

ENTERPRISE PRODUCTS PARTNERS L.P. ENTERPRISE PRODUCTS HOLDINGS LLC (General Partner)

December 20, 2023

FedEx Standard Overnight

New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505-1816

Re: NSR Permit No. 0220-M12R1 Significant Revision Enterprise Field Services, LLC – South Carlsbad Compressor Station Eddy County, New Mexico

Sir or Madam:

Enterprise Products Operating, LLC (Enterprise) is submitting this NSR application for a Significant Revision to the current NSR Permit No. 0220-M12R1, issued on October 30, 2023, for the South Carlsbad Compressor Station. The proposed updates to the NSR Permit include the installation of one (1) Caterpillar G3608 (Unit 11) and four (4) Caterpillar G3612 compressor engines (Units 12-15), one slop storage tank (Unit TK-1000), one (1) Caterpillar G3516A4 emergency generator (Unit GEN-1), and various auxiliary units. The facility will also modify all combustion equipment based on a more recent fuel gas analysis.

Enterprise would like to thank you in advance for your review and concurrence with this submission. If you have questions regarding the information presented in this letter and attachments, please do not hesitate to contact me at (713) 381-5766 or via email at <u>jli@eprod.com</u> or Pranav Kulkarni at (713) 381-5830.

Thank you,

Enterprise Field Services, LLC

Jing Li Staff Environmental Engineer

/sed Enclosure

Pranav Kulkarni, Ph.D. Manager, Environmental Permitting

Air Permit Application Compliance History Disclosure Form

Pursuant to Subsection 74-2-7(S) of the New Mexico Air Quality Control Act ("AQCA"), NMSA §§ 74-2-1 to -17, the New Mexico Environment Department ("Department") may deny any permit application or revoke any permit issued pursuant to the AQCA if, within ten years immediately preceding the date of submission of the permit application, the applicant met any one of the criteria outlined below. In order for the Department to deem an air permit application administratively complete, or issue an air permit for those permits without an administrative completeness determination process, the applicant must complete this Compliance History Disclosure Form as specified in Subsection 74-2-7(P). An existing permit holder (permit issued prior to June 18, 2021) shall provide this Compliance History Disclosure Form to the Department upon request.

Permi	ttee/Applicant Company Name	Expected Application Submittal Date								
Enter	prise Field Services, LLC		December 20, 2023							
.Perm	ittee/Company Contact	Phone	Email							
Jing Li	Jing Li (713) 381-5766 jli@eprod.com									
Withi	n the 10 years preceding the expected date	e of submittal of the applicat	ion, has the permittee or applicant:	-						
1	1 Knowingly misrepresented a material fact in an application for a permit?									
2	Refused to disclose information required	by the provisions of the New	Mexico Air Quality Control Act?	🗆 Yes 🗵 No						
3	Been convicted of a felony related to envi	ironmental crime in any court	of any state or the United States?	🗆 Yes 🗵 No						
4	Been convicted of a crime defined by stat price fixing, bribery, or fraud in any court			🗆 Yes 🖾 No						
5a	Constructed or operated any facility for which a permit was sought, including the current facility, without the required air quality permit(s) under 20.2.70 NMAC, 20.2.72 NMAC, 20.2.74 NMAC, 20.2.79 NMAC, or 20.2.84 NMAC?									
5b	If "No" to question 5a, go to question 6. If "Yes" to question 5a, state whether eac air quality permit met at least one of the	following exceptions:		🗆 Yes 🗖 No						
	a. The unpermitted facility was discovered authorized by the Department; or	d after acquisition during a tir	nely environmental audit that was							
	b. The operator of the facility estimated that the facility's emissions would not require an air permit, and the operator applied for an air permit within 30 calendar days of discovering that an air permit was required for the facility.									
6	Had any permit revoked or permanently s or the United States?	suspended for cause under th	e environmental laws of any state	🗆 Yes 🛛 No						
7	For each "yes" answer, please provide an	explanation and documentat	ion.							

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

 This application is submitted as (check all that apply):
 Request for a No Permit Required Determination (no fee)

 Updating an application currently under NMED review.
 Include this page and all pages that are being updated (no fee required).

 Construction Status:
 Not Constructed
 Existing Permitted (or NOI) Facility
 Existing Non-permitted (or NOI) Facility

 Minor Source:
 NOI 20.2.73 NMAC
 20.2.72 NMAC application or revision
 20.2.72.300 NMAC Streamline application

 Title V Source:
 Title V (new)
 Title V renewal
 TV minor mod.
 TV significant mod.
 TV Acid Rain:
 New
 Renewal

 PSD Major Source:
 PSD major source (new)
 Minor Modification to a PSD source
 a PSD major modification

Acknowledgements:

I acknowledge that a pre-application meeting is available to me upon request. 🔲 Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

S \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications).

Check No.: _____ in the amount of \$500

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.

I acknowledge there is an annual fee for permits in addition to the permit review fee: <u>www.env.nm.gov/air-quality/permit-fees-</u> <u>2/.</u>

This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.219.D(1)(a) NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	Al # if known: 218	Updating Permit/NOI #: 0220- M12R1					
1	Facility Name: South Carlsbad Compressor Station	Plant primary SIC Code (4 digits): 1311						
T		Plant NAIC code (6 digits): 211130						
а	Facility Street Address (If no facility street address, provide directions from a prominent landmark):							
a	Facility Street Address (If no facility street address, provide directions from a prominent landmark): From Loving, NM follow US-285 north 2.5 miles to Roberson Road West. Follow Roberson Road West 1.0 mile to the facility.							
2	2 Plant Operator Company Name: Enterprise Products Operating, LLC Phone/Fax: (713) 381-6595 / (713) 381-6811							

а	Plant Operator Address: PO Box 4324, Houston, TX 77210-4324						
b	Plant Operator's New Mexico Corporate ID or Tax ID: 3289188						
3	Plant Owner(s) name(s): Enterprise Field Services, LLC	Phone/Fax: (713) 381-6500 / (713) 381-6811					
а	Plant Owner(s) Mailing Address(s): PO Box 4324, Houston, TX 77210-4324						
4	Bill To (Company): Enterprise Field Services, LLC	Phone/Fax: (713) 381-6595 / (713) 381-6811					
а	Mailing Address: PO Box 4324, Houston, TX 77210-4324	E-mail: environmental@eprod.com					
5	Preparer: Jing Li	Phone/Fax: (713) 381-5766 / (713) 759-3931					
а	Mailing Address: PO Box 4324, Houston, TX 77210-4324	E-mail: jli@eprod.com					
6	Plant Operator Contact: Daryl Arredondo	Phone/Fax: (575) 628-6819					
а	Address: PO Box 4324, Houston, TX 77210-4324	E-mail: ddarredondo@eprod.com					
7	Air Permit Contact: Jing Li	Title: Staff Environmental Engineer					
а	E-mail: jli@eprod.com	Phone/Fax: (713) 381-5766 / (713) 759-3931					
b	Mailing Address: PO Box 4324, Houston, TX 77210-4324						
с	The designated Air permit Contact will receive all official corresponden	ce (i.e. letters, permits) from the Air Quality Bureau.					

IL Facility Status LUU しし

1.a	Has this facility already been constructed? 🛛 Yes 🔲	1.b If yes to question 1.a, is it currently operating in New Mexico?						
2	If yes to question 1.a, was the existing facility subject t Intent (NOI) (20.2.73 NMAC) before submittal of this a Yes No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? Xes I No						
3	Is the facility currently shut down? 🔲 Yes 🛛 No	onth and year of shut down (MM/YY): N/A						
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? 🛛 Yes 🔲 No							
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972?							
6	Does this facility have a Title V operating permit (20.2.) ☑ Yes □ No	70 NMAC)?	If yes, the permit No. is: P-130-R3M1					
7	Has this facility been issued a No Permit Required (NPF	R)?	If yes, the NPR No. is: N/A					
8	Has this facility been issued a Notice of Intent (NOI)?	🗌 Yes 🛛 No	If yes, the NOI No. is: N/A					
9	Does this facility have a construction permit (20.2.72/2 Yes No	20.2.74 NMAC)	? If yes, the permit No. is: 0222-M12R1					
10	Is this facility registered under a General permit (GCP-2	1, GCP-2, etc.)?	? If yes, the register No. is: N/A					

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)									
а	Current	Hourly: 8.33 MMscf	Daily: 200 MMscf	Annually: 73 Bscf						
b	Proposed	Hourly: 18.75 MMscf	Daily: 450 MMscf	Annually: 164 Bscf						
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)									
	trifac is the	racinty s maximum production rate, s	seeny and (reference here and list capacities h	i section 20, il more room is required						
а	Current	Hourly: 8.33 MMscf	Daily: 200 MMscf	Annually: 73 Bscf						

Section 1-D: Facility Location Information

1	Latitude (decimal degrees): 32.313828 N	Longitude -104.1371	(decimal degrees): 32 W		County: Eddy	Elevation (ft): 3,065				
2	UTM Zone: 12 or 13			WGS 8						
а	UTM E (in meters, to nearest 10 meters): 581,225m E UTM N (in meters, to nearest 10 meters): 3,575,549m N									
3	Name and zip code of nearest New Mexic	o town: Lovi	ng, NM 88256							
4	Detailed Driving Instructions from nearest From Loving, NM follow US-285 north 2.5	•			Road West 1.0 m	ile to the facility.				
5	The facility is 2.8 miles northwest of Lovin	g, NM.								
6	Land Status of facility (check one): 🔀 Priv	vate 🔲 Ind	ian/Pueblo 🔲 Government	🗌 BLI	M 🔲 Forest Ser	rvice 🔲 Military				
7	List all municipalities, Indian tribes, and co which the facility is proposed to be constr Municipalities: Carlsbad, Loving, Malaga;	ucted or ope	erated:	2.203.	B.2 NMAC) of the	e property on				
8	20.2.72 NMAC applications only: Will the than 50 km (31 miles) to other states, Bern publications/)? ⊠ Yes □ No (20.2.72.2) States: Texas – 34.7 km; Class 1 Areas: Ca	nalillo Count 06.A.7 NMA	y, or a Class I area (see <u>www.e</u> C) If yes, list all with correspon	nv.nm	.gov/air-quality/	modeling-				
9	Name nearest Class I area: Carlsbad Caver	ns National	Park							
10	Shortest distance (in km) from facility bou	ndary to the	boundary of the nearest Class	larea	(to the nearest 10 m	neters): 26.1 km				
11	Distance (meters) from the perimeter of t lands, including mining overburden remov			-						
12	Iands, including mining overburden removal areas) to nearest residence, school or occupied structure: 582.2 m Method(s) used to delineate the Restricted Area: Fencing, gates, and signage "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the next of a Participation of the provided area.									
13	area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? □ Yes ⊠ No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.									
14	Will this facility operate in conjunction with If yes, what is the name and permit numb			oroper	ty? 🛛 No	Yes				

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating ($\frac{hours}{day}$): 24	(<mark>days</mark>): 7	(weeks year): 52	(<u>hours</u>): 8,760
2	Facility's maximum daily operating schedule (if less	than 24 hours day)? Start: N/A	AM PM	End: N/A AM PM
3	Month and year of anticipated start of construction	n: Upon receipt of permit.		
4	Month and year of anticipated construction comple	etion: N/A		
5	Month and year of anticipated startup of new or m	odified facility: N/A		
6	Will this facility operate at this site for more than o	ne year? 🛛 Yes 🗌 No		

Section 1-F: Other Facility Information

r									
1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? Yes No If yes, specify:								
а	If yes, NOV date or description of issue: N/A		NOV Tracking No: N/A						
b	Is this application in response to any issue listed in 1-F, 1 c If Yes, provide the 1c & 1d info below:	or 1a above? 🗌 Yes	No						
с	Document Title: N/A	Date: N/A	Requirement # (or page # and paragraph #): N/A						
d	Provide the required text to be inserted in this permit: N/	4							
2	Is air quality dispersion modeling or modeling waiver bein	g submitted with this	application? 🛛 Yes 🔀 No						
3	Does this facility require an "Air Toxics" permit under 20.2	2.72.400 NMAC & 20.	2.72.502, Tables A and/or B? 🔲 Yes 🛛 No						
4	Will this facility be a source of federal Hazardous Air Pollu	tants (HAP)? 🔀 Yes	No						
а	If Yes, what type of source? \square Major ($\square \ge 10$ tpy of a OR \square Minor ($\square < 10$ tpy of any		$\square \ge 25$ tpy of any combination of HAPS) $\square < 25$ tpy of any combination of HAPS)						
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? 🗹 Yes	□ No							
	If yes, include the name of company providing commercia	l electric power to th	e facility: Excel Energy						
а	Commercial power is purchased from a commercial utility on site for the sole purpose of the user.	y company, which spo	ecifically does not include power generated						

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1	I have filled out Section 18, "Addendum for Stre	ine Applications." X/A (This is not a Streamline application.)
---	--	--

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Graham Bacon	Phone:(713) 381-6595		
а	R.O. Title: Executive Vice President-EHS&T	R.O. e-mail: <u>enviro</u>	nmental@eprod.com	
b	R. O. Address:			
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC):Bradley Cooley		Phone: (713) 381-6595	
а	A. R.O. Title: Senior Director, Environmental	A. R.O. e-mail: <u>environmental@eprod.com</u>		
b	A. R. O. Address: PO Box 4324, Houston, TX 77210-4324			
3	Company's Corporate or Partnership Relationship to any other Air have operating (20.2.70 NMAC) permits and with whom the applic relationship): Enterprise Field Services, LLC and Enterprise Product	cant for this permit		
4	Name of Parent Company ("Parent Company" means the primary permitted wholly or in part.): 1100 Louisiana St., Houston, TX 7700	_	ation that owns the company to be	
а	Address of Parent Company: N/A			
5	Names of Subsidiary Companies ("Subsidiary Companies" means or owned, wholly or in part, by the company to be permitted.): N/A	rganizations, brancl	nes, divisions or subsidiaries, which are	
6	Telephone numbers & names of the owners' agents and site conta Daryl Arredondo (575) 628-6819 / Jing Li (713) 381-5766 / (713) 7		ant operations:	

Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: Texas (~34.7 km)

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application

Secure electronic transfer. Air Permit Contact Name: Jing Li, Email: jli@eprod.com, Phone number: (713) 381-5766.

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

11-14					Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #	Source			RICE Ignition Type (CI, SI,	
Unit Number ¹	Source Description	Make	Model #	Serial #	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	Classi- fication Code (SCC)	For Each Piece of Equ	Piece of Equipment, Check One		Replacing Unit No.
							9/1/2004	N/A		Existing (unchanged)	To be Removed		
1	Natural Gas Turbine				1700	1000	3/24/2010	1		New/Additional ✓ To Be Modified	Replacement Unit To be Replaced	N/A	N/A
		Solar Centaur	T-4702	OHD10-C-7915	4700 hp	4328 hp	Unknown	N/A	20200201	Existing (unchanged)	To be Removed		
C9101	Compressor					-	< 8/23/2011	N/A		New/Additional ✓ To Be Modified	Replacement Unit To be Replaced	N/A	N/A
							9/1/2004	N/A		Existing (unchanged)	To be Removed		-
2	Natural Gas Turbine						8/31/2013	2		New/Additional	Replacement Unit To be Replaced	N/A	N/A
		Solar Centaur	T-4702	OHE12-C-7057	4700 hp	4328 hp	Unknown	– N/A	20200201	Existing (unchanged)	To be Removed		
C9102	Compressor						< 8/23/2011			New/Additional	Replacement Unit	N/A	N/A
								N/A		✓ To Be Modified Existing (unchanged)	To be Replaced To be Removed		
5	Natural Gas Turbine						12/18/2000	N/A		New/Additional	Replacement Unit	N/A	N/A
		Solar Centaur	T40-4700S	OHL20-C1803	4700 hp	4329 hp	< 8/23/2011	N/A	20200201	✓ To Be Modified	To be Replaced		
C9103	Compressor						N/A	N/A		Existing (unchanged)	To be Removed Replacement Unit	N/A	N/A
05100	compressor						N/A	N/A		✓ To Be Modified	To be Replaced	,	,,,
6		o	6369944	VUIZ04045	2500 1	2500 1	TBD	CAT-6	20200254	Existing (unchanged)	To be Removed	461.0	
6	Compressor Engine	Caterpillar	G3608A4	XH701915	2500 hp	2500 hp	TBD	6	20200254	New/Additional ✓ To Be Modified	Replacement Unit To be Replaced	4SLB	N/A
							TBD	CAT-7		Existing (unchanged)	To be Removed		-
7	Compressor Engine	Caterpillar	G3608A4	XH701920	2500 hp	2500 hp	TBD	7	20200254	New/Additional	Replacement Unit	4SLB	N/A
							TBD	, CAT-8		✓ To Be Modified Existing (unchanged)	To be Replaced To be Removed		
8	Compressor Engine	Caterpillar	G3608A4	XH701923	2500 hp	2500 hp			20200254	New/Additional	Replacement Unit	4SLB	N/A
							TBD	8		✓ To Be Modified	To be Replaced		
9	Compressor Engine	Caterpillar	G3608A4	TBD	2500 hp	2500 hp	TBD	CAT-9	20200254	Existing (unchanged) New/Additional	To be Removed Replacement Unit	4SLB	N/A
-	5						TBD	9		✓ To Be Modified	To be Replaced	-	,
10	Compressor Engine	Cotornillor	G3608A4	TBD	2500 hp	2500 hp	TBD	CAT-10	20200254	Existing (unchanged) New/Additional	To be Removed Replacement Unit	4SLB	N/A
10	Compressor Engine	Caterpillar	G3008A4	IBD	2500 np	2500 np	TBD	10	20200254	To Be Modified	To be Replaced	43LB	N/A
							TBD	CAT-11		Existing (unchanged)	To be Removed		
11	Compressor Engine	Caterpillar	G3608A4	TBD	2500 hp	2500 hp	TBD	11	20200254	✓ New/Additional To Be Modified	Replacement Unit To be Replaced	4SLB	N/A
							TBD	CAT-12		Existing (unchanged)	To be Removed		
12	Compressor Engine	Caterpillar	G3612A4	TBD	4125 hp	4125 hp		-	20200254	✓ New/Additional	Replacement Unit	4SLB	N/A
							TBD	12		To Be Modified	To be Replaced		
13	Compressor Engine	Caterpillar	G3612A4	TBD	4125 hp	4125 hp	TBD	CAT-13	20200254	Existing (unchanged) New/Additional	To be Removed Replacement Unit	4SLB	N/A
	- 0						TBD	13		To Be Modified	To be Replaced		
14	Compressor Engine	Cotornillor	C261244	TBD	4125 hr	4125 hr	TBD	CAT-14	20200254	Existing (unchanged)	To be Removed Replacement Unit	461.0	NI / A
14	Compressor Engine	Caterpillar	G3612A4	IBD	4125 hp	4125 hp	TBD	14	20200254	✓ New/Additional To Be Modified	To be Replaced	4SLB	N/A
							TBD	CAT-15		Existing (unchanged)	To be Removed		
15	Compressor Engine	Caterpillar	G3612A4	TBD	4125 hp	4125 hp	TBD	15	20200254	✓ New/Additional To Be Modified	Replacement Unit To be Replaced	4SLB	N/A
 	Culture Dark of the				200	202	1/1/1999	3a		✓ Existing (unchanged)	To be Removed		
3a	Gylcol Dehydrator Still Vent	Gas Tech	Unknown	Unknown	200 MMscf/day	200 MMscf/day	· · ·		31000302	New/Additional	Replacement Unit	N/A	N/A
	Jun Vent				www.scr/udy	wiiwisci/uay	Unknown	3b		To Be Modified	To be Replaced		

Unit Number ¹	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of Construction/ Reconstruction ²	Controlled by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Ec	uipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
3b	Glycol Dehydrator Reboiler	Gas Tech	Unknown	Unknown	3.0 MMBtu/hr	3.0 MMBtu/hr	1/1/1999 Unknown	3b 3b	31000302	Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced	N/A	N/A
TK-1000	Slop Tank	Unknown	Unknown	N/A	400 bbl	400 bbl	TBD TBD	N/A N/A	40400315	Existing (unchanged) Wew/Additional To Be Modified	To be Removed Replacement Unit To be Replaced	N/A	N/A
T-007	Slop Tank	Unknown	Unknown	N/A	400 bbl	400 bbl	2023 Unknown	N/A N/A	40400315	 ✓ Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced	N/A	N/A
T-008	Stabilized Condensate Tank	Unknown	Unknown	N/A	300 bbl	300 bbl	2013 Unknown	N/A N/A	40400311	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced	N/A	N/A
T-009	Stabilized Condensate Tank	Unknown	Unknown	N/A	300 bbl	300 bbl	< 8/23/2011 < 8/23/2011	N/A N/A	40400311	 ✓ Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced	N/A	N/A
T-011	Stabilized Condensate Tank	Unknown	Unknown	N/A	300 bbl	300 bbl	12/1/2006 Unknown	N/A N/A	40400311	Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced	N/A	N/A
T-012	Stabilized Condensate Tank	Unknown	Unknown	N/A	300 bbl	300 bbl	12/1/2006 Unknown	N/A N/A	40400311	 ✓ Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced	N/A	N/A
ECD	Enclosed Combustor Device	SpiralX	TBD	TBD	6.50 MMscf/yr	6.50 MMscf/yr	TBD TBD	N/A ECD	30600904	Existing (unchanged) Kew/Additional To Be Modified	To be Removed Replacement Unit To be Replaced	N/A	N/A
Flare	Process Flare	Unknown	Unknown	N/A	72 Mscf/hr	72 Mscf/hr	Unknown 12/1/2006	N/A Flare	31000215	Existing (unchanged) Kew/Additional To Be Modified	To be Removed Replacement Unit To be Replaced	N/A	N/A
VENT (SSM)	Vent for Startup, Shutdown and Blowdown Emissions	N/A	N/A	N/A	N/A	N/A	Unknown Unknown	N/A N/A	31000299	Existing (unchanged) Kew/Additional To Be Modified	To be Removed Replacement Unit To be Replaced	N/A	N/A
F-001	Fugitives	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	31088811	Existing (unchanged) Kew/Additional To Be Modified	To be Removed Replacement Unit To be Replaced	N/A	N/A
Flare (SSM)	SSM Flare	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	31000215	Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced	N/A	N/A
LOAD	Truck Loading Emission	N/A	N/A	N/A	69,350 bbl/yr	69,350 bbl/yr	N/A N/A	N/A N/A	31000199	 ✓ Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced	N/A	N/A
MALF	Malfunction Emissions	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	31088811	Existing (unchanged) New/Additional	To be Removed Replacement Unit To be Replaced	N/A	N/A

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-content/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)		For Foch Diago of Fo	uipment, Check Onc
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Piece of Ec	Juipment, Check Onc
T-001	Lube Oil Tank	N/A	N/A	24	20.2.72.202.B(2)(a) NMAC	Unknown	✓ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1-001		N/A	N/A	bbl	IA List Item #5	Unknown	To Be Modified	To be Replaced
T-002	Methanol Tank	N/A	N/A	210	20.2.72.202.B(2)(a) NMAC	Unknown	✓ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1-002		N/A	N/A	bbl	IA List Item #5	Unknown	To Be Modified	To be Replaced
T-003	Triathylana Glycal Tank	N/A	N/A	210	20.2.72.202.B(2)(a) NMAC	Unknown	 Existing (unchanged) New/Additional 	To be Removed
1-005	Triethylene Glycol Tank	N/A	N/A	bbl	IA List Item #5	Unknown	To Be Modified	Replacement Unit To be Replaced
T-004	Used Oil Tank	N/A	N/A	210	20.2.72.202.B(2)(a) NMAC	Unknown	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
1-004	Used On Talik	N/A	N/A	bbl	IA List Item #5	Unknown	To Be Modified	To be Replaced
T-005	Used Oil Tank	N/A	N/A	210	20.2.72.202.B(2)(a) NMAC	Unknown	✓ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 005	Osed On Tank	19/5	N/A	bbl	IA List Item #5	Unknown	To Be Modified	To be Replaced
T-006	Slop Tank	N/A	N/A	TBD	20.2.72.202.B(5) NMAC	N/A	✓ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1-000	SIOP TAILS	N/A	N/A	TBD	IA List Item #1.a.	N/A	To Be Modified	To be Replaced
LOAD SLOP	Slop Loading	N/A	N/A	TBD	20.2.72.202.B(5) NMAC	N/A	Existing (unchanged)	To be Removed Replacement Unit
LOAD_SLOP	Stop Loading	N/A	N/A	TBD	IA List Item #5	N/A	To Be Modified	To be Replaced
Haul	Haul Road Emissions	N/A	N/A	TBD	20.2.72.202.B(5) NMAC	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
Haui		N/A	N/A	TBD	IA List Item #5	N/A	To Be Modified	To be Replaced
Unload	Chemical Unloading	N/A	N/A	TBD	20.2.72.202.B(5) NMAC	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
Unioau	chemical officauling	N/A	N/A	TBD	IA List Item #1.a.	N/A	To Be Modified	To be Replaced
GC-1	Gas Chromatograph	Daniel	700	350	20.2.72.202.B(5) NMAC	Unknown	✓ Existing (unchanged) New/Additional	To be Removed Replacement Unit
60-1	Gas chroniatograph	Daniel	Unknown	cc/min	IA List Item #1.a.	Unknown	To Be Modified	To be Replaced
GC-2	Gas Chromatograph	ABB	NGC 8206	820	20.2.72.202.B(5) NMAC	Unknown	✓ Existing (unchanged) New/Additional	To be Removed Replacement Unit
00-2		ADD	Unknown	cc/min	IA List Item #1.a.	Unknown	To Be Modified	To be Replaced
Pigging	Pig Receiver and Launcher	N/A	N/A	280	20.2.72.202.B(5) NMAC	TBD	Existing (unchanged) New/Additional	To be Removed Replacement Unit
LIRRIIR	Emissions	IN/A	N/A	scf/event	Insignificant Activity #1a	TBD	To Be Modified	To be Replaced
GEN 1	Emorgonou Conorator	Catorpillar G2E1CAA	N/A	1462	20.2.72.202.B(3) NMAC	TBD	Existing (unchanged)	To be Removed
GEN-1	Emergency Generator	Caterpillar G3516A4	N/A	hp	Insignificant Activity #1a	TBD	✓ New/Additional To Be Modified	Replacement Unit To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
Flare	Condensate Stabilizer Flare	Unknown	VOCs & HAPs	Condensate Stabilizer	98%	Engineering Estimate
3b	Glycol Dehydrator Reboiler	Unknown	VOCs & HAPs	За	98%	Engineering Estimate
5	SoloNOx	TBD	NO _X	5	25 ppm	Manufacturers Spec.
CAT-6 through CAT-11	Catalyst	TBD	CO, VOC, HCHO	6-11	76% CO 0% VOC 85.625% HCHO	Manufacturers Spec.
CAT-12 through CAT- 15	Catalyst	TBD	CO, VOC, HCHO	12-15	79% CO 3% VOC 82% HCHO	Manufacturers Spec.
ECD	Glycol Still Vent and Flash Combustor	TBD	VOCs & HAPS	За	98%	Manufacturers Spec.
¹ List each control dev	vice on a separate line. For each control device, list all en	hission units co	ntrolled by the control device			

Table 2-D: Maximum Emissions (under normal operating conditions)

This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

	N	Ox	C	D	V	C	SC	Эх	PI	Иı	PIV	10 ¹	PM	2.5 ¹	н	2S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.55	2.40	0.55	2.40	0.55	2.40	2.52E-04	1.10E-03	-	-
2	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.55	2.40	0.55	2.40	0.55	2.40	2.52E-04	1.10E-03	-	-
5	4.43	19.40	5.89	25.78	1.40	6.15	0.56	2.43	0.27	1.16	0.27	1.16	0.27	1.16	2.78E-04	1.22E-03	-	-
6	1.65	7.24	13.78	60.35	1.49	6.52	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04	-	-
7	1.65	7.24	13.78	60.35	1.49	6.52	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04	-	-
8	1.65	7.24	13.78	60.35	1.49	6.52	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04	-	-
9	1.65	7.24	13.78	60.35	1.49	6.52	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04	-	-
10	1.65	7.24	13.78	60.35	1.49	6.52	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04	-	-
11	1.65	7.24	13.78	60.35	1.49	6.52	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04	-	-
12	2.71	11.88	26.24	114.95	6.17	27.03	0.38	1.67	0.28	1.21	0.28	1.21	0.28	0.28	1.91E-04	8.35E-04	-	-
13	2.71	11.88	26.24	114.95	6.17	27.03	0.38	1.67	0.28	1.21	0.28	1.21	0.28	0.28	1.91E-04	8.35E-04	-	-
14	2.71	11.88	26.24	114.95	6.17	27.03	0.38	1.67	0.28	1.21	0.28	1.21	0.28	0.28	1.91E-04	8.35E-04	-	-
15	2.71	11.88	26.24	114.95	6.17	27.03	0.38	1.67	0.28	1.21	0.28	1.21	0.28	0.28	1.91E-04	8.35E-04	-	-
3a	-	-	-	-	73.65	322.57	-	-	-	-	-	-	-	-	0.041	0.18	-	-
3b	0.29	1.29	0.25	1.08	0.016	0.071	0.041	0.18	0.022	0.098	0.022	0.098	0.022	0.098	1.04E-03	4.54E-03	-	-
TK-1000	-	-	-	-	*	0.67	-	-	-	-	-	-	-	-	-	-		
T-007	-	-	-	-	*	0.67	-	-	-	-	-	-	-	-	-	-	-	-
T-008																		
T-009	_	_	_	_	*	18.85	_	_	_	_	-	_	_	_	_	_	_	_
T-011						10.05												
T-012																		
F-001	-	-	-	-	*	58.61	-	-	-	-	-	-	-	-	-	-	-	-
LOAD	-	-	-	-	*	9.82	-	-	-	-	-	-	-	-	-	-	-	-
ECD	0.010	0.044	8.52E-03	0.037	-	-	6.59E-05	2.89E-04	-	-	-	-	-	-	3.50E-05	1.53E-04	-	-
Flare (Process)	15.78	2.81	42.32	15.26	61.88	22.28	0.11	0.46	-	-	-	-	-	-	0.056	0.020	-	-
MALF	38.24	6.00	102.53	10.00	123.52	10.00	0.26	10.00	-	-	-	-	-	-	0.058	2.00		
Totals	133.53	302.17	353.44	896.56	295.61	603.66	4.92	30.37	3.51	15.37	3.51	15.37	3.51	11.65	0.16	2.21	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

Unit No.	N	Эx	C	0	VC	C	sc)x	PN	Л ¹	PM	10 ¹	PM	2.5 ¹	н	₂ S	Le	ead
Unit NO.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.55	2.40	0.55	2.40	0.55	2.40	2.52E-04	1.10E-03	-	-
2	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.55	2.40	0.55	2.40	0.55	2.40	2.52E-04	1.10E-03	-	-
5	4.43	19.40	5.89	25.78	1.40	6.15	0.56	2.43	0.27	1.16	0.27	1.16	0.27	1.16	2.78E-04	1.22E-03	-	-
6	1.65	7.24	3.31	14.48	3.86	16.90	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04	-	-
7	1.65	7.24	3.31	14.48	3.86	16.90	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04	-	-
8	1.65	7.24	3.31	14.48	3.86	16.90	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04	-	-
9	1.65	7.24	3.31	14.48	3.86	16.90	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04	-	-
10	1.65	7.24	3.31	14.48	3.86	16.90	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04	-	-
11	1.65	7.24	3.31	14.48	3.86	16.90	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04	-	-
12	2.73	11.95	5.46	23.90	6.37	27.88	0.38	1.67	0.28	1.21	0.28	1.21	0.28	1.21	1.91E-04	8.35E-04	-	-
13	2.73	11.95	5.46	23.90	6.37	27.88	0.38	1.67	0.28	1.21	0.28	1.21	0.28	1.21	1.91E-04	8.35E-04	-	-
14	2.73	11.95	5.46	23.90	6.37	27.88	0.38	1.67	0.28	1.21	0.28	1.21	0.28	1.21	1.91E-04	8.35E-04	-	-
15	2.73	11.95	5.46	23.90	6.37	27.88	0.38	1.67	0.28	1.21	0.28	1.21	0.28	1.21	1.91E-04	8.35E-04	-	-
3a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3b	0.29	1.29	0.25	1.08	0.016	0.071	0.041	0.18	0.022	0.098	0.022	0.098	0.022	0.098	1.04E-03	4.54E-03	-	-
TK-1000	-	-	-	-	*	0.67	-	-	-	-	-	-	-	-	-	-	-	-
T-007	-	-	-	-	*	0.67	-	-	-	-	-	-	-	-	-	-	-	-
T-008																		
T-009	_		_	_	*	18.85	_		_	_	_		_	_	_	_	_	
T-011	-	-	-	-		10.05	-	_	-	_	-		_	_	_	_	_	
T-012																		
F-001	-	-	-	-	*	58.61	-	-	-	-	-	-	-	-	-	-	-	-
LOAD	-	-	-	-	*	9.82	-	-	-	-	-	-	-	-	-	-	-	-
ECD	0.15	0.65	0.12	0.54	0.86	3.79	0.067	0.29	0.01	0.046	0.01	0.046	0.01	0.046	7.61E-04	3.33E-03	-	-
Flare (Process)	15.78	2.81	42.32	15.26	61.88	22.28	0.11	0.46	-	-	-	-	-	-	0.056	0.020	-	-
MALF	38.24	6.00	102.53	10.00	123.52	10.00	0.26	10.00	-	-	-	-	-	-	0.058	2.00		
Totals	133.73	303.04	207.57	257.66	237.83	350.57	4.98	30.67	3.52	15.42	3.52	15.42	3.52	15.42	0.12	2.04	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5.

Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

"*" Denotes an hourly emission rate is not appropriate

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/agb/permit/agb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

(https://www									shall be ex	pressed to	at least 2	decimal po	oints (e.g. i	<u>, 1.41, 1.41, 2</u>	or 1.41E-4).		
Unit No.	N	Оx	C	0	V	C	SC	Эx		۷ ²		110 ²		2.5 ²		₂ S	Le	ead
5	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Flare (SSM)	22.46	4.59	60.21	12.30	61.64	8.06	0.16	0.047	-	-	-	-	-	-	1.70E-03	5.11E-04		
Vent (SSM)	-	-	-	-	*	29.43	-	-	-	-	-	-	-	-	*	2.13E-03		
Totals	22.46	4.59	60.21	12.30	61.64	37.50	0.16	0.047	-	-	-	-	-	-	1.70E-03	2.64E-03		

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

³ Flare Malfunction pph emission rates reflect worst case emissions modeled for this unit. Flare Malfunction pph rates are maximums allowed for this unit and not additive with Flare SSM pph rates or Flare Process emission rates in Table 106.A.

"*" Denotes an hourly emission rate is not appropriate

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ох	c	0	V	ос	S	Ͻх	Р	м	PN	110	PM	12.5	\square H ₂ S or	Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
		-								-							
																	-
	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s) from	Orientation (H- Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
1	1	V	No	25.0	907	1542	-	N/A	177.00	3.30
2	2	V	No	25.0	907	1542	-	N/A	177.00	3.30
5	5	V	No	25.0	907	1542	-	N/A	177.00	3.30
6	6	V	No	28.5	833	268	-	N/A	85.30	2.00
7	7	V	No	28.5	833	268	-	N/A	85.30	2.00
8	8	V	No	28.5	833	268	-	N/A	85.30	2.00
9	9	V	No	28.5	833	268	-	N/A	85.30	2.00
10	10	V	No	28.5	833	268	-	N/A	85.30	2.00
11	11	V	No	28.5	833	268	-	N/A	85.30	2.00
12	12	V	No	47.0	766	428	-	N/A	136.28	2.00
13	13	V	No	47.0	766	428	-	N/A	136.28	2.00
14	14	V	No	47.0	766	428	-	N/A	136.28	2.00
15	15	V	No	47.0	766	428	-	N/A	136.28	2.00
Flare	Flare	V	No	65.0	1832	421	-	N/A	65.60	2.90
3b	3b	V	No	35.0	800	23.98	-	N/A	17.26	1.33
ECD	ECD	V	No	12.0	650	10.60	-	N/A	0.67	4.50

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 top. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Formal	dehyde r 🗌 TAP	Acetal	dehyde or 🗌 TAP	Ben ✓ HAP o	^{zene} r 🗌 TAP	Tolu HAP o	uene r 🗌 TAP	Xyle ☑ HAP o		He: ✓ HAP c	xane Dr 🗌 TAP	Name	Pollutant e Here or
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	1	0.035	0.15	0.026	0.11	1.46E-03	6.39E-03	4.38E-04	1.92E-03	4.74E-03	0.021	2.33E-03	0.010	-	-		
2	2	0.035	0.15	0.026	0.11	1.46E-03	6.39E-03	4.38E-04	1.92E-03	4.74E-03	0.021	2.33E-03	0.010	-	-		
5	5	0.038	0.17	0.029	0.13	1.61E-03	7.04E-03	4.82E-04	2.11E-03	5.23E-03	0.023	2.57E-03	0.011	-	-		
6	6	0.29	1.26	0.13	0.56	0.14	0.63	7.53E-03	0.033	6.98E-03	0.031	3.15E-03	0.014	0.019	0.083		
7	7	0.29	1.26	0.13	0.56	0.14	0.63	7.53E-03	0.033	6.98E-03	0.031	3.15E-03	0.014	0.019	0.083		
8	8	0.29	1.26	0.13	0.56	0.14	0.63	7.53E-03	0.033	6.98E-03	0.031	3.15E-03	0.014	0.019	0.083		
9	9	0.29	1.26	0.13	0.56	0.14	0.63	7.53E-03	0.033	6.98E-03	0.031	3.15E-03	0.014	0.019	0.083		
10	10	0.29	1.26	0.13	0.56	0.14	0.63	7.53E-03	0.033	6.98E-03	0.031	3.15E-03	0.014	0.019	0.083		
11	11	0.29	1.26	0.13	0.56	0.14	0.63	7.53E-03	0.033	6.98E-03	0.031	3.15E-03	0.014	0.019	0.083		
12	12	0.47	2.05	0.209	0.92	0.23	1.01	0.012	0.053	0.011	0.048	5.08E-03	0.022	0.031	0.13		
13	13	0.47	2.05	0.209	0.92	0.23	1.01	0.012	0.053	0.011	0.048	5.08E-03	0.022	0.031	0.13		
14	14	0.47	2.05	0.209	0.92	0.23	1.01	0.012	0.053	0.011	0.048	5.08E-03	0.022	0.031	0.13		
15	15	0.47	2.05	0.209	0.92	0.23	1.01	0.012	0.053	0.011	0.048	5.08E-03	0.022	0.031	0.13		
3a	3a	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
3b	3b	0.022	0.095	1.26E-03	5.50E-03	1.10E-03	4.80E-03	1.12E-03	4.90E-03	1.53E-03	6.70E-03	1.99E-03	8.70E-03	2.10E-03	9.20E-03		
TK-1000	ТК-1000	*	0.097	-	-	-	-	*	0.058	*	0.017	*	1.95E-03	*	7.66E-04		
T-007	T-007	*	0.097	-	-	-	-	*	0.058	*	0.017	*	1.95E-03	*	7.66E-04		
T-008	T-008	*	0.79	-	-	-	-	*	0.086	*	0.031	*	2.72E-03	*	0.67		
T-009	T-009	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
T-011	T-011	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
T-012	T-012	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
F-001	F-001	*	5.23	-	-	-	-	-	-	-	-	-	-	-	-		
LOAD	LOAD	*	0.45	-	-	-	-	*	0.043	*	7.00E-04	*	1.20E-03	*	0.39		
ECD	ECD	0.16	0.70	-	-	-	-	0.084	0.37	0.052	0.23	0.052	0.23	0.018	0.079		
Flare (Process)	Flare (Process)	0.79	0.28	-	-	-	-	0.075	0.027	0.087	0.031	0.058	0.021	0.56	0.20		
Flare (SSM)	Flare (SSM)	0.38	0.11	-	-	-	-	-	-	-	-	-	-	0.38	0.11		
VENT (SSM)	VENT (SSM)	*	0.47	-	-	-	-	*	0.078	*	0.023	*	-	*	0.35		
MALF	MALF	-	0.16	-	-	-	-	-	0.026	-	7.615E-03	-	-	-	0.12		
Total	s:	5.06	24.72	1.68	7.35	1.79	7.83	0.26	1.17	0.24	0.80	0.16	0.47	1.20	2.97		

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial, pipeline quality natural gas, residue gas,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
1	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	35.27 Mscf/hr	308.97 MMscf/yr	5%	Negligible
2	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	35.27 Mscf/hr	308.97 MMscf/yr	5%	Negligible
3b	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	2.90 Mscf/hr	25.42 MMscf/yr	5%	Negligible
5	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	38.88 Mscf/hr	340.57 MMscf/yr	5%	Negligible
6	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	16.56 Mscf/hr	25.42 MMscf/yr	5%	Negligible
7	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	16.56 Mscf/hr	25.42 MMscf/yr	5%	Negligible
8	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	16.56 Mscf/hr	25.42 MMscf/yr	5%	Negligible
9	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	16.56 Mscf/hr	25.42 MMscf/yr	5%	Negligible
10	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	16.56 Mscf/hr	25.42 MMscf/yr	5%	Negligible
11	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	16.56 Mscf/hr	25.42 MMscf/yr	5%	Negligible
12	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	26.69 Mscf/hr	25.42 MMscf/yr	5%	Negligible
13	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	26.69 Mscf/hr	16.40 MMscf/yr	5%	Negligible
14	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	26.69 Mscf/hr	16.40 MMscf/yr	5%	Negligible
15	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	26.69 Mscf/hr	16.40 MMscf/yr	5%	Negligible
Flare (Process)	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	0.10 Mscf/hr	0.88 MMscf/yr	5%	Negligible
ECD	Natural Gas	Pipeline Quality Natural Gas	1034 Btu/scf	0.10 Mscf/hr	0.88 MMscf/yr	5%	Negligible

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Stora	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (Ib/gal)	Molecular Weight (Ib/Ib*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
TK-1000	40400315	Produced Water	Water and Mixed Hydrocarbons	62.17	38.15	79.21	12.88	79.21	12.88
T-007	40400315	Produced Water	Water and Mixed Hydrocarbons	62.17	38.15	79.21	12.88	79.21	12.88
T-008	40400311	Stabilized Condensate	Mixed Hydrocarbons	Unknown	65	74.10	7.50	87.10	9.40
T-009	40400311	Stabilized Condensate	Mixed Hydrocarbons	Unknown	65	74.10	7.50	87.10	9.40
T-011	40400311	Stabilized Condensate	Mixed Hydrocarbons	Unknown	65	74.10	7.50	87.10	9.40
T-012	40400311	Stabilized Condensate	Mixed Hydrocarbons	Unknown	65	74.10	7.50	87.10	9.40

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Capa	acity	Diameter (M)	Vapor Space (M)		l lor able VI-C)	Paint Condition (from Table VI-	Annual Throughput	Turn- overs (per year)
			LR below)	LK DEIOW)	(bbl)	(M ³)			Roof	Shell	C)	(gal/yr)	
TK-1000	TBD	Produced Water	N/A	FX	400	64	3.66	6.10	MG	MG	Average	3,459,993	205.95
T-007	2023	Produced Water	N/A	FX	400	64	3.66	6.10	MG	MG	Average	3,459,993	205.95
T-008	2013	Stabilized Condensate	N/A	FX	300	48	3.70	4.60	MG	MG	Good	2,912,700	231.17
T-009	<8/23/2011	Stabilized Condensate	N/A	FX	300	48	3.70	4.60	MG	MG	Good	2,912,700	231.17
T-011	<8/23/2011	Stabilized Condensate	N/A	FX	300	48	3.70	4.60	MG	MG	Good	2,912,700	231.17
T-012	<8/23/2011	Stabilized Condensate	N/A	FX	300	48	3.70	4.60	MG	MG	Good	2,912,700	231.17

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, We	elded Tank Seal Type	Seal Type, Rive	ted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P : Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: 1.00 bbl = 0.159 M ³	= 42.0 gal				BL: Black	
					OT: Other (specify)	

	Material Processed Material Produced													
	Water				Iviaterial Flouuceu		1							
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)							
Field Natural Gas	Metehane, low concentration VOC's	Gas	450 MMscf/day	Dry Gas	Methane, low concentration VOCs	G	450 MMscf/day							
				Produced Water	Water with trace hydrocarbons	L	451 bbl/day							
				Stabilized Condensate	Heavy hydrocarbons	L	190 bbl/day							

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
			N/A - No CEM e	quipment at this facili	ty.				

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
		N/A	- No PEM equipment	at this facility.				

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box.

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

$ \begin{array}{c} 1 \\ \hline 2 \\ 5 \\ \hline 6 \\ \hline \end{array} $	GWPs ¹ ass GHG CO ₂ e ass GHG CO ₂ e ass GHG CO ₂ e ass GHG	1 18,685.34 18,685.34 18,685.34 18,685.34	298 0.035 10.49	25 0.35	22,800	footnote 3			1		1	ton/yr ⁴	ton/yr⁵
1 C 2 mas 5 C 6 mas	CO ₂ e asss GHG CO ₂ e asss GHG CO ₂ e	18,685.34 18,685.34 18,685.34	10.49										
$ \begin{array}{c} 2 \\ 2 \\ 5 \\ 5 \\ 6 \\ \hline 6 \\ \hline \\ \hline $	ass GHG CO ₂ e ass GHG CO ₂ e	18,685.34 18,685.34			-	-						18,685.73	
2 C 5 mas 6 mas	CO ₂ e ass GHG CO ₂ e	18,685.34	0.005	8.80	-	-							18,704.64
5 C	ass GHG CO ₂ e		0.035	0.35	-	-						18,685.73	
5 C	CO ₂ e	00 F0C 0F	10.49	8.80	-	-							18,704.64
C 6 mas		20,596.87	0.039	0.39	-	-						20,597.29	
6	ass GHG	20,596.87	11.57	9.70	-	-							20,618.14
° c		8,771.60	0.017	0.17	-	-						8,771.78	
	CO ₂ e	8,771.60	4.93	4.13	-	-							8,780.66
7	ass GHG	8,771.60	0.017	0.17	-	-						8,771.78	
, c	CO ₂ e	8,771.60	4.93	4.13	-	-							8,780.66
8	ass GHG	8,771.60	0.017	0.17	-	-	 			L		8,771.78	
C	CO ₂ e	8,771.60	4.93	4.13	-	-							8,780.66
a	ass GHG	8,771.60	0.017	0.17	-	-	 					8,771.78	
C	CO ₂ e	8,771.60	4.93	4.13	-	-							8,780.66
10	ass GHG	8,771.60	0.017	0.17	-	-				<u> </u>		8,771.78	
C	CO ₂ e	8,771.60	4.93	4.13	-	-							8,780.66
	ass GHG	8,771.60	0.017	0.17	-	-	 					8,771.78	
C	CO2e	8,771.60	4.93	4.13	-	-							8,780.66
1 12	ass GHG	14,141.32	0.027	0.27						 		14,141.62	
C	CO2e	14,141.32	7.94	6.66									14,155.93
13	ass GHG	14,141.32	0.027	0.27								14,141.62	
C	CO ₂ e	14,141.32	7.94	6.66									14,155.93
14	ass GHG	14,141.32	0.027	0.27						 		14,141.62	
	CO ₂ e	14,141.32	7.94	6.66									14,155.93
15	ass GHG	14,141.32	0.027	0.27							<u> </u>	14,141.62	
	CO ₂ e	14,141.32	7.94	6.66									14,155.93
	ass GHG CO ₂ e	-	-	-	-	-				<u> </u>	<u>├───</u>	-	-
	ass GHG	1,537.07	- 2.90E-03	0.029	-	-						1,537.10	-
3h	CO ₂ e	1,537.07	0.86	0.029	-	-						1,557.10	1,538.65
mas	ass GHG	0.61	-	1.03	-	-						1.64	1,550.05
TK-1000	CO ₂ e	0.61	-	25.75	-	-		1				1.04	26.36
mas	ass GHG	0.61	_	1.03	-	-						1.64	20.00
T-007	CO ₂ e	0.61	-	25.75	-	-						1.01	26.36

		CO₂ ton/yr	N₂O ton/yr	CH₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
T-008												
T-009	mass GHG	9.04E-11	-	8.19E-13	-	-					9.13E-11	-
T-011	CO₂e	9.04E-11	-	2.05E-11	-	-					_	1.11E-10
T-012				2.05E-11	-	-					-	1.112-10
F-001	mass GHG	-	-	-	-	-					-	
1-001	CO ₂ e	-	-	-	-	-						-
LOAD	mass GHG	-	-	-	-	-					-	
LOAD	CO ₂ e	-	-	-	-	-						-
ECD	mass GHG	52.98	9.98E-05	1.05	-	-					54.03	
	CO ₂ e	52.98	0.030	26.21	-	-						79.22
Flare	mass GHG	5,146.41	0.011	8.71	-	-					5,155.13	
(process)	CO ₂ e	5,146.41	2.74	217.66	-	-						5,366.81
Flare	mass GHG	10,216.49	0.012	6.83	-	-					10,223.33	
(SSM)	CO ₂ e	10,216.49	3.60	170.85	-	-						10,390.94
Vent	mass GHG	0.59	-	77.78	-	-					78.37	
(SSM)	CO ₂ e	0.59	-	1,944.47	-	-						1,945.06
MALF	mass GHG	-	-	-	-	-					-	
	CO ₂ e	-	-	-	-	-						-
Total	mass GHG	184,064.22	0.34	98.56	-	-					184,163.12	
. Star	CO ₂ e	184,064.22	101.09	2,463.97	-	-						186,629.27

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a mass basis is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The **Application Summary** shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **Process Summary** shall include a brief description of the facility and its processes.

<u>Startup</u>, <u>Shutdown</u>, <u>and Maintenance</u> (<u>SSM</u>) routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Enterprise Field Services, LLC (Enterprise) is submitting this application and accompanying material pursuant to 20.2.72.219.D(1)(a) NMAC to apply for a significant revision to the existing NSR minor source permit for the South Carlsbad Compressor Station (South Carlsbad). The facility is located approximately 2.8 miles northwest of Loving, NM in Eddy county and is currently operating under NSR Permit No. 0220-M12R1.

The purpose of this significant revision is to increase the facility wide gas throughput from 300 MMscfd to 450 MMscfd. In addition, Enterprise will also add one (1) Caterpillar G3608 compressor engine (Unit 11), four (4) Caterpillar G3612 compressor engines (Units 12 through 15), and one (1) slop oil storage tank (Unit TK-1000). Enterprise will also install one (1) Caterpillar G3516A4 emergency generator (Unit GEN-1) for backup power only and will operate less than 500 hr/yr. As a result, GEN-1 will be exempt under 20.2.72.202.B.(3) NMAC. The facility fuel gas will also be updated to a more recent analysis which will affect all combustion equipment. Compressor blowdowns from the existing engines as well as the new engines will be directed to the flare for combustion (Unit Flare (SSM)). These additions will also modify the facility wide fugitive emissions. The addition of these units will make the facility major for both Title V and PSD.

The facility is a natural gas compressor station. Gas enters the facility through a separator and is compressed by three gas turbine-driven compressors (Units 1, 2, & 5) and ten 4-stroke lean burn compressor engines (Units 6 - 15). The water-rich gas is routed through a dehydrator, Unit 3a, where water is removed. The water from the dehydrator regenerator, which contains some hydrocarbons, is routed through a condenser to recover salable hydrocarbons, which are routed to unit T-006. The non-condensable gas from the condenser is routed to a packaged burner system for use as burner fuel in the dehydrator reboiler. During periods when the reboiler is not operating or not calling for fuel, the non-condensable gas stream is routed to the enclosed combustion device (Unit ECD) and combusted with a 98% DRE. The gas stream from the flash tank is send to the fuels system and is not a source of emissions. After inlet compression, gas is sent directly to a chiller and cold separator, where liquids (primarily water) condense and are removed from the stream. The dry gas stream then goes to a pipeline for transport.

Liquids from the inlet separator are routed to a 3-phase separator, where water, hydrocarbon liquids, and gas are separated. The gas stream from the 3-phase separator is used as turbine fuel (along with makeup fuel if needed from the discharge residue gas stream and/or the gas stream from the condensate stabilizer). The water goes to tanks for storage. The hydrocarbon liquids from the 3-phase separator and from the cold separator go to the condensate stabilizer where the water and hydrocarbons are further separated. Liquid hydrocarbons and water are stored in separate tanks, and hydrocarbon gases are added to the turbine fuel stream.

