NMED AIR QUALITY APPLICATION NSR SIGNIFICANT REVISION

DAGGER DRAW GAS PLANT

NSR PERMIT 0001-M11

FRONTIER FIELD SERVICES, LLC EDDY COUNTY, NEW MEXICO

JUNE 2023

For Department use only:

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

This application is submitted as (check all that apply):
□ Request for a No Permit Required Determination (no fee)

□ Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Construction Status: □ Not Constructed **b** Existing Permitted (or NOI) Facility □ Existing Non-permitted (or NOI) Facility Minor Source: □ a NOI 20.2.73 NMAC **b** 20.2.72 NMAC application or revision □ 20.2.72.300 NMAC Streamline application Title V Source: **b** Title V (new) □ Title V renewal □ TV minor mod. □ TV significant mod. TV Acid Rain: □ New □ Renewal PSD Major Source: □ PSD major source (new) □ minor modification to a PSD source □ a PSD major modification

Acknowledgements:

b I acknowledge that a pre-application meeting is available to me upon request. □ Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

b \$500 NSR application Filing Fee enclosed OR \Box The full permit fee associated with 10 fee points (required w/ streamline applications).

□ Check No.: N/A in the amount of Application fee from GCP-O&G Application will be applied.

▶ I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.
▶ I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-2/.
□ This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.219.D.1.a NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

		AI # if known (see 1st	Updating
C		3 to 5 #s of permit	Permit/NOI #: NSR-
Sect	tion 1-A: Company Information	IDEA ID No.): 36536	0001-M11
1	Facility Name:	Plant primary SIC Code	e (4 digits): 1311
1	Dagger Draw Gas Plant	Plant NAIC code (6 dig	gits): 211120
a	Facility Street Address (If no facility street address, provide directions from 278 Pipeline Rd, Artesia, NM 88210	n a prominent landmark)	:
2	Plant Operator Company Name: Frontier Field Services, LLC	Phone/Fax: 575-677-51	08
a	Plant Operator Address: 1001 Conoco Road, Maljamar, NM 88264		
b	Plant Operator's New Mexico Corporate ID or Tax ID:		

3	Plant Owner(s) name(s): Frontier Field Services, LLC	Phone/Fax: 346-224-2459
a	Plant Owner(s) Mailing Address(s): 10077 Grogans Mill Road, Suite 300,	The Woodlands, TX 77380
4	Bill To (Company): Frontier Field Services, LLC	Phone/Fax: 346-224-2459
a	Mailing Address: 10077 Grogans Mill Road, Suite 300, The Woodlands, TX 77380	E-mail: RMoore@durangomidstream.com
5	Preparer: Consultant: Bright Sky Environmental, LLC	Phone/Fax: 281-217-8233
а	Mailing Address: 11701 FM 2244, Suite 215-B, Bee Cave, Texas 78738	E-mail: Kat@BrightSkyENV.com
6	Plant Operator Contact: John Prentiss	Phone/Fax: 575-677-5108
а	Mailing Address: 1001 Conoco Road, Maljamar, NM 88264	E-mail: JPrentiss@durangomidstream.com
7	Air Permit Contact: Darin B. Kennard	Title: Vice President & GM
a	E-mail: DKennard@durangomidstream.com	Phone/Fax: 346-351-2790/N/A
b	Mailing Address: 10077 Grogans Mill Road, Suite 300, The Woodlands, T	TX 77380
с	The designated Air permit Contact will receive all official correspondence	(i.e. letters, permits) from the Air Quality Bureau.

Section 1-B: Current Facility Status

1.a	.a Has this facility already been constructed? b Yes □ No 1.b If yes to question 1.a, is it c .a In New Mexico? b Yes □				
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? □ Yes þ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? □ Yes □ No			
3	Is the facility currently shut down? □Yes þNo If yes, give month and year of shut down (MM/YY): N/A				
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? □ Yes þ No				
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMA \Box Yes \Box No \flat N/A	C) or the capacity increased since 8/31/1972?			
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? □ Yes þ No	If yes, the permit No. is:			
7	Has this facility been issued a No Permit Required (NPR)? □ Yes þ No	If yes, the NPR No. is: N/A			
8	Has this facility been issued a Notice of Intent (NOI)? □ Yes þ No	If yes, the NOI No. is: N/A			
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? þ Yes □ No	If yes, the permit No. is: NSR-0001-M11			
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? □ Yes þ No	If yes, the register No. is: N/A			

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)					
a	Current Hourly: 3.75 MMSCF Daily: 90 MMSCF Annually: 32,850 MMSCF					
b	Proposed Hourly: 3.75 MMSCF Daily: 90 MMSCF Annually: 32,850 MMSCF					
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)					
a	a Current Hourly: 3.75 MMSCF Daily: 90 MMSCF Annually: 32,850 MMSCF		Annually: 32,850 MMSCF			
	b Proposed Hourly: 3.75 MMSCF Daily: 90 MMSCF Annually: 32,850 MMSCF					

Section 1-D: Facility Location Information

1	Section: 25	Range: 25E	Township: 18S	County: Eddy		Elevation (ft): 3,465
2	UTM Zone: 12 or 13 Datum: NAD 27 NAD 83 WG		33 🗆 WGS 84			
а	UTM E (in meter	rs, to nearest 10 meter	s): 551,933 m E	UTM N (in meters, to near	est 10 meters):	3,619,808 m
b	AND Latitude	(deg., min., sec.):	32°42'53"	Longitude (deg., min.,	sec.): -104°2	6'45''
3	Name and zip o	code of nearest Ne	ew Mexico town: Artesia, N	NM 88210		
4			m nearest NM town (attacl turn right onto Kincaid rd a			esia, NM head south on
5	The facility is 9	0.2 miles southwe	st of Artesia, NM 88210.			
6	Status of land a	t facility (check o	one): þ Private 🛛 Indian/Pu	eblo □ Federal BLM □	Federal For	est Service □ Other (specify)
7			bes, and counties within a t be constructed or operated			NMAC) of the property on
8	20.2.72 NMAC applications only : Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see <u>www.env.nm.gov/air-quality/modeling-publications/</u>)? □ Yes b No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: N/A					
9	Name nearest Class I area: Carlsbad Caverns National Park					
10	Shortest distant	ce (in km) from fa	cility boundary to the bour	ndary of the nearest Class	s I area (to the	nearest 10 meters): 57.05 km
11			neter of the Area of Operati len removal areas) to neare			
12	"Restricted An continuous wal that would requ	ls, or other contin	which public entry is effect	the Department, such as property is completely e	rugged phys nclosed by fo	ical terrain with steep grade encing, a restricted area
13	Does the owner □ Yes þ No A portable stati one location or	c/operator intend onary source is n that can be re-ins	to operate this source as a p ot a mobile source, such as talled at various locations,	ortable stationary source an automobile, but a sou such as a hot mix asphal	as defined ince that can	n 20.2.72.7.X NMAC? be installed permanently at s moved to different job sites.
14			nction with other air regulant in the second seco		property?	🛛 No 🗌 Yes

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24	$\left(\frac{\text{days}}{\text{week}}\right)$: 7	$\left(\frac{\text{weeks}}{\text{year}}\right): 52$	$(\frac{\text{hours}}{\text{year}})$: 8,760	
2	Facility's maximum daily operating schedule (if less	s than $24 \frac{\text{hours}}{\text{day}}$)? Start: N/A	□AM □PM	End: N/A	AM PM
3	Month and year of anticipated start of construction:	N/A			
4	Month and year of anticipated construction complet	ion: N/A			
5	Month and year of anticipated startup of new or more	dified facility: N/A			
6	Will this facility operate at this site for more than or	ne year? þ Yes □No			

Section 1-F: Other Facility Information

	e l		
1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related		
1	to this facility? \Box Yes b No If yes, specify:		
а	If yes, NOV date or description of issue:	NOV Tracking No:	

b	Is this application in response to any issue listed in 1-F, 1 or 1a above? 🗆 Yes 🗆 No If Yes, provide the 1c & 1d info below:				
c	Document Title:	Date:	Requirement # (or page # and paragraph #):		
d	Provide the required text to be inserted in this permit:				
2	Is air quality dispersion modeling or modeling waiver bein	g submitted with this	application? þ Yes 🗆 No		
3	Does this facility require an "Air Toxics" permit under 20.2	2.72.400 NMAC & 20	0.2.72.502, Tables A and/or B? □ Yes þ No		
4	Will this facility be a source of federal Hazardous Air Poll	utants (HAP)? þ Yes	□No		
a	If Yes, what type of source? \Box Major ($\Box \ge 10$ tpy of an OR b Minor ($\Box < 10$ tpy of an				
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? Yes	3 þ No			
	If yes, include the name of company providing commercial	l electric power to the	facility:		
a	Commercial power is purchased from a commercial utility site for the sole purpose of the user.	⁷ company, which spe	cifically does not include power generated on		

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1 🛛 I have filled out Section 18, "Addendum for Streamline Applications." **þ** N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Darin B. KennardPhone: 346-351-2790		Phone: 346-351-2790
a	R.O. Title: Vice President & GM	R.O. e-mail: DKen	nard@durangomidstream.com
b	R. O. Address: 10077 Grogans Mill Road, Suite 300, The Woodlar	ids, Texas 77380	
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): N/A		Phone: N/A
а	A. R.O. Title: N/A	A. R.O. e-mail: N/	A
b	A. R. O. Address: N/A		
3	Company's Corporate or Partnership Relationship to any other Air have operating (20.2.70 NMAC) permits and with whom the applic relationship): N/A		
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): N/A		
а	Address of Parent Company: N/A		
5	Names of Subsidiary Companies ("Subsidiary Companies" means owned, wholly or in part, by the company to be permitted.): N/A	organizations, branc	hes, divisions or subsidiaries, which are
6	Telephone numbers & names of the owners' agents and site contact Darin Kennard – (346) 351-2790	ts familiar with plan	t operations:
7	Affected Programs to include Other States, local air pollution contribution Will the property on which the facility is proposed to be constructed states, local pollution control programs, and Indian tribes and pueb ones and provide the distances in kilometers: N/A	d or operated be clo	ser than 80 km (50 miles) from other

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-toto 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application

secure electronic transfer. Air Permit Contact Name_____, Email_____ Phone number _____

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.

4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Change Log – Do **not** submit this page with your application.

If you are using a form older than the most current form posted on the website, you are required to incorporate the changes listed. Periodically, AQB will announce when older form versions will no longer be accepted.

Version Date	Changes Incorporated
4/1/2021	Current version of this form. Older versions are not accepted.

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, debottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The <u>Process</u> <u>Summary</u> shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

The Dagger Draw Gas Plant is currently permitted under Synthetic Minor > 80, permit NSR-0001-M11, authorized 4/26/2022. Frontier Field Services, LLC seeks a Significant Permit Revision per 20.2.72.219.D NMAC.

The facility's total capacity is 90 MMSCFD of natural gas, which is treated to remove H_2S and CO. The gas plant is located approximately 9.2 miles southwest of Artesia in Eddy County, New Mexico. This permit modification includes the following proposed changes:

- 1. Removal of H-4 and H-5 heaters from the permit. This equipment was never installed.
- 2. Adjustments to emissions factors used for ENG-1 through ENG-6.
- 3. Addition of amine flash tank and SSM emissions at the Process Flare, FL-2.
- 4. Updated gas sample composition updated for various sources.
- 5. Updated as-built counts of fugitive components used for fugitive emissions calculations.

There are no proposed changes made to the following equipment:

- Dehydrators DEHY-1 and DEHY-2
- Amine treating units AU-1, AU-2, and AU-3

This proposed revision does not increase the facility's total capacity and causes no auxiliary emissions increases.

The proposed PTE for the site is as follows:

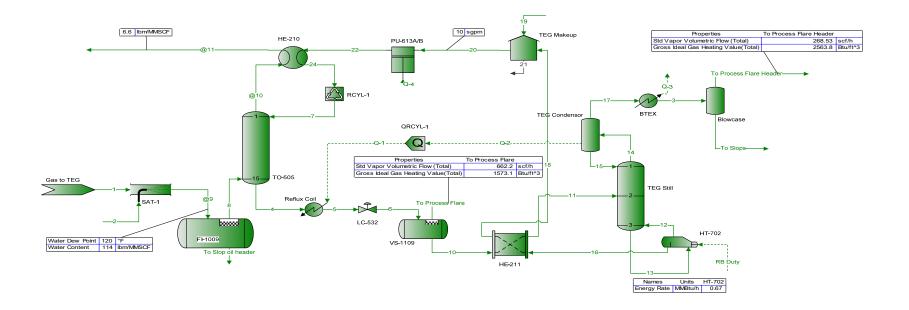
NOX (TPY)	CO (TPY)	VOC (TPY)	SO2 (TPY)	PM _{10/2.5} (TPY)	Total HAP (TPY)	Single HAP
						(TPY)
119.18	241.12	209.79	55.92	9.40	18.65	8.07

The facility is not a new major stationary source under the new source review requirements of the FCAA, Part C (PSD). The facility is located in Eddy County, New Mexico, an area that is classified as attainment or unclassified with the National Ambient Air Quality Standards (NAAQS) for all pollutants. Oil and gas production operations are not a listed source category under 40 CFR §52.21(b)(1); therefore, the facility would be considered a major source if criteria pollutant emissions are greater than or equal to the major source threshold of 250 tpy for each pollutant. The maximum annual emission rates for each criteria pollutant are less than 250 tpy. Therefore, the facility will remain a minor source as defined in the rules, and PSD review is not triggered.

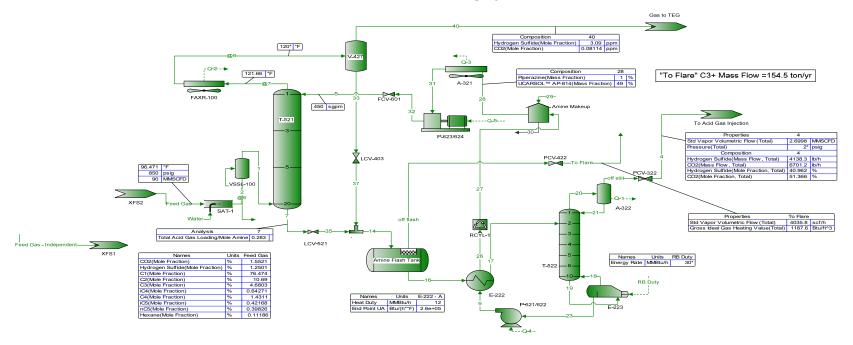
3,

Frontier Field Services, LLC

Dagger Draw Gas Plant

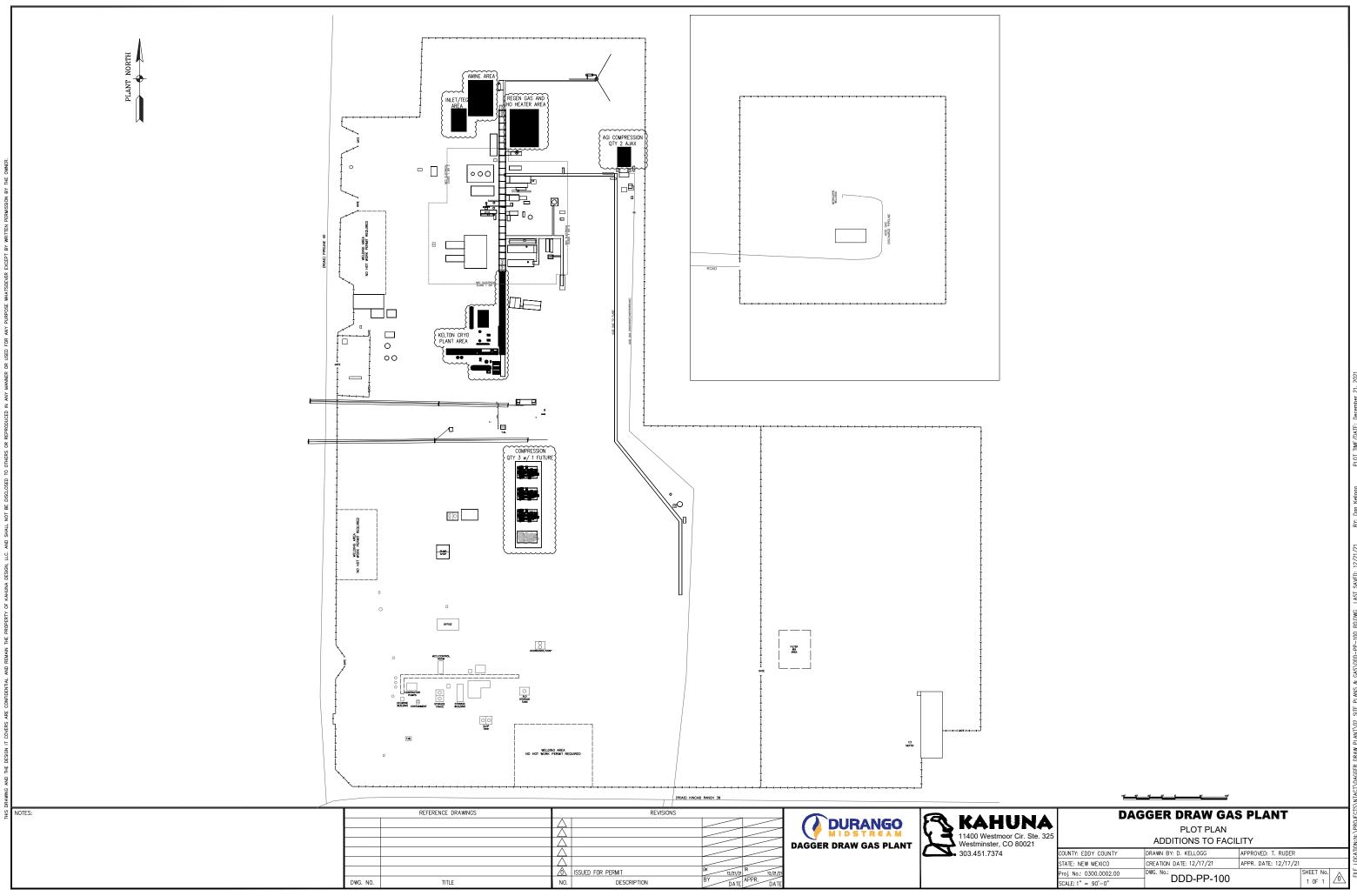

Title V permitting requirements are triggered since the Title V major source thresholds are exceeded (100 tpy for each criteria pollutant, 25 tpy for total HAPs, 10 tpy for any single HAP). The site will be Title V major for NOx, CO, and VOC.

Section 4


Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

TEG Glycol Dehydration System


Amine Treating System

Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

, 202
nber 21,
scen
Ĕ
IE/DA
È
PLO
_
<ellogg< td=""></ellogg<>
Dan
BY:
-
/21/21
: 12,
SAVED:
LAST
-100_
900-PP
GAS\D
ઝ
PLANS
_SITE
NT\02_
PLA
DRAW
GGER
ľ∕DA
NTA
JECTS
\PROJ
ION: N:
LOCATION: N
FILE L
-

Section 6

All Calculations

<u>Show all calculations</u> used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the

Frontier Field Services, LLC

Dagger Draw Gas Plant

application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

TEG Dehydrators (Units DEHY-1 & DEHY-2)

Emission rates were calculated using Promax (gas processing analysis/simulation program) the simulated throughput for the facility was set at a combined total of 90 MMscfd. A copy can be found in Section 7 of this application. The dehydrator is controlled by a Venturi system and a condenser. These controls are 100% efficient. 98% control accounts for fugitive emissions. All vapors are routed to the plant flare (unit FL-2). The system has no vent to the atmosphere.

Amine Units (Units AU-1 through AU-3)

Emission rates were calculated using Promax (gas processing analysis/simulation program) based on a combined maximum throughput of 90 MMSCFD for the entire facility. A copy can be found in Section 7 of this application. The Amine unit's flash tank emissions are collected and sent to a low-pressure inlet of the facility, the regenerator emissions are sent to the AGI system. The amine unit flash tank emissions have been updated to route to the facility Process Flare (FL-2) as a worst-case alternating operating scenario for the facility. The system has no vent to the atmosphere.

Compressor Engines (Units ENG-1 through ENG-6)

Emission factors for NOx, CO, VOC, formaldehyde, and GHG are based on manufacturer data. NSCR and Catalytic oxidation for NOx, CO, VOC, and formaldehyde are based on vendor guarantees with a factor for operational flexibility. Emission rates for TSP, PM10, and PM2.5 were calculated using AP-42 Table 3.2-2 emission factors. PM10 and PM2.5 emissions are set equal to TSP emissions as a conservative measure. SO2 emissions were calculated based on the units' fuel consumption and AP-42 assumptions of fuel sulfur. Only those HAPs greater than 1 tpy were illustrated in the application. GHG emissions were calculated using 40 CFR 98 Subpart C Tier1.

Fugitives (Unit FUG)

Fugitives for the facility were calculated using the as-built component counts from LDAR testing and emission factors from EPA/API for oil and gas production facilities.

Hot oil heater, Reboiler, and Mol Sieve Regenerator heater (Units H-1 through H-3)

Emission rates for NOx, CO, VOC, and PM were calculated using AP-42 factors for external natural gas combustion sources, Table 1.4-1 and 1.4-2. PM₁₀ and PM_{2.5} emissions are set equal to PM emissions as a conservative measure. SO₂ emissions were calculated based on the units' fuel consumption and a maximum sulfur content of 2/100 scf). GHG emissions were calculated using 40 CFR 98 Subpart C Tier1.

Flares:

NOx emission factors from AP-42, Table 13.5-1, February 2018. CO emission factor from TCEQ Air Permit Technical Guidance for Flares and Vapor Oxidizers, high btu. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

Emergency Flare (Unit FL-1)

The Emergency Flare is used in emergency events for acid gas flaring during compressor downtime of acid gas injection system. Pilot Emissions are included for the facility flare, assuming year-round operation of the flare pilot. A copy of the flare pilot calculation is provided in this section.

Process Flare (Unit FL-2)

The Process Flare is used to control glycol dehydrator emissions and the amine flash tank. Pilot Emissions are included for the facility flare, assuming year-round operation of the flare pilot. A copy of the flare pilot calculation is provided in this section.

SSM emissions: in the event that the facility needs to handle a sour gas event, the gas exiting the amine unit may need to be flared at the Process Flare (FL-2). This permit amendment includes SSM flaring of 3.06 MMscf/hour and 949 MMscf/year of gas at 100 ppm H2S.

Routine or predictable emissions during Startup, Shutdown and Maintenance (SSM):

Frontier Field Services, LLC maintains 10 tpy of VOC associated with compressor and slug catcher blowdowns that will occur at this facility.

Malfunction Emissions (M):

Frontier Field Services, LLC maintains 10 tpy of VOC associated with malfunction emissions at this facility.

