ALTERNATIVE COMPLIANCE PLAN

Energy Transfer Company

Prepared By:

Alena Miro - Environmental Engineer

Energy Transfer Company

2564 Pecos Hwy Carlsbad, NM 88220 (575) 810-8674

Adam Erenstein - Principal Consultant

TRINITY CONSULTANTS

9400 Holly Ave NE Building 3, Suite B Albuquerque, NM 87122 (505) 266-6611

February 2024

Project 233201.0149

TABLE OF CONTENTS

1.	EXEC	CUTIVE	SUMMARY	1-1
2.	INTR	RODUC	TION	2-3
	2.1	Regul	atory Background	2-3
			e Information	
			ne Information	
3.	PRO	POSED	ALTERNATIVE COMPLIANCE PLAN	3-1
4.	ENV		MENTAL JUSTICE CONSIDERATIONS	4-1
	4.1	Backg	ground Information	4-1
	4.2	Initia	I Filter Approach for Screening	4-2
	4.3	Uncer	tainty in Estimates for Small Areas	4-3
	4.4	EJScr	een Data Overview	4-4
		4.4.1	Socioeconomic Indicators	4-4
			Demographic Index	
		4.4.3	Supplemental Demographic Index	4-4
	4.5	EJ Ide	entification Assessment	4-5
		4.5.1	High-Level Summary	4-7
		4.5.2	EJSCREEN Report and Mapping Considerations	4-7
	4.6 21	Addit	ional Analysis for Communities Above 80 th Percentile Socioeconomic Ind	licators4-
		4.6.1	Bloomfield	4-21
		4.6.2	Harroun	4-21
		4.6.3	Maljamar	
		4.6.4	New James Ranch	4-23
		4.6.5	Pecos River	4-24
		4.6.6	Wantz	4-24
		4.6.7	West Eunice	4-25
		4.6.8	Summary of Facilities in New Mexico	
5.	THIR	RD PAR	RTY CERTIFICATION	5-1
AP	PEND	IX A. S	STACK TEST RESULTS	A-1

LIST OF FIGURES

Figure 1. Energy Transfer Company New Mexico Facility Locations	1-1
Figure 2. Locations of Engines and Turbines above 20.2.50 NMAC Thresholds – Northwest	4-5
Figure 3. Locations of Engines and Turbines above 20.2.50 NMAC Thresholds – Southeast	4-6
Figure 4. Proximity to Tribal Areas – Northwest	4-9
Figure 5. Proximity to Tribal Areas – Southeast	4-10
Figure 6. Proximity to Schools, Places of Worship, and Hospitals – Northwest	4-11
Figure 7. Proximity to Schools, Places of Worship, and Hospitals – Southeast	4-12
Figure 8. Proximity to Parks – Northwest	4-13
Figure 9. Proximity to Parks – Southeast	4-14
Figure 10. Proximity to Facilities Reporting to EPA (TRI and Superfund) – Northeast	4-15
Figure 11. Proximity to Facilities Reporting to EPA (TRI and Superfund) – Southwest	4-16

LIST OF TABLES

Table 1.Emission Standards for Existing Natural Gas-Fired Spark Ignition Engines	2-3
Table 2. Emission Standards for Stationary Combustion Turbines	2-3
Table 3. Existing Engines and Associated Emissions	2-4
Table 4. Existing Turbines and Associated Emissions	2-7
Table 5. ACP Engines and Turbines Permitted, Baseline and NO _x Rule Comparison	3-2
Table 6. ACP Engines and Turbines Permitted, Baseline and CO Rule Comparison	3-6
Table 7. ACP Engines and Turbines Permitted, Baseline and VOC Rule Comparison	3-10
Table 8. Rule Emissions Threshold Comparison	3-14
Table 9. Schedule of Compliance for Existing Engines	3-14
Table 10. Schedule of Compliance for Existing Turbines	3-14
Table 11. EJSCREEN ETC Facilities in New Mexico	4-18

Energy Transfer Company (ETC) is a transmission and gathering/processing oil and gas company with numerous facility locations in New Mexico. Figure 1 provides an overview of the facilities and their locations.

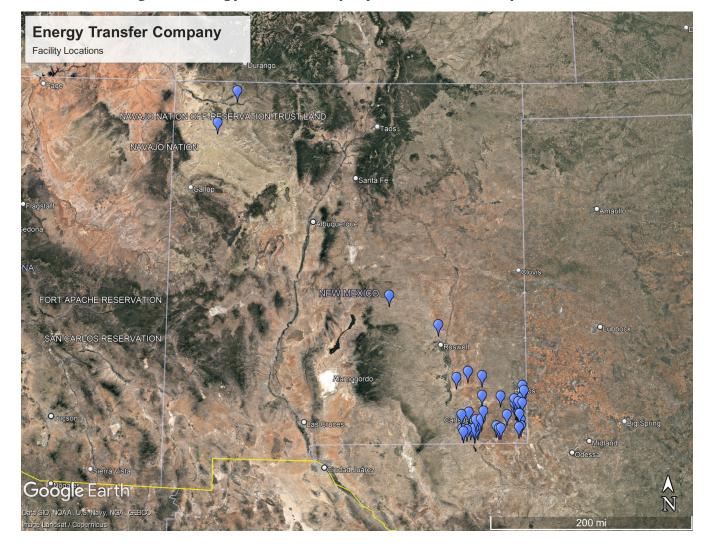


Figure 1. Energy Transfer Company New Mexico Facility Locations

ETC is submitting an alternative compliance plan (ACP) in accordance with Paragraph (1) of Subsection B of 20.2.50.113 NMAC, which states:

"In lieu of complying with the emission standards for individual engines and turbines established in Subsection B of 20.2.50.113 NMAC, an owner or operator may elect to comply with the emission standards through an Alternative Compliance Plan (ACP) approved by the department. An ACP must include the list of engines or turbines subject to the ACP, and a demonstration that the total allowable emissions for the engines or turbines subject to the ACP will not exceed the total allowable emissions under the emission standards of this Part."

The ACP detailed herein addresses Nitrogen Dioxide (NO_x), Carbon Monoxide (CO), and Volatile Organic Compounds (VOC) emissions from all subject units in the ETC fleet. The ACP also provides a demonstration that the total allowable emission for ETC's fleet of engines and turbines will not exceed the total allowable emissions for each pollutant under this Part.

If approved, ETC will meet the total allowable emissions established under the emission standards of 20.2.50.113 NMAC by January 1, 2029 for engines and January 1, 2028 for turbines.

Additionally, an environmental justice review is detailed herein that evaluates the areas surrounding the units of the fleet that are, on an individual basis, in excess of the limits established in 20.2.50.113 NMAC.

2.1 Regulatory Background

20.2.50 NMAC, Oil and Gas Sector – Ozone Precursor Pollutants, became effective on August 5, 2022. The Part applies to sources located within areas of the state under the board's jurisdiction that, as of the effective date or anytime thereafter, are causing or contributing to ambient ozone concentrations that exceed ninety-five percent of the national ambient air quality standard for ozone, as measured by a design value calculated and based on data from one or more department monitors. As of the effective date, sources located in the following counties of the state are subject to this Part: Chaves, Dona Ana, Eddy, Lea, Rio Arriba, Sandoval, San Juan, and Valencia.

Pursuant to 20.2.50.113.B(1) NMAC,

"The owner or operator of a portable or stationary natural gas-fired spark ignition engine, compression ignition engine, or natural gas-fired combustion turbine shall ensure compliance with the emission standards by the dates specified in Subsection B of 20.2.50.113 NMAC, except as otherwise specified under an Alternative Compliance Plan approved pursuant to Paragraph (10) of Subsection B of 20.2.50.113 NMAC or alternative emissions standards approved pursuant to Paragraph (11) of Subsection B of 20.2.50.113 NMAC."

Table 1 below shows the emission standards for existing engines, as specified in Subsection B of 20.2.50.113 NMAC.

Engine Type	Rated bhp	NOx	СО	NMNEHC (as propane)
2 Stroke Lean Burn	>1,000 bhp	3.0 g/bhp-hr	0.60 g/bhp-hr	0.70 g/bhp-hr
4-Stroke Lean Burn	_ ' !.		0.60 g/bhp-hr	0.70 g/bhp-hr
4-Storke Lean Burn	≥1,775 bhp	0.5 g/bhp-hr	0.60 g/bhp-hr	0.70 g/bhp-hr
Rich Burn	>1,000 bhp	0.5 g/bhp-hr	0.60 g/bhp-hr	0.70 g/bhp-hr

Table 1.Emission Standards for Existing Natural Gas-Fired Spark Ignition Engines

Table 2 below shows the emission standards turbines, as specified in Subsection b of 20.2.50.113 NMAC.

Turbine Rating (bhp)	NO _x (ppmvd @15% O ₂)	CO (ppmvd @ 15% O ₂)	NMNEHC (as propane, ppmvd @ 15% O ₂)
>1,000 and <4,100	150	50	9
≥4,100 and <15,000	50	50	9
≥15,000	50	50 or 93% reduction	5 or 50% reduction

Table 2. Emission Standards for Stationary Combustion Turbines

2.2 Engine Information

ETC has numerous engines at multiple facilities which are above the Part 50 thresholds for NO_x, CO, VOC, or for all three. These engines and their associated permitted emissions are detailed in Table 3 below. Additional information regarding each unit's make, model, type, and horsepower is also provided.

Table 3. Existing Engines and Associated Emissions

Site	Unit	Make	Model	Туре	Нр	Permitted NO _x tpy (8760 hrs)	Permitted CO tpy (8760 hrs)	Permitted VOC tpy (8760 hrs)
	7083	Caterpillar	3516	4SLB	1380	6.7	8.1	6.2
	7084	Caterpillar	3516	4SLB	1380	6.7	8.1	6.2
	7106	Caterpillar	3516	4SLB	1380	6.7	8.1	6.2
Avalon	7107	Caterpillar	3516	4SLB	1380	6.7	8.1	6.2
	4556	Caterpillar	3606	4SLB	1875	9.1	10.5	6.9
	4557	Caterpillar	3606	4SLB	1875	9.1	10.5	6.9
	7115	Caterpillar	3516J	4SLB	1500	7.2	7.5	4.8
	ENG-1	Caterpillar	3606	4SLB	1775	8.6	23.5	9.9
Bennetville	ENG-2	Caterpillar	3606	4SLB	1775	8.6	23.5	9.9
Bennetville	ENG-3	Caterpillar	3606	4SLB	1775	8.6	23.5	9.9
	ENG-4	Caterpillar	3606	4SLB	1775	8.6	23.5	9.9
	ENG-1	Caterpillar	3608A4	4SLB	2500	12.1	13.3	6.5
	ENG-2	Caterpillar	3608A4	4SLB	2500	12.1	13.3	6.5
Daminatan	ENG-3	Caterpillar	3608A4	4SLB	2500	12.1	13.3	6.5
Dominator	ENG-4	Caterpillar	3608A4	4SLB	2500	12.1	13.3	6.5
	ENG-5	Caterpillar	G3608	4SLB	2370	11.4	12.6	12.7
	ENG-6	Caterpillar	G3608 ADEM4	4SLB	2500	7.2	14.5	6.5
Fortson	4	Caterpillar	G3516ULB	4SLB	1353	13.1	26.1	11.6
	5	Caterpillar	G3516LE	4SLB	1340	19.4	24.6	8.7
Harroun	6	Caterpillar	G3516LE	4SLB	1245	24.0	23.2	6.8
	9	Caterpillar	G3516LE	4SLB	1245	24.0	23.2	6.2
Hawk	1	Caterpillar	G3516LE	4SLB	1340	19.4	24.6	6.0
	7072	Caterpillar	G3516LE	4SLB	1340	19.4	24.6	6.0
	7073	Caterpillar	G3516LE	4SLB	1340	19.4	24.6	6.0
Hobson	7074	Caterpillar	G3516LE	4SLB	1340	19.4	2.5	3.3
	7118	Caterpillar	G3516LE	4SLB	1340	19.4	2.5	3.3
	7117	Caterpillar	G3516B	4SLB	1380	6.7	3.2	6.4
Heuse	2	Caterpillar	G3516LE	4SLB	1340	19.4	24.6	8.7
House	3	Caterpillar	G3516LE	4SLB	1340	19.4	24.6	8.7

Table 3. Existing Engines and Associated Emissions (cont.)

Site	Unit	Make	Model	Туре	Нр	Permitted NO _x tpy (8760 hrs)	Permitted CO tpy (8760 hrs)	Permitted VOC tpy (8760 hrs)
	1A	Cooper- Bessemer	GMV-10TF	2SLB	1100	21.2	26.6	10.6
	2A	Cooper- Bessemer	GMV-10TF	2SLB	1100	21.2	26.6	10.6
	3A	Cooper- Bessemer	GMV-10TF	2SLB	1100	21.2	26.6	10.6
	4A	Cooper- Bessemer	GMV-10TF	2SLB	1100	122.0	50.1	5.2
Jal #3	5A	Cooper- Bessemer	GMV-10TF	2SLB	1100	122.0	50.1	5.2
	C1	Caterpillar	G3612TALE	4SLB	3550	17.1	9.4	7.7
	C2	Caterpillar	G3612TALE	4SLB	3550	17.1	9.4	7.7
	C3	Caterpillar	G3612TALE	4SLB	3550	17.1	9.4	7.7
	C4	Caterpillar	G3612TALE	4SLB	3550	17.1	9.4	7.7
	S1	Superior	2416G	4SLB	3200	39.0	13.1	15.5
	S2	Superior	2416G	4SLB	3200	39.0	13.1	15.5
	S3	Superior	2416G	4SLB	3200	39.0	13.1	15.5
	S4	Superior	2416G	4SLB	3200	39.0	13.1	15.5
	S5	Superior	12SGTA	4SLB	2000	36.2	9.3	5.8
	1	Caterpillar	Cat G3516ULB	4SLB	1380	13.3	19.5	5.3
Jal #4	2	Caterpillar	G3516ULB	4SLB	1380	13.3	19.5	5.3
	3	Caterpillar	G3516ULB	4SLB	1380	13.3	19.5	5.3
New James	7069	Caterpillar	G3516TALE	4SLB	1340	19.4	24.6	8.7
Ranch	7076	Caterpillar	G3516B LE	4SLB	1380	6.7	2.3	4.5
Nash Draw	1	Superior	12G825	4SRB	1140	22.0	33.0	12.0
Oil Contor	2	Caterpillar	G3516TALE	4SLB	1340	19.4	25.9	9.2
Ranch	4	Waukesha	L7042GSI	4SRB	1478	28.5	42.8	14.3
	ENG-2	Caterpillar	G3516TALE	4SLB	1340	19.4	25.9	8.7
Pecos River	ENG-1	Caterpillar	G3516TALE	4SLB	1340	25.9	25.9	8.7
Pecos River	ENG-3	Caterpillar	G3516ULB	4SLB	1380	6.7	2.3	4.4
	ENG-4	Caterpillar	G3606TALE	4SLB	1775	8.6	28.3	11.2
	1A	Caterpillar	G3606LE	4SLB	1775	8.6	2.4	4.7
Pod Uille	2A	Caterpillar	G3606LE	4SLB	1775	8.6	2.4	4.7
Red Hills	3A	Caterpillar	G3516TALE	4SLB	1340	19.4	2.5	3.7
	4B	Caterpillar	G3606 LE	4SLB	1775	8.6	2.4	4.7
	ENG-3	Caterpillar	G3608A4	4SLB	2500	12.1	12.1	8.0
	ENG-4	Caterpillar	G3608A4	4SLB	2500	12.1	12.1	8.0
Ross Draw	ENG-5	Caterpillar	G3608A4	4SLB	2500	12.1	12.1	8.0
	ENG-1a	Caterpillar	G3606TALE	4SLB	1775	8.6	2.9	11.8
	ENG-2a	Caterpillar	G3606TALE	4SLB	1775	8.6	2.9	11.8

Table 3. Existing Engines and Associated Emissions (cont.)