In the event of an emergency, the gas streams from the 3-phase separator and from the condensate stabilizer may be routed to the flare. During non-routine conditions such as when gas must be released from portions of the facility for maintenance

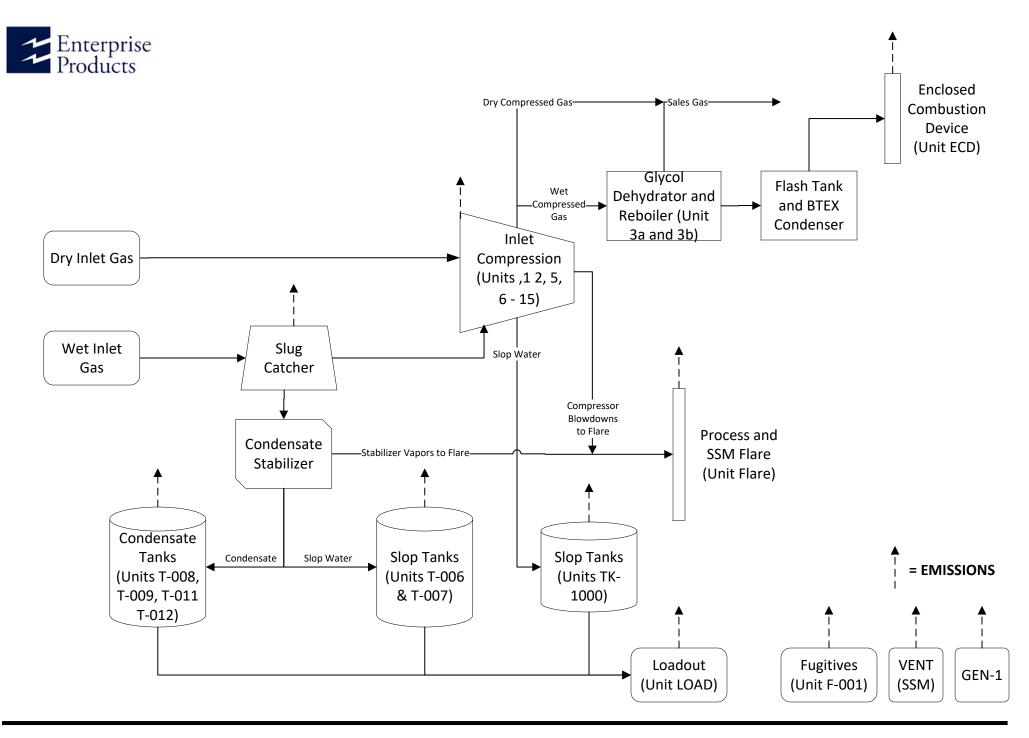
UA3 Form Revision: July 12, 2023

Section3, Page1

Saved Date: 12/15/2023

Enterprise Field Services, LLC

South Carlsbad Compressor Station

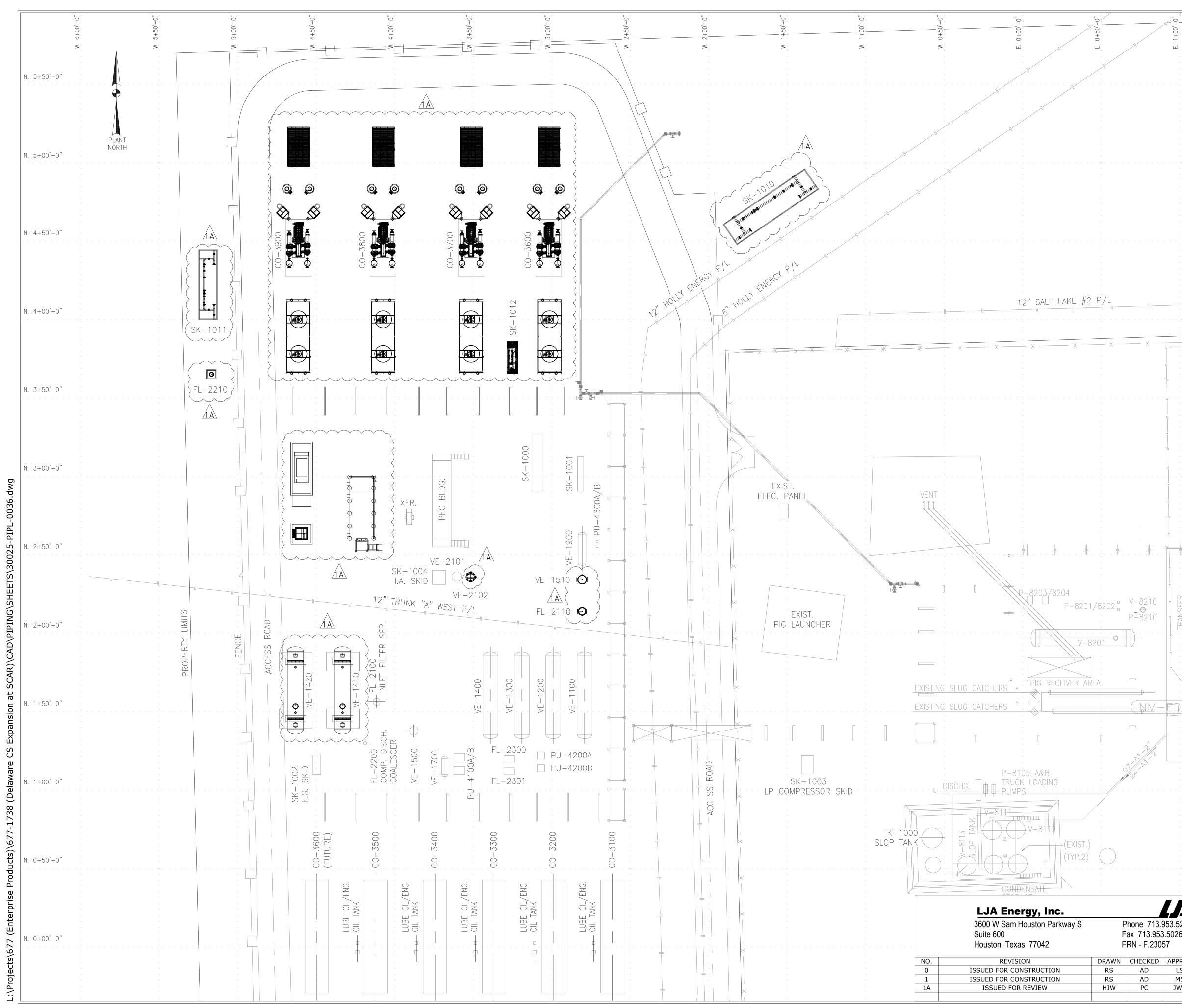

or in the event of an emergency, some VOCs will be directed to the flare. Gas from the 3-phase separator and stabilizer overheads will be directed to the flare in the event of a plant shutdown. Additionally, during an emergency shutdown, pressure vessels or the gas contents of the refrigeration system may be released to the flare; however, the quantity of gas in these vessels or systems is less than the assumed maximum gas volume from the 3-phase separator and stabilizer overheads. Additionally, during routine maintenance of the compressor engines, compressor blowdown vapors will be routed to the flare for combustion.

Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow diagram has been included with this section.


PROCESS FLOW DIAGRAM South Carlsbad Compressor Station

Section 5

Plot Plan Drawn to Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan has been included with this section.

E. 1+00 ¹ -0"		E. 1+50-0.	× — E. 2+00'-0"	X — X čc		E. 3+00,-0"
	∥∥ · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
				LUBI	E- OIL LER	4
* · · · · · · · · · · · · · · · · · · ·			PROPANE RE COMP. SKID	FRIG.		
	INS AIR SKII			KEF. SKID	DEW POINT	X-8305
TRANSFER · · · · · · · · · · · · · · · · · · ·		MCC BLDG.		GC BLDG.	STABIL SKID E - 8202	
	12" BY-PASS <u>V-91</u>			× × × × × × × × × × × × × × × × × × ×	2nd STAGE	
	T SCRUBBER -9101 SCRUBBER		UND VO GAS	DRAN DRAN DRAN		
· · · · · · · · · · · · · · · · · · ·	V- H SC	-9110 ORIZ CRUBBER	FUEL GAS SCRUBBER SCRUBBER COMPRESSOF	<i>≡≡≣≣≣≣≣≣</i> R AREA V−8203⊕		
				6		
13.953.5200 953.5026		OVERALL PLOT SOUTH CARLSBA		OR STATION	1	Enterprise Products
3057 ED APPRVD LS MS JWB	DATE [07/06/23 (09/14/23 / 10/12/23 [DRAWING SCALE DRAWN BY CHECKED BY APPROVED BY DOCUMENT CONTROL #	1"=30'-0 RS AD MS 30025	03/21/23 04/18/23 04/18/23 -PIPL-0036	ENTERPRISE APPROVED DATE ENTERPRISE PROJECT # DRAWING NUMBER	J. EMBLEN A60532 30025-PIPL-0036

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Enterprise Field Services, LLC

South Carlsbad Compressor Station

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Solar Centaur T-4702 turbines (Units 1 & 2)

NO_x and CO emission rates were updated using historical stack test results obtained from 2010 to 2016 stack tests with a safety factor. VOC emission rates are reproduced here from previous applications. SO₂ emissions are based on a conservative fuel sulfur content estimated of 5 gr S/100 scf and 100% conversion of elemental sulfur to SO₂. Particulate emission rates (PM_{2.5}, PM₁₀, and PM) were updated based on Solar Turbines Inc, Product Information Letter 171, refer to Section 7. Total and individual HAP emissions are calculated using AP-42 Table 3.1-3 emission factors. Greenhouse gas emissions are estimated using emission factors from 40 CFR 98 Subpart C Tables C-1 and C-2.

Solar Centaur 40-4700S (Unit 5)

NO_x, CO, and VOC emission rates were calculated using manufacturer specifications. SO₂ emissions are based on a conservative fuel sulfur content estimated of 5 gr S/100 scf and 100% conversion of elemental sulfur to SO₂. Particulate (PM_{2.5}, PM₁₀, and PM) and HAP emissions were calculated using AP-42 Table 3.1-2a and 3.1-3 emission factors. Greenhouse gas emissions are estimated using emission factors from 40 CFR 98 Subpart C Tables C-1 and C-2.

Caterpillar Engines (Units 6, 7, 8, 9, 10, 11, 12 & 13)

NO_x, CO, and VOC emission rates were calculated using manufacturer specifications. SO₂ emissions are based on a conservative fuel sulfur content estimated of 5 gr S/100 scf and 100% conversion of elemental sulfur to SO₂. Particulate (PM_{2.5}, PM₁₀, and TSP) and HAP emissions were calculated using AP-42 Table 3.2-2. Greenhouse gas emissions are estimated using emission factors from 40 CFR 98 Subpart C Tables C-1 and C-2.

Glycol Dehydrator and Reboiler (Units 3a & 3b)

Glycol dehydrator emissions were calculated using GRI-GLYCalc and an extended gas analysis. VOC and HAP emissions from the regenerator are controlled with a BTEX condenser. Flash tank emissions are primarily controlled by the ECD or sent to the reboiler to be used as fuel. The BTEX condenser overheads are routed to the ECD where VOC and HAP emissions are combusted and controlled with a 98% efficiency.

Produced Water Slop Tank (Unit TK-1000 & T-007)

Working, breathing, and flash emissions from TK-1000 and T-007 are calculated in this application using a BR&E ProMax simulation.

Stabilized Condensate Storage Tanks (Units T-008, T-009, T-011, & T-012)

Working and breathing emissions from T-008, T-009, T-011, and T-012 are calculated in this application using a BR&E ProMax simulation.

Exempt Storage Tanks (Units T-001 through T-006)

Methanol storage tanks (T-002) and condensate slop oil tank (T-006) are exempt pursuant to 20.2.72.202.B.(5) NMAC. Emissions from T-002 were conservatively estimated based on three (3) anticipated turnovers per year. Emissions from T-006 was calculated with BR&E ProMax using condenser liquid streams from the GRI-GLYCalc process simulation and other relevant calculations. Emission calculations for both units are included in the application for reference. All other storage tanks at South Carlsbad Compressor Station are either exempt because they contain liquids with vapor pressure less than 10 mmHg (T-001, T-004, and T-005) or are not a source of regulated pollutants (T-003).

Condensate Loading Emissions (Unit LOAD & LOAD_SLOP)

ProMax (both LOAD and LOAD_SLOP) and GRI-HAPCalc (Unit LOAD only) were used to perform the loading emissions calculations. Specifically, a RVP11 ProMax simulation was used to determine the stream compositions.

SprialX Enclosed Combustion Device (Unit ECD)

Emission calculations account for the possible presence of H_2S in the fuel gas. Emissions of NO_x , CO, and PM are calculated using AP-42 Tables 1.4-1 & 2 emission factors. Pilot H_2S emissions are calculated based on the conservative estimate of 0.25 g $H_2S/100$ scf and a 98% combustion efficiency of the ECD. Pilot SO_2 emissions are based on a conservative fuel sulfur content

South Carlsbad Compressor Station

estimate of 5 gr S/100 scf and 100% conversion of elemental sulfur to SO₂. SO₂ emissions were calculated based on a destruction rate efficiency (DRE) of 98%, based on the manufacturer specification sheet, and conversion to SO₂. Emissions of VOC, H₂S, and HAPs are calculated based on the GRI-GLYCalc report for the Controlled Regenerator Emissions after the BTEX condenser and the report for the Flash Gas Emissions with a 98% DRE. For the H₂S, it was assumed 98% was combusted and 100% of the combusted H₂S was converted to SO₂.

Unpaved Haul Road Emissions (Unit HAUL)

These emissions were calculated using Equation 2 of AP-42 Section 13.2.2. Haul road emissions at this facility are exempt pursuant to 20.2.72.202.B(5) NMAC. Emission calculations are included in the application for reference.

Flare (Unit Flare)

Emission calculations were updated to account for the possible presence of H_2S . An H_2S composition of 0.5 mol % was assumed. Emissions of NO_x and CO are calculated using the larger of the AP-42 Table 13.5-1 and TNRCC RG-109 emission factors. Pilot H_2S emissions are calculated based on the conservative estimate of 0.25 g $H_2S/100$ scf and a 98% combustion efficiency of the flare. Pilot SO₂ emissions are based on a conservative fuel sulfur content estimated of 5 gr S/100 scf and 100% conversion of elemental sulfur to SO₂. SO₂ emissions were calculated assuming 98% combustion efficiency and conversion to SO₂. Emissions of VOCs and HAPs are estimated based on the gas analysis and an assumed 98% combustion efficiency.

During non-routine conditions such as when gas must be released from portions of the facility for maintenance or in the event of an emergency, some VOCs will be directed to the flare. Gas streams 14 and 33 will be directed to the flare in the event of a plant shutdown. Additionally, during an emergency shutdown, pressure vessels or the gas contents of the refrigeration system may be released to the flare; however, the quantity of gas in these vessels or systems is less than the assumed maximum gas volume from streams 14 and 33. Additionally, compressor blowdown vapors will be sent to the flare.

Flare parameters are calculated using a temperature of 1000° C and a 20 m/sec velocity (per NMAQB guidelines), and an effective diameter calculated in accordance with the Modeling Guidelines.

Greenhouse gas emissions were estimated using 40 CFR 98 Subpart W calculation methodology.

Turbine Blowdowns (Unit VENT (SSM)) and Compressor Blowdowns (Unit Flare (SSM))

An updated facility fuel gas analysis was used to determine the emissions associated with this unit. From time to time, the pressurized gas in a portion of the facility's system must be vented in order to relieve the pressure. At South Carlsbad Compressor Station, this is primarily done in order to perform maintenance on the compressors (Units 6 through 15) and compressor turbines (Units 1, 2, and 5). This pressure relief is termed "blow down". Blow down at this facility is and will continue to be directed to various vents, including but not limited to pressure relief valves and blowdown vent stacks, aggregated in this application as unit VENT (SSM). Compressor blowdowns will be combusted at the facility flare as unit Flare (SSM)

During routine startup, shutdown, or blow down events, gas from the turbines is diverted to unit VENT. A table of the inlet gas composition (based on the combined gas analysis) and the anticipated number of blow down events per year (conservatively estimated) is included in this section. Venting volume and frequency were estimated based on operating history and engineering knowledge.

Maximum hourly venting emissions were calculated assuming 1 hour per event for a worst-case scenario. Annual venting emissions were calculated using the total volume of gas vented annually based on the estimate of predicted annual events.

Fugitive Emissions (Unit F-001)

Fugitive emission calculations were completed using emission factors from Table 2-4 of EPA Protocol for Equipment Leak Emission Estimates, 1995. Subcomponent counts for each subcomponent are based on estimated average component counts for each piece of equipment.

						Maxim	um Uncont	rolled Emi	ssions							
Equipment	N	0 _x	C	C	V	C	S	0 _x	P	M	PI	1 ₁₀	PI	M _{2.5}	H	₂ S
Equipment	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.55	2.40	0.55	2.40	0.55	2.40	2.52E-04	1.10E-03
2	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.55	2.40	0.55	2.40	0.55	2.40	2.52E-04	1.10E-03
5	4.43	19.40	5.89	25.78	1.40	6.15	0.56	2.43	0.27	1.16	0.27	1.16	0.27	1.16	2.78E-04	1.22E-03
6	1.65	7.24	13.78	60.35	1.49	6.52	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04
7	1.65	7.24	13.78	60.35	1.49	6.52	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04
8	1.65	7.24	13.78	60.35	1.49	6.52	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04
9	1.65	7.24	13.78	60.35	1.49	6.52	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04
10	1.65	7.24	13.78	60.35	1.49	6.52	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04
11	1.65	7.24	13.78	60.35	1.49	6.52	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04
12	2.71	11.88	26.24	114.95	6.17	27.03	0.38	1.67	0.28	1.21	0.28	1.21	0.28	0.28	1.91E-04	8.35E-04
13	2.71	11.88	26.24	114.95	6.17	27.03	0.38	1.67	0.28	1.21	0.28	1.21	0.28	0.28	1.91E-04	8.35E-04
14	2.71	11.88	26.24	114.95	6.17	27.03	0.38	1.67	0.28	1.21	0.28	1.21	0.28	0.28	1.91E-04	8.35E-04
15	2.71	11.88	26.24	114.95	6.17	27.03	0.38	1.67	0.28	1.21	0.28	1.21	0.28	0.28	1.91E-04	8.35E-04
3a	-	-	-	-	73.65	322.57	-	-	-	-	-	-	-	-	0.041	0.18
3b	0.29	1.29	0.25	1.08	0.016	0.071	0.041	0.18	0.022	0.098	0.022	0.098	0.022	0.098	1.04E-03	4.54E-03
TK-1000	-	-	-	-	*	0.67	-	-	-	-	-	-	-	-	-	-
T-007	-	-	-	-	*	0.67	-	-	-	-	-	-	-	-	-	-
T-008																
T-009	-	-	_	-	*	18.85	-	_	_	-	-	-	_	_	_	_
T-011						10.05										
T-012																
F-001	-	-	-	-	*	58.61	-	-	-	-	-	-	-	-	-	-
LOAD	-	-	-	-	*	9.82	-	-	-	-	-	-	-	-	-	-
ECD	0.010	0.044	8.52E-03	0.037	-	-	6.59E-05	2.89E-04	-	-	-	-	-	-	3.50E-05	1.53E-04
Flare (Process)	15.78	2.81	42.32	15.26	61.88	22.28	0.11	0.46	-	-	-	-	-	-	0.056	0.020
Flare (SSM)	22.46	4.59	60.21	12.30	61.64	8.06	0.16	0.047	-	-	-	-	-	-	1.70E-03	5.11E-04
VENT (SSM)	-	-	-	-	*	29.43	-	-	-	-	-	-	-	-	*	2.13E-03
MALF ¹	38.24	6.00	102.53	10.00	123.52	10.00	0.26	10.00	-	-	-	-	-	-	0.058	2.00
Total	155.98	306.75	413.64	908.86	357.25	641.15	5.07	30.42	3.51	15.37	3.51	15.37	3.51	11.65	0.16	2.22

"*" Denotes an hourly emission rate is not appropriate "-" Indicates emissions of this pollutant are not expected

¹ Flare malfunction hourly emission rates reflect worst case emissions modeled for this unit. These emissions are the maximum allowed for the flare and are not additive with the Process and SSM emissions requested under Unit Flare.

						(Controlled	Emissions								
Equipment	N	0 _x	C	0	V	OC	S	0 _x	Р	М	PN	1 ₁₀	P	M _{2.5}	Н	₂S
Equipment	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.55	2.40	0.55	2.40	0.55	2.40	2.52E-04	1.10E-03
2	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.55	2.40	0.55	2.40	0.55	2.40	2.52E-04	1.10E-03
5	4.43	19.40	5.89	25.78	1.40	6.15	0.56	2.43	0.27	1.16	0.27	1.16	0.27	1.16	2.78E-04	1.22E-03
6	1.65	7.24	3.31	14.48	3.86	16.90	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04
7	1.65	7.24	3.31	14.48	3.86	16.90	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04
8	1.65	7.24	3.31	14.48	3.86	16.90	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04
9	1.65	7.24	3.31	14.48	3.86	16.90	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04
10	1.65	7.24	3.31	14.48	3.86	16.90	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04
11	1.65	7.24	3.31	14.48	3.86	16.90	0.24	1.04	0.17	0.75	0.17	0.75	0.17	0.75	1.18E-04	5.18E-04
12	2.73	11.95	5.46	23.90	6.37	27.88	0.38	1.67	0.28	1.21	0.28	1.21	0.28	1.21	1.91E-04	8.35E-04
13	2.73	11.95	5.46	23.90	6.37	27.88	0.38	1.67	0.28	1.21	0.28	1.21	0.28	1.21	1.91E-04	8.35E-04
14	2.73	11.95	5.46	23.90	6.37	27.88	0.38	1.67	0.28	1.21	0.28	1.21	0.28	1.21	1.91E-04	8.35E-04
15	2.73	11.95	5.46	23.90	6.37	27.88	0.38	1.67	0.28	1.21	0.28	1.21	0.28	1.21	1.91E-04	8.35E-04
3a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3b	0.29	1.29	0.25	1.08	0.016	0.071	0.041	0.18	0.022	0.098	0.022	0.098	0.022	0.098	1.04E-03	4.54E-03
TK-1000	-	-	-	-	*	0.67	-	-	-	-	-	-	-	-	-	-
T-007	-	-	-	-	*	0.67	-	-	-	-	-	-	-	-	-	-
T-008																
T-009	_	_	_	_	*	18.85	_	_	_	_	_	_	_	_		_
T-011	-	-	-	-		10.05	_	-	-		-		-		_	
T-012																
F-001	-	-	-	-	*	58.61	-	-	-	-	-	-	-	-	-	-
LOAD	-	-	-	-	*	9.82	-	-	-	-	-	-	-	-	-	-
ECD	0.15	0.65	0.12	0.54	0.86	3.79	0.067	0.29	0.01	0.046	0.01	0.046	0.01	0.046	7.61E-04	3.33E-03
Flare (Process)	15.78	2.81	42.32	15.26	61.88	22.28	0.11	0.46	-	-	-	-	-	-	0.056	0.020
Flare (SSM)	22.46	4.59	60.21	12.30	61.64	8.06	0.16	0.047	-	-	-	-	-	-	1.70E-03	5.11E-04
VENT (SSM)	-	-	-	-	*	29.43	-	-	-	-	-	-	-	-	*	2.13E-03
MALF ¹	38.24	6.00	102.53	10.00	123.52	10.00	0.26	10.00	-	-	-	-	-	-	0.058	2.00
Total	156.18	307.63	267.77	269.96	299.47	388.07	5.14	30.72	3.52	15.42	3.52	15.42	3.52	15.42	0.12	2.04

"*" Denotes an hourly emission rate is not appropriate "-" Indicates emissions of this pollutant are not expected ¹ Flare malfunction hourly emission rates reflect worst case emissions modeled for this unit. These emissions are the maximum allowed for the flare and are not additive with the Process and SSM emissions requested under Unit Flare.

						Contro	lled HAP a	nd Greent	nouse Gas	Emissions							
Equipment	Total	HAPs	Formal	dehyde	Acetal	dehyde	n-He	exane	Ben	zene	Tolu	Jene	Ху	lenes	Ethylb	enzene	CO2e
Equipment	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
1	0.035	0.15	0.026	0.11	1.46E-03	6.39E-03	-	-	4.38E-04	1.92E-03	4.74E-03	0.021	2.33E-03	0.010	-	-	18,704.64
2	0.035	0.15	0.026	0.11	1.46E-03	6.39E-03	-	-	4.38E-04	1.92E-03	4.74E-03	0.021	2.33E-03	0.010	-	-	18,704.64
5	0.038	0.17	0.029	0.13	1.61E-03	7.04E-03	-	-	4.82E-04	2.11E-03	5.23E-03	0.023	2.57E-03	0.011	-	-	20,618.14
6	0.29	1.26	0.13	0.56	0.14	0.63	0.019	0.083	7.53E-03	0.033	6.98E-03	0.031	3.15E-03	0.014	-	-	8,780.66
7	0.29	1.26	0.13	0.56	0.14	0.63	0.019	0.083	7.53E-03	0.033	6.98E-03	0.031	3.15E-03	0.014	-	-	8,780.66
8	0.29	1.26	0.13	0.56	0.14	0.63	0.019	0.083	7.53E-03	0.033	6.98E-03	0.031	3.15E-03	0.014	-	-	8,780.66
9	0.29	1.26	0.13	0.56	0.14	0.63	0.019	0.083	7.53E-03	0.033	6.98E-03	0.031	3.15E-03	0.014	-	-	8,780.66
10	0.29	1.26	0.13	0.56	0.14	0.63	0.019	0.083	7.53E-03	0.033	6.98E-03	0.031	3.15E-03	0.014	-	-	8,780.66
11	0.29	1.26	0.13	0.56	0.14	0.63	0.019	0.083	7.53E-03	0.033	6.98E-03	0.031	3.15E-03	0.014	-	-	8,780.66
12	0.47	2.05	0.209	0.92	0.23	1.01	0.031	0.13	0.012	0.053	0.011	0.048	5.08E-03	0.022	-	-	14,155.93
13	0.47	2.05	0.209	0.92	0.23	1.01	0.031	0.13	0.012	0.053	0.011	0.048	5.08E-03	0.022	-	-	14,155.93
14	0.47	2.05	0.209	0.92	0.23	1.01	0.031	0.13	0.012	0.053	0.011	0.048	5.08E-03	0.022	-	-	14,155.93
15	0.47	2.05	0.209	0.92	0.23	1.01	0.031	0.13	0.012	0.053	0.011	0.048	5.08E-03	0.022	-	-	14,155.93
3a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3b	0.022	0.095	1.26E-03	5.50E-03	1.10E-03	4.80E-03	2.10E-03	9.20E-03	1.12E-03	4.90E-03	1.53E-03	6.70E-03	1.99E-03	8.70E-03	3.17E-03	0.014	1,538.65
TK-1000	*	0.097	-	-	-	-	*	7.66E-04	*	0.058	*	0.017	*	1.95E-03	*	5.44E-04	-
T-007	*	0.097	-	-	-	-	*	7.66E-04	*	0.058	*	0.017	*	1.95E-03	*	5.44E-04	-
T-008																	
T-009	*	0.79					*	0.67	*	0.086	*	0.031	*	2.72E-03	*	1.44E-03	
T-011		0.75	_	-	-	-		0.07		0.000		0.051		2.72L-05		1.446-05	_
T-012																	
F-001	*	5.23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LOAD	*	0.45	-	-	-	-	*	0.39	*	0.043	*	7.00E-04	*	1.20E-03	*	1.30E-03	-
ECD	0.16	0.70	-	-	-	-	0.018	0.079	0.084	0.37	0.052	0.23	0.052	0.23	-	-	79.22
lare (Process)	0.79	0.28	-	-	-	-	0.56	0.20	0.075	0.027	0.087	0.031	0.058	0.021	7.50E-03	2.70E-03	5,366.81
Flare (SSM)	0.38	0.11	-	-	-	-	0.38	0.11	-	-	-	-	-	-	-	-	10,390.94
VENT (SSM)	*	0.47	-	-	-	-	*	0.35	*	0.078	*	0.023	*	-	-	-	1,945.06
MALF	-	0.16	-	-	-	-	-	0.12	-	0.026	-	7.61E-03	-	-	-	-	-
Total	5.06	24.72	1.68	7.35	1.79	7.83	1.20	2.97	0.26	1.17	0.24	0.80	0.16	0.47	0.011	0.020	186,655.78

Unit:	1, 2 Solar Contr	aur T-4702 N	IC turbings
Description:	Solar Centa	aur 1-4702 N	ig turdines
Fuel consumption	35.3	Mscf/hr	As permitted
Fuel heat value	1034	Btu/scf	LHV of fuel gas
Heat rate	36.5	MMbtu/hr	Fuel consumption * fue

36.5 MMbtu/hr Fuel consumption * fuel heat value / 1000

Annual fuel usage 309.0 MMscf/yr 8760 hrs/yr operation

Uncontrolled Emissions

NO _x	со	VOC	SO ₂ ¹	PM ²	H_2S^1		
				0.015		lb/MMBtu	Solar Turbines Inc Product Information Letter 171 Particulates Emission Rate
15.8	1.5					lbs/hr	Unit 1: 2010 Stack Test Report Maximum Recordable Rate
-	-					lbs/hr	Unit 2: 2010 Stack Test Report Maximum Recordable Rate
15.2	0.8					lbs/hr	Unit 1: 2011 Stack Test Report Maximum Recordable Rate
15.4	1.0					lbs/hr	Unit 2: 2011 Stack Test Report Maximum Recordable Rate
16.4	1.2					lbs/hr	Unit 1: 2012 Stack Test Report Maximum Recordable Rate
15.2	1.0					lbs/hr	Unit 2: 2012 Stack Test Report Maximum Recordable Rate
17.57	2.14					lbs/hr	Unit 1: 2014 Stack Test Report Maximum Recordable Rate
18.85	1.87					lbs/hr	Unit 2: 2014 Stack Test Report Maximum Recordable Rate
15.63	1.87					lbs/hr	Unit 1: 2015 Stack Test Report Maximum Recordable Rate
16.62	1.27					lbs/hr	Unit 2: 2015 Stack Test Report Maximum Recordable Rate
7.85	0.90					lbs/hr	Unit 1: 2016 Stack Test Report Maximum Recordable Rate
9.75	1.21					lbs/hr	Unit 2: 2016 Stack Test Report Maximum Recordable Rate
18.9	2.1					lbs/hr	Maximum Recordable Rate
10%	20%						Safety Factor
20.7	2.6					lbs/hr	Emission Rate with Safety Factor
27.0	7.4	0.77				lb/hr	As permitted
27.0	7.4	0.77	0.50	0.55	2.5E-04	lb/hr	Hourly emission rate
90.8	11.2	3.4	2.2	2.4	1.1E-03	tpy	Annual emission rate (8760 hrs/yr)
Total HAP ³	HCHO ³	Acetaldehyde ³	Benzene ³	Toluene ³	Xylenes ³	_	

I OTAL HAP	HCHO	Acetaidenyde	Benzene	loiuene	xyienes		
	7.10E-04	4.00E-05	1.20E-05	1.30E-04	6.40E-05	lb/MMbtu	AP-42 Table 3.1-3
0.035	0.026	1.46E-03	4.38E-04	4.74E-03	2.33E-03	lb/hr	Hourly emission rate
0.15	0.11	6.39E-03	1.92E-03	0.021	0.010	tpy	Annual emission rate (8760 hrs/yr)

 $^1\,$ SO₂ emissions based on fuel sulfur content of 5 gr S/100 scf, or 0.00714 lb S/Mscf

lb/hr SO₂ = 5gr S/100scf * Fuel consumption (Mscf/hr) * 1lb/7000gr * 1000scf/Mscf * 64 lb SO₂/32 lb S

 H_2S emissions based on 0.25 g/100 scf H_2S in fuel

lb/hr H₂S = 0.25 gr H₂S/100 scf * Fuel consumption (Mscf/hr) * 1000scf/Mscf * 1 lb/7000 gr * (1 - Comb. Eff [98%]) ² Assumed TSP = $PM_{10} = PM_{2.5}$

³ HAP emissions calculated using emission factors from AP-42 Table 3.1-3.

GHG Calculations

CO ₂ ⁴	N_2O^4	CH4 ⁴	CO₂e ⁴		
53.06	0.0001	0.001		kg/MMBtu	40 CFR 98 Subpart C Tables C-1 and C-2
1	298	25		GWP	40 CFR 98 Table A-1
18685.3	0.035	0.35		tpy	
18685.34	10.5	8.8	18704.6	tpy CO ₂ e	

⁴ N₂O, CH₄, and CO₂ tpy Emission Rate= EF* Fuel Usage * Fuel Heat Value * 2.20462 lb/1 kg * 1 ton/2000 lb CO_2e tpy Emission Rate = CO_2 Emission Rate + N_2O Emission Rate*GWP Factor + CH_4 Emission Rate*GWP Factor Unit: 5 Description: Solar Centaur 40-4700 NG turbines

Fuel consumption	38.9	Mscf/hr	
Fuel heat value	1034	Btu/scf	LHV of fuel gas
Heat rate	40.2	MMBtu/hr	Fuel consumption * fuel heat value / 1000
Annual fuel usage	340.6	MMscf/yr	8760 hrs/yr operation

Uncontrolled Emissions

NO _x	со	voc	SO21	PM ²	H_2S^1		
				0.0066	-	lb/MMBtu	AP-42 Table 3.1-2a
0.100	0.122	0.035			-	lb/MMBtu	Hourly Emission Factors
0.100	0.122	0.035			-	lb/MMBtu	Annual emission rate (8760 hrs/yr)
4.03	4.90	1.40	0.56	0.27		lb/hr	
17.64	21.48	6.15	2.43	1.16	-	tpy	
10%	20%					_	Safety Factor
4.43	5.89	1.40	0.56	0.27	2.78E-04	lb/hr	Emission Rate with Safety Factor
19.40	25.78	6.15	2.43	1.16	1.22E-03	tpy	
Total HAP ³	HCHO ³	Acetaldehyde ³	Benzene ³	Toluene ³	Xylenes ³	_	
	7.10E-04	4.00E-05	1.20E-05	1.30E-04	6.40E-05	lb/MMBtu	AP-42 Table 3.1-3
0.038	0.029	0.002	4.82E-04	0.0052	0.0026	lb/hr	Hourly emission rate
0.17	0.13	0.0070	0.0021	0.023	0.011	tpy	Annual emission rate (8760 hrs/yr)

 $^1~{\rm SO_2}$ emissions based on fuel sulfur content of 5 gr S/100 scf, or 0.00714 lb S/Mscf

lb/hr SO₂ = 5gr S/100scf * Fuel consumption (Mscf/hr) * 1lb/7000gr * 1000scf/Mscf * 64 lb SO₂/32 lb S H_2S emissions based on 0.25 g/100 scf H_2S in fuel

 $lb/hr H_2S = 0.25 \text{ gr } H_2S/100 \text{ scf} * Fuel consumption (Mscf/hr) * 1000scf/Mscf * 1 lb/7000 \text{ gr} * (1 - Comb. Eff [98%])$ ² Assumed TSP = PM₁₀ = PM_{2.5}

 $^{\scriptscriptstyle 3}$ HAP emissions calculated using emission factors from AP-42 Table 3.1-3.

GHG Calculations

CO ₂ ⁴	N ₂ O ⁴	CH44	CO ₂ e ⁴		
53.06	0.0001	0.001		kg/MMBtu	40 CFR 98 Subpart C Tables C-1 and C-2
1	298	25		GWP	40 CFR 98 Table A-1
20596.9	0.039	0.39		tpy	
20596.866	11.6	9.7	20618.1	tpy CO ₂ e	

⁴ N₂O, CH₄, and CO₂ tpy Emission Rate= EF* Fuel Usage * Fuel Heat Value * 2.20462 lb/1 kg * 1 ton/2000 lb CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate*GWP Factor +CH₄ Emission Rate*GWP Factor
 Unit(s):
 6-11

 Description:
 Six (6) CAT G3608 4-Stroke Lean Burn Compressor Engines

Horespower	2,500	bhp	LHV of fuel gas
Fuel Consumption Rate	6,848	Btu/hp-hr	
Fuel consumption	16.6	Mscf/hr	
Fuel heat value	1034	Btu/scf	
Annual fuel usage	145.0	MMscf/yr	8760 hrs/yr operation

Uncontrolled Emissions

NOx	со	voc	SO ₂ ¹	PM ³	H ₂ S ²			
				0.0100	-	lb/MMBtu	AP-42 Table	3.2-2
0.300	2.5	0.270	-	-	-	g/bhp-hr	Vendor Emi	ssion Factors
1.65	13.78	1.49	0.24	0.17	1.18E-4	lb/hr	Hourly emis	sion rate
7.24	60.35	6.52	1.04	0.75	5.18E-4	tpy	Annual emis	sion rate (8760 hrs/yr)
Total HAP ⁴	n-Hexane ⁴	нсно⁴	Acetaldehyde ⁴	Benzene ⁴	Toluene⁴	Xylenes ⁴	_	
Total HAP ⁴	n-Hexane ⁴ 1.11E-03	HCHO⁴	Acetaldehyde ⁴ 8.36E-03	Benzene ⁴ 4.40E-04	Toluene⁴ 4.08E-04	Xylenes⁴ 1.84E-04	lb/MMBtu	AP-42 Table 3.2-2
Total HAP ⁴		HCHO ⁴ 0.16	· ·				lb/MMBtu g/bhp-hr	AP-42 Table 3.2-2 Vendor Emission Factors
			8.36E-03	4.40E-04		1.84E-04	.,	

Controlled Emissions

NOx	со	voc	SO ₂ ¹	PM ³	H ₂ S ²			
				0.0100	-	lb/MMBtu	AP-42 Table	3.2-2
0.300	0.6	0.700	-	-	-	g/bhp-hr	Vendor Emis	ssion Factors
1.65	3.31	3.86	0.24	0.17	1.18E-4	lb/hr	Hourly emis	sion rate
7.24	14.48	16.90	1.04	0.75	5.18E-4	tpy	Annual emis	sion rate (8760 hrs/yr)
Total HAP ⁴	n-Hexane ⁴	нсно⁴	Acetaldehyde ⁴	Benzene ⁴	Toluene ⁴	Xylenes ⁴		
Total HAP ⁴	n-Hexane ⁴ 1.11E-03	HCHO ⁴	Acetaldehyde ⁴ 8.36E-03	Benzene ⁴ 4.40E-04	Toluene⁴ 4.08E-04	Xylenes⁴ 1.84E-04	lb/MMBtu	AP-42 Table 3.2-2
<u>Total HAP⁴</u>		HCHO ⁴				,	lb/MMBtu g/bhp-hr	AP-42 Table 3.2-2 Vendor Emission Factors
			8.36E-03	4.40E-04		,	.,	

 1 SO₂ emissions based on fuel sulfur content of 5 gr S/100 scf, or 0.00714 lb S/Mscf

lb/hr SO₂ = 5gr S/100scf * Fuel consumption (Mscf/hr) * 1lb/7000gr * 1000scf/Mscf * 64 lb SO₂/32 lb S

² H₂S emissions based on 0.25 g/100 scf H₂S in fuel

lb/hr H_2S = 0.25 gr $H_2S/100$ scf * Fuel consumption (Mscf/hr) * 1000scf/Mscf * 1 lb/7000 gr * (1 - Comb. Eff [98%])

³ Assumed TSP = $PM_{10} = PM_{2.5}$

⁴ HAP emissions calculated using emission factors from AP-42 Table 3.1-3.

GHG Calculations

CO ₂ ⁴	N_2O^4	CH44	CO ₂ e ⁴		
53.06	0.0001	0.001		kg/MMBtu	40 CFR 98 Subpart C Tables C-1 and C-2
1	298	25		GWP	40 CFR 98 Table A-1
8,771.60	0.017	0.17	8,771.78	tpy	
8,771.60	4.93	4.13	8,780.66	tpy CO ₂ e	

⁴ N₂O, CH₄, and CO₂ tpy Emission Rate= EF* Fuel Usage * Fuel Heat Value * 2.20462 lb/1 kg * 1 ton/2000 lb CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate*GWP Factor + CH₄ Emission Rate*GWP Factor
 Unit(s):
 12-15

 Description:
 Four (4) CAT G3612 4-Stroke Lean Burn Compressor Engines

Horespower	4,125	bhp	
Fuel Consumption Rate	6,691	Btu/hp-hr	
Fuel consumption	26.7	Mscf/hr	
Fuel heat value	1034	Btu/scf	LHV of fuel gas
Annual fuel usage	233.8	MMscf/yr	8760 hrs/yr operation

Uncontrolled Emissions

NOx	со	voc	SO ₂ ¹	PM ³	H ₂ S ²		
				0.0100	-	lb/MMBtu	AP-42 Table 3.2-2
0.40	3.87	0.91	-	-	-	g/bkW-hr	Vendor Emission Factors
0.30	2.89	0.68	-	-	-	g/bhp-hr	Vendor Emission Factors
0.298	2.885863	0.679			-	lb/MMBtu	Annual emission rate (8760 hrs/yr)
2.71	26.24	6.17		0.28		lb/hr	
11.88	114.95	27.03		1.21	-	tpy	
			0%				Safety Factor
2.71	26.24	6.17	0.38	0.28	1.91E-4	lb/hr	Hourly emission rate
11.88	114.95	27.03	1.67	1.21	8.35E-4	tpy	Annual emission rate (8760 hrs/yr)
4	4		4 4 - 1 - 1 - 4	B	4	X. I 4	

Tota	al HAP⁴	n-Hexane ⁴	HCHO⁴	Acetaldehyde ⁴	Benzene ⁴	Toluene⁴	Xylenes⁴	_	
		1.11E-03		8.36E-03	4.40E-04	4.08E-04	1.84E-04	lb/MMBtu	AP-42 Table 3.2-2
	-		0.17	-	-	-	-	g/bkW-hr	Vendor Emission Factors
	-		0.13	-	-	-	-	g/bhp-hr	Vendor Emission Factors
1	L.41	0.03	1.15	0.23	0.012	0.011	0.0051	lb/hr	Hourly emission rate
6	5.18	0.13	5.05	1.01	0.053	0.049	0.022	tpy	Annual emission rate (8760 hrs/yr)

Controlled Emissions

NOx	со	voc	SO ₂ ¹	PM ³	H ₂ S ²			
				0.0100	-	lb/MMBtu	AP-42 Table	e 3.2-2
0.3	0.6	0.7	-	-	-	g/bhp-hr	Vendor Em	ission Factors
2.73	5.46	6.37	0.38	0.28	1.91E-4	lb/hr	Hourly emi	ssion rate
11.95	23.90	27.88	1.67	1.21	8.35E-4	tpy	Annual emi	ission rate (8760 hrs/yr)
Total HAP ⁴	n-Hexane ⁴	нсно⁴	Acetaldehyde ⁴	Benzene⁴	Toluene ⁴	Xylenes ⁴	_	
Total HAP ⁴	n-Hexane ⁴ 1.11E-03	НСНО⁴	Acetaldehyde ⁴ 8.36E-03	Benzene ⁴ 4.40E-04	Toluene ⁴ 4.00E-04	Xylenes⁴ 1.84E-04		AP-42 Table 3.2-2
Total HAP ⁴		HCHO ⁴					lb/MMBtu g/bhp-hr	AP-42 Table 3.2-2 Vendor Emission Factors
			8.36E-03	4.40E-04		1.84E-04	.,	

 $^1~{\rm SO_2}$ emissions based on fuel sulfur content of 5 gr S/100 scf, or 0.00714 lb S/Mscf

lb/hr SO₂ = 5gr S/100scf * Fuel consumption (Mscf/hr) * 1lb/7000gr * 1000scf/Mscf * 64 lb SO₂/32 lb S

 2 H₂S emissions based on 0.25 g/100 scf H₂S in fuel

lb/hr $H_2S = 0.25$ gr $H_2S/100$ scf * Fuel consumption (Mscf/hr) * 1000scf/Mscf * 1 lb/7000 gr * (1 - Comb. Eff [98%])

³ Assumed TSP = $PM_{10} = PM_{2.5}$

 $^{\rm 4}$ HAP emissions calculated using emission factors from AP-42 Table 3.1-3.

GHG Calculations

CO24	N_2O^4	CH44	CO ₂ e ⁴		
53.06	0.0001	0.001		kg/MMBtu	40 CFR 98 Subpart C Tables C-1 and C-2
1	298	25		GWP	40 CFR 98 Table A-1
14,141.32	0.03	0.27	14,141.62	tpy	
14,141.32	7.94	6.66	14,155.93	tpy CO ₂ e	

⁴ N₂O, CH₄, and CO₂ tpy Emission Rate= EF* Fuel Usage * Fuel Heat Value * 2.20462 lb/1 kg * 1 ton/2000 lb CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate*GWP Factor + CH₄ Emission Rate*GWP Factor

Unit(s):	GEN-1	(Exempt under 20.2.72.202.B.(3) NMAC)
Description: Operating Hours:	. ,	ΓG3516A4 4-Stroke Lean Burn Generator Engines) hr/vr
operating realist	500	

Horespower	1,462	bhp	
Fuel Consumption Rate	7,786	Btu/hp-hr	
Fuel consumption Fuel heat value Annual fuel usage	11.0 1034 5.5	Mscf/hr Btu/scf MMscf/yr	Nominal LHV of fuel gas 500 hrs/yr operation

Uncontrolled Emissions

NOx	со	VOC	SO ₂ ¹	PM ³	H ₂ S ²			
				0.0100	-	lb/MMBtu	AP-42 Table	e 3.2-2
2.7	2.58	0.31	-	-	-	g/bhp-hr	Vendor Emi	ission Factors
2.680	2.58	0.310			-	lb/MMBtu	Annual emi	ssion rate (500 hrs/yr)
8.64	8.32	1.00		0.11		lb/hr		
2.16	2.08	0.25		0.03	-	tpy		
			0%			_	Safety Facto	or
8.64	8.32	1.00	0.16	0.11	7.86E-5	lb/hr	Hourly emis	ssion rate
2.16	2.08	0.25	0.69	0.03	3.44E-4	tpy	Annual emi	ssion rate (500 hrs/yr)
Total HAP ⁴	n-Hexane ⁴	нсно⁴	Acetaldehyde ⁴	Benzene ⁴	Toluene ⁴	Xylenes ⁴	_	
	1.11E-03		8.36E-03	4.40E-04	4.08E-04	1.84E-04	lb/MMBtu	AP-42 Table 3.2-2
-		0.42	-	-	-	-	g/bhp-hr	Vendor Emission Factors
1.46	0.013	1.35	0.10	5.01E-03	4.64E-03	2.09E-03	lb/hr	Hourly emission rate
0.37	3.16E-3	0.34	0.024	1.25E-03	1.16E-03	5.24E-04	tpy	Annual emission rate (8760 hrs/yr)

Controlled Emissions

NOx	со	voc	SO ₂ ¹	PM ³	H ₂ S ²			
				0.0100	-	lb/MMBtu	AP-42 Table	e 3.2-2
2.7	2.58	0.3	-	-	-	g/bhp-hr	Vendor Emi	ission Factors
2.700	2.58	0.310			-	lb/MMBtu	Annual emi	ssion rate (8760 hrs/yr)
8.70	8.32	1.00	0.16	0.11	7.86E-05	lb/hr	Hourly emis	ssion rate
2.18	2.08	0.25	0.69	0.03	3.44E-04	tpy	Annual emi	ssion rate (8760 hrs/yr)
Total HAP ⁴	n-Hexane ⁴	нсно⁴	Acetaldehyde ⁴	Benzene ⁴	4			
		neno	Acetaluellyue	вепzепе	Toluene⁴	Xylenes⁴		
	1.11E-03	neno	8.36E-03	4.40E-04	4.08E-04	1	lb/MMBtu	AP-42 Table 3.2-2
-	1.11E-03	0.42				1	lb/MMBtu g/bhp-hr	AP-42 Table 3.2-2 Vendor Emission Factors
- 1.46	1.11E-03 0.013		8.36E-03				.,	

 $^1\,$ SO_2 emissions based on fuel sulfur content of 5 gr S/100 scf, or 0.00714 lb S/Mscf

lb/hr SO₂ = 5gr S/100scf * Fuel consumption (Mscf/hr) * 1lb/7000gr * 1000scf/Mscf * 64 lb SO₂/32 lb S

 2 H₂S emissions based on 0.25 g/100 scf H₂S in fuel

 $lb/hr H_2S = 0.25 gr H_2S/100 scf * Fuel consumption (Mscf/hr) * 1000scf/Mscf * 1 lb/7000 gr * (1 - Comb. Eff [98%])$

³ Assumed TSP = $PM_{10} = PM_{2.5}$

 $^{\rm 4}$ HAP emissions calculated using emission factors from AP-42 Table 3.1-3.

