NMED AIR QUALITY NSR APPLICATION DELAWARE G&P, LLC REVEILLE COMPRESSOR STATION

Prepared By:

Adam Erenstein – Manager of Consulting Services

TRINITY CONSULTANTS

9400 Holly Ave NE Bldg 3, Suite B Albuquerque, NM 87122 (505) 266-6611

April 2023

Project 233201.0050

April 14, 2023

Permit Programs Manager NMED Air Quality Bureau 525 Camino de los Marquez Suite 1 Santa Fe, NM 87505-1816

RE: NSR Application Delaware G&P, LLC – Reveille Compressor Station

Permit Programs Manager:

Delaware G&P, LLC is submitting an NSR application for Reveille Compressor Station. The facility is located approximately 13.05 miles southeast of Loving, New Mexico. Currently, this facility is permitted under GCP O&G 9896. The facility will have a total production of 150 MMscf of gas per day and includes eight (8) compressor engines, one (1) gunbarrel separator, two (2) condensate storage tanks, one (1) produced water storage tank, one (1) glycol dehydrator, one (1) vapor recovery Unit.

The format and content of this application are consistent with the Bureau's current policy regarding NSR applications; it is a complete application package using the most current application form. Enclosed is a hard copy of the application, including the original certification. Please feel free to contact either myself at (505) 266-6611 or by email at <u>aerenstein@trinityconsultants.com</u> if you have any questions regarding this application. Alternatively, you may contact Lance Green, Environmental Specialist for Delaware G&P, LLC, at (225) 692-6947 or by email at <u>lance.green@enlink.com</u>.

Sincerely,

Adam Erenstein Manager of Consulting Services

Trinity Project File 233201.0050

For Department use only:

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

This application is submitted as (check all that apply): Request for a No Permit Required Determination (no fee)

Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Construction Status: Not Constructed Existing Permitted (or NOI) Facility Existing Non-permitted (or NOI) Facility Minor Source: a NOI 20.2.73 NMAC 20.2.72 NMAC application or revision 20.2.72.300 NMAC Streamline application Title V Source: Title V (new) Title V renewal TV minor mod. TV significant mod. TV Acid Rain: New Renewal minor modification to a PSD source PSD Major Source: PSD major source (new) a PSD major modification

Acknowledgements:

 \square I acknowledge that a pre-application meeting is available to me upon request. Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

☑ \$500 NSR application Filing Fee enclosed OR The full permit fee associated with 10 fee points (required w/ streamline applications).

Check No.: 655542 in the amount of \$500

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.
 I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-2/.

This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.200.A NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Seci	tion 1-A: Company Information	AI # if known (see 1 st 3 to 5 #s of permit IDEA ID No.):	Updating Permit/NOI #: GCP O&G 9896
1	Facility Name: Reveille Compressor Station	Plant primary SIC Cod	e (4 digits): 1311
1		Plant NAIC code (6 dig	gits): 21112
а	Facility Street Address (If no facility street address, provide directions from	n a prominent landmark)	:
2	Plant Operator Company Name: Delaware G&P, LLC	Phone/Fax: (225) 692 -	6947
а	Plant Operator Address: 1722 Routh Street, Suite 1300, Dallas, TX 75201		
b	Plant Operator's New Mexico Corporate ID or Tax ID:		

3	Plant Owner(s) name(s): Delaware G&P, LLC	Phone/Fax: (225) 692 - 6947
a	Plant Owner(s) Mailing Address(s): 1722 Routh Street, Suite 1300, Dallas	, TX 75201
4	Bill To (Company): Delaware G&P, LLC	Phone/Fax: (225) 692 - 6947
а	Mailing Address: 1722 Routh Street, Suite 1300, Dallas, TX 75201	E-mail: mike.luckett@enlink.com
5	 Preparer: Trinity Consultants Consultant: Adam Erenstein 	Phone/Fax: (505) 266 - 6611
а	Mailing Address: aerenstein@trinityconsultants.com	E-mail: mike.luckett@enlink.com
6	Plant Operator Contact: Mike Luckett	Phone/Fax: (432) 221 - 9707
a	Address:303 W Wall Street, Suite 202, Midland, TX 79701	E-mail: mike.luckett@enlink.com
7	Air Permit Contact: Lance Green	Title: Environmental Specialist
a	E-mail: lance.green@enlink.com	Phone/Fax: (225) 692-6947
b	Mailing Address: 1722 Routh Street, Suite 1300, Dallas, TX 75201	
с	The designated Air permit Contact will receive all official correspondence	(i.e. letters, permits) from the Air Quality Bureau.

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? Yes 🗹 No	1.b If yes to question 1.a, is it currently operating in New Mexico? Yes ☑ No
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? Yes Z No
3	Is the facility currently shut down? Yes Z No	If yes, give month and year of shut down (MM/YY):
4	Was this facility constructed before 8/31/1972 and continuously operated s	since 1972? Yes 🗹 No
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMA Yes No ZN/A	C) or the capacity increased since 8/31/1972?
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? Yes ☑ No	If yes, the permit No. is: P-
7	Has this facility been issued a No Permit Required (NPR)? Yes ☑ No	If yes, the NPR No. is:
8	Has this facility been issued a Notice of Intent (NOI)? Yes 🗹 No	If yes, the NOI No. is:
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? Yes ☑ No	If yes, the permit No. is:
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? ☑Yes No	If yes, the register No. is: GCP O&G 9896

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)									
a	a Current Hourly: Daily: Annually:									
b	Proposed	Hourly: 6.25 MMscf/hr	Daily: 150 MMscf/d	Annually: 54,750 MMscf/yr						
2	What is the	facility's maximum production rate, sp	pecify units (reference here and list capacities in	Section 20, if more room is required)						
a	Current Hourly: Daily: Annually:									
b	Proposed	Hourly: 6.25 MMscf/hr	Daily: 150 MMscf/d	Annually: 54,750 MMscf/yr						

Section 1-D: Facility Location Information

1	Section: 15	Range: 29E	Township: 25S	County: Ed	dy		Elevation (ft): 3037				
2	UTM Zone:	12 or 🗹 13		Datum:	Datum: NAD 27 NAD 83 🗹 WGS 84						
а	UTM E (in mete	ers, to nearest 10 meter	s): 596,502 m	UTM N (in	meters, to nearest	10 meters):	3,554,846 m				
b	AND Latitude (deg., min., sec.): 32° 7'33.15"N Longitude (deg., min., sec.): 103°58'37.01"W										
3	Name and zip	code of nearest N	ew Mexico town: Loving, 1	NM 88256							
4	for 1.3 mi towa for 2.4 mi, slig	ard W Cedar St, tu ht left onto Longh tinue straight at th	rrn left onto US Hwy 285 S orn Rd, after 1.8 mi turn le	and continues and continues oft onto Pipeli	e for 16 mi, tui ine Rd Number	m left onto r 1, after 1	ing head south on N 4th St Whitehorn Rd and continue .8 mi turn left and continue facility on the right on the				
5	The facility is	13.05 miles south	east of Loving, NM 88256.								
6	Status of land a (specify)	at facility (check o	one): Private Indian/Pu	ieblo 🗹 Fede	eral BLM F	ederal Fo	rest Service Other				
7			bes, and counties within a t be constructed or operated			2.203.B.2	NMAC) of the property on				
8	than 50 km (31 publications/)	l miles) to other st	tates, Bernalillo County, or (20.2.72.206.A.7 NMAC)	a Class I area	a (see <u>www.en</u>	v.nm.gov/					
9	Name nearest	Class I area: Carls	bad Caverns National Park								
10	Shortest distan	ice (in km) from fa	acility boundary to the boundary	ndary of the r	nearest Class I	area (to the	nearest 10 meters): 43.47 km				
11	lands, includin	g mining overbur		est residence,	school or occu						
12	" Restricted A continuous wa that would requ	lands, including mining overburden removal areas) to nearest residence, school or occupied structure: 12,313 m Method(s) used to delineate the Restricted Area: Fencing, gates, and signage. "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.									
13	Does the owne Yes Z N A portable stat one location or	Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC?									
14		<i>v</i> 1 <i>v</i>	unction with other air regul nit number (if known) of th	1	1	operty?	🛛 No 🗌 Yes				

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24	$\left(\frac{\text{days}}{\text{week}}\right)$: 7	$\left(\frac{\text{weeks}}{\text{year}}\right): 52$	$\left(\frac{\text{hours}}{\text{year}}\right)$: 8760	
2	Facility's maximum daily operating schedule (if less	s than $24 \frac{\text{hours}}{\text{day}}$? Start: N/A	AM PM	End: N/A	AM PM
3	Month and year of anticipated start of construction:	Upon completion of permit			
4	Month and year of anticipated construction complet	ion: Upon completion of permi	t		
5	Month and year of anticipated startup of new or mod	dified facility: Upon completion	n of permit		
6	Will this facility operate at this site for more than or	ne year? 🗹Yes No			

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? Yes ZNo If yes, specify:
a	If yes, NOV date or description of issue: N/A NOV Tracking No: N/A
b	Is this application in response to any issue listed in 1-F, 1 or 1a above? Yes 🗹 No If Yes, provide the 1c & 1d info below:
с	Document Title: N/ADate: N/ARequirement # (or page # and paragraph #): N/A
d	Provide the required text to be inserted in this permit: N/A
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? 🗹 Yes No
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? Yes 🗹 No
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)?
a	If Yes, what type of source? \blacksquare Major (≥ 10 tpy of any single HAPOR $\blacksquare \geq 25$ tpy of any combination of HAPS)ORMinor (<10 tpy of any single HAPAND<25 tpy of any combination of HAPS)
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? Yes ☑ No
	If yes, include the name of company providing commercial electric power to the facility:
a	Commercial power is purchased from a commercial utility company, which specifically does not include power generated on site for the sole purpose of the user.

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1 I have filled out Section 18, "Addendum for Streamline Applications." ☑ N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources (Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Maior PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Michael LeBlanc	· · · · · · · · · · · · · · · · · · ·	Phone: (985) 575-8311
a	R.O. Title: SVP Operations	R.O. e-mail: Micha	el.LeBlanc@EnLink.com
b	R. O. Address: 5609 Bayou Black Dr, Suite A, Gibson, LA 70356		
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): Tad Stallings		Phone: (432) 684-3870
а	A. R.O. Title: Director Operations	A. R.O. e-mail: Tao	d.Stallings@Enlink.com
b	A. R. O. Address: 303 West Wall St, Suite 202, Midland, TX 7970	1	
3	Company's Corporate or Partnership Relationship to any other Air have operating (20.2.70 NMAC) permits and with whom the applic relationship): N/A		7 1
4	Name of Parent Company ("Parent Company" means the primary r permitted wholly or in part.): Delaware G&P, LLC	ame of the organizat	tion that owns the company to be
a	Address of Parent Company: 1722 Routh Street, Suite 1300, Dallas	s, TX 75201	
5	Names of Subsidiary Companies ("Subsidiary Companies" means owned, wholly or in part, by the company to be permitted.): N/A	organizations, branch	nes, divisions or subsidiaries, which are
6	Telephone numbers & names of the owners' agents and site contac Lance Green, (225) 692-6947	ts familiar with plant	t operations:

7

Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: Texas - 13.98 km

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-toto 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application

☑ secure electronic transfer. Air Permit Contact Name: <u>Adam Erenstein</u>, Email: <u>aerenstein@trinityconsultants.com</u> Phone number (505) 266-6611.

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.

- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

	<u> </u>				Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #			RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
ENG-1	Compressor Engine	Waukesha	16V275 Gl	TBD	5000 hp	5000 hp	TBD TBD	CAT-1 ENG-1	20200254	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced	4SLB	N/A
ENG-2	Compressor Engine	Waukesha	16V275 Gl	TBD	5000 hp	5000 hp	TBD TBD TBD	CAT-2 ENG-2	20200254	✓ Existing (unchanged) To be Removed ○ New/Additional ⊂ Replacement Unit ○ To be Modified ⊂ be Removed	4SLB	N/A
ENG-3	Compressor Engine	Caterpillar	3612A4	TBD	3750 hp	3750 hp	TBD TBD TBD	CAT-3 ENG-3	20200254	□ For Bornderic □ To be Removed □ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit □ To be Modified □ To be Replaced	4SLB	N/A
ENG-4	Compressor Engine	Caterpillar	3612A4	TBD	3750 hp	3750 hp	TBD	CAT-4 ENG-4	20200254	Existing (unchanged) To be Removed Ø New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	N/A
ENG-5	Compressor Engine	Caterpillar	3612A4	TBD	3750 hp	3750 hp	TBD TBD	CAT-5 ENG-5	20200254	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	N/A
ENG-6	Compressor Engine	Caterpillar	3612A4	TBD	3750 hp	3750 hp	TBD TBD	CAT-6 ENG-6	20200254	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	N/A
ENG-7	Compressor Engine	Caterpillar	3612A4	TBD	3750 hp	3750 hp	TBD TBD	CAT-7 ENG-7	20200254	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	N/A
ENG-8	Compressor Engine	Caterpillar	3612A4	TBD	3750 hp	3750 hp	TBD TBD	CAT-8 ENG-8	20200254	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	N/A
DEHY-1	TEG Glycol Dehydrator	TBD	TBD	TBD	150 MMSCFD	150 MMSCFD	TBD TBD	BTEX To Inlet	31000301	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
RBL-1	Glycol Reboiler	TBD	TBD	TBD	2 MMBtu/hr	2 MMBtu/hr	TBD TBD	N/A RBL-1	31000228	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
TK-407	Gunbarrel	TBD	TBD	TBD	750 bbl	750 bbl	TBD 12/1/2023	ECD-1 ECD-1	31000503		N/A	N/A
ТК- 406А	Condensate Tank	TBD	TBD	TBD	1000 bbl	1000 bbl	TBD 12/1/2023	ECD-1 ECD-1	40400311	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced	N/A	N/A

		Manufact- urer's Rated Permitted Date of Controlled by Unit #																
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Source Classi- fication Emissions Code (SCC) vented to Stack #		vented to		For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.				
TK-	Condensate Tank	TBD	TBD	TBD	1000 bbl	1000 bbl	TBD	ECD-1	40400311	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A						
406B	Condensate Tank	IDD	TBD	TDD	1000 001	1000 001	12/1/2023	ECD-1	40400311	□ To Be Modified □ To be Replaced	IV/A	11/74						
TK-	Produced Water Tank	TBD	TBD	TBD	1000 bbl	1000 bbl	TBD	ECD-1	40400315	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A						
406C	Troduced Water Talik	TDD	TDD	TDD	1000 001	1000 001	12/1/2023	ECD-1	40400315	40400315	□ To Be Modified □ To be Replaced	IVA	11/14					
ECD-1	Enclosed Combustion	TBD	TBD	TBD	57.6	57.6	TBD	N/A	30600903	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A						
LCD-1	Unit	IDD	TDD	TDD	MSCF/d	MSCF/d	TBD	ECD-1	50000905	□ To Be Modified □ To be Replaced	IV/A	11/21						
	Condensate and	NT/A		NT/ A	NT/A	NT/A	N/A	N/A	40,0001.27	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	21/4							
LOAD-1	Produced Water Loading	N/A	N/A	N/A	N/A	N/A	N/A	N/A	40600137	New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A						
							N/A	N/A		☑ Existing (unchanged) □ To be Removed								
FUG	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811			□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A				
COMM	Start-up, Shutdown	NI/A	NT/A	NT/A	NT/A	NT/A	N/A	N/A	21000011	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	NT/A	NI/A						
SSM/M	Maintenance & Malfunction	N/A	N/A	N/A	N/A	N/A	N/A	N/A 31088811		N/A 31088811		N/A 31088811		N/A N/A		□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wpcontent/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc	
	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Free of Equipment, Check One	
TK-408	Mathanal Taula	TBD	TBD	400	20.2.72.202.B.5 NMAC	TBD	Existing (unchanged) To be Removed New/Additional Replacement Unit	
1K-408	Methanol Tank	IBD	TBD	bbl	20.2.72.202.B.5 NMAC	TBD	New/AdditionalReplacement UnitTo Be ModifiedTo be Replaced	
HAUL	Haul Road	N/A	N/A	N/A	20.2.72.202.B.5 NMAC	N/A	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit	
HAUL	Haul Koad	IN/A	N/A	N/A	20.2.72.202.B.3 NMAC	N/A	To Be Modified To be Replaced	
							Existing (unchanged) To be Removed New/Additional Replacement Unit	
							To Be Modified To be Replaced	
							Existing (unchanged) To be Removed New/Additional Replacement Unit	
							To Be Modified To be Replaced	
							Existing (unchanged) To be Removed New/Additional Replacement Unit	
							To Be Modified To be Replaced	
							Existing (unchanged) To be Removed New/Additional Replacement Unit	
							To Be Modified To be Replaced	

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.03.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
CAT-1	Oxidation Catalyst	TBD	CO, HCHO, VOC	ENG-1	CO = 75.6%	Catalyst Spec Sheet
CAT-2	Oxidation Catalyst	TBD	CO, HCHO, VOC	ENG-2	(% Control by Weight)	Catalyst Spec Sheet
CAT-3	Oxidation Catalyst	TBD	CO, HCHO, VOC	ENG-3		Catalyst Spec Sheet
CAT-4	Oxidation Catalyst	TBD	CO, HCHO, VOC	ENG-4		Catalyst Spec Sheet
CAT-5	Oxidation Catalyst	TBD	CO, HCHO, VOC	ENG-5		Catalyst Spec Sheet
CAT-6	Oxidation Catalyst	TBD	CO, HCHO, VOC	ENG-6		Catalyst Spec Sheet
CAT-7	Oxidation Catalyst	TBD	CO, HCHO, VOC	ENG-7		Catalyst Spec Sheet
CAT-8	Oxidation Catalyst	TBD	CO, HCHO, VOC	ENG-8		Catalyst Spec Sheet
ECD-1	Vapor Combustor	TBD	VOC, HAP	TK-406A through TK-407, Condensate and Produced Water Loading	95%	Engineering Estimate
BTEX Condenser	BTEX Condenser Unit for DEHY-1	TBD	VOC, HAP	DEHY-1 Still Vent	98%	Manufacturer Specs
VRU-1	Vapor Recovery Unit	TBD	VOC, HAP	TK-406A through TK-407, Condensate and Produced Water Loading	95%	Engineering Estimate
	device on a separate line. For each control device, list all en					

¹ List each control device on a separate line. For each control device, list all emission units controlled by the control device.

Table 2-D: Maximum Emissions (under normal operating conditions)

□ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-1. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Lint N.	N	Ox	С	0	V	DC	S	Ox	PI	M1	PM	[10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	3.31	14.48	26.24	114.91	11.24	49.25	0.19	0.85	0.35	1.51	0.35	1.51	0.35	1.51	-	-	-	-
ENG-2	3.31	14.48	26.24	114.91	11.24	49.25	0.19	0.85	0.35	1.51	0.35	1.51	0.35	1.51	-	-	-	-
ENG-3	2.48	10.86	25.22	110.44	9.34	40.92	0.14	0.63	0.25	1.12	0.25	1.12	0.25	1.12	-	-	-	-
ENG-4	2.48	10.86	25.22	110.44	9.34	40.92	0.14	0.63	0.25	1.12	0.25	1.12	0.25	1.12	-	-	-	-
ENG-5	2.48	10.86	25.22	110.44	9.34	40.92	0.14	0.63	0.25	1.12	0.25	1.12	0.25	1.12	-	-	-	-
ENG-6	2.48	10.86	25.22	110.44	9.34	40.92	0.14	0.63	0.25	1.12	0.25	1.12	0.25	1.12	-	-	-	-
ENG-7	2.48	10.86	25.22	110.44	9.34	40.92	0.14	0.63	0.25	1.12	0.25	1.12	0.25	1.12	-	-	-	-
ENG-8	2.48	10.86	25.22	110.44	9.34	40.92	0.14	0.63	0.25	1.12	0.25	1.12	0.25	1.12	-	-	-	-
RBL-1	0.20	0.86	0.16	0.72	0.01	0.05	0.01	0.05	0.01	0.07	0.01	0.07	0.01	0.07	-	-	-	-
TK-406A	-	-	-	-	*	30.55	-	-	-	-	-	-	-	-	-	-	-	-
TK-406B	-	-	-	-	*	30.55	-	-	-	-	-	-	-	-	-	-	-	-
TK-406C	-	-	-	-	*	0.08	-	-	-	-	-	-	-	-	-	-	-	-
TK-407	-	-	-	-	*	29.18	-	-	-	-	-	-	-	-	-	-	-	-
DEHY-1	-	-	-	-	337.03	1476.18	-	-	-	-	-	-	-	-	-	-	-	-
ECD-1	0.00	0.02	0.01	0.04	-	-	0.0002	0.0008	-	-	-	-	-	-	-	-	-	-
LOAD-1	-	-	-	-	1.20	5.26	-	-	-	-	-	-	-	-	-	-	-	-
FUG	-	-	-	-	2.29	10.02	-	-	-	-	-	-	-	-	-	-	-	-
Totals	21.70	95.03	203.94	893.24	419.07	1925.86	1.26	5.50	2.23	9.78	2.23	9.78	2.23	9.78	0.00	0.00	0.00	0.00

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

Unit No.	N	Ox	C	0	V	C	SC)x	PI	M	PM	[10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	3.31	14.48	6.39	28.00	8.01	35.06	0.19	0.85	0.35	1.51	0.35	1.51	0.35	1.51	-	-	-	-
ENG-2	3.31	14.48	6.39	28.00	8.01	35.06	0.19	0.85	0.35	1.51	0.35	1.51	0.35	1.51	-	-	-	-
ENG-3	2.48	10.86	4.80	21.00	5.32	23.28	0.14	0.63	0.25	1.12	0.25	1.12	0.25	1.12	-	-	-	-
ENG-4	2.48	10.86	4.80	21.00	5.32	23.28	0.14	0.63	0.25	1.12	0.25	1.12	0.25	1.12	-	-	-	-
ENG-5	2.48	10.86	4.80	21.00	5.32	23.28	0.14	0.63	0.25	1.12	0.25	1.12	0.25	1.12	-	-	-	-
ENG-6	2.48	10.86	4.80	21.00	5.32	23.28	0.14	0.63	0.25	1.12	0.25	1.12	0.25	1.12	-	-	-	-
ENG-7	2.48	10.86	4.80	21.00	5.32	23.28	0.14	0.63	0.25	1.12	0.25	1.12	0.25	1.12	-	-	-	-
ENG-8	2.48	10.86	4.80	21.00	5.32	23.28	0.14	0.63	0.25	1.12	0.25	1.12	0.25	1.12	-	-	-	-
RBL-1	0.20	0.86	0.16	0.72	0.01	0.05	0.01	0.05	0.01	0.07	0.01	0.07	0.01	0.07	-	-	-	-
TK-406A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-406B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-406C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-407	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEHY-1	-	-	-	-	0.63	2.76	-	-	-	-	-	-	-	-	-	-	-	-
ECD-1	0.10	0.45	0.20	0.89	0.05	0.24	0.0002	0.001	-	-	-	-	-	-	-	-	-	-
LOAD-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FUG	-	-	-	-	2.29	10.02	-	-	-	-	-	-	-	-	-	-	-	-
																		
Totals	21.79	95.45	41.92	183.63	50.89	222.89	1.26	5.50	2.23	9.78	2.23	9.78	2.23	9.78	-	-	-	-

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submitted of Startup, Shutdown, Maintenance Emissions in the table with the table. Refer to "Guidance for Submitted of Startup, Shutdown, Maintenance (20.2.73.200.D.2 NMAC).

(https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	C	0	VO	DC	S	Ox	PI	M^2	PM	[10²	PM	$[2.5^2]$	H	I_2S	L	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr										
SSM/M	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
Totals	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	C	0	V	C	S	Dx	Р	М	PN	110	PM	12.5	H ₂ S of	r Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
								N/A									
	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
ENG-1	ENG-1	Vertical	No	35	864	432.26	-	-	88.06	2.50
ENG-2	ENG-2	Vertical	No	35	864	432.26	-	-	88.06	2.50
ENG-3	ENG-3	Vertical	No	28	820	399.14	-	-	127.05	2.00
ENG-4	ENG-4	Vertical	No	28	820	399.14	-	-	127.05	2.00
ENG-5	ENG-5	Vertical	No	28	820	399.14	-	-	127.05	2.00
ENG-6	ENG-6	Vertical	No	28	820	399.14	-	-	127.05	2.00
ENG-7	ENG-7	Vertical	No	28	820	399.14	-	-	127.05	2.00
ENG-8	ENG-8	Vertical	No	28	820	399.14	-	-	127.05	2.00
RBL-1	RBL-1	Vertical	No	9.2	1400	13.37	-	-	26.60	0.80
ECD-1	ECD-1	Vertical	No	13	1200	28.97	-	-	1.48	5.00

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total		Provide Name		Provide Name	Pollutant e Here	Name	Pollutant e Here or 🗆 TAP	Name	Pollutant e Here or 🗆 TAP	Name	Pollutant Here Or 🗆 TAP	Name	Pollutant Here or 🗆 TAP	Name	Pollutant e Here)r 🛛 TAP	Name	Pollutant e Here or 🗆 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	ENG-1	0.83	3.32																
ENG-2	ENG-2	0.83	3.32																
ENG-3	ENG-3	0.56	2.46																
ENG-4	ENG-4	0.56	2.46																
ENG-5	ENG-5	0.56	2.46																
ENG-6	ENG-6	0.56	2.46																
ENG-7	ENG-7	0.56	2.46																
ENG-8	ENG-8	0.56	2.46																
RBL-1	RBL-1	0.004	0.02																
TK-406A	TK-406A	-	-																
TK-406B	TK-406B	-	-																
TK-406C	TK-406C	-	-																
TK-407	TK-407	-	-																
DEHY-1	DEHY-1	0.10	0.44																
ECD-1	ECD-1	0.004	0.02																
LOAD-1	LOAD-1	-	-																
FUG	FUG	0.19	0.82																
SSM/M	SSM/M	*	0.38																
						-													-
Tot	tals:	5.33	23.07																

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial, pipeline quality natural gas, residue gas,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
ENG-1	Field Gas	Process Gas	1020 Btu/scf	33872.55 scf/hr	296.72 MMscf/yr	2 gr S/100 scf	N/A
ENG-2	Field Gas	Process Gas	1020 Btu/scf	33872.55 scf/hr	296.72 MMscf/yr	2 gr S/100 scf	N/A
ENG-3	Field Gas	Process Gas	1020 Btu/scf	25000.00 scf/hr	219.00 MMscf/yr	2 gr S/100 scf	N/A
ENG-4	Field Gas	Process Gas	1020 Btu/scf	25000.00 scf/hr	219.00 MMscf/yr	2 gr S/100 scf	N/A
ENG-5	Field Gas	Process Gas	1020 Btu/scf	25000.00 scf/hr	219.00 MMscf/yr	2 gr S/100 scf	N/A
ENG-6	Field Gas	Process Gas	1020 Btu/scf	25000.00 scf/hr	219.00 MMscf/yr	2 gr S/100 scf	N/A
ENG-7	Field Gas	Process Gas	1020 Btu/scf	25000.00 scf/hr	219.00 MMscf/yr	2 gr S/100 scf	N/A
ENG-8	Field Gas	Process Gas	1020 Btu/scf	25000.00 scf/hr	219.00 MMscf/yr	2 gr S/100 scf	N/A
RBL-1	Field Gas	Process Gas	1020 Btu/scf	1960.78 scf/hr	17.18 MMscf/yr	2 gr S/100 scf	N/A
ECD-1	Field Gas	Process Gas	1020 Btu/scf	30.00 scf/hr	0.26 MMscf/yr	2 gr S/100 scf	N/A

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vanar	Average Stor	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Vapor Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
TK-406A	40400312	Condensate	Mixed Hydrocarbons	5.75	46.83	47.6	34.8179	75.8	34.8179
TK-406B	40400312	Condensate	Mixed Hydrocarbons	5.75	46.83	47.6	34.8179	75.8	34.8179
TK-406C	40400315	Produced Water	Water and Mixed Hydrocarbons	8.32	31.27	47.6	36.3941	75.8	36.3941

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Cap	acity	Diameter (M)	Vapor Space		blor ble VI-C)	Paint Condition (from Table	Annual Throughput	Turn- overs
			EK below)	LK below)	(bbl)	(M ³)		(M)	Roof	Shell	VI-C)	(gal/yr)	(per year)
TK-406A	TBD	Condensate	N/A	VFR	1,000	159	4.57	4.57	Dark Green	Dark Green	Good	1,131,641	26.94
TK-406B	TBD	Condensate	N/A	VFR	1,000	159	4.57	4.57	Dark Green	Dark Green	Good	1,131,641	26.94
TK-406C	TBD	Produced Water	N/A	VFR	1,000	159	3.66	3.05	Dark Green	Dark Green	Good	737,202	17.55
TK-407	TBD	Mixed Hydrocarbons	N/A	VFR	750	119	3.66	5.33	Dark Green	Dark Green	Good	3,068,102	97.40

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Rive	ted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$^{3} = 42.0 \text{ gal}$				BL: Black	
					OT: Other (specify)	

	Materi	al Processed		Ν	Iaterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Field Gas	Mixed Hydrocanbons	Gas	150 MMscf/d	Condensate	Mixed Hydrocanbons	Liquid	148 bbl/day
				Prodcued Water	Water and Mixed Hydrocanbons	Liquid	48 bbl/day
				Sales Gas	Mixed Hydrocanbons	Gas	150 MMscf/d

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
			N/A- No CEM H	Equipment at this facil	lity				

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time				
N/A - No Parametric Emissions Measurement Equipment at this facility												

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO_2 ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²				Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3					
ENG-1	mass GHG	17702.03	0.033	0.33	-	-				17702.40	
	CO ₂ e	17702.03	9.94	8.34	-	-					17720.32
ENG-2	mass GHG	17702.03	0.033	0.33	-	-				17702.40	
	CO ₂ e	17702.03	9.94	8.34	-	-					17720.32
ENG-3	mass GHG	13065.18	0.025	0.25	-	-				13065.45	12070 (7
	CO ₂ e	13065.18 13065.18	7.34 0.025	6.16 0.25	-	-				12075 45	13078.67
ENG-4	mass GHG CO ₂ e	13065.18	7.34	6.16	-	-				13065.45	13078.67
	mass GHG	13065.18	0.025	0.10	-	-				13065.45	130/8.0/
ENG-5	CO ₂ e	13065.18	7.34	6.16	-	-				15005.45	13078.67
	mass GHG	13065.18	0.02	0.25	-	-				13065.45	15070.07
ENG-6	CO ₂ e	13065.18	7.34	6.16	-	-				15005.15	13078.67
	mass GHG	13065.18	0.02	0.25	-	-				13065.45	
ENG-7	CO ₂ e	13065.18	7.34	6.16	-	-					13078.67
ENG 0	mass GHG	13065.18	0.02	0.25	-	-				13065.45	
ENG-8	CO ₂ e	13065.18	7.34	6.16	-	-					13078.67
RBL-1	mass GHG	1024.72	0.00	0.02	-	-				1024.74	
KDL-1	CO ₂ e	1024.72	0.58	0.48	-	-					1025.78
TK-	mass GHG	-	-	-	-	-					
406A	CO ₂ e	-	-	-	-	-					
ТК-	mass GHG	-	-	-	-	-					
406B	CO ₂ e	-	-	-	-	-					
ТК-	mass GHG	-	-	-	-	-					
406C	CO ₂ e	-	-		-	-					
TK-407	mass GHG	-	-	-	-	-					
	CO ₂ e	-	-	-	-	-					
DEHY-1	mass GHG CO ₂ e	-	-	-	-	-					
	mass GHG	361.62	0.00068	0.0068	-	-				361.63	
ECD-1	CO2e	361.62	0.00003	0.17	-	-				301.03	362.00
	mass GHG	-	-	-	-	-					302.00
LOAD-1	CO ₂ e	-	-	-	-	-					
	mass GHG	-	-	-	-	-					
FUG	CO2e	-	-	-	-	-					
COMPA	mass GHG	-	-	-	-	-					
SSM/M	CO ₂ e	-	-	-	-	-					
Total	mass GHG		0.22	2.17	-	-				115183.86	
10141	CO ₂ e	115181.47	64.69	54.27	-	-					115300.43

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

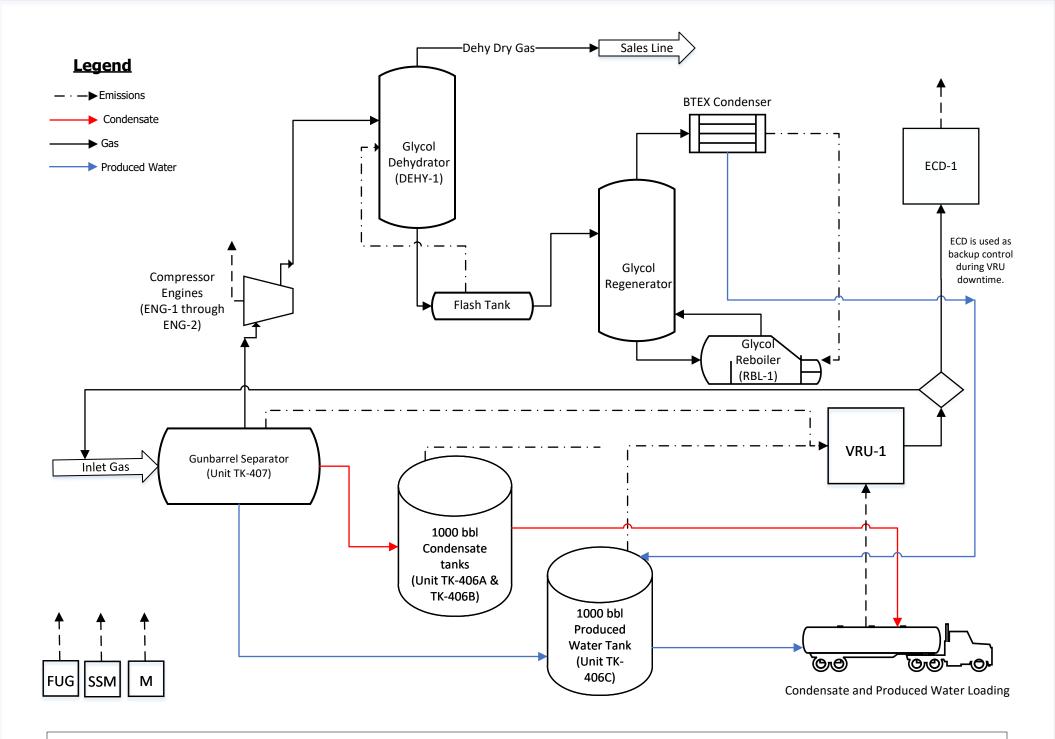
Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **Process Summary** shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Delaware G&P, LLC is submitting this application for an initial NSR permit pursuant to 20.2.72. This facility is located in Eddy County and currently is permitted under GCP O&G 9896. With this application, Delaware G&P, LLC seeks to increase the number of compressors at the facility.

