin Emisiones de gases de efecto inv	antes peligrosos en el aire	5.1 lph 2.4 5.8 lph 24. 5.6 lph 24.	tpa 98 tpa 5 tpa	The standard and maximum operating schedule of 6 days a week and a maximum of 52 weeks per year. The owner and operator of the facility are:	the facility will be from 7:00 a.m. to 4:00 p.m. ar.	Building D, Bernalillo, NM 87004 and P.O. Box 40 Bernalillo, NM 87004.
(CO2 equivalente total)			209 tpa	Sandoval County Department of Public Works (Own	ner)	Dated: 2/10/2023
El horario de funcionamiento es máximo de 52 semanas por año.	tándar y máximo de las instala	ciones será de 7:00 a.m. a 4	:00 p.m. 6 días por semana y un	2708 Iris Rd. NE Rio Rancho, NM 87124		/s/Gary Lynn Brister, Personal Representative
El propietario y el operador de		0		Sandoval County Landfill (Operator) 2708 Iris Road NE		of the Estate of Lois Lila Brister
Sandoval County Department of F 2708 Iris Rd. NE Rio Rancho, NM 87124	Public Works (Propietano)	Sandoval County Landfill (Ope 2708 Iris Road NE Rio Rancho, NM 87124	arador)	Rio Rancho, NM 87124 If you have any comments about the construction of	or operation of this facility, and you want your	Submitted by: SPANGLER PACHECO &
Si tiene comentarios acerca de la parte del proceso de revisión del misos de la Oficina para la Calida New Mexico Environment Depart	l permiso, deberá presentar sus ad del Aire del Departamento d tment; Air Quality Bureau; 525 hman-work/current-permitting-au	ento de estas instalaciones y o comentarios por escrito al Ac el Medio Ambiente de Nuevo N Camino de los Marquez, Suite	lesea que sus comentarios formen ministrador de Programas de Per- léxico: Permit Programs Manager, 1; Santa Fe, New Mexico: 87505- omentarios y preguntas podrán	comments to be made as part of the permit review writing to this address: Permit Programs: Manage Quality Bureau; 525 Camino de los Marquez, Suite v/coda.iu/@todd-hochman-work/current-permitting- questions may be submitted verbally 505-476.4300; Please refer to the company name and facility na	r process, you must submit you'r comments in r, New Mexico: Brwiornwent - Bopartment. Air 1: Santa Fe, New Mexico: 87505-1816; https actions-under-review. Other comments and 1.800.224.7009. me, or send a copy of this notice along with	WERBELOW PA /s/LeeAnn Werbelow Attorneys for Gary Lynn Brister, as Personal Repre- sentative for the Estate of Lois Lila Brister
tarios una dirección de retorno le	egible. Una vez que el Departar e publicará el aviso del Depart	nento haya hecho una revisió	una copia de este aviso junto con Por favor, incluya con sus comen- n preliminar de la solicitud y de su e un periódico de circulación en la	your comments, since the Department may have n include a legible return mailing address with you formed a preliminary review of the application and i will be published in the legal section of a newspaper Attención	r comments. Once the Department has per- ts air quality impacts, the Department's notice r circulated near the facility location.	P. O. Box 15698 Rio Rancho, New Mexico 87174 Telephone: (505) 892-3607 Email: Iw@Isplegal.com
Atención Este es un aviso de la Oficina p emisiones producidas por instalar esa oficina llamando al 505.629.3	vara la Calidad de Aire del Dep ciones ubicadas en esa zona. S 395.	artamento del Medio Ambient i desea recibir información en	e de Nuevo México, relativo a las español, sírvase comunicarse con	Este es un aviso de la oficina de Calidad del Air Nuevo México, acerca de las emisiones producio usted desea información en español, por favor com .3395.	das por un establecimiento en esta área. Si	Observer: March 2, 9, 16, 2023
Aviso de no discriminación El Departamento del Medio Ambi or, orgen nacional, discapacidad leyes y los reglamentos correspo- reglas y la recepción de indagad incluye el Titulo VI de la Ley de el 1973; la Ley de Discriminaciór Enmiendas a la Ley Federal de (programas, las normas o los pro un programa, las normas o los pro un programa, a catividad del NM enimation Coordinator, NMED,	iente de Nuevo México (NMED , dad o sexo en la administr ndientes. El NMED es respons iones relativas a los requeitos Derechos Civiles de 1964, com por Edad de 1975, el Título IX Control de la Contaminación de cedimientos de no discriminació ED, puede comunicarse con la 1190 SL. Francis Dr., Sute N ambién puede visitar	por sus siglas en inglés) no d cion de sus programas o aci- ble de la coordinación de esta de no discrimiención impleme o fuera enmendado; la Secció de las Enmiendas de Educaci de las Enmiendas de Educaci 1 Agua de 1972. Si tiene preg- in del NMED; o si cree que ha Coordinadora de No Discrim 4050, PO Box 5469, Santa f nuestro siño wel	iscrimina por motivos de raza, col- ividades, según lo exigido por las verzos para el cumplimiento de las rados por 40 C. F.R. Parte 7, que n 504 de la Ley de Rehabilitación nó de 1972, y la Sección 13 de las natas sobre este aviso o sobre los rado discriminado con respecto a nación: Kathyn Becker, Non-Dis- e, NM 87502, 505.827.2855, nd. en https://www.env.nm.	Notice of Non-Discrimination NMED does not discriminate on the basis of race, the administration of its programs or activities, as NMED is responsible for coordination of complexity on-discrimination requirements implemented by 40 Rights Act of 1964, as amended; Section 504 of the ration Act of 1975. This IX of the Education Amend	required by applicable laws and regulations. c efforts and receipt of inquires concerning n- C C.F.R. Part 7. including Title VI of the Civil 8 hehabilitation Act of 1973; the Age Discrim- iments of 1972, and Section 13 of the Federal If you have any questions about this notice or lais or procedures, or If you believe that you NMED program or activity, you may contact IMED, 11390 St. Francis Dr., Suite N4050, PO Coordinator 6 date.m.m.s. You may also yidi	FOR CLASSIFIED ADS CALL 505.823.4444 abglournal.com/classifieds
Observer: March 2, 2023				Observer: March 2, 2023		-

RR slaying to appear

BY MICHAELA HELEAN

RIO RANCHO — The 2018 murder of Dawn Sandoval, from Rio Rancho, will be included in the Oxygen True Crime show "Killer Relationship with Faith Jenkins" in season two.

"Hosted by Divorce Court's presiding judge, Faith Jenkins, this true crime series delves into jaw-droppingly evil stories of love that sours and breakups that turn downright murderous," it says in the show description.

According to IMDB, Killer Relationship investigates burgeoning romances from their beginnings and follows what happened all the way through to their bitter ends

In 2018, Sandoval County police investigated a missing person case that involved Sandoval and her ex-husband Michael Encinias. The 46-year-old woman was reported missing by fam-

on true crime show ily on April 16 and found

> Sandoval County on May 6. Due to decomposition, the Office of the Medical Investigator could not determine how Dawn Sandoval died but ruled her death a homicide.

> missing, and after a long investigation police arrested Encinias in November that same year.

married for 19 years. They got a divorce shortly before Sandoval went missing.

second-degree murder and tampering with evidence. Encinias' sentence amounted to a total of 18 years in jail and two years of probation after that.

for season two yet. com/killer-relationship-

burned in a remote area of

Her family waited for months after reporting her

According to the report, Sandoval and Encinias were

There is no release date For more information

He was found guilty of

on the show, visit oxygen. with-faith-jenkins

RRPD: Woman tried to ram police vehicle

BY MICHAELA HELEAN

RIO RANCHO — An Albuquerque woman is facing several charges in Rio Rancho after attempting to ram a police car and a following pursuit.

According to a criminal complaint filed with Rio Rancho Police Department, an officer was out on duty Jan. 5 looking at a suspicious vehicle when another vehicle passed them at a high rate of speed. The officer got into their vehicle and followed the car, which pulled into the parking lot of Good 2 Go on

Unser Blvd. The driver, Erika Mendez, 33, of Albuquerque, then allegedly drove toward the officer, according to the report. "The vehicle proceeded to head my way and pulled next to the passenger side of my marked police unit. I was able to get a good look at the driver as she stared at me, then smirked briefly before she revved the engine and accelerated her vehicle towards mine," the complaint states.

The officer then says that because they feared she would strike them, maneuvered the vehicle out of the

at a high rate of speed As the officer was calling out the information, she got close enough to hit the

police unit again, forcing the officer to swerve the police unit so it wouldn't get hit. The officer was able to get behind the vehicle

once more and saw Mendez almost hit another vehicle which "just so happened to be an Albuquerque Police Unit" stopped at the red light at Unser and Southern blvds. The woman ran through the red light and almost hit right-of-way vehicles.

The officer was able to get the license plate number at that point and attempted to perform a traffic stop after Cabezon Blvd. on Unser Blvd.

Mendez stopped briefly but continued to travel southbound on Unser. She then threw a glass bottle out the window toward the police unit, causing them swerve out of the way and disengage from the chase.

The Albuquerque Police unit continued to chase the woman. She traveled into Albuquerque, where she was finally detained on Jan. 6.

Rio Rancho charged Mendez with aggravated way, and pulled around to assault with a deadly weapobstructing an officer. She was also charged with littering due to the glass bottle

NEWS

NOTICE OF AIR OUALITY PERMIT APPLICATION

Sandoval County Landfill announces its application submittal to the New Mexico Environment Department for a significant revision of the Sandoval County Landfill Air Quality Permit. Expected date of application submittal to the Air Quality Bureau is March 7, 2023.

The exact location for the Sandoval County Landfill is 2708 Iris Road, NE, Rio Rancho, NM 87124. The facility is located immediately north of the intersection of Iris and Idalia Roads, approximately 1.5 miles northwest of intersection of NM 528 and Iris Road in Sandoval County NM.

The proposed revision consists of the following

The Sandoval County Landfill is Applying for a New Source Review (NSR) Significant Permit Modification to accommodate planned modifications to the facility disposal route and other facility roadway orientation modifications, as well as changes in traffic volumes

The estimated maximum site-wide quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and may change slightly during the course of the Department's review

Pollutant:	Pounds per hour	Tons per year	
PM 10	31.4 pph	25.6 tpy	
PM 2.5	4.5 pph	3.5 tpy	
Sulfur Dioxide (SO ₂)	0.83 pph	0.58 tpy	
Nitrogen Oxides (NOx)	12.84 pph	8.94 tpy	
Carbon Monoxide (CO)	5.1 pph	2.4 tpy	
Volatile Organic Compounds (VOC)	5.8 pph	24.98 tpy	
Total sum of all Hazardous Air Pollutants (HAPs)	5.6 pph	24.5 tpy	
Green House Gas Emissions as Total CO2e	n/a	83,209 tpy	

The standard and maximum operating schedule of the facility will be from 7:00 a.m. to 4:00 p.m. 6 days a week and a maximum of 52 weeks per year.

The owner and operator of the facility are:

Sandoval County Department of Public Works (Owner) 2708 Iris Rd. NE Rio Rancho, NM 87124

Sandoval County Landfill (Operator) 2708 Iris Road NE Rio Rancho, NM 87124

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; https://coda.io/@todd-hochman-work/current-permitting-actions-under-review. Other comments and questions may be submitted verbally 505.476.4300; 1.800.224.7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor muníquese con esa oficina al teléfono 505.629.3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, PO Box 5469, Santa Fe, NM, 87502, 505.827.2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/general/environmental-justice-in-new-mexico/ to learn how and where to file a complaint of discrimination.

Community center hosts spring mininge sale

AVISO DE SOLICITUD DE PERMISO RELATIVO A LA CALIDAD DEL AIRE

El Relleno Sanitario del Condado de Sandoval (Sandoval County Landfill) anuncia la presentación de su solicitud ante el Departamento del Medio Ambiente de Nuevo México para una revisión significativa del Permiso relativo a la calidad del aire del Relleno anitario del Condado de Sandoval. La fecha prevista para la presentación de la solicitud ante la Oficina para la Calidad del Aire (Air Quality Bureau) es el 7 de marzo de 2023.

a ubicación exacta del Relleno Sanitario del Condado de Sandoval es 2708 Iris Road, NE, Rio Rancho, NM 87124. Las instalaciones se encuentran inmediatamente al norte de la intersección de Iris Road e Idalia Road, aproximadamente 1.5 millas al noroeste de la ntersección de la carretera NM 528 e Iris Road en el Condado de Sandoval, NM.

Revisión propuesta:

El Relleno Sanitario del Condado de Sandoval solicita una Modificación significativa del Permiso con una Revisión de Fuente Nueva (NSR por sus siglas en inglés) para incorporar las modificaciones planeadas para la ruta de depósito de las instalaciones y otras nodificaciones en la orientación de la carretera de las instalaciones, además de cambios en el volumen del tráfico.

A continuación se detallanºlas cantidades máximas estimadas en todo el sitio para los contaminantes regulados del aire en libras por hora (lph) y en toneladas por año (tpa), que podrán cambiar levemente durante el transcurso de la revisión del Departamento.

del permiso, deberá presentar sus comentarios por escrito al Administrador de Programas de Permisos de la Oficina para la Calidad del Aire del Departamento del Medio Ambiente de Nuevo México: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; https://coda. io/@todd-hochman-work/current-permitting-actionsunder-review. Otros comentarios y preguntas podrán presentarse verbalmente 505.476.4300; 1.800.224.7009;

Sírvase hacer referencia al nombre de la empresa y al nombre de las instalaciones, o envie una copia de este aviso junto con sus comentarios ya que el Departamento podría no haber recibido aún la solicitud del permiso. Por favor, incluya con sus comentarios una dirección de retorno legible. Una vez que el Departamento haya hecho una revisión preliminar de la solicitud y de su impacto en la calidad del aire, se publicará el aviso del Departamento en la sección legal de un periódico de circulación en la zona cercana a las instalaciones.

Atención

Este es un aviso de la Oficina para la Calidad de Aire del Departamento del Medio Ambiente de Nuevo México, relativo a las emisiones producidas por instalaciones ubicadas en esa zona. Si desea recibir información en español, sírvase comunicarse con esa oficina llamando al 505.629.3395

Aviso de no discriminación

El Departamento del Medio Ambiente de Nuevo México (NMED por sus siglas en inglés) no discrimina

try to get her license plate on and resisting, evading or The two vehicles down. circled each other until the officer pulled away on Unser Blvd. The woman caught up being thrown.

Shamrock Shuffle: A fun run for luck, health

RIO RANCHO - Run Fit will host its annual Shamrock Shuffle for St. Patrick's Day on March 12.

The run location is the Loma Colorado Park near the Aquatic Center.

Participants have dressed up in the past with shamrocks, headbands and a lot of green.

The run offers several distances including the 10-Miler, 10K, 4 Mile Run, 4 Mile Walk, and Kids K.

Run Fit puts on several fun runs every year, but the Shamrock Shuffle and Hobbler Gobbler always happen in Rio Rancho.

People wishing to register for the fun run can go to irunfit.org/run-fit-events/shamrock-shuffle.

Correction

In the Feb. 23 Observer story "Brandt targets shooting threats," state Sen. Craig Brandt was incorrectly identified as the Senate majority whip. He is the Senate minority whip.

Contaminante: Libra	s por hora	Toneladas por año
Material particulado PM 10	31.4 lph	25.6 tpa
Material particulado PM 2.5	4.5 lph	3.5 tpa
Dióxido de azufre (SO2)	0.83 lph	0.58 tpa
Óxidos de nitrógeno (NOx)	12.84 lph	8.94 tpa
Monóxido de carbono (CO)	5.1 lph	2.4 tpa
Compuestos Volátiles Orgánicos	5.8 lph	24.98 tpa
Suma total de todos los contamin	nantes peligros	os en el aire
Annual of Constant In States of	5.6 lph	24.5 tpa
Emisiones de gases de efecto inv	vernadero	
(CO2 equivalente total)	n/a	83,209 tpa

El horario de funcionamiento estándar y máximo de las instalaciones será de 7:00 a.m. a 4:00 p.m. 6 días por semana y un máximo de 52 semanas por año.

El propietario y el operador de las instalaciones son:

Sandoval County Department of	Sandoval County
Public Works (Propietario)	Landfill (Operador)
2708 Iris Rd. NE	2708 Iris Road NE
Rio Rancho, NIM 87124	Rio Rancho, NM 87124

Si tiene comentarios acerca de la construcción o del funcionamiento de estas instalaciones y desea que sus comentarios formen parte del proceso de revisión

por motivos de raza, color, origen nacional, discapacidad, edad o sexo en la administración de sus programas o actividades, según lo exigido por las leyes y los reglamentos correspondientes. El NMED es responsable de la coordinación de esfuerzos para el cumplimiento de las reglas y la recepción de indagaciones relativas a los requisitos de no discriminación implementados por 40 C.F.R. Parte 7, que incluye el Título VI de la Ley de Derechos Civiles de 1964, como fuera enmendado: la Sección 504 de la Lev de Rehabilitación de 1973: la Lev de Discriminación por Edad de 1975; el Título IX de las Enmiendas de Educación de 1972, y la Sección 13 de las Enmiendas a la Ley Federal de Control de la Contaminación del Agua de 1972. Si tiene preguntas sobre este aviso o sobre los programas, las normas o los procedimientos de no discriminación del NMED, o si cree que ha sido discriminado con respecto a un programa o actividad del NMED, puede comunicarse con la Coordinadora de No Discriminación: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, PO Box 5469, Santa Fe, NM 87502, 505.827.2855, nd.coordinator@state.nm.us. También puede visitar nuestro sitio web en https://www.env.nm.gov/general/ environmental-justice-in-new-mexico/ para saber cómo y dónde presentar una queja por discriminación.

