20.2.72 NMAC NEW NSR AIR QUALITY PERMIT APPLICATION

For

SHORT LINE, LLC

LAS VEGAS HMA & CRUSHER AGGREGATE CRUSHING AND SCREENING PLANT Las Vegas, NM

PREPARED BY Montrose Environmental Solutions, LLC Albuquerque, NM October 2023

For Department use only:

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

 This application is submitted as (check all that apply):
 Request for a No Permit Required Determination (no fee)

 Updating an application currently under NMED review.
 Include this page and all pages that are being updated (no fee required).

 Construction Status:
 Not Constructed
 Existing Permitted (or NOI) Facility
 Existing Non-permitted (or NOI) Facility

 Minor Source:
 NOI 20.2.73 NMAC
 20.2.72 NMAC application or revision
 20.2.72.300 NMAC Streamline application

 Title V Source:
 Title V (new)
 Title V renewal
 TV minor mod.
 TV significant mod.
 TV Acid Rain:
 New
 Renewal

 PSD Major Source:
 PSD major source (new)
 Minor Modification to a PSD source
 a PSD major modification

Acknowledgements:

I acknowledge that a pre-application meeting is available to me upon request. 🔲 Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

S500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications).

Check No.: 1061 in the amount of \$500.00

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.

I acknowledge there is an annual fee for permits in addition to the permit review fee: <u>www.env.nm.gov/air-quality/permit-fees-</u> 2/.

This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.200.A(1) NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	<mark>Al #</mark> if known:	<mark>Updating</mark> Permit/NOI #:				
1	Facility Name: Las Vegas HMA & Crusher	Plant primary SIC Code (4 digits): 1429, 1442, 1499					
		Plant NAIC code (6 digits): 142901, 144202, 149998					
а	a Facility Street Address (If no facility street address, provide directions from a prominent landmark): 1109 Airport Road, L Vegas, NM						
2	Plant Operator Company Name: Short Line, LLC	Phone/Fax: 505-892-54	100/				

-							
а	Plant Operator Address: PO Box 1499, Peralta, NM 87042						
b	Plant Operator's New Mexico Corporate ID or Tax ID: 03-543893-00-2						
3	Plant Owner(s) name(s): Short Line, LLC Phone/Fax: 505-892-5400/						
а	Plant Owner(s) Mailing Address(s):PO Box 1499, Peralta, NM 87042						
4	Bill To (Company): Short Line, LLC	Phone/Fax: 505-892-5400/					
а	Mailing Address: PO Box 1499, Peralta, NM 87042	E-mail:shortlinellc@yahoo.com					
5	 Preparer: Consultant: Paul Wade, Montrose Environmental Solutions, Inc. 	Phone/Fax: 505-830-9680 x6/505-830-9678					
а	Mailing Address: 9100 2nd Street NW, Suite 200, Albuquerque, NM 87114-1664	E-mail: pwade@montrose-env.com					
6	Plant Operator Contact: Beverly Zastrow	Phone/Fax: 505-892-5400/					
а	Address: PO Box 1499, Peralta, NM 87042	E-mail: shortlinellc@yahoo.com					
7	Air Permit Contact: Beverly Zastrow	Title: Managing Member					
а	E-mail: <u>shortlinellc@yahoo.com</u>	Phone/Fax: 505-892-5400/					
b	Mailing Address: PO Box 1499, Peralta, NM 87042						
с	The designated Air permit Contact will receive all official correspondence	(i.e. letters, permits) from the Air Quality Bureau.					

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed?	1.b If yes to question 1.a, is it currently operating in New Mexico? ☐ Yes ☐ No				
2	If yes to question 1.a, was the existing facility subject t Intent (NOI) (20.2.73 NMAC) before submittal of this a Yes No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? Yes No				
3	Is the facility currently shut down? 🔲 Yes 🛛 No	If yes, give m	onth and year of shut down (MM/YY):			
4	Was this facility constructed before 8/31/1972 and cor	ntinuously ope	rated since 1972? 🔲 Yes 🖾 No			
5	If Yes to question 3, has this facility been modified (see ☐ Yes ☐ No ☑ N/A	MAC) or the capacity increased since 8/31/1972?				
6	Does this facility have a Title V operating permit (20.2.) ☐ Yes ⊠ No	70 NMAC)?	If yes, the permit No. is: P-			
7	Has this facility been issued a No Permit Required (NPF	R)?	If yes, the NPR No. is:			
8	Has this facility been issued a Notice of Intent (NOI)?	🗌 Yes 🛛 No	If yes, the NOI No. is:			
9	Does this facility have a construction permit (20.2.72/2 ☐ Yes ⊠ No	If yes, the permit No. is:				
10	Is this facility registered under a General permit (GCP-: ☐ Yes ⊠ No	1, GCP-2, etc.)?	If yes, the register No. is:			

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)								
а	a Current Hourly: Daily: Annually:								
b	Proposed Hourly: 200 TPH Daily: 2,900 TPD Annually: 876,000 TPY								
2	What is the	facility's maximum production rate, sp	pecify units (reference here and list capacities in	n Section 20, if more room is required)					
а	Current Hourly: Daily: Annually:								
b	b Proposed Hourly: 200 TPH Daily: 2,900 TPD Annually: 876,000 TPY								

Section 1-D: Facility Location Information

1	Latitude (decimal degrees): 35.629554	Longitude	(decimal c	legrees): -105.2	198349	County: San Miguel	Elevation (ft): 6495		
2	UTM Zone: 🔲 12 or 🔀 13		Datum: 🔀 NAD 83 🔲 WGS 84						
а	UTM E (in meters, to nearest 10 meters): 482.04		UTM N (n meters, to neare	st 10 meters)	: 3,942.88			
3	Name and zip code of nearest New Mexico	o town: Las '	/egas, 877	01					
4	Detailed Driving Instructions from nearest Highway 250 (Airport Road) travel east on						of I-25 and		
5	The facility is 2.3 miles north-northeast of	Las Vegas							
6	Land Status of facility (check one): 🛛 Priv	vate 🔲 Ind	ian/Pueblo	Governm	ient 🗌 B	LM 🔲 Forest Se	rvice 🔲 Military		
7	List all municipalities, Indian tribes, and co which the facility is proposed to be constr	ucted or ope	erated: Las	Vegas, San Mi	guel Count	Σγ			
8	20.2.72 NMAC applications only: Will the than 50 km (31 miles) to other states, Bern publications/)? ⊠ Yes □ No (20.2.72.20 Wilderness Area – 12.9 km	nalillo Count	y, or a Cla	ss I area (see <u>w</u>	ww.env.nr	m.gov/air-quality/	modeling-		
9	Name nearest Class I area: Pecos Wilderne	ess Area							
10	Shortest distance (in km) from facility bou	ndary to the	boundary	of the nearest	Class I are	a (to the nearest 10 n	neters): 12.90 km		
11	Distance (meters) from the perimeter of t lands, including mining overburden remov								
12	Method(s) used to delineate the Restricted Area: Fencing and Gate with Signage "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.								
13	Does the owner/operator intend to opera Yes No A portable stationary source is not a mobi at one location or that can be re-installed sites.	te this sourc le source, su at various lo	e as a por Ich as an a cations, si	table stationary utomobile, but uch as a hot mi	/ source as : a source t x asphalt p	defined in 20.2.7 hat can be installe lant that is moved	2.7.X NMAC? ed permanently d to different job		
14	Will this facility operate in conjunction wit If yes, what is the name and permit numb		• •			· _	Yes		

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating (^{hours}): Daylight	(days (week): 7		(weeks year): 52	(<u>hours</u>): 4380		
2	Facility's maximum daily operating schedule (if less	than 24 ^{hours})?	Start: Sunrise	XAM DPM	End: Sunset	□am xpm	
3	Month and year of anticipated start of construction	: After Permit is	Issued				
4	Month and year of anticipated construction comple	tion: After Perm	nit is Issued				
5	Month and year of anticipated startup of new or modified facility: After Permit is Issued						
6	Will this facility operate at this site for more than or	ne year? 🛛 🔀	Yes 🗌 No				

Section 1-F: Other Facility Information

 1
 Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility?

 1
 Yes

 1

а	If yes, NOV date or description of issue: NOV Tracking No:						
b	Is this application in response to any issue listed in 1-F, 1 o If Yes, provide the 1c & 1d info below:	r 1a above? 🔲 Yes	🛛 No				
С	Document Title:	Date:		nent # (or nd paragraph #):			
d	Provide the required text to be inserted in this permit:						
2	Is air quality dispersion modeling or modeling waiver being	g submitted with this	applicatio	n? 🛛 Yes 🗌 No			
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? 🔲 Yes 🔀 No						
4	Will this facility be a source of federal Hazardous Air Pollut	ants (HAP)? 🔀 Yes	🗌 No				
а	If Yes, what type of source? Major (≥10 tpy of a OR Minor (<10 tpy of any			tpy of any combination of HAPS) py of any combination of HAPS)			
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? Yes No						
	If yes, include the name of company providing commercial electric power to the facility:						
а	Commercial power is purchased from a commercial utility company, which specifically does not include power generated on site for the sole purpose of the user.						

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1	I have filled out Section 18, "Addendum for Streamline Applications."	N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC):		Phone:				
а	a R.O. Title: R.O. e-mail:						
b	R. O. Address:						
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC):		Phone:				
а	A. R.O. Title:	A. R.O. e-mail:					
b	A. R. O. Address:						
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship):						
4	Name of Parent Company ("Parent Company" means the primary permitted wholly or in part.):	name of the organiz	ation that owns the company to be				
а	Address of Parent Company:						
5	Names of Subsidiary Companies ("Subsidiary Companies" means o owned, wholly or in part, by the company to be permitted.):	rganizations, branch	nes, divisions or subsidiaries, which are				
6	Telephone numbers & names of the owners' agents and site conta	icts familiar with pla	nt operations:				
7	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers:						

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This copy should be printed in book form, 3-hole punched, and **must be double sided**. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application

Secure electronic transfer. Air Permit Contact Name_____, Email______ Phone number ______.

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.

- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition Type	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equ	For Each Piece of Equipment, Check One		Replacing Unit No.
RAW	Raw Material Pile	NA	NA	NA	200 TPH	200 TPH	NA	NA	3050200	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
RAW	Raw Waterial Pile	NA	NA	NA	200 191	200 191	2024	NA	7	To Be Modified	To be Replaced		
1	Feeder	TBD	TBD	TBD	200 TPH	200 TPH		NA	3050203	Existing (unchanged)	To be Removed Replacement Unit		
Ţ	reder	100	TBD	100	200 1711	200 111	2024	NA	1	To Be Modified	To be Replaced		
2	Waste Conveyor	TBD	TBD	TBD	200 TPH	200 TPH		C1	3050200	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
2	waste conveyor		TBD	IBD	200 1911	200 171	2024	NA	6	To Be Modified	To be Replaced		
3	Primary Crusher	TBD	TBD	TBD	200 TPH	200 TPH		C3	3050200	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
5	Primary Crusher	IDD	ТБО	ТБО	200 191	200 191	2024	NA	1	To Be Modified	To be Replaced		
4	Primary Crusher	TBD				200 TPH		C1	3050200	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
4	Conveyor	IDD	TBD	TBD	200 TPH	200 191	2024	NA	6	To Be Modified	To be Replaced		
5	Secondary Crusher	TBD	TBD	TBD	200 TPH	200 TPH		C3	3050200	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
5	Secondary crusher	IDU	ТБО	עסו	200 191	200 191	2024	NA	1	To Be Modified	To be Replaced		
6	Seconary Crusher	TBD	TBD	TBD	200 TPH	200 TPH		C1	3050200	Existing (unchanged) New/Additional 	To be Removed Replacement Unit		
0	Conveyor	IBD	TBD	IBD	200 1911	200 1711	2024	NA	6	To Be Modified	To be Replaced		
7	Screen	TBD	TBD	TBD	200 TPH	200 TPH		C2	3050201	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
,	Scieen		TBD	IBD	200 1911	200 171	2024	NA	5	To Be Modified	To be Replaced		
8	Stacker Conveyor 1	TBD	TBD	TBD	200 TPH	200 TPH		C1	3050200	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
0	Stacker Conveyor 1		TBD	IBD	200 1911	200 171	2024	NA	6	To Be Modified	To be Replaced		
9	Stacker Conveyor 2	TBD	TBD	TBD	200 TPH	200 TPH		C1	3050200	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
9	Stacker Conveyor 2		TBD	IBD	200 1911	200 171	2024	NA	6	To Be Modified	To be Replaced		
10	Stacker Conveyor 3	TBD	TBD	TBD	200 TPH	200 TPH		C1	3050200	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
10	Stacker Conveyor 5	IDD	ТБО	עסו	200 191	200 191	2024	NA	6	To Be Modified	To be Replaced		
11	Stacker Conveyor	NA	NA	NA	200 TPH	200 TPH	NA	NA	3050200	Existing (unchanged) New/Additional	To be Removed		
11	Drop to Pile	NA	NA	NA	200 191	200 191	2024	NA	7	To Be Modified	Replacement Unit To be Replaced		
	Finish Dila	NIA	NIA	NIA	200 7011		NA	NA	3050200	Existing (unchanged)	To be Removed		
FPILE	Finish Pile	NA	NA	NA	200 TPH	200 TPH	2024	NA	7	 ✓ New/Additional To Be Modified 	Replacement Unit To be Replaced		
10	Cruchor Constants 1	CAT	<u> </u>	15033943	350 HP	350 HP	2005	1	3050209	Existing (unchanged)	To be Removed	C	
12	Crusher Generator 1	CAT	C9	JSC23842	320 HP	320 HY	2024	NA	9	 ✓ New/Additional To Be Modified 	Replacement Unit To be Replaced	CI	
12	Cruchar Constator 2	Doutz	212	10220724	325 HP	325 HP	2006	2	3050209	Existing (unchanged)	To be Removed	CL	
13	Crusher Generator 2	Deutz	312	10228734	325 HP	323 HP	2024	NA	9	✓ New/Additional To Be Modified	Replacement Unit To be Replaced	CI	

ľ						Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition Type		
	Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.	
ľ	14	Crusher Haul Road	NA	NA	NA	252	252	NA	C4	3050201	Existing (unchanged) To be Removed ✓ New/Additional			
	14	Crusher Haur Koau	NA	NA	INA	truck/day	truck/day	2024	NA	3050201 1	To Be Modified To be Replaced			

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "Cl" means compression ignition, and "Sl" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-

content/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)		For Each Piece of Equipment, Check Onc
							Existing (unchanged) To Removed
							New/Additional Reacement Unit
							To Be Modified To Peplaced
							Existing (unchanged) T Removed
							New/Additional Reacement Unit
							To Be Modified To Peplaced
							Existing (unchanged) T Removed
							New/Additional Reacement Unit
							To Be Modified Te Replaced
							Lexisting (unchanged) Tele Removed
							To Be Modified To Peplaced
							Existing (unchanged) Te Removed
							New/Additional Recement Unit
							To Be Modified To Peplaced
							Existing (unchanged) Te Removed
							New/Additional Recement Unit
							To Be Modified To Peplaced
							Existing (unchanged) T Removed
							New/Additional Recement Unit
							To Be Modified Te Replaced
							Existing (unchanged) Terrer Removed
							New/Additional Reacement Unit
							To Be Modified To Peplaced
							Existing (unchanged) T Removed
							New/Additional Reacement Unit
							To Be Modified To Peplaced
							Existing (unchanged) Te Removed
							New/Additional Reacement Unit
							To Be Modified To Peplaced
							Existing (unchanged) T Removed
							New/Additional Reacement Unit
							To Be Modified To e Replaced
							Existing (unchanged) T Removed
							New/Additional Reacement Unit
							To Be Modified To Pe Replaced
							Existing (unchanged) Te Removed
							New/Additional Reacement Unit
							To Be Modified To Peplaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissed from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
C1	Conveyor Transfer Points - Wet Dust Suppression System	2024	РМ	2, 4, 6, 8, 9, 10	95.33%	AP-42 11.19.2 Emission Factors
C2	Screen - Wet Dust Suppression System	2024	РМ	7	91.20%	AP-42 11.19.2 Emission Factors
C3	Crusher - Wet Dust Suppression System	2024	РМ	3, 5	77.78%	AP-42 11.19.2 Emission Factors
C4	Unpaved Roads - Base Course and Watering	2011	РМ	14	80.00%	NMED Policy
1	ntrol device on a separate line. For each control device, list all er					

Table 2-D: Maximum Emissions (under normal operating conditions)

This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

	N	Ох	C	0	V	C	S	Ох	PI	M1	PM	110 ¹	PM	2.5 ¹	Н	₂ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr										
RAW	-	-	-	-	-	-	-	-	1.38	6.06	0.65	2.86	0.099	0.43	-	-	-	-
1	-	-	-	-	-	-	-	-	1.38	6.06	0.65	2.86	0.099	0.43	-	-	-	-
2	-	-	-	-	-	-	-	-	0.60	2.63	0.22	0.96	0.033	0.15	-	-	-	-
3	-	-	-	-	-	-	-	-	1.08	4.73	0.48	2.10	0.073	0.32	-	-	-	-
4	-	-	-	-	-	-	-	-	0.60	2.63	0.22	0.96	0.033	0.15	-	-	-	-
5	-	-	-	-	-	-	-	-	1.08	4.73	0.48	2.10	0.073	0.32	-	-	-	-
6	-	-	-	-	-	-	-	-	0.60	2.63	0.22	0.96	0.033	0.15	-	-	-	-
7	-	-	-	-	-	-	-	-	5.00	21.90	1.74	7.62	0.26	1.15	-	-	-	-
8	-	-	-	-	-	-	-	-	0.20	2.63	0.073	0.96	0.011	0.15	-	-	-	-
9	-	-	-	-	-	-	-	-	0.20	2.63	0.073	0.96	0.011	0.15	-	-	-	-
10	-	-	-	-	-	-	-	-	0.20	2.63	0.073	0.96	0.011	0.15	-	-	-	-
11	-	-	-	-	-	-	-	-	1.38	6.06	0.65	2.86	0.099	0.43	-	-	-	-
FPILE	-	-	-	-	-	-	-	-	1.38	6.06	0.65	2.86	0.099	0.43	-	-	-	-
12	3.50	15.32	2.01	8.82	0.18	0.81	0.13	0.55	0.12	0.50	0.12	0.50	0.12	0.50	-	-	2.0E-05	9.0E-05
13	3.25	14.23	1.87	8.19	0.17	0.75	0.12	0.51	0.11	0.47	0.11	0.47	0.11	0.47	-	-	1.9E-05	8.4E-05
14	-	-	-	-	-	-	-	-	25.03	88.61	6.38	22.58	0.64	2.26	-	-	-	-
Totals	6.75	29.55	3.88	17.01	0.36	1.56	0.24	1.06	40.34	160.93	12.80	52.62	1.80	7.63	-	-	3.9E-05	1.7E-04

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	N	Ox	C	0	V	C	S	Эx	PI	M1	PM	10 ¹	PM	2.5 ¹	Н	₂S	Le	ad
Unit NO.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
RAW	-	-	-	-	-	-	-	-	1.38	3.03	0.65	1.43	0.099	0.22	-	-	-	-
1	-	-	-	-	-	-	-	-	1.38	3.03	0.65	1.43	0.099	0.22	-	-	-	-
2	-	-	-	-	-	-	-	-	0.028	0.061	0.0092	0.020	0.0026	0.0057	-	-	-	-
3	-	-	-	-	-	-	-	-	0.24	0.53	0.11	0.24	0.020	0.04	-	-	-	-
4	-	-	-	-	-	-	-	-	0.028	0.061	0.0092	0.020	0.0026	0.0057	-	-	-	-
5	-	-	-	-	-	-	-	-	0.24	0.53	0.11	0.24	0.020	0.044	-	-	-	-
6	-	-	-	-	-	-	-	-	0.028	0.061	0.0092	0.020	0.0026	0.0057	-	-	-	-
7	-	-	-	-	-	-	-	-	0.44	0.96	0.15	0.32	0.010	0.022	-	-	-	-
8	-	-	-	-	-	-	-	-	0.0093	0.061	0.0031	0.020	0.0009	0.0057	-	-	-	-
9	-	-	-	-	-	-	-	-	0.0093	0.061	0.0031	0.020	0.0009	0.0057	-	-	-	-
10	-	-	-	-	-	-	-	-	0.0094	0.061	0.0031	0.020	0.0009	0.0057	-	-	-	-
11	-	-	-	-	-	-	-	-	1.38	3.03	0.65	1.43	0.099	0.22	-	-	-	-
FPILE	-	-	-	-	-	-	-	-	1.38	3.03	0.65	1.43	0.099	0.22	-	-	-	-
12	3.50	7.66	2.01	4.41	0.18	0.40	0.13	0.28	0.12	0.25	0.12	0.25	0.12	0.25	-	-	2.0E-05	4.5E-05
13	3.25	7.11	1.87	4.10	0.17	0.37	0.12	0.26	0.11	0.23	0.11	0.23	0.11	0.23	-	-	1.9E-05	4.2E-05
14	-	-	-	-	-	-	-	-	5.01	8.86	1.28	2.26	0.13	0.23	-	-	-	-
Totals	6.75	14.78	3.88	8.51	0.36	0.78	0.24	0.53	11.79	23.84	4.51	9.39	0.81	1.72	-	-	3.9E-05	8.7E-05

* Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

X This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications

(https://www.env.nm.gov/agb/permit/agb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	C	0	V	C	S	Dx	PI	M ²	PM	10 ²	PM	2.5 ²	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr								
																		<u> </u>
Totals																		
Totals																		

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

6. I.N.	Serving Unit	N	Ox	С	0	V	oc	S	Ох	Р	М	PN	/10	PN	12.5	\Box H ₂ S or	Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
	Totals:																

Revision #0

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s) from	Orientation (H- Horizontal	Rain Caps	Height Above	Temp.	Flow	v Rate	Moisture by	Velocity	Inside
Number	Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
1	12	V	No	12	900	17.45		trace	200	0.33
2	13	Н	No	10	900	6.82		trace	200	0.21

Revision #0

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Name	Pollutant Here r TAP	Provide I Name	Here	Name	Pollutant Here r 🗌 TAP	Provide I Name		Name	Pollutant Here r TAP	Name	Pollutant Here r 🗌 TAP	Name	Pollutant Here r TAP	Name	Pollutant Here r 🗌 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	12	0.015	0.032																
2	13	0.014	0.030																
Tata		0.020	0.002																
Tota	ais:	0.029	0.062																

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial, pipeline quality natural gas, residue gas,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
12	Low sulfur diesel	Purchased Commercial	120,000 BTU/Gal	17.7 gallons	77,526 gallons	0.05	Neg.
13	Low sulfur diesel	Purchased Commercial	120,000 BTU/Gal	16.5 gallons	72,270 gallons	0.05	Neg.

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Stora	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
NA									

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)			Diameter (M)	Vapor Space (M)	(from Ta	lor ible VI-C)	Paint Condition (from Table VI-	Annual Throughput (gal/yr)	Turn- overs
			ER BEIOW)	ENDEROWY	(bbl)	(M ³)			Roof	Shell	C)	(gai/yr)	(per year)
NA													
						-							

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Rive	ted Tank Seal Type	Roof, Shell Color	Paint Condition
FX : Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH : White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG : Light Gray	
					MG : Medium Gray	
Note: 1.00 bbl = 0.159 N	1 ³ = 42.0 gal				BL: Black	
					OT : Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Materi	al Processed		N	Naterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Aggregate, Recycled Asphalt, Recycled Concrete	Aggregate, Recycled Asphalt, Recycled Concrete	Solid	200 TPH	Aggregate, Recycled Asphalt, Recycled Concrete	Aggregate, Recycled Asphalt, Recycled Concrete	Solid	200 TPH

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
NA									

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
NA								

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box.

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO 2 ton/yr	N₂O ton/yr	CH₄ ton/yr	SF ₅ ton∕yr	PFC/HFC ton/yr ²						Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3							
12	mass GHG	881.5										881.5	
	CO ₂ e	881.5									_		881.5
13	mass GHG	818.5										818.5	
15	CO ₂ e	818.5											818.5
	mass GHG												
	CO ₂ e										_		
	mass GHG												
	CO ₂ e												
	mass GHG												
	CO ₂ e				-		-		-	-	-		
	mass GHG												
	CO ₂ e												
	mass GHG												
	CO ₂ e										_		
	mass GHG												
	CO ₂ e												
	mass GHG												
	CO ₂ e										_		
	mass GHG												
	CO ₂ e												
	mass GHG												
	CO ₂ e												
	mass GHG												
	CO ₂ e												
	mass GHG												
	CO2e												
Total	mass GHG	1700										1700	
10101	CO ₂ e	1700											1700

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a mass basis is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **<u>Process Summary</u>** shall include a brief description of the facility and its processes.

<u>Startup</u>, <u>Shutdown</u>, <u>and Maintenance</u> (<u>SSM</u>) routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Short Line, LLC (Short Line) is applying for a new 20.2.72 NMAC air quality permit for a 200 ton per hour (tph) aggregate crushing and screening plant to be operated within county of San Miguel, state of New Mexico. Regulation governing this permit application is 20.2.72.200.A(1) NMAC.

Short Line has retained Montrose Environmental Solutions, LLC (Montrose) to assist with the permit application. The plant will be identified as Las Vegas HMA & Crusher and will be located at 1109 Airport Road in Las Vegas, NM, 87701.

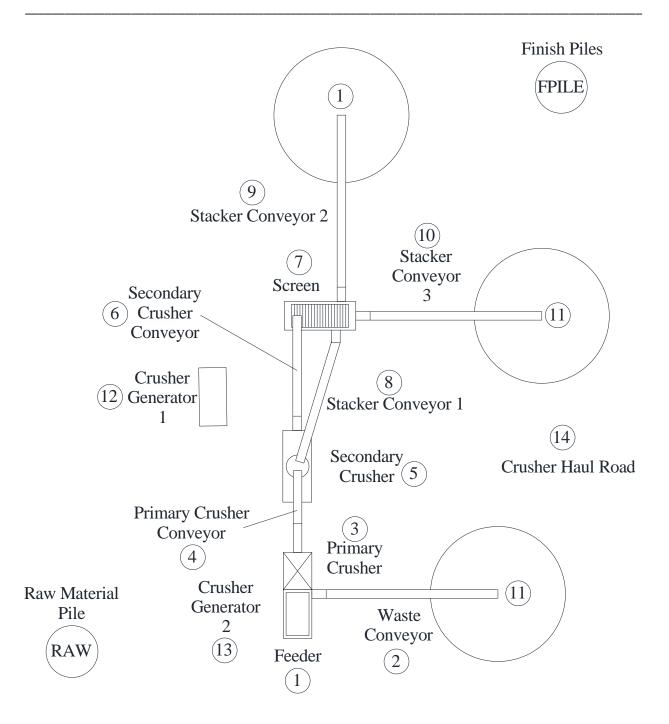
Aggregate Crushing and Screening Plant

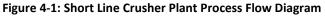
The Las Vegas HMA & Crusher facility includes a 200 tph aggregate crushing and screening plant. The proposed construction includes raw and finish aggregate storage piles, aggregate feeder, primary crusher, secondary crusher, screen, nine (9) transfer conveyors, and three (3) stacker conveyors. The aggregate crushing and screening plant will be powered with a 261 kW (350 horsepower (hp)) generator and a 242 kW (325 horsepower (hp)) generator. Processed aggregate will be used at the HMA plant and transported to off-site sales. Aggregate processing hours will be limited to daylight hours only. The hours of operation are presented below in Table 3-1.

- -	TABLE 3-1. Aggregate Crushing and Screening Plant Production Hours of Operation (WST)											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
12:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
5:00 AM	0	0	0	1	1	1	1	1	0.5	0	0	0
6:00 AM	0	0.5	1	1	1	1	1	1	1	1	0.5	0
7:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
8:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
9:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
10:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
11:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
12:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
1:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
2:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
3:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
4:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
5:00 PM	0.5	1	1	1	1	1	1	1	1	1	0	0
6:00 PM	0	0	0	1	1	1	1	1	0.5	0	0	0
7:00 PM	0	0	0	0	0	0.5	0.5	0	0	0	0	0
8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
Total	10.5	11.5	12	14	14	14.5	14.5	14	13	12	10.5	10

 TABLE 3-1: Aggregate Crushing and Screening Plant Production Hours of Operation (MST)

Haul truck traffic entering the facility will be controlled with base course and road watering. Haul truck traffic involving the Las Vegas Crusher Plant operation will be limited to a maximum of 208 trucks per day.


If you have any questions regarding this significant permit application please call Paul Wade of Montrose Environmental Solutions, Inc. at (505) 830-9680 ext 6 or Cody Sutton of Albuquerque Asphalt, Inc. at (505) 892-5400.


Routine or predictable emissions during Startup, Shutdown, and Maintenance (SSM)

No SSM emissions are proposed or submitted for this facility. For material processing equipment at the Las Vegas Crusher Plant, Short Line, LLC will follow normal industry practices in minimizing emissions during startup, shutdown, and maintenance to not exceed the maximum hourly or annual emission rates submitted in Table 2-E. All control equipment and methods will be functioning correctly prior to aggregate processing.

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

Plot Plan Drawn to Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

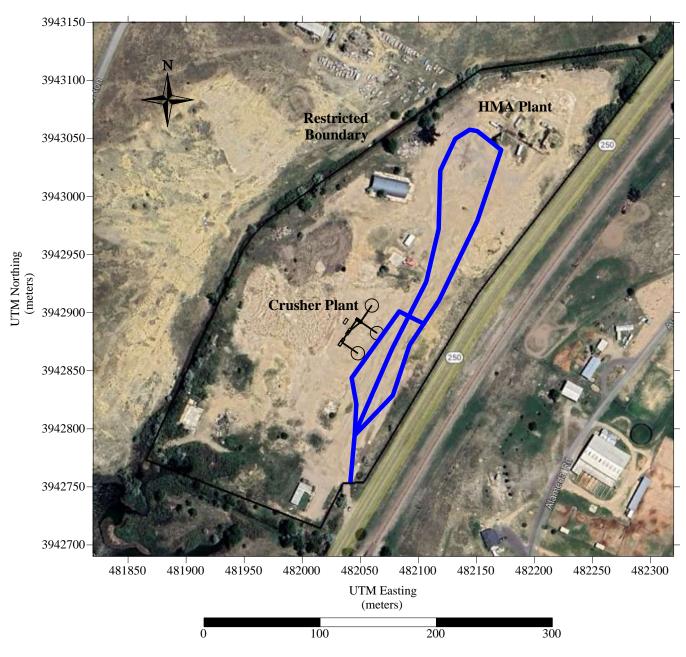


Figure 5-1: Location of Short Line Crusher Plant and Surrounding Area

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; **and**

- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.(2) The first events of the events of the events of the standard.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Aggregate Crushing and Screening Plant

Pre-Control Particulate Emission Rates

Material Handling (PM2.5, PM10, and PM)

To estimate material handling pre-control particulate emissions rates for crushing, screening, and conveyor transfer operations, emission factors were obtained from EPA's <u>Compilation of Air Pollutant Emission Factors, Volume I:</u> <u>Stationary Point and Area Sources</u>, Aug. 2004, Section 11.19.2, Table 11.19.2-2. To determine missing PM_{2.5} emission factors the ratio of 0.35/0.053 from PM₁₀/PM_{2.5} *k* factors found in AP-42 Section 13.2.4 (11/2006) were used.

To estimate material handling particulate emission rates for aggregate handling operations (aggregate storage piles/ loading feed bins), an emission equation was obtained from EPA's <u>Compilation of Air Pollutant Emission Factors</u>, Volume <u>I: Stationary Point and Area Sources</u>, Fifth Edition, Section 13.2.4 (11/2004), where the k (TSP = 0.74, PM₁₀ = 0.35, PM_{2.5} = 0.053), wind speed for determining emission rate is based on the average wind speed for Las Vegas Airport (1996 – 2006), of 11.4 mph (see Section 7) and the NMED default moisture content of 2 percent.

Uncontrolled annual emissions for tons per year (tpy) were calculated assuming daylight operation for 4380 hours per year.

<u>Aggregate Material Handling – Drop to Storage Piles, Storage Piles, and Feed Bin Loading Emission Equation:</u> Maximum Hour Emission Factor

E (lbs/ton) = k x 0.0032 x (U/5)^{1.3} / (M/2)^{1.4} E_{PM} (lbs/ton) = 0.74 x 0.0032 x (11.4/5)^{1.3} / (2/2)^{1.4} E_{PM10} (lbs/ton) = 0.35 x 0.0032 x (11.4/5)^{1.3} / (2/2)^{1.4} $E_{PM2.5}$ (lbs/ton) = 0.0053 x 0.0032 x (11.4/5)^{1.3} / (2/2)^{1.4} E_{PM} (lbs/ton) = 0.00691 lbs/ton; E_{PM10} (lbs/ton) = 0.00327 lbs/ton $E_{PM2.5}$ (lbs/ton) = 0.00050 lbs/ton

AP-42 Section 11.19.2 Table 11.19.2-2 Emission Factors:

All Bin Unloading and Conveyor Transfers = Uncontrolled Conveyor Transfer Point Emission Factor Crushing = Uncontrolled Tertiary Crushing Emission Factor Screening = Uncontrolled Screening Emission Factor

Material Handling Emission Factors:

Process Unit	PM Emission Factor (lbs/ton)	PM10 Emission Factor (lbs/ton)	PM _{2.5} Emission Factor (lbs/ton)
Uncontrolled Tertiary Crushing	0.00540	0.00240	0.00036
Uncontrolled Screening	0.02500	0.00870	0.00130
Feed Bin Unloading, and Conveyor Transfers	0.00300	0.00110	0.00017
Uncontrolled Aggregate Storage Piles, Aggregate Drop to Piles, Feeder Loading	0.00691	0.00327	0.00050

The following equation was used to calculate the hourly emission rate for each process unit:

Emission Rate (lbs/hour) = Process Rate (tons/hour) * Emission Factor (lbs/ton)

The following equation was used to calculate the annual emission rate for each process unit:

Emission Rate (tons/year) = Emission Rate (lbs/hour) * Operating Hour (hrs/year) 2000 lbs/ton

Table 6-1 Pre-Controlled Regulated Process Equipment Emission Rates

Unit #	Process Unit Description	Process Rate (tph)	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM2.5 Emission Rate (Ibs/hr)	PM2.5 Emission Rate (tons/yr)
RAW	Raw Material Storage Pile	200	1.38	6.06	0.65	2.86	0.099	0.43
1	Feeder	200	1.38	6.06	0.65	2.86	0.099	0.43
2	Waste Conveyor	200	0.60	2.63	0.22	0.96	0.033	0.15
3	Primary Crusher	200	1.08	4.73	0.48	2.10	0.073	0.32
4	Primary Crusher Conveyor	200	0.60	2.63	0.22	0.96	0.033	0.15
5	Secondary Crusher	200	1.08	4.73	0.48	2.10	0.073	0.32
6	Secondary Crusher Conveyor	200	0.60	2.63	0.22	0.96	0.033	0.15
7	Screen	200	5.00	21.90	1.74	7.62	0.26	1.15
8	Screen Conveyor	67	0.20	2.63	0.073	0.96	0.011	0.15
9	Screen Conveyor	67	0.20	2.63	0.073	0.96	0.011	0.15
10	Screen Conveyor	67	0.20	2.63	0.073	0.96	0.011	0.15
11	Stacker Conveyor Drop to Pile	200	1.38	6.06	0.65	2.86	0.099	0.43
FPILE	Finish Piles	200	1.38	6.06	0.65	2.86	0.099	0.43
		TOTALS	15.09	71.35	6.20	29.07	0.94	4.40

Controlled Particulate Emission Rates

A "Wet Suppression" system will control emissions of particulate matter during crushing and screening. Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group found in AP-42 Section 11.19.2. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent, and the same facilities operating wet suppression systems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over of the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. No fugitive dust controls are proposed for loading the feeder (Unit 1), material drop from stacker conveyors (Unit 11), and material handling at the raw material source (RAW) or finish storage pile (FPILE). Water sprays and moisture carryover will control fugitive dust for Units 2, 3, 4, 5, 6, 7, 8, 9, and 10.

To estimate material handling control particulate emissions rates for crushing, screening, and conveyor transfer operations, emission factors were obtained from EPA's <u>Compilation of Air Pollutant Emission Factors</u>, Volume I: <u>Stationary Point and Area Sources</u>, Aug. 2004, Section 11.19.2, Table 11.19.2-2.

To estimate material handling control particulate emission rates for aggregate handling operations (loading feeder, stacker conveyor drops to storage piles, material handling at storage piles), an emission equation was obtained from EPA's <u>Compilation of Air Pollutant Emission Factors</u>, Volume I: Stationary Point and Area Sources, Fifth Edition, Section 13.2.4 (11/2004), where the k (PM = 0.74, PM₁₀ = 0.35, PM_{2.5} = 0.053), wind speed for determining emission rate is based on the average wind speed for Las Vegas Airport (1996 – 2006), of 11.4 mph (see Section 7) and the NMED default moisture content of 2 percent.