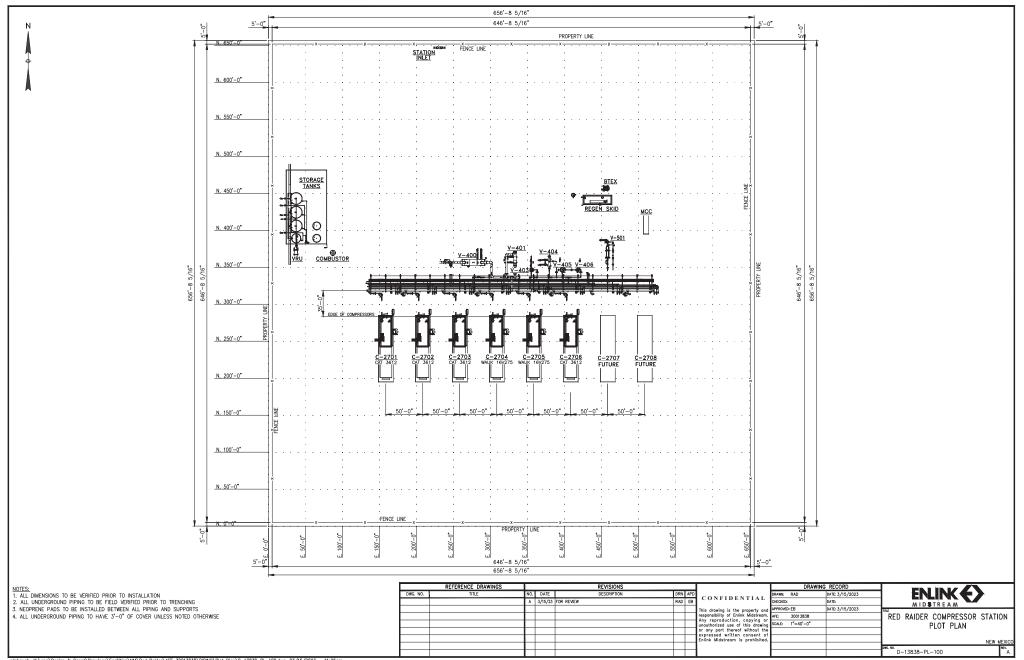

This facility is a compressor station. Delaware G&P, LLC proposes to add 6 engines to the facility. The equipment to be permitted with this application will consist of eight natural gas-fueled generators, one reboiler, one TEG dehydrator, one 750 bbl gunbarrel tank, two 1000 bbl condensate tanks, one 1000 bbl produced water tank, one enclosed combustion device, and one vapor recovery unit.

Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow diagram has been included in this section.


Delaware G&P, LLC – Reveille Compressor Station – Process Flow Diagram

Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan has been included in this section.

rdebaugh, Y:\eng\Design & Const\Drawings\Facilities\NM\Red Raider\AFE 30013838\PIPING\Piot Plan\D-13838-PL-100.dwg, 03/15/2023 - 11:25am

Section 6

All Calculations

<u>Show all calculations</u> used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the

Delaware G&P, LLC

application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Waukesha 16V275GL Engines (Unit IDs: ENG-1 and ENG-2)

 NO_X , CO, and VOC emission rates were calculated using manufacturer specifications. SO_2 emissions are based on a conservative fuel sulfur content estimated of 2 gr S/100 scf and 100% conversion of elemental sulfur to SO_2 . Particulate ($PM_{2.5}$, PM_{10} , and PM) and HAP emissions were calculated using AP-42 Table 3.2-2. Greenhouse gas emissions are estimated using emission factors from 40 CFR 98 Subpart C Tables C-1 and C-2.

Caterpillar 3612A4 Engines (Unit IDs: ENG-3 through ENG-8)

 NO_X , CO, and VOC emission rates were calculated using manufacturer specifications. SO_2 emissions are based on a conservative fuel sulfur content estimated of 2 gr S/100 scf and 100% conversion of elemental sulfur to SO_2 . Particulate ($PM_{2.5}$, PM_{10} , and PM) and HAP emissions were calculated using AP-42 Table 3.2-2. Greenhouse gas emissions are estimated using emission factors from 40 CFR 98 Subpart C Tables C-1 and C-2.

Glycol Dehydrator (Unit ID: DEHY-1)

Glycol dehydrator emissions were calculated using BR&E Promax and an extended gas analysis. Flash tank emissions are sent to station suction, still column to BTEX, BTEX non-condensable is sent to reboiler stack with glow plug with 98% DRE.

Gunbarrel Tank (Unit ID: TK-407)

Gunbarrel emissions were estimated using BR&E ProMax. Flash, working and standing emissions are controlled by a VRU with an assumed 5% downtime.

Storage Tanks (Unit IDs: TK-406A through TK-406C)

Condensate storage tanks (Unit IDs: TK-406A and TK-406B) and produced water tanks (Unit IDs: TK-406C) emissions were estimated using BR&E ProMax. Flash, working and standing emissions from these tanks are controlled by a VRU with an assumed 5% downtime.

Enclosed Combustor Devices (Unit IDs: ECD-1)

 NO_X and CO emissions were calculated using TNRCC RG-109. VOCs and HAPs emissions were estimated based on the gas analysis and with manufacturer specification of 95% combustion efficiency. Pilot SO₂ emissions are based on a conservative fuel sulfur content estimated of 2 gr S/100 scf and 100% conversion of elemental sulfur to SO₂. Process emissions were calculated assuming 95% combustion efficiency. Greenhouse gas emissions are estimated using emission factors from 40 CFR Part 98 Subpart C Table C-01 and C-02.

Fugitive Emissions (Unit ID: FUG)

Fugitive emission calculations were completed using emission factors from Table 2-4 of EPA Protocol for Equipment Leak Emission Estimates, 1995, and weight percent of gas and liquid components from gas and liquid streams generated in a BR&E ProMax simulation. Subcomponent counts for each subcomponent are based on estimated average component counts for each piece of equipment.

Condensate Loading Emissions (Unit ID: LOAD-1)

ProMax was used to perform the loading emission for condensate.

Reboiler (Unit ID: RBL-1)

NO_X, CO, VOCs and PM were estimated using AP-42 Table 1.4-1 & 1.4-2 with adjusted emission factor. HAPs were calculated using adjusted emission rates from AP-42 Table 1.4-3. SO₂ emissions were calculated with a conservative assumption of 2 gr S/100 scf and 100% conversion of elemental sulfur to SO₂. Greenhouse gas emissions are estimated using emission factors from 40 CFR Part 98 Subpart C Table C-01 and C-02.

Unpaved Haul Road (Unit ID: HAUL)

 PM_{10} and $PM_{2.5}$ emissions were estimated based on the condensate loadout design basis and using equations 1a & 2 from AP-42 Section 13.2.2. Emissions factors were used from AP-42 Table 13.2.2-2.

Exempt Methanol Storage Tank (Unit ID: TK-408)

210 bbl Methanol Storage Tank (TK-408) is exempt pursuant to 20.2.72.202.B.(5) NMAC. Emissions were calculated using BR&E ProMax.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO2e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Delaware G&P - Reveille Compressor Station

All

Emissions Summary

Emission Unit: Source Description:

Delaware G&P - Reveille Compressor Station - Maximum Uncontrolled and Controlled Emissions

					М	aximum U	ncontrolle	ed Emissi	ons							
Unit	N	D _x	C	0	V	DC	SC) ₂	PN	4 ₁₀	PM	1 _{2.5}	H	₂S	Tota	I HAP
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
ENG-1	3.31	14.48	26.24	114.91	11.24	49.25	0.19	0.85	0.35	1.51	0.35	1.51	-	-	3.59	15.72
ENG-2	3.31	14.48	26.24	114.91	11.24	49.25	0.19	0.85	0.35	1.51	0.35	1.51	-	-	3.59	15.72
ENG-3	2.48	10.86	25.22	110.44	9.34	40.92	0.14	0.63	0.25	1.12	0.25	1.12	-	-	1.94	8.51
ENG-4	2.48	10.86	25.22	110.44	9.34	40.92	0.14	0.63	0.25	1.12	0.25	1.12	-	-	1.94	8.51
ENG-5	2.48	10.86	25.22	110.44	9.34	40.92	0.14	0.63	0.25	1.12	0.25	1.12	-	-		
ENG-6	2.48	10.86	25.22	110.44	9.34	40.92	0.14	0.63	0.25	1.12	0.25	1.12	-	-		
ENG-7	2.48	10.86	25.22	110.44	9.34	40.92	0.14	0.63	0.25	1.12	0.25	1.12	-	-		
ENG-8	2.48	10.86	25.22	110.44	9.34	40.92	0.14	0.63	0.25	1.12	0.25	1.12	-	-		
RBL-1	0.20	0.86	0.16	0.72	0.011	0.047	0.011	0.049	0.015	0.065	0.015	0.065	-	-	0.0037	0.016
TK-406A ¹	-	-	-	-	*	30.55	-	-	-	-	-	-	-	-	*	2.06
TK-406B ¹	-	-	-	-	*	30.55	-	-	-	-	-	-	-	-	*	2.06
TK-406C ¹	-	-	-	-	*	0.082	-	-	-	-	-	-	-	-	*	0.027
TK-407 ¹	-	-	-	-	*	29.18	-	-	-	-	-	-	-	-	*	1.73
DEHY-1 ²	-	-	-	-	337.03	1476.18	-	-	-	-	-	-	-	-	11.67	51.11
ECD-1	0.0042	0.018	0.0084	0.037	-	-	1.71E-04	7.51E-04	-	-	-	-	-	-	-	-
LOAD-1 ³	-	-	-	-	1.20	5.26	-	-	-	-	-	-	-	-	0.10	0.45
FUG	-	-	-	-	2.29	10.02	-	-	-	-	-	-	-	-	0.19	0.82
SSM/M	-	-	-	-	*	10.00	-	-	-	-	-	-	-	-	*	0.38
Totals	21.70	95.03	203.94	<i>893.2</i> 4	419.07	1935.87	1.26	5.50	2.23	9.78	2.23	9.78	0.000	0.00	*	107.10

						M	laximum (Controlled	l Emissio	ons								
Unit	N	D _x	со		VOC		S	D ₂	PN	4 ₁₀	PM	1 _{2.5}	H	₂S	Tota	HAP	Forma	ldehyde
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
ENG-1	3.31	14.48	6.39	28.00	8.01	35.06	0.19	0.85	0.35	1.51	0.35	1.51	-	-	0.83	3.32	0.33	1.45
ENG-2	3.31	14.48	6.39	28.00	8.01	35.06	0.19	0.85	0.35	1.51	0.35	1.51	-	-	0.83	3.32	0.33	1.45
ENG-3	2.48	10.86	4.80	21.00	5.32	23.28	0.14	0.63	0.25	1.12	0.25	1.12	-	-	0.56	2.46	0.19	0.83
ENG-4	2.48	10.86	4.80	21.00	5.32	23.28	0.14	0.63	0.25	1.12	0.25	1.12	-	-	0.56	2.46	0.19	0.83
ENG-5	2.48	10.86	4.80	21.00	5.32	23.28	0.14	0.63	0.25	1.12	0.25	1.12	-	-	0.56	2.46	0.19	0.83
ENG-6	2.48	10.86	4.80	21.00	5.32	23.28	0.14	0.63	0.25	1.12	0.25	1.12	-	-	0.56	2.46	0.19	0.83
ENG-7	2.48	10.86	4.80	21.00	5.32	23.28	0.14	0.63	0.25	1.12	0.25	1.12	-	-	0.56	2.46	0.19	0.83
ENG-8	2.48	10.86	4.80	21.00	5.32	23.28	0.14	0.63	0.25	1.12	0.25	1.12	-	-	0.56	2.46	0.19	0.83
RBL-1	0.20	0.86	0.16	0.72	0.011	0.047	0.011	0.049	0.015	0.065	0.015	0.065	-	-	0.0037	0.016	1.47E-04	6.44E-04
TK-406A ¹	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-406B ¹	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-406C ¹	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-407 ¹	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEHY-1 ²	-	-	-	-	0.63	2.76	-	-	-	-	-	-	-	-	0.10	0.44	-	-
ECD-1	0.10	0.45	0.20	0.89	0.055	0.24	1.71E-04	7.51E-04	-	-	-	-	-	-	0.0037	0.016	-	-
LOAD-1 ³	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FUG	-	-	-	-	2.29	10.02	-	-	-	-	-	-	-	-	0.19	0.82	-	-
SSM/M	-	-	-	-	*	10.00	-	-	-	-	-	-	-	-	*	0.38	-	-
Totals	21.79	95.45	41.92	183.63	50.89	232.90	1.26	5.50	2.23	<i>9.78</i>	2.23	<i>9.78</i>	0.00	0.00	5.33	23.07	*	<i>7.89</i>
Total Without Fugitives	21.79	95.45	41.92	183.63	48.60	222.88	1.26	5.50	2.23	9.78	2.23	9.78	0.00	0.00	5.15	22.25	1.80	7.89

"*" Indicates that an hourly limit is not appropriate for this operating situation and is not being requested.

"-" Indicates emissions of this pollutant are not expected.

¹ The enclosed combustion unit controls TK-406A through TK-407 during VRU downtime with an assumed 95% DRE for VOC and HAPs.

² Flash tank emissions are sent to station suction, still column to BTEX, BTEX non-condensables are sent to reboiler stack with glow plug with 98% DRE.

³ Emissions from truck loadout of condensate and PW are vapor-balanced back to their respective storage tanks and vented to enclosed combustion unit ECD-1.

Delaware G&P - Reveille Compressor Station Compressor Engine Emissions

Unit:	ENG-1 through ENG-2	
Model:	Waukesha 16V275GL Compressor E	Engine 4SLB
	5000 hp	Mfg. specs
Fuel Consumption:	6910 Btu/hp-hr	Mfg. specs
Fuel Heating Value:	1020.00 Btu/scf	Facility Specific
Daily Fuel Usage:	812941 scf/day	Calculated
Hourly Fuel Usage:	33873 scf/hr	Hourly Fuel Consumption
Annual Fuel Usage:	296.72 MMscf/yr	Calculated

	Uncontrolled Emissions														
	NO _x ¹	CO1	VOC1	SO ₂ ²	PM ³	Formaldehyde ⁴	Acetaldehyde ⁴	Acrolein ⁴	Benzene ⁴	E-Benzene ⁴	Toluene ⁴	Xylene ⁴	Total HAP	Units	
Emission Factors	0.30	2.38	1.02			0.28								g/hp-hr	
					9.99E-03		0.00836	0.00514	0.00044	0.0000397	0.000408	0.000184		lb/MMBtu	
				0.020										gr/scf	
Hourly Totals	3.31	26.24	11.24	0.19	3.45E-01	3.09	2.89E-01	1.78E-01	1.52E-02	1.37E-03	1.41E-02	6.36E-03	3.59	lb/hr	
Annual Totals	14.48	114.91	49.25	0.85	1.51E+00	13.52	1.27E+00	7.78E-01	6.66E-02	6.01E-03	6.17E-02	2.78E-02	15.72	ton/yr	

	Controlled Emissions														
	NO _x	СО	VOC	SO ₂ ²	PM ³	Formaldehyde ⁴	Acetaldehyde ⁴	Acrolein ⁴	Benzene ⁴	E-Benzene ⁴	Toluene ⁴	Xylene ⁴	Total HAP	Units	
Emission Factors	0.30	0.58	0.64			0.023								g/hp-hr	
Percent Reduction	0%	76%	37%			92%									
					9.99E-03		0.00836	0.00514	0.00044	0.0000397	0.000408	0.000184		lb/MMBtu	
				0.020										gr/scf	
Hourly Totals	3.31	6.39	7.09	0.194	3.45E-01	0.25	2.89E-01	1.78E-01	1.52E-02	1.37E-03	1.41E-02	6.36E-03	0.76	lb/hr	
Annual Totals	14.48	28.00	31.04	0.85	1.51E+00	1.11	1.27E+00	7.78E-01	6.66E-02	6.01E-03	6.17E-02	2.78E-02	3.32	ton/yr	

GH	G Calculations				
CO2 ⁵	N₂O ⁵	CH₄⁵	CO₂e ⁵		
53.06	0.0001	0.001		kg/MMBtu	40 CFR 98 Subpart Table
1	298	25		GWP	40 CFR 98 Table A-1
17702.03	0.03	0.33	17702.40	tpy	
17702.03	9.94	8.34	17720.32	tpy CO2e	

Notes

 1 Emissions factors are referenced from the catalyst spec sheet 04/18/2023.

 2 SO_2 is calculated based on the default fuel sulfur content from AECT of 0.02 grains total sulfur per scf.

³ Assumes $PM_{10} = PM_{2.5}$ (condensable and filterable particulate), referenced from AP-42 Table 3.2-2.

⁴ HAPs emissions factors are referenced from AP-42 Table 3.2-2.

HAPs include: Formaldehyde, Acetaldehyde, Acrolein, Benzene, Ethylbenzene, N-Hexane, Toluene, and Xylene HAP emission factors were adjusted using the heat value of gas from site and standard 1020 Btu/scf

⁵ N₂O, CH₄, and CO₂ tpy Emission Rate = EF * Fuel Usage * Fuel Heat Value *2.20462 lb/kg * 1 ton/2000 lb CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate * GWP Factor + CH₄ Emission Rate * GWP Factor

Delaware G&P - Reveille Compressor Station Compressor Engine Emissions

Unit:	ENG-3 through ENG-8	
Model:	Caterpillar 3612A4	4SLB
	3750 hp	Mfg. specs
Fuel Consumption:	6800 Btu/hp-hr	Mfg. specs
Fuel Heating Value:	1020.00 Btu/scf	Facility Specific
Daily Fuel Usage:	600000 scf/day	Calculated
Hourly Fuel Usage:	25000 scf/hr	Hourly Fuel Consumption
Annual Fuel Usage:	219.00 MMscf/yr	Calculated

						Unconti	olled Emissions							
	NO _x ¹	CO1	VOC1	SO ₂ ²	PM ³	Formaldehyde ⁴	Acetaldehyde ⁴	Acrolein ⁴	Benzene ⁴	E-Benzene ⁴	Toluene ⁴	Xylene ⁴	Total HAP	Units
Emission Factors	0.30	3.05	1.13			0.19								g/hp-hr
					9.99E-03		0.00836	0.00514	0.00044	0.0000397	0.000408	0.000184		lb/MMBtu
				0.020										gr/scf
Hourly Totals	2.48	25.22	9.34	0.14	0.25	1.57	0.21	0.13	0.011	0.0010	0.010	0.0047	1.94	lb/hr
Annual Totals	10.86	110.44	40.92	0.63	1.12	6.88	0.93	0.57	0.049	0.0044	0.046	0.021	8.51	ton/yr

						Contro	lled Emissions							
	NO _x	СО	VOC	SO ₂ ²	PM ³	Formaldehyde ⁴	Acetaldehyde ⁴	Acrolein ⁴	Benzene ⁴	E-Benzene ⁴	Toluene ⁴	Xylene ⁴	Total HAP	Units
Emission Factors	0.30	0.58	0.64			0.023								g/hp-hr
Percent Reduction	0%	81%	43%			88%								
					9.99E-03		0.00836	0.00514	0.00044	0.0000397	0.000408	0.000184		lb/MMBtu
				0.020										gr/scf
Hourly Totals	2.48	4.80	5.32	0.14	0.25	0.19	0.21	0.13	0.011	0.0010	0.010	0.0047	0.56	lb/hr
Annual Totals	10.86	21.00	23.28	0.63	1.12	0.83	0.93	0.57	0.049	0.0044	0.046	0.021	2.46	ton/yr

GH	G Calculations				
CO2 ⁵	N ₂ O ⁵	CH₄⁵	CO₂e ⁵		
53.06	0.0001	0.001		kg/MMBtu	40 CFR 98 Subpart Table
1	298	25		GWP	40 CFR 98 Table A-1
13065.18	0.02	0.25	13065.45	tpy	
13065.18	7.34	6.16	13078.67	tpy CO2e	

Notes

 1 Emissions factors are referenced from the catalyst spec sheet 04/18/2023

 2 SO_2 is calculated based on the default fuel sulfur content from AECT of 0.02 grains total sulfur per scf.

³ Assumes $PM_{10} = PM_{2.5}$ (condensable and filterable particulate), referenced from AP-42 Table 3.2-2.

⁴ HAPs emissions factors are referenced from AP-42 Table 3.2-2.

HAPs include: Formaldehyde, Acetaldehyde, Acrolein, Benzene, Ethylbenzene, N-Hexane, Toluene, and Xylene HAP emission factors were adjusted using the heat value of gas from site and standard 1020 Btu/scf

⁵ N₂O, CH₄, and CO₂ tpy Emission Rate = EF * Fuel Usage * Fuel Heat Value *2.20462 lb/kg * 1 ton/2000 lb CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate * GWP Factor + CH₄ Emission Rate * GWP Factor

Produced Wat	Produced Water Tank Input Information								
Unit(s): TK-406C									
Description:	1000 bbl Produced Water Storage Tank								
Number of Tanks:	1								
Facility Produced Water Throughput:	48	bbl/day	Facility Design						
Produced Water Throughput:	48	bbl/day/tank							

Flash, Workin	g and Breathi	ng Emissions ¹	(Uncontrolled)	Controlled	Emissions
Component	Flash Emissions (tpy)	Working and Breathing Losses (tpy)	Total Emissions (tpy)	Total Emissions Per Tank (tpy)	Total Emissions (tpy)	Total Emissions Per Tank (tpy)
Nitrogen	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Carbon Dioxide	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Methane	0.041	0.033	0.074	0.074	0.00E+00	0.00E+00
Ethane	0.026	0.032	0.058	0.058	0.00E+00	0.00E+00
Propane	0.025	0.022	0.047	0.047	0.00E+00	0.00E+00
Isobutane	0.0050	0.0030	0.0080	0.0080	0.00E+00	0.00E+00
n-Butane	0.013	0.010	0.023	0.023	0.00E+00	0.00E+00
Isopentane	0.0052	0.0028	0.0080	0.0080	0.00E+00	0.00E+00
n-Pentane	0.0027	0.0006	0.0033	0.0033	0.00E+00	0.00E+00
n-Hexane	0.0009	1.14E-04	0.0010	1.05E-03	0.00E+00	0.00E+00
Cyclohexane	0.0030	0.0063	0.0093	0.0093	0.00E+00	0.00E+00
Heptane	0.0011	6.65E-05	0.0011	1.15E-03	0.00E+00	0.00E+00
Methylcyclohexane	0.0013	0.0009	0.0022	0.0022	0.00E+00	0.00E+00
2,2,4-Trimethylpentane	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Benzene	8.91E-04	0.018	0.019	0.019	0.00E+00	0.00E+00
Toluene	6.09E-04	0.0065	0.0071	0.0071	0.00E+00	0.00E+00
Ethylbenzene	5.57E-06	1.89E-05	2.44E-05	2.44E-05	0.00E+00	0.00E+00
o-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
m-Xylene	3.36E-05	1.35E-04	1.69E-04	1.69E-04	0.00E+00	0.00E+00
p-Xylene	7.19E-06	2.93E-05	3.65E-05	3.65E-05	0.00E+00	0.00E+00
Water	0.0025	0.0024	0.0049	0.0049	0.00E+00	0.00E+00
Total VOC	0.034	0.048	0.082	0.082	0.00E+00	0.00E+00
Total HAP	0.0025	0.025	0.027	0.027	0.00E+00	0.00E+00

¹ Flash, working, and breathing emissions from the produced water tank are controlled by a VRU with an assumed 5% downtime. VRU Downtime is controlled by an enclosed combustion unit (ECD-1). Controlled emissions from the produced water tank are represented at the ECD.

	Heater Input Information									
Unit(s):		RBL-1								
Description:		2 MMBtu/hr Heaters								
Heat input:	2.00	MMBtu/hr	Estimated heat input							
Fuel heat value:	1,020	Btu/scf								
Fuel sulfur content:	2.0	gr S/100scf	Estimated for field gas							
Operating hours:	8,760	hours/year								
Fuel Usage:	1,961 scf/hr									
	17.2	MMscf/vr								

			Crit	teria Pollutant E	Criteria Pollutant Emission Rates per Unit									
	NOx	со	VOC	SO 2 ¹	PM*	Units	Notes							
Emission Factors	100	84	5.5	-	7.6	lb/MMscf	AP-42 Table 1.4-1 & 2							
Emission Factors	100.0	84.0	5.5	-	7.6	lb/MMscf	Adjusted EF, per footnote a in Tables 1.4-1 and 1.4-2							
Emissions	0.20	0.16	0.011	0.011	0.015	lb/hr ³								
	0.86	0.72	0.047	0.049	0.065	tons/year ⁴								

	HAP Emission Rates per Unit									
	Hexane	Benzene	Toluene	нсно	Total HAPs ⁵	Units	Notes			
Emission Factors	1.8	2.10E-03	3.40E-03	0.075	-	lb/MMscf	AP-42 Table 1.4-3			
ETHISSION Factors	1.8	2.10E-03	3.40E-03	7.50E-02	-	lb/MMscf	Adjusted EF, per footnote a in Table 1.4-3			
Emissions	0.0035	4.12E-06	6.67E-06	1.47E-04	0.0037	lb/hr ³				
LITIISSIOTIS	0.015	1.80E-05	2.92E-05	6.44E-04	0.016	tons/year ⁴				

GHG Calculations									
CO2 ⁶	N₂O ⁶	CH₄ ⁶	CO₂e ⁶						
53.06	0.0001	0.001		kg/MMBtu	40 CFR 98 Subpart Tables				
1	298	25		GWP	40 CFR 98 Table A-1				
1024.72	0.0019	0.019	1024.74	tpy					
1024.72	0.58	0.48	1025.78	tpy CO2e					

 $^{\rm 1}$ SO_2 emissions based on fuel sulfur content of 2 gr S/100 scf or 0.00286 lb S/Mscf

0.00286 lb S/Mscf*fuel consumption (Mscf/hr)*64 lb SO₂/32 lb S = lb SO₂/hr

² Assumes $PM_{10} = PM_{2.5}$

³ lb/hr emissions calculated using the following methods: Criteria and HAPs lb/hr = EF (lb/MMscf) * Rating (MMBtu/hr) / Heat value (Btu/scf)

⁴ For all non-HAP calculations, tons/year = lb/hr * Operating hours * 1ton/2000lb

⁵ Total HAP emissions are the sum of all individual HAPs calculated.

⁶ N2O, CH4, and CO2 tpy Emission Rate = EF * Fuel Usage * Fuel Heat Value *2.20462 lb/kg * 1 ton/2000 lb

CO2e tpy Emission Rate = CO2 Emission Rate + N2O Emission Rate * GWP Factor + CH4 Emission Rate * GWP Factor

Parameters	Value	Unit	Note
Input heat rate	2.00	MMBtu/hr	Estimated
Fuel heat value	1,020	Btu/scf	Estimated, nominal
Fuel rate	1.96	Mscf/hr	Input heat rate / fuel heat value
Annual fuel usage	17.18	MMscf/yr	8760 actual hrs/yr operation

Parameters	Value	Unit	Note
Input heat rate	2.00	MMBtu/hr	
Exhaust temp	1,400	°F	Engineering Estimate
Stack height	9	ft	Engineering Estimate
Stack diameter	0.80	ft	Engineering Estimate
Exhaust flow (Actual)	802	acfm	Flow (acfm) = Flow (scfm) * (Stack Temp + 460) / 528 * 29.92 / Site Bar. Pres. / (100% - Moisture%)
Exhaust flow (Actual)	13.37	acfs	Flow (acfs) - Flow (acfm) / 60s/min
Exhaust velocity	26.60	ft/sec	Exhaust flow / stack area
O ₂ F factor	8,710	dscf/MMBtu	Method 9
Moisture	10	%	Nominal
Exhaust flow (Dry)	556.7	dscfm	Flow (dscfm) = heat input * O2 F * [20.9 / (20.9 - O2%)]
O ₂ %	10	%	
Site Elevation	3,037	ft MSL	
Pressure at Elevation	26.78	in Hg	

Delaware G&P - Reveille Compressor Station

Unpaved Haul Road Emissions

Haul Input Information				
Unit(s):	HAUL			
Description:	Unpaved haul road emissions			

	Input	: Data
Truck Size	7560	Nominal (gal)
Total Loadout Volume ¹	3,000,483	gal/yr
Trips per Year ²	397	trips/year
Trips per hour	1	trips/hr
Empty vehicle weight ³	16	tons
Load Out Density ⁴	5.75	lb/gal
Load weight ⁵	21.7	tons
Loaded vehicle ⁶	37.7	tons
Mean vehicle weight ⁷	26.86	tons
Round-trip distance	0.25	mile/trip
Loadout Spots	2	Assumed
Facility Operating Hours	8,760	Cumulative total
Surface silt content ⁸	4.8	%
Annual wet days ⁹	70	days/yr

Emission Factors and Constants						
Parameter PM ₁₀ PM _{2.5}						
k, lb/VMT ¹⁰ a, lb/VMT ¹⁰	1.5	0.15				
a, lb/VMT ¹⁰	0.90	0.90				
b, lb/VMT ¹⁰	0.45	0.45				
Hourly EF, lb/VMT ¹¹	1.76	0.18				
Annual EF, lb/VMT ¹²	1.43	0.14				

Emission Rate Calculation					
VMT/hr ¹³	VMT/yr ¹³		n Rate by Month hr) ¹⁴	Annual Emission Rate (tons/yr) ¹⁴	
		PM ₁₀	PM _{2.5}	PM10	PM _{2.5}
0.25	99.3	0.44	0.044	0.07	0.007

¹ The facility will remove condensate and produced water via loadout. Loadout volume is based on facility design.

² Trips per Year = Total Loadout Volume (gal) / Truck Size (gal)

³ Empty vehicle weight includes driver and occupants and full fuel load.

