20.2.72 NMAC NEW NSR AIR QUALITY PERMIT APPLICATION

For

MESA VERDE ENTERPRISES, INC.

MV 400 TPH GENCOR HMA PLANT Alamogordo, NM

Prepared by Montrose Environmental Solutions, LLC Albuquerque, NM January 2024

January 23, 2024

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87507-3313

JAN 24 2024

Air Quality Bureau

Subject: Permit Application for Mesa Verde Enterprises, Inc's MV 400 TPH Gencor HMA Plant

NSR Permit Manager:

Attached please find two (2) hardcopies of the 20.2.72 NMAC Permit Application for Mesa Verde Enterprises, Inc's MV 400 TPH Gencor HMA Plant. This letter is attached to the application copy that has the original notarized signature page (Section 22), along with an application submittal fee of \$500.

Mesa Verde Enterprises, Inc (Mesa Verde) is applying for a new 20.2.72 NMAC air quality permit for a 300 ton per hour (TPH) recycled asphalt products (RAP) crushing and screening plant, 300 TPH scalping screen plant, and 400 TPH hot mix asphalt plant to be operated within county of Otero, state of New Mexico. Regulation governing this permit application is 20.2.72.200.A(1) NMAC. The asphalt plant presently operates under General Construction Permit GCP-3-5880. This permit will allow the asphalt plant to operate nighttime hours presently not allowed by the General Construction Permit 3. The New Mexico DOT is requiring increasing amount of road work be done at night for public safety.

Please let me know if you have any questions or need additional information.

Sincerely,

Paul Wade Sr. Associate Engineer Montrose Environmental Solutions, Inc.

Cc: Allister Gunn, Mesa Verde Enterprises, Inc

IMontrose Environmental Solutions, Inc. 19100 2nd St. NW Suite 200 Albuquerque, NM 87114-1664 T: 505.830.9680 ext. 6 IF: 505.830.9678 IPwade@montrose-env.com

For Department use only:

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

 This application is submitted as (check all that apply):
 Request for a No Permit Required Determination (no fee)

 Updating an application currently under NMED review.
 Include this page and all pages that are being updated (no fee required).

 Construction Status:
 Not Constructed
 Existing Permitted (or NOI) Facility
 Existing Non-permitted (or NOI) Facility

 Minor Source:
 NOI 20.2.73 NMAC
 20.2.72 NMAC application or revision
 20.2.72.300 NMAC Streamline application

 Title V Source:
 Title V (new)
 Title V renewal
 TV minor mod.
 TV significant mod.
 TV Acid Rain:
 New
 Renewal

 PSD Major Source:
 PSD major source (new)
 Minor Modification to a PSD source
 a PSD major modification

Acknowledgements:

I acknowledge that a pre-application meeting is available to me upon request. 🔲 Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

S500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications).

Check No.: 058330 in the amount of \$500

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.

I acknowledge there is an annual fee for permits in addition to the permit review fee: <u>www.env.nm.gov/air-quality/permit-fees-</u> 2/.

This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.200.A NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	<mark>Al #</mark> if known: 34287	Updating Permit/NOI #:					
1	Facility Name: MV 400 TPH Gencor Asphalt Plant	Plant primary SIC Code	e (4 digits): 2951					
1	Plant NAIC code (6 digits): 324121							
а	Facility Street Address (If no facility street address, provide directions from 396 La Luz Gate Rd. Alamogordo, NM 88310	n a prominent landmark):					
2	Plant Operator Company Name: Mesa Verde Enterprises, Inc	Phone/Fax: 575-437-2995/575-437-8358						
а	a Plant Operator Address: 396 La Luz Gate Rd. Alamogordo, NM 88310							

b	Plant Operator's New Mexico Corporate ID or Tax ID: 85-0123702	
3	Plant Owner(s) name(s): Mesa Verde Enterprises, Inc	Phone/Fax: 575-437-2995/575-437-8358
а	Plant Owner(s) Mailing Address(s): PO Box 907, Alamogordo, NM 88311	
4	Bill To (Company): Mesa Verde Enterprises, Inc	Phone/Fax: 575-437-2995/575-437-8358
а	Mailing Address: PO Box 907, Alamogordo, NM 88311	E-mail: allisterg@aggtecllc.com
5	Preparer: Consultant: Paul Wade, Montrose Environmental Solutions, Inc.	Phone/Fax: 505-830-9680 x6/505-830-9678
а	Mailing Address: 9100 2 nd St NW, Albuquerque, NM 87114-1664	E-mail: pwade@montrose-env.com
6	Plant Operator Contact: Allister Gunn	Phone/Fax: 575-437-2995/575-437-8358
а	Address: PO Box 907, Alamogordo, NM 88311	E-mail: allisterg@aggtecllc.com
7	Air Permit Contact: Allister Gunn	Title: Compliance/Safety/DOT Admin
а	E-mail: allisterg@aggtecllc.com	Phone/Fax: 575-437-2995/
b	Mailing Address: PO Box 907, Alamogordo, NM 88311	
С	The designated Air permit Contact will receive all official correspondence	(i.e. letters, permits) from the Air Quality Bureau.

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? 🛛 Yes 🔲	No	1.b If yes to question 1.a, is it currently operating in New Mexico?							
2	If yes to question 1.a, was the existing facility subject to Intent (NOI) (20.2.73 NMAC) before submittal of this a Yes No		If yes to question 1.a, was the existing facility subjectto a construction permit (20.2.72 NMAC) beforesubmittal of this application?☑ Yes□ No							
3	Is the facility currently shut down? 🔲 Yes 🛛 No	onth and year of shut down (MM/YY):								
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? 🔲 Yes 🖾 No									
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972? ☐ Yes ☐ No 🖾 N/A									
6	Does this facility have a Title V operating permit (20.2.) ☐ Yes ⊠ No	70 NMAC)?	If yes, the permit No. is: P-							
7	Has this facility been issued a No Permit Required (NPF	<)?	If yes, the NPR No. is:							
8	Has this facility been issued a Notice of Intent (NOI)?	🗌 Yes 🛛 No	If yes, the NOI No. is:							
9	Does this facility have a construction permit (20.2.72/2 ☐ Yes ⊠ No	20.2.74 NMAC)	? If yes, the permit No. is:							
10	Is this facility registered under a General permit (GCP-2	L, GCP-2, etc.)	If yes, the register No. is: GCP-3-5880							

Section 1-C: Facility Input Capacity & Production Rate

1	What is the	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)											
а	Current	Hourly:	Daily:	Annually:									
b	Proposed	Hourly: 400	Annually: 900,000										
2	What is the	facility's maximum production rate, sp	pecify units (reference here and list capacities in	n Section 20, if more room is required)									
а	Current	Hourly:	Daily:	Annually:									
b	Proposed	Hourly: 400	Annually: 900,000										

Section 1-D: Facility Location Information

1	Latitude (decimal degrees): 32.93435	Longitude	(decimal degrees): -106.03	3041	County: Otero	Elevation (ft): 4270					
2	UTM Zone: 🔲 12 or 🔀 13		Datum: 🛛 NAD 83	WGS	84						
а	UTM E (in meters, to nearest 10 meters): 403.67		UTM N (in meters, to nearest 10 meters): 3,644.48								
3	Name and zip code of nearest New Mexico	o town: Alan	nogordo, 88310								
4	Detailed Driving Instructions from nearest and 82 in Alamogordo travel north on Higl approximately 4 miles to the entrance to t	hway 70 for	-	• •							
5	The facility is 5.2 miles northwest of Alam	ogordo, NM									
6	Land Status of facility (check one): Private Indian/Pueblo Government BLM Forest Service Military List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on										
7	which the facility is proposed to be constr	ucted or ope	erated: Alamogordo, Villag	e of Tular	osa, Otero County	/					
8	20.2.72 NMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see <u>www.env.nm.gov/air-quality/modeling-publications/</u>)? ☐ Yes ⊠ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers:										
9	Name nearest Class I area: White Mounta	in Wildernes	s Area								
10	Shortest distance (in km) from facility bou	ndary to the	boundary of the nearest (Class I are	a (to the nearest 10 m	neters): 52.50					
11	Distance (meters) from the perimeter of the lands, including mining overburden removed the second se			-		all disturbed					
12	Method(s) used to delineate the Restricted "Restricted Area " is an area to which public continuous walls, or other continuous bar grade that would require special equipme area within the property may be identified	lic entry is ef riers approvent nt to travers	fectively precluded. Effect ed by the Department, suc e. If a large property is co	tive barrie h as rugg mpletely	ers include continu ed physical terrair enclosed by fencir	n with steep ng, a restricted					
13	Does the owner/operator intend to opera Yes No A portable stationary source is not a mobi at one location or that can be re-installed sites.	te this sourc le source, su at various lo	e as a portable stationary s ch as an automobile, but a cations, such as a hot mix	source as a source t asphalt p	defined in 20.2.72 hat can be installe lant that is moved	2.7.X NMAC? d permanently to different job					
14	Will this facility operate in conjunction wit If yes, what is the name and permit numb					Yes Yes					

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating ($\frac{hours}{day}$): 24	(days): 7	(weeks year): 52	(<u>hours</u>): 8016					
2	Facility's maximum daily operating schedule (if less	than 24 $\frac{hours}{day}$)? Start:	AM DPM	End:	2am 2pm				
3	Month and year of anticipated start of construction: Existing Permitted Facility								
4	Month and year of anticipated construction completion: Existing Permitted Facility								
5	Month and year of anticipated startup of new or m	odified facility: Upon issuance	of new NSR permit						
6	Will this facility operate at this site for more than o	ne year? 🛛 Yes 🗌 No							

Section 1-F: Other Facility Information

1Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related
to this facility? Yes X No If yes, specify:

а	If yes, NOV date or description of issue:			NOV Tracking No:							
b	Is this application in response to any issue listed in 1-F, 1 o If Yes, provide the 1c & 1d info below:	r 1a above? 🔲 Yes	No								
с	Document Title:	Date:	•	nent # (or nd paragraph #):							
d	Provide the required text to be inserted in this permit:										
2	Is air quality dispersion modeling or modeling waiver being	g submitted with this	applicatio	n? 🛛 Yes 🗌 No							
3	Does this facility require an "Air Toxics" permit under 20.2	.72.400 NMAC & 20.2	.72.502, 1	Tables A and/or B? 🛛 Yes 🔲 No							
4	Will this facility be a source of federal Hazardous Air Pollut	ants (HAP)? 🔀 Yes	🗌 No								
а	If Yes, what type of source? Major (≥10 tpy of a OR Minor (<10 tpy of any			tpy of any combination of HAPS) py of any combination of HAPS)							
5	Is any unit exempt under 20.2.72.202.B.3 NMAC?	No									
	If yes, include the name of company providing commercial	electric power to the	facility: _								
а	Commercial power is purchased from a commercial utility on site for the sole purpose of the user.	company, which spe	cifically d	oes not include power generated							

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1	I have filled out Section 18, "Addendum for Streamline Applications."	N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC):		Phone:							
а	R.O. Title:	R.O. e-mail:								
b	R. O. Address:									
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC):		Phone:							
а	A. R.O. Title:	A. R.O. e-mail:								
b	A. R. O. Address:									
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship):									
4	Name of Parent Company ("Parent Company" means the primary permitted wholly or in part.):	name of the organiz	ation that owns the company to be							
а	Address of Parent Company:									
5	Names of Subsidiary Companies ("Subsidiary Companies" means o owned, wholly or in part, by the company to be permitted.):	rganizations, branch	nes, divisions or subsidiaries, which are							
6	Telephone numbers & names of the owners' agents and site conta	icts familiar with pla	nt operations:							
7	Affected Programs to include Other States, local air pollution cont Will the property on which the facility is proposed to be construct states, local pollution control programs, and Indian tribes and pue ones and provide the distances in kilometers:	ed or operated be cl	oser than 80 km (50 miles) from other							

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application

Secure electronic transfer. Air Permit Contact Name Paul Wade, Email pwade@montose-env.com Phone number (505) 830-9680 x6.

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

 All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application. Mesa Verde Enterprises, Inc.

- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition Type	Devilación
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equ	ipment, Check One	(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
AGGPILE	Cold Aggregate/RAP	NA	NA	NA	NA	370 TPH	NA	NA	305002	Existing (unchanged)	To be Removed Replacement Unit		
	Storage Pile					570 1111	2024	NA	03	To Be Modified	To be Replaced		
1	Feed Bin Loading	Gencor	Ultra 400	5BCF-48206-	400 TPH	370 TPH	1996	NA	305002	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
-	5-Bins	Geneor		96-TA	100 11 11	570 1111	2024	NA	16	To Be Modified	To be Replaced		
2	Feed Bin Unloading	Gencor	Ultra 400	5BCF-48206-	400 TPH	370 TPH	1996	C1	305002	Existing (unchanged)	To be Removed Replacement Unit		
	(Conveyor)	Geneor		96-TA	100 11 11	570 1111	2024	NA	17	To Be Modified	To be Replaced		
3	Scalping Screen	Gencor	Ultra 400	5BCF-48206-	400 TPH	370 TPH	1996	C2	305002	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
5	Scalping Screen	Geneor	01118 400	96-TA	400 11 11	570 1111	2024	NA	04	To Be Modified	To be Replaced		
	Scalping Screen			5BCF-48206-			1996	C1	305002	Existing (unchanged)	To be Removed		
4	Unloading (Conveyor)	Gencor	Ultra 400	96-TA	400 TPH	370 TPH	2024	NA	17	✓ New/Additional To Be Modified	Replacement Unit		
_		_		PM-48206-96			1996	C1	305002	Existing (unchanged)	To be Removed		
5	Pug Mill Load	Gencor	Ultra 400	SA	400 TPH 376 TPH	2024	NA	04	 New/Additional To Be Modified 	Replacement Unit To be Replaced			
	Pug Mill Unload	_		PM-48206-96			1996	C1	305002	Existing (unchanged)	To be Removed		
6	(Conveyor)	Gencor	Ultra 400	SA	400 TPH	376 TPH	2024	NA	17	✓ New/Additional To Be Modified	Replacement Unit To be Replaced		
7	Conveyor Transfer			V3060SC-		276 TOU	1996	C1	305002	Existing (unchanged)	To be Removed		
/	to Slinger Conveyor	Gencor	Ultra 400	48206-96-TA	400 TPH	376 TPH	2024	NA	17	✓ New/Additional To Be Modified	Replacement Unit To be Replaced		
0	DAD Din Londing	Even	Custom	NIA	100 TDU	100 TDU	2004	NA	305002	Existing (unchanged)	To be Removed		
8	RAP Bin Loading	Excel	Built	NA	180 TPH	180 TPH	2024	NA	16	✓ New/Additional To Be Modified	Replacement Unit To be Replaced		
9	RAP Bin Unloading	Even	Custom	NIA	100 TDU	100 TDU	2004	C1	305002	Existing (unchanged)	To be Removed		
9	(Conveyor)	Excel	Built	NA	180 TPH	180 TPH	2024	NA	17	 ✓ New/Additional To Be Modified 	Replacement Unit To be Replaced		
10	RAP Screen	Evcol	Custom	NA	180 TPH	180 TPH	2004	C2	305002	Existing (unchanged)	To be Removed		
10	KAP Screen	Excel	Built	INA	100 191	100 191	2024	NA	04	To Be Modified	Replacement Unit To be Replaced		
	RAP Screen		Custom				2004	C1	305002	Existing (unchanged)	To be Removed		
11	Unloading (Conveyor)	Excel	Built	NA	180 TPH	180 TPH	2024	NA	17	 New/Additional To Be Modified 	Replacement Unit To be Replaced		
12	RAP Transfer	Excel	Custom	NA	180 TPH	180 TPH	2004	C1	305002	Existing (unchanged)	To be Removed Replacement Unit		
12	Conveyor	LACEI	Built	INA	100 1611		2024	NA	17	To Be Modified	To be Replaced		
13	Mineral Filler Silo	Gencor	Ultra 400	700-BMF-	700 Barrel	6 TPH	1996	C4	305002	Existing (unchanged)	To be Removed Replacement Unit		
15	Loading	Gencor	0111 a 400	48206-96-TA	700 Barrel		2024	1	13	To Be Modified	To be Replaced		
14	Drum Dryer	Gencor	Ultra 400	400UPD-	400 TPH	400 TPH	1996	C5	305002	Existing (unchanged)	To be Removed Replacement Unit		
14		Gencor	0101 a 400	48206-96-TA	400 1711		2024	2	01	To Be Modified	To be Replaced		

Mesa	Verde Enterprises, Inc.					MV 40	00 TPH Gencor HMA	Plant			Application	Date: 01/17/2024	Revision #0	
Unit					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-				RICE Ignition Type	Donlosing
Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)		For Each Piece of Equip	oment, Check One	(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
45	Drum Mixer	Cadananida	NI / A	NI / A	400 TDU	400 TDU	1996	NA	305002	F	Existing (unchanged)	To be Removed		
15	Unloading (Incline Conveyor)	Cedarapids	N/A	N/A	400 TPH	400 TPH	2024	NA	21		New/Additional To Be Modified	Replacement Unit To be Replaced		
16	Asphalt Silo	Cedarapids	N/A	N/A	400 TPH	400 TPH	1996	NA	305002	F	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
	Unloading (4)	ecuarapiao	,//	,			2024	NA	13	Ė	To Be Modified	To be Replaced		
17	HMA Main Plant	TBD	TBD	TBD	1000 kW	1000 kW	TBD	NA	305002		Existing (unchanged) New/Additional	To be Removed Replacement Unit	CI	
	Generator				1372 HP	1372 HP	TBD	3	99		To Be Modified	To be Replaced		
18	HMA Standby	TBD	TBD	TBD	100 kW	100 kW	TBD	NA	305002	┠	Existing (unchanged) New/Additional	To be Removed Replacement Unit	CI	
_	Generator				114 HP	114 HP	TBD	4	99		To Be Modified	To be Replaced	_	
19	Asphalt Heater	Gencor	Ultra 400	5872	1 MM Btu	1 MM Btu	1996	NA	305002		Existing (unchanged)	To be Removed Replacement Unit		
19	Asphalt Heater	Gencor	0111 a 400	3072			2024	5	08	ľ	To Be Modified	To be Replaced		
20	Asphalt Cement	6			30,000	30,000	1996	NA	305002	Ļ	Existing (unchanged)	To be Removed		
20	Storage Tanks (2)	Gencor	Ultra 400	NA	Gallons Each	Gallons Each	2024	NA	12		New/Additional To Be Modified	Replacement Unit To be Replaced		
						318	NA	C3	306020	E	Existing (unchanged)	To be Removed		
TRCK	Haul Road Traffic	NA	NA	NA	NA	Truck/Day	2024	NA	11	ľ	 New/Additional To Be Modified 	Replacement Unit To be Replaced		
							NA	NA	305020	┢	Existing (unchanged)	To be Removed		
YARD	HMA Yard	NA	NA	NA	400 TPH	400 TPH	2024	NA	14	F	 New/Additional To Be Modified 	Replacement Unit To be Replaced		
	RAP Raw Material						NA	NA	305020	╞	Existing (unchanged)	To be Removed		
RAPPILE	Source	NA	NA	NA	300 TPH	300 TPH	2024	NA	07	Ē	 New/Additional To Be Modified 	Replacement Unit		
							NA	NA	305020	┢	Existing (unchanged)	To be Replaced		
21	RAP Feeder Loading	TBD	TBD	TBD	300 TPH	300 TPH	2024	NA	303020		New/Additional	Replacement Unit		
							NA	NA	305020	╞	To Be Modified Existing (unchanged)	To be Replaced		
22	RAP Vertical Impact Crusher	TBD	TBD	TBD	300 TPH	300 TPH	2024	NA	305020 01		New/Additional	Replacement Unit		
							2024 NA			╠	To Be Modified Existing (unchanged)	To be Replaced		
23	RAP Crusher Conveyor	TBD	TBD	TBD	300 TPH	300 TPH		NA	305020 06		New/Additional	Replacement Unit		
							2024	NA		┢	To Be Modified Existing (unchanged)	To be Replaced		
24	RAP Recycle Conveyor #2	TBD	TBD	TBD	300 TPH	300 TPH	NA 2024	NA NA	305020 06		Existing (unchanged) New/Additional To Be Modified	Replacement Unit		
							NA	NA	305020		_ To Be Modified Existing (unchanged)	To be Replaced		
25	RAP Conveyor	TBD	TBD	TBD	300 TPH	300 TPH	2024	NA	305020 06	F	New/Additional	Replacement Unit		
	PAD Scroop						NA	NA	305020	╠	To Be Modified Existing (unchanged)	To be Replaced		
26	RAP Screen Conveyor	TBD	TBD	TBD	300 TPH	300 TPH	2024	NA	305020 06		New/Additional	Replacement Unit		
										╠	To Be Modified Existing (unchanged)	To be Replaced		
27	RAP Screen	TBD	TBD	TBD	300 TPH	300 TPH	NA	NA	305020 15		New/Additional	Replacement Unit		
	Devision 5/2/2016						2024	NA	13		To Be Modified	To be Replaced	Drinted 1/22/2024 0	

Unit					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-				RICE Ignition Type	Replacing	
Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)		For Each Piece of Equi	For Each Piece of Equipment, Check One			Replacing Unit No.
28	RAP Recycle	TBD	TBD	TBD	300 TPH	300 TPH	NA	NA	305020		Existing (unchanged) New/Additional		To be Removed Replacement Unit		
	Conveyor #1						2024	NA	06		To Be Modified		To be Replaced		
29	RAP Waste	TBD	TBD	TBD	300 TPH	300 TPH	NA	NA	305020		Existing (unchanged) New/Additional	_	To be Removed Replacement Unit		
	Conveyor						2024	NA	06	Ĺ	To Be Modified		To be Replaced		
30	RAP Product	TBD	TBD	TBD	300 TPH	300 TPH	NA	NA	305020		Existing (unchanged) New/Additional	-	To be Removed Replacement Unit		
	Conveyor						2024	NA	06	Ĺ	To Be Modified		To be Replaced		
31	RAP Stacker	TBD	TBD	TBD	300 TPH	300 TPH	NA	NA	305020		Existing (unchanged) New/Additional		To be Removed Replacement Unit		
51	Conveyor Drop to Pile	IBD	ТБО		500 IPH	300 IPH	2024	NA	06		To Be Modified		To be Replaced		
22	RAP Product Storage				200 7511	200 TRU	NA	NA	305020		Existing (unchanged)		To be Removed		
32	Pile	NA	NA	NA	300 TPH	300 TPH	2024	NA	07	 √	New/Additional To Be Modified		Replacement Unit To be Replaced		
	RAP Plant	700	700	700	450.00		NA	NA	305020		Existing (unchanged)		To be Removed		
33	Generator/Engine	TBD	TBD	TBD	450 HP	450 HP	2024	024 6	99	Ľ	New/Additional To Be Modified	Replacement Unit To be Replaced		CI	
24	RAP Screen Plant	TRD	TOO	TRD	200 7011	200 701	NA	NA	305020		Existing (unchanged)		To be Removed		
34	Feeder	TBD	TBD	TBD	200 TPH	200 TPH	2024	NA	31	Ľ	New/Additional To Be Modified		Replacement Unit To be Replaced		
25	RAP Screen Plant	700	700	Ŧ	200 7511	200 TRU	NA	NA	305020		Existing (unchanged)	_	To be Removed		
35	Feeder Conveyor	TBD	TBD	TBD	200 TPH	200 TPH	2024	NA	06	ľ	New/Additional To Be Modified		Replacement Unit To be Replaced		
26	RAP Screen Plant	TDD	700	TRO	200 7511	200 TRU	NA	NA	305020		Existing (unchanged)		To be Removed		
36	Screen	TBD	TBD	TBD	200 TPH	200 TPH	2024	NA	15	~	New/Additional To Be Modified	F	Replacement Unit To be Replaced		
27	RAP Screen Plant	700	700	Ŧ	200 7511	200 TRU	NA	NA	305020		Existing (unchanged)		To be Removed		
37	Stacker Conveyor	TBD	TBD	TBD	200 TPH	200 TPH	2024	NA	06	~	New/Additional To Be Modified		Replacement Unit To be Replaced		
20	RAP Screen Plant	TDD	TDD	TDD	200 TD	200 TO	NA	NA	305020		Existing (unchanged)		To be Removed		
38	Stacker Conveyor	TBD	TBD	TBD	200 TPH	200 TPH	2024	NA	06	✓ _	New/Additional To Be Modified	F	Replacement Unit To be Replaced		
20	RAP Screen Plant	700	700	700	200 75.1	200 TR	NA	NA	305020		Existing (unchanged)		To be Removed		
39	Stacker Conveyor Drop to Pile	TBD	TBD	TBD	200 TPH	200 TPH	2024	NA	06	 √	New/Additional To Be Modified	┢	Replacement Unit To be Replaced		
	RAP Screen Plant						NA	NA	305020	Ē	Existing (unchanged)	Ē	To be Removed	<i>c</i> :	
40	Engine	TBD	TBD	TBD	175 HP	175 HP	2024	7	99	~	New/Additional To Be Modified	F	Replacement Unit To be Replaced	CI	

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wpcontent/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
onit Number	Source Description	Wanuacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	
Т3	Burner Fuel Tank	NA	NA	10,000 Gallons	20.2.72.202.B.2.a	1996	Existing (unchanged) Tele Removed
15	builler Fuel Lank	NA	NA	10,000 Gallons	NA	1996	To Be Modified To Replaced
T4	Burner Fuel Tank	NA	NA	6,500 Gallons	20.2.72.202.B.2.a	1996	Existing (unchanged) Te Removed
14	builler Fuel Talik	NA	NA	6,500 Gallons	NA	1996	To Be Modified T Replaced
T5	Diesel Fuel Tank	NA	NA	10,000 Gallons	20.2.72.202.B.2.a	1996	Existing (unchanged) Te Removed
15	Dieser Fuer Talik	NA	NA	10,000 Gallons	NA	1996	To Be Modified Te Replaced
Т6	Evotherm Storage Tank	NA	NA	5,000 Gallons	NA	2024	Existing (unchanged) Te Removed
10	Evoluerin Storage Talik	NA	NA	5,000 Gallons	1.a	2024	To Be Modified Te Replaced
Τ7	Water Starsge Tenk	NA	NA	5,000 Gallons	NA	2024	Existing (unchanged) Te Removed
17	Water Storage Tank	NA	NA	5,000 Gallons	1.a	2024	Vew/Additional Reacement Unit
то	Duine o Oil Teal	21/2	NA	12,000 Gallons	20.2.72.202.B.2.a	1996	Existing (unchanged) T Removed
Т8	Prime Oil Tank	N/A	NA	12,000 Gallons	NA	1996	Vew/Additional Reacement Unit
T 0	T 01 T		NA	10,000 Gallons	20.2.72.202.B.2.a	1996	Existing (unchanged) T Removed
Т9	Tack Oil Tank	N/A	NA	10,000 Gallons	NA	1996	Vew/Additional Reacement Unit
							Existing (unchanged) Te Removed New/Additional Received
							To Be Modified To Be Replaced Existing (unchanged) To Be Removed New/Additional Removed To Be Modified To Be Replaced
							Existing (unchanged) Tele Removed New/Additional Refacement Unit To Be Modified Tele Replaced Existing (unchanged) Tele Removed
							New/Additional Racement Unit To Be Modified Take Replaced Existing (unchanged) Take Removed New/Additional Racement Unit
							To Be Modified To Preplaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emisses from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
C1	Conveyor Transfer Points - Wet Dust Suppression System	1996	Particulate	2, 4, 5, 6, 7	PM - 95.33%	AP-42 11.19.2 Emission Factors
C2	Screen - Wet Dust Suppression System	1996	Particulate	3	PM - 91.20%	AP-42 11.19.2 Emission Factors
C3	Unpaved Roads - Surfactant and Water Paved Roads - Pavement	2014	Particulate	TRCK	Unpaved - 90% Paved - 95%	NMED Policy
C4	Silo Baghouse	1996	Particulate	13	99%	Low End of Filter Control Efficiency
C5	Drum Mixer Baghouse	1996	Particulate	14	99.88%	AP-42 11.1 Emission Factors

Table 2-D: Maximum Emissions (under normal operating conditions)

This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	C	0	V	C	S	Ох	PI	٧	PM	10 ¹	PM	2.5 ¹	Н	₂S	Le	ad
Unit NO.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AGGPILE									1.61	5.91	0.76	2.79	0.12	0.42				
1									1.25	4.60	0.59	2.18	0.090	0.33				
2									0.57	2.50	0.21	0.92	0.032	0.14				
3									4.75	20.81	1.65	7.24	0.25	1.10				
4									0.57	2.50	0.21	0.92	0.032	0.14				
5									0.59	2.58	0.22	0.94	0.033	0.15				
6									0.59	2.58	0.22	0.94	0.033	0.15				
7									0.59	2.58	0.22	0.94	0.033	0.15				
8									0.36	1.31	0.17	0.62	0.026	0.094				
9									0.16	0.71	0.059	0.26	0.0092	0.040				
10									1.35	5.91	0.47	2.06	0.071	0.31				
11									0.16	0.71	0.059	0.26	0.0092	0.040				
12									0.16	0.71	0.059	0.26	0.0092	0.040				
13									18.25	19.18	11.75	12.35	2.33	2.44				
14	22.0	96.4	52.0	227.8	23.2	101.6	12.8	56.1	11200	49056	2600	11388	626	2742	0.021	0.091	0.0060	0.0068
15			0.88	3.87			9.13	39.99	0.32	1.41	0.32	1.41	0.32	1.41	0.00058	0.0026		
16			1.01	4.43			3.12	13.65	0.33	1.44	0.33	1.44	0.33	1.44	0.00058	0.0026		
17	13.4	58.7	7.72	33.8	0.50	2.19	0.71	3.09	0.44	1.93	0.44	1.93	0.44	1.93			8.13E-05	
18	0.088	0.39	1.10	4.83	0.0012	0.0055	0.042	0.1835	0.0066	0.029	0.0066	0.029	0.0066	0.029			6.80E-06	
19	0.16	0.68	0.039	0.17	0.055	0.24	0.0027	0.012	0.016	0.068	0.016	0.068	0.016	0.068			9.00E-06	3.27E-05
20							0.026	0.12										
TRCK									13.9	49.2	3.5	12.5	0.35	1.25				
YARD			0.14	0.62			0.44	1.93										
RAPPILE									0.59	0.95	0.28	0.45	0.043	0.068				
21									0.59	0.95	0.28	0.45	0.043	0.068				
22									0.49	0.93	0.22	0.41	0.033	0.063				
23									0.27	0.52	0.10	0.19	0.015	0.029				
24									0.27	0.52	0.10	0.19	0.015	0.029				
25									0.27	0.52	0.10	0.19	0.015	0.029				\square
26									0.27	0.52	0.10	0.19	0.015	0.029				
27									2.25	4.31	0.78	1.50	0.12	0.23				
28									0.27	0.52	0.10	0.19	0.015	0.029				
29									0.27	0.52	0.10	0.19	0.015	0.029				
30									0.27	0.52	0.10	0.19	0.015	0.029				
31									0.59	0.95	0.28	0.45	0.043	0.068				

Unit No.	N	Ох	C	0	V	C	S	Ͻх	PI	N 1	PM	10 ¹	PM	2.5 ¹	Н	₂ S	Le	ad
Onit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
32									0.59	0.95	0.28	0.45	0.043	0.068				
33	12.90	28.24	2.78	6.09	0.15	0.33	1.03	2.25	0.92	2.00	0.92	2.00	0.92	2.00			2.47E-05	4.72E-05
34									0.59	0.95	0.28	0.45	0.043	0.068				
35									0.27	0.52	0.099	0.19	0.015	0.029				
36									2.25	4.31	0.78	1.50	0.12	0.23				
37									0.27	0.52	0.099	0.19	0.015	0.029				
38									0.27	0.52	0.099	0.19	0.015	0.029				
39									0.59	0.95	0.28	0.45	0.043	0.068				
40	0.088	0.39	1.10	4.83	0.0014	0.0061	0.042	0.18	0.0044	0.019	0.0044	0.019	0.0044	0.019			7.49E-06	1.44E-05
Totals	48.6	185	66.8	286	23.9	104	27.3	117	11258	49205	2627	11448	632	2757	0.022	0.096	0.0061	0.0071

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

	N	Ox	C	0	V	C	S	Эx	PI	Иı	PM	10 ¹	PM	2 .5 ¹	Н	₂S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AGGPILE									1.61	1.52	0.76	0.72	0.12	0.11				
1									1.25	1.18	0.59	0.56	0.090	0.085				
2									0.027	0.030	0.0087	0.010	0.0025	0.0028				
3									0.42	0.47	0.14	0.16	0.010	0.011				
4									0.027	0.030	0.0087	0.010	0.0025	0.0028				
5									0.027	0.031	0.0090	0.010	0.0025	0.0029				
6									0.027	0.031	0.0090	0.010	0.0025	0.0029				
7									0.027	0.031	0.0090	0.010	0.0025	0.0029				
8									0.36	0.34	0.17	0.16	0.026	0.024				
9									0.16	0.18	0.059	0.067	0.0092	0.010				
10									1.35	1.52	0.47	0.53	0.071	0.080				
11									0.162	0.182	0.059	0.067	0.0092	0.010				
12									0.162	0.182	0.059	0.067	0.0092	0.010				
13									0.18	0.049	0.12	0.032	0.023	0.0063				
14	22.00	24.75	52.0	58.5	23.20	26.10	12.80	14.40	13.20	14.85	9.20	10.35	9.20	10.35	0.021	0.023	0.0060	0.0068
15			0.88	0.99			9.13	10.27	0.32	0.36	0.32	0.36	0.32	0.36	0.00058	0.00066		
16			1.01	1.14			3.12	3.51	0.33	0.37	0.33	0.37	0.33	0.37	0.00058	0.00066		
17	13.40	29.35	7.72	16.9	0.50	1.10	0.71	1.54	0.44	0.97	0.44	0.97	0.44	0.97			8.13E-05	1.78E-04
18	0.088	0.19	1.10	2.41	0.0012	0.0027	0.042	0.092	0.0066	0.014	0.0066	0.014	0.0066	0.014			6.80E-06	1.49E-05
19	0.16	0.57	0.039	0.14	0.055	0.20	0.0027	0.010	0.016	0.057	0.016	0.057	0.016	0.057			9.00E-06	3.27E-05
20							0.026	0.12										
TRCK									13.90	13.56	3.54	3.46	0.35	0.35				
YARD			0.14	0.16			0.44	0.50										
RAPPILE									0.59	0.33	0.28	0.16	0.043	0.024				
21									0.59	0.33	0.28	0.16	0.043	0.024				
22									0.49	0.32	0.22	0.14	0.033	0.022				
23									0.27	0.18	0.10	0.066	0.015	0.010				
24									0.27	0.18	0.10	0.066	0.015	0.010				
25									0.27	0.18	0.10	0.066	0.015	0.010				
26									0.27	0.18	0.10	0.066	0.015	0.010				
27									2.25	1.50	0.78	0.52	0.12	0.079				
28									0.27	0.18	0.10	0.066	0.015	0.010				
29									0.27	0.18	0.10	0.066	0.015	0.010				

Unit No.	N	Оx	C	0	VC	C	SC	Эx	PI	M1	PM	1 10 ¹	PM	2.5 ¹	Н	₂ S	Le	ad
Onit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
30									0.27	0.18	0.10	0.066	0.015	0.010				
31									0.59	0.33	0.28	0.16	0.043	0.024				
32									0.59	0.33	0.28	0.16	0.043	0.024				
33	12.90	24.72	2.78	5.33	0.15	0.29	1.03	1.97	0.92	1.75	0.92	1.75	0.92	1.75			2.47E-05	4.72E-05
34									0.59	0.33	0.28	0.16	0.043	0.024				
35									0.27	0.18	0.099	0.066	0.015	0.010				
36									2.25	1.50	0.78	0.52	0.12	0.079				
37									0.27	0.18	0.099	0.066	0.015	0.010				
38									0.27	0.18	0.099	0.066	0.015	0.010				
39									0.59	0.33	0.28	0.16	0.043	0.024				
40	0.088	0.17	1.10	2.11	0.0014	0.0027	0.042	0.080	0.0044	0.0085	0.0044	0.0085	0.0044	0.0085			7.49E-06	1.44E-05
Totals	48.6	79.7	66.8	87.7	23.9	27.7	27.3	32.5	46.2	44.8	21.7	22.5	12.64	15.01	0.022	0.025	0.0061	0.0071

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5.

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

X This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.em.gov/opt/capplications/linear-provide/linear-pr

		UX		0	C	S	Ox	PI	pressed to M ²		1102		2.5		₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
																	-
																	-
																	-
																	-
																	<u> </u>
Totals																	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	Net	Ox	С	0	V	OC	S	Ох	Р	М	PN	/10	PM	2.5	H ₂ S or	r 🗌 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
																	L
-	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s) from	Orientation (H- Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
1	13	Н	No	60	Ambient	8.33		Trace	10.6	1.00
2	14	V	No	31.8	270	1486.95	701.88	21.7	73.3	5.08
3	17	V	No	13	854.8	95.69		Trace	175.45	0.83
4	18	V	No	13	800	17.45		Trace	200	0.3333
5	19	V	Yes	9	200	23.57		Trace	30	1.00
6	33	Н	No	10	800	27.27		Trace	200	0.4167
7	40	Н	No	10	800	17.45		Trace	200	0.3333

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

	Unit No.(s)	Total		Formal	dehyde	Tolu	iene	Asphal			n Oxide r ₇ TAP	Name	Pollutant Here r TAP	Name	Pollutant Here r 🗌 TAP	Name	Pollutant Here r 🗌 TAP	Name	Pollutant e Here or TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	13									0.18	0.032								
2	14	4.19	4.72	1.24	1.40	1.16	1.31	4.80	5.40										
3	17	0.059	0.0099																
4	18	0.0049	0.00083																
5	19	0.0011	0.0021																
6	33	0.018	0.0026																
7	40	0.0054	0.00080																
	15							0.14	0.16										
	16							0.065	0.073										
	20							0.00034	0.0015										
	YARD							0.0066	0.0074										
Tota	als:	4.28	4.73	1.24	1.40	1.16	1.31	5.01	5.64	0.18	0.032								

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial, pipeline quality natural gas, residue gas,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
14	On-Spec Burner Fuel Oil	purchased commercial	140,353	600.0 gallons	1,350,000 gallons	0.5	
17	#2 Diesel	purchased commercial	129,488	70.6 gallons	309,228 gallons	0.05	
18	#2 Diesel	purchased commercial	129,488	5.9 gallons	25,842 gallons	0.05	
19	#2 Diesel	purchased commercial	129,488	7.8 gallons	68,328 gallons	0.05	
36	#2 Diesel	purchased commercial	129,488	23.1 gallons	101,178 gallons	0.05	
45	#2 Diesel	purchased commercial	129,488	9.0 gallons	39,420 gallons	0.05	

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Stora	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (Ib/Ib*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
T1	3-05-002- 12	Hot Oil Asphalt Cement	Hot Oil Asphalt Cement	9.22	105	350	0.0347	350	0.0347
T2	3-05-002- 12	Hot Oil Asphalt Cement	Hot Oil Asphalt Cement	9.22	105	350	0.0347	350	0.0347
Т3	3-05-002- 98	Burner Fuel Oil	Burner Fuel Oil	7.88	130	58.54	0.0062	65.66	0.0079
T4	3-05-002- 98	Burner Fuel Oil	Burner Fuel Oil	7.88	130	58.54	0.0062	65.66	0.0079
Τ5	3-05-002- 98	Diesel Fuel	Diesel Fuel	7.05	130	58.54	0.0062	65.66	0.0079
Т8	3-05-002- 98	Prime Oil	Prime Oil	7.88	130	58.54	0.0062	65.66	0.0079
Т9	3-05-002- 98	Tack Fuel	Tack Fuel	9.22	105	350	0.0347	350	0.0347

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Сара	acity	Diameter (M)	Vapor Space (M)		lor ble VI-C)	Paint Condition (from Table VI-	Annual Throughput	Turn- overs
			LK DEIOW)	LK below)	(bbl)	(M ³)			Roof	Shell	C)	(gal/yr)	(per year)
T1	2006	Hot Oil Asphalt Cement	NA	FX	714.29	113.55	3.66	2.42	OT (Yellow)	OT (Yellow)	Good	5,856,833	195.33
Т2	2006	Hot Oil Asphalt Cement	NA	FX	714.29	113.55	3.66	2.42	OT (Yellow)	OT (Yellow)	Good	5,856,833	195.33
Т3	2006	Burner Fuel Oil	NA	FX	238.10	37.85	2.44	1.95	OT (Yellow)	OT (Yellow)	Good	675,000	33.75
T4	2006	Burner Fuel Oil	NA	FX	154.76	24.60	2.44	1.95	OT (Yellow)	OT (Yellow)	Good	675,000	33.75
T5	2006	Diesel Fuel	NA	FX	238.10	37.85	2.44	1.95	OT (Yellow)	OT (Yellow)	Good	543,996	54.40
Т8	2006	Prime Oil	NA	FX	154.76	24.60	2.44	1.95	OT (Yellow)	OT (Yellow)	Good	100,000	8.33
Т9	2006	Tack Fuel	NA	FX	238.10	37.85	2.44	1.95	OT (Yellow)	OT (Yellow)	Good	100,000	10.00

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, V	/elded Tank Seal Type	Seal Type, Rive	Roof, Shell Color	Paint Condition	
FX : Fixed Roof	Mechanical Shoe Seal Liquid-mounted resilient seal		Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG : Light Gray	
					MG: Medium Gray	
Note: 1.00 bbl = 0.159 M	³ = 42.0 gal				BL: Black	
					OT : Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Matar	ial Processed	Material Produced						
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)		
Aggregate	Aggregate	Solid	190-370 TPH						
RAP	Recycled Asphalt Products	Solid	0-190 TPH						
Mineral Filler	Rock dust, Slag dust, Hydrated lime, Cement, Versabind, and/or Loess	Solid	6 ТРН	Asphalt	Aggregate, RAP, Mineral Filler, Asphalt Cement	Solid	400 TPH		
Asphalt Cement	Asphalt Cement	Heated Liquid	24 TPH						
Evotherm	Anti-Stripper	Liquid	0.4 TPH						

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
NA									

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
13	Differential Pressure	Baghouse inlet and outlet	inches of water	1 - 3 inches	Annual	Calibrate	Datalogger	1 min
14	Differential Pressure	Baghouse inlet and outlet	inches of water	2 - 6 inches	Annual	Calibrate	Datalogger	1 min

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box.

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO₂ ton/yr	N₂O ton/yr	CH₄ ton/yr	SF ₅ ton∕yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/γr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
14	mass GHG	14850									14850	
14	CO ₂ e	14850										14850
17	mass GHG	3455									3455	
17	CO ₂ e	3455										3455
18	mass GHG	287									287	
10	CO ₂ e	287										287
19	mass GHG	593	0.0048	0.024							593	
19	CO ₂ e	593	1.43	0.60								595
22	mass GHG	917									917	
33	CO ₂ e	917										917
40	mass GHG	280									280	
40	CO ₂ e	280										280
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO2e											
Tatal	mass GHG	20382	0.0048	0.024							20382	
Total	CO ₂ e	20382	1.43	0.60								20384

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a mass basis is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The <u>Application</u> <u>Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **Process Summary** shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Mesa Verde Enterprises, Inc. (MV) is applying for a new 20.2.72 NMAC air quality permit for a 300 ton per hour (TPH) recycled asphalt products (RAP) crushing and screening plant, 300 TPH scalping screen plant, and 400 TPH hot mix asphalt plant to be operated within county of Otero, state of New Mexico. Regulation governing this permit application is 20.2.72.200.A(1) NMAC. The asphalt plant presently operates under General Construction Permit GCP-3-5880. This permit will allow the asphalt plant to operate nighttime hours presently not allowed by the General Construction Permit 3. The New Mexico DOT is requiring increasing amount of road work be done at night for public safety.

MV has retained Montrose Environmental Solutions, Inc. (Montrose) to assist with the permit application. The plant will be identified as MV 400 TPH Gencor HMA Plant and will be located at 396 La Luz Gate Rd. Alamogordo, NM 88310. While facility-wide "potential" emission rates are greater than 100 tons per year for a single pollutant potentially making it a major source; with the proposed emission controls the facility emission rates will be below 100 tons per year and will be permitted as a "synthetic minor source".

HMA Plant

The 400 tph hot mix asphalt plant will include; aggregate/RAP storage piles, a 5-bin cold aggregate feeder, scalping screen, pug mill, mineral filler silo with screw conveyor and baghouse, drum dryer/mixer with baghouse, incline conveyor, four (4) asphalt silos, asphalt heater, six (6) transfer conveyors, Evotherm storage tank, and two (2) asphalt cement storage tanks. Evotherm promotes adhesion by acting as both a liquid antistrip and a warm mix asphalt (WMA). Evotherm is an easy-to-handle, pumpable liquid that contains no regulated HAPs or TAPs components. Evotherm and mineral filler will not be used in the mix concurrently. While located at 396 La Luz Gate Rd. Alamogordo, NM 88310, the plant will be powered by line power. When relocated the plant will be powered by a 1000 kW (1372 hp) generator. At the relocation site a 100 kW (114 hp) standby (night) generator will provide electricity during periods the main generator is shutdown. Processed asphalt will be transported from the HMA plant to off-site sales. The HMA plant will limit processing rates to 400 tph, 4,000 tons per day, and 900,000 tpy. The hours of operation are presented below in Table 3-1. Daily production rates are presented below in Table 3-3.

RAP Crushing and Screening Plant

The 300 tph RAP crushing and screening plant will include a feeder, vertical impact crusher, screen, seven (7) transfer conveyors, and two (2) stacker conveyors. The plant will be powered by a 416 horsepower (hp) engine. Processed RAP will be transported to the HMA plant and/or off-site sales. The RAP crushing and screening plant will limit hourly processing rate to 300 tph, 2,400 tons per day, and 400,000 tpy. RAP crushing and screening plant processing hours of operation are presented below in Table 3-2.

RAP Scalping Screen Plant

The 300 tph RAP scalping screen plant will include a feeder, screen, three (3) transfer conveyor, and two (2) stacker conveyors. The plant will be powered by a 127 horsepower (hp) engine. Processed RAP will be used in the HMA plant. The RAP scalping screen plant will limit hourly processing rate to 300 tph, 2,400 tons per day, and 400,000 tpy. RAP scalping screen plant processing hours of operation are presented below in Table 3-2.

The MV 400 TPH Gencor HMA Plant will be co-located with Mesa Verde's GCP-5-2131 concrete batching plant and Mesa Verde's Permit #0503 aggregate crushing and screening plant operating at the initial site.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
12:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
1:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
2:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
3:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
4:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
5:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
6:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
7:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
8:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
9:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
10:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
11:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
12:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
1:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
2:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
3:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
4:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
5:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
6:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
7:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
8:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
9:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
10:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
11:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
Total	0	24	24	24	24	24	24	24	24	24	24	0

TABLE 3-1: HMA Production Hours of Operation (MST)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
12:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
5:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
6:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
7:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
8:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
9:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
10:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
11:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
12:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
1:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
2:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
3:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
4:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
5:00 PM	0	0	0	1	1	1	1	1	1	0	0	0
6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
Total	10	10	10	11	11	11	11	11	11	10	10	10

TABLE 3-2: RAP Crushing and Screening and RAP Scalping Screen Plants Production Hours of Operation (MST)

TABLE 3-3: HMA Daily Throughput

Month	HMA
	Tons Per Day
January	0
February	2000
March	3200
April	3200
May	4000
June	4000
July	4000
August	4000
September	4000
October	4000
November	2000
December	0

Nighttime operations for the HMA plant will follow the guidelines issued by the department "Air Quality Permitting Guidelines for Night Operations of Crushing and Screening Plants, Hot Mix Asphalt Plants, and Concrete Batch Plants" (Ver.08/14/06). Nighttime conditions acceptable to Mesa Verde Enterprises, Inc. include:

Construction and Operation

The permittee shall install data logger(s) capable of continuously recording differential pressure measured by magnahelic gauges or equivalent differential pressure gauges installed on the Drum Dryer/Mixer Baghouse (Unit 14, Control Unit C5).

Monitoring

The permittee shall, during nighttime loading of the Mineral Filler Silo (Unit 13, Control Unit C4), monitor the differential pressure across the Mineral Filler Silo Baghouse by the use of a differential pressure gauge to ensure it is within the manufacturers or facility determined specified operating range. One reading shall be taken during the silo loading operation.

The permittee shall, during nighttime operation of the plant continuously monitor and record the differential pressure across the Drum Dryer/Mixer Baghouse (Unit 14, Control Unit C5) by the use of a differential pressure gauge with a data recording system to ensure it is within the manufacturers or facility determined specified operating range.

The permittee shall, during nighttime operating hours, ensure fugitive dust control systems are functioning correctly for Units 2, 3, 4, 5, 6, and 7 per {CONDITION X}.

Recordkeeping

During night operation the permittee shall record, by the use of a data logger, a continuous record of the differential pressure across Drum Dryer/Mixer Baghouse (Unit 14, Control Unit C5).

During silo loading of the Mineral Filler Silo (Unit 13, Control Unit C4), the differential pressure shall be recorded once.

Routine or predictable emissions during Startup, Shutdown, and Maintenance (SSM)

No SSM emissions are predicted for this permit application. All control systems will be operational prior to the start or shutdown of asphalt production or aggregate processing. Maintenance will be performed during period with no production.

Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

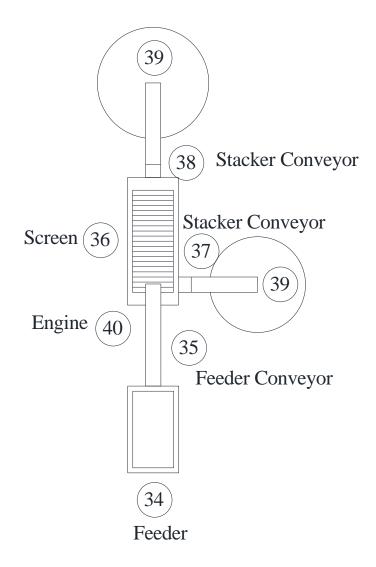
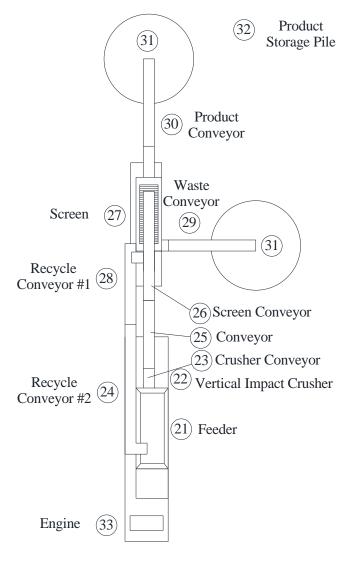



Figure 4-1: Process Flow of RAP Scalping Screen Plant

RAPPILE Raw Material Storage Pile

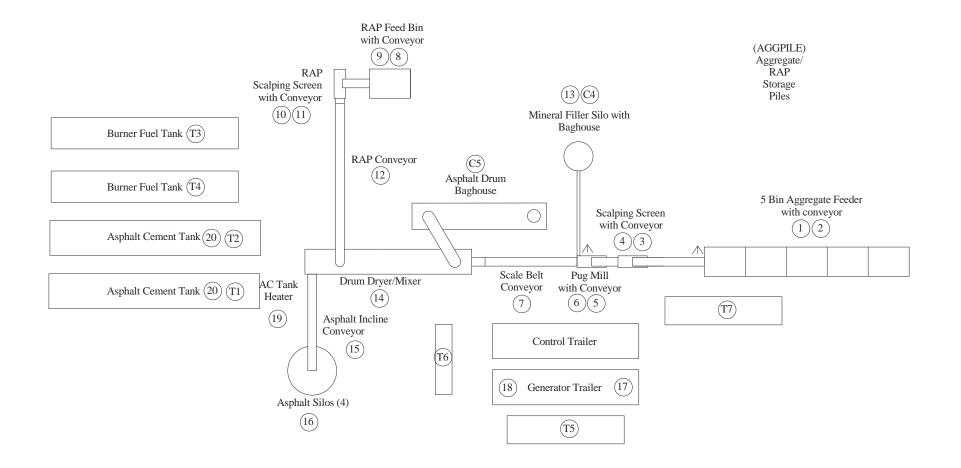
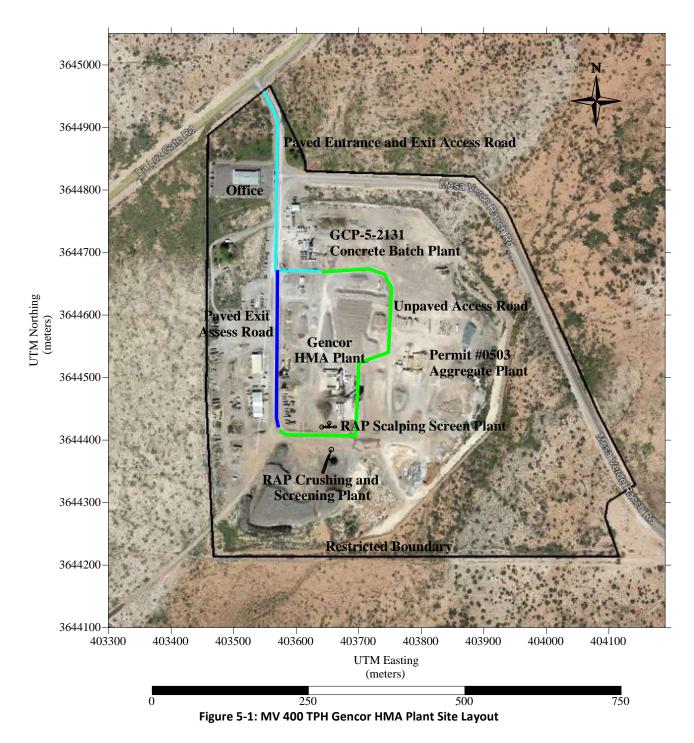



Figure 4-3: Process Flow of 400 TPH Gencor HMA Plant

Section 5

Plot Plan Drawn to Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.

(4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

RAP Crushing/Screening Plant and RAP Scalping Screen Plant

Pre-Control Particulate Emission Rates

Material Handling (PM_{2.5}, PM₁₀, and PM)

To estimate material handling pre-control particulate emissions rates for crushing, screening, and conveyor transfer operations, emission factors were obtained from EPA's <u>Compilation of Air Pollutant Emission Factors</u>, Volume I: <u>Stationary</u> <u>Point and Area Sources</u>, Aug. 2004, Section 11.19.2, Table 11.19.2-2. To determine missing PM_{2.5} emission factors the ratio of 0.35/0.053 from PM₁₀/PM_{2.5} *k* factors found in AP-42 Section 13.2.4 (11/2006) were used.

To estimate material handling particulate emission rates for aggregate handling operations (aggregate and RAP storage piles/ loading feed bins), an emission equation was obtained from EPA's <u>Compilation of Air Pollutant Emission Factors</u>, Volume I: <u>Stationary Point and Area Sources</u>, Fifth Edition, Section 13.2.4 (11/2004), where the k (TSP = 0.74, $PM_{10} = 0.35$, $PM_{2.5} = 0.053$), wind speed for determining the maximum hourly emission rate is the NMED default of 11 MPH and for determining the annual emission rate is based on the average wind speed for Alamogordo, found on the internet, of 9.6 mph (see Section 7) and the NMED default moisture content of 2 percent.

Emission factors for processing RAP are reduced further to account for the inherent properties of RAP with a coating of asphalt oils which captures small particles within the material. Based on EPA documents "EIIP – Preferred and Alternative Methods for Estimating Air Emissions from Hot-Mix-Asphalt Plants, Final Report, July 1996, Table 3.2-1 Fugitive Dust – Crushed RAP material" the inherent typical efficiency of the material is 70% (see Section 7). The below emission equations are multiplied by 0.3 and are summarized below.

Uncontrolled annual emissions for tons per year (tpy) were calculated assuming daylight operation for 4380 hours per year. This limit is based on the natural limitation of daylight hours for the safety of MSCI personnel operating the RAP plants.

RAP Material Handling – Storage Piles, and Feed Bin Loading Emission Equation with 70% inherent emission reduction:

Maximum Hour Emission Factor E (lbs/ton) = k x 0.0032 x (U/5)^{1.3} / (M/2)^{1.4} * 0.3 E_{PM} (lbs/ton) = 0.74 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM10} (lbs/ton) = 0.35 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} * 0.3 $E_{PM2.5}$ (lbs/ton) = 0.053 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM} (lbs/ton) = 0.00198 lbs/ton; E_{PM10} (lbs/ton) = 0.00094 lbs/ton $E_{PM2.5}$ (lbs/ton) = 0.00014 lbs/ton

Annual Emission Factor

E (lbs/ton) = k x 0.0032 x (U/5)^{1.3} / (M/2)^{1.4} * 0.3 E_{PM} (lbs/ton) = 0.74 x 0.0032 x (9.6/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM10} (lbs/ton) = 0.35 x 0.0032 x (9.6/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM2.5} (lbs/ton) = 0.053 x 0.0032 x (9.6/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM} (lbs/ton) = 0.00166 lbs/ton; E_{PM10} (lbs/ton) = 0.00078 lbs/ton E_{PM2.5} (lbs/ton) = 0.00012 lbs/ton

AP-42 Section 11.19.2 Table 11.19.2-2 Emission Factors:

All Bin Unloading and Conveyor Transfers = Uncontrolled Conveyor Transfer Point Emission Factor

Crushing = Uncontrolled Tertiary Crushing Emission Factor

Screening = Uncontrolled Screening Emission Factor

Aggregate Material Handling Emission Factors:

Process Unit	PM Emission Factor (lbs/ton)	PM10 Emission Factor (lbs/ton)	PM _{2.5} Emission Factor (lbs/ton)
Uncontrolled Tertiary Crushing	0.00540	0.00240	0.00036
Uncontrolled Screening	0.02500	0.00870	0.00130
Feed Bin Unloading, and Conveyor Transfers	0.00300	0.00110	0.00017

These emission factors are reduced further to account for the inherent properties of RAP with a coating of asphalt oils which captures small particles within the material. Based on EPA documents "EIIP – Preferred and Alternative Methods for Estimating Air Emissions from Hot-Mix-Asphalt Plants, Final Report, July 1996, Table 3.2-1 Fugitive Dust – Crushed RAP material" the inherent typical efficiency of the material is 70% (see Section 7). The above emission factors are multiplied by 0.3 and are summarized below.