GHG Calculations

CO ₂ ⁴	N ₂ O ⁴	CH44	CO ₂ e ⁴		
53.06	0.0001	0.001		kg/MMBtu	40 CFR 98 Subpart C Tables C-1 and C-2
1	298	25		GWP	40 CFR 98 Table A-1
332.89	6.27E-04	0.006	332.90	tpy	
332.89	0.19	0.16	333.24	tpy CO ₂ e	

⁴ N₂O, CH₄, and CO₂ tpy Emission Rate= EF* Fuel Usage * Fuel Heat Value * 2.20462 lb/1 kg * 1 ton/2000 lb CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate*GWP Factor + CH₄ Emission Rate*GWP Factor
 Unit:
 3a

 Description:
 Gas Tech dehydrator with condenser & BTEX buster

 3a
 Glycol Dehydrator(Still Vent and FlashTank)

Control Equipment: ECD (Unit ECD) to control dehydrator regenerator. ECD and reboiler (Unit 3b) to control flash tank emissions Gas Tech

	NO _x	со	VOC	SO ₂	H₂s	PM		
Regenerator-unit 3a	-	-	56.35	-	0.037	-	lb/hr	GRI-GLYCalc (uncontrolled regenerator emissions
Flash tank-unit 3a	-	-	17.30	-	3.60E-03	-	lb/hr	GRI-GLYCalc (flash tank off gas)
Total	-	-	73.65	-	0.041	-	lb/hr	
	-	-	322.57	-	0.18	-	tpy	
	n-Hexane	Benzene	Toluene	Xylenes	Total HAPs	_		
	1.14	7.30	8.14	2.53	19.1	lb/hr		YCalc (Regenerator - 3a)
-	0.21	0.038	0.027	0.0030	0.28	lb/hr	GRI-GL	YCalc (Flash tank-3a "off gas")
	1.4	7.3	8.2	2.5	19.4	lb/hr		
	5.9	32.1	35.8	11.1	84.9	tpy		
-	s - Glycol Dehy NO _x BTEX still vent 6	со	VOC nt to the ECD for	SO ₂ ¹ combustion. Er	H ₂ S ¹ missions are repl	PM resented at	t lb/hr	
	NO _x BTEX still vent e	CO emissions are ser ors are sent to th	nt to the ECD for ECD. e ECD for combu	combustion. Er	nissions are repr Reboiler (Unit 3	resented a		GRI-GLYCalc (uncontrolled regenerator emissions GRI-GLYCalc (flash tank off gas)
Regenerator-unit 3a Flash tank-unit 3a	NO _x BTEX still vent e	CO emissions are ser ors are sent to th	nt to the ECD for ECD.	combustion. Er	nissions are repr Reboiler (Unit 3	resented at	lb/hr	, s
Regenerator-unit 3a	NO _x BTEX still vent e	CO emissions are ser ors are sent to th	nt to the ECD for ECD. e ECD for combu	combustion. Er	nissions are repr Reboiler (Unit 3	resented a		, s
Regenerator-unit 3a Flash tank-unit 3a	NO _x BTEX still vent o Flash tank vapo - - n-Hexane	CO emissions are ser ors are sent to th Emissio - - Benzene	nt to the ECD for ECD. e ECD for combu ons are represent - - Toluene	combustion. Er ustion, or to the ted at those unit Xylenes	nissions are repr Reboiler (Unit 3 ts. - - Total HAPs	resented at	lb/hr	GRI-GLYCalc (uncontrolled regenerator emissions GRI-GLYCalc (flash tank off gas)
Regenerator-unit 3a Flash tank-unit 3a	NO _x BTEX still vent o Flash tank vapo - - n-Hexane	CO emissions are sen ors are sent to th Emissio - - Benzene t emissions are s	nt to the ECD for ECD. e ECD for combu ons are represent	combustion. Er ustion, or to the ted at those uni	nissions are repr Reboiler (Unit 3 ts. - - Total HAPs	resented at	lb/hr lb/hr tpy	
Regenerator-unit 3a Flash tank-unit 3a Total	NO. BTEX still vent of Flash tank vapo - - - BTEX still ven Flash tank vap	CO emissions are sen ors are sent to th Emissio - Benzene t emissions are s re ors are sent to th	nt to the ECD for ECD. e ECD for combu- ons are represent - - Toluene sent to the ECD f	combustion. Er ustion, or to the ted at those uni	Reboiler (Unit 3 ts. - - - - - - - - - - - - - - - - - - -	resented al b) for fuel. - -	lb/hr lb/hr tpy GRI-GL	GRI-GLYCalc (flash tank off gas)
Regenerator-unit 3a Flash tank-unit 3a Total Regenerator-unit 3a	NO. BTEX still vent of Flash tank vapo - - - BTEX still ven Flash tank vap	CO emissions are sen ors are sent to th Emissio - Benzene t emissions are s re ors are sent to th	nt to the ECD for ECD. e ECD for combu- ons are represent - - Toluene sent to the ECD for presented at ECI ne ECD for comb	combustion. Er ustion, or to the ted at those uni	Reboiler (Unit 3 ts. - - - - - - - - - - - - - - - - - - -	resented a b) for fuel. - - Ib/hr	lb/hr lb/hr tpy GRI-GL	GRI-GLYCalc (flash tank off gas) YCalc (Regenerator - 3a)

 Control Equipment:
 Controls flash tank vapors from dehy (Unit 3a), along with the ECD (Unit ECD)

 Manufacturer:
 Gas Tech

Reboiler Emissions

de a lla se Escal I la a sea										
boiler Fuel Usage		MANDL	To set based under							
el Consumption	3.0 200	MMBtu/hr	Input heat rate							
roughput el heat value	1034	MMscf/d Btu/scf	Throughput	fuel and						
urly fuel usage	2.90	Mscf/hr	Nominal LHV of Fuel usage	ruer gas						
nual fuel usage	25.42	MMscf/yr	Annual usage							
erating hours	8760	hr/yr								
ash Tank Usage										
	759	scf/hr		lash tank off ga		o Fuel Inlet)				
w to Reboiler	100%			t to the reboiler						
	0.76	Mscf/hr	Total fuel route	d to Reboiler (fla	ash tank off gas	not combusted	by ECD)			
	NO _x	со	voc	SO ₂ ¹	H ₂ S ¹	PM				
Reboiler-unit 3b	100	84	5.5			7.6	lb/MMscf	Unit emission	rates from	AP-42 Table 1.4-1 & 2 (Assuming average NG
	101.4	85.2	5.6			7.7	lb/MMscf	Adjusted emi	sion facto	r: EF X (Fuel Heat Value/1,020 Btu/scf)
				0.041	1.04E-03		lb/hr			
Total	0.29	0.25	0.016	0.041	1.04E-03	0.022	lb/hr	lb/MMscf * (1	1scf/hr / 1	000 Mscf/1 MMscf)
. orai	1.29	1.08	0.07	0.18	4.54E-03	0.10	tpy			,
		2.00	0.07	0.20		0.20				
	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	нсно	Acetaldehvde	Total HAPs		
-	0.0092	0.0049	0.0067	0.0139	0.0087	0.0055	0.0048		tpy	GRI-HAPCalc (Reboiler-3b)
Total	2.10E-03	1.12E-03	1.53E-03	3.17E-03	1.99E-03	1.26E-03	1.10E-03	0.022	lb/hr	
. otai	9.20E-03	4.90E-03	6.70E-03	0.014	8.70E-03	5.50E-03	4.80E-03		tpy	
			0.702 00	0.011	0.702 00	0.002 00		0.000	ч р /	
IG Calculations										
	CO23	N_2O^3	CH ₄ ³	CO ₂ e ³	_					
	53.06	0.0001	0.001		kg/MMBtu	40 CFR 98 Sul	opart C Tables C	-1 and C-2		
	1	298	25		GWP	40 CFR 98 Tal	ole A-1			
	<u>1537.07</u>	<u>0.0029</u>	<u>0.029</u>		tpy					
			19.8			GRI-GLYCalc (flash tank off ga	s)		
			-			GRI-GLYCalc (flash tank off ga	s, Routed to F	uel)	
	1537.1	0.86	0.72	1538.7	tpy CO ₂ e		-			
3		CO. km/ Emi!-	n Daka - EE* Evel	Hence * Eucl. U	at Value * 2.20	460 lb/1 ka * 1	an/2000 lb			
			n Rate= EF* Fuel							
			n Rate= EF* Fuel Emission Rate +					r		
haust Parameters	CO ₂ e tpy Emis	sion Rate = CO_2	Emission Rate +					r		
t haust Parameters Pat Rate:	CO ₂ e tpy Emis	sion Rate = CO ₂	Emission Rate + 0 MBtu/hr					r		
haust Parameters at Rate: naust temp (Tstk):	CO ₂ e tpy Emis	sion Rate = CO ₂ 300 80	Emission Rate + 0 MBtu/hr 0 °F					r		
haust Parameters at Rate: naust temp (Tstk): e Elevation:	CO ₂ e tpy Emis	sion Rate = CO ₂ 300 80 306	Emission Rate + 0 MBtu/hr 0 °F 0 ft MSL	N ₂ O Emission Ra	ite*GWP Factor			r		
haust Parameters at Rate: haust temp (Tstk): e Elevation:	CO ₂ e tpy Emis	sion Rate = CO ₂ 300 80 306	Emission Rate + 0 MBtu/hr 0 °F		ite*GWP Factor			r		
haust Parameters at Rate: haust temp (Tstk): e Elevation: bient pressure (Pstk	CO ₂ e tpy Emis	sion Rate = CO ₂ 300 80 306 26.7	Emission Rate + 0 MBtu/hr 0 °F 0 ft MSL	N ₂ O Emission Ra	ed on elevation			r		
haust Parameters at Rate:	CO ₂ e tpy Emis	sion Rate = CO ₂ 300 80 306 26.7 1061	Emission Rate + 0 MBtu/hr 0 °F 0 ft MSL 3 in. Hg	N ₂ O Emission Ra Calculated base 40 CFR 60 App	ed on elevation	+CH₄ Emission F		r		
haust Parameters at Rate: aust temp (Tstk): Elevation: blent pressure (Pstk actor: aust flow	CO ₂ e tpy Emis	sion Rate = CO ₂ 300 306 26.7 1061 530.	Emission Rate + 0 MBtu/hr 0 °F 0 ft MSL 3 in. Hg 0 wscf/MMBtu	N ₂ O Emission Ra Calculated base 40 CFR 60 App Calculated fron	ed on elevation A Method 19 Factor and he	+CH₄ Emission F	Rate*GWP Facto			
haust Parameters at Rate: laust temp (Tstk): e Elevation: bient pressure (Pstk actor: laust flow:	CO ₂ e tpy Emis	sion Rate = CO ₂ 300 80 306 26.7 1061 530. 1438.	Emission Rate + 0 MBtu/hr 0 °F 0 ft MSL 3 in. Hg 0 wscf/MMBtu 5 scfm	N ₂ O Emission Ra Calculated base 40 CFR 60 App Calculated fron	etd on elevation x A Method 19 h F factor and he stk)*(Tstk/Tstd),	+CH ₄ Emission F	Rate*GWP Facto			
haust Parameters at Rate: naust temp (Tstk): e Elevation: bient pressure (Pstk actor: naust flow: ck diameter:	CO ₂ e tpy Emis	sion Rate = CO ₂ 300 80 26.7 1061 530. 1438. 1.3	Emission Rate + 1 0 MBtu/hr 0 °F 0 ft MSL 3 in. Hg 0 wscf/MMBtu 5 scfm 6 acfm	Calculated base 40 CFR 60 App Calculated fron scfm * (Pstd/Ps	ed on elevation x A Method 19 b F factor and he stth>(Tstk/Tstd), timate	+CH ₄ Emission F	Rate*GWP Facto			
haust Parameters at Rate: naust temp (Tstk): e Elevation: bient pressure (Pstk actor:	CO ₂ e tpy Emis	sion Rate = CO ₂ 300 80 306 26.7 1061 530. 1438. 1.3 3	Emission Rate + 0 MBtu/hr 0 °F 0 ft MSL 3 in. Hg 0 wscf/MMBtu 5 scfm 6 acfm 3 ft 5 ft	N ₂ O Emission Ra Calculated base 40 CFR 60 App Calculated fron scfm * (Pstd/P: Engineering es	ed on elevation x A Method 19 n F factor and he stk)*(Tstk/Tstd), timate timate	+CH ₄ Emission F	Rate*GWP Facto			
haust Parameters at Rate: laust temp (Tstk): Elevation: bient pressure (Pstk letor: aust flow laust flow ck diameter: ck height:	CO ₂ e tpy Emis	sion Rate = CO ₂ 300 80 306 26.7 1061 530. 1438. 1.3 3	Emission Rate + 1 0 MBtu/hr 0 °F 0 ft MSL 3 in. Hg 0 wscf/MMBtu 5 scfm 6 acfm 3 ft	Calculated base 40 CFR 60 App Calculated from scfm * (Pstd/P) Engineering es Engineering es	ed on elevation x A Method 19 n F factor and he stk)*(Tstk/Tstd), timate timate	+CH ₄ Emission F	Rate*GWP Facto			

Standard Pressure 29.92 ir	MSL Hg hg Hess, Introduction to Theoretical Meteorology, eqn. 6.8
----------------------------	--

Unit:	TK-1000
Description:	Slop Tank from Compression

Tank Throughput

226 bbl/day	bbl/yr / 365 day/yr
82,381 bbl/yr	Maximum Throughput
3,459,993 gal/yr	bbl/yr * 42 gal/bbl

Promax Emissions Report Annual Emissions

	Working Losses	Breathing Losses	Flashing Losses	Total Losses
Components	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr) ¹
Hydrogen Sulfide				
Nitrogen	4.50E-6	1.44E-6	0.01	0.01
Carbon Dioxide	0.02	0.01	0.58	0.61
Methane	1.16E-3	3.72E-4	1.03	1.03
Ethane	7.96E-4	2.55E-4	0.62	0.62
Propane	6.92E-5	2.22E-5	0.31	0.31
i-Butane	1.66E-6	5.32E-7	0.03	0.03
n-Butane	4.30E-6	1.38E-6	0.09	0.05
2,2-Dimethylpropane	2.39E-9	7.66E-10	1.50E-4	1.50E-4
i-Pentane	1.64E-7	5.25E-8	0.01	0.01
n-Pentane	2.06E-8	6.59E-9	0.01	0.01
2,2-Dimethylbutane	9.32E-11	2.99E-11	4.09E-5	4.09E-5
Cyclopentane				
2,3-Dimethylbutane	2.41E-9	7.74E-10	5.66E-4	5.66E-4
2-Methylpentane	2.12E-9	6.80E-10	1.01E-3	1.01E-3
3-Methylpentane	5.41E-9	1.73E-9	1.20E-3	1.20E-3
n-Hexane	5.71E-10	1.83E-10	7.66E-4	7.66E-4
Methylcyclopentane	5.26E-9	1.69E-9	9.57E-4	9.57E-4
Benzene	1.84E-5	5.91E-6	0.06	0.06
Cyclohexane	1.33E-8	4.27E-9	1.49E-3	1.49E-3
2-Methylhexane	3.12E-11	9.99E-12	7.40E-5	7.40E-5
3-Methylhexane				
2,2,4-Trimethylpentane	2.97E-11	9.52E-12	1.12E-4	1.12E-4
n-Heptane	2.48E-11	7.95E-12	1.56E-4	1.56E-4
Methylcyclohexane	6.88E-10	2.20E-10	3.85E-4	3.85E-4
Toluene	1.16E-6	3.71E-7	0.02	0.02
n-Octane	7.42E-14	2.38E-14	3.98E-6	3.98E-6
Ethylbenzene m-Xylene	1.09E-8 1.15E-9	3.50E-9 3.70E-10	5.44E-4 1.00E-4	5.44E-4 1.00E-4
p-Xylene	1.15E-9	5.70E-10	1.00E-4 	1.00E-4
o-Xylene	3.80E-8	1.22E-8	1.85E-3	1.85E-3
n-Nonane	2.71E-15	8.67E-16	5.59E-7	5.59E-7
n-Decane	6.01E-18	1.93E-18	1.51E-8	1.51E-8
n-Undecane				
Saftey Factor	25%	25%	25%	
Total VOC	1.19E-4	3.81E-5	0.67	0.67
Total HAP	2.46E-5	7.87E-6	0.10	0.10

Venting VOC Emissions

Unit:	T-006
Description:	Slop Water Tank from 3-Phase Separator and Dehy

Tank Throughput

33 bbl/day	bbl/yr / 365 day/yr
12,000 bbl/yr	Maximum Throughput
504,000 gal/yr	bbl/yr * 42 gal/bbl

Promax Emissions Report

Annual	Emissions

	Working Losses	Breathing Losses	Total Losses
Components	(ton/yr)	(ton/yr)	(ton/yr) ¹
Hydrogen Sulfide	3.28692E-05	1.89576E-05	5.18268E-05
Nitrogen	1.10618E-05	6.38002E-06	1.74418E-05
Carbon Dioxide	0.002045151	0.001179563	0.003224714
Methane	0.000521325	0.00030068	0.000822004
Ethane	0.00410824	0.002369471	0.006477712
Propane	0.009757611	0.005627806	0.015385417
i-Butane	0.001901042	0.001096446	0.002997489
n-Butane	0.00583467	0.003365208	0.009199879
2,2-Dimethylpropane	0	0	0
i-Pentane	0.001544366	0.00089073	0.002435096
n-Pentane	0.001627716	0.000938803	0.002566519
2,2-Dimethylbutane	0.001027710	0.000950005	0.002500515
	0	0	0
Cyclopentane	0	-	0
2,3-Dimethylbutane	5	0	ů, s
2-Methylpentane	0	0	0
3-Methylpentane	0	0	0
n-Hexane	0.000416481	0.00024021	0.00065669
Methylcyclopentane	0	0	0
Benzene	0.002117181	0.001221107	0.003338287
Cyclohexane	0.000822733	0.00047452	0.001297252
2-Methylhexane	0	0	0
3-Methylhexane	0	0	0
2,2,4-Trimethylpentane	0	0	0
n-Heptane	0.000369694	0.000213225	0.000582919
Methylcyclohexane	0.000511008	0.000294729	0.000805737
Toluene	0.00118465	0.00068326	0.00186791
n-Octane	0.000519775	0.000299786	0.000819561
Ethylbenzene	6.81112E-08	3.92839E-08	1.07395E-07
m-Xylene	0.000140878	8.12527E-05	0.00022213
p-Xylene	0	0	0
o-Xylene	0	0	0
n-Nonane	0	0	0
n-Decane	0	0	0
n-Undecane	0	0	0
Saftey Factor	100%	100%	100%
Total VOC	0.0535	0.0309	0.0843
Total HAP	7.72E-03	4.45E-03	1.22E-02

¹ Emissions are assumed to be 1% condensate.

Venting VOC Emissions

Unit:	T-007
Description:	Slop Water Tank from 3-Phase Separator and Dehy

Tank Throughput

226 bbl/day	bbl/yr / 365 day/yr
82,381 bbl/yr	Maximum Throughput
3,459,993 gal/yr	bbl/yr * 42 gal/bbl

Hydrogen Sulfide Nitrogen 4.50E-6 1.44E-6 0.01 0.58 Methane 1.16E-3 3.72E-4 1.03 Ethane Ethane 7.96E-4 2.55E-4 0.62 Propane n-Butane 1.66E-6 5.32E-7 0.03 n-Butane n-Butane 1.66E-6 5.32E-7 0.03 n-Butane 2,2-Dimethylpropane 2.39E-9 7.66E-10 1.50E-4 1 n-Pentane 1.64E-7 5.25E-8 0.01 n-Pentane 1.64E-7 2,2-Dimethylpropane 2.03E-91 4.09E-5 4 Cyclopentane 2,2-Dimethylbutane 9.32E-11 2.99E-11 4.09E-5 4 Cyclopentane 2,3-Dimethylbutane 2.12E-9 6.80E-10 1.01E-3 1 3-Methylpentane 5.71E-10 1.83E-10 7.66E-4 7 Methylcyclopentane 5.26E-9 1.69E-9 9.57	. .	Working Losses	Breathing Losses	Flashing Losses	Total Losse
Nitrogen 4.50E-6 1.44E-6 0.01 Carbon Dioxide 0.02 0.01 0.58 Methane 1.16E-3 3.72E-4 1.03 Ethane 7.96E-4 2.55E-4 0.62 Propane 6.92E-5 2.22E-5 0.31 i-Butane 1.66E-6 5.32E-7 0.03 n-Butane 4.30E-6 1.38E-6 0.09 2,2-Dimethylpropane 2.39E-9 7.66E-10 1.50E-4 1 i-Pentane 1.64E-7 5.25E-8 0.01 0.9 2,2-Dimethylpropane 2.39E-9 7.66E-10 1.50E-4 1 i-Pentane 1.64E-7 5.25E-8 0.01 0.9 2,2-Dimethylbutane 9.32E-11 2.99E-11 4.09E-5 4 Cyclopentane 2,3-Dimethylbutane 2.12E-9 6.80E-10 1.01E-3 1 3-Methylpentane 5.21E-10 1.83E-10 7.66E-4 7 Benzene 1.84E-5	Components	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr) ¹
Carbon Dioxide 0.02 0.01 0.58 Methane 1.16E-3 3.72E-4 1.03 Ethane 7.96E-4 2.55E-4 0.62 Propane 6.92E-5 2.22E-5 0.31 i-Butane 1.66E-6 5.32E-7 0.03 n-Butane 4.30E-6 1.38E-6 0.09 2,2-Dimethylpropane 2.39E-9 7.66E-10 1.50E-4 1 i-Pentane 1.64E-7 5.25E-8 0.01 1 i-Pentane 2.06E-8 6.59E-9 0.01 2 2-Dimethylpropane 2.32E-11 2.99E-11 4.09E-5 4 Cyclopentane	Hydrogen Sulfide				
Methane 1.16E-3 3.72E-4 1.03 Ethane 7.96E-4 2.55E-4 0.62 Propane 6.92E-5 2.22E-5 0.31 i-Butane 1.66E-6 5.32E-7 0.03 n-Butane 4.30E-6 1.38E-6 0.09 2,2-Dimethylpropane 2.39E-9 7.66E-10 1.50E-4 1 i-Pentane 1.64E-7 5.25E-8 0.01 1 n-Pentane 2.06E-8 6.59E-9 0.01 1 2,2-Dimethylbutane 9.32E-11 2.99E-11 4.09E-5 4 Cyclopentane 2,3-Dimethylbutane 2.41E-9 7.74E-10 5.66E-4 5 2-Methylpentane 5.71E-10 1.83E-10 7.66E-4 7 Methylcyclopentane 5.26E-9 1.69E-9 9.57E-4 9 Benzene 1.84E-5 5.91E-6 0.06 Cyclohexane 1.33E-8 4.27E-9 1.49E-3 1 2.Methy	•		1.44E-6		0.01
Ethane 7.96E-4 2.55E-4 0.62 Propane 6.92E-5 2.22E-5 0.31 i-Butane 1.66E-6 5.32E-7 0.03 n-Butane 4.30E-6 1.38E-6 0.09 2,2-Dimethylpropane 2.39E-9 7.66E-10 1.50E-4 1 i-Pentane 1.64E-7 5.25E-8 0.01 1 n-Pentane 2.06E-8 6.59E-9 0.01 1 2,2-Dimethylbutane 9.32E-11 2.99E-11 4.09E-5 4 Cyclopentane 2,3-Dimethylbutane 2.41E-9 7.74E-10 5.66E-4 5 2 2-Methylpentane 5.71E-10 1.83E-10 7.66E-4 7 n-Hexane 5.71E-10 1.83E-10 7.66E-4 7 Methylcyclopentane 5.26E-9 1.69E-9 9.57E-4 9 Benzene 1.84E-5 5.91E-6 0.06	Carbon Dioxide	0.02	0.01	0.58	0.61
Propane 6.92E-5 2.22E-5 0.31 i-Butane 1.66E-6 5.32E-7 0.03 n-Butane 4.30E-6 1.38E-6 0.09 2,2-Dimethylpropane 2.39E-9 7.66E-10 1.50E-4 1 i-Pentane 1.64E-7 5.25E-8 0.01 1 n-Pentane 2.06E-8 6.59E-9 0.01 1 2,2-Dimethylbutane 9.32E-11 2.99E-11 4.09E-5 4 Cyclopentane 2,3-Dimethylbutane 2.41E-9 7.74E-10 5.66E-4 5 5 2-Methylpentane 5.71E-10 1.83E-10 7.66E-4 7 Methylcyclopentane 5.26E-9 1.69E-9 9.57E-4 9 Benzene 1.84E-5 5.91E-6 0.06 Cyclohexane 1.33E-8 4.27E-9 1.49E-3 1 2-Methylhexane 2.44E-11 7.95E-12 1.12E-4	Methane	1.16E-3	3.72E-4	1.03	1.03
i-Butane 1.66E-6 5.32E-7 0.03 n-Butane 4.30E-6 1.38E-6 0.09 2,2-Dimethylpropane 2.39E-9 7.66E-10 1.50E-4 1 i-Pentane 1.64E-7 5.25E-8 0.01 1 n-Pentane 2.06E-8 6.59E-9 0.01 1 2,2-Dimethylbutane 9.32E-11 2.99E-11 4.09E-5 4 Cyclopentane 2,3-Dimethylbutane 2.41E-9 7.74E-10 5.66E-4 5 5 2-Methylpentane 5.41E-9 1.73E-9 1.20E-3 1 n-Hexane 5.71E-10 1.83E-10 7.66E-4 7 Methylcyclopentane 5.26E-9 1.69E-9 9.57E-4 9 Benzene 1.84E-5 5.91E-6 0.06	Ethane	7.96E-4	2.55E-4	0.62	0.62
i-Butane 1.66E-6 5.32E-7 0.03 n-Butane 4.30E-6 1.38E-6 0.09 2,2-Dimethylpropane 2.39E-9 7.66E-10 1.50E-4 1 i-Pentane 1.64E-7 5.25E-8 0.01 1 n-Pentane 2.06E-8 6.59E-9 0.01 1 2,2-Dimethylbutane 9.32E-11 2.99E-11 4.09E-5 4 Cyclopentane 2.3-Dimethylbutane 2.41E-9 7.74E-10 5.66E-4 5 2-Methylpentane 5.41E-9 1.73E-9 1.20E-3 1 1 3-Methylpentane 5.26E-9 1.69E-9 9.57E-4 9 9 Benzene 1.84E-5 5.91E-6 0.06 2.2,4-Trimethylpentane 2.97E-11 9.99E-12 7.40E-5 7 3- 2.41E-9 1.33E-8 4.27E-9 1.49E-3 1 1 2.2,4-Trimethylpentane 2.97E-11 9.52E-12 1.12E-4	Propane	6.92E-5	2.22E-5	0.31	0.31
n-Butane 4.30E-6 1.38E-6 0.09 2,2-Dimethylpropane 2.39E-9 7.66E-10 1.50E-4 1 i-Pentane 1.64E-7 5.25E-8 0.01 1 n-Pentane 2.06E-8 6.59E-9 0.01 1 2,2-Dimethylbutane 9.32E-11 2.99E-11 4.09E-5 4 Cyclopentane 2,3-Dimethylbutane 2.41E-9 7.74E-10 5.66E-4 5 2 2-Methylpentane 5.41E-9 1.73E-9 1.20E-3 1 n-Hexane 5.71E-10 1.83E-10 7.66E-4 7 Methylcyclopentane 5.26E-9 1.69E-9 9.57E-4 9 Benzene 1.84E-5 5.91E-6 0.06	•	1.66E-6	5.32E-7	0.03	0.03
2,2-Dimethylpropane 2.39E-9 7.66E-10 1.50E-4 1 i-Pentane 1.64E-7 5.25E-8 0.01 1 n-Pentane 2.06E-8 6.59E-9 0.01 1 2,2-Dimethylbutane 9.32E-11 2.99E-11 4.09E-5 4 Cyclopentane 2,3-Dimethylbutane 2.41E-9 7.74E-10 5.66E-4 5 2 2-Methylpentane 5.41E-9 1.73E-9 1.20E-3 1 n-Hexane 5.71E-10 1.83E-10 7.66E-4 7 Methylcyclopentane 5.26E-9 1.69E-9 9.57E-4 9 Benzene 1.84E-5 5.91E-6 0.06 6 Cyclohexane 1.33E-8 4.27E-9 1.49E-3 1 2-Methylpentane 2.97E-11 9.92E-12 7.40E-5 7 3-Methylpentane 2.97E-11 9.52E-12 1.12E-4 1 n-Heptane 2.48E-11 7.95E-12 1.56E-4 3 <					0.09
i-Pentane 1.64E-7 5.25E-8 0.01 n-Pentane 2.06E-8 6.59E-9 0.01 2,2-Dimethylbutane 9.32E-11 2.99E-11 4.09E-5 4 Cyclopentane 2,3-Dimethylbutane 2.41E-9 7.74E-10 5.66E-4 5 2-Methylpentane 2.12E-9 6.80E-10 1.01E-3 1 3-Methylpentane 5.41E-9 1.73E-9 1.20E-3 1 n-Hexane 5.71E-10 1.83E-10 7.66E-4 7 Methylcyclopentane 5.26E-9 1.69E-9 9.57E-4 9 Benzene 1.84E-5 5.91E-6 0.06					1.50E-4
n-Pentane 2.06E-8 6.59E-9 0.01 2,2-Dimethylbutane 9.32E-11 2.99E-11 4.09E-5 4 Cyclopentane 2,3-Dimethylbutane 2.41E-9 7.74E-10 5.66E-4 5 2-Methylpentane 2.12E-9 6.80E-10 1.01E-3 1 3-Methylpentane 5.41E-9 1.73E-9 1.20E-3 1 n-Hexane 5.71E-10 1.83E-10 7.66E-4 7 Methylcyclopentane 5.26E-9 1.69E-9 9.57E-4 9 Benzene 1.84E-5 5.91E-6 0.06					0.01
2,2-Dimethylbutane 9.32E-11 2.99E-11 4.09E-5 4 Cyclopentane		-			
Cyclopentane 2,3-Dimethylbutane 2.41E-9 7.74E-10 5.66E-4 5 2-Methylpentane 2.12E-9 6.80E-10 1.01E-3 1 3-Methylpentane 5.41E-9 1.73E-9 1.20E-3 1 n-Hexane 5.71E-10 1.83E-10 7.66E-4 7 Methylcyclopentane 5.26E-9 1.69E-9 9.57E-4 9 Benzene 1.84E-5 5.91E-6 0.06 0 Cyclohexane 1.33E-8 4.27E-9 1.49E-3 1 2-Methylhexane 3.12E-11 9.99E-12 7.40E-5 7 3-Methylpentane 2.97E-11 9.52E-12 1.12E-4 1 n-Heptane 2.48E-11 7.95E-12 1.56E-4 1 n-Heptane 2.48E-11 7.95E-12 1.56E-4 3 Toluene 1.16E-6 3.71E-7 0.02 - n-Octane 7.42E-14 2.38E-14 3.98E-6 33 Ethylbenzene 1.09E-8					0.01
2,3-Dimethylbutane 2.41E-9 7.74E-10 5.66E-4 5 2-Methylpentane 2.12E-9 6.80E-10 1.01E-3 1 3-Methylpentane 5.41E-9 1.73E-9 1.20E-3 1 n-Hexane 5.71E-10 1.83E-10 7.66E-4 7 Methylcyclopentane 5.26E-9 1.69E-9 9.57E-4 9 Benzene 1.84E-5 5.91E-6 0.06 7 Cyclohexane 1.33E-8 4.27E-9 1.49E-3 1 2-Methylhexane 3.12E-11 9.99E-12 7.40E-5 7 3-Methylhexane 2,2,4-Trimethylpentane 2.97E-11 9.52E-12 1.12E-4 1 n-Heptane 2.48E-10 2.20E-10 3.85E-4 33 Toluene 1.16E-6 3.71E-7 0.02 n-Octane 7.42E-14 2.38E-14 3.98E-6 33 Ethylbenzene 1.09E-8 3.50E-9 5.44E-4 55			2.99E-11	4.09E-5	4.09E-5
2-Methylpentane 2.12E-9 6.80E-10 1.01E-3 1 3-Methylpentane 5.41E-9 1.73E-9 1.20E-3 1 n-Hexane 5.71E-10 1.83E-10 7.66E-4 7 Methylcyclopentane 5.26E-9 1.69E-9 9.57E-4 9 Benzene 1.84E-5 5.91E-6 0.06 7 Cyclohexane 1.33E-8 4.27E-9 1.49E-3 1 2-Methylhexane 3.12E-11 9.99E-12 7.40E-5 7 3-Methylhexane 2,2,4-Trimethylpentane 2.97E-11 9.52E-12 1.12E-4 1 n-Heptane 2.48E-11 7.95E-12 1.56E-4 1 Methylcyclohexane 6.88E-10 2.20E-10 3.85E-4 3 Toluene 1.16E-6 3.71E-7 0.02 n-Octane 7.42E-14 2.38E-14 3.98E-6 33 Ethylbenzene 1.09E-8 3.50E-9 5.44E-4 55					
3-Methylpentane 5.41E-9 1.73E-9 1.20E-3 1 n-Hexane 5.71E-10 1.83E-10 7.66E-4 7 Methylcyclopentane 5.26E-9 1.69E-9 9.57E-4 9 Benzene 1.84E-5 5.91E-6 0.06 7 Cyclohexane 1.33E-8 4.27E-9 1.49E-3 1 2-Methylhexane 3.12E-11 9.99E-12 7.40E-5 7 3-Methylhexane 2,2,4-Trimethylpentane 2.97E-11 9.52E-12 1.12E-4 1 n-Heptane 2.48E-11 7.95E-12 1.56E-4 1 Methylcyclohexane 6.88E-10 2.20E-10 3.85E-4 3 Toluene 1.16E-6 3.71E-7 0.02 n-Octane 7.42E-14 2.38E-14 3.98E-6 3 Ethylbenzene 1.09E-8 3.50E-9 5.44E-4 5 m-Xylene p-Xylene	2,3-Dimethylbutane	2.41E-9	7.74E-10	5.66E-4	5.66E-4
n-Hexane 5.71E-10 1.83E-10 7.66E-4 7 Methylcyclopentane 5.26E-9 1.69E-9 9.57E-4 9 Benzene 1.84E-5 5.91E-6 0.06 9 Cyclohexane 1.33E-8 4.27E-9 1.49E-3 1 2-Methylhexane 3.12E-11 9.99E-12 7.40E-5 7 3-Methylhexane 9 2.2,4-Trimethylpentane 2.97E-11 9.52E-12 1.12E-4 1 n-Heptane 2.48E-11 7.95E-12 1.56E-4 1 Methylcyclohexane 6.88E-10 2.20E-10 3.85E-4 33 Toluene 1.16E-6 3.71E-7 0.02 n-Octane 7.42E-14 2.38E-14 3.98E-6 33 33 Ethylbenzene 1.09E-8 3.50E-9 5.44E-4 55 m-Xylene 1.15E-9 3.70E-10 1.00E-4 1 1 p-Xylene <	2-Methylpentane	2.12E-9	6.80E-10	1.01E-3	1.01E-3
Methylcyclopentane 5.26E-9 1.69E-9 9.57E-4 9 Benzene 1.84E-5 5.91E-6 0.06 1.49E-3 1 2-Methylhexane 3.12E-11 9.99E-12 7.40E-5 7 3-Methylhexane 2 2,2,4-Trimethylpentane 2.97E-11 9.52E-12 1.12E-4 1 n-Heptane 2.48E-11 7.95E-12 1.56E-4 1 Methylcyclohexane 6.88E-10 2.20E-10 3.85E-4 3 Toluene 1.16E-6 3.71E-7 0.02 m-Octane 7.42E-14 2.38E-14 3.98E-6 33 Ethylbenzene 1.09E-8 3.50E-9 5.44E-4 55 m-Xylene p-Xylene n-Xylene 3.80E-8 1.22E-8 1.85E-3 1 1 n-Nonane 2.71E-15 8.67E-16 5.	3-Methylpentane	5.41E-9	1.73E-9	1.20E-3	1.20E-3
Benzene 1.84E-5 5.91E-6 0.06 Cyclohexane 1.33E-8 4.27E-9 1.49E-3 1 2-Methylhexane 3.12E-11 9.99E-12 7.40E-5 7 3-Methylhexane 2,2,4-Trimethylpentane 2.97E-11 9.52E-12 1.12E-4 1 n-Heptane 2.48E-11 7.95E-12 1.56E-4 1 Methylcyclohexane 6.88E-10 2.20E-10 3.85E-4 3 Toluene 1.16E-6 3.71E-7 0.02 n-Octane 7.42E-14 2.38E-14 3.98E-6 33 Ethylbenzene 1.09E-8 3.50E-9 5.44E-4 55 m-Xylene 1.15E-9 3.70E-10 1.00E-4 1 p-Xylene o-Xylene 3.80E-8 1.22E-8 1.85E-3 1 1 n-Nonane 2.71E-15 8.67E-16 5.59E-7 5 <td>n-Hexane</td> <td>5.71E-10</td> <td>1.83E-10</td> <td>7.66E-4</td> <td>7.66E-4</td>	n-Hexane	5.71E-10	1.83E-10	7.66E-4	7.66E-4
Cyclohexane 1.33E-8 4.27E-9 1.49E-3 1 2-Methylhexane 3.12E-11 9.99E-12 7.40E-5 7 3-Methylhexane 2,2,4-Trimethylpentane 2.97E-11 9.52E-12 1.12E-4 1 n-Heptane 2.48E-11 7.95E-12 1.56E-4 1 Methylcyclohexane 6.88E-10 2.20E-10 3.85E-4 3 Toluene 1.16E-6 3.71E-7 0.02 n-Octane 7.42E-14 2.38E-14 3.98E-6 3 Ethylbenzene 1.09E-8 3.50E-9 5.44E-4 5 m-Xylene 1.15E-9 3.70E-10 1.00E-4 1 p-Xylene o-Xylene 3.80E-8 1.22E-8 1.85E-3 1 n-Nonane 2.71E-15 8.67E-16 5.59E-7 5	Methylcyclopentane	5.26E-9	1.69E-9	9.57E-4	9.57E-4
Cyclohexane 1.33E-8 4.27E-9 1.49E-3 1 2-Methylhexane 3.12E-11 9.99E-12 7.40E-5 7 3-Methylhexane 2,2,4-Trimethylpentane 2.97E-11 9.52E-12 1.12E-4 1 n-Heptane 2.48E-11 7.95E-12 1.56E-4 1 Methylcyclohexane 6.88E-10 2.20E-10 3.85E-4 3 Toluene 1.16E-6 3.71E-7 0.02 n-Octane 7.42E-14 2.38E-14 3.98E-6 3 Ethylbenzene 1.09E-8 3.50E-9 5.44E-4 5 m-Xylene 1.15E-9 3.70E-10 1.00E-4 1 p-Xylene o-Xylene 3.80E-8 1.22E-8 1.85E-3 1 n-Nonane 2.71E-15 8.67E-16 5.59E-7 5		1.84E-5	5.91E-6	0.06	0.06
2-Methylhexane 3.12E-11 9.99E-12 7.40E-5 7 3-Methylhexane </td <td></td> <td></td> <td></td> <td></td> <td>1.49E-3</td>					1.49E-3
3-Methylhexane 2,2,4-Trimethylpentane 2.97E-11 9.52E-12 1.12E-4 1 n-Heptane 2.48E-11 7.95E-12 1.56E-4 1 Methylcyclohexane 6.88E-10 2.20E-10 3.85E-4 3 Toluene 1.16E-6 3.71E-7 0.02 n-Octane 7.42E-14 2.38E-14 3.98E-6 3 Ethylbenzene 1.09E-8 3.50E-9 5.44E-4 5 m-Xylene 1.15E-9 3.70E-10 1.00E-4 1 p-Xylene o-Xylene 3.80E-8 1.22E-8 1.85E-3 1 n-Nonane 2.71E-15 8.67E-16 5.59E-7 5	/		-		7.40E-5
n-Heptane 2.48E-11 7.95E-12 1.56E-4 1 Methylcyclohexane 6.88E-10 2.20E-10 3.85E-4 3 Toluene 1.16E-6 3.71E-7 0.02 7 n-Octane 7.42E-14 2.38E-14 3.98E-6 3 Ethylbenzene 1.09E-8 3.50E-9 5.44E-4 5 m-Xylene 1.15E-9 3.70E-10 1.00E-4 1 p-Xylene o-Xylene 3.80E-8 1.22E-8 1.85E-3 1 n-Nonane 2.71E-15 8.67E-16 5.59E-7 5					
Methylcyclohexane 6.88E-10 2.20E-10 3.85E-4 3 Toluene 1.16E-6 3.71E-7 0.02 7 n-Octane 7.42E-14 2.38E-14 3.98E-6 3 Ethylbenzene 1.09E-8 3.50E-9 5.44E-4 5 m-Xylene 1.15E-9 3.70E-10 1.00E-4 1 p-Xylene o-Xylene 3.80E-8 1.22E-8 1.85E-3 1 n-Nonane 2.71E-15 8.67E-16 5.59E-7 5	2,2,4-Trimethylpentane	2.97E-11	9.52E-12	1.12E-4	1.12E-4
Toluene 1.16E-6 3.71E-7 0.02 n-Octane 7.42E-14 2.38E-14 3.98E-6 3 Ethylbenzene 1.09E-8 3.50E-9 5.44E-4 5 m-Xylene 1.15E-9 3.70E-10 1.00E-4 1 p-Xylene o-Xylene 3.80E-8 1.22E-8 1.85E-3 1 n-Nonane 2.71E-15 8.67E-16 5.59E-7 5					1.56E-4
n-Octane 7.42E-14 2.38E-14 3.98E-6 3 Ethylbenzene 1.09E-8 3.50E-9 5.44E-4 5 m-Xylene 1.15E-9 3.70E-10 1.00E-4 1 p-Xylene o-Xylene 3.80E-8 1.22E-8 1.85E-3 1 n-Nonane 2.71E-15 8.67E-16 5.59E-7 5	, ,				3.85E-4
Ethylbenzene 1.09E-8 3.50E-9 5.44E-4 5 m-Xylene 1.15E-9 3.70E-10 1.00E-4 1 p-Xylene o-Xylene 3.80E-8 1.22E-8 1.85E-3 1 n-Nonane 2.71E-15 8.67E-16 5.59E-7 5					0.02
m-Xylene 1.15E-9 3.70E-10 1.00E-4 1 p-Xylene o-Xylene 3.80E-8 1.22E-8 1.85E-3 1 n-Nonane 2.71E-15 8.67E-16 5.59E-7 5					3.98E-6 5.44E-4
p-Xylene o-Xylene 3.80E-8 1.22E-8 1.85E-3 1 n-Nonane 2.71E-15 8.67E-16 5.59E-7 5					1.00E-4
o-Xylene 3.80E-8 1.22E-8 1.85E-3 1 n-Nonane 2.71E-15 8.67E-16 5.59E-7 5	'				
		3.80E-8	1.22E-8	1.85E-3	1.85E-3
n-Decane 6.01E-18 1.93E-18 1.51E-8 1		2.71E-15	8.67E-16	5.59E-7	5.59E-7
			1.93E-18		1.51E-8
n-Undecane					
Saftey Factor 25% 25% 25%					
		-			0.67

Unit: Description: # of tanks Tank Throughput*

T-008. 009, T-011, T-012 Stabilized condensate tanks 4

190 bbl/day

Tanks 4.09d Emissions Report	
Annual Emissions	

Uncontrolled Tank **Uncontrolled Emissions per Tank** Battery Working Losses Breathing Losses Total Losses Total Losses (ton/yr) Components (ton/yr) (ton/yr) (ton/yr) Hydrogen Sulfide 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Nitrogen 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Carbon Dioxide 1.16E-11 1.10E-11 2.26E-11 9.04E-11 Methane 1.05E-13 1.00E-13 2.05E-13 8.19E-13 Ethane 7.64E-08 7.28E-08 1.49E-07 5.97E-07 Propane 4.13E-04 3.93E-04 8.06E-04 3.22E-03 i-Butane 2.98E-02 2.84E-02 5.83E-02 2.33E-01 n-Butane 5.68E+00 7.27E-01 6.93E-01 1.42E+00 2,2-Dimethylpropane 1.45E-02 1.39E-02 2.84E-02 1.14E-01 -Pentane 6.38E-01 6.08E-01 1.25E+00 4.99E+00 n-Pentane 4.51E+00 5.78E-01 5.51E-01 1.13E+00 2,2-Dimethylbutane 5.63E-03 5.37E-03 1.10E-02 4.40E-02 Cyclopentane 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2,3-Dimethylbutane 3.99E-02 3.80E-02 7.80E-02 3.12E-01 2-Methylpentane 9.24E-02 8.80E-02 1.80E-01 7.22E-01 3-Methylpentane 4.87E-02 3.81E-01 4.65E-02 9.52E-02 n-Hexane 8.57E-02 8.17E-02 1.67E-01 6.70E-01 Methylcyclopentane 3.96E-02 3.77E-02 7.73E-02 3.09E-01 Benzene 1.10E-02 1.05E-02 2.15E-02 8.58E-02 Cyclohexane 2.72E-02 2.59E-02 5.32E-02 2.13E-01 2-Methylhexane 7.08E-03 6.75E-03 1.38E-02 5.53E-02 3-Methylhexane 7.97E-03 7.59E-03 1.56E-02 6.22E-02 2,2,4-Trimethylpentane 0.00E+00 0.00E+00 0.00E+00 0.00E+00 n-Heptane 3.02E-02 2.88E-02 5.89E-02 2.36E-01 Methylcyclohexane 1.65E-02 1.58E-02 3.23E-02 1.29E-01 Toluene 3.94E-03 3.76E-03 7.70E-03 3.08E-02 n-Octane 7.97E-03 7.60E-03 1.56E-02 6.23E-02 Ethylbenzene 1.84E-04 3.60E-04 1.44E-03 1.76E-04 m-Xylene 1.71E-04 1.63E-04 3.33E-04 1.33E-03 1.78E-04 p-Xylene 1.70E-04 3.48E-04 1.39E-03 o-Xylene 0.00E+00 0.00E+00 0.00E+00 0.00E+00 n-Nonane 7.42E-04 7.07E-04 1.45E-03 5.80E-03 n-Decane 0.00E+00 0.00E+00 0.00E+00 0.00E+00 n-Undecane 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TOTAL VOC 18.85 2.41 2.30 4.71 TOTAL HAPs 0.101 0.096 0.20 0.79

* Facility throughout will be 190 bbl/day. Each tank has the potential to route entire facility throughput through a give tank however actual throughput will likely be much lower.

Unit:	VENT (SSM)
Description:	Emission rates from venting during startup, shutdown, and blowdown operation

Volume Vented Calculations

	Venting Unit	Volume (Mscf)	Events/yr	Gas Stream	Volume Vented (Mscf/yr)	
	1	13.27	120	Inlet	1591.84	
	2	8	120	Inlet	901.21	
_	5	18.68	120	Inlet	2241.11	_
Totals			360		4734.15	_
Total (hrs)			360			Assumes 1 hour per event

Source: 4/8/2022 Inlet Sample Analysis

Component	MW	Wet vol/mol%	Dry vol/mol%	MW * dry vol %	Mass Fraction (dry)	Spec. Volume ft ³ /lb	Spec. Volume VOC ft ³ /lb
Water	18.02	0.000%			(* 1)	21.06	
Nitrogen	28.01	1.23%	1.23%	0.345	1.63%	13.55	
CO ₂	44.01	0.21%	0.21%	0.094	0.45%	8.62	
H ₂ S	34.08	0.001%	0.001%	0.034%	0.0016%	11.14	
Methane	16.04	77.6%	77.63%	12.455	58.88%	23.65	
Ethane	30.07	11.8%	11.78%	3.541	16.74%	12.62	
		5.6%		2.491	16.74%	8.61	4.545
Propane	44.10		5.65%				
i-Butane	58.12	0.75%	0.75%	0.433	2.05%	6.53	0.599
n-Butane	58.12	1.7%	1.72%	0.997	4.71%	6.53	1.380
2,2 Dimethylpropane	72.15	0.012%	0.01%	0.009	0.04%	5.30	0.010
i-Pentane	72.15	0.35%	0.35%	0.253	1.20%	5.26	0.282
n-Pentane	72.15	0.36%	0.36%	0.258	1.22%	5.26	0.287
2,2 Dimethylbutane	86.18	0.0050%	0.01%	0.004	0.02%	5.26	0.005
Cyclopentane	70.14	0.00%	0.00%	0.000	0.00%	5.41	0.000
2,3 Dimethylbutane	86.18	0.026%	0.03%	0.022	0.11%	4.40	0.021
2 Methylpentane	86.18	0.061%	0.06%	0.053	0.25%	4.40	0.049
3 Methylpentane	86.18	0.031%	0.03%	0.027	0.13%	4.40	0.025
n-Hexane	86.18	0.07%	0.07%	0.056	0.26%	4.40	0.052
Methylcyclopentane	84.16	0.031%	0.03%	0.026	0.12%	4.51	0.025
Cyclohexane	84.16	0.034%	0.03%	0.029	0.14%	3.79	0.023
2-Methylhexane	100.20	0.004%	0.00%	0.004	0.02%	3.79	0.003
3-Methylhexane	100.20	0.005%	0.01%	0.005	0.02%	3.79	0.004
n-Heptanes	100.20	0.018%	0.02%	0.018	0.09%	3.79	0.014
Other Heptanes	100.20	0.00%	0.00%	0.000	0.00%	3.79	0.000
Methylcyclohexane	98.19	0.013%	0.01%	0.013	0.06%	3.87	0.010
2,2,4-Trimethylpentane	114.23	0.00%	0.00%	0.003	0.02%	3.32	0.002
Benzene	78.11	0.016%	0.02%	0.012	0.06%	4.86	0.013
Toluene	92.14	0.004%	0.00%	0.004	0.02%	4.12	0.003
Ethylbenzene	106.17	0.00000%	0.00%	0.000	0.00%	3.57	0.000
Xylenes	106.17	0.0000%	0.00%	0.000	0.00%	3.57	0.000
C8+ heavies	114.23	0.0000%	0.00%	0.000	0.00%	3.32	0.000
Total		100.0%	100.0%	21.15	100%		7.355
Dry total		100.0%		ixture mol. и			
	IEHC (VOC)	9.15% 1241	BTU/scf		~		22.30%

Note: Composition is based on a Fesco Gas Analysis from April 8, 2022

Unit:	VENT (SSM)
Description:	Emission rates from venting during startup, shutdown, and blowdown operation

Emission Calculations

Inlet Gas 1.0 Mcf/hr Engineering estimate

VOC	H ₂ S		
9.15%	0.0010%	mol%	VOC content from gas analysis; H2S content based on maximum possible
7.4	11.136	ft³/lb	Specific volume from gas analysis, calculated above
12.4	0.00090	lb/hr	vol. gas * mole fraction / specific volume
12.4	0.00090	lb/Mcf	lb/hr / Mcf/hr

Total Blowdown Emissions

These calculations estimate the total emission rate per blowdown event, based on duration and volume of gas

Vent

	4734.15	Mcf/yr total	vented	
	0%	Safety Facto	or	
_	4734.15	with SF		
-	13.27	Max Mcf/eve	ent	
	0%	Safety Facto	or	
_	13.27	with SF		
-		-		
	VOC	H ₂ S		
Inlet Gas	12.4	0.00090	lb/Mcf vented	
	164.9	0.012	lb/Max event	Max Mcf/event * lb/Mcf
	164.9	0.012	lb/hr	lb/Max event / 1 hr/event Hourly emission rate shown for infor
	29.4	0.00	tpy vented	(Mcf/yr * lb/Mcf) / 2000 lb/ton

НАР	VOC content	Specific Volume	lb/Mcf ¹	tpy ²
n-Hexane	0.07%	4.40	0.15	0.35
2,2,4-TMP	0%	3.32	9.03E-03	0.02
Benzene	0.016%	4.86	0.033	0.08
Toluene	0.004%	4.12	9.711E-03	0.02
Ethylbenzene	0.00000%	3.57	-	-
Xylenes	0.0000%	3.57	-	-
Total HAPs				0.47

 1 (Vol. gas * mole fraction / specific volume) / Mcf/hr 2 (Mcf/yr * lb/Mcf) / 2000 lb/ton

GHG Calculations

CO ₂	CH₄	CO ₂ e		
0.6	77.8		tpy	Mscf/yr * 1000scf/yr * density * 1.1023tons/MT * 1MT/1000k
1	25		GWP	40 CFR 98 Table A-1
0.59	1,944.47	1,945.1	tpy CO ₂ e	

.

.

.

.

 Unit:
 Flare (SSM)

 Description:
 Compressor Blowdown Emissions sent to Flare (SSM)

Volume Vented Calculations

vented Calcula	tions				Mal	
	Venting	Volume		Gas	Volume Vented	
	Unit	(Mscf/event)	Events/yr	Stream	(Mscf/yr)	
	6	9.48	60	Inlet	568.80	Assumed equivalent to new compressor blowdowns
	7	9.48	60	Inlet	568.80	Assumed equivalent to new compressor blowdowns
	8	9.48	60	Inlet	568.80	Assumed equivalent to new compressor blowdowns
	9	9.48	60	Inlet	568.80	Assumed equivalent to new compressor blowdowns
	10	9.48	60	Inlet	568.80	Assumed equivalent to new compressor blowdowns
	11	9.48	60	Inlet	568.80	Assumed equivalent to new compressor blowdowns
	12	9.48	60	Inlet	568.80	5 events/month/unit
	13	9.48	60	Inlet	568.80	5 events/month/unit
	14	9.48	60	Inlet	568.80	5 events/month/unit
	15	9.48	60	Inlet	568.80	5 events/month/unit
Totals			600		5688.00	
Total (hrs)		94.80	600			Assumes 1 hour per event

Source: 4/8/2022 Inlet Sample Analysis

			Dry	MW * dry	Mass Fraction	Spec. Volume	Spec. Volume VOC
Component	MW	Wet vol/mol%	vol/mol%	vol %	(dry)	ft ³ /lb	ft³/lb
Water	18.02	0.000%				21.06	
Nitrogen	28.01	1.231%	1.23%	0.345	1.63%	13.547	
CO ₂	44.01	0.214%	0.21%	0.094	0.45%	8.623	
H ₂ S*	34.08	0.001%	0.00%	0.03%	0.00%	11.136	
Methane	16.04	77.628%	77.63%	12.455	58.88%	23.65	
Ethane	30.07	11.775%	11.78%	3.541	16.74%	12.62	
Propane	44.10	5.649%	5.65%	2.491	11.78%	8.606	4.545
-Butane	58.12	0.745%	0.75%	0.433	2.05%	6.529	0.599
n-Butane	58.12	1.715%	1.72%	0.997	4.71%	6.529	1.380
2,2 Dimethylpropane	72.15	0.012%	0.01%	0.009	0.04%	5.302	0.010
-Pentane	72.15	0.351%	0.35%	0.253	1.20%	5.26	0.282
n-Pentane	72.15	0.357%	0.36%	0.258	1.22%	5.26	0.287
2,2 Dimethylbutane	86.18	0.005%	0.01%	0.004	0.02%	5.26	0.005
Cyclopentane	70.14	0.000%	0.00%	0.000	0.00%	5.411	0.000
2,3 Dimethylbutane	86.18	0.026%	0.03%	0.022	0.11%	4.404	0.021
2 Methylpentane	86.18	0.061%	0.06%	0.053	0.25%	4.404	0.049
3 Methylpentane	86.18	0.031%	0.03%	0.027	0.13%	4.404	0.025
n-Hexane	86.18	0.065%	0.07%	0.056	0.26%	4.404	0.052
Methylcyclopentane	84.16	0.031%	0.03%	0.026	0.12%	4.509	0.025
Cyclohexane	84.16	0.034%	0.03%	0.029	0.14%	3.787	0.023
2-Methylhexane	100.20	0.004%	0.00%	0.004	0.02%	3.787	0.003
3-Methylhexane	100.20	0.005%	0.01%	0.005	0.02%	3.787	0.004
n-Heptanes	100.20	0.018%	0.02%	0.018	0.09%	3.787	0.014
Other Heptanes	100.20	0.000%	0.00%	0.000	0.00%	3.787	0.000
Methylcyclohexane	98.19	0.013%	0.01%	0.013	0.06%	3.865	0.010
2,2,4-Trimethylpentane	114.23	0.003%	0.00%	0.003	0.02%	3.322	0.002
Benzene	78.11	0.016%	0.02%	0.012	0.06%	4.858	0.013
Toluene	92.14	0.004%	0.00%	0.004	0.02%	4.119	0.003
Ethylbenzene	106.17	0.000%	0.00%	0.000	0.00%	3.574	0.000
Xylenes	106.17	0.000%	0.00%	0.000	0.00%	3.574	0.000
C8+ heavies	114.23	0.000%	0.00%	0.000	0.00%	3.322	0.000
Total		100.0%	100.0%	21.15	100%		7.355
Dry total		100.0%	(n	nixture mol. v	vt)		
NM	IEHC (VOC)	9.15%					22.30%
Mixture he	ating value	1292	BTU/scf				

Note: Composition is based on a Fesco Gas Analysis from April 8, 2022

Unit:	Flare (SSM)
Description:	Compressor Blowdown Emissions sent to Flare (SSM)

Emission Calculations

Inlet Gas 9.5 Mcf/hr-compressor Based on calculated compressor blowdowns

voc	H ₂ S		
9.15%	0.0010%	mol%	VOC content from gas analysis; H2S content based on maximum possible estimated inlet concentration
7.4 117.9	11.136 8.51E-03	ft ³ /lb lb/hr ¹	Specific volume from gas analysis, calculated above vol. gas * mole fraction / specific volume

	VOC	Specific	
HAP	content	Volume	lb/hr ¹
n-Hexane	0.07%	4.40	1.40
2,2,4-TMP	0%	3.32	0.09
Benzene	0.016%	4.86	0.31
Toluene	0.004%	4.12	0.09
Ethylbenzene	0.00000%	3.57	-
Xylenes	0.0000%	3.57	-
Total HAPs			1.89

¹ lb/hr-comp = Vol. gas (Mcf/hr-comp) * (1000 cf/Mcf) * mole fraction / specific volume (ft³/lb)

Total Uncontrolled Blowdown Emissions

These calculations estimate the total uncontrolled emission rate per blowdown event, based on duration and volume of gas. Compressor blowdowns are routed to the flare for combustion.