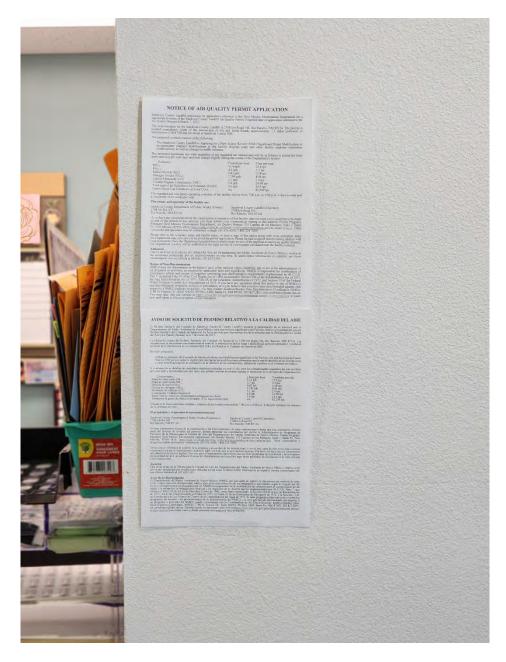
ATTACHMENT 9.5

Proof and Verification of Public Notice Posting

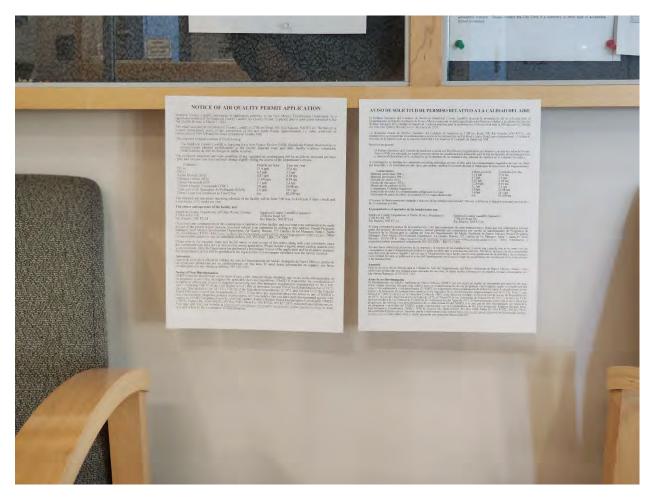
ATTACHMENT 9.5 Sandoval County Landfill Public Notice Posting Locations

Notice of this filing has been posted in the following locations:

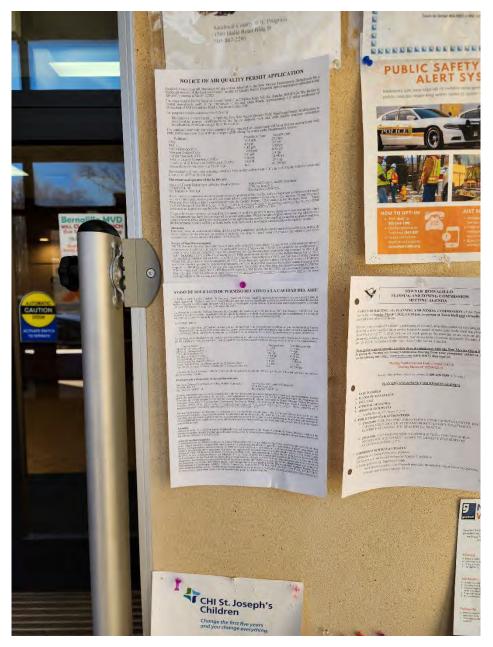
- 1. Sandoval County Landfill Scale House, 2700 Iris Road NE, Rio Rancho, NM, 87124
- Sandoval County Department of Public Works Office, 2708 Iris Road Ne, Rio Rancho, NM 87124
- 3. Rio Rancho City Hall, 3200 Civic Center Circle NE, Rio Rancho, NM 87144
- 4. Bernalillo Town Hall, 829 Camino del Pueblo, Bernalillo, NM 87004


Verification of local postings and certification of posting is also provided in this Attachment.

ATTACHMENT 9.5 Sandoval County Landfill Verification of Local Postings


Sandoval County Landfill Scale House – 3/3/2023

ATTACHMENT 9.5 Sandoval County Landfill Verification of Local Postings


Sandoval County Department of Public Works Office Lobby - 3/3/2023

ATTACHMENT 9.5 Sandoval County Landfill Verification of Local Postings

Rio Rancho City Hall, main entrance – 3/3/2023

ATTACHMENT 9.5 Sandoval County Landfill Verification of Local Postings

Bernalillo Town Hall, main entrance – 3/3/2023

General Posting of Notices – Certification

I, Pamela Gonzales, the undersigned, certify that on March 3, 2023, I posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the Town of Bernalillo and the City of Rio Rancho, Sandoval County, State of New Mexico:

- 1. Sandoval County Landfill Scale House
- 2. Sandoval County Public Works Complex
- 3. Bernalillo Town Hall
- 4. Rio Rancho City Hall

Signed this <u>3</u> day of <u>Morech</u> 2023

gnature JONRALLS

13/2023

Printed Name

PRESECT COORDINATOR

ATTACHMENT 9.6

Property Tax Records from Sandoval County Assessor

Location			Owner Information	Assessmen	t History			
Parcel Number 1-016-073-098-298			Owner Name AMREP SOUTHWEST INC	Actual Va				\$174
	CSH_NR - 510CSH_N	IR	Owner Address 409 NM HWY 528 NE	Primary T				\$58
Situs Address			RIO RANCHO, NM 87124			SH_NR	Mill Levy: 41.7	05
Legal Summar	ry Legal: S: 34 T: 13N	NR: 3E	UNITED STATES OF AMERICA	Туре	Actual A	ssessed	Acres SQFT	Units
Subd: RIO RAN Lot: 45 Unit: 20	NCHO ESTATES Blo 0	ck: 97		Non- Residential Land	\$174	\$58	0.500 21780.000	1.000
<u>Transfers</u>								
	Sale Date			Doc Descri	ption			
				<u>PLAT</u>				
			Images					
Tax Year	Taxes		• <u>GIS</u>					
	2022	\$2.40	• 015					
	2021	\$2.40						

Location		Owner Information	Assessmen	t History			
Parcel Numbe	r 1-016-073-104-292	Owner Name AMREP SOUTHWEST INC	Actual Val	ue (2022)			\$174
Tax Area 510CSH_NR - 510CSH_NR		Owner Address 409 NM HWY 528 NE	Primary T	axable			\$58
Situs Address		RIO RANCHO, NM 87124	Tax A	rea: 510C	SH_NR	Mill Levy: 41.7	705
	ry Legal: S: 34 T: 13N R: 3		Туре	Actual A	ssessed	Acres SQFT	Units
Subd: RIO RA Lot: 44 Unit: 2	NCHO ESTATES Block: 9 0		Non- Residential Land	\$174	\$58	0.500 21780.000	0 1.000
<u>Transfers</u>							
	Sale Date		Doc Descri	ption			
			PLAT				
		Images					
Tax Year	Taxes						
	2022 \$2	• <u>GIS</u>					
	2021 \$2	40 - 0					

Location		Owner Information	Assessment					
Parcel Number 1-016-073-110-288		Owner Name AMREP SOUTHWEST INC	Actual Val	ue (2022)			\$174	
Tax Area 5100	CSH_NR - 510CSH_NF	ι	Owner Address 409 NM HWY 528 NE	Primary Ta	axable			\$58
Situs Address			RIO RANCHO, NM 87124	Tax Ai	rea: 510C	SH_NR	Mill Levy : 41.7	05
	ry Legal: S: 34 T: 13N		UNITED STATES OF AMERICA	Туре	Actual A	ssessed	Acres SQFT	Units
Subd: RIO RAI Lot: 43 Unit: 20	NCHO ESTATES Bloc 0	k: 97		Non- Residential Land	\$174	\$58	0.500 21780.000	1.000
<u>Transfers</u>								
	Sale Date			Doc Descrij	ption			
				<u>PLAT</u>				
			Images					
Tax Year	Taxes		• <u>GIS</u>					
	2022	\$2.40	• 015					
	2021	\$2.40						

Location	Owner Information	Assessme	ent History	
Parcel Number	Owner Name PUBLIC SERVICE COMPANY OF	Actual (2	2022)	\$58,738,143
Tax Area 510CSH_NR - 510CSH_NR	NEW MEXICO	Primary	Taxable	\$19,579,381
Situs Address	Owner Address CORPORATE HEADQUARTERS	Tax A	_NR Mill	
Legal Summary Subd: RIO RANCHO ESTATES	MS 1025		Levy: 41.7	05
Block: 62 Lot: 38 Unit: 17, Subd: RIO RANCHO	ALBUQUERQUE, NM 87158-0001 UNITED STATES OF AMERICA	Туре	Actual	Assessed
ESTATES Block: 177 Lot: 1 Unit: 20 AND:- Lot: 2	UNITED STATES OF AMERICA	Central	\$58 738 1/3	\$19,579,381
Unit: 20 AND:- Lot: 3 Unit: 20 AND:- Lot: 4 Unit: 20		Assessed	\$50,750,145	\$17,577,581
AND:- Lot: 5 Unit: 20 AND:- Lot: 6 Unit: 20 AND:- Lot: 10 Unit: 20 AND:- Lot: 11 Unit: 20 AND:- Lot:				
12 Unit: 20 AND:- Lot: 13 Unit: 20, Subd: RIO				
RANCHO ESTATES Unit: 21 AND:- Unit: 20 Tract:				
CC-2, 8-A, Subd: RIO RANCHO ESTATES Block:				
97 Lot: 41 Unit: 20 AND:- Lot: 42 Unit: 20, Subd:				
RIO RANCHO ESTATES Block: BB Lot: 33 Unit: 17				
AND:- Lot: 34 Unit: 17 CENTRAL ASSESSED 94-				

IN (SSCAFCA)

Transfers			
	Sale Date		Doc Description
			WARRANTY DEED
			Images
Tax Year	Taxes		
	2022	\$816,558.08	
	2021	\$883,338.40	

Location	Owner Information	Assessme	ent History	
Parcel Number	Owner Name PUBLIC SERVICE COMPANY OF	Actual (2	2022)	\$58,738,143
Tax Area 510CSH_NR - 510CSH_NR	NEW MEXICO	Primary	Taxable	\$19,579,381
Situs Address	Owner Address CORPORATE HEADQUARTERS	Tax A	_NR Mill	
Legal Summary Subd: RIO RANCHO ESTATES	MS 1025		Levy: 41.7	05
Block: 62 Lot: 38 Unit: 17, Subd: RIO RANCHO	ALBUQUERQUE, NM 87158-0001 UNITED STATES OF AMERICA	Туре	Actual	Assessed
ESTATES Block: 177 Lot: 1 Unit: 20 AND:- Lot: 2	UNITED STATES OF AMERICA	Central	\$58 738 1/3	\$19,579,381
Unit: 20 AND:- Lot: 3 Unit: 20 AND:- Lot: 4 Unit: 20		Assessed	\$50,750,145	\$17,577,581
AND:- Lot: 5 Unit: 20 AND:- Lot: 6 Unit: 20 AND:- Lot: 10 Unit: 20 AND:- Lot: 11 Unit: 20 AND:- Lot:				
12 Unit: 20 AND:- Lot: 13 Unit: 20, Subd: RIO				
RANCHO ESTATES Unit: 21 AND:- Unit: 20 Tract:				
CC-2, 8-A, Subd: RIO RANCHO ESTATES Block:				
97 Lot: 41 Unit: 20 AND:- Lot: 42 Unit: 20, Subd:				
RIO RANCHO ESTATES Block: BB Lot: 33 Unit: 17				
AND:- Lot: 34 Unit: 17 CENTRAL ASSESSED 94-				

IN (SSCAFCA)

Transfers			
	Sale Date		Doc Description
			WARRANTY DEED
			Images
Tax Year	Taxes		
	2022	\$816,558.08	
	2021	\$883,338.40	

Location	Owner Information	Assessme	ent History	
Parcel Number	Owner Name PUBLIC SERVICE COMPANY OF	Actual (2	2022)	\$58,738,143
Tax Area 510CSH_NR - 510CSH_NR	NEW MEXICO	Primary	Taxable	\$19,579,381
Situs Address	Owner Address CORPORATE HEADQUARTERS	Tax A	NR Mill	
Legal Summary Subd: RIO RANCHO ESTATES	MS 1025		Levy: 41.7	05
Block: 62 Lot: 38 Unit: 17, Subd: RIO RANCHO	ALBUQUERQUE, NM 87158-0001 UNITED STATES OF AMERICA	Туре	Actual	Assessed
ESTATES Block: 177 Lot: 1 Unit: 20 AND:- Lot: 2	UNITED STATES OF AMERICA	Central	\$58 738 1/3	\$19,579,381
Unit: 20 AND:- Lot: 3 Unit: 20 AND:- Lot: 4 Unit: 20		Assessed	\$50,750,145	\$17,577,581
AND:- Lot: 5 Unit: 20 AND:- Lot: 6 Unit: 20 AND:- Lot: 10 Unit: 20 AND:- Lot: 11 Unit: 20 AND:- Lot:				
12 Unit: 20 AND:- Lot: 13 Unit: 20, Subd: RIO				
RANCHO ESTATES Unit: 21 AND:- Unit: 20 Tract:				
CC-2, 8-A, Subd: RIO RANCHO ESTATES Block:				
97 Lot: 41 Unit: 20 AND:- Lot: 42 Unit: 20, Subd:				
RIO RANCHO ESTATES Block: BB Lot: 33 Unit: 17				
AND:- Lot: 34 Unit: 17 CENTRAL ASSESSED 94-				

IN (SSCAFCA)

Transfers			
	Sale Date		Doc Description
			WARRANTY DEED
			Images
Tax Year	Taxes		
	2022	\$816,558.08	
	2021	\$883,338.40	

<u>Location</u>	Owner Information	Assessmen	<u>t Histor</u>	<u>y</u>			
Parcel Number 1-015-073-058-194	Owner Name AMREP SOUTHWEST INC	Actual Val	ue (2022	2)			\$174
Tax Area 510CSH_NR - 510CSH_NR	Owner Address 409 NM HWY 528 NE	Primary T	axable				\$58
Situs Address	RIO RANCHO, NM 87124	Tax A	Mill Levy: 41.705				
Legal Summary Legal: Subd: RIO	UNITED STATES OF AMERICA	Туре	Actual	Assessed	Acres	SQFT	Units
RANCHO ESTATES Block: 194 Lot: 9 Unit: 20 SUB: RIO RANCHO ESTATES UNIT: 20 BLK: 194 LOT: 9 PG: 0 .50 ACS		Non- Residential Land	\$174	\$58	0.500	21780.000	1.000

			No Transfer Documents			
Images						
Fax Year	Taxes		• <u>GIS</u>			
	2022	\$2.40				
	2021	\$2.40				

Location	Owner Information	Assessment History
Parcel Number 1-015-073-053-189	Owner Name GRANT, STEVEN	Actual Value (2022) \$2,614
Tax Area 510CSH_NR - 510CSH_NR	Owner Address 45 LAFAYETTE MILLS	Primary Taxable \$871
Situs Address	RD MANALAPAN, NJ 07726 UNITED STATES OF AMERICA	Tax Area: 510CSH_NR Mill Levy: 41.705
Legal Summary Legal: Subd: RIO		Type Actual Assessed Acres SQFT Units
RANCHO ESTATES Block: 194 Lot: 10 Unit: 20		Non- Residential \$2,614 \$871 0.500 21780.000 1.000 Land

2022 2021	\$36.32 \$41.96	nages • <u>GIS</u>
2022		• <u>GIS</u>
		• (113)
2021	\$41.96	

Location	Owner Information	Assessment History
Parcel Number 1-015-073-047-183	Owner Name GRANT, STEVEN	Actual Value (2022) \$2,614
Tax Area 510CSH_NR - 510CSH_NR	Owner Address 45 LAFAYETTE MILLS	Primary Taxable \$871
Situs Address	RD	Tax Area: 510CSH_NR Mill Levy: 41.705
Legal Summary Legal: Subd: RIO	MANALAPAN, NJ 07726	Type Actual Assessed Acres SQFT Units
RANCHO ESTATES Block: 194 Lot: 11 Unit: 20	UNITED STATES OF AMERICA	Non- Residential \$2,614 \$871 0.500 21780.000 1.000 Land

			No Transfer Documents
		In	nages
Tax Year	Taxes		• <u>GIS</u>
	2022	\$36.32	• <u>UIS</u>
	2021	\$41.96	

Location	Owner Information	Assessment History	
Parcel Number 1-015-073-041-178	Owner Name STEPHENS PROPERTIES	Actual Value (2022)	\$2,614
Tax Area 510CSH_NR - 510CSH_NR	LP	Primary Taxable	\$871
Situs Address	Owner Address 171 BEAR CREEK RD	Tax Area: 510CSH_NR Mill Levy: 4	1.705
Legal Summary Legal: Subd: RIO	SARVER, PA 16055-9227 UNITED STATES OF AMERICA	Type Actual Assessed Acres SQFT	Units
RANCHO ESTATES Block: 194 Lot: 12 Unit: 20 SUB: RIO RANCHO ESTATES UNIT: 20 BLK: 194 LOT: 12 BK: 407 PG: 18895	UNITED STATES OF AMERICA	Non- Residential \$2,614 \$871 0.500 21780. Land	000 1.000

Transfers

Sale Date			Doc Description WARRANTY DEED
		In	nages
Tax Year	Taxes		• <u>GIS</u>
	2022	\$36.32	• 015
	2021	\$41.96	

Location	Owner Information	Assessment History			
Parcel Number 1-015-073-035-172	Owner Name STEPHENS PROPERTIES	Actual Value (2022) \$2,6	514		
Tax Area 510CSH_NR - 510CSH_NR	LP	Primary Taxable \$8	371		
Situs Address	Owner Address 171 BEAR CREEK RD	Tax Area: 510CSH_NR Mill Levy: 41.705			
Legal Summary Legal: Subd: RIO	SARVER, PA 16055-9227 UNITED STATES OF AMERICA	Type Actual Assessed Acres SQFT Uni	iits		
RANCHO ESTATES Block: 194 Lot: 13 Unit: 20	UNITED STATES OF AMERICA	Non- Residential \$2,614 \$871 0.500 21780.000 1.0 Land)00		

Sale Date			Doc Description WARRANTY DEED
		Ir	nages
Tax Year	Taxes		• CIS
	2022	\$36.32	• <u>GIS</u>
	2021	\$41.96	

Location	Owner Information	Assessmen	<u>t Histor</u>	<u>y</u> .			
Parcel Number 1-015-073-030-167	Owner Name GARCIA, VANESSA &	Actual Val	ue (202	2)		:	\$2,614
Tax Area 510CSH_NR - 510CSH_NR	HOFHEINS, MARK	Primary T	axable				\$871
Situs Address	In Care Of Name HOFHEINS, MARK	Tax Area: 510CSH_NR Mill Levy: 41.705)5	
Legal Summary Legal: Subd: RIO	Owner Address 5808 RIO LAMA RD NE	Туре	Actual	Assessed	Acres	SQFT	Units
RANCHO ESTATES Block: 194 Lot: 14 Unit: 20 SUB: RIO RANCHO ESTATES UNIT: 20 BLK: 194 LOT: 14 PG: 0	RIO RANCHO, NM 87144 UNITED STATES OF AMERICA	Non- Residentia Land	\$2,614	\$871	0.500	21780.000	1.000

Images Tax Year Taxes 2022 \$36.32 2021 \$41.96				No Transfer Documents
2022 \$36.32			Ir	Images
2022 \$36.32	Tax Year	Taxes		
2021 \$41.96		2022	\$36.32	• 013

Location	Owner Information	Assessment History	
Parcel Number 1-015-073-057-148	Owner Name VANDERGEEST, JOHN W	Actual Value (2022)	\$2,614
Tax Area 510CSH_NR - 510CSH_NR	Owner Address 8521 MOUNTAIN RD NE	Primary Taxable	\$871
Situs Address	ALBUQUERQUE, NM 87112	Tax Area: 510CSH_NR	Mill Levy: 41.705
Legal Summary Legal: Subd: RIO	UNITED STATES OF AMERICA	Type Actual Assessed A	cres SQFT Units
RANCHO ESTATES Block: 193 Lot: 14		Non-	
Unit: 20 SUB: RIO RANCHO ESTATES		Residential \$2,614 \$871 0	0.500 21780.000 1.000
UNIT: 20 BLK: 193 LOT: 14 BK: 408 PG:		Land	
43640			

			No Transfer Documents
			Images
Tax Year	Taxes		• <u>GIS</u>
	2022	\$36.32	• 013
	2021	\$41.96	

