May 27, 2022

Elizabeth Bisbey-Kuehn New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816

Re: Application to Modify and Renew Title V Operating Permit Number P038-R4 Harvest Four Corners, LLC – 29-6#2 Central Delivery Point

Dear Ms. Bisbey-Kuehn,

On behalf of Harvest Four Corners, LLC (Harvest), Cirrus Consulting, LLC submits the enclosed application to modify and renew the Title V operating permit for the 29-6#2 Central Delivery Point.

Thank you for your assistance. If you have questions or need any additional information, please contact Jennifer Deal of Harvest at (505) 324-5128.

Sincerely,

CIRRUS CONSULTING, LLC

ames W. Newby

James W. Newby

Attachment 29-6#2 Central Delivery Point Title V Operating Permit Application

c: Jennifer Deal, Harvest

This Page Intentionally Left Blank

NEW MEXICO 20.2.70 NMAC APPLICATION TO MODIFY AND RENEW PERMIT NUMBER P038-R4

29-6#2 CENTRAL DELIVERY POINT

Submitted By:

HARVEST FOUR CORNERS, LLC 1755 Arroyo Drive Bloomfield, New Mexico 87413

Prepared By:

CIRRUS CONSULTING, LLC 11139 Crisp Air Drive Colorado Springs, Colorado 80908 (801) 294-3024

May 2022

This Page Intentionally Left Blank

Table of Contents

Introduction	
Section 1:	General Information
Section 2:	Tables
Section 3:	Application Summary
Section 4:	Process Flow Sheet
Section 5:	Plot Plan Drawn to Scale
Section 6:	All Calculations
Section 7:	Information Used to Determine Emissions
Section 8:	Map(s)
Section 9:	Proof of Public Notice
Section 10:	Written Description of the Routine Operations of the Facility
Section 11:	Source Determination
Section 12:	PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
Section 13:	Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
Section 14:	Operational Plan to Mitigate Emissions
Section 15:	Alternative Operating Scenarios
Section 16:	Air Dispersion Modeling
Section 17:	Compliance Test History
Section 18:	Addendum for Streamline Applications
Section 19:	Requirements for the Title V (20.2.70 NMAC) Program
Section 20:	Other Relevant Information
Section 21:	Addendum for Landfill Applications
Section 22:	Certification Page

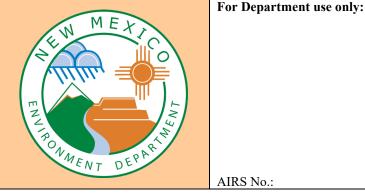
This Page Intentionally Left Blank

Introduction

The Harvest Four Corners, LLC (Harvest) 29-6#2 Central Delivery Point currently operates under a construction permit, 1035-M11, dated June 2, 2021, and a Title V operating permit, P038-R4, dated September 13, 2019.

A list of the equipment currently approved for use at the facility by the Title V operating permit can be found in Tables 2-A and 2-B of Section 2 of this application.

This application is being submitted to both modify and renew the Title V operating permit. An application to add two additional dehydrators to the permit is due no later than June 2, 2022, one year after the additional dehydrators commenced operation. A Title V renewal application is due 12 months prior to September 13, 2024. To avoid the necessity of submitting two applications, the modification and renewal are being combined into a single application.


Note that the two new dehydrators are already in the current construction permit.

This Page Intentionally Left Blank

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions for other permits.

This application is submitted as (check all that apply):
□ Request for a No Permit Required Determination (no fee) Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Construction Status: 🗆 Not Constructed 🗹 Existing Permitted (or NOI) Facility 🗆 Existing Non-permitted (or NOI) Facility Minor Source: □ a NOI 20.2.73 NMAC □ 20.2.72 NMAC application or revision □ 20.2.72.300 NMAC Streamline application Title V Source: 🗆 Title V (new) 🗹 Title V renewal 🗆 TV minor mod. 🗹 TV significant mod. TV Acid Rain: 🗆 New 🗆 Renewal PSD Major Source: 🗆 PSD major source (new) 🗆 minor modification to a PSD source 🗆 a PSD major modification

Acknowledgements:

Z I acknowledge that a pre-application meeting is available to me upon request. 🗆 Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

□ \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications).

□ Check No.: XXXX in the amount of XXXX

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page. Z I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-2/.

□ This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the low level citation under which this application is being submitted: 20.2.70.300.B(2) NMAC (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	AI # if known (see 1 st 3 to 5 #s of permit IDEA ID No.): 1007	Updating Permit/NOI #: P038-R4	
		Plant primary SIC Code (4 digits): 1389		
1	Facility Name: 29-6#2 Central Delivery Point	Plant NAIC code (6 digits): 213112		
а	 Facility Street Address (If no facility street address, provide directions from a prominent landmark): See directions in Section 1-D4 			
2	Plant Operator Company Name: Harvest Four Corners, LLCPhone/Fax: (505) 632-4600 / (505) 632-4782			
а	Plant Operator Address: 1755 Arroyo Drive, Bloomfield, New Mexico 87413			

b	Plant Operator's New Mexico Corporate ID or Tax ID: 76-0451075		
3	Plant Owner(s) name(s): Same as #2 above	Phone/Fax: Same as #2 above	
a	Plant Owner(s) Mailing Address(s): Same as #2a above		
4	Bill To (Company): Same as #2 above	Phone/Fax: Same as #2 above	
a	Mailing Address: Same as #2a above	E-mail: N/A	
5	Preparer: Consultant: James Newby, Cirrus Consulting, LLC	Phone/Fax: (801) 294-3024	
а	Mailing Address: 11139 Crisp Air Drive, Colorado Springs, CO 80908	E-mail: jnewby@cirrusllc.com	
6	Plant Operator Contact: Jennifer Deal	Phone/Fax: (505) 324-5128 / (505) 632-4782	
а	Address: Same as #2a above	E-mail: jdeal @harvestmidstream.com	
7	Air Permit Contact: Same as #6 above	Title: Environmental Specialist	
a	E-mail: Same as #6a above	Phone/Fax: Same as #6 above	
b	Mailing Address: Same as #2a above		
с	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.		

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? \blacksquare Yes \Box No	1.b If yes to question 1.a, is it currently operating in New Mexico? ☑ Yes □ No			
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? □ Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ✓ Yes □ No			
3	Is the facility currently shut down? □ Yes ☑ No	If yes, give month and year of shut down (MM/YY): N/A			
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? □ Yes ☑ No				
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since $8/31/1972$? \Box Yes \Box No \blacksquare N/A It is assumed this question refers to question 4 rather than question 3.				
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ✓ Yes □ No	If yes, the permit No. is: P038-R4			
7	Has this facility been issued a No Permit Required (NPR)? □ Yes ☑ No If yes, the NPR No. is: N/A				
8	Has this facility been issued a Notice of Intent (NOI)? Ves No	If yes, the NOI No. is: N/A			
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑ Yes □ No	If yes, the permit No. is: 1035-M11			
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? □ Yes ☑ No	If yes, the register No. is: N/A			

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)				
a	Current	entHourly: 6.34 MMCF(a)Daily: 152.2 MMCF(a)Annually: 55,533 MMCF(a)			
b	Proposed	oposed Hourly: 6.34 MMCF ^(a) Daily: 152.2 MMCF ^(a) Annually: 55,533 MMCF ^(a)			
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)				
a	Current	Hourly: 6.34 MMCF ^(a)	Daily: 152.2 MMCF ^(a)	Annually: 55,533 MMCF ^(a)	

b	Proposed	Hourly: 6.34 MMCF ^(a)	Daily: 152.2 MMCF ^(a)	Annually: 55,533 MMCF ^(a)
---	----------	----------------------------------	---	--------------------------------------

^(a) The station capacity is a direct function of available horsepower. The throughput is therefore dependent on atmospheric temperature and pressure, gas temperature and pressure, relative humidity and gas quality, was well as other factors. The "throughput" expressed above is a nominal quantity (with a 15 percent safety factor), neither an absolute maximum, nor an average. Actual throughput will vary from the nominal amount.

Section 1-D: Facility Location Information

1	Section: 10	Range: 6W	Township: 29N	County: Rio Arriba	Elevation (ft): 6,440
2	UTM Zone: □ 12 or ☑ 13		Datum: Datum: NAD 27 NAD 83 WGS 84		
a	UTM E (in meters, to nearest 10 meters): 281,686			UTM N (in meters, to nearest 10 meters):	4,069,385
b	AND Latitude	(deg., min., sec.):	36° 44' 49.8"	Longitude (deg., min., sec.): -107°	26' 43.8"
3	Name and zip o	code of nearest No	ew Mexico town: Blanco,	New Mexico 87412	
4	64 to mile mar	ker 102.3 (appro		h a road map if necessary): From Bl to Hwy 527 and drive 5.3 miles, turn he right.	
5	The facility is a	approximately 18	B miles east of Blanco, Ne	w Mexico.	
6	Status of land a	t facility (check o	one): 🗹 Private 🗆 Indian/P	ueblo 🗆 Federal BLM 🗆 Federal Fo	rest Service Other (specify)
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: None; None; Rio Arriba County, San Juan County.				
8	20.2.72 NMAC applications only : Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see <u>www.env.nm.gov/aqb/modeling/class1areas.html</u>)? □ Yes □ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: N/A				
9	Name nearest Class I area: Weminuche Wilderness Area				
10	Shortest distant	ce (in km) from fa	cility boundary to the bou	ndary of the nearest Class I area (to the	e nearest 10 meters): 75.50
11	Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: $\approx 3,050$				
12	Method(s) used to delineate the Restricted Area: Fence "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.				
13	Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? □ Yes ☑ No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.				
14	Will this facility operate in conjunction with other air regulated parties on the same property? \Box Yes \blacksquare No If yes, what is the name and permit number (if known) of the other facility? N/A				

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24	$\left(\frac{\text{days}}{\text{week}}\right)$: 7	$(\frac{\text{weeks}}{\text{year}})$: 52	$(\frac{\text{hours}}{\text{year}}): 8,760$	
2	Facility's maximum daily operating schedule (if less	s than $24 \frac{\text{hours}}{\text{day}}$)? Start: N/A	□AM □PM	End: N/A	□AM □PM
3	Month and year of anticipated start of construction: N/A				
4	Month and year of anticipated construction completion: N/A				
5	Month and year of anticipated startup of new or modified facility: N/A				
6	Will this facility operate at this site for more than one year? \blacksquare Yes \Box No				

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? \Box Yes \blacksquare No If yes, specify: N/A			
а	If yes, NOV date or description of issue: N/A			NOV Tracking No: N/A
b	Is this application in response to any issue listed in 1-F, 1 of	or 1a above? 🗆 Yes 🛛	☑ No If Y	es, provide the 1c & 1d info below:
c	Document Title: : N/A	Date: : N/A		nent # (or nd paragraph #):: N/A
d	Provide the required text to be inserted in this permit: : N/A			
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? Yes No			
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? 🗆 Yes 🗹 No			
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? 🗹 Yes 🗆 No			
a	If Yes, what type of source? \square Major ($\square \ge 10$ tpy of any single HAP OR $\square \ge 25$ tpy of any combination of HAPS) OR \square Minor ($\square < 10$ tpy of any single HAP AND $\square < 25$ tpy of any combination of HAPS)			
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? Ves No			
a	If yes, include the name of company providing commercial electric power to the facility: N/A Commercial power is purchased from a commercial utility company, which specifically does not include power generated on site for the sole purpose of the user.			

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

Section 1-H: Current Title V Information - Required for all applications from TV Sources (Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Travis Jones		Phone: (713) 289-2630	
a	R.O. Title: EH&S Manager	.O. Title: EH&S Manager R.O. e-mail: trjon		
b	R. O. Address: 1111 Travis Street, Houston, Texas 77002			
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): TBD		Phone: TBD	
a	A. R.O. Title: TBD	A. R.O. e-mail: T	BD	
b	A. R. O. Address: TBD			
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): N/A			
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): Hilcorp Energy Company			
a	Address of Parent Company: Same as #1b above			
5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): N/A			
6	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations: N/A			
7	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: Yes. Colorado (\approx 28 km), Jicarilla Apache Reservation (\approx 22 km), Navajo Reservation (\approx 62 km / \approx 27 km checkerboard), Southern Ute Reservation (\approx 28 km), and Ute Mountain Reservation (\approx 73 km).			

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-toto 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

 \blacksquare CD/DVD attached to paper application

secure electronic transfer. Air Permit Contact Name

Phone number _____

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible

format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit Number ¹	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of Construction/ Reconstruction ²	Controlled by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
4	Reciprocating	Waukesha	L7042GL	TBD	1,478 hp	1,370 hp	TBD	4	20200201	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	4SLB	N/A
т	Engine	waukesha	L/0420L	TBD	1,470 np	1,570 np	TBD	4	20200201	□ To Be Modified □ To be Replaced	TOLD	11/21
5	Reciprocating	XX7 1 1	1.50.40.01	TDD	1 470 1	1 270 1	TBD	5	20200201	\blacksquare Existing (unchanged) \Box To be Removed	AGL D	
5	Engine	Waukesha	L7042GL	TBD	1,478 hp	1,370 hp	TBD	5	20200201	 New/Additional Replacement Unit To Be Modified To be Replaced 	4SLB	N/A
	Reciprocating	XX 1 1		C-12588/2	1 470 1	1.070.1	07/17/1998	N/A		Existing (unchanged) To be Removed	AGL D	27/1
6	Engine	Waukesha	L7042GL	(serial) 76474 (skid)	1,478 hp	1,370 hp	07/17/1998	6	20200201	 New/Additional Replacement Unit To Be Modified To be Replaced 	4SLB	N/A
	Reciprocating			12588/7			12/16/1994	N/A		☑ Existing (unchanged) □ To be Removed		
7	Engine	Waukesha	L7042GL	(serial)	1,478 hp	1,370 hp	12/16/1994	7	20200201	 New/Additional Replacement Unit To Be Modified To be Replaced 	4SLB	N/A
				X00023 (skid) C-12597/2			05/11/1998	/ N/A		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
8	Reciprocating Engine	Waukesha	L7042GL	(serial)	1,478 hp	1,370 hp			20200201	New/Additional Replacement Unit	4SLB	N/A
	5			76738 (skid)			05/11/1998	8		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		ļ
9	Reciprocating	Waukesha	L7042GL	403317 (serial)	1,478 hp	1,370 hp	04/14/1991	9	20200201	Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	4SLB	N/A
	Engine			77581 (skid)	· 1	· 1	04/14/1991	9		□ To Be Modified □ To be Replaced		
10	Reciprocating	Waukesha	L7042GL	C-11563/1 (serial)	1,478 hp	1,370 hp	03/31/1995	N/A	20200201	Existing (unchanged) To be Removed New/Additional Replacement Unit	4SLB	N/A
10	Engine	w auxesna	L/0420L	(serial) X00114 (skid)	1, 4 78 np	1,570 np	03/31/1995	10	20200201	□ To Be Modified □ To be Replaced	45LD	11/74
11	Reciprocating	XX 7 1 1	1.50.40.01	141428 (serial)	1 470 1	1.070.1	04/17/1967	N/A		Existing (unchanged) To be Removed	AGL D	27/4
11	Engine	Waukesha	L7042GL	76736 (skid)	1,478 hp	1,370 hp	04/17/1967	11	20200201	 New/Additional Replacement Unit To Be Modified To be Replaced 	4SLB	N/A
					12	12	1992	N/A		Existing (unchanged)		
16a	TEG Dehydrator	Enertek	J2P12M749	41998	MMCFD	MMCFD	1992	16a	31000227	 New/Additional Replacement Unit To Be Modified To be Replaced 	N/A	N/A
							1992	N/A		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		┢────┦
16b	Dehydrator Reboiler	Enertek	J2P12M749	41998	1.1 MMBtu/br	1.1 MMBtu/hr			31000228	□ New/Additional □ Replacement Unit	N/A	N/A
							1992	16b		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		┠────┦
17a	TEG Dehydrator	Enertek	J2P12M749	42381	12	12	1993	N/A	31000227	New/Additional Replacement Unit	N/A	N/A
	-				MMCFD	MMCFD	1993	17a		□ To Be Modified □ To be Replaced		
17b	Dehydrator Reboiler	Enertek	J2P12M749	42381	1.1	1.1	1993	N/A	31000228	Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
170	Denyalutor Reboller	Enertex	521 121017 15	12501	MMBtu/hr	MMBtu/hr	1993	17b	51000220	□ To Be Modified □ To be Replaced	10/1	1.0/2.1
21			100100 10010	41675	12	12	1992	N/A	21000225	Existing (unchanged) To be Removed		
21a	TEG Dehydrator	Enertek	J2P12M749	41675	MMCFD	MMCFD	1992	21a	31000227	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
					1.1	1.1	1992	N/A		□ Existing (unchanged) □ To be Removed		
21b	Dehydrator Reboiler	Enertek	J2P12M749	41675		MMBtu/hr	1992	21b	31000228	New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
					12	12	1992	N/A		Existing (unchanged) To be Removed		
22a	TEG Dehydrator	Enertek	J2P12M749	41926	MMCFD	MMCFD	1992	22a	31000227	☑ New/Additional □ Replacement Unit	N/A	N/A
					initial D	innici D	1992	ZZa		□ To Be Modified □ To be Replaced		

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition Type (CI, SI,	Replacing
Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	4SLB, 4SRB, 2SLB) ⁴	Unit No.
22b	Dahadaataa Dahailaa	En antals	1201204740	41926	1.1	1.1	1992	N/A	31000228	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit	N/A	N/A
220	Dehydrator Reboiler	Enertek	J2P12M749	41920	MMBtu/hr	MMBtu/hr	1992	22b	31000228	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	IN/A	IN/A
	Compressors &	27/1				27/1	N/A	N/A		Existing (unchanged)	27/1	27/1
SSM	Piping	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000203	 New/Additional Replacement Unit To Be Modified To be Replaced 	N/A	N/A
							N/A	N/A		Existing (unchanged)		
MAL	Malfunctions	N/A	N/A	N/A	N/A	N/A	NA	N/A	31000299	 New/Additional Replacement Unit To Be Modified To be Replaced 	N/A	N/A
							N/A	N/A		Existing (unchanged)		
F1	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	 New/Additional Replacement Unit To Be Modified To be Replaced 	N/A	N/A
	Condensate Storage						1985	N/A		Existing (unchanged)		
T29	Tank	N/A	300 bbl	N/A	300 bbl	300 bbl	1985	N/A	40400311	 New/Additional Replacement Unit To Be Modified To be Replaced 	N/A	N/A
	Condensate Storage						1985	N/A		Existing (unchanged)		
Т30	Tank	N/A	300 bbl	N/A	300 bbl	300 bbl	1985	N/A	40400311	 New/Additional Replacement Unit To Be Modified To be Replaced 	N/A	N/A

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf . TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
	Source Description	ivianuiactui ci	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	i of Each Free of Equipment, Circk One
T4 to T11	Lube Oil Sterroge Tenks		500 gal	500	20.2.72.202.B(2) NMAC		Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
14 10 111	Lube Oil Storage Tanks		N/A	gal	Insignificant Activity List Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
T12			100 bbl	4,200	20.2.72.202.B(2) NMAC		Existing (unchanged)
T13	Lube Oil Storage Tanks		N/A	gal	Insignificant Activity List Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
T14 . T17	Triethylene Glycol Storage		100 gal	100	20.2.72.202.B(2) NMAC		Existing (unchanged)
T14 to T17	Tank		N/A	gal	Insignificant Activity List Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
T 0 4			165 bbl	6,930	20.2.72.202.B(2) NMAC		Existing (unchanged)
T24	Waste Water Storage Tank		N/A	gal	Insignificant Activity List Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
			300 bbl	12,600	20.2.72.202.B(5) NMAC		Existing (unchanged)
T25	Produced Water Storage Tank		N/A	gal	Insignificant Activity List Item #1.a		 New/Additional To Be Modified To be Replaced
			165 bbl	6,930	20.2.72.202.B(2) NMAC		Existing (unchanged)
T26	Used Lube Oil Storage Tank		N/A	gal	Insignificant Activity List Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
			500 gal	500	20.2.72.202.B(2) NMAC		Existing (unchanged)
T27	Antifreeze Storage Tank		N/A	gal	Insignificant Activity List Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
			300 gal	300	20.2.72.202.B(2) NMAC		Existing (unchanged)
T28	Solvent Storage Tank		N/A	gal	Insignificant Activity List Item #5		 New/Additional Replacement Unit To Be Modified To be Replaced
			500 gal	500	20.2.72.202.B(5) NMAC		Existing (unchanged)
T31	Methanol Storage Tank		N/A	gal	Insignificant Activity List Item #1.a		 New/Additional Replacement Unit To Be Modified To be Replaced
			N/A	N/A	20.2.72.202.B(5) NMAC		Existing (unchanged)
L1	Truck Loading (Condensate)		N/A	N/A	Insignificant Activity List Item #1.a		 New/Additional Replacement Unit To Be Modified To be Replaced
	Truck Loading (Produced		N/A	N/A	20.2.72.202.B(5) NMAC		Existing (unchanged)
L2	Water)		N/A	N/A	Insignificant Activity List Item #1.a		 New/Additional Replacement Unit To Be Modified To be Replaced
							□ Existing (unchanged) □ To be Removed
							 New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight) CO (93%), VOC (65%)	Method used to Estimate Efficiency
4	Catalytic converter		CO, VOC, Formaldehyde	4	CO (93%), VOC (65%) & Formaldehyde (80%) CO (93%), VOC (65%)	Mfg. data
5	Catalytic converter		CO, VOC, Formaldehyde	5	CO (93%), VOC (65%) & Formaldehyde (80%) CO (93%), VOC (65%)	Mfg. data
9	Catalytic converter		CO, VOC, Formaldehyde	9	CO (93%), VOC (65%) & Formaldehyde (80%)	Mfg. data

¹ List each control device on a separate line. For each control device, list all emission units controlled by the control device.