10 600 1 600	events/year hr/event hr/yr	Annual num Assumed du	Simultaneous Blowdowns ber of blowdowns for all compressors ration per event I Blowdown Hours				
VOC	H ₂ S	HAP					
117.9	0.00851	1.89	lb/hr-comp				
1178.77	0.085	18.89	lb/hr (worst case) = lb/hr-comp * # comp.				
353.63	0.026	5.67 tpy (worst case) = lb/hr * annual total blowdown hours (hr/					

Unit: Description:	Flare (Proces Combustion		m condensate	stabilizer - a	alternative op	erating scena	ario		
Pilot Emissions									
MW of fuel gas	16.04	lb/lb-mol	Estimated, n						
Pilot fuel flow	10.04	scf/hr	Engineering		aturai gas				
			Estimated, n		N/	-			
Fuel heating value	1034 0.10	Btu/scf				15			
Heat rate			Btu/scf * scf						
Annual fuel usage	0.88	MMscf/yr	scf/hr * 8760) nrs/yr / 1,0	000,000				
Pilot Emission Calcu	lations								
	NOx	CO	VOC ¹	H ₂ S ²	502 ³	HAPs ¹	_		
	0.068	0.37					lb/MMBtu	AP-42 Tables 13.5-1 & 13.5-2 (02/18)	
	0.138	0.2755					lb/MMBtu	TNRCC RG-109 High Btu ("Other")	
				3.57E-05			lb H ₂ S/hr	Sweet natural gas fuel, 0.25 gr H ₂ S/100scf	
					0.0014		lb S0 ₂ /hr	Sweet natural gas fuel, 5 gr S/100scf	
				7.1E-07	6.6E-05		lb/hr	98% combustion H ₂ S; 100% H ₂ S -> SO ₂	
	0.0143	0.038	-	7.1E-07	0.0015	-	lb/hr		
	0.0156	0.042	-	7.8E-07	0.0016	-	tpy	lb/hr * (2190 hr/vr operation)/ 2000 lb/ton	
	0.062	0.168	-	3.1E-06	0.0065	-	tpy	lb/hr * (8760 hr/yr operation)/ 2000 lb/ton	
	² H ₂ S emission ³ SO ₂ emission	0.25 gr H ₂ is based on s	S/100 scf * fu	el scf/hr * 1 of <mark>5</mark> g/100 s	lb/7000 gr = cf S in fuel ar	lb/hr H ₂ S (p Id 100% com	bustion of H ₂ S to S	and conversion to SO_2) O_2 .	
Source: Armstron Gas L	ab Analysis No. 2113	06							
		vol/mol		MW *	Spec.				
		% Gas	Drv	drv vol	Volume	Flow			Annual Loading
Component	MW	Analysis	vol/mol%	%	(scf/lb)	(scf/hr)	Loading (lb/hr) Annual Flow (scf/yr)	(lb/yr)
Vater	18.02	0.000%							
Nitrogen	28.01	0.412%	0.414%	0.116	13,547	259	19.102	186.314.1	13,753,2
202	44.01	1.020%	1.025%	0.451	8.623	641	74.298	461,284,7	53,494,7
42S	34.08	0.050%	0.050%	0.017	11.136	31	2.821	22,616.4	2,030.9
Methane	16.04	45.293%	45.527%	7.304	23.65	28455	1203.152	20,487,273,4	866,269,5
Ethane	30.07	15.926%	16.008%	4.814	12.62	10005	792,795	7,203,649.3	570,812.2
Propane	44.10	22.771%	22.889%	10.093	8.606	14305	1662.258	10,299,883.7	1,196,825.9
i-Butane	58.12	4.100%	4.121%	2.395	6.529	2576	394.501	1,854,502.0	284,040.7
n-Butane	58.12	7.034%	7.071%	4.110	6.529	4419	676.846	3,181,769.7	487,328.8
i-Pentane	72.15	1 33306	1 340%	0.967	5.26	838	150 256	603 134 9	114 664 4

Uncontrolled VO Uncontrolled HA			36.98%		3,093.8 39.4	lb/hr lb/hr	2,227,532.2 28,345.4		
Note: * Although the RVP 11	gas simulatio	n did not acc	count and H_2	5 it was dete	ermined that	a 0.05% wet/n	ol % will be used	to overcome gas composition fluctuations.	
Dry total		99.5%							
Total		99.5%	100.0%	20.83		62500	5186.0	45,000,000.0	2,227,532.2
C8+ heavies	114.23	0.095%	0.096%	0.109	3.322	60	18.026	43,115.4	12,978.8
Xylenes	106.17	0.016%	0.016%	0.017	3.574	10	2.876	7,400.4	2,070.6
Ethylbenzene	106.17	0.002%	0.002%	0.002	3.574	1	0.375	965.3	270.1
Toluene	92.14	0.028%	0.029%	0.026	4.119	18	4.340	12,870.3	3,124.6
Benzene	78.11	0.029%	0.029%	0.023	4.858	18	3.772	13,192.0	2,715.5
2,2,4-Trimethylpentane	114.23	0.000%	0.000%	0.000	3.322	0	0.000	0.0	0.0
Methylcyclohexane	98.19	0.000%	0.000%	0.000	3.865	0	0.000	0.0	0.0
Heptanes	100.20	0.059%	0.059%	0.059	3.787	37	9.794	26,705.8	7,052.0
Other Hexanes	84.16	0.000%	0.000%	0.000	4.509	0	0.000	0.0	0.0
Cyclohexane	84.16	0.000%	0.000%	0.000	4.509	0	0.000	0.0	0.0
n-Hexane	86.18	0.196%	0.197%	0.170	4,404	123	28.006	88,804.9	20,164.6
Cyclopentane	70.14	0.000%	0.000%	0.000	5.411	0	0.000	0.0	0.0
n-Pentane	72.15	1.120%	1.126%	0.812	5.26	703	133,745	506,517,5	96,296,1
-Pentane	72.15	1.333%	1.340%	0.967	5.26	838	159.256	603,134.9	114,664,4
n-Butane	58.12	7.034%	7.071%	4.110	6.529	4419	676.846	3,181,769.7	487,328.8
-Butane	58.12	4.100%	4.121%	2.395	6.529	2576	394,501	1,854,502.0	284.040.7

Uncontrolled VC Uncontrolled HA			36.98%		3,093.8 39.4	lb/hr lb/hr	2,227,532.2 28,345.4					
Gas to Flare	62,500 45,000,000 1,828.35 114.27 82,275.84 20.83	scf/yr Btu/scf MMbtu/hr Mmbtu/yr	maximum ex maximum ex			/day; assumed	24 hour operation					
Pilot Gas to Flare	100.00 16.04											
Totals all streams	62,600.00 20.82		volume-weig	hted average								
	NOx	со	VOC	H ₂ S	SO ₂	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	HAPs	
-	0.0680	0.3700										lb/MMBtu
	0.138	0.2755		-		_						lb/MMBtu
					0.10							lb/hr
Gas to Flare Stack	15.8	42.3	61.9	0.056	0.10	0.56	0.075	0.087	0.008	0.058	0.79	lb/hr lb/hr
Gas to Flare Stack - annual emissions	2.8	15.2	22.3	0.020	- 0.46	0.20	0.027	0.031	0.003	0.021	0.28	tpy tpy

Flare Emission Totals (Pilot + Inlet Gases)

NOx	со	VOC	H ₂ S	SO ₂	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	HAPs	
15.8	42.3	61.9	5.6E-02	1.1E-01	0.56	0.075	0.087	0.0075	0.058	0.79	lb/hr
2.8	15.3	22.3	2.0E-02	4.6E-01	0.20	0.027	0.031	0.0027	0.021	0.28	tpy

Stack Parameters	1000 °C 20 m/sec 65 ft	Exhaust temperature Exhaust velocity Flare height	Per NMAQB guidelines Per NMAQB guidelines Engineering design
	Pilot only		
	7,238 cal/sec	Heat release (q)	MMBtu/hr * 10 ⁶ * 252 cal/Btu ÷ 3600 sec/hr
	5,847	q _n	$q_n = q(1-0.048(MW)^{1/2})$
	0.08 m	Effective stack diameter (D)	$D = (10^{-6}q_n)^{1/2}$
	Pilot and Normal Oper	ation	
		Total heat input	Sum of fuel and flare gas heating values
	20.82 g/mol	Total mean MW	Volume weighted average of gas MWs
	8,006,278 cal/sec	Heat release (q)	MMBtu/hr * 10 ⁶ * 252 cal/Btu ÷ 3600 sec/hr
	6,252,653	q _n	$q_n = q(1-0.048(MW)^{1/2})$
	2.501 m	Effective stack diameter (D)	$D = (10^{-6}q_n)^{1/2}$
	8.20 ft	Effective stack diameter (D)	

AP-42 Table 13.5-1 TNRCC RG-109 High Btu ("Other") 98% combustion H₂S; 100% H₅S -> SO₂ 10/MMBtu * MMBtu/hr 98% destruction of calculated content 10/MMBtu * MMBbu/r/2000 98% destruction of calculated content

Flare GHG Emissions

	<u>re stack GHG emissions</u> t gas & Assist Gas						
	Calculate contribution of	un-combusted CH ₄ emiss	sions				
	E _{a.CH4} (un-combusted) =		uation W-39B)				
	where:	u ()) chi ()	,				
		f annual un-combusted CH ₄	emissions from	regenerator in cu	pic feet under	actual conditi	ions.
		to combustion unit during t					
		busted by a burning flare (o		default value from	Subpart W =		0.98
			····j-···//		Pilot NG		
	For gas sent to an u	inlit flare, ŋ is zero.		Client Analysis	Compositio	ı	
	X _{CH4} = Mole fraction of C			0.452929	0.9500		
Step 2.	Calculate contribution of	un-combusted CO ₂ emiss	sions				
	$E_{a,CO2} = V_a * X_{CO2}$	(Equation W-20)					
	where:						
	E _{a,CO2} = contribution of	f annual un-combusted CO ₂	emissions from	regenerator in cu	pic feet unde	actual conditi	ions.
				<u>.</u>	Pilot NG	_	
		t to combustion unit during t	the year (cf)	Client Analysis		1	
	X_{CO2} = Mole fraction of 0	CO_2 in gas to the flare =		0.010198	0.005		
<i>.</i>							
Step 3.	Calculate contribution of						
	$E_{a,CO2}$ (combusted) = Σ	$(\eta + v_a + Y_j + R_j)$ (Eq.	uation W-21)				
	where:	busted by a burning flat	* *00000			0.00	
		busted by a burning flare (o	r regenerator) =			0.98	
	For gas sent to an u		ho yoor (cf)				
	v _a = volume or gas sent	t to combustion unit during t	ne year (cr)		Pilot NG		
	V - mole fraction of day	s hydrocarbon constituents j		Client Analysis	Compositio		
		nt j, Methane =		0.452929	0.9500		
		nt j, Ethane =		0.159257	0.0320		
		nt j, Propane =		0.227708	0.0020		
		nt j, Butane =		0.111341	0.00060		
		nt j, Pentanes Plus =		0.028800006	0.015		
		atoms in the gas hydrocarbo	n constituent j:				
	Constituen	nt j, Methane =		1			
		nt j, Ethane =		2			
		nt j, Propane =		3			
		nt j, Butane =		4			
	Constituen	nt j, Pentanes Plus =		5			
Step 4.	Calculate GHG volumetrie	c emissions at standard o	onditions (scf).			
).			
	E _{s,n} = E _{a,n} * (459.67 + T _s) * P _a		tion W-33)).			
E	$E_{s,n} = \frac{E_{a,n} * (459.67 + T_s) * P_a}{(459.67 + T_a) * P_s}$).			
E	$E_{s,n} = \frac{E_{a,n} * (459.67 + T_s) * P_a}{(459.67 + T_a) * P_s}$ nere:	a (Equat	tion W-33)				
E	$E_{s,n} = \frac{E_{a,n} * (459.67 + T_s) * P_a}{(459.67 + T_a) * P_s}$ here: $E_{s,n} = GHG i volumetric of the second seco$	emissions at standard tempe	<i>tion W-33)</i> erature and pres		ic feet		
E	$E_{s,n} = E_{a,n} * (459.67 + T_s) * P_e$ (459.67 + T _a) * P _s here: $E_{s,n} = GHG i \text{ volumetric} \in E_{a,n} = GHG i \text{ volumetric}$	emissions at standard tempe emissions at actual condition	<i>tion W-33)</i> erature and pres				
E	$E_{s,n} = \frac{E_{a,n} * (459.67 + T_s) * P_a}{(459.67 + T_a) * P_s}$ here: $E_{s,n} = GHG i volumetric of the second seco$	emissions at standard tempe emissions at actual condition	<i>tion W-33)</i> erature and pres			50 F	
E	$\begin{split} \tilde{E}_{s,n} &= \frac{E_{s,n} * (459.67 + T_s) * P_s}{E_{s,n} = GHG i volumetric} \\ \text{receive} \\ E_{s,n} &= GHG i volumetric \\ T_s &= Temperature at states \end{split}$	emissions at standard tempe emissions at actual condition indard conditions (F) =	<i>tion W-33)</i> erature and pres				(Based on Annual Avg Max Temperature for Hobbs, NM from W
E	$\begin{split} & \tilde{t}_{s,n} = \frac{E_{s,n} * (459.67 + T_s) * P_s}{(459.67 + T_s)^* P_s} \\ & \text{rere:} \\ & E_{s,n} = GHG \ i \ volumetric \cdot \\ & E_{s,n} = GHG \ i \ volumetric \cdot \\ & T_s = Temperature \ at \ sta \\ & T_a = Temperature \ at \ at \end{split}$	emissions at standard temper emissions at actual condition undard conditions (F) = tual conditions (F) =	tion W-33) erature and pres ns (cf)			76 F	(Based on Annual Avg Max Temperature for Hobbs, NM from W Regional Climate Center)
E	$ \begin{split} & \underset{a,n}{\overset{a}{\leftarrow}} = \underbrace{E_{a,n}}{\overset{a}{\leftarrow}} * \left(459.67 + T_s \right) * P_a \\ & (459.67 + T_a) * P_s \\ & \text{here:} \\ & \underset{a,n}{\overset{a}{\leftarrow}} = GHG \text{ i volumetric } \\ & \underset{a,n}{\overset{a}{\leftarrow}} = GHG \text{ i volumetric } \\ & \underset{a,n}{\overset{a}{\leftarrow}} = GHG \text{ i volumetric } \\ & \underset{a,n}{\overset{a}{\leftarrow}} = Temperature \text{ at sta} \\ & \underset{a}{\overset{a}{\leftarrow}} = \text{ Absolute pressure } a \end{split} $	emissions at standard tempe emissions at actual condition undard conditions (F) = tual conditions (F) = at standard conditions (psia)	tion W-33) erature and pres ns (cf)		14	76 F .7 psia	Regional Climate Center)
E	$ \begin{split} & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} \left(\frac{459.67}{T_{a,n}} + \binom{459.67}{T_{a,n}} + \underset{k_{a,n}}{\overset{k_{a,n}}{=}} \frac{6}{HG} i \text{ volumetric} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=} \frac{6}{HG} i \text{ volumetric} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=} \frac{6}{HG} i \text{ volumetric} \\ & \underset{k_{a,n}}$	 (Equation of the standard temperature of the standard temperature of the standard conditions (F) = tual conditions (F) = at standard conditions (psia) at actual conditions (psia) 	tion W-33) erature and pres ns (cf)	sure (STP) in cub	14	76 F	
E	$ \begin{split} & \underset{a,n}{\overset{a}{\leftarrow}} = \underbrace{E_{a,n}}{\overset{a}{\leftarrow}} * \left(459.67 + T_s \right) * P_a \\ & (459.67 + T_a) * P_s \\ & \text{here:} \\ & \underset{a,n}{\overset{a}{\leftarrow}} = GHG \text{ i volumetric } \\ & \underset{a,n}{\overset{a}{\leftarrow}} = GHG \text{ i volumetric } \\ & \underset{a,n}{\overset{a}{\leftarrow}} = GHG \text{ i volumetric } \\ & \underset{a,n}{\overset{a}{\leftarrow}} = Temperature \text{ at sta} \\ & \underset{a}{\overset{a}{\leftarrow}} = \text{ Absolute pressure } a \end{split} $	 (Equation of the standard temperature of the standard temperature of the standard conditions (F) = tual conditions (F) = at standard conditions (psia) at actual conditions (psia) 	tion W-33) erature and pres ns (cf)	sure (STP) in cub	14	76 F .7 psia	Regional Climate Center)
E.	$ \begin{split} & \underset{k_{a,h}}{\overset{k_{a,h}}{=}} \left(\frac{459.67}{T_{a,h}} + \frac{7}{T_{a,h}} + \frac{7}{P_{a}} \right)^{*} \frac{1}{P_{a}} \\ & \underset{k_{a,h}}{\overset{k_{a,h}}{=}} \left(\frac{5}{HG} \right)^{*} \frac{1}{V_{a,h}} \frac{1}{P_{a}} \frac{1}{P_$	emissions at standard tempe emissions at actual condition undard conditions (F) = tual conditions (F) = at standard conditions (psia) at actual conditions (psia) (tempe	tion W-33) erature and pres ns (cf) = erature conversio	sure (STP) in cub	14	76 F .7 psia	Regional Climate Center)
E.	$ \begin{split} & \sum_{k,n} = \underbrace{E_{k,n}}_{k,n} * (459.67 + T_s) * P_s \\ & (459.67 + T_s) * P_s \\ & \text{tere:} \\ & E_{k,n} = GHG \ \text{i volumetric} \\ & E_{k,n} = GHG \ \text{i volumetric} \\ & T_s = Temperature \ \text{at sta} \\ & T_s = Temperature \ \text{at sta} \\ & P_s = Absolute \ \text{pressure} \ \text{i} \\ & Constant = 459.67 \end{split} $	emissions at standard tempr emissions at actual condition indard conditions (F) = tual conditions (F) = at standard conditions (psia) at actual conditions (psia) et at actual conditions (psia) ta conditions (psia)	tion W-33) erature and pres ns (cf) = erature conversion n).	sure (STP) in cub	14	76 F .7 psia	Regional Climate Center)
E.	$ \begin{split} & \sum_{s,n} = \underline{E}_{s,n} * (459.67 + T_s) * P_s \\ & (459.67 + T_s) * P_s \\ & \text{tree:} \\ & E_{s,n} = GHG \ i \ volumetric \\ & E_{s,n} = GHG \ i \ volumetric \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ at \ sta \\ & T_s = Temperature \ sta \\ & T_s = Temperat \ sta \\ & T_s $	emissions at standard tempr emissions at actual condition indard conditions (F) = tual conditions (F) = at standard conditions (psia) at actual conditions (psia) et at actual conditions (psia) ta conditions (psia)	tion W-33) erature and pres ns (cf) = erature conversion n).	sure (STP) in cub	14	76 F .7 psia	Regional Climate Center)
E.	$ \begin{split} & \underset{k_{a}}{\overset{k_{a}}{=}} \left(\frac{459.67}{T_{a}} + \binom{k_{2}}{T_{a}} + \binom{k_{2}}{T_{a}} + \binom{k_{2}}{T_{a}} + \binom{k_{2}}{T_{a}} + \binom{k_{2}}{T_{a}} \right)^{k} P_{a} \\ & \text{tere:} \\ & \underset{k_{a}}{\overset{k_{a}}{=}} \text{GHG i volumetric} \\ & \underset{k_{a}}{\overset{k_{a}}{=}} \text{GHG i volumetric} \\ & \underset{k_{a}}{\overset{k_{a}}{=}} \text{Temperature at sta} \\ & \underset{k_{a}}{\overset{k_{a}}{=}} \text{Absolute pressure a} \\ & \underset{k_{a}}{\overset{k_{a}}{=}} \underset{k_{a}}{\overset{k_{a}}{=} \underset{k_{a}}{\overset{k_{a}}{=}} \underset{k_{a}}{\overset{k_{a}}{=} \underset{k_{a}}{\overset{k_{a}}{=}} \underset{k_{a}}{\overset{k_{a}}{=} \underset{k_{a}}{\overset{k_{a}}{=} \underset{k_{a}}{\overset{k_{a}}{=} \atop \underset{k_{a}}{\overset{k_{a}}{=} \underset{k_{a}}{\overset{k_{a}}{=} \underset{k_{a}}{\overset{k_{a}}{=} \underset{k_{a}}{\overset{k_{a}}{=} \underset{k_{a}}{\overset{k_{a}}{=} \underset{k_{a}}{\overset{k_{a}}{=} \atop \underset{k_{a}}{\overset{k_{a}}{=} \atop \underset{k_{a}}{\overset{k_{a}}{=} $	emissions at standard tempe emissions at actual condition undard conditions (F) = tual conditions (F) = at standard conditions (psia) at actual conditions (psia) at actual conditions (psia) (tempe (tempe (tempe) (t	tion W-33) erature and pres ns (cf) = erature conversion -36)	sure (STP) in cub	14 14	76 F .7 psia	Regional Climate Center)
E.	$ \begin{split} & \sum_{i,n} = \underbrace{E_{k,n}}_{i,n} + \underbrace{(459.67 + T_k)}_{i,n} + P_s \\ & \underbrace{(459.67 + T_k)}_{i,n} + P_s \\ \text{tere:} \\ & E_{k,n} = GHG \ i \ volumetric \\ & E_{k,n} = GHG \ i \ volumetric \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ sta \ sta \\ & T_k = Temperat$	emissions at standard tempe emissions at actual condition undard conditions (F) = tual conditions (F) = at standard conditions (psia) at actual conditions (psia) at actual conditions (psia) (tempe (tempe (tot)) (tion W-33) erature and pres ns (cf) = erature conversion n). -36) sions at standard	sure (STP) in cub on from F to R) d conditions in to	14 14 15	76 F .7 psia	Regional Climate Center)
E.	$ \begin{split} & \underset{k_{a}}{\overset{k_{a}}{=}} \left\{ \underbrace{E_{k,a}}{+} \left(\underbrace{459.67}{+} T_{a} \right)^{*} P_{a} \\ & \underset{k_{a}}{\overset{k_{a}}{=}} \left\{ \underbrace{F_{a}}{+} a \right\} \left\{ \underbrace{F_{a}}{+} a \right\}$	emissions at standard tempe emissions at actual condition indard conditions (F) = tual conditions (F) = at standard conditions (psia) = (tempe I CO_ mass emissions (to 11023 <i>(Equation W</i> O ₂ , CH ₄ , or N ₂ O) mass emiss CH ₄ , or N ₂ O volumetric em	tion W-33) erature and pres ns (cf) = erature conversion n). -36) sions at standard	sure (STP) in cub on from F to R) d conditions in to	14 14 15	76 F .7 psia	Regional Climate Center)
E.	$ \begin{split} & \sum_{i,n} = \underbrace{E_{k,n}}_{i,n} + \underbrace{(459.67 + T_k)}_{i,n} + P_s \\ & \underbrace{(459.67 + T_k)}_{i,n} + P_s \\ \text{tere:} \\ & E_{k,n} = GHG \ i \ volumetric \\ & E_{k,n} = GHG \ i \ volumetric \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ sta \ sta \\ & T_k = Temperat$	emissions at standard tempe emissions at actual condition indard conditions (F) = tual conditions (F) = at standard conditions (psia) = (tempe I CO_ mass emissions (to 11023 <i>(Equation W</i> O ₂ , CH ₄ , or N ₂ O) mass emiss CH ₄ , or N ₂ O volumetric em	tion W-33) erature and pres ns (cf) erature conversion erature conversion sions at standard issions at standard	sure (STP) in cub on from F to R) d conditions in to ard conditions (cf.	14 14 ns (tpy)	76 F .7 psia .7 psia	Regional Climate Center) (Assumption)
E.	$ \begin{split} & \underset{k_{a}}{\overset{k_{a}}{=}} \left\{ \underbrace{E_{k,a}}{+} \left(\underbrace{459.67}{+} T_{a} \right)^{*} P_{a} \\ & \underset{k_{a}}{\overset{k_{a}}{=}} \left\{ \underbrace{F_{a}}{+} a \right\} \left\{ \underbrace{F_{a}}{+} a \right\} \left\{ \underbrace{F_{a}}{+} a \right\} \\ & \underset{k_{a}}{\overset{k_{a}}{=}} \left\{ \underbrace{F_{a}}{+} a \right\} \left\{ \underbrace{F_{a}}{+} a \right\} \\ & \underset{k_{a}}{\overset{k_{a}}{=}} \left\{ \underbrace{F_{a}}{+} a \right\} \\ & \underset{k_{a}}{\overset{k_{a}}{=} \left\{ \underbrace{F_{a}}{+}$	emissions at standard tempe emissions at actual condition indard conditions (F) = tual conditions (F) = at standard conditions (psia) = (tempe I CO_ mass emissions (to 11023 <i>(Equation W</i> O ₂ , CH ₄ , or N ₂ O) mass emiss CH ₄ , or N ₂ O volumetric em	tion W-33) erature and pres ns (cf) = erature conversion n). -36) sions at standard issions at standard cH4:	sure (STP) in cub on from F to R) d conditions in to ard conditions (cf, 0.0192	14 14 ns (tpy) kg/ft ³ (at 60	76 F .7 psia .7 psia F and 14.7 psi	Regional Climate Center) (Assumption)
E.	$ \begin{split} & \underset{k_{a}}{\overset{k_{a}}{=}} \left\{ \underbrace{E_{k,a}}{+} \left(\underbrace{459.67}{+} T_{a} \right)^{*} P_{a} \\ & \underset{k_{a}}{\overset{k_{a}}{=}} \left\{ \underbrace{F_{a}}{+} a \right\} \left\{ \underbrace{F_{a}}{+} a \right\} \left\{ \underbrace{F_{a}}{+} a \right\} \\ & \underset{k_{a}}{\overset{k_{a}}{=}} \left\{ \underbrace{F_{a}}{+} a \right\} \left\{ \underbrace{F_{a}}{+} a \right\} \\ & \underset{k_{a}}{\overset{k_{a}}{=}} \left\{ \underbrace{F_{a}}{+} a \right\} \\ & \underset{k_{a}}{\overset{k_{a}}{=} \left\{ \underbrace{F_{a}}{+}$	emissions at standard tempe emissions at actual condition indard conditions (F) = tual conditions (F) = at standard conditions (psia) = (tempe I CO_ mass emissions (to 11023 <i>(Equation W</i> O ₂ , CH ₄ , or N ₂ O) mass emiss CH ₄ , or N ₂ O volumetric em	tion W-33) erature and pres ns (cf) erature conversion erature conversion sions at standard issions at standard	sure (STP) in cub on from F to R) d conditions in to ard conditions (cf, 0.0192	14 14 ns (tpy) kg/ft ³ (at 60	76 F .7 psia .7 psia	Regional Climate Center) (Assumption)
E wh Step 5.	$\begin{split} & \sum_{i,n} = \underline{E}_{k,n} + (459.67 + T_k) * P_s \\ & (459.67 + T_k) * P_s \\ & \text{tere:} \\ & E_{k,n} = GHG \ i \ volumetric \\ & E_{k,n} = GHG \ i \ volumetric \\ & T_k = Temperature \ at \ at \\ & T_k = Temperature \ at \ at \\ & P_s = Absolute \ pressure \ since \\ & P_s = Absolute \ pressure \ since \\ & Constant = 459.67 \\ \hline \\ & Calculate \ annual \ CH_k \ and \\ & Mass_{k,i} = E_{k,i} * \rho_i * 0.00 \\ & \text{where:} \\ & Mass_{k,i} = GHG \ i \ (O_{E_{k,i}} = GHG \ i \ (O_{E_{$	emissions at standard tempe emissions at actual condition undard conditions (F) = tual conditions (F) = at standard conditions (psia) at actual conditions (psia) at actua	tion W-33) erature and pres ns (cf) = erature conversion (n). -36) sions at standard issions at standard (Ch4: CO2:	sure (STP) in cub on from F to R) d conditions in to ard conditions (cf. 0.0192 0.0526	14 14 ns (tpy) kg/ft ³ (at 60 kg/ft ³ (at 60	76 F .7 psia .7 psia F and 14.7 psi F and 14.7 psi	Regional Climate Center) (Assumption) a) a)
E wh Step 5.	$ \begin{split} & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = \underbrace{E_{k,n}}_{k_{a,n}} + \underbrace{(459.67 + T_{a})}_{k_{a,n}} + P_{a} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = GHG \ i \ volumetric \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = GHG \ i \ volumetric \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = Temperature \ at \ sta \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = Temperature \ at \ sta \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = Temperature \ at \ sta \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = Temperature \ at \ sta \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = Temperature \ at \ sta \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = Temperature \ at \ sta \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = GHG \ i \ volumetric \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = GHG \ i \ sta \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = GHG \ i \ (C)_{a,n} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = GHG \ i \ (C)_{a,n} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = GHG \ i \ (C)_{a,n} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = GHG \ i \ (C)_{a,n} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = GHG \ i \ (C)_{a,n} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = GHG \ i \ (C)_{a,n} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = GHG \ i \ (C)_{a,n} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = GHG \ i \ (C)_{a,n} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = GHG \ i \ (C)_{a,n} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} = GHG \ i \ (C)_{a,n} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=} \\ \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=} \\ \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=}} \\ & \underset{k_{a,n}}{\overset{k_{a,n}}{=} \\ \\ & k$	emissions at standard tempe emissions at actual condition indard conditions (F) = tual conditions (F) = t standard conditions (psia) = (tempe I CO_ mass emissions (to 11023 <i>(Equation W</i> O ₂ , CH ₄ , or N ₂ O) walumetric em HG i. Use: issions from portable or	tion W-33) erature and pres ns (cf) = = erature conversion n). -36) sions at standar (Ch4: CO2: stationary fuel	sure (STP) in cub on from F to R) d conditions in to ard conditions (cf, 0.0192 0.0526 combustion so	14 14 ns (tpy) kg/ft ³ (at 60 kg/ft ³ (at 60	76 F .7 psia .7 psia F and 14.7 psi F and 14.7 psi	Regional Climate Center) (Assumption)
E wh Step 5.	$\begin{split} & \sum_{i,n} = \underline{E}_{k,n} + (459.67 + T_k) * P_s \\ & (459.67 + T_k) * P_s \\ & \text{tere:} \\ & E_{k,n} = GHG \ i \ volumetric \\ & E_{k,n} = GHG \ i \ volumetric \\ & T_k = Temperature \ at \ at \\ & T_k = Temperature \ at \ at \\ & P_s = Absolute \ pressure \ since \\ & P_s = Absolute \ pressure \ since \\ & Constant = 459.67 \\ \hline \\ & Calculate \ annual \ CH_k \ and \\ & Mass_{k,i} = E_{k,i} * \rho_i * 0.00 \\ & \text{where:} \\ & Mass_{k,i} = GHG \ i \ (O_{E_{k,i}} = GHG \ i \ (O_{E_{$	emissions at standard tempe emissions at actual condition indard conditions (F) = tual conditions (F) = t standard conditions (psia) = (tempe I CO_ mass emissions (to 11023 <i>(Equation W</i> O ₂ , CH ₄ , or N ₂ O) walumetric em HG i. Use: issions from portable or	tion W-33) erature and pres ns (cf) = erature conversion (n). -36) sions at standard issions at standard (Ch4: CO2:	sure (STP) in cub on from F to R) d conditions in to ard conditions (cf, 0.0192 0.0526 combustion so	14 14 ns (tpy) kg/ft ³ (at 60 kg/ft ³ (at 60	76 F .7 psia .7 psia F and 14.7 psi F and 14.7 psi	Regional Climate Center) (Assumption) a) a)
E wh Step 5.	$\begin{split} & \sum_{k,n} = \underline{E}_{k,n} * (459.67 + T_k) * P_c \\ & (459.67 + T_k) * P_s \\ & \text{rere:} \\ & E_{k,n} = GHG \ i \ volumetric \\ & E_{k,n} = GHG \ i \ volumetric \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ at \ sta \\ & T_k = Temperature \ sta \\ & Temperature \ sta \ sta \\ & Temperature \ sta \ sta \ sta \ sta \ sta \ sta \ sta$	emissions at standard tempremissions at actual condition indard conditions (F) = tual conditions (F) = at standard conditions (psia) at actual conditions (ps	tion W-33) erature and pres ns (cf) = erature conversion m). -36) sions at standar issions at standar (Ch4: CO2: stationary fuel (Equation W-40)	sure (STP) in cub on from F to R) d conditions in to ard conditions (cf. 0.0192 0.0526 combustion so	14 14 14 ns (tpy) kg/ft ³ (at 60 kg/ft ³ (at 60 urces under	76 F .7 psia .7 psia F and 14.7 psi F and 14.7 psi	Regional Climate Center) (Assumption) a) a)
E wh Step 5.	$\begin{split} & \underset{k_{A}}{=} = \underbrace{E_{M,A}}^{*} \left(459.67 + T_{a} \right)^{*} P_{a} \\ & (459.67 + T_{a})^{*} P_{s} \\ & \text{tree:} \\ & \underset{k_{A}}{=} = GHG \ i \ volumetric \\ & \underset{k_{A}}{=} = GHG \ i \ volumetric \\ & \underset{k_{A}}{=} = Temperature \ at \ sta \\ & \underset{k_{A}}{=} = Temperature \ sta \\ & $	emissions at standard tempre emissions at actual condition undard conditions (F) = tual conditions (F) = at standard conditions (psia) = (tempre I CO2 mass emissions (to 111023 (Equation W O2, CH4, or N2O) volumetric em HG i. Use: issions from portable or : Fuel * HHV * EF	tion W-33) erature and pres ns (cf) = erature conversion m). -36) sions at standar issions at standar (CH4: CO2: stationary fuel (Equation W-40)	sure (STP) in cub on from F to R) d conditions in to ard conditions (cf. 0.0192 0.0526 combustion so	14 14 14 ns (tpy) kg/ft ³ (at 60 kg/ft ³ (at 60 urces under	76 F .7 psia .7 psia F and 14.7 psi F and 14.7 psi	Regional Climate Center) (Assumption) a) a)
E wh Step 5.	$\begin{split} & \sum_{i_{n}n} = \underbrace{E_{h,n}}_{i_{n}} * (459.67 + T_{s})^{*} P_{s} \\ & (459.67 + T_{s})^{*} P_{s} \\ & \text{tere:} \\ & E_{n,n} = GHG i volumetric \cdot \\ & E_{n,n} = GHG i volumetric \cdot \\ & T_{s} = Temperature at sta \\ & T_{s} = Temperature at at \\ & P_{s} = Absolute pressure : \\ & P_{s} = Absolute pressure : \\ & Constant = 459.67 \\ \hline \\ & Calculate annual CH_{s} and \\ & Mass_{s,i} = E_{s,i}^{*} + p_{i} = Nou \\ & \text{where:} \\ & Mass_{s,i} = GHG i (CO_{2r}, \\ & \rho_{i} = Density of GI \\ \hline \\ & Calculate annual N_{s}O e min \\ & Mass_{NOD} = annual N_{s}O e \\ & Fuel = mass or volume \\ \hline \end{array}$	emissions at standard tempre emissions at actual condition indard conditions (F) = tual conditions (F) = at standard conditions (psia) at actual conditions (psia) at actu	tion W-33) erature and pres ns (cf) = erature conversion m). -36) sions at standar issions at standar (CH4: CO2: stationary fuel (Equation W-40)	sure (STP) in cub on from F to R) d conditions in to ard conditions (cf. 0.0192 0.0526 combustion so	14 14 14 ns (tpy) kg/ft ³ (at 60 kg/ft ³ (at 60 urces under	76 F .7 psia .7 psia F and 14.7 psi F and 14.7 psi	Regional Climate Center) (Assumption) a) a)
E wh Step 5.	$\begin{split} & \sum_{i_{A}n} = \underbrace{E_{M,n}}_{i_{A}} + \underbrace{(459.67 + T_{a})}_{i_{A}} + P_{a} \\ & \underbrace{(459.67 + T_{a})}_{i_{A}} + P_{a} \\ & \text{tere:} \\ & E_{a,n} = GHG i \ \text{volumetric} \\ & E_{a,n} = GHG i \ \text{volumetric} \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ at \ sta \\ & T_{a} = Temperature \ sta \\ & Temperature \ sta \ sta \ sta \\ & Temperature \ sta \ s$	emissions at standard tempre emissions at actual condition indard conditions (F) = tual conditions (F) = at standard conditions (psia) at actual conditions (psia) at actu	tion W-33) erature and press ns (cf) = = erature conversion n). -36) sions at standar CH4: CQ2: stationary fuel (Equation W-40) f a particular typ	sure (STP) in cub on from F to R) d conditions in to ard conditions (cf 0.0192 0.0526 combustion so be of fuel (tons)	14 14 14 ns (tpy) kg/ft ³ (at 60 kg/ft ³ (at 60 urces under	76 F .7 psia .7 psia F and 14.7 psi F and 14.7 psi	Regional Climate Center) (Assumption) a) a)
E wh Step 5.	$\begin{split} & \sum_{i_{n}n} = \underbrace{E_{i_n}}{}^* (459.67 + T_s) * P_s \\ & (459.67 + T_s) * P_s \\ & (459.67 + T_s) * P_s \\ & \text{tere:} \\ & E_{i_n} = GHG i volumetric \\ & E_{i_n} = GHG i volumetric \\ & T_s = Temperature at sta \\ & T_s = Temperature at at \\ & P_s = Absolute pressure : \\ & Constant = 459.67 \\ \hline \end{tabular}$	emissions at standard tempre emissions at actual condition indard conditions (F) = tual conditions (F) = at standard conditions (psia) at actual conditions (psia) at actu	tion W-33) erature and pres ns (cf) = erature conversion (n), -36) sions at standard (Ch4: CO2: stationary fuel (Equation W-40) f a particular typ 1.034E-03	sure (STP) in cub on from F to R) d conditions in to ard conditions (cf, 0.0192 0.0526 combustion so be of fuel (tons) MMBtu/scf	14 14 14 ns (tpy) kg/ft ³ (at 60 kg/ft ³ (at 60 urces under	76 F .7 psia .7 psia F and 14.7 psi F and 14.7 psi	Regional Climate Center) (Assumption) a) a)
E wh Step 5.	$\begin{split} & \sum_{i_{A,P}} = \underbrace{E_{A,O}}_{i_{A}} + \underbrace{(459.67 + T_{a})}_{i_{A}} + P_{a} \\ & (459.67 + T_{a})^{+} P_{a} \\ & \text{tree:} \\ & E_{a,n} = GHG i volumetric \\ & E_{a,n} = GHG i volumetric \\ & T_{a} = Temperature at sta \\ & Temperature at \\ & $	emissions at standard tempre emissions at actual condition indard conditions (F) = tual conditions (F) = at standard conditions (psia) at actual conditions (psia) at actu	tion W-33) erature and pres ns (cf) = erature conversion n). -36) sions at standar (Cq: stationary fuel (Equation W-40) of a particular typ 1.034E-03 1.828E-03	sure (STP) in cub on from F to R) d conditions in to ard conditions (cf, 0.0192 0.0526 c combustion so) be of fuel (tons) MMBtu/scf	14 14 14 ns (tpy) kg/ft ³ (at 60 kg/ft ³ (at 60 urces under	76 F .7 psia .7 psia F and 14.7 psi F and 14.7 psi	Regional Climate Center) (Assumption) a) a)
E wh Step 5.	$\begin{split} & \sum_{i_{n}n} = \underbrace{E_{i_n}}{}^* (459.67 + T_s) * P_s \\ & (459.67 + T_s) * P_s \\ & (459.67 + T_s) * P_s \\ & \text{tere:} \\ & E_{i_n} = GHG i volumetric \\ & E_{i_n} = GHG i volumetric \\ & T_s = Temperature at sta \\ & T_s = Temperature at at \\ & P_s = Absolute pressure : \\ & Constant = 459.67 \\ \hline \end{tabular}$	emissions at standard temper emissions at actual condition undard conditions (F) = tual conditions (F) = at standard conditions (psia) at actual conditions (psia) at actu	tion W-33) erature and pres ns (cf) = erature conversion n). -36) sions at standar (Cq: stationary fuel (Equation W-40) of a particular typ 1.034E-03 1.828E-03	sure (STP) in cub on from F to R) d conditions in to ard conditions (cf, 0.0192 0.0526 combustion so be of fuel (tons) MMBtu/scf	14 14 14 ns (tpy) kg/ft ³ (at 60 kg/ft ³ (at 60 urces under	76 F .7 psia .7 psia F and 14.7 psi F and 14.7 psi	Regional Climate Center) (Assumption) a) a)

Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21

Gas Sent to Flare	Gas Sent to Flare (cf/yr)	CH ₄ Un- Combuste d, E _{a,CH4} (cf)	CO ₂ Un-Combusted, E _{a,CO2} (cf)	CO ₂ Combusted, E _{a,CO2} (cf)	CH ₄ Un- Combusted, E _{a,CH4} (scf)	CO ₂ Un- Combusted, E _{a,CO2} (scf)	CO ₂ Combusted, E _{a,CO2} (scf)	CH ₄ Un- Combusted, E _{a,CH4} (tpy)	CO ₂ Un- Combuste d, E _{a,CO2} (tpy)		N₂O Mass Emissions (tpy)	CO2e (tpy)
Inlet Gas	45,000,000	407,636.1	458,910.0	90,137,358.4	395,239.0	444,953.6	87,396,087.5	8.4	25.8	5,067.3	0.0091	5,304.9
Pilot Gas	876,000	16,644.0	4,380.0	943,812.9	16,137.8	4,246.8	915,109.5	0.34	0.25	53.1	0.0001	61.9
-							Total	8.7	26.0	5.120.4	0.0092	5.366.8

GWP 1 25 298

Unit:	Flare (SSM)
Description:	Flare controlling blowdown and emergency emissions from the facility

Flaring Excess Gas When Plant is Down

26274.78 2163.24 56.84 37.87	scf/hr Btu/scf MMbtu/hr Ib/Ibmol	Compressor Blowdowns	85320 1241.00 105.88 21.16	scf/hr Btu/scf MMbtu/hr lb/lbmol
5/10/	18,1811101		21110	10/1011101
	2163.24 56.84	2163.24 Btu/scf 56.84 MMbtu/hr	2163.24Btu/scfCompressor56.84MMbtu/hrBlowdowns	2163.24 Btu/scf Compressor 1241.00 56.84 MMbtu/hr Blowdowns 105.88

Totals all streams 111594.78 scf/hr

25.10 MW volume-weighted average

	NOx	со	VOC	H₂S	SO ₂	HAPs	РМ	Units	
	0.068	0.37						lb/MMBtu	AP-42 Tables 13.5-1 & 13.5-2
	0.138	0.2755						lb/MMBtu	TNRCC RG-109 High Btu ("Other")
				-				% H2S	Max est. concentration from inlet
Stream 11	7.84	21.03	-	-	-	-	-	lb/hr	lb/MMBtu * MMBtu/hr
	-	-	38.07	-	-	3.98E-03	-	lb/hr	98% destruction of calculated content
	7.84	21.03	38.07	-	-	3.98E-03	-	lb/hr	Total for Stream 11
	0.20	0.55	0.99	-	-	1.04E-04	-	tpy	Assumes 52 events of 1 hr duration for upset conditions
Compressor	14.61	39.18	-	-	-	-	-	lb/hr	lb/MMBtu * MMBtu/hr
Blowdowns	-	-	23.58	1.70E-03	-	0.38	-	lb/hr	98% destruction of calculated content
	-	-	-	-	0.16	-	-	lb/hr	Estimated 100% conversion of combusted H ₂ S to SO ₂
	14.61	39.18	23.58	1.70E-03	0.16	0.38	-	lb/hr	Total for compressor blowdowns
	4.38	11.75	7.07	5.11E-04	0.047	0.11	-	tpy	60 events of 1 hr duration per compressor (600 hr/yr)
	0%	0%	0%	0%	0%	0%	0%	%	Safety Factor
	22.46	60.21	61.64	1.70E-03	0.157	0.38	-	lb/hr	
	4.59	12.30	8.06	5.11E-04	0.047	0.11	-	tpy	Total; Upset Flared gas

