NMED AIR QUALITY INITIAL TITLE V APPLICATION

Crestwood New Mexico Pipeline LLC Willow Lake Gas Processing Plant

Prepared By:

Kaitlyn Lopez - Manager, Air Quality

Crestwood Midstream Partners LP 811 Main Street, Suite 3400 Houston, TX 77002 (713) 380-3249

Michael Celente – Senior Consultant

TRINITY CONSULTANTS

9400 Holly Ave NE Building 3, Suite 300 Albuquerque, NM 87122 (505) 266-6611

May 2022

Project 223201.0056

9400 Holly Ave NE, Bldg 3, Ste 300, Albuquerque, NM 87122 / P 505.266.6611 / trinityconsultants.com

May 19, 2022

Permit Programs Manager NMED Air Quality Bureau 525 Camino de los Marquez Suite 1 Santa Fe, NM 87505-1816

RE: Initial Title V Application Crestwood New Mexico Pipeline LLC – Willow Lake Gas Processing Plant

Permit Programs Manager:

On behalf of Crestwood New Mexico Pipeline LLC (Crestwood) we are submitting an initial Title V application for the existing Willow Lake Gas Processing Plant (Willow Lake). The facility is currently authorized under NSR 5142-M8 and is located at 393 Higby Hole Rd in Malaga, NM 88263. This application is being submitted pursuant to 20.2.70.300.B.2 NMAC as a result of the facility exceeding Title V thresholds in the NSR 5142-M7 application. Details are included in Section 3 of the application.

The format and content of this application are consistent with the Bureau's current policy regarding Title V applications; it is a complete application package using the most current Universal Application forms. Enclosed are two (2) hard copies of the application (one original and one copy), including the original certification, and one disk containing the electronic files. No application fees are required for Title V applications. Please feel free to contact either myself at (505) 266-6611 or Kaitlyn Lopez, Air Quality Manager for Crestwood, at (713) 380-3249 if you have any questions regarding this application.

Sincerely,

Michael Celente Senior Consultant

Muhael Celente

Cc:

Kaitlyn Lopez (Crestwood) Mason McLean (Crestwood) Trinity Project File 223201.0056

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

For Department use only:

AIRS No.:

AI # if known (see 1st

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions for other permits.

This application is submitted as (check all that apply): ☐ Request for a No Permit Required Determination (no fee)

□ Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required).
Construction Status: ☐ Not Constructed ☑ Existing Permitted (or NOI) Facility ☐ Existing Non-permitted (or NOI) Facility
Minor Source: ☐ a NOI 20.2.73 NMAC ☐ 20.2.72 NMAC application or revision ☐ 20.2.72.300 NMAC Streamline application
Title V Source: ☑ Title V (new) □ Title V renewal □ TV minor mod. □ TV significant mod. TV Acid Rain: □ New □ Renewal
PSD Major Source: ☐ PSD major source (new) ☐ minor modification to a PSD source ☐ a PSD major modification
Acknowledgements:
☑ I acknowledge that a pre-application meeting is available to me upon request. ☑ Title V Operating, Title IV Acid Rain, and NPR
applications have no fees.
□ \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline
applications).
☐ Check No.: N/A in the amount of N/A
☑ I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched
(except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.
☑ I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-2/ .
☐ This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this
application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has
been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information:
www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.70.300.B.(2) NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sect	tion 1-A: Company Information	3 to 5 #s of permit IDEA ID No.): 32575	Updating Permit/NOI #: N/A			
1	Facility Name: Willow Lake Gas Processing Plant	Plant primary SIC Code	e (4 digits): 1321			
1	Willow Bake Gus Frocessing Frank	Plant NAIC code (6 digits): 211130				
a	Facility Street Address (If no facility street address, provide directions from 393 Higby Hole Rd, Malaga, NM 88263	n a prominent landmark)	:			
2	Plant Operator Company Name: Crestwood New Mexico Pipeline LLC	Phone/Fax: (832) 519-2	2200			
a	Plant Operator Address: 811 Main Street, Suite 3400 Houston, TX 77002					

b	Plant Operator's New Mexico Corporate ID or Tax ID: 4407086								
3	Plant Owner(s) name(s): Crestwood New Mexico Pipeline LLC Phone/Fax: (832) 519-2200								
a	Plant Owner(s) Mailing Address(s): 811 Main Street, Suite 3400 Houston, TX 77002								
4	Bill To (Company): Crestwood New Mexico Pipeline LLC Phone/Fax: (832) 519-2200								
a	Mailing Address: 811 Main Street, Suite 3400 Houston, TX 77002	E-mail: Kaitlyn.Lopez@crestwoodlp.com							
5	☑ Preparer: Michael Celente☑ Consultant: Trinity Consultants Inc.	Phone/Fax: (505) 266-6611							
a	Mailing Address: 9400 Holly Ave. NE, Bldg. 3, Ste 300, Albuquerque, NM 87122	E-mail: mcelente@trinityconsultants.com							
6	Plant Operator Contact: Will Jaquess	Phone/Fax: (432) 255-8714							
a	Address: 393 Higby Hole Rd, Malaga, NM 88263	E-mail: william.jaquess@crestwoodlp.com							
7	Air Permit Contact: Kaitlyn Lopez	Title: Manager, Air Quality							
a	E-mail: Kaitlyn.Lopez@crestwoodlp.com	Phone/Fax: (713) 380-3249							
b	Mailing Address: 811 Main Street, Suite 3400 Houston, TX 77002								
С	The designated Air permit Contact will receive all official correspondence	(i.e. letters, permits) from the Air Quality Bureau.							

Section 1-B: Current Facility Status

	non 1 B. Current ruemty Status						
1.a	Has this facility already been constructed? ☑ Yes □ No	1.b If yes to question 1.a, is it currently operating in New Mexico? ✓ Yes □ No					
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? ☐ Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ☐ Yes ☐ No					
3	Is the facility currently shut down? \Box Yes \square No	If yes, give month and year of shut down (MM/YY): N/A					
4	Was this facility constructed before 8/31/1972 and continuously operated s	since 1972? □ Yes ☑ No					
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972? □Yes □No ☑ N/A						
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? \square Yes \square No	If yes, the permit No. is: TBD; With the authorization of this application the facility will have a Title V permit.					
7	Has this facility been issued a No Permit Required (NPR)? ☐ Yes ☑ No	If yes, the NPR No. is: N/A					
8	Has this facility been issued a Notice of Intent (NOI)? ☐ Yes ☑ No	If yes, the NOI No. is: N/A					
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑ Yes □ No	If yes, the permit No. is: NSR #5142-M8					
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? ☐ Yes ☑ No	If yes, the register No. is: N/A					

Section 1-C: Facility Input Capacity & Production Rate

~ ~ ~ ~	Section 1 of 1 demoj imput supusity of 11 of details 1 that											
1	What is the	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)										
a	Current Hourly: 5.63 MMscf/hour Daily: 135 MMscf/day Annually: 49,275 MMscf/year											
b	Proposed Hourly: 5.63 MMscf/hour Daily: 135 MMscf/day Annually: 49,275 MMscf/year											
2	What is the	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)										

a	Current	Hourly: 5.63 MMscf/hour	Daily: 135 MMscf/day	Annually: 49,275 MMscf/year
b	Proposed	Hourly: 5.63 MMscf/hour	Daily: 135 MMscf/day	Annually: 49,275 MMscf/year

Section 1-D: Facility Location Information

Sect	ion I-D: Faci	lity Locati	on Information								
1	Section: 20 & 29	Range: 28E	Township: 24S	County: Eddy	y County		Elevation (ft): 3,018				
2	UTM Zone: □ 12	or ☑ 13		Datum:	NAD 27	□ NAD 8	33 ☑ WGS 84				
a	UTM E (in meters, to	nearest 10 meters):	584,520 m E	UTM N (in me	eters, to nearest	10 meters):	3,562,400 m N				
b	AND Latitude (deg	g., min., sec.): 32	2°11'41.94"N	Longitude (de	eg., min., se	c.): 104°6′	11.91"W				
3	Name and zip code	of nearest New	Mexico town: Malaga,	NM 88263							
4	US 285 and Black I right onto an access	Detailed Driving Instructions from nearest NM town (attach a road map if necessary): From Malaga, from the intersection of US 285 and Black River Village Rd., travel west for 1.7 miles. Turn left onto Higby Hole Rd. and continue for 0.7 miles. Turn right onto an access road, immediately turn left, and continue for 0.3 miles. Turn right and continue for 0.1 miles. Take a left at the fork and continue for 0.4 miles. Turn right and continue for 0.5 miles and arrive at the facility.									
5	The facility is 2.7 n	niles SW of Ma	laga, NM.								
6	Status of land at fac	cility (check one	e): 🗹 Private 🗆 Indian/Pu	ieblo □ Federa	ıl BLM □ F	ederal For	est Service Other (specify)				
7	which the facility is Eddy	s proposed to be	constructed or operated	: Malaga, NM a	and Loving,	NM; India	NMAC) of the property on an Tribes: N/A; Counties:				
8	than 50 km (31 mil	es) to other state aqb/modeling/cl	Will the property on whes, Bernalillo County, or asslareas.html)? Y Years: 21.6 km from Texas	a Class I area (s □ No (20.2.	(see 72.206.A.7]	NMAC) 1					
9	Name nearest Class	s I area: Carlsba	d Caverns National Park								
10	Shortest distance (i	n km) from faci	lity boundary to the bour	ndary of the nea	arest Class I	area (to th	ne nearest 10 meters): 25.6 km				
11		ning overburde	er of the Area of Operat n removal areas) to neare				nclusive of all disturbed eture: 1750 m from occupied				
	Method(s) used to o	delineate the Re	stricted Area: Fencing								
12	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.										
13	Does the owner/ope ☐ Yes ☑ No A portable stationar	erator intend to	operate this source as a paramobile source, such as	ortable stationa an automobile	ary source a	s defined i					
14	Will this facility op	erate in conjun	etion with other air regul number (if known) of the	ated parties on	the same pro		No Yes				

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24	$(\frac{\text{days}}{\text{week}}): 7$	$(\frac{\text{weeks}}{\text{year}})$: 52	(<u>hours</u>): 8,760			
2	Facility's maximum daily operating schedule (if less	□AM □PM	End: N/A	□AM □PM			
3	Month and year of anticipated start of construction: N/A – This is a Title V Application						
4	Month and year of anticipated construction complet	ion: N/A – This is a Title V Ap	plication				

Crestv	wood New Mexico Pipeline LLC Willow Lake Gas Processing Plant May 2022, Revision 0
5	Month and year of anticipated startup of new or modified facility: N/A – This is a Title V Application
6	Will this facility operate at this site for more than one year? ☐ Yes ☐ No
Sect	ion 1-F: Other Facility Information
1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? Yes No If yes, specify: N/A
a	If yes, NOV date or description of issue: N/A NOV Tracking No: N/A
b	Is this application in response to any issue listed in 1-F, 1 or 1a above? ☐ Yes ☑ No If Yes, provide the 1c & 1d info below:
c	Document Title: N/A Date: N/A Requirement # (or page # and paragraph #): N/A
d	Provide the required text to be inserted in this permit: N/A
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? ☐ Yes ☑ No
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? ☐ Yes ☑ No
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? ☑ Yes ☐ No
a	If Yes, what type of source? \square Major ($\square \ge 10$ tpy of any single HAP OR $\square \ge 25$ tpy of any combination of HAPS) OR \square Minor (\square <10 tpy of any single HAP AND \square <25 tpy of any combination of HAPS)
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? ☐ Yes ☑ No
	If yes, include the name of company providing commercial electric power to the facility: N/A
a	Commercial power is purchased from a commercial utility company, which specifically does not include power generated on site for the sole purpose of the user.
Sect	tion 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)
1	☐ I have filled out Section 18, "Addendum for Streamline Applications." ☑ N/A (This is not a Streamline application.)

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Ben Hansen		Phone: 832-519-2200				
a	R.O. Title: Senior Vice President, Operations	R.O. e-mail: ben.h	ansen@crestwoodlp.com				
b	R. O. Address: 811 Main St., Ste 3400, Houston, TX 77002						
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC):Jonathan Smith		Phone: 432-255-8736				
a	A. R.O. Title: Vice President, Operations	A. R.O. e-mail: jonathan.smith@crestwoodlp.com					
b	A. R. O. Address: 393 Higby Hole Rd, Malaga, NM						
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): N/A						
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): Crestwood Midstream Partners, LP						
a	Address of Parent Company: 811 Main St, Suite 3400, Houston, TX 77002						
5	Names of Subsidiary Companies ("Subsidiary Companies" means owned, wholly or in part, by the company to be permitted.): N/A	organizations, branc	hes, divisions or subsidiaries, which are				
6	Telephone numbers & names of the owners' agents and site contact 432-255-8736	ts familiar with plan	t operations: Jonathan Smith,				

7

Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: Texas – 21.7 km

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- 1) One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

☐ CD/DVD attached to paper application
✓ secure electronic transfer. Air Permit Contact Name_Mike Celente
Emailmcelente@trinityconsultants.com_
Phone number(505) 266-6611

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If **air dispersion modeling** is required by the application type, include the **NMED Modeling Waiver** and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling **summary report only** should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible

format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

Section 1: **General Facility Information**

Section 2: Tables

Section 3: Application Summary Section 4: Process Flow Sheet Plot Plan Drawn to Scale

Section 5:

All Calculations Section 6:

Section 7: **Information Used to Determine Emissions**

Section 8: Map(s)

Section 9: Proof of Public Notice

Section 10: Written Description of the Routine Operations of the Facility

Section 11: Source Determination

Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application

Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation

Section 14: Operational Plan to Mitigate Emissions

Alternative Operating Scenarios Section 15:

Section 16: Air Dispersion Modeling Compliance Test History Section 17:

Section 18: Addendum for Streamline Applications (streamline applications only)

Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only) Section 19:

Section 20: **Other Relevant Information**

Certification Page Section 22:

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

	ering must correspond			0 117	Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #			RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack#	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
C-1100	Engine	Caterpillar	G3608	BEN00538	2370 hp	2370 hp	12/16/2008	OxCat-1100	20200254	☑ Existing (unchanged)☐ New/Additional☐ Replacement Unit	4SLB	N/A
							> 6/12/2006	C-1100 NSCR-1200		 □ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed 	+	
C-1200	Engine	Waukesha	P9390GSI	C-17865/2	1980 hp	1980 hp	3/1/2008 > 6/12/2006	C-1200	20200253	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SRB	N/A
C-2300	Engine	Waukesha	VHP- L7044GSI	5283703535	1680 hp	1680 hp	3/1/2014 > 7/1/2010	NSCR-2300 C-2300	20200253	 ✓ Existing (unchanged) □ New/Additional □ To be Removed □ Replacement Unit □ To be Replaced 	4SRB	N/A
C-2400	Engine	Waukesha	VHP-	5283704347	1680 hp	1680 hp	12/1/2014	NSCR-2400	20200253	✓ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	4SRB	N/A
			L7044GSI		,	1	> 7/1/2010	C-2400		☐ To Be Modified ☐ To be Replaced		
C-1110	Engine	Caterpillar	G3606	JFE01238	1875 hp	1875 hp	>7/1/2010	OxCat-1110 C-1110	20200254	 ✓ Existing (unchanged) □ New/Additional □ To be Removed □ Replacement Unit □ To be Replaced 	4SLB	N/A
							>7/1/2010	OxCat-1120		☑ Existing (unchanged) ☐ To be Removed		
C-1120	Engine	Caterpillar	G3606	JFE01236	1875 hp	1875 hp	>7/1/2010	C-1120	20200254	 □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 	4SLB	N/A
							>7/1/2010	OxCat-1130		☑ Existing (unchanged) □ To be Removed		
C-1130	Engine	Caterpillar	G3606	JFE01241	1875 hp	1875 hp	>7/1/2010	C-1130	20200254	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	N/A
							>7/1/2010	OxCat-1140		☑ Existing (unchanged) ☐ To be Removed		
C-1140	Engine	Caterpillar	G3606	JFE01260	1875 hp	1875 hp	>7/1/2010	C-1140	20200254	 □ New/Additional □ To Be Modified □ To be Replaced 	4SLB	N/A
							>7/1/2010	OxCat-1150		☑ Existing (unchanged) ☐ To be Removed		
C-1150	Engine	Caterpillar	G3606	JFE01259	1875 hp	1875 hp	>7/1/2010	C-1150	20200254	 □ New/Additional □ To Be Modified □ To be Replaced 	4SLB	N/A
							>7/1/2010	OxCat-1160		✓ Existing (unchanged) □ To be Removed		
C-1160	Engine	Caterpillar	G3606	TBD	1875 hp	1875 hp	>7/1/2010	C-1160	20200254	 □ New/Additional □ To Be Modified □ To be Replaced 	4SLB	N/A
							>7/1/2010	OxCat-1170		✓ Existing (unchanged) □ To be Removed		
C-1170	Engine	Caterpillar	G3606	TBD	1875 hp	1875 hp	>7/1/2010	C-1170	20200254	 New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 	4SLB	N/A
							>7/1/2010	OxCat-1180		□ To be Modified □ To be Removed □ To be Removed		
C-1180	Engine	Caterpillar	G3606	TBD	1875 hp	1875 hp	>7/1/2010	C-1180	20200254	 New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 	4SLB	N/A
WL2-FL &										-		
WL2-FL	Process Flare and	Zeeco	UFX-12-45	N/A	65 scf/hr Pilot	65 scf/hr Pilot	2015	N/A	31000205	✓ Existing (unchanged)✓ To be Removed✓ Replacement Unit	N/A	N/A
Blowdown	Blowdown Flaring				Pilot	Pilot	>1/2016	WL2-FL		☐ To Be Modified ☐ To be Replaced		
WL1-FL &	Process Flare and		AFDS-		55 scf/hr	55 scf/hr	2020	N/A		☑ Existing (unchanged) ☐ To be Removed		
WL1-FL Blowdown	Blowdown Flaring	Zeeco	10D/30-60	N/A	Pilot	Pilot	>1/2014	WL1-FL	31000205	 □ New/Additional □ Replacement Unit □ To be Replaced 	N/A	N/A
					25	25	2015	HTR-803		✓ Existing (unchanged) □ To be Removed		
DEHY-803	TEG Dehydrator	KWI	N/A	1480588-C	MMSCFD	MMSCFD	>1/2014	HTR-803	31000227	 □ New/Additional □ Replacement Unit □ To be Replaced 	N/A	N/A
					3.5	3.5	2014	HTR-804		✓ Existing (unchanged) □ To be Removed		
DEHY-804	TEG Dehydrator	KWI	N/A	280115-C	MMSCFD	MMSCFD	>1/2014	HTR-804	31000227	 New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 	N/A	N/A
					35	35	2015	WL2-FL		✓ Existing (unchanged) □ To be Removed		
DEHY-EG	EG Dehydrator	Valerus	N/A	N/A	MMSCFD	MMSCFD	>1/2016	WL2-FL	31000227	 New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 	N/A	N/A
					65	65	2018	HTR-805		□ To be Modified □ To be Removed □ To be Removed	+	
DEHY-805	TEG Dehydrator	KWI	N/A	100146-C	MMSCFD	MMSCFD	>1/2014	HTR-805	31000227	☐ New/Additional ☐ Replacement Unit	N/A	N/A
							TBD	HTR-1505		 □ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed 		
DEHY-1505	TEG Dehydrator	KWI	N/A	N/A	80 MMSCFD	80 MMSCFD	>1/2014	HTR-1505	31000227	☐ New/Additional ☐ Replacement Unit	N/A	N/A
							2015	N/A		 □ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed 		
HTR-803	DEHY 803 Reboiler	FLAMECO	SB18-12	1406-92M	0.5 MMBtu/hr	0.5 MMBtu/hr	>1/2014	HTR-803	31000228	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
					0.125	0.125	2015	N/A		☑ Existing (unchanged) ☐ To be Removed		
HTR-804	DEHY-804 Reboiler	KWI	N/A	1580717-0	MMBtu/hr	MMBtu/hr	2015	HTR-804	31000228	 □ New/Additional □ To Be Modified □ To be Replaced 	N/A	N/A
11000 000	D C	Heat Recovery	37/4	37/1	2.0	2.0	2013	N/A	21000707	☑ Existing (unchanged) ☐ To be Removed	27/	37//
HTR-802	Regen Gas Heater	Corp.	N/A	N/A	MMBtu/hr	MMBtu/hr	N/A	HTR-802	31000404	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
11mb 007	DEIII/ 007 F : "	ET ALCESS	areas so	1001 520	1.5	1.5	N/A	N/A	21000773	☑ Existing (unchanged) ☐ To be Removed	37/	77/4
HTR-805	DEHY-805 Reboiler	FLAMECO	SB36-18	1801-620	MMBtu/hr	MMBtu/hr	>1/2014	HTR-805	31000228	 □ New/Additional □ To Be Modified □ To be Replaced 	N/A	N/A
	I	l					. 1, 4011			- 10 De modified - 10 de Replaced		

					Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #			RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack#	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
HTR-1505	DEHY-1505 Reboiler	TBD	TBD	TBD	1.5 MMBtu/hr	1.5 MMBtu/hr	N/A >1/2014	N/A HTR-1505	31000228	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
HTR-730	Hot Oil Heater	Heatec	HCI-5010- 30	HI14-167	6.83 MMBtu/hr	6.83 MMBtu/hr	2/2015 >1/2016	N/A HTR-730	31000404	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
WL1-TK601	Condensate Tank	N/A	N/A	N/A	210 bbl	210 bbl	>8/23/2011	WL1-VRU / WLCS-VRU	40400311	✓ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
WL1-TK602	Condensate Tank	N/A	N/A	N/A	210 bbl	210 bbl	>8/23/2011 >8/23/2011	N/A WL1-VRU / WLCS-VRU	40400311	□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
WB1 111002	Condensate Tunk		1771		210 001	210 001	>8/23/2011 >8/23/2011	N/A WL1-VRU /	10 100511	☐ To Be Modified ☐ To be Replaced ☑ Existing (unchanged) ☐ To be Removed	1,11	1771
WL1-TK603	Condensate Tank	N/A	N/A	N/A	210 bbl	210 bbl	>8/23/2011	WLCS-VRU N/A	40400311	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
WL2-TK8101	Condensate Tank	N/A	N/A	N/A	400 bbl	400 bbl	>9/18/2015 >9/18/2015	WL2-VRU N/A	40400311	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
WL2-TK8102	Condensate Tank	N/A	N/A	N/A	400 bbl	400 bbl	>9/18/2015 >9/18/2015	WL2-VRU N/A	40400311	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
WLCS-TK2301	Condensate Tank	N/A	N/A	N/A	400 bbl	400 bbl	>9/18/2015	WL1-VRU / WLCS-VRU N/A	40400311	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
WLCS-TK2302	Condensate Tank	N/A	N/A	N/A	400 bbl	400 bbl	>9/18/2015 >9/18/2015	WL1-VRU / WLCS-VRU N/A	40400311	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
WLCS-TK2303	Condensate Tank	N/A	N/A	N/A	400 bbl	400 bbl	>9/18/2015 >9/18/2015 >9/18/2015	WL1-VRU / WLCS-VRU N/A	40400311		N/A	N/A
WLCS-TK2304	Condensate Tank	N/A	N/A	N/A	400 bbl	400 bbl	>9/18/2015 >9/18/2015	WL1-VRU / WLCS-VRU N/A	40400311		N/A	N/A
ATM LOAD	Atmospheric Loading	N/A	N/A	N/A	791400 bbl/yr	791400 bbl/yr	N/A N/A	N/A N/A N/A	40600197	⊠ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
NGL LOAD	NGL Loading	N/A	N/A	N/A	54,750,000 gal/yr	54,750,000 gal/yr	N/A N/A	N/A N/A	40600197	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
FUG-1	Willow Lake Plant 1 - Fugitive emissions	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	31000220	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
FUG-2	Willow Lake Plant 2 and Willow Lake Compressor Station - Fugitive emissions	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	31000220	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
PIGGING	Pig Receiver and Launcher	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	31000211	 ✓ Existing (unchanged) □ New/Additional □ To be Removed □ Replacement Unit □ To be Replaced 	N/A	N/A
SSM/M	Startup, Shutdown, Maintenance, and Malfunction	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	31088811	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) **OR Exempted Equipment** (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/apb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/air-quality/air-quality-title-v-operating-permits-guidance-page/. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Omt Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Fiece of Equipment, Check Onc
NGL-1	NGL Pressurized Bullet Tank	TBD	TBD	90,000	20.2.72.202.B(5) NMAC	TBD	☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
NGL-1	NOL HESSUITZEU DUHET TAHK	IBD	TBD	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
NGL-2	NGL Pressurized Bullet Tank	TBD	TBD	60,000	20.2.72.202.B(5) NMAC	TBD	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
NGL-2	NOL HESSUITZEU DUHET TAHK	ТВБ	TBD	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
NGL-3	NGL Pressurized Bullet Tank	TBD	TBD	60,000	20.2.72.202.B(5) NMAC	TBD	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
NGL-3	NOL HESSUITZEU DUHET TAHK	IBD	TBD	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
NGL-4	NGL Pressurized Bullet Tank	TBD	TBD	60,000	20.2.72.202.B(5) NMAC	TBD	✓ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
NGL-4	NOL Flessuitzed Bullet Talik	TBD	TBD	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
AST-4	Methanol	Unknown	N/A	500	20.2.72.202.B(5) NMAC	TBD	
A51-4	Wedianor	Ulikilowii	N/A	gallons	N/A	TBD	☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced
AST-5	Triothylana Clysol	Unknown	N/A	520	20.2.72.202.B(2) NMAC	TBD	☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
AS1-3	Triethylene Glycol	Clikilowii	N/A	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
AST-7	Lube Oil	Unknown	N/A	500	20.2.72.202.B(2) NMAC	TBD	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
A31-7	Lube Oil	Clikilowii	N/A	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
AST-8	Antifreeze	Unknown	N/A	500	20.2.72.202.B(2) NMAC	TBD	☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
A51-6	Antineeze	Clikilowii	N/A	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
AST-9	Lube Oil	Unknown	N/A	500	20.2.72.202.B(2) NMAC	TBD	⊠ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
A31-9	Lube Oil	Clikilowii	N/A	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
AST-10	Antifreeze	Unknown	N/A	500	20.2.72.202.B(2) NMAC	TBD	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
AS1-10	Anuneeze	Clikilowii	N/A	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
AST-11	Used Oil	Unknown	N/A	540	20.2.72.202.B(2) NMAC	TBD	☐ Existing (unchanged) ☐ To be Removed ☐ Replacement Unit
A31-11	Osed Off	Clikilowii	N/A	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
AST-12	Triethylene Glycol	Unknown	N/A	500	20.2.72.202.B(2) NMAC	TBD	☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
AS1-12	Triettiyielle Giycoi	UlikilOWII	N/A	gallons	N/A	TBD	□ To Be Modified □ To be Replaced
AST-13	Emulsion Breaker	Unknown	N/A	130	20.2.72.202.B(2) NMAC	TBD	☐ Existing (unchanged) ☐ To be Removed ☐ Replacement Unit
A31-13	Emuision Breaker	UIIKIIOWII	N/A	gallons	N/A	TBD	□ To Be Modified □ To be Replaced
AST-14	Coop	Linknoven	N/A	300	20.2.72.202.B(2) NMAC	TBD	☐ Existing (unchanged) ☐ To be Removed ☐ Replacement Unit
A31-14	Soap	Unknown	N/A	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Omt Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Fiece of Equipment, Check Onc
AST-15	Degreaser	Unknown	N/A	300	20.2.72.202.B(2) NMAC	TBD	✓ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
A31-13	Degreaser	Clikilowii	N/A	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
AST-16	Compressor Oil	Unknown	N/A	500	20.2.72.202.B(2) NMAC	TBD	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
A31-10	Compressor On	Chkhowh	N/A	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
AST-17	Compressor Oil	Unknown	N/A	500	20.2.72.202.B(2) NMAC	TBD	⊠ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
ASI-I7	Compressor On	Chkhowh	N/A	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
AST-2-2	Engine Oil	Unknown	N/A	1000	20.2.72.202.B(2) NMAC	TBD	
A31-2-2	Eligilic Oli	Chkhowh	N/A	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
AST-3-2	Antifreeze	Unknown	N/A	1000	20.2.72.202.B(2) NMAC	TBD	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
A31-3-2	Antineeze	Chkhowh	N/A	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
AST-4-2	Ethylene Glycol	Unknown	N/A	500	20.2.72.202.B(2) NMAC	TBD	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
1151-4-2	Ethylene Grycor	Chkhown	N/A	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
AST-5-2	Methanol	Unknown	N/A	60	20.2.72.202.B(5) NMAC	TBD	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
1151-5-2	Wedianor	Chkhowh	N/A	bbl	N/A	TBD	☐ To Be Modified ☐ To be Replaced
AST-6-2	Waste Oil	Unknown	N/A	500	20.2.72.202.B(2) NMAC	TBD	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
1101-0-2	waste on	Chillown	N/A	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
AST-8-2	Compressor Oil	Unknown	N/A	1000	20.2.72.202.B(2) NMAC	TBD	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
1101-0-2	Compressor on	Chillown	N/A	gallons	N/A	TBD	☐ To Be Modified ☐ To be Replaced
HAUL	Unpaved Haul Road Emissions	Unknown	N/A	N/A	20.2.72.202.B(5) NMAC	TBD	✓ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
IIIIOL	Chpaved Hauf Road Emissions	Chkhown	N/A	N/A	N/A	TBD	☐ To Be Modified ☐ To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit ${\color{blue}{Number(s)}^1}$	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
OxCat-1100	Oxidation Catalyst	>6/12/2006	CO, VOC, HCHO	C-1100	64% CO, 75% VOC, 75% HCHO	Catalyst Data
NSCR-1200	Non-Selective Catalytic Reduction	>6/12/2006	NO _X , CO, VOC, HCHO	C-1200	85% NO _x , 85% CO, 60% VOC, 80% HCHO	Catalyst Data
NSCR-2300	Non-Selective Catalytic Reduction	>6/12/2006	NO _X , CO, VOC, HCHO	C-2300	92.5% NO _X , 91.3% CO, 71.4% VOC, 76% HCHO	Catalyst Data
NSCR-2400	Non-Selective Catalytic Reduction	>6/12/2006	NO _X , CO, VOC, HCHO	C-2400	92.5% NO _X , 91.3% CO, 71.4% VOC, 76% HCHO	Catalyst Data
OxCat-1110	Oxidation Catalyst	TBD	CO, VOC, HCHO	C-1110	90% CO, 50% VOC, 85% HCHO	Catalyst Data
OxCat-1120	Oxidation Catalyst	TBD	CO, VOC, HCHO	C-1120	90% CO, 50% VOC, 85% HCHO	Catalyst Data
OxCat-1130	Oxidation Catalyst	TBD	CO, VOC, HCHO	C-1130	90% CO, 50% VOC, 85% HCHO	Catalyst Data
OxCat-1140	Oxidation Catalyst	TBD	CO, VOC, HCHO	C-1140	90% CO, 50% VOC, 85% HCHO	Catalyst Data
OxCat-1150	Oxidation Catalyst	TBD	CO, VOC, HCHO	C-1150	90% CO, 50% VOC, 85% HCHO	Catalyst Data
OxCat-1160	Oxidation Catalyst	TBD	CO, VOC, HCHO	C-1160	90% CO, 50% VOC, 85% HCHO	Catalyst Data
OxCat-1170	Oxidation Catalyst	TBD	CO, VOC, HCHO	C-1170	90% CO, 50% VOC, 85% HCHO	Catalyst Data
OxCat-1180	Oxidation Catalyst	TBD	CO, VOC, HCHO	C-1180	90% CO, 50% VOC, 85% HCHO	Catalyst Data
WL2-FL	Process Flare	2016	VOC, HAP, H_2S	DEHY-EG	98%	Manufacturer Data
WL1-FL	Process Flare	TBD	VOC, HAP, H₂S	WL1-TK601 - WL1-TK603; WLCS-TK2301 - WLCS-TK2304 DEHY-803, DEHY-804, DEHY-805, DEHY-1505	98%	Manufacturer Data
WL2-VRU	Vapor Recovery Unit	TBD	VOC, HAP, H_2S	WL2-TK8101 & WL2-TK8102	95%	5% VRU Downtime
WL1-VRU	Vapor Recovery Unit	TBD	VOC, HAP, $\mathrm{H}_2\mathrm{S}$	WL1-TK601 - WL1-TK603; WLCS-TK2301 - WLCS-TK2304 DEHY-803, DEHY-804, DEHY-805, DEHY-1505	95%	5% VRU Downtime
WLCS-VRU	Vapor Recovery Unit	TBD	VOC, HAP, H ₂ S	WL1-TK601 - WL1-TK603; WLCS-TK2301 - WLCS-TK2304 DEHY-803, DEHY-804, DEHY-805, DEHY-1505	95%	5% VRU Downtime
HTR-803 ²	Dehydrator Reboiler	> 2014	VOC, HAP, H ₂ S	DEHY-803	98%	Engineering Estimate
HTR-804 ²	Dehydrator Reboiler	> 2014	VOC, HAP, H ₂ S	DEHY-804	98%	Engineering Estimate
HTR-805 ²	Dehydrator Reboiler	> 2014	VOC, HAP, H ₂ S	DEHY-805	98%	Engineering Estimate
1				1		L

List each control device on a separate line. For each control device, list all emission units controlled by the control device.

² Dehydrator flash tank emissions are routed into the reboiler fuel lines (assumed 98% DRE).

The post-condenser regenerator emissions are routed to the firebox when the reboiler is firing and glow plug when the reboiler is not firing (assumed 98% DRE).

Table 2-D: Maximum Emissions (under normal operating conditions)

☐ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

TI\$4 NI-	N(Ox	C	0	V(OC	SC	Ox	PN	\mathbf{M}^1	PM	10^1	PM	2.5 ¹	Н	$_{2}S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
C-1100	2.61	11.44	14.37	62.93	4.12	18.05	0.23	1.01	0.16	0.69	0.16	0.69	0.16	0.69	1.10E-04	4.82E-04	-	-
C-1200	56.75	248.55	39.29	172.07	2.14	9.37	0.23	0.99	0.30	1.31	0.30	1.31	0.30	1.31	1.08E-04	4.73E-04	-	-
C-2300	49.26	215.76	42.59	186.56	0.78	3.41	0.19	0.85	0.26	1.13	0.26	1.13	0.26	1.13	9.32E-05	4.08E-04	-	-
C-2400	49.26	215.76	42.59	186.56	0.78	3.41	0.19	0.85	0.26	1.13	0.26	1.13	0.26	1.13	9.32E-05	4.08E-04	-	-
C-1110	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	-	-
C-1120	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	-	-
C-1130	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	-	-
C-1140	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	-	-
C-1150	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	-	-
C-1160	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	-	-
C-1170	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	-	-
C-1180	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	-	-
WL2-FL	0.0091	0.040	0.018	0.080	-	-	0.00093	0.0041	-	-	-	-	-	-	2.32E-05	1.02E-04	-	-
WL2-FL Blowdown	-	-	-	-	-	-	-	-	-	-	-	-1	-	-	-	-	-	-
WL1-FL	0.0300	0.131	0.060	0.262	-	-	0.00304	0.0133	-	-	-	-	-	-	7.61E-05	3.33E-04	-	-
WL1-FL Blowdown	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEHY-803	-	-	-	-	82.14	359.76	-	-	-	-	-	-	-	-	9.60E-03	4.20E-02	-	-
DEHY-804	-	-	-	-	7.91	34.63	-	-	-	-	-	-	-	-	9.00E-04	3.94E-03	-	-
DEHY-EG	-	-	-	-	1.82	7.97	-	-	-	-	-	-	-	-	9.40E-03	4.12E-02	-	-
DEHY-805	-	-	-	-	176.64	773.68	-	-	-	-	-	-	-	-	2.05E-02	8.98E-02	-	-
DEHY-1505	-	-	-	-	177.06	775.50	-	-	-	-	-	-	-	-	2.04E-02	8.94E-02	-	-
HTR-803	0.049	0.21	0.041	0.18	0.0027	0.012	0.0073	0.032	0.0037	0.016	0.0037	0.016	0.0037	0.016	3.50E-06	1.53E-05	-	-
HTR-804	0.012	0.054	0.010	0.045	0.00067	0.0030	0.0018	0.0080	0.00093	0.0041	0.00093	0.0041	0.00093	0.0041	8.75E-07	3.83E-06	-	-
HTR-802	0.20	0.86	0.16	0.72	0.011	0.047	0.029	0.13	0.015	0.065	0.015	0.065	0.015	0.065	1.40E-05	6.13E-05	-	-
HTR-730	0.67	2.93	0.56	2.46	0.037	0.16	0.10	0.44	0.051	0.22	0.051	0.22	0.051	0.22	4.78E-05	2.10E-04	-	-
HTR-805	0.15	0.64	0.12	0.54	0.0081	0.035	0.022	0.096	0.011	0.049	0.011	0.049	0.011	0.049	1.05E-05	4.60E-05	-	-
HTR-1505	0.15	0.64	0.12	0.54	0.0081	0.035	0.022	0.096	0.011	0.049	0.011	0.049	0.011	0.049	1.05E-05	4.60E-05	-	-
WL1-TK601	-	-	-	-	53.28	198.22	-	-	-	-	-	-	-	-	0.0014	3.82E-03	-	-
WL1-TK602	-	-	-	-	53.28	198.22	-	-	-	-	-	-	-	-	0.0014	3.82E-03	-	-
WL1-TK603	-	-	-	-	53.28	198.22	-	-	-	-	-	-	-	-	0.0014	3.82E-03	-	-
WL2-TK8101	-	-	-	-	94.33	46.96	-	-	-	-	-	-	-	-	0.0023	9.01E-04	-	-
WL2-TK8102	-	-	-	-	94.33	46.96	-	-	-	-	-	-	-	-	0.0023	9.01E-04	-	-
WLCS-TK2301	-	-	-	-	488.81	371.48	-	-	-	-	-	-	-	-	0.016	0.0107	-	-
WLCS-TK2302	-	-	-	-	488.81	371.48	-	-	-	-	-	-	-	-	0.016	0.0107	-	-
WLCS-TK2303	-	-	-	-	488.81	371.48	-	-	-	-	-	-	-	-	0.016	1.07E-02	-	-
WLCS-TK2304	-	-	-	-	488.81	371.48	-	-	-	-	-	-	-	-	0.016	1.07E-02	-	-
ATM LOAD	-	-	-	-	93.95	84.33	-	-	-	-	-	-	-	-	0.00193	0.00237	-	-
NGL LOAD	-	-	-	-	0.0031	0.013	-	-	-	-	-	-	-	-	-	-	-	-
FUG-1	-	-	-	-	5.66	24.77	-	-	-	-	-	-	-	-	6.24E-05	2.73E-04	-	-
FUG-2	-	-	-	-	8.82	38.65	-	-	-	-	-	-	-	-	5.93E-05	2.60E-04	-	-
PIGGING	-	-	-	-	0.30	1.31	-	-	-	-	-	-	-	-	4.99E-06	2.19E-05	-	-
SSM/M	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	1.00	-	-
Totals	175.67	769.46	212.70	931.62	2882.12	4390.62	2.69	11.80	2.20	9.63	2.20	9.63	2.20	9.63	0.14	1.33	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Form Revision: 5/3/2016 Table 2-D: Page 1 Printed 5/17/2022 10:01 PM

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	N(Ox	C	О	V(OC	S	Ox	PN	\mathbf{M}^1	PM	[10 ¹	PM	2.5 ¹	Н	₂ S	Le	ead
UIII NO.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
C-1100	2.61	11.44	5.22	22.89	1.03	4.51	0.23	1.01	0.16	0.69	0.16	0.69	0.16	0.69	1.10E-04	4.82E-04		
C-1200	8.51	37.28	5.89	25.81	0.69	3.02	0.23	0.99	0.30	1.31	0.30	1.31	0.30	1.31	1.08E-04	4.73E-04		
C-2300	3.70	16.22	3.70	16.22	0.27	1.17	0.19	0.85	0.26	1.13	0.26	1.13	0.26	1.13	9.32E-05	4.08E-04		
C-2400	3.70	16.22	3.70	16.22	0.27	1.17	0.19	0.85	0.26	1.13	0.26	1.13	0.26	1.13	9.32E-05	4.08E-04		
C-1110	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04		
C-1120	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04		
C-1130	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04		
C-1140	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04		
C-1150	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04		
C-1160	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04		
C-1170	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04		
C-1180	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04		
WL2-FL	0.28	1.23	0.56	2.45	0.036	0.16	0.018	0.080	-	-	-	-	-	-	2.11E-04	9.25E-04		
WL1-FL	10.88	2.57	21.73	5.121	49.02	4.58	0.19	0.031	-	-	-	-	-	-	2.11E-03	5.30E-04		
DEHY-803	-	-	-	-	1.37	6.01	-	-	-	-	-	-	-	-	2.26E-04	9.88E-04		
DEHY-804	-	-	-	-	0.13	0.58	-	-	-	-	-	-	-	-	2.16E-05	9.46E-05		
DEHY-EG	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
DEHY-805	-	-	-	-	2.94	12.90	-	-	-	-	-	-	-	-	4.80E-04	2.10E-03		
DEHY-1505	-	-	-	-	0.43	1.88	-	-	-	-	-	-	-	-	2.09E-04	9.13E-04		
HTR-803	0.049	0.21	0.041	0.18	0.0027	0.012	0.0073	0.032	0.0037	0.016	0.0037	0.016	0.0037	0.016	3.50E-06	1.53E-05		
HTR-804	0.012	0.054	0.010	0.045	0.00067	0.0030	0.0018	0.0080	0.00093	0.0041	0.00093	0.0041	0.00093	0.0041	8.75E-07	3.83E-06		
HTR-802	0.20	0.86	0.16	0.72	0.011	0.047	0.029	0.13	0.015	0.065	0.015	0.065	0.015	0.065	1.40E-05	6.13E-05		
HTR-730	0.67	2.93	0.56	2.46	0.037	0.16	0.10	0.44	0.051	0.22	0.051	0.22	0.051	0.22	4.78E-05	2.10E-04		
HTR-805	0.15	0.64	0.12	0.54	0.0081	0.035	0.022	0.096	0.011	0.049	0.011	0.049	0.011	0.049	1.05E-05	4.60E-05		
HTR-1505	0.15	0.64	0.12	0.54	0.0081	0.035	0.022	0.096	0.011	0.049	0.011	0.049	0.011	0.049	1.05E-05	4.60E-05		
WL1-TK601	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
WL1-TK602	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
WL1-TK603	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
WL2-TK8101	-	-	-	-	94.33	2.35	-	-	-	-	-	-	-	-	0.0023	4.51E-05		
WL2-TK8102	-	-	-	-	94.33	2.35	1	-	-	ı	-	1	-	1	0.0023	4.51E-05		
WLCS-TK2301	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
WLCS-TK2302	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
WLCS-TK2303	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
WLCS-TK2304	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
ATM LOAD	-	-	-	-	39.54	2.73	-	-	-	-	-	-	-	-	6.35E-05	5.34E-05		
NGL LOAD	-	-	-	-	0.0031	0.013	-	-	-	-	-	-	-	-	-	-		
FUG-1	-	-	-	-	5.66	24.77	-	-	-	-	-	-	-	-	6.24E-05	2.73E-04		
FUG-2	-	-	-	-	8.82	38.65	-	-	-	-	-	-	-	-	5.93E-05	2.60E-04		
Totals	47.45	162.73	49.11	125.07	304.734	132.49	2.90	11.89	2.20	9.63	2.20	9.63	2.20	9.63	0.009	0.012		

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

☐ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	NO	Ox	C	0	VO	OC	S	Ox	PI	\mathbf{M}^2	PM	10^2	PM	(2.5^2)	\mathbf{H}_{2}	$_{2}S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
WL2-FL Blowdown	110.23	2.87	220.06	5.72	159.39	4.14	0.41	0.011	ı	1	-	-	-	-	4.49E-03	1.17E-04	ı	-
WL1-FL Blowdown	9.17	0.24	18.31	0.48	13.26	0.34	0.034	0.00089	1	-	-	-	-	-	3.74E-04	9.71E-06	1	-
PIGGING	=	ı	-	1	0.30	1.31	-	-	ı	-	-	-	-	-	4.99E-06	2.19E-05	1	-
SSM/M	-	1	-	ı	-	10.00	-	-	ı	-	-	-	-	-	-	1.00	-	-
	110.15	- 10			1=2.05	1=00		0.010							4.0== 6.5	1.00		
Totals	119.40	3.10	238.36	6.20	172.95	15.80	0.45	0.012	-	-	-	-	-	-	4.87E-03	1.00	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

☑ I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	C	0	V	OC	SO	Ox	P	M	PM	I 10	PM	12.5	\Box H ₂ S or	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
						N/A - Th	e facility doe	s not have a	ny special sta	acks.							,
	Totals:																

Form Revision: 5/3/2016 Table 2-G: Page 1 Printed 5/17/2022 10:01 PM

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
C-1100	C-1100	Vertical	No	40	857	269.1	N/A	N/A	123.33	3.33
C-1200	C-1200	Vertical	No	20	1177	162.9	N/A	N/A	74.67	1.67
C-2300	C-2300	Vertical	No	23	1152	123.3	N/A	N/A	115.29	1.92
C-2400	C-2400	Vertical	No	23	1152	123.3	N/A	N/A	115.29	1.92
C-1110	C-1110	Vertical	No	29	835	203.6	N/A	N/A	93.30	2.40
C-1120	C-1120	Vertical	No	29	835	203.6	N/A	N/A	93.30	2.40
C-1130	C-1130	Vertical	No	29	835	203.6	N/A	N/A	93.30	2.40
C-1140	C-1140	Vertical	No	29	835	203.6	N/A	N/A	93.30	2.40
C-1150	C-1150	Vertical	No	29	835	203.6	N/A	N/A	93.30	2.40
C-1160	C-1160	Vertical	No	45	835	203.6	N/A	N/A	93.30	2.40
C-1170	C-1170	Vertical	No	60	835	203.6	N/A	N/A	93.30	2.40
C-1180	C-1180	Vertical	No	14	835	203.6	N/A	N/A	93.30	2.40
WL2-FL*	WL2-FL	Vertical	No	45	1832	N/A	N/A	N/A	65.60	21.68
WL1-FL*	WL1-FL	Vertical	No	60	1832	N/A	N/A	N/A	65.60	9.80
HTR-803	HTR-803	Vertical	No	14	600	3.5	N/A	N/A	4.39	1.00
HTR-804	HTR-804	Vertical	No	11	600	0.9	N/A	N/A	4.41	0.50
HTR-802	HTR-802	Vertical	Yes	19	600	13.8	N/A	N/A	25.51	0.83
HTR-805	HTR-805	Vertical	Yes	23	600	10.4	N/A	N/A	9.68	1.17
HTR-1505	HTR-1505	Vertical	Yes	17	600	10.4	N/A	N/A	5.86	1.50
HTR-730	HTR-730	Vertical	Yes	16	600	47.2	N/A	N/A	15.01	2.00

^{*} Flare diameters are effective diameters used in the air dispersion modeling. Supporting calculations are included in the Excel workbook submitted in conjunction with this application.

Form Revision: 5/3/2016 Table 2-H: Page 1 Printed 5/17/2022 10:01 PM

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total l	HAPs	Formaldehyd HAP or		Acetalo	-	1	olein or 🗆 TAP	Meth ☑ HAP 0		n-He ☑ HAP (exane or TAP	Pollutar	nt Name or TAP		nt Name or TAP		ant Name
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
C-1100	C-1100	0.43	1.90	0.21	0.91	0.10	0.44	0.062	0.27	0.030	0.13	0.013	0.059						
C-1200	C-1200	0.35	1.51	0.17	0.73	0.043	0.19	0.041	0.18	0.047	0.21	-	-						
C-2300	C-2300	0.20	0.87	0.044	0.19	0.037	0.16	0.035	0.15	0.041	0.18	-	-						
C-2400	C-2400	0.20	0.87	0.044	0.19	0.037	0.16	0.035	0.15	0.041	0.18	-	-						
C-1110	C-1110	0.29	1.27	0.12	0.54	0.074	0.32	0.045	0.20	0.022	0.097	0.0098	0.043						
C-1120	C-1120	0.29	1.27	0.12	0.54	0.074	0.32	0.045	0.20	0.022	0.097	0.0098	0.043						
C-1130	C-1130	0.29	1.27	0.12	0.54	0.074	0.32	0.045	0.20	0.022	0.097	0.0098	0.043						
C-1140	C-1140	0.29	1.27	0.12	0.54	0.074	0.32	0.045	0.20	0.022	0.097	0.0098	0.043						
C-1150	C-1150	0.29	1.27	0.12	0.54	0.074	0.32	0.045	0.20	0.022	0.097	0.0098	0.043						
C-1160	C-1160	0.29	1.27	0.12	0.54	0.074	0.32	0.045	0.20	0.022	0.097	0.0098	0.043						
C-1170	C-1170	0.29	1.27	0.12	0.54	0.074	0.32	0.045	0.20	0.022	0.097	0.0098	0.043						
C-1180	C-1180	0.29	1.27	0.12	0.54	0.074	0.32	0.045	0.20	0.022	0.097	0.0098	0.043						
WL2-FL	WL2-FL	7.82E-04	0.0034	-	-	-	-	-	-	-	-	-	-						
WL2-FL	WL2-FL Blowdown	21.73	0.56	-	-	-	-	-	-	-	-	-	-						
WL1-FL	WL1-FL	2.14	0.13	-	-	-	-	-	-	-	-	-	-						
WL1-FL	WL1-FL Blowdown	1.81	0.047	-	-	-	-	-	-	-	-	-	-						
DEHY-803	DEHY-803	0.092	0.40	-	-	-	-	-	-	-	-	0.052	0.23						
DEHY-804	DEHY-804	0.0089	0.039	-	-	-	-	-	-	-	-	0.0050	0.022						
DEHY-EG	DEHY-EG	-	-	-	-	-	-	-	-	-	-	-	-						
DEHY-805	DEHY-805	0.20	0.87	-	-	-	-	-	-	-	-	0.11	0.49						
DEHY-1505	DEHY-1505	0.079	0.34	-	-	-	-	-	-	-	-	0.018	0.080						
HTR-803	HTR-803	9.22E-04	0.0040	3.68E-05	1.61E-04	-	-	-	-	-	-	8.82E-04	3.86E-03						
HTR-804	HTR-804	2.30E-04	0.0010	9.19E-06	4.03E-05	-	-	-	-	-	-	2.21E-04	9.66E-04						
HTR-802	HTR-802	0.0037	0.016	1.47E-04	6.44E-04	-	-	-	-	-	-	0.0035	0.015						
HTR-730	HTR-730	0.013	0.055	5.02E-04	2.20E-03	-	-	-	-	-	-	0.012	0.053						
HTR-805	HTR-805	0.0028	0.012	1.10E-04	4.83E-04	-	-	-	-	-	-	0.0026	0.012						
HTR-1505	HTR-1505	0.0028	0.012	1.10E-04	4.83E-04	-	-	-	-	-	-	0.0026	0.012						
WL1-FL	WL1-TK601	-	-	-	-	-	-	-	-	-	-	-	-						
WL1-FL	WL1-TK602	-	-	-	-	-	-	-	-	-	-	-	-						
WL1-FL	WL1-TK603	-	-	-	-	-	-	-	-	-	-	-	-						
WL2-TK8101	WL2-TK8101	1.88	0.059	-	-	-	-	-	-	-	-	1.51	0.047						
WL2-TK8102	WL2-TK8102	1.88	0.059	-	-	-	-	-	-	-	-	1.51	0.047						
WL1-FL	WLCS-TK2301	-	-	-	-	-	-	-	-	-	-	-	-						
WL1-FL	WLCS-TK2302	-	-	-	-	-	-	-	-	-	-	-	-						
WL1-FL	WLCS-TK2303	-	-	-	-	-	-	-	-	-	-	-	-						
WL1-FL	WLCS-TK2304	-	-	-	-	-	-	-	-	-	-	-	-						
N/A	ATM LOAD	1.26	0.09	-	-	-	-	-	-	-	-	1.00	0.08						
N/A	NGL LOAD	-	-	-	-	-	-	-	-	-	-	-	-						
N/A	FUG-1	0.35	1.53	-	-	-	-	-	-	0.033	0.14	-	-						
N/A	FUG-2	0.88	3.85	-	-	-	-	-	-	0.35	1.55	-	-						
N/A	PIGGING	0.012	0.055	-	-	-	-	-	-	-	-	-	-						
N/A	SSM/M	-	1.00	-	-	-	-	-	-	-	-	-	-						
Totals:		35.82	24.42	1.46	6.37	0.81	3.54	0.54	2.34	0.72	3.17	4.31	1.49						

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Specia	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage (MScf/hr)	Annual Usage (MMScf/yr)	% Sulfur (gr/100 scf)	% Ash
C-1100	Natural Gas	Pipeline Quality Natural Gas	1020	15.40	134.93	5	N/A
C-1200	Natural Gas	Pipeline Quality Natural Gas	1020	15.13	132.50	5	N/A
C-2300	Natural Gas	Pipeline Quality Natural Gas	1020	13.04	114.26	5	N/A
C-2400	Natural Gas	Pipeline Quality Natural Gas	1020	13.04	114.26	5	N/A
ENG-1	Natural Gas	Pipeline Quality Natural Gas	1020	13.90	121.74	5	N/A
ENG-2	Natural Gas	Pipeline Quality Natural Gas	1020	13.90	121.74	5	N/A
ENG-3	Natural Gas	Pipeline Quality Natural Gas	1020	13.90	121.74	5	N/A
ENG-4	Natural Gas	Pipeline Quality Natural Gas	1020	13.90	121.74	5	N/A
ENG-5	Natural Gas	Pipeline Quality Natural Gas	1020	13.90	121.74	5	N/A
ENG-6	Natural Gas	Pipeline Quality Natural Gas	1020	13.90	121.74	5	N/A
ENG-7	Natural Gas	Pipeline Quality Natural Gas	1020	13.90	121.74	5	N/A
ENG-8	Natural Gas	Pipeline Quality Natural Gas	1020	13.90	121.74	5	N/A
WL2-FL	Natural Gas	Pipeline Quality Natural Gas, Process Gas	1020	0.065	0.57	5	N/A
WL1-FL	Natural Gas	Pipeline Quality Natural Gas, Process Gas	1020	0.213	1.87	5	N/A
HTR-803	Natural Gas	Pipeline Quality Natural Gas, Process Gas	1020	0.49	4.29	5	N/A
HTR-804	Natural Gas	Pipeline Quality Natural Gas, Process Gas	1020	0.12	1.07	5	N/A
HTR-802	Natural Gas	Pipeline Quality Natural Gas, Process Gas	1020	1.96	17.18	5	N/A
HTR-730	Natural Gas	Pipeline Quality Natural Gas, Process Gas	1020	6.70	58.66	5	N/A
HTR-805	Natural Gas	Pipeline Quality Natural Gas, Process Gas	1020	1.47	12.88	5	N/A
HTR-1505	Natural Gas	Pipeline Quality Natural Gas, Process Gas	1020	1.47	12.88	5	N/A

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
WL1-TK601	40400311	Condensate and Produced Water	Condensate and Produced Water	6.2	37.8	65.9	11.4	74.7	11.4
WL1-TK602	40400311	Condensate and Produced Water	Condensate and Produced Water	6.2	37.8	65.9	11.4	74.7	11.4
WL1-TK603	40400311	Condensate and Produced Water	Condensate and Produced Water	6.2	37.8	65.9	11.4	74.7	11.4
WL2-TK8101	40400311	Condensate and Produced Water	Condensate and Produced Water	7.2	38.1	63.3	11.7	70.5	11.7
WL2-TK8102	40400311	Condensate and Produced Water	Condensate and Produced Water	7.2	38.1	63.3	11.7	70.5	11.7
WLCS-TK2301	40400311	Condensate and Produced Water	Condensate and Produced Water	7.2	48.5	65.8	11.3	74.7	11.3
WLCS-TK2302	40400311	Condensate and Produced Water	Condensate and Produced Water	7.2	48.5	65.8	11.3	74.7	11.3
WLCS-TK2303	40400311	Condensate and Produced Water	Condensate and Produced Water	7.2	48.5	65.8	11.3	74.7	11.3
WLCS-TK2304	40400311	Condensate and Produced Water	Condensate and Produced Water	7.2	48.5	65.8	11.3	74.7	11.3

Form Revision: 5/3/2016 Table 2-K: Page 1 Printed 5/17/2022 10:01 PM

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored		Roof Type (refer to Table 2-	Сар	acity	Diameter (m)	Vapor Space		C olor Table VI-C)	Paint Condition (from Table	Annual Throughput	Turn- overs
			LR below)	LR below)	(bbl)	(m ³)		(m)	Roof	Shell	VI-C)	(gal/yr)	(per year)
WL1-TK601	>8/23/2011	Condensate and Produced Water	N/A	FX	210	33	3.0	2.3	Tan	Tan	New	1,839,600	208.57
WL1-TK602	>8/23/2011	Condensate and Produced Water	N/A	FX	210	33	3.0	2.3	Tan	Tan	New	1,839,600	208.57
WL1-TK603	>8/23/2011	Condensate and Produced Water	N/A	FX	210	33	3.0	2.3	Tan	Tan	New	1,839,600	208.57
WL2-TK8101	>9/15/2015	Condensate and Produced Water	N/A	FX	400	64	3.7	3.0	White	White	New	420,000	25.00
WL2-TK8102	>9/15/2015	Condensate and Produced Water	N/A	FX	400	64	3.7	3.0	White	White	New	420,000	25.00
WLCS-TK2301	>9/15/2015	Condensate and Produced Water	N/A	FX	400	64	3.7	3.0	Tan	Tan	New	6,720,000	400.00
WLCS-TK2302	>9/15/2015	Condensate and Produced Water	N/A	FX	400	64	3.7	3.0	Tan	Tan	New	6,720,000	400.00
WLCS-TK2303	>9/15/2015	Condensate and Produced Water	N/A	FX	400	64	3.7	3.0	Tan	Tan	New	6,720,000	400.00
WLCS-TK2304	>9/15/2015	Condensate and Produced Water	N/A	FX	400	64	3.7	3.0	Tan	Tan	New	6,720,000	400.00
										1			

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

		1 1				
Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Riveted	Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG : Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}^3$	= 42.0 gal				BL : Black]
					OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Materi	al Processed		Material Produced						
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)			
Inlet Gas	Natural Gas	Gas	135 MMSCFD	Residue Gas	Natural Gas	Gas	135 MMSCFD			
				Condensate	Mixed Hydrocarbons	Liquid	395700 bbl/yr			
				Produced Water	Mixed Hydrocarbons and Water	Liquid	395700 bbl/yr			
				NGL	Natural Gas Liquids	Liquid	54750000 gal/yr			
						_				

Crestwood New Mexico Pipeline LLC Willow Lake Gas Processing Plant May 2022, Revision 0

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
			N/A - No CEM equip	oment is located at the	facility.				