Table 2-D: Maximum Emissions (under normal operating conditions)

□ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No	N	Ox	C	0	V	DC	S	Ox	P	M ¹	PM	[10 ¹	PM	2.5^{1}	Н	$_2S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
4	4.53	19.84	8.00	35.05	3.02	13.23	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
5	4.53	19.84	8.00	35.05	3.02	13.23	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
6	4.53	19.84	8.00	35.05	3.02	13.23	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
7	4.53	19.84	8.00	35.05	3.02	13.23	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
8	4.53	19.84	8.00	35.05	3.02	13.23	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
9	4.53	19.84	8.00	35.05	3.02	13.23	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
10	4.53	19.84	8.00	35.05	3.02	13.23	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
11	4.53	19.84	8.00	35.05	3.02	13.23	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
16a	-	-	-	-	3.6	15.8	-	-	-	-	-	-	-	-	-	-	-	-
16b	4.29E-02	1.88E-01	3.25E-02	1.42E-01	4.79E-03	2.10E-02	8.33E-04	3.65E-03	9.18E-03	4.02E-02	9.18E-03	4.02E-02	9.18E-03	4.02E-02	-	-	-	-
17a	-	-	-	-	3.6	15.8	-	-	-	-	-	-	-	-	-	-	-	-
17b	4.29E-02	1.88E-01	3.25E-02	1.42E-01	4.79E-03	2.10E-02	8.33E-04	3.65E-03	9.18E-03	4.02E-02	9.18E-03	4.02E-02	9.18E-03	4.02E-02	-	-	-	-
21a	-	-	-	-	3.6	15.8	-	-	-	-	-	-	-	-	-	-	-	-
21b	4.29E-02	1.88E-01	3.25E-02	1.42E-01	4.79E-03	2.10E-02	8.33E-04	3.65E-03	9.18E-03	4.02E-02	9.18E-03	4.02E-02	9.18E-03	4.02E-02	-	-	-	-
22a	-	-	-	-	3.6	15.8	-	-	-	-	-	-	-	-	-	-	-	-
22b	4.29E-02	1.88E-01	3.25E-02	1.42E-01	4.79E-03	2.10E-02	8.33E-04	3.65E-03	9.18E-03	4.02E-02	9.18E-03	4.02E-02	9.18E-03	4.02E-02	-	-	-	-
SSM	-	-	-	-	unspecified	3.90	-	-	-	-	-	-	-	-	-	-	-	-
F1	-	-	-	-	9.77E-01	4.28	-	-	-	-	-	-	-	-	-	-	-	-
MAL	-	-	-	-	unspecified	10.00	-	-	-	-	-	-	-	-	-	-	-	-
T29	-	-	-	-	unspecified	59.80	-	-	-	-	-	-	-	-	-	-	-	-
T30	-	-	-	-	unspecified	w/T29	-	-	-	-	-	-	-	-	-	-	-	-
Totals	36.41	159.48	64.15	280.99	39.56	247.08	5.08E-02	2.23E-01	8.43E-01	3.69	8.43E-01	3.69	8.43E-01	3.69	-	-	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

LL. 4 NL	N	Ox	C	0	V	C	S	Ox	P	M ¹	PM	[10 ¹	PM	2.5 ¹	Н	$_2$ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
4	4.53	19.84	5.60E-01	2.45	1.06	4.63	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
5	4.53	19.84	5.60E-01	2.45	1.06	4.63	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
6	4.53	19.84	8.00	35.05	3.02	13.23	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
7	4.53	19.84	8.00	35.05	3.02	13.23	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
8	4.53	19.84	8.00	35.05	3.02	13.23	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
9	4.53	19.84	5.60E-01	2.45	1.06	4.63	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
10	4.53	19.84	8.00	35.05	3.02	13.23	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
11	4.53	19.84	8.00	35.05	3.02	13.23	5.93E-03	2.60E-02	1.01E-01	4.41E-01	1.01E-01	4.41E-01	1.01E-01	4.41E-01	-	-	-	-
16a	-	-	-	-	3.6	15.8	-	-	-	-	-	-	-	-	-	-	-	-
16b	4.29E-02	1.88E-01	3.25E-02	1.42E-01	4.79E-03	2.10E-02	8.33E-04	3.65E-03	9.18E-03	4.02E-02	9.18E-03	4.02E-02	9.18E-03	4.02E-02	-	-	-	-
17a	-	-	-	-	3.6	15.8	-	-	-	-	-	-	-	-	-	-	-	-
17b	4.29E-02	1.88E-01	3.25E-02	1.42E-01	4.79E-03	2.10E-02	8.33E-04	3.65E-03	9.18E-03	4.02E-02	9.18E-03	4.02E-02	9.18E-03	4.02E-02	-	-	-	-
21a	-	-	-	-	3.6	15.8	-	-	-	-	-	-	-	-	-	-	-	-
21b	4.29E-02	1.88E-01	3.25E-02	1.42E-01	4.79E-03	2.10E-02	8.33E-04	3.65E-03	9.18E-03	4.02E-02	9.18E-03	4.02E-02	9.18E-03	4.02E-02	-	-	-	-
22a	-	-	-	-	3.6	15.8	-	-	-	-	-	-	-	-	-	-	-	-
22b	4.29E-02	1.88E-01	3.25E-02	1.42E-01	4.79E-03	2.10E-02	8.33E-04	3.65E-03	9.18E-03	4.02E-02	9.18E-03	4.02E-02	9.18E-03	4.02E-02	-	-	-	-
SSM	-	-	-	-	unspecified	3.90	-	-	-	-	-	-	-	-	-	-	-	-
F1	-	-	-	-	9.77E-01	4.28	-	-	-	-	-	-	-	-	-	-	-	-
MAL	-	-	-	-	unspecified	10.00	-	-	-	-	-	-	-	-	-	-	-	-
T29	-	-	-	-	unspecified	59.80	-	-	-	-	-	-	-	-	-	-	-	-
T30	-	-	-	-	unspecified	w/T29	-	-	-	-	-	-	-	-	-	-	-	-
Totals	36.41	159.48	41.82	183.19	33.67	221.29	5.08E-02	2.23E-01	8.43E-01	3.69	8.43E-01	3.69	8.43E-01	3.69	-	-	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

□ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N			0		DC	S	Ox	PI	M^2		[10 ²		2.5 ²		$_2S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr										
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
22a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
22b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SSM	-	-	-	-	-	3.90	-	-	-	-	-	-	-	-	-	-	-	-
F1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MAL	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
T29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Т30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Totals	-	-	-	-	-	13.9	-	-	-	-	-	-	-	-	-	-	-	-

^T For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	C	0	V	C	S	Dx	Р	М	PN	110	PN	12.5	$\Box \mathbf{H}_2 \mathbf{S} 0$	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
																	1
	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation		Height Above	Temp.	Flow		Moisture by	Velocity	Inside
Number	from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
4	4	V	No	22	702	127			155	1.02
5	5	V	No	22	702	127			155	1.02
6	6	V	No	22	702	127			155	1.02
7	7	V	No	22	702	127			155	1.02
8	8	V	No	22	702	127			155	1.02
9	9	V	No	22	702	127			155	1.02
10	10	V	No	22	702	127			155	1.02
11	11	V	No	22	702	127			155	1.02
16b	16b	V	No	10	600	4.8			6.1	1.00
17b	17b	V	No	10	600	4.8			6.1	1.00
21b	21b	V	No	10	600	4.8			6.1	1.00
22b	22b	V	No	10	600	4.8			6.1	1.00

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Forma HAP of	ldehyde or 🗆 TAP		Pollutant Here or 🗆 TAP	Nam	Pollutant e Here or 🗆 TAP		e Here	Name	Pollutant e Here or 🗆 TAP	Name	Pollutant Here or 🗆 TAP	Nam	Pollutant e Here or 🛛 TAP	Name	Pollutant e Here or 🗆 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
4	4	0.1	0.5	0.1	0.4														
5	5	0.1	0.5	0.1	0.4														
6	6	0.5	2.3	0.5	2.2														
7	7	0.5	2.3	0.5	2.2														
8	8	0.5	2.3	0.5	2.2														
9	9	0.1	0.5	0.1	0.4														
10	10	0.5	2.3	0.5	2.2														
11	11	0.5	2.3	0.5	2.2														
16a	16a	-	-	-	-														
16b	16b	-	-	-	-														
17a	17a	-	-	-	-														
17b	17b	-	-	-	-														
21a	21a	-	-	-	-														
21b	21b	-	-	-	-														
22a	22a	-	-	-	-														
22b	22b	-	-	-	-														
SSM	SSM	-	0.2	-	-														
F1	F1	-	0.2	-	-														
MAL	MAL	-	0.5	-	-														
T29	T29	-	0.4	-	-														
T30	T30	-	W/T29	-	-														
																			<u> </u>
Tota	ls:	3.05	14.49	2.85	12.46														

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
4	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	11.21 MSCF	98.23 MMSCF	-	-
5	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	11.21 MSCF	98.23 MMSCF	-	-
6	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	11.21 MSCF	98.23 MMSCF	-	-
7	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	11.21 MSCF	98.23 MMSCF	-	-
8	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	11.21 MSCF	98.23 MMSCF	-	-
9	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	11.21 MSCF	98.23 MMSCF	-	-
10	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	11.21 MSCF	98.23 MMSCF	-	-
11	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	11.21 MSCF	98.23 MMSCF	-	-
16b	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	1.208 MSCF	10.58 MMSCF	-	-
17b	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	1.208 MSCF	10.58 MMSCF	-	-
21b	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	1.208 MSCF	10.58 MMSCF	-	-
22b	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	1.208 MSCF	10.58 MMSCF	-	-

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

				Liquid	Vapor	Average Stor	age Conditions	Max Storag	e Conditions
Tank No.	SCC Code	Material Name	Composition	Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
T4 - T11	40400313	Lube Oil	Lubrication oil	Exempt & In	nsignificant Sour	ce			
T13	40400313	Lube Oil	Lubrication oil	Exempt & Iı	nsignificant Sour	ce			
T14 - T17	40705218	Triethylene Glycol (TEG)	Glycol	Exempt & Iı	nsignificant Sour	ce			
T24	40400313	Waste Water	Waste water w/trace of hydrocarbons	Exempt & Iı	nsignificant Sour	ce			
T25	40400315	Produced Water	99% Produced H2O & 1% Hydrocarbons	Exempt & In	nsignificant Sour	ce			
T26	40400313	Used Lube Oil	Used lubrication oil	Exempt & In	nsignificant Sour	ce			
T27	40400313	Antifreeze	Glycol	Exempt & Iı	nsignificant Sour	ce			
T28	40200914	Solvent	Jet kerosene	Exempt & Iı	nsignificant Sour	ce			
T29	40400311	Condensate	Mixed hydrocarbon liquids	5.97	67.40	58.54	2.08	65.66	2.40
T30	40400311	Condensate	Mixed hydrocarbon liquids	5.97	67.40	58.54	2.08	65.66	2.40
T31	40700816	Methanol	Methanol	Exempt & Iı	nsignificant Sour	ce			

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Cap	acity	Diameter (M)	Vapor Space		olor ible VI-C)	Paint Condition (from Table	Annual Throughput	Turn- overs
	Installed				(bbl)	(M ³)	(M)	(M)	Roof	Shell	(from Table VI-C)	(gal/yr)	(per year)
T4 - T11		Lube Oil	N/A	FX	12		Exempt & Ins	ignificant Sou	rce				
T13		Lube Oil	N/A	FX	100		Exempt & Ins	ignificant Sou	rce				
T14 - T17		Triethylene Glycol (TEG)	N/A	FX	2		Exempt & Ins	ignificant Sou	rce				
T24		Waste Water	N/A	FX	165		Exempt & Ins	ignificant Sou	rce				
T25		Produced Water	N/A	FX	300		Exempt & Ins	ignificant Sou	rce				
T26		Used Lube Oil	N/A	FX	165		Exempt & Ins	ignificant Sou	rce				
T27		Antifreeze	N/A	FX	12		Exempt & Ins	ignificant Sou	rce				
T28		Solvent	N/A	FX	7		Exempt & Ins	ignificant Sou	rce				
T29		Condensate	N/A	FX	300		3.66	2.69	WH	WH	Good	143,514	12
T30		Condensate	N/A	FX	300		3.66	2.69	WH	WH	Good	w/T29	w/T29
T31		Methanol	N/A	FX	12		Exempt & Ins	ignificant Sou	rce				

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, W	'elded Tank Seal Type	Seal Type, Rive	Roof, Shell Color	Paint Condition	
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield B: Weather shield B: Shoe-mounted secondary AD: Aluminum (diffuse)				
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ N}$	$1^3 = 42.0 \text{ gal}$				BL: Black	
					OT: Other (specify)	

Table 2-M:	Materials	Processed and	Produced	(Use additional sheets as necessary.)
------------	-----------	----------------------	----------	---------------------------------------

	Materi	al Processed		Ν	Iaterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Low pressure natural gas	C1 - C6+	Gas	55,533 mmscfy1	High pressure natural gas	C1 - C6+	Gas	55,533 mmscfy1
Condensate	Hydrocarbon (HC)	Liquid	143,514 gal/yr	Condensate	Hydrocarbon (HC)	Liquid	143,514 gal/yr
Produced water	H2O + trace of HC	Liquid	298.366 gal/yr	Produced water	H2O + trace of HC	Liquid	298.366 gal/yr

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
N/A									

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
N/A								
								L

Harvest Four Corners, LLC

Table 2-P:Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²				G	Total HG Mass sis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
4	mass GHG	6010.45	1.13E-02	1.13E-01						6	,010.58	
•	CO ₂ e	6010.45	3.38	2.83								6,016.66
5	mass GHG	6010.45	1.13E-02	1.13E-01						6	,010.58	
5	CO ₂ e	6010.45	3.38	2.83								6,016.66
6	mass GHG	6010.45	1.13E-02	1.13E-01						6	,010.58	
Ũ	CO ₂ e	6010.45	3.38	2.83								6,016.66
7	mass GHG	6010.45	1.13E-02	1.13E-01						6	,010.58	
/	CO ₂ e	6010.45	3.38	2.83								6,016.66
8	mass GHG	6010.45	1.13E-02	1.13E-01						6	,010.58	
0	CO ₂ e	6010.45	3.38	2.83								6,016.66
9	mass GHG	6010.45	1.13E-02	1.13E-01						6	,010.58	
9	CO ₂ e	6010.45	3.38	2.83								6,016.66
10	mass GHG	6010.45	1.13E-02	1.13E-01						6	,010.58	
10	CO ₂ e	6010.45	3.38	2.83								6,016.66
11	mass GHG	6010.45	1.13E-02	1.13E-01						6	,010.58	
11	CO ₂ e	6010.45	3.38	2.83								6,016.66
16a	mass GHG	40.16		1.21							41.37	
10a	CO ₂ e	40.16		30.22								70.39
16b	mass GHG	617.63	1.16E-03	1.16E-02							617.65	
100	CO ₂ e	617.63	3.47E-01	2.91E-01								618.27
17a	mass GHG	40.16		1.21							41.37	
1/a	CO ₂ e	40.16		30.22								70.39
17b	mass GHG	617.63	1.16E-03	1.16E-02							617.65	
175	CO ₂ e	617.63	3.47E-01	2.91E-01								618.27
21a	mass GHG	40.16		1.21							41.37	
21a	CO ₂ e	40.16		30.22								70.39
21b	mass GHG	617.63	1.16E-03	1.16E-02							617.65	
210	CO ₂ e	617.63	3.47E-01	2.91E-01								618.27

Harvest Four Corners, LLC

Table 2-P:Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²							Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3								
22a	mass GHG	40.16		1.21									41.37	
22a	CO ₂ e	40.16		30.22										70.39
22b	mass GHG	617.63	1.16E-03	1.16E-02									617.65	
220	CO ₂ e	617.63	3.47E-01	2.91E-01										618.27
SSM	mass GHG	14.57		33.02									47.59	
3311	CO ₂ e	14.57		825.48										840.05
F1	mass GHG	192.35		436.61		Reciprocating	Reciprocating compressor venting is						628.96	
1 1	CO ₂ e	192.35		10915.20		included with	equipment le	ak emission	s.					11,107.56
M1	mass GHG	37.36		84.66									122.02	
1111	CO ₂ e	37.36		2116.62										2,153.97
T29	mass GHG	2.76E-02		5.90E-02									0.09	
129	CO ₂ e	2.76E-02		1.48										1.50
T30	mass GHG	2.76E-02		5.90E-02									0.09	
130	CO ₂ e	2.76E-02		1.48										1.50
	mass GHG													
	CO ₂ e													
Tatala	mass GHG	50,959.15	9.53E-02	560.20									51,519.45	
Totals	CO ₂ e	50,959.15	28.39	14,004.96										64,992.50

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **<u>Process</u>** <u>Summary</u> shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Application Summary

The Harvest 29-6#2 Central Delivery Point currently operates under a construction permit, 1035-M11, dated June 2, 2021, and a Title V operating permit, P038-R4, dated September 13, 2019.

A list of the equipment currently approved for use at the facility by the Title V operating permit can be found in Tables 2-A and 2-B of Section 2 of this application.

This application is being submitted to both modify and renew the Title V operating permit. An application to add two additional dehydrators to the permit is due no later than June 2, 2022, one year after the additional dehydrators commenced operation. A Title V renewal application is due 12 months prior to September 13, 2024. To avoid the necessity of submitting two applications, the modification and renewal are being combined into a single application.

Note that the two new dehydrators are already in the current construction permit.

The applicable regulation is 20.2.70 New Mexico Administrative Code (NMAC). The lowest level regulatory citation is 20.2.70.300.B(2) NMAC.

There are no modifications in this application to de-bottleneck impacts or change the facility's major/minor status (both prevention of significant deterioration [PSD] & Title V).

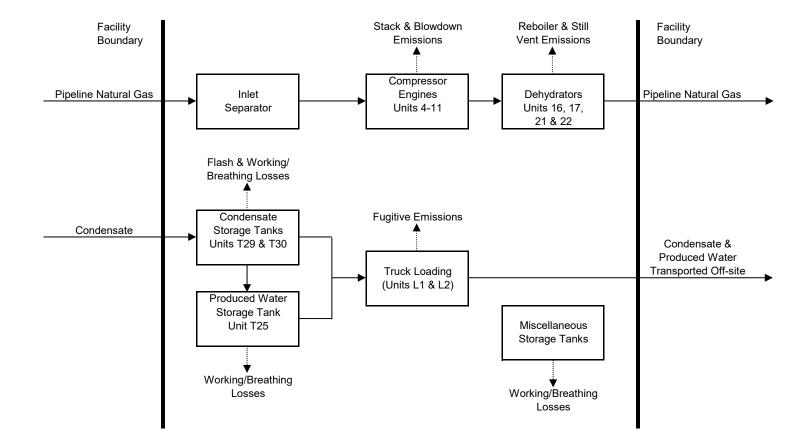
Process Description

Natural gas is compressed for pipeline transmission using compressors driven by the natural gas-fired reciprocating internal combustion engines. Before re-insertion back into the product pipeline for downstream transport, the gas is also routed to the dehydrators. Condensate and produced water are also removed from the pipeline. They are stored in tanks until they can be transported off-site.

Startup, Shutdown and Maintenance Emissions

Except for blowdown events (described below), it is concluded there are no SSM emissions in excess of those identified for steady-state operation as seen in Table 2-E of Section 2. Discussions justifying this conclusion are provided in Section 6.

SSM emissions from blowdowns of the compressors and piping associated with the facility were calculated from the quantity of gas vented during each event, the composition of the gas, and the number of events. The number of blowdowns events were estimated based on historical operations. A safety factor was included.


Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow diagram is provided in this section. Please see the following page.

Flow Diagram

Cirrus Consulting, LLC

Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is provided in this section. Please see the following page.

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Engines

The NO₂, CO, and VOC emissions from the engines were calculated from manufacturer's data. The SO₂ and particulate emissions were calculated using AP-42 emission factors from Table 3.2-2. HAP emissions were calculated using GRI-HAPCalc 3.0. All emissions were calculated assuming each engine operates at full site capacity for 8,760 hours per year.

The engines startup with no load and a rich fuel mixture. As a result, emissions are minimized. Because the engines take only minutes to reach operating temperature, emissions during startup are not expected to exceed the steady-state allowable limits. Similarly, emissions during shutdown do not exceed the steadystate allowable limits, because fuel and air flow cease within seconds of shutdown. Emissions due to scheduled maintenance are negligible as the engines are not in operation during maintenance.

No modifications are being made to the engines or their operation. Permitted emissions are carried forward and not revised.

Compressors and Piping (SSM)

Blowdown emissions from the compressors and piping associated with the facility occur when high pressure gas is used to purge air from the system prior to startup. Also, after shutdowns, high pressure gas is released to atmosphere as a safety precaution.

VOC and HAP emissions from blowdowns of the compressors and piping associated with the station were calculated from the quantity of gas vented during each event, the composition of the gas, and the number of events. The quantity of gas vented during each event was determined by Harvest engineering. The composition of the gas was determined from a recent extended gas analysis. For each unit, the annual number of blowdown events were estimated based on historical operations. A safety factor was added because emissions from each blowdown event are dependent on the composition of the gas in the pipeline and because the number of blowdowns in a year may vary. Use of the safety factor is also designed to ensure an adequate emissions limit, which includes emissions from other miscellaneous startup, shutdown and maintenance activities.

The SSM emissions identified in this application are routine or predictable startup/shutdown and scheduled maintenance and do not include malfunctions or upsets.

No modifications are being made to the SSM emissions. Permitted emissions are carried forward and not revised.

Dehydrator Still Vents

VOC and HAP emissions from the dehydrator still vents were calculated using GRI-GLYCalc 4.0. All emissions were calculated assuming each dehydrator operates at full capacity for 8,760 hours per year. To allow for variability in the composition of the inlet gas stream, the dehydrator still vent VOC emission rates identified on the application forms (Table 2-E) are higher than the calculated emission rates in this section.

During startups, the dehydrator reboilers are brought up to temperature before allowing glycol into the absorbers. This prevents excess VOC and HAP from collecting in the glycol streams and there are no excess startup emissions above those expected during steady-state operation. During shutdown, the reboilers are shut down in conjunction with the gas flow and glycol circulation. Again, this prevents excess VOC and HAP from collecting in the glycol streams and there are no excess shutdown emissions above those expected during steady-state operation. Emissions due to scheduled maintenance are negligible; either the units will not be in operation during maintenance or maintenance is limited to tasks for which there are no excess emissions.

No modifications are being made to the dehydrators or their operation. Permitted emissions are carried forward and not revised.

Dehydrator Reboilers

The NO_X and CO emission factors for the reboilers were identified from an Enertek letter dated August 19, 1994. The VOC and SO₂ emission factors were identified from an InFab letter dated July 22, 1998. The particulate and lead emissions were calculated using AP-42 emission factors from Table 1.4-2. HAP emissions were calculated using GRI-HAPCalc 3.0. All emissions were calculated assuming each reboiler operates 8,760 hours per year.

The dehydrator reboilers (uncontrolled) startup with less fuel input than during steady-state operation, so emissions are lower than during steady-state operation. During shutdown, the fuel supply stops quickly, but air flow may not, causing the continued formation of NO_X. Even so, with no fuel, NO_X formation

should be less than during steady-state operation. Emissions due to scheduled maintenance are negligible as the units are not in operation.

No modifications are being made to the dehydrator reboilers or their operation. Permitted emissions are carried forward and not revised.

Truck Loading (Condensate)

VOC emissions from condensate truck loading were calculated using the AP-42 emission factor from Section 5.2 and data provided by Harvest. HAP emissions were calculated from the composition of the condensate as determined from TANKS 4.0 results.

Due to the nature of the source, it is estimated there are no startup or shutdown emissions associated with truck loading. No maintenance is conducted during truck loading operations.

Condensate truck loading is an exempt source in accordance with 20.2.72.202.B(5) NMAC (VOC emissions are less than 0.5 tons per year) and a Title V insignificant source in accordance with Insignificant Activity Item #1.

Truck Loading (Produced Water)

The VOC emissions from produced water truck loading were calculated using the AP-42 emissions factor identified in Section 5.2-1. The data used to calculate the emission factor was obtained assuming the liquid was pure water.

Due to the nature of the source, it is estimated that SSM emissions from truck loading are accounted for in the calculations.

Produced water truck loading is an exempt source in accordance with 20.2.72.202.B(5) NMAC (VOC emissions are less than 0.5 tons per year) and a Title V insignificant source in accordance with Insignificant Activity Item #1.

Equipment Leak Emissions

VOC and HAP emissions from equipment leaks were calculated using emission factors from Table 2.4 of the 1995 Protocol for Equipment Leak Emission Estimates published by the Environmental Protection Agency (EPA) and the gas stream composition obtained from a recent extended gas analysis. Emissions were calculated assuming the equipment operates 8,760 hours per year.

Due to the nature of the source, it is estimated that SSM emissions from the equipment are accounted for in the calculations.

No modifications are being made to the equipment leak emissions. Permitted emissions are carried forward and not revised.

Malfunctions

Malfunction emissions were set at 10.0 tons of VOC per year to account for emissions that may occur during upsets and malfunctions (including, but not limited to, unscheduled blowdowns and relief valve release). Based on the gas release rate associated with the set annual VOC emission rate, HAP emissions are calculated using a recent extended gas analysis. Note that these malfunction emissions include the venting of gas only, not combustion emissions.

No modifications are being made to the malfunction emissions. Permitted emissions are carried forward and not revised.

Storage Tanks

Emissions from the condensate storage tanks were calculated using TANKS 4.0.9d for working-breathing losses and Promax 3.2 for flash emissions. Emissions were calculated using a condensate (post-flash) throughput of 3,417 barrels per year.

Where needed, working/breathing losses for the remaining tanks were calculated using TANKS 4.0.d.9. The following assumptions were made:

- Residual oil #6 was used as an estimate for lubrication oil. As the vapor pressure of residual oil #6 is less than 0.2 psia, the tanks containing lubrication oil are NSR exempt sources under 20.2.72.202.B(2) NMAC and Title V insignificant sources in accordance with Insignificant Activity Item #5;
- As the vapor pressure of TEG is less than 0.2 psia, the tanks containing TEG are exempt sources under 20.2.72.202.B(2) NMAC and Title V insignificant sources in accordance with Insignificant Activity List Item #5;
- Jet kerosene was used as an estimate for the solvent. As the vapor pressure of jet kerosene is less than 0.2 psia, the tank containing solvent is an exempt source under 20.2.72.202.B(2) NMAC and

a Title V insignificant source in accordance with Insignificant Activity List Item #5;

- The wastewater storage tank is assumed to be 99% water and 1% residual oil. As the vapor pressure of residual oil is less than 0.2 psia, the tank containing wastewater is an exempt source under 20.2.72.202.B(2) NMAC and a Title V insignificant source in accordance with Insignificant Activity List Item #5;
- The anti-freeze is an inhibited ethylene glycol (EG) coolant containing 50 percent EG and 50 percent water. As the vapor pressure of EG is less than 0.2 psia, the tank containing antifreeze is an exempt source under 20.2.72.202.B(2) NMAC and a Title V insignificant source in accordance with Insignificant Activity List Item #5.

The VOC emission rate from the produced water storage tank is 15.44 pounds per year. As such, it is an exempt source under 20.2.72.202.B(5) NMAC and a Title V insignificant source in accordance with Insignificant Activity List Item #1.a.

The VOC emission rate from the methanol storage tank is 19.35 pounds per year. As such, it is an exempt source under 20.2.72.202.B(5) NMAC and a Title V insignificant source in accordance with Insignificant Activity List Item #1.a.

Due to the nature of operations, startup and shutdown emissions from the storage tanks are assumed to be accounted for in the calculations discussed above. Emissions due to maintenance are negligible as the units are not in operation during maintenance.

No changes are being made to the storage tanks or their operation. Emissions from the tanks are carried forward and not revised.