Flare SSM GHG Emissions

Amine veri gue & Aussist Gai Step 1. Calculate contribution of un-combusted C14, emissions L _{q,cont} = contribution of annual un-combusted C14, emissions from regenerator in cubic feet under actual conditions. V _q = volume of gas serie to combustion unit during the year (c) The gas series to an unit flave, it is rea. Since 1.1 Since 2.2 0.2753 Step 2. Calculate contribution of un-combusted C02, emissions E _{q,cont} = vontribution of un-combusted C02, emissions E _{q,cont} = vontribution of un-combusted C02, emissions from regenerator in cubic feet under actual conditions. V _q = volume of gas series to combustion unit during the year (c) Step 2. Calculate contribution of un-combusted C02, emissions from regenerator in cubic feet under actual conditions. K _{qon} = Medi fraction of C02, in gas to the flare = 0.464 U.002 Step 3. Calculate contribution of combusted C02, emissions E _{q,cont} = v ⁺ , ⁺ K _{Qon} (<i>Cquadran W-20</i>) where: The region of combusted C02, emissions E _{q,cont} = v ⁺ , ⁺ K _{Qon} (<i>Cquadran W-20</i>) where: The region of combusted C02, emissions E _{q,cont} = v ⁺ , ⁺ K _{Qon} (<i>Cquadran W-20</i>) V ₀ = volume of gas series to combustion unit during the year (c) Step 3. Calculate contribution of the vert (c) V ₀ = volume of gas series to combustion U.0 (<i>Construents</i>) = 1 (n + V ₀ * V ₁ * N) (<i>Cquadran W-20</i>) V ₀ = volume of gas series to combustion U.0 (<i>Construents</i>) = 1 (n + V ₀ * V ₁ * N) (<i>Cquadran W-20</i>) V ₀ = volume of gas series to combustion U.0 (<i>Construents</i>) = 1 (n + V ₀ * V ₁ * N) (<i>Cquadran W-20</i>) (<i>Construents</i>) = 1 (n + V ₀ * V ₁ * N) (<i>Cquadran W-20</i>) (<i>Construents</i>) = 1 (n + V ₀ * V ₁ * N) (<i>Cquadran W-20</i>) (<i>Construents</i>) = 1 (n + V ₀ * V ₁ * N) (<i>Cquadran W-20</i>) (<i>Construents</i>) = 1 (n + 0 + 0) (<i>Construents</i>) = 1 (n + 0	default value from Subpart W = Compressor 0.98 stream 11 Blowdowns 0.464 0.002 compressor 0.98 Stream 11 Blowdowns 0.464 0.002 compressor 0.98 Stream 11 Blowdowns 0.271 0.763 Stream 11 Blowdowns 0.212 0.76 0.2219 0.78 0.2219 0.78 0.2219 0.78 0.2219 0.78 0.212 0.76 0.212 0.76 0.219 0.76 0.219 0.76 0.3949 0.4010 1 2 3 5 > Stream 11 stream 11 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 14.7 psia (Assumption) in from F to R) (Assumption) to onditions (cf) 0.019 kg/h² (et 60F and 14.7 psia) 0.0252 kg/h² (et 60F and 14.7 psia) 0.0252 kg/h² (et 60F and 14.7 psia) 0.0252 kg/h² (et 60F a
$\begin{aligned} \sum_{k_{1} \leq k_{1} \leq k_{2} \leq k_{1} \leq k_{2} \leq k_{1} \leq k_{2} \leq$	default value from Subpart W = Compressor 0.98 stream 11 Blowdowns 0.464 0.002 compressor 0.98 Stream 11 Blowdowns 0.464 0.002 compressor 0.98 Stream 11 Blowdowns 0.271 0.763 Stream 11 Blowdowns 0.212 0.76 0.2219 0.78 0.2219 0.78 0.2219 0.78 0.2219 0.78 0.212 0.76 0.212 0.76 0.219 0.76 0.219 0.76 0.3949 0.4010 1 2 3 5 > Stream 11 stream 11 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 14.7 psia (Assumption) in from F to R) (Assumption) to onditions (cf) 0.019 kg/h² (et 60F and 14.7 psia) 0.0252 kg/h² (et 60F and 14.7 psia) 0.0252 kg/h² (et 60F and 14.7 psia) 0.0252 kg/h² (et 60F a
where: $V_{n} = volume of gas sent to combustion unit during the year (cf) V_{n} = volume of gas sent to combustion unit during the year (cf) For gas sent to an unit fitten, its zero. V_{n} = volume of combustion of the fitten = 10, 227 0 0.7763 0.7776 0.77776 0.7777777777$	default value from Subpart W = Compressor 0.98 stream 11 Blowdowns 0.464 0.002 compressor 0.98 Stream 11 Blowdowns 0.464 0.002 compressor 0.98 Stream 11 Blowdowns 0.271 0.763 Stream 11 Blowdowns 0.212 0.76 0.2219 0.78 0.2219 0.78 0.2219 0.78 0.2219 0.78 0.212 0.76 0.212 0.76 0.219 0.76 0.219 0.76 0.3949 0.4010 1 2 3 5 > Stream 11 stream 11 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 14.7 psia (Assumption) in from F to R) (Assumption) to onditions (cf) 0.019 kg/h² (et 60F and 14.7 psia) 0.0252 kg/h² (et 60F and 14.7 psia) 0.0252 kg/h² (et 60F and 14.7 psia) 0.0252 kg/h² (et 60F a
$ \begin{bmatrix} z_{n,n} & = & contribution of annual un-combusted U, emissions from regenerator in club: feet under actual conditions. $	default value from Subpart W = Compressor 0.38 Stream 11 Blowdowns 0.464 0.002 compressor 0.98 Stream 11 Blowdowns 0.464 0.002 compressor 0.98 Stream 11 Blowdowns 0.464 0.002 compressor 0.98 Stream 11 Blowdowns 0.2719 0.76 0.212 0.76 0.2219 0.78 0.219 0.76 0.210 0.12 0.219 0.76 0.120 0.12 0.219 0.76 0.121 0.212 0.218 0.010 1 2 3 5 > Stream 11 14.7 psia (Assumption) in from F to R) Compressor conditions (cf) 0.0192 kg/t ² (st 60F and 14.7 psia) 0.0252 kg/t ² (st 60F and 14.7 psia) 0.0252 kg/t ² (st 60F and 14.7 psia) 0.0252 kg/t ² (st 60F and 14.7 psia) 0.0252 kg/t ² (st 60F and 14.7 psia)
$ \begin{array}{c} V_{a} = value of gas sent to combuston unit during the year (cf) \\ \eta = Fraction of gas combustod by a busing fairs (or regenerator), default value from Subpart W = 0.98 For gas sent to an unit fairs, \eta is zero. Stream 11 BoordowersV_{com} = Mode fraction of Ch4 in gas to the flame = 0.27 0.7733 \\ \end{array}$	default value from Subpart W = Compressor 0.38 Stream 11 Blowdowns 0.464 0.002 compressor 0.98 Stream 11 Blowdowns 0.464 0.002 compressor 0.98 Stream 11 Blowdowns 0.464 0.002 compressor 0.98 Stream 11 Blowdowns 0.2719 0.76 0.212 0.76 0.2219 0.78 0.219 0.76 0.210 0.12 0.219 0.76 0.120 0.12 0.219 0.76 0.121 0.212 0.218 0.010 1 2 3 5 > Stream 11 14.7 psia (Assumption) in from F to R) Compressor conditions (cf) 0.0192 kg/t ² (st 60F and 14.7 psia) 0.0252 kg/t ² (st 60F and 14.7 psia) 0.0252 kg/t ² (st 60F and 14.7 psia) 0.0252 kg/t ² (st 60F and 14.7 psia) 0.0252 kg/t ² (st 60F and 14.7 psia)
$ \int_{a_{a_{a}}^{a_{a}} = Facta conducted by a burning fare (or regenerator), default value from Subgert W = Compressor For gas sent to an unit flare, it is zero. Sing = 0.01 floation CAL in, gas to the flare = 0.27 0.7783 Step 2. Calculate contribution of annual un-combusted CQ, emissions from regenerator in cubic feet under actual conditions. Compressor Ve = volume of gas sent to combustion unit during the year (cf) Stream 11 Biowdowns Xcon = 0.464 floation dCQ, majs to the flare = 0.464 0.002 Step 3. Calculate contribution of annual un-combusted CQ, emissions from regenerator in cubic feet under actual conditions. Compressor Ve = volume of gas sent to combustion unit during the year (cf) Stream 11 Biowdowns Xcon = 0.464 0.002 Step 3. Calculate contribution of annual un-combusted CQ, emissions Escon (combusted) = \Sigma (n * Ve * Ye * Rp) (Qaution W-21)where:n = fraction of gas combusted by a burning flare (or regenerator) = 0.98For gas sent to an unit flare, n is zero.Ve = volume of gas sent to combustion unit during the year (cf)Constituent j. Hetanne = 0.155 0.017Constituent j. Hetanne = 4Constituent j. Hetanne = 5Step 4. Calculate CGK volumetric emissions at standard conditions (scf).Esco = Esco (Sig Ve - Yo) * Pe (Equation W-32)where:Esco = Cinci Volumetric emissions at standard conditions (scf).Esco = Esco (Sig Ve - Yo) * Pe (Equation W-32)where:Mergen = 0.01102 (C) (C, Ve or No) volumetric emissions at standard conditions (sf) = 1.4.7 paia(Assumption)Constituent j. Petanne Pills = 1.4.7 paiaPe - Absolute pressure at standard conditions (sf) = 1.4.7 paiaPe - Absolute pressure at standard conditions (sf) = $	Compressor Stream 11 Blowdowns 0.464 0.002 . 0.98 Compressor Stream 11 Blowdowns 0.464 0.002 . 0.98 Compressor Stream 11 Blowdowns 0.2719 0.78 0.279 0.78 0.278 0.06 0.212 0.278 0.06 0.1556 0.017 0.2498 0.010 1 2 3 4 5 sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 14.7 pia 14.7 pia 1
$ \begin{aligned} & \text{For gas sent to an unit flare, \eta is zero. Scient 11 Biologous \\ X_{NR} = Nike fraction of CK1 mgs to the flare = 0.27 0.7763 \end{aligned}$	Compressor Stream 11 Blowdowns 0.464 0.002 . 0.98 Compressor Stream 11 Blowdowns 0.464 0.002 . 0.98 Compressor Stream 11 Blowdowns 0.2719 0.78 0.279 0.78 0.278 0.06 0.212 0.278 0.06 0.1556 0.017 0.2498 0.010 1 2 3 4 5 sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 14.7 pia 14.7 pia 1
$ \begin{aligned} & \operatorname{Fregage sent to a unit flare, in is zero. Stream 11 Biowdowns \\ & \operatorname{Step 2. Calculate contribution of Cu, mays to the fore = 0.27 0.7763 \\ & \operatorname{Step 2. Calculate contribution of ann-combusted CO, emissions \\ & \operatorname{E_{ACC}} = - contribution of annual un-combusted CO, emissions from regenerator in cubic freet under actual conditions. \\ & \operatorname{E_{ACC}} = - contribution of annual un-combusted CO, emissions \\ & \operatorname{E_{ACC}} = - contribution of annual un-combusted CO, emissions \\ & \operatorname{E_{ACC}} = - contribution of annual un-combusted CO, emissions \\ & \operatorname{E_{ACC}} = - contribution of annual un-combusted CO, emissions \\ & \operatorname{E_{ACC}} = - contribution of annual un-combusted CO, emissions \\ & \operatorname{E_{ACC}} = - contribution of annual un-combusted CO, emissions \\ & \operatorname{E_{ACC}} = - contribution of annual un-combusted CO, emissions \\ & \operatorname{E_{ACC}} = (contonset) = 2 \\ $	Stream 11 Blowdowns 0.27 0.7763 egenerator in cubic feet under actual conditions. Compressor Stream 11 Blowdowns 0.464 0.002 : 0.98 Compressor Stream 11 Blowdowns 0.2719 0.78 0.2796 0.12 0.2796 0.12 0.2796 0.12 0.2796 0.12 0.2998 0.010 1 2 3 4 5), sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 14.7 pia 14.7
$ V_{\text{pur}} = \dot{\text{Mole}} \text{ fraction of CH, in gas to the fine = 0.27 0.763 } \\ \text{Step 2. Calculate contribution of un-combusted CO, emissions from regenerator in clock forture actual conditions. Congression V_{\text{pur}} = v_{\text{outment}} + v_{\text{purp}} = v_{\text{purp}} + v_{\text{purp}} + v_{\text{purp}} = v_{\text{purp}} + v_{\text{purp}} + v_{\text{purp}} = v_{\text{purp}} + v_{\text{purp}}$	0.27 0.7763 regenerator in cubic feet under actual conditions. Compressor Stream 11 Blowdowns 0.464 0.002 . 0.98 Compressor Stream 11 Blowdowns 0.2719 0.78 0.398 Compressor Stream 11 Blowdowns 0.275 0.78 0.398 .0.10 .2.20 0.398 0.010 .2.2 0.398 0.010 0.358 0.010
Step 2. Calculate contribution of un-combusted CO ₂ emissions $ \begin{bmatrix} F_{a,co} = V_{a}^{-1} X_{co} & (Equation W-20) \\ Where: \\ F_{a,co} = Contribution of annual un-combusted CO2 emissions from regenerator in cubic feet under actual conditions. Comparison Vacuum 2000 and Vacuum 2000 a$	regenerator in cubic feet under actual conditions. Stream 11 Biowdowns 0.464 0.002 Compressor Stream 11 Biowdowns 0.2710 0.78 0.2718 0.06 0.125 0.017 0.0348 0.010 1 2 3 4 5), sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F Regional Climate Center) 14.7 psia 14.7 psia
	Compressor Stream 11 Blowdowns 0.464 0.002 s 0.38 Compressor Compressor Stream 11 Blowdowns 0.2719 0.78 0.27265 0.012 0.2786 0.06 0.2786 0.010 1 2 3 4 5 5), (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 16, T psia 14.7 psia (Assumption) n from F to R) (Assumption) conditions in tons (tpy) (conditions (cf) 0.0192 kg/ft ² (at 60F and 14.7 psia) 0.0152 kg/ft ⁴ (at 60F and 14.7 psia) combustion sources under actual conditions (cf) using Equation W-40 . se of fuel (tons). MMBku/scf
$ \begin{bmatrix} c_{rot} = V_{s}^{-1} C_{rot} & (Equation W-20) \\ where: \\ E_{rots} = contribution of annual un-combusted CQ, emissions from regenerator in cubic feet under actual conditions. Compressor W, = volume of gas sent to combuston unit during the year (cf) Stream 11 Biowdowns Compressor Step 1. Calculate contribution of Co. In gas to the flare = For gas sent to an unit flare, h is zero. W = volume of gas sent to canonicate the year (cf) Compressor For gas sent to an unit flare, h is zero. W = volume of gas sent to canonication unit during the year (cf) Compressor For gas sent to an unit flare, h is zero. W = volume of gas sent to canonication on the during the year (cf) Compressor Ty = mole fraction of gas hydrocarbon constituents ; Stream 11 Biondowns Constituent j. Pethone = 0.2286 0.066 Constituent j. Pethone Piss = 0.0398 0.010 Constituent j. Pethone Piss = 0.0398 0.010 R = number of carbon atoms in the gas hydrocarbon constituent j: Constituent j. Pethone Piss = 0.0398 0.010 R = number of carbon atoms in the gas hydrocarbon constituent j: Constituent j. Pethone Piss = 0.0398 0.010 R = number of carbon atoms in the gas hydrocarbon constituent j: Constituent j. Pethone Piss = 0.338 0.010 R = number of carbon atoms in the gas hydrocarbon constituent j: Constituent j. Pethone Piss = 5 Step 4. Calculate GHV outuretric emissions at standard conditions (std) R_e = 6.0474 0.0173 (Equation W-33) (Equation M-33) (Equatio$	Stream 11 Blowdowns 0.464 0.002 s 0.38 Compressor Compressor Stream 11 Blowdowns 0.2719 0.78 0.2726 0.06 0.2786 0.017 0.2786 0.06 0.2786 0.010 1 2 3 4 5 5), (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 14.7 psia (Assumption) n from F to R) (Assumption) conditions in tons (tpy) (conditions (cf) 0.0192 kg/ft ² (at 60F and 14.7 psia) 0.0152 kg/ft ⁴ (at 60F and 14.7 psia) combustion sources under actual conditions (cf) using Equation W-40 . se of fuel (tons).
where: E_{score} = contribution of annual un-combusted CQ, emissions from regenerator in cubic feet under actual conditions. Compressor V_{s} = volume of gas sent to combustion unit during the year (cf) Stream 11 Blowdowns K_{score} = Mole fraction of CQ, in gas to the flare = 0.464 0.002 Step 3. Calculate contribution of combusted Q, emissions E_{score} (contribution of combusted Q, emissions F_{score} (contribution of combusted Q, emissions F_{score} (contribution of as combusted Q) a burning flare (or regenerator) = 0.98 F_{core} (secore) V_s = volume of gas sent to combustion unit during the year (cf) V_s = volume of gas sent to combustion unit during the year (cf) $C_{correstover}$ (secore) V_s = volume of gas sent to combustion unit during the year (cf) $C_{correstover}$ (secore) V_s = nucle fraction of gas hydrocarbon constituents (secore) V_s = nucle fraction of gas hydrocarbon constituents (secore) $C_{corstituent}$ (Stream 11 Blowdowns 0.464 0.002 s 0.38 Compressor Compressor Stream 11 Blowdowns 0.2719 0.78 0.2726 0.06 0.2786 0.017 0.2786 0.06 0.2786 0.010 1 2 3 4 5 5), (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 14.7 psia (Assumption) n from F to R) (Assumption) conditions in tons (tpy) (conditions (cf) 0.0192 kg/ft ² (at 60F and 14.7 psia) 0.0152 kg/ft ⁴ (at 60F and 14.7 psia) combustion sources under actual conditions (cf) using Equation W-40 . se of fuel (tons).
	Compressor Stream 11 Blowdowns 0.464 0.002 compressor Stream 11 Blowdowns 0.2719 0.780 0.2726 0.06 0.2786 0.012 0.2786 0.012 0.2786 0.010 1 2 3 4 5), (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 16.7 psia (Assumption) in from F to R) Conditions in tons (tpy) in cubic feet (Assumption) in from F to R) Combustion sources under actual conditions (cf) using Equation W-40 . are of fuel (tons). MMBtu/scf
$ \begin{aligned} & \begin{array}{l} & \end{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \begin{array}{l} & \end{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \begin{array}{l} & \end{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} & \end{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \end{array}{l} \\ & \end{array}{l} \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \end{array}{l} \\ & \end{array}{l} \end{array}{l} \\ & \end{array}{l} \end{array}{l} \end{array}{l} \\ & \end{array}{l} \end{array}{l} \end{array}{l} \end{array}{l} \end{array}{l} \\ & \end{array}{l} \end{array}{l} \end{array}{l} \end{array}{l} \end{array}{l} \end{array}{l} \\ & \end{array}{l} \end{array}{l} \end{array}{l} \end{array}{l} \end{array}{l} \end{array}{l} \\ & \end{array}{l} \end{array}{l} \end{array}{l} \end{array}{l} \end{array}{l} \end{array}{l} \end{array}{l} \end{array}{l}$	Compressor Stream 11 Blowdowns 0.464 0.002 compressor Stream 11 Blowdowns 0.2719 0.780 0.2726 0.06 0.2786 0.012 0.2786 0.012 0.2786 0.010 1 2 3 4 5), (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 16.7 psia 14.7 psia (Assumption) in from F to R) Combustions in tons (tpy) in cubic field (conditions in tons (tpy) in cubic field (conditions in tons (tpy) in cubic field (tors of and 14.7 psia) (0.0526 kg/ft ⁺¹ (at 60F and 14.7 psia) (0.0526 kg/ft
	Stream 11 Blowdowns 0.464 0.464 0.002 compressor Compressor Stream 11 Blowdowns 0.2719 0.78 0.2719 0.78 0.2719 0.78 0.2789 0.010 1 2 3 4 5 0.010 1 2 3 4 5 0.010 1 2 3 4 5 0.010 1 2 3 4 5 0.010 1 2 3 4 5 0.010 1 2 1 76 F Regional Climate Center) 14.7 psia 14.7 psia (Assumption) In from F to R) 0.0122 kg/ft ² (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia)
$ \frac{1}{N_{CD}} = Mole fraction of CO2 in gas to the flare = C quark on W-21 Fraction combusted CO2 emissions Equation of gas combusted CO2 emissions Equation of gas combusted by a burning flare (or regenerator) = O.98 For gas sent to a null flare, is zero. V1 = nole fraction of gas hydrocarbon constituents : Constituent), Herbane = O.2766 Constituent), Porpone = O.2766 Constituent), Porpone = O.2766 Constituent), Porpone = O.2766 Constituent), Butane = Constituent), Constent =$	0.464 0.002 Compressor Stream 11 Blowdowns 0.2719 0.78 0.190 0.12 0.2786 0.06 0.175 0.03498 0.010 1 2 3 4 5), sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) in from F to R) Combustion sources under actual conditions (cf) using Equation W-40 . be of fuel (tons). MMBtu/scf
See 3. Calculate contribution of combusted CQ, emissions $ E_{cross} (combusted) = 2 (n + V_s + Y_1 + R_) (Equation W-22) where: n = Fraction of gas combusted by a burning flare (or regenerator) = 0.98 For gas sent to an unit flare, n is zero. Vs = volume of gas sent to combustion unit during the year (of) Vs = volume of gas sent to combustion unit during the year (of) Vs = volume of gas sent to combustion unit during the year (of) Vs = volume of gas sent to combustion unit during the year (of) Vs = volume of gas sent to combustion unit during the year (of) Vs = volume of gas sent to combustion unit during the year (of) Constituent 1, Bethane = 0.1396 Constituent 1, Bethane = 0.1396 Constituent 1, Bethane = 0.1395 Constituent 1, Bethane = 0.1395 Constituent 1, Bethane = 1 Constituent 1, Bethane Bus = 3 Constituent 1, Bethane Bus = 4 Constituent 1, $	s 0.38 Compressor Stream 11 Blowdowns 0.2719 0.78 0.2706 0.12 0.2786 0.06 0.1556 0.017 0.03498 0.010 1 2 3 4 5). sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) in from F to R) conditions in tons (tpy) rd conditions (of) 0.0122 kg/ft ² (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) Combustion sources under actual conditions (cf) using Equation W-40. be of fuel (tons).
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	Stream 11 Bowdowns 0.271 9 0.78 0.1906 0.12 0.2906 0.06 0.1556 0.017 0.03498 0.010 1 2 3 4 5 5 >, 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia (Assumption) in from F to R) 0.0132 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) 14. combustion sources under actual conditions (cf) using Equation W-40 . e of fuel (tons).
$ \begin{array}{c} E_{cons} (combusted) = \sum (n^2 V_s^* Y_1^* R_s) (Equation W-2J) \\ where: \\ n = Fraction of gas combusted by a burning flare (or regenerator) = 0.98 \\ For gas sent to an unit flare, n is zero. \\ V_s = volume of gas sent to combustion unit during the year (cf) \\ \hline V_1 = mole fraction of gas individuation on the during the year (cf) \\ V_1 = mole fraction of gas singly (contraction constituents) : Stream 11 Blowdowns Constituent), Methane = 0.22719 0.78 Constituent), Methane = 0.1056 0.012 Constituent), Propane = 0.2786 0.06 Constituent), Propane = 0.0398 R_1 = number of carbon atoms in the gas hydrocarbon constituent J: Constituent), Propane = 1 Constituent), Propane = 2 Constituent), Propane = 3 Constituent), Propane = 3 Constituent), Propane = 3 Constituent), Propane = 4 Constituent), Propane = 5 Step 4. Calculate GHG volumetric emissions at standard conditions (scf). E_{u^n} = E_{u^n}^4 (efShG^2 + T_1)^* P_a (Equation W-33) \\ (efShG^2 + T_2)^* P_a \qquad (Equation (f)^2 = 75 F \\ Regional Climate Center) \\ P_a - Absolute pressure at standard conditions (f) = 14.7 psia \\ P_a - Absolute pressure at standard conditions (f) = 14.7 psia \\ P_a - Absolute pressure at standard conditions (for) \\ P_a - Bosing (CO2, CHa or N0) mass emissions at standard conditions (f) \\ P_a - Bosing (CO2, CHa or N0) mass emissions at standard conditions (f) \\ P_a - Bosing (F) (CO2, CHa or N0) mass emissions at standard conditions (f) \\ P_a - Bosing (F) (CO2, CHa or N0) mass emissions at standard conditions (f) \\ P_a - Bosing (F) (CO2, CHa or N0) mass emissions at standard conditions (f) \\ P_a = Density of CHG i. Use: (H_i: 0.0192 ky/R^2 (dt 60F and 14.7 psia) (Co;: 0.0526 ky/R^2 (dt 60F and 14.7 psia) (Co;: 0.0526 ky/R^2 (dt 60F and 14.7 psia) (Bassage annual N0O emissions from portable or stationary fu$	Stream 11 Bowdowns 0.271 9 0.78 0.1906 0.12 0.2906 0.06 0.1556 0.017 0.03498 0.010 1 2 3 4 5 5 >, 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia (Assumption) n from F to R) 0.0192 kg/ft ² (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) 14. combustion sources under actual conditions (cf) using Equation W-40 . e of fuel (tons).
where: $\eta = Fraction of gas conducted by a burning flare (or regenerator) = 0.98 For gas sent to an unit flare, fits zero. V_s = volume of gas sent to constituent is zero. Y_1 = mole fraction of gas hydrocarbon constituents ; Stream 11 Constituent j. Methane = 0.2719 Constituent j. Methane = 0.27268 0.0349 0.0319 Constituent j. Pathane Pau = 0.1586 0.03498 0.010 R = number of carbon atom the two shydrocarbon constituents ; Constituent j. Burane = 1 Constituent j. Burane = 4 Constituent j. Burane = 1 Constituent j. Burane = 4 Constituent j. Burane = 1 Constituent j. Persen at atcual conditions (F) = 60 F T_s = Temperature at atcual conditions (F) = 76 F Regional Climate Center) Pr P_s = Absolute pressure at standard conditions (psi) = 14.7 psia P_s = Absolute pressure at standard conditions (psi) = 14.7 psia P_s = Absolute pressure at standard conditions (con) Cosist t = 495.67 (Equation W-32) (Equation W-32) Cosist t = 495.67 (Equation W-32) Cosist t = 495.67 (Cosi Che, or No) on mass emissions at standard conditions (cf) p_s = Density of GHG I. Use: CH: 0.0192 kg/R1 (at 60F and 14.7 psia) Cosist t = 10$	Stream 11 Bowdowns 0.271 9 0.78 0.1906 0.12 0.2906 0.06 0.1556 0.017 0.03498 0.010 1 2 3 4 5 5 >, 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia (Assumption) in from F to R) 0.0132 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) 14. combustion sources under actual conditions (cf) using Equation W-40 . e of fuel (tons).
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Stream 11 Bowdowns 0.271 9 0.78 0.1906 0.12 0.2906 0.06 0.1556 0.017 0.03498 0.010 1 2 3 4 5 5 >, 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia (Assumption) in from F to R) 0.0132 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) 14. combustion sources under actual conditions (cf) using Equation W-40 . e of fuel (tons).
$ \begin{aligned} For gas sent to a null flare, h is zero. \\ V_s = volume of gas sent to combuston unit during the year (cf) \\ Compressor \\ Y_s = mole fraction of gas hydrocarbon constituents j: Stream 11 Blowdowns \\ Constituent j, Methane = 0.2719 0.78 \\ Constituent j, Pitanae = 0.2786 0.06 \\ Constituent j, Pitanae Plus = 0.0356 0.017 \\ Constituent j, Pitanae Plus = 0.0356 0.017 \\ Constituent j, Pitanae Plus = 0.03398 0.010 \\ R_s = number of carbon atoms in the gas hydrocarbon constituent j i Constituent j, Pitanae Plus = 0.03398 0.010 \\ R_s = number of carbon atoms in the gas hydrocarbon constituent j i Constituent j, Pitanae Plus = 0.0356 0.017 \\ Constituent j, Methane = 1 \\ Constituent j, Pitanae Plus = 0.03398 0.010 \\ R_s = number of carbon atoms in the gas hydrocarbon constituent j i Constituent j, Pitanae Plus = 3 \\ Constituent j, Pitanae Plus = 3 \\ Constituent j, Pitanae Plus = 5 \\ \end{tabular}$	Stream 11 Bowdowns 0.271 9 0.78 0.1906 0.12 0.2906 0.06 0.1556 0.017 0.03498 0.010 1 2 3 4 5 5 >, 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia (Assumption) in from F to R) 0.0132 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) 14. combustion sources under actual conditions (cf) using Equation W-40 . e of fuel (tons).
$V_{*} = volume of gas sent to combuston unit during the year (cf) Compressor Y_{1} = mole fraction of gas hydrocarbon constituents j: Stream 11 Biowdowns Constituent j, Brhane = 0.2719 0.78 Constituent j, Bropane = 0.2736 0.06 Constituent j, Bropane = 0.1556 0.017 Constituent j, Britanes Plus = 0.03499 0.010 R_{1} = number of carbon atoms in the gas hydrocarbon constituent j = 0.03499 Constituent j, Britanes Plus = 1 Constituent j, Britanes Plus = 3 Constituent j, Britanes Plus = 5 Step 4. Calculate GHG volumetric emissions at standard conditions (scf). E_{x_{10}} = GHG i volumetric emissions at standard conditions (scf). E_{x_{10}} = GHG i volumetric emissions at standard conditions (scf) = 60 F T_{1} = Temperature at standard conditions (f) = 60 F R_{2} = GHG i volumetric emissions at atomard temperature and pressure (STP) in cubic feet E_{x_{10}} = GHG i volumetric emissions at standard conditions (sci) = 14.7 psia P_{1} = Absolute pressure at standard conditions (psia) = 14.7 psia P_{2} = Absolute pressure at standard conditions (psia) = 14.7 psia P_{2} = Absolute pressure at standard conditions (psia) = 14.7 psia P_{2} = Absolute pressure at standard conditions (psia) = 14.7 psia Co;: 0.0152 kg/ft1 (at GFF and 14.7 psia) CO;: 0.0252 kg/ft1 (at GFF and 14.7 psia)$	Stream 11 Blowdowns 0.2719 0.78 0.1906 0.12 0.2786 0.06 0.1556 0.017 0.03498 0.010 1 2 3 4 5 5), (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) on from F to R) 0.0192 kg/R ⁵ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) I combustion sources under actual conditions (cf) using Equation W-40 . . we of fuel (tons). MMBtu/scf
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Stream 11 Blowdowns 0.2719 0.78 0.1906 0.12 0.2786 0.06 0.1556 0.017 0.03498 0.010 1 2 3 4 5 5), (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) on from F to R) 0.0192 kg/R ⁵ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) I combustion sources under actual conditions (cf) using Equation W-40 . . we of fuel (tons). MMBtu/scf
	Stream 11 Blowdowns 0.2719 0.78 0.1906 0.12 0.2786 0.06 0.1556 0.017 0.03498 0.010 1 2 3 4 5 5), (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) on from F to R) 0.0192 kg/R ⁵ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) I combustion sources under actual conditions (cf) using Equation W-40 . . we of fuel (tons). MMBtu/scf
$ \begin{bmatrix} c_{nn} & c_{nn} $	0.2719 0.78 0.1906 0.12 0.2786 0.06 0.1556 0.017 0.03498 0.010 1 2 3 4 5). sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F Regional Climate Center) 14.7 psia 14.7
Constituent j, Ethane = 0.1906 0.12 Constituent j, Bvtane = 0.1556 0.06 Constituent j, Bvtane = 0.03948 0.010 R _j = number of carbon atoms in the gas hydrocarbon constituent j: Constituent j, Pentanes Plus = 0.03498 0.010 R _j = number of carbon atoms in the gas hydrocarbon constituent j: Constituent j, Pentanes Plus = 1 Constituent j, Propane = 2 Constituent j, Propane = 3 Constituent j, Propane = 3 Constituent j, Propane = 5 Step 4. Calculate GHG volumetric emissions at standard conditions (scf). E _{v₀} = E _{u₀⁺⁺ (459.67 + T₀) * P_x (Equation W-32) (459.67 + T₀) * P_x (Equation W-33) (459.67 + T₀) * P_x (Equation K-5) T_x = Temperature at standard conditions (pia) = 14.7 pia P_x = Absolute pressure at standard conditions (pia) = 14.7 pia P_x = Absolute pressure at standard conditions (pia) = 14.7 pia (Assumption) Constant = 459.67 (temperature conversion from F to R) Step 5. Calculate annual CH₄ and CO₂ mass emissions at standard conditions in tons (tpy) E_u = CH₁: (CO₂, CH₄, or N₂O) was emissions at standard conditions (cf) p_x = Density of GHG i. Use: CH₁: 0.0192 kg/h² (at 60F and 14.7 pia) CO₂: 0.0526 kg/h⁴ (at 60F and 14.7 pia) Step 5. Calculate annual N₂O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 - Where: Mass_{No0} = noual N₂O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel Step 1. Calculate annual N₂O em}	0.1906 0.12 0.2786 0.06 0.155 0.017 0.03498 0.010 1 2 3 4 5). sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia (Assumption) in from F to R) 1 conditions in tons (tpy) rd conditions (cf) 0.0192 kg/R ² (at 60F and 14.7 psia) 0.0526 kg/R ² (at 60F and 14.7 psia) 0.0526 kg/R ² (at 60F and 14.7 psia) 1 combustion sources under actual conditions (cf) using Equation W-40. pe of fuel (tons). MMBtu/scf
$ \begin{cases} Constituent, j. Propane = 0.2286 0.06 \\ Constituent, j. Butane = 0.033498 0.010 \\ R_{j} = number of carbon atoms in the gas hydrocarbon constituent j: \\ Constituent, j. Methane = 1 \\ Constituent, j. Bethane = 2 \\ Constituent, j. Butane = 3 \\ Constituent, j. Butane = 5 \\ Step 4. Calculate GHG volumetric emissions at standard conditions (scf). \\ E_{a,n} = (E_{a,n} + (459.67 + T_a) + P_a (Equation W-33) \\ P_a = Absolute pressure at actual conditions (pia) = 14.7 pia (Assumption) \\ Constant = 459.67 (transformations (pia)) = 14.7 pia (Assumption) \\ Constant = 459.67 (transformations (pia)) = 14.7 pia (Assumption) \\ Mass_{a,j} = E_{a,j} + n + 0.0011023 (Equation W-30) \\ Where: \\ Mass_{a,j} = GHG i (CO_{a}, CH_{a}, or N_{0}O) mass emissions at standard conditions in tons (tpr) \\ E_{a,j} = GHG i (CO_{a}, CH_{a}, or N_{0}O) volumetric emissions at standard conditions (cf) \\ P_{a} = Density of GHG i. Use: \\ CH_{a}: 0.0192 kg/R^{2} (at 60F and 14.7 pia) \\ CO_{2}: 0.0526 kg/R^{2} (at 60F and 14.7 pia) \\ CO_{3}: 0.0526 kg/R^{2} (at 60F and 14.7 pia) \\ Mass_{BO} = 0.0011023 + Fuel + HHV + EF (Equation W-40) \\ Where: \\ Mass_{BO} = 0.0011023 + Fuel + HHV + EF (Equation W-40) \\ Where: \\ Hass_{BO} = 0.0011023 + Fuel + HHV + EF (Equation W-40) \\ Where: \\ Hass_{BO} = 0.0011023 + Fuel + HHV + EF (Equation W-40$	0.2786 0.06 0.1556 0.017 0.03498 0.010 1 2 3 4 5). sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F Regional Climate Center) 14.7 psia 14.7 psia
Constituent j, Butane = 0.1556 0.017 Constituent j, Pentanes Plus = 0.039498 0.010 R _j = number of carbon atoms in the gas hydrocarbon constituent j: Constituent j, Behane = 1 Constituent j, Behane = 2 Constituent j, Broane = 3 Constituent j, Broane = 3 Constituent j, Butane = 4 Constituent j, Butane = 4 Constituent j, Pentanes Plus = 5 Step 4. Calculate GHG volumetric emissions at standard conditions (scf). $E_{x,n} = \frac{E_{x,n} * (459.67 + T_{y}) * P_{x}}{(459.67 + T_{y}) * P_{x}}$ (Equation W-33) ($\frac{459.67 + T_{y}}{(459.67 + T_{y}) * P_{x}}$ (Equation W-33) where: $E_{x,n} = GHG i volumetric emissions at standard temperature and pressure (STP) in cubic feet E_{x,n} = GHG i volumetric emissions at atual conditions (cf) T_{x} = Temperature at standard conditions (f) = 60 F (Based on Annual Avg Max Tem T_{a} = Temperature at standard conditions (f) = 76 F Regional Climate Center) P_{a} = Absolute pressure at standard conditions (psia) = 14.7 psia P_{a} = Absolute pressure at atual conditions (psia) = 14.7 psia P_{a} = Absolute pressure at atual conditions (fon). Massx1 = E_{x1} + 61 (CO2, CHx or NxO) mass emissions at standard conditions in tons (tpy) E_{x1} = GHG i (CO2, CHx or NxO) mass emissions at standard conditions in tons (tpy) E_{x2} = GHG i (CO2, CHx or NxO) volumetric emissions at standard conditions (cf) pa = Density of GHG i. Use: CH4: 0.0152 k g/R12 (at 60F and 14.7 psia) CG2: 0.0526 kg/R12 (at 60F and 14.7 psia) CG1: 0.01528 kg/R12 (at 60F and 14.7 psia) CG2: 0.0526 kg/R12 (at 60F and 14.7 psia) CG2: 0.0526 kg/R12 (at 60F and 14.7 psia) CG1: 0.0526 kg/R12 (at 60F and 14.7 psia) CG2: 0.0526 kg/R12 (at 60F and 14.7 psia) CG2: 0.0526 kg/$	0.1556 0.017 0.03498 0.010 1 2 3 4 5). sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia 0.0526 kg/R ² (at 60F and 14.7 psia) 0.0526 kg/R ² (at 60F and 14.7 psia) 0.0526 kg/R ² (at 60F and 14.7 psia) 1 combustion sources under actual conditions (cf) using Equation W-40. pe of fuel (tons).
Constituent j, Pentanes Plus = 0.03498 0.010 R _j = number of carbon atoms in the gas hydrocarbon constituent j: Constituent j, Bethane = 1 Constituent j, Protane = 2 Constituent j, Pentanes Plus = 2 Step 4. Calculate GHG volumetric emissions at standard conditions (scf). $f_{e_n} = \frac{f_{e_n} + (459.67 + T_j) * P_n$ (Equation W-33) (459.67 + T_j) * P_n (Equation W-33) (459.67 + T_j) * P_n (Equation W-33) (459.67 + T_j) * P_n (Equation W-33) (459.67 + T_j) * P_n where: $F_{e_n} = GHG i volumetric emissions at standard temperature and pressure (STP) in cubic feet F_{e_n} = GHG i volumetric emissions at actual conditions (f) = 0 F T_n = Temperature at standard conditions (F) = 0 F T_n = temperature at standard conditions (F) = 14.7 psia P_n = Absolute pressure at standard conditions (pia) = 14.7 psia P_n = Absolute pressure at actual conditions (pia) = 14.7 psia P_n = Absolute pressure at actual conditions (sol) Mass10 = f_{e_1} + p_1 + 0.001023 (Equation W-36)where:Mass10 = f_{e_1} + p_1 + 0.001023 (Equation W-36)where:Mass10 = f_{e_1} + p_1 + 0.001023 (Equation W-36)where:Mass10 = 0.0011023 * Fuel * HHV * EF (Equation W-40)where:Mass100 = annual N2O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40.Mass100 = annual N2O emissions from combustion of a particular type of fuel (ton s).Fuel = mass or volume of the fuel combustion for poly (M-40)where:Mass100 = annual N2O emissions from combustion of a particular type of fuel (ton s).Fuel = mass or volume of the fuel combustion of a particular type of fuel (ton s).Fuel = mass or volume of the fuel combustion of a particular type of fuel (ton s).Fuel = mass or volume of the fuel combustion of a particular type of fuel (ton s).Fuel = mass or volume of the fuel combustion of a particular type of fuel (ton s).Fuel = mass or volume of the fuel combustion of a particular type of fuel (ton s).Fuel = mass or volume of$	0.03498 0.010 1 2 3 4 5), sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) on from F to R) conditions in tons (tpy) rd conditions in tons (tpy) rd conditions in tons (tpy) rd conditions sources under actual conditions (cf) using Equation W-40. pe of fuel (tons). MMBtu/scf
$ \begin{array}{c} R_{j} = number of carbon actions in the gas hydrocarbon constituent j: \\ Constituent j. Methane = 1 \\ Constituent j. Bhane = 2 \\ Constituent j. Bhane = 3 \\ Constituent j. Bhane = 3 \\ Constituent j. Butane = 4 \\ Constituent j. Pertname Plus = 5 \\ \end{array}$	1 2 3 4 5). sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F Regional Climate Center) 14.7 psia 14.7 psia 15.8 16
$\begin{aligned} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ \\ \\$	2 3 4 5). sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia 0.0526 kg/R ² (at 60F and 14.7 psia) 0.0526 kg/R ² (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 1 combustion sources under actual conditions (cf) using Equation W-40. pe of fuel (tons). MMBtu/scf
	2 3 4 5). sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia 0.0526 kg/R ² (at 60F and 14.7 psia) 0.0526 kg/R ² (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 1 combustion sources under actual conditions (cf) using Equation W-40. pe of fuel (tons). MMBtu/scf
	3 4 5). sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 1 combustion sources under actual conditions (cf) using Equation W-40. pe of fuel (tons). MMBtu/scf
$ \begin{array}{c} \text{Constituent } j, \text{ Justane} = & 4 \\ \text{Constituent } j, \text{ Pentanes Plus} = & 5 \end{array} \\ \hline \\ Step 4. Calculate GHG volumetric emissions at standard conditions (scf). \\ \hline \\ $	4 5). sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F 14.7 psia 14.7 psia 15. 16. 16. 16. 16. 16. 16. 16. 16
Step 4. Calculate GHG volumetric emissions at standard conditions (scf). $E_{x,n} = \underbrace{E_{x,n}^{-1} (459.67 + T_n)^* P_n}_{(459.67 + T_n)^* P_n} (Equation W-33)}_{(459.67 + T_n)^* P_n} (Equation W-36)}_{(T_n^- = Temperature at standard conditions (pia) = 14.7 psia}_{P_n^- Absolute pressure at standard conditions (psia) = 14.7 psia}_{P_n^- Absolute pressure at standard conditions (psia) = 14.7 psia}_{P_n^- Absolute pressure at standard conditions (psia) = 14.7 psia}_{P_n^- Absolute pressure at actual conditions (psia) = 14.7 psia}_{P_n^- Absolute pressure at actual conditions (psia) = 14.7 psia}_{P_n^- Absolute pressure at actual conditions (psia) = 14.7 psia}_{P_n^- Absolute pressure at actual conditions (psia) = 14.7 psia}_{P_n^- Absolute pressure at actual conditions (psia) = 14.7 psia}_{P_n^- Absolute pressure at actual conditions (psia) = 14.7 psia}_{P_n^- Absolute pressure at actual conditions (psia) = 14.7 psia}_{P_n^- Absolute pressure at actual conditions (psia) = 14.7 psia}_{P_n^- Absolute pressure at actual conditions (psia) = 14.7 psia}_{P_n^- Absolute pressure at actual conditions (psia) = 14.7 psia}_{P_n^- Absolute pressure at actual conditions (psia) = 14.7 psia}_{P_n^- Absolute pressure (P_n^- A 0.0011023 (Equation W-36)_{V}^- Venter: Mass_{N_n^-} = GHG i (CO_n^- CH_n^- or N_0^- O) mass emissions at standard conditions (cf)_{P_n^- Basolute pressions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40}_{Vhere:}_{Neroe:}_{Nass_{N_n^-} = Anual N_0^- emissions from combustion of a particular type of fuel (tons). Frue = mass or volume of the fuel combusted Hirty = has or volume of the fuel combusted Hirty = high heat value of the fuel St$	5), sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) on from F to R) d conditions in tons (tpy) rd conditions in tons (tpy) rd conditions (cf) 0.0192 kg/ft ² (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) Hombustion sources under actual conditions (cf) using Equation W-40.
Step 4. Calculate GHG volumetric emissions at standard conditions (scf). $\begin{aligned} E_{x_0} &= \underbrace{E_{x_0} * (459.67 + T_0) * P_a}_{(459.67 + T_0) * P_a} & (Equation W-33)\\ (Equation W-33)\\ (equation W-33)\\ (equation W-33)\\ (equation W-33)\\ T_s &= GHG i volumetric emissions at standard temperature and pressure (STP) in cubic feet \\ E_{x_0} &= GHG i volumetric emissions at standard conditions (cf)\\ T_s &= Temperature at standard conditions (F) = 60 F \\ T_s &= Temperature at atual conditions (F) = 76 F Regional Climate Center)\\ P_s &= Absolute pressure at standard conditions (psia) = 14.7 psia\\ P_s &= Absolute pressure at actual conditions (psia) = 14.7 psia\\ P_s &= Absolute pressure at actual conditions (psia) = 14.7 psia\\ P_s &= Absolute pressure at actual conditions (psia) = 14.7 psia\\ P_s &= Absolute pressure at actual conditions (psia) = 14.7 psia\\ P_s &= Absolute pressure at actual conditions (psia) = 14.7 psia\\ P_s &= Absolute pressure at actual conditions (psia) = 14.7 psia\\ P_s &= Absolute pressure at actual conditions (psia) = 14.7 psia\\ P_s &= Absolute pressure at actual conditions (psia) = 14.7 psia\\ P_s &= Absolute pressure at actual conditions (psia) = 14.7 psia\\ P_s &= GHG i (CO_2, CH_s or N_2O) mass emissions at standard conditions in tons (try)\\ E_{y} &= GHG i (CO_2, CH_s or N_2O) mass emissions at standard conditions in tons (try)\\ E_{y} &= GHG i (CO_2, CH_s or N_2O) volumetric emissions at standard conditions (cf)\\ \rho_s &= Denisty of GHG i. Use:\\ CH_s &= 0.0192 kg/ft^3 (at 60F and 14.7 psia)\\ CO_2 &= 0.0526 kg/ft^4 (at 60F and 14.7 psia)\\ CO_2 &= 0.0526 kg/ft^4 (at 60F and 14.7 psia)\\ Mass_{RO0} = annual N_2O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-400\\ where:\\ Mass_{RO0} = annual N_2O emissions from combustion of a particular type of fuel (tons).\\ Frue mass or volume of the fuel combusted\\ HW = high heat value of the fuel combusted\\ HW = high heat value of the fuel combusted\\ HW = high heat value of the fuel combusted\\ HW = high heat v$). sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia (Assumption) on from F to R) d conditions in tons (tpy) rd conditions (cf) 0.0192 kg/R ³ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) l combustion sources under actual conditions (cf) using Equation W-40. pe of fuel (tons). MMBtu/scf
$ \begin{array}{l} & $	sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) on from F to R) d conditions in tons (tpy) rd conditions (cf) 0.0192 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) 1 combustion sources under actual conditions (cf) using Equation W-40. pe of fuel (tons).
$ \begin{cases} E_{a,n} = \underbrace{E_{a,n} * (459.67 + T_{a}) * P_{a}}{(459.67 + T_{a}) * P_{a}}, & (Equation W-33) \\ (459.67 + T_{a}) * P_{a} & (Equation W-33) \\ Where: \\ E_{a,n} = GHG i volumetric emissions at standard temperature and pressure (STP) in cubic feet \\ E_{a,n} = GHG i volumetric emissions at actual conditions (f) = & 00 F \\ T_{a} = Temperature at standard conditions (F) = & 00 F \\ T_{a} = Temperature at standard conditions (F) = & 00 F \\ T_{a} = Temperature at actual conditions (F) = & 76 F Regional Climate Center) \\ P_{a} = Absolute pressure at standard conditions (pia) = & 14.7 psia \\ P_{a} = Absolute pressure at standard conditions (pia) = & 14.7 psia \\ P_{a} = Absolute pressure at standard conditions (pia) = & 14.7 psia \\ P_{a} = Absolute pressure at standard conditions (P) \\ Where: & Mass_{a,i} = E_{a,i} * p_{a} * 0.0011023 (Equation W-36) \\ Where: & Mass_{a,i} = GHG i (CO_{2}, CH_{4}, or N_{2}O) and set emissions at standard conditions in tons (tpy) \\ E_{a,i} = GHG i (CO_{2}, CH_{4}, or N_{2}O) and unetric emissions at standard conditions (rf) \\ p_{i} = Density of GHG i. Use: \\ CH_{4} : 0.0192 kg/h^{2} (at 60F and 14.7 psia) \\ CO_{2} : 0.0526 kg/h^{2} (at 60F and 14.7 psia) \\ Step 5. Calculate annual N_{0} emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 . \\ Mass_{RO} = annual N_{0} emissions from combustion of a particular type of fuel (tons). \\ Fuel = mass or volume of the fuel combusted \\ HTV = high heat value of the fuel \\ Stream 11 = $2.163E-03 MMBtu/scf \\ EF = $1.00E-04 kg N_{0}/0/MMBtu \\ \end{bmatrix}$	sure (STP) in cubic feet 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) on from F to R) d conditions in tons (tpy) rd conditions (cf) 0.0192 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) 1 combustion sources under actual conditions (cf) using Equation W-40. pe of fuel (tons).
	60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) on from F to R) d conditions in tons (tpy) rd conditions (cf) 0.0192 kg/R ² (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) d combustion sources under actual conditions (cf) using Equation W-40. Dee of fuel (tons).
	60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) on from F to R) d conditions in tons (tpy) rd conditions (cf) 0.0192 kg/R ² (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) d combustion sources under actual conditions (cf) using Equation W-40. Dee of fuel (tons).
where: $E_{s,n} = GHG$ i volumetric emissions at standard temperature and pressure (STP) in cubic feet $E_{s,n} = GHG$ i volumetric emissions at actual conditions (cf) $T_s = Temperature at standard conditions (F) = 60 F (Based on Annual Avg Max Tem T_s = Temperature at actual conditions (F) = 76 F Regional Climate Center) P_s = Absolute pressure at standard conditions (psia) = 14.7 psia P_s = Absolute pressure at actual conditions (psia) = 14.7 psia P_s = Absolute pressure at actual conditions (psia) = 14.7 psia P_s = Absolute pressure at actual conditions (psia) = 14.7 psia P_s = Absolute pressure at actual conditions (psia) = 14.7 psia (Assumption) Step 5. Calculate annual CHs and CO2 mass emissions (ton). Masssia = Esi + p_i * 0.0011023 (Equation W-36)where:Mass_{sia} = GHG i (CO_2, CH_4, or N_2O) mass emissions at standard conditions in tons (tpy)E_{sia} = GHG i (CO_2, CH_4, or N_2O) mass emissions at standard conditions (cf)p_i = Density of GHG i. Use:CH_4: 0.0192 kg/ft3 (at 60F and 14.7 psia)CO_2: 0.0526 kg/f$	60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) on from F to R) d conditions in tons (tpy) rd conditions (cf) 0.0192 kg/R ² (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) d combustion sources under actual conditions (cf) using Equation W-40. Dee of fuel (tons).
$ \begin{array}{c} E_{s,n} = \operatorname{GHG} \text{ i volumetric emissions at standard temperature and pressure (STP) in cubic feet \\ E_{s,n} = \operatorname{GHG} \text{ i volumetric emissions at actual conditions (f)} \\ T_s = Temperature at standard conditions (F) = & G0 F \\ T_s = Temperature at actual conditions (F) = & 76 F Regional Climate Center) \\ P_s = \operatorname{Absolute pressure at standard conditions (psia) = & 14.7 psia \\ P_s = \operatorname{Absolute pressure at actual conditions (psia) = & 14.7 psia \\ P_s = \operatorname{Absolute pressure at actual conditions (psia) = & 14.7 psia \\ P_s = \operatorname{Absolute pressure at actual conditions (psia) = & 14.7 psia \\ P_s = \operatorname{Absolute pressure at actual conditions (psia) = & 14.7 psia \\ Constant = 459.67 (temperature conversion from F to R) \end{array} $ $\begin{array}{c} \text{Step 5. Calculate annual CH_a and CO_2 mass emissions (ton). \\ Mass_{s_{s_1}} = E_{s_1} * \rho_1 * 0.0011023 (Equation W-36) \\ where: \\ Mass_{s_{s_1}} = GHG i (CO_2, CH_a, or N_2O) mass emissions at standard conditions in tons (tpy) \\ E_{s_1} = GHG i (CO_2, CH_a, or N_2O) nouse emissions at standard conditions (cf) \\ \rho_1 = Density of GHG i. Use: \\ CH_4: 0.0192 kg/ft^2 (at 60F and 14.7 psia) \\ CO_2: 0.0526 kg/ft^2 (at 60F and 14.7 psia) \\ CO_2: 0.0526 kg/ft^2 (at 60F and 14.7 psia) \\ Mass_{N2O} = annual N_2O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 \\ where: \\ Mass_{N2O} = annual N_2O emissions from combustion of a particular type of fuel (tons). \\ Fuel = mass or volume of the fuel combusted \\ HHV = high heat value of the fuel \\ Stream 11 = \\ 2.163E-03 MMBtu/scf \\ EF = \\ 1.00E-04 kg N_2O/MMBtu \end{array}$	60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) on from F to R) d conditions in tons (tpy) rd conditions (cf) 0.0192 kg/R ² (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) d combustion sources under actual conditions (cf) using Equation W-40. pe of fuel (tons). MMBtu/scf
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F 14.7 psia 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) on from F to R) d conditions in tons (tpy) rd conditions (cf) 0.0192 kg/R ² (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) d combustion sources under actual conditions (cf) using Equation W-40. Dee of fuel (tons).
$T_{s} = \text{Temperature at standard conditions (F) = 60 F (Based on Annual Avg Max Tem P_{a} = Absolute pressure at standard conditions (psia) = 76 F Regional Climate Center) P_{s} = Absolute pressure at actual conditions (psia) = 14.7 psia P_{a} = Absolute pressure at actual conditions (psia) = 14.7 psia P_{a} = Absolute pressure at actual conditions (psia) = 14.7 psia P_{a} = Absolute pressure at actual conditions (psia) = 14.7 psia (Assumption) Constant = 459.67 (temperature conversion from F to R) Step 5. Calculate annual CH_{a} and CO_{2} mass emissions (ton). Mass_{s,i} = E_{u} * P_{n} * 0.0011023 (Equation W-36) where: Mass_{s,i} = GHG i (CO_{2}, CH_{4}, or N_{2}O) mass emissions at standard conditions (nf) P_{i} = Density of GHG i. Use: CH_{4}: 0.0192 kg/ft3 (at 60F and 14.7 psia) CO_{2}: 0.0526 kg/ft^$	(Based on Annual Avg Max Temperature for Hobbs, NM from Wester 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia (Assumption) in from F to R) d conditions in tons (tpy) rd conditions (cf) 0.0192 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) d combustion sources under actual conditions (cf) using Equation W-40 . pe of fuel (tons).
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	(Based on Annual Avg Max Temperature for Hobbs, NM from Weste 76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) if conditions in tons (tpy) rd conditions in tons (tpy) rd conditions (cf) 0.0192 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) d combustion sources under actual conditions (cf) using Equation W-40. pe of fuel (tons). MMBtu/scf
$ \begin{array}{cccccc} T_{a} = \text{Temperature at actual conditions (F) =} & 76 \text{ F} & \text{Regional Climate Center}) \\ P_{s} = \text{Absolute pressure at standard conditions (psia) =} & 14.7 \text{ psia} \\ P_{s} = \text{Absolute pressure at standard conditions (psia) =} & 14.7 \text{ psia} \\ P_{s} = \text{Absolute pressure at actual conditions (psia) =} & 14.7 \text{ psia} \\ P_{s} = \text{Absolute pressure at actual conditions (psia) =} & 14.7 \text{ psia} \\ P_{s} = \text{Absolute pressure at actual conditions (psia) =} & 14.7 \text{ psia} \\ \text{Constant =} & 459.67 & (\text{temperature conversion from F to R}) \\ \end{array} $	76 F Regional Climate Center) 14.7 psia 14.7 psia 14.7 psia 14.7 psia (Assumption) It conditions in tons (tpy) Ird conditions (cf) 0.0192 kg/R ² (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) It combustion sources under actual conditions (cf) using Equation W-40. we of fuel (tons). MMBtu/scf
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	14.7 psia 14.7 psia 14.7 psia (Assumption) d conditions in tons (tpy) rd conditions (cf) 0.0192 kg/R ³ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) 0.0526 kg/R ⁴ (at 60F and 14.7 psia) d combustion sources under actual conditions (cf) using Equation W-40. Dee of fuel (tons).
$\begin{array}{c} P_{a} = \mbox{Absolute pressure at actual conditions (psia) = 14.7 psia (Assumption) \\ Constant = 459.67 (temperature conversion from F to R) \end{array}$ $\begin{array}{c} \mbox{Step 5. Calculate annual C4_ and C0_ mass emissions (ton). \\ Mass_{a;i} = E_{a;i} * \rho_i * 0.0011023 (Equation W-36) \\ where: \\ Mass_{a;i} = GHG i (C0_{2}, CH_{4}, or N_{2}O) mass emissions at standard conditions in tons (tpy) \\ E_{a;i} = GHG i (C0_{2}, CH_{4}, or N_{2}O) mass emissions at standard conditions (cf) \\ \rho_i = Density of GHG i. Use: \\ CH_{4}: 0.0192 kg/ft^2 (at 60F and 14.7 psia) \\ CO_{2}: 0.0526 kg/ft^2 (at 60F and 14.7 psia) \\ CO_{2}: 0.0526 kg/ft^2 (at 60F and 14.7 psia) \\ mass_{N2O} = 0.0011023 * Fuel * HHV * EF (Equation W-40) \\ where: \\ Mass_{N2O} = annual N_{2}O emissions from combustion of a particular type of fuel (tons). \\ Fuel = mass or volume of the fuel combusted \\ HHV = high heat value of the fuel \\ Stream 11 = 2.163E-03 MMBtu/scf \\ EF = 1.00E-04 kg N_{2}O/MMBtu \\ \end{array}$	14.7 psia (Assumption) I conditions in tons (tpy) rd conditions (cf) 0.0192 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ² (at 60F and 14.7 psia) I combustion sources under actual conditions (cf) using Equation W-40 . De of fuel (tons).
Constant = 459.67 (temperature conversion from F to R) Step 5. Calculate annual CH ₄ and CO ₂ mass emissions (ton). Mass _{xi} = E _{xi} * ρ , * 0.0011023 (Equation W-36) where: Mass _{xi} = GHG i (CO ₂ , CH ₄ , or N ₂ O) mass emissions at standard conditions in tons (tpy) E _{xi} = GHG i (CO ₂ , CH ₄ , or N ₂ O) volumetric emissions at standard conditions (cf) ρ_i = Density of GHG i. Use: CH ₄ : 0.0192 kg/th ² (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/th ² (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/th ² (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/th ² (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/th ² (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/th ² (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/th ² (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/th ² (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/th ² (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/th ² (at 60F and 14.7 psia) Mass _{NCO} = 0.0011023 * Fuel * HHV * EF (Equation W-40) where: Mass _{NCO} = annual N ₂ O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel HHV = high heat value of the fuel <t< td=""><td>t conditions in tons (tpy) rd conditions (cf) 0.0192 kg/ft³ (at 60F and 14.7 psia) 0.0526 kg/ft⁴ (at 60F and 14.7 psia) i combustion sources under actual conditions (cf) using Equation W-40. pe of fuel (tons).</td></t<>	t conditions in tons (tpy) rd conditions (cf) 0.0192 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) i combustion sources under actual conditions (cf) using Equation W-40. pe of fuel (tons).
Constant = 459.67 (temperature conversion from F to R) Step 5. Calculate annual CH ₄ and CO ₂ mass emissions (ton). Mass _{x,i} = E _{x,i} * ρ_i * 0.0011023 (Equation W-36) where: Mass _{x,i} = GHG i (CO ₂ , CH ₄ , or N ₂ O) mass emissions at standard conditions in tons (tpy) E _{x,i} = GHG i (CO ₂ , CH ₄ , or N ₂ O) volumetric emissions at standard conditions (cf) ρ_i = Density of GHG i. Use: CH ₄ : 0.0192 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) CH ₄ : 0.0101023 * Fuel * HHV * EF (Equation W-40) where: Mass _{N40} = annual N ₂ O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = hiph heat value of the fuel 2.163E-03 MMB	t conditions in tons (tpy) rd conditions (cf) 0.0192 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ⁴ (at 60F and 14.7 psia) i combustion sources under actual conditions (cf) using Equation W-40. pe of fuel (tons).
Step 5. Calculate annual CH ₄ and CO ₂ mass emissions (ton). Mass _{k1} = E _{k1} * ρ_1 * 0.0011023 (Equation W-36) where: Mass _{k21} = GHG i (CO ₂ , CH ₄ , or N ₂ O) mass emissions at standard conditions in tons (tpy) E _{k21} = GHG i (CO ₂ , CH ₄ , or N ₂ O) volumetric emissions at standard conditions (cf) ρ_1 = Density of GHG i. Use: CH ₄ : 0.0192 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) Mass _{NDO} = 0.0011023 * Fuel * HHV * EF (Equation W-40) where: Mass _{NDO} = annual N ₂ O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu	d conditions in tons (tpy) rd conditions (cf) 0.0192 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ³ (at 60F and 14.7 psia) I combustion sources under actual conditions (cf) using Equation W-40 . pe of fuel (tons).
$\begin{array}{ccccc} Mass_{s_i} = E_{s_i} * \rho_i * 0.0011023 & (\textit{Equation W-36}) \\ & where: \\ & Mass_{s_i} = GHG i\left(CO_2, CH_4, or N_2O\right) mass emissions at standard conditions in tons(tpy) \\ & E_{s_i} = GHG i\left(CO_2, CH_4, or N_2O\right) volumetric emissions at standard conditions(cf) \\ & \rho_i = Density of GHG i. Use: \\ & CH_4 \mathrel{:} \\ & 0.0192 kg/ft^3 (at 60F and 14.7 psia) \\ & CO_2 \mathrel{:} \\ & 0.0526 kg/ft^4 (at 60F and 14.7 psia) \\ & CO_2 \mathrel{:} \\ & Mass_{NO} = 0.0011023 * Fuel * HHV * EF & (\textit{Equation W-40}) \\ & where: \\ & Mass_{NO} = nnual N_2O emissions from combusted of aparticular type of fuel(tons). \\ & Fuel = mass or volume of the fuel combusted \\ & HHV = high heat value of the fuel \\ & Stream 11 = \\ & 2.163E-03 MMBtu MStu \\ & EF = \\ \end{array} $	In conditions (cf) 0.0192 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ³ (at 60F and 14.7 psia) I combustion sources under actual conditions (cf) using Equation W-40. Dee of fuel (tons). MMBtu/scf
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ind conditions (cf) 0.0192 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ³ (at 60F and 14.7 psia) I combustion sources under actual conditions (cf) using Equation W-40. Dee of fuel (tons). MMBtu/scf
$ \begin{array}{c} \text{where:} \\ \text{Mass}_{s,i} = \text{GHG i} (\text{CO}_2, \text{CH}_4, \text{ or } N_2\text{O}) \text{ mass emissions at standard conditions in tons (tpy)} \\ \text{E}_{s,i} = \text{GHG i} (\text{CO}_2, \text{CH}_4, \text{ or } N_2\text{O}) \text{ volumetric emissions at standard conditions (cf)} \\ \rho_i = \text{Density of GHG i. Use:} \\ \text{CH}_4: 0.0192 \text{ kg/ft}^3 (\text{at 60F and } 14.7 \text{ psia}) \\ \text{CO}_2: 0.0526 \text{ kg/ft}^3 (\text{ at 60F and } 14.7 \text{ psia}) \\ \text{CO}_2: 0.0526 \text{ kg/ft}^3 (\text{ at 60F and } 14.7 \text{ psia}) \\ \text{Mass}_{NOO} = 0.0011023 \text{ Fuel * HHV * EF} (Equation W-40) \\ \text{where:} \\ \text{Mass}_{NOO} = 0.0011023 \text{ Fuel * HHV * EF} (Equation W-40) \\ \text{where:} \\ \text{Mass}_{NOO} = \text{annual } N_2\text{O} \text{ emissions from combustion of a particular type of fuel (tons).} \\ \text{Fuel = mass or volume of the fuel combusted} \\ \text{HHV} = \text{high heat value of the fuel} \\ \text{Stream 11} = 2.163E-03 \text{ MMBtu/scf} \\ \text{EF} = 1.00E-04 \text{ kg } N_2\text{O}/\text{MMBtu} \\ \end{array} $	Ind conditions (cf) 0.0192 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ³ (at 60F and 14.7 psia) I combustion sources under actual conditions (cf) using Equation W-40. Dee of fuel (tons). MMBtu/scf
$\begin{array}{c} \mbox{Mass}_{k,2} = \mbox{GHG i} (CO_2, CH_4, \mbox{or} N_2O) \mbox{mass emissions at standard conditions in tons (tpy)} \\ \mbox{E}_{s,i} = \mbox{GHG i} (CO_2, CH_4, \mbox{or} N_2O) \mbox{volumetric emissions at standard conditions (cf)} \\ \mbox{p}_i = \mbox{Density of GHG i}. Use: \\ \mbox{CH}_4: 0.0192 \mbox{ kg/ft}^3 (at 60F \mbox{ and } 14.7 \mbox{ psia}) \\ \mbox{CO}_2: 0.0526 \mbox{ kg/ft}^3 (at 60F \mbox{ and } 14.7 \mbox{ psia}) \\ \mbox{Step 6. Calculate annual N_2O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 . \\ \mbox{Mass}_{N2O} = 0.0011023 \mbox{ Fuel * HHV * EF} (Equation W-40) \\ \mbox{where:} \\ \mbox{Mass}_{N2O} = annual N_2O emissions from combustion of a particular type of fuel (tons). \\ \mbox{Fuel = mass or volume of the fuel combusted} \\ \mbox{HHV} = \mbox{ high heat value of the fuel} \\ \mbox{Streem 11} = 2.163E-03 \mbox{ MMBtu/scf} \\ \mbox{EF = } 1.00E-04 \mbox{ kg N_2O/MMBtu} \end{array}$	Ind conditions (cf) 0.0192 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ³ (at 60F and 14.7 psia) I combustion sources under actual conditions (cf) using Equation W-40. Dee of fuel (tons). MMBtu/scf
$ \begin{array}{c} E_{s,i} = \mbox{GHG i} (\mbox{CO}_2, \mbox{CH}_4, \mbox{or N}_2 \mbox{O}) \mbox{ volumetric emissions at standard conditions (cf)} \\ \rho_i = \mbox{Density of GHG i}. \mbox{Use:} & CH_4: 0.0192 \mbox{ kg/ft}^3 (at 60F and 14.7 \mbox{ psia}) \\ CO_2: 0.0526 \mbox{ kg/ft}^3 (at 60F and 14.7 \mbox{ psia}) \\ \hline \mbox{Step 6. Calculate annual N_2O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 . \\ \mbox{Mass}_{N2O} = 0.0011023 * \mbox{Fuel * HHV * EF} (Equation W-40) \\ \mbox{where:} \\ \mbox{Mass}_{N2O} = annual N_2O emissions from combustion of a particular type of fuel (tons). \\ \mbox{Fuel = mass or volume of the fuel combusted} \\ \mbox{HHV = high heat value of the fuel} \\ \mbox{Stream 11 = } 2.163E-03 \ \mbox{MMBtu}/scf \\ \mbox{EF = } & 1.00E-04 \ \mbox{ kg N_2O}/\mbox{MMBtu} \end{array} $	In conditions (cf) 0.0192 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ³ (at 60F and 14.7 psia) I combustion sources under actual conditions (cf) using Equation W-40. Dee of fuel (tons). MMBtu/scf
$ \begin{array}{l} \rho_{i} = \text{Density of GHG i. Use:} \\ & CH_{4}: & 0.0192 \ \text{kg/ft}^{3} \ (\text{at 60F and } 14.7 \ \text{psia}) \\ CO_{2}: & 0.0526 \ \text{kg/ft}^{3} \ (\text{at 60F and } 14.7 \ \text{psia}) \\ \hline \\ \text{Step 6. Calculate annual N_{2}O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 \\ \hline \\ \text{Mass}_{N2O} = 0.0011023 * Fuel * HHV * EF \qquad (Equation W-40) \\ \text{where:} \\ \hline \\ \text{Mass}_{N2O} = \text{annual N_{2}O emissions from combustion of a particular type of fuel (tons). \\ \hline \\ \text{Fuel} = \text{mass or volume of the fuel combusted} \\ \hline \\ \text{HHV} = \text{high heat value of the fuel} \\ \hline \\ \\ \text{Stream 11} = & 2.163E-03 \ \text{MMBtu/scf} \\ \hline \\ \\ \text{EF} = & 1.00E-04 \ \text{kg N_{2}O/\text{MMBtu}} \end{array} $	0.0192 kg/ft ³ (at 60F and 14.7 psia) 0.0526 kg/ft ³ (at 60F and 14.7 psia) I combustion sources under actual conditions (cf) using Equation W-40 . De of fuel (tons).
CH4: 0.0192 kg/ft ² (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ² (at 60F and 14.7 psia) Step 6. Calculate annual N2O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40. Mass _{N2O} = 0.0011023 * Fuel * HHV * EF (Equation W-40) where: Mass _{N2D} = annual N2O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N2O/MMBtu	0.0526 kg/ft ² (at 60F and 14.7 psia) I combustion sources under actual conditions (cf) using Equation W-40 . De of fuel (tons). MMBtu/scf
CO2: 0.0526 kg/ft ² (at 60F and 14.7 psia) Step 6. Calculate annual N ₂ O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 . Mass _{N2O} = 0.0011023 * Fuel * HHV * EF (Equation W-40) where: Mass _{N2O} = annual N ₂ O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu	0.0526 kg/ft ² (at 60F and 14.7 psia) I combustion sources under actual conditions (cf) using Equation W-40 . De of fuel (tons). MMBtu/scf
Step 6. Calculate annual N ₂ O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40. Mass _{N2O} = 0.0011023 * Fuel * HHV * EF (Equation W-40) where: Mass _{N2O} = annual N ₂ O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu	I combustion sources under actual conditions (cf) using Equation W-40 . De of fuel (tons). MMBtu/scf
Mass _{N20} = 0.0011023 * Fuel * HHV * EF (Equation W-40) where: Mass _{N20} = annual N ₂ O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu	be of fuel (tons).
Mass _{N2O} = 0.0011023 * Fuel * HHV * EF (Equation W-40) where: Mass _{N2O} = annual N ₂ O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu	be of fuel (tons).
where: Mass _{NZO} = annual N ₂ O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu	pe of fuel (tons). MMBtu/scf
Mass _{N20} = annual N ₂ O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu	MMBtu/scf
Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu	MMBtu/scf
HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N₂O/MMBtu	
Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu	
EF = 1.00E-04 kg N ₂ O/MMBtu	
10^{13} = conversion factor from kg to metric tons.	kg N ₂ U/MMBtu
Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.	