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time				
	N/A - No parametric emissions measurement equipment is located at the facility.											

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit.

Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²				Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3					
C-1100	mass GHG	10092.43	0.015	0.15						10092.59	
C-1100	CO ₂ e	10092.43	4.52	3.79							10100.74
C-1200	mass GHG	7904.77	0.015	0.15						7904.93	
C-1200	CO ₂ e	7904.77	4.44	3.72							7912.93
C-2300	mass GHG	6816.39	0.013	0.13						6816.54	
C-2300	CO ₂ e	6816.39	3.83	3.21							6823.43
C-2400	mass GHG	6816.39	0.013	0.13						6816.54	
C-2400	CO ₂ e	6816.39	3.83	3.21							6823.43
C-1110	mass GHG	7268.18	0.014	0.14						7268.33	
C-1110	CO ₂ e	7268.18	4.08	3.42							7275.68
C-1120	mass GHG	7268.18	0.014	0.14						7268.33	
C 1120	CO ₂ e	7268.18	4.08	3.42							7275.68
C-1130	mass GHG	7268.18	0.014	0.14						7268.33	
0 1100	CO ₂ e	7268.18	4.08	3.42							7275.68
C-1140	mass GHG	7268.18	0.014	0.14						7268.33	
	CO ₂ e	7268.18	4.08	3.42							7275.68
C-1150	mass GHG	7268.18	0.014	0.14						7268.33	
	CO ₂ e	7268.18	4.08	3.42						52.50.22	7275.68
C-1160	mass GHG	7268.18	0.014	0.14						7268.33	7077 (0
	CO ₂ e	7268.18	4.08	3.42						72.60.22	7275.68
C-1170	mass GHG	7268.18	0.014	0.14						7268.33	7075 (6)
	CO ₂ e	7268.18	4.08	3.42						72.60.22	7275.68
C-1180	mass GHG	7268.18	0.014	0.14						7268.33	7275 (8
	CO ₂ e	7268.18	4.08	3.42						1007.14	7275.68
WL2-FL	mass GHG	1007.12	0.002	0.02						1007.14	1000.16
	CO ₂ e	1007.12	0.57	0.47							1008.16

WL2-FL Blowdown	mass GHG	2431.15	0.005	0.05					2431.20	
WL2-FL Blowdown	CO ₂ e	2431.15	1.36	1.14						2433.66
WL1-FL	mass GHG	2662.93	0.005	0.05					2662.98	
WLI-FL	CO ₂ e	2662.93	1.50	1.25						2665.68
WL1-FL Blowdown	mass GHG	202.27	0.000	0.00					202.28	
WLI-FL Diowdowii	CO ₂ e	202.27	0.11	0.10						202.48
DEHY-803	mass GHG	7.34	-	10.30					17.64	
DEIT1-003	CO ₂ e	7.34	-	257.46						264.80
DEHY-804	mass GHG	0.70	-	0.99					1.70	
DE111-004	CO ₂ e	0.70	-	24.76						25.46
DEHY-EG	mass GHG	-	-	-					-	
DEITT-EG	CO ₂ e	-	-	-						-
DEHY-805	mass GHG	15.76	-	22.12					37.87	
DEIT1-003	CO ₂ e	15.76	-	552.91						568.67
DEHY-1505	mass GHG	2.27	•	1.30					3.56	
DEII1-1303	CO ₂ e	2.27	-	32.38						34.64
HTR-803	mass GHG	256.18	0.000	0.00					256.19	
111K-003	CO ₂ e	256.18	0.14	0.12						256.44
HTR-804	mass GHG	64.04	0.000	0.00					64.05	
H1K-004	CO ₂ e	64.04	0.04	0.03						64.11
HTR-802	mass GHG	1024.72	0.002	0.02					1024.74	
111K-002	CO ₂ e	1024.72	0.58	0.48						1025.78
HTR-730	mass GHG	3499.75	0.007	0.07					3499.82	
111K-750	CO ₂ e	3499.75	1.97	1.65						3503.36
HTR-805	mass GHG	768.54	0.001	0.01					768.56	
H1K-005	CO ₂ e	768.54	0.43	0.36						769.33
HTR-1505	mass GHG	768.54	0.001	0.01					768.56	
111K-1303	CO ₂ e	768.54	0.43	0.36						769.33
WL1-TK601	mass GHG	-	-	-						
W L1-1 K001	CO ₂ e	-	-	-						
WL1-TK602	mass GHG	-	-	-						
WL1-1K0U2	CO ₂ e	-	-	-						

	mass GHG	_	_	_	1	1	1		l	
WL1-TK603	CO ₂ e	_	_	_						
	mass GHG		-	0.25					0.26	
WL2-TK8101	CO ₂ e	0.00	-	6.36					0.20	6.36
	mass GHG	0.00	_	0.25					0.26	0.50
WL2-TK8102	CO ₂ e	0.00	_	6.36					0.20	6.36
	mass GHG	-	-	-						0.50
WLCS-TK2301	CO ₂ e	_	_	_						
	mass GHG	-	_	_						
WLCS-TK2302	CO ₂ e	_	-	-						
	mass GHG	_	_	_						
WLCS-TK2303	CO ₂ e	_	-	_						
	mass GHG	-	_	-						
WLCS-TK2304	CO ₂ e	-	=	-						
	mass GHG	0.17	-	1.80					1.97	
ATM LOAD	CO ₂ e	0.17	-	45.09						45.26
	mass GHG	0.61	-	48.18					48.79	
FUG-1	CO ₂ e	0.61	-	1204.46						1205.08
EVIC A	mass GHG	0.50	-	39.05					39.56	
FUG-2	CO ₂ e	0.50	-	976.27						976.78
DICCINC	mass GHG	0.01	-	8.56					8.57	
PIGGING	CO ₂ e	0.01	=	213.96						213.97
CCMANA	mass GHG	-	-	-					-	
SSM/M	CO ₂ e	-	-	-						-
Total	mass GHG	79912.07	0.15	84.79					102622.90	
Total	CO ₂ e	79912.07	43.70	2119.83						105911.69

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

 $^{^2}$ For $\,$ HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **Process Summary** shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Application Summary: Crestwood New Mexico Pipeline LLC (Crestwood) owns and operates the Willow Lake Gas Processing Plant (Willow Lake), which is currently permitted under NSR 5142-M8. With the issuance of NSR 5142-M7 the facility exceeded the Title V operating thresholds and therefore Crestwood is submitting this initial Title V application pursuant 20.2.70.300.(B).2 NMAC within 12 months after the source commences operation as a Part 70 Source.

This Title V application seeks to incorporate the following NSR permitting actions:

Summary of Permitting Actions to be Incorporated

	Actions to be incorporated
Permit Date Issued Application Type	Changes
NSR # 2/11/2022 NSR Significant Revision	 Add three (3) natural gas-fired Caterpillar G3606 4SLB compressor engines rated at 1875 hp and associated compressors (Units C-1160 through C- 1180); Add one (1) 400 bbl produced water/condensate tank associated with the compressor station (Unit WLCS- TK2304); Add one (1) Triethylene Glycol dehydration unit rated at 80 MMSCFD (Unit DEHY-1505) and one (1) associated 1.5 MMBtu/hr reboiler (Unit HTR-1505); A thorough review of emission calculations was completed for all existing units and pertinent updates were made as applicable. These include the following: Updating formaldehyde control efficiency for existing compressor engines based on updated catalyst guarantees (Units C-2300 and C-2400, C-1110 through C-1150); Revising WL1-FL calculations to account for truck loading vapors from WL1 and WLCS tanks as well as flash tank vapors from the dehydration units (Units DEHY-803, DEHY-804, DEHY-805, and DEHY- 1505) in the event flash gas is not burned as fuel, and VRU is out of service for maintenance; Revising WL Compressor Station tank and

NSR # 5142-M7	2/3/2022*	NSR Administrative Revision	 WLCS-TK2301 through WLCS-TK2303, and ATM LOAD); Updating fugitive component counts and separating fugitive components based on federal regulatory applicability (Units FUG-1 and FUG-2) and estimated component increases; Updating unit numbering from ENG-1 through ENG-5 to C-1110 through C-1150; Updating control device numbering on engines from C-1 through C-9 to Oxcat-1100, NSCR-1200, NSCR-2300, NSCR-2400 and OxCat-1110 through OxCat-1150. Like-kind engine replacement of Unit C-2400.
NSR # 5142-M7	9/14/2021*	NSR Administrative Revision	Updated fugitive piping components for additional pumps installed for facility discharge pipeline.
NSR # 5142-M7	12/24/2020	NSR Significant Revision	 Add five (5) natural gas-fired Caterpillar G3606 4SLB compressor engines rated at 1875 hp and associated compressors (Units ENG-1 through ENG-5); Add three (3) 400 bbl produced water/condensate tanks at Willow Lake 1 associated with the new compressor station (Units WLCS-TK2301 through WLCS-TK2303); Revise existing reboiler representation from one (1) 0.75 MMBtu/hr unit to one (1) existing 0.5 MMBtu/hr reboiler (Unit HTR-803); and one (1) 0.125 MMBtu/hr reboiler (Unit HTR-804); Add One (1) process flare at Willow Lake 1 (Unit WL1-FL); Increase the capacity of one (1) triethylene glycol (TEG) dehydrator (Unit DEHY-805) to 65 MMscf/day; Update facility-wide fugitive emissions to take into account new equipment (Unit FUG); Addition of new miscellaneous equipment/emission sources including: Pig Receivers and Launchers (Unit PIGGING), Slug Catcher, Filters, Scrubbers and Compressor Blowdowns (Units WL1-FL Blowdown and WL2-FL Blowdown); A thorough review of emission calculations was completed for all existing units and pertinent updates were made as applicable. These include the following: Updating HAP calculation methodology from GRI HAPCalc to AP-42 for all engines and heaters/reboilers (Units C-1100, C-1200, C-2300 and C-2400, ENG-1 through ENG-5, HTR-803, HTR-804, HTR-802, HTR-805, HTR-730) Updating Willow Lake 2 flare destruction efficiency from 95% to 98% (Unit WL2-FL); Updating Willow Lake 2 flare destruction efficiency from 95% to 98% (Unit WL2-FL); Updating tank calculation methodology form E&P Tanks to BR&E ProMax (Units WL1-TK601 through WL1-TK603, WL2-TK8101 and WL2-TK8102); Updating condensate loading methodology to

1	C	·
		BR&E ProMax (Unit ATM LOAD);
	0	Updating haul road inputs to NMED's most
		recent default values for silt content and wet
		days (Unit HAUL);
	0	Updated liquids and gas analyses; and
	0	Conservative addition of 4 ppm H ₂ S to
		existing fuel gas and facility gas and liquid

analyses.

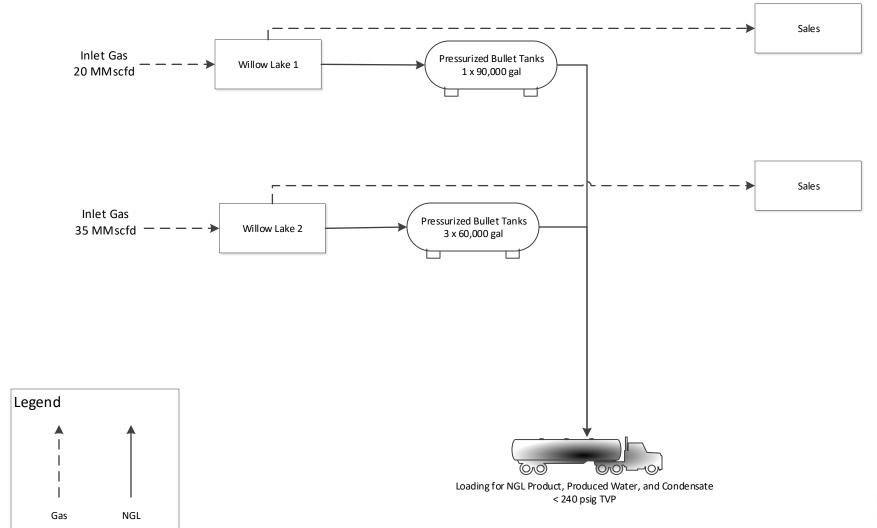
Willow Lake Gas Processing Plant

May 2022 & Revision 0

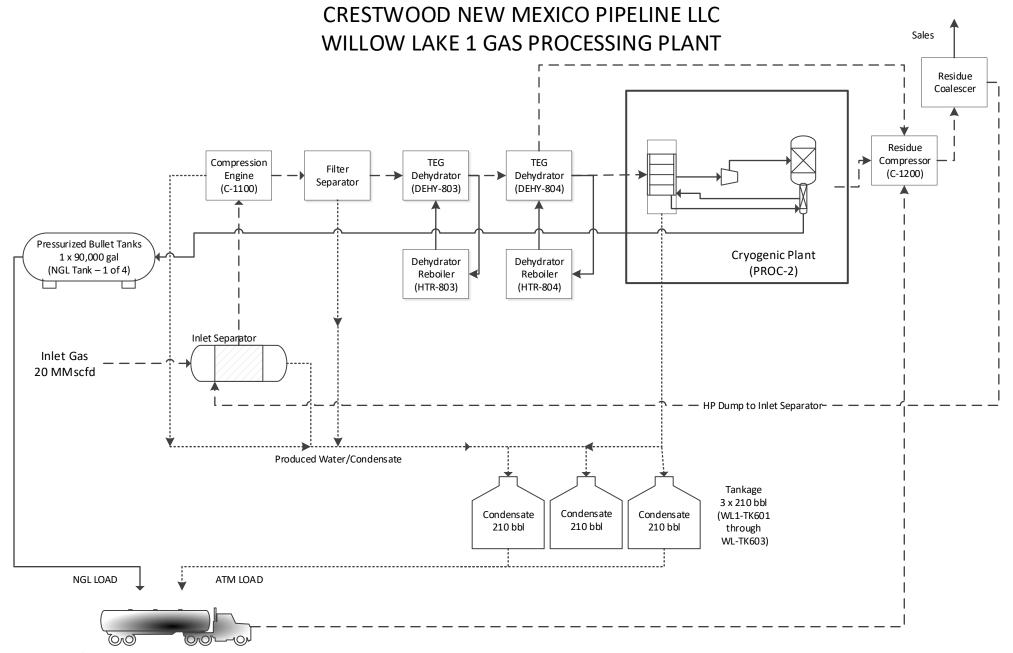
Crestwood New Mexico Pipeline LLC

^{*} The date listed for the administrative revisions is the date the application was submitted to the NMED. Per the New Mexico Administrative Code (NMAC), "the administrative permit revision is effective upon receipt of the notification by the department (20.2.72.219.A(3) NMAC)).

Section 4

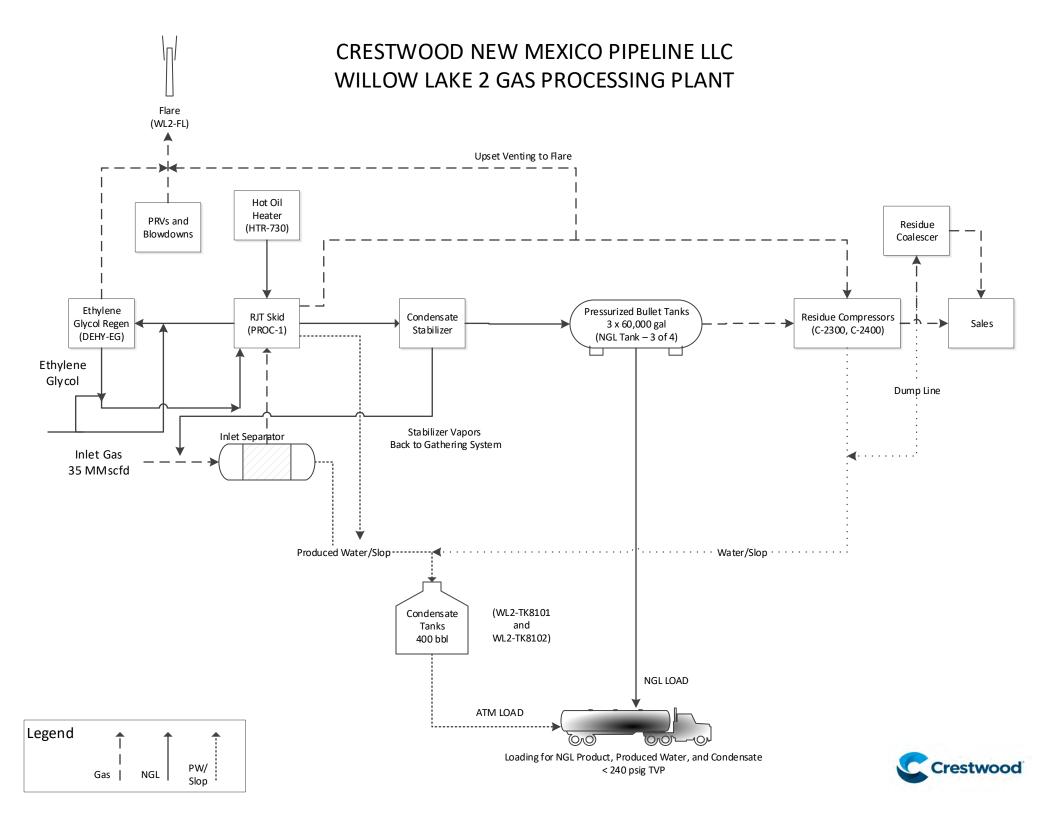

Process Flow Sheet

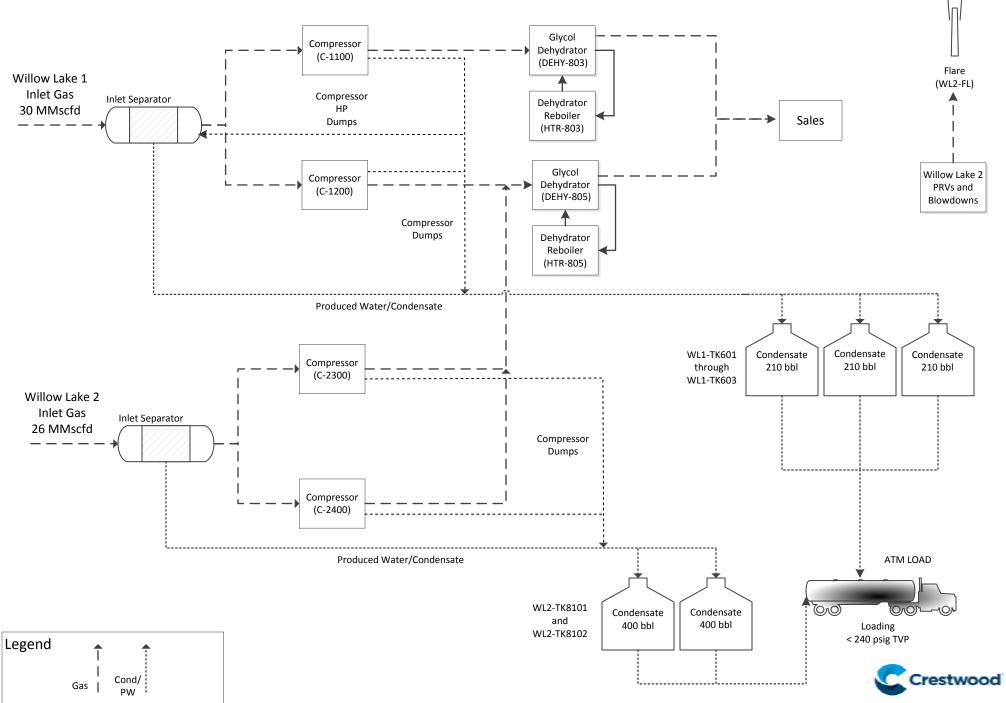
A <u>process flow sheet</u> and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

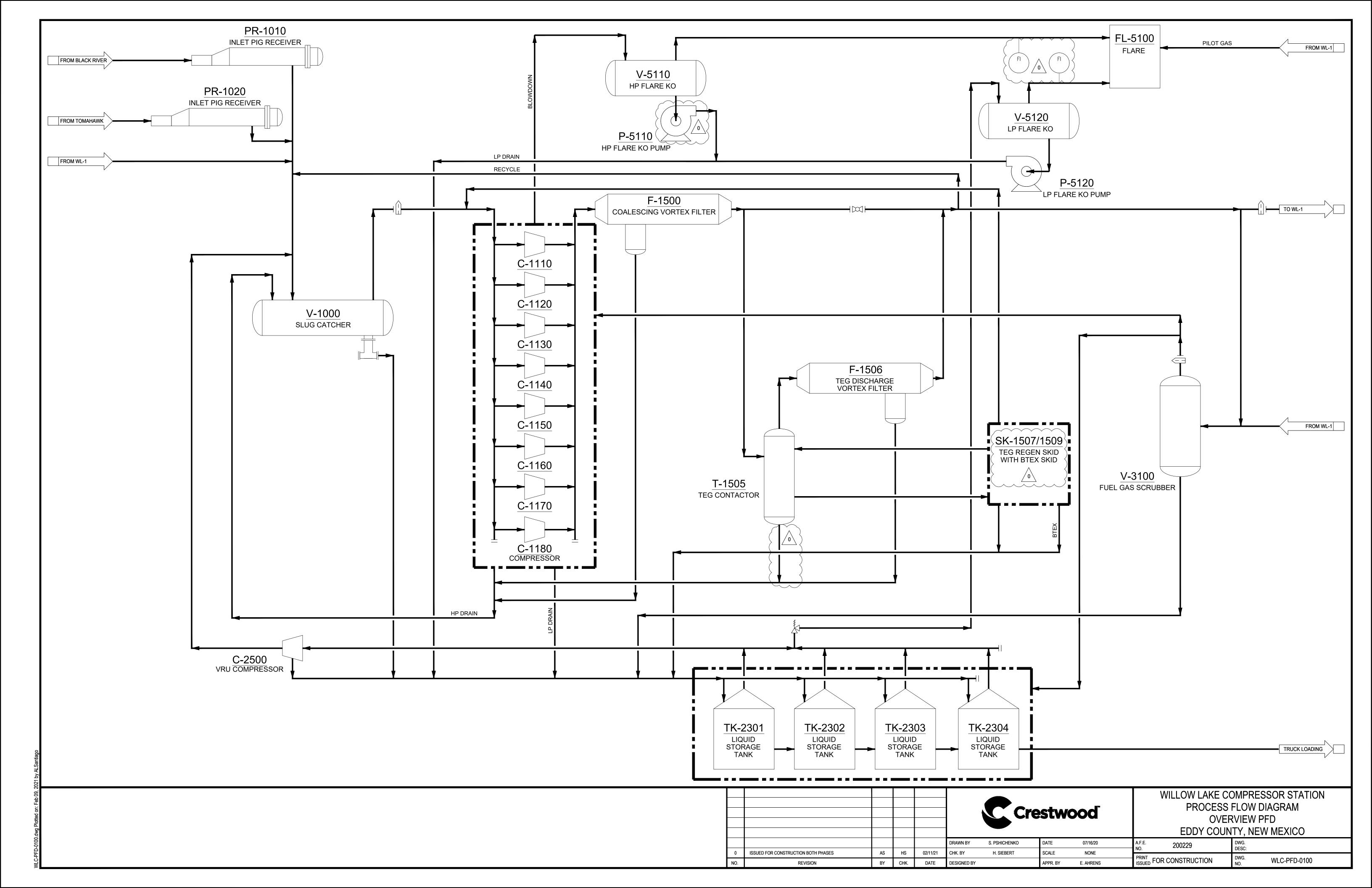

Process flow diagrams are attached.

Form-Section 4 last revised: 8/15/2011 Section 4, Page 1 Saved Date: 5/17/2022

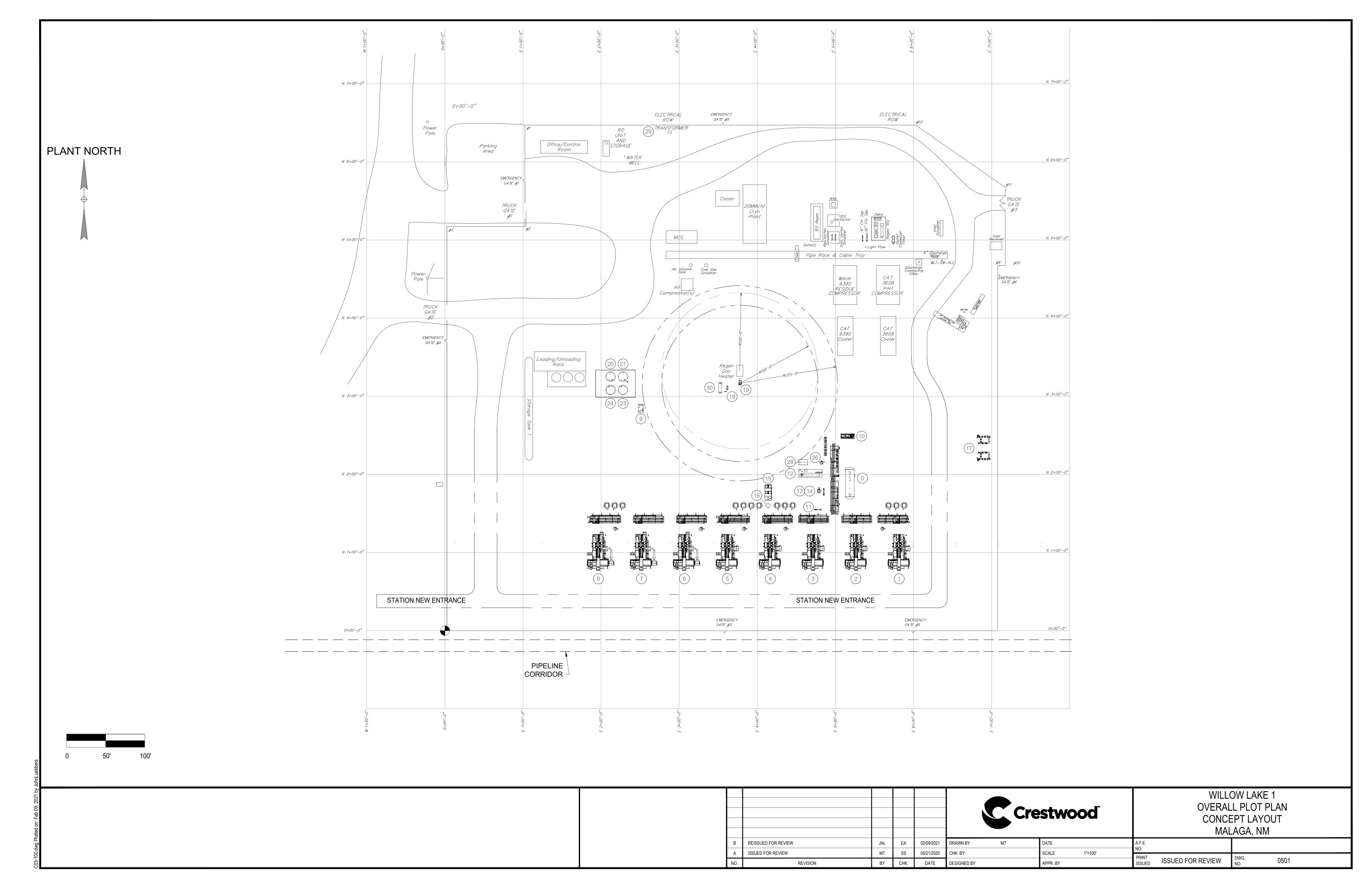
CRESTWOOD NEW MEXICO PIPELINE LLC WILLOW LAKE GAS PROCESSING PLANT




Loading for NGL Product, Produced Water, and Condensate < 240 psig TVP



CRESTWOOD NEW MEXICO PIPELINE LLC WILLOW LAKE 1 AND 2 AS COMPRESSOR STATION

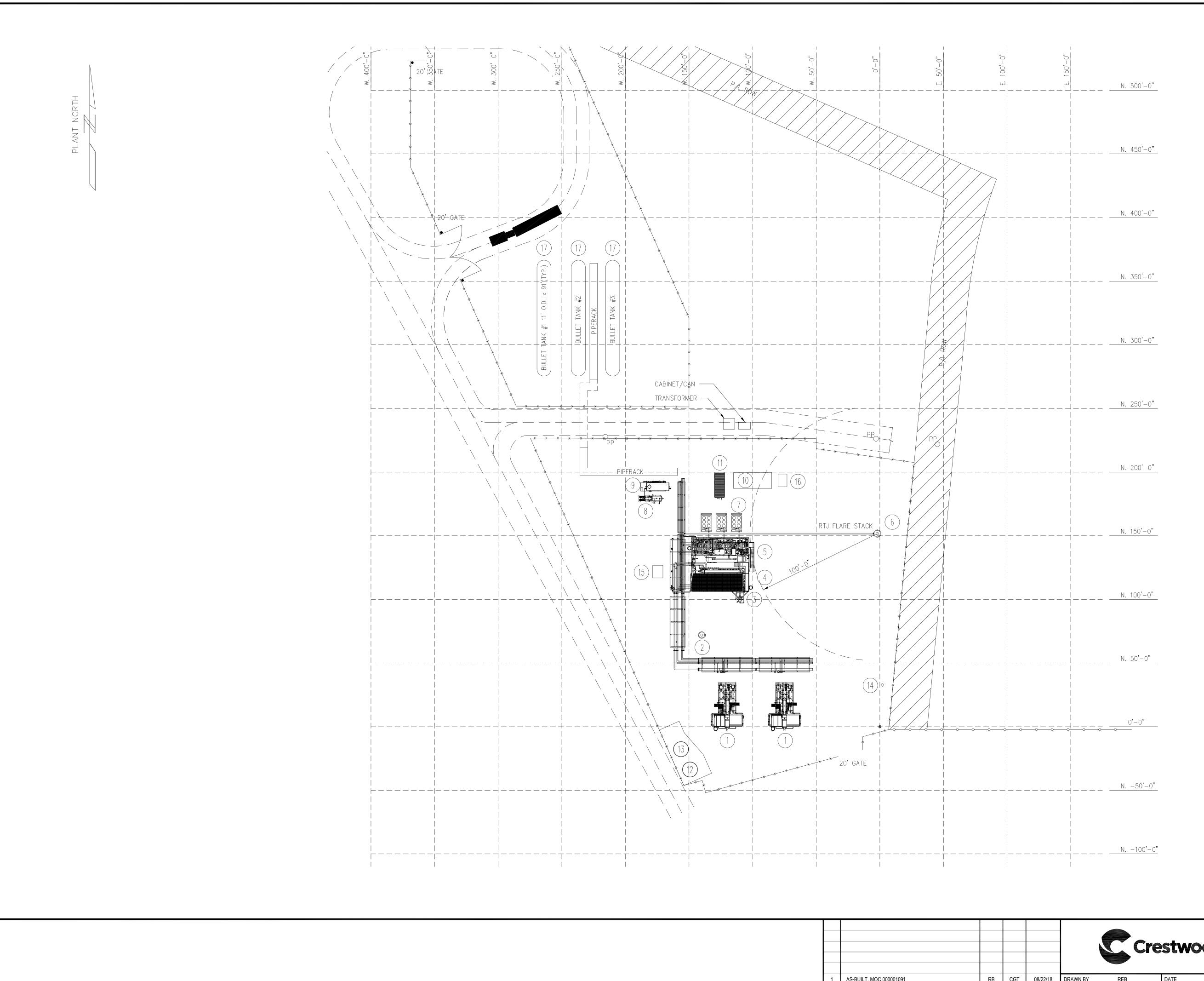

Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A facility plot plan is attached.

Form-Section 5 last revised: 8/15/2011 Section 5, Page 1 Saved Date: 5/17/2022



EQUIPMENT LEGEND

- ① PIG RECEIVERS
- 1 SLUG CATCHER
- 2 INLET COMPRESSOR
- ③ INLET COMPRESSOR
- 4 INLET COMPRESSOR
- (5) INLET COMPRESSOR
- 6 INLET COMPRESSOR
- 7 INLET COMPRESSOR
- 8 INLET COMPRESSOR
- 9 INLET COMPRESSOR
- (10) COALESCING VORTEX FILTER
- 11) TEG REGENERATION SKID
- 12 TEG CONTACTOR
- 13 TEG AFTER SCRUBBER
- 14) BTEX SKID
- (15) GAS DISCHARGE METER SKID
- (16) INSTRUMENT AIR COMPRESSOR
- 17) INSTRUMENT AIR RECEIVER
- 18) FUEL GAS SKID (SCRUBBER)
- 19 TRANSFORMER
- ② LP FLARE DRUM PUMP
- (21) HP FLARE KO DRUM & PUMP
- 22) FL-5100 FLARE
- 23 LIQUID TANK
- ②4) LIQUID TANK
- 25 LIQUID TANK
- 26 LIQUID TANK
- 27) VRU

					Cre	estwood	WILLOW LAKE 1 PLOT PLAN LEGEND CONCEPT LAYOUT MALAGA, NM	
В	REISSUED FOR REVIEW	JAL	EA	02/10/2021	DRAWN BY MT	DATE	A.F.E.	
Α	ISSUED FOR REVIEW	MT	SS	05/21/2020	CHK. BY	SCALE 1"=100'	PRINT ICCUED FOR DEVIEW DWG. 0502	
NO.	REVISION	BY	CHK.	DATE	DESIGNED BY	APPR. BY	PRINT ISSUED FOR REVIEW DWG. NO. 0502	

ted on: Feb 10, 2021 by JohnLuebb:

ITEM	EQUIPMENT DESCRIPTION
1	Compressor
2	Inlet Separator
3	Process Skid #1
4	Process Skid #2
5	Process Skid #3
6	Flare "
7	Hycon Oil Coolers
8	Hot Oil Pump Skid
9	Hot Oil Heater
10	MCC Building
11	Instrument Air
12	Slop Tank #1
13	Slop Tank #2
14	Coalescing Filter
15	Building
16	Switchboard
17	Bullet Tank

						restwood	WILLOW LAKE GAS OVERALL SITE MALAGA, N	PLAN
1	AS-BUILT, MOC 000001091	RB	CGT	08/22/18	DRAWN BY REB	DATE 12/03/15	A.F.E.	
0	RECORD DRAWING	EFA	GJS	02/22/17	CHK. BY	SCALE NTS	NO.	
NO.	REVISION	BY	CHK.	DATE	DESIGNED BY	APPR. BY	PRINT DWG. NO.	0501

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

- **B.** At least 5 significant figures shall be retained in all intermediate calculations.
- C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:
 - (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
 - (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
 - (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
 - (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

Form-Section 6 last revised: 5/3/16 Section 6, Page 1 Saved Date: 5/17/2022

Crestwood New Mexico Pipeline LLC Willow Lake Gas Processing Plant

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Emission calculations are attached.

Compressor Engines (Units C-1100, C-1200, C-2300, C-2400, and C-1110 through C-1180)

Manufacturer and catalyst data was used to calculate engine NO_X, CO, VOC, and HCHO emissions. Emission factors from AP-42 Tables 3.2-1 and 2 were used to calculate PM and all other HAP emissions. A fuel gas sulfur content of 5 gr/100 scf was assumed to calculated SO₂ emissions and a fuel gas hydrogen sulfide content of 0.25 gr/100 scf was used to calculate H₂S emissions.

Glycol Dehydrators (Units DEHY-803, DEHY-804, DEHY-EG, DEHY-805, DEHY-1505)

GRI GlyCalc 4.0 was used to calculate emissions from TEG and EG Dehydrators. A recent representative gas analysis (dated 5/28/2020) was used along with design specifications from facility engineers. 40 CFR 98 Subpart A was used to calculate GHG emissions.

Heaters and Reboilers (Units HTR-802, HTR-803, HTR-804, HTR-805, HTR-730, HTR-1505)

Heater and reboiler emissions were calculated using emission factors from AP-42 Tables 1.4-1, 1.4-2, and 1.4-3. GHG emissions were calculated using emission factors and GWPs in 40 CFR 98 Subparts A and C.

Fugitive Components (Units FUG-1 and FUG-2)

Fugitive component emissions were calculated using emission factors from Table 2-4 of EPA Protocol for Equipment Leak Emission Estimates (1995). A representative gas analysis (dated 5/28/2020) and liquid compositions calculated using BR&E ProMax was used in these calculations.

Storage Tanks (Units WL1-TK601 through WL1-TK603, WL2-TK8101 and WL2-TK8102, WLCS-TK2301 to WLCS-TK2304)

Tanks emission calculations were performed using BR&E ProMax using a condensate liquid analysis (dated 5/28/2020). WLCS tank emissions were based on an updated pressurized condensate analysis (dated 8/19/2021).

Condensate Loading (Unit ATM LOAD)

Condensate loading emission calculations were performed using BR&E ProMax using a condensate liquid analysis dated 5/28/2020. Loading vapors associated with WL1 and WLCS are routed to a flare (WL1-FL), while loading vapors associated with WL2 are uncontrolled.

Natural Gas Liquid Loading (Unit NGL LOAD)

NGL loading emissions were calculated using loading hose dimensions, volumes, and throughputs. Physical properties of NGLs were estimated.

Unpaved Haul Road (Unit HAUL)

Haul road emissions were calculated in accordance with AP-42 Section 13.2.2.3, liquid density and production rates and truck volume capacities and weights. Haul roads are exempt pursuant to 20.2.72.202.B(5) NMAC.

Process Flares (Units WL1-FL and WL2-FL)

Process flare emissions were calculated with tank, loading and dehydrator emissions and properties from BR&E ProMax, GRI GlyCalc 4.0, and TNRCC RG-109 emission factors.

Miscellaneous Equipment (Units WL1-FL Blowdown, WL2-FL Blowdown, PIGGING)

Engineer estimates for blowdown volumes and frequency were used to calculated engine blowdown emissions. A gas analysis dated 05/28/2020 and a residue gas analysis were used to estimate blowdown gas composition. Flaring emissions were calculated using TNRCC RG-109 emission factors. Pig receiver and launcher emissions were calculated using estimated component volumes and a facility inlet gas analysis (dated 2/17/2020).

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

- 1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.
- **2.** GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 Mandatory Greenhouse Gas Reporting.
- 3. Emissions from routine or predictable start up, shut down, and maintenance must be included.
- **4.** Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **short** tons per year and represent each emission unit's Potential to Emit (PTE).
- **5.** All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.
- **6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009
 or most recent version.
- Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 Mandatory Greenhouse Reporting requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Crestwood New Mexico Pipeline LLC Willow Lake Gas Processing Plant

Maximum Uncontrolled Emissions

Unit	N	O _x	C	0	vo	Cs	S	02	TS	SP.	PN	1 ₁₀	PN	1 _{2.5}	Н	₂ S	CO ₂ e
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
C-1100	2.61	11.44	14.37	62.93	4.12	18.05	0.23	1.01	0.16	0.69	0.16	0.69	0.16	0.69	1.10E-04	4.82E-04	10100.74
C-1200	56.75	248.55	39.29	172.07	2.14	9.37	0.23	0.99	0.30	1.31	0.30	1.31	0.30	1.31	1.08E-04	4.73E-04	7912.93
C-2300	49.26	215.76	42.59	186.56	0.78	3.41	0.19	0.85	0.26	1.13	0.26	1.13	0.26	1.13	9.32E-05	4.08E-04	6823.43
C-2400	49.26	215.76	42.59	186.56	0.78	3.41	0.19	0.85	0.26	1.13	0.26	1.13	0.26	1.13	9.32E-05	4.08E-04	6823.43
C-1110	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
C-1120	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
C-1130	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
C-1140	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
C-1150	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
C-1160	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
C-1170	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
C-1180	2.07	9.05	9.09	39.83	2.03	8.87	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
WL2-FL	0.0091	0.040	0.018	0.080	-	-	9.29E-04	4.07E-03	-	_	-	_	-	_	2.32E-05	1.02E-04	-
WL2-FL Blowdown	-	-	-	-	-	-	-	-	-	_	-	_	-	_	-	_	-
WL1-FL	0.0300	0.131	0.060	0.262	-	-	0.00304	0.0133	-	_	-	_	-	_	7.61E-05	3.33E-04	-
WL1-FL Blowdown	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-	_	-
DEHY-803	-	-	-	-	82.14	359.76	-	-	-	_	-	_	-	_	9.60E-03	4.20E-02	10733.76
DEHY-804	-	_	-	-	7.91	34.63	-	-	-	-	-	-	-	-	9.00E-04	3.94E-03	1032.26
DEHY-EG	-	-	-	_	1.82	7.97	-	-	-	_	-	_	-	_	9.40E-03	4.12E-02	156.76
DEHY-805	-	_	-	-	176.64	773.68	-	-	-	-	-	-	-	-	2.05E-02	8.98E-02	23051.90
DEHY-1505	-	-	-	_	177.06	775.50	-	-	-	_	-	_	-	_	2.04E-02	8.94E-02	23117.48
HTR-803	0.049	0.21	0.041	0.18	0.0027	0.012	0.0073	0.032	0.0037	0.016	0.0037	0.016	0.0037	0.016	3.50E-06	1.53E-05	256.44
HTR-804	0.012	0.054	0.010	0.045	0.00067	0.0030	0.0018	0.0080	0.00093	0.0041	0.00093	0.0041	0.00093	0.0041	8.75E-07	3.83E-06	64.11
HTR-802	0.20	0.86	0.16	0.72	0.011	0.047	0.029	0.13	0.015	0.065	0.015	0.065	0.015	0.065	1.40E-05	6.13E-05	1025.78
HTR-730	0.67	2.93	0.56	2.46	0.037	0.16	0.10	0.44	0.051	0.22	0.051	0.22	0.051	0.22	4.78E-05	2.10E-04	3503.36
HTR-805	0.15	0.64	0.12	0.54	0.0081	0.035	0.022	0.096	0.011	0.049	0.011	0.049	0.011	0.049	1.05E-05	4.60E-05	769.33
HTR-1505	0.15	0.64	0.12	0.54	0.0081	0.035	0.022	0.096	0.011	0.049	0.011	0.049	0.011	0.049	1.05E-05	4.60E-05	769.33
WL1-TK601	-	-	-	_	53.28	198.22	-	-	-	_	-	_	-	_	1.37E-03	3.82E-03	555.69
WL1-TK602	-	-	-	_	53.28	198.22	-	-	-	_	-	_	-	_	1.37E-03	3.82E-03	555.69
WL1-TK603	-	-	-	-	53.28	198.22	-	-	-	_	-	_	-	_	1.37E-03	3.82E-03	555.69
WL2-TK8101	-	_	-	-	94.33	46.96	-	-	-	-	-	-	-	-	2.32E-03	9.01E-04	127.22
WL2-TK8102	-	-	-	_	94.33	46.96	-	-	-	_	-	_	-	_	2.32E-03	9.01E-04	127.22
WLCS-TK2301	-	_	-	-	488.81	371.48	-	-	-	-	-	-	-	-	1.60E-02	1.07E-02	510.06
WLCS-TK2302	-	-	-	_	488.81	371.48	-	-	-	_	-	_	-	_	1.60E-02	1.07E-02	510.06
WLCS-TK2303	-	_	-	-	488.81	371.48	-	_	_	_	_	_	-	_	1.60E-02	1.07E-02	510.06
WLCS-TK2304	-	-	-	-	488.81	371.48	-	-	-	-	-	-	-	-	1.60E-02	1.07E-02	510.06
ATM LOAD	-	-	-	-	93.95	84.33	-	-	-	_	_	-	_	-	1.93E-03	2.37E-03	45.26
NGL LOAD	-	-	-	-	0.0031	0.013	-	-	-	_	_	-	_	-	-		-
FUG-1	-	-	-	-	5.66	24.77	-	-	-	_	_	-	_	-	6.24E-05	2.73E-04	1205.08
FUG-2	-	-	-	-	8.82	38.65	_	_	-	_	_	_	_	_	5.93E-05	2.60E-04	976.78
PIGGING	_	_	_	_	0.30	1.31	_	_	_	_	_	_	_	_	4.99E-06	2.19E-05	213.97
SSM/M	-	-	-	-	-	10.00	_	_	-	_	_	_	_	_	-	1.00	-
Totals	175.67	769.46	212.70	931.62	2882.12	4390.62	2.69	11.80	2,20	9.63	2.20	9.63	2.20	9.63	0.14	1.33	160749.29

Willow Lake Gas Processing Plant

Maximum Controlled Emissions

Unit	N	O _x	С	0	vo	Cs	S	O ₂	TS	SP	PN	N ₁₀	PN	1 _{2.5}	Н	₂ S	CO ₂ e
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
C-1100	2.61	11.44	5.22	22.89	1.03	4.51	0.23	1.01	0.16	0.69	0.16	0.69	0.16	0.69	1.10E-04	4.82E-04	10100.74
C-1200	8.51	37.28	5.89	25.81	0.69	3.02	0.23	0.99	0.30	1.31	0.30	1.31	0.30	1.31	1.08E-04	4.73E-04	7912.93
C-2300	3.70	16.22	3.70	16.22	0.27	1.17	0.19	0.85	0.26	1.13	0.26	1.13	0.26	1.13	9.32E-05	4.08E-04	6823.43
C-2400	3.70	16.22	3.70	16.22	0.27	1.17	0.19	0.85	0.26	1.13	0.26	1.13	0.26	1.13	9.32E-05	4.08E-04	6823.43
C-1110	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
C-1120	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
C-1130	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
C-1140	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
C-1150	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
C-1160	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
C-1170	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
C-1180	2.07	9.05	0.91	3.98	0.72	3.17	0.21	0.91	0.14	0.62	0.14	0.62	0.14	0.62	9.93E-05	4.35E-04	7275.68
WL2-FL	0.28	1.23	0.56	2.45	0.036	0.16	0.018	0.080	-	-	-	-	-	-	2.11E-04	9.25E-04	1008.16
WL2-FL Blowdown	110.23	2.87	220.06	5.72	159.39	4.14	0.41	0.011	-	-	-	-	-	-	4.49E-03	1.17E-04	2433.66
WL1-FL	10.88	2.57	21.73	5.12	49.02	4.58	0.19	0.031	-	-	-	-	-	-	2.11E-03	5.30E-04	2665.68
WL1-FL Blowdown	9.17	0.24	18.31	0.48	13.26	0.34	0.034	0.00089	-	-	-	-	-	-	3.74E-04	9.71E-06	202.48
DEHY-803	-	-	-	-	1.37	6.01	-	-	-	-	-	-	-	-	2.26E-04	9.88E-04	264.80
DEHY-804	-	-	-	-	0.13	0.58	-	-	-	-	-	-	-	-	2.16E-05	9.46E-05	25.46
DEHY-EG	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEHY-805	-	-	-	-	2.94	12.90	-	-	-	-	-	-	-	-	4.80E-04	2.10E-03	568.67
DEHY-1505	-	-	-	-	0.43	1.88	-	-	-	-	-	-	-	-	2.09E-04	9.13E-04	34.64
HTR-803	0.049	0.21	0.041	0.18	0.0027	0.012	0.0073	0.032	0.004	0.016	0.004	0.016	0.0037	0.016	3.50E-06	1.53E-05	256.44
HTR-804	0.012	0.054	0.010	0.045	0.00067	0.0030	0.0018	0.0080	0.00093	0.0041	0.00093	0.0041	0.00093	0.0041	8.75E-07	3.83E-06	64.11
HTR-802	0.20	0.86	0.16	0.72	0.011	0.047	0.029	0.13	0.015	0.065	0.015	0.065	0.015	0.07	1.40E-05	6.13E-05	1025.78
HTR-730	0.67	2.93	0.56	2.46	0.037	0.16	0.10	0.44	0.051	0.22	0.051	0.22	0.05	0.22	4.78E-05	2.10E-04	3503.36
HTR-805	0.15	0.64	0.12	0.54	0.0081	0.035	0.022	0.096	0.011	0.049	0.011	0.049	0.011	0.049	1.05E-05	4.60E-05	769.33
HTR-1505	0.15	0.64	0.12	0.54	0.0081	0.035	0.022	0.096	0.011	0.049	0.011	0.049	0.011	0.049	1.05E-05	4.60E-05	769.33
WL1-TK601	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL1-TK602	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL1-TK603	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL2-TK8101	-	-	-	-	94.33	2.35	-	-	-	-	-	-	-	-	2.32E-03	4.51E-05	6.36
WL2-TK8102	-	-	-	-	94.33	2.35	-	-	-	-	-	-	-	-	2.32E-03	4.51E-05	6.36
WLCS-TK2301	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WLCS-TK2302	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WLCS-TK2303	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WLCS-TK2304	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ATM LOAD	-	-	-	-	39.54	2.73	-	-	-	-	-	-	-	-	6.35E-05	5.34E-05	45.26
NGL LOAD	-	-	-	-	0.0031	0.013	-	-	-	-	-	-	-	-	-	-	-
FUG-1	-	-	-	-	5.66	24.77	-	-	-	-	-	-	-	-	6.24E-05	2.73E-04	1205.08
FUG-2	-	-	-	-	8.82	38.65	-	-	-	-	-	-	-	-	5.93E-05	2.60E-04	976.78
PIGGING	-	-	-	-	0.30	1.31	-	-	-	-	-	-	-	-	4.99E-06	2.19E-05	213.97
SSM/M	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	1.00	-
Totals	166.85	165.84	287.48	131.27	477.69	148.29	3.35	11.91	2.20	9.63	2.20	9.63	2.20	9.63	0.014	1.01	105911.69