⁴ Cargo, transported materials, etc. (Promax Loadout Density = Condensate density 43 (lb/scf)*1 scf / 7.480519 gal)

⁵ Load weight (lb) = Truck Size (gal) * Oil Load Out Density (lb/gal)

⁶ Loaded vehicle weight = Empty + Load Size

⁷ Mean Vehicle weight = (Loaded Weight + Empty Weight) / 2

⁸ AP-42 Table 13.2.2-1

⁹ Per NMED Guidance

¹⁰ Table 13.2.2-2, Industrial Roads

¹¹ AP-42 13.2.2, Equation 1a

¹² AP-42 13.2.2, Equation 2

¹³ VMT/hr = 1 trip/hr * Round-trip distance (mi/trip)

VMT/yr = Trips per Year * Round-trip distance (mi/trip)

¹⁴ Hourly Emission Rate (lb/hr) = Hourly EF (lb/VMT) * VMT/hr (mile/hr) Annual Emission Rate (tpy) = Annual EF (lb/VMT) * VMT/yr (mile/yr) / 2000 lb/ton

Oil Tank Input Information				
Unit(s):	TK-406A & TK-406B			
Description:	1000 bbl Condensate Storage Tank			
Number of Tanks:	2			
Facility condensate Throughput:	147.64	bbl/day	Facility Design	
Condensate Throughput: 73.82 bbl/day/tank				

Flash, Worl	king and Breat	hing Emissions	¹ (Uncontrolled)		Controlled	Emissions
Component	Flash Emissions (tpy)	Working and Breathing Losses (tpy)	Total Emissions (tpy)	Total Emissions Per Tank (tpy)	Total Emissions (tpy)	Total Emissions Per Tank (tpy)
Nitrogen	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Carbon Dioxide	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Methane	5.08	0.45	5.53	2.77	0.00E+00	0.00E+00
Ethane	8.55	3.75	12.29	6.15	0.00E+00	0.00E+00
Propane	14.02	4.92	18.94	9.47	0.00E+00	0.00E+00
Isobutane	3.53	1.17	4.70	2.35	0.00E+00	0.00E+00
n-Butane	9.21	3.08	12.29	6.15	0.00E+00	0.00E+00
Isopentane	4.50	1.40	5.90	2.95	0.00E+00	0.00E+00
n-Pentane	5.55	1.77	7.32	3.66	0.00E+00	0.00E+00
n-Hexane	2.67	0.84	3.51	1.75	0.00E+00	0.00E+00
Cyclohexane	1.30	0.34	1.65	0.82	0.00E+00	0.00E+00
Heptane	3.96	1.15	5.11	2.55	0.00E+00	0.00E+00
Methylcyclohexane	0.82	0.25	1.07	0.54	0.00E+00	0.00E+00
2,2,4-Trimethylpentane	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Benzene	0.28	0.056	0.34	0.17	0.00E+00	0.00E+00
Toluene	0.21	0.040	0.25	0.12	0.00E+00	0.00E+00
Ethylbenzene	0.00	0.0003	0.0022	0.0011	0.00E+00	0.00E+00
o-Xylene	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
m-Xylene	0.01	0.0022	0.014	0.0072	0.00E+00	0.00E+00
p-Xylene	0.00	0.00047	0.0030	0.0015	0.00E+00	0.00E+00
Water	0.24	3.53E-05	0.24	0.12	0.00E+00	0.00E+00
Total VOC	46.07	15.02	61.09	30.55	0.00E+00	0.00E+00
Total HAP	3.17	0.94	4.11	2.06	0.00E+00	0.00E+00

¹ Flash, working, and breathing emissions from condensate tanks are controlled by a VRU with an assumed 5% downtime. VRU Downtime is controlled by an enclosed combustion unit (ECD-1). Controlled emissions from the condensate tanks are represented at the ECD.

Gunbarrel Tank Input Information					
Unit(s):	TK-407				
Description:	750 bbl Gunbarrel Tank				
Number of Tanks:	1				
Facility Produced Water Throughput:	200	bbl/day	Facility Design		
Produced Water Throughput:	200	bbl/day/tank			

Flash, Workir	ng and Breathi	ng Emissions ¹	(Uncontrolled		Controlled	Emissions
Component	Flash Emissions (tpy)	Working and Breathing Losses (tpy)	Total Emissions (tpy)	Total Emissions Per Tank (tpy)	Total Emissions (tpy)	Total Emissions Per Tank (tpy)
Nitrogen	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Carbon Dioxide	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Methane	16.69	0.17	16.86	16.86	0.00E+00	0.00E+00
Ethane	8.13	0.77	8.90	8.90	0.00E+00	0.00E+00
Propane	9.21	1.08	10.29	10.29	0.00E+00	0.00E+00
Isobutane	2.00	0.28	2.28	2.28	0.00E+00	0.00E+00
n-Butane	5.03	0.75	5.78	5.78	0.00E+00	0.00E+00
Isopentane	2.30	0.35	2.66	2.66	0.00E+00	0.00E+00
n-Pentane	2.78	0.45	3.23	3.23	0.00E+00	0.00E+00
n-Hexane	1.25	0.21	1.47	1.47	0.00E+00	0.00E+00
Cyclohexane	0.61	0.088	0.70	0.700	0.00E+00	0.00E+00
Heptane	1.77	0.30	2.07	2.07	0.00E+00	0.00E+00
Methylcyclohexane	0.37	0.065	0.44	0.44	0.00E+00	0.00E+00
2,2,4-Trimethylpentane	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Benzene	0.13	0.014	0.15	0.15	0.00E+00	0.00E+00
Toluene	0.092	0.010	0.10	0.10	0.00E+00	0.00E+00
Ethylbenzene	8.05E-04	9.36E-05	8.98E-04	8.98E-04	0.00E+00	0.00E+00
o-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
m-Xylene	0.0052	5.89E-04	0.0058	0.0058	0.00E+00	0.00E+00
p-Xylene	0.0011	1.27E-04	0.0012	0.0012	0.00E+00	0.00E+00
Water	0.31	0.13	0.44	0.44	0.00E+00	0.00E+00
Total VOC	25.57	3.61	29.18	29.18	0.00E+00	0.00E+00
Total HAP	1.49	0.24	1.73	1.73	0.00E+00	0.00E+00

¹ Flash, working, and breathing emissions are controlled by a VRU with an assumed 5% downtime. VRU Downtime is controlled by an enclosed combustion unit (ECD-1). Controlled emissions from the condensate tanks are represented at the ECD. Delaware G&P - Reveille Compressor Station

Methanol Storage Tank - Exempt Equipment Exempt per 20.2.72.202.B.5

Methanol Tank Input Information					
Unit(s): TK-408					
Description:	210 bbl Methanol Storage Tank				
Number of Tanks:	1				
Facility Methanol Throughput:	2.38	bbl/day	Facility Design		
Methanol Throughput:	2.38	bbl/day/tank			

Flash, Working				
Component	Flash Emissions (tpy)	Working and Breathing Losses (tpy)	Total Emissions (tpy)	Total Emissions Per Tank (tpy)
Methanol	0.00E+00	0.18	0.18	0.18
Total VOC	0.00	0.18	0.18	0.18
Total HAP	0.00	0.18	0.18	0.18

¹ Flash, working, and breathing emissions from the methanol storage tank are below 0.5 tpy of VOC therefore this unit is exempt per 20.2.72.202.B.5 NMAC

Condensate Loading Emissions Annual Operating Hours:

8760

	Uncontrolled Loading Emissions					
	Condensate Load	ling (Unit LOAD)	roduced Water Lo	oading (Unit LOAD	Tota	al
Pollutant	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
VOC	1.10	4.83	0.10	0.42	1.20	5.26
n-Hexane	0.062	0.27	0.0002	0.0007		
Benzene	0.0041	0.018	0.025	0.11		
Toluene	0.0029	0.0128	0.009	0.039		
Ethylbenzene	2.54E-05	1.11E-04	2.60E-05	1.14E-04		
m-Xylene	1.59E-04	6.95E-04	1.87E-04	8.17E-04		
o-Xylene	0.00000	0.00000	0.00000	0.00000		
p-Xylene	3.43E-05	1.50E-04	4.05E-05	1.77E-04		
Total HAP	0.069	0.30	0.034	0.15	0.10	0.45

¹ Loading emissions are calculated using a BR&E ProMax simulation.

² Emissions from truck loadout of produced water and condensate are vapor-balanced back to the condensate storage tanks and 5% routed to ECD during VRU downtime.

Delaware G&P - Reveille Compressor Station **Enclosed Combustor**

Emission Unit:

Source Description:

Condensate Tanks, Produced Water Tank, Gunbarrel Tank, Condensate and PW Loading

VOC Heat Input and Flow Rate Calculation Per Unit

ECD-1

Parameters	Value	Unit	Notes
Number of ECDs	1	-	
VRU Downtime	5%		
VOC Emissions	4.80	tpy	Condensate Tanks, Produced Water Tank, Gunbarrel Tank, Condensate and PW Loading
HAP Emissions	0.33	tpy	Condensate Tanks, Produced Water Tank, Gunbarrel Tank, Condensate and PW Loading
Total Flared Gas Heating Value	1987.38	Btu/scf	Weighted average heating value from all streams
Total Flared Gas Flow	3.55E+02	scf/hr	Total flow from all streams to flare
Total Flared Gas Heating Rate	0.706	MMBtu/hr	Calculated based on heating value and steady-state flow
Flared Gas Flow Rate with Safety	0%	%	Safety factor
Factor	355.14	scf/hr	Flow with safety factor
Factor	3.11	MMscf/yr	
Short-Term Safety Factor	0%	-	Applied to emissions to account for variations in heat content.
Heating Rate	0.7058	MMBtu/hr	
	30	scf/hr	Mfg. Spec Sheet
Flare pilot	0%		Safety factor
i la e piloc	30	scf/hr	Pilot flow with safety factor
	3.00E-05	MMscf/hr	
Pipeline Gas HHV	1020	Btu/scf	Facility specification
Elara Haat Input	0.031	MMBtu/hr	
Flare Heat Input	0.26	MMscf/yr	
Heating Rate + Pilot	0.74	MMBtu/hr	

	Emission Rates Per Unit											
	NOx	со	VOC1	SO ₂ ²	H ₂ S	HAPs ¹	Units	Notes				
	0.1380	0.2755					lb/MMBtu	TNRCC RG-109 (high Btu; other)				
Emission Factors							lb H ₂ S/Mscf					
Emission ractors				8.57E-05			lb S/hr					
			4.80		-	0.327	tpy	Condensate Tanks, Produced Water				
Pilot Emissions	0.0042	0.008	-	1.71E-04	-	-	lb/hr					
FILOT ETHISSIONS	0.018	0.037	-	7.51E-04	-	-	tpy					
	0.10	0.19	-	-	-	-	lb/hr					
Process Emissions			0.055	-	-	3.74E-03	lb/hr					
	0.43	0.85	0.240	-	-	1.64E-02	tpy					
Total Emissions	0.10	0.20	5.48E-02	1.71E-04	-	3.74E-03	lb/hr					
Total Emissions	0.45	0.89	2.40E-01	7.51E-04	-	1.64E-02	tpy					

GHG Calculations								
CO23	N ₂ O ³	CH₄ ³	CO ₂ e ³					
53.06 1	0.0001 298	0.001 25			40 CFR 98 Subpart Tables 40 CFR 98 Table A-1			
361.62	0.00068	0.0068	361.63	tpy				
361.62	0.20	0.17	362.00	tpy CO2e				

¹ The ECD controls Condensate tanks, produced water tank, gunbarrel, condensate loading, and produced water loading emissions during downtime.

² Fuel sulfur content is assumed to be

2 gr/100 Scf

3 N2O, CH4, and CO2 typ Emission Rate = EF * Fuel Usage * Fuel Heat Value *2.20462 lb/kg * 1 ton/2000 lb CO2e tpy Emission Rate = CO2 Emission Rate + N2O Emission Rate * GWP Factor + CH4 Emission Rate * GWP Factor

"-" Indicates emissions of this pollutant are not expected.

Parameters	Value	Unit	Note
Input heat rate	1.60	MMBtu/hr	
Exhaust temp	1,200	°F	Manufacturer spec
Stack height	13.00	ft	Manufacturer spec
Stack diameter	5.00	ft	Manufacturer spec
Exhaust flow (Actual)	1738	acfm	Flow (acfm) = Flow (scfm) * (Stack Temp + 460) / 528 * 29.92 / Site Bar. Pres. / (100% - Moisture%)
Exhaust flow (Actual)	28.97	acfs	Flow (acfs) - Flow (acfm) / 60s/min
Exhaust velocity	1.48	ft/sec	Exhaust flow / stack area
O ₂ F factor	8,710	dscf/MMBtu	Method 9
Moisture	10	%	Nominal
Exhaust flow (Dry)	445.4	dscfm	Flow (dscfm) = heat input * O2 F * [20.9 / (20.9 - O2%)]
O ₂ %	10	%	
Site Elevation	3,037	ft MSL	
Pressure at Elevation	26.78	in Hg	

95.00% DRE

Delaware G&P - Reveille Compressor Station

Glycol Dehydrator Emissions

Unit:	DEHY-1
Description:	Glycol Dehydrator
Control Equipment:	BTEX Condenser
Dry Gas Flow Rate:	150 MMscfd
Pump Circulation:	30.00 gpm

Uncontrolled Emissions¹

1 Junih	VO	C	H ₂	S	Met	hane	C	02	Tota	I HAP	n-He	xane	Benz	zene	Tolu	iene	Ethylbe	enzene	Xyle	enes
Unit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Dehy-1 (Flash Vent)	305.47	1337.97	-	-	671.41	2940.79	5.92	25.92	6.59	28.86	5.48	24.00	0.78	3.40	0.32	1.39	0.0021	0.0093	0.014	0.062
Dehy-1 (Regenerator)	31.56	138.22		-	4.47	19.56	0.45	1.98	5.08	22.25	1.33	5.83	2.80	12.28	0.92	4.03	0.0031	0.013	0.022	0.10
DEHY-1 Total	337.03	1476.18	-	-	675.88	2960.35	6.37	27.90	11.67	51.11	6.81	29.83	3.58	15.68	1.24	5.42	0.0052	0.023	0.036	0.16

Controlled Emissions²

Unit	VO	C	H ₂	S	Meth	nane	CC	D ₂	Total	I HAP	n-He	xane	Benz	ene	Tolu	lene	Ethylb	enzene	Xyle	enes
Onic	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Dehy-1 (Flash Vent) ²	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dehy-1 (Regenerator) ²	0.63	2.76	-	-	0.089	0.39	0.0090	0.040	0.10	0.44	0.027	0.12	0.056	0.25	0.018	0.081	6.14E-05	2.69E-04	4.44E-04	1.95E-03
DEHY-1 Total	0.63	2.76	-	-	0.089	0.39	0.0090	0.040	0.10	0.44	0.027	0.12	0.056	0.25	0.018	0.081	6.14E-05	2.69E-04	4.44E-04	1.95E-03

Notes

 $^{\rm 1}$ Emissions are calculated using BR&E ProMax.

² Flash tank emissions are sent to station suction, still column to BTEX, BTEX non-condensables are sent to reboiler stack with glow plug with 98% DRE.

Delaware G&P - Reveille Compressor Station Fugitives

Unit: FUG Annual Operating Hours: 8,760

	Facility-wide F	ugitive Emission	s Per Piece of Eq	uipment	
Subcompo	nent	Emission Factor ¹ (lb/hr/comp)	VOC Content ² (wt%)	HAP Content ² (wt%)	Subcomponent Counts ³
	Gas	9.92E-03	21.61%	0.39%	393
Valves	Light Oil	5.51E-03	99.84%	15.56%	136
	Water/Oil	2.16E-04	0.0035%	0.0035%	136
	Gas	8.60E-04	21.61%	0.39%	393
Flanges	Light Oil	2.43E-04	99.84%	15.56%	136
	Water/Oil	6.39E-06	0.0035%	0.0035%	136
	Gas	4.41E-04	21.61%	0.39%	2423
Connectors	Light Oil	4.63E-04	99.84%	15.56%	332
	Water/Oil	2.43E-04	0.0035%	0.0035%	332
	Gas	1.94E-02	21.61%	0.39%	0
Other	Light Oil	1.65E-02	99.84%	15.56%	0
	Water/Oil	3.09E-02	0.0035%	0.0035%	0
	Gas	5.29E-03	21.61%	0.39%	0
Pump Seals	Light Oil	2.87E-02	99.84%	15.56%	3
	Water/Oil	5.29E-05	0.0035%	0.0035%	3
	Gas	4.41E-03	21.61%	0.39%	87
Open Ended Lines	Light Oil	3.09E-03	99.84%	15.56%	12
	Water/Oil	5.51E-04	0.0035%	0.0035%	12
			urly VOC Emissio		
		Α	nnual VOC Emis	sion Rate (tpy)°	10.02
			urly HAP Emissio		
		A	nnual HAP Emis	sion Rate (tpy)°	0.82

¹ Emission factors from Table 2-4 of EPA Protocol for Equipment Leak Emission Estimates, 1995.

² Weight percent of gas and liquid components from gas and liquid streams generated in a ProMax simulation of this facility. ³ Component counts are based on estimated design.

"Hourly Emissions [lb/hr] = Emissions Factor [lb/hr/component] * Weight Content of Chemical Component [%] * Subcomponent Count.

⁵ Annual Emissions [ton/yr] = Hourly Emissions [lb/hr] * Operating Hours [hr/yr] * 1/2000 [ton/lb].

Delaware G&P - Reveille Compressor Station SSM/M Emission Calculation Inputs

Compressor Blowdowns					
	Quantity of Compressors	Quantity of Compressors Simultaneously	Total Volume	Hours / Blowdown	Number of
Compressor Name	(#)	(#)	(scf/event) ¹	(hr/event)	Events/yr
Waukesha 16V275GL Compressor Engine	2	2	1365.0	1	208
Caterpillar 3612A4 Compressor Engine	6	6	1365.0	1	624

 $^{\rm 1}$ Blowdown volumes provided by Delaware G&P

Dehydrator/ Amine Blowdowns	Volume of Gas per	# Blowdowns /	Hours /	Number of
	Blowdown	year	Blowdown	Units
Dehydrator/Amine	(scf/event)	(# /year)	(hr/event)	(#)
42" Contactor	21,870	2	1	1
30" Contactor	9,025	2	1	1
Filter Coalescer Blowdowns				
Input Data	Value	Units		
Volume of gas per blowdown	6900	scf/event		
Number of Filter Coalescers	1	Units		
Number of Blowdowns per unit per year	2	events/yr		
Duration of Event	1	hr/event		
Scrubbers				
Input Data	Value	Units		
Volume of Gas Per Blowdown	33800	scf/event		
Number of Scrubbers	5	Units		
Number of Blowdowns per unit per year	6	events/yr		
Duration of Event	1	hr/event		
Simultaneous unit blowdowns	5			
Pump Blowdowns				
Input Data	Value	Units		
Volume of gas per blowdown	16	scf/event		
Number of pumps	2	Units		
Number of blowdowns per unit per year	5	events/yr		
Hours per event Simultaneous unit blowdowns	1 2	hr/event Units		
Simulaneous unit biowdowns	2	Units		
Reboiler Maintenance				
Input Data	Value	Units		
Volume of Gas Released during Reboiler Maintenance	65	scf/event		
Number of Reboilers	1	-		
Duration of Event	1	hr/event		
Maintenance Events per year	2	event/ year		
Actual Pressure	15.2	psia		
Maximum Temperature Annual Temperature	100 80	°F °F		

Pipeline Maintenance			
Input Data	Value	Units	
Pipeline Diameter	12	inches	
Pipeline Length	11058	ft	
Duration of Event	0.25	hr/event	
Maintenance events per year	2	events/yr	
Actual Pressure	100	psia	
Maximum Temperature	100	°F	
Annual Temperature	80	°F	
Pipeline volume vented	54874	scf/event	

Tank Maintenance			
Input Data	Value	Units	
Number of tanks	3	Units	
Molecular Weight of Vapors	70	lb/lb-mol	
Duration of tank purging/degassing	24	hr/event	
Volume of gas released during degassing event	4322.83	scf/event	
Tank Height	21.5	ft	
Tank Diameter	16	ft	
Number of tank purging/degassing events per tank per			
year	4	event/yr	

Description	V	'OC	H	₂ S	Total	HAPs
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Compressor Blowdowns	130.34	6.78	-	-	2.33	0.12
Coalescer Blowdowns	82.36	0.082	-	-	1.47	0.0015
Scrubber Blowdowns	2,017.12	1.21	-	-	36.00	0.022
Dehydrator Blowdowns	368.75	0.74	-	-	6.58	0.013
Pump Blowdowns	0.38	4.77E-04	-	-	0.007	8.52E-06
Pipeline Maintenance	654.95	0.33	-	-	11.69	0.006
Tank Degassing	127.48	0.87	-	-	31.87	0.22
Reboiler Maintenance	0.78	0.0008	-	-	0.014	1.38E-05
TOTAL	3,382.15	10.00			89.95	0.38

Delaware G&P - Reveille Compressor Station Waukesha 16V275GL Compressor Engine

Basis of Calculation:

Emissions from blowdowns are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of blowdown (scf/event/unit)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# compressors blowndown simultaneously (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of blowdown (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# compressors blowndown at site (units)] x [frequency of events

1,365

Compressor BlowDown Emissions Estimated Gas Vented per BlowDown Event ¹ = Compressors at Site = Compressors Blowndown Simultaneously =

Compressors at Site =	2	units
Compressors Blowndown Simultaneously =	2	units
Assumed BlowDown Duration =	1	hrs/event
Compressor BlowDowns in One Year =	208	events/yr
Molecular Weight of Stream =	21	lb/lb-mol
Control Type =	None	

Compound	Composition	Maximum Uncontrolled Hourly Emissions	Maximum Uncontrolled Annual Emissions	Control Efficiency	Maximum Controlled Hourly Emissions	Maximum Controlled Annual Emissions
	(wt %)	(lb/hr)	(tpy)	(%)	(lb/hr)	(tpy)
Carbon Dioxide	0.31308	4.72E-01	2.45E-02			
Hydrogen Sulfide	0.00000	0.00E+00	0.00E+00			
Nitrogen	1.22866	1.85E+00	9.63E-02			
Methane	59.89087	9.03E+01	4.70E+00			
Ethane	16.95830	2.56E+01	1.33E+00			
Propane	11.42849	1.72E+01	8.96E-01			
i-butane	2.13880	3.23E+00	1.68E-01			
n-butane	4.74664	7.16E+00	3.72E-01			
i-pentane	1.31592	1.98E+00	1.03E-01			
n-pentane	1.40491	2.12E+00	1.10E-01			
n-hexane	0.34780	5.24E-01	2.73E-02			
Cyclohexane	0.13841	2.09E-01	1.09E-02			
n-heptane	0.05030	7.58E-02	3.94E-03			
methylcyclohexane	0.00000	0.00E+00	0.00E+00			
2,2,4-trimethylpentane	0.00000	0.00E+00	0.00E+00			
benzene	0.02407	3.63E-02	1.89E-03			
toluene	0.01277	1.93E-02	1.00E-03			
ethylbenzene	0.00013	1.91E-04	9.95E-06			
o-xylene	0.00000	0.00E+00	0.00E+00			
m-xylene	0.00071	1.07E-03	5.57E-05			
p-xylene	0.00013	1.91E-04	9.95E-06			
Total VOC	21.61	32.58	1.69			
H₂S	0.0000	0.00E+00	0.00E+00			
Total HAP	0.39	0.58	0.030			

scf/event

Emissions from blowdowns are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of blowdown (scf/event/unit)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# compressors blowndown simultaneously (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of blowdown (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# compressors blowndown at site (units)] x [frequency of events (events/yr/unit)] / [379.5 (scf/lb-mol)] /

Compressor BlowDown Emissions

Estimated Gas Vented per BlowDown Event ¹ =	1,365	scf/event
Compressors at Site =	6	units
Compressors Blowndown Simultaneously =	6	units
Assumed BlowDown Duration =	1	hrs/event
Compressor BlowDowns in One Year =	624	events/yr
Molecular Weight of Stream =	21	lb/lb-mol
Control Type =	None	

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)	Control Efficiency (%)	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
Carbon Dioxide	0.31308	1.42E+00	7.36E-02	(%)		(cpy)
Hydrogen Sulfide	0.00000	0.00E+00	0.00E+00			
Nitrogen	1.22866	5.56E+00	2.89E-01			
Methane	59.89087	2.71E+02	1.41E+01			
Ethane	16.95830	7.67E+01	3.99E+00			-
Propane	11.42849	5.17E+01	2.69E+00			
i-butane	2.13880	9.68E+00	5.03E-01			
n-butane	4.74664	2.15E+01	1.12E+00			
i-pentane	1.31592	5.95E+00	3.10E-01			
n-pentane	1.40491	6.36E+00	3.30E-01			
n-hexane	0.34780	1.57E+00	8.18E-02			
Cvclohexane	0.13841	6.26E-01	3.26E-02			
n-heptane	0.05030	2.28E-01	1.18E-02			
methylcyclohexane	0.00000	2.28E-01 0.00E+00	0.00E+00			
	0.00000	0.00E+00 0.00E+00	0.00E+00			
2,2,4-trimethylpentan	0.00000	1.09E-01	5.66E-03			
benzene	0.02407	1.09E-01 5.78E-02	3.00E-03			
toluene	0.001277	5.78E-02 5.74E-04	3.00E-03 2.98E-05			
ethylbenzene						
o-xylene	0.00000	0.00E+00	0.00E+00			
m-xylene	0.00071	3.21E-03	1.67E-04			
p-xylene	0.00013	5.74E-04	2.98E-05			
Total VOC	21.61	97.75	5.08			
H ₂ S	0.0000	0.0000	0.0000			
Total HAP	0.39	1.74	0.091			

Delaware G&P - Reveille Compressor Station Compressor Blowdowns

Hours per event:

Compressor	Number of Compressors	Volume per Compressor Event (scf/event)	Annual events per Compressor	Annual Release (scf/yr)	Hourly Volume (scf/hr)	Molecular Weight (lb/lb-mol)
Waukesha 16V275GL Compressor Engine	2	1365	104	283920	2730	21
Caterpillar 3612A4 Compressor Engine	6	1365	104	851760	8190	21

1

	VOC		H₂S		Total HAP	
_	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Waukesha 16V275GL Compressor Engine	32.58	1.69	0.00E+00	0.00E+00	0.58	0.030
Caterpillar 3612A4 Compressor Engine	97.75	5.08	0.00E+00	0.00E+00	1.74	0.091
TOTAL	130.34	6.78	0.000	0.00E+00	2.33	0.121

Basis of Calculation: Emissions from pipeline maintenance operations are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions for each Unit (lb/hr) = [Volume of gas in pipe (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent]* [events per hour (event/hr) / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions for each Unit (tpy) = [Volume of gas in pipe (scf/event)] x [MW of stream

Pipeline Maintenance Emissions

Pipeline Volume Vented = Molecular Weight of Stream = Control Type =

54,873.54 scf/yr lb/lb-mol

21

None

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)	Control Efficiency (%)	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
Carbon Dioxide	3.13E-01	9.49E+00	4.74E-03			
Hydrogen Sulfide	0.00E+00	0.00E+00	0.00E+00			
Nitrogen	1.23E+00	3.72E+01	1.86E-02			
Methane	5.99E+01	1.82E+03	9.08E-01			
Ethane	1.70E+01	5.14E+02	2.57E-01			
Propane	1.14E+01	3.46E+02	1.73E-01			
i-butane	2.14E+00	6.48E+01	3.24E-02			
n-butane	4.75E+00	1.44E+02	7.19E-02			
i-pentane	1.32E+00	3.99E+01	1.99E-02			
n-pentane	1.40E+00	4.26E+01	2.13E-02			
n-hexane	3.48E-01	1.05E+01	5.27E-03			
Cyclohexane	1.38E-01	4.20E+00	2.10E-03			
n-heptane	5.03E-02	1.52E+00	7.62E-04			
methylcyclohexane	0.00E+00	0.00E+00	0.00E+00			
2,2,4-trimethylpentane	0.00E+00	0.00E+00	0.00E+00			
benzene	2.41E-02	7.30E-01	3.65E-04			
toluene	1.28E-02	3.87E-01	1.94E-04			
ethylbenzene	1.27E-04	3.85E-03	1.92E-06			
o-xylene	0.00E+00	0.00E+00	0.00E+00			
m-xylene	7.11E-04	2.15E-02	1.08E-05			
p-xylene	1.27E-04	3.85E-03	1.92E-06			
Total VOC	21.61	654.95	0.33			
H₂S	0.00	0.000	0.00			
Total HAP	0.39	11.69	0.006			

Emissions from reboiler maintenance activities are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of Gas Vented (scf/event/unit)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# Reboilers worked on simultaneously (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of Gas Vented (scf/event)] x [MW of stream

Doboilor	Maintenance	Emissions
Kepoller	Maintenance	Emissions

Estimated Gas Vented per Event ¹ =	65	scf/event
Reboilers at Site =	1	units
Reboilers Maintenance Events Occurring Simultaneously =	1	events
Assumed Reboiler Maintenance Duration =	1	hrs/event
Reboiler Maintenance Activities in One Year =	2	events/yr
Molecular Weight of Stream =	21	lb/lb-mol
Control Type =	None	

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)	Control Efficiency (%)	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
Carbon Dioxide	3.13E-01	1.12E-02	1.12E-05			
Hydrogen Sulfide	0.00E+00	0.00E+00	0.00E+00			
Nitrogen	1.23E+00	4.41E-02	4.41E-05			
Methane	5.99E+01	2.15E+00	2.15E-03			
Ethane	1.70E+01	6.09E-01	6.09E-04			
Propane	1.14E+01	4.10E-01	4.10E-04			
i-butane	2.14E+00	7.68E-02	7.68E-05			
n-butane	4.75E+00	1.70E-01	1.70E-04			
i-pentane	1.32E+00	4.72E-02	4.72E-05			
n-pentane	1.40E+00	5.04E-02	5.04E-05			
n-hexane	3.48E-01	1.25E-02	1.25E-05			
Cyclohexane	1.38E-01	4.97E-03	4.97E-06			
n-heptane	5.03E-02	1.81E-03	1.81E-06			
methylcyclohexane	0.00E+00	0.00E+00	0.00E+00			
2,2,4-trimethylpentane	0.00E+00	0.00E+00	0.00E+00			
benzene	2.41E-02	8.64E-04	8.64E-07			
toluene	1.28E-02	4.59E-04	4.59E-07			
ethylbenzene	1.27E-04	4.56E-06	4.56E-09			
o-xylene	0.00E+00	0.00E+00	0.00E+00			
m-xylene	7.11E-04	2.55E-05	2.55E-08			
p-xylene	1.27E-04	4.56E-06	4.56E-09			
Total VOC	21.61	0.78	7.76E-04			
H₂S	0.00	0.00	0.00			
Total HAP	0.39	0.014	1.38E-05			

¹ This is a representative estimate of the amount of gas vented per reboiler maintenance event.