Site	Unit	Make	Model	Туре	Нр	Permitted NO _x tpy (8760 hrs)	Permitted CO tpy (8760 hrs)	Permitted VOC tpy (8760 hrs)
	ENG-1	Caterpillar	G3606A4	4SLB	1875	9.1	3.5	3.4
	ENG-2	Caterpillar	G3606A4	4SLB	1875	9.1	3.5	3.4
Ross Ranch	ENG-3	Caterpillar	G3606A4	4SLB	1875	9.1	3.5	3.4
NOSS Naticii	ENG-4	Caterpillar	G3606A3	4SLB	1775	8.6	17.2	6.7
	ENG-5	Caterpillar	G3606A4	4SLB	1875	9.1	3.5	3.4
	ENG-6	Caterpillar	G3606A4	4SLB	1875	9.1	3.5	3.4
Trestle	3	Superior	16G825	4SRB	1506	14.5	14.5	14.5
Wantz	3	Waukesha	L7042GSI	4SRB	1478	12.4	22.4	2.1
\Mast	4	Superior	2416GTL	4SLB	3200	46.3	16.1	15.5
West Eunice	6	Caterpillar	G3516LE	4SLB	1340	19.4	24.6	6.0
Eurice	7	Caterpillar	G3516LE	4SLB	1340	19.4	24.6	6.0
	C-1	Caterpillar	3608	4SLB	2370	11.4	15.8	8.8
\A/bita City	C-2	Caterpillar	3608	4SLB	2370	11.4	15.8	8.8
White City Road	C-3	Caterpillar	3608	4SLB	2370	11.4	15.8	8.8
Roau	C-4	Caterpillar	3608	4SLB	2370	11.4	15.8	8.8
	C-5	Caterpillar	3608	4SLB	2370	11.4	15.8	8.8
	1	Caterpillar	G3606	4SLB	1875	9.1	9.1	12.7
	2	Caterpillar	G3606	4SLB	1875	9.1	9.1	12.7
Whitehorn	3	Caterpillar	G3606	4SLB	1875	9.1	9.1	12.7
willelloili	4	Caterpillar	G3606	4SLB	1875	9.1	9.1	12.7
	5	Caterpillar	G3606	4SLB	1875	9.1	9.1	10.1
	6	Caterpillar	G3606	4SLB	1875	9.1	9.1	10.1
Maljamar	001	Waukesha	L7042 GSIU	4SRB	1195	23.1	34.6	11.6
ivialjamar	002	Superior	8GTLA	4SLB	1073	51.8	31.1	7.6
Roswell	903	Cooper- Bessemer	LSV-16SSG	4SLB	4500	547.5	72.3	43.4
Noswell	904	Cooper- Bessemer	LSV-16SSG	4SLB	4500	547.5	72.3	43.4
A-14	1*	Waukesha	7042 GU	4SRB	896	17.3	26.0	9.6
South	1	Superior	8GTLE	4SLB	1100	21.2	21.2	13.3
Eunice	2*	Waukesha	L7042 GU	4SRB	896	16.5	16.5	8.3

^{*} Indicates unit is not subject to 20.2.50.113 NMAC, but ETC will claim credit for its removal towards the fleet total

2.3 Turbine Information

ETC has numerous turbines which are above the Part 50 thresholds for NO_x , CO, VOC, or for all three. These turbines and their associated permitted emissions are detailed in Table 4 below. Additional information regarding each unit's make, model, type, and horsepower is also provided.

Table 4. Existing Turbines and Associated Emissions

Site	Unit	Make	Model	Нр	Permitted NO _x tpy (8760 hrs)	Permitted CO tpy (8760 hrs)	Permitted VOC tpy (8760 hrs)
Atoka #2	760	Solar	Saturn T1200	1100	23.4	16.0	8.5
AlOKa # Z	837	Solar	Saturn T1200	1100	23.4	16.0	8.5
	1001	Solar	T-7002	5879	119.6	25.6	1.1
Bloomfield	1002	Solar	T-7002	5879	119.6	25.6	1.1
	1003	Solar	T-7002	5879	119.6	25.6	1.1
Crawford	1	Solar	Saturn T-1001S	1100	14.0	18.6	1.0
Crawioru	2	Solar	Saturn T-1001S	1100	14.0	18.6	1.0
Monument	1	Solar	Saturn T-1200	1200	14.4	18.6	0.2
Turbine Station	2	Solar	Saturn T-1200	1200	14.4	18.6	0.2

3. PROPOSED ALTERNATIVE COMPLIANCE PLAN

ETC has conducted an inventory of their engines and turbines, pursuant 20.2.50.113.B(2) NMAC and has compiled a fleet-wide list of engines and turbines that are not in compliance with the emission limits as established in Subsection B of 20.2.50.113 NMAC for NO_x, CO, and VOC on an individual basis. In order to meet fleet-wide compliance with Subsection B of 20.2.50.113 NMAC, various units will be retired or repermitted based on emission stack testing or the installation of a catalyst. The proposed stack testing results can be found in Appendix A. If the stack test has proven that emissions for the specified pollutant are below the maximum allowed by 20.2.50.113 NMAC for that unit and pollutant, then the proposed limit of that pollutant will be equivalent to the maximum allowed by 20.2.50.113 NMAC.

The following units will be retired for the ACP:

- Jal #3 Facility (Units 1A through 5A & S1 through S5);
- Jal #4 Facility (Unit 1);
- West Eunice Facility (Unit 4);
- Roswell Facility (Units 903 & 904);
- A-14 Facility (Unit 1);
- South Eunice Facility (Units 1 & 2);
- Crawford Facility (Units 1 & 2); and
- Monument Turbine Station (units 1 & 2)

The following units will be re-permitted based on stack testing:

- Bennetville Facility (Units ENG-1 through ENG-4);
- Fortson Facility (Unit 4);
- Hawk Facility (Unit 1); and
- Hobson Facility (Unit 7072)

The following units will be re-permitted, and a new catalyst will be installed:

Pecos River Facility (Units ENG-1 & ENG-2)

The following units will retain their current permit limits and the facility will be subject to an EJScreen:

- Avalon Facility (Units 7083, 7084, 7106, & 7107);
- Harroun Facility (Units 5, 6, & 9);
- Hobson Facility (Unit 7073);
- House Facility (Units 2 & 3);
- Jal #4 Facility (Units 2 & 3);
- New James Ranch Facility (Unit 7069);
- Nash Draw Facility (Unit 1);
- Oil Center Facility (Units 2 & 4);
- Pecos River Facility (Unit ENG-4);
- Ross Ranch Facility (Unit ENG-4);
- Trestle Facility (Unit 3);
- Wantz Facility (Unit 3);
- West Eunice Facility (Units 6 & 7);
- White City Road Facility (Units C-1 through C-5);
- Maljamar Facility (Units 001 & 002);
- Atoka #2 Facility (Units 760 & 837); and
- Bloomfield Facility (Units 1001, 1002, & 1003)

The remaining units are already in compliance with 20.2.50 NMAC and will retain their current permit limits.

Below is a summary of the engines and turbines that will be subject to this ACP, their currently permitted NO_x , CO, and VOC emissions, their baseline value, which is either currently permitted or will be permitted, the NO_x , CO, and VOC emission limit for each unit based on Subpart B of 20.2.50.113 NMAC, and how the baseline value compares to the rule thresholds. Table 5 represents all the engines and turbines subject to the ACP for NO_x , Table 6 represents the same for CO, and Table 7 represents the same for VOC.

Table 5. ACP Engines and Turbines Permitted, Baseline and NO_x Rule Comparison

Site	Unit	Proposed Modification for ACP	Permitted NO _x (8760 hrs) (tpy)	Baseline (Permitted or To Be Permitted) (tpy)	Rule NO _x Emission Limit (tpy)
	7083	-	6.7	6.7	26.7
	7084	-	6.7	6.7	26.7
	7106	-	6.7	6.7	26.7
Avalon	7107	-	6.7	6.7	26.7
	4556	-	9.1	9.1	9.1
	4557	-	9.1	9.1	9.1
	7115	-	7.2	7.2	29.0
	ENG-1	-	8.6	8.6	8.6
Donnehille	ENG-2	-	8.6	8.6	8.6
Bennetville	ENG-3	-	8.6	8.6	8.6
	ENG-4	-	8.6	8.6	8.6
	ENG-1	-	12.1	12.1	12.1
	ENG-2	-	12.1	12.1	12.1
	ENG-3	-	12.1	12.1	12.1
Dominator	ENG-4	-	12.1	12.1	12.1
	ENG-5	-	11.4	11.4	11.4
	ENG-6	-	7.2	7.2	12.1
Fortson	4	-	13.1	13.1	26.1
	5	-	19.4	19.4	25.9
Harroun	6	-	24.0	24.0	24.0
	9	-	24.0	24.0	24.0
Hawk	1	-	19.4	19.4	25.9
	7072	-	19.4	19.4	25.9
	7073	-	19.4	19.4	25.9
Hobson	7074	-	19.4	19.4	25.9
	7118	-	19.4	19.4	25.9
	7117	-	6.7	6.7	26.7
Uevee	2	-	19.4	19.4	25.9
House	3	-	19.4	19.4	25.9

Table 5. ACP Engines and Turbines Permitted, Baseline and NO_x Rule Comparison (cont.)

Site	Unit	Proposed Modification for ACP	Permitted NO _x (8760 hrs) (tpy)	Baseline (Permitted or To Be Permitted) (tpy)	Rule NO _x Emission Limit (tpy)
	1A	Retire Unit	21.2	0.0	31.9
	2A	Retire Unit	21.2	0.0	31.9
	3A	Retire Unit	21.2	0.0	31.9
	4A	Retire Unit	122.0	0.0	31.9
	5A	Retire Unit	122.0	0.0	31.9
	C1	-	17.1	17.1	17.1
	C2	-	17.1	17.1	17.1
Jal #3	C3	1	17.1	17.1	17.1
	C4	-	17.1	17.1	17.1
	S1	Retire Unit	39.0	0.0	15.5
	S2	Retire Unit	39.0	0.0	15.5
	S3	Retire Unit	39.0	0.0	15.5
	S4	Retire Unit	39.0	0.0	15.5
	S5	Retire Unit	36.2	0.0	9.7
	1	Retire Unit	13.3	0.0	26.7
Jal #4	2	-	13.3	13.3	26.7
	3	-	13.3	13.3	26.7
New James	7069	-	19.4	19.4	25.9
Ranch	7076	-	6.7	6.7	26.7
Nash Draw	1	Retain Current Permit Limits	22.0	22.0	5.5
	2	-	19.4	19.4	25.9
Oil Center	4	Retain Current Permit Limits	28.5	28.5	7.1
	ENG-2	-	19.4	19.4	25.9
D D:	ENG-1	-	25.9	25.9	25.9
Pecos River	ENG-3	-	6.7	6.7	26.7
	ENG-4	-	8.6	8.6	8.6
	1A	-	8.6	8.6	8.6
Dad Lilla	2A	-	8.6	8.6	8.6
Red Hills	3A	-	19.4	19.4	25.9
	4B	-	8.6	8.6	8.6
	ENG-3	-	12.1	12.1	12.1
	ENG-4	-	12.1	12.1	12.1
Ross Draw	ENG-5	-	12.1	12.1	12.1
	ENG-1a	-	8.6	8.6	8.6
	ENG-2a	-	8.6	8.6	8.6

Table 5. ACP Engines and Turbines Permitted, Baseline and NO_x Rule Comparison (cont.)

Site	Unit	Proposed Modification for ACP	Permitted NO _x (8760 hrs) (tpy)	Baseline (Permitted or To Be Permitted) (tpy)	Rule NO _x Emission Limit (tpy)
	ENG-1	-	9.1	9.1	9.1
	ENG-2	-	9.1	9.1	9.1
Ross Ranch	ENG-3	-	9.1	9.1	9.1
ROSS RATICIT	ENG-4	-	8.6	8.6	8.6
	ENG-5	-	9.1	9.1	9.1
	ENG-6	-	9.1	9.1	9.1
Trestle	3	Retain Current Permit Limits	14.5	14.5	7.3
Wantz	3	Retain Current Permit Limits	12.4	12.4	7.1
	4	Retire Unit	46.3	0.0	15.5
West Eunice	6	-	19.4	19.4	25.9
	7	-	19.4	19.4	25.9
	C-1	-	11.4	11.4	11.4
	C-2	-	11.4	11.4	11.4
White City Road	C-3	-	11.4	11.4	11.4
,	C-4	-	11.4	11.4	11.4
	C-5	-	11.4	11.4	11.4
	1	-	9.1	9.1	9.1
	2	-	9.1	9.1	9.1
	3	-	9.1	9.1	9.1
Whitehorn	4	-	9.1	9.1	9.1
	5	-	9.1	9.1	9.1
	6	-	9.1	9.1	9.1
Maliana	001	Retain Current Permit Limits	23.1	23.1	5.8
Maljamar	002	Retain Current Permit Limits	51.8	51.8	20.7
Roswell	903	Retire Unit	547.5	0.0	21.7
Rosweii	904	Retire Unit	547.5	0.0	21.7
A-14	1*	Retire Unit	17.3	0.0	0.0
Courth Funice	1	Retire Unit	21.2	0.0	21.2
South Eunice	2*	Retire Unit	16.5	0.0	0.0
Abole #2	760	Retain Current Permit Limits	23.4	23.4	28.4
Atoka #2	837	Retain Current Permit Limits	23.4	23.4	28.4
	1001	Retain Current Permit Limits	119.6	119.6	34.8
Bloomfield	1002	Retain Current Permit Limits	119.6	119.6	34.8
	1003	Retain Current Permit Limits	119.6	119.6	34.8

Table 5. ACP Engines and Turbines Permitted, Baseline and NO_x Rule Comparison (cont.)

Site	Unit	Proposed Modification for ACP	Permitted NO _x (8760 hrs) (tpy)	Baseline (Permitted or To Be Permitted) (tpy)	Rule NO _x Emission Limit (tpy)
Current	1	Unit has been planned for retirement for 12/31/2023	14.0	0.0	28.4
Crawford 2		Unit has been planned for retirement for 12/31/2023	14.0	0.0	28.4
Monument	1	Unit has been planned for retirement for 12/31/2023	14.4	0.0	37.6
Turbine Station	2	Unit has been planned for retirement for 12/31/2023	14.4	0.0	37.6

[&]quot;-" Indicates unit is already in compliance with 20.2.50.113 NMAC.

^{*} Indicates unit is not subject to 20.2.50.113 NMAC, but ETC will claim credit for its removal towards the fleet total

Table 6. ACP Engines and Turbines Permitted, Baseline and CO Rule Comparison

Site	Unit	Proposed Modification for ACP	Permitted CO (8760 hrs) (tpy)	Baseline (Permitted or To Be Permitted) (tpy)	Rule CO Emission Limit (tpy)
	7083	Retain Current Permit Limits	8.1	8.1	8.0
	7084	Retain Current Permit Limits	8.1	8.1	8.0
	7106	Retain Current Permit Limits	8.1	8.1	8.0
Avalon	7107	Retain Current Permit Limits	8.1	8.1	8.0
	4556	-	10.5	10.5	10.9
	4557	-	10.5	10.5	10.9
	7115	-	7.5	7.5	8.7
	ENG-1	Reauthorize Based on Emissions Tests	23.5	10.3	10.3
Bennetville	ENG-2	Reauthorize Based on Emissions Tests	23.5	10.3	10.3
Definetville	ENG-3	Reauthorize Based on Emissions Tests	23.5	10.3	10.3
	ENG-4	Reauthorize Based on Emissions Tests	23.5	10.3	10.3
	ENG-1	-	13.3	13.3	14.5
	ENG-2	-	13.3	13.3	14.5
Daninatan	ENG-3	-	13.3	13.3	14.5
Dominator	ENG-4	-	13.3	13.3	14.5
	ENG-5	-	12.6	12.6	13.7
	ENG-6	-	14.5	14.5	14.5
Fortson	4	Reauthorize Based on Emissions Tests	26.1	7.8	7.8
	5	Retain Current Permit Limits	24.6	24.6	7.8
Harroun	6	Retain Current Permit Limits	23.2	23.2	7.2
	9	Retain Current Permit Limits	23.2	23.2	7.2
Hawk	1	Reauthorize Based on Emissions Tests	24.6	7.8	7.8
	7072	Reauthorize Based on Emissions Tests	24.6	7.8	7.8
	7073	Retain Current Permit Limits	24.6	24.6	7.8
Hobson	7074	-	2.5	2.5	7.8
	7118	-	2.5	2.5	7.8
	7117	-	3.2	3.2	8.0
House	2	Retain Current Permit Limits	24.6	24.6	7.8
riouse	3	Retain Current Permit Limits	24.6	24.6	7.8

Table 6. ACP Engines and Turbines Permitted, Baseline and CO Rule Comparison (cont.)

Site	Unit	Proposed Modification for ACP	Permitted CO (8760 hrs) (tpy)	Baseline (Permitted or To Be Permitted) (tpy)	Rule CO Emission Limit (tpy)
	1A	Retire Unit	26.6	0.0	6.4
	2A	Retire Unit	26.6	0.0	6.4
	3A	Retire Unit	26.6	0.0	6.4
	4A	Retire Unit	50.1	0.0	6.4
	5A	Retire Unit	50.1	0.0	6.4
	C1	-	9.4	9.4	20.5
	C2	-	9.4	9.4	20.5
Jal #3	C3	1	9.4	9.4	20.5
	C4	-	9.4	9.4	20.5
	S1	Retire Unit	13.1	0.0	18.5
	S2	Retire Unit	13.1	0.0	18.5
	S3	Retire Unit	13.1	0.0	18.5
	S4	Retire Unit	13.1	0.0	18.5
	S5	Retire Unit	9.3	0.0	11.6
	1	Retire Unit	19.5	0.0	8.0
Jal #4	2	Retain Current Permit Limits	19.5	19.5	8.0
	3	Retain Current Permit Limits	19.5	19.5	8.0
New James	7069	Retain Current Permit Limits	24.6	24.6	7.8
Ranch	7076	-	2.3	2.3	8.0
Nash Draw	1	Retain Current Permit Limits	33.0	33.0	6.6
	2	Retain Current Permit Limits	25.9	25.9	7.8
Oil Center	4	Retain Current Permit Limits	42.8	42.8	8.6
	ENG-2	Add catalyst - 0.6 g	25.9	7.8	7.8
Danas Divers	ENG-1	Add catalyst - 0.6 g	25.9	7.8	7.8
Pecos River	ENG-3	-	2.3	2.3	8.0
	ENG-4	Retain Current Permit Limits	28.3	28.3	10.3
	1A	-	2.4	2.4	10.3
Red Hills	2A	-	2.4	2.4	10.3
Red Hills	3A	-	2.5	2.5	7.8
	4B	-	2.4	2.4	10.3
	ENG-3	<u> </u>	12.1	12.1	14.5
	ENG-4	-	12.1	12.1	14.5
Ross Draw	ENG-5	-	12.1	12.1	14.5
	ENG-1a	-	2.9	2.9	10.3
	ENG-2a	-	2.9	2.9	10.3

Table 6. ACP Engines and Turbines Permitted, Baseline and CO Rule Comparison (cont.)