Willow Lake Gas Processing Plant

Maximum Uncontrolled HAP Em	issions																			
Unit	HCI	но	Acetal	dehyde	Acro	olein	Metl	hanol	Tolu	iene	Ethylb	enzene	Xyl	enes	Ben	zene	n-He	xane	Tota	l HAPs
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C-1100	0.83	3.63	0.13	0.58	8.08E-02	3.54E-01	3.93E-02	1.72E-01	6.41E-03	2.81E-02	6.24E-04	2.73E-03	2.89E-03	1.27E-02	6.91E-03	3.03E-02	1.74E-02	7.64E-02	1.12	4.92
C-1200	0.83	3.63	0.043	0.19	4.06E-02	1.78E-01	4.72E-02	2.07E-01	8.61E-03	3.77E-02	3.83E-04	1.68E-03	3.01E-03	1.32E-02	2.44E-02	1.07E-01	-	-	1.01	4.42
C-2300	0.19	0.81	0.037	0.16	3.50E-02	1.53E-01	4.07E-02	1.78E-01	7.42E-03	3.25E-02	3.30E-04	1.45E-03	2.59E-03	1.14E-02	2.10E-02	9.21E-02	-	-	0.34	1.49
C-2400	0.19	0.81	0.037	0.16	3.50E-02	1.53E-01	4.07E-02	1.78E-01	7.42E-03	3.25E-02	3.30E-04	1.45E-03	2.59E-03	1.14E-02	2.10E-02	9.21E-02	-	-	0.34	1.49
C-1110	0.83	3.62	0.12	0.52	7.29E-02	3.19E-01	3.54E-02	1.55E-01	5.78E-03	2.53E-02	5.63E-04	2.46E-03	2.61E-03	1.14E-02	6.24E-03	2.73E-02	1.57E-02	6.89E-02	1.09	4.78
C-1120	0.83	3.62	0.12	0.52	7.29E-02	3.19E-01	3.54E-02	1.55E-01	5.78E-03	2.53E-02	5.63E-04	2.46E-03	2.61E-03	1.14E-02	6.24E-03	2.73E-02	1.57E-02	6.89E-02	1.09	4.78
C-1130	0.83	3.62	0.12	0.52	7.29E-02	3.19E-01	3.54E-02	1.55E-01	5.78E-03	2.53E-02	5.63E-04	2.46E-03	2.61E-03	1.14E-02	6.24E-03	2.73E-02	1.57E-02	6.89E-02	1.09	4.78
C-1140	0.83	3.62	0.12	0.52	7.29E-02	3.19E-01	3.54E-02	1.55E-01	5.78E-03	2.53E-02	5.63E-04	2.46E-03	2.61E-03	1.14E-02	6.24E-03	2.73E-02	1.57E-02	6.89E-02	1.09	4.78
C-1150	0.83	3.62	0.12	0.52	7.29E-02	3.19E-01	3.54E-02	1.55E-01	5.78E-03	2.53E-02	5.63E-04	2.46E-03	2.61E-03	1.14E-02	6.24E-03	2.73E-02	1.57E-02	6.89E-02	1.09	4.78
C-1160	0.83	3.62	0.12	0.52	7.29E-02	3.19E-01	3.54E-02	1.55E-01	5.78E-03	2.53E-02	5.63E-04	2.46E-03	2.61E-03	1.14E-02	6.24E-03	2.73E-02	1.57E-02	6.89E-02	1.09	4.78
C-1170	0.83	3.62	0.12	0.52	7.29E-02	3.19E-01	3.54E-02	1.55E-01	5.78E-03	2.53E-02	5.63E-04	2.46E-03	2.61E-03	1.14E-02	6.24E-03	2.73E-02	1.57E-02	6.89E-02	1.09	4.78
C-1180	0.83	3.62	0.12	0.52	7.29E-02	3.19E-01	3.54E-02	1.55E-01	5.78E-03	2.53E-02	5.63E-04	2.46E-03	2.61E-03	1.14E-02	6.24E-03	2.73E-02	1.57E-02	6.89E-02	1.09	4.78
WL2-FL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL2-FL Blowdown	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL1-FL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL1-FL Blowdown	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEHY-803	-	-	-	-	-	-	-	-	9.08	39.78	1.23	5.39	4.87	21.32	0.15	0.66	2.59	11.33	17.92	78.47
DEHY-804	-	-	-	-	-	-	-	-	0.90	3.93	0.12	0.54	0.50	2.17	0.015	0.064	0.25	1.08	1.78	7.78
DEHY-EG	-	-	-	-	-	-	-	-	0.0047	0.021	0.0037	0.016	0.013	0.055	0.0034	0.015	0.015	0.065	0.039	0.17
DEHY-805	-	-	-	-	-	-	-	-	19.82	86.79	2.70	11.81	10.81	47.34	0.33	1.43	5.53	24.23	39.18	171.60
DEHY-1505	-	-	-	-	-	-	-	-	20.09	87.97	2.74	12.01	11.13	48.76	0.33	1.44	5.52	24.16	39.81	174.35
HTR-803	3.68E-05	1.61E-04	-	-	-	-	-	-	1.67E-06	7.30E-06	-	-	-	-	1.03E-06	4.51E-06	8.82E-04	3.86E-03	9.22E-04	4.04E-03
HTR-804	9.19E-06	4.03E-05	-	-	-	-	-	-	4.17E-07	1.83E-06	-	-	-	-	2.57E-07	1.13E-06	2.21E-04	9.66E-04	2.30E-04	1.01E-03
HTR-802	1.47E-04	6.44E-04	-	-	-	-	-	-	6.67E-06	2.92E-05	-	-	-	-	4.12E-06	1.80E-05	3.53E-03	1.55E-02	3.69E-03	1.62E-02
HTR-730	5.02E-04	2.20E-03	-	-	-	-	-	-	2.28E-05	9.97E-05	-	-	-	-	1.41E-05	6.16E-05	1.21E-02	5.28E-02	1.26E-02	5.52E-02
HTR-805	1.10E-04	4.83E-04	-	-	-	-	-	-	5.00E-06	2.19E-05	-	-	-	-	3.09E-06	1.35E-05	2.65E-03	1.16E-02	2.77E-03	1.21E-02
HTR-1505	1.10E-04	4.83E-04	-	-	-	-	-	-	5.00E-06	2.19E-05	-	-	-	-	3.09E-06	1.35E-05	2.65E-03	1.16E-02	2.77E-03	1.21E-02
WL1-TK601	-	-	-	-	-	-	-	-	0.10	0.500	6.38E-03	3.42E-02	4.00E-02	2.15E-01	5.59E-02	2.65E-01	0.82	3.95	1.02	4.96
WL1-TK602	-	-	-	-	-	-	-	-	0.10	0.500	6.38E-03	3.42E-02	4.00E-02	2.15E-01	5.59E-02	2.65E-01	0.82	3.95	1.02	4.96
WL1-TK603	-	-	-	-	-	-	-	-	0.10	0.500	6.38E-03	3.42E-02	4.00E-02	2.15E-01	5.59E-02	2.65E-01	0.82	3.95	1.02	4.96
WL2-TK8101	-	-	-	-	-	-	-	-	0.18	0.12	1.19E-02	8.16E-03	7.45E-02	5.13E-02	1.03E-01	6.31E-02	1.51	0.94	1.88	1.18
WL2-TK8102	-	-	-	-	-	-	-	-	0.18	0.12	1.19E-02	8.16E-03	7.45E-02	5.13E-02	1.03E-01	6.31E-02	1.51	0.94	1.88	1.18
WLCS-TK2301	-	-	-	-	-	-	-	-	1.01	0.78	4.04E-02	3.09E-02	1.49E-01	1.14E-01	1.08E+00	8.23E-01	19.53	15.02	21.81	16.76
WLCS-TK2302	-	-	-	-	-	-	-	-	1.01	0.78	4.04E-02	3.09E-02	1.49E-01	1.14E-01	1.08E+00	8.23E-01	19.53	15.02	21.81	16.76
WLCS-TK2303	-	-	-	-	-	-	-	-	1.01	0.78	4.04E-02	3.09E-02	1.49E-01	1.14E-01	1.08E+00	8.23E-01	19.53	15.02	21.81	16.76
WLCS-TK2304	-	-	-	-	-	-	-	-	1.01	0.78	4.04E-02	3.09E-02	1.49E-01	1.14E-01	1.08E+00	8.23E-01	19.53	15.02	21.81	16.76
ATM LOAD	-	-	-	-	-	-	-	-	2.37E-01	1.86E-01	1.36E-02	8.85E-03	7.53E-02	4.21E-02	1.79E-01	1.73E-01	3.03	3.06	3.53	3.47
NGL LOAD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FUG-1	-	-	-	-	-	-	0.033	0.14	-	-	-	-	-	-	-	-	-	-	0.35	1.53
FUG-2	-	-	-	-	-	-	0.35	1.55	-	-	-	-	-	-	-	-	-	-	0.88	3.85
PIGGING	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.012	0.055
SSM/M	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.00
Totals	8.64	37.86	1.20	5.24	0.77	3.39	0.84	3.68	54.91	223.85	7.02	30.04	28.29	121.03	5.81	8.53	100.68	138.45	209.11	577.24

Willow Lake Gas Processing Plant

Maximum Controlled HAP Emissions

Unit	HCI	Ю	Acetalo	dehyde	Acro	lein	Metl	hanol	Tolu	iene	Ethylb	enzene	Xyl	enes	Ben	zene	n-He	xane	Tota	l HAPs
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C-1100	0.21	0.91	0.10	0.44	6.22E-02	2.72E-01	3.03E-02	1.33E-01	4.94E-03	2.16E-02	4.80E-04	2.10E-03	2.23E-03	9.75E-03	5.32E-03	2.33E-02	1.34E-02	5.88E-02	0.43	1.90
C-1200	0.17	0.73	0.043	0.19	4.06E-02	1.78E-01	4.72E-02	2.07E-01	8.61E-03	3.77E-02	3.83E-04	1.68E-03	3.01E-03	1.32E-02	2.44E-02	1.07E-01	-	-	0.35	1.51
C-2300	0.044	0.19	0.037	0.16	3.50E-02	1.53E-01	4.07E-02	1.78E-01	7.42E-03	3.25E-02	3.30E-04	1.45E-03	2.59E-03	1.14E-02	2.10E-02	9.21E-02	-	-	0.20	0.87
C-2400	0.044	0.19	0.037	0.16	3.50E-02	1.53E-01	4.07E-02	1.78E-01	7.42E-03	3.25E-02	3.30E-04	1.45E-03	2.59E-03	1.14E-02	2.10E-02	9.21E-02	-	-	0.20	0.87
C-1110	0.12	0.54	0.074	0.32	4.53E-02	1.98E-01	2.20E-02	9.65E-02	3.60E-03	1.58E-02	3.50E-04	1.53E-03	1.62E-03	7.10E-03	3.88E-03	1.70E-02	9.78E-03	4.29E-02	0.29	1.27
C-1120	0.12	0.54	0.074	0.32	4.53E-02	1.98E-01	2.20E-02	9.65E-02	3.60E-03	1.58E-02	3.50E-04	1.53E-03	1.62E-03	7.10E-03	3.88E-03	1.70E-02	9.78E-03	4.29E-02	0.29	1.27
C-1130	0.12	0.54	0.074	0.32	4.53E-02	1.98E-01	2.20E-02	9.65E-02	3.60E-03	1.58E-02	3.50E-04	1.53E-03	1.62E-03	7.10E-03	3.88E-03	1.70E-02	9.78E-03	4.29E-02	0.29	1.27
C-1140	0.12	0.54	0.074	0.32	4.53E-02	1.98E-01	2.20E-02	9.65E-02	3.60E-03	1.58E-02	3.50E-04	1.53E-03	1.62E-03	7.10E-03	3.88E-03	1.70E-02	9.78E-03	4.29E-02	0.29	1.27
C-1150	0.12	0.54	0.074	0.32	4.53E-02	1.98E-01	2.20E-02	9.65E-02	3.60E-03	1.58E-02	3.50E-04	1.53E-03	1.62E-03	7.10E-03	3.88E-03	1.70E-02	9.78E-03	4.29E-02	0.29	1.27
C-1160	0.12	0.54	0.074	0.32	4.53E-02	1.98E-01	2.20E-02	9.65E-02	3.60E-03	1.58E-02	3.50E-04	1.53E-03	1.62E-03	7.10E-03	3.88E-03	1.70E-02	9.78E-03	4.29E-02	0.29	1.27
C-1170	0.12	0.54	0.074	0.32	4.53E-02	1.98E-01	2.20E-02	9.65E-02	3.60E-03	1.58E-02	3.50E-04	1.53E-03	1.62E-03	7.10E-03	3.88E-03	1.70E-02	9.78E-03	4.29E-02	0.29	1.27
C-1180	0.12	0.54	0.074	0.32	4.53E-02	1.98E-01	2.20E-02	9.65E-02	3.60E-03	1.58E-02	3.50E-04	1.53E-03	1.62E-03	7.10E-03	3.88E-03	1.70E-02	9.78E-03	4.29E-02	0.29	1.27
WL2-FL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	0.00078	0.0034
WL2-FL Blowdown	-	-	-	_	-	_	-	-	-	_	-	_	-	_	-	-	-	_	21.73	0.56
WL1-FL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.14	0.129
WL1-FL Blowdown	-	-	-	_	-	_	-	-	-	_	-	_	-	_	-	-	-	_	1.81	0.047
DEHY-803	_	_	_	_	_	_	_	_	0.031	0.13	0.0019	0.0082	0.0059	0.026	0.0010	0.0045	0.052	0.23	0.092	0.40
DEHY-804	_	_	_	_	_	_	_	_	0.0030	0.013	0.00018	0.00081	0.00060	0.0026	0.000098	0.00043	0.0050	0.022	0.0089	0.04
DEHY-EG	_	_	_	_	_	_	_	_	-	-	-	-	-	-	-	-	-		-	-
DEHY-805	_	_	_	_	_	_	_	_	0.067	0.29	0.0041	0.018	0.013	0.057	0.0022	0.0097	0.11	0.49	0.20	0.87
DEHY-1505	_	_	_	_	_	_	_	_	0.048	0.21	0.0023	0.010	0.0086	0.038	0.0018	0.0081	0.0182	0.080	0.079	0.34
HTR-803	3.68E-05	1 61F-04	_	_	_	_	_	_		7.30E-06	-	-	-	-	1.03E-06	4.51E-06	8.82E-04	3.86E-03		
HTR-804		4.03E-05	_	_	_	_	_	_		1.83E-06	_	_	_	_	2.57E-07	1.13E-06	2.21E-04	9.66E-04	-	1.01E-03
HTR-802	1.47E-04		_	_	_	_	_	_		2.92E-05	_	_	_	_	4.12E-06	1.80E-05	3.53E-03			1.62E-02
HTR-730	5.02E-04	-	_	_	_	_	_	_		9.97E-05	_	_	_	_	1.41E-05	6.16E-05	1.21E-02	5.28E-02		5.52E-02
HTR-805	1.10E-04		_	_	_	_	_	_		2.19E-05	_	_	_	_	3.09E-06	1.35E-05	2.65E-03	1.16E-02	l .	1.21E-02
HTR-1505		4.83E-04	_	_	_	_	_	_		2.19E-05	_	_	_	_	3.09E-06	1.35E-05	2.65E-03	1.16E-02	l l	1.21E-02
WL1-TK601	-	-	-	_	-	_	-	_	-	-	_	-	-	_	-	-	-	-	-	-
WL1-TK602	_	-	-	_	-	_	-	_	-	-	_	-	-	_	-	-	-	_	_	_
WL1-TK603	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WL2-TK8101	-	-	-	-	-	-	-	-	0.18	0.0060	0.012	0.00041	0.074	0.0026	0.10	0.0032	1.51	0.047	1.88	0.059
WL2-TK8102	-	-	-	-	-	-	-	-	0.18	0.0060	0.012	0.00041	0.074	0.0026	0.10	0.0032	1.51	0.047	1.88	0.059
WLCS-TK2301	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WLCS-TK2302	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WLCS-TK2303	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WLCS-TK2304	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ATM LOAD	-	-	-	-	-	-	-	-	0.13	0.0081	0.0092	0.00053	0.058	0.0032	0.066	0.0049	1.00	0.078	1.26	0.095
NGL LOAD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FUG-1	-	-	-	-	-	-	0.033	0.14	-	-	-	-	-	-	-	-	-	-	0.35	1.53
FUG-2	-	-	-	-	-	-	0.35	1.55	-	-	-	-	-	-	-	-	-	-	0.88	3.85
PIGGING	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.012	0.055
SSM/M	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.00
Totals	1.46	6.37	0.81	3.54	0.54	2.34	0.72	3.17	0.70	0.92	0.05	0.057	0.26	0.23	0.38	0.48	4.31	1.49	35.82	24.42

Willow Lake Gas Processing Plant

Unit: C-1100

Description: CAT G3608 4SLB Inlet Gas Compressor Engine with Oxidation Catalyst

Engine Power¹: 2370 hp Mfg. Data - 100% Load (DM8606-02) Fuel Consumption: 6629 Btu/hp-hr Mfg. Data - 100% Load (DM8606-02)

 Fuel Type:
 NG
 Mfg. Data

 Fuel Heating Value:
 1020
 Btu/scf
 Fuel Gas Analysis

 Operating Hours:
 8760
 hours
 Continuous

 Fuel Usage:
 15402.676
 sc/fnr
 Calculated

 Annual Fuel Usage:
 134.93
 MMScf/yr
 Calculated

NO..2

Uncontrolled Emission Calculations

	0.5	2.75	0.63																g/hp-hr
				5		0.25													gr/100 scf
				0.014	0.010	7.00E-06	5.28E-02	8.36E-03	5.14E-03	2.50E-03	4.08E-04	3.97E-05	1.84E-04	4.40E-04	1.11E-03	2.67E-04	2.50E-04		_lb/MMBtu
	2.61	14.37	4.12	0.23	0.16	1.10E-04	0.83	0.13	0.081	0.039	0.0064	0.00062	0.0029	0.0069	0.017	0.0042	0.0039	1.12	lb/hr ⁸
	11.44	62.93	18.05	1.01	0.69	4.82E-04	3.63	0.58	0.35	0.17	0.028	0.0027	0.013	0.030	0.076	0.018	0.017	4.92	tpy ⁹
Controlled Emission C	alculations																		
	NO _x	co	voc	SO ₂	PM	H ₂ S	нсно	Acetaldehyde	Acrolein	Methanol	Toluene	Ethylbenzene	Xylenes	Benzene	n-Hexane	1,3-Butadiene	2,2,4-TMP	HAPs ¹⁰	_
		64%	75%				75%												Control efficiency ¹¹
	0.5	1.0	0.16					1.94E-02	1.19E-02	5.79E-03	9.45E-04	9.20E-05	4.26E-04	1.02E-03	2.57E-03	6.18E-04	5.79E-04		g/hp-hr 16
	2.61	5.22	1.03	0.23	0.16	1.10E-04	0.21	0.10	0.062	0.030	0.0049	0.00048	0.0022	0.0053	0.013	0.0032	0.0030	0.43	lb/hr ¹²
	11.44	22.89	4.51	1.01	0.69	4.82E-04	0.91	0.44	0.27	0.13	0.022	0.0021	0.0098	0.023	0.059	0.014	0.013	1.90	tpy ⁹

Acrolein⁷

Methanol⁷ Toluene⁷ Ethylbenzene⁷ Xylenes⁷ Benzene⁷ n-Hexane⁷ 1,3-Butadiene⁷ 2,2,4-TMP⁷ HAPs⁷

Greenhouse Gas Calculations¹³

CO ₂	N ₂ O	CH₄	CO₂e	
441				g/hp-hr
	0.0001	0.001		kg/MMBtu
1	298	25		GWP ¹⁴
2304.21	0.0035	0.035	2306.11	lb/hr15
10092.43	0.015	0.15	10100.74	tpy ⁹

VOC2

Footnotes

SO₂ EF (lb/MMBtu) =[(5 gr S/100 scf * 1 lb/7000 gr * 64 lb/lbmol SO₂/32 lb/lbmol S) / HHV (Btu/scf)] * 10⁶ Btu/MMBtu

Assume 100% conversion of combusted H₂S into SO₂ and 98% Combustion Efficiency. Additional SO₂ emissions from the combustion of H₂S:

HCHO⁷

Acetaldehvde⁷

SO₂ (lb/hr) from H₂S = 98%*[(0.25 gr H₂S/100 scf * 1 lb/7000 gr * 64 lb/lbmol SO₂/34 lb/lbmol H₂S) / HHV (Btu/scf)] * (Btu/hp-hr * hp)

H₂S EF (lb/MMBtu) =2%*[(0.25 gr H₂S/100 scf * 1 lb/7000 gr) / HHV (Btu/scf)] * 10⁶ Btu/MMbtu

PM & HAP lb/hr Emission Rate = EF * Fuel Consumption (Btu/hp-hr) * hp * 1 MMBtu/10⁶ Btu

 N_2O and CH_4 lb/hr = EF (kg/MMBtu) * 2.20462 lb/kg * Fuel consumption (Btu/hp-hr) * Engine hp * 1 MMBtu/ 10^6 Btu

 $CO_2e lb/hr = CO_2 lb/hr + (CH_4 lb/hr * GWP) + (N_2O lb/hr * GWP)$

Acrolein EF (g/hp-hr) = Acrolein AP-42 EF (lb/mmbtu) * VOC excl. HCHO vendor EF (g/hp-hr) / [VOC AP-42 EF (lb/mmbtu) - HCHO AP-42 EF (lb/mmbtu)]

¹ No derate being requested

² For uncontrolled and controlled emissions, emission factors are taken from catalyst data. VOC emissions factors do not include HCHO. HCHO emissions are added to VOC calculated emissions; therefore, VOC emissions represent Total VOC.

³ Assumes natural gas sulfur content of 5 gr/100 scf

⁴ Emission Factors from AP-42 Table 3.2-2 (4SLB)

⁵ PM includes Condensable + Filterable; assume PM₁₀ = PM_{2.5}

⁶ Assumes a conservative natural gas H₂S content of 0.25 gr/100 scf and 98% conversion to SO₂.

⁷ Uncontrolled HAP emissions based on AP-42 Table 3.2-2 (4SLB)

⁸ NO_v, CO, and VOC lb/hr Emission Rate = EF * 1 lb/453.592 g * hp

⁹ tov = lb/hr * hours of operation * 1 ton/2000 lb

¹⁰ Controlled HAP emissions (lb/hr) = Controlled individual HAPs (lb/hr) + Controlled HCHO (lb/hr)

 $^{^{\}rm 11}$ Catalysts are guaranteed by manufacturer to be at least as efficient as claimed.

¹² lb/hr (controlled) = lb/hr (uncontrolled) * (1 - Control Efficiency)

 $^{^{13}}$ CO $_2$ emission factor from manufacturer's data. All other greenhouse gas emission factors are from 40 CFR 98 Subpart C

¹⁴ 40 CFR 98 Subpart A, Table A-1

¹⁵ CO₂ lb/hr = EF (g/hp-hr) * 1 lb/453.592 g * Engine hp

¹⁶ Non-HCHO HAP uncontrolled emission are based on AP-42 emission factors for individual HAPS. AP-42 emission factors are converted into catalyst vendor specific emission factors in g/hp-hr by normalizing speciated emission with respect to the non-HCHO VOC factor. Example calculation for individual HAP component:

Willow Lake Gas Processing Plant

Unit(s): C-1200

Description: Waukesha P9390GSI 4SRB Residue Gas Compressor Engine with NSCR

Engine Power¹: 1980 hp

 Fuel Consumption:
 7792
 Btu/hp-hr
 Mfg. specs

 Fuel Type:
 NG
 Mfg Data

 Fuel Heating Value:
 1020
 Btu/scf
 Fuel Gas Analysis

 Operating Hours:
 8760
 hour
 Continuous

Hourly Fuel Usage: 15125.65 scf/hr Annual Fuel Usage: 132.50 MMscf/yr

Uncontrolled Emission Calculations

3101	Calculations																	
	NO _x ²	CO2	VOC2	SO ₂ ³	PM ^{4,5}	H ₂ S ⁶	HCHO ²	Acetaldehyde ⁷	Acrolein ⁷	Methanol ⁷	Toluene ⁷	Ethylbenzene ⁷	Xylenes ⁷	Benzene ⁷	1,3-Butadiene ⁷	PAH ⁷	HAPs ⁷	
	13.00	9.00	0.30				0.19											g/hp-hr
				5		0.25												gr/100 scf
				0.014	0.019	7.00E-06		2.79E-03	2.63E-03	3.06E-03	5.58E-04	2.48E-05	1.95E-04	1.58E-03	6.63E-04	1.41E-04		lb/MMBtu
	56.75	39.29	2.14	0.23	0.30	1.08E-04	0.83	0.043	0.041	0.047	0.0086	0.00038	0.0030	0.024	0.010	0.0022	1.01	lb/hr ⁸
	248.55	172.07	9.37	0.99	1.31	4.73E-04	3.63	0.19	0.18	0.21	0.038	0.0017	0.013	0.11	0.045	0.0095	4.42	ton/yr9

Controlled Emission Calculations

NO _x	co	VOC	SO ₂	PM	H ₂ S	HCHO	Acetaldehyde	Acrolein	Methanol	Toluene	Ethylbenzene	Xylenes	Benzene	1,3-Butadiene	PAH	HAPs ¹⁰	
85.0%	85.0%	60.0%				80.0%											Control Efficiency ¹¹
2.0	1.35	0.12				0.038											g/hp-hr
8.51	5.89	0.69	0.23	0.30	1.08E-04	0.17	0.043	0.041	0.047	0.0086	0.00038	0.0030	0.024	0.010	0.0022	0.35	lb/hr ¹²
37.28	25.81	3.02	0.99	1.31	4.73E-04	0.73	0.19	0.18	0.21	0.038	0.0017	0.013	0.11	0.045	0.0095	1.51	ton/yr9

Greenhouse Gas Calculations 13

CO ₂	N ₂ O	CH ₄	CO₂e	
53.1	0.0001	0.001		kg/MME
1	298	25		GWP ¹⁴
1804.7	0.0034	0.034	1806.6	lb/hr15
7904.8	0.015	0.15	7912.9	tpy

Footnotes

- No derate being requested
- ² For uncontrolled and controlled emissions, emission factors are taken from catalyst data. VOC emissions factors do not include HCHO. HCHO emissions are added to VOC calculated emissions; therefore, VOC emissions represent Total VOC.
- ³ Assumes natural gas sulfur content of 5 gr/100 scf

 $SO_{2} \ EF \ (lb/MMBtu) = [(5 \ gr \ S/100 \ scf * 1 \ lb/7000 \ gr * 64 \ lb/lbmol \ SO_{2}/32 \ lb/lbmol \ S) \ / \ HHV \ (Btu/scf)] * 10^{6} \ Btu/MMBtu$

Assume 100% conversion of combusted H₂S into SO₂ and 98% Combustion Efficiency. Additional SO₂ emissions from the combustion of H₂S:

 SO_2 (lb/hr) from $H_2S = 98\%*[(0.25 \text{ gr } H_2S/100 \text{ scf} * 1 \text{ lb/7000 gr} * 64 \text{ lb/lbmol } SO_2/34 \text{ lb/lbmol } H_2S) / HHV (Btu/scf)] * (Btu/hp-hr * hp)$

- ⁴ Emission Factors from AP-42 Table 3.2-3 (4SRB)
- ⁵ PM includes Condensable + Filterable; assume PM₁₀ = PM_{2.5}
- ⁶ Assumes a conservative natural gas H₂S content of 0.25 gr/100 scf and 98% conversion to SO₂.
- H₂S EF (lb/MMBtu) = 2%*[(0.25 gr H₂S/100 scf * 1 lb/7000 gr) / HHV (Btu/scf)] * 10⁶ Btu/MMbtu
- Uncontrolled HAP emissions based on AP-42 Table 3.2-3 (4SRB)
- 8 NO_y, CO, and VOC lb/hr Emission Rate = EF * 1 lb/453.592 g * hp
- PM & HAP lb/hr Emission Rate = EF * Fuel Consumption (Btu/hp-hr) * hp * 1 MMBtu/10⁶ Btu
- $^{9}\,$ tpy = lb/hr * hours of operation * 1 ton/2000 lb
- 10 Controlled HAP emissions (lb/hr) = Uncontrolled Total HAPs (lb/hr) Uncontrolled HCHO (lb/hr) + Controlled HCHO (lb/hr)
- 11 Catalysts are guaranteed by manufacturer to be at least as efficient as claimed.
- 12 lb/hr (controlled) = lb/hr (uncontrolled) * (1 Control Efficiency)
- $^{\rm 13}\,$ Greenhouse gas emission factors are from 40 CFR 98 Subpart C
- ¹⁴ 40 CFR 98 Subpart A, Table A-1
- 15 CO₂, N₂O, and CH₄ lb/hr = EF (kg/MMBtu) * 2.20462 lb/kg * Fuel consumption (Btu/hp-hr) * Engine hp * 1 MMBtu/10⁶ Btu

CO₂e lb/hr = CO₂ lb/hr + (CH₄ lb/hr * GWP) + (N₂O lb/hr * GWP)

Description:

Fuel Type:

Willow Lake Gas Processing Plant

Unit(s): C-2300, C-2400 Waukesha VHP-L7044GSI 4SRB

Engine Power1:

1680 hp Fuel Consumption: 7919 Btu/hp-hr

Mfg. specs Mfg Data

Fuel Heating Value: 1020 Btu/scf Fuel Gas Analysis Operating Hours: 8760 hour Hourly Fuel Usage: 13043.06 scf/hr Continuous

Annual Fuel Usage: 114.26 MMscf/yr

Uncontrolled Emission Calculations

NO _x ²	CO ²	VOC2	SO23	PM ^{4,5}	H ₂ S ⁶	HCHO ²	Acetaldehyde ⁷	Acrolein ⁷	Methanol ⁷	Toluene ⁷	Ethylbenzene ⁷	Xylenes ⁷	Benzene ⁷	1,3-Butadiene ⁷	PAH ⁷	HAPs ⁷	_
13.30	11.50	0.16				0.050											g/hp-hr
			5		0.25												gr/100 sc
			0.014	0.019	7.00E-06		2.79E-03	2.63E-03	3.06E-03	5.58E-04	2.48E-05	1.95E-04	1.58E-03	6.63E-04	1.41E-04		lb/MMBt
49.26	42.59	0.78	0.19	0.26	9.32E-05	0.19	0.037	0.035	0.041	0.0074	0.00033	0.0026	0.021	0.0088	0.0019	0.34	lb/hr ⁸
215.76	186.56	3.41	0.85	1.13	4.08E-04	0.81	0.16	0.15	0.18	0.033	0.0014	0.011	0.092	0.039	0.0082	1.49	ton/yr9

Controlled Emission Calculations

NO _x	co	VUC	SO ₂	PINI	H ₂ S	HCHO	Acetaldehyde	Acrolein	Methanol	Toluene	Ethylbenzene	Xylenes	Benzene	1,3-Butadiene	PAH	HAPs	
92.5%	91.3%	71.4%				76.0%											Control Efficiency ¹¹
1.00	1.00	0.060				0.012											g/hp-hr
3.70	3.70	0.27	0.19	0.26	9.32E-05	0.044	0.037	0.035	0.041	0.0074	0.00033	0.0026	0.021	0.009	0.0019	0.20	lb/hr ¹²
16 22	16 22	1 17	0.00	1 12	4.005.04	0.10	0.16	0.15	0.10	0.022	0.0014	0.011	0.002	0.020	0.0002	0.97	ton/vr ⁹

Greenhouse Gas Calculations 13

CO ₂	N ₂ O	CH ₄	CO ₂ e	
53.1	0.0001	0.001		kg/MMBt
1	298	25		GWP ¹⁴
1556.3	0.0029	0.029	1557.9	lb/hr15
6816.4	0.013	0.13	6823.4	tpy

- ¹ No derate being requested
- ² For uncontrolled and controlled emissions, emission factors are taken from catalyst data. VOC emissions factors do not include HCHO. HCHO emissions are added to VOC calculated emissions; therefore, VOC emissions represent Total VOC.
- ³ Assumes natural gas sulfur content of 5 gr/100 scf

SO₂ EF (lb/MMBtu) =[(5 gr S/100 scf * 1 lb/7000 gr * 64 lb/lbmol SO₂/32 lb/lbmol S) / HHV (Btu/scf)] * 10⁶ Btu/MMBtu

Assume 100% conversion of combusted H₂S into SO₂ and 98% Combustion Efficiency. Additional SO₂ emissions from the combustion of H₂S:

- SO_2 (lb/hr) from $H_2S = 98\%$ *[(0.25 gr $H_2S/100$ scf * 1 lb/7000 gr * 64 lb/lbmol $SO_2/34$ lb/lbmol H_2S) / HHV (Btu/scf)] * (Btu/hp-hr * hp)
- ⁴ Emission Factors from AP-42 Table 3.2-3 (4SRB)
- PM includes Condensable + Filterable; assume PM₁₀ = PM_{2.5}
 Assumes a conservative natural gas H₂S content of 0.25 gr/100 scf and 98% conversion to SO₂.
- H₂S EF (lb/MMBtu) =2%*[(0.25 gr H₂S/100 scf * 1 lb/7000 gr) / HHV (Btu/scf)] * 10⁶ Btu/MMbtu
- Uncontrolled HAP emissions based on AP-42 Table 3.2-3 (4SRB)
- $^{8}\,$ NO $_{\rm xr}$ CO, and VOC lb/hr Emission Rate = EF * 1 lb/453.592 g * hp
- PM & HAP lb/hr Emission Rate = EF * Fuel Consumption (Btu/hp-hr) * hp * 1 MMBtu/10⁶ Btu
- 9 tpy = lb/hr * hours of operation * 1 ton/2000 lb
- Controlled HAP emissions (lb/hr) = Uncontrolled Total HAPs (lb/hr) Uncontrolled HCHO (lb/hr) + Controlled HCHO (lb/hr)
- ¹¹ Catalysts are guaranteed by manufacturer to be at least as efficient as claimed.
- 12 lb/hr (controlled) = lb/hr (uncontrolled) * (1 Control Efficiency)
- ¹³ Greenhouse gas emission factors are from 40 CFR 98 Subpart C
- 40 CFR 98 Subpart A, Table A-1
 CO₂, N₂O, and CH₄ (b/hr = EF (kg/MM8tu) * 2.20462 lb/kg * Fuel consumption (Btu/hp-hr) * Engine hp * 1 MM8tu/10⁶ Btu

CO₂e lb/hr = CO₂ lb/hr + (CH₄ lb/hr * GWP) + (N₂O lb/hr * GWP)

Willow Lake Gas Processing Plant

Unit: C-1110 through C-1180

Description: Eight (8) CAT G3606 4SLB Inlet Gas Compressor Engine with Oxidation Catalyst

Engine Power¹: 1875 hp Mfg. Data - 100% Load Fuel Consumption: 7560 Btu/hp-hr Mfg. Data - 100% Load Fuel Type: Mfg. Data NG Fuel Heating Value: 1020 Btu/scf Fuel Gas Analysis Operating Hours: 8760 hours Continuous Fuel Usage: 13897.06 scf/hr Calculated Annual Fuel Usage: 121.74 MMScf/yr Calculated

Uncontrolled Emission Calculations

Oncontrolled Emission	Culculations																		
	NO _x ²	CO ²	VOC ²	SO ₂ ³	PM ^{4,5}	H₂S ⁶	HCHO ⁷	Acetaldehyde ⁷	Acrolein ⁷	Methanol ⁷	Toluene ⁷	Ethylbenzene ⁷	Xylenes ⁷	Benzene ⁷	n-Hexane ⁷	1,3-Butadiene ⁷	2,2,4-TMP ⁷	HAPs ⁷	
	0.50	2.20	0.29				0.2												g/hp-hr
				5		0.25													gr/100 scf
				0.014	0.010	7.00E-06		8.36E-03	5.14E-03	2.50E-03	4.08E-04	3.97E-05	1.84E-04	4.40E-04	1.11E-03	2.67E-04	2.50E-04		Ib/MMBtu
	2.07	9.09	2.03	0.21	0.14	9.93E-05	0.83	0.12	0.073	0.035	0.0058	0.00056	0.0026	0.0062	0.016	0.0038	0.0035	1.09	lb/hr ⁸
	9.05	39.83	8.87	0.91	0.62	4.35E-04	3.62	0.52	0.32	0.16	0.025	0.0025	0.011	0.027	0.069	0.017	0.016	4.78	tpy ⁹
Controlled Emission Co	alculations																		
	NO _x	co	VOC	SO ₂	PM	H ₂ S	нсно	Acetaldehyde	Acrolein	Methanol	Toluene	Ethylbenzene	Xylenes	Benzene	n-Hexane	1,3-Butadiene	2,2,4-TMP	HAPs ¹⁰	
		90%	50%				85%												Control efficiency ¹¹
	0.50	0.22	0.15				0.03	1.78E-02	1.10E-02	5.33E-03	8.70E-04	8.47E-05	3.92E-04	9.38E-04	2.37E-03	5.69E-04	5.33E-04		g/hp-hr 16
	2.07	0.91	0.72	0.21	0.14	9.93E-05	0.12	0.074	0.045	0.022	0.0036	0.00035	0.0016	0.0039	0.0098	0.0024	0.0022	0.29	lb/hr ¹²
	9.05	3.98	3.17	0.91	0.62	4.35E-04	0.54	0.32	0.20	0.097	0.016	0.0015	0.0071	0.017	0.043	0.010	0.0097	1.27	tpy ⁹

Greenhouse Gas Calculations¹³

CO2	N ₂ O	CH ₄	CO ₂ e	_
53.1	0.0001	0.001		kg/MMBti
1	298	25		GWP ¹⁴
1659.40	0.0031	0.031	1661.11	lb/hr ¹⁵
7268 176	0.014	0.14	7275 68	tnv ⁹

Footnotes

SO₂ EF (lb/MMBtu) =[(5 gr S/100 scf * 1 lb/7000 gr * 64 lb/lbmol SO₂/32 lb/lbmol S) / HHV (Btu/scf)] * 10⁶ Btu/MMBtu

Assume 100% conversion of combusted H₂S into SO₂ and 98% Combustion Efficiency. Additional SO₂ emissions from the combustion of H₂S:

 SO_2 (lb/hr) from $H_2S = 98\%$ [(0.25 gr $H_2S/100$ scf * 1 lb/7000 gr * 64 lb/lbmol $SO_2/34$ lb/lbmol H_2S) / HHV (Btu/scf)] * (Btu/hp-hr * hp)

H₂S EF (lb/MMBtu) =2%*[(0.25 gr H₂S/100 scf * 1 lb/7000 gr) / HHV (Btu/scf)] * 10⁶ Btu/MMbtu

PM & HAP lb/hr Emission Rate = EF * Fuel Consumption (Btu/hp-hr) * hp * 1 MMBtu/10⁶ Btu

Acrolein EF (g/hp-hr) = Acrolein AP-42 EF (lb/mmbtu) * VOC excl. HCHO vendor EF (g/hp-hr) / [VOC AP-42 EF (lb/mmbtu) - HCHO AP-42 EF (lb/mmbtu)]

¹ No derate being requested

² For uncontrolled and controlled emissions, emission factors are taken from catalyst data. VOC emissions factors do not include HCHO. HCHO emissions are added to VOC calculated emissions; therefore, VOC emissions represent Total VOC.

³ Assumes natural gas sulfur content of 5 gr/100 scf

⁴ Emission Factors from AP-42 Table 3.2-2 (4SLB)

⁵ PM includes Condensable + Filterable; assume PM₁₀ = PM_{2.5}

⁶ Assumes a conservative natural gas H₂S content of 0.25 gr/100 scf and 98% conversion to SO₂.

Uncontrolled HAP emissions based on AP-42 Table 3.2-2 (4SLB)

⁸ NO_v, CO, and VOC lb/hr Emission Rate = EF * 1 lb/453.592 g * hp

⁹ tpy = lb/hr * hours of operation * 1 ton/2000 lb

¹⁰ Controlled HAP emissions (lb/hr) = Controlled individual HAPs (lb/hr) + Controlled HCHO (lb/hr)

 $^{^{\}rm 11}$ Catalysts are guaranteed by manufacturer to be at least as efficient as claimed.

¹² lb/hr (controlled) = lb/hr (uncontrolled) * (1 - Control Efficiency)

¹³ CO₂ emission factor from manufacturer's data. All other greenhouse gas emission factors are from 40 CFR 98 Subpart C

^{14 40} CFR 98 Subpart A, Table A-1

¹⁵ CO₂, N₂O, and CH₄ lb/hr = EF (kg/MMBtu) * 2.20462 lb/kg * Fuel consumption (Btu/hp-hr) * Engine hp * 1 MMBtu/10⁶ Btu

 $CO_2e lb/hr = CO_2 lb/hr + (CH_4 lb/hr * GWP) + (N_2O lb/hr * GWP)$

¹⁶ Non-HCHO HAP uncontrolled emission are based on AP-42 emission factors for individual HAPS. AP-42 emission factors are converted into catalyst vendor specific emission factors in g/hp-hr by normalizing speciated emission with respect to the non-HCHO VOC Example calculation for individual HAP component:

Willow Lake Gas Processing Plant

Unit(s): Description WL2 Process Flare

Fuel Data

65.0 scf/hr 0.066 MMBtu/hr 1,840.0 scf/hr Flare Pilot

Ethylene Glycol Dehydrator Regen Ethylene Glycol Dehydrator Flash Tank Total flow from Dehy ${\sf GlyCalc}$

87.1 scf/hr 1,927.1 scf/hr 0.001927 MMscf/hr

1020.00 Btu/scf¹ Residue Gas, HHV

1.966 MMBtu/hr 16.881396 MMscf/yr

Emission Rates

Pilot Gas + Regen + Flash Tank

IIIK								
	NOx	co	VOC ³	H ₂ S ³	SO ₂ ⁴	HAPs	Units	
-	0.1380	0.2755					lb/MMBtu ²	TNRCC RG-109
				0.25	5		gr/100 scf	Assumed for Fuel Gas
			1.82	0.0094		0.039	lb/hr	From EG Dehydrator (Unit D3)
-	0.0091	0.018	-	2.32E-05	9.29E-04	-	lb/hr	Elare Pilot
	0.040	0.080	-	1.02E-04	4.07E-03	-	tpy	- Flare Pilot
-	0.27	0.54	0.036	0.00019	0.017	0.0008	lb/hr	Controlled Emission Rate
	1.19	2.37	0.16	0.00082	0.076	0.0034	tpy	controlled Emission Rate
								_
	NOx	co	VOC ³	H ₂ S ³	SO ₂ ⁴	HAPs	Units	
	0.28	0.56	0.036	0.00021	0.018	0.00078	lb/hr	Controlled Emission Rate
	1.23	2.45	0.16	0.0009	0.080	0.0034	tpy	

Greenhouse Gas Calculations

Pilot Gas + Regen + Flash Tank

CO2	N ₂ O	CH₄	CO₂e	
53.1	0.0001	0.001		kg/MMBti
1	298	25		GWP ⁷
229.9	0.0004	0.004	230.2	lb/hr ⁸
1007.1	0.002	0.001	1008.2	tnv ⁵

¹ Based on pipeline quality gas

² To be conservative the TNRCC RG-109 emission factors for high-Btu flares were used.

 $^{^3}$ Assumed 98% combustion for H₂S, HAP, and VOC. Pilot H₂S emissions calculated based on 0.25 gr H₂S/100 scf.

 $^{^4}$ Assumed 100% conversion of combusted H₂S to SO₂, SO₂ (lb/hr)= 98% * (64 lb/lbmol SO₂/34 lb/lbmol H₂S)*Uncontrolled H₂S (lb/hr). Pilot SO₂ emissions based on assumption of 5 gr S/100 scf.

⁵ ton/yr = lb/hr * Hours of operation (hr/yr) * 1ton/2000lb ⁶ Greenhouse gas emission factors are from 40 CFR 98 Subpart C

⁷ 40 CFR 98 Subpart A, Table A-1

 $^{^{8}}$ CO $_{2}$, N $_{2}$ O and CH $_{4}$ lb/hr = EF (kg/MMBtu) * 2.20462lb/kg * Fuel consumption (MMBtu/hr) CO_2e lb/hr = CO_2 lb/hr + (CH_4 lb/hr * GWP) + (N_2O lb/hr * GWP)

Crestwood New Mexico Pipeline LLC Willow Lake Gas Processing Plant

Unit(s): WL2-FL Blowdown

Description: Flare - Compressor Downtime Flaring

Flare Emissions - Residue Compressor Blowdowns - NO_x and CO ¹

Input Data			
Total Number of Events =	52	events/year	
Estimated Event Duration ² =	1	hr/event	
Event Flowrate =	0.625	MMscf/event	Compressor Downtime Volume
Annual Event Hours =	52	hrs/yr	
Gas Stream Heat Value =	1,278	Btu/scf	Residue Gas Analysis
Maximum Hourly Flowrate 3 =	0.625	MMscf/hr	
Annual Flowrate 4 =	32.500	MMscf/yr	
Hourly Gas Stream Heat Input 5 =	799	MMBtu/hr	
Annual Gas Stream Heat Input ⁶ =	41,535	MMBtu/yr	

Compound	Flare Emission Factors ⁷	Flare Emissions 8,9			
	(lb/MMBtu)	(lb/hr)	(tpy)		
NO _x	0.138	110.23	2.87		
CO	0.2755	220.06	5.72		

¹ Emergency blowdown of residue gas header is routed to flare.

Maximum hourly flowrate is not steady-state, but represents the maximum hourly flowrate at the time that a blowdown is routed to the flare. Hourly Flowrate (MMscf/hr) = Event Flowrate (MMscf/event) / Event Duration (hrs/event)

Hourly Flowrate (MMscf/hr) =	0.625 MMscf	event	=	0.625 MMscf
	event	1 hr		hr

⁴ Annual Flowrate (MMscf/vr) = Event Flowrate (MMscf/event) x Total Number of Event (events/vr)

te (Miniscry)) – Event Flowrate (Miniscryevent) x Total Number of Event (events/yr)								
Annual Flowrate (MMscf/yr) =	0.625 MMscf	52 events	=	32.5 MMscf				
	event	vr	•	vr				

⁵ Hourly Gas Stream Heat Input (MMBtu/hr) = Hourly Flowrate (MMscf/hr) x Gas Stream Heat Value (Btu/scf)

Hourly Gas Stream Heat Input (MMBtu/hr) =	0.625 MMscf	1,278 Btu	799 MMBtu
	hr	scf	hr

⁶ Annual Gas Stream Heat Input (MMBtu/yr) = Annual Flowrate (MMscf/yr) x Gas Stream Heat Value (Btu/scf)

Annual Gas Stream Heat Input (MMBtu/yr) =	32.5 MMscf	1,278 Btu	=	41,535 MMBtu
-	vr	scf		vr

⁷ From TCEQ, "Air Permit Guidance For Chemical Sources, Flare And Vapor Oxidizers" (Draft Oct. 2000) Table 4, emission factors for industrial flares combusting high-Btu vapors.

⁸ Maximum Potential Hourly Emission Rate (lb/hr) = Flare Emission Factor (lb/MMBtu) x Hourly Gas Stream Heat Input (MMBtu/hr)

Example NO _x Hourly Emission Rate (lb/hr) =	0.138 lb	799 MMBtu	=	110.23 lb
_	MMBtu	hr		hr

⁹ Maximum Potential Annual Emission Rate (tpy) = Flare Emission Factor (lb/MMBtu) x Annual Gas Stream Heat Input (MMBtu/yr) x (1 ton / 2,000 lb)

Example NO _x Annual Emission Rate (tpy) = _	0.138 lb	0.138 lb 41,535 MMBtu		=	2.87 ton
_	MMBtu	yr	2,000 lb		yr

² For events lasting less than 1 hour, it is assumed that no more than 1 event occurs per hour.

Crestwood New Mexico Pipeline LLC Willow Lake Gas Processing Plant

Unit(s): WL2-FL Blowdown

Description: Flare - Compressor Downtime Flaring

Flare Emissions - Residue Compressor Emergency Blowdowns - VOC, SO₂, and H₂S

Input Data		
Total Number of Events =	52	events/year
Estimated Event Duration ² =	1	hr/event
Event Flowrate =	0.625	MMscf/event
Annual Event Hours =	52	hrs/yr
Gas Stream Heat Value =	1,278	Btu/scf
Hourly Flowrate 3 =	0.625	MMscf/hr
Annual Flowrate ⁴ =	32.50	MMscf/yr
Hourly Gas Stream Heat Input 5 =	799	MMBtu/hr
Annual Gas Stream Heat Input ⁶ =	41,535	MMBtu/yr

Compound	Composition 5	MW	MW DRE ⁶ Gas Vented to Flare ^{7,8} Controlled Emis		Gas Vented to Flare 7,8		missions 9,10
	(Mole %)	(lb/lb-mole)	(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Propane	5.118	44	98%	3,708.70	96.43	74.17	1.93
i-Butane	0.731	58	98%	698.25	18.15	13.97	0.36
n-Butane	1.623	58	98%	1,550.30	40.31	31.01	0.81
i-Pentane	0.383	72	98%	454.15	11.81	9.08	0.24
n-Pentane	0.398	72	98%	471.94	12.27	9.44	0.25
Hexanes Plus	0.767	86	98%	1,086.33	28.24	21.73	0.56
H ₂ S	0.0004	34	98%	0.22	5.84E-03	4.49E-03	0.00012
VOC 11	9.02			7969.66	207.21	159.39	4.14
SO ₂		64				0.41	0.011

¹ Emergency blowdown of residue gas header is routed to flare.

² For events lasting less than 1 hour, it is assumed that no more than 1 event occurs per hour.

³ Hourly Flowrate (MMscf/hr) = Event Flowrate (MMscf/event) / Event Duration (hrs/event)										
Hourly Flowrate (MMscf/hr) =	MMscf/hr) = 0.625 MMscf event =									
	event	1 hr		hr						
Annual Flowrate (MMscf/yr) = Event Flowrate (MMscf/event) x Total Number of Event (events/yr)										
Annual Flowrate (MMscf/yr) =	0.625 MMscf	52 events	=	32.5 MMscf						
	event	yr	- '	yr						

⁵ Composition of the gas stream is obtained from the Dehy Upstream Gas Analysis (05/28/2020). H₂S is conservatively assumed to be 4 ppm.

For TCEO "Air Permit Guidance For Chemical Sources. Flare And Vapor Oxidizers" (Draft Oct. 2000), 98% of the H-S is assumed to be oxidized to SO₂ while the remaining 2% is emitted as H₂S.

Per TCEQ "Air Permit Guidance For Chemical Sources, Flare And Var	or Oxidizers" (Dra	aft Oct. 2000), 98% of th	e H ₂ S is assumed to	be oxidized to SO	while the remain	ning 2% is emitte	d as H ₂ S.	
⁷ Gas Vented to Flare (lb/hr) = Hourly Flowrate (MMscf/hr) x Mole Pe	ercent (%) / 100 x	MW (lb/lb-mole) / 379.5	(scf/lb-mole) x (10	6 scf/1 MMscf)	-,			
Example Propane Hourly Vented Rate (lb/hr) =	0.625 MMscf	5.12 %	44 lb	lb-mole	10 ⁶ scf	=	3,708.70 lb	-
	hr	100	lb-mole	379.5 scf	1 MMscf		hr	
8 Gas Vented to Flare (tpy) = Annual Flowrate (MMscf/yr) x Mole Pere	cent (%) / 100 x M	IW (lb/lb-mole) / 379.5 (scf/lb-mole) x (10 ⁶	scf/1MMscf) x (1to	on/ 2,000 lb)	-		
Example Propane Annual Vented Rate (tpy) =	32.5 MMscf	5.12 %	44 lb	lb-mole	10 ⁶ scf	1 ton	=	96.43 ton
	yr	100	lb-mole	379.5 scf	1 MMscf	2,000 lb		yr
Ontrolled Maximum Potential Hourly Emission Rate (lb/hr) = Gas V	ented to Flare (lb,	/hr) x (1 - DRE)						
Controlled Maximum Potential Annual Emission Rate (tpy) = Gas V	ented to Flare (tp	y) x (1 - DRE)	_					
Example Controlled Propane Hourly Emissi	on Rate (lb/hr) =	3,708.70 lb	(1 - 0.98)	=	74.17 lb	_		
		hr			hr			
¹⁰ Controlled flare SO ₂ Emission Rate (lb/hr) = [H ₂ S Inlet (lb/hr) - H ₂ S	Outlet (lb/hr)] x S0	O ₂ MW (lb/lb-mol) / H ₂ S	MW (lb/lb-mol)					
Controlled SO ₂ Hourly Emission Rate (lb/hr) =	[0.2]	2 - 0.00] lb	64.06 lb/lb-mol	=	0.41 lb	_		
		hr	34.08 lb/lb-mol		hr			

 $^{^{\}rm 11}\,$ Total VOC taken as the sum of NMNEHC.

Crestwood New Mexico Pipeline LLC Willow Lake Gas Processing Plant

Unit(s): WL2-FL Blowdown

Description: Flare - Compressor Downtime Flaring

Flare Emissions - Residue Compressor Emergency Blowdowns - Greenhouse Gas Calculations

CO ₂	N ₂ O	CH ₄	CO ₂ e	
53.1	0.0001	0.001	-	kg/MMBtu ¹
1	298	25	-	GWP ²
2,431	0.005	0.05	2,434	tpy ³

¹ Greenhouse gas emission factors are from 40 CFR 98 Subpart C.

² 40 CFR 98 Subpart A, Table A-1.