Location	Owner Information	Assessment History	
Parcel Number 1-015-073-051-143	Owner Name CHAVEZ, GEORGE P	Actual Value (2022)	\$2,614
Tax Area 510CSH_NR - 510CSH_NR	Owner Address 6501 KALGAN RD NE	Primary Taxable	\$871
Situs Address	RIO RANCHO, NM 87144-3521	Tax Area: 510CSH_NR Mill Le	vy: 41.705
Legal Summary Legal: Subd: RIO	UNITED STATES OF AMERICA	Type Actual Assessed Acres S	QFT Units
RANCHO ESTATES Block: 193 Lot: 13		Non-	
Unit: 20 SUB: RIO RANCHO ESTATES		Residential \$2,614 \$871 0.500 2	1780.000 1.000
UNIT: 20 BLK: 193 LOT: 13 BK: 409 PG:		Land	
1943			

ages
• <u>GIS</u>
• (113)

Location	Owner Information	Assessment History	
Parcel Number 1-015-073-071-135	Owner Name CARMEN SCHELL CONST	Actual Value (2022) \$2,4	,457
Tax Area 510CSH_NR - 510CSH_NR	CO INC AND KLINGLER, JENNY	Primary Taxable \$8	819
Situs Address	Owner Address 204 WINGED FOOT CT	Tax Area: 510CSH_NR Mill Levy: 41.705	
Legal Summary Legal: Subd: RIO	SE RIO RANCHO, NM 87124-8252	Type Actual Assessed Acres SQFT Un	nits
RANCHO ESTATES Block: 193 Lot: 12 Unit: 20	UNITED STATES OF AMERICA	Non- Residential \$2,457 \$819 0.940 40946.400 1.0 Land	.000

	Sale Date <u>10/20/2008</u>		Doc Description <u>CASH SALE</u>
		Iı	mages
Tax Year	Taxes		- Dhoto
	2022 2021	\$34.16 \$33.80	• <u>Photo</u> • <u>GIS</u>

Location	Owner Information	Assessment History
Parcel Number 1-015-073-063-101	Owner Name AMREP SOUTHWEST INC	Actual Value (2022) \$352
Tax Area 510CSH_NR - 510CSH_NR	Owner Address 409 NM HWY 528 NE	Primary Taxable \$117
Situs Address	RIO RANCHO, NM 87124	Tax Area: 510CSH_NR Mill Levy: 41.705
Legal Summary Legal: Subd: RIO	UNITED STATES OF AMERICA	Type Actual Assessed Acres SQFT Units
RANCHO ESTATES Block: 192 Lot: 13		Non-
Unit: 20 SUB: RIO RANCHO ESTATES		Residential \$352 \$117 1.010 43995.600 1.000
UNIT: 20 BLK: 192 LOT: 13 PG: 0 1.01		Land
ACS		

Location	Owner Information	Assessment History
Parcel Number 1-015-073-079-100	Owner Name CHAVEZ, GEORGE P	Actual Value (2022) \$4,757
Tax Area 510CSH_NR - 510CSH_NR	Owner Address 6501 KALGAN RD NE	Primary Taxable \$1,586
Situs Address	RIO RANCHO, NM 87144-3521	Tax Area: 510CSH_NR Mill Levy: 41.705
Legal Summary Legal: Subd: RIO	UNITED STATES OF AMERICA	Type Actual Assessed Acres SQFT Units
RANCHO ESTATES Block: 192 Lot: 14 Unit: 20 SUB: RIO RANCHO ESTATES UNIT: 20 BLK: 192 LOT: 14 BK: 409 PG: 21715		Non- Residential \$4,757 \$1,586 1.820 79279.200 1.000 Land

	Sale Date 04/21/2006		Doc Description <u>CASH SALE</u>
		In	nages
Tax Year	Taxes		Directo
	2022	\$66.16	 <u>Photo</u> <u>GIS</u>
	2021	\$65.48	

Location	Owner Information	Assessment History
Parcel Number 1-015-073-091-104	Owner Name RUIZ DEVELOPMENT LC	Actual Value (2022) \$1,803
Tax Area 510CSH_NR - 510CSH_NR	Owner Address P.O. BOX 66960	Primary Taxable \$601
Situs Address	ALBUQUERQUE, NM 87193-6960	Tax Area: 510CSH_NR Mill Levy: 41.705
Legal Summary Legal: Subd: RIO	UNITED STATES OF AMERICA	Type Actual Assessed Acres SQFT Units
RANCHO ESTATES Block: 192 Lot: 15 Unit: 20		Non- Residential \$1,803 \$601 0.690 30056.400 1.000 Land

Sale Date		Doc Description
		SPECIAL WARRANTY DEED
	Ir	nages
Tax Year	Taxes	• <u>GIS</u>
2022	\$25.08	• 013
2021	\$24.80	

Location	Owner Information	Assessment History
Parcel Number 1-015-073-103-109	Owner Name GOODE, MATTIE L	Actual Value (2022) \$1,882
Tax Area 510CSH_NR - 510CSH_NR	Owner Address 220 WEST 133RD	Primary Taxable \$627
Situs Address	STREET APT-9J	Tax Area: 510CSH_NR Mill Levy: 41.705
Legal Summary Legal: Subd: RIO	NEW YORK, NY 10030 UNITED STATES OF AMERICA	Type Actual Assessed Acres SQFT Units
RANCHO ESTATES Block: 192 Lot: 16 Unit: 20	UNITED STATES OF AMERICA	Non- \$627 0.720 31363.200 1.000 Land \$ </th

Images

Location	Owner Information	Assessment History
Parcel Number 1-016-073-141-081	Owner Name BEDFORD, ALFRED J AND	Actual Value (2022) \$3,889
Tax Area 510CSH_NR - 510CSH_NR	RECIO, ZENAIDA M	Primary Taxable \$1,296
Situs Address	Owner Address 39 CAVEN RD	Tax Area: 510CSH_NR Mill Levy: 41.705
Legal Summary Legal: S: 34 T: 13N R: 3E	LIGONIER, PA 15658-2010	Type Actual Assessed SQFT Units
Subd: RIO RANCHO ESTATES Block: 192 Lot: 12 Unit: 20	UNITED STATES OF AMERICA	Non- Residential \$3,889 \$1,296 32404.284 1.000
		Land

Sale Date	Doc Description
	<u>PLAT</u>
<u>01/27/2017</u>	DEATH CERTIFICATE
	WARRANTY DEED
	QUIT CLAIM DEED
	MISCELLANEOUS

Tax Year	Taxes		• <u>GIS</u>
	2022	\$54.04	• 013
	2021	\$62.40	

<u>Location</u>	Owner Information	Assessment History	
Parcel Number 1-016-073-371-110	Owner Name CITY OF RIO RANCHO	Actual Value (2018)	\$18,01
Tax Area 510CSH_NR - 510CSH_NR	Owner Address 3200 CIVIC CENTER CIR	Primary Taxable	\$6,00
Situs Address	NE	Exempt	(\$6,005
Legal Summary Legal: S: 34 T: 13N R: 3E	RIO RANCHO, NM 87144-4501	Adjusted Taxable Total	\$
Subd: RIO RANCHO ESTATES Block: 93	UNITED STATES OF AMERICA	Tax Area: 510CSH NR Mill I	Levy: 41.705
Lot: 35 Unit: 20 AND:- Lot: 41 Unit: 20		Type Actual Assessed Acres SQ	-
AND:- Lot: 36 Unit: 20 AND:- Lot: 37 Unit:			
20 AND:- Lot: 38 Unit: 20 AND:- Lot: 39		Exempt \$18,016 \$6,005 2.758 11 Land	7126.586 33.00
Unit: 20 AND:- Lot: 40 Unit: 20, Subd: RIO		Land	
RANCHO ESTATES Block: 99 Lot: 27 Unit:			
20 AND:- Lot: 28 Unit: 20 AND:- Lot: 29			
Unit: 20 AND:- Lot: 30 Unit: 20 AND:- Lot: 31 Unit: 20 AND:- Lot: 32 Unit: 20 AND:-			
Lot: 33 Unit: 20 AND:- Lot: 34 Unit: 20			
AND:- Lot: 35 Unit: 20 AND:- Lot: 34 Unit: 20			
20 AND:- Lot: 37 Unit: 20, Subd: RIO			
RANCHO ESTATES Block: 104 Lot: 1 Unit:			
20 AND:- Lot: 2 Unit: 20 AND:- Lot: 3 Unit:			
20 AND:- Lot: 4 Unit: 20 AND:- Lot: 5 Unit:			
20 AND:- Lot: 6 Unit: 20 AND:- Lot: 7 Unit:			
20 AND:- Lot: 8 Unit: 20 AND:- Lot: 9 Unit:			
20 AND:- Lot: 10 Unit: 20 AND:- Lot: 11			
Unit: 20 AND:- Lot: 12 Unit: 20 AND:- Lot:			
13 Unit: 20 AND:- Lot: 14 Unit: 20 AND:-			
Lot: 15 Unit: 20 AND:- Lot: 17 Unit: 20			
AND:- Lot: 16 Unit: 20 AND:- Lot: 18 Unit:			
20 AND:- Lot: 19 Unit: 20 AND:- Lot: 20 Unit: 20 AND:- Lot: 21 Unit: 20 AND:- Lot:			
22 Unit: 20 AND:- Lot: 21 Unit: 20 AND:- Lot.			
Lot: 24 Unit: 20 AND:- Lot: 25 Unit: 20			
AND:- Lot: 27 Unit: 20 AND:- Lot: 26 Unit:			
20 AND:- Lot: 28 Unit: 20 AND:- Lot: 29			
Unit: 20 AND:- Lot: 30 Unit: 20 AND:- Lot:			
31 Unit: 20 AND:- Lot: 32 Unit: 20 AND:-			
Lot: 35 Unit: 20 AND:- Lot: 36 Unit: 20			
AND:- Lot: 37 Unit: 20 AND:- Lot: 38 Unit:			
20 AND:- Lot: 39 Unit: 20, Subd: RIO			
RANCHO ESTATES Unit: 20 AND:- Lot:			
R.O.W Unit: 21 Tract: A, Subd: RIO			
RANCHO ESTATES Block: 177 Lot: 3 Unit: 20 AND:- Lot: 7 Unit: 20 AND:- Lot: 8 Unit:			
20 AND:- Lot: 7 Unit: 20 AND:- Lot: 8 Unit.			
Unit: 20 AND:- Lot: 12 Unit: 20 AND:- Lot:			
12 Unit: 20, Subd: RIO RANCHO ESTATES			
Block: 179 Lot: 41 Unit: 20 AND:- Lot: 41			
Unit: 20 AND:- Lot: 41 Unit: 20 AND:- Lot:			
42 Unit: 20 AND:- Lot: 42 Unit: 20 AND:-			
Lot: 43 Unit: 20 AND:- Lot: 43 Unit: 20			
AND:- Lot: 44 Unit: 20 AND:- Lot: 44 Unit:			
20 AND:- Lot: 45 Unit: 20 AND:- Lot: 45			
Unit: 20 AND:- Lot: 46 Unit: 20 AND:- Lot:			
46 Unit: 20, Subd: RIO RANCHO ESTATES			
Block: 192 Lot: 6 Unit: 20 AND:- Lot: 7			
Unit: 20 AND:- Lot: 8 Unit: 20 AND:- Lot: 9 Unit: 20 AND:- Lot: 10 Unit: 20 AND:- Lot:			
11 Unit: 20 AND:- Lot: 10 Unit: 20 AND:- Lot:			
11 Onit. 20 AND LOL 12 Oliit. 20, Subd.			

R.O.W, Subd: SPORTS COMPLEX NORTH Lot: R.O.W PORT. OF, PORT. OF IBADAN RD

Transfers

Sale Date 07/01/2020 10/17/2019

Doc Description SPECIAL WARRANTY DEED WARRANTY DEED PARTIAL DEFAULT JUDGMENT PLAT WARRANTY DEED PARTIAL DEFAULT JUDGMENT WARRANTY DEED **ORDER ORDER** WARRANTY DEED WARRANTY DEED

WARRANTY DEED

PARTIAL DEFAULT JUDGMENT <u>PLAT</u> **PLAT** WARRANTY DEED PLAT STIPULATED JUDEMENT WARRANTY DEED WARRANTY DEED

WARRANTY DEED
WARRANTY DEED
WARRANTY DEED
WARRANTY DEED
WARRANTY DEED
<u>PLAT</u>
<u>PLAT</u>

Images			
Tax Year	Taxes		
	2022	\$0.00	
	2021	\$0.00	

Location	Owner Information	Assessment History	<u>r</u>
Parcel Number 1-016-073-153-085 Tax Area 510CSH NR - 510CSH NR	Owner Name BEDFORD, ALFRED J AND RECIO, ZENAIDA M	Actual Value (2022 Primary Taxable	2) \$2,894 \$965
Situs Address Legal Summary Legal: S: 34 T: 13N R: 3E Subd: RIO RANCHO ESTATES Block: 192 Lot: 11 Unit: 20	Owner Address 39 CAVEN RD LIGONIER, PA 15658-2010 UNITED STATES OF AMERICA	Tax Area: 510CSI	Assessed SQFT Units \$965 24114.000 1.000

Sale Date	Doc Description	
	<u>PLAT</u>	
01/27/2017	DEATH CERTIFICATE	
	WARRANTY DEED	
	QUIT CLAIM DEED	
	<u>MISCELLANEOUS</u>	

			Images
Tax Year	Taxes		
	2022	\$40.24	- • <u>GIS</u>
	2021	\$46.44	\downarrow / / / \land \land

<u>Location</u>		Owner Information	Assessme	<u>nt History</u>			
Parcel Numb	er 1-016-073-144-057	Owner Name HARSH HOLDINGS LLC	Actual V	alue (2022)		\$11,998
Tax Area 510	OCSH_NR - 510CSH_NR	Owner Address 2525 VISTA LARGA AVE	Primary	Taxable			\$3,999
Situs Address	s	NE	Tax	Area: 510	CSH_NR	Mill Levy: 41.705	
Legal Summa	ary Legal: S: 34 T: 13N R: 3E	ALBUQUERQUE, NM 87106-2647 UNITED STATES OF AMERICA	Туре	Actual	Assessed	Acres SQFT	Units
Subd: RIO RANCHO ESTATES Block: 84 Lot: 16A Unit: 17 AND:- Lot: 16B Unit: 17		UNITED STATES OF AMERICA	Non- Residentia Land	al \$11,998	\$3,999	0.977 42562.4	76 2.000
<u>Transfers</u>							
Sale	e Date	Doc Descr	iption				
<u>01/22</u>	2/2019	WARRANTY	Y DEED				
<u>11/13</u>	<u>3/2018</u>	WARRANTY	Y DEED				
		<u>PLAT</u>	<u>[</u>				
		<u>PLA1</u>	<u>[</u>				
		WARRANTY	Y DEED				
		WARRANTY	<u>Y DEED</u>				
		SOLE SEPERATE PROP	ERTY COM	<u>NVEYAN</u>			
<u>12/1</u>	<u>9/2011</u>	WARRANTY					
		<u>QUIT CLAIN</u>					
		MISCELLA					
		<u>PLA1</u>	<u> </u>				
		Images					
Tax Year	Taxes	• <u>GIS</u>					
	2022 \$166.76						
	2021 \$117.96						

Location	Owner Information	Assessment History				
Parcel Number 1-016-073-102-029 Tax Area 510CSH NR - 510CSH NR	Owner Name HARSH HOLDINGS LLC	Actual Value (2022) \$100,188				
	Owner Address 2525 VISTA LARGA AVE NE ALBUQUERQUE, NM 87106-2647 UNITED STATES OF AMERICA	Primary Taxable \$33,396				
Situs Address		Tax Area: 510CSH NR Mill Levy: 41.705				
Legal Summary Legal: S: 34 T: 13N R: 3E Subd: RIO RANCHO ESTATES Block: 82 Lot: 3 Unit: 17		Type Actual Assessed Acres SQFT Units				
		Non- Residential \$100,188 \$33,396 5.000 217800.000 1.000 Land				
<u>Transfers</u>						
Sale Date	Doc De	scription				
01/22/2019	WARRAN	ITY DEED				

01/22/2019	WARRANTY DEED
<u>11/13/2018</u>	WARRANTY DEED
	<u>PLAT</u>
	SOLE SEPERATE PROPERTY CONVEYAN
<u>12/19/2011</u>	WARRANTY DEED
	WARRANTY DEED
	<u>PLAT</u>

Location	Owner Information	Assessment History
Parcel Number 1-016-073-066-001	Owner Name YOUNGBERG LLLP	Actual Value (2022) \$19,602
Tax Area 510CSH_NR - 510CSH_NR	Owner Address 6729 ACADEMY RD NE	Primary Taxable \$6,534
Situs Address	ALBUQUERQUE, NM 87109-3390	Tax Area: 510CSH_NR Mill Levy: 41.705
Legal Summary Legal: Subd: RIO	UNITED STATES OF AMERICA	Type Actual Assessed Acres SQFT Units
RANCHO ESTATES Block: 82 Lot: 2 Unit: 17 SUB: RIO RANCHO ESTATES UNIT: 17 BLK: 82 LOT: 2 BK: N/A PG: 0		Non- Residential \$19,602 \$6,534 5.000 217800.000 1.000 Land

Sale Date	Doc Description
<u>11/18/2020</u>	QUIT CLAIM DEED
<u>09/07/2017</u>	QUIT CLAIM DEED
07/16/2012	SPECIAL WARRANTY DEED
07/18/2012	SPECIAL WARRANTY DEED
	<u>PLAT</u>

			Images
Tax Year	Taxes		• Photo
	2022	\$272.52	 <u>Photo</u> <u>GIS</u>
	2021	\$269.72	

Location		Owner Information	Assessment History						
Parcel Number 1-016-072-025-501 Tax Area 510CSH_NR - 510CSH_NR		Owner Name HAROLD'S GRADING &	Actual Va		\$60,984				
		TRUCKING,INC	Primary Taxable				\$20,328		
Situs Address		Owner Address PO BOX 54 BERNALILLO, NM 87004 UNITED STATES OF AMERICA			Mill Levy: 41.705				
Legal Summary			Туре	Actual	Assessed	Acres SQFT	Units		
RANCHO ESTATES Block: 82 Lot: 1 Unit: 17			Non- Residentia Land	ıl \$60,984	\$20,328	5.000 217800.	000 1.000		
<u>Transfers</u>									
	Sale Date	Doc Description							
		WARRANTY DEED							
			UIT CLAIM	DEED					
		Images							
	Taxes	• <u>GIS</u>							
*2022	\$0.00			-					
2021 * Estimated	No Tax Values								

Location			wner Information <u>Assessment History</u>						
Parcel Number 1-015-072-510-476		-476	Owner Name BARCENA, NORBERT	Actual Value (2022)			\$19,837		
Tax Area 510CSH_NR - 510CSH_NR			Owner Address PO BOX 892	Primary Taxable			\$6,612		
Situs Address			PLACITAS, NM 87043	Tax Area: 510CSH_NR			Mill Levy: 41.705		
Legal Summary Legal: Subd: RIO RANCHO ESTATES Block: 81 Lot: 1 Unit: 17 SUB: RIO RANCHO ESTATES UNIT: 17 BLK: 81 LOT: 1 BK: 408 PG: 2523			UNITED STATES OF AMERICA	Туре	Actual	Assessed	Acres	SQFT	Units
				Non- Residentia Land	al \$19,837	\$6,612	5.060	220413.	600 1.000
<u>Transfers</u>									
Sale Date			Doc Description						
			WARRANTY DEED						
				<u>PLAT</u>					
			Images						
Tax Year	Taxes								
	2022	\$275.76	• <u>GIS</u>						
	2021	\$272.96							
					T				