Emission Summary

												Uncontrolle	d Emissions													
	N	iO,	6	20	v	OC	s	0,	P	M ₁₀		M _{2.5}		LS	Tot	al HAP	Forms	aldehyde	Acetale	dehvde	Act	olein	n-he	xane	benz	ene
Unit	lb/hr	tov	lb/hr	tov	lb/hr	tpy	lb/hr	tpv	lb/hr	tpv	lb/hr	tov	lb/hr	tpy	lb/hr	tpv	lb/hr	tpy	lb/hr	tov	lb/hr	tpv	lb/hr	tpy	lb/hr	tpy
ENG-1	1.96	8.57	10.76	47.13	3.85	16.85	0.07	0.30	0.12	0.51	0.12	0.51	0.00	0.00	1.47	6.43	1.02	4.46	0.09	0.40	0.09	0.40	0.01	0.02	0.02	0.10
ENG-2	1.96	8.57	10.76	47.13	3.85	16.85	0.07	0.30	0.12	0.51	0.12	0.51	0.00	0.00	1.47	6.43	1.02	4.46	0.09	0.40	0.09	0.40	0.01	0.02	0.02	0.10
ENG-3	1.96	8.57	10.76	47.13	3.85	16.85	0.07	0.30	0.12	0.51	0.12	0.51	0.00	0.00	1.47	6.43	1.02	4.46	0.09	0.40	0.09	0.40	0.01	0.02	0.02	0.10
ENG-4	1.96	8.57	10.76	47.13	3.85	16.85	0.07	0.30	0.12	0.51	0.12	0.51	0.00	0.00	1.47	6.43	1.02	4.46	0.09	0.40	0.09	0.40	0.01	0.02	0.02	0.10
ENG-5	3.53	15.45	2.12	9.27	1.46	6.41	0.04	0.16	0.30	1.32	0.30	1.32	0.00	0.00	0.64	2.81	0.53	2.32	0.05	0.23	0.03	0.14	0.01	0.03	0.00	0.01
ENG-6	3.53	15.45	2.12	9.27	1.46	6.41	0.04	0.16	0.30	1.32	0.30	1.32	0.00	0.00	1.17	5.13	0.53	2.32	0.05	0.23	0.03	0.14	0.01	0.03	0.00	0.01
H-1	2.20	9.62	1.84	8.08	0.12	0.53	0.13	0.58	0.17	0.73	0.17	0.73	0.00	0.00	0.04	0.18	0.00	0.01	0.00	0.00	0.00	0.00	0.04	0.17	0.00	0.00
H-2	0.15	0.64	0.12	0.54	0.01	0.04	0.01	0.04	0.01	0.05	0.01	0.05	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
H-3	0.31	1.37	0.26	1.15	0.02	0.08	0.02	0.08	0.02	0.10	0.02	0.10	0.00	0.00	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.00
H-4													Removed	1												
H5 Removed																										
DEHY-1				-	48.49	212.38			-	_			0.01	0.03	10.73	46.99	0	0	0	0	0	0	1.02	4.47	6.74	29.51
DEHY-2	-	-	-	-	40.47	212.56	-	-	-	-	-	-	0.01	0.05	10.75	40.77	0	0	0	0	0	0	1.02	7.77	0.74	29.51
AU-1					1					1	1	1	1				1	1					1			
AU-2	-	-	-	-	94.97	153.58	-	-	-	-		-	4143.89	24.32	56.25	12.56	0	0	0	0	0	0	0.29	1.13	33.80	7.23
AU-3			L	L	L	L						I	<u> </u>	L		L										
FL-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FL-2	-	-	-	-	-	- 5450.25	-	-	-			-		28.56	-	-		-	-	-		-	- 564.39	- 87.48	-	-
FL-2 SSM FUG	-	-	-	-	35162.93 1.48		-	-	-	-			27.51 0.12	28.56	1134.05	175.78							0.03		331.17 0.05	51.33
SSM	-	-	-	-	1.48	- 10.00	-		-	-	-	-	0.12	0.53	-	-							0.03	0.12	0.05	0.24
MALF	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-							-	-	-	-
Total	17.54	76.81	49.51	216.85	35326.34	5917.09	0.509	2.23	1.27	5.58	1.27	5.58	4171.52	53.44	1208.77	269.22	5.13	22.47	0.470	2.057	0.430	1.885	565.82	93.56	371.85	88.73
Totai	17.54	70.01	47.51	210.05	55520.54	3717.07	0.507	2.23	1.27	5.50	1.27	5.50	41/1.52	55.44	1200.77	207.22	5.15	22.47	0.470	2.037	0.450	1.005	505.02	75.50	571.85	00.75
			Control In France																							
	Controlled Emissions																									
	N	0		<u>~0</u>	V	0C*		0	P	M.,	P			LS	Tot	HAP	Forms	aldebyde	Acetak	debyde	Act	olein	n-he	vane	henz	ene
Unit		iO _x		CO fmv		DC*		O _x		M ₁₀ tny		M _{2.5}	H	I ₂ S		al HAP fny		aldehyde fny	Acetale lb/hr			olein tov		exane fpy	benzo lb/hr	
Unit ENG-1	N lb/hr 1.96	tpy	lb/hr	tpy	lb/hr	tpy	8 1b/hr 0.07	O _x tpy 0.30	lb/hr	tpy	lb/hr	M _{2.5} tpy		I₂S tpy 0.00	Tota lb/hr 0.45	tpy	lb/hr	tpy	lb/hr	dehyde tpy 0.40	lb/hr	tpy	lb/hr	tpy	benze lb/hr 0.02	tpy
	lb/hr	-					lb/hr	tpy				M _{2.5}	H lb/hr	- tpy	lb/hr					tpy					lb/hr	
ENG-1	lb/hr 1.96	tpy 8.57	lb/hr 2.35	tpy 10.28	lb/hr 3.03	tpy 13.25	lb/hr 0.07	tpy 0.30	lb/hr 0.12	tpy 0.51	lb/hr 0.12	M _{2.5} tpy 0.51	H lb/hr 0.00	tpy 0.00	lb/hr 0.45	tpy 1.98	lb/hr 0.20	tpy 0.86	lb/hr 0.09	tpy 0.40	lb/hr 0.09	tpy 0.40	lb/hr 0.01	tpy 0.02	1b/hr 0.02	tpy 0.10
ENG-1 ENG-2	lb/hr 1.96 1.96	tpy 8.57 8.57	1b/hr 2.35 2.35	tpy 10.28 10.28	1b/hr 3.03 3.03	tpy 13.25 13.25	lb/hr 0.07 0.07	tpy 0.30 0.30	1b/hr 0.12 0.12	tpy 0.51 0.51	1b/hr 0.12 0.12	M _{2.5} tpy 0.51 0.51	H lb/hr 0.00 0.00	tpy 0.00 0.00	lb/hr 0.45 0.45	tpy 1.98 1.98	lb/hr 0.20 0.20	tpy 0.86 0.86	lb/hr 0.09 0.09	tpy 0.40 0.40	lb/hr 0.09 0.09	tpy 0.40 0.40	1b/hr 0.01 0.01	tpy 0.02 0.02	lb/hr 0.02 0.02	tpy 0.10 0.10
ENG-1 ENG-2 ENG-3	lb/hr 1.96 1.96 1.96	tpy 8.57 8.57 8.57	lb/hr 2.35 2.35 2.35	tpy 10.28 10.28 10.28	lb/hr 3.03 3.03 3.03	tpy 13.25 13.25 13.25	lb/hr 0.07 0.07 0.07	tpy 0.30 0.30 0.30	lb/hr 0.12 0.12 0.12	tpy 0.51 0.51 0.51	lb/hr 0.12 0.12 0.12	M _{2.5} tpy 0.51 0.51 0.51	H b/hr 0.00 0.00 0.00	tpy 0.00 0.00 0.00	lb/hr 0.45 0.45 0.45	tpy 1.98 1.98 1.98	lb/hr 0.20 0.20 0.20	tpy 0.86 0.86 0.86	lb/hr 0.09 0.09 0.09	tpy 0.40 0.40 0.40	lb/hr 0.09 0.09 0.09	tpy 0.40 0.40 0.40	lb/hr 0.01 0.01 0.01	tpy 0.02 0.02 0.02	lb/hr 0.02 0.02 0.02	tpy 0.10 0.10 0.10
ENG-1 ENG-2 ENG-3 ENG-4	lb/hr 1.96 1.96 1.96 1.96 3.53 3.53	tpy 8.57 8.57 8.57 8.57 15.45 15.45	lb/hr 2.35 2.35 2.35 2.35 2.35 2.12 2.12	tpy 10.28 10.28 10.28 10.28	lb/hr 3.03 3.03 3.03 3.03 3.03	tpy 13.25 13.25 13.25 13.25 13.25 6.41 6.41	lb/hr 0.07 0.07 0.07 0.07	tpy 0.30 0.30 0.30 0.30 0.30	lb/hr 0.12 0.12 0.12 0.12 0.12	tpy 0.51 0.51 0.51 0.51	lb/hr 0.12 0.12 0.12 0.12	M _{2.5} tpy 0.51 0.51 0.51 0.51	H b/hr 0.00 0.00 0.00 0.00	tpy 0.00 0.00 0.00 0.00	lb/hr 0.45 0.45 0.45 0.45 0.45	tpy 1.98 1.98 1.98 1.98	lb/hr 0.20 0.20 0.20 0.20	tpy 0.86 0.86 0.86 0.86	lb/hr 0.09 0.09 0.09 0.09	tpy 0.40 0.40 0.40 0.40	lb/hr 0.09 0.09 0.09 0.09	tpy 0.40 0.40 0.40 0.40	lb/hr 0.01 0.01 0.01 0.01	tpy 0.02 0.02 0.02 0.02	lb/hr 0.02 0.02 0.02 0.02	tpy 0.10 0.10 0.10 0.10
ENG-1 ENG-2 ENG-3 ENG-4 ENG-5 ENG-6 H-1	lb/hr 1.96 1.96 1.96 3.53 3.53 2.20	tpy 8.57 8.57 8.57 15.45 15.45 9.62	lb/hr 2.35 2.35 2.35 2.35 2.35 2.12 2.12 1.84	tpy 10.28 10.28 10.28 10.28 9.27 9.27 8.08	lb/hr 3.03 3.03 3.03 3.03 1.46 1.46 0.12	tpy 13.25 13.25 13.25 13.25 6.41 6.41 0.53	lb/hr 0.07 0.07 0.07 0.07 0.07 0.04 0.04 0.13	tpy 0.30 0.30 0.30 0.30 0.16 0.16 0.58	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17	tpy 0.51 0.51 0.51 0.51 1.32 1.32 0.73	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17	M _{2.5} tpy 0.51 0.51 0.51 1.32 1.32 0.73	H b/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00	lb/hr 0.45 0.45 0.45 0.45 1.17 1.17 0.04	tpy 1.98 1.98 1.98 1.98 2.81 2.81 0.18	lb/hr 0.20 0.20 0.20 0.20 0.20 0.53 0.53 0.00	tpy 0.86 0.86 0.86 0.86 2.32 2.32 2.32 0.01	lb/hr 0.09 0.09 0.09 0.09 0.05 0.05 0.00	tpy 0.40 0.40 0.40 0.23 0.23 0.00	lb/hr 0.09 0.09 0.09 0.09 0.09 0.03 0.03 0.00	tpy 0.40 0.40 0.40 0.40 0.14 0.14 0.14 0.00	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	tpy 0.02 0.02 0.02 0.03 0.03 0.03 0.17	lb/hr 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00	tpy 0.10 0.10 0.10 0.10 0.01 0.01 0.01 0.0
ENG-1 ENG-2 ENG-3 ENG-4 ENG-5 ENG-6 H-1 H-2	Ib/hr 1.96 1.96 1.96 3.53 3.53 2.20 0.15	tpy 8.57 8.57 8.57 15.45 15.45 9.62 0.64	Ib/hr 2.35 2.35 2.35 2.35 2.12 1.84 0.12	tpy 10.28 10.28 10.28 10.28 9.27 9.27 8.08 0.54	lb/hr 3.03 3.03 3.03 3.03 1.46 1.46 0.12 0.01	tpy 13.25 13.25 13.25 13.25 6.41 6.41 0.53 0.04	Ib/hr 0.07 0.07 0.07 0.07 0.07 0.04 0.13 0.01	tpy 0.30 0.30 0.30 0.30 0.16 0.16 0.58 0.04	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01	tpy 0.51	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01	M _{2.5} tpy 0.51 0.51 0.51 1.32 1.32 0.73 0.05	H b/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	lb/hr 0.45 0.45 0.45 0.45 1.17 1.17 0.04 0.00	tpy 1.98 1.98 1.98 2.81 2.81 0.18 0.01	lb/hr 0.20 0.20 0.20 0.20 0.20 0.53 0.53 0.00	tpy 0.86 0.86 0.86 0.86 2.32 2.32 2.32 0.01 0.00	lb/hr 0.09 0.09 0.09 0.09 0.05 0.05 0.00 0.00	tpy 0.40 0.40 0.40 0.23 0.23 0.23 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.09 0.03 0.03 0.00	tpy 0.40 0.40 0.40 0.40 0.40 0.14 0.14 0.00	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	tpy 0.02 0.02 0.02 0.02 0.03 0.03 0.17 0.01	lb/hr 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00	tpy 0.10 0.10 0.10 0.01 0.01 0.01 0.00 0.00
ENG-1 ENG-2 ENG-3 ENG-4 ENG-5 ENG-6 H-1 H-2 H-3	lb/hr 1.96 1.96 1.96 3.53 3.53 2.20	tpy 8.57 8.57 8.57 15.45 15.45 9.62	lb/hr 2.35 2.35 2.35 2.35 2.35 2.12 2.12 1.84	tpy 10.28 10.28 10.28 10.28 9.27 9.27 8.08	lb/hr 3.03 3.03 3.03 3.03 1.46 1.46 0.12	tpy 13.25 13.25 13.25 13.25 6.41 6.41 0.53	lb/hr 0.07 0.07 0.07 0.07 0.07 0.04 0.04 0.13	tpy 0.30 0.30 0.30 0.30 0.16 0.16 0.58	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17	tpy 0.51 0.51 0.51 0.51 1.32 1.32 0.73	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17	M _{2.5} tpy 0.51 0.51 0.51 1.32 1.32 0.73	H b/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	lb/hr 0.45 0.45 0.45 0.45 1.17 1.17 0.04	tpy 1.98 1.98 1.98 1.98 2.81 2.81 0.18	lb/hr 0.20 0.20 0.20 0.20 0.20 0.53 0.53 0.00	tpy 0.86 0.86 0.86 0.86 2.32 2.32 2.32 0.01	lb/hr 0.09 0.09 0.09 0.09 0.05 0.05 0.00	tpy 0.40 0.40 0.40 0.23 0.23 0.00	lb/hr 0.09 0.09 0.09 0.09 0.09 0.03 0.03 0.00	tpy 0.40 0.40 0.40 0.40 0.14 0.14 0.14 0.00	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	tpy 0.02 0.02 0.02 0.03 0.03 0.03 0.17	lb/hr 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00	tpy 0.10 0.10 0.10 0.10 0.01 0.01 0.01 0.0
ENG-1 ENG-2 ENG-3 ENG-4 ENG-5 ENG-6 H-1 H-2 H-3 H-4	Ib/hr 1.96 1.96 1.96 3.53 3.53 2.20 0.15	tpy 8.57 8.57 8.57 15.45 15.45 9.62 0.64	Ib/hr 2.35 2.35 2.35 2.35 2.12 1.84 0.12	tpy 10.28 10.28 10.28 10.28 9.27 9.27 8.08 0.54	lb/hr 3.03 3.03 3.03 3.03 1.46 1.46 0.12 0.01	tpy 13.25 13.25 13.25 13.25 6.41 6.41 0.53 0.04	Ib/hr 0.07 0.07 0.07 0.07 0.07 0.04 0.13 0.01	tpy 0.30 0.30 0.30 0.30 0.16 0.16 0.58 0.04	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01	tpy 0.51	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01	M _{2.5} tpy 0.51 0.51 0.51 1.32 1.32 0.73 0.05	H b/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Removed	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	lb/hr 0.45 0.45 0.45 0.45 1.17 1.17 0.04 0.00	tpy 1.98 1.98 1.98 2.81 2.81 0.18 0.01	lb/hr 0.20 0.20 0.20 0.20 0.20 0.53 0.53 0.00	tpy 0.86 0.86 0.86 0.86 2.32 2.32 2.32 0.01 0.00	lb/hr 0.09 0.09 0.09 0.09 0.05 0.05 0.00 0.00	tpy 0.40 0.40 0.40 0.23 0.23 0.23 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.09 0.03 0.03 0.00	tpy 0.40 0.40 0.40 0.40 0.40 0.14 0.14 0.00	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	tpy 0.02 0.02 0.02 0.02 0.03 0.03 0.17 0.01	lb/hr 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00	tpy 0.10 0.10 0.10 0.01 0.01 0.01 0.00 0.00
ENG-1 ENG-2 ENG-3 ENG-4 ENG-5 ENG-6 H-1 H-2 H-3 H-4 H-5	Ib/hr 1.96 1.96 1.96 3.53 3.53 2.20 0.15	tpy 8.57 8.57 8.57 15.45 15.45 9.62 0.64	Ib/hr 2.35 2.35 2.35 2.35 2.12 1.84 0.12	tpy 10.28 10.28 10.28 10.28 9.27 9.27 8.08 0.54	lb/hr 3.03 3.03 3.03 3.03 1.46 1.46 0.12 0.01	tpy 13.25 13.25 13.25 13.25 6.41 6.41 0.53 0.04	Ib/hr 0.07 0.07 0.07 0.07 0.07 0.04 0.13 0.01	tpy 0.30 0.30 0.30 0.30 0.16 0.16 0.58 0.04	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01	tpy 0.51	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01	M _{2.5} tpy 0.51 0.51 0.51 1.32 1.32 0.73 0.05	H b/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	lb/hr 0.45 0.45 0.45 0.45 1.17 1.17 0.04 0.00	tpy 1.98 1.98 1.98 2.81 2.81 0.18 0.01	lb/hr 0.20 0.20 0.20 0.20 0.20 0.53 0.53 0.00	tpy 0.86 0.86 0.86 0.86 2.32 2.32 2.32 0.01 0.00	lb/hr 0.09 0.09 0.09 0.09 0.05 0.05 0.00 0.00	tpy 0.40 0.40 0.40 0.23 0.23 0.23 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.09 0.03 0.03 0.00	tpy 0.40 0.40 0.40 0.40 0.40 0.14 0.14 0.00	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	tpy 0.02 0.02 0.02 0.02 0.03 0.03 0.17 0.01	lb/hr 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00	tpy 0.10 0.10 0.10 0.01 0.01 0.01 0.00 0.00
ENG-1 ENG-2 ENG-3 ENG-4 ENG-5 ENG-6 H-1 H-2 H-3 H-4 H-5 DEHY-1	Ib/hr 1.96 1.96 1.96 3.53 3.53 2.20 0.15	tpy 8.57 8.57 8.57 15.45 15.45 9.62 0.64	Ib/hr 2.35 2.35 2.35 2.35 2.12 1.84 0.12	tpy 10.28 10.28 10.28 10.28 9.27 9.27 8.08 0.54	lb/hr 3.03 3.03 3.03 3.03 1.46 1.46 0.12 0.01	tpy 13.25 13.25 13.25 13.25 6.41 6.41 0.53 0.04	Ib/hr 0.07 0.07 0.07 0.07 0.07 0.04 0.13 0.01	tpy 0.30 0.30 0.30 0.30 0.16 0.16 0.58 0.04	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01	tpy 0.51	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01	M _{2.5} tpy 0.51 0.51 0.51 0.51 1.32 1.32 0.73 0.05 0.10	H b/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Removed	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	lb/hr 0.45 0.45 0.45 0.45 1.17 1.17 0.04 0.00	tpy 1.98 1.98 1.98 2.81 2.81 0.18 0.01	lb/hr 0.20 0.20 0.20 0.20 0.20 0.53 0.53 0.00	tpy 0.86 0.86 0.86 0.86 2.32 2.32 2.32 0.01 0.00	lb/hr 0.09 0.09 0.09 0.09 0.05 0.05 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.23 0.23 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.09 0.03 0.03 0.00	tpy 0.40 0.40 0.40 0.40 0.40 0.14 0.14 0.00	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	tpy 0.02 0.02 0.02 0.02 0.03 0.03 0.17 0.01	lb/hr 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00	tpy 0.10 0.10 0.10 0.01 0.01 0.01 0.00 0.00
ENG-1 ENG-2 ENG-3 ENG-4 ENG-5 ENG-5 ENG-5 H-1 H-2 H-3 H-4 H-3 H-4 H-5 DEHY-1 DEHY-2	Ib/hr 1.96 1.96 1.96 3.53 3.53 2.20 0.15	tpy 8.57 8.57 8.57 15.45 15.45 9.62 0.64	Ib/hr 2.35 2.35 2.35 2.35 2.12 1.84 0.12	tpy 10.28 10.28 10.28 10.28 9.27 9.27 8.08 0.54	lb/hr 3.03 3.03 3.03 3.03 1.46 1.46 0.12 0.01	tpy 13.25 13.25 13.25 13.25 6.41 6.41 0.53 0.04	Ib/hr 0.07 0.07 0.07 0.07 0.07 0.04 0.13 0.01	tpy 0.30 0.30 0.30 0.30 0.16 0.16 0.58 0.04 0.08	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01	tpy 0.51 0.05 0.10	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01	M _{2.5} tpy 0.51 0.51 0.51 1.32 1.32 0.73 0.05	H b/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Removed	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 1	lb/hr 0.45 0.45 0.45 0.45 1.17 1.17 0.04 0.00	tpy 1.98 1.98 1.98 2.81 2.81 0.18 0.01 0.03	lb/hr 0.20 0.20 0.20 0.20 0.20 0.53 0.53 0.00	tpy 0.86 0.86 0.86 0.86 2.32 2.32 0.01 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.05 0.05 0.00 0.00	tpy 0.40 0.40 0.40 0.23 0.23 0.23 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.09 0.03 0.03 0.00	tpy 0.40 0.40 0.40 0.40 0.40 0.14 0.14 0.00	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	tpy 0.02 0.02 0.02 0.02 0.03 0.03 0.17 0.01	lb/hr 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00	tpy 0.10 0.10 0.10 0.01 0.01 0.01 0.00 0.00
ENG-1 ENG-2 ENG-3 ENG-4 ENG-5 H-1 H-2 H-3 H-4 H-5 DEHY-1 DEHY-2 AU-1	Ib/hr 1.96 1.96 1.96 3.53 3.53 2.20 0.15	tpy 8.57 8.57 8.57 15.45 15.45 9.62 0.64 1.37	Ib/hr 2.35 2.35 2.35 2.35 2.12 1.84 0.12	tpy 10.28 10.28 10.28 10.28 9.27 9.27 8.08 0.54	lb/hr 3.03 3.03 3.03 3.03 1.46 1.46 0.12 0.01	tpy 13.25 13.25 13.25 13.25 6.41 6.41 0.53 0.04 0.08	Ib/hr 0.07 0.07 0.07 0.07 0.07 0.04 0.13 0.01	tpy 0.30 0.30 0.30 0.30 0.16 0.16 0.58 0.04 0.08	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01	tpy 0.51 0.51 0.51 0.51 1.32 1.32 1.32 0.73 0.05 0.10 -	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01	tpy 0.51 <	H b/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Removed	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b/hr 0.45 0.45 0.45 1.17 1.17 0.04 0.00 0.01	tpy 1.98 1.98 1.98 1.98 2.81 2.81 0.18 0.01 0.03 -	lb/hr 0.20 0.20 0.20 0.20 0.20 0.53 0.53 0.00	tpy 0.86 0.86 0.86 2.32 2.32 0.01 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.05 0.05 0.05 0.00 0.00	tpy 0.40 0.40 0.40 0.23 0.23 0.23 0.00 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.03 0.03 0.03 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.14 0.14 0.14 0.00 0.00	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	tpy 0.02 0.02 0.02 0.02 0.03 0.03 0.17 0.01	lb/hr 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00	tpy 0.10 0.10 0.10 0.01 0.01 0.01 0.00 0.00
ENG-1 ENG-2 ENG-3 ENG-4 ENG-5 ENG-6 H-1 H-2 H-3 H-4 H-4 H-5 DEHY-1 DEHY-2 AU-1 AU-2	Ib/hr 1.96 1.96 1.96 3.53 3.53 2.20 0.15	tpy 8.57 8.57 8.57 15.45 15.45 9.62 0.64	Ib/hr 2.35 2.35 2.35 2.35 2.12 1.84 0.12	tpy 10.28 10.28 10.28 10.28 9.27 9.27 8.08 0.54	lb/hr 3.03 3.03 3.03 3.03 1.46 1.46 0.12 0.01	tpy 13.25 13.25 13.25 13.25 6.41 6.41 0.53 0.04	Ib/hr 0.07 0.07 0.07 0.07 0.07 0.04 0.13 0.01	tpy 0.30 0.30 0.30 0.30 0.16 0.16 0.58 0.04 0.08	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01	tpy 0.51 0.05 0.10	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01	M _{2.5} tpy 0.51 0.51 0.51 0.51 1.32 1.32 0.73 0.05 0.10	H b/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Removed	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 1	lb/hr 0.45 0.45 0.45 0.45 1.17 1.17 0.04 0.00	tpy 1.98 1.98 1.98 2.81 2.81 0.18 0.01 0.03	lb/hr 0.20 0.20 0.20 0.20 0.20 0.53 0.53 0.00	tpy 0.86 0.86 0.86 0.86 2.32 2.32 0.01 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.05 0.05 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.23 0.23 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.09 0.03 0.03 0.00	tpy 0.40 0.40 0.40 0.40 0.40 0.14 0.14 0.00	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	tpy 0.02 0.02 0.02 0.02 0.03 0.03 0.17 0.01	lb/hr 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00	tpy 0.10 0.10 0.10 0.01 0.01 0.01 0.00 0.00
ENG-1 ENG-2 ENG-3 ENG-4 ENG-5 ENG-6 H-1 H-2 H-3 H-4 H-5 DEHY-1 DEHY-2 AU-1 AU-2 AU-3	lb/hr 1.96 1.96 1.96 1.96 3.53 3.53 2.20 0.15 0.31 -	tpy 8.57 8.57 8.57 8.57 15.45 9.62 0.64 1.37	lb/hr 2.35 2.35 2.35 2.35 2.35 2.12 1.84 0.12 0.26 -	tpy 10.28 10.28 10.28 10.28 9.27 9.27 8.08 0.54 1.15	lb/hr 3.03 3.03 3.03 3.03 3.03 3.03 1.46 1.46 0.12 0.01 0.02 -	tpy 13.25 13.25 13.25 13.25 6.41 0.53 0.04 0.08	lb/hr 0.07 0.07 0.07 0.07 0.04 0.04 0.01 0.02	tpy 0.30 0.30 0.30 0.30 0.16 0.16 0.18 0.04 0.08	lb/hr 0.12 0.12 0.12 0.12 0.12 0.10 0.112 0.30 0.30 0.17 0.01 0.02	tpy 0.51 0.51 0.51 0.51 1.32 1.32 1.32 0.73 0.05 0.10 -	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01 0.02	tpy 0.51	H b/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b/hr 0.45 0.45 0.45 0.45 1.17 1.17 0.04 0.00 0.01	tpy 1.98 1.98 1.98 1.98 1.98 2.81 2.81 0.18 0.01 0.03	lb/hr 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.53 0.53 0.00 0.00 -	tpy 0.86 0.86 0.86 0.86 2.32 2.32 0.01 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.05 0.05 0.00 0.00 0.00 0.00 0.00 -	tpy 0.40 0.40 0.40 0.23 0.23 0.00 0.00 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.40 0.14 0.14 0.14	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 - -	tpy 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.01 0.01 0.02	lb/hr 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 - -	tpy 0.10 0.10 0.10 0.10 0.01 0.01 0.01 0.0
ENG-1 ENG-2 ENG-3 ENG-3 ENG-5 ENG-5 ENG-6 H-1 H-2 H-3 H-3 H-4 H-5 DEHY-1 DEHY-1 DEHY-1 DEHY-2 AU-1 AU-2 AU-3 FL-1	lb/hr 1.96 1.96 1.96 1.96 3.53 2.20 0.15 0.31	tpy 8.57 8.57 8.57 15.45 9.62 0.64 1.37 - 0.21	b/hr 2.35 2.35 2.35 2.35 2.12 2.12 1.84 0.12 0.26	tpy 10.28 10.28 10.28 10.28 9.27 9.27 8.08 0.54 1.15	lb/hr 3.03 3.03 3.03 3.03 3.03 1.46 1.46 0.12 0.01 0.02	tpy 13.25 13.25 13.25 13.25 6.41 6.41 0.53 0.04 0.08	lb/hr 0.07 0.07 0.07 0.07 0.07 0.04 0.13 0.01 0.02 -	tpy 0.30 0.30 0.30 0.16 0.16 0.58 0.04 0.08	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.10 0.30 0.01 - - 0.01	tpy 0.51 0.51 0.51 0.51 0.51 1.32 1.32 1.32 0.73 0.05 0.10	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01	tpy 0.51 0.51 0.51 0.51 0.51 1.32 1.32 0.73 0.05 0.10 -	H b/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - Removec - - 0.00	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	lb/hr 0.45 0.45 0.45 0.45 0.45 1.17 1.17 0.04 0.00 0.01	tpy 1.98 1.98 1.98 1.98 2.81 2.81 0.18 0.01 0.03 - - 0.09	lb/hr 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.53 0.53 0.00 0.00	tpy 0.86 0.86 0.86 0.86 2.32 2.32 0.01 0.00 -	lb/hr 0.09 0.09 0.09 0.09 0.09 0.09 0.05 0.05 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.23 0.23 0.23 0.23 0.20 0.00 0.00	lb/hr 0.09 0.09 0.09 0.03 0.03 0.00 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.14 0.14 0.14 0.00 0.00	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02	tpy 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.01 0.01 0.02	b/hr 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 - - - 0.00	tpy 0.10 0.10 0.10 0.10 0.01 0.01 0.00 0.00 0.00 - -
ENG-1 ENG-2 ENG-3 ENG-3 ENG-5 ENG-5 ENG-5 ENG-5 H-1 H-2 H-3 H-4 H-3 H-4 H-5 DEHY-1 DEHY-1 DEHY-1 DEHY-2 AU-1 AU-2 AU-3 FL-1 FL-2	lb/hr 1.96 1.96 1.96 1.96 1.96 0.353 3.53 2.20 0.31	tpy 8.57 8.57 8.57 8.57 15.45 15.45 0.64 1.37	lb/hr 2.35 2.35 2.35 2.35 2.35 2.32 2.12 2.12 1.84 0.26	tpy 10.28 10.28 10.28 10.28 9.27 9.27 9.27 9.27 - - - 0.54 1.15 - - 0.87 8.76	Ib/hr 3.03 3.03 3.03 3.03 3.03 1.46 1.46 0.12 0.01 0.02	tpy 13.25 13.25 13.25 13.25 13.25 6.41 6.41 0.53 0.04 0.08 - - 0.24 7.58	lb/hr 0.07 0.07 0.07 0.07 0.07 0.04 0.13 0.04 0.02 -	tpy 0.30 0.30 0.30 0.16 0.16 0.58 0.04 0.08	lb/hr 0.12 0.12 0.12 0.12 0.12 0.10 0.112 0.30 0.17 0.01 0.02	tpy 0.51 0.51 0.51 0.51 0.51 1.32 1.32 0.73 0.05 0.10 -	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01 0.02	tpy 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.52 0.02 0.19	H b/br 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Removed Removed - - 0.00 0.0	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 - - 0.00	lb/hr 0.45 0.45 0.45 0.45 1.17 1.17 0.04 0.00 0.01	tpy 1.98 1.98 1.98 1.98 2.81 0.18 0.01 0.03 - - 0.09 1.28	lb/hr 0.20 0.20 0.20 0.20 0.20 0.53 0.00 0.00 - - 0.000 0.000	tpy 0.86 0.86 0.86 0.86 2.32 2.32 0.01 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.09 0.05 0.05 0.05 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.23 0.00 0.00 - - 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.03 0.03 0.00 0.00 0.00 - - 0.000 0.00	tpy 0.40 0.40 0.40 0.40 0.14 0.14 0.00 0.00	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 - - 0.02 0.05	tpy 0.02 0.02 0.02 0.03 0.03 0.17 0.01 0.02 - - - 0.09 0.20	lb/hr 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 - - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02	tpy 0.10 0.10 0.10 0.10 0.01 0.01 0.00 0.00 0.00 0.00 - - - 0.00 0.73
ENG-1 ENG-2 ENG-3 ENG-3 ENG-5 ENG-5 ENG-6 H-1 H-2 H-3 H-3 H-4 H-5 DEHY-1 DEHY-2 AU-1 AU-2 AU-1 AU-2 FL-2 FL-2 EL-2 SSM	b/hr 1.96 1.96 1.96 1.96 3.53 3.53 2.20 0.15 0.31 - - 0.05 0.49 258.05	tpy 8.57 8.57 8.57 15.45 15.45 9.62 0.64 1.37	Ib/hr 2.35 2.35 2.35 2.35 2.35 2.12 2.12 2.12 1.84 0.12 0.26 - - - 0.20 2.00 1045.50 -	tpy 10.28 10.28 10.28 10.28 9.27 9.27 9.27 9.27 9.28 0.54 1.15	Ib/hr 3.03 3.03 3.03 3.03 3.03 1.46 0.12 0.01 0.02	tpy 13.25 13.25 13.25 13.25 6.41 0.53 0.04 0.08	lb/hr 0.07 0.07 0.07 0.07 0.07 0.04 0.13 0.01 0.02 - - - 0.00 10.43 \$1.70 -	tpy 0.30 0.30 0.30 0.16 0.16 0.58 0.04 0.08 0.08	lb/hr 0.12 0.12 0.12 0.12 0.12 0.130 0.30 0.30 0.30 0.30 0.17 0.02	tpy 0.51 0.51 0.51 0.51 0.51 1.32 1.32 1.32 0.73 0.05 0.10	Ib/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.17 0.01 0.01 0.04 23.28	tpy 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.73 0.05 0.10	H b/br 0.00 0.0	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	bb/hr 0.45 0.45 0.45 0.45 1.17 1.17 0.04 0.00 0.01	tpy 1.98 1.98 1.98 1.98 2.81 2.81 0.01 0.03 - - 0.09 1.28 3.52	lb/hr 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.53 0.53 0.00 0.00	tpy 0.86 0.86 0.86 0.86 2.32 2.32 0.01 0.00 -	lb/hr 0.09 0.09 0.09 0.09 0.09 0.09 0.05 0.05 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.23 0.23 0.23 0.23 0.20 0.00 0.00	lb/hr 0.09 0.09 0.09 0.03 0.03 0.00 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.14 0.14 0.14 0.00 0.00	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.05 11.29 29	tpy 0.02 0.02 0.02 0.03 0.03 0.03 0.17 0.01 0.02 - - - - - - - - - - - - - - - - 	Ib/hr 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 - - - - 0.00 0.17 6.62 -	tpy 0.10 0.10 0.10 0.10 0.01 0.01 0.00 0.00 0.00 - - - - - 0.00 0.73 1.03
ENG-1 ENG-2 ENG-3 ENG-3 ENG-5 ENG-5 ENG-5 H-1 H-2 H-3 H-4 H-2 H-4 H-4 H-4 H-4 H-4 H-4 H-4 H-4 H-4 H-4	lb/hr 1.96 1.96 1.96 3.53 3.53 2.20 0.15 0.31	ipy 8.57 8.57 8.57 8.57 15.45 9.62 0.64 1.37	Ib/hr 2.35 2.35 2.35 2.35 2.35 2.12 2.12 0.12 0.26	tpy 10.28 10.28 10.28 10.28 9.27 9.27 9.27 9.27 8.08 0.54 1.15	Ib/hr 3.03 3.03 3.03 3.03 3.03 3.03 1.46 1.46 1.46 0.12 0.01 0.02	tpy 13.25 13.25 13.25 6.41 6.41 0.53 0.04 0.08 - - 0.24 7.58 109.01 6.49	lb/hr 0.07 0.07 0.07 0.07 0.07 0.04 0.13 0.01 0.02 -	tpy 0.30 0.30 0.30 0.16 0.16 0.04 0.04 0.08	lb/hr 0.12 0.12 0.12 0.12 0.12 0.30 0.17 0.01 0.02	tpy 0.51 0.51 0.51 0.51 1.32 0.73 0.05 0.10 - - - 0.02 0.19 3.61 -	Ib/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.17 0.01 0.01 0.242 -	tpy tpy 0.51 0.51 0.51 0.51 1.32 0.73 0.05 0.10	H b/br 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Removed Removed - - 0.00 0.0	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Ib/hr 0.45 0.45 0.45 0.45 1.17 1.17 0.04 0.00 0.01	tpy 1.98 1.98 1.98 1.98 2.81 2.81 0.18 0.01 0.03 - - 0.09 1.28 3.52 -	lb/hr 0.20 0.20 0.20 0.20 0.53 0.00 0.00 0.00 0.00 0.00 0.00	tpy 0.86 0.86 0.86 0.86 2.32 2.32 2.32 0.01 0.00 0.00 	lb/hr 0.09 0.09 0.09 0.09 0.09 0.05 0.05 0.00 0.00 0.00 - - - - 0.00 0.00 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.23 0.00 0.00 0.00 - - - 0.00 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.03 0.03 0.00 0.00 - - - - 0.00 0.00 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.14 0.04 0.00 0.00	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.05 11.29 0.03	tpy 0.02 0.02 0.02 0.03 0.03 0.17 0.01 0.02 - - - - - - - - - 0.09 0.20 1.75 0.12	Ib/hr 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.017 6.62 0.05	tpy 0.10 0.10 0.10 0.10 0.01 0.01 0.00 0.00 0.00 0.00 - - - 0.00 0.73
ENG-1 ENG-2 ENG-3 ENG-3 ENG-5 ENG-5 H-1 H-2 H-3 H-4 H-3 H-4 H-3 H-4 H-3 H-4 H-3 H-4 H-4 H-3 H-4 H-4 H-4 H-3 H-4 H-4 H-4 H-4 H-4 H-4 H-4 H-4 H-4 H-4	b/hr 1.96 1.96 1.96 1.96 1.96 1.96 3.53 3.53 2.20 0.15 0.31 - - 0.05 0.49 258.05 - -	tpy 8.57 8.57 8.57 15.45 9.62 0.64 1.37	Ib/hr 2.35 2.35 2.35 2.35 2.35 2.12 2.12 2.12 1.84 0.12 0.26	tpy 10.28 10.28 10.28 10.28 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27	Ib/hr 3.03 3.03 3.03 3.03 3.03 1.46 0.12 0.01 0.02	tpy 13.25 13.25 13.25 13.25 13.25 6.41 0.53 0.04 0.05	Ib/hr 0.07 0.07 0.07 0.07 0.07 0.07 0.04 0.04 0.04 0.04 0.01 0.02	tpy 0.30 0.30 0.30 0.16 0.16 0.04 0.08	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.30 0.17 0.02	tpy 0.51 0.51 0.51 0.51 0.51 1.32 1.32 1.32 0.73 0.05 0.10	Ib/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.30 0.17 0.01 0.02	tpy 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.73 0.05 0.10	H H	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b/br 0.45 0.45 0.45 0.45 1.17 1.17 0.04 0.00 0.00 0.01	tpy 1.98 1.98 1.98 1.98 1.98 2.81 2.81 0.01 0.03 0.09 1.28 3.52	lb/hr 0.20 0.20 0.20 0.20 0.20 0.53 0.00 0.00 - - 0.000 0.000	tpy 0.86 0.86 0.86 0.86 2.32 2.32 0.01 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.09 0.05 0.05 0.05 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.23 0.00 0.00 - - 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.03 0.03 0.00 0.00 0.00 - - 0.000 0.00	tpy 0.40 0.40 0.40 0.40 0.14 0.14 0.00 0.00	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.05 11.29 0.03	tpy 0.02 0.02 0.02 0.03 0.03 0.03 0.17 0.07 - - - - - - - - - - - - - - - - -	Ib/hr 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 6.62 0.05 . .	tpy 0.10 0.10 0.10 0.10 0.01 0.01 0.00 0.00 0.00 - - - - - 0.00 0.73 1.03
ENG-1 ENG-2 ENG-3 ENG-5 ENG-5 ENG-5 H-1 H-2 H-3 H-4 H-3 H-4 H-5 DEHY-2 AU-1 DEHY-2 AU-1 AU-2 FL-2 FL-2 SSM FUG SSM MALF	Ib/hr 1.96 1.96 1.96 1.96 1.96 1.96 0.15 0.15 0.31	tpy 8.57 8.57 8.57 8.57 15.45 15.45 9.62 9.62 9.64 1.37 -	Ib/hr 2.35 2.35 2.35 2.35 2.35 2.12 2.12 2.12 0.12 0.26	tpy 10.28 10.28 10.28 10.28 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27	Ib/hr 3.03 3.03 3.03 3.03 3.03 3.03 1.46 1.46 0.12 0.01 0.02 -	tpy 13.25 13.25 13.25 13.25 6.41 6.41 0.53 0.04 0.08 - - 0.24 7.58 - 109.01 6.49 10.000	lb/hr 0.07 0.07 0.07 0.07 0.07 0.07 0.04 0.03 0.01 0.02	tpy 0.30 0.30 0.30 0.16 0.16 0.04 0.04 0.08	Ib/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.10 0.01 0.02	tpy 0.51 0.51 0.51 0.51 1.32 1.32 1.32 0.73 0.05 0.10 - - - 0.02 0.19 3.61 - - -	Ib/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.01 0.02	M125 tpy 0.51 0.51 0.51 1.32 1.32 0.73 0.05 0.10 - - 0.02 0.19 - -	H b/br b/br 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Ib/hr 0.45 0.45 0.45 0.45 1.17 1.17 0.04 0.00 0.01	tpy 1.98 1.98 1.98 1.98 2.81 2.81 0.18 0.01 0.03	Ib/hr 0.20 0.20 0.20 0.20 0.53 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	tpy 0.86 0.86 0.86 0.86 2.32 2.32 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	b/hr 0.09 0.09 0.09 0.05 0.05 0.05 0.05 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.23 0.23 0.00 0.00 0.00 	Ib/hr 0.09 0.09 0.09 0.03 0.00 0.03 0.00 0.00 - - - - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.40 0.14 0.00 0.00	Ib/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 -	tpy 0.02 0.02 0.02 0.03 0.03 0.03 0.17 0.01 0.02 - - - - - - - - - - - - - - - - - -	Hb/hr 0.02 0.02 0.02 0.02 0.000 0.00	tpy 0.10 0.10 0.10 0.10 0.01 0.01 0.01 0.0
ENG-1 ENG-2 ENG-3 ENG-3 ENG-5 ENG-5 H-1 H-2 H-3 H-4 H-3 H-4 H-3 H-4 H-3 H-4 H-3 H-4 H-4 H-3 H-4 H-4 H-4 H-3 H-4 H-4 H-4 H-4 H-4 H-4 H-4 H-4 H-4 H-4	b/hr 1.96 1.96 1.96 1.96 1.96 1.96 3.53 3.53 2.20 0.15 0.31 - - 0.05 0.49 258.05 - -	tpy 8.57 8.57 8.57 15.45 9.62 0.64 1.37	Ib/hr 2.35 2.35 2.35 2.35 2.35 2.12 2.12 2.12 1.84 0.12 0.26	tpy 10.28 10.28 10.28 10.28 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27	Ib/hr 3.03 3.03 3.03 3.03 3.03 1.46 0.12 0.01 0.02	tpy 13.25 13.25 13.25 13.25 13.25 6.41 0.53 0.04 0.05	Ib/hr 0.07 0.07 0.07 0.07 0.07 0.07 0.04 0.04 0.04 0.04 0.01 0.02	tpy 0.30 0.30 0.30 0.16 0.16 0.04 0.08	lb/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.30 0.17 0.02	tpy 0.51 0.51 0.51 0.51 1.32 0.73 0.05 0.10 - - - 0.02 0.19 3.61 -	Ib/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.30 0.17 0.01 0.02	tpy tpy 0.51 0.51 0.51 0.51 1.32 0.73 0.05 0.10	H H	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	b/br 0.45 0.45 0.45 0.45 1.17 1.17 0.04 0.00 0.00 0.01	tpy 1.98 1.98 1.98 1.98 1.98 2.81 2.81 0.01 0.03 0.09 1.28 3.52	lb/hr 0.20 0.20 0.20 0.20 0.53 0.00 0.00 0.00 0.00 0.00 0.00	tpy 0.86 0.86 0.86 0.86 2.32 2.32 2.32 0.01 0.00 0.00 	lb/hr 0.09 0.09 0.09 0.09 0.09 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.23 0.00 0.00 0.00 - - - 0.00 0.00 0.00	lb/hr 0.09 0.09 0.09 0.09 0.03 0.03 0.00 0.00 - - - - 0.00 0.00 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.14 0.04 0.00 0.00	lb/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.05 11.29 0.03	tpy 0.02 0.02 0.02 0.03 0.03 0.03 0.17 0.07 - - - - - - - - - - - - - - - - -	Ib/hr 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 6.62 0.05 . .	tpy 0.10 0.10 0.10 0.10 0.01 0.01 0.00 0.00 0.00 - - - - - 0.00 0.73 1.03
ENG-1 ENG-2 ENG-3 ENG-3 ENG-4 ENG-5 ENG-5 ENG-5 ENG-5 H-1 H-2 H-3 H-4 H-3 H-4 H-5 DEHY-1 DEHY-1 DEHY-1 DEHY-2 AU-1 FL-2 FL-2 SSM FUG SSM MALF Total	Ib/hr 1.96 1.96 1.96 1.96 1.96 1.96 1.96 0.15 0.15 0.31	tpy 8.57 8.57 8.57 8.57 15.45 15.45 9.62 9.62 9.64 1.37 -	Ib/hr 2.35 2.35 2.35 2.35 2.35 2.12 2.12 2.12 0.12 0.26	tpy 10.28 10.28 10.28 10.28 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27	Ib/hr 3.03 3.03 3.03 3.03 3.03 3.03 1.46 1.46 0.12 0.01 0.02 -	tpy 13.25 13.25 13.25 13.25 6.41 6.41 0.53 0.04 0.08 - - 0.24 7.58 - 109.01 6.49 10.000	lb/hr 0.07 0.07 0.07 0.07 0.07 0.07 0.04 0.03 0.01 0.02	tpy 0.30 0.30 0.30 0.16 0.16 0.04 0.04 0.08	Ib/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.10 0.01 0.02	tpy 0.51 0.51 0.51 0.51 1.32 1.32 1.32 0.73 0.05 0.10 - - - 0.02 0.19 3.61 - - -	Ib/hr 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.30 0.30 0.01 0.02	M125 tpy 0.51 0.51 0.51 1.32 1.32 0.73 0.05 0.10 - - 0.02 0.19 - - -	H b/br b/br 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Ib/hr 0.45 0.45 0.45 0.45 1.17 1.17 0.04 0.00 0.01	tpy 1.98 1.98 1.98 1.98 2.81 2.81 0.18 0.01 0.03	Ib/hr 0.20 0.20 0.20 0.20 0.53 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	tpy 0.86 0.86 0.86 0.86 2.32 2.32 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	b/hr 0.09 0.09 0.09 0.09 0.05 0.05 0.05 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.23 0.23 0.00 0.00 0.00 	Ib/hr 0.09 0.09 0.09 0.03 0.00 0.03 0.00 0.00 - - - - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	tpy 0.40 0.40 0.40 0.40 0.40 0.14 0.00 0.00	Ib/hr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 -	tpy 0.02 0.02 0.02 0.03 0.03 0.03 0.17 0.01 0.02 - - - - - - - - - - - - - - - - - - -	Hb/hr 0.02 0.02 0.02 0.02 0.000 0.00	tpy 0.10 0.10 0.10 0.10 0.01 0.01 0.01 0.0