Site	Unit	Proposed Modification for ACP	Permitted CO (8760 hrs) (tpy)	Baseline (Permitted or To Be Permitted) (tpy)	Rule CO Emission Limit (tpy)
	ENG-1	-	3.5	3.5	10.9
	ENG-2	-	3.5	3.5	10.9
Ross Ranch	ENG-3	-	3.5	3.5	10.9
RUSS RailCit	ENG-4	Retain Current Permit Limits	17.2	17.2	10.3
	ENG-5	-	3.5	3.5	10.9
	ENG-6	-	3.5	3.5	10.9
Trestle	3	Retain Current Permit Limits	14.5	14.5	8.7
Wantz	3	Retain Current Permit Limits	22.4	22.4	8.6
	4	Retire Unit	16.1	0.0	18.5
West Eunice	6	Retain Current Permit Limits	24.6	24.6	7.8
	7	Retain Current Permit Limits	24.6	24.6	7.8
	C-1	Retain Current Permit Limits	15.8	15.8	13.7
	C-2	Retain Current Permit Limits	15.8	15.8	13.7
White City Road	C-3	Retain Current Permit Limits	15.8	15.8	13.7
·	C-4	Retain Current Permit Limits	15.8	15.8	13.7
	C-5	Retain Current Permit Limits	15.8	15.8	13.7
	1	-	9.1	9.1	10.9
	2	-	9.1	9.1	10.9
	3	-	9.1	9.1	10.9
Whitehorn	4	-	9.1	9.1	10.9
	5	-	9.1	9.1	10.9
	6	-	9.1	9.1	10.9
Maliana	001	Retain Current Permit Limits	34.6	34.6	6.9
Maljamar	002	Retain Current Permit Limits	31.1	31.1	6.2
Roswell	903	Retire Unit	72.3	0.0	26.0
KOSWEII	904	Retire Unit	72.3	0.0	26.0
A-14	1*	Retire Unit	26.0	0.0	0.0
South Eunice	1	Retire Unit	21.2	0.0	6.4
South Eunice	2*	Retire Unit	16.5	0.0	0.0
Abole #2	760	Retain Current Permit Limits	16.0	16.0	5.8
Atoka #2	837	Retain Current Permit Limits	16.0	16.0	5.8
	1001	Retain Current Permit Limits	25.6	25.6	25.0
Bloomfield	1002	Retain Current Permit Limits	25.6	25.6	25.0
	1003	Retain Current Permit Limits	25.6	25.6	25.0

Table 6. ACP Engines and Turbines Permitted, Baseline and CO Rule Comparison (cont.)

Site	Unit	Proposed Modification for ACP	Permitted CO (8760 hrs) (tpy)	Baseline (Permitted or To Be Permitted) (tpy)	Rule CO Emission Limit (tpy)
Cuantand	1	Unit has been planned for retirement for 12/31/2023	18.6	0.0	5.8
Crawford 2		Unit has been planned for retirement for 12/31/2023	18.6	0.0	5.8
Monument	1	Unit has been planned for retirement for 12/31/2023	18.6	0.0	7.6
Turbine Station	2	Unit has been planned for retirement for 12/31/2023	18.6	0.0	7.6

[&]quot;-" Indicates unit is already in compliance with 20.2.50.113 NMAC.

^{*} Indicates unit is not subject to 20.2.50.113 NMAC, but ETC will claim credit for its removal towards the fleet total

Table 7. ACP Engines and Turbines Permitted, Baseline and VOC Rule Comparison

Site	Unit	Proposed Modification for ACP	Permitted CO (8760 hrs) (tpy)	Baseline (Permitted or To Be Permitted) (tpy)	Rule CO Emission Limit (tpy)
	7083	-	6.2	6.2	9.3
	7084	-	6.2	6.2	9.3
	7106	-	6.2	6.2	9.3
Avalon	7107	-	6.2	6.2	9.3
	4556	-	6.9	6.9	12.7
	4557	-	6.9	6.9	12.7
	7115	-	4.8	4.8	10.1
	ENG-1	-	9.9	9.9	12.0
	ENG-2	-	9.9	9.9	12.0
Bennetville	ENG-3	-	9.9	9.9	12.0
	ENG-4	-	9.9	9.9	12.0
	ENG-1	-	6.5	6.5	16.9
	ENG-2	-	6.5	6.5	16.9
	ENG-3	-	6.5	6.5	16.9
Dominator	ENG-4	-	6.5	6.5	16.9
	ENG-5	-	12.7	12.7	16.0
	ENG-6	-	6.5	6.5	16.9
Fortson	4	Reauthorize Based on Emissions Tests	11.6	9.1	9.1
	5	-	8.7	8.7	9.0
Harroun	6	-	6.8	6.8	8.4
	9	-	6.2	6.2	8.4
Hawk	1	-	6.0	6.0	9.0
	7072	-	6.0	6.0	9.0
	7073	-	6.0	6.0	9.0
Hobson	7074	-	3.3	3.3	9.0
	7118	-	3.3	3.3	9.0
	7117	-	6.4	6.4	9.3
Цолго	2	-	8.7	8.7	9.0
House	3	-	8.7	8.7	9.0

Table 7. ACP Engines and Turbines Permitted, Baseline and VOC Rule Comparison (cont.)

Site	Unit	Proposed Modification for ACP	Permitted CO (8760 hrs) (tpy)	Baseline (Permitted or To Be Permitted) (tpy)	Rule CO Emission Limit (tpy)
	1A	Retire Unit	10.6	0.0	7.4
	2A	Retire Unit	10.6	0.0	7.4
	3A	Retire Unit	10.6	0.0	7.4
	4A	Retire Unit	5.2	0.0	7.4
	5A	Retire Unit	5.2	0.0	7.4
	C1	-	7.7	7.7	24.0
7.1."2	C2	-	7.7	7.7	24.0
Jal #3	C3	-	7.7	7.7	24.0
	C4	-	7.7	7.7	24.0
	S1	Retire Unit	15.5	0.0	21.6
	S2	Retire Unit	15.5	0.0	21.6
	S3	Retire Unit	15.5	0.0	21.6
	S4	Retire Unit	15.5	0.0	21.6
	S5	Retire Unit	5.8	0.0	13.5
	1	Retire Unit	5.3	0.0	9.3
Jal #4	2	-	5.3	5.3	9.3
	3	-	5.3	5.3	9.3
New James	7069	-	8.7	8.7	9.0
Ranch	7076	-	4.5	4.5	9.3
Nash Draw	1	Retain Current Permit Limits	12.0	12.0	7.7
	2	Retain Current Permit Limits	9.2	9.2	9.0
Oil Center	4	Retain Current Permit Limits	14.3	14.3	10.0
	ENG-2	-	8.7	8.7	9.0
Danas Divers	ENG-1	-	8.7	8.7	9.0
Pecos River	ENG-3	-	4.4	4.4	9.3
	ENG-4	-	11.2	11.2	12.0
	1A	-	4.7	4.7	12.0
Red Hills	2A	-	4.7	4.7	12.0
Red Hills	3A	-	3.7	3.7	9.0
	4B	-	4.7	4.7	12.0
	ENG-3	-	8.0	8.0	16.9
	ENG-4	-	8.0	8.0	16.9
Ross Draw	ENG-5	-	8.0	8.0	16.9
	ENG-1a	-	11.8	11.8	12.0
	ENG-2a	-	11.8	11.8	12.0

Table 7. ACP Engines and Turbines Permitted, Baseline and VOC Rule Comparison (cont.)

Site	Unit	Proposed Modification for ACP	Permitted CO (8760 hrs) (tpy)	Baseline (Permitted or To Be Permitted) (tpy)	Rule CO Emission Limit (tpy)
	ENG-1	-	3.4	3.4	12.7
	ENG-2	-	3.4	3.4	12.7
Dana Danah	ENG-3	-	3.4	3.4	12.7
Ross Ranch	ENG-4	-	6.7	6.7	12.0
	ENG-5	-	3.4	3.4	12.7
	ENG-6	-	3.4	3.4	12.7
Trestle	3	Retain Current Permit Limits	14.5	14.5	10.2
Wantz	3	-	2.1	2.1	10.0
	4	Retire Unit	15.5	0.0	21.6
West Eunice	6	-	6.0	6.0	9.0
	7	-	6.0	6.0	9.0
	C-1	-	8.8	8.8	16.0
	C-2	-	8.8	8.8	16.0
White City Road	C-3	-	8.8	8.8	16.0
,	C-4	-	8.8	8.8	16.0
	C-5	-	8.8	8.8	16.0
	1	-	12.7	12.7	12.7
	2	-	12.7	12.7	12.7
	3	-	12.7	12.7	12.7
Whitehorn	4	-	12.7	12.7	12.7
	5	-	10.1	10.1	12.7
	6	-	10.1	10.1	12.7
	001	Retain Current Permit Limits	11.6	11.6	8.1
Maljamar	002	Retain Current Permit Limits	7.6	7.6	7.2
Degwell	903	Retire Unit	43.4	0.0	30.4
Roswell	904	Retire Unit	43.4	0.0	30.4
A-14	1	Retire Unit	9.6	0.0	0.0
Cauth Familia	1	Retire Unit	13.3	0.0	7.4
South Eunice	2	Retire Unit	8.3	0.0	0.0
A. I. "5	760	Retain Current Permit Limits	8.5	8.5	7.4
Atoka #2	837	Retain Current Permit Limits	8.5	8.5	7.4
	1001	Retain Current Permit Limits	1.1	1.1	39.7
Bloomfield	1002	Retain Current Permit Limits	1.1	1.1	39.7
	1003	Retain Current Permit Limits	1.1	1.1	39.7

Table 7. ACP Engines and Turbines Permitted, Baseline and VOC Rule Comparison (cont.)

Site	Unit	Proposed Modification for ACP	Permitted CO (8760 hrs) (tpy)	Baseline (Permitted or To Be Permitted) (tpy)	Rule CO Emission Limit (tpy)
Cuantand	1	Unit has been planned for retirement for 12/31/2023	1.0	0.0	7.4
Crawford 2		Unit has been planned for retirement for 12/31/2023	1.0	0.0	7.4
Monument	1	Unit has been planned for retirement for 12/31/2023	0.2	0.0	8.1
Turbine Station	2	Unit has been planned for retirement for 12/31/2023	0.2	0.0	8.1

[&]quot;-" Indicates unit is already in compliance with 20.2.50.113 NMAC.

^{*} Indicates unit is not subject to 20.2.50.113 NMAC, but ETC will claim credit for its removal towards the fleet total

Based on the emission limits established in Subpart B of 20.2.50.113 NMAC for existing engines and turbines, ETC's fleet is required to meet a fleet-wide NO $_{\times}$ emission limit of 1861.52 tons per year, a fleet-wide CO emission limit of 1115.03 tons per year, and a fleet-wide VOC emission limit of 1333.57 tons per year by January 1, 2029 for engines and January 1, 2028 for turbines. This is summarized in Table 8 below.

This demonstrates compliance with the emission thresholds established in Subpart B of 20.2.50 113 NMAC and the compliance schedule as defined in 20.2.50.113.B(2) and 20.2.50.113.B(7) NMAC and shown below in Table 9 and Table 10. The net emissions compared to regulations is the difference between the regulatory threshold, as established in Subpart B of 20.2.50.113 NMAC, and the proposed fleet-wide emissions based on the modifications to their units. For NO_x , the fleet-wide emissions will be 423.36 tpy below the regulatory emissions threshold. For CO, the fleet-wide emissions will be 24.72 tpy below the regulatory emission threshold. For VOC, the fleet-wide emissions will be 730.95 tpy below the regulatory emission threshold.

Table 8. Rule Emissions Threshold Comparison

Pollutant	Regulatory Emissions Threshold (tpy)	Proposed Fleet-Wide Emissions (tpy)	Net Emissions Compared to the Regulation (tpy)
NO _x	1861.52	1438.16	-423.36
CO	1115.03	1090.31	-24.72
VOC	1333.57	602.62	-730.95

Table 9. Schedule of Compliance for Existing Engines

Regulatory Compliance Date	Total Percent Meeting Standard
January 1, 2025	30%
January 1, 2027	65%
January 1, 2029	100%

Table 10. Schedule of Compliance for Existing Turbines

Regulatory Compliance Date	Total Percent Meeting Standard
January 1, 2024	30%
January 1, 2026	65%
January 1, 2028	100%

4. ENVIRONEMENTAL JUSTICE CONSIDERATIONS

4.1 Background Information

New Mexico Environmental Justice Executive Order 2005-056¹ resulted in the creation of the New Mexico EJ Task Force, increased community outreach, notice and participation in permitting activities and public hearings in New Mexico. In 2008, New Mexico received the US EPA EJ National Achievement Award.

NMED has defined Environmental Justice as the following:²

"Environmental Justice at the New Mexico Environment Department is the fair treatment and meaningful opportunities for involvement of all New Mexicans regarding the development and enforcement of environmental laws and regulations."

The NMED Air Quality Bureau (AQB) develops Public Involvement Plans (PIPs) for the processing of air quality permit applications in accordance with the requirements at 20.2.72 NMAC. Elements presented by NMED AQB in the PIPs include:

- NMED assesses a combination of environmental and demographic factors (e.g., low income community, minority community, limited English proficiency individuals, linguistically isolated households, etc.) to ensure appropriate promotion of public outreach.
- EPA's EJSCREEN tool is used identify communities that are low income and minority populations for notification and outreach communication.
- A 4-mile radius from each facility
- (ACS) Summary Report

-

¹ https://www.env.nm.gov/wp-content/uploads/sites/10/2019/10/EO_2005_056.pdf

² https://www.env.nm.gov/general/environmental-justice-in-new-mexico/

4.2 Initial Filter Approach for Screening

In past screening experience, EPA has found it helpful to establish a suggested starting point for the purpose of identifying geographic areas that may warrant further consideration, analysis, or outreach. The use of an initial filter promotes consistency and provides a pragmatic first step for EPA programs and regions when interpreting screening results. For early applications of EJScreen, EPA identified the 80th percentile filter as that initial starting point. In other words, an area with any of the twelve EJ Indexes at or above the 80th percentile nationally should be considered as a potential candidate for further review. Further review may include considering other factors and other sources of information such as health-based information, local knowledge, proximity and exposure to environmental hazards, susceptible populations, unique exposure pathways, and other federal, regional, state, and local data. This filter is simply a starting point, and additional analysis should be performed before making any decisions about potential environmental justice issues. As EPA gains further experience and insight into the performance of the tool and its applicability for different uses, program offices and regions may opt to designate starting points that are more inclusive or specifically tailored to meet programmatic needs more effectively.

The 80th percentile filter in EJScreen is not intended to designate an area as an "EJ community." EJScreen provides screening level indicators, not a determination of the existence or absence of EJ concerns. Nor does the use of the 80th percentile filter suggest that all of the twelve environmental indicators are equal in terms of their impact on human health and the environment. Instead, the 80th percentile filter encourages programs to consider environmental indicators outside of their areas of concentration.

4.3 Uncertainty in Estimates for Small Areas

It is important to understand that EJScreen is not a detailed risk analysis. It is a screening tool that examines some of the relevant issues related to environmental justice, and there is uncertainty in the data included. It is important to understand both of these limitations.

The first limitation arises because a screening tool cannot capture all the relevant issues that should be considered (e.g., other environmental concerns). Any national screening tool must balance a desire for data quality and national coverage against the goal of including as many important environmental factors as feasible given resource constraints.

Many environmental concerns are not yet included in comprehensive, nationwide databases. For example, data on environmental factors such as drinking water quality and indoor air quality are not available with adequate quality, coverage and/or resolution to be included in this national screening tool. EJScreen cannot provide data on every environmental impact and demographic factor that may be important to any location. Therefore, its initial results should be supplemented with additional information and local knowledge whenever appropriate, for a more complete picture of a location.

The second important limitation is that EJScreen relies on demographic and environmental estimates that involve substantial uncertainty. This is especially true when looking at a small geographic area, such as a single Census block group. A single block group is often small and has uncertain estimates. Therefore, it is typically very useful and advisable to summarize EJScreen data within a larger area that may cover several block groups, in what is called a "buffer" report.

The demographic estimates, such as "percent" low-income, come from surveys, not a full census of all households. This means the Census Bureau may estimate that a block group is 30% low-income, for example, but it might actually be 20% or 40% in some cases.

All indicators are calculated for each block group. The only exception is certain environmental indicators for air quality (PM, ozone, and air toxics indicators). Those air data were obtained for each Census tract, so each block group in a tract was assigned the same environmental indicator value, as described in the Technical Documentation.