Location Parcel Number 1-015-072-473-470 Tax Area 510CSH_NR - 510CSH_NR Situs Address Legal Summary Legal: Subd: MONTE BELLA Lot: 1 SUB: MONTE BELLA LOT: 1 BK: 409 PG: 10587			Owner Information	Assessment History	essment History					
			Owner Name YI, EUNHEE NICOLE Owner Address 1528 N EVERGREEN AVE UNIT 481 LOS ANGELES, CA 90033-1517	Actual Value (2022) Primary Taxable Tax Area: 510CSH_NR M Type Actual Assessed Act Non- Residential \$75,000 \$25,000 1.6 Land	res SQFT Units					
<u>Transfers</u>										
	Sale Date			Doc Description WARRANTY DEED WARRANTY DEED PLAT PLAT						
			Images							
Tax Year	2022 Taxes	\$1,042.64	• <u>GIS</u>							
	2021	\$414.96								

Location	Owner Information	Assessment History	
Parcel Number 1-015-072-441-452	Owner Name BOWLES, ROBERT J AND	Actual Value (2022) \$75,00	00
Tax Area 510CSH_NR - 510CSH_NR	NANCY MURPHY	Primary Taxable \$25,00	00
Situs Address	Owner Address 4811 HARDWARE DR NE	Tax Area: 510CSH_NR Mill Levy: 41.705	
Legal Summary Legal: Subd: MONTE	STE D-5	Type Actual Assessed Acres SQFT Uni	its
BELLA Lot: 19 SUB: MONTE BELLA LOT: 19 BK: 409 PG: 26981	ALBUQUERQUE, NM 87109-2023 UNITED STATES OF AMERICA	Non- Residential \$75,000 \$25,000 0.890 38768.000 1.00 Land	00

Transfers

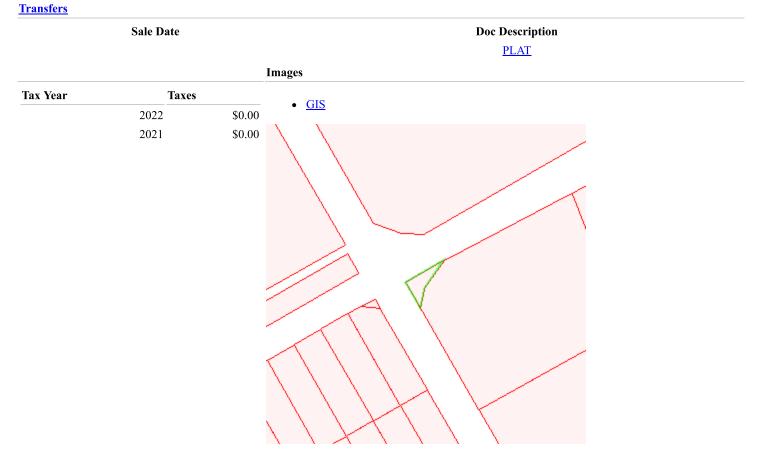
Sale Date	Doc Description
04/25/2022	WARRANTY DEED
<u>12/13/2018</u>	SPECIAL MASTER DEED
	NOTICE OF LIS PENDENS
	WARRANTY DEED
	RELEASE OF LIS PENDENS
	NOTICE OF LIS PENDENS
	NOTICE OF LIS PENDENS
	WARRANTY DEED
	<u>PLAT</u>
	<u>PLAT</u>
	<u>PLAT</u>

			0
Tax Year	2022 Taxes	\$1,042.64	• <u>GIS</u>
	2021	\$229.40	

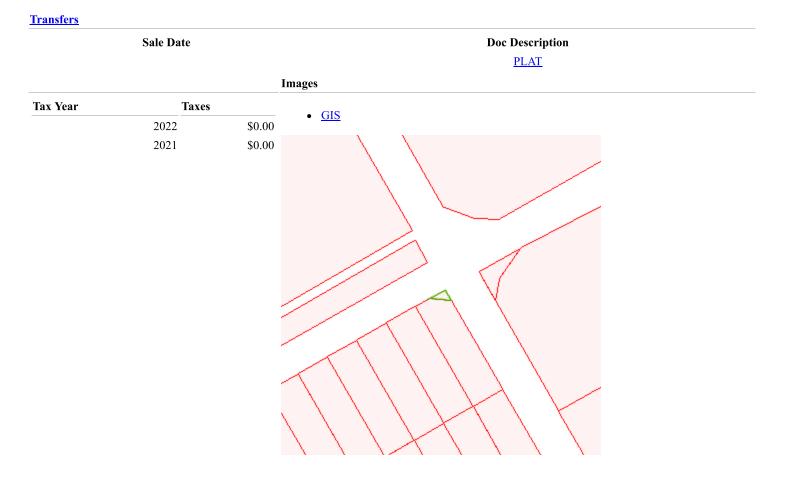
Images

Location	Owner Information	Assessment History					
Parcel Number 1-015-072-421-441	Owner Name BOWLES, JASON AND	Actual Value (2022) \$75,000					
Tax Area 510CSH_NR - 510CSH_NR	NANCY MURPHY	Primary Taxable \$25,000					
Situs Address	Owner Address 4811 HARDWARE DR NE	Tax Area: 510CSH_NR Mill Levy: 41.705					
Legal Summary Legal: Subd: MONTE	STE D5 ALBUQUERQUE, NM 87109-2023	Type Actual Assessed Acres SQFT Units					
BELLA Lot: 18	UNITED STATES OF AMERICA	Non- Residential \$75,000 \$25,000 0.810 35283.000 1.000 Land					

Transfers

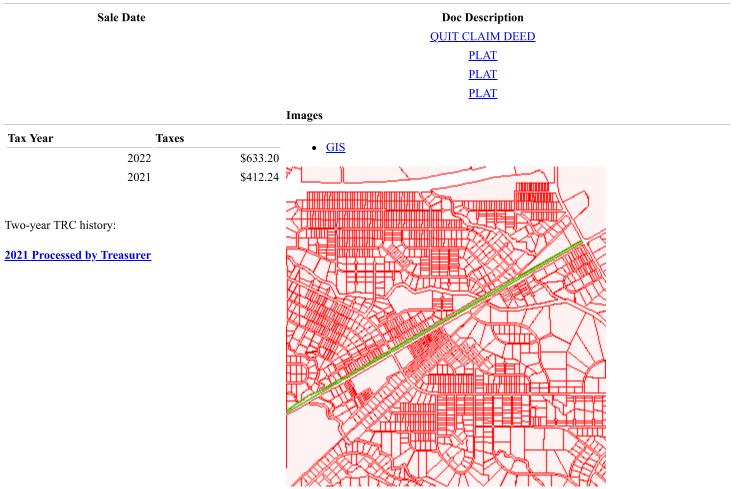

Sale Date
04/26/2022
<u>12/13/2018</u>

Doc Description
WARRANTY DEED
SPECIAL MASTER DEED
NOTICE OF LIS PENDENS
WARRANTY DEED
RELEASE OF LIS PENDENS
NOTICE OF LIS PENDENS
NOTICE OF LIS PENDENS
WARRANTY DEED
<u>PLAT</u>
<u>PLAT</u>
<u>PLAT</u>


			Images
Tax Year	Taxes		- CIS
	2022	\$1,042.64	• <u>GIS</u>
	2021	\$208.76	

<u>Location</u>			Owner Information	Assessment History		
Parcel Number 1-015-072-396-409 Tax Area 510CSH_NR - 510CSH_NR Situs Address Legal Summary Legal: Subd: RIO RANCHO ESTATES Block: 81 Lot: 24-A Unit: 17		CSH_NR RIO	Owner Name COLLINS, LON E & JEANNETTE R.Actual Value (2022)Owner Address 216 VILLA VERDE SE RIO RANCHO, NM 87124 UNITED STATES OF AMERICATax Area: 510CSH_NRTypeActual Assessed A Non- Residential \$87,494Actual \$29,165Actual \$29,165		Acres SQFT Units	
<u>Transfers</u>	Sale Date			Doc Description		
			Q	UIT CLAIM DEED <u>PLAT</u> <u>PLAT</u>		
			Images			
Tax Year	2022 Taxes	\$1,216.32	• <u>GIS</u>			
	2021	\$732.84				

Location	Owner Information	Assessment History			
Parcel Number 1-015-072-365-415	Owner Name CITY OF RIO RANCHO	Actual Value (2018) \$1,133			
Tax Area 510CSH_NR - 510CSH_NR	Owner Address 3200 CIVIC CENTER CIRCLE	Primary Taxable \$378			
Situs Address	NE	Exempt (\$378)			
Legal Summary Legal: Tract: A Subd: RIO RANCHO ESTATES Block: 81 Lot: PAR A	RIO RANCHO, NM 87144 UNITED STATES OF AMERICA	Adjusted Taxable \$0			
Unit: 17		Tax Area: 510CSH_NR Mill Levy: 41.705			
		Type Actual Assessed SQFT Units			
		Exempt \$1,133 \$378 3541.428 1.000 Land			


Location	Owner Information	Assessm	nent His	t <u>ory</u>		
Parcel Number 1-015-072-352-409 Tax Area 510CSH_NR - 510CSH_NR Situs Address Legal Summary Legal: Subd: RIO RANCHO ESTATES Block: 60 Lot: PAR A Unit: 17	Owner Name CITY OF RIO RANCHO Owner Address 3200 CIVIC CENTER CIRCLE NE RIO RANCHO, NM 87144 UNITED STATES OF AMERICA	Primary Taxable Exempt Adjusted Taxable			\$166 \$55 (\$55) \$0	
		Total Tax A Type Exempt Land	Actual	OCSH_NR 41.705 Assessed \$55	Levy: Units	

Location			Owner Information	Assess	ment Hist	<u>ory</u>	
Parcel Number 1-015-072-357-395 Tax Area 510CSH_NR - 510CSH_NR			Owner Name CITY OF RIO RANCHO Owner Address 3200 CIVIC CENTER CIR NE		Actual Value (2018) Primary Taxable		
Situs Address			RIO RANCHO, NM 87144-4503	Exemp	ot		(\$2,268)
Legal Summary Legal: Subd: RIO RANCHO ESTATES Block: 60 Lot: 13-A Unit: 17 PLAT: 3008			UNITED STATES OF AMERICA	Adjus Total	ted Taxab	le	\$0
				Тах	Area: 51	0CSH_NR 41.705	Mill Levy:
				Туре	Actual	Assessed SQ	FT Units
				Exemp Land	^{ot} \$6,804	\$2,268 212	261.636 1.000
<u>Fransfers</u>							
	Sale Date		Doc D	escriptio	n		
	02/17/2009		CAS	<u>H SALE</u>			
			I	<u>PLAT</u>			
			Images				
Tax Year	Taxes		• <u>GIS</u>				
	2022	\$0.00					
	2021	\$0.00			1		
					_		

Location	Owner Information	Assessment History			
Parcel Number 1-014-071-022-462	Owner Name AMREP SOUTHWEST INC	Actual Valu	ie (2022)	\$45,550	
Tax Area 510CSH_NR - 510CSH_NR	Owner Address 409 NM HWY 528 NE	Primary Ta	xable	\$15,183	
Situs Address	RIO RANCHO, NM 87124	Tax Area: 510CSH_NR Mill			
Legal Summary Legal: S: 4 T: 12N R: 3E S: 5 T: 12N	UNITED STATES OF AMERICA	Le	vy : 41.70	5	
R: 3E S: 7 T: 12N R: 3E S: 8 T: 12N R: 3E Subd: RIO		Туре	Actual	Assessed	
RANCHO ESTATES Block: 34 Unit: 17, Subd: RIO		Non-			
RANCHO ESTATES Block: 32 Unit: 17, Subd: RIO		Residential	\$45,550	\$15,183	
RANCHO ESTATES Block: 31 Unit: 17, Subd: RIO		Land			
RANCHO ESTATES Block: 30 Unit: 17, Subd: RIO					
RANCHO ESTATES Block: 24 Unit: 17, Subd: RIO					
RANCHO ESTATES Block: 22 Unit: 17, Subd: RIO					
RANCHO ESTATES Block: 18 Unit: 17 GAS LINE					
EASEMENT TRACT					

Transfers

Location	Owner Information	Assessmen	Assessment History					
Parcel Number 1-015-072-333-440	072-333-440 Owner Name SHADY VENTURES LLC		Actual Value (2022)					
Tax Area 510CSH_NR - 510CSH_NR	Owner Address 9600 TENNYSON ST NE	Primary 7	Faxable		5	\$33,396		
Situs Address	ALBUQUERQUE, NM 87122-2282	Tax		Mill Levy: 41.705				
Legal Summary Legal: S: 4 T: 12N R: 3E	UNITED STATES OF AMERICA	Туре	Actual	Assessed	Acres SQFT	Units		
Subd: RIO RANCHO ESTATES Unit: 17 Tract: G1		Non- Residentia Land	1 \$100,188	\$33,396	5.000 217800.000	0 1.000		
<u>Transfers</u>								
Sale Date	Doc	Descriptio	n					
04/22/2021	WAR	RANTY DE	ED					
<u>12/31/2020</u>	WAR	RANTY DE	ED					
	SPECIAL V	WARRANT	Y DEED					
		<u>PLAT</u>						
	QUIT	CLAIM DE	EED					
		<u>PLAT</u>						
	Images							
Tax Year Taxes	• <u>Photo</u>							
2022 \$1,392.80	• <u>GIS</u>							
2021 \$839.20								

Location	Owner Information	Assessme	ent History	
Parcel Number	Owner Name PUBLIC SERVICE COMPANY OF	Actual (2	2022)	\$58,738,143
Tax Area 510CSH_NR - 510CSH_NR	NEW MEXICO	Primary	Taxable	\$19,579,381
Situs Address	Owner Address CORPORATE HEADQUARTERS	Tax A	rea: 510CSH	NR Mill
Legal Summary Subd: RIO RANCHO ESTATES	MS 1025		Levy: 41.7	05
Block: 62 Lot: 38 Unit: 17, Subd: RIO RANCHO	ALBUQUERQUE, NM 87158-0001 UNITED STATES OF AMERICA	Туре	Actual	Assessed
ESTATES Block: 177 Lot: 1 Unit: 20 AND:- Lot: 2	UNITED STATES OF AMERICA	Central	\$58 738 1/3	\$19,579,381
Unit: 20 AND:- Lot: 3 Unit: 20 AND:- Lot: 4 Unit: 20		Assessed	\$50,750,145	\$17,577,581
AND:- Lot: 5 Unit: 20 AND:- Lot: 6 Unit: 20 AND:- Lot: 10 Unit: 20 AND:- Lot: 11 Unit: 20 AND:- Lot:				
12 Unit: 20 AND:- Lot: 13 Unit: 20, Subd: RIO				
RANCHO ESTATES Unit: 21 AND:- Unit: 20 Tract:				
CC-2, 8-A, Subd: RIO RANCHO ESTATES Block:				
97 Lot: 41 Unit: 20 AND:- Lot: 42 Unit: 20, Subd:				
RIO RANCHO ESTATES Block: BB Lot: 33 Unit: 17				
AND:- Lot: 34 Unit: 17 CENTRAL ASSESSED 94-				

IN (SSCAFCA)

Transfers			
	Sale Date		Doc Description
			WARRANTY DEED
			Images
Tax Year	Taxes		
	2022	\$816,558.08	
	2021	\$883,338.40	

Location			Owner Information	Assessment H	<u>History</u>				
Parcel Numb	Der 1-015-072-279-4	499	Owner Name BACA, DEBRA	Actual Value				\$1	31,981
Tax Area 510CSH_R - 510CSH_R Situs Address 5194 27TH AVE NE Legal Summary Legal: Subd: RIO RANCHO ESTATES Block: 63 Lot: 12 Unit: 17		_R	Owner Address 5194 27TH AVE NE	Residential Cap applied)					
			RIO RANCHO, NM 87144-4702 UNITED STATES OF AMERICA	Primary Tax				, i	543,994
			entited shares of American	Exemption A					†2 000)
		Lot: 12		Head of Fam		-			\$2,000)
Ollit. 17				Adjusted Ta			MELL AV		541,994
				тах А Туре		CSH_R I Assessed		-	Units
				Residential		\$15,612			
				Land	\$40,855	\$15,012	1.210	52707.000	1.000
				Residential Improvement	t ^{\$85,146}	\$28,382		1318.000)
<u>Transfers</u>									
	Sale Date			Doc Descrip	ption				
	<u>05/18/2015</u>			WARRANTY	DEED				
				WARRANTY	DEED				
				<u>PLAT</u>					
			Images						
Tax Year	Taxes								
	2022	\$1,608.04	 <u>Map</u> <u>Photo</u> 						
	2021	\$1,576.96							
			• 015	_					

Location	Owner Information	Assessment History				
Parcel Number 1-015-073-276-008 Tax Area 510CSH_R - 510CSH_R Situs Address 5195 27TH AVE NE Legal Summary Legal: Subd: RIO RANCHO ESTATES Block: 65 Lot: 17 Unit: 17	Owner Name SALAIS, RIGBERTO & ROSA MARIE Owner Address 5195 27TH AVE RIO RANCHO, NM 87124 UNITED STATES OF AMERICA	Actual Value (2022 - Residential Cap applied) \$123,640 Primary Taxable \$41,215 Tax Area: 510CSH_R Mill Levy: 36.551 Type Actual Assessed Acres SQFT Units Residential \$38,665 \$12,888 1.010 43995.600 1.000 Residential \$84,981 \$28,327 1562.000				
<u>Transfers</u>						
Sale Date		Doc Description WARRANTY DEED PLAT				
	Images					
Tax Year Taxes 2022 \$1,506. 2021 \$1,477.	• 11000					

<u>Location</u>	Owner Information	Assessmen	<u>t History</u>				
Parcel Number 1-015-073-264-035	Owner Name MC DONALD, DONALD P	Actual Va	lue (2022)		\$	11,953
Tax Area 510CSH_NR - 510CSH_NR	& ADELE	Primary T	axable				\$3,984
Situs Address	Owner Address 26 HARTFORD AVE	Tax A	rea: 510	CSH_NR	Mill I	L evy : 41.70)5
Legal Summary Legal: Subd: RIO	STATEN ISLAND, NY 10310 UNITED STATES OF AMERICA	Туре	Actual	Assessed	Acres	SQFT	Units
RANCHO ESTATES Block: N Lot: 24 Unit: 17 SUB: RIO RANCHO ESTATES UNIT: 17 BLK: N LOT: 24 PG: 0	UNITED STATES OF AMERICA	Non- Residentia Land	1 \$11,953	\$3,984	0.980	42688.800	1.000

Transfers

	Sale Date		Doc Description <u>MISCELLANEOUS</u> <u>PLAT</u>
			Images
Tax Year	Taxes		• <u>GIS</u>
	2022	\$166.16	
	2021	\$117.48	

<u>Location</u>	Owner Information	Assessment History
Parcel Number 1-015-073-472-105	Owner Name SANDOVAL COUNTY	Actual Value (2021) \$7,765,297
Tax Area 510CSH_NR - 510CSH_NR	Owner Address PO BOX 40	Primary Taxable \$2,588,432
Situs Address	BERNALILLO, NM 87004-0040	Exempt (\$2,588,432)
Legal Summary Legal: S: 33 T: 13N R:	UNITED STATES OF AMERICA	Adjusted Taxable Total \$0
3E S: 34 T: 13N R: 3E S: 3 T: 12N R: 3E		Tax Area: 510CSH_NR Mill Levy: 41.705
S: 4 T: 12N R: 3E Subd: SANDOVAL COUNTY LANDFILL Tract: A1A		Type Actual Assessed Acres SQFT Units
LANDFILL		Exempt \$7,765,297 \$2,588,432 178.267 7765297.400 1.000 Land

Transfers

Sale Date

05/16/2014

Doc Description PLAT STIPULATED ORDER **QUIT CLAIM DEED QUIT CLAIM DEED QUIT CLAIM DEED QUIT CLAIM DEED QUIT CLAIM DEED** QUIT CLAIM DEED **QUIT CLAIM DEED** QUIT CLAIM DEED **QUIT CLAIM DEED QUIT CLAIM DEED QUIT CLAIM DEED** WARRANTY DEED <u>PLAT</u> WARRANTY DEED WARRANTY DEED WARRANTY DEED WARRANTY DEED <u>PLAT</u> **PLAT**

ATTACHMENT 9.7

Sample of letters Sent to Owners of Record

Parkhill

March 3, 2023

To whom it may concern;

Sandoval County Landfill announces its application submittal to the New Mexico Environment Department for a significant revision of the Sandoval County Landfill Air Quality Permit. Expected date of application submittal to the Air Quality Bureau is March 7, 2023.