*Engine VOC includes formaldehyde and acetaldehyde.

Laboratory Analyses

All emission calculations in this application are based upon site-specific laboratory analyses of the gas and liquids handled at this site.

Produced Gas Sample

Sample Information		
Site	Dagger Draw	
Sample Type	Site-Specific Sample	
Date Sampled	10/12/2022	
Point in Process	Meter Run	
Temperature (°F)	89	
Pressure (psig)	873	
Used for	Pilot/purge	
Notes		

Composition:

	Molecular Weight		
Component	(lb/lb-mole)	Mole %	Weight %
Hydrogen Sulfide	34.08	0.0000	0.0000
Carbon Dioxide	44.01	0.0257	0.0607
Nitrogen	28.01	7.4012	11.1141
Methane (C1)	16.04	86.0245	73.9758
Ethane (C2)	30.07	3.9866	6.4268
Propane (C3)	44.10	1.0435	2.4671
Isobutane (i-C4)	58.12	0.1821	0.5674
n-Butane (n-C4)	58.12	0.3714	1.1574
Isopentane (i-C5)	72.15	0.1434	0.5546
n-Pentane (n-C5)	72.15	0.1598	0.6179
Cyclopentane	70.10	0.0000	0.0000
Other Hexanes (C6)	86.18	0.6619	3.0581
Cyclohexane	84.16		0.0000
Heptanes (C7)	100.20		0.0000
Methylcyclohexane	98.19		0.0000
Octanes Plus (C8+)	127.48		0.0000
Nonanes (C9)	128.26		0.0000
Decanes Plus (C10+)	142.29		0.0000
Benzene	78.11		0.0000
Toluene	92.14		0.0000
Ethylbenzene	106.17		0.0000
Xylenes	106.17		0.0000
n-Hexane	86.18		0.0000
2,2,4 - Trimethylpentane	114.23		0.0000
Totals:		100.0000	100.0000

Equations used:

A. (Component Weight %) = (Component Mole %) x (Component Molecular Weight, lb/lb-mole) / (Total Molecular Weight, lb/lb-mole)

Other sample properties are shown in the table below:

Property	Value
Molecular Weight (lb/lb-mole)	18.7
VOC (Wt%)	8.42
HHV (Btu/scf)	1,029.8

Engines

Unit: Description: Control Equipment: ENG-1, ENG-2, ENG-3, ENG-4 Engines ENG-1, ENG-2, ENG-3, ENG-4

EPN/FIN:	ENG-1	ENG-2	ENG-3	ENG-4
Name:	CAT 3606	CAT 3606	CAT 3606	CAT 3606
Manufacturer	Caterpillar	Caterpillar	Caterpillar	Caterpillar
Model Number	G3606LE	G3606 TALE	G3606 TALE	G3606 TALE
Rated Horsepower:	1,775	1,775	1,775	1,775
Fuel consumption (Btu/hp-hr):	6,629	6,629	6,629	6,629
(MMBtu/hr)	11.77	11.77	11.77	11.77
Hours of operation per year:	8,760	8,760	8,760	8,760
Total Annual Aggregate heat Input (MMBTU)	103,074	103,074	103,074	103,074
Engine Type:	4 Stroke, Lean-Burn	4 Stroke, Lean-Burn	4 Stroke, Lean-Burn	4 Stroke, Lean-Burn

Fuel Data

Fuel Type	natural gas	natural gas	natural gas	natural gas
Fuel Consumption (BTU/bhp-hr)	6,629	6,629	6,629	6,629
Fuel sulflur content (grains/scf)	0.02	0.02	0.02	0.02
Fuel Gas Heat Value (HHV)	1,030	1,030	1,030	1,030

Method of Emission Control

	Yes/No	Yes/No	Yes/No	Yes/No
NSCR Catalyst	No	No	No	No
SCR Catalyst	No	No	No	No
JLCC Catalyst	No	No	No	No
Parameter Adjustment	No	No	No	No
Stratified Charge		No	No	No
Other (Specify)	Oxidation	Oxidation	Oxidation	Oxidation

Emissions

Uncontrolled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	Emissions Factor Used	units	Uncontrolled Emissions lb/hr	Emissions tpy
VOC	0.7	0.12	0.118	0.0296	0.118	0.7	g/hp-hr	2.74	12.00
NOx	0.5	3.17	4.08	2.21	4.08	0.5	g/hp-hr	1.96	8.57
CO	2.75	0.386	0.317	3.72	0.317	2.75	g/hp-hr	10.76	47.13
PM ₁₀		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM2.5		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂ ⁴		0.000588	0.000588	0.000588	0.000588	0.00588	lb/MMBtu	0.0692	0.30
Formaldehyde	0.26	0.0552	0.0528	0.0205	0.0528	0.26	g/hp-hr	1.02	4.46
Benzene		0.00194	0.00044	0.00158	0.00044	0.00044	lb/MMBtu	0.01	0.02
CO2						53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N20						1.00E-04	kg/MMBtu		0.01
1								Total CO2e (TPY)	6,033

ENG-1 Controlled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	Emissions Factor Used	units	Controlled Emissions lb/hr	Emissions tpy
VOC	0.7	0.12	0.118	0.0296	0.118	0.7	g/hp-hr	2.74	12.00
NOx	0.5	3.17	4.08	2.21	4.08	0.5	g/hp-hr	1.96	8.57
CO	0.6	0.386	0.317	3.72	0.317	0.6	g/hp-hr	2.35	10.28
PM ₁₀		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM2.5		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂ ^a		0.000588	0.000588	0.000588	0.000588	0.00588	lb/MMBtu	0.07	0.30
Formaldehyde	0.05	0.0552	0.0528	0.0205	0.0528	0.05	g/hp-hr	0.20	0.86
Benzene		0.00194	0.00044	0.00158	0.00044	0.00044	lb/MMBtu	0.01	0.02
CO2						53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N2O						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	6,033

ENG-2 Uncontrolled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Uncontrolled Emissions lb/hr	Emissions tpy
VOC	0.7	0.12	0.118	0.0296	0.118	0.7	g/hp-hr	2.74	12.00
NOx	0.5	3.17	4.08	2.21	4.08	0.5	g/hp-hr	1.96	8.57
CO	2.75	0.386	0.317	3.72	0.317	2.75	g/hp-hr	10.76	47.13
PM ₁₀		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM2.5		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂ ^a		0.000588	0.000588	0.000588	0.000588	0.00588	lb/MMBtu	0.07	0.30
Formaldehyde	0.26	0.0552	0.0528	0.0205	0.0528	0.26	g/hp-hr	1.02	4.46
Benzene		0.00194	0.00044	0.00158	0.00044	0.00044	lb/MMBtu	0.01	0.02
CO2						53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N2O						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	6,033

ENG-2 Controlled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Controlled Emissions lb/hr	Emissions tpy
VOC	0.7	0.12	0.118	0.0296	0.118	0.7	g/hp-hr	2.74	12.00
NOx	0.5	3.17	4.08	2.21	4.08	0.5	g/hp-hr	1.96	8.57
CO	0.6	0.386	0.317	3.72	0.317	0.6	g/hp-hr	2.35	10.28
PM ₁₀		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM2.5		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂ *		0.000588	0.000588	0.000588	0.000588	0.00588	lb/MMBtu	0.07	0.30
Formaldehyde	0.05	0.0552	0.0528	0.0205	0.0528	0.05	g/hp-hr	0.20	0.86
Benzene		0.00194	0.00044	0.00158	0.00044	0.00044	lb/MMBtu	0.01	0.02
CO2						53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N2O						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	6,033

ENG-3 Uncontrolled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Uncontrolled Emissions lb/hr	Emissions (each) tpy
VOC	0.7	0.12	0.118	0.0296	0.0296	0.7	g/hp-hr	2.74	12.00
NOx	0.5	3.17	4.08	2.21	2.21	0.5	g/hp-hr	1.96	8.57
CO	2.75	0.386	0.317	3.72	3.72	2.75	g/hp-hr	10.76	47.13
PMI		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM _{2.5}		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂ ⁴		0.000588	0.000588	0.000588	0.000588	0.00588	lb/MMBtu	0.07	0.30
Formaldehyde	0.26	0.0552	0.0528	0.0205	0.0205	0.26	g/hp-hr	1.02	4.46
Benzene		0.00194	0.00044	0.00158	0.00158	0.00158	lb/MMBtu	0.02	0.08
CO2						53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N20	•					1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	6,033

ENG-3 Controlled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Controlled Emissions lb/hr	Emissions (each) tpy
VOC	0.7	0.12	0.118	0.0296	0.0296	0.7	g/hp-hr	2.74	12.00
NOx	0.5	3.17	4.08	2.21	2.21	0.5	g/hp-hr	1.96	8.57
CO		0.386	0.317	3.72	3.72	0.6	g/hp-hr	2.35	10.28
PM ₁₀		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM _{2.5}		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂ ⁴		0.000588	0.000588	0.000588	0.000588	0.00588	lb/MMBtu	0.07	0.30
Formaldehyde	0.05	0.0552	0.0528	0.0205	0.0205	0.05	g/hp-hr	0.20	0.86
Benzene		0.00194	0.00044	0.00158	0.00158	0.00158	lb/MMBtu	0.02	0.08
CO2						53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N20						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	6,033

ENG-4 Uncontrolled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Uncontrolled Emissions lb/hr	Emissions (each) tpy
VOC	0.7	0.12	0.118	0.0296	0.0296	0.7	g/hp-hr	2.74	12.00
NOx	0.5	3.17	4.08	2.21	2.21	0.5	g/hp-hr	1.96	8.57
CO	2.75	0.386	0.317	3.72	3.72	2.75	g/hp-hr	10.76	47.13
PM ₁₀		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM2.5		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂ *		0.000588	0.000588	0.000588	0.000588	0.00588	lb/MMBtu	0.07	0.30
Formaldehyde	0.26	0.0552	0.0528	0.0205	0.0205	0.26	g/hp-hr	1.02	4.46
Benzene		0.00194	0.00044	0.00158	0.00158	0.00158	lb/MMBtu	0.02	0.08
CO2						53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N2O						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	6,033

ENG-4 Controlled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Controlled Emissions lb/hr	Emissions (each) tpy
VOC	0.7	0.12	0.118	0.0296	0.0296	0.7	g/hp-hr	2.74	12.00
NOx	0.5	3.17	4.08	2.21	2.21	0.5	g/hp-hr	1.96	8.57
CO	0.6	0.386	0.317	3.72	3.72	0.6	g/hp-hr	2.35	10.28
PM ₁₀		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM2.5		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂ ⁴		0.000588	0.000588	0.000588	0.000588	0.00588	lb/MMBtu	0.07	0.30
Formaldehyde	0.05	0.0552	0.0528	0.0205	0.0205	0.05	g/hp-hr	0.20	0.86
Benzene		0.00194	0.00044	0.00158	0.00158	0.00158	lb/MMBtu	0.02	0.08
CO2						53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N20						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	6,033

(lb/MMBtu) * (Btu/hp-hr) * (hp) * (1 MMBtu/1,000,000 Btu) ^b SO₂ emissions are based on AP-42 factor-based emissions considering a 2000 gr/MMscf sulfur content

HAP Emissions (controlled)

	Lean Burning 4 Stroke Engines	ENG-1	ENG-1	ENG-2	ENG-2	ENG-3	ENG-3	ENG-4	ENG-4
Pollutant	AP-42 Table 3.2-2, 2000 Emission Factor (lb/MMBtu)	Emissions lb/hr	Emissions tpy	Emissions Ib/hr	Emissions tpy	Emissions lb/hr	Emissions tpy	Emissions lb/hr	Emissions tpy
Acetaldehyde	7.76E-03	0.0913	0.3999	0.0913	0.3999	0.09	0.40	0.09	0.40
Acrolein	7.78E-03	0.0915	0.4010	0.0915	0.4010	0.09	0.40	0.09	0.40
Benzene	1.94E-03	0.0228	0.1000	0.0228	0.099982	0.02	0.10	0.02	0.10
Ethylbenzene	1.08E-04	< 0.01	0.0056	< 0.01	0.0056	< 0.01	0.01	< 0.01	0.01
Formaldehyde	Engine Specific	0.1957	0.8570	0.1957	0.8570	0.20	0.86	0.1957	0.8570
Methanol	2.48E-03	0.0292	0.1278	0.0292	0.1278	0.03	0.13	0.03	0.13
n-Hexane	4.45E-04	0.0052	0.0229	0.0052	0.0229	0.01	0.02	0.01	0.02
Toluene	9.63E-04	0.0113	0.0496	0.0113	0.0496	0.01	0.05	0.01	0.05
Xylenes	2.68E-04	< 0.01	0.0138	< 0.01	0.0138	< 0.01	0.01	< 0.01	0.01
Totals		0.45	1.98	0.45	1.98	0.45	1.98	0.45	1.98