Emissions from blowdowns are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of blowdown (scf/event/unit)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# units blowndown simultaneously (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of blowdown (scf/event)] x [MW of

Filter Coalescer BlowDown Emissions

Estimated Gas Vented per BlowDown Event ¹ =	6,900	scf/event
Units at Site =	1	units
Units Blowndown Simultaneously =	1	units
Assumed BlowDown Duration =	1	hrs/event
Unit BlowDowns in One Year =	2	events/yr
Molecular Weight of Stream =	21	lb/lb-mol
Control Type =	None	

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)	Control Efficiency (%)	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
Carbon Dioxide	3.13E-01	1.19E+00	1.19E-03			
Hydrogen Sulfide	0.00E+00	0.00E+00	0.00E+00			
Nitrogen	1.23E+00	4.68E+00	4.68E-03			
Methane	5.99E+01	2.28E+02	2.28E-01			
Ethane	1.70E+01	6.46E+01	6.46E-02			
Propane	1.14E+01	4.36E+01	4.36E-02			
i-butane	2.14E+00	8.15E+00	8.15E-03			
n-butane	4.75E+00	1.81E+01	1.81E-02			
i-pentane	1.32E+00	5.02E+00	5.02E-03			
n-pentane	1.40E+00	5.35E+00	5.35E-03			
n-hexane	3.48E-01	1.33E+00	1.33E-03			
Cyclohexane	1.38E-01	5.28E-01	5.28E-04			
n-heptane	5.03E-02	1.92E-01	1.92E-04			
methylcyclohexane	0.00E+00	0.00E+00	0.00E+00			
2,2,4-trimethylpentane	0.00E+00	0.00E+00	0.00E+00			
benzene	2.41E-02	9.17E-02	9.17E-05			
toluene	1.28E-02	4.87E-02	4.87E-05			
ethylbenzene	1.27E-04	4.84E-04	4.84E-07			
o-xylene	0.00E+00	0.00E+00	0.00E+00			
m-xylene	7.11E-04	2.71E-03	2.71E-06			
p-xylene	1.27E-04	4.84E-04	4.84E-07			
Total VOC	21.61	82.36	0.082			
H₂S	0.00	0.00	0.00			
Total HAP	0.39	1.47	0.0015			

Emissions from blowdowns are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of blowdown (scf/event/unit)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# units blowndown simultaneously (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of blowdown (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# units blowndown at site

Scrubber BlowDown Emissions

Estimated Gas Vented per BlowDown Event ¹ =	33,800	scf/event
Units at Site =	5	units
Units Blowndown Simultaneously =	5	units
Assumed BlowDown Duration =	1	hrs/event
Unit BlowDowns in One Year =	6	events/yr
Molecular Weight of Stream =	21	lb/lb-mol
Control Type =	None	

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)	Control Efficiency (%)	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
Carbon Dioxide	3.13E-01	2.92E+01	1.75E-02			
Hydrogen Sulfide	0.00E+00	0.00E+00	0.00E+00			
Nitrogen	1.23E+00	1.15E+02	6.88E-02			
Methane	5.99E+01	5.59E+03	3.35E+00			
Ethane	1.70E+01	1.58E+03	9.50E-01			
Propane	1.14E+01	1.07E+03	6.40E-01			
i-butane	2.14E+00	2.00E+02	1.20E-01			
n-butane	4.75E+00	4.43E+02	2.66E-01			
i-pentane	1.32E+00	1.23E+02	7.37E-02			
n-pentane	1.40E+00	1.31E+02	7.87E-02			
n-hexane	3.48E-01	3.25E+01	1.95E-02			
Cyclohexane	1.38E-01	1.29E+01	7.75E-03			
n-heptane	5.03E-02	4.70E+00	2.82E-03			
methylcyclohexane	0.00E+00	0.00E+00	0.00E+00			
2,2,4-trimethylpentane	0.00E+00	0.00E+00	0.00E+00			
benzene	2.41E-02	2.25E+00	1.35E-03			
toluene	1.28E-02	1.19E+00	7.15E-04			
ethylbenzene	1.27E-04	1.18E-02	7.11E-06			
o-xylene	0.00E+00	0.00E+00	0.00E+00			
m-xylene	7.11E-04	6.63E-02	3.98E-05			
p-xylene	1.27E-04	1.18E-02	7.11E-06			
Total VOC	21.61	2,017.12	1.21			
H₂S	0.00	0.00	0.00			
Total HAP	0.39	36.00	0.022			

Emissions from blowdowns are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of blowdown (scf/event/unit)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# units blowndown simultaneously (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of blowdown (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# units blowndown at site (units)] x [frequency of events (events/yr/unit)] / [379.5 (scf/lb-mol)] / [2,000 (lb/ton)]

Pump BlowDown Emissions

Estimated Gas Vented per BlowDown Event ¹ =	16	scf/event
Units at Site =	2	units
Units Blowndown Simultaneously =	2	units
Assumed BlowDown Duration =	1	hrs/event
Unit BlowDowns in One Year =	5	events/yr
Molecular Weight of Stream =	21	lb/lb-mol
Control Type =	None	

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)	Control Efficiency (%)	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
Carbon Dioxide	3.13E-01	5.53E-03	6.92E-06			
Hydrogen Sulfide	0.00E+00	0.00E+00	0.00E+00			
Nitrogen	1.23E+00	2.17E-02	2.71E-05			
Methane	5.99E+01	1.06E+00	1.32E-03			
Ethane	1.70E+01	3.00E-01	3.75E-04			
Propane	1.14E+01	2.02E-01	2.52E-04			
i-butane	2.14E+00	3.78E-02	4.73E-05			
n-butane	4.75E+00	8.39E-02	1.05E-04			
i-pentane	1.32E+00	2.33E-02	2.91E-05			
n-pentane	1.40E+00	2.48E-02	3.10E-05			
n-hexane	3.48E-01	6.15E-03	7.68E-06			
Cyclohexane	1.38E-01	2.45E-03	3.06E-06			
n-heptane	5.03E-02	8.89E-04	1.11E-06			
methylcyclohexane	0.00E+00	0.00E+00	0.00E+00			
2,2,4-trimethylpentane	0.00E+00	0.00E+00	0.00E+00			
benzene	2.41E-02	4.25E-04	5.32E-07			
toluene	1.28E-02	2.26E-04	2.82E-07			
ethylbenzene	1.27E-04	2.24E-06	2.80E-09			
o-xylene	0.00E+00	0.00E+00	0.00E+00			
m-xylene	7.11E-04	1.26E-05	1.57E-08			
p-xylene	1.27E-04	2.24E-06	2.80E-09			
Total VOC	21.61	0.38	4.77E-04			
H₂S	0.00	0.00	0.00			
Total HAP	0.39	0.007	8.52E-06			

Basis of Calculation:

Emissions from tank degassing are calculated based on a mass balance as follows:

 $\label{eq:maintender} \begin{array}{l} \mbox{Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of gas vented (scf/event/unit)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# tank degassing activities occurring simultaneously (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)] + Clingage volume (scf/event) x Liquid density (lb/scf) / event duration (hr/event) x [# tank degassing activities occurring simultaneously (units)] \\ \end{array}$

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of gas vented (scf/event)] x [MW of stream (lb/lbmol)] x [wt % VOC or speciated constituent] x [# tanks at site (units)] x [frequency of events (events/yr/unit)] / [379.5 (scf/lb-mol)] / [2,000 (lb/ton)] + Clingage volume (scf/event) x Liquid density (lb/scf) / Frequency of event (events/yr/unit) / 2,000 (lb/ton) x [# tanks at site (units)]

Tank Degassing Emissions - Non-Forced Ventilation			
Estimated Gas Vented per Degassing Event =	4,323	scf/event	
Number of Tanks =	3	units	
Tank Degassing Events Occurring Simultaneously =	3	units	
Assumed Degassing Event Duration =	24	hrs/event	
Tank Degassing Events in One Year =	4	events/yr	
Molecular Weight of Stream =	43	lb/lb-mol	
Is Forced Ventilation used?	No		
Control Type =	No		

Clingage-to-vessel Volume						
Clingage volume ¹ =	0.51	scf				
Clingage thickness ² =	0.0004	ft				
Diameter =	16	ft				
Height =	21.5	ft				
Liquid Density ¹ =	43.00	lb/scf				

 $^{\rm 1}$ The roof of the tank is not included in the clingage volume since no liquid will reach the roof. Liquid density is from ProMax for condensate.

² Clingage thickness per TCEQ Maintenance, Startup and Shutdown (MSS) Guidance Document for terminals and chemical plants.

http://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/mss/mss-guidance.pdf

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)	Control Efficiency (%)	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
Total VOC	100	127.48	0.87			
Total HAP	25	31.87	0.22			

¹ HAP content is conservatively assumed to be 25% of the vented liquid vapor analysis.

Delaware G&P - Reveille Compressor Station **Dehydrator Blowdowns**

Basis of Calculation: Emissions from blowdowns are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Estimated blowdown volume (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] / [hour/event] / [379.5] (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Estimated blowdown volume (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] * [event/yr] / [379.5 (scf/lb-mol)] / [2,000 (lb/ton)]

The hourly volume is calculated from the sum of the blowdown volumes from each component of the dehydrator (i.e. the contactor, scrubber, flash tank, and filters).

Dehydrator BlowDown Emissions		
Estimated Hourly BlowDown Volume ¹ =	30,895	scf/event
Number of Units =	1	units
Assumed BlowDown Duration =	1	hr/event
Blowdowns Per Year =	4	event/yr
Molecular Weight of Stream =	21	lb/lb-mol
Control Type =	None	

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)	Control Efficiency (%)	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
Carbon Dioxide	3.13E-01	5.34E+00	1.07E-02			
Hydrogen Sulfide	0.00E+00	0.00E+00	0.00E+00			
Nitrogen	1.23E+00	2.10E+01	4.19E-02			
Methane	5.99E+01	1.02E+03	2.04E+00			
Ethane	1.70E+01	2.89E+02	5.79E-01			
Propane	1.14E+01	1.95E+02	3.90E-01			
i-butane	2.14E+00	3.65E+01	7.30E-02			
n-butane	4.75E+00	8.10E+01	1.62E-01			
i-pentane	1.32E+00	2.25E+01	4.49E-02			
n-pentane	1.40E+00	2.40E+01	4.79E-02			
n-hexane	3.48E-01	5.94E+00	1.19E-02			
Cyclohexane	1.38E-01	2.36E+00	4.72E-03			
n-heptane	5.03E-02	8.58E-01	1.72E-03			
methylcyclohexane	0.00E+00	0.00E+00	0.00E+00			
2,2,4-trimethylpentane	0.00E+00	0.00E+00	0.00E+00			
benzene	2.41E-02	4.11E-01	8.22E-04			
toluene	1.28E-02	2.18E-01	4.36E-04			
ethylbenzene	1.27E-04	2.17E-03	4.33E-06			
o-xylene	0.00E+00	0.00E+00	0.00E+00			
m-xylene	7.11E-04	1.21E-02	2.43E-05			
p-xylene	1.27E-04	2.17E-03	4.33E-06			
Total VOC	21.61	368.75	0.74			
H₂S	0.00	0.00	0.00			
Total HAP	0.39	6.58	0.013			

Stream Information: Dehydrator Blowdowns

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- ☑ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- ☑ If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- \blacksquare If an older version of AP-42 is used, include a complete copy of the section.
- \blacksquare If an EPA document or other material is referenced, include a complete copy.
- ☑ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Documentation used to support calculation in this permit application

- Current version of AP-42 located at: <u>http://www.epa.gov/ttn/chief/ap42/index.html</u>. Specific sections used in this application:
 - Subsection 1.4 Natural Gas External Combustion Sources-Natural Gas (Table 1.4-1, 1.4-2 & 1.4-3) [Units ECD-1 and RBL-1]
 - Subsection 3.2 Natural Gas-Fired Reciprocating Engines (Table 3.2-2) [Units ENG-1 through ENG-8]
 - Subsection 13.2.2 Unpaved Roads (Table 13.2.2-2) [Unit HAUL]
- Compressor Manufacturer Specifications [Units ENG-1 through ENG-8]
- TCEQ TNRCC RG-109 Flare Guidance documentation [Unit ECD-1]
- Manley Gas Testing, Inc.'s Extended Gas analysis. [Unit DEHY-1 and inlet gas analysis for ProMax input]
- 40 CFR Subpart C (Table C-1 and C-2) [Units ENG-1 through ENG-8, RBL-1, and ECD-1]

ICE CATALYST SIZING PROGRAM

rev 2.1.1

Report Date: 4/18/2023

Customer Sales Persc Project Engine Nai	Red Raide	er/Reveille	aterpillar G	3612 A4 3	Housing Elemen Contact 3750 BHP (t MCC : Trav	Z-7140-3 is Burke	430C3-15 3-400	509			
Engine Power		3750.0	BHP	P ACFM		23872	0 CU.	FT/MIN	Exhaust 02		7.7	%
Exhaust Mass	Flow	42986.0	LBS/HR	ACFH		143232	0 CU	. FT/HR	Exhaust CO2		6.6	%
Process Temp	erature	820.0	F	SCFM		9713.	3 CU.	FT/MIN	Exhaust H2O		9.4	%
Exhaust Press	ure	14.5	PSI	SCFH		58280	0 CU	. FT/HR	Exhaust N2		76.3	%
Exhaust Densi	ty	0.0300	LBS/FT^3	Std Te	mp	68.	0	F	Max Pressure D)rop	12.0	in wc
Molecular Wei	ght	28.43	AMU	Std Pre	essure	14.695	9	PSI	Propane in Fuel	I	5.57	%
ACS Part NameRN15.400X24.750X3.500-400OEM Part NameMCCZ-7140-3-400TypePropane OxidationLayersGeometryRectangularModules/Layer5X15.400inGuard BedNoY24.750in												
Oper	n Area	11.875	ft^2		Part Volu	me	0.693	ft^3	Part We	eight	50	lbs
Linear	Velocity	2010	ft/min		Total Volu	ıme	3.464	ft^3	Total W	eight 252 I		lbs
Pressu	ire Drop	3.5	in wc		Space Veloc		168267	GHSV				
					Inlet Er	nissions						
		g/bhp-	hr	lb/hr	ton	s/year	рр	m∨	ppmvd	ppn	nvd%C	2
N	Ox	0.300		2.48	1	0.87	35.	64	39.36		18.73	
C	0	3.050		25.22	11	10.52	595	.20	657.22	3	812.71	
H2	200	0.190		1.57	6	5.88	34.	58	38.19		18.17	
VOC+	H2CO	1.130		9.34		0.95	151	.09	166.84		79.38	
					Target E	missions						
	min %DRE	g/bhp-	hr	lb/hr	tons	s/year	ppi	mv	ppmvd	ppr	nvd%C	2
NOx	0.00	<0.300		<2.48		0.87	<35		<39.36		:18.73	
CO	80.98	<0.580		<4.80		1.02	<113		<124.98		<59.47	
H2CO	87.89	<0.023		<0.19).83	<4.		<4.62		<2.20	
VOC+H2CO	43.10	<0.643	3	<5.32		3.30	<81	.03	<89.48	<	42.57	
		<i>i</i>				vith Cata	-	-				
110	%DRE	g/bhp-		lb/hr		s/year	ppi		ppmvd		nvd%C	2
NOx	0.00	< 0.300		<2.48		0.87	<35		<39.36		<18.73	
C0	80.98	<0.580		<4.80		1.02	<113		<124.98		\$9.47	
H2CO VOC+H2CO	87.89 43.10	<0.023		<0.19 <5.32).83 3.30	<4. <81		<4.62 <89.48		<2.20 <42.57	
V00+H200	43.10	<0.043)	<0.3Z	<2	5.30	<81	.03	<09.40		42.37	

Safety Value: 2 VOC Molecular Weight: 44.1 O2 Reference Value: 15

ICE CATALYST SIZING PROGRAM

rev 2.1.1

Report Date: 4/18/2023

Customer Sales Persc Project Engine Nai	Red Raide	er/Reveille	000 BHP @	1000 RP	Housing Elemen Contact M	t MCO	C3-G10-3 CZ-7140- ris Burke		5509			
Engine Power		5000.0	BHP	ACFM		32101	0 CU	FT/MIN	Exhaust 02		6.1	%
Exhaust Mass	Flow	55158.0	LBS/HR	ACFH		192606	O CL	I. FT/HR	Exhaust CO2		6.4	%
Process Temp	erature	864.0	F	SCFM		12627	5 CU	FT/MIN	Exhaust H2O		12.2	%
Exhaust Press	ure	14.5	PSI	SCFH		75765	0 CL	I. FT/HR	Exhaust N2		75.3	%
Exhaust Densi	ty	0.0286	LBS/FT^3	Std Te	mp	68	0	F	Max Pressure D	rop	12.0	in wc
Molecular Wei	ght	28.06	AMU	Std Pro	essure	14.695	9	PSI	Propane in Fuel		5.57	%
ACS Part NameRN15.400X24.750X3.500-400OEM Part NameMCCZ-7140-3-400TypePropane OxidationLayersIGeometryRectangularModules/LayerX15.400inGuard BedNoY24.750in												
Oper	n Area	14.250	ft^2		Part Volu	me	0.693	ft^3	Part We	eight	50	lbs
Linear	Velocity	2253	ft/min		Total Volu	ime	4.156	ft^3	Total W	eight	303	lbs
Pressu	ire Drop	4.0	in wc		Space Velo	,	182292	GHSV				
						nissions						
		g/bhp		lb/hr		s/year	рр	mv	ppmvd	• •	nvd%C	2
	Ox	0.300		3.31		4.49		.56	41.63		17.67	
	0	2.380		26.24		4.99		5.35	542.45		230.25	
	200	0.280		3.09		3.53		.27	59.52		25.27	
VOC+	H2CO	1.020)	11.24		9.28		5.34	166.65		70.74	
						missions						
	min %DRE	g/bhp	hr	b/hr		s/year	рр	mv	ppmvd	ppr	mvd%C	2
NOx	0.00	<0.30		<3.31		4.49		5.56	<41.63		<17.67	
CO	75.63	<0.58		<6.39		8.02		6.09	<132.19		<56.11	
H2CO	91.79	< 0.02		<0.25		.11		.29	<4.89		<2.08	
VOC+H2CO	36.96	<0.64	3	<7.09	-	1.07		8.11	<94.64		<40.17	
						vith Cata	yst					
	%DRE	g/bhp		b/hr		s/year		mv	ppmvd		mvd%C	2
NOx	0.00	< 0.30		<3.31		4.49		5.56	<41.63		<17.67	
CO	75.63	< 0.58		<6.39		8.02		6.09	<132.19		<56.11	
H2CO	91.79	< 0.02		<0.25		.11		.29	<4.89		<2.08	
VOC+H2CO	36.96	<0.64	3	<7.09	<3	1.07	<83	3.11	<94.64		<40.17	

Safety Value: 2 VOC Molecular Weight: 44.1 O2 Reference Value: 15

AS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOx EMISSION LEVEL (g/bhp-hr NOx): SET POINT TIMING:

1000 7.6 SCAC 130 174 190 ΤA JW+1AC, OC+2AC ADEM4 DRY LOW EMISSION 03 18

RATING LEVEL: FUEL SYSTEM: SITE CONDITIONS: FUEL:

STANDARD RATED POWER:

RATING STRATEGY:

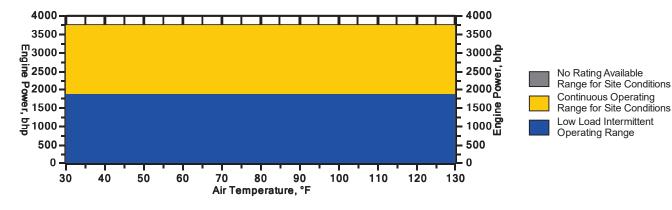
FUEL PRESSURE RANGE(psig): (See note 1) FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): INLET AIR TEMPERATURE(°F):

STANDARD CONTINUOUS GAV WITH AIR FUEL RATIO CONTROL

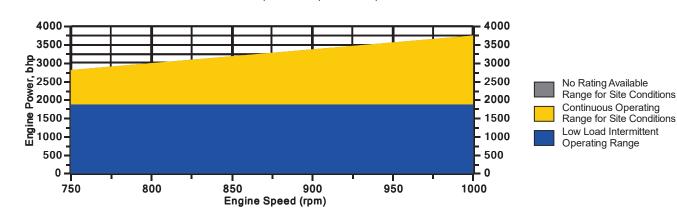
> Nat Gas 58.0-70.3 84.7 905 500 77 3750 bhp@1000rpm

SITE RATING AT MAXIMUM MAXIMUM RATING **INLET AIR TEMPERATURE** RATING NOTES LOAD 100% 100% 75% 50% ENGINE POWER (WITHOUT FAN (2) bhp 3750 3750 2813 1875 INLET AIR TEMPERATURE °F 77 77 77 77 **ENGINE DATA** FUEL CONSUMPTION (LHV) (3) Btu/bhp-hr 6800 6800 7003 7465 FUEL CONSUMPTION (HHV) Btu/bhp-hr 7543 7543 7768 8280 (3)(WFT) AIR FLOW (@inlet air temp, 14.7 psia) (4)(5)ft3/min 9251 9251 7013 4802 AIR FLOW (WET) (4)(5)lb/hr 41017 41017 31095 21293 FUEL FLOW (60°F, 14.7 psia) 470 470 363 258 scfm INLET MANIFOLD PRESSURE (6) in Hg(abs) 99.2 99.2 757 53 1 **EXHAUST TEMPERATURE - ENGINE OUTLET** (7) °F 840 840 894 957 EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET 23936 23936 18904 13581 ft3/min (8)(5)EXHAUST GAS MASS FLOW (WET 42304 32089 21999 (8)(5)lb/hr 42304 **EMISSIONS DATA - ENGINE OUT** NOx (as NO2) (9)(10)g/bhp-hr 0.30 0.30 0.30 0.30 со (9)(10) g/bhp-hr 2.50 2.50 2.50 2.50 THC (mol. wt. of 15.84) (9)(10)g/bhp-hr 4.49 4.49 4.65 4.67 NMHC (mol. wt. of 15.84) (9)(10) g/bhp-hr 0.42 0.42 0.43 0.43 NMNEHC (VOCs) (mol. wt. of 15.84) (9)(10)(11) g/bhp-hr 0.28 0.28 0.29 0.29 HCHO (Formaldehyde) (9)(10)g/bhp-hr 0.19 0.19 0.19 0.21 CO2(9)(10)g/bhp-hr 423 423 438 468 EXHAUST OXYGEN (9)(12)% DRY 11.5 11.5 11.3 10.9 HEAT REJECTION HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 40888 40888 32639 27887 HEAT REJ. TO ATMOSPHERE (13) Btu/min 17674 17674 16883 13955 HEAT REJ. TO LUBE OIL (OC) 18701 18701 17070 15164 (13)Btu/min HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14)Btu/min 30425 30425 14447 2708 HEAT REJ. TO A/C - STAGE 2 (2AC) (13)(14) Btu/min 7352 7352 5372 3527 **COOLING SYSTEM SIZING CRITERIA** TOTAL JACKET WATER CIRCUIT (JW+1AC) 76923 (14)(15) Btu/min TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC) (14)(15) Btu/min 30160

A cooling system safety factor of 0% has been added to the cooling system sizing criteria.

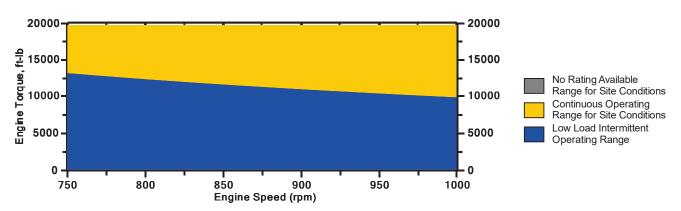

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown


For notes information consult page three

Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 500 ft and 1000 rpm



Engine Power vs. Engine Speed Data represents speed sweep at 500 ft and 77 °F

Data represents speed sweep at 500 ft and 77 °F

Note: At site conditions of 500 ft and 77°F inlet air temp., constant torque can be maintained down to 750 rpm. The minimum speed for loading at these conditions is 750 rpm.

G3612

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

NOTES

1. Fuel pressure range specified is to the engine gas shutoff valve (GSOV). Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.

- 3. Fuel consumption tolerance is \pm 2.5% of full load data.
- 4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.
- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.
- 7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of \pm 6 %.
- 9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	92.2700	92.2700	Fuel Makeup:	Nat Gas
Ethane	C2H6	2.5000	2.5000	Unit of Measure:	English
Propane	C3H8	0.5000	0.5000		•
Isobutane	iso-C4H1O	0.0000	0.0000	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.2000	0.2000		84.7
Isopentane	iso-C5H12	0.0000	0.0000	Caterpillar Methane Number:	04.7
Norpentane	nor-C5H12	0.1000	0.1000		
Hexane	C6H14	0.0500	0.0500	Lower Heating Value (Btu/scf):	905
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1004
Nitrogen	N2	3.4800	3.4800	WOBBE Index (Btu/scf):	1168
Carbon Dioxide	CO2	0.9000	0.9000		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	21.83
Carbon Monoxide	CO	0.0000	0.0000		4.38%
Hydrogen	H2	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.998
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	9.45
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	15.75
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.600
Propylene	C3H6	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.313
TOTAL (Volume %)		100.0000	100.0000		1.313

CONDITIONS AND DEFINITIONS

Conditions and Dermittions Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Combustor Type	NOx ^b		со	
(MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	A	84	В
Uncontrolled (Post-NSPS) ^c	190	A	84	в
Controlled - Low NOx burners	140	A	84	в
Controlled - Flue gas recirculation	100	D	84	в
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NOx burners	50	D	84	в
Controlled - Low NOx burners/Flue gas recirculation	32	С	84	в
Tangential-Fired Boilers (All Sizes) [1-01-006-04]	Land N ₂ E v			
Uncontrolled	170	A	24	С
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO_x) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10 ⁶ scf to kg/10⁶ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10 ⁶ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.
 ^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For

^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.
 ^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat

^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	E
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO ₂ ^d	0.6	А
TOC	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

- ^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.
- ^b Based on approximately 100% conversion of fuel carbon to CO₂. CO₂[lb/10⁶ scf] = (3.67) (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO₂, C = carbon content of fuel by weight (0.76), and D = density of fuel, 4.2x10⁴ lb/10⁶ scf.
- ^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION^a

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylcholanthrene ^{b, c}	<1.8E-06	E
	7,12- Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	E
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	E
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	E
120-12-7	Anthracene ^{b,c}	<2.4E-06	E
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	E
71-43-2	Benzeneb	2.1E-03	в
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	E
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	E
207-08-9	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	E
106-97-8	Butane	2.1E+00	E
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	Е
25321-22- 6	Dichlorobenzene ^b	1.2E-03	E
74-84-0	Ethane	3.1E+00	E
206-44-0	Fluoranthene ^{b,c}	3.0E-06	E
86-73-7	Fluorene ^{b,c}	2.8E-06	E
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	E
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	E
91-20-3	Naphthalene ^b	6.1E-04	Е
109-66-0	Pentane	2.6E+00	E
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D
74-98-6	Propane	1.6E+00	E

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
129-00-0	Pyrene ^{b, c}	5.0E-06	E
108-88-3	Toluene ^b	3.4E-03	C

* Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceeded with a less-than symbol are based on method detection limits.

^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhou	se Gases	5/0
NO _x ^c 90 - 105% Load	4.08 E+00	В
NO _x ^c <90% Load	8.47 E-01	в
CO ^c 90 - 105% Load	3.17 E-01	с
CO ^c <90% Load	5.57 E-01	в
CO2 ^d	1.10 E+02	А
SO2 ^e	5.88 E-04	Α
TOC	1.47 E+00	А
Methane ^g	1.25 E+00	с
VOC ^h	1.18 E-01	С
PM10 (filterable) ⁱ	7.71 E-05	D
PM2.5 (filterable) ⁱ	7.71 E-05	D
PM Condensable ^j	9.91 E-03	D
Trace Organic Compounds	- 	
1,1,2,2-Tetrachloroethanek	<4.00 E-05	E
1,1,2-Trichloroethanek	<3.18 E-05	Е
1,1-Dichloroethane	<2.36 E-05	E
1,2,3-Trimethylbenzene	2.30 E-05	D
1,2,4-Trimethylbenzene	1.43 E-05	с
1,2-Dichloroethane	<2.36 E-05	Е
1,2-Dichloropropane	<2.69 E-05	Е
1,3,5-Trimethylbenzene	3.38 E-05	D
1,3-Butadiene ^k	2.67E-04	D
1,3-Dichloropropenek	<2.64 E-05	E
2-Methylnaphthalene ^k	3.32 E-05	С
2,2,4-Trimethylpentanek	2.50 E-04	с
Acenaphthenek	1.25 E-06	с

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES	
(SCC 2-02-002-54)	

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating	
Acenaphthylene ^k	5.53 E-06	С	
Acetaldehyde ^{k,l}	8.36 E-03	А	
Acrolein ^{k,l}	5.14 E-03	А	
Benzene ^k	4.40 E-04	A	
Benzo(b)fluoranthenek	1.66 E-07	D	
Benzo(e)pyrene ^k	4.15 E-07	D	
Benzo(g,h,i)perylene ^k	4.14 E-07	D	
Biphenyl ^k	2.12 E-04	D	
Butane	5.41 E-04	D	
Butyr/Isobutyraldehyde	1.01 E-04	с	
Carbon Tetrachloride ^k	<3.67 E-05	E	
Chlorobenzenek	<3.04 E-05	Е	
Chloroethane	1.87 E-06	D	
Chloroformk	<2.85 E-05	E	
Chrysene	6.93 E-07	С	
Cyclopentane	2.27 E-04	с	
Ethane	1.05 E-01	С	
Ethylbenzene ^k	3.97 E-05	в	
Ethylene Dibromide ^k	<4.43 E-05	E	
Fluoranthene ^k	1.11 E-06	с	
Fluorene ^k	5.67 E-06	с	
Formaldehyde ^{k,1}	5.28 E-02	А	
Methanol ^k	2.50 E-03	В	
Methylcyclohexane	1.23 E-03	С	
Methylene Chloride ^k	2.00 E-05	с	
n-Hexane ^k	1.11 E-03	С	
n-Nonane	1.10 E-04	С	

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES (Continued)

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES (Continued)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating	
n-Octane	3.51 E-04	С	
n-Pentane	2.60 E-03	С	
Naphthalenek	7.44 E-05	С	
PAH ^k	2.69 E-05	D	
Phenanthrenek	1.04 E-05	D	
Phenol ^k	2.40 E-05	D	
Propane	4.19 E-02	С	
Pyrene ^k	1.36 E-06	С	
Styrene ^k	<2.36 E-05	Е	
Tetrachloroethanek	2.48 E-06	D	
Toluene ^k	4.08 E-04	в	
Vinyl Chloride ^k	1.49 E-05	С	
Xylene ^k	1.84 E-04	в	

^a Reference 7. Factors represent uncontrolled levels. For NO_x, CO, and PM10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM-10 = Particulate Matter \leq 10 microns (μ m) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit. ^b Emission factors were calculated in units of (Ib/MMBtu) based on procedures in EPA Method 19. To convert from (Ib/MMBtu) to (Ib/10⁶ scf), multiply by the heat content of

the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from (lb/MMBtu) to (lb/hp-hr) use the following equation:

lb/hp-hr = (lb/MMBtu, (heat input, MMBtu/hr, (l/operating HP, 1/hp)

^c Emission tests with unreported load conditions were not included in the data set.

Stationary Internal Combustion Sources

^d Based on 99.5% conversion of the fuel carbon to CO₂. CO₂ [lb/MMBtu] =

^{(3.67)(%}CON)(C)(D)(1/h), where %CON = percent conversion of fuel carbon to CO2,

C = carbon content of fuel by weight (0.75), D = density of fuel, 4.1 E+04 lb/10^o scf, and

	Industrial Roads (Equation 1a)			Public Roads (Equation 1b)		
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0
а	0.9	0.9	0.7	1	1	1
b	0.45	0.45	0.45	-	-	-
с	-	-	-	0.2	0.2	0.3
d	-	-	-	0.5	0.5	0.3
Quality Rating	В	В	В	В	В	В

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

*Assumed equivalent to total suspended particulate matter (TSP)

"-" = not used in the emission factor equation

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

			Vehicle ight		Vehicle eed	Mean	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4-17ª	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model ²³. The emission factor also varies with aerodynamic size range

11/06

October 2000 RG-109 (Draft)

Air Permit Technical Guidance for Chemical Sources:

Flares and Vapor Oxidizers

printed on recycled paper

Air Permits Division

TEXAS NATURAL RESOURCE CONSERVATION COMMISSION

Waste Stream	Destruction/Re	emoval Efficie	ncy (DRE)	
VOC	98 percent (gen	eric)		
	99 percent for compounds containing no more than 3 carbons that contain no elements other than carbon and hydrogen in addition to the following compounds: methanol, ethanol, propanol, ethylene oxide and propylene oxide			
H ₂ S	98 percent			
NH ₃	case by case			
СО	case by case			
Air Contaminants	Emission Factors			
thermal NO _x	steam-assist:	high Btu low Btu	0.0485 lb/MMBtu 0.068 lb/MMBtu	
	other:	high Btu low Btu	0.138 lb/MMBtu 0.0641 lb/MMBtu	
fuel NO _x	NO _x is 0.5 wt p	ercent of inlet l	NH_3 , other fuels case by case	
со	steam-assist:	high Btu low Btu	0.3503 lb/MMBtu 0.3465 lb/MMBtu	
	other:	high Btu low Btu	0.2755 lb/MMBtu 0.5496 lb/MMBtu	
PM	none, required t	o be smokeless	5	
SO ₂	100 percent S ir	1 fuel to SO_2		

*The only exeption of this is if inorganics might be emitted from the flare. In the case of landfills, the AP-42 PM factor may be used. In other cases, the emissions should be based on the composition of the waste stream routed to the flare.

MA	NLEY	GAS	TESTI	NG, INC.	
P.O. DRAW OFFICE(432)367-		FAX(432)	367-1166	ODESSA, TEXAS 79760 E-MAIL: MANLEYGAST@A	OL.COM
RECORD NO 3	66 - 0 - 19 26807	Θ			01-18-23 01-20-23
METER NUMBER A SAMPLE OF O RECEIVED FROM E LOCATION F	CORRAL CON ENLINK PER FT. WORTH	MIAN LLC.			
PRESSURE	10	PSIG	TEMF	PERATURE 58	F
	CALCU		AL ANALYSI 4.696 PSIA		
	MOLE%	LIQUID%	WEIGHT%		
NITROGEN CARBON DIOXIDE. METHANE ETHANE PROPANE ISO-BUTANE NOR-BUTANE NOR-PENTANE HEXANES+	$\begin{array}{r} 0.00\\ 0.00\\ 0.17\\ 0.44\\ 1.72\\ 1.00\\ 4.08\\ 4.32\\ 7.56\\ 80.71 \end{array}$	0.00 0.07 0.29 1.15 0.79 3.14 3.83 6.64 84.09	0.00 0.03 0.15 0.85 0.65 2.67 3.50 6.12 86.03	TOTAL SP. GRAVITY TOTAL VAPOR PRESS TOTAL MOLECULAR WT.	21.939
	100.00	100.00	100.00		
	**	HEXANES+	CALCULATIO	NS **	
SP. GRAVITY C6+ MOLECULAR WT C6+		VAPOR F	PRESS C6+ .	. 2.208 CF/GAL C6+ LB/GAL C6+	
ANALYSIS BASED ON DISTRIBUTION / REM		ARDS 2177	7-20 & 2145	5-16	
T. LEBLANC / B. BF	ROWN / S.T	IRMZI / A	A. ORTIZ		
RUN BY: K.CASWELL				APPROVED	[1]

R

MANLEY GAS TESTING INC.