Maximum rated material throughput is 200 tons per hour (tph) and 200,000 tons per year.

<u>Aggregate Material Handling – Drop to Storage Piles, Storage Piles, and Feed Bin Loading Emission Equation:</u> Maximum Hour Emission Factor

E (lbs/ton) = k x 0.0032 x (U/5)^{1.3} / (M/2)^{1.4} E_{PM} (lbs/ton) = 0.74 x 0.0032 x (11.4/5)^{1.3} / (2/2)^{1.4} E_{PM10} (lbs/ton) = 0.35 x 0.0032 x (11.4/5)^{1.3} / (2/2)^{1.4} $E_{PM2.5}$ (lbs/ton) = 0.0053 x 0.0032 x (11.4/5)^{1.3} / (2/2)^{1.4} E_{PM} (lbs/ton) = 0.00691 lbs/ton; E_{PM10} (lbs/ton) = 0.00327 lbs/ton $E_{PM2.5}$ (lbs/ton) = 0.00050 lbs/ton

AP-42 Emission Factors:

All Crushing Sources = Controlled Tertiary Crushing Emission Factor All Screening Sources = Controlled Screening Emission Factor All Conveyor Transfers = Controlled Conveyor Transfer Point Emission Factor

Material Handling Emission Factors:

Process Unit	PM Emission Factor (Ibs/ton)	PM ₁₀ Emission Factor (Ibs/ton)	PM _{2.5} Emission Factor (Ibs/ton)	
Controlled Tertiary Crushing	0.00120	0.00054	0.00010	
Controlled Screening	0.00220	0.00074	0.00005	
Controlled Conveyor Transfer	0.00014	0.00005	0.000013	
Uncontrolled Aggregate Storage Piles, Aggregate Drop to Piles, Feeder Loading	0.00691	0.00327	0.00050	

The following equations was used to calculate the hourly emission rate for each process unit:

Emission Rate (lbs/hour) = Process Rate (tons/hour) * Controlled Emission Factor (lbs/ton)

The following equations was used to calculate the hourly emission rate for each process unit:

Emission Rate (tons/year) = <u>Controlled Emission Rate (lbs/hour) * Operating Hour (hrs/year)</u> 2000 lbs/ton

Unit #	Process Unit Description	Process Rate (tph)	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM _{2.5} Emission Rate (Ibs/hr)	PM _{2.5} Emission Rate (tons/yr)
RAW	Raw Material Storage Pile	200	1.38	3.03	0.65	1.43	0.099	0.22
1	Feeder	200	1.38	3.03	0.65	1.43	0.099	0.22
2	Waste Conveyor	200	0.028	0.061	0.0092	0.020	0.0026	0.0057
3	Primary Crusher	200	0.24	0.53	0.11	0.24	0.020	0.044
4	Primary Crusher Conveyor	200	0.028	0.061	0.0092	0.020	0.0026	0.0057
5	Secondary Crusher	200	0.24	0.53	0.11	0.24	0.020	0.044
6	Secondary Crusher Conveyor	200	0.028	0.061	0.0092	0.020	0.0026	0.0057
7	Screen	200	0.44	0.96	0.15	0.32	0.010	0.022
8	Screen Conveyor	67	0.0093	0.061	0.0031	0.020	0.00087	0.0057
9	Screen Conveyor	67	0.0093	0.061	0.0031	0.020	0.00087	0.0057
10	Screen Conveyor	67	0.0093	0.061	0.0031	0.020	0.00087	0.0057
11	Stacker Conveyor Drop to Pile	200	1.38	3.03	0.65	1.43	0.099	0.22
FPILE	Finish Piles	200	1.38	3.03	0.65	1.43	0.099	0.22
		TOTALS	6.56	14.50	3.02	6.65	0.46	1.01

Table 6-2 Controlled Regulated Process Equipment Emission Rates

Estimates for 350 hp Crushing and Screening Plant Diesel-Fired Engine (NO_x, CO, SO₂, VOC, PM, and CO₂)

A 350 horsepower (hp), 261 kilowatt (kW) engine (Unit 12) provides power to the RAP crushing and screening plant. Emission rates for NO_X, CO, PM and NMHC are based on EPA Tier 2 emission factors (See Section 7). Tier 2 emission factors lists NMHC+NOx. NOx emission factor is 95% of the NMHC+NOx emission factor and Hydrocarbons (VOC) is 5% of the NMHC+NOx emission factor. Sulfur dioxide (SO₂) emissions are estimated based on sulfur content of diesel fuel, not to exceed 0.05% fuel content and a fuel usage rate of 17.7 gal/hr. CO₂ emission rates are found in AP-42 Section 3.3. Uncontrolled annual emissions in tons per year (tpy) were calculated assuming daylight operation of 8760 hours per year.

EPA Tier 2:

Pollutant	EPA Tier 2 Emission Factor (g-kW/hr)				
NMHC+NOx	6.40				
Nitrogen Oxide (NOx)	6.08				
Carbon Monoxides (CO)	3.50				
Particulate (PM)	0.20				
Hydrocarbons (VOC)	0.32				

Sulfur dioxide emission rate was calculated using the fuel consumption rate for this engine of 17.7 gallons per hour, a fuel density of 7.1 pounds per gallon, a fuel sulfur content of 500 PPM, and a sulfur to sulfur dioxide conversion factor of two (2). The following equation calculates the emission rate for sulfur dioxide (SO₂).

Emission Rate (lbs/hr) = Fuel (gal/hr) * Density lbs/gal * % Sulfur Content * Factor

Emission Rate (lbs/hr) = 0.13 lbs/hr

Carbon Dioxide emissions were estimated using AP-42 Table 3.3-1 emission factor of 1.15 lbs/hp-hr.

The following equation was used to calculate the annual emission rate for each engine pollutant:

Emission Rate (tons/year) = Emission Rate (lbs/hour) * Operating Hour (hrs/year) 2000 lbs/ton

Process Unit Number	Pollutant	Engine Rating (hp)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
12	NOx	350	3.50 15.32	
	СО	350	2.01	8.82
	SO ₂	350	0.18	0.81
	voc	350	0.13	0.55
	PM	350	0.12	0.50
	CO ₂	350	402.5	1763.0

Table 6-3: Pre-Controlled Combustion Emission Rates

Table 6-4: Controlled Combustion Emission Rates

Process Unit Number	Pollutant	Engine Rating (hp)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
12	NOx	350	3.50	7.66
	СО	350	2.01	4.41
	SO ₂	350	0.18	0.40
	VOC	350	0.13	0.28
	PM	350	0.12	0.25
	CO ₂	350	402.5	881.5

Estimates for 325 hp Crushing and Screening Plant Diesel-Fired Engine (NO_x, CO, SO₂, VOC, PM, and CO₂)

A 325 horsepower (hp), 242 kilowatt (kW) engine (Unit 13) provides power to the RAP crushing and screening plant. Emission rates for NO_X, CO, PM and NMHC are based on EPA Tier 2 emission factors (See Section 7). Tier 2 emission factors lists NMHC+NOx. NOx emission factor is 95% of the NMHC+NOx emission factor and Hydrocarbons (VOC) is 5% of the NMHC+NOx emission factor. Sulfur dioxide (SO₂) emissions are estimated based on sulfur content of diesel fuel, not to exceed 0.05% fuel content and a fuel usage rate of 16.5 gal/hr. CO₂ emission rates are found in AP-42 Section 3.3. Uncontrolled annual emissions in tons per year (tpy) were calculated assuming daylight operation of 8760 hours per year. Controlled annual emissions in tons per year (tpy) were calculated assuming daylight operation of 4380 hours per year.

EPA Tier 2:

Pollutant	EPA Tier 2 Emission Factor (g-kW/hr)
NMHC+NOx	6.40
Nitrogen Oxide (NOx)	6.08
Carbon Monoxides (CO)	3.50
Particulate (PM)	0.20
Hydrocarbons (VOC)	0.32

Sulfur dioxide emission rate was calculated using the fuel consumption rate for this engine of 16.5 gallons per hour, a fuel density of 7.1 pounds per gallon, a fuel sulfur content of 500 PPM, and a sulfur to sulfur dioxide conversion factor of two (2). The following equation calculates the emission rate for sulfur dioxide (SO₂).

Emission Rate (lbs/hr) = Fuel (gal/hr) * Density lbs/gal * % Sulfur Content * Factor

Emission Rate (lbs/hr) = 0.12 lbs/hr

Carbon Dioxide emissions were estimated using AP-42 Table 3.3-1 emission factor of 1.15 lbs/hp-hr.

The following equation was used to calculate the annual emission rate for each engine pollutant:

Emission Rate (tons/year) = Emission Rate (lbs/hour) * Operating Hour (hrs/year) 2000 lbs/ton

Process Unit Number	Pollutant	Engine Rating (hp)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)			
13	NOx	325	3.25	14.23			
	СО	325	1.87	8.19			
	SO ₂	325	0.17	0.75			
	voc	325	0.12	0.51			
	PM	325	0.11	0.47			
	CO ₂	325	373.8	1637.0			

Table 6-5: Pre-Controlled Combustion Emission Rates

Table 6-6: Controlled Combustion Emission Rates

Process Unit Number	Pollutant	Engine Rating (hp)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
13	NOx	325	3.25 7.11	
	СО	325	1.87	4.10
	SO ₂	325	0.17	0.37
	VOC	325	0.12	0.26
	PM	325	0.11	0.23
	CO ₂	325	373.8	818.5

Estimates for Truck Traffic (PM_{2.5}, PM₁₀ and PM) (Unit 14)

Haul truck travel emissions were estimated using AP-42, Section 13.2.2 (ver.11/06) "Unpaved Roads" emission equation. Haul roads for the aggregate crushing and screening plant use base course and watering as the control method (80% control efficiency allowed). Maximum number of round trip haul trucks per day is 252, which is equivalent to 17.4 haul trucks per hour based on a 14.5 hour day. Tables 6-7 and 6-8 summarizes the emission rate for both the uncontrolled and control method.

$$E = k * (s/12)^{a} * (W/3)^{b} * [(365 - p)/365] * VMT$$

Where k = constantPM2.5 = 0.15 PM10 = 1.5 PM = 4.9 s = % silt content (Table 13.2.2-1, "Sand and Gravel" 4.8%) W = mean vehicle weight (26.5 tons) (Truck Tare Weight - 15 tons; Load Weight - 23 tons) p = number of days with at least 0.01 in of precip. (NMED Policy = 70 days) a = Constant PM2.5 = 0.9 PM10 = 0.9 PM = 0.7 b = Constant PM2.5 = 0.45 PM10 = 0.45 PM = 0.45 VMT Vehicle Miles Traveled (road length = 0.20929 miles round trip) = Trucks per hour = 8.7 trucks material in and 8.7 trucks material out; total 17.4 trucks/hr

Hourly Emission Rate Factor Uncontrolled

PM = 6.8769 lbs/VMT PM10 = 1.7527 lbs/VMT PM2.5 = 0.1753 lbs/VMT

Annual Emission Rate Factor Uncontrolled

PM = 5.5581 lbs/annual VMT PM10 = 1.4165 lbs/annual VMT PM2.5 = 0.1417 lbs/annual VMT

Table 6-7: Uncontrolled Haul Road Fugitive Dust Emission Rates

Process Unit Description	Miles Traveled	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM ₁₀ Emission Rate (Ibs/hr)	PM ₁₀ Emission Rate (tons/yr)	PM _{2.5} Emission Rate (Ibs/hr)	PM _{2.5} Emission Rate (tons/yr)
Haul Truck Travel	3.6398 miles/hr 31,885 miles/yr	25.03	88.61	6.38	22.58	0.64	2.26

Las Vegas HMA & Crusher

Fugitive dust control will include base course and watering for 80% control (NMED Policy). Reduction in emissions due to precipitation was only accounted for in the annual emission rate. Particulate emission rate per vehicle mile traveled for each particle size category is:

Hourly Emission Rate Factor with Base Course and Watering 80% Control

PM = 1.3754 lbs/VMT PM10 = 0.3505 lbs/VMT PM2.5 = 0.0351 lbs/VMT

Annual Emission Rate Factor with Base Course and Watering 80% Control

PM = 1.1116 lbs/annual VMT PM10 = 0.2833 lbs/annual VMT PM2.5 = 0.0283 lbs/annual VMT

Table 6-8: Controlled Haul Road Fugitive Dust Emission Rates

Process Unit Description	Miles Traveled	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM _{2.5} Emission Rate (Ibs/hr)	PM _{2.5} Emission Rate (tons/yr)
Haul Truck Travel Base Course and Watering	3.6398 miles/hr 31,885 miles/yr	5.01	8.86	1.28	2.26	0.13	0.23

				anninary			Emission	<u> </u>	and PIM En		ates				
		N	Ох	(0		02		ос	P	M	P	M ₁₀	PN	12.5
Unit #	Description	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
RAW	Raw Material Pile	-	-	-	-	-	-	-	-	1.38	6.06	0.65	2.86	0.10	0.43
1	Feeder	-	-	-	-	-	-	-	-	1.38	6.06	0.65	2.86	0.10	0.43
2	Waste Conveyor	-	-	-	-	-	-	-	-	0.60	2.63	0.22	0.96	0.033	0.15
3	Primary Crusher	-	-	-	-	-	-	-	-	1.08	4.73	0.48	2.10	0.073	0.32
4	Primary Crusher Conveyor	-	-	-	-	-	-	-	-	0.60	2.63	0.22	0.96	0.033	0.15
5	Secondary Crusher	-	-	-	-	-	-	-	-	1.08	4.73	0.48	2.10	0.073	0.32
6	Secondary Crusher Conveyor	-	-	-	-	-	-	-	-	0.60	2.63	0.22	0.96	0.033	0.15
7	Screen	-	-	-	-	-	-	-	-	5.00	21.90	1.74	7.62	0.26	1.15
8	Stacker Conveyor 1	-	-	-	-	-	-	-	-	0.20	2.63	0.07	0.96	0.011	0.15
9	Stacker Conveyor 2	-	-	-	-	-	-	-	-	0.20	2.63	0.07	0.96	0.011	0.15
10	Stacker Conveyor 3	-	-	-	-	-	-	-	-	0.20	2.63	0.07	0.96	0.011	0.15
11	Stacker Conveyor Drop to Pile	-	-	-	-	-	-	-	-	1.38	6.06	0.65	2.86	0.10	0.43
FPILE	Finish Piles	-	-	-	-	-	-	-	-	1.38	6.06	0.65	2.86	0.10	0.43
12	Crusher Generator 1	3.50	15.32	2.01	8.82	0.13	0.55	0.18	0.81	0.12	0.50	0.12	0.50	0.12	0.50
13	Crusher Generator 2	3.25	14.23	1.87	8.19	0.12	0.51	0.17	0.75	0.11	0.47	0.11	0.47	0.11	0.47
14	Crusher Haul Road	-	-	-	-	-	-	-	-	25.03	88.61	6.38	22.58	0.64	2.26
	Total	6.75	29.55	3.88	17.01	0.24	1.06	0.36	1.56	40.34	160.93	12.80	52.62	1.80	7.63

				Junnal	,		Emission	<u> </u>	nd PM Em		103				
		NOx			20	1	0 ₂		OC	P	M	PI	M 10	PN	12.5
Unit #	Description	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
RAW	Raw Material Pile	-	-	-	-	-	-	-	-	1.38	3.03	0.65	1.43	0.10	0.22
1	Feeder	-	-	-	-	-	-	-	-	1.38	3.03	0.65	1.43	0.10	0.22
2	Waste Conveyor	-	-	-	-	-	-	-	-	0.028	0.061	0.0092	0.020	0.0026	0.0057
3	Primary Crusher	-	-	-	-	-	-	-	-	0.24	0.53	0.11	0.24	0.020	0.044
4	Primary Crusher Conveyor	-	-	-	-	-	-	-	-	0.028	0.061	0.0092	0.020	0.0026	0.0057
5	Secondary Crusher	-	-	-	-	-	-	-	-	0.24	0.53	0.11	0.24	0.020	0.044
6	Secondary Crusher Conveyor	-	-	-	-	-	-	-	-	0.028	0.061	0.0092	0.020	0.0026	0.0057
7	Screen	-	-	-	-	-	-	-	-	0.44	0.96	0.15	0.32	0.010	0.022
8	Stacker Conveyor 1	-	-	-	-	-	-	-	-	0.009	0.061	0.0031	0.020	0.0009	0.0057
9	Stacker Conveyor 2	-	-	-	-	-	-	-	-	0.009	0.061	0.0031	0.020	0.0009	0.0057
10	Stacker Conveyor 3	-	-	-	-	-	-	-	-	0.009	0.061	0.0031	0.020	0.0009	0.0057
11	Stacker Conveyor Drop to Pile	-	-	-	-	-	-	-	-	1.38	3.03	0.65	1.43	0.10	0.22
FPILE	Finish Piles	-	-	-	-	-	-	-	-	1.38	3.03	0.65	1.43	0.10	0.22
12	Crusher Generator 1	3.50	7.66	2.01	4.41	0.13	0.28	0.18	0.40	0.12	0.25	0.12	0.25	0.12	0.25
13	Crusher Generator 2	3.25	7.11	1.87	4.10	0.12	0.26	0.17	0.37	0.11	0.23	0.11	0.23	0.11	0.23
14	Crusher Haul Road	-	-	-	-	-	-	-	-	5.01	8.86	1.28	2.26	0.128	0.23
	Total	6.75	14.78	3.88	8.51	0.24	0.53	0.36	0.78	11.79	23.84	4.51	9.39	0.81	1.72

Estimates for Federal HAPs Air Pollutants

The crushing and screening plant generator (Units 12 and 13) are sources of HAPs as it appears in Section 112 (b) of the 1990 CAAA. Emissions of HAPs were determined for Units 12 and 13 generator/engines using AP-42 Section 3.3 and Section 1.3.

The following tables summarize the HAPs emission rates from the crushing and screening plant generators (Unit 12 and 13). Total combined HAPs emissions from crushing and screening plant are 0.028 pounds per hour and 0.062 tons per year.

Table 6-11: HAPs Emission Rates from the Crushing and Screening Plant Generator (Unit 12)

Horsepower Rating: Fuel Usage: MMBtu/hr: Btu x 10^-12/hr: Yearly Operating Hours:		350 17.7 2.2656 2.2656E-06 4380	horsepower gallons/hr Btu Btu x10^-12 hours per year	allons/hr tu (based on 128000 Bt tu x10^-12 (based on 128000 Bt		-
Type of Fuel: Emission Factors	Diesel AP-42 Section	n 3.3 and Secti	on 1.3			
Non-PAH HAPS	CAS#			Emission Factor (Ibs/mmBtu)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Acetaldehyde	75-07-0			7.67E-04	0.001738	0.003806
Acrolein	107-02-8			9.25E-05	0.000210	0.000459
Benzene	71-43-2			9.33E-04	0.002114	0.004629
1,3-Butadiene	106-99-0			3.91E-05	0.000089	0.000194
Formaldehyde	50-00-0			1.18E-03	0.002673	0.005855
Propylene	115-07-1			2.58E-03	0.005845	0.012801
Toluene	108-88-3			4.09E-04	0.000927	0.002029
Xylene	1330-20-7			2.85E-04	0.000646	0.001414
		Т	otal Non-PAH HAPS	6.29E-03	0.014241	0.031187
				Emission Factor	Emission Rate	Emission Rate
РАН НАРЅ	CAS#			(lbs/mmBtu)	(lbs/hr)	(ton/yr)
Acenaphthene	83-32-9			1.42E-06	0.000003	0.000007
Acenaphthylene	208-96-8			5.06E-06	0.000011	0.000025
Anthracene	120-12-7			1.87E-06	0.000004	0.000009
Benzo(a)anthracene	56-55-3			1.68E-06	0.000004	0.000008
Benzo(a)pyrene	50-32-8			1.88E-07	0.000000	0.000001
Benzo(b)fluoranthene	205-99-2			9.91E-08	0.000000	0.000000
Benzo(a)pyrene	192-97-2			1.55E-07	0.000000	0.000001
Benzo(g,h,I)perylene	191-24-2			4.89E-07	0.000001	0.000002
Benzo(k)fluoranthene	207-08-9			1.55E-07	0.000000	0.000001
Dibenz(a,h)anthracene				5.83E-07	0.000001	0.000003
Chrysene	218-01-9			3.53E-07	0.000001	0.000002
Fluoranthene	206-44-0			7.61E-06	0.000017	0.000038
Fluorene	86-73-7			2.92E-05	0.000066	0.000145
Indeno(1,2,3-cd)pyrene	193-39-5			3.75E-07	0.000001	0.000002
Naphthalene	91-20-3			8.48E-05	0.000192	0.000421
Phenanthrene	85-01-8			2.94E-05	0.000067	0.000146
Pyrene	129-00-0			4 705 00	0 000011	0 00000 4
	129-00-0		Total PAH HAPS	4.78E-06 1.68E-04	0.000011 0.000381	0.000024 0.000835

HAPS Metals		Emission Factor (Ibs/Btu^12)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Arsenic		4	0.000009	0.000020
Beryllium		3	0.000007	0.000015
Cadmium		3	0.000007	0.000015
Chromium		3	0.000007	0.000015
Lead		9	0.000020	0.000045
Manganese		6	0.000014	0.000030
Mercury		3	0.000007	0.000015
Nickel		3	0.000007	0.000015
Selenium		15	0.000034	0.000074
	Total Metals HAPS	49	0.000111	0.000243
	Total HAPS		0.01473	0.03226

Table 6-12: HAPs Emission Rates from the Crushing and Screening Plant Generator (Unit 12)

Horsepower Rating: Fuel Usage: MMBtu/hr: Btu x 10^-12/hr: Yearly Operating Hours:		325 16.5 2.112 0.000002112 4380	horsepower gallons/hr Btu Btu x10^-12 hours per year	(based on 1280 (based on 1280	-	-
Type of Fuel: Emission Factors	Diesel AP-42 Sectior	a 3.3 and Section	1.3			
Non-PAH HAPS	CAS#			Emission Factor (Ibs/mmBtu)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Acetaldehyde	75-07-0			7.67E-04	0.001620	0.003548
Acrolein	107-02-8			9.25E-05	0.000195	0.000428
Benzene	71-43-2			9.33E-04	0.001970	0.004315
1,3-Butadiene	106-99-0			3.91E-05	0.000083	0.000181
Formaldehyde	50-00-0			1.18E-03	0.002492	0.005458
Propylene	115-07-1			2.58E-03	0.005449	0.011933
Toluene	108-88-3			4.09E-04	0.000864	0.001892
Xylene	1330-20-7			2.85E-04	0.000602	0.001318
		Tota	l Non-PAH HAPS	6.29E-03	0.013275	0.029073
				Fmission	Fmission	Fmission
				Emission Factor	Emission Rate	Emission Rate
РАН НАРЅ	CAS#			Emission Factor (Ibs/mmBtu)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Acenaphthene	83-32-9			Factor (Ibs/mmBtu) 1.42E-06	Rate (lbs/hr) 0.000003	Rate (ton/yr) 0.000007
Acenaphthene Acenaphthylene	83-32-9 208-96-8			Factor (lbs/mmBtu) 1.42E-06 5.06E-06	Rate (lbs/hr) 0.000003 0.000011	Rate (ton/yr) 0.000007 0.000023
Acenaphthene Acenaphthylene Anthracene	83-32-9 208-96-8 120-12-7			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06	Rate (lbs/hr) 0.000003 0.000011 0.000004	Rate (ton/yr) 0.000007 0.000023 0.000009
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	83-32-9 208-96-8 120-12-7 56-55-3			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06	Rate (lbs/hr) 0.000003 0.000011 0.000004 0.000004	Rate (ton/yr) 0.000007 0.000023 0.000009 0.000008
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07	Rate (lbs/hr) 0.000003 0.000011 0.000004 0.000004 0.000000	Rate (ton/yr) 0.000007 0.000023 0.000009 0.000008 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08	Rate (lbs/hr) 0.000003 0.000011 0.000004 0.000004 0.000000 0.000000	Rate (ton/yr) 0.000007 0.000023 0.000009 0.000008 0.000001 0.000000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07	Rate (lbs/hr) 0.000003 0.000011 0.000004 0.000004 0.000000 0.000000 0.000000	Rate (ton/yr) 0.000007 0.000023 0.000009 0.000008 0.000001 0.000000 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,l)perylene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07	Rate (lbs/hr) 0.000003 0.000011 0.000004 0.000004 0.000000 0.000000 0.000000 0.000001	Rate (ton/yr) 0.000007 0.000023 0.000009 0.000008 0.000001 0.0000001 0.000001 0.000002
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07	Rate (lbs/hr) 0.000003 0.000011 0.000004 0.000004 0.000000 0.000000 0.000000 0.000001 0.000000	Rate (ton/yr) 0.000007 0.000023 0.000009 0.000008 0.000001 0.000000 0.000001 0.000002 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9			Factor (Ibs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07	Rate (lbs/hr) 0.000003 0.000011 0.000004 0.000004 0.000000 0.000000 0.000000 0.000001 0.000000 0.000001	Rate (ton/yr) 0.000007 0.000023 0.000009 0.000008 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000003
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07	Rate (lbs/hr) 0.000003 0.000011 0.000004 0.000000 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001	Rate (ton/yr) 0.000007 0.000023 0.000009 0.000008 0.000001 0.000001 0.000001 0.000002 0.000001 0.000003 0.000002
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06	Rate (lbs/hr) 0.000003 0.000011 0.000004 0.000004 0.000000 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001	Rate (ton/yr) 0.000007 0.000023 0.000009 0.000008 0.000001 0.000001 0.000001 0.000002 0.000001 0.000002 0.000003
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06 2.92E-05	Rate (lbs/hr) 0.000003 0.000011 0.000004 0.000000 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000016 0.000062	Rate (ton/yr) 0.000007 0.000023 0.000009 0.000008 0.000001 0.000000 0.000001 0.000002 0.000001 0.000003 0.000003 0.000035 0.000135
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7 193-39-5			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06 2.92E-05 3.75E-07	Rate (lbs/hr) 0.000003 0.000011 0.000004 0.000000 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001	Rate (ton/yr) 0.000007 0.000023 0.000009 0.000008 0.000001 0.000001 0.000001 0.000002 0.000001 0.000002 0.000002 0.000035 0.000135 0.000002
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7 193-39-5 91-20-3			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06 2.92E-05 3.75E-07 8.48E-05	Rate (lbs/hr) 0.000003 0.000011 0.000004 0.000000 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000016 0.000001 0.000001 0.0000179	Rate (ton/yr) 0.000007 0.000023 0.000009 0.000008 0.000001 0.000001 0.000002 0.000001 0.000002 0.000002 0.000035 0.000135 0.00002 0.00002 0.00002
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 3.53E-07 7.61E-06 2.92E-05 3.75E-07 8.48E-05 2.94E-05	Rate (lbs/hr) 0.000003 0.000011 0.000004 0.000000 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000016 0.0000179 0.000062	Rate (ton/yr) 0.000007 0.000023 0.000009 0.000008 0.000001 0.000001 0.000001 0.000002 0.000001 0.000002 0.000002 0.000035 0.000135 0.00002 0.000392 0.000136
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7 193-39-5 91-20-3		Total PAH HAPS	Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06 2.92E-05 3.75E-07 8.48E-05	Rate (lbs/hr) 0.000003 0.000011 0.000004 0.000000 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000016 0.000001 0.000001 0.0000179	Rate (ton/yr) 0.000007 0.000023 0.000009 0.000008 0.000001 0.000001 0.000002 0.000001 0.000002 0.000002 0.000035 0.000135 0.00002 0.00002 0.00002

HAPS Metals		Emission Factor (lbs/Btu^12)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Arsenic		4	0.000008	0.000019
Beryllium		3	0.000006	0.000014
Cadmium		3	0.000006	0.000014
Chromium		3	0.000006	0.000014
Lead		9	0.000019	0.000042
Manganese		6	0.000013	0.000028
Mercury		3	0.000006	0.000014
Nickel		3	0.000006	0.000014
Selenium		15	0.000032	0.000069
	Total Metals HAPS	49	0.000103	0.000227

Total HAPS

0.01373 0.03008

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **<u>short</u>** tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following **X** By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Section 7

Information Used to Determine Emissions

Information Used to Determine Emissions shall include the following:

- □ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- □ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

A-XXXX-7-AP42S1-3	Diesel-Fired Engine HAPs Emission Factors
A-XXXX-7-AP42S3-3	Diesel-Fired Engine HAPs Emission Factors
A-XXXX-7-AP42S11-19-2	Crusher, Screen and Transfer Point Emission Factors
A-XXXX-7-AP42S13-2-2	Unpaved Road Emission Factors
A-XXXX-7-AP42S13-2-4	Material Handling Emission Factors
A-XXXX-7-WindspeedLasVegas	Las Vegas Airport Wind Speed Average
A-XXXX-7-Unit12Tier2	Unit 12: Crusher Plant Generator 1
A-XXXX-7-Unit13Tier2	Unit 13: Crusher Plant Generator 2
A-XXXX-7-CrusherEI.xls	Short Line Crusher Plant Emissions Spreadsheet (Electronic File)

1.3 Fuel Oil Combustion

1.3.1 General¹⁻³

Two major categories of fuel oil are burned by combustion sources: distillate oils and residual oils. These oils are further distinguished by grade numbers, with Nos. 1 and 2 being distillate oils; Nos. 5 and 6 being residual oils; and No. 4 being either distillate oil or a mixture of distillate and residual oils. No. 6 fuel oil is sometimes referred to as Bunker C. Distillate oils are more volatile and less viscous than residual oils. They have negligible nitrogen and ash contents and usually contain less than 0.3 percent sulfur (by weight). Distillate oils are used mainly in domestic and small commercial applications, and include kerosene and diesel fuels. Being more viscous and less volatile than distillate proper atomization. Because residual oils are produced from the residue remaining after the lighter fractions (gasoline, kerosene, and distillate oils) have been removed from the crude oil, they contain significant quantities of ash, nitrogen, and sulfur. Residual oils are used mainly in utility, industrial, and large commercial applications.

1.3.2 Firing Practices⁴

The major boiler configurations for fuel oil-fired combustors are watertube, firetube, cast iron, and tubeless design. Boilers are classified according to design and orientation of heat transfer surfaces, burner configuration, and size. These factors can all strongly influence emissions as well as the potential for controlling emissions.

Watertube boilers are used in a variety of applications ranging from supplying large amounts of process steam to providing space heat for industrial facilities. In a watertube boiler, combustion heat is transferred to water flowing through tubes which line the furnace walls and boiler passes. The tube surfaces in the furnace (which houses the burner flame) absorb heat primarily by radiation from the flames. The tube surfaces in the boiler passes (adjacent to the primary furnace) absorb heat primarily by convective heat transfer.

Firetube boilers are used primarily for heating systems, industrial process steam generators, and portable power boilers. In firetube boilers, the hot combustion gases flow through the tubes while the water being heated circulates outside of the tubes. At high pressures and when subjected to large variations in steam demand, firetube units are more susceptible to structural failure than watertube boilers. This is because the high-pressure steam in firetube units is contained by the boiler walls rather than by multiple small-diameter watertubes, which are inherently stronger. As a consequence, firetube boilers are typically small and are used primarily where boiler loads are relatively constant. Nearly all firetube boilers are sold as packaged units because of their relatively small size.

A cast iron boiler is one in which combustion gases rise through a vertical heat exchanger and out through an exhaust duct. Water in the heat exchanger tubes is heated as it moves upward through the tubes. Cast iron boilers produce low pressure steam or hot water, and generally burn oil or natural gas. They are used primarily in the residential and commercial sectors.

Another type of heat transfer configuration used on smaller boilers is the tubeless design. This design incorporates nested pressure vessels with water in between the shells. Combustion gases are fired into the inner pressure vessel and are then sometimes recirculated outside the second vessel.

Organic Compound	Average Emission Factor ^b (lb/10 ³ Gal)	EMISSION FACTOR RATING
Benzene	2.14E-04	С
Ethylbenzene	6.36E-05 [°]	Е
Formaldehyde ^d	3.30E-02	С
Naphthalene	1.13E-03	С
1,1,1-Trichloroethane	2.36E-04 ^c	Е
Toluene	6.20E-03	D
o-Xylene	1.09E-04 ^c	Е
Acenaphthene	2.11E-05	С
Acenaphthylene	2.53E-07	D
Anthracene	1.22E-06	С
Benz(a)anthracene	4.01E-06	С
Benzo(b,k)fluoranthene	1.48E-06	С
Benzo(g,h,i)perylene	2.26E-06	С
Chrysene	2.38E-06	С
Dibenzo(a,h) anthracene	1.67E-06	D
Fluoranthene	4.84E-06	С
Fluorene	4.47E-06	С
Indo(1,2,3-cd)pyrene	2.14E-06	С
Phenanthrene	1.05E-05	С
Pyrene	4.25E-06	С
OCDD	3.10E-09 ^c	Е

Table 1.3-9. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM FUEL OIL COMBUSTION^a

^a Data are for residual oil fired boilers, Source Classification Codes (SCCs) 1-01-004-01/04.
 ^b References 64-72. To convert from lb/10³ gal to kg/10³ L, multiply by 0.12.
 ^c Based on data from one source test (Reference 67).

^d The formaldehyde number presented here is based only on data from utilities using No. 6 oil. The number presented in Table 1.3-7 is based on utility, commercial, and industrial boilers.

Table 1.3-10. EMISSION FACTORS FOR TRACE ELEMENTS FROM DISTILLATEFUEL OIL COMBUSTION SOURCES^a

EMISSION FACTOR RATING: E

Firing Configuration					Emission	Factor (1	b/10 ¹² Btu))			
(SCC)	As	Be	Cd	Cr	Cu	Pb	Hg	Mn	Ni	Se	Zn
Distillate oil fired (1-01-005-01, 1-02-005-01, 1-03-005-01)	4	3	3	3	б	9	3	6	3	15	4

^a Data are for distillate oil fired boilers, SCC codes 1-01-005-01, 1-02-005-01, and 1-03-005-01. References 29-32, 40-44 and 83. To convert from lb/10¹² Btu to pg/J, multiply by 0.43.

Metal	Average Emission Factor ^{b, d} (lb/10 ³ Gal)	EMISSION FACTOR RATING
Antimony	5.25E-03 ^c	Е
Arsenic	1.32E-03	С
Barium	2.57E-03	D
Beryllium	2.78E-05	С
Cadmium	3.98E-04	С
Chloride	3.47E-01	D
Chromium	8.45E-04	С
Chromium VI	2.48E-04	С
Cobalt	6.02E-03	D
Copper	1.76E-03	С
Fluoride	3.73E-02	D
Lead	1.51E-03	С
Manganese	3.00E-03	С
Mercury	1.13E-04	С
Molybdenum	7.87E-04	D
Nickel	8.45E-02	С
Phosphorous	9.46E-03	D
Selenium	6.83E-04	С
Vanadium	3.18E-02	D
Zinc	2.91E-02	D

Table 1.3-11. EMISSION FACTORS FOR METALS FROM UNCONTROLLED NO. 6FUEL OIL COMBUSTION^a

^a Data are for residual oil fired boilers, Source Classification Codes (SCCs) 1-01-004-01/04.

^b References 64-72. 18 of 19 sources were uncontrolled and 1 source was controlled with low efficiency ESP. To convert from lb/10³ gal to kg/10³ L, multiply by 0.12.

^c References 29-32,40-44.

^d For oil/water mixture, reduce factors in proportion to water content of the fuel (due to dilution). To adjust the listed values for water content, multiply the listed value by 1-decimal fraction of water (ex: For fuel with 9 percent water by volume, multiply by 1-0.9=.91).

	1	ne Fuel 01, 2-03-003-01)		Diesel Fuel (SCC 2-02-001-02, 2-03-001-01)			
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING		
NO _x	0.011	1.63	0.031	4.41	D		
со	0.439	62.7	6.68 E-03	0.95	D		
SO _x	5.91 E-04	0.084	2.05 E-03	0.29	D		
PM-10 ^b	7.21 E-04	0.10	2.20 E-03	0.31	D		
CO ₂ ^e	1.08	154	1.15	164	В		
Aldehydes	4.85 E-04	0.07	4.63 E-04	0.07	D		
TOC							
Exhaust	0.015	2.10	2.47 E-03	0.35	D		
Evaporative	6.61 E-04	0.09	0.00	0.00	Е		
Crankcase	4.85 E-03	0.69	4.41 E-05	0.01	Е		
Refueling	1.08 E-03	0.15	0.00	0.00	Е		

Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES^a

^a References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.

^b PM-10 = particulate matter less than or equal to 10 μ m aerodynamic diameter. All particulate is assumed to be $\leq 1 \ \mu$ m in size.

^c Assumes 99% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.

11.19.2 Crushed Stone Processing and Pulverized Mineral Processing

11.19.2.1 Process Description ^{24, 25}

Crushed Stone Processing

Major rock types processed by the crushed stone industry include limestone, granite, dolomite, traprock, sandstone, quartz, and quartzite. Minor types include calcareous marl, marble, shell, and slate. Major mineral types processed by the pulverized minerals industry, a subset of the crushed stone processing industry, include calcium carbonate, talc, and barite. Industry classifications vary considerably and, in many cases, do not reflect actual geological definitions.