Engines

 Unit:
 ENG-5, ENG-6

 Description:
 Engines

 Control Equipment:
 ENG-5, ENG-6

Engine Data

Unit:	ENG-5	ENG-6
Name:	ENG-5	ENG-6
Manufacturer	Ajax	Ajax
Model Number	DPC 2804LE	DPC 2804LE
Rated Horsepower:	800	800
Fuel consumption (Btu/hp-hr):	7,800	7,800
(MMBtu/hr)	6.24	6.24
Hours of operation per year:	8,760	8,760
Total Annual Aggregate heat Input (MMBTU)	54,662	54,662
Engine Type:	2 Stroke, Lean-Burn	2 Stroke, Lean-Burn

Fuel Data

Fuel Type	natural gas	natural gas
Fuel Consumption (BTU/bhp-hr)	7,800	7,800
Fuel sulflur content (grains/scf)	0.02	0.02
Fuel Gas Heat Value (HHV)	1,030	1,030

Method of Emission Control

Method of Emission Control		
	Yes/No	Yes/No
NSCR Catalyst	No	No
SCR Catalyst	No	No
JLCC Catalyst	No	No
Parameter Adjustment	No	No
Stratified Charge	No	No
Other (Specify)	Oxidation	Oxidation

Emissions

ENG-5 Uncontrolled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	Emissions Factor Used	units	Uncontrolled Emissions lb/hr	Emissions tpy
VOC	0.5	0.12	0.118	0.0296	0.12	0.5	g/hp-hr	0.88	3.86
NO	2	3.17	4.08	2.21	3.17	2.0	g/hp-hr	3.53	15.45
CC	1.2	0.386	0.317	3.72	0.386	1.2	g/hp-hr	2.12	9.27
PM ₁)	0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.32
PM ₂	5	0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.32
SO ₂	1	0.000588	0.000588	0.000588	0.000588	0.00588	lb/MMBtu	0.04	0.16
Formaldehyde	0.3	0.0552	0.0528	0.0205	0.0552	0.3	g/hp-hr	0.53	2.32
Benzene		0.00194	0.00044	0.00158	0.00194	0.00194	lb/MMBtu	0.01	0.05
CO2						53.06	kg/MMBtu		3,196
CH4						1.00E-03	kg/MMBtu		0.06
N2C						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	3,200

ENG-5 Controlled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	Emissions Factor Used	units	Controlled Emissions lb/hr	Emissions tpy
VOC	0.5	0.12	0.118	0.0296	0.12	0.5	g/hp-hr	0.88	3.86
NOx	2	3.17	4.08	2.21	3.17	2.0	g/hp-hr	3.53	15.45
CO	1.2	0.386	0.317	3.72	0.386	1.2	g/hp-hr	2.12	9.27
PM10		0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.32
PM _{2.5}		0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.32
SO ₂ ^a		0.000588	0.000588	0.000588	0.000588	0.00588	lb/MMBtu	0.04	0.16
Formaldehyde	0.3	0.0552	0.0528	0.0205	0.0552	0.3	g/hp-hr	0.53	2.32
Benzene		0.00194	0.00044	0.00158	0.00194	0.00194	lb/MMBtu	0.01	0.05
CO2						53.06	kg/MMBtu		3,196
CH4						1.00E-03	kg/MMBtu		0.06
N2O						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	3,200

ENG-6 Uncontrolled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Uncontrolled Emissions lb/hr	Emissions tpy
VOC	0.5	0.12	0.118	0.0296	0.12	0.5	g/hp-hr	0.88	3.86
NO	x 2	3.17	4.08	2.21	3.17	2.0	g/hp-hr	3.53	15.45
CC	1.2	0.386	0.317	3.72	0.386	1.2	g/hp-hr	2.12	9.27
PM ₁	0	0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.32
PM ₂	5	0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.32
SO ₂	2	0.000588	0.000588	0.000588	0.000588	0.00588	lb/MMBtu	0.04	0.16
Formaldehyd	e 0.3	0.0552	0.0528	0.0205	0.0552	0.3	g/hp-hr	0.53	2.32
Benzen	e	0.00194	0.00044	0.00158	0.00194	0.00194	lb/MMBtu	0.01	0.05
CO	2					53.06	kg/MMBtu		3,196
CH	1					1.00E-03	kg/MMBtu		0.06
N20)					1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	3,200

ENG-6 Controlled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Controlled Emissions lb/hr	Emissions tpy
VOC	0.5	0.12	0.118	0.0296	0.0296	0.5	g/hp-hr	0.88	3.86
NOx	2	3.17	4.08	2.21	2.21	2.0	g/hp-hr	3.53	15.45
CO	1.2	0.386	0.317	3.72	3.72	1.2	g/hp-hr	2.12	9.27
PM ₁₀		0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.32
PM _{2.5}		0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.32
SO ₂ ^a		0.000588	0.000588	0.000588	0.000588	0.00588	lb/MMBtu	0.04	0.16
Formaldehyde	0.3	0.0552	0.0528	0.0205	0.0205	0.3	g/hp-hr	0.53	2.32
Benzene		0.00194	0.00044	0.00158	0.00158	0.00158	lb/MMBtu	0.01	0.04
CO2						53.06	kg/MMBtu		3,196
CH4						1.00E-03	kg/MMBtu		0.06
N2O						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	3,200

^a Calculation:

For emission factors in terms of g/hp-hr: (Emission factor) * (Horsepower) * (Conversion factor)

(g/hp-hr) * (hp) * (1 lb/453.59 g)

For emission factors in terms of lb/MMBtu:

(Emission factor) * (Fuel Consumption) * (Horsepower) * (Conversion factor) (lb/MMBtu) * (Btu/hp-hr) * (hp) * (1 MMBtu/1,000,000 Btu)

^b SO₂ emissions are based on AP-42 factor-based emissions considering a 2000 gr/MMscf sulfur content

HAP Emissions

	Lean Burning 2 Stroke Engines	ENG-5	ENG-5	ENG-6	ENG-6
Pollutant	AP-42 Table 3.2-1, 2000 Emission Factor (lb/MMBtu)	Emissions lb/hr	Emissions tpy	Emissions lb/hr	Emissions tpy
Acetaldehyde	8.36E-03	0.0522	0.2285	0.0522	0.2285
Acrolein	5.14E-03	0.0321	0.1405	0.0321	0.1405
Benzene	4.40E-04	< 0.01	0.0120	< 0.01	0.0120
Ethylbenzene	3.97E-05	< 0.01	< 0.01	< 0.01	< 0.01
Formaldehyde	engine specific	0.5291	2.3175	0.5291	2.3175
Methanol	2.50E-03	0.0156	0.0683	0.0156	0.0683
n-Hexane	1.11E-03	0.0069	0.0303	0.0069	0.0303
Toluene	4.08E-04	< 0.01	0.0112	< 0.01	0.0112
Xylene	1.84E-04	< 0.01	0.0050	< 0.01	0.0050
Totals		0.64	2.81	0.64	2.81

Heaters

Unit:
Description:
Control Equipment:

H-1, H-2, H-3 Hot Oil Heater, Reboiler, Mol Sieve Regen Heater None

Background Information

Unit	H-1	H-2	H-3
Name:	Hot Oil Heater	Dehy Reboiler	Mol Sieve Regen Heater
Heater/Boiler rating (MMBtu/hr) ¹ :	22.4	1.5	3.18
Rating above is (select from list):	below 100 MMBtu/hp-hr, controlled - low NOx burner	below 100 MMBtu/hp-hr, controlled - low NOx burner	below 100 MMBtu/hp-hr, controlled - low NOx burner
Operating hours/year:	8760	8760	8760
Natural Gas Usage (MM Cubic Feet/hr):	0.0218	0.0015	0.0031
Natural Gas Heat Value (Btu/scf) ² :	1029.80	1029.80	1029.80
H2S Destruction Efficiency (%) ³ :	100	100	100
Fuel Gas Lower Heating Value (Btu/SCF):	1,029.8	1,029.8	1,029.8
Fuel Rate (scf/hr):	21,752	1,457	3,088
Fuel Rate (scf/yr):	190,545,737	12,759,759	27,050,689
Exhaust Oxygen Content (%):		10	
Moisture content (%):		10	
O2 F factor (dscf/106 Btu):		8,710	
Volume of Exhaust Gas (dscf/hr) ⁴ :	374,098	25,051	53,109
Volume of Exhaust Gas (acf/hr):	834,741	50,308	106,653
Volume of Exhaust Gas (acfm):	13,912	838	1,778
Stack Diameter (ft):	2.67	1.50	1.50
Stack Temperature (F):	600	600	600.00
Stack Velocity (fps):	41.41	7.91	16.76

¹ Calculated heat release based on LHV basis. Heat duty as provided, or as heat release with guaranteed thermal efficiency.

² Heating value for natural gas taken from Section 1.4 of AP-42 (dated 7/98).

³SO₂ emissions conservatively estimated assuming 100% destruction efficiency (conversion) of HS to SO₂. SO₂ emissions are based on AP-42 factor-based emissions considering a 2 gr/100 scf sulfur content

⁴ Exhaust gas flow for heaters are based on 40 CFR 60 Appendix A, Method 19.

Heater Emissions^a

	n i n he	·· ·	H-1		H-	Н-2		Н-3	
Pollutant	Emission Factor ^{b,c}	Unit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOC	5.6	lb/MMscf	0.12	0.53	0.01	0.04	0.02	0.08	
NO _x	101.0	lb/MMscf	2.20	9.62	0.15	0.64	0.31	1.37	
CO	84.8	lb/MMscf	1.84	8.08	0.12	0.54	0.26	1.15	
PM	7.7	lb/MMscf	0.17	0.73	0.01	0.05	0.02	0.10	
SO ₂ ^e	6.06	lb/MMscf	0.13	0.58	0.01	0.04	0.02	0.08	
APS									
Total HAPs			0.04	0.18	< 0.01	0.01	0.01	0.03	
Arsenic	0.0002	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Benzene	0.0021	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Beryllium	0.0000	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Cadmium	0.0011	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Chromium	0.0014	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Cobalt	0.0001	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Dichlorobenzene	0.0012	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Formaldehyde	0.0757	lb/MMscf	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	
n-Hexane	1.8173	lb/MMscf	0.04	0.17	< 0.01	0.01	0.01	0.02	
Lead	0.0005	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Manganese	0.0004	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Mercury	0.0003	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Naphthalene	0.0006	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Nickel	0.0021	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
POM	0.0001	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Toluene	0.0034	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Selenium	0.0000	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
IG									
CO2	53.06	kg/MMBtu	2,620	11,474	175.42	768.32	371.88	1,629	
CH4	0.001	kg/MMBtu	0.05	0.22	< 0.01	0.01	0.01	0.03	
N2O	0.0001	kg/MMBtu	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	

^a Example Calculations:

Emission rate (lb/hr) = [Emission Factor (lb/MMscf)] / [Natural Gas Heat Content (1,020 Btu/scf)] * [Heater Rating (MMBtu/hr)]

Emission Rate (tpy) = [Emission Rate (lb/hr)] * [Operating Hours per Year (hr/yr)] / [Conversion Factor (2000 lb/ton)]

^b Criteria pollutant emission factors obtained from AP-42 Natural Gas Combustion, Table 1.4-1, < 100 MMBtu/hr heat input & Table 1.4-2 (7/98). NO x and CO emission factors converted from BACT standards.

^c HAP emission factors are taken from AP-42, Chapter 1, Table 1.4-3 (7/98).

 $^{\rm d}\,H_2S$ emissions are calculated based on fuel gas H_2S content of 20,000 gr/MMscf.

 $^{\rm e}\,{\rm SO}_2$ emissions conservatively estimated assuming 100% destruction efficiency (conversion) of HzS to SO_2.

Glycol Dehydrator

Unit:	DEHY-1 & DEHY-2
Description:	Glycol Dehydrators
Control Equipment:	Process Flare (Unit FL-2)

Emission Component	Uncontrolle	d Flash Tank	Uncontrolled	Still Column	Total		
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
Hydrogen Sulfide	1.19E-03	5.23E-03	4.58E-03	0.02	5.77E-03	2.53E-02	
N2	0.17	0.76	4.18E-03	0.02	0.18	0.78	
C1	16.89	74.00	1.54E+00	6.75	18.44	80.75	
CO2	2.52E-05	1.10E-04	2.17E-05	0.00	4.69E-05	2.05E-04	
C2	10.24	44.85	3.15	13.79	13.39	58.64	
C3	8.55	37.47	4.82	21.09	13.37	58.56	
iC4	1.55	6.79	1.12	4.89	2.67	11.68	
C4	4.07	17.83	4.19	18.36	8.26	36.19	
iC5	1.38	6.03	1.84	8.04	3.21	14.08	
nC5	1.36	5.97	1.97	8.63	3.33	14.61	
i-Hexane	0.73	3.20	1.26	5.52	1.99	8.71	
Hexane	0.37	1.60	0.65	2.86	1.02	4.47	
Benzene	0.33	1.46	6.40	28.05	6.74	29.51	
Cyclohexane	0.39	1.72	1.60	7.00	1.99	8.73	
i-Heptane	0.55	2.39	0.83	3.63	1.38	6.03	
n-Heptane	0.12	0.52	0.18	0.78	0.30	1.30	
Toluene	0.16	0.69	2.40	10.53	2.56	11.22	
i-Octane	0.46	2.01	0.69	3.03	1.15	5.03	
n-Octane	0.02	0.09	0.02	0.09	0.04	0.18	
Ethylbenzene	0.02	0.07	0.14	0.60	0.15	0.67	
m-Xylene	0.02	0.11	0.23	1.01	0.26	1.12	
o-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00	0.00	0.00	
p-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00	0.00	0.00	
Nonane	0.03	0.13	0.02	0.10	0.05	0.23	
Decane	8.48E-03	0.04	4.52E-03	0.02	0.01	0.06	
TEG	5.01E-04	2.19E-03	2.18E-10	0.00	5.01E-04	2.19E-03	
H2O	0.29	1.28	1.46	6.38	1.75	7.66	
Total	47.72	209.03	34.52	151.21	82.25	360.24	
Total VOC	20.12	88.13	28.37	124.24	48.49	212.38	
Total HAP	0.90	3.94	9.83	43.05	10.73	46.99	

Notes

 $^{\rm 1}$ Uncontrolled emissions from the regenerator and flash tank are calculated using BR&E ProMax.

 2 100% of emissions from the flash tank and regenerator are captured and routed to the process flare (Unit FL-2).

Amine Units

Unit:	AU-1, AU-2, and AU-3
Description:	Amine units
Control Equipment:	AGI Well / SSM FL-2

Emission Component	Uncontrolle	ed Flash Tank	Uncontro	olled Acid Gas	Total		
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
Hydrogen Sulfide	5.54	24.27	4138.35	0.05	4143.89	24.32	
N2	1.47	6.43	0.05	0.01	1.52	6.45	
C1	128.05	560.87	16.62	1.12	144.67	561.99	
CO2	2.18	9.54	6701.20	0.02	6703.38	9.56	
C2	42.09	184.38	9.51	0.37	51.61	184.74	
C3	18.96	83.04	3.60	0.17	22.56	83.21	
iC4	2.32	10.16	0.35	0.02	2.67	10.18	
C4	6.89	30.20	1.54	0.06	8.43	30.26	
iC5	1.13	4.96	0.13	0.01	1.27	4.97	
nC5	1.30	5.70	0.20	0.01	1.50	5.71	
i-Hexane	0.26	1.13	0.07	2.25E-03	0.33	1.13	
Hexane	0.26	1.13	0.03	0.00	0.29	1.13	
Benzene	1.65	7.21	32.15	0.01	33.80	7.23	
Cyclohexane	0.88	3.83	0.67	0.01	1.55	3.84	
i-Heptane	0.20	0.89	0.01	0.00	0.22	0.89	
n-Heptane	0.04	0.18	0.00	0.00	0.04	0.18	
Toluene	0.76	3.33	16.44	0.01	17.20	3.34	
i-Octane	0.14	0.61	8.77E-03	1.22E-03	0.15	0.61	
n-Octane	0.01	0.03	6.35E-04	6.62E-05	0.01	0.03	
Ethylbenzene	0.07	0.33	1.46	6.53E-04	1.53	0.33	
m-Xylene	0.12	0.53	3.31	1.05E-03	3.43	0.53	
o-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
p-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Nonane	5.14E-03	0.02	2.05E-04	4.50E-05	0.01	0.02	
Decane	5.23E-04	2.29E-03	7.49E-06	4.58E-06	5.31E-04	2.30E-03	
TEG	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
H2O	5.61	24.58	371.58	0.05	377.19	24.63	
Piperazine	5.44E-04	2.38E-03	7.79E-11	4.77E-06	5.44E-04	2.39E-03	
TEG	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
UCARSOL™ AP-814	8.95E-03	0.04	8.90E-10	7.84E-05	0.01	0.04	
Oxygen	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Total	219.95	963.39	11297.29	1.93	11517.25	965.32	
Total VOC	34.99	153.28	59.98	0.31	94.97	153.58	
Total HAP	2.86	12.53	53.39	0.03	56.25	12.56	

Emergency Flare (FL-1) - Hourly Emissions Emission Unit: FL-1 Source Description: Emergency Flare - pilot and purge only

	Maximum Hourly I	Emission Rates and	Composition to F	lare [*]		Crite	ria Pollutant Emis	sions from F	'lare [°]
Component	Pilot ^b	Purge	Total	Destruction Efficiency	Flare Exhaust (controlled)	Component	Emission Rate	Emission Factor	Emission Factor Unit
	(lb/hr)	(lb/hr)	(lb/hr)	(%)	(lb/hr)		(lb/hr)		
Hydrogen Sulfide	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00	NOx	0.05	0.068	lb/MMBtu
N2	1.10	2.74	3.84	0%	3.84	со	0.20	0.2755	lb/MMBtt
C1	7.29	18.24	25.53	98%	0.51	SO ₂	0.00		-
CO2	0.01	0.01	0.02	0%	0.02	PM10	0.01	7.60	lb/MMscf
C2	0.63	1.58	2.22	98%	0.04	PM2.5	0.01	7.60	lb/MMscf
C3	0.24	0.61	0.85	98%	0.02	H ₂ S	5.11E-01		-
iC4	0.06	0.14	0.20	98%	3.92E-03	-			
C4	0.11	0.11	0.23	98%	4.56E-03	UP	Flare Parameter		1
iC5	0.05	0.14	0.19	98%	3.83E-03	m	Flare I al ameters		
	0.05	0.14	0.21	98%		Flare Destructi	on Efficiency C3+	98%	
nC5					4.27E-03				
i-Hexane	0.00	0.00	0.00	98%	0.00E+00		ecular weight	34.08	
Hexane	0.30	0.75	1.06	98%	0.02	SO2 mole	ecular weight	64.06	l
Benzene	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
Cyclohexane	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
i-Heptane	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
n-Heptane	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
Toluene	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
i-Octane	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
n-Octane	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
Ethylbenzene	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
m-Xylene	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
o-Xylene	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
p-Xylene	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
Nonane	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
Decane	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
TEG									
H2O	0.00E+00	0.00E+00	0.00E+00	0%	0.00E+00				
Piperazine	0.00E+00	0.00E+00	0.00E+00	0%	0.00E+00				
UCARSOL™ AP-814	0.00E+00	0.00E+00	0.00E+00	0%	0.00E+00				
Oxygen	0.00E+00	0.00E+00	0.00E+00	0%	0.00E+00				
Total	9.86	24.48	34.34		4.47				
Total VOC	0.83	1.91	2.74		0.05				
Total HAP	0.30	0.75	1.06		0.02				
Heating Value (Btu/scf)	1,030	1,030	1,030			-			
Molecular Weight	18.70	18.70	18.70	-					
Operating Hours Mass Flow	8,760	8,760		-					
Mass Flow Volumetric Flow (scf/hr)	9.86 200.00	24.48 500.00	700.00	-					
Heat Release (MMBtu/hr)	0.21	0.51	0.72						
	0.24	0.01		-					
Combustion	n Emissions from FLA	RE	Totals	T					
	(lb/hr)	(lb/hr)	(lb/hr)						
Total NO _x	0.01	0.04	0.05	1					

	(ID/nr)	(ID/nr)	(ID/nr)
Total NO _x	0.01	0.04	0.05
Total CO	0.06	0.14	0.20
Total SO ₂	0.00E+00	0.00E+00	0.00E+00
Total PM ₁₀	1.52E-03	3.80E-03	0.01
Total PM _{2.5}	1.52E-03	3.80E-03	0.01

Footnotes:

^aUncontrolled stream properties determined via ProMax.

^b Pilot fuel gas emissions are conservatively calculated based on a 200 scfh flow rate.

¹NOx emission factors from AP-42, Table 13.5-1, February 2018. CO emission factor from TCEQ Air Permit Technical Guidance for Flares and Vapor Oxidizers, high btu. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 98% conversion of H2S to SO2.

Flare Effective Diameter (for modeling only): For modeling purposes, the effective flare diameter is calculated according to TCEQ RG-25, Modeling Guidance Document, 1998 (method not appropriate for enclosed flares)

 $D = sqrt(10^{-6} \bullet q_n) \qquad and \qquad qn = q(1 \bullet 0.048 \bullet sqrt(MW))$

where,	$q=$ Gross heat release (cal/sec) $MW=Weighted (by volume) average molecular weight of the com q_{\mu}=N the hat release (cal/sec) D= Effective Flare Diameter (meters)$	pound being flared
q =	50,460.20 cal/sec	

MW =	18.70	lb/lb-mole
q _n =	39,986.24	cal/sec
D =		meters
D =	0.66	feet

Flare Compliance with 40 CFR 60.18

Type of Flare	Non-assisted					
Flare/burner tip diameter	10.00	inches				
Exit Velocity:	0.11	m/sec				
Exit Velocity:	0.36	ft/sec				
Net Heating Value (HT)	34.53	MJ/scm				
Vmax1	99.51	m/sec				
Vmax2	33.17	m/sec				

Equations used: A. (Exit velocity; m/sec) = (Gas Flow Rate, scf/hr) / (3,600 sec/hr) / [(Diameter, in.) / (1 foot/12 in.) / (2 radii/diameter)] ² * (pi)] / (3.28084 fl/m)

B. (Net Heating Yalue, MJ/scon) = (Average Higher Heat Yalue, Btu/scf) x (0.9) x (35.3147 scf/scm) / (947.81712 Btu/MJ) [According to the API Compendium (August 2009), Section 4.2, Equation 4-7, for gaseous fuels, the net heating value is 0.9 times the gross heating value.]

C. $Vmaxl = 10 \land [(H_T + 28.8) / 31.7]$ according to 40 CFR 60.18(f)(5). D. $Vmax2 = 8.706 + (0.7084 \ x \ H_T)$ according to 40 CFR 60.18(f)(6).

Non-assisted flare requirements:	Must meet A and B below ¹

Rule Reference	All Requirements	Individual	Specific Requirements
A. 60.18(c)(3)(ii):		Yes	Net Heating Value ≥ 7.45 MJ/scm (200 Btu/scf)
B. 60.18(c)(4)(i) - (iii):	Yes		Exit velocity < 18.3 m/sec (60 ft/sec) OR: Exit Velocity ≥ 18.3 m/sec (60 ft/sec) AND Exit Velocity < 122 m/sec (400 ft/sec) AND Net Heating Value > 37.3 MJ/sem (1,000 Btu/sef)
		Yes	OR: Exit Velocity < 122 m/sec (400 ft/sec) AND Exit Velocity < Vmax1

¹The flare stream does not have a hydrogen content greater than or equal to 8.0 vol%; therefore 40 CFR 60.18(C)(3)(i) requirements cannot not be used to demonstrate compliance.

Emergency Flare (FL-1) - Annual Emissions Emission Unit: FL-1

Emission Unit: Source Description:

Emergency Flare - pilot and purge only

	Annual Emissio	Cr	iteria Pollutant Emissi	ons from Fla	re ^c				
Component	Pilot ^b	Purge	Total	Destruction Efficiency	Exhaust Stream (controlled)	Component	Emission Rate	Emission Factor	Emission Factor Units
	(ton/yr)	(ton/yr)	(ton/yr)	(%)	(ton/yr)		(ton/yr)		
Hydrogen Sulfide	0.00	0.00	0.00	98%	0.00	NO _X	0.21	0.068	lb/MMBtu
N2	4.80	12.00	16.80	0%	16.80	СО	0.87	0.2755	lb/MMBtu
C1	31.95	79.87	111.82	98%	2.24	SO ₂	0.00E+00		
CO2	0.03	0.07	0.09	0%	0.09	PM ₁₀	0.02	7.60	lb/MMscf
C2	2.78	6.94	9.71	98%	0.19	PM _{2.5}	0.02	7.60	lb/MMscf
C3	1.07	2.66	3.73	98%	0.07	H ₂ S	0.00E+00		
iC4	0.25	0.61	0.86	98%	0.02	N2O	6.96E-04	0.0001	kg/MMBtu
C4	0.50	0.50	1.00	98%	0.02		00002 01		
iC5	0.24	0.60	0.84	98%	0.02				
	0.24	0.67	0.93	98%	0.02				
nC5	0.27	0.07	0.93	98%	0.02				
i-Hexane									
Hexane	1.32	3.30	4.62	98%	0.09				
Benzene	0.00	0.00	0.00	98%	0.00				
Cyclohexane	0.00	0.00	0.00	98%	0.00				
i-Heptane	0.00	0.00	0.00	98%	0.00				
n-Heptane	0.00	0.00	0.00	98%	0.00				
Toluene	0.00	0.00	0.00	98%	0.00				
i-Octane	0.00	0.00	0.00	98%	0.00				
n-Octane	0.00	0.00	0.00	98%	0.00E+00				
Ethylbenzene	0.00	0.00	0.00	98%	0.00				
m-Xylene	0.00	0.00	0.00	98%	0.00				
o-Xylene	0.00	0.00	0.00	98%	0.00				
p-Xylene	0.00	0.00	0.00	98%	0.00				
Nonane	0.00	0.00	0.00	98%	0.00				
Decane	0.00	0.00	0.00	98%	0.00				
TEG	0.00	0.00	0.00	98%	0.00				
H2O	0.00	0.00	0.00	0%	0.00				
	0.00	0.00	0.00	0%	0.00				
Piperazine		0.00	0.00	0%	0.00E+00				
UCARSOL™ AP-814	0.00	0.00	0.00 0.00E+00	0%					
Oxygen					0.00E+00				
Total	43.19	107.22	150.41		19.56				
Total VOC	3.64	8.34	11.98		0.24				
Total HAP	1.32	3.30	4.62		0.09	l			
Heating Value (Btu/scf) Molecular Weight	1,030 18.70	1,030 18.70	1,030	1					
Operating Hours	8,760	8,760		1					
Mass Flow (ton/yr)	43.19	107.22	150.41	1					
Volumetric Flow (scf/hr)	200.00	500.00		1					
Volumetric Flow (MMscf/yr)	1.75	4.38	6.13]					
Heat Release (MMBtu/yr)	1,804	4,511	6,315						

Annual Combustio	Annual Combustion Emissions from Flare								
	(TPY)	(TPY)	(TPY)						
Total NO _x	0.06	0.15	0.21						
Total CO	0.25	0.62	0.87						
Total SO ₂	0.00	0.00	0.00						
Total PM ₁₀	0.01	0.02	0.02						
Total PM _{2.5}	0.01	0.02	0.02						

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

^bPilot fuel gas emissions are conservatively calculated based on a 200 scfh flow rate.