Engine Exhaust Emissions Calculations

Unit Number:	4, 5 & 9
Description:	Waukesha L7042GL
Type:	Four Stroke Lean Burn (Turbocharged)

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower Calculations		
6,440 ft above MSL	Elevation	
1,478 hp	Nameplate hp	Mfg. data
1,370 hp	NMAQB Site-rated hp	NMAQB Procedure # 02.002-00 (loss of 3% for every 1,000 ft over 4,000 ft)
1,332 hp	Mfg. Site-rated hp	Mfg. product bulletin Power Derate, S8154-6, April 2001 (loss of 2% for every 1,000 ft over 1,500 ft)
Engine Specifications		
1200 rpm	Engine rpm	Mfg. data
7040 cu in	Engine displacement	Mfg. data
128.42 psi	BMEP	Mfg. data (+[(792,000 x NMAQB Site-rated hp) / (rpm * in^3)])
Fuel Consumption		
7368 Btu/hp-hr	Brake specific fuel consumption	Mfg. data
10.09 MMBtu/hr	Hourly fuel consumption	Btu/hp-hr x NMAQB site-rated hp / 1,000,000
900 Btu/scf	Field gas heating value	Nominal heat content
11,214 scf/hr	Hourly fuel consumption	MMBtu/hr x 1,000,000 / Btu/scf
<mark>8,760</mark> hr/yr	Annual operating time	Harvest Four Corners, LLC
88,408 MMBtu/yr	Annual fuel consumption	MMBtu/hr x hr/yr
98.23 MMscf/yr	Annual fuel consumption	scf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

Pollutants	Emission Factors,	Uncontrolled E	mission Rates,	Control Efficiencies,	Controlled Em	ission Rates,
	g/hp-hr	pph	tpy	%	pph	tpy
NOX	1.50	4.53	19.84	0	4.53	19.84
СО	2.65	8.00	35.05	93	5.60E-01	2.45
VOC	1.00	3.02	13.23	65	1.06	4.63

Emission factors taken from Waukesha Bulletin 7005 0107

Uncontrolled Emission Rates (pph) = g/hp-hr x NMAQB Site-rated hp / 453.59 g/lb Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton CO & VOC control efficiencies based on the DCL DC68-14 catalytic converter data sheet. Controlled Emission Rates (pph) = Uncontrolled Emission Rates (pph) x (1 - (% / 100)) Controlled Emission Rates (tpy) = Uncontrolled Emission Rates (tpy) x (1 - (% / 100))

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/MMBtu	pph	tpy
SO2	5.88E-04	5.93E-03	2.60E-02
PM	9.99E-03	1.01E-01	4.41E-01
PM10	9.99E-03	1.01E-01	4.41E-01
PM2.5	9.99E-03	1.01E-01	4.41E-01

Emission factors taken from AP-42, Table 3.2-2

Particulate factors include both filterable and condensible emissions

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

702 °F 7621 acfm 1.02 ft 0.82 ft^2 155.18 fps 22.00 ft Stack exit temperature Stack flowrate Stack exit diameter Stack exit area Stack exit velocity Stack height Mfg. data Mfg. data Harvest Four Corners, LLC 3.1416 x ((ft / 2) ^2) acfm / ft^2 / 60 sec/min Harvest Four Corners, LLC

Engine Exhaust Emissions Calculations

Unit Number:	6-8, 10 & 11
Description:	Waukesha L7042GL
Туре:	Four Stroke Lean Burn (Turbocharged)

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower Calculations		
6,440 ft above MSL	Elevation	
1,478 hp	Nameplate hp	Mfg. data
1,370 hp	NMAQB Site-rated hp	NMAQB Procedure # 02.002-00 (loss of 3% for every 1,000 ft over 4,000 ft)
1,332 hp	Mfg. Site-rated hp	Mfg. product bulletin Power Derate, S8154-6, April 2001 (loss of 2% for every 1,000 ft over 1,500 ft)
Engine Specifications		
1200 rpm	Engine rpm	Mfg. data
7040 cu in	Engine displacement	Mfg. data
128.42 psi	BMEP	Mfg. data (+[(792,000 x NMAQB Site-rated hp) / (rpm * in^3)])
Fuel Consumption		
7368 Btu/hp-hr	Brake specific fuel consumption	Mfg. data
10.09 MMBtu/hr	Hourly fuel consumption	Btu/hp-hr x NMAQB site-rated hp / 1,000,000
900 Btu/scf	Field gas heating value	Nominal heat content
11,214 scf/hr	Hourly fuel consumption	MMBtu/hr x 1,000,000 / Btu/scf
8,760 hr/yr	Annual operating time	Harvest Four Corners, LLC
88,408 MMBtu/yr	Annual fuel consumption	MMBtu/hr x hr/yr
98.23 MMscf/yr	Annual fuel consumption	scf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

Pollutants	Emission Factors,	Uncontrolled E	mission Rates,
	g/hp-hr	pph	tpy
NOX	1.50	4.53	19.84
CO	2.65	8.00	35.05
VOC	1.00	3.02	13.23

Emission factors taken from Waukesha Bulletin 7005 0107

Uncontrolled Emission Rates (pph) = g/hp-hr x NMAQB Site-rated hp / 453.59 g/lb Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Pollutants	Emission Factors,	Uncontrolled Emission Rate	
	lb/MMBtu	pph	tpy
SO2	5.88E-04	5.93E-03	2.60E-02
PM	9.99E-03	1.01E-01	4.41E-01
PM10	9.99E-03	1.01E-01	4.41E-01
PM2.5	9.99E-03	1.01E-01	4.41E-01

Emission factors taken from AP-42, Table 3.2-2

Particulate factors include both filterable and condensible emissions

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

702 °F	Stack exit temperature	Mfg. data
7621 acfm	Stack flowrate	Mfg. data
1.02 ft	Stack exit diameter	Harvest Four Corners, LLC
0.82 ft^2	Stack exit area	3.1416 x ((ft / 2) ^2)
155.18 fps	Stack exit velocity	acfm / ft^2 / 60 sec/min
22.00 ft	Stack height	Harvest Four Corners, LLC

GRI-HAPCalc[®] 3.0 Engines Report

	Facility ID: Operation Type: Facility Name: User Name: Units of Measure:	COMPRES 29-6#2 CE Harvest Fo	9-6#2 CDP Notes: COMPRESSOR STATION 9-6#2 CENTRAL DELIVERY POINT larvest Four Corners, LLC U.S. STANDARD			
	These emissions are ind	icated on the	report with a "0".		red insignificant and are treated as zero r are represented on the report with "0.	
	Engine Unit					
ι	Jnit Name: 7042GL					
	Hours of C	Operation:	8,760	Yearly		
	Rate Powe	er:	1,370	hp		
	Fuel Type	:	FIELD GAS			
	Engine Ty	pe:	4-Stroke, Lea	n Burn		
	Emission I	Factor Set:	FIELD > EPA	> LITERA	TURE	
	Additional	EF Set:	-NONE-			
			<u>Calc</u>	ulated E	missions (ton/yr)	
	<u>Chemical Nam</u> <u>HAPs</u>	<u>1e</u>	<u>En</u>	nissions	Emission Factor	Emission Factor Set
	Formaldehyde			2.2245	0.16830000 g/bhp-hr	GRI Literature

0.0687

0.0278

0.0185

2.3395

0.00520000 g/bhp-hr

0.00210000 g/bhp-hr

0.00140000 g/bhp-hr

Benzene

Toluene

Total

Xylenes(m,p,o)

GRI Literature

GRI Literature

GRI Literature

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: 29-6#2 TEG Dehys File Name: C:\1 - Cirrus\1 - Projects\1 - Harvest\1 - Permitting\2 - Title V\1 -29-6#2\1 - Application\29-6#2 - GRI-GLYCalc - Units 16, 17 21 & 22 (12 MMSCFD).ddf Date: April 27, 2022 **DESCRIPTION:** _____ Description: Capacity: 12 MMSCFD Unit Numbers: 16, 17, 21 & 22 Extended Gas Analysis Sampled 04-06-2022 Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 76.00 deg. F 355.00 psig Pressure: Wet Gas Water Content: Saturated Component Conc. (vol %) ----- -----Carbon Dioxide 24.1998 Nitrogen 0.0387 Methane 74.4496 Ethane 1.0643 Propane 0.2094 Isobutane 0.0186 n-Butane 0.0196 DRY GAS: _____ Flow Rate:12.0 MMSCF/dayWater Content:7.0 lbs. H20/MMSCF LEAN GLYCOL: _____

Glycol Type: TEG

Water Content: 1.5 wt% H20 Flow Rate: 3.3 gpm

PUMP:

Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.130 acfm gas/gpm glycol

FLASH TANK:

Flash Control: Recycle/recompression Temperature: 65.0 deg. F Pressure: 50.0 psig GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: 29-6#2 TEG Dehys
File Name: C:\1 - Cirrus\1 - Projects\1 - Harvest\1 - Permitting\2 - Title V\1 29-6#2\1 - Application\29-6#2 - GRI-GLYCalc - Units 16, 17 21 & 22 (12 MMSCFD).ddf
Date: April 27, 2022

DESCRIPTION:

Description: Capacity: 12 MMSCFD Unit Numbers: 16, 17, 21 & 22 Extended Gas Analysis Sampled 04-06-2022

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.2759	6.621	1.2084
Ethane	0.0398	0.954	0.1742
Propane	0.0360	0.865	0.1578
Isobutane	0.0088	0.211	0.0384
n-Butane	0.0146	0.350	0.0639
Total Emissions	0.3751	9.002	1.6428
Total Hydrocarbon Emissions	0.3751	9.002	1.6428
Total VOC Emissions	0.0594	1.426	0.2602

FLASH GAS EMISSIONS

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	22.6555	543.732	99.2311
Ethane	0.7236	17.366	3.1694
Propane	0.2500	5.999	1.0948
Isobutane	0.0337	0.810	0.1478
n-Butane	0.0396	0.949	0.1733
Total Emissions	23.7024	568.857	103.8163
Total Hydrocarbon Emissions	23.7024	568.857	103.8163
Total VOC Emissions	0.3233	7.758	1.4159

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.2759	6.621	1.2084
Ethane	0.0398	0.954	0.1742
Propane	0.0360	0.865	0.1578
Isobutane	0.0088	0.211	0.0384
n-Butane	0.0146	0.350	0.0639
Total Emissions	0.3751	9.002	1.6428
Total Hydrocarbon Emissions	0.3751	9.002	1.6428
Total VOC Emissions	0.0594	1.426	0.2602

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane Ethane Propane Isobutane n-Butane	a 3.3435 a 1.2527 a 0.1862	1.2084 0.1742 0.1578 0.0384 0.0639	98.80 94.79 87.40 79.35 73.04
Total Emissions	5 105.4591	1.6428	98.44
Total Hydrocarbon Emissions Total VOC Emissions		1.6428 0.2602	98.44 84.47

EQUIPMENT REPORTS:

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages:	1.25	
Calculated Dry Gas Dew Point:	2.98	lbs. H2O/MMSCF
Temperature:	76.0	deg. F
Pressure:	355.0	psig
Dry Gas Flow Rate:	12.0000	MMSCF/day
Glycol Losses with Dry Gas:	0.0193	lb/hr
Wet Gas Water Content:	Saturated	
Calculated Wet Gas Water Content:	65.12	lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio:	6.44	gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	4.57%	95.43%
Carbon Dioxide	99.80%	0.20%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.95%	0.05%
Propane	99.90%	0.10%
Isobutane	99.84%	0.16%
n-Butane	99.77%	0.23%

FLASH TANK

Flash Control: Recycle/recompressionFlash Temperature:65.0 deg. FFlash Pressure:50.0 psig

Left in Removed in

Component	Glycol	Flash Gas
Water	99.98%	0.02%
Carbon Dioxide	19.53%	80.47%
Nitrogen	1.16%	98.84%
Methane	1.20%	98.80%
Ethane	5.21%	94.79%
Propane	12.60%	87.40%
Isobutane	20.65%	79.35%
n-Butane	26.96%	73.04%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	47.46%	52.54%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%

STREAM REPORTS:

WET GAS STREAM Temperature: 76.00 deg. F Pressure: 369.70 psia Flow Rate: 5.01e+005 scfh

Component			Loading (lb/hr)
	Water	1.37e-001	3.26e+001

Carbon Dioxide 2.42e+001 1.40e+004 Nitrogen 3.86e-002 1.43e+001 Methane 7.43e+001 1.57e+004 Ethane 1.06e+000 4.22e+002 Propane 2.09e-001 1.22e+002 Isobutane 1.86e-002 1.43e+001 n-Butane 1.96e-002 1.50e+001 Total Components 100.00 3.04e+004

DRY GAS STREAM

Temperature: Pressure: Flow Rate:	369.70	psia				
	Component				Loading (lb/hr)	
		Wat	er 6	5.28e-003	1.49e+000	
	Carbon	Dioxi	de 2	2.42e+001	1.40e+004	
		Nitrog	en 3	8.87e-002	1.43e+001	
		Metha	ne 7	7.45e+001	1.57e+004	
		Etha	ne 1	L.06e+000	4.22e+002	
		Propa	ne 2	2.09e-001	1.22e+002	
	I	sobuta	ne 1	L.86e-002	1.42e+001	
	I	n-Buta	ne 1	L.96e-002	1.50e+001	
			 + -	100.00	2 02 0 004	
	TOTAL CO	mponen	LS	T00.00	3.03e+004	

LEAN GLYCOL STREAM

Temperature: 76.00 deg. F Flow Rate: 3.33e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.85e+001 1.85e+003 Water 1.50e+000 2.82e+001 Carbon Dioxide 1.50e-010 2.82e-009 Nitrogen 9.15e-015 1.72e-013 Methane 3.30e-018 6.20e-017 Ethane 4.99e-009 9.36e-008 Propane 2.67e-010 5.00e-009 Isobutane 3.75e-011 7.03e-010 n-Butane 4.50e-011 8.44e-010 Total Components 100.00 1.88e+003

RICH GLYCOL AND PUMP GAS STREAM Temperature: 76.00 deg. F Pressure: 369.70 psia Flow Rate: 3.55e+000 gpm NOTE: Stream has more than one phase. Component Conc. Loading

 Component
 Conc.
 Loading (wt%)

 TEG
 9.34e+001
 1.85e+003

 Water
 3.00e+000
 5.93e+001

 Carbon Dioxide
 2.37e+000
 4.70e+001

 Nitrogen
 1.05e-003
 2.09e-002

 Methane
 1.16e+000
 2.29e+001

 Ethane
 3.86e-002
 7.63e-001

 Propane
 1.45e-002
 2.86e-001

 Isobutane
 2.15e-003
 4.25e-002

 n-Butane
 2.74e-003
 5.42e-002

 Total Components
 100.00
 1.98e+003

FLASH TANK OFF GAS STREAM

Temperature: 65.00 deg. F Pressure: 64.70 psia Flow Rate: 8.74e+002 scfh Component Conc. Loading (vol%) (lb/hr) Water 3.15e-002 1.31e-002 Carbon Dioxide 3.73e+001 3.78e+001 Nitrogen 3.20e-002 2.06e-002 Methane 6.13e+001 2.27e+001 Ethane 1.04e+000 7.24e-001

Propane 2.46e-001 2.50e-001

Isobutane 2.52e-002 3.37e-002 n-Butane 2.95e-002 3.96e-002 Total Components 100.00 6.15e+001

FLASH TANK GLYCOL STREAM

Temperature: 65.00 deg. F Flow Rate: 3.42e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.64e+001 1.85e+003 Water 3.09e+000 5.93e+001 Carbon Dioxide 4.78e-001 9.17e+000 Nitrogen 1.26e-005 2.41e-004

Ethane 2.07e-003 3.98e-002 Propane 1.88e-003 3.60e-002 Isobutane 4.58e-004 8.78e-003 n-Butane 7.62e-004 1.46e-002 Total Components 100.00 1.92e+003

Methane 1.44e-002 2.76e-001

FLASH GAS EMISSIONS

Control Method: Recycle/recompression Control Efficiency: 100.00

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 7.43e+002 scfh Component Conc. Loading (vol%) (lb/hr) Water 8.83e+001 3.12e+001 Carbon Dioxide 1.06e+001 9.17e+000 Nitrogen 4.40e-004 2.41e-004 Methane 8.78e-001 2.76e-001 Ethane 6.75e-002 3.98e-002 Propane 4.17e-002 3.60e-002 Isobutane 7.71e-003 8.78e-003 n-Butane 1.28e-002 1.46e-002 Total Components 100.00 4.07e+001

Dehydrator Reboiler Exhaust Emissions Calculations

Unit Number: 16b, 17b, 21b & 22b Description: Dehydrator Reboiler (12 MMSCFD)

Note: The data on this worksheet applies to each individual emissions unit identified above.

Fuel Consumption

1,208 scf/hr	Hourly fuel consumption
900 Btu/scf	Field gas heating value
1.09 MMBtu/hr	Capacity
<mark>8,760</mark> hr/yr	Annual operating time
9,524 MMBtu/yr	Annual fuel consumption
10.58 MMscf/yr	Annual fuel consumption

Mfg. data (Infab) Nominal heat content scf/hr x Btu/scf / 1,000,000 Harvest Four Corners, LLC MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

Pollutants	Emission Factors.	Uncontrolled F	mission Rates,
1 onutarito	lb/day	pph	tpy
NOX	1.03	4.29E-02	1.88E-01
СО	0.78	3.25E-02	1.42E-01
VOC	0.12	4.79E-03	2.10E-02
SO2	0.02	8.33E-04	3.65E-03

NOX emission factor taken from August 1994 Enertek Letter

CO, TOC and SO2 emission factors taken from July 1998 InFab Letter 50% of TOC emissions are assumed to be VOC emissions, consistent with AP-42, Table 1.4-2 Uncontrolled Emission Rates (pph) = Ib/day / 24 hr/day

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
PM	7.60	9.18E-03	4.02E-02
PM10	7.60	9.18E-03	4.02E-02
PM2.5	7.60	9.18E-03	4.02E-02

Emission factors taken from AP-42, Table 1.4-2

Uncontrolled Emission Rates (pph) = lb/MMscf x (scf/hr / 1,000,000)

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

600 °F	Exhaust temperature
287.46 cfm	Stack flowrate
1.00 ft	Stack diameter
0.79 ft^2	Stack exit area
6.1 fps	Stack velocity
10.0 ft	Stack height

Mfg. data (Enertek & InFab) fps x ft^2 x 60 sec/min Mfg. data (InFab) 3.1416 x ((ft / 2) ^2) Mfg. data (Enertek & InFab) Mfg. data (InFab)

<u>GRI-HAPCalc® 3.0</u> External Combustion Devices Report

Facility ID:	29-6#2 CDP	Notes:
Operation Type:	COMPRESSOR STATION	
Facility Name:	29-6#2 CENTRAL DELIVERY POINT	
User Name:	Harvest Four Corners, LLC	
Units of Measure:	U.S. STANDARD	

Note: Emissions less than 5.00E-09 tons (or tonnes) per year are considered insignificant and are treated as zero. These emissions are indicated on the report with a "0". Emissions between 5.00E-09 and 5.00E-05 tons (or tonnes) per year are represented on the report with "0.0000".

External Combustion Devices

Unit Name: REBOILERS

Hours of Operation:	8,760	Yearly		
Heat Input:	1.09	MMBtu/hr		
Fuel Type:	NATURAL GAS			
Device Type:	BOILER			
Emission Factor Set:	FIELD > EPA	> LITERATURE		
Additional EF Set:	-NONE-			

Calculated Emissions (ton/yr)

	<u>Chemical Name</u>	Emissions	Emission Factor	Emission Factor Set
HA	APs_			
	3-Methylchloranthrene	0.0000	0.000000018 lb/MMBtu	EPA
	7,12-Dimethylbenz(a)anthracene	0.0000	0.0000000157 lb/MMBtu	EPA
	Formaldehyde	0.0017	0.0003522500 lb/MMBtu	GRI Field
	Methanol	0.0021	0.0004333330 lb/MMBtu	GRI Field
	Acetaldehyde	0.0014	0.0002909000 lb/MMBtu	GRI Field
	1,3-Butadiene	0.0000	0.0000001830 lb/MMBtu	GRI Field
	Benzene	0.0000	0.0000062550 lb/MMBtu	GRI Field
	Toluene	0.0000	0.0000053870 lb/MMBtu	GRI Field
	Ethylbenzene	0.0000	0.0000000720 lb/MMBtu	GRI Field
	Xylenes(m,p,o)	0.0000	0.0000010610 lb/MMBtu	GRI Field
	2,2,4-Trimethylpentane	0.0002	0.0000323000 lb/MMBtu	GRI Field
	n-Hexane	0.0015	0.0003214790 lb/MMBtu	GRI Field
	Phenol	0.0000	0.0000000950 lb/MMBtu	GRI Field
	Naphthalene	0.0000	0.0000002950 lb/MMBtu	GRI Field
	2-Methylnaphthalene	0.0000	0.0000000700 lb/MMBtu	GRI Field
	Acenaphthylene	0.0000	0.0000000550 lb/MMBtu	GRI Field
	Biphenyl	0.0000	0.0000011500 lb/MMBtu	GRI Field
	Acenaphthene	0.0000	0.000000800 lb/MMBtu	GRI Field
	Fluorene	0.0000	0.0000000700 lb/MMBtu	GRI Field
	Anthracene	0.0000	0.0000000750 lb/MMBtu	GRI Field
	Phenanthrene	0.0000	0.0000000550 lb/MMBtu	GRI Field
	Fluoranthene	0.0000	0.000000800 lb/MMBtu	GRI Field
	Pyrene	0.0000	0.0000000750 lb/MMBtu	GRI Field
	Benz(a)anthracene	0.0000	0.0000000750 lb/MMBtu	GRI Field
	Chrysene	0.0000	0.0000001000 lb/MMBtu	GRI Field
	Benzo(a)pyrene	0.0000	0.0000000600 lb/MMBtu	GRI Field
04/27/2022	10:17:07	GRI-HAPCalc 3.0		Page 1 of 2

Benzo(b)fluoranthene	0.0000	0.0000001350 lb/MMBtu	GRI Field
Benzo(k)fluoranthene	0.0000	0.0000004400 lb/MMBtu	GRI Field
Benzo(g,h,i)perylene	0.0000	0.0000001500 lb/MMBtu	GRI Field
Indeno(1,2,3-c,d)pyrene	0.0000	0.0000001000 lb/MMBtu	GRI Field
Dibenz(a,h)anthracene	0.0000	0.000000950 lb/MMBtu	GRI Field
Lead	0.0000	0.0000004902 lb/MMBtu	EPA
Total	0.0069		
Criteria Pollutants			
VOC	0.0257	0.0053921569 lb/MMBtu	EPA
PM	0.0356	0.0074509804 lb/MMBtu	EPA
PM, Condensible	0.0267	0.0055882353 lb/MMBtu	EPA
PM, Filterable	0.0089	0.0018627451 lb/MMBtu	EPA
CO	0.1467	0.0307275000 lb/MMBtu	GRI Field
NMHC	0.0407	0.0085294118 lb/MMBtu	EPA
NOx	0.4213	0.0882553330 lb/MMBtu	GRI Field
SO2	0.0028	0.0005880000 lb/MMBtu	EPA
Other Pollutants			
Dichlorobenzene	0.0000	0.0000011765 lb/MMBtu	EPA
Methane	0.0281	0.0058790650 lb/MMBtu	GRI Field
Acetylene	0.0255	0.0053314000 lb/MMBtu	GRI Field
Ethylene	0.0025	0.0005264000 lb/MMBtu	GRI Field
Ethane	0.0080	0.0016804650 lb/MMBtu	GRI Field
Propylene	0.0045	0.0009333330 lb/MMBtu	GRI Field
Propane	0.0057	0.0012019050 lb/MMBtu	GRI Field
Butane	0.0066	0.0013866350 lb/MMBtu	GRI Field
Cyclopentane	0.0002	0.0000405000 lb/MMBtu	GRI Field
Pentane	0.0099	0.0020656400 lb/MMBtu	GRI Field
n-Pentane	0.0095	0.0020000000 lb/MMBtu	GRI Field
Cyclohexane	0.0002	0.0000451000 lb/MMBtu	GRI Field
Methylcyclohexane	0.0008	0.0001691000 lb/MMBtu	GRI Field
n-Octane	0.0002	0.0000506000 lb/MMBtu	GRI Field
n-Nonane	0.0000	0.0000050000 lb/MMBtu	GRI Field
CO2	561.6706	117.6470588235 lb/MMBtu	EPA

Compressor Blowdown Emissions Calculations

Unit Number: SSM

Description: Compressor & Piping Associated With Station

Throughput

8 # of units	Number of units
26 events/yr/unit	Blowdowns per year per unit
9,228 scf/event	Gas loss per blowdown
1,944,303 scf/yr	Annual gas loss

Emission Rates

		Uncontrolled,	
	Emission	Emission	
Pollutants	Factors,	Rates,	
	lb/scf	tpy	
VOC	4.012E-03	3.90	
Benzene	1.256E-05	1.22E-02	
Ethylbenzene	8.395E-07	8.16E-04	
n-Hexane	1.293E-04	1.26E-01	
Isooctane	7.131E-06	6.93E-03	
Toluene	3.704E-05	3.60E-02	
Xylene	1.637E-05	1.59E-02	

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
-	%	lb/lb-mole	lb/scf
Carbon dioxide	12.9196	44.01	1.499E-02
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.0996	28.01	7.349E-05
Methane	80.3387	16.04	3.396E-02
Ethane	3.9236	30.07	3.110E-03
Propane	1.4805	44.09	1.720E-03
Isobutane	0.2777	58.12	4.254E-04
n-Butane	0.3691	58.12	5.654E-04
Isopentane	0.1490	72.15	2.833E-04
n-Pentane	0.1012	72.15	1.925E-04
Cyclopentane	0.0067	70.14	1.239E-05
n-Hexane	0.0570	86.17	1.293E-04
Cyclohexane	0.0193	84.16	4.270E-05
Other hexanes	0.1097	86.18	2.491E-04
Heptanes	0.0431	100.20	1.138E-04
Methylcyclohexane	0.0479	98.19	1.238E-04
Isooctane	0.0027	100.21	7.131E-06
Benzene	0.0061	78.11	1.256E-05
Toluene	0.0153	92.14	3.704E-05
Ethylbenzene	0.0003	106.17	8.395E-07
Xylenes	0.0059	106.17	1.637E-05
C8+ Heavies	0.0275	110.00	7.959E-05
Total	100.0000		
Total VOC			4.012E-03

Gas stream composition obtained from 29-6#2 extended gas analysis (blended) dated 04/06/2022 Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.4 scf/lb-mole