Rock and crushed stone products generally are loosened by drilling and blasting and then are loaded by power shovel or front-end loader into large haul trucks that transport the material to the processing operations. Techniques used for extraction vary with the nature and location of the deposit. Processing operations may include crushing, screening, size classification, material handling and storage operations. All of these processes can be significant sources of PM and PM-10 emissions if uncontrolled.

Quarried stone normally is delivered to the processing plant by truck and is dumped into a bin. A feeder is used as illustrated in Figure 11.19.2-1. The feeder or screens separate large boulders from finer rocks that do not require primary crushing, thus reducing the load to the primary crusher. Jaw, impactor, or gyratory crushers are usually used for initial reduction. The crusher product, normally 7.5 to 30 centimeters (3 to 12 inches) in diameter, and the grizzly throughs (undersize material) are discharged onto a belt conveyor and usually are conveyed to a surge pile for temporary storage or are sold as coarse aggregates.

The stone from the surge pile is conveyed to a vibrating inclined screen called the scalping screen. This unit separates oversized rock from the smaller stone. The undersized material from the scalping screen is considered to be a product stream and is transported to a storage pile and sold as base material. The stone that is too large to pass through the top deck of the scalping screen is processed in the secondary crusher. Cone crushers are commonly used for secondary crushing (although impact crushers are sometimes used), which typically reduces material to about 2.5 to 10 centimeters (1 to 4 inches). The material (throughs) from the second level of the screen bypasses the secondary crusher because it is sufficiently small for the last crushing step. The output from the secondary crusher and the throughs from the secondary screen are transported by conveyor to the tertiary circuit, which includes a sizing screen and a tertiary crusher.

Tertiary crushing is usually performed using cone crushers or other types of impactor crushers. Oversize material from the top deck of the sizing screen is fed to the tertiary crusher. The tertiary crusher output, which is typically about 0.50 to 2.5 centimeters (3/16th to 1 inch), is returned to the sizing screen. Various product streams with different size gradations are separated in the screening operation. The products are conveyed or trucked directly to finished product bins, to open area stock piles, or to other processing systems such as washing, air separators, and screens and classifiers (for the production of manufactured sand).

Some stone crushing plants produce manufactured sand. This is a small-sized rock product with a maximum size of 0.50 centimeters (3/16 th inch). Crushed stone from the tertiary sizing screen is sized in a vibrating inclined screen (fines screen) with relatively small mesh sizes.

Oversized material is processed in a cone crusher or a hammermill (fines crusher) adjusted to produce small diameter material. The output is returned to the fines screen for resizing.

In certain cases, stone washing is required to meet particulate end product specifications or demands.

Pulverized Mineral Processing

Pulverized minerals are produced at specialized processing plants. These plants supply mineral products ranging from sizes of approximately 1 micrometer to more than 75 micrometers aerodynamic diameter. Pharmaceutical, paint, plastics, pigment, rubber, and chemical industries use these products. Due to the specialized characteristics of the mineral products and the markets for these products, pulverized mineral processing plants have production rates that are less than 5% of the production capacities of conventional crushed stone plants. Two alternative processing systems for pulverized minerals are summarized in Figure 11-19.2-2.

In dry processing systems, the mineral aggregate material from conventional crushing and screening operations is subject to coarse and fine grinding primarily in roller mills and/or ball mills to reduce the material to the necessary product size range. A classifier is used to size the ground material and return oversized material that can be pulverized using either wet or dry processes. The classifier can either be associated with the grinding operation, or it can be a standalone process unit. Fabric filters control particulate matter emissions from the grinding operation and the classifier. The products are stored in silos and are shipped by truck or in bags.

In wet processing systems, the mineral aggregate material is processed in wet mode coarse and fine grinding operations. Beneficiation processes use flotation to separate mineral impurities. Finely ground material is concentrated and flash dried. Fabric filters are used to control particulate matter emissions from the flash dryer. The product is then stored in silos, bagged, and shipped.

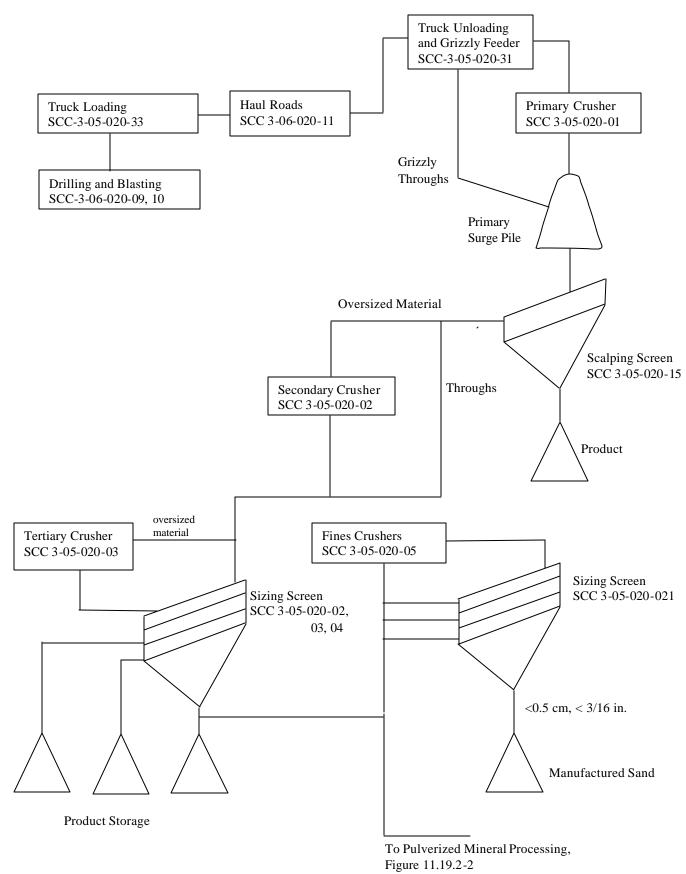


Figure 11.19.2-1. Typical stone processing plant

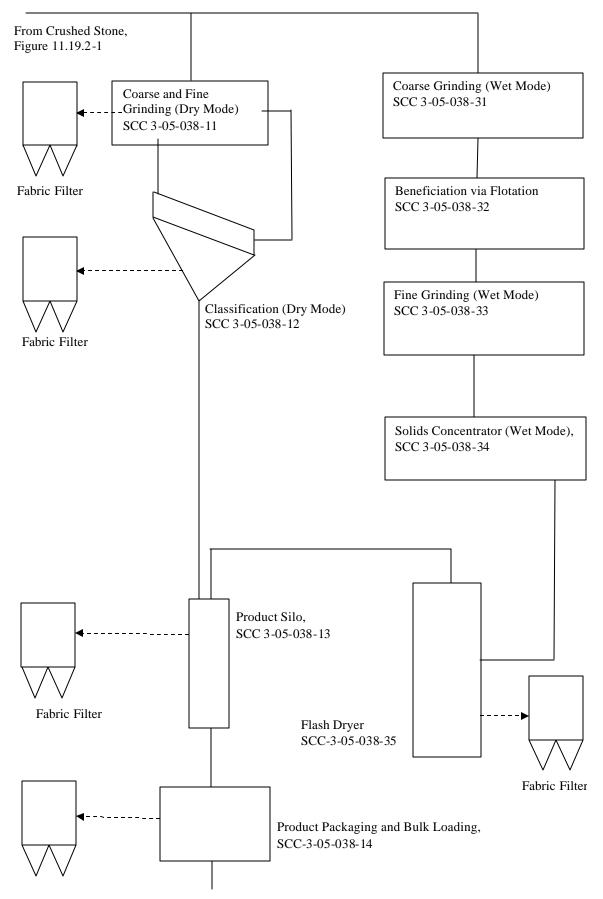


Figure 11.19.2-2 Flowchart for Pulverized Mineral Processing

11.19.2.2 Emissions and Controls ^{10, 11, 12, 13, 14, and 26}

Crushed Stone Processing

Emissions of PM, PM-10, and PM-2.5 occur from a number of operations in stone quarrying and processing. A substantial portion of these emissions consists of heavy particles that may settle out within the plant. As in other operations, crushed stone emission sources may be categorized as either process sources or fugitive dust sources. Process sources include those for which emissions are amenable to capture and subsequent control. Fugitive dust sources generally involve the reentrainment of settled dust by wind or machine movement. Emissions from process sources should be considered fugitive unless the sources are vented to a baghouse or are contained in an enclosure with a forced-air vent or stack. Factors affecting emissions from either source category include the stone size distribution and the surface moisture content of the stone processed, the process throughput rate, the type of equipment and operating practices used, and topographical and climatic factors.

Of graphical and seasonal factors, the primary variables affecting uncontrolled PM emissions are wind and material moisture content. Wind parameters vary with geographical location, season, and weather. It can be expected that the level of emissions from unenclosed sources (principally fugitive dust sources) will be greater during periods of high winds. The material moisture content also varies with geographical location, season, and weather. Therefore, the levels of uncontrolled emissions from both process emission sources and fugitive dust sources generally will be greater in arid regions of the country than in temperate ones and greater during the summer months because of a higher evaporation rate.

The moisture content of the material processed can have a substantial effect on emissions. This effect is evident throughout the processing operations. Surface wetness causes fine particles to agglomerate on or to adhere to the faces of larger stones, with a resulting dust suppression effect. However, as new fine particles are created by crushing and attrition and as the moisture content is reduced by evaporation, this suppressive effect diminishes and may disappear. Plants that use wet suppression systems (spray nozzles) to maintain relatively high material moisture contents can effectively control PM emissions throughout the process. Depending on the geographical and climatic conditions, the moisture content of mined rock can range from nearly zero to several percent. Because moisture content is usually expressed on a basis of overall weight percent, the actual moisture amount per unit area will vary with the size of the rock being handled. On a constant mass-fraction basis, the per-unit area moisture content varies inversely with the diameter of the rock. The suppressive effect of the moisture depends on both the absolute mass water content and the size of the rock product. Typically, wet material contains >1.5 percent water.

A variety of material, equipment, and operating factors can influence emissions from crushing. These factors include (1) stone type, (2) feed size and distribution, (3) moisture content, (4) throughput rate, (5) crusher type, (6) size reduction ratio, and (7) fines content. Insufficient data are available to present a matrix of rock crushing emission factors detailing the above classifications and variables. Available data indicate that PM-10 and PM-2.5 emissions from limestone and granite processing operations are similar. Therefore, the emission factors developed from the emissions data gathered at limestone and granite processing facilities are considered to be representative of typical crushed stone processing operations. Emission factors for filterable PM, PM-10, and PM-2.5 emissions from crushed stone processing operations are presented in Tables 11.19.2-1 (Metric units) and 11.19.2-2 (English units.)

Table 11.19.2-1 (Metric Units). EMISSION FACTORS FOR CRUSHED STONE PROCESSING OPERATIONS (kg/Mg)^a

Source ^b	Total	EMISSION	Total	EMISSION	Total	EMISSION
	Particulate	FACTOR	PM-10	FACTOR	PM-2.5	FACTOR
	Matter ^{r,s}	RATING		RATING		RATING
Primary Crushing	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-01)						
Primary Crushing (controlled)	ND		ND^n		ND^{n}	
(SCC 3-05-020-01)						
Secondary Crushing (SCC 3-05-020-02)	ND		ND^{n}		ND^{n}	
Secondary Crushing (controlled) (SCC 3-05-020-02)	ND		ND^{n}		ND^{n}	
Tertiary Crushing (SCC 3-050030-03)	0.0027 ^d	Е	0.0012°	С	ND^{n}	
Tertiary Crushing (controlled) (SCC 3-05-020-03)	0.0006^{d}	E	0.00027 ^p	С	0.00005 ^q	E
Fines Crushing (SCC 3-05-020-05)	0.0195 ^e	E	0.0075 ^e	E	ND	
Fines Crushing (controlled) (SCC 3-05-020-05)	0.0015 ^f	E	$0.0006^{\rm f}$	E	0.000035 ^q	E
Screening (SCC 3-05-020-02, 03)	0.0125 ^c	E	0.0043 ¹	С	ND	
Screening (controlled) (SCC 3-05-020-02, 03)	0.0011 ^d	E	0.00037 ^m	С	0.000025 ^q	E
Fines Screening (SCC 3-05-020-21	0.15 ^g	E	0.036 ^g	E	ND	
Fines Screening (controlled) (SCC 3-05-020-21)	0.0018 ^g	Е	0.0011 ^g	Е	ND	
Conveyor Transfer Point (SCC 3-05-020-06)	0.0015 ^h	E	0.00055 ^h	D	ND	
Conveyor Transfer Point (controlled) (SCC 3-05-020-06)	0.00007 ⁱ	E	2.3 x 10 ⁻⁵ⁱ	D	6.5 x 10 ^{-6q}	E
Wet Drilling - Unfragmented Stone (SCC 3-05-020-10)	ND		4.0 x 10 ^{-5j}	E	ND	
Truck Unloading - Fragmented Stone (SCC 3-05-020-31)	ND		8.0 x 10 ^{-6j}	Е	ND	
Truck Unloading - Conveyor, crushed stone (SCC 3-05-020-32)	ND		5.0 x 10 ^{-5k}	E	ND	

a. Emission factors represent uncontrolled emissions unless noted. Emission factors in kg/Mg of material throughput. SCC = Source Classification Code. ND = No data.

b. Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent, and the same facilities operating wet suppression systems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over of the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. Visual observations from each source under normal operating conditions are probably the best indicator of which emission factor is most appropriate. Plants that employ substandard control measures as indicated by visual observations should use the uncontrolled factor with appropriate control efficiency that best reflects the effectiveness of the controls employed.

c. References 1, 3, 7, and 8

d. References 3, 7, and 8

- e. Reference 4
- f. References 4 and 15
- g. Reference 4
- h. References 5 and 6
- i. References 5, 6, and 15
- j. Reference 11
- k. Reference 12
- 1. References 1, 3, 7, and 8
- m. References 1, 3, 7, 8, and 15
- n. No data available, but emission factors for PM-10 for tertiary crushers can be used as an upper limit for primary or secondary crushing
- o. References 2, 3, 7, 8
- p. References 2, 3, 7, 8, and 15
- q. Reference 15
- r. PM emission factors are presented based on PM-100 data in the Background Support Document for Section 11.19.2
- s. Emission factors for PM-30 and PM-50 are available in Figures 11.19.2-3 through 11.19.2-6.

Table 11.19.2-2 (English Units). EMISSION FACTORS FOR CRUSHED STONE PROCESSING OPERATIONS (lb/Ton)^a

Source ^b	Total Particulate	EMISSION FACTOR	Total PM-10	EMISSION FACTOR	Total PM-2.5	EMISSION FACTOR
	Matter ^{r,s}	RATING		RATING		RATING
Primary Crushing (SCC 3-05-020-01)	ND		ND^{n}		ND^{n}	
Primary Crushing (controlled) (SCC 3-05-020-01)	ND		ND^n		ND^{n}	
Secondary Crushing (SCC 3-05-020-02)	ND		ND^n		ND^n	
Secondary Crushing (controlled) (SCC 3-05-020-02)	ND		ND^n		ND^n	
Tertiary Crushing (SCC 3-050030-03)	0.0054 ^d	E	0.0024°	С	ND^n	
Tertiary Crushing (controlled) (SCC 3-05-020-03)	0.0012 ^d	E	0.00054 ^p	С	0.00010 ^q	Е
Fines Crushing (SCC 3-05-020-05)	0.0390 ^e	E	0.0150 ^e	E	ND	
Fines Crushing (controlled) (SCC 3-05-020-05)	$0.0030^{\rm f}$	E	0.0012 ^f	E	0.000070 ^q	Е
Screening (SCC 3-05-020-02, 03)	0.025°	E	0.0087 ¹	С	ND	
Screening (controlled) (SCC 3-05-020-02, 03)	0.0022 ^d	E	0.00074 ^m	С	0.000050 ⁹	E
Fines Screening (SCC 3-05-020-21)	0.30 ^g	E	0.072 ^g	E	ND	
Fines Screening (controlled) (SCC 3-05-020-21)	0.0036 ^g	E	0.0022 ^g	E	ND	
Conveyor Transfer Point (SCC 3-05-020-06)	0.0030 ^h	E	0.00110 ^h	D	ND	
Conveyor Transfer Point (controlled) (SCC 3-05-020-06)	0.00014 ¹	E	4.6 x 10 ⁻⁵¹	D	1.3 x 10 ^{-5q}	E
Wet Drilling - Unfragmented Stone (SCC 3-05-020-10)	ND		8.0 x 10 ^{-5j}	E	ND	
Truck Unloading -Fragmented Stone (SCC 3-05-020-31)	ND		1.6 x 10 ^{-5j}	Е	ND	
Truck Unloading - Conveyor, crushed stone (SCC 3-05-020-32)	ND		0.00010 ^k	E	ND	

a. Emission factors represent uncontrolled emissions unless noted. Emission factors in lb/Ton of material of throughput. SCC = Source Classification Code. ND = No data.

b. Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent, and the same facilities operating wet suppression systems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over of the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. Visual observations from each source under normal operating conditions are probably the best indicator of which emission factor is most appropriate. Plants that employ substandard control measures as indicated by visual observations should use the uncontrolled factor with an appropriate control efficiency that best reflects the effectiveness of the controls employed.

c. References 1, 3, 7, and 8

d. References 3, 7, and 8

e. Reference 4

- f. References 4 and 15
- g. Reference 4
- h. References 5 and 6
- i. References 5, 6, and 15
- j. Reference 11
- k. Reference 12
- 1. References 1, 3, 7, and 8
- m. References 1, 3, 7, 8, and 15
- n. No data available, but emission factors for PM-10 for tertiary crushers can be used as an upper limit for primary or secondary crushing
- o. References 2, 3, 7, 8
- p. References 2, 3, 7, 8, and 15
- q. Reference 15

.

- r. PM emission factors are presented based on PM-100 data in the Background Support Document for Section 11.19.2
- s. Emission factors for PM-30 and PM-50 are available in Figures 11.19.2-3 through 11.19.2-6.

Emission factor estimates for stone quarry blasting operations are not presented because of the sparsity and unreliability of available tests. While a procedure for estimating blasting emissions is presented in Section 11.9, Western Surface Coal Mining, that procedure should not be applied to stone quarries because of dissimilarities in blasting techniques, material blasted, and size of blast areas. Emission factors for fugitive dust sources, including paved and unpaved roads, materials handling and transfer, and wind erosion of storage piles, can be determined using the predictive emission factor equations presented in AP-42 Section 13.2.

The data used in the preparation of the controlled PM calculations was derived from the individual A-rated tests for PM-2.5 and PM-10 summarized in the Background Support Document. For conveyor transfer points, the controlled PM value was derived from A-rated PM-2.5, PM-10, and PM data summarized in the Background Support Document.

The extrapolation line was drawn through the PM-2.5 value and the mean of the PM-10 values. PM emission factors were calculated for PM-30, PM-50, and PM-100. Each of these particle size limits is used by one or more regulatory agencies as the definition of total particulate matter. The graphical extrapolations used in calculating the emission factors are presented in Figures 11.19.2-3, -4, -5, and -6.

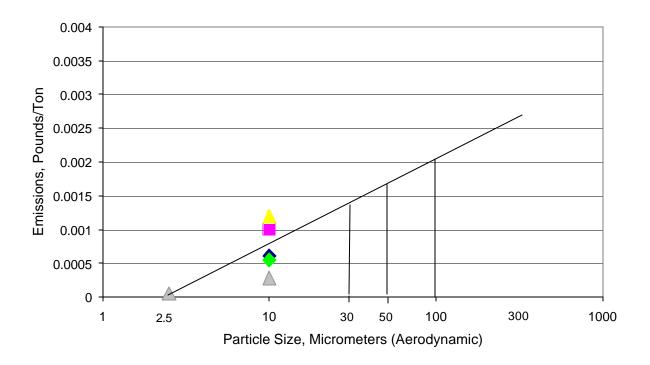


Figure 11-19-3. PM Emission Factor Calculation, Screening (Controlled)

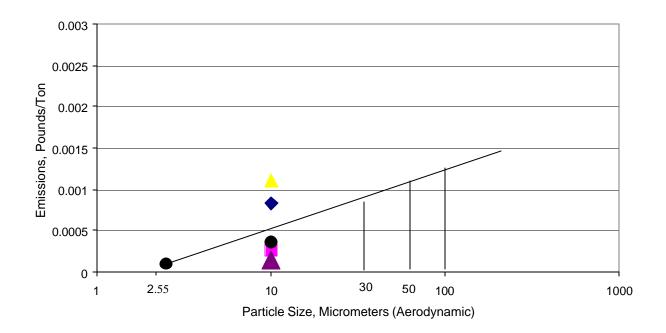


Figure 11.19-4. PM Emission Factor Calculation, Tertiary Crushing (Controlled)

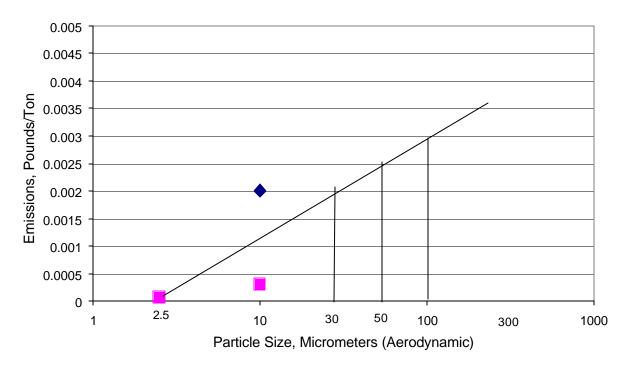


Figure 11-19.5. PM Emission Factor Calculation, Fines Crushing (Controlled)

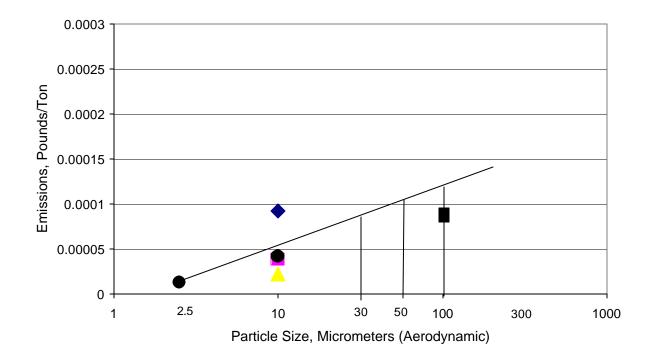


Figure 11.19-6. PM Emission Factor Calculation, Conveyor Transfer Points (Controlled)

The uncontrolled PM emission factors have been calculated from the controlled PM emission factors calculated in accordance with Figures 11.19.2-3 through 11.19.2-6. The PM-10 control efficiencies have been applied to the PM controlled emission factor data to calculate the uncontrolled PM emission rates.

Screening PM-10

Controlled = 0.00073 Lbs./Ton.

Uncontrolled = 0.00865 Lbs./Ton.

Efficiency = 91.6%

Tertiary Crushing PM-10

Controlled = 0.00054Uncontrolled = 0.00243

Efficiency = 77.7%

Fines Crushing PM-10:

Controlled = 0.0012

Uncontrolled = 0.015

Efficiency = 92.0%

Conveyor Transfer Points PM-10

Controlled = 0.000045 Uncontrolled = 0.0011 Efficiency = 95.9%

The uncontrolled total particulate matter emission factor was calculated from the controlled total particulate matter using Equation 1:

Uncontrolled emission factor = <u>Controlled total particulate emission factor</u> (100% – PM-10 Efficiency %)/100%

Equation 1

The Total PM emission factors calculated using Figures 11.19.2-3 through 11.19.2-6 were developed because (1) there are more A-rated test data supporting the calculated values and (2) the extrapolated values provide the flexibility for agencies and source operators to select the most appropriate definition for Total PM. All of the Total PM emission factors have been rated as E due to the limited test data and the need to estimate emission factors using extrapolations of the PM-2.5 and PM-10 data.

Pulverized Mineral Processing

Emissions of particulate matter from dry mode pulverized mineral processing operations are controlled by pulse jet and envelope type fabric filter systems. Due to the low-to-moderate gas temperatures generated by the processing equipment, conventional felted filter media are used. Collection efficiencies for fabric filter-controlled dry process equipment exceed 99.5%. Emission factors for pulverized mineral processing operations are presented in Tables 11.19.2-3 and 11.19.2-4.

Source ^b	Total	EMISSION	Total	EMISSION	Total	EMISSION
	Particulate	FACTOR	PM-10	FACTOR	PM-2.5	FACTOR
	Matter	RATING		RATING		RATING
Grinding (Dry) with Fabric Filter Control (SCC 3-05-038-11)	0.0202	D	0.0169	В	0.0060	В
Classifiers (Dry) with Fabric Filter Control (SCC 3-05-038-12)	0.0112	Е	0.0052	Е	0.0020	Е
Flash Drying with Fabric Filter Control (SCC 3-05-038-35)	0.0134	С	0.0073	С	0.0042	С
Product Storage with Fabric Filter Control (SCC 3-05-38-13)	0.0055	Е	0.0008	Е	0.0003	Е

Table 11.19.2-3 (Metric Units). EMISSION FACTORS FOR PULVERIZED MINERAL PROCESSING OPERATIONS^a

a. Emission factors represent controlled emissions unless noted. Emission factors are in kg/Mg of material throughput.

b. Date from references 16 through 23

Table 11.19.2-4 (English Units). EMISSION FACTORS FOR PULVERIZED MINERAL PROCESSING OPERATIONS ^a

Source ^b	Total	ÉMISSION	Total	EMISSION	Total	EMISSION
	Particulate	FACTOR	PM-10	FACTOR	PM-2.5	FACTOR
	Matter	RATING		RATING		RATING
Grinding (Dry) with Fabric Filter Control (SCC 3-05-038-11)	0.0404	D	0.0339	В	0.0121	В
Classifiers (Dry) with Fabric Filter Control (SCC 3-05-038-12)	0.0225	Е	0.0104	Е	0.0041	Е
Flash Drying with Fabric Filter Control (SCC 3-05-038-35)	0.0268	С	0.0146	С	0.0083	С
Product Storage with Fabric Filter Control (SCC 3-05-038-13)	0.0099	Е	0.0016	Е	0.0006	Е

a. Emission factors represent controlled emissions unless noted. Emission factors are in lb/Ton of material throughput.

b. Data from references 16 through 23

13.2.2 Unpaved Roads

13.2.2.1 General

When a vehicle travels an unpaved road, the force of the wheels on the road surface causes pulverization of surface material. Particles are lifted and dropped from the rolling wheels, and the road surface is exposed to strong air currents in turbulent shear with the surface. The turbulent wake behind the vehicle continues to act on the road surface after the vehicle has passed.

The particulate emission factors presented in the previous draft version of this section of AP-42, dated October 2001, implicitly included the emissions from vehicles in the form of exhaust, brake wear, and tire wear as well as resuspended road surface material²⁵. EPA included these sources in the emission factor equation for unpaved public roads (equation 1b in this section) since the field testing data used to develop the equation included both the direct emissions from vehicles and emissions from resuspension of road dust.

This version of the unpaved public road emission factor equation only estimates particulate emissions from resuspended road surface material ^{23, 26}. The particulate emissions from vehicle exhaust, brake wear, and tire wear are now estimated separately using EPA's MOBILE6.2 ²⁴. This approach eliminates the possibility of double counting emissions. Double counting results when employing the previous version of the emission factor equation in this section and MOBILE6.2 to estimate particulate emissions from vehicle traffic on unpaved public roads. It also incorporates the decrease in exhaust emissions that has occurred since the unpaved public road emission factor equation includes estimates of emissions from exhaust, brake wear, and tire wear based on emission rates for vehicles in the 1980 calendar year fleet. The amount of PM released from vehicle exhaust has decreased since 1980 due to lower new vehicle emission standards and changes in fuel characteristics.

13.2.2.2 Emissions Calculation And Correction Parameters¹⁻⁶

The quantity of dust emissions from a given segment of unpaved road varies linearly with the volume of traffic. Field investigations also have shown that emissions depend on source parameters that characterize the condition of a particular road and the associated vehicle traffic. Characterization of these source parameters allow for "correction" of emission estimates to specific road and traffic conditions present on public and industrial roadways.

Dust emissions from unpaved roads have been found to vary directly with the fraction of silt (particles smaller than 75 micrometers $[\mu m]$ in diameter) in the road surface materials.¹ The silt fraction is determined by measuring the proportion of loose dry surface dust that passes a 200-mesh screen, using the ASTM-C-136 method. A summary of this method is contained in Appendix C of AP-42. Table 13.2.2-1 summarizes measured silt values for industrial unpaved roads. Table 13.2.2-2 summarizes measured silt values for public unpaved roads. It should be noted that the ranges of silt content vary over two orders of magnitude. Therefore, the use of data from this table can potentially introduce considerable error. Use of this data is strongly discouraged when it is feasible to obtain locally gathered data.

Since the silt content of a rural dirt road will vary with geographic location, it should be measured for use in projecting emissions. As a conservative approximation, the silt content of the parent soil in the area can be used. Tests, however, show that road silt content is normally lower than in the surrounding parent soil, because the fines are continually removed by the vehicle traffic, leaving a higher percentage of coarse particles.

Other variables are important in addition to the silt content of the road surface material. For example, at industrial sites, where haul trucks and other heavy equipment are common, emissions are highly correlated with vehicle weight. On the other hand, there is far less variability in the weights of cars and pickup trucks that commonly travel publicly accessible unpaved roads throughout the United States. For those roads, the moisture content of the road surface material may be more dominant in determining differences in emission levels between, for example a hot, desert environment and a cool, moist location.

The PM-10 and TSP emission factors presented below are the outcomes from stepwise linear regressions of field emission test results of vehicles traveling over unpaved surfaces. Due to a limited amount of information available for PM-2.5, the expression for that particle size range has been scaled against the result for PM-10. Consequently, the quality rating for the PM-2.5 factor is lower than that for the PM-10 expression.

	Road Use Or	Plant	No. Of	Silt Conte	ent (%)
Industry	Surface Material	Sites	Samples	Range	Mean
Copper smelting	Plant road	1	3	16 - 19	17
Iron and steel production	Plant road	19	135	0.2 - 19	6.0
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	<mark>4.8</mark>
	Material storage area	1	1	-	7.1
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10
	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3
	Haul road to/from pit	1	12	3.9 - 9.7	5.8
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4
	Plant road	2	2	4.9 - 5.3	5.1
	Scraper route	3	10	7.2 - 25	17
	Haul road (freshly graded)	2	5	18 - 29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills	Disposal routes	4	20	2.2 - 21	6.4
^a References 1,5-15.					

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS^a

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^{a} (W/3)^{b}$$
(1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$
(1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

- E = size-specific emission factor (lb/VMT)
- s = surface material silt content (%)
- W = mean vehicle weight (tons)
- M = surface material moisture content (%)
- S = mean vehicle speed (mph)
- C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

1 lb/VMT = 281.9 g/VKT

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

	Industria	al Roads (Equa	ation 1a)	Public Roads (Equation 1b)				
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*		
k (lb/VMT)	0.15	1.5	<mark>4.9</mark>	0.18	1.8	6.0		
а	<mark>0.9</mark>	0.9 0.9		1	1	1		
b	0.45	0.45	0.45	-	-	-		
с	-	-	-	0.2	0.2	0.3		
d	-	-	-	0.5	0.5	0.3		
Quality Rating	В	В	В	В	В	В		

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

*Assumed equivalent to total suspended particulate matter (TSP)

"-" = not used in the emission factor equation

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

		• • • •	Vehicle ight		Vehicle eed	Mean	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4-17ª	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model ²³. The emission factor also varies with aerodynamic size range

Particle Size Range ^a	C, Emission Factor for Exhaust, Brake Wear and Tire Wear ^b lb/VMT
PM _{2.5}	0.00036
\mathbf{PM}_{10}	0.00047
PM_{30}^{c}	0.00047

Table 13.2.2-4. EMISSION FACTOR FOR 1980'S VEHICLE FLEET EXHAUST, BRAKE WEAR AND TIRE WEAR

- ^a Refers to airborne particulate matter (PM-x) with an aerodynamic diameter equal to or less than x micrometers.
- ^b Units shown are pounds per vehicle mile traveled (lb/VMT).
- ^c PM-30 is sometimes termed "suspendable particulate" (SP) and is often used as a surrogate for TSP.

It is important to note that the vehicle-related source conditions refer to the average weight, speed, and number of wheels for all vehicles traveling the road. For example, if 98 percent of traffic on the road are 2-ton cars and trucks while the remaining 2 percent consists of 20-ton trucks, then the mean weight is 2.4 tons. More specifically, Equations 1a and 1b are *not* intended to be used to calculate a separate emission factor for each vehicle class within a mix of traffic on a given unpaved road. That is, in the example, one should *not* determine one factor for the 2-ton vehicles and a second factor for the 20-ton trucks. Instead, only one emission factor should be calculated that represents the "fleet" average of 2.4 tons for all vehicles traveling the road.

Moreover, to retain the quality ratings when addressing a group of unpaved roads, it is necessary that reliable correction parameter values be determined for the road in question. The field and laboratory procedures for determining road surface silt and moisture contents are given in AP-42 Appendices C.1 and C.2. Vehicle-related parameters should be developed by recording visual observations of traffic. In some cases, vehicle parameters for industrial unpaved roads can be determined by reviewing maintenance records or other information sources at the facility.

In the event that site-specific values for correction parameters cannot be obtained, then default values may be used. In the absence of site-specific silt content information, an appropriate mean value from Table 13.2.2-1 may be used as a default value, but the quality rating of the equation is reduced by two letters. Because of significant differences found between different types of road surfaces and between different areas of the country, use of the default moisture content value of 0.5 percent in Equation 1b is discouraged. The quality rating should be downgraded two letters when the default moisture content value is used. (It is assumed that readers addressing industrial roads have access to the information needed to develop average vehicle information in Equation 1a for their facility.)

The effect of routine watering to control emissions from unpaved roads is discussed below in Section 13.2.2.3, "Controls". However, all roads are subject to some natural mitigation because of rainfall and other precipitation. The Equation 1a and 1b emission factors can be extrapolated to annual

average uncontrolled conditions (but including natural mitigation) under the simplifying assumption that annual average emissions are inversely proportional to the number of days with measurable (more than 0.254 mm [0.01 inch]) precipitation:

$$E_{ext} = E [(365 - P)/365]$$
 (2)

where:

 E_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT

E = emission factor from Equation 1a or 1b

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation (see

below)

Figure 13.2.2-1 gives the geographical distribution for the mean annual number of "wet" days for the United States.

Equation 2 provides an estimate that accounts for precipitation on an annual average basis for the purpose of inventorying emissions. It should be noted that Equation 2 does not account for differences in the temporal distributions of the rain events, the quantity of rain during any event, or the potential for the rain to evaporate from the road surface. In the event that a finer temporal and spatial resolution is desired for inventories of public unpaved roads, estimates can be based on a more complex set of assumptions. These assumptions include:

1. The moisture content of the road surface material is increased in proportion to the quantity of water added;

2. The moisture content of the road surface material is reduced in proportion to the Class A pan evaporation rate;

3. The moisture content of the road surface material is reduced in proportion to the traffic volume; and

4. The moisture content of the road surface material varies between the extremes observed in the area. The CHIEF Web site (http://www.epa.gov/ttn/chief/ap42/ch13/related/c13s02-2.html) has a file which contains a spreadsheet program for calculating emission factors which are temporally and spatially resolved. Information required for use of the spreadsheet program includes monthly Class A pan evaporation values, hourly meteorological data for precipitation, humidity and snow cover, vehicle traffic information, and road surface material information.

It is emphasized that <u>the simple assumption underlying Equation 2 and the more complex set of</u> <u>assumptions underlying the use of the procedure which produces a finer temporal and spatial resolution</u> have not been verified in any rigorous manner. For this reason, the quality ratings for either approach should be downgraded one letter from the rating that would be applied to Equation 1.

13.2.2.3 Controls¹⁸⁻²²

A wide variety of options exist to control emissions from unpaved roads. Options fall into the following three groupings:

1. Vehicle restrictions that limit the speed, weight or number of vehicles on the road;

2. <u>Surface improvement</u>, by measures such as (a) paving or (b) adding gravel or slag to a dirt road; and

3. Surface treatment, such as watering or treatment with chemical dust suppressants.

Available control options span broad ranges in terms of cost, efficiency, and applicability. For example, traffic controls provide moderate emission reductions (often at little cost) but are difficult to enforce. Although paving is highly effective, its high initial cost is often prohibitive. Furthermore, paving is not feasible for industrial roads subject to very heavy vehicles and/or spillage of material in transport. Watering and chemical suppressants, on the other hand, are potentially applicable to most industrial roads at moderate to low costs. However, these require frequent reapplication to maintain an acceptable level of control. Chemical suppressants are generally more cost-effective than water but not in cases of temporary roads (which are common at mines, landfills, and construction sites). In summary, then, one needs to consider not only the type and volume of traffic on the road but also how long the road will be in service when developing control plans.