4.4 EJScreen Data Overview

4.4.1 Socioeconomic Indicators

All demographic indicators are from Census Bureau's ACS 2017-2021 5-year Summary. EJScreen uses socioeconomics indicators as very general indicators of a community's potential susceptibility to the types of environmental factors included in EJScreen. There are seven socioeconomic indicators featured in EJScreen. These indicators form the basis for both the demographic index and the supplemental demographic index:

- ▶ **People of Color** The percent of individuals in a block group who list their racial status as a race other than white alone and/or list their ethnicity as Hispanic or Latino. That is, all people other than non-Hispanic white-alone individuals. The word "alone" in this case indicates that the person is of a single race, not multiracial.
- ▶ **Low-Income** The percent of a block group's population in households where the household income is less than or equal to twice the federal "poverty level."
- ▶ **Unemployment Rate** The percent of a block group's population that did not have a job at all during the reporting period, made at least one specific active effort to find a job during the prior four weeks, and were available for work (unless temporarily ill).
- ▶ **Limited English-Speaking Household** A "limited English-speaking household" is one in which no member 14 years old and over (1) speaks only English or (2) speaks a non-English language and speaks English "very well." In other words, all members 14 years old and over have at least some difficulty with English.
- ▶ **Less than High School Education** Percent of people age 25 or older in a block group whose education is short of a high school diploma.
- ▶ **Under Age 5** Percent of people in a block group under the age of 5.
- ▶ **Over Age 64** Percent of people in a block group over the age of 64.

4.4.2 Demographic Index

The Demographic Index in EJScreen is a combination of percent low-income and percent people of color. These are the two demographic factors explicitly named in Executive Order 12898 on Environmental Justice. For each Census block group, these two numbers are simply averaged together. The formula is as follows:

$$Demographic\ Index = \frac{\%\ Low\ Income + \%\ People\ of\ Color}{2}$$

For example, if a Census block group has a low-income indicator value of 25% and a people of color indicator value of 75%, the Demographic Index value would be 50%.

4.4.3 Supplemental Demographic Index

The Supplemental Demographic Index uses the same updated methodology and calculation as the EJ Indexes but replaces the current Demographic Index (the average percent low-income and percent people of color) with a supplemental five-factor demographic index. The five socioeconomic indicators considered are percent low life expectancy, percent low-income, percent unemployed, percent limited English speaking, and percent less than high school education.

4.5 EJ Identification Assessment

Based on the Alternative Compliance Plan established in Section 3, some units will remain above the emissions requirements of Subsection B of 20.2.50.113 NMAC for NO_x , CO, or VOC on an individual basis. For these units, an initial filter screening, as described in Section 4.2, was conducted. For facilities identified during the initial filter screening as needing further evaluation, an additional analysis was conducted.

For the purposes of this evaluation, ETC facilities were grouped together. The communities surrounding each facility was evaluated independently.

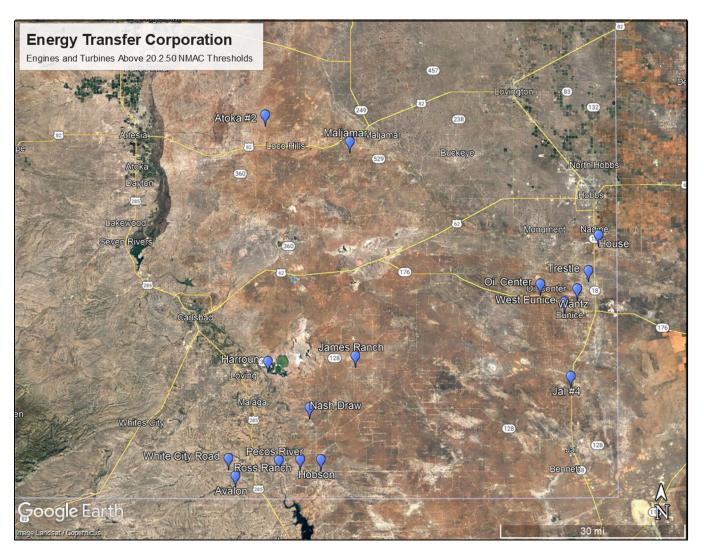



Figure 2. Locations of Engines and Turbines above 20.2.50 NMAC Thresholds - Northwest

Figure 3. Locations of Engines and Turbines above 20.2.50 NMAC Thresholds — Southeast

4.5.1 High-Level Summary

EJ aspects are moderate for ETC facilities because the <u>demographic indicators</u> that are most frequently analyzed vary for the area encompassing the facilities:

Demographic Index: 36% to 60% vs 51% state average
People of Color: 44% to 76% vs 62% state average
Low Income: 5% to 47% vs 40% state average

Although there is no definitive policy or procedure for EJ Index use, to date EPA has identified the 80th percentile as the starting point for identifying areas that may warrant further consideration, analysis, or outreach.³

The Federal CLEAN Future Act, as currently introduced, provides insight into being located in an "overburden census tract." The Act defines this as:

"Having a greater than 100 in 1 million total cancer risk per the National Air Toxics Assessment (NATA) [or] Having an annual mean concentration of PM_{2.5} or greater than 8 micrograms per cubic meter, as determined over the most recent 3-year period for which data are available.

For the locations of ETC facilities, NATA Cancer Risk and PM_{2.5} are below the proposed CLEAN Future Act overburdened census tract thresholds.

4.5.2 EJSCREEN Report and Mapping Considerations

4.5.2.1 Proximity Considerations

For ETC, the proximity of the facilities to tribal areas, schools, places of worship, and hospitals, parks, and facilities reporting to the EPA or the NMED were considered and evaluated:

- Tribal Areas
 - As shown in Figures 4 and 5, the nearest EPA Tribal Area is the Navajo Nation which is 17 miles from the closest ETC facility.
 - As shown in Figures 6 and 7, the following schools are located within a 4-mile radius of an ETC facility:
 - Central Primary;
 - Charlie Y Brown School;
 - Bloomfield Early Childhood Center;
 - Mesa Alta Junior High School;
 - Bloomfield High School;
 - Naaba Ani Elementary School;

³ EPA answer to question about EJSCREEN, Does EPA use any filters, benchmarks, or thresholds, as a part of interpreting indicators or indexes found in reports, as part of the screening process? - "In past screening experience, EPA has found it helpful to establish a suggested Agency starting point for the purpose of identifying geographic areas that may warrant further consideration, analysis or outreach. The use of an initial filter promotes consistency and provides a pragmatic first step for EPA programs and regions when interpreting screening results. For early applications of EJSCREEN, EPA identified the 80th percentile filter as that initial starting point. As EPA gains further experience and insight into the performance of the tool and its applicability for different uses, program offices and regions may opt to designate starting points that are more inclusive or specifically tailored to meet programmatic needs more effectively. Read the EJSCREEN Technical Documentation for more information on this topic. https://www.epa.gov/ejscreen/frequent-questions-about-ejscreen

- Eunice High School;
- Caton Middle School; and,
- Mettie Jordan Elementary School.
- There are a total of six places of worship located within a 4-mile radius of an ETC facility.
- There is one hospital located with a 4-mile radius of an ETC facility.
- Parks
 - As shown in Figures 8 and 9, there are no National Park Service (NPS) parks in close proximity to ETC facilities.
- Facilities Reporting to EPA (TRI and Superfund) TRI/RSEI
 - As shown in Figures 10 and 11, there are six TRI facilities reporting to the EPA within the 4-mile radius of an ETC facility.

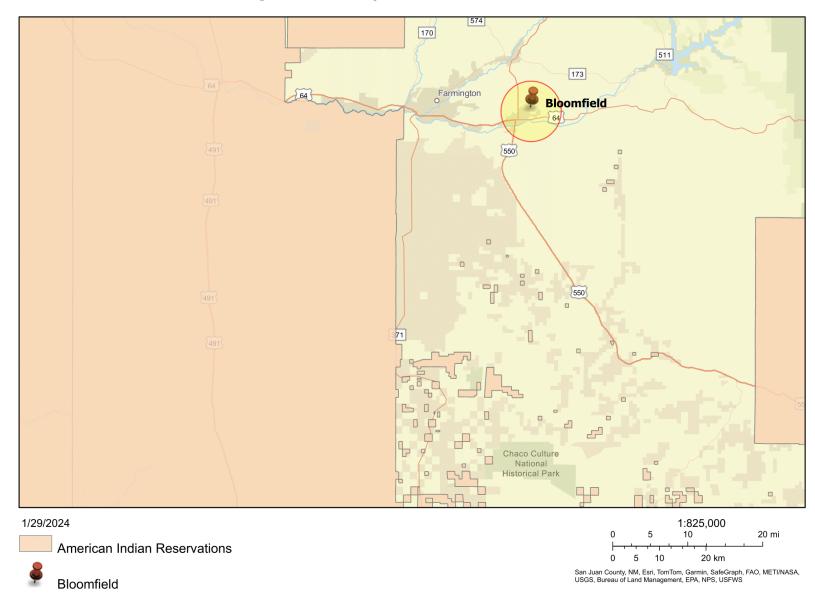


Figure 4. Proximity to Tribal Areas – Northwest

83 Atoka #2 Artesia **M**aljamar 285 62 Hobbs 285 House 62 Trestle 176 Oil Center Wantz **West Eunice** 31 176 62 New James Ranch Harroun Jal #4 Nash Draw 128 62 Carlsbad **Pecos River** Caverns National Park 128 115 White City Road Avalon Ross Ranch Hobson 1:825,000 10 1/29/2024 20 mi 5 10 20 km White City Road Texas Parks & Wildlife, CONANP, Esri, TomTom, Garmin, SafeGraph, FAO, METI/NASA, USGS, EPA, NPS, USFWS Ross Ranch Atoka #2

Figure 5. Proximity to Tribal Areas – Southeast

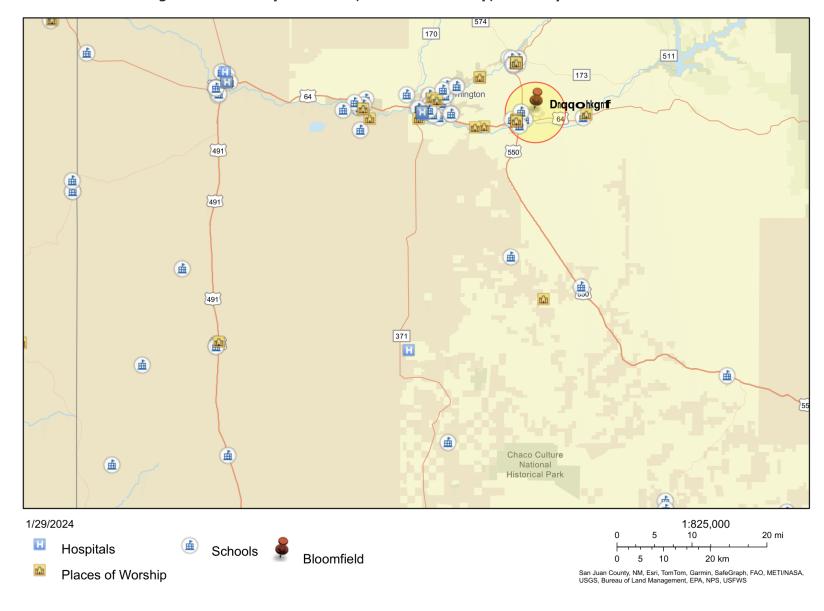


Figure 6. Proximity to Schools, Places of Worship, and Hospitals – Northwest

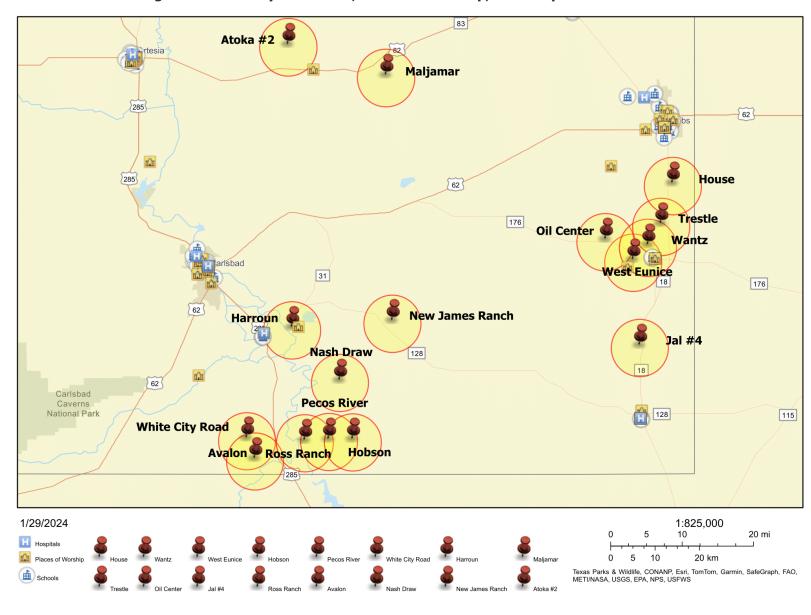


Figure 7. Proximity to Schools, Places of Worship, and Hospitals – Southeast

Figure 8. Proximity to Parks – Northwest

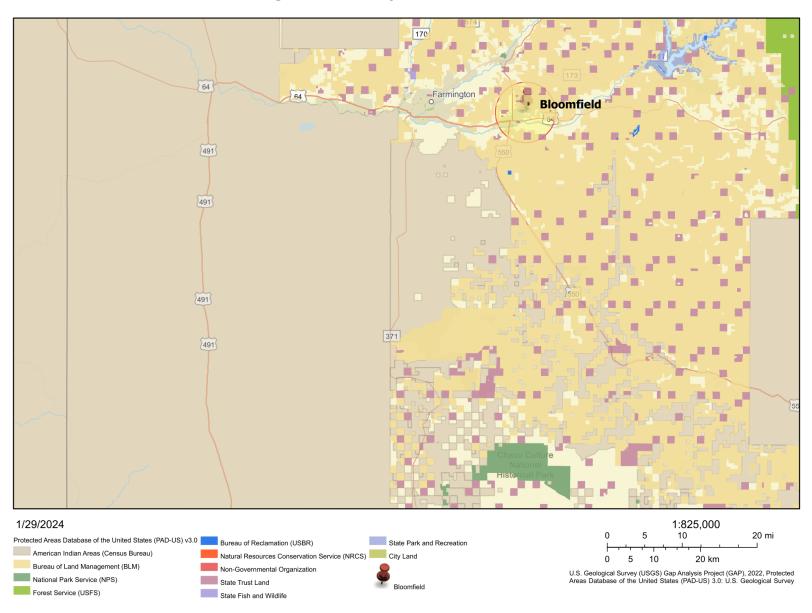
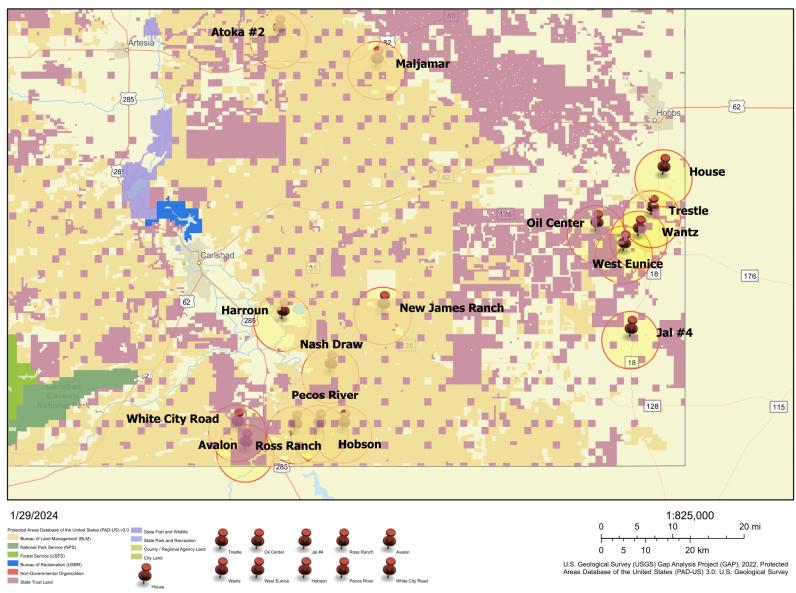



Figure 9. Proximity to Parks – Southeast

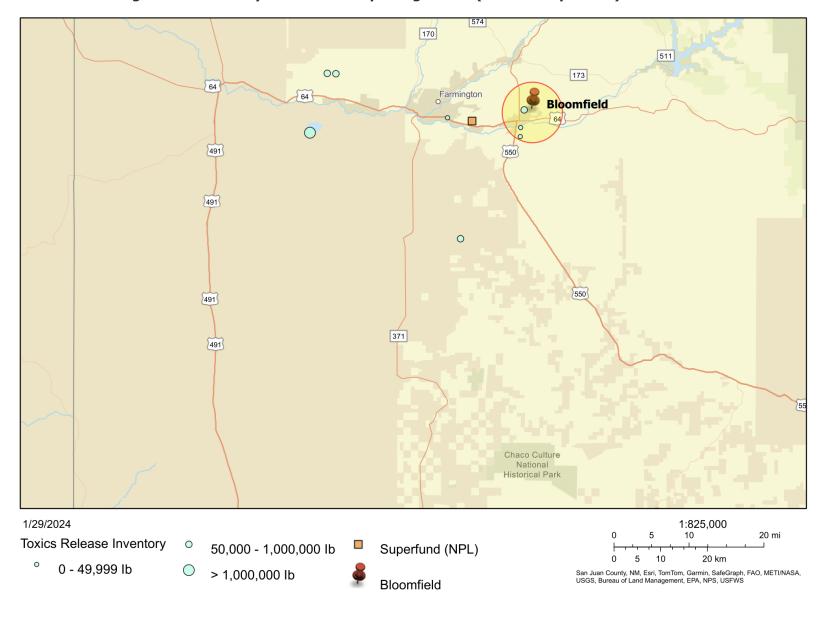


Figure 10. Proximity to Facilities Reporting to EPA (TRI and Superfund) – Northeast