Equipment Leaks Emissions Calculations

Unit Number: F1

Description: Valves, Connectors, Seals & Open-Ended Lines

Steady-State Emission Rates

	Number of	Emission	Emission	Uncor	ntrolled
Equipment	Components,	Factors,	Factors,	Emissio	n Rates,
	# of sources	kg/hr/source	lb/hr/source	pph	tpy
Valves	765	0.0045	0.0099	7.57	33.17
Connectors	799	0.0002	0.0004	0.35	1.54
Pump Seals	8	0.0024	0.0053	0.04	0.19
Compressor Seals	56	0.0088	0.0194	1.08	4.75
Pressure Relief Valves	67	0.0088	0.0194	1.30	5.68
Open-Ended Lines	214	0.0020	0.0044	0.94	4.12
Т	otal			11.29 49.45	

Number of components based on the numbers of compressors and dehydrators at the station (see next page)

Emission factors taken from the EPA "1995 Protocol for Equipment Leak Emission Estimates"

Emission factors (lb/hr/source) = Emission factors (kg/hr/source) x 2.2 lb/kg Uncontrolled TOC Emission Rates (pph) = lb/hr/source x # of sources

Uncontrolled TOC Emission Rates (tpy) = Uncontrolled TOC Emission Rates (pph) x 8,760 hr/yr / 2,000 lb/ton

	Mole	Molecular	Component	Weight,	Uncontrolled		
Components	Percents,	Weights,	Weights,	Percent	Emissio	n Rates,	
	%	lb/lb-mole	lb/lb-mole	%	pph	tpy	
Carbon dioxide	12.9196	44.010	5.686	26.687	3.01E+00	1.32E+01	
Hydrogen sulfide	0.0000	34.070	0.000	0.000	0.00E+00	0.00E+00	
Nitrogen	0.0996	28.013	0.028	0.131	1.48E-02	6.47E-02	
Methane	80.3387	16.043	12.889	60.493	6.83E+00	2.99E+01	
Ethane	3.9236	30.070	1.180	5.538	6.25E-01	2.74E+00	
Propane	1.4805	44.097	0.653	3.064	3.46E-01	1.52E+00	
Isobutane	0.2777	58.123	0.161	0.758	8.55E-02	3.75E-01	
n-Butane	0.3691	58.123	0.215	1.007	1.14E-01	4.98E-01	
Isopentane	0.1490	72.150	0.107	0.504	5.69E-02	2.49E-01	
n-Pentane	0.1012	72.150	0.073	0.343	3.87E-02	1.69E-01	
Cyclopentane	0.0067	70.134	0.005	0.022	2.49E-03	1.09E-02	
n-Hexane	0.0570	86.177	0.049	0.230	2.60E-02	1.14E-01	
Cyclohexane	0.0193	84.161	0.016	0.076	8.58E-03	3.76E-02	
Other hexanes	0.1097	86.177	0.094	0.444	5.01E-02	2.19E-01	
Heptanes	0.0431	100.204	0.043	0.203	2.29E-02	1.00E-01	
Methylcyclohexane	0.0479	98.188	0.047	0.221	2.49E-02	1.09E-01	
Isooctane	0.0027	114.231	0.003	0.014	1.63E-03	7.16E-03	
Benzene	0.0061	78.114	0.005	0.022	2.52E-03	1.11E-02	
Toluene	0.0153	92.141	0.014	0.066	7.45E-03	3.26E-02	
Ethylbenzene	0.0003	106.167	0.000	0.001	1.69E-04	7.39E-04	
Xylenes	0.0059	106.167	0.006	0.029	3.29E-03	1.44E-02	
C8+ Heavies	0.0275	114.231	0.031	0.147	1.66E-02	7.28E-02	
Total	100.0000		21.306				
Total VOC				7.152	8.07E-01	3.54E+00	

Gas stream composition obtained from 29-6#2 extended gas analysis (blended) dated 04/06/2022

Component Weights (lb/lb-mole) = (% / 100) * Molecular Weights (lb/lb-mole)

Weight Percent (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole)

Uncontrolled Emission Rates (pph) = Total Uncontrolled Emission Rate (from Table 1 above) (pph) x (% / 100)

Uncontrolled Emission Rates (tpy) = Total Uncontrolled Emission Rate (from Table 1 above) (tpy) x (% / 100)

Equipment Leaks Emissions Calculations

Unit Number: F1

Description: Valves, Connectors, Seals & Open-Ended Lines

Component Count

Number of Compressors at the Facility:8Number of Dehydrators at the Facility:4

		Equipment Count					Instrument Count		
					Pressure				
Process Equipment Description			Pump	Compressor	Relief	Open-			
	Valves	Connectors	Seals	Seals	Valves	End	Flow	Level	Pressure
Station inlet, meter run to pulsation dampener	17	14	0	0	1	13	3	0	3
Pulsation dampener	12	8	0	0	0	2	0	4	1
Compressor suction header	7	4	0	0	0	3	0	0	1
Suction header feed to instrument gas header	3	1	0	0	0	1	0	0	0
Compressor discharge header and bypass to station discharge	6	5	0	0	0	3	0	1	1
Compressor discharge header and suction header bypass lines	4	2	0	0	0	2	0	0	1
Fuel gas header	2	2	0	0	1	2	0	0	1
Instrument gas header	2	2	0	0	1	2	0	0	0
Station discharge header	9	5	0	0	1	6	0	0	2
Fuel gas recovery header	2	2	0	0	1	2	0	0	0
Fuel gas feed and filter loop	15	9	0	0	0	1	0	4	1
Instrument gas feed and filter loop	9	11	0	0	0	3	0	0	0
Produced water storage tank	1	0	0	0	0	1	0	1	0
ESD panel	12	0	0	0	0	0	0	0	0
Starting gas header	6	2	0	0	1	3	0	0	0
Hot gas header	2	2	0	0	0	2	0	0	0
Volume bottle lop	12	4	0	24	1	2	0	0	1
Components from Compressors	352	472	0	32	48	88	0	32	72
Components from dehydrators	24	40	8	0	12	24	0	12	16
Total	497	585	8	56	67	160	3	54	100
Adjusted Total	765	799	8	56	67	214			

The following additions are included in the Adjusted Total:

1 valve is added for each open end line

2 connectors are added for each flow meter

2 valves, 2 connectors and 1 open end line are added for each level gauge

1 connector is added for each pressure gauge

The component count is based on the evaluation of a comparable facility (Sim Mesa Central Delivery Point)

Malfunction Emissions Data and Calculations

Unit Number: M1 Description: Malfunctions

Emission Rates

	Weight	Uncontrolled Emission
Pollutants	Percents,	Rates,
	%	tpy
VOC		10.00
Benzene	3.130E-01	3.13E-02
Ethylbenzene	2.093E-02	2.09E-03
n-Hexane	3.224E+00	3.22E-01
Isooctane	1.778E-01	1.78E-02
Toluene	9.232E-01	9.23E-02
Xylene	4.081E-01	4.08E-02

Weight percents calculated from gas composition (see table below)

Uncontrolled Emission Rates (tpy) = VOC Emission Rate (tpy) x (% / 100)

Gas Composition

Components	Mole Percents, %	Molecular Weights, Ib/lb-mole	Component Weights, Ib/Ib-mole	Weight Percent, %
Carbon dioxide	12,9196	44.01		
Hydrogen sulfide	0.0000	34.07		
Nitrogen	0.0996	28.01		
Methane	80.3387	16.04		
Ethane	3.9236	30.07		
Propane	1.4805	44.09	0.6528	4.289E+01
Isobutane	0.2777	58.12	0.1614	1.060E+01
n-Butane	0.3691	58.12	0.2145	1.409E+01
Isopentane	0.1490	72.15	0.1075	7.061E+00
n-Pentane	0.1012	72.15	0.0730	4.797E+00
Cyclopentane	0.0067	70.14	0.0047	3.088E-01
n-Hexane	0.0570	86.17	0.0491	3.224E+00
Cyclohexane	0.0193	84.16	0.0162	1.064E+00
Other hexanes	0.1097	86.18	0.0945	6.209E+00
Heptanes	0.0431	100.20	0.0432	2.837E+00
Methylcyclohexane	0.0479	98.19	0.0470	3.087E+00
Isooctane	0.0027	100.21	0.0027	1.778E-01
Benzene	0.0061	78.11	0.0048	3.130E-01
Toluene	0.0153	92.14	0.0141	9.232E-01
Ethylbenzene	0.0003	106.17	0.0003	2.093E-02
Xylenes	0.0059	106.17	0.0062	4.081E-01
C8+ Heavies	0.0275	110.00	0.0302	1.984E+00
Total	100.0000			
Total VOC			1.5220	

Gas stream composition obtained from 29-6#2 extended gas analysis (blended) dated 04/06/2022 Component Weights (lb/lb-mole) = (% / 100) x Molecular Weights (lb/lb-mole)

Weight Percents (%) = 100 x Component Weights (lb/lb-mole) / Total VOC Weight (lb/lb-mole)

Storage Tank Emissions Data and Calculations

Unit Number: T29 & T30

Description: Storage Tanks (with flash emissions)

Emission Rates

Source/Pollutants	Working/Brea ppy	athing Losses, tpy	Flash Losses, tpy	Uncontrolled Emission Rates, tpy
T29				
VOC	751.71	0.38	1.78	2.16
Benzene	4.65	2.33E-03	1.30E-02	1.54E-02
Ethylbenzene	0.30	1.50E-04	7.61E-04	9.11E-04
n-Hexane	68.39	3.42E-02	1.25E-01	1.59E-01
Isooctane	0.30	1.50E-04	6.19E-04	7.69E-04
Toluene	8.55	4.28E-03	2.35E-02	2.78E-02
Xylene	3.20	1.60E-03	8.11E-03	9.71E-03
Т30				
VOC	751.71	0.38	1.78	2.16
Benzene	4.65	2.33E-03	1.30E-02	1.54E-02
Ethylbenzene	0.30	1.50E-04	7.61E-04	9.11E-04
n-Hexane	68.39	3.42E-02	1.25E-01	1.59E-01
Isooctane	0.30	1.50E-04	6.19E-04	7.69E-04
Toluene	8.55	4.28E-03	2.35E-02	2.78E-02
Xylene	3.20	1.60E-03	8.11E-03	9.71E-03
Combined Total				
VOC	1,503.42	0.75	3.56	4.31
Benzene	9.30	4.65E-03	2.61E-02	3.07E-02
Ethylbenzene	0.60	3.00E-04	1.52E-03	1.82E-03
n-Hexane	136.78	6.84E-02	2.49E-01	3.18E-01
Isooctane	0.60	3.00E-04	1.24E-03	1.54E-03
Toluene	17.10	8.55E-03	4.70E-02	5.55E-02
Xylene	6.40	3.20E-03	1.62E-02	1.94E-02

Working/breathing losses taken from TANKS 4.0 results

Flash emissions taken from HYSYS 2.4.1 results

Storage Tank Emissions Data and Calculations

Unit Number: T29 & T30 Description: Condensate Tanks (flash emissions)

Calculation of Emission Rates from ProMax Results

Pollutant	Emission Rate,			
	pph	tpy		
VOC		3.56		
Benzene	5.959E-03	2.61E-02		
Ethylbenzene	3.475E-04	1.52E-03		
n-Hexane	5.689E-02	2.49E-01		
Isooctane	2.828E-04	1.24E-03		
Toluene	1.072E-02	4.70E-02		
Xylenes	3.703E-03	1.62E-02		

VOC tpy and HAP pph emission rates are obtained from the ProMax output HAP Emission Rate (tpy) = HAP Emission Rate (pph) x 8,760 hr/yr / 2,000 lb/ton

Composition of Post Flash Condensate (for use in TANKS 4)

	Speciated	Mass
	Mass	Percent,
Component	Fraction	Of VOC,
		%
Carbon dioxide	1.296E-04	
Nitrogen	1.095E-05	
Methane	2.769E-04	
Ethane	1.445E-03	
Propane	6.337E-03	
Isobutane	5.661E-03	0.8846
n-Butane	1.171E-02	1.4910
Isopentane	1.780E-02	1.7834
n-Pentane	1.767E-02	1.7701
n-Hexane	6.485E-02	6.4970
Cyclohexane	0.000E+00	0.0000
n-Heptane	1.898E-01	19.0107
Octane	3.077E-01	30.8264
Nonane	1.404E-01	14.0659
Decane	1.106E-01	11.0838
Benzene	7.240E-03	0.7253
Ethylbenzene	5.058E-03	0.5068
Isooctane	9.295E-04	0.0931
Toluene	4.733E-02	4.7414
Xylenes	6.508E-02	6.5203
Total	1.000E+00	
VOC Total	9.981E-01	100.0000

Speciated Mass Fractions are obtained from the ProMax output

Total = Sum (Carbon Dioxide - Xylene Mass Fractions)

VOC Total = Sum (Propane - Xylene Mass Fractions)

Mass Percent of VOC (%) = 100 x Component Mass Fraction / VOC Total Mass Fraction

Propane Mass Percent of VOC is included with the n-butane and isobutane percentages (even distribution)

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State:	29-6#2 T29 & T30 (Condensate) Blanco New Mexico
Company:	Harvest Four Corners, LLC
Type of Tank:	Vertical Fixed Roof Tank
Description:	12,600 Gallon Condensate Storage Tanks
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	15.00 12.00 14.00 7.00 12,600.00 5.70 71,757.00 N
Paint Characteristics	
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good
Roof Characteristics	
Type:	Dome
Height (ft)	0.00
Radius (ft) (Dome Roof)	12.00
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

29-6#2 T29 & T30 (Condensate) - Vertical Fixed Roof Tank Blanco, New Mexico

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
/ixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Condensate	All	58.54	51.41	65.66	56.17	2.0750	1.7868	2.4039	67.3955			106.33	
2,2,4-Trimethylpentane (isooctane)						0.5710	0.4627	0.6998	114.2300	0.0009	0.0004	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.1212	0.9158	1.3637	78.1100	0.0073	0.0062	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						25.4384	22.2168	29.0506	58.1230	0.0149	0.2884	58.12	Option 1: VP50 = 21.58 VP60 = 26.1
Decane (-n)						0.0322	0.0274	0.0381	142.2900	0.1108	0.0027	142.29	Option 1: VP50 = .026411 VP60 = .033211
Ethylbenzene						0.1031	0.0800	0.1318	106.1700	0.0051	0.0004	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.5852	0.4708	0.7232	100.2000	0.1901	0.0846	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						1.8417	1.5232	2.2130	86.1700	0.0650	0.0910	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Iso-Butane						37.2383	32.8479	42.1157	58.1230	0.0088	0.2505	58.12	Option 1: VP50 = 31.98 VP60 = 38.14
Isopentane						9.6953	8.1871	11.4350	72.1500	0.0178	0.1315	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Nonane (-n)						0.0632	0.0533	0.0754	128.2600	0.1407	0.0068	128.26	Option 1: VP50 = .051285 VP60 = .065278
Octane (-n)						0.1406	0.1170	0.1697	114.2300	0.3083	0.0330	114.23	Option 1: VP50 = .112388 VP60 = .145444
Pentane (-n)						6.6165	5.6308	7.7408	72.1500	0.0177	0.0891	72.15	Option 3: A=27691, B=7.558
Toluene						0.3154	0.2512	0.3929	92.1300	0.0474	0.0114	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Xylenes (mixed isomers)						0.0858	0.0664	0.1100	106.1700	0.0652	0.0043	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

29-6#2 T29 & T30 (Condensate) - Vertical Fixed Roof Tank Blanco, New Mexico

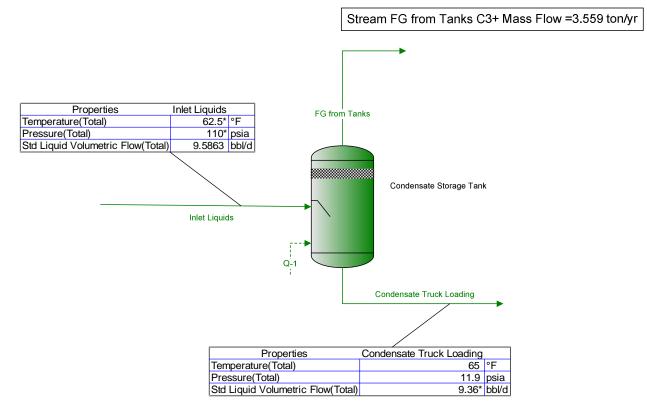
Annual Emission Calcaulations	
Standing Losses (Ib):	512.7798
Vapor Space Volume (cu ft):	997.8675
Vapor Density (lb/cu ft):	0.0251
Vapor Space Expansion Factor:	0.1103
Vented Vapor Saturation Factor:	0.5075
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	997.8675
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	8.8231
Tank Shell Height (ft):	15.0000
Average Liquid Height (ft):	7.0000
Roof Outage (ft):	0.8231
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.8231
Dome Radius (ft):	12.0000
Shell Radius (ft):	6.0000
Vapor Density	0.000
Vapor Density (lb/cu ft):	0.0251
Vapor Molecular Weight (lb/lb-mole):	67.3955
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	2.0750
Daily Avg. Liquid Surface Temp. (deg. R):	518.2062
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	10 701
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	515.8442
Tank Paint Solar Absorptance (Shell):	0.1700 0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	1,765.3167
Factor (Btu/sqft day):	1,705.5107
Vapor Space Expansion Factor	0.4400
Vapor Space Expansion Factor:	0.1103
Daily Vapor Temperature Range (deg. R):	28.5089
Daily Vapor Pressure Range (psia):	0.6171
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0750
Surface Temperature (psia):	2.0750
Vapor Pressure at Daily Minimum Liquid	1 7000
Surface Temperature (psia):	1.7868
Vapor Pressure at Daily Maximum Liquid	2 4020
Surface Temperature (psia):	2.4039
Daily Avg. Liquid Surface Temp. (deg R):	518.2062
Daily Min. Liquid Surface Temp. (deg R):	511.0790
Daily Max. Liquid Surface Temp. (deg R):	525.3334
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	0 5075
Vented Vapor Saturation Factor:	0.5075
Vapor Pressure at Daily Average Liquid:	2 0750
Surface Temperature (psia):	2.0750
Vapor Space Outage (ft):	8.8231
Working Losses (Ib):	238.9314
	200.0014

Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liguid	67.3955
Surface Temperature (psia):	2.0750
Annual Net Throughput (gal/yr.):	71,757.0000
Annual Turnovers:	5.7000
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	12,600.0000
Maximum Liquid Height (ft):	14.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	751.7112

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual


29-6#2 T29 & T30 (Condensate) - Vertical Fixed Roof Tank Blanco, New Mexico

	Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions			
Condensate	238.93	512.78	751.71			
Iso-Butane	59.84	128.44	188.28			
Butane (-n)	68.91	147.88	216.79			
Isopentane	31.41	67.41	98.83			
Pentane (-n)	21.28	45.66	66.94			
Hexane (-n)	21.74	46.65	68.39			
Heptane (-n)	20.21	43.38	63.59			
Octane (-n)	7.87	16.90	24.77			
Nonane (-n)	1.62	3.47	5.08			
Decane (-n)	0.65	1.39	2.04			
Benzene	1.48	3.17	4.65			
Ethylbenzene	0.09	0.20	0.30			
2,2,4-Trimethylpentane (isooctane)	0.10	0.21	0.30			
Toluene	2.72	5.83	8.55			
Xylenes (mixed isomers)	1.02	2.18	3.20			

TANKS 4.0 Report

Bryan Research & Engineering, Inc. ProMax® 3.2 with TSWEET*& PROSIMI* Copyright (#) BRE Group Ltd 2002-2013 All Rights Reserved
Simulation Report
Project: 29-6#2 Tank Flash PTE - Single Tank.pmx
Licensed to Williams Midstream Natural Gas Liquids, Inc. and Customer's Org. Client Name: Williams Location: 29-6#2 Job: PTE Model ProMax Filename: C:\Users\khong\Desktop\29-6#2 Tank Flash PTE\29-6#2 Tank Flash PTE - Single Tank.pmx ProMax Version: 3.2.13330.0 Simulation Initiated: 12/21/2017 8:07:33 AM
Bryan Research & Engineering, Inc. Chemical Engineering Consultants P.O. Box 4747 Bryan, Texas 77805 Office: (979) 776-5220 FAX: (979) 776-4818 mailto:sales@bre.com http://www.bre.com/ Report Navigator can be activated via the ProMax Navigator Toolbar. An asterisk (*), throughout the report, denotes a user specified value. A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.

29-6#2 Condensate Flash Emissions

Process Streams		Condensate Truck Loading	FG from Tanks	Inlet Liquids
Composition	Status:	Solved	Solved	Solved
Phase: Total	From Block:	Condensate Storage Tank	Condensate Storage Tank	
	To Block:		-	Condensate Storage Tank
Mass Fraction				
Nitrogen		1.09519E-05	0.0310309	0.000475193
Methane		0.000276913	0.218157	0.00353768
Carbon Dioxide		0.000129593	0.0335677	0.000630025
Ethane		0.00144485	0.167902	0.00393604
Propane		0.00633721	0.195367	0.00916621
sobutane		0.00566112	0.0645521	0.00654248
n-Butane		0.0117140	0.0922732	0.0129197
sopentane		0.0178007	0.0517249	0.0183085
-Pentane		0.0176679	0.0373086	0.0179618
Hexane		0.0648493	0.0384606	0.0644543
2,2,4-Trimethylpentane		0.000929481	0.000191146	0.000918431
Benzene		0.00723992	0.00402805	0.00719185
leptane		0.189753	0.0353404	0.187442
		0.0473257	0.00724981	0.0467259
Octane		0.307690	0.0170504	0.303340
Ethylbenzene		0.00505845	0.000234943	0.00498626
n-Xylene		0.0650813	0.00250350	0.0641448
Nonane		0.140397	0.00245088	0.138333
C10 Mass Flow		0.110632 Ib/h	0.000607442 Ib/h	0.108986 Ib/h
Nitrogen		0.00106632	0.0459036	0.0469700
/lethane		0.0269615	0.322717	0.349678
Carbon Dioxide		0.01269813		0.0622741
Ethane		0.0126178	0.0496563 0.248376	0.389053
Propane			0.248376	0.389033
sobutane		0.617020 0.551193	0.289004	0.646684
i-Butane		1.14053	0.136499	1.27703
sopentane		1.73316	0.0765161	1.80968
-Pentane		1.72022	0.0551902	1.77542
lexane		6.31402	0.0568944	6.37092
2,2,4-Trimethylpentane		0.0904986	0.000282760	0.0907813
Benzene		0.704912	0.00595865	0.710871
leptane		18.4752	0.0522787	18.5275
Toluene		4.60784	0.0107246	4.61857
Dctane		29.9581	0.0252225	29.9833
Ethylbenzene		0.492514	0.000347548	0.492862
n-Xylene		6.33662	0.00370341	6.34032
Vonane		13.6697	0.00362556	13.6734
C10		10.7717	0.000898582	10.7726
Nole Fraction			0.00000002	1011120
litrogen		4.11955E-05	0.0362648	0.00173
/lethane		0.00181886	0.445200	0.02249
Carbon Dioxide		0.000310286	0.0249708	0.00146
Ethane		0.00506327	0.182808	0.01335
Propane		0.0151436	0.145048	0.0212
sobutane		0.0102633	0.0363602	0.01148
-Butane		0.0212370	0.0519746	0.02267
sopentane		0.0259978	0.0234708	0.02588
-Pentane		0.0258037	0.0169293	0.02539
lexane		0.0792957	0.0146114	0.07628
2,2,4-Trimethylpentane		0.000857420	5.47833E-05	0.00082
Benzene		0.00976663	0.00168824	0.00939
leptane		0.199545	0.0115466	0.19078
oluene		0.0541232	0.00257599	0.05172
Dctane		0.283835	0.00237333	0.27083
Ethylbenzene		0.00502070	7.24499E-05	0.27003
n-Xylene		0.0645956	0.000772013	0.06162
Nonane		0.0045950	0.000625612	0.00102
		0.110049	0.000020012	0.11

Process Streams		Condensate Truck Loading	FG from Tanks	Inlet Liquids
Properties	Status:	Solved	Solved	Solved
Phase: Total	From Block:	Condensate Storage Tank	Condensate Storage Tank	-
	To Block:			Condensate Storage Tank
Property	Units			
Temperature	°F	65	65*	62.5*
Pressure	psia	11.9	11.9*	110*
Molecular Weight	lb/lbmol	105.373	32.7384	101.986
Mass Density	lb/ft^3	44.6290	0.0696922	44.4980
Molar Flow	lbmol/h	0.924003	0.0451851	0.969188
Mass Flow	lb/h	97.3646	1.47929	98.8439
Liquid Volumetric Flow	gpm	0.271997	2.64637	0.276943
Std Liquid Volumetric Flow	sgpm	0.273*	0.00660039	0.279600
Vapor Volumetric Flow	ft^3/h	2.18165	21.2261	2.22131
Std Vapor Volumetric Flow	MMSCFD	0.00841548	0.000411529	0.00882701

Truck Loading (Condensate) Emissions Calculations

Unit Number: L1 Description: Truck Loading (Insignificant Source)