^cCO and Nox emission factors from AP-42, Table 13.5-1 and 13.5-2, February 2018. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 98% conversion of H2S to SO2.

Process Flare (FL-2) - Hourly Emissions Emission Unit: FL-2, DEHY-1, DEHY-2, AU-1, AU-2, AU-3 Process Flare - pilot, purge, dehy still column, dehy flash tank, amine flash tank, inlet gas SSM Source Description:

Maximum Hourly Emission Rates and Composition to Flare ^a								Criteria Pollutant Emissions from Flare ^c					
Component	Pilot ^b	Purge	Dehy Flash Tank	Dehy Still Column	Amine Flash Tank	Inlet Gas to Dehy SSM	Total	Destruction Efficiency	Flare Exhaust (controlled)	Component	Emission Rate	Emission Factor	Emission Factor Units
	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(%)	(lb/hr)		(lb/hr)		
Hydrogen Sulfide	0.00E+00	0.00E+00	1.19E-03	4.58E-03	5.54	27.51	33.05	100%	0.00	NOX	258.55	0.068	lb/MMBtu
N2	1.10	2.74	0.17	4.18E-03	1.47	3,402	3,407	0%	3,407	CO	1047.50	0.2755	lb/MMBtu
C1	7.29	18.24	16.89	1.54	128.05	102,564	102,736	98%	2,055	SO ₂	62.13		
CO2	0.01	0.01	2.52E-05	2.17E-05	2.18	0.03	2.23	0%	2.23	PM10	23.32	7.60	lb/MMscf
C2	0.63	1.58	10.24	3.15	42.09	26,616	26,674	98%	533.48	PM2.5	23.32	7.60	lb/MMscf
C3	0.24	0.61	8.55	4.82	18.96	16,796	16,830	98%	336.59	H ₂ S	0.00		
iC4	0.06	0.14	1.55	1.12	2.32	2,967	2,972	98%	59.44				
C4	0.11	0.11	4.07	4.19	6.89	6,483	6,499	98%	129.98	HP	Flare Parameters		
iC5	0.05	0.14	1.38	1.84	1.13	2,237	2,242	98%	44.84	Elere Destruct	on Efficiency C3+	98%	
nC5	0.06	0.15	1.36	1.97	1.30	2,051	2,056	98%	41.12	Flare Destructi	on Efficiency C3+	98%	
i-Hexane	0.00E+00	0.00E+00	0.73	1.26	0.54	1,115	1,118	98%	22.35	H2S mole	cular weight	34.08	
Hexane	0.30	0.75	0.37	0.65	0.26	564.39	566.73	98%	11.33		cular weight	64.06	
Benzene	0.00E+00	0.00E+00	0.33	6.40	1.65	331.17	339.55	98%	6.79		0		
Cyclohexane	0.00E+00	0.00E+00	0.39	1.60	0.88	485.33	488.19	98%	9.76	Dehy Inlet C	as vol % flared	85.00%	
i-Heptane	0.00E+00	0.00E+00	0.55	0.83	0.20	859	861	98%	17.22				1
n-Heptane	0.00E+00	0.00E+00	0.12	0.18	0.04	188.85	189.19	98%	3.78				
Toluene	0.00E+00	0.00E+00	0.12	2.40	0.76	180.35	183.67	98%	3.67				
	0.00E+00	0.00E+00	0.46	0.69	0.14	728.67	729.96	98%	14.60				
i-Octane	0.00E+00	0.00E+00	0.02	0.03	0.14	35.82	35.87	98%	0.72				
n-Octane	0.00E+00	0.00E+00	0.02	0.02	0.01	22.99	23.22	98%	0.72				
Ethylbenzene	0.00E+00	0.00E+00	0.02	0.14	0.07	35.15	35.52	98%					
m-Xylene									0.71				
o-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.00E+00	98%	0.00E+00				
p-Xylene	0.00E+00	0.00E+00	0.00E+00		0.00E+00		0.00E+00	98%	0.00E+00				
Nonane	0.00E+00	0.00E+00	0.03	0.02	0.01	60.72	60.78	98%	1.22				
Decane	0.00E+00	0.00E+00	0.01	4.52E-03	5.23E-04	20.07	20.08	98%	0.40				
TEG	0.00E+00	0.00E+00	5.01E-04	2.18E-10	0.00E+00	0.00E+00	5.01E-04	98%	1.00E-05				
H2O	0.00E+00	0.00E+00	0.29	1.46	5.61	309.42	316.79	0%	316.79				
Piperazine	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.44E-04	0.00E+00	5.44E-04	0%	5.44E-04				
UCARSOL™ AP-814	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.01	0.00E+00	0.01	0%	0.01				
Oxygen	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0%	0.00E+00				
Total	9.86	24.48	47.72	34.52	220.24	168,082	168,418	23.54	7,020				
Total VOC	0.83	1.91	20.12	28.37	35.28	35162.93	35,249		704.99				
Total HAP	0.30	0.75	0.90	9.83	2.86	1,134	1,149		22.97				
Heating Value (Btu/scf)	1,030	1,030	1,570	2,551	1,188	1,239	1,239						
Molecular Weight	18.70	18.70	26.82	49.00	20.71	20.83	20.83	4					
Operating Hours Mass Flow	8,760 9,86	8,760 24.48	8,760 47.72	8,760 34.52	8,760 220.24	8,760 168,082	-	-					
Volumetric Flow (scf/hr)	200.00	24.48	675	267	4,036	3,062,646	3,068,325	-					
Heat Release (MMBtu/hr)	0.21	0.51	1.06	0.68	4.79	3,795	3,802	1					
								-					
		Combustion Emiss					Totals	4					
T-4-1NO	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	-					
Total NO _x Total CO	0.01	0.04	0.07 0.29	0.05	0.33	258.05 1,046	258.55	-					
Total SO2	0.00E+00	0.00E+00	0.29 2.24E-03	0.19	1.52	51.70	62.13	4					

23.32

23.32

23.28

23.28

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

Total PM10

Total PM2.5

^b Pilot fuel gas emissions are conservatively calculated based on a 200 scfh flow rate.

1.52E-03

1.52E-03

⁵NOx emission factors from AP-42, Table 13.5-1, February 2018. CO emission factor from TCEQ Air Permit Technical Guidance for Flares and Vapor Oxidizers, high btu. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

3.80E-03

3.80E-03

Flare Effective Diameter (for modeling only): For modeling purposes, the effective flare diameter is calculated according to TCEQ RG-25, Modeling Guidance Document, 1998 (method not appropriate for enclosed flares).

0.01

0.01

	$D = sqrt(10^{-6} \cdot q_n)$	and $qn = q(1 - 0)$	048 • sqrt(MW))
where,		Gross heat release (
		Weighted (by volun Net heat release (cal	ne) average molecular weight of the compound being flared
		Effective Flare Diar	
	D -	Effective Flare Dial	leter (meters)
q =	266,152,347.83	cal/sec	
MW =	20.83	lb/lb-mole	
q _n =	207,842,182.55	cal/sec	
D =	14.42	meters	
D =	47.30	feet	

Flare Compliance for Standard Permits: To comply with the standard permit requirements for flares [(e)(11) of the non-rule standard permit, or (a)(12) of 30 TAC 116.620], 40 CFR 60.18 requirements for flare gas heating value and tip exit velocity must be met:

2.03E-03

2.03E-03

0.03

0.03

Type of Flare	No	n-assisted	
Flare/burner tip diameter	20.00	inches	
Exit Velocity:	119.08	m/sec	
Exit Velocity:	390.67	ft/sec	
Net Heating Value (H _T)	41.55	MJ/scm	
Vmax1	165.71	m/sec	
Vmax2	38.14	m/sec	

Equations used:

A. (Exit velocity, m/sec) = (Gas Flow Rate, scf/hr) / (3,600 sec/hr) / [(Diameter, in.) / (1 foot/12 in.) / (2 radii/diameter)] ² * (pi)] / (3.28084 fl/m)

B. (Net Heating Value, MJ/scm) = (Average Higher Heat Value, Btu/scf) x (0.9) x (35.3147 scf/scm) / (947.81712 Btu/MJ) [According to the APICompendium (August 2009), Section 4.2, Equation 4-7, for gaseous fuels, the net heating value is 0.9 times the gross heating value.]

C. $Vmax1 = 10 \land [(H_T + 28.8) / 31.7]$ according to 40 CFR 60.18(f)(5). D. $Vmax2 = 8.706 + (0.7084 \ x \ H_T)$ according to 40 CFR 60.18(f)(6).

Non-assisted flare requirements: Must meet A and B below¹

All Requirements	Individual	Specific Requirements				
	Yes	Net Heating Value \geq 7.45 MJ/scm (200 Btu/scf)				
	No	Exit velocity < 18.3 m/sec (60 ft/sec)				
Ves		OR: Exit Velocity ≥ 18.3 m/sec (60 ft/sec) AND Exit Velocity < 122 m/sec (400 ft/sec) AND Net Heating Value > 37.3 MJ/scm (1,000				
Yes		Yes	Btu/scf)			
	Yes	OR: Exit Velocity < 122 m/sec (400 ft/sec) AND Exit Velocity < Vmax1				
The flare stream does not have a hydrogen content greater than or equal to 8.0 vol%; therefore 40 CFR 60.18(C)(3)(i) requirements cannot not be used to demonstrate compliance.						
	Yes	Yes Yes Yes				

 Process Flare (FL-2) - Annual Emissions

 Emission Unit:
 FL-2, DEHY-1, DEHY-2, AU-1, AU-2, AU-3

 Source Description:
 Process Flare - pilot, purge, dehy still column, dehy flash tank, amine flash tank, inlet gas SSM

			Annual Emissio	n Rates and Con	Annual Emission Rates and Composition to Flare ^{ab}											
Component	Pilot ^b	Purge	Dehy Flash Tank	Dehy Still Column	Amine Flash Tank	Inlet Gas SSM	Total	Destruction Efficiency	Exhaust Stream (controlled)	Component	Emission Rate	Emission Factor	Emission Factor Units			
	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(%)	(ton/yr)		(ton/yr)					
Hydrogen Sulfide	0.00E+00	0.00E+00	0.01	0.02	24.27	4.26	28.56	100%	0.00	NOX	42.16	0.068	lb/MMBtu			
N2	4.80	12.00	0.76	0.02	6.43	527.30	551.31	0%	551.31	со	170.81	0.2755	lb/MMBtu			
21	31.95	79.87	74.00	6.75	560.87	15,897	16,651	98%	333.02	SO ₂	53.68					
202	0.03	0.07	1.10E-04	9.51E-05	9.54	4.47E-03	9.64	0%	9.64	PM10	3.80	7.60	lb/MMscf			
.2	2.78	6.94	44.85	13.79	184.38	4,126	4,378	98%	87.56	PM2.5	3.80	7.60	lb/MMscf			
23	1.07	2.66	37.47	21.09	83.04	2,603	2,749	98%	54.98	H ₂ S	0.00					
C4	0.25	0.61	6.79	4.89	10.16	459.83	482.53	98%	9.65	N2O	0.14	0.0001	kg/MMBtu			
24	0.50	0.50	17.83	18.36	30.20	1004.93	1072.32	98%	21.45				-			
C5	0.24	0.60	6.03	8.04	4.96	346.77	366.65	98%	7.33	1	IP Flare Parameters					
nC5	0.27	0.67	5.97	8.63	5.70	317.93	339.16	98%	6.78	Flare Destru	ction Efficiency C3+	98%				
-Hexane	0.00E+00	0.00E+00	3.20	5.52	2.39	172.86	183.96	98%	3.68	Third Desire	cuon Enterency Co.	,,,,,				
Iexane	1.32	3.30	1.60	2.86	1.13	87.48	97.70	98%	1.95	H2S m	olecular weight	34.08]			
Benzene	0.00E+00	0.00E+00	1.46	28.05	7.21	51.33	88.06	98%	1.76	SO2 m	olecular weight	64.06				
Cyclohexane	0.00E+00	0.00E+00	1.72	7.00	3.83	75.23	87.79	98%	1.76	SEM	hours to flare	310				
-Heptane	0.00E+00	0.00E+00	2.39	3.63	0.89	133.20	140.12	98%	2.80	3314	nours to nare	510				
n-Heptane	0.00E+00	0.00E+00	0.52	0.78	0.18	29.27	30.75	98%	0.62				-			
Foluene	0.00E+00	0.00E+00	0.69	10.53	3.33	27.95	42.51	98%	0.85							
-Octane	0.00E+00	0.00E+00	2.01	3.03	0.61	112.94	118.59	98%	2.37							
n-Octane	0.00E+00	0.00E+00	0.09	0.09	0.03	5.55	5.76	98%	0.12							
Ethylbenzene	0.00E+00	0.00E+00	0.07	0.60	0.33	3.56	4.56	98%	0.09							
n-Xylene	0.00E+00	0.00E+00	0.11	1.01	0.53	5.45	7.09	98%	0.14							
o-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00							
-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00							
Nonane	0.00E+00	0.00E+00	0.13	0.10	0.02	9.41	9.67	98%	0.19							
Decane	0.00E+00	0.00E+00	0.04	0.02	2.29E-03	3.11	3.17	98%	0.06							
TEG	0.00E+00	0.00E+00	2.19E-03	9.53E-10	0.00E+00	0.00E+00	2.19E-03	98%	4.39E-05							
120	0.00E+00	0.00E+00	1.28	6.38	24.58	47.96	80.21	0%	80.21							
Piperazine	0.00E+00	0.00E+00	0.00	0.00E+00	2.38E-03	0.00E+00	2.38E-03	0%	2.38E-03							
JCARSOL™ AP-814	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.04	0.00E+00	0.04	0%	0.04							
Oxygen	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0%	0.00E+00							
Total	43.19	107.22	209.03	151.21	964.65	26,053	27,528	-	1178.36							
Total VOC	3.64	8.34	88.13	124.24	154.54	5450.25	5,829	-	116.58							
Total HAP	1.32	3.30	3.94	43.05	12.53	175.78	239.92	-	4.80							
leating Value (Btu/scf)	1,030	1,030	1,570	2,551	1,188	1,239	1,241									
Molecular Weight	18.70	18.70	26.82	49.00	20.71	20.83										
Operating Hours Mass Flow (ton/yr)	8,760 43.19	8,760 107.22	8,760 209.03	8,760 151.21	8760 964.65	310 26,053	27,528	_								
Volumetric Flow (scf/hr)	200.00	500.00	675	267	4,036	3,062,646		-								
volumetric Flow (MMscf/yr)	1.75	4.38	5.92	2.34	35.35	949.42	999.16									
Heat Release (MMBtu/yr)	1,804	4,511	9,288	5,975	41,987	1,176,425	1,239,990									
	4 n n	ual Combustion	Emissions from	Flare			Totals	1								
	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	-								
Total NO _x	0.06	0.15	0.32	0.20	1.43	40.00	42.16	1								
Total CO	0.25	0.62	1.28	0.82	5.78	162.05	170.81									
Total SO ₂	0.00E+00	0.00E+00	0.01	0.04	45.62	8.01	53.68									
Total PM ₁₀	0.01	0.02	0.02	0.01	0.13	3.61	3.80	4								
Total PM2.5	0.01	0.02	0.02	0.01	0.13	3.61	3.80	1								

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

⁶CO and Nox emission factors from AP-42, Table 13.5-1 and 13.5-2, February 2018. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 98% conversion of H2S to SO2.

Fugitive Emissions Emission Unit: FUG Source Description: Fugit FUG Fugitives

Operating Hours:	8760 hours/year
Emission Factor Source	Standard EFs - EPA-453/R-95-017 Table 2-4
Control Efficiency Source:	None
Emission Buffer (%):	0

Service	Component Type	Count	Emission Factor (lb/hr-source) ^a		Control (%) ^b	Pollutant	Mass Fraction ^c	Uncontrolled Emissions	Uncontrolled Emissions	Controlled Emissions	Controlled Emissions
			Table 2-4	Table 2-8				(lb/hr)	(tpy)	(lb/hr)	(tpy)
	Valves	521	9.92E-03	5.51E-05	0%	VOC	0.221	1.3799	6.0440	1.3799	6.0440
	Pump Seals	0	5.29E-03	7.72E-04	0%	H2S	0.020	0.1217	0.5330	0.1217	0.5330
	Connectors	1010	4.41E-04	2.20E-05	0%	Benzene	0.003	0.0178	0.0781	0.0178	0.0781
Gas	Flanges	0	8.60E-04	1.26E-05	0%	Toluene	0.002	0.0139	0.0607	0.0139	0.0607
Gas	Open-Ended Lines	0	4.41E-03	3.31E-05	0%	E-Benzene	0.000	0.0029	0.0126	0.0029	0.0126
	Other	22	1.94E-02	2.65E-04	0%	Xylenes	0.001	0.0047	0.0207	0.0047	0.0207
	Relief Valves	10	1.94E-02	2.65E-04	0%	n-Hexane	0.004	0.0275	0.1206	0.0275	0.1206
						2,2,4 Trimethylpentane	0.000	0.0000	0.0000	0.0000	0.0000
	Valves	0	1.85E-05	1.85E-05	0%	VOC	0.017	0.0000	0.0000	0.0000	0.0000
	Pump Seals	0	0.00E+00	0.00E+00	0%	H2S	0.000	0.0000	0.0000	0.0000	0.0000
	Connectors	0	1.65E-05	1.65E-05	0%	Benzene	0.006	0.0000	0.0000	0.0000	0.0000
Heavy Oil	Flanges	0	8.60E-06	8.60E-07	0%	Toluene	0.002	0.0000	0.0000	0.0000	0.0000
Heavy OII	Open-Ended Lines	0	3.09E-04	1.59E-05	0%	E-Benzene	0.000	0.0000	0.0000	0.0000	0.0000
	Other	0	3.09E-04	7.05E-05	0%	Xylenes	0.000	0.0000	0.0000	0.0000	0.0000
	Relief Valves	0	3.09E-04	7.05E-05	0%	n-Hexane	0.000	0.0000	0.0000	0.0000	0.0000
						2,2,4 Trimethylpentane	0.000	0.0000	0.0000	0.0000	0.0000
	Valves	940	5.51E-03	4.19E-05	0%	VOC	0.017	0.1027	0.4497	0.1027	0.4497
	Pump Seals	0	2.87E-02	1.12E-03	0%	H2S	0.000	0.0001	0.0006	0.0001	0.0006
	Connectors	1271	4.63E-04	2.14E-05	0%	Benzene	0.006	0.0360	0.1578	0.0360	0.1578
Light Oil	Flanges	0	2.43E-04	5.29E-06	0%	Toluene	0.002	0.0122	0.0533	0.0122	0.0533
Light Off	Open-Ended Lines	0	2.87E-03	3.09E-05	0%	E-Benzene	0.000	0.0009	0.0039	0.0009	0.0039
	Other	22	1.65E-02	2.43E-04	0%	Xylenes	0.000	0.0010	0.0046	0.0010	0.0046
	Relief Valves	0	1.65E-02	2.43E-04	0%	n-Hexane	0.000	0.0001	0.0005	0.0001	0.0005
						2,2,4 Trimethylpentane	0.000	0.0000	0.0000	0.0000	0.0000
	Valves	0	2.16E-04	2.14E-05	0%	VOC	0.017	0.0000	0.0000	0.0000	0.0000
	Pump Seals	0	5.29E-05	5.29E-05	0%	H2S	0.000	0.0000	0.0000	0.0000	0.0000
	Connectors	0	2.43E-04	2.20E-05	0%	Benzene	0.006	0.0000	0.0000	0.0000	0.0000
Water/Oil	Flanges	0	6.39E-06	6.39E-06	0%	Toluene	0.002	0.0000	0.0000	0.0000	0.0000
water/Off	Open-Ended Lines	0	5.51E-04	7.72E-06	0%	E-Benzene	0.000	0.0000	0.0000	0.0000	0.0000
	Other	0	3.09E-02	1.30E-04	0%	Xylenes	0.000	0.0000	0.0000	0.0000	0.0000
	Relief Valves	0	3.09E-02	1.30E-04	0%	n-Hexane	0.000	0.0000	0.0000	0.0000	0.0000
						2,2,4 Trimethylpentane	0.000	0.0000	0.0000	0.0000	0.0000

Fugitive Emission Summary

Pollutant	Uncontrol	led Emissions	Controlled Emissions		
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
VOC	1.48	6.49	1.48	6.49	
HAPs	0.12	0.51	0.12	0.51	
H2S	0.12	0.53	0.12	0.53	
Benzene	0.05	0.24	0.05	0.24	
Toluene	0.03	0.11	2.60E-02	0.11	
E-Benzene	0.00	0.02	3.77E-03	1.65E-02	
Xylenes	0.01	0.03	5.78E-03	0.03	
n-Hexane	0.03	0.12	2.76E-02	0.12	
2.2.4 Trimethylpentane	0.00	0.00	0.00E+00	0.00E+00	

Footnotes: ^a Factors are taken from EPA Document EPA-453/R-095-017, November 1995, Table 2-4 ^cGas/vapor based on inlet gas. Heavy Oil, Light Oil, and Water/Oil fugitives were based on Promax estimate of slop from the dehydration system.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO_2), nitrous oxide (N_2O), methane (CH_4), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF_6).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following

x By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- **x** If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- **x** If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- \Box If an older version of AP-42 is used, include a complete copy of the section.
- □ If an EPA document or other material is referenced, include a complete copy.
- **x** Fuel specifications sheet.
- **x** If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Compressor Engines (Units ENG-1 through ENG-6)

- AP-42 3.2-2 Natural Gas-fired Reciprocating Engines
- Manufacturer specifications and catalyst guarantee

All heaters and reboilers (Units H-1 through H-3)

• AP-42 1.4-1 & 2 Natural Gas Combustion

TEG Dehydrators (Units DEHY-1 & DEHY-2)

- BR&E ProMax
- Site-specific inlet gas analysis

Amine Units (Units AU-1 through AU-3)

- BR&E ProMax
- Site-specific inlet gas analysis

Emergency Flare and Process Flare (Unit FL-1 & FL-2)

- Site-specific inlet gas analysis.
- TCEQ and EPA Emission Factors

Fugitives (Unit FUG)

- Site-specific inlet gas analysis
- Liquid analysis derived from BR&E ProMax

Certificate of Analysis

Number: 6030-21110023-001A

Station Name:	#1 Inlet
Station Number	: 633000
Station Locatior	n:FFS
Instrument:	6030_GC2 (Agilent GC-7890B)
Last Inst. Cal.:	09/13/2021 14:54 PM
Analyzed:	11/01/2021 16:00:14 by KJM
Instrument: Last Inst. Cal.:	6030_GC2 (Agilent GC-7890B) 09/13/2021 14:54 PM

Nov	^r . 01, 2021
Z	
Gas	Spot
11/01/20	021
:37.1 psi	g, @ 81.6 °F
11/01/20	021
GPA 22	86
	Z Gas 11/01/20 ::37.1 psi 11/01/20

Analytical Data

Components	Un-normalized Mol %	Mol. %	Wt. %	GPM at 14.65 psia		
Hydrogen Sulfide	0.000	0.80000	1.129		GPM TOTAL C2+	8.18
Nitrogen	1.732	1.69600	1.968		GPM TOTAL C3+	4.26
Methane	69.469	68.00900	45.186		GPM TOTAL iC5+	1.07
Carbon Dioxide	0.989	0.96800	1.764			
Ethane	14.985	14.67000	18.269	3.920		
Propane	7.776	7.61300	13.903	2.095		
Iso-butane	1.027	1.00500	2.419	0.329		
n-Butane	2.474	2.42200	5.830	0.763		
Iso-pentane	0.791	0.77400	2.313	0.283		
n-Pentane	0.753	0.73700	2.202	0.267		
Hexanes Plus	1.334	1.30600	5.017	0.526		
	101.330	100.00000	100.000	8.183		
Calculated Physical Pr	operties	Tota		C6+		
Relative Density Real G		0.8373	5	3.1966		
Calculated Molecular We	eight	24.15	i	92.58		
Compressibility Factor		0.9953	5			
GPA 2172 Calculation:						
Calculated Gross BTU	per ft ³ @ 14.65 p	sia & 60°F				
Real Gas Dry BTU		1382	2	4926		
Water Sat. Gas Base BT	ΓU	1358	5	4839		
Ideal, Gross HV - Dry at	: 14.65 psia	1375.6	;	4925.7		
Ideal, Gross HV - Wet		1351.5	i	0.000		

Data reviewed by: Krystle Fitzwater, Laboratory Manager The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Quality Assurance:

Certificate of Analysis

Number: 6030-21110023-001A

Station Name: #1 Inlet Station Number: 633000 Station Location: FFS Analyzed: 11/01/2021 16:13:44 by KJM

Sampled By:	Z	
Sample Of:	Gas	Spot
Sample Date:	11/01/2021	1
Sample Conditions:	37.1 psig,	@ 81.6 °F
Method:	GPA 2286	

Analytical Data

Components	Mol. %	Wt. %	GPM at		
-			14.65 psia		
Hydrogen Sulfide	0.800	1.129			
Nitrogen	1.696	1.968			
Methane	68.009	45.186			
Carbon Dioxide	0.968	1.764			
Ethane	14.670	18.269	3.920		
Propane	7.613	13.903	2.095		
Iso-Butane	1.005	2.419	0.329		
n-Butane	2.422	5.830	0.763		
Iso-Pentane	0.774	2.313	0.283		
n-Pentane	0.737	2.202	0.267		
i-Hexanes	0.286	0.994	0.114		
n-Hexane	0.165	0.573	0.067		
Benzene	0.095	0.306	0.027		
Cyclohexane	0.138	0.477	0.047		
i-Heptanes	0.221	0.852	0.089		
n-Heptane	0.053	0.220	0.025		
Toluene	0.068	0.253	0.022		
i-Octanes	0.169	0.741	0.076		
n-Octane	0.016	0.077	0.008		
Ethylbenzene	0.010	0.042	0.004		
Xylenes	0.019	0.088	0.008		
i-Nonanes	0.033	0.185	0.018		
n-Nonane	0.010	0.050	0.005		
Decanes Plus	0.023	0.159	0.016		
	100.000	100.000	8.183		
Calculated Physical F	Properties		Total	C10+	
Calculated Molecular V			24.15	149.51	
GPA 2172 Calculation	U U				
Calculated Gross BT		4.65 psia 8	60°F		
Real Gas Dry BTU			1382.1	8019.1	
Water Sat. Gas Base BTU			1357.9	7841.5	
Relative Density Real Gas			0.8373	5.1622	
Compressibility Factor			0.9953		
Ideal, Gross HV - Wet			1351.5		
Ideal, Gross HV - Dry at 14.65 psia			1375.6		
Net BTU Dry Gas - real gas			1258		
Net BTU Wet Gas - real gas			1236		
	ld Content 0.8				

Data reviewed by: Krystle Fitzwater, Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Equipment Specification

Proposal Information	Proposal Number: Project Reference:	CG-22-000043 Durango Midstream - CAT3606LE - Catalyst Spec Sheet	Date:	1/5/2022
Engine Information	Engine Make: Engine Model: Rated Speed: Fuel Description: Hours Of Operation: Load:	Caterpillar G 3606 LE TA 1000 RPM Natural Gas 8750 Hours per year 100%	Speed: Power Output: Exhaust Flow Rate: Exhaust Temperature Fuel Consumption: O ₂ : H ₂ O:	Rated 1,775 bhp 12,129 acfm (cfm) 847 ° F 6,811 btu/bhp-hr 12.8% 17%

Emission Data			Rav	v Engine	Emissi	ons		Target Outlet Emissions						
(100% Load)	Emission	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	g/kW- hr	lb/MW- hr	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	g/kW- hr	lb/MW- hr	Calculated Reduction
	NO _x *	0.5	8.56	49	67	0.671	1.48	5	85.6	489	671	6.705	14.78	
	со	2.75	47.08	442	606	3.688	8.13	0.75	12.84	120	165	1.006	2.22	72.7%
	THC**	6.3	107.86	1,767	2,426	8.448	18.63							
	NMNEHC***	0.63	10.79	177	243	0.845	1.86	0.15	2.57	42	58	0.201	0.44	76.2%
	CH ₂ O†	0.26	4.45	39	54	0.349	0.77	0.05	0.86	7	10	0.067	0.15	80.8%

System	<u>Catalyst (Replacement Catalyst)</u>	
Specifications	Element Model Number:	MECB-OX-RB3494-3275-0000-291
	Number of Catalyst Layers:	1
	Number of Catalyst Per Layer:	1
	Catalyst Back Pressure:	3.0 inWC (Clean)
	Design Exhaust Flow Rate:	12,129 acfm
	Design Exhaust Temperature:	847f
	Dimensions:	Ø 32.75 in
	Exhaust Temperature Limits++:	550f – 1250f (catalyst inlet); 1350f (catalyst outlet)
	System Pressure Loss	3.0 inWC (Clean)

* MW referenced as NO₂

** MW referenced as CH4

*** MW referenced as CH₄. Propane in the exhaust shall not exceed 15% by volume of the NMNEHC compounds in the exhaust, excluding aldehydes. The 15% (vol.) shall be established on a wet basis, reported on a methane molecular weight basis. The measurement of exhaust NMNEHC composition shall be based upon EPA method 320 (FTIR), and shall exclude formaldehyde.