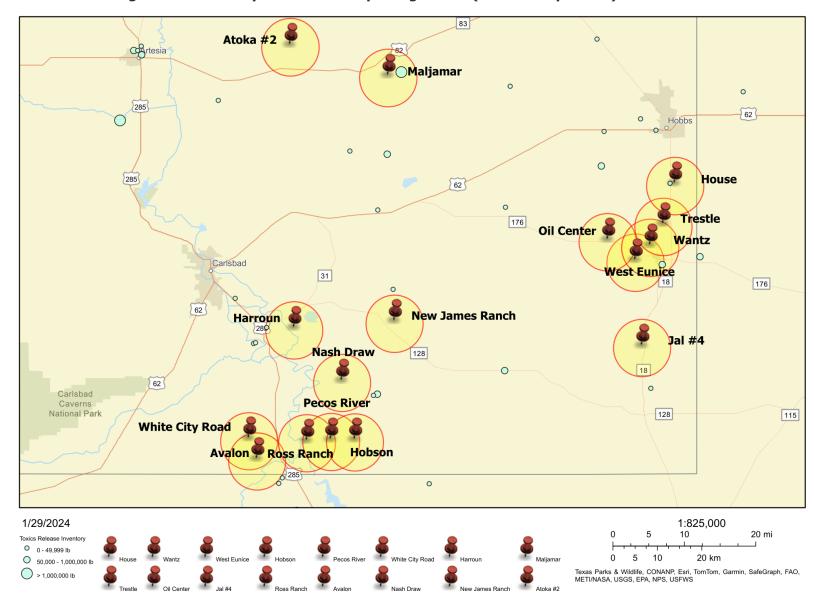


Figure 11. Proximity to Facilities Reporting to EPA (TRI and Superfund) – Southwest

4.5.2.2 Demographic Indicator Considerations

For the region encompassing the ETC facilities listed in the ACP, there is minimal population (18,350) within 850+ sq. mile area encompassing the facilities location. EJSCREEN demographic indicators were compiled for the 4-mile radius surrounding each facility as can be seen in Table 11. A detailed environmental indicators analysis was conducted for facilities that have **two or more** <u>socioeconomic</u> indicators or **one or more** <u>demographic</u> indicators (People of Color or Low Income) above the 80th percentile when compared to either state or national averages. This analysis can be found in Section 4.6 of this ACP.

4.5.2.3 Environmental Indicator Considerations

For the facilities in New Mexico subject to the ACP, ozone ranges from 61.1 ppb to 74.2 ppb with an average of 70.68 ppb. This average is slightly higher than the state average of 64.7 ppb, placing the fleet on average in the 88th percentile in the state. The average ozone is also higher than the national average (61.6 ppb), placing the fleet in the 91st percentile.

Particulate Matter smaller than 2.5 microns (on average 6.40 μ g/m³) is slightly higher than the state average (5.16 μ g/m³) but is still significantly lower than the national average (8.08 μ g/m³). The value is also lower than the 8 μ g/m³ threshold established in the proposed Federal CLEAN Future Act definition of an "overburdened census tract."

Air Toxics Cancer Risk (on average 22.73) is slightly higher than the state average (20 per million) but is still lower than the national average (28 per million). The value is also significantly lower than the 100 per million threshold established in the proposed Federal CLEAN Future Act definition of an "overburdened census tract."

Air Toxics Respiratory HI (on average 0.25) is slightly higher than the state average (0.21) but below the national average (0.31).

Lead Paint (on average 0.26% Pre-1960 Housing) is above the state average (0.19 % Pre-1960 Housing) but is still below the national average (0.3% Pre-1960 Housing).

RMP Facility Proximity (on average 0.46 facilities/km) is above both the state and national averages (0.15 and 0.43 facilities/km, respectively).

Other Air Quality Indicators show on average results **lower than or equal** to state and national averages, including, Diesel Particulate Matter, Toxic Releases to Air, Traffic Proximity, Superfund Proximity, Hazardous Waste Proximity, Underground Storage Tanks, and Wastewater Discharge.

Table 11. EJSCREEN ETC Facilities in New Mexico

	State Average	USA Average	ı	Atoka #2			Avalon		В	loomfield	i		Harroun			Hobson			House	
Population	2,116,000	331,900,000		-			-			9,949			819			-			318	
Indicators	Value	Value	Value	%tile in State	%tile in USA	Value	%tile in State	%tile in USA	Value	%tile in State	%tile in USA	Value	%tile in State	%tile in USA	Value	%tile in State	%tile in USA	Value	%tile in State	%tile in USA
Socioeconomic Indicators																				
Demographic Index	51	35	N/A	N/A	N/A	N/A	N/A	N/A	53	5 4	77	60	65	83	N/A	N/A	N/A	52	51	76
Supplemental Demographic Index	17	14	N/A	N/A	N/A	N/A	N/A	N/A	19	63	75	20	64	77	N/A	N/A	N/A	17	53	68
People of Color	62	39	N/A	N/A	N/A	N/A	N/A	N/A	60	45	72	76	67	81	N/A	N/A	N/A	56	40	70
Low Income	40	31	N/A	N/A	N/A	N/A	N/A	N/A	46	61	77	45	58	75	N/A	N/A	N/A	47	62	78
Unemployment Rate	7	6	N/A	N/A	N/A	N/A	N/A	N/A	5	51	56	8	67	74	N/A	N/A	N/A	0	0	0
Limited English Speaking	6	5	N/A	N/A	N/A	N/A	N/A	N/A	10	80	85	3	56	68	N/A	N/A	N/A	0	0	0
Less Than High School Education	14	12	N/A	N/A	N/A	N/A	N/A	N/A	14	61	70	22	76	83	N/A	N/A	N/A	12	55	65
Under Age 5	5	6	N/A	N/A	N/A	N/A	N/A	N/A	9	83	83	10	84	85	N/A	N/A	N/A	0	0	0
Over Age 64	19	17	N/A	N/A	N/A	N/A	N/A	N/A	17	49	55	15	40	46	N/A	N/A	N/A	18	54	59
Low Life Expectancy	19	20	N/A	N/A	N/A	N/A	N/A	N/A	19	39	41	20	60	59	N/A	N/A	N/A	23	87	83
Pollution and Sources																				
Particulate Matter 2.5 (µg/m3)	5.16	8.08	N/A	N/A	N/A	N/A	N/A	N/A	4.96	39	3	6.27	84	10	N/A	N/A	N/A	6.71	96	15
Ozone (ppb)	64.7	61.6	N/A	N/A	N/A	N/A	N/A	N/A	61.1	12	50	74.2	98	97	N/A	N/A	N/A	71	96	95
Diesel Particulate Matter* (µg/m3)	0.194	0.261	N/A	N/A	N/A	N/A	N/A	N/A	0.0457	22	3	0.0242	11	1	N/A	N/A	N/A	0.0394	18	2
Air Toxics Cancer Risk* (lifetime risk per million)	18	25	N/A	N/A	N/A	N/A	N/A	N/A	20	1	1	30	34	5	N/A	N/A	N/A	20	34	5
Air Toxics Respiratory HI*	0.21	0.31	NI/A	N/A	N/A	N/A	N/A	N/A	0.2	29	4	0.2	20	4	NI/A	N/A	N/A	0.2	20	4
Toxics Respiratory HI	29	4600	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.3 160	98	4 29	0.2 1.6	29 44	5	N/A	N/A N/A	N/A N/A	3	29 46	6
Traffic Proximity (daily traffic	29	7000	IN/A	N/A	IN/A	N/A	IN/A	N/A	100	90	29	1.0	44	5	N/A	IN/A	IN/A	3	40	0
count/distance to road)	84	210	N/A	N/A	N/A	N/A	N/A	N/A	3.4	19	9	0.23	4	0	N/A	N/A	N/A	1.6	14	6
Lead Paint (% Pre-1960 Housing)	0.19	0.3	N/A	N/A	N/A	N/A	N/A	N/A	0.095	48	34	0.21	65	49	N/A	N/A	N/A	0.54	89	76
Superfund Proximity (site count/km distance)	0.14	0.13	N/A	N/A	N/A	N/A	N/A	N/A	0.092	65	64	0.0094	10	3	N/A	N/A	N/A	0.012	20	5
RMP Facility Proximity (facility count/km distance)	0.15	0.43	N/A	N/A	N/A	N/A	N/A	N/A	0.46	92	74	0.94	98	87	N/A	N/A	N/A	0.2	78	57
Hazardous Waste Proximity (facility count/km distance)	0.73	1.9	N/A	N/A	N/A	N/A	N/A	N/A	0.059	28	11	0.05	26	9	N/A	N/A	N/A	0.17	48	31
Underground Storage Tanks (count/km2)	3.3	3.9	N/A	N/A	N/A	N/A	N/A	N/A	4.1	78	73	1.4	58	53	N/A	N/A	N/A	0.048	31	25
Wastewater Discharge (toxicity- weighted concentration/m distance)	0.47	22	N/A	N/A	N/A	N/A	N/A	N/A	0.0048	40	61	6.20E- 09	2	1	N/A	N/A	N/A	8.20E-12	0	0

^{*}N/A indicates that data is not available or that there is no recorded population within a 4-mile buffer zone of the facility.

Table 11. EJSCREEN ETC Facilities in New Mexico (cont.)

	State Average	USA Average		Jal #4		N	1aljamar		N	ash Drav	v	New	James Ra	anch	O	il Center		Pe	cos Rive	r
Population	2,116,000	331,900,000		8			9			-			12			42			10	
Indicators	Value	Value	Value	%tile in State	%tile in USA	Value	%tile in State	%tile in USA	Value	%tile in State	%tile in USA	Value	%tile in State	%tile in USA	Value	%tile in State	%tile in USA	Value	%tile in State	%tile in USA
Socioeconomic Indicators				State			State			<u> </u>			Diate			State			<u> </u>	
Demographic Index	51	35	40	32	64	36	24	59	N/A	N/A	N/A	53	53	77	49	47	74	53	53	77
Supplemental Demographic Index	17	14	17	53	68	9	18	30	N/A	N/A	N/A	20	66	78	16	51	65	20	66	78
People of Color	62	39	44	25	62	66	53	76	N/A	N/A	N/A	62	47	73	63	48	74	62	47	73
Low Income	40	31	36	45	64	5	4	9	N/A	N/A	N/A	43	55	73	36	45	64	43	55	73
Unemployment Rate	7	6	0	0	0	0	0	0	N/A	N/A	N/A	11	78	83	3	37	38	11	78	83
Limited English Speaking	6	5	13	86	89	0	0	0	N/A	N/A	N/A	4	62	73	0	0	0	4	62	73
Less Than High School Education	14	12	19	71	80	24	81	86	N/A	N/A	N/A	21	75	82	26	82	88	21	75	82
Under Age 5	5	6	5	52	47	14	93	95	N/A	N/A	N/A	11	87	89	5	59	54	11	87	89
Over Age 64	19	17	19	58	64	9	20	24	N/A	N/A	N/A	9	19	21	9	20	24	9	19	21
Low Life Expectancy	19	20	14	7	9	17	21	23	N/A	N/A	N/A	20	60	59	16	17	18	20	60	59
Pollution and Sources																				
Particulate Matter 2.5 (µg/m3)	5.16	8.08	6.64	96	14	6.02	77	8	N/A	N/A	N/A	6.29	84	10	6.81	97	17	6.29	84	10
Ozone (ppb)	64.7	61.6	71.7	97	96	67.9	84	88	N/A	N/A	N/A	74.2	98	97	70.8	96	95	74.2	98	97
Diesel Particulate Matter* (µg/m3)	0.194	0.261	0.0242	11	1	0.0246	12	1	N/A	N/A	N/A	0.0243	11	1	0.0299	15	1	0.0243	11	1
Air Toxics Cancer Risk* (lifetime risk per million)	18	25	20	34	5	20	34	5	N/A	N/A	N/A	30	87	52	20	34	5	30	87	52
Air Toxics Respiratory HI*	0.21	0.31	0.2	29	4	0.2	29	4	N/A	N/A	N/A	0.2	29	4	0.3	69	31	0.2	29	4
Toxic Releases to Air	29	4600	3.2	46	6	4.2	47	6	N/A	N/A	N/A	0.038	27	2	3.3	46	6	0.038	27	2
Traffic Proximity (daily traffic count/distance to road)	84	210	N/A	N/A	N/A	2.8	17	8	N/A	N/A	N/A	0.2	4	0	0.008	0	0	0.2	4	0
Lead Paint (% Pre-1960 Housing)	0.19	0.3	0.5	87	73	0.14	57	41	N/A	N/A	N/A	0.081	45	32	0.29	73	57	0.081	45	32
Superfund Proximity (site count/km distance)	0.14	0.13	0.03	40	29	0.009	7	3	N/A	N/A	N/A	0.0095	10	3	0.015	23	11	0.0095	10	3
RMP Facility Proximity (facility count/km distance)	0.15	0.43	0.15	67	44	0.095	50	27	N/A	N/A	N/A	0.64	96	81	0.37	89	71	0.64	96	81
Hazardous Waste Proximity (facility count/km distance)	0.73	1.9	0.027	18	3	0.078	35	15	N/A	N/A	N/A	0.048	26	9	0.1	40	20	0.048	26	9
Underground Storage Tanks (count/km2)	3.3	3.9	0.0052	23	0	0.0061	24	0	N/A	N/A	N/A	0.0076	25	0	0.03	29	24	0.0076	25	0
Wastewater Discharge (toxicity- weighted concentration/m distance)	0.47	22	N/A	N/A	N/A	2.50E- 12	0	0	N/A	N/A	N/A	7.80E- 09	2	1	0	0	0	7.80E-09	2	1

^{*}N/A indicates that data is not available or that there is no recorded population within a 4-mile buffer zone of the facility.

Table 11. EJSCREEN ETC Facilities in New Mexico (cont.)