Emission Factor

0.6	Saturation factor, S	AP-42, Table 5.2-1 (submerged loading & dedicated service)
2.4039 psia (maximum)	True vapor pressure of liquid, P	TANKS 4.0 output file
2.075 psia (average)	True vapor pressure of liquid, P	TANKS 4.0 output file
67.3955 lb/lb-mole	Molecular weight of vapors, M	TANKS 4.0 output file
65.66 °F (maximum)	Temperature of liquid	TANKS 4.0 output file
58.54 °F (average)	Temperature of liquid	TANKS 4.0 output file
525.33 °R (maximum)	Temperature of liquid, T	°F + 459.67
518.21 °R (average)	Temperature of liquid, T	°F + 459.67
2.31 lb/10 ³ gal (maximum)	Emission factor, L	AP-42, Section 5.2, Equation 1
2.02 lb/10 ³ gal (average)	Emission factor, L	AP-42, Section 5.2, Equation 1
		$L = 12.46 \frac{\text{SPM}}{\text{T}}$
Production Rate		
8.82 10^3 gal/hr	Maximum hourly production rate	Harvest Four Corners, LLC
143.51 10^3 gal/yr	Maximum annual production rate	Harvest Four Corners, LLC

Steady-State Emission Rates

Pollutant	Uncontrolled Emission Rates,					
	pph	tpy				
VOC	20.34	1.45E-01				

The short-term emission rates are calculated using the maximum true vapor pressure and maximum temperature of the liquid The annual emission rates are calculated using the average true vapor pressure and average temperature of the liquid Uncontrolled Emission Rate (pph) = lb/10^3 gal x 10^3 gal/hr

Uncontrolled Emission Rate (tpy) = lb/10^3 gal x 10^3 gal/yr / 2,000 lb/ton

	Percent		
Pollutants	of VOC,	Uncontrolled E	mission Rates,
	%	pph	tpy
Benzene	0.6186	1.26E-01	8.96E-04
Ethylbenzene	0.0399	8.12E-03	5.78E-05
n-Hexane	9.0979	1.85E+00	1.32E-02
Isooctane	0.0399	8.12E-03	5.78E-05
Toluene	1.1374	2.31E-01	1.65E-03
m-Xylene	0.4257	8.66E-02	6.16E-04

Percent of VOC calculated from the TANKS 4.0 results

Percent of VOC (%) = 100 x Pollutant Emission Rate (lb/yr) / Total VOC Emission Rate (lb/yr) Emission Rates (pph) = VOC Emission Rate (pph) x (% / 100) Emission Rates (tpy) = VOC Emission Rate (tpy) x (% / 100)

Truck Loading (Produced Water) Emissions Calculations

Unit Number: L2

Description: Truck Loading (Insignificant Source)

Emission Factor

0.6	Saturation factor, S	AP-42, Table 5.2-1 (submerged loading & dedicated service)
0.4581 psia (maximum)	True vapor pressure of liquid, P	Estimated using Antoine's Equation (see calculations below)
0.3045 psia (average)	True vapor pressure of liquid, P	Estimated using Antoine's Equation (see calculations below)
18.02 lb/lb-mole	Molecular weight of vapors, M	TANKS 4.0 Database
77 °F (maximum)	Temperature of liquid	Estimated (see calculations below)
65 °F (average)	Temperature of liquid	Estimated (see calculations below)
536.67 °R (maximum)	Temperature of liquid, T	°F + 459.67
524.67 °R (average)	Temperature of liquid, T	°F + 459.67
0.11 lb/10 ³ gal (maximum)	Emission factor, L	AP-42, Section 5.2, Equation 1
0.08 lb/10 ³ gal (average)	Emission factor, L	AP-42, Section 5.2, Equation 1
		$L = 12.46 \frac{SPM}{T}$

Maximum hourly production rate

Maximum annual production rate

Production Rate

8.82 10^3 gal/hr 298.37 10^3 gal/yr

Steady-State Emission Rates

Pollutant	Uncontrolled Emission Rates,					
	pph	tpy				
VOC	1.01E+00	1.17E-02				
T I I I I						

The short-term emission rates are calculated using the maximum true vapor pressure and maximum temperature of the liquid The annual emission rates are calculated using the average true vapor pressure and average temperature of the liquid Uncontrolled Emission Rate (pph) = lb/10^3 gal x 10^3 gal/hr

Harvest Four Corners, LLC

Harvest Four Corners, LLC

Uncontrolled Emission Rate (tpy) = lb/10^3 gal x 10^3 gal/yr / 2,000 lb/ton

	Mass		
Pollutants	Fraction	Uncontrolled E	mission Rates,
		pph	tpy
Benzene	0.0267	2.71E-04	3.12E-06
Ethylbenzene	0.0027	2.71E-05	3.12E-07
n-Hexane	0.0840	8.52E-04	9.79E-06
Toluene	0.0344	3.48E-04	4.01E-06
m-Xylene	0.0229	2.32E-04	2.67E-06

HAP mass fractions are estimated from the produced water tank emission factors HAP Mass Fraction = HAP Emission Factor (lb/bbl) / VOC Emission Factor (lb/bbl) Emission Rates (pph) = VOC Emission Rate (pph) x HAP Mass Fraction

Emission Rates (tpy) = VOC Emission Rate (tpy) x HAP Mass Fraction

Truck Loading (Produced Water) Emissions Calculations

Unit Number: L2

Description: Truck Loading (Insignificant Source)

Vapor Pressure of Produced Water:

It is estimated that the true vapor pressure of produced water is approximately equal to the true vapor pressure of pure water. An estimate of the true vapor pressure for water is calculated using Antoine's equation (see AP-42, Section 7.1, Equation 1-25).

<u>Maximum:</u>		Average:	
Temperature =	77 °F	Temperature =	<mark>65</mark> °F
log P = A - (B / (C + T))	log P = A - (B / (C + T)))
A = 8.07131 B = 1730.63 C = 233.426 T = P = mmHg	25.00 °C	A = 8.07131 B = 1730.63 C = 233.426 T = P = mmHg	18.33 °C
P = 10^(A - (B / (C + T))	P = 10^(A - (B / (C + T	-))
P = P =	23.69 mmHg 0.4581 psi	P = P =	15.75 mmHg 0.3045 psi

Note: 760 mmHg = 14.7 psia

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

Identification	
User Identification:	29-6#2 - T25 (Produced H2O)
City:	Blanco
State:	New Mexico
Company:	Harvest Four Corners, LLC
Type of Tank:	Vertical Fixed Roof Tank
Description:	4,200 Gallon Produced Water Storage Tank
Tank Dimensions	
Shell Height (ft):	7.25
Diameter (ft):	10.00
Liquid Height (ft)	7.25
Avg. Liquid Height (ft):	3.75
Volume (gallons):	4,200.00
Turnovers:	71.04
Net Throughput(gal/yr):	298,368.00
Is Tank Heated (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good
Roof Characteristics	
Type:	Dome
Height (ft)	0.00
Radius (ft) (Dome Roof)	10.00
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03
o (1 o)	

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

29-6#2 - T25 (Produced H2O) - Vertical Fixed Roof Tank Blanco, New Mexico

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Produced Water	All	58.54	51.41	65.66	56.17	0.2971	0.2362	0.3744	24.7887			18.15	
Benzene						1.1212	0.9158	1.3637	78.1100	0.0000	0.0000	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						25.4384	22.2168	29.0506	58.1230	0.0018	0.1122	58.12	Option 1: VP50 = 21.58 VP60 = 26.1
Ethylbenzene						0.1031	0.0800	0.1318	106.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.8417	1.5232	2.2130	86.1700	0.0012	0.0056	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Iso-Butane						37.2383	32.8479	42.1157	58.1230	0.0018	0.1643	58.12	Option 1: VP50 = 31.98 VP60 = 38.14
Isopentane						9.6953	8.1871	11.4350	72.1500	0.0026	0.0618	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Pentane (-n)						6.6165	5.6308	7.7408	72.1500	0.0026	0.0422	72.15	Option 3: A=27691, B=7.558
Toluene						0.3154	0.2512	0.3929	92.1300	0.0000	0.0000	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Water						0.2517	0.1965	0.3224	18.0150	0.9900	0.6139	18.02	Option 1: VP50 = .1856 VP60 = .263
Xylenes (mixed isomers)						0.0858	0.0664	0.1100	106.1700	0.0000	0.0000	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

29-6#2 - T25 (Produced H2O) - Vertical Fixed Roof Tank Blanco, New Mexico

Annual Emission Calcaulations	
Standing Losses (Ib):	9.1873
Vapor Space Volume (cu ft):	328.7602
Vapor Density (lb/cu ft):	0.0013
Vapor Space Expansion Factor:	0.0616
Vented Vapor Saturation Factor:	0.9382
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	328.7602
Tank Diameter (ft):	10.0000
Vapor Space Outage (ft):	4.1859
Tank Shell Height (ft):	7.2500
Average Liquid Height (ft):	3.7500
Roof Outage (ft):	0.6859
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.6859
Dome Radius (ft):	10.0000
Shell Radius (ft):	5.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0013
Vapor Molecular Weight (lb/lb-mole):	24.7887
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2971
Daily Avg. Liquid Surface Temp. (deg. R):	518.2062
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	10.731
(psia cuft / (lb-mol-deg R)):	
Liquid Bulk Temperature (deg. R):	515.8442
Tank Paint Solar Absorptance (Shell): Tank Paint Solar Absorptance (Roof):	0.1700 0.1700
Daily Total Solar Insulation	0.1700
Factor (Btu/sqft day):	1,765.3167
raciór (Bu/sqli day).	1,705.5107
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0616
Daily Vapor Temperature Range (deg. R):	28.5089
Daily Vapor Pressure Range (psia):	0.1382
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0071
Surface Temperature (psia):	0.2971
Vapor Pressure at Daily Minimum Liquid	0.0000
Surface Temperature (psia):	0.2362
Vapor Pressure at Daily Maximum Liquid	0.0711
Surface Temperature (psia):	0.3744
Daily Avg. Liquid Surface Temp. (deg R):	518.2062
Daily Min. Liquid Surface Temp. (deg R):	511.0790
Daily Max. Liquid Surface Temp. (deg R):	525.3334
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	0.0000
Vented Vapor Saturation Factor:	0.9382
Vapor Pressure at Daily Average Liquid:	0.0071
Surface Temperature (psia):	0.2971
Vapor Space Outage (ft):	4.1859
Working Losses (Ib):	30.8172
	00.0172

Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	24.7887	
Surface Temperature (psia):	0.2971	
Annual Net Throughput (gal/yr.):	298,368.0000	
Annual Turnovers:	71.0400	
Turnover Factor:	0.5890	
Maximum Liquid Volume (gal):	4,200.0000	
Maximum Liquid Height (ft):	7.2500	
Tank Diameter (ft):	10.0000	
Working Loss Product Factor:	1.0000	
Total Losses (lb):	40.0046	

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

29-6#2 - T25 (Produced H2O) - Vertical Fixed Roof Tank Blanco, New Mexico

		Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions						
Produced Water	30.82	9.19	40.00						
Benzene	0.00	0.00	0.00						
Butane (-n)	3.46	1.03	4.49						
Hexane (-n)	0.17	0.05	0.22						
Iso-Butane	5.06	1.51	6.57						
Isopentane	1.90	0.57	2.47						
Pentane (-n)	1.30	0.39	1.69						
Toluene	0.00	0.00	0.00						
Water	18.92	5.64	24.56						
Ethylbenzene	0.00	0.00	0.00						
Xylenes (mixed isomers)	0.00	0.00	0.00						

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

Pressure Settings (psig)

User Identification: City: State: Company: Type of Tank: Description:	29-6#2 T31 (Methanol) Blanco New Mexico Harvest Four Corners, LLC Horizontal Tank 500 Gallon Methanol Storage Tank
Tank Dimensions	
Shell Length (ft):	6.00
Diameter (ft):	4.00
Volume (gallons):	500.00
Turnovers:	12.00
Net Throughput(gal/yr).	6,000.00
Is Tank Heated (y/n):	Ν
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	White/White
Shell Condition	Good
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Dragouro Cottingo (noig)	0.02

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

0.03

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

29-6#2 T31 (Methanol) - Horizontal Tank Blanco, New Mexico

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapor Pressure (psia)		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methyl alcohol	All	58.54	51.41	65.66	56.17	1.3769	1.0943	1.7198	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

29-6#2 T31 (Methanol) - Horizontal Tank Blanco, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb):	13.0454
Vapor Space Volume (cu ft):	48.0243
Vapor Density (lb/cu ft):	0.0079
	0.1075
Vapor Space Expansion Factor:	0.8726
Vented Vapor Saturation Factor:	0.8720
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	48.0243
Tank Diameter (ft):	4.0000
Effective Diameter (ft):	5.5293
Vapor Space Outage (ft):	2.0000
Tank Shell Length (ft):	6.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0079
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	52.0400
Surface Temperature (psia):	1.3769
Daily Avg. Liquid Surface Temp. (deg. R):	518.2062
	516.2062
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	56.1542
	10 721
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	515.8442
Tank Paint Solar Absorptance (Shell):	0.1700
Daily Total Solar Insulation	1 765 2467
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.1075
Daily Vapor Temperature Range (deg. R):	28.5089
Daily Vapor Pressure Range (psia):	0.6255
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.3769
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	1.0943
Vapor Pressure at Daily Maximum Liquid	1100 10
Surface Temperature (psia):	1.7198
Daily Avg. Liquid Surface Temp. (deg R):	518.2062
Daily Min. Liquid Surface Temp. (deg R):	511.0790
Daily Max. Liquid Surface Temp. (deg R):	525.3334
Daily Ambient Temp. Range (deg. R):	27.9250
Daily Ambient Temp. Nange (deg. N).	21.3250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.8726
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	1.3769
Vapor Space Outage (ft):	2.0000
· · · · · ·	
Working Losses (Ib):	6.3024
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	32.0400
Surface Temperature (psia):	1.3769
Annual Net Throughput (gal/yr.):	6.000.0000
Annual Turnovers:	12.0000
Turnover Factor:	1.0000
	1.0000

TANKS 4.0 Report

Tank Diameter (ft):	4.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	19.3478

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

29-6#2 T31 (Methanol) - Horizontal Tank Blanco, New Mexico

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Methyl alcohol	6.30	13.05	19.35				

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

CO₂, CH₄, and N₂O exhaust emissions were calculated using emission factors from 40 Code of Federal Regulations (CFR), Part C, Tables C-1 & C-2 and the combustion source higher heating value (HHV) design heat rates.

The SSM and malfunction CO₂ and CH₄ emissions from blowdown events were calculated from the annual blowdown volumes and gas composition.

The reciprocating compressor CO₂ and CH₄ emissions were calculated using a combination of equations W-26 & W-36 (from Subpart W).

Dehydrator CO2 and CH4 emissions were calculated using GRI-GLYCalc.

CO2 and CH4 equipment leak emissions were calculated using the TOC emission factors and gas stream composition.

Condensate tank CO2 and CH4 emissions were calculated from throughput and composition data in the ProMax output file.

		Facility Total Emissions						
Sources		CO2,	CH4,	N2O,	GHG,	CO2e,		
		tpy	tpy	tpy	tpy	tpy		
Engine & Turbine Exhaust		48,083.62	9.06E-01	9.06E-02	48,084.62	48,133.28		
SSM Blowdowns		14.57	33.02		47.59	840.05		
Reciprocating Compressor Venting		184.10	417.88		601.99	10,631.20		
Dehydrators		160.66	4.84		165.49	281.55		
Reboiler Exhaust		2,470.53	4.66E-02	4.66E-03	2,470.59	2,473.09		
Equipment Leaks		8.25	18.72		26.97	476.36		
Malfunctions		37.36	84.66		122.02	2,153.97		
Separators & Storage Tanks (Flash Emissions)		5.53E-02	1.18E-01		1.73E-01	3.01		
	Total	50,959.15	560.20	9.53E-02	51,519.45	64,992.50		

Engine & Turbine Exhaust Emissions

Unit		E	Emission Factor	rs	Emission Rates			
Numbers	Description	CO2,	CH4,	N2O,	CO2,	CH4,	N2O,	
		kg/MMBtu	kg/MMBtu	kg/MMBtu	tpy	tpy	tpy	
4	Waukesha 7042GL	53.06	1.00E-03	1.00E-04	6,010.45	1.13E-01	1.13E-02	
5	Waukesha 7042GL	53.06	1.00E-03	1.00E-04	6,010.45	1.13E-01	1.13E-02	
6	Waukesha 7042GL	53.06	1.00E-03	1.00E-04	6,010.45	1.13E-01	1.13E-02	
7	Waukesha 7042GL	53.06	1.00E-03	1.00E-04	6,010.45	1.13E-01	1.13E-02	
8	Waukesha 7042GL	53.06	1.00E-03	1.00E-04	6,010.45	1.13E-01	1.13E-02	
9	Waukesha 7042GL	53.06	1.00E-03	1.00E-04	6,010.45	1.13E-01	1.13E-02	
10	Waukesha 7042GL	53.06	1.00E-03	1.00E-04	6,010.45	1.13E-01	1.13E-02	
11	Waukesha 7042GL	53.06	1.00E-03	1.00E-04	6,010.45	1.13E-01	1.13E-02	
	Total				48,083.62	9.06E-01	9.06E-02	

The emissions factors are taken from 40 CFR 98, Subpart C, Tables C-1 & C-2 Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton

				LHV	HHV	
Unit			Operating	Design	Design	Fuel
Numbers	Description	Fuel Types	Times,	Heat Rates,	Heat Rates,	Usages,
			hr/yr	MMBtu/hr	MMBtu/hr	MMBtu/yr
4	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
5	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
6	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
7	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
8	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
9	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
10	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
11	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979

The fuel types and operating times are provided by Harvest

The LHV design heat rates are taken from manufacturers data

HHV Design Heat Rates (MMBtu/hr) = LHV Design Heat Rates (MMBtu/hr) / 0.9 LHV/HHV

HHV Fuel Usages (MMBtu/yr) = HHV Design Heat Rates (MMBtu/hr) x hr/yr

SSM Blowdown Emissions

			CO2	CH4		
Unit		Total	Emission	Emission	Emission Rates	
Numbers	Description	Gas Losses,	Factors,	Factors,	CO2,	CH4,
		scf/yr	lb/scf	lb/scf	tpy	tpy
SSM	SSM Blowdowns	1,944,303	0.0150	0.0340	14.57	33.02

The annual blowdown volumes are calculated from data provided by Harvest

The CO2 and CH4 emission factors are calculated from the facility extended gas analysis

Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Reciprocating Compressor Venting Emissions

Unit		Emissic	n Rates
Numbers	Description	CO2,	CH4,
		tpy	tpy
NA	Blowdown Valve Leakage	17.59	39.92
NA	Rod Packing Emissions	166.52	377.97
NA	Isolation Valve Leakage	0.00	0.00
	Total	184.10	417.88

Operating or standby mode - includes blowdown valve leakage through blowdown vent stack

Operating mode - includes rod packing emissions

Non-operating depressurized mode - includes isolation valve leakage through open blowdown vents (without blind flanges)

Rod packing gas emissions assume 4 cylinders per compressor

A combination of equations W-26 & W-36 (Subpart W) is used to calculate reciprocating compressor emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rates (tpy) = # x scf/hr x hr/yr x (CO2 Mole Percent (%) / 100) x CO2 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rates (tpy) = # x scf/hr x hr/yr x (CH4 Mole Percent (%) / 100) x CH4 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

Unit		Number of	Gas	Operating	CO2 Mole	CH4 Mole	CO2	CH4
Numbers	Description	Compressors	Emissions,	Times,	Percents,	Percents,	Density,	Density,
		#	scf/hr	hr/yr	%	%	kg/scf	kg/scf
NA	Blowdown Valve Leakage	8	33.5	8,760	12.92	80.34	0.0526	0.0192
NA	Rod Packing Emissions	8	317.2	8,760	12.92	80.34	0.0526	0.0192
NA	Isolation Valve Leakage	8	10.5	0	12.92	80.34	0.0526	0.0192

The number of compressors is provided by Harvest

Blowdown valve leakage (33.5 scf/hr) and rod packing emissions occur in operating mode

Blowdown valve leakage (10.5 scf/hr) occurs in standby pressurized mode

Emission factors are the three year rolling average (2012-2014) of all measurements in the Williams Field Services, LLC compressor fleet located at natural gas processing plants

The operating times (the average operating times for all station compressors combined) are provided by Harvest

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The CO2 & CH4 densities (kg/scf) are taken from Subpart W, Paragraph 98.233(v)

Dehydrator Emissions

Unit		Emissic	on Rates
Numbers	Description	CO2,	CH4,
		tpy	tpy
16a	Dehydrator (12 MMSCFD)	40.16	1.21
17a	Dehydrator (12 MMSCFD)	40.16	1.21
21a	Dehydrator (12 MMSCFD)	40.16	1.21
22a	Dehydrator (12 MMSCFD)	40.16	1.21
	Total	160.66	4.84

The emission rates are taken from the GRI-GLYCalc output file

Reboiler Exhaust Emissions

Unit		E	Emission Factor	ſS	Emission Rates		
Numbers	Description	CO2,	CH4,	N2O,	CO2,	CH4,	N2O,
		kg/MMBtu	kg/MMBtu	kg/MMBtu	tpy	tpy	tpy
16b	Reboiler (1.09 MMBtu/hr)	53.06	1.00E-03	1.00E-04	617.63	1.16E-02	1.16E-03
17b	Reboiler (1.09 MMBtu/hr)	53.06	1.00E-03	1.00E-04	617.63	1.16E-02	1.16E-03
21b	Reboiler (1.09 MMBtu/hr)	53.06	1.00E-03	1.00E-04	617.63	1.16E-02	1.16E-03
22b	Reboiler (1.09 MMBtu/hr)	53.06	1.00E-03	1.00E-04	617.63	1.16E-02	1.16E-03
	Total				2,470.53	4.66E-02	4.66E-03

The emissions factors are taken from 40 CFR 98, Subpart C, Tables C-1 & C-2

Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton

				LHV			HHV	
Unit			Operating	Fuel	Fuel Heat	Fuel	Fuel	Fuel
Numbers	Description	Fuel Types	Times	Usages,	Contents,	Usages,	Usages,	Usages,
			hr/yr	scf/hr	Btu/scf	MMBtu/hr	MMBtu/hr	MMBtu/yr
16b	Reboiler (1.09 MMBtu/hr)	Nat. Gas	8,760	1,208	900	1.09	1.21	10,582
17b	Reboiler (1.09 MMBtu/hr)	Nat. Gas	8,760	1,208	900	1.09	1.21	10,582
21b	Reboiler (1.09 MMBtu/hr)	Nat. Gas	8,760	1,208	900	1.09	1.21	10,582
22b	Reboiler (1.09 MMBtu/hr)	Nat. Gas	8,760	1,208	900	1.09	1.21	10,582

The fuel types and operating times are provided by Harvest

The LHV fuel usages (scf/hr) are taken from manufacturer's data

The LHV fuel heat contents are estimated based on the value typically used by manufacturers

LHV Fuel Usages (MMBtu/hr) = LHV Fuel Usages (scf/hr) x Btu/scf / 1,000,000 Btu/MMBtu

HHV Fuel Usages (MMBtu/hr) = LHV Fuel Usages (MMBtu/hr) / 0.9 LHV/HHV

HHV Fuel Usages (MMBtu/yr) = HHV Fuel Usages (MMBtu/hr) x hr/yr

Equipment Leaks Emissions

Unit		Emissio	on Rates
Numbers	Description	CO2,	CH4,
		tpy	tpy
NA	Valves	6.1	13.8
NA	Connectors	0.9	2.0
NA	Open-Ended Lines	0.4	1.0
NA	Pressure Relief Valves	0.8	1.9
	Total	8.2	18.7

A combination of equations W-31 & W-36 (Subpart W) is used to calculate uncombusted CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rate (tpy) = # x scf/hr/component x (CO2 Content (mole %) / 100) x hr/yr x CO2 Density (kg/scf) x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rate (tpy) = # x scf/hr/component x (CH4 Content (mole %) / 100) x hr/yr x CH4 Density (kg/scf) x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

			Emission					
Unit		Number of	Factors,	CO2	CH4	Operating	CO2	CH4
Numbers	Description	Components,	scf/hr	Contents,	Contents,	Times,	Density,	Density,
		#	/component	mole %	mole %	hr/yr	kg/scf	kg/scf
NA	Valves	765	0.121	12.92	80.34	8,760	0.0526	0.0192
NA	Connectors	799	0.017	12.92	80.34	8,760	0.0526	0.0192
NA	Open-Ended Lines	214	0.031	12.92	80.34	8,760	0.0526	0.0192
NA	Pressure Relief Valves	67	0.193	12.92	80.34	8,760	0.0526	0.0192

The number of sources are calculated based on the number of compressors and dehydrators at the station (see criteria pollutant and HAP equipment leaks calculations)

The emission factors are taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The operating times are provided by Harvest (default is the entire year)

The CO2 & CH4 densities are taken from Subpart W, Paragraph 98.233(v)

Malfunction Emissions

		Total	VOC	CO2	CH4			
Unit		Component	Component	Weight %	Weight %		Emission Rates	6
Number	Description	Weight,	Weight,	of Total,	of Total,	VOC,	CO2,	CH4,
		lb/lb-mole	lb/lb-mole	%	%	tpy	tpy	tpy
M1	Malfunctions	21.30	1.52	26.69	60.49	10.00	37.36	84.66

The total & VOC component weights and CO2 & CH4 weight % of totals are calculated from the facility extended gas analysis The VOC emission rate is estimated (see calculations workbook)

CO2 Emission Rate (tpy) = VOC Emission Rate (tpy) x (Total Component Weight (lb/lb-mole) / VOC Component Weight (lb-lb-mole)) x (CO2 Weight % of Total (%) / 100)

CH4 Emission Rate (tpy) = VOC Emission Rate (tpy) x (Total Component Weight (lb/lb-mole) / VOC Component Weight (lb-lb-mole)) x (CH4 Weight % of Total (%) / 100)

Separators & Storage Tanks (Flash Emissions)

Unit		Emissio	on Rates	Operating	Emissio	on Rates
Number	Description	CO2,	CH4,	Time,	CO2,	CH4,
		pph	pph	hr/yr	tpy	tpy
T29	Condensate Storage Tank	6.31E-03	1.35E-02	8,760	2.76E-02	5.90E-02
Т30	Condensate Storage Tank	6.31E-03	1.35E-02	8,760	2.76E-02	5.90E-02
	Total				5.53E-02	1.18E-01

Short-term emission rates (pph) are taken from the ProMax output

The operating times are provided by Harvest

Emission Rate (tpy) = Emission Rate (pph) x Operating Time (hr/yr) / 2,000 lb/ton

Gas Stream Composition

Components	Mole Percents, %	Molecular Weights, lb/lb-mole	Component Weights, Ib/Ib-mole	Weight Percent of Total, %	Emission Factors, lb/scf
Carbon Dioxide	12.9196	44.01	5.69	26.6919	0.0150
Hydrogen Sulfide	0.0000	34.07	0.00	0.0000	0.0000
Nitrogen	0.0996	28.01	0.03	0.1309	0.0001
Methane	80.3387	16.04	12.89	60.4935	0.0340
Ethane	3.9236	30.07	1.18	5.5386	0.0031
Propane	1.4805	44.09	0.65	3.0643	0.0017
IsoButane	0.2777	58.12	0.16	0.7577	0.0004
Normal Butane	0.3691	58.12	0.21	1.0070	0.0006
IsoPentane	0.1490	72.15	0.11	0.5045	0.0003
Normal Pentane	0.1012	72.15	0.07	0.3428	0.0002
Cyclopentane	0.0067	70.14	0.00	0.0221	0.0000
n-Hexane	0.0570	86.17	0.05	0.2304	0.0001
Cyclohexane	0.0193	84.16	0.02	0.0761	0.0000
Other Hexanes	0.1097	86.18	0.09	0.4436	0.0002
Heptanes	0.0431	100.20	0.04	0.2027	0.0001
Methylcyclohexane	0.0479	98.19	0.05	0.2206	0.0001
2,2,4-Trimethylpentane	0.0027	100.21	0.00	0.0127	0.0000
Benzene	0.0061	78.11	0.00	0.0224	0.0000
Toluene	0.0153	92.14	0.01	0.0660	0.0000
Ethylbenzene	0.0003	106.17	0.00	0.0015	0.0000
Xylenes	0.0059	106.17	0.01	0.0292	0.0000
C8+ heavies	0.0275	110.00	0.03	0.1417	0.0001
Total	100.0000		21.30	100.0000	0.0561
VOC			1.52		0.0040

Gas stream composition obtained from 29-6#2 extended gas analysis (blended) dated 04/06/2022 Component Weights (lb/lb-mole) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole) Weight Percent of Total (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole) Emission Factors (lb/scf) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole) / 379.4 scf/lb-mole This Page Intentionally Left Blank

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- ☑ If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- \Box If an older version of AP-42 is used, include a complete copy of the section.
- \blacksquare If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

STANDARD EQUIPMENT

AIR CLEANER - Two, dry type with rain shield and service indicator.