The exact location for the Sandoval County Landfill is 2708 Iris Road, NE, Rio Rancho, NM 87124. The facility is located immediately north of the intersection of Iris and Idalia Roads, approximately 1.5 miles northwest of intersection of NM 528 and Iris Road in Sandoval County NM.

The proposed revision consists of the following

The Sandoval County Landfill is Applying for a New Source Review (NSR) Significant Permit Modification to accommodate planned modifications to the facility disposal route and other facility roadway orientation modifications, as well as changes in traffic volumes.

The estimated maximum site-wide quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM 10	31.4 pph	25.6 tpy
PM 2.5	4.5 pph	3.5 tpy
Sulfur Dioxide (SO ₂)	0.83 pph	0.58 tpy
Nitrogen Oxides (NO _x)	12.84 pph	8.94 tpy
Carbon Monoxide (CO)	5.1 pph	2.4 tpy
Volatile Organic Compounds (VOC)	5.8 pph	24.98 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	5.6 pph	24.5 tpy
Green House Gas Emissions as Total CO ₂ e	n/a	83,209 tpy

The standard and maximum operating schedule of the facility will be from 7:00 a.m. to 4:00 p.m. 6 days a week and a maximum of 52 weeks per year.

The owner and operator of the facility are:

Sandoval County Department of Public Works (Owner)	Sandoval County Landfill (Operator)
2708 Iris Rd. NE	2708 Iris Road NE
Rio Rancho, NM 87124	Rio Rancho, NM 87124

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; <u>https://coda.io/@todd-hochman-work/current-permitting-actions-under-review</u>. Other comments and questions may be submitted verbally 505.476.4300; 1.800.224.7009.

\\Data1\Projects3\2022\40111.22\04_PRCMNT\00_PASS\NSR_Mailing_Ltr_EN.docx

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505.629.3395.

Sincerely,

Sandoval County Landfill 2708 Iris Rd. NE Rio Rancho, NM 87124

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, PO Box 5469, Santa Fe, NM 87502, 505.827.2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/general/environmental-justice-in-new-mexico/ to learn how and where to file a complaint of discrimination.

Parkhill

3 de Marzo de 2023

A quien le interese;

El Relleno Sanitario del Condado de Sandoval (Sandoval County Landfill) anuncia la presentación de su solicitud ante el Departamento del Medio Ambiente de Nuevo México para una revisión significativa del Permiso relativo a la calidad del aire del Relleno Sanitario del Condado de Sandoval. La fecha prevista para la presentación de la solicitud ante la Oficina para la Calidad del Aire (Air Quality Bureau) es el 7 de marzo de 2023.

La ubicación exacta del Relleno Sanitario del Condado de Sandoval es 2708 Iris Road, NE, Rio Rancho, NM 87124. Las instalaciones se encuentran inmediatamente al norte de la intersección de Iris Road e Idalia Road, aproximadamente 1.5 millas al noroeste de la intersección de la carretera NM 528 e Iris Road en el Condado de Sandoval, NM.

Revisión propuesta:

El Relleno Sanitario del Condado de Sandoval solicita una Modificación significativa del Permiso con una Revisión de Fuente Nueva (NSR por sus siglas en inglés) para incorporar las modificaciones planeadas para la ruta de depósito de las instalaciones y otras modificaciones en la orientación de la carretera de las instalaciones, además de cambios en el volumen del tráfico.

A continuación se detallan las cantidades máximas estimadas en todo el sitio para los contaminantes regulados del aire en libras por hora (lph) y en toneladas por año (tpa), que podrán cambiar levemente durante el transcurso de la revisión del Departamento.

Contaminante:	Libras por hora	Toneladas por año
Material particulado PM 10	31.4 lph	25.6 tpa
Material particulado PM 2.5	4.5 lph	3.5 tpa
Dióxido de azufre (SO ₂)	0.83 lph	0.58 tpa
Óxidos de nitrógeno (NO _x)	12.84 lph	8.94 tpa
Monóxido de carbono (CO)	5.1 lph	2.4 tpa
Compuestos Volátiles Orgánicos	5.8 lph	24.98 tpa
Suma total de todos los contaminantes peligrosos en el aire Emisiones de gases de efecto invernadero	5.6 lph	24.5 tpa
(CO ₂ equivalente total)	n/a	83,209 tpa

El horario de funcionamiento estándar y máximo de las instalaciones será de 7:00 a.m. a 4:00 p.m. 6 días por semana y un máximo de 52 semanas por año.

El propietario y el operador de las instalaciones son:

Sandoval County Department of Public Works (Propietario)	Sandoval County Landfill (Operador)
2708 Iris Rd. NE	2708 Iris Road NE
Rio Rancho, NM 87124	Rio Rancho, NM 87124

\\Data1\Projects3\2022\40111.22\04_PRCMNT\00_PASS\NSR_Mailing_Ltr_SP.docx

Si tiene comentarios acerca de la construcción o del funcionamiento de estas instalaciones y desea que sus comentarios formen parte del proceso de revisión del permiso, deberá presentar sus comentarios por escrito al Administrador de Programas de Permisos de la Oficina para la Calidad del Aire del Departamento del Medio Ambiente de Nuevo México: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; <u>https://coda.io/@todd-hochman-work/current-permitting-actions-under-review</u>. Otros comentarios y preguntas podrán presentarse verbalmente 505.476.4300; 1.800.224.7009;.

Sírvase hacer referencia al nombre de la empresa y al nombre de las instalaciones, o envíe una copia de este aviso junto con sus comentarios ya que el Departamento podría no haber recibido aún la solicitud del permiso. Por favor, incluya con sus comentarios una dirección de retorno legible. Una vez que el Departamento haya hecho una revisión preliminar de la solicitud y de su impacto en la calidad del aire, se publicará el aviso del Departamento en la sección legal de un periódico de circulación en la zona cercana a las instalaciones.

Atención

Este es un aviso de la Oficina para la Calidad de Aire del Departamento del Medio Ambiente de Nuevo México, relativo a las emisiones producidas por instalaciones ubicadas en esa zona. Si desea recibir información en español, sírvase comunicarse con esa oficina llamando al 505.629.3395.

Sinceramente,

Sandoval County Landfill 2708 Iris Rd. NE Rio Rancho, NM 87124

Aviso de no discriminación

El Departamento del Medio Ambiente de Nuevo México (NMED por sus siglas en inglés) no discrimina por motivos de raza, color, origen nacional, discapacidad, edad o sexo en la administración de sus programas o actividades, según lo exigido por las leyes y los reglamentos correspondientes. El NMED es responsable de la coordinación de esfuerzos para el cumplimiento de las reglas y la recepción de indagaciones relativas a los requisitos de no discriminación implementados por 40 C.F.R. Parte 7, que incluye el Título VI de la Ley de Derechos Civiles de 1964, como fuera enmendado; la Sección 504 de la Ley de Rehabilitación de 1973; la Ley de Discriminación por Edad de 1975; el Título IX de las Enmiendas de Educación de 1972, y la Sección 13 de las Enmiendas a la Ley Federal de Control de la Contaminación del Agua de 1972. Si tiene preguntas sobre este aviso o sobre los programas, las normas o los procedimientos de no discriminación del NMED, o si cree que ha sido discriminado con respecto a un programa o actividad del NMED, puede comunicarse con la Coordinadora de No Discriminación: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, PO Box 5469, Santa Fe, NM 87502, 505.827.2855, nd.coordinator@state.nm.us. También puede visitar nuestro sitio web en

https://www.env.nm.gov/general/environmental-justice-in-new-mexico/ para saber cómo y dónde presentar una queja por discriminación.

ATTACHMENT 9.8

Copy and Documentary Proof of PSA Submittal to Local Radio Station

Public Service Announcement

NOTICE:

The Sandoval County Department of Public Works announces its application to the New Mexico Environment Department for a modification to the Sandoval County Landfill Air Quality Permit. The date of application submittal to the Air Quality Bureau is expected to be March 7, 2023.

The Sandoval County Landfill is located at 2700 Iris Road NE, Rio Rancho, NM 87124, which is immediately north of the intersection of Iris and Idalia Roads, approximately 1.5 miles northwest of the intersection of NM 528 and Iris Rd. in Rio Rancho.

The Sandoval County Landfill is Applying for a New Source Review (NSR) Significant Permit Modification to accommodate planned modifications to the facility disposal route and other facility roadway orientation modifications, as well as changes in traffic volumes.

Notice of this filing has been posted in the following locations:

- 1. Sandoval County Landfill scalehouse, 2700 Iris Road NE, Rio Rancho, NM, 87124
- 2. Sandoval County Department of Public Works Office, 2708 Iris Road Ne, Rio Rancho, NM 87124
- 3. Rio Rancho City Hall, 3200 Civic Center Circle NE, Rio Rancho, NM 87144
- 4. Bernalillo Town Hall, 829 Camino del Pueblo, Bernalillo, NM 87004

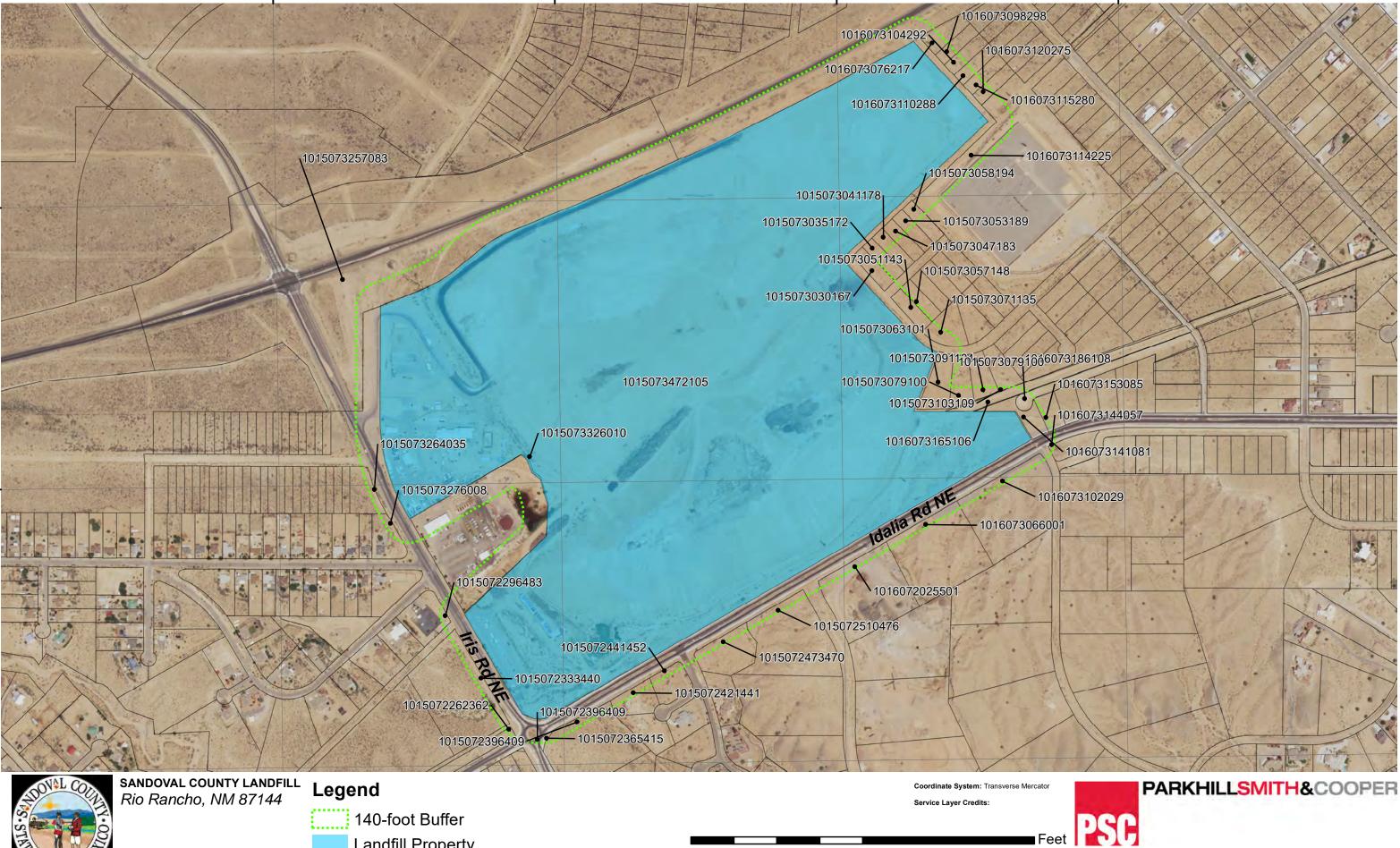
Questions and comments regarding this notice may be directed to:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816 Phone: (505) 476-4300 or 1 800 224-7009

Submittal of Public Service Announcement – Certification

I, Andrew N Yuhas, the undersigned, certify that on March 3, 2023, I submitted a public service announcement to KKOB 770 AM that serves the Town of Bernalillo and the City of Rio Rancho, Sandoval County, New Mexico, in which the source is located or is proposed to be located.

Signed this 3 day of March , 2023,


<u>Mu</u> Signature

3/3/2023 Date

ANDREW N. YUMAS Printed Name <u>Professional</u> Reslogist Title

ATTACHMENT 9.9

Map of Facility and Surrounding Owners of Record

1,000

500

0

352284.304723

Landfill Property

Surrounding Properties

39086

Section 10

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

10.0 Operational Plan

10.1 Solid Waste Permit Operational Plans

The April 2015 (Updated February 2016) Solid Waste Permit Application for the Sandoval County Landfill includes detailed operating and construction plans for the Landfill. For example, the following Plans are included in Volume II (Landfill Management Plans) of both Permit Applications:

Section 1: Engineering Drawings

Section 2: Plan of Operations

Section 3: Contingency Plan

Section 4: Construction Quality Assurance (CQA) Plan

- Section 5: Closure/Post-Closure Plan
- Section 6: Landfill Gas Management Plan
- Section 7: Leachate Management Plan
- Section 8: Sludge Disposal Management Plan
- Section 9: Petroleum Contaminated Soils Management Plan

Section 10: Transportation Plan

Section 11: Composting Plan of Operations

The 2016 Plans have been approved by NMED Solid Waste Bureau (SWB), and are incorporated by reference in the facility's Permit (Solid Waste Facility I.D. No. SWM-0123365). A copy of the 2016 Plan is available at SWB, and will be made available by Sandoval County Landfill upon request. Section 14 contains a description of measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies for landfill operations that have the potential to emit pollutants of concern (e.g., particulates, NMOCs, VOCs). There are no known major bottlenecks that limit production at SCLF.

Section 11

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

Sandoval County Landfill and all associated activities occur on-site within the property boundaries of the facility.

B. Apply the 3 criteria for determining a single source:

<u>SIC Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

\boxtimes	Yes		No
-------------	-----	--	----

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

🛛 Yes 🛛 No

<u>Contiguous or Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

🛛 Yes 🛛 No

C. Make a determination:

☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.

□ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

This document represents an application being submitted under 20.2.70 NMAC, and is not subject to the requirements of this part

Section 12

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review Workshop Manual</u> to determine if the revision is subject to PSD review.

A. This facility is:

a minor PSD source before and after this modification (if so, delete C and D below).
 a major PSD source before this modification. This modification will make this a PSD minor source.
 an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 an existing PSD Major Source that has had a major modification requiring a BACT analysis
 a new PSD Major Source after this modification.

This document represents an application being submitted for a minor source under the provisions of 20.2.70 NMAC, and is not subject to the requirements of this part.

Section 13

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. For example, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15),

Form-Section 13 last revised: 5/29/2019Section 13, Page 1

20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

STATE REGULATIONS:

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	Compliance with NMAAQS is demonstrated in the Air Dispersion Modeling Analysis Report (Submitted to NMED AQB as part of this application)
20.2.7 NMAC	Excess Emissions	Yes	Facility	Facility is subject to 20.2.70, 20.2.72 and 20.2.73 NMAC, but is not subject to established enforceable fugitive emissions limits
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	No affected facilities
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility has oil burning equipment which consists of waste oil burners for personal comfort. These heaters have design rates less than 1,000,000 BTU/yr/unit
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	No affected facilities
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	No	N/A	No affected facilities
<u>20.2.38</u> NMAC	Hydrocarbon Storage Facility	No	N/A	No affected facilities
<u>20.2.39</u> NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	No affected facilities
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	2B, 2C, 5D, 6	Units 2B, 2C, 5D, and 6 (diesel engines) are subject to periodic opacity observation requirements.
20.2.64 NMAC	Municipal Solid Waste Landfills	Yes	Facility	Facility is an Active Municipal Solid Waste Landfill as defined by and subject to this Part.
20.2.70 NMAC	Operating Permits	Yes	Facility	Source is submitting a permit Renewal which falls under the requirements of 20.2.70.300 NMAC. This Permit Renewal satisfies applicable requirements of this Part.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	Facility is subject to 20.2.70 NMAC and is in turn subject to 20.2.71 NMAC. The facility will submit required fees as assessed by NMED.
20.2.72 NMAC	Construction Permits	Yes	Facility	This facility is subject to 20.2.72 NMAC (NSR Permit No. 4111-M2).

Sandoval County

Sandoval County Landfill

March 7, 2023 Rev 0

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The facility will submit emissions inventory as requested by NMED.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	This facility is not a PSD major source as defined by: 20.2.74 NMAC.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This facility is subject to 20.2.72 NMAC and is in turn subject to 20.2.75 NMAC. The issuance of NSR Permit No. 4111-M2 includes annual permit fees.
20.2.77 NMAC	New Source Performance	Yes	Facility	The facility is a stationary source which is subject to the requirements of 40 CFR Part 60, as amended through September 21, 2006. Operating Permit No. P-243L- R2 satisfies NSPS requirements.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	The facility is not a major source for HAPs (NMOC emissions are < 50 Mg/yr, facility-wide HAP emissions <10tpy individually and < 25tpy in the aggregate).
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	The facility is not a major source, and is not located in a Non-attainment Area.
20.2.80 NMAC	Stack Heights	No	N/A	No affected units
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	Units 2B, 2C	Units 2B and 2C (Wood Chipper and Compost Screen diesel engines) are subject to the provisions of 40 CFR 63 Subpart ZZZZ, and are, therefore subject to this part. The units are considered stationary RICE located at an area source of HAP emissions that were constructed on or before June 12, 2006.