³ GHG Emissions (tpy) = Emission Factor (kg/MMBtu) x Fuel Consumption (MMBtu/yr) x 2.20426 (lb/kg) / 2,000 (lb/ton) CO₂e (tpy) = CO₂ tpy + (CH₄ tpy x CH₄ GWP) + (N₂O tpy x N₂O GWP)

Willow Lake Gas Processing Plant

Unit(s): WL1-FL
Description: WL1 Process Flare

Fuel and Gas Stream Data

Fuel and Gas Stream Data		
Flare Pilot + Purge	213.0 scf/hr	Design
Flare Pilot + Purge	1020 Btu/scf	Fuel Gas
Flare Pilot + Purge	0.217 MMBtu/hr	Calculated
Condensate Tank Flash (Max)	0.491 MMSCFD	ProMax
Condensate Tank Flash	20,466.5 scf/hr	Calculated
Condensate Tank Flash	9.0 MMscf/yr	Calculated (Annual based on 5% VRU downtime)
Condensate Tank Flash	2,785.6 Btu/scf	ProMax
Truck Loading (Max)	0.0120 MMSCFD	ProMax
Truck Loading (Max)	500.8 scf/hr	Calculated
Truck Loading (Annual)	0.0040 MMSCFD	ProMax
Truck Loading (Annual)	1.5 MMscf/yr	Calculated
Truck Loading	2833.30 btu/scf	ProMax
DEHY-803 Flash Tank	3,090.0 scf/hr	GLYCalc
DEHY-804 Flash Tank	297.0 scf/hr	GLYCalc
DEHY-805 Flash Tank	6,640.0 scf/hr	GLYCalc
DEHY-1505 Flash Tank	6,610.0 scf/hr	GLYCalc
Total Dehy Flash Tank *	16,637.0 scf/hr	Calculated
Total Dehy Flash Tank *	5.1 MMscf/yr	Calculated
Dehy Flash Tank	1215.02 btu/scf	GLYCalc/Calculated

^{*} Total hourly dehy flash tank flowrate assumes all dehydration unit flash tank emissions are routed to flare. Total annual dehy flash tank flowrate is calculated based on 5% annual VRU downtime. During VRU downtime, flash tank flow from DEHY-803, DEHY-804, and DEHY-805 are assumed to route flash tank gases to reboiler fuel line for approximately half of the VRU downtime, and to flare for half of the VRU downtime: therefore. an additional 50% reduction in flash tank asses to flare is accounted for.

Total Flare Flowrate (Max Hourly)	37,316.5 scf/hr	Calculated
Total Flare Flowrate (Max Hourly)	0.037 MMscf/hr	r Calculated
Total Flare Flowrate (Annual)	15.92 MMscf/yr	r
Total Flare Heat Content (Max)	2785.57 Btu/scf1	
Total Flare Heat Flow (Max)	103.948 MMBtu/hr	ır

Emission Rates

Pilot Gas + Tanks Vap

		281.07	0.032		14.38	lb/hr	Uncontrolled Truck Loading (WL1+WLC Uncontrolled Dehy Flash Tank Vapors
		42.77	0.0048		2.16	tpy	Uncontrolled Dehy Flash Tank Vapors 9
0.0300	0.060	-	7.61E-05	3.04E-03	-	lb/hr	Pilot Emissions
0.131	0.262	-	3.33E-04	1.33E-02	-	tpy	THOCETHISSIONS
7.87	15.71	42.30	1.36E-03	0.1253	1.81	lb/hr	Post-Control Tank Emissions
1.72	3.44	2.08	5.44E-05	0.0050	0.082	tpy⁵	POSC-CONTROL TAIR EMISSIONS
0.20	0.39	1.10	3.77E-05	3.48E-03	0.046	lb/hr	Post-Control Truck Loading
0.28	0.57	1.65	4.69E-05	4.33E-03	0.0034	tpy ⁵	Emissions (WL1+WLCS)
 2.79	5.57	5.62	0.00064	0.059	0.29	lb/hr	Post-Control Flash Tank
0.43	0.85	0.86	9.55E-05	8.81E-03	0.043	tpy ⁹	Emissions

	NOx	со	VOC ³	H ₂ S ³	SO₂⁴	HAPs	Units	
Pilot Gas + Tank Vapors + Loading	10.88	21.73	49.02	2.11E-03	0.191	2.14	lb/hr	Controlled Emission Rate
+ Dehy Flash Gas	2.57	5.12	4.58	5.30E-04	0.031	0.13	tpy	

Greenhouse Gas Calculations⁶

CO ₂	N ₂ O	CH ₄	CO ₂ e	_
53.1	0.0001	0.001		kg/MMBtu
1	298	25		GWP ⁷
12159.5	0.0229	0.229	12172.0	lb/hr ⁸
2662.9	0.0050	0.050	2665.7	tpy⁵

 $^{^{\}rm 1}$ Based on maximum heating value from ProMax simulation for WL1 or WLCS.

Uncontrolled Annual Dehy Flash Tank Vapors routed to flare are based on 5% of the annual uncontrolled emissions rates. Emissions from DEHY-803, DEHY-804, and DEHY-805 are further reduced by routing flash tank emissions to reboiler fuel line at least 50% of the time.

² To be conservative the TNRCC RG-109 emission factors for high-Btu flares were used.

³ Assumed 98% combustion for H₂S, HAP and VOC. 98% DRE

 $^{^4}$ Assumed 100% conversion H₂S to SO₂, SO₂=(64/34)*uncontrolled H₂S.

ton/yr emissions based on assumed 5% annual VRU downtime. MMScf/yr * 5% = Annual Flowrate

⁶ Greenhouse gas emission factors are from 40 CFR 98 Subpart C

⁷ 40 CFR 98 Subpart A, Table A-1

 $^{^{8}}$ CO $_{2}$, N $_{2}$ O and CH $_{4}$ lb/hr = EF (kg/MMBtu) * 2.20462lb/kg * Fuel consumption (MMBtu/hr) CO $_{2}$ e lb/hr = CO $_{2}$ lb/hr + (CH $_{4}$ lb/hr * GWP) + (N $_{2}$ O lb/hr * GWP)

Crestwood New Mexico Pipeline LLC Willow Lake Gas Processing Plant

Unit(s): WL1-FL

Description: Flare - Compressor Blowdowns

Flare Emissions - Residue Compressor Blowdowns - NO_{x} and $\mathrm{CO}^{\ 1}$

In	put	Data

Total Number of Events = 416 blowdowns/year Total Number of Compressors = compressors 6,500 Blowdown Volume per Compressor= scf/blowdown Estimated Event Duration 2= hr/event Maximum Flowrate = 0.052 MMscf/event Annual Event Hours = Gas Stream Heat Value = 416 1,278 hrs/yr Btu/scf Maximum Hourly Flowrate ³ = 0.052 MMscf/hr Annual Flowrate 4 = 2.704 MMscf/yr Hourly Gas Stream Heat Input ⁵ = 66 MMBtu/hr Annual Gas Stream Heat Input ⁶ = MMBtu/yr 3.456

Compound	Flare Emission Factors 7	Flare Emissions ^{8, 9}		
	(lb/MMBtu)	(lb/hr)	(tpy)	
NO _x	0.138	9.17	0.24	
CO	0.2755	18.31	0.48	

 $^{^1 \ \, \}text{Blowdown of compressors is routed to WL1-FL. Maximum of five blowdowns per event @ 6,500 scf/blowdown and compressors is routed to WL1-FL. Maximum of the blowdowns per event @ 6,500 scf/blowdown and compressors is routed to WL1-FL. Maximum of the blowdowns per event @ 6,500 scf/blowdown and compressors is routed to WL1-FL. Maximum of the blowdowns per event @ 6,500 scf/blowdown and compressors is routed to WL1-FL. Maximum of the blowdowns per event @ 6,500 scf/blowdown and compressors is routed to WL1-FL. Maximum of the blowdown and compressors is routed to WL1-FL$

³ Maximum hourly flowrate is not steady-state, but represents the maximum hourly flowrate at the time that a blowdown is routed to the flare.

Hourly Flowrate (MMscf/hr) =	0.052 MMscf	event	=	0.052 MMscf	
	event	1 hr		hr	
Annual Flowrate (MMscf/yr) = Event Flowrate (N	Mscf/event) x To	tal Number of Event (events/yr)		
Annual Flowrate (MMscf/vr) =	0.052 MMscf	416 events	-	2.7 MMscf	

Annual Flowrate (MMscf/yr) =	0.052 MMscf	416 events	=	2.7 MMscf
	event	yr		yr

⁵ Hourly Gas Stream Heat Input (MMBtu/hr) = Hourly Flowrate (MMscf/hr) x Gas Stream Heat Value (Btu/scf) Hourly Gas Stream Heat Input (MMBtu/hr) = 0.052 MMscf

⁶ Annual Gas Stream Heat Input (MMBtu/yr) = Annual Flowrate (MMs	cf/yr) x Gas Stream H	leat Value (Btu/scf)		
Annual Cas Stream Heat Innut (MANADtu /ur) -	2.7 MMscf	1 278 Rtu	_	3 456 MMRtu

⁷ From TCEQ "Air Permit Guidance For Chemical Sources, Flare And Vapor Oxidizers" (Draft Oct. 2000) Table 4, emission factors $for industrial \ flares \ combusting \ high-Btu \ vapors.$

⁸ Maximum Potential Hourly Emission Rate (lb/hr) = Flare Emission Factor (lb/MMBtu) x Hourly Gas Stream Heat Input (MMBtu/hr)

Example NO _x Hourly Emission Rate (lb/hr) =	0.138 lb	66 MMBtu	=	9.17 lb	
-	MMBtu	hr	•	hr	Τ

⁹ Maximum Potential Annual Emission Rate (tpy) = Flare Emission Factor (lb/MMBtu) x Annual Gas Stream Heat Input (MMBtu/yr) x (1 ton / 2,000 lb)

Example NO _x Annual Emission Rate (tpy) =	0.138 lb 3,456 MMBtu		1 ton	=	0.24 ton
·	MMBtu	yr	2,000 lb		yr

² For events lasting less than 1 hour, it is assumed that no more than 1 event occurs per hour. Hourly Flowrate (MMscf/hr) = Event Flowrate (MMscf/event) / Event Duration (hrs/event)

Flare Emissions - Residue Compressor Emergency Blowdowns - VOC, SO₂, and H₂S

Input Data		
Total Number of Events =	416	blowdowns/year
Estimated Event Duration 2=	1	hr/event
Maximum Flowrate =	0.052	MMscf/event
Annual Event Hours =	416	hrs/yr
Gas Stream Heat Value =	1,278	Btu/scf
Hourly Flowrate 3 =	0.052	MMscf/hr
Annual Flowrate 4 =	2.70	MMscf/yr
Hourly Gas Stream Heat Input 5 =	66	MMBtu/hr
Annual Gas Stream Heat Input ⁶ =	3,456	MMBtu/yr

Compound	Composition 5	MW	MW DRE ⁶ Gas Vented to Flare ^{7,8} Co		Gas Vented to Flare 7,8		missions 9,10
	(Mole %)	(lb/lb-mole)	(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Propane	5.118	44	98%	308.56	8.02	6.17	0.16
i-Butane	0.731	58	98%	58.09	1.51	1.16	0.03
n-Butane	1.623	58	98%	128.98	3.35	2.58	0.07
i-Pentane	0.383	72	98%	37.79	0.98	0.76	0.020
n-Pentane	0.398	72	98%	39.27	1.02	0.79	0.020
Hexanes Plus	0.767	86	98%	90.38	2.35	1.81	0.047
H ₂ S	0.0004	34	98%	1.87E-02	4.86E-04	3.74E-04	9.71E-06
VOC 11	9.02			663.08	17.24	13.26	0.34
SO ₂		64				0.034	8.95E-04

 $^{^{1}\,\}mathrm{Blowdown}$ of compressor station engines are routed to flare.

³ Hourly Flowrate (MMscf/hr) = Event Flowrate (MMscf/event) / Event Duration (hrs/event)

Hourly Flowrate (Wiwisciffil) - Event Flowrate (Wiwiscifevent) / Event Duration (Ilis/event)									
Hourly Flowrate (MMscf/hr) =	0.052 MMscf	event	=	0.052 MMscf					
	event	1 hr		hr					
⁴ Annual Flowrate (MMscf/yr) = Event Flowrate (M	1Mscf/event) x To	tal Number of Event (events/yr)						
Annual Flowrate (MMscf/yr) =	0.052 MMscf	416 events	=	2.7 MMscf					
·	event	vr		vr					

⁵ Composition of the gas stream is obtained from the Dehy Upstream Gas Analysis (05/28/2020). H₂S is conservatively assumed to be 4 ppm.

⁶ Per TCEQ "Air Permit Guidance For Chemical Sources, Flare And Vapor Oxidizers" (Draft Oct. 2000), 98% of the H₂S is assumed to be oxidized to SO₂ while the remaining 2% is emitted as H₂S.

Gas Vented to Flare (lb/hr) = Hourly Flowrate (MMscf/hr) x M	ole Percent (%) / 100 x M	W (lb/lb-mole) / 379.5	(scf/lb-mole) x (10 ⁶	scf/1 MMscf)				
Example Propane Hourly Vented Rate (lb/h	r) = 0.052 MMscf	5.12 %	44 lb	lb-mole	10 ⁶ scf	=	0,308.56 lb	
	hr	100	lb-mole	379.5 scf	1 MMscf		hr	
⁸ Gas Vented to Flare (tpy) = Annual Flowrate (MMscf/yr) x Mole Percent (%) / 100 x MW (lb/lb-mole) / 379.5 (scf/lb-mole) x (10 ⁶ scf/1MMscf) x (1ton/ 2,000 lb)								
Example Propane Annual Vented Rate (tp	y) = 2.7 MMscf	5.12 %	44 lb	lb-mole	10 ⁶ scf	1 ton	=	8.02 ton
	yr	100	lb-mole	379.5 scf	1 MMscf	2,000 lb	_	yr
9 Controlled Maximum Potential Hourly Emission Rate (lb/hr) =	Gas Vented to Flare (lb/h	ır) x (1 - DRE)						
Controlled Maximum Potential Annual Emission Rate (tpy) =	Gas Vented to Flare (tpy) x (1 - DRE)						
		0.200 FC III	(4 0 00)		C 47 II			

Example Controlled Propane Hourly Emission Rate (lb/hr) = 0,308.56 lb (1 - 0.98) = hr

 $^{^{\}rm 2}\,$ For events lasting less than 1 hour, it is assumed that no more than 1 event occurs per hour.

 ¹⁰ Controlled flare SO2 Emission Rate (lb/hr) = [H₂S Inlet (lb/hr) - H₂S Outlet (lb/hr)] x SO2 MW (lb/lb-mol) / H₂S MW (lb/lb-mol)
 Ed.406 lb/lb-mol
 =

 Controlled SO2 Hourly Emission Rate (lb/hr) =
 [0.02 - 0.00] lb
 64.06 lb/lb-mol
 =

 hr
 34.08 lb/lb-mol

 0.03 lb

 $^{^{\}rm 11}\,$ Total VOC taken as the sum of NMNEHC.

Flare Emissions - Residue Compressor Emergency Blowdowns - Greenhouse Gas Calculations

CO ₂	N ₂ O	CH ₄	CO ₂ e	
53.1	0.0001	0.001	-	kg/MMBtu 1
1	298	25	-	GWP ²
202	0.000	0.00	202	tpy 3

¹ Greenhouse gas emission factors are from 40 CFR 98 Subpart C.

² 40 CFR 98 Subpart A, Table A-1.

³ GHG Emissions (tpy) = Emission Factor (kg/MMBtu) x Fuel Consumption (MMBtu/yr) x 2.20426 (lb/kg) / 2,000 (lb/ton) CO₂e (tpy) = CO₂ tpy + (CH₄ tpy x CH₄ GWP) + (N₂O tpy x N₂O GWP)

Willow Lake

Emission Unit: DEHY-803
Source Description: Glycol Dehydrator

Annual Operating Hours: 8760 hr
Dry Gas Flow Rate: 25 MMscf/day

Criteria Pollutant Emissions

		Uncontrolle	d Flash Tank	Uncontrolled	Uncontrolled Regenerator		controlled	Controlled F	Regenerator	Total Co	ntrolled
Compound	DRE (%)	Emiss	ions ¹	Emis	sions ²	Emis	sions ³	Emiss	ions ⁴	Emis	sions ⁵
		lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Carbon Dioxide ⁵	0%	1.2900	5.6502	0.1090	0.4774	1.3990	6.1276	0.1070	0.4687	1.6764	7.3426
Hydrogen Sulfide	98%	0.0062	0.0272	0.0034	0.0149	0.0096	0.0420	0.0032	0.0140	0.0002	0.0010
Methane	98%	97.3095	426.2156	0.6597	2.8895	97.9692	429.1051	0.6569	2.8772	2.3512	10.2982
Ethane	98%	30.7329	134.6101	0.7663	3.3564	31.4992	137.9665	0.7490	3.2806	0.7556	3.3094
Propane	98%	22.1606	97.0634	1.1983	5.2486	23.3589	102.3120	1.0738	4.7032	0.5576	2.4424
Isobutane	98%	4.4301	19.4038	0.3713	1.6263	4.8014	21.0301	0.3021	1.3232	0.1136	0.4974
n-Butane	98%	10.6813	46.7841	1.1845	5.1881	11.8658	51.9722	0.9037	3.9582	0.2780	1.2178
Isopentane	98%	2.9814	13.0585	0.3866	1.6933	3.3680	14.7518	0.2046	0.8961	0.0765	0.3349
n-Pentane	98%	3.3602	14.7177	0.5454	2.3889	3.9056	17.1065	0.2752	1.2054	0.0872	0.3822
n-Hexane	98%	1.9850	8.6943	0.6025	2.6390	2.5875	11.3333	0.1865	0.8169	0.0521	0.2283
Other Hexanes	98%	2.2096	9.6780	0.5015	2.1966	2.7111	11.8746	0.1843	0.8072	0.0575	0.2516
Heptanes	98%	3.3209	14.5455	2.1406	9.3758	5.4615	23.9214	0.3014	1.3201	0.0869	0.3808
Benzene	98%	0.0151	0.0661	0.1349	0.5909	0.1500	0.6570	0.0280	0.1226	0.0010	0.0045
Toluene	98%	0.5918	2.5921	8.4893	37.1831	9.0811	39.7752	0.6903	3.0235	0.0308	0.1348
Ethylbenzene	98%	0.0461	0.2019	1.1841	5.1864	1.2302	5.3883	0.0317	0.1388	0.0019	0.0082
Xylenes	98%	0.1272	0.5571	4.7399	20.7608	4.8671	21.3179	0.1186	0.5195	0.0059	0.0258
C8+ Heavies	98%	0.9895	4.3340	7.7595	33.9866	8.7490	38.3206	0.0038	0.0166	0.0238	0.1044
VOC	98%	52.90	231.70	29.24	128.06	82.14	359.76	4.30	18.85	1.37	6.01
HAP	98%	2.77	12.11	15.15	66.360	17.92	78.47	1.06	4.62	0.092	0.40

Greenhouse Gas Emissions

CO ₂	CH₄	CO₂e	
7.34	10.30		tons/yr ⁶
1	25		GWP ⁷
7.34	257.46	264.80	tons/yr CO ₂ e8

¹ From "Flash Tank Off Gas" stream in GLYCalc Report.

Flash tank emissions are routed into the reboiler fuel line for reboiler firing and continuous pilot fuel, vapors may be routed to the VRU in the event of low fuel demand.

Flash tank emissions are routed to the flare in the event the VRU is not in service with an assumed 98% DRE.

The post-condenser regenerator emissions are routed to the firebox when the reboiler is firing and glow plug when the reboiler is not firing (assumed 98% DRE).

20%

 $^{^{2}\,\}mathrm{From}$ "Uncontrolled Regenerator Emissions" stream in GLYCalc Report.

 $^{^{\}rm 3}$ Summation of the Uncontrolled Flash Tank and Regenerator Emissions.

 $^{^4}$ From "Controlled Regenerator Emissions" stream in GLYCalc Report. The control provided in the GLYCalc report is by a condenser.

⁵ Controlled maximum potential hourly emission rate = (Uncontrolled Flash Tank Emissions + Condenser Controlled Regenerator Emissions) * (1-DRE). A Safety Factor has been added.

⁶ Carbon Dioxide emissions from "Condenser Vent Gas Stream" and "Flash Tank Off Gas Stream" in the GLYCalc report. A DRE of 0% is assumed for CO₂.

⁷ 40 CFR 98 Subpart A, Table A-1

⁸CO₂e tons/yr = tons/yr * GWP

Willow Lake

Emission Unit: DEHY-804
Source Description: Glycol Dehydrator

Annual Operating Hours: 8760 hr

Dry Gas Flow Rate: 3.5 MMscf/day

Criteria Pollutant Emissions

Comment	DDE (0()	Uncontrolle			Regenerator	Total Uncontro	olled Emissions ³		Regenerator		ntrolled
Compound	DRE (%)		sions ¹		sions ²			Emissions ⁴			sions ⁵
		lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Carbon Dioxide⁵	0%	0.1240	0.5431	0.0103	0.0451	0.1343	0.5882	0.0101	0.0442	0.1609	0.7048
Hydrogen Sulfide	98%	0.0006	0.0026	0.0003	0.0013	0.0009	0.0039	0.0003	0.0013	0.0000	0.0001
Methane	98%	9.3595	40.9946	0.0622	0.2724	9.4217	41.2670	0.0619	0.2711	0.2261	0.9904
Ethane	98%	2.9459	12.9030	0.0709	0.3105	3.0168	13.2136	0.0692	0.3031	0.0724	0.3169
Propane	98%	2.1282	9.3215	0.1139	0.4989	2.2421	9.8204	0.1017	0.4454	0.0535	0.2344
Isobutane	98%	0.4250	1.8615	0.0351	0.1537	0.4601	2.0152	0.0284	0.1244	0.0109	0.0477
n-Butane	98%	1.0243	4.4864	0.1118	0.4897	1.1361	4.9761	0.0847	0.3710	0.0266	0.1166
Isopentane	98%	0.2859	1.2522	0.0363	0.1590	0.3222	1.4112	0.0190	0.0832	0.0073	0.0321
n-Pentane	98%	0.3221	1.4108	0.0512	0.2243	0.3733	1.6351	0.0254	0.1113	0.0083	0.0365
n-Hexane	98%	0.1903	0.8335	0.0562	0.2462	0.2465	1.0797	0.0170	0.0745	0.0050	0.0218
Other Hexanes	98%	0.2118	0.9277	0.0468	0.2050	0.2586	1.1327	0.0169	0.0740	0.0055	0.0240
Heptanes	98%	0.3192	1.3981	0.1983	0.8686	0.5175	2.2667	0.0271	0.1187	0.0083	0.0364
Benzene	98%	0.0015	0.0066	0.0132	0.0578	0.0147	0.0644	0.0026	0.0114	0.0001	0.0004
Toluene	98%	0.0599	0.2624	0.8363	3.6630	0.8962	3.9254	0.0654	0.2865	0.0030	0.0132
Ethylbenzene	98%	0.0047	0.0206	0.1176	0.5151	0.1223	0.5357	0.0030	0.0131	0.0002	0.0008
Xylenes	98%	0.0133	0.0583	0.4827	2.1142	0.4960	2.1725	0.0116	0.0508	0.0006	0.0026
C8+ Heavies	98%	0.0978	0.4284	0.7238	3.1702	0.8216	3.5986	0.0003	0.0013	0.0024	0.0103
voc	98%	5.08	22.27	2.82	12.37	7.91	34.63	0.40	1.77	0.13	0.58
HAP	98%	0.27	1.18	1.51	6.60	1.78	7.78	0.10	0.44	0.0089	0.039

Greenhouse Gas Emissions

CO2	CH₄	CO₂e	
0.70	0.99		tons/yr ⁵
1	25		GWP ⁶
0.705	24 7594	25,464	tons/vr CO ₂ e ⁷

¹ From "Flash Tank Off Gas" stream in GLYCalc Report.

Flash tank emissions are routed into the reboiler fuel line for reboiler firing and continuous pilot fuel, vapors may be routed to the VRU in the event of low fuel demand.

Flash tank emissions are routed to the flare in the event the VRU is not in service with an assumed 98% DRE.

The post-condenser regenerator emissions are routed to the firebox when the reboiler is firing and glow plug when the reboiler is not firing (assumed 98% DRE).

20%

² From "Uncontrolled Regenerator Emissions" stream in GLYCalc Report.

³ Summation of the Uncontrolled Flash Tank and Regenerator Emissions.

 $^{^4}$ From "Controlled Regenerator Emissions" stream in GLYCalc Report. The control provided in the GLYCalc report is by a condenser.

⁵ Controlled maximum potential hourly emission rate = (Uncontrolled Flash Tank Emissions + Condenser Controlled Regenerator Emissions) * (1-DRE). A Safety Factor has been added.

⁶ Carbon Dioxide emissions from "Condenser Vent Gas Stream" and "Flash Tank Off Gas Stream" in the GLYCalc report. A DRE of 0% is assumed for CO₂.

⁷ 40 CFR 98 Subpart A, Table A-1

⁸CO₂e tons/yr = tons/yr * GWP

Willow Lake

Emission Unit: DEHY-EG

Source Description: Ethylene Glycol Dehydrator

Annual Operating Hours: 8760 hr

Dry Gas Flow Rate: 35 MMscf/day

Criteria Pollutant Emissions

	Uncontrolle	d Flash Tank	Uncontrolled	Regenerator	Total Un	controlled	Total Controlled	
Compound	Emiss	sions ¹	Emiss	sions ²	Emis	sions ³	Emiss	ions ⁴
	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Carbon Dioxide ⁵	0.5270	2.3083	0.6820	2.9872	1.2090	5.2954	-	-
Hydrogen Sulfide	0.0014	0.0061	0.0080	0.0350	0.0094	0.0412	-	-
Methane	1.2202	5.3445	0.1630	0.7139	1.3832	6.0584	-	-
Ethane	3.0956	13.5587	0.4700	2.0586	3.5656	15.6173	-	-
Propane	0.8371	3.6665	0.3432	1.5032	1.1803	5.1697	-	-
Isobutane	0.1032	0.4520	0.0392	0.1717	0.1424	0.6237	-	-
n-Butane	0.2334	1.0223	0.1110	0.4862	0.3444	1.5085	-	-
Isopentane	0.0382	0.1673	0.0215	0.0942	0.0597	0.2615	-	-
n-Pentane	0.0167	0.0731	0.0111	0.0486	0.0278	0.1218	-	-
n-Hexane	0.0079	0.0346	0.0069	0.0302	0.0148	0.0648	-	-
Other Hexanes	0.0123	0.0539	0.0085	0.0372	0.0208	0.0911	-	-
Heptanes	0.0022	0.0096	0.0026	0.0114	0.0048	0.0210	-	-
Benzene	0.0003	0.0013	0.0031	0.0136	0.0034	0.0149	-	-
Toluene	0.0003	0.0013	0.0044	0.0193	0.0047	0.0206	-	-
Ethylbenzene	0.0003	0.0013	0.0034	0.0149	0.0037	0.0162	-	-
Xylenes	0.0006	0.0026	0.0119	0.0521	0.0125	0.0548	-	-
C8+ Heavies	0.0001	0.0004	0.0001	0.0004	0.0002	0.0009	-	-
voc	1.25	5.49	0.57	2.48	1.82	7.97	-	-
HAP	0.0094	0.041	0.030	0.13	0.039	0.17	-	-

Greenhouse Gas Emissions

CO ₂	CH₄	CO₂e	
5.30	6.06		tons/yr ⁶
1	25		GWP ⁷
5.30	151.46	156.76	tons/vr CO ₂ e ⁸

¹ From "Flash Tank Off Gas" Stream in GlyCalc Report.

² From "Uncontrolled Regenerator" Stream in GlyCalc Report.

³ Summation of the Uncontrolled Flash Tank Emissions and Uncontrolled Regenerator Emissions

⁴ Flash tank emissions and regenerator emissions are routed to the flare. Controlled emissions are represented under that unit (WL2-FL)

⁵ Carbon Dioxide emissions from "Flash Tank off Gas" and "Regenerator Overheads" streams in the GLYCalc report.

⁶ From "Uncontrolled Emissions", calculated above

⁷ 40 CFR 98 Subpart A, Table A-1

⁸ CO₂e tons/yr = tons/yr * GWP

Willow Lake

Emission Unit: DEHY-805

Source Description: Triethylene Glycol Dehydrator

Annual Operating Hours: 8760 hr

Dry Gas Flow Rate: 65 MMscf/day

Criteria Pollutant Emissions

Compound	DRE (%)	Emissions ¹			Uncontrolled Regenerator Emissions ²		Total Uncontrolled Emissions		Regenerator sions ⁴		ontrolled sions ⁵
		lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Carbon Dioxide ⁵	0%	2.7700	12.1326	0.2320	1.0162	3.0020	13.1488	0.2280	0.9986	3.5976	15.7575
Hydrogen Sulfide	98%	0.0132	0.0578	0.0073	0.0320	0.0205	0.0898	0.0068	0.0298	0.0005	0.0021
Methane	98%	208.9957	915.4012	1.4039	6.1491	210.3996	921.5502	1.3979	6.1228	5.0494	22.1166
Ethane	98%	65.9011	288.6468	1.6159	7.0776	67.5170	295.7245	1.5788	6.9151	1.6195	7.0935
Propane	98%	47.5613	208.3185	2.5594	11.2102	50.1207	219.5287	2.2892	10.0267	1.1964	5.2403
Isobutane	98%	9.5035	41.6253	0.7913	3.4659	10.2948	45.0912	0.6413	2.8089	0.2435	1.0664
n-Butane	98%	22.9093	100.3427	2.5220	11.0464	25.4313	111.3891	1.9162	8.3930	0.5958	2.6097
Isopentane	98%	6.3946	28.0083	0.8215	3.5982	7.2161	31.6065	0.4313	1.8891	0.1638	0.7175
n-Pentane	98%	7.2055	31.5601	1.1584	5.0738	8.3639	36.6339	0.5788	2.5351	0.1868	0.8183
n-Hexane	98%	4.2568	18.6448	1.2758	5.5880	5.5326	24.2328	0.3897	1.7069	0.1115	0.4884
Other Hexanes	98%	4.7382	20.7533	1.0618	4.6507	5.8000	25.4040	0.3860	1.6907	0.1230	0.5387
Heptanes	98%	7.1305	31.2316	4.5189	19.7928	11.6494	51.0244	0.6258	2.7410	0.1862	0.8153
Benzene	98%	0.0331	0.1450	0.2927	1.2820	0.3258	1.4270	0.0595	0.2606	0.0022	0.0097
Toluene	98%	1.3065	5.7225	18.5091	81.0699	19.8156	86.7923	1.4731	6.4522	0.0667	0.2922
Ethylbenzene	98%	0.1025	0.4490	2.5935	11.3595	2.6960	11.8085	0.0678	0.2970	0.0041	0.0179
Xylenes	98%	0.2857	1.2514	10.5216	46.0846	10.8073	47.3360	0.2574	1.1274	0.0130	0.0571
C8+ Heavies	98%	2.1529	9.4297	16.4331	71.9770	18.5860	81.4067	0.0078	0.0342	0.0519	0.2271
voc	98%	113.58	497.48	63.06	276.20	176.64	773.68	9.12	39.96	2.94	12.90
НАР	98%	5.98	26.21	33.19	145.38	39.18	171.60	2.25	9.84	0.20	0.87

Greenhouse Gas Emissions

CO ₂	CH₄	CO₂e	
15.76	22.12		tons/yr ⁵
1	25		GWP ⁶
15 76	552 91	568 67	tons/vr CO2e7

¹ From "Flash Tank Off Gas" stream in GLYCalc Report.

Flash tank emissions are routed into the reboiler fuel line for reboiler firing and continuous pilot fuel, vapors may be routed to the VRU in the event of low fuel demand.

Flash tank emissions are routed to the flare in the event the VRU is not in service with an assumed 98% DRE.

The post-condenser regenerator emissions are routed to the firebox when the reboiler is firing and glow plug when the reboiler is not firing (assumed 98% DRE).

20%

² From "Uncontrolled Regenerator Emissions" stream in GLYCalc Report.

³ Summation of the Uncontrolled Flash Tank and Regenerator Emissions.

 $^{^4}$ From "Controlled Regenerator Emissions" stream in GLYCalc Report. The control provided in the GLYCalc report is by a condenser.

⁵ Controlled maximum potential hourly emission rate = (Uncontrolled Flash Tank Emissions + Condenser Controlled Regenerator Emissions) * (1-DRE). A Safety Factor has been added.

⁶ Carbon Dioxide emissions from "Condenser Vent Gas Stream" and "Flash Tank Off Gas Stream" in the GLYCalc report. A DRE of 0% is assumed for CO₂.

⁷ 40 CFR 98 Subpart A, Table A-1

⁸CO₂e tons/yr = tons/yr * GWP

Willow Lake Gas Processing Plant

Emission Unit: DEHY-1505

Source Description: Triethylene Glycol Dehydrator

Annual Operating Hours: 8760 hr

Dry Gas Flow Rate: 80 MMscf/day

Criteria Pollutant Emissions

	(a/)		d Flash Tank		Regenerator	Total Uncontro	olled Emissions ³		Regenerator		ontrolled
Compound	DRE (%)		sions ¹		sions ²				sions ⁴	Emissions ⁵	
		lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Carbon Dioxide⁵	0%	2.7000	11.8260	0.2960	1.2965	2.9960	13.1225	0.2960	1.2965	0.5172	2.2653
Hydrogen Sulfide	98%	0.0118	0.0517	0.0086	0.0377	0.0204	0.0894	0.0081	0.0355	0.0002	0.0009
Methane	98%	209.1286	915.9833	1.8701	8.1910	210.9987	924.1743	1.8638	8.1634	0.2957	1.2951
Ethane	98%	65.4390	286.6228	2.1037	9.2142	67.5427	295.8370	2.0662	9.0500	0.1281	0.5611
Propane	98%	46.8732	205.3046	3.3304	14.5872	50.2036	219.8918	3.0541	13.3770	0.1295	0.5674
Isobutane	98%	9.2882	40.6823	1.0133	4.4383	10.3015	45.1206	0.8593	3.7637	0.0318	0.1391
n-Butane	98%	22.2317	97.3748	3.2040	14.0335	25.4357	111.4084	2.5787	11.2947	0.0886	0.3879
Isopentane	98%	6.1784	27.0614	1.0360	4.5377	7.2144	31.5991	0.6127	2.6836	0.0221	0.0969
n-Pentane	98%	6.9083	30.2584	1.4482	6.3431	8.3565	36.6015	0.8160	3.5741	0.0279	0.1221
n-Hexane	98%	3.9783	17.4250	1.5384	6.7382	5.5167	24.1631	0.5606	2.4554	0.0182	0.0798
Other Hexanes	98%	4.4851	19.6447	1.3023	5.7041	5.7874	25.3488	0.5560	2.4353	0.0187	0.0820
Heptanes	98%	6.4042	28.0504	5.1747	22.6652	11.5789	50.7156	0.8949	3.9197	0.0292	0.1277
Benzene	98%	0.0264	0.1156	0.3026	1.3254	0.3290	1.4410	0.0757	0.3316	0.0018	0.0081
Toluene	98%	1.0450	4.5771	19.0405	83.3974	20.0855	87.9745	1.9355	8.4775	0.0477	0.2090
Ethylbenzene	98%	0.0827	0.3622	2.6596	11.6490	2.7423	12.0113	0.0908	0.3977	0.0023	0.0100
Xylenes	98%	0.2318	1.0153	10.9008	47.7455	11.1326	48.7608	0.3473	1.5212	0.0086	0.0377
C8+ Heavies	98%	1.7714	7.7587	16.6000	72.7080	18.3714	80.4667	0.0102	0.0447	0.0024	0.0104
voc	98%	109.50	479.63	67.55	295.87	177.06	775.50	12.39	54.28	0.43	1.88
HAP	98%	5.36	23.50	34.44	150.86	39.81	174.35	3.01	13.18	0.08	0.34

Greenhouse Gas Emissions

CO2	CH₄	CO₂e	
2.27	1.30		tons/yr ⁵
1	25		GWP ⁶
2.27	32.38	34.64	tons/vr CO ₂ e ⁷

¹ From "Flash Tank Off Gas" stream in GLYCalc Report.

Flash tank emissions are recycled and directed back into the suction side of the compressor station. Flash tank emissions may also be routed to VRU, and to flare during VRU downtime. Worst-case emissions assume flash tank emissions are routed to flare with 98% DRE during VRU downtime (VRU downtime estimated at 5% annually). The post-condenser regenerator emissions are routed to the firebox when the reboiler is firing and glow plug when the reboiler is not firing (assumed 98% DRE).

20%

² From "Uncontrolled Regenerator Emissions" stream in GLYCalc Report.

³ Summation of the Uncontrolled Flash Tank and Regenerator Emissions.

⁴ From "Controlled Regenerator Emissions" stream in GLYCalc Report. The control provided in the GLYCalc report is by a condenser.

⁵ Controlled maximum potential hourly emission rate = (Condenser Controlled Regenerator Emissions) * (1-DRE). A Safety Factor has been added.

⁶ Carbon Dioxide emissions from "Condenser Vent Gas Stream" and "Flash Tank Off Gas Stream" in the GLYCalc report. A DRE of 0% is assumed for CO₂.

⁷ 40 CFR 98 Subpart A, Table A-1

⁸CO₂e tons/yr = tons/yr * GWP

Willow Lake

Emission Unit: HTR-803
Source Description: DEHY 803 Reboiler

Fuel Consumption

Input heat rate 0.500 MMBtu/hr

Fuel heat value 1020 Btu/scf Fuel Gas Analysis

Fuel rate 490.20 scf/hr Input heat rate / fuel heat value Fuel rate 0.00049 MMscf/hr Converted to MMscf

Annual operating hours: 8760

Annual fuel usage 4.29 MMscf/yr

Emission Rates

NO _x 1	CO1	VOC1	SO22	PM ^{1,3}	H ₂ S ⁴	нсно⁵	Toluene⁵	Benzene ⁵	n-Hexane ⁵	HAPs ⁵	Units
100	84	5.5		7.6		0.075	0.0034	0.0021	1.80		lb/MMscf
100.0	84.0	5.5		7.6		0.075	0.0034	0.0021	1.80		lb/MMscf
0.049	0.041	0.0027	0.0073	0.0037	3.50E-06	3.68E-05	1.67E-06	1.03E-06	8.82E-04	9.22E-04	lb/hr⁰
0.21	0.18	0.012	0.032	0.016	1.53E-05	1.61E-04	7.30E-06	4.51E-06	3.86E-03	4.04E-03	tons/vr7

¹ Emission factors from AP-42 Tables 1.4-1 and 1.4-2 (7/98)

Emission factors have been adjusted according to AP-42: EF (at fuel heating value) = Fuel Heat Value / EF Heat Value (1020 Btu/scf) * EF (at 1020 Btu/scf)

SO₂ lb/hr = 5gr S/100 scf * Fuel usage (scf/hr) * 1 lb/7000 gr * 64lb SO2/ 32lb S

Assume 100% conversion of combusted H₂S into SO₂ and 98% Combustion Efficiency. Additional SO₂ emissions from the combustion of H₂S:

 SO_2 (lb/hr) from $H_2S = 98\%*[(0.25 \text{ gr } H_2S/100 \text{ scf} * 1 \text{ lb/}7000 \text{ gr} * 64 \text{ lb/}lbmol <math>SO_2/34 \text{ lb/}lbmol H_2S*scf/hr)]$

⁵ HAP emission factors from AP-42 Table 1.4-3

Emission factors have been adjusted according to AP-42: EF (at fuel heating value) = Fuel Heat Value / EF Heat Value (1020 Btu/scf) * EF (at 1020 Btu/scf)

NOx, CO, VOC, PM, HAP lb/hr = EF (lb/MMscf) * Fuel usage (MMscf/hr)

tons/yr = Hourly emissions (lb/hr) * Hours of operation * 1 ton/2000 lb

Greenhouse Gas Calculations

CO2	N ₂ O	CH ₄	CO ₂ e	_
53.06	0.00010	0.0010		kg/MMBtu ⁸
1	298	25		GWP ⁹
				10
58.5	0.000110	0.00110		lb/hr ¹⁰
256.2	0.00048	0.0048	256.4	tpy ¹¹

⁸ Greenhouse gas emission factors are from 40 CFR 98 Subpart C

CO₂e tpy = CO₂ Emission Rate + (N₂O Emission Rate * GWP) + (CH₄ Emission Rate * GWP)

² SO₂ emissions based on fuel content of 5 grains of sulfur per 100 scf

³ Assumes PM (Total) = PM-10 = PM-2.5

 $^{^4\,}$ H $_2$ S emissions fuel content of 0.25 grains of hydrogen sulfide per 100 scf and combustion efficiency of 98%

H₂S lb/hr = (1-0.98) * 0.25 gr H₂S/100 scf * Fuel usage (scf/hr) * 1 lb/7000 gr

⁶ Hourly emission rates calculated as follows:

⁷ Annual emissions calculated as follows:

^{9 40} CFR 98 Subpart A, Table A-1

¹⁰ GHG lb/hr = EF (kg/MMBtu) * Heat input (MMBtu/hr) * 2.20462lb/kg

 $^{^{11}\,}$ CO2, N2O, CH4 tpy = Hourly emission rate (lb/hr) * Hours of operation * 1ton/2000lb

Willow Lake

Emission Unit: HTR-804

Source Description: DEHY 804 Reboiler

Fuel Consumption

Input heat rate 0.125 MMBtu/hr

Fuel heat value 1020 Btu/scf Fuel Gas Analysis

Fuel rate 122.55 scf/hr Input heat rate / fuel heat value

Fuel rate 0.00012 MMscf/hr Converted to MMscf

Annual operating hours: 8760

Annual fuel usage 1.07 MMscf/yr

Emission Rates

_	NO _x 1	CO1	VOC1	SO ₂ ²	PM ^{1,3}	H ₂ S ⁴	нсно⁵	Toluene ⁵	Benzene ⁵	n-Hexane ⁵	HAPs ⁵	Units
	100	84	5.5		7.6		0.075	0.0034	0.0021	1.80		lb/MMscf
_	100.0	84.0	5.5		7.6		0.075	0.0034	0.0021	1.80		lb/MMscf
_	0.012	0.010	0.00067	0.0018	0.00093	8.75E-07	9.19E-06	4.17E-07	2.57E-07	2.21E-04	2.30E-04	lb/hr ^b
	0.054	0.045	0.0030	0.0080	0.0041	3.83E-06	4.03E-05	1.83E-06	1.13E-06	9.66E-04	1.01E-03	tons/yr ⁷

¹ Emission factors from AP-42 Tables 1.4-1 and 1.4-2 (7/98)

Emission factors have been adjusted according to AP-42: EF (at fuel heating value) = Fuel Heat Value / EF Heat Value (1020 Btu/scf) * EF (at 1020 Btu/scf)

SO₂ lb/hr = 5gr S/100 scf * Fuel usage (scf/hr) * 1 lb/7000 gr * 64lb SO2/ 32lb S

Assume 100% conversion of combusted H₂S into SO₂ and 98% Combustion Efficiency. Additional SO₂ emissions from the combustion of H₂S:

 SO_2 (lb/hr) from $H_2S = 98\%*[(0.25 \text{ gr H}_2S/100 \text{ scf} * 1 \text{ lb/}7000 \text{ gr} * 64 \text{ lb/}lbmol <math>SO_2/34 \text{ lb/}lbmol H}_2S*scf/hr)]$

 $H_2S lb/hr = (1-0.98) * 0.25 gr H_2S/100 scf * Fuel usage (scf/hr) * 1 lb/7000 gr$

Emission factors have been adjusted according to AP-42: EF (at fuel heating value) = Fuel Heat Value / EF Heat Value (1020 Btu/scf) * EF (at 1020 Btu/scf)

NOx, CO, VOC, PM, HAP lb/hr = EF (lb/MMscf) * Fuel usage (MMscf/hr)

tons/yr = Hourly emissions (lb/hr) * Hours of operation * 1 ton/2000 lb

CO2	N ₂ O	CH₄	CO ₂ e	_
53.06	0.00010	0.0010		kg/MMBtu ⁸
1	298	25		GWP ⁹
14.6	0.000028	0.00028		lb/hr ¹⁰
64.0	0.00012	0.0012	64.1	tpy ¹¹

⁸ Greenhouse gas emission factors are from 40 CFR 98 Subpart C

² SO₂ emissions based on fuel content of 5 grains of sulfur per 100 scf

³ Assumes PM (Total) = PM-10 = PM-2.5

 $^{^4}$ H_2S emissions fuel content of 0.25 grains of hydrogen sulfide per 100 scf and combustion efficiency of 98%

⁵ HAP emission factors from AP-42 Table 1.4-3

⁶ Hourly emission rates calculated as follows:

⁷ Annual emissions calculated as follows:

⁹ 40 CFR 98 Subpart A, Table A-1

¹⁰ GHG lb/hr = EF (kg/MMBtu) * Heat input (MMBtu/hr) * 2.20462lb/kg

¹¹ CO₂, N₂O, CH₄ tpy = Hourly emission rate (lb/hr) * Hours of operation * 1ton/2000lb CO₂e tpy = CO₂ Emission Rate + (N₂O Emission Rate * GWP) + (CH₄ Emission Rate * GWP)

Willow Lake

Emission Unit: HTR-802
Source Description: Regen Gas Heater

Fuel Consumption

Input heat rate 2.00 MMBtu/hr

Fuel heat value 1020 Btu/scf Fuel Gas Analysis

Fuel rate 1960.78 scf/hr Input heat rate / fuel heat value

Fuel rate 0.00196 MMscf/hr Converted to MMscf

Annual operating hours: 8760

Annual fuel usage 17.18 MMscf/yr

Emission Rates

NO _x 1	CO1	VOC1	SO ₂ ²	PM ^{1,3}	H ₂ S ⁴	HCHO ⁵	Toluene ⁵	Benzene ⁵	n-Hexane⁵	HAPs⁵	Units
100	84	5.5		7.6		0.075	0.0034	0.0021	1.80		lb/MMscf
100.0	84.0	5.5		7.6		0.075	0.0034	0.0021	1.80		lb/MMscf
0.20	0.16	0.011	0.029	0.015	1.40E-05	1.47E-04	6.67E-06	4.12E-06	0.0035	0.0037	_lb/hr⁵
0.86	0.72	0.047	0.13	0.065	6.13E-05	6.44E-04	2.92E-05	1.80E-05	0.015	0.016	tons/yr ⁷

¹ Emission factors from AP-42 Tables 1.4-1 and 1.4-2 (7/98)

Emission factors have been adjusted according to AP-42: EF (at fuel heating value) = Fuel Heat Value / EF Heat Value (1020 Btu/scf) * EF (at 1020 Btu/scf)

SO₂ lb/hr = 5gr S/100 scf * Fuel usage (scf/hr) * 1 lb/7000 gr * 64lb SO2/ 32lb S

Assume 100% conversion of combusted H₂S into SO₂ and 98% Combustion Efficiency. Additional SO₂ emissions from the combustion of H₂S:

 SO_2 (lb/hr) from $H_2S = 98\%*[(0.25 \text{ gr H}_2S/100 \text{ scf} * 1 \text{ lb/}7000 \text{ gr} * 64 \text{ lb/}lbmol <math>SO_2/34 \text{ lb/}lbmol H}_2S*scf/hr)]$

 $H_2S lb/hr = (1-0.98) * 0.25 gr H_2S/100 scf * Fuel usage (scf/hr) * 1 lb/7000 gr$

Emission factors have been adjusted according to AP-42: EF (at fuel heating value) = Fuel Heat Value / EF Heat Value (1020 Btu/scf) * EF (at 1020 Btu/scf)

NOx, CO, VOC, PM, HAP lb/hr = EF (lb/MMscf) * Fuel usage (MMscf/hr)

tons/yr = Hourly emissions (lb/hr) * Hours of operation * 1 ton/2000 lb

CO2	N ₂ O	CH₄	CO ₂ e	_
53.06	0.00010	0.0010		kg/MMBtu ⁸
1	298	25		GWP ⁹
234.0	0.000441	0.00441		lb/hr ¹⁰
1024.7	0.00193	0.0193	1025.8	tpy ¹¹

⁸ Greenhouse gas emission factors are from 40 CFR 98 Subpart C

² SO₂ emissions based on fuel content of 5 grains of sulfur per 100 scf

³ Assumes PM (Total) = PM-10 = PM-2.5

 $^{^4}$ H_2S emissions fuel content of 0.25 grains of hydrogen sulfide per 100 scf and combustion efficiency of 98%

⁵ HAP emission factors from AP-42 Table 1.4-3

⁶ Hourly emission rates calculated as follows:

⁷ Annual emissions calculated as follows:

⁹ 40 CFR 98 Subpart A, Table A-1

¹⁰ GHG lb/hr = EF (kg/MMBtu) * Heat input (MMBtu/hr) * 2.20462lb/kg

¹¹ CO₂, N₂O, CH₄ tpy = Hourly emission rate (lb/hr) * Hours of operation * 1ton/2000lb CO₂e tpy = CO₂ Emission Rate + (N₂O Emission Rate * GWP) + (CH₄ Emission Rate * GWP)

Willow Lake

Emission Unit: HTR-730
Source Description: Hot Oil Heater

Fuel Consumption

Input heat rate 6.83 MMBtu/hr

Fuel heat value 1020 Btu/scf Fuel Gas Analysis

Fuel rate 6696.71 scf/hr Input heat rate / fuel heat value

Fuel rate 0.00670 MMscf/hr Converted to MMscf

Annual operating hours: 8760

Annual fuel usage 58.66 MMscf/yr

Emission Rates

_	NO _x 1	CO1	VOC1	SO ₂ ²	PM ^{1,3}	H ₂ S ⁴	нсно⁵	Toluene⁵	Benzene ⁵	n-Hexane⁵	HAPs ⁵	Units
	100	84	5.5		7.6		0.075	0.0034	0.0021	1.80		lb/MMscf
	100.0	84.0	5.5		7.6		0.075	0.0034	0.0021	1.80		lb/MMscf
-	0.67	0.56	0.037	0.10	0.051	4.78E-05	5.02E-04	2.28E-05	1.41E-05	0.012	0.013	lb/hr⁵
	2.93	2.46	0.16	0.44	0.22	2.10E-04	2.20E-03	9.97E-05	6.16E-05	0.053	0.055	tons/yr ⁷

¹ Emission factors from AP-42 Tables 1.4-1 and 1.4-2 (7/98)

Emission factors have been adjusted according to AP-42: EF (at fuel heating value) = Fuel Heat Value / EF Heat Value (1020 Btu/scf) * EF (at 1020 Btu/scf)

SO₂ lb/hr = 5gr S/100 scf * Fuel usage (scf/hr) * 1 lb/7000 gr * 64lb SO2/ 32lb S

Assume 100% conversion of combusted H₂S into SO₂ and 98% Combustion Efficiency. Additional SO₂ emissions from the combustion of H₂S:

 SO_2 (lb/hr) from $H_2S = 98\%*[(0.25 \text{ gr H}_2S/100 \text{ scf} * 1 \text{ lb/}7000 \text{ gr} * 64 \text{ lb/}lbmol <math>SO_2/34 \text{ lb/}lbmol H}_2S*scf/hr)]$

 $H_2S lb/hr = (1-0.98) * 0.25 gr H_2S/100 scf * Fuel usage (scf/hr) * 1 lb/7000 gr$

Emission factors have been adjusted according to AP-42: EF (at fuel heating value) = Fuel Heat Value / EF Heat Value (1020 Btu/scf) * EF (at 1020 Btu/scf)

NOx, CO, VOC, PM, HAP lb/hr = EF (lb/MMscf) * Fuel usage (MMscf/hr)

tons/yr = Hourly emissions (lb/hr) * Hours of operation * 1 ton/2000 lb

CO ₂	N ₂ O	CH₄	CO ₂ e	_
53.06	0.00010	0.0010		kg/MMBtu ⁸
1	298	25		GWP ⁹
799.0	0.001506	0.01506		lb/hr ¹⁰
3499.7	0.00660	0.0660	3503.4	tpy ¹¹

⁸ Greenhouse gas emission factors are from 40 CFR 98 Subpart C

² SO₂ emissions based on fuel content of 5 grains of sulfur per 100 scf

³ Assumes PM (Total) = PM-10 = PM-2.5

 $^{^4}$ H $_2$ S emissions fuel content of 0.25 grains of hydrogen sulfide per 100 scf and combustion efficiency of 98%

⁵ HAP emission factors from AP-42 Table 1.4-3

⁶ Hourly emission rates calculated as follows:

⁷ Annual emissions calculated as follows:

⁹ 40 CFR 98 Subpart A, Table A-1

¹⁰ GHG lb/hr = EF (kg/MMBtu) * Heat input (MMBtu/hr) * 2.20462lb/kg

¹¹ CO₂, N₂O, CH₄ tpy = Hourly emission rate (lb/hr) * Hours of operation * 1ton/2000lb CO₂e tpy = CO₂ Emission Rate + (N₂O Emission Rate * GWP) + (CH₄ Emission Rate * GWP)

Willow Lake Gas Processing Plant

Emission Unit: HTR-805 and HTR-1505

Source Description: DEHY 805 Reboiler and DEHY 1505 Reboiler

Fuel Consumption

Input heat rate 1.50 MMBtu/hr

Fuel heat value 1020 Btu/scf Fuel Gas Analysis

Fuel rate 1470.59 scf/hr Input heat rate / fuel heat value

Fuel rate 0.00147 MMscf/hr Converted to MMscf

Annual operating hours: 8760

Annual fuel usage 12.88 MMscf/yr

Emission Rates

_	NO _x ¹	CO1	VOC1	SO ₂ ²	PM ^{1,3}	H ₂ S ⁴	нсно⁵	Toluene⁵	Benzene ⁵	n-Hexane⁵	HAPs⁵	Units
	100	84	5.5		7.6		0.075	0.0034	0.0021	1.80		lb/MMscf
	100.0	84.0	5.5		7.6		0.075	0.0034	0.0021	1.80		lb/MMscf
-	0.15	0.12	0.0081	0.022	0.011	1.05E-05	1.10E-04	5.00E-06	3.09E-06	0.0026	0.0028	_lb/hr⁵
	0.64	0.54	0.035	0.096	0.049	4.60E-05	4.83E-04	2.19E-05	1.35E-05	0.012	0.012	tons/yr ⁷

¹ Emission factors from AP-42 Tables 1.4-1 and 1.4-2 (7/98)

Emission factors have been adjusted according to AP-42: EF (at fuel heating value) = Fuel Heat Value / EF Heat Value (1020 Btu/scf) * EF (at 1020 Btu/scf)

SO₂ lb/hr = 5gr S/100 scf * Fuel usage (scf/hr) * 1 lb/7000 gr * 64lb SO2/ 32lb S

Assume 100% conversion of combusted H₂S into SO₂ and 98% Combustion Efficiency. Additional SO₂ emissions from the combustion of H₂S:

 SO_2 (lb/hr) from $H_2S = 98\%*[(0.25 \text{ gr H}_2S/100 \text{ scf} * 1 \text{ lb/}7000 \text{ gr} * 64 \text{ lb/}lbmol <math>SO_2/34 \text{ lb/}lbmol H}_2S*scf/hr)]$

 $H_2S lb/hr = (1-0.98) * 0.25 gr H_2S/100 scf * Fuel usage (scf/hr) * 1 lb/7000 gr$

Emission factors have been adjusted according to AP-42: EF (at fuel heating value) = Fuel Heat Value / EF Heat Value (1020 Btu/scf) * EF (at 1020 Btu/scf)

NOx, CO, VOC, PM, HAP lb/hr = EF (lb/MMscf) * Fuel usage (MMscf/hr)

tons/yr = Hourly emissions (lb/hr) * Hours of operation * 1 ton/2000 lb

CO2	N ₂ O	CH₄	CO ₂ e	
53.06	0.00010	0.0010		kg/MMBtu ⁸
1	298	25		GWP ⁹
175.5	0.000331	0.00331		lb/hr ¹⁰
768.5	0.00145	0.0145	769.3	tpy ¹¹

⁸ Greenhouse gas emission factors are from 40 CFR 98 Subpart C

² SO₂ emissions based on fuel content of 5 grains of sulfur per 100 scf

³ Assumes PM (Total) = PM-10 = PM-2.5

 $^{^4}$ H_2S emissions fuel content of 0.25 grains of hydrogen sulfide per 100 scf and combustion efficiency of 98%

⁵ HAP emission factors from AP-42 Table 1.4-3

⁶ Hourly emission rates calculated as follows:

⁷ Annual emissions calculated as follows:

⁹ 40 CFR 98 Subpart A, Table A-1

¹⁰ GHG lb/hr = EF (kg/MMBtu) * Heat input (MMBtu/hr) * 2.20462lb/kg

¹¹ CO₂, N₂O, CH₄ tpy = Hourly emission rate (lb/hr) * Hours of operation * 1ton/2000lb CO₂e tpy = CO₂ Emission Rate + (N₂O Emission Rate * GWP) + (CH₄ Emission Rate * GWP)

Willow Lake Gas Processing Plant

Unit: WL1-TK601 through WL1-TK603
Description: WL1 210 bbl Condensate Tanks

Number of Tanks 3

Tank Emissions 1,2

VOC	Benzene	Toluene	Ethylbenzene	Xylenes	n-Hexane	Total HAPs	H ₂ S			
159.85	0.17	0.30	0.019	0.12	2.45	3.06	0.0041	lb/hr	ProMax Repo	ort
594.66	0.79	1.50	0.10	0.645	11.85	14.89	0.011	tpy	ProMax Repo	ort
53.28	0.056	0.099	0.0064	0.040	0.82	1.02	0.0014	lb/hr	Per Tank	Uncontrolled
198.22	0.26	0.50	0.034	0.21	3.95	4.96	0.0038	tpy	Per Tank	Uncontrolled
1.07	0.0011	0.0020	0.00013	0.00080	0.016	0.020	2.74E-05	lb/hr	Per Tank	Controlled ³
0.20	0.00026	0.00050	0.000034	0.00021	0.0039	0.0050	3.82E-06	tpy	Per Tank	Controlled ³
CO2	Methane									
0.40	24.83	lb/hr	ProMax Report							
1.10	66.64	tpy	ProMax Report							
CO ₂ e ⁴	<u> </u>									
1667.06	tpy									
555.69	tpy	Per Tank								

Notes

14 bbl/hr of condensate for lb/hr calculations and 65,700 bbl/yr of condensate for tpy calculations.