<u>Vehicle restrictions</u>. These measures seek to limit the amount and type of traffic present on the road or to lower the mean vehicle speed. For example, many industrial plants have restricted employees from driving on plant property and have instead instituted bussing programs. This eliminates emissions due to employees traveling to/from their worksites. Although the heavier average vehicle weight of the busses increases the base emission factor, the decrease in vehicle-miles-traveled results in a lower overall emission rate.

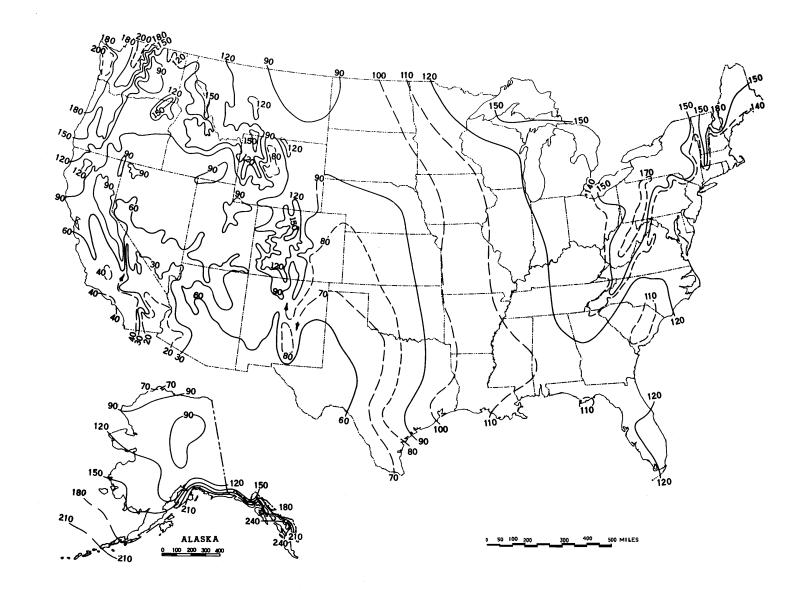


Figure 13.2.2-1. Mean number of days with 0.01 inch or more of precipitation in United States.

<u>Surface improvements</u>. Control options in this category alter the road surface. As opposed to the "surface treatments" discussed below, improvements are relatively "permanent" and do not require periodic retreatment.

The most obvious surface improvement is paving an unpaved road. This option is quite expensive and is probably most applicable to relatively short stretches of unpaved road with at least several hundred vehicle passes per day. Furthermore, if the newly paved road is located near unpaved areas or is used to transport material, it is essential that the control plan address routine cleaning of the newly paved road surface.

The control efficiencies achievable by paving can be estimated by comparing emission factors for unpaved and paved road conditions. The predictive emission factor equation for paved roads, given in Section 13.2.1, requires estimation of the silt loading on the traveled portion of the paved surface, which in turn depends on whether the pavement is periodically cleaned. Unless curbing is to be installed, the effects of vehicle excursion onto unpaved shoulders (berms) also must be taken into account in estimating the control efficiency of paving.

Other improvement methods cover the road surface with another material that has a lower silt content. Examples include placing gravel or slag on a dirt road. Control efficiency can be estimated by comparing the emission factors obtained using the silt contents before and after improvement. The silt content of the road surface should be determined after 3 to 6 months rather than immediately following placement. Control plans should address regular maintenance practices, such as grading, to retain larger aggregate on the traveled portion of the road.

<u>Surface treatments</u> refer to control options which require periodic reapplication. Treatments fall into the two main categories of (a) "wet suppression" (i. e., watering, possibly with surfactants or other additives), which keeps the road surface wet to control emissions and (b) "chemical stabilization/ treatment", which attempts to change the physical characteristics of the surface. The necessary reapplication frequency varies from several minutes for plain water under summertime conditions to several weeks or months for chemical dust suppressants.

Watering increases the moisture content, which conglomerates particles and reduces their likelihood to become suspended when vehicles pass over the surface. The control efficiency depends on how fast the road dries after water is added. This in turn depends on (a) the amount (per unit road surface area) of water added during each application; (b) the period of time between applications; (c) the weight, speed and number of vehicles traveling over the watered road during the period between applications; and (d) meteorological conditions (temperature, wind speed, cloud cover, etc.) that affect evaporation during the period. Figure 13.2.2-2 presents a simple bilinear relationship between the instantaneous control efficiency due to watering and the resulting increase in surface moisture. The moisture ratio "M" (i.e., the x-axis in Figure 13.2.2-2) is found by dividing the surface moisture content of the watered road by the surface moisture content of the uncontrolled road. As the watered road surface dries, both the ratio M and the predicted instantaneous control efficiency (i.e., the y-axis in the figure) decrease. The figure shows that between the uncontrolled moisture content and a value twice as large, a small increase in moisture content results in a large increase in control efficiency. Beyond that, control efficiency grows slowly with increased moisture content.

Given the complicated nature of how the road dries, characterization of emissions from watered roadways is best done by collecting road surface material samples at various times between water truck passes. (Appendices C.1 and C.2 present the sampling and analysis procedures.) The moisture content measured can then be associated with a control efficiency by use of Figure 13.2.2-2. Samples that reflect average conditions during the watering cycle can take the form of either a series of samples between water applications or a single sample at the midpoint. It is essential that samples be collected during periods with active traffic on the road. Finally, because of different evaporation rates, it is recommended that samples be collected at various times during the year. If only one set of samples is to be collected, these must be collected during hot, summertime conditions.

When developing watering control plans for roads that do not yet exist, it is strongly recommended that the moisture cycle be established by sampling similar roads in the same geographic area. If the moisture cycle cannot be established by similar roads using established watering control plans, the more complex methodology used to estimate the mitigation of rainfall and other precipitation can be used to estimate the control provided by routine watering. An estimate of the maximum daytime Class A pan evaporation (based upon daily evaporation data published in the monthly Climatological Data for the state by the National Climatic Data Center) should be used to insure that adequate watering capability is available during periods of highest evaporation. The hourly precipitation values in the spreadsheet should be replaced with the equivalent inches of precipitation (where the equivalent of 1 inch of precipitation is provided by an application of 5.6 gallons of water per square yard of road). Information on the long term average annual evaporation and on the percentage that occurs between May and October was published in the Climatic Atlas (Reference 16). Figure 13.2.2-3 presents the geographical distribution for "Class A pan evaporation" throughout the United States. Figure 13.2.2-4 presents the geographical distribution of the percentage of this evaporation that occurs between May and October. The U.S. Weather Bureau Class A evaporation pan is a cylindrical metal container with a depth of 10 inches and a diameter of 48 inches. Periodic measurements are made of the changes of the water level.

The above methodology should be used <u>only for prospective analyses</u> and for designing watering programs for existing roadways. The quality rating of an emission factor for a watered road that is based on this methodology should be downgraded two letters. Periodic road surface samples should be collected and analyzed to verify the efficiency of the watering program.

As opposed to watering, chemical dust suppressants have much less frequent reapplication requirements. These materials suppress emissions by changing the physical characteristics of the existing road surface material. Many chemical unpaved road dust suppressants form a hardened surface that binds particles together. After several applications, a treated road often resembles a paved road except that the surface is not uniformly flat. Because the improved surface results in more grinding of small particles, the silt content of loose material on a highly controlled surface may be substantially higher than when the surface was uncontrolled. For this reason, the models presented as Equations 1a and 1b cannot be used to estimate emissions from chemically stabilized roads. Should the road be allowed to return to an

uncontrolled state with no visible signs of large-scale cementing of material, the Equation 1a and 1b emission factors could then be used to obtain conservatively high emission estimates.

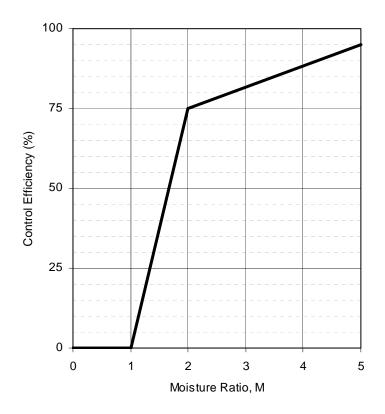
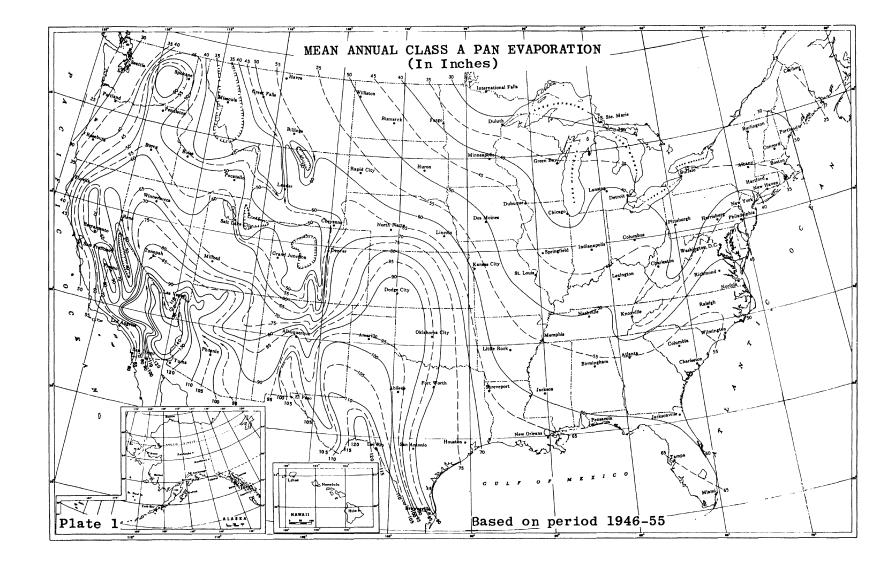



Figure 13.2.2-2. Watering control effectiveness for unpaved travel surfaces

The control effectiveness of chemical dust suppressants appears to depend on (a) the dilution rate used in the mixture; (b) the application rate (volume of solution per unit road surface area); (c) the time between applications; (d) the size, speed and amount of traffic during the period between applications; and (e) meteorological conditions (rainfall, freeze/thaw cycles, etc.) during the period. Other factors that affect the performance of dust suppressants include other traffic characteristics (e. g., cornering, track-on from unpaved areas) and road characteristics (e. g., bearing strength, grade). The variabilities in the above factors and differences between individual dust control products make the control efficiencies of chemical dust suppressants difficult to estimate. Past field testing of emissions from controlled unpaved roads has shown that chemical dust suppressants provide a PM-10 control efficiency of about 80 percent when applied at regular intervals of 2 weeks to 1 month.

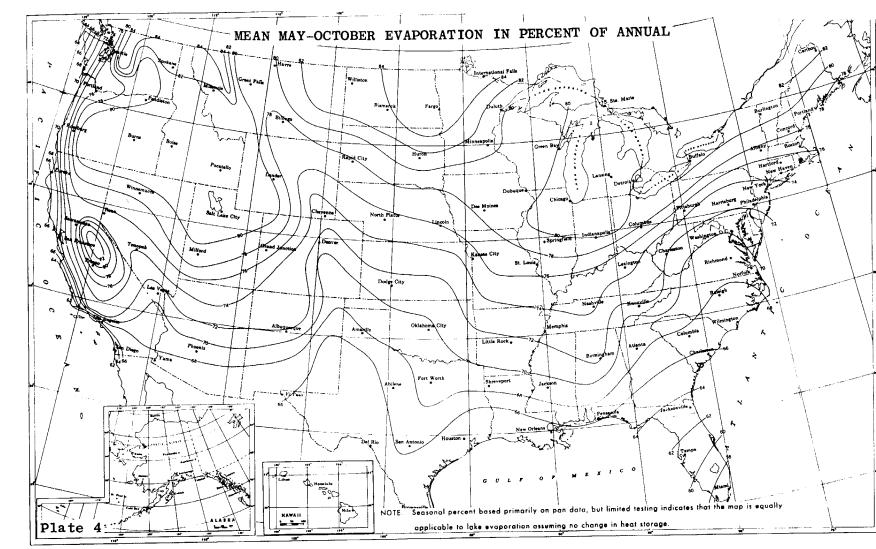


Figure 13.2.2-4. Geographical distribution of the percentage of evaporation occurring between May and October.

Petroleum resin products historically have been the dust suppressants (besides water) most widely used on industrial unpaved roads. Figure 13.2.2-5 presents a method to estimate average control efficiencies associated with petroleum resins applied to unpaved roads.²⁰ Several items should be noted:

1. The term "ground inventory" represents the total volume (per unit area) of petroleum resin concentrate (*not solution*) applied since the start of the dust control season.

2. Because petroleum resin products must be periodically reapplied to unpaved roads, the use of a time-averaged control efficiency value is appropriate. Figure 13.2.2-5 presents control efficiency values averaged over two common application intervals, 2 weeks and 1 month. Other application intervals will require interpolation.

3. Note that zero efficiency is assigned until the ground inventory reaches 0.05 gallon per square yard (gal/yd^2). Requiring a minimum ground inventory ensures that one must apply a reasonable amount of chemical dust suppressant to a road before claiming credit for emission control. Recall that the ground inventory refers to the amount of petroleum resin concentrate rather than the total solution.

As an example of the application of Figure 13.2.2-5, suppose that Equation 1a was used to estimate an emission factor of 7.1 lb/VMT for PM-10 from a particular road. Also, suppose that, starting on May 1, the road is treated with 0.221 gal/yd² of a solution (1 part petroleum resin to 5 parts water) on the first of each month through September. Then, the average controlled emission factors, shown in Table 13.2.2-5, are found.

Period	Ground Inventory, gal/yd ²	Average Control Efficiency, % ^a	Average Controlled Emission Factor, lb/VMT
May	0.037	0	7.1
June	0.073	62	2.7
July	0.11	68	2.3
August	0.15	74	1.8
September	0.18	80	1.4

Table 13.2-2-5. EXAMPLE OF AVERAGE CONTROLLED EMISSION FACTORSFOR SPECIFIC CONDITIONS

^a From Figure 13.2.2-5, $\leq 10 \,\mu$ m. Zero efficiency assigned if ground inventory is less than 0.05 gal/yd². 1 lb/VMT = 281.9 g/VKT. 1 gal/yd² = 4.531 L/m².

Besides petroleum resins, other newer dust suppressants have also been successful in controlling emissions from unpaved roads. Specific test results for those chemicals, as well as for petroleum resins and watering, are provided in References 18 through 21.

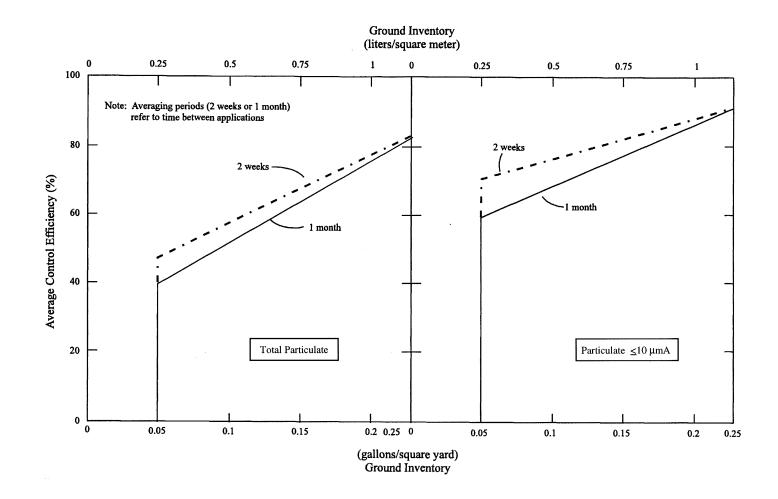


Figure 13.2.2-5. Average control efficiencies over common application intervals.

13.2.4 Aggregate Handling And Storage Piles

13.2.4.1 General

Inherent in operations that use minerals in aggregate form is the maintenance of outdoor storage piles. Storage piles are usually left uncovered, partially because of the need for frequent material transfer into or out of storage.

Dust emissions occur at several points in the storage cycle, such as material loading onto the pile, disturbances by strong wind currents, and loadout from the pile. The movement of trucks and loading equipment in the storage pile area is also a substantial source of dust.

13.2.4.2 Emissions And Correction Parameters

The quantity of dust emissions from aggregate storage operations varies with the volume of aggregate passing through the storage cycle. Emissions also depend on 3 parameters of the condition of a particular storage pile: age of the pile, moisture content, and proportion of aggregate fines.

When freshly processed aggregate is loaded onto a storage pile, the potential for dust emissions is at a maximum. Fines are easily disaggregated and released to the atmosphere upon exposure to air currents, either from aggregate transfer itself or from high winds. As the aggregate pile weathers, however, potential for dust emissions is greatly reduced. Moisture causes aggregation and cementation of fines to the surfaces of larger particles. Any significant rainfall soaks the interior of the pile, and then the drying process is very slow.

Silt (particles equal to or less than 75 micrometers $[\mu m]$ in diameter) content is determined by measuring the portion of dry aggregate material that passes through a 200-mesh screen, using ASTM-C-136 method.¹ Table 13.2.4-1 summarizes measured silt and moisture values for industrial aggregate materials.

Table 13.2.4-1. TYPICAL SILT AND MOISTURE CONTENTS OF MATERIALS AT VARIOUS INDUSTRIES^a

			Silt	Content (%)	Moist	ure Content	(%)
	No. Of		No. Of			No. Of		
Industry	Facilities	Material	Samples	Range	Mean	Samples	Range	Mean
Iron and steel production	9	Pellet ore	13	1.3 - 13	4.3	11	0.64 - 4.0	2.2
		Lump ore	9	2.8 - 19	9.5	6	1.6 - 8.0	5.4
		Coal	12	2.0 - 7.7	4.6	11	2.8 - 11	4.8
		Slag	3	3.0 - 7.3	5.3	3	0.25 - 2.0	0.92
		Flue dust	3	2.7 - 23	13	1		7
		Coke breeze	2	4.4 - 5.4	4.9	2	6.4 - 9.2	7.8
		Blended ore	1		15	1		6.6
		Sinter	1		0.7	0		
		Limestone	3	0.4 - 2.3	1.0	2	ND	0.2
Stone quarrying and processing	2	Crushed limestone	2	1.3 - 1.9	1.6	2	0.3 - 1.1	0.7
		Various limestone products	8	0.8 - 14	3.9	8	0.46 - 5.0	2.1
Taconite mining and processing	1	Pellets	9	2.2 - 5.4	3.4	7	0.05 - 2.0	0.9
		Tailings	2	ND	11	1		0.4
Western surface coal mining	4	Coal	15	3.4 - 16	6.2	7	2.8 - 20	6.9
		Overburden	15	3.8 - 15	7.5	0		
		Exposed ground	3	5.1 - 21	15	3	0.8 - 6.4	3.4
Coal-fired power plant	1	Coal (as received)	60	0.6 - 4.8	2.2	59	2.7 - 7.4	4.5
Municipal solid waste landfills	4	Sand	1		2.6	1		7.4
		Slag	2	3.0 - 4.7	3.8	2	2.3 - 4.9	3.6
		Cover	5	5.0 - 16	9.0	5	8.9 - 16	12
		Clay/dirt mix	1		9.2	1	—	14
		Clay	2	4.5 - 7.4	6.0	2	8.9 - 11	10
		Fly ash	4	78 - 81	80	4	26 - 29	27
		Misc. fill materials	1		12	1		11

^a References 1-10. ND = no data.

13.2.4.3 Predictive Emission Factor Equations

Total dust emissions from aggregate storage piles result from several distinct source activities within the storage cycle:

- 1. Loading of aggregate onto storage piles (batch or continuous drop operations).

- Equipment traffic in storage area.
 Wind erosion of pile surfaces and ground areas around piles.
 Loadout of aggregate for shipment or for return to the process stream (batch or continuous drop operations).

Either adding aggregate material to a storage pile or removing it usually involves dropping the material onto a receiving surface. Truck dumping on the pile or loading out from the pile to a truck with a front-end loader are examples of batch drop operations. Adding material to the pile by a conveyor stacker is an example of a continuous drop operation.

The quantity of particulate emissions generated by either type of drop operation, per kilogram (kg) (ton) of material transferred, may be estimated, with a rating of A, using the following empirical expression:¹¹

$$E = k(0.0016) \qquad \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \text{ (kg/megagram [Mg])}$$
$$E = k(0.0032) \qquad \frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \text{ (pound [lb]/ton)}$$

where:

E = emission factor

k = particle size multiplier (dimensionless)

U = mean wind speed, meters per second (m/s) (miles per hour [mph])

M = material moisture content (%)

The particle size multiplier in the equation, k, varies with aerodynamic particle size range, as follows:

Aerodynamic Particle Size Multiplier (k) For Equation 1									
$< 30 \ \mu m$	$< 15 \ \mu m$	$< 10 \ \mu m$	$< 5 \ \mu m$	$< 2.5 \ \mu m$					
0.74	0.48	0.35	0.20	0.053ª					

^a Multiplier for $< 2.5 \mu m$ taken from Reference 14.

The equation retains the assigned quality rating if applied within the ranges of source conditions that were tested in developing the equation, as follows. Note that silt content is included, even though silt content does not appear as a correction parameter in the equation. While it is reasonable to expect that silt content and emission factors are interrelated, no significant correlation between the 2 was found during the derivation of the equation, probably because most tests with high silt contents were conducted under lower winds, and vice versa. It is recommended that estimates from the equation be reduced 1 quality rating level if the silt content used in a particular application falls outside the range given:

Ranges Of Source Conditions For Equation 1									
Silt Contont	Maisture Contout	Wind	Speed						
Silt Content (%)	Moisture Content (%)	m/s	mph						
0.44 - 19	0.25 - 4.8	0.6 - 6.7	1.3 - 15						

To retain the quality rating of the equation when it is applied to a specific facility, reliable correction parameters must be determined for specific sources of interest. The field and laboratory procedures for aggregate sampling are given in Reference 3. In the event that site-specific values for

(1)

correction parameters cannot be obtained, the appropriate mean from Table 13.2.4-1 may be used, but the quality rating of the equation is reduced by 1 letter.

For emissions from equipment traffic (trucks, front-end loaders, dozers, etc.) traveling between or on piles, it is recommended that the equations for vehicle traffic on unpaved surfaces be used (see Section 13.2.2). For vehicle travel between storage piles, the silt value(s) for the areas among the piles (which may differ from the silt values for the stored materials) should be used.

Worst-case emissions from storage pile areas occur under dry, windy conditions. Worst-case emissions from materials-handling operations may be calculated by substituting into the equation appropriate values for aggregate material moisture content and for anticipated wind speeds during the worst case averaging period, usually 24 hours. The treatment of dry conditions for Section 13.2.2, vehicle traffic, "Unpaved Roads", follows the methodology described in that section centering on parameter p. A separate set of nonclimatic correction parameters and source extent values corresponding to higher than normal storage pile activity also may be justified for the worst-case averaging period.

13.2.4.4 Controls¹²⁻¹³

Watering and the use of chemical wetting agents are the principal means for control of aggregate storage pile emissions. Enclosure or covering of inactive piles to reduce wind erosion can also reduce emissions. Watering is useful mainly to reduce emissions from vehicle traffic in the storage pile area. Watering of the storage piles themselves typically has only a very temporary slight effect on total emissions. A much more effective technique is to apply chemical agents (such as surfactants) that permit more extensive wetting. Continuous chemical treating of material loaded onto piles, coupled with watering or treatment of roadways, can reduce total particulate emissions from aggregate storage operations by up to 90 percent.¹²

References For Section 13.2.4

- 1. C. Cowherd, Jr., et al., Development Of Emission Factors For Fugitive Dust Sources, EPA-450/3-74-037, U. S. Environmental Protection Agency, Research Triangle Park, NC, June 1974.
- 2. R. Bohn, et al., Fugitive Emissions From Integrated Iron And Steel Plants, EPA-600/2-78-050, U. S. Environmental Protection Agency, Cincinnati, OH, March 1978.
- 3. C. Cowherd, Jr., *et al., Iron And Steel Plant Open Dust Source Fugitive Emission Evaluation*, EPA-600/2-79-103, U. S. Environmental Protection Agency, Cincinnati, OH, May 1979.
- 4. *Evaluation Of Open Dust Sources In The Vicinity Of Buffalo, New York*, EPA Contract No. 68-02-2545, Midwest Research Institute, Kansas City, MO, March 1979.
- 5. C. Cowherd, Jr., and T. Cuscino, Jr., *Fugitive Emissions Evaluation*, MRI-4343-L, Midwest Research Institute, Kansas City, MO, February 1977.
- 6. T. Cuscino, Jr., *et al.*, *Taconite Mining Fugitive Emissions Study*, Minnesota Pollution Control Agency, Roseville, MN, June 1979.
- 7. *Improved Emission Factors For Fugitive Dust From Western Surface Coal Mining Sources*, 2 Volumes, EPA Contract No. 68-03-2924, PEDCo Environmental, Kansas City, MO, and Midwest Research Institute, Kansas City, MO, July 1981.
- 8. Determination Of Fugitive Coal Dust Emissions From Rotary Railcar Dumping, TRC, Hartford, CT, May 1984.
- 9. *PM-10 Emission Inventory Of Landfills In the Lake Calumet Area*, EPA Contract No. 68-02-3891, Midwest Research Institute, Kansas City, MO, September 1987.

- 10. *Chicago Area Particulate Matter Emission Inventory Sampling And Analysis*, EPA Contract No. 68-02-4395, Midwest Research Institute, Kansas City, MO, May 1988.
- 11. *Update Of Fugitive Dust Emission Factors In AP-42 Section 11.2*, EPA Contract No. 68-02-3891, Midwest Research Institute, Kansas City, MO, July 1987.
- 12. G. A. Jutze, *et al.*, *Investigation Of Fugitive Dust Sources Emissions And Control*, EPA-450/3-74-036a, U. S. Environmental Protection Agency, Research Triangle Park, NC, June 1974.
- 13. C. Cowherd, Jr., *et al., Control Of Open Fugitive Dust Sources*, EPA-450/3-88-008, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 1988.
- 14. C. Cowherd, *Background Document for Revisions to Fine Fraction Ratios &sed for AP-42 Fugitive Dust Emission Factors.* Prepared by Midwest Research Institute for Western Governors Association, Western Regional Air Partnership, Denver, CO, February 1, 2006.

AVERAGE WIND SPEED - MPH

STATION	ID Years	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ι	Ann
ALAMOGORDO AIRPORT ASOS	KALM 1996-2006	5.1	6.3	7.1	7.9	7.1	6.9	6.1	5.3	5.2	5.2	5.0	5.0		6.0
ALAMOGORDO-HOLLOMAN AFB	KHMN 1996-2006	8.5	9.7	10.6	11.8	10.8	10.6	9.8	9.1	8.8	8.5	8.1	8.3	- I	9.6
ALBUQUERQUE AP ASOS	KABQ 1996-2006	7.0	8.2	9.3	11.1	10.0	10.0	8.7	8.3	8.0	7.9	7.2	6.9		8.5
ALBUQUERQUE-DBLE EAGLE	KAEG 1999-2006	7.1	7.9	9.0	10.6	9.5	8.6	7.0	6.2	7.0	6.5	6.5	6.1		7.7
ARTESIA AIRPORT ASOS	KATS 1997-2006	7.8	9.1	10.1	10.9	10.2	9.9	7.8	6.9	7.6	7.8	7.6	7.4		8.5
CARLSBAD AIRPORT ASOS	KCNM 1996-2006	9.2	9.8	10.9	11.4	10.4	9.9	8.5	7.7	8.2	8.5	8.4	8.8		9.3
CLAYTON MUNI AP ASOS	KCAO 1996-2006	11.9	12.7	13.4	14.6	13.4	13.0	11.7	10.8	11.8	12.1	12.1	12.0		12.4
CLINES CORNERS	KCQC 1998-2006	16.2	16.1	15.7	16.9	14.6	13.5	10.6	10.1	11.8	13.3	15.0	16.0		14.1
CLOVIS AIRPORT AWOS	KCVN 1996-2006	12.3	12.3	13.4	13.8	12.4	11.9	9.7	8.9	9.7	10.9	11.6	12.2		11.6
CLOVIS-CANNON AFB	KCVS 1996-2006	12.5	12.6	13.6	13.8	12.2	12.5	10.7	10.0	10.2	11.3	11.7	12.4		12.0
DEMING AIRPORT ASOS	KDMN 1996-2006	8.7	9.7	10.9	12.0	10.6	10.1	8.9	8.1	8.4	8.2	8.5	8.1		9.3
FARMINGTON AIRPORT ASOS	KFMN 1996-2006	7.3	8.3	9.0	9.8	9.4	9.4	8.7	8.2	8.0	7.8	7.6	7.3		8.4
GALLUP AIRPORT ASOS	KGUP 1996-2006	5.7	6.9	7.8	10.0	9.0	8.8	6.9	6.0	6.5	6.1	5.6	5.3		7.0
GRANTS-MILAN AP ASOS	KGNT 1997-2006	7.8	8.8	9.6	10.9	10.0	9.8	8.1	7.2	7.9	8.4	8.0	7.6		8.7
HOBBS AIRPORT AWOS	KHOB 1996-2006	11.3	11.9	12.6	13.4	12.5	12.3	11.0	10.0	10.2	10.6	10.7	11.1		11.4
LAS CRUCES AIRPORT AWOS	KLRU 2000-2006	6.4	7.5	8.8	10.1	8.7	8.2	6.8	6.0	6.2	6.1	6.4	6.0		7.3
LAS VEGAS AIRPORT ASOS	KLVS 1996-2006	10.9	12.2	12.5	14.3	12.4	11.8	10.0	9.2	10.9	10.8	11.0	10.9		11.4
LOS ALAMOS AP AWOS	KLAM 2005-2006	3.9	5.7	7.5	8.1	7.1	7.3	5.3	4.8	5.7	5.1	4.4	3.2		5.4
RATON AIRPORT ASOS	KRTN 1998-2006	8.9	9.4	10.4	12.2	10.8	10.2	8.4	8.1	8.6	9.0	8.6	8.5		9.4
ROSWELL AIRPORT ASOS	KROW 1996-2006	7.4	8.9	9.9	11.1	10.3	10.2	8.8	7.9	8.3	8.0	7.5	7.3		8.8
RUIDOSO AIRPORT AWOS	KSRR 1996-2006	8.8	9.6	10.0	11.6	10.0	8.4	5.9	5.3	6.4	7.4	7.9	8.7		8.3
SANTA FE AIRPORT ASOS	KSAF 1996-2006	8.9	9.5	9.9	11.2	10.6	10.5	9.2	8.8	8.8	9.1	8.7	8.5		9.5
SILVER CITY AP AWOS	KSVC 1999-2006	8.1	8.7	9.9	10.8	10.2	9.9	8.5	7.2	6.9	7.6	7.9	7.7		8.5
TAOS AIRPORT AWOS	KSKX 1996-2006	5.8	6.5	7.7	9.1	8.6	8.5	7.1	6.6	6.7	6.6	6.0	5.7		7.0
TRUTH OR CONSEQ AP ASOS	KTCS 1996-2006	7.4	8.7	9.9	11.1	10.4	9.8	8.1	7.4	7.7	8.0	7.7	7.3		8.6
TUCUMCARI AIRPORT ASOS	KTCC 1999-2006	10.0	11.2	11.9	13.6	11.9	11.6	9.9	9.3	10.0	10.0	10.4	10.2		10.8

Nonroad Compression-Ignition Engines: Exhaust Emission Standards

	Rated Power (kW)	Tier	Model Year	NMHC (g/kW-hr)	NMHC + NOx (g/kW-hr)	NOx (g/kW-hr)	PM (g/kW-hr)	CO (g/kW-hr)	Smoke ^a (Percentage)	Useful Life (hours /years) ^b	Warranty Period (hours /years) ^b
		1	2000- 2004	-	10.5	-	1.0	8.0			
	kW < 8	2	2005- 2007	-	7.5	-	0.80	8.0		3,000/5	1,500/2
		4	2008+	-	7.5	-	0.40 °	8.0			
	8 ≤ kW < 19	1	2000- 2004	-	9.5	-	0.80	6.6			
		2	2005- 2007	-	7.5	-	0.80	6.6		3,000/5	1,500/2
		4	2008+	-	7.5	-	0.40	6.6			
		1	1999- 2003	-	9.5	-	0.80	5.5			
	19 ≤ kW < 37	2	2004- 2007	-	7.5	-	0.60	5.5		5,000/7 ^d	3,000/5 °
	- 01	4	2008- 2012	-	7.5	-	0.30	5.5			
			2013+	-	4.7	-	0.03	5.5			
	37 ≤ kW < 56	1	1998- 2003	-	-	9.2	-	-			
		2	2004- 2007	-	7.5	-	0.40	5.0			
Federal		3 ^f	2008- 2011	-	4.7	-	0.40	5.0	20/15/50		
reuerai		4 (Option 1) ^g	2008- 2012	-	4.7	-	0.30	5.0	20/15/50		
		4 (Option 2) ^g	2012	-	4.7	-	0.03	5.0			
		4	2013+	-	4.7	-	0.03	5.0			
		1	1998- 2003	-	-	9.2	-	-			
	50 41144	2	2004- 2007	-	7.5	-	0.40	5.0		8,000/10	3,000/5
	56 ≤ kW < 75	3	2008- 2011	-	4.7	-	0.40	5.0			
		4	2012- 2013 ^h	-	4.7	-	0.02	5.0			
			2014+ ⁱ	0.19	-	0.40	0.02	5.0			
		1	1997- 2002	-	-	9.2	-	-			
	75 ≤ kW	2	2003- 2006	-	6.6	-	0.30	5.0			
	75 ≤ KVV < 130	3	2007- 2011	-	4.0	-	0.30	5.0			
		4	2012- 2013 ^h	-	4.0	-	0.02	5.0			
			2014+	0.19	-	0.40	0.02	5.0			

	Rated Power (kW)	Tier	Model Year	NMHC (g/kW-hr)	NMHC + NOx (g/kW-hr	NOx (g/kW-hr	PM (g/kW-hr	CO (g/kW-hr)	Smoke ^a (Percentage)	Useful Life (hours /years) ^b	Warranty Period (hours /years) ^b
		1	1996- 2002	1.3 ^j	-	9.2	0.54	11.4			
		2	2003- 2005	-	6.6	-	0.20	3.5			
	130 ≤ kW < 225	3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5			
			2014+ ⁱ	0.19	-	0.40	0.02	3.5			
		1	1996- 2000	1.3 ^j	-	9.2	0.54	11.4			
		2	2001- 2005	-	<mark>6.4</mark>	-	<mark>0.20</mark>	<mark>3.5</mark>			
	225 ≤ kW < 450	3	2006- 2010	-	4.0	-	0.20	3.5		8,000/10	
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5			
			2014+ ⁱ	0.19	-	0.40	0.02	3.5			
		1	1996- 2001	1.3 ^j	-	9.2	0.54	11.4	20/15/50		
Federal		2	2002- 2005	-	6.4	-	0.20	3.5			3,000/5
	450 ≤ kW < 560	3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5			
			2014+ ⁱ	0.19	-	0.40	0.02	3.5			
		1	2000- 2005	1.3 ^j	-	9.2	0.54	11.4			
	560 ≤ kW < 900	2	2006- 2010	-	6.4	-	0.20	3.5			
	< 900	4	2011- 2014	0.40	-	3.5	0.10	3.5			
			2015+ ⁱ	0.19	-	3.5 ^k	0.04 ^I	3.5			
		1	2000- 2005	1.3 ^j	-	9.2	0.54	11.4			
	kW > 900	2	2006- 2010	-	6.4	-	0.20	3.5			
	кvv > 900	4	2011- 2014	0.40	-	3.5 ^k	0.10	3.5			
			2015+ ⁱ	0.19	-	3.5 ^k	0.04 '	3.5			

Notes on following page.

Notes:

- For Tier 1, 2, and 3 standards, exhaust emissions of nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC), and non-methane hydrocarbons (NMHC) are measured using the procedures in 40 Code of Federal Regulations (CFR) Part 89 Subpart E. For Tier 1, 2, and 3 standards, particulate matter (PM) exhaust emissions are measured using the California Regulations for New 1996 and Later Heavy-Duty Off-Road Diesel Cycle Engines.
- For Tier 4 standards, engines are tested for transient and steady-state exhaust emissions using the procedures in 40 CFR Part 1039 Subpart F. Transient standards do not apply to engines below 37 kilowatts (kW) before the 2013 model year, constant-speed engines, engines certified to Option 1, and engines above 560 kW.
- Tier 2 and later model naturally aspirated nonroad engines shall not discharge crankcase emissions into the atmosphere unless these emissions are permanently routed into the exhaust. This prohibition does not apply to engines using turbochargers, pumps, blowers, or superchargers.
- In lieu of the Tier 1, 2, and 3 standards for NOX, NMHC + NOX, and PM, manufacturers may elect to participate in the averaging, banking, and trading (ABT) program described in 40 CFR Part 89 Subpart C.
- a Smoke emissions may not exceed 20 percent during the acceleration mode, 15 percent during the lugging mode, and 50 percent during the peaks in either mode. Smoke emission standards do not apply to single-cylinder engines, constant-speed engines, or engines certified to a PM emission standard of 0.07 grams per kilowatt-hour (g/kW-hr) or lower. Smoke emissions are measured using procedures in 40 CFR Part 86 Subpart I.
- **b** Useful life and warranty period are expressed hours and years, whichever comes first.
- c Hand-startable air-cooled direct injection engines may optionally meet a PM standard of 0.60 g/kW-hr. These engines may optionally meet Tier 2 standards through the 2009 model years. In 2010 these engines are required to meet a PM standard of 0.60 g/kW-hr.
- **d** Useful life for constant speed engines with rated speed 3,000 revolutions per minute (rpm) or higher is 5 years or 3,000 hours, whichever comes first.