RAP Handling Emission Factors:

Process Unit	PM Emission Factor (lbs/ton)	PM ₁₀ Emission Factor (lbs/ton)	PM _{2.5} Emission Factor (lbs/ton)
Uncontrolled Tertiary Crushing	0.00162	0.00072	0.00011
Uncontrolled Screening	0.00750	0.00261	0.00040
Feed Bin Unloading, and Conveyor Transfers	0.00090	0.00033	0.00005

The following equation was used to calculate the hourly emission rate for each process unit:

Emission Rate (lbs/hour) = F

= Process Rate (tons/hour) * Emission Factor (lbs/ton)

The following equation was used to calculate the annual emission rate for each process unit:

Form-Section 6 last revised: 5/3/16

Section 6, Page 3

Emission Rate (tons/year)

= <u>Emission Rate (lbs/hour) * Operating Hour (hrs/year)</u> 2000 lbs/ton

Table 6-1 Pre-Controlled Process Equipment Emission Rates

Unit #	Process Unit Description	Process Rate (tph)	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM _{2.5} Emission Rate (Ibs/hr)	PM2.5 Emission Rate (tons/yr)
RAPPILE	RAP Raw Material Source	300	0.59	0.95	0.28	0.45	0.043	0.068
21	RAP Feeder Loading	300	0.59	0.95	0.28	0.45	0.043	0.068
22	RAP Vertical Impact Crusher	300	0.49	0.93	0.22	0.41	0.033	0.063
23	RAP Crusher Conveyor	300	0.27	0.52	0.10	0.19	0.015	0.029
24	RAP Recycle Conveyor #2	300	0.27	0.52	0.10	0.19	0.015	0.029
25	RAP Conveyor	300	0.27	0.52	0.10	0.19	0.015	0.029
26	RAP Screen Conveyor	300	0.27	0.52	0.10	0.19	0.015	0.029
27	RAP Screen	300	2.25	4.31	0.78	1.50	0.12	0.23
28	RAP Recycle Conveyor #1	300	0.27	0.52	0.10	0.19	0.015	0.029
29	RAP Waste Conveyor	300	0.27	0.52	0.10	0.19	0.015	0.029
30	RAP Product Conveyor	300	0.27	0.52	0.10	0.19	0.015	0.029
31	RAP Stacker Conveyors (2) Drop to Pile	300	0.59	0.95	0.28	0.45	0.043	0.068
32	RAP Product Storage Pile	300	0.59	0.95	0.28	0.45	0.043	0.068
34	RAP Screen Plant Feeder	300	0.59	0.95	0.28	0.45	0.043	0.068
35	RAP Screen Plant Feeder Conveyor	300	0.27	0.52	0.099	0.19	0.015	0.029
36	RAP Screen Plant Screen	300	2.25	4.31	0.78	1.50	0.12	0.23
37	RAP Screen Plant Stacker Conveyor	300	0.27	0.52	0.099	0.19	0.015	0.029
38	RAP Screen Plant Screen Conveyor	300	0.27	0.52	0.099	0.19	0.015	0.029
39	RAP Screen Plant Stacker Conveyor (2) Drop to Pile	300	0.59	0.95	0.28	0.45	0.043	0.068
		TOTALS	11.25	20.45	4.46	8.02	0.68	1.21

Allowable Particulate Emission Rates

No controls or emission reductions for hourly particulate matter emission rates are proposed for Unit RAPPILE, Units 21 - 32, and Units 33 - 39. The only control is limiting annual throughput for annual emission reductions.

Unit #	Process Unit Description	Process Rate (tph) (tpy)	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM _{2.5} Emission Rate (Ibs/hr)	PM _{2.5} Emission Rate (tons/yr)
RAPPILE	RAP Raw Material Source	300, 400,000	0.59	0.33	0.28	0.16	0.043	0.024
21	RAP Feeder Loading	300, 400,000	0.59	0.33	0.28	0.16	0.043	0.024
22	RAP Vertical Impact Crusher	300, 400,000	0.49	0.32	0.22	0.14	0.033	0.022
23	RAP Crusher Conveyor	300, 400,000	0.27	0.18	0.10	0.066	0.015	0.010
24	RAP Recycle Conveyor #2	300, 400,000	0.27	0.18	0.10	0.066	0.015	0.010
25	RAP Conveyor	300, 400,000	0.27	0.18	0.10	0.066	0.015	0.010
26	RAP Screen Conveyor	300, 400,000	0.27	0.18	0.10	0.066	0.015	0.010
27	RAP Screen	300, 400,000	2.25	1.50	0.78	0.52	0.12	0.079
28	RAP Recycle Conveyor #1	300, 400,000	0.27	0.18	0.10	0.066	0.015	0.010
29	RAP Waste Conveyor	300, 400,000	0.27	0.18	0.10	0.066	0.015	0.010
30	RAP Product Conveyor	300, 400,000	0.27	0.18	0.10	0.066	0.015	0.010
31	RAP Stacker Conveyors (2) Drop to Pile	300, 400,000	0.59	0.33	0.28	0.16	0.043	0.024
32	RAP Product Storage Pile	300, 400,000	0.59	0.33	0.28	0.16	0.043	0.024
34	RAP Screen Plant Feeder	300, 400,000	0.59	0.33	0.28	0.16	0.043	0.024
35	RAP Screen Plant Feeder Conveyor	300, 400,000	0.27	0.18	0.099	0.066	0.015	0.010
36	RAP Screen Plant Screen	300, 400,000	2.25	1.50	0.78	0.52	0.12	0.079
37	RAP Screen Plant Stacker Conveyor	300, 400,000	0.27	0.18	0.099	0.066	0.015	0.010
38	RAP Screen Plant Screen Conveyor	300, 400,000	0.27	0.18	0.099	0.066	0.015	0.010
39	RAP Screen Plant Stacker Conveyor (2) Drop to Pile	300, 400,000	0.59	0.33	0.28	0.16	0.043	0.024
		TOTALS	11.25	7.11	4.46	2.79	0.68	0.42

Estimates for 416 hp RAP Crushing and Screening Plant Diesel-Fired Engine (NO_X, CO, SO₂, VOC, PM, and CO₂)

A 416 horsepower (hp), 310 kilowatt (kW) engine (Unit 33) provides power to the RAP crushing and screening plant. Emission rates for NO_X, CO, PM and NMHC are based on AP-42 Section 3.3 emission factors (See Section 7). Sulfur dioxide (SO₂) emissions are estimated based on sulfur content of diesel fuel, not to exceed 0.05% fuel content and a fuel usage rate of 21.4 gal/hr. CO₂ emission rates are found in AP-42 Section 3.3. Uncontrolled annual emissions in tons per year (tpy) were calculated assuming daylight operation of 4380 hours per year. Allowable annual emissions in tons per year were calculation using the maximum requested annual hours of operation of 3833.

Manufacturer:

Pollutant	Emission Factor (lbs/hp-hr)	
Nitrogen Oxide	0.031	
Carbon Monoxides	0.00668	
Particulate	0.0022	
Hydrocarbons	0.00247	

Sulfur dioxide emission rate was calculated using the fuel consumption rate for this engine of 21.4 gallons per hour, a fuel density of 7.1 pounds per gallon, a fuel sulfur content of 500 PPM, and a sulfur to sulfur dioxide conversion factor of two (2). The following equation calculates the emission rate for sulfur dioxide (SO₂).

Emission Rate (lbs/hr) = Fuel (gal/hr) * Density lbs/gal * % Sulfur Content * Factor

Emission Rate (lbs/hr) =	21.4 gallons	7.1 lbs	0.0005 lbs Sulfur	2 lbs Sulfur Dioxide
	hr	gallon	lbs of fuel	1 lb Sulfur

Emission Rate (lbs/hr) = 0.15 lbs/hr

Carbon Dioxide emissions were estimated using AP-42 Table 3.3-1 emission factor of 1.15 lbs/hp-hr.

The following equation was used to calculate the annual emission rate for each engine pollutant:

Emission Rate (tons/year) = Emission Rate (lbs/hour) * Operating Hour (hrs/year) 2000 lbs/ton

Process Unit Number	Pollutant	Engine Rating (hp)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
33	NOx	416	12.90	28.24
	СО	416	2.78	6.09
	SO ₂	416	1.03	2.25
	VOC	416	0.15	0.33
	PM	416	0.92	2.00
	CO2	416	478.4	1047.70

Table 6-3: Pre-Controlled Combustion Emission Rates

Table 6-4: Requested Allowable Combustion Emission Rates

Process Unit Number	Pollutant	Engine Rating (hp)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
33	NOx	416	12.90	24.72
	СО	416	2.78	5.33
	SO ₂	416	1.03	1.97
	VOC	416	0.15	0.29
	PM	416	0.92	1.75
	CO ₂	416	478.4	916.85

Estimates for 127 hp RAP Scalping Screen Plant Diesel-Fired Engine (NO_X, CO, SO₂, VOC, PM, and CO₂)

A 127 horsepower (hp), 100 kilowatt (kW) engine (Unit 40) provides power to the RAP scalping screen plant. Emission rates for NO_x, CO, PM and NMHC are based on EPA AP-42 Tier 4f emission factors. Sulfur dioxide (SO₂) emissions are estimated based on sulfur content of diesel fuel, not to exceed 0.05% fuel content and a fuel usage rate of 6.5 gal/hr. CO₂ emission rates are found in AP-42 Section 3.3. Uncontrolled annual emissions in tons per year (tpy) were calculated assuming daylight operation of 4380 hours per year. Allowable annual emissions in tons per year were calculation using the maximum requested annual hours of operation of 3833.

EPA Tier 2:

Pollutant	Emission Factor (g/kW-hr)	
Nitrogen Oxide	0.40	
Carbon Monoxides	5.00	
Particulate	0.02	
Hydrocarbons	0.19	

Sulfur dioxide emission rate was calculated using the fuel consumption rate for this engine of 6.5 gallons per hour, a fuel density of 7.1 pounds per gallon, a fuel sulfur content of 15 PPM, and a sulfur to sulfur dioxide conversion factor of two (2). The following equation calculates the emission rate for sulfur dioxide (SO₂).

Emission Rate (lbs/hr) = Fuel (gal/hr) * Density lbs/gal * % Sulfur Content * Factor

Emission Rate (lbs/hr) =	6.5 gallons	7.1 lbs	0.000015 lbs Sulfur	2 lbs Sulfur Dioxide
	hr	gallon	lbs of fuel	1 lb Sulfur

Emission Rate (lbs/hr) = 0.0014 lbs/hr

Carbon Dioxide emissions were estimated using AP-42 Table 3.3-1 emission factor of 1.15 lbs/hp-hr.

The following equation was used to calculate the annual emission rate for each engine pollutant:

Emission Rate (tons/year) = Emission Rate (lbs/hour) * Operating Hour (hrs/year) 2000 lbs/ton

Process Unit Number	Pollutant	Engine Rating (hp)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
40	NOx	127	0.088	0.39
	СО	127	1.10	4.83
	SO ₂	127	0.0014	0.0061
	VOC	127	0.042	0.18
	РМ	127	0.0044	0.019
	CO ₂	127	146.05	639.7

Table 6-5: Pre-Controlled Combustion Emission Rates

Table 6-6: Requested Allowable Combustion Emission Rates

Process Unit Number	Pollutant	Engine Rating (hp)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
40	NOx	127	0.088	0.17
	СО	127	1.10	2.11
	SO ₂	127	0.0014	0.0027
	voc	127	0.042	0.080
	PM	127	0.0044	0.0085
	CO ₂	127	146.05	279.9

	Uncontrolled Emission Totals														
		N	Ох	C	0	S	O 2	V	ос	Р	М	PI	M ₁₀	PN	1 2.5
Unit #	Description	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/y r	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
RAPPILE	RAP Raw Material Source	-	-	-	-	-	-	-	-	0.59	0.95	0.28	0.45	0.043	0.068
21	RAP Feeder/Hopper	-	-	-	-	-	-	-	-	0.59	0.95	0.28	0.45	0.043	0.068
22	RAP Vertical Impact Crusher	-	-	-	-	-	-	-	-	0.49	0.93	0.22	0.41	0.033	0.063
23	RAP Crusher Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.10	0.19	0.015	0.029
24	RAP Recycle Conveyor #2	-	-	-	-	-	-	-	-	0.27	0.52	0.10	0.19	0.015	0.029
25	RAP Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.10	0.19	0.015	0.029
26	RAP Screen Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.10	0.19	0.015	0.029
27	RAP Screen	-	-	-	-	-	-	-	-	2.25	4.31	0.78	1.50	0.12	0.23
28	RAP Recycle Conveyor #1	-	-	-	-	-	-	-	-	0.27	0.52	0.10	0.19	0.015	0.029
29	RAP Waste Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.10	0.19	0.015	0.029
30	RAP Product Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.10	0.19	0.015	0.029
31	RAP Stacker Conveyor (2) Drop to Pile	-	-	-	-	-	-	-	-	0.59	0.95	0.28	0.45	0.043	0.068
32	RAP Product Storage Pile	-	-	-	-	-	-	-	-	0.59	0.95	0.28	0.45	0.043	0.068
33	RAP Plant Generator/Engine	12.90	28.24	2.78	6.09	0.15	0.33	1.03	2.25	0.92	2.00	0.92	2.00	0.92	2.00
34	RAP Screen Plant Feeder	-	-	-	-	-	-	-	-	0.59	0.95	0.28	0.45	0.043	0.068
35	RAP Screen Plant Feeder Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.099	0.190	0.015	0.029
36	RAP Screen Plant Screen	-	-	-	-	-	-	-	-	2.25	4.31	0.78	1.50	0.12	0.227

Table 6-7: Summary of Uncontrolled NOx, CO, SO2, VOC, and PM Emission Rates – RAP Plants

	Uncontrolled Emission Totals														
	NOx CO SO2 VOC PM PM10 PM2.5								12.5						
									tons/y						
Unit #	Description	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	r	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
37	RAP Screen Plant	_	_	_	_	_	_	_	_	0.27	0.52	0.099	0.190	0.015	0.029
- 57	Stacker Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.099	0.190	0.015	0.029
38	RAP Screen Plant									0.27	0.52	0.099	0.190	0.015	0.029
50	Stacker Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.099	0.190	0.015	0.029
	RAP Screen Plant														
39	Stacker Conveyor (2)	-	-	-	-	-	-	-	-	0.59	0.95	0.28	0.45	0.043	0.068
	Drop to Pile														
40	RAP Screen Plant Engine	0.088	0.39	1.10	4.83	0.0014	0.0061	0.042	0.18	0.0044	0.019	0.0044	0.019	0.0044	0.019
40		0.000	0.39	1.10	4.05	0.0014	0.0001	0.042	0.10	0.0044	0.019	0.0044	0.019	0.0044	0.019
	Total	12.98	28.63	3.88	10.91	0.15	0.34	1.07	2.43	12.17	22.48	5.38	10.04	1.59	3.24

Table 6-7: Summary of Uncontrolled NOx, CO, SO2, VOC, and PM Emission Rates – RAP Plants

	Uncontrolled Emission Totals														
		N	Ох	C	0	S	O 2	V	ос	Р	M	PI	M ₁₀	PN	12.5
Unit #	Description	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/y r	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
RAPPILE	RAP Raw Material Source	-	-	-	-	-	-	-	-	0.59	0.33	0.28	0.16	0.043	0.024
21	RAP Feeder/Hopper	-	-	-	-	-	-	-	-	0.59	0.33	0.28	0.16	0.043	0.024
22	RAP Vertical Impact Crusher	-	-	-	-	-	-	-	-	0.49	0.32	0.22	0.14	0.033	0.022
23	RAP Crusher Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010
24	RAP Recycle Conveyor #2	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010
25	RAP Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010
26	RAP Screen Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010
27	RAP Screen	-	-	-	-	-	-	-	-	2.25	1.50	0.78	0.52	0.12	0.079
28	RAP Recycle Conveyor #1	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010
29	RAP Waste Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010
30	RAP Product Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010
31	RAP Stacker Conveyor (2) Drop to Pile	-	-	-	-	-	-	-	-	0.59	0.33	0.28	0.16	0.043	0.024
32	RAP Product Storage Pile	-	-	-	-	-	-	-	-	0.59	0.33	0.28	0.16	0.043	0.024
33	RAP Plant Generator/Engine	12.90	24.72	2.78	5.33	0.15	0.29	1.03	1.97	0.92	1.75	0.92	1.75	0.92	1.75
34	RAP Screen Plant Feeder	-	-	-	-	-	-	-	-	0.59	0.33	0.28	0.16	0.043	0.024
35	RAP Screen Plant Feeder Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010
36	RAP Screen Plant Screen	-	-	-	-	-	-	-	-	2.25	1.50	0.78	0.52	0.12	0.079

Table 6-8: Summary of Allowable NOx, C), SO2, VOC, and PM Emission Rates – RAP Plants
--	---

	Uncontrolled Emission Totals														
	NOx CO SO2 VOC PM PM10 PM2.5										12.5				
Unit #	Description	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/y r	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
37	RAP Screen Plant Stacker Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010
38	RAP Screen Plant Stacker Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010
39	RAP Screen Plant Stacker Conveyor (2) Drop to Pile	-	-	-	-	-	-	-	-	0.59	0.33	0.28	0.16	0.043	0.024
40	RAP Screen Plant Engine	0.088	0.17	1.10	2.11	0.0014	0.0027	0.042	0.080	0.0044	0.0085	0.0044	0.0085	0.0044	0.0085
	Total	12.98	24.88	3.88	7.44	0.15	0.29	1.07	2.05	12.17	8.88	5.38	4.55	1.59	2.18

Table 6-8: Summary of Allowable NOx, CO, SO2, VOC, and PM Emission Rates – RAP Plants

Estimates for Federal HAPs Air Pollutants

The RAP crushing and screening plant generator (Unit 33) and RAP scalping screen plant engine (Unit 40) are sources of HAPs as it appears in Section 112 (b) of the 1990 CAAA. Emissions of HAPs were determined for Units 33 and 40 generator/engines using AP-42 Section 3.3 and Section 1.3.

The following tables summarize the HAPs emission rates from the RAP crushing and screening plant generator and RAP scalping screen plant engine. Total combined HAPs emissions from RAP Plants are 0.023 pounds per hour and 0.0034 tons per year.

Table 6-9: HAPs Emission Rates from the RAP Crushing and Screening Plant Generator (33)

Horsepower Rating: Fuel Usage: MMBtu/hr: Btu x 10^-12/hr: Yearly Operating Hours:		21.4 2.7392 2.7392E-06 3833 21.4	horsepower gallons/hr Btu Btu x10^-12 hours per year	(based on 1280 (based on 1280	-	-
Type of Fuel: Emission Factors	Diesel AP-42 Sectio	n 3.3 and Secti	on 1.3			
Non-PAH HAPS	CAS#			Emission Factor (Ibs/mmBtu)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Acetaldehyde	75-07-0			7.67E-04	0.002101	0.004027
Acrolein	107-02-8			9.25E-05	0.000253	0.000486
Benzene	71-43-2			9.33E-04	0.002556	0.004898
1,3-Butadiene	106-99-0			3.91E-05	0.000107	0.000205
Formaldehyde	50-00-0			1.18E-03	0.003232	0.006195
Propylene	115-07-1			2.58E-03	0.007067	0.013544
Toluene	108-88-3			4.09E-04	0.001120	0.002147
Xylene	1330-20-7			2.85E-04	0.000781	0.001496
		Т	otal Non-PAH HAPS	6.29E-03	0.017218	0.032997
РАН НАРЅ	CAS#			Emission Factor (Ibs/mmBtu)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
-				Factor (lbs/mmBtu)	Rate (Ibs/hr)	Rate (ton/yr)
Acenaphthene	83-32-9			Factor (lbs/mmBtu) 1.42E-06	Rate (lbs/hr) 0.000004	Rate (ton/yr) 0.000007
Acenaphthene Acenaphthylene	83-32-9 208-96-8			Factor (lbs/mmBtu) 1.42E-06 5.06E-06	Rate (lbs/hr) 0.000004 0.000014	Rate (ton/yr) 0.000007 0.000027
Acenaphthene Acenaphthylene Anthracene	83-32-9 208-96-8 120-12-7			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06	Rate (lbs/hr) 0.000004 0.000014 0.000005	Rate (ton/yr) 0.000007 0.000027 0.000010
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	83-32-9 208-96-8 120-12-7 56-55-3			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06	Rate (lbs/hr) 0.000004 0.000014 0.000005 0.000005	Rate (ton/yr) 0.000007 0.000027 0.000010 0.000009
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07	Rate (lbs/hr) 0.000004 0.000014 0.000005 0.000005 0.000001	Rate (ton/yr) 0.000007 0.000027 0.000010 0.000009 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08	Rate (lbs/hr) 0.000004 0.000014 0.000005 0.000005 0.000001 0.000000	Rate (ton/yr) 0.000007 0.000027 0.000010 0.000001 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07	Rate (lbs/hr) 0.000004 0.000014 0.000005 0.000005 0.000001 0.000000 0.000000	Rate (ton/yr) 0.000007 0.000027 0.000010 0.000001 0.000001 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,l)perylene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07	Rate (lbs/hr) 0.000004 0.000014 0.000005 0.000005 0.000001 0.000000 0.000000 0.000001	Rate (ton/yr) 0.000007 0.000010 0.000001 0.000001 0.000001 0.000001 0.000003
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07	Rate (lbs/hr) 0.000004 0.000014 0.000005 0.000005 0.000001 0.000000 0.000001 0.000000	Rate (ton/yr) 0.000007 0.000010 0.000001 0.000001 0.000001 0.000001 0.000003 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,l)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07	Rate (lbs/hr) 0.000004 0.000014 0.000005 0.000005 0.000001 0.000000 0.000000 0.000000 0.000000	Rate (ton/yr) 0.000007 0.000027 0.000010 0.000001 0.000001 0.000001 0.000001 0.000003 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07	Rate (lbs/hr) 0.000004 0.000014 0.000005 0.000005 0.000001 0.000000 0.000001 0.000000 0.000002 0.000001	Rate (ton/yr) 0.000007 0.000027 0.000009 0.000001 0.000001 0.000001 0.000003 0.000003 0.000003
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06	Rate (lbs/hr) 0.000004 0.000014 0.000005 0.000005 0.000001 0.000000 0.000001 0.000000 0.000001 0.000001 0.000001 0.000001	Rate (ton/yr) 0.000007 0.000010 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000003 0.000002 0.000040
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06 2.92E-05	Rate (lbs/hr) 0.000004 0.000014 0.000005 0.000005 0.000001 0.000000 0.000001 0.000000 0.000002 0.000001 0.000021 0.000021 0.000080	Rate (ton/yr) 0.000007 0.000027 0.000010 0.000001 0.000001 0.000001 0.000003 0.000003 0.000002 0.000040 0.000153
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Benzo(g,h,l)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7 193-39-5			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 3.53E-07 7.61E-06 2.92E-05 3.75E-07	Rate (lbs/hr) 0.000004 0.000014 0.000005 0.000005 0.000001 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001 0.000021 0.000080 0.000001	Rate (ton/yr) 0.000007 0.000027 0.000000 0.000001 0.000001 0.000001 0.000003 0.000003 0.000002 0.000040 0.0000153 0.000002
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7 193-39-5 91-20-3			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06 2.92E-05 3.75E-07 8.48E-05	Rate (lbs/hr) 0.000004 0.000014 0.000005 0.000005 0.000001 0.000000 0.000001 0.000001 0.000001 0.000021 0.000021 0.000001 0.000001 0.0000232	Rate (ton/yr) 0.000007 0.000027 0.000010 0.000001 0.000001 0.000001 0.000003 0.000003 0.000002 0.000040 0.000153 0.00002 0.000445
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Benzo(g,h,l)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7 193-39-5			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 3.53E-07 7.61E-06 2.92E-05 3.75E-07	Rate (lbs/hr) 0.000004 0.000014 0.000005 0.000005 0.000001 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001 0.000021 0.000080 0.000001	Rate (ton/yr) 0.000007 0.000027 0.000000 0.000001 0.000001 0.000001 0.000003 0.000003 0.000002 0.000040 0.0000153 0.000002

HAPS Metals		Emission Factor (Ibs/Btu^12)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Arsenic		4	0.000011	0.000021
Beryllium		3	0.000008	0.000016
Cadmium		3	0.000008	0.000016
Chromium		3	0.000008	0.000016
Lead		9	0.000025	0.000047
Manganese		6	0.000016	0.000031
Mercury		3	0.000008	0.000016
Nickel		3	0.000008	0.000016
Selenium		15	0.000041	0.000079
	Total Metals HAPS	49	0.000134	0.000257
	Total HAPS		0.01781	0.00264

Table 6-10: HAPs Emission Rates from the RAP Scalping Screen Engine (40)

Horsepower Rating: Fuel Usage: MMBtu/hr: Btu x 10^-12/hr: Yearly Operating Hours:		127 6.5 0.832 0.00000832 3833	horsepower gallons/hr Btu Btu x10^-12 hours per year	(based on 1280 (based on 1280	-	-
Type of Fuel: Emission Factors	Diesel AP-42 Sectior	3.3 and Section	1.3			
Non-PAH HAPS	CAS#			Emission Factor (lbs/mmBtu)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
				,		
Acetaldehyde	75-07-0			7.67E-04	0.000638	0.001223
Acrolein	107-02-8			9.25E-05	0.000077	0.000147
Benzene	71-43-2			9.33E-04	0.000776	0.001488
1,3-Butadiene	106-99-0			3.91E-05	0.000033	0.000062
Formaldehyde	50-00-0			1.18E-03	0.000982	0.001882
Propylene	115-07-1			2.58E-03	0.002147	0.004114
Toluene	108-88-3			4.09E-04	0.000340	0.000652
Xylene	1330-20-7			2.85E-04	0.000237	0.000454
		Tota	al Non-PAH HAPS	6.29E-03	0.005230	0.010023
				Emission Factor	Emission Rate	Emission Rate
РАН НАРЅ	CAS#					
				Factor	Rate	Rate
Acenaphthene	83-32-9			Factor (lbs/mmBtu)	Rate (Ibs/hr)	Rate (ton/yr) 0.000002
	83-32-9 208-96-8			Factor (Ibs/mmBtu) 1.42E-06 5.06E-06	Rate (lbs/hr) 0.000001	Rate (ton/yr) 0.000002 0.000008
Acenaphthene Acenaphthylene Anthracene	83-32-9 208-96-8 120-12-7			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06	Rate (lbs/hr) 0.000001 0.000004 0.000002	Rate (ton/yr) 0.000002 0.000008 0.000003
Acenaphthene Acenaphthylene	83-32-9 208-96-8			Factor (Ibs/mmBtu) 1.42E-06 5.06E-06	Rate (lbs/hr) 0.000001 0.000004	Rate (ton/yr) 0.000002 0.000008
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	83-32-9 208-96-8 120-12-7 56-55-3			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06	Rate (lbs/hr) 0.000001 0.000004 0.000002 0.000001	Rate (ton/yr) 0.000002 0.000008 0.000003 0.000003
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8			Factor (Ibs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07	Rate (lbs/hr) 0.000001 0.000004 0.000002 0.000001 0.000000	Rate (ton/yr) 0.000002 0.000008 0.000003 0.000003 0.000000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2			Factor (Ibs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08	Rate (lbs/hr) 0.000001 0.000002 0.000001 0.000000 0.000000	Rate (ton/yr) 0.000002 0.000008 0.000003 0.000003 0.000000 0.000000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07	Rate (lbs/hr) 0.000001 0.000004 0.000002 0.000001 0.000000 0.000000 0.000000	Rate (ton/yr) 0.000002 0.000003 0.000003 0.000000 0.000000 0.000000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07	Rate (lbs/hr) 0.000001 0.000004 0.000002 0.000001 0.000000 0.000000 0.000000 0.000000	Rate (ton/yr) 0.000002 0.000008 0.000003 0.000003 0.000000 0.000000 0.000000 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2			Factor (Ibs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07	Rate (lbs/hr) 0.000001 0.000002 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000	Rate (ton/yr) 0.000002 0.000003 0.000003 0.000000 0.000000 0.000000 0.000001 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07	Rate (lbs/hr) 0.000001 0.000002 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000	Rate (ton/yr) 0.000002 0.000003 0.000003 0.000000 0.000000 0.000000 0.000001 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07	Rate (lbs/hr) 0.000001 0.000002 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000	Rate (ton/yr) 0.000002 0.000003 0.000003 0.000000 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06	Rate (lbs/hr) 0.000001 0.000002 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000	Rate (ton/yr) 0.000002 0.000003 0.000003 0.000000 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06 2.92E-05	Rate (lbs/hr) 0.000001 0.000002 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000	Rate (ton/yr) 0.000002 0.000003 0.000003 0.000000 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000012 0.000047
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7 193-39-5			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06 2.92E-05 3.75E-07	Rate (lbs/hr) 0.000001 0.000002 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000	Rate (ton/yr) 0.000002 0.000003 0.000003 0.000000 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7 193-39-5 91-20-3			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06 2.92E-05 3.75E-07 8.48E-05	Rate (lbs/hr) 0.000001 0.000002 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000	Rate (ton/yr) 0.000002 0.000003 0.000003 0.000000 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000012 0.000047 0.000001 0.0000135

Total PAH HAPS

1.68E-04

0.000140

0.000268

HAPS Metals		Emission Factor (lbs/Btu^12)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Arsenic		4	0.000003	0.000006
Beryllium		3	0.000002	0.000005
Cadmium		3	0.000002	0.000005
Chromium		3	0.000002	0.000005
Lead		9	0.000007	0.000014
Manganese		6	0.000005	0.000010
Mercury		3	0.000002	0.000005
Nickel		3	0.000002	0.000005
Selenium		15	0.000012	0.000024
	Total Metals HAPS	49	0.000041	0.000078

Total HAPS

0.00541 0.00080

Pre-Control Particulate Emission Rates

Material Handling (PM2.5, PM10, and PM)

To estimate material handling pre-control particulate emissions rates for screening, pugmill, and conveyor transfer operations, emission factors were obtained from EPA's <u>Compilation of Air Pollutant Emission Factors</u>, Volume I: <u>Stationary</u> <u>Point and Area Sources</u>, Aug. 2004, Section 11.19.2, Table 11.19.2-2. To determine missing PM_{2.5} emission factors the ratio of 0.35/0.053 from PM₁₀/PM_{2.5} *k* factors found in AP-42 Section 13.2.4 (11/2006) were used.

To estimate material handling pre-control particulate emission rates for aggregate handling operations (aggregate and RAP piles/ loading cold and RAP feed bins), an emission equation was obtained from EPA's <u>Compilation of Air Pollutant Emission</u> <u>Factors, Volume I: Stationary Point and Area Sources</u>, Fifth Edition, Section 13.2.4 (11/2004), where the k (PM = 0.74, PM₁₀ = 0.35, PM_{2.5} = 0.053), wind speed for determining the maximum hourly emission rate is the NMED default of 11 MPH and for determining the annual emission rate is based on the average wind speed for Alamogordo found on the internet of 9.6 mph (see Section 7), and the NMED default moisture content of 2 percent.

The asphalt may will contain 1.5% mineral filler, if Evotherm is not used. Pre-control particulate emissions rates for mineral filler silo loading was obtained from EPA's <u>Compilation of Air Pollutant Emission Factors</u>, Volume I: <u>Stationary Point and Area</u> <u>Sources</u>, Fifth Edition, Section 11.12 (06/06), Table 11.12-2 "Cement Unloading to Elevated Storage Silo". To determine missing PM_{2.5} emission factors the ratio of 1.92/0.38 from PM₁₀/PM_{2.5} uncontrolled k factors found in AP-42 Section 11.12 (06/06), Table 11.12-4 "Central Mix Operation" was used.

Maximum hourly asphalt production is 400 tons per hours. Virgin aggregate/RAP/Mineral filler/Asphalt cement ratios used in estimating material handling particulate emission rates is equal to 47.5/45.0/1.5/6.0. These ratios are estimates and ratios may change with mix requirements, these are not requested permit conditions.

Aggregate Storage Piles and Cold Feed Bin Loading Emission Equation:

Maximum Hour Emission Factor

$$\begin{split} & \mathsf{E} \; (\mathsf{lbs/ton}) = \mathsf{k} \; \mathsf{x} \; 0.0032 \; \mathsf{x} \; (\mathsf{U}/\mathsf{5})^{1.3} \; / \; (\mathsf{M}/\mathsf{2})^{1.4} \\ & \mathsf{E}_{\mathsf{PM}} \; (\mathsf{lbs/ton}) = 0.74 \; \mathsf{x} \; 0.0032 \; \mathsf{x} \; (11/5)^{1.3} \; / \; (2/2)^{1.4} \\ & \mathsf{E}_{\mathsf{PM10}} \; (\mathsf{lbs/ton}) = 0.35 \; \mathsf{x} \; 0.0032 \; \mathsf{x} \; (11/5)^{1.3} \; / \; (2/2)^{1.4} \\ & \mathsf{E}_{\mathsf{PM2.5}} \; (\mathsf{lbs/ton}) = 0.053 \; \mathsf{x} \; 0.0032 \; \mathsf{x} \; (11/5)^{1.3} \; / \; (2/2)^{1.4} \\ & \mathsf{E}_{\mathsf{PM}} \; (\mathsf{lbs/ton}) = 0.00660 \; \mathsf{lbs/ton}; \\ & \mathsf{E}_{\mathsf{PM10}} \; (\mathsf{lbs/ton}) = 0.00312 \; \mathsf{lbs/ton} \\ & \mathsf{E}_{\mathsf{PM2.5}} \; (\mathsf{lbs/ton}) = 0.00047 \; \mathsf{lbs/ton} \end{split}$$

Aggregate Storage Piles and Cold Feed Bin Loading Emission Equation:

Annual Emission Factor

E (lbs/ton) = k x 0.0032 x (U/5)^{1.3} / (M/2)^{1.4} E_{PM} (lbs/ton) = 0.74 x 0.0032 x (9.6/5)^{1.3} / (2/2)^{1.4} E_{PM10} (lbs/ton) = 0.35 x 0.0032 x (9.6/5)^{1.3} / (2/2)^{1.4} $E_{PM2.5}$ (lbs/ton) = 0.053 x 0.0032 x (9.6/5)^{1.3} / (2/2)^{1.4} E_{PM} (lbs/ton) = 0.00553 lbs/ton; E_{PM10} (lbs/ton) = 0.00262 lbs/ton $E_{PM2.5}$ (lbs/ton) = 0.00040 lbs/ton

RAP material handling emission factors are reduced further to account for the inherent properties of RAP with a coating of asphalt oils which captures small particles within the material. Based on EPA documents "EIIP – Preferred and Alternative

Mesa Verde Enterprises, Inc.

Methods for Estimating Air Emissions from Hot-Mix-Asphalt Plants, Final Report, July 1996, Table 3.2-1 Fugitive Dust – Crushed RAP material" the inherent typical efficiency of the material is 70% (see Section 7).

RAP Storage Piles and RAP Feed Bin Loading Emission Equation:

Maximum Hour Emission Factor

E (lbs/ton) = k x 0.0032 x (U/5)^{1.3} / (M/2)^{1.4} * 0.3 E_{PM} (lbs/ton) = 0.74 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM10} (lbs/ton) = 0.35 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM2.5} (lbs/ton) = 0.053 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM} (lbs/ton) = 0.00198 lbs/ton; E_{PM10} (lbs/ton) = 0.00094 lbs/ton E_{PM2.5} (lbs/ton) = 0.00014 lbs/ton

RAP Storage Piles and RAP Feed Bin Loading Emission Equation:

Annual Emission Factor

E (lbs/ton) = k x 0.0032 x (U/5)^{1.3} / (M/2)^{1.4} * 0.3 E_{PM} (lbs/ton) = 0.74 x 0.0032 x (9.6/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM10} (lbs/ton) = 0.35 x 0.0032 x (9.6/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM2.5} (lbs/ton) = 0.053 x 0.0032 x (9.6/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM} (lbs/ton) = 0.00166 lbs/ton; E_{PM10} (lbs/ton) = 0.00078 lbs/ton E_{PM2.5} (lbs/ton) = 0.00012 lbs/ton

AP-42 Emission Factors:

All Bin Unloading and Conveyor Transfers = Uncontrolled Conveyor Transfer Point Emission Factor Screening = Uncontrolled Screening Emission Factor Pugmill Loading and Unloading = Uncontrolled Conveyor Transfer Point Emission Factor

Material Handling Emission Factors Aggregate:

Process Unit	PM Emission Factor (lbs/ton)	PM ₁₀ Emission Factor (lbs/ton)	PM _{2.5} Emission Factor (Ibs/ton)
Uncontrolled Screening	0.02500	0.00870	0.00132
Uncontrolled Screen Unloading, Pug Mill Loading and Unloading, Feed Bin Unloading, and Conveyor Transfers	0.00300	0.00110	0.00017
Uncontrolled Aggregate Storage Piles, Cold Aggregate Feeder Loading Max Hourly	0.00660	0.00312	0.00047
Uncontrolled Aggregate Storage Piles, Cold Aggregate Feeder Loading Annual	0.00553	0.00262	0.00040

RAP material handling emission factors are reduced further to account for the inherent properties of RAP with a coating of asphalt oils which captures small particles within the material. Based on EPA documents "EIIP – Preferred and Alternative Methods for Estimating Air Emissions from Hot-Mix-Asphalt Plants, Final Report, July 1996, Table 3.2-1 Fugitive Dust – Crushed RAP material" the inherent typical efficiency of the material is 70% (see Section 7).

Form-Section 6 last revised: 5/3/16

Material Handling Emission Factors RAP:

Process Unit	PM Emission Factor (lbs/ton)	PM ₁₀ Emission Factor (lbs/ton)	PM _{2.5} Emission Factor (lbs/ton)
Uncontrolled Screening	0.00750	0.00261	0.00040
Uncontrolled Screen Unloading, Feed Bin Unloading, and Conveyor Transfers	0.00090	0.00033	0.00005
Uncontrolled RAP Storage Piles, RAP Feeder Loading Max Hourly	0.00198	0.00094	0.00014
Uncontrolled RAP Storage Piles, RAP Feeder Loading Annual	0.00166	0.00078	0.00012

AP-42 Section 11.12 Table 11.12-2 Uncontrolled Emission Factors:

Process Unit	PM	PM10	PM _{2.5}
	Emission Factor	Emission Factor	Emission Factor
	(lbs/ton)	(lbs/ton)	(Ibs/ton)
Mineral Filler Silo Loading	0.73	0.47	0.093

The following equation was used to calculate the hourly emission rate for each process unit:

Emission Rate (lbs/hour) = Process Rate (tons/hour) * Emission Factor (lbs/ton)

The following equation was used to calculate the annual emission rate for each process unit:

Emission Rate (tons/year) = Emission Rate (lbs/hour) * Operating Hour (hrs/year) 2000 lbs/ton

Unit #	Process Unit Description	Process Rate (tph)	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM _{2.5} Emission Rate (Ibs/hr)	PM2.5 Emission Rate (tons/yr)
AGGPILE	Cold Aggregate Storage Pile	190	1.25	4.60	0.59	2.18	0.090	0.33
1	Cold Aggregate Feed Bin Loading	190	1.25	4.60	0.59	2.18	0.090	0.33
2	Cold Aggregate Feed Bin Unloading (Conveyor)	190	0.57	2.50	0.21	0.92	0.032	0.14
3	Scalping Screen	190	4.75	20.8	1.65	7.24	0.25	1.10
4	Scalping Screen Unloading (Conveyor)	190	0.57	2.50	0.21	0.92	0.032	0.14
5	Pug Mill Load	196	0.59	2.58	0.22	0.94	0.033	0.15
6	Pug Mill Unload (Conveyor)	196	0.59	2.58	0.22	0.94	0.033	0.15
7	Conveyor Transfer to Slinger Conveyor	196	0.59	2.58	0.22	0.94	0.033	0.15
AGGPILE	RAP Storage Pile	180	0.36	1.31	0.17	0.62	0.026	0.094
8	RAP Feed Bin Loading	180	0.36	1.31	0.17	0.62	0.026	0.094
9	RAP Feed Bin Unloading (Conveyor)	180	0.16	0.71	0.059	0.26	0.0092	0.040
10	RAP Screen	180	1.35	5.9	0.47	2.06	0.071	0.31
11	RAP Screen Unloading (Conveyor)	180	0.16	0.71	0.059	0.26	0.0092	0.040
12	RAP Transfer Conveyor	180	0.16	0.71	0.059	0.26	0.0092	0.040
13	Mineral Filler Silo	25 tph, 52,560 tpy	18.3	19.2	11.8	12.4	2.33	2.44
		TOTALS	31.0	72.6	16.64	32.7	3.07	5.54

Table 6-11: Pre-Controlled Regulated Process Equipment Emission Rates

HMA Plant Haul Truck Travel

Haul truck travel emissions were estimated using AP-42, Section 13.2.2 (ver.11/06) "Unpaved Roads" emission equation. The haul road to the plant will be unpaved. Table 6-12 summarizes the emission rate for each haul truck category. The facility is an existing site with pavement at the entrance and exit and surfactants on the unpaved interior roads. All traffic is from the site entrance to the HMA.

Unpaved Roads Plant HMA

AP-42, Section 13.2.2 (ver.11/06) "Unpaved Roads"

 $E = k * (s/12)^{a} * (W/3)^{b} * [(365 - p)/365] * VMT$ Where k = constantPM2.5 = 0.15PM10 = 1.5 PM = 4.9s = % silt content (Table 13.2.2-1, "Sand and Gravel" 4.8%) W = mean vehicle weight (26.5 tons – 15 tons truck, 23 tons load) p = number of days with at least 0.01 in of precip. (70 days) a = Constant PM2.5 = 0.9 PM10 = 0.9 PM = 0.7 b = Constant PM2.5 = 0.45PM10 = 0.45 PM = 0.45 Unpaved Vehicle Dust Control 90% Paved Vehicle Dust Control 95% Trucks per Hour Mineral Fill Trucks = 0.2 truck per hour average Asphalt Cement Trucks = 1.0 truck per hour average Asphalt Trucks = 16.2 truck per hour average Aggregate Trucks = 7.7 truck per hour average RAP Trucks = 7.3 truck per hour average Evotherm Trucks = 0.03 truck per hour average Trucks per Year (Uncontrolled) Mineral Fill Trucks = 2,130 truck per year Asphalt Cement Trucks = 8,519 truck per year Asphalt Trucks = 141,988 truck per year Aggregate Trucks = 67,444 truck per year RAP Trucks = 63,895 truck per year Evotherm Trucks = 271 truck per year VMT =Vehicle Miles Traveled Mineral Fill Trucks Paved – 0.55376 miles per vehicle Asphalt Cement Trucks Paved – 0.55376 miles per vehicle Aggregate Trucks Paved – 0.55376 miles per vehicle **RAP Trucks** Paved – 0.55376 miles per vehicle Evotherm Trucks Paved – 0.55376 miles per vehicle VMT =Vehicle Miles Traveled Mineral Fill Trucks Unpaved - 0.34618 miles per vehicle Asphalt Cement Trucks Unpaved – 0.34618 miles per vehicle Aggregate Trucks Unpaved - 0.34618 miles per vehicle **RAP Trucks** Unpaved - 0.34618 miles per vehicle Evotherm Trucks Unpaved – 0.34618 miles per vehicle Miles Traveled HMA Plant HMA Plant

Paved – 17.96871 miles per hour; 157,406 miles per year Unpaved – 11.23307 miles per hour; 98,402 miles per year

Reduction in emissions due to precipitation was only accounted for in the annual emission rate. Particulate emission rate per vehicle mile traveled for each particle size category is:

Paved

Hourly Emission Rate Factor – 95% Existing Control PM = 6.87692 lbs/VMT PM10 = 1.75267 lbs/VMT PM2.5 = 0.17527 lbs/VMT

Annual Emission Rate Factor – 95% Existing Control

PM = 5.55806 lbs/VMT PM10 = 1.41655 lbs/VMT PM2.5 = 0.14165 lbs/VMT

Unpaved

Hourly Emission Rate Factor – 90% Existing Control PM = 6.87692 lbs/VMT PM10 = 1.75267 lbs/VMT PM2.5 = 0.17527 lbs/VMT

Annual Emission Rate Factor – 90% Existing Control

PM = 5.55806 lbs/VMT PM10 = 1.41655 lbs/VMT PM2.5 = 0.14165 lbs/VMT

Process Unit Description	Process Rate	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM2.5 Emission Rate (Ibs/hr)	PM _{2.5} Emission Rate (tons/yr)
Mineral Filler Truck Emissions	Unpaved 0.08417 miles/hr; 737 miles/yr Paved 0.13464 miles/hr: 1179 miles/yr	0.10	0.37	0.027	0.094	0.0027	0.009
Asphalt Cement Truck Emissions	Unpaved 0.33667 miles/hr; 2949 miles/yr Paved 0.53855 miles/hr: 4718 miles/yr	0.42	1.48	0.11	0.38	0.011	0.038
Asphalt Truck Emissions Paved	Unpaved 5.61119 miles/hr; 49154 miles/yr Paved 8.97580 miles/hr: 78628 miles/yr	6.95	24.59	1.77	6.27	0.18	0.63
Aggregate Truck Emissions Paved	Unpaved 2.66531 miles/hr; 23348 miles/yr Paved 4.26350 miles/hr: 37348 miles/yr	3.30	11.68	0.84	2.98	0.084	0.30
RAP Truck Emissions	Unpaved 2.52503 miles/hr; 22119 miles/yr Paved 4.03911 miles/hr: 35383 miles/yr	3.13	11.06	0.80	2.82	0.080	0.28
Evotherm Truck Emissions	Unpaved 0.01070 miles/hr; 94 miles/yr Paved 0.01712 miles/hr: 150 miles/yr	0.012	0.042	0.0030	0.011	0.00030	0.0011
	Total	13.90	49.2	3.54	12.54	0.35	1.25

Drum Mix Hot Mix Asphalt Plant

Drum mix hot mix asphalt plant uncontrolled emissions were estimated using AP-42, Section 11.1 "Hot Mix Asphalt Plants" (revised 03/04), tables 11.1.3, 7, 8 and 14 emission equations. The drum dryer will be permitted to combust on-spec recycled oil. Hourly emission rates are based on maximum hourly asphalt production (400 tph) and maximum annual emission rates are based on operating 8760 hours per year. To determine missing PM_{2.5} emission factor the sum of uncontrolled filterable from Table 11.1-4 plus uncontrolled organic and inorganic condensable in Table 11.1-3 was used. Silo filling and plant loadout emission factors were calculated using the default value of -0.5 for asphalt volatility (V) and a tank temperature setting of 350° F for HMA mix temperature (T).

Silo Filling	
Total PM	$EF = 0.000332 + 0.00105(-V)e^{((0.0251)(T + 460) - 20.43)}$
ТОС	$EF = 0.0504(-V)e^{((0.0251)(T + 460) - 20.43)}$
CO	EF = 0.00488(-V)e ^{((0.0251)(T + 460) - 20.43)}
<u>Plant Loadout</u>	
Total PM	$EF = 0.000181 + 0.00141(-V)e^{((0.0251)(T + 460) - 20.43)}$
ТОС	$EF = 0.0172(-V)e^{((0.0251)(T + 460) - 20.43)}$
CO	EF = 0.00558(-V)e ^{((0.0251)(T + 460) - 20.43)}

Yard emissions were found in AP-42 Section 11.1.2.5. TOC emission equation is 0.0011 lbs/ton of asphalt produced and CO is equal to the TOC emission rate times 0.32.

Emissions of VOCs (TOCs) from the asphalt cement storage tanks were determined with EPA's TANK 4.0.9d program and the procedures found in EPA's "Emission Factor Documentation for AP-42 Section 11.1 (12/2000) Section 4.4.5" for input to the TANK program.

AP-42 Section 11.1 Table 11.1-3, -4, -7, -8, and -14 Uncontrolled Emission Factors:

Process Unit	Pollutant	Emission Factor (lbs/ton)
Drum Mixer	NOx	0.055
	СО	0.13
	SO ₂	0.058
	VOC	0.032
	тос	0.044
	PM	28.0
	PM10	6.5
	PM _{2.5}	1.565
	CO ₂	33.0
Silo Filling	CO	0.002210012
	тос	0.022824716
	PM	0.000807515
	PM10	0.000807515
	PM _{2.5}	0.000807515
Plant Loadout	CO	0.002527022
	тос	0.007789387
	PM	0.000819549
	PM10	0.000819549
	PM _{2.5}	0.000819549
Yard	CO	0.000352
	ТОС	0.0011

The following equation was used to calculate the hourly emission rate for each process unit:

Emission Rate (lbs/hour) = Process Rate (tons/hour) * Emission Factor (lbs/ton)

The following equation was used to calculate the annual emission rate for each process unit:

Emission Rate (tons/year) = Emission Rate (lbs/hour) * Operating Hour (hrs/year) 2000 lbs/ton

Table 6-13: Pre-Controlled Hot Mix Plant Emission Rates

Process Unit Number	Process Unit Description	Pollutant	Average Hourly Process Rate (tons/hour)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
		NOx	400	22.00	96.36
		со	400	52.00	227.76
		SO ₂	400	23.20	101.62
		VOC	400	12.80	56.06
14	Asphalt Drum Dryer/Mixer	PM	400	11200.0	49056.0
		PM10	400	2600.0	11388.0
		PM2.5	400	626.0	2741.88
		CO ₂	400	13200.0	57816.0
	Silo Filling 15 (Drum Mixer Unloading)	СО	400	0.88	3.87
		тос	400	9.13	39.99
15		PM	400	0.32	1.41
		PM ₁₀	400	0.32	1.41
		PM2.5	400	0.32	1.41
		СО	400	1.01	1.01
		тос	400	3.12	3.12
16	Plant Loadout (Asphalt Silo Unloading)	PM	400	0.33	1.44
		PM10	400	0.33	1.44
		PM _{2.5}	400	0.33	1.44
20	Asphalt Cement Storage Tanks (2)	тос	30,000 gallons each	0.026	0.12
YARD	HMA YARD	тос	400	0.44	1.93
		СО	400	0.14	0.62

Controlled Particulate Emission Rates

No controls or emission reductions for combustion emissions (NO_x, CO, SO₂, VOC, or TOC) are proposed for the drum dryer (14), unloading the drum mixer (15), asphalt silo (16), main plant generator (17), standby generator (18), and asphalt heater (19) with the exception of limiting annual production rates for production equipment and annual hours of operation for combustion equipment.

RAP material handling emission rates are reduced by inherent properties of RAP with a coating of asphalt oils which captures small particles within the material. Uncontrolled hourly emission rate found in Table 6-1 and annual emission are based on limiting annual production rates. For RAP processing equipment, emission factors are based on uncontrolled hourly emission rates and EPA documents "EIIP – Preferred and Alternative Methods for Estimating Air Emissions from Hot-Mix-Asphalt Plants, Final Report, July 1996, Table 3.2-1 Fugitive Dust – Crushed RAP material" the inherent typical efficiency of the material is 70% (see Section 7). These include the following emission source; AGGPILE (RAP portion), 8, 9. 10, 11, 12, and 12a.

Controlled Material Handling (PM2.5, PM10, and PM)

No fugitive dust controls or emission reductions are proposed for the aggregate storage piles (AGGPILE – Aggregate Portion), loading of the cold aggregate feed bins (1) with the exception of limiting annual production rates.

Fugitive dust control for unloading the cold aggregate feed bins onto the cold aggregate feed bin conveyor (2) will be controlled, as needed, with enclosures and/or water sprays at the exit of the feed bins. It is estimated that these methods will control to an efficiency of 95.3 percent per AP42 Section 11.19.2, Table 11.19.2-2. Additional emission reductions include limiting annual production rates.

Fugitive dust control for the scalping screen (3) will be controlled, as needed, with enclosures and/or water sprays. It is estimated that these methods will control to an efficiency of 91.2 percent for screening operations per AP42 Section 11.19.2, Table 11.19.2-2. Additional emission reductions include limiting annual production rates.

Fugitive dust control for unloading the scalping screens (4), loading and unloading the pug mill (5 and 6), transfer from the scale conveyor to the sling conveyor (7), and RAP transfer conveyor (12) will be controlled, as needed, with enclosures and/or water sprays. It is estimated that these methods will control to an efficiency of 95.3 percent per AP42 Section 11.19.2, Table 11.19.2-2. Additional emission reductions include limiting annual production rates.

Particulate emissions from loading the mineral filler silo (13) will be controlled with a baghouse dust collector on the exhaust vent (C4). This dust collector consists of filter bags and is passive with no fan. It functions only when material is loaded into the silo. The filter bags are cleaned by air pulses at set intervals. Baghouse fines are dumped back into the silo. It is estimated that this method will control to an efficiency of 99 percent or greater based on information from filter bag specifications. Additional emission reductions include limiting annual production rates.

Particulate emissions from the drum dryer/mixer (14) will be controlled with a baghouse dust collector (C5) on the exhaust vent. It is estimated that this method will control to an efficiency of 99.88 percent per AP42 Section 11.1, Table 11.1-3 "controlled emission factor vs. uncontrolled emission factor". Baghouse fines are sent to a dust box. Additional emission reductions include limiting annual production rates.

No fugitive controls or emission reductions are proposed for unloading the drum dryer/mixer or asphalt silo (15, 16) with the exception of limiting annual production rates. No fugitive controls are proposed for yard emissions (YARD) or asphalt storage tanks (20).

To estimate material handling control particulate emissions rates for pug mill and conveyor transfer operations, emission factors were obtained from EPA's <u>Compilation of Air Pollutant Emission Factors</u>, Volume I: Stationary Point and Area Sources, Aug. 2004, Section 11.19.2, Table 11.19.2-2.

To estimate material handling pre-control particulate emission rates for aggregate handling operations (aggregate storage piles and cold aggregate loading feed bins), an emission equation was obtained from EPA's <u>Compilation of Air Pollutant</u> <u>Emission Factors, Volume I: Stationary Point and Area Sources</u>, Fifth Edition, Section 13.2.4 (11/2004), where the k (PM = 0.74, PM₁₀ = 0.35, PM_{2.5} = 0.053), wind speed for determining the maximum hourly emission rate is the NMED default of 11 MPH and for determining the annual emission rate is based on the average wind speed for Alamogordo of 9.6 mph (see Section 7), and the NMED default moisture content of 2 percent.

The asphalt may will contain 1.5% mineral filler, if Evotherm is not used. Control particulate emissions rates for mineral filler silo loading was obtained from EPA's <u>Compilation of Air Pollutant Emission Factors</u>, Volume I: Stationary Point and Area <u>Sources</u>, Fifth Edition, Section 11.12 (06/06), Table 11.12-2 uncontrolled "Cement Unloading to Elevated Storage Silo" and a control efficiency of 99% for the baghouse.

Maximum hourly asphalt production is 400 tons per hours. Virgin aggregate/RAP/Mineral filler/Asphalt cement ratios used in estimating material handling particulate emission rates is equal to 47.5/45.0/1.5/6.0. These ratios are estimates and ratios may change with mix requirements, these are not requested permit conditions. Annual emissions in tons per year (tpy) were calculated assuming an annual production throughput of 900,000 tons of asphalt per year.

Aggregate Storage Piles and Cold Feed Bin Loading Emission Equation:

Maximum Hour Emission Factor

E (lbs/ton) = k x 0.0032 x (U/5)^{1.3} / (M/2)^{1.4} E_{PM} (lbs/ton) = 0.74 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} E_{PM10} (lbs/ton) = 0.35 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} E_{PM2.5} (lbs/ton) = 0.053 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} E_{PM} (lbs/ton) = 0.00660 lbs/ton; E_{PM10} (lbs/ton) = 0.00312 lbs/ton E_{PM2.5} (lbs/ton) = 0.00047 lbs/ton

Aggregate Storage Piles and Cold Feed Bin Loading Emission Equation:

Annual Emission Factor

$$\begin{split} & \mathsf{E} \; (\mathsf{lbs/ton}) = \mathsf{k} \; x \; 0.0032 \; \mathsf{x} \; (\mathsf{U}/\mathsf{5})^{1.3} \; / \; (\mathsf{M}/\mathsf{2})^{1.4} \\ & \mathsf{E}_\mathsf{PM} \; (\mathsf{lbs/ton}) = 0.74 \; \mathsf{x} \; 0.0032 \; \mathsf{x} \; (9.6/5)^{1.3} \; / \; (2/2)^{1.4} \\ & \mathsf{E}_\mathsf{PM10} \; (\mathsf{lbs/ton}) = 0.35 \; \mathsf{x} \; 0.0032 \; \mathsf{x} \; (9.6/5)^{1.3} \; / \; (2/2)^{1.4} \\ & \mathsf{E}_\mathsf{PM2.5} \; (\mathsf{lbs/ton}) = 0.053 \; \mathsf{x} \; 0.0032 \; \mathsf{x} \; (9.6/5)^{1.3} \; / \; (2/2)^{1.4} \\ & \mathsf{E}_\mathsf{PM} \; (\mathsf{lbs/ton}) = 0.00553 \; \mathsf{lbs/ton}; \\ & \mathsf{E}_\mathsf{PM10} \; (\mathsf{lbs/ton}) = 0.00262 \; \mathsf{lbs/ton} \\ & \mathsf{E}_\mathsf{PM2.5} \; (\mathsf{lbs/ton}) = 0.00040 \; \mathsf{lbs/ton} \end{split}$$

RAP material handling emission factors are reduced further to account for the inherent properties of RAP with a coating of asphalt oils which captures small particles within the material. Based on EPA documents "EIIP – Preferred and Alternative Methods for Estimating Air Emissions from Hot-Mix-Asphalt Plants, Final Report, July 1996, Table 3.2-1 Fugitive Dust – Crushed RAP material" the inherent typical efficiency of the material is 70% (see Section 7).