120 DOCK ROAD - ODESSA, TEXAS-432-367-3024

A SAMPLE OF CORRAL CONDENSATE (1/18/23)

CAPILLARY EXTENDED C-6+ ANALYSIS

(NORMALIZED TO 100%)

PAGE NO. 1

=======================================				
COMPONENT	MOT.8	1.10%	WT ዩ	

NEOHEXANE 0.24 0.24 0.22 2,3DMC4+CYC5 1.33 1.09 1.05 2MPENTANE 7.56 7.52 6.86 3MPENTANE 13.79 13.57 12.50 2,4 DMPENTANE 0.00 0.00 0.00 MCYCLOPENTANE 0.05 0.06 0.06 2,4 DMPENTANE 0.00 0.00 0.00 MCYCLOPENTANE 0.05 0.06 0.06 2,4 DMPENTANE 0.00 0.00 0.00 BKZENE 1.65 1.11 1.36 3,3 DMPENTANE 0.12 0.13 0.13 CYCLOHEXANE 9.18 7.49 8.13 ZMHEXANE 3.97 4.42 4.18 2,3 DMPENTANE 0.99 1.07 1.04 3MHEXANE 3.97 4.42 4.18 2,3 DMPENTANE 0.99 1.07 1.04 MMEXANE 1.52 4.52 4.66 N+HEYANE 1.01 1.25 1.22 2,3 JMPENTANE 0.00 0.00 0.00 CYD	COMPONENT	MOL %	LIQ%	WT8
2,3DMC4+CYC5 1.33 1.09 1.05 2MPENTANE 7.56 7.52 6.86 3MPENTANE 4.41 4.32 4.00 N-HEXANE 13.79 13.57 12.50 2,2 DMPENTANE 0.00 0.00 0.00 MCYCLOPENTANE 6.90 5.86 6.12 2,4 DMPENTANE 0.05 0.06 0.06 2,2 JMMEUTANE 0.00 0.00 0.00 MCYCLOPENTANE 0.05 0.06 0.06 2,2,3 TMBUTANE 0.00 0.00 0.00 BENZENE 1.65 1.11 1.36 3,3 DMPENTANE 0.12 0.13 0.13 CYCLOHEXANE 9.18 7.49 8.13 ZMHEXANE 0.99 1.07 1.04 3MHEXANE 5.86 6.44 6.18 DIMCYCPENTANES(GROUPED) 4.52 4.52 4.66 N-HEPTANE 1.01 1.25 1.22 2,3,3TMPENTANE 0.00 0.00 0.00 CUCHEXANE 1.01 1.25 1.22 <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
2,3DMC4+CYC5 1.33 1.09 1.05 2MPENTANE 7.56 7.52 6.86 3MPENTANE 4.41 4.32 4.00 N-HEXANE 13.79 13.57 12.50 2,2 DMPENTANE 0.00 0.00 0.00 MCYCLOPENTANE 6.90 5.86 6.12 2,4 DMPENTANE 0.05 0.06 0.06 2,2 JMMEUTANE 0.00 0.00 0.00 MCYCLOPENTANE 0.05 0.06 0.06 2,2,3 TMBUTANE 0.00 0.00 0.00 BENZENE 1.65 1.11 1.36 3,3 DMPENTANE 0.12 0.13 0.13 CYCLOHEXANE 9.18 7.49 8.13 ZMHEXANE 0.99 1.07 1.04 3MHEXANE 5.86 6.44 6.18 DIMCYCPENTANES(GROUPED) 4.52 4.52 4.66 N-HEPTANE 1.01 1.25 1.22 2,3,3TMPENTANE 0.00 0.00 0.00 CUCHEXANE 1.01 1.25 1.22 <tr< td=""><td>NECHEYANE</td><td>0 24</td><td>0.24</td><td>0 22</td></tr<>	NECHEYANE	0 24	0.24	0 22
2MPENTANE 7.56 7.52 6.86 3MPENTANE 4.41 4.32 4.00 N-HEXANE 13.79 13.57 12.50 2,2 DMPENTANE 0.00 0.00 0.00 MCYCLOPENTANE 6.90 5.86 6.12 2,4 DMPENTANE 0.05 0.06 0.06 2,2 J TMBUTANE 0.05 0.06 0.00 BENZENE 1.65 1.11 1.36 3,3 DMPENTANE 0.12 0.13 0.13 CYCLOHEXANE 9.18 7.49 8.13 2MHEXANE 3.97 4.42 4.18 2,3 DMPENTANE 0.99 1.07 1.04 3MHEXANE 5.86 6.44 6.18 DIMCYCPENTANES(GROUPED) 4.52 4.52 4.66 N-HEPTANE 1.01 1.25 1.22 2,3 JTMPENTANE 0.00 0.00 0.00 OLUENE 3.58 2.88 3.47 2,2DMHEXANE 0.31 0.38 0.37 Z,3 JTMPENTANE 0.15 0.18 0.18	2 3DMC/+CVC5	1 33	1 09	
3MPENTANE 4.41 4.32 4.00 N-HEXANE 13.79 13.57 12.50 2,2 DMPENTANE 0.00 0.00 0.00 MCYCLOPENTANE 6.90 5.86 6.12 2,4 DMPENTANE 0.05 0.06 0.06 2,2,3 TMBUTANE 0.00 0.00 0.00 BENZENE 1.65 1.11 1.36 3,3 DMPENTANE 0.12 0.13 0.13 CYCLOHEXANE 9.18 7.49 8.13 ZMHEXANE 0.99 1.07 1.04 3MHEXANE 0.99 1.07 1.04 3MHEXANE 1.254 12.08 12.96 2,2DMHEXANE 1.01 1.25 1.22 2,3 JTMPENTANE 0.00 0.00 0.00 VCYCLOHEXANE 1.01 1.25 1.22 2,3 JTMPENTANE 0.31 0.38 0.37 ZHEXANE 1.01 1.25 1.22 2,3 JTMPENTANE 0.00 0.00 0.00 CYCLOHEXANE 0.31 0.38 0.37		7 56		
N-HEXANE 13.79 13.57 12.50 2,2 DMPENTANE 0.00 0.00 0.00 MCYCLOPENTANE 6.90 5.86 6.12 2,4 DMPENTANE 0.05 0.06 0.06 2,2 JTMBUTANE 0.00 0.00 0.00 2,4 DMPENTANE 0.05 0.06 0.00 2,2 JTMBUTANE 0.00 0.00 0.00 BENZENE 1.65 1.11 1.36 3,3 DMPENTANE 0.12 0.13 0.13 CYCLOHEXANE 9.18 7.49 8.13 2MHEXANE 9.18 7.49 8.13 2MHEXANE 0.99 1.07 1.04 3MHEXANE 5.86 6.44 6.18 DIMCYCPENTANES(GROUPED) 4.52 4.52 4.66 N-HEPTANE 12.54 12.08 12.96 2,3 JTMPENTANE 0.00 0.00 0.00 CULUENE 3.58 2.88 3.47 2,3 DMHEXANE 0.31 0.38 0.37 ZMBEPENTANE 0.15 0.18 0.18 <t< td=""><td></td><td>1.30</td><td></td><td></td></t<>		1.30		
2,2 DMPENTANE 0.00 0.00 0.00 MCYCLOPENTANE 6.90 5.86 6.12 2,4 DMPENTANE 0.05 0.06 0.06 2,2,3 TMBUTANE 0.00 0.00 0.00 BENZENE 1.65 1.11 1.36 3,3 DMPENTANE 0.12 0.13 0.13 CYCLOHEXANE 9.18 7.49 8.13 2MHEXANE 3.97 4.42 4.18 2,3 DMPENTANE 0.99 1.07 1.04 3MHEXANE 5.86 6.44 6.18 DIMCYCPENTANES(GROUPED) 4.52 4.52 4.66 N-HEPTANE 1.01 1.25 1.22 2,3 JTMPENTANE 1.01 1.25 1.22 2,3 JTMPENTANE 0.00 0.00 0.00 VCLOHEXANE 1.01 1.25 1.22 2,3 JTMPENTANE 0.31 0.38 0.37 2,452 2.68 3.47 2.30MHEXANE 0.31 0.38 0.37 2,3 JTMPENTANE 0.00 0.00 0.00 0.00 0.00 0	N UEVANE	4.41	4.34	
MCYCLOPENTANE 6.90 5.86 6.12 2,4 DMPENTANE 0.05 0.06 0.06 2,2,3 TMBUTANE 0.00 0.00 0.00 BENZENE 1.65 1.11 1.36 3,3 DMPENTANE 0.12 0.13 0.13 CYCLOHEXANE 9.18 7.49 8.13 2MHEXANE 3.97 4.42 4.18 2,3 DMPENTANE 0.99 1.07 1.04 3MHEXANE 5.86 6.44 6.18 DIMCYCPENTANES(GROUPED) 4.52 4.52 4.66 N-HEPTANE 12.54 12.08 12.96 2,20MHEXANE 1.01 1.25 1.22 2,3 3TMPENTANE 0.00 0.00 0.00 TOLUENE 1.01 1.25 1.22 2,3 3TMPENTANE 0.31 0.38 0.37 ZMHEXANE 0.31 0.38 0.37 ZMHEXANE 0.15 0.18 0.18 3,4DMHEXANE 0.15 0.18 0.18 3,4DMHEXANE 0.15 0.18 0.18	N-HEAANE	13.79	13.37	
2,4 DMPENTANE 0.05 0.06 0.06 2,2,3 TMBUTANE 0.00 0.00 0.00 BENZENE 1.65 1.11 1.36 3,3 DMPENTANE 0.12 0.13 0.13 CYCLOHEXANE 9.18 7.49 8.13 ZMHEXANE 3.97 4.42 4.18 2,3 DMPENTANE 0.99 1.07 1.04 3MHEXANE 5.86 6.44 6.18 DIMCYCPENTANES(GROUPED) 4.52 4.52 4.66 N-HEPTANE 1.01 1.25 1.22 2,3 JTMPENTANE 1.01 1.25 1.22 2,3 JTMPENTANE 0.00 0.00 0.00 VCYCLOHEXANE 1.01 1.25 1.22 2,3 JTMPENTANE 0.00 0.00 0.00 TOLUENE 3.58 2.88 3.47 2,3DMHEXANE 0.15 0.18 0.37 2,3DMHEXANE 0.00 0.00 0.00 ZMBEPTANE 0.15 0.18 0.18 3,4DMHEXANE 0.00 0.00 0.0	Z,Z DMPENTANE	6.00	0.00	
2,2,3 TMBUTANE 0.00 0.00 0.00 BENZENE 1.65 1.11 1.36 3,3 DMPENTANE 0.12 0.13 0.13 CYCLOHEXANE 9.18 7.49 8.13 2MHEXANE 3.97 4.42 4.18 2,3 DMPENTANE 0.99 1.07 1.04 3MHEXANE 5.86 6.44 6.18 DIMCYCPENTANES(GROUPED) 4.52 4.52 4.66 N-HEPTANE 1.01 1.25 1.22 2,3 JTMPENTANE 1.01 1.25 1.22 2,2DMHEXANE 1.01 1.25 1.22 2,3 JTMPENTANE 0.00 0.00 0.00 TOLUENE 3.58 2.88 3.47 2,3DMHEXANE 0.31 0.38 0.37 ZM3EPENTANE 0.00 0.00 0.00 ZMHEFTANE 1.62 1.98 1.95 TRIMCYCPENTANES(GROUPED) 0.27 0.29 0.31 DIMEFTANE 1.62 1.98 1.95 TRIMCYCPENTANES(GROUPED) 0.277 2.95 0.31 <td></td> <td></td> <td></td> <td></td>				
BENZENE 1.65 1.11 1.36 3,3 DMPENTANE 0.12 0.13 0.13 CYCLOHEXANE 9.18 7.49 8.13 2MHEXANE 3.97 4.42 4.18 2,3 DMPENTANE 0.99 1.07 1.04 3MHEXANE 5.86 6.44 6.18 DIMCYCPENTANES(GROUPED) 4.52 4.52 4.66 N-HEPTANE 8.48 9.37 8.94 MCYCLOHEXANE 1.01 1.25 1.22 2,3 JTMPENTANE 0.00 0.00 0.00 2,2DMHEXANE 1.01 1.25 1.22 2,3 JTMPENTANE 0.31 0.38 0.37 2,3 JTMPENTANE 0.31 0.38 0.37 2,3 DMHEXANE 0.15 0.18 0.18 3,4DMHEXANE 0.15 0.18 0.18 3,4DMHEXANE 0.27 0.29 0.31 DIMCYCPENTANES(GROUPED) 0.27 0.29 0.31 DIMCYCPENTANES(GROUPED) 0.277 0.29 0.31 DIMCYCPENTANES(GROUPED) 0.277 0.29 <td></td> <td></td> <td></td> <td></td>				
3,3 DMPENTANE0.120.130.13CYCLOHEXANE9.187.498.132MHEXANE3.974.424.182,3 DMPENTANE0.991.071.043MHEXANE5.866.446.18DIMCYCPENTANES(GROUPED)4.524.524.66N-HEPTANE8.489.378.94MCYCLOHEXANE1.011.251.222,3 JTMPENTANE0.000.000.00TOLUENE3.582.883.472,3 JDMHEXANE0.310.380.372MBEPATANE0.000.000.00MCYCLOHEXANE1.551.222,3 JTMPENTANE0.000.000.000.000.000.010.000.000.010.000.000.000.000.002,3 DMHEXANE0.150.180.150.180.183,4DMHEXANE0.150.183,4DMHEXANE0.000.003MHEPTANE1.621.981.541.891.857RIMCYCPENTANES(GROUPED)2.502.772,3 STRIMUEVANE0.300.41				
CYCLOHEXANE 9.18 7.49 8.13 2MHEXANE 3.97 4.42 4.18 2,3 DMPENTANE 0.99 1.07 1.04 3MHEXANE 5.86 6.44 6.18 DIMCYCPENTANES(GROUPED) 4.52 4.52 4.66 N-HEPTANE 8.48 9.37 8.94 MCYCLOHEXANE 12.54 12.08 12.96 2,2DMHEXANE 1.01 1.25 1.22 2,3,3TMPENTANE 0.00 0.00 0.00 TOLUENE 3.58 2.88 3.47 2,3DMHEXANE 0.31 0.38 0.37 ZM3EPENTANE 0.00 0.00 0.00 ZMHEYANE 0.15 0.18 0.18 3,4DMHEXANE 0.15 0.18 0.18 3,4DMHEXANE 0.27 0.29 0.31 DIMCYCPENTANES(GROUPED) 0.277 0.29 0.31 DIMCYCHEXANES(GROUPED) 0.277 2.95 0.31 DIMCYCHEXANES(GROUPED) 2.50 2.777 2.95 N-OCTANE 1.54 1.89				
2MHEXANE3.974.424.182,3 DMPENTANE0.991.071.043MHEXANE5.866.446.18DIMCYCPENTANES(GROUPED)4.524.524.66N-HEPTANE8.489.378.94MCYCLOHEXANE12.5412.0812.962,2DMHEXANE1.011.251.222,3,3TMPENTANE0.000.000.00TOLUENE3.582.883.472,3DMHEXANE0.310.380.372M3EPENTANE0.000.000.002MHEYANE1.150.180.183,4DMHEXANE0.150.180.183,4DMHEXANE0.000.000.002MHEPTANE1.621.981.95TRIMCYCPENTANES(GROUPED)0.270.290.31DIMCYCHEXANES(GROUPED)0.2772.950.31DIMCYCHEXANES(GROUPED)0.200.410.41				
2,3 DMPENTANE0.991.071.043MHEXANE5.866.446.18DIMCYCPENTANES(GROUPED)4.524.524.66N-HEPTANE8.489.378.94MCYCLOHEXANE12.5412.0812.962,2DMHEXANE1.011.251.222,3,3TMPENTANE0.000.000.00TOLUENE3.582.883.472,3DMHEXANE0.310.380.372MSEPENTANE0.000.000.00ZMBEPTANE0.150.180.183,4DMHEXANE0.000.000.002MHEPTANE1.621.981.95TRIMCYCPENTANES(GROUPED)0.270.290.31DIMCYCHEXANES(GROUPED)0.270.290.31DIMCYCHEXANES(GROUPED)2.502.772.95N-OCTANE1.541.891.852,35TRIMEYANE0.300.410.41				
3MHEXANE 5.86 6.44 6.18 DIMCYCPENTANES(GROUPED) 4.52 4.52 4.66 N-HEPTANE 8.48 9.37 8.94 MCYCLOHEXANE 12.54 12.08 12.96 2,2DMHEXANE 1.01 1.25 1.22 2,3,3TMPENTANE 0.00 0.00 0.00 TOLUENE 3.58 2.88 3.47 2,3DMHEXANE 0.31 0.38 0.37 ZM3EPENTANE 0.00 0.00 0.00 ZMBEPTANE 0.15 0.18 0.18 3,4DMHEXANE 0.15 0.18 0.18 3,4DMHEXANE 0.27 0.29 0.31 DIMCYCPENTANES(GROUPED) 0.27 0.29 0.31 DIMCYCHEXANES(GROUPED) 2.50 2.77 2.95 N-OCTANE 1.54 1.89 1.85				
DIMCYCPENTANES(GROUPED)4.524.524.66N-HEPTANE8.489.378.94MCYCLOHEXANE12.5412.0812.962,2DMHEXANE1.011.251.222,3,3TMPENTANE0.000.000.00TOLUENE3.582.883.472,3DMHEXANE0.310.380.372M3EPENTANE0.000.000.00ZM3EPENTANE0.150.180.183,4DMHEXANE0.150.180.183,4DMHEXANE1.621.981.95TRIMCYCPENTANES(GROUPED)0.270.290.31DIMCYCHEXANES(GROUPED)2.502.772.95N-OCTANE1.541.891.852,3 5TRIMUEYANE0.300.410.41	2,3 DMPENTANE	0.99		
N-HEPTANE 8.48 9.37 8.94 MCYCLOHEXANE 12.54 12.08 12.96 2,2DMHEXANE 1.01 1.25 1.22 2,3,3TMPENTANE 0.00 0.00 0.00 TOLUENE 3.58 2.88 3.47 2,3DMHEXANE 0.31 0.38 0.37 2M3EPENTANE 0.00 0.00 0.00 ZM3EPENTANE 0.15 0.18 0.18 3,4DMHEXANE 0.00 0.00 0.00 ZMHEPTANE 1.62 1.98 1.95 TRIMCYCPENTANES(GROUPED) 0.27 0.29 0.31 DIMCYCHEXANES(GROUPED) 2.50 2.77 2.95 N-OCTANE 1.54 1.89 1.85	JMHEXANE	5.86		
MCYCLOHEXANE 12.54 12.08 12.96 2,2DMHEXANE 1.01 1.25 1.22 2,3,3TMPENTANE 0.00 0.00 0.00 TOLUENE 3.58 2.88 3.47 2,3DMHEXANE 0.31 0.38 0.37 2M3EPENTANE 0.00 0.00 0.00 2MHEPTANE 0.11 0.38 0.37 2MHEPTANE 0.00 0.00 0.00 2MHEPTANE 0.00 0.00 0.00 2MHEPTANE 0.15 0.18 0.18 3,4DMHEXANE 0.00 0.00 0.00 3MHEPTANE 1.62 1.98 1.95 TRIMCYCPENTANES(GROUPED) 0.27 0.29 0.31 DIMCYCHEXANES(GROUPED) 2.50 2.77 2.95 N-OCTANE 1.54 1.89 1.85 2.3 5 0.30 0.41 0.41	DIMCYCPENTANES(GROUPED)	4.52		
2,2DMHEXANE 1.01 1.25 1.22 2,3,3TMPENTANE 0.00 0.00 0.00 TOLUENE 3.58 2.88 3.47 2,3DMHEXANE 0.31 0.38 0.37 2M3EPENTANE 0.00 0.00 0.00 2M3EPENTANE 0.00 0.00 0.00 2MHEPTANE 0.15 0.18 0.18 3,4DMHEXANE 0.15 0.18 0.18 3,4DMHEXANE 0.00 0.00 0.00 3MHEPTANE 1.62 1.98 1.95 TRIMCYCPENTANES(GROUPED) 0.27 0.29 0.31 DIMCYCHEXANES(GROUPED) 2.50 2.77 2.95 N-OCTANE 1.54 1.89 1.85	N-HEPTANE	8.48		
2,3,3TMPENTANE 0.00 0.00 0.00 TOLUENE 3.58 2.88 3.47 2,3DMHEXANE 0.31 0.38 0.37 2M3EPENTANE 0.00 0.00 0.00 2MHEPTANE 0.00 0.00 0.00 2MHEPTANE 3.53 4.35 4.24 4MHEPTANE 0.15 0.18 0.18 3,4DMHEXANE 0.00 0.00 0.00 3MHEPTANE 1.62 1.98 1.95 TRIMCYCPENTANES(GROUPED) 0.27 0.29 0.31 DIMCYCHEXANES(GROUPED) 2.50 2.77 2.95 N-OCTANE 1.54 1.89 1.85 2.3 5TRIMUEVANE 0.30 0.41 0.41				
TOLUENE 3.58 2.88 3.47 2,3DMHEXANE 0.31 0.38 0.37 2M3EPENTANE 0.00 0.00 0.00 2MHEPTANE 3.53 4.35 4.24 4MHEPTANE 0.15 0.18 0.18 3,4DMHEXANE 0.00 0.00 0.00 3MHEPTANE 1.62 1.98 1.95 TRIMCYCPENTANES(GROUPED) 0.27 0.29 0.31 DIMCYCHEXANES(GROUPED) 2.50 2.77 2.95 N-OCTANE 1.54 1.89 1.85 2.3 5TRIMEYANE 0.30 0.41 0.41	2,2DMHEXANE	1.01		
2,3DMHEXANE 0.31 0.38 0.37 2M3EPENTANE 0.00 0.00 0.00 2MHEPTANE 3.53 4.35 4.24 4MHEPTANE 0.15 0.18 0.18 3,4DMHEXANE 0.00 0.00 0.00 3MHEPTANE 1.62 1.98 1.95 TRIMCYCPENTANES(GROUPED) 0.27 0.29 0.31 DIMCYCHEXANES(GROUPED) 2.50 2.77 2.95 N-OCTANE 1.54 1.89 1.85 2.3 5TRIMEYANE 0.30 0.41 0.41	2,3,3TMPENTANE			
2M3EPENTANE 0.00 0.00 0.00 2MHEPTANE 3.53 4.35 4.24 4MHEPTANE 0.15 0.18 0.18 3,4DMHEXANE 0.00 0.00 0.00 3MHEPTANE 1.62 1.98 1.95 TRIMCYCPENTANES(GROUPED) 0.27 0.29 0.31 DIMCYCHEXANES(GROUPED) 2.50 2.77 2.95 N-OCTANE 1.54 1.89 1.85 2.3 5TRIMUEYANE 0.30 0.41 0.41	TOLUENE	3.58		And the second sec
2MHEPTANE 3.53 4.35 4.24 4MHEPTANE 0.15 0.18 0.18 3,4DMHEXANE 0.00 0.00 0.00 3MHEPTANE 1.62 1.98 1.95 TRIMCYCPENTANES(GROUPED) 0.27 0.29 0.31 DIMCYCHEXANES(GROUPED) 2.50 2.77 2.95 N-OCTANE 1.54 1.89 1.85 2.3 5TRIMUEYANE 0.30 0.41 0.41	2,3DMHEXANE	0.31		
4MHEPTANE 0.15 0.18 0.18 3,4DMHEXANE 0.00 0.00 0.00 3MHEPTANE 1.62 1.98 1.95 TRIMCYCPENTANES(GROUPED) 0.27 0.29 0.31 DIMCYCHEXANES(GROUPED) 2.50 2.77 2.95 N-OCTANE 1.54 1.89 1.85 2 3 5 0.30 0.41				
3,4DMHEXANE 0.00 0.00 0.00 3MHEPTANE 1.62 1.98 1.95 TRIMCYCPENTANES(GROUPED) 0.27 0.29 0.31 DIMCYCHEXANES(GROUPED) 2.50 2.77 2.95 N-OCTANE 1.54 1.89 1.85 2.3 5TRIMUEYANE 0.30 0.41 0.41				
3MHEPTANE 1.62 1.98 1.95 TRIMCYCPENTANES(GROUPED) 0.27 0.29 0.31 DIMCYCHEXANES(GROUPED) 2.50 2.77 2.95 N-OCTANE 1.54 1.89 1.85 2.3 5TRIMUEYANE 0.30 0.41 0.41	4MHEPTANE	0.15		
TRIMCYCPENTANES(GROUPED)0.270.290.31DIMCYCHEXANES(GROUPED)2.502.772.95N-OCTANE1.541.891.852.35TRIMUEVANE0.300.41	3,4DMHEXANE	0.00		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3MHEPTANE	1.62		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TRIMCYCPENTANES (GROUPED)	0.27		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DIMCYCHEXANES (GROUPED)	2.50		
2,3,5TRIMHEXANE 0.30 0.41 0.41 2,2,4TRIMHEXANE 0.03 0.03 0.03 2 DIMMERTANE 0.01 0.02 0.03	N-OCTANE	1.54		
2,2,4TRIMHEXANE 0.03 0.03 0.03	2,3,5TRIMHEXANE	0.30		
	2,2,4TRIMHEXANE	0.03		
2,201 mBF TARE 0.01 0.02 0.02	2,2DIMHEPTANE	0.01	0.02	0.02
2,2,3TRIMHEXANE 0.05 0.06 0.06	2,2,3TRIMHEXANE	0.05		
	- ,	0.00		0.00
I-NONANE 0.00 0.00 0.00				
2,4DIMHEPTANE 0.00 0.00 0.00				
E-CYCHEXANE 0.47 0.51 0.56				
3,3DIMHEPTANE 0.18 0.24 0.25				
2,6DIMHEPTANE 0.06 0.08 0.08				
E-BENZENE 0.09 0.08 0.10				
2,3DIMHEPTANE 0.03 0.04 0.04				
M-XYLENE 0.65 0.60 0.72				
P-XYLENE 0.13 0.12 0.14				
3,4DIMHEPTANE 0.12 0.16 0.16				
3EHEPTANE 0.03 0.04 0.05	3EHEPTANE	0.03	0.04	0.05

MANLEY GAS TESTING INC.

120 DOCK ROAD - ODESSA, TEXAS-432-367-3024

A SAMPLE OF CORRAL CONDENS	ATE (1/18/23)	
C	APILLARY EXTE C-6+ ANALYSI		
(N	ORMALIZED TO		PAGE NO. 2
	=================		
4MOCTANE	0.10	0.13	0.13
3MOCTANE	0.04	0.06	0.06
O-XYLENE	0.07	0.07	0.08
IC4CYCPENTANE	0.03	0.04 0.24	0.04 0.24
N-NONANE	0.18 0.04	0.24	0.24
I-DECANE	0.04	0.05	0.06
1E1MCYC6	0.03	0.04	0.05
IC3BENZENE	0.20	0.29	0.30
2,3DMOCTANE	0.33	0.48	0.50
NC4CYCC6	0.05	0.48	0.07
NC3BENZENE	0.02	0.02	0.02
M+P E-TOLUENE	0.02	0.02	0.04
O-E-TOLUENE	0.06	0.07	0.08
2,2DMOCTANE	0.16	0.23	0.23
TERTBUTYLBENZENE	0.03	0.04	0.05
	0.01	0.01	0.01
	0.03	0.04	0.04
IC4BENZENE	0.05	0.06	0.07
N-DECANE	0.02	0.04	0.04
UNKNOWN C-6'S	0.00	0.00	0.00
UNKNOWN C-7'S	0.00	0.00	0.00
UNKNOWN C-8'S	0.03	0.04	0.04
UNKNOWN C-9'S	0.16	0.22	0.22
UNK C10'S THRU C14'S	0.02	0.03	0.03
UNK C15'S THRU C16'S	0.00	0.00	0.00
UNK C17'S THRU C20'S	0.00	0.00	0.00
TOTAL	100.00	100.00	100.00
	===================	=======================================	: = = = = = = = = = = = = = = = = = = =
COMPONENT GROUPINGS (PARAFF			
	LIQ		=======================================
			_
TOTAL C-6'S 45.06			SP GRAV C6+ - 0 7220
TOTAL C-7'S 40.11			
TOTAL C-8'S 12.37	14.51	14.71	GAL/LB, $C6+ = 15.800$
TOTAL C-9'S 1.53	2.00	2.05	CF/GAL, $C6+ = 24, 139$
TOTAL C-9'S 1.53 TOTAL C-10'S 0.91	1.29	1.35	LB/GAL, $C6+ = 6.028$
TOTAL C-11 THRU C-14 0.02	0.03	0.03	
TOTAL C-15 THRU C-16 0.00	0.00	0.00	MOL 6+ AROMATICS = 6.41
TOTAL C-17 THRU C-20 0.00	0.00	0.00	
		100.00	-
TOTAL 100.00	100.00		

MANLEY GAS	TESTING, INC.
P.O. DRAWER 193 OFFICE(432)367-3024 FAX(432)367	ODESSA, TEXAS 79760 -1166 E-MAIL: MANLEYGAST@AOL.COM
CHARGE 23 - 5319 REC. NO 0 TEST NUMBER 61221 SAMPLE TYPE SPOT	DATE SAMPLED 01-18-23 DATE RUN 01-19-23
STATION NO PRODUCER ENLINK SAMPLE NAME CORRAL CANYON BEFORE DEHY RECEIVED FROM ENLINK MIDSTREAM LOCATION MIDLAND TEXAS	Y
FLOWING PRESSURE 1053 PSIG	FLOWING TEMPERATURE 58 F
SAMPLED BY: 182	CYLINDER NO MGT-030
HYDROGEN SULFIDE 0.0000 NITROGEN 0.9174 CARBON DIOXIDE 0.1488 METHANE 78.0879 ETHANE 11.7966 S.148 PROPANE 5.4211 ISO-BUTANE 0.7697 NOR-BUTANE 1.7082 NOR-BUTANE 0.3815 NOR-PENTANE 0.4073 NOR-PENTANE. 0.2989 O.148 HEXANES 0.2989 O.130 HEPTANES + 0.0626	'Z' FACTOR (DRY) = 0.9964 'Z' FACTOR (WET) = 0.9960
TOTALS 100.0000 5.871	
CALCULATED SPECIFIC GRAVITIES IDEAL, DRY 0.7297 IDEAL, WET 0.7278 REAL, DRY 0.7320 REAL, WET 0.7304	CALCULATED GROSS HEATING VALUES BTU/CF - IDEAL, DRY 1260.8 BTU/CF - IDEAL, WET 1238.7 BTU/CF - REAL, DRY 1265.4 BTU/CF - REAL, WET 1243.7
* BASED ON GPA STANDARDS 2261-20 / 2145-1	16 / 2172-19
DISTRIBUTION AND REMARKS:	
T. LEBLANC / B. BROWN / S. TIRMZI / A. OF	RTIZ / L. GUELKER
ANALYZED BY: CM	APPROVED:

MANLEY GAS TESTING INC. 120 DOCK ROAD - ODESSA, TEXAS-432-367-3024

A SAMPLE OF CORRAL CANY	ON INLET BEFORE DEHY -	01-18-23	
	CAPILLARY EXTENDED C-6+ ANALYSIS (NORMALIZED TO 100%)		PAGE NO. 1
COMPONENT	MOL%	WT%	
COMPONENT	1.249 6.520 20.459 10.162 23.353 0.216 9.689 0.047 0.000 1.783 0.097 9.516 1.636 0.696 1.684 3.222 2.916 4.675 0.141 0.000 0.803 0.021 0.253 0.000 0.045 0.010 0.138 0.023 0.356 0.130 0.023 0.356 0.130 0.003 0.011 0.000 0.003 0.011 0.000 0.000 0.001 0.000 0.000 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0	1.232 5.601 20.196 10.032 23.054 0.248 9.341 0.054 0.000 1.596 0.111 9.174 1.878 0.799 1.933 3.624 3.347 5.258 0.185 0.000 0.847 0.027 0.331 0.000 0.059 0.013 0.180 0.030 0.457 0.170 0.030 0.457 0.170 0.005 0.016 0.000 0.005 0.016 0.000	