65,700 bbl/yr of produced water for tpy calculations.

 $^{^{\}mbox{\scriptsize 1}}$ ProMax simulation utilized the following conservative throughputs:

 $^{^{\,\,2}}$ Emissions include working, breathing and flash and are per tank.

³ Emissions from the tanks are controlled by a VRU with an assumed annual 5% downtime. VRU control only applied to annual emissions.

5% During VRU downtime, the emissions will be routed to a flare (WL1-FL) with an assumed additional 98% DRE

98%

 $^{^4}$ CO $_2$ e tpy Emission Rate = CO $_2$ Emission Rate + CH $_4$ Emission Rate *GWP Factor

Willow Lake Gas Processing Plant

Unit: WL2-TK8101 and WL2-TK8102
Description: WL 2 400 bbl Condensate Tanks

Number of Tanks 2

Tank Emissions 1,2

VOC	Benzene	Toluene	Ethylbenzene	Xylenes	n-Hexane	Total HAPs	H ₂ S			
188.67	0.21	0.36	0.024	0.15	3.01	3.75	0.0046	lb/hr	ProMax Report	
 93.93	0.13	0.24	0.016	0.10	1.88	2.36	0.0018	tpy	ProMax Report	
94.33	0.10	0.18	0.012	0.074	1.51	1.88	0.0023	lb/hr	Per Tank	Uncontrolled
 46.96	0.063	0.12	0.0082	0.051	0.94	1.18	0.00090	tpy	Per Tank	Uncontrolled
 94.33	0.10	0.18	0.012	0.074	1.51	1.88	0.0023	lb/hr	Per Tank	Controlled ³
2.35	0.0032	0.0060	0.00041	0.0026	0.047	0.059	0.000045	tpy	Per Tank	Controlled ³

	CO ₂	Methane	_	
Ī	0.45	27.72	lb/hr	ProMax Report
	0.17	10.17	tpy	ProMax Report
	CO₂e³	_		
Ī	254.44	tpy		
	127.22	tpy	Per Tank	

Notes

14 bbl/hr of condensate for lb/hr calculations and 10,000 bbl/yr of condensate for tpy calculations.

1 bbl/hr of produced water for lb/hr calculations and 10,000 bbl/yr of produced water for tpy calculations.

5%

¹ ProMax simulation utilized the following conservative throughputs:

² Emissions include working, breathing and flash and are per tank.

³ Emissions from the tanks are controlled by a VRU with an assumed annual 5% downtime. VRU control only applied to annual emissions.

⁴ CO₂e tpy Emission Rate = CO₂ Emission Rate + CH₄ Emission Rate *GWP Factor

Willow Lake Gas Processing Plant

Unit: WLCS-TK2301 through WLCS-TK2304

Description: WLCS 400 bbl Condensate Tanks

Number of Tanks 4

Tank Emissions 1,2

voc	Benzene	Toluene	Ethylbenzene	Xylenes	n-Hexane	Total HAPs	H ₂ S			
1955.23	4.31	4.05	0.16	0.60	78.13	87.25	6.38E-02	lb/hr	ProMax Report	
 1485.90	3.29	3.11	0.124	0.46	60.06	67.04	4.29E-02	tpy	ProMax Report	
 488.81	1.08	1.01	0.040	0.15	19.53	21.81	1.60E-02	lb/hr	Per Tank	Uncontrolled
 371.48	0.82	0.78	0.031	0.114	15.02	16.76	1.07E-02	tpy	Per Tank	Uncontrolled
 9.78	0.022	0.020	0.00081	0.0030	0.39	0.44	3.19E-04	 lb/hr	Per Tank	Controlled ³
0.37	0.00082	0.00078	0.000031	0.00011	0.015	0.017	1.07E-05	tpy	Per Tank	Controlled ³

co_2	ivietnane	_	
4.22	120.80	lb/hr	ProMax Report
2.93	81.49	tpy	ProMax Report
CO e ³			

CO₂e³2040.23 tpy
510.06 tpy Per Tank

Notes

250 bbl/hr of condensate for lb/hr calculations and 320,000 bbl/yr of condensate for tpy calculations.

320,000 bbl/yr of produced water for tpy calculations.

 $^{^{1}\,}$ ProMax simulation utilized the following conservative throughputs:

 $^{^{\}rm 2}$ Emissions include working, breathing and flash and are per tank.

Emissions from the tanks are controlled by a VRU with an assumed annual 5% downtime. VRU control only applied to lb/hr and tpy emissions.

5%
During VRU downtime, the emissions will be routed to a flare (WL1-FL) with an assumed additional 98% DRE

98%

⁴ CO₂e tpy Emission Rate = CO₂ Emission Rate + CH₄ Emission Rate *GWP Factor

Willow Lake Gas Processing Plant

Unit: ATM LOAD

Description: Atmospheric Tank Loadout from All Tanks

Number of Tanks 9

Loading Emissions¹

voc	Benzene	Toluene	Ethylbenzene	Xylenes	n-Hexane	Total HAPs	H ₂ S		
93.95	0.18	0.24	0.014	0.075	3.03	3.53	1.93E-03	lb/hr	ProMax Report (WL1+WL2+WLCS)
84.33	0.17	0.19	0.0088	0.042	3.06	3.47	2.37E-03	tpy	ProMax Report (WL1+WL2+WLCS)
38.99	0.065	0.13	0.0091	0.057	0.98	1.24	4.46E-05	lb/hr	WL2 Uncontrolled Loading
1.91	0.0032	0.0063	0.00045	0.0028	0.048	0.061	2.99E-05	tpy	WL2 Uncontrolled Loading
54.96	0.11	0.11	0.0044	0.018	2.05	2.29	1.89E-03	lb/hr	WL1+WLCS Uncontrolled Loading
82.42	0.17	0.18	0.0084	0.039	3.01	3.41	2.34E-03	tpy	WL1+WLCS Uncontrolled Loading
1.10	0.0023	0.0022	0.000089	0.00036	0.041	0.046	3.77E-05	lb/hr	WL1+WLCS Controlled Loading ²
1.65	0.0034	0.0036	0.00017	0.00079	0.060	0.068	4.69E-05	tpy	WL1+WLCS Controlled Loading ²
39.54	0.07	0.13	0.01	0.06	1.00	1.26	6.35E-05	lb/hr	Total Loading ³
2.73	0.00	0.01	0.00	0.00	0.08	0.09	5.34E-05	tpy	Total Loading ³

CO ₂	Methane		
0.1324	2.612	lb/hr	ProMax Report
0.1690	1.803	tpy	ProMax Report
CO_2e^2			

tpy

Notes

45.26

lb/hr emissions based on maximum bbl/hr flowrate; tpy emissions based on annual bbl/yr throughput.

Total loading includes uncontrolled WL2 condensate and produced water loading emissions and produced water loading from WL1 and WLCS (assumed 1% of uncontrolled emission rate). Controlled loading of condensate at WL1 and WLCS is not included in ATM LOAD, these emissions are included at the emission point WL-FL1.

98%

¹ Loading emissions from tanks at WL1, WL2 and WLCS portions of the facility.

 $^{^{2}\,}$ WL1 and WLCS condensate tank truck loading vapors will be routed to a flare (WL1-FL) with 98% DRE

⁴ CO₂e tpy Emission Rate = CO₂ Emission Rate + CH₄ Emission Rate *GWP Factor

Willow Lake

NGL LOAD		
ers		
Vapor Hose Diameter	2	inches
Vapor Hose Length	1	foot
Hose Volume	0.022	ft ³
Number of Hoses	2	_
Total Hose Volume	0.044	ft ³
NGL Tank Pressure	321.27	psia
NGL Throughput	3571.43	bbl/day
NGL Throughput	4500000	gal/month
Capacity of Tank	9000	gal/load
NGL Throughput	500.00	loads/month
	Vapor Hose Diameter Vapor Hose Length Hose Volume Number of Hoses Total Hose Volume NGL Tank Pressure NGL Throughput NGL Throughput Capacity of Tank	Vapor Hose Diameter 2 Vapor Hose Length 1 Hose Volume 0.022 Number of Hoses 2 Total Hose Volume 0.044 NGL Tank Pressure 321.27 NGL Throughput 3571.43 NGL Throughput 4500000 Capacity of Tank 9000

 $^{^{\}scriptsize 1}$ Values obtained from a similar Crestwood facility.

Physical Data

Loadout Temperature (T)	591.67	R
Molecular Weight	46.315	lb/lbmol
Moles in the vapor phase (n)	2.21E-03	lbmol/ft ³
Vapor Density ²	1.02E-01	lb/ft ³

 $^{^2}$ Calculated using PV = nRT, where R = Universal Gas Constant 10.73 cubic feet *psi/lbmole * deg R

VOC Emissions from Pressurized NGL Loadout

				Monthly	Annual
		Hose Volume		Emissions	Emissions
Source	Density (lb/ft ³)	(ft ³ /load)	Loads per month	(lb/month) ³	(tpy) ⁴
Vapor Hoses	0.102	0.044	500.00	2.23	0.013
Total				2.23	0.013

 $[\]label{eq:monthly Emissions (lb/month) = Density (lb/ft^3) x Hose Volume (ft^3/load) x Loads per month (load/month)} \\ \frac{\text{Monthly Emission Rate (lb/month)} = \underbrace{0.10 \text{ lb}}_{\text{ft}^3} \underbrace{0.043633231}_{\text{load}} \underbrace{500}_{\text{month}} = \underbrace{2.23 \text{ lb}}_{\text{month}} \\ = \underbrace{1.34E-02 \text{ lb}}_{\text{month}} \\ \text{Annual Emission Rate (tpy)} = \underbrace{1.34E-02 \text{ lb}}_{\text{load}} = \underbrace{1.34E-02 \text{ lb}}_{\text{load}} \\ \text{Annual Emission Rate (tpy)} = \underbrace{2.23}_{\text{load}} \underbrace{12 \text{ months}}_{\text{load}} = \underbrace{1.34E-02 \text{ lb}}_{\text{load}} \\ = \underbrace{1.34E-02 \text{ lb}}_{\text{load}} \\ \text{Annual Emission Rate (tpy)}_{\text{load}} = \underbrace{1.34E-02 \text{ lb}}_{\text{load}} = \underbrace{1.34E-02 \text{ lb}}_{\text{load}} \\ \text{Annual Emission Rate (tpy)}_{\text{load}} = \underbrace{1.34E-02 \text{ lb}}_{\text{load}} = \underbrace{1.34E-02 \text{ lb}}_{\text{load}} \\ \text{Annual Emission Rate (tpy)}_{\text{load}} = \underbrace{1.34E-02 \text{ lb}}_{\text{load}} = \underbrace{1.34E-02 \text{ lb}}_{\text{load$

month

2,000 lb

Willow Lake Gas Processing Plant

Unit: FUG-1

Description: Willow Lake Plant 1 - Fugitive emissions

Facility-wide Fugitive Emissions Per Piece of Equipment

Subo	omponent	Emission Factor ¹	Emission Factor ¹	Component	VOC Content ²	VOC ⁴	HAP Content ²	HAP ⁴	H ₂ S Content ²	H ₂ S ⁴	CO ₂ Content ²	CO ₂ ⁴	CH ₄ Content ²	CH ₄ ⁴	CO ₂ e ⁷
		(kg/hr/comp)	(lb/hr/comp)	Counts ³	(wt%)	(lb/hr)	(wt%)	(lb/hr)	(wt%)	(lb/hr)	(wt%)	(lb/hr)	(wt%)	(lb/hr)	(lb/hr)
Valves	Gas	4.50E-03	9.92E-03	1155	23.15%	2.65E+00	0.85%	9.78E-02	0.0004%	4.58E-05	1.00%	1.15E-01	79.00%	9.05	226.34
	Heavy Oil	8.40E-06	1.85E-05	0	100.00%	0.00E+00	100.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - MeOH	2.50E-03	5.51E-03	0	100.00%	0.00E+00	100.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil- Propane	2.50E-03	5.51E-03	107	100.00%	5.89E-01	0.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - Cond/PW	2.50E-03	5.51E-03	239	100.00%	1.32E+00	11.69%	1.54E-01	0.0004%	5.27E-06	0.074%	9.80E-04	0.78%	0.01	0.26
Flanges	Gas	3.90E-04	8.60E-04	323	23.15%	6.43E-02	0.85%	2.37E-03	0.0004%	1.11E-06	1.00%	2.78E-03	79.00%	0.22	5.49
	Heavy Oil	3.90E-07	8.60E-07	0	100.00%	0.00E+00	100.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - MeOH	1.10E-04	2.43E-04	0	100.00%	0.00E+00	100.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil- Propane	1.10E-04	2.43E-04	22	100.00%	5.30E-03	0.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - Cond/PW	1.10E-04	2.43E-04	107	100.00%	2.59E-02	11.69%	3.03E-03	0.0004%	1.04E-07	0.074%	1.93E-05	0.78%	0.00	0.01
Connectors	Gas	2.00E-04	4.41E-04	4080	23.15%	4.16E-01	0.85%	1.54E-02	0.0004%	7.20E-06	1.00%	1.80E-02	79.00%	1.42	35.55
	Heavy Oil	7.50E-06	1.65E-05	0	100.00%	0.00E+00	100.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - MeOH	2.10E-04	4.63E-04	0	100.00%	0.00E+00	100.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil- Propane	2.10E-04	4.63E-04	245	100.00%	1.13E-01	0.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - Cond/PW	2.10E-04	4.63E-04	726	100.00%	3.36E-01	11.69%	3.93E-02	0.0004%	1.34E-06	0.074%	2.50E-04	0.78%	0.00	0.07
Other	Gas	8.80E-03	1.94E-02	10	23.15%	4.65E-02	0.85%	1.71E-03	0.0004%	8.03E-07	1.00%	2.01E-03	79.00%	0.16	3.97
	Heavy Oil	3.20E-05	7.05E-05	0	100.00%	0.00E+00	100.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - MeOH	7.50E-03	1.65E-02	0	100.00%	0.00E+00	100.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil- Propane	7.50E-03	1.65E-02	0	100.00%	0.00E+00	0.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - Cond/PW	7.50E-03	1.65E-02	0	100.00%	0.00E+00	11.69%	0.00E+00	0.0004%	0.00E+00	0.074%	0.00E+00	0.78%	0.00	0.00
Pump Seals	Gas	2.40E-03	5.29E-03	0	23.15%	0.00E+00	0.85%	0.00E+00	0.0004%	0.00E+00	1.00%	0.00E+00	79.00%	0.00	0.00
	Light Oil - MeOH	1.30E-02	2.87E-02	1	100.00%	3.30E-02	100.00%	3.30E-02	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil- Propane	1.30E-02	2.87E-02	0	100.00%	0.00E+00	0.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - Cond/PW	1.30E-02	2.87E-02	0	100.00%	0.00E+00	11.69%	0.00E+00	0.0004%	0.00E+00	0.07%	0.00E+00	0.78%	0.00	0.00
Open Ended-Lines	Gas	2.03E-03	4.48E-03	39	23.15%	4.05E-02	0.85%	1.49E-03	0.0004%	7.00E-07	1.00%	1.75E-03	79.00%	0.14	3.46
	Heavy Oil	1.40E-04	3.09E-04	0	100.00%	0.00E+00	100.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - MeOH	1.40E-03	3.09E-03	0	100.00%	0.00E+00	100.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil- Propane	1.40E-03	3.09E-03	3	100.00%	1.06E-02	0.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - Cond/PW	1.40E-03	3.09E-03	1	100.00%	3.55E-03	11.69%	4.15E-04	0.0004%	1.42E-08	0.074%	2.64E-06	0.78%	0.00	0.00
	<u> </u>		Hourly Emission Ra	ite (lb/hr)⁴		5.66		0.35		0.000062		0.14		11.00	275.13
			Annual Emission Ra	ate (tpy) ⁵		24.77		1.53		0.00027		0.61		48.18	1205.08

¹Emission factors from Table 2-4 of EPA Protocol for Equipment Leak Emission Estimates, 1995.

² Weight percent of gas and light liquid - Cond/PW components from facility gas analysis and liquid stream from ProMax report. H₂S is conservatively assumed to be 4 ppm.

Weight percent of heavy liquids and light liquids assumed to be 100% VOC. Propane assumed to have 0% HAP. Heavy liquid (glycol) and methanol assumed to be 100% HAP.

³ Component counts are based on actual facility counts plus estimated counts for new modification. A safety factor is included for non-methanol service components.

The safety factor provides a conservative estimate of fugitive components, and conservatively estimates emissions to account for variation in gas quality.

Safety Factor 15%

⁴ Hourly Emissions [lb/hr] = Emissions Factor [lb/hr/component] * Weight Content of Chemical Component [%] * Subcomponent Count.

⁵Annual Emissions [ton/yr] = Hourly Emissions [lb/hr] * Operating Hours [hr/yr] * 1/2000 [ton/lb].

⁶ Annual GHG Emissions [tpy] = Emissions Factor [lb/hr/component] * Weight Content of Chemical Component [%] * Subcomponent Count * Operating Hours [hr/yr] * 1/2000 [ton/lb]

 $^{^{7}}$ CO $_{2}$ e tpy Emission Rate = CO $_{2}$ Emission Rate + CH $_{4}$ Emission Rate *GWP Factor

Willow Lake Gas Processing Plant

Unit: FUG-2

Description: Willow Lake Plant 2 and Willow Lake Compressor Station - Fugitive emissions

Facility-wide Fugitive Emissions Per Piece of Equipment

Subc	omponent	Emission Factor ¹ (kg/hr/comp)	Emission Factor ¹ (lb/hr/comp)	Component Counts ³	VOC Content ² (wt%)	VOC ⁴ (lb/hr)	HAP Content ² (wt%)	HAP ⁴ (lb/hr)	H ₂ S Content ² (wt%)	H ₂ S ⁴ (lb/hr)	CO ₂ Content ² (wt%)	CO ₂ ⁴ (lb/hr)	CH ₄ Content ² (wt%)	CH ₄ ⁴ (lb/hr)	CO ₂ e ⁷
Valves	lo				· · · · ·		<u> </u>					_ ` · ·			(lb/hr)
vaives	Gas	4.50E-03	9.92E-03	968	23.15%	2.22E+00	0.85%	8.20E-02	0.0004%	3.84E-05	1.00%	9.61E-02	79.00%	7.59	189.82
	Heavy Oil	8.40E-06	1.85E-05	123	100.00%	2.28E-03	100.00%	2.28E-03	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - MeOH	2.50E-03	5.51E-03	41	100.00%	2.26E-01	100.00%	2.26E-01	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil- Propane	2.50E-03	5.51E-03	317	100.00%	1.75E+00	0.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - Cond/PW	2.50E-03	5.51E-03	482	100.00%	2.66E+00	11.69%	3.10E-01	0.0004%	1.06E-05	0.074%	1.97E-03	0.78%	0.02	0.52
Flanges	Gas	3.90E-04	8.60E-04	486	23.15%	9.68E-02	0.85%	3.57E-03	0.0004%	1.67E-06	1.00%	4.18E-03	79.00%	0.33	8.26
	Heavy Oil	3.90E-07	8.60E-07	51	100.00%	4.35E-05	100.00%	4.35E-05	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - MeOH	1.10E-04	2.43E-04	9	100.00%	2.18E-03	100.00%	2.18E-03	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil- Propane	1.10E-04	2.43E-04	227	100.00%	5.49E-02	0.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - Cond/PW	1.10E-04	2.43E-04	291	100.00%	7.06E-02	11.69%	8.25E-03	0.0004%	2.82E-07	0.074%	5.24E-05	0.78%	0.00	0.01
Connectors	Gas	2.00E-04	4.41E-04	2252	23.15%	2.30E-01	0.85%	8.48E-03	0.0004%	3.97E-06	1.00%	9.93E-03	79.00%	0.78	19.62
	Heavy Oil	7.50E-06	1.65E-05	486	100.00%	8.04E-03	100.00%	8.04E-03	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - MeOH	2.10E-04	4.63E-04	143	100.00%	6.62E-02	100.00%	6.62E-02	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil- Propane	2.10E-04	4.63E-04	697	100.00%	3.23E-01	0.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - Cond/PW	2.10E-04	4.63E-04	1270	100.00%	5.88E-01	11.69%	6.87E-02	0.0004%	2.35E-06	0.074%	4.37E-04	0.78%	0.00	0.11
Other	Gas	8.80E-03	1.94E-02	12	23.15%	5.16E-02	0.85%	1.91E-03	0.0004%	8.92E-07	1.00%	2.23E-03	79.00%	0.18	4.41
	Heavy Oil	3.20E-05	7.05E-05	0	100.00%	0.00E+00	100.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - MeOH	7.50E-03	1.65E-02	0	100.00%	0.00E+00	100.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil- Propane	7.50E-03	1.65E-02	3	100.00%	5.70E-02	0.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - Cond/PW	7.50E-03	1.65E-02	0	100.00%	0.00E+00	11.69%	0.00E+00	0.0004%	0.00E+00	0.074%	0.00E+00	0.78%	0.00	0.00
Pump Seals	Gas	2.40E-03	5.29E-03	0	23.15%	0.00E+00	0.85%	0.00E+00	0.0004%	0.00E+00	1.00%	0.00E+00	79.00%	0.00	0.00
	Light Oil - MeOH	1.30E-02	2.87E-02	2	100.00%	5.73E-02	100.00%	5.73E-02	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil- Propane	1.30E-02	2.87E-02	3	100.00%	9.89E-02	0.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - Cond/PW	1.30E-02	2.87E-02	9	100.00%	2.58E-01	11.69%	3.02E-02	0.0004%	1.03E-06	0.07%	1.92E-04	0.78%	0.00	0.05
Open Ended-Lines	Gas	2.03E-03	4.48E-03	2	23.15%	2.38E-03	0.85%	8.79E-05	0.0004%	4.12E-08	1.00%	1.03E-04	79.00%	0.01	0.20
	Heavy Oil	1.40E-04	3.09E-04	0	100.00%	0.00E+00	100.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - MeOH	1.40E-03	3.09E-03	1	100.00%	3.09E-03	100.00%	3.09E-03	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil- Propane	1.40E-03	3.09E-03	0	100.00%	0.00E+00	0.00%	0.00E+00	0.0000%	0.00E+00	0.00%	0.00E+00	0.00%	0.00	0.00
	Light Oil - Cond/PW	1.40E-03	3.09E-03	0	100.00%	0.00E+00	11.69%	0.00E+00	0.0004%	0.00E+00	0.074%	0.00E+00	0.78%	0.00	0.00
	10		Hourly Emission Ra	_		8.82		0.88		0.000059		0.12		8.92	223.01
			Annual Emission Ra			38.65		3.85		0.00026		0.50		39.05	976.78

¹Emission factors from Table 2-4 of EPA Protocol for Equipment Leak Emission Estimates, 1995.

² Weight percent of gas and light liquid - Cond/PW components from facility gas analysis and liquid stream from ProMax report. H₂S is conservatively assumed to be 4 ppm.

Weight percent of heavy liquids and light liquids assumed to be 100% VOC. Propane assumed to have 0% HAP. Heavy liquid (glycol) and methanol assumed to be 100% HAP.

³ Component counts are based on actual facility counts plus estimated counts for new modification. A safety factor is included for non-methanol service components.

The safety factor provides a conservative estimate of fugitive components, and conservatively estimates emissions to account for variation in gas quality. Safety Factor 15%

⁴Hourly Emissions [lb/hr] = Emissions Factor [lb/hr/component] * Weight Content of Chemical Component [%] * Subcomponent Count.

⁵Annual Emissions [ton/yr] = Hourly Emissions [lb/hr] * Operating Hours [hr/yr] * 1/2000 [ton/lb].

⁶ Annual GHG Emissions [tpy] = Emissions Factor [lb/hr/component] * Weight Content of Chemical Component [%] * Subcomponent Count * Operating Hours [hr/yr] * 1/2000 [ton/lb]

 $^{^{7}}$ CO $_{2}$ e tpy Emission Rate = CO $_{2}$ Emission Rate + CH $_{4}$ Emission Rate *GWP Factor

Willow Lake

Emission Unit: PIGGING

Source Description: Pig Receiver and Launcher Emissions - WL1, WL2, WLCS

Area	Туре	Qty	Blowdowns (per year)	Actual cubic ft.	Pressure (psig)	Temperature (F)	scf/event per pig trap
WL CS	Receiver	2	312	21.4	50	80	92.10
WL1	Auto-Launcher	1	26	88.5	1000	80	5973.15
WL1	Receiver	1	26	11.8	150	80	129.27
WL2	Receiver	1	26	11.8	150	80	129.27

Inlet Gas 1

Molecular Weight	21.74	lb/lb-mol
Methane	55.99%	wt%
CO2	0.19%	wt%
VOC	24%	wt%
HAPs	1%	wt%
H₂S	0.0004%	wt%

¹ Weight percent of gas from facility inlet gas analysis. HAPs are based of inlet to dehy gas analysis. H₂S is conservatively assumed to be 4 ppm.

								Methane
Total Emissions	VOC Emissions	VOC Emissions	HAP Emissions	HAP Emissions	H ₂ S Emissions	H ₂ S Emissions	CO2 Emissions	Emissions
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(tpy)	(tpy)
WL CS	0.05	0.20	0.0019	0.008	7.52E-07	3.29E-06	0.0016	0.032
WL1	0.24	1.07	0.010	0.044	4.06E-06	1.78E-05	0.0085	8.48
WL1	0.0053	0.023	0.00022	0.00096	8.79E-08	3.85E-07	0.00018	0.024
WL2	0.0053	0.023	0.00022	0.00096	8.79E-08	3.85E-07	0.00018	0.024
Total	0.30	1.31	0.012	0.055	4.99E-06	2.19E-05	0.010	8.56

Notes

Density of Natural Gas (379 scf/lb-mol) * 2000 (lb/ton)

Willow Lake Gas Processing Plant

Unit: HAUL

Description: Truck Loadout of Condensate, PW and NGL

Haul Road Inputs

Max Facility Throughput:

				Truck	Vehicles Per	Vehicles Per	
		bbl/week	bbl/yr	Capacity (bbl)	Day (VPD)⁵	Year (VPY) ⁶	
Haul-1	Condensate + PW	3121.15	162300	139	3.19	1165.00	
Haul-2	NGL	25000	1300000	200	17.81	6500.00	
	Total	28121.15	1462300	170	21.00	7665.00	

		Weig	tht (tons)			
	Empty		Loaded		Segments per	Trips per
Vehicle Type	Vehicle ¹	Load Size ²	Vehicle ³	Mean Vehicle ⁴	trip	hour ⁷
Haul-1	16	22.0	38.0	27.0	1	1.000
Haul-2	16	21.0	37.0	26.5	1	1.000
			Haul-1	Haul-2		
	Hours of Operat	tion per Day	24	24		
	Total Vehi	cles Per Day	4.00	18.00		
	Mean Vehicle W	eight (tons)	27.0	26.5		
	Total Tri	ps per Hour	1.00	1.00		

Footnotes

¹ Empty vehicle weight includes driver and occupants and full fuel load.

² Cargo, transported materials, etc. (Water Density*SG*8400 gal truck/ 2000lb/ton)

³ Loaded vehicle weight = Empty + Load Size

⁴ Mean Vehicle weight = (Loaded Weight + Empty Weight) / 2

⁵ Vehicles per day =Maximum Facility Throughput per year*(1/Truck Capacity)*(1 year/365 days)

⁶ Vehicles per year =Maximum Facility Throughput per year (bbl/yr)*(1/Truck Capacity (bbl))

⁷ Trips per hour = Vehicles per day * Segments per trip ÷ Hours of Operation per Day

Willow Lake Gas Processing Plant

Unit: HAUL

Description: Truck Loadout of Condensate, PW and NGL

Haul Road Emission Factor Calculation

Emission Factor Calculation (AP-42 Sec. 13.2.2.3 November, 2006, Equation 2)

Unit		Operating Hours	s, silt content ¹ %	W, Avg. Veh. Wt. tons	k, PM-10 lb/VMT	k, PM-2.5 lb/VMT	a, PM-10 lb/VMT	a, PM-2.5 lb/VMT	b, PM-10 lb/VMT	b, PM-2.5 lb/VMT
	HAUL-1	8760	4.8	27.0	1.5	0.15	0.9	0.9	0.45	0.45
	HAUL-2	8760	4.8	26.5	1.5	0.15	0.9	0.9	0.45	0.45
		Hourly Emis	sion Factor ²	2	Wet Day, A	djusted Emi	ssion Factor	.3		
		E, PM-10	E, PM-2.5	1	Wet Days	E, PM-10	E, PM-2.5	_		
		lb/VMT	lb/VMT			lb/VMT	lb/VMT			
	HAUL-1	1.77	0.18		70	1.43	0.14			
	HAUL-2	1.75	0.18		70	1.42	0.14			

Haul Road Emission Calculations

Unit	Avg. Trips per Hour	Avg. Trips per Day	Trips per Year	Segment Length	Average VMT/hr ⁴	Average VMT/yr ⁵	PM-10 ⁶		PM-	-2.5 ⁶
	T	T	T	mi	mi/hr	mi/yr	lb/hr	tpy	lb/hr	tpy
Haul-1	1.00	4.00	1165.00	0.096	0.0964	112.31	0.17	0.080	0.017	0.0080
Haul-2	1.00	18.00	6500.00	0.085	0.0850	552.75	0.15	0.39	0.015	0.039
		То	tal				0.32	0.47	0.032	0.047

Footnotes

E= Size Specific Emission Factor (lb/VMT)

s = surface material silt content (%)

k, a, b = constants from AP-42 Table 13.2.2-2

W = Weighted Mean Vehicle Weight from Haul Road Inputs (tons)

tpy PM = lb/VMT * VMT/yr * 1 ton/2000 lb

¹ Surface silt = % of 75 micron diameter and smaller particles (NMED Default)

 $^{^{2}}$ E = k x (s/12)^a x (W/3)^b (AP-42 page 13.2.2-4 Equation 1a, November 2006)

³ Wet Day Emission Factor = E * (365 - Wet Days)/365. Wet days value is the NM default allowed by NMED without additional justification.

⁴ VMT/hr = Vehicle Miles Travelled per hour= Trips per hour * Segment Length

⁵ VMT/yr = Vehicle Miles Travelled per year = Trips per day * 365 days per year * Segment Length

⁶ lb/hr PM = lb/VMT * VMT/hr

Section 7

Information Used To Determine Emissions

<u>Information Used to Determine Emissions</u> shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- ☐ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- \square If an older version of AP-42 is used, include a complete copy of the section.
- ☑ If an EPA document or other material is referenced, include a complete copy.
- **☑** Fuel specifications sheet.
- If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Compressor Engines (Units C-1100, C-1200, C-2300, C-2400, and C-1110 to C-1180)

- Manufacturer and catalyst data
- AP-42 Tables 3.2-1 and 3.2-2
- 40 CFR 98 Subparts A and C

Glycol Dehydrators (Units DEHY-803, DEHY-804, DEHY-EG, DEHY-805, DEHY-1505)

- GRI GlyCalc 4.0
- Dehy Upstream Gas Analysis (5/28/2020)
- 40 CFR 98 Subpart A

Heaters and Reboilers (Units HTR-802, HTR-803, HTR-804, HTR-805, HTR-730, HTR-1505)

- AP-42 Tables 1.4-1, 1.4-2, and 1.4-3
- 40 CFR 98 Subparts A and C

Fugitive Components (Units FUG-1 and FUG-2)

- Table 2-4 of EPA Protocol for Equipment Leak Emission Estimates (1995)
- Dehy Upstream Gas Analysis (5/28/2020)
- BR&E ProMax Report

Storage Tanks (Units WL1-TK601 through WL1-TK603, WL2-TK8101 and WL2-TK8102, WLCS-TK2301 to WLCS-TK2304)

- BR&E ProMax
- Condensate Liquid Analysis (5/28/2020)
- Condensate Liquid Analysis (8/19/2021)

Condensate Loading (Unit ATM LOAD)

- BR&E ProMax
- Condensate Liquid Analysis (5/28/2020)
- Condensate Liquid Analysis (8/19/2021)

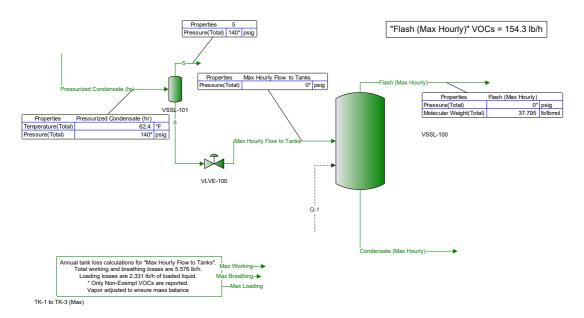
Natural Gas Liquid Loading (Unit NGL LOAD)

- Loading hose dimensions, volumes, and throughputs
- Estimated physical properties of NGL

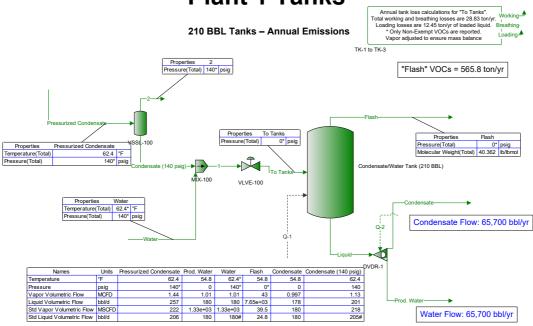
Unpaved Haul Road (Unit HAUL)

- AP-42 13.2.2
- Facility throughputs and truck capacities

Process Flares (Units WL1-FL and WL2-FL)

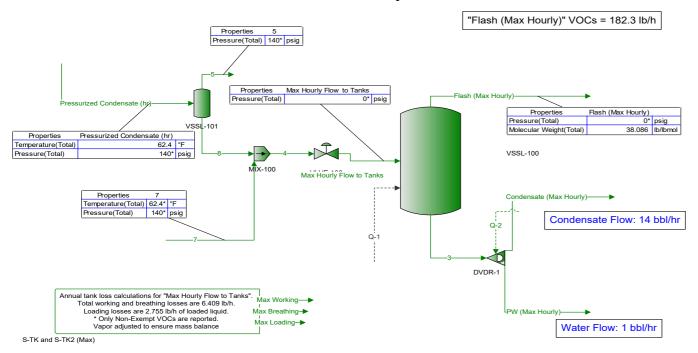

- Tank, loading, and dehydrator streams from BR&E ProMax
- TNRCC RG-109 emission factors

Miscellaneous Equipment (Units WL1-FL Blowdown, WL2-FL Blowdown, PIGGING)


- Engineer estimates for blowdown volumes and frequency
- Dehy Upstream Gas Analysis (05/28/2020)
- Inlet Gas Analysis (02/17/2020)
- TNRCC RG-109 emission factors

Willow Lake Gas Plant Plant 1 Tanks

210 BBL Tanks - Max Hourly Emissions



Willow Lake Gas Plant Plant 1 Tanks

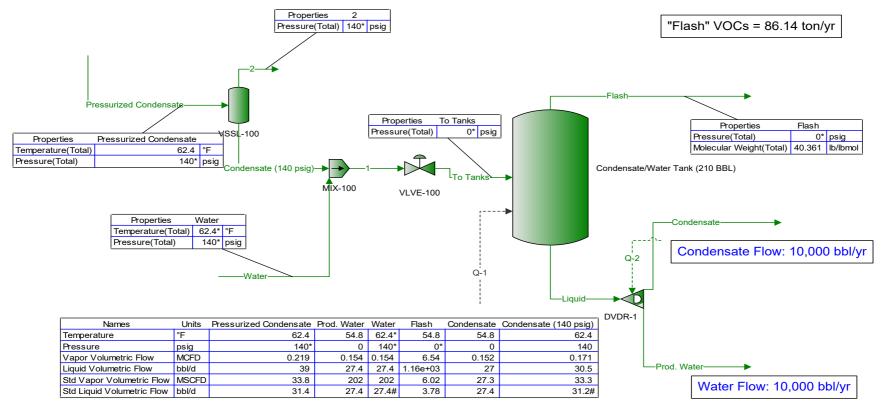
Willow Lake Gas Plant Plant 2 Tanks

400 BBL Tanks - Max Hourly Emissions

Willow Lake Gas Plant Plant 2 Tanks

400 BBL Tanks - Annual Emissions

Annual tank loss calculations for "To Tanks".


Total working and breathing losses are 7.792 ton/yr.

Loading losses are 1.909 ton/yr of loaded liquid.

* Only Non-Exempt VOCs are reported.

Vapor adjusted to ensure mass balance

S-TK and S-TK2

Willow Lake Gas Plant Compressor Station Tanks

400 BBL Tanks - Max Hourly Emissions

Properties Max Hourly Flow to Tanks
Pressure(Total)

Properties Max Hourly Flow to Tanks
Pressure(Total)

Properties Vapor
Pressure(Total)

Not psig
Molecular Weight(Total) 46.381 bilbmol

VSSL-100

VLVE-100

Annual tank loss calculations for "Max Hourly Flow to Tanks".

Total working and breathing losses are 106.4 bib.
Flashing losses are 1.849 lib.
Loading losses are 52.63 libh of loaded liquid.

Non-Exempt VOCs are reported.

Max Flashing Losses are 1.849 lib.

Max Working —

Max Flashing Losses are 1.849 lib.

Max Working —

Max Flashing Losses are 1.849 lib.

Max Working —

Max Flashing Losses are 1.849 lib.

Max Working —

Max Flashing Losses are 1.849 lib.

Max Working —

Max Flashing Losses are 1.849 lib.

Max Working —

Max Flashing Losses are 1.849 lib.

Max Working —

Max Flashing Losses are 1.849 lib.

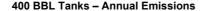
Max Working —

Max Flashing Losses are 1.849 lib.

Max Working —

Max Loading Losses are 52.63 libh of loaded liquid.

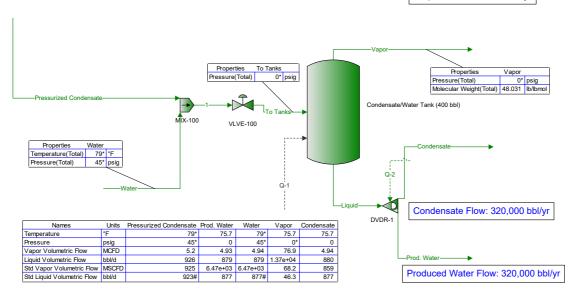
Max Loading Losses are 52.63 libh of loaded liquid.


Max Loading Losses are 52.63 libh of loaded liquid.

Max Loading Losses are 52.63 libh of loaded liquid.

Max Loading Losses are 52.63 libh of loaded liquid.

Four 400-bbl tanks1


Willow Lake Gas Plant Compressor Station Tanks Annual tank loss calculations for "To Tanks". | Flash Total working and breathing losses are 148.6 tonlyr. | Working—A 400 BBL Tanks – Annual Emissions Annual Emissions Total working and breathing losses are 148.6 tonlyr. | Working—A Flashing losses are 149.7 tonlyr. | Loading losses are 19.37 tonlyr. | Breathing. | Loading losses are 69.97 tonly of loaded liquid. | Loading losses are 19.98 tonlyr. | Loading losses are 19.99 tonly losses are 19.99 tonlyr. | Loading losse

Four 400-bbl tanks

"Vapor" VOCs = 1,318 ton/yr

Equipment Specification

Proposal Information Proposal Number: CEA-20-005080

Project Reference: Crestwood

Engine Information

Engine Make: Caterpillar Engine Model: G 3608 LE TA Rated Speed: 1000 RPM Fuel Description: Natural Gas Hours Of Operation: 8760 Hours per year

Load: 100%

Speed: Rated Power Output: 2,370 bhp **Exhaust Flow Rate:** 16,144 acfm (cfm)

8/17/2020

Exhaust Temperature: 857 F Fuel Consumption: 6,629 btu/bhp-hr

O₂: 12.3% H₂O: 17%

Emission Data (100% Load)

	Raw Engine Emissions							Targ	get Outle	t Emissi	ons		
Emission	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	g/kW- hr	lb/MW- hr	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	g/kW- hr	lb/MW- hr	Calculated Reduction
NO _x *	0.5	11.44	47	68	0.671	1.48							
СО	2.75	62.93	421	613	3.688	8.13	1	22.89	153	223	1.341	2.96	63.6%
THC**	6.29	143.95	1,680	2,448	8.435	18.6							
NMNEHC***	0.63	14.42	168	245	0.845	1.86	0.16	3.66	43	62	0.215	0.47	74.6%
CH ₂ O	0.26	5.95	37	54	0.349	0.77	0.04	0.92	6	8	0.054	0.12	84.6%

Date:

System Specifications

Catalyst (Replacement Catalyst)

Design Exhaust Flow Rate: 16,144 acfm (cfm)

857°F Design Exhaust Temperature:

Element Model Number: MECB-OX-SQ-1500-2400-350

Number of Catalyst Layers: Number of Catalyst Per Layer: 3

4.0 inches of WC (Clean) (10.0 mBar) Catalyst Back Pressure:

Dimensions:

550 - 1250°F (catalyst inlet); 1350°F (catalyst outlet) Exhaust Temperature Limits†: 288 - 677°C (catalyst inlet); 732°C (catalyst outlet)

^{*} MW referenced as NO2

^{**} MW referenced as CH₄

MW referenced as CH4. Propane in the exhaust shall not exceed 15% by volume of the NMNEHC compounds in the exhaust, excluding aldehydes. The 15% (vol.) shall be established on a wet basis, reported on a methane molecular weight basis. The measurement of exhaust NMNEHC composition shall be based upon EPA method 320 (FTIR), and shall exclude formaldehyde.

[†] General catalyst temperature operating range. Performance is based on the Design Exhaust Temperature.

8,278 btu/bhp-hr

Equipment Specification

Proposal Information Proposal Number: CEA-20-005082 Rev(2)

Project Reference: Crestwood

Engine Information

Waukesha Engine Make: P 9390 GSI Engine Model: Rated Speed: 1200 RPM Fuel Description: Natural Gas Hours Of Operation: 8760 Hours per year

Load: 100%

Speed: Rated Power Output: 1,980 bhp **Exhaust Flow Rate:** 9,774 acfm (cfm) Exhaust Temperature: 1,250 F

9/14/2020

O₂: 0.3% H₂O: 18.5%

Emission Data (100% Load)

	Raw Engine Emissions							Targ	get Outle	t Emissi	ions		
Emission	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	g/kW- hr	lb/MW- hr	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	g/kW- hr	lb/MW- hr	Calculated Reduction
NO _x *	13	248.55	922	3,220	17.433	38.43	2	38.24	142	495	2.682	5.91	84.6%
СО	9	172.07	1,049	3,661	12.069	26.61	1.35	25.81	157	549	1.81	3.99	85%
THC**	2	38.24	407	1,420	2.682	5.91							
NMNEHC***	0.3	5.74	61	213	0.402	0.89	0.12	2.29	24	85	0.161	0.35	60%
CH ₂ O	0.05	0.96	5	19	0.067	0.15	0.04	0.73	4	14	0.051	0.11	24%

Date:

Fuel Consumption:

System Specifications

Catalyst (Replacement Catalyst)

Design Exhaust Flow Rate: 9,774 acfm (cfm)

1,250°F Design Exhaust Temperature:

Element Model Number: MECB-TW-RO-3350-0000-350

Number of Catalyst Layers: Number of Catalyst Per Layer:

6.0 inches of WC (Clean) (14.9 mBar) Catalyst Back Pressure:

Dimensions:

750 - 1250°F (catalyst inlet); 1350°F (catalyst outlet) Exhaust Temperature Limits†: 399 - 677°C (catalyst inlet); 732°C (catalyst outlet)

^{*} MW referenced as NO2

^{**} MW referenced as CH₄

MW referenced as CH4. Propane in the exhaust shall not exceed 15% by volume of the NMNEHC compounds in the exhaust, excluding aldehydes. The 15% (vol.) shall be established on a wet basis, reported on a methane molecular weight basis. The measurement of exhaust NMNEHC composition shall be based upon EPA method 320 (FTIR), and shall exclude formaldehyde.

[†] General catalyst temperature operating range. Performance is based on the Design Exhaust Temperature.

ICE Catalyst Sizing Program

ENGINE INPUT (Manufacturer, Model, Type) - Waukesha L7044GSI L7044GSI-1680BHP-1200RPM - EXPERT MODE

lass Flow Rate	lbs/hr	scfm	scfh	"acfm"	"acfh"	Estimate	d Exhaust Gas Com	oosition
	10750	2,422	145,332	7,395.1	443,706	N2	79.7	vol%
Brake Horse Power:	1680	,	-7	,	-,	O2	0.3	vol%
			Maximum Pro	essure Drop (in)	20	H2O	10	vol%
Molecular weight:	28.50			ensity (lbs/ft3)	0.025	CO2	10	vol%
				ne in fuel gas:	<5			
emperature		Permitted Emission	ns (g/bhp-hr)	20**		V000/11/11/5/44		11000
Process Temperature (F)		NOx**		CO**		VOC(NMNE)**		H2CC
1152		1.0		1.0		0.06		.012
st Type		Catalyst Module De	etails					
		Module	Shape		Modules/Layer	3	Layers	1
Three-way Catalyst		Squ	are				cpsi	300
		Guard Bed - No		X&Y (inch)	15	24	Depth	3.5
				Part Number:		ERT-1524-2	Part Weight (lbs)	43.4
							Total Weight (lbs)	130.
Velocity								
Open area for gas flow (ft2):	6.71							
Linear Velocity (ft/min):	1,102	Calculated Sp	pace Velocity:	74,278		Safety Value	2	
Foil thickness (inches):	0.002					,		
D		Inlet Dellutente						
re Drop		Inlet Pollutants	g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd%O2*	
		NOx	13.3	49.26	215.76	2,792.64	888.70	
		СО	11.5	42.59	186.56	3,966.98	1,262.42	
0 cpsi Pressure Drop	(in wc): 1.83	VOC	0.16	0.59	2.60	35.04	11.15	
	,	H2CO	0.05	0.19	0.81	16.10	5.12	
Conversions		Required Output P	ollutants					
Conversions		Required Output 1	g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd%O2*	
NOx	92.5%	NOx	<1.0	3.70	16.22	209.97	66.82	
со	91.3%	со	<1.0	3.70	16.22	344.95	109.78	
VOC(NMNE)	62.5%	VOC	<0.06	0.22	0.98	13.14	4.18	
H2CO	76.0%	H2CO	<.012	0.05	0.19	3.86	1.23	
sions Catalyst Design		Output Pollutants v	vith Catalyst Sizing g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd%O2*	
NOx	92.5%	NOx	1.0	3.70	16.22	209.97	66.82	
СО	91.3%	co	1.0	3.70	16.22	344.95	109.78	
VOC(NMNE)	62.5%	VOC	0.06	0.22	0.98	13.14	4.18	
H2CO	76.0%	H2CO	.012	0.22	0.19	3.86	1.23	
11200	70.076	11200	.012	0.00	0.13	3.00	1.20	
	N							
	Notes:							
					1701100:			
Customer: Sales Person:	Crestwood Midst	ream Date:	11/17/20		L7044GSI Moe Wolfe			

^{*} Calculated ppm at 15% Oxygen. Estimated with O2 value provided in "Estimated Exhaust Gas Composition". For accurate value insert actual engine O2.

^{**} Insert required conversion rates.

ICE Catalyst Sizing Program

ENGINE INPUT (Manufacturer, Model, Type) - Caterpillar G3606 1875 BHP @ 1000 RPM Caterpillar G3606 - EXPERT MODE

	lbs/hr	scfm	scfh	"acfm"	"acfh"	Estimate	d Exhaust Gas Com	position
	22100	4,980	298,776	12,213.2	732,792	N2	74	vol%
Brake Horse Power:	1875					O2	10	vol%
			Maximum Pr	essure Drop (in)	0	H2O	10	vol%
Molecular weight:	28.50		Exhaust D	ensity (lbs/ft3)	0.031	CO2	6	vol%
			mol% propa	ane in fuel gas:	<5			
emperature		Permitted Emission	ns (g/bhp-hr)					
Process Temperature (F)		NOx**		CO**		VOC(NMNE)**	_	H2CC
835		0.5		0.22		0.145		0.03
st Type		Catalyst Module De	etails					
		Module	Shape		Modules/Layer	2	Layers	1
CO/DOC Catalyst		Squ	are				cpsi	300
		Guard Bed - No		X&Y (inch)	15	36	Depth	3.5
				Part Number:		ERH-1536-2	Part Weight (lbs)	63.6
							Total Weight (lbs)	127.
Velocity								
Open area for gas flow (ft2):	6.81	0-1 1 : : :		450.504		0-1-1-1/	0	
Linear Velocity (ft/min):	1,795	Calculated Sp	pace velocity:	150,521		Safety Value	2	
Foil thickness (inches):	0.002							
re Drop		Inlet Pollutants						
		NOx	g/bhp-hr 0.50	lb/hr 2.07	tons/year 9.05	ppmv 57.00	ppmvd%O2* 34.28	
		CO	2.20	9.09	39.83	412.00	247.79	
0 cpsi Pressure Drop	(in wc): 2 98	voc	0.29	1.20	5.25	34.48	20.74	
5 Spoi	(110). 2.00	H2CO	0.20	0.83	3.62	34.96	21.03	
Conversions		Required Output Po	ollutants					
		•	g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd%O2*	
NOx	0.0%	NOx	<0.5	2.07	9.05	57.00	34.28	
со	90.0%	со	<0.22	0.91	3.98	41.20	24.78	
VOC(NMNE)	50.0%	voc	<0.145	0.60	2.63	17.24	10.37	
H2CO	85.0%	H2CO	<0.03	0.12	0.54	5.24	3.15	
sions Catalyst Design		Output Pollutants v	vith Catalyst Sizing					
			g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd%O2*	
NOx	0.0%	NOx	0.5	2.07	9.05	57.00	34.28	
СО	90.0%	со	0.22	0.91	3.98	41.20	24.78	
VOC(NMNE)	50.0%	VOC	0.145	0.60	2.63	17.24	10.37	
H2CO	85.0%	H2CO	0.03	0.12	0.54	5.24	3.15	
	Notes:							
Customer	Crestwood Midst	ream		Project	G3606A4			
Ouotoillei.				1 10,001.				

^{*} Calculated ppm at 15% Oxygen. Estimated with O2 value provided in "Estimated Exhaust Gas Composition". For accurate value insert actual engine O2.

^{**} Insert required conversion rates.