RAP Storage Piles and RAP Feed Bin Loading Emission Equation:

Maximum Hour Emission Factor E (lbs/ton) = k x 0.0032 x (U/5)^{1.3} / (M/2)^{1.4} * 0.3 E_{PM} (lbs/ton) = 0.74 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM10} (lbs/ton) = 0.35 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} * 0.3 $E_{PM2.5}$ (lbs/ton) = 0.053 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM} (lbs/ton) = 0.00198 lbs/ton; E_{PM10} (lbs/ton) = 0.00094 lbs/ton $E_{PM2.5}$ (lbs/ton) = 0.00014 lbs/ton

RAP Storage Piles and RAP Feed Bin Loading Emission Equation:

Annual Emission Factor

E (lbs/ton) = k x 0.0032 x (U/5)^{1.3} / (M/2)^{1.4} * 0.3 E_{PM} (lbs/ton) = 0.74 x 0.0032 x (9.6/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM10} (lbs/ton) = 0.35 x 0.0032 x (9.6/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM2.5} (lbs/ton) = 0.053 x 0.0032 x (9.6/5)^{1.3} / (2/2)^{1.4} * 0.3 E_{PM} (lbs/ton) = 0.00166 lbs/ton; E_{PM10} (lbs/ton) = 0.00078 lbs/ton E_{PM2.5} (lbs/ton) = 0.00012 lbs/ton

AP-42 Emission Factors:

Feed Bin Unloading = Controlled Conveyor Transfer Point Emission Factor Crusher = Controlled Tertiary Crusher Emission Factor Screen = Controlled Screening Emission Factor Transfer Conveyor = Controlled Conveyor Transfer Point Emission Factor Scalping Screen Conveyor = Controlled Conveyor Transfer Point Emission Factor Pug Mill = Controlled Conveyor Transfer Point Emission Factor Pug Mill Conveyor = Controlled Conveyor Transfer Point Emission Factor

Material Handling Emission Factors Aggregate:

Process Unit	PM Emission Factor (lbs/ton)	PM10 Emission Factor (lbs/ton)	PM _{2.5} Emission Factor (lbs/ton)
Feed Bin Unloading	0.00014	0.00005	0.000013
Controlled Screening	0.00220	0.00074	0.00005
Transfer Conveyor	0.00014	0.00005	0.000013
Controlled Pug Mill Loading and Unloading	0.00014	0.00005	0.000013
Uncontrolled Aggregate Storage Piles, Cold Aggregate Bin Loading Max Hourly	0.00660	0.00312	0.00047
Uncontrolled Aggregate Storage Piles, Cold Aggregate Bin Loading Annual	0.00553	0.00262	0.00040

RAP material handling emission factors are reduced further to account for the inherent properties of RAP with a coating of asphalt which captures small particles within the material. Based on EPA documents "EIIP – Preferred and Alternative Methods for Estimating Air Emissions from Hot-Mix-Asphalt Plants, Final Report, July 1996, Table 3.2-1 Fugitive Dust – Crushed RAP material" the inherent typical efficiency of the material is 70% (see Section 7).

Material Handling Emission Factors RAP:

Process Unit	PM Emission Factor (lbs/ton)	PM10 Emission Factor (Ibs/ton)	PM _{2.5} Emission Factor (Ibs/ton)
Uncontrolled RAP Screening	0.00750	0.00261	0.00040
Uncontrolled RAP Screen Unloading, RAP Feed Bin Unloading, and RAP Conveyor Transfers	0.00090	0.00033	0.00005
Uncontrolled RAP Storage Piles, RAP Feeder Loading Max Hourly	0.00198	0.00094	0.00014
Uncontrolled RAP Storage Piles, RAP Feeder Loading Annual	0.00166	0.00078	0.00012

AP-42 Section 11.12 Table 11.12-2 Uncontrolled Emission Factors with 99% Control Efficiency:

Process Unit	PM	PM10	PM _{2.5}
	Emission Factor	Emission Factor	Emission Factor
	(lbs/ton)	(lbs/ton)	(Ibs/ton)
Mineral Filler Silo Loading	0.0073	0.0047	0.00093

The following equation was used to calculate the hourly emission rate for each process unit:

Emission Rate (lbs/hour) = Process Rate (tons/hour) * Emission Factor (lbs/ton)

The following equation was used to calculate the annual emission rate for each process unit:

Emission Rate (tons/year)

= <u>Hourly Emission Rate (lbs/hour) * Operating Hour (hrs/year)</u> 2000 lbs/ton

PM PM **PM**₁₀ **PM**₁₀ PM2.5 PM2.5 Process **Process Unit** Emission Emission Emission Emission Emission Emission Unit # Rate Description Rate Rate Rate Rate Rate Rate (tph) (lbs/hr) (tons/yr) (lbs/hr) (tons/yr) (lbs/hr) (tons/yr) Cold Aggregate AGGPILE 190 1.25 1.18 0.59 0.56 0.090 0.085 Storage Pile Cold Aggregate 190 1 Feed Bin 1.25 1.18 0.59 0.56 0.090 0.085 Loading Cold Aggregate Feed Bin 2 190 0.027 0.030 0.0087 0.010 0.0025 0.0028 Unloading (Conveyor) 3 0.47 0.010 Scalping Screen 190 0.42 0.14 0.16 0.011 Scalping Screen 4 Unloading 190 0.027 0.030 0.0087 0.010 0.0025 0.0028 (Conveyor) 5 Pug Mill Load 196 0.027 0.031 0.0090 0.010 0.0025 0.0029 Pug Mill Unload 6 196 0.027 0.031 0.0090 0.010 0.0025 0.0029 (Conveyor) Conveyor Transfer to 7 196 0.027 0.031 0.0090 0.010 0.0025 0.0029 Slinger Conveyor RAP Storage AGGPILE 180 0.026 0.024 0.36 0.34 0.17 0.16 Pile RAP Feed Bin 8 180 0.36 0.34 0.17 0.16 0.026 0.024 Loading RAP Feed Bin 9 Unloading 180 0.16 0.18 0.059 0.067 0.0092 0.010 (Conveyor) 10 **RAP Screen** 180 1.35 1.52 0.47 0.53 0.071 0.080 **RAP Screen** 11 Unloading 180 0.16 0.18 0.059 0.067 0.0092 0.010 (Conveyor) **RAP** Transfer 12 180 0.16 0.18 0.059 0.067 0.0092 0.010 Conveyor 25 tph, Mineral Filler 13 52,560 0.18 0.049 0.12 0.032 0.023 0.0063 Silo tpy TOTALS 5.79 5.77 2.47 2.40 0.37 0.36

Table 6-14: Controlled Regulated Process Equipment Emission Rates

Controlled Haul Truck Travel

Haul truck travel emissions were estimated using AP-42, Section 13.2.2 (ver.11/06) "Unpaved Roads" emission equation. The facility is an existing site with pavement at the entrance and exit and surfactants on the unpaved interior roads. All traffic is from the site entrance to the HMA. The total number of HMA trucks per day is 325. See Figure 5-2 for identification of haul road. Table 6-15 summarizes the emission rate for each haul truck category.

Unpaved Roads Plant HMA

AP-42, Section 13.2.2 (ver.11/06) "Unpaved Roads"

 $E = k * (s/12)^{a} * (W/3)^{b} * [(365 - p)/365] * VMT$ Where k = constantPM2.5 = 0.15PM10 = 1.5 PM = 4.9s = % silt content (Table 13.2.2-1, "Sand and Gravel" 4.8%) W = mean vehicle weight (26.5 tons – 15 tons truck, 23 tons load) p = number of days with at least 0.01 in of precip. (70 days) a = Constant PM2.5 = 0.9 PM10 = 0.9PM = 0.7b = Constant PM2.5 = 0.45 PM10 = 0.45 PM = 0.45 Unpaved Vehicle Dust Control 90% Paved Vehicle Dust Control 95% Trucks per Hour Mineral Fill Trucks = 0.2 truck per hour average Asphalt Cement Trucks = 1.0 truck per hour average Asphalt Trucks = 16.2 truck per hour average Aggregate Trucks = 7.7 truck per hour average RAP Trucks = 7.3 truck per hour average Evotherm Trucks = 0.03 truck per hour average Trucks per Year (Uncontrolled) Mineral Fill Trucks = 587 truck per year Asphalt Cement Trucks = 2348 truck per year Asphalt Trucks = 39,130 truck per year Aggregate Trucks = 18,587 truck per year RAP Trucks = 17,609 truck per year Evotherm Trucks = 75 truck per year VMT =Vehicle Miles Traveled Mineral Fill Trucks Paved – 0.55376 miles per vehicle Asphalt Cement Trucks Paved - 0.55376 miles per vehicle Aggregate Trucks Paved – 0.55376 miles per vehicle **RAP Trucks** Paved – 0.55376 miles per vehicle Evotherm Trucks Paved - 0.55376 miles per vehicle VMT =Vehicle Miles Traveled Mineral Fill Trucks Unpaved - 0.34618 miles per vehicle Asphalt Cement Trucks Unpaved - 0.34618 miles per vehicle Unpaved - 0.34618 miles per vehicle Aggregate Trucks **RAP Trucks** Unpaved - 0.34618 miles per vehicle Evotherm Trucks Unpaved – 0.34618 miles per vehicle Miles Traveled HMA Plant HMA Plant

Paved – 17.96871 miles per hour; 43,379 miles per year Unpaved – 11.23307 miles per hour; 27,118 miles per year

Reduction in emissions due to precipitation was only accounted for in the annual emission rate. Particulate emission rate per vehicle mile traveled for each particle size category is:

Paved

Hourly Emission Rate Factor – 95% Existing Control PM = 6.87692 lbs/VMT PM10 = 1.75267 lbs/VMT PM2.5 = 0.17527 lbs/VMT

Annual Emission Rate Factor – 95% Existing Control

PM = 5.55806 lbs/VMT PM10 = 1.41655 lbs/VMT PM2.5 = 0.14165 lbs/VMT

Unpaved

Hourly Emission Rate Factor – 90% Existing Control

PM = 6.87692 lbs/VMT PM10 = 1.75267 lbs/VMT PM2.5 = 0.17527 lbs/VMT

Annual Emission Rate Factor – 90% Existing Control

PM = 5.55806 lbs/VMT PM10 = 1.41655 lbs/VMT PM2.5 = 0.14165 lbs/VMT

Process Unit Description	Process Rate	PM Emission Rate (lbs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM₂.₅ Emission Rate (Ibs/hr)	PM2.5 Emission Rate (tons/yr)
Mineral Filler Truck Emissions	Unpaved 0.08417 miles/hr; 203 miles/yr Paved 0.13464 miles/hr: 325 miles/yr	0.10	0.10	0.027	0.026	0.0027	0.0026
Asphalt Cement Truck Emissions	Unpaved 0.33667 miles/hr; 813 miles/yr Paved 0.53855 miles/hr: 1300 miles/yr	0.42	0.41	0.11	0.10	0.011	0.010
Asphalt Truck Emissions Paved	Unpaved 5.61119 miles/hr; 13546 miles/yr Paved 8.97580 miles/hr: 21669 miles/yr	6.95	6.78	1.77	1.73	0.18	0.17
Aggregate Truck Emissions Paved	Unpaved 2.66531 miles/hr; 6435 miles/yr Paved 4.26350 miles/hr: 10293 miles/yr	3.30	3.22	0.84	0.82	0.084	0.082
RAP Truck Emissions	Unpaved 2.52503 miles/hr; 6096 miles/yr Paved 4.03911 miles/hr: 9751 miles/yr	3.13	3.05	0.80	0.78	0.080	0.078
Evotherm Truck Emissions	Unpaved 0.01070 miles/hr; 26 miles/yr Paved 0.01712 miles/hr: 41 miles/yr	0.012	0.012	0.0030	0.0030	0.00030	0.00030
	Total	13.90	13.56	3.54	3.46	0.35	0.35

Table 6-15: Allowable Haul Road Fugitive Dust Emission Rates

Drum Mix Hot Mix Asphalt Plant

Particulate emissions from the drum dryer/mixer (14) will be controlled with a baghouse dust collector (C5) on the exhaust vent. This dust collector consists of filter bags and a fan that draws all the drum mixer exhaust through the dust collector. It is estimated that this method will control to an efficiency of 99.88 percent per AP42 Section 11.1, Table 11.1-3. Additional emission reductions include limiting annual production rates. No fugitive controls are proposed for unloading the drum dryer/mixer or asphalt silo (15, 16) with the exception of limiting annual production rates. No fugitive controls are proposed for yard emissions or asphalt storage tank emissions.

Drum mix hot mix asphalt plant controlled emissions were estimated using AP-42, Section 11.1 "Hot Mix Asphalt Plants" (revised 03/04), tables 11.1-3, -4, -7, -8 and -14 emission rates for all pollutants. The drum dryer will be permitted to combust on-spec recycled oil. Hourly emission rates are based on maximum hourly asphalt production (400 tph) and maximum annual asphalt production rates of 1,000,000 tons. To determine missing PM_{2.5} emission factor the sum of uncontrolled filterable from Table 11.1-4 plus uncontrolled organic and inorganic condensable in Table 11.1-3 was used. Silo filling and plant loadout emission factors were calculated using the default value of –0.5 for asphalt volatility (V) and a tank temperature setting of 350° F for HMA mix temperature (T).

Silo Filling

Total PM	$EF = 0.000332 + 0.00105(-V)e^{((0.0251)(T + 460) - 20.43)}$
тос	EF = 0.0504(-V)e ^{((0.0251)(T + 460) - 20.43)}
CO	EF = 0.00488(-V)e ^{((0.0251)(T + 460) - 20.43)}

Plant Loadout

Total PM	EF = 0.000181 + 0.00141(-V)e ^{((0.0251)(T + 460) - 20.43)}
тос	EF = 0.0172(-V)e ^{((0.0251)(T + 460) - 20.43)}
CO	EF = 0.00558(-V)e ^{((0.0251)(T + 460) - 20.43)}

Yard emissions were found in AP-42 Section 11.1.2.5. TOC emission equation is 0.0011 lbs/ton of asphalt produced and CO is equal to the TOC emission rate times 0.32.

Emissions of VOCs (TOCs) from the asphalt cement storage tanks were determined with EPA's TANK 4.0.9d program and the procedures found in EPA's "Emission Factor Documentation for AP-42 Section 11.1 (12/2000) Section 4.4.5" for input to the TANK program.

AP-42 Section 11.1 Table 11.1-3, -4, -7, -8, and -14 Controlled Emission Factors:

Process Unit	Pollutant	Emission Factor (lbs/ton)
Drum Mixer	NOx	0.055
	СО	0.13
	SO ₂	0.058
	VOC	0.032
	ТОС	0.044
	PM	0.033
	PM10	0.023
	PM _{2.5}	0.023
	CO ₂	33.0
Silo Filling	CO	0.002210012
	TOC	0.022824716
	PM	0.000807515
	PM ₁₀	0.000807515
	PM _{2.5}	0.000807515
Plant Loadout	CO	0.002527022
	ТОС	0.007789387
	PM	0.000819549
	PM10	0.000819549
	PM _{2.5}	0.000819549
Yard	СО	0.000352
	TOC	0.0011

The following equation was used to calculate the hourly emission rate for each process unit:

Emission Rate (lbs/hour)

= Process Rate (tons/hour) * Emission Factor (lbs/ton)

The following equation was used to calculate the annual emission rate for each process unit:

Emission Rate (tons/year)

= Emission Rate (lbs/hour) * Operating Hour (hrs/year) 2000 lbs/ton

Table 6-16: Controlled Hot Mix Plant Emission Rates

Process Unit Number	Process Unit Description	Pollutant	Average Hourly Process Rate (tons/hour)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
		NOx	400	22.00	24.75
		СО	400	52.00	58.50
		SO ₂	400	23.20	26.10
		VOC	400	12.80	14.40
14	Asphalt Drum Dryer/Mixer	PM	400	13.20	14.85
		PM ₁₀	400	9.20	10.35
		PM2.5	400	9.20	10.35
		CO ₂	400	13200	14850
		СО	400	0.88	0.99
		тос	400	9.13	10.27
15	Silo Filling (Drum Mixer Unloading)	PM	400	0.32	0.36
		PM ₁₀	400	0.32	0.36
		PM2.5	400	0.32	0.36
		СО	400	1.01	1.14
		тос	400	3.12	3.51
16	Plant Loadout (Asphalt Silo Unloading)	PM	400	0.33	0.37
		PM10	400	0.33	0.37
			400	0.33	0.37
20	Asphalt Cement Storage Tanks (2)	тос	30,000 gallons each	0.026	0.12
YARD	HMA YARD	тос	400	0.44	0.50
		CO	400	0.14	0.16

Diesel-Fired Asphalt Heater

One diesel-fired asphalt heater (19) heats the asphalt oil before it is mixed with the aggregate in the drum dryer/mixer. The unit is rated at 1,000,000 Btu/hr. The estimated hourly diesel combusted is 7.8 gal/hr. Emissions of nitrogen oxides (NO_x), carbon monoxides (CO), sulfur dioxide (SO₂), hydrocarbons (VOC) and particulate (PM) are estimated using AP-42 Section 1.3 (9/98). Sulfur content of diesel will not exceed 0.05%. No controls are proposed for the fuel asphalt heater. Uncontrolled annual emissions in tons per year (tpy) were calculated assuming operation of 8760 hours per year. Controlled annual emissions in tons per year (tpy) were calculated assuming operation of 7272 hours per year.

AP-42 Emission Factors: Section 1.4

Diesel Emission Factors			
Pollutant	Emission Factor		
Nitrogen Oxides	20 lbs/1000 gallons		
Carbon Monoxides	5.00 lbs/1000 gallons		
Particulate	0.34 lbs/1000 gallons		
Hydrocarbons	142S lbs/1000 gallons S = %sulfur		
Sulfur Dioxides	2.00 lbs/1000 gallons		
Carbon Dioxide	73.96 kg CO₂ per mmBTU		

The following equation was used to calculate the hourly emission rate for asphalt heater pollutant (NO_x, CO, VOC, PM):

Emission Rate (lbs/hr) = EF (lbs/1000 gal) * fuel usage (gal/hr)

The following equation was used to calculate the hourly emission rate for asphalt heater pollutant (SO₂):

Emission Rate (lbs/hr) = 142 * Sulfur Content (0.05%) * fuel usage (7.8 gal/hr) / 1000 gal/hr

The following equation was used to calculate the hourly emission rate for asphalt heater pollutant (CO₂):

Emission Rate (lbs/hr) = 73.96 kg CO2 per mmBTU * fuel usage (120000 BTU) / 1000000 BTU * 2.20462 lbs/kg Emission Rate (lbs/hr) = 3.00 g CH4 per mmBTU * fuel usage (120000 BTU) / 1000000 BTU * 0.00220462 lbs/g Emission Rate (lbs/hr) = 0.60 g N2O per mmBTU * fuel usage (120000 BTU) / 1000000 BTU * 0.00220462 lbs/g

The following equation was used to calculate the annual emission rate for asphalt heater pollutant (NO_X, CO, VOC, PM, SO₂, CO₂):

Emission Rate (tons/year) = Emission Rate (lbs/hour) * Operating Hour (hrs/year) 2000 lbs/ton

Process Unit Number	Pollutant	Fuel Usage (gal/hr)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
19	NOx	7.8	0.16	0.68
	СО	7.8	0.039	0.17
	VOC	7.8	0.0027	0.012
	SO ₂	7.8	0.055	0.24
	РМ	7.8	0.016	0.068
	GHG	7.8	163.6	717

Table 6-17: Pre-Controlled Combustion Emission Rates for Asphalt Heater

Table 6-18: Controlled Combustion Emission Rates for Asphalt Heater

Process Unit Number	Pollutant	Fuel Usage (scf/hr)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
19	NOx	7.8	0.16	0.57
	СО	7.8	0.039	0.14
	VOC	7.8	0.0027	0.010
	SO ₂	7.8	0.055	0.20
	PM	7.8	0.016	0.057
	GHG	7.8	163.6	595

Estimates for 1372 hp HMA Plant Main Diesel-Fired Engine (NO_X, CO, SO₂, VOC, PM, and CO₂)

A 1372 horsepower (hp), 1000 kilowatt (kW) engine (Unit 17) provides power to the HMA plant. Emission rates for NO_X, CO, PM, and VOC emission factors are based on EPA Tier 2. NMHC+NOx is equivalent to 95% NOx and 5% VOC. Sulfur dioxide (SO₂) emissions are estimated based on sulfur content of diesel fuel, not to exceed 0.05% fuel content and a fuel usage rate of 70.6 gal/hr. CO₂ emission rates are found in AP-42 Section 3.3. Uncontrolled annual emissions in tons per year (tpy) were calculated assuming daylight operation of 8760 hours per year. Controlled annual emissions in tons per year (tpy) were calculated assuming operation of 4380 hours per year.

EPA Tier 2:

Pollutant	Emission Factor (g/kW-hr)
NMHC+NOx	6.40
Nitrogen Oxide	6.08
Carbon Monoxides	3.50
Particulate	0.20
Hydrocarbons	0.32

Sulfur dioxide emission rate was calculated using the fuel consumption rate for this engine of 70.6 gallons per hour, a fuel density of 7.1 pounds per gallon, a fuel sulfur content of 500 PPM, and a sulfur to sulfur dioxide conversion factor of two (2). The following equation calculates the emission rate for sulfur dioxide (SO₂).

Emission Rate (lbs/hr) = Fuel (gal/hr) * Density lbs/gal * % Sulfur Content * Factor

Emission Rate (lbs/hr) =	70.6 gallons	7.1 lbs	0.0005 lbs Sulfur	2 lbs Sulfur Dioxide
	hr	gallon	lbs of fuel	1 lb Sulfur

Emission Rate (lbs/hr) = 0.50 lbs/hr

Carbon Dioxide emissions were estimated using AP-42 Table 3.3-1 emission factor of 1.15 lbs/hp-hr.

The following equation was used to calculate the annual emission rate for each engine pollutant:

Emission Rate (tons/year) = <u>Emission Rate (lbs/hour) * Operating Hour (hrs/year)</u> 2000 lbs/ton

Process Unit Number	Pollutant	Engine Rating (hp)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
17	NOx	1372	13.40	58.71
	СО	1372	7.72	33.80
	SO ₂	1372	0.50	2.19
	voc	1372	0.71	3.09
	PM	1372	0.44	1.93
	CO ₂	1372	1578	6911

Table 6-19: Pre-Controlled Combustion Emission Rates

Table 6-20: Controlled Combustion Emission Rates

Process Unit Number	Pollutant	Engine Rating (hp)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
17	NOx	1372	13.40	29.35
	СО	1372	7.72	16.90
	SO ₂	1372	0.50	1.10
	VOC	1372	0.71	1.54
	PM	1372	0.44	0.97
	CO ₂	1372	1578	3455

Estimates for 114 hp HMA Plant Standby Diesel-Fired Engine (NO_X, CO, SO₂, VOC, PM, and CO₂)

A 114 horsepower (hp), 100 kilowatt (kW) engine (Unit 18) provides standby power to the HMA plant. Emission rates for NOx, CO, PM and NMHC (VOC) are based on EPA AP-42 Tier 4f emission factors. Sulfur dioxide (SO₂) emissions are estimated based on sulfur content of diesel fuel, not to exceed 0.0015% fuel content and a fuel usage rate of 5.9 gal/hr. CO₂ emission rates are found in AP-42 Section 3.3. Uncontrolled annual emissions in tons per year (tpy) were calculated assuming daylight operation of 8760 hours per year. Controlled annual emissions in tons per year (tpy) were calculated assuming operation of 4380 hours per year.

EPA Tier 4f:

Pollutant	Emission Factor (g/kW-hr)
Nitrogen Oxide	0.40
Carbon Monoxides	5.00
Particulate	0.02
Hydrocarbons	0.19

Sulfur dioxide emission rate was calculated using the fuel consumption rate for this engine of 5.9 gallons per hour, a fuel density of 7.1 pounds per gallon, a fuel sulfur content of 15 PPM, and a sulfur to sulfur dioxide conversion factor of two (2). The following equation calculates the emission rate for sulfur dioxide (SO₂).

Emission Rate (lbs/hr) = Fuel (gal/hr) * Density lbs/gal * % Sulfur Content * Factor

Emission Rate (lbs/hr) =	5.9 gallons	7.1 lbs	0.000015 lbs Sulfur	2 lbs Sulfur Dioxide
	hr	gallon	lbs of fuel	1 lb Sulfur

Emission Rate (lbs/hr) = 0.0012 lbs/hr

Carbon Dioxide emissions were estimated using AP-42 Table 3.3-1 emission factor of 1.15 lbs/hp-hr.

The following equation was used to calculate the annual emission rate for each engine pollutant:

Emission Rate (tons/year) = Emission Rate (lbs/hour) * Operating Hour (hrs/year) 2000 lbs/ton

Process Unit Number	Pollutant	Engine Rating (hp)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
18	NOx	114	0.088	0.39
	СО	114	1.10	4.83
	SO ₂	114	0.0012	0.0055
	VOC	114	0.042	0.18
	PM	114	0.0066	0.029
	CO2	114	131	574

Table 6-21: Pre-Controlled Combustion Emission Rates

Table 6-22: Controlled Combustion Emission Rates

Process Unit Number	Pollutant	Engine Rating (hp)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
18	NOx	114	0.088	0.19
	СО	114	1.10	2.41
	SO ₂	114	0.0012	0.0027
	VOC	114	0.042	0.092
	PM	114	0.0066	0.014
	CO ₂	114	131	287

					Unc	ontrolled	Emission 1	otals							
		N	Ох	(0	S	D ₂	V	ос	Р	м	P	M ₁₀	PN	1 2.5
Unit #	Description	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/y r	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
AGGPILE	Cold Aggregate/RAP Storage Pile	-	-	-	-	-	-	-	-	1.61	5.91	0.76	2.79	0.12	0.42
1	Feed Bin Loading	-	-	-	-	-	-	-	-	1.25	4.60	0.59	2.18	0.090	0.33
2	Feed Bin Unloading	-	-	-	-	-	-	-	-	0.57	2.50	0.21	0.92	0.032	0.14
3	Scalping Screen	-	-	-	-	-	-	-	-	4.75	20.8	1.65	7.24	0.25	1.10
4	Scalping Screen Unloading	-	-	-	-	-	-	-	-	0.57	2.50	0.21	0.92	0.032	0.14
5	Pug Mill Load	-	-	-	-	-	-	-	-	0.59	2.58	0.22	0.94	0.033	0.15
6	Pug Mill Unload	-	-	-	-	-	-	-	-	0.59	2.58	0.22	0.94	0.033	0.15
7	Conveyor Transfer to Slinger Conveyor	-	-	-	-	-	-	-	-	0.59	2.58	0.22	0.94	0.033	0.15
8	RAP Bin Loading	-	-	-	-	-	-	-	-	0.36	1.31	0.17	0.62	0.026	0.094
9	RAP Bin Unloading	-	-	-	-	-	-	-	-	0.16	0.71	0.059	0.26	0.0092	0.040
10	RAP Screen	-	-	-	-	-	-	-	-	1.35	5.9	0.47	2.06	0.071	0.31
11	RAP Screen Unloading	-	-	-	-	-	-	-	-	0.16	0.71	0.059	0.26	0.0092	0.040
12	RAP Transfer Conveyor	-	-	-	-	-	-	-	-	0.16	0.71	0.059	0.26	0.0092	0.040
13	Mineral Filler Silo Loading	-	-	-	-	-	-	-	-	18.3	19.2	11.8	12.4	2.33	2.44
14	Drum Dryer	22.0	96.4	52.0	228	23.2	102	12.8	56.1	11200	49056	2600	11388	626	2742
15	Drum Mixer Unloading	-	-	0.88	3.87	-	-	9.13	40.0	0.32	1.41	0.32	1.41	0.32	1.41
16	Asphalt Silo Unloading	-	-	1.01	4.43	-	-	3.12	13.6	0.33	1.44	0.33	1.44	0.33	1.44
17	Main Plant Generator	13.4	58.7	7.72	33.8	0.50	2.19	0.71	3.09	0.44	1.93	0.44	1.93	0.44	1.93
18	Standby Generator	0.088	0.39	1.10	4.83	0.0012	0.0055	0.042	0.18	0.0066	0.029	0.0066	0.029	0.0066	0.029

Form-Section 6 last revised: 5/3/16

Table 6-23: Summary of l	ncontrolled NOx, CO, SO ₂ , and PM HMA Emission Rates
--------------------------	--

-					Unc		Emission ⁻								
		N	Ох	0	0	S	O 2	V	ос	Р	М	P	M ₁₀	PN	1 2.5
Unit #	Description	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/y r	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
19	Asphalt Heater	0.16	0.68	0.039	0.17	0.055	0.24	0.002 7	0.012	0.016	0.068	0.016	0.068	0.016	0.068
20	Asphalt Cement Storage Tanks (2)	-	-	-	-	-	-	0.026	0.12	-	-	-	-	-	-
TRCK	Haul Road Traffic	-	-	-	-	-	-			13.90	49.2	3.54	12.54	0.35	1.25
YARD	HMA Yard	-	-	0.14	0.62	-	-	0.44	1.93	-	-	-	-	-	-
RAPPILE	RAP Raw Material Source	-	-	-	-	-	-	-	-	0.59	0.95	0.28	0.45	0.043	0.068
21	RAP Feeder/Hopper	-	-	-	-	-	-	-	-	0.59	0.95	0.28	0.45	0.043	0.068
22	RAP Vertical Impact Crusher	-	-	-	-	-	-	-	-	0.49	0.93	0.22	0.41	0.033	0.063
23	RAP Crusher Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.10	0.19	0.015	0.029
24	RAP Recycle Conveyor #2	-	-	-	-	-	-	-	-	0.27	0.52	0.10	0.19	0.015	0.029
25	RAP Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.10	0.19	0.015	0.029
26	RAP Screen Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.10	0.19	0.015	0.029
27	RAP Screen	-	-	-	-	-	-	-	-	2.25	4.31	0.78	1.50	0.12	0.23
28	RAP Recycle Conveyor #1	-	-	-	-	-	-	-	-	0.27	0.52	0.10	0.19	0.015	0.029
29	RAP Waste Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.10	0.19	0.015	0.029
30	RAP Product Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.10	0.19	0.015	0.029
31	RAP Stacker Conveyor (2) Drop to Pile	-	-	-	-	-	-	-	-	0.59	0.95	0.28	0.45	0.043	0.068
32	RAP Product Storage Pile	-	-	-	-	-	-	-	-	0.59	0.95	0.28	0.45	0.043	0.068
33	RAP Plant Generator/Engine	12.90	28.24	2.78	6.09	0.15	0.33	1.03	2.25	0.92	2.00	0.92	2.00	0.92	2.00

-	Uncontrolled Emission Totals														
		N	Ох	СО		S	D 2	V	ос	Р	M	PI	M ₁₀	PN	/1 2.5
Unit #	Description	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/y r	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
34	RAP Screen Plant Feeder	-	-	-	-	-	-	-	-	0.59	0.95	0.28	0.45	0.043	0.068
35	RAP Screen Plant Feeder Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.099	0.190	0.015	0.029
36	RAP Screen Plant Screen	-	-	-	-	-	-	-	-	2.25	4.31	0.78	1.50	0.12	0.227
37	RAP Screen Plant Stacker Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.099	0.190	0.015	0.029
38	RAP Screen Plant Stacker Conveyor	-	-	-	-	-	-	-	-	0.27	0.52	0.099	0.190	0.015	0.029
39	RAP Screen Plant Stacker Conveyor (2) Drop to Pile	-	-	-	-	-	-	-	-	0.59	0.95	0.28	0.45	0.043	0.068
40	RAP Screen Plant Engine	0.088	0.39	1.10	4.83	0.0014	0.0061	0.042	0.18	0.0044	0.019	0.0044	0.019	0.0044	0.019
	Total	48.6	185	66.8	286	23.9	104	27.3	117	11258	49205	2627	11448	632	2757

Table 6-23: Summary of Uncontrolled NOx, CO, SO₂, and PM HMA Emission Rates

_					Unc	ontrolled	Emission ⁻	Totals							
	Description		Ох		0		O 2		ос		M		M ₁₀		1 2.5
Unit #	-	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
AGGPILE	Cold Aggregate/RAP Storage Pile	-	-	-	-	-	-	-	-	1.61	1.52	0.76	0.72	0.12	0.11
1	Feed Bin Loading	-	-	-	-	-	-	-	-	1.25	1.18	0.59	0.56	0.090	0.085
2	Feed Bin Unloading	-	-	-	-	-	-	-	-	0.027	0.030	0.008 7	0.010	0.0025	0.0028
3	Scalping Screen	-	-	-	-	-	-	-	-	0.42	0.47	0.14	0.16	0.010	0.011
4	Scalping Screen Unloading	-	-	-	-	-	-	-	-	0.027	0.030	0.008 7	0.010	0.0025	0.0028
5	Pug Mill Load	-	-	-	-	-	-	-	-	0.027	0.031	0.009 0	0.010	0.0025	0.0029
6	Pug Mill Unload	-	-	-	-	-	-	-	-	0.027	0.031	0.009 0	0.010	0.0025	0.0029
7	Conveyor Transfer to Slinger Conveyor	-	-	-	-	-	-	-	-	0.027	0.031	0.009 0	0.010	0.0025	0.0029
8	RAP Bin Loading	-	-	-	-	-	-	-	-	0.36	0.34	0.17	0.16	0.026	0.024
9	RAP Bin Unloading	-	-	-	-	-	-	-	-	0.16	0.18	0.059	0.067	0.0092	0.010
10	RAP Screen	-	-	-	-	-	-	-	-	1.35	1.52	0.47	0.53	0.071	0.080
11	RAP Screen Unloading	-	-	-	-	-	-	-	-	0.16	0.18	0.059	0.067	0.0092	0.010
12	RAP Transfer Conveyor	-	-	-	-	-	-	-	-	0.16	0.18	0.059	0.067	0.0092	0.010
13	Mineral Filler Silo Loading	-	-	-	-	-	-	-	-	0.18	0.049	0.12	0.032	0.023	0.0063
14	Drum Dryer	22.0	24.8	52.0	58.5	23.2	26.1	12.8	14.4	13.2	14.9	9.20	10.4	9.20	10.4
15	Drum Mixer Unloading	-	-	0.88	0.99	-	-	9.13	10.27	0.32	0.36	0.32	0.36	0.32	0.36
16	Asphalt Silo Unloading	-	-	1.01	1.14	-	-	3.12	3.51	0.33	0.37	0.33	0.37	0.33	0.37
17	Main Plant Generator	13.4	29.4	7.72	16.90	0.50	1.10	0.71	3.09	0.44	0.97	0.44	0.97	0.44	0.97
18	Standby Generator	0.09	0.19	1.10	2.41	0.0012 5	0.0027 3	0.042	0.18	0.0066	0.014	0.0066	0.014	0.0066	0.014

Form-Section 6 last revised: 5/3/16

Table 6-24: Summary of Allowable NOx, CO, SO ₂ , and PM HMA Emission Rates

-					Unc	ontrolled		-								
	Description	N	Ох	C	0	S	O ₂	v	ос	P	M	PI	M 10	PN	PM _{2.5}	
Unit #	Description	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	
19	Asphalt Heater	0.16	0.57	0.039	0.14	0.055	0.20	0.002 7	0.012	0.016	0.057	0.016	0.057	0.016	0.057	
20	Asphalt Cement Storage Tanks (2)	-	-	-	-	-	-	0.026	0.12	-	-	-	-	-	-	
TRCK	Haul Road Traffic	-	-	-	-	-	-			13.90	13.56	3.54	3.46	0.35	0.35	
YARD	HMA Yard	-	-	0.14	0.16	-	-	0.44	0.50	-	-	-	-	-	-	
RAPPILE	RAP Raw Material Source	-	-	-	-	-	-	-	-	0.59	0.33	0.28	0.16	0.043	0.024	
21	RAP Feeder/Hopper	-	-	-	-	-	-	-	-	0.59	0.33	0.28	0.16	0.043	0.024	
22	RAP Vertical Impact Crusher	-	-	-	-	-	-	-	-	0.49	0.32	0.22	0.14	0.033	0.022	
23	RAP Crusher Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010	
24	RAP Recycle Conveyor #2	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010	
25	RAP Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010	
26	RAP Screen Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010	
27	RAP Screen	-	-	-	-	-	-	-	-	2.25	1.50	0.78	0.52	0.12	0.079	
28	RAP Recycle Conveyor #1	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010	
29	RAP Waste Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010	
30	RAP Product Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010	
31	RAP Stacker Conveyor (2) Drop to Pile	-	-	-	-	-	-	-	-	0.59	0.33	0.28	0.16	0.043	0.024	
32	RAP Product Storage Pile	-	-	-	-	-	-	-	-	0.59	0.33	0.28	0.16	0.043	0.024	
33	RAP Plant Generator/Engine	12.90	24.72	2.78	5.33	0.15	0.29	1.03	1.97	0.92	1.75	0.92	1.75	0.92	1.75	
34	RAP Screen Plant Feeder	-	-	-	-	-	-	-	-	0.59	0.33	0.28	0.16	0.043	0.024	

-					Unc	ontrolled	Emission 1	Totals							
	Description	N	Ох	(СО		SO ₂		VOC		PM		PM10		A _{2.5}
Unit #	Description	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
35	RAP Screen Plant Feeder Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010
36	RAP Screen Plant Screen	-	-	-	-	-	-	-	-	2.25	1.50	0.78	0.52	0.12	0.079
37	RAP Screen Plant Stacker Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010
38	RAP Screen Plant Stacker Conveyor	-	-	-	-	-	-	-	-	0.27	0.18	0.10	0.066	0.015	0.010
39	RAP Screen Plant Stacker Conveyor (2) Drop to Pile	-	-	-	-	-	-	-	-	0.59	0.33	0.28	0.16	0.043	0.024
40	RAP Screen Plant Engine	0.088	0.17	1.10	2.11	0.0014	0.0027	0.042	0.080	0.0044	0.0085	0.0044	0.0085	0.0044	0.0085
	Total	48.6	79.8	66.8	87.7	23.9	27.7	27.3	32.5	46.2	44.83	21.7	22.5	12.64	15.01

Estimates for State Toxic Air Pollutants (Asphalt Fumes)

The Hot Mix Asphalt Plant (HMA) drum dryer/mixer, asphalt silo loading, asphalt silo unloading, yard emissions, and heated asphalt cement storage tank are sources of asphalt fumes listed in the NMED's 20.2.72 NMAC, 502 "Toxic Air Pollutants and Emissions", Table A. Emissions of asphalt fumes from the drum dryer/mixer are based on PM organic condensable emission factors found in AP-42 Section 11.1, Table 11.1-3 (0.012 pounds per ton x 400 tons/hr: 0.012 pounds per ton x 900,000 tons/yr) from the drum dryer/mixer baghouse stack or 4.80 pounds per hour/5.40 tons per year.

Emissions of asphalt fumes from the asphalt silo loading (15), asphalt plant unloading (16), yard (asphalt transported in asphalt trucks-YARD), and hot oil asphalt storage tanks (20) assumed that the emissions of concern from the silo filling, plant loadout, hot oil asphalt storage tanks, and yard asphalt fumes sources are the PAH HAPs plus other semi-volatile HAPs from the particulate (PM) organics and the volatile organic HAPs from the Total Organic Compounds (TOC). These two combined make up asphalt fume emissions from the silo filling, plant loadout, hot oil asphalt storage tanks, and yard sources. Using information found in AP-42 Section 11.1, Tables 11.1-14, 15, and 16 were reviewed and the following emission equations or emission factors were used to estimate asphalt fumes emissions from silo filling, silo unloading, hot oil asphalt storage tanks, and yard.

Drum Loadout

Asphalt Fumes EF = 0.00036(-V)e^{((0.0251)(T+460)-20.43)}

Silo Filling

Asphalt Fumes EF = 0.00078(-V)e^{((0.0251)(T+460)-20.43)}

Asphalt Storage Tanks

Asphalt Fumes EF = VOC emissions from TANKs * 1.3%

Yard

Asphalt Fumes EF = 0.0000165 lbs/ton of asphalt loaded

Silo filling and plant loadout emission factors were calculated using the default value of -0.5 for asphalt volatility (V) and a tank temperature setting of 350° F for HMA mix temperature (T). Inputting these values in to the equations gives you a pound per ton value of 0.0003532 lbs/ton and 0.0001630 lbs/ton or asphalt fumes emission rates of 0.14 pounds/hour/0.16 tons/yr and 0.065 pounds per hour/0.082 tons/yr (400 tph and 900,000 tpy of asphalt production).

Emissions of asphalt fumes from the Yard were based on 1.5 percent of the TOC emission. Yard emission factors are found in AP-42 Section 11.1.2.5. TOC emission factor is 0.0011 lbs/ton of asphalt produced. Asphalt fumes emissions are 0.0000165 lbs/ton of asphalt produced or 0.0066 pounds per hour and 0.0073 tons/yr (400 tph and 900,000 tpy of asphalt production).

Emissions of asphalt fumes from the asphalt cement storage (2) tanks (20) were determined with EPA's TANK 4.0.9d program and the procedures found in EPA's "Emission Factor Documentation for AP-42 Section 11.1 (12/2000) Section 4.4.5" for input to the TANK program. The annual VOC emissions for working and breathing losses from two 30,000 gallon tank were estimated at 230.2 pounds per year or 0.026 pounds per hour. Based on 1.3 percent of the VOC emissions (0.026 pounds per hour total from both tanks), the asphalt fumes emission rate is 0.00034 pounds per hour and 0.0015 tons/yr.

Total asphalt fumes from the HMA plant is 5.01 pounds per hour and 5.64 tons per year.

Estimates for State Toxic Air Pollutants (Calcium Hydroxide)

A potential mineral filler that will be used is lime (calcium hydroxide). Calcium hydroxide is listed in the NMED's 20.2.72 NMAC, 502 "Toxic Air Pollutants and Emissions", Table A. Controlled PM emissions of lime from the mineral filler silo during loading is 0.18 pounds per hour.

Estimates for Hydrogen Sulfide Pollutants

The Hot Mix Asphalt Plant (HMA) drum dryer/mixer, asphalt silo loading, and asphalt silo unloading are sources of hydrogen sulfide (H₂S) listed as a state regulated ambient air quality standard. Emission factors of H₂S from the drum dryer/mixer, asphalt silo loading, and asphalt silo unloading are based on a 2001 study performed by the North Carolina Division of Air Quality and the city of Salisbury, NC. From the study the H₂S emission factors from these sources are:

Process Unit Number	Process Unit Description	H ₂ S Emission Factor
14	Drum Dryer/Mixer and Baghouse	0.0000518 lbs/ton
15	Drum Mixer Unloading	0.000001460 lbs/ton
16	Asphalt Silo Unloading	0.000001460 lbs/ton

Table 6-25: Controlled Hot Mix Plant Emission Rates

Process Unit Number	Process Unit Description	Pollutant	Average Hourly Process Rate (tons/hour)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
14	Drum Dryer/Mixer and Baghouse	H ₂ S	400	0.021	0.023
15	Drum Mixer Unloading	H ₂ S	400	0.00058	0.00066
16	Asphalt Silo Unloading	H₂S	400	0.00058	0.00066
			Total H₂S	0.022	0.025

Estimates for Federal HAPs Air Pollutants

The Hot Mix Asphalt Plant (HMA) drum dryer (14), main plant generator (17), standby generator (18), and asphalt heater (19) are sources of HAPs as it appears in Section 112 (b) of the 1990 CAAA. Emissions of HAPs were determined for the drum mixer using AP-42 Section 11.1 Tables 11.1-10, 11.1-12. Emissions of HAPs were determined for the plant generators using AP-42 Section 3.3 Table 3.3-2; Section 1.3 Table 1.3-10. Emissions of HAPs were determined for the asphalt heater using AP-42 Section 1.4.

The following tables summarize the HAPs emission rates from the drum mixer, main plant generator, standby generator, and asphalt heater. Total combined HAPs emissions from MV 400 TPH Gencor HMA Plant is 4.28 pounds per hour and 4.73 tons per year.

Table 6-26: HAPs Emission Rates from the Drum Dryer/Mixer (14)EPA HAPS Emissions Drum Mixer Hot Mix Asphalt Plant with Fabric Filter

Average Hourly Production Rate:	400	tons per hour
Yearly Production Rate:	900000	tons per year

Type of Fuel:	Waste Fuel Oil
Emission Factors	AP-42 Section 11.1 Tables 11.1-10, 11.1-12

Non-PAH HAPS	CAS#		Emission Factor (lbs/ton)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Acetaldehyde	75-07-0		1.3E-03	0.520000	0.585000
Acrolein	107-02-8		2.6E-05	0.010400	0.011700
Benzene	71-43-2		3.9E-04	0.156000	0.175500
Ethylbenzene	100-41-4		2.4E-04	0.096000	0.108000
Formaldehyde	50-00-0		3.1E-03	1.240000	1.395000
Hexane	110-54-3		9.2E-04	0.368000	0.414000
Isooctane	540-84-1		4.0E-05	0.016000	0.018000
Methyl Ethyl Ketone	78-93-3		2.0E-05	0.008000	0.009000
Propionaldehyde	123-38-6		1.3E-04	0.052000	0.058500
Quinone	106-51-4		1.6E-04	0.064000	0.072000
Methyl chorlform	71-55-6		4.8E-05	0.019200	0.021600
Toluene	108-88-3		2.9E-03	1.160000	1.305000
Xylene	1330-20-7		2.0E-04	0.080000	0.090000
		Total Non-PAH HAPS	9.5E-03	3.789600	4.263300
			Emission Factor	Emission Rate	Emission Rate
PAH HAPS	CAS#		(lbs/ton)	(lbs/hr)	(ton/yr)
2-Methylnaphthalene	91-57-6		1.7E-04	0.068000	0.076500
Acenaphthene	83-32-9		1.4E-06	0.000560	0.000630
Acenaphthylene	208-96-8		2.2E-05	0.008800	0.009900
Anthracene	120-12-7		3.1E-06	0.001240	0.001395
Benzo(a)anthracene	56-55-3		2.1E-07	0.000084	0.000095
Benzo(a)pyrene	50-32-8		9.8E-09	0.000004	0.000004
Benzo(b)fluoranthene	205-99-2		1.0E-07	0.000040	0.000045
Benzo(b)pyrene	192-97-2		1.1E-07	0.000044	0.000050
Benzo(g,h,l)perylene	191-24-2		4.0E-08	0.000016	0.000018
Benzo(k)fluoranthene	207-08-9		4.1E-08	0.000016	0.000018
Chrysene	218-01-9		1.8E-07	0.000072	0.000081
Fluoranthene	206-44-0		6.1E-07	0.000244	0.000275
Fluorene	86-73-7		1.1E-05	0.004400	0.004950
Indeno(1,2,3-cd)pyrene	193-39-5		7.0E-09	0.000003	0.000003
Naphthalene	91-20-3		6.5E-04	0.260000	0.292500
Perylene	198-55-0		8.8E-09	0.000004	0.000004
Phenanthrene	85-01-8		2.3E-05	0.009200	0.010350
Pyrene	129-00-0		3.0E-06	0.001200	0.001350
		Total PAH HAPS	8.8E-04	0.353927	0.398167

HAPS Metals		Emission Factor (lbs/ton)	Emission Rate (lbs/hr)	Emission Rate (ton/yr)
Arsenic		5.6E-07	0.000224	0.000252
Beryllium		0.0E+00	0.000000	0.000000
Cadmium		4.1E-07	0.000164	0.000185
Chromium		5.5E-06	0.002200	0.002475
Cobalt		2.6E-08	0.000010	0.000012
Hexavalent Chromium		4.5E-07	0.000180	0.000203
Lead		1.5E-05	0.006000	0.006750
Manganese		7.7E-06	0.003080	0.003465
Mercury		2.6E-06	0.001040	0.001170
Nickel		6.3E-05	0.025200	0.028350
Phosphorus		2.8E-05	0.011200	0.012600
Selenium		3.5E-07	0.000140	0.000158
	Total Metals HAPS	1.2E-04	0.049438	0.055618
	Total HAPS		4.19297	4.71709

Table 6-27: HAPs Emission Rates from the Main Plant Generator (17)

Horsepower Rating: Fuel Usage: MMBtu/hr: Btu x 10^-12/hr: Yearly Operating Hours:	1372 70.6 9.0368 9.0368E-06 4380	horsepower gallons/hr Btu Btu x10^-12 hours per year		28000 Btu/ga 28000 Btu/ga	-
Type of Fuel: Emission Factors	Diesel	. 1 0			
	AP-42 Section 3.3 and Sectior	11.3	Emission Factor	Emission Rate	Emission Rate
Non-PAH HAPS	CAS#		(lbs/mmBtu)	(lbs/hr)	(ton/yr)
Acetaldehyde	75-07-0		7.67E-04	0.006931	0.015179
Acrolein	107-02-8		9.25E-05	0.000836	0.001831
Benzene	71-43-2		9.33E-04	0.008431	0.018465
1,3-Butadiene	106-99-0		3.91E-05	0.000353	0.000774
Formaldehyde	50-00-0		1.18E-03	0.010663	0.023353
Propylene	115-07-1		2.58E-03	0.023315	0.051060
Toluene	108-88-3		4.09E-04	0.003696	0.008094
Xylene	1330-20-7		2.85E-04	0.002575	0.005640
		Total Non-PAH HAPS	6.29E-03	0.056802	0.124396

РАН НАРЅ	CAS#		Emission Factor (Ibs/mmBtu)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Acenaphthene	83-32-9		1.42E-06	0.000013	0.000028
Acenaphthylene	208-96-8		5.06E-06	0.000046	0.000100
Anthracene	120-12-7		1.87E-06	0.000017	0.000037
Benzo(a)anthracene	56-55-3		1.68E-06	0.000015	0.000033
Benzo(a)pyrene	50-32-8		1.88E-07	0.000002	0.000004
Benzo(b)fluoranthene	205-99-2		9.91E-08	0.000001	0.000002
Benzo(a)pyrene	192-97-2		1.55E-07	0.000001	0.000003
Benzo(g,h,I)perylene	191-24-2		4.89E-07	0.000004	0.000010
Benzo(k)fluoranthene	207-08-9		1.55E-07	0.000001	0.000003
Dibenz(a,h)anthracene			5.83E-07	0.000005	0.000012
Chrysene	218-01-9		3.53E-07	0.000003	0.000007
Fluoranthene	206-44-0		7.61E-06	0.000069	0.000151
Fluorene	86-73-7		2.92E-05	0.000264	0.000578
Indeno(1,2,3-cd)pyrene	193-39-5		3.75E-07	0.000003	0.000007
Naphthalene	91-20-3		8.48E-05	0.000766	0.001678
Phenanthrene	85-01-8		2.94E-05	0.000266	0.000582
Pyrene	129-00-0		4.78E-06	0.000043	0.000095
		Total PAH HAPS	1.68E-04	0.001520	0.003329

HAPS Metals		Emission Factor (Ibs/Btu^12)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Arsenic		4	0.000036	0.000079
Beryllium		3	0.000027	0.000059
Cadmium		3	0.000027	0.000059
Chromium		3	0.000027	0.000059
Lead		9	0.000081	0.000178
Manganese		6	0.000054	0.000119
Mercury		3	0.000027	0.000059
Nickel		3	0.000027	0.000059
Selenium		15	0.000136	0.000297
	Total Metals HAPS	49	0.000443	0.000970
	Total HAPS		0.05876	0.00994

Table 6-28: HAPs Emission Rates from the Standby Plant Generator (18)

Horsepower Rating: Fuel Usage: MMBtu/hr: Btu x 10^-12/hr: Yearly Operating Hours:	7	114 5.9 0.7552 7.552E-07 4380	horsepower gallons/hr Btu Btu x10^-12 hours per year	(based on 128000 Btu/gallon) (based on 128000 Btu/gallon)		-
Type of Fuel:	Diesel					
Emission Factors	AP-42 Section 3.3 a	nd Section	1.3			
Non-PAH HAPS	CAS#			Emission Factor (Ibs/mmBtu)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
NOI-FAR RAFS	CA3#			(IDS/IIIIIDtu)	(וווינטו)	((01) y)
Acetaldehyde	75-07-0			7.67E-04	0.000579	0.001269
Acrolein	107-02-8			9.25E-05	0.000070	0.000153
Benzene	71-43-2			9.33E-04	0.000705	0.001543
1,3-Butadiene	106-99-0			3.91E-05	0.000030	0.000065
Formaldehyde	50-00-0			1.18E-03	0.000891	0.001952
Propylene	115-07-1			2.58E-03	0.001948	0.004267
Toluene	108-88-3			4.09E-04	0.000309	0.000676
Xylene	1330-20-7			2.85E-04	0.000215	0.000471
		Tota	l Non-PAH HAPS	6.29E-03	0.004747	0.010396
				Emission	Emission	Emission
				Factor	Rate	Rate
PAH HAPS	CAS#			(lbs/mmBtu)	(lbs/hr)	(ton/yr)
Acenaphthene	83-32-9			1.42E-06	0.000001	0.000002
Acenaphthylene	208-96-8			5.06E-06	0.000004	0.000008
Anthracene	120-12-7			1.87E-06	0.000001	0.000003
Benzo(a)anthracene	56-55-3			1.68E-06	0.000001	0.000003
Benzo(a)pyrene	50-32-8			1.88E-07	0.000000	0.000000
Benzo(b)fluoranthene	205-99-2			9.91E-08	0.000000	0.000000
Benzo(a)pyrene	192-97-2			1.55E-07	0.000000	0.000000
Benzo(g,h,I)perylene	191-24-2			4.89E-07	0.000000	0.000001
Benzo(k)fluoranthene	207-08-9			1.55E-07	0.000000	0.000000
Dibenz(a,h)anthracene				5.83E-07	0.000000	0.000001
Chrysene	218-01-9			3.53E-07	0.000000	0.000001
Fluoranthene	206-44-0			7.61E-06	0.000006	0.000013
Fluorene	86-73-7			2.92E-05	0.000022	0.000048
Indeno(1,2,3-cd)pyrene	193-39-5			3.75E-07	0.000000	0.000001
Naphthalene	91-20-3			8.48E-05	0.000064	0.000140
•						

Total PAH HAPS

2.94E-05

4.78E-06

1.68E-04

85-01-8

129-00-0

Phenanthrene

Pyrene

0.000022

0.000004

0.000127

0.000049

0.000008

0.000278

HAPS Metals		Emission Factor (Ibs/Btu^12)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Arsenic		4	0.000003	0.000007
Beryllium		3	0.000002	0.000005
Cadmium		3	0.000002	0.000005
Chromium		3	0.000002	0.000005
Lead		9	0.000007	0.000015
Manganese		6	0.000005	0.000010
Mercury		3	0.000002	0.000005
Nickel		3	0.000002	0.000005
Selenium		15	0.000011	0.000025
	Total Metals HAPS	49	0.000037	0.000081
	Total HAPS		0.00491	0.00083

Table 6-29: HAPs Emission Rates from the Asphalt Heater (19)

	Table 0-25. HAPS		ates nom the Asphalt n	ieater (19)		
Btu Rating Fuel Usage:		1.0 7.8	mmBtu/hr gallons/hr	(based on 12800	0 Btu/gallon)	
Btu x 10 ⁻ -12/hr: Yearly Operating Hours:		0.000001 7272	Btu x10^-12 hours per year	(based on 12800)	0 Btu/gallon)	
Type of Fuel:	Diesel					
Emission Factors	AP-42 Section 1.3					
				Emission Factor	Emission Rate	Emission Rate
Organic Compounds	CAS#			(lbs/10^3 gal)	(lbs/hr)	(ton/yr)
Acenaphthene	83-32-9			2.11E-05	0.000000	0.000001
Acenaphthylene	208-96-8			2.53E-07	0.000000	0.000000
Anthracene	120-12-7			1.22E-06	0.000000	0.000000
Benzene	71-43-2			2.14E-04	0.000002	0.000006
Benzo(a)anthracene	56-55-3			4.01E-06	0.000000	0.000000
Benzo(b,k)fluoranthene	205-99-2			1.48E-06	0.000000	0.000000
Benzo(g,h,I)perylene	191-24-2			2.26E-06	0.000000	0.000000
Chrysene	218-01-9			2.38E-06	0.000000	0.000000
Dibenz(a,h)anthracene				1.67E-06	0.000000	0.000000
Ethylbenzene	100-41-4			6.36E-05	0.000000	0.000002
Fluoranthene	206-44-0			4.84E-06	0.000000	0.000000
Fluorene	86-73-7			4.47E-06	0.000000	0.000000
Formaldehyde	50-00-0			6.10E-02	0.000476	0.001730
Indeno(1,2,3-cd)pyrene	193-39-5			2.14E-06	0.000000	0.000000
Naphthalene	91-20-3			1.13E-03	0.000009	0.000032
Phenanthrene	85-01-8			1.05E-05	0.000000	0.000000
Pyrene	129-00-0			4.25E-06	0.000000	0.000000
Toluene	108-88-3			6.20E-03	0.000048	0.000176
Xylene	1330-20-7			1.09E-04	0.000001	0.000003
		To	tal Organic Compounds	6.88E-02	0.000536	0.001951
				Emission	Emission	Emission
				Factor	Rate	Rate
HAPS Metals				(lbs/Btu^12)	(lbs/hr)	(ton/yr)
Arsenic				4	0.000004	0.000015
Beryllium				3	0.000003	0.000011
Cadmium				3	0.000003	0.000011
Chromium				3	0.000003	0.000011
Lead				9	0.000009	0.000033
Manganese				6	0.000006	0.000022
Mercury				3	0.000003	0.000011
Nickel				3	0.000003	0.000011
Selenium				15	0.000015	0.000055
			Total Metals HAPS	49	0.000049	0.000178
			Total HAPS		0.00112	0.00213

Controlled Emission Totals						
	HAPS		Asphalt Fumes (State TAPS)			
Description	lbs/hr	tons/yr	lbs/hr	tons/yr		
HMA Plant	4.26	4.73	5.01	5.64		
RAP Crushing & Screening/Scalping Screen Plants	0.028	0.0034				
Total	4.28	4.73	5.01	5.64		

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following X By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Section 7

Information Used to Determine Emissions

Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- □ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

A-XXXX-7-AP42S1-3	Asphalt Heater Combustion and HAPs Emission Factors				
A-XXXX-7-AP42S1-3	Diesel-Fired Engine HAPs Emission Factors				
A-XXXX-7-AP42S3-3	Diesel-Fired Engine HAPs Emission Factors				
A-XXXX-7-AP42S3-3	Unit 33: Diesel-Fired Engine Emission Factors				
A-XXXX-7-AP42S11-1	HMA Plant and HAPs Emission Factors				
A-XXXX-7-AP42S11-12	Mineral Filler Silo Emission Factors				
A-XXXX-7-AP42S11-19-2	Crusher, Screen, Pugmill, and Transfer Point Emission Factors				
A-XXXX-7-AP42S13-2-2	Unpaved Road Emission Factors				
A-XXXX-7-AP42S13-2-4	Material Handling Emission Factors				
A-XXXX-7-Unit17Tier2	Unit 17: HMA Plant Main Engine				
A-XXXX-7-Unit18&40Tier4f	Unit 18 and 40: HMA Plant Standby Engine and RAP Scalping Screen Engine				
A-XXXX-7-EPAii03	EPA documents "EIIP – Preferred and Alternative Methods for Estimating Air Emissions from Hot-Mix-Asphalt Plants, Final Report, July 1996, Table 3.2-1 Fugitive Dust – Crushed RAP material"				
A-XXXX-7-WindspeedAlamogordo	Wind Speed Average 1996-2006				
A-XXXX-7-ACTANK1	Unit 20: HMA Plant Asphalt Cement Storage Tank (#1)				
A-XXXX-7-ACTANK2	Unit 20: HMA Plant Asphalt Cement Storage Tank (#2)				
A-XXXX-7-HMAEI.xls	MV HMA Plant Emissions Spreadsheet (Electronic File)				
A-XXXX-7-HMARELOCATEEI.xls	MV HMA Plant Relocation Emissions Spreadsheet (Electronic File)				

1.3 Fuel Oil Combustion

1.3.1 General¹⁻³

Two major categories of fuel oil are burned by combustion sources: distillate oils and residual oils. These oils are further distinguished by grade numbers, with Nos. 1 and 2 being distillate oils; Nos. 5 and 6 being residual oils; and No. 4 being either distillate oil or a mixture of distillate and residual oils. No. 6 fuel oil is sometimes referred to as Bunker C. Distillate oils are more volatile and less viscous than residual oils. They have negligible nitrogen and ash contents and usually contain less than 0.3 percent sulfur (by weight). Distillate oils are used mainly in domestic and small commercial applications, and include kerosene and diesel fuels. Being more viscous and less volatile than distillate proper atomization. Because residual oils are produced from the residue remaining after the lighter fractions (gasoline, kerosene, and distillate oils) have been removed from the crude oil, they contain significant quantities of ash, nitrogen, and sulfur. Residual oils are used mainly in utility, industrial, and large commercial applications.