BARRING DEVICE - Manual.

BEARINGS - Heavy duty, replaceable, precision type.

BREATHER - Closed system.

CONNECTING RODS - Drop forged steel, rifle drilled.

CONTROL SYSTEM - Pneumatic. Includes pilot operated valves for air start and prelube. Engine mounted control panel with two push button valves. Pilot operated air start valves omitted when starter is not furnished by Waukesha. Includes engine On/Off push button. One mounted on either side of the engine.

CRANKCASE - Integral crankcase and cylinder frame. Main bearing caps drilled and tapped for temperature sensors. Does not include sensors.

CRANKSHAFT - Counterweighted, forged steel, seven main bearings, and dynamically balanced.

CYLINDERS - Removable wet type cylinder liners, chrome plated on outer diameter. Induction hardened.

CYLINDER HEADS - Twelve interchangeable. Two hard faced intake and two hard faced exhaust valves per cylinder. Hard faced intake and exhaust valve seat inserts. Roller valve lifters and hydraulic push rods. Includes prechamber and related fuel control valves.

ENGINE ROTATION - Counterclockwise when facing flywheel.

ENGINE MONITORING DEVICES - Engine thermocouples. K-type, for jacket water temperature, lube oil temperature, intake manifold temperature, individual cylinder exhaust temperature and a common pre turbine temperatures, one on each bank. Magnetic pickup wired for customer supplied tachometer. Lube oil pressure and intake manifold pressure sensing lines are terminated in a common bulk head.

EXHAUST OUTLET - Single vertical at rear. Flexible stainless steel connection with 8" (203 mm) pipe flange.

FLYWHEEL - Approx. WR² = 155000 lb-in²; with ring gear (208 teeth), machined to accept two drive adapters: 31.88" (810 mm) pilot bore, 30.25" (768 mm) bolt circle, (12) 0.75"-10 tapped holes; or 28.88" (734 mm) pilot bore, 27.25" (692 mm) bolt circle, (12) 0.625"-11 tapped holes and (12) 0.75"-10 tapped holes.

FLYWHEEL HOUSING - No. 00 SAE.

FUEL SYSTEM - Dual natural gas, 4" (102 mm) duplex updraft carburetors. Two Fisher Model 99, 2" (51 mm) gas regulators,

30 - 50 psi (241 - 345 kPa) gas inlet pressure required. Prechamber fuel system and control logic. GOVERNOR - Woodward UG-8 LD hydraulic lever type, with friction type speed control. Mounted on right hand side.

IGNITION - Waukesha Custom Engine Control Ignition Module. Electronic digital ignition system. 24V DC power required.

INTERCOOLER - Air-to-water.

LEVELING BOLTS

LIFTING EYES

LUBRICATION - Full pressure, Gear type pump, Full flow filter, 36 gallon (136 litres) capacity, not mounted. Includes flexible connections. Includes lube oil strainer, mounted on engine. Air/gas motor driven prelube pump. Requires final piping.

MANIFOLDS - Exhaust, (2) water cooled.

OIL COOLER - With thermostatic temperature controller and pressure regulating valve. Not mounted.

OIL PAN - Base type. 90 gallon (340 litres) capacity including filter and cooler.

PAINT - Oilfield orange primer.

PISTONS – Aluminum with floating pin. 10.5:1 compression ratio. Oil cooled.

SHIPPING SKID - Steel for domestic truck or rail.

TURBOCHARGERS - Two, dry type. Wastegate controlled.

VIBRATION DAMPER - Two, viscous type. Guard included with remote mounted radiator or no radiator. WATER CIRCULATING SYSTEM

Auxiliary Circuit - For oil cooler and intercooler. Pump is belt driven from crankshaft pulley. Includes thermostatic valve.

Engine Jacket - Belt driven water circulating pump, cluster type thermostatic temperature regulating valve, full flow bypass type. Flange connections and mating flanges for (2) 4" (102 mm) inlets and (1) 5" (127 mm) outlet.

WAUKESHA CUSTOM ENGINE CONTROL, DETONATION SENSING MODULE (DSM) - Includes individual cylinder sensors, Detonation Sensing Module, filter and cables. Device is compatible with Waukesha CEC Ignition Module only. Sensors are mounted and wired to engine junction box. Detonation Sensing Module and filter are shipped loose. One 11 ft. cable provided for connection between engine junction box and filter. One each 15 ft. cable provided for connection between filter and DSM and Ignition Module and DSM. One 20 ft. cable provided for power and ground for filter. All cables are shipped loose. Packager is responsible for power supply and ground to the DSM. 24V DC power is required. The DSM meets Canadian Standards Association Class 1, Group D, Division 2, hazardous location requirements.

L7042GL

VHP[™] Series Gas Engine 886 - 1547 BHP

Model L7042GL Turbocharged and Intercooled, Twelve Cylinder, Lean Combustion, Four-Cycle Gas Engine

SPECIFICATIONS

Cylinders V 12

Piston Displacement 7040 cu. in. (115 L)

Bore & Stroke 9.375" x 8.5" (238 x 216 mm)

Compression Ratio 10.5:1

Jacket Water System Capacity 107 gal. (405 L) Lube Oil Capacity 90 gal. (340 L)

Starting System 125 - 150 psi air/gas 24/32V electric

Dry Weight 21,000 lb. (9525 kg)

Full Load Exhaust Emissions Nox - 1.50 g/bhp-hr

CO - 2.65 g/bhp-hr HC - 1.00 g/bhp-hr (non-methane)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhou	se Gases	
NO _x ^c 90 - 105% Load	4.08 E+00	В
NO _x ^c <90% Load	8.47 E-01	В
CO ^c 90 - 105% Load	3.17 E-01	С
CO ^c <90% Load	5.57 E-01	В
$\mathrm{CO_2}^{\mathrm{d}}$	1.10 E+02	А
SO ₂ ^e	5.88 E-04	А
TOC ^f	1.47 E+00	А
Methane ^g	1.25 E+00	С
VOC ^h	1.18 E-01	С
PM10 (filterable) ⁱ	7.71 E-05	D
PM2.5 (filterable) ⁱ	7.71 E-05	D
PM Condensable ^j	9.91 E-03	D
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ^k	<4.00 E-05	Е
1,1,2-Trichloroethane ^k	<3.18 E-05	Е
1,1-Dichloroethane	<2.36 E-05	Е
1,2,3-Trimethylbenzene	2.30 E-05	D
1,2,4-Trimethylbenzene	1.43 E-05	С
1,2-Dichloroethane	<2.36 E-05	Е
1,2-Dichloropropane	<2.69 E-05	Е
1,3,5-Trimethylbenzene	3.38 E-05	D
1,3-Butadiene ^k	2.67E-04	D
1,3-Dichloropropene ^k	<2.64 E-05	Е
2-Methylnaphthalene ^k	3.32 E-05	С
2,2,4-Trimethylpentane ^k	2.50 E-04	С
Acenaphthene ^k	1.25 E-06	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINESa(SCC 2-02-002-54)

2030 Afton Place Farmington, NM 87401 (505) 325-6622

Analysis No: HM20220023 Cust No: 33700-10215

BRIAN ALLEN

Sampled by (CO): HARVEST MID

Sampled By:

		Well/Lease Information		
Customer Name:	HARVEST MIDSTREAM		Source:	INLET
Well Name:	29-6-2 TRUNK F INLET		Well Flowing:	
County/State:	RIO ARRIBA NM		Pressure:	29 PSIG
Location:			Flow Temp:	43 DEG. F
Lease/PA/CA:			Ambient Temp:	DEG. F
Formation:			Flow Rate:	MCF/D
Cust. Stn. No.:			Sample Method:	
			Sample Date:	04/06/2022
			Sample Time:	9.00 AM

Heat Trace: Remarks:

Calculated Molecular Weight = 19.6078

		Analysis			
Component:	Mole%:	Unormalized %:	**GPM:	*BTU:	*SP Gravity:
Nitrogen	0.1604	0.1607	0.0180	0.00	0.0016
CO2	1.6394	1.6427	0.2810	0.00	0.0249
Methane	86.2277	86.3994	14.6580	870.90	0.4776
Ethane	6.7829	6.7964	1.8190	120.04	0.0704
Propane	2.7516	2.7571	0.7600	69.23	0.0419
Iso-Butane	0.5368	0.5379	0.1760	17.46	0.0108
N-Butane	0.7186	0.7200	0.2270	23.44	0.0144
Neopentane 2,2 dmc3	0.0000	0.0000	0.0000	0.00	0.0000
I-Pentane	0.2979	0.2985	0.1090	11.92	0.0074
N-Pentane	0.2024	0.2028	0.0740	8.11	0.0050
Neohexane	0.0127	N/R	0.0050	0.60	0.0004
2-3-Dimethylbutane	0.0129	N/R	0.0050	0.61	0.0004
Cyclopentane	0.0134	N/R	0.0040	0.50	0.0003
2-Methylpentane	0.0866	N/R	0.0360	4.11	0.0026
3-Methylpentane	0.0324	N/R	0.0130	1.54	0.0010
C6	0.1139	0.6836	0.0470	5.42	0.0034
Methylcyclopentane	0.0747	N/R	0.0270	3.36	0.0022
Benzene	0.0122	N/R	0.0030	0.46	0.0003
Cyclohexane	0.0385	N/R	0.0130	1.73	0.0011
2-Methylhexane	0.0137	N/R	0.0060	0.75	0.0005
3-Methylhexane	0.0158	N/R	0.0070	0.86	0.0005
2-2-4-Trimethylpentane	0.0054	N/R	0.0030	0.33	0.0002
i-heptanes	0.0105	N/R	0.0050	0.56	0.0004
Heptane	0.0462	N/R	0.0210	2.54	0.0016
			0.0210	2.04	

Total	100.00	100.199	18.398	1154.89	0.6757
C12P	0.0000	N/R	0.0000	0.00	0.0000
C11	0.0001	N/R	0.0000	0.01	0.0000
i-C11	0.0000	N/R	0.0000	0.00	0.0000
C10	0.0003	N/R	0.0000	0.02	0.0000
i-C10	0.0002	N/R	0.0000	0.01	0.0000
C9	0.0021	N/R	0.0010	0.15	0.0001
i-C9	0.0010	N/R	0.0010	0.07	0.0000
o Xylene (& 2,2,4 tmc7)	0.0010	N/R	0.0000	0.05	0.0000
m, p Xylene	0.0107	N/R	0.0040	0.55	0.0004
Ethylbenzene	0.0006	N/R	0.0000	0.03	0.0000
Octane	0.0182	N/R	0.0090	1.14	0.0007
i-Octanes	0.0089	N/R	0.0040	0.54	0.0003
4-Methylheptane	0.0076	N/R	0.0040	0.47	0.0003
2-Methylheptane	0.0165	N/R	0.0090	1.02	0.0007
Toluene	0.0305	N/R	0.0100	1.36	0.0010
Methylcyclohexane	0.0957	N/R	0.0390	4.99	0.0032

* @ 14.730 PSIA DRY & UNCORRECTED FOR COMPRESSIBILITY

**@ 14.730 PSIA & 60 DEG. F.

COMPRESSIBLITY FACTOR	(1/Z):	1.003	CYLINDER #:	1
BTU/CU.FT IDEAL:		1157.6	CYLINDER PRESSURE:	29 PSIG
BTU/CU.FT (DRY) CORRECTED F	OR (1/Z):	1161.0	ANALYSIS DATE:	04/13/2022
BTU/CU.FT (WET) CORRECTED F	OR (1/Z):	1140.8	ANALYIS TIME:	04:25:36 AM
DRY BTU @ 15.025:		1184.3	ANALYSIS RUN BY:	PATRICIA KING
REAL SPECIFIC GRAVITY:		0.6775		

GPM, BTU, and SPG calculations as shown above are based on current GPA constants. GPA Standard: GPA 2286-14 GC: SRI Instruments 8610 GC Method: C12+BTEX Gas

Description: Field: Meter Number: Analysis Date/Time: Date Sampled: Sample Temperature: Sample Pressure:	29-6-2 TRUNK F INLET 4/13/2022 4/6/2022 43	Company: HARVEST MIDSTREAM WorkOrder: GPA Method: GPA 2286 4:25:36 Sampled By: BRIAN ALLEN Analyst Initials: PK Instrument: SRI 8610
GRI GlyCalc Information		
Component Carbon Dioxide Hydrogen Sulfide Nitrogen Methane Ethane Propane Iso-Butane n-Butane Iso-Pentane n-Pentane Cyclopentane n-Hexane Cyclopentane n-Hexane Cyclohexane Other Hexanes Heptanes Methylcyclohexane 2 2 4 Trimethylpentane Benzene Toluene Ethylbenzene Xylenes	Mol% 1.6394 N/R 0.1604 86.2277 6.7829 2.7516 0.5368 0.7186 0.2979 0.2024 0.0134 0.1139 0.0385 0.2193 0.0862 0.0957 0.0054 0.0122 0.0305 0.0006 0.0117	Normalized Weight % 3.6796 0.0000 0.2292 70.5509 10.4021 6.1882 1.5912 2.1301 1.0962 0.7448 0.0479 0.5244 0.1652 1.1207 0.4405 0.4792 0.0315 0.0486 0.1433 0.0032 0.0633 0.2108
C8+ Heavies Subtotal	0.0549 100.0000	0.3198
Oxygen Subtotal	N/R 100.0000	100.0000
Calculated Molecular Weight		19.6078

2030 Afton Place Farmington, NM 87401 (505) 325-6622

Analysis No: HM20220025 Cust No: 33700-10400

Sampled by (CO): Harvest Mid

		Well/Lease Information		
Customer Name:	HARVEST MIDSTREAM		Source:	Dehy Inlet
Well Name:	29-6 #2 Dehy Inlet		Well Flowing:	
County/State:	Rio Arriba		Pressure:	315 PSIG
Location:			Flow Temp:	62 DEG. F
Lease/PA/CA:			Ambient Temp:	DEG. F
Formation:			Flow Rate:	MCF/D
Cust. Stn. No.:			Sample Method:	
			Sample Date:	04/06/2022
			Sample Time:	8.30 AM
			Sampled By:	Brian Allen

Heat Trace:

Remarks: Calculated Molecular Weight : 23.0397

		Analysis			
Component:	Mole%:	Unormalized %:	**GPM:	*BTU:	*SP Gravity:
Nitrogen	0.0387	0.0382	0.0040	0.00	0.0004
CO2	24.1998	23.8848	4.1400	0.00	0.3677
Methane	74.4496	73.4805	12.6540	751.94	0.4124
Ethane	1.0643	1.0504	0.2850	18.83	0.0110
Propane	0.2094	0.2067	0.0580	5.27	0.0032
Iso-Butane	0.0186	0.0184	0.0060	0.61	0.0004
N-Butane	0.0196	0.0193	0.0060	0.64	0.0004
Neopentane 2,2 dmc3	0.0000	0.0000	0.0000	0.00	0.0000
I-Pentane	0.0000	0.0000	0.0000	0.00	0.0000
N-Pentane	0.0000	0.0000	0.0000	0.00	0.0000
Neohexane	0.0000	N/R	0.0000	0.00	0.0000
2-3-Dimethylbutane	0.0000	N/R	0.0000	0.00	0.0000
Cyclopentane	0.0000	N/R	0.0000	0.00	0.0000
2-Methylpentane	0.0000	N/R	0.0000	0.00	0.0000
3-Methylpentane	0.0000	N/R	0.0000	0.00	0.0000
C6	0.0000	0.0000	0.0000	0.00	0.0000
Methylcyclopentane	0.0000	N/R	0.0000	0.00	0.0000
Benzene	0.0000	N/R	0.0000	0.00	0.0000
Cyclohexane	0.0000	N/R	0.0000	0.00	0.0000
2-Methylhexane	0.0000	N/R	0.0000	0.00	0.0000
3-Methylhexane	0.0000	N/R	0.0000	0.00	0.0000
2-2-4-Trimethylpentane	0.0000	N/R	0.0000	0.00	0.0000
i-heptanes	0.0000	N/R	0.0000	0.00	0.0000
Heptane	0.0000	N/R	0.0000	0.00	0.0000
			0.0000	0.00	0.0000

Methylcyclohexane	0.0000	N/R	0.0000	0.00	0.0000
Toluene	0.0000	N/R	0.0000	0.00	0.0000
2-Methylheptane	0.0000	N/R	0.0000	0.00	0.0000
4-Methylheptane	0.0000	N/R	0.0000	0.00	0.0000
i-Octanes	0.0000	N/R	0.0000	0.00	0.0000
Octane	0.0000	N/R	0.0000	0.00	0.0000
Ethylbenzene	0.0000	N/R	0.0000	0.00	0.0000
m, p Xylene	0.0000	N/R	0.0000	0.00	0.0000
o Xylene (& 2,2,4 tmc7)	0.0000	N/R	0.0000	0.00	0.0000
i-C9	0.0000	N/R	0.0000	0.00	0.0000
C9	0.0000	N/R	0.0000	0.00	0.0000
i-C10	0.0000	N/R	0.0000	0.00	0.0000
C10	0.0000	N/R	0.0000	0.00	0.0000
i-C11	0.0000	N/R	0.0000	0.00	0.0000
C11	0.0000	N/R	0.0000	0.00	0.0000
C12P	0.0000	N/R	0.0000	0.00	0.0000
Total	100.00	98.698	17.153	777.29	0.7955

* @ 14.730 PSIA DRY & UNCORRECTED FOR COMPRESSIBILITY

**@ 14.730 PSIA & 60 DEG. F.

COMPRESSIBLITY FACTOR	(1/Z):	1.0028	CYLINDER #:	05
BTU/CU.FT IDEAL:		779.1	CYLINDER PRESSURE:	313 PSIG
BTU/CU.FT (DRY) CORRECTED FC	OR (1/Z):	781.3	ANALYSIS DATE:	04/14/2022
BTU/CU.FT (WET) CORRECTED FO	OR (1/Z):	767.7	ANALYIS TIME:	01:21:13 AM
DRY BTU @ 15.025:		796.9	ANALYSIS RUN BY:	ELAINE MORRISON
REAL SPECIFIC GRAVITY:		0.7974		

GPM, BTU, and SPG calculations as shown above are based on current GPA constants. GPA Standard: GPA 2286-14 GC: SRI Instruments 8610 GC Method: C12+BTEX Gas

Description:	29-6 #2 Dehy Inlet	Company:	HARVEST MIDSTREAM
Field: Meter Number:		WorkOrder: GPA Method:	GPA 2286
Analysis Date/Time:	4/14/2022	1:21:13 Sampled By:	Brian Allen
Date Sampled:	4/6/2022	Analyst Initials	
Sample Temperature:	4/0/2022	Instrument:	SRI 8610
Sample Pressure:	313	instrument.	51(10010
Sample Flessule.	515		
GRI GlyCalc Information			
Component	Mol%	Normalized Weigl	nt %
Carbon Dioxide	24.1998	46.2260	
Hydrogen Sulfide	N/R	0.0000	
Nitrogen	0.0387	0.0471	
Methane	74.4496	51.8407	
Ethane	1.0643	1.3891	
Propane	0.2094	0.4008	
Iso-Butane	0.0186	0.0469	
n-Butane	0.0196	0.0494	
Iso-Pentane	0.0000	0.0000	
n-Pentane	0.0000	0.0000	
Cyclopentane	0.0000	0.0000	
n-Hexane	0.0000	0.0000	
Cyclohexane	0.0000	0.0000	
Other Hexanes	0.0000	0.0000	
Heptanes	0.0000	0.0000	
Methylcyclohexane	0.0000	0.0000	
2 2 4 Trimethylpentane	0.0000	0.0000	
Benzene	0.0000	0.0000	
Toluene	0.0000	0.0000	
Ethylbenzene	0.0000	0.0000	
Xylenes	0.0000	0.0000	
C8+ Heavies	0.0000	0.0000	
Subtotal	100.0000		
Oxygen	N/R		
Subtotal	100.0000	100.0000	
Calculated Molecular Weight		23.0397	

Blended Inlet Stream Gas Composition

Gas Composition

	Location	Trunk F	Inlet Gas	Gas Blend
	Sample Date	4/6/2022	4/6/2022	4/6/2022
Comp	onent	mol%	mol%	mol%
Carbon dioxide	;	1.6394	24.1998	12.9196
Hydrogen sulfi	de	0.0000	0.0000	0.0000
Nitrogen		0.1604	0.0387	0.0996
Methane		86.2277	74.4496	80.3387
Ethane		6.7829	1.0643	3.9236
Propane		2.7516	0.2094	1.4805
Isobutane		0.5368	0.0186	0.2777
n-Butane		0.7186	0.0196	0.3691
Isopentane		0.2979	0.0000	0.1490
n-Pentane		0.2024	0.0000	0.1012
Cyclopentane		0.0134	0.0000	0.0067
n-Hexane		0.1139	0.0000	0.0570
Cyclohexane		0.0385	0.0000	0.0193
Other hexanes		0.2193	0.0000	0.1097
Heptanes		0.0862	0.0000	0.0431
Methylcyclohex	kane	0.0957	0.0000	0.0479
Isooctane		0.0054	0.0000	0.0027
Benzene		0.0122	0.0000	0.0061
Toluene		0.0305	0.0000	0.0153
Ethylbenzene		0.0006	0.0000	0.0003
Xylenes		0.0117	0.0000	0.0059
C8+ Heavies		0.0549	0.0000	0.0275
Subtotal		100.0000	100.0000	100.0000

It was assumed equal quantities of Trunk F and inlet gas enter the facility

This blended gas was used to calculate SSM, equipment leaks, malfunction & GHG emissions

The inlet gas composition was used to calculate dehydrator emissions.

P.1/1

Oil and Gas mailuction Equipment

S. Enerters, Inc. 4101 Ball Marn Street Farmington, NM 87401

505/126-1151 MAR \$05/325-0317 RTEK

VIA FACSDAILE Fax No. (801) 584-7760 Pages 1

August 19, 1994

Mr. Los Bauerla Williams Field Services Salt Lake City, UT

The following table shows the stack emissions at maximum firing conditions for the dahydrators noted

Dehvdrator	NO ₃ #/Day	© ₽/₽₹¥	Fuel SCEH	Total Stack Gates ACEH	Stuck H1. F1	Stack Dis Inchas	Stack Tamp F	Stack Velocity, FPS
J2P10M11109	0.16	0_17	357	10010	121-	8	600	5.1
J2710M749	1.03	0.21	429	12012	19*-1*	10	600	6 .1
J2P12M11109	0.16	0.17	357	10010	13'-5"	¥	600	5. i
J2P12M749	1.03	0_21	«29	12012	19"-1"	10	600	6.1
J2P20M11109	1_03	0.21	429	12012	19-1-	10	600	6.1

Please call me if you need additional information.