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES $^{\rm a}$ (SCC 2-02-002-54)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhouse	e Gases	
NO _x ^c 90 - 105% Load	4.08 E+00	В
NO _x ^c <90% Load	8.47 E-01	В
CO ^c 90 - 105% Load	3.17 E-01	С
CO ^c <90% Load	5.57 E-01	В
CO_2^d	1.10 E+02	A
SO ₂ ^e	5.88 E-04	A
TOC^{f}	1.47 E+00	A
Methane ^g	1.25 E+00	С
VOC^h	1.18 E-01	С
PM10 (filterable) ⁱ	7.71 E-05	D
PM2.5 (filterable) ⁱ	7.71 E-05	D
PM Condensable ^j	9.91 E-03	D
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ^k	<4.00 E-05	E
1,1,2-Trichloroethane ^k	<3.18 E-05	E
1,1-Dichloroethane	<2.36 E-05	Е
1,2,3-Trimethylbenzene	2.30 E-05	D
1,2,4-Trimethylbenzene	1.43 E-05	С
1,2-Dichloroethane	<2.36 E-05	E
1,2-Dichloropropane	<2.69 E-05	E
1,3,5-Trimethylbenzene	3.38 E-05	D
1,3-Butadiene ^k	2.67E-04	D
1,3-Dichloropropene ^k	<2.64 E-05	Е
2-Methylnaphthalene ^k	3.32 E-05	С
2,2,4-Trimethylpentane ^k	2.50 E-04	С
Acenaphthene k	1.25 E-06	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES (Continued)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Acenaphthylenek	5.53 E-06	С
Acetaldehyde ^{k,l}	8.36 E-03	A
Acrolein ^{k,l}	5.14 E-03	A
Benzene ^k	4.40 E-04	A
Benzo(b)fluoranthene ^k	1.66 E-07	D
Benzo(e)pyrene ^k	4.15 E-07	D
Benzo(g,h,i)perylenek	4.14 E-07	D
Biphenyl ^k	2.12 E-04	D
Butane	5.41 E-04	D
Butyr/Isobutyraldehyde	1.01 E-04	С
Carbon Tetrachloride ^k	<3.67 E-05	E
Chlorobenzene ^k	<3.04 E-05	Е
Chloroethane	1.87 E-06	D
Chloroform ^k	<2.85 E-05	Е
Chrysene ^k	6.93 E-07	С
Cyclopentane	2.27 E-04	С
Ethane	1.05 E-01	С
Ethylbenzene ^k	3.97 E-05	В
Ethylene Dibromide ^k	<4.43 E-05	E
Fluoranthenek	1.11 E-06	С
Fluorene ^k	5.67 E-06	С
Formaldehyde ^{k,l}	5.28 E-02	A
Methanol ^k	2.50 E-03	В
Methylcyclohexane	1.23 E-03	С
Methylene Chloride ^k	2.00 E-05	С
n-Hexane ^k	1.11 E-03	С
n-Nonane	1.10 E-04	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES

(Continued)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
n-Octane	3.51 E-04	С
n-Pentane	2.60 E-03	С
Naphthalenek	7.44 E-05	C
PAH ^k	2.69 E-05	D
Phenanthrenek	1.04 E-05	D
Phenol ^k	2.40 E-05	D
Propane	4.19 E-02	С
Pyrene ^k	1.36 E-06	С
Styrene ^k	<2.36 E-05	E
Tetrachloroethane ^k	2.48 E-06	D
Toluenek	4.08 E-04	В
Vinyl Chloride ^k	1.49 E-05	С
Xylene ^k	1.84 E-04	В

a Reference 7. Factors represent uncontrolled levels. For NO_x, CO, and PM10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM-10 = Particulate Matter ≤ 10 microns (μm) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit. Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA Method 19. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from (lb/MMBtu) to (lb/hp-hr) use the following equation:

lb/hp-hr = (lb/MMBtu) (heat input, MMBtu/hr) (1/operating HP, 1/hp)

Emission tests with unreported load conditions were not included in the data set. Based on 99.5% conversion of the fuel carbon to CO_2 . CO_2 [lb/MMBtu] = (3.67)(%CON)(C)(D)(1/h), where %CON = percent conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.75), D = density of fuel, 4.1 E+04 lb/10⁶ scf, and

h = heating value of natural gas (assume 1020 Btu/scf at 60°F).

e Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content in natural gas of $2,000 \text{ gr/}10^6 \text{scf.}$

Emission factor for TOC is based on measured emission levels from 22 source tests.

g Emission factor for methane is determined by subtracting the VOC and ethane emission factors from the TOC emission factor. Measured emission factor for methane compares well with the calculated emission factor, 1.31 lb/MMBtu vs. 1.25 lb/MMBtu, respectively.

h VOC emission factor is based on the sum of the emission factors for all speciated organic compounds less ethane and methane.

- Considered $\leq 1 \, \mu \text{m}$ in aerodynamic diameter. Therefore, for filterable PM emissions, PM10(filterable) = PM2.5(filterable).
- ^j PM Condensable = PM Condensable Inorganic + PM-Condensable Organic

Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.

For lean burn engines, aldehyde emissions quantification using CARB 430 may reflect interference with the sampling compounds due to the nitrogen concentration in the stack. The presented emission factor is based on FTIR measurements. Emissions data based on CARB 430 are available in the background report.

Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES (Concluded)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Chlorobenzene	<1.29 E-05	Е
Chloroform	<1.37 E-05	Е
Ethane ⁿ	7.04 E-02	С
Ethylbenzene ¹	<2.48 E-05	Е
Ethylene Dibromide ¹	<2.13 E-05	Е
Formaldehyde ^{l,m}	2.05 E-02	A
Methanol ¹	3.06 E-03	D
Methylene Chloride ¹	4.12 E-05	С
Naphthalene	<9.71 E-05	Е
PAH ^l	1.41 E-04	D
Styrene ¹	<1.19 E-05	Е
Toluene	5.58 E-04	A
Vinyl Chloride ¹	<7.18 E-06	Е
Xylene ^l	1.95 E-04	A

Reference 7. Factors represent uncontrolled levels. For NO_x , CO, and PM-10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM10 = Particulate Matter ≤ 10 microns (μ m) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit.

Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA Method 19. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from (lb/MMBtu) to (lb/hp-hr) use the following equation:

lb/hp-hr = _llb/MMBtu₁ heat input, MMBtu/hr₁ (1/operating HP, 1/hp₁

^c Emission tests with unreported load conditions were not included in the data set. ^d Based on 99.5% conversion of the fuel carbon to CO_2 . CO_2 [lb/MMBtu] = (3.67)(%CON)(C)(D)(1/h), where %CON = percent conversion of fuel carbon to CO_2 ,

Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES $^{\rm a}$ (SCC 2-02-002-53)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating		
Criteria Pollutants and Greenhouse Gases				
NO _x c 90 - 105% Load	2.21 E+00	A		
NO _x c <90% Load	2.27 E+00	С		
CO ^c 90 - 105% Load	3.72 E+00	A		
CO ^c <90% Load	3.51 E+00	С		
CO_2^{d}	1.10 E+02	A		
SO ₂ ^e	5.88 E-04	A		
TOC^{f}	3.58 E-01	С		
Methane ^g	2.30 E-01	С		
VOCh	2.96 E-02	С		
PM10 (filterable) ^{i,j}	9.50 E-03	Е		
PM2.5 (filterable) ^j	9.50 E-03	Е		
PM Condensable ^k	9.91 E-03	Е		
Trace Organic Compounds				
1,1,2,2-Tetrachloroethane	2.53 E-05	C		
1,1,2-Trichloroethane ¹	<1.53 E-05	Е		
1,1-Dichloroethane	<1.13 E-05	Е		
1,2-Dichloroethane	<1.13 E-05	Е		
1,2-Dichloropropane	<1.30 E-05	E		
1,3-Butadiene ¹	6.63 E-04	D		
1,3-Dichloropropene ¹	<1.27 E-05	Е		
Acetaldehyde ^{l,m}	2.79 E-03	С		
Acrolein ^{1,m}	2.63 E-03	С		
Benzene	1.58 E-03	В		
Butyr/isobutyraldehyde	4.86 E-05	D		
Carbon Tetrachloride ¹	<1.77 E-05	E		

C = carbon content of fuel by weight (0.75), D = density of fuel, 4.1 E+04 lb/ 10^6 scf, and h = heating value of natural gas (assume 1020 Btu/scf at 60° F).

Based on 100% conversion of fuel sulfur to SO_2 . Assumes sulfur content in natural gas of 2,000 gr/ 10^6 scf.

Emission factor for TOC is based on measured emission levels from 6 source tests.

^g Emission factor for methane is determined by subtracting the VOC and ethane emission factors from the TOC emission factor.

h VOC emission factor is based on the sum of the emission factors for all speciated organic compounds. Methane and ethane emissions were not measured for this engine category.

No data were available for uncontrolled engines. PM10 emissions are for engines equipped with a PCC.

Considered $\leq 1 \ \mu \text{m}$ in aerodynamic diameter. Therefore, for filterable PM emissions, PM10(filterable) = PM2.5(filterable).

^k No data were available for condensable emissions. The presented emission factor reflects emissions from 4SLB engines.

¹ Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.

^m For rich-burn engines, no interference is suspected in quantifying aldehyde emissions. The presented emission factors are based on FTIR and CARB 430 emissions data measurements.

ⁿ Ethane emission factor is determined by subtracting the VOC emission factor from the NMHC emission factor.

References For Section 3.2

- 1. Engines, Turbines, And Compressors Directory, American Gas Association, Catalog #XF0488.
- 2. Standards Support And Environmental Impact Statement, Volume I: Stationary Internal Combustion Engines, EPA-450/2-78-125a, U. S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, July 1979.
- 3. Alternative Control Techniques Document NO_x Emissions From Stationary Reciprocating Engines, EPA-453/R-93-032, July 1993.
- 4. *Handbook Control Technologies For Hazardous Air Pollutants*, EPA-625/6-91-014, June 1991.
- 5. Limiting Net Greenhouse Gas Emissions In The United States, Volume II: Energy Responses, Report for the Office of Environmental Analysis, Office of Policy, Planning and Analysis, Department of Energy (DOE), DOE/PE-0101 Volume II, September 1991.
- 6. C. Castaldini, NO_x Reduction Technologies For Natural Gas Industry Prime Movers, GRI-90/0215, Gas Research Institute, Chicago, IL, August 1990.
- 7. Emission Factor Documentation for AP-42 Section 3.2, Natural Gas-Fired Reciprocating Engines, EPA Contract No. 68-D2-0160, Alpha-Gamma Technologies, Inc., Raleigh, North Carolina, July 2000.

Bloomberg Environment

Environment & Safety Resource Center[™]

Federal Environment and Safety Codified Regulations TITLE 40—Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING SUBPART A—General Provision

Table A-1 to Subpart A of Part 98 —Global Warming Potentials

[100-Year Time Horizon]

Name	CAS No.	Chemical formula	Global warming potential (100 yr.)
	Chemical-Specific GV		, ,
Carbon dioxide	124-38-9		1
Methane	74-82-8	CH ₄	a 25
Nitrous oxide	10024-97-2	N ₂ O	^a 298
	Fully Fluorinated GH	Gs	
Sulfur hexafluoride	2551-62-4	SF ₆	^a 22,800
Trifluoromethyl sulphur pentafluoride	373-80-8	SF ₅ CF ₃	17,700
Nitrogen trifluoride	7783-54-2	NF ₃	17,200
PFC-14 (Perfluoromethane)	75-73-0	CF ₄	^a 7,390
PFC-116 (Perfluoroethane)	76-16-4	C ₂ F ₆	^a 12,200
PFC-218 (Perfluoropropane)	76-19-7	C ₃ F ₈	^a 8,830
Perfluorocyclopropane	931-91-9	C-C ₃ F ₆	17,340
PFC-3-1-10 (Perfluorobutane)	355-25-9	C ₄ F ₁₀	^a 8,860
PFC-318 (Perfluorocyclobutane)	115-25-3	C-C ₄ F ₈	^a 10,300
PFC-4-1-12 (Perfluoropentane)	678-26-2	C ₅ F ₁₂	^a 9,160
PFC-5-1-14 (Perfluorohexane, FC-72)	355-42-0	C ₆ F ₁₄	^a 9,300
PFC-6-1-12	335-57-9	C ₇ F ₁₆ ; CF ₃ (CF ₂) ₅ CF ₃	^b 7,820
PFC-7-1-18	307-34-6	C ₈ F ₁₈ ; CF ₃ (CF ₂) ₆ CF ₃	^b 7,620
PFC-9-1-18	306-94-5	C ₁₀ F ₁₈	7,500
PFPMIE (HT-70)	NA	CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃	10,300
Perfluorodecalin (cis)	60433-11-6	Z-C ₁₀ F ₁₈	^b 7,236
Perfluorodecalin (trans)	60433-12-7	E-C ₁₀ F ₁₈	^b 6,288
Saturated Hydrofluorocarbons (H	IFCs) With Two or Fe	wer Carbon-Hydrogen Bonds	5
HFC-23	75-46-7	CHF ₃	^a 14,800
HFC-32	75-10-5	CH ₂ F ₂	^a 675
HFC-125	354-33-6	C ₂ HF ₅	^a 3,500
HFC-134	359-35-3	C ₂ H ₂ F ₄	^a 1,100
HFC-134a	811-97-2	CH ₂ FCF ₃	^a 1,430
HFC-227ca	2252-84-8	CF ₃ CF ₂ CHF ₂	b 2640

Bloomberg Environment

Environment & Safety Resource CentersM

Federal Environment and Safety Codified Regulations TITLE 40—Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING SUBPART C—General Stationary Fuel Combustion Sources

Table C-1 to Subpart C of Part 98 —Default CO 2 Emission Factors and High Heat Values for Various Types of Fuel

Fuel type	Default high heat value	Default CO ₂ emission factor
Coal and coke	mmBtu/short ton	kg CO ₂ /mmBtu
Anthracite	25.09	103.69
Bituminous	24.93	93.28
Subbituminous	17.25	97.17
Lignite	14.21	97.72
Coal Coke	24.80	113.67
Mixed (Commercial sector)	21.39	94.27
Mixed (Industrial coking)	26.28	93.90
Mixed (Industrial sector)	22.35	94.67
Mixed (Electric Power sector)	19.73	95.52
Natural gas	mmBtu/scf	kg CO ₂ /mmBtu
(Weighted U.S. Average)	1.026 x 10 ⁻³	53.06
Petroleum products—liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Distillate Fuel Oil No. 1	0.139	73.25
Distillate Fuel Oil No. 2	0.138	73.96
Distillate Fuel Oil No. 4	0.146	75.04
Residual Fuel Oil No. 5	0.140	72.93
Residual Fuel Oil No. 6	0.150	75.10
Used Oil	0.138	74.00
Kerosene	0.135	75.20
Liquefied petroleum gases (LPG) ¹	0.092	61.71
Propane ¹	0.091	62.87
Propylene ²	0.091	67.77
Ethane ¹	0.068	59.60
Ethanol	0.084	68.44
Ethylene ²	0.058	65.96
Isobutane ¹	0.099	64.94
Isobutylene ¹	0.103	68.86
Butane ¹	0.103	64.77
Butylene ¹	0.105	68.72
Naphtha (<401 deg F)	0.125	68.02
Natural Gasoline	0.110	66.88
Other Oil (>401 deg F)	0.139	76.22

Pentanes Plus	0.110	70.02
Petrochemical Feedstocks	0.125	71.02
Special Naphtha	0.125	72.34
Unfinished Oils	0.139	74.54
Heavy Gas Oils	0.148	74.92
Lubricants	0.144	74.27
Motor Gasoline	0.125	70.22
Aviation Gasoline	0.120	69.25
Kerosene-Type Jet Fuel	0.135	72.22
Asphalt and Road Oil	0.158	75.36
Crude Oil	0.138	74.54
Petroleum products—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Petroleum Coke	30.00	102.41
Petroleum products—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Propane Gas	2.516 x 10 ⁻³	61.46
Other fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Municipal Solid Waste	9.95 ³	90.7
Tires	28.00	85.97
Plastics	38.00	75.00
Other fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Blast Furnace Gas	0.092 x 10 ⁻³	274.32
Coke Oven Gas	0.599 x 10 ⁻³	46.85
Fuel Gas ⁴	1.388 x 10 ⁻³	59.00
Biomass fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Wood and Wood Residuals (dry basis) ⁵	17.48	93.80
Agricultural Byproducts	8.25	118.17
Peat	8.00	111.84
Solid Byproducts	10.39	105.51
Biomass fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Landfill Gas	0.485 x 10 ⁻³	52.07
Other Biomass Gases	0.655 x 10 ⁻³	52.07
Biomass Fuels—Liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Ethanol	0.084	68.44
Biodiesel (100%)	0.128	73.84
		I
Rendered Animal Fat	0.125	71.06

¹ The HHV for components of LPG determined at 60 °F and saturation pressure with the exception of ethylene.

² Ethylene HHV determined at 41 °F (5 °C) and saturation pressure.

³ Use of this default HHV is allowed only for: (a) Units that combust MSW, do not generate steam, and are allowed to use Tier 1; (b) units that derive no more than 10 percent of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year.

⁴ Reporters subject to subpart X of this part that are complying with § 98.243(d) or subpart Y of this part may only use the default HHV and the default CO_2 emission factor for fuel gas combustion under the conditions prescribed in § 98.243(d)(2)(i) and (d)(2)(ii) and § 98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4.

 5 Use the following formula to calculate a wet basis HHV for use in Equation C-1: HHV_W = ((100 - M)/100)*HHV_d where HHV_W = wet basis HHV, M = moisture content (percent) and HHV_d = dry basis HHV from Table C-1.

[78 FR page 71950, Nov. 29, 2013; 81 FR page 89252, Dec. 9, 2016; corrected at 82 FR 41343, Aug. 31, 2017]

Contact us at http://www.bna.com/contact-us or call 1-800-372-1033

ISSN 2167-8065

Copyright © 2018, The Bureau of National Affairs, Inc. Reproduction or redistribution, in whole or in part, and in any form, without express written permission, is prohibited except as permitted by the BNA Copyright Policy.

Bloomberg Environment

Environment & Safety Resource Center[™]

Federal Environment and Safety Codified Regulations
TITLE 40—Protection of Environment
PART 98—MANDATORY GREENHOUSE GAS REPORTING
SUBPART C—General Stationary Fuel Combustion Sources

Table C-2 to Subpart C of Part 98 —Default CH $\,_4$ and N $_2$ O Emission Factors for Various Types of Fuel

Fuel type	Default CH ₄ emission factor (kg CH ₄ /mmBtu)	Default N ₂ O emission factor (kg N ₂ O/mmBtu)
Coal and Coke (All fuel types in Table C-1)	1.1 x 10 ⁻⁰²	1.6 x 10 ⁻⁰³
Natural Gas	1.0×10^{-03}	1.0×10^{-04}
Petroleum Products (All fuel types in Table C-1)	3.0×10^{-03}	6.0 x 10 ⁻⁰⁴
Fuel Gas	3.0×10^{-03}	6.0×10^{-04}
Other Fuels—Solid	3.2 x 10 ⁻⁰²	4.2 x 10 ⁻⁰³
Blast Furnace Gas	2.2 x 10 ⁻⁰⁵	1.0×10^{-04}
Coke Oven Gas	4.8 × 10 ⁻⁰⁴	1.0×10^{-04}
Biomass Fuels—Solid (All fuel types in Table C-1, except wood and wood residuals)	3.2 x 10 ⁻⁰²	4.2 x 10 ⁻⁰³
Wood and wood residuals	7.2×10^{-03}	3.6×10^{-03}
Biomass Fuels—Gaseous (All fuel types in Table C-1)	3.2 x 10 ⁻⁰³	6.3 x 10 ⁻⁰⁴
Biomass Fuels—Liquid (All fuel types in Table C-1)	1.1 × 10 ⁻⁰³	1.1 x 10 ⁻⁰⁴

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1g of CH₄ /mmBtu.

[75 FR page 79154, Dec. 17, 2010; 78 FR page 71952, Nov. 29, 2013; 81 FR page 89252, Dec. 9, 2016]

Contact us at http://www.bna.com/contact-us or call 1-800-372-1033

ISSN 2167-8065

Copyright © 2018, The Bureau of National Affairs, Inc. Reproduction or redistribution, in whole or in part, and in any form, without express written permission, is prohibited except as permitted by the BNA Copyright Policy.

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: 2020_Willow Lake_Dehy 1

File Name: P:\1. CLIENTS\Crestwood\Willow Lake NSR\ProMax and GlyCalc\GlyCalc

Runs\2020_Dehy1_WillowLake 2020 0817.ddf

Date: August 17, 2020

DESCRIPTION: DEHY-803

Description: 2020 PTE Calculations

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide	0.0032	0.077	0.0140
Methane	0.6569	15.766	2.8774
Ethane	0.7490	17.976	3.2807
Propane	1.0738	25.771	4.7032
Isobutane	0.3021	7.252	1.3234
n-Butane	0.9037	21.688	3.9581
Isopentane	0.2046	4.910	0.8960
n-Pentane	0.2752	6.604	1.2053
n-Hexane	0.1865	4.476	0.8168
Other Hexanes	0.1843	4.423	0.8072
Heptanes	0.3014	7.233	1.3199
Benzene	0.0280	0.672	0.1227
Toluene	0.6903	16.566	3.0233
Ethylbenzene	0.0317	0.760	0.1388
Xylenes	0.1186	2.847	0.5196
C8+ Heavies	0.0038	0.090	0.0164
Total Emissions Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	5.7130	137.112	25.0229
	5.7098	137.035	25.0089
	4.3038	103.292	18.8508
	1.0551	25.322	4.6212
	0.8686	20.846	3.8044

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide Methane Ethane Propane Isobutane	0.0034 0.6597 0.7663 1.1983 0.3716	0.082 15.832 18.391 28.760 8.919	0.0150 2.8893 3.3564 5.2487 1.6277
n-Butane Isopentane n-Pentane n-Hexane Other Hexanes	1.1845 0.3866 0.5454 0.6025 0.5015	28.429 9.278 13.091 14.460 12.036	5.1883 1.6932 2.3890 2.6390 2.1965
Heptanes	2.1406	51.376	9.3760

Benzene Toluene Ethylbenzene Xylenes	0.1349 8.4893 1.1841 4.7399	3.239 203.744 28.418 113.757	Page: 2 0.5911 37.1833 5.1863 20.7606
C8+ Heavies	7.7595	186.227	33.9865
Total Emissions	30.6682	736.038	134.3269
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	30.6648 29.2389 15.1507 14.5482	735.956 701.732 363.618 349.158	134.3119 128.0662 66.3603 63.7213

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide Methane Ethane Propane Isobutane	0.0062 97.3095 30.7329 22.1606 4.4301	2335.427 737.591	426.2154 134.6103
n-Butane Isopentane n-Pentane n-Hexane Other Hexanes	10.6813 2.9814 3.3602 1.9850 2.2096	256.352 71.553 80.645 47.640 53.030	46.7843 13.0585 14.7178 8.6943 9.6781
Heptanes Benzene Toluene Ethylbenzene Xylenes	3.3209 0.0151 0.5918 0.0461 0.1272	79.702 0.363 14.203 1.107 3.054	14.5455 0.0663 2.5920 0.2020 0.5573
C8+ Heavies	0.9895	23.747	4.3339
Total Emissions Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	180.9413 52.8989 2.7653 0.7803	1269.573	792.5498 792.5228 231.6971 12.1119 3.4176

EOUIPMENT REPORTS:

CONDENSER

Condenser Outlet Temperature: 120.00 deg. F
Condenser Pressure: 13.50 psia Condenser Duty: 5.14e-002 MM BTU/hr
Hydrocarbon Recovery: 2.01 bbls/day
Produced Water: 4.05 bbls/day

Produced Water: 4.05 bbls/
VOC Control Efficiency: 85.28 %
HAP Control Efficiency: 93.04 %
BTEX Control Efficiency: 94.03 %
Dissolved Hydrocarbons in Water: 380.15 mg/L

Component	Emitted	Condensed	
Water	0.60%	99.40%	

		Page:	3
Carbon Dioxide	98.16%	1.84%	
Hydrogen Sulfide	93.58%	6.42%	
Nitrogen	99.59%	0.41%	
Methane	99.59%	0.41%	
Ethane	97.74%	2.26%	
Propane	89.61%	10.39%	
Isobutane	81.31%	18.69%	
n-Butane	76.29%	23.71%	
Isopentane	52.92%	47.08%	
n-Pentane	50.45%	49.55%	
n-Hexane	30.95%	69.05%	
Other Hexanes	36.75%	63.25%	
Heptanes	14.08%	85.92%	
Benzene	20.76%	79.24%	
Toluene	8.13%	91.87%	
Ethylbenzene	2.68%	97.32%	
Xylenes	2.50%	97.50%	
C8+ Heavies	0.05%	99.95%	

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: 1.25

Calculated Dry Gas Dew Point: 2.81 lbs. H2O/MMSCF

Temperature: 100.0 deg. F
Pressure: 975.0 psig
Dry Gas Flow Rate: 25.0000 MMSCF/day

Glycol Losses with Dry Gas: 0.6630 lb/hr

Wet Gas Water Content: Saturated

Calculated Wet Gas Water Content: 59.85 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 7.06 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	4.69%	95.31%
Carbon Dioxide	99.61%	0.39%
Hydrogen Sulfide	97.69%	2.31%
Nitrogen	99.96%	0.04%
Methane	99.97%	0.03%
Ethane	99.91%	0.09%
Propane	99.87%	0.13%
Isobutane	99.84%	0.16%
n-Butane	99.79%	0.21%
Isopentane	99.81%	0.19%
n-Pentane	99.76%	0.24%
n-Hexane	99.64%	0.36%
Other Hexanes	99.72%	0.28%
Heptanes	99.40%	0.60%
Benzene	86.26%	13.74%
Toluene	82.31%	17.69%
Ethylbenzene	79.16%	20.84%
Xylenes	72.43%	27.57%
C8+ Heavies	98.58%	1.42%

Flash Control: Vented to atmosphere Flash Temperature: 120.0 deg. F Flash Pressure: 45.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	99.75%	0.25%
Carbon Dioxide	7.78%	92.22%
Hydrogen Sulfide	35.68%	64.32%
Nitrogen	0.65%	99.35%
Methane	0.67%	99.33%
Ethane	2.43%	97.57%
Propane	5.13%	94.87%
Isobutane	7.74%	92.26%
n-Butane	9.98%	90.02%
Isopentane	11.67%	88.33%
n-Pentane	14.18%	85.82%
n-Hexane	23.51%	76.49%
Other Hexanes	18.93%	81.07%
Heptanes	39.41%	60.59%
Benzene	90.41%	9.59%
Toluene	93.99%	6.01%
Ethylbenzene	96.64%	3.36%
Xylenes	97.72%	2.28%
C8+ Heavies	89.87%	10.13%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	
Water Carbon Dioxide Hydrogen Sulfide Nitrogen Methane	49.86% 0.00% 0.00% 0.00% 0.00%	100.00% 100.00% 100.00%
Ethane Propane Isobutane n-Butane Isopentane	0.00% 0.00% 0.00% 0.00% 1.87%	100.00% 100.00%
n-Pentane n-Hexane Other Hexanes Heptanes Benzene	1.75% 1.26% 2.81% 0.90% 5.44%	97.19%
Toluene Ethylbenzene Xylenes C8+ Heavies	8.30% 10.65% 13.12% 11.57%	

WET GAS STREAM

Temperature: 100.00 deg. F Pressure: 989.70 psia Flow Rate: 1.04e+006 scfh

Conc. Loading Component (vol%) (lb/hr) Water 1.26e-001 6.25e+001 Carbon Dioxide 1.81e-001 2.19e+002 Hydrogen Sulfide 4.00e-004 3.74e-001 Nitrogen 7.90e-001 6.09e+002 Methane 7.87e+001 3.47e+004 Ethane 1.12e+001 9.27e+003 Propane 5.11e+000 6.20e+003 Isobutane 7.30e-001 1.17e+003 n-Butane 1.62e+000 2.59e+003 Isopentane 3.83e-001 7.59e+002 n-Pentane 3.98e-001 7.89e+002 n-Hexane 1.79e-001 4.24e+002 Other Hexanes 2.15e-001 5.09e+002 Heptanes 2.33e-001 6.41e+002 Benzene 4.99e-004 1.07e+000 Toluene 2.00e-002 5.06e+001 Ethylbenzene 2.00e-003 5.83e+000 Xylenes 5.99e-003 1.75e+001 C8+ Heavies 1.12e-001 5.24e+002

Total Components 100.00 5.86e+004

DRY GAS STREAM

Temperature: 100.00 deg. F Pressure: 989.70 psia Flow Rate: 1.04e+006 scfh

Component		Loading (lb/hr)	
Carbon Dioxide Hydrogen Sulfide Nitrogen		2.18e+002 3.66e-001 6.08e+002	
Propane Isobutane	1.12e+001 5.11e+000 7.30e-001 1.62e+000 3.82e-001	6.19e+003 1.17e+003 2.59e+003	
n-Hexane Other Hexanes Heptanes	3.97e-001 1.78e-001 2.15e-001 2.32e-001 4.32e-004	4.22e+002 5.08e+002 6.38e+002	
Toluene Ethylbenzene	1.65e-002 1.58e-003		

Page: 6 Xylenes 4.35e-003 1.27e+001

C8+ Heavies 1.10e-001 5.17e+002

Total Components 100.00 5.84e+004

LEAN GLYCOL STREAM

Temperature: 100.00 deg. F Flow Rate: 6.99e+000 gpm

Component Conc. Loading (wt%) (lb/hr) TEG 9.84e+001 3.88e+003 Water 1.50e+000 5.91e+001 Carbon Dioxide 2.16e-012 8.52e-011 Hydrogen Sulfide 2.19e-014 8.64e-013 Nitrogen 5.78e-013 2.28e-011 Methane 9.44e-018 3.72e-016 Ethane 9.93e-008 3.91e-006 Propane 8.10e-009 3.19e-007 Isobutane 1.43e-009 5.64e-008 n-Butane 3.39e-009 1.33e-007 Isopentane 1.87e-004 7.37e-003 n-Pentane 2.46e-004 9.70e-003 n-Hexane 1.95e-004 7.67e-003 Other Hexanes 3.69e-004 1.45e-002 Heptanes 4.92e-004 1.94e-002 Benzene 1.97e-004 7.76e-003 Toluene 1.95e-002 7.68e-001 Ethylbenzene 3.59e-003 1.41e-001 Xylenes 1.82e-002 7.15e-001 C8+ Heavies 2.58e-002 1.02e+000 -----Total Components 100.00 3.94e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 100.00 deg. F Pressure: 989.70 psia Flow Rate: 7.59e+000 gpm

NOTE: Stream has more than one phase.

Component		Loading (lb/hr)
Water Carbon Dioxide Hydrogen Sulfide		1.19e+002 1.40e+000 9.57e-003
Ethane Propane Isobutane	2.33e+000 7.48e-001 5.55e-001 1.14e-001 2.82e-001	3.15e+001 2.34e+001 4.80e+000
n-Hexane Other Hexanes	9.30e-002 6.16e-002	3.92e+000 2.60e+000 2.73e+000

```
Benzene 3.75e-003 1.58e-001
Toluene 2.34e-001 9.85e+000
Ethylbenzene 3.26e-002 1.37e+000
Xylenes 1.33e-001 5.58e+000
C8+ Heavies 2.32e-001 9.76e+000
Total Components 100.00 4.21e+003
```

FLASH TANK OFF GAS STREAM

Temperature: 120.00 deg. F Pressure: 59.70 psia Flow Rate: 3.09e+003 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Hydrogen Sulfide Nitrogen		1.29e+000 6.16e-003 1.74e+000
Propane Isobutane	1.26e+001 6.17e+000 9.36e-001 2.26e+000 5.07e-001	2.22e+001 4.43e+000 1.07e+001
n-Hexane Other Hexanes Heptanes	5.72e-001 2.83e-001 3.15e-001 4.07e-001 2.38e-003	1.98e+000 2.21e+000 3.32e+000
Ethylbenzene	1.47e-002	4.61e-002 1.27e-001
Total Components	100.00	1.84e+002

FLASH TANK GLYCOL STREAM

Temperature: 120.00 deg. F Flow Rate: 7.18e+000 gpm

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Hydrogen Sulfide		1.18e+002 1.09e-001 3.42e-003
Ethane Propane Isobutane	1.64e-002 1.90e-002 2.98e-002 9.23e-003 2.94e-002	7.66e-001 1.20e+000 3.72e-001
	9.78e-003 1.38e-002 1.52e-002	5.55e-001

Other Hexanes 1.28e-002 5.16e-001
Heptanes 5.36e-002 2.16e+000

Benzene 3.54e-003 1.43e-001
Toluene 2.30e-001 9.26e+000
Ethylbenzene 3.29e-002 1.33e+000
Xylenes 1.35e-001 5.46e+000
C8+ Heavies 2.18e-001 8.77e+000

Total Components 100.00 4.03e+003

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 1.39e+003 scfh

Component Conc. Loading (vol%) (lb/hr) Water 9.00e+001 5.94e+001 Carbon Dioxide 6.76e-002 1.09e-001 Hydrogen Sulfide 2.74e-003 3.42e-003 Nitrogen 1.12e-002 1.14e-002 Methane 1.12e+000 6.60e-001 Ethane 6.96e-001 7.66e-001 Propane 7.42e-001 1.20e+000 Isobutane 1.75e-001 3.72e-001 n-Butane 5.56e-001 1.18e+000 Isopentane 1.46e-001 3.87e-001 n-Pentane 2.06e-001 5.45e-001 n-Hexane 1.91e-001 6.03e-001 Other Hexanes 1.59e-001 5.01e-001 Heptanes 5.83e-001 2.14e+000 Benzene 4.72e-002 1.35e-001 Toluene 2.51e+000 8.49e+000 Ethylbenzene 3.04e-001 1.18e+000 Xylenes 1.22e+000 4.74e+000 C8+ Heavies 1.24e+000 7.76e+000 _____ _____ Total Components 100.00 9.02e+001

CONDENSER VENT GAS STREAM

Temperature: 120.00 deg. F Pressure: 13.50 psia Flow Rate: 5.96e+001 scfh

Component Conc. Loading (vol%) (lb/hr)

Water 1.26e+001 3.57e-001
Carbon Dioxide 1.55e+000 1.07e-001
Hydrogen Sulfide 5.98e-002 3.20e-003
Nitrogen 2.59e-001 1.14e-002
Methane 2.61e+001 6.57e-001

Ethane 1.59e+001 7.49e-001
Propane 1.55e+001 1.07e+000
Isobutane 3.31e+000 3.02e-001
n-Butane 9.91e+000 9.04e-001
Isopentane 1.81e+000 2.05e-001

CONDENSER PRODUCED WATER STREAM

Temperature: 120.00 deg. F Flow Rate: 1.18e-001 gpm

Component		Loading (lb/hr)	(ppm)
Carbon Dioxide Hydrogen Sulfide Nitrogen	1.25e-003	7.20e-005 2.04e-006	
Propane Isobutane	4.99e-004 7.36e-004 1.13e-004 4.47e-004 7.14e-005	4.34e-004 6.66e-005 2.64e-004	5. 7. 1. 4.
n-Hexane Other Hexanes Heptanes	1.03e-004 5.79e-005 4.61e-005 5.18e-005 1.39e-003	3.42e-005 2.72e-005 3.06e-005	1. 1. 0. 1.
Ethylbenzene	9.72e-004 5.05e-003	2.98e-003	281. 10. 50. 0.
Total Components	100.00	5.91e+001	1000000.

CONDENSER RECOVERED OIL STREAM

Temperature: 120.00 deg. F Flow Rate: 5.86e-002 gpm

Component	Conc. (wt%)	Loading (lb/hr)
Carbon Dioxide Hydrogen Sulfide Nitrogen		1.27e-003 1.47e-004 4.52e-005
Propane Isobutane	6.81e-002 4.98e-001 2.78e-001 1.12e+000 7.29e-001	1.24e-001 6.94e-002 2.81e-001

n-Pentane	1.08e+000	2.70e-001	_
n-Hexane	1.67e+000	4.16e-001	
Other Hexanes	1.27e+000	3.17e-001	
Heptanes	7.37e+000	1.84e+000	
Benzene	4.25e-001	1.06e-001	
Toluene	3.12e+001	7.78e+000	
Ethylbenzene	4.62e+000	1.15e+000	
Xylenes	1.85e+001	4.62e+000	
C8+ Heavies	3.11e+001	7.76e+000	
Total Components	100.00	2.49e+001	

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: 2020_Willow Lake_Dehy 2

File Name: P:\1. CLIENTS\Crestwood\Willow Lake NSR\ProMax and GlyCalc\GlyCalc

Runs\2020_Dehy2_WillowLake 2020 0817.ddf

Date: August 17, 2020

DESCRIPTION: DEHY-804

Description: 2020 PTE Calculations

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide	0.0003	0.007	0.0013
Methane	0.0619	1.487	0.2713
Ethane	0.0692	1.661	0.3032
Propane	0.1017	2.441	0.4454
Isobutane	0.0284	0.681	0.1242
n-Butane	0.0847	2.032	0.3708
Isopentane	0.0190	0.455	0.0830
n-Pentane	0.0254	0.609	0.1112
n-Hexane	0.0170	0.408	0.0744
Other Hexanes	0.0169	0.404	0.0738
Heptanes	0.0271	0.651	0.1188
Benzene	0.0026	0.063	0.0115
Toluene	0.0654	1.570	0.2865
Ethylbenzene	0.0030	0.072	0.0132
Xylenes	0.0116	0.278	0.0508
C8+ Heavies	0.0003	0.008	0.0015
Total Emissions Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	0.5345	12.827	2.3409
	0.5342	12.820	2.3396
	0.4030	9.672	1.7652
	0.0996	2.391	0.4364
	0.0827	1.984	0.3620

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide Methane Ethane Propane Isobutane	0.0003 0.0622 0.0709 0.1139 0.0351	0.008 1.493 1.701 2.733 0.842	0.0014 0.2725 0.3104 0.4987 0.1537
n-Butane Isopentane n-Pentane n-Hexane Other Hexanes	0.1118 0.0363 0.0512 0.0562 0.0468	2.683 0.872 1.229 1.349 1.122	0.4897 0.1591 0.2243 0.2462 0.2048
Heptanes	0.1983	4.760	0.8688

Benzene Toluene Ethylbenzene Xylenes	0.0132 0.8363 0.1176 0.4827	0.316 20.071 2.822 11.584	Page: 2 0.0577 3.6629 0.5150 2.1142
C8+ Heavies	0.7238	17.371	3.1702
Total Emissions	2.9565	70.957	12.9496
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	2.9562 2.8231 1.5059 1.4497	70.949 67.755 36.142 34.794	12.9482 12.3653 6.5960 6.3498

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide Methane Ethane Propane Isobutane	0.0006 9.3595 2.9459 2.1282 0.4250	224.628 70.702	
n-Butane Isopentane n-Pentane n-Hexane Other Hexanes	1.0243 0.2859 0.3221 0.1903 0.2118	24.584 6.862 7.730 4.567 5.083	4.4865 1.2523 1.4108 0.8335 0.9277
Heptanes Benzene Toluene Ethylbenzene Xylenes	0.3192 0.0015 0.0599 0.0047 0.0133	7.660 0.036 1.437 0.114 0.319	1.3980 0.0066 0.2623 0.0207 0.0582
C8+ Heavies Total Emissions	0.0978 	2.348 417.361	0.4285 76.1684
Total Hydrocarbon Emissions	17.3895 5.0840 0.2697 0.0794	417.347 122.017	76.1658 22.2681 1.1813 0.3478

EOUIPMENT REPORTS:

CONDENSER

Condenser Outlet Temperature: 120.00 deg. F
Condenser Pressure: 13.50 psia
Condenser Duty: 1.21e-002 MM BTU/hr
Hydrocarbon Recovery: 0.20 bbls/day
Produced Water: 0.56 bbls/day

Produced Water: 0.56 bbls/
VOC Control Efficiency: 85.72 %
HAP Control Efficiency: 93.38 %
BTEX Control Efficiency: 94.30 %
Dissolved Hydrocarbons in Water: 385.68 mg/L

Component	Emitted	Condensed
Water	0.41%	99.59%

		Page:	3
Carbon Dioxide	97.80%	2.20%	
Hydrogen Sulfide	92.47%	7.53%	
Nitrogen	99.55%	0.45%	
Methane	99.56%	0.44%	
Ethane	97.67%	2.33%	
Propane	89.31%	10.69%	
Isobutane		19.17%	
n-Butane		24.27%	
Isopentane	52.18%	47.82%	
-			
n-Pentane	49.59%	50.41%	
n-Hexane	30.22%	69.78%	
Other Hexanes	36.04%	63.96%	
Heptanes	13.67%	86.33%	
Benzene	20.00%	80.00%	
Toluene	7.82%	92.18%	
	7.62% 2.57%	97.43%	
Ethylbenzene			
Xylenes	2.40%	97.60%	
C8+ Heavies	0.05%	99.95%	

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: 1.25

Calculated Dry Gas Dew Point: 3.31 lbs. H2O/MMSCF

Temperature: 100.0 deg. F
Pressure: 975.0 psig
Dry Gas Flow Rate: 3.5000 MMSCF/day

Glycol Losses with Dry Gas: 0.0929 lb/hr

Wet Gas Water Content: Saturated

Calculated Wet Gas Water Content: 59.85 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 4.87 gal/lb H2O

Component	Remaining in Dry Gas	
Water	5.52%	94.48%
Carbon Dioxide	99.73%	0.27%
Hydrogen Sulfide	98.43%	1.57%
Nitrogen	99.97%	0.03%
Methane	99.98%	0.02%
Ethane	99.94%	0.06%
Propane	99.91%	0.09%
Isobutane	99.89%	0.11%
n-Butane	99.86%	0.14%
Isopentane	99.87%	0.13%
n-Pentane	99.83%	0.17%
n-Hexane	99.76%	0.24%
Other Hexanes	99.81%	0.19%
Heptanes	99.60%	0.40%
Benzene	90.39%	9.61%
Toluene	87.52%	12.48%
Ethylbenzene	85.19%	14.81%
Xylenes	79.92%	20.08%
C8+ Heavies	99.05%	0.95%

Flash Control: Vented to atmosphere Flash Temperature: 120.0 deg. F Flash Pressure: 45.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water Carbon Dioxide Hydrogen Sulfide Nitrogen Methane	99.75% 7.69% 35.16% 0.64% 0.66%	
Ethane	2.35%	97.65%
Propane	5.08%	94.92%
Isobutane	7.63%	92.37%
n-Butane	9.84%	90.16%
Isopentane	11.47%	88.53%
n-Pentane	13.93%	86.07%
n-Hexane	23.03%	76.97%
Other Hexanes	18.52%	81.48%
Heptanes	38.54%	61.46%
Benzene	90.24%	9.76%
Toluene	93.84%	6.16%
Ethylbenzene	96.53%	3.47%
Xylenes	97.67%	2.33%
C8+ Heavies	89.33%	10.67%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	
Water Carbon Dioxide Hydrogen Sulfide Nitrogen Methane	40.69% 0.00% 0.00% 0.00% 0.00%	100.00% 100.00%
Ethane Propane Isobutane n-Butane Isopentane	0.00% 0.00% 0.00% 0.00% 1.89%	100.00%
n-Pentane n-Hexane Other Hexanes Heptanes Benzene	1.76% 1.27% 2.85% 0.91% 5.45%	98.24% 98.73% 97.15% 99.09% 94.55%
Toluene Ethylbenzene Xylenes C8+ Heavies	8.32% 10.67% 13.14% 11.60%	91.68% 89.33% 86.86% 88.40%

STREAM REPORTS:

WET GAS STREAM

Temperature: 100.00 deg. F Pressure: 989.70 psia Flow Rate: 1.46e+005 scfh

Conc. Component Loading (vol%) (lb/hr) Water 1.26e-001 8.74e+000 Carbon Dioxide 1.81e-001 3.06e+001 Hydrogen Sulfide 4.00e-004 5.24e-002 Nitrogen 7.90e-001 8.52e+001 Methane 7.87e+001 4.86e+003 Ethane 1.12e+001 1.30e+003 Propane 5.11e+000 8.68e+002 Isobutane 7.30e-001 1.63e+002 n-Butane 1.62e+000 3.63e+002 Isopentane 3.83e-001 1.06e+002 n-Pentane 3.98e-001 1.10e+002 n-Hexane 1.79e-001 5.93e+001 Other Hexanes 2.15e-001 7.12e+001 Heptanes 2.33e-001 8.98e+001 Benzene 4.99e-004 1.50e-001 Toluene 2.00e-002 7.09e+000 Ethylbenzene 2.00e-003 8.16e-001 Xylenes 5.99e-003 2.45e+000 C8+ Heavies 1.12e-001 7.34e+001 Total Components 100.00 8.20e+003

DRY GAS STREAM

Temperature: 100.00 deg. F Pressure: 989.70 psia Flow Rate: 1.46e+005 scfh

Component		Loading (lb/hr)
Carbon Dioxide Hydrogen Sulfide Nitrogen		3.05e+001 5.16e-002 8.52e+001
Propane Isobutane	1.12e+001 5.12e+000 7.30e-001 1.62e+000 3.83e-001	8.67e+002 1.63e+002 3.62e+002
n-Hexane Other Hexanes Heptanes	3.97e-001 1.79e-001 2.15e-001 2.32e-001 4.52e-004	5.92e+001 7.11e+001 8.94e+001
Toluene Ethylbenzene	1.75e-002 1.70e-003	

Page: 6 Xylenes 4.80e-003 1.96e+000

C8+ Heavies 1.11e-001 7.27e+001

Total Components 100.00 8.18e+003

LEAN GLYCOL STREAM

Temperature: 100.00 deg. F Flow Rate: 6.69e-001 gpm

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Hydrogen Sulfide		5.65e+000 8.12e-012 8.21e-014
Ethane Propane Isobutane	9.31e-018 9.76e-008 8.05e-009 1.42e-009 3.36e-009	3.68e-007 3.03e-008 5.35e-009
n-Hexane Other Hexanes	2.44e-004 1.92e-004	9.19e-004 7.25e-004 1.37e-003
Toluene Ethylbenzene	1.94e-002	7.59e-002 1.40e-002 7.30e-002
Total Components	100.00	3.77e+002

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 100.00 deg. F Pressure: 989.70 psia Flow Rate: 7.31e-001 gpm

NOTE: Stream has more than one phase.

Component	Conc. (wt%)	
Water Carbon Dioxide Hydrogen Sulfide		1.39e+001 1.34e-001 9.12e-004
Ethane Propane Isobutane	2.32e+000 7.44e-001 5.53e-001 1.13e-001 2.80e-001	3.02e+000 2.24e+000 4.60e-001
n-Hexane Other Hexanes	9.22e-002 6.09e-002	3.74e-001 2.47e-001 2.60e-001

```
Benzene 3.81e-003 1.54e-002
Toluene 2.40e-001 9.72e-001
Ethylbenzene 3.36e-002 1.36e-001
Xylenes 1.40e-001 5.69e-001
C8+ Heavies 2.26e-001 9.17e-001
Total Components 100.00 4.06e+002
```

FLASH TANK OFF GAS STREAM

Temperature: 120.00 deg. F Pressure: 59.70 psia Flow Rate: 2.97e+002 scfh

Component	Conc. (vol%)	Loading (lb/hr)	
Carbon Dioxide Hydrogen Sulfide Nitrogen		1.24e-001 5.91e-004 1.67e-001	
Propane Isobutane	1.25e+001 6.16e+000 9.34e-001 2.25e+000 5.06e-001	2.13e+000 4.25e-001 1.02e+000	
n-Hexane Other Hexanes Heptanes	5.70e-001 2.82e-001 3.14e-001 4.07e-001 2.46e-003	1.90e-001 2.12e-001 3.19e-001	
Ethylbenzene	1.60e-002	4.73e-003 1.33e-002	
Total Components	100.00	1.77e+001	

FLASH TANK GLYCOL STREAM

Temperature: 120.00 deg. F Flow Rate: 6.92e-001 gpm

Component		Loading (lb/hr)
Water Carbon Dioxide Hydrogen Sulfide		1.39e+001 1.03e-002 3.21e-004
Ethane Propane Isobutane	1.60e-002 1.83e-002 2.94e-002 9.04e-003 2.88e-002	7.09e-002 1.14e-001 3.51e-002
	9.55e-003 1.34e-002 1.47e-002	5.21e-002

Other Hexanes 1.24e-002 4.81e-002
Heptanes 5.16e-002 2.00e-001

Benzene 3.59e-003 1.39e-002
Toluene 2.35e-001 9.12e-001
Ethylbenzene 3.39e-002 1.32e-001
Xylenes 1.43e-001 5.56e-001
C8+ Heavies 2.11e-001 8.19e-001
Total Components 100.00 3.88e+002

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 1.87e+002 scfh

Component Conc. Loading (vol%) (lb/hr) Water 9.29e+001 8.24e+000 Carbon Dioxide 4.75e-002 1.03e-002 Hydrogen Sulfide 1.91e-003 3.21e-004 Nitrogen 7.76e-003 1.07e-003 Methane 7.87e-001 6.22e-002 Ethane 4.78e-001 7.09e-002 Propane 5.24e-001 1.14e-001 Isobutane 1.23e-001 3.51e-002 n-Butane 3.90e-001 1.12e-001 Isopentane 1.02e-001 3.63e-002 n-Pentane 1.44e-001 5.12e-002 n-Hexane 1.32e-001 5.62e-002 Other Hexanes 1.10e-001 4.68e-002 Heptanes 4.02e-001 1.98e-001 Benzene 3.42e-002 1.32e-002 Toluene 1.84e+000 8.36e-001 Ethylbenzene 2.25e-001 1.18e-001 Xylenes 9.23e-001 4.83e-001 C8+ Heavies 8.62e-001 7.24e-001 _____ ____ Total Components 100.00 1.12e+001

CONDENSER VENT GAS STREAM

Temperature: 120.00 deg. F Pressure: 13.50 psia Flow Rate: 5.58e+000 scfh

Component

Conc. Loading
(vol%) (lb/hr)

Water 1.26e+001 3.34e-002
Carbon Dioxide 1.56e+000 1.01e-002
Hydrogen Sulfide 5.91e-002 2.96e-004
Nitrogen 2.59e-001 1.07e-003
Methane 2.63e+001 6.19e-002

Ethane 1.57e+001 6.92e-002
Propane 1.57e+001 1.02e-001
Isobutane 3.32e+000 2.84e-002
n-Butane 9.90e+000 8.47e-002
Isopentane 1.79e+000 1.90e-002

CONDENSER PRODUCED WATER STREAM

Temperature: 120.00 deg. F Flow Rate: 1.64e-002 gpm

Component		Loading (lb/hr)	(ppm)
Carbon Dioxide Hydrogen Sulfide Nitrogen	1.25e-003	9.91e-006 2.83e-007	999601. 13. 1. 0. 4.
Propane Isobutane	4.92e-004 7.44e-004 1.13e-004 4.47e-004 7.07e-005	6.10e-005 9.27e-006 3.67e-005	5. 7. 1. 4.
n-Hexane Other Hexanes Heptanes	1.01e-004 5.63e-005 4.50e-005 4.98e-005 1.39e-003	4.62e-006 3.70e-006 4.09e-006	1. 1. 0. 0. 14.
Ethylbenzene	5.26e-003	8.11e-005 4.32e-004	284. 10. 53. 0.
Total Components	100.00	8.21e+000	1000000.