Gas Sent to Flare		CH ₄ Un- Combuste d, E _{a,CH4} (cf)	CO ₂ Un-Combusted, E _{a,CO2} (cf)	CO ₂ Combusted, E _{a,CO2} (cf)	CH ₄ Un- Combusted, E _{a,CH4} (scf)	CO ₂ Un- Combusted, E _{a,CO2} (scf)	CO ₂ Combusted, E _{a,CO2} (scf)	CH ₄ Un- Combusted, E _{a,CH4} (tpy)	CO ₂ Un- Combuste d, E _{a,CO2} (tpy)	CO ₂ Combuste d, E _{a,CO2} (tpy)	N ₂ O Mass Emissions (tpy)	CO2e (tpy)
Stream 11	45,000,000	244,718	20,898,382.25	100,814,700.26	237,275.48	20,262,817.52	97,748,708.48	5.02	1,174.86	5,667.57	0.011	6,971.17
Compressor Blowdowns	5,688,000	88,310	2,641,555.52	57,376,305.00	85,623.93	2,561,220.13	55,631,368.21	1.81	148.50	3,225.56	0.001	3,419.77
							Total	6.83	1.323.36	8.893.13	0.012	10.390.94

	CO ₂	CH ₄	N ₂ O	
GWP	1	25	298	

Emission unit: F-001

		Facility-wid	le Fugitive Emi	issions Per Piece of Equipment					
Subco	mponent	Emission Factor ¹ (lb/hr/comp)	Control Efficiency	VOC Content ² (wt%)	H ₂ S Content ² (wt%)	HAP Content ² (wt%)	Subcomponent Counts ^{3,6}		
	Gas	9.92E-03	0%	22.33%	0.001%	0.36%	1424		
Valves	Light Oil	5.51E-03	0%	100.00%	0%	12.51%	1219		
	Heavy Oil	1.85E-05	0%	0%	0%	0.00%	0		
	Gas	8.60E-04	0%	22.33%	0.001%	0.36%	1405		
Flanges	Light Oil	2.43E-04	0%	100.00%	0%	12.51%	885		
	Heavy Oil	8.60E-07	0%	0%	0%	0.00%	0		
	Gas	4.41E-04	0%	22.33%	0.001%	0.36%	3757		
Connectors	Light Oil	4.63E-04	0%	100.00%	0%	12.51%	3237		
	Heavy Oil	1.65E-05	0%	0%	0%	0.00%	0		
Pumps	Light Oil	2.87E-02	0%	100.00% 0%		12.51%	17		
Pumps	Heavy Oil	2.87E-02	0%	0% 0%		0.00%	0		
	Gas	1.94E-02	0%	22.33%	0.001%	0.36%	139		
Other	Light Oil	1.65E-02	0%	100.00%	0%	12.51%	4		
	Heavy Oil	7.06E-05	0%	0%	0%	0.00%	0		
					10%				
				Hourly VC	OC Emission Ra	te (lb/hr) ⁴	13.38		
				Annual V	OC Emission R	ate (tpy)⁵	58.61		
				Hourly H ₂	1.97E-04				
				Annual H	8.62E-04				
				Hourly HA	1.19				
				Annual H	5.23				

¹ Emission factors from Table 2-4 of EPA Protocol for Equipment Leak Emission Estimates, 1995.

² Weight percent of gas and liquid components are referenced from flash gas and liquid streams from a ProMax simulation for this facility.

³ Subcomponent counts for each subcomponent are based on estimated average component counts for each piece of equipment.

⁴ Hourly Emissions [lb/hr] = Emissions Factor [lb/hr/component] * Weight Content of Chemical Component [%] * Subcomponent Count. ⁵ Annual Emissions [ton/yr] = Hourly Emissions [lb/hr] * 8760 [hr/yr] * 1/2000 [ton/lb].

⁶ The safety factor of 25% is added to accommodate the addition of the CAT G3608 engines.

Enterprise Field Services LLC South Carlsbad Compressor Station

Loading Emissions

Unit:LOADDescription:Emissions from Truck Loading of Condensate

Emission Calculations

69,350 2,912,700	Throughput (Throughput (,,	Expected condensate throughput bbl/d * 42 gal/bbl * 365 d/yr						
9.82	tpy VOC		GRI-HAPCa	lc 3.01					
	n-Hexane	Benzene	Toluene	e-Benzene	Xylenes	_			
0.4	0.39	0.04	0.00	0.001	0.0012	tpy	GRI-HAPCalc3.01		

Jnit:	ECD								
escription:	BTEX Combu	ustor							
RE:	98%								
lot Emissions									
W of fuel gas	16.04	lb/lb-mol		nominal for na	atural gas				
lot fuel flow	100	scf/hr	Engineering						
el heating value	1034	Btu/scf		nominal for L		as			
eat rate nnual fuel usage	0.10 0.88	MMBtu/hr MMscf/vr		f/hr / 1,000,0 50 hrs/yr / 1,0					
nnual fuel usage	0.88	MMSCI/yr	SCI/III 0/0	50 HIS/ YI / 1,0	00,000				
lash Tank & Still Vent Emiss									
till Vent Flow	362	scf/hr		c Controlled R					
till Vent Heating Value	2356.59 759	Btu/scf		ising weighted c Flash Tank (s of component	S		
lash Tank Flow ercentage Sent to ECD	50%	scf/hr					vapors are sent to	o reboiler ac fu	
lash Tank Flow to ECD	380	scf/hr	rereentage	Serie to LED I	or combusti	on. Remaining	vapors are serie a	b rebolier us ru	
lash Tank Heating Value	1447.76	Btu/scf	Estimated u	ising weighted	d heat value	s of component	s		
otal Flow	742	scf/hr	BTEX Still V	'ent + Flash T	ank Vapors	sent to ECD	-		
otal Heating Value	1891.45	Btu/scf				and Flash Tank	streams		
otal Heating Rate	1.40			f/hr / 1,000,0					
nnual fuel usage	6.50	MMscf/yr	sct/hr * 8/6	60 hrs/yr / 1,0	000,000				
mission Rates	NO,	со	VOC ¹	H ₂ S ²	SO ₃ ³	РМ	HAPs ¹		
	100	84	100	20	202	7.6	IIAF 3	lb/MMscf	AP-42 Tables 1.4-1 & 2
	101.37	85.15				7.70		lb/MMscf	Adjusted emission factor (Pilot): EF X (Fuel Heat Value/1,020 Btu/scf)
	185.44	155.77				14.09		lb/MMscf	Adjusted emission factor (Still Vent & Flash Tank Vapors):
Emission Factors	105.44	133.77				11.05			EF X (Fuel Heat Value/1,020 Btu/scf)
			34.59	0.035			7.82	lb/hr	Still Vent: GRI-GLYCalc Controlled Regenerator Emisisons Stream
			8.65	1.80E-03			0.14	lb/hr	Flash Tank: GRI-GLYcalc Flash Tank Off Gas Stream
				3.57E-05	0.0044			Ib H ₂ S/hr	Pilot Gas: Sweet natural gas fuel, 0.25 gr H ₂ S/100scf
	0.010	0 535 03		2 505 05	0.0014 6.588E-05			Ib SO ₂ /hr	Pilot Gas: Sweet natural gas fuel, 5 gr S/100scf
Pilot	0.010 0.044	8.52E-03 0.037		3.50E-05 1.53E-04	6.588E-05 2.89E-04	-	-	lb/hr tpy	95% combustion H ₂ S; 100% H ₂ S -> SO ₂
lycol Regenerator Still Vent		0.037	0.86	7.26E-04	0.067	1.05E-02	0.16	lb/hr	95% combustion H ₂ S; 100% H ₂ S -> SO ₂
Flash Tank	0.60	0.51	3.79	3.18E-03	0.29	0.046	0.70	tpy	
							0170	Ψ	
Total (Pilot + Gases)	0.15	0.124	0.86	7.61E-04	0.067	1.05E-02	0.16	lb/hr	
Total (Pilot + Gases)	0.15 0.65	0.124 0.54	0.86 3.79						lb/hr * (8760 hr/yr operation)/ 2000 lb/ton
Total (Pilot + Gases)	0.65	0.54	3.79	7.61E-04 3.33E-03	0.067 0.29	1.05E-02 0.046	0.16	lb/hr	lb/hr * (8760 hr/yr operation)/ 2000 lb/ton
Total (Pilot + Gases)		0.54	3.79	7.61E-04 3.33E-03	0.067	1.05E-02 0.046 s lb/hr	0.16 0.70 Still Vent: GRI-G	lb/hr <u>tpy</u> iLYCalc Control	led Regenerator Emisisons Stream
Total (Pilot + Gases)	0.65 <u>n-Hexane</u> 0.80 0.11	0.54 Benzene 4.16 0.04	3.79 Toluene 2.59 0.03	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03	0.067 0.29 Total HAP 7.82 0.17	1.05E-02 0.046 s lb/hr lb/hr	0.16 0.70 Still Vent: GRI-G	lb/hr <u>tpy</u> iLYCalc Control	
Total (Pilot + Gases)	0.65 <u>n-Hexane</u> 0.80 0.11 0.018	0.54 Benzene 4.16 0.04 0.08	3.79 <u>Toluene</u> 2.59 0.03 0.05	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006	0.067 0.29 Total HAP 7.82 0.17 0.16	1.05E-02 0.046 s lb/hr lb/hr lb/hr	0.16 0.70 Still Vent: GRI-G	lb/hr <u>tpy</u> iLYCalc Control	led Regenerator Emisisons Stream
Total (Pilot + Gases)	0.65 <u>n-Hexane</u> 0.80 0.11 0.018 0.08	0.54 Benzene 4.16 0.04 0.08 0.37	3.79 Toluene 2.59 0.03 0.05 0.23	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006 0.02	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70	1.05E-02 0.046 s lb/hr lb/hr lb/hr tpy	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI-	lb/hr <u>tpy</u> GLYCalc Control -GLYcalc Flash	led Regenerator Emisisons Stream Tank Off Gas Stream
Total (Pilot + Gases)	0.65 n-Hexane 0.80 0.11 0.018 0.08 ¹ Pilot fuel is p	0.54 8 Benzene 4.16 0.04 0.08 0.37 burchased nat	3.79 Toluene 2.59 0.03 0.05 0.23 cural gas, con	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006 0.02 nprised mainly	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan	1.05E-02 0.046 s lb/hr lb/hr lb/hr tpy e. VOC and HA	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI-	lb/hr <u>tpy</u> GLYCalc Control -GLYcalc Flash	led Regenerator Emisisons Stream
Total (Pilot + Gases)	0.65 <u>n-Hexane</u> 0.80 0.11 0.018 0.08	0.54 8 Benzene 4.16 0.04 0.08 0.37 burchased nations based on 0	3.79 Toluene 2.59 0.03 0.05 0.23 cural gas, con 0.25 g/100 sc	7.61E-04 3.33E-03 0.28 3.00E-03 0.006 0.02 nprised mainly ft H ₂ S in fuel,	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu	1.05E-02 0.046 b/hr lb/hr lb/hr tpy e. VOC and HA istion.	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- P emissions from	Ib/hr tpy GLYCalc Control -GLYcalc Flash pilot only are a	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible.
Total (Pilot + Gases)	0.65 n-Hexane 0.80 0.11 0.018 0.08 ¹ Pilot fuel is p ² H ₂ S emission	0.54 8 Benzene 4.16 0.04 0.08 0.37 Durchased nat ns based on C 0.25 gr H ₂	3.79 Toluene 2.59 0.03 0.05 0.23 cural gas, con 0.25 g/100 scf * f	7.61E-04 3.33E-03 0.28 3.00E-03 0.006 0.02 nprised mainh if H ₂ S in fuel, uel scf/hr * 1	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu lb/7000 gr =	1.05E-02 0.046 s lb/hr lb/hr lb/hr tpy e. VOC and HA istion. = lb/hr H ₂ S (pr	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- P emissions from or to combustion	Ib/hr tpy GLYCalc Control -GLYCalc Flash pilot only are a and conversio	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible.
Total (Pilot + Gases)	0.65 n-Hexane 0.80 0.11 0.018 0.08 ¹ Pilot fuel is p ² H ₂ S emission	0.54 8 Benzene 4.16 0.04 0.08 0.37 purchased nat hs based on C 0.25 gr H ₂ hs based on s	3.79 Toluene 2.59 0.03 0.05 0.23 cural gas, con 0.25 g/100 scf * f sulfur content	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006 0.02 nprised mainly if H ₂ S in fuel, uel scf/hr * 1 c of 5 g/100 sc	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu lb/7000 gr = cf S in fuel a	1.05E-02 0.046 s lb/hr lb/hr lb/hr by e. VOC and HA stion. = lb/hr H ₂ S (pr und 100% coml	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- P emissions from or to combustion pustion of H ₂ S to :	Ib/hr tpy GLYCalc Control -GLYCalc Flash pilot only are a and conversio	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible.
Total (Pilot + Gases)	0.65 n-Hexane 0.80 0.11 0.018 0.08 ¹ Pilot fuel is p ² H ₂ S emission	0.54 8 Benzene 4.16 0.04 0.08 0.37 purchased nat hs based on C 0.25 gr H ₂ hs based on s	3.79 Toluene 2.59 0.03 0.05 0.23 cural gas, con 0.25 g/100 scf * f sulfur content	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006 0.02 nprised mainly if H ₂ S in fuel, uel scf/hr * 1 c of 5 g/100 sc	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu lb/7000 gr = cf S in fuel a	1.05E-02 0.046 s lb/hr lb/hr lb/hr tpy e. VOC and HA istion. = lb/hr H ₂ S (pr	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- P emissions from or to combustion pustion of H ₂ S to :	Ib/hr tpy GLYCalc Control -GLYCalc Flash pilot only are a and conversio	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible.
	0.65 n-Hexane 0.80 0.11 0.018 0.08 ¹ Pilot fuel is p ² H ₂ S emission	0.54 8 Benzene 4.16 0.04 0.08 0.37 purchased nat hs based on C 0.25 gr H ₂ hs based on s	3.79 Toluene 2.59 0.03 0.05 0.23 cural gas, con 0.25 g/100 scf * f sulfur content	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006 0.02 nprised mainly if H ₂ S in fuel, uel scf/hr * 1 c of 5 g/100 sc	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu lb/7000 gr = cf S in fuel a	1.05E-02 0.046 s lb/hr lb/hr lb/hr by e. VOC and HA stion. = lb/hr H ₂ S (pr und 100% coml	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- P emissions from or to combustion pustion of H ₂ S to :	Ib/hr tpy GLYCalc Control -GLYCalc Flash pilot only are a and conversio	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible.
	0.65 n-Hexane 0.80 0.11 0.018 0.08 ¹ Pilot fuel is p ² H ₂ S emission	0.54 8 Benzene 4.16 0.04 0.08 0.37 purchased nat hs based on C 0.25 gr H ₂ hs based on s	3.79 Toluene 2.59 0.03 0.05 0.23 cural gas, con 0.25 g/100 scf * f sulfur content	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006 0.02 nprised mainly if H ₂ S in fuel, uel scf/hr * 1 c of 5 g/100 sc	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu lb/7000 gr = cf S in fuel a	1.05E-02 0.046 s lb/hr lb/hr lb/hr by e. VOC and HA stion. = lb/hr H ₂ S (pr und 100% coml	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- P emissions from or to combustion pustion of H ₂ S to :	Ib/hr tpy GLYCalc Control -GLYCalc Flash pilot only are a and conversio	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible.
	0.65 <u>n-Hexane</u> 0.80 0.11 0.018 0.08 0.08 ¹ Pilot fuel is f ² H ₂ S emission ³ SO ₂ emission	0.54 8 Benzene 4.16 0.04 0.08 0.37 Durchased nat s based on C 0.25 gr H ₂ ns based on s 5 gr S/100	3.79 Toluene 2.59 0.03 0.05 0.23 cural gas, con 0.25 g/100 scf * f culfur content scf * fuel scf	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006 0.02 nprised mainly f H ₂ S in fuel, uel scf/hr * 1 c of 5 g/100 ss f/hr * 1 lb/70 CO ₂ e ⁴	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu lb/7000 gr = cf S in fuel a	1.05E-02 0.046	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- P emissions from or to combustion pustion of H ₂ S to :	lb/hr tov -GLYCalc Control -GLYcalc Flash pilot only are a and conversio SO ₂ .	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible.
	0.65 n-Hexane 0.80 0.11 0.018 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission <u>CO₂⁴</u> 53.06 1	0.54 9 Benzene 4.16 0.04 0.08 0.37 Durchased nat 0.25 gr H ₂ ns based on 0 0.25 gr H ₂ 5 gr S/100 N ₂ 0 ⁴ 0.0001 298	3.79 Toluene 2.59 0.03 0.05 0.23 cural gas, con 0.25 g/100 sc 5/100 sc 5/10 s	7.61E-04 3.33E-03 Vylenes 0.28 3.00E-03 0.006 0.02 nprised mainly f H ₂ S in fuel, uel scf/hr * 1 ib/70 CO ₂ e ⁴	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu lb/7000 gr : cf S in fuel a 00 gr * 64 ll	1.05E-02 0.046	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- P emissions from or to combustion poustion of H ₂ S to : ib/hr SO ₂	lb/hr tov -GLYCalc Control -GLYcalc Flash pilot only are a and conversio SO ₂ .	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible.
	0.65 <u>n-Hexane</u> 0.80 0.11 0.018 0.08 1 Pilot fuel is p ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission ³ SO ₂ emission	0.54 Benzene 4.16 0.04 0.08 0.37 Durchased nat s based on c 0.25 gr H ₂ ns based on s 5 gr S/100 N ₂ o ⁴ 0.0001	3.79 Toluene 2.59 0.03 0.05 0.23 .25 g/100 sc \$/100 scf * f ulfur content 0 scf * fuel sc CH ₄ 0.001 25 0.001	7.61E-04 3.33E-03 0.28 3.00E-03 0.006 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu lb/7000 gr : cf S in fuel a 00 gr * 64 ll	1.05E-02 0.046 5 1b/hr 1b/hr 1b/hr tpy e. VOC and HA stion. 1 = 1b/hr H,S (pr ind 100% coml b SO ₂ /32 lb S = 40 CFR 98 St 40 CFR 98 Ta	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI P emissions from or to combustion oustion of H ₂ S to : i lb/hr SO ₂	lb/hr tpv -GLYCalc Control -GLYCalc Flash pilot only are : and conversio SO ₂ . -1 and C-2	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO ₂)
	0.65 n-Hexane 0.80 0.11 0.018 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission <u>CO₂⁴</u> 53.06 1	0.54 9 Benzene 4.16 0.04 0.08 0.37 Durchased nat 0.25 gr H ₂ ns based on 0 0.25 gr H ₂ 5 gr S/100 N ₂ 0 ⁴ 0.0001 298	3.79 Toluene 2.59 0.05 0.23 tural gas, con 0.25 g/100 scd * f tulfur content scf * fuel sc CH ₄ 4 0.001 25 0.001 9.04	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.017 * 1 0.700 st f/hr * 1 b/70	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu lb/7000 gr cf S in fuel a 00 gr * 64 ll 00 gr * 64 ll kg/MMBtu GWP tpy tpy	1.05E-02 0.046 5 1b/hr 1b/hr 1b/hr 1b/hr tpy e. VOC and HA stion. = 1b/hr H_2S (pr nd 100% coml b SO ₂ /32 lb S = 40 CFR 98 St 40 CFR 98 Ta Still Vent: GR	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- P emissions from or to combustion or the combustion or the combustion or the combustion or the combustion or the combustion of H ₂ S to := ib/hr SO ₂	Ib/hr tov IL/Calc Control -GL/Calc Flash pilot only are a and conversio SO ₂ .	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO ₂)
	0.65 n-Hexane 0.80 0.11 0.018 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission <u>CO₂⁴</u> 53.06 1	0.54 9 Benzene 4.16 0.04 0.08 0.37 Durchased nat 0.25 gr H ₂ ns based on 0 0.25 gr H ₂ 5 gr S/100 N ₂ 0 ⁴ 0.0001 298	3.79 Toluene 2.59 0.03 0.05 0.25 0.100 scf * f ulfur content scf * fuel sc CH ₄ ⁴ 0.001 25 0.001 9.04 43.34	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.017 * 1 0.700 st f/hr * 1 b/70	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu Ib/7000 gr * 64 II kg/MMBtu GWP tpy tpy tpy	1.05E-02 0.046 10/hr 40 CFR 98 St 40 CFR 98 Tc 50il Vent: GR Still Vent: GR Still Vent: GR	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI P emissions from or to combustion or to combustion or H ₂ S to : ib/hr SO ₂ ib/hr SO ₂ bibpart C Tables C bible A-1 I-GLYCalc Control	lb/hr try ILYCalc Control -GLYCalc Flash pilot only are a and conversio SO ₂ . -1 and C-2 lled Regenerati Tank Off Gas	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO2) or Emisisons Stream Stream
	0.65 <u>n-Hexane</u> 0.80 0.11 0.018 0.08 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission ³ SO ₂ emission <u>CO₂⁴</u> 53.06 1 53.0	0.54 9 Benzene 4.16 0.04 0.08 0.25 gr H ₂ 0.25 gr S/100 N ₂ 0 ⁴ 0.0001 298 0.0001	3.79 Toluene 2.59 0.03 0.05 0.23 0.125 g/100 sc 5/100 scf * f 0.125 g/100 sc 5/100 scf * f 0.25 g/100 sc 5/100 scf * f 0.001 25 0.001 9.04 4.3.34 1.05	7.61E-04 3.33E-03 0.28 0.02 0.006-03 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.02	0.067 0.29 Total HA2 0.17 0.16 0.70 y of methan 95% combu 1b/7000 gr at a 10 d00 gr * 64 ll kg/MMBtu GWP ky tpy tpy tpy tpy	1.05E-02 0.046 10/hr 40 CFR 98 St 40 CFR 98 Tc 50il Vent: GR Still Vent: GR Still Vent: GR	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- P emissions from or to combustion or the combustion or the combustion or the combustion or the combustion or the combustion of H ₂ S to := ib/hr SO ₂	lb/hr try ILYCalc Control -GLYCalc Flash pilot only are a and conversio SO ₂ . -1 and C-2 lled Regenerati Tank Off Gas	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO2) or Emisisons Stream Stream
	0.65 n-Hexane 0.80 0.11 0.018 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission <u>CO₂⁴</u> 53.06 1	0.54 9 Benzene 4.16 0.04 0.08 0.37 Durchased nat 0.25 gr H ₂ ns based on 0 0.25 gr H ₂ 5 gr S/100 N ₂ 0 ⁴ 0.0001 298	3.79 Toluene 2.59 0.03 0.05 0.25 0.100 scf * f ulfur content scf * fuel sc CH ₄ ⁴ 0.001 25 0.001 9.04 43.34	7.61E-04 3.33E-03 0.28 0.02 0.006-03 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.02	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu Ib/7000 gr * 64 II kg/MMBtu GWP tpy tpy tpy	1.05E-02 0.046 10/hr 40 CFR 98 St 40 CFR 98 Tc 50il Vent: GR Still Vent: GR Still Vent: GR	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI P emissions from or to combustion or to combustion or H ₂ S to : ib/hr SO ₂ ib/hr SO ₂ bibpart C Tables C bible A-1 I-GLYCalc Control	lb/hr try ILYCalc Control -GLYCalc Flash pilot only are a and conversio SO ₂ . -1 and C-2 lled Regenerati Tank Off Gas	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO ₂) or Emisisons Stream Stream
	0.65 <u>n-Hexane</u> 0.80 0.11 0.018 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission ³ SO ₂ emission <u>CO₂⁴</u> 53.06 1 53.0	0.54 9 Benzene 4.16 0.04 0.08 0.37 0.25 gr H ₂ 0.25 gr S/100 1.5 based on C 0.25 gr S/100 0.25 gr S/100 0.25 gr S/100 0.0001 298 0.0001 0.0001 0.03	3.79 Toluene 2.59 0.03 0.05 0.23 tural gas, con 2.5 g/100 scf * f 100 scf * ful sc 5/100 scf * ful sc CH4 * 0.001 25 0.001 9.04 4.3.34 <u>1.05</u> 26.21	7.61E-04 3.33E-03 0.28 0.028 0.006-03 0.006 0.002 0.001 prised mainly f H ₂ S in fuel, uel sc/hr * 1 i:of 5 g/100 st f/hr * 1 ib/70 CO_2e ⁴	0.067 0.29 7.82 0.17 0.16 0.70 95% combu lb/7000 gr = cf S in fuel a 000 gr * 64 ll 000 gr * 64 ll kg/MMBtu GWP tpy tpy tpy Co ₂ e	1.05F-02 0.046 5 1b/hr 1b/hr 1b/hr 1b/hr by e. VOC and HA Stion. = 1b/hr H,S (pr nd 100% coml b SO ₂ /32 lb S = 40 CFR 98 St 40 CFR 98 TS Still Vent: GR Flash Tank: Controlled en	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI P emissions from or to combustion or to combustion or H ₂ S to : ib/hr SO ₂ ib/hr SO ₂ bibpart C Tables C bible A-1 I-GLYCalc Control	Ib/hr tov ILYCalc Control -GLYCalc Flash pilot only are a and conversio SO ₂ . -1 and C-2 Iled Regenerati Tank Off Gas o Combustion C	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO2) or Emisisons Stream Stream
	0.65 <u>n-Hexane</u> 0.80 0.11 0.018 0.08 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission ³ SO ₂ emission ³ SO ₂ emission ⁴ N ₂ O, CH ₄ , and	0.54 9 Benzene 4.16 0.04 0.08 0.37 0.25 gr H ₂ 5 gr S/100 N_0 ⁴ 0.0001 298 0.0001 298 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 0.003 0.0	3.79 Toluene 2.59 0.03 0.05 0.23 0.125 g/100 sc 5/100 scf * f 0.25 g/100 scf * f 0.001 25 0.001 25 0.001 9.04 4.05 26.21 scion Rate= EF*	7.61E-04 3.33E-03 0.28 0.02 0.00E-03 0.00E-03 0.00E 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 95% combu- 15% combu- 15% combu- 15% combu- 100 gr * 64 ll 00 gr * 64 ll 00 gr * 64 ll 00 gr * 00 gr ty ty ty ty ty ty ty ty ty ty ty ty ty	1.05E-02 0.046 5 1b/hr 1b/hr 1b/hr 1b/hr 40 CFR 98 St 40 CFR 98 St 40 CFR 98 Ta Still Vent: GR Flash Tank: (Controlled en	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- P emissions from or to combustion or H ₂ S to : ib/hr SO ₂ ib/hr SO ₂ ubpart C Tables C bible A-1 I-GLYCalc Contro RI-GLYCalc Flash hissions with 98%	Ib/hr tov IL/Calc Control -GLYcalc Flash pilot only are a and conversio SO ₂ . -1 and C-2 Iled Regenerati Tank Off Gas C combustion C	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO2) or Emisisons Stream Stream
HG Calculations	0.65 <u>n-Hexane</u> 0.80 0.11 0.018 0.08 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission ³ SO ₂ emission ³ SO ₂ emission ⁴ N ₂ O, CH ₄ , and	0.54 9 Benzene 4.16 0.04 0.08 0.37 0.25 gr H ₂ 5 gr S/100 N_0 ⁴ 0.0001 298 0.0001 298 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 0.003 0.0	3.79 Toluene 2.59 0.03 0.05 0.23 0.125 g/100 sc 5/100 scf * f 0.25 g/100 scf * f 0.001 25 0.001 25 0.001 9.04 4.05 26.21 scion Rate= EF*	7.61E-04 3.33E-03 0.28 0.02 0.00E-03 0.00E-03 0.00E 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 95% combu- 15% combu- 15% combu- 15% combu- 100 gr * 64 ll 00 gr * 64 ll 00 gr * 64 ll 00 gr * 00 gr ty ty ty ty ty ty ty ty ty ty ty ty ty	1.05E-02 0.046 5 1b/hr 1b/hr 1b/hr 1b/hr 40 CFR 98 St 40 CFR 98 St 40 CFR 98 Ta Still Vent: GR Flash Tank: (Controlled en	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- Flash Tank: GRI P emissions from or to combustion or to combustion or to combustion or to combustion or to combustion or to combustion subpart C Tables C lible A-1 I-GLYCalc Contro RI-GLYCalc Contro RI-GLYCALCONTRO RI	Ib/hr tov IL/Calc Control -GLYcalc Flash pilot only are a and conversio SO ₂ . -1 and C-2 Iled Regenerati Tank Off Gas C combustion C	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO ₂) or Emisisons Stream Stream
HG Calculations	0.65 n-Hexane 0.80 0.11 0.018 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission ³ SO ₂ emission ³ SO ₂ emission ⁴ N ₂ O, CH ₄ , and CO ₂ e tpy Emi	0.54 2 Benzene 4.16 0.04 0.08 0.37 Dourchased nat s based on C 0.25 gr H, ns based on s 5 gr S/100 0.25 gr S/100 0.0001 298 0.0001 0.03 d CO ₂ tpy Emiss scion Rate = C	3.79 Toluene 2.59 0.03 0.05 0.23 0.125 g/100 sc 5/100 scf * f 0.25 g/100 scf * f 0.001 25 0.001 25 0.001 9.04 4.05 26.21 scion Rate= EF*	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.06 0.07 0.06 0.06 0.02 0.06 0.02 0.06 0.02 0.06 0.02 0.06 0.05 0.	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu lb/7000 gr * 64 II 00 gr * 64 II 00 gr * 64 II kg/MMBtu GWP tpy tpy tpy tpy tpy tpy tpy tpy tpy tpy	1.05E-02 0.046 5 1b/hr 1b/hr 1b/hr 1b/hr 40 CFR 98 St 40 CFR 98 St 40 CFR 98 Ta Still Vent: GR Flash Tank: (Controlled en	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- Flash Tank: GRI P emissions from or to combustion or to combustion or to combustion or to combustion or to combustion or to combustion subpart C Tables C lible A-1 I-GLYCalc Contro RI-GLYCalc Contro RI-GLYCALCONTRO RI	Ib/hr tov IL/Calc Control -GLYcalc Flash pilot only are a and conversio SO ₂ . -1 and C-2 Iled Regenerati Tank Off Gas C combustion C	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO2) or Emisisons Stream Stream
HG Calculations	0.65 n-Hexane 0.80 0.11 0.018 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission ⁴ N ₂ O, CH ₄ , and CO ₂ e tpy Emi 1505.91	0.54 9 Benzene 4.16 0.04 0.08 0.37 0.25 gr H ₂ 5 gr S/100 N_0 ⁴ 0.0001 298 0.0001 298 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 208 0.0001 0.003 0.0	3.79 Toluene 2.59 0.03 0.05 0.23 0.125 g/100 sc 5/100 scf * f 0.25 g/100 scf * f 0.001 25 0.001 25 0.001 9.04 4.05 26.21 scion Rate= EF*	7.61E-04 3.33E-03 Xylenes 0.28 0.006-03 0.006 0.000 0.001 hf H ₂ S in fuel, the S in	0.067 0.29 7.82 0.17 0.16 0.70 95% combu lb/7000 gr = cf S in fuel a 00 gr * 64 ll kg/MMBtu GWP tpy tpy tpy tpy C0 ₂ e cuel Heat Valk sion Rate*GW	1.05E-02 0.046 5 1b/hr 1b/hr 1b/hr 1b/hr 40 CFR 98 St 40 CFR 98 St 40 CFR 98 Ta Still Vent: GR Flash Tank: (Controlled en	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- Flash Tank: GRI P emissions from or to combustion or to combustion or to combustion or to combustion or to combustion or to combustion subpart C Tables C lible A-1 I-GLYCalc Contro RI-GLYCalc Contro RI-GLYCALCONT	Ib/hr tov IL/Calc Control -GLYcalc Flash pilot only are a and conversio SO ₂ . -1 and C-2 Iled Regenerati Tank Off Gas C combustion C	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO2) or Emisisons Stream Stream
iHG Calculations iHG Calculations xhaust Parameters eat Rate: shaust temp (Tstk):	0.65 n-Hexane 0.80 0.11 0.018 0.08 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission ³ SO ₂ emission ³ SO ₂ emission ⁴ N ₂ O, CH ₄ , and CO ₂ et py Emi 1505.91 650	0.54 2. Benzene 4.16 0.04 0.08 0.37 Durchased natars based on C 0.25 gr H, ns based on S 0.25 gr S/100 N,O ⁴ 0.0001 298 0.0001 0.0001 - 0.03 d CO, tpy Emissi ssion Rate = CC MBtu/hr of	3.79 Toluene 2.59 0.03 0.05 0.23 0.125 g/100 sc 5/100 scf * f 0.25 g/100 scf * f 0.001 25 0.001 25 0.001 9.04 4.05 26.21 scion Rate= EF*	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.06 0.07 0.06 0.06 0.02 0.06 0.02 0.06 0.02 0.06 0.02 0.06 0.05 0.	0.067 0.29 7.82 0.17 0.16 0.70 95% combu lb/7000 gr = cf S in fuel a 00 gr * 64 ll kg/MMBtu GWP tpy tpy tpy tpy C0 ₂ e cuel Heat Valk sion Rate*GW	1.05E-02 0.046 5 1b/hr 1b/hr 1b/hr 1b/hr 40 CFR 98 St 40 CFR 98 St 40 CFR 98 Ta Still Vent: GR Flash Tank: (Controlled en	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- Flash Tank: GRI P emissions from or to combustion or to combustion or to combustion or to combustion or to combustion or to combustion subpart C Tables C lible A-1 I-GLYCalc Contro RI-GLYCalc Contro RI-GLYCALCONT	Ib/hr tov IL/Calc Control -GLYcalc Flash pilot only are a and conversio SO ₂ . -1 and C-2 Iled Regenerati Tank Off Gas C combustion C	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO2) or Emisisons Stream Stream
xhaust Parameters leat Rate: xhaust temp (Tstk): ite Elevation:	0.65 n-Hexane 0.80 0.11 0.018 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission ³ SO ₂ emission ³ SO ₂ emission ⁴ N ₂ O, CH ₄ , and CO ₂ e tpy Emi 1505.91 650 3060	0.54 2 Benzene 4.16 0.04 0.08 0.37 purchased nat s based on C 0.25 gr H, ns based on S 5 gr S/100 N_0^0 N_0^0 0.0001 288 0.0001 0.03 d C02 tpy Emiss ssion Rate = CC MBtu/hr °F ft MSL	3.79 Toluene 2.59 0.03 0.05 0.23 0.125 g/100 sc 5/100 scf * f 0.25 g/100 scf * f 0.001 25 0.001 25 0.001 9.04 4.05 26.21 scion Rate= EF*	7.61E-04 3.33E-03 0.28 0.28 3.00E-03 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.02	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 95% combu- 1b/7000 gr * 64 II 95% combu- 1b/7000 gr * 64 II 95% combu- the state of the state of S in fuel a 00 gr * 64 II wy the state f S in fuel a 00 gr * 64 II vy the state f S in fuel a 00 gr * 64 II vy the state f S in fuel a state of the state f S in fuel a 00 gr * 64 II vy the state f S in fuel a state of the state of the state f S in fuel a state of the state of	1.05E-02 0.046 5 1b/hr 1b/hr 1b/hr 1b/hr 1b/hr 40 CFR 96 St 40 CFR 96 St 40 CFR 96 St 40 CFR 98 TS 50/32 Ib 5 = 5 5 5 5 5 5 6 6 7 7 8 10 10 10 10 10 10 10 10 10 10	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- Flash Tank: GRI P emissions from or to combustion or to combustion or to combustion or to combustion or to combustion or to combustion subpart C Tables C lible A-1 I-GLYCalc Contro RI-GLYCalc Contro RI-GLYCALCONT	Ib/hr tov IL/Calc Control -GLYcalc Flash pilot only are a and conversio SO ₂ . -1 and C-2 Iled Regenerati Tank Off Gas C combustion C	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO2) or Emisisons Stream Stream
SHG Calculations SHG Calculations Sthaust Parameters leat Rate: xhaust temp (Tstk): ite Elevation: mbient pressure (Pstk):	0.65 n-Hexane 0.80 0.11 0.018 0.08 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission ³ SO ₂ emission ³ SO ₂ emission ⁴ N ₂ O, CH ₄ , and CO ₂ et py Emi 1505.91 650	0.54 2. Benzene 4.16 0.04 0.08 0.37 Durchased natars based on C 0.25 gr H, ns based on S 0.25 gr S/100 N,O ⁴ 0.0001 298 0.0001 0.0001 - 0.03 d CO, tpy Emissi ssion Rate = CC MBtu/hr of	3.79 Toluene 2.59 0.03 0.23 0.05 0.23 0.25 g/100 sc \$/100 scf * full sc \$/100 scf *	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006 0.02 maintential of the second se	0.067 0.29 7.82 0.17 0.16 0.70 95% combu lb/7000 gr = cf S in fuel a 00 gr * 64 ll kg/MMBtu GWP tpy tpy tpy tpy C0 ₂ e cuel Heat Valk sion Rate*GW	1.05E-02 0.046 10/hr	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- Flash Tank: GRI P emissions from or to combustion or to combustion or to combustion or to combustion or to combustion or to combustion subpart C Tables C lible A-1 I-GLYCalc Contro RI-GLYCalc Contro RI-GLYCALCONT	Ib/hr tov IL/Calc Control -GLYcalc Flash pilot only are a and conversio SO ₂ . -1 and C-2 Iled Regenerati Tank Off Gas C combustion C	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO2) or Emisisons Stream Stream
xhaust Parameters eat Rate: xhaust temp (Tstk): ite Elevation: mbient pressure (Pstk): factor:	0.65 <u>n-Hexane</u> 0.80 0.11 0.018 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission ³ SO ₂ emission ³ SO ₂ emission ³ SO ₂ emission ⁴ N ₂ O, CH ₄ , and CO ₂ e tpy Emi 1505.91 650 3060 26.73	0.54 9 Benzene 4.16 0.04 0.08 0.25 gr H ₂ 5 gr S/100 N ₂ O ⁴ 0.0001 298 0.0001 298 0.0001 298 0.0001 4 CO ₂ tpy Emissi ssion Rate = Cl MBtu/hr of ft MSL in. Hg	3.79 Toluene 2.59 0.03 0.23 0.05 0.23 0.25 g/100 sc \$/100 scf * full sc \$/100 scf *	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006 0.02 mprised mainly f H ₂ S in fuel, i co 5 g/100 st f/hr * 1 lb/70 CO ₂ e ⁴ 79.2 Fuel Usage * f tet + N ₂ O Emiss Design Spee Eng Estimat Calculated I 40 CFR 60 Calculated I	0.067 0.29 Total HAP 7.82 0.16 0.70 vf methan 95% combu lb/7000 gr * 64 ll 000 gr * 64 ll 000 gr * 64 ll 000 gr * 64 ll wp tpy tpy tpy tpy tpy tpy tpy tpy tpy tp	1.05F-02 0.046 5 1b/hr 1b/hr 1b/hr 1b/hr 1b/hr 40 CFR 98 St 40 CFR 98 St 40 CFR 98 St 40 CFR 98 Tc Still Vent: GR Still Vent: GR	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- P emissions from or to combustion poustion of H ₂ S to : ib/hr SO ₂ ib/hr SO ₂ hippart C Tables C bible A-1 I-GLYCalc Contro SRI-GLYCalc Flash issions with 98%	Ib/hr tov IL/Calc Control -GLYCalc Flash pilot only are a and conversio SO ₂ . -1 and C-2 Iled Regeneratu Tank Off Gas Combustion C - Factor	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO2) or Emisisons Stream Stream
xhaust Parameters khaust Parameters leat Rate: shaust temp (Tstk): ite Elevation: mbient pressure (Pstk): factor: shaust flow shaust flow;	0.65 n-Hexane 0.80 0.11 0.018 0.08 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission ³ SO ₂ emission ³ SO ₂ emission ⁴ N ₂ O, CH ₄ , and CO ₂ e tpy Emil 1505.91 650 3060 26.73 10610 266.3 636.2	0.54 2. Benzene 4.16 0.04 0.08 0.37 Durchased national 15 based on C 0.25 gr B/100 0.25 gr S/100 0.25 gr S/100 0.0001 298 0.0001 0.0001 298 0.0001 0.03 d CO ₂ tpy Emissission Rate = Cl MBtu/hr °F ft MSL in. Hg wscf/MMB scfm	3.79 Toluene 2.59 0.03 0.23 0.05 0.23 0.25 g/100 sc \$/100 scf * full sc \$/100 scf *	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.00E 0.02 0.00E 0.02 0.00E 0.02 0.00E 0.02 0.00E 0.02 0.00E 0.02 0.0	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu- 15% combu- 15% combu- 15% combu- 15% combu- 100 gr * 64 II 00 gr * 64 II kg/MMBtu GWP tpy tpy tpy tpy CO ₂ e full Heat Valusion Rate*GW cification te assed on ele Appx A Mett rom F factod (/Psk/)*(Ts)	1.05F-02 0.046 5 1b/hr 1b/hr 1b/hr 1b/hr 1b/hr 40 CFR 98 St 40 CFR 98 St 40 CFR 98 St 40 CFR 98 Tc Still Vent: GR Still Vent: GR	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- Flash Tank: GRI- P emissions from or to combustion or to combustion or to combustion or to combustion or to combustion suition of H ₂ S to : ib/hr SO ₂ ib/part C Tables C lible A-1 I-GLYCalc Contro RI-GLYCalc Contro RI-GLYCAL FLASH Dission Rate "Guidenteen Contro RI-GLYCAL FLASH RI-GLYCAL FLASH RI	Ib/hr tov IL/Calc Control -GLYCalc Flash pilot only are a and conversio SO ₂ . -1 and C-2 Iled Regeneratu Tank Off Gas Combustion C - Factor	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO2) or Emisisons Stream Stream
SHG Calculations SHG Calculations Exhaust Parameters teat Rate: xhaust temp (Tstk): its Elevation: mbient pressure (Pstk): fractor: xhaust flow xhaust flow: xhaust flow: xha	0.65 n-Hexane 0.80 0.11 0.018 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission ³ SO ₂ emission ³ SO ₂ emission ⁴ N ₂ O, CH ₄ , and CO ₂ e tpy Emi 1505.91 650 3060 26.73 310610 266.3 636.2 4.5	0.54 2. Benzene 4.16 0.04 0.08 0.25 gr H ₂ ns based on C 0.25 gr H ₂ ns based on S 5 gr S/100 N ₂ O ⁴ 0.0001 288 0.0001 288 0.0001 0.03 3 CO ₂ tpy Emissission Rate = CC MBtu/hr °F ft MSL in. Hg wscf/MMB scfm acfm ft	3.79 Toluene 2.59 0.03 0.23 0.05 0.23 0.25 g/100 sc \$/100 scf * full sc \$/100 scf *	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006 0.002 nprised mainly f H ₂ S in fuel, uel sc/fhr * 1 co 5 g/100 sr f/hr * 1 lb/70 CO ₂ e ⁴ 79.2 Fuel Usage * F tate + N ₂ O Emiss Design Spee Eng Estimal Calculated I 40 CFR 60 calculated I score * (Pst Spec Sheet	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu lb/7000 gr r cf S in fuel a 00 gr * 64 ll 00 gr * 64 ll kg/MMBtu GWP tpy tpy tpy tpy tpy tpy tpy tpy tpy tpy	1.05F-02 0.046 5 1b/hr 1b/hr 1b/hr 1b/hr 1b/hr 40 CFR 98 St 40 CFR 98 St 40 CFR 98 St 40 CFR 98 Tc Still Vent: GR Still Vent: GR	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- P emissions from or to combustion poustion of H ₂ S to : ib/hr SO ₂ ib/hr SO ₂ hippart C Tables C bible A-1 I-GLYCalc Contro SRI-GLYCalc Flash issions with 98%	Ib/hr tov IL/Calc Control -GLYCalc Flash pilot only are a and conversio SO ₂ . -1 and C-2 Iled Regeneratu Tank Off Gas Combustion C - Factor	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO ₂) or Emisisons Stream Stream
Total (Pilot + Gases) SHG Calculations Exhaust Parameters feat Rate: Schaust temp (Tstk): its Elevation: mbient pressure (Pstk): Factor: Schaust flow Schaust flow Schaust flow: Schaust flow:	0.65 n-Hexane 0.80 0.11 0.018 0.08 ¹ Pilot fuel is p ² H ₂ S emission ³ SO ₂ emission ³ SO ₂ emission ³ SO ₂ emission ⁴ N ₂ O, CH ₄ , and CO ₂ e tpy Emi 1505.91 650 3060 26.73 10610 266.3 636.2	0.54 2. Benzene 4.16 0.04 0.08 0.37 Durchased national 15 based on C 0.25 gr B/100 0.25 gr S/100 0.25 gr S/100 0.0001 298 0.0001 0.0001 298 0.0001 0.03 d CO ₂ tpy Emissission Rate = Cl MBtu/hr °F ft MSL in. Hg wscf/MMB scfm	3.79 Toluene 2.59 0.03 0.23 0.05 0.23 0.25 g/100 sc \$/100 scf * full sc \$/100 scf *	7.61E-04 3.33E-03 Xylenes 0.28 3.00E-03 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.006 0.02 0.02 0.02 0.006 0.02 0.	0.067 0.29 Total HAP 7.82 0.17 0.16 0.70 y of methan 95% combu lb/7000 gr r cf S in fuel a 00 gr * 64 ll 00 gr * 64 ll kg/MMBtu GWP tpy tpy tpy tpy tpy tpy tpy tpy tpy tpy	1.05E-02 0.046 10/hr	0.16 0.70 Still Vent: GRI-G Flash Tank: GRI- P emissions from or to combustion poustion of H ₂ S to : ib/hr SO ₂ ib/hr SO ₂ hippart C Tables C bible A-1 I-GLYCalc Contro SRI-GLYCalc Flash issions with 98%	Ib/hr tov IL/Calc Control -GLYCalc Flash pilot only are a and conversio SO ₂ . -1 and C-2 Iled Regeneratu Tank Off Gas Combustion C - Factor	led Regenerator Emisisons Stream Tank Off Gas Stream assumed to be negligible. n to SO ₂) or Emisisons Stream Stream

Site Data

Site Elevation	
Standard Pressure	
Pressure at Elevation	
Standard Temperature	

 3060
 ft MSL

 29.92
 in Hg

 26.75
 in Hg

 528
 R

Enterprise Field Services LLC South Carlsbad Compressor Station

LOAD_SLOP Unit: Description: Emissions from Truck Loading of Slop Water

Emission Calculations

Loading from T-006

12,000	Throughput (bbl/yr)	Expected condensate throughput
504,000	Throughput (gal/yr)	bbl/d * 42 gal/bbl * 365 d/yr
10.3 1% 0.10	tpy VOC Based on 1% Crude Oil ¹ tpy VOC	GRI-HAPCalc 3.01

Total HAPs	n-Hexane	Benzene	Toluene	e-Benzene	Xylenes		
0.5	0.41	0.05	0.02	0.0007	0.0012	tpy	GRI-HAPCalc3.01
1%	1%	1%	1%	1%	1%	%	Based on 1% Crude Oil ¹
4.71E-03	4.08E-03	4.56E-04	1.51E-04	7.00E-06	1.20E-05	tpy	_

¹ Assume slop water contains 1% hydrocarbons per TCEQ guidance.