FEDERAL REGULATIONS (Note: This is not an exhaustive list):

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	Compliance with NAAQS is demonstrated in the Air Dispersion Modeling Analysis Report (Submitted to NMED AQB as part of this application)
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	Facility	The facility will comply with applicable sections.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	The facility does not own any storage vessels with capacities > 40,000 gallons.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	The facility does not own any storage vessels with capacities > 40,000 gallons.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	No affected units.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	Yes	5D and 6	Units 5D and 6 (Crusher/Shredder Engine and Portable Rock Crusher (Rental)) are subject to the provisions of this part. The units are considered stationary compression ignition (CE that commenced construction after April 1, 2006).
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	No	N/A	No affected units
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for	No	N/A	No affected units

Sandoval County

Sandoval County Landfill

March 7, 2023 Rev 0

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
	Electric Generating Units			
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	No affected units
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	Yes	Facility	Facility is subject to 40 CFR 60 Subpart WWW. The facility will comply with applicable sections.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	No affected facilities
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	No affected facilities
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	No affected facilities
MACT 40 CFR 63, Subpart A	General Provisions	Yes	Units 2B, 2C and Vehicle Fueling	Units 2B, 2C and the vehicle fueling operations are subject to various subparts of 40 CFR 63, and are, therefore, subject to requirements of this part.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	No	N/A	No affected facilities
MACT 40 CFR 63 Subpart HHH	National Emission Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities	No	N/A	No affected facilities
MACT 40 CFR 63 Subpart AAAA	National Emission Standards for Hazardous Air Pollutants: Municipal Solid Waste Landfills	No	N/A	Overall facility emissions do not exceed 10 tons/year for any individual HAP; or 25 tons/year of aggregate HAPs on a site-wide basis
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	No affected facilities

Sandoval County

Sandoval County Landfill

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	No affected facilities
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	2B, 2C	Units 2B and 2C (Wood Chipper and Compost Screen diesel engines) are subject to the provisions of this part. The units are considered stationary RICE located at an area source of HAP emissions that were constructed on or before June 12, 2006.
MACT 40 CFR 63 Subpart CCCCCC	Nathinal Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities	Yes	Vehicle Fueling Operatio ns	The gasoline dispensing facility at SCLF is subject to the requirements of 40 CFR 63, Subpart CCCCCC, §63.11111(c) as a Gasoline Dispensing Facility (GDF) with throughput of greater than 10,000 gal/month, but less than 100,000 gal / month.
40 CFR 64	Compliance Assurance Monitoring	No	N/A	This facility does not have an emissions source subject to the provisions of 40 CFR 64.
40 CFR 68	Chemical Accident Prevention	No	N/A	The facility does not have more than a threshold quantity of a regulated substance as determined under 40 CFR 68.115, and, therefore, is not required to comply with the requirements of this part.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	Does not apply to this application
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	No affected facilities
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	No affected facilities
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	No affected facilities
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	Yes	Facility	SCLF does not service refrigerant-containing devices, but does disposes of or recycle formerly-refrigerant-containing devices, and requires a certification that all refrigerant has been removed prior to acceptance.

Sandoval County Landfill

Section 14

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

☐ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During</u> <u>Startups, Shutdowns, and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

■ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to</u> <u>Mitigate Source Emissions During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

⊠ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

SCLF has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, Scheduled Maintenance, and Emergencies. This Plan is summarized in **Section 3**, and is maintained on-site as part of the Facility Operating Record.

Sandoval County Landfill

Section 15

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

Alternative Operating Scenarios

The Sandoval County Landfill disposes of municipal solid waste (MSW), construction and demolition (C&D) debris and wastewater treatment plant (WWTP) sludge; and processes and disposes of petroleum contaminated soils (PCS). In addition, the Landfill operates an in-vessel composting system that will be constructed and operated in "Phases". With the expanding population of the Landfill's service area, it is reasonable to expect an increase in the acceptance rates of MSW, WWTP sludge, PCS, and green waste (compost feedstock) at the Landfill over the lifetime of the facility.

Composting Operation – Phase I of the Composting Operation processes chipped green waste, woody C&D debris and manure using water as a feedstock, and can produce up to 10 tons of compost per day. The aerobic composting system uses a computerized control system of blowers and dampers to maintain ideal temperatures and oxygen levels for the production of compost.

Sandoval County

The Composting Operation also includes provisions to utilize WWTP sludge as a feedstock upon implementation of Phase II (total design capacity production rate of 50 tons/day). Chipped green waste and woody C&D debris are mixed with water and manure in ratios necessary to achieve an ideal carbon/nitrogen ratio, and then loaded into sealed compost digesters.

The compost mix for each Phase is allowed to digest for 14 to 21 days, at which time it is unloaded from the digesters and deposited into windrows to cure for a minimum of 90 days. Process odors produced by the aerobic composting processes are minimized by processing the air through a biofilter containing select chipped green waste.

Control Measures for Disposal Routes and Control Efficiency – The Sandoval County Landfill may elect to apply select fugitive dust control measures to on-site roads to achieve greater control efficiencies in the future. The following control efficiencies, recommended by the AQB, will be applied if and when such control measures are warranted:

Control Measure	Control Efficiency
None	0%
Base course or watering	60%
Basecourse and watering	80%
Chip seal – swept and watered	85%
Base course and surfactant	90%
Paved and Swept	95%

Haul Road Dust Control Measures and Control Efficiency:

Section 16

Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	N/A
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC). See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	X
Reporting existing pollutants that were not previously reported.	N/A
Reporting existing pollutants where the ambient impact is being addressed for the first time.	N/A
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	N/A
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	N/A
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like- kind unit replacements.	N/A
Other: i.e. SSM modeling. See #2 above.	N/A
This application does not require modeling since this is a No Permit Required (NPR) application.	N/A
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	N/A
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	N/A

Check each box that applies:

- \Box See attached, approved modeling **waiver for all** pollutants from the facility.
- \Box See attached, approved modeling waiver for some pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- □ Attached in UA4 is a **modeling report for some** pollutants from the facility.
- \Box No modeling is required.

Air Dispersion Modeling in support of Title V Operating Permit P243L-R2 was last performed and approved in 2018, and modeling in support of NSR Permit 4111-M2 was last performed and approved in 2021.

An Air Dispersion Modeling (ADM) is included with this Application, and is intended to support both this Application for NSR Permit Revision, and previously-submitted Title V Operating Permit Renewal Application. Modeling is required due to changes in emissions and source locations per 20.2.72.219.D NMAC. This Application for NSR Permit Revision incorporates those changes to be included in the Title V Operating Permit Renewal.

Attachment 16.1

Section UA4

Air Dispersion Modeling Report

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

Introduction

The modifications in this application affect only particulate emissions (PM₁₀ and PM_{2.5}). There are changes in the permitted particulate emission rates and relocations of a significant number of the particulate sources.

There are no modifications to the combustion sources (engines) at the facility. They are not being relocated, emission rates are not being changed, and as stated in the current permit only one engine will be in operation at the facility at any given time. As a result, NO₂, CO, and SO₂ modeling is not required.

16-	16-A: Identification				
1	Name of facility:	Sandoval County Landfill			
2	Name of company:	Sandoval County			
3	Current Permit number:	4111-M2 & P243L-R2			
4	Name of applicant's modeler:	James Newby			
5	Phone number of modeler:	(801) 294-3024			
6	E-mail of modeler:	jnewby@cirrusllc.com			

16	-B: Brief				
1	Was a modeling protocol submitted and approved?	Yes⊠	No□		
2	Why is the modeling being done?	Moving E	quipment		
2	Describe the permit changes relevant to the modeling.				
3	The facility is both updating emissions and changing the location of sources.				
4	What geodetic datum was used in the modeling?	WG	S84		

5	How long will the facility be at this location?	Indefinitely				
6	Is the facility a major source with respect to Prevention	Yes□	No⊠			
7	Identify the Air Quality Control Region (AQCR) in whi	ch the facility is located:	15	2		
	List the PSD baseline dates for this region (minor or ma	jor, as appropriate).				
	NO2	N/A as NO2 modeling is not rea	quired			
8	SO2	N/A as SO2 modeling is not required				
	PM10	03/26/1997				
	PM2.5	02/11/2013				
0	Provide the name and distance to Class I areas within 50 km of the facility (300 km for PSD permits).					
9	Bandelier Wilderness Area (49.7 km)					
10	Is the facility located in a non-attainment area? If so, describe below		Yes□	No⊠		
10	N/A					
11	Describe any special modeling requirements, such as str	Describe any special modeling requirements, such as streamline permit requirements.				
11	N/A					

16-C: Modeling History of Facility

Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).

	warvers).						
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments			
	СО	P243L-R2	9/28/2018	Modeled for NAAQS and NMAAQS			
	NO ₂ P243L-R2		9/28/2018	Modeled for NAAQS and NMAAQS			
1	SO ₂	P243L-R2	9/28/2018	Modeled for NAAQS and NMAAQS			
	H_2S	N/A	N/A	N/A			
	PM2.5	P243L-R2	9/28/2018	Modeled for NAAQS and NMAAQS			
	PM10	P243L-R2	9/28/2018	Modeled for NAAQS and NMAAQS			
	Lead	N/A	N/A	N/A			
	Ozone (PSD only)	N/A	N/A	N/A			
	NM Toxic Air Pollutants (20.2.72.402 NMAC)	N/A	N/A	N/A			

1	16-D: Modeling performed for this application						
For each pollutant, indicate the modeling performed and submitted with this application. Choose the most compli modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed							
1		Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.

СО			\boxtimes
NO ₂			\boxtimes
SO_2			\boxtimes
H_2S			\boxtimes
PM2.5	\boxtimes		
PM10	\boxtimes		
Lead			\boxtimes
Ozone			\boxtimes
State air toxic(s (20.2.72.402 NMAC)			

The modeling was conducted in accordance with the modeling protocol and the current NMAQB modeling guidelines. A copy of the modeling protocol is provided as a part of this report.

16-E: New Mexico toxic air pollutants modeling

1 List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application. N/A

List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required.

2	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor
	N/A					

16	16-F: Modeling options					
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□			
	N/A					

Both significant and cumulative impact modeling were conducted using the latest version of the AMS/EPA Regulatory Model (AERMOD). The Beeline Software BEEST for Windows modeling manager was used to prepare the input files and manage processing. The EPA recommended defaults were used. As the station is located in a rural area, urban area modeling was not conducted.

16	16-G: Surrounding source modeling			
1	Date of surrounding source retrieval:		January 26, 2023	
	modeled differ fro	If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed.		
2	AQB Source ID	Description of Corrections		
	1128E2	This source from MergeMaster was not included in the modeling as no emission rate was identified.		
	as not included in the modeling as no emission rate was identified.			

The modeling was conducted using both background concentrations and neighboring sources. The neighboring sources were obtained from the NMAQB (Eric Peters) using MergeMaster, from an email dated 1/26/2023.

Cumulative PM₁₀, and PM_{2.5} impacts used to demonstrate compliance with the NAAQS were calculated as facility impacts plus neighboring source impacts plus background concentrations. Neighboring sources were all those within 10 km of the facility.

Cumulative PM₁₀, and PM_{2.5} impacts used to demonstrate compliance with the PSD increment were calculated as facility impacts plus neighboring source impacts. Class II neighboring sources were all those within 25 kilometers of the facility, plus sources emitting over 1,000 pounds per hour within 50 kilometers of the facility. Note that Class I neighboring sources were not needed, as there were no significant impacts at the Bandelier Wilderness Area.

16-	16-H: Building and structure downwash					
1	How many buildings are	e present at the facility?	≈40			
2	How many above grour facility?	nd storage tanks are present at the	0			
2	Was building downwash modeled for all buildings and tanks		s? If not explain why below.	Yes□	No⊠	
3	The buildings are not located near any of the point sources.					
4	Building comments The one diesel engine included in the modeling, the shredder engine, is located on the shredder. This piece of equipment was assumed to be a structure creating downwash. Since the future orientation of the equipment can vary, the engine stack was modeled as though it was located in the center of the structure (though it is actually located near one end of the structure).					

16-I: Receptors and modeled property boundary

"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility.

Describe the fence or other physical barrier at the facility that defines the restricted area.

	Fence										
2	Receptors must be placed along publicly accessible roads in the restricted area. Are there public Yes No No										
3	Are restricted area boundary coordinates included in the modeling files?Yes \boxtimes No \square										
	Describe the re	Describe the receptor grids and their spacing. The table below may be used, adding rows as needed.									
	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility		Comments				
4	Cartesian	Rectangle	50 m	0 m	500 m						
	Cartesian	Rectangle	100 m	500 m	1,000 m						
	Cartesian	Rectangle	250 m	1,000 m	3,000 m						
	Cartesian	Rectangle	500 m	3,000 m	5,000 m						

1

	Maximum 50 meter spacing
	Describe the PSD Class I area receptors.
6	To model significant impacts at the Bandelier Wilderness Area, a single receptor was placed on the border of the Class I area at the point nearest the Sandoval Landfill. Since there were no significant impacts, no other receptors were needed.

A Cartesian grid with variable receptor spacing was used to evaluate significant impacts around the facility. The grid contained the receptors identified in the table above. There were no significant impacts beyond 5,000 meters from the fence line.

All PM₁₀ cumulative impact modeling was conducted using only those receptors within the Scenario 1 24-hour significant impact area. This scenario and averaging period produced the largest PM₁₀ radius of impact.

All PM_{2.5} cumulative impact modeling was conducted using only those receptors within the Scenario 3 24-hour significant impact area. This scenario and averaging period produced the largest PM_{2.5} radius of impact.

There were no impacts greater than or equal to 75 percent of the applicable standard within the 100-meter, 250-meter or 500-meter interval portions of the grid.

16-	16-J: Sensitive areas							
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes□	No⊠					
	N/A							
2	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠					

16-K: Modeling Scenarios

Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).

It is expected that the disposal area will move during the five-year term of the permit. During this time, the disposal area might be located anywhere within the area created by Cell 4B and the three disposal areas shown on the plot plan (see the attached plot plan).

Modeling was conducted using three scenarios, one for each of the disposal area locations shown on the plot plan. As these locations are nearest the property boundaries, they identify the high facility impacts associated with operation of the disposal areas.

Scraper operations will occur during three consecutive hours each day (modeled as 1000-1300 or 1300-1600). The scraper will not operate from 0700-1000. Preliminary modeling was conducted to determine which time period produced the highest impacts and more importantly which time period produced the highest impacts in the areas of facility high impacts. As a result, scraper operations were modeled from 1300-1600 ((the time period contributing most to the facility high impacts).

Only one engine will be in operation at the facility during any given hour. The compost screen engine will operate only one hour per day, but that can occur any time from 0700-1600. The wood chipper and shredder engines will operate five hours per day (modeled as 0700-1200 or 1100-1600). The crusher engine will operate a maximum of nine hours per day. Preliminary modeling was conducted to determine which engine, location and time period produced the highest impacts and more importantly which engine, location and time period produced the highest impacts in the areas

1

	of facility high impacts. As a result, modeling was conducted with the shredder engine located at the northern most shredder location (the location contributing most to the facility high impacts) from 0700-1200.											
	Crushing a exclusive, o while crus (modeled a and time p produced shredder l impacts) fi entire day	crushing o hing oper as 0700-12 period pro the highes being loca rom 0700.	operations cations can 200 or 110 oduced th st impacts ted at the -1200. Th	and shre n occur du 0-1600). he highest in the an northerr	dding ope uring the Prelimina impacts a reas of fac most shu	rations ca entire day ry modeli and more cility high redder loo	nnot be lo y, shreddi ng was co importan impacts. cation (the	ocated at t ng operat nducted to ntly which As a res e location	the same p ions are li o determin operation ult, model contributi	place at the imited to ne which of n, location ling was of ing most	e same tir five hours operation, n, and tin conducted to the fac	ne. Also, s per day location, ne period with the ility high
_	Which scer	nario produ	ices the hig	ghest conc	entrations?	Why?						
2	Scenario 3 property b	oundary i	in the area	where th	e wind dir	rection pro	oduced hig	gh impacts	5.	-	l area was	near the
3	Were emission pertains to used for call	the "SEAS	SON", "M	ONTH", "I	HROFDY'							No□
4	se • TI • TI • W • W • No HI pr	e table as n Il will oper e appropr leling files below. was condu xcept as no t of factor he shreddo cond set o he scraper (ind erosio eighboring ROFDY fa	rate from iate emiss , no attem acted as fo oted in the s below). er engine, f factors k was assur- on emission g sources v actors are th this rep	It's ok to p 7:00 a.m. ion rate fa pt is made llows: bullets b shredder below). med to op n were assu not provi	ut the table to 4:00 p.n actors for e to list the elow, facil and associ erate from sumed to k ned to ope ded in the	e below se m. Monda each emis em individ ity source iated load n 1300-160 pe present erate as id	ction 16-K by through sion sourc lually in th s were ass er were ass 00 (see the 24 hours) lentified by	if it makes Saturday e. Since this table. umed to o sumed to third set o per day. I y the Merg	s formattin . The HR here are 74 However, perate fro operate fr of factors 1 No HRDO geMaster i AAQS and	g easier.) DOW flag 40 facility a general m 0700-1 om 0700-1 below). W factors	g was used sources in descriptio 600 (see th 1200 (see t s were used . The num odeling file	to ncluded n is e first he l. nerous
	Hour of Day	Factor	Hour of Day	Factor	Hour of Day	Factor	Hour of Day	Factor	Hour of Day	Factor	Hour of Day	Factor
	1	0	13	1	1	0	13	0	1	0	13	0
	2	0	14	1	2	0	14	0	2	0	14	1
5	3	0	15	1	3	0	15	0	3	0	15	1
	4	0	16	1	4	0	16	0	4	0	16	1
	5	0	17	0	5	0	17	0	5	0	17	0
	6	0	18	0	6	0	18	0	6	0	18	0
	7	0	19	0	7	0	19	0	7	0	19	0

	8	1	20	0	8	1	20	0	8	0	20	0
	9	1	21	0	9	1	21	0	9	0	21	0
	10	1	22	0	10	1	22	0	10	0	22	0
	11	1	23	0	11	1	23	0	11	0	23	0
	12	1	24	0	12	1	24	0	12	0	24	0
If hourly, variable emission rates were used that were not described above, describe them below.					W.							
	N/A											
6	Were diffe	Were different emission rates used for short-term and annual modeling? If so describe below. Yes \Box No \boxtimes										
	N/A	N/A										

A summary of the preliminary modeling results for the scraper, engine, shredder and crusher operations is provided on the Operating Time tab in the "Sandoval – Modeling – Input Data & Results.xlsx" file.

The distribution of emissions to the various sources can also be seen in the "Sandoval – Modeling – Input Data & Results.xlsx" file. First, emission rates from the application were inserted into the Emissions tab (see the emission rates in red font). Second, where needed, road dust emissions for three scenarios were distributed to the various source groups based on the applicable road lengths (see road lengths in red font). Finally, emissions from the Emissions tab were linked to the individual sources on the Point, Area, Volume#1 and Volume#2 tabs. The road lengths applicable to the three scenarios can be seen on the Road Summary tab.