CONDENSER RECOVERED OIL STREAM

Temperature: 120.00 deg. F Flow Rate: 5.69e-003 gpm

Component	Conc. (wt%)	Loading (lb/hr)
Carbon Dioxide Hydrogen Sulfide Nitrogen		1.24e-004 1.42e-005 4.57e-006
Propane Isobutane	6.67e-002 5.01e-001 2.78e-001 1.12e+000 7.18e-001	1.21e-002 6.72e-003 2.71e-002

	1.07e+000		
n-Hexane	1.62e+000	3.92e-002	
Other Hexanes	1.24e+000	2.99e-002	
Heptanes	7.08e+000	1.71e-001	
Benzene	4.31e-001	1.04e-002	
Toluene	3.18e+001	7.69e-001	
Ethylbenzene	4.73e+000	1.14e-001	
Xylenes	1.94e+001	4.71e-001	
C8+ Heavies	2.99e+001	7.23e-001	
Total Components	100.00	2.42e+000	

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Willow Lake Dehy 3

File Name: P:\1. CLIENTS\Crestwood\Willow Lake NSR\ProMax and GlyCalc\GlyCalc

Runs\2020_Dehy3_WillowLake 2020 0817.ddf

Date: August 17, 2020

DESCRIPTION: DEHY-EG

Description: 2020 PTE Calculations Dehy 3

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide	0.0080	0.191	0.0348
Methane	0.1630	3.911	0.7138
Ethane	0.4700	11.280	2.0586
Propane	0.3432	8.237	1.5032
Isobutane	0.0392	0.940	0.1716
n-Butane	0.1110	2.665	0.4864
Isopentane	0.0215	0.517	0.0943
n-Pentane	0.0111	0.266	0.0485
n-Hexane	0.0069	0.167	0.0304
Other Hexanes	0.0085	0.204	0.0373
Heptanes	0.0026	0.062	0.0112
Benzene	0.0031	0.075	0.0137
Toluene	0.0044	0.105	0.0191
Ethylbenzene	0.0034	0.081	0.0147
Xylenes	0.0119	0.285	0.0520
C8+ Heavies	<0.0001	<0.001	0.0001
Total Emissions Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	1.2077	28.984	5.2896
	1.1997	28.793	5.2548
	0.5668	13.602	2.4824
	0.0297	0.712	0.1299
	0.0227	0.545	0.0995

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide	0.0014	0.033	0.0060
Methane	1.2202	29.285	5.3445
Ethane	3.0956	74.295	13.5589
Propane	0.8371	20.091	3.6666
Isobutane	0.1032	2.476	0.4518
n-Butane	0.2334	5.600	1.0221
Isopentane	0.0382	0.916	0.1671
n-Pentane	0.0167	0.401	0.0732
n-Hexane	0.0079	0.189	0.0345
Other Hexanes	0.0123	0.294	0.0537
Heptanes	0.0022	0.052	0.0095

Benzene Toluene Ethylbenzene Xylenes	0.0003 0.0003 0.0003 0.0006	0.007 0.008 0.006 0.015	Page: 2 0.0013 0.0015 0.0011 0.0026
C8+ Heavies	<0.0001	<0.001	0.0001
Total Emissions	5.5696	133.669	24.3947
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	5.5682 1.2524 0.0094 0.0015	133.636 30.057 0.225 0.036	24.3886 5.4853 0.0411 0.0066

EOUIPMENT REPORTS:

COLD SEPARATOR

-45.0 deg. F 250.0 psig Cold Separator Temperature: Cold Separator Pressure: 35.0000 MMSCF/day Dry Gas Flow Rate: Calculated Dry Gas Dew Point:

alculated Dry Gas Dew Point: 0.22 lbs. H2O/MMSCF Glycol Losses with Dry Gas: 0.0163 lb/hr

Wet Gas Water Content: Saturated

Calculated Wet Gas Water Content: 69.06 lbs. H2O/MMSCF culated Lean Glycol Recirc. Ratio: 4.18 gal/lb H2O Calculated Lean Glycol Recirc. Ratio:

Produced Liquid: 1.32e+003 bbls/day

Glycol Losses in Produced Liquids: 5.0528 lb/hr

Component		Absorbed or Condensed
Water	0.29%	99.71%
Carbon Dioxide	94.47%	5.53%
Hydrogen Sulfide	79.02%	20.98%
Nitrogen	99.58%	0.42%
Methane	98.34%	
Ethane	96.59%	3.41%
Propane	49.87%	50.13%
Isobutane	23.84%	76.16%
n-Butane	15.47%	84.53%
Isopentane	4.98%	95.02%
n-Pentane	1.44%	98.56%
n-Hexane	0.58%	99.42%
Other Hexanes	1.13%	98.87%
Heptanes	0.05%	99.95%
Benzene	0.46%	99.54%
Toluene	0.01%	99.99%
Ethylbenzene	0.03%	99.97%
Xylenes	0.01%	
C8+ Heavies	0.00%	100.00%
-		

FLASH TANK

Flash Control: Vented to atmosphere Flash Temperature: 170.0 deg. F Flash Pressure: 45.0 psig

Component	Left in Oil and Glycol	Removed in Flash Gas
Water	99.97%	0.03%
Carbon Dioxide	56.43%	43.57%
Hydrogen Sulfide	85.25%	14.75%
Nitrogen	9.49%	90.51%
Methane	11.79%	88.21%
Ethane	13.19%	86.81%
Propane	29.09%	70.91%
Isobutane	27.53%	72.47%
n-Butane	32.26%	67.74%
Isopentane	36.39%	63.61%
n-Pentane	40.16%	59.84%
n-Hexane	47.10%	52.90%
Other Hexanes	41.57%	58.43%
Heptanes	54.34%	45.66%
Benzene	91.80%	8.20%
Toluene	93.34%	6.66%
Ethylbenzene	93.53%	6.47%
Xylenes	95.78%	4.22%
C8+ Heavies	57.81%	42.19%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	89.82%	10.18%
Carbon Dioxide	0.00%	100.00%
Hydrogen Sulfide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	1.37%	98.63%
n-Pentane	1.25%	98.75%
n-Hexane	1.06%	98.94%
Other Hexanes	2.41%	97.59%
Heptanes	0.92%	99.08%
Benzene	5.45%	94.55%
Toluene	8.46%	91.54%
Ethylbenzene	11.12%	88.88%
Xylenes	13.47%	86.53%
C8+ Heavies	20.76%	79.24%

STREAM REPORTS:

Temperature: 100.00 deg. F Pressure: 814.70 psia Flow Rate: 1.58e+006 scfh

Conc. Loading (vol%) (lb/hr) Component ______ Water 1.46e-001 1.09e+002 Carbon Dioxide 1.81e-001 3.32e+002 Hydrogen Sulfide 3.99e-004 5.68e-001 Nitrogen 7.90e-001 9.23e+002 Methane 7.87e+001 5.26e+004 Ethane 1.12e+001 1.41e+004 Propane 5.11e+000 9.40e+003 Isobutane 7.30e-001 1.77e+003 n-Butane 1.62e+000 3.93e+003 Isopentane 3.82e-001 1.15e+003 n-Pentane 3.97e-001 1.20e+003 n-Hexane 1.79e-001 6.42e+002 Other Hexanes 2.15e-001 7.72e+002 Heptanes 2.33e-001 9.72e+002 Benzene 4.99e-004 1.63e+000 Toluene 2.00e-002 7.67e+001 Ethylbenzene 2.00e-003 8.84e+000 Xylenes 5.99e-003 2.65e+001 C8+ Heavies 1.12e-001 7.95e+002 Total Components 100.00 8.88e+004

DRY GAS STREAM

Temperature: -45.00 deg. F Pressure: 264.70 psia Flow Rate: 1.46e+006 scfh

Component		Loading (lb/hr)
Carbon Dioxide Hydrogen Sulfide Nitrogen		3.13e+002 4.49e-001 9.19e+002
Propane Isobutane	1.17e+001 2.77e+000 1.89e-001 2.72e-001 2.07e-002	4.69e+003 4.22e+002 6.08e+002
n-Hexane Other Hexanes Heptanes	6.21e-003 1.13e-003 2.63e-003 1.24e-004 2.51e-006	3.73e+000 8.72e+000 4.78e-001
Ethylbenzene	9.75e-007	2.35e-003 3.98e-003
Total Components	100.00	7.24e+004

Temperature: 100.00 deg. F
Flow Rate: 7.00e+000 gpm

Component	Conc. (wt%)	5 - 5 - 5
Water Carbon Dioxide Hydrogen Sulfide		7.62e+002 1.21e-010 9.33e-013
Ethane Propane Isobutane	1.22e-018 4.42e-008 1.26e-009 1.12e-010 2.24e-010	1.68e-006 4.80e-008 4.27e-009
n-Hexane Other Hexanes	3.67e-006 1.95e-006	1.40e-004 7.44e-005 2.10e-004
Toluene Ethylbenzene	4.85e-005	4.04e-004 4.21e-004 1.85e-003
Total Components	100.00	3.81e+003

RICH GLYCOL STREAM

Temperature: -45.00 deg. F Pressure: 264.70 psia Flow Rate: 7.18e+000 gpm

NOTE: Stream has more than one phase.

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Hydrogen Sulfide		8.48e+002 1.21e+000 9.33e-003
Ethane Propane Isobutane	3.55e-002 9.14e-002 3.03e-002 3.65e-003 8.83e-003	3.56e+000 1.18e+000 1.42e-001
n-Hexane Other Hexanes	7.16e-004 3.82e-004	2.79e-002 1.49e-002 2.10e-002
Toluene Ethylbenzene	3.68e-004	5.11e-003 4.05e-003 1.43e-002

Total Components 100.00 3.90e+003

COLD SEPARATOR OIL STREAM

Temperature: -45.00 deg. F Flow Rate: 3.84e+001 gpm

Component Conc. Loading (wt%) (lb/hr) EG 3.09e-002 5.05e+000 Water 1.38e-001 2.25e+001 Carbon Dioxide 1.05e-001 1.71e+001 Hydrogen Sulfide 6.72e-004 1.10e-001 Nitrogen 2.35e-002 3.84e+000 Methane 5.33e+000 8.70e+002 Ethane 2.92e+000 4.76e+002 Propane 2.89e+001 4.71e+003 Isobutane 8.25e+000 1.35e+003 n-Butane 2.03e+001 3.32e+003 Isopentane 6.70e+000 1.09e+003 n-Pentane 7.22e+000 1.18e+003 n-Hexane 3.91e+000 6.39e+002 Other Hexanes 4.67e+000 7.63e+002 Heptanes 5.95e+000 9.72e+002 Benzene 9.90e-003 1.62e+000 Toluene 4.70e-001 7.67e+001 Ethylbenzene 5.41e-002 8.84e+000 Xylenes 1.62e-001 2.65e+001 C8+ Heavies 4.87e+000 7.95e+002 Total Components 100.00 1.63e+004

FLASH TANK OFF GAS STREAM

Temperature: 170.00 deg. F Pressure: 59.70 psia Flow Rate: 8.71e+001 scfh

Component		Loading (lb/hr)
Carbon Dioxide Hydrogen Sulfide Nitrogen		5.27e-001 1.38e-003 1.57e-002
Propane Isobutane	4.49e+001 8.27e+000 7.74e-001 1.75e+000 2.30e-001	8.37e-001 1.03e-001 2.33e-001
n-Hexane Other Hexanes Heptanes	1.01e-001 3.98e-002 6.20e-002 9.46e-003 1.64e-003	7.88e-003 1.23e-002 2.17e-003
Ethylbenzene	1.61e-003 1.08e-003 2.48e-003	2.62e-004

C8+ Heavies 4.68e-005 1.83e-005
-----Total Components 100.00 6.33e+000

FLASH TANK OIL STREAM

Temperature: 170.00 deg. F

The calculated flow rate is less than $0.000001 \ \# mol/hr$. The stream flow rate and composition are not reported.

FLASH TANK GLYCOL STREAM

Temperature: 170.00 deg. F Flow Rate: 7.17e+000 gpm

Conc. Loading (wt%) (lb/hr) Component EG 7.82e+001 3.04e+003 Water 2.18e+001 8.48e+002 Carbon Dioxide 1.75e-002 6.82e-001 Hydrogen Sulfide 2.04e-004 7.96e-003 Nitrogen 4.22e-005 1.64e-003 Methane 4.19e-003 1.63e-001 Ethane 1.21e-002 4.70e-001 Propane 8.82e-003 3.43e-001 Isobutane 1.01e-003 3.92e-002 n-Butane 2.85e-003 1.11e-001 Isopentane 5.61e-004 2.18e-002 n-Pentane 2.88e-004 1.12e-002 n-Hexane 1.80e-004 7.01e-003 Other Hexanes 2.24e-004 8.72e-003 Heptanes 6.65e-005 2.59e-003 Benzene 8.48e-005 3.30e-003 Toluene 1.23e-004 4.77e-003 Ethylbenzene 9.73e-005 3.79e-003 Xylenes 3.53e-004 1.37e-002 C8+ Heavies 6.43e-007 2.50e-005 ----- -----Total Components 100.00 3.89e+003

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 1.84e+003 scfh

Component

Conc. Loading
(vol%) (lb/hr)

Water 9.89e+001 8.63e+001
Carbon Dioxide 3.20e-001 6.82e-001
Hydrogen Sulfide 4.82e-003 7.95e-003
Nitrogen 1.21e-003 1.64e-003
Methane 2.10e-001 1.63e-001

Ethane 3.22e-001 4.70e-001
Propane 1.61e-001 3.43e-001
Isobutane 1.39e-002 3.92e-002
n-Butane 3.94e-002 1.11e-001

Page: 8
Isopentane 6.15e-003 2.15e-002

n-Pentane 3.17e-003 1.11e-002 n-Hexane 1.66e-003 6.94e-003 Other Hexanes 2.04e-003 8.51e-003 Heptanes 5.28e-004 2.56e-003 Benzene 8.24e-004 3.12e-003

Toluene 9.77e-004 4.36e-003 Ethylbenzene 6.54e-004 3.37e-003 Xylenes 2.31e-003 1.19e-002 C8+ Heavies 2.40e-006 1.98e-005

Total Components 100.00 8.82e+001

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: 2020_Willow Lake_Dehy 5

File Name: P:\1. CLIENTS\Crestwood\Willow Lake NSR\ProMax and GlyCalc\GlyCalc

Runs\2020_Dehy5_WillowLake 2020 0817.ddf

Date: August 17, 2020

DESCRIPTION: DEHY-805

Description: 2020 PTE Calculations

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide	0.0068	54.940	0.0296
Methane	1.3979		6.1227
Ethane	1.5788		6.9152
Propane	2.2892		10.0266
Isobutane	0.6413		2.8090
n-Butane	1.9162	45.989	8.3930
Isopentane	0.4313	10.351	1.8891
n-Pentane	0.5788	13.892	2.5352
n-Hexane	0.3897	9.353	1.7069
Other Hexanes	0.3860	9.263	1.6905
Heptanes	0.6258	15.020	2.7412
Benzene	0.0595	1.429	0.2608
Toluene	1.4731	35.354	6.4522
Ethylbenzene	0.0678	1.628	0.2971
Xylenes	0.2574	6.177	1.1273
C8+ Heavies	0.0078	0.186	0.0340
Total Emissions	12.1073	290.576	53.0302
Total Hydrocarbon Emissions	12.1006	290.414	53.0006
Total VOC Emissions	9.1239	218.974	39.9627
Total HAP Emissions	2.2475	53.941	9.8442
Total BTEX Emissions	1.8578	44.588	8.1373

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide	0.0073	0.174	0.0318
Methane	1.4039	33.693	6.1490
Ethane	1.6159	38.783	7.0778
Propane	2.5594	61.425	11.2102
Isobutane	0.7913	18.992	3.4661
n-Butane	2.5220	60.527	11.0462
Isopentane	0.8215	19.716	3.5981
n-Pentane	1.1584	27.801	5.0736
n-Hexane	1.2758	30.620	5.5881
Other Hexanes	1.0618	25.484	4.6508
Heptanes	4.5189	108.454	19.7928

Benzene Toluene Ethylbenzene Xylenes	0.2927 18.5091 2.5935 10.5216	7.025 444.218 62.244 252.517	Page: 2 1.2820 81.0698 11.3596 46.0844
C8+ Heavies	16.4331	394.394	71.9769
Total Emissions	66.0861	1586.067	289.4572
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	66.0789 63.0590 33.1927 31.9168	1585.892 1513.417 796.624 766.004	289.4254 276.1985 145.3839 139.7958

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide	0.0132	0.317	0.0579
Methane	208.9957	5015.897	915.4011
Ethane	65.9011	1581.625	288.6466
Propane	47.5613	1141.472	208.3186
Isobutane	9.5035	228.084	41.6253
n-Butane	22.9093	549.824	100.3428
Isopentane	6.3946	153.471	28.0084
n-Pentane	7.2055	172.932	31.5601
n-Hexane	4.2568	102.162	18.6446
Other Hexanes	4.7382	113.716	20.7531
Heptanes	7.1305	171.131	31.2314
Benzene	0.0331	0.795	0.1451
Toluene	1.3065	31.356	5.7225
Ethylbenzene	0.1025	2.461	0.4491
Xylenes	0.2857	6.857	1.2515
C8+ Heavies Total Emissions	2.1529 	51.671 9323.770	9.4299 1701.5880
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	388.4772 113.5804 5.9847 1.7279	9323.453 2725.931 143.632 41.470	1701.5880 1701.5301 497.4823 26.2128 7.5682

EOUIPMENT REPORTS:

CONDENSER

Condenser Outlet Temperature: 120.00 deg. F
Condenser Pressure: 13.50 psia
Condenser Duty: 1.24e-001 MM BTU/hr
Hydrocarbon Recovery: 4.35 bbls/day
Produced Water: 10.49 bbls/day
VOC Control Efficiency: 85.53 %

HAP Control Efficiency: 93.23 %
BTEX Control Efficiency: 94.18 %
Dissolved Hydrocarbons in Water: 383.12 mg/L

Component	Emitted	Condensed
Water	0.49%	99.51%

		Page:	3
Carbon Dioxide	97.99%	2.01%	
Hydrogen Sulfide	93.05%	6.95%	
Nitrogen	99.57%	0.43%	
Methane	99.57%	0.43%	
Ethane	97.70%	2.30%	
Propane	89.44%	10.56%	
Isobutane		18.96%	
n-Butane		24.02%	
Isopentane	52.50%	47.50%	
_			
n-Pentane	49.97%	50.03%	
n-Hexane	30.55%	69.45%	
Other Hexanes	36.35%	63.65%	
Heptanes	13.85%	86.15%	
Benzene	20.34%	79.66%	
Toluene	7.96%	92.04%	
Ethylbenzene	2.61%	97.39%	
Xylenes	2.45%	97.55%	
4			
C8+ Heavies	0.05%	99.95%	

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: 1.25

Calculated Dry Gas Dew Point: 3.04 lbs. H2O/MMSCF

Temperature: 100.0 deg. F
Pressure: 975.0 psig
Dry Gas Flow Rate: 65.0000 MMSCF/day

Glycol Losses with Dry Gas: 1.7246 lb/hr

Wet Gas Water Content: Saturated

Calculated Wet Gas Water Content: 59.85 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 5.84 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	5.07%	94.93%
Carbon Dioxide	99.68%	0.32%
Hydrogen Sulfide	98.10%	1.90%
Nitrogen	99.97%	0.03%
Methane	99.97%	0.03%
Ethane	99.93%	0.07%
Propane	99.90%	0.10%
Isobutane	99.87%	0.13%
n-Butane	99.83%	0.17%
Isopentane	99.84%	0.16%
n-Pentane	99.80%	0.20%
n-Hexane	99.70%	0.30%
Other Hexanes	99.77%	0.23%
Heptanes	99.51%	0.49%
Benzene	88.52%	11.48%
Toluene	85.15%	14.85%
Ethylbenzene	82.43%	17.57%
Xylenes	76.44%	23.56%
C8+ Heavies	98.84%	1.16%

Flash Control: Vented to atmosphere Flash Temperature: 120.0 deg. F Flash Pressure: 45.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water Carbon Dioxide Hydrogen Sulfide Nitrogen Methane	99.75% 7.74% 35.44% 0.64% 0.67%	
Ethane	2.39%	97.61%
Propane	5.11%	94.89%
Isobutane	7.69%	92.31%
n-Butane	9.92%	90.08%
Isopentane	11.58%	88.42%
n-Pentane	14.06%	85.94%
n-Hexane	23.29%	76.71%
Other Hexanes	18.74%	81.26%
Heptanes	39.01%	60.99%
Benzene	90.33%	9.67%
Toluene	93.92%	6.08%
Ethylbenzene	96.59%	3.41%
Xylenes	97.70%	2.30%
C8+ Heavies	89.62%	10.38%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water Carbon Dioxide Hydrogen Sulfide Nitrogen Methane	45.15% 0.00% 0.00% 0.00% 0.00%	100.00% 100.00%
Ethane Propane Isobutane n-Butane Isopentane	0.00% 0.00% 0.00% 0.00% 1.88%	
n-Pentane n-Hexane Other Hexanes Heptanes Benzene	1.75% 1.26% 2.83% 0.90% 5.44%	98.25% 98.74% 97.17% 99.10% 94.56%
Toluene Ethylbenzene Xylenes C8+ Heavies	8.31% 10.66% 13.13% 11.58%	91.69% 89.34% 86.87% 88.42%

STREAM REPORTS:

WET GAS STREAM

Temperature: 100.00 deg. F Pressure: 989.70 psia Flow Rate: 2.71e+006 scfh

Conc. Component Loading (vol%) (lb/hr) Water 1.26e-001 1.62e+002 Carbon Dioxide 1.81e-001 5.69e+002 Hydrogen Sulfide 4.00e-004 9.73e-001 Nitrogen 7.90e-001 1.58e+003 Methane 7.87e+001 9.02e+004 Ethane 1.12e+001 2.41e+004 Propane 5.11e+000 1.61e+004 Isobutane 7.30e-001 3.03e+003 n-Butane 1.62e+000 6.74e+003 Isopentane 3.83e-001 1.97e+003 n-Pentane 3.98e-001 2.05e+003 n-Hexane 1.79e-001 1.10e+003 Other Hexanes 2.15e-001 1.32e+003 Heptanes 2.33e-001 1.67e+003 Benzene 4.99e-004 2.79e+000 Toluene 2.00e-002 1.32e+002 Ethylbenzene 2.00e-003 1.52e+001 Xylenes 5.99e-003 4.55e+001 C8+ Heavies 1.12e-001 1.36e+003

DRY GAS STREAM

Total Components 100.00 1.52e+005

Temperature: 100.00 deg. F Pressure: 989.70 psia Flow Rate: 2.71e+006 scfh

Component		Loading (lb/hr)
Carbon Dioxide Hydrogen Sulfide Nitrogen		5.67e+002 9.55e-001 1.58e+003
Propane Isobutane	1.12e+001 5.11e+000 7.30e-001 1.62e+000 3.83e-001	1.61e+004 3.03e+003 6.72e+003
n-Hexane Other Hexanes Heptanes	3.97e-001 1.79e-001 2.15e-001 2.32e-001 4.43e-004	1.10e+003 1.32e+003 1.66e+003
Toluene Ethylbenzene	1.70e-002 1.65e-003	

Page: 6 Xylenes 4.59e-003 3.48e+001

C8+ Heavies 1.11e-001 1.35e+003

Total Components 100.00 1.52e+005

LEAN GLYCOL STREAM

Temperature: 100.00 deg. F Flow Rate: 1.50e+001 gpm

Component		Loading (lb/hr)
Water Carbon Dioxide Hydrogen Sulfide		1.27e+002 1.82e-010 1.85e-012
Ethane Propane Isobutane	9.38e-018 9.85e-008 8.08e-009 1.43e-009 3.38e-009	8.31e-006 6.82e-007 1.20e-007
n-Hexane Other Hexanes	2.45e-004 1.94e-004	2.07e-002 1.63e-002 3.09e-002
Toluene Ethylbenzene	1.88e-002	1.68e+000 3.10e-001 1.59e+000
Total Components	100.00	8.44e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 100.00 deg. F Pressure: 989.70 psia Flow Rate: 1.63e+001 gpm

NOTE: Stream has more than one phase.

Component		Loading (lb/hr)
Water Carbon Dioxide Hydrogen Sulfide		2.81e+002 3.00e+000 2.05e-002
Ethane Propane Isobutane	2.32e+000 7.46e-001 5.54e-001 1.14e-001 2.81e-001	6.75e+001 5.01e+001 1.03e+001
n-Hexane Other Hexanes	9.26e-002 6.13e-002	8.38e+000 5.55e+000 5.83e+000

```
Benzene 3.79e-003 3.43e-001
Toluene 2.37e-001 2.15e+001
Ethylbenzene 3.32e-002 3.01e+000
Xylenes 1.37e-001 1.24e+001
C8+ Heavies 2.29e-001 2.07e+001
Total Components 100.00 9.05e+003
```

FLASH TANK OFF GAS STREAM

Temperature: 120.00 deg. F Pressure: 59.70 psia Flow Rate: 6.64e+003 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Hydrogen Sulfide Nitrogen		2.77e+000 1.32e-002 3.74e+000
Propane Isobutane	1.25e+001 6.17e+000 9.35e-001 2.25e+000 5.07e-001	4.76e+001 9.50e+000 2.29e+001
n-Hexane Other Hexanes Heptanes	5.71e-001 2.82e-001 3.14e-001 4.07e-001 2.42e-003	4.26e+000 4.74e+000 7.13e+000
Ethylbenzene	1.54e-002	1.03e-001 2.86e-001
Total Components	100.00	3.96e+002

FLASH TANK GLYCOL STREAM

Temperature: 120.00 deg. F Flow Rate: 1.54e+001 gpm

Component		Loading (lb/hr)
Water Carbon Dioxide Hydrogen Sulfide		2.80e+002 2.32e-001 7.25e-003
Ethane Propane Isobutane	1.62e-002 1.87e-002 2.96e-002 9.14e-003 2.91e-002	1.62e+000 2.56e+000 7.91e-001
	9.67e-003 1.36e-002 1.49e-002	1.18e+000

```
Other Hexanes 1.26e-002 1.09e+000
Heptanes 5.27e-002 4.56e+000

Benzene 3.58e-003 3.10e-001
Toluene 2.33e-001 2.02e+001
Ethylbenzene 3.35e-002 2.90e+000
Xylenes 1.40e-001 1.21e+001
C8+ Heavies 2.15e-001 1.86e+001

Total Components 100.00 8.66e+003
```

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 3.54e+003 scfh

Component		Loading (lb/hr)
Carbon Dioxide Hydrogen Sulfide Nitrogen		2.32e-001 7.25e-003 2.43e-002
Propane Isobutane	5.76e-001 6.22e-001 1.46e-001 4.65e-001 1.22e-001	2.56e+000 7.91e-001 2.52e+000
n-Hexane Other Hexanes Heptanes	1.72e-001 1.59e-001 1.32e-001 4.84e-001 4.02e-002	1.28e+000 1.06e+000 4.52e+000
Ethylbenzene	1.06e+000	2.59e+000 1.05e+001
Total Components	100.00	2.20e+002

CONDENSER VENT GAS STREAM

Temperature: 120.00 deg. F Pressure: 13.50 psia Flow Rate: 1.26e+002 scfh

Component		Loading (lb/hr)
Carbon Dioxide Hydrogen Sulfide Nitrogen		2.28e-001 6.75e-003 2.42e-002
Propane Isobutane	1.58e+001 1.56e+001 3.31e+000 9.90e+000 1.80e+000	2.29e+000 6.41e-001 1.92e+000

n-Pentane 2.41e+000 5.79e-001
n-Hexane 1.36e+000 3.90e-001
Other Hexanes 1.35e+000 3.86e-001
Heptanes 1.88e+000 6.26e-001
Benzene 2.29e-001 5.95e-002

Toluene 4.80e+000 1.47e+000
Ethylbenzene 1.92e-001 6.78e-002
Xylenes 7.28e-001 2.57e-001
C8+ Heavies 1.37e-002 7.76e-003

Total Components 100.00 1.31e+001

CONDENSER PRODUCED WATER STREAM

Temperature: 120.00 deg. F Flow Rate: 3.06e-001 gpm

Component	Conc. (wt%)	Loading (lb/hr)	(ppm)
Carbon Dioxide Hydrogen Sulfide Nitrogen	1.25e-003	1.86e-004 5.29e-006	999603. 12. 1. 0. 4.
Propane Isobutane	4.96e-004 7.39e-004 1.13e-004 4.47e-004 7.10e-005	1.13e-003 1.73e-004 6.84e-004	5. 7. 1. 4.
n-Hexane Other Hexanes Heptanes	1.02e-004 5.70e-005 4.55e-005 5.08e-005 1.39e-003	8.73e-005 6.97e-005 7.77e-005	1. 1. 0. 1.
Ethylbenzene	5.16e-003	1.50e-003 7.90e-003	283. 10. 52. 0.
Total Components	100.00	1.53e+002	1000000.

CONDENSER RECOVERED OIL STREAM

Temperature: 120.00 deg. F Flow Rate: 1.27e-001 gpm

Component	Conc. (wt%)	Loading (lb/hr)
Carbon Dioxide Hydrogen Sulfide Nitrogen		2.76e-003 3.18e-004 9.99e-005
Propane Isobutane	6.74e-002 4.99e-001 2.78e-001 1.12e+000 7.23e-001	2.69e-001 1.50e-001 6.05e-001

n-Hexane Other Hexanes Heptanes	7.22e+000	8.86e-001 6.76e-001 3.89e+000	J
Toluene Ethylbenzene		1.70e+001 2.52e+000	
Xylenes C8+ Heavies Total Components			

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: 2020_Willow Lake_Dehy_80MMSCFD

File Name: P:\1. CLIENTS\Crestwood\Willow Lake NSR Sig Rev\ProMax and GlyCalc\GlyCalc

Runs\Dehydration Unit\2020_Dehy_WLCS_80MMSCFD.ddf

Date: December 08, 2020

DESCRIPTION: DEHY-1505

Description: 2020 PTE Calculations

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide	0.0081	0.194	0.0353
Methane	1.8638	44.731	8.1633
Ethane	2.0662	49.589	9.0500
Propane	3.0541	73.299	13.3771
Isobutane	0.8593	20.623	3.7636
n-Butane	2.5787	61.889	11.2947
Isopentane	0.6127	14.706	2.6838
n-Pentane	0.8160	19.584	3.5741
n-Hexane	0.5606	13.455	2.4555
Other Hexanes	0.5560	13.344	2.4352
Heptanes	0.8949	21.478	3.9198
Benzene	0.0757	1.818	0.3318
Toluene	1.9355	46.452	8.4774
Ethylbenzene	0.0908	2.178	0.3975
Xylenes	0.3473	8.335	1.5211
C8+ Heavies	0.0102	0.246	0.0449
Total Emissions Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	16.3300	391.919	71.5252
	16.3219	391.725	71.4899
	12.3919	297.406	54.2765
	3.0099	72.237	13.1833
	2.4493	58.783	10.7278

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide Methane Ethane Propane Isobutane	0.0086 1.8701 2.1037 3.3304 1.0133	0.206 44.881 50.488 79.930 24.319	0.0375 8.1908 9.2140 14.5872 4.4382
n-Butane Isopentane n-Pentane n-Hexane Other Hexanes	3.2040 1.0360 1.4482 1.5384 1.3023	76.895 24.863 34.757 36.923 31.255	14.0334 4.5376 6.3431 6.7384 5.7040
Heptanes	5.1747	124.194	22.6653

Benzene Toluene Ethylbenzene Xylenes	0.3026 19.0405 2.6596 10.9008	7.262 456.973 63.831 261.619	Page: 2 1.3253 83.3975 11.6491 47.7454
C8+ Heavies	16.6000	398.401	72.7081
Total Emissions	71.5331	1716.795	313.3150
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	71.5245 67.5508 34.4419 32.9035	1716.589 1621.220 826.606 789.684	313.2775 295.8726 150.8556 144.1172

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide Methane Ethane Propane Isobutane	0.0118 209.1286 65.4390 46.8732 9.2882	5019.087	
n-Butane Isopentane n-Pentane n-Hexane Other Hexanes	22.2317 6.1784 6.9083 3.9783 4.4851	533.562 148.283 165.800 95.479 107.643	97.3750 27.0616 30.2585 17.4250 19.6449
Heptanes Benzene Toluene Ethylbenzene Xylenes	6.4042 0.0264 1.0450 0.0827 0.2318	153.701 0.634 25.081 1.984 5.564	28.0504 0.1156 4.5773 0.3621 1.0154
C8+ Heavies Total Emissions	1.7714 	42.513 	7.7586 1682.2898
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	384.0726 109.5049 5.3642 1.3859	9217.742	1682.2380

EOUIPMENT REPORTS:

CONDENSER

Condenser Outlet Temperature: 120.00 deg. F
Condenser Pressure: 13.50 psia
Condenser Duty: 1.49e-001 MM BTU/hr
Hydrocarbon Recovery: 4.45 bbls/day
Produced Water: 12.85 bbls/day
VOC Control Efficiency: 81.66 %

VOC Control Efficiency: 81.66 %
HAP Control Efficiency: 91.26 %
BTEX Control Efficiency: 92.56 %
Dissolved Hydrocarbons in Water: 377.75 mg/L

Component	Emitted	Condensed
Water	0.54%	99.46%

		Page:	3
Carbon Dioxide	98.33%	1.67%	
Hydrogen Sulfide	94.24%	5.76%	
Nitrogen	99.67%	0.33%	
Methane	99.66%	0.34%	
Ethane	98.22%	1.78%	
Propane	91.70%	8.30%	
Isobutane	84.80%	15.20%	
n-Butane	80.48%	19.52%	
Isopentane	59.15%	40.85%	
n-Pentane	56.35%	43.65%	
n-Hexane	36.44%	63.56%	
Other Hexanes	42.69%	57.31%	
Heptanes	17.29%	82.71%	
Benzene	25.04%	74.96%	
Toluene	10.17%	89.83%	
Ethylbenzene	3.41%	96.59%	
Xylenes	3.19%	96.81%	
C8+ Heavies	0.06%	99.94%	

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: 1.25

Calculated Dry Gas Dew Point: 3.35 lbs. H2O/MMSCF

Temperature: 100.0 deg. F
Pressure: 975.0 psig
Gas Flow Rate: 80.0000 MMSCF/day

Dry Gas Flow Rate: 80.0000 MMSCF/day Glycol Losses with Dry Gas: 2.1234 lb/hr

Wet Gas Water Content: Saturated

Calculated Wet Gas Water Content: 59.85 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 4.77 gal/lb H2O

Component	Remaining in Dry Gas	
Water	5.58%	94.42%
Carbon Dioxide	99.74%	0.26%
Hydrogen Sulfide	98.47%	1.53%
Nitrogen	99.98%	0.02%
Methane	99.98%	0.02%
Ethane	99.94%	0.06%
Propane	99.92%	0.08%
Isobutane	99.89%	0.11%
n-Butane	99.86%	0.14%
Isopentane	99.87%	0.13%
n-Pentane	99.84%	0.16%
n-Hexane	99.76%	0.24%
Other Hexanes	99.81%	0.19%
Heptanes	99.60%	0.40%
Benzene	90.58%	9.42%
Toluene	87.77%	12.23%
Ethylbenzene	85.47%	14.53%
Xylenes	80.28%	19.72%
C8+ Heavies	99.07%	0.93%

Flash Control: Vented to atmosphere Flash Temperature: 120.0 deg. F Flash Pressure: 65.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	99.82%	0.18%
Carbon Dioxide	10.04%	89.96%
Hydrogen Sulfide	41.98%	58.02%
Nitrogen	0.85%	99.15%
Methane	0.89%	99.11%
Ethane	3.11%	96.89%
Propane	6.63%	93.37%
Isobutane	9.84%	90.16%
n-Butane	12.60%	87.40%
Isopentane	14.54%	85.46%
n-Pentane n-Hexane Other Hexanes Heptanes Benzene	17.53% 28.10% 22.91% 44.88% 92.37%	82.47% 71.90% 77.09% 55.12% 7.63%
Toluene	95.20%	4.80%
Ethylbenzene	97.30%	2.70%
Xylenes	98.18%	1.82%
C8+ Heavies	91.36%	8.64%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	
Water Carbon Dioxide Hydrogen Sulfide Nitrogen Methane	40.18% 0.00% 0.00% 0.00% 0.00%	100.00% 100.00%
Ethane Propane Isobutane n-Butane Isopentane	0.00% 0.00% 0.00% 0.00% 1.49%	100.00% 100.00%
n-Pentane n-Hexane Other Hexanes Heptanes Benzene	1.40% 1.04% 2.30% 0.78% 5.32%	98.60% 98.96% 97.70% 99.22% 94.68%
Toluene Ethylbenzene Xylenes C8+ Heavies	8.20% 10.59% 13.07% 11.34%	91.80% 89.41% 86.93% 88.66%

STREAM REPORTS:

WET GAS STREAM

Temperature: 100.00 deg. F Pressure: 989.70 psia Flow Rate: 3.34e+006 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Hydrogen Sulfide Nitrogen		7.00e+002 1.20e+000 1.95e+003
Propane Isobutane	1.12e+001 5.11e+000 7.30e-001 1.62e+000 3.83e-001	1.98e+004 3.73e+003 8.29e+003
n-Hexane Other Hexanes Heptanes	3.98e-001 1.79e-001 2.15e-001 2.33e-001 4.99e-004	1.36e+003 1.63e+003 2.05e+003
Ethylbenzene	5.99e-003	1.87e+001 5.60e+001
Total Components	100.00	1.87e+005

DRY GAS STREAM

Temperature: 100.00 deg. F Pressure: 989.70 psia Flow Rate: 3.33e+006 scfh

Component		Loading (lb/hr)
Carbon Dioxide Hydrogen Sulfide Nitrogen		6.98e+002 1.18e+000 1.95e+003
Propane Isobutane	1.12e+001 5.12e+000 7.30e-001 1.62e+000 3.83e-001	1.98e+004 3.73e+003 8.28e+003
n-Hexane Other Hexanes Heptanes	3.97e-001 1.79e-001 2.15e-001 2.32e-001 4.53e-004	1.35e+003 1.63e+003 2.04e+003
Toluene Ethylbenzene	1.76e-002 1.71e-003	

Page: 6 Xylenes 4.82e-003 4.49e+001

C8+ Heavies 1.11e-001 1.66e+003
-----Total Components 100.00 1.87e+005

LEAN GLYCOL STREAM

Temperature: 100.00 deg. F Flow Rate: 1.50e+001 gpm

Component Conc. Loading (wt%) (lb/hr) TEG 9.84e+001 8.30e+003 Water 1.50e+000 1.27e+002 Carbon Dioxide 2.15e-012 1.82e-010 Hydrogen Sulfide 2.18e-014 1.84e-012 Nitrogen 5.69e-013 4.80e-011 Methane 9.30e-018 7.85e-016 Ethane 9.75e-008 8.22e-006 Propane 8.05e-009 6.79e-007 Isobutane 1.42e-009 1.20e-007 n-Butane 3.36e-009 2.83e-007 Isopentane 1.85e-004 1.56e-002 n-Pentane 2.44e-004 2.06e-002 n-Hexane 1.92e-004 1.62e-002 Other Hexanes 3.63e-004 3.07e-002 Heptanes 4.83e-004 4.08e-002 Benzene 2.02e-004 1.70e-002 Toluene 2.02e-002 1.70e+000 Ethylbenzene 3.73e-003 3.15e-001 Xylenes 1.94e-002 1.64e+000 C8+ Heavies 2.52e-002 2.12e+000 Total Components 100.00 8.44e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 100.00 deg. F Pressure: 989.70 psia Flow Rate: 1.64e+001 gpm

NOTE: Stream has more than one phase.

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Hydrogen Sulfide		3.16e+002 3.00e+000 2.04e-002
Ethane Propane Isobutane	2.32e+000 7.43e-001 5.53e-001 1.13e-001 2.80e-001	6.75e+001 5.02e+001 1.03e+001
n-Hexane Other Hexanes	9.22e-002 6.09e-002	8.38e+000 5.53e+000 5.82e+000

```
Benzene 3.81e-003 3.46e-001
Toluene 2.40e-001 2.18e+001
Ethylbenzene 3.36e-002 3.06e+000
Xylenes 1.41e-001 1.28e+001
C8+ Heavies 2.26e-001 2.05e+001
Total Components 100.00 9.09e+003
```

FLASH TANK OFF GAS STREAM

Temperature: 120.00 deg. F Pressure: 79.70 psia Flow Rate: 6.61e+003 scfh

Component		Loading (lb/hr)
Carbon Dioxide Hydrogen Sulfide Nitrogen		2.70e+000 1.18e-002 3.74e+000
Propane Isobutane	1.25e+001 6.10e+000 9.18e-001 2.20e+000 4.92e-001	4.69e+001 9.29e+000 2.22e+001
n-Hexane Other Hexanes Heptanes	5.50e-001 2.65e-001 2.99e-001 3.67e-001 1.94e-003	3.98e+000 4.49e+000 6.40e+000
Ethylbenzene	1.25e-002	8.27e-002 2.32e-001
Total Components	100.00	3.91e+002

FLASH TANK GLYCOL STREAM

Temperature: 120.00 deg. F Flow Rate: 1.55e+001 gpm

Component		Loading (lb/hr)
Water Carbon Dioxide Hydrogen Sulfide		3.15e+002 3.01e-001 8.56e-003
Ethane Propane Isobutane	2.15e-002 2.42e-002 3.83e-002 1.17e-002 3.68e-002	2.10e+000 3.33e+000 1.01e+000
	1.21e-002 1.69e-002 1.79e-002	1.47e+000

Other Hexanes 1.53e-002 1.33e+000
Heptanes 6.00e-002 5.22e+000

Benzene 3.68e-003 3.20e-001
Toluene 2.39e-001 2.07e+001
Ethylbenzene 3.42e-002 2.97e+000
Xylenes 1.44e-001 1.25e+001
C8+ Heavies 2.15e-001 1.87e+001

Total Components 100.00 8.69e+003

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 4.31e+003 scfh

Conc. Loading Component (vol%) (lb/hr) Water 9.21e+001 1.88e+002 Carbon Dioxide 6.03e-002 3.01e-001 Hydrogen Sulfide 2.21e-003 8.56e-003 Nitrogen 1.01e-002 3.22e-002 Methane 1.03e+000 1.87e+000 Ethane 6.16e-001 2.10e+000 Propane 6.65e-001 3.33e+000 Isobutane 1.53e-001 1.01e+000 n-Butane 4.85e-001 3.20e+000 Isopentane 1.26e-001 1.04e+000 n-Pentane 1.77e-001 1.45e+000 n-Hexane 1.57e-001 1.54e+000 Other Hexanes 1.33e-001 1.30e+000 Heptanes 4.55e-001 5.17e+000 Benzene 3.41e-002 3.03e-001 Toluene 1.82e+000 1.90e+001 Ethylbenzene 2.21e-001 2.66e+000 Xylenes 9.04e-001 1.09e+001 C8+ Heavies 8.58e-001 1.66e+001 _____ _____ Total Components 100.00 2.60e+002

CONDENSER VENT GAS STREAM

Temperature: 120.00 deg. F Pressure: 13.50 psia Flow Rate: 1.69e+002 scfh

Component

Conc. Loading
(vol%) (lb/hr)

Water 1.26e+001 1.01e+000
Carbon Dioxide 1.51e+000 2.96e-001
Hydrogen Sulfide 5.32e-002 8.07e-003
Nitrogen 2.57e-001 3.21e-002
Methane 2.61e+001 1.86e+000

Ethane 1.54e+001 2.07e+000
Propane 1.55e+001 3.05e+000
Isobutane 3.32e+000 8.59e-001
n-Butane 9.96e+000 2.58e+000
Isopentane 1.91e+000 6.13e-001

n-Pentane 2.54e+000 8.16e-001
n-Hexane 1.46e+000 5.61e-001
Other Hexanes 1.45e+000 5.56e-001
Heptanes 2.00e+000 8.95e-001
Benzene 2.18e-001 7.57e-002

Toluene 4.71e+000 1.94e+000
Ethylbenzene 1.92e-001 9.08e-002
Xylenes 7.34e-001 3.47e-001
C8+ Heavies 1.35e-002 1.02e-002
Total Components 100.00 1.77e+001

CONDENSER PRODUCED WATER STREAM

Temperature: 120.00 deg. F Flow Rate: 3.75e-001 gpm

Component		Loading (lb/hr)	(ppm)
Carbon Dioxide Hydrogen Sulfide Nitrogen	1.22e-003	2.03e-004 6.44e-006	999609. 12. 1. 0. 4.
Propane Isobutane	4.85e-004 7.37e-004 1.13e-004 4.49e-004 7.54e-005	1.38e-003 2.12e-004 8.43e-004	5. 7. 1. 4.
n-Hexane Other Hexanes Heptanes	1.08e-004 6.13e-005 4.90e-005 5.42e-005 1.32e-003	1.15e-004 9.19e-005 1.02e-004	1. 1. 0. 1.
Ethylbenzene	5.21e-003	1.84e-003 9.76e-003	277. 10. 52. 0.
Total Components	100.00	1.87e+002	1000000.

CONDENSER RECOVERED OIL STREAM

Temperature: 120.00 deg. F Flow Rate: 1.30e-001 gpm

Component	Conc. (wt%)	Loading (lb/hr)
Carbon Dioxide Hydrogen Sulfide Nitrogen		2.75e-003 2.90e-004 9.98e-005
Propane Isobutane	6.62e-002 4.98e-001 2.79e-001 1.13e+000 7.67e-001	2.75e-001 1.54e-001 6.24e-001

n-Pentane	1.15e+000	6.32e-001	
n-Hexane	1.77e+000	9.78e-001	
Other Hexanes	1.35e+000	7.46e-001	
Heptanes	7.76e+000	4.28e+000	
Benzene	4.07e-001	2.24e-001	
Toluene	3.09e+001	1.71e+001	
Ethylbenzene	4.65e+000	2.57e+000	
Xylenes	1.91e+001	1.05e+001	
C8+ Heavies	3.01e+001	1.66e+001	
Total Components	100.00	5.52e+001	

Athens, TX (903) 677-0700 . Beeville, TX (361) 354-5200 . Midland, TX (432) 704-5351

GAS ANALYSIS REPORT

LABORATORY REPORT NUMBER

200226-5000-02-022620-19

EFFECTIVE DATE: 02/01/2020

PHYSICAL CONSTANTS PER GPA 2145-16

64

TEMP:

COMPANY: CRESTWOOD CYLINDER NO.: 12174

STATION: WL2-0002 DATE ON: 02/17/2020

PROD.: CRESTWOOD DATE OFF:

LEASE: WL PLANT 2 INLET DATE ANALYZED: 02/28/2020

PRESS. 182 SAMPLED BY JG

COMPONENT	MOLE %	GPM	WT. %
H2S	0.0000		-
OXYGEN	0.0030		0.0040
CARBON DIOXIDE	0.0940		0.1900
NITROGEN	0.8930		1.1490
METHANE	78.0090		55,9900
ETHANE	12.6090	3.3840	17.4090
PROPANE	6.1250	1.6940	12.4010
I-BUTANE	0.8400	0.2760	2.2420
N-BUTANE	1.9530	0.6180	5.2120
I-PENTANE	0.4450	0.1630	1.4740
N-PENTANE	0.4910	0.1790	1.6270
HEXANE PLUS	0.5380	0.2340	2.3020

TOTAL 100,0000 6,5480 100,0000

PRESSURE BASE	14.65	14.73	15.025
BTU DRY BASIS	1302.05	1309.17	1335.38
BTU SAT BASIS	1279.39	1286.37	1312.14

 REAL GRAVITY
 0.7545
 H2S:
 0.4 ppm

 Z FACTOR
 0.9961
 SAMPLE TYPE:
 SPOT

MERCAPTAN PPM: 0

ANALYZED BY: PETER DOUGLAS CHROMATOGRAPH 5000-02-022620-19

06-20-2018

Athens, TX (903) 677-0700 . Beeville, TX (361) 354-5200 . Midland, TX (432) 704-5351

GAS ANALYSIS REPORT

LABORATORY REPORT NUMBER

190522-5000-05-052219-15

PHYSICAL CONSTANTS PER GPA 2145-16

COMPANY: CRESTWOOD

STATION: WL2-0002FL

CYLINDER NO .: DATE ON:

1589

PROD.: CRESTWOOD

05/07/2019

LEASE:

WL PLANT 2 FUEL

DATE OFF:

DATE ANALYZED: 05/22/2019

TEMP: 88

EFFECTIVE DATE: 05/01/2019

PRESS. 157		SAMPLED BY PL	
COMPONENT	MOLE %	GPM	WT. %
H2S	0.0000		
OXYGEN	0.0140		0.0270
CARBON DIOXIDE	0.0350		0.0920
NITROGEN	1.4900		2.4960
METHANE	95.0800		91,1980
ETHANE	3.2800	0.8790	5.8970
PROPANE	0.0930	0.0260	0.2450
I-BUTANE	0.0000	0.0000	0.0000
N-BUTANE	0.0000	0.0000	0.0000
I-PENTANE	0.0000	0.0000	0.0000
N-PENTANE	0.0000	0.0000	0.0000
HEXANE PLUS	0.0080	0.0030	0.0450

TOTAL 100.0000 0.9080 100.0000

PRESSURE BASE	14.65	14.73	15.025
BTU DRY BASIS	1020.05	1025.62	1046.16
BTU SAT BASIS	1002.29	1007.76	1027.94

REAL GRAVITY

0.5785

H2S:

0 ppm

Z FACTOR COMMENT: 0.9979 SPOT

SAMPLE TYPE:

SPOT

ANALYZED BY: PETER DOUGLAS

CHROMATOGRAPH 5000-05-052219-15

06-20-2018

Athens, TX (903) 677-0700 . Beeville, TX (361) 354-5200 .. Midland, TX (432) 704-5351

GAS EXTENDED ANALYSIS REPORT

LAB REPORT NUMBER: 200601-5000-05-060120-01 PHYSICAL CONSTANTS PER GPA 2145-09 & TP-17 (1998)

CUSTOMER:	CRESTWOOD	DATE ON:	05/28/2020
STATION:	BLACK RIVER COMP DEHY UPSTREAM	DATE ANALYZED:	06/01/2020
PRODUCER:	CRESTWOOD	EFFECTIVE DATE:	05/01/2020
LEASE:	BLACK RIVER COMP DEHY UPSTREAM	DATE OFF:	

COMPONENT	MOLE %	<u>GPM</u>	WT. %
H2S	0.000		0.000
OXYGEN	0.002		0.003
NITROGEN	0.791		1.044
CARBON DIOXIDE	0.181		0.375
METHANE	78.781		59.530
ETHANE	11.225	3.012	15.898
PROPANE	5.118	1.415	10.628
I-BUTANE	0.731	0.240	2.001
N-BUTANE	1.623	0.513	4.443
I-PENTANE	0.383	0.141	1.302
N-PENTANE	0.398	0.145	1.353
HEXANES (C6's)	0.394	0.163	1.599
HEPTANES (C7+)	0.253	0.109	1.177
OCTANES (C8+)	0.109	0.055	0.582
NONANES (C9+)	0.007	0.002	0.041
DECANES (C10+)	0.004	0.001	0.024
TOTAL	100.000	5.796	100.000

REAL SP. GRAVITY	0.7354	REAL BTU DRY	1277.894
MOL. WT.	21.230	REAL BTU SAT	1255.646
Z FACTOR	0.9963	PRESS BASE	14.730
C2+ GPM	5.796	C4+ GPM	1.389
C3+ GPM	2.784	C5+ GPM	0.616
C8-C10+ MOL WT	103.795	C6-C10+ GRAVITY	3.574

SAMPLED BY	WJ	SAMPLE PRESS:	865
SAMPLE TYPE:	SPOT	SAMPLE TEMP:	100
CYLINDER NO.:		COUNTY / STATE:	14.73
COMMENT:	SPOT	ANALYST	MIKE HOBGOOD

^{*} SEE NEXT PAGE FOR C6+ COMPOSITIONAL BREAKDOWN PAGE 1 OF 3 06-04-2020

STATION: BLACK RIVER COMP DEF LEASE: BLACK RIVER COMP DEHY UPSTREAM

C6+ FRACTION COMPOSITION

HEXANE ISOMERS (C6'S)		MOLE %	GPM	WT. %
2,2-Dimethylbutane	P	0.010	0.004	0.040
2,3-Dimethylbutane	PN	0.000	0.000	0.000
2-Methylpentane	P	0.133	0.055	0.538
3-Methylpentane	P	0.071	0.029	0.288
Methylcyclopentane	N	0.000	0.000	0.000
Benzene	A	0.000	0.000	0.000
Cyclohexane	N'	0.002	0.001	0.008
n-Hexane	P	0.179	0.074	0.725
HEPTANE ISOMERS (C7'S)				
3,3-Dimethylpentane	P	0.000	0.000	0.001
2,2-Dimethylpentane	P	0.003	0.001	0.012
2,4-Dimethylpentane	P	0.007	0.003	0.034
2 & 3-Methylhexane	P	0.031	0.015	0.148
2,3-Dimethylpentane	P	0.020	0.009	0.093
1,t-3-Dimethylcyclopentane	N	0.000	0.000	0.000
1,c-3-Dimethylcyclopentane	N	0.000	0.000	0.000
3-Ethlypentane	N	0.000	0.000	0.000
1,t-2-Dimethylcyclopentane	N	0.000	0.000	0.000
Toluene	A	0.020	0.007	0.087
Methylcyclohexane	N	0.105	0.043	0.487
Ethylcyclopentane	N	0.000	0.000	0.000
n-Heptane	P	0.067	0.031	0.315
OCTANE ISOMERS (C8'S)				
2,4 & 2,5-Dimethylhexane	P	0.006	0.003	0.033
2,2,4-Trimethylpentane	N	0.000	0.000	0.000
1,t-2,c-4-Trimethylcyclopentane	N	0.000	0.000	0.000
1,t-2,c-3-Trimethylcyclopentane	N	0.000	0.000	0.000
2-Methylheptane	P	0.021	0.011	0.112
1,c-2,t-4-Trimethylcyclopentane	N	0.000	0.000	0.000
3-Methylheptane	P	0.013	0.007	0.071
1,o-3-Dimethylcyclohexane	N	0.004	0.002	0.019
1,t-4-Dimethylcyclohexane	N	0.000	0.000	0.000
methyl-ethylcyclopentanes	N'	0.000	0.000	0.000
1,t-3 & 1,c-4 Dimethylcyclohexane	N	0.009	0.004	0.046
1,c-2-Dimethylcyclohexane	N	0.002	0.001	0.000
Ethylcyclohexane	N	0.013	0.008	0.069
Ethylbenzene	Α	0.002	0.001	0.012
m & p-Xylene	A	0.002	0.001	0.008
o-Xylene	A	0.004	0.002	0.022
Cyclooctane	P	0.001	0.000	0.005
n-Octane	P	0.032	0.017	0.174

Athens, TX (903) 677-0700 Beeville, TX (361) 354-5200 Midland, TX (432) 704-5351

STATION: BLACK RIVER COMP DEF LEASE: BLACK RIVER COMP DEHY UPSTREAM

C6+ FRACTION COMPOSITION

NONANE ISOMERS (C9'S)		MOLE %	GPM	WT. %
Trimethylhexanes	P	0.000	0.000	0.000
Dimethylpentanes	P	0.000	0.000	0.000
Isopropylcyclopentane	N	0.000	0.000	0.000
n-Propylcyclopentane	N	0.000	0.000	0.000
3-Methyloctane	P	0.000	0.000	0.000
Trimethylcyclohexanes	N	0.000	0.000	0.000
Isopropylbenzene	A	0.003	0.001	0.016
Isopropylcyclohexane	N	0.000	0.000	0.000
n-Propylcyclohexane	N	0.000	0.000	0.002
n-Propylibenzene	A	0.002	0.001	0.014
m-Ethyltoluene	Α	0.000	0.000	0.000
p-Ethyltoluene	Α	0.000	0.000	0.000
1,3,5-Trimethylbenzene	A	0.000	0.000	0.001
4 & 5-Methylnonane	P	0.000	0.000	0.000
o-Ethyltoluene & 3-Methylnonane	AP	0.000	0.000	0.000
1,2,3-Trimethylbenzene	A	0.000	0.000	0.000
1.2,4-Trimethylbenzene	A	0.001	0.000	0.006
n-Nonane	P	0.000	0.000	0.002
DECANE ISOMERS (C10'S)				
2-Methylnonane	P	0.000	0.000	0.000
tert-Butylbenzene	A	0.003	0.001	0.017
Isobutylcyclohexane & tert-Butylcyclohexa	ine	0.000	0.000	0.000
Isobutylbenzene	A	0.000	0.000	0.000
sec-Butylbenzene	A	0.000	0.000	0.002
n-Butylcyclohexane	N	0.001	0.000	0.005
1,3-Diethylbenzene	A	0.000	0.000	0.000
1,2-Diethylbenzene & n-Butylbenzene	A	0.000	0.000	0.000
1.4-Diethylbenzene	A	0.000	0.000	0.000
n-Decane	P	0.000	0.000	0.000
UNDECANE ISOMERS (C11'S)				
n-Undecane	P	0.000	0.000	0.000
DODECANE ISOMERS (C12'S)			W. 140	Parameter Control
n-Dodecane +	P	0.000	0.000	0.000