Population 2,116,000 331,900,000 Value		State Average	USA Average	Ro	oss Ranci	1		Trestle			Wantz		W	est Euni	ce	Whi	te City R	load
Name	Population	2,116,000	331,900,000		-			404			3,435			3,344			-	
Demographic Index 51 35	Indicators	Value	Value	Value	in		Value	in		Value	in		Value	in		Value	in	
Supplemental Demographic Index 17	Socioeconomic Indicators																	
People of Color 62 39 N/A N/A N/A 59 43 71 55 38 59 55 38 69 N/A N/A N/A N/A N/A Low Income 40 31 N/A N/A N/A N/A N/A 35 44 63 36 46 64 36 46 65 N/A	Demographic Index	51	35	N/A	N/A	N/A	47	43	71	46	41	70	46	41	70	N/A	N/A	N/A
Low Income	Supplemental Demographic Index	17	14	N/A	N/A	N/A	16	51	65	19	62	75	19	62	75	N/A	N/A	N/A
Unemployment Rate 7 6 N/A N/A N/A 4 49 53 7 62 69 7 62 69 N/A	People of Color	62	39	N/A	N/A	N/A	59	43	71	55	38	59	55	38	69	N/A	N/A	N/A
Limited English Speaking 6 5 N/A N/A N/A N/A 0 0 0 57 11 82 86 11 82 86 N/A N/A N/A N/A N/A Less Than High School Education 14 12 N/A N/A N/A N/A 24 81 86 27 84 89 27 84 89 N/A	Low Income	40	31	N/A	N/A	N/A	35	44	63	36	46	64	36	46	65	N/A	N/A	N/A
Less Than High School Education Under Age 5 5 6 N/A	Unemployment Rate	7	6	N/A	N/A	N/A	4	49	53	7	62	69	7	62	69	N/A	N/A	N/A
Under Age 5 5 6 N/A N/A N/A N/A 1 52 46 4 49 42 4 48 42 N/A	Limited English Speaking	6	5	N/A	N/A	N/A	0	0	57	11	82	86	11	82	86	N/A	N/A	N/A
Over Age 64 19 17 N/A N/A N/A 11 25 30 14 38 43 14 39 43 N/A	Less Than High School Education	14	12	N/A	N/A	N/A	24	81	86	27	84	89	27	84	89	N/A	N/A	N/A
Low Life Expectancy 19 20 N/A N/A N/A 16 17 18 16 17 18 16 17 18 N/A	Under Age 5	5	6	N/A	N/A	N/A	4	52	46	4	49	42	4	48	42	N/A	N/A	N/A
Low Life Expectancy 19 20 N/A N/A N/A 16 17 18 16 17 18 16 17 18 N/A	Over Age 64	19	17	N/A	N/A	N/A	11	25	30	14	38	43	14	39	43	N/A	N/A	N/A
Particulate Matter 2.5 (μg/m3) 5.16 8.08 N/A N/A N/A N/A 6.81 97 17 6.81 93 10 20 20 20	Low Life Expectancy	19	20	N/A	N/A		16	17	18	16	17	18	16	17	18	N/A	N/A	
Ozone (ppb) 64.7 61.6 N/A	Pollution and Sources															-	-	-
Ozone (ppb) 64.7 Diesel Particulate Matter* (μg/m3) 64.7 0.8 0.261 N/A	Particulate Matter 2.5 (µg/m3)	5.16	8.08	N/A	N/A	N/A	6.81	97	17	6.81	97	17	6.81	97	17	N/A	N/A	N/A
Diesel Particulate Matter* (µg/m3)		64.7	61.6	-	-	-	70.8	96	95	70.8	96	95	70.8	96	95	-	-	-
risk per million) Air Toxics Respiratory HI* Toxic Releases to Air Toxic Releases to Air Traffic Proximity (daily traffic count/distance to road) Lead Paint (% Pre-1960 Housing) Superfund Proximity (site count/km distance) 18 25 N/A	,	0.194			•	-	0.0299		1	0.0299	15		0.0299		1	•	-	-
risk per million) Air Toxics Respiratory HI* Toxic Releases to Air Toxic Releases to Air Traffic Proximity (daily traffic count/distance to road) Lead Paint (% Pre-1960 Housing) Superfund Proximity (site count/km distance) 18 25 N/A	Air Toxics Cancer Risk* (lifetime	40	25						_			_			_			
Toxic Releases to Air Traffic Proximity (daily traffic count/distance to road) Lead Paint (% Pre-1960 Housing) Superfund Proximity (site count/km distance) 29 4600 N/A	risk per million)	18	25	N/A	N/A	N/A	20	34	5	20	34	5	20	34	5	N/A	N/A	N/A
Traffic Proximity (daily traffic count/distance to road) 84 210 N/A N/A N/A 0.006 0 0.003 0 0.002 0 0 N/A	Air Toxics Respiratory HI*	0.21	0.31	N/A	N/A	N/A	0.3	69	31	0.3	69	31	0.3	69	31	N/A	N/A	N/A
Traffic Proximity (daily traffic count/distance to road) 84 210 N/A N/A N/A 0.006 0 0.003 0 0.002 0 0 N/A	Toxic Releases to Air	29	4600	N/A	N/A	N/A	3.1	46	6	2.5	45	5	2.5	45	5	N/A	N/A	N/A
count/distance to road) 84 210 N/A N/A N/A N/A 0.006 0 0.003 0 0.002 0 0 N/A	Traffic Proximity (daily traffic	24	240					_			_	_		_	_		-	-
Lead Paint (% Pre-1960 Housing) 0.19 0.3 N/A N/A N/A N/A 0.28 72 56 0.3 74 58 0.3 74 58 N/A		84	210	N/A	N/A	N/A	0.006	0	0	0.003	0	0	0.002	0	0	N/A	N/A	N/A
Superfund Proximity (site count/km distance) 0.14 0.13 N/A N/A N/A N/A 0.015 23 11 0.015 23 11 0.015 23 11 N/A	·	0.19	0.3	N/A	N/A	N/A	0.28	72	56	0.3	74	58	0.3	74	58	N/A	N/A	N/A
distance) 0.14 0.13 N/A N/A N/A 0.015 23 11 0.015 23 11 0.015 23 11 N/A N/A N/A N/A	\	0.44		•	•	•										•	•	,
, , , , , , , , , , , , , , , , , , , ,		0.14	0.13	N/A	N/A	N/A	0.015	23	11	0.015	23	11	0.015	23	11	N/A	N/A	N/A
RMP Facility Proximity (facility 0.45 0.42 0.45 0.	RMP Facility Proximity (facility	0.45	0.40															
count/km distance) 0.15 0.43 N/A N/A N/A 0.4 91 72 0.57 94 78 0.54 95 78 N/A N/A N/A N/A		0.15	0.43	N/A	N/A	N/A	0.4	91	72	0.57	94	78	0.54	95	78	N/A	N/A	N/A
Hazardous Waste Provimity (facility																		
count/km distance) 0.73 1.9 N/A N/A N/A 0.1 40 20 0.1 40 20 0.1 40 20 N/A N/A N/A N/A		0./3	1.9	N/A	N/A	N/A	0.1	40	20	0.1	40	20	0.1	40	20	N/A	N/A	N/A
Underground Storage Tanks																		
(count/km2) 3.3 3.9 N/A N/A N/A N/A 1.3 57 52 3.6 75 70 3.7 76 71 N/A N/A N/A N/A N/A		3.3	3.9	N/A	N/A	N/A	1.3	57	52	3.6	75	70	3.7	76	71	N/A	N/A	N/A
Wastewater Discharge (toxicity-	` ' '																	
weighted concentration/m 0.47 22 N/A	- ` '	0.47	22	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
distance)	1	,	- -	,,,	, , ,	, , .	,,,	,,,	,, .	, , ,	, , ,	,,,	,,,	, , .	,, .	, , ,	, , ,	, , ,

^{*}N/A indicates that data is not available or that there is no recorded population within a 4-mile buffer zone of the facility.

4.6 Additional Analysis for Communities Above 80th Percentile Socioeconomic Indicators

4.6.1 Bloomfield

The community surrounding the Bloomfield facility was below the 80th percentile when compared to state and national averages for all socioeconomic indicators except for Limited English Speaking (85th percentile in USA) and Under Age 5 (83rd percentile in State and USA). Further analysis was conducted on the proximity of the surrounding community to pollution and sources.

The following EJSCREEN pollution and source indicators are **below or equal to** the state averages:

- Particulate Matter 2.5
- Ozone
- Diesel Particulate Matter
- Air Toxics Cancer Risk
- Traffic Proximity
- Lead Paint
- Superfund Proximity
- Hazardous Waste Proximity
- Wastewater Discharge

The following EJSCREEN demographic indicators are **below or equal to** the national averages:

- Particulate Matter 2.5
- Ozone
- Diesel Particulate Matter
- Air Toxics Cancer Risk
- Air Toxics Respiratory HI
- Toxic Releases to Air
- Traffic Proximity
- Lead Paint
- Superfund Proximity
- Hazardous Waste Proximity
- Wastewater Discharge

Additionally, Particulate Matter 2.5, Ozone, Diesel Particulate Matter, Air Toxics Cancer Risk, Traffic Proximity, Lead Paint, and Hazardous Waste Proximity are all below the 50th percentile when compared to both the state and national averages. The community surrounding the Bloomfield facility is below the proposed Clean Future Act overburdened census tract thresholds for NATA Cancer Risk and PM_{2.5}.

4.6.2 Harroun

The community surrounding the Harroun facility was below the 80th percentile when compared to state and national averages for all socioeconomic indicators except for Demographic Index (83rd percentile in USA), People of Color (81st percentile in USA), Less Than High School Education (83rd percentile in USA), Population Under Age 5 (84th percentile in state and 85th percentile in USA). Further analysis was conducted on the proximity of the surrounding community to pollution and sources.

The following EJSCREEN pollution and source indicators are **below or equal to** the <u>state</u> averages:

- Diesel Particulate Matter
- Air Toxics Respiratory HI
- Toxic Releases to Air
- Traffic Proximity
- Superfund Proximity
- Hazardous Waste Proximity
- Underground Storage Tanks
- Wastewater Discharge

The following EJSCREEN demographic indicators are **below or equal to** the <u>national</u> averages:

- Particulate Matter 2.5
- Diesel Particulate Matter
- Air Toxics Respiratory HI
- Toxic Releases to Air
- Traffic Proximity
- Lead Paint
- Superfund Proximity
- Hazardous Waste Proximity
- Underground Storage Tanks
- Wastewater Discharge

Additionally, Diesel Particulate Matter, Air Toxics Respiratory HI, Toxic Releases to Air, Traffic Proximity, Superfund Proximity, Hazardous Waste Proximity, and Wastewater Discharge are all below the 50th percentile when compared to both the state and national averages. The community surrounding the Harroun facility is below the proposed Clean Future Act overburdened census tract thresholds for NATA Cancer Risk and PM_{2.5}.

4.6.3 Maljamar

The community surrounding the Maljamar facility was below the 80th percentile when compared to state and national averages for all socioeconomic indicators except for Less than High School Education (81st percentile in state and 86th percentile in USA) and Under Age 5 (93rd percentile in State and 95th percentile in USA). Further analysis was conducted on the proximity of the surrounding community to pollution and sources.

The following EJSCREEN pollution and source indicators are **below or equal to** the <u>state</u> averages:

- Diesel Particulate Matter
- Air Toxics Cancer Risk
- Air Toxics Respiratory HI
- Toxic Releases to Air
- Traffic Proximity
- Lead Paint
- Superfund Proximity
- RMP Facility Proximity
- Hazardous Waste Proximity
- Underground Storage Tanks
- Wastewater Discharge

The following EJSCREEN demographic indicators are **below or equal to** the <u>national</u> averages:

- Particulate Matter 2.5
- Diesel Particulate Matter
- Air Toxics Cancer Risk
- Air Toxics Respiratory HI
- Toxic Releases to Air
- Traffic Proximity
- Lead Paint
- Superfund Proximity
- RMP Facility Proximity
- Hazardous Waste Proximity
- Underground Storage Tanks
- Wastewater Discharge

Additionally, Diesel Particulate Matter, Air Toxics Cancer Risk, Air Toxics Respiratory HI, Toxic Releases to Air, Traffic Proximity, Superfund Proximity, RMP Facility Proximity, Hazardous Wast Proximity, Underground Storage Tanks, and Wastewater Discharge are all below the 50th percentile when compared to both the state and national averages. The community surrounding the Maljamar facility is below the proposed Clean Future Act overburdened census tract thresholds for NATA Cancer Risk and PM_{2.5}.

4.6.4 New James Ranch

The community surrounding the New James Ranch facility was below the 80th percentile when compared to state and national averages for all socioeconomic indicators except for Unemployment Rate (83rd percentile in USA), Less Than High School Education (82nd percentile in USA), and Population Under Age 5 (87th percentile in state and 89th percentile in USA). Further analysis was conducted on the proximity of the surrounding community to pollution and sources.

The following EJSCREEN pollution and source indicators are **below or equal to** the state averages:

- Diesel Particulate Matter
- Air Toxics Respiratory HI
- Toxic Releases to Air
- Traffic Proximity
- Lead Paint
- Superfund Proximity
- Hazardous Waste Proximity
- Underground Storage Tanks
- Wastewater Discharge

The following EJSCREEN demographic indicators are **below or equal to** the <u>national</u> averages:

- Particulate Matter 2.5
- Diesel Particulate Matter
- Air Toxics Respiratory HI
- Toxic Releases to Air
- Traffic Proximity
- Lead Paint
- Superfund Proximity
- Hazardous Waste Proximity
- Underground Storage Tanks
- Wastewater Discharge

Additionally, Diesel Particulate Matter, Air Toxics Respiratory HI, Toxic Releases to Air, Traffic Proximity, Lead Paint, Superfund Proximity, Hazardous Waste Proximity, Underground Storage Tanks, and Wastewater Discharge are all below the 50th percentile when compared to both the state and national averages. The community surrounding the New James Ranch facility is below the proposed Clean Future Act overburdened census tract thresholds for NATA Cancer Risk and PM_{2.5}.

4.6.5 Pecos River

The community surrounding the Pecos River facility was below the 80th percentile when compared to state and national averages for all socioeconomic indicators except for Unemployment Rate (83rd percentile in USA), Less Than High School Education (82nd percentile in USA), and Under Age 5 (87th percentile in state and 89th percentile in USA). Further analysis was conducted on the proximity of the surrounding community to pollution and sources.

The following EJSCREEN pollution and source indicators are **below or equal to** the <u>state</u> averages:

- Diesel Particulate Matter
- Air Toxics Respiratory HI
- Toxic Releases to Air
- Traffic Proximity
- Lead Paint
- Superfund Proximity
- Hazardous Waste Proximity
- Underground Storage Tanks
- Wastewater Discharge

The following EJSCREEN demographic indicators are **below or equal to** the national averages:

- Particulate Matter 2.5
- Diesel Particulate Matter
- Air Toxics Respiratory HI
- Toxic Releases to Air
- Traffic Proximity
- Lead Paint
- Superfund Proximity
- Hazardous Waste Proximity
- Underground Storage Tanks
- Wastewater Discharge

Additionally, Diesel Particulate Matter, Air Toxics Respiratory HI, Toxic Releases to Air, Traffic Proximity, Lead Paint, Superfund Proximity, Hazardous Waste Proximity, Underground Storage Tanks, and Wastewater Discharge are all below the 50th percentile when compared to both the state and national averages. The community surrounding the New James Ranch facility is below the proposed Clean Future Act overburdened census tract thresholds for NATA Cancer Risk and PM_{2.5}.

4.6.6 Wantz

The community surrounding the Wantz facility was below the 80th percentile when compared to state and national averages for all socioeconomic indicators except for Limited English Speaking (82nd percentile in state and 86th percentile in USA) and Less Than High School Education (84th percentile in State and 89th

percentile in USA). Further analysis was conducted on the proximity of the surrounding community to pollution and sources.

The following EJSCREEN pollution and source indicators are **below or equal to** the <u>state</u> averages:

- Diesel Particulate Matter
- Air Toxics Cancer Risk
- Toxic Releases to Air
- Traffic Proximity
- Superfund Proximity
- Hazardous Waste Proximity
- Wastewater Discharge

The following EJSCREEN demographic indicators are **below or equal to** the <u>national</u> averages:

- Particulate Matter 2.5
- Diesel Particulate Matter
- Air Toxics Cancer Risk
- Air Toxics Respiratory HI
- Toxic Releases to Air
- Traffic Proximity
- Lead Paint
- Superfund Proximity
- Hazardous Waste Proximity
- Underground Storage Tanks
- Wastewater Discharge

Additionally, Diesel Particulate Matter, Air Toxics Cancer Risk, Toxic Releases to Air, Traffic Proximity, Superfund Proximity, Hazardous Waste Proximity, and Wastewater Discharge are all below the 50^{th} percentile when compared to both the state and national averages. The community surrounding the Wantz facility is below the proposed Clean Future Act overburdened census tract thresholds for NATA Cancer Risk and $PM_{2.5}$.

4.6.7 West Eunice

The community surrounding the West Eunice facility was below the 80th percentile when compared to state and national averages for all socioeconomic indicators except for Limited English Speaking (82nd percentile in state and 86th percentile in USA) and Less Than High School Education (84th percentile in State and 89th percentile in USA). Further analysis was conducted on the proximity of the surrounding community to pollution and sources.

The following EJSCREEN pollution and source indicators are **below or equal to** the <u>state</u> averages:

- Diesel Particulate Matter
- Air Toxics Cancer Risk
- ◆ Toxic Releases to Air
- Traffic Proximity
- Superfund Proximity
- Hazardous Waste Proximity
- Wastewater Discharge

The following EJSCREEN demographic indicators are **below or equal to** the <u>national</u> averages:

- Particulate Matter 2.5
- Diesel Particulate Matter
- Air Toxics Cancer Risk
- Air Toxics Respiratory HI
- Toxic Releases to Air
- Traffic Proximity
- Lead Paint
- Superfund Proximity
- Hazardous Waste Proximity
- Underground Storage Tanks
- Wastewater Discharge

Additionally, Diesel Particulate Matter, Air Toxics Cancer Risk, Toxic Releases to Air, Traffic Proximity, Superfund Proximity, Hazardous Waste Proximity, and Wastewater Discharge are all below the 50th percentile when compared to both the state and national averages. The community surrounding the West Eunice facility is below the proposed Clean Future Act overburdened census tract thresholds for NATA Cancer Risk and PM_{2.5}.

4.6.8 Summary of Facilities in New Mexico

Facilities and surrounding communities in New Mexico that were identified as needing an additional analysis and evaluated by ETC were determined to not be significantly impacted by surrounding pollution and sources as shown by the pollution and sources indicators. Additionally, the communities surrounding each of the facilities in New Mexico are below the proposed Clean Future Act overburdened census tract thresholds for NATA Cancer Risk and PM_{2.5}

5. THIRD PARTY CERTIFICATION

Energy Transfer Company Alternative Compliance Plan Independent 3rd Party Review and Certification

February 2024

Prepared for:

Energy Transfer Company 2564 Pecos Hwy Carlsbad, NM 88220

Reviewed and Certified by:

Alliant Environmental, LLC 7804 Pan American Fwy. NE Albuquerque, NM 87109

TABLE OF CONTENTS

Section	<u>Page</u>
1.0 INTRODUCTION	3
2.0 ALTERNATIVE COMPLIANCE PLAN REVIEW AND CERTIFICATIO	N 4

1.0 INTRODUCTION

Energy Transfer Company (ETC) is a transmission and gathering/processing oil and gas company that owns and operates numerous facilities at various locations in northwest and southeast New Mexico in affected counties.

Each existing engine and stationary combustion turbine evaluated in the proposed Alternative Compliance Plan (ACP) are subject to the applicable emissions standards in Table 1 of Paragraph (2) and Table 3 of Paragraph (7) of Subsection B of 20.2.50.113 NMAC. In lieu of meeting the emissions standards for individual turbines and engines, 20.2.50.113.B(10) NMAC allows for an owner or operator to comply with emission standards through an ACP.

Under 20.2.50.113.B(10)(a) NMAC, it is required that a proposed ACP undergoes an independent third-party review and certification prior to submittal to the New Mexico Environment Department (NMED). The owner or operator must contract with an independent third-party engineering or consulting firm to conduct a technical and regulatory review of the proposed ACP. A proposed ACP must be approved by the New Mexico Environment Department (NMED) before it can be implemented.