Sincerely.

. .

Fronty Heath

FH/ab

Office: (505)632-2200 Fax: (505)632-8070

July 22, 1998

5928 U.S. Highway 64

Farmington, NM 87401

Mr. Bobby Myers Williams Field Services Environmental Affairs 295 Chipeta Way P O Box 58900 Salt Lake City, UT 84158-0900

The table shown below gives the stack emissions for our larger dehydrators:

Unit Description	SO Ib/day	NO _x Ib/ Day	CO Jb/ Day	Fuel SCFH	Total Organic Comp. Lb/d	Stack Ht. Ft.	Stack Dia inches	Stack Temp °F	Stack Velocity
	1		1					1	
10 MM LP	.01	.27	.43	659	.13	10.	8	600	5.1
10 MM HP	.01	.27	.43	659	.13 1	10.	10	600 j	6.1
					i			• • •	
12 MM LP	.02	.49	.78	1208	.23	10, 1	8 j	600	5.1
12 MM HP	.02	.49	.78	1208	.23	10'	10	600	6.1
15 MM	.02	.54	.85	1318	.25	10' 1	8	600 !	5.1
	1	1	1 07 1	1/10		·			
20 MM LP	.02	.67	1.07	1648	.31 [10, 1	8	600	5.1
20 MM HP	.02	.67	1.07	1648	.31	10'	12 1	600 ;	ć.1

If you need any additional information please call me.

Sincerely,

(la

Darby West VP Engineering

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^{d}	0.6	А
TOC	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by 16. To convert from $lb/10^6$ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

- ^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.
- ^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM_{10} , $PM_{2.5}$ or PM_1 emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO_2 . Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO_2 emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO_2 emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

Equipment Type	Servicea	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

^bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

^CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

Certificate of Analysis

Number: 1030-17120512-001A

Environmental Department Williams 1755 Arroyo Drive Bloomfield, NM 87402

Station Name: 29-6#2 Pressurized LiquidsMethod:GPA 2103MCylinder No:CP27Analyzed:12/13/2017 12:22:45 by RR

Sampled By:CLSample Of:LiquidSpotSample Date:12/12/201710:15Sample Conditions:94 psigPO/Ref. No:651377

Jan. 02, 2018

Analytical Data

Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
Nitrogen	0.173	28.013	0.049	0.807	0.044	
Methane	2.249	16.043	0.364	0.300	0.887	
Carbon Dioxide	0.146	44.010	0.065	0.817	0.058	
Ethane	1.335	30.069	0.405	0.356	0.831	
Propane	2.120	44.096	0.943	0.507	1.358	
Iso-Butane	1.148	58.122	0.673	0.563	0.874	
n-Butane	2.267	58.122	1.329	0.584	1.662	
Iso-Pentane	2.588	72.149	1.884	0.625	2.201	
n-Pentane	2.539	72.149	1.848	0.631	2.140	
i-Hexanes	4.078	84.787	3.488	0.668	3.814	
n-Hexane	3.550	86.175	3.086	0.664	3.395	
2,2,4-Trimethylpentane	0.082	114.229	0.095	0.696	0.100	
Benzene	0.939	78.112	0.740	0.884	0.611	
Heptanes	19.078	95.242	18.331	0.717	18.682	
Toluene	5.172	92.138	4.807	0.872	4.027	
Octanes	27.083	107.671	29.410	0.743	28.917	
Ethylbenzene	0.479	106.165	0.513	0.872	0.430	
Xylenes	6.162	106.165	6.600	0.870	5.542	
Nonanes	11.000	125.182	13.895	0.746	13.614	
Decanes Plus	7.812	145.576	11.475	0.775	10.813	
	100.000		100.000		100.000	
Calculated Physical Prope	erties		Total	C10+		
Specific Gravity at 60°F			7305	0.7750		
API Gravity at 60°F			2.214	51.081		
Molecular Weight			9.127	145.576		
Pounds per Gallon (in Vacu	um)		6.090	6.461		
Pounds per Gallon (in Air)			6.083	6.454		
Cu. Ft. Vapor per Gallon @	14.696 psia	23	3.314	16.843		

Hydrocarbon Laboratory Manager

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 1030-17120512-001A

Jan. 02, 2018

Environmental Department Williams 1755 Arroyo Drive Bloomfield, NM 87402

Station Name:29-6#2 Pressurized Liquids PO/Ref. No: 651377 Cylinder No: CP27 Sampled By:CLSample Of:LiquidSpotSample Date:12/12/2017 10:15Sample Conditions: 94 psig

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech.	Analysis Date
Shrinkage Factor	Proprietary	0.9721		JH	12/14/2017
Flash Factor	Proprietary	49.2838	Cu.Ft./STBbl.	JH	12/14/2017
Color Visual	Proprietary	Light Straw		JH	12/14/2017
API Gravity @ 60° F	ASTM D-4052	59.19	0	JJH	12/14/2017

Hydrocarbon Laboratory Manager The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Quality Assurance:

Page 2 of 2

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T}$$
(1)

where:

 $L_{\rm L}$ = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded

- S = a saturation factor (see Table 5.2-1)
- P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Figure 7.1-5, Figure 7.1-6, and Table 7.1-2)
- M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Table 7.1-2)
- T = temperature of bulk liquid loaded, ${}^{\circ}\bar{R}$ (${}^{\circ}\bar{F}$ + 460)

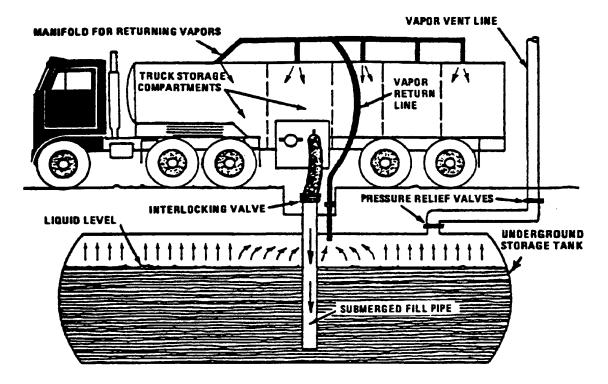


Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1.	SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID
	LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-

2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

The saturation factor, S, represents the expelled vapor's fractional approach to saturation, and it accounts for the variations observed in emission rates from the different unloading and loading methods. Table 5.2-1 lists suggested saturation factors.

Emissions from controlled loading operations can be calculated by multiplying the uncontrolled emission rate calculated in Equation 1 by an overall reduction efficiency term:

$$\left(1 - \frac{\text{eff}}{100}\right)$$

The overall reduction efficiency should account for the capture efficiency of the collection system as well as both the control efficiency and any downtime of the control device. Measures to reduce loading emissions include selection of alternate loading methods and application of vapor recovery equipment. The latter captures organic vapors displaced during loading operations and recovers the vapors by the use of refrigeration, absorption, adsorption, and/or compression. The recovered product is piped back to storage. Vapors can also be controlled through combustion in a thermal oxidation unit, with no product recovery. Figure 5.2-6 demonstrates the recovery of gasoline vapors from tank trucks during loading operations at bulk terminals. Control efficiencies for the recovery units range from 90 to over 99 percent, depending on both the nature of the vapors and the type of control equipment used.⁵⁻⁶ However, not all of the displaced vapors reach the control device, because of leakage from both the tank truck and collection system. The collection efficiency should be assumed to be 99.2 percent for tanker trucks passing the MACT-level annual leak test (not more than 1 inch water column pressure change in 5 minutes after pressurizing to 18 inches water followed by pulling a vacuum of 6 inches water).⁷ A collection efficiency of 98.7 percent (a 1.3 percent leakage rate) should be assumed for trucks not passing one of these annual leak tests⁶.

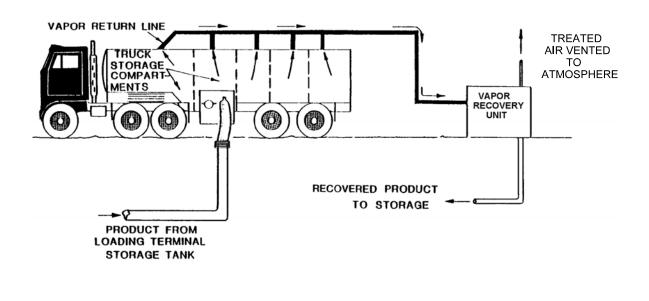


Figure 5.2-6. Tank truck loading with vapor recovery.

Table A-1 to Subpart A of Part 98—Global Warming Potentials

GLOBAL WARMING POTENTIALS

[100-Year Time Horizon]

Name	CAS No.	Chemical formula	Global warming potential (100 yr.)
Carbon dioxide	124-38-9	CO ₂	1
Methane	74-82-8	CH_4	°25
Nitrous oxide	10024-97-2	N ₂ O	^a 298
HFC-23	75-46-7	CHF ₃	^a 14,800
HFC-32	75-10-5	CH_2F_2	^a 675
HFC-41	593-53-3	CH ₃ F	^a 92
HFC-125	354-33-6	C_2HF_5	^a 3,500
HFC-134	359-35-3	$C_2H_2F_4$	^a 1,100
HFC-134a	811-97-2	CH ₂ FCF ₃	^a 1,430
HFC-143	430-66-0	$C_2H_3F_3$	°353
HFC-143a	420-46-2	$C_2H_3F_3$	^a 4,470
HFC-152	624-72-6	CH ₂ FCH ₂ F	53
HFC-152a	75-37-6	CH ₃ CHF ₂	^a 124
HFC-161	353-36-6	CH ₃ CH ₂ F	12
HFC-227ea	431-89-0	C ₃ HF ₇	^a 3,220
HFC-236cb	677-56-5	CH ₂ FCF ₂ CF ₃	1,340
HFC-236ea	431-63-0	CHF ₂ CHFCF ₃	1,370
HFC-236fa	690-39-1	$C_3H_2F_6$	^a 9,810
HFC-245ca	679-86-7	$C_3H_3F_5$	^a 693
HFC-245fa	460-73-1	CHF ₂ CH ₂ CF ₃	1,030
HFC-365mfc	406-58-6	CH ₃ CF ₂ CH ₂ CF ₃	794
HFC-43-10mee	138495-42-8	CF ₃ CFHCFHCF ₂ CF ₃	^a 1,640
Sulfur hexafluoride	2551-62-4	SF ₆	^a 22,800
Trifluoromethyl sulphur pentafluoride	373-80-8	SF5CF3	17,700
Nitrogen trifluoride	7783-54-2	NF ₃	17,200
PFC-14 (Perfluoromethane)	75-73-0	CF_4	^a 7,390
PFC-116 (Perfluoroethane)	76-16-4	C_2F_6	^a 12,200
PFC-218 (Perfluoropropane)	76-19-7	C_3F_8	^a 8,830
Perfluorocyclopropane	931-91-9	C-C ₃ F ₆	17,340
PFC-3-1-10 (Perfluorobutane)	355-25-9	C_4F_{10}	^a 8,860
PFC-318 (Perfluorocyclobutane)	115-25-3	C-C ₄ F ₈	^a 10,300
PFC-4-1-12 (Perfluoropentane)	678-26-2		^a 9,160
PFC-5-1-14 (Perfluorohexane, FC-72)	355-42-0		^a 9,300
PFC-9-1-18	306-94-5		7,500
HCFE-235da2 (Isoflurane)	26675-46-7	CHF ₂ OCHClCF ₃	350
HFE-43-10pccc (H-Galden 1040x, HG-11)		CHF ₂ OCF ₂ OC ₂ F ₄ OCHF ₂	1,870

HFE-125	3822-68-2 CHF ₂ OCF ₃	14,900
HFE-134 (HG-00)	1691-17-4 CHF ₂ OCHF ₂	6,320
HFE-143a	421-14-7CH ₃ OCF ₃	756
HFE-227ea	2356-62-9CF ₃ CHFOCF ₃	1,540
HFE-236ca12 (HG-10)	78522-47-1CHF2OCF2OCHF2	2,800
HFE-236ea2 (Desflurane)	57041-67-5CHF ₂ OCHFCF ₃	989
HFE-236fa	20193-67-3CF ₃ CH ₂ OCF ₃	487
HFE-245cb2	22410-44-2CH ₃ OCF ₂ CF ₃	708
HFE-245fa1	84011-15-4CHF ₂ CH ₂ OCF ₃	286
HFE-245fa2	1885-48-9CHF2OCH2CF3	659
HFE-254cb2	425-88-7CH ₃ OCF ₂ CHF ₂	359
HFE-263fb2	460-43-5CF ₃ CH ₂ OCH ₃	11
HFE-329mcc2	134769-21-4CF ₃ CF ₂ OCF ₂ CHF ₂	919
HFE-338mcf2	156053-88-2CF ₃ CF ₂ OCH ₂ CF ₃	552
HFE-338pcc13 (HG-01)	188690-78-0CHF2OCF2CF2OCHF2	1,500
HFE-347mcc3 (HFE-7000)	375-03-1CH ₃ OCF ₂ CF ₂ CF ₃	575
HFE-347mcf2	171182-95-9CF ₃ CF ₂ OCH ₂ CHF ₂	374
HFE-347pcf2	406-78-0CHF ₂ CF ₂ OCH ₂ CF ₃	580
HFE-356mec3	382-34-3CH ₃ OCF ₂ CHFCF ₃	101
HFE-356pcc3	160620-20-2CH ₃ OCF ₂ CF ₂ CHF ₂	110
HFE-356pcf2	50807-77-7CHF2CH2OCF2CHF2	265
HFE-356pcf3	35042-99-0CHF2OCH2CF2CHF2	502
HFE-365mcf3	378-16-5 CF ₃ CF ₂ CH ₂ OCH ₃	11
HFE-374pc2	512-51-6CH ₃ CH ₂ OCF ₂ CHF ₂	557
HFE-449s1 (HFE-7100)	163702-07-6C ₄ F ₉ OCH ₃	297
Chemical blend	163702-08-7(CF ₃) ₂ CFCF ₂ OCH ₃	
HFE-569sf2 (HFE-7200)	163702-05-4C ₄ F ₉ OC ₂ H ₅	59
Chemical blend	163702-06-5(CF ₃) ₂ CFCF ₂ OC ₂ H ₅	
Sevoflurane (HFE-347mmz1)	28523-86-6CH ₂ FOCH(CF ₃) ₂	345
HFE-356mm1	13171-18-1 (CF ₃) ₂ CHOCH ₃	27
HFE-338mmz1	26103-08-2CHF ₂ OCH(CF ₃) ₂	380
(Octafluorotetramethy-lene) hydroxymethyl group	NAX-(CF ₂) ₄ CH(OH)-X	73
HFE-347mmy1	22052-84-2CH ₃ OCF(CF ₃) ₂	343
Bis(trifluoromethyl)-methanol	920-66-1 (CF ₃) ₂ CHOH	195
2,2,3,3,3-pentafluoropropanol	422-05-9CF ₃ CF ₂ CH ₂ OH	42
PFPMIE (HT-70)	NACF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃	10,300

^aThe GWP for this compound is different than the GWP in the version of Table A-1 to subpart A of part 98 published on October 30, 2009.

Table C-1 to Subpart C of Part 98—Default CO₂ Emission Factors and High Heat Values for Various Types of Fuel

Fuel type	Default high heat value	Default CO ₂ emission factor
Coal and coke	mmBtu/short ton	kg CO ₂ /mmBtu
Anthracite	25.09	103.69
Bituminous	24.93	93.28
Subbituminous	17.25	97.17
Lignite	14.21	97.72
Coal Coke	24.80	113.67
Mixed (Commercial sector)	21.39	94.27
Mixed (Industrial coking)	26.28	93.90
Mixed (Industrial sector)	22.35	94.67
Mixed (Electric Power sector)	19.73	95.52
Natural gas	mmBtu/scf	kg CO ₂ /mmBtu
(Weighted U.S. Average)	1.026×10^{-3}	53.06
Petroleum products	mmBtu/gallon	kg CO ₂ /mmBtu
Distillate Fuel Oil No. 1	0.139	73.25
Distillate Fuel Oil No. 2	0.138	73.96
Distillate Fuel Oil No. 4	0.146	75.04
Residual Fuel Oil No. 5	0.140	72.93
Residual Fuel Oil No. 6	0.150	75.10
Used Oil	0.138	74.00
Kerosene	0.135	75.20
Liquefied petroleum gases (LPG) ¹	0.092	61.71
Propane ¹	0.091	62.87
Propylene ²	0.091	67.77
Ethane ¹	0.068	59.60
Ethanol	0.084	68.44
Ethylene ²	0.058	65.96
Isobutane ¹	0.099	64.94
Isobutylene ¹	0.103	68.86
Butane ¹	0.103	64.77
Butylene ¹	0.105	68.72
Naphtha (<401 deg F)	0.125	68.02
Natural Gasoline	0.110	66.88
Other Oil (>401 deg F)	0.139	76.22
Pentanes Plus	0.110	70.02

Default CO_2 Emission Factors and High Heat Values for Various Types of Fuel

Petrochemical Feedstocks	0.125	71.02
Petroleum Coke	0.143	102.41
Special Naphtha	0.125	72.34
Unfinished Oils	0.139	74.54
Heavy Gas Oils	0.148	74.92
Lubricants	0.144	74.27
Motor Gasoline	0.125	70.22
Aviation Gasoline	0.120	69.25
Kerosene-Type Jet Fuel	0.135	72.22
Asphalt and Road Oil	0.158	75.36
Crude Oil	0.138	74.54
Other fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Municipal Solid Waste	9.95 ³	90.7
Tires	28.00	85.97
Plastics	38.00	75.00
Petroleum Coke	30.00	102.41
Other fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Blast Furnace Gas	0.092×10^{-3}	274.32
Coke Oven Gas	0.599×10^{-3}	46.85
Propane Gas	2.516×10^{-3}	61.46
Fuel Gas ⁴	1.388×10^{-3}	59.00
Biomass fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Wood and Wood Residuals (dry basis) ⁵	17.48	93.80
Agricultural Byproducts	8.25	118.17
Peat	8.00	111.84
Solid Byproducts	10.39	105.51
Biomass fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Landfill Gas	0.485×10^{-3}	52.07
Other Biomass Gases	0.655×10^{-3}	52.07
Biomass Fuels—Liquid	mmBtu/gallon	kg CO₂/mmBtu
Ethanol	0.084	68.44
Biodiesel (100%)	0.128	73.84
Rendered Animal Fat	0.125	71.06
Vegetable Oil	0.120	81.55

¹The HHV for components of LPG determined at 60 °F and saturation pressure with the exception of ethylene.

 $^2 Ethylene \,HHV$ determined at 41 $^\circ F$ (5 $^\circ C)$ and saturation pressure.

³Use of this default HHV is allowed only for: (a) Units that combust MSW, do not generate steam, and are allowed to use Tier 1; (b) units that derive no more than 10 percent of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year.

 4 Reporters subject to subpart X of this part that are complying with \$98.243(d) or subpart Y of this part may only use the default HHV and the default CO₂ emission factor for fuel gas combustion under the conditions prescribed in \$98.243(d)(2)(i) and (d)(2)(i) and \$98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4.

⁵Use the following formula to calculate a wet basis HHV for use in Equation C-1: $HHV_w = ((100 - M)/100)*HHV_d$ where $HHV_w =$ wet basis HHV, M = moisture content (percent) and HHV_d = dry basis HHV from Table C-1.

[78 FR 71950, Nov. 29, 2013]

L Back to Top

Table C-2 to Subpart C of Part 98—Default CH4 and N2O Emission Factors for Various Types of Fuel

Fuel type	Default CH₄ emission factor (kg CH₄/mmBtu)	$\begin{array}{c} Default \ N_2O \ emission \ factor \ (kg \\ N_2O/mmBtu) \end{array}$
Coal and Coke (All fuel types in Table C-1)	1.1×10^{-02}	1.6×10^{-03}
Natural Gas	1.0×10^{-03}	1.0×10^{-04}
Petroleum (All fuel types in Table C-1)	3.0×10^{-03}	6.0×10^{-04}
Fuel Gas	3.0×10^{-03}	6.0×10^{-04}
Municipal Solid Waste	3.2×10^{-02}	4.2×10^{-03}
Tires	3.2×10^{-02}	4.2×10^{-03}
Blast Furnace Gas	2.2×10^{-05}	1.0×10^{-04}
Coke Oven Gas	4.8×10^{-04}	1.0×10^{-04}
Biomass Fuels—Solid (All fuel types in Table C-1, except wood and wood residuals)	3.2×10^{-02}	4.2×10^{-03}
Wood and wood residuals	7.2×10^{-03}	3.6×10^{-03}
Biomass Fuels—Gaseous (All fuel types in Table C-1)	3.2×10^{-03}	6.3×10^{-04}
Biomass Fuels—Liquid (All fuel types in Table C-1)	1.1×10^{-03}	1.1×10^{-04}

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1g of CH_4 /mmBtu.

Onshore petroleum and natural gas production	Emission factor (scf/hour/ component)
Eastern U.S.	
Population Emission Factors—All Com	ponents, Gas Service ¹
Valve	0.027
Connector	0.003
Open-ended Line	0.061
Pressure Relief Valve	0.040
Low Continuous Bleed Pneumatic Device Vents ²	1.39
High Continuous Bleed Pneumatic Device Vents ²	37.3
Intermittent Bleed Pneumatic Device Vents ²	13.5
Pneumatic Pumps ³	13.3
Population Emission Factors—All Compone	ents, Light Crude Service ⁴
Valve	0.05
Flange	0.003
Connector	0.007
Open-ended Line	0.05
Pump	0.01
Other ⁵	0.30
Population Emission Factors—All Compone	nts, Heavy Crude Service ⁶
Valve	0.0005
Flange	0.0009
Connector (other)	0.0003
Open-ended Line	0.006
Other ⁵	0.003
Western U.S.	
Population Emission Factors—All Com	ponents, Gas Service ¹
Valve	0.121
Connector	0.017
Open-ended Line	0.031
Pressure Relief Valve	0.193
Low Continuous Bleed Pneumatic Device Vents ²	1.39
High Continuous Bleed Pneumatic Device Vents ²	37.3
Intermittent Bleed Pneumatic Device Vents ²	13.5
Pneumatic Pumps ³	13.3
Population Emission Factors—All Compone	
Valve	0.05
Flange	0.003

Table W-1A of Subpart W of Part 98—Default Whole Gas Emission Factors for Onshore Petroleum and Natural Gas Production

Connector (other)	0.007
Open-ended Line	0.05
Pump	0.01
Other ⁵	0.30
Population Emission Fact	ors—All Components, Heavy Crude Service ⁶
Valve	0.0005
Flange	0.0009
Connector (other)	0.0003
Open-ended Line	0.006
Other ⁵	0.003

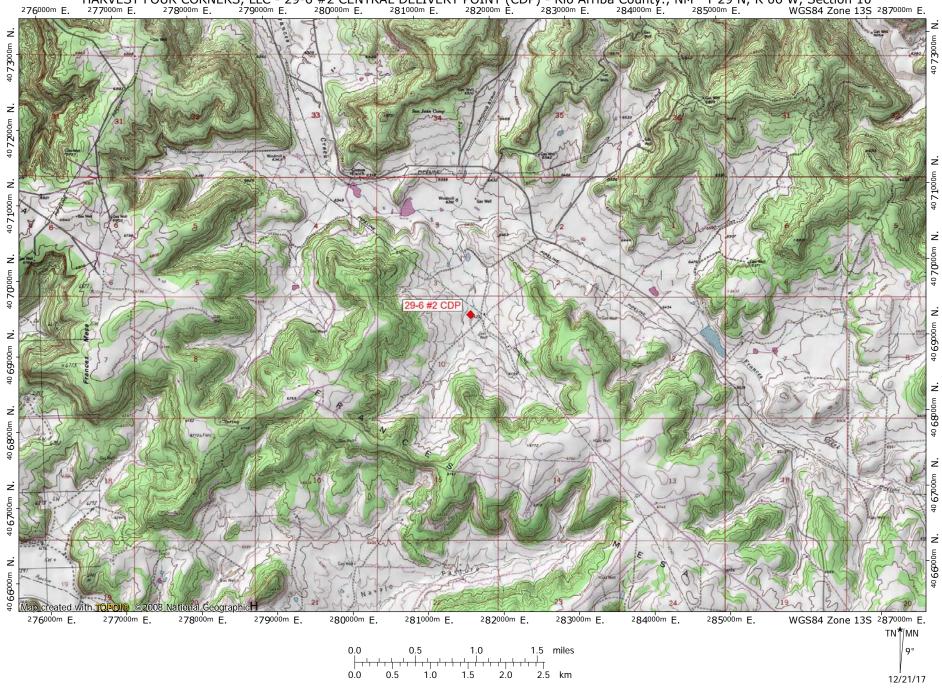
¹For multi-phase flow that includes gas, use the gas service emissions factors.

²Emission Factor is in units of "scf/hour/device."

³Emission Factor is in units of "scf/hour/pump."

⁴Hydrocarbon liquids greater than or equal to 20°API are considered "light crude."

⁵"Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.


⁶Hydrocarbon liquids less than 20°API are considered "heavy crude."

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A topographic map of the area around the facility is provided in this section. Please see the following page.