1.3.2 Firing Practices⁴

The major boiler configurations for fuel oil-fired combustors are watertube, firetube, cast iron, and tubeless design. Boilers are classified according to design and orientation of heat transfer surfaces, burner configuration, and size. These factors can all strongly influence emissions as well as the potential for controlling emissions.

Watertube boilers are used in a variety of applications ranging from supplying large amounts of process steam to providing space heat for industrial facilities. In a watertube boiler, combustion heat is transferred to water flowing through tubes which line the furnace walls and boiler passes. The tube surfaces in the furnace (which houses the burner flame) absorb heat primarily by radiation from the flames. The tube surfaces in the boiler passes (adjacent to the primary furnace) absorb heat primarily by convective heat transfer.

Firetube boilers are used primarily for heating systems, industrial process steam generators, and portable power boilers. In firetube boilers, the hot combustion gases flow through the tubes while the water being heated circulates outside of the tubes. At high pressures and when subjected to large variations in steam demand, firetube units are more susceptible to structural failure than watertube boilers. This is because the high-pressure steam in firetube units is contained by the boiler walls rather than by multiple small-diameter watertubes, which are inherently stronger. As a consequence, firetube boilers are typically small and are used primarily where boiler loads are relatively constant. Nearly all firetube boilers are sold as packaged units because of their relatively small size.

A cast iron boiler is one in which combustion gases rise through a vertical heat exchanger and out through an exhaust duct. Water in the heat exchanger tubes is heated as it moves upward through the tubes. Cast iron boilers produce low pressure steam or hot water, and generally burn oil or natural gas. They are used primarily in the residential and commercial sectors.

Another type of heat transfer configuration used on smaller boilers is the tubeless design. This design incorporates nested pressure vessels with water in between the shells. Combustion gases are fired into the inner pressure vessel and are then sometimes recirculated outside the second vessel.

Organic Compound	Average Emission Factor ^b (lb/10 ³ Gal)	EMISSION FACTOR RATING
Benzene	2.14E-04	С
Ethylbenzene	6.36E-05 [°]	Е
Formaldehyde ^d	3.30E-02	С
Naphthalene	1.13E-03	С
1,1,1-Trichloroethane	2.36E-04 ^c	Е
Toluene	6.20E-03	D
o-Xylene	1.09E-04 ^c	Е
Acenaphthene	2.11E-05	С
Acenaphthylene	2.53E-07	D
Anthracene	1.22E-06	С
Benz(a)anthracene	4.01E-06	С
Benzo(b,k)fluoranthene	1.48E-06	С
Benzo(g,h,i)perylene	2.26E-06	С
Chrysene	2.38E-06	С
Dibenzo(a,h) anthracene	1.67E-06	D
Fluoranthene	4.84E-06	С
Fluorene	4.47E-06	С
Indo(1,2,3-cd)pyrene	2.14E-06	С
Phenanthrene	1.05E-05	С
Pyrene	4.25E-06	С
OCDD	3.10E-09 ^c	Е

Table 1.3-9. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM FUEL OIL COMBUSTION^a

^a Data are for residual oil fired boilers, Source Classification Codes (SCCs) 1-01-004-01/04.
 ^b References 64-72. To convert from lb/10³ gal to kg/10³ L, multiply by 0.12.
 ^c Based on data from one source test (Reference 67).

^d The formaldehyde number presented here is based only on data from utilities using No. 6 oil. The number presented in Table 1.3-7 is based on utility, commercial, and industrial boilers.

Table 1.3-10. EMISSION FACTORS FOR TRACE ELEMENTS FROM DISTILLATEFUEL OIL COMBUSTION SOURCES^a

EMISSION FACTOR RATING: E

Firing Configuration	Emission Factor (lb/10 ¹² Btu)										
(SCC)	As	Be	Cd	Cr	Cu	Pb	Hg	Mn	Ni	Se	Zn
Distillate oil fired (1-01-005-01, 1-02-005-01, 1-03-005-01)	4	3	3	3	б	9	3	6	3	15	4

^a Data are for distillate oil fired boilers, SCC codes 1-01-005-01, 1-02-005-01, and 1-03-005-01. References 29-32, 40-44 and 83. To convert from lb/10¹² Btu to pg/J, multiply by 0.43.

Metal	Average Emission Factor ^{b, d} (lb/10 ³ Gal)	EMISSION FACTOR RATING
Antimony	5.25E-03 ^c	Е
Arsenic	1.32E-03	С
Barium	2.57E-03	D
Beryllium	2.78E-05	С
Cadmium	3.98E-04	С
Chloride	3.47E-01	D
Chromium	8.45E-04	С
Chromium VI	2.48E-04	С
Cobalt	6.02E-03	D
Copper	1.76E-03	С
Fluoride	3.73E-02	D
Lead	1.51E-03	С
Manganese	3.00E-03	С
Mercury	1.13E-04	С
Molybdenum	7.87E-04	D
Nickel	8.45E-02	С
Phosphorous	9.46E-03	D
Selenium	6.83E-04	С
Vanadium	3.18E-02	D
Zinc	2.91E-02	D

Table 1.3-11. EMISSION FACTORS FOR METALS FROM UNCONTROLLED NO. 6FUEL OIL COMBUSTION^a

^a Data are for residual oil fired boilers, Source Classification Codes (SCCs) 1-01-004-01/04.

^b References 64-72. 18 of 19 sources were uncontrolled and 1 source was controlled with low efficiency ESP. To convert from lb/10³ gal to kg/10³ L, multiply by 0.12.

^c References 29-32,40-44.

^d For oil/water mixture, reduce factors in proportion to water content of the fuel (due to dilution). To adjust the listed values for water content, multiply the listed value by 1-decimal fraction of water (ex: For fuel with 9 percent water by volume, multiply by 1-0.9=.91).

	Gasoline Fuel (SCC 2-02-003-01, 2-03-003-01)		Diese (SCC 2-02-001-		
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING
NO _x	0.011	1.63	0.031	4.41	D
со	0.439	62.7	6.68 E-03	0.95	D
SO _x	5.91 E-04	0.084	2.05 E-03	0.29	D
PM-10 ^b	7.21 E-04	0.10	2.20 E-03	0.31	D
CO ₂ ^c	1.08	154	1.15	164	В
Aldehydes	4.85 E-04	0.07	4.63 E-04	0.07	D
TOC					
Exhaust	0.015	2.10	2.47 E-03	0.35	D
Evaporative	6.61 E-04	0.09	0.00	0.00	Е
Crankcase	4.85 E-03	0.69	4.41 E-05	0.01	Е
Refueling	1.08 E-03	0.15	0.00	0.00	Е

Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES^a

^a References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.

^b PM-10 = particulate matter less than or equal to 10 μ m aerodynamic diameter. All particulate is assumed to be $\leq 1 \ \mu$ m in size.

^c Assumes 99% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.

11.1 Hot Mix Asphalt Plants

11.1.1 General^{1-3,23, 392-394}

Hot mix asphalt (HMA) paving materials are a mixture of size-graded, high quality aggregate (which can include reclaimed asphalt pavement [RAP]), and liquid asphalt cement, which is heated and mixed in measured quantities to produce HMA. Aggregate and RAP (if used) constitute over 92 percent by weight of the total mixture. Aside from the amount and grade of asphalt cement used, mix characteristics are determined by the relative amounts and types of aggregate and RAP used. A certain percentage of fine aggregate (less than 74 micrometers [µm] in physical diameter) is required for the production of good quality HMA.

Hot mix asphalt paving materials can be manufactured by: (1) batch mix plants, (2) continuous mix (mix outside dryer drum) plants, (3) parallel flow drum mix plants, and (4) counterflow drum mix plants. This order of listing generally reflects the chronological order of development and use within the HMA industry.

In 1996, approximately 500 million tons of HMA were produced at the 3,600 (estimated) active asphalt plants in the United States. Of these 3,600 plants, approximately 2,300 are batch plants, 1,000 are parallel flow drum mix plants, and 300 are counterflow drum mix plants. The total 1996 HMA production from batch and drum mix plants is estimated at about 240 million tons and 260 million tons, respectively. About 85 percent of plants being manufactured today are of the counterflow drum mix design, while batch plants and parallel flow drum mix plants account for 10 percent and 5 percent respectively. Continuous mix plants represent a very small fraction of the plants in use (≤ 0.5 percent) and, therefore, are not discussed further.

An HMA plant can be constructed as a permanent plant, a skid-mounted (easily relocated) plant, or a portable plant. All plants can have RAP processing capabilities. Virtually all plants being manufactured today have RAP processing capability. Most plants have the capability to use either gaseous fuels (natural gas) or fuel oil. However, based upon Department of Energy and limited State inventory information, between 70 and 90 percent of the HMA is produced using natural gas as the fuel to dry and heat the aggregate.

11.1.1.1 Batch Mix Plants -

Figure 11.1-1 shows the batch mix HMA production process. Raw aggregate normally is stockpiled near the production unit. The bulk aggregate moisture content typically stabilizes between 3 to 5 percent by weight.

Processing begins as the aggregate is hauled from the storage piles and is placed in the appropriate hoppers of the cold feed unit. The material is metered from the hoppers onto a conveyer belt and is transported into a rotary dryer (typically gas- or oil-fired). Dryers are equipped with flights designed to shower the aggregate inside the drum to promote drying efficiency.

As the hot aggregate leaves the dryer, it drops into a bucket elevator and is transferred to a set of vibrating screens, where it is classified into as many as four different grades (sizes) and is dropped into individual "hot" bins according to size. At newer facilities, RAP also may be transferred to a separate heated storage bin. To control aggregate size distribution in the final <u>batch</u> mix, the operator opens various hot bins over a weigh hopper until the desired mix and weight are obtained. Concurrent with the aggregate being weighed, liquid asphalt cement is pumped from a heated storage tank to an asphalt bucket, where it is weighed to achieve the desired aggregate-to-asphalt cement ratio in the final mix.

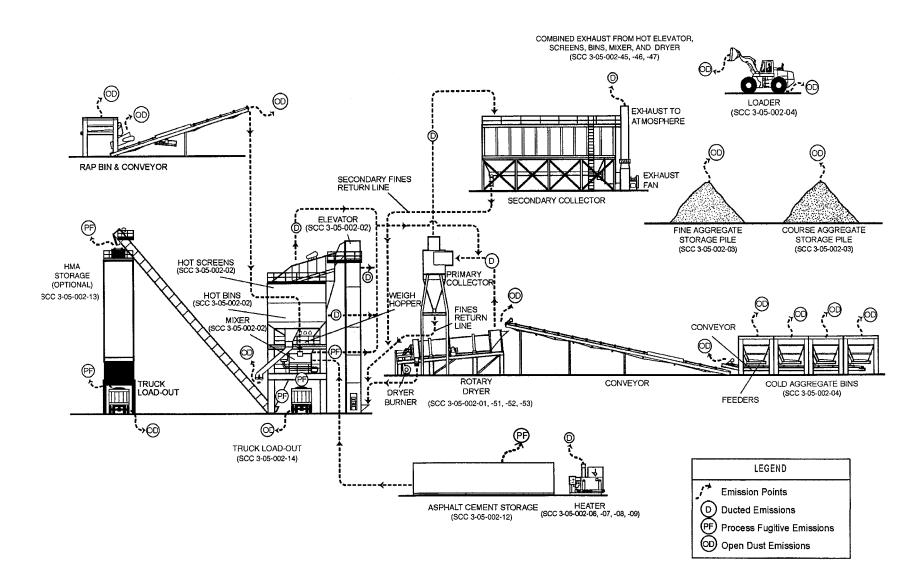


Figure 11.1-1. General process flow diagram for batch mix asphalt plants (source classification codes in parentheses).³

The aggregate from the weigh hopper is dropped into the mixer (pug mill) and dry-mixed for 6 to 10 seconds. The liquid asphalt is then dropped into the pug mill where it is mixed for an additional period of time. At older plants, RAP typically is conveyed directly to the pug mill from storage hoppers and combined with the hot aggregate. Total mixing time usually is less than 60 seconds. Then the hot mix is conveyed to a hot storage silo or is dropped directly into a truck and hauled to the job site.

11.1.1.2 Parallel Flow Drum Mix Plants -

Figure 11.1-2 shows the parallel flow drum mix process. This process is a continuous mixing type process, using proportioning cold feed controls for the process materials. The major difference between this process and the batch process is that the dryer is used not only to dry the material but also to mix the heated and dried aggregates with the liquid asphalt cement. Aggregate, which has been proportioned by size gradations, is introduced to the drum at the burner end. As the drum rotates, the aggregates, as well as the combustion products, move toward the other end of the drum in <u>parallel</u>. Liquid asphalt cement flow is controlled by a variable flow pump electronically linked to the new (virgin) aggregate and RAP weigh scales. The asphalt cement is introduced in the mixing zone midway down the drum in a lower temperature zone, along with any RAP and particulate matter (PM) from collectors.

The mixture is discharged at the end of the drum and is conveyed to either a surge bin or HMA storage silos, where it is loaded into transport trucks. The exhaust gases also exit the end of the drum and pass on to the collection system.

Parallel flow drum mixers have an advantage, in that mixing in the discharge end of the drum captures a substantial portion of the aggregate dust, therefore lowering the load on the downstream PM collection equipment. For this reason, most parallel flow drum mixers are followed only by primary collection equipment (usually a baghouse or venturi scrubber). However, because the mixing of aggregate and liquid asphalt cement occurs in the hot combustion product flow, organic emissions (gaseous and liquid aerosol) may be greater than in other asphalt mixing processes. Because data are not available to distinguish significant emissions differences between the two process designs, this effect on emissions cannot be verified.

11.1.1.3 Counterflow Drum Mix Plants -

Figure 11.1-3 shows a counterflow drum mix plant. In this type of plant, the material flow in the drum is opposite or <u>counterflow</u> to the direction of exhaust gases. In addition, the liquid asphalt cement mixing zone is located behind the burner flame zone so as to remove the materials from direct contact with hot exhaust gases.

Liquid asphalt cement flow is controlled by a variable flow pump which is electronically linked to the virgin aggregate and RAP weigh scales. It is injected into the mixing zone along with any RAP and particulate matter from primary and secondary collectors.

Because the liquid asphalt cement, virgin aggregate, and RAP are mixed in a zone removed from the exhaust gas stream, counterflow drum mix plants will likely have organic emissions (gaseous and liquid aerosol) that are lower than parallel flow drum mix plants. However, the available data are insufficient to discern any differences in emissions that result from differences in the two processes. A counterflow drum mix plant can normally process RAP at ratios up to 50 percent with little or no observed effect upon emissions.

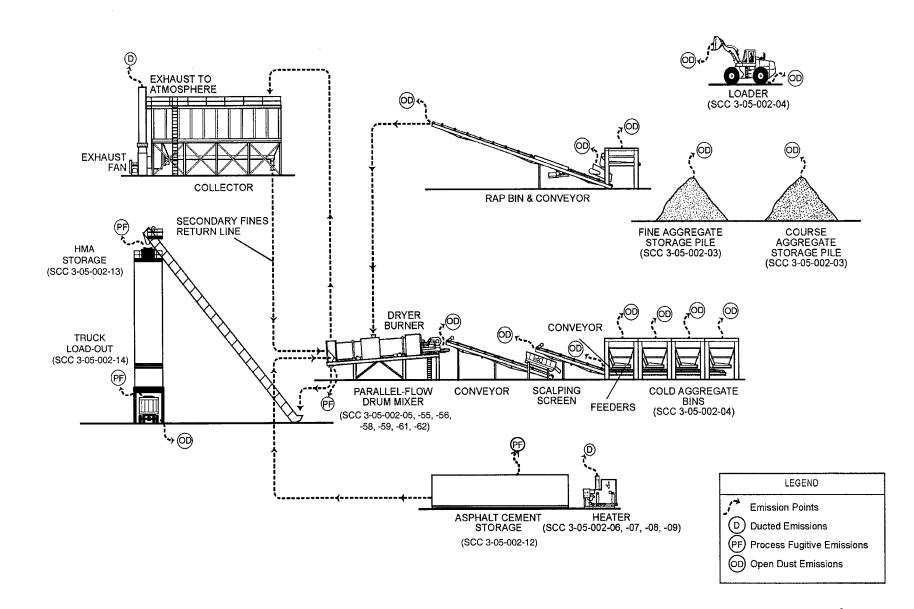
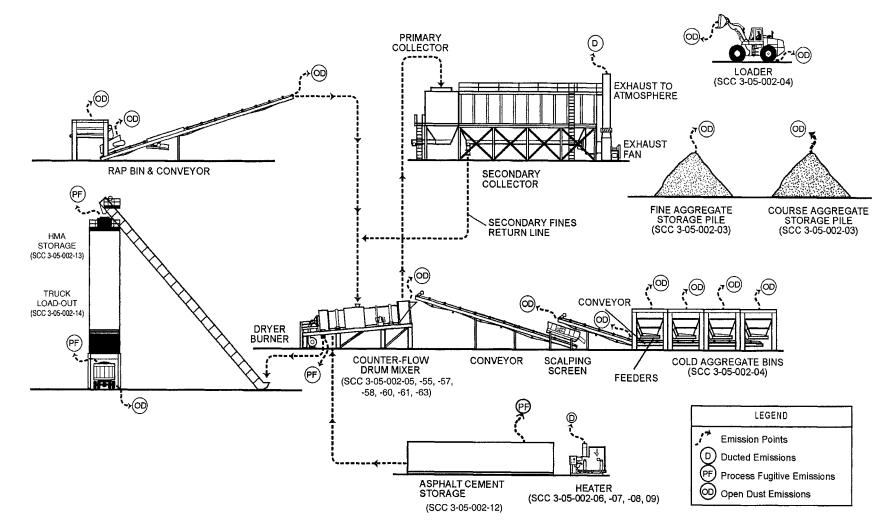



Figure 11.1-2. General process flow diagram for parallel-flow drum mix asphalt plants (source classification codes in parentheses).³

11.1-5

Figure 11.1-3. General process flow diagram for counter-flow drum mix asphalt plants (source classification codes in parentheses).³

11.1.1.4 Recycle Processes³⁹³ -

In recent years, the use of RAP has been initiated in the HMA industry. Reclaimed asphalt pavement significantly reduces the amount of virgin rock and asphalt cement needed to produce HMA.

In the reclamation process, old asphalt pavement is removed from the road base. This material is then transported to the plant, and is crushed and screened to the appropriate size for further processing. The paving material is then heated and mixed with new aggregate (if applicable), and the proper amount of new asphalt cement is added to produce HMA that meets the required quality specifications.

11.1.2 Emissions And Controls^{2-3,23}

Emissions from HMA plants may be divided into ducted production emissions, pre-production fugitive dust emissions, and other production-related fugitive emissions. Pre-production fugitive dust sources associated with HMA plants include vehicular traffic generating fugitive dust on paved and unpaved roads, aggregate material handling, and other aggregate processing operations. Fugitive dust may range from 0.1 µm to more than 300 µm in aerodynamic diameter. On average, 5 percent of cold aggregate feed is less than 74 µm (minus 200 mesh). Fugitive dust that may escape collection before primary control generally consists of PM with 50 to 70 percent of the total mass less than 74 µm. Uncontrolled PM emission factors for various types of fugitive sources in HMA plants are addressed in Sections 11.19.2, "Crushed Stone Processing", 13.2.1, "Paved Roads", 13.2.2, "Unpaved Roads", 13.2.3, "Heavy Construction Operations", and 13.2.4, "Aggregate Handling and Storage Piles." Production-related fugitive emissions and emissions from ducted production operations are discussed below. Emission points discussed below refer to Figure 11.1-1 for batch mix asphalt plants and to Figures 11.1-2 and 11.1-3 for drum mix plants.

11.1.2.1 Batch Mix Plants -

As with most facilities in the mineral products industry, batch mix HMA plants have two major categories of emissions: ducted sources (those vented to the atmosphere through some type of stack, vent, or pipe), and fugitive sources (those not confined to ducts and vents but emitted directly from the source to the ambient air). Ducted emissions are usually collected and transported by an industrial ventilation system having one or more fans or air movers, eventually to be emitted to the atmosphere through some type of stack. Fugitive emissions result from process and open sources and consist of a combination of gaseous pollutants and PM.

The most significant ducted source of emissions of most pollutants from batch mix HMA plants is the rotary drum dryer. The dryer emissions consist of water (as steam evaporated from the aggregate); PM; products of combustion (carbon dioxide $[CO_2]$, nitrogen oxides $[NO_x]$, and sulfur oxides $[SO_x]$); carbon monoxide (CO); and small amounts of organic compounds of various species (including volatile organic compounds [VOC], methane $[CH_4]$, and hazardous air pollutants [HAP]). The CO and organic compound emissions result from incomplete combustion of the fuel. It is estimated that between 70 and 90 percent of the energy used at HMA plants is from the combustion of natural gas.

Other potential process sources include the hot-side conveying, classifying, and mixing equipment, which are vented either to the primary dust collector (along with the dryer gas) or to a separate dust collection system. The vents and enclosures that collect emissions from these sources are commonly called "fugitive air" or "scavenger" systems. The scavenger system may or may not have its own separate air mover device, depending on the particular facility. The emissions captured and transported by the scavenger system are mostly aggregate dust, but they may also contain gaseous organic compounds and a fine aerosol of condensed organic particles. This organic aerosol is created by the condensation of vapor into particles during cooling of organic vapors volatilized from the asphalt cement in the mixer (pug mill). The amount of organic aerosol produced depends to a large extent on the temperature of the asphalt cement and aggregate entering the pug mill. Organic vapor and its associated

aerosol also are emitted directly to the atmosphere as process fugitives during truck load-out, from the bed of the truck itself during transport to the job site, and from the asphalt storage tank. Both the low molecular weight organic compounds and the higher weight organic aerosol contain small amounts of HAP. The ducted emissions from the heated asphalt storage tanks include gaseous and aerosol organic compounds and combustion products from the tank heater.

The choice of applicable emission controls for PM emissions from the dryer and vent line includes dry mechanical collectors, scrubbers, and fabric filters. Attempts to apply electrostatic precipitators have met with little success. Practically all plants use primary dust collection equipment such as large diameter cyclones, skimmers, or settling chambers. These chambers often are used as classifiers to return collected material to the hot elevator and to combine it with the drier aggregate. To capture remaining PM, the primary collector effluent is ducted to a secondary collection device. Most plants use either a fabric filter or a venturi scrubber for secondary emissions control. As with any combustion process, the design, operation, and maintenance of the burner provides opportunities to minimize emissions of NO_x , CO, and organic compounds.

11.1.2.2 Parallel Flow Drum Mix Plants -

The most significant ducted source of emissions from parallel-flow drum mix plants is the rotary drum dryer. Emissions from the drum consist of water (as steam evaporated from the aggregate); PM; products of combustion; CO; and small amounts of organic compounds of various species (including VOC, CH_4 , and HAP). The organic compound and CO emissions result from incomplete combustion of the fuel and from heating and mixing of the liquid asphalt cement inside the drum. Although it has been suggested that the processing of RAP materials at these type plants may increase organic compound emissions because of an increase in mixing zone temperature during processing, the data supporting this hypothesis are very weak. Specifically, although the data show a relationship only between RAP content and condensible organic particulate emissions, 89 percent of the variations in the data were the result of other unknown process variables.

Once the organic compounds cool after discharge from the process stack, some condense to form a fine organic aerosol or "blue smoke" plume. A number of process modifications or restrictions have been introduced to reduce blue smoke, including installation of flame shields, rearrangement of flights inside the drum, adjustments of the asphalt injection point, and other design changes.

11.1.2.3 Counterflow Drum Mix Plants -

The most significant ducted source of emissions from counterflow drum mix plants is the rotary drum dryer. Emissions from the drum consist of water (as steam evaporated from the aggregate); PM; products of combustion; CO; and small amounts of organic compounds of various species (including VOC, CH_4 , and HAP). The CO and organic compound emissions result primarily from incomplete combustion of the fuel, and can also be released from the heated asphalt. Liquid asphalt cement, aggregate, and sometimes RAP, are mixed in a zone not in contact with the hot exhaust gas stream. As a result, kiln stack emissions of organic compounds from counterflow drum mix plants may be lower than parallel flow drum mix plants. However, variations in the emissions due to other unknown process variables are more significant. As a result, the emission factors for parallel flow and counterflow drum mix plants are the same.

11.1.2.4 Parallel and Counterflow Drum Mix Plants -

Process fugitive emissions associated with batch plant hot screens, elevators, and the mixer (pug mill) are not present in the drum mix processes. However, there are fugitive PM and VOC emissions from transport and handling of the HMA from the drum mixer to the storage silo and also from the load-out operations to the delivery trucks. Since the drum process is continuous, these plants have surge

bins or storage silos. The fugitive dust sources associated with drum mix plants are similar to those of batch mix plants with regard to truck traffic and to aggregate material feed and handling operations.

Table 11.1-1 presents emission factors for filterable PM and PM-10, condensable PM, and total PM for batch mix HMA plants. Particle size data for batch mix HMA plants, based on the control technology used, are shown in Table 11.1-2. Table 11.1-3 presents filterable PM and PM-10, condensable PM, and total PM emission factors for drum mix HMA plants. Particle size data for drum mix HMA plants, based on the control technology used, are shown in Table 11.1-4. Tables 11.1-5 and -6 present emission factors for CO, CO_2 , NO_x , sulfur dioxide (SO₂), total organic compounds (TOC), formaldehyde, CH_4 , and VOC from batch mix plants. Tables 11.1-7 and -8 present emission factors for CO, CO_2 , NO_x , SO₂, TOC, CH_4 , VOC, and hydrochloric acid (HCl) from drum mix plants. The emission factors for CO, NO_x , and organic compounds represent normal plant operations without scrutiny of the burner design, operation, and maintenance. Information provided in Reference 390 indicates that attention to burner design, periodic evaluation of burner operation, and appropriate maintenance can reduce these emissions. Table 11.1-9 presents organic pollutant emission factors for drum mix plants. Tables 11.1-11 and -12 present metals emission factors for batch and drum mix plants, respectively. Table 11.1-13 presents organic pollutant emission factors for the (asphalt) oil systems.

11.1.2.5 Fugitive Emissions from Production Operations -

Emission factors for HMA load-out and silo filling operations can be estimated using the data in Tables 11.1-14, -15, and -16. Table 11.1-14 presents predictive emission factor equations for HMA load-out and silo filling operations. Separate equations are presented for total PM, extractable organic PM (as measured by EPA Method 315), TOC, and CO. For example, to estimate total PM emissions from drum mix or batch mix plant load-out operations using an asphalt loss-on-heating of 0.41 percent and temperature of 290°F, the following calculation is made:

$$\begin{split} \mathrm{EF} &= 0.000181 + 0.00141(\text{-V})e^{((0.0251)(290 + 460) - 20.43)} \\ &= 0.000181 + 0.00141(\text{-}(-0.41))e^{((0.0251)(290 + 460) - 20.43)} \\ &= 0.000181 + 0.00141(0.41)e^{(-1.605)} \\ &= 0.000181 + 0.00141(0.41)(0.2009) \\ &= 0.000181 + 0.000116 \\ &= 0.00030 \text{ lb total PM/ton of asphalt loaded} \end{split}$$

Tables 11.1-15 and -16 present speciation profiles for organic particulate-based and volatile particulate-based compounds, respectively. The speciation profile shown in Table 11.1-15 can be applied to the extractable organic PM emission factors estimated by the equations in Table 11.1-14 to estimate emission factors for specific organic PM compounds. The speciation profile presented in Table 11.1-16 can be applied to the TOC emission factors estimated by the equations in Table 11.1-14 to estimate emission factors for specific volatile organic compounds. The derivations of the predictive emission factor equations and the speciation profiles can be found in Reference 1.

For example, to estimate TOC emissions from drum mix plant load-out operations using an asphalt loss-on-heating of 0.41 percent and temperature of 290°F, the following calculation is made:

 $EF = 0.0172(-V)e^{((0.0251)(290 + 460) - 20.43)}$ = 0.0172(-(-0.41))e^{((0.0251)(290 + 460) - 20.43)} = 0.0172(0.41)e^{(-1.605)} = 0.0172(0.41)(0.2009) = 0.0014 lb TOC/ton of asphalt loaded To estimate the benzene emissions from the same operation, use the TOC emission factor calculated above and apply the benzene fraction for load-out emissions from Table 11.1-16:

EF = 0.0014 (0.00052)= 7.3 x 10⁻⁷ lb benzene/ton of asphalt loaded

Emissions from asphalt storage tanks can be estimated using the procedures described in AP-42 Section 7.1, Organic Liquid Storage Tanks, and the TANKS software. Site-specific data should be used for storage tank specifications and operating parameters, such as temperature. If site-specific data for Antoine's constants for an average asphalt binder used by the facility are unavailable, the following values for an average liquid asphalt binder can be used:

A = 75,350.06B = 9.00346

These values should be inserted into the Antoine's equation in the following form:

$$\log_{10}P = \frac{-0.05223A}{T} + B$$

where:

P = vapor pressure, mm Hg T = absolute temperature, Kelvin

The assumed average liquid molecular weight associated with these Antoine's constants is 1,000 atomic mass units and the average vapor molecular weight is 105. Emission factors estimated using these default values should be assigned a rating of E. Carbon monoxide emissions can be estimated by multiplying the THC emissions calculated by the TANKS program by 0.097 (the ratio of silo filling CO emissions to silo filling TOC emissions).

Vapors from the HMA loaded into transport trucks continue following load-out operations. The TOC emissions for the 8-minute period immediately following load-out (yard emissions) can be estimated using an emission factor of 0.00055 kg/Mg (0.0011 lb/ton) of asphalt loaded. This factor is assigned a rating of E. The derivation of this emission factor is described in Reference 1. Carbon monoxide emissions can be estimated by multiplying the TOC emissions by 0.32 (the ratio of truck load-out CO emissions to truck load-out THC emissions).

11.2.3 Updates Since the Fifth Edition

The Fifth Edition was released in January 1995. Revisions to this section since that date are summarized below. For further detail, consult the background report for this section. This and other documents can be found on the CHIEF Web Site at http://www.epa.gov/ttn/chief/, or by calling the Info CHIEF Help Desk at (919)541-1000.

December 2000

• All emission factors were revised and new factors were added. For selected pollutant emissions, separate factors were developed for distilate oil, No. 6 oil and waste oil fired dryers. Dioxin and Furan emission factors were developed for oil fired drum mix plants. Particulate, VOC and CO factors were developed for silo filling, truck load out and post truck load out operations at batch plants and drum mix plants. Organic species profiles were developed for silo filling, truck load out and post truck load out operations.

March 2004

• The emission factor for formaldehyde for oil fired hot oil heaters was revised. An emission factor for formaldehyde for gas fired hot oil heaters and emission factors for CO and CO₂ for gas and oil fired hot oil heaters were developed. (Table 11.1-13)

Table 11.1-3. PARTICULATE MATTER EMISSION FACTORS FOR DRUM MIX HOT MIX ASPHALT PLANTS^a

	Filterable PM				Condensable PM ^b			Total PM				
Process	PM ^c	EMISSION FACTOR RATING	PM-10 ^d	EMISSION FACTOR RATING	Inorganic	EMISSION FACTOR RATING	Organic	EMISSION FACTOR RATING	PM ^e	EMISSION FACTOR RATING	PM-10 ^f	EMISSION FACTOR RATING
Dryer ^g (SCC 3-05-002-05,-55 to -63)												
Uncontrolled	28 ^h	D	6.4	D	0.0074 ^j	Е	0.058 ^k	Е	<mark>28</mark>	D	<mark>6.5</mark>	D
Venturi or wet scrubber	0.026 ^m	А	ND	NA	0.0074^{n}	А	0.012 ^p	А	0.045	А	ND	NA
Fabric filter	0.014 ^q	А	0.0039	С	<mark>0.0074</mark> ª	А	<mark>0.012</mark> p	А	<mark>0.033</mark>	А	0.023	С

^a Factors are lb/ton of product. SCC = Source Classification Code. ND = no data. NA = not applicable. To convert from lb/ton to kg/Mg, multiply by 0.5.

- ^b Condensable PM is that PM collected using an EPA Method 202, Method 5 (analysis of "back-half" or impingers), or equivalent sampling train.
- ^c Filterable PM is that PM collected on or before the filter of an EPA Method 5 (or equivalent) sampling train.
- ^d Particle size data from Reference 23 were used in conjunction with the filterable PM emission factors shown.
- ^e Total PM is the sum of filterable PM, condensable inorganic PM, and condensable organic PM.
- ^f Total PM-10 is the sum of filterable PM-10, condensable inorganic PM, and condensable organic PM.
- ^g Drum mix dryer fired with natural gas, propane, fuel oil, and waste oil. The data indicate that fuel type does not significantly effect PM emissions.
 - ^a References 31, 36-38, 340.
- ^j Because no data are available for uncontrolled condensable inorganic PM, the emission factor is assumed to be equal to the maximum controlled condensable inorganic PM emission factor.
- ^k References 36-37.
- ^m Reference 1, Table 4-14. Average of data from 36 facilities. Range: 0.0036 to 0.097 lb/ton. Median: 0.020 lb/ton. Standard deviation: 0.022 lb/ton.
- ⁿ Reference 1, Table 4-14. Average of data from 30 facilities. Range: 0.0012 to 0.027 lb/ton. Median: 0.0051 lb/ton. Standard deviation: 0.0063 lb/ton.
- ^p Reference 1, Table 4-14. Average of data from 41 facilities. Range: 0.00035 to 0.074 lb/ton. Median: 0.0046 lb/ton. Standard deviation: 0.016 lb/ton.
- ^q Reference 1, Table 4-14. Average of data from 155 facilities. Range: 0.00089 to 0.14 lb/ton. Median: 0.010 lb/ton. Standard deviation: 0.017 lb/ton.

11.1-13

Table 11.1-4. SUMMARY OF PARTICLE SIZE DISTRIBUTION FOR DRUM MIX DRYERS^a

		ess Than or Equal to lize (%) ^c	Emission Factors, lb/ton		
Particle Size, µm ^b	Uncontrolled ^d	Fabric Filter	Uncontrolled ^d	Fabric Filter	
1.0	ND	15 ^e	ND	0.0021 ^e	
2.5	5.5	21 ^f	1.5	0.0029 ^f	
10.0	23	30 ^g	6.4	0.0042 ^g	
15.0	27	35 ^d	7.6	0.0049 ^d	

EMISSION FACTOR RATING: E

^a Emission factor units are lb/ton of HMA produced. Rounded to two significant figures.
 SCC 3-05-002-05, and 3-05-002-55 to -63. ND = no data available. To convert from lb/ton to kg/Mg, multiply by 0.5.

^b Aerodynamic diameter.

^c Applies only to the mass of filterable PM.

^d Reference 23, Table 3-35. The emission factors are calculated using the particle size data from this reference in conjunction with the filterable PM emission factor shown in Table 11.1-3.

^e References 214, 229. The emission factors are calculated using the particle size data from these references in conjunction with the filterable PM emission factor shown in Table 11.1-3.

^f References 23, 214, 229. The emission factors are calculated using the particle size data from these references in conjunction with the filterable PM emission factor shown in Table 11.1-3.

^g Reference 23, 25, 229. The emission factors are calculated using the particle size data from these references in conjunction with the filterable PM emission factor shown in Table 11.1-3. EMISSION FACTOR RATING: D.

11.1-17

Table 11.1-7. EMISSION FACTORS FOR CO, CO2, NOx, AND SO2 FROM
DRUM MIX HOT MIX ASPHALT PLANTS^a

Process	CO ^b	EMISSION FACTOR RATING	CO ₂ ^c	EMISSION FACTOR RATING	NO _x	EMISSION FACTOR RATING	SO ₂ ^c	EMISSION FACTOR RATING
Natural gas-fired dryer (SCC 3-05-002-55,-56,-57)	0.13	В	33 ^d	А	0.026 ^e	D	0.0034^{f}	D
No. 2 fuel oil-fired dryer (SCC 3-05-002-58,-59,-60)	0.13	В	33 ^d	А	0.055 ^g	С	0.011 ^h	E
Waste oil-fired dryer (SCC 3-05-002-61,-62,-63)	0.13	В	33 ^d	А	<mark>0.055</mark> g	С	0.058 ^j	В
Coal-fired dryer ^k (SCC 3-05-002-98)	ND	NA	33 ^d	А	ND	NA	0.19 ^m	Е

EMISSION FACTORS

^a Emission factor units are lb per ton of HMA produced. SCC = Source Classification Code. ND = no data available. NA = not applicable. To convert from lb/ton to kg/Mg, multiply by 0.5.

^b References 25, 44, 48, 50, 149, 154, 197, 214, 229, 254, 339-342, 344, 346, 347, 390. The CO emission factors represent normal plant operations without scrutiny of the burner design, operation, and maintenance. Information is available that indicates that attention to burner design, periodic evaluation of burner operation, and appropriate maintenance can reduce CO emissions. Data for dryers firing natural gas, No. 2 fuel oil, and No. 6 fuel oil were combined to develop a single emission factor because the magnitude of emissions was similar for dryers fired with these fuels.

^c Emissions of CO_2 and SO_2 can also be estimated based on fuel usage and the fuel combustion emission factors (for the appropriate fuel) presented in AP-42 Chapter 1. The CO_2 emission factors are an average of all available data, regardless of the dryer fuel (emissions were similar from dryers firing any of the various fuels). Fifty percent of the fuel-bound sulfur, up to a maximum (as SO_2) of 0.1 lb/ton of product, is expected to be retained in the product, with the remainder emitted as SO_2 .

^d Reference 1, Table 4-15. Average of data from 180 facilities. Range: 2.6 to 96 lb/ton. Median: 31 lb/ton. Standard deviation: 13 lb/ton.

- ^e References 44-45, 48, 209, 341, 342.
- ^f References 44-45, 48.
- ^g References 25, 50, 153, 214, 229, 344, 346, 347, 352-354.
- ^h References 50, 119, 255, 340
- ^j References 25, 299, 300, 339, 345, 351, 371-377, 379, 380, 386-388.
- ^k Dryer fired with coal and supplemental natural gas or fuel oil.
- ^m References 88, 108, 189-190.

Process	ТОСь	EMISSION FACTOR RATING	CH ₄ ^c	EMISSION FACTOR RATING	VOC ^d	EMISSION FACTOR RATING	HCle	EMISSION FACTOR RATING
Natural gas-fired dryer (SCC 3-05-002-55, -56,-57)	0.044 ^f	В	0.012	С	0.032	С	ND	NA
No. 2 fuel oil-fired dryer (SCC 3-05-002-58, -59,-60)	0.044 ^f	В	0.012	С	0.032	С	ND	NA
Waste oil-fired dryer (SCC 3-05-002-61, -62,-63)	<mark>0.044^f</mark>	Е	0.012	С	0.032	E	0.00021	D

Table 11.1-8. EMISSION FACTORS FOR TOC, METHANE, VOC, AND HCI FROM
DRUM MIX HOT MIX ASPHALT PLANTS^a

^a Emission factor units are lb per ton of HMA produced. SCC = Source Classification Code. ND = no data available. NA = not applicable. To convert from lb/ton to kg/Mg, multiply by 0.5.

^b TOC equals total hydrocarbons as propane as measured with an EPA Method 25A or equivalent sampling train plus formaldehyde.

^c References 25, 44-45, 48, 50, 339-340, 355. Factor includes data from natural gas-, No. 2 fuel oil, and waste oil-fired dryers. Methane measured with an EPA Method 18 or equivalent sampling train.

^d The VOC emission factors are equal to the TOC factors minus the sum of the methane emission factors and the emission factors for compounds with negligible photochemical reactivity shown in Table 11.1-10; differences in values reported are due to rounding.

^e References 348, 374, 376, 379, 380.

^f References 25, 44-45, 48, 50, 149, 153-154, 209-212, 214, 241, 242, 339-340, 355.

		Pollutant	Emission	Emission	
			Factor,	Factor	
Process	CASRN	Name	lb/ton	Rating	Ref. No.
Natural gas-fired	Non-l				
dryer with fabric filter ^b (SCC 3-05-002-55,	71-43-2	Benzene ^d	0.00039	А	25,44,45,50, 341, 342, 344-351, 373, 376, 377, 383, 384
-56,-57)	100-41-4	Ethylbenzene	0.00024	D	25,44,45
	50-00-0	Formaldehyde ^e	0.0031	Α	25,35,44,45,50, 339- 344, 347-349, 371- 373, 384, 388
	110-54-3	Hexane	0.00092	Е	339-340
	540-84-1	Isooctane (2,2,4-trimethylpentane)	4.0x10 ⁻⁵	Е	339-340
	71-55-6	Methyl chloroform ^f	4.8x10 ⁻⁵	Е	35
	108-88-3	Toluene	0.00015	D	35,44,45
	1330-20-7	Xylene	0.00020	D	25,44,45
		Total non-PAH HAPs	0.0051		
		PAH HAPs			
	91-57-6	2-Methylnaphthalene ^g	7.4x10 ⁻⁵	D	44,45,48
	83-32-9	Acenaphthene ^g	1.4x10 ⁻⁶	Е	48
	208-96-8	Acenaphthylene ^g	8.6x10 ⁻⁶	D	35,45,48
	120-12-7	Anthracene ^g	2.2x10 ⁻⁷	Е	35,48
	56-55-3	Benzo(a)anthracene ^g	2.1x10 ⁻⁷	Е	48
	50-32-8	Benzo(a)pyrene ^g	9.8x10 ⁻⁹	Е	48
	205-99-2	Benzo(b)fluoranthene ^g	1.0x10 ⁻⁷	Е	35,48
	192-97-2	Benzo(e)pyrene ^g	1.1x10 ⁻⁷	Е	48
	191-24-2	Benzo(g,h,i)perylene ^g	4.0x10 ⁻⁸	Е	48
	207-08-9	Benzo(k)fluoranthene ^g	4.1x10 ⁻⁸	Е	35,48
	218-01-9	Chrysene ^g	1.8x10 ⁻⁷	Е	35,48
	206-44-0	Fluoranthene ^g	6.1x10 ⁻⁷	D	35,45,48
	86-73-7	Fluorene ^g	3.8x10 ⁻⁶	D	35,45,48,163
	193-39-5	Indeno(1,2,3-cd)pyrene ^g	7.0x10 ⁻⁹	Е	48
	91-20-3	Naphthalene ^g	9.0x10 ⁻⁵	D	35,44,45,48,163
	198-55-0	Perylene ^g	8.8x10 ⁻⁹	Е	48
	85-01-8	Phenanthrene ^g	7.6x10 ⁻⁶	D	35,44,45,48,163
	129-00-0	Pyrene ^g	5.4x10 ⁻⁷	D	45,48
		Total PAH HAPs	0.00019		

Table 11.1-10.EMISSION FACTORS FOR ORGANIC POLLUTANTEMISSIONS FROM DRUM MIX HOT MIX ASPHALT PLANTS^a

		Pollutant	Emission	Emission	
			Factor,	Factor	
Process	CASRN	Name Total HAPs	lb/ton	Rating	Ref. No.
Natural gas-fired dryer with fabric		0.0053			
filter ^b	Noi				
(SCC 3-05-002-55,	106-97-8 Butane		0.00067	Е	339
-56,-57) (cont.)	74-85-1	Ethylene	0.0070	Е	339-340
	142-82-5	Heptane	0.0094	Е	339-340
	763-29-1	2-Methyl-1-pentene	0.0040	Е	339,340
	513-35-9	2-Methyl-2-butene	0.00058	Е	339,340
	96-14-0	3-Methylpentane	0.00019	D	339,340
	109-67-1	1-Pentene	0.0022	Е	339-340
	109-66-0	n-Pentane	0.00021	Е	339-340
		Total non-HAP organics	0.024		
No. 2 fuel oil-fired					
dryer with fabric filter (SCC 3-05-002-58,	58, 71-43-2	Benzene ^d	0.00039	А	25,44,45,50, 341, 342, 344-351, 373, 376, 377, 383, 384
-59,-60)	100-41-4	Ethylbenzene	0.00024	D	25,44,45
	50-00-0	Formaldehyde ^e	0.0031	А	25,35,44,45,50, 339- 344, 347-349, 371- 373, 384, 388
	110-54-3	Hexane	0.00092	Е	339-340
	540-84-1	Isooctane (2,2,4-trimethylpentane)	4.0x10 ⁻⁵	Е	339-340
	71-55-6	Methyl chloroform ^f	4.8x10 ⁻⁵	Е	35
	108-88-3	Toluene	0.0029	Е	25, 50, 339-340
	1330-20-7	Xylene	0.00020	D	25,44,45
		Total non-PAH HAPs	0.0078		
	01.57.(PAH HAPs	0.00017	Г	50
	91-57-6 82-22-0	2-Methylnaphthalene ^g Acenaphthene ^g	0.00017 1.4x10 ⁻⁶	E	50
	83-32-9	-		E	48
	208-96-8	Acenaphthylene ^g	2.2x10 ⁻⁵	Е	50
	120-12-7	Anthracene ^g	3.1x10 ⁻⁶	Е	50,162
	56-55-3	Benzo(a)anthracene ^g	2.1x10 ⁻⁷	Е	48
	50-32-8	Benzo(a)pyrene ^g	9.8x10 ⁻⁹	Е	48
	205-99-2	Benzo(b)fluoranthene ^g	1.0x10 ⁻⁷	Е	35,48
	192-97-2	Benzo(e)pyrene ^g	1.1x10 ⁻⁷	Е	48

Table 11.1-10 (cont.)

		Pollutant	Emission	Emission	
	~ . ~ ~ ~ ~		Factor,	Factor	
Process CASRN Name			lb/ton	Rating	Ref. No.
No. 2 fuel oil-fired dryer with fabric	191-24-2	Benzo(g,h,i)perylene ^g	4.0x10 ⁻⁸	Е	48
filter	207-08-9	Benzo(k)fluoranthene ^g	4.1x10 ⁻⁸	Е	35,48
(SCC 3-05-002-58,	218-01-9	Chrysene ^g	1.8x10 ⁻⁷	Е	35,48
-59,-60) (cont.)	206-44-0	Fluoranthene ^g	6.1x10 ⁻⁷	D	35,45,48
	86-73-7	Fluorene ^g	1.1x10 ⁻⁵	Е	50,164
	193-39-5	Indeno(1,2,3-cd)pyrene ^g	7.0x10 ⁻⁹	Е	48
	91-20-3	Naphthalene ^g	0.00065	D	25,50,162,164
	198-55-0	Perylene ^g	8.8x10 ⁻⁹	Е	48
	85-01-8	Phenanthrene ^g	2.3x10 ⁻⁵	D	50,162,164
	129-00-0	Pyrene ^g	3.0x10 ⁻⁶	Е	50
		Total PAH HAPs	0.00088		
		Total HAPs	0.0087		
	No	n-HAP organic compounds			
	106-97-8	Butane	0.00067	Е	339
	74-85-1	Ethylene	0.0070	Е	339-340
	142-82-5	Heptane	0.0094	Е	339-340
	763-29-1	2-Methyl-1-pentene	0.0040	Е	339,340
	513-35-9	2-Methyl-2-butene	0.00058	Е	339,340
	96-14-0	3-Methylpentane	0.00019	D	339,340
	109-67-1	1-Pentene	0.0022	Е	339-340
	109-66-0	n-Pentane	0.00021	Е	339-340
		Total non-HAP organics	0.024		

Table 11.1-10 (cont.)

Table 11.1-10 (cont.)

		Pollutant	Emission	Emission	
			Factor,	Factor	
Process	CASRN	Name Dioxins	lb/ton	Rating	Ref. No.
Fuel oil- or waste oil-fired dryer with					
fabric filter	1746-01-6	2,3,7,8-TCDD ^g	2.1x10 ⁻¹³	Е	339
(SCC 3-05-002-58, -59,-60,-61,-62,		Total TCDD ^g	9.3x10 ⁻¹³	Е	339
-63)	40321-76-4	1,2,3,7,8-PeCDD ^g	3.1x10 ⁻¹³	Е	339
		Total PeCDD ^g	2.2x10 ⁻¹¹	Е	339-340
	39227-28-6	1,2,3,4,7,8-HxCDD ^g	4.2x10 ⁻¹³	Е	339
	57653-85-7	1,2,3,6,7,8-HxCDD ^g	1.3x10 ⁻¹²	Е	339
	19408-24-3	1,2,3,7,8,9-HxCDD ^g	9.8x10 ⁻¹³	Е	339
		Total HxCDD ^g	1.2x10 ⁻¹¹	Е	339-340
	35822-46-9	1,2,3,4,6,7,8-HpCDD ^g	4.8x10 ⁻¹²	Е	339
		Total HpCDD ^g	1.9x10 ⁻¹¹	Е	339-340
	3268-87-9	Octa CDD ^g	2.5x10 ⁻¹¹	Е	339
		Total PCDD ^g	7.9x10 ⁻¹¹	Е	339-340
	51207-31-9	2,3,7,8-TCDF ^g	9.7x10 ⁻¹³	Е	339
		Total TCDF ^g	3.7x10 ⁻¹²	Е	339-340
		1,2,3,7,8-PeCDF ^g	4.3x10 ⁻¹²	Е	339-340
		2,3,4,7,8-PeCDF ^g	8.4x10 ⁻¹³	Е	339
		Total PeCDF ^g	8.4x10 ⁻¹¹	Е	339-340
		1,2,3,4,7,8-HxCDF ^g	4.0x10 ⁻¹²	Е	339
		1,2,3,6,7,8-HxCDF ^g	1.2x10 ⁻¹²	Е	339
		2,3,4,6,7,8-HxCDF ^g	1.9x10 ⁻¹²	Е	339
		1,2,3,7,8,9-HxCDF ^g	8.4x10 ⁻¹²	Е	340
		Total HxCDF ^g	1.3x10 ⁻¹¹	Е	339-340
		1,2,3,4,6,7,8-HpCDF ^g	6.5x10 ⁻¹²	Е	339
		1,2,3,4,7,8,9-HpCDF ^g	2.7x10 ⁻¹²	Е	339
		Total HpCDF ^g	1.0x10 ⁻¹¹	Е	339-340
	39001-02-0		4.8x10 ⁻¹²	Е	339
		Total PCDF ^g	4.0x10 ⁻¹¹	Е	339-340
		Total PCDD/PCDF ^g	1.2x10 ⁻¹⁰	Е	339-340
				_	

		Pollutant	Emission	Emission		
Process	CASRN	Name	Factor, lb/ton	Factor Rating	Ref. No.	
Fuel oil- or waste	H					
oil-fired dryer (uncontrolled)		Dioxins	1			
(SCC 3-05-002-58,		Total HxCDD ^g	5.4x10 ⁻¹²	Е	340	
-59,-60,-61,-62, -63)	35822-46-9	1,2,3,4,6,7,8-HpCDD ^g	3.4x10 ⁻¹¹	Е	340	
,		Total HpCDD ^g	7.1x10 ⁻¹¹	Е	340	
	3268-87-9	Octa CDD ^g	2.7x10 ⁻⁹	Е	340	
		Total PCDD ^g	2.8x10 ⁻⁹	Е	340	
		Furans				
		Total TCDF ^g	3.3x10 ⁻¹¹	Е	340	
		Total PeCDF ^g	7.4x10 ⁻¹¹	Е	340	
		1,2,3,4,7,8-HxCDF ^g	5.4x10 ⁻¹²	Е	340	
		2,3,4,6,7,8-HxCDF ^g	1.6x10 ⁻¹²	Е	340	
		Total HxCDF ^g	8.1x10 ⁻¹²	Е	340	
Fuel oil- or waste		1,2,3,4,6,7,8-HpCDF ^g	1.1x10 ⁻¹¹	Е	340	
oil-fired dryer (uncontrolled)		Total HpCDF ^g	3.8x10 ⁻¹¹	Е	340	
(SCC 3-05-002-58,		Total PCDF ^g	1.5x10 ⁻¹⁰	Е	340	
-59,-60,-61,-62, -63) (cont.)		Total PCDD/PCDF ^g	3.0x10 ⁻⁹	Е	340	

Table 11.1-10 (cont.)

		Pollutant	Emission	Emission	
			Factor,	Factor	
Process	CASRN	Name	lb/ton	Rating	Ref. No.
Waste oil-fired dryer		Non-PAH HAPs ^c			
with fabric filter (SCC 3-05-002-61,	75-07-0	Acetaldehyde	0.0013	Е	25
-62,-63)	107-02-8	Acrolein	2.6x10 ⁻⁵	Е	25
	71-43-2	Benzene ^d	0.00039	Α	25,44,45,50,341,342, 344-351, 373, 376, 377, 383, 384
	100-41-4	Ethylbenzene	0.00024	D	25,44,45
	50-00-0	Formaldehyde ^e	0.0031	А	25,35,44,45,50,339- 344,347-349,371-373, 384, 388
	110-54-3	Hexane	0.00092	Е	339-340
	540-84-1	Isooctane (2,2,4-trimethylpentane)	4.0x10 ⁻⁵	Е	339-340
	78-93-3	Methyl Ethyl Ketone	2.0x10 ⁻⁵	Е	25
	123-38-6	Propionaldehyde	0.00013	Е	25
	106-51-4	Quinone	0.00016	Е	25
	71-55-6	Methyl chloroform ^f	4.8x10 ⁻⁵	Е	35
	108-88-3	Toluene	0.0029	Е	25, 50, 339-340
	1330-20-7	Xylene	0.00020	D	25,44,45
		Total non-PAH HAPs	0.0095		
		PAH HAPs			
	91-57-6	2-Methylnaphthalene ^g	0.00017	Е	50
	83-32-9	Acenaphthene ^g	1.4x10 ⁻⁶	Е	48
	208-96-8	Acenaphthylene ^g	2.2x10 ⁻⁵	Е	50
	120-12-7	Anthracene ^g	3.1x10 ⁻⁶	Е	50,162
	56-55-3	Benzo(a)anthracene ^g	2.1x10 ⁻⁷	Е	48
	50-32-8	Benzo(a)pyrene ^g	9.8x10 ⁻⁹	Е	48
	205-99-2	Benzo(b)fluoranthene ^g	1.0x10 ⁻⁷	Е	35,48
	192-97-2	Benzo(e)pyrene ^g	1.1x10 ⁻⁷	Е	48
	191-24-2	Benzo(g,h,i)peryleneg	4.0x10 ⁻⁸	Е	48

Table 11.1-10 (cont.)