Trinity Consultants assisted in the preparation of the proposed ACP for ETC and addressed nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compound (VOC) emissions from the existing combustion engines and turbines listed in the ACP. Alliant Environmental was hired as the independent third-party reviewer and certifier of the proposed ACP prior to submittal to NMED. This letter report and third-party certification contains a summary of Alliant Environmental's review of the proposed ACP presented to Alliant Environmental on February 8, 2024 under the document name "Energy Transfer_ACP_v4.0_2024 0206" and that the requirements under 20.2.50.113.B(10) NMAC are met. In addition, an environmental justice review was performed and included in the proposed ACP, evaluating areas surrounding combustion engines and turbines of the fleet that are on an individual basis in excess of the limits established in 20.2.50.113 NMAC.

2.0 ALTERNATIVE COMPLIANCE PLAN REVIEW AND CERTIFICATION

ETC is submitting a proposed ACP for NOx, CO and VOC emissions from all combustion engines and turbines in their fleet at the locations presented in the ACP.

The following requirement in 20.2.50.113.B(10) NMAC must be met for an ACP:

B(10) In lieu of complying with the emission standards for individual engines and turbines established in Subsection B of 20.2.50.113 NMAC, an owner or operator may elect to comply with the emission standards through an Alternative Compliance Plan (ACP) approved by the department. An ACP must include the list of engines or turbines subject to the ACP, and a demonstration that the total allowable emissions for the engines or turbines subject to the ACP will not exceed the total allowable emissions under the emission standards of this Part. Prior to submitting a proposed ACP to the Department, the owner or operator shall comply with the following:

(a) The owner or operator shall contract with an independent third-party engineering or consulting firm to conduct a technical and regulatory review of the ACP proposal. The selected firm shall review the proposal to determine if it meets the requirements of this Part, and shall prepare and certify an evaluation of the proposed ACP indicting whether the ACP proposal adheres to the requirements of this Part.

Tables 1 and 2 of the proposed ACP contain the emissions standards under 20.2.50.113.B(2) and (7) NMAC. Tables 3 and 4 of the proposed ACP provide a list and information of all existing combustion engines and turbines subject to the ACP. These tables include site name, unit numbers, make and model of each engine and turbine as well as currently permitted NOx, CO and VOC emissions in tons per year (tpy). Alliant Environmental reviewed the existing engines and turbines information provided and based on the information received from Trinity Consultants and ETC and information located on NMED's APMAP website, confirmed the following:

- All applicable engines and turbines in ETC's fleet were considered according to existing and current permits
- The locations of the engines and turbines are within the counties as listed in 20.2.50 NMAC
- All applicable emission standards

Pursuant to 20.2.50.113.B(2), ETC conducted an inventory of their turbines and engines and conducted stack testing for the units in their fleet. ETC compiled a list of engines and turbines that are not in compliance with the emission limits per 20.2.50.113.B for NOx, CO and VOC on an individual basis. In order to meet fleet-wide compliance under Subsection B of 20.2.50.113, ETC will retire various units or re-permit various units based on stack test data or the installation of emissions controls such as catalyst. This will reduce enforceable emissions to meet the rules emission limits.

Currently permitted annual emission rates for NOx, CO, and VOC and stack testing results were evaluated for each unit. Alliant Environmental reviewed and verified permitted emission rates and stack test data that was made available for review in the provided ACP to confirm the methodology

used to calculate and reduce emissions. Some minor rounding (tenths) may differ during the repermitting actions when comparing currently permitted values to calculated values.

Alliant Environmental agrees with the approach ETC is proposing in the ACP to reach the required emission standards, assuming that NMED will authorize the proposed re-permitting of sources during the permit revision application reviews. The total emission rate allowed by the standard was calculated by summing the allowable emission limits for each engine and turbine from all facilities included in the ACP.

The final Net Emissions compared to the regulation of -423.36 tpy of NOx, -24.72 tpy of CO, and -730.95 tpy of VOC as listed in Table 8 of the proposed ACP were verified to be accurate. These values may differ slightly after re-permitting is completed due to permit application data review and final calculations, including some rounding differences.

The reductions in allowable emissions are proposed to be achieved through retiring units, repermitting and reducing enforceable emission limits for certain engines and turbines based on actual stack test data. Alliant Environmental verified the method used to determine the value and the accuracy of the results. The proposed ACP would fulfill the requirements in emissions reductions per the regulation. In addition, Alliant Environmental verifies that the requirement to include an inventory of engines and turbines subject to the ACP has been met.

Environmental Justice Considerations

The ozone precursor rule under 20.2.50 NMAC does not require any evaluation of environmental justice considerations. Similar to NMED's development of Public Involvement Plans (PIPs) for processing air quality permit applications; however, ETC included Environmental Justice considerations in their proposed ACP.

Some units in the proposed ACP will remain above the emissions requirements of Subsection B of 20.2.50.113 NMAC for NOx, CO and VOC on an individual basis. For these units, an initial filter screening, as described in Section 4.2 of the proposed ACP, was conducted. Further analysis was performed on facilities identified during the initial filter screening as needing further evaluation. For the purposes of this evaluation, ETC facilities were grouped by geographic location, Northwest New Mexico and Southeast New Mexico. The community surrounding each facility was evaluated independently for both socioeconomic indicators and pollution and source indicators, as necessary.

Based on the information provided in the proposed ACP, Alliant Environmental verifies that based on the methodologies followed under the Environmental Justice Considerations section of the ACP, the National Air Toxics Cancer Risk and the annual mean concentration of PM2.5 are below the proposed CLEAN Future Act overburden census tract thresholds. The Environmental Justice review further determined that facilities and surrounding communities are not significantly impacted by surrounding emission sources as demonstrated by pollution and source indicators values from EPA's EJSCREEN analysis included in the proposed ACP.

This letter report summarizes the third-party review by Alliant Environmental and certifies that the proposed ACP by ETC is complete and sufficient.

ALLIANT ENVIRONMENTAL, LLC

6

APPENDIX A. STACK TEST RESULTS

Phone (505) 476-4300 Fax (505) 476-4375

Version 1/1/2	010							
NMED USE ONLY								
DTS								
TEMPO								

UNIVERSAL STACK TEST NOTIFICATION, PROTOCOL AND REPORT FORM

NMED USE ONLY							
Staff							
Admin							

Submit to: Stacktest.aqb@state.nm.us

od)							
 /							
only)							
GCP-OG#7291M1, 40 CFR 60 Subpart JJJJ							

	II. GENE	RAL COMPANY A	ND FACILITY INFORMATION	ON					
a.Company Address:			k Facility Address:						
600 N. Marienfield S	Str., Suit	te 700	32.06898, -103.20497						
b. City:	c. State:	d. Zip:	I. City:	m. State:	n. Zip:				
Midland	TX	7 9 7 0 1		NM					
e. Environmental Contact:	f. Title:		o. Facility Contact:	p. Title:					
Clarence Rasco	Env. S	pecialist	Larry Hummel	Mana	ger				
g. Phone Number:	h. Cell Num	ber:	q. Phone Number:	r. Cell Nu	mber:				
N/A	432-88	88-9312		432-4	25-2433				
i. Email Address:			s. Email Address:						
Clarence.Rasco@e	nergytra	ansfer.com	larry.hummel@energytransfer.com						
j. Title V Permit Number:			t. NSR Permit Number:						
N/A			GCP-OG#7291M1						
u. Detailed driving directions from ne	arest New Me	exico town:		_	<u> </u>				

From Jal, travel south on S 3rd St. for 1.3 miles. Continue onto NM-205 S for 1.8 miles. Turn left onto Bennetville Rd. for 0.2 miles and facility is on the left.

-		
III. TEST	ING FIRM	
a. Company:	g. Contact:	
Slipstream Environmental Services, LLC	Josh Canfield	
b. Address 1:	h. Title:	
772 Airfield Lane	Co-Owner	
c. Address 2:	i. Office Phone:	j. Cell Phone:
		307-760-5262

Table 2-2: Test Results

	TEST RE	SULTS AND U	NIT OPERATIONA	L DATA	
Parameter	Units	Average	Run 1	Run 2	Run 3
Fuel Consumption	sft³/hr	11,097	11,107	10,925	11,259
O2 Percentage	%	11.53	11.34	11.63	11.62
Adjusted O2 Percentage	%	11.53	11.34	11.63	11.61
Exhaust Flow Rate	dsft³/hr	218,590	214,618	217,702	224,100
Engine Power	bhp	1,473	1,475	1,447	1,498
Engine Load	%	83.00	83.08	81.51	84.40
Speed	RPM	1,001	1,005	998	1,000
Parameter	Permitted	Average	Run 1	Run 2	Run 3
CO					
ppmvd		38.06	37.91	38.37	37.90
ppm at 15% O2		23.96	23.38	24.41	24.08
Ib/MMBTU HHV		0.05	0.05	0.05	0.05
g/bhp-hr	1.37	0.19	0.18	0.19	0.19
lb/hr	5.36	0.61	0.59	0.61	0.62
ton/yr		2.66	2.60	2.67	2.71
NOx					
ppmvd		53.14	65.69	46.69	47.03
ppm at 15% O2		33.37	40.52	29.71	29.88
Ib/MMBTU HHV		0.12	0.15	0.11	0.11
g/bhp-hr	0.50	0.43	0.52	0.38	0.38
lb/hr	1.96	1.39	1.69	1.22	1.26
ton/yr		6.08	7.39	5.33	5.53
VOC					
ppmvd		13.94	13.68	14.06	14.09
ppm at 15% O2		8.78	8.44	8.95	8.95
Ib/MMBTU HHV		0.03	0.03	0.03	0.03
g/bhp-hr	0.44	0.11	0.10	0.11	0.11
lb/hr		0.35	0.34	0.35	0.36
ton/yr		1.53	1.48	1.54	1.59

^{1.)} VOC Calculated per NSPS JJJJ definition (does not include Methane, Ethane, or Formaldehyde concentrations). PPM values are expressed as a propane basis.

Phone (505) 476-4300 Fax (505) 476-4375

Version 1/1/2010									
NMED USE ONLY									
DTS									
TEMPO									

UNIVERSAL STACK TEST NOTIFICATION, PROTOCOL AND REPORT FORM

NMED USE ONLY							

Submit to: Stacktest.aqb@state.nm.us

	I. DATABASE HEADER INFORMATION (drop down menus in bold)							
a. Al# 37864	Tool Donout				Periodic Test (EPA Method)			
d. Company Name:			e. Facili	ty Name:				
ETC Texas Pipeline, Ltd.				Bennetville Compressor Station				
f. Emission Unit Numbers: g. Emission		g. Emission Unit D	Emission Unit Description (boiler, Waukesha 7042, etc)					
ENG-2(202) Caterr			Caterpilla	terpillar G3606				
h. Reports - Tracki	ing Number CMT			i. P	oposed Test Date:		j. Actual test date:	
from notification re	esponse: CIVI I			W	eek of 7/24/2	23	7/25/23	
k. Reason for te	st (name permit requi	rement, NSPS, N	MACT, consent ded	cree, etc.	Indicate here is this no	tificati	on is a revised test date only)	
GCP-OG#	7291M1, 40	CFR 60 S	Subpart JJ	IJJ				
	, -		•					

	II. GENE	RAL COMPANY A	ND FACILITY INFORMATION	ON		
a.Company Address:			k Facility Address:			
600 N. Marienfield S	te 700	32.06898, -103.20497				
b. City:	c. State:	d. Zip:	I. City:	m. State:	n. Zip:	
Midland	TX	7 9 7 0 1		NM		
e. Environmental Contact:	f. Title:		o. Facility Contact:	p. Title:		
Clarence Rasco Env. Specialist			Larry Hummel	Manager		
g. Phone Number:	h. Cell Num	ber:	q. Phone Number:	r. Cell Nu	mber:	
N/A	432-888-9312			432-4	25-2433	
i. Email Address:			s. Email Address:			
Clarence.Rasco@e	nergytra	ansfer.com	larry.hummel@en	ergytrans	sfer.com	
j. Title V Permit Number:			t. NSR Permit Number:			
N/A			GCP-OG#7291M1			
u. Detailed driving directions from ne	arest New Me	exico town:		_	<u> </u>	

From Jal, travel south on S 3rd St. for 1.3 miles. Continue onto NM-205 S for 1.8 miles. Turn left onto Bennetville Rd. for 0.2 miles and facility is on the left.

III. TESTING FIRM				
a. Company:	g. Contact:			
Slipstream Environmental Services, LLC	Josh Canfield			
b. Address 1:	h. Title:			
772 Airfield Lane	Co-Owner			
c. Address 2:	i. Office Phone:	j. Cell Phone:		
		307-760-5262		

Table 2-2: Test Results

	TEST RESULTS AND UNIT OPERATIONAL DATA				
Parameter	Units	Average	Run 1	Run 2	Run 3
Fuel Consumption	sft³/hr	11,601.01	11,690.40	11,575.42	11,537.20
O2 Percentage	%	11.81	11.75	11.81	11.87
Adjusted O2 Percentage	%	11.84	11.77	11.84	11.90
Exhaust Flow Rate	dsft ³ /hr	236,233.29	235979.00	235193.94	235962.57
Engine Power	bhp	1,565.18	1,579.47	1,561.08	1,554.98
Engine Load	%	88.18	88.98	87.95	87.60
Speed	RPM	952.00	956.00	947.00	953.00
Parameter	Permitted	Average	Run 1	Run 2	Run 3
CO					
ppmvd		35.94	34.95	36.11	36.76
ppm at 15% O2		23.26	22.45	23.38	23.96
Ib/MMBTU HHV		0.05	0.05	0.05	0.05
g/bhp-hr	1.37	0.18	0.17	0.18	0.18
lb/hr	5.36	0.62	0.60	0.62	0.63
ton/yr		2.70	2.63	2.71	2.77
NOx					
ppmvd		39.79	42.27	39.69	37.41
ppm at 15% O2		25.76	27.15	25.70	24.39
Ib/MMBTU HHV		0.09	0.10	0.09	0.09
g/bhp-hr	0.50	0.33	0.34	0.32	0.31
lb/hr	1.96	1.12	1.19	1.12	1.06
ton/yr		4.92	5.23	4.90	4.63
VOC					
ppmvd		7.98	8.14	7.94	7.86
ppm at 15% O2		5.17	5.23	5.14	5.12
Ib/MMBTU HHV		0.02	0.02	0.02	0.02
g/bhp-hr	0.44	0.06	0.06	0.06	0.06
lb/hr		0.22	0.22	0.21	0.21
ton/yr		0.95	0.96	0.94	0.93

^{1.)} VOC Calculated per NSPS JJJJ definition (does not include Methane, Ethane, or Formaldehyde concentrations). PPM values are expressed as a propane basis.

^{2.)} Load percentage indicates maximum achievable load based on operating conditions on day of testing.

Phone (505) 476-4300 Fax (505) 476-4375

Version 1/1/2	2010
NM	IED USE ONLY
DTS	
TEL 100	
TEMPO	

UNIVERSAL STACK TEST NOTIFICATION, PROTOCOL AND REPORT FORM

D USE ONLY

Submit to: Stacktest.aqb@state.nm.us

	I. DATABASE HEADER INFORMATION (drop down menus in bold)							
a. Al# 37864	Tool Donout				Periodic Test (EPA Method)			
d. Company Name:			e. Facil	ty Name:				
ETC Texas Pipeline, Ltd.				Bennetville Compressor Station				
• • •		g. Emission Unit D	Emission Unit Description (boiler, Waukesha 7042, etc)					
ENG-3(203) Caterp			Caterpilla	erpillar G3606				
h. Reports - Tracki	ing Number CMT			i. P	roposed Test Date:		j. Actual test date:	
from notification re	esponse: CIVI I			W	eek of 7/24/2	23	7/24/23	
k. Reason for te	st (name permit requir	ement, NSPS, N	MACT, consent ded				ion is a revised test date only)	
GCP-OG#	7291M1, 40	CFR 60 S	Subpart JJ	IJJ				
	,		•					
	·		-					

	II. GENE	RAL COMPANY A	ND FACILITY INFORMATION	ON		
a.Company Address:			k Facility Address:			
600 N. Marienfield S	te 700	32.06898, -103.20497				
b. City:	c. State:	d. Zip:	I. City:	m. State:	n. Zip:	
Midland	TX	7 9 7 0 1		NM		
e. Environmental Contact:	f. Title:		o. Facility Contact:	p. Title:		
Clarence Rasco Env. Specialist			Larry Hummel	Manager		
g. Phone Number:	h. Cell Num	ber:	q. Phone Number:	r. Cell Nu	mber:	
N/A	432-888-9312			432-4	25-2433	
i. Email Address:			s. Email Address:			
Clarence.Rasco@e	nergytra	ansfer.com	larry.hummel@en	ergytrans	sfer.com	
j. Title V Permit Number:			t. NSR Permit Number:			
N/A			GCP-OG#7291M1			
u. Detailed driving directions from ne	arest New Me	exico town:		_	<u> </u>	

From Jal, travel south on S 3rd St. for 1.3 miles. Continue onto NM-205 S for 1.8 miles. Turn left onto Bennetville Rd. for 0.2 miles and facility is on the left.