16-	6-L: NO ₂ Modeling								
	Which types of NO_2 modeling were used? Check all that apply. N/A.								
		ARM2							
1		100% NO _X to NO ₂ conversion							
		PVMRM							
		OLM							
		Other:							
2	Describe the NO ₂ modeling.								
2	N/A								
3		It NO_2/NO_X ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not d justify the ratios used below.	Yes□	No□					
3	N/A								
	Describe the design value used for each averaging period modeled. N/A								
4	1-hour: Choose an item.								
	Annual: Ch	oose an item.							

16-	M: Part	iculate Matter Modeling			
Select the pollutants for which plume depletion modeling was used.					
1		PM2.5			
	\boxtimes	PM10			

		None							
	Describe the	Describe the particle size distributions used. Include the source of information.							
2	The particle size distributions were obtained from the NMAQB. See Tables 2 & 3 in the Model Options section of the modeling protocol. Point sources were modeled using the Table 2 size distributions. Volume and area sources were modeled using the Table 3 size distributions.								
3	Does the facility emit at least 40 tons per year of NO_X or at least 40 tons per year of SO_2 ? Sources that emit at least 40 tons per year of NO_X or at least 40 tons per year of SO_2 are considered to emit significant amounts of precursors and must account for secondary formation of PM2.5.								
4	Was second	ary PM modeled fo	or PM2.5?		Yes□	No⊠			
	If MERPs we below.	vere used to accou	nt for secondary PM2.5 fill ou	tt the information below. If anoth	er method was	used describe			
5	NO	_X (ton/yr)	SO_2 (ton/yr)	[PM2.5] _{annual}	[PM2.5] _{24-hour}				
5	N/A N/A N/A				N/A				
	N/A								

16-	N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
	N/A
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.
2	N/A

16-	16-O: PSD Increment and Source IDs								
		Tables 2-A, 2-B, 2-C, 2-E match? If not, provide a ow.			Yes□	No⊠			
1	Unit	Number in UA-2		Unit Number in	Modeling Files				
		The emission rates in the Tables 2-E and 2-F should match the ones in the modeling files. Do these match? If not, explain why below. $No\Box$							
2	The emission rates in Tables 2-E and 2-F of the application were taken from the calculations submitted with the application. These same calculations were used to identify the emissions rates assigned to all the facility sources in the								
	– Data & Results (2023	f these emission rates to	the various sources can	be seen in Tabs 2-5	in the "Sandov	al – Modeling			
		/	neignificant Activities" (Table 2 D) sources					
3	Have the minor NSR exempt sources or Title V Insignificant Activities" (Table 2-B) sources Yes No								
4	Which units consume incompared to the consume increment.	crement for which polluta	nts? It was assumed tha	t all PM ₁₀ and PM ₂	.5 sources at th	e facility			
+	Unit IDNO2SO2PM10PM2.5								

	N/A						
5		on for sources (for unusua emissions after baseline da		N/A			
6	This is necessary to veri	ation dates included in Ta fy the accuracy of PSD in status is determined for th	crement mod	eling. If not p	please explain how	Yes⊠	No□
	It was assumed that all	PM10 and PM2.5 sources	s at the facili	ty consume	increment.		

16-	16-P: Flare Modeling									
	For each flare or flaring scenar	For each flare or flaring scenario, complete the following:								
1	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)						
	N/A									

16-	Q: Volume and Related Sources					
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing installation dates below.	Yes□	No⊠			
	N/A					
2	Describe the determination of sigma-Y and sigma-Z for fugitive sources.					
2	See the Conversions tab in the "Sandoval – Modeling – Data & Results (2023-03).xlsx" file.					
	Describe how the volume sources are related to unit numbers. Or say they are the same.					
3	In the model, there are 727 volume sources used to represent facility emissions. Since most emissions from the facility are represented by multiple volume sources, and since each source name in the model must be unique, it is not possible to match the unit numbers in the model with those of the application. The emission rates in Tables 2-E and 2-F of the application were taken from the calculations submitted with the					
	application. These same calculations were used to identify the emissions rates assigned to all the facility sources in the modeling. Allocation of these emission rates to the various sources can be seen in Tabs 2-5 in the "Sandoval – Modeling – Data & Results (2023-03).xlsx" file.					
4	Describe any open pits.					
4	N/A					
_	Describe emission units included in each open pit.					
5	N/A					

16-R: Background Concentrations				
1	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data that was used.	Yes⊠	No□	
	CO: Choose an item.			

	NO ₂ : Choose	e an item.		
	PM2.5: Del N	Norte High School (350010023)		
	PM10: Choo	se an item.		
	SO ₂ : Choose	an item.		
	Other:			
	Comments:	Note that the Del Norte High School background data was used for the PM ₁ available on the PM ₁₀ dropdown menu.	0 modeling, but	it is not
2	Were backgr	ound concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠
2	N/A			

As identified in the modeling protocol, background concentrations were taken from Tables 33 & 34 of the July 2022 Modeling Guidelines (Del Norte High School (350010023)).

16-S: Meteorological Data						
1	Was NMED provided meteorological data used? If so, select the station used.Bernalillo	Yes⊠	No□			
If NMED provided meteorological data was not used describe the data set(s) used below. Discuss how missin handled, how stability class was determined, and how the data were processed.						
2	N/A					

As recommended by Eric Peters, NMAQB, and as approved in the modeling protocol, modeling was conducted using Bernalillo meteorological data collected during 2011 and 2012. This is consistent with the NMAQB Modeling Guidelines. The facility is located in Rio Rancho and is on top of the mesa west of the Rio Grande. The meteorological data was obtained from the NMAQB web site.

16	16-T: Terrain						
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□				
1	N/A						
	What was the source of the terrain data?						
	Terrain elevation data within the landfill was obtained from a plot plan provided by the L	andfill.					
2	² Terrain elevation data beyond the landfill fence line was obtained from National Elevation Data (NED) data (1/3 second taken from the United States Geological Survey (USGS) website. The AERMOD Terrain Preprocessor (AERMAI was used to calculate the receptor elevations and terrain maximums. The domain used to calculate terrain maximum was sufficient to identify all terrain nodes that create a slope greater than or equal to 10 percent.						

16-	16-U: Modeling Files						
	Describe the modeling files:						
1	File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)				
	Sandoval – Modeling – AERMAP Files.zip	N/A	Files used to determine receptor and neighboring source elevations				
	Sandoval – Modeling – AERMOD Files (Engine Ops).zip	РМ	Preliminary modeling files used to determine maximum engine impacts				

Sandoval – Modeling – AERMOD Files (Scraper Ops).zip	PM	Preliminary modeling files used to determine maximum scraper impacts
Sandoval – Modeling – AERMOD Files (Shredder & Loader Ops).zip	PM	Preliminary modeling files used to determine maximum shredder impacts
Sandoval – Modeling – AERMOD Files (ROI).zip	PM	ROI/SIA
Sandoval – Modeling – AERMOD Files (NAAQS).zip	PM	Cumulative
Sandoval – Modeling – AERMOD Files (PSD).zip	PM	Cumulative
Sandoval – Modeling – AERMOD Files (Neighbors).zip	PM	N/A
Sandoval – Modeling – Input Data & Results.xlsx	N/A	Input data and summary of results
Sandoval – Modeling – Report Files.xlsx	N/A	Report files
Sandoval – Modeling – Protocol.zip	N/A	Approved modeling Protocol

16-	16-V: PSD New or Major Modification Applications						
1	A new PSD major source or a major modification to an existing PSD major source requiresYes□additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSDYes□Preapplication Guidance on the AQB website)?Yes□						
2	2 If not, did AQB approve an exemption from preconstruction monitoring? Yes No						
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.						
5	N/A – PSD modeling for a major modification was not required.						
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.						
4	N/A						
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No⊠				
5	N/A						

	16-W: Mod	eling Results	5								
	1 If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so, describe below. N/A					than the	Yes□	ľ	No⊠		
	2	Identify the maxim as necessary.				·					
		For a breakdown of - Data & Results (pact modeling re	esults by scenari	o, see Tab 1	(S&I) in the	"Sandoval	– Modeling	5
		Modeled	Modeled Concentration		Declement	Completion				Location	
Pollutant, Time Period and Standard		Facility Concentration (µg/m3)	with Surrounding Sources (µg/m3)	Secondary PM (µg/m3)	Background Concentration (µg/m3)	Cumulative Concentration (µg/m3)	Value of Standard (µg/m3)	Percent of Standard	UTM E (m)	UTM N (m)	Elevatior (ft)
PM10 24-	Hr NAAQS	29.39	33.07	N/A	58.7	91.77	150	61.2	352521	3908773	5380
PM10 24-	Hr PSD (Class I)	No significant impacts									
PM10 An	nual PSD (Class I)	No significant impacts									
PM10 24-	Hr PSD (Class II)	25.64	26.05	N/A		26.05	30	86.8	352521	3908773	5380
PM10 An	nual PSD (Class II)	7.23	7.62	N/A		7.62	17	44.8	352565	3908793	5376
PM2.5 24	-Hr NAAQS	5.02	5.46	N/A	15.7	21.16	35	60.5	352521	3908773	5380
PM2.5 An	nual NAAQS	1.00	1.29	N/A	5.8	7.09	12	59.1	352565	3908793	5376
PM2.5 24	-Hr PSD (Class I)	No significant impacts									
PM2.5 An	nual PSD (Class I)	No significant impacts									
PM2.5 24	-Hr PSD (Class II)	5.02	5.03	N/A		5.03	9	55.9	352521	3908773	5380
PM2.5 An	nual PSD (Class II)	1.00	1.02	N/A		1.02	4	25.4	352565	3908793	5376

1

16-X: Summary/conclusions/

A statement that modeling requirements have been satisfied and that the permit can be issued.

The modeling requirements have been satisfied and the permit can be issued.

February 13, 2023

Mr. Sufi Mustafa New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505

Re: Air Dispersion Modeling Protocol for the Sandoval County Landfill

Dear Mr. Mustafa:

Sandoval County is preparing to submit a construction permit application to the New Mexico Air Quality Bureau (NMAQB) requesting a modification to the Sandoval County Landfill. In support of this application, air dispersion modeling is being conducted for the following two pollutants: particulate matter less than or equal to 10 microns (PM₁₀) and particulate matter less than or equal to 2.5 microns (PM_{2.5}). The analysis will evaluate compliance with the National Ambient Air Quality Standards (NAAQS), New Mexico Ambient Air Quality Standards (NMAAQS), and prevention of significant deterioration (PSD) increment consumption. This protocol outlines the proposed air dispersion modeling techniques that will be used to assess impacts around the facility.

Facility

The Sandoval County Landfill is located in Sections 33 & 34 of Township 13 North, Range 3 East in Rio Rancho, Sandoval County, New Mexico. The Universal Transverse Mercator (UTM) coordinates for the facility are approximately 352,470 meters easting, 3,908,390 meters northing, zone 13 (North American Datum 1983 [NAD83]). The facility is situated at an elevation of approximately 5,350 feet above mean sea level. The facility disposes of municipal solid wastes and special wastes.

Sources at the facility include the following:

- vehicle traffic along the disposal routes and access roads;
- fill face operations and daily cell construction (scraper, compactor & bulldozer);
- waste crushing operations (front-end loader, crusher, conveyor & truck);
- reciprocating internal combustion engines (RICE); and
- wind erosion.

Standards

Modifications in the forthcoming application will only affect particulate emissions. There will be changes in the permitted particulate emission rates and relocations of a significant number of the particulate sources.

No modifications to the combustion sources (engines) at the facility are expected. They are not being relocated, emission rates will be unchanged, and as stated in the current permit only one engine will be in

operation at the facility at any given time. As a result, nitrogen dioxide (NO₂), carbon monoxide (CO), and sulfur dioxide (SO₂) modeling is not required.

Table 1 identifies the applicable significant impact levels (SIL), NAAQS and NMAAQS:

Pollutant	Averaging Period	SIL (µg/m ³)	NAAQS (µg/m ³)	NMAAQS (µg/m ³)
PM ₁₀	24-Hour	5.0	150	
PM _{2.5}	24-Hour	1.2	35	
PM _{2.5}	Annual	0.2	12	

Table 1SIL, NAAQS and NMAAQS

Compliance with these standards will be evaluated using the methodologies identified for each pollutant and averaging period as identified in Section 2.6 of the most recent NMAQB Modeling Guidelines.

As the facility is not a significant source of $PM_{2.5}$ precursors, the $PM_{2.5}$ 24-hour average evaluation will not include precursors.

The Sandoval County Landfill is located in Air Quality Control Region (AQCR) 152, an attainment area for all pollutants. Therefore, non-attainment modeling will not be conducted.

Table 2 identifies the applicable SIL and allowable PSD increments:

Pollutant	Averaging	Area	SIL	Allowable Increment
	Period	Туре	$(\mu g/m^3)$	$(\mu g/m^3)$
PM ₁₀	24-Hour	Class I	0.3	8
PM_{10}	Annual	Class I	0.2	4
PM_{10}	24-Hour	Class II	5.0	30
PM_{10}	Annual	Class II	1.0	17
PM _{2.5}	24-Hour	Class I	0.07	2
PM _{2.5}	Annual	Class I	0.06	1
PM _{2.5}	24-Hour	Class II	1.2	9
PM _{2.5}	Annual	Class II	0.2	4

Table 2SIL & Allowable PSD Increments

Again, compliance with these standards will be evaluated using the methodologies identified for each pollutant and averaging period as identified in Section 2.6 of the most recent NMAQB Modeling Guidelines.

The nearest Class I area is the Bandelier Wilderness Area located approximately 49.7 kilometers from the landfill. As it is closer than 50 kilometers, PSD increment modeling is required.

Dispersion Model

Both significant and cumulative impact modeling will be conducted using the latest version of the AMS/EPA Regulatory Model (AERMOD). The Beeline Software BEEST for Windows modeling manager will be used to prepare the input files and manage processing. All Environmental Protection Agency (EPA) recommended defaults will be used. As the station is located in a rural area, urban area modeling will not be conducted.

Methodology

The modeling will be conducted in accordance with this protocol and the NMAQB Modeling Guidelines. First, emissions from the Sandoval County Landfill sources will be modeled to determine if there are significant impacts. For pollutant averaging periods where impacts are less than the SIL, no additional modeling will be conducted. Second, where pollutant impacts exceed the SIL, cumulative impacts for comparison with the NAAQS and PSD increment will be determined using methodologies identified in the modeling guidelines.

Model Options

The HRDOW and HROFDY flags will be used to identify the operating times for the various equipment at the landfill and for the neighboring sources.

If needed to demonstrate compliance with the standards, impacts will be calculated using the dry plume depletion (DPD) algorithm. Tables 2-4 identify the particle deposition values that will be used.

	-		
Size Range	Diameter		Density
(microns)	(microns)	Mass Fraction	(g/cm^3)
0-2.5	1.57	1.00	1.5

 Table 2

 Particle Deposition Values for PM₁₀ & PM_{2.5} (Combustion)

Table 3	
Particle Deposition Values for PM ₁₀ (Vehicles)	

Size Range	Diameter		Density
(microns)	(microns)	Mass Fraction	(g/cm^3)
0-2.5	1.57	0.25	2.5
2.5-10	6.91	0.75	2.5

Table 4Particle Deposition Values for PM2.5 (Vehicles)

Size Range	Diameter	Mass Fraction	Density
(microns)	(microns)		(g/cm ³)
0-2.5	1.57	1.00	2.5

The Table 2 values will be used for combustion sources at the landfill and all neighboring point sources. The Tables 3 & 4 values will be used for non-combustion sources at the facility and for neighboring volume sources.

The coordinate system used to reference source and receptor locations will be of the UTM convention, NAD83.

Facility Sources

The modeled sources and emission rates for the Sandoval County Landfill will be those identified in the permit application.

Source Types

All fugitive dust emission sources at the landfill will be modeled using volume and area sources. The disposal routes and access roads will be modeled as alternating volume sources (due to the large number of sources needed to define the roads). Crushing/shredding operations will also be modeled as volume sources. Compactor, bulldozer, scraper loading and unloading, disturbed areas and storage piles will be modeled as area sources. Wind erosion emissions from the roads will be modeled as alternating volume sources and wind erosion emissions from the other landfill operations areas will be modeled as area sources.

Road source parameters will be calculated from the road widths and estimated average vehicle heights, as specified in the NMAQB Modeling Guidelines. Other volume and area source parameters will be selected so as to be representative of operations at the facility.

Engine emissions will be modeled using point sources and the applicable stack parameters as identified in the application.

Scenarios

It is expected that the disposal area will move during the five-year term of the permit. During the term of the permit, the disposal area might be located anywhere within the area created by Cell 4B and the three disposal areas shown on the plot plan (see the attached plot plan).

Modeling will be conducted using three scenarios, one for each of the disposal area locations shown on the plot plan. As these locations are nearest the property boundaries, they will identify the high facility impacts associated with operation of the disposal areas.

Location of Crushing & Shredding Operations

Crushing and shredding operations at the landfill are limited to two specific areas. The operations are mutually exclusive, crushing operations and shredding operations cannot be located at the same place at the same time. The two areas are identified on the plot plan by the number 5 located within a square. Modeling will be conducted using the operation (crushing or shredding) and location producing the highest impacts in the areas of highest facility total impacts. The operation producing the second highest impacts will be modeled at the remaining location.

Location of Engines

Since the engines can be at different locations, modeling will be conducted using the location that produces the highest impacts in areas with the highest facility total impacts.

Hours of Operation

The Sandoval County Landfill will operate nine hours per day Monday through Saturday from 7:00 a.m. until 4:00 p.m. As the landfill will be open 304 days per year, it will operate a total of 2,736 hour per year. Except as noted below, all sources will be modeled as operating as operating Monday through Saturday from 0700-1600.

Wind erosion emissions will be modeled at 24 hours per day, seven days a week, and 8,760 hours per year.

Sources operating less than nine hours per day will be modeled using the time periods producing the highest impacts in the areas of highest facility total impacts.

- Since the scraper operates only three hours per day, it will be tested for impacts from 0700-1000, 1000-1300, and 1300-1600.
- Since the shredding operations are limited to five hours per day, it will be tested for impacts from 0700-1200 or 1100-1600.
- Since the compost screen engine will operate a maximum of one hour per day, it will be tested for impacts during each hour of the nine-hour day.
- Since the wood chipper and shredder engines will operate a maximum of 5 hours per day, they will be tested for impacts from 0700-1200 and 1100-1600.

Building Downwash

The EPA Building Profile Input Program - Prime (BPIP-Prime) will be used to evaluate structures for building downwash impacts. All structures close enough (of sufficient height and/or width) to produce downwash effects from the stacks will be included in the evaluation.

Receptor Selection

A Cartesian grid with variable receptor spacing will be used to evaluate significant impacts around the facility. The grid will contain receptors with 50-meter spacing around the fence line and from the fence line out to at least 500 meters, 100-meter spacing from the 500 meters beyond the fence line out to at least 1,000 meters, 250-meter spacing from 1,000 meters beyond the fence line out to at least 3,000 meters, and 500-meter spacing from 3,000 meters beyond the fence line out to at least 5,000 meters. If significant impact areas extend beyond 5,000 meters from the fence line, the grid will also include receptors with 1,000-meter spacing sufficient to cover the entire significant impact area.