		Pollutant	Emission	Emission	
Decose	CASRN	Name	Factor,	Factor	Ref. No.
Process Waste oil-fired dryer	207-08-9	Benzo(k)fluoranthene ^g	lb/ton 4.1x10 ⁻⁸	Rating E	35,48
with fabric filter	218-01-9	Chrysene ^g	1.8x10 ⁻⁷	E	35,48
(SCC 3-05-002-61, -62,-63) (cont.)	206-44-0	Fluoranthene ^g	6.1x10 ⁻⁷	D	35,45,48
	86-73-7	Fluorene ^g	1.1x10 ⁻⁵	E	50,164
	193-39-5	Indeno(1,2,3-cd)pyrene ^g	7.0x10 ⁻⁹	E	48
	91-20-3	Naphthalene ^g	0.00065	D	25,50,162,164
	198-55-0	Perylene ^g	8.8x10 ⁻⁹	E	48
	85-01-8	Phenanthrene ^g	2.3x10 ⁻⁵	D	50,162,164
	129-00-0	Pyrene ^g	3.0x10 ⁻⁶	E	50,102,104
	129-00-0	Total PAH HAPs	0.00088	L	50
		Total HAPs	0.00000		
	No	n-HAP organic compounds	0.010		
	67-64-1	Acetone ^f	0.00083	Е	25
	100-52-7	Benzaldehyde	0.00011	E	25
	106-92-7	Butane	0.00067	E	339
	78-84-2	Butyraldehyde	0.00016	E	25
	4170-30-3	Crotonaldehyde	8.6x10 ⁻⁵	E	25
	74-85-1	Ethylene	0.0070	E	339, 340
	142-82-5	Heptane	0.0070	E	339, 340
	66-25-1	Hexanal	0.0004	E	25
	590-86-3	Isovaleraldehyde	3.2×10^{-5}	E	25
		2-Methyl-1-pentene		E	
	763-29-1		0.0040		339, 340 339, 340
	513-35-9	2-Methyl-2-butene	0.00058	E	339, 340 339, 340
	96-14-0	3-Methylpentane	0.00019	D	339, 340
	109-67-1	1-Pentene	0.0022	E	339, 340
	109-66-0	n-Pentane	0.00021	E	339, 340
	110-62-3	Valeraldehyde	6.7x10 ⁻⁵	Е	25
		Total non-HAP organics	0.026		

Table 11.1-10 (cont.)

^a Emission factor units are lb/ton of hot mix asphalt produced. Table includes data from both parallel flow and counterflow drum mix dryers. Organic compound emissions from counterflow systems are expected to be less than from parallel flow systems, but the available data are insufficient to quantify

Table 11.1-10 (cont.)

accurately the difference in these emissions. CASRN = Chemical Abstracts Service Registry Number. SCC = Source Classification Code. To convert from lb/ton to kg/Mg, multiply by 0.5.

- ^b Tests included dryers that were processing reclaimed asphalt pavement. Because of limited data, the effect of RAP processing on emissions could not be determined.
- ^c Hazardous air pollutants (HAP) as defined in the 1990 Clean Air Act Amendments (CAAA).
- ^d Based on data from 19 tests. Range: 0.000063 to 0.0012 lb/ton; median: 0.00030; Standard deviation: 0.00031.
- ^e Based on data from 21 tests. Range: 0.0030 to 0.014 lb/ton; median: 0.0020; Standard deviation: 0.0036.
- ^f Compound has negligible photochemical reactivity.
- ^g Compound is classified as polycyclic organic matter, as defined in the 1990 CAAA. Total PCDD is the sum of the total tetra through octa dioxins; total PCDF is sum of the total tetra through octa furans; and total PCDD/PCDF is the sum of total PCDD and total PCDF.

Table 11.1-12.EMISSION FACTORS FOR METAL EMISSIONSFROM DRUM MIX HOT MIX ASPHALT PLANTS^a

Process	Pollutant	Emission Factor, lb/ton	Emission Factor Rating	Reference Numbers
Fuel oil-fired dryer,	Arsenic ^b	1.3x10 ⁻⁶	Е	340
uncontrolled	Barium	0.00025	Е	340
(SCC 3-05-002-58,	Beryllium ^b	0.0	Е	340
-59,-60)	Cadmium ^b	4.2x10 ⁻⁶	Е	340
	Chromium ^b	2.4x10 ⁻⁵	Е	340
	Cobalt ^b	1.5x10 ⁻⁵	Е	340
	Copper	0.00017	Е	340
	Lead ^b	0.00054	Е	340
	Manganese ^b	0.00065	Е	340
	Nickel ^b	0.0013	Е	340
	Phosphorus ^b	0.0012	Е	340
	Selenium ^b	2.4x10 ⁻⁶	Е	340
	Thallium	2.2x10 ⁻⁶	Е	340
	Zinc	0.00018	Е	340
Natural gas- or	Antimony	1.8x10 ⁻⁷	Е	339
propane-fired dryer,	Arsenic ^b	5.6x10 ⁻⁷	D	25, 35, 339-340
with fabric filter	Barium	5.8x10 ⁻⁶	Е	25, 339-340
(SCC 3-05-002-55,	Beryllium ^b	0.0	Е	339-340
-56,-57))	Cadmium ^b	4.1x10 ⁻⁷	D	25, 35, 162, 301, 339-340
,	Chromium ^b	5.5x10 ⁻⁶	С	25, 162-164, 301, 339-340
	Cobalt ^b	2.6x10 ⁻⁸	Е	339-340
	Copper	3.1x10 ⁻⁶	D	25, 162-164, 339-340
	Hexavalent chromium ^b	4.5x10 ⁻⁷	Е	163
	Lead ^b	6.2x10 ⁻⁷	Е	35
	Manganese ^b	7.7x10 ⁻⁶	D	25, 162-164, 339-340
	Mercury ^b	2.4x10 ⁻⁷	Е	35, 163
	Nickel ^b	6.3x10 ⁻⁵	D	25, 163-164, 339-340
	Phosphorus ^b	2.8x10 ⁻⁵	Ē	25, 339-340
	Silver	4.8x10 ⁻⁷	Е	25, 339-340
	Selenium ^b	3.5x10 ⁻⁷	Ē	339-340
	Thallium	4.1x10 ⁻⁹	Е	339-340
	Zinc	6.1x10 ⁻⁵	С	25, 35, 162-164, 339-340

Process	Pollutant	Emission Factor, lb/ton	Emission Factor Rating	Reference Numbers
No. 2 fuel oil-fired	Antimony	1.8x10 ⁻⁷	Е	339
dryer or waste oil/drain	Arsenic ^b	5.6x10 ⁻⁷	D	25, 35, 339-340
oil/No. 6 fuel oil-fired	Barium	5.8x10 ⁻⁶	Е	25, 339-340
dryer, with fabric filter	Beryllium ^b	0.0	Е	339-340
(SCC 3-05-002-58,	Cadmium ^b	4.1x10 ⁻⁷	D	25, 35, 162, 301, 339-340
-59,-60,-61,-62,-63)	Chromium ^b	5.5x10 ⁻⁶	С	25, 162-164, 301, 339-340
	Cobalt ^b	2.6x10 ⁻⁸	Е	339-340
	Copper	3.1x10 ⁻⁶	D	25, 162-164, 339-340
	Hexavalent chromium ^b	4.5x10 ⁻⁷	Е	163
	Lead ^b	1.5x10 ⁻⁵	С	25, 162, 164, 178-179, 183, 301,
				315, 339-340
	Manganese ^b	7.7x10 ⁻⁶	D	25, 162-164, 339-340
	Mercury ^b	2.6x10 ⁻⁶	D	162, 164, 339-340
	Nickel ^b	6.3x10 ⁻⁵	D	25, 163-164, 339-340
	Phosphorus ^b	2.8x10 ⁻⁵	Е	25, 339-340
	Silver	4.8x10 ⁻⁷	Е	25, 339-340
	Selenium ^b	3.5x10 ⁻⁷	Е	339-340
	Thallium	4.1x10 ⁻⁹	Е	339-340
	Zinc	6.1x10 ⁻⁵	С	25, 35, 162-164, 339-340

Table 11.1-12 (cont.)

^a Emission factor units are lb/ton of HMA produced. SCC = Source Classification Code. To convert from lb/ton to kg/Mg, multiply by 0.5. Emission factors apply to facilities processing virgin aggregate or a combination of virgin aggregate and RAP.

^b Arsenic, beryllium, cadmium, chromium, hexavalent chromium, cobalt, lead, manganese, mercury, nickel, and selenium compounds are HAPs as defined in the 1990 CAAA. Elemental phosphorus also is a listed HAP, but the phosphorus measured by Method 29 is not elemental phosphorus.

Table 11.1-14.PREDICTIVE EMISSION FACTOR EQUATIONSFOR LOAD-OUT AND SILO FILLING OPERATIONS^a

Source	Pollutant	Equation
Drum mix or batch mix	Total PM ^b	$EF = 0.000181 + 0.00141(-V)e^{((0.0251)(T + 460) - 20.43)}$
plant load-out (SCC 3-05-002-14)	Organic PM ^c	$EF = 0.00141(-V)e^{((0.0251)(T + 460) - 20.43)}$
	$\mathrm{TOC}^{\mathrm{d}}$	$EF = 0.0172(-V)e^{((0.0251)(T + 460) - 20.43)}$
	СО	$EF = 0.00558(-V)e^{((0.0251)(T + 460) - 20.43)}$
Silo filling	Total PM ^b	$EF = 0.000332 + 0.00105(-V)e^{((0.0251)(T + 460) - 20.43)}$
(SCC 3-05-002-13)	Organic PM ^c	$EF = 0.00105(-V)e^{((0.0251)(T + 460) - 20.43)}$
	TOC ^d	$EF = 0.0504(-V)e^{((0.0251)(T + 460) - 20.43)}$
	СО	$EF = 0.00488(-V)e^{((0.0251)(T + 460) - 20.43)}$

EMISSION FACTOR RATING: C

- ^a Emission factor units are lb/ton of HMA produced. SCC = Source Classification Code. To convert from lb/ton to kg/Mg, multiply by 0.5. EF = emission factor; V = asphalt volatility, as determined by ASTM Method D2872-88 "Effects of Heat and Air on a Moving Film of Asphalt (Rolling Thin Film Oven Test - RTFOT)," where a 0.5 percent loss-on-heating is expressed as "-0.5." Regional- or sitespecific data for asphalt volatility should be used, whenever possible; otherwise, a default value of -0.5 should be used for V in these equations. T = HMA mix temperature in °F. Site-specific temperature data should be used, whenever possible; otherwise a default temperature of 325°F can be used. Reference 1, Tables 4-27 through 4-31, 4-34 through 4-36, and 4-38 through 4-41.
- ^b Total PM, as measured by EPA Method 315 (EPA Method 5 plus the extractable organic particulate from the impingers). Total PM is assumed to be predominantly PM-2.5 since emissions consist of condensed vapors.
- ^c Extractable organic PM, as measured by EPA Method 315 (methylene chloride extract of EPA Method 5 particulate plus methylene chloride extract of impinger particulate).
- ^d TOC as propane, as measured with an EPA Method 25A sampling train or equivalent sampling train.

Table 11.1-15. SPECIATION PROFILES FOR LOAD-OUT, SILO FILLING, AND ASPHALT STORAGE EMISSIONS-ORGANIC PARTICULATE-BASED COMPOUNDS

		Speciation Profile for Load-out and Yard Emissions ^b	Speciation Profile for Silo Filling and Asphalt Storage Tank Emissions
Pollutant	CASRN ^a	Compound/Organic PM ^c	Compound/Organic PM ^c
PAH HAPs			
Acenaphthene	83-32-9	0.26%	0.47%
Acenaphthylene	208-96-8	0.028%	0.014%
Anthracene	120-1207	0.070%	0.13%
Benzo(a)anthracene	56-55-3	0.019%	0.056%
Benzo(b)fluoranthene	205-99-2	0.0076%	ND^d
Benzo(k)fluoranthene	207-08-9	0.0022%	ND^d
Benzo(g,h,i)perylene	191-24-2	0.0019%	ND^d
Benzo(a)pyrene	50-32-8	0.0023%	ND^d
Benzo(e)pyrene	192-97-2	0.0078%	0.0095%
Chrysene	218-01-9	0.103%	0.21%
Dibenz(a,h)anthracene	53-70-3	0.00037%	ND^d
Fluoranthene	206-44-0	0.050%	0.15%
Fluorene	86-73-7	0.77%	1.01%
Indeno(1,2,3-cd)pyrene	193-39-5	0.00047%	ND^d
2-Methylnaphthalene	91-57-6	2.38%	5.27%
Naphthalene	91-20-3	1.25%	1.82%
Perylene	198-55-0	0.022%	0.030%
Phenanthrene	85-01-8	0.81%	1.80%
Pyrene	129-00-0	0.15%	0.44%
Total PAH HAPs		5.93%	11.40%
Other semi-volatile HAPs			
Phenol		1.18%	ND ^d

EMISSION FACTOR RATING: C

 ^a Chemical Abstract Service Registry Number.
 ^b Emissions from loaded trucks during the period between load-out and the time the truck departs the plant.

^c Emission factor for compound is determined by multiplying the percentage presented for the compound by the emission factor for extractable organic particulate (organic PM) as determined from Table 11.1-14.

^d ND = Measured data below detection limits.

Table 11.1-16. SPECIATION PROFILES FOR LOAD-OUT, SILO FILLING, AND ASPHALT STORAGE EMISSIONS–ORGANIC VOLATILE-BASED COMPOUNDS

Load-Out		Speciation Profile for Load-Out and Yard Emissions	Speciation Profile for Silo Filling and Asphalt Storage Tank Emissions
Pollutant	CASRN	Compound/TOC ^a	Compound/TOC (%) ^a
VOC ^b		94% ^b	100%
Non-VOC/non-HAPs			
Methane	74-82-8	6.5%	0.26%
Acetone	67-64-1	0.046%	0.055%
Ethylene	74-85-1	0.71%	1.1%
Total non-VOC/non-HAPS		7.3%	1.4%
Volatile organic HAPS			
Benzene	71-43-2	0.052%	0.032%
Bromomethane	74-83-9	0.0096%	0.0049%
2-Butanone	78-93-3	0.049%	0.039%
Carbon Disulfide	75-15-0	0.013%	0.016%
Chloroethane	75-00-3	0.00021%	0.0040%
Chloromethane	74-87-3	0.015%	0.023%
Cumene	92-82-8	0.11%	ND^{c}
Ethylbenzene	100-41-4	0.28%	0.038%
Formaldehyde	50-00-0	0.088%	0.69%
n-Hexane	100-54-3	0.15%	0.10%
Isooctane	540-84-1	0.0018%	0.00031%
Methylene Chloride	75-09-2	$0.0\%^{d}$	0.00027%
MTBE	596899	0.0% ^d	ND^{c}
Styrene	100-42-5	0.0073%	0.0054%
Tetrachloroethene	127-18-4	0.0077%	ND^{c}
Toluene	100-88-3	0.21%	0.062%
1,1,1-Trichloroethane	71-55-6	0.0% ^d	ND^{c}
Trichloroethene	79-01-6	0.0% ^d	ND^{c}
Trichlorofluoromethane	75-69-4	0.0013%	ND ^c
m-/p-Xylene	1330-20-7	0.41%	0.2%
o-Xylene	95-47-6	0.08%	0.057%
Total volatile organic HAPs		1.5%	1.3%

EMISSION FACTOR RATING: C

Table 11.1-16 (cont.)

- ^a Emission factor for compound is determined by multiplying the percentage presented for the compound by the emission factor for total organic compounds (TOC) as determined from Table 11.1 ^b The base of the total organic compounds (TOC) as determined from Table 11.1-
- ^b The VOC percentages are equal to 100 percent of TOC minus the methane, acetone, methylene chloride, and 1,1,1-trichloroethane percentages.
- ^c ND = Measured data below detection limits. Additional compounds that were not detected are: acrylonitrile, allyl chloride, bromodichloromethane, bromoform, 1,3-butadiene, carbon tetrachloride, chlorobenzene, chloroform, dibromochloromethane, 1,2-dibromoethane, 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroptene, cis-1,3-dichloropropene, trans-1,3-dichloropropene, 1,2-epoxybutane, ethyl acrylate, 2-hexanone, iodomethane, methyl methacrylate, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, vinyl acetate, vinyl bromide, and vinyl chloride
- ^d Values presented as 0.0% had background concentrations higher than the capture efficiency-corrected measured concentration.

11.12 CONCRETE BATCHING

11.12-1 Process Description ¹⁻⁵

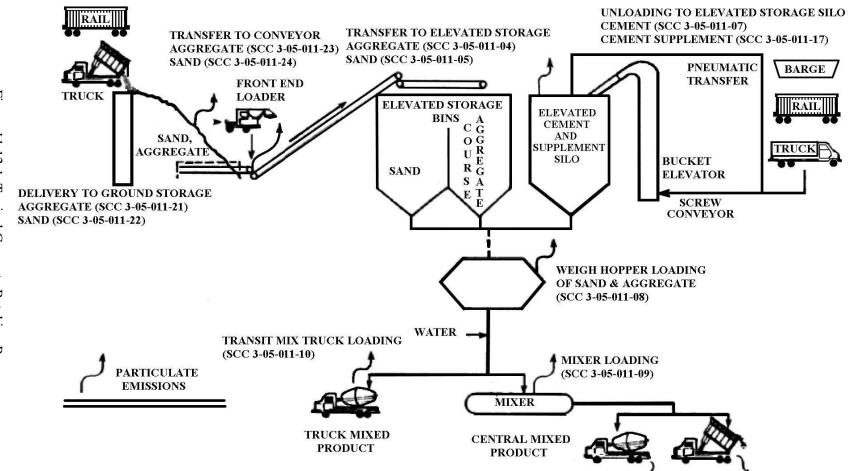
Concrete is composed essentially of water, cement, sand (fine aggregate) and coarse aggregate. Coarse aggregate may consist of gravel, crushed stone or iron blast furnace slag. Some specialty aggregate products could be either heavyweight aggregate (of barite, magnetite, limonite, ilmenite, iron or steel) or lightweight aggregate (with sintered clay, shale, slate, diatomaceous shale, perlite, vermiculite, slag pumice, cinders, or sintered fly ash). Supplementary cementitious materials, also called mineral admixtures or pozzolan minerals may be added to make the concrete mixtures more economical, reduce permeability, increase strength, or influence other concrete properties. Typical examples are natural pozzolans, fly ash, ground granulated blast-furnace slag, and silica fume, which can be used individually with portland or blended cement or in different combinations. Chemical admixtures are usually liquid ingredients that are added to concrete to entrain air, reduce the water required to reach a required slump, retard or accelerate the setting rate, to make the concrete more flowable or other more specialized functions.

Approximately 75 percent of the U.S. concrete manufactured is produced at plants that store, convey, measure and discharge these constituents into trucks for transport to a job site. At most of these plants, sand, aggregate, cement and water are all gravity fed from the weight hopper into the mixer trucks. The concrete is mixed on the way to the site where the concrete is to be poured. At some of these plants, the concrete may also be manufactured in a central mix drum and transferred to a transport truck. Most of the remaining concrete manufactured are products cast in a factory setting. Precast products range from concrete bricks and paving stones to bridge girders, structural components, and panels for cladding. Concrete masonry, another type of manufactured concrete, may be best known for its conventional 8 x 8 x 16-inch block. In a few cases concrete is dry batched or prepared at a building construction site. Figure 11.12-1 is a generalized process diagram for concrete batching.

The raw materials can be delivered to a plant by rail, truck or barge. The cement is transferred to elevated storage silos pneumatically or by bucket elevator. The sand and coarse aggregate are transferred to elevated bins by front end loader, clam shell crane, belt conveyor, or bucket elevator. From these elevated bins, the constituents are fed by gravity or screw conveyor to weigh hoppers, which combine the proper amounts of each material.

11.12-2 Emissions and Controls 6-8

Particulate matter, consisting primarily of cement and pozzolan dust but including some aggregate and sand dust emissions, is the primary pollutant of concern. In addition, there are emissions of metals that are associated with this particulate matter. All but one of the emission points are fugitive in nature. The only point sources are the transfer of cement and pozzolan material to silos, and these are usually vented to a fabric filter or "sock". Fugitive sources include the transfer of sand and aggregate, truck loading, mixer loading, vehicle traffic, and wind erosion from sand and aggregate storage piles. The amount of fugitive emissions generated during the transfer of sand and aggregate depends primarily on the surface moisture content of these materials. The extent of fugitive emission control varies widely from plant to plant. Particulate emission factors for concrete batching are give in Tables 11.12-1 and 11.12-2.


Types of controls used may include water sprays, enclosures, hoods, curtains, shrouds, movable and telescoping chutes, central duct collection systems, and the like. A major source of potential emissions, the movement of heavy trucks over unpaved or dusty surfaces in and around the plant, can be controlled by good maintenance and wetting of the road surface.

Predictive equations that allow for emission factor adjustment based on plant specific conditions are given in the Background Document for Chapter 11.12 and Chapter 13. Whenever plant specific data are available, they should be used with these predictive equations (e.g. Equations 11.12-1 through 11.12-3) in lieu of the general fugitive emission factors presented in Table 11.12-1 through 11.12-5 in order to adjust to site specific conditions, such as moisture levels and localized wind speeds.

11.12-3 Updates since the 5th Edition.

October 2001 – This major revision of the section replaced emissions factors based upon engineering judgment and poorly documented and performed source test reports with emissions tests conducted at modern operating truck mix and central mix facilities. Emissions factors for both total PM and total PM_{10} were developed from this test data.

June 2006 – This revision of the section supplemented the two source tests with several additional source tests of central mix and truck mix facilities. The measurement of the capture efficiency, local wind speed and fines material moisture level was improved over the previous two source tests. In addition to quantifying total PM and PM_{10} , $PM_{2.5}$ emissions were quantified at all of the facilities. Single value emissions factors for truck mix and central mix operations were revised using all of the data. Additionally, parameterized emissions factor equations using local wind speed and fines material moisture content were developed from the newer data.

BARGE

ND = No data

^a All emission factors are in kg of pollutant per Mg of material loaded unless noted otherwise. Loaded material includes course aggregate, sand, cement, cement supplement and the surface moisture associated with these materials. The average material composition of concrete batches presented in references 9 and 10 was 846 kg course aggregate, 648 kg sand, 223 kg cement and 33kg cement supplement. Approximately 75 liters of water was added to this solid material to produce 1826 kg of concrete.

^b Reference 9 and 10. Emission factors are based upon an equation from AP-42, Section 13.2.2, with k_{PM-10} =.35, k_{PM} = .74, U = 10mph, $M_{aggregate}$ =1.77%, and M_{sand} = 4.17%. These moisture contents of the materials ($M_{aggregate}$ and M_{sand}) are the averages of the values obtained from Reference 9 and Reference 10.

^c The uncontrolled PM & PM-10 emission factors were developed from Reference 9. The controlled emission factor for PM was developed from References 9, 10, 11, and 12. The controlled emission factor for PM-10 was developed from References 9 and 10.

^d The controlled PM emission factor was developed from Reference 10 and Reference 12, whereas the controlled PM-10 emission factor was developed from only Reference 10.

^e Emission factors were developed by using the Aggregate and Sand Transfer Emission Factors in conjunction with the ratio of aggregate and sand used in an average yard³ of concrete. The unit for these emission factors is kg of pollutant per Mg of aggregate and sand.

^f References 9, 10, and 14. The emission factor units are kg of pollutant per Mg of cement and cement supplement. The general factor is the arithmetic mean of all test data.

^g Reference 9, 10, and 14. The emission factor units are kg of pollutant per Mg of cement and cement supplement. The general factor is the arithmetic mean of all test data.

EMISSION FACTORS FOR CONCRETE BATCHING ^a Source (SCC) Uncontrolled Controlled Total PM₁₀ Total PM Emission Emission Total PM Emission Total Emission Factor Factor Factor PM_{10} Factor

TABLE 11.12-2 (ENGLISH UNITS)

		Rating		Rating		Rating	1 14110	Rating
Aggregate transfer ^b (3-05-011-04,-21,23)	0.0069	D	0.0033	D	ND		ND	
Sand transfer ^b (3-05-011-05,22,24)	0.0021	D	0.00099	D	ND		ND	
Cement unloading to elevated storage silo (pneumatic) ^c (3-05-011-07)	0.72	E	<mark>0.46</mark>	E	0.00099	D	0.00034	D
Cement supplement unloading to elevated storage silo (pneumatic) ^d (3-05-011-17)	3.14	E	1.10	E	0.0089	D	0.0049	E
Weigh hopper loading ^e (3-05-011-08)	0.0051	D	0.0024	D	ND		ND	
Mixer loading (central mix) ^f (3-05-011-09)	0.544 or Eqn. 11.12-1	В	0.134 or Eqn. 11.12-1	В	0.0173 or Eqn. 11.12-1	В	0.0048 or Eqn. 11.12-1	В
Truck loading (truck mix) ^g (3-05-011-10)	0.995	В	0.278	В	0.0568 or Eqn. 11.12-1	В	0.0160 or Eqn. 11.12-1	В
Vehicle traffic (paved roads)	See AP-42 Section 13.2.1							
Vehicle traffic (unpaved roads)	See AP-42 Section 13.2.2							
Wind erosion from aggregate and sand storage piles	See AP-42 Section 13.2.5							

ND = No data

^a All emission factors are in lb of pollutant per ton of material loaded unless noted otherwise. Loaded material includes course aggregate, sand, cement, cement supplement and the surface moisture associated with these materials. The average material composition of concrete batches presented in references 9 and 10 was 1865 lbs course aggregate, 1428 lbs sand, 491 lbs cement and 73 lbs cement supplement. Approximately 20 gallons of water was added to this solid material to produce 4024 lbs (one cubic yard) of concrete.

^b Reference 9 and 10. Emission factors are based upon an equation from AP-42, Section 13.2.2, with k_{PM-10} =.35, k_{PM} = .74, U = 10mph, $M_{aggregate}$ =1.77%, and M_{sand} = 4.17%. These moisture contents of the materials ($M_{aggregate}$ and M_{sand}) are the averages of the values obtained from Reference 9 and Reference 10.

^c The uncontrolled PM & PM-10 emission factors were developed from Reference 9. The controlled emission factor for PM was developed from References 9, 10, 11, and 12. The controlled emission factor for PM-10 was developed from References 9 and 10.

^d The controlled PM emission factor was developed from Reference 10 and Reference 12, whereas the controlled PM-10 emission factor was developed from only Reference 10.

^e Emission factors were developed by using the Aggregate and Sand Transfer Emission Factors in conjunction with the ratio of aggregate and sand used in an average yard³ of concrete. The unit for these emission factors is lb of pollutant per ton of aggregate and sand.

^f References 9, 10, and 14. The emission factor units are lb of pollutant per ton of cement and cement supplement. The general factor is the arithmetic mean of all test data.

^g Reference 9, 10, and 14. The emission factor units are lb of pollutant per ton of cement and cement supplement. The general factor is the arithmetic mean of all test data.

The particulate matter emissions from truck mix and central mix loading operations are calculated in accordance with the values in Tables 11.12-1 or 11.12-2 or by Equation 11.12-1¹⁴ when site specific data are available.

$\mathbf{E} = \mathbf{k} (0.0032) \left[\frac{U^a}{M^b} \right] + \mathbf{c}$	Equation 11.12-1
E =	Emission factor in lbs./ton of cement and cement supplement
k =	Particle size multiplier (dimensionless)
U =	Wind speed, miles per hour (mph)
M =	Minimum moisture (% by weight) of cement and cement
	supplement
a, b =	Exponents
c =	Constant

The parameters for Equation 11.12-1 are summarized in Tables 11.12-3 and 11.12-4.

Condition	Parameter Category	k	a	b	с	
	Total PM	0.8	1.75	0.3	0.013	
Controlled ¹	PM ₁₀	0.32	1.75	0.3	0.0052	
	PM _{10-2.5}	0.288	1.75	0.3	0.00468	
	PM _{2.5}	0.048	1.75	0.3	0.00078	
	Total PM	0.995				
Uncontrolled ¹	PM ₁₀	0.278				
	PM _{10-2.5}	0.228				
	PM _{2.5}	0.050				

Table 11.12-3. Ec	quation Parameters for	Truck Mix O	perations
-------------------	------------------------	-------------	-----------

Condition	Parameter Category	k	a	b	с
	Total PM	0.19	0.95	0.9	0.0010
Controlled ¹	PM ₁₀	0.13	0.45	0.9	0.0010
Controlleu	PM _{10-2.5}	0.12	0.45	0.9	0.0009
	PM _{2.5}	0.03	0.45	0.9	0.0002
Uncontrolled ¹	Total PM	5.90	0.6	1.3	0.120
	PM ₁₀	1.92	0.4	1.3	0.040
	PM _{10-2.5}	1.71	0.4	1.3	0.036
	PM _{2.5}	0.38	0.4	1.3	0

1. Emission factors expressed in lbs/tons of cement and cement supplement

To convert from units of lbs/ton to units of kilograms per mega gram, the emissions calculated by Equation 11.12-1 should be divided by 2.0.

Particulate emission factors per yard of concrete for an average batch formulation at a typical facility are given in Tables 11.12-4 and 11.12-5. For truck mix loading and central mix loading, the

11.19.2 Crushed Stone Processing and Pulverized Mineral Processing

11.19.2.1 Process Description ^{24, 25}

Crushed Stone Processing

Major rock types processed by the crushed stone industry include limestone, granite, dolomite, traprock, sandstone, quartz, and quartzite. Minor types include calcareous marl, marble, shell, and slate. Major mineral types processed by the pulverized minerals industry, a subset of the crushed stone processing industry, include calcium carbonate, talc, and barite. Industry classifications vary considerably and, in many cases, do not reflect actual geological definitions.

Rock and crushed stone products generally are loosened by drilling and blasting and then are loaded by power shovel or front-end loader into large haul trucks that transport the material to the processing operations. Techniques used for extraction vary with the nature and location of the deposit. Processing operations may include crushing, screening, size classification, material handling and storage operations. All of these processes can be significant sources of PM and PM-10 emissions if uncontrolled.

Quarried stone normally is delivered to the processing plant by truck and is dumped into a bin. A feeder is used as illustrated in Figure 11.19.2-1. The feeder or screens separate large boulders from finer rocks that do not require primary crushing, thus reducing the load to the primary crusher. Jaw, impactor, or gyratory crushers are usually used for initial reduction. The crusher product, normally 7.5 to 30 centimeters (3 to 12 inches) in diameter, and the grizzly throughs (undersize material) are discharged onto a belt conveyor and usually are conveyed to a surge pile for temporary storage or are sold as coarse aggregates.

The stone from the surge pile is conveyed to a vibrating inclined screen called the scalping screen. This unit separates oversized rock from the smaller stone. The undersized material from the scalping screen is considered to be a product stream and is transported to a storage pile and sold as base material. The stone that is too large to pass through the top deck of the scalping screen is processed in the secondary crusher. Cone crushers are commonly used for secondary crushing (although impact crushers are sometimes used), which typically reduces material to about 2.5 to 10 centimeters (1 to 4 inches). The material (throughs) from the second level of the screen bypasses the secondary crusher because it is sufficiently small for the last crushing step. The output from the secondary crusher and the throughs from the secondary screen are transported by conveyor to the tertiary circuit, which includes a sizing screen and a tertiary crusher.

Tertiary crushing is usually performed using cone crushers or other types of impactor crushers. Oversize material from the top deck of the sizing screen is fed to the tertiary crusher. The tertiary crusher output, which is typically about 0.50 to 2.5 centimeters (3/16th to 1 inch), is returned to the sizing screen. Various product streams with different size gradations are separated in the screening operation. The products are conveyed or trucked directly to finished product bins, to open area stock piles, or to other processing systems such as washing, air separators, and screens and classifiers (for the production of manufactured sand).

Some stone crushing plants produce manufactured sand. This is a small-sized rock product with a maximum size of 0.50 centimeters (3/16 th inch). Crushed stone from the tertiary sizing screen is sized in a vibrating inclined screen (fines screen) with relatively small mesh sizes.

Oversized material is processed in a cone crusher or a hammermill (fines crusher) adjusted to produce small diameter material. The output is returned to the fines screen for resizing.

In certain cases, stone washing is required to meet particulate end product specifications or demands.

Pulverized Mineral Processing

Pulverized minerals are produced at specialized processing plants. These plants supply mineral products ranging from sizes of approximately 1 micrometer to more than 75 micrometers aerodynamic diameter. Pharmaceutical, paint, plastics, pigment, rubber, and chemical industries use these products. Due to the specialized characteristics of the mineral products and the markets for these products, pulverized mineral processing plants have production rates that are less than 5% of the production capacities of conventional crushed stone plants. Two alternative processing systems for pulverized minerals are summarized in Figure 11-19.2-2.

In dry processing systems, the mineral aggregate material from conventional crushing and screening operations is subject to coarse and fine grinding primarily in roller mills and/or ball mills to reduce the material to the necessary product size range. A classifier is used to size the ground material and return oversized material that can be pulverized using either wet or dry processes. The classifier can either be associated with the grinding operation, or it can be a standalone process unit. Fabric filters control particulate matter emissions from the grinding operation and the classifier. The products are stored in silos and are shipped by truck or in bags.

In wet processing systems, the mineral aggregate material is processed in wet mode coarse and fine grinding operations. Beneficiation processes use flotation to separate mineral impurities. Finely ground material is concentrated and flash dried. Fabric filters are used to control particulate matter emissions from the flash dryer. The product is then stored in silos, bagged, and shipped.

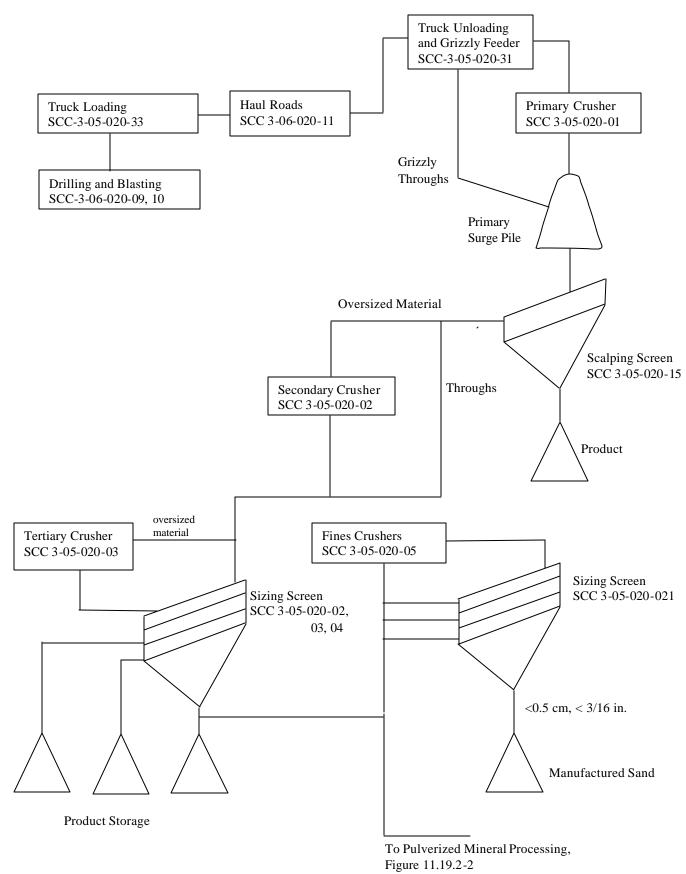


Figure 11.19.2-1. Typical stone processing plant

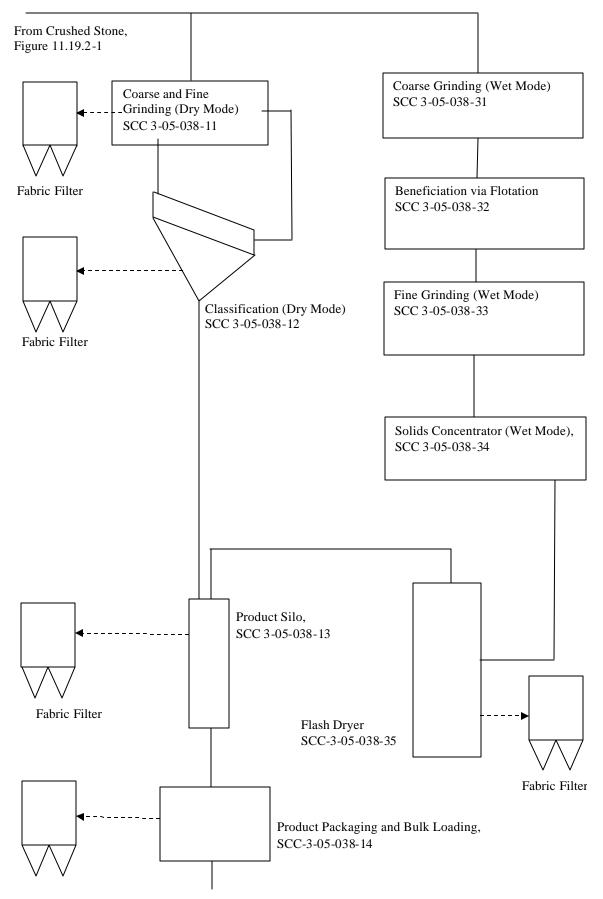


Figure 11.19.2-2 Flowchart for Pulverized Mineral Processing

11.19.2.2 Emissions and Controls ^{10, 11, 12, 13, 14, and 26}

Crushed Stone Processing

Emissions of PM, PM-10, and PM-2.5 occur from a number of operations in stone quarrying and processing. A substantial portion of these emissions consists of heavy particles that may settle out within the plant. As in other operations, crushed stone emission sources may be categorized as either process sources or fugitive dust sources. Process sources include those for which emissions are amenable to capture and subsequent control. Fugitive dust sources generally involve the reentrainment of settled dust by wind or machine movement. Emissions from process sources should be considered fugitive unless the sources are vented to a baghouse or are contained in an enclosure with a forced-air vent or stack. Factors affecting emissions from either source category include the stone size distribution and the surface moisture content of the stone processed, the process throughput rate, the type of equipment and operating practices used, and topographical and climatic factors.

Of graphical and seasonal factors, the primary variables affecting uncontrolled PM emissions are wind and material moisture content. Wind parameters vary with geographical location, season, and weather. It can be expected that the level of emissions from unenclosed sources (principally fugitive dust sources) will be greater during periods of high winds. The material moisture content also varies with geographical location, season, and weather. Therefore, the levels of uncontrolled emissions from both process emission sources and fugitive dust sources generally will be greater in arid regions of the country than in temperate ones and greater during the summer months because of a higher evaporation rate.

The moisture content of the material processed can have a substantial effect on emissions. This effect is evident throughout the processing operations. Surface wetness causes fine particles to agglomerate on or to adhere to the faces of larger stones, with a resulting dust suppression effect. However, as new fine particles are created by crushing and attrition and as the moisture content is reduced by evaporation, this suppressive effect diminishes and may disappear. Plants that use wet suppression systems (spray nozzles) to maintain relatively high material moisture contents can effectively control PM emissions throughout the process. Depending on the geographical and climatic conditions, the moisture content of mined rock can range from nearly zero to several percent. Because moisture content is usually expressed on a basis of overall weight percent, the actual moisture amount per unit area will vary with the size of the rock being handled. On a constant mass-fraction basis, the per-unit area moisture content varies inversely with the diameter of the rock. The suppressive effect of the moisture depends on both the absolute mass water content and the size of the rock product. Typically, wet material contains >1.5 percent water.

A variety of material, equipment, and operating factors can influence emissions from crushing. These factors include (1) stone type, (2) feed size and distribution, (3) moisture content, (4) throughput rate, (5) crusher type, (6) size reduction ratio, and (7) fines content. Insufficient data are available to present a matrix of rock crushing emission factors detailing the above classifications and variables. Available data indicate that PM-10 and PM-2.5 emissions from limestone and granite processing operations are similar. Therefore, the emission factors developed from the emissions data gathered at limestone and granite processing facilities are considered to be representative of typical crushed stone processing operations. Emission factors for filterable PM, PM-10, and PM-2.5 emissions from crushed stone processing operations are presented in Tables 11.19.2-1 (Metric units) and 11.19.2-2 (English units.)

Table 11.19.2-2 (English Units). EMISSION FACTORS FOR CRUSHED STONE PROCESSING OPERATIONS (lb/Ton)^a

Source ^b	Total Particulate	EMISSION FACTOR	Total PM-10	EMISSION FACTOR	Total PM-2.5	EMISSION FACTOR
	Matter ^{r,s}	RATING		RATING		RATING
Primary Crushing (SCC 3-05-020-01)	ND		ND^{n}		ND^{n}	
Primary Crushing (controlled) (SCC 3-05-020-01)	ND		ND^n		ND^n	
Secondary Crushing (SCC 3-05-020-02)	ND		ND^n		ND^{n}	
Secondary Crushing (controlled) (SCC 3-05-020-02)	ND		ND^n		ND^{n}	
Tertiary Crushing (SCC 3-050030-03)	0.0054 ^d	E	0.0024°	С	ND^n	
Tertiary Crushing (controlled) (SCC 3-05-020-03)	0.0012 ^d	E	0.00054 ^p	С	0.00010 ^q	Е
Fines Crushing (SCC 3-05-020-05)	0.0390 ^e	E	0.0150 ^e	E	ND	
Fines Crushing (controlled) (SCC 3-05-020-05)	$0.0030^{\rm f}$	E	0.0012 ^f	E	0.000070 ^q	Е
Screening (SCC 3-05-020-02, 03)	0.025°	E	0.0087 ¹	С	ND	
Screening (controlled) (SCC 3-05-020-02, 03)	0.0022 ^d	E	0.00074 ^m	С	0.000050 ⁹	Е
Fines Screening (SCC 3-05-020-21)	0.30 ^g	E	0.072 ^g	E	ND	
Fines Screening (controlled) (SCC 3-05-020-21)	0.0036 ^g	E	0.0022 ^g	Е	ND	
Conveyor Transfer Point (SCC 3-05-020-06)	0.0030 ^h	E	0.00110 ^h	D	ND	
Conveyor Transfer Point (controlled) (SCC 3-05-020-06)	0.00014 ⁱ	E	4.6 x 10 ⁻⁵¹	D	1.3 x 10 ^{-5q}	E
Wet Drilling - Unfragmented Stone (SCC 3-05-020-10)	ND		8.0 x 10 ^{-5j}	E	ND	
Truck Unloading -Fragmented Stone (SCC 3-05-020-31)	ND		1.6 x 10 ^{-5j}	Е	ND	
Truck Unloading - Conveyor, crushed stone (SCC 3-05-020-32)	ND		0.00010 ^k	E	ND	

a. Emission factors represent uncontrolled emissions unless noted. Emission factors in lb/Ton of material of throughput. SCC = Source Classification Code. ND = No data.

b. Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent, and the same facilities operating wet suppression systems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over of the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. Visual observations from each source under normal operating conditions are probably the best indicator of which emission factor is most appropriate. Plants that employ substandard control measures as indicated by visual observations should use the uncontrolled factor with an appropriate control efficiency that best reflects the effectiveness of the controls employed.

c. References 1, 3, 7, and 8

d. References 3, 7, and 8

e. Reference 4

- f. References 4 and 15
- g. Reference 4
- h. References 5 and 6
- i. References 5, 6, and 15
- j. Reference 11
- k. Reference 12
- 1. References 1, 3, 7, and 8
- m. References 1, 3, 7, 8, and 15
- n. No data available, but emission factors for PM-10 for tertiary crushers can be used as an upper limit for primary or secondary crushing
- o. References 2, 3, 7, 8
- p. References 2, 3, 7, 8, and 15
- q. Reference 15

.

- r. PM emission factors are presented based on PM-100 data in the Background Support Document for Section 11.19.2
- s. Emission factors for PM-30 and PM-50 are available in Figures 11.19.2-3 through 11.19.2-6.

13.2.2 Unpaved Roads

13.2.2.1 General

When a vehicle travels an unpaved road, the force of the wheels on the road surface causes pulverization of surface material. Particles are lifted and dropped from the rolling wheels, and the road surface is exposed to strong air currents in turbulent shear with the surface. The turbulent wake behind the vehicle continues to act on the road surface after the vehicle has passed.

The particulate emission factors presented in the previous draft version of this section of AP-42, dated October 2001, implicitly included the emissions from vehicles in the form of exhaust, brake wear, and tire wear as well as resuspended road surface material²⁵. EPA included these sources in the emission factor equation for unpaved public roads (equation 1b in this section) since the field testing data used to develop the equation included both the direct emissions from vehicles and emissions from resuspension of road dust.

This version of the unpaved public road emission factor equation only estimates particulate emissions from resuspended road surface material ^{23, 26}. The particulate emissions from vehicle exhaust, brake wear, and tire wear are now estimated separately using EPA's MOBILE6.2 ²⁴. This approach eliminates the possibility of double counting emissions. Double counting results when employing the previous version of the emission factor equation in this section and MOBILE6.2 to estimate particulate emissions from vehicle traffic on unpaved public roads. It also incorporates the decrease in exhaust emissions that has occurred since the unpaved public road emission factor equation includes estimates of emissions from exhaust, brake wear, and tire wear based on emission rates for vehicles in the 1980 calendar year fleet. The amount of PM released from vehicle exhaust has decreased since 1980 due to lower new vehicle emission standards and changes in fuel characteristics.

13.2.2.2 Emissions Calculation And Correction Parameters¹⁻⁶

The quantity of dust emissions from a given segment of unpaved road varies linearly with the volume of traffic. Field investigations also have shown that emissions depend on source parameters that characterize the condition of a particular road and the associated vehicle traffic. Characterization of these source parameters allow for "correction" of emission estimates to specific road and traffic conditions present on public and industrial roadways.

Dust emissions from unpaved roads have been found to vary directly with the fraction of silt (particles smaller than 75 micrometers $[\mu m]$ in diameter) in the road surface materials.¹ The silt fraction is determined by measuring the proportion of loose dry surface dust that passes a 200-mesh screen, using the ASTM-C-136 method. A summary of this method is contained in Appendix C of AP-42. Table 13.2.2-1 summarizes measured silt values for industrial unpaved roads. Table 13.2.2-2 summarizes measured silt values for public unpaved roads. It should be noted that the ranges of silt content vary over two orders of magnitude. Therefore, the use of data from this table can potentially introduce considerable error. Use of this data is strongly discouraged when it is feasible to obtain locally gathered data.

Since the silt content of a rural dirt road will vary with geographic location, it should be measured for use in projecting emissions. As a conservative approximation, the silt content of the parent soil in the area can be used. Tests, however, show that road silt content is normally lower than in the surrounding parent soil, because the fines are continually removed by the vehicle traffic, leaving a higher percentage of coarse particles.

Other variables are important in addition to the silt content of the road surface material. For example, at industrial sites, where haul trucks and other heavy equipment are common, emissions are highly correlated with vehicle weight. On the other hand, there is far less variability in the weights of cars and pickup trucks that commonly travel publicly accessible unpaved roads throughout the United States. For those roads, the moisture content of the road surface material may be more dominant in determining differences in emission levels between, for example a hot, desert environment and a cool, moist location.

The PM-10 and TSP emission factors presented below are the outcomes from stepwise linear regressions of field emission test results of vehicles traveling over unpaved surfaces. Due to a limited amount of information available for PM-2.5, the expression for that particle size range has been scaled against the result for PM-10. Consequently, the quality rating for the PM-2.5 factor is lower than that for the PM-10 expression.

	Road Use Or	Plant	No. Of	Silt Conte	ent (%)
Industry	Surface Material	Sites	Samples	Range	Mean
Copper smelting	Plant road	1	3	16 - 19	17
Iron and steel production	Plant road	19	135	0.2 - 19	6.0
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	<mark>4.8</mark>
	Material storage area	1	1	-	7.1
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10
	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3
	Haul road to/from pit	1	12	3.9 - 9.7	5.8
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4
	Plant road	2	2	4.9 - 5.3	5.1
	Scraper route	3	10	7.2 - 25	17
	Haul road (freshly graded)	2	5	18 - 29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills	Disposal routes	4	20	2.2 - 21	6.4
^a References 1,5-15.					

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS^a

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^{a} (W/3)^{b}$$
(1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$
(1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

- E = size-specific emission factor (lb/VMT)
- s = surface material silt content (%)
- W = mean vehicle weight (tons)
- M = surface material moisture content (%)
- S = mean vehicle speed (mph)
- C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

1 lb/VMT = 281.9 g/VKT

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

	Industria	al Roads (Equa	ation 1a)	Public Roads (Equation 1b)				
Constant	PM-2.5	PM-2.5 PM-10		PM-2.5	PM-10	PM-30*		
k (lb/VMT)	0.15 1.5		<mark>4.9</mark>	0.18	1.8	6.0		
а	0.9 0.9		0.7	1	1	1		
b	0.45	0.45	0.45	-	-	-		
с	-	-	-	0.2	0.2	0.3		
d			-	0.5	0.5	0.3		
Quality Rating	В	В	В	В	В	В		

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

*Assumed equivalent to total suspended particulate matter (TSP)

"-" = not used in the emission factor equation

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

		• • • •	Vehicle ight		Vehicle eed	Mean	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg ton k		km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4-17ª	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model ²³. The emission factor also varies with aerodynamic size range

13.2.4 Aggregate Handling And Storage Piles

13.2.4.1 General

Inherent in operations that use minerals in aggregate form is the maintenance of outdoor storage piles. Storage piles are usually left uncovered, partially because of the need for frequent material transfer into or out of storage.

Dust emissions occur at several points in the storage cycle, such as material loading onto the pile, disturbances by strong wind currents, and loadout from the pile. The movement of trucks and loading equipment in the storage pile area is also a substantial source of dust.

13.2.4.2 Emissions And Correction Parameters

The quantity of dust emissions from aggregate storage operations varies with the volume of aggregate passing through the storage cycle. Emissions also depend on 3 parameters of the condition of a particular storage pile: age of the pile, moisture content, and proportion of aggregate fines.

When freshly processed aggregate is loaded onto a storage pile, the potential for dust emissions is at a maximum. Fines are easily disaggregated and released to the atmosphere upon exposure to air currents, either from aggregate transfer itself or from high winds. As the aggregate pile weathers, however, potential for dust emissions is greatly reduced. Moisture causes aggregation and cementation of fines to the surfaces of larger particles. Any significant rainfall soaks the interior of the pile, and then the drying process is very slow.

Silt (particles equal to or less than 75 micrometers $[\mu m]$ in diameter) content is determined by measuring the portion of dry aggregate material that passes through a 200-mesh screen, using ASTM-C-136 method.¹ Table 13.2.4-1 summarizes measured silt and moisture values for industrial aggregate materials.

Table 13.2.4-1. TYPICAL SILT AND MOISTURE CONTENTS OF MATERIALS AT VARIOUS INDUSTRIES^a

			Silt Content (%)			Moist	ure Content	(%)
	No. Of		No. Of			No. Of		
Industry	Facilities	Material	Samples	Range	Mean	Samples	Range	Mean
Iron and steel production	9	Pellet ore	13	1.3 - 13	4.3	11	0.64 - 4.0	2.2
		Lump ore	9	2.8 - 19	9.5	6	1.6 - 8.0	5.4
		Coal	12	2.0 - 7.7	4.6	11	2.8 - 11	4.8
		Slag	3	3.0 - 7.3	5.3	3	0.25 - 2.0	0.92
		Flue dust	3	2.7 - 23	13	1		7
		Coke breeze	2	4.4 - 5.4	4.9	2	6.4 - 9.2	7.8
		Blended ore	1		15	1		6.6
		Sinter	1		0.7	0		
		Limestone	3	0.4 - 2.3	1.0	2	ND	0.2
Stone quarrying and processing	2	Crushed limestone	2	1.3 - 1.9	1.6	2	0.3 - 1.1	0.7
		Various limestone products	8	0.8 - 14	3.9	8	0.46 - 5.0	2.1
Taconite mining and processing	1	Pellets	9	2.2 - 5.4	3.4	7	0.05 - 2.0	0.9
		Tailings	2	ND	11	1		0.4
Western surface coal mining	4	Coal	15	3.4 - 16	6.2	7	2.8 - 20	6.9
		Overburden	15	3.8 - 15	7.5	0		
		Exposed ground	3	5.1 - 21	15	3	0.8 - 6.4	3.4
Coal-fired power plant	1	Coal (as received)	60	0.6 - 4.8	2.2	59	2.7 - 7.4	4.5
Municipal solid waste landfills	4	Sand	1		2.6	1		7.4
		Slag	2	3.0 - 4.7	3.8	2	2.3 - 4.9	3.6
		Cover	5	5.0 - 16	9.0	5	8.9 - 16	12
		Clay/dirt mix	1		9.2	1	—	14
		Clay	2	4.5 - 7.4	6.0	2	8.9 - 11	10
		Fly ash	4	78 - 81	80	4	26 - 29	27
		Misc. fill materials	1		12	1		11

^a References 1-10. ND = no data.

13.2.4.3 Predictive Emission Factor Equations

Total dust emissions from aggregate storage piles result from several distinct source activities within the storage cycle:

- 1. Loading of aggregate onto storage piles (batch or continuous drop operations).

- Equipment traffic in storage area.
 Wind erosion of pile surfaces and ground areas around piles.
 Loadout of aggregate for shipment or for return to the process stream (batch or continuous drop operations).

Either adding aggregate material to a storage pile or removing it usually involves dropping the material onto a receiving surface. Truck dumping on the pile or loading out from the pile to a truck with a front-end loader are examples of batch drop operations. Adding material to the pile by a conveyor stacker is an example of a continuous drop operation.

The quantity of particulate emissions generated by either type of drop operation, per kilogram (kg) (ton) of material transferred, may be estimated, with a rating of A, using the following empirical expression:¹¹

$$E = k(0.0016) \qquad \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \text{ (kg/megagram [Mg])}$$
$$E = k(0.0032) \qquad \frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \text{ (pound [lb]/ton)}$$

where:

E = emission factor

k = particle size multiplier (dimensionless)

U = mean wind speed, meters per second (m/s) (miles per hour [mph])

M = material moisture content (%)

The particle size multiplier in the equation, k, varies with aerodynamic particle size range, as follows:

Aerodynamic Particle Size Multiplier (k) For Equation 1										
$< 30 \ \mu m$	$< 30 \ \mu m$ $< 15 \ \mu m$ $< 10 \ \mu m$ $< 5 \ \mu m$ $< 2.5 \ \mu m$									
0.74	0.48	0.20	0.053ª							

^a Multiplier for $< 2.5 \mu m$ taken from Reference 14.

The equation retains the assigned quality rating if applied within the ranges of source conditions that were tested in developing the equation, as follows. Note that silt content is included, even though silt content does not appear as a correction parameter in the equation. While it is reasonable to expect that silt content and emission factors are interrelated, no significant correlation between the 2 was found during the derivation of the equation, probably because most tests with high silt contents were conducted under lower winds, and vice versa. It is recommended that estimates from the equation be reduced 1 quality rating level if the silt content used in a particular application falls outside the range given:

Ranges Of Source Conditions For Equation 1									
Silt Content Wind Speed									
Silt Content (%)	Moisture Content (%)	m/s	mph						
0.44 - 19	0.25 - 4.8	0.6 - 6.7	1.3 - 15						

To retain the quality rating of the equation when it is applied to a specific facility, reliable correction parameters must be determined for specific sources of interest. The field and laboratory procedures for aggregate sampling are given in Reference 3. In the event that site-specific values for

(1)

correction parameters cannot be obtained, the appropriate mean from Table 13.2.4-1 may be used, but the quality rating of the equation is reduced by 1 letter.

For emissions from equipment traffic (trucks, front-end loaders, dozers, etc.) traveling between or on piles, it is recommended that the equations for vehicle traffic on unpaved surfaces be used (see Section 13.2.2). For vehicle travel between storage piles, the silt value(s) for the areas among the piles (which may differ from the silt values for the stored materials) should be used.

Worst-case emissions from storage pile areas occur under dry, windy conditions. Worst-case emissions from materials-handling operations may be calculated by substituting into the equation appropriate values for aggregate material moisture content and for anticipated wind speeds during the worst case averaging period, usually 24 hours. The treatment of dry conditions for Section 13.2.2, vehicle traffic, "Unpaved Roads", follows the methodology described in that section centering on parameter p. A separate set of nonclimatic correction parameters and source extent values corresponding to higher than normal storage pile activity also may be justified for the worst-case averaging period.