MANLEY GAS TESTING INC. 120 DOCK ROAD - ODESSA, TEXAS-432-367-3024

A SAMPLE OF CORRAL CANY		DEHY - 01-18-23	
		ENDED IS	
COMPONENT	MOL%		
4MOCTANE 3MOCTANE 3MOCTANE 0-XYLENE IC4CYCPENTANE IC4CYCPENTANE N-NONANE I-DECANE IC3BENZENE 2, 3DMOCTANE 3EOCTANE 3EOCTANE NC4CYCC6 NC3BENZENE M+P E-TOLUENE 0-E-TOLUENE 2, 2DMOCTANE TERTBUTYLBENZENE 1, 3, 5TMBENZENE 1, 3, 5TMBENZENE 1, 3, 6DMOCTANE IC4BENZENE N-DECANE	0.000 0.000 0.005 0.000 0.010 0.000 0.000 0.000 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.000 0.000 0.012 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.006\\ 0.000\\ 0.001\\ 0.001\\ 0.000\\ 0.007\\ 0.000\\ 0.014\\ 0.000\\ 0.013\\ 0.000\\ 0.013\\ 0.000\\ 0.013\\ 0.000\\ 0.002\\ 0.004\\ 0.000\\ 0.004\\ 0.000\\ 0.019\\ 0.000\\ 0.019\\ 0.000\\ 0.011\\ 0.003 \end{array}$	
UNKNOWN C-6'S UNKNOWN C-7'S UNKNOWN C-8'S UNKNOWN C-9'S UNK C10'S THRU C14'S UNK C15'S THRU C16'S UNK C17'S THRU C20'S	0.004 0.001	0.000 0.000 0.000 0.007 0.003 0.000 0.000	,
TOTAL	100.000	100.000	
COMPONENT GROUPINGS (PAR	AFFINS-NAPTHENES		
	0L% WT%	* C6+ CHARACTERIZATION	
TOTAL C-6'S 82 TOTAL C-7'S 15 TOTAL C-8'S 1 TOTAL C-9'S 0 TOTAL C-10'S 0 TOTAL C-10'S 0 TOTAL C-11 THRU C-14 TOTAL C-15 THRU C-16 0 TOTAL C-17 THRU C-20 0	.731 80.226 .992 18.099 .189 1.542 .058 0.084 .029 0.046 .001 0.003 .000 0.000 .000 0.000	MOL.WEIGHT = 87.299 SP.GRAVITY = 3.0142 BTU/FT3(DRY) = 4726.681 BTU/FT3(WET) = 4645.314 CU.FT./GAL = 25.652 GAL/CU.FT. = 0.038983 MOL% C6+ AROMATICS = 2.6	564
TOTAL 100	.000 100.000 		

2.Technical

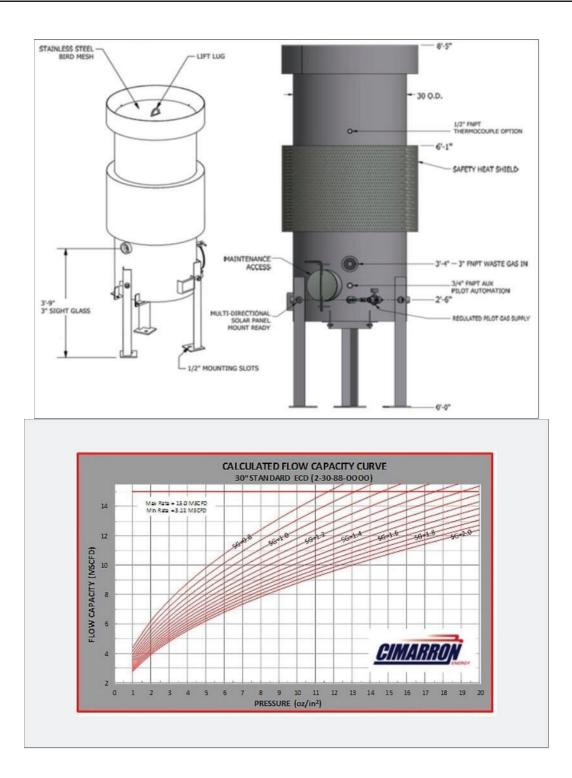
ECD - 30" OD x 102" OAL x 1.6 MMBTU/HR

ECD30STD

Data		Paramete	er		
Size	30" OD x 102" OAL				
Capacity (Third Party Verified)	11 MSCFE) @ 10 oz/in using S	G 1.52/2500 BTU/SCF		
Heat Duty Rating		1.6 MMBTU/HR	R Max		
Burner Size		88 Orifices, 19"L	x 16" W		
Stack		Un-insulate	ed		
Stack Internal Operating Temperature	500-1200°F				
Inlet Temp	-20-1200°F				
Pressure Rating	Atmospheric				
Electrical Classification	Non-Hazardous				
Wind Load	N/A, <20' OAL				
Estimated Weight (No Concrete Block):	810 lbs				
Connection Schedule	QTY	Size	Туре		
Waste Gas Inlet	1	3"	NPT		
Pilot Gas (7 psig setpoint)	1	1/4"	NPT		
Handhole Cover	1	8"	Assembly		
Aux Pilot Automation (plugged)	1	3/4"	NPT		

Paint	
External	Coated with silicone resin, Hi-Heat Industrial Black

Notes
Pilot Consumption: Propane: 15 SCFH @ 4 psig, Natural Gas: 30 SCFH @ 8 - 10 psig (per ignitor)
OOOO (Quad O) Certified. >99.99% TVOC DRE when operating within flow rate guidelines.
Meets all EPA and CDPHE Regulations. Certified USEPA 40 CFR 60, App. A, Source Emissions Test Methods.

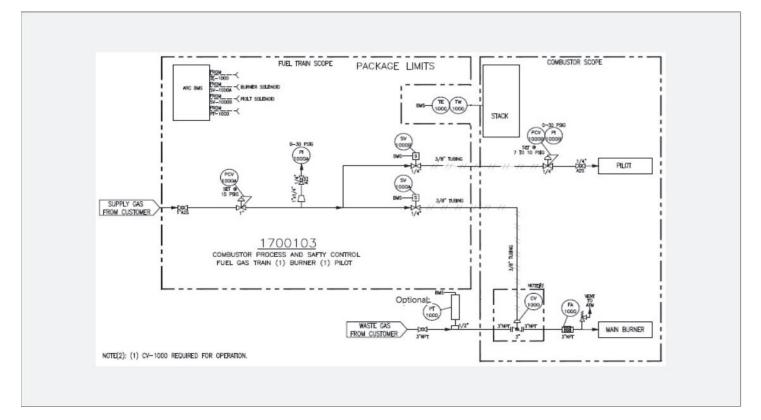

Accessories - Included

Description	OEM	OEM Model #	QTY
2" Flame Arrestor	Generic	N/A	1
Stainless Steel Burner Jets	Generic	Generic	88
Pilot Regulator, 1/4"	Fisher	67CR-206	1
Pilot Isolation Ball Valve 1/4 STL 2000# FP	Chemoil	2027WC-02	1
4'x4'x6" Concrete Block	Generic	Generic	1

Quote: 17596 Rev 0	Power Quote V2.2, © Cimarron Energy, 6/24/2021	Page 5

Unit Illustrations (For information only, actual drawings to be provided upon purchase)

Quote: 17596 Rev 0



Fuel Train: ECD Process & Safety Control

Notes

Requires a BMS for full functionality. A temperature sensor (sold separately) will generate a signal to the pilot solenoid and/or waste gas ESD to shut in the event a high temperature setpoint is met on the stack. Includes a pressure transducer (sold separately) will generate a signal to the pilot solenoid and/or waste gas ESD to shut in the event a signal to the pilot solenoid and/or waste gas ESD to shut in the event a signal to the pilot solenoid and/or waste gas ESD to shut in the event sensed pressure falls below the minimum setpoint. Isolation Valves, Inline Filters, Wiring Kit included. Components ship loose unless factory installation on unit option purchased.

Description	OEM	Syteline PN	QTY
Regulator, 1",5-20#,3/8"	Fisher 627-492	115905	1
		24V: 149571	
Solenoid, 3-Way, 1/4" NPT, 24VDC (12VDC as Option)	ASCO EF	12V: 145846	1
		24V: 159548	
Solenoid, 2-Way, 1/4" NPT, 24VDC, (12VDC as Option)	ASCO EF	12V: 159547	1
Gauge, Pressure 30 PSIG, Liquid Filled	Generic	13683	2
Valve, Ball, 1/4" NPT, 200#, FP, CS	Generic, 1/4" A2S	116471	1
Valve, Ball, 1" NPT, 200#, FP, CS	Generic, 1" A2S	143269	1

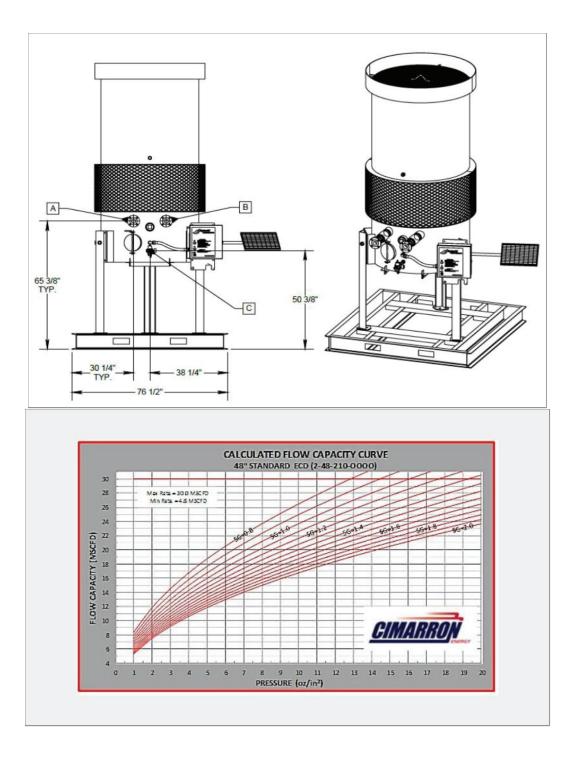
ECD - 48" OD x 139" OAL x 2 MMBTU/HR

ECD48

Data		Paramete	er
Size	48" OD x 139" OAL		
Capacity (Third Party Verified)	30 MSCFE	D @ 10 oz/in using S	G 1.52/2500 BTU/SCF
Heat Duty Rating		2 MMBTU/HR	Мах
Burner Size		210 Orifices, 26"L	_ x 27" W
Stack		Un-insulate	ed
Stack Internal Operating Temperature		500-1200°	Ϋ́F
Inlet Temp		-20-1200°	F
Pressure Rating	Atmospheric		
Electrical Classification	Non-Hazardous		
Wind Load	N/A, <20' OAL		
Estimated Weight (No Concrete Block):	1750 lbs		
Connection Schedule	QTY	Size	Туре
Waste Gas Inlet	1	3"	NPT
Pilot Gas (7 psig setpoint)	1	1/4"	NPT
Handhole Cover	1	8"	Assembly
Aux Pilot Automation (plugged)	1	3/4"	NPT

Paint	
External	Coated with silicone resin, Hi-Heat Industrial Black

Notes	
Pilot Consumption: Propane: 15 SCFH @ 4 psig, Natural Gas: 30 SCFH @ 8 - 10 psig (per ignitor)	
OOOO (Quad O) Certified. >99.99% TVOC DRE when operating within flow rate guidelines.	
Meets all EPA and CDPHE Regulations. Certified USEPA 40 CFR 60, App. A, Source Emissions Test Methods.	

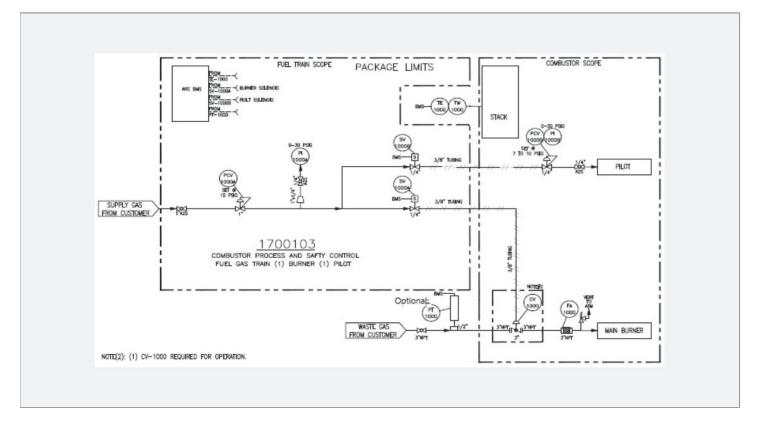

Accessories - Included

Description	OEM	OEM Model #	QTY
2" Flame Arrestor	Generic	N/A	1
Stainless Steel Burner Jets	Generic	Generic	210
Pilot Regulator, 1/4"	Fisher	67CR-206	1
Pilot Isolation Ball Valve 1/4 STL 2000# FP	Chemoil	2027WC-02	1
6'x6'x6" Concrete Block	Generic	Generic	1

Quote: 17596 Rev 0	Power Quote V2.2, © Cimarron Energy, 6/24/2021	Page 8

Unit Illustrations (For information only, actual drawings to be provided upon purchase)

Quote: 17596 Rev 0



Fuel Train: ECD Process & Safety Control

Notes

Requires a BMS for full functionality. A temperature sensor (sold separately) will generate a signal to the pilot solenoid and/or waste gas ESD to shut in the event a high temperature setpoint is met on the stack. Includes a pressure transducer (sold separately) will generate a signal to the pilot solenoid and/or waste gas ESD to shut in the event a signal to the pilot solenoid and/or waste gas ESD to shut in the event a signal to the pilot solenoid and/or waste gas ESD to shut in the event sensed pressure falls below the minimum setpoint. Isolation Valves, Inline Filters, Wiring Kit included. Components ship loose unless factory installation on unit option purchased.

Description	OEM	Syteline PN	QTY
Regulator, 1",5-20#,3/8"	Fisher 627-492	115905	1
		24V:149571	
Solenoid, 3-Way, 1/4" NPT, 24VDC (12VDC as Option)	ASCO EF	12V: 145846	1
		24V: 159548	
Solenoid, 2-Way, 1/4" NPT, 24VDC, (12VDC as Option)	ASCO EF	12V: 159547	1
Gauge, Pressure 30 PSIG, Liquid Filled	Generic	13683	2
Valve, Ball, 1/4" NPT, 200#, FP, CS	Generic, 1/4" A2S	116471	1
Valve, Ball, 1" NPT, 200#, FP, CS	Generic, 1" A2S	143269	1

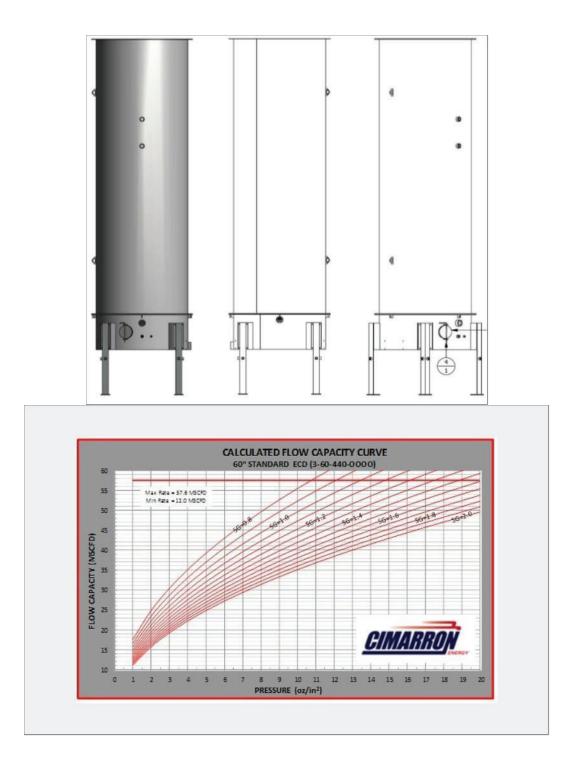
ECD - 60" x 13' x 6.1 MMBTU/HR

ECD60

Data	Parameter
Size	60" OD x 13'
Capacity (Third Party Verified)	57.6 MSCFD @ 10 oz/in using SG 1.52/2500 BTU/SCF
Heat Duty Rating	6.1 MMBTU/HR Max
Burner Size	440 Orifices, 34"L x 41" W
Stack	Insulated
Stack Internal Operating Temperature	600-1200°F
Inlet Temp	-20-1200°F
Pressure Rating	Atmospheric
Electrical Classification	Non-Hazardous
Wind Load	N/A, <20' OAL
Estimated Weight (No Concrete Block):	2150 lbs

Connection Schedule	QTY	Size	Туре
Waste Gas Inlet	1	3"	NPT
Pilot Gas (7 psig setpoint)	1	1/4''	NPT
Handhole Cover	1	8''	Assembly
Aux Pilot Automation (plugged)	1	3/4"	NPT

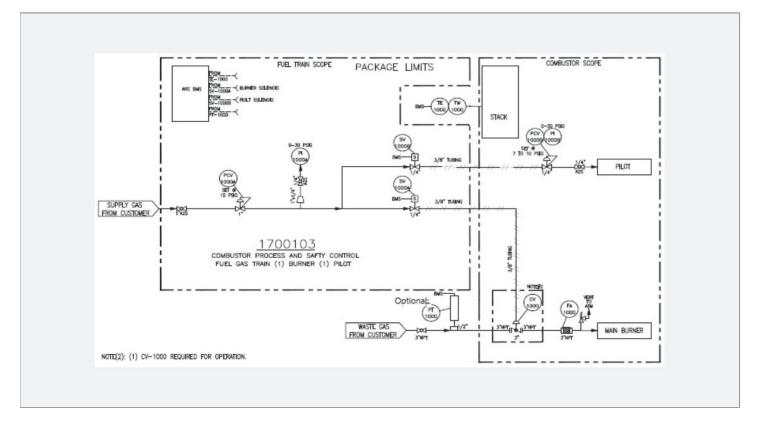
	Paint
External	Coated with silicone resin, Hi-Heat Industrial Black


Notes
Pilot Consumption: Propane: 15 SCFH @ 4 psig, Natural Gas: 30 SCFH @ 8 - 10 psig (per ignitor)
OOOO (Quad O) Certified. >99.99% TVOC DRE when operating within flow rate guidelines.
Meets all EPA and CDPHE Regulations. Certified USEPA 40 CFR 60, App. A, Source Emissions Test Methods.

Accessories - Included

Description	OEM	OEM Model #	QTY
3" Flame Arrestor	Generic	N/A	1
Stainless Steel Burner Jets	Generic	Generic	440
Pilot Regulator, 1/4"	Fisher	67CR-206	1
Pilot Isolation Ball Valve 1/4 STL 2000# FP	Chemoil	2027WC-02	1
8'x8'x8" Concrete Block	Generic	Generic	1

Unit Illustrations (For information only, actual drawings to be provided upon purchase)



Fuel Train: ECD Process & Safety Control

Notes

Requires a BMS for full functionality. A temperature sensor (sold separately) will generate a signal to the pilot solenoid and/or waste gas ESD to shut in the event a high temperature setpoint is met on the stack. Includes a pressure transducer (sold separately) will generate a signal to the pilot solenoid and/or waste gas ESD to shut in the event a signal to the pilot solenoid and/or waste gas ESD to shut in the event a signal to the pilot solenoid and/or waste gas ESD to shut in the event sensed pressure falls below the minimum setpoint. Isolation Valves, Inline Filters, Wiring Kit included. Components ship loose unless factory installation on unit option purchased.

Description	OEM	Syteline PN	QTY
Regulator, 1",5-20#,3/8"	Fisher 627-492	115905	1
		24V:149571	
Solenoid, 3-Way, 1/4" NPT, 24VDC (12VDC as Option)	ASCO EF	12V: 145846	1
		24V: 159548	
Solenoid, 2-Way, 1/4" NPT, 24VDC, (12VDC as Option)	ASCO EF	12V: 159547	1
Gauge, Pressure 30 PSIG, Liquid Filled	Generic	13683	2
Valve, Ball, 1/4" NPT, 200#, FP, CS	Generic, 1/4" A2S	116471	1
Valve, Ball, 1" NPT, 200#, FP, CS	Generic, 1" A2S	143269	1

ECD - Knockout Pot - 20"x36" with Sandpiper Pump

DRIP	2036SP
------	--------

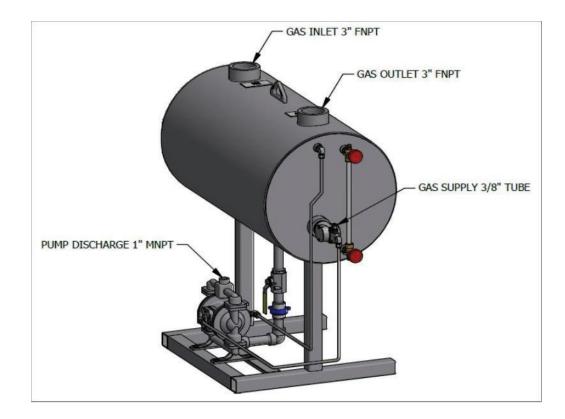
Vessel Connections	QTY	Size	Туре
Inlet/Outlet	2	3"	3000# NPT
Drain	1	2"	3000# NPT
Pump Gas Supply	1	3/8"	Tubing
Pump Discharge	1	1"	MNPT

Paint		
Specification	Cimarron Standard (CIM-ENG-MECH-001)	
External Surface Preparation	SSPC-SP3	
External Primer Coat	Not Included/Optional Adder	
External Intermediate Coat	Not Included/Optional Adder	
External Top Coat	Alkyd Enamel	
Color	To be provided by Customer ARO	
Internal	None	

KO Drum

Data	Parameter	
Size:	20"x36"	
Rating:	15 psig @-20/200°F	
ASME Code Stamped	No	
NB Registered	No	
Shell Material	SA-53B, 1/4" Thick	
Top/Base Material	SA-36	
NDE	Air Test	
Estimated Weight (Empty):	450	

Accessories


Description	OEM	OEM Model #	QTY
GAUGE COCKS,SET,1/2"X5/8",250PSIG,BRASS	Generic	Generic	1
VALVE,BALL,1"NPT,2000#,FP,CS,W/STD,HD	Generic	Generic	1
LEVEL CONTROLLER,2",2"X6"FLOAT,500PSI,SS	Snaptrol	7400	1
PUMP,SANDPIPER,1/2"FNPT/1"MNPT,ALUMINUM	Sandpiper	G05	1

Optional Accessories Description	OEM	OEM Model #	QTY
Safety Float 3"x6" w/ Internal Mesh Pad	Generic	122356	1

Quote: 17596 Rev 0	Power Quote V2.2, © Cimarron Energy, 6/24/2021	Page 14
--------------------	--	---------

Unit Illustrations (For information only, actual drawings to be provided upon purchase)

ARControl™ Burner Management System

ARC

Standard Features for the ARControl[™] Product Family

• Increase controller capabilities through firmware upgrades, no need to purchase a new model.

• Fully automated direct spark ignition with flame sensing capability. Control both pilot and main burner.

• Customer PLC compatibility through Modbus RS-485/SCADA communications with data logging capability.

• 12 / 24 VDC compatible multi-burner applications (one box can control up to 2 burners)

• Class I Div 1 & Class I Div 2 approved configurations available. For Class 1 Div 1 classifications, controller to be mounted outside classified area using remote stand.

Firmware Features:	Base	Flare	BMS	Dual
Auto-Ignition	Yes	Yes	Yes	Yes
Advanced Data Logging	Yes	Yes	Yes	Yes
Modbus RTU over RS-485	Yes	Yes	Yes	Yes
Temperature Monitoring	Yes	Yes	Yes	Yes
Multiple Process Control	No	No	Yes	Yes
Temperature, Pressure, High Level Shutdown	No	No	Yes	Yes
High Temperature Shutdown	No	No	Yes	Yes
Two Pilot Control Capability	No	Yes	No	Yes
Two Burner Control Capability	No	No	No	Yes
Types of Equipment	Flares/ECDs	Flares/ECDs	All	All

Arc Burner Mangement System Individual Options

Description	SL PN
	1960-
ARControl Solar Package 12VDC 12Ah	160
ARControl Solar Package 12VDC 90W	150907
ARControl Solar Package 24VDC 180W	150906
ARControl Solar Package 24VDC 90W	150905

3.Documentation

The tables below list the information/documentation that is provided standard (free of charge) or can be provided as an option. Customer to ensure all necessary information and conditions submitted to Cimarron to complete deliverable.

3.1. Standard Documentation Packages (Free of Charge)

See sections 3.3 and 3.4 for pricing on documentation not included with equipment.

Engineering Documentation

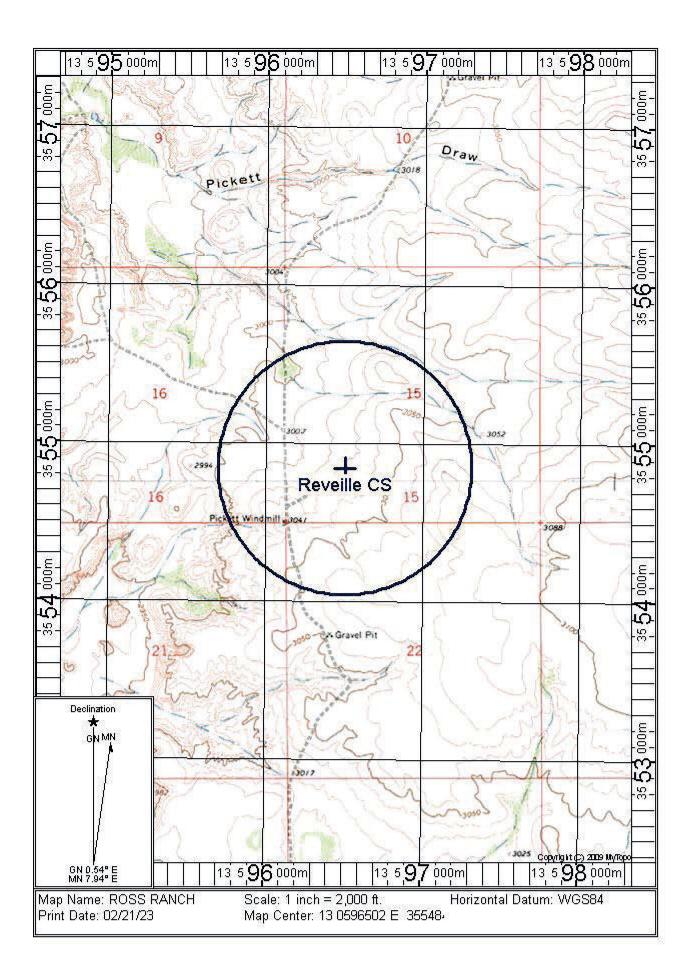
Cimarron will provide the following documentation along with the equipment on this project:				
Туре	Prod. Equip.	VRUs	Flares	Combustors
Piping And Instrumentation Diagram (P&ID)	Yes	Yes	Yes	Yes
Mechanical General Arrangement (GA)	Yes	Yes	Yes	Yes
ASME BPVC Sec VIII Div 1 Pressure Vessel Calcs	Yes	Yes	N/A	N/A
Ladder Logic Diagrams	No	No	Yes	No
Control Enclosures Drawings	No	No	Yes	No
Operating & Maintenance Manuals (Upon RTS) (One manual when Included, \$300 ea. additional)	No	No	Yes, QTY 1	Yes, QTY 1

Fabrication Documents & Testing

Cimarron will provide the following documentation along with the equipment on this project:				
Туре	Prod. Equip.	VRUs	Flares	Combustors
Visual Inspection	Yes	Yes	Yes	Yes
Dimensional Check	Yes	Yes	Yes	Yes
Factory Acceptance Test	N/A	Yes	Yes (ex. HP Line)	No
Dry Film Thickness: Painted CS Components Only	No	No	Yes	Yes
Radiography Test Documentation:	No	No	No	No
Dye Penetrant Examination Documentation:	No	No	No	No
Ultrasonic Testing Documentation:	No	No	No	No
Magnetic Particle Examination Documentation:	No	No	No	No
Hydro-Testing Chart and Calibration Certificate:	Yes	Yes	No	No
Pneumatic Testing Extent (where Applicable)	Yes	Yes	Yes	No
Hardness/Impact Testing	No	No	No	No
Heat Maps/Weld Maps	No	No	No	No
PMI	No	No	No	No
MTRs	No	No	No	No
Manufacturing Record Books (MRB)	No	No	No	No

Quote: 17596 Rev 0

Power Quote V2.2, © Cimarron Energy, 6/24/2021


Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A map is included in this section.

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

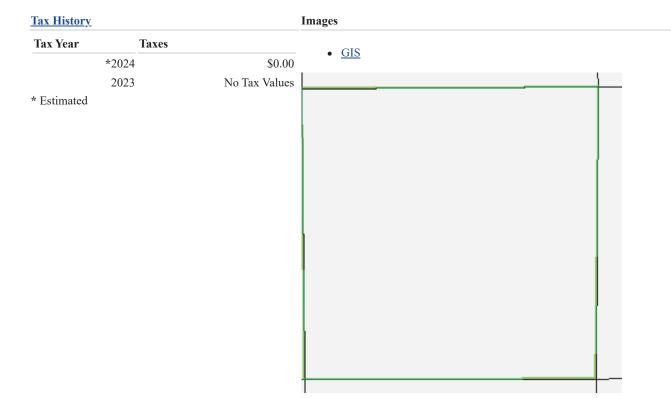
Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. ☑ A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. ☑ A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. \square A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \square A sample of the letters sent to the owners of record.
- 5. I A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. \square A sample of the public notice posted and a verification of the local postings.
- 7. Z A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🗹 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. ☑ A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.


69	Domestic Mail O	D MAIL [®] RE	
ц Ф	For delivery inform	ation, visit our webs	ite at www.usps.com®.
പ	OFF	ICIA	
472	Postage Certified Fee	\$	\$0.00 US POSTAGE 3/31/2023 062512395454
1000	Return Receipt Fee (Endorsement Required) Restricted Delivery Fee		87113 000025732
2870	(Endorsement Required) Total Postage & Fees	\$	-
HIDY	Sent To Street & Apt. No., or PO Box No. [0] City, State, ZIP+4	County M W. Greene	anager St. Slite 110 Ø8220
	PS Form 3800, July 201	of the second	See Reverse for Instructions

- <u>Account Search</u>
- View Created Report(s)
- <u>Help?</u>
- <u>Eddy County Website</u>
- <u>County Treasurer</u>
- <u>County Assessor</u>
- <u>County Clerk</u>
- Logout Public

Account: R091587 *Mill Levy does not include Special District Rates such as Penasco, Carlsbad Soil & Water, Central Valley, Eagle Draw, PVC, Cottonwood, and Hackberry

Location	Owner Information	Assessme	ent History	
Account Number R091587 Situs Address 390-5 LONGHORN ROAD	Owner Name BUREAU OF LAND MANAGEMENT Owner Address UNITED STATES OF AMERICA	Actual V (2023)	alue	\$1,152
Tax Area CO_NR - CARLSBAD-OUT (Nonresidential)		Primary Taxable		\$384
Parcel Number 4-172-147-265-265		Exempt		(\$384)
Legal Summary Quarter: NE S: 15 T: 25S R: 29E Quarter: NW S: 15 T: 25S R: 29E Quarter: SW S: 15		Adjusted Taxable		\$0
T: 25S R: 29E Quarter: SE S: 15 T: 25S R: 29E ALL EXEMPT		Tax Ar	ea: CO_NR 22.56600	v
Map Number 384-15		Туре	Actual Ass	essed Acres
Parcel Size 640		Exempt Land	\$1,152	\$384 640.000

General Posting of Notices – Certification

ylieles I, M, ke Luclut , the undersigned, certify that on {DATE}, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the {CITY\TOWN\VILLAGE} of {COUNTY NAME} County, State of New Mexico on the following dates: EDDY CARSONS

4/12/23 - Neveille 1. Facility entrance {DATE} JANelle Whitlock Municipal Coupler - 4/12/23 2. {Location 2}{DATE} Carlsbad Library -4/12/23 Carlsbad City Hall - 4/12/23 3. {Location 3}{DATE} 4. {Location 4}{DATE}

Signed this 12 day of April , 2023,

Pluce L

4/12/23

Mike Luchest

Printed Name

Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

ORTUNITIES

G FACILITY e-RN - LPN

CE Assistant orker

ALTH re Aide

ite and click "A

ical, social, e and those w needs

0

EMPLOYEE BENEFITS

✓ Health Insurance

✓ 403(b) Retirement

✓ Life Insurance

CITY OF CARLSBAD MUNICIPAL COURT PENALTY ASSESSMENT LIST

0

0

NOTICE

Delaware G&P, LLC announces its application to the New Mexico Environment Department for an air qua permit for the modification of its compressor station facility. The expected date of application submittal

Pollutants	Pounds per hour	Tons per year
Particulate Matter (PM)	2,23 pph	9.78.tpy
PM to	2.23 pph	9.78 tpy
PM as	2,23 pph	9,78 tpy
Sulfur Dioxide (SD ₂)	1.26 pph	5.50 tpy
Nitrogen Oxides (NO.)	21.79 pph	95.45 tpy
Carbon Monoxide (CO)	41.92 pph	183.63 tpy
Volatile Organic Compounds (VOC)	49.85 pph	238.36 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	5.60 pph	26.51 tpy
Grando Maurier Glas Emissions at Total COunt	ola	315300 43 toy

CASA

Delaware G&P, LLC; 1722 Routh St. Suite 1300, Dallas, TX 75201

If you have any comments about the construction or operation of this facility, and you w

Elle es un aviso de la oficina de Calidad del Aire del Departamento del Medio Amblente de Nuevo Movico. Norrea de las emplusoses productos non un el entre internationale de Medio Amblente de Anno Movico.

nteer lered

irt you?