- e Warranty period for constant speed engines with rated speed 3,000 rpm or higher is 2 years or 1,500 hours, whichever comes first.
- f These Tier 3 standards apply only to manufacturers selecting Tier 4 Option 2. Manufacturers selecting Tier 4 Option 1 will be meeting those standards in lieu of Tier 3 standards.
- **g** A manufacturer may certify all their engines to either Option 1 or Option 2 sets of standards starting in the indicated model year. Manufacturers selecting Option 2 must meet Tier 3 standards in the 2008-2011 model years.
- h These standards are phase-out standards. Not more than 50 percent of a manufacturer's engine production is allowed to meet these standards in each model year of the phase out period. Engines not meeting these standards must meet the final Tier 4 standards.
- These standards are phased in during the indicated years. At least 50 percent of a manufacturer's engine production must meet these standards during each year of the phase in. Engines not meeting these standards must meet the applicable phase-out standards.
- **j** For Tier 1 engines the standard is for total hydrocarbons.
- k The NOx standard for generator sets is 0.67 g/kW-hr.
- I The PM standard for generator sets is 0.03 g/kW-hr.

Citations: Code of Federal Regulations (CFR) citations:

- 40 CFR 89.112 = Exhaust emission standards
- 40 CFR 1039.101 = Exhaust emission standards for after 2014 model year
- 40 CFR 1039.102 = Exhaust emission standards for model year 2014 and earlier
- 40 CFR 1039 Subpart F = Exhaust emissions transient and steady state test procedures
- 40 CFR 86 Subpart I = Smoke emission test procedures
- 40 CFR 1065 = Test equipment and emissions measurement procedures

Nonroad Compression-Ignition Engines: Exhaust Emission Standards

	Rated Power (kW)	Tier	Model Year	NMHC (g/kW-hr)	NMHC + NOx (g/kW-hr)	NOx (g/kW-hr)	PM (g/kW-hr)	CO (g/kW-hr)	Smoke ^a (Percentage)	Useful Life (hours /years) ^b	Warranty Period (hours /years) ^b
		1	2000- 2004	-	10.5	-	1.0	8.0			
	kW < 8	2	2005- 2007	-	7.5	-	0.80	8.0		3,000/5	1,500/2
		4	2008+	-	7.5	-	0.40 °	8.0			
	8 ≤ kW < 19	1	2000- 2004	-	9.5	-	0.80	6.6			
		2	2005- 2007	-	7.5	-	0.80	6.6		3,000/5	1,500/2
		4	2008+	-	7.5	-	0.40	6.6			
		1	1999- 2003	-	9.5	-	0.80	5.5			
	19 ≤ kW < 37	2	2004- 2007	-	7.5	-	0.60	5.5		5,000/7 ^d	3,000/5 °
	- 01	4	2008- 2012	-	7.5	-	0.30	5.5			
			2013+	-	4.7	-	0.03	5.5			
	37 ≤ kW < 56	1	1998- 2003	-	-	9.2	-	-			
		2	2004- 2007	-	7.5	-	0.40	5.0			
Federal		3 ^f	2008- 2011	-	4.7	-	0.40	5.0	20/15/50		
reuerai		4 (Option 1) ^g	2008- 2012	-	4.7	-	0.30	5.0	20/15/50		
		4 (Option 2) ^g	2012	-	4.7	-	0.03	5.0			
		4	2013+	-	4.7	-	0.03	5.0			
		1	1998- 2003	-	-	9.2	-	-			
	50 41144	2	2004- 2007	-	7.5	-	0.40	5.0		8,000/10	3,000/5
	56 ≤ kW < 75	3	2008- 2011	-	4.7	-	0.40	5.0			
		4	2012- 2013 ^h	-	4.7	-	0.02	5.0			
			2014+ ⁱ	0.19	-	0.40	0.02	5.0			
		1	1997- 2002	-	-	9.2	-	-			
	75 ≤ kW	2	2003- 2006	-	6.6	-	0.30	5.0			
	75 ≤ KVV < 130	3	2007- 2011	-	4.0	-	0.30	5.0			
		4	2012- 2013 ^h	-	4.0	-	0.02	5.0			
			2014+	0.19	-	0.40	0.02	5.0			

	Rated Power (kW)	Tier	Model Year	NMHC (g/kW-hr)	NMHC + NOx (g/kW-hr	NOx (g/kW-hr	PM (g/kW-hr	CO (g/kW-hr)	Smoke ^a (Percentage)	Useful Life (hours /years) ^b	Warranty Period (hours /years) ^b
	130 ≤ kW < 225	1	1996- 2002	1.3 ^j	-	9.2	0.54	11.4	-		3,000/5
		2	2003- 2005	-	6.6	-	0.20	3.5			
		3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5			
			2014+ ⁱ	0.19	-	0.40	0.02	3.5			
		1	1996- 2000	1.3 ^j	-	9.2	0.54	11.4	20/15/50	8,000/10	
	225 ≤ kW < 450	2	2001- 2005	-	<mark>6.4</mark>	-	<mark>0.20</mark>	<mark>3.5</mark>			
		3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5			
			2014+ ⁱ	0.19	-	0.40	0.02	3.5			
		1	1996- 2001	1.3 ^j	-	9.2	0.54	11.4			
Federal	450 ≤ kW < 560	2	2002- 2005	-	6.4	-	0.20	3.5			
		3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5			
			2014+ ⁱ	0.19	-	0.40	0.02	3.5			
		1	2000- 2005	1.3 ^j	-	9.2	0.54	11.4			
	560 ≤ kW	2	2006- 2010	-	6.4	-	0.20	3.5			
	< 900	< 900	2011- 2014	0.40	-	3.5	0.10	3.5			
			2015+ ⁱ	0.19	-	3.5 ^k	0.04 ^I	3.5			
		1	2000- 2005	1.3 ^j	-	9.2	0.54	11.4			
	kW > 900	2	2006- 2010	-	6.4	-	0.20	3.5			
		4	2011- 2014	0.40	-	3.5 ^k	0.10	3.5			
			2015+ ⁱ	0.19	-	3.5 ^k	0.04 '	3.5			

Notes on following page.

Notes:

- For Tier 1, 2, and 3 standards, exhaust emissions of nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC), and non-methane hydrocarbons (NMHC) are measured using the procedures in 40 Code of Federal Regulations (CFR) Part 89 Subpart E. For Tier 1, 2, and 3 standards, particulate matter (PM) exhaust emissions are measured using the California Regulations for New 1996 and Later Heavy-Duty Off-Road Diesel Cycle Engines.
- For Tier 4 standards, engines are tested for transient and steady-state exhaust emissions using the procedures in 40 CFR Part 1039 Subpart F. Transient standards do not apply to engines below 37 kilowatts (kW) before the 2013 model year, constant-speed engines, engines certified to Option 1, and engines above 560 kW.
- Tier 2 and later model naturally aspirated nonroad engines shall not discharge crankcase emissions into the atmosphere unless these emissions are permanently routed into the exhaust. This prohibition does not apply to engines using turbochargers, pumps, blowers, or superchargers.
- In lieu of the Tier 1, 2, and 3 standards for NOX, NMHC + NOX, and PM, manufacturers may elect to participate in the averaging, banking, and trading (ABT) program described in 40 CFR Part 89 Subpart C.
- a Smoke emissions may not exceed 20 percent during the acceleration mode, 15 percent during the lugging mode, and 50 percent during the peaks in either mode. Smoke emission standards do not apply to single-cylinder engines, constant-speed engines, or engines certified to a PM emission standard of 0.07 grams per kilowatt-hour (g/kW-hr) or lower. Smoke emissions are measured using procedures in 40 CFR Part 86 Subpart I.
- **b** Useful life and warranty period are expressed hours and years, whichever comes first.
- c Hand-startable air-cooled direct injection engines may optionally meet a PM standard of 0.60 g/kW-hr. These engines may optionally meet Tier 2 standards through the 2009 model years. In 2010 these engines are required to meet a PM standard of 0.60 g/kW-hr.
- **d** Useful life for constant speed engines with rated speed 3,000 revolutions per minute (rpm) or higher is 5 years or 3,000 hours, whichever comes first.

- e Warranty period for constant speed engines with rated speed 3,000 rpm or higher is 2 years or 1,500 hours, whichever comes first.
- f These Tier 3 standards apply only to manufacturers selecting Tier 4 Option 2. Manufacturers selecting Tier 4 Option 1 will be meeting those standards in lieu of Tier 3 standards.
- **g** A manufacturer may certify all their engines to either Option 1 or Option 2 sets of standards starting in the indicated model year. Manufacturers selecting Option 2 must meet Tier 3 standards in the 2008-2011 model years.
- h These standards are phase-out standards. Not more than 50 percent of a manufacturer's engine production is allowed to meet these standards in each model year of the phase out period. Engines not meeting these standards must meet the final Tier 4 standards.
- These standards are phased in during the indicated years. At least 50 percent of a manufacturer's engine production must meet these standards during each year of the phase in. Engines not meeting these standards must meet the applicable phase-out standards.
- **j** For Tier 1 engines the standard is for total hydrocarbons.
- k The NOx standard for generator sets is 0.67 g/kW-hr.
- I The PM standard for generator sets is 0.03 g/kW-hr.

Citations: Code of Federal Regulations (CFR) citations:

- 40 CFR 89.112 = Exhaust emission standards
- 40 CFR 1039.101 = Exhaust emission standards for after 2014 model year
- 40 CFR 1039.102 = Exhaust emission standards for model year 2014 and earlier
- 40 CFR 1039 Subpart F = Exhaust emissions transient and steady state test procedures
- 40 CFR 86 Subpart I = Smoke emission test procedures
- 40 CFR 1065 = Test equipment and emissions measurement procedures

Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

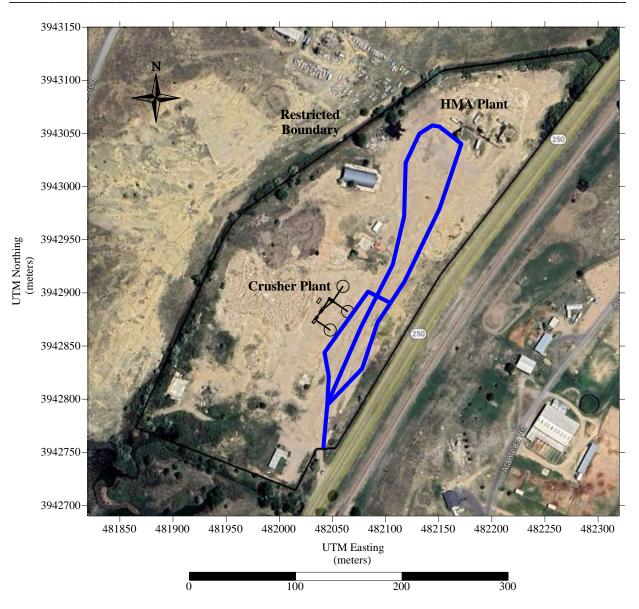


Figure 8-1: Location of Short Line Crusher Plant and Surrounding Area

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

X I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications"

This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. X A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. X A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. **X** A copy of the property tax record (20.2.72.203.B NMAC).
- 4. **X** A sample of the letters sent to the owners of record.
- 5. **X** A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. **X** A sample of the public notice posted and a verification of the local postings.
- 7. X A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. **X** A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. X A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. X A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. X A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

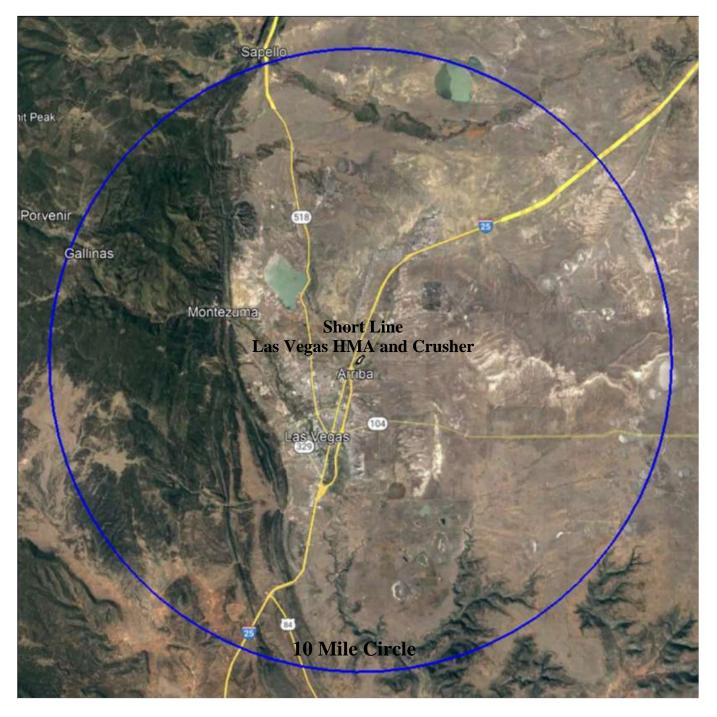
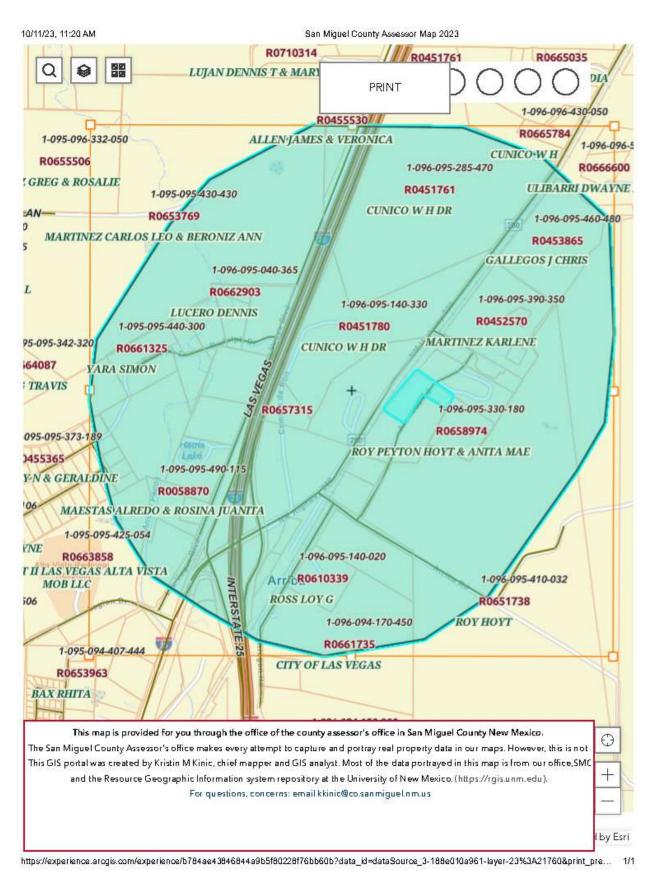



Figure 9-1: Ten-Mile Radius around Site

Government List within 10 Miles

San Miguel County	Connie M. Gallegos, County Clerk	518 Valencia St. County Annex Building	Las Vegas	NM	87701
City of Las Vegas	Casandra Fresquez, City Clerk	1700 N. Grand Avenue	Las Vegas	NM	87701

Figure 9-2: Half Mile Radius around Site

Acct_No	OWNNAME	MAILADD	MCITY	STATE	ZIP
R0058870	MAESTAS ALREDO & ROSINA JUANITA	PO BOX 152	LAS VEGAS	NM	87701
R0073511	MARTINEZ MATIAS JR & CONSUELO	300 SOUTH HIGHWAY 85	LAS VEGAS	NM	87701
R0451420	TRUJILLO JOHNNY A & LILLIAN M & LAW OFFICE OF DENNIS P	PO BOX 45311	RIO RANCHO	NM	87174
R0451761	CUNICO W H DR	57 CAMINO DE RON	LAS VEGAS	NM	87701
R0451780	CUNICO W H DR	57 CAMINO DE RON	LAS VEGAS	NM	87701
R0451861	MARTINEZ JOHN D & XIMENEZ ANDREA I	PO BOX 3600	LAS VEGAS	NM	87701
R0452570	MARTINEZ KARLENE	PO BOX 562	LAS VEGAS	NM	87701
R0452660	SAN MIGUEL HOSPITAL CORPORTION A NM CORP PROPERTY VALUATION SERVICES	14400 METCALF	OVERLAND PARK	KS	66223
R0453865	GALLEGOS J CHRIS	PO BOX 3	LAS VEGAS	NM	87701
R0454121	ROY ANITA MAE NAYLOR	PO BOX 515	LAS VEGAS	NM	87701
R0454220	PACHECO JACOBO E & VALERIE	PO BOX 300	MORA	NM	87732
R0454286	MARTINEZ MEGAN R	412 South Pacific St	LAS VEGAS	NM	87701
R0454730	LYSTER HARLAN K	PO Box 2546	Las Vegas	NM	87701
R0454740	RUDOLPH GENE L SR, JERRY & BERNICE	29 RUDOLPH DRIVE #9	LAS VEGAS	NM	87701
R0455362	ORTEGA-MATHIS PRESCILLA S & DYCKSON RAYMOND J	PO BOX 56	LAS VEGAS	NM	87701
R0455363	TAFOYA LEONOR	202 CHICO DRIVE	LAS VEGAS	NM	87701
R0455530	ALLEN JAMES & VERONICA	PO BOX 2735	LAS VEGAS	NM	87701
R0455810	VALDEZ PACOMIO & MARCELLA	582 SCHULTZ	GREEN RIVER	WY	82935
R0600364	TRUJILLO ANTHONY & PATRICIA	201 CHICO DRIVE	LAS VEGAS	NM	87701
R0610303	GONZALES RITA MARIE & ESPINOZA DARIAN MATTHEW	276 HARRIS ROAD	LAS VEGAS	NM	87701
R0610339	ROSS LOY G	PO Box 727	Springer	NM	87747
R0651509	LALA'S ENTERPRICES LLC	1409 4TH STREET	LAS VEGAS	NM	87701
R0651738	ROY HOYT	PO BOX 841	LAS VEGAS	NM	87701
R0653769	MARTINEZ CARLOS LEO & BERONIZ ANN	PO BOX 13	SAPELLO	NM	87745
R0653770	MADRID MARVIN D & REGINA A	205 1/2 CHICO DRIVE	LAS VEGAS	NM	87701
R0654835	ROSS KENNETH & VIVIAN D	PO Box 188	Las Vegas	NM	87701
R0654878	LUCERO DENNIS	14 B Rudolph Drive	LAS VEGAS	NM	87701
R0654993	MARTINEZ MARCIA A	274 HARRIS ROAD	LAS VEGAS	NM	87701
R0655097	LOS ALAMOS NATIONAL BANK	640 WEST LAMBERT ROAD	BREA	CA	92821
R0655954	HENSSLER ROBERT R	PO Box 4202	LAS VEGAS	NM	87701
R0655955	BOYD WILLIAM J & HEMMES VICKY L	17 ALMEDA ROAD	LAS VEGAS	NM	87701
R0657312	ROSS KENNETH & VIVIAN D	PO Box 188	Las Vegas	NM	87701
R0657320	MORA SAN MIGUEL ELECTRIC COOP	PO BOX 240	MORA	NM	87732
R0657363	CITY OF LAS VEGAS	1700 NORTH GRAND AVENUE	LAS VEGAS	NM	87701
R0658974	ROY PEYTON HOYT & ANITA MAE	PO BOX 515	LAS VEGAS	NM	87701

October 23, 2023 & Revision #0

Acct_No	OWNNAME	MAILADD	MCITY	STATE	ZIP
R0658978	NEW MEXICO STATE HWY DEPT	28 BD INDUSTRIAL DR	LAS VEGAS	NM	87701
R0660617	RUDOLPH JERRY R & BERNICE	29 RUDOLPH DRIVE #9	LAS VEGAS	NM	87701
R0661325	YARA SIMON	4 Rudolph Dr	LAS VEGAS	NM	87701
R0661326	EBELL VINIA A & ZACRIAS J	PO BOX 337	MAXWELL	NM	87728
R0661428	IBARRA JOSEFINA PRIETO	PO BOX 3572	LAS VEGAS	NM	87701
R0661436	HENSSLER ROBERT R	PO Box 4202	LAS VEGAS	NM	87701
R0661735	CITY OF LAS VEGAS	1700 NORTH GRAND AVENUE	LAS VEGAS	NM	87701
R0662525	ROSS KENNETH & VIVIAN D	PO Box 188	LAS VEGAS	NM	87701
R0662903	LUCERO DENNIS, Care of LUCERO ANNETTE	14 B Rudolph Drive	LAS VEGAS	NM	87701
R0662980	LOS ALAMOS NATIONAL BANK	PO BOX 60	LOS ALAMOS	NM	87544
R0663616	RUDOLPH JERRY & BERNICE	29 RUDOLPH DRIVE #9	LAS VEGAS	NM	87701
R0664128	MASCARENAS ESEQUIEL	3505 ERNEST ROAD	LAS VEGAS	NM	87701
R0665713	PLATEAU TELECOMMUNICATIONS	PO BOX 1947	CLOVIS	NM	88102
R0666310	MARTINEZ MATT C & MARTHA L S	772 DORA CELESTE	LAS VEGAS	NM	87701
R0709744	STALLSMITH JUNE & ROY	PO Box 1147	LAS VEGAS	NM	87701
R0709745	GONZALES KARLENE & MARTINEZ JOHNNA	PO Box 562	LAS VEGAS	NM	87701

NOTICE

Short Line, LLC announces its application submittal to the New Mexico Environment Department for a new air quality permit for an aggregate crushing and screening plant. The expected date of application submittal to the Air Quality Bureau is October 20, 2023.

The address for the new facility known as, Las Vegas HMA & Crusher, is at 1109 Airport Road, Las Vegas, NM. The exact location of the Las Vegas HMA & Crusher is at Zone 13, UTM Easting 482,040 meters, UTM Northing 3,942,880 meters The approximate location of this facility is 2.3 miles north-northeast of Las Vegas in San Miguel county.

The proposed Las Vegas HMA & Crusher facility includes a 200 ton per hour aggregate crushing and screening plant. The proposed construction includes raw and finish aggregate storage piles, aggregate feeder, primary crusher, secondary crusher, screen, nine (9) transfer conveyors, and three (3) stacker conveyors. The aggregate crushing and screening plant will be powered with a 261 kW (350 horsepower (hp)) generator and a 242 kW (325 horsepower (hp)) generator.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and maximum tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Maximum Pounds per hour	Maximum Tons per year
PM 10	4.51 pph	9.39 tpy
PM 2.5	0.81 pph	1.72 tpy
Sulfur Dioxide (SO ₂)	0.24 pph	0.53 tpy
Nitrogen Oxides (NO _x)	6.75 pph	14.78 tpy
Carbon Monoxide (CO)	3.88 pph	8.51 tpy
Volatile Organic Compounds (VOC)	0.36 pph	0.78 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	0.03 pph	0.06 tpy
Toxic Air Pollutant (TAP)	0.0002 pph	0.0004 tpy
Green House Gas Emissions as Total CO2e	n/a	1,700 tpy

The maximum and standard operating schedule of the facility is daylight hours, 7 days per week, and 52 weeks per year.

The owner and/or operator of the Facility is:

Short Line, LLC PO Box 1499 Peralta, NM 87042

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and

its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

General Posting of Notices – Certification

I, Beverly Zastrow, the undersigned, certify that on October 5, 2023, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the City of Las Vegas of San Miguel County, State of New Mexico on the following dates:

- 1. Facility entrance (10.5.23)
- 2. Kocina De Raphael 610 Legion Dr., Las Vegas, NM 87701 (10.5.23)
- 3. USPS West Las Vegas, NM 87701 (10.5.23)
- 4. USPS Las Vegas, NM 87701 (10.5.23)

Signed this 6th day of <u>October</u>, <u>2023</u>

Beverly Zastrow, Managing Member

October 6, 2023

TERRA TRANSIT

2000

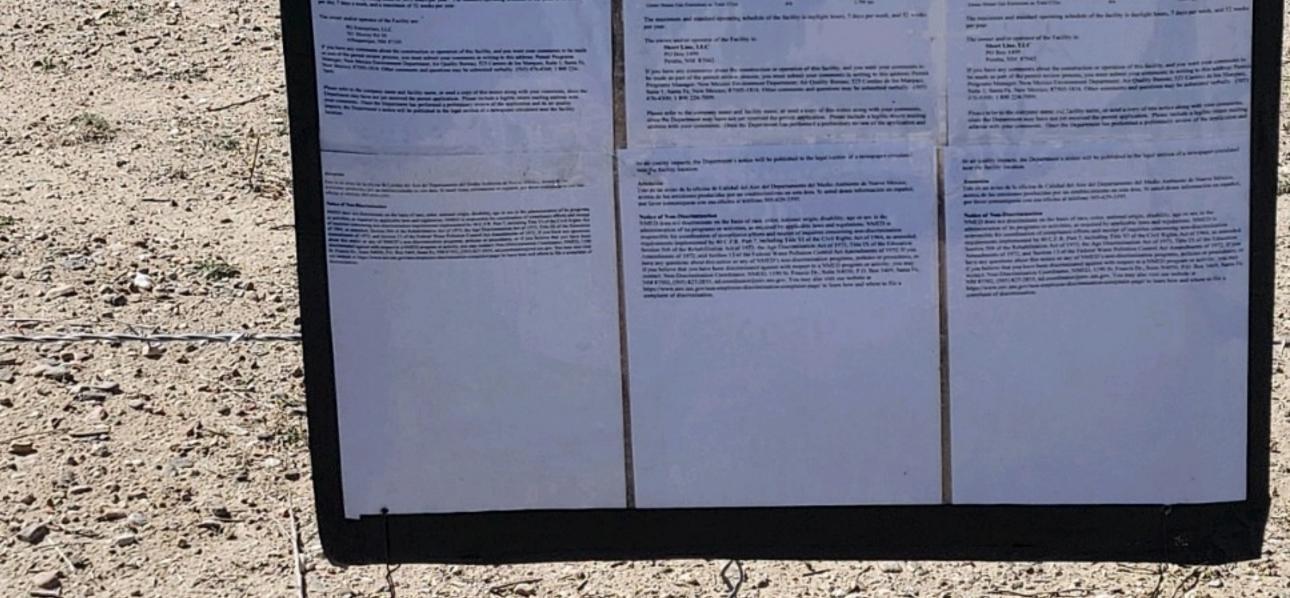
NOTICE

And the second se	Read on Los	Same or
Per other Darlies . Any stand and Darphins Reserves	37.44	BRIDE .
Per unified Auditor - Registered and Fugitive Research	801.00	477.98
Name Statute (With	8.00 To pps	830 88
Nitragen Straine (Part)	847.68	1.0.0
Calles Manuals 2110	1.01 mm	1114
Name Income Company, Name	10.45	1.01.00
They been of all Reportings for Publication (Scaling	110.00	
Name and Address (Table	Local States	A PROPERTY AND
Name Name (in Address of Soul) has		State of Lot of
The restored sprang whether for the observer is 12 is	and the Party of the local division of the l	and a measure of \$1 months
the new line wanted interaction income of the life barrier over 1 and	The summaries successing to	Andrew of the proof in 12 boosts
and then I done a mand, and a manufacture of \$2 months and \$		

NOTICE

SALES OFFICE SHIPPING AND RECEIVING

alls


	and print	has proper
and the second		
	10.00	1.0.00
	475 at	1.000
the Track West	All and	18.00
anges Children (1951.)	A Trank	1.7
the Name of Str.	100.000	48140
And Designation (1978)	a.m.m.t	1.7 10
and some of all Managiment All Publications (District	Add and	20.00
and the Redman (Table	a list and	8.000 to
new Owner Day Contrained on Taxas 17(no.	**	1.740 mm

NOTICE

323

	Real or loss	Taxat per
-	a strant	417.00
	3.10 pt	31740
	12744	242.00
Charlen Parts	12.04 (44)	a series
time of the	The off state	2.2.4
Capana Companya (1916)	111.00	
a of all Deservices All Prolongers (Frights	1,74.94	
Colomer (1984)	8-9-1-24	1.847.87
tear tis bound a Tear the		

(Jarreu0)

FOR CUSTOMERS ONLY.

411 107 3.17 tpv 6.62 my 21.12 цру 22.23 tpy 7.29 MW 1.06 tpy 0.001 (879 5,860 975

The maximum and standard operating schedule of the facility is daylight hours, 7 days per week, and 52 weeks per year.

3.38 pph

7.27 pph

13.54 pph

20.15 pph

8.03 pph

1.29 pph

0.001 pph

The owner and/or operator of the Facility is: Short Line, LLC PO Box 1499

Total sam of all Hazardous Air Pollatarts (HAPs

Green House Gas Emissions as Total CO.e

Sulfat Disside (SO.)

Ninogra Oxides (NO₄)

Carbon Moneside (CO)

Toxic Ab Pollutant (TAP)

Volatile Organic Compounds (VOC)

Peralta, NM 87042 If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address. Permi Programs Manager, New Mexico Lovinourient Department, Air Quality Bureau, 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico 87505-1816. Other comments and questions may be submitted verbally. (305) 476-4300; 1 800 224-7009.

Please reflet to the company name and facility name, or send a copy of this tensor along with your commenti-since the Department may have not yet received the permit application. Please include a highlic return mailing address with providents. Once the Department has performed a preliminary review of the application and

air quality impacts, the Department's notice will be published in the legal section of a newspaper circu near the facility location.

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español por favor comuniquese con esa oficina al teléfono 505-629-3395.

DUKE

REALTY GROUP

INVEST IN PROPERTY!

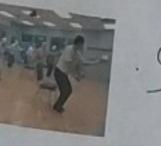
505.429.1523

PHALIN GAMIN

505.429.1523

Notice of Non-Discrimination MED does not discriminate on the basis of race, color, national origin, disability, age or sex in the Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe. NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

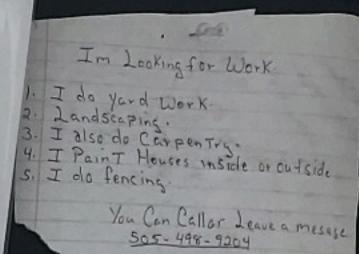
its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

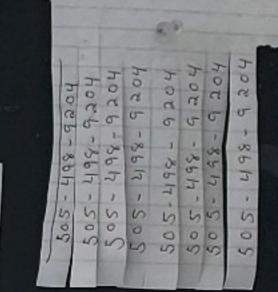

Attención Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuniquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination of the basis of race, color, national origin, disability, age or ses in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended. Section 564 of the Relabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMLD program or activity, you may contact. Non-Discrimination Coordinator Jam um gov. You may also visit our website at https://www.etw.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Tai Chi Fall Prevention Programs at the Las Vegas Senior Center (must be 60 yrs old to join) New Schedule starting week of April 4, 2022

Tai Ji Quan: Moving for Better Balance Monday & Wednesday 9:30 - 10:30 am





Classes are Free!

10:10 am - 11:10 am Beginner Class Tai Chi for Arthritis

Contact: John Arnold, Certified NMDOH Fall Prevention Instructor 505-225-4023. Senior Center: 425-9139

NOTICE

Short Line, LLC announces its application submittal to the New Mexico Environment Department for a new air quality permit for an aggregate crushing and screening plant. The expected date of application submittal to the Air Quality Bureau is October 20, 2023.

The address for the new facility known as, Las Vegas HMA & Crusher, is at 1109 Alreet Boad Las Vegas, NM. The exact location of the Lora Energy Facility is at Zone 13, UTM Easting 482,040 meters, UTM Northing 3,942,880 meters. The approximate location of this facility is 2.5 miles northeast of Las Vegas in San Miguel

The proposed Las Vegas HMA & Crusher facility includes a 200 ton per hour aggregate crushing and screening plant. The proposed construction includes raw and finish aggregate storage piles, aggregate feeder, primary crusher, secondary crusher, screen, nine (9) transfer conveyors, and there (3) stacker conveyors. The aggregate erushing and screecing plant will be powered with a 261 kW (350 horsepower (hp)) generator and a 242 kW (325 horsepower (hp)) generator.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph)

Tuesday & Thursdays 9:00 am - 10:00 am Intermediate

Ali Romero

Incident Management Team

Luke McLarty - Incident Commander

Canyon Flood Issues

And the second streams

Northe

and maximum only p	er year (ipy) ind may	change slightly	during the course	of the Department"	S DON
--------------------	-----------------------	-----------------	-------------------	--------------------	-------

Pollamer;	Maximum Pounds per hour	Masienum Tons per year
PM in	3.86 pph	8.49 tpy
PM D	0.71 pph	1.19 (19)
Sulfar Dioxide (SD ₂)	0.24 pph	0.53 tpy
Nirogen Oxides (NO ₂)	6.75 gph	14.78 109
Carban Manus ide (CO)	3.85 pph	1.51 my
Volatile Organic Compounds (VOC)	dag 01.0	0.78 (py
Total sam of all Hazardous Air Pollstann (HAPs)	0.03 pph	0.06 tpy
Tesle Air Pelloant (TAP)	0.0002 pph	0.0004 ups
Green House Gas Emissions as Total COre	14	1,700 tev

The maximum and standard operating schedule of the facility is daylight hours, 7 days per week, and 52 weeks per year.

The owner and/or operator of the Facility is: Short Line, LLC

- PO Box 1499
- Peralta, NM 87042

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager, New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and

its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated mmr the facility location.

Amencioli Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, neerca de las emisiones producidas por un establecimiento en esta área. Si usted desen información en español, por favor comuniquese con esa oficina al teléfono 505-629-3395.

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable lass and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 CE-R, Part 7, including Title VI of the Civit Rights Act of 1964, as arcended. Soletion 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975. Title IX of the Education Ansendments of 1972, and Section 13 of the Federal Water Pollation Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or lif you believe that you have been discrimination gainest with respect to a NMED program or activity, you may contact. Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe. NM 87502, (305) 827-2855, nd coordinator/itermination-complaint-page' to learn how and where to file a complaint of discrimination. Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the NMED is not discriminate on the basis of race, color, national origin, disability, age or sex in the complaint of discrimination.

SANTA PE, NM - August 61, 2023 - The Northern New Mexico Type 3 Incident Management Torm, hosted by NM Homeland Security and Emergency Management (NMDHSEM) and the Santa Pe National Forest (SPNP), are outreaching to the policie. information on Hermits Peak Call Canyon post-five faced rg issues that are affecting our communities.

Hermits Peak Calf Canyon Post Fire Response

Online Form Available to Assist with Hermits Peak Calf

Information is being gathered through an online form that is available in English and Spannin and can be found by scatting the QR codes below, or you can also enter/click the following URLs into your web borower. English https://domin.office.com/p//Esrechd/Español https://domin.office.com/p//orthfold/when filling out the form you will be prompted to provide the following information:

· Nome, phone masher, and email address.

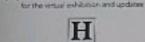
Physical address, rounty, and sip rode.
 Date of Dooding Impact and the road identification number of the property being affected by flooding.

exico Type 3

Once the forms are completed, responses will be pathered and the flood response tears in conjunction with the NMDHSEM and SPNP, will work on getting you assistance from the appropriate agency,

Although work has been done in the barned area there is still a risk for potential flooding and richts flow. Communities and landowsers is proximity to the HPCC burn sur should closely manitor alerts from the National Weather Service (NWS) in Albuquerque and sign up for emergency alerts with the local operity or local emergency management agency.

...