13.2.4.4 Controls¹²⁻¹³

Watering and the use of chemical wetting agents are the principal means for control of aggregate storage pile emissions. Enclosure or covering of inactive piles to reduce wind erosion can also reduce emissions. Watering is useful mainly to reduce emissions from vehicle traffic in the storage pile area. Watering of the storage piles themselves typically has only a very temporary slight effect on total emissions. A much more effective technique is to apply chemical agents (such as surfactants) that permit more extensive wetting. Continuous chemical treating of material loaded onto piles, coupled with watering or treatment of roadways, can reduce total particulate emissions from aggregate storage operations by up to 90 percent.¹²

References For Section 13.2.4

- 1. C. Cowherd, Jr., et al., Development Of Emission Factors For Fugitive Dust Sources, EPA-450/3-74-037, U. S. Environmental Protection Agency, Research Triangle Park, NC, June 1974.
- 2. R. Bohn, et al., Fugitive Emissions From Integrated Iron And Steel Plants, EPA-600/2-78-050, U. S. Environmental Protection Agency, Cincinnati, OH, March 1978.
- 3. C. Cowherd, Jr., *et al., Iron And Steel Plant Open Dust Source Fugitive Emission Evaluation*, EPA-600/2-79-103, U. S. Environmental Protection Agency, Cincinnati, OH, May 1979.
- 4. *Evaluation Of Open Dust Sources In The Vicinity Of Buffalo, New York*, EPA Contract No. 68-02-2545, Midwest Research Institute, Kansas City, MO, March 1979.
- 5. C. Cowherd, Jr., and T. Cuscino, Jr., *Fugitive Emissions Evaluation*, MRI-4343-L, Midwest Research Institute, Kansas City, MO, February 1977.
- 6. T. Cuscino, Jr., *et al.*, *Taconite Mining Fugitive Emissions Study*, Minnesota Pollution Control Agency, Roseville, MN, June 1979.
- 7. *Improved Emission Factors For Fugitive Dust From Western Surface Coal Mining Sources*, 2 Volumes, EPA Contract No. 68-03-2924, PEDCo Environmental, Kansas City, MO, and Midwest Research Institute, Kansas City, MO, July 1981.
- 8. Determination Of Fugitive Coal Dust Emissions From Rotary Railcar Dumping, TRC, Hartford, CT, May 1984.
- 9. *PM-10 Emission Inventory Of Landfills In the Lake Calumet Area*, EPA Contract No. 68-02-3891, Midwest Research Institute, Kansas City, MO, September 1987.

- 10. *Chicago Area Particulate Matter Emission Inventory Sampling And Analysis*, EPA Contract No. 68-02-4395, Midwest Research Institute, Kansas City, MO, May 1988.
- 11. *Update Of Fugitive Dust Emission Factors In AP-42 Section 11.2*, EPA Contract No. 68-02-3891, Midwest Research Institute, Kansas City, MO, July 1987.
- 12. G. A. Jutze, *et al.*, *Investigation Of Fugitive Dust Sources Emissions And Control*, EPA-450/3-74-036a, U. S. Environmental Protection Agency, Research Triangle Park, NC, June 1974.
- 13. C. Cowherd, Jr., *et al., Control Of Open Fugitive Dust Sources*, EPA-450/3-88-008, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 1988.
- 14. C. Cowherd, *Background Document for Revisions to Fine Fraction Ratios &sed for AP-42 Fugitive Dust Emission Factors.* Prepared by Midwest Research Institute for Western Governors Association, Western Regional Air Partnership, Denver, CO, February 1, 2006.

Nonroad Compression-Ignition Engines: Exhaust Emission Standards

	Rated Power (kW)	Tier	Model Year	NMHC (g/kW-hr)	NMHC + NOx (g/kW-hr)	NOx (g/kW-hr)	PM (g/kW-hr)	CO (g/kW-hr)	Smoke ^a (Percentage)	Useful Life (hours /years) ^b	Warranty Period (hours /years) ^b	
		1	2000- 2004	-	10.5	-	1.0	8.0				
	kW < 8	2	2005- 2007	-	7.5	-	0.80	8.0		3,000/5	1,500/2	
		4	2008+	-	7.5	-	0.40 °	8.0				
		1	2000- 2004	-	9.5	-	0.80	6.6				
	8 ≤ kW < 19	2	2005- 2007	-	7.5	-	0.80	6.6		3,000/5	1,500/2	
		4	2008+	-	7.5	-	0.40	6.6				
		1	1999- 2003	-	9.5	-	0.80	5.5				
	19 ≤ kW < 37	2	2004- 2007	-	7.5	-	0.60	5.5		5,000/7 ^d	3,000/5 °	
		4	2008- 2012	-	7.5	-	0.30	5.5				
			2013+	-	4.7	-	0.03	5.5				
	37 ≤ kW < 56	1	1998- 2003	-	-	9.2	-	-				
		2	2004- 2007	-	7.5	-	0.40	5.0				
Federal		3 ^f	2008- 2011	-	4.7	-	0.40	5.0	20/15/50			
reuerai		4 (Option 1) ^g	2008- 2012	-	4.7	-	0.30	5.0	20/15/50			
		4 (Option 2) ^g	2012	-	4.7	-	0.03	5.0				
		4	2013+	-	4.7	-	0.03	5.0				
		1	1998- 2003	-	-	9.2	-	-				
	50	2	2004- 2007	-	7.5	-	0.40	5.0		8,000/10	3,000/5	
	56 ≤ kW < 75	3	2008- 2011	-	4.7	-	0.40	5.0				
		4	2012- 2013 ^h	-	4.7	-	0.02	5.0				
			2014+ ⁱ	0.19	-	0.40	0.02	5.0				
		1	1997- 2002	-	-	9.2	-	-				
	75 - 114	2	2003- 2006	-	6.6	-	0.30	5.0				
	75 ≤ kW < 130	3	2007- 2011	-	4.0	-	0.30	5.0				
		4	2012- 2013 ^h	-	4.0	-	0.02	5.0				
			2014+	0.19	-	0.40	0.02	<mark>5.0</mark>				

	Rated Power (kW)	Tier	Model Year	NMHC (g/kW-hr)	NMHC + NOx (g/kW-hr	NOx (g/kW-hr	PM (g/kW-hr	CO (g/kW-hr)	Smoke ^a (Percentage)	Useful Life (hours /years) ^b	Warranty Period (hours /years) ^b
		1	1996- 2002	1.3 ^j	-	9.2	0.54	11.4			
		2	2003- 2005	-	6.6	-	0.20	3.5			
	130 ≤ kW < 225	3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5			
			2014+ ⁱ	0.19	-	0.40	0.02	3.5			
		1	1996- 2000	1.3 ^j	-	9.2	0.54	11.4			
		2	2001- 2005	-	6.4	-	0.20	3.5			
	225 ≤ kW < 450	3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5		8,000/10	
			2014+ ⁱ	0.19	-	0.40	0.02	3.5	20/15/50		
	450 ≤ kW < 560	1	1996- 2001	1.3 ^j	-	9.2	0.54	11.4			
Federal		2	2002- 2005	-	6.4	-	0.20	3.5			3,000/5
		3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5			
			2014+ ⁱ	0.19	-	0.40	0.02	3.5			
		1	2000- 2005	1.3 ^j	-	9.2	0.54	11.4			
	560 ≤ kW	2	2006- 2010	-	6.4	-	0.20	3.5			
	< 900	4	2011- 2014	0.40	-	3.5	0.10	3.5			
			2015+ ⁱ	0.19	-	3.5 ^k	0.04 ^I	3.5			
		1	2000- 2005	1.3 ^j	-	9.2	0.54	11.4			
	kW > 900	2	2006- 2010	-	<mark>6.4</mark>	-	<mark>0.20</mark>	<mark>3.5</mark>			
		4	2011- 2014	0.40	-	3.5 ^k	0.10	3.5			
			2015+ ⁱ	0.19	-	3.5 ^k	0.04 1	3.5			

Notes on following page.

Notes:

- For Tier 1, 2, and 3 standards, exhaust emissions of nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC), and non-methane hydrocarbons (NMHC) are measured using the procedures in 40 Code of Federal Regulations (CFR) Part 89 Subpart E. For Tier 1, 2, and 3 standards, particulate matter (PM) exhaust emissions are measured using the California Regulations for New 1996 and Later Heavy-Duty Off-Road Diesel Cycle Engines.
- For Tier 4 standards, engines are tested for transient and steady-state exhaust emissions using the procedures in 40 CFR Part 1039 Subpart F. Transient standards do not apply to engines below 37 kilowatts (kW) before the 2013 model year, constant-speed engines, engines certified to Option 1, and engines above 560 kW.
- Tier 2 and later model naturally aspirated nonroad engines shall not discharge crankcase emissions into the atmosphere unless these emissions are permanently routed into the exhaust. This prohibition does not apply to engines using turbochargers, pumps, blowers, or superchargers.
- In lieu of the Tier 1, 2, and 3 standards for NOX, NMHC + NOX, and PM, manufacturers may elect to participate in the averaging, banking, and trading (ABT) program described in 40 CFR Part 89 Subpart C.
- a Smoke emissions may not exceed 20 percent during the acceleration mode, 15 percent during the lugging mode, and 50 percent during the peaks in either mode. Smoke emission standards do not apply to single-cylinder engines, constant-speed engines, or engines certified to a PM emission standard of 0.07 grams per kilowatt-hour (g/kW-hr) or lower. Smoke emissions are measured using procedures in 40 CFR Part 86 Subpart I.
- **b** Useful life and warranty period are expressed hours and years, whichever comes first.
- c Hand-startable air-cooled direct injection engines may optionally meet a PM standard of 0.60 g/kW-hr. These engines may optionally meet Tier 2 standards through the 2009 model years. In 2010 these engines are required to meet a PM standard of 0.60 g/kW-hr.
- **d** Useful life for constant speed engines with rated speed 3,000 revolutions per minute (rpm) or higher is 5 years or 3,000 hours, whichever comes first.

- e Warranty period for constant speed engines with rated speed 3,000 rpm or higher is 2 years or 1,500 hours, whichever comes first.
- f These Tier 3 standards apply only to manufacturers selecting Tier 4 Option 2. Manufacturers selecting Tier 4 Option 1 will be meeting those standards in lieu of Tier 3 standards.
- **g** A manufacturer may certify all their engines to either Option 1 or Option 2 sets of standards starting in the indicated model year. Manufacturers selecting Option 2 must meet Tier 3 standards in the 2008-2011 model years.
- h These standards are phase-out standards. Not more than 50 percent of a manufacturer's engine production is allowed to meet these standards in each model year of the phase out period. Engines not meeting these standards must meet the final Tier 4 standards.
- These standards are phased in during the indicated years. At least 50 percent of a manufacturer's engine production must meet these standards during each year of the phase in. Engines not meeting these standards must meet the applicable phase-out standards.
- **j** For Tier 1 engines the standard is for total hydrocarbons.
- k The NOx standard for generator sets is 0.67 g/kW-hr.
- I The PM standard for generator sets is 0.03 g/kW-hr.

Citations: Code of Federal Regulations (CFR) citations:

- 40 CFR 89.112 = Exhaust emission standards
- 40 CFR 1039.101 = Exhaust emission standards for after 2014 model year
- 40 CFR 1039.102 = Exhaust emission standards for model year 2014 and earlier
- 40 CFR 1039 Subpart F = Exhaust emissions transient and steady state test procedures
- 40 CFR 86 Subpart I = Smoke emission test procedures
- 40 CFR 1065 = Test equipment and emissions measurement procedures

Nonroad Compression-Ignition Engines: Exhaust Emission Standards

	Rated Power (kW)	Tier	Model Year	NMHC (g/kW-hr)	NMHC + NOx (g/kW-hr)	NOx (g/kW-hr)	PM (g/kW-hr)	CO (g/kW-hr)	Smoke ^a (Percentage)	Useful Life (hours /years) ^b	Warranty Period (hours /years) ^b	
		1	2000- 2004	-	10.5	-	1.0	8.0				
	kW < 8	2	2005- 2007	-	7.5	-	0.80	8.0		3,000/5	1,500/2	
		4	2008+	-	7.5	-	0.40 °	8.0				
		1	2000- 2004	-	9.5	-	0.80	6.6				
	8 ≤ kW < 19	2	2005- 2007	-	7.5	-	0.80	6.6		3,000/5	1,500/2	
		4	2008+	-	7.5	-	0.40	6.6				
		1	1999- 2003	-	9.5	-	0.80	5.5				
	19 ≤ kW < 37	2	2004- 2007	-	7.5	-	0.60	5.5		5,000/7 ^d	3,000/5 °	
		4	2008- 2012	-	7.5	-	0.30	5.5				
			2013+	-	4.7	-	0.03	5.5				
	37 ≤ kW < 56	1	1998- 2003	-	-	9.2	-	-				
		2	2004- 2007	-	7.5	-	0.40	5.0				
Federal		3 ^f	2008- 2011	-	4.7	-	0.40	5.0	20/15/50			
reuerai		4 (Option 1) ^g	2008- 2012	-	4.7	-	0.30	5.0	20/15/50			
		4 (Option 2) ^g	2012	-	4.7	-	0.03	5.0				
		4	2013+	-	4.7	-	0.03	5.0				
		1	1998- 2003	-	-	9.2	-	-				
	50	2	2004- 2007	-	7.5	-	0.40	5.0		8,000/10	3,000/5	
	56 ≤ kW < 75	3	2008- 2011	-	4.7	-	0.40	5.0				
		4	2012- 2013 ^h	-	4.7	-	0.02	5.0				
			2014+ ⁱ	0.19	-	0.40	0.02	5.0				
		1	1997- 2002	-	-	9.2	-	-				
	75 - 114	2	2003- 2006	-	6.6	-	0.30	5.0				
	75 ≤ kW < 130	3	2007- 2011	-	4.0	-	0.30	5.0				
		4	2012- 2013 ^h	-	4.0	-	0.02	5.0				
			2014+	0.19	-	0.40	0.02	<mark>5.0</mark>				

	Rated Power (kW)	Tier	Model Year	NMHC (g/kW-hr)	NMHC + NOx (g/kW-hr	NOx (g/kW-hr	PM (g/kW-hr	CO (g/kW-hr)	Smoke ^a (Percentage)	Useful Life (hours /years) ^b	Warranty Period (hours /years) ^b
		1	1996- 2002	1.3 ^j	-	9.2	0.54	11.4			
		2	2003- 2005	-	6.6	-	0.20	3.5			
	130 ≤ kW < 225	3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5			
			2014+ ⁱ	0.19	-	0.40	0.02	3.5			
		1	1996- 2000	1.3 ^j	-	9.2	0.54	11.4			
		2	2001- 2005	-	6.4	-	0.20	3.5			
	225 ≤ kW < 450	3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5	20/15/50	8,000/10	
			2014+ ⁱ	0.19	-	0.40	0.02	3.5			
	450 ≤ kW < 560	1	1996- 2001	1.3 ^j	-	9.2	0.54	11.4			
Federal		2	2002- 2005	-	6.4	-	0.20	3.5			3,000/5
		3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5			
			2014+ ⁱ	0.19	-	0.40	0.02	3.5			
		1	2000- 2005	1.3 ^j	-	9.2	0.54	11.4			
	560 ≤ kW	2	2006- 2010	-	6.4	-	0.20	3.5			
	< 900	4	2011- 2014	0.40	-	3.5	0.10	3.5			
			2015+ ⁱ	0.19	-	3.5 ^k	0.04 ^I	3.5			
		1	2000- 2005	1.3 ^j	-	9.2	0.54	11.4			
	kW > 900	2	2006- 2010	-	6.4	-	0.20	3.5			
		4	2011- 2014	0.40	-	3.5 ^k	0.10	3.5			
			2015+ ⁱ	0.19	-	3.5 ^k	0.04 1	3.5			

Notes on following page.

Notes:

- For Tier 1, 2, and 3 standards, exhaust emissions of nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC), and non-methane hydrocarbons (NMHC) are measured using the procedures in 40 Code of Federal Regulations (CFR) Part 89 Subpart E. For Tier 1, 2, and 3 standards, particulate matter (PM) exhaust emissions are measured using the California Regulations for New 1996 and Later Heavy-Duty Off-Road Diesel Cycle Engines.
- For Tier 4 standards, engines are tested for transient and steady-state exhaust emissions using the procedures in 40 CFR Part 1039 Subpart F. Transient standards do not apply to engines below 37 kilowatts (kW) before the 2013 model year, constant-speed engines, engines certified to Option 1, and engines above 560 kW.
- Tier 2 and later model naturally aspirated nonroad engines shall not discharge crankcase emissions into the atmosphere unless these emissions are permanently routed into the exhaust. This prohibition does not apply to engines using turbochargers, pumps, blowers, or superchargers.
- In lieu of the Tier 1, 2, and 3 standards for NOX, NMHC + NOX, and PM, manufacturers may elect to participate in the averaging, banking, and trading (ABT) program described in 40 CFR Part 89 Subpart C.
- a Smoke emissions may not exceed 20 percent during the acceleration mode, 15 percent during the lugging mode, and 50 percent during the peaks in either mode. Smoke emission standards do not apply to single-cylinder engines, constant-speed engines, or engines certified to a PM emission standard of 0.07 grams per kilowatt-hour (g/kW-hr) or lower. Smoke emissions are measured using procedures in 40 CFR Part 86 Subpart I.
- **b** Useful life and warranty period are expressed hours and years, whichever comes first.
- c Hand-startable air-cooled direct injection engines may optionally meet a PM standard of 0.60 g/kW-hr. These engines may optionally meet Tier 2 standards through the 2009 model years. In 2010 these engines are required to meet a PM standard of 0.60 g/kW-hr.
- **d** Useful life for constant speed engines with rated speed 3,000 revolutions per minute (rpm) or higher is 5 years or 3,000 hours, whichever comes first.

- e Warranty period for constant speed engines with rated speed 3,000 rpm or higher is 2 years or 1,500 hours, whichever comes first.
- f These Tier 3 standards apply only to manufacturers selecting Tier 4 Option 2. Manufacturers selecting Tier 4 Option 1 will be meeting those standards in lieu of Tier 3 standards.
- **g** A manufacturer may certify all their engines to either Option 1 or Option 2 sets of standards starting in the indicated model year. Manufacturers selecting Option 2 must meet Tier 3 standards in the 2008-2011 model years.
- h These standards are phase-out standards. Not more than 50 percent of a manufacturer's engine production is allowed to meet these standards in each model year of the phase out period. Engines not meeting these standards must meet the final Tier 4 standards.
- These standards are phased in during the indicated years. At least 50 percent of a manufacturer's engine production must meet these standards during each year of the phase in. Engines not meeting these standards must meet the applicable phase-out standards.
- **j** For Tier 1 engines the standard is for total hydrocarbons.
- k The NOx standard for generator sets is 0.67 g/kW-hr.
- I The PM standard for generator sets is 0.03 g/kW-hr.

Citations: Code of Federal Regulations (CFR) citations:

- 40 CFR 89.112 = Exhaust emission standards
- 40 CFR 1039.101 = Exhaust emission standards for after 2014 model year
- 40 CFR 1039.102 = Exhaust emission standards for model year 2014 and earlier
- 40 CFR 1039 Subpart F = Exhaust emissions transient and steady state test procedures
- 40 CFR 86 Subpart I = Smoke emission test procedures
- 40 CFR 1065 = Test equipment and emissions measurement procedures

VOLUME II: CHAPTER 3

PREFERRED AND ALTERNATIVE METHODS FOR ESTIMATING AIR EMISSIONS FROM HOT-MIX ASPHALT PLANTS

Final Report

July 1996

Prepared by: Eastern Research Group, Inc. Post Office Box 2010 Morrisville, North Carolina 27560

Prepared for: Point Sources Committee Emission Inventory Improvement Program In the counterflow drum mixing process, the aggregate is proportioned through a cold feed system prior to introduction to the drying process. As opposed to the parallel flow drum mixing process though, the aggregate moves opposite to the flow of the exhaust gases. After drying and heating take place, the aggregate is transferred to a part of the drum that is not exposed to the exhaust gas and coated with asphalt cement. This process prevents stripping of the asphalt cement by the hot exhaust gas. If RAP is used, it is usually introduced into the coating chamber.

2.2 EMISSION SOURCES

Emissions from HMA plants derive from both controlled (i.e., ducted) and uncontrolled sources. Section 7 lists the source classification codes (SCCs) for these emission points.

2.2.1 MATERIAL HANDLING (FUGITIVE EMISSIONS)

Material handling includes the receipt, movement, and processing of fuel and materials used at the HMA facility. Fugitive particulate matter (PM) emissions from aggregate storage piles are typically caused by front-end loader operations that transport the aggregate to the cold feed unit hoppers. The amount of fugitive PM emissions from aggregate piles will be greater in strong winds (Gunkel, 1992). Piles of RAP, because RAP is coated with asphalt cement, are not likely to cause significant fugitive dust problems. Other pre-dryer fugitive emission sources include the transfer of aggregate from the cold feed unit hoppers to the dryer feed conveyor and, subsequently, to the dryer entrance. Aggregate moisture content prior to entry into the dryer is typically 3 percent to 7 percent. This moisture content, along with aggregate size classification, tend to minimize emissions from these sources, which contribute little to total facility PM emissions. PM less than or equal to 10 μ m in diameter (PM₁₀) emissions from these sources are reported to account for about 19 percent of their total PM emissions (NAPA, 1995).

If crushing, breaking, or grinding operations occur at the plant, these may result in fugitive PM emissions (TNRCC, 1994). Also, fine particulate collected from the baghouses can be a source of fugitive emissions as the overflow PM is transported by truck (enclosed or tarped) for on-site disposal. At all HMA plants there may be PM and slight process fugitive volatile organic compound (VOC) emissions from the transport and handling of the hot-mix from the mixer to the storage silo and also from the load-out operations to the delivery trucks (EPA, 1994a). Small amounts of VOC emissions can also result from the transfer of liquid and gaseous fuels, although natural gas is normally transported in a pipeline (Gunkel, 1992, Wiese, 1995).

TABLE 3.2-1

TYPICAL HOT-MIX ASPHALT PLANT EMISSION CONTROL TECHNIQUES

Emission Source	Pollutant	Control Technique	Typical Efficiency (%)
Process	PM and	Cyclones	50 - 75 ^{a,b}
	PM_{10}	Multiple cyclones	90°
		Settling chamber	<50 ^b
		Baghouse	99 - 99.97 ^{a,d}
		Venturi scrubber	90 - 99.5 ^{d,e}
	VOC	Dryer and combustion process modifications	37 - 86 ^{f,g}
	SO _x	Limestone	50 ^{b,e}
		Low sulfur fuel	80°
Fugitive dust	PM and	Paving and maintenance	60 - 99 ^g
	PM_{10}	Wetting and crusting agents	70 ^b - 80 ^c
		Crushed RAP material, asphalt shingles	70 ^h

^a Control efficiency dependent on particle size ratio and size of equipment.

- ^b Source: Patterson, 1995c.
- ^c Source: EIIP, 1995.
- ^d Typical efficiencies at a hot-mix asphalt plant.
- ^e Source: TNRCC, 1995.
- ^f Source: Gunkel, 1992.
- ^g Source: TNRCC, 1994.
- ^h Source: Patterson, 1995a.

AVERAGE WIND SPEED - MPH

STATION	ID Years	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	I	Ann
ALAMOGORDO AIRPORT ASOS	KALM 1996-2006	5.1	6.3	7.1	7.9	7.1	6.9	6.1	5.3	5.2	5.2	5.0	5.0	I	6.0
ALAMOGORDO-HOLLOMAN AFB	KHMN 1996-2006	8.5	9.7	10.6	11.8	10.8	10.6	9.8	9.1	8.8	8.5	8.1	8.3	Í	9.6
ALBUQUERQUE AP ASOS	KABQ 1996-2006	7.0	8.2	9.3	11.1	10.0	10.0	8.7	8.3	8.0	7.9	7.2	6.9	Í	8.5
ALBUQUERQUE-DBLE EAGLE	KAEG 1999-2006	7.1	7.9	9.0	10.6	9.5	8.6	7.0	6.2	7.0	6.5	6.5	6.1	- I	7.7
ARTESIA AIRPORT ASOS	KATS 1997-2006	7.8	9.1	10.1	10.9	10.2	9.9	7.8	6.9	7.6	7.8	7.6	7.4	I.	8.5
CARLSBAD AIRPORT ASOS	KCNM 1996-2006	9.2	9.8	10.9	11.4	10.4	9.9	8.5	7.7	8.2	8.5	8.4	8.8		9.3
CLAYTON MUNI AP ASOS	KCAO 1996-2006	11.9	12.7	13.4	14.6	13.4	13.0	11.7	10.8	11.8	12.1	12.1	12.0		12.4
CLINES CORNERS	KCQC 1998-2006	16.2	16.1	15.7	16.9	14.6	13.5	10.6	10.1	11.8	13.3	15.0	16.0		14.1
CLOVIS AIRPORT AWOS	KCVN 1996-2006	12.3	12.3	13.4	13.8	12.4	11.9	9.7	8.9	9.7	10.9	11.6	12.2		11.6
CLOVIS-CANNON AFB	KCVS 1996-2006	12.5	12.6	13.6	13.8	12.2	12.5	10.7	10.0	10.2	11.3	11.7	12.4		12.0
DEMING AIRPORT ASOS	KDMN 1996-2006	8.7	9.7	10.9	12.0	10.6	10.1	8.9	8.1	8.4	8.2	8.5	8.1		9.3
FARMINGTON AIRPORT ASOS	KFMN 1996-2006	7.3	8.3	9.0	9.8	9.4	9.4	8.7	8.2	8.0	7.8	7.6	7.3		8.4
GALLUP AIRPORT ASOS	KGUP 1996-2006	5.7	6.9	7.8	10.0	9.0	8.8	6.9	6.0	6.5	6.1	5.6	5.3		7.0
GRANTS-MILAN AP ASOS	KGNT 1997-2006	7.8	8.8	9.6	10.9	10.0	9.8	8.1	7.2	7.9	8.4	8.0	7.6		8.7
HOBBS AIRPORT AWOS	KHOB 1996-2006	11.3	11.9	12.6	13.4	12.5	12.3	11.0	10.0	10.2	10.6	10.7	11.1		11.4
LAS CRUCES AIRPORT AWOS	KLRU 2000-2006	6.4	7.5	8.8	10.1	8.7	8.2	6.8	6.0	6.2	6.1	6.4	6.0		<mark>7.3</mark>
LAS VEGAS AIRPORT ASOS	KLVS 1996-2006	10.9	12.2	12.5	14.3	12.4	11.8	10.0	9.2	10.9	10.8	11.0	10.9		11.4
LOS ALAMOS AP AWOS	KLAM 2005-2006	3.9	5.7	7.5	8.1	7.1	7.3	5.3	4.8	5.7	5.1	4.4	3.2		5.4
RATON AIRPORT ASOS	KRTN 1998-2006	8.9	9.4	10.4	12.2	10.8	10.2	8.4	8.1	8.6	9.0	8.6	8.5		9.4
ROSWELL AIRPORT ASOS	KROW 1996-2006	7.4	8.9	9.9	11.1	10.3	10.2	8.8	7.9	8.3	8.0	7.5	7.3		8.8
RUIDOSO AIRPORT AWOS	KSRR 1996-2006	8.8	9.6		11.6			5.9	5.3	6.4	7.4	7.9	8.7		8.3
SANTA FE AIRPORT ASOS	KSAF 1996-2006	8.9	9.5	9.9	11.2	10.6	10.5	9.2	8.8	8.8	9.1	8.7	8.5		9.5
SILVER CITY AP AWOS	KSVC 1999-2006	8.1	8.7	9.9	10.8	10.2	9.9	8.5	7.2	6.9	7.6	7.9	7.7		8.5
TAOS AIRPORT AWOS	KSKX 1996-2006	5.8	6.5	7.7	9.1	8.6	8.5	7.1	6.6	6.7	6.6	6.0	5.7		7.0
TRUTH OR CONSEQ AP ASOS	KTCS 1996-2006	7.4	8.7	9.9	11.1	10.4	9.8	8.1	7.4	7.7	8.0	7.7	7.3		8.6
TUCUMCARI AIRPORT ASOS	KTCC 1999-2006	10.0	11.2	11.9	13.6	11.9	11.6	9.9	9.3	10.0	10.0	10.4	10.2		10.8

TANKS 4.0.9d

Emissions Report - Detail Format Tank Identification and Physical Characteristics

	, , , , , , , , , ,
Identification	
User Identification:	MVHMAAC1
City:	Alamogordo
State:	New Mexico
Company:	Mesa Verde Enterprises
Type of Tank:	Horizontal Tank
Description:	Mesa Verde Enterprises Asphalt Cement Tank 1
Tank Dimensions	
Shell Length (ft):	52.00
Diameter (ft):	10.00
Volume (gallons):	30,000.00
Turnovers:	173.54
Net Throughput(gal/yr):	5,206,074.00
Is Tank Heated (y/n):	Y
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Aluminum/Diffuse
Shell Condition	Good
Breather Vent Settings	
Vacuum Settings (psig):	0.00
Pressure Settings (psig)	0.00
Meteorological Data used in Emissions	Calculations: Roswell, New Mexico (Avg Atmospheric Pressure = 12.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

			aily Liquid S nperature (d		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	n Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Asphalt Cement	All	350.00	350.00	350.00	350.00	0.0347	0.0347	0.0347	105.0000			1,000.00	Option 3: A=75350, B=9.00346

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Standing Losses (Ib):	
	0.0000
Vapor Space Volume (cu ft):	2,601.3188
Vapor Density (lb/cu ft):	0.0004
Vapor Space Expansion Factor:	0.0000
Vented Vapor Saturation Factor:	0.9909
Vented Vapor Oddatatorri dotor.	0.0000
Fank Vapor Space Volume:	
Vapor Space Volume (cu ft):	2,601.3188
Tank Diameter (ft):	10.0000
Effective Diameter (ft):	25.7375
Vapor Space Outage (ft):	5.0000
Tank Shell Length (ft):	52.0000
/apor Density	
Vapor Density (lb/cu ft):	0.0004
Vapor Molecular Weight (lb/lb-mole):	105.0000
Vapor Pressure at Daily Average Liquid	105:0000
	0.0247
Surface Temperature (psia):	0.0347
Daily Avg. Liquid Surface Temp. (deg. R):	809.6700
Daily Average Ambient Temp. (deg. F):	60.8167
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	809.6700
Tank Paint Solar Absorptance (Shell):	0.6000
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,810.0000
/apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0000
Daily Vapor Temperature Range (deg. R):	0.0000
Daily Vapor Pressure Range (psia):	0.0000
Breather Vent Press. Setting Range(psia):	0.0000
	0.0000
Vapor Pressure at Daily Average Liquid	0.0247
Surface Temperature (psia):	0.0347
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0347
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0347
Daily Avg. Liquid Surface Temp. (deg R):	809.6700
Daily Min. Liquid Surface Temp. (deg R):	809.6700
Daily Max. Liquid Surface Temp. (deg R):	809.6700
Daily Ambient Temp. Range (deg. R):	29.8333
/ented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9909
Vapor Pressure at Daily Average Liquid:	0.0000
Surface Temperature (psia):	0.0347
Vapor Space Outage (ft):	5.0000
vapor Space Outage (it).	5.0000
	145 0000
Vorking Losses (Ib):	115.0966
Vapor Molecular Weight (lb/lb-mole):	105.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0347
Annual Net Throughput (gal/yr.):	5,206,074.0000
· · · · ·	173.5358
Annual Turnovers:	0.3395
Annual Turnovers: Turnover Factor:	
Turnover Factor:	10.0000
	10.0000 0.7500
Turnover Factor: Tank Diameter (ft):	

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Asphalt Cement	115.10	0.00	115.10

TANKS 4.0.9d

Emissions Report - Detail Format Tank Identification and Physical Characteristics

	,
Identification	
User Identification:	MVHMAAC2
City:	Alamogordo
State:	New Mexico
Company:	Mesa Verde Enterprises
Type of Tank:	Horizontal Tank
Description:	Mesa Verde Enterprises Asphalt Cement Tank 2
Tank Dimensions	
Shell Length (ft):	52.00
Diameter (ft):	10.00
Volume (gallons):	30,000.00
Turnovers:	173.54
Net Throughput(gal/yr):	5,206,074.00
Is Tank Heated (y/n):	Y
Is Tank Underground (y/n):	N
Paint Characteristics	
Shell Color/Shade:	Aluminum/Diffuse
Shell Condition	Good
Breather Vent Settings	
Vacuum Settings (psig):	0.00
Pressure Settings (psig)	0.00
Meteorological Data used in Emissions	Calculations: Roswell, New Mexico (Avg Atmospheric Pressure = 12.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	n Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Asphalt Cement	All	350.00	350.00	350.00	350.00	0.0347	0.0347	0.0347	105.0000			1,000.00	Option 3: A=75350, B=9.00346

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Vapor Space Volume (cu ft): 2,601.31 Vapor Density (lb/cu ft): 0.00 Vapor Space Expansion Factor: 0.00 Vapor Space Expansion Factor: 0.99 Tank Vapor Space Volume: 2,601.31 Vapor Space Volume (cu ft): 2,601.31 Tank Diameter (ft): 25.07 Effective Diameter (ft): 25.73 Vapor Space Outage (ft): 5.00 Tank Shell Length (ft): 25.00 Vapor Density 0.00 Vapor Density (b/cu ft): 0.00 Vapor Density (b/cu ft): 0.00 Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Daily Average Ambient Temp. (deg. R): 809.67 Daily Average Ambient Temp. (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Average Ambient Temp. (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Average Amsoin Factor: 0.00 Vapor Space Expansion Factor: 0.00 Vapor Space Expansion Factor: 0.00 <	xe Volume (cu ft): 2,601.3188 sity (lb/cu ft): 0.0004 xe Expansion Factor: 0.0000
Vapor Space Volume (cu ft): 2,601.31 Vapor Density (lb/cu ft): 0.00 Vapor Space Expansion Factor: 0.00 Vented Vapor Saturation Factor: 0.99 Tank Vapor Space Volume: 2,601.31 Vapor Space Volume (cu ft): 2,601.31 Tank Diameter (ft): 25.73 Vapor Space Outage (ft): 5.00 Tank Shell Length (ft): 5.00 Vapor Density 0.00 Vapor Density (lb/cu ft): 0.00 Vapor Density (lb/cu ft): 0.00 Vapor Density (lb/cu ft): 0.00 Vapor Pressure at Daily Average Liquid 0.03 Daily Average Ambient Temp. (deg. R): 809.67 Daily Average Ambient Temp. (deg. R): 809.67 Daily Average Ambient Temp. (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.01 Daily Average Ambient Temp. (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Total Solar Insulation 0.60 Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor 0.00 <tr< th=""><th>xe Volume (cu ft): 2,601.3188 sity (lb/cu ft): 0.0004 xe Expansion Factor: 0.0000</th></tr<>	xe Volume (cu ft): 2,601.3188 sity (lb/cu ft): 0.0004 xe Expansion Factor: 0.0000
Vapor Space Expansion Factor: 0.00 Vented Vapor Saturation Factor: 0.99 Tank Vapor Space Volume: 2,601.31 Vapor Space Volume (cu ft): 2,601.31 Tank Diameter (ft): 10.00 Effective Diameter (ft): 25.73 Vapor Space Outage (ft): 5.00 Tank Shell Length (ft): 52.00 Vapor Density Vapor Density (b/ou ft): 0.00 Vapor Density (b/ou ft): 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg. R): 809.67 Daily Avg. Liquid Surface Temp. (deg. R): 809.67 Ideal Gas Constant R (psia cuft / (lb-mol-deg R)): 10.7 Liquid Bulk Temperature (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Total Solar Insulation 10.7 Factor (Btu/sqft day): 1,810.000 Vapor Space Expansion Factor: 0.00 Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03	e Expansion Factor: 0.0000
Vented Vapor Saturation Factor: 0.99 Tank Vapor Space Volume: 2,601.31 Yapor Space Volume (cu ft): 2,601.31 Tank Diameter (ft): 25,001.31 Tank Diameter (ft): 25,302 Effective Diameter (ft): 52,002 Vapor Space Outage (ft): 5,000 Tank Shell Length (ft): 0.000 Vapor Density (b/cu ft): 0.000 Vapor Density (b/cu ft): 0.000 Vapor Pressure at Daily Average Liquid 0.03 Daily Average Ambient Temp. (deg. R): 809.67 Daily Average Ambient Temp. (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Average Expansion Factor 0.00 Vapor Space Expansion Factor 0.00 Vapor Pressure at Daily Average Liquid 0.00 Daily Vapor Temperature (psia): 0.00 Vapor Space Expansion Factor 0.00 Vapor Pressure at Daily Average Liquid 0.00 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Vapor Pressure at Daily Minimum Liquid <t< td=""><td></td></t<>	
Vented Vapor Saturation Factor: 0.99 Tank Vapor Space Volume: 2,601.31 Yapor Space Volume (cu ft): 2,601.31 Tank Diameter (ft): 25,001.31 Tank Diameter (ft): 25,302 Effective Diameter (ft): 52,002 Vapor Space Outage (ft): 5,000 Tank Shell Length (ft): 0.000 Vapor Density (b/cu ft): 0.000 Vapor Density (b/cu ft): 0.000 Vapor Pressure at Daily Average Liquid 0.03 Daily Average Ambient Temp. (deg. R): 809.67 Daily Average Ambient Temp. (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Average Expansion Factor 0.00 Vapor Space Expansion Factor 0.00 Vapor Pressure at Daily Average Liquid 0.00 Daily Vapor Temperature (psia): 0.00 Vapor Space Expansion Factor 0.00 Vapor Pressure at Daily Average Liquid 0.00 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Vapor Pressure at Daily Minimum Liquid <t< td=""><td></td></t<>	
Vapor Space Volume (cu ft): 2,601.31 Tank Diameter (ft): 10.00 Effective Diameter (ft): 25.73 Vapor Space Outage (ft): 5.00 Tank Shell Length (ft): 52.00 Vapor Density 0.00 Vapor Density (lb/cu ft): 0.00 Vapor Pressure at Daily Average Liquid 0.03 Daily Average Ambient Temp. (deg. R): 809.67 Daily Average Ambient Temp. (deg. R): 60.81 Ideal Gas Constant R (pia culf / (lb-mol-deg R)): (pia culf / (lb-mol-deg R)): 10.7 Liquid Bulk Temperature (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Yotal Solar Insulation Factor (Btu/sqft day): Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor 0.00 Vapor Pressure Range (pia): 0.00 Daily Vapor Temperature (pia): 0.03 Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (pia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia):	oor Saturation Factor: 0.9909
Vapor Space Volume (cu ft): 2,601.31 Tank Diameter (ft): 10.00 Effective Diameter (ft): 25.73 Vapor Space Outage (ft): 5.00 Tank Shell Length (ft): 52.00 Vapor Density 0.00 Vapor Density (lb/cu ft): 0.00 Vapor Pressure at Daily Average Liquid 0.03 Daily Average Ambient Temp. (deg. R): 809.67 Daily Average Ambient Temp. (deg. R): 60.81 Ideal Gas Constant R (pia culf / (lb-mol-deg R)): (pia culf / (lb-mol-deg R)): 10.7 Liquid Bulk Temperature (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Yotal Solar Insulation Factor (Btu/sqft day): Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor 0.00 Vapor Pressure Range (pia): 0.00 Daily Vapor Temperature (pia): 0.03 Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (pia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia):	
Tank Diameter (ft): 10.00 Effective Diameter (ft): 25.73 Vapor Space Outage (ft): 5.00 Tank Shell Length (ft): 52.00 Vapor Density 0.00 Vapor Density (lb/cu ft): 0.00 Vapor Density (lb/cu ft): 0.00 Vapor Molecular Weight (lb/lb-mole): 105.00 Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Daily Average Ambient Temp. (deg. R): 809.67 Tank Paint Solar Insulation 10.7 Factor (Btu/sqft day): 10.7 Liquid Bulk Temperature (deg. R): 809.67 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Temperature (psia): 0.03 Vapor Space Expansion Factor 0.00 Vapor Pressure at Daily Average Liquid	
Effective Diameter (ft): 25.73 Vapor Space Outage (ft): 5.00 Tank Shell Length (ft): 52.00 Vapor Density Vapor Density (loc ft): 0.00 Vapor Molecular Weight (lb/lb-mole): 105.00 Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg. R): 809.67 Daily Average Ambient Temp. (deg. R): 809.67 Ideal Gas Constant R (psia cuft / (lb-mol-deg R)): 10.7 Liquid Bulk Temperature (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Total Solar Insulation Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor: 0.00 0.00 Vapor Pressure Range (psia): 0.00 0.00 Daily Vapor Pressure Range (psia): 0.03 0.00 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 0.03	
Vapor Space Outage (ft): 5.00 Tank Shell Length (ft): 52.00 Vapor Density 0.00 Vapor Density (lb/cu ft): 0.00 Vapor Density (lb/cu ft): 0.00 Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Daily Average Ambient Temp. (deg. R): 809.67 Daily Average Ambient Temp. (deg. R): 809.67 Liquid Surface Temp. (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Average Ambient Temp. (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Total Solar Insulation Factor (Btu/sqft day): Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor 0.00 Vapor Pressure Range (psia): 0.00 Daily Vapor Temperature (psia): 0.03 Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liqui	
Tank Shell Length (ft): 52.00 Vapor Density 0.00 Vapor Density (lb/cu ft): 0.00 Vapor Molecular Weight (lb/lb-mole): 105.00 Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg. R): 809.67 Daily Avg. Laquid Surface Temp. (deg. R): 809.67 Daily Avg. Laquid Surface Temp. (deg. R): 809.67 Liquid Bluk Temperature (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 10.7 Liquid Bluk Temperature (deg. R): 809.67 Tank Paint Solar Insulation 7 Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor 0.00 Vapor Pressure Range (psia): 0.00 Daily Vapor Temperature (psia): 0.00 Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Surface Temperatu	
Vapor Density Vapor Density (lb/cu ft): 0.00 Vapor Molecular Weight (lb/lb-mole): 105.00 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 0.03 Daily Average Ambient Temp. (deg. R): 809.67 Daily Average Ambient Temp. (deg. R): 809.67 Daily Average Ambient Temp. (deg. R): 809.67 Taik Average Ambient Temp. (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Total Solar Insulation Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor Vapor Space Expansion Factor: 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Breather Vent Press. Setting Range(psia): 0.00 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Ambient Temp. Range (deg. R): 29.83 Vented Vapor Saturation Factor Vented Vapor Saturation Factor Vented Vapor Saturation Factor Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): 0.03	
Vapor Density (lb/cu ft): 0.00 Vapor Molecular Weight (lb/lb-mole): 105.00 Vapor Pressure at Daily Average Liquid 105.00 Surface Temperature (psia): 0.03 Daily Average Ambient Temp. (deg. R): 809.67 Daily Average Ambient Temp. (deg. F): 60.81 Ideal Gas Constant R 107.7 (psia cuft / (lb-mol-deg R)): 809.67 Liquid Bulk Temperature (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Yotal Solar Insulation 809.67 Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor: 0.00 Vapor Pressure at Daily Average Liquid 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67	Length (ft): 52.0000
Vapor Molecular Weight (lb/lb-mole): 105.00 Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Daily Average Ambient Temp. (deg. R): 809.67 Daily Average Ambient Temp. (deg. F): 60.81 Ideal Gas Constant R (psia cuft / (lb-mol-deg R)): 10.7 Liquid Bulk Temperature (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Total Solar Insulation 809.67 Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor: 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Pressure Range (psia): 0.00 Daily Vapor Pressure Range (psia): 0.00 Vapor Pressure at Daily Average Liquid 3urface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 0.03 0.03 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 <td>у</td>	у
Vapor Pressure at Daily Åverage Liquid Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg. R): 809.67 Daily Avg. Liquid Surface Temp. (deg. R): 60.81 Ideal Gas Constant R (psia cuff / (lb-mol-deg R)): 10.7 Liquid Bulk Temperature (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Average Ambient Temp. (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Total Solar Insulation 50.60 Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Pressure Range (psia): 0.00 Surface Temperature Range (psia): 0.03 Vapor Pressure at Daily Maverage Liquid Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 0.03 Surface Temperature (psia): 0.03 0.03 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67 809.67	sity (lb/cu ft): 0.0004
Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg. R): 809.67 Daily Average Ambient Temp. (deg. F): 60.81 Ideal Gas Constant R 10.7 (psia cuff / (b-mol-deg R)): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Average Ambient Temp. (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Total Solar Insulation 809.67 Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor 0.00 Vapor Temperature Range (deg. R): 0.00 Daily Vapor Temperature Range (psia): 0.00 Daily Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67	cular Weight (lb/lb-mole): 105.0000
Daily Avg. Liquid Surface Temp. (deg. R): 809.67 Daily Average Ambient Temp. (deg. F): 60.81 Ideal Gas Constant R (psia cuft / (lb-mol-deg R)): 10.7 Liquid Bulk Temperature (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Total Solar Insulation 809.67 Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Temssure Range (psia): 0.03 Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily May. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Ma	sure at Daily Average Liquid
Daily Average Ambient Temp. (deg. F): 60.81 Ideal Gas Constant R (psia cuft / (lb-mol-deg R)): 10.7 Liquid Bulk Temperature (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Total Solar Insulation 809.67 Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor 0.00 Daily Total Solar Insulation 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Temperature Range (psia): 0.00 Breather Vent Press. Setting Range(psia): 0.00 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 0.967 Surface Temperature (psia): 0.03 0.967 Daily Avg. Liquid Surface Temp. (deg R): 809.67 0.918 Daily Avg. Liquid Surface Temp. (deg R): 809.67 0.918 Daily Max. Liquid Surface Temp. (deg R): 809.67 0.918 Daily Max. Liquid Surface Temp. (deg R): 809.67 0.93 Daily Max. Liquid Surface Temp. (deg R):	Temperature (psia): 0.0347
Daily Average Ambient Temp. (deg. F): 60.81 Ideal Gas Constant R (psia cuft / (lb-mol-deg R)): 10.7 Liquid Bulk Temperature (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Total Solar Insulation 809.67 Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor 0.00 Daily Total Solar Insulation 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Temperature Range (psia): 0.00 Breather Vent Press. Setting Range(psia): 0.00 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 0.967 Surface Temperature (psia): 0.03 0.967 Daily Avg. Liquid Surface Temp. (deg R): 809.67 0.918 Daily Avg. Liquid Surface Temp. (deg R): 809.67 0.918 Daily Max. Liquid Surface Temp. (deg R): 809.67 0.918 Daily Max. Liquid Surface Temp. (deg R): 809.67 0.93 Daily Max. Liquid Surface Temp. (deg R):	Liquid Surface Temp. (deg. R): 809.6700
Ideal Gas Constant R 10.7 Liquid Bulk Temperature (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Total Solar Insulation 7 Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor 0.00 Daily Vapor Temperature (Ag. R): 0.00 Daily Vapor Temseure ange (deg. R): 0.00 Daily Vapor Temseure Range (psia): 0.00 Breather Vent Press. Setting Range(psia): 0.00 Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Surget the Surface Temp. (deg R): 809.67 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Ambient Temp. Range (deg. R): 29.83	
(psia cuft / (lb-mol-deg R)): 10.7 Liquid Bulk Temperature (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Total Solar Insulation 1,810.00 Vapor Space Expansion Factor 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Temssure Range (psia): 0.00 Breather Vent Press. Setting Range(psia): 0.00 Vapor Pressure at Daily Average Liquid 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 <t< td=""><td></td></t<>	
Liquid Bulk Temperature (deg. R): 809.67 Tank Paint Solar Absorptance (Shell): 0.60 Daily Total Solar Insultation 0.60 Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor 0.00 Vapor Space Expansion Factor: 0.00 Daily Total Solar Insultation 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Pressure Range (psia): 0.00 Breather Vent Press. Setting Range(psia): 0.00 Vapor Pressure at Daily Average Liquid 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 80	
Tank Paint Solar Absorptance (Shell): 0.60 Daily Total Solar Insulation 1,810.00 Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Temssure Range (psia): 0.00 Breather Vent Press. Setting Range(psia): 0.00 Vapor Space Expansion Factor: 0.00 Daily Vapor Temperature (psia): 0.00 Wapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Ambient Temp. Range (deg. R): 29.83 Vented Vapor Saturation Factor 29.83 Vapor Pressure at Daily Average Liquid: 0.99 Vapor Pressure at Daily Average Liquid: 0.03 Surface Temperature (psia): <td< td=""><td></td></td<>	
Daily Total Solar Insulation 1,810.00 Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Pressure Range (psia): 0.00 Daily Vapor Pressure Range (psia): 0.00 Breather Vent Press. Setting Range(psia): 0.00 Vapor Pressure at Daily Average Liquid 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Mr. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Dai	
Factor (Btu/sqft day): 1,810.00 Vapor Space Expansion Factor 0.00 Vapor Space Expansion Factor: 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Pressure Range (psia): 0.00 Breather Vent Press. Setting Range(psia): 0.00 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Average Liquid 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (adg R): 809.67 Daily Max. Liquid Surface Temp. (adg R): 809.67 Daily Max. Liquid Surface Temp. (
Vapor Space Éxpansion Factor: 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Pressure Range (psia): 0.00 Breather Vent Press. Setting Range(psia): 0.00 Vapor Pressure at Daily Average Liquid 0.00 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Vapor Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. Range (deg. R): 29.83 Vented Vapor Saturation Factor 0.99 Vapor Pressure at Daily Average Liquid: 0.03 Surface Tem	
Vapor Space Expansion Factor: 0.00 Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Pressure Range (psia): 0.00 Breather Vent Press. Setting Range(psia): 0.00 Vapor Pressure at Daily Average Liquid 0.00 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Vapor Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Da	
Daily Vapor Temperature Range (deg. R): 0.00 Daily Vapor Tessure Range (psia): 0.00 Breather Vent Press. Setting Range(psia): 0.00 Vapor Pressure at Daily Average Liquid 0.00 Vapor Pressure at Daily Average Liquid 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 0.03 Daily Min. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. Range (deg. R): 29.83 Vented Vapor Saturation Factor 99 Vapor Pressure at Daily Average Liquid: 0.03 Surface Temperature (psia): 0.03	
Daily Vapor Pressure Range (psia): 0.00 Breather Vent Press. Setting Range(psia): 0.00 Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 29.83 Vented Vapor Saturation Factor: 0.99 Vapor Pressure at Daily Average Liquid: 0.03 Surface Temperature (psia): 0.03	
Breather Vent Press. Setting Range(psia): 0.00 Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 29.83 Vented Vapor Saturation Factor 9.98 Vapor Pressure at Daily Average Liquid: 0.03 Surface Temperature (psia): 0.03	
Vapor Pressure at Daily Average Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Arabient Temp. Range (deg. R): 29.83 Vented Vapor Saturation Factor 29.83 Vapor Pressure at Daily Average Liquid: 0.99 Vapor Pressure at Daily Average Liquid: 0.03	
Surface Temperature (psia): 0.03 Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 29.83 Vented Vapor Saturation Factor: 0.99 Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Outed Vapor Saturation Factor: 0.99 Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	ent Press. Setting Range(psia): 0.0000
Vapor Pressure at Daily Minimum Liquid 0.03 Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Motiont Temp. Range (deg. R): 29.83 Vented Vapor Saturation Factor 0.99 Vapor Pressure at Daily Average Liquid: 0.03 Surface Temperature (psia): 0.03	sure at Daily Average Liquid
Surface Temperature (psia): 0.03 Vapor Pressure at Daily Maximum Liquid 0.03 Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Ambient Temp. Range (deg. R): 29.83 Vented Vapor Saturation Factor 0.99 Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	Temperature (psia): 0.0347
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Min. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Ambient Temp. Range (deg. R): 29.83 Vented Vapor Saturation Factor 0.99 Vapor Pressure at Daily Average Liquid: 0.03 Surface Temperature (psia): 0.03	sure at Daily Minimum Liquid
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Min. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Ambient Temp. Range (deg. R): 29.83 Vented Vapor Saturation Factor 0.99 Vapor Pressure at Daily Average Liquid: 0.03 Surface Temperature (psia): 0.03	Temperature (psia): 0.0347
Surface Temperature (psia): 0.03 Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Min. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Ambient Temp. Range (deg. R): 29.83 Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Surface Temperature (psia): 0.03	
Daily Avg. Liquid Surface Temp. (deg R): 809.67 Daily Min. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Ambient Temp. Range (deg. R): 29.83 Vented Vapor Saturation Factor 99 Vapor Pressure at Daily Average Liquid: 0.99 Surface Temperature (psia): 0.03	
Daily Min. Liquid Surface Temp. (deg R): 809.67 Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Ambient Temp. Range (deg. R): 29.83 Vented Vapor Saturation Factor 29.93 Vapor Pressure at Daily Average Liquid: 0.99 Surface Temperature (psia): 0.03	
Daily Max. Liquid Surface Temp. (deg R): 809.67 Daily Ambient Temp. Range (deg. R): 29.83 Vented Vapor Saturation Factor 90.98 Vented Vapor Saturation Factor: 0.99 Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	
Dailý Ambient Temp. Range (deg. R): 29.83 Vented Vapor Saturation Factor 0.99 Vapor Pressure at Daily Average Liquid: 0.03 Surface Temperature (psia): 0.03	
Vented Vapor Saturation Factor: 0.99 Vapor Pressure at Daily Average Liquid: 5 Surface Temperature (psia): 0.03	
Vented Vapor Saturation Factor: 0.99 Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): 0.03	
Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): 0.03	
Surface Temperature (psia): 0.03	
Vapor Space Outage (ii). 5.00	
	.e Odlage (il). 5.000
Madving Leases (lb)	
Vapor Pressure at Daily Average Liquid	
Annual Turnovers: 173.53	novers: 173.5358
Turnover Factor: 0.33	actor: 0.3395
Tank Diameter (ft): 10.00	eter (ft): 10.0000
Total Losses (lb): 115.09	

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Asphalt Cement	115.10	0.00	115.10

Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

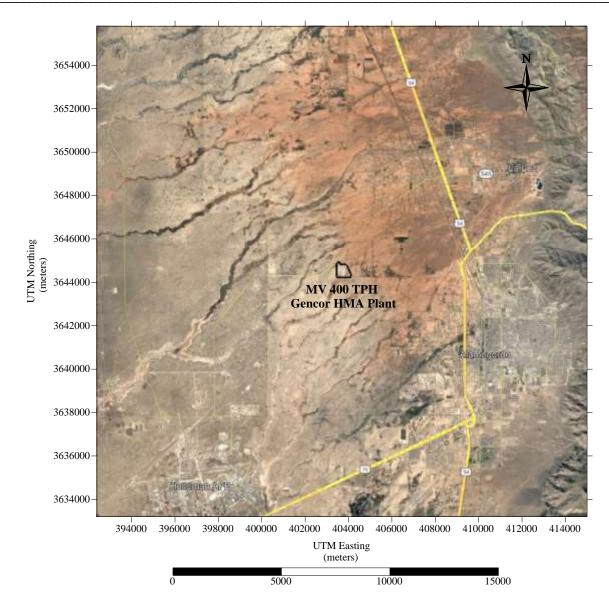


Figure 8-1: Location of MV 400 TPH Gencor HMA Plant and Surrounding Area

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

□ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. X A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. X A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. X A copy of the property tax record (20.2.72.203.B NMAC).
- 4. X A sample of the letters sent to the owners of record.
- 5. X A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. X A sample of the public notice posted and a verification of the local postings.
- 7. X A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. X A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. X A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. X A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. X A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

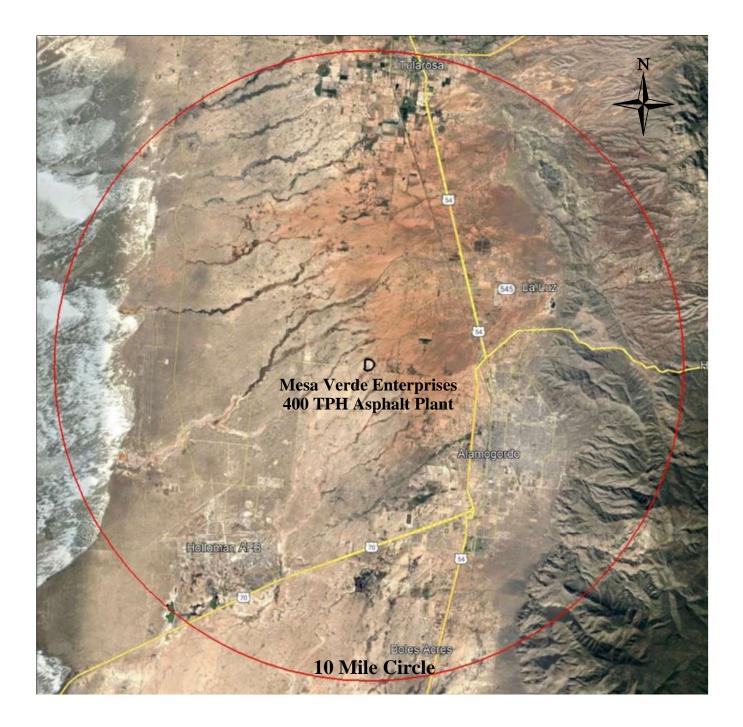


Figure 9-1: Ten-Mile Radius around Site

Government List within 10 Miles

Otero County	Robyn Holmes, County Clerk	1104 N White Sands Blvd, Suite C	Alamogordo	NM	88310
City of Alamogordo	Rachael Hughs, City Clerk	1376 E Ninth Street	Alamogordo	NM	88310

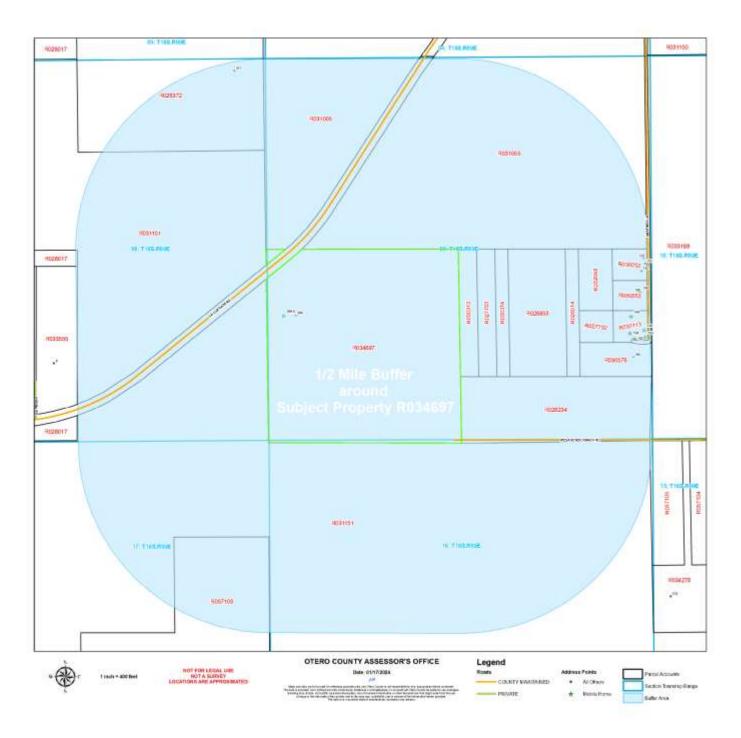


Figure 9-2: Half Mile Radius around Site

Acct_No	OWNNAME	MAILADD	MCITY	STATE	ZIP
R033169	AFW LTD CO	PO BOX 40	MESILLA	NM	88046
R031005	BLM USA	1800 MARQUESS ST	LAS CRUCES	NM	88005
R030576	BOSSART, PAUL & TRACIE	1810 S REDWING CIR	WASILLA	AK	99654
R027792	BYRON & BYRON & MORENO ET AL	144 HEATHER LANE	ALAMOGORDO	NM	88310
R030713	BYRON & BYRON & MORENO ET AL	144 HEATHER LANE	ALAMOGORDO	NM	88310
R026372	FOREE, ROBERT E	PO BOX 533	LA LUZ	NM	88337
R032048	GUINAN & SMITH	5186 HUNTER CHASE RD	LAS CRUCES	NM	88011
R030553	HIGGINS, CALVIN S & LYNNAE	136 HEATHER LANE	ALAMOGORDO	NM	88310
R026234	MESA VERDE RANCH HOLDINGS, LLC	PO BOX 907	ALAMOGORDO	NM	88311
R026514	MESA VERDE RANCH HOLDINGS, LLC	PO BOX 907	ALAMOGORDO	NM	88311
R026853	MESA VERDE RANCH HOLDINGS, LLC	PO BOX 907	ALAMOGORDO	NM	88311
R027783	MESA VERDE RANCH HOLDINGS, LLC	PO BOX 907	ALAMOGORDO	NM	88311
R030313	MESA VERDE RANCH HOLDINGS, LLC	PO BOX 907	ALAMOGORDO	NM	88311
R030314	MESA VERDE RANCH HOLDINGS, LLC	PO BOX 907	ALAMOGORDO	NM	88311
R026017	MESA VERDE RANCH LLP	PO BOX 907	ALAMOGORDO	NM	88311
R057103	MESA VERDE RANCH LLP	PO BOX 907	ALAMOGORDO	NM	88311
R057105	MESA VERDE RANCH LLP	PO BOX 907	ALAMOGORDO	NM	88311
R030252	NUNN & NUNN	151 GRAVEL PIT RD	LA LUZ	NM	88337
R033555	RABON, TIMOTHY A & DEBORAH M	9 PIEDRA	ALAMOGORDO	NM	88310
R031151	STATE OF NEW MEXICO	PO BOX 6850	SANTA FE	NM	87502

NOTICE

Mesa Verde Enterprises, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the construction of its hot mix asphalt facility. The expected date of application submittal to the Air Quality Bureau is January 19, 2024.