Cumulative impact modeling will be conducted using only those receptors from the grid defined in the paragraph above for which there were significant impacts. If maximum cumulative impacts greater than

or equal to 75 percent of the applicable standard are calculated at receptors located in the 100-meter, 250meter or 500-meter interval portions of the grid, then refined grids with 50-meter spacing will be centered on these receptors to identify the local high. These refined grids will be large enough to include adjacent receptors in all directions (200 meters square in the 100-meter interval portion of the grid, 500 meters square in the 250-meter interval portion of the grid, 1,000 meters square in the 500-meter interval portion of the grid, and 2,000 meters square in the 1,000-meter interval portion of the grid).

To model significant impacts at the Bandelier Wilderness Area, a single receptor will be placed on the border of the Class I area at the point nearest the Sandoval Landfill. If there are significant impacts, a grid with 1,000-meter spacing will be used to determine impacts within the Class I area. If concentrations are above 75% of the allowable increment, grids with 50 and 100-meter spacing will be used around the hot spots to determine the high impacts.

The coordinate system used to reference receptor locations will be of the UTM convention (NAD83). Terrain elevation data will be obtained from NED data (1/3 second) taken from the USGS website. The AERMOD Terrain Preprocessor (AERMAP) will be used to calculate the receptor elevations and terrain maximums. The domain used to calculate terrain maximums will be sufficient to identify all terrain nodes that create a slope greater than or equal to 10 percent.

Meteorological Data

In accordance with a recommendation by Eric Peters, NMAQB, modeling will be conducted using Bernalillo meteorological data collected during 2011 and 2012. This is consistent with the NMAQB Modeling Guidelines. The facility is located in Rio Rancho and is on top of the mesa west of the Rio Grande. The meteorological data will be obtained from the NMAQB web site.

Neighboring Sources

Cumulative PM_{10} , and $PM_{2.5}$ impacts used to demonstrate compliance with the NAAQS <u>must</u> be calculated as facility impacts plus neighboring source impacts plus background concentrations. Therefore, if particulate impacts from the Sandoval County Landfill exceed the SIL, neighboring sources must be used to evaluate compliance with the NAAQS. For particulate modeling, neighboring sources are all those within 10 kilometers of the facility.

Cumulative PM_{10} , and $PM_{2.5}$ impacts used to demonstrate compliance with the Class II PSD increment <u>must</u> be calculated as facility impacts plus neighboring source impacts. Therefore, if particulate impacts from the Sandoval County Landfill exceed the SIL, neighboring sources must be used to evaluate compliance with PSD increment. Neighboring sources are all those within 25 kilometers of the facility, plus sources emitting over 1,000 pounds per hour within 50 kilometers of the facility.

Cumulative PM_{10} , and $PM_{2.5}$ impacts used to demonstrate compliance with the Class I PSD increment <u>must</u> be calculated as facility impacts plus neighboring source impacts. Therefore, if particulate impacts from the Sandoval County Landfill exceed the SIL, neighboring sources must be used to evaluate compliance with PSD increment. Neighboring sources are all those within 25 kilometers of the Class I area, plus sources emitting over 1,000 pounds per hour within 50 kilometers of the Class I area.

Neighboring sources will be obtained from the MergeMaster database in accordance with requirements established by the NMAQB Modeling Guidelines (the neighboring source data we are currently expecting to use was obtained from Eric Peters on January 26, 2023).

Background Concentrations

Where PM_{10} , and $PM_{2.5}$ impacts exceed the SIL, cumulative impacts for comparison with the NAAQS <u>must</u> be calculated as facility impacts plus neighboring source impacts plus background concentrations as identified in the modeling guidelines.

Table 5 below identifies the applicable background concentrations that will be used.

_	e		
Pollutant	Averaging Period	Background	Source ID
		$(\mu g/m^3)$	
PM ₁₀	24-Hour	58.7 (2nd high)	350010023
PM _{2.5}	24-Hour	15.7 (98th%ile)	350010023
PM _{2.5}	Annual	5.8	350010023

In accordance with a recommendation by Eric Peters, NMAQB, Del Norte High School background

If you have any questions or comments, please contact me at (801) 294-3024. Thank you for your assistance.

Sincerely,

CIRRUS CONSULTING, LLC

med W. Ner

concentrations will be used.

James W. Newby

Table 5Background Concentrations

jwnewby@comcast.net

From:	Ren, Mingcheng, ENV <mingcheng.ren@env.nm.gov></mingcheng.ren@env.nm.gov>
Sent:	Monday, February 13, 2023 3:58 PM
То:	jwnewby@comcast.net
Subject:	RE: Comments RE: [EXTERNAL] FW: Updated Sandoval Landfill Modeling Protocol

Thank you. The updated modeling protocol looks good to me.

I appreciate your time and response.

Best, Mingcheng

Mingcheng Ren, Ph.D. Air Dispersion Modeling New Mexico Environment Department's Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505 505-629-7729 mingcheng.ren@env.nm.gov https://www.env.nm.gov/ https://www.env.nm.gov/

Science | Innovation | Collaboration | Compliance

From: jwnewby@comcast.net <jwnewby@comcast.net>
Sent: Monday, February 13, 2023 3:52 PM
To: Ren, Mingcheng, ENV <Mingcheng.Ren@env.nm.gov>
Subject: RE: Comments RE: [EXTERNAL] FW: Updated Sandoval Landfill Modeling Protocol

Mingcheng,

Attached is an updated modeling protocol for the Sandoval Landfill.

When I went to add the statement about not including secondary formation of PM2.5, I realized the original protocol already included it. Please see Page 2 Paragraph 4.

I added the date of the neighboring source retrieval. Please see page 7 Paragraph 1.

Thanks.

James Newby Cirrus Consulting, LLC Phone: (801) 294-3024 From: Ren, Mingcheng, ENV <<u>Mingcheng.Ren@env.nm.gov</u>>
Sent: Monday, February 13, 2023 3:12 PM
To: jwnewby@comcast.net
Cc: Mustafa, Sufi A., ENV <<u>sufi.mustafa@env.nm.gov</u>>
Subject: RE: Comments RE: [EXTERNAL] FW: Updated Sandoval Landfill Modeling Protocol

Hi James,

Thank you for your email. I appreciate your quick response.

Please update the modeling protocol – please only include your responses to questions 2 and 4 in the protocol.

Nice to work with you too.

Have a good one.

Best, Mingcheng

From: jwnewby@comcast.net <jwnewby@comcast.net>
Sent: Monday, February 13, 2023 2:31 PM
To: Ren, Mingcheng, ENV <<u>Mingcheng.Ren@env.nm.gov</u>>
Subject: RE: Comments RE: [EXTERNAL] FW: Updated Sandoval Landfill Modeling Protocol

Mingcheng,

Please see my comments in red font below.

I'm not sure if you are approving the protocol and want to see the following items addressed in the final report OR if you want the protocol modified to include the following. Please clarify.

If you are looking for an update to the protocol, I propose to respond to bullet 2. I believe my responses to 1, 3 & 4 below show that no other updates are needed. If you disagree, please let me know what you would like me to provide.

Thanks for your help. I don't believe I have worked with you before. I look forward to it. Have a good day.

James Newby Cirrus Consulting, LLC Phone: (801) 294-3024 E-mail: jnewby@cirrusllc.com

From: Ren, Mingcheng, ENV <<u>Mingcheng.Ren@env.nm.gov</u>>
Sent: Monday, February 13, 2023 11:42 AM
To: jwnewby@comcast.net
Cc: Mustafa, Sufi A., ENV <<u>sufi.mustafa@env.nm.gov</u>>
Subject: Comments RE: [EXTERNAL] FW: Updated Sandoval Landfill Modeling Protocol

Hi James,

I hope this email finds you well.

I have some comments regarding this modeling protocol. Please review:

1. Please list the sources' information for modifications and their PM emission rates. Please also describe the modifications/changes of these sources. We indicated in the modeling protocol that there would be changes to source emission rates and locations. What those changes will be are fluid until the modeling is complete. For example, at landfills, it is often the case that a road will cause exceedances to a standard. When that happens, the road typically has to be relocated. Therefore, the road volume sources must be relocated. And since the road length is changed, the source emission rates also change. The same thing happens with other sources.

I'm not sure if you are asking for more information in the protocol, or if you are asking that the report provide that information. This is a level of detail that is typically provided in the permit application and the modeling report. Note that there will be over 700 facility sources in the modeling and the distribution of emissions among these sources varies with scenario and hour of the day. Beyond the scope of the protocol.

- 2. Per NMED-AQB-Modeling Guidelines (pages 28-30), please describe PM2.5 secondary formation in this project. The facility will not emit at least 40 tons of NOx or 40 tons of SO2. Therefore, modeling will <u>not</u> include the secondary formation of PM2.5. This should have been stated in the protocol. I will include it if you desire.
- On page 4 "The Table 2 values will be used for combustion sources at the landfill and all neighboring point sources. The Tables 3 & 4 values will be used for non-combustion sources at the facility and for neighboring volume sources."

Will you have detailed/refined modeling of neighboring sources? Yes, if there are significant impacts. Particulate modeling requires it; please see the bottom half of page 6 of the protocol. Could you describe this part in detail? Again, please see the bottom half of page 6 of the protocol. Will you model the haul roads of neighboring sources? We will model all of the sources provided by MergeMaster. Do you differentiate neighboring source types? MergeMaster typically provides neighboring point and volume sources. We do not alter MergeMaster data in any way unless directed by NMAQB.

4. Page 6 – "Neighboring sources will be obtained from the MergeMaster database in accordance with requirements established by the NMAQB Modeling Guidelines." Please provide the date(version) you obtained the neighboring source information. That information will provided in the modeling report. Sometimes the modeling takes a long time and any date we provide in the protocol may be obsolete. The neighboring source data we are currently expecting to use was obtained from Eric Peters on 1/26/2023.

Thank you.

Best, Mingcheng

Mingcheng Ren, Ph.D. Air Dispersion Modeling New Mexico Environment Department's Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505 505-629-7729 mingcheng.ren@env.nm.gov https://www.env.nm.gov/ https://www.env.nm.gov/air-quality

Science | Innovation | Collaboration | Compliance

From: Mustafa, Sufi A., ENV <<u>sufi.mustafa@env.nm.gov</u>>
Sent: Tuesday, January 31, 2023 5:13 PM
To: Ren, Mingcheng, ENV <<u>Mingcheng.Ren@env.nm.gov</u>>
Cc: jwnewby@comcast.net
Subject: FW: [EXTERNAL] FW: Updated Sandoval Landfill Modeling Protocol

Mingcheng Please see email below from James and in attachment find an updated modeling protocol. Thank you.

Sufi A. Mustafa, Ph.D. Manager Air Dispersion Modeling and Emission Inventory Section New Mexico Environment Department's Air Quality Bureau Office: (505) 629 6186 <u>sufi.mustafa@state.nm.us</u> 525 Camino de los Marquez Suite 1 Santa Fe, New Mexico, 87505 <u>https://www.env.nm.gov/air-quality/</u>

"Innovation, Science, Collaboration, Compliance"

From: jwnewby@comcast.net <jwnewby@comcast.net>
Sent: Tuesday, January 31, 2023 4:55 PM
To: Mustafa, Sufi A., ENV <<u>sufi.mustafa@env.nm.gov</u>>
Subject: [EXTERNAL] FW: Updated Sandoval Landfill Modeling Protocol

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

From: jnewby@cirrusllc.com <jnewby@cirrusllc.com>
Sent: Tuesday, January 31, 2023 4:01 PM
To: Sufi Mustafa (sufi.mustafa@env.nm.gov) <sufi.mustafa@env.nm.gov>
Cc: Andy Yuhas (ayuhas@parkhill.com) <ayuhas@parkhill.com>
Subject: Updated Sandoval Landfill Modeling Protocol

Sufi,

I just learned that the Sandoval County Landfill is located 49.7 kilometers from the Bandelier Wilderness Area (a Class I area). This was not addressed in the modeling protocol currently under review. Attached is an updated protocol that includes Class I area modeling.

Sorry for the confusion. Thanks for your help.

James Newby Cirrus Consulting, LLC Phone: (801) 294-3024 E-mail: jnewby@cirrusllc.com

Section 17

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Compliance Plan

The Sandoval County Landfill affirms that it is in compliance with applicable Title V regulatory requirements at the time this Application is submitted. If, however, it is determined that the Sandoval County Landfill needs to attain compliance with additional regulatory requirements, the County commits to working with the AQB to develop a schedule and compliance plan for achieving compliance.

To-date, and consistent with the provisions of Title V Operating Permit No. P243L-R2 (issued on September 28, 2018), Sandoval County Landfill has submitted six Semi-Annual Compliance Reports and three Annual Compliance Certification reports to AQB (Compliance Section) since September 28, 2018. The next Semi-Annual Report will be submitted on or before February 14, 2023. In addition, SCLF continues to submit Annual NMOC Emission Rate Estimate Reports to ABQ, consistent with the conditions of Title V Permit P243L-R2.

Compliance Schedule

In the event that compliance issues are identified, the Sandoval County Landfill will respond expeditiously to correct potential deficiencies and maintain compliance with applicable regulations. Additional compliance requirements, if any, which may be imposed by enactment of new regulations, will be addressed in accordance with applicable regulatory schedules.

The Sandoval County Landfill will continue to submit certified progress reports (i.e., Semi-Annual Compliance Reports) to AQB on a semi-annual basis (consistent with the current submittal schedule).

Section 20

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is necessary for this application for renewal. Therefore, this section does not apply.

March 7, 2023 Rev 0

Section 21

Addendum for Landfill Applications

Do not print this section unless this is a landfill application.

Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: https://www3.epa.gov/airtoxics/landfill/landflpg.html

NM Solid Waste Bureau Website: https://www.env.nm.gov/swb/

21-A: Municipal Solid Waste Landfill Information						
1	How long will the landfill be operated? From 15 to 20 years					
2	Maximum operational hour	rs per year: 2,736				
3	Landfill Operating hours (o F: 7am - 4pm	pen to the public) M- Sat. 7am – 4pm		рт	Sun. Closed	
4	To determine to what NSPS and emissions guidelines the landfill is subject, what is the date that the landfill was constructed, modified, or reconstructed as defined at 40 CFR 60, Subparts A, WWW, XXX, Cc, and Cf. Sandoval County Landfill was last modified after July 17, 2014, and is, therefore, subject to the requirements of 40 CFR 60, Subpart XXX.					
5	Landfill Design Capacity. Enter all 3	Tons: 7,277,684	Megagrams (Mg): 6,602,204		Cubic meters: 10,116,710	
6	Landfill NMOC Emission Rate (NSPS XXX)	Less than 34 Mg/year using		Equal to using Tiers	to or Greater than 34 Mg/year rs 1 to 3	
	Landfill NMOC Emission Rate (NSPS XXX) N/A	U less than 500 ppm using Tier 4		Equal to using Tier 4	Equal to or Greater than 500 ppm g Tier 4	
	Landfill NMOC Emission Rate (NSPS WWW)			o or Greater than 50 Mg/yr		
7	Annual Waste Acceptance Rate: 100,000 to 140,000 tons/year					
8	Is Petroleum Contaminated Soil Accepted? Yes If so, what is the annual acceptance rate? Acceptan rate limited by BTEX Concentration and calculated emissions (Section 6.7.3).			oncentration and		
9	NM Solid Waste Bureau (SWB) Permit No.: SWM-0123365 SWB Permit Date:09/27/2016			Date:09/27/2016		

11

Describe the NM Solid Waste Bureau Permit, Status, and Type of waste deposited at the landfill.

The Sandoval County Landfill (SCLF) was initially registered as a solid waste facility in 1983, and has been a permitted solid waste facility since 1995. SCLF disposes of municipal solid waste (MSW), construction and demolition (C&D) debris, and is permitted to accept wastewater

10 treatment plant (WWTP) sludge and petroleum contaminated soils (PCS). SCLF has not accepted any shipments of PCS to date. In April 2014, SCLF submitted an Application for Permit Renewal and Modification to include a lateral and vertical expansion, resulting in a new "Unit IV" disposal area which will overlap Units I, II, and III and include a portion of the former Public Service Company of New Mexico (PNM) utilities easement. That Application was approved, and the current Solid Waste Permit for SCLF was issued on 09/27/2016.

Describe briefly any process(es) or any other operations conducted at the landfill.

In addition to the activities described in Part 10 above, SCLF operates an in-vessel composting system, and offers collection areas/bins for source separated recyclables, white goods (appliances) and electronic wastes, which are collected and periodically transported off-site by private contractors. With the expanding population of the landfill's service area, it is reasonable to expect an increase in the acceptance rates of MSW, C&D debris, WWTP sludge, PCS, and green waste (compost feedstock) at the landfill over the term of the Title V Operating Permit.

21-B: NMOC Emissions Determined Pursuant to 40 CFR 60, Subparts WWW or XXX

	Enter the regulatory citation of all Tier 1, 2, 3, and/or 4 procedures used to determine NMOC emission rates and the date(s) that each Tier procedure was conducted. In Section 7 of the application, include the input data and results.
1	Tier 1 equations (e.g. LandGEM): 28.48 Mg/yr (31.39 tons/yr) for 2028 (projected)
2	Tier 2 Sampling: N/A
3	Tier 3 Rate Constant: N/A
4	Tier 4 Surface Emissions Monitoring: N/A
5	Attach all Tier Procedure calculations, procedures, and results used to determine the Gas Collection and Control System (GCCS) requirements. N/A

Facilities that have a landfill GCCS must complete Section 21-C.

21-C: Landfill Gas Collection and Control System (GCCS) Design Plan					
1	Was the GCCS design certified by a Professional Engineer? N/A				
2	Attach a copy of the GCCS Design Plan and enter the submittal date of the Plan pursuant to the deadlines in either NSPS WWW or NSPS XXX. The NMOC applicability threshold requiring a GCCS plan is 50Mg/yr for NSPS WWW and 34 Mg/yr or 500 ppm for NSPS XXX. N/A				
3	Is/Was the GCCS planned to be operational within 30 months of reporting NMOC emission rates equal to or greater than 50 Mg/yr, 34 Mg/yr, or 500 ppm pursuant to the deadlines specified in NSPS WWW or NSPS XXX? N/A				
4	Does the GCCS comply with the design and operational requirements found at 60.752, 60.753, and 69.759 (NSPS WWW) or at 60.762, 60.763, and 60.769 (NSPS XXX)? N/A				
5	Enter the control device(s) to which the landfill gas will be/is routed such as an open flare, enclosed combustion device, boiler, process heater, or other. N/A				
6	Do the control device(s) meet the operational requirements at 60.752 and 60.756 (NSPS WWW) or 60.762, 60.763, 60.766 (NSPS XXX)? N/A				

March 7, 2023 Rev 0

Section 22: Certification

Company Name: Sandoval County Landfill

I, Mark Hatzenbuhler, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this <u>3</u> day of <u>March</u>, <u>2023</u>, upon my oath or affirmation, before a notary of the State of

New Mexico

Mark Hatzenbuhler Printed Name

Date

3-3-2023

Director of Public Works Title

	ard		
Scribed and sworn before me on this $\frac{2}{3}$	day of	March	. 2023.

My authorization as a notary of the State of <u>New Mexico</u> expires on the

<u>29th</u> day of July <u>2023</u> <u>Crystal Gutierrez</u> Notary's Signature

3/3/2= Date "Terestereteresses

Notary's Printed

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

Form-Section 22 last revised: 3/7/2016

Saved Date: 3/1/2023