† The concentration of formaldehyde in the exhaust shall be measured in real time using an FTIR - EPA method 320 or equivalent

tt General catalyst temperature operating range. Performance is based on the Design Exhaust Temperature.

Application & Performance Warranty Data

Project Information	
Site Location:	WTX
Project Name:	Durango Midstream - AJAX DPC 2804LE - Housing/Catalyst Replacement
Application:	Prime Power
Number Of Engines:	1
Operating Hours per Year:	8750
Engine Specifications	
Engine Manufacturer:	AJAX
Model Number:	DPC-2804 LE
Rated Speed:	440 RPM
Type of Fuel:	Natural Gas
Type of Lube Oil:	0.6 wt% sulfated ash or less
Lube Oil Consumption:	0.1 % Fuel Consumption
Number of Exhaust Manifolds:	1

Engine Cycle Data

Load	Speed	Power	Exhaust Flow	Exhaust Temp.	Fuel Cons.	NOx	со	NMHC	NMNEHC	CH ₂ O	O2	H ₂ O
%		bhp	acfm (cfm)	°F		g/bhp-hr	g/bhp-hr	g/bhp-hr	g/bhp-hr	g/bhp-hr	%	%
100	Rated	800	6,320	515		2	1.2	1.2	0.5	0.3	7.8	17

Emission Data (100% Load)

	Raw Engine Emissions					Target Outlet Emissions							
Emission	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	g/kW-hr	lb/MW- hr	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	g/kW-hr	lb/MW- hr	Calculated Reduction
NO _x *	2	15.43	78	173	2.682	5.91	2	15.43	78	173	2.682	5.91	
со	1.2	9.26	77	171	1.609	3.55	0.6	4.63	38	85	0.805	1.77	50%
NMNEHC**	0.5	3.86	56	124	0.671	1.48	0.5	3.86	56	124	0.671	1.48	
CH ₂ O	0.3	2.31	18	40	0.402	0.89	0.3	2.31	18	40	0.402	0.89	

System Specifications

Oxidation System Specifications (ZCS-30x31-12)

Housing Model Number: Element Model Number:	ZCS-30x31-12-HSG-0 MEC-TS-SB2969-1550-2475-350
Number of Catalyst Elements:	1
Number of Spare Catalyst Tracks:	2
Sound Attenuation:	22-29 dBA insertion loss
Design Exhaust Flow Rate:	6,320 acfm (cfm)
Design Exhaust Temperature ¹ : Exhaust Temperature Limits***:	515° F 550° F – 1250° F (catalyst inlet); 1350° F (catalyst outlet)
System Pressure Loss:	4.0 inH ₂ O (Clean)

* MW referenced as NO₂

** MW referenced as CH4. Propane in the exhaust shall not exceed 15% by volume of the NMNEHC compounds in the exhaust, excluding aldehydes. The 15% (vol.) shall be established on a wet basis, reported on a methane molecular weight basis. The measurement of exhaust NMNEHC composition shall be based upon EPA method 320 (FTIR), and shall exclude formaldehyde.

*** General catalyst temperature operating range. Performance is based on the Design Exhaust Temperature.

Model	STD	LE
Fuel Gas System ¹		
Fuel pressure range	150 psi (10.3 bar)	150 psi (10.3 bar)
Exhaust System ²		
Exhaust Temperature	465°F (241°C)	515°F (268°C)
Exhaust Flow	233 lb/min (106 kg/min)	239 lb/min (108 kg/min)
Cooling Water System		
Capacity	120 gal (454 l)	120 gal (454 l)
Lube Oil System ³		
Capacity	95 gal (360 l)	95 gal (360 l)
Consumption	28.2 pints/day (13.3 l/day)	28.2 pints/day (13.3 l/day)
Crankcase Makeup	6.6 pints/day (3.1 l/day)	6 pints/day (2.8 l/day)
Brake Specific Fuel Consumption		
100% Load (LHV)	8,000 Btu/bhp-hr (11,319 kJ/kWh)	7,800 Btu/bhp-hr (11,036 kJ/kWh)
Engine Emissions ²		
NOx	12 g/bhp-hr	2 g/bhp-hr
СО	1.2 g/bhp-hr	1.2 g/bhp-hr
NMHC	0.7 g/bhp-hr	0.6 g/bhp-hr
VOC	0.5 g/bhp-hr	0.5 g/bhp-hr
Formaldehyde	0.3 g/bhp-hr	0.3 g/bhp-hr
CO ₂	469 g/bhp-hr	458 g/bhp-hr
Compressor Specifications		
No. of Throws	3	3
Stroke	11" (279 mm)	11" (279 mm)
Piston Speed	807 ft/min (4 m/s)	807 ft/min (4 m/s)
Rod Load	40,000 lb (178 kN)	40,000 lb (178 kN)
Rod Diameter	2.5" (64 mm)	2.5" (64 mm)
Crankshaft Centerline	20" (508 mm)	20" (508 mm)
Dry Weight		
Frame Weight	48,700 lb (22,090 kg)	48,700 lb (22,090 kg)
Dimensions		
Frame Length	171" (4,353 mm)	171" (4,353 mm)
Frame Width	157" (3 <i>,</i> 987 mm)	157" (3,987 mm)
Frame Height	74" (1,881 mm)	74" (1,881 mm)
Stack Diameter	17¼" (438 mm)	17¼" (438 mm)
Stack Height	241" (6,121 mm)	241" (6,121 mm)
Flywheel		
Outside Diameter	48" (1,219 mm)	48" (1,219 mm)
Weight	2,200 lb (998 kg)	2,200 lb (998 kg)

¹ Fuel gas system pressure noted is maximum pressure at customer connection

² Exhaust and emissions noted based on: PLQNG, 1500 FASL elevation, 65°F ambient temperature for STD and LE

³ Lube oil system consumption rates based on full load and full speed operation. Values do not indicate break-in consumption rates.

LEGENDS DON'T STOP. WE MAKE SURE OF IT.™

CALL +1-844-RECIP-43 (INTERNATIONAL: +1-713-354-1299) 24/7 TECH SUPPORT: SUPPORT@COOPERSERVICES.COM **COOPERSERVICES.COM**

 $\ensuremath{\mathbb C}$ 2020 GE Oil & Gas Compression Systems, LLC – All rights reserved.

TABLE 3.2-1 UNCONTROLLED EMISSION FACTORS FOR 2-STROKE LEAN-BURN ENGINES a (SCC 2-02-002-52)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhou	ise Gases	
NO _x ^c 90 - 105% Load	3.17 E+00	А
NO _x ^c <90% Load	1.94 E+00	А
CO ^c 90 - 105% Load	3.86 E-01	А
CO ^c <90% Load	3.53 E-01	А
CO ₂ ^d	1.10 E+02	А
so ₂ ^e	5.88 E-04	А
TOC ^f	1.64 E+00	А
Methane ^g	1.45 E+00	С
VOC ^h	1.20 E-01	С
PM10 (filterable) ⁱ	3.84 E-02	С
PM2.5 (filterable) ⁱ	3.84 E-02	С
PM Condensable ^j	9.91 E-03	Е
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ^k	6.63 E-05	С
1,1,2-Trichloroethane ^k	5.27 E-05	С
1,1-Dichloroethane	3.91 E-05	С
1,2,3-Trimethylbenzene	3.54 E-05	D
1,2,4-Trimethylbenzene	1.11 E-04	С
1,2-Dichloroethane	4.22 E-05	D
1,2-Dichloropropane	4.46 E-05	С
1,3,5-Trimethylbenzene	1.80 E-05	D
1,3-Butadiene ^k	8.20 E-04	D
1,3-Dichloropropene ^k	4.38 E-05	С
2,2,4-Trimethylpentane ^k	8.46 E-04	В
2-Methylnaphthalene ^k	2.14 E-05	С
Acenaphthene ^k	1.33 E-06	С

Table 3.2-1. UNCONTROLLED EMISSION FACTORS FOR 2-STROKE LEAN-BURN ENGINES

(Continued)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Acenaphthylene ^k	3.17 E-06	С
Acetaldehyde ^{k,l}	7.76 E-03	А
Acrolein ^{k,l}	7.78 E-03	А
Anthracene ^k	7.18 E-07	С
Benz(a)anthracene ^k	3.36 E-07	С
Benzene ^k	1.94 E-03	А
Benzo(a)pyrene ^k	5.68 E-09	D
Benzo(b)fluoranthene ^k	8.51 E-09	D
Benzo(e)pyrene ^k	2.34 E-08	D
Benzo(g,h,i)perylene ^k	2.48 E-08	D
Benzo(k)fluoranthenek	4.26 E-09	D
Biphenyl ^k	3.95 E-06	С
Butane	4.75 E-03	С
Butyr/Isobutyraldehyde	4.37 E-04	С
Carbon Tetrachloride ^k	6.07 E-05	С
Chlorobenzene ^k	4.44 E-05	С
Chloroform ^k	4.71 E-05	С
Chrysene ^k	6.72 E-07	С
Cyclohexane	3.08 E-04	С
Cyclopentane	9.47 E-05	С
Ethane	7.09 E-02	А
Ethylbenzene ^k	1.08 E-04	В
Ethylene Dibromide ^k	7.34 E-05	С
Fluoranthene ^k	3.61 E-07	С
Fluorene ^k	1.69 E-06	С
Formaldehyde ^{k,1}	5.52 E-02	А

-

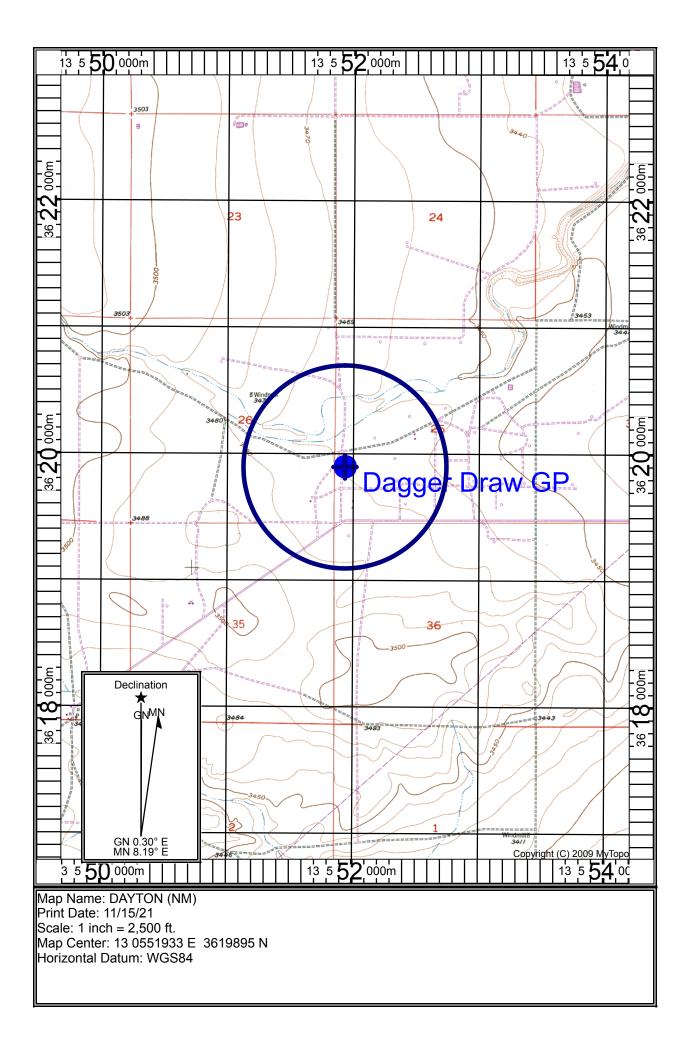
Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Indeno(1,2,3-c,d)pyrene ^k	9.93 E-09	D
Isobutane	3.75 E-03	С
Methanol ^k	2.48 E-03	А
Methylcyclohexane	3.38 E-04	С
Methylene Chloride ^k	1.47 E-04	С
n-Hexane ^k	4.45 E-04	С
n-Nonane	3.08 E-05	С
n-Octane	7.44 E-05	С
n-Pentane	1.53 E-03	С
Naphthalene ^k	9.63 E-05	С
PAH ^k	1.34 E-04	D
Perylene ^k	4.97 E-09	D
Phenanthrene ^k	3.53 E-06	С
Phenol ^k	4.21 E-05	С
Propane	2.87 E-02	С
Pyrene ^k	5.84 E-07	С
Styrene ^k	5.48 E-05	А
Toluene ^k	9.63 E-04	А
Vinyl Chloride ^k	2.47 E-05	С
Xylene ^k	2.68 E-04	А

 Table 3.2-1. UNCONTROLLED EMISSION FACTORS FOR 2-STROKE LEAN-BURN ENGINES (Concluded)

^a Reference 7. Factors represent uncontrolled levels. For NO_x, CO, and PM10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM10 = Particulate Matter \leq 10 microns (μ m) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit.

^b Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA

Method 19. To convert from (lb/MMBtu) to (lb/ 10^6 scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from (lb/MMBtu) to (lb/hp-hr) use the following equation:


lb/hp-hr = (lb/MMBtu) (heat input, MMBtu/hr) (1/operating HP, 1/hp)

- ^c Emission tests with unreported load conditions were not included in the data set.
- ^d Based on 99.5% conversion of the fuel carbon to CO_2 . CO_2 [lb/MMBtu] =
- (3.67)(%CON)(C)(D)(1/h), where %CON = percent conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.75), $D = \text{density of fuel}, 4.1 \text{ E}+04 \text{ lb}/10^6 \text{ scf}, \text{ and}$ h = heating value of natural gas (assume 1020 Btu/scf at 60° F).
- ^e Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content in natural gas of 2,000 gr/10⁶ scf.
- Emission factor for TOC is based on measured emission levels of 43 tests.
- ^g Emission factor for methane is determined by subtracting the VOC and ethane emission factors from the TOC emission factor. Measured emission factor for methane compares well with the calculated emission factor, 1.48 lb/MMBtu vs. 1.45 lb/MMBtu, respectively.
- ^h VOC emission factor is based on the sum of the emission factors for all speciated organic compounds less ethane and methane.
- Considered $\leq 1 \ \mu m$ in aerodynamic diameter. Therefore, for filterable PM emissions, PM10(filterable) = PM2.5(filterable).
- ^j No data were available for condensable PM emissions. The presented emission factor reflects emissions from 4SLB engines.
- ^k Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.
- For lean burn engines, aldehyde emissions quantification using CARB 430 may reflect interference with the sampling compounds due to the nitrogen concentration in the stack. The presented emission factor is based on FTIR measurements. Emissions data based on CARB 430 are available in the background report.

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The Dagger Draw Gas Plant consists of six natural gas compressor engines, an amine gas treatment system, an Acid Gas Injection Well that controls the acid gas stream from the amine unit, a process Flare, an emergency flare, a glycol dehydration system, and ancillary equipment. The primary function of the plant is to remove H₂S and CO₂ from sour field gas so that the gas can meet pipeline specifications. The plant has been designated a primary Standard Industrial Classification (SIC) Code of 1311. The operation of the Dagger Draw Gas Plant is intended to process 90 MMscfd of gas.

Amine Treating Units (Units AU-1 through AU-3)

The amine units are designed to remove acid gas components (carbon dioxide, hydrogen sulfide and mercaptans) from the natural gas stream. These components are removed from the natural gas because they are corrosive, hazardous to health, and reduce the heating value of the natural gas stream. In addition, the carbon dioxide can freeze in the cryogenic unit forming dry ice and forcing the shut down of the facility. This is known as the gas sweetening process.

Amine treating is an exothermic chemical reaction process. The treating solution is a mixture of RO water and approximately 28-35% DEA (diethanolamine). This aqueous mixture is regenerated and reused. Lean DEA solution is pumped to the top of the contactor and allowed to flow downward. Sour gas is fed into the bottom of the contactor and flows upward. As the lean DEA solution flows down through the contactor, it comes into contact with the sour gas. The H₂S and CO₂ react with the amine to form an amine sulfide complex and carbonate. The amine is now known as sour or rich amine and the remaining gas is sweet and continues to the dehydration system.

The rich DEA amine solution is fed into a flash tank. This unit reduces the pressure on the rich amine and allows dissolved gases to vent off. The dissolved gases are usually hydrocarbons. This vented stream is sent to the sour gas system. Due to weak chemical bonds between the sour gas and the DEA amine solution, H₂S and CO₂ can be stripped from the amine by heating the amine at low pressures. Rich amine is fed into a stripper column known as a regenerator. Steam generated in the amine reboiler passes up through the amine still and removes the acid gases from the rich amine. Hot oil is used to supply heat to the regenerator reboiler. H₂S and CO₂ (acid gases) exit the top of the regenerator and are sent to the acid gas injection well (AGI). The DEA amine solution is now regenerated and leaves the stripper column to be recirculated to the contactor.

Acid Gas Injection Well

The acid gas removed by the amine units is disposed of by acid gas injection into a disposal well for a control of 100%. In the event both of the redundant AGI well compressor units go down FL-1 will incinerate the acid gas stream from the amine unit as an emergency event. The acid gas will be compressed in stages from a pressure of 5 PSIG to a final pressure of no more than 1250 PSIG. After compression, the gas must be cooled and any water that is condensed at the higher pressure will be separated. The water is collected and disposed of in a separate disposal well. Should the acid gas compressor shut down for any reason, valves will automatically isolate it. At this point, the acid gas will be diverted to the emergency flare. The acid gas will be enriched with sweet natural gas so that it will burn. The entire system will be shut down in a controlled manner if the acid gas compressor cannot be restarted.

Glycol Dehydration Units (Unit DEHY-1 & DEHY-2)

The glycol dehydration unit receives up to 90 MMscf/d of treated gas (sweet) from the amine unit and reduce the water content of the gas by circulating approximately 5.0 to 6.5 gallons per minute of triethylene glycol (TEG). The gas passes into the lower section of the glycol contactor and the TEG enters the top of the contactor. The gas and liquid comes into contact on trays within the tower and the TEG absorbs the water. The dry gas exits the top of the contactor and moves on to the next processing phase, the molecular sieve dehydration.

The rich glycol is fed into a flash tank. This unit reduces the pressure on the solution and allows dissolved gases to vent off. The dissolved gases are usually hydrocarbons. This low pressure stream is sent to the fuel gas system. The rich glycol is

Frontier Field Services, LLC

regenerated by passing through a series of heat exchangers to warm the glycol. It then enters the glycol reboiler where it is heated to approximately 400°F to boil the absorbed water out of the solution. By-products that are also absorbed, such as benzene, toluene, ethyl-benzene and xylene (BTEX), are also boiled out of the solution. Since BTEX is considered a harmful component these vapors (including water) will be collected and condensed into a liquid using an air-cooled exchanger and a separator. These liquids are then disposed of in a disposal well. The overall efficiency of the BTEX controls is maintained at a 95% minimum efficiency.

The glycol unit and the components of the glycol unit are similar to that of an amine unit. Hot oil is the heat source for the glycol regenerator reboiler.

Molecular Sieve Dehydration

Molecular sieve dehydration is used upstream of the cryogenic processes to achieve a -150°F dew point. The process uses two molecular sieve vessels with one vessel in service absorbing moisture from the gas stream and the other vessel in the regeneration mode, hot, dry gas (regen gas) is passed up through the vessel to drive off the absorbed moisture from the molecular sieve. The gas comes from the discharge of the residue compressors and it is passed through a heat exchanger (heated by hot oil) and a heater to achieve a temperature of approximately 500°F. After the gas passes through the bed it is cooled in an air cooled exchanger. The water in the gas condenses and is separated from the gas stream in a separator. The regen gas has four potential paths depending on the concentration of the sulfur products in the regen gas:

- 1. Blended with the sales gas at the sales point (outlet of the plant);
- 2. Routed to the front of the plant for reprocessing;
- 3. Sold to a third-party for processing; or
- 4. Treated on-site via AGI system.

There are no air emissions from the molecular sieve dehydration system.

Cryogenic Unit:

The cryogenic unit is designed to liquefy natural gas components from the sweet, dehydrated inlet gas by removing work (heat) from the gas be means of the turbo expander. The cryogenic unit recovers natural gas liquids (NGL) by cooling the gas stream to extremely cold temperatures (-150°F) and condensing components such as ethane, propane, butanes and heavier. The gas is cooled by a series of heat exchangers and by lowering the pressure of the gas from approximately 650 PSIG to approximately 180 PSIG. Once the gas has passed through the system of heat exchangers and expansion it is re-compressed using the energy obtained from expanding the gas. Further compression is usually required to enter the pipeline so a standard reciprocating compressor is located at the end of the process.

The gas flows through the following heat exchangers:

• Gas to Gas Exchanger – This unit exchanges heat from the warm inlet gas and the cold residue gas that has already been expanded. This cools the inlet gas.

• Product Heater – This unit will cool the inlet gas by exchanging heat with the cold liquid product that has been recovered.

• De-Methanizer Reboiler / Side-Reboiler – This unit draws liquid off of the de-methanizer and uses heat from the inlet gas to boil the methane out of the liquid. One stream comes off the side of the tower and one stream comes off of the bottom of the tower. This also cools the inlet gas. The gas is expanded and recompressed in the expander/compressor. At this point the gas temperature should be at its coldest. The de-methanizer is used to stabilize the liquid. By adding heat to the tower, the methane that has been absorbed in the liquid can be rejected with the residue gas.

There are no air emissions associated with the cryogenic unit.

Residual Compression

Once the sweet, dry gas exits the cryogenic unit, it needs to be recompressed to approximately 800 to 1200 psi before the gas is sent to the main transportation pipeline. This is accomplished with two 2250 horsepower electric driven compressors.

Hot Oil System

The hot oil system in the plant is used to provide heat to certain processes within the facility. It is a very basic system consisting of the following:

Natural Gas Fired Heater – This provides heat input into the system by burning natural gas and circulating the oil through the heater. The heater also has a convection section that assists in heating the regeneration gas for the molecular sieve.

• Hot Oil Pumps - These pumps circulate the required amount of hot oil through the system.

• Hot Oil Surge Tank – This tank provides expansion volume for the system. As the system heats up the liquid will expand. This tank allows for the liquid to expand without spilling out of the system.

• Heat Exchangers – A series of exchangers, mainly the reboiler and regeneration gas heat exchanger that removes heat from the hot oil system and transfers it to the respective process.

Regen Gas Processing

During regeneration mode, hot gas is passed up through the vessel to drive the absorbed moisture off of the molecular sieve. The gas comes from the discharge of the residue compressors. The regen gas also drives off any residual sulfur compounds from the mole sieves. Due to the mercaptan content of the regen gas, it does not generally meet pipeline specifications and must be treated. The sulfur compounds must be removed along with the water that was picked up from the mole sieve beds. The regen gas stream volume ranges from 1.5 MMscfd to 6.0 MMscfd depending on the volume of the mole sieve beds and the concentration of sulfur compounds in the inlet gas.

Sulfur Removal

AU-1 through AU-3 are amine units that are used to remove H₂S and CO₂. The concentrated waste acid gas is then sent to the AGI well. The selective amine is regenerated using the hot oil heater media. The regen gas waste stream is composed primarily of sulfur compounds. This stream would be mixed with the acid gas stream produced by the main process amine unit. The acid gas that is removed by the amine unit will normally be disposed of by acid gas injection into a disposal well or, under emergency situations, by incinerating in a flare (FL-1).

It is assumed that the main process stream removes 100% of all sulfur compounds for ease of measurement and calculations. In fact, the main amine unit removes 99.8% to 99.9% of H₂S and leaves some mercaptans in the gas stream. These additional sulfur compounds are removed by the mole sieves. This additional sulfur removal process will not generate any additional emissions as the emissions are already accounted for in the sulfur calculations of the main amine process unit.

The facility is authorized to operate continuously (8,760 hr/yr) at design maximum capacity processing rates. Frontier Field Services will minimize startup and shutdown activities at the facility in accordance with good operating principles and business objectives. This practice will serve to minimize total annual excess emissions from the facility due to startup, shutdown, and maintenance activities.

Section 11 Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

B. Apply the 3 criteria for determining a single source:

<u>SIC Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

x Yes 🗆 No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

x Yes 🛛 No

<u>Contiguous</u> or <u>Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

□ Yes □ No

C. Make a determination:

- x The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- □ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - X a minor PSD source before and after this modification (if so, delete C and D below).
 - □ a major PSD source before this modification. This modification will make this a PSD minor source.
 - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - □ an existing PSD Major Source that has had a major modification requiring a BACT analysis
 - □ a new PSD Major Source after this modification.
- B. This facility not one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are not significant because the emissions after the modification are below PSD major thresholds. The "project" emissions listed below only result from changes described in this permit application, thus no emissions from other [revisions or modifications, past or future] to this facility. This project does not increase facility throughput or any other associated emissions increases. The project emissions (before netting) for this project are as follows:
 - a. NOx: 119.2 TPY
 - b. CO: 241.1 TPY
 - c. VOC: 209.8 TPY
 - d. SOx: 55.9 TPY
 - e. **PM: 9.4 TPY**
 - f. PM10: 9.4 TPY
 - g. PM2.5: 9.4 TPY
 - h. Fluorides: 0 TPY
 - i. Lead: 0 TPY
 - j. Sulfur compounds (listed in Table 2): H2S 0.5 TPY
 - k. GHG: 52,452 TPY
- C. Netting is not required (project is not significant)
- D. BACT is not required for this modification, as this application is a minor modification.
- E. If this is an existing PSD major source, or any facility with emissions greater than 250 TPY (or 100 TPY for 20.2.74.501 Table 1 PSD Source Categories), determine whether any permit modifications are related, or could be considered a single project with this action, and provide an explanation for your determination whether a PSD modification is triggered.