Kennedy Alumni Hall Gallery New Mence Highlands 5, ms/5 Las Wegas, NM E7701

10" INVITATIONAL New Mexico

PAINTERS' EXHIBITION

September 10-October 31, 2023 Opening reception Sanday September 10.4-7 PM Kernedy Hall, New Mexico Highlands University

Las Vegas, NM Please vis I http://pilleries.wshu.edu/correct pill the knowedy gill etp/

H Grow maps #77" Limit. First time limits by had

575

455

02M

100

520 ath St Las Vegas, Tim

T Penintunit

Love Letter Jattee

NUS - Altracturers | NM Department of Identifiand Security and Resequency Management | After Wildlim: A Guide for

MCommunities | Secta De National

Earest Alerts and Nation

0

THAT MOLDING GUY We got you covered from the base to the crown and everything in between. We even do quarter rounds

October 5, 2023 Monthly Commissioner's Board Meeting Hillcrest 6:00pm Sourd Members – Mayordomo, Dickey Martinez; Chair, Mic Sourd Members – Don Monnheimer; Secretary, Linda Tap John Hemera, vice chair; Carlos Ortiz, member

Agenda Call meeting to order Establish Quorum Approval of minutes from August 2, 2023

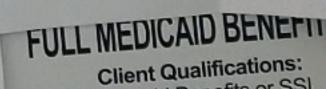
1. Sign Bylaws

-0281

5 45

5

rt


5

2. Discussion on how to proceed with signature(s) on app for certification with state auditors office 2010-2019 2020-2022 2023

 Approve application/ funds request from NM Acequia Commission/Special Project Grant Program/Ashley Arella Initiated by Carlos Ortiz/Dickey Martinez

 Ratify and approve execution of the contracts signed Michael Quintana on behalf of Acequia Madre de Los Ro EQUIP 2018 748C30230D9 -8/7/2023 EQUIP 2018 748C302010W-6/13/2023

5. Resolution to authorize Commissioners, Don Monnho other member as signers at Community First Bank. Checking 1048902 Savings 36743 All other signers are to be removed Two signatures are required for all checks that will be pr for payment Order a For Deposit Only Stamp Order current check blanks Order personalized deposit slips

Medicaid Benefits or SSI

Services covered by: Western Sky, Blue Cross Blue Shield and Presby

preces of mail each day - no matter who we are or whore we live. In contrast, private delivery companies go where they can make a profit.

FACT: Multiple polls consistently rate , the Postal Service as the most trusted U.S. agency. It rates highest among young adults.

FACT: Package volume is increasing. In these days of rising on line shopping, the public Postal Service is as needed as ever.

If the White House Office of Management and Budget's proposal to sell the USPS to corporations for private profit goes through, it will result in higher costs, reduced mail days, and the end of delivery to every address.

Go to usmailnotforsale.org or call 202-224-3121 to contact your members of Congress. Tell them you support your public Postal Service!

NOTICE

The Public Postal

Short Line, LLC announces its application submittal to the New Mexico Environment Department for a new air quality permit for an aggregate crushing and screening plant. The expected date of application submittal to the

The address for the new facility known as Las Vegas HMA & Crusher, is at 1109 Airport Road, Las Vegas, NM. The event weeks of the Land Energy Focility is at Zone 13, UTM Easting 482,040 meters, UTM Northing The Approximate Incation of this facility is 2.5 miles northeast of Las Vegas in San Miguel

A proposal Les Versel Mexic Crueber facility includes a 200 ton per hour aggregate crushing and screening The provide storage piles, aggregate feeder, primary and three (3) stacker conveyors. The aggregate a server has a low power of with a 261 kW (350 horsepower (hp)) generator and a 242 kW

in the set of the light of the light of the

These searches of sets regulated al.; contaminant will be as follows in pound per hour (pph) and may change slightly during the course of the Department's review:

No.	Maximum Pounds per hour	Maximum
Str Charles (SD)	3.86 pph 0.71 pph	Tons per year 8.49 tpy 1.39 tpy
Nitropen Uxides (NO,) Carlver Monenside (CO) Violgele Organic Compounds (NDC)	0.24 pph 6.75 pph 3.55 pph	0.53 tpy 14.78 tpy 8.51 tpy
Total arm of all Hazardous Air Pollutants (HAPs) To Tot Air Pollutant (TAP) of House Gas Emissions as Total COse	0.36 pph 0.03 pph 0.0002 pph m/a	0.78 try 0.06 try 0.0004 try 1.700 try

maximum and standard operating schedule of the facility is daylight hours, 7 days per week, and 52 weeks

The owner and/or operator of the Facility is: Short Line, LLC PO Box 1499 Peralta, NM \$7042

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; \$7505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

NOTICE

Short Line, LLC announces its application submittal to the New Mexico Environment Department for a new air quality permit for a hot mix asphalt plant. The expected date of application submittal to the Air Quality Bureau is October 20, 2023.

The address for the new facility known as, Las Vegas HMA & Crusher, is at 1109 Airport Road, Las Vegas, NM. The exact location of the Luna Energy Facility is at Zone 13, UTM Easting 482,180 meters, UTM Northing 3,943,060 meters The approximate location of this facility is 2.5 miles northeast of Las Vegas in San Miguel county.

The proposed Las Vegas HMA & Crusher facility includes a 120 ton per hour and 200,000 tons per year hot mix asphalt plant (HMA) producing asphalt for road paving. The proposed construction includes aggregate storage piles, two 3-bin cold aggregate feeders, scalping screen, drum dryer/mixer with baghouse, incline conveyor, asphalt silo, asphalt heater, four (4) transfer conveyors, Evotherm storage tank, and two (2) asphalt cement storage tanks. The HMA plant will be powered with a 504 kW (676 horsepower (hp)) generator.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and maximum tons per year (tpy) and may change slightly during the course of the Department's review:

	Maximum Pounds per hour	Maximum Tons per year
ollutant	4.68 pph	4.11 tpy
	3.38 pph	3.17 tpy
	7.27 pph	6.62 tpy
Dioxide (SO ₂)	13.54 pph	21.12 фу
pen Oxádes (NO ₄)	20.15 pph	22.23 tpy
n Monoxide (CO)	8.03 pph	7.29 tpy
ile Organic Compounds (VOC)	1.29 pph	1.06 tpy
sum of all Hazardous Air Pollutants (HAPs)	0.001 pph	0.001 tpy
Air Pollutant (TAP)	8 10	5,860 tpy

The maximum and standard operating schedule of the facility is daylight hours, 7 days per week, and 52 weeks per year.

The owner and/or operator of the Facility is: Short Line, LLC PO Box 1499 Peralta, NM 87042

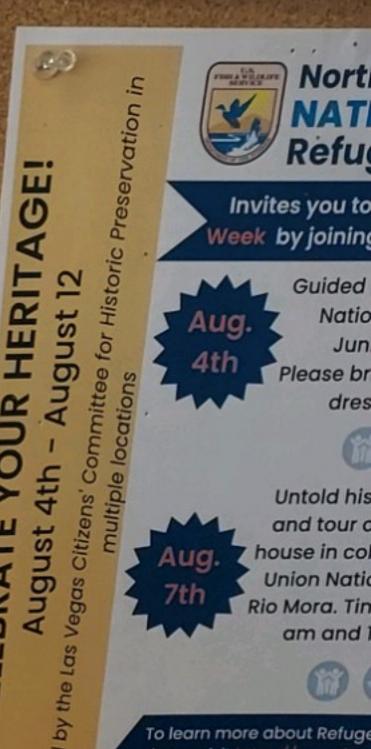
PM.

PM:

Sulfu

Nitre

Carby


Vola

Total

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1: Santa Fe, New Mexico: 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your of since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and

Craft Saturday Octo 10:00 pm-American 2300 Collins Dr, La

S

0

>

ш

4

BR

CELEI

losted

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and

its air quality impacts, the Department's notice wi 2 published in the legal section of a newspaper circulated near the facility location.

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuniquese con esa oficina al telefono 505-629-3395.

NATED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section S04 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Section 564 of the Renatorination 13 of the Federal Water Pollution Control Act Amendments of 1972, If you Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you Amendments of 1972 If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or have any questions about this notice of any or control resonance programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinatee, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM \$7502, (505) \$27-2855, nd covedinatorijenv.nm.gov. You may also visit our website at Not a concern to the new new new power-discrimination complaint-page' to learn how and where to file a complaint of discrimination.

SH

CARECNET

Fregrands Options C

Albertmint Pressancy Tests National HOTLINES:

Human Trafficking Hotline:

Text: INFO to 233733

Abortion Pill Reversal

877-558-0333 non-urgent inquiries:

614-885-7577 info@apr.Life

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emissiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuniquese con esa oficina al teléfono 505-629-3395.

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination regrams, policies or procedures, or have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 SL Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM \$7502, (505) \$27-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

9

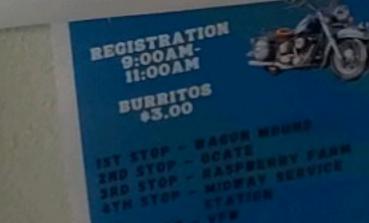
Stephen R Pruit?

Photographs

A Cartography of Solitude

To learn more about Refuge please visit https://www.fws mora or call 505-248-6453 about Heritage Week, visit w We hope to see you

Monthly Commissioner's Board Meeting Hillcrest 6:00, Board Members - Mayordomo, Dickey Martinez; Ghair Quintana, Treasurer, Don Monnheimer, Secretary, Linda John Herrera, vice chair; Carlos Ortiz, member


Agenda Call meeting to order Approval of minutes from August 2, 2023

2. Discussion on how to proceed with signature(s) on ap for certification with state auditors office 2010-2019 2020-2022 2023

3. Approve application/ funds request from NM Acequia Commission/Special Project Grant Program/Ashley Arella initiated by Carlos Ortiz/Dickey Martinez Ratify and approve execution of the contracts signed. Michael Quintana on behalf of Acequia Madre de Los Ror

EQUIP 2018 748C30230D9 -8/7/2023 EQUIP 2018 748C302010W-6/13/2023 5. Resolution to authorize Commissioners, Don Monnheit other member as signers at Community First Bank Checking 1048902 Savings 36743 All other signers are to be removed Two signatures are required for all checks that will be pres for payment

Order a For Deposit Only Stamp Order current check blanks Order personalized deposit slips

October 20, 2023

CERTIFIED MAIL XXXX XXXX XXXX XXXX

Dear [Neighbor/Environmental Director/county or municipal official]

Short Line, LLC announces its application submittal to the New Mexico Environment Department for a new air quality permit for an aggregate crushing and screening plant. The expected date of application submittal to the Air Quality Bureau is October 20, 2023.

The address for the new facility known as, Las Vegas HMA & Crusher, is at 1109 Airport Road, Las Vegas, NM. The exact location of the Las Vegas HMA & Crusher is at Zone 13, UTM Easting 482,040 meters, UTM Northing 3,942,880 meters The approximate location of this facility is 2.3 miles north-northeast of Las Vegas in San Miguel county.

The proposed Las Vegas HMA & Crusher facility includes a 200 ton per hour aggregate crushing and screening plant. The proposed construction includes raw and finish aggregate storage piles, aggregate feeder, primary crusher, secondary crusher, screen, nine (9) transfer conveyors, and three (3) stacker conveyors. The aggregate crushing and screening plant will be powered with a 261 kW (350 horsepower (hp)) generator and a 242 kW (325 horsepower (hp)) generator.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and maximum tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Maximum Pounds per hour	Maximum Tons per year
PM 10	4.51 pph	9.39 tpy
PM _{2.5}	0.81 pph	1.72 tpy
Sulfur Dioxide (SO ₂)	0.24 pph	0.53 tpy
Nitrogen Oxides (NO _x)	6.75 pph	14.78 tpy
Carbon Monoxide (CO)	3.88 pph	8.51 tpy
Volatile Organic Compounds (VOC)	0.36 pph	0.78 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	0.03 pph	0.06 tpy
Toxic Air Pollutant (TAP)	0.0002 pph	0.0004 tpy
Green House Gas Emissions as Total CO2e	n/a	1,700 tpy

The maximum and standard operating schedule of the facility is daylight hours, 7 days per week, and 52 weeks per year.

The owner and/or operator of the Facility is: **Short Line, LLC** PO Box 1499 Peralta, NM 87042

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air

Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

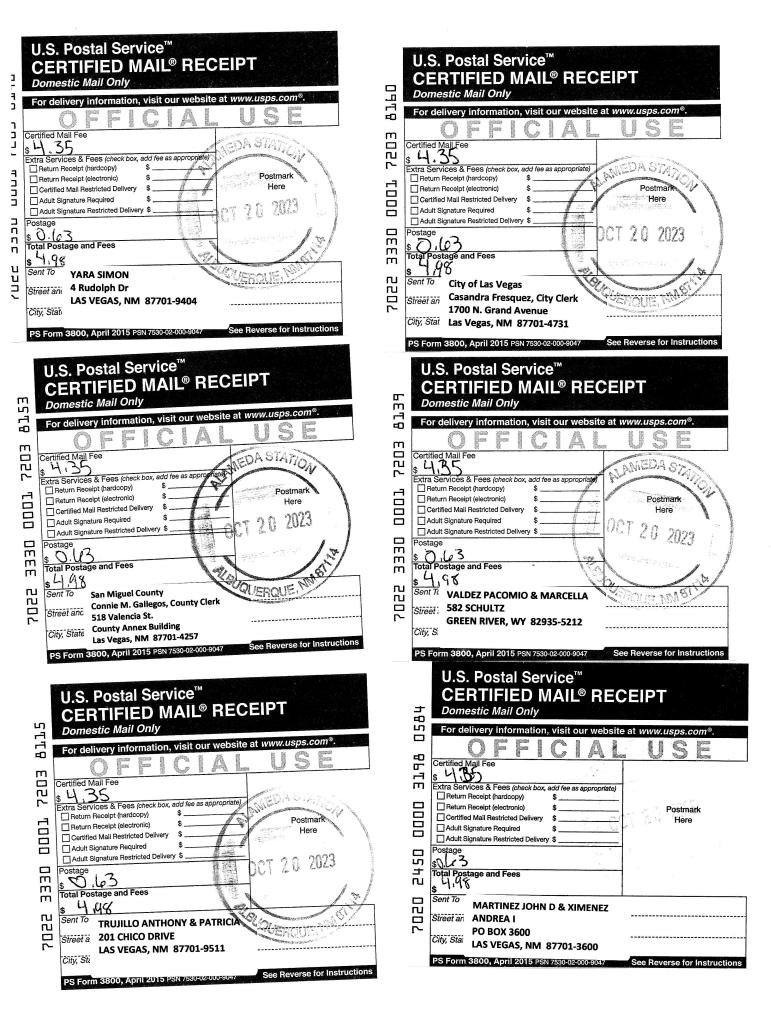
Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

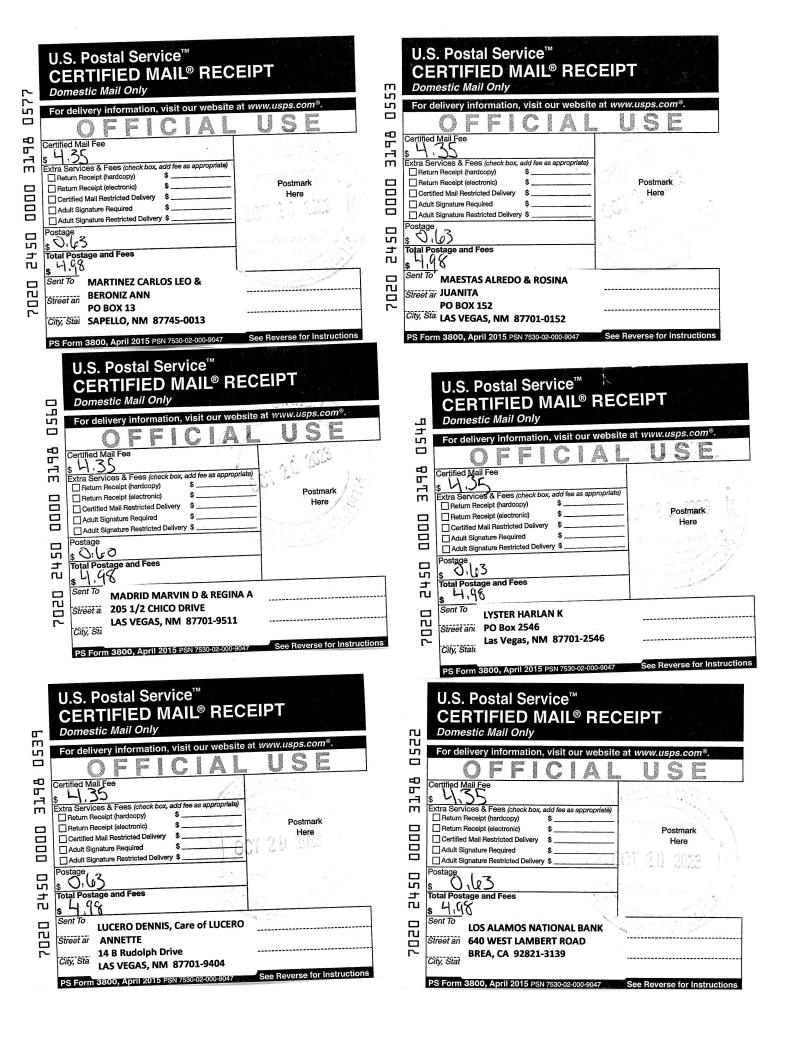
Sincerely,

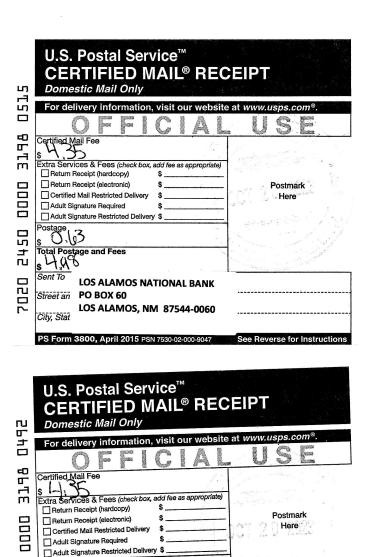
Short Line, LLC

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.


Government Entities within 10 Miles


October 2023

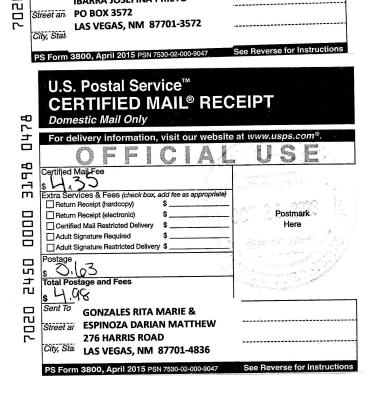

San Miguel County	Connie M. Gallegos, County Clerk	518 Valencia St. County Annex Building	Las Vegas	NM	87701
City of Las Vegas	Casandra Fresquez, City Clerk	1700 N. Grand Avenue	Las Vegas	NM	87701

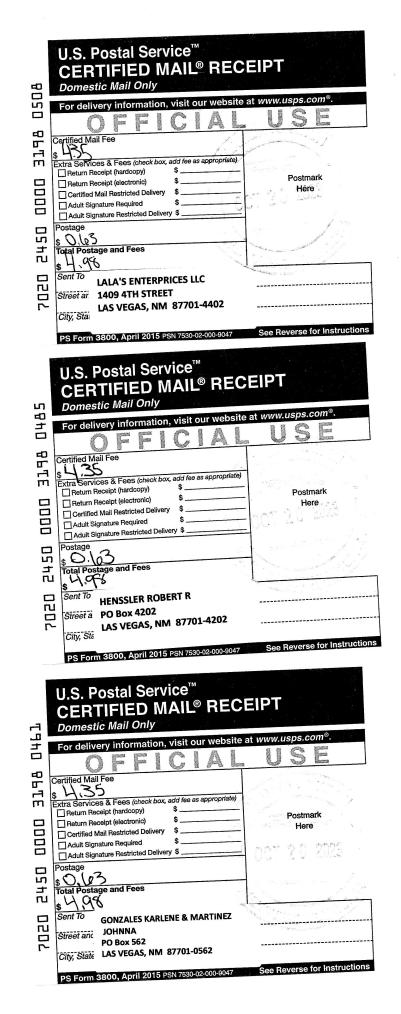
ACCOUNTNO	NAME	ADDRESS1	CITY	STATE	ZIPCODE
R0661735	CITY OF LAS VEGAS	1700 NORTH GRAND AVENUE	LAS VEGAS	NM	87701
R0709745	GONZALES KARLENE & MARTINEZ JOHNNA	PO Box 562	LAS VEGAS	NM	87701
R0709744	STALLSMITH JUNE & ROY	PO Box 1147	LAS VEGAS	NM	87701
R0666310	MARTINEZ MATT C & MARTHA L S	772 DORA CELESTE	LAS VEGAS	NM	87701
R0665713	PLATEAU TELECOMMUNICATIONS	PO BOX 1947	CLOVIS	NM	88102
R0657363	CITY OF LAS VEGAS	1700 NORTH GRAND AVENUE	LAS VEGAS	NM	87701
R0658978	NEW MEXICO STATE HWY DEPT	28 BD INDUSTRIAL DR	LAS VEGAS	NM	87701
R0451861	MARTINEZ JOHN D & XIMENEZ ANDREA I	PO BOX 3600	LAS VEGAS	NM	87701
R0451761	CUNICO W H DR	57 CAMINO DE RON	LAS VEGAS	NM	87701
R0651509	LALA'S ENTERPRICES LLC	1409 4TH STREET	LAS VEGAS	NM	87701
R0654878	LUCERO DENNIS	14 B Rudolph Drive	LAS VEGAS	NM	87701
R0653769	MARTINEZ CARLOS LEO & BERONIZ ANN	PO BOX 13	SAPELLO	NM	87745
R0454740	RUDOLPH GENE L SR, JERRY & BERNICE	29 RUDOLPH DRIVE #9	LAS VEGAS	NM	87701
R0662980	LOS ALAMOS NATIONAL BANK	PO BOX 60	LOS ALAMOS	NM	87544
R0657312	ROSS KENNETH & VIVIAN D	PO Box 188	Las Vegas	NM	87701
R0657320	MORA SAN MIGUEL ELECTRIC COOP	PO BOX 240	MORA	NM	87732
R0658974	ROY PEYTON HOYT & ANITA MAE	PO BOX 515	LAS VEGAS	NM	87701
R0661436	HENSSLER ROBERT R	PO Box 4202	LAS VEGAS	NM	87701
R0073511	MARTINEZ MATIAS JR & CONSUELO	300 SOUTH HIGHWAY 85	LAS VEGAS	NM	87701
R0662525	ROSS KENNETH & VIVIAN D	PO Box 188	Las Vegas	NM	87701
R0651738	ROY HOYT	PO BOX 841	LAS VEGAS	NM	87701
R0664128	MASCARENAS ESEQUIEL	3505 ERNEST ROAD	LAS VEGAS	NM	87701
R0451780	CUNICO W H DR	57 CAMINO DE RON	LAS VEGAS	NM	87701
R0663616	RUDOLPH JERRY & BERNICE	29 RUDOLPH DRIVE #9	LAS VEGAS	NM	87701
R0662903	LUCERO DENNIS, Care of LUCERO ANNETTE	14 B Rudolph Drive	LAS VEGAS	NM	87701
R0660617	RUDOLPH JERRY R & BERNICE	29 RUDOLPH DRIVE #9	LAS VEGAS	NM	87701
R0453865	GALLEGOS J CHRIS	PO BOX 3	LAS VEGAS	NM	87701
R0455810	VALDEZ PACOMIO & MARCELLA	582 SCHULTZ	GREEN RIVER	WY	82935
R0454220	PACHECO JACOBO E & VALERIE	PO BOX 300	MORA	NM	87732
R0454121	ROY ANITA MAE NAYLOR	PO BOX 515	LAS VEGAS	NM	87701
R0655955	BOYD WILLIAM J & HEMMES VICKY L	17 ALMEDA ROAD	LAS VEGAS	NM	87701
R0655097	LOS ALAMOS NATIONAL BANK	640 WEST LAMBERT ROAD	BREA	CA	92821
R0661428	IBARRA JOSEFINA PRIETO	PO BOX 3572	LAS VEGAS	NM	87701
R0653770	MADRID MARVIN D & REGINA A	205 1/2 CHICO DRIVE	LAS VEGAS	NM	87701
R0455530	ALLEN JAMES & VERONICA	PO BOX 2735	LAS VEGAS	NM	87701
R0600364	TRUJILLO ANTHONY & PATRICIA	201 CHICO DRIVE	LAS VEGAS	NM	87701

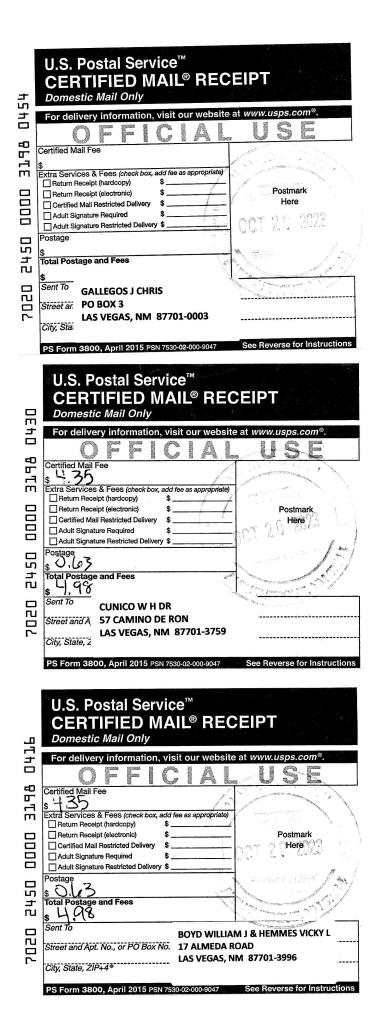
ACCOUNTNO	NAME	ADDRESS1	CITY	STATE	ZIPCODE
R0454730	LYSTER HARLAN K	PO Box 2546	Las Vegas	NM	87701
R0610303	GONZALES RITA MARIE & ESPINOZA DARIAN MATTHEW	276 HARRIS ROAD	LAS VEGAS	NM	87701
R0661326	EBELL VINIA A & ZACRIAS J	PO BOX 337	MAXWELL	NM	87728
R0455363	TAFOYA LEONOR	202 CHICO DRIVE	LAS VEGAS	NM	87701
R0455362	ORTEGA-MATHIS PRESCILLA S & DYCKSON RAYMOND J	PO BOX 56	LAS VEGAS	NM	87701
R0661325	YARA SIMON	4 Rudolph Dr	LAS VEGAS	NM	87701
R0655954	HENSSLER ROBERT R	PO Box 4202	LAS VEGAS	NM	87701
R0451420	TRUJILLO JOHNNY A & LILLIAN M & LAW OFFICE OF DENNIS P	PO BOX 45311	RIO RANCHO	NM	87174
R0610339	ROSS LOY G	PO Box 727	Springer	NM	87747
R0654993	MARTINEZ MARCIA A	274 HARRIS ROAD	LAS VEGAS	NM	87701
R0454286	MARTINEZ MEGAN R	412 South Pacific St	LAS VEGAS	NM	87701
R0058870	MAESTAS ALREDO & ROSINA JUANITA	PO BOX 152	LAS VEGAS	NM	87701
R0452570	MARTINEZ KARLENE	PO BOX 562	LAS VEGAS	NM	87701
R0452660	SAN MIGUEL HOSPITAL CORPORTION A NM CORP PROPERTY VALUATION SERVICES	14400 METCALF	OVERLAND PARK	KS	66223
R0654835	ROSS KENNETH & VIVIAN D	PO Box 188	Las Vegas	NM	87701

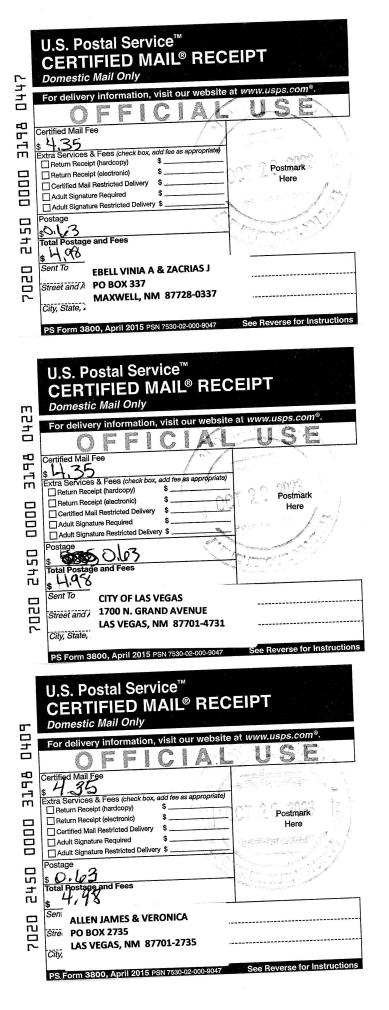
50

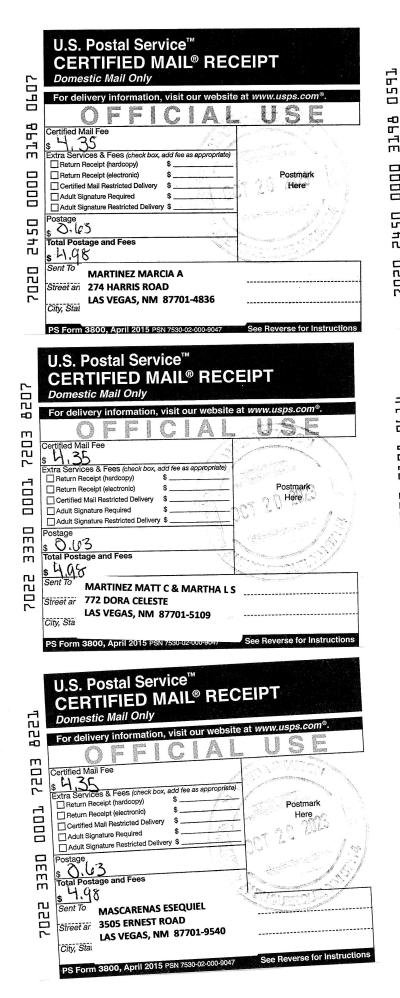
п

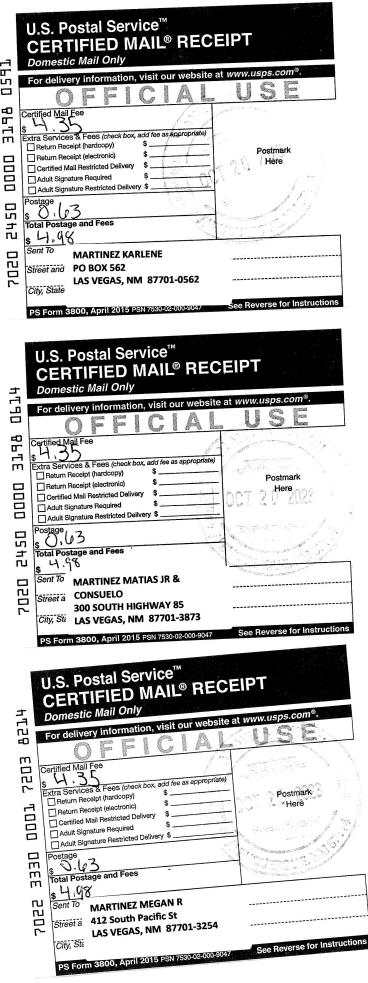

8,63

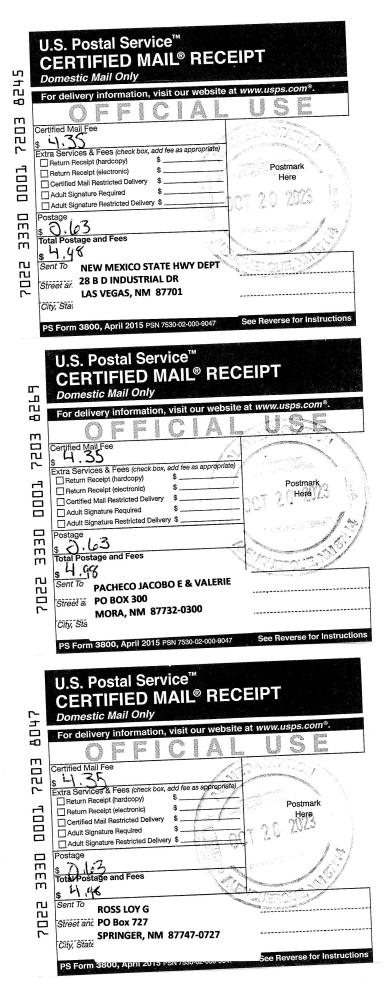

4.98

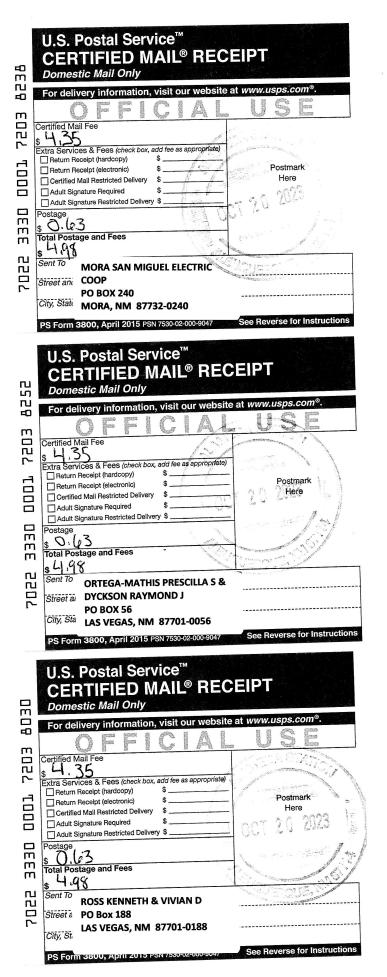

Sent To

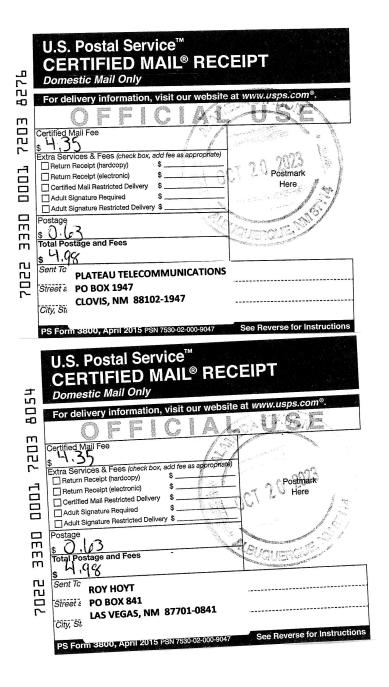

Total Postage and Fees

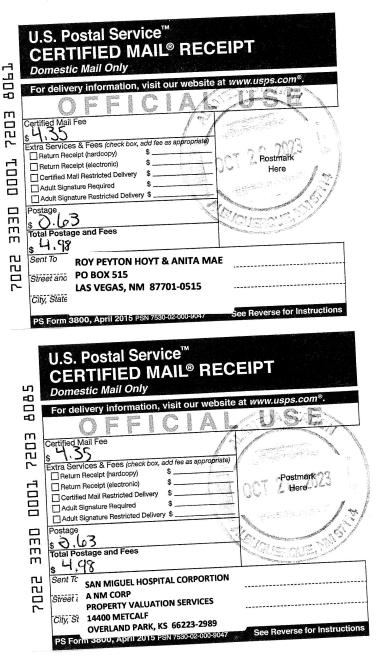

IBARRA JOSEFINA PRIETO

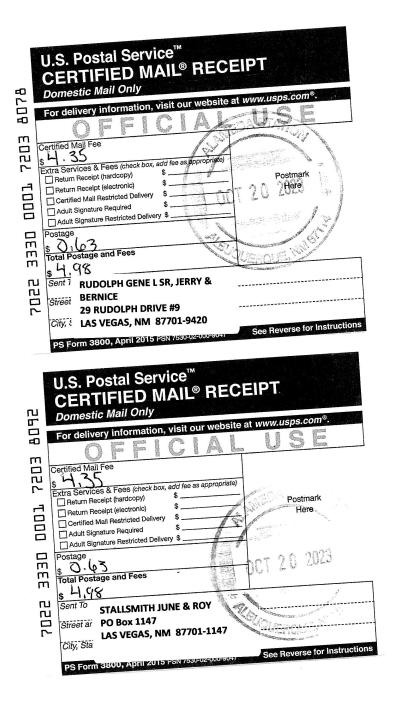


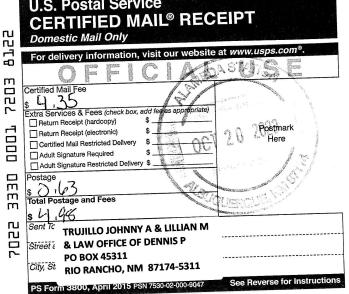


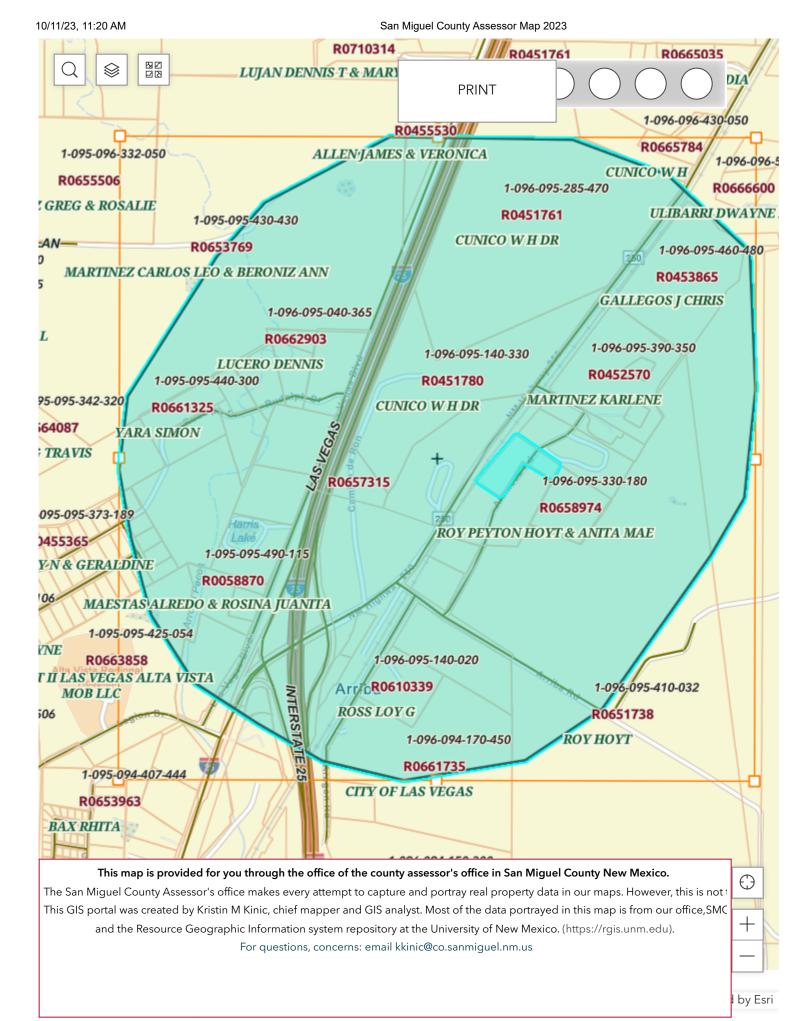












≡	M G	mail Q san miguel	×	Ħ
Mail				
Chat	٢	Garcia-Lujan, Dorene to me		
		Good morning Paul,		
Spaces		Attached please find the information you requested. Please feel free to contact me if you have any questions or concerns.		
		Thank you,		
Meet		Dorene J. García-Lujan		
		San Miguel County		
		Chief Deputy Assessor		
		dgarcialujan@co.sanmiguel.nm.us		
		505-454-1430		

CONFIDENTIALITY NOTICE: The contents of this email message and any attachments are intended solely for the addressee(s) and may contain confidential, proprietary ar their agent, or if this message has been addressed to you in error, please immediately alert the sender by reply email and then delete this message and any attachments a dissemination, copying, or storage of this message or its attachments is strictly prohibited.