Page 3 of 3

x Michael Holgand

ANALYST

Athens, TX (903) 677-0700 . Beeville, TX (361) 354-5200 . Edmond, OK (405) 525-0579

LIQUID EXTENDED ANALYSIS REPORT

LABORATORY REPORT NUMBER

200604-5000-05-060420-01

PHYSICAL CONSTANTS PER GPA 2145-09 & TP-17 (1998)

CUSTOMER:	CRESTWOOD	DATE ON:	05/28/2020
STATION:	BLACK RIVER CONDENSATE	DATE ANALYZED:	08/04/2020
PRODUCER:	CRESTWOOD	EFFECTIVE DATE:	05/01/2020
LEASE:	BLACK RIVER CONDENSATE	DATE OFF:	

COMPONENT	MOLE %	LIQUID VOL %	WT. %	
H2S	0.000	0.000	0.000	
OXYGEN	0.000	0.000	0.000	
NITROGEN	0.085	0.024	0.029	
CARBON DIOXIDE	0.027	0.012	0.014	
METHANE	5.070	2.214	0.974	
ETHANE	4.815	3.318	1.734	
PROPANE	7.670	5.441	4.052	
I-BUTANE	2.497	2.104	1.738	
N-BUTANE	8.122	6.595	5.654	
I-PENTANE	4.386	4.131	3.790	
N-PENTANE	6.011	5.612	5.195	
HEXANES (C6's)	12.302	12.277	12.581	
HEPTANES (C7+)	19.991	21.607	23.563	
OCTANES (C8+)	22.113	27.049	29.782	
NONANES (C9+)	4.108	5.505	6.191	
DECANES (C10+)	2.803	4.113	4.703	
TOTAL	100.000	100.000	100.000	

IDEAL SP. GRAVITY	0.6813	BTU / GAL	116521.77
MOL. WT.	83,486	VAPOR PRESS.	319.80
CUBIC FT / GAL	25.819	LBS / GAL	5.68
C1/C2 LV % RATIO	66.767	API GRAVITY	76.19
CO2/C2 LV % RATIO	0.362	SP GRAV AS VAPOR	2.88
CB C10+ MOL WT	104 504	CR.C10+ GDAVITY	

SAMPLED BY	WJ	SAMPLE PRESS:	140
SAMPLE TYPE:	SPOT	SAMPLE TEMP:	80
CYLINDER NO .:		COUNTY / STATE:	0

COMMENT: SPOT ANALYST MIKE HOBGOOD

PAGE 1 OF 3

06-04-2020

^{*} SEE NEXT PAGE FOR C6+ COMPOSITIONAL BREAKDOWN

Athens, TX (903) 677-0700 Beeville, TX (361) 354-5200 Edmand, OK (405) 525-0579

STATION: BLACK RIVER CONDENS/LEASE: BLACK RIVER CONDENSATE

C6+ FRACTION COMPOSITION

HEXANE ISOMERS (C6'S)	-	MOLE %	LIQ VOL %	WT. %
2,2-Dimethylbutane	P	0.106	0.114	0.109
2,3-Dimethylbutane	PN	0.000	0.000	0.000
2-Methylpentane	P	2.369	2.531	2.446
3-Methylpentane	P	1.434	1.506	1.480
Methylcyclopentane	N	0.000	0.000	0.000
Benzene	A	0.341	0.248	0.320
Cyclohexane	N	3.535	3.097	3.564
n-Hexane	P	4.516	4.783	4.662
HEPTANE ISOMERS (C7'S)				
3,3-Dimethylpentane	P	0.038	0.044	0.045
2,3-Dimethylpentane	P	0.000	0.000	0.000
2,2-Dimethylpentane	P	0.096	0.116	0.115
2,4-Dimethylpentane	P	0.579	0.698	0.695
2 & 3-Methylhexane	P	1.260	1.499	1.512
1,t-3-Dimethylcyclopentane	N	0.000	0.000	0.000
1,c-3-Dimethylcyclopentane	N	0.000	0.000	0.000
1,t-2-Dimethylcyclopentane	N	0.000	0.000	0.000
3-Ethylpentane	N	0.000	0.000	0.000
Toluene	A	2.011	1.734	2.220
Methylcyclohexane	N	9.803	10.144	11.529
Ethylcyclopentane	N	0.000	0.000	0.000
n-Heptane	P	8.204	7.372	7.447
OCTANE ISOMERS (C8'S)			- 1	
2,4 & 2,5-Dimethylhexane	P	0.525	0.701	0.718
1,t-2,c-4-Trimethylcyclopentane	N	0.000	0.000	0.000
1,t-2,c-3-Trimethylcyclopentane	N'	0.000	0.000	0.000
2-Methylheptane	P	3.883	5.151	5.313
1,c-2,t-4-Trimethylcyclopentane	N	0.000	0.000	0.000
3-Methylheptane	P	1.857	2.437	2.541
1,c-3-Dimethylcyclohexane	N	0.257	0.305	0.345
1,t-4-Dimethylcyclohexane	N	0.000	0.000	0.000
methyl-ethylcyclopentanes	N	0.000	0.000	0.000
1,t-3 & 1,c-4 Dimethylcyclohexane	N	1.359	1.576	1.827
1,c-2-Dimethylcyclohexane	N'	2.510	2.869	3.374
Ethylcyclohexane	N	1.904	2.199	2.559
Ethylbenzene	A	0.413	0.411	0.526
m & p-Xylene	A	2.415	2.407	3.071
o-Xylene	A	0.520	0.509	0.661
n-Octane	P	6.242	8.236	8.541

Athens, TX (903) 677-0700 Beeville, TX (361) 354-5200 Edmond, OK (405) 525-0579

STATION: BLACK RIVER CONDENS/LEASE: BLACK RIVER CONDENSATE

C6+ FRACTION COMPOSITION

NONANE ISOMERS (C9'S)		MOLE %	LIQ VOL %	WT. %
Trimethylhexanes	P	0.000	0.000	0.000
Dimethylpentanes	P	0.000	0.000	0.000
Isopropylcyclopentane	N	0.000	0.000	0.000
n-Propylcyclopentane	N	0.000	0.000	0.000
3-Methyloctane	P	0.000	0.000	0.000
Trimethylcyclohexanes	N	0.000	0.000	0.000
Isopropylbenzene	A	0.201	0.228	0.290
Isopropylcyclohexane	N	0.000	0.000	0.000
n-Propylcyclohexane	N	0.550	0.710	0.832
n-Propylibenzene	A	0.372	0.421	0.535
m-Ethyltoluene	A	0.000	0.000	0.000
p-Ethyltoluene	A	0.000	0.000	0.000
1,3,5-Trimethylbenzene	A	0.006	0.007	0.009
4 & 5-Methylnonane	P	0.000	0.000	0.000
o-Ethyltoluene & 3-Methylnonane	AP	0.000	0.000	0.000
1,2,3-Trimethylbenzene	A	0.000	0.000	0.000
1,2,4-Trimethylbenzene	A	0.530	0.590	0.763
n-Nonane	P	2.449	3.549	3.762
DECANE ISOMERS (C10'S)				
2-Methylnonane	P	0.000	0.000	0.000
tert-Butylbenzene	A	0.187	0.235	0.301
Isobutylcyclohexane & tert-Butylcyclohexa	ane	0.497	0.696	0.835
Isobutylbenzene	A	0.113	0.145	0.182
sec-Butylbenzene	A	0.089	0.112	0.142
n-Butylcyclohexane	N	0.365	0.520	0.613
1,3-Diethylbenzene	A	0.000	0.000	0.000
1,2-Diethylbenzene & n-Butylbenzene	A	0.152	0.192	0.244
1,4-Diethylbenzene	A	0.000	0.000	0.000
n-Decane	Р	1.400	2.213	2.386
UNDECANE ISOMERS (C11'S)	- 1			
n-Undecane	P	0.000	0.000	0.000
DODECANE ISOMERS (C12'S)				
n-Dodecane +	Р	0.000	0.000	0.000

Page 3 of 3

* Miland Adams

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO_x) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION^a

Combustor Tyres	N	NO_x^b		
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers				
(>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	A	84	В
Uncontrolled (Post-NSPS) ^c	190	A	84	В
Controlled - Low NO _x burners	140	A	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	C	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	A	24	C
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10 6 scf to kg/106 m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10 6 scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating

value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.

b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO_X emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO_X emission factor.

c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	A
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO ₂ ^d	0.6	A
TOC	11	В
Methane	2.3	В
VOC	5.5	С

a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb/} 10^6 \text{ scf}$.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO₂.

Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

WDECH#1766#PIMIRQ#DFWRUM#RU#SHFIDWHG#WUDQIF#RPSRXQGV#URP# QDWKUDC#DV#RPEXWIRQ#Frqwbptg#

#

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION^a

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylcholanthrene ^{b, c}	<1.8E-06	E
	7,12- Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	E
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	Е
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	Е
120-12-7	Anthracene ^{b,c}	<2.4E-06	Е
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	Е
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	Е
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	Е
207-08-9	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	Е
106-97-8	Butane	2.1E+00	Е
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	Е
25321-22- 6	Dichlorobenzene ^b	1.2E-03	Е
74-84-0	Ethane	3.1E+00	Е
206-44-0	Fluoranthene ^{b,c}	3.0E-06	Е
86-73-7	Fluorene ^{b,c}	2.8E-06	Е
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	Е
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	Е
91-20-3	Naphthalene ^b	6.1E-04	Е
109-66-0	Pentane	2.6E+00	Е
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D
74-98-6	Propane	1.6E+00	Е

WDECINITIO6 #P IMIRQ #IDFWRUN #RUN #SHFIDWHG #RUDQ IDF#RP SRXQ GV#URP# QDWXUDC #IDV#RP EXWIRQ #Frqwlpylrg

#

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
129-00-0	Pyrene ^{b, c}	5.0E-06	Е
108-88-3	Toluene ^b	3.4E-03	С

- a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceded with a less-than symbol are based on method detection limits.
- b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.
- ^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.
- ^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park NC 27711

EPA-453/R-95-017 November 1995

Air

Emission EstimatesProtocol for Equipment Leak

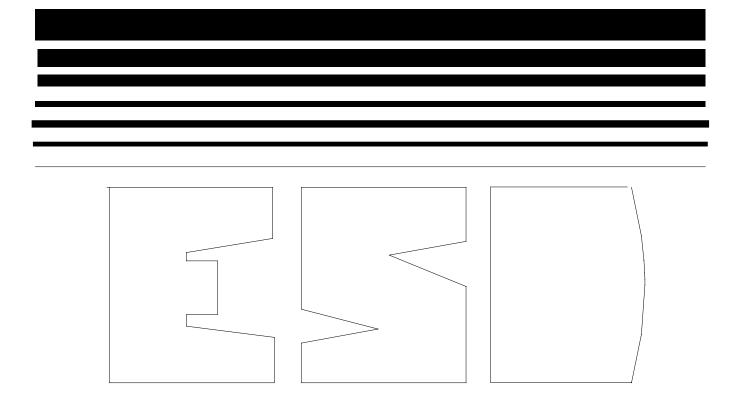


TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

Equipment Type	Service ^a	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS $^{\rm a}$

	Road Use Or	Plant	No. Of	Silt Conte	ent (%)
Industry	Surface Material	Sites	Samples	Range	Mean
Copper smelting	Plant road	1	3	16 - 19	17
Iron and steel production	Plant road	19	135	0.2 - 19	6.0
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	4.8
	Material storage area	1	1	-	7.1
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10
	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3
	Haul road to/from pit	1	12	3.9 - 9.7	5.8
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4
	Plant road	2	2	4.9 - 5.3	5.1
	Scraper route	3	10	7.2 - 25	17
	Haul road (freshly graded)	2	5	18 - 29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills	Disposal routes	4	20	2.2 - 21	6.4

^aReferences 1,5-15.

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^a (W/3)^b$$
 (1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$
 (1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

E = size-specific emission factor (lb/VMT)

s = surface material silt content (%)

W = mean vehicle weight (tons)

M = surface material moisture content (%)

S = mean vehicle speed (mph)

C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

$$1 \text{ lb/VMT} = 281.9 \text{ g/VKT}$$

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

	Industria	al Roads (Equa	ation 1a)	Public	Roads (Equati	ion 1b)
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0
a	0.9	0.9	0.7	1	1	1
ь	0.45	0.45	0.45	-	-	-
С	ı	ı	-	0.2	0.2	0.3
d	-	-	-	0.5	0.5	0.3
Quality Rating	В	В	В	В	В	В

^{*}Assumed equivalent to total suspended particulate matter (TSP)

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

			Vehicle ight		Vehicle eed	Mean	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4-17ª	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model ²³. The emission factor also varies with aerodynamic size range

[&]quot;-" = not used in the emission factor equation

Table 13.2.2-4. EMISSION FACTOR FOR 1980'S VEHICLE FLEET EXHAUST, BRAKE WEAR AND TIRE WEAR

Particle Size Range ^a	C, Emission Factor for Exhaust, Brake Wear and Tire Wear ^b
$PM_{2.5}$	0.00036
PM_{10}	0.00047
PM_{30}^{c}	0.00047

- ^a Refers to airborne particulate matter (PM-x) with an aerodynamic diameter equal to or less than x micrometers.
- b Units shown are pounds per vehicle mile traveled (lb/VMT).
- ^c PM-30 is sometimes termed "suspendable particulate" (SP) and is often used as a surrogate for TSP.

It is important to note that the vehicle-related source conditions refer to the average weight, speed, and number of wheels for all vehicles traveling the road. For example, if 98 percent of traffic on the road are 2-ton cars and trucks while the remaining 2 percent consists of 20-ton trucks, then the mean weight is 2.4 tons. More specifically, Equations 1a and 1b are *not* intended to be used to calculate a separate emission factor for each vehicle class within a mix of traffic on a given unpaved road. That is, in the example, one should *not* determine one factor for the 2-ton vehicles and a second factor for the 20-ton trucks. Instead, only one emission factor should be calculated that represents the "fleet" average of 2.4 tons for all vehicles traveling the road.

Moreover, to retain the quality ratings when addressing a group of unpaved roads, it is necessary that reliable correction parameter values be determined for the road in question. The field and laboratory procedures for determining road surface silt and moisture contents are given in AP-42 Appendices C.1 and C.2. Vehicle-related parameters should be developed by recording visual observations of traffic. In some cases, vehicle parameters for industrial unpaved roads can be determined by reviewing maintenance records or other information sources at the facility.

In the event that site-specific values for correction parameters cannot be obtained, then default values may be used. In the absence of site-specific silt content information, an appropriate mean value from Table 13.2.2-1 may be used as a default value, but the quality rating of the equation is reduced by two letters. Because of significant differences found between different types of road surfaces and between different areas of the country, use of the default moisture content value of 0.5 percent in Equation 1b is discouraged. The quality rating should be downgraded two letters when the default moisture content value is used. (It is assumed that readers addressing industrial roads have access to the information needed to develop average vehicle information in Equation 1a for their facility.)

The effect of routine watering to control emissions from unpaved roads is discussed below in Section 13.2.2.3, "Controls". However, all roads are subject to some natural mitigation because of rainfall and other precipitation. The Equation 1a and 1b emission factors can be extrapolated to annual

average uncontrolled conditions (but including natural mitigation) under the simplifying assumption that annual average emissions are inversely proportional to the number of days with measurable (more than 0.254 mm [0.01 inch]) precipitation:

$$E_{\text{ext}} = E [(365 - P)/365]$$
 (2)

where:

 E_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT

E = emission factor from Equation 1a or 1b

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation (see

below)

Figure 13.2.2-1 gives the geographical distribution for the mean annual number of "wet" days for the United States.

Equation 2 provides an estimate that accounts for precipitation on an annual average basis for the purpose of inventorying emissions. It should be noted that Equation 2 does not account for differences in the temporal distributions of the rain events, the quantity of rain during any event, or the potential for the rain to evaporate from the road surface. In the event that a finer temporal and spatial resolution is desired for inventories of public unpaved roads, estimates can be based on a more complex set of assumptions. These assumptions include:

- 1. The moisture content of the road surface material is increased in proportion to the quantity of water added;
- 2. The moisture content of the road surface material is reduced in proportion to the Class A pan evaporation rate;
- 3. The moisture content of the road surface material is reduced in proportion to the traffic volume; and
- 4. The moisture content of the road surface material varies between the extremes observed in the area. The CHIEF Web site (http://www.epa.gov/ttn/chief/ap42/ch13/related/c13s02-2.html) has a file which contains a spreadsheet program for calculating emission factors which are temporally and spatially resolved. Information required for use of the spreadsheet program includes monthly Class A pan evaporation values, hourly meteorological data for precipitation, humidity and snow cover, vehicle traffic information, and road surface material information.

It is emphasized that the simple assumption underlying Equation 2 and the more complex set of assumptions underlying the use of the procedure which produces a finer temporal and spatial resolution have not been verified in any rigorous manner. For this reason, the quality ratings for either approach should be downgraded one letter from the rating that would be applied to Equation 1.

13.2.2.3 Controls¹⁸⁻²²

A wide variety of options exist to control emissions from unpaved roads. Options fall into the following three groupings:

1. Vehicle restrictions that limit the speed, weight or number of vehicles on the road;

- 2. <u>Surface improvement</u>, by measures such as (a) paving or (b) adding gravel or slag to a dirt road; and
 - 3. Surface treatment, such as watering or treatment with chemical dust suppressants.

Available control options span broad ranges in terms of cost, efficiency, and applicability. For example, traffic controls provide moderate emission reductions (often at little cost) but are difficult to enforce. Although paving is highly effective, its high initial cost is often prohibitive. Furthermore, paving is not feasible for industrial roads subject to very heavy vehicles and/or spillage of material in transport. Watering and chemical suppressants, on the other hand, are potentially applicable to most industrial roads at moderate to low costs. However, these require frequent reapplication to maintain an acceptable level of control. Chemical suppressants are generally more cost-effective than water but not in cases of temporary roads (which are common at mines, landfills, and construction sites). In summary, then, one needs to consider not only the type and volume of traffic on the road but also how long the road will be in service when developing control plans.

<u>Vehicle restrictions</u>. These measures seek to limit the amount and type of traffic present on the road or to lower the mean vehicle speed. For example, many industrial plants have restricted employees from driving on plant property and have instead instituted bussing programs. This eliminates emissions due to employees traveling to/from their worksites. Although the heavier average vehicle weight of the busses increases the base emission factor, the decrease in vehicle-miles-traveled results in a lower overall emission rate.

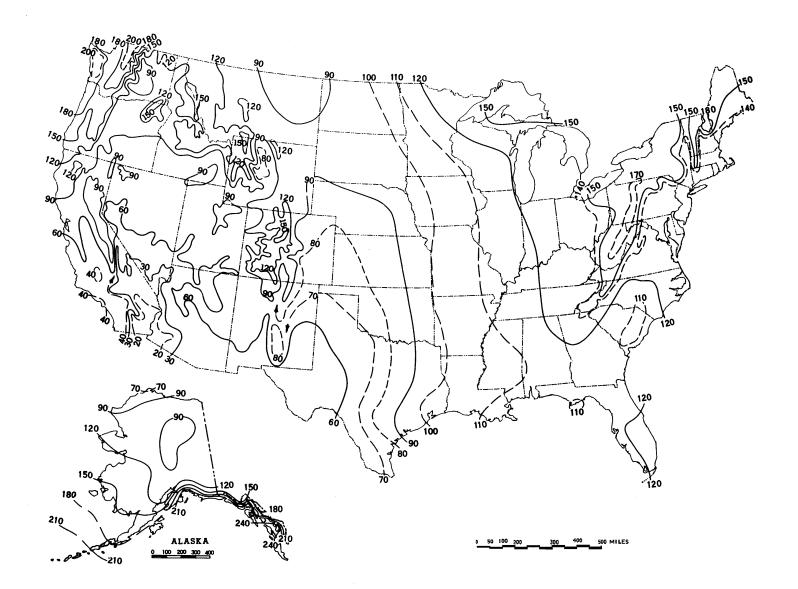


Figure 13.2.2-1. Mean number of days with 0.01 inch or more of precipitation in United States.

New Mexico ENVIRONMENT DEPARTMENT

505 Camino de los Marquez, Suite 1 Santa Fe, NM 87505 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov

JC BORREGO DEPUTY SECRETARY

DEPARTMENT ACCEPTED VALUES FOR: AGGREGATE HANDLING, STORAGE PILE, and HAUL ROAD EMISSIONS

TO: Applicants and Air Quality Bureau Permitting Staff

SUBJECT: Department accepted default values for percent silt, wind speed, moisture content, and

control efficiencies for haul road control measures

This guidance document provides the Department accepted default values for correction parameters in the emission calculation equations for aggregate handling and storage piles emissions in construction permit applications and notices of intent submitted under 20.2.72 and 20.2.73 NMAC; and the Department accepted control efficiencies for haul road control measures for applications submitted under 20.2.72 NMAC.

Aggregate Handling and Storage Pile Emission Calculations

Applicants should calculate the particulate matter emissions from aggregate handling and storage piles using the EPA's AP-42 Chapter 13.2.4.

http://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0204.pdf

Equation 1 from Chapter 13.2.4 requires users to input values for two correction parameters, U and M, where U = mean wind speed and M = material moisture content. Below are the accepted values for U and M:

Default Values for Chapter 13.2.4, Equation 1:

Parameter	Default Value
U = Mean wind speed (miles per hour)	11 mph
M = Material moisture content (% water)	2%

Applicants must receive preapproval from the Department if they wish to assume a higher moisture content and/or a lower wind speed in these calculations. Higher moisture contents may require site specific testing either as a permit condition or submitted with the application. Applicants may assume higher wind speeds and lower percent moisture content in their calculations without prior approval from the Department.

Haul Road Emissions and Control Measure Efficiencies

Accepted Default Values for Aggregate Handling, Storage Piles, and Haul Roads Page 2 of 2

Applicants should calculate the particulate matter emissions from unpaved haul roads using the EPA's AP-42 Chapter 13.2.2. http://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0202.pdf

Equation 1(a) from Chapter 13.2.2 requires users to input values for two correction parameters, s and W, where s = surface material silt content (%) and W = mean vehicle weight (tons). The applicant should calculate the mean vehicle weight in accordance with the chapter's instructions. Below is the accepted value for the parameter s:

Default Values for Chapter 13.2.2, Equation 1(a):

Parameter	Default Value	
s = surface material silt content (%)	4.8%	

Applicants may use a higher silt content without prior approval from the Department. Use of a lower silt content requires prior approval from the Department and may require site specific testing in support of the request.

Equation 2 from Chapter 13.2.2 allows users to take credit for the number of days that receive precipitation in excess of 0.01 inches, in the annual emissions calculation, where P = number of days in a year with at least 0.01 inches of precipitation.

Default Values for Chapter 13.2.2, Equation 2:

Parameter	Default Value
P = number of days in a year with at least 0.01 inches of precipitation	70 days

Applications submitted under Part 72 <u>may</u> request to apply control measures to reduce the particulate matter emissions from facility haul roads. Applications submitted under Part 73 <u>may not</u> consider any emission reduction from control measures in the potential emission rate calculation, as registrations issued under Part 73 are not federally enforceable under the Clean Air Act or the New Mexico Air Quality Control Act. In order for those control measures to be federally enforceable, the controls must be a requirement in an air quality permit.

Below are the Department accepted control efficiencies for various haul road control measures:

Haul Road Control Measures and Control Efficiency:

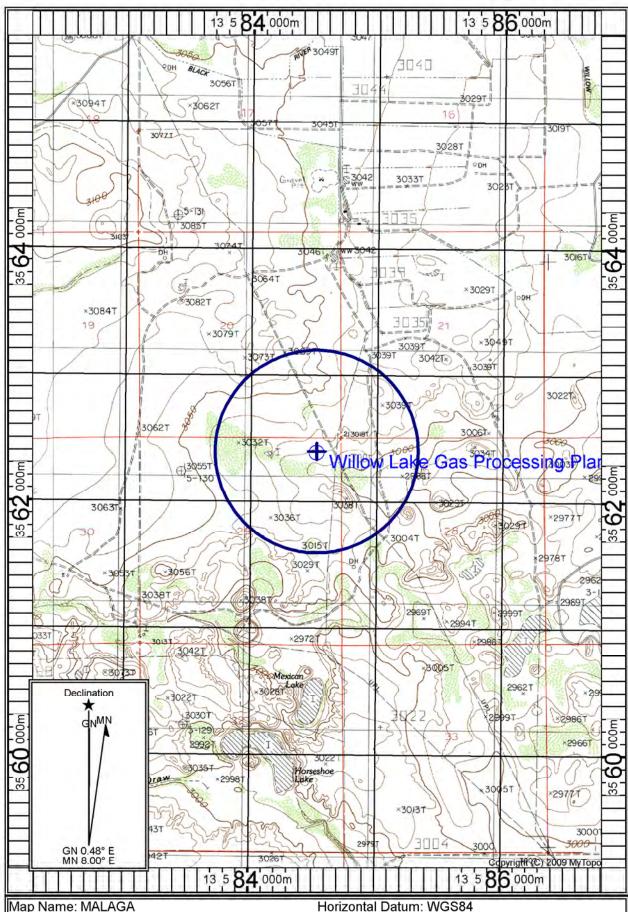
Control Measure	Control Efficiency
None	0%
Base course or watering	60%
Base course and watering	80%
Base course and surfactant	90%
Paved and Swept	95%

October 2000 RG-109 (Draft)

Air Permit Technical Guidance for Chemical Sources:

Flares and Vapor Oxidizers

Waste Stream	Destruction/Re	emoval Efficie	ney (DRE)		
VOC	98 percent (gen	neric)			
	contain no elen	99 percent for compounds containing no more than 3 carbons that contain no elements other than carbon and hydrogen in addition to the following compounds: methanol, ethanol, propanol, ethylene oxide and propylene oxide			
H_2S	98 percent				
$\mathrm{NH_3}$	case by case				
со	case by case				
Air Contaminants	Emission Factors				
thermal NO _x	steam-assist:	high Btu low Btu	0.0485 lb/MMBtu 0.068 lb/MMBtu		
	other:	high Btu low Btu	0.138 lb/MMBtu 0.0641 lb/MMBtu		
fuel NO _x	NO _x is 0.5 wt p	ercent of inlet	NH ₃ , other fuels case by case		
со	steam-assist:	high Btu low Btu	0.3503 lb/MMBtu 0.3465 lb/MMBtu		
	other:	high Btu low Btu	0.2755 lb/MMBtu 0.5496 lb/MMBtu		
PM	none, required	to be smokeles	s		
SO_2	100 percent S i	100 percent S in fuel to SO ₂			


^{*}The only exeption of this is if inorganics might be emitted from the flare. In the case of landfills, the AP-42 PM factor may be used. In other cases, the emissions should be based on the composition of the waste stream routed to the flare.

Map(s)

 $\underline{\mathbf{A}\ \mathbf{map}}$ such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A topographic map is attached.

Map Name: MALAGA Print Date: 08/20/20 Scale: 1 inch = 2,500 ft.

Map Center: 13 0584520 E 3562399 N

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per	the	Guidelines	for :	Public	Notification	document mention	ed a	ibove, inc	:lude:
-----	-----	------------	-------	--------	--------------	------------------	------	------------	--------

1. ☐ A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC) A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g. post office, library, grocery, etc.) \square A copy of the property tax record (20.2.72.203.B NMAC). \square A sample of the letters sent to the owners of record. 5. \(\subseteq \) A sample of the letters sent to counties, municipalities, and Indian tribes. 6. A sample of the public notice posted and a verification of the local postings. 7. A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group. 8.

A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal. A copy of the <u>classified</u> or <u>legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish. 10. \(\subseteq \) A copy of the display ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish. 11.

A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

N/A – Public notice requirements are not applicable for applications submitted pursuant to 20.2.70 NMAC.

Written Description of the Routine Operations of the Facility

A written description of the routine operations of the facility. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Crestwood New Mexico Pipeline LLC (Crestwood) owns and operates the Willow Lake Gas Processing Plant (Willow Lake) located in Eddy County, New Mexico. As permitted, The Willow Lake facility consists of two (2) gas processing plants to recover natural gas liquids (NGL): Willow Lake 1 consists of a turbo-expander cryogenic separation system that removes a significant fraction of the C2+ compounds from the cooled gas stream, and Willow Lake 2 consists of a refrigerated Joule-Thompson (RJT) plant that also removes C2+ compounds using a combination of mechanical refrigeration and a Joule-Thompson effect. The NGL streams from these units are routed to pressurized storage tanks prior to truck loading and transport. Willow Lake 1 has a maximum processing capacity of 20 MMSCFD of natural gas. Willow Lake 2 has a maximum processing capacity of 35 MMSCFD of natural gas. The two processing units have separate inlets but share two outlet residue lines.

During normal operation, the gas enters Willow Lake 1 through an inlet scrubber. Produced water and condensate is sent to atmospheric storage tanks, and the gas stream is sent to inlet compression and filter separation. The gas is then sent to a 25 MMSCFD TEG dehydration unit (Unit DEHY-803) where water is removed from the wet gas. The dry gas from the contactor is sent to a molecular sieve dehydrator to further remove water from the gas stream before additional processing. Gas that is utilized during molecular sieve regeneration is routed to a 3.5 MMSCFD TEG dehydration unit (Unit DEHY-804) The cryogenic separation system separates and extracts NGLs from the dry gas stream. The resulting lean residual gas stream is sent to the residue compressor and to the sales pipeline. The resulting NGL stream is sent to one 90,000-gallon bullet tank, then trucked offsite.

Gas enters Willow Lake 2 through an inlet gas separator. The produced water is sent to atmospheric storage tanks, and the gas stream is sent to the RJT skid. A combination of mechanical refrigeration and a Joule-Thompson effect separates and extracts NGLs. The resulting lean residual gas stream is sent to two residue compressors and to the sales pipeline. The resulting NGL stream is sent to three 30,000 gallon bullet tanks, then trucked offsite. Ethylene glycol is injected at various stages in the RJT process for hydrate formation prevention. The system includes a 35 MMSCF ethylene glycol unit (Unit DEHY-EG), whose associated flash tank and still column are controlled by a flare (Unit WL2-FL). Relief valves and blowdowns at Willow Lake 2 also are routed to the flare.

Willow Lake 1 and Willow Lake 2 (in addition to operating as two processing units) may also operate as a standalone compressor station (i.e., without processing). A standalone compressor station is also located at the Willow Lake facility. The compressor station includes five compressor engines (unit C-1110 though C-1150), three 400-bbl condensate/produced water storage tanks (WLCS-TK2301 through WLCS-TK2303). Three (3) compressor engines (units C-1160 through C-1180) will operate in conjunction with the existing units (C-1110 through C-1150) as a compressor station within the existing Willow Lake 1 area. An additional TEG dehydration unit (DEHY-1505) and associated reboiler (HTR-1505) support the existing compressor station TEG dehydrator (Unit DEHY-805). The site also includes a 400 barrel atmospheric storage tank (Unit WLCS-TK2304) to store produced water and condensate. A VRU (WL1-VRU that controls emissions from the Willow Lake 1 existing tanks controls emissions from the compressor station tanks (WLCS-TK2301 through WLCS-TK2304), an additional VRU (WLCS-VRU) is also located on site and storage tank emissions during VRU downtime will be directed to a flare (Unit WL1-FL). The flare also controls truck loading vapors from WL1 and WLCS (Unit ATM LOAD) as well as emissions from compressor blowdowns. In addition to loading condensate into tank truck for removal offsite, condensate may also be pumped into the facility's discharge pipeline.

The emissions represented in this application represent the worst-case emissions calculated as if each piece of equipment operates 8,760 hours/year, even though only certain equipment will actually be operated in each scenario.

Form-Section 11 last revised: 10/26/2011 Section 11, Page 1 Saved Date: 5/17/2022

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, Single Source Determination Guidance, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of

these factors in support of the responses below is optional, unless requested by NMED. **A. Identify the emission sources evaluated in this section** (list and describe): See emission sources listed in Table 2-A. B. Apply the 3 criteria for determining a single source: SIC Code: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, OR surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source. **✓** Yes \square No Common Ownership or Control: Surrounding or associated sources are under common ownership or control as this source. **✓** Yes \square No Contiguous or Adjacent: Surrounding or associated sources are contiguous or adjacent with this source. **☑** Yes \square No C. Make a determination: ☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. ☐ The source, as described in this application, **does not** constitute the entire source for 20.2.70, 20.2.72,

20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

A.

Section 12

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review Workshop Manual</u> to determine if the revision is subject to PSD review.

This facil	lity is:
\square	a minor PSD source before and after this modification (if so, delete C and D below).
	a major PSD source before this modification. This modification will make this a PSD minor source.
	an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
	an existing PSD Major Source that has had a major modification requiring a BACT analysis
	a new PSD Major Source after this modification.

N/A – This application is being submitted pursuant to 20.2.70 NMAC.

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). **We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example,** if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

Form-Section 13 last revised: 5/29/2019 Section 13, Page 1 Saved Date: 5/17/2022

STATE REGULATIONS:

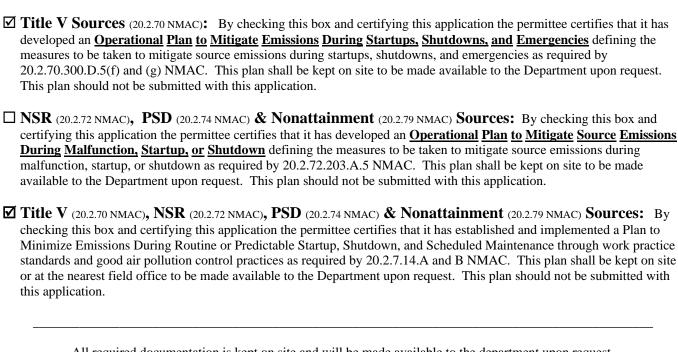
	E REGULATION	JNS:		
STATE REGU- LATIONS CITATION	Title	Applies?	Unit(s) or Facility	JUSTIFICATION:
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a SIP approved regulation that limits the maximum allowable concentration of Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. The facility meets maximum allowable concentrations of SO ₂ , H ₂ S, NO _x , and CO under this regulation.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. The owner or operator will operate the source at the facility having an excess emission, to the extent practicable, including associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions. The facility will also notify the NMED of any excess emission per 20.2.7.110 NMAC.
20.2.23 NMAC	Fugitive Dust Control	No	Facility	This regulation does not apply as the facility has no need to fugitive dust control measures as the facility does not generate enough particulate matter.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This facility does not have gas burning equipment (external combustion emission sources, such as gas fired boilers and heaters) having a heat input of greater than 1,000,000 million British Thermal Units per year per unit. The facility is not subject to this regulation and does not have emission sources that meet the applicability requirements under 20.2.33.108 NMAC.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility does not have oil burning equipment (external combustion emission sources, such as oil fired boilers and heaters) having a heat input of greater than 1,000,000 million British Thermal Units per year per unit. The facility is not subject to this regulation and does not have emission sources that meet the applicability requirements under 20.2.34.108 NMAC.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	This regulation establishes sulfur emission standards for natural gas processing plants. The facility does not meet the minimum sulfur emission requirement of an average of 5 tons/day [20.2.35.110.A NMAC]. Therefore, this facility is not subject to the operational, recordkeeping, or reporting requirements of this regulation.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	No	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	This facility does not meet the definition of a petroleum production facility or tank battery as defined in 20.2.38 NMAC and is therefore not subject to this regulation.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This regulation establishes sulfur emission standards for sulfur recovery plants that are not part of petroleum or natural gas processing facilities. This regulation does not apply to the facility because this facility does not have a sulfur recovery plant.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	C-1100, C-1200, C-2300, C-2400, C-1110 to C-1180, HTR-802 to HTR-730, HTR-1505, WL1-FL, WL2-FL	This regulation establishes controls on smoke and visible emissions from certain sources, including stationary combustion equipment. The engines, heaters, flares and combustors at this facility are subject to this regulation.
20.2.70 NMAC	Operating Permits	Yes	Facility	The facility increased emissions to above Title V thresholds with the transition to a minor NSR. It is major with respect to Title V and is submitting this initial Title V permit within one (1) year of commencing operations as a Title V facility.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This facility is subject to 20.2.70 and will therefore comply with the fee requirements of this regulation.
20.2.72 NMAC	Construction Permits	Yes	Facility	This regulation establishes the requirements for obtaining a construction permit. This facility is subject to the requirements of this subpart and currently complies with NSR-5142-M8.

STATE REGU- LATIONS CITATION	Title	Applies?	Unit(s) or Facility	JUSTIFICATION:
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	This regulation establishes emission inventory requirements. The facility meets the applicability requirements of 20.2.73.300 NMAC. The facility will meet all applicable reporting requirements under 20.2.73.300.B.1 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	This regulation establishes requirements for obtaining a prevention of significant deterioration permit. This facility is not a major source with respect to PSD and is therefore not subject to 20.2.74 NMAC.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation establishes a schedule of operating permit emission fees. This facility is subject to 20.2.72 NMAC and in turn subject to 20.2.75 NMAC. The facility is exempt from annual fees under this part (20.2.75.11.E NMAC) as it is subject to fees pursuant to 20.2.71 NMAC.
20.2.77 NMAC	New Source Performance Standards	Yes	C-1100, C-1200, C-2300 C-2400, C-1110 to C-1180, FUG-1 and FUG-2	The facility currently operates equipment that is subject to subparts of 40 CFR 60: the compressors associated with Units C-2300, C-2400 and units C-1110 to C-1180 will be subject to subpart OOOOa. All engines will be subject to subpart JJJJ. Additionally, the new fugitive components (FUG-2) associated with the expansion of the compressor station will trigger subpart OOOOa applicability. The collection of fugitive components at Willow Lake 1 (FUG-1) will still remain subject to NSPS OOOO as the compressor station will be considered a separate process unit.
20.2.78 NMAC	Emission Standards for HAPS	No	Units Subject to 40 CFR 61	This regulation establishes state authority to implement emission standards for hazardous air pollutants subject to 40 CFR Part 61. This facility does not emit hazardous air pollutants which are subject to the requirements of 40 CFR Part 61 and is therefore not subject to this regulation.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	This regulation establishes the requirements for obtaining a nonattainment area permit. The facility is not located in a non-attainment area and therefore is not subject to this regulation.
20.2.80 NMAC	Stack Heights	Yes	Facility	This regulation establishes requirements for the evaluation of stack heights and other dispersion techniques. As this facility is a new facility pursuant to 20.2.80.110, this facility is subject to this regulation.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	C-1100, C-1200, C-2300, C-2400, C-1110 to C-1180, DEHY-803, DEHY-804, DEHY-805, DEHY-1505	The engines at this facility are subject to 40 CFR 63 subpart ZZZZ and the TEG dehydrators at this facility are subject to 40 CFR 63 subpart HH. Therefore, this regulation applies.

FEDERAL REGULATIONS:

<u> </u>	FEDERAL REGULATIONS:								
FEDERAL REGU- LATIONS CITATION	Title	Applies?	Unit(s) or Facility	JUSTIFICATION:					
40 CFR 50	NAAQS	Yes	Facility	This regulation defines national ambient air quality standards. The facility meets all applicable national ambient air quality standards for NOx, CO, SO ₂ , H ₂ S, PM ₁₀ , and PM _{2.5} under this regulation.					
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	C-1100, C-1200, C-2300 C-2400, C-1110 to C-1180, FUG-1, FUG-2	The facility currently operates equipment that is subject to subparts of 40 CFR 60: the compressors associated with Units C-2300, C-2400 and units C-1110 to C-1180 will be subject to subpart OOOOa. All engines will be subject to subpart JJJJ. Additionally, the new fugitive components (FUG-2) associated with the expansion of the compressor station will trigger subpart OOOOa applicability. The collection of fugitive components at Willow Lake 1 (FUG-1) will still remain subject to NSPS OOOO as the compressor station will be considered a separate process unit.					
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards of performance for fossil-fuel-fired stream generators. This regulation does not apply as the facility does not have any fossil-fuel-fired steam generating units with a heat input rate of 250 MMBtu/hr [60.40(a)(1)].					
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards of performance for electric utility steam generating units. This regulation does not apply because the facility does not operate any electric utility steam generating units.					
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	This regulation does not apply as the facility does not have any steam generating units which meet the applicability criteria of a heat input greater than or equal to 10 MMBtu/hr.					
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	This regulation establishes performance standards for storage vessels for petroleum liquids for which construction, reconstruction, or modification commenced after May 18, 1978, and prior to July 23, 1984. The tanks at the facility, which are regulated emission sources, are 400 bbl (16,800 gallons) and 210 bbl (8,820 gallons). The capacities of the tanks at the facility are less than 40,000 gallons and are not subject to this regulation. [40 CFR Part 60.110a(a)]					
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	This regulation establishes performance standards for volatile organic liquid storage vessels (including petroleum liquid storage vessels) for which construction, reconstruction, or modification commenced after July 23, 1984. This facility does not have any storage vessels with a capacity greater than or equal to 75 cubic meters that were constructed, reconstructed or modified after July 23, 1984. This regulation is not applicable."					

FEDERAL REGU- LATIONS	Title	Applies?	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	There are no stationary gas turbines at this facility; this regulation does not apply.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	This subpart applies to gas processing plants constructed after January 20, 1984, and on or before August 23, 2011. The gas processing plants were constructed after August 23, 2011.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions	No	N/A	NSPS Subpart LLL applies to onshore natural gas processing facilities that contain sweetening units that commenced construction after January 20, 1984 but before August 23, 2011. The facility is an onshore natural gas processing plant for which construction, reconstruction, or modification commenced after August 23, 2011. This subpart does not apply.
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	Yes	FUG-1	Units C-1100 and C-1200 were constructed prior to August 23, 2011 and are therefore not subject to this regulation. The compressors associated with Units C-2300, C-2400 and units C-1110 to C-1180 will be or were constructed or modified after September 18, 2015 and are subject to subpart OOO0a. The collection of fugitive components at Willow Lake 1 (FUG-1) will remain subject to NSPS OOO0 as the compressor station will be considered a separate process unit. Finally, the new fugitive components (FUG-2) associated with the expansion of the compressor station will trigger subpart OOO0a applicability (not NSPS OOO0). The storage vessels at this facility each emit less than 6 tpy of VOC and are therefore not subject to this regulation.
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	C-2300 C-2400, C-1110 to C-1180, FUG-2	The compressors associated with Units C-2300, C-2400 and units C-1110 to C-1180 will be or were constructed or modified after September 18, 2015 and are subject to subpart OOOOa. The collection of fugitive components at Willow Lake 1 (FUG-1) will remain subject to NSPS OOOO as the compressor station will be considered a separate process unit. Finally, the new fugitive components (FUG-2) associated with the addition of the compressor station will trigger subpart OOOOa applicability (not NSPS OOOO). The fugitive components installed as part of the compressor station (FUG-2) will operate as a separate process unit than the WL1 gas processing plant. The fugitive components at the WL1 gas processing plant (FUG-1) will remain subject to NSPS OOOO and the new compressor station component will be subject to NSPS OOOOa. The storage vessels at this facility each emit less than 6 tpy of VOC and are therefore not subject to this regulation.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	There are no CI engines at this facility; this regulation does not apply.


		-		
FEDERAL REGU- LATIONS CITATION	Title	Applies?	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	C-1100, C-1200, C-2300, C-2400, C-1110 to C-1180	All engines at this facility are new stationary spark ignition engines with respect to NSPS JJJJ pursuant to 40 CFR 60.4230(4)(i). This regulation applies.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	There are no electric generating units at this facility; this regulation does not apply.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	There are no electric utility generating units at this facility; this regulation does not apply.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	This facility is not a municipal solid waste landfill; this regulation does not apply.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	NSPS 40 CFR 61 does not apply to the facility because the facility does not emit or have the triggering substances on site and/or the facility is not involved in the triggering activity. The facility is not subject to this regulation. None of the subparts of Part 61 apply to the facility.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The provisions of this subpart are applicable to those stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge. This facility does no process mercury ore, use mercury chlor-alkali cells, or incinerate or dry wastewater treatment plant sludge. Therefore, this facility is not subject to this regulation.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	This regulation establishes national emission standards for equipment leaks (fugitive emission sources). The facility does not have equipment that operates in volatile hazardous air pollutant (VHAP) service [40 CFR Part 61.240]. The regulated activities subject to this regulation do not take place at this facility. The facility is not subject to this regulation.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	C-1100, C-1200, C-2300, C-2400, C-1110 to C-1180, DEHY-803, DEHY-804, DEHY-805, DEHY-1505	The engines at this facility are subject to 40 CFR 63 subpart ZZZZ and the TEG dehydrators at this facility are subject to 40 CFR 63 subpart HH. Therefore, this regulation applies.

FEDERAL REGU- LATIONS CITATION	Title	Applies?	Unit(s) or Facility	JUSTIFICATION:
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DEHY-803, DEHY-804, DEHY-805, DEHY-1505	This regulation establishes national emission standards for hazardous air pollutants from oil and natural gas production facilities. The facility is an area source of HAPs and meets the definition of a natural gas processing plant. MACT Subpart HH applies to emission points at oil and natural gas production facilities that are HAP major or HAP area sources and that process, upgrade, or store either hydrocarbon liquids or natural gas prior to the point of custody transfer. This regulation applies to TEG units at area sources pursuant to 40 CFR 63.760(b)(2). Unit DEHY-EG is an ethylene glycol unit and is not subject to this regulation. The facility's TEG dehydrators will comply with the requirements of this subpart as applicable. Since benzene emissions from each dehydrator are less than 1 tpy, the facility is subject to only recordkeeping requirements.
MACT 40 CFR 63 Subpart HHH	Natural Gas Transmission and Storage Facilities	No	N/A	This regulation establishes national emission standards for hazardous air pollutants from boilers and heaters at major sources for HAPs. This facility is an area source for HAPs therefore this regulation does not apply. [63.1270(a)]. Additionally, this facility is not a natural gas transmission or storage facility, as defined by this regulation.
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	Subpart DDDDD covers majors sources of HAPs. Willow Lake GPP is an area source of HAPS; and therefore, is not subject to Subpart DDDDD.
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	This subpart establishes national emission limitations and work practice standards for hazardous air pollutants (HAP) emitted from coal- and oil-fired electric utility steam generating units (EGUs) as defined in §63.10042 of this subpart. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations. This facility does not contain the affected units and is therefore not subject to this regulation.
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary RICE	Yes	C-1100, C-1200, C-2300, C-2400, C-1110 to C-1180	The engines at this facility are subject to MACT ZZZZ. Units C-1100, C-1200, C-2300, C-2400 and C-1110 through C-1180 will fulfill the requirements of this regulation by complying with NSPS JJJJ.
40 CFR 64	Compliance Assurance Monitoring	No	N/A	Units C-1200, C-2300 and C-2400 have an uncontrolled PTE > 100 tpy of NOx and CO but are subject to NSPS JJJJ and per 40 CFR 64.2(b)(1)(i) can take credit for an emissions reductions. These units are therefore not subject to CAM. Units DEHY-803, DEHY-805 and DEHY-1505 have uncontrolled VOC emissions > 100 tpy. The flash tank vapors from DEHY-803 and DEHY-805 are rerouted to the reboilers to be used as fuel and the still vent vapors are sent to a BTEX condenser. The flash tank vapors from DEHY-1505 are routed to the suction side of the compressor station and the still vent vapors are sent to a BTEX condenser. The VRU serves to collect any flash tank vapors not utilized as fuel, or routed to the compressor station suction and returns vapors to the process. Although these TEG units could potentially be subject to CAM, pursuant to 40 CFR 64.1, the reboiler and condenser are considered passive control measures which are process design features. As such, these reductions are not considered to be taken as a result of a control device, but rather as inherent to the dehydration process. Additionally, the dehydration units are subject to 40 CFR Part 63, Subpart HH.
40 CFR 68	Chemical Accident Prevention	Yes	Facility	The facility does have a material above a threshold quantity listed in 40 CFR 68.130; and therefore, is subject to 40 CFR Part 68.

FEDERAL REGU- LATIONS CITATION	Title	Applies?	Unit(s) or Facility	JUSTIFICATION:
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	This part establishes the acid rain program. This facility is not an acid rain source. This regulation does not apply.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	This regulation establishes sulfur dioxide allowance emissions for certain types of facilities. This facility is not an acid rain source. This regulation does not apply.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	This facility does not produce commercial electricity for sale; therefore, this regulation does not apply.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	This regulation establishes an acid rain nitrogen oxides emission reduction program. This regulation applies to each coal-fired utility unit that is subject to an acid rain emissions limitation or reduction requirement for SO2. This part does not apply because the facility does not operate any coal-fired units [40 CFR Part 76.1].
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	This facility does not operate any equipment that releases CFCs; This regulation does not apply.

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

All required documentation is kept on site and will be made available to the department upon request.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance

certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

No alternate operating scenarios are being proposed with this application.

Form-Section 15 last revised: 8/15/2011 Section 15, Page 1 Saved Date: 5/17/2022

Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app form.html) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	X
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

	See attached, approved modeling waiver for all pollutants from the facility.
	See attached, approved modeling waiver for some pollutants from the facility.
	Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.
	Attached in UA4 is a modeling report for some pollutants from the facility.
$\overline{\mathbf{V}}$	No modeling is required.

Modeling is not being submitted with this application pursuant to 20.2.70 NMAC. Air dispersion modeling for this facility was completed and submitted with NSR Permit 5142-M8.

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Compliance Test History Table

Unit No.	Test Description	Test Date
		3/15/2021
		5/7/2021
C-1100	Tested quarterly in accordance with NSR Permit Condition A201A	8/26/2021
		11/18/2021
		2/28/2022
		3/15/2021
C 1200	Tested quarterly in accordance with NSR Permit Condition A201A	5/7/2021
C-1200		8/26/2021
		11/18/2021
		2/28/2022
		3/15/2021
G 2200		5/7/2021
C-2300	Tested quarterly in accordance with NSR Permit Condition A201A	8/26/2021
		11/18/2021
		2/28/2022
		3/15/2021
G 2400		5/7/2021
C-2400	Tested quarterly in accordance with NSR Permit Condition A201A	8/26/2021
		11/18/2021
		2/28/2022
		7/15/2021
C-1100	Tested quarterly in accordance with NSR Permit Condition A201A	11/19/2021
		1/26/2022
		7/15/2021
C-1120	Tested quarterly in accordance with NSR Permit Condition A201A	11/19/2021
		1/26/2022
		7/14/2021
C-1130	Tested quarterly in accordance with NSR Permit Condition A201A	11/19/2021
		1/26/2022
		7/14/2021
C-1140	Tested quarterly in accordance with NSR Permit Condition A201A	11/19/2021
		1/26/2022
	Tested quarterly in accordance with NSR Permit Condition A201A	7/14/2021
C-1150		11/19/2021
		1/26/2022
C-1160	These units have not yet been installed and as such, have no compliance	
C-1170	test history to report.	N/A
C-1180	test instory to report.	

Requirements for Title V Program

Who Must Use this Attachment:

- * Any major source as defined in 20.2.70 NMAC.
- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

No units are subject to 40 CFR 64, despite Units C-1200, C-2300 and C-2400 having an uncontrolled PTE > 100 tpy of NOx and CO and units DEHY-803, DEHY-805 and DEHY-1505 having uncontrolled VOC emissions > 100 tpy. These units have inherent process controls or are subject to federal regulations that bring their respective emission rates below emission monitoring thresholds.

19.2 - Compliance Status (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

Based on information and belief formed after reasonable inquiry, Crestwood believes that Willow Lake is in compliance with each applicable requirement identified in Section 13. In the event that Crestwood should discover new information affecting the compliance status of the facility, Crestwood will make appropriate notifications and/or take corrective actions.

19.3 - Continued Compliance (20.2.70.300.D.10.c NMAC)

Provide a statement that Willow Lake will continue to be in compliance with requirements for which it is in					
compliance at the time of permit application. This statement must also include a commitment to comply with other					
applicable requirements as they come into effect during the permit term. This compliance must occur in a timely					
manner or be consistent with such schedule expressly required by the applicable requirement.					

Willow Lake will continue to comply with currently appliable regulations and is committed to complying with newly effective regulations.

19.4 - Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)

You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.

Compliance certification will be submitted annually and will begin with the issuance of this Title V operating permit.

19.5 - Stratospheric Ozone and Climate Protection

In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners).

- Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozone-depleting substances?
 ☐ Yes
 ☑ No
- 2. Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 lbs? ☐ Yes ☑ No

(If the answer is yes, describe the type of equipment and how many units are at the facility.)

- 3. Do your facility personnel maintain, service, repair, or dispose of any motor vehicle air conditioners (MVACs) or appliances ("appliance" and "MVAC" as defined at 82. 152)? ☐ Yes ☑ No
- 4. Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through G.)

No 40 CFR 82 requirements apply to this facility.

19.6 - Compliance Plan and Schedule

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

Saved Date: 5/17/2022

A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.

B. Compliance plan: (20.2.70.300.D.11.B NMAC)

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC)

A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

No compliance plan is required as Willow Lake is in compliance.

19.7 - 112(r) Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

Willow Lake is not subject to RMP.

10.9 Distance to Other States Demolille Indian Tribes and Duchles

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.)

Yes, Willow Lake is located 21.6 km from the Texas border. Willow Lake is greater than 50 km from local pollution control

programs, Indian Tribes, and Pueblos.

19.9 - Responsible Official

Provide the Responsible Official as defined in 20.2.70.7.AD NMAC: Ben Hansen, Senior Vice President, Operations 811 Main St., Ste 3400, Houston, TX 77002 Ben.hansen@crestwoodlp.com, 832-519-2200

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No additional relevant information is being submitted with this application.

Saved Date: 4/26/2022

Section 22: Certification

Company Name: Crestwood	•
And as accurate as possible, to the best of my knowledge and professional expe	on and data submitted in this application are true rtise and experience.
Signed this 18th day of May 2022, upon my oath or affirm	nation, before a notary of the State of
New Mexico	
*Signature	5-18-2022 Date
Tonatlan Sm. M. Printed Name	VP, Operations Title
Scribed and sworn before me on this & day of	2022
My authorization as a notary of the State of New Mexico	expires on the
18th day of December, 2024	
Notary's Signature NOPORTU	5/18/22 Date
Notary's Printed Name Sta	Official Seal IARA DOPORTO Notary Public te of New Mexico III. Expires 121424

^{*}For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.