HARVEST FOUR CORNERS, LLC - 29-6 #2 CENTRAL DELIVERY POINT (CDP) - Rio Arriba County., NM T 29 N, R 06 W, Section 10 277000m E. 279000m E. 281000m E. 281000m E. 281000m E. 283000m E. 284000m E. 284000m E. 285000m E. WGS84 Zone 13S 287000m E.

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

□ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. □ A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC).
- 2. □ A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.).
- 3. \Box A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \Box A sample of the letters sent to the owners of record.
- 5. \Box A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. \Box A sample of the public notice posted and a verification of the local postings.
- 7. \Box A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. \Box A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. \Box A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. \Box A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. □ A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

Not applicable, since this is a Title V application.

This Page Intentionally Left Blank

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The 29-6#2 Central Delivery Point is a production field facility that compresses and dehydrates natural gas. The gas is received from independent producers via a gathering pipeline. The facility is permitted to compress gas using eight compressors driven by natural gas-fired reciprocating internal combustion engines. The facility is also permitted to remove water from the gas using four TEG dehydrators.

Condensate and produced water from the pipeline are held in storage tanks while waiting for transport offsite. The facility is also equipped with other miscellaneous storage tanks (for lubrication oil, used oil, waste water, TEG, solvent, methanol and antifreeze).

The facility will operate up to 24 hours per day, seven days per week, 52 weeks per year, 8,760 hours per year.

This Page Intentionally Left Blank

Source Determination

(Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC)

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination</u> <u>Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

29-6#2 Central Delivery Point – natural gas compression and dehydration facility

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

🗹 Yes 🗆 No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

🗹 Yes 🗆 No

Contiguous or Adjacent: Surrounding or associated sources are contiguous or adjacent with this source.

🗹 Yes 🗆 No

C. Make a determination:

- ✓ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- □ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

This Page Intentionally Left Blank

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review</u> <u>Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - \square a minor PSD source before and after this modification (if so, delete C and D below).
 - $\hfill\square$ a major PSD source before this modification. This modification will make this a PSD minor source.
 - \Box an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - \square an existing PSD Major Source that has had a major modification requiring a BACT analysis
 - □ a new PSD Major Source after this modification.
- B. This facility [is or is not] one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are [significant or not significant]. [Discuss why.] The "project" emissions listed below [do or do not] only result from changes described in this permit application, thus no emissions from other [revisions or modifications, past or future] to this facility. Also, specifically discuss whether this project results in "de-bottlenecking", or other associated emissions resulting in higher emissions. The project emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]:
 - a. NOx: XX.X TPY
 - b. CO: XX.X TPY
 - c. VOC: XX.X TPY
 - d. SOx: XX.X TPY
 - e. PM: XX.X TPY
 - f. PM10: XX.X TPY
 - g. PM2.5: XX.X TPY
 - h. Fluorides: XX.X TPY
 - i. Lead: XX.X TPY
 - j. Sulfur compounds (listed in Table 2): XX.X TPY
 - k. GHG: XX.X TPY
- C. Netting [is required, and analysis is attached to this document.] OR [is not required (project is not significant)] OR [Applicant is submitting a PSD Major Modification and chooses not to net.]
- D. BACT is [not required for this modification, as this application is a minor modification.] OR [required, as this application is a major modification. List pollutants subject to BACT review and provide a full top down BACT determination.]
- E. If this is an existing PSD major source, or any facility with emissions greater than 250 TPY (or 100 TPY for 20.2.74.501 Table 1 PSD Source Categories), determine whether any permit modifications are related, or could be considered a single project with this action, and provide an explanation for your determination whether a PSD modification is triggered.

Not applicable, since this is a Title V application.

Section 12.B

Special Requirements for a PSD Application

(Submitting under 20.2.74 NMAC)

<u>Prior</u> to Submitting a PSD application, the permittee shall:

- □ Submit the BACT analysis for review prior to submittal of the application. No application will be ruled complete until the final determination regarding BACT is made, as this determination can ultimately affect information to be provided in the application. A pre-application meeting is recommended to discuss the requirements of the BACT analysis.
- □ Submit a modeling protocol prior to submitting the permit application. [Except for GHG]
- Submit the monitoring exemption analysis protocol prior to submitting the application. [Except for GHG]

For PSD applications, the permittee shall also include the following:

- Documentation containing an analysis on the impact on visibility. [Except for GHG]
- Documentation containing an analysis on the impact on soil. [Except for GHG]
- Documentation containing an analysis on the impact on vegetation, including state and federal threatened and endangered species. [Except for GHG]
- Documentation containing an analysis on the impact on water consumption and quality. [Except for GHG]
- Documentation that the federal land manager of a Class I area within 100 km of the site has been notified and provided a copy of the application, including the BACT and modeling results. The name of any Class I Federal area located within one hundred (100) kilometers of the facility.

Not applicable, since this is a Title V application.

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants. Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. For example, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: <u>http://cfpub.epa.gov/adi/</u>

State Regulations

Applicable state requirements are embodied in the New Mexico SIP, the New Mexico Administrative Code (NMAC), and the terms and conditions of any preconstruction permits issued pursuant to regulations promulgated through rulemaking under Title I of the CAA.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
20.2.1 NMAC	General Provisions	Yes	Facility	This regulation is applicable because it establishes procedures for protecting confidential information, procedures for seeking a variance, NMAQB's authority to require sampling equipment, severability, and the effective date for conformance with the NMACs, and prohibits the violation of other requirements in attempting to comply with the NMACs.
				Although this regulation is applicable, it does not impose any specific requirements.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	This is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentrations of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation is applicable because it prohibits excess emissions unless proper notification procedures are followed.
20.2.8 NMAC	Emissions Leaving New Mexico	Yes	Facility	This regulation is applicable because it establishes prohibitions on the release of pollutants that cross New Mexico State boundaries.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This regulation is not applicable because the facility is not equipped with external gas burning equipment which have heat input rates exceeding the trigger level (one million MMBtu/year) established by the regulation (see 20.2.33.108 NMAC).
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	This regulation is not applicable because the facility is not a natural gas processing plant (see 20.2.35.6 NMAC).
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	This regulation is not applicable because the facility does not store hydrocarbons containing hydrogen sulfide, nor is there a tank battery storing hydrocarbon liquids with a capacity greater than or equal to 65,000 gallons (see 20.2.38.112 NMAC).
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This regulation is not applicable because the facility is not equipped with a sulfur recovery plant (see 20.2.39.6 NMAC).
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	4-11, 16b, 17b, 21b & 22b	This regulation is applicable because the facility is equipped with stationary combustion sources. Emissions from these combustion sources are limited to less than 20% opacity (see 20.2.61.109 NMAC). The regulation is not applicable to Title V insignificant heaters (see 20.2.61.111.D NMAC).
20.2.70 NMAC	Operating Permits	Yes	Facility	This regulation is applicable because the facility is a major source of NOx, CO, VOC & HAP emissions (see 20.2.70.200 NMAC).
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This regulation is applicable because the facility is subject to 20.2.70 NMAC (see 20.2.71.6 NMAC).
20.2.72 NMAC	Construction Permits	Yes	Facility	This regulation is applicable because the facility has potential emission rates (PER) greater than 10 pph or 25 tpy for pollutants subject to a state or federal ambient air quality standards (does not include VOCs or HAPs).
20.2.73	NOI & Emissions Inventory	Yes	Facility	The Notice of Intent portion of this regulation is not applicable because the facility is subject to 20.2.72 NMAC.
NMAC	Requirements			The emissions inventory portion of this regulation is applicable since the facility is a Title V major source (see $20.2.73.300.B(1) \& (2)$).

Table for STATE REGULATIONS:

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	This regulation is not applicable because the facility is not a PSD major source.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation is applicable because the facility is subject to 20.2.72 NMAC and it establishes the fee schedule associated with the filing of construction permits (see 20.2.75.6 NMAC).
20.2.77 NMAC	New Source Performance	Yes	F1	This regulation is applicable because it adopts by reference the federal NSPS codified in 40 CFR 60 (see 20.2.77.6 NMAC). The facility is subject to 40 CFR 60, Subpart OOOOa.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	This regulation is not applicable because it incorporates by reference the NESHAPs codified under 40 CFR 61 (see 20.2.78.6 NMAC). The facility is not subject to 40 CFR 61.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	This regulation is not applicable because the facility is neither located in nor has a significant impact on a nonattainment area (see 20.2.79.6 NMAC).
20.2.80 NMAC	Stack Heights	No	N/A	This regulation is not applicable because it establishes guidelines for the selection of an appropriate stack height for the purpose of atmospheric dispersion modeling (see 20.2.80.6 NMAC); however, it only imposes those requirements when modeling is required as a part of the application. This application does not require modeling.
20.2.82 NMAC	MACT Standards for Source Categories of HAPS	Yes	16a, 17a, 21a & 22a	This regulation is applicable because it adopts by reference the federal MACT Standards for source categories codified in 40 CFR 63 (see 20.2.82.6 NMAC). The facility is subject to 40 CFR 63, Subpart HH.

Federal Regulations

Federal standards and requirements are embodied in Title 40 (Protection of the Environment), Subchapter C (Air Programs) of the CFR, Parts 50 through 99.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	This regulation is applicable because it applies to all sources in the state of New Mexico.
40 CFR 52	Approval and Promulgation of Implementation Plans	No	N/A	40 CFR 52.21 <i>Prevention of Significant Deterioration of Air Quality</i> is not applicable because the facility is not a major Prevention of Significant Deterioration source. The remainder of 40 CFR 52 is not applicable because it addresses approval and promulgation of implementation plans.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	F1	This regulation is applicable because 40 CFR Part 60, Subpart OOOOa applies.
NSPS 40 CFR 60, Subpart K	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, or Modification Commenced After June 11, 1973, and Prior to May 19, 1978	No	N/A	This regulation is not applicable because the petroleum liquids storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 40,000 gallons (see §60.110(a)).
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	This regulation is not applicable because the storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 40,000 gallons (see §60.110a(a)).
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	This regulation is not applicable because all storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 75 cubic meters (19,812 gallons) or they have a capacity between 75 and 151 cubic meters (40,000 gallons) and store a liquid with a maximum true vapor pressure less than 15.0 kPa (2.2 psi) (see §60.110b(a) & §60.110b(b))).

FEDERAL REGULATIONS APPLICABILITY CHECKLIST

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60, Subpart KKK	Standards of Performance for Equipment Leaks of VOC from Onshore Gas Plants	No	N/A	This regulation is not applicable because the facility is not an onshore natural gas processing plant as defined by the subpart (see $(0.630(a)(1))$). Natural gas processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both (see (0.631)).
NSPS 40 CFR 60, Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions	No	N/A	This regulation is not applicable because the facility is not a natural gas processing plant as defined by the subpart. It is not equipped with a sweetening unit (see $60.640(a)$).
NSPS 40 CFR 60, Subpart IIII	40 CFR 60, Compression	No	N/A	This regulation is not applicable because the facility is not equipped with stationary compression ignition (CI) internal combustion engines (ICE) that commenced construction after July 11, 2005 and were manufactured after April 1, 2006 (see $60.4200(a)(2)(i)$).
Subpart III	Ignition Internal Combustion Engines			For the purpose of this subpart, construction commences on the date the engine is ordered by the owner or operator (see §60.4200(a)).
	Standards of		4 & 5	This regulation is not applicable because the facility is not equipped with spark ignition (SI) internal combustion engines (ICE) constructed, modified, or reconstructed after June 12, 2006.
NSPS 40 CFR 60,	Performance for Stationary Spark Ignition Internal	Potentially Applicable		Units 6-11 were constructed prior to the applicability date and have not been modified or reconstructed.
Subpart JJJJ	Combustion	11		If Units 4 or 5 are installed, the subpart may become applicable.
	Engines			See the definitions of construction, modification, and reconstruction referenced in Subpart OOOO below.
	Standards of Performance for		N/A	This regulation is not applicable because the facility is not equipped with "affected" sources that commenced construction, modification or reconstruction after August 23, 2011 and on or before September 18, 2015: gas wells, centrifugal or reciprocating compressors, pneumatic controllers, and storage vessels (see §60.5365).
	Crude Oil and Natural Gas Production,			Note that the facility is not a natural gas processing plant as defined by the subpart (see §60.5430).
NSPS	Transmission, and Distribution for	No		Commenced construction means a continuous program of fabrication, erection or installation (see §60.2).
OOOO Mo Re Com Au and	which Construction, Modification or Reconstruction Commenced After August 23, 2011 and On or Before			Modification means any physical change in or change in the method of operation of an existing facility which increases emissions or results in new emissions (see §60.2). The following, by themselves, are not modifications: routine maintenance, repair or replacement, production increase without capital expenditure, increase in hours of operation, addition of emission controls, or the relocation or change in ownership of an existing facility (see §60.14).
	and On or Before September 18, 2015	September 18,		

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
			F1	This regulation is applicable because the facility is equipped with "affected" sources (reciprocating compressors) that commenced construction, modification or reconstruction after September 18, 2015.
	Standards of Performance for Crude Oil and	Yes		It does not currently apply to the following sources: gas wells, centrifugal, pneumatic controllers, storage vessels, sweetening units, and pneumatic pumps (see §60.5365a), as they are not installed or were installed prior to the applicability date.
NSPS	Natural Gas Facilities for			In general, this regulation may apply if existing equipment is replaced or new affected equipment is installed.
40 CFR 60, Subpart OOOOa				In particular, this regulation applies to fugitive emissions components at the facility if any engines and compressors are installed. Fugitive components monitoring is required if a compressor station is modified. For the purpose of fugitive components monitoring as required by this subpart, modification of a compressor station is the addition of a compressor or replacement of a compressor with a larger unit (greater total horsepower) (see §60.5365a(j)).
				Note that the facility is not a natural gas processing plant as defined by the subpart (see §60.5430a).
				See the definitions of construction, modification, and reconstruction referenced in Subpart OOOO above.
NESHAP 40 CFR 61, Subpart A	General Provisions	No	N/A	This regulation is not applicable because no other 40 CFR Part 61 subparts apply (see §61.01(c)).
				This regulation is not applicable because none of the listed equipment at the facility is in VHAP service.
NESHAP 40 CFR 61, Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	The provisions of this subpart apply to each of the following sources that are intended to operate in volatile hazardous air pollutant (VHAP) service: pumps, compressors, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, and control devices or systems required by this subpart (see §61.240(a)). VHAP service means a piece of equipment either contains or contacts a fluid (liquid or gas) that is at least 10 percent by weight of VHAP. VHAP means a substance regulated under this subpart for which a standard for equipment leaks of the substance has been promulgated (see §61.241).
MACT 40 CFR 63, Subpart A	General Provisions	Yes	16a, 17a, 21a & 22a	This regulation is applicable because 40 CFR 63 Subpart HH applies (see §63.1(b)).
		ds for us Air For Oil Yes ral Gas ction	16a, 17a, 21a & 22a	This regulation is applicable because the facility is equipped with dehydrators.
MACT Haza 40 CFR 63, Polluta Subpart HH and N Pro	National Emission			The facility is an area HAP source. Note that since it is a production field facility (located prior to the point of custody transfer), only HAP emissions from glycol dehydration units and storage vessels are aggregated for a major source determination. Storage vessels include crude oil tanks, condensate tanks, intermediate hydrocarbon liquid tanks, and produced water tanks (see §63.761).
	Standards for Hazardous Air Pollutants For Oil and Natural Gas Production			At area HAP facilities, the regulation is only applicable to dehydrators (see $(63.760(b)(2))$).
				The TEG dehydrators are located in an area that is not within an UA plus offset and UC boundary (as defined in §63.761).
	Facilities			Under $(63.764(e)(1)(ii))$, the owner or operator of an affected area source [TEG dehydrator] with actual average benzene emissions from the process vent to the atmosphere of less than 0.90 megagrams per year (~1 tpy) is exempt from the operational, recordkeeping and notification requirements in $(63.764(d))$, provided that documentation of the exemption determination is maintained as required in $(63.774(d)(1))$.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
MACT Standards for 40 CER 63 Hazardous Air		No	N/A	This regulation is not applicable because the facility is not a natural gas transmission and storage facility as defined by the subpart.
Subpart HHH	Natural Gas Transmission and Storage Facilities			A compressor station that transports natural gas prior to the point of custody transfer or to a natural gas processing plant (if present) are not considered a part of the natural gas transmission and storage source category (see §63.1270(a)).
	National			This regulation is not currently applicable because the facility is not equipped with affected sources.
MACT 40 CFR 63,	Emissions Standards for Hazardous Air Pollutants for	Potentially		The station is a major HAP source as defined by the subpart. For production field facilities, only HAP emissions from engines, turbines, dehydrators, and storage vessels with the potential for flash emissions are aggregated for the HAP major source determination (see §63.6675).
Subpart ZZZZ	Subpart Stationary Reciprocating	Applicable	4 & 5	Units 6-11 are 4-stroke, lean burn (4SLB) spark ignition (SI) RICE with a site rating of more than 500 hp, and were constructed prior to December 19, 2002. Under §63.6590(b)(3)(ii), existing 4SLB stationary RICE with site ratings of more than 500 hp located at major HAP sources do not have to meet the requirements of the subpart and of subpart A, including initial notification requirements.
				If Units 4 or 5 are installed, the subpart might be applicable.
MACT 40 CFR 63,		No	N/A	This regulation is not applicable both because the facility is an area HAP source as defined by the subpart (see §63.7480) and is not equipped with boilers and process heaters.
				Since the facility is a natural gas production facility, only HAP emissions from dehydrators and storage vessels with the potential for flash emissions are aggregated for a major source determination (see §63.7575).
MACT 40 CFR 63, Subpart JJJJJJ	National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers at Area Sources	No	N/A	This regulation is not applicable because the facility is not equipped with industrial, commercial, or institutional boilers.
40 CFR 64	Compliance Assurance Monitoring	No	N/A	This regulation is not applicable because no equipment at the facility requires a control device to achieve compliance with emission limits or standards where pre control emissions equal or exceed the major source threshold (100 tons per year). (see §64.2(a)).
40 CFR 68	Chemical Accident Prevention	No	N/A	This regulation is not applicable because the facility does not store any of the identified toxic and flammable substances in quantities exceeding the applicability thresholds (see §68.10(a), §68.115(a), and §68.130 Tables 1-4).
40 CFR 70	State Operating Permit Programs	No	N/A	This regulation is not applicable, as the requirements associated with Title V are delegated to the State of New Mexico and implemented under 20 NMAC 2.70.
40 CFR 82	Protection of Stratospheric Ozone	No	N/A	This regulation is not applicable because the facility does not produce, transform, destroy, import, or export ozone-depleting substances (see §82.1(b),); does not service motor vehicle air conditioning units (see §82.30(b)); and does not sell, distribute, or offer for sale or distribution any product that contains ozone-depleting substances (see §82.64).

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 98	Mandatory Greenhouse Gas Reporting	Yes	Facility	 40 CFR 98, <i>Mandatory Greenhouse Gas Reporting</i>, is a federal requirement that is applicable to either: (1) a facility that contains any source category listed in Subpart A, Table A-3, (2) a facility that contains any source category listed in Subpart A, Table A-4, that emits 25,000 metric tons of CO₂ equivalent (CO₂e) or more per year in combined emissions from stationary fuel combustion units, miscellaneous uses of carbonate, and all applicable source categories listed in Table A–3 and Table A–4 of Subpart A, or, (3) a facility that does not meet the requirements above, contains stationary fuel combustion units with an aggregate maximum rated heat input capacity of 30 mmBtu/hr or more, and, emits 25,000 metric tons of CO₂ equivalent (CO₂e) or more per year in combined emissions from all stationary fuel combustion units. The regulation is applicable to the facility because it is included in the Petroleum and Natural Gas Systems (Subpart W) source category listed in Table A-4 and otherwise meets the applicability criteria of Item 2 above. The GHG emissions inventory is reported annually.

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

- ☑ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ✓ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

This Page Intentionally Left Blank

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

Not applicable, as there are no alternative operating scenarios at this facility.

This Page Intentionally Left Blank

Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	Х
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

- $\hfill\square$ See attached, approved modeling waiver for all pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- □ Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- □ Attached in UA4 is a **modeling report for some** pollutants from the facility.
- \blacksquare No modeling is required.

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permit conditions, you must submit a compliance test history. The table below provides an example.

Unit No.	Test Description	Test Date
4	Quarterly NOx and CO Testing in accordance with permit	Not Installed
5	Quarterly NOx and CO Testing in accordance with permit	Not Installed
6	Annual NOx and CO Testing in accordance with permit	11/03/2021
7	Annual NOx and CO Testing in accordance with permit	11/03/2021
8	Annual NOx and CO Testing in accordance with permit	12/01/2021
9	Quarterly NOx and CO Testing in accordance with permit	02/08/2022
10	Annual NOx and CO Testing in accordance with permit	11/03/2021
11	Annual NOx and CO Testing in accordance with permit	12/01/2021

Compliance Test History Table

Addendum for Streamline Applications

Streamline Applications do not require a complete application. Submit Sections 1-A, 1-B, 1-D, 1-F, 1-G, 2-A, 2-C thru L, Sections 3 thru 8, Section 13, Section 18, Section 22, and Section 23 (Certification). Other sections may be required at the discretion of the Department. 20.2.72.202 NMAC Exemptions do not apply to Streamline sources. 20.2.72.219 NMAC revisions and modifications do not apply to Streamline sources, thus 20.2.72.219 type actions require a complete new application submittal. Please do not print sections of a streamline application that are not required.

Not applicable, as this is not a streamline application.

Requirements for Title V Program

Who Must Use this Attachment:

* Any major source as defined in 20.2.70 NMAC.

- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

The facility is not subject to 40 CFR, Part 64, Compliance Assurance Monitoring (CAM); consequently, a

monitoring protocol is not required with this application.

19.2 - Compliance Status (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

The facility is in compliance with all applicable requirements, as has been demonstrated by the most recent semi-annual monitoring reports and annual compliance certification. It is assumed that compliance with the Title V operating permit ensures compliance with the construction permit and New Mexico regulations.

Form-Section 19 last revised: 8/15/2011

19.3 - Continued Compliance (20.2.70.300.D.10.c NMAC)

Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement.

The facility will continue to be in compliance with applicable requirements for which it is in compliance at the time of this permit application. In addition, Harvest will, in a timely manner or consistent with such schedule expressly required by the applicable requirement, comply with other applicable requirements as they come into effect during the permit term.

19.4 - Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)

You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.

The submittal of compliance certifications during the five-year term of the operating permit will occur annually.

19.5 - Stratospheric Ozone and Climate Protection

In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners).

- 1. Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozonedepleting substances? □ Yes ☑ No
- Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 2. □ Yes ☑ No lbs? (If the answer is yes, describe the type of equipment and how many units are at the facility.)

3. Do your facility personnel maintain, service, repair, or dispose of any motor vehicle air conditioners (MVACs) or appliances ("appliance" and "MVAC" as defined at 82. 152)? □ Yes ☑ No

Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through 4. G). None

The facility does not produce, manufacture, transform, destroy, import, or export any stratospheric ozonedepleting substances (CFCs, HCFCs); does not maintain or service motor vehicle air conditioning units or refrigeration equipment; and does not sell, distribute, or offer for sale any product that may contain stratospheric ozone-depleting substances.

Harevst shall continue to maintain compliance with the conditions stipulated in 40 CFR 82, Subparts A-G

of the Stratospheric Ozone Protection Program (Title VI of the Clean Air Act Amendments).

19.6 - Compliance Plan and Schedule

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.

B. Compliance plan: (20.2.70.300.D.11.B NMAC)

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC)

A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See <u>http://www.env.nm.gov/aqb/index.html</u>. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

The facility is in compliance with all applicable requirements; consequently, a compliance plan, a compliance schedule, and a schedule of certified progress reports is not required.

The facility is not equipped with any acid rain sources; consequently, compliance with the acid rain provisions is not required as a part of this permit application.

19.7 - 112(r) Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

The facility is not subject to 40 CFR 68, Chemical Accident Prevention Provisions; consequently, a Risk

Management Plan is not required.

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.)

The facility is located within 80 kilometers of the following states, local pollution control programs, Indian tribes and pueblos:

Colorado (≈28 km) Jicarilla Apache Indian Reservation (≈22 km) Navajo Indian Reservation (≈27 km) Southern Ute Tribe (≈28 km) Ute Mountain Indian Reservation (≈73 km)

19.9 - Responsible Official

Provide the Responsible Official as defined in 20.2.70.7.AD NMAC:

The responsible official is Travis Jones.

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

Not applicable, as no other relevant information is being provided.

Addendum for Landfill Applications

Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: <u>https://www3.epa.gov/airtoxics/landfill/landflpg.html</u>

NM Solid Waste Bureau Website: https://www.env.nm.gov/swb/

Not applicable, as the facility is not a landfill.

Certification

Company Name: Harvest Four Corners, LLC

	I, JAUS Javes, hereby certify that the i	information and data submitted in this application are true
	and as accurate as possible, to the best of my knowledge and profession	onal expertise and experience. Signed this 23 day of
May, 1022, upon my oath or affirmation, before a notary of the State of New Mexico.		
C	*Signature	S/23/2022 Date
Y	Thans Janes Printed Name	ELB MAMAGER
	Scribed and sworn before me on this 23 day of May My authorization as a notary of the State of New Mexico expires on the	, <u>d0d2</u> .
	My authorization as a notary of the State of New Mexico expires on the	ne 23 day of November, 2025.
ŀ.	Notars's Signature	5/23/2022 Date
	Tennicor Dra Notary's Printed Name	OFFICIAL SEAL Jennifer Deal NOTARY PUBLIC - STATE OF NEW MEXICO

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AD NMAC.