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

State Regulations:

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
20.2.1 NMAC	General Provisions	Yes	Facility	This facility is authorized under a construction permit. Therefore, this regulation applies.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a SIP approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. The facility meets the maximum allowable concentrations of TSP, SO ₂ , H ₂ S, NO _X and CO under this regulation.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. The owner or operator will operate the source at the facility having an excess emission, to the extent practicable, including associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions. The facility will also notify the NMED of any excess emissions per 20.2.7.110 NMAC.
20.2.23 NMAC	Fugitive Dust Control	No	Facility	This facility is not authorized under 20.2.73. Therefore, this regulation does not apply.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	Yes	H-1, H-2, H- 3	This facility has existing gas burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit, including H-1, H-2, and H-3. This rule applies.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility does not have oil burning equipment with a heat input of greater than 1,000,000 million British Thermal Units per year per unit. Therefore, this regulation does not apply
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	Yes	Facility	This regulation could apply to existing (prior to July 1, 1974) or new (on or after July 1, 1974) natural gas processing plants that use a Sulfur Recovery Unit to reduce sulfur emissions.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	This regulation could apply to storage tanks at petroleum production facilities, processing facilities, tanks batteries, or hydrocarbon storage facilities. This facility does not have a crude oil or condensate storage capacity greater than 65,000 gallons (1547.6 bbl) and is therefore not subject to this regulation.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This regulation could apply to sulfur recovery plants that are not part of petroleum or natural gas processing facilities. This facility is not a sulfur recovery plant. Therefore, this regulation does not apply.
20.2.50 NMAC	Oil and Gas Sector – Ozone Precursor Pollutants	Yes	ENG 1 through ENG-6, DEHY-1, DEHY-2, H- 1, H-2, H-3, FUG	The facility is subject to the emission standards for volatile organic compounds (VOC) and oxides of nitrogen (NOx) for oil and gas production, processing, compression, and transmission sources. 20.2.50 NMAC subparts: 113 – Engines and Turbines 114 – Compressor Seals 115 – Control Devices and Closed Vent Systems 116 – Equipment Leaks and Fugitive Emissions 118 – Glycol Dehydrators 119 – Heaters
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	ENG-1 through ENG-6, H-1, H-2, H-3, FL-1, and FL-2	This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares unless your equipment is subject to another state regulation that limits particulate matter such as 20.2.19 NMAC (see 20.2.61.109 NMAC). This facility operates combustion equipment that are subject to this regulation.
20.2.70 NMAC	Operating Permits	Yes	Facility	Through this permitting action, the facility will become subject to a Title V operating permit.

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	If subject to 20.2.70 NMAC and your permit includes numerical ton per year emission limits, you are subject to 20.2.71 NMAC and normally applies to the entire facility.
20.2.72 NMAC	Construction Permits	Yes	Facility	This facility is permitted under 20.2.72 and is therefore subject to this regulation.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	All facilities that are a Title V Major Source as defined at 20.2.70.7.R NMAC, are subject to Emissions Inventory Reporting. This facility is required to submit an annual emission inventory report pursuant to 20.2.73.300.A(1) NMAC. This regulation applies.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	The facility is a minor source for PSD purposes therefore this regulation is not applicable.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This application is being submitted under 20.2.72 and is therefore subject to this regulation.
20.2.77 NMAC	New Source Performance	Yes	ENG-1 through ENG-6	This facility is a stationary source with units that are subject to 40 CFR 60. Therefore, this regulation applies.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	This facility does not include and equipment subject to 40 CFR 61. Therefore this regulation does not apply.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	This facility is not located in a non-attainment area. Therefore, this regulation does not apply.
20.2.80 NMAC	Stack Heights	No	N/A	This regulation establishes requirements for the evaluation of stack heights and other dispersion techniques. This regulation does not apply as all stacks at the facility will follow good engineering practice.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	ENG-1 through ENG-6, DEHY-1, DEHY-2	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63. This facility operates units which are subject to 40 CFR 63. Therefore this regulation applies.

Applicable Federal Regulations:

<u>Federal</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:	
40 CFR 50	NAAQS	Yes	Facility	This regulation defines National Ambient Air Quality Standards (NAAQS). The facility meets all applicable NAAQS for NOx, CO, SO ₂ , H ₂ S, PM ₁₀ , and PM _{2.5} under this regulation.	
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	ENG-1 through ENG-6	This facility is a stationary source with units that are subject to 40 CFR 60. Therefore, this regulation applies.	

<u>Federal</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:	
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This facility does not include any electric utility steam generating units. Therefore, this regulation does not apply.	
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	This facility does not include any electric utility steam generating units. Therefore, this regulation does not apply.	
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	Applicability: the facility does not have any steam generating units for which construction, modification or reconstruction is commenced after June 9, 1989 and that have a maximum design heat input capacity of 29 MW (100 MMBtu/hr) or less, but greater than or equal to 2.9 MW (10 MMBtu/hr).	
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	This facility does not have any tanks with a volume of 420,000 gallons or larger. Therefore, this subpart does not apply.	
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, or Modification Commenced After July 23, 1984	No	N/A	This facility does not have any storage vessels with a volume of 75 cubic meters. Therefore this regulation does not apply.	
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	This facility does not have any stationary turbines. Therefore, this regulation does not apply.	
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	Yes	Facility	This facility is subject to this regulation as it operates sweetening units, dehydration units, and compressors on site. The site was originally constructed in 2010 and relocated to New Mexico in 2021. The relocation in 2021 is not considered a modification per 40 CFR 60.14(e)(6); therefore, the facility remain subject to NSPS KKK in lieu of NSPS OOOO/OOOOa.	
NSPS 40 CFR Part 60 Subpart LLL	of Performance for Onshore Natural Gas Processing: SO ₂ Emissions	No	N/A	The facility is not subject to this subpart as the acid gas is completely reinjected into the geologic formation.	

<u>Federal</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No	N/A	This facility is a gas plant. Therefore, equipment leaks are not subject to this regulation. No compressors at the facility were manufactured after 8/23/2011 and before 9/19/2015. Therefore, no compressors are subject to this regulation.
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	ENG-1 through ENG-6	The compressors (Units ENG-1 through ENG-6) were constructed/modified after September 18, 2015 and are therefore subject to this regulation.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	There are no compression ignition engines installed at this facility. Therefore, this regulation does not apply.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	ENG-1 through ENG-6	The engines at this facility were manufactured in 2021 after the NSPS JJJJ date of June 12, 2006. The units are therefore subject to this regulation.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	There are no electric generating units at this facility. Therefore, this regulation does not apply.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	There are no electric generating units at this facility. Therefore, this regulation does not apply.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	This facility is not a Municipal Solid Waste Landfill. Therefore, this regulation does not apply.

<u>Federal</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	No units at this facility are subject to any of the subparts of 40 CFR 61.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	This facility does not process mercury. Therefore, this regulation does not apply.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	This facility is not a major source of HAPs. Therefore, this regulation does not apply.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	ENG-1 through ENG-6, DEHY-1, DEHY-2	This facility is a stationary source with units that are subject to 40 CFR 63. Therefore, this regulation applies.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DEHY-1, DEHY-2	This facility is subject to the requirements of 40 CFR 63 Subpart HH, which includes requirements applicable to area sources with TEG Dehydrators. The site is not a major source of HAPs, but an area source of HAPs and therefore is subject to this subpart. The dehydrator has the potential to emit less than 1 tpy (0.90 megagram per year) of benzene and is therefore exempt from the requirements of §63.764(d) pursuant to §63.764(e)(1)(ii).
MACT 40 CFR 63 Subpart HHH		No	N/A	This subpart applies to owners and operators of natural gas transmission and storage facilities that transport or store natural gas prior to entering the pipeline to a local distribution company or to a final end user. This facility is not a natural gas transmission facility. Therefore, this regulation does not apply.
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	The facility is not major for HAPs; therefore, this regulation does not apply.
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	This facility does not operate any coal & oil fire electric utility steam generating units. Therefore, this regulation does not apply.
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	ENG-1 through ENG-6	The compressor engines at this facility are subject to MACT ZZZZ and will comply with this regulation by complying with the requirements of NSPS JJJJ.

<u>Federal</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:	
				Applies only to Title V Major Sources	
				A CAM plan is applicable to Title V Major sources if	
			AU-1,	1. The emission unit is subject to an emission limitation or standard for an air pollutant (or surrogate thereof) in an applicable requirement;	
40 CFR 64	Compliance Assurance	Yes	AU-2, AU-3,	2. The emission unit uses a control device to achieve compliance with the emission limitation or standard; and	
	Monitoring		DEHY-1, DEHY-2	3. The emission unit has the pre-control device potential to emit greater than or equal to the amount in tons per year required for a site to be classified as a major source.	
				Emissions for Unit AU-1, AU-2, and AU-3 combined are major in and of itself. Emissions for DEHY-1 and DEHY-2 combined are major. The CAM plan for AU-1, AU-2, and AU-3 and DEHY-1 and DEHY-2 are provided in section 19.1.	
40 CFR 68	Chemical Accident Prevention	Yes	Facility	The facility is an affected facility, as it will use flammable process chemicals such as propane at quantities greater than the thresholds. The facility will develop and maintain an RMP for these chemicals.	
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	This facility does not generate commercial electric power or electric power for sale. Therefore, this regulation does not apply.	
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	This facility does not generate commercial electric power or electric power for sale. Therefore, this regulation does not apply.	
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	This facility does not generate commercial electric power or electric power for sale. Therefore, this regulation does not apply.	
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	This facility does not generate commercial electric power or electric power for sale. Therefore, this regulation does not apply.	
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	The facility does not service, maintain, or repair equipment containing refrigerants. Therefore, this regulation does not apply.	

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

- X Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- X NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- X Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Startup and shutdown procedures are performed according to guidelines, which dictate proper procedural sequence to minimize emissions from the facility during such activities.

Equipment located at the plant is equipped with various safety devices that aid in preventing excess emissions to the atmosphere in the event of an operational emergency. In the event of a malfunction, startup, shutdown, or scheduled maintenance in which emission rates from the facility exceed permitted allowable emissions, Frontier Field Services will notify the AQB in accordance with 20.2.7 NMAC and the equipment responsible for the exceedance will be repaired as soon as possible.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

The operation of the Dagger Draw Gas Plant is intended to process 90 MMscfd of gas. As an alternative operating scenario, the plant will only process sweet gas. The gas will be treated to remove CO₂, dehydrated to remove water and processed to remove heavy (liquid) hydrocarbons from the gas stream. Several plant systems will be involved to perform these functions as discussed in Section 10.

Section 16 Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application? New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	Enter an X for each purpose that applies
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC). See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	Х
Reporting existing pollutants that were not previously reported.Reporting existing pollutants where the ambient impact is being addressed for the first time.Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC) Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above. This application does not require modeling since this is a No Permit Required (NPR) application. This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	Х
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

□ See attached, approved modeling **waiver for all** pollutants from the facility.

□ See attached, approved modeling **waiver for some** pollutants from the facility.

□ Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.

X Attached in UA4 is a **modeling report for some** pollutants from the facility.

Lead, ozone, and state air toxic(s) not applicable.

 \Box No modeling is required.

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-A: Identification				
1	Name of facility:	Dagger Draw Gas Plant		
2	Name of company:	Frontier Field Services, LLC		
3	Current Permit number:	NSR-0001-M11		
4	Name of applicant's modeler:	Kimberly Krause		
5	Phone number of modeler:	512-773-1973		
6	E-mail of modeler:	kimberly@brightskyenv.com		

16	16-B: Brief								
1	Was a modeling protocol submitted and approved? Yes⊠ No□								
2	Why is the modeling being done? Permit modification application Other (describe below)								
3	 Describe the permit changes relevant to the modeling. Removal of H-4 and H-5 heaters from the permit. This equipment was never installed. Adjustments to emissions factors used for ENG-1 through ENG-6. Addition of amine flash tank and SSM emissions at the Process Flare, FL-2. Updated gas sample composition updated for various sources. Updated stack parameters for ENG-1, ENG-2, and ENG-3. 								
4	What geodetic datum was used in the modeling?	NAD83							

5	How long will the facility be at this location?	Permanent				
6	Is the facility a major source with respect to Prevention of Sign	ificant Deterioration (PSD)?	Yes□	No⊠		
7	Identify the Air Quality Control Region (AQCR) in which the	facility is located	155			
	List the PSD baseline dates for this region (minor or major, as	appropriate).				
8	NO2	Minor Source Baseline Date - 3/	16/1988			
0	SO2	Minor Source Baseline Date - 7/2	28/1978			
	PM10	Minor Source Baseline Date - 2/2	20/1979			
	PM2.5 Minor Source Baseline Date - 1/13/2013					
	Provide the name and distance to Class I areas within 50 km of the facility (300 km for PSD permits).					
9	Carlsbad Caverns National Park					
10	Is the facility located in a non-attainment area? If so describe b	elow	Yes□	No⊠		
	N/A					
11	Describe any special modeling requirements, such as streamline permit requirements.					
	n/A					

16-C: Modeling History of Facility

Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).

	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments
	CO	0001-M11	4/26/2022	
	NO ₂	0001-M11	4/26/2022	
1	SO ₂	0001-M11	4/26/2022	
	H ₂ S	0001-M11	4/26/2022	
	PM2.5	0001-M11	4/26/2022	
	PM10	0001-M11	4/26/2022	
	Lead	N/A	N/A	
	Ozone (PSD only)	N/A	N/A	
	NM Toxic Air	N/A	N/A	
	Pollutants			
	(20.2.72.402 NMAC)			

16-D: Modeling performed for this application

For each pollutant, indicate the modeling performed and submitted with this application.

Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.

Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.
СО	\boxtimes				
NO ₂		\boxtimes			
SO_2	\boxtimes	\boxtimes			
H_2S	\boxtimes				
PM2.5		\boxtimes			
PM10	\boxtimes				
Lead					\boxtimes
Ozone					\boxtimes
State air toxic(s) (20.2.72.402 NMAC)					\boxtimes

16-E: New Mexico toxic air pollutants modeling List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this 1 application. N/A – no emissions were modeled as this facility is not a source of TAPs. List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required. Emission Rate Emission Rate Screening Stack Height Emission Rate/ Pollutant Correction Factor 2 (pounds/hour) Level (pounds/hour) (meters) Correction Factor N/A – No TAPs were modeled for this facility.

16-	F: Modeling options		
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□

16-	16-G: Surrounding source modeling						
1	Date of surroundi	ng source retrieval	5/22/2023				
	sources modeled	If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed.					
2	AQB Source ID	Description of Corrections					

Г

16-	16-H: Building and structure downwash						
1	How many buildings are present at the facility?	26 buildings are modeled at this facility					
2	How many above ground storage tanks are present at the facility?	11 above ground storage tanks were mo	11 above ground storage tanks were modeled.				
3	Was building downwash modeled for all buildings and	wnwash modeled for all buildings and tanks? If not explain why below. $Yes \boxtimes$ No					
4	Building comments	N/A					

16-	I: Recept	tors and	modeled	l property bou	Indary			
1	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area.							
	A secure chair	n link fence su	rrounds the fa	cility, there are three po	ints to enter the facili	ty, but th	ese entry poir	ts are locked.
2	Receptors must be placed along publicly accessible roads in the restricted area.Yes□No⊠Are there public roads passing through the restricted area?Yes□No⊠							No⊠
3	Are restricted	area boundary	v coordinates i	ncluded in the modeling	g files?		Yes□	No⊠
	Describe the r	eceptor grids a	and their spaci	ng. The table below ma	· · · · · ·	s as need	led.	
	Grid Type	Shape	Spacing	Start distance from restricted area or center of facilityEnd distance from restricted area or center of facility		Comm	nents	
	Variable density	Circular	50 m	From restricted facility	800 m from restricted facility			
4	Variable density	Circular	100 m	800 m from restricted facility	3,000 m from restricted facility			
	Variable density	Circular	250 m	3,000 m from restricted facility	6,000 m from restricted facility			
	Variable density	Circular	500 m	6,00 m from restricted facility	10,000 m from restricted facility			
	Variable density	Circular	500 m	10,00 m from restricted facility	50,000 m from restricted facility			
	Describe recep							
5	Along the facility fence line a 25 m spaced boundary receptor grid was applied.							
	Describe the P	SD Class I ar	ea receptors.					

(N/A	
6		

16-	16-J: Sensitive areas						
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes□	No⊠				
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠				

16	-K: Mo	deling	s Scena	rios							
1	Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).										
	N/A										
	Which sce	nario prod	uces the hi	ghest conc	entrations	? Why?					
2	N/A										
3	to the facto	tion pertain ors used fo	ns to the "S r calculatir	SEASON"	, "MONTH imum emi	H", "HROI ssion rate.	DY" and ()	related fac	tor sets, not	Yes□	No⊠
4									ore the factor if it makes fo		ıp.
	Hour of Day	Factor	Hour of Day	Factor							
	1		13								
	2		14								
	3		15								
	4 5		16 17								
5	6		17								
	7		18								
	8		20								
	9		21								
	10		22								
	11		23								
	12 24										

	If hourly, variable emission rates were used that were not described above, describe them below.					
6	Were different emission rates used for short-term and annual modeling? If so describe below.	Yes□	No⊠			

16-	5-L: NO ₂ Modeling						
	Which type: Check all th	s of NO ₂ modeling were used? at apply.					
	\boxtimes	ARM2					
1		100% NO _X to NO ₂ conversion					
		PVMRM					
		OLM					
		Other:					
2	Describe the	2 NO ₂ modeling.					
-	The ARM2 Methodology was used with the default maximum and minimum ambient ratios.						
3		t NO ₂ /NO _x ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not I justify the ratios used below.	Yes⊠	No□			
	N/A						
4	Describe the	Describe the design value used for each averaging period modeled.					
4 1-hour: High eighth high Annual: Highest Annual Average Over Five Years							

16	-M: Par	ticulate Matter Modeling							
	Select the	Select the pollutants for which plume depletion modeling was used.							
1		PM2.5							
		PM10							
	\boxtimes	⊠ None							
2	Describe t	Describe the particle size distributions used. Include the source of information.							
2	N/A. Size	N/A. Size distributions were not implemented in this modeling.							
3	Sources th considered	Does the facility emit at least 40 tons per year of NO_X or at least 40 tons per year of SO_2 ? Sources that emit at least 40 tons per year of NO_X or at least 40 tons per year of SO_2 are considered to emit significant amounts of precursors and must account for secondary formation of PM2.5.							
4	Was secon	dary PM modeled for PM2.5?	Yes⊠	No□					

5	If MERPs were used to account for secondary PM2.5 fill out the information below. If another method was used describe below.				
	NO _X (ton/yr)	SO ₂ (ton/yr)	[PM2.5] _{annual}	[PM2.5] _{24-hour}	
	119.18	55.92	0.002383	0.087243	

1	16-N: Setback Distances				
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location. N/A				
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling. N/A				

16	-O: PSD In	crement and S	ource IDs				
1	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-I should match the ones in the modeling files. Do these match? If not, provide a cross-reference table between unit numbers if they do not match below.					No□	
	Unit Number in	UA-2		Unit Number in Modeling Fil	es		
2	The emission rates in the Tables 2-E and 2-F should match the ones in the modeling files. Do these match? If not, explain why below.				Yes⊠	No□	
3	Have the minor 1	NSR exempt sources or '	Title V Insignificant A	Activities" (Table 2-B) sources	Yes□	No⊠	
	been modeled?	_			Y es	NOK	
	Which units consume increment for which pollutants?						
	Unit ID	NO ₂	SO_2	PM10	PM2.5		
	ENG-1	Yes	Yes	Yes	Yes		
	ENG-2	Yes	Yes	Yes	Yes		
	ENG-3	Yes	Yes	Yes	Yes		
4	ENG-4	Yes	Yes	Yes	Yes		
-	ENG-5	Yes	Yes	Yes	Yes		
	ENG-6	Yes	Yes	Yes	Yes		
	H-1	Yes	Yes	Yes	Yes		
	Н-2	Yes	Yes	Yes	Yes		
	Н-3	Yes	Yes	Yes	Yes		
	FL-1	Yes	Yes	Yes	Yes Yes		
	FL-2	Yes	Yes	Yes	Yes		

5	PSD increment description for sources. (for unusual cases, i.e., baseline unit expanded emissions after baseline date).	N/A		
6	Are all the actual installation dates included in Table 2A of the This is necessary to verify the accuracy of PSD increment mod how increment consumption status is determined for the missin	eling. If not please explain	Yes⊠	No□

16-	16-P: Flare Modeling					
1	For each flare or flaring scenario, complete the following					
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)		
	FL-1	18.70	50,460.20	0.20		
	FL-2 (Normal + SSM)	20.83	266,152,647.83	14.42		

16-	Q: Volume and Related Sources					
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing installation dates below.	Yes□	No⊠			
	Describe the determination of sigma-Y and sigma-Z for fugitive sources.					
2	The pipe rack height of height of 10 feet from the ground and length of the AGI well inlet area of 88 ft was used as the dimensions of sigma-Y and sigma-Z values for the fugitive source.					
3	Describe how the volume sources are related to unit numbers. Or say they are the same.					
	They are the same.					
	Describe any open pits.					
4	N/A					
5	Describe emission units included in each open pit.					
5	N/A					

16-	16-R: Background Concentrations					
	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data that was used.	below. If non-NMED provided background concentrations were used describe the data that Yes⊠ No□ was used.				
	CO: N/A					
	NO ₂ : Outside Carlsbad (350151005)					
1	PM2.5: Hobbs-Jefferson (350450019)					
	PM10: Hobbs-Jefferson (350250008)					
	SO ₂ : Amarillo (483751025)					
	Other:					
	Comments:					
2	Were background concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠			

16	16-S: Meteorological Data					
	Was NMED provided meteorological data used? If so select the station used.					
1	Carlsbad	Yes⊠	No□			
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discuss how missing data were handled, how stability class was determined, and how the data were processed.					
	N/A					

16-	16-T: Terrain				
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□		
2	What was the source of the terrain data?				
2	National Elevation Dataset (NED) files were obtained from the following USGS website: https://apps.nationalmap.gov/downloader/#/				

16-	16-U: Modeling Files					
	Describe the modeling files:					
1	File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)			
	Dagger Draw SIL 20XX CO 1	СО	SIL			
	H2S_NMAAQS_20XX_H2S_1	H2S	CIA - NMAAQS			

PM10_24H_NAAQSINC_2017- 2021 PM10_1	PM10	CIA - NAAQS
PM10_24H_NAAQSINC_20XX_PM1 0_1	PM10	CIA – CLASS II PSD INCREMENT
Dagger Draw SIL 20XX PM10 A	PM10	SIL
Dagger Draw SIL 20XX PM25 1	PM25	SIL
Dagger Draw SIL 20XX PM25 A	PM25	SIL
Dagger Draw SIL 2017-2021_NO2_1	NO2	SIL
Dagger Draw SIL 20XX NO2 A	NO2	SIL
Dagger Draw SIL_20XX_SO2_1	SO2	SIL
Dagger Draw SIL_20XX_SO2_A	SO2	SIL
Dagger Draw CIA SO2_1H_2017- 2021_SO2_1	SO2	CIA - NAAQS
Dagger Draw CIA_NO2_1H_2017- 2021 NO2 1	NO2	CIA - NAAQS
Dagger Draw CIA NO2 ANN 20XX NO2 A	NO2	CIA – NMAAQS, NAAQS, CLASS II PSD INCREMENT
Dagger Draw CIA_PM25_24H_2017- 2021_PM2.5_1	PM2.5	CIA - NAAQS
Dagger Draw CIA_PM25_24H PSDINC_2017_PM2.5_1	PM2.5	CIA- CLASS II PSD INCREMENT
Dagger Draw CIA_ PM25 ANN 20XX PM25 A	PM2.5	CIA – NAAQS, CLASS II PSD INCREMENT

16	-V: PSD New or Major Modification Applications						
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No⊠				
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No⊠				
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring exemption.	ruction monitorir	ig or				
	N/A						
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.						
-	N/A						
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No⊠				

16-W: Modeling Results									
1	If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so describe below.	Yes□	No⊠						
	N/A								
2	Identify the maximum concentrations from the modeling analysis. Rows may be modified, added and removed from the table below as necessary.								

Pollutant, Time Period, and Standard	Modeled Facility Concentration (µg/m ³)	Modeled Concentrati on with Surrounding Sources (µg/m ³)	Secondary PM (µg/m³)	Background Concentration (μg/m³)	Cumulative Concentration (μg/m³)	Value of Standard (μg/m³)	Percent of Standard	Location		
								UTM E (m)	UTM N (m)	Elevation (ft)
CO (1-HR) Significance	185.68				185.68	2000.00	9.28%	551975	3619466	1062
CO (8-HR) Significance	78.46				78.46	500.00	15.69%	552208	3619915	1061
SO2 (1-HR) NAAQS		13.46			13.46	75.00	59.2%	552137	3619830	1061
SO2 (3-HR) Significance	4.55				4.55	25.00	18.22%	552054	3619997	1062
SO2 (24-HR) Significance	1.75				1.75	5.00	35.04%	552137	3619980	1062
SO2 (ANNUAL) Significance	0.22				0.22	1.00	22.08%	552079	3619997	1062
NO2 (1-HR) NAAQS	116.04			54.50	170.54	188.03	90.70%	552208	3619915	1061
NO2 (ANNUAL) NMAAQS	7.68			5.00	12.68	94.02	13.49%	552208	3619915	1061
NO2 (ANNUAL) NAAQS	7.68			9.30	16.98	100.00	16.98%	552205	3619723	1060
NO2 (ANNUAL) CLASS II PSD INCREMENT	7.68				7.68	25.00	30.73%	552205	3619723	1060
PM10 (24- HR) NAAQS		3.45		37.30	40.75	150.00	27.17%	552208	3619915	1061
PM10 (24- HR) CLASS II PSD INCREMENT		3.77			3.77	30.00	12.57%	552208	3619915	1061

Modeled Pollutant, Facility	Modeled Concentrati on with	Secondary	Background	Cumulative	Value of		Location			
Time Period, and Standard	Concentration (µg/m ³)	Surrounding Sources (μg/m³)	PM (μg/m³)	$ \begin{array}{c c} Concentration \\ (\mu g/m^3) \end{array} \\ \begin{array}{c} Concentration \\ (\mu g/m^3) \end{array} \\ \begin{array}{c} Concentration \\ (\mu g/m^3) \end{array} \\ \begin{array}{c} Concentration \\ Standard \\ (\mu g/m^3) \end{array} \\ \begin{array}{c} Percent of \\ Standard \\ (m) \end{array} \\ \begin{array}{c} Concentration \\ Standard \\ (m) \end{array} \\ \end{array} \\ \begin{array}{c} Concentration \\ Standard \\ (m) \end{array} \\ \end{array} \\ \begin{array}{c} Concentration \\ Standard \\ (m) \end{array} \\ \begin{array}{c} Concentration \\ Standard \\ (m) \end{array} \\ \end{array} \\ \begin{array}{c} Concentration \\ Standard \\ (m) \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Concentration \\ Standard \\ (m) \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Concentration \\ Standard \\ (m) \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Concentration \\ Standard \\ Concentration \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Concentration \\ Standard \\ Concentration \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Concentration \\ Concentration \\ Concentration \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Concentration \\ Concentration \\ Concentration \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Concentration \\ Concentrat$	(ug/m ³) Standard St	(ug/m ³) Standard S	Standard Standard	UTM N (m)	Elevation (ft)	
PM10 (ANNUAL) Significance	0.54				0.54	1.00	53.25%	552079	3619997	1062
PM2.5 (24- HR) NAAQS		3.30	0.0872435	16.50	19.88	35.00	56.81%	552158	3619915	1061
PM2.5 (ANNUAL) NAAQS		1.08	0.0023834	7.10	8.18	12.00	68.16%	552004	3619996	1062
PM2.5 (24- HR) CLASS II PSD INCREMENT		4.27	0.0872435		4.35	9.00	48.39%	552158	3619915	1061
PM2.5 (ANNUAL) CLASS II PSD INCREMENT		0.69	0.0023834		0.69	4.00	17.25%	552004	3619996	1062
H2S (1-HR) NMAAQS	123.39				123.39	139.3	89%	551932	3619794	1061

16-X: Summary/conclusions

1

A statement that modeling requirements have been satisfied and that the permit can be issued.

Frontier Field Services has demonstrated that the proposed changes to NSR Permit 0001-M11 would neither cause nor contribute to an exceedance of the standards for CO, H₂S, NO₂, PM_{2.5}, PM₁₀, and SO₂.