One attachment • Scanned by Gmail

ACCOUNTED	MARK	CAREON	ADDREDIT
80KS7563			
8005500%			35 BO INDUSTRIAL OF
80451563	MARTINEZ (DHN/3 & WHENEZ AND/ICA)		IND BIEK 5680
80451255	D.MICD/WH D8		52 CAMINO DE ROM
80611309	LNLA'S ENTERPRICES U.C.		1409 ATH STREET

Paul Wade <pwade@montrose-env.com>

to Dorene

Dorene

I am in need of one more item. As part of the requirement from the state I need a map that shows the area of landowners that corresponds to the list of landowners. T

NOTICE OF AIR QUALITY PERMIT APPLICATION

Short Line, LLC announces its application submittal to the New Mexico Environment Department for a new air quality permit for an aggregate crushing and screening plant. The expected date of application submittal to the Air Quality Bureau is October 20, 2023.

The address for the new facility known as, Las Vegas HMA & Crusher, is at 1109 Airport Road, Las Vegas, NM. The exact location of the Las Vegas HMA & Crusher is at Zone 13, UTM Easting 482,040 meters, UTM Northing 3,942,880 meters The approximate location of this facility is 2.3 miles north-northeast of Las Vegas in San Miguel county.

The proposed Las Vegas HMA & Crusher facility includes a 200 ton per hour aggregate crushing and screening plant. The proposed construction includes raw and finish aggregate storage piles, aggregate feeder, primary crusher, secondary crusher, screen, nine (9) transfer conveyors, and three (3) stacker conveyors. The aggregate crushing and screening plant will be powered with a 261 kW (350 horsepower (hp)) generator and a 242 kW (325 horsepower (hp)) generator.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and maximum tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Maximum Pounds per hour	Maximum Tons per year
PM 10	4.51 pph	9.39 tpy
PM _{2.5}	0.81 pph	1.72 tpy
Sulfur Dioxide (SO ₂)	0.24 pph	0.53 tpy
Nitrogen Oxides (NO _x)	6.75 pph	14.78 tpy
Carbon Monoxide (CO)	3.88 pph	8.51 tpy
Volatile Organic Compounds (VOC)	0.36 pph	0.78 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	0.03 pph	0.06 tpy
Toxic Air Pollutant (TAP)	0.0002 pph	0.0004 tpy
Green House Gas Emissions as Total CO2e	n/a	1,700 tpy

The maximum and standard operating schedule of the facility is daylight hours, 7 days per week, and 52 weeks per year.

The owner and/or operator of the Facility is:

Short Line, LLC PO Box 1499 Peralta, NM 87042

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

AFFIDAVIT OF PUBLICATION

COUNTIES OF SAN MIGUEL and MORA. STATE OF NEW MEXICO } ss.

Phil Scherer, Editor, being first duly sworn, on oath states that he is a Manager of the Las Vegas Optic, a semi-weekly newspaper of general paid and general circulation in San Miguel and Mora Counties, New Mexico, and that this newspaper is duly qualified to publish legal notices or advertisements within the meaning of the provisions of Chapter 167, session Laws of 1937, and that payment therefor has been made and assessed as court costs. That the notice of which a copy as published is hereto attached and hereby made a part hereof was published in said newspaper once each week for 1 consecutive insertion(s). That the first publication being on the 13th day of October, 2023 and the subsequent consecutive publications on the n/a day(s) of , 20 .

NOTICE OF AIR QUALITY PERMIT APPLICATION

Short Line, LLC announces its application submittal to the New Mexico Environment Department for a new air quality permit for an plant. The expected date of application submittal to the Air Quality Bureau is October 20, 2023.

The address for the new facility known as, Las Vegas HMA & Crusher, is at 1109 Airport Road, Las Vegas is at Zone 13, UTM Easting 482,040 meters, UTM Northing 3,942,880 meters The approximate location of

sed Las Vegas HMA & Crusher facility includes a 200 ton per hour aggregate crushing and screening plant. T regate storage piles, aggregate feeder, primary crusher, secondary crusher, screen, aine (9) instafer courseyors, and accreasing plant will be powered with a 261 KW (326 horespower (bp)) generation and a 242 KW (325 horesp

estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and a http://uring/the.course of the Department's muleur

Pollutant:	Maximum Pounds per hour	Maximum Tons p			
PM 10	4.51 pph	9.39 tpy			
PM 2.5	0.81 pph	1.72 tpy			
Sulfur Dioxide (SO2)	0.24 pph	0.53 tpy			
Nitrogen Oxides (NOx)	6.75 pph	14.78 tpy			
Carbon Monoxide (CO)	3.88 pph	8.51 tpy			
Volatile Organic Compounds (VOC)	0.36 pph	0.78 tpy			
Total sum of all Hazardous Air Pollutants (HAPs)	0.03 pph	0.06 tpy			
Toxic Air Pollutant (TAP)	0.0002 pph	0.0004 tpy			
Green House Gas Emissions as Total CO2e	n/a	1.700 toy			

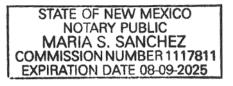
num and standard operating schedule of the facility is daylight hours, 7 days per week, and 52 weeks per ye

The owner and/or operator of the Facility is: Short Line, LLC PO Box 1499 Peralta, NM 87042 If you have any comments about the construc-tion of the operation of the opera on of this facility, and you want your comments to be made as part of the pe grams Manager; New Mexico Environment Department; Air Quality Burea its and questions may be submitted verbally. (505) 476-4300; 1 800 224-70

refer to the company name and facility name, or send a copy of this notice along with your come plication. Please include a legible return mailing address with your comments. Once the Departm quality impacts, the Department's notice will be published in the legal section of a newspaper cin

and discriminance on the main or mee, cores, manyour organ, untercomy, age or test in the regulations. NMED is responsible for coordination of compliance efforts and receipt of inquisites core. R part 7, including Title VI of the Civil Rights Act of 1964, as mended; Section 504 of the Rehabil x of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act ol Act Amer or any of NMED's no on programs, policies or procedures, or if you believe that you have been discriminated against crimination Coordinator, NMED, 1190 St. Francis Dr. Snite N4050, P.O. Box 5469, Santa Fe. J. r@env.nm.gov. You may also visit our website at https://www.env.nm.gov/i

Price: \$ 421.77.


Account Number: 40484.

Phillip Scherer

Editor

Subscribed and sworn to before me this 13th day of October, 2023.

Notary Public

News

Courtesy photo

This photograph was taken Feb. 1955 on the storage tracks in Belen. It was provided by Sylvan Rupert from the Everette DeGolyer Historical Railroad Archives

Continue A Winning Tradition

With A Robertson High School Letter Jacket

Order day is Monday, October 16, from 9 a.m. to 3 p.m.. In the High School Office The basic jacket includes:

- Wool body
- Leather sleeves
- Quilted Lining School letter
- One shoulder patch with grad year
- Student name
- embroidered on front
- \$269 Your Letter Jacket

Your Letter Jacket Provider for 20 years.

Tom Quaid • Meca Sportswear Representative 10 Cosmos Court, Santa Fe, NM 87508 • 505-946-8560 tlquaid@yahoo.com

Train From Page A8

ordered by the Atchison, Topeka and Santa Fe Railway, Potts' research reveals. The 1129 worked hard for 18 years until its particular kind of valve gear became too expensive to maintain.

However, rather than scrap the 1129, the locomotive went through a refit in 1920 in order to simplify its running gear.

"This was the Santa Fe's way of testing different designs, and this was what she'd ultimately bare for the rest of her known career," Potts' proposal to the City Council states. The 1129 went through another refit in 1936, when it was given an oil tender originally built for a 2-8-2 Santa Fe Mikado.

The tender – which looks like an additional compartment attached to the locomotive – increased the train's ability to remain on the road without needing to stop for water, Potts said. This part of the train still has the number 4009 on it – a sign that it once was attached to a locomotive with that number.

Locomotive 1129 continued to traverse the Santa Fe network for several more years, Potts' proposal states.

"The 1129 wouldn't stop until 1953, where she ended up on the storage tracks in Belen, New Mexico," Potts says in his City Council proposal. Then, in 1955, a recommendation was made by the Santa Fe Railroad to donate the 1129 to the city of Las Vegas. This action was taken, Potts states, as "the age of steam came to a close."

"Las Vegas had been a railroad town for 75 years at this point," Potts continues. "Las Vegans were seasoned and dedicated railroaders. ... They were deserving of a symbol that could accurately show how much pride the town had in the things that they earned."

In 1956, the locomotive was placed where it currently sits on the corner of Grand and Mills avenues.

Potts noted that, with all of the work the 1129 has had done, it is an "engineering marvel" that has sadly fallen to disrepair. He said he hopes to not only restore the 1129, but also have it moving again.

The Las Vegas City Council is set to meet Wednesday at 5:30 p.m. at the City Council Chambers at 1700 N. Grand Ave.

NOTICE OF AIR QUALITY PERMIT APPLICATION

Short Line, LLC announces its application submittal to the New Mexico Environment Department for a new air quality permit for an aggregate crushing and screening plant. The expected date of application submittal to the Air Quality Bureau is October 20, 2023.

The address for the new facility known as, Las Vegas HMA & Crusher, is at 1109 Airport Road, Las Vegas, NM. The exact location of the Las Vegas HMA & Crusher is at Zone 13, UTM Easting 482,040 meters, UTM Northing 3,942,880 meters The approximate location of this facility is 2.3 miles north-northeast of Las Vegas in San Miguel county.

The proposed Las Vegas HMA & Crusher facility includes a 200 ton per hour aggregate crushing and screening plant. The proposed construction includes raw and finish aggregate storage piles, aggregate feeder, primary crusher, secondary crusher, screen, nine (9) transfer conveyors, and three (3) stacker conveyors. The aggregate crushing and screening plant will be powered with a 261 kW (350 horsepower (hp)) generator and a 242 kW (325 horsepower (hp)) generator.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and maximum tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Maximum Pounds per hour	Maximum Tons per year
PM 10	4.51 pph	9.39 tpy
PM 2.5	0.81 pph	1.72 tpy
Sulfur Dioxide (SO2)	0.24 pph	0.53 tpy
Nitrogen Oxides (NOx)	6.75 pph	14.78 tpy
Carbon Monoxide (CO)	3.88 pph	8.51 tpy
Volatile Organic Compounds (VOC)	0.36 pph	0.78 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	0.03 pph	0.06 tpy
Toxic Air Pollutant (TAP)	0.0002 pph	0.0004 tpy
Green House Gas Emissions as Total CO2e	n/a	1,700 tpy

The maximum and standard operating schedule of the facility is daylight hours, 7 days per week, and 52 weeks per year.

The owner and/or operator of the Facility is:

Short Line, LLC PO Box 1499 Peralta, NM 87042

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

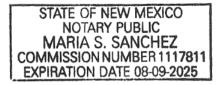
NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

AFFIDAVIT OF PUBLICATION

COUNTIES OF SAN MIGUEL and MORA, STATE OF NEW MEXICO } ss.

Phil Scherer, Editor, being first duly sworn, on oath states that he is a Manager of the Las Vegas Optic, a semi-weekly newspaper of general paid and general circulation in San Miguel and Mora Counties. New Mexico. and that this newspaper is duly qualified to publish legal notices or advertisements within the meaning of the provisions of Chapter 167, session Laws of 1937, and that payment therefor has been made and assessed as court costs. That the notice of which a copy as published is hereto attached and hereby made a part hereof was published in said newspaper once each week for 1 consecutive insertion(s). That the first publication being on the 13th day of October, 2023 and the subsequent consecutive publications on the _____, 20_____, 20_____.

Price: \$ 172.17.


Account Number: 40484.

Phillip Scherer

Editor

Subscribed and sworn to before me this 13th day of October, 2023.

Notary Public

NOTICE OF AIR QUALITY PERMIT APPLICA-TION Short Line, LLC announces its application submittal to the New Mexico Environment Department for a new air quality permit for an aggregate crushing and screening plant. The expected date of application submittal to the Air Quality Bureau is October 20, 2023. The address for the new facility known as, Las Vegas HMA & Crusher, is at 1109 Airport Road, Las Vegas, NM. The exact location of the Las Vegas HMA & Crusher is at Zone 13, UTM Easting 482,040 meters, UTM Northing 3,942,880 meters The approximate location of this facility is 2.3 miles north-northeast of Las Vegas in San Miguel county. The proposed Las Vegas HMA & Crusher facility includes a 200 ton per hour aggregate crushing and screening plant. The proposed construction includes raw and finish aggregate storage piles, aggregate feeder, primary crusher, secondary crusher, screen, nine (9) transfer conveyors, and three (3) stacker conveyors. The aggregate crushing and screening plant will be powered with a 261 kW (350 horsepower (hp)) generator and a 242 kW (325 horsepower (hp)) generator. The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and maximum tons per year (tpy) and may change slightly during the course of the Department's review: Pollutant / Maximum Pounds per hour / Maximum Tons per year PM 10 / 4.51 pph / 9.39 tpv PM 2.5 / 0.81 pph / 1.72 tpy Sulfur Dioxide (SO2) / 0.24 pph / 0.53 tpy Nitrogen Oxides (NOx) / 6.75 pph / 14.78 tpy

Carbon Monoxide (CO) / 3.88 pph / 8.51 tpy Volatile Organic Compounds (VOC) / 0.36 pph / 0.78 tpv Total sum of all Hazardous Air Pollutants (HAPs) / 0.03 pph / 0.06 tpy Toxic Air Pollutant (TAP) / 0.0002 pph / 0.0004 tpy Green House Gas Emissions as Total CO2e / n/a / 1,700 tpy The maximum and standard operating schedule of the facility is daylight hours, 7 days per week, and 52 weeks per year. The owner and/or operator of the Facility is: Short Line, LLC PO Box 1499 Peralta, NM 87042 If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1: Santa Fe. New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009. Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location. Attención Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca

de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395. Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973: the Age Discrimination Act of 1975, Title IX of the **Education Amendments** of 1972, and Section 13 of the Federal Water **Pollution Control Act** Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@ env.nm.gov. You may also visit our website at https://www.env. nm.gov/non-employeediscriminationcomplaintpage/ to learn how and where to file a complaint of discrimination. PUB: Las Vegas Optic, October 13, 2023 #218509

To submit your classified ad, go to: www.lasvegasoptic.com (Under Classifieds/Submit an Ad/Go to form)

CLASSIFIEDS To place a legal or display ad, email lvolegals@orourkemediagroup.com

To view statewide legals online, go to: www.newmexicopublicnotices.com

EMPLOYMENT

EMPLOYMENT

We are looking for full time drivers, Laborers, Yard men, and experienced carpenters. Please call (505) 429-2961

LAS VEGAS OPTIC SPORTS EDITOR

The successful applicant will be a multitalented writer who is dedicated to excelling at local sports coverage, identifying and producing sports news and features. Must have strong writing, editing, photography and pagination skills with a knowledge Adobe Creative of Suite - Photoshop and InDesign. Will be part of the editorial team developing stories and producing accurate, timely news articles. Must work well under pressure and meet deadlines. Send your resume to Jim O'Rourke, jorourke@ orourkemediagroup. com or to Phil Scherer, pscherer@orourkemediagroup.com

GARAGE SALES

YARD SALE

HUMONGOUS Yard Sale Saturday 10/14. At 482 Christine Dr, Las Vegas. 9 am to 1 pm, unless sold out earlier. Christmas gift items as well as some tools, bedding, replace items lost in the fire and gifts.

MERCHANDISE

FOR SALE

I have two coin operated pool tables with accessories, a jukebox for sale, great for a game room. Please contact me at (505) 429-2961

RENTALS

STATE OF NEW MEXICO COUNTY OF MORA FOURTH JUDICIAL DISTRICT COURT JOSEPH ROMERO, Plaintiff,

LEGALS

MICHELLE RENAE ROMERO, THE ESTATE OF RAYMOND CHRISTIAN ROMERO,

PERSONS WHO MAY CLAIM A LIEN, INTEREST OR TITLE TO THE PROPERTY,

D-430-CV-2023-41 NOTICE OF SUIT

STATE OF NEW MEX-ICO to the defendants Who Persons GREETINGS:

described real estate: All of that certain Tract

of Land herein designated Tract "B-A" being part of Tract B on P. David Archuleta & Associates. Inc., drawing 112225-262, Date No. 2-23-95, Mora County, New Mexico. Said Tract B-A being bounded as follows: On the north & west by property belonging now or formerly to Eureka Ranch, on the east by property belonging now or formerly to Theresa M. Manzanares, and on the south by Tract B-B and being more particularly described as follows: Commencing at 1/4 corner USGLO brass cap section 25 & 24, T.19N., R.22E.; thence S00o 12'53" west, a distance of 1333.021 feet to a 1/2" I/P. with cap number 10261: thence N89o 53'51" west, a distance of 893.39 feet to angle point number 1 and true point of be-

ginning; thence N89o

west a distance

53'51"

6, 13, 2023 IN THE DISTRICT COURT COUNTY OF SAN MIGUEL

STATE OF

AND THE

DECEASED

NOTICE TO

CREDITORS

NOTICE IS HEREBY

GIVEN that the under-

signed has been ap-

pointed personal repre-

sentative of the estates

of Carly Gallegos and

legos. All persons hav-

ing claims against these

estates are required

to present their claims

within four months after

the date of the first pub-

lication of this Notice or

the claims will be forev-

er barred. Claims must

be presented either to

the undersigned per-

sonal representative c/o

Danelle J. Smith, Attor-

Miguel

County

Estates

#217315

AUCTION

26, MORA, NM. The

following vehicle will

be sold to satisfy stor-

ΝN

CHEVY

WAGON.

#218057

and Jordan

Marae Gal-

Jordan

NEW MEXICO D-412-PB-2023-00045 IN THE MATTER OF THE JOINT AND SUCCEEDING and ALL UNKNOWN ESTATE OF CARLY GALLEGOS. DECEASED.

Defendants.

Michelle Renae Romero, the Estate of Raymond Christian Romero, and All Unknown Mav Claim a Lien, Interest or Title to the Property, You are hereby notified that the above-named

Plaintiff has filed a civil action against you in the above-entitled court and cause, the general object thereof being enforcing specific performance of a contract to convey the following

ney for Personal Representative, P.O. Box 1811, Las Vegas, New Mexico 87701 or filed with the District Court, San Courthouse, Las Vegas, New Mexico DATED: September 27, 2023 Marie G. Sena. Personal Representative of the Joint and Succeeding of Carly Gallegos, Deceased, Marae Gallegos, Deceased c/o Danelle J. Smith. Attorney P.O. Box 1811 Las Vegas, NM 87701 PUB: Las Vegas Optic, October 6, 13, 20, 2023 NOTICE OF PUBLIC AUCTION THURSDAY, DECEMBER 21, 2023, 10 A.M. HWY 518 MM

Deputy PUB: Las Vegas Optic, tors or sixty (60) days after the date of mailing September 29, October or other delivery of this notice, whichever is lat-#217111 er, or the claims will be forever barred. Claims must be presented ei-ther to the undersigned personal representative at the address listed below, or filed with the Probate Court of San Miguel County, New Mexico, located at the following address: 500 West National Ave., Las Vegas, N.M. 87701 Dated: 10/02/2023 /s/ Julia D. Lucero, personal representative HC 73, Box 70 ESTATE OF JORDAN San Jose, NM 87565 MARAE GALLEGOS, PUB: Las Vegas Optic, October 6, 13, 20, 2023

STATE OF NEW MEXICO COUNTY OF SAN MIGUEL FOURTH JUDICIAL DISTRICT COURT D-412-CV-2023-340 THERESITA TAFOYA,

#218123

THE ESTATE OF JOSE ANDRES TAFOYA, ALL UNKNOWN PERSONS WHO MAY CLAIM A LIEN, INTEREST OR TITLE ADVERSE TO

Plaintiff,

PLAINTIFF, Defendants. NOTICE OF SUIT STATE OF NEW MEX-ICO to the defendants The Estate of Jose Andres Tafoya and All

Unknown Persons Who May Claim a Lien, Interest or Title Adverse to Plaintiff, GREETINGS: You are hereby notified that the above-named Plaintiff has filed a civil action against you in the above-entitled court and cause, the general object thereof being ejectment, quiet title in and to the following described real estate:

The property located at 110 Bridge Street, Las Vegas, San Miguel County, New Mexico, Parcel number 1-094-093-426-012, R0659724, as judicially awarded to Marian Elvira Tafoya in that certain Final Decree in the Fourth Judicial District of Las Vegas, Court New Mexico, dated September 1, 1970. case number 18.715. recorded on March 28, 1994, in book 234, page 5196 in the Office of the San Miguel County Clerk (the "Property"). That unless you enter your appearance in said cause on or before 30 days after the last day of publication, judgment by default may be entered against you. Attorney(s) Scott Aaron Attorney for Plaintiff POB 3834 Las Vegas, NM 87701 505-434-1515 WITNESS the Honorable Abigail Aragon, District Judge of the

Fourth Judicial District Court of the State of New Mexico, and the Seal of the District Court of San Miguel County, this 3rd day of October, 2023. (SEAL) Vidal Martinez CLERK OF THE DIS-TRICT COURT By: /s/ Helen Tafoya Deputy

October 6, 13, 20, 2023

STATE OF **NEW MEXICO** COUNTY OF SAN MIGUEL FOURTH JUDICIAL DISTRICT COURT VIRGINIA GONZALES and DEBORAH VALENCIA, Plaintiffs,

THE HEIRS OF AURORA TRUJILLO, ALL UNKNOWN PERSONS WHO MAY CLAIM A LIEN, INTEREST OR TITLE **ADVERSE TO** PLAINTIFFS.

Defendants.

D-412-CV-2023-343 NOTICE OF SUIT STATE OF NEW MEX ICO to the defendants The Heirs of Aurora Trujillo and All Unknown Who May Persons Claim a Lien, Interest or Title Adverse to Plain-tiffs, GREETINGS: You are hereby notified that the above-named Plaintiffs have filed a civil action against you in the above-entitled court and cause, the general object thereof being guiet title in and to the following real estate: Right of way, beginning at the SE corner, being the SW corner of the

0.96 acre tract currently or formerly owned by Teofilo Duran (as found in warranty deed re-corded on January 19, 1971 in book 224, page 5487, in the office of the San Miguel County Clerk, New Mexico), on E. Lone of the highway between Rociada and Manuelitas: Thence. N 41° 40 minutes W 22 feet to SW corner; Thence N 33° 20 minutes E 250 feet to the NW corner; Thence, S 51° 00 minute E 22 feet to SE corner: Thence, S 33° 20 minutes W 2055

Toxic Air Pollutant (TAP) New Mexico, and the 13 of the Federal Wa-

To view local classifieds/legals online, go to: www.lasvegasoptic.com

Questions? Call: 505-425-6796

/ 0.0002 pph / 0.0004 tpy Green House Gas Emissions as Tota CO2e / n/a / 1,700 tpy Total The maximum and standard operating schedule of the facility is daylight hours, 7 days per week, and 52 weeks per year. The owner and/or operator of the Facility is: Short Line, LLC

PO Box 1499

#218465

APPLICATION

Short Line, LLC an-

nounces its application

submittal to the New

Department for a new

air quality permit for an

aggregate crushing and

screening plant. The ex-

pected date of applica-

tion submittal to the Air

Quality Bureau is Octo-

The address for the new

facility known as, Las Vegas HMA & Crush-

er, is at 1109 Airport

Road, Las Vegas, NM.

The exact location of

the Las Vegas HMA &

Crusher is at Zone 13,

UTM Easting 482,040 meters, UTM Northing

3,942,880 meters The

approximate location of

this facility is 2.3 miles

north-northeast of Las

Vegas in San Miguel

The proposed Las Ve-

gas HMA & Crusher

facility includes a 200

ton per hour aggregate

crushing and screen-

ing plant. The proposed

raw and finish aggre-

gate storage piles, ag-

gregate feeder, primary

(9) transfer conveyors,

and three (3) stacker

gregate crushing and

screening plant will be

powered with a 261 kW

(350 horsepower (hp))

generator and a 242 kW

(325 horsepower (hp))

mum quantities of any

regulated air contami-

nant will be as follows

in pound per hour (pph)

maximum

per year (tpy) and may

change slightly during

the course of the De-

Pollutant / Maximum

partment's review:

estimated maxi-

includes

secondary

screen, nine

The ag

construction

crusher,

crusher,

conveyors.

generator.

The

and

county.

ber 20, 2023.

Mexico

Environment

Peralta, NM 87042 If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to address: Permit this Programs Manager; New Mexico Environment Department; Air Bureau; 525 Quality Camino de los Marquez, Suite 1; Santa Fe, Mexico; 87505-New Other comments 1816. and questions may be submitted verbally (505) 476-4300; 1 800 224-7009. Please refer to the com-

pany name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facilitv location. Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395 Non-Dis-Notice of

crimination NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or required

ination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may con-tact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr. N4050, P.O Suite Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@ env.nm.gov. You may also visit our website https://www.env. at nm.gov/non-employeediscrimination-complaint-page/ to learn how and where to file a complaint of discrimination PUB: Las Vegas Optic,

ter Pollution Control Act

Amendments of 1972. If

you have any questions

about this notice or any

of NMED's non-discrim

October 13, 2023 **#218509**

NOTICE OF AIR QUALITY PERMIT APPLICATION

Short Line, LLC announces its application submittal to the New Mexico Environment Department for a new air quality permit for a hot mix asphalt plant. The expected date of application submittal to the Air Quality Bureau is October 20, 2023.

The address for the new facility known as, Las Vegas HMA & Crusher, is at 1109 Airport Road, Las Vegas, NM. The exact location of the Las Vegas HMA & Crusher is at Zone 13, UTM Easting 482,180 meters, UTM Northing 3,943,060 meters The approximate location of this facility is 2.5 miles northeast of Las Vegas

in San Miguel county. The proposed Las Vegas HMA & Crusher facility includes a 120 ton per hour and 200,000 tons per year hot mix asphalt plant (HMA) producing asphalt for road paving. The proposed construction includes aggregate storage piles, two 3-bin cold aggregate feeders, scalping screen, drum dryer/mixer with baghouse, incline conveyor, asphalt silo, asphalt heater, four (4) transfer Évotherm conveyors, storage tank, and two (2) asphalt cement stor age tanks. The HMA plant will be powered with a 504 kW (676 horsepower (hp)) generator. The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and maximum tons per year (tpy) and may change slightly during the course of the De-

Seal of the District Court of San Miguel County, this 5th day of October, 2023 (SEAL) VIDAL MARTINEZ CLERK OF THE DIS-TRICT COURT By: /s/ Lenor Encinas Deputy PUB: Las Vegas Optic, October 13, 20, 27, PUB: Las Vegas Optic, 2023 #218185 NOTICE OF AIR QUALITY PERMIT

HOMES FOR RENT

For Rent - 2 bedroom, bathroom home for rent plus all utilities. Has large yard. References required, a lease is required, and non-smoking. For more information, call Aileen @ 505.426.5301

For Rent - 3 bedrooms. \$600 per month. No pets. Please call 505-. 398-0031 or 505-451-9389 for more information

MOBILE HOMES FOR RENT

2 bedroom in Buena Vista NM, Hwy 518 MM 21. No Kids, No Pets. Call or text 505-259-7373 or 575-770-4169.

FOR RENT

I have a Mobile home Set up for sale. Please call me for questions (505) 429-2961

COMMERCIAL

FOR LEASE

Available salon space/ office space for rent at 618 8th street if you have any questions please contact (505) 429-2961. For further information.

WATER RIGHTS

Looking to purchase water rights in the Upper Pecos Basin (Las Vegas NM broader area.) Call 505-702-7192

S00o 17'00" east, a distance of 680.518 feet to angle point number 3; thence S89o 55'59" a distance of east. 1761.60 feet to angle point number 4. thence N00o 17'02" west, a distance of 679.428 feet to angle point number 1 and true point of beginning; containing 26.500 acres more or less That unless you enter your appearance in said cause on or before 30 days after the last day of publication, judgment by default may be entered against you. Scott Aaron, Attorney for Plaintiff

POB 3834, Las Vegas,

NM 87701

2023

(SEAL)

TRICT COURT

/s/ Helen Tafoya

505-434-1515

age debt to DANIEL of 1761.60 set to angle JARCIA point number 2; thence 1957 law: BELAIR VIN#: VC57T183921, \$1976.70 NO PRIOR VIEWING OF VEHICLE PUB: Las Vegas Optic, October 6, 13, 2023 STATE OF NEW MEXICO IN THE PROBATE COURT SAN MIGUEL COUNTY IN THE MATTER OF

THE ESTATE OF DONELIA MABEL FLORES, a/k/a MABEL B. FI ORES Deceased No. 2023-0070 NOTICE TO CREDITORS

WITNESS the Honor-NOTICE IS HEREBY able Flora Gallegos, GIVEN that the un-District Judge of the Fourth Judicial District dersigned has been appointed personal Court of the State of representative of the New Mexico, and the decedent. All persons Seal of the District Court having claims against of Mora County, this this estate of the de-25th day of September, cedent are required to present their claims within four (4) months CLERK OF THE DISafter the date of the first publication of any published notice to credi-

Any interested party wishing to present their qualifications for the position must submit a complete application packet, which includes a County Employment application, to the Mora County Manager's Office. The application and job description can be found at www.countyofmora. com/careers or you can call DesMarie Romero, HR Coordinator at (575) 387-5925. Open until 10/13/2023 at noon.

Mora County is an equal opportunity employer. C218301

1.03 less. That unless you enter your appearance in said cause on or before 30 days after the last day of publication, judgment by default may be entered against you. Attorney(s) Scott Aaron Attorney for Plaintiff POB 3834 Las Vegas, NM 87701 505-434-1515 WITNESS the Honorable Michael A. Aragon, District Judge of the Fourth Judicial District Court of the State of

feet to the place of the

JLGRAY FACT SHEET GALLINAS VALLEY APARTMENTS **2612 7TH STREET** LAS VEGAS, NM 87701 505-425-5060

TDD: 711 MANAGER: LORRAINE MAESE

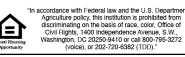
To Qualify for Residency: **Rent is Based on Income**

RENT: 1-BR: \$600.00 per month (basic rent) 2-BR: \$730.00 per month (basic rent) 3-BR: \$880.00 per month (basic rent)

> Subsidized units are available, financed by USDA Rural Development (RD)

SECURITY DEPOSIT: Equal to one month's basic rent.

UTILITIES: Paid by Resident except water, sewer, trash


PROPERTY FEATURES:

- Basketball Court
- Refrigerated Air
- Close to Shopping
- Close to Schools
- Appliances Furnished
- Quiet Neighborhood Sorry - No Pets
- Laundry Facility On-Site

We are pledged to the letter and spirit of the US policy for achievement of equal opportunity throughout the nation. We encourage and support an affirmative advertising and marketing program in which there are no barriers to obtain housing because of race, color, religion, sex, national origin, handicap or familial status

This institution is an equal opportunity provider and employer

Č218785

beginning, containing Pounds per hour acres, more or year tpy tpv 0.24 pph / 0.53 tpy

Nitrogen Oxides (NOx) / 6.75 pph / 14.78 tpy Carbon Monoxide (CO) / 3.88 pph / 8.51 tpy Volatile Organic Compounds (VOC) / 0.36 pph / 0.78 tpy Total sum of all Hazardous Air Pollutants (HAPs) / 0.03 pph / 0.06 tpy

activities Maximum Tons per by applicable laws and regulations. NMED is PM 10 / 4.51 pph / 9.39 responsible for coordination of compliance PM 2.5 / 0.81 pph / 1.72 efforts and receipt of concerning inquiries Sulfur Dioxide (SO2) / non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section

Continue on next page

San Miguel County is accepting applications for the position of **Animal Control Officer**

San Miguel County is accepting applications for Animal Control Officer with San Miguel County Sheriffs Division. Under the direction of the Sheriff, Under Sheriff and/or proper chain of command. The Animal Control Officer is responsible for the removing, caring for, and disposing of unwanted animals within San Miguel County. Work involves responsibility for answering complaints involving unwanted or escaped animals and/or removing, caring for and disposing of them. Must be able to work independently with the framework of the San Miguel County Animal Control Ordinance and San Miguel County Sheriff's Office Standard Operating Procedures. Must obtain certifications as an Animal Control Officer by the New Mexico Animal Control Association within a one year period after obtaining employment at the San Miguel County Sheriff's Office.

Salary Range: (18) \$26,902.00 - \$30,264.75 FLSA: Non Exempt Position Deadline for Application: October 24, 2023

Applications and a detailed job description may be picked up at the San Miguel County Human Resource Office located at 500 West National, Suite 202 or you may obtain one on our website at co.sanmiguel.nm.us. San Miguel County is an Equal Opportunity and Affirmative Action Employer. The County reserves the right to reject any and all applications. C218850

PAYMENT All classified ads must be paid in full before the first run date. Account holders will be billed. (We accept cash, check, Visa, Master Card and American Express).

FAIR HOUSING All real estate classified ads must meet the Fair Housing Act criteria. (A publishers notice has been placed at the bottom of this notice for information on the Fair Housing Act).

ADJUSTMENTS Please carefully review your Classified ad for any error in the first day of publication. Make request for corrections by 11 a.m. the day following the first publication. A copy of your ad may be provided at time of payment.

DEADLINE All classified ads and legals must be received by 11 a.m. on the Wednesday before the desired Friday run date.

PUBLISHERS NOTICE All real estate advertising in this newspaper is subject to the Fair Housing Act which makes it illegal to advertise "any preference, limitation or discrimination based on race, color, religion, sex, handicap, familial status or national origin, or an intention to make any such preference, limitation or discrimination." Familial status includes children under the age of 18 living with parents or legal custodians, pregnant women and people securing custody of children under 18. This newspaper will not knowingly accept any advertising for real estate which is in violation of the law. Our readers are hereby informed that all dwellings advertised in this newspaper are available on an equal opportunity basis. To complain of discrimination call HUD toll-free at 1-800-669-9777. The toll-free telephone number for the hearing impaired is: 1-800-927-9275

PUBLIC SERVICE ANNOUNCEMENT

Short Line, LLC announces its application submittal to the New Mexico Environment Department for a new air quality permit for an aggregate crushing and screening plant. The expected date of application submittal to the Air Quality Bureau is October 20, 2023.

The address for the new facility known as, Las Vegas HMA & Crusher, is at 1109 Airport Road, Las Vegas, NM.

The proposed Las Vegas HMA & Crusher facility includes a 200 ton per hour aggregate crushing and screening plant.