The exact location for the proposed facility known as, MV 400 TPH Gencor HMA Plant, at address 396 La Luz Gate Rd. Alamogordo, NM or coordinates latitude 32.93435 decimal degree North and longitude -106.03041 decimal degree West. The approximate location of this facility is 5.2 miles northwest of Alamogordo, NM in Otero county.

The proposed construction consists of a 400 ton per hour (TPH) HMA plant that presently operates under GCP-3-5880, a 300 TPH RAP crushing and screening plant, and 300 TPH RAP screening plant.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM 10	23.2 pph	24.2 tpy
PM 2.5	12.9 pph	15.3tpy
Sulfur Dioxide (SO ₂)	23.9 pph	27.7 tpy
Nitrogen Oxides (NO _x)	48.6 pph	79.8 tpy
Carbon Monoxide (CO)	66.8 pph	87.8 tpy
Volatile Organic Compounds (VOC)	27.3 pph	32.5 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	4.3 pph	4.7 tpy
Toxic Air Pollutant (TAP)	5.1 pph	5.7 tpy
Green House Gas Emissions as Total CO ₂ e	n/a	20384 tpy

The standard operating schedule of the facility will be daylight hours, seven days a week, and a maximum of 43.2 weeks per year for the months of February through November. The maximum operating schedule will be 24 hours per day, seven days a week, and a maximum of 43.2 weeks per year for the months of February through November.

The owner and/or operator of the Facility is: Mesa Verde Enterprises, Inc., P.O. Box 907, Alamogordo, New Mexico 88311-0907, Phone: (575) 437-2995

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its

preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Atención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

General Posting of Notices – Certification

I, <u>Allister G Gunn Jr</u>, the undersigned, certify that on **11 January 2024**, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the La Luz and Alamogordo area of **Otero** County, State of New Mexico:

- 1. Mesa Verde Enterprises entrance, 396 La Luz Gate Rd, Alamogordo, NM 88310
- 2. La Luz Post Office, 12 Main St, La Luz, NM 88337
- 3. Alamogordo City Hall, 1376 E. 9th St, Alamogordo, NM 88310
- 4. Otero County Administration, 1101 New York Ave, Alamogordo, NM 88310

Signed this <u>11th</u> day of <u>January</u>, 2024.

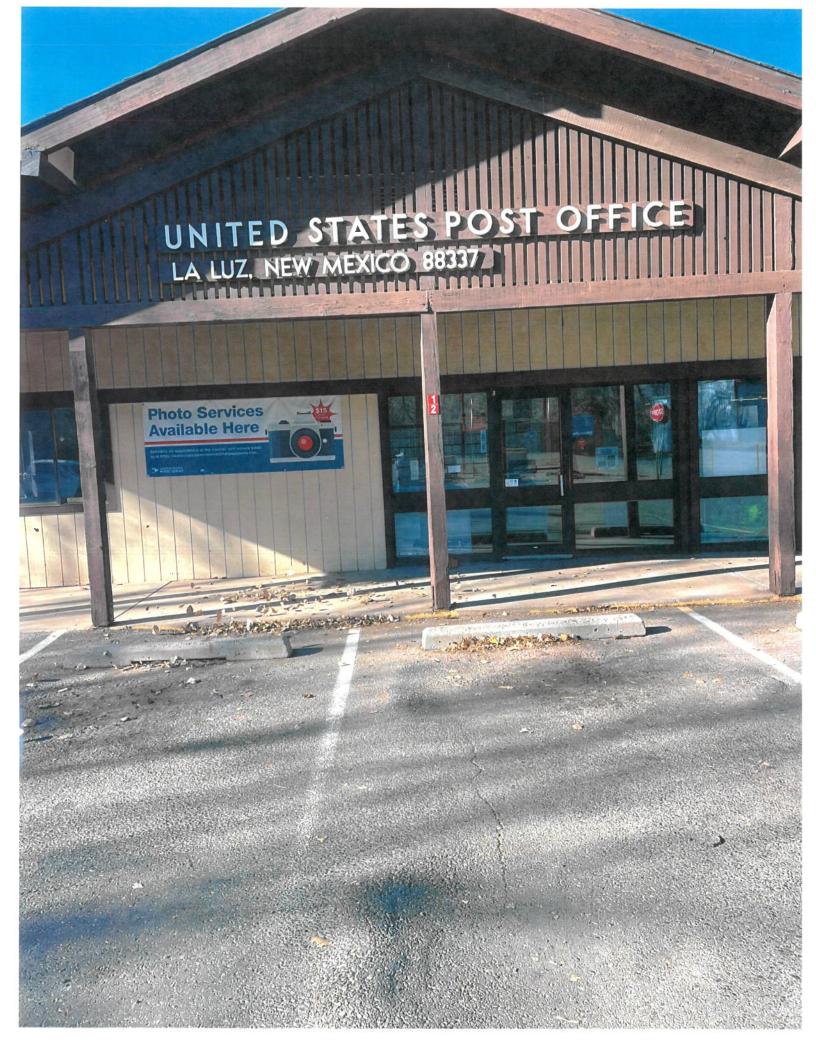
illister & Aunaf

Signature

1/11/24

Date

<u>ALLISTER G GUNN JR</u>


Printed Name

Compliance Officer

<u>Title</u>

45th 4nnu

tive

rdo

eakfast

nior Center

ico, Avenue

RSVP Requested

75-430-3313

Ve

today.

acalamo@gmail.com

NOTICE

Mesa Verde Enterprises, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the construction of its hot mix asphalt facility. The expected date of application submittal to the Air Quality Bureau is January 19, 2024.

The exact location for the proposed facility known as, MV 400 TPH Gencor HMA Plant, at address 396 La Luz Gate Rd. Alamogordo, NM or coordinates latitude 32.93435 decimal degree North and longitude -106.03041 decimal degree West. The approximate location of this facility is 5.2 miles northwest of Alamogordo, NM in Otero county.

The proposed construction consists of a 400 ton per hour (TPH) HMA plant that presently operates under GCP-3-5880, a 300 TPH RAP crushing and screening plant, and 300 TPH RAP screening plant.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year	
PM 10	23.2 pph	24.2 tpy	NEW MEXI
PM 2.5	12.9 pph	15.3tpy	ALUZ NEW MEXIC
Sulfur Dioxide (SO ₂)	23.9 pph	27.7 tpy	151
Nitrogen Oxides (NOx) Carbon Monoxide (CO)	48.6 pph	79.8 tpy	1 1 505 1 1 NY
Volatile Organic Compounds (VOC)	66.8 pph	87.8 tpy	1 1000 1 1 11
Total sum of all Hazardous Air Pollutants (HAPs)	27.3 pph	32.5 tpy	11
Toxic Air Pollutant (TAP)	4.3 pph	4.7 tpy	1
Green House Gas Emissions as Total CO2e	5.1 pph	5.7 tpy	USPS
de rotal core	n/a	20384 tpy	

The standard operating schedule of the facility will be daylight hours, seven days a week, and a maximum of 43.2 weeks per year for the months of February through November. The maximum operating schedule will be 24 hours per day, seven days a week, and a maximum of 43.2 weeks per year for the months of February through November.

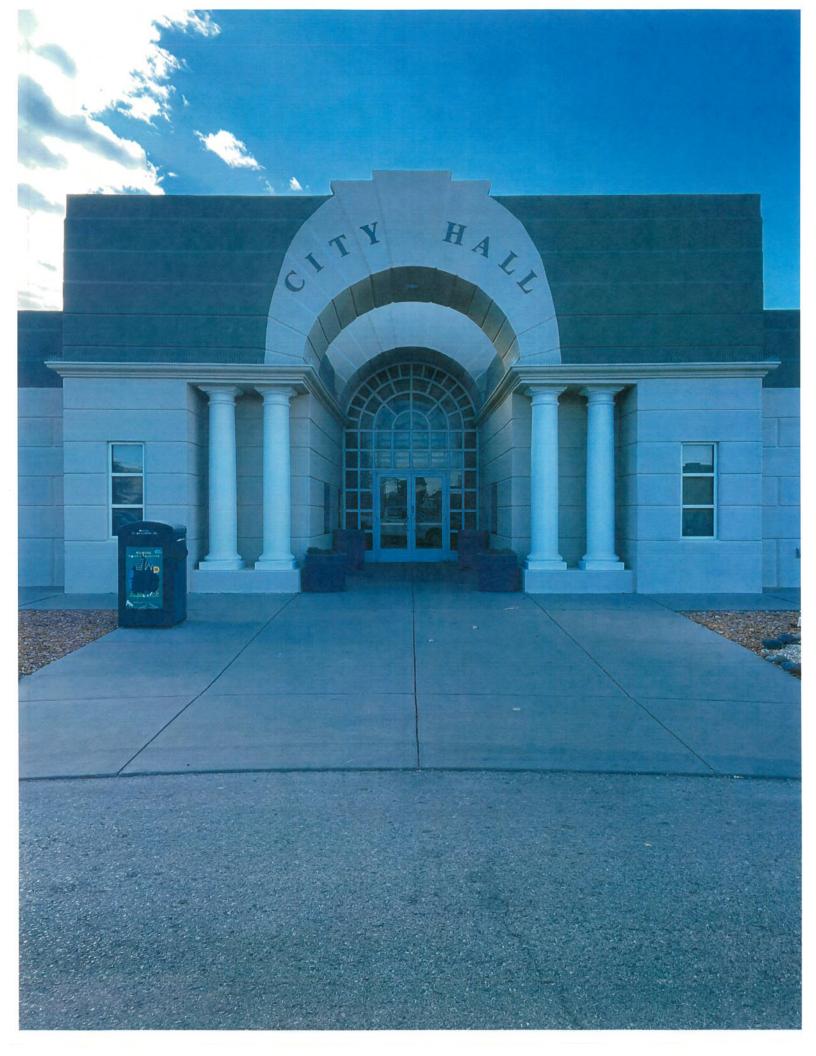
The owner and/or operator of the Facility is: Mesa Verde Enterprises, Inc., P.O. Box 907, Alamogordo, New Mexico 88311-0907, Phone: (575) 437-2995

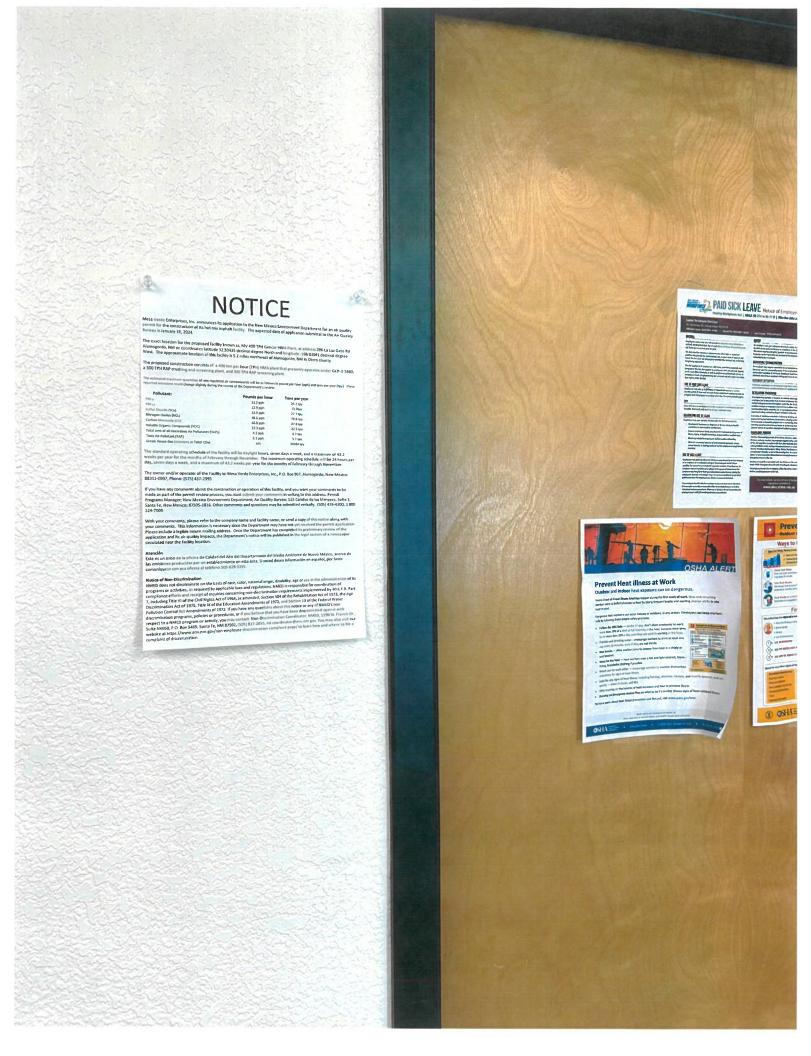
If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

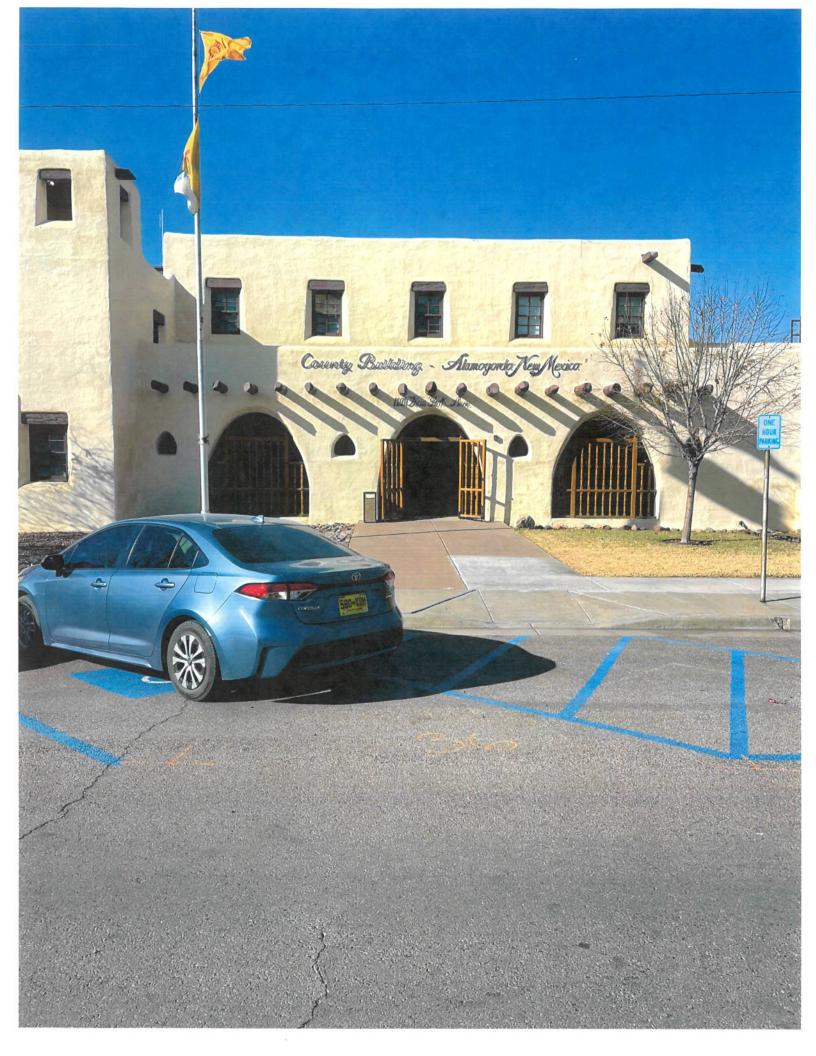
With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

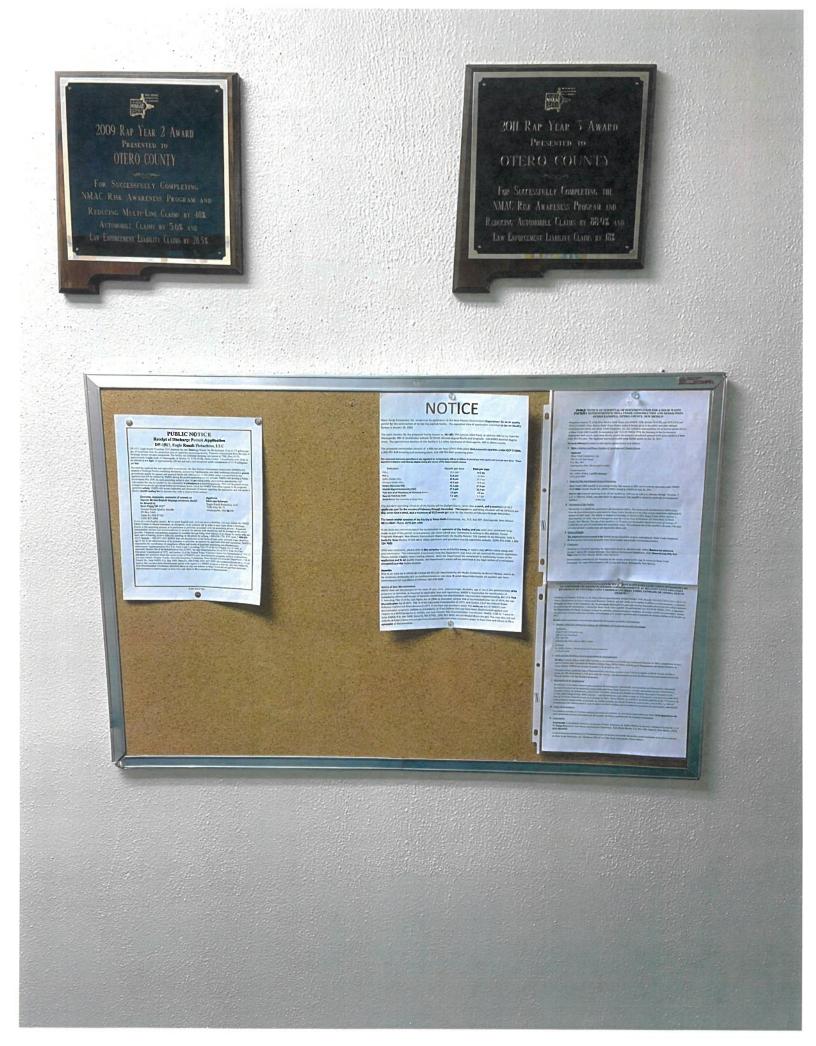
Atención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea Información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.


Notice of Non-Discrimination


NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's nondiscrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.




Free Kittens Two—3 month old ki Brother-golden color Sister-very light golde

st \$15 per person proceeds to do Senior Center Psalm 33:72

NOTICE OF AIR QUALITY PERMIT APPLICATION

Mesa Verde Enterprises, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the construction of its hot mix asphalt facility. The expected date of application submittal to the Air Quality Bureau is January 19, 2023.

The exact location for the proposed facility known as, MV 400 TPH Gencor HMA Plant, at address 396 La Luz Gate Rd. Alamogordo, NM or coordinates latitude 32.93435 decimal degree North and longitude - 106.03041 decimal degree West. The approximate location of this facility is 5.2 miles northwest of Alamogordo, NM in Otero county.

The proposed construction consists of a 400 ton per hour (TPH) HMA plant that presently operates under GCP-3-5880, a 300 TPH RAP crushing and screening plant, and 300 TPH RAP screening plant.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM 10	23.2 pph	24.2 tpy
PM 2.5	12.9 pph	15.3tpy
Sulfur Dioxide (SO ₂)	23.9 pph	27.7 tpy
Nitrogen Oxides (NO _x)	48.6 pph	79.8 tpy
Carbon Monoxide (CO)	66.8 pph	87.8 tpy
Volatile Organic Compounds (VOC)	27.3 pph	32.5 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	4.3 pph	4.7 tpy
Toxic Air Pollutant (TAP)	5.1 pph	5.7 tpy
Green House Gas Emissions as Total CO ₂ e	n/a	20384 tpy

The standard operating schedule of the facility will be daylight hours, seven days a week, and a maximum of 43.2 weeks per year for the months of February through November. The maximum operating schedule will be 24 hours per day, seven days a week, and a maximum of 43.2 weeks per year for the months of February through November.

The owner and/or operator of the Facility is: Mesa Verde Enterprises, Inc., P.O. Box 907, Alamogordo, New Mexico 88311-0907, Phone: (575) 437-2995

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Atención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Alamogordo Daily News

AFFIDAVIT OF PUBLICATION

Ad No.

GCI1130886

MONTROSE AIR QUALITY SERVICE 2500 COMANCHE RD ND BLDG G ALBUQUERQUE, NM 87107 ATTN PAUL WADE

I, being duly sworn, on my oath say that I am the Legal Coordinator of the Alamogordo Daily News, a newspaper of daily circulation, published and printed in the English language at the City of Alamogordo, Otero County, and State of New Mexico. That the Alamogordo Daily News has been regularly published and issued for more than nine months prior to the date of the first publication hereinafter mentioned.

1/14/2024

Legal Clerk

Subscribed and sworn before me this 14th day of January, 2024

of XM, County of Otero NOTARY PUBLIC State of MM.

My Commission Expires

Ad#: GCI1130886 Ad Cost: \$268.72 P O : MV GENCOR PUBLIC NOTICE # of Affidavits : 1 NANCY HEYRMAN Notary Public State of Wisconsin

NOTICE OF AIR QUALITY PERMIT APPLICATION

Mesa Verde Enterprises, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the construction of its hot mix asphalt facility. The expected date of application submittal to the Air Quality Bureau is January 19, 2023.

The exact location for the proposed facility known as, MV 400 TPH Gencor HMA Plant, at address 396 La Luz Gate Rd. Alamogordo, NM or coordinates latitude 32.93435 decimal degree North and longitude -106.03041 decimal degree West. The approximate location of this facility is 5.2 miles northwest of Alamogordo, NM in Otero county.

The proposed construction consists of a 400 ton per hour (TPH) HMA plant that presently operates under GCP-3-5880, a 300 TPH RAP crushing and screening plant, and 300 TPH RAP screening plant.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Poliutant:	Pounds per hour	Tons per year
PM 10	23.2 pph	24.2 tpy
PM 2.5	12.9 pph	15.3 tpy
Sulfur Dioxide (SO ₂)	23.9 pph	27.7 tpy
Nitrogen Oxides (NO,)	48.6 pph	79.8 tpy
Carbon Monoxide (CO)	66.8 pph	87.8 tpy
Volatile Organic Compounds (VOC)	27.3 pph	32.5 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	4.3 pph	4.7 tpy
Toxic Air Pollutant (TAP)	5.1 pph	5.7 tpy
Green House Gas Emissions as Total CO.e	n/a	20384 tpy

The standard operating schedule of the facility will be daylight hours, seven days a week, and a maximum of 43.2 weeks per year for the months of February through November. The maximum operating schedule will be 24 hours per day, seven days a week, and a maximum of 43.2 weeks per year for the months of February through November.

The owner and/or operator of the Facility is: Mesa Verde Enterprises, Inc., P.O. Box 907, Alamogordo, New Mexico 88311-0907, Phone: (575) 437-2995

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Atención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https:// www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

SCOREBOARD

BET**MGM**

New BetMGM customers can sign up today and get a Bet \$5, Get \$158 using bonus code USATSPORTS. Just download the BetMGM app or visit betmgm.com, sign up and deposit at least \$5. Place a wager in the amount of at least \$5 at standard odds price. Once you have placed a bet, you will receive \$158 in Bonus Bets regardless of the outcome of your wager! Just make sure you use bonus code **USATSPORTS** when you sign up. Bet Now! Terms and conditions apply. Must be 21+.

ODDS SPONSORED BY BETMGM.COM

Odds available as of print deadline. NFL				
AVORITE BUFFALO DALLAS DETROIT	Su OPEN 9½ 7 3	nday O/U (37½) (49½) (51½)	UNDERDOG Pittsburgh Green Bay LA Rams	

E

B

Ē

FAVORITE OPEN O/U UNDERDOG Philadelphia 21/2 (44) TAMPA BAY

Gannett may earn revenue from Gannett may earn revenue from sports betting operators for audience referrals to betting services. Sports betting operators have no influence over nor are any such revenues in any way dependent on or linked to the newsrooms or news coverage. Terms apply, see operator site for Terms and Conditions, Gambling Terms and Conditions. Gambling problem? Call 1-800-GAMBLER CO, DC, IL, IN, KS, KY, LA, MD, MS, NJ, OH, PA, TN, VA, WV, WY. Call 877-8-HOPENY or text HOPENY (467369) (NY) Call 1-800-327-5050 (MA). 21+ to wager. Please Gamble Responsibly. Call 1-800-NEXT-STEP (AZ), 1-800-522-4700 (NV), 1-800-BETS-OFF (IA), 1-800-270-7117 for confidential help (MI), 1-800-981-0023 (PR). In partnership with Kansas Crossing Casino and Hotel. Visit Casino and Hotel. Visit BetMGM.com for Terms & Conditions. US promotional offers not available in DC. Nevada. New York or Ontario.

All times Eastern

NFL

Plavoff Glance Wild-card Playoffs

Saturday, Jan. 13 Cleveland at Houston Miami at Kansas City

Sunday, Jan. 14 Sunday, Jan. 14 Pittsburgh at Buffalo, 1 p.m. (CBS) Green Bay at Dallas, 4:30 p.m. (FOX) L.A. Rams at Detroit, 8 p (NBC/Peacock)

p.m Monday, Jan. 15

Philadelphia at Tampa Bay, 8:15 p.m. (ESPN/ABC)

2023 NFL All-Pro Team Roster The Associated Press 2023 NFL All-Pro team selected by a national panel of 50 media members

OFFENSE Quarterback - Lamar Jackson, Baltimore

Running Back - Christian McCaffrey, San Francisco Fullback - Kyle Juszczyk, San Francisco Tight End - George Kittle, San Francisco Wide Receivers - Tyreek Hill, Miami; CeeDee Lamb, Dallas; Amon-Ra St. Brown, Detroit Left Tackle - Trent Williams, San Francisco Left Guard - Joe Thuney, Kansas City Center - Jason Kelce, Philadelphia Right Guard - Zack Martin, Dallas Right Tackle - Penei Sewell, Detroit DEFENSE Edge Rushers - Myles Garrett, Cleveland; T.J. Watt, Pittsburgh Interior Linemen - Aaron Donald, Los Angeles Rams; Chris Jones, Kansas City Linebackers - Fred Warner, San Francisco; Roquan Smith, Baltimore; Quincy Williams; New York Jets Slot cornerback - DaRon Bland, Dallas; Sauce Gardner, New York Jets Slot cornerback - Trent McDuffie, Kansas City Safeties - Kyle Hamilton, Baltimore; Antoine Winfield Jr., Tampa Bay SPECIAL TEAMS Placekicker - Brandon Aubrey, Dallas Punter - AJ Cole, Las Vegas Kick Returner - Kassias Nixon, Green Bay Punt, Returner - Rashid Shaheed, New
Orleans Special Teamer – Miles Killebrew,
Pittsburgh Long Snapper – Ross Matiscik,
Jacksonville
SECOND TEAM OFFENSE
Quarterback – Dak Prescott, Dallas
Running Back – Kyren Williams, Los Angeles Rams Fullback – Patrick Ricard, Baltimore Tight End – Sam LaPorta, Detroit Wide Receivers – A.J. Brown, Philadelphia; Puka Nacua, Los Angeles Rams; *Brandon Aiyuk, San Francisco; *Mike Evans; Tampa Bay Left Tackle – Tyron Smith, Dallas Left Guard – Tyler Smith, Dallas Center – Frank Ragnow, Detroit Right Guard – Chris Lidstrom, Atlanta Right Tackle – Lane Johnson, Philadelphia DEFENSE
Edge Rushers – Micah Parsons, Dallas; Maxx Crosby, Las Vegas
Interior Linemen – Justin Madubuike, Baltimore; Dexter Lawrence, New York Giants
Linebackers – Demario Davis, New Orleans; Bobby Wagner, Seattle; Patrick Queen, Baltimore
Cornerbacks – Jaylon Johnson, Chicago; Charvarius Ward, San Francisco Slot cornerback – Taron Johnson, Buffalo Safeties – Jessie Bates III, Atlanta; Justin Simmons, Denver

SPECIAL TEAMS Placekicker – Jake Elliott, Philadelphia Punter – Bryan Anger, Dallas Kick Returner – Marvin Mims, Denver Punt Returner – Derius Davis, Los Angeles Chargers

Special Teamer - Jalen Reeves-Maybin, Detroit Long Snapper – Andrew DePaola, Minnesota *-tied for second-team spot

NBA

EASTERN CONFERENCE				
Atla	antic Di	vision	1	
	Ŵ	L	Pct	GB
Boston	29	9	.763	-
Philadelphia	24	13	.649	41⁄2
New York	22	16	.579	7
Brooklyn	16	22	.421	13
Toronto	15	24	.385	14½
Southeast Division				
	W	L	Pct	GB
Miami	22	16	.579	-
Orlando	21	17	.553	1

Atlanta Charlotte	15 8 6	22 28	.405	6½ 13
Washington	6	31	.162	15½
Cent	ral Div			
NPL 1 1	W	L	Pct	GB
Milwaukee Indiana	26 23	12 15	.684 .605	_
Cleveland	23	15 15	.605	3 3½
Chicago	18	22	.395	372 9
Detroit	3	36	.430	231/2
	•			2372
WESTER				
South				
Dilli	W	L	Pct	GB
Dallas New Orleans	23 23	16 16	.590	_
Houston	23 19	18	.590 .514	3
Memphis	14	24	.368	81/2
San Antonio	7	30	.189	15
North				
North	West L	JIVISIO	n Pct	GB
Minnesota	27	11	.711	_
Oklahoma City	26	11	.703	1/2
Denver	27	13	.675	1
Utah	20	20	.500	8
Portland	10	28	.263	17
Paci	fic Div	ision		
	W	L	Pct	GB
L.A. Clippers	25	13	.658	-
Sacramento	23	15	.605	2
Phoenix	20	18	.526	5
L.A. Lakers	19	20 20	.487	6½ 7
Golden State	18	20	.474	(
Friday's Games				

Vancouver

Vegas

Indiana 126. Atlanta 108 Houston 112, Detroit 110 Philadelphia 112, Sacramento 93 L.A. Clippers 128, Memphis 119 Minnesota 116, Portland 93 Golden State 140, Chicago 131 San Antonio 135. Charlotte 99 Miami 99, Orlando 96 Utah 145, Toronto 113 Denver 125, New Orleans 113 Saturday's Games Houston at Boston Washington at Atlanta Golden State at Milwaukee

New York at Memphis Orlando at Oklahoma City Chicago at San Antonio New Orleans at Dallas L.A. Lakers at Utah Sunday's Games Indiana at Denver, 3:30 p.m.

Charlotte at Miami, 6 p.m. L.A. Clippers at Minnesota, 7 p.m. Sacramento at Milwaukee, 7 p.m. Phoenix at Portland, 9 p.m.

NHL

EASTERN CONFERENCE

A	Itlantic Division		
Boston Florida Toronto Tampa Bay Detroit Montreal Buffalo Ottawa	GP W L OT Pts GF GA 41 24 8 9 57 137 111 41 27 12 2 56 131 102 39 21 10 8 50 143 125 43 21 17 5 47 141 148 41 20 16 5 45 146 139 41 17 18 6 40 115 143 42 18 20 4 40 127 142 71 42 8 20 2 18 141		
Met	ropolitan Division GP W L OT Pts GF GA		
N.Y. Rangers Carolina Philadelphia N.Y. Islanders New Jersey Pittsburgh Washington Columbus	GP W L OT Pts GF GA 40 26 12 54 134 117 41 23 13 5 51 143 125 42 22 14 6 50 124 118 41 19 12 0 48 127 138 39 21 15 3 45 138 140 40 20 15 5 45 124 110 39 21 15 3 45 138 140 40 20 15 5 45 124 110 39 11 6 44 95 121 42 13 20 9 35 126 155		
WESTERN CONFERENCE			
Winnipeg Colorado	Central Division GP W L OT Pts GF GA 41 28 9 4 60 139 95 42 27 12 3 57 155 130		
Dallas Nashville St. Louis Arizona Minnesota Chicago	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

Pacific Division GP W L OT Pts GF GA 42 28 11 3 59 164 110 42 24 13 5 53 135 116 5 38 20 10 8 48 126 97 38 20 10 8 48 126 97 38 22 15 1 45 136 116 41 18 14 9 45 115 118 42 10 29 23 84 173 42 10 29 23 84 173 42 10 29 avia 23 84 173 Los Angeles Edmonton Seattle Calgary Anaheim San Jose NOTE: Two points for a win, one point for overtime loss. Top three teams in each division and two wild cards per conference advance to playoffs. Friday's Games Nashville 6, Dallas 3 Philadelphia 4 Minnesota 3 OT Saturday's Games N.Y. Rangers at Washington San Jose at Ottawa Vancouver at Buffalo New Jersey at Florida Anaheim at Tampa Bay Colorado at Toronto Edmonton at Montreal Los Angeles at Detroit Philadelphia at Winnipeg Pittsburgh at Carolina Seattle at Columbus Arizona at Minnesota Boston at St. Louis Dallas at Chicago N.Y. Islanders at Nashville Calgary at Vegas Sunday's Games Washington at N.Y. Rangers, 1 p.m. Detroit at Toronto, 7 p.m. COLLEGE BASKETBALL Friday's Men's Scores EAST Canisius 67 Siena 63 Dayton 72, Duquesne 62 Niagara 96, Fairfield 72 Quinnipiac 66. Marist 55 Rider 71, Manhattan 58 Robert Morris 91, Fort Wayne 88, OT Villanova 94, DePaul 69 SOUTH Kennesaw St. 78, Florida Gulf Coast 75 North Florida 82, Jacksonville 74 South Florida 81. Rice 73 Stetson 84, Queens (NC) 66 MIDWEST Akron 76, Buffalo 59 Indiana 74, Minnesota 62 Iowa 94, Nebraska 76 Milwaukee 88, Cleveland St. 80 Youngstown St. 81, Wright St. 71 FAR WEST Boise St. 64, Nevada 56 UC Irvine 60. Hawaii 50 Men's AP Top 25 Schedule **Saturday's Games** No. 1 Purdue (14-2) vs. Penn St. (8-7) No. 2 Houston (14-1) at TCU (11-3) No. 3 Kansas (13-1) vs. No. 9 Oklahoma (13-1) No. 5 Tennessee (11-3) at Georgia (11-3) No. 6 Kentucky (12-2) at Texas A&M (9-6) No. 7 North Carolina (11-3) vs. Syracuse (10-4) No. 8 Arizona (12-3) at Washington St. (10-5) No. 11 Duke (12-3) vs. Georgia Tech (8-7) No. 14 Baylor (13-2) vs. Cincinnati (12-3) No. 15 Wisconsin (11-3) vs. Northwestern (11-3) No. 16 Auburn (13-2) vs. LSU (10-5) No. 18 BYU (12-3) at UCF (9-4) No. 19 San Diego St. (14-2) at New Mexico (13-3) No. 20 Utah St. (15-1) at UNLV (8-6) No. 21 Clemson (11-3) vs. Boston College (10-4) No. 22 Creighton (12-4) vs. St. John's

(11-4) No. 25 Texas (12-3) at West Virginia (5-10)

Sunday's Games No. 4 UConn (14-2) vs. Georgetown (8-8), Noon No. 10 Illinois (12-3) vs. Maryland (10-6), 2 p.m No. 13 Memphis (14-2) at Wichita St. (8-7) 1 p.m No. 24 FAU (12-4) vs. UAB (10-5), Noon Friday's Women's Scores EAST Stony Brook 77. Towson 65 SOUTH Coll. of Charleston 60, Drexel 48 Elon 45, Campbell 44 NC A&T 53, William & Mary 51

Northeastern 79, UNC-Wilmington 49 MIDWEST Belmont 84, Evansville 40 Drake 83, Valparaiso 54

Saint Louis 74. Davton 70 FAR WEST Colorado 76. California 61 Oregon 65, Arizona St. 53 Oregon St. 73, Arizona 70, 20T Stanford 66, Utah 64

Women's AP Top 25 Schedule

- Saturday's Games No. 3 Iowa (15-1) vs. No. 14 Indiana (13-1) No. 4 Baylor (14-0) at Iowa St. (10-4) No. 10 Texas (15-1) at No. 12 Kansas St.
- (15-1) No. 13 UConn (12-3) at St. John's (10-7)
- No. 16 Gonzaga (14-2) vs. San Diego (4-11) No. 23 Marquette (14-2) vs. DePaul (9-8) No. 24 West Virginia (13-1) at UCF (9-4) No. 25 UNLV (12-1) at Air Force (8-8)

Sunday's Games No. 2 UCLA (14-0) at No. 9 Southern Cal

- (12-1), 5 p.m. No. 5 Colorado (13-1) vs. No. 8 Stanford (14-1), 2 p.m. No. 7 LSU (16-1) at Auburn (11-5), 3 p.m. No. 11 Virginia Tech (13-2) at No. 21 Florida St (13-4) 1 nm No. 15 Louisville (14-2) vs. Wake Forest (4-12), 2 p.m. No. 17 Ohio St. (12-3) vs. Michigan St.
- (12-3), 4 p.m. No. 18 Notre Dame (11-3) vs. Miami (11-4), Noon
- No. 19 Utah (11-4) vs. California (12-3), 2 p.m. No. 20 North Carolina (11-5) vs. Virginia
- (8-7), 4 p.m. No. 22 Creighton (12-3) vs. Providence (8-9), 2 p.m.

GOLF

Sony Open in Hawaii Friday At Waialae Country Club Honolulu			
Purse: \$8.3 millio	n		
Yardage: 7,044; Par	: 70		
Second Round Lead	ers		
Byeong Hun An67	7-64–131 (-9)		
Austin Eckroat65	5-66-131 (-9)		
Carl Yuan66	6-65-131 (-9)		
Stewart Cink67			
Cameron Davis62			
Ben Griffin			
Stephan Jaeger65-67-132 (-8)			
Chris Kirk66-66-132 (-8)			
Kurt Kitayama70-62–132 (-8)			
Keith Mitchell68-64-132 (-8)			
Taylor Montgomery64			
Grayson Murray69			
Matthieu Pavon66			
Dubai Invitationa	l .		
Friday			
At Dubai Creek			
Dubai, United Arab Emirates			
Purse: \$2.5 million			
Yardage: 7,059; Par: 71			
Second Round Leaders			
Rory McIlroy, Northern Ireland 62-70–132			
Yannik Paul, Germany			

Jeff Winther, Denmark.68-66-134 Tommy Fleetwood, England ...66-69-135 Thriston Lawrence, South Africa Zander Lombard South Africa 67-68-135 Sean Crocker, United States67-70–137 Ewen Ferguson, Scotland69-68–137 Joost Luiten, Netherlands......71-66-137 Adrian Meronk, Poland70-67–137 Adrian Otaegui, Spain......67-70-137

TRANSACTIONS

Friday's Transactions BASEBALL Major League Baseball

American League BALTIMORE ORIOLES – Named Drew French pitching coach, Mitch Plassmeyer Anders development coach, and Grant Anders development coach. TAMPA BAY RAYS – Agreed to terms with RHP Naoyui Uwasawa on a minor league contract

TORONTO BLUE JAYS – Named Matt Hague assistant hitting coach and John Lannan mental performance coach.

National League ATLANTA BRAVES – Agreed to terms with president of baseball operations and general manager Alex Anthopoulos on a contract extension through 2031. LOS ANGELES DODGERS – Agreed to terms with OF Teoscar Hernandez on a

one-year contract. NEW YORK METS – Claimed RHP Max Kranick off waivers from Pittsburgh. Designated C Cooper Hummel for assignment. Agreed to terms with LHP Danny Young on a minor league contract. Agreed to terms with LHP Sean Manaea on a two-year contract. Designated INF Diego Castillo for assignment.

FOOTBALL

National Football League BALTIMORE RAVENS – Designated TE Mark Andrews to return to practice from

injured reserve CLEVELAND BROWNS – Elevated RB John Kelly Jr. and K Riley Patterson from the Practice squad to the active roster. GREEN BAY PACKERS – Signed CB David Long Jr. to the practice squad. Released RB Kenyan Drake from the practice squad. NEW ENGLAND PATRIOTS – Named Jerod

Mayo as head coach.

HOCKEY

National Hockey League CAROLINA HURRICANES – Recalled G Yaniv Perets from Norfolk (AHL). MONTREAL CANADIENTS – Returned LW Emil Heineman to Laval (AHL). NEW YORK RANGERS – Recalled F Anton Blidh from Hartford (AHL). OTTAWA SENATORS – Reassigned G Leevi Merilainen from Allen (ECHL) to Belleville (AHL). PHILADELPHIA FLYERS – Reassigned D Mason Millman to from Lehigh Valley (AHL) to Reading (ECHL). ST. LOUIS BLUES – Reassigned F Jakub Vrana to Springfield (AHL). Activated D Justin Faulk off injured reserve. TAMPA BAY LIGHTNING – Recalled D Max Crozier from Syracuse (AHL). VEGAS GOLDEN KNIGHTS – Returned G Usaiah Saville to Henderson (AHL). WASHINGTON CAPITALS – Assigned G Mitchell Gibson from Hershey (AHL) to South Carolina (ECHL). WINNIPEG JETS – Recalled C Rasmus Kupari from Manitoba (AHL).

SOCCER

Major League Soccer ATLANTA UNITED – Signe Signed Derrick AILANIA UNIED – Signed Derrick Williams through 2025. D.C. UNITED – Signed Fs Jacob Murrell through 2026.

NOTICE OF AIR QUALITY PERMIT APPLICATION

Mesa Verde Enterprises. Inc. announces its application to the New Mexico Environment Department for an air quality permit for the construction of its hot mix asphalt facility. The expected date of application submittal to the Air Quality Bureau is January 19, 2023.

The exact location for the proposed facility known as, MV 400 TPH Gencor HMA Plant, at address 396 La Luz Gate Rd. Alamogordo, NM or coordinates latitude 32.93435 decimal degree North and longitude -106.03041 decimal degree West. The approximate location of this facility is 5.2 miles northwest of Alamogordo, NM in Otero county.

The proposed construction consists of a 400 ton per hour (TPH) HMA plant that presently operates under GCP-3-5880, a 300 TPH RAP

B Fl D M Bu Ot

Green Bay quarterback Jordan Love throws under pressure from Chicago defensive tackle Justin Jones during a game Jan. 7 at Lambeau Field in Green Bay, Wis. WM. GLASHEEN/USA TODAY NETWORK-WISCONSIN/USA TODAY NETWORK

Cowboys

Continued from Page 1

the road.

"Experience is everything," said Dallas receiver CeeDee Lamb, who set club records with an NFLbest 135 catches for 1,749 yards. "I feel like we have a lot of guys that have also been on the team for quite some time and we all went through the same scars and we're not trying to feel that again."

This time, Dallas wouldn't see the top-seeded Niners until the NFC title game. The Cowboys chased defending division champion Philadelphia for two months before overtaking the Eagles in the final two weeks.

Instead of a postseason likely filled with road games like a year ago, when Dallas dominated Tampa Bay before the loss in the Bay Area, the Cowboys are in line for multiple home playoff games for the first time since they were the NFC's top seed in Prescott's rookie year in 2016.

Prescott lost his playoff debut to Rodgers and coach Mike McCarthy's Packers. McCarthy is now in his fourth season in charge of the Cowboys.

"It's all about an excellent opportunity that we prepared ourselves and we put ourselves in this position," said McCarthy, who led Green Bay to a Super Bowl title 13 years ago and spent 12-plus seasons there. "We earned it, deserved it and more importantly, we're going to take advantage of it."

Love threw 18 touchdown passes with just one interception in the final eight games, when the Packers went 6-2 to surge into the final playoff spot in the NFC.

"We've had to win every game going forward to be able to put ourselves in this position," Love said. "Obviously now the stakes are a little bit higher in the playoffs, but I think we've been here, we have the right mindset going forward."

Sizzling QBs

Prescott threw an NFL-leading 36 touchdown passes during the regular season, while Love was second with 32. It's the second wild-card meeting of league leaders from the regular season.

The other matched a pair of Hall of Famers when Dan Fouts and San Diego topped Terry Bradshaw and Pittsburgh 31-28 in 1982.

Love will try to continue the mastery Rodgers had over the Cowboys. The Packers have won nine of the past 10 meetings, including divisional playoff games during the 2014 and 2016 seasons.

Keeping up with Jones

Green Bay running back Aaron Jones missed six games this season, and his 656 yards rushing represent his lowest total since 2017. But he's healthy and playing well just in time for the postseason. Jones rushed for at least 111 yards in each of the Packers' last three games, all wins.

crushing and screening plant, and 300 TPH RAP screening plant.

The estimated maximum guantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM ₁₀	23.2 pph	24.2 tpy
PM _{2.5}	12.9 pph	15.3 tpy
Sulfur Dioxide (SO ₂)	23.9 pph	27.7 tpy
Nitrogen Oxides (NO _x)	48.6 pph	79.8 tpy
Carbon Monoxide (CO)	66.8 pph	87.8 tpy
Volatile Organic Compounds (VOC)	27.3 pph	32.5 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	4.3 pph	4.7 tpy
Toxic Air Pollutant (TAP)	5.1 pph	5.7 tpy
Green House Gas Emissions as Total CO ₂ e	n/a	20384 tpy

The standard operating schedule of the facility will be daylight hours, seven days a week, and a maximum of 43.2 weeks per year for the months of February through November. The maximum operating schedule will be 24 hours per day, seven days a week, and a maximum of 43.2 weeks per year for the months of February through November.

The owner and/or operator of the Facility is: Mesa Verde Enterprises, Inc., P.O. Box 907, Alamogordo, New Mexico 88311-0907, Phone: (575) 437-2995

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Atención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7 including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975 Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https:// www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination. TX-GCI1130886-0

January 19, 2024

Dear [Neighbor/Environmental Director/county or municipal official]

Mesa Verde Enterprises, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the construction of its hot mix asphalt facility. The expected date of application submittal to the Air Quality Bureau is January 19, 2024.

The exact location for the proposed facility known as, MV 400 TPH Gencor HMA Plant, at address 396 La Luz Gate Rd. Alamogordo, NM or coordinates latitude 32.93435 decimal degree North and longitude -106.03041 decimal degree West. The approximate location of this facility is 5.2 miles northwest of Alamogordo, NM in Otero county.

The proposed construction consists of a 400 ton per hour (TPH) HMA plant that presently operates under GCP-3-5880, a 300 TPH RAP crushing and screening plant, and 300 TPH RAP screening plant.

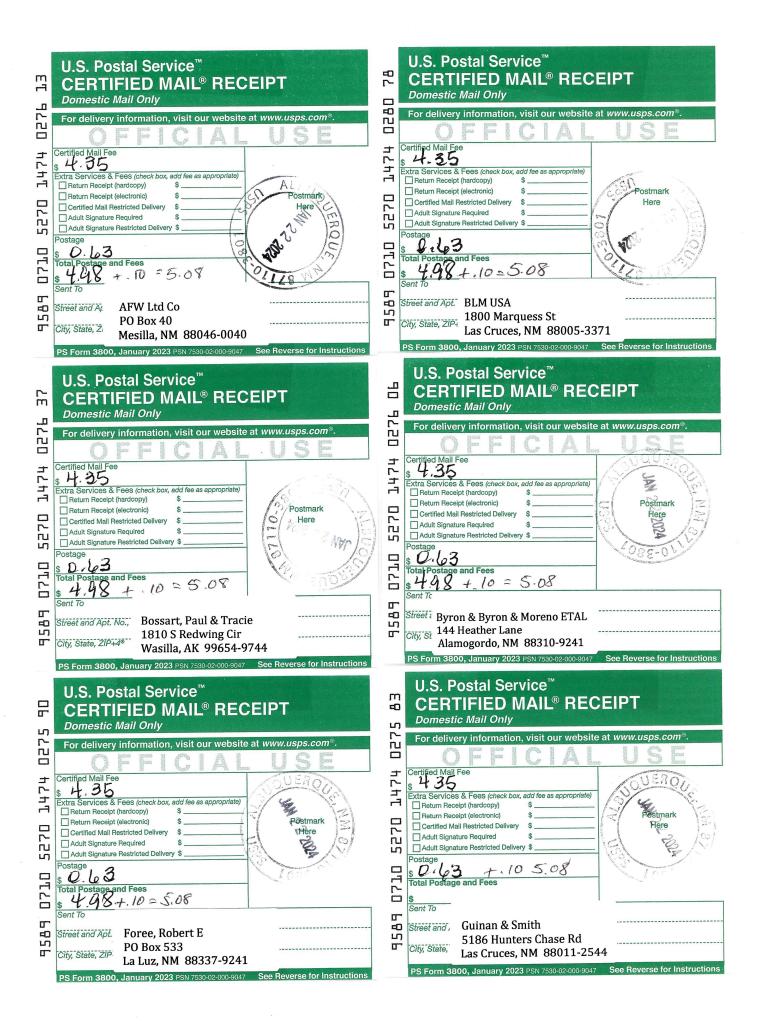
The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

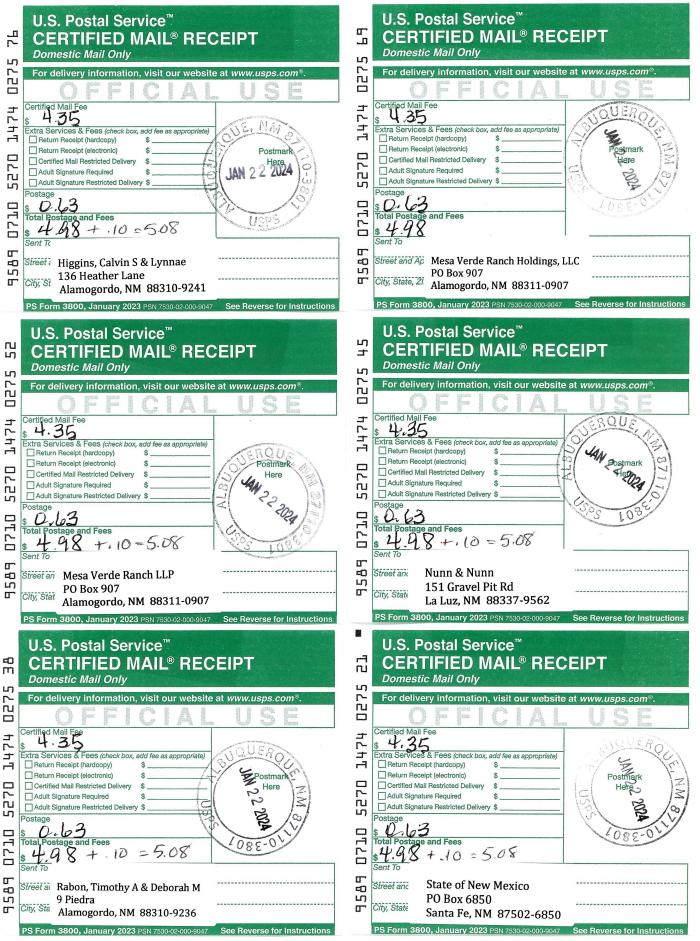
Pollutant:	Pounds per hour	Tons per year
PM 10	23.2 pph	24.2 tpy
PM 2.5	12.9 pph	15.3tpy
Sulfur Dioxide (SO ₂)	23.9 pph	27.7 tpy
Nitrogen Oxides (NO _x)	48.6 pph	79.8 tpy
Carbon Monoxide (CO)	66.8 pph	87.8 tpy
Volatile Organic Compounds (VOC)	27.3 pph	32.5 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	4.3 pph	4.7 tpy
Toxic Air Pollutant (TAP)	5.1 pph	5.7 tpy
Green House Gas Emissions as Total CO2e	n/a	20384 tpy

The standard operating schedule of the facility will be daylight hours, seven days a week, and a maximum of 43.2 weeks per year for the months of February through November. The maximum operating schedule will be 24 hours per day, seven days a week, and a maximum of 43.2 weeks per year for the months of February through November.

The owner and/or operator of the Facility is: Mesa Verde Enterprises, Inc., P.O. Box 907, Alamogordo, New Mexico 88311-0907, Phone: (575) 437-2995

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.


With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.


Atención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

PUBLIC SERVICE ANNOUNCEMENT

Mesa Verde Enterprises, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the construction of its hot mix asphalt facility. The expected date of application submittal to the Air Quality Bureau is January 19, 2024.

The approximate location of the proposed facility known as, MV 400 TPH Gencor HMA Plant, is 5.2 miles northwest of Alamogordo, NM in Otero county.

The proposed construction consists of a 400 ton per hour (TPH) HMA plant that presently operates under GCP-3-5880, a 300 TPH RAP crushing and screening plant, and 300 TPH RAP screening plant.

Public notices have been posted in the following locations for review by the public:

- 1. At La Luz Post Office, 12 Main St, La Luz, NM 88337;
- 2. At Alamogordo City Hall, 1376 E. 9th St., Alamogordo, NM 88310;
- 3. At Otero County Administration, 1101 New York Ave., Alamogordo, NM 88310; and
- 4. At the main entrance to Mesa Verde Enterprises at 396 La Luz Gate Rd, Alamogordo, NM

The owner and/or operator of the Facility is:

Mesa Verde Enterprises, Inc. P.O. Box 907 Alamogordo, New Mexico 88311-0907 Phone: (575) 437-2995

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico; 87505-1816 Telephone Number (505) 476-4300 or 1 800 224-7009

Submittal of Public Service Announcement – Certification

I, Paul Wade, the undersigned, certify that on 01/19/2024, submitted a public service announcement to KZZX Radio that serves the City of Alamogordo, Otero County, New Mexico, in which the source is or is proposed to be located and that KZZX Radio DID NOT RESPOND THAT IT WOULD AIR THE ANNOUNCEMENT.

Signed this 1 day of January, 2024, Paul Wardy

Signature

1/19/24

Paul Wade Printed Name

Air Quality Consultant – Montrose Environmental Solutions, Inc. Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

January 19, 2024

KZZX Radio 501 S Florida Alamogordo, NM 83310

CERTIFIED MAIL

Dear KZZX Radio:

SUBJECT: PSA Request - Proposed Air Quality Construction Permit Application for Mesa Verde Enterprises' MV Gencor 400 TPH HMA Plant. The approximate location of this facility is 5.2 miles northwest of Alamogordo, NM in Otero county.

Attached is a copy of a public service announcement regarding a proposed air quality construction permit application for Mesa Verde Enterprises' MV Gencor 400 TPH HMA Plant. This announcement is being submitted by Montrose Environmental Solutions, Inc., Albuquerque, NM on behalf of Mesa Verde Enterprises, Inc.

The announcement request is being made to fulfill the requirements of the New Mexico Environmental Department air quality permitting regulations. Please consider reading the attached announcement as a public service message.

If you have any questions or need additional information, please contact me at (505) 830-9680 ext 6 (voice), (505) 830-9678 (fax) or email at <u>pwade@montrose-env.com</u>. You may also contact Mr. Allister Gunn, Mesa Verde Enterprises, Inc. at (575) 437-2995.

Thank you.