Loading from T-007

4.81E-5	Calculated VOC Emissions (tpy)	Calculated using ProMax
25%	Safety Factor	
6.01E-5	tpy VOC	

Т	otal HAPs	n-Hexane	Benzene	Toluene	e-Benzene	Xylenes		
9	9.94E-06	2.89E-10	9.33E-06	5.86E-07	5.52E-09	1.98E-08	tpy	Calculated using ProMax
	25%	25%	25%	25%	25%	25%	%	Safety Factor
1	L.24E-05	3.61E-10	1.17E-05	7.32E-07	6.90E-09	2.48E-08	tpy	

Calculated using ProMax

6.90E-09

Safety Factor

2.48E-08 tpy

Loading from TK-1000 (Identical to T-007)

1.24E-05

Calculated VOC Emissions (tpy) 4.81E-5 25% Safety Factor 6.01E-5 tpy VOC

3.61E-10

Total HAPs n-Hexane Benzene Toluene e-Benzene **Xylenes** Calculated using ProMax 2.89E-10 5.86E-07 5.52E-09 1.98E-08 9.94E-06 9.33E-06 tpy 25% 25% 25% 25% 25% 25% <u>%</u>

7.32E-07

Total Emissions

 0.10	tpy VOC					
Total HAPs	n-Hexane	Benzene	Toluene	e-Benzene	Xylenes	
4.73E-03	4.08E-03	4.79E-04	1.52E-04	7.01E-06	1.20E-05	tpy

1.17E-05

Haul Road Emissions

Enterprise Field Services LLC South Carlsbad Compressor Station

Input Data

Empty vehicle weight ¹	16	tons
Load weight ²	21.2	tons
Loaded vehicle ³	37.2	tons
Mean vehicle weight ⁴	26.6	tons
Vehicle frequency	1.2	vehicles/day
Vehicle frequency	1.2	trips/hour
Round-trip distance	0.40	mile/trip
Operating hours	8760	hours/yr
Surface silt content ⁵	1.8	%
Annual wet days ⁶	60	days/yr
Vehicle miles traveled ⁷	0.5	mile/hr

Throughput (gal/yr) * (1 yr/365 days) * (1 truck/7,560 gal) Maximum

Emission Factors and Constants

Parameter	PM ₃₀	PM ₁₀	PM _{2.5}
k, lb/VMT ⁸	4.9	1.5	0.15
a, lb/VMT ⁸	0.70	0.90	0.90
b, lb/VMT ⁸	0.45	0.45	0.45
Hourly EF, lb/VMT ⁹	3.47	0.73	0.07
Annual EF, lb/VMT ¹⁰	2.90	0.61	0.06

Uncontrolled Emissions

PM ₃₀	PM ₁₀	PM _{2.5}	
1.7	0.36	0.036	lb/hr ¹¹
0.26	0.055	0.0055	ton/yr ¹²

Footnotes

¹ Empty vehicle weight includes driver and occupants and full fuel load.

² Cargo, transported materials, etc. (lb/gal RVP11 *7560 gal truck/ 2000lb/ton)

³ Loaded vehicle weight = Empty + Load Size

⁴ Mean Vehicle weight = (Loaded Weight + Empty Weight) / 2

⁵ AP-42 Table 13.2.2-1, Taconite mining and processing mean silt content

A 60% reduction in silt is used based on the use of gravel roads at this facility.

⁶ AP-42 Figure 13.2.2-1

⁷ VMT/hr = Vehicle Miles Traveled per hour = Trips per hour * Miles per trip

⁸ Table 13.2.2-2, Industrial Roads

⁹ AP-42 13.2.2, Equation 1a

¹⁰ AP-42 13.2.2, Equation 2

¹¹ lb/hr = Hourly EF (lb/VMT) * VMT (mile/hr)

¹² ton/yr = Annual EF (lb/VMT) * Truck/day * Mile/truck * 365day/yr * 1ton/2000lb

Unit:	MALF
Description:	Facility-wide malfunction emissions

Emission Calculations

Requested NO _x MALF:	6 tons/yr
Requested CO MALF:	10 tons/yr
Requested VOC MALF:	10 tons/yr
Requested SO _x MALF:	10 tons/yr
Requested H ₂ S MALF:	2 tons/yr
Requested HAP MALF:	0.16 tons/yr
Requested Hexane MALF:	0.12 tons/yr
Request Benzene MALF:	0.026 tons/yr
Requested Toluene MALF:	0.0076 tons/yr
Inlet gas VOC content:	22.33 Mass %
Inlet gas CO ₂ content:	0.45 Mass %
Inlet gas CH₄ content:	58.87 Mass %
Inlet gas HAPs content:	0.357 Mass %
Inlet gas Hexane:	0.27 Mass %
Inlet gas Benzene:	0.059 Mass %
Inlet gas Toluene:	0.017 Mass %

Unit(s):	PIGGING		
Description:	Pig Receive	r and Launcher Emissions	
Exemption:	20.2.72.202	2.B(5) NMAC	
Inlet Receiver Volume Safety Factor	140.00 100%	scf/event	Estimate based on similar Facility Design
Inlet Receiver Volume	280.00	scf/event	Calculated
Annual Events:	24	# of events/yr	Estimate based on similar Facility Design
Duration of Event	0.5	hr/event	Estimate
Number of Receivers:	1		Estimate based on similar Facility Design

		Pigging Emi	ssions based on	Inlet Analysis	5			
Composition	MW ²	Wet vol/mol% ¹	Dry vol/mol%	MW*Mol%	Spec. Volume (scf/lb) ²	Mass Flow (lb/hr) ³	Mass Flow (lb/yr) ⁴	Mass Flow (ton/yr) ⁵
Water	18.015	0.000%			21.06			
Nitrogen	28.013	1.23%	1.231%	0.34	13.55	5.09E-03	6.11E-02	3.05E-05
CO2	44.010	0.21%	0.214%	0.09	8.62	1.39E-03	1.67E-02	8.34E-06
H2S*	34.082	0.001%	0.001%	0.00	11.14	5.03E-06	6.03E-05	3.02E-08
Methane	16.043	77.6%	77.633%	12.45	23.65	1.84E-01	2.21E+00	1.10E-03
Ethane	30.070	11.8%	11.776%	3.54	12.62	5.23E-02	6.27E-01	3.14E-04
Propane	44.097	5.6%	5.649%	2.49	8.61	3.68E-02	4.41E-01	2.21E-04
i-Butane	58.123	0.75%	0.745%	0.43	6.53	6.39E-03	7.67E-02	3.83E-05
n-Butane	58.123	1.7%	1.715%	1.00	6.53	1.47E-02	1.77E-01	8.83E-05
2,2 Dimethylpropane	72.150	0.012%	0.012%	0.01	5.30	1.27E-04	1.52E-03	7.60E-07
i-Pentane	72.150	0.35%	0.351%	0.25	5.26	3.74E-03	4.48E-02	2.24E-05
n-Pentane	72.150	0.36%	0.357%	0.26	5.26	3.80E-03	4.56E-02	2.28E-05
2,2 Dimethylbutane	86.180	0.0050%	0.005%	0.004	5.26	5.32E-05	6.39E-04	3.19E-07
Cyclopentane	70.140	0.00%	0.000%	0.000	5.41	0.00E+00	0.00E+00	0.00E+00
2,3 Dimethylbutane	86.180	0.026%	0.026%	0.022	4.40	3.31E-04	3.97E-03	1.98E-06
2 Methylpentane	86.180	0.061%	0.061%	0.053	4.40	7.76E-04	9.31E-03	4.65E-06
3 Methylpentane	86.180	0.031%	0.031%	0.027	4.40	3.94E-04	4.73E-03	2.37E-06
n-Hexane	86.180	0.07%	0.065%	0.056	4.40	8.27E-04	9.92E-03	4.96E-06
Methylcyclopentane	84.160	0.031%	0.031%	0.026	4.51	3.85E-04	4.62E-03	2.31E-06
Cyclohexane	84.160	0.034%	0.034%	0.029	3.79	5.03E-04	6.03E-03	3.02E-06
2-Methylhexane	100.200	0.004%	0.004%	0.004	3.79	5.92E-05	7.10E-04	3.55E-07
3-Methylhexane	100.200	0.005%	0.005%	0.005	3.79	7.39E-05	8.87E-04	4.44E-07
n-Heptanes	100.200	0.018%	0.018%	0.018	3.79	2.66E-04	3.19E-03	1.60E-06
Other Heptanes	100.200	0.00%	0.000%	0.000	3.79	0.00E+00	0.00E+00	0.00E+00
Methylcyclohexane	98.190	0.013%	0.013%	0.013	3.87	1.88E-04	2.26E-03	1.13E-06
2,2,4-Trimethylpentane	114.230	0.00%	0.003%	0.003	3.32	5.06E-05	6.07E-04	3.03E-07
Benzene	78.110	0.016%	0.016%	0.012	4.86	1.84E-04	2.21E-03	1.11E-06
Toluene	92.140	0.004%	0.004%	0.004	4.12	5.44E-05	6.53E-04	3.26E-07
Ethylbenzene	106.170	0.00000%	0.000%	0.000	3.57	0.00E+00	0.00E+00	0.00E+00
Xylenes	106.170	0.0000%	0.000%	0.000	3.57	0.00E+00	0.00E+00	0.00E+00
C8+ heavies	114.230	0.0000%	0.000%	0.000	3.32	0.00E+00	0.00E+00	0.00E+00
Total		100.0%	100.0%	21.15		Ī		
Dry Total		100.0%				0.31	3.75	0.0019
VOC Total		0.21		8.26		0.12	1.46	7.32E-04

Notes

¹ Inlet

² Inlet
² From "Physical Properties of Hydrocarbons"
³ Flow (lb/hr) = Volume (scf/event) / Duration (hr/event) / Sp. Vol. (scf/lb) * Mol%
⁴ Flow (tons/yr) = Volume (scf/yr) / Sp. Vol. (scf/lb) * Mol%
⁵ Flow (tons/yr) = Flow (lb/yr) / 2000 lb/ton

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **<u>short</u>** tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Section 7

Information Used to Determine Emissions

Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- ☑ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- If an EPA document or other material is referenced, include a complete copy.
- Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

This section contains the following references or actual documentation to support the emissions in the required forms and the calculations in Section 6:

Subsection 1 – Documentation used to support calculations in this permit revision.

- o Current version of AP-42 located online at: EPA AP-42 Compilation Air Emissions Factors
- Specific sections used in this application:
 - Section 3.1 Stationary Gas Turbines (Table 3.1-3)
 - Section 3.2 Natural Gas-fired Reciprocating Engines (Table 3.2-2)
 - Section 13.5 Industrial Flares (Table 13.5-1)
- Compressor manufacturer and catalyst specifications (for Units 11, 12, 13, 14, and 15)
- Generator manufacturer specification sheet (for Unit GEN-1)
- TCEQ TNRCC RG-109 Flare guidance documentation
- ProMax Output for slop working, breathing, flashing, and loading emissions (for Unit TK-1000)
- FESCO, Ltd. inlet gas analysis (April 8, 2022) (for units VENT (SSM), FLARE (SSM), and F-001)
- FESCO, Ltd. Fuel gas analysis (April 8, 2022) (for units 1, 2, 5 15, 3b, Flare (Process), Flare (SSM), ECD)

Subsection 2 – Documentation used to support calculations from previous permit application.

- o Current version of AP-42 located online at: EPA AP-42 Compilation Air Emissions Factors
- o Specific sections used in this application:
 - Section 1.4 Natural Gas External Combustion Sources-Natural Gas (Table 1.4-1, 1.4-2)
 - Section 3.1 Stationary Natural Gas Turbines (Table 3.1-2a)
 - Section 3.2 Natural Gas-fired Reciprocating Engines (Table 3.2-2)
 - Section 13.2.2 Introduction to Fugitive Dust sources Unpaved Roads
- o Compressor manufacturer and catalyst specifications (for Units 6, 7, 8, 9, & 10)
- o GRI-GLYCalc v4.0 aggregate calculations report (for Unit 3a)
- Stream 11 properties used for Unit Flare (SSM)
- HAPCalc[®] 3.01 run results loading
- ProMax Output for slop and condensate working and breathing, and slop loading emissions (for Units T-006, T-007, T-008, T-009, T-011, and T-012)
- o SpiralX manufacturer specification sheet (for Unit ECD)
- Turbine Stack Test Data Reports (for Units 1 and 2)
- o Turbine manufacturer specifications (for Unit 5)

Section 7

Subsection 1 – Information Used to Determine Emissions from Amended Portion of the Application

For clarity, this Subsection 1 contains pertinent information used for the calculations associated with the current project modifications (i.e. Units 11 - 15, TK-1000, GEN-1, F-001, VENT(SSM), Flare (SSM)). For all supplemental information used to calculate emissions for the existing permit, please refer to Section 7 Subsection 2.

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhouse	e Gases	
NO _x ^c 90 - 105% Load	4.08 E+00	В
$NO_x^{c} < 90\%$ Load	8.47 E-01	В
CO ^c 90 - 105% Load	3.17 E-01	С
CO ^c <90% Load	5.57 E-01	В
CO ₂ ^d	1.10 E+02	А
SO ₂ ^e	5.88 E-04	А
TOC ^f	1.47 E+00	А
Methane ^g	1.25 E+00	С
VOC ^h	1.18 E-01	С
PM10 (filterable) ⁱ	7.71 E-05	D
PM2.5 (filterable) ⁱ	7.71 E-05	D
PM Condensable ^j	9.91 E-03	D
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ^k	<4.00 E-05	Е
1,1,2-Trichloroethane ^k	<3.18 E-05	Е
1,1-Dichloroethane	<2.36 E-05	Е
1,2,3-Trimethylbenzene	2.30 E-05	D
1,2,4-Trimethylbenzene	1.43 E-05	С
1,2-Dichloroethane	<2.36 E-05	Е
1,2-Dichloropropane	<2.69 E-05	Е
1,3,5-Trimethylbenzene	3.38 E-05	D
1,3-Butadiene ^k	2.67E-04	D
1,3-Dichloropropene ^k	<2.64 E-05	Е
2-Methylnaphthalene ^k	3.32 E-05	С
2,2,4-Trimethylpentane ^k	2.50 E-04	С
Acenaphthene ^k	1.25 E-06	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINESa(SCC 2-02-002-54)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Acenaphthylene ^k	5.53 E-06	С
Acetaldehyde ^{k,1}	8.36 E-03	А
Acrolein ^{k,1}	5.14 E-03	А
Benzene ^k	4.40 E-04	А
Benzo(b)fluoranthene ^k	1.66 E-07	D
Benzo(e)pyrene ^k	4.15 E-07	D
Benzo(g,h,i)perylene ^k	4.14 E-07	D
Biphenyl ^k	2.12 E-04	D
Butane	5.41 E-04	D
Butyr/Isobutyraldehyde	1.01 E-04	С
Carbon Tetrachloride ^k	<3.67 E-05	Е
Chlorobenzene ^k	<3.04 E-05	Е
Chloroethane	1.87 E-06	D
Chloroform ^k	<2.85 E-05	Е
Chrysene ^k	6.93 E-07	С
Cyclopentane	2.27 E-04	С
Ethane	1.05 E-01	С
Ethylbenzene ^k	3.97 E-05	В
Ethylene Dibromide ^k	<4.43 E-05	Е
Fluoranthene ^k	1.11 E-06	С
Fluorene ^k	5.67 E-06	С
Formaldehyde ^{k,1}	5.28 E-02	А
Methanol ^k	2.50 E-03	В
Methylcyclohexane	1.23 E-03	С
Methylene Chloride ^k	2.00 E-05	С
n-Hexane ^k	1.11 E-03	С
n-Nonane	1.10 E-04	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES (Continued)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
n-Octane	3.51 E-04	С
n-Pentane	2.60 E-03	С
Naphthalene ^k	7.44 E-05	С
PAH ^k	2.69 E-05	D
Phenanthrene ^k	1.04 E-05	D
Phenol ^k	2.40 E-05	D
Propane	4.19 E-02	С
Pyrene ^k	1.36 E-06	С
Styrene ^k	<2.36 E-05	Е
Tetrachloroethane ^k	2.48 E-06	D
Toluene ^k	4.08 E-04	В
Vinyl Chloride ^k	1.49 E-05	С
Xylene ^k	1.84 E-04	В

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES (Continued)

^a Reference 7. Factors represent uncontrolled levels. For NO_x, CO, and PM10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM-10 = Particulate Matter ≤ 10 microns (µm) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit.
^b Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA Method 19. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from

(lb/MMBtu) to (lb/hp-hr) use the following equation:

lb/hp-hr = (lb/MMBtu) (heat input, MMBtu/hr) (1/operating HP, 1/hp)

^c Emission tests with unreported load conditions were not included in the data set.

^d Based on 99.5% conversion of the fuel carbon to CO_2 . CO_2 [lb/MMBtu] =

^{(3.67)(%}CON)(C)(D)(1/h), where %CON = percent conversion of fuel carbon to CO_2 ,

C = carbon content of fuel by weight (0.75), D = density of fuel, 4.1 E+04 $lb/10^6$ scf, and

h = heating value of natural gas (assume 1020 Btu/scf at 60° F).

- ^e Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content in natural gas of 2,000 gr/10⁶ scf.
- ^f Emission factor for TOC is based on measured emission levels from 22 source tests.
- ^g Emission factor for methane is determined by subtracting the VOC and ethane emission factors from the TOC emission factor. Measured emission factor for methane compares well with the calculated emission factor, 1.31 lb/MMBtu vs. 1.25 lb/MMBtu, respectively.
- ^h VOC emission factor is based on the sum of the emission factors for all speciated organic compounds less ethane and methane.
- ¹ Considered $\leq 1 \ \mu m$ in aerodynamic diameter. Therefore, for filterable PM emissions, PM10(filterable) = PM2.5(filterable).
- ^j PM Condensable = PM Condensable Inorganic + PM-Condensable Organic
- ^k Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.
- ¹ For lean burn engines, aldehyde emissions quantification using CARB 430 may reflect interference with the sampling compounds due to the nitrogen concentration in the stack. The presented emission factor is based on FTIR measurements. Emissions data based on CARB 430 are available in the background report.

Since flares do not lend themselves to conventional emission testing techniques, only a few attempts have been made to characterize flare emissions. Recent EPA tests using propylene as flare gas indicated that efficiencies of 98 percent can be achieved when burning an offgas with at least $11,200 \text{ kJ/m}^3$ (300 Btu/ft³). The tests conducted on steam-assisted flares at velocities as low as 39.6 meters per minute (m/min) (130 ft/min) to 1140 m/min (3750 ft/min), and on air-assisted flares at velocities of 180 m/min (617 ft/min) to 3960 m/min (13,087 ft/min) indicated that variations in incoming gas flow rates have no effect on the combustion efficiency. Flare gases with less than 16,770 kJ/m³ (450 Btu/ft³) do not smoke.

Table 13.5-1 presents flare emission factors, and Table 13.5-2 presents emission composition data obtained from the EPA tests.¹ Crude propylene was used as flare gas during the tests. Methane was a major fraction of hydrocarbons in the flare emissions, and acetylene was the dominant intermediate hydrocarbon species. Many other reports on flares indicate that acetylene is always formed as a stable intermediate product. The acetylene formed in the combustion reactions may react further with hydrocarbon radicals to form polyacetylenes followed by polycyclic hydrocarbons.²

In flaring waste gases containing no nitrogen compounds, NO is formed either by the fixation of atmospheric nitrogen (N) with oxygen (O) or by the reaction between the hydrocarbon radicals present in the combustion products and atmospheric nitrogen, by way of the intermediate stages, HCN, CN, and OCN.² Sulfur compounds contained in a flare gas stream are converted to SO₂ when burned. The amount of SO₂ emitted depends directly on the quantity of sulfur in the flared gases.

Table 13.5-1 (English Units). EMISSION FACTORS FOR FLARE OPERATIONS^a

Component	Emission Factor (lb/10 ⁶ Btu)
Total hydrocarbons ^b	0.14
Carbon monoxide	0.37
Nitrogen oxides	0.068
Soot ^c	0 - 274

EMISSION FACTOR RATING: B

^a Reference 1. Based on tests using crude propylene containing 80% propylene and 20% propane.
 ^b Measured as methane equivalent.

^c Soot in concentration values: nonsmoking flares, 0 micrograms per liter (μ g/L); lightly smoking flares, 40 μ g/L; average smoking flares, 177 μ g/L; and heavily smoking flares, 274 μ g/L.

G3608

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Enterprise

WITH AIR FUEL RATIO CONTROL

STANDARD CONTINUOUS GAV

Nat Gas

58.0-70.3 95.2 912 3000 110

AFTERCOOLER - STAGE FINLET (F). 174 JACKET WATER OUTLET (°F): 190 FUEL: ASPIRATION: TA FUEL P COOLING SYSTEM: JW+1AC, OC+2AC FUEL L CONTROL SYSTEM: ADEM4 FUEL L EXHAUST MANIFOLD: DRY ALTITU COMBUSTION: LOW EMISSION INLET /	YSTEM: DNDITIONS: RESSURE RANGE(psig): (See note 1) IETHANE NUMBER: HV (Btu/scf): DE(ft): IR TEMPERATURE(°F): ARD RATED POWER:
--	---

COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOx): SET POINT TIMING:		NDARD RATED				2500 bł	110 np@1000rpm
				MAXIMUM RATING		TING AT N IR TEMPE	
RATING		NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER	(WITHOUT FAN)	(2)	bhp	2500	2500	1875	1250
			°F	110	110	110	110
ENGINE DATA							
FUEL CONSUMPTION (LHV)		(3)	Btu/bhp-hr	6848	6848	7075	7573
FUEL CONSUMPTION (HHV)		(3)	Btu/bhp-hr	7598	7598	7849	8403
AIR FLOW (@inlet air temp, 14.7 psia)	(WET)	(4)(5)	ft3/min	6636	6636	5029	3419
AIR FLOW	(WET)	(4)(5)	lb/hr	27720	27720	21007	14282
FUEL FLOW (60°F, 14.7 psia)			scfm	313	313	242	173
INLET MANIFOLD PRESSURE		(6)	in Hg(abs)	104.4	104.4	78.9	55.1
EXHAUST TEMPERATURE - ENGINE OUTLI	ET	(7)	°F	833	833	876	941
EXHAUST GAS FLOW (@engine outlet temp,	14.5 psia) (WET)	(5)(8)	ft3/min	16069	16069	12600	9005
EXHAUST GAS MASS FLOW	(WET)	(5)(8)	lb/hr	28528	28528	21633	14728
EMISSIONS DATA - ENGINE O	UT						
NOx (as NO2)		(9)(10)	g/bhp-hr	0.30	0.30	0.30	0.30
co		(9)(10)	g/bhp-hr	2.50	2.50	2.49	2.50
THC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	4.41	4.41	4.68	4.75
NMHC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	0.41	0.41	0.43	0.44
NMNEHC (VOCs) (mol. wt. of 15.84)		(9)(10)(11)	g/bhp-hr	0.27	0.27	0.29	0.30
HCHO (Formaldehyde)		(9)(10)	g/bhp-hr	0.16	0.16	0.17	0.20
CO2		(9)(10)	g/bhp-hr	425	425	441	470
EXHAUST OXYGEN		(9)(12)	% DRY	11.3	11.3	11.1	10.7
HEAT REJECTION							
HEAT REJ. TO JACKET WATER (JW)		(13)	Btu/min	27700	27700	23042	18866
HEAT REJ. TO ATMOSPHERE		(13)	Btu/min	11186	11186	11118	10432
HEAT REJ. TO LUBE OIL (OC)		(13)	Btu/min	12553	12553	11937	10885
HEAT REJ. TO A/C - STAGE 1 (1AC)		(13)(14)	Btu/min	27175	27175	13666	3763
HEAT REJ. TO A/C - STAGE 2 (2AC)		(13)(14)	Btu/min	9026	9026	5673	2840
COOLING SYSTEM SIZING CR	ITERIA						
TOTAL JACKET WATER CIRCUIT (JW+1AC)		(14)(15)	Btu/min	59003]		
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)	(14)(15)	Btu/min	24540]		
A cooling system safety factor of 0% has been	added to the cooling system sizing criteria.]		

A cooling system safety factor of 0% has been added to the cooling system sizing criteria.

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Refer to product O&M manual for details on additional lower load capability. No overload permitted at rating shown.

For notes information consult page three.

Emission Control Application Data Sheet

 Maxim Silencers

 6545 N. ELDRIDGE PKWY

 HOUSTON TX.77041

 Phone:
 713-682-6777

 Fax:
 713-682-3628

Date: 11/11/2022

Customer: COMPASS

Customer Contact

Project: **OPP# 2207-270-EPD**Powertherm Contact:

Engine Data:

(
Engine Model:	CAT 3608A4	Speed:	1000	RPM	
Fuel & Operating Type:	Natural Gas Lean Burn	Engine Power:	2500 1880	Hp KW	
Exhaust Flow Rate:	16069 acfm 27301 m ³ /hr 29528 lbs/hr	Exhaust Temperature:	833 445	°F ℃	

Catalyst Data:

Number of Core layers:	1							\mathcal{A}
Model:	MCCOF3-6-2	420C3			Inlet Size:	20	in	
Grade:	Critical				Outlet Size:	24	in	
Body Diameter:	54	in			Body Length:	182	in	
Estimated weight:	4180 1897	lbs Kg			Estimated Back Pressure of the unit:	6.01 15.0	in of WC mbar	
Core Part Number:	ERH-1536-1,	15 X 36 SIZE	Qty	3	Speed through inlet:	5279	ft/min	
Cell Density	300	cpsi			Back Pressure across Element(s) only	2.66 6.6	in of WC mbar	

Emission:

Min. Temp. at Core Face: Max. Temp. at Core Face:			400 492	℃ ℃				Catalyst Type: 0	Dxidation
	517		452	U				O ₂ in Exhaust	vol %
					Pollutant			H ₂ O in Exhaust	vol %
		NOx		СО	NMNEHC/VOC	CH ₂ O/CHCO	ORGANIC PM10		
Engine Out / Pre Emission:		0.3		2.5	0.27	0.16	0	g/bhp-hr	
-		72.19		601.62	64.97	38.50	0.00	mg/Nm3	
Post Emission:		0.300		0.600	0.700	0.040	0.000	g/bhp-hr	
		72.19		144.39	168.45	9.63	0.00	mg/Nm3	
		0.0		76.0	-159.3	75.0	50.0	% Reduction	
		1.65		3.31	3.86	0.22		lb/hr	
		7.24		14.48	16.90	0.97		tons/year operation	8760 hr/year
		34.7		69.3	80.9	4.6		ppmv	,
								ppmvd @ 15% O2	

Acoustics:

(_									
Frequency Band (Hz):	31.5	63	125	250	500	1000	2000	4000	8000	
Raw Noise SPL (dB) at 3.28 ft.:	0	0	0	0	0	0	0	0	0	7 dBA
Estimated Attenuation (dB):	24	35	37	31	28	24	25	29.5	30	No Element
Plus:	24	36	39	33	32	29	31	35.5	35	One Element Layer
Silenced SPL (dB) at 3.28 ft.:	-24	-36	-39	-33	-32	-29	-31	-35.5	-35	-24.8 dBA

Warranty & Notes:

	If Pre-Emission levels are not as noted above, contact Maxim Silencers for a re-quote.		
/	 To achieve Post Emissions levels detailed above, exhaust temperature and Pre-Emission data must be as specified. 		
1	 Maximum allowable exhaust temperature at core face is 1350°F. 		
	 If applicable, the engine will require an air/fuel ratio controller to meet above emission levels. For Rich Burn engines λ must be 0.96 - 0.99. 		
	 Catalyst cleaning/regeneration required, if initial backpressure increases by 2" of WC. 		
	Engine operation to be stable and reproducible.		
	 QAC is not designed to withstand a backfire, therefore measures should be taken prior to QAC unit to alleviate backfire pressure. 		
	 Maximum lubrication oil consumption rate to be less than 0.0015 lb/bhp/hr. 		
	 Lube oil sulfate ash contents should not exceed 0.5%. 		
	 Phosphorus and/or Zinc should not exceed 5 ppmv in the exhaust stream. 		
	 A high temperature alarm/shutdown to be maintained at downstream of catalyst at 1300°F. 		
	 Fuel not to contain heavy or transition metals such as Pb, Ar, Zn, Cu, Sn, Fe, Ba, Ni, Cr etc. 		
	 Chlorinated or Silicone containing compounds in the exhaust not to exceed 1 ppmv. 		
	 Sulfur compounds in the exhaust gas stream not to exceed 25 ppmv. 		
	Performance guarantee is voided should the catalyst become masked or de-activated by any contaminant in the exhaust stream.		
	 Engine to be maintained and operated in accordance within manufacturer's recommended practice. 		
	 Under no condition will Maxim Silencers assume any contingent liabilities. 		
	 Operating manual is available online at www.maximsilencers.com or contact a Maxim sales representative. 		
	 Nomenclature: QAC4-292-8, 4 is grade (Super Critical), 29 is catalyst block size, 2 is no. of catalyst(s) and 8 is flange diameter. 		
1	 Organic PM10 are estimate only and not a guarantee because of the variability in fuels and additives which change PM10. 		
\backslash	Maxim Silencers standard one year warranty applies.		
$\overline{\}$		Rev level: 86	
~			/

G3612

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Josh Shaver - 677-1738 SCAR rA

GAS COMPRESSION APPLICATION				
ENGINE SPEED (rpm):	1000	RATING STRATEGY:		STANDARD
COMPRESSION RATIO:	7.6	RATING LEVEL:		CONTINUOUS
AFTERCOOLER TYPE:	SCAC	FUEL SYSTEM:		GAV
AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F):	130 174	SITE CONDITIONS:		WITH AIR FUEL RATIO CONTROL
JACKET WATER OUTLET (°F):	190	FUEL:		Gas Analysis
ASPIRATION:	TA	FUEL PRESSURE RANGE(psia): (See note 1)	84.8-94.6
COOLING SYSTEM:	JW+1AC. OC+2AC	FUEL METHANE NUMBER:		43.3
CONTROL SYSTEM:	ADEM4	FUEL LHV (Btu/scf):		1171
EXHAUST MANIFOLD:	DRY	ALTITUDE(ft):		3063
COMBUSTION:	LOW EMISSION	INLET AIR TEMPERATURE(°F):		105
NOx EMISSION LEVEL (g/bhp-hr NOx):	0.3	STANDARD RATED POWER:		4125 bhp@1000rpm
SET POINT TIMING:	16			
			MAXIMUM	SITE RATING AT MAXIMUM

			RATING		IR TEMPE	
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(2)	bhp	4125	4125	3094	2063
INLET AIR TEMPERATURE		°F	105	105	105	105
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	6691	6691	6913	7342
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	7370	7370	7615	8087
AIR FLOW (@inlet air temp, 14.7 psia) (WET	(4)(5)	ft3/min	11164	11164	8455	5770
AIR FLOW (WET	(4)(5)	lb/hr	47048	47048	35630	24315
FUEL FLOW (60°F, 14.7 psia)		scfm	393	393	304	215
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	114.4	114.4	86.8	59.9
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	°F	766	766	817	884
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET	(5)(8)	ft3/min	25689	25689	20288	14597
EXHAUST GAS MASS FLOW (WET	(5)(8)	lb/hr	48374	48374	36658	25042
EMISSIONS DATA - ENGINE OUT	1					
NOx (as NO2)	(9)(10)	g/bkW-hr	0.40	0.40	0.40	0.40
	(9)(10)	g/bkW-hr	3.87	3.87	3.86	3.86
THC (mol. wt. of 15.84)	(9)(10)	g/bkW-hr	3.43	3.43	3.56	3.60
NMHC (mol. wt. of 15.84)	(9)(10)	g/bkW-hr	1.46	1.46	1.51	1.53
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bkW-hr	0.91	0.91	0.94	0.95
HCHO (Formaldehyde)	(9)(10)	g/bkW-hr	0.17	0.17	0.17	0.19
CO2	(9)(10)	g/bkW-hr	628	628	651	693
EXHAUST OXYGEN	(9)(12)	% DRY	12.0	12.0	11.7	11.3
HEAT REJECTION]					
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	45398	45398	39344	33323
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	16446	16446	16338	13820
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	19328	19328	18264	16034
HEAT REJ. TO A/C - STAGE 1 (1AC)	(13)(14)	Btu/min	57735	57735	29434	8824
HEAT REJ. TO A/C - STAGE 2 (2AC)	(13)(14)	Btu/min	10125	10125	6767	3924
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+1AC)	(14)(15)	Btu/min	110560	ן		
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)	(14)(15)	Btu/min	33825			
A cooling system safety factor of 0% has been added to the cooling system sizing criteri		•	<u>.</u>]		

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Refer to product O&M manual for details on additional lower load capability. No overload permitted at rating shown.

For notes information consult page three.

G3516

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Josh Shaver - 677-1738 SCAR Genset

GENSET APPLICATION ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOX): SET POINT TIMING:	11 FU SCAC SI 130 SI 210 FU TA FU JW+OC, AC FU ADEM4 FU ASWC AL LOW EMISSION ST 18 PC	TING STRATEGY EL SYSTEM: EL: EL PRESSURE R/ EL METHANE NU EL LHV (Btu/scf): TITUDE(ft): LET AIR TEMPER/ ANDARD RATED WER FACTOR: DTAGE(V):	ANGE(psig): (Se MBER: ATURE(°F):	MAXIMUM	SITE RA	FUEL RATIO 1462 br TING AT M	-
RATING		NOTES	LOAD	RATING	100%	IR TEMPE	S1%
			-				
GENSET POWER	(WITHOUT FAN)		ekW	1052	1015	762	521
GENSET POWER ENGINE POWER	(WITHOUT FAN)		kVA	1052	1015	762	521
INLET AIR TEMPERATURE	(WITHOUT FAN)	(3)	bhp °F	1462 86	1411 105	1060 105	731 105
GENERATOR EFFICIENCY		(2)	Г %	96.5	96.5	96.3	95.6
GENERATOR EFFICIENCY	(ISO 3046/1	(2) (4)	%	96.5 32.1	96.5 32.0	96.3 31.0	95.6 29.3
THERMAL EFFICIENCY	(130 3040/1)	(5)	%	51.8	52.0	54.2	29.3 57.9
TOTAL EFFICIENCY		(6)	%	83.9	84.1	85.2	87.2
			70	00.0	01.1	00.2	07.2
ENGINE DATA						1	
GENSET FUEL CONSUMPTION	(ISO 3046/1		Btu/ekW-hr	10614	10658	11007	11643
GENSET FUEL CONSUMPTION	(NOMINAL		Btu/ekW-hr	10820	10865	11220	11869
	(NOMINAL		Btu/bhp-hr	7786	7818	8061	8461
AIR FLOW (@inlet air temp, 14.7 psia)	(WET		ft3/min	3093	3087	2289	1481
AIR FLOW	(WET) (8)(9)	lb/hr	13487	13008	9647	6241
FUEL FLOW (60°F, 14.7 psia) INLET MANIFOLD PRESSURE		(10)	scfm	210 63.5	203	157	114
EXHAUST TEMPERATURE - ENGINE OUTLET		(10) (11)	in Hg(abs) °F	886	61.4 886	47.2 886	32.5 921
EXHAUST GAS FLOW (@engine outlet temp, 14.5	psia) (WET		ft3/min	8306	8010	5959	3988
EXHAUST GAS MASS FLOW	(WET		lb/hr	14057	13561	10076	6551
	(****	7 (3)(12)	10/11	14007	10001	10070	0001
EMISSIONS DATA - ENGINE OUT							
NOx (as NO2)		(13)(14)	g/bkW-hr	2.68	2.68	2.68	2.68
СО		(13)(14)	g/bkW-hr	2.58	2.56	2.43	2.21
THC (mol. wt. of 15.84)		(13)(14)	g/bkW-hr	3.13	3.14	3.19	3.30
NMHC (mol. wt. of 15.84)		(13)(14)	g/bkW-hr	0.47	0.47	0.48	0.50
NMNEHC (VOCs) (mol. wt. of 15.84)		(13)(14)(15)	g/bkW-hr	0.31	0.31	0.32	0.33
HCHO (Formaldehyde)		(13)(14)	g/bkW-hr	0.42	0.42	0.42	0.43
CO2		(13)(14)	g/bkW-hr	670	672	683	676
EXHAUST OXYGEN		(13)(16)	% DRY	7.4	7.3	6.9	6.0
HEAT REJECTION							
LHV INPUT		(17)	Btu/min	189683	183875	142413	103067
HEAT REJ. TO JACKET WATER (JW)		(18)	Btu/min	49466	48608	41267	33919
HEAT REJ. TO ATMOSPHERE	(INCLUDES GENERATOR	(18)	Btu/min	9001	8774	7224	5918
HEAT REJ. TO LUBE OIL (OC)		(18)	Btu/min	7377	7249	6154	5059
HEAT REJECTION TO EXHAUST (LHV TO 248°F)	(18)	Btu/min	40524	39068	29117	20159
HEAT REJ. TO AFTERCOOLER (AC)		(18)(20)	Btu/min	10319	9677	5555	1545
PUMP POWER		(19)	Btu/min	971	971	971	971
COOLING SYSTEM SIZING CRITE	RIA						
TOTAL JACKET WATER CIRCUIT (JW+OC)		(21)	Btu/min	63265	62168]	
TOTAL AFTERCOOLER CIRCUIT (AC)		(21)	Btu/min	13471	15226		
HEAT REJECTION TO EXHAUST (LHV TO 248°F)	(21)	Btu/min	44576	42974		
A cooling system safety factor of 0% has been added			·	·	·]	
MINIMUM HEAT RECOVERY	· · · · · · · · · · · · · · · · · · ·]				-	
TOTAL JACKET WATER CIRCUIT (JW+OC)		(22)	Btu/min	50421	49547	1	
TOTAL AFTERCOOLER CIRCUIT (AC)		(22)	Btu/min	9803	9193		
HEAT REJECTION TO EXHAUST (LHV TO 248°F)	(22)	Btu/min	34102	31466		
	/	()		0.102	0.100	L	

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Refer to product O&M manual for details on additional lower load capability. No overload permitted at rating shown.

For notes information consult page three. ***WARNINGS ISSUED FOR THIS RATING CONSULT PAGE 3***

October 2000 RG-109 (Draft)

Air Permit Technical Guidance for Chemical Sources:

Flares and Vapor Oxidizers

printed on recycled paper

Air Permits Division

TEXAS NATURAL RESOURCE CONSERVATION COMMISSION

Chapter 2—Types of Flare and Oxidizer Systems

This document provides guidance for two classes of vapor combustion control devices: flares and vapor oxidizers. While there may be some overlap between the two, flares have generally been treated separately by the EPA and the TNRCC, in large part because flares have an open flame and often cannot be sampled, so emissions are estimated based on the results of flare testing performed in the early 1980s. Each of the two classes will be dealt with separately in each of the chapters of this document.

Combustion Control Devices NOT Discussed. This document will not cover permitting of RCRA or BIF units because the requirements for these units often go beyond the requirements for state air permitting. Incinerators used to treat solid wastes are covered in another technical guidance document, *Incinerators*. Guidance for combustion control devices associated with spray paint booths, coatings operations, and semiconductor facilities should be obtained by calling the TNRCC New Source Review Permits Division at (512) 239-1250.

Flares

Flare systems generally are open-flame control devices used for disposing of waste gas streams during both routine process and emergency or upset conditions. In addition to simple, unassisted flares, typical smokeless flare systems include, but are not limited to, the following:

- *Enclosed Flares/Vapor Combustors.* Enclosed flares are used in disposing of waste gas streams in instances where a visible flame is unacceptable. Applications include chemical processing, petroleum refining and production, and municipal waste gas treatment. These may be referred to as vapor combustors and can have more than one burner in the stack.
- *Steam-Assisted Flares*. Steam-assisted flares are used in disposing of low-pressure waste gas streams when steam is available and practical to minimize smoking from the flare. Applications are similar to those of enclosed flares. Flares might also be assisted with natural gas if readily available on site; these flares would undergo a case-by-case review.
- *Air-Assisted Flares.* Air-assisted flares are used in disposing of low-pressure waste gas streams when practical or when steam utilities are not available to minimize smoking from the flare. Applications include chemical processing, petroleum refining and production, and pipeline transportation.
- *Sonic Flares.* Sonic flares are used in disposing of high-pressure waste gas streams. Applications include gas production, pipeline transportation, and treatment plants.

• *Multipoint Flare Systems*. Multipoint flare systems are used in disposing of both high- and low-pressure waste gas streams. Multiple burner tips in conjunction with a staged control system provide for controlled combustion. Applications are similar to those of air-assisted flares.

Vapor Oxidizers

These devices generally do not have an open flame but have an exhaust stack which allows for sampling and monitoring of exhaust emissions. The most common type, thermal, relies on the combustion heat of the waste gas and assist fuel (if required) to oxidize the waste gas air contaminants. Other types include:

- *Recuperative*. In this case, the waste gas is directed to a heat exchanger to be preheated by the exhaust gas, to minimize the need for additional assist fuel. Recuperative oxidizers are considered a subset of thermal oxidizers in this document.
- *Regenerative*. Combustion takes place in a chamber with a heat sink, such as ceramic saddles, which retains the heat of combustion, allowing for combustion of more dilute vapor streams (which have a low heat of combustion) at a lower cost. These units generally have multiple chambers, which allow for the preheat of one chamber by exhaust gases while combustion takes place in another chamber.
- *Catalytic.* Combustion takes place over a catalyst that allows for combustion at a lower temperature (in the range of 600 to 800°F as opposed to greater than 1400°F for many thermal oxidizers). Catalytic oxidizers function best with a waste stream with constant flow and composition.

Chapter 5—Emission Factors, Efficiencies, and Calculations

This chapter provides detailed instructions for the calculations necessary to verify BACT and estimate emissions from flares and vapor oxidizers. Flares must be checked to determine whether they will satisfy the flow and thermal requirements of 40 CFR § 60.18, and their emissions are determined by the use of emission factors. Example calculations are provided for these flare calculations.

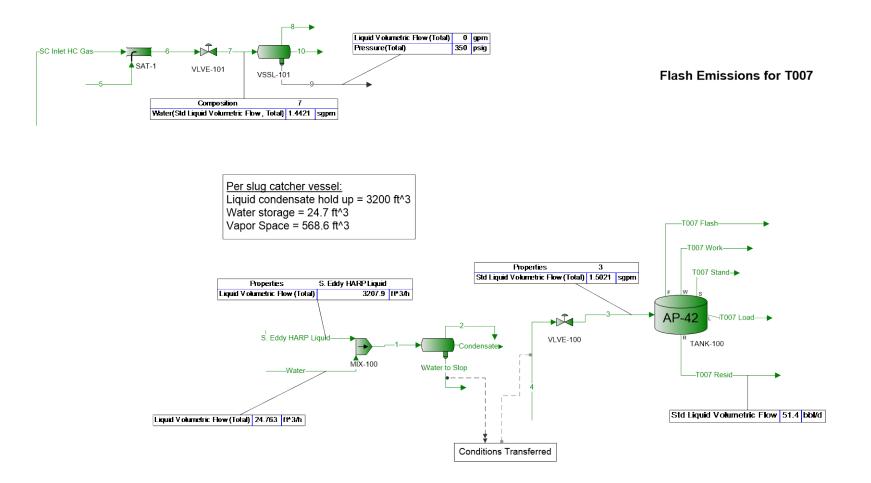
Oxidizer emissions are determined by using previous sampling results or emission factors from the manufacturer or AP-42. These calculations are very similar to the flare calculations and are only discussed in general terms.

Flares: Introduction

Although emissions from emergency flares are not included in a permit when it is issued, emissions should be estimated for both routine process flares and emergency flares. Sometimes, emissions of routine pilot gas combustion may be included in an issued permit for emergency flares (although not required).

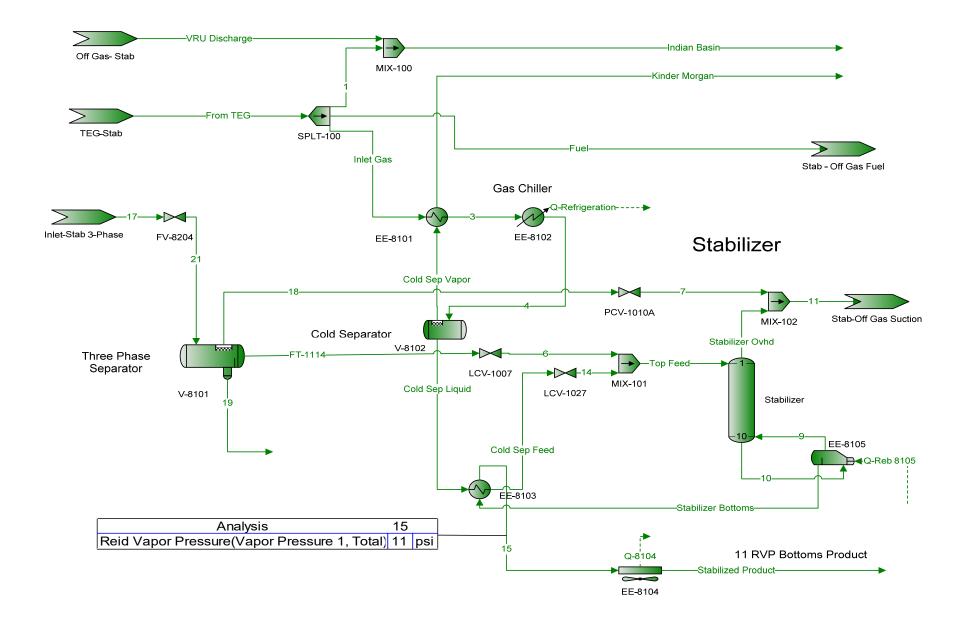
In this section, the *flare* emission factors and destruction efficiencies are presented first. This information is followed by sample *calculations* that demonstrate how to ensure that the requirements of 40 CFR § 60.18 are satisfied and how to estimate emissions from a flare. Flare data in Attachment B (typical refinery flare) will be used as a basis in most of the following calculations. Flare data in Attachment C (acid gas flare) will be used as a basis in the example calculations for SO₂ emissions.

Flare Emission Factors


The usual flare destruction efficiencies and emission factors are provided in Table 4. The high-Btu waste streams referred to in the table have a heating value greater than 1,000 Btu/scf.

Flare Destruction Efficiencies

Claims for destruction efficiencies greater than those listed in Table 4 will be considered on a case-by-case basis. The applicant may make one of the three following demonstrations to justify the higher destruction efficiency: (1) general method, (2) 99.5 percent justification, or (3) flare stack sampling.


Waste Stream	Destruction/Re	Destruction/Removal Efficiency (DRE)							
VOC	98 percent (gene	eric)							
	contain no elem following comp	99 percent for compounds containing no more than 3 carbons that contain no elements other than carbon and hydrogen in addition to the following compounds: methanol, ethanol, propanol, ethylene oxide and propylene oxide							
H_2S	98 percent	98 percent							
NH ₃	case by case								
СО	case by case								
Air Contaminants	Emission Factors								
thermal NO _x	steam-assist:	high Btu low Btu	0.0485 lb/MMBtu 0.068 lb/MMBtu						
	other:	high Btu low Btu	0.138 lb/MMBtu 0.0641 lb/MMBtu						
fuel NO _x	NO _x is 0.5 wt pe	ercent of inlet]	NH ₃ , other fuels case by case						
со	steam-assist:	high Btu low Btu	0.3503 lb/MMBtu 0.3465 lb/MMBtu						
	other:	high Btu low Btu	0.2755 lb/MMBtu 0.5496 lb/MMBtu						
PM	none, required t	o be smokeles	5						
SO ₂	100 percent S ir	1 fuel to SO_2							

*The only exeption of this is if inorganics might be emitted from the flare. In the case of landfills, the AP-42 PM factor may be used. In other cases, the emissions should be based on the composition of the waste stream routed to the flare.

Process Streams		T007 Flash	T007 Load	T007 Resid	T007 Stand	T007 Work
Composition	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Vapor	From Block:	TANK-100	TANK-100	TANK-100	TANK-100	TANK-100
	To Block:					
Mass Flow		lb/h	lb/h		lb/h	lb/h
CO2		0.133378	0.00189041		0.00119717	0.00373511
N2		0.00253144	5.20004E-07		3.29312E-07	1.02744E-06
Methane		0.234813	0.000134200		8.49873E-05	0.000265156
Ethane		0.140636	9.19687E-05		5.82427E-05	0.000181714
Propane		0.0718049	8.00178E-06		5.06744E-06	1.58101E-05
i-Butane		0.00714517	1.91629E-07		1.21357E-07	3.78626E-07
n-Butane		0.0203610	4.96324E-07		3.14316E-07	9.80649E-07
2,2-Dimethylpropane		3.41758E-05	2.76260E-10		1.74953E-10	5.45842E-10
i-Pentane		0.00295933	1.89223E-08		1.19833E-08	3.73871E-08
n-Pentane		0.00122503	2.37697E-09		1.50531E-09	4.69648E-09
2,2-Dimethylbutane		9.32821E-06	1.07660E-11		6.81797E-12	2.12717E-11
Cyclopentane		0	0		0	0
2,3-Dimethylbutane		0.000129139	2.78977E-10		1.76673E-10	5.51210E-10
2-Methylpentane		0.000230393	2.45186E-10		1.55274E-10	4.84445E-10
3-Methylpentane		0.000273982	6.25413E-10		3.96067E-10	1.23571E-09
n-Hexane		0.000174999	6.59635E-11		4.17739E-11	1.30332E-10
Methylcyclopentane		0.000218516	6.08282E-10		3.85218E-10	1.20186E-09
Benzene		0.0132306	2.13091E-06		1.34948E-06	4.21031E-06
Cyclohexane		0.000339756	1.53830E-09		9.74191E-10	3.03942E-09
2-Methylhexane		1.68889E-05	3.60261E-12		2.28149E-12	7.11813E-12
3-Methylhexane		0	0		0	0
2,2,4-Trimethylpentane		2.55548E-05	3.43200E-12		2.17345E-12	6.78104E-12
n-Heptane		3.56897E-05	2.86606E-12		1.81504E-12	5.66283E-12
Methylcyclohexane		8.79239E-05	7.94464E-11		5.03125E-11	1.56972E-10
Toluene		0.00376847	1.33734E-07		8.46922E-08	2.64235E-07
n-Octane		9.08574E-07	8.57030E-15		5.42748E-15	1.69334E-14
Ethylbenzene		0.000124212	1.26097E-09		7.98555E-10	2.49145E-09
m-Xylene		2.28563E-05	1.33288E-10		8.44099E-11	2.63354E-10
o-Xylene		0.000421244	4.38913E-09		2.77959E-09	8.67215E-09
n-Nonane		1.27632E-07	3.12644E-16		1.97994E-16	6.17729E-16
n-Decane		3.44277E-09	6.94417E-19		4.39766E-19	1.37205E-18
Undecane		8.55938E-11	6.20916E-21		3.93219E-21	1.22682E-20
Dodecane		2.66972E-11	1.98251E-21		1.25550E-21	3.91709E-21
Water		0.0179314	3.95852E-05		2.50689E-05	7.82135E-05

Process Streams		T007 Flash	T007 Load	T007 Resid	T007 Stand	T007 Work
Properties	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Vapor	From Block:	TANK-100	TANK-100	TANK-100	TANK-100	TANK-100
	To Block:					
Property	Units					
Temperature	°F	79.2053	79.2053		79.2053	79.2053
Pressure	psig	-1.81595	-1.81595		-1.81595	-1.81595
Mole Fraction Vapor	%	100	100		100	100
Mole Fraction Light Liquid	%	0	0		0	0
Mole Fraction Heavy Liquid	%	0	0		0	0
Phase Mole Fraction	%	100	13.4249		13.4249	13.4249
Molecular Weight	lb/lbmol	25.2452	38.1519		38.1519	38.1519
Mass Density	lb/ft^3	0.0564449	0.0853451		0.0853451	0.0853451
Molar Flow	lbmol/h	0.0258240	5.68167E-05		3.59814E-05	0.000112260
Mass Flow	lb/h	0.651930	0.00216766		0.00137276	0.00428293
Vapor Volumetric Flow	ft^3/h	11.5499	0.0253988		0.0160848	0.0501836
Liquid Volumetric Flow	gpm	1.43998	0.00316661		0.00200538	0.00625666
Std Vapor Volumetric Flow	MMSCFD	0.000235195	5.17465E-07		3.27704E-07	1.02242E-06
Std Liquid Volumetric Flow	sgpm	0.00315865	6.15482E-06		3.89778E-06	1.21609E-05
Compressibility		0.996134	0.995639		0.995639	0.995639
Specific Gravity		0.871650	1.31729		1.31729	1.31729
API Gravity						
Enthalpy	Btu/h	-1351.68	-7.88170		-4.99139	-15.5729
Mass Enthalpy	Btu/lb	-2073.34	-3636.03		-3636.03	-3636.03
Mass Cp	Btu/(lb*°F)	0.409161	0.237816		0.237816	0.237816
Ideal Gas CpCv Ratio		1.23906	1.28190		1.28190	1.28190
Dynamic Viscosity	cP	0.0111200	0.0143701		0.0143701	0.0143701
Kinematic Viscosity	cSt	12.2987	10.5114		10.5114	10.5114
Thermal Conductivity	Btu/(h*ft*°F)	0.0156055	0.0112447		0.0112447	0.0112447
Surface Tension	lbf/ft					
Net Ideal Gas Heating Value	Btu/ft^3	1052.52	230.930		230.930	230.930
Net Liquid Heating Value	Btu/lb	15713.4	2205.07		2205.07	2205.07
Gross Ideal Gas Heating Value	Btu/ft^3	1158.34	256.574		256.574	256.574
Gross Liquid Heating Value	Btu/lb	17304.5	2460.23		2460.23	2460.23

Process Streams		11
Composition	Status:	Solved
Phase: Total	From Block:	MIX-102
	To Block:	Stab-Off Gas Suction
Mole Fraction		%
Hydrogen Sulfide		0
Nitrogen		0.312230
Carbon Dioxide		0.464408
Methane		27.1909
Ethane		19.0598
Propane		27.8591
i-Butane		5.97467
n-Butane		15.5568
2,2-Dimethylpropane		0.0793060
i-Pentane		1.52584
n-Pentane		1.28386
2,2-Dimethylbutane		0.00868833
Cyclopentane		0
2,3-Dimethylbutane		0.0610432
2-Methylpentane		0.142975
3-Methylpentane		0.0752226
n-Hexane		0.130981
Methylcyclopentane		0.0700064
Benzene		0.0289122
Cyclohexane		0.0571682
2-Methylhexane		0.0100054
3-Methylhexane		0.0111842
2,2,4-Trimethylpentane		0
n-Heptane		0.0454781
Methylcyclohexane		0.0245459
Toluene		0.00791647
n-Octane		0.0120664
Ethylbenzene		0.000343834
m-Xylene		0.000321012
p-Xylene		0.000320591
o-Xylene		0
n-Nonane		0.00110478
n-Decane		0
n-Undecane		0

April 8, 2022

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Enterprise Field Services, LLC P. O. Box 1508 Carlsbad, New Mexico 88221

Sample: South Carlsbad Plant Inlet to Plant Spot Gas Sample @ 265 psig & 50 °F

Date Sampled: 03/22/22

Job Number: 221595.011

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT Hydrogen Sulfide* Nitrogen Carbon Dioxide Methane	MOL% < 0.001 1.231 0.214 77.628	GPM
Ethane	11.775	3.223
Propane	5.649	1.593
Isobutane	0.745	0.250
n-Butane	1.715	0.553
2-2 Dimethylpropane	0.012	0.005
Isopentane	0.351	0.131
n-Pentane	0.357	0.132
Hexanes	0.188	0.079
Heptanes Plus	<u>0.135</u>	<u>0.052</u>
Totals	100.000	6.019
Computed Real Chara Specific Gravity Molecular Weight Gross Heating Value	acteristics Of Hepta	

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.733	(Air=1)
Compressibility (Z)	0.9963	
Molecular Weight	21.16	
Gross Heating Value		
Dry Basis	1292	BTU/CF
Saturated Basis	1270	BTU/CF

*Hydrogen Sulfide tested on location by: Stain Tube Method (GPA 2377) Results: 0.031 Gr/100 CF, 0.5 PPMV or <0.0001 Mol%

Base Conditions: 15.025 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Sampled By: (24) Field Analyst: RG Processor: AS Cylinder ID: ST-6013

Conan Pierce 361-661-7015

Page 1 of 3

FESCO, Ltd.