Public notices have been posted in the following locations for review by the public:

- 1. At Kocina De Raphael, 610 Legion Dr., Las Vegas, NM 87701;
- 2. At USPS West Las Vegas, 1900 Hot Springs Blvd, Las Vegas, NM 87701;
- 3. At USPS Las Vegas, 1001 Douglas Ave, Las Vegas, NM 87701; and
- 4. At the main entrance to Las Vegas HMA & Crusher at 1109 Airport Road, Las Vegas, NM

The owner and/or operator of the Facility is:

Short Line, LLC PO Box 1499 Peralta, NM 87042

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico; 87505-1816 Telephone Number (505) 476-4300 or 1 800 224-7009

October 23, 2023

KBQL Radio 304 South Grand Ave. Las Vegas, NM 88030

CERTIFIED MAIL

Dear KBQL Radio:

SUBJECT: PSA Request - Proposed Air Quality Construction Permit Application for Short Line LLC's Aggregate Crushing and Screening Plant at 1109 Airport Road, Las Vegas, NM.

Attached is a copy of a public service announcement regarding a proposed air quality construction permit application for Short Line LLC's Aggregate Crushing and Screening Plant. This announcement is being submitted by Montrose Environmental Solutions, Inc., Albuquerque, NM on behalf of Short Line LLC.

The announcement request is being made to fulfill the requirements of the New Mexico Environmental Department air quality permitting regulations. Please consider reading the attached announcement as a public service message.

If you have any questions or need additional information, please contact me at (505) 830-9680 ext 6 (voice), (505) 830-9678 (fax) or email at <u>pwade@montrose-env.com</u>. You may also contact Ms. Beverly Zastrow, Short Line LLC at (505) 892-5400.

Thank you.

Sincerely,

Paul Wade

Paul Wade Principal/Senior Associate Engineer

Montrose Environmental Solutions, Inc. 9100 2nd St., Suite 200 Albuquerque, NM 87114-1664 T: 505.830.9680 ext. 6 F: 505.830.9678 Pwade@montrose-env.com www.montrose-env.com

Submittal of Public Service Announcement – Certification

I, <u>Paul Wade</u>, the undersigned, certify that on 10/23/2023, submitted a public service announcement to KBQL Radio that serves the City of Las Vegas, San Miguel County, New Mexico, in which the source is or is proposed to be located and that KOTS Radio DID NOT RESPOND THAT IT WOULD AIR THE ANNOUNCEMENT.

Signed this 23 day of Oct , 2023,

Signature

10/23/2023

Paul Wade Printed Name

<u>Air Quality Consultant – Montrose Environmental Solutions, Inc.</u> Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

Section 10

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

For this permit revision the only change in the process is replacement of the plant generator. The Albuquerque Asphalt's Terex Recycle Plant consists of storage material piles, a grizzly feeder, a screen/crusher plant, five conveyors, one stacker conveyor, and a replacement 440 horsepower Caterpillar diesel-fired generator/engine.

From the raw material source onsite (RAW), a front-end transfers aggregate/recycle into the grizzly feeder (Unit 1). From the grizzly feeder, material is transferred and crushed in the Primary Crusher (Unit 2). Crushed material from the primary crusher is conveyed (Unit 4) to the Screen (Unit 3). Oversized material from the screen is returned by conveyor (Unit 5) to the Primary Crusher (Unit 2) for further sizing. Product from the screen is conveyed (Units 6, 7 and 8) and stacked (Unit 9) on one of two storage piles (AGGPILE). Material is transported by front-end loader from the aggregate/recycle storage piles to the finish storage pile (FPILE).

Fugitive dust generated during aggregate processing will be controlled by the inherent moisture content of the material and a "Wet Dust Suppression System" to no more than 7% opacity at screening and conveyor transfer points and 12% opacity at crushing operations. No fugitive dust controls are proposed for the feeder loading or unloading aggregate storage piles.

The plant will be powered by a 440 hp diesel-fired generator/engine (Unit 10). No emission controls are proposed for the generator/engine.

The Albuquerque Asphalt's Terex Recycle Plant is permitted to co-located with a KMA 220 Portable Cold Recycle Mixer operating under NMED Permit #3864. The KMA 220 Portable Cold Recycle Mixer mixes the recycled asphalt crushed and sized by the Terex Recycle Plant with oil to produce cold mix asphalt cement.

Truck traffic (TRUCK) will be limited to 30,688 trucks per year. Fugitive road dust will be controlled by chip sealing or asphalt millings and watering to reduce excess fugitive emissions.

A process flow diagram is presented as Figure 4-1 in Section 4. A facility layout is presented as Figure 5-1 in Section 5.

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe): Aggregate crushing and screening plant - produce aggregate and recycled material, co-located Hot Mix Asphalt Plant

B. Apply the 3 criteria for determining a single source:

<u>SIC Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

□ Yes X No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

X Yes 🛛 No

<u>Contiguous</u> or <u>Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

X Yes 🗆 No

C. Make a determination:

- X The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - X a minor PSD source before and after this modification (if so, delete C and D below).
 - □ a major PSD source before this modification. This modification will make this a PSD minor source.
 - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - **an existing PSD Major Source that has had a major modification requiring a BACT analysis**
 - □ a new PSD Major Source after this modification.
- B. This facility is not one of the listed 20.2.74.501 Table I PSD Source Categories:
 - a. NOx: 14.8 TPY
 - b. CO: 8.5 TPY
 - c. VOC: 0.78 TPY
 - d. SOx: 0.53 TPY
 - e. PM: 23.8 TPY
 - f. PM10: 9.4 TPY
 - g. PM2.5: 1.7 TPY
 - h. Fluorides: 0.0 TPY
 - i. Lead: 0.000087 TPY
 - j. Sulfur compounds (listed in Table 2): 0.0 TPY
 - k. GHG: 1700 TPY

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: <u>http://cfpub.epa.gov/adi/</u>

Table for State Regulations:

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This facility is subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	10	Unit 10 is limited to opacity of 20% per 20.2.61.109 NMAC.
20.2.70 NMAC	Operating Permits	No	Facility	The facility does not have potential to emit (PTE) of 100 tpy or more of any regulated air pollutant other than HAPs; and/or a HAPs PTE of 10 tpy or more for a single HAP or 25 or more tpy for combined HAPs
20.2.71 NMAC	Operating Permit Fees	No	Facility	If subject to 20.2.70 NMAC and your permit includes numerical ton per year emission limits, you are subject to 20.2.71 NMAC and normally applies to the entire facility.
20.2.72 NMAC	Construction Permits	Yes	Facility	The facility already operates under Permit 4308 "Construction Permit". With this application AAI is applying for a permit revision under 20.2.200.A.2 NMAC.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The facility is applicable to the Emissions Inventory Reporting per 20.2.73.300 NMAC since the facility is subject to 20.2.72.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	Facility	The facility is not a major PSD source
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation applies to this facility since AAI is submitting an application pursuant to 20.2.72 NMAC.
20.2.77 NMAC	New Source Performance	Yes	2,3,4,5, 6,7,8,9, 10, AGGPIL E	This is a stationary source which is subject to the requirements of 40 CFR Part 60, Subpart OOO. This is a stationary source is potentially subject to the requirements of 40 CFR Part 60, Subpart IIII.
20.2.78 NMAC	Emission Standards for HAPS	No	Units Subject to 40 CFR 61	This facility does not emit hazardous air pollutants which are subject to the requirements of 40 CFR Part 61.
20.2.80 NMAC	Stack Heights	No		No citation applicable in NSR Permit 4308.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	10	This facility is potentially subject to the requirements of 40 CFR Part 63, Subpart ZZZZ.

Table for Applicable Federal Regulations:

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 50	NAAQS	Yes	Facility	Defined as applicable at 20.2.72, Any national ambient air quality standard
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	2,3,4,5, 6,7,8,9, 10 AGGPIL E	Subparts IIII and OOO in 40 CFR 60 apply to this facility.
NSPS 40 CFR 60, Subpart 000	Standards of Performance for Nonmetallic Mineral Processing Plants	Yes	2,3,4,5, 6,7,8,9, AGGPIL E	The provisions of this subpart are applicable to the following affected facilities in fixed or portable nonmetallic mineral processing plants: each crusher, grinding mill, screening operation, bucket elevator, belt conveyor, bagging operation, storage bin, enclosed truck or railcar loading station. Also, crushers and grinding mills at hot mix asphalt facilities that reduce the size of nonmetallic minerals embedded in recycled asphalt pavement and subsequent affected facilities up to, but not including, the first storage silo or bin are subject to the provisions of this subpart.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	Yes	10	If the plant is only located at the site for less than 12 months, the plant engine is defined by EPA as a "non-road" engine, and as such is not applicable to 40 CFR Part 60 Subpart IIII. If the plant operates at the site for more than 12 months, Unit 10 would then be applicable to Subpart IIII.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	Units Subject to 40 CFR 61	Applies if any other Subpart in 40 CFR 61 applies.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	10	Applies if any other Subpart in 40 CFR 63 applies.
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	10	If the plant is only located at the site for less than 12 months, the plant engine is defined by EPA as a "non-road" engine, and as such is not applicable to 40 CFR Part 63 Subpart ZZZZ. If the plant operates at the site for more than 12 months, Unit 10 would then be applicable to Subpart ZZZZ. If Unit 10 meets the requirement of Subpart IIII it also meets the requirement of Subpart ZZZZ.

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

- NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions During</u> <u>Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Startups and Shutdowns

For material processing equipment at the Short Line, LLC's Las Vegas HMA & Crusher, Short Line will follow normal industry practices in minimizing emissions during startup and shutdown. During startup of the plant all control devices (addition of moisture and/or water sprays) will be operating prior to beginning production. Prior to the shutdown of any control devices, material transfers for that system will end. Scheduled maintenance will occur during off production periods.

Malfunctions Operational Plan

During malfunctions, where excessive emissions are observed, the operator will complete successful repairs in a timely manner depending on replacement part availability.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

NA

Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC). See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	х
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

- □ See attached, approved modeling **waiver for all** pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- Attached in UA4 is a **modeling report for some** pollutants from the facility.
- □ No modeling is required.

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	16-A: Identification				
1	Name of facility:	Las Vegas HMA & Crusher			
2	Name of company:	Short Line, LLC			
3	Current Permit number:	New Permit			
4	Name of applicant's modeler:	Paul Wade			
5	Phone number of modeler:	505-830-9680 x6			
6	E-mail of modeler:	pwade@montrose-env.com			

16	-B: Brief						
1	Was a modeling protocol submitted and approved?	Yes□	No⊠				
2	Why is the modeling being done? New Facility						
3	Describe the permit changes relevant to the modeling.						
	New facility consisting of a new HMA plant and crushing and screening plant each operating under a different permit						
4	What geodetic datum was used in the modeling? NAD83						
5	How long will the facility be at this location? Permanent, Can Relocate						
6	⁶ Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)? Yes No						

List the PSD baseline dates for this region (minor or major, as appropriate).					
No⊠					
Describe any special modeling requirements, such as streamline permit requirements.					

16-	16-C: Modeling History of Facility						
	Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).						
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments			
	CO	NA		New Permit			
	NO ₂	NA		New Permit			
1	SO ₂	NA		New Permit			
	H ₂ S	NA		New Permit			
	PM2.5	NA		New Permit			
	PM10	NA		New Permit			
	Lead	N/A					
	Ozone (PSD only)	N/A					
	NM Toxic Air Pollutants (20.2.72.402 NMAC)	NA		New Permit			

16-	16-D: Modeling performed for this application						
1	For each pollutant, indicate the modeling performed and submitted with this application. Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.						
	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.	

СО	\boxtimes			
NO ₂	\boxtimes	\boxtimes		
SO ₂	\boxtimes	\boxtimes		
H ₂ S				\boxtimes
PM2.5	\boxtimes	\boxtimes		
PM10	\boxtimes	\boxtimes		
Lead				
Ozone				
State air toxic(s) (20.2.72.402 NMAC)				

16	16-E: New Mexico toxic air pollutants modeling								
1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application.								
	List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required.								
2	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor			

16	16-F: Modeling options							
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□					

16-	16-G: Surrounding source modeling						
1	Date of surround	ing source retrieval	6/1/2023				
2	If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed.						
2							

16-H: Building and structure downwash

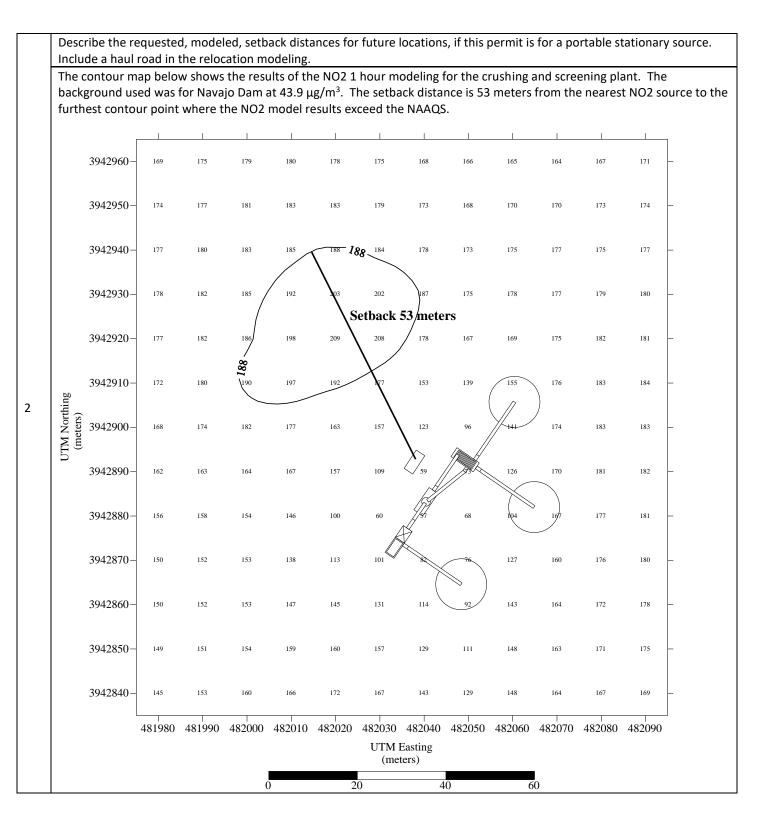
1	How many buildings are present at the facility?	6 – HMA Plant		
2	How many above ground storage tanks are present at the facility?	1 – HMA Plant		
3	Was building downwash modeled for all buildings and	tanks? If not explain why below.	Yes⊠	No□
4	Building comments			

16-	I: Recepto	ors and m	nodeled p	property boun	dary								
1	continuous wa grade that wou area within the Area is require receptors shall	lls, or other co uld require spe property ma d in order to e be placed wit	ontinuous barr ecial equipmer y be identified exclude recept hin the proper	c entry is effectively pr iers approved by the D nt to traverse. If a large with signage only. Put ors from the facility pro rty boundaries of the fa r at the facility that def	epartment, such as ru property is complete lic roads cannot be p operty. If the facility c acility.	ugged ph ely enclos art of a F loes not	ysical terrain wi sed by fencing, a Restricted Area.	th a steep a restricted A Restricted					
	Fencing and Gates restrict access												
2	Receptors must be placed along publicly accessible roads in the restricted area.YesNoAre there public roads passing through the restricted area?YesNo												
3	Are restricted a	eted area boundary coordinates included in the modeling files? Yes⊠ No□					No□						
	Describe the receptor grids and their spacing. The table below may be used, adding rows as needed.												
	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility	Comments							
	Very Fine	Fence Following	50	0	500								
4	Very Fine	Fence Following	100	500	1000								
	Fine	Fence Following	250	1000	3000								
	Fine	Fence Following	500	3000	5000								
	Course	Fence Following	1000	5000	50000								
	Describe recep	otor spacing al	ong the fence	line.									
5	25 meters												
	Describe the P	SD Class I area	receptors.										

	NA
6	

16-	16-J: Sensitive areas							
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes□	No⊠					
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠					

16	-K: Modeling Scenarios									
1	Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).									
	None									
2	Which scenario produces the highest concentrations? Why?									
2	NA									
3	Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.)	Yes⊠	No□							
4	If so, describe factors for each group of sources. List the sources in each group before the factor (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes for Sources: Daylight Hours all sources except Asphalt Heater (Unit 10) and Asphalt Cement Storag 10 and 11, sources will be permitted to operate 24 hours per day.	ormatting ea	sier.)							


		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	12:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
	1:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
	2:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
	3:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
	4:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
	5:00 AM	0	0	0	1	1	1	1	1	0.5	0	0	0
	6:00 AM	0	0.5	1	1	1	1	1	1	1	1	0.5	0
	7:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
	8:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
	9:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
	10:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
	11:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
	12:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
	1:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
	2:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
	3:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
	4:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
	5:00 PM	0.5	1	1	1	1	1	1	1	1	1	0	0
	6:00 PM	0	0	0	1	1	1	1	1	0.5	0	0	0
	7:00 PM	0	0	0	0	0	0.5	0.5	0	0	0	0	0
	8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
	9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
	10:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
	11:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
	Total	10.5	11.5	12	14	14	14.5	14.5	14	13	12	10.5	10
If	hourly, variable	emissio	n rates w	vere usec	l that w	ere not d	escribed	above, o	describe	them bel	ow.		
N	lone												
	Vere different er elow.	nission r	ates used	d for sho	rt-term	and annu	ial mode	eling? If s	o describ	e	Yes□		No⊠

16-	16-L: NO ₂ Modeling Which types of NO ₂ modeling were used?							
Which types of NO ₂ modeling were used? Check all that apply.								
	\boxtimes	ARM2						
		100% NO ₂ to NO ₂ conversion						

		PVMRM								
		OLM OLM								
	C Other:									
2	Describe the	e NO2 modeling.								
Both ROI and Cumulative analysis were run using ARM2										
3	Were default NO ₂ /NO _x ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not describe and justify the ratios used below. Yes⊠									
4	Describe the	Describe the design value used for each averaging period modeled.								
		r: 98th percentile as calculated by AERMOD								
	Annual: Higi	nest Annual Average of Three Years								

16-	-M: Parti	culate Mat	ter Modeling								
	Select the p	ollutants for whic	h plume depletion mod	deling was	used.						
1		PM2.5									
		PM10									
	\boxtimes	None									
	Describe the	e particle size disti	ributions used. Include	the sourc	e of information.						
2											
3	Sources that	t emit at least 40 t to emit significant	40 tons per year of NO cons per year of NO _X or amounts of precursors	r at least 4	0 tons per year of S	6O₂ are	Yes	No⊠			
4	Was second	ary PM modeled f	or PM2.5?				Yes□	No⊠			
	If MERPs we below.	ere used to accour	nt for secondary PM2.5	5 fill out th	e information below	w. If another	method was use	ed describe			
5 NOx (ton/yr) SO ₂ (ton/yr) [PM2.5] _{annual} [PM2.5] _{24-hour}											

16-	-N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
	All setback modeling including background, with the exception of NO2 1 hour setback model, results were below the NAAQS.

16-O: PSD Increment and Source IDs

-	these match? If not, p not match below.	provide a cross-reference table between unit	Yes	No⊠
Unit #	Model ID	Description	I	
		MA Plant	I	
7	HMASTK	HMA Baghouse Stack		
10	HMAHEAT	HMA Asphalt Cement Heater		
8	DRUMUNL	HMA Asphalt Silo Loading		
9	HMASILO	HMA Asphalt Silo Unloading		
12	HMAGEN	HMA Generator		
AGGPILE	HMAPILE1	HMA Storage Pile Handling 1		
AGGPILE	HMAPILE2	HMA Storage Pile Handling 2		
AGGPILE	HMAPILE3	HMA Storage Pile Handling 3		
AGGPILE	HMAPILE4	HMA Storage Pile Handling 4		
AGGPILE	HMAPILE5	HMA Storage Pile Handling 5		
1	HMABIN1	HMA 1 Bin Loading (3 Bins)		
1	HMABIN2	HMA 1 Bin Loading (3 Bins)		
2	HMATP1	HMA Bin 1 Unloading		
2	HMATP2	HMA Bin 2 Unloading		
4	HMASCR	HMA Scalping Screen		
5	HMATP3	HMA Scalping Screen Unloading		
6	HMATP4	HMA Conveyor Transfer to Drum Conveyor		
11	ASPHTANK	Asphalt Cement Storage Tank		
13	HR_0001-0049	HMA Haul Road Volume 1-49		
YARD	HR_0027-0049	HMA Yard		
	Crushing ar	nd Screening Plant		
12	GEN1	Crusher Generator 1		
13	GEN2	Crusher Generator 2		
RAW	RAW	Raw Material Piles		
1	FEED	Feeder		
2	TP1	Waste Conveyor		
3	PCRSH	Primary Crusher		
4	TP2	Primary Crusher Conveyor		
5	SCRSH	Secondary Crusher		
6	TP3	Secondary Crusher Conveyor		
7	SCR	Screen		
8	TP4	Screen Conveyor		
9	TP5	Screen Conveyor		
10	TP6	Screen Conveyor		
11	STK1	Stacker Conveyor Drop to Pile		
11	STK2	Stacker Conveyor Drop to Pile		

1

	FPILE	FP	Finish Piles						
	14	CR_0001-0023	Crusher Haul Road	Volume 1-23					
2	The emission rates in these match? If not,		2-F should match the	e ones in the	modeling files. Do	Yes⊵	3	No□	
3	Have the minor NSR exempt sources or Title V Insignificant Activities" (Table 2-B) sources Yes]	No⊠	
	Which units consume increment for which pollutants?								
4	Unit ID	NO ₂	SO ₂ PM10		PM10		PM2.5		
	NA								
5	PSD increment description for sources. (for unusual cases, i.e., baseline unit expanded emissions NA after baseline date).								
 Are all the actual installation dates included in Table 2A of the application form, as required? This is necessary to verify the accuracy of PSD increment modeling. If not please explain how increment consumption status is determined for the missing installation dates below. 					3	No□			

16	16-P: Flare Modeling							
1	For each flare or flaring scenario, complete the following							
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)				
	NA							

16-	Q: Volume a	nd Related Sou	urces					
	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines?							
1	If not please explain how increment consumption status is determined for the missing installation dates below. Yes□ No⊠							
	Describe the determ	Describe the determination of sigma-Y and sigma-Z for fugitive sources.						
2	For storage piles the model inputs were based on the size of the pile (100 feet)/4.3 (sigma-Y) and a release height of 8 feet							
	or a sigma-Z of 8ft*2/2.15. All others followed standard dimensions from Air Quality Bureau (AQB) Modeling Guidelines.							
	Describe how the vo	olume sources are relat	ted to unit numbers.					
3	Or say they are the	same.						
	Unit #	Model ID	Description					
	HMA Plant							

	AGGPILE	HMAPILE1	HMA Storage Pile Handling 1	
	AGGPILE	HMAPILE2	HMA Storage Pile Handling 2	
	AGGPILE	HMAPILE3	HMA Storage Pile Handling 3	
	AGGPILE	HMAPILE4	HMA Storage Pile Handling 4	
	AGGPILE	HMAPILE5	HMA Storage Pile Handling 5	
	1	HMABIN1	HMA 1 Bin Loading (3 Bins)	
	1	HMABIN2	HMA 1 Bin Loading (3 Bins)	
	2	HMATP1	HMA Bin 1 Unloading	
	2	HMATP2	HMA Bin 2 Unloading	
	4	HMASCR	HMA Scalping Screen	
	5	HMATP3	HMA Scalping Screen Unloading	
	6	HMATP4	HMA Conveyor Transfer to Drum Conveyor	
	11	ASPHTANK	Asphalt Cement Storage Tank	
	13	HR_0001-0049	HMA Haul Road Volume 1-49	
	YARD	HR 0027-0049	HMA Yard	
			nd Screening Plant	1
	RAW	RAW	Raw Material Piles	
	1	FEED	Feeder	
	2	TP1	Waste Conveyor	
	3	PCRSH	Primary Crusher	
	4	TP2	Primary Crusher Conveyor	
	5	SCRSH	Secondary Crusher	
	6	TP3	Secondary Crusher Conveyor	
	7	SCR	Screen	
	8	TP4	Screen Conveyor	
	9	TP5	Screen Conveyor	
	10	TP6	Screen Conveyor	
	11	STK1	Stacker Conveyor Drop to Pile	
	11	STK2	Stacker Conveyor Drop to Pile	
	11	STK3	Stacker Conveyor Drop to Pile	
	FPILE	FP	Finish Piles	
	14	CR_0001-0023	Crusher Haul Road Volume 1	
	Describe any open p	vits.		
4	None			
	Describe emission u	nits included in each	open pit.	
5				
	NA			

16-	16-R: Background Concentrations							
	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data Yes No that was used. No No No No							
	CO: Del Norte	e High School (350010023)						
	NO ₂ : N/A							
1	PM2.5: Santa	Fe (350490020)						
	SO2: N/A							
	Other:							
	Comments:For NO2 1-Hour and Annual, and SO2 1-Hour averaging periods modeling only neighboring sources were included as discussed in Table 20. Facility location is outside the city of Las Vegas							
2	Were backgro	ound concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠				

16-	16-S: Meteorological Data							
1	Was NMED provided meteorological data used? If so select the station used. Santa Fe 2017 - 2021	Yes⊠	No□					
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discuss how missing data were handled, how stability class was determined, and how the data were processed.							

16-T: Terrain						
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□			
	mode. For setba	ack modeling				
2	What was the source of the terrain data?					
2	USGS National Elevation Data (NED)					

16-	16-U: Modeling Files					
1	Describe the modeling files:					
	File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)			

Shortline Combustion ROI	NOx, CO, SO2	ROI
Shortline PM ROI	PM10, PM2.5	ROI
Shortline NO2 1Hour	NO2	cumulative
Shortline NO2 Annual	NO2	cumulative
Shortline PM10	PM10	cumulative
Shortline PM25 24Hr	PM2.5	cumulative
Shortline PM25 Yr	PM2.5	cumulative
Shortline SO2 1Hour	SO2	cumulative
Shortline H2S	H2S	ROI
Shortline PM10 Setback	PM10	setback
Shortline PM25 24 Hr Setback	PM25	setback
Shortline PM25 Annual Setback	PM25	setback
Shortline NO2 Annual Setback	NO2	setback
Shortline NO2 1 Hour Setback	NO2	setback
Shortline SO2 Setback	SO2	setback

16-	V: PSD New or Major Modification Applications					
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes	No⊠			
2	If not, did AQB approve an exemption from preconstruction monitoring? Yes No					
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.					
	Not a PSD Source					
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.					
-	Not a PSD Source					
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No⊠			
	Not a PSD Source					

If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so describe below. Yes□		Yes□	es□ No⊠							
		oncentrations	from the model	ing analysis. Row	vs may be mo	dified, add	ed and remove	d and removed from the table below		
Modeled Facility	Modeled Concentratio n with	Secondary	Background	Cumulative	Value of	Percent		Location		
Concentrati on (µg/m3)	Surrounding Sources (µg/m3)	μg/m3)	n (μg/m3)	n (μg/m3)	Standard (μg/m3)	of Standarc	UTM E (m)	UTM N (m)	Elevation (ft)	
182.8	182.8	NA	NA	182.8	188.0	97.2	482220.6	3943006.9	1982.99	
14.0	1.0	NA	NA	15.0	94.0	16.0	482164.9	3942934.2	1982.40	
607.0	NA	NA	NA	607.0	SIL - 2000	30.4	482133.9	3943095.8	1982.43	
219.8	NA	NA	NA	219.8	SIL - 500	44.0	482206.6	3942988.7	1983.00	
77.5	77.5	NA	NA	77.5	196.4	39.5	482100.0	3943100.0	1985.32	
7.5	7.7	NA	9.2	16.9	35.0	48.3	482154.0	3943110.0	1982.16	
3.6	3.9	NA	3.7	7.6	12.0	63.3	482234.5	3943025.1	1983.29	
64.3	68.3	NA	19.0	87.3	150.0	58.2	482113.9	3942854.9	1981.59	
0.24	NA	NA	NA	0.24	SIL - 1.0	24.0	482176.8	3943113.0	1985.74	
	significa describ Identify as nece Facility Concentrati on (µg/m3) 182.8 14.0 607.0 219.8 77.5 7.5 3.6 64.3	significance levels for the describe below. describe below. Identify the maximum coas necessary. Modeled Concentratio Facility n with Concentratio Surrounding on (µg/m3) Sources 182.8 182.8 14.0 1.0 607.0 NA 219.8 NA 77.5 77.5 7.5 7.7 3.6 3.9 64.3 68.3	isignificance levels for the specific poll describe below. Identify the maximum concentrations as necessary. Modeled Facility n with Concentrati Surrounding on (µg/m3) Sources (µg/m3) 182.8 182.8 NA (µg/m3) 182.8 182.8 NA 14.0 1.0 NA 14.0 1.0 NA 14.0 1.0 NA 14.0 Surrounding ONA NA 3.6 3.9 NA 3.6 3.9 NA	significance levels for the specific pollutant. Was culpated describe below. Identify the maximum concentrations from the model as necessary. Modeled Concentratio from the model fr	significance levels for the specific pollutant. Was culpability analysis per describe below. Identify the maximum concentrations from the modeling analysis. Row as necessary. Modeled Concentratio n with Surrounding on (µg/m3) Sources (µg/m3) 182.8 182.8 NA 14.0 1.0 NA 182.8 14.0 1.0 NA NA 182.8 14.0 1.0 NA NA 182.8 14.0 1.0 NA NA NA NA NA NA NA NA NA NA NA NA NA N	significance levels for the specific pollutant. Was culpability analysis performed? If sidescribe below.Identify the maximum concentrations from the modeling analysis. Rows may be moral as necessary.Modeled FacilityModeled Concentratio n with Surrounding (µg/m3)Secondary PM (µg/m3)Background Concentratio n (µg/m3)Value of Standard (µg/m3)182.8182.8NANA182.8188.014.01.0NANA15.094.0607.0NANAANA219.8SIL - 2000219.8NANANA219.8SIL - 50077.577.5NA9.216.935.03.63.9NA19.087.3150.0	significance levels for the specific pollutant. Was culpability analysis performed? If so describe below.Identify the maximum concentrations from the modeling analysis. Rows may be modified, add as necessary.Identify the maximum concentrations from the modeling analysis. Rows may be modified, add as necessary.Modeled Facility on (µg/m3)Modeled Concentratio N(µg/m3)Secondary PM (µg/m3)Background Concentratio n (µg/m3)Value of Standard of Standard (µg/m3)Percent of Standard of N(µg/m3)182.8182.8NANA182.8188.097.214.01.0NANA15.094.016.0607.0NANANA219.8SIL - 200030.4219.8NANANA219.8SIL - 50044.077.577.5NA9.216.935.048.33.63.9NA3.77.612.063.364.368.3NA19.087.3150.058.2	Significance levels for the specific pollutant. Was culpability analysis performed? If so Yes_ describe below. Identify the maximum concentrations from the modeling analysis. Rows may be modified, added and remove as necessary. Identify the maximum concentrations from the modeling analysis. Rows may be modified, added and remove as necessary. Modeled Concentratio Nodeled Concentratio Nodeled PM Cumulative Value of Percent of UTM E 0 Concentratio n with Secondary PM (µg/m3) NA NA NA Percent of UTM E 0 182.8 182.8 NA NA 182.8 188.0 97.2 482220.6 14.0 1.0 NA NA 15.0 94.0 16.0 48213.9 607.0 NA NA 607.0 SIL - 2000 30.4 482206.6 77.5 77.5 NA NA 219.8 SIL - 500 44.0 482206.6 77.5 77.7 NA 9.2 16.9 35.0 48210.0 48210.0	Significance levels for the specific pollutant. Was culpability analysis performed? If so Yes No describe below. Identify the maximum concentrations from the modeling analysis. Rows may be modified, added and removed from the tal as necessary. Identify the maximum concentrations from the modeling analysis. Rows may be modified, added and removed from the tal as necessary. Modeled Concentratio No Economy Background Cumulative Value of Percent UTM R Location Facility n with Secondary Background Concentratio N(µg/m3) Value of Standard UTM R UTM N (m) (m) 182.8 182.8 NA NA 182.8 188.0 97.2 48220.6 3943006.9 14.0 1.0 NA NA 15.0 94.0 16.0 482164.9 3942934.2 607.0 NA NA NA 219.8 SIL - 2000 30.4 48220.6 3943095.8 219.8 NA NA NA 219.8 SIL - 500 44.0 48213.9 3943095.8 77.5 77.7	

16-	16-X: Summary/conclusions			
	A statement that modeling requirements have been satisfied and that the permit can be issued.			
1	Dispersion modeling was performed for the new Las Vegas HMA & Crusher permit applications. All facility pollutants with ambient air quality standards were modeled to show compliance with those standards. All results of this modeling showed			
	the facility in compliance with applicable ambient air quality standards.			

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Unit No.	Test Description	Test Date				
2, 3, 4, 5, 6, 7, 8, 9, 10, 11	New Permitted Facility	TBD				
12, 13	New Permitted Facility	TBD				

Compliance Test History Table

Other Relevant Information

Other relevant information. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information.

Section 22: Certification

Company Name: <u>Short Line, LLC</u>

Perty 2005 hereby certify that the information and data submitted in this application are

true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this 23 day of OCTOBC, 2023 upon my oath or affirmation, before a notary of the State of

1 pmico NDee A

uaging Dember

Scribed and sworn before me on this 23 day of October, 2023.

My authorization as a notary of the State of <u>New Mexico</u> expires on the

Ist day of June, 2024

otary's Signature

Notary's Printed Name

Printed Name

LINDA R. HERRERA Notary Public - State of New Mexico Commission # 1114817 My Comm. Expires June 1, 2024

0601/2024

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

1061 95-219/1070 782 SHORT LINE, LLC PO BOX 1499 PERALTA, NM 87042 Date Pay to the Ø \$ u Dollars Photo Safe Deposit® Details on back Wells Fargo Bank, N.A. New Mexico wellsfargo.com WELLS FARGO For _ MP DIDEI 1:107002192: 6862631956

Air Permit Application Compliance History Disclosure Form

Pursuant to Subsection 74-2-7(S) of the New Mexico Air Quality Control Act ("AQCA"), NMSA §§ 74-2-1 to -17, the New Mexico Environment Department ("Department") may deny any permit application or revoke any permit issued pursuant to the AQCA if, within ten years immediately preceding the date of submission of the permit application, the applicant met any one of the criteria outlined below. In order for the Department to deem an air permit application administratively complete, or issue an air permit for those permits without an administrative completeness determination process, the applicant must complete this Compliance History Disclosure Form as specified in Subsection 74-2-7(P). An existing permit holder (permit issued prior to June 18, 2021) shall provide this Compliance History Disclosure Form to the Department upon request.

Permittee/Applicant Company Name			Expected Application Submittal Date	
Short Line, LLC			October 20, 2023	
Permittee/Company Contact		Phone	Email	
Beverly Zastrow		505-892-5400	shortlinellc@yahoo.com	
Within the 10 years preceding the expected date of submittal of the application, has the permittee or applicant:				
1	Knowingly misrepresented a material fact in an application for a permit?			🗆 Yes 🖾 No
2	Refused to disclose information required by the provisions of the New Mexico Air Quality Control Act?			🗆 Yes 🖂 No
3	Been convicted of a felony related to environmental crime in any court of any state or the United States?			🗆 Yes 🗵 No
4	Been convicted of a crime defined by state or federal statute as involving or being in restraint of trade, price fixing, bribery, or fraud in any court of any state or the United States?			🗆 Yes 🗵 No
5a	Constructed or operated any facility for which a permit was sought, including the current facility, without the required air quality permit(s) under 20.2.70 NMAC, 20.2.72 NMAC, 20.2.74 NMAC, 20.2.79 NMAC, or 20.2.84 NMAC?			🗆 Yes 🖂 No
5b	 If "No" to question 5a, go to question 6. If "Yes" to question 5a, state whether each facility that was constructed or operated without the require air quality permit met at least one of the following exceptions: a. The unpermitted facility was discovered after acquisition during a timely environmental audit that was authorized by the Department; or b. The operator of the facility estimated that the facility's emissions would not require an air permit, and the operator applied for an air permit within 30 calendar days of discovering that an air permit was required for the facility. 			🗆 Yes 🗆 No
6	Had any permit revoked or permanently suspended for cause under the environmental laws of any state or the United States?			🗆 Yes 🖂 No
7	For each "yes" answer, please provide an	explanation and documentat	ion.	1

October 23, 2023

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87507-3313

Subject: Permit Application for Short Line, LLC's Las Vegas HMA and Crusher Facility

NSR Permit Manager:

Attached please find two (2) hardcopies and three (3) electronic (CD) copies of the 20.2.72 NMAC Permit Application for Short Line, LLC's Las Vegas HMA and Crusher Facility. This letter is attached to the application copy that has the original notarized signature page (Section 22), along with an application submittal fee of \$500.

Short Line, LLC (Short Line) is applying for a new 20.2.72 NMAC air quality permit for a 200 ton per hour (TPH) aggregate crushing and screening plant to be operated within county of San Miguel, state of New Mexico. Regulation governing this permit application is 20.2.72.200.A(1) NMAC.

Please let me know if you have any questions or need additional information.

Sincerely,

Paul Wade Sr. Associate Engineer Montrose Environmental Solutions, Inc.

Cc: Beverly Zastrow, Short Line, LLC

Montrose Environmental Solutions, Inc. 9100 2nd St. NW Suite 200 Albuquerque, NM 87114-1664 T: 505.830.9680 ext. 6 F: 505.830.9678 Pwade@montrose-env.com www.montrose-env.com