Section 17

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Unit		
No.	Test Description	Test Date
Facility	Annual Inlet Extended Analysis	6/8/2022
	Annual Method 22 visible emission monitoring event to demonstrate	
FL-1	compliance with the no visible emission standard.	12/14/2022
51.0	Annual Method 22 visible emission monitoring event to demonstrate compliance with the no visible emission standard.	
FL-2		12/14/2022
FL-1	Perform an annual flare gas analysis to include H2S, Total Sulfur, VOC, and Heating Value.	2/24/2022
	Perform an annual flare gas analysis to include H2S, Total Sulfur, VOC,	
FL-2	and Heating Value.	3/31/2022
	Initial compliance tests shall be conducted within sixty days after the	
ENG-1	unit achieves the maximum normal production rate.	10/25/2022
	Initial compliance tests shall be conducted within sixty days after the	
ENG-2	unit achieves the maximum normal production rate.	10/25/2022
	Initial compliance tests shall be conducted within sixty days after the	
ENG-3	unit achieves the maximum normal production rate.	10/26/2022
	Initial compliance tests shall be conducted within sixty days after the	
ENG-5	unit achieves the maximum normal production rate.	10/26/2022
	Initial compliance tests shall be conducted within sixty days after the	
ENG-6	unit achieves the maximum normal production rate.	1/27//2023
ENG-1	PEA Testing required quarterly.	3/27/2023
ENG-2	PEA Testing required quarterly.	3/27/2023
ENG-3	PEA Testing required quarterly.	3/27/2023
ENG-5	PEA Testing required quarterly.	3/27/2023
ENG-6	PEA Testing required quarterly.	3/27/2023
ENG-1	PEA Testing required quarterly.	4/27/2023
ENG-2	PEA Testing required quarterly.	4/27/2023
ENG-3	PEA Testing required quarterly.	4/27/2023
ENG-5	PEA Testing required quarterly.	4/27/2023
ENG-6	PEA Testing required quarterly.	4/27/2023

Section 19

Requirements for Title V Program

Who Must Use this Attachment:

* Any major source as defined in 20.2.70 NMAC.

- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See <u>www.env.nm.gov/air-quality/air-quality-title-v-operating-permits-guidance-page/</u>. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.

* Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

Monitoring Protocols

40 CFR 64.2 states that the requirements of this part shall apply to an emissions unit at a major source if the unit satisfies all of the following criteria:

1) The unit is subject to an emission limitation or standard for the applicable regulated air pollutant;

2) The unit uses a control device to achieve compliance with any such emission limitation or standard; and

3) The unit has potential pre-control device emissions of the applicable regulated air pollutant that are equal to or greater than 100 percent of the amount, in tons per year, required for a source to be classified as a major source.

Compliance Assurance Monitoring Plan for the Amine Units

Emissions from the Amine Units, AU-1, AU-2, and AU-3 combined, will be controlled by an acid gas injection system (AGI, Ariel JGA/6) with flaring (FL-1 Acid Gas Flare with Pilot) as an option during upsets and malfunctions. There are several components to the CAM for the amine units. Acid gas compressor and compressor engine parameters will be monitored. In addition, the flare valve position and flare pilot flame will be monitored. The monitoring system will be part of the PLC system. The following approach will be applicable to the amine units, the acid gas injection system, and the flare FL-1.

Justification

Proper operation of the acid gas injection system should result in no emissions. Proper operation is ensured by continuous monitoring of compressor discharge pressure and the wellhead pressure and alarming should the system malfunction (e.g., pressure loss indicating a leak or pressure gain above 1200 psi indicating a blockage in the system). In these events, in addition to alarming, the valve will automatically divert the acid gas to the flare.

CAM Requirement	Acid Injection System (AGI)	Flare (FL-1)
Performance Indicator [64.3(a)(1)]	Discharge pressure (psig) of acid gas compressor will be continuously monitored as will the well head pressure.	Flare valve position.
		Presence of combustion in the flare or flare pilot.
Measurement Approach	The wellhead pressure at the disposal well is monitored by a pressure transducer.	The flare valve position is monitored.
	The discharge pressure of acid gas from the compressor is monitored by a pressure transducer.	Presence of combustion in the flare or flare pilot is monitored continuously by a well-maintained alarm that signals non-combustion of gas.
Indicator Range [64.4(a)(2)]	The pressure differential between the wellhead and the acid gas compressor discharge must be a positive value.	The valve position is either OPEN or SHUT.
	Acceptable wellhead pressure is not to exceed 1200 psig.	An excursion is defined as no flame present or no flame sensed.
	Acceptable discharge pressure is not to exceed 1200 psig.	
Data Representativeness [64.3(b)(1)]	As long as a positive pressure differential is maintained between the acid gas discharge and the wellhead, acid gas will flow between the two. There are valves to close each component so that the pressure differential will either be positive or neutral.	If the valve is not open, gas routed to the flare is not combusted.
		If the pilot flame is not present, gas routed to the flare is not combusted.
Verification of Operational Status [64.3(b)(2)]	The acid gas compressor discharge pressure and the wellhead pressure are checked visually at least once per day during normal working hours.	The valve position shall be visually checked at least once per day during normal working hours. The compressor alarm system automatically opens the flare valve.

CAM Doquinement	Agid Injustion System (ACI)	Flara (FL 1)
CAM Requirement	Acid Injection System (AGI) An audible alarm occurs if the	Flare (FL-1) An audible alarm occurs due to
	system malfunctions (pressure loss or pressure gain above 1200 psig).	non-combustion of the flare pilot and/or flare flame.
	The pressure transducer alarm system is maintained. The operator records the data and results of each maintenance activity and any repairs or replacements made.	The non-combustion alarm system is maintained. The operator records the date and result of each maintenance activity, and any repairs or replacements made.
QA/QC Practices and Criteria [64.3(b)(3)]	The pressure transducer is verified at least once every 12-months in accordance with manufacturer's specifications. Verification procedures include adding a known amount of pressure to the system to verify the accuracy of the reading of the transducer.	During initial startup and testing activities, the automatic valve adjustments are checked. Valve adjustments are checked at least once every 12-months.
	At least annually, or more frequently as recommended by the manufacturer, inspections and regular maintenance are performed on the acid gas compressor.	The flame alarm system is tested once in January and once in July of each year by turning off the thermocouples and recording the time required for the alarm to respond.
Monitoring Frequency [64.3(b)(4)]	The PLC system continuously monitors the discharge pressure and the wellhead pressure.	The PLC system continuously monitors the valve position.
		The PLC system continuously monitors the presence of the flare pilot and/or flare flame.
Data Collection Procedures [64.3(b)(4)(i) and (iii)]	The discharge pressure and the wellhead pressure are electronically recorded at least once every 24 hours. In addition, periodic manual readings may be taken.	The PLC system records any change of the valve position, the valve position (open or shut), and the cumulative time that the valve was in that position when the valve position changed.
	Records are maintained of the pressure transducer verification and of inspections, repairs, and maintenance to the pressure transducers.	Records are maintained of non- combustion of the flare or flare pilot for any reason, including failure to deliver fuel and of inspection, repairs, and/or maintenance to the flare and flare pilot.
Averaging Period [64.3(b)(4)]	For the discharge pressure and the wellhead pressure, there is no averaging period. The values are not to exceed minimum and maximum values in the range specified.	Not applicable. The valve is either open or shut. The flare and pilot flare are either present or not.

Compliance Assurance Monitoring Plan

Dehydration Units Using the Process Flare for VOC and H2S Control (FL-2)

I. Background

A. Emissions Unit

Description: Process Flare Identification: FL-2

B. Applicable Regulation, Emission Limit, and Monitoring Requirements

Regulation: Regulated Pollutant: Emission Limit:	NSR Permit and 40 CFR 64 VOC, SO2 Proposed VOC Limit: 705 pph and 116.6 tpy Proposed SO2 Limit: 62.1 pph and 53.7tpy
Monitoring in Permit:	Continuous flare pilot with pilot alarm Continuous flow rate Annual visible emissions

C. Control Technology: Flare

II. Monitoring Approach

The monitoring approach is provided in the table below.

III. Data Availability

Monitoring of the flare pilot is continuous and any outages will create an alarm signal, which is recorded. Visible emissions will be monitored annually using Method 22. Flow is monitored and recorded continuously

CAM MONITORING PLAN FOR Process Flare FL-2

	Indicator 1	Indicator 2	Indicator 3
I. Performance Indicator [64.3(a)(1)]	Pilot Flame	Presence of Visible Emissions	Totalized flow volume
Measurement Approach	Pilot flame is constantly monitored using a thermocouple or infrared (IR) device as approved by the Division.	The flare will be monitored for visible emissions in accordance with 40 CFR 60.18 once per year that the flare is operational.	Gas flow to the flare will be measured continuously with a flow meter.
II. Indicator Range or Designated Condition [64.3(a)(2)]	The thermocouple and/or IR is linked to a programmable logic controller (PLC) which constantly monitors the pilot status for presence or absence of flame. Absence of flame causes spark igniter to relight pilot. After set time with no pilot flame, the pilot goes to alarm.	Visible emissions are present or not present	Once every 24 hours, SO2 emissions are calculated based on gas flow to the flare. The calculated emissions are compared to the most recent permit limits.
III. Performance Criteria		T	
A. Data Representativeness [64.3(b)(1)]	Presence of a flame indicated on the PLC pane, PLC registration of pilot status, automatic spark igniter ignition.	Efficient combustion is assumed if no visible emissions are observed.	Calculation of emission rates on a daily basis demonstrates compliance with permitted emission limitations.
B. Verification of Operational Status and AQ Practices and Criteria Verifying Data Validity [64.3(b)(2) & 64.3(b)(3)]	Thermocouple and/or IR sensor visually checked quarterly, and the alarm tested twice per year.	Visible emissions will be determined in accordance with Method 22 of Appendix A of 40 CFR 60 Subpart A.	A sample of the flared gas is analyzed annually. The new H2S concentration is used in the daily calculations to ensure data quality.
C. Monitoring Frequency [64.3(b)(4)]	The presence of a pilot flame is monitored continuously. The thermocouple and/or IR sensor will be monitored quarterly and the alarm monitored semiannually.	Monitoring of visible emissions will occur once per year that the flare is operational.	Flow is continuously measured.
D. Data Collection Procedures [64.3(b)(4)]	Presence or absence of flame will be recorded in a log.	Records shall be maintained of all visible emissions observations.	Totalized flow is continuously recorded while the flare is in operation.
E. Averaging Period [64.3(b)(4)]	None	Method 22 shall be conducted over a 30-minute time period or the full duration of the event, whichever is shorter.	24 hours

19.2 - **Compliance Status** (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

A compliance matrix detailing each of the requirements of NSR 0001-M11 has been prepared and associated activities implemented. Please refer to the table below, which provides each actionable requirement, a description of how it is monitored, how recordkeeping is maintained, and associated reporting obligations for each detail.

<u>Unit</u>	<u>Requirement</u>	<u>Monitoring</u>	Recordkeeping	Reporting
Acid Gas Injection System	Monitor the pressure into the AGI well to ensure proper injection of the acid gas stream.	AGI Pressure monitored through Plant DCS.	Plant DCS/Historian	Not applicable
Acid Gas Injection System	Install, maintain, and operate AGI well with redundant compressors (Engines 5&6).	Three compressors, 1 electric and 2 gas driven are installed. Operations are monitored through the Plant DCS.	Plant DCS	Not applicable
Acid Gas Injection System	At all times, except during scheduled maintenance of a single compressor, the redundant compressor shall be available to inject gas into the AGI well.	Three compressors, 1 electric and 2 gas driven are installed. Operations are monitored through the Plant DCS.	Plant DCS	Not applicable
Acid Gas Injection System	At all times either ENG-5 or ENG- 6 shall be available to accept the entire acid gas stream during maintenance or failure of the operating compressor.	Three compressors, 1 electric and 2 gas driven are installed. Operations are monitored through the Plant DCS.	Plant DCS	Not applicable
Acid Gas Injection System	Maintain a positive pressure differential between the Acid Gas Compressor discharge and the well head.	AGI Pressure monitored through Plant DCS. A check valve (unidirectional valve) prevents gas sent to the AGI well from moving backwards to compression.	Plant DCS	Not applicable
Acid Gas Injection System	Inspect and maintain the AGI Well	Scheduled Maintenance Work Orders	Scheduled Maintenance Work Orders	Not applicable
Acid Gas Injection System	The AGI compressors shall be maintained and inspected in accordance with the manufacturer's recommendations.	Scheduled Maintenance Work Orders	Scheduled Maintenance Work Orders	Not applicable
Amine System	Acid Gas Flare is to be used only during an upset of the AGI system.	The Plant DCS records times and conditions when gas is routed to acid gas flare. Cygnet records flare volumes.	Plant DCS/Historian, Cygnet, Enviance	Excess Emission Event Reporting, Air Emissions Inventory
Amine System	Amine unit flash tank shall at all times be routed to the inlet, other	The amine flash is piped to the facility inlet.	Plant DCS/Historian	Not applicable

	process stream in the facility, or the Process Flare FL-2.			
Amine System	Amine unit and associated equipment must achieve a continuous and permanent daily rolling annual average of 100% control efficiency in reducing SO2 Emissions.	The facility is designed to extract and reinject SO2 from the inlet gas stream.	Post-amine system gas analysis, Plant DCS/Historian	Excess Emission Event Reporting, Air Emissions Inventory
Amine System	Inspect amine units and associated control equipment to ensure they are controlling as required and operated in accordance with manufacturers operating procedures.	Operations are monitored continuously through the Plant DCS and operator's daily inspections.	Plant DCS, Scheduled Maintenance Work Orders	Not applicable
Amine System	Total sulfur extended gas analysis to measure mercaptans	An extended gas analysis using ASTM D5504 is run monthly.	Retain Gas Analyses	Not applicable
Compressors	Compressor rod packing changeouts must be completed every 3 years for units subject to OOOOa.	Compressor overhauls are managed through Scheduled Maintenance Work Orders. These are set on a 3-year cycle.	Scheduled Maintenance Work Orders	OOOOa Reporting to EPA
Dehydration System	Glycol Pump Circulation Rate shall not exceed 600 GPH or 10 GPM.	The Plant DCS records equipment operational parameters, including the glycol pump rate.	Plant DCS/Historian	Not applicable
Dehydration System	Still vent emissions shall at all times be routed to the condenser. All non-condensed hydrocarbon vapors shall be routed directly to FL-2 (process flare)	Plant DCS	Plant DCS/Historian	Not applicable
Dehydration System	Flash Tank vents must be routed to FL-2 at all times.	Plant DCS	Plant DCS/Historian	Not applicable
Dehydration System	Inspect the glycol dehy and control equipment to ensure operating as designed.	Scheduled Maintenance Work Orders	Scheduled Maintenance Work Orders	Not applicable
Dehydration System	Maintain in accordance with manufacturers specifications.	Scheduled Maintenance Work Orders	Scheduled Maintenance Work Orders	Not applicable
Dehydration System	Compliance with the VOC limits demonstrated by no exceeded inlet daily flow rate of 90 MMSCFD.	Plant DCS	Scheduled Maintenance Work Orders	Not applicable
Dehydration System MSS	Compliance with the VOC limits demonstrated by not exceeding 3.06 MMscf/hour and 949 MMscf/year sweetened gas (dehy outlet) gas to FL-2	Plant DCS	Plant DCS/Historian	Not applicable
Dehydration System	Record daily natural gas throughput	Cygnet	Cygnet	Not applicable
Dehydration System	Promax Run	Promax Output	Promax Output	Not applicable
Dehydration System	Maintain records to show exempt from HH.	Promax Output	Promax Output	Not applicable
Emissions Limits	Facility is limited to 10 TPY VOC SSM (Vent only).	Plant DCS, Cygnet	Plant DCS, Cygnet, Enviance	Not applicable

Emissions Limits	Facility is limited to 10 TPY VOC Malfunction Limit (Vent only).	Plant DCS, Cygnet	Plant DCS, Cygnet, Enviance	Not applicable
Engines	All lean burn engines must have oxidation catalyst	Pre-Startup Safety review, Engine Testing Reports	Engine Testing Reports	Not applicable
Engines	Maintain Units in accordance with manufacturers recommended maintenance including replacement of oxygen sensors in unit with oxygen based controllers.	Scheduled Maintenance Work Orders	Scheduled Maintenance Work Orders	Not applicable
Engines	Initial compliance tests shall be conducted within sixty days after the units achieve the maximum normal production rate.	Startup date, Engine Testing Reports	Startup date, Engine Testing Reports	Not applicable
Engines	PEA Testing required quarterly. JJJJ can be used to satisfy one quarterly.	Stack testing schedule, Engine Testing Reports	Engine Testing Reports	Not applicable
Facility	Daily Throughput Limit 90 MMSCFD	Cygnet	Cygnet	Not applicable
Facility	Inlet Extended Analysis	Inlet Extended Gas Analysis	Inlet Extended Gas Analysis	Not applicable
Facility	Fuel Sulfur levels must not be greater than 2 gr/100 scf.	The gas sulfur content at the amine treatment outlet (source of fuel gas) is continuously monitored to ensure natural gas will meet delivery specifications.	Plant DCS	Not applicable
Flares	Flares must be operated with a flame present at all time and no visible emissions. Continuously monitor presence of a flare pilot flame using a thermocouple or an equivalent device.	Pilot light presence and flaring are continuously monitored through the Plant DCS.	Plant DCS/Historian	Not applicable
Flares	Method 22 visible emission monitoring event to demonstrate compliance with the no visible emission standard.	A Method 22 Test is conducted annually.	Method 22 Test Report	Not applicable
Flares	Inspect to ensure flare is operating in accordance with manufacturers specification. Document name of person performing inspection, results of all equipment inspected and any maintenance or repairs needed for the flares to be compliant. Maintain a copy of the manufacturer's recommendations.	Operator Routine Duties include a daily visual inspection of the flare equipment. In combination with the Plant DCS continuous monitoring and Scheduled Maintenance Work Orders, this ensures proper operation.	Scheduled Maintenance Work Orders	Not applicable
Flares	Continuously monitor the flare flow rate. Pilot, purge, and assist gas should be monitored using a gas flow meter or determined using manufacturers specifications or engineering estimates.	Flare gas meters continuously record gas volumes.	Cygnet, Plant DCS/Historian	Excess Emission Event Reporting, Air Emissions Inventory
Flares	Perform a flare gas analysis to include H2S, Total Sulfur, VOC, and Heating Value.	Flare Gas Analyses are completed annually.	Gas Analysis	Not applicable
Flares	Flow meters and in flow monitors (spectrometer, H2S analyzers, etc) shall be calibrated in accordance with manufacturers specifications.	Flow meters and instrumentation are maintained per the Scheduled Maintenance Work Orders.	Scheduled Maintenance Work Orders	Not applicable

Flares	H2S analyzers are required on the inlet gas and Acid Gas Flare stream and are required to continuously record.	Plant DCS generates a daily report of H2S concentrations on inlet and the acid gas flare streams.	Plant DCS/Historian	Not applicable
Flares	Record all routine SSM Events.	All SSM events are recorded through Plant DCS, volumes in Cygnet, and emissions in Enviance.	Enviance	Excess Emission Event Reporting, Air Emissions Inventory
Flares	Records of flow meter, totalizer, and in line monitor certifications, calibrations, break downs, and reasons for the breakdowns, and corrective actions shall be maintained.	Calibrations and maintenance items are tracked in the Scheduled Maintenance Work Orders. Issues with metering are tracked through the daily production reports.	Scheduled Maintenance Work Orders	Not applicable
Flares	Determine the maximum flare tip velocity	Volumes are tracked through Cygnet and Enviance. The 60.18 calculation is kept in facility air quality files.	Cygnet, Enviance, Calculation	Not applicable
Flares	Summarize the following in a table: H2S and Total Sulfur Content % VOC Content Gas Heating Value Max hourly gas flow rate that occurred during the month Hourly gas flow rate for any hours that exceeded PPH emission limits Total SCF of gas sent to flare During the first 12 months of monitoring, cumulative total of gas sent to flare Cumulative total of SO2 and H2S sent to flare in Tons After first 12 months, document rolling 12.	An automated report has been developed that pulls these data points from the systems of record into Enviance and generates the compliance report.	Cygnet, Enviance	Excess Emission Event Reporting, Air Emissions Inventory
Fugitives	Implement and maintain a LDAR program per the facility's NSPS applicability.	Facility components as defined in 40 CFR 60.482 are monitored per requirements.	Reports detailing monitoring, leak detection, and repair are generated monthly.	
Heaters	Inspection shall meet those recommended by the manufacturer. At a minimum inspection shall include the following: Check indicators to verify oxygen levels are sufficient for combustion (i.e. blue colored steady flame). Inspection of unit housing for cracks or worn parts.	Facility operations are monitored daily through Operator Routine Duties and Plant DCS. Any issues are documented, and repairs tracked through the Scheduled Maintenance Work Orders.	Scheduled Maintenance Work Orders	Not applicable

The majority of requirements have been met in regard to compliance activities, recordkeeping, and reporting, with the following exceptions:

• Each Ajax DPC 2804LE engine exhausts at a lower temperature than specified in the product literature. As a result, the catalytic controls for these units have been less efficient than expected. Frontier Field Services is submitting this application to authorize the actual emissions rates of these units.

- Despite specific vendor representations that catalytic controls were installed upon startup, Frontier discovered that ENG 1-3 did not have the catalysts that were ordered installed upon startup. These controls were immediately installed upon discovery.
- Redundant acid gas injection compression has been installed at the facility. There are three total acid gas injection compressors: one electric unit, and two gas-driven compressors. However, after installation it was discovered that the Ajax units required various maintenance items and repairs to optimize performance. Parts availability for these specialized units is limited and difficult to acquire. As a result, each of the Ajax units experienced downtime during the completion of construction/bringing the plant online and stabilizing processes/operations. As a result, acid gas injection efficiency was lower than the 100% control specified in the permit, and acid gas flaring was higher than allowed under A 106.
- Flare emissions have exceeded the allowable limits in Section A 106. Upon review of the January 2022 permit application, it was noted that although the Process Flare (FL-2) is the control device for facility SSM (blowdowns, process or equipment issues, etc), no SSM was represented in the permit action. Therefore, this application is being submitted to represent actual facility operations and as-built equipment specifications and authorize the associated emissions.

19.3 - Continued Compliance (20.2.70.300.D.10.c NMAC)

Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement.

Frontier Field Services, LLC will continue to be in compliance with requirements for which it is in compliance at the time of permit application. Frontier Field Services, LLC will comply with other applicable requirements as they come into effect during the permit term.

19.4 - Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)

You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.

Frontier Field Services, LLC proposes annual submission of compliance aligned with the permit approval date.

19.5 - Stratospheric Ozone and Climate Protection

In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners).

- Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozone-depleting substances?
 Yes X No
- 2. Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 lbs?

(If the answer is yes, describe the type of equipment and how many units are at the facility.)

- 3. Do your facility personnel maintain, service, repair, or dispose of any motor vehicle air conditioners (MVACs) or appliances ("appliance" and "MVAC" as defined at 82. 152)? □ Yes X No
- 4. Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through G.)

19.6 - Compliance Plan and Schedule

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.

As illustrated in Section 19.2, Compliance Status, the majority of compliance requirements are being met through equipment installation and maintenance practices, testing, and recordkeeping and reporting. The following items are not in compliance at the time of the application:

- Each Ajax DPC 2804LE engine exhausts at a lower temperature than specified in the product literature. As a result, the catalytic controls for these units have been less efficient than expected. Frontier Field Services is submitting this application to authorize the actual emissions rates of these units.
- Redundant acid gas injection compression has been installed at the facility. There are three total acid gas injection compressors: one electric unit, and two gas-driven compressors. However, after installation it was discovered that the Ajax units required various maintenance items and repairs to optimize performance. Parts availability for these specialized units is limited and difficult to acquire. As a result, each of the Ajax units experienced higher than expected downtime during the completion of construction and bringing the plant online and stabilizing processes and operations. As a result, acid gas injection efficiency was lower than the 100% control specified in the permit, and acid gas flaring was higher than allowed under A 106.
- Flare emissions have exceeded the allowable limits in Section A 106. Upon review of the January 2022 permit application, it was noted that although the Process Flare (FL-2) is the control device for facility SSM (blowdowns, process or equipment issues, etc), no SSM was represented in the permit action. Therefore, this application is being submitted to represent actual facility operations and as-built equipment specifications and authorize the associated emissions.

B. Compliance plan: (20.2.70.300.D.11.B NMAC)

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

- This permit application is being submitted to accurately represent site conditions and operations. Authorization of this permit application will bring the Ajax DPC 2804LE units into compliance with permitted emissions limits.
- Several strategies are employed to reduce or eliminate acid gas flaring from Fl-1.
 - Operational strategies include manually managing compressor operations to ensure that automated shutdowns designed to protect the equipment do not occur. For example, liquids in the compressor knockouts will trigger an automated shutdown if the levels get too high. Operations personnel routinely check the compressors and manually drain the knockout to ensure liquids do not reach shut down levels.
 - Operations monitors performance of the acid gas injection compressor in use. If issues are noted, such as alarms, pressure changes, or changes in other operational parameters indicating a problem with performance, the backup compressor is proactively warmed up and readied for switch over prior to a unit going down.
 - If the plant control system indicates that the amine treatment system is experiencing issues, gas receipts at the inlet of the plant will be restricted in order to reduce inlet volumes and/or high-H2S gas from entering the plant, thereby reducing or eliminating process streams that would need to be routed to the acid gas flare.
 - Difficult to source spare parts have been ordered and will be kept on hand for reasonably foreseeable required maintenance.
 - Reliability issues with the compressors are being addressed through planned engineering and construction updates.
- This permit application is being submitted to accurately represent site conditions and operations. Authorization of this permit application will bring the process flare, FL-2, into compliance with permitted emissions limits.

C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

Frontier Field Services strives to be in compliance continually and therefore has already implemented measures to bring the facility into compliance.

- Anticipated permit issuance in late 2023 will authorize the engine emissions and process flare emissions.
- Operations and maintenance practices have already been implemented and are designed and anticipated to prevent acid gas flaring in normal operations, routine SSM, and/or alternate operating scenarios.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC) A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

Frontier Field Services, LLC proposes semiannual compliance reporting in alignment with the Title V semiannual reporting requirements.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See <u>www.env.nm.gov/air-quality/air-quality-title-v-operating-permits-guidance-page/</u>. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

The Dagger Draw Gas Plant is not an acid rain source.

19.7 - **112(r)** Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

The RMP was last submitted to EPA 11/02/2022.

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.)

NOT APPLICABLE

19.9 - Responsible Official

Provide the Responsible Official as defined in 20.2.70.7.AD NMAC:

Darin B. Kennard Vice President & General Manager

Durango Midstream LLC 10077 Grogans Mill Road – Suite 300 The Woodlands, Texas 77380

Direct: (346) 351-2790 Mobile: (832) 388-8338 Email: DKennard@durangomidstream.com DurangoMidstream.com

Section 20

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

None requested.

Section 22: Certification

Company Name: Frontier Field Services I, Rebua Moore, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience. Signed this $\frac{\partial I}{\partial t}$ day of $\frac{\partial I}{\partial t}$, $\frac{2023}{2023}$, upon my oath or affirmation, before a notary of the State of Texas. Rebuca Moore Brinted Name <u>Aune 21, 2023</u> Date <u>HSE Advisor</u> Title Scribed and sworn before me on this 21 day of June, 2023 My authorization as a notary of the State of Texas expires on the ___ day of June, 2024. 6-21-23 Notary's Signature LAJUANA BERGER Notary Public, State of Texas Comm. Expires 06-03-2024 Notary ID 132505127 E OF T

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.