Sincerely,

Paul Wade

Paul Wade Principal/Senior Associate Engineer

Montrose Environmental Solutions, Inc. 9100 2nd St., Suite 200 Albuquerque, NM 87114-1664 T: 505.830.9680 ext. 6 F: 505.830.9678 Pwade@montrose-env.com www.montrose-env.com

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The MV 400 TPH Gencor HMA Plant produces hot mix asphalt concrete. The operation is typical to a continuous drum mix HMA operation. Aggregate in loaded into the Cold Aggregate Feed Bins (Unit 1), where it is metered onto the Aggregate Feed Bin Collection Conveyor (Unit 2). From the Aggregate Feed Bin Collection Conveyor the aggregate is sent to the Scalping Screen and conveyor (Units 3 and 4) and Pug Mill (Unit 5). The Mineral Filler Silo and Augur (Unit 13) meters mineral filler into the Pug Mill. The Pug Mill mixes the aggregate and mineral filler together and empties onto the Pug Mill Conveyor (Unit 6). The Pug Mill Conveyor transfers the material onto the Scale Conveyor (Unit 7) and sends the aggregate/mineral filler to the Drum Dryer (Unit 14). RAP is loaded into the RAP Feed Bin (Unit 8), where it is metered onto the RAP Feed Bin Conveyor (Unit 9) and then transferred to the RAP Screen (Unit 10). The RAP Transfer Conveyor (Unit 11) transports RAP to the RAP Scale Transfer Conveyor (Unit 12). The RAP Scale Conveyor transports RAP to the Drum Dryer/Mixer. There the material is dried and asphalt cement is added to make asphalt concrete. From the Drum Dryer/Mixer the asphalt concrete is sent by the Incline Conveyor (Unit 15) to the Asphalt Silos (4 total) (Unit 16).

For warm mix asphalt instead of mineral filler Evotherm is added to the drum. The use of Evotherm reduces the temperature of the mix and concurrently reduces the amount of emissions generated making the asphalt cement.

Control Units include a Drum Dryer/Mixer Dust Collector (C5) that captures particulates generated at the Drum Dryer/Mixer and Mineral Filler Silo Dust Collector (C4) that captures particulates generated during loading of the Mineral Filler Silo. Controlled particulates exhaust the Drum Dryer/Mixer Dust Collector Stack (Stack 2) and Mineral Filler Silo Dust Collector Stack (Stack 1).

Fugitive dust is controlled when material exits the Cold Aggregate to the Cold Aggregate Collection Conveyor with enclosures to reduce the chance that wind will blow any generated fugitive dust away and/or water sprays, as needed, at the exit of the feed bins.

Fugitive dust is controlled when material enters and exits the Scalping Screen (Unit 3), and Pug Mill (Unit 4) with the addition of water, as needed, on the material at the Scalping Screen and/or Pug Mill.

Baghouse fines that are captured in the Drum Dryer/Mixer Dust Collector (Unit C5) are recycled back to the Drum Dryer (Unit 14) using an enclosed loop with no visible emissions. During baghouse maintenance or relocation the remaining fines are removed from the baghouse and routed to a pit where a water truck controls any fugitive dust by adding additional moisture to the fines making it a slurry.

Baghouse fines that are captured in the Mineral Filler Silo Dust Collector (Unit C4) are recycled back to the Mineral Filler Silo.

Mesa Verde Enterprises, Inc.

There are no pollution controls for the RAP Storage Piles (Unit AGGPILE - RAP portion), RAP Feed Bins (Unit 8), RAP feeder collection conveyor (Unit 9), RAP Screen (Unit 10), RAP Screen Conveyor (Unit 11), and RAP Transfer Conveyor (Unit 12). These source emission rates are reduced to account for the inherent properties of RAP with a coating of asphalt oils which captures small particles within the material. Based on EPA documents "EIIP – Preferred and Alternative Methods for Estimating Air Emissions from Hot-Mix-Asphalt Plants, Final Report, July 1996, Table 3.2-1 Fugitive Dust – Crushed RAP material" the inherent typical efficiency of the material is 70% (see Section 7).

The plant will be powered by a 1372 horsepower (1000 kW) diesel-fired generator (Unit 17) operating a maximum of 4380 hours per year. During no production operations when the main generator is off (Unit 17), the plant will be powered by a 114 horsepower (100 kW) standby diesel-fired generator (Unit 18) operating a maximum of 4380 hours per year. A 1.0 MMBtu asphalt heater (Unit 19) will maintain an asphalt cement temperature of no more than 350° F.

There are no pollution controls for the Aggregate Storage Piles (Unit AGGPILE – aggregate portion), Aggregate Feed Bins (Unit 1), Incline Belt (Unit 15), Asphalt Silo (Units 16), Main Plant Generator (Unit 17), Standby Plant Generator (Unit 18), Asphalt Heater (Unit 19), or Hot Oil Asphalt Storage Tanks (2 total) (Unit 20).

All truck traffic (Unit TRCK) travels to the HMA Plant on the Main Entrance road. The road is controlled with pavement at the entrance and exit and asphalt millings and/or surfactants, and watering for interior roads to the HMA Plant. Haul roads are defined in Figure 5-1.

Annual emissions are controlled by permit limits on annual production for processing equipment and hours of operation for generators and asphalt heater.

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe): Hot Mix Asphalt Plant - produce asphalt concrete, RAP Crushing and Screening Plant – plant for processing recycling asphalt to size, co-located NSR minor source aggregate crushing and screening plant, co-located GCP5 concrete batch plant

B. Apply the 3 criteria for determining a single source:

<u>SIC Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

□ Yes X No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

X Yes 🛛 No

<u>Contiguous</u> or <u>Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

X Yes 🗌 No

C. Make a determination:

X The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.

The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - X a minor PSD source before and after this modification (if so, delete C and D below).
 - □ a major PSD source before this modification. This modification will make this a PSD minor source.
 - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - an existing PSD Major Source that has had a major modification requiring a BACT analysis
 - □ a new PSD Major Source after this modification.
- B. This facility is not one of the listed 20.2.74.501 Table I PSD Source Categories:
 - a. NOx: 79.8 TPY
 - b. CO: 87.7 TPY
 - c. VOC: 30.4 TPY
 - d. SOx: 27.4 TPY
 - e. PM: 36.0 TPY
 - f. **PM10: 22.5 TPY**
 - g. PM2.5: 15.0 TPY
 - h. Fluorides: <0.01 TPY
 - i. Lead: 0.0078 TPY
 - j. Sulfur compounds (listed in Table 2): NA
 - k. GHG: 20384 TPY

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). **We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example,** if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: <u>http://cfpub.epa.gov/adi/</u>

Table for STATE REGULATIONS:

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a SIP approved regulation that limits the maximum allowable concentration of Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This facility is subject to 20.2.7 NMAC.
20.2.11 NMAC	Asphalt Process Equipment	Yes	13 (C4), 14 (C5)	These sources are subject to 20.2.11.108 NMAC and 20.2.11.109 NMAC.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	17, 18, 19	Engines and heaters are Stationary Combustion Equipment. Specify units subject to this regulation. The facility stationary combustion equipment are subject to a 20 percent opacity limit.
20.2.70 NMAC	Operating Permits	No	Facility	This facility is not a Title V Operating Permit source. The facility consists of aggregate processing plants and HMA plants. Aggregate processing falls under 2-digit SIC Code Group 14 and HMA plants falls under 2-digit SIC Code Group 29. While aggregate material from aggregate processing plants is used in the HMA plant, since they are operating under different SIC Codes they are separate facilities for major source determination.
20.2.71 NMAC	Operating Permit Fees	No	Facility	This facility is not a Title V Operating Permit source.
20.2.72 NMAC	Construction Permits	Yes	Facility	Potential emission rate (PER) for the facility is greater than 10 pph or greater than 25 tpy for any pollutant subject to a state or federal ambient air quality standard.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	NOI: 20.2.73.200 NMAC applies (requiring a NOI application) Emissions Inventory Reporting: 20.2.73.300 NMAC applies.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	Facility	This facility is not a PSD major source.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This facility is subject to 20.2.72 NMAC and is in turn subject to 20.2.75 NMAC.
20.2.77 NMAC	New Source Performance	Yes	Units subject to 40 CFR 60	This is a stationary source, which is subject to the requirements of 40 CFR Part 60.
20.2.78 NMAC	Emission Standards for HAPS	No	Units Subject to 40 CFR 61	This facility doesn't emit hazardous air pollutants which are subject to the requirements of 40 CFR Part 61.
20.2.79 NMAC	Permits – Nonattainment Areas	No	Facility	This facility is located in an Attainment Area.
20.2.80 NMAC	Stack Heights	Yes	13 (C4), 14 (C5), 17, 18, 19	The objective of this Part is to establish requirements for the evaluation of stack heights and other dispersion techniques in permitting decisions. The Department shall give no credit for reductions in emissions due to the length of a source's stack height that exceeds good engineering practice or due to any other dispersion technique. The facility will meet all requirements of good engineering practices.

STATE REGU-	Title	Applies?	Unit(s)	JUSTIFICATION:
LATIONS		Enter Yes	or	(You may delete instructions or statements that do not apply in
CITATION		or No	Facility	the justification column to shorten the document.)
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	17, 18	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63.

Table for Applicable FEDERAL REGULATIONS:

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	This is a 20.2.72 NMAC permit application.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	Units subject to 40 CFR 60	Subparts IIII and I in 40 CFR 60 applies.
NSPS 40 CFR60.40, Subpart I	Subpart I, Performance Standards for Hot Mix Asphalt Facilities	Yes	13 (C4), 14 (C5)	The affected facility, that commences construction or modification after June 11, 1973, to which the provisions of this subpart apply is each hot mix asphalt facility. For the purpose of this subpart, a hot mix asphalt facility is comprised only of any combination of the following: dryers; systems for screening, handling, storing, and weighing hot aggregate; systems for loading, transferring, and storing mineral filler, systems for mixing hot mix asphalt; and the loading, transfer, and storage systems associated with emission control systems.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No		This facility does not have storage vessels with a capacity greater than or equal to 75 cubic meters (m ³) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984.
NSPS 40 CFR Part 60 Subpart 000	Standards of Performance for Nonmetallic Mineral Processing Plants	No		NSPS standards for non-metallic minerals apply to applicable crushers, screens, and conveyors.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	Yes	17, 18	The provisions of this subpart are applicable to manufacturers, owners, and operators of stationary compression ignition (CI) internal combustion engines (ICE). Units 17 and 18 are applicable to 60.4202(a) and Subpart IIII Table 1 emission standards for its year and size category if they are located at the same location for a period of 12 months.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	No		See 40 CFR 60.4230 and EPA Region 1's Reciprocating Internal Combustion Guidance website.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	Units Subject to 40 CFR 61	Applies if any other Subpart in 40 CFR 61 applies.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	Units Subject to 40 CFR 63	Applies if any other Subpart in 40 CFR 63 applies.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	17, 18	Facilities are subject to this subpart if they own or operate a stationary RICE, except if the stationary RICE is being tested at a stationary RICE test cell/stand. Applicable if the units are located at the same location for a period of 12 months.

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

- Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ✓ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions During</u> <u>Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Operational Plan to Mitigate Emissions and Plan of Work Practices

<u>Startup</u>

Prior to the production of asphalt, the drum mixer dust collector will be operational and functioning correctly per 20.2.11.108.A, 20.2.11.109, and applicable permit conditions.

Prior to loading of mineral filler, the mineral filler silo dust collector will be operational and functioning correctly per 20.2.11.108.A, 20.2.11.109, and applicable permit conditions.

Prior to the production of asphalt, feeder bin exit enclosures or other control measures will be functioning correctly to control fugitive emissions to an opacity limit of 20 percent per EPA Reference Method 9.

Prior to the production of asphalt, water sprays, or other control measures, for the scalping screen and pug mill will be functioning correctly and used as needed, to control fugitive emissions to an opacity limit of 20 percent per EPA Reference Method 9.

Upon visual inspection, all unpaved haul roads will be controlled with surfactants or other equivalent control methods, to minimize fugitive dust as required under applicable permit conditions.

<u>Shutdown</u>

All required control equipment will operate until all asphalt production ceases.

<u>Maintenance</u>

The feeder bin exit enclosures, asphalt drum mixer, drum mixer dust collector, equipment water sprays, and mineral filler silo dust collector will be maintained to prevent excess emissions during startup or shutdown. This facility will not have excess emissions during any maintenance procedures.

Malfunction

Upon malfunction where excess particulate emissions are observed from the feeder bin exit enclosures, asphalt drum mixer, drum mixer dust collector, scalping screen and pug mill water sprays, mineral filler silo dust collector, and baghouse loadout enclosure and watering, all asphalt production will cease until repairs to control equipment are made.

Upon malfunction where excess particulate emissions are observed from the feeder bin exit enclosures, and equipment water sprays, all aggregate processing will cease until repairs to control equipment are made.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

While located at 396 La Luz Gate Rd. Alamogordo, NM 88310 the HMA plant will be powered by line power. Upon relocation to other sites, the HMA plant will be powered by diesel-fired generated power.

Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC). See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	x
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

- □ See attached, approved modeling **waiver for all** pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- Attached in UA4 is a **modeling report for some** pollutants from the facility.
- □ No modeling is required.

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	16-A: Identification				
1 Name of facility:		MV 400 TPH Gencor HMA Plant			
2 Name of company: Mesa Verde Enterprises, Inc.		Mesa Verde Enterprises, Inc.			
3	Current Permit number:	New Permit			
4	Name of applicant's modeler:	Paul Wade			
5	5 Phone number of modeler: (505) 830-9680 x6				
6 E-mail of modeler: pwade@montrose-env.com		pwade@montrose-env.com			

16	16-B: Brief				
1	Was a modeling protocol submitted and approved?	Yes□	No⊠		
2	is the modeling being done? New Facility				
3	Describe the permit changes relevant to the modeling.				
	New NSR Permit. Presently operates under GCP-3-5880. Allow night time operations.				
4	4 What geodetic datum was used in the modeling? NAD83				
5	How long will the facility be at this location?	More than a year			
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes⊠	No□		

7	Identify the Air Quality Control Region (AQCR) in which the facility is located						
	List the PSD baseline dates for this region (n	ninor or major, as appropriate).					
8	NO2	08/02/1995	08/02/1995				
0	SO2	N/A	N/A				
	PM10	06/16/2000	06/16/2000				
	PM2.5	N/A	N/A				
	Provide the name and distance to Class I are	eas within 50 km of the facility (300 km for PS	SD permits).				
9	No Class I areas within 50 km. Closest is Wh	nite Mountain Wilderness Area at 52.5 km					
10	Is the facility located in a non-attainment ar	rea? If so describe below	Yes	No⊠			
Describe any special modeling requirements, such as streamline permit requirements.							
11							

16	-C: Modeling Hi	story of Facility						
	-	Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).						
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments				
	CO	N/A	N/A	New Permitted Facility				
	NO ₂	N/A	N/A	New Permitted Facility				
1	SO ₂	N/A	N/A	New Permitted Facility				
	H ₂ S	N/A	N/A	New Permitted Facility				
	PM2.5	N/A	N/A	New Permitted Facility				
	PM10	N/A	N/A	New Permitted Facility				
	Lead	N/A	N/A	Not a significant facility pollutant				
	Ozone (PSD only)	N/A	N/A	Not a PSD Source				
	NM Toxic Air Pollutants (20.2.72.402 NMAC)	N/A	N/A	New Permitted Facility				

16-D: Modeling performed for this application

For each pollutant, indicate the modeling performed and submitted with this application. Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.

	analysis were also performed.						
	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.	
	СО	\boxtimes					
	NO ₂	\boxtimes	\boxtimes				
1	SO ₂	\boxtimes	\boxtimes				
	H ₂ S	\boxtimes					
	PM2.5	\boxtimes	\boxtimes				
	PM10	\boxtimes	\boxtimes				
	Lead					\boxtimes	
	Ozone					\boxtimes	
	State air toxic(s) (20.2.72.402 NMAC)	\boxtimes					

16	16-E: New Mexico toxic air pollutants modeling							
List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application.								
	-	List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required.						
2	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor		
	Asphalt Fumes	5.01	0.333	9.70	1	5.01		
	Calcium Hydroxide	0.18	0.333	18.3	5	0.036		

16-	F: Modeling options		
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□
	AERMOD Version 23132		

16-	16-G: Surrounding source modeling				
1 Date of surrounding source retrieval 10/18/2023					
2	2 If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how th sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use table below to describe them. Add rows as needed.				

	GCP emission sources were set to 71.25 tpy and 17.875 tpy, respectively. ours of operation were limited to daylight hours only.			
GCP2 and GCP3 hours of operation were limited to daylight hours only. AQB Source ID Description of Corrections				

16-	H: Building and structure downwa	6-H: Building and structure downwash				
1	How many buildings are present at the facility?	4				
2	How many above ground storage tanks are present at the facility?	5				
3	Was building downwash modeled for all buildings and	d tanks? If not explain why below. Yes⊠ No□				
4	Building comments					

16	I: Recept	ors and n	nodeled p	property boun	dary					
1	continuous w grade that we area within tl Area is requir receptors sha	valls, or other co ould require spo ne property ma red in order to e ill be placed wit	ontinuous barr ecial equipmen y be identified exclude recepto thin the proper	c entry is effectively pro- iers approved by the D t to traverse. If a large with signage only. Pub ors from the facility pro- ty boundaries of the fa- r at the facility that def	epartment, such as re property is complete lic roads cannot be p operty. If the facility o acility.	ugged ph ely enclos art of a F does not	ysical terrain w sed by fencing, a Restricted Area.	ith a steep a restricted A Restricted		
	Fencing surro	Fencing surrounds site. At gates are located "Restricted Area" signs.								
2	Receptors must be placed along publicly accessible roads in the restricted area.YesNoAre there public roads passing through the restricted area?YesNo						No⊠			
3	Are restricted	l area boundary	y coordinates in	ncluded in the modelin	g files?		Yes⊠	No□		
	Describe the	receptor grids a	and their spaci	ng. The table below ma	ay be used, adding ro	ws as nee	eded.	•		
	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility					
4	Very Fine	Cartesian	50 meters	Border	500 Meters					
4	Very Fine	Cartesian	100 meters	500 Meters	1 Kilometers					
	Fine	Cartesian	250 meters	1 Kilometers	3 Kilometers					
	Course	Cartesian	500 meters	3 Kilometers	7 Kilometers					
	Course	Cartesian	1000 meters	7 Kilometers	50 Kilometers					
5	Describe receptor spacing along the fence line. 25 meters									

6	Describe the PSD Class I area receptors.
	N/A

16	-J:	Modeling	g Scei	narios	5										
1	rate etc.	Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).													
	the Nov two ope	For HMA Plant, they will limit model hours to the equivalent of 10 hours per day if operating at maximum to account for the requested permit daily production rate. For particulate modeling, 12 scenarios were run beginning with February - November months operating daily limits starting at 12:00 AM. Scenario 2 modeling hours for February - November months two hours from 2 AM. This trend continues for all 12 scenarios. For December and January months, the facility will not operate. NO2 modeling was run for all hours of operation in February – November months. Which scenario produces the highest concentrations? Why?													
2	PM PM PM PM	10 24 hour – S 10 24 hour Inc 10 Annual Inc 2.5 24 hour – S 2.5 annual – S	Scenario 5 — Scena — Scenar Scenario	11, oper irio 10, Y rio 11, Y 11, ope	ating nig ear 2017 ear 2017 rating nig	httime h , operat , operat ghttime	nours with ing night ing night hours wit	h low wi time hou time hou th low w	urs with urs with l inds and	low wind low wind I low bou	s and low s and low ndary lay	v bounda v bounda ver			
3	(Thi	re emission fa is question per factors used f	rtains to	the "SEA	ASON", "I	MONTH'	' <i>,</i> "HROFI	DY" and			s, not to	Yes⊠		No□	
4	(Mo	o, describe fac odify or duplica rces:		-	-				-	-			-		
	For	the MV 400 T	PH Asteo	: HMA pl			g hours li uction Ho				f operati	on.			
			Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ì
		12:00 AM	0	1	1	1	1	1	1	1	1	1	1	0	
		1:00 AM	0	1	1	1	1	1	1	1	1	1	1	0	
		2:00 AM	0	1	1	1	1	1	1	1	1	1	1	0	
		3:00 AM	0	1	1	1	1	1	1	1	1	1	1	0	
5		4:00 AM	0	1	1	1	1	1	1	1	1	1	1	0	
5		5:00 AM	0	1	1	1	1	1	1	1	1	1	1	0	
		6:00 AM	0	1	1	1	1	1	1	1	1	1	1	0	
		7:00 AM	0	1	1	1	1	1	1	1	1	1	1	0	
		8:00 AM	0	1	1	1	1	1	1	1	1	1	1	0	
		9:00 AM	0	1	1	1	1	1	1	1	1	1	1	0	
		10:00 AM	0	1	1	1	1	1	1	1	1	1	1	0	
		11:00 AM	0	1	1	1	1	1	1	1	1	1	1	0	
		12:00 PM	0	1	1	1	1	1	1	1	1	1	1	0	
		1:00 PM	0	1	1	1	1	1	1	1	1	1	1	0	

2:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
3:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
4:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
5:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
6:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
7:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
8:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
9:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
10:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
11:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
Total	0	24	24	24	24	24	24	24	24	24	24	0

Since the HMA plant daily hours of operation running at maximum hourly production rate is less than the total hours of operation, twelve (12) PM modeling scenarios will be performed for each averaging period. For each scenario the hours of operation are shifted by two hours.

	Model Scenario	Time Segments 5-Hour Blocks February, March, November	Time Segments 8-Hour Blocks April, September, and October		Time Segment: 10-Hour Block: May - August	s	
	1	12 AM to 5 AM	12 AM to 8 AM		12 AM to 10 AN	Л	
	2	2 AM to 7 AM	2 AM to 10 AM		2 AM to 12 PN	1	
	3	4 AM to 9 AM	4 AM to 12 PM		4 AM to 2 PM		
	4	6 AM to 11 AM	6 AM to 2 PM		6 AM to 4 PM		
	5	8 AM to 1 PM	8 AM to 4 PM		8 AM to 6 PM		
	6	10 AM to 3 PM	10 AM to 6 PM		10 AM to 8 PM	1	
	7	12 PM to 5 AM	12 PM to 8 PM		12 PM to 10 PN	Λ	
	8	2 PM to 7 PM	2 PM to 10 PM		2 PM to 12 AN	1	
	9	4 PM to 9 PM	4 PM to 12 AM		4 PM to 2 AM		
	10	6 PM to 11 PM	6 PM to 2 AM		6 PM to 4 AM		
	11	8 PM to 1 AM	8 PM to 4 AM		8 PM to 6 AM		
	12	10 PM to 3 AM	10 PM to 6 AM		10 PM to 8 AN	1	
lf ho	urly, variable	emission rates were used that wer	e not described above, describe the	m belov	w.		
	Vere different emission rates used for short-term and annual modeling? If so describe elow. Yes⊠ No□						
	etback mode uction.	ling, the annual particulate matter	modeling included hourly factors ba	ised on	limitations on a	annual	

HMA Model Scenario Time Segments

6

16	-K: NO	2 Modeling		
		pes of NO2 modeling were used? that apply.		
	\boxtimes	ARM2		
1		100% NO _x to NO ₂ conversion		
		PVMRM		
		OLM		
		Other:		
2	Describe	the NO ₂ modeling.		
-	NO2 mo	deling included neighboring sources and no background concentrations.		
3		fault NO ₂ /NO _x ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not and justify the ratios used below.	Yes⊠	No□
4	Describe	the design value used for each averaging period modeled.		
-		98th percentile as calculated by AERMOD		
	Annual H	lighest Annual Average of Three Years:		

16-	L: Ozone Analy	sis			
2	NMED has performed a contribute to any violat The basis of the ozone S <u>Prevention of Signific</u> accepts this SIL basis an concentration analysis The MERP values prese concentrations indicate	generic analysis that den ions of ozone NAAQS. The SIL is documented in <u>Guid</u> ant <u>Deterioration Perm</u> d incorporates it into this using MERPS is included in nted in Table 10 and Tabl that facilities emitting no n of O ₃ than the O ₃ signifi $[O_3]_{8-hour} = \left(\frac{1}{3}\right)^{1/2}$	$\frac{dance \text{ on Significant Imp}}{\frac{itting Program}{program}}$, EPA, Apris permit record by referend in the New Mexico Air Quade 11 of the NM AQB Mode of more than 250 tons/yead icance level. $\frac{250 \frac{ton}{yr}}{40_{MERP_{NOX}}} + \frac{250 \frac{ton}{yr}}{4679_{MERP_{V}}}$	ract Levels for Ozone of ril 17, 2018 and associate face. Complete document ality Bureau Air Dispersion eling Guidelines that pro- r of NO _x and no more that $rac{-}{oc} \times 1.96 \ \mu g/m^3$	and Fine Particles in the ed documents. NMED ation of the ozone n Modeling Guidelines. duce the highest an 250 tons/year of VOCs
	Sources that produce of exceeding the ozone NA	zone concentrations belo	³ , which is below the signi w the ozone SIL do not ca		
3	VOCs? Sources that em	it at least 250 tons per ye	of NO _x or at least 250 tons ar of NO _x or at least 250 t uire an individual analysis.	ons per year of Yes□	No⊠
	-	rces or PSD major modific od was used describe belo	cations, if MERPs were us ow.	ed to account for ozone t	fill out the information
5	NO _x (ton/yr)	MERP _{NOX}	VOCs (ton/yr)	MERP _{VOC}	[O3]8-hour

	ct the pollutants for which ph	ume depletion modeling was us	sed.				
	PM2.5						
\boxtimes	PM10						
	None						
		tions used. Include the source o					
		using plume deposition. Plume	•	• • •			
		id as the plume travels downwi		-			
		e greater the effect of plume d		-			
		istribution, particle mass fraction	on, and particle density are	required inputs to the mode			
perf	orm this function.						
Dort	icle cize distribution for fugiti	ve dust during material handlin	a fugitivo road dust on un	any od roadcy limo cilo bagbo			
	-	emissions; and combustion wi		-			
	leling Section approved value		in use the particle size distri				
The	mass-mean particle diameter	s were calculated using the for	mula:				
		1 12 12 1 1 1 1/2					
	$d = ((d^{3}_{1} + d^{2}_{1}d_{2} + d_{1}d^{2}_{2} + d^{3}_{2}) / 4)^{1/3}$						
Where: d = mass-mean particle diameter							
	Where: d = ma	ss-mean particle diameter					
		ss-mean particle diameter w end of particle size category i	range				
	$d_1 = lov$		-				
	$d_1 = lov$	w end of particle size category	-				
Repi	$d_1 = lov$ $d_2 = hig$	w end of particle size category	range				
Repi	$d_1 = lov$ $d_2 = hig$	w end of particle size category is and of particle size category is a second structure of the second structure	range MED accepted values.				
Repi	$d_1 = low$ $d_2 = hig$ resentative average particle d	w end of particle size category in gh end of particle size category lensities were obtained from N	range MED accepted values. Density	Defenses			
Repi	d ₁ = lov d ₂ = hig resentative average particle d	w end of particle size category is and of particle size category is a second structure of the second structure	range MED accepted values. Density (g/cm ³)	Reference			
Repi	d ₁ = lov d ₂ = hig resentative average particle d M Road Dust	w end of particle size category in gh end of particle size category lensities were obtained from N	range MED accepted values. Density (g/cm ³) 2.5	NMED Value			
Repi	d ₁ = lov d ₂ = hig resentative average particle d Road Dust Lime	w end of particle size category in gh end of particle size category lensities were obtained from N	range MED accepted values. Density (g/cm ³) 2.5 3.3	NMED Value NMED Value			
Repi	d ₁ = low d ₂ = hig resentative average particle d M Road Dust Lime HMA Asphalt	w end of particle size category in gh end of particle size category lensities were obtained from N	range MED accepted values. Density (g/cm ³) 2.5 3.3 1.5	NMED Value NMED Value NMED Value			
Repi	d ₁ = lov d ₂ = hig resentative average particle d Road Dust Lime	w end of particle size category in gh end of particle size category lensities were obtained from N	range MED accepted values. Density (g/cm ³) 2.5 3.3	NMED Value NMED Value			
Repi	d ₁ = low d ₂ = hig resentative average particle d M Road Dust Lime HMA Asphalt	w end of particle size category in gh end of particle size category lensities were obtained from N	range MED accepted values. Density (g/cm ³) 2.5 3.3 1.5	NMED Value NMED Value NMED Value			
	d ₁ = lov d ₂ = hig resentative average particle d M Road Dust Lime HMA Asphalt Combustion Fugitive Dust	w end of particle size category i gh end of particle size category lensities were obtained from Ni laterial	range MED accepted values. Density (g/cm ³) 2.5 3.3 1.5 1.5 1.5 2.5	NMED Value NMED Value NMED Value NMED Value			
	d ₁ = lov d ₂ = hig resentative average particle d M Road Dust Lime HMA Asphalt Combustion Fugitive Dust	w end of particle size category in gh end of particle size category lensities were obtained from N	range MED accepted values. Density (g/cm ³) 2.5 3.3 1.5 1.5 1.5 2.5	NMED Value NMED Value NMED Value NMED Value			
	d ₁ = lov d ₂ = hig resentative average particle d M Road Dust Lime HMA Asphalt Combustion Fugitive Dust	w end of particle size category i gh end of particle size category lensities were obtained from Ni laterial	range MED accepted values.	NMED Value NMED Value NMED Value NMED Value			
	d ₁ = lov d ₂ = hig resentative average particle d M Road Dust Lime HMA Asphalt Combustion Fugitive Dust	w end of particle size category i gh end of particle size category lensities were obtained from N laterial	range MED accepted values.	NMED Value NMED Value NMED Value NMED Value NMED Value			
	d ₁ = lov d ₂ = hig resentative average particle d M Road Dust Lime HMA Asphalt Combustion Fugitive Dust size distribution for PM ₁₀ emi	w end of particle size category i gh end of particle size category ensities were obtained from N laterial ssion sources are presented in Road Vehicle Fugitive Dust	range MED accepted values. Density (g/cm ³) 2.5 3.3 1.5 1.5 2.5 Tables below. Deposition Parameters	NMED Value NMED Value NMED Value NMED Value NMED Value Density			
	d ₁ = lov d ₂ = hig resentative average particle d Road Dust Lime HMA Asphalt Combustion Fugitive Dust size distribution for PM ₁₀ emi	w end of particle size category i gh end of particle size category ensities were obtained from Ni laterial ssion sources are presented in Road Vehicle Fugitive Dust Mass Mean	range MED accepted values. Density (g/cm ³) 2.5 3.3 1.5 1.5 2.5 Tables below. Deposition Parameters Mass Weighted	NMED Value NMED Value NMED Value NMED Value NMED Value			

0 – 2.5	1.57	25.0	2.5	
2.5 – 10	6.91	75.0	2.5	

Based on NMED Particle Size Distribution Spreadsheet – April 25, 2007 (Vehicle Fugitive)

Lime Baghouse Source Deposition Parameters

Particle Size Category (μm)	Mass Mean Particle Diameter (μm)	Mass Weighted Size Distribution (%)	Density (g/cm³)
	PM10)	
0-2.5	1.57	25	3.3
2.5-10	6.91	75	3.3

Parameters based on baghouse exhaust capture percentages. (Lime Silo)

Combustion Source Deposition Parameters

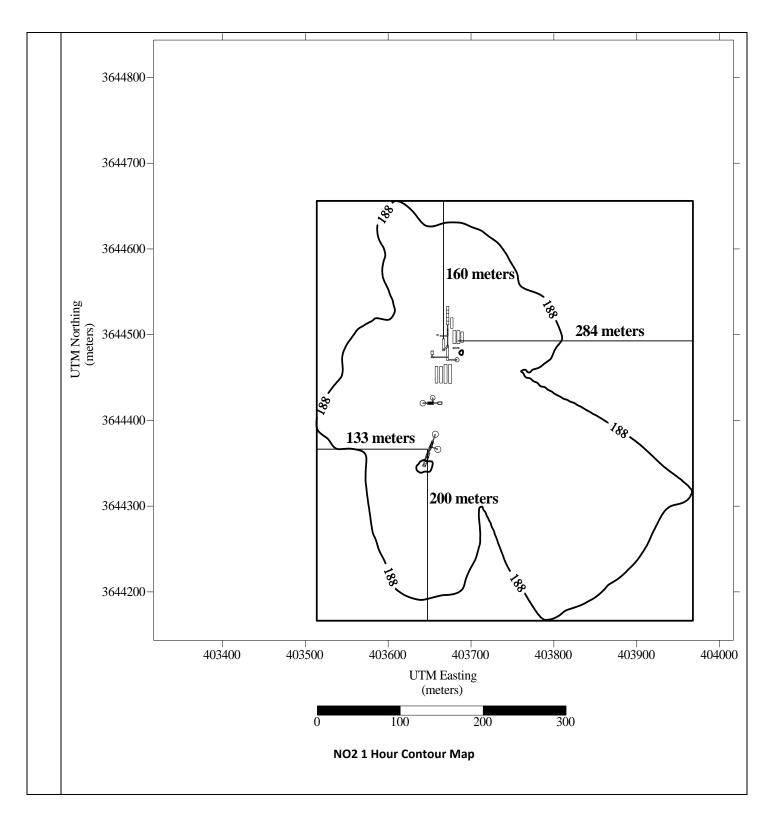
Particle Size Category (μm)	Mass Mean Particle Diameter (μm)	Mass Weighted Size Distribution (%)	Density (g/cm³)
	PM10	D	
0 - 2.5	1.57	100	1.5

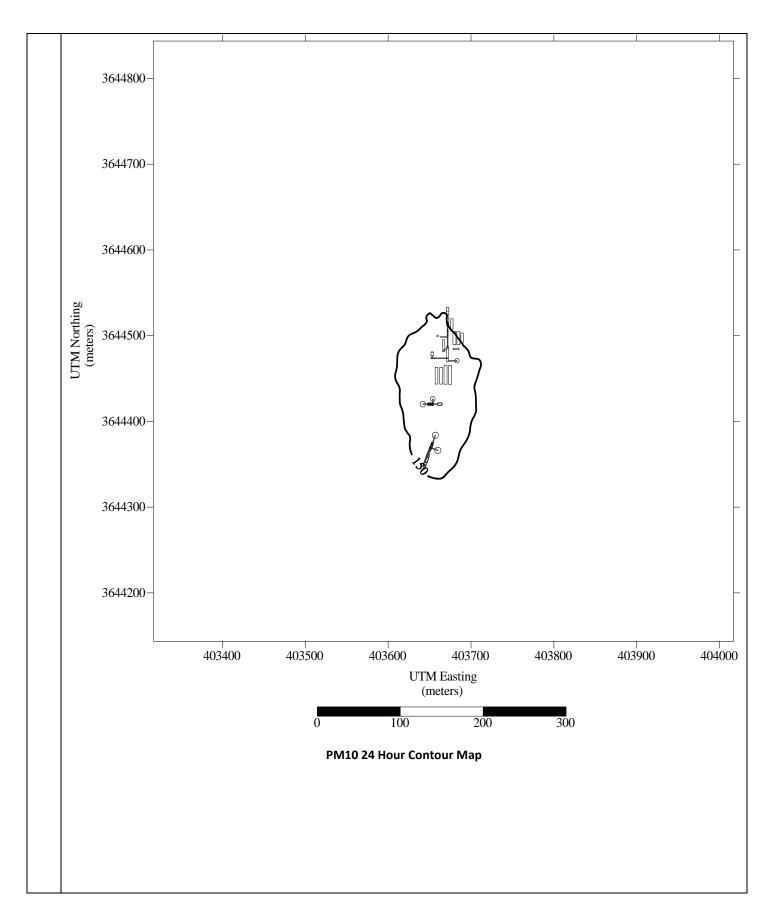
Based on NMED Particle Size Distribution Spreadsheet – April 25, 2007 (Combustion)

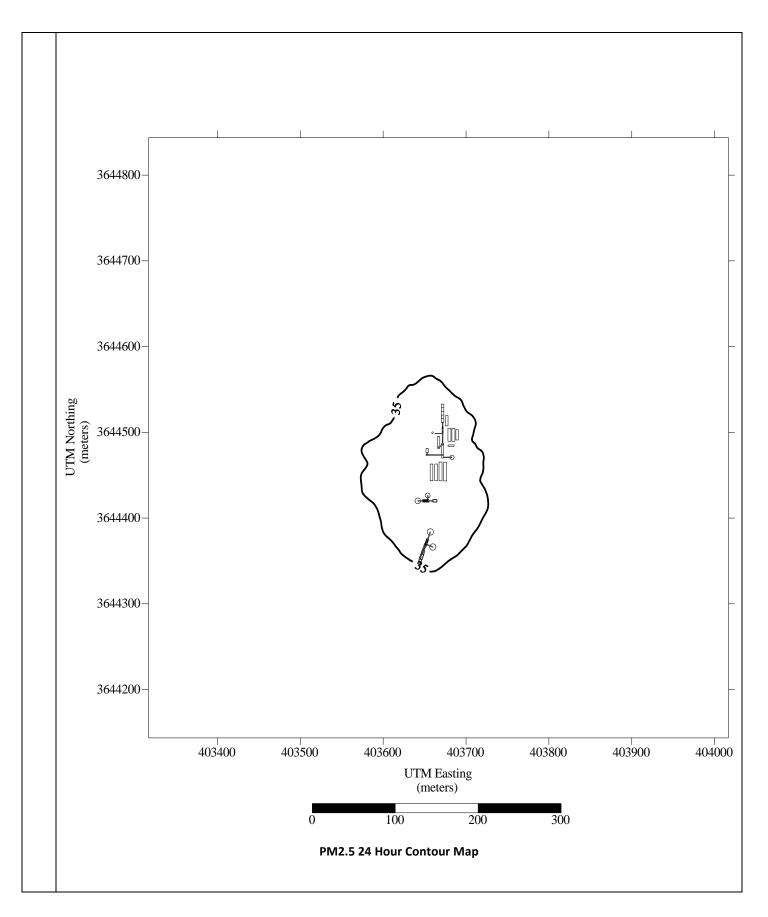
Asphalt Baghouse and Stack Source Deposition Parameters

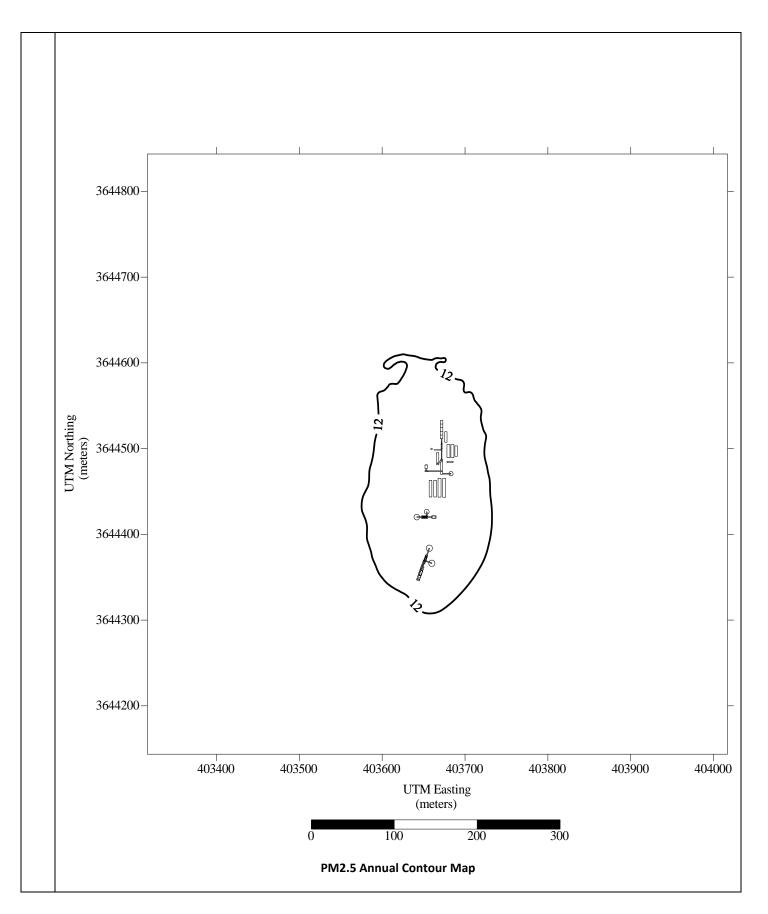
Particle Size Category (μm)	Mass Mean Particle Diameter (μm)	Mass Weighted Size Distribution (%)	Density (g/cm³)
	PM10)	
0-1.0	0.63	50.0	1.5
1.0-2.5	1.85	19.0	1.5
2.5-10	6.92	31.0	1.5

Based on NMED Particle Size Distribution Spreadsheet – April 25, 2007 (Asphalt Baghouse Stack)


Fugitive Dust Source Deposition Parameters


Particle Size Category (μm)	Mass Mean Particle Diameter (μm)	Mass Weighted Size Distribution (%)	Density (g/cm³)
	PM10)	
0 - 2.5	1.57	7.8	2.5
2.5 – 5	3.88	27.0	2.5
5 - 10	7.77	65.2	2.5
sed on NMED Particle Size	Distribution Spreadsheet – Ar	vril 25, 2007 (Coal Handling)	•


Based on NMED Particle Size Distribution Spreadsheet – April 25, 2007 (Coal Handling).


3	Does the facility emit at least 40 tons per year of NO _x or at least 40 tons per year of SO ₂ ? Sources that emit at least 40 tons per year of NO _x or at least 40 tons per year of SO ₂ are considered to emit significant amounts of precursors and must account for secondary formation of PM2.5.			Yes⊠	No□	
4	Was secondary PM modeled for PM2.5?			Yes⊠	No□	
	If MERPs were used to accorde	ount for seconda	ry PM2.5 fill out the	informa	ition below. If another method was	used describe
I	Pollutant	NOx	SO ₂		[PM2.5] _{24-hour}	
5	MERPannual	130260	53898		0.0057	
I	MERP _{24-hour}	42498	9753		[PM2.5] _{annual}	
1	Emission rate (ton/yr)	79.8	27.7		0.00022	

16	-N: Setback Distance	S				
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.					
	At the initial location they will be operating more than one year. Any relocations back will be to the same location.					
	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.					
2	The most likely future location will be near Alamogordo. Meteorological data from Holloman Air Force Base was used in the relocation modeling. For the relocation modeling all truck traffic was run from the plant to the exit on a single haul road. All modeling was run with no elevations. For PM10, Scenario 11 produced the largest setback. For PM2.5, Scenario 10 produced the largest setback. For the setback modeling, NO2 1 hour produced the furthest setback distance of 284 meters.					
		Setback Distance in Meters				
	North	East	South	West		
	160	284	200	133		

16-	16-O: PSD Increment and Source IDs								
	modeling file		tch? If	A, 2-B, 2-C, 2-E, 2-F, and 2-I sl not, provide a cross-referent w.				Yes□	No⊠
	Unit Number	-			Unit N	umber in Mo	odeling Files		
1					PEHR_	1-24			
	TRCK				UPHR_1-43				
					 PXHR 1-38				
	VADD				UPHR	29-43			
	YARD				PXHR_	1-38			
		rates in the Ta If not, explain		E and 2-F should match the elow.	ones in	the modelin	g files. Do	Yes□	No□
	-			aterial handling sources (Em or Alamogordo.	issions	calculated u	sing AP-42 S	ection 13.2.4) are calculated
						Permit En	nission Rate	Modeled	Emission Rate
						PM10	PM2.5	PM10	PM2.5
2	Permit ID	Model ID		Source Description Cold Aggregate Storage Pil	٩	Lb/Hr	Lb/Hr	Lb/Hr	Lb/Hr
	AGGPILE	AGGPILE1 - 4	ļ	(combined)			0.08981	0.49689	0.07524
	AGGPILE	AGGPILE5 –		RAP Storage Pile (combine		0.16856	0.02553	0.14122	0.02139
	1	1	(Cold Aggregate Feed Bin Loa	ding	0.59309	0.08981	0.49689	0.07524
	8	8 RAPPILE		RAP Feeder/Hopper		0.16856 0.28094	0.02553	0.14122	0.02139
	RAPPILE 21	21		RAP Raw Material Source RAP Feeder/Hopper	!	0.28094	0.04254 0.04254	0.23537	0.03564 0.03564
	34	34		RAP Screen Plant Feeder		0.28094	0.04254	0.23537	0.03564
	39	39	R	AP Screen Plant Stacker Con Drop to Pile	veyor	0.28094	0.04254	0.23537	0.03564
3		•	sourc	es or Title V Insignificant Act	ivities"	(Table 2-B) s	ources	Yes□	No⊠
	been modele Which units of		nent fo	or which pollutants?					
	Which drifts (, which politicality.					
		Mode		Source Descr	iption		NOx	PM10	
		AGGP	ILE	Cold Aggregate/RAP Storage Pile			Х		
		1		Feed Bin Loading				Х	
	2 Feed Bin Unloading			Х					
4	3 Scalping Screen			Х					
		4		Scalping Screen Unloading				Х	
		5		Pug Mill Load				Х	
		6		Pug Mill Unload				Х	
		7		Conveyor Transfer to Sling	er Con	veyor		Х	
		8		RAP Bin Loading				Х	
		9		RAP Bin Unloading				Х	
		10		RAP Screen			Х		

11RAP Screen UnloadingX12RAP Transfer ConveyorX13Mineral Filler Silo LoadingX14Drum DryerX15Drum Mixer UnloadingX16Asphalt Silo UnloadingX17Main Plant GeneratorX18Standby GeneratorX19Asphalt HeaterX	
13Mineral Filler Silo LoadingX14Drum DryerXX15Drum Mixer UnloadingX16Asphalt Silo UnloadingX17Main Plant GeneratorX18Standby GeneratorX	
14Drum DryerXX15Drum Mixer UnloadingX16Asphalt Silo UnloadingX17Main Plant GeneratorX18Standby GeneratorX	
15Drum Mixer UnloadingX16Asphalt Silo UnloadingX17Main Plant GeneratorX18Standby GeneratorX	
16Asphalt Silo UnloadingX17Main Plant GeneratorXX18Standby GeneratorXX	
17Main Plant GeneratorXX18Standby GeneratorXX	
18 Standby Generator X X	
19Asphalt HeaterXX	
TRCK Haul Road Traffic X	
YARD HMA Yard X	
RAPPILE RAP Raw Material Source X	
21 RAP Feeder Loading X	
22 RAP Vertical Impact Crusher X	
23 RAP Crusher Conveyor X	
24 RAP Recycle Conveyor #2 X	
25 RAP Conveyor X	
26 RAP Screen Conveyor X	
27 RAP Screen X	
28 RAP Recycle Conveyor #1 X	
29 RAP Waste Conveyor X	
30 RAP Product Conveyor X	
31 RAP Stacker Conveyor Drop to Pile X	
32 RAP Product Storage Pile X	
33 RAP Plant Generator/Engine X X	
34 RAP Screen Plant Feeder X	
35 RAP Screen Plant Feeder Conveyor X	
36 RAP Screen Plant Screen X	
37 RAP Screen Plant Stacker Conveyor X	
38 RAP Screen Plant Screen Conveyor X	
39 RAP Screen Plant Stacker Conveyor Drop to X Pile	
40 RAP Screen Plant Engine X X	
For PSD Class II Increment modeling, both sources from NSR Permit 0503 and GCP-5	2131-M1 will be
included in the analysis as increment con- were installed after 08/02/1995, but both	-
PSD increment description for sources.	
⁵ (for unusual cases, i.e., baseline unit expanded emissions so neither will be included in the PM ₁₀ inc	rement analysis.
after baseline date). Additionally, a previous 90 tph HMA plan	
NSR Permit 1672-M1 has been removed f will be included in the modeling analysis a	
increment expander. Since NSR Permit 1	
removed from the site, its NOx sources w	

		in the NO2 Class II Increment a	nalysis.	
6	Are all the actual installation dates included in Table 2A of the This is necessary to verify the accuracy of PSD increment mode increment consumption status is determined for the missing in	ling. If not please explain how	Yes⊠	No□

16-	16-P: Flare Modeling				
1	For each flare or flaring scenar	io, complete the following			
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)	
	NA				

16-	Q: Volume and Related Sources		
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing installation dates below.	Yes⊠	No□
	Describe the determination of sigma V and sigma 7 for fugitive sources		
2	Describe the determination of sigma-Y and sigma-Z for fugitive sources. For storage piles the model inputs were based on the size of the pile (100 feet)/4.3 (sigma-Y) a or a sigma-Z of 8ft*2/2.15. All others followed standard dimensions from Air Quality Bureau (A		-
3	Describe how the volume sources are related to unit numbers. Or say they are the same.		
	Same		
_	Describe any open pits.		
4	ΝΑ		
5	Describe emission units included in each open pit.		
5	NA		

16-	16-R: Background Concentrations		
	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data that was used.	Yes□	No□
1	CO: Del Norte High School (350010023)		
_	NO ₂ : N/A		
	PM2.5: Hobbs-Jefferson (350450019)		
	PM10: Hobbs-Jefferson (350250008)		
	SO ₂ : N/A		

	Other:			
	Comments:			
2	Were backgro	ound concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠

16-	16-S: Meteorological Data				
1	Was NMED provided meteorological data used? If so select the station used. Alamorgordo	Yes⊠	No□		
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discuss how missing data were handled, how stability class was determined, and how the data were processed.				
	For site and relocation modeling: Alamogordo 2017 - 2021				

16	16-T: Terrain				
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□		
	Yes, for point sources only. For volume sources, model was run in source selected flat terrain mode. For setback modeling all sources are run in flat terrain mode.				
2	What was the source of the terrain data?				
2	USGS National Elevation Data (NED)				

16	-U: Modeling Files					
	Describe the modeling files: : For PM10 and PM2.5 modeling, the ROI modeling included all discussed operating scenario. For the results of the ROI particulate matter modeling, the highest seven model results were used in the CIA modeling					
	File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)			
	MVCombustROI	NO2, CO, SO2	ROI/SIA			
	MVPMROIS1-12	PM10, PM2.5	ROI/SIA			
1	MVNO2CIA	NO2 1 Hour and Annual NAAQS	Cumulative			
-	MVNO2Annualinc	NO2 Annual Increment	Increment			
	MVSO2CIA	SO2 1 hour NAAQS	Cumulative			
	MVPM10CIAS1, 2, 8, 9, 10, 11, 12	PM10 NAAQS	Cumulative			
	MVPM25CIAS1, 2, 8, 9, 10, 11, 12	PM2.5 NAAQS	Cumulative			
	MVPM10INCS1d, 2d, 8d, 9d, 10d, 11d, 12d	PM10 Increment	Increment			
	MVAF	Asphalt Fumes	TAPs Model			
	MVH2S	H2S	ROI/SIA			
	MVNO2Relocation	NO2 1 hour	Relocation Setback			
	MVPM10RelocationS1, 2, 9, 10, 11, 12	PM10 24 Hour	Relocation Setback			
	MVPM24RelocationS1, 2, 9, 10, 11, 12	PM2.5 24 Hour and Annual	Relocation Setback			

16	16-V: PSD New or Major Modification Applications						
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No⊠				
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No⊠				
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.						
	Not a PSD Source						
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.						
-	Not a PSD Source						
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes	No□				
	Secondary PM2.5 were calculated using Modeling Guideline MERPs						

	If am	hient standards a	re exceeded because	of surroundin	g sources la culna	hility analysis is re	auired for th	e source to			
	If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability Yes No										
1		analysis performed? If so describe below.									
	Identify the maximum concentrations from the modeling analysis. Rows may be modified, added and removed from the table below as necessary. For PM10 24 hour, the maximum scenario was Scenario 11. For PM10 24 hour increment, the maximum scenario was Scenario 10, year 2017. For PM10 Annual										
2											
	increment, the maximum scenario was Scenario 11, year 2017. For PM2.5 24 hour, the maximum scenario was Scenario 11. For PM2.5 Annual, the maximum scenario was Scenario 12. All highest applicable concentrations were on the Mesa Verde Model boundary.										
		Modeled	Modeled	Cocondony	condary Background PM Concentration ug/m3) (µg/m3)	Cumulative Concentration (µg/m3)	Value of Standard (µg/m3)	Percent of Standard	Location		
Pollutant, Ti	ndard Concentra	Facility	Concentration	,					Location		
Period and Star		Concentration (μg/m3)	with Surrounding Sources (µg/m3)	(µg/m3)					UTM E (m)	UTM N (m)	Elevation (ft)
Asphalt Fumes -	– 8 Hr	12.8	NA	NA	NA	NA	50	25.6	403450.0	3644500.0	1300.94
H2S – 1 hr		0.25	NA	NA	NA	NA	SIL – 1.0	25.0	403457.8	3644443.8	1300.63
NOx - Annual NOx – Annual Inc		8.6	9.6	NA	NA	9.61	94.0	10.2	403739.8	3644828.0	1304.06
		5.4	6.4	NA	NA	6.4	25	25.6	403688.2	3644209.6	1297.35
NOx – 1 Hr		182.3	182.4	NA	NA	182.4	188.0	97.0	403978.0	3644668.4	1302.91
CO – 1 hr		417.1	NA	NA	NA	NA	SIL – 2000	20.9	403461.0	3644446.7	1300.67
CO – 8 Hr		109.7	NA	NA	NA	NA	SIL – 500	21.9	403461.0	3644510.7	1301.24
SO ₂ – 1 Hr		47.4	47.4	NA	NA	47.4	196.4	24.1	403618.0	3644833.0	1303.18
PM _{2.5} - Annual		1.4	2.4	0.00022	7.1	9.5	12	79.2	403663.5	3644209.9	1297.22
PM _{2.5} -24 Hr		6.7	7.9	0.0057	16.5	24.4	35	69.7	403457.4	3644490.7	1301.06
PM ₁₀ -24 Hr		29.4	29.4	NA	37.3	66.7	150	44.5	403579.7	3644935.3	1303.22
PM ₁₀ -24 Hr Inc		29.8	29.8	NA	NA	29.8	30	99.3	403460.3	3644374.3	1300.10
PM ₁₀ – Annual Inc		4.49	5.02	NA	NA	5.02	17	29.5	403460.3	3644374.3	1300.10

16-X: Summary/conclusions					
	A statement that modeling requirements have been satisfied and that the permit can be issued.				
1	Dispersion modeling was performed for the new HMA permit application. All facility pollutants with ambient air quality				
	standards and PSD increments were modeled to show compliance with those standards. All results of this modeling				
	showed the facility in compliance with applicable ambient air quality standards and PSD increments.				

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

The HMA plant has performed a GCP-3 compliance test for the plant operating under GCP-3-5880.

Unit No.	Test Description	Test Date				
13	GCP-3-5880 initial compliance test for Opacity	12/11/2019				
14	GCP-3-5880 initial compliance test for CO, NOx, PM Total, PM2.5, and Opacity	12/11/2019				
17	Initial compliance test for CO, NO _X , and Opacity	TBD				
36	Initial compliance test for CO, NO _X , and Opacity	01/16/2015				

Compliance Test History Table

Other Relevant Information

Other relevant information. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information.

Mesa Verde Enterprises, Inc.

January 19, 2024 & Revision #0

Section 22: Certification

Company Name: <u>Mesa Verde Enterprises, Inc.</u>

l, <u>Allister G Gunn Jr</u> _____, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

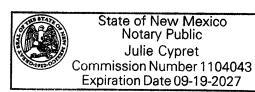
Signed this <u>17th</u> day of <u>January</u>, <u>2024</u>, upon my oath or affirmation, before a notary of the State of

New Mexico

1 Anny Signature

ALLISTER G GUNN JR Printed Name

COMPLIANCE OFFICER Title


funede Scribed and sworn before me on this 1 day of

My authorization as a notary of the State of NUN MULCO expires on the

Ember, 2027.

Notary's Signature

Notary's Printed Na

Date

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

Air Permit Application Compliance History Disclosure Form

Pursuant to Subsection 74-2-7(S) of the New Mexico Air Quality Control Act ("AQCA"), NMSA §§ 74-2-1 to -17, the New Mexico Environment Department ("Department") may deny any permit application or revoke any permit issued pursuant to the AQCA if, within ten years immediately preceding the date of submission of the permit application, the applicant met any one of the criteria outlined below. In order for the Department to deem an air permit application administratively complete, or issue an air permit for those permits without an administrative completeness determination process, the applicant must complete this Compliance History Disclosure Form as specified in Subsection 74-2-7(P). An existing permit holder (permit issued prior to June 18, 2021) shall provide this Compliance History Disclosure Form to the Department upon request.

Permi	ttee/Applicant Company Name	Expected Application Submittal Date					
Mesa	Verde Enterprises, Inc	1/17/2024					
Permi	ttee/Company Contact	Phone	Email				
Alliste	r Gunn	575-437-2995	allisterg@aggtecllc.com				
Withi	Within the 10 years preceding the expected date of submittal of the application, has the permittee or applicant:						
1	Knowingly misrepresented a material fact	🗆 Yes 🖾 No					
2	Refused to disclose information required	Mexico Air Quality Control Act?	🗆 Yes 🖂 No				
3	Been convicted of a felony related to environmental crime in any court of any state or the United States?						
4	Been convicted of a crime defined by state or federal statute as involving or being in restraint of trade, price fixing, bribery, or fraud in any court of any state or the United States?						
5a	Constructed or operated any facility for which a permit was sought, including the current facility, without the required air quality permit(s) under 20.2.70 NMAC, 20.2.72 NMAC, 20.2.74 NMAC, 20.2.79 NMAC, or 20.2.84 NMAC?						
5b	If "No" to question 5a, go to question 6. If "Yes" to question 5a, state whether each facility that was constructed or operated without the required air quality permit met at least one of the following exceptions:						
	a. The unpermitted facility was discovered after acquisition during a timely environmental audit that was authorized by the Department; or						
	b. The operator of the facility estimated that the facility's emissions would not require an air permit, and the operator applied for an air permit within 30 calendar days of discovering that an air permit was required for the facility.						
6	Had any permit revoked or permanently suspended for cause under the environmental laws of any state or the United States?						
7	For each "yes" answer, please provide an	explanation and documentat	ion.				