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286 TOTAL REPORT

		0.014		
	MOL %	GPM		WT %
Hydrogen Sulfide*	< 0.001			< 0.001
Nitrogen	1.231			1.630
Carbon Dioxide	0.214			0.445
Methane	77.628			58.865
Ethane	11.775	3.223		16.735
Propane	5.649	1.593		11.774
Isobutane	0.745	0.250		2.047
n-Butane	1.715	0.553		4.711
2,2 Dimethylpropane	0.012	0.005		0.041
Isopentane	0.351	0.131		1.197
n-Pentane	0.357	0.132		1.217
2,2 Dimethylbutane	0.005	0.002		0.020
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.026	0.011		0.106
2 Methylpentane	0.061	0.026		0.248
3 Methylpentane	0.031	0.013		0.126
n-Hexane	0.065	0.027		0.265
Methylcyclopentane	0.031	0.011		0.123
Benzene	0.016	0.005		0.059
Cyclohexane	0.034	0.000		0.135
2-Methylhexane	0.004	0.012		0.135
3-Methylhexane	0.005	0.002		0.019
2,2,4 Trimethylpentane	0.003	0.002		0.016
Other C7's	0.012	0.005		0.056
n-Heptane	0.007	0.003		0.033
Methylcyclohexane	0.013	0.005		0.060
Toluene	0.004	0.001		0.017
Other C8's	0.005	0.002		0.026
n-Octane	0.001	0.001		0.005
Ethylbenzene	0.000	0.000		0.000
M & P Xylenes	0.000	0.000		0.000
O-Xylene	0.000	0.000		0.000
Other C9's	0.000	0.000		0.000
n-Nonane	0.000	0.000		0.000
Other C10's	0.000	0.000		0.000
n-Decane	0.000	0.000		0.000
Undecanes (11)	0.000	0.000		0.000
Totals	100.000	6.019		100.000
Computed Real Charact	eristics of Total Sample			
Specific Gravity		0.733	(Air=1)	
Compressibility (Z)		0.9963		
		21.16		
Gross Heating Value		-		
		1292	BTU/CF	
		1270	BTU/CF	

Page 2 of 3

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

Sample: South Carlsbad Plant Inlet to Plant Spot Gas Sample @ 265 psig & 50 °F

Date Sampled: 03/22/22

Job Number: 221595.011

	GLYCALC FORM	ТАТ	
COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.214		0.445
Hydrogen Sulfide	< 0.001		< 0.001
Nitrogen	1.231		1.630
Methane	77.628		58.865
Ethane	11.775	3.223	16.735
Propane	5.649	1.593	11.774
Isobutane	0.745	0.250	2.047
n-Butane	1.727	0.558	4.752
Isopentane	0.351	0.131	1.197
n-Pentane	0.357	0.132	1.217
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.065	0.027	0.265
Cyclohexane	0.034	0.012	0.135
Other C6's	0.123	0.052	0.500
Heptanes	0.059	0.024	0.255
Methylcyclohexane	0.013	0.005	0.060
2,2,4 Trimethylpentane	0.003	0.002	0.016
Benzene	0.016	0.005	0.059
Toluene	0.004	0.001	0.017
Ethylbenzene	0.000	0.000	0.000
Xylenes	0.000	0.000	0.000
Octanes Plus	<u>0.006</u>	0.003	<u>0.031</u>
Totals	100.000	6.019	100.000

Real Characteristics Of Octanes Plus: Specific Gravity Molecular Weight Gross Heating Value	3.843 110.89 5710	(Air=1) BTU/CF
Real Characteristics Of Total Sample: Specific Gravity Compressibility (Z) Molecular Weight	0.733 0.9963 21.16	(Air=1)
Gross Heating Value Dry Basis Saturated Basis	1292 1270	BTU/CF BTU/CF

Page 3 of 3

April 8, 2022

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Enterprise Field Services, LLC P. O. Box 1508 Carlsbad, New Mexico 88221

Sample: South Carlsbad Plant Fuel Gas Spot Gas Sample @ 785 psig & 83 °F

Date Sampled: 03/22/22

Job Number: 221595.001

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	1.248	
Carbon Dioxide	0.022	
Methane	97.135	
Ethane	1.554	0.425
Propane	0.041	0.012
Isobutane	0.000	0.000
n-Butane	0.000	0.000
2-2 Dimethylpropane	0.000	0.000
Isopentane	0.000	0.000
n-Pentane	0.000	0.000
Hexanes	0.000	0.000
Heptanes Plus	0.000	0.000
Totals	100.000	0.436
		- Diver

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	#DIV/0!	(Air=1)
Molecular Weight	#DIV/0!	
Gross Heating Value	#DIV/0!	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.568	(Air=1)
Compressibility (Z)	0.9979	
Molecular Weight	16.43	
Gross Heating Value		
Dry Basis	1034	BTU/CF
Saturated Basis	1017	BTU/CF

*Hydrogen Sulfide tested on location by: Stain Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 15.025 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Sampled By: (24) Field Analyst: RG Processor: AS Cylinder ID: ST-6001

Conan Pierce 361-661-7015

Page 1 of 3

FESCO, Ltd.

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286 TOTAL REPORT

		0.004		
COMPONENT	MOL %	GPM		WT %
Hydrogen Sulfide*	< 0.001			< 0.001
Nitrogen	1.248			2.128
Carbon Dioxide	0.022			0.059
Methane	97.135			94.859
Ethane	1.554	0.425		2.844
Propane	0.041	0.012		0.110
Isobutane	0.000	0.000		0.000
n-Butane	0.000	0.000		0.000
2,2 Dimethylpropane	0.000	0.000		0.000
Isopentane	0.000	0.000		0.000
n-Pentane	0.000	0.000		0.000
2,2 Dimethylbutane	0.000	0.000		0.000
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.000	0.000		0.000
•				
2 Methylpentane	0.000	0.000		0.000
3 Methylpentane	0.000	0.000		0.000
n-Hexane	0.000	0.000		0.000
Methylcyclopentane	0.000	0.000		0.000
Benzene	0.000	0.000		0.000
Cyclohexane	0.000	0.000		0.000
2-Methylhexane	0.000	0.000		0.000
3-Methylhexane	0.000	0.000		0.000
2,2,4 Trimethylpentane	0.000	0.000		0.000
Other C7's	0.000	0.000		0.000
n-Heptane	0.000	0.000		0.000
Methylcyclohexane	0.000	0.000		0.000
Toluene	0.000	0.000		0.000
Other C8's	0.000	0.000		0.000
n-Octane	0.000	0.000		0.000
Ethylbenzene	0.000	0.000		0.000
M & P Xylenes	0.000	0.000		0.000
•				
O-Xylene	0.000	0.000		0.000
Other C9's	0.000	0.000		0.000
n-Nonane	0.000	0.000		0.000
Other C10's	0.000	0.000		0.000
n-Decane	0.000	0.000		0.000
Undecanes (11)	<u>0.000</u>	<u>0.000</u>		<u>0.000</u>
Totals	100.000	0.436		100.000
Computed Real Charact	eristics of Total Sa	ample		
Specific Gravity		0.568	(Air=1)	
Compressibility (Z)			. ,	
Molecular Weight				
Gross Heating Value				
Dry Basis		1034	BTU/CF	
Saturated Basis		1017	BTU/CF	
Galdialed Dasis		1017	510/01	

Page 2 of 3

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

Sample: South Carlsbad Plant Fuel Gas Spot Gas Sample @ 785 psig & 83 °F

Date Sampled: 03/22/22

Job Number: 221595.001

	GLYCALC FORM	ТАТ	
COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.022		0.059
Hydrogen Sulfide	< 0.001		< 0.001
Nitrogen	1.248		2.128
Methane	97.135		94.859
Ethane	1.554	0.425	2.844
Propane	0.041	0.012	0.110
Isobutane	0.000	0.000	0.000
n-Butane	0.000	0.000	0.000
Isopentane	0.000	0.000	0.000
n-Pentane	0.000	0.000	0.000
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.000	0.000	0.000
Cyclohexane	0.000	0.000	0.000
Other C6's	0.000	0.000	0.000
Heptanes	0.000	0.000	0.000
Methylcyclohexane	0.000	0.000	0.000
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.000	0.000	0.000
Toluene	0.000	0.000	0.000
Ethylbenzene	0.000	0.000	0.000
Xylenes	0.000	0.000	0.000
Octanes Plus	0.000	0.000	<u>0.000</u>
Totals	100.000	0.436	100.000

Real Characteristics Of Octanes Plus: Specific Gravity Molecular Weight Gross Heating Value	#DIV/0! #DIV/0! #DIV/0!	(Air=1) BTU/CF
Real Characteristics Of Total Sample: Specific Gravity Compressibility (Z) Molecular Weight	0.568 0.9979 16.43	(Air=1)
Gross Heating Value Dry Basis Saturated Basis	1034 1017	BTU/CF BTU/CF

Page 3 of 3

Inlet Stream for F-001 (Gas)		Condensate Stream for F-001 (LL)			
Component	Mass Fraction (%)	Component	Mass Fraction (%)		
Hydrogen Sulfide	0.001	Hydrogen Sulfide	0		
Nitrogen	1.630	Nitrogen	0		
Carbon Dioxide	0.445	Carbon Dioxide	1.56E-12		
Methane	58.865	Methane	3.41E-14		
Ethane	16.735	Ethane	2.94E-08		
Propane	11.774	Propane	0.000634161		
i-Butane	2.047	i-Butane	0.128229103		
n-Butane	4.711	n-Butane	5.031456961		
2,2-Dimethylpropane	0.041	2,2-Dimethylpropane	0.158545918		
i-Pentane	1.197	i-Pentane	14.05103734		
n-Pentane	1.217	n-Pentane	17.18954573		
2,2-Dimethylbutane	0.020	2,2-Dimethylbutane	0.266527577		
Cyclopentane	0.000	Cyclopentane	0		
2,3-Dimethylbutane	0.106	2,3-Dimethylbutane	2.563416485		
2-Methylpentane	0.248	2-Methylpentane	6.596582328		
3-Methylpentane	0.126	3-Methylpentane	3.881328456		
n-Hexane	0.265	n-Hexane	8.492380503		
Methylcyclopentane	0.123	Methylcyclopentane	4.295514381		
Benzene	0.059	Benzene	1.519673324		
Cyclohexane	0.135	Cyclohexane	4.138898529		
2-Methylhexane	0.019	2-Methylhexane	1.565672441		
3-Methylhexane	0.024	3-Methylhexane	1.873134659		
2,2,4-Trimethylpentane	0.016	2,2,4-Trimethylpentane	0		
Other C7's	0.056	n-Heptane	9.463728444		
n-Heptane	0.033	Methylcyclohexane	5.067089098		
Methylcyclohexane	0.060	Toluene	1.749635538		
Toluene	0.017	n-Octane	8.41525751		
Other C8's	0.026	Ethylbenzene	0.244897106		
n-Octane	0.005	m-Xylene	0.256298415		
Ethylbenzene	0.000	p-Xylene	0.249932323		
M & P Xylenes	0.000	o-Xylene	0		
O-Xylenes	0.000	n-Nonane	2.800062758		
Other C9's	0.000	n-Decane	0		
n-Nonane	0.000	n-Undecane	0		
Other C10's	0.000	C12	0		
n-Decane	0.000	C13	0		
Undecanes (11)	0.000	C14	0		
Total	100.001	C15	0		
		C16	0		
		C17	0		
		C18	0		
		C19	0		
		C20	0		
		C21	0		
		C22	0		
		C23	0		
		C24	0		
		C25	0		
		C26	0		
		C27	0		
		C28	0		
		C29	0		
		C30	0		
		C36	0		

VENT (SSM) Inlet Gas Analysis

Mole Fraction	%
Hydrogen Sulfide	0.001
Nitrogen	1.23100
Carbon Dioxide	0.21400
Methane	77.6280
Ethane	11.7750
Propane	5.64900
i-Butane	0.745000
n-Butane	1.71500
2,2-Dimethylpropane	0.01200000
i-Pentane	0.351000
n-Pentane	0.357000
2,2-Dimethylbutane	0.00500000
Cyclopentane	0
2,3-Dimethylbutane	0.0260000
2-Methylpentane	0.0610000
3-Methylpentane	0.0310000
n-Hexane	0.065000
Methylcyclopentane	0.0310000
Benzene	0.0160000
Cyclohexane	0.0340000
2-Methylhexane	0.0040000
3-Methylhexane	0.0050000
2,2,4-Trimethylpentane	0.003
n-Heptane	0.0180000
Methylcyclohexane	0.0130000
Toluene	0.0040000
n-Octane	0.0060000
Ethylbenzene	0.00000000
m-Xylene	0.00000000
p-Xylene	0.00000000
o-Xylene	0
n-Nonane	0.0000000
n-Decane	0
n-Undecane	0
Total VOC	9.15100
Total HAP	0.08800

Total VOC	9.1510
Total HAP	0.0880

Section 7

Subsection 2 – Information Used to Determine Emissions from Previous Applications

For clarity, this Subsection 2 contains pertinent information used to calculate emission for the existing permit (i.e. units other than Units 11 - 15, TK-1000, GEN-1, F-001, VENT(SSM), and Flare (SSM)). For pertinent information used for the calculations associated with current project modifications, please refer to Section 7 Subsection 1.

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NOx) AND CARBON MONOXIDE (CO)FROM NATURAL GAS COMBUSTIONa

	N	O _x ^b	(CO
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	А	84	В
Uncontrolled (Post-NSPS) ^c	190	А	84	В
Controlled - Low NO _x burners	140	А	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	С	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	А	24	С
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from $lb/10^{6}$ scf to $kg/10^{6}$ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from $1b/10^{6}$ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable. ^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For

^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.
 ^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of

^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^{d}	0.6	А
TOC	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by 16. To convert from $lb/10^6$ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

- ^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.
- ^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM_{10} , $PM_{2.5}$ or PM_1 emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO_2 . Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO_2 emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO_2 emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

Emission Factors^a - Uncontrolled Natural Gas-Fired Turbines^b Distillate Oil-Fired Turbines^d Pollutant (lb/MMBtu)^c (lb/MMBtu)^e **Emission Factor Emission Factor** (Fuel Input) (Fuel Input) Rating Rating \rm{CO}_2^{f} 110 А 157 Α 0.003^g N_2O Е ND NA ND NA 1.4 E-05 С Lead $0.94S^{h}$ $1.01S^{h}$ SO_2 В В 8.6 E-03 ND Methane C NA

D

В

С

С

С

4.1 E-04^j

 $4.0 \text{ E-}03^{1}$

 $7.2 \text{ E-}03^{1}$

4.3 E-03¹

 $1.2 \text{ E-}02^{l}$

Е

С

С

С

С

Table 3.1-2a. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSEGASES FROM STATIONARY GAS TURBINES

^a Factors are derived from units operating at high loads (≥ 80 percent load) only. For information on units operating at other loads, consult the background report for this chapter (Reference 16), available at "www.epa.gov/ttn/chief". ND = No Data, NA = Not Applicable.

^b SCCs for natural gas-fired turbines include 2-01-002-01, 2-02-002-01 & 03, and 2-03-002-02 & 03.

^c Emission factors based on an average natural gas heating value (HHV) of 1020 Btu/scf at 60°F. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by 1020. Similarly, these emission factors can be converted to other natural gas heating values.

^d SCCs for distillate oil-fired turbines are 2-01-001-01, 2-02-001-01, 2-02-001-03, and 2-03-001-02.

^e Emission factors based on an average distillate oil heating value of 139 MMBtu/10³ gallons. To convert from (lb/MMBtu) to (lb/10³ gallons), multiply by 139.

- ^f Based on 99.5% conversion of fuel carbon to CO₂ for natural gas and 99% conversion of fuel carbon to CO₂ for distillate oil. CO₂ (Natural Gas) [lb/MMBtu] = (0.0036 scf/Btu)(% CON)(C)(D), where % CON = weight percent conversion of fuel carbon to CO₂, C = carbon content of fuel by weight, and D = density of fuel. For natural gas, C is assumed at 75%, and D is assumed at 4.1 E+04 lb/10⁶ scf. For distillate oil, CO₂ (Distillate Oil) [lb/MMBtu] = (26.4 gal/MMBtu) (% CON)(C)(D), where C is assumed at 87%, and the D is assumed at 6.9 lb/gallon.
- ^g Emission factor is carried over from the previous revision to AP-42 (Supplement B, October 1996) and is based on limited source tests on a single turbine with water-steam injection (Reference 5).
- ^h All sulfur in the fuel is assumed to be converted to SO₂. S = percent sulfur in fuel. Example, if sulfur content in the fuel is 3.4 percent, then S = 3.4. If S is not available, use 3.4 E-03 lb/MMBtu for natural gas turbines, and 3.3 E-02 lb/MMBtu for distillate oil turbines (the equations are more accurate).
- ^j VOC emissions are assumed equal to the sum of organic emissions.

2.1 E-03

1.1 E-02

4.7 E-03¹

1.9 E-03¹

 $6.6 \text{ E-}03^{1}$

- ^k Pollutant referenced as THC in the gathered emission tests. It is assumed as TOC, because it is based on EPA Test Method 25A.
- ¹ Emission factors are based on combustion turbines using water-steam injection.

VOC

 TOC^k

PM (condensible)

PM (filterable)

PM (total)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhou	se Gases	
NO _x ^c 90 - 105% Load	4.08 E+00	В
NO _x ^c <90% Load	8.47 E-01	В
CO ^c 90 - 105% Load	3.17 E-01	С
CO ^c <90% Load	5.57 E-01	В
$\mathrm{CO_2}^{\mathrm{d}}$	1.10 E+02	А
SO ₂ ^e	5.88 E-04	А
TOC ^f	1.47 E+00	А
Methane ^g	1.25 E+00	С
VOC ^h	1.18 E-01	С
PM10 (filterable) ⁱ	7.71 E-05	D
PM2.5 (filterable) ⁱ	7.71 E-05	D
PM Condensable ^j	9.91 E-03	D
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ^k	<4.00 E-05	Е
1,1,2-Trichloroethane ^k	<3.18 E-05	Е
1,1-Dichloroethane	<2.36 E-05	Е
1,2,3-Trimethylbenzene	2.30 E-05	D
1,2,4-Trimethylbenzene	1.43 E-05	С
1,2-Dichloroethane	<2.36 E-05	Е
1,2-Dichloropropane	<2.69 E-05	Е
1,3,5-Trimethylbenzene	3.38 E-05	D
1,3-Butadiene ^k	2.67E-04	D
1,3-Dichloropropene ^k	<2.64 E-05	Е
2-Methylnaphthalene ^k	3.32 E-05	С
2,2,4-Trimethylpentane ^k	2.50 E-04	С
Acenaphthene ^k	1.25 E-06	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINESa(SCC 2-02-002-54)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Acenaphthylene ^k	5.53 E-06	С
Acetaldehyde ^{k,l}	8.36 E-03	А
Acrolein ^{k,l}	5.14 E-03	А
Benzene ^k	4.40 E-04	А
Benzo(b)fluoranthene ^k	1.66 E-07	D
Benzo(e)pyrene ^k	4.15 E-07	D
Benzo(g,h,i)perylenek	4.14 E-07	D
Biphenyl ^k	2.12 E-04	D
Butane	5.41 E-04	D
Butyr/Isobutyraldehyde	1.01 E-04	С
Carbon Tetrachloride ^k	<3.67 E-05	Е
Chlorobenzene ^k	<3.04 E-05	Е
Chloroethane	1.87 E-06	D
Chloroform ^k	<2.85 E-05	E
Chrysene ^k	6.93 E-07	С
Cyclopentane	2.27 E-04	С
Ethane	1.05 E-01	С
Ethylbenzene ^k	3.97 E-05	В
Ethylene Dibromide ^k	<4.43 E-05	Е
Fluoranthene ^k	1.11 E-06	С
Fluorene ^k	5.67 E-06	С
Formaldehyde ^{k,1}	5.28 E-02	А
Methanol ^k	2.50 E-03	В
Methylcyclohexane	1.23 E-03	С
Methylene Chloride ^k	2.00 E-05	С
n-Hexane ^k	1.11 E-03	С
n-Nonane	1.10 E-04	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES (Continued)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
n-Octane	3.51 E-04	С
n-Pentane	2.60 E-03	С
Naphthalene ^k	7.44 E-05	С
PAH ^k	2.69 E-05	D
Phenanthrene ^k	1.04 E-05	D
Phenol ^k	2.40 E-05	D
Propane	4.19 E-02	С
Pyrene ^k	1.36 E-06	С
Styrene ^k	<2.36 E-05	Е
Tetrachloroethane ^k	2.48 E-06	D
Toluene ^k	4.08 E-04	В
Vinyl Chloride ^k	1.49 E-05	С
Xylene ^k	1.84 E-04	В

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN **ENGINES** (Continued)

^a Reference 7. Factors represent uncontrolled levels. For NO_v, CO, and PM10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM-10 = Particulate Matter \leq 10 microns (μ m) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit. ^b Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA Method 19. To convert from (lb/MMBtu) to (lb/ 10^6 scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from

(lb/MMBtu) to (lb/hp-hr) use the following equation:

lb/hp-hr = (lb/MMBtu) (heat input, MMBtu/hr) (1/operating HP, 1/hp)

^c Emission tests with unreported load conditions were not included in the data set.

^d Based on 99.5% conversion of the fuel carbon to CO_2 . CO_2 [lb/MMBtu] = (3.67)(%CON)(C)(D)(1/h), where %CON = percent conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.75), D = density of fuel, 4.1 E+04 lb/10⁶ scf. and

h = heating value of natural gas (assume 1020 Btu/scf at 60° F).

- ^e Based on 100% conversion of fuel sulfur to SO_2 . Assumes sulfur content in natural gas of $2,000 \text{ gr}/10^6 \text{scf.}$
- Emission factor for TOC is based on measured emission levels from 22 source tests.
- ^g Emission factor for methane is determined by subtracting the VOC and ethane emission factors from the TOC emission factor. Measured emission factor for methane compares well with the calculated emission factor, 1.31 lb/MMBtu vs. 1.25 lb/MMBtu, respectively.
- $^{\rm h}$ VOC emission factor is based on the sum of the emission factors for all speciated organic compounds less ethane and methane.
- Considered $\leq 1 \ \mu m$ in aerodynamic diameter. Therefore, for filterable PM emissions, PM10(filterable) = PM2.5(filterable).
- ^j PM Condensable = PM Condensable Inorganic + PM-Condensable Organic
- Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.
- For lean burn engines, aldehyde emissions quantification using CARB 430 may reflect interference with the sampling compounds due to the nitrogen concentration in the stack. The presented emission factor is based on FTIR measurements. Emissions data based on CARB 430 are available in the background report.

13.2.2 Unpaved Roads

13.2.2.1 General

When a vehicle travels an unpaved road, the force of the wheels on the road surface causes pulverization of surface material. Particles are lifted and dropped from the rolling wheels, and the road surface is exposed to strong air currents in turbulent shear with the surface. The turbulent wake behind the vehicle continues to act on the road surface after the vehicle has passed.

The particulate emission factors presented in the previous draft version of this section of AP-42, dated October 2001, implicitly included the emissions from vehicles in the form of exhaust, brake wear, and tire wear as well as resuspended road surface material²⁵. EPA included these sources in the emission factor equation for unpaved public roads (equation 1b in this section) since the field testing data used to develop the equation included both the direct emissions from vehicles and emissions from resuspension of road dust.

This version of the unpaved public road emission factor equation only estimates particulate emissions from resuspended road surface material ^{23, 26}. The particulate emissions from vehicle exhaust, brake wear, and tire wear are now estimated separately using EPA's MOBILE6.2 ²⁴. This approach eliminates the possibility of double counting emissions. Double counting results when employing the previous version of the emission factor equation in this section and MOBILE6.2 to estimate particulate emissions from vehicle traffic on unpaved public roads. It also incorporates the decrease in exhaust emissions that has occurred since the unpaved public road emission factor equation includes estimates of emissions from exhaust, brake wear, and tire wear based on emission rates for vehicles in the 1980 calendar year fleet. The amount of PM released from vehicle exhaust has decreased since 1980 due to lower new vehicle emission standards and changes in fuel characteristics.

13.2.2.2 Emissions Calculation And Correction Parameters¹⁻⁶

The quantity of dust emissions from a given segment of unpaved road varies linearly with the volume of traffic. Field investigations also have shown that emissions depend on source parameters that characterize the condition of a particular road and the associated vehicle traffic. Characterization of these source parameters allow for "correction" of emission estimates to specific road and traffic conditions present on public and industrial roadways.

Dust emissions from unpaved roads have been found to vary directly with the fraction of silt (particles smaller than 75 micrometers $[\mu m]$ in diameter) in the road surface materials.¹ The silt fraction is determined by measuring the proportion of loose dry surface dust that passes a 200-mesh screen, using the ASTM-C-136 method. A summary of this method is contained in Appendix C of AP-42. Table 13.2.2-1 summarizes measured silt values for industrial unpaved roads. Table 13.2.2-2 summarizes measured silt values for public unpaved roads. It should be noted that the ranges of silt content vary over two orders of magnitude. Therefore, the use of data from this table can potentially introduce considerable error. Use of this data is strongly discouraged when it is feasible to obtain locally gathered data.

Since the silt content of a rural dirt road will vary with geographic location, it should be measured for use in projecting emissions. As a conservative approximation, the silt content of the parent soil in the area can be used. Tests, however, show that road silt content is normally lower than in the surrounding parent soil, because the fines are continually removed by the vehicle traffic, leaving a higher percentage of coarse particles.

Other variables are important in addition to the silt content of the road surface material. For example, at industrial sites, where haul trucks and other heavy equipment are common, emissions are highly correlated with vehicle weight. On the other hand, there is far less variability in the weights of cars and pickup trucks that commonly travel publicly accessible unpaved roads throughout the United States. For those roads, the moisture content of the road surface material may be more dominant in determining differences in emission levels between, for example a hot, desert environment and a cool, moist location.

The PM-10 and TSP emission factors presented below are the outcomes from stepwise linear regressions of field emission test results of vehicles traveling over unpaved surfaces. Due to a limited amount of information available for PM-2.5, the expression for that particle size range has been scaled against the result for PM-10. Consequently, the quality rating for the PM-2.5 factor is lower than that for the PM-10 expression.

	Road Use Or Plant No. Of Silt Cont				
Industry	Surface Material	Sites	Samples	Range	Mean
Copper smelting	Plant road	1	3	16 - 19	17
Iron and steel production	Plant road	19	135	0.2 - 19	6.0
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	4.8
	Material storage area	1	1	-	7.1
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10
	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3
	Haul road to/from pit	1	12	3.9 - 9.7	5.8
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4
	Plant road	2	2	4.9 - 5.3	5.1
	Scraper route	3	10	7.2 - 25	17
	Haul road (freshly graded)	2	5	18 - 29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills	Disposal routes	4	20	2.2 - 21	6.4
^a References 1,5-15.					

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS^a

11/06

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^{a} (W/3)^{b}$$
(1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$
(1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

- E = size-specific emission factor (lb/VMT)
- s = surface material silt content (%)
- W = mean vehicle weight (tons)
- M = surface material moisture content (%)
- S = mean vehicle speed (mph)
- C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

1 lb/VMT = 281.9 g/VKT

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

	Industrial Roads (Equation 1a)		Public Roads (Equation 1b)			
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0
а	0.9	0.9	0.7	1	1	1
b	0.45	0.45	0.45	-	-	-
с	-	-	-	0.2	0.2	0.3
d	-	-	-	0.5	0.5	0.3
Quality Rating	В	В	В	В	В	В

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

*Assumed equivalent to total suspended particulate matter (TSP)

"-" = not used in the emission factor equation

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

		Mean Vehicle Mean Vehicle Weight Speed			Mean	Surface Moisture	
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4-17 ^a	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (*C*) was obtained from EPA's MOBILE6.2 model 23 . The emission factor also varies with aerodynamic size range

Particle Size Range ^a	C, Emission Factor for Exhaust, Brake Wear and Tire Wear ^b lb/VMT
PM _{2.5}	0.00036
\mathbf{PM}_{10}	0.00047
PM_{30}^{c}	0.00047

Table 13.2.2-4. EMISSION FACTOR FOR 1980'S VEHICLE FLEET EXHAUST, BRAKE WEAR AND TIRE WEAR

- ^a Refers to airborne particulate matter (PM-x) with an aerodynamic diameter equal to or less than x micrometers.
- ^b Units shown are pounds per vehicle mile traveled (lb/VMT).
- ^c PM-30 is sometimes termed "suspendable particulate" (SP) and is often used as a surrogate for TSP.

It is important to note that the vehicle-related source conditions refer to the average weight, speed, and number of wheels for all vehicles traveling the road. For example, if 98 percent of traffic on the road are 2-ton cars and trucks while the remaining 2 percent consists of 20-ton trucks, then the mean weight is 2.4 tons. More specifically, Equations 1a and 1b are *not* intended to be used to calculate a separate emission factor for each vehicle class within a mix of traffic on a given unpaved road. That is, in the example, one should *not* determine one factor for the 2-ton vehicles and a second factor for the 20-ton trucks. Instead, only one emission factor should be calculated that represents the "fleet" average of 2.4 tons for all vehicles traveling the road.

Moreover, to retain the quality ratings when addressing a group of unpaved roads, it is necessary that reliable correction parameter values be determined for the road in question. The field and laboratory procedures for determining road surface silt and moisture contents are given in AP-42 Appendices C.1 and C.2. Vehicle-related parameters should be developed by recording visual observations of traffic. In some cases, vehicle parameters for industrial unpaved roads can be determined by reviewing maintenance records or other information sources at the facility.

In the event that site-specific values for correction parameters cannot be obtained, then default values may be used. In the absence of site-specific silt content information, an appropriate mean value from Table 13.2.2-1 may be used as a default value, but the quality rating of the equation is reduced by two letters. Because of significant differences found between different types of road surfaces and between different areas of the country, use of the default moisture content value of 0.5 percent in Equation 1b is discouraged. The quality rating should be downgraded two letters when the default moisture content value is used. (It is assumed that readers addressing industrial roads have access to the information needed to develop average vehicle information in Equation 1a for their facility.)

The effect of routine watering to control emissions from unpaved roads is discussed below in Section 13.2.2.3, "Controls". However, all roads are subject to some natural mitigation because of rainfall and other precipitation. The Equation 1a and 1b emission factors can be extrapolated to annual

average uncontrolled conditions (but including natural mitigation) under the simplifying assumption that annual average emissions are inversely proportional to the number of days with measurable (more than 0.254 mm [0.01 inch]) precipitation:

$$E_{ext} = E [(365 - P)/365]$$
 (2)

where:

 E_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT

E = emission factor from Equation 1a or 1b

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation (see

below)

Figure 13.2.2-1 gives the geographical distribution for the mean annual number of "wet" days for the United States.

Equation 2 provides an estimate that accounts for precipitation on an annual average basis for the purpose of inventorying emissions. It should be noted that Equation 2 does not account for differences in the temporal distributions of the rain events, the quantity of rain during any event, or the potential for the rain to evaporate from the road surface. In the event that a finer temporal and spatial resolution is desired for inventories of public unpaved roads, estimates can be based on a more complex set of assumptions. These assumptions include:

1. The moisture content of the road surface material is increased in proportion to the quantity of water added;

2. The moisture content of the road surface material is reduced in proportion to the Class A pan evaporation rate;

3. The moisture content of the road surface material is reduced in proportion to the traffic volume; and

4. The moisture content of the road surface material varies between the extremes observed in the area. The CHIEF Web site (http://www.epa.gov/ttn/chief/ap42/ch13/related/c13s02-2.html) has a file which contains a spreadsheet program for calculating emission factors which are temporally and spatially resolved. Information required for use of the spreadsheet program includes monthly Class A pan evaporation values, hourly meteorological data for precipitation, humidity and snow cover, vehicle traffic information, and road surface material information.

It is emphasized that <u>the simple assumption underlying Equation 2 and the more complex set of</u> <u>assumptions underlying the use of the procedure which produces a finer temporal and spatial resolution</u> have not been verified in any rigorous manner. For this reason, the quality ratings for either approach should be downgraded one letter from the rating that would be applied to Equation 1.

13.2.2.3 Controls¹⁸⁻²²

A wide variety of options exist to control emissions from unpaved roads. Options fall into the following three groupings:

1. Vehicle restrictions that limit the speed, weight or number of vehicles on the road;

2. <u>Surface improvement</u>, by measures such as (a) paving or (b) adding gravel or slag to a dirt road; and

3. Surface treatment, such as watering or treatment with chemical dust suppressants.

Available control options span broad ranges in terms of cost, efficiency, and applicability. For example, traffic controls provide moderate emission reductions (often at little cost) but are difficult to enforce. Although paving is highly effective, its high initial cost is often prohibitive. Furthermore, paving is not feasible for industrial roads subject to very heavy vehicles and/or spillage of material in transport. Watering and chemical suppressants, on the other hand, are potentially applicable to most industrial roads at moderate to low costs. However, these require frequent reapplication to maintain an acceptable level of control. Chemical suppressants are generally more cost-effective than water but not in cases of temporary roads (which are common at mines, landfills, and construction sites). In summary, then, one needs to consider not only the type and volume of traffic on the road but also how long the road will be in service when developing control plans.

<u>Vehicle restrictions</u>. These measures seek to limit the amount and type of traffic present on the road or to lower the mean vehicle speed. For example, many industrial plants have restricted employees from driving on plant property and have instead instituted bussing programs. This eliminates emissions due to employees traveling to/from their worksites. Although the heavier average vehicle weight of the busses increases the base emission factor, the decrease in vehicle-miles-traveled results in a lower overall emission rate.

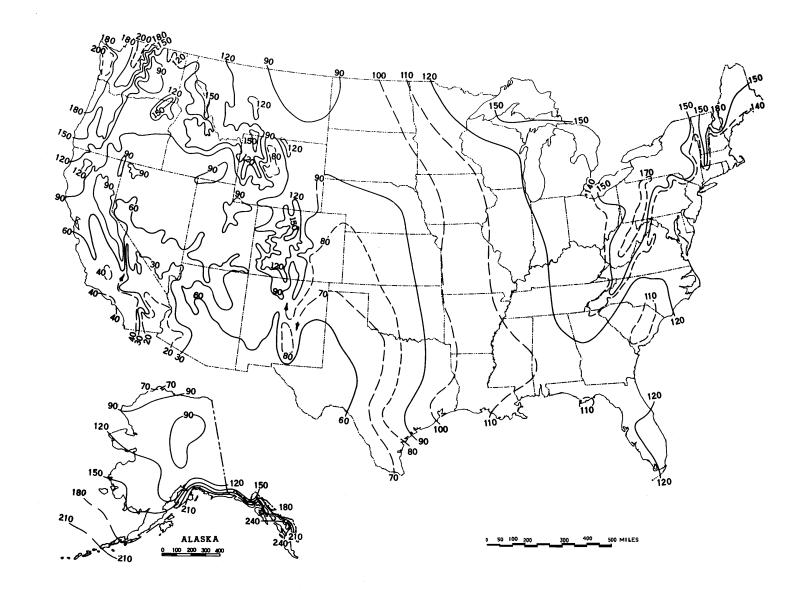


Figure 13.2.2-1. Mean number of days with 0.01 inch or more of precipitation in United States.

<u>Surface improvements</u>. Control options in this category alter the road surface. As opposed to the "surface treatments" discussed below, improvements are relatively "permanent" and do not require periodic retreatment.

The most obvious surface improvement is paving an unpaved road. This option is quite expensive and is probably most applicable to relatively short stretches of unpaved road with at least several hundred vehicle passes per day. Furthermore, if the newly paved road is located near unpaved areas or is used to transport material, it is essential that the control plan address routine cleaning of the newly paved road surface.

The control efficiencies achievable by paving can be estimated by comparing emission factors for unpaved and paved road conditions. The predictive emission factor equation for paved roads, given in Section 13.2.1, requires estimation of the silt loading on the traveled portion of the paved surface, which in turn depends on whether the pavement is periodically cleaned. Unless curbing is to be installed, the effects of vehicle excursion onto unpaved shoulders (berms) also must be taken into account in estimating the control efficiency of paving.

Other improvement methods cover the road surface with another material that has a lower silt content. Examples include placing gravel or slag on a dirt road. Control efficiency can be estimated by comparing the emission factors obtained using the silt contents before and after improvement. The silt content of the road surface should be determined after 3 to 6 months rather than immediately following placement. Control plans should address regular maintenance practices, such as grading, to retain larger aggregate on the traveled portion of the road.

<u>Surface treatments</u> refer to control options which require periodic reapplication. Treatments fall into the two main categories of (a) "wet suppression" (i. e., watering, possibly with surfactants or other additives), which keeps the road surface wet to control emissions and (b) "chemical stabilization/ treatment", which attempts to change the physical characteristics of the surface. The necessary reapplication frequency varies from several minutes for plain water under summertime conditions to several weeks or months for chemical dust suppressants.

Watering increases the moisture content, which conglomerates particles and reduces their likelihood to become suspended when vehicles pass over the surface. The control efficiency depends on how fast the road dries after water is added. This in turn depends on (a) the amount (per unit road surface area) of water added during each application; (b) the period of time between applications; (c) the weight, speed and number of vehicles traveling over the watered road during the period between applications; and (d) meteorological conditions (temperature, wind speed, cloud cover, etc.) that affect evaporation during the period. Figure 13.2.2-2 presents a simple bilinear relationship between the instantaneous control efficiency due to watering and the resulting increase in surface moisture. The moisture ratio "M" (i.e., the x-axis in Figure 13.2.2-2) is found by dividing the surface moisture content of the watered road by the surface moisture content of the uncontrolled road. As the watered road surface dries, both the ratio M and the predicted instantaneous control efficiency (i.e., the y-axis in the figure) decrease. The figure shows that between the uncontrolled moisture content and a value twice as large, a small increase in moisture content results in a large increase in control efficiency. Beyond that, control efficiency grows slowly with increased moisture content.

Given the complicated nature of how the road dries, characterization of emissions from watered roadways is best done by collecting road surface material samples at various times between water truck passes. (Appendices C.1 and C.2 present the sampling and analysis procedures.) The moisture content measured can then be associated with a control efficiency by use of Figure 13.2.2-2. Samples that reflect average conditions during the watering cycle can take the form of either a series of samples between water applications or a single sample at the midpoint. It is essential that samples be collected during periods with active traffic on the road. Finally, because of different evaporation rates, it is recommended that samples be collected at various times during the year. If only one set of samples is to be collected, these must be collected during hot, summertime conditions.

When developing watering control plans for roads that do not yet exist, it is strongly recommended that the moisture cycle be established by sampling similar roads in the same geographic area. If the moisture cycle cannot be established by similar roads using established watering control plans, the more complex methodology used to estimate the mitigation of rainfall and other precipitation can be used to estimate the control provided by routine watering. An estimate of the maximum daytime Class A pan evaporation (based upon daily evaporation data published in the monthly Climatological Data for the state by the National Climatic Data Center) should be used to insure that adequate watering capability is available during periods of highest evaporation. The hourly precipitation values in the spreadsheet should be replaced with the equivalent inches of precipitation (where the equivalent of 1 inch of precipitation is provided by an application of 5.6 gallons of water per square yard of road). Information on the long term average annual evaporation and on the percentage that occurs between May and October was published in the Climatic Atlas (Reference 16). Figure 13.2.2-3 presents the geographical distribution for "Class A pan evaporation" throughout the United States. Figure 13.2.2-4 presents the geographical distribution of the percentage of this evaporation that occurs between May and October. The U.S. Weather Bureau Class A evaporation pan is a cylindrical metal container with a depth of 10 inches and a diameter of 48 inches. Periodic measurements are made of the changes of the water level.

The above methodology should be used <u>only for prospective analyses</u> and for designing watering programs for existing roadways. The quality rating of an emission factor for a watered road that is based on this methodology should be downgraded two letters. Periodic road surface samples should be collected and analyzed to verify the efficiency of the watering program.

As opposed to watering, chemical dust suppressants have much less frequent reapplication requirements. These materials suppress emissions by changing the physical characteristics of the existing road surface material. Many chemical unpaved road dust suppressants form a hardened surface that binds particles together. After several applications, a treated road often resembles a paved road except that the surface is not uniformly flat. Because the improved surface results in more grinding of small particles, the silt content of loose material on a highly controlled surface may be substantially higher than when the surface was uncontrolled. For this reason, the models presented as Equations 1a and 1b cannot be used to estimate emissions from chemically stabilized roads. Should the road be allowed to return to an

uncontrolled state with no visible signs of large-scale cementing of material, the Equation 1a and 1b emission factors could then be used to obtain conservatively high emission estimates.

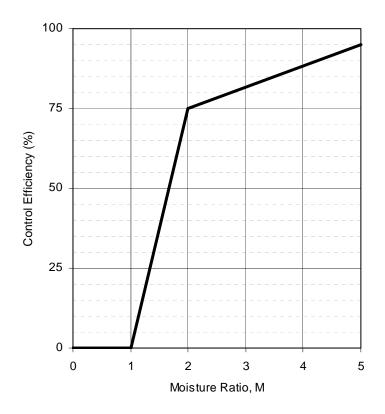
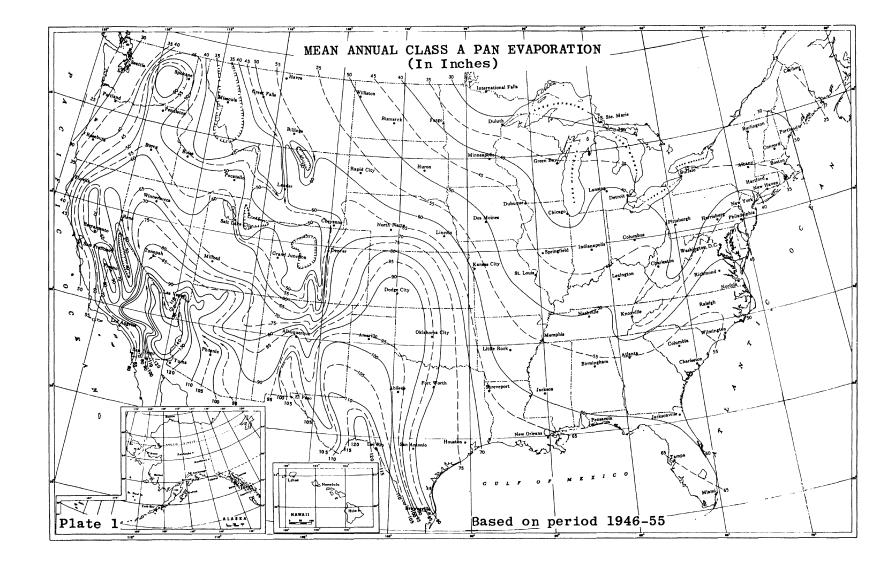



Figure 13.2.2-2. Watering control effectiveness for unpaved travel surfaces

The control effectiveness of chemical dust suppressants appears to depend on (a) the dilution rate used in the mixture; (b) the application rate (volume of solution per unit road surface area); (c) the time between applications; (d) the size, speed and amount of traffic during the period between applications; and (e) meteorological conditions (rainfall, freeze/thaw cycles, etc.) during the period. Other factors that affect the performance of dust suppressants include other traffic characteristics (e. g., cornering, track-on from unpaved areas) and road characteristics (e. g., bearing strength, grade). The variabilities in the above factors and differences between individual dust control products make the control efficiencies of chemical dust suppressants difficult to estimate. Past field testing of emissions from controlled unpaved roads has shown that chemical dust suppressants provide a PM-10 control efficiency of about 80 percent when applied at regular intervals of 2 weeks to 1 month.

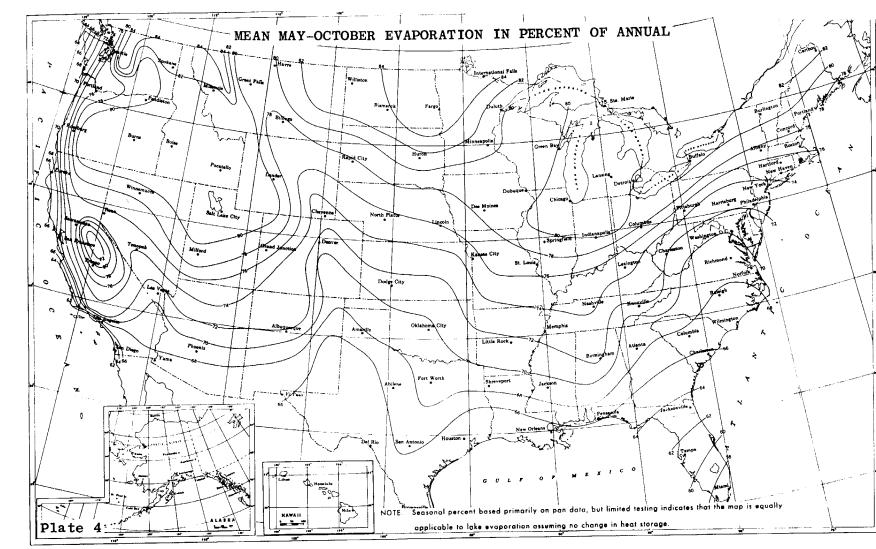


Figure 13.2.2-4. Geographical distribution of the percentage of evaporation occurring between May and October.

Petroleum resin products historically have been the dust suppressants (besides water) most widely used on industrial unpaved roads. Figure 13.2.2-5 presents a method to estimate average control efficiencies associated with petroleum resins applied to unpaved roads.²⁰ Several items should be noted:

1. The term "ground inventory" represents the total volume (per unit area) of petroleum resin concentrate (*not solution*) applied since the start of the dust control season.

2. Because petroleum resin products must be periodically reapplied to unpaved roads, the use of a time-averaged control efficiency value is appropriate. Figure 13.2.2-5 presents control efficiency values averaged over two common application intervals, 2 weeks and 1 month. Other application intervals will require interpolation.

3. Note that zero efficiency is assigned until the ground inventory reaches 0.05 gallon per square yard (gal/yd^2). Requiring a minimum ground inventory ensures that one must apply a reasonable amount of chemical dust suppressant to a road before claiming credit for emission control. Recall that the ground inventory refers to the amount of petroleum resin concentrate rather than the total solution.

As an example of the application of Figure 13.2.2-5, suppose that Equation 1a was used to estimate an emission factor of 7.1 lb/VMT for PM-10 from a particular road. Also, suppose that, starting on May 1, the road is treated with 0.221 gal/yd² of a solution (1 part petroleum resin to 5 parts water) on the first of each month through September. Then, the average controlled emission factors, shown in Table 13.2.2-5, are found.

Period	Ground Inventory, gal/yd ²	Average Control Efficiency, % ^a	Average Controlled Emission Factor, lb/VMT
May	0.037	0	7.1
June	0.073	62	2.7
July	0.11	68	2.3
August	0.15	74	1.8
September	0.18	80	1.4

Table 13.2-2-5. EXAMPLE OF AVERAGE CONTROLLED EMISSION FACTORSFOR SPECIFIC CONDITIONS

^a From Figure 13.2.2-5, $\leq 10 \,\mu$ m. Zero efficiency assigned if ground inventory is less than 0.05 gal/yd². 1 lb/VMT = 281.9 g/VKT. 1 gal/yd² = 4.531 L/m².

Besides petroleum resins, other newer dust suppressants have also been successful in controlling emissions from unpaved roads. Specific test results for those chemicals, as well as for petroleum resins and watering, are provided in References 18 through 21.

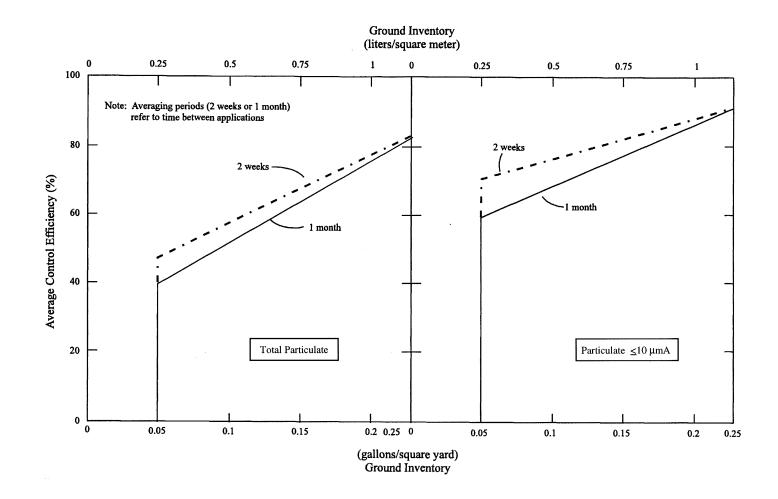


Figure 13.2.2-5. Average control efficiencies over common application intervals.

13.2.2.4 Updates Since The Fifth Edition

The Fifth Edition was released in January 1995. Revisions to this section since that date are summarized below. For further detail, consult the background report for this section (Reference 6).

October 1998 (Supplement E)– This was a major revision of this section. Significant changes to the text and the emission factor equations were made.

October 2001 – Separate emission factors for unpaved surfaces at industrial sites and publicly accessible roads were introduced. Figure 13.2.2-2 was included to provide control effectiveness estimates for watered roads.

December 2003 – The public road emission factor equation (equation 1b) was adjusted to remove the component of particulate emissions from exhaust, brake wear, and tire wear. The parameter C in the new equation varies with aerodynamic size range of the particulate matter. Table 13.2.2-4 was added to present the new coefficients.

January 2006 – The PM-2.5 particle size multipliers (i.e., factors) in Table 13.2.2-2 were modified and the quality ratings were upgraded from C to B based on the wind tunnel studies of a variety of dust emitting surface materials.

References For Section 13.2.2

- C. Cowherd, Jr., et al., Development Of Emission Factors For Fugitive Dust Sources, EPA-450/3-74-037, U. S. Environmental Protection Agency, Research Triangle Park, NC, June 1974.
- 2. R. J. Dyck and J. J. Stukel, "Fugitive Dust Emissions From Trucks On Unpaved Roads", *Environmental Science And Technology*, *10*(10):1046-1048, October 1976.
- 3. R. O. McCaldin and K. J. Heidel, "Particulate Emissions From Vehicle Travel Over Unpaved Roads", Presented at the 71st Annual Meeting of the Air Pollution Control Association, Houston, TX, June 1978.
- 4. C. Cowherd, Jr, et al., Iron And Steel Plant Open Dust Source Fugitive Emission Evaluation, EPA-600/2-79-013, U. S. Environmental Protection Agency, Cincinnati, OH, May 1979.
- 5. G. Muleski, *Unpaved Road Emission Impact*, Arizona Department of Environmental Quality, Phoenix, AZ, March 1991.
- 6. *Emission Factor Documentation For AP-42, Section 13.2.2, Unpaved Roads, Final Report, Midwest Research Institute, Kansas City, MO, September 1998.*
- 7. T. Cuscino, Jr., *et al., Taconite Mining Fugitive Emissions Study*, Minnesota Pollution Control Agency, Roseville, MN, June 1979.
- 8. *Improved Emission Factors For Fugitive Dust From Western Surface Coal Mining Sources*, 2 Volumes, EPA Contract No. 68-03-2924, Office of Air Quality Planning and Standards, U. S. Environmental Protection Agency, Research Triangle Park, NC.