III. TESTING FIRM				
a. Company:	g. Contact:			
Slipstream Environmental Services, LLC	Josh Canfield			
b. Address 1:	h. Title:			
772 Airfield Lane	Co-Owner			
c. Address 2:	i. Office Phone:	j. Cell Phone:		
		307-760-5262		

Table 2-2: Test Results

	TEST RESULTS AND UNIT OPERATIONAL DATA				
Parameter	Units	Average	Run 1	Run 2	Run 3
Fuel Consumption	sft³/hr	11,669	11,710	11,532	11,764
O2 Percentage	%	11.17	11.09	11.16	11.27
Adjusted O2 Percentage	%	11.23	11.13	11.21	11.33
Exhaust Flow Rate	dsft³/hr	222,727	220,551	218,721	225,678
Engine Power	bhp	1,563	1,570	1,542	1,578
Engine Load	%	88.08	88.44	86.86	88.92
Speed	RPM	1,000	1,000	1,000	1,000
Parameter	Permitted	Average	Run 1	Run 2	Run 3
CO					
ppmvd		34.94	34.94	34.75	35.13
ppm at 15% O2		21.31	21.11	21.17	21.65
Ib/MMBTU HHV		0.05	0.05	0.05	0.05
g/bhp-hr	1.37	0.16	0.16	0.16	0.17
lb/hr	5.36	0.57	0.56	0.56	0.58
ton/yr		2.49	2.47	2.44	2.55
NOx					
ppmvd		52.12	54.41	52.62	49.34
ppm at 15% O2		31.78	32.87	32.05	30.41
Ib/MMBTU HHV		0.12	0.12	0.12	0.11
g/bhp-hr	0.50	0.40	0.42	0.41	0.39
lb/hr	1.96	1.39	1.44	1.39	1.34
ton/yr		6.09	6.32	6.07	5.88
VOC					
ppmvd		7.07	7.41	6.97	6.83
ppm at 15% O2		4.31	4.48	4.25	4.21
Ib/MMBTU HHV		0.02	0.02	0.01	0.01
g/bhp-hr	0.44	0.05	0.05	0.05	0.05
lb/hr		0.18	0.19	0.18	0.18
ton/yr		0.79	0.83	0.77	0.78

^{1.)} VOC Calculated per NSPS JJJJ definition (does not include Methane, Ethane, or Formaldehyde concentrations). PPM values are expressed as a propane basis.

Phone (505) 476-4300 Fax (505) 476-4375

Version 1/1/2	010
NM	IED USE ONLY
DTS	
TEMPO	

UNIVERSAL STACK TEST NOTIFICATION, PROTOCOL AND REPORT FORM

D USE ONLY

Submit to: Stacktest.aqb@state.nm.us

	I. DATABASE HEADER INFORMATION (drop down menus in bold)						
a. Al# 37864	Test Report			Periodic Test (EPA Method)			
d. Company Nam	ie:			e. Facility Name:			
ETC Texa	s Pipeline, L	.td.		Bennetvil	le Comp	ressor Station	
f. Emission Unit No	ımbers:	g	g. Emission Unit D	escription (boiler,	Waukesha 7042	, etc)	
ENG-4 Caterpillar G3606							
h. Reports - Tracki	na Number	_	<u>-</u>	i. Proposed T	est Date:	j. Actual test date:	
h. Reports - Tracking Number from notification response:			Week o	f 3/6/23	3/8/23		
k. Reason for te	st (name permit require	ement, NSPS, M	ACT, consent dec	ree, etc. Indicate l	nere is this notific	cation is a revised test date only)	
GCP-OG#	7291M1, 40 (CFR 60 S	ubpart JJ	JJ			
	,		•				

	II. GENE	RAL CO	MP	ANY	A۱	ND FACILITY INFORMATION		
a.Company Address:			k Facility Address:					
600 N. Marienfield S	treet, S	uite 7	'00			32.06898, -103.20497		
b. City:	c. State:	d. Zip:				I. City:	m. State:	n. Zip:
Midland	TX	7 9	7	0	1		NM	
e. Environmental Contact:	f. Title:					o. Facility Contact:	p. Title:	
Clarence Rasco Sr.Tech Specialist			t	Larry Hummel	Manager			
g. Phone Number:	h. Cell Num	ber:				q. Phone Number:	r. Cell Nu	mber:
432-888-9312	575-390-6032			N/A	432-4	25-2433		
i. Email Address:						s. Email Address:		
clarence.rasco@en	ergytrar	nsfer.	COI	m		larry.hummel@energ	avtrans	sfer.com
j. Title V Permit Number:			t. NSR Permit Number:					
N/A			GCP-OG#7291M1					
u. Detailed driving directions from ne	arest New Me	xico town:						<u> </u>

From Jal, NM travel S on S 3rd St. for 1.3 miles. Continue onto NM-205 S for 1.8

miles. Turn left onto Bennetville Rd. for 0.2 miles and facility is on the left.

III. TESTING FIRM					
a. Company:	g. Contact:				
Slipstream Environmental Services, LLC	Josh Canfield				
b. Address 1:	h. Title:				
772 Airfield Lane	Co-Owner				
c. Address 2:	i. Office Phone:	j. Cell Phone:			
		307-760-5262			

Table 2-2: Test Results

TEST RESULTS AND UNIT OPERATIONAL DATA					
Parameter	Units	Average	Run 1	Run 2	Run 3
Fuel Consumption	sft³/hr	10,022.31	9,712.62	10,113.32	10,241.00
O2 Percentage	%	11.12	11.15	11.12	11.09
Adjusted O2 Percentage	%	10.98	11.00	10.98	10.96
Exhaust Flow Rate	dsft ³ /hr	186,556.60	184039.45	191046.42	192867.05
Engine Power	bhp	1,310.10	1,264.01	1,323.57	1,342.71
Engine Load	%	73.81	71.21	74.57	75.65
Speed	RPM	1,004.33	1,008.00	1,001.00	1,004.00
Parameter	Permitted	Average	Run 1	Run 2	Run 3
CO					
ppmvd		13.73	13.84	13.70	13.67
ppm at 15% O2		8.13	8.20	8.10	8.07
Ib/MMBTU HHV		0.02	0.02	0.02	0.02
g/bhp-hr	1.37	0.06	0.07	0.06	0.06
lb/hr	5.36	0.19	0.18	0.19	0.19
ton/yr		0.82	0.80	0.82	0.83
NOx					
ppmvd		51.14	49.67	51.12	52.62
ppm at 15% O2		30.26	29.45	30.25	31.08
Ib/MMBTU HHV		0.11	0.11	0.11	0.11
g/bhp-hr	0.50	0.39	0.39	0.39	0.40
lb/hr	1.96	1.14	1.08	1.15	1.20
ton/yr		4.99	4.71	5.04	5.24
VOC					
ppmvd		6.32	6.46	6.55	5.95
ppm at 15% O2		3.74	3.83	3.87	3.52
Ib/MMBTU HHV		0.01	0.01	0.01	0.01
g/bhp-hr	0.44	0.05	0.05	0.05	0.04
lb/hr		0.13	0.13	0.14	0.13
ton/yr		0.59	0.59	0.62	0.57

^{1.)} VOC Calculated per NSPS JJJJ definition (does not include Methane, Ethane, or Formaldehyde concentrations). PPM values are expressed as a propane basis.

Phone (505) 476-4300 Fax (505) 476-4375

Version 1/1/2010				
NMED USE ONLY				
DTS				
TEMPO				

UNIVERSAL STACK TEST NOTIFICATION, PROTOCOL AND REPORT FORM

NME	D USE ONLY
Staff	
Admin	

Submit to: Stacktest.aqb@state.nm.us

	I. DATABASE HEADER INFORMATION (drop down menus in bold)					
a. Al# 24106	Test Report			Periodic ⁻	Test (EPA Method)	
d. Company Nam	ne:		e. Fac	lity Name:		
ETC Texa	s Pipeline, Ltd.		For	tson Compress	or Station	
f. Emission Unit No	umbers:	g. Emission Unit D	escript	on (boiler, Waukesha 7042,	etc)	
4		Caterpilla	r G 3	516ULB		
h. Reports - Tracki	ing Number CMT		i. I	Proposed Test Date:	j. Actual test date:	
from notification re	esponse: CIVI I		V	leek of 2/27/23	3/1/23	
k. Reason for te	st (name permit requirement, NSP	S, MACT, consent dec	ree, et	. Indicate here is this notifica	tion is a revised test date only)	
GCP-OG#	3223M2, 40 CFR 60) Subpart JJ	JJ			

	II. GENE	RAL COM	PANY A	AND FACILITY INFORM	ATION	
a.Company Address:				k Facility Address:		
600 N. Marienfield S	Street, S	uite 70	0	32.191944, -103	3.828056	
b. City:	c. State:	d. Zip:		I. City:	m. State: n. Zip:	
Midland	TX	7 9 7	7 0	1	NM	
e. Environmental Contact:	f. Title:			o. Facility Contact:	p. Title:	
Clarence Rasco	Sr.Tec	h Spec	ialist	David Jaquez	Manager	
g. Phone Number:	h. Cell Num	ber:		q. Phone Number:	r. Cell Number:	
432-888-9312	575-390-6032		N/A	432-290-5836		
i. Email Address:				s. Email Address:		
clarence.rasco@en	<u>ergytra</u> ı	nsfer.c	om	david.jaquez@	energytransfer.com	
j. Title V Permit Number:			t. NSR Permit Number:			
N/A				GCP-OG#3223	M2	

u. Detailed driving directions from nearest New Mexico town:

From Malaga, NM, go N onto US HWY 285 N for 5.4 miles. Turn right onto Carter Rd and stay right for 1.3 miles. Turn right onto NM-31 for 6.5 miles. Turn right onto NM-128 E for 12.8 miles. Turn right on Twin Wells Rd for 7 miles. Turn left on lease road and go 1.7 miles. Turn left for 0.1 miles and facility is on the left.

III. TESTING FIRM				
a. Company:	g. Contact:			
Slipstream Environmental Services, LLC	Josh Canfield			
b. Address 1:	h. Title:			
772 Airfield Lane	Co-Owner			

Table 2-2: Test Results

TEST RESULTS AND UNIT OPERATIONAL DATA					
Parameter	Units	Average	Run 1	Run 2	Run 3
Fuel Consumption	sft³/hr	7,504.04	7,581.50	7,427.20	7,503.41
O2 Percentage	%	8.98	8.72	9.11	9.11
Adjusted O2 Percentage	%	9.04	8.77	9.19	9.18
Exhaust Flow Rate	dsft ³ /hr	120,026.84	118062.67	119466.49	120696.31
Engine Power	bhp	976.91	988.48	965.45	976.80
Engine Load	%	72.20	73.06	71.36	72.20
Speed	RPM	1,302.00	1,300.00	1,304.00	1,302.00
Parameter	Permitted	Average	Run 1	Run 2	Run 3
CO					
ppmvd		1.53	1.59	1.52	1.48
ppm at 15% O2		0.76	0.77	0.76	0.74
Ib/MMBTU HHV		0.00	0.00	0.00	0.00
g/bhp-hr	2.00	0.01	0.01	0.01	0.01
lb/hr	5.97	0.01	0.01	0.01	0.01
ton/yr		0.06	0.06	0.06	0.06
NOx					
ppmvd		66.25	104.85	46.92	46.97
ppm at 15% O2		32.84	50.80	23.53	23.54
Ib/MMBTU HHV		0.12	0.19	0.09	0.09
g/bhp-hr	1.00	0.44	0.68	0.32	0.32
lb/hr	2.98	0.95	1.48	0.67	0.68
ton/yr		4.16	6.50	2.95	2.98
VOC					
ppmvd		15.96	11.26	17.75	18.86
ppm at 15% O2		7.91	5.46	8.90	9.45
Ib/MMBTU HHV		0.03	0.02	0.03	0.03
g/bhp-hr	0.70	0.10	0.07	0.11	0.12
lb/hr		0.22	0.15	0.24	0.26
ton/yr		0.96	0.67	1.07	1.15

^{1.)} VOC Calculated per NSPS JJJJ definition (does not include Methane, Ethane, or Formaldehyde concentrations). PPM values are expressed as a propane basis.

POST MAINTENANCE TEST REPORT

EXHAUST EMISSIONS TEST

FROM ONE

CATERPILLAR G3516 COMPRESSOR ENGINE UNIT NUMBER: 7063 SERIAL NUMBER: WPW01628

IN SERVICE AT THE

HAWK COMPRESSOR STATION

NEAR
EUNICE, LEA COUNTY, TEXAS

PREPARED FOR ETC TEXAS PIPELINE, LTD

JULY 29, 2020

PROJECT NUMBER: 0928PM

PREPARED BY

Summary of Results

Company: Location: ETC Texas Pipeline, Ltd Hawk Compressor Station Eunice, Lea County, NM Caterpillar G3516 S/N

S/N: WPW01628

Source: Engine Rating: Technician: 1340

RAT

Test Run Number	1
Unit	7063
Date	7/29/2020
Start Time	9:47
Stop Time	10:02
Unit Operational Data	
Engine Speed (rpm)	1216
Unit Horse Power	1191
Compressor Load (%) {Based on Manufature Spec	88.9%
Compressor Suction Pressure (psig)	14
1st Interstage Pressure (psig)	81
2nd Interstage Pressure (psig)	244
Compressor Discharge Pressure (psig)	607
Intake Manifold Air Pressure (psig)	24.6
Intake Manifold Air Temperature (°F)	134.6
Engine Timing (°BTDC)	29.5
Engine Hours	17695
Pre-Converter Temperature (°F)	644
Post-Converter Temperature (°F)	607
Fuel Data	
Fuel Consumption (lb/hr)	401.0
Fuel Consumption (SCFH)	6654
O2 F-Factor (DSCF/MMBtu, HHV basis)	8732
Fuel Heating Value (Btu/SCF, HHV basis)	1321
BHp Specific Fuel Rate (Btu/Hp-hr, HHV basis)	7381
BHp Specific Fuel Rate (Btu/Hp-hr, LHV basis)	6650
Ambient Conditions	
Pressure Altitude (MSL)	3100
Atmospheric Pressure ("Hg)	26.74
Dry Bulb Temperature (°F)	89
Wet Bulb Temperature (°F)	68
Humidity (lb/lb air)	0.0112
Measured Exhaust Emissions	
O ₂ (% Vol)	10.30
NOx (ppmvd)	87.09
CO (ppmvd)	132.09
Exhaust Flow Rate (DSCFH)	202107
Dry SCFH (dry basis, calc. from Hp/BSFR/HHV)	1.51E+05
Calculated Mass Emission Rates (Based on btu S	
NOx (g/hp-hr)	0.60
CO (g/hp-hr)	0.55
NOx (lbs/hr) { Permit Limit = 2.0 }	1.57
CO (lbs/hr) { Permit Limit = 3.0 }	1.45
NOx (tons/yr)	6.89
CO (tons/yr)	6.36
00 (0010/51)	0.50

EMISSIONS TEST REPORT

New Mexico Environment Department Periodic Test

Report #	20230906_K01
Test Date	Sep 06, 2023

Performed For:

ETC Texas Pipeline, Ltd. 800 E. Sonterra Blvd. Suite 400 San Antonio, TX 78258-3941

Location: Hobson Booster Station, Unit 7072, Eddy County, NM **Engine:** Caterpillar G3516LE, 4EK04487

Performed By:

Slipstream Environmental Services, LLC

Mobile Lab: Lab K 772 Airfield Lane Sheridan, WY 82801 josh.canfield@slipstreames.com 307-760-5262

Certification:

I certify, to the best of my knowledge, the test results are accurate and representative of the emissions from this source

Caroline Weathers

Slipstream Environmental Services, LLC

Caroline Weathers

901-383-0377

Caroline.weathers@slipstreames.com

Table 2-2: Test Results

TEST RESULTS AND UNIT OPERATIONAL DATA					
Parameter	Units	Average	Run 1	Run 2	Run 3
Fuel Consumption	sft³/hr	10,550	10,564	10,553	10,534
O2 Percentage	%	8.57	8.56	8.57	8.57
Adjusted O2 Percentage	%	8.54	8.54	8.54	8.54
Exhaust Flow Rate	dsft³/hr	157,284	157,786	157,745	157,459
Engine Power	bhp	1,284	1,286	1,285	1,282
Engine Load	%	95.84	95.98	95.86	95.66
Speed	RPM	1,380	1,380	1,380	1,380
Parameter	Permitted	Average	Run 1	Run 2	Run 3
CO					
ppmvd		3.46	3.47	3.46	3.46
ppm at 15% O2		1.65	1.65	1.65	1.65
Ib/MMBTU HHV		0.00	0.00	0.00	0.00
g/bhp-hr		0.01	0.01	0.01	0.01
lb/hr	5.60	0.04	0.04	0.04	0.04
ton/yr		0.17	0.17	0.17	0.17
NOx					
ppmvd		230.82	232.25	230.97	229.26
ppm at 15% O2		110.18	110.87	110.24	109.42
Ib/MMBTU HHV		0.40	0.41	0.40	0.40
g/bhp-hr		1.53	1.54	1.54	1.52
lb/hr	4.40	4.34	4.38	4.35	4.31
ton/yr		19.03	19.17	19.04	18.87

^{1.)} VOC Calculated per NSPS JJJJ definition (does not include Methane, Ethane, or Formaldehyde concentrations). PPM values are expressed as a propane basis.

^{2.)} Load percentage indicates maximum achievable load based on operating conditions on day of testing.