Crisis Line:

eat infection &

need of volunteers who want to make a difference!

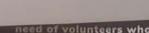
NOTICE

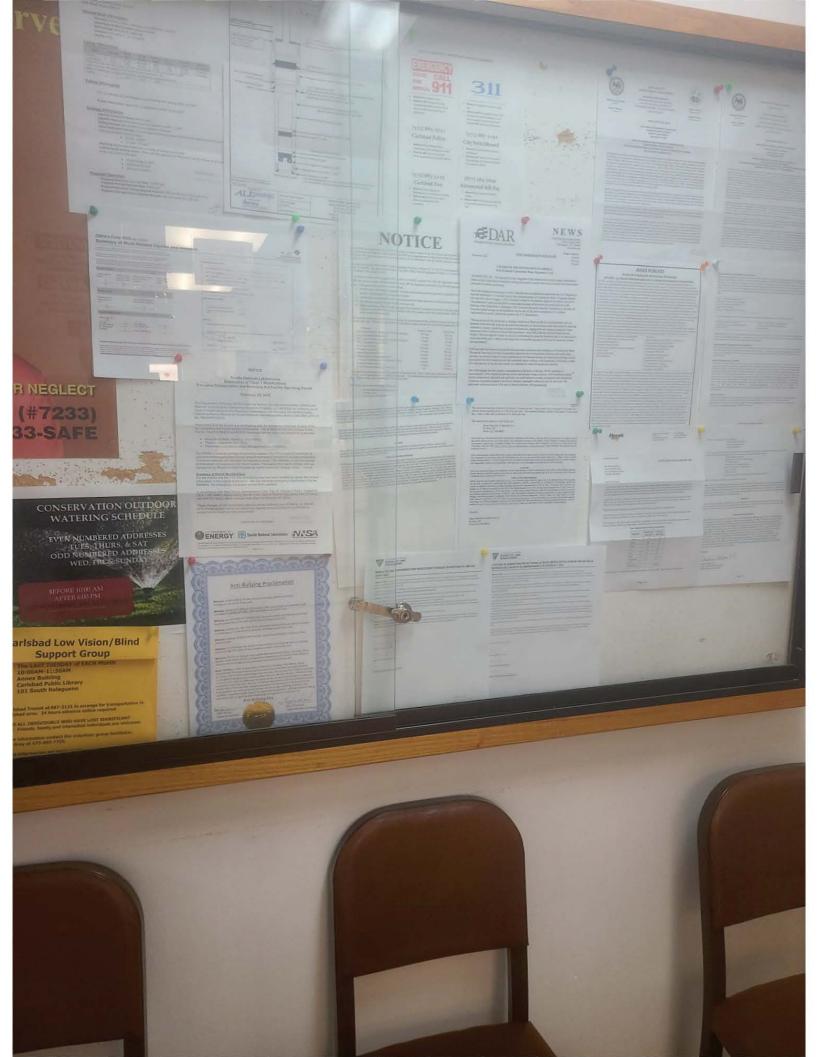
permit to the modification of its compressor station facility. The expected date of application sobmittal to the Air Quality Bureau is March 31, 2023.

The exact location for the proposed facility known as, Red Raider Compressor Station, is at UTM Zone 13.5, UTM Easting 597,280 m, UTM Northing 3,555,400 m. The approximate location of this facility is 12.94 miles southeast of Loving, NM in Eddy county.

The proposed modification consists of adding six Caterpillar 3612A4 engines.

Pollutant:	Pounds per hour	Tons per ye
Particulate Matter (PM)	2.23 pph	9.78-tpy
PM as	2.23 pph	9.78 tpy
PMas	2.23 pph	9,78 tpy
Sulfur Dioxide (502)	1:26 pph	S.50 tpy
Nitrogen Oxides (NO _x)	21.79 pph	95.45 tpy
Carbon Monoxide (CO)	41.92 pph	183.63 tpy
Volatile Organic Compounds (VOC)	49.85 pph	238.36 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	5.60 pph	26.51 tpy
Green House Gas Emissions as Total CO.e	:n/a	115300.43 tp


The owner and/or operator of the Facility is: Delaware G&P, LLC; 1722 Routh St. Suite 1300, Dallas, TX 75201


If you have any comments about the construction or operation of this facility, and you w (Fyou have any comments about constructions oper automatics) in writing to this address be made as part of the permit review process, you mult submit your comments in writing to this address Permit Programs Manager, New Meekico Environment Department; Air Quality Bureau, 525 Camino de los Marquez, Suite 1; Santa Fe, New Meekico 37505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary along the Department may have not yet received the permit application. Please include a legible return malling address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in

Este es un aviso de la oficina de Calidad del Airo del Departamento del Medio Ambiente de Nuevo Mési, acerca de las emisiones producidas por un establecimiento en esta área. Si usted deser información en español, por favor comuniquese con esa oficina al teléfono 505-629-3395.

SANE program Advocacy Center 24 Hour Sexual Assault Crisis Line: (575) 303-7070

This service is available 24 h whether or not you decide to enforcement, and there is n for our services. 575-303 1313 W Mermod SPEAK Program

1313 W Merm

YOU KNEW YOU WERE GOO ENOUGH? VHAT LIFE COULD BE LIKE IF

FACEBOOK GROUP

THOUT A SHADOW OF A DO YOU WERE GOOD ENOUGH

HAVE BEEN RAISED TO BELIEVE THAT WHAT YOU FE AVE BEEN NIMPORTANT, YOU DEVELOP INTO SON ANT AND PEOPLE-PLEASES, LACKS BOUNDARIES, IS THE SELF. ANXIOUS, AND HAS FEW SKILLS TO CHAP LIVES. LETS GET STARTED ON YOU TODAY!!

Group and One on One coaching with Valerie McArthur Life Coach/ Teacher/ Mentor specializing in Codependency

> PLEASE JOIN BY USING THE QR CODE

回然然回

NOTICE

Delaware G&P, LLC announces its application to the New Mexico Environment Department for an air quality permit for the modification of its compressor station facility. The expected state of application submittal to the Air Quality Bureau is March 31, 2023.

The exact location for the proposed facility known as, Reveille Compressor Station, is at UTM Zone 13.5, UTM Easting 596,502 m, UTM Northing 3,554,846 m. The approximate location of this facility is 13.05 miles southeast of Loving, NM in Eddy zounty.

The proposed modification consists of adding six Caterpillar 3612A4 engines

The estimated maximum quantities of any regulated air contaminants will be as follows: (pb)) and tors per year (tby). These reported emissions could name signify during the Department's involve.

Pollutant		r suring the course of	the
Particulate Matter (PAI) PM s Suffur Dioxide (SOr) Natrogen Oxides (NOC) Cartion Monoxide (CO) Volatilie Organic Compounds (VOC) Total sum of all Instantious Air Pollutants (MAPs) Green House Gas Emilysions as Total (Co;e	Pounds per hour 2.23 pph 2.23 pph 2.23 pph 2.23 pph 3.25 pph 41.92 pph 43.85 pph 5.60 pph n/a	Tons per year 9.78 tpy 9.78 tpy 9.78 tpy 5.50 tpy 95.45 tpy 183.65 tpy 238.36 tpy 26.51 tpy 215.30 dat sec	

e standard operating schedule of the facility will be contained and the standard operating schedule of the facility will be contained as the standard operating schedule of the facility will be contained as the standard operating schedule of the facility will be contained as the standard operating schedule of the facility will be contained as the standard operating schedule of the facility will be contained as the standard operating schedule of the facility will be contained as the standard operating schedule of the facility will be contained as the standard operating schedule of the facility will be contained as the standard operating schedule of the facility will be contained as the standard operating schedule as the standard operating schedule of the facility will be contained as the standard operating schedule as the standard operating sched

The owner and/or operator of the Facility is: Delaware G&P, LLC: 1722 Routh St. Suite 1300, Dallas, TX 75201

If you have any comments about the construction or operation of this facility, and you want your commen-be made as part of the permit review process, you must submit your comments in writing to this address. Permit Programs Manager, New Mexico Environment Department, Ar Quality Bureau, 525 Camino de los Manager, Sula 1, Santa F., New Mexico, 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300, 1 800 224-7009.

our comments, please refer to the company name and facility name, or send a copy of this notice along our comments. This information is excessing since the Department may have not yet recover the application. Please include a legible return mailing address. Once the Department has completed the many review of the application and its air quality impacts, the Department's notice will be sublicated in all formum of

o millionte de Nuevo 555-629-3399

INU TUE

ng six Caterpillar 3012A4 ang

stimuted maximum manthies of any regulated at core

Department's raview:	the course of a		
Polivant Particulate Matter (MM) PM is Sultu Davide (SO) Sultu Davide (SO) Carbon Manuskie (SO) Carbon Manuskie (SO) Voestie Cognetic Compositie (VOC) Total aum of all Statemetics Riv Policants (MM) Genere Hassa Cast Entitutions at antal COpe	Preventili per Hanar 2:23 path 2:23 path 2:23 path 2:23 path 2:1,70 path 21:52 path 40:65 path 5:50 path 5:50 path 5:50 path	5000 and year 9.70 tay 9.70 tay 9.50 tay 9.50 tay 9.540 tay 188.64 tay 210.36 tay 210.36 tay 215.51 tay 215.51 tay	

CARLSBAD

· HINGH

Open now on M.W.TH.F from 9am-2pm and TUES 1pm-6pm. Contact Leonora Mendee for more information at 575-885-1752 or email director@myclp.org Located at 511 N. 12th

SE HABLA ESPANOL

HRU PISTRIBUTION

volunteer ch Lives Everyday

SPEAK Program 1313 W Mermod

24/7

888-808-2775 are not alone!

Constant Constant

FOUNDRY BEB-BDE 2317 JAC

NOTICE

No. 1 A second secon

14 Work is wated facility known as, Revealle Compressor Statistics in all UNA come as a list in Endows 23554,846 m. The approximate location of this facility is 12 US must be an endow county.

The state of adding six Caterpillar 3612A4 explores

(Mail)	Po
CH	
Av Follutants (HAPs)	

9.76 tpy
9.78 MW
5.50 004
45.45 10 1
111.63177
748.36 107
26 51 109
415 100 43 tay

the loss of the facility will be continuous or the Facility will be continuous

All Table Could be and the construction of operation of the facility, and you and you and you are constructed on a operation of the facility, and you and you are constructed and table and you construct the source tables and your comments in while a terms are as a source tables and your comments and watches a source and tables and you constructed and you constructed and tables and you constructed and you constructed

The second secon

"Fullated near the facility location

March 29, 2023

<u>CERTIFIED MAIL XXXX XXXX XXXX XXXX</u> <u>RETURN RECEIPT REQUESTED (certified mail is required, **return receipt is optional**)</u>

Dear Property Owner,

Delaware G&P, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its compressor station facility. The expected date of application submittal to the Air Quality Bureau is March 31, 2023.

The exact location for the proposed facility known as, Reveille Compressor Station, is at UTM Zone 13 S, UTM Easting 596,502 m, UTM Northing 3,554,846 m. The approximate location of this facility is 13.05 miles southeast of Loving, NM in Eddy county.

The proposed modification consists of adding six Caterpillar 3612A4 engines.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	2.23 pph	9.78 tpy
PM 10	2.23 pph	9.78 tpy
PM 2.5	2.23 pph	9.78 tpy
Sulfur Dioxide (SO ₂)	1.26 pph	5.50 tpy
Nitrogen Oxides (NO _x)	21.79 pph	95.45 tpy
Carbon Monoxide (CO)	41.92 pph	183.63 tpy
Volatile Organic Compounds (VOC)	49.85 pph	238.36 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	5.60 pph	26.51 tpy
Green House Gas Emissions as Total CO ₂ e	n/a	115300.43 tpy

The standard operating schedule of the facility will be continuous.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Sincerely, Delaware G&P, LLC

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

4-171-147-265-265	>
Owner:	
STATE OF NEW MEXICO	
Owner Address:	
310 OLD SANTA FE TRAIL	
SANTA FE NM 87504	
Site Address:	
A-172-147-265-265	>
Owner:	
BUREAU OF LAND MANAGEMENT	6
Owner Address:	
Site Address:	
4-172-148-269-265	>
Owner:	
BUREAU OF LAND MANAGEMENT	
Owner Address:	
	<u>8</u>
Site Address:	
☆ 4-171-148-265-265	>
Owner:	
BUREAU OF LAND MANAGEMENT	
Owner Address:	
Site Address:	6

Affidavit	of	Publication
-----------	----	-------------

No.
State of New Mexico
County of Eddy:
Danny Scott form & Cat
being duly sworn sayes that he is the Publisher
of the Artesia Daily Press, a daily newspaper of General
circulation, published in English at Artesia, said county
and state, and that the hereto attached
Display Ad
was published in a regular and entire issue of the said
Artesia Daily Press, a daily newspaper duly qualified
for that purpose within the meaning of Chapter 167 of
the 1937 Session Laws of the state of New Mexico for
1 Consecutive weeks/day on the same
day as follows:
First Publication March 30, 2023
Second Publication
Third Publication
Fourth Publication
Fifth Publication
Sixth Publication
Seventh Publication
Subscribed and sworn before me this
30th day of March 2023
STATE OF NEW MEXICO NOTARY PUBLIC Latisha Romine Commission Number 1076338 My Commission Expires May 12, 2023
· · · · · · · · · · · · · · · · · · ·
Latisto Remine
Latisha Romine

Copy of Publication:

NOTICE OF AIR QUALITY PERMIT APPLICATION

Delaware G&P, LLC announces its application submittal to the New Mex Environment Department for an air quality permit for the modification of compressor station facility. The expected date of application submittal to Air Quality Bureau is March 31, 2023.

The exact location for the proposed facility known as, Reveille Compress tion, is at UTM Zone 13 S, UTM Easting 596,502 m, UTM Northing 3,55 m. The approximate location of this facility is 13.05 miles southeast of Lo NM in Eddy county.

The proposed modification consists of adding six Caterpillar 3612A4 eng

The estimated maximum quantities of any regulated air contaminant will as follows in pound per hour (pph) and tons per year (tpy) and could cha slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per yea
Particulate Matter (PM)	2.23 pph	9.78 tpy
PM 10	2.23 pph	9.78 tpy
PM 2.5	2.23 pph	9.78 tpy
Sulfur Dioxide (SO2)	1.26 pph	5.50 tpy
Nitrogen Oxides (NOx)	21.79 pph	95.45 tpy
Carbon Monoxide (CO)	41.92 pph	183.63 tpy
Volatile Organic Compounds (VO	OC) 49.85 pph	238.36 tpy
Total sum of all Hazardous	A start and a st	
Air Pollutants (HAPs)	5.60 pph	26.51 tpy
Green House Gas Emissions	the state that the state of	The she was
as Total CO2e	winn/a that shares	115300.43 tp
the second the second s	A PARA AND AND OF AN AND AND AND AND	the set of the set of the

The standard operating schedule of the facility will be continuous.

The owner and/or operator of the Facility is: Delaware G&P, LLC; 1722 Ro St., Suite 1300, Dallas, TX 75201

If you have any comments about the construction or operation of this faci and you want your comments to be made as part of the permit review pro you must submit your comments in writing to this address:

Permit Programs Manager; New Mexico Environment Department; Air Q ty Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87 1816. Other comments and questions may be submitted verbally. (505) 47 4300; 1 800 224-7009.

Please refer to the company name and site name, or send a copy of this no along with your comments, since the Department may have not yet receivthe permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary reviethe

application and its air quality impacts, the Department's notice will be pub lished in the legal section of a newspaper circulated near the facility location General information about air quality and the permitting process, and link to the regulations can be found at the Air Quality Bureau's website: www.e nm.gov/air-quality/permitting-section-home-page/. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMA

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Me dio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por fa comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, di ability, age or sex in the administration of its programs or activities, as requ by applicable laws and regulations. NMED is responsible for coordination compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Ci Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 19 the Age Discrimination Act of 1975, Title IX of the Education Amendment 1972, and Section 13 of the Federal Water Pollution Control Act Amendment

Latisha Romine Notary Public, Eddy County, New Mexico

Affidavit of Publication
No. 26492
State of New Mexico
County of Eddy.
Danny Scott Norma Lat
being duly sworn sayes that he is the Publisher
of the Artesia Daily Press, a daily newspaper of General
circulation, published in English at Artesia, said county
and state, and that the hereto attached
Legal Ad
was published in a regular and entire issue of the said
Artesia Daily Press, a daily newspaper duly qualified
for that purpose within the meaning of Chapter 167 of
the 1937 Session Laws of the state of New Mexico for
1 Consecutive weeks/day on the same
day as follows:
First Publication March 30, 2023
Second Publication
Third Publication
Fourth Publication
Fifth Publication
Sixth Publication
Seventh Publication
Subscribed and sworn before me this
30th day of March 2023
STATE OF NEW MEXICO NOTARY PUBLIC Latisha Romine Commission Number 1076338 My Commission Expires May 12, 2023
Λ
Katisto Remine
Latisha Romine
Notary Public, Eddy County, New Mexico

Copy of Publication:

Legal Notice

NOTICE OF AIR QUALITY PERMIT APPLICATION Delaware G&P, LLC announces its application submittal to the New Me Environment Department for an air quality permit for the modification compressor station facility. The expected date of application submittal to Quality Bureau is March 31, 2023.

The exact location for the proposed facility known as, Reveille Compretion, is at UTM Zone 13 S, UTM Easting 596,502 m, UTM Northing 3, m. The approximate location of this facility is 13.05 miles southeast of 1 NM in Eddy county.

The proposed modification consists of adding six Caterpillar 3612A4 e

The estimated maximum quantities of any regulated air contaminant w follows in pound per hour

(pph) and tons per year (tpy) and could change slightly during the could perform the review:

Pollutant:	Pounds per hour	Tons per y
Particulate Matter (PM)	2.23 pph	9.78 tpy
PM 10	2.23 pph	9.78 tpy
PM 2.5	2.23 pph	9.78 tpy
Sulfur Dioxide (SO2)	1.26 pph	5.50 tpy
Nitrogen Oxides (NOx)	21.79 pph	95.45 tpy
Carbon Monoxide (CO)	41.92 pph	183.63 tpy
Volatile Organic Compounds (VOC) Total sum of all Hazardous		238.36 tpy
Air Pollutants (HAPs) Green House Gas Emissions	5.60 pph	26.51 tpy
as Total CO2e	n/a	115300.43

The standard operating schedule of the facility will be continuous.

The owner and/or operator of the Facility is: Delaware G&P, LLC; 1722 Suite 1300, Dallas, TX 75201

It you have any comments about the construction of operation of this 1 and you want your comments to be made as part of the permit review 1 you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Ai Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 82 Other comments and questions may be submitted verbally. (505) 476-4 224-7009.

Please refer to the company name and site name, or send a copy of this along with your comments, since the Department may have not yet rec permit application. Please include a legible return mailing address with comments. Once the Department has performed a preliminary review application and its air quality impacts, the Department's notice will be in the legal section of a newspaper circulated near the facility location. General information about air quality and the permitting process, and to the regulations can be found at the Air Quality Bureau's website: ww nm.gov/air-quality/permitting-section-home-page/. The regulation de public participation in the permit review process is 20.2.72.206 NMAC

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Ambiente de Nuevo México, acerca de las emisiones producidas por un blecimiento en esta área. Si usted desea información en español, por fa muníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origi ity, age or sex in the administration of its programs or activities, as req applicable laws and regulations. NMED is responsible for coordination pliance efforts and receipt of inquiries concerning non-discrimination ments implemented by 40 C.F.R. Part 7, including Title VI of the Civil Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973 Discrimination Act of 1975, Title IX of the Education Amendments of Section 13 of the Federal Water Pollution Control Act Amendments of

NOTICE OF AIR QUALITY PERMIT APPLICATION

Delaware G&P, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its compressor station facility. The expected date of application submittal to the Air Quality Bureau is March 31, 2023.

The exact location for the proposed facility known as, Reveille Compressor Station, is at UTM Zone 13 S, UTM Easting 596,502 m, UTM Northing 3,554,846 m. The approximate location of this facility is 13.05 miles southeast of Loving, NM in Eddy county.

The proposed modification consists of adding six Caterpillar 3612A4 engines.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	2.23 pph	9.78 tpy
PM 10	2.23 pph	9.78 tpy
PM _{2.5}	2.23 pph	9.78 tpy
Sulfur Dioxide (SO ₂)	1.26 pph	5.50 tpy
Nitrogen Oxides (NO _x)	21.79 pph	95.45 tpy
Carbon Monoxide (CO)	41.92 pph	183.63 tpy
Volatile Organic Compounds (VOC)	49.85 pph	238.36 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	5.60 pph	26.51 tpy
Green House Gas Emissions as Total CO ₂ e	n/a	115300.43 tpy

The standard operating schedule of the facility will be continuous.

The owner and/or operator of the Facility is: Delaware G&P, LLC; 1722 Routh St., Suite 1300, Dallas, TX 75201

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: www.env.nm.gov/air-quality/permitting-section-home-page/. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

NOTICE

Delaware G&P, LLC announces its application to the New Mexico Environment Department for an air quality permit for the modification of its compressor station facility. The expected date of application submittal to the Air Quality Bureau is March 31, 2023.

The exact location for the proposed facility known as, Reveille Compressor Station, is at UTM Zone 13 S, UTM Easting 596,502 m, UTM Northing 3,554,846 m. The approximate location of this facility is 13.05 miles southeast of Loving, NM in Eddy county.

The proposed modification consists of adding six Caterpillar 3612A4 engines.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	2.23 pph	9.78 tpy
PM 10	2.23 pph	9.78 tpy
PM _{2.5}	2.23 pph	9.78 tpy
Sulfur Dioxide (SO ₂)	1.26 pph	5.50 tpy
Nitrogen Oxides (NO _x)	21.79 pph	95.45 tpy
Carbon Monoxide (CO)	41.92 pph	183.63 tpy
Volatile Organic Compounds (VOC)	49.85 pph	238.36 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	5.60 pph	26.51 tpy
Green House Gas Emissions as Total CO ₂ e	n/a	115300.43 tpy

The standard operating schedule of the facility will be continuous.

The owner and/or operator of the Facility is: Delaware G&P, LLC; 1722 Routh St. Suite 1300, Dallas, TX 75201

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Dear Carlsbad Radio, KAMQ 1240 AM,

Per New Mexico Administrative Code 20.2.72.203.B NMAC and according to the Guidance for Public Notice for Air Quality Permit Applications – (5) Notifications: Submittal of Public Service Announcement (PSA): A public service announcement required for permits and significant permit revisions must be submitted to at least one radio or television station, which services the municipality, or county which the facility is or will be located. Therefore, based on the above, we respectfully ask you to air the information shown below as a Public Service Announcement.

The public service announcement request must contain the following information about the facility or proposed facility (20.2.72.203.D NMAC).

- a. The name: <u>Reveille Compressor Station</u>, location: <u>latitude 32 deg</u>, 7 min, <u>33.15 sec and</u> longitude -<u>103 deg</u>, <u>58 min</u>, <u>37.01 sec</u>. The approximate location of this facility is <u>13.05 miles</u> <u>southeast of Loving in Eddy county</u> and type of business: <u>natural gas compressor facility</u>.
- b. The name and principal owner or operator: **<u>Delaware G&P, LLC</u>** owner and operator.
- c. The type of process or change for which the permit is sought: <u>NSR Permit for natural gas</u> <u>compression and distribution facility.</u>
- d. Locations where the notices have been posted in Loving, NM: (1) Reveille Compressor Station Facility's Entrance (2) Carlsbad City Hall (3) Carlsbad Library (4) Janell Whitloch Municipal Complex, Carlsbad, NM.
- e. The Department's address or telephone number to which comments may be directed: Permit Programs manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 (800) 224-7009.

Please let me know if you have any questions.

Thank you! Atiqur Rahman (He/Him) Associate Consultant

P 505.266.6611 M 575.489.8334 Email: <u>Atiqur.rahman@trinityconsultants.com</u> Address: 9400 Holly Avenue NE, Building 3, Suite B, Albuquerque, NM 87122

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The facility is a natural gas compressor station, the purpose of which is to compress natural gas along a pipeline to sales. The facility consists of inlet separators, compressor engines, reboiler, dehydrator, enclosed combustion unit, vapor combustion unit.

Low pressure field gas is gathered from various wells in the area. The gas is compressed by natural gas driven compressors (Unit ENG-1 through ENG-8). Maximum controlled and uncontrolled emissions for NOx, CO, VOC, HCHO are calculated based on emission factors from manufacturer and catalyst vendor specifications. Estimated HAP and PM emissions from the compressor engines are calculated based on AP-42 Table 3.2-2 (dated 07/00). SO2 emissions are estimated based on the assumption that fuel gas has a Sulfur content of 2 gr per 100 scf. All emission values listed in the application forms for the engines correspond to 100% load at maximum engine speed.

Condensate and water are collected from the inlet separator and compression, are separated in a gunbarrel tank (TK-407) and are stored in atmospheric storage tanks. Condensate is routed from the facility storage tanks (TK-406A & TK-406B) to remove from the facility via truck. Flash, working, and breading emissions from the condensate and produced water tanks are routed to a vapor combustor (Unit ECD-1) with an assumed 95% destruction removal efficiency.

Once the gas is compressed, it is treated using a glycol dehydration system to remove entrained water. The glycol dehydration unit (DEHY-1) incorporates three distinct sources of air emissions: (1) a gas-fired reboiler burner, (2) a glycol recovery still, and (3) a glycol flash tank. Flash tank emissions are sent to station suction. The still vent emissions go to the BTEX condenser. BTEX non-condensable is sent to reboiler stack with glow plug with 98% DRE.

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

All sources listed in the Table 2-A of this application.

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

☑ Yes No

<u>Common</u> <u>Ownership</u> <u>or</u> <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

☑ Yes No

<u>Contiguous</u> or <u>Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

☑ Yes No

C. Make a determination:

☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.

The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - **a** minor PSD source before and after this modification (if so, delete C and D below).

a major PSD source before this modification. This modification will make this a PSD minor source.

an existing PSD Major Source that has never had a major modification requiring a BACT analysis.

an existing PSD Major Source that has had a major modification requiring a BACT analysis

a new PSD Major Sour12ce after this modification.

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

Table for State Regulations:

	State Regulatio			
<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	If subject, this would normally apply to the entire facility. 20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC The TSP NM ambient air quality standard was repealed by the EIB effective November 30, 2018.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. The owner or operator will operate the source at the facility having an excess emission, to the extent practicable, including associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions. The facility will also notify the NMED of any excess emission per 20.2.7.110 NMAC
20.2.23 NMAC	Fugitive Dust Control	No	N/A	This regulation does not apply because this application is not for a Notice of Intent.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This facility does not have gas burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit; therefore, this regulation does not apply.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility does not have oil burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit; therefore, this unit does not apply.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	N/A	No	This facility does not meet the definition of a natural gas processing plant; therefore, this regulation does not apply.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	Yes	TK- 406A & TK-406B	This new facility has a storage capacity greater than 65,000 gallons; therefore, this regulation is subject.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This facility does not meet the definition of a sulfur recovery plant; therefore, this regulation does not apply.
20.2.50 NMAC	Oil and Gas Sector – Ozone Precursor Pollutants	Yes	ENG-1 through ENG-8, RBL-1, ECD-1, SSM, DEHY-1, FUG	This regulation establishes emission standards for volatile organic compounds (VOC) and oxides of nitrogen (NOx) for oil and gas production, processing, compression, and transmission sources. 20.2.50 NMAC subparts: 113 – Engines and Turbines 114 – Compressor Seals 115 – Control Devices and Closed Vent Systems 116 – Equipment Leaks and Fugitive Emissions 117 – Natural Gas Well Liquid Unloading 118 – Glycol Dehydrators 119 – Heaters 120 – Hydrocarbon Liquid Transfers 121 – Pig Launching and Receiving 122 – Pneumatic Controllers and Pumps 123 – Storage Vessels 124 – Well Workovers 125 – Small Business Facilities 126 – Produced Water Management Units

<u>State</u> <u>Regulation</u>	Title	Applies? Enter Yes or	Unit(s) or Facility	Justification:
Citation		No		(You may delete instructions or statements that do not apply in the justification column to shorten the document.)
				127 – Flowback Vessels and Preproduction Operations
				113- Compressor Engines (Units ENG-1 through ENG-8) will comply with the requirements of this subpart.
				114- Compressor Engines (Units ENG-1 through ENG-8) will comply with the requirements of this subpart.
				115 – The control devices and closed vent systems at this facility are not used to comply with the requirements of this rule; therefore, they are not subject to the requirements of this rule.
				116 – This facility will have equipment leaks and fugitive emissions. Thus, it will comply with this regulation.
				117 – This facility is a natural gas compressor station. Thus, it is not subject to this rule.
				118- Glycol Dehydrator (Unit ID: DEHY-1) has a PTE greater than 2 tpy; therefore DEHY-1 is subject to this subpart.
				119- RBL-1 has a heat rating less than 20 MMBtu/hr; therefore, this subpart is not subject.
				120 – This facility will truck out more than 13 times a year and is therefore subject to this subpart.
				121 – This facility does not have any pig launching and receiving. Therefore, this facility is not subject to this subpart.
				122 – This facility is subject to this subpart and will comply with this subpart as stated in 20.2.50.122.B(3) Table-2.
				123 – This facility has less than 2 tpy maximum allowable VOC emissions. Thus, it is not subject to this subpart.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	ENG-1 through ENG-8, RBL-1	Engines, boilers, heaters, and flares are subject. ENG-1 through ENG-8 and RBL- 1 will be subject to this regulation.
20.2.70 NMAC	Operating Permits	Yes	Facility	The facility has the potential to emit more than 100 tpy of carbon monoxide; therefore, this regulation is subject.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This facility is subject to 20.2.70 NMAC; therefore, this regulation is subject.
20.2.72 NMAC	Construction Permits	Yes	Facility	This facility is subject to 20.2.72 NMAC.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	This regulation establishes emission inventory requirements. The facility meets the applicability requirements of 20.2.73.300 NMAC. The facility will meet all applicable reporting requirements under 20.2.73.300.B.1 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	Facility	This facility is not a PSD source; therefore, this regulation does not apply.

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This facility is subject to 20.2.72 NMAC; therefore, Nthis regulation applies.
20.2.77 NMAC	New Source Performance	Yes	FUG, ENG-1 through ENG-8	This regulation establishes state authority to implement new source performance standards (NSPS) for stationary sources, as amended through January 15, 2017. FUG applies as it is subject to NSPS OOOOb, and Units ENG-1 through ENG-8 will be subject to JJJJ and OOOOb when the rule is promulgated.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	This regulation establishes state authority to implement emission standards for hazardous air pollutants subject to 40 CFR Part 61. This facility does not emit hazardous air pollutants which are subject to the requirements of 40 CFR Part 61 and is therefore not subject to this regulation
20.2.79 NMAC	Permits – Nonattainment Areas	No	Facility	This regulation establishes the requirements for obtaining a nonattainment area permit. The facility is not located in a non-attainment area and therefore is not subject to this regulation.
20.2.80 NMAC	Stack Heights	No	N/A	This regulation establishes requirements for the evaluation of stack heights and other dispersion techniques. This regulation does not apply, as all stacks at the facility will follow good engineering practice.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	DEHY-1, ENG-1 Through ENG-8	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63.

Example of a Table for Applicable Federal Regulations (Note: This is not an exhaustive list):

Federal <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 50	NAAQS	Yes	Facility	This regulation defines national ambient air quality standards. The facility meets all applicable national ambient air quality standards for NOx, CO, SO2, H2S, PM10, and PM2.5 under this regulation.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	ENG-1 through ENG-8, FUG	 This regulation defines general provisions for relevant standards that have been set under this part. The facility is subject to this regulation because the following subparts apply: Unit FUG is subject to NSPS OOOOb when the rule is promulgated. Units ENG-1 Through ENG-8 are subject to JJJJ and will be subject to NSPS OOOOb when the rule is promulgated.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	There are no electric utility steam generating units located at this facility; therefore, the facility is not subject to this regulation.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	There are no electric utility steam generating units located at this facility; therefore, the facility is not subject to this regulation.
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	There are no small industrial commercial institutional steam generating units located at this facility; therefore, the facility is not subject to this regulation.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	Yes	TK-406a and TK- 406b	Tanks TK-406A and TK-406B have a storage capacity greater than 151,416 liters (40,000 gallons) that are used to store petroleum liquids for which construction is commenced after May 18, 1978.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	Yes	TK-406A and TK- 406B	This facility has storage vessels, emission units TK-406A and TK-406B with a capacity greater than or equal to 75 cubic meters (m ³) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	There are no turbines located at this facility; therefore, this regulation does not apply.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	This is not a natural gas processing plant; therefore, this regulation does not apply.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing : SO ₂ Emissions	No	N/A	This is not a natural gas processing plant; therefore, this regulation does not apply.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No	N/A	This facility is a new facility and therefore is not subject to this regulation. The storage tanks have a potential to emit less than 6 tpy; therefore, the tanks are not subject to this regulation.
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015 and before November 15, 2021	No	N/A	The storage tanks have a potential to emit less than 6 tpy; therefore, the tanks are not subject to this regulation.
NSPS 40 CFR Part 60 Subpart OOOOb	Standards of Performance for Crude Oil and Natural Gas Facilities for Which Construction, Modification or Reconstruction Commenced After November 15, 2021	Yes	ENG-1 Through ENG-8, FUG	This regulation is applicable to natural gas compressor stations constructed after November 15, 2021. The facility is subject to this regulation because the following subparts apply: - Unit FUG is subject to NSPS OOOOb when the rule is promulgated. - Units ENG-1 Through ENG-8 are subject to JJJJ and will be subject to NSPS OOOOb when the rule is promulgated.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	This facility does not have any compression ignition internal combustion engines. Thus, this regulation is not subject to this facility.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	ENG-1 through ENG-8	ENG-1 through ENG-8 are manufactured after June 12, 2006, and have maximum engine power greater than 500 HP. Thus, ENG-1 to ENG-8 are subject to this subpart.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric	No	N/A	This facility does not have any steam generating units and is therefore not subject to this regulation.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:	
	Generating Units				
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	This facility does not operate any sources that are applicable to this subpart.	
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	This facility is not a municipal solid waste landfill and is therefore not subject to this regulation.	
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	N/A This facility is not subject to any subparts of 40 CFR 61. The provisions of this subpart are applicable to those stationary sources which	
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The provisions of this subpart are applicable to those stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge	
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	Not applicable as the facility equipment does not operate in VHAP service. VHAP service is a piece of equipment, which contains or encounters a fluid that is at least 10% weight of VHAP. VHAP is a substance regulated under this subpart for which a standard for equipment leaks of VHAPs has been promulgated	
MACT 40 CFR 63, Subpart A	General Provisions	Yes	ENG-1 Through ENG-8	Applies if any other Subpart in 40 CFR 63 applies.	
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DEHY-1	The dehydrator (Unit DEHY-1) is located at an area source of HAPS and has the potential to emit less than 1 tpy (0.90 megagram per year) of benzene. Therefore, it is subject to the operating and recordkeeping requirements of §63.764(e)(1)(ii).	
MACT 40 CFR 63 Subpart HHH		No	N/A	This facility is not a natural gas transmission or storage facility; therefore, this subpart does not apply.	
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	Yes	RBL-1	RBL-1 is a process heater that is located at a facility that is a major source of HAPs; therefore, this subpart will apply.	
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	This facility does not contain a coal or oil fire electric utility steam generating units; therefore, this regulation does not apply.	

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:	
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	ENG-1 through ENG-8	ENG-1 through ENG-8 are stationary internal combustion engines that are operated at a major source HAP; therefore, these engines are subject to this subpart.	
40 CFR 64	Compliance Assurance Monitoring	No	N/A	/A This facility is submitting an application pursuant of 20.2.72.200A.(1) NMAC for an NSR permit. Thus, this regulation does not apply.	
40 CFR 68	Chemical Accident Prevention	Yes	Facility	The facility has more than a threshold quantity of a regulated substance in a process, as determined under §68.115. The owner will comply by maintaining a Risk Management Plan.	
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	This facility is not an acid rain source; therefore, this regulation is not subject.	
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	This facility is not an acid rain source; therefore, this regulation is not subject.	
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	This facility does not generate commercial electric power or electric power for sale and is therefore not subject to this regulation.	
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	This facility is not an acid rain source; therefore, this regulation is not subject.	
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	This facility will have appliances containing CFCs. The owner will use only certified technicians for the maintenance, service, repair and disposal of appliances to comply with this regulation.	

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

- ✓ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Equipment located at this facility is equipped with various safety devices and features that aid in the prevention of excess emissions in the event of an operational emergency. If an operational emergency does occur and excess emissions occur, Delaware G&P will submit the required Excess Emissions Report as per 20.2.7 NMAC. Corrective action to eliminate the excess emissions and prevent recurrence in the future will be undertaken as quickly as safety allows.

Startup and shutdown procedures are either based on manufacturer's recommendations or based on Delaware G&P's experience with specific equipment. These procedures are designed to proactively address the potential for malfunction to the minimize emissions from the facility during events that result in shutdown and subsequent startup.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

There are no alternative operating scenarios.

Section 16 Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	Х
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

- □ See attached, approved modeling **waiver for all** pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- ☑ Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- □ Attached in UA4 is a **modeling report for some** pollutants from the facility.
- \Box No modeling is required.

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-A: Identification				
1	Name of facility:	Reveille Compressor Station		
2	Name of company:	Delaware G&P, LLC		
3	Current Permit number:	9896		
4	Name of applicant's modeler:	Mingcheng Ren		
5	Phone number of modeler:	(505) 266-6611		
6	E-mail of modeler:	mingcheng.ren@trinityconsultants.com		

16	16-B: Brief							
1	Was a modeling protocol submitted and approved?	Yes⊠	No□					
2	Why is the modeling being done?	Other (describ	e below)					
	Describe the permit changes relevant to the modeling.							
3	Delaware G&P, LLC seeks to authorize a facility throughput of 150 MMSCFD of natural gas, the construction and operation of two (2) Waukesha 16V275G1 compressor engines (ENG-1 and ENG-2), six (6) Caterpillar 3612A4 compressor engines (ENG-3 through ENG-8), one (1) DEHY Glycol Reboiler (RBL-1), and one (1) Enclosed Combustion Unit (ECD-1).							
4	What geodetic datum was used in the modeling?	WGS84						
5	How long will the facility be at this location?	Permanent						

6	Is the facility a major source with res	pect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠					
7	Identify the Air Quality Control Regi	155	ż						
	List the PSD baseline dates for this re	List the PSD baseline dates for this region (minor or major, as appropriate).							
8	NO ₂	3/16/1988							
	SO ₂	7/28/1978							
	PM ₁₀	2/20/1979	2/20/1979						
	PM _{2.5}	11/13/2013	11/13/2013						
	Provide the name and distance to Class I areas within 50 km of the facility (300 km for PSD permits).								
9	Carlsbad Caverns National Park - 38.20 km								
10	Is the facility located in a non-attainn	nent area? If so describe below	Yes□	No⊠					
11	Describe any special modeling requirements, such as streamline permit requirements.								
11	N/A								

16-C: Modeling History of Facility

Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).

	······································							
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments				
1	СО	N/A	N/A	N/A				
	NO ₂	N/A	N/A	N/A				
	SO ₂	N/A	N/A	N/A				
	H ₂ S	N/A	N/A	N/A				
	PM2.5	N/A	N/A	N/A				
	PM10	N/A	N/A	N/A				
	Lead	N/A	N/A	N/A				
	Ozone (PSD only)	N/A	N/A	N/A				
	NM Toxic Air Pollutants (20.2.72.402 NMAC)	N/A	N/A	N/A				

16	16-D: Modeling performed for this application								
	For each pollutant, indicate the modeling performed and submitted with this application. Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.								
1	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.			
	СО	\boxtimes							
	NO ₂	\boxtimes	\boxtimes						

SO ₂	\boxtimes			
H_2S				\boxtimes
PM2.5	\boxtimes	\boxtimes		
PM10	\boxtimes	\boxtimes		
Lead				\boxtimes
Ozone				\boxtimes
State air toxic(s) (20.2.72.402 NMAC)				

16	16-E: New Mexico toxic air pollutants modeling									
1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application. N/A									
	List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required.									
2	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor				
	N/A	N/A	N/A	N/A	N/A	N/A				

16-	16-F: Modeling options						
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□				
	N/A						

1 Date of surrounding source retrieval 3/13/2023 1 Date of surrounding source retrieval 3/13/2023 2 If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed. 2 AQB Source ID Description of Corrections N/A N/A

16-	16-H: Building and structure downwash					
1	How many buildings are present at the facility?	N/A				
2	How many above ground storage tanks are present at the facility?	4				

3	Was building downwash modeled for all buildings and tanks? If not explain why below. Yes⊠					
	N/A					
4	Building comments	N/A				

1	"Restricted A continuous w grade that wo within the pro- is required in receptors sha	rea" is an area alls, or other co uld require spe operty may be i order to exclud ll be placed wit	to which pub ontinuous barn cial equipmen dentified with le receptors fi hin the prope	I property bou lic entry is effectively pri- riers approved by the De- nt to traverse. If a large p a signage only. Public ro- rom the facility property rty boundaries of the fac- er at the facility that defi	ecluded. Effective ba partment, such as rug property is completely ads cannot be part of . If the facility does no ility.	ged phys enclosed a Restric ot have a	ical terrain w l by fencing, ted Area. A F	rith a steep a restricted area Restricted Area	
	The facility w	vill install a fen	ce line for the	e restricted area.					
2	Receptors must be placed along publicly accessible roads in the restricted area. Are there public roads passing through the restricted area? Yes□						No⊠		
3	Are restricted	l area boundary	coordinates i	ncluded in the modeling	; files?		Yes⊠	No□	
	Describe the	Describe the receptor grids and their spacing. The table below may be used, adding rows as needed.							
	Grid Type	Shape	Spacing	Start distance from center of facility	End distance from center of facility	Commo	ents		
	Fenceline	Fenceline	25m	-	-	-			
4	Discrete	Circular	50m	0	800	Very fi	ne grid		
	Discrete	Circular	100m	800	3,000	Fine gr	id		
	Discrete	Circular	250m	3,000	6,000	Mediur	n grid		
	Discrete	Circular	500m	6,000	10,000	Coarse	grid		
	Discrete	Circular	1000m	10,000	50,000	00 Very coarse grid			
5	Describe receptor spacing along the fence line. The facility fenceline was modeled using 25-meter grid spacing.								
6	The PSD Clas	Describe the PSD Class I area receptors. The PSD Class I area receptors for Carlsbad Caverns National Park and Guadalupe Mountains National Park were retrieved from NMED AQB's MergeMaster on 4/9/2023.							

16-	16-J: Sensitive areas						
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.		No⊠				
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠				

16	-K: Mo	deling	Scena	rios								
1	Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).											
	The model	ed facility	operates 2	4 hours a o	day, 7 days	s a week, a	nd 8760 h	ours a year				
Which scenario produces the highest concentrations? Why?												
2	N/A											
3	(This quest	Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.)										
4									ore the factor if it makes fo			
	Hour of Day	Factor	Hour of Day	Factor								
	1		13									
	2		14									
	3 4		15 16									
	5		10									
	6		17									
5	7		10									
	8		20									
	9		21									
	10		22									
	11		23									
	12		24									
	If hourly, v	variable en	nission rate	es were use	ed that wer	e not descr	ribed abov	ve, describe	them below	•		
	N/A											
6	Were diffe	rent emiss	ion rates u	sed for sho	ort-term an	d annual n	odeling?	If so descr	ibe below.	Yes□		No⊠

16-L: NO₂ Modeling Which types of NO₂ modeling were used? Check all that apply. \boxtimes ARM2 1 100% NO_X to NO₂ conversion **PVMRM** \square OLM \square Other: Describe the NO₂ modeling. Following NMED AQB's Modeling Guidelines, for 1-hour NO2, the entire facility was modeled and the 98th percentile 1-2 hour background concentration was added to the high 8th high modeled value to compare to the design value. For annual NO₂, the entire facility was modeled, and the annual background concentration was added to the high first high to compare to the design value. For annual NO₂ PSD, the monitored background value was added to the modeled high first high value from the facility as a conservative approach to the increment consumption. Were default NO₂/NO_x ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not Yes⊠ No□ describe and justify the ratios used below. 3 N/A Describe the design value used for each averaging period modeled. 4 1-hour: High eighth high Annual: Other (Describe): 5-year annual average

	Select the pollutants for which plume depletion modeling was used.							
1	□ PM2.5							
	□ PM10							
	⊠ None							
`	Describe the particle s	size distributions used. Include t	he source of information.					
2	N/A							
3	Does the facility emit at least 40 tons per year of NO_X or at least 40 tons per year of SO_2 ? Sources that emit at least 40 tons per year of NO_X or at least 40 tons per year of SO_2 are considered to emit significant amounts of precursors and must account for secondary formation of PM2.5.				No□			
4	Was secondary PM m	odeled for PM2.5?		Yes□	No⊠			
	If MERPs were used to account for secondary PM2.5 fill out the information below. If another method was used describe below.							
5	NO _X (ton/yr)	SO ₂ (ton/yr)	[PM2.5] _{annual}	[PM2.5] _{24-h}	our			
	95.45	5.50	0.00078628	0.018956				

16	-N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location. N/A
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling. N/A

16-	-O: PSD Increment and Source IDs			
1	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-I should match the ones in the modeling files. Do these match? If not, provide a cross-reference table between unit numbers if they do not match below.			No□
	Unit Number in UA-2	Unit Number in Modeling File	s	
2	The emission rates in the Tables 2-E and 2-F should match the ones in the modeling files. Do these match? If not, explain why below.			No□
3	Have the minor NSR exempt sources or Title V Insignificant Activities" (Table 2-B) sources been modeled?			No⊠
4	Which units consume increment for which pollutants?			
	All units consume increment for all pollutants at this facility.			
5	PSD increment description for sources. (for unusual cases, i.e., baseline unit expanded emissions after baseline date).	N/A		
6	Are all the actual installation dates included in Table 2A of the application form, as required? This is necessary to verify the accuracy of PSD increment modeling. If not please explain how increment consumption status is determined for the missing installation dates below.		Yes⊠	No□
	N/A			

16-P: Flare Modeling								
1	For each flare or flaring scenario, complete the following							
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)				
	N/A	N/A	N/A	N/A				

16-	16-Q: Volume and Related Sources						
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing installation dates below.	Yes□	No□				
	N/A						
	Describe the determination of sigma-Y and sigma-Z for fugitive sources.						
2	N/A						
3	Describe how the volume sources are related to unit numbers. Or say they are the same.						
	N/A						
	Describe any open pits.						
4	N/A						
5	Describe emission units included in each open pit.						
5	N/A						

16-	R: Back	ground Concentrations					
	below. If non	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data that Yes ⊠ No□					
	CO: N/A	was used.					
	NO ₂ : Outside Carlsbad (350151005)						
1	PM2.5: Hobbs-Jefferson (350450019)						
	PM10: Hobbs-Jefferson (350250008)						
	SO ₂ : N/A						
	Other:						
	Comments:	N/A					
2	Were backgr	ound concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠			

16-S: Meteorological Data				
1	Was NMED provided meteorological data used? If so select the station used. Carlsbad 2017-2021 NWS dataset	Yes⊠	No□	

2 If NMED provided meteorological data was not used describe the data set(s) used below. Discuss how missing data were handled, how stability class was determined, and how the data were processed.
N/A

16-	16-T: Terrain							
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□					
2	What was the source of the terrain data?							
2	USGS - TNM Download (v2.0) https://apps.nationalmap.gov/downloader/ (1 arc-second DEM)							

Describe the modeling files:		
File name (or folder and file name) "Folder name" – "sub-folder name" – "file name"	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)
"SIL" – "CO" – CO.ami	CO	SIA
"SIL" – "NO2" – NO2.ami	NO ₂	SIA
"SIL" - "PM10" - PM10.ami	PM_{10}	SIA
1 "SIL" – "PM2.5" – PM25.ami	PM _{2.5}	SIA
"SIL" – "SO2" – SO2.ami	SO_2	SIA
"SIL ClassI" – "NO2" – NO2.ami	NO ₂	Class I SIA
"SIL ClassI" - "PM10" - PM10.ami	PM_{10}	Class I SIA
"SIL ClassI" – "PM2.5" – PM25.ami	PM _{2.5}	Class I SIA
"SIL ClassI" – "SO2" – SO2.ami	SO_2	Class I SIA
"CIA" – "PM10" – PM10 CIA 24hr.ami	PM10	CIA
"CIA" – "PM2.5 24HR" – PM25_24hr_CIA.ami	PM _{2.5}	CIA
"CIA" – "PM2.5 Annual" – PM25_Annual_CIA.ami	PM _{2.5}	CIA

16-	V: PSD New or Major Modification Applications					
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No⊠			
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□			
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.					
	N/A					
4						
	N/A					

5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No⊠
	N/A		

16-W: M	odeling Re	sults										
1	required for significance	If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so describe below.										
2	Identify the	maximum concer	ntrations from	the modeling ar	alusis Rows ma	v he modifie	d added and	removed	from the t	able below		
2	as necessary			i the modeling an	arysis. Rows ma	y be mounte	u, autou and	removed	from the t			
Pollutant, Time Period	Modeled Facility Concentration	Modeled Concentration with	Secondary PM	Background Concentration	Cumulative Concentration	$\begin{array}{c c} ration \\ ration \\ ration \\ Standard \\ \end{array}$	Percent	Location				
and Standard	$(\mu g/m^3)$	Sources $(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$		Standard	UTM E (m)	UTM N (m)	Elevation (ft)		
CO 8-hr SIL	188.36	-	-	-	-	500	37.7%	596652	3554846	3038.68		
CO 1-hr SIL	220.45	-	-	-	-	2000	11.0%	596652	3554846	3038.68		
NO ₂ Annual SIL	3.58	-	-	-	-	1	Significant	596403	3554901	3024.11		
NO ₂ 24-hr SIL	49.32	-	-	-	-	5	Significant	596652	3554846	3038.68		
NO ₂ 1-hr SIL	102.80	-	-	-	-	7.52	Significant	596652	3554846	3038.68		
PM _{2.5} Annual SIL	0.36	-	-	-	-	0.2	Significant	596403	3554946	3023.36		
PM _{2.5} 24-hr SIL	3.90	-	-	-	-	1.2	Significant	596652	3554846	3038.68		
PM ₁₀ Annual SIL	0.36	-	-	-	-	1	35.9%	596403	3554946	3023.36		
PM ₁₀ 24-hr SIL	5.57	-	-	-	-	5	Significant	596652	3554846	3038.68		
SO ₂ Annual SIL	0.20	-	-	-	-	1	20.2%	596403	3554946	3023.36		
SO ₂ 24-hr SIL	3.10	-	-	-	-	5	62.0%	596652	3554846	3038.68		
SO ₂ 3-hr SIL	5.92	-	-	-	-	25	23.7%	596652	3554796	3039.99		
SO ₂ 1-hr SIL	6.46	-	-	-	-	7.8	82.8%	596652	3554846	3038.68		
NO ₂ Annual Class I SIL	0.00246	-	-	-	-	0.1	2.5%	559359	3560480	3619.85		
PM _{2.5} Annual Class I SIL	0.00028	-	-	-	-	0.05	0.6%	559359	3560480	3619.85		

Pollutant, Time Period	Modeled Facility Concentration (µg/m ³)	Modeled Concentration with	Secondary PM	Background Concentration (µg/m ³)	Cumulative Concentration	Value of Standard (µg/m ³)	Percent of Standard	Location		
and Standard		Surrounding Sources (µg/m ³)	$(\mu g/m^3)$		(µg/m ³)			UTM E (m)	UTM N (m)	Elevation (ft)
PM _{2.5} 24-hr Class I SIL	0.00575	-	-	-	-	0.27	2.1%	557365	3558860	3587.50
PM ₁₀ Annual Class I SIL	0.00028	-	-	-	-	0.2	0.1%	559359	3560480	3619.85
PM ₁₀ 24-hr Class I SIL	0.01007	-	-	-	-	0.3	3.4%	558179	3558860	3599.21
SO ₂ Annual Class I SIL	0.00015	-	-	-	-	0.1	0.2%	559359	3560480	3619.85
SO ₂ 24-hr Class I SIL	0.00561	-	-	-	-	0.2	2.8%	558179	3558860	3599.21
SO ₂ 3-hr Class I SIL	0.03121	-	-	-	-	1	3.1%	558179	3558860	3599.21
NO ₂ Annual NMAAQS	3.58	-	-	9.3	12.88	94.0	14%	596403	3554901	3024.11
NO ₂ 1-hr NNAQS	100.68	-	-	54.50	155.18	188.03	83%	596652	3554846	3038.68
PM _{2.5} Annual NAAQS	0.36	1.95	0.00079	7.10	9.06	12	75%	596402	3554996	3022.83
PM _{2.5} 24-hr NAAQS	2.02	4.76	0.019	16.50	21.28	35	61%	596252	3555046	3015.16
PM ₁₀ 24-hr NAAQS	4.74	10.57	-	37.30	47.87	150	32%	596752	3554846	3045.18
NO2 Annual PSD Class II	3.58	-	-	9.3	12.88	25	52%	596403	3554901	3024.11
PM _{2.5} Annual PSD Class II	0.36	1.70	0.00079	-	1.70	4	43%	596402	3554996	3022.83
PM _{2.5} 24-hr PSD Class II	3.00	5.84	0.019	-	5.86	9	65%	596702	3554896	3041.14
PM ₁₀ 24-hr PSD Class II	4.74	8.72	-	-	8.72	30	29%	596652	3554846	3038.68

1

16-X: Summary/conclusions

A statement that modeling requirements have been satisfied and that the permit can be issued.

This modeling analysis demonstrates that operation of the facility described in this report neither causes nor contributes to any exceedances of applicable air quality standards. The permit can be issued based on this modeling analysis.

From:	Mustafa, Sufi A., ENV
То:	Adam Erenstein
Cc:	Peters, Eric, ENV; Mingcheng Ren; Lance Green
Subject:	RE: [EXTERNAL] Modeling Protocol: Reveille Compressor Station
Date:	Monday, April 10, 2023 6:14:11 PM
Attachments:	image002.png
	image003.png

Adam

This modeling protocol is acceptable. Thank you.

Sufi A. Mustafa, Ph.D.

Manager Air Dispersion Modeling and Emission Inventory Section New Mexico Environment Department's Air Quality Bureau Office: (505) 629 6186 <u>sufi.mustafa@state.nm.us</u> 525 Camino de los Marquez Suite 1 Santa Fe, New Mexico, 87505 <u>https://www.env.nm.gov/air-quality/</u>

"Innovation, Science, Collaboration, Compliance"

From: Adam Erenstein < AErenstein@trinityconsultants.com>

Sent: Friday, March 31, 2023 3:27 PM

To: Mustafa, Sufi A., ENV <sufi.mustafa@env.nm.gov>

Cc: Peters, Eric, ENV <eric.peters@env.nm.gov>; Mingcheng Ren

<Mingcheng.Ren@trinityconsultants.com>; Lance Green <Lance.Green@enlink.com>

Subject: [EXTERNAL] Modeling Protocol: Reveille Compressor Station

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Hi Sufi,

Attached is the modeling protocol for the Reveille Compressor Station for your review. Please contact me if you have any questions. Have a great weekend!

Regards,

Adam Erenstein Principal Consultant, Manager of Consulting Services

P 505.266.6611 M 480.760.3860 **NEW ADDRESS:** 9400 Holly Avenue NE, Building 3, Suite B, Albuquerque, NM 87122 Email: <u>aerenstein@trinityconsultants.com</u>

AIR DISPERSION MODELING PROTOCOL NSR Application Modeling Protocol

Delaware G&P, LLC Reveille Compressor Station

Prepared By:

Mingcheng Ren – Consultant

TRINITY CONSULTANTS

9400 Holly Avenue NE Building 3, Suite B Albuquerque, NM 87122 (603) 866-0968

March 2023

Project 233201.0050

Reveille Compressor Station Air Dispersion Modeling Protocol Trinity Consultants

1.1 Purpose of Modeling

Reveille Compressor Station (the facility) is a natural gas compressor station for the transport of natural gas owned and operated by Delaware G&P, LLC (Delaware). The facility will collect and store condensate and produced water generated at the inlet separator and compressors, which will be transported offsite via truck. The facility is located approximately 13.05 miles southeast of Loving, New Mexico in Eddy County.

Delaware is submitting an application pursuant to 20.2.72.200.A NMAC for an initial NSR Permit. With this application, Delaware seeks to authorize facility throughput of 150 MMSCFD of natural gas, the construction and operation of two (2) Waukesha 16V275G1 compressor engines (ENG-1 and ENG-2), one (1) dehydrator, one (1) DEHY Glycol Reboiler (RBL-1), six (6) Caterpillar 3612A4 compressor engines (ENG-3 through ENG-8), one (1) Enclosed Combustion Unit (ECD-1), one (1) 750 bbl gunbarrel tank, two (2) 1000 bbl condensate tanks, and one (1) 1000 bbl produced water tank. Emissions will also result from associated fugitives, malfunctions, condensate and produced water loading, and SSM.

Delaware seeks to demonstrate compliance with the National Ambient Air Quality Standards (NAAQS), New Mexico Ambient Air Quality Standards (NMAAQS), and PSD Increment standards as applicable for the following pollutants and averaging periods: NO₂ (1-hour and annual), CO (1-hour and 8-hour), SO₂ (1-hour, 3-hour, 24-hour, and annual), PM_{2.5} (24-hour and annual), and PM₁₀ (24-hour and annual).

1.2 Facility Description and Location

The approximate UTM coordinates of the facility are 596,502 meters east and 3,554,846 meters north with WGS84 datum Zone 13 at an elevation of approximately 3,037 feet above mean sea level.

2.1 Model Input Options

The latest version of the AERMOD dispersion model (version 22112) will be used for this analysis. The model will be run in regulatory mode with all default options. The ARM2 method will be used to convert NO_x to NO₂. Default minimum and maximum ambient ratios will be utilized.

Table 1 shows the emission sources and stack parameters for the facility including the new units (ENG-1 through ENG-8, RBL-1, and ECD-1).

Unit Number	NOx	СО	SO _x	PM 10	PM _{2.5}	H ₂ S	Height	Temp	Velocity	Diam.
Onic Number	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	ft	F	ft/s	ft
ENG-1	3.31	6.39	0.19	0.35	0.35	-	35	864	88.06	2.50
ENG-2	3.31	6.39	0.19	0.35	0.35	-	35	864	88.06	2.50
ENG-3	2.48	4.80	0.14	0.25	0.25	-	28	820	127.05	2.00
ENG-4	2.48	4.80	0.14	0.25	0.25	-	28	820	127.05	2.00
ENG-5	2.48	4.80	0.14	0.25	0.25	-	28	820	127.05	2.00
ENG-6	2.48	4.80	0.14	0.25	0.25	-	28	820	127.05	2.00
ENG-7	2.48	4.80	0.14	0.25	0.25	-	28	820	127.05	2.00
ENG-8	2.48	4.80	0.14	0.25	0.25	-	28	820	127.05	2.00
RBL-1	0.20	0.16	0.011	0.015	0.015	-	9.2	1400	26.6	0.8
ECD-1	0.10	0.20	0.00017	-	-	-	13	1200	1.48	5

Table 1- Emission sources and stack parameters to be included in the air dispersion modeling.

If applicable, a downwash analysis using the latest version of BPIP will be conducted and incorporated into the modeling analysis to account for potential effluent downwash due to structures at the facility.

2.2 Receptor Grid Description and Elevation Data

The center point of the facility will be designated at 596,502 meters east and 3,554,846 meters north. This center point will serve as the center point for a variable-density circular receptor grid. The facility fenceline will be modeled using 25-meter grid spacing. A 50-meter grid spacing will extend out to 800 meters in each direction from the facility center point for a very fine grid resolution. A 100-meter grid spacing will extend from 800 meters to 3,000 meters in each direction for a fine grid resolution. A 250-meter grid spacing will extend from 3,000 meters to 6,000 meters in each direction for a medium grid resolution. A 500-meter grid spacing will extend from 6,000 meters to 10,000 meters in each direction for a coarse grid resolution. A 1000-meter grid spacing will extend from 10,000 meters to 50,000 meters in each direction for a very coarse grid resolution. It is expected that the highest impacts from the proposed source will be at or near the facility property.

For the Class I area analysis, a grid spacing of 1000 m is used for receptors over the Class I area obtained from New Mexico Environment Department's Air Quality Bureau (NMED).

The elevations of receptors and facility sources will be determined using the most recent NED data currently available obtained from USGS (1 arc-second DEM).

2.3 Meteorological Data

We will use the Carlsbad NWS dataset for five meteorological years (2017-2021) available on the NMED website. As the site is in Eddy County, the Carlsbad NWS dataset is the most representative location for the meteorological conditions of the facility.

2.4 Significance Analysis (SIL) and Cumulative Impact Analysis (CIA)

The modeled ground-level concentrations will be compared to the corresponding significant impact levels (SILs) to determine whether any modeled ground-level concentrations at any receptor locations are greater than the SIL (i.e., "significant" receptors). If the significance analysis reveals that modeled ground-level concentrations for a particular pollutant and averaging period are greater than the applicable SIL, a Cumulative Impact Analysis (CIA) will be performed at the significant receptors. The CIA will include impacts from the facility sources and background concentrations/surrounding sources if applicable.

If necessary, the background concentration used for NO_2 will be from the Carlsbad Monitor (5ZR). The background concentration for $PM_{2.5}$ and PM_{10} will be the Hobbs-Jefferson Monitor (5ZS). The inclusion of background concentrations will follow the guidance shown in Table 20: "Modeling the Design Value Summary (Default Modeling)" from the Modeling Guidelines.

For SO₂ modeling, based on the NMED Modeling Guidelines, if the facility is in the Pecos-Permian Basin Intrastate AQCR (AQCR 155), we will model the facility and surrounding sources (because representative monitoring may not be available).

For PM_{2.5} and PM₁₀ modeling, we will include modeling the facility and nearby sources and adding secondary formation (if applicable) and a background concentration. For modeling nearby sources, all sources within 10 km of the facility will be included in the model. An inventory of the surrounding sources will be obtained from the NMED. Based on EPA's Guidance for PM_{2.5} Permit Modeling and NMED'S Modeling Guidelines, sources that emit at least 40 tons per year of NO_x or at least 40 tons per year of SO₂ are considered to emit significant amounts of precursors. Sources with significant increases of PM_{2.5} precursors must qualitatively and/or quantitatively account for the secondary formation of PM_{2.5}. The secondary formation of PM_{2.5} will be calculated in this modeling following the NMED Modeling Guidelines.

2.5 **PSD Increment Analysis**

If the results of the ROI analysis for NO_X, SO₂, or PM₁₀ indicate concentrations greater than significance levels, PSD increment analysis will be conducted for the appropriate averaging periods. If required, the PSD increment analysis will be conducted including all PSD increment consuming and expanding sources within 25 km of the facility, plus sources emitting over 1000 pounds per hour within 50 km of the facility. These surrounding sources' information will be obtained from NMED-AQB. The predicted maximum concentrations will be compared to the appropriate Class II PSD Standard.

2.6 Class I Areas Analysis

The nearest Class I area is Carlsbad Caverns National Park at 43.47 km from the facility. Pollutants will be modeled for significance using the Carlsbad Caverns receptor grid. Class I area analysis will be performed if concentrations are greater than Class I significance levels as the national park is inside of the 100 km inclusion zone for PSD major sources.

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

 $N\!/\!A-T\!his$ Facility has not been constructed yet.

Section 22: Certification

Company Name:	
I,, hereb and as accurate as possible, to the best of my knowle	by certify that the information and data submitted in this application are true edge and professional expertise and experience.
Signed this day of,	, upon my oath or affirmation, before a notary of the State of
*Signature	Date
Printed Name	Title
Scribed and sworn before me on this day of	<u> </u>
My authorization as a notary of the State of	expires on the
day of	,
Notary's Signature	Date
Notary's Printed Name	
*For Title V applications, the signature must be of the	he Responsible Official as defined in 20.2.70.7.AE NMAC.