Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	16-A: Identification				
1	Name of facility:	MV 400 TPH Astec HMA Plant			
2	Name of company:	Mesa Verde Enterprises, Inc.			
3	Current Permit number:	New Permit			
4	Name of applicant's modeler:	Paul Wade			
5	Phone number of modeler:	(505) 830-9680 x6			
6	E-mail of modeler:	pwade@montrose-env.com			

16	16-B: Brief						
1	Was a modeling protocol submitted and approved? Submitted 11/30/2023, but not approved	Yes⊠	No□				
2	Why is the modeling being done?	New Facility					
3	Describe the permit changes relevant to the modeling.						
	New NSR Permit. Presently operates under GCP-3-9079. Allow night time operations.						
4	What geodetic datum was used in the modeling?	NAD83					
5	ow long will the facility be at this location? No more than a year						
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠				

7	Identify the Air Quality Control Region (AQCR) in which the facility is located							
	List the PSD baseline dates for this region (minor or major, as a	List the PSD baseline dates for this region (minor or major, as appropriate).						
8	NO2	08/02/1995						
0	SO2	N/A						
	PM10	06/16/2000						
	PM2.5	N/A						
	Provide the name and distance to Class I areas within 50 km of the facility (300 km for PSD permits).							
9	No Class I area within 50 km.							
10	Is the facility located in a non-attainment area? If so describe b	pelow	Yes□	No⊠				
	Describe any special modeling requirements, such as streamline permit requirements.							
11								

16	-C: Modeling H	istory of Facility							
	Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).								
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments					
	СО	N/A	N/A	New Permitted Facility					
	NO ₂	N/A	N/A	New Permitted Facility					
1	SO ₂	N/A	N/A	New Permitted Facility					
	H ₂ S	N/A	N/A	New Permitted Facility					
	PM2.5	N/A	N/A	New Permitted Facility					
	PM10	N/A	N/A	New Permitted Facility					
	Lead	N/A	N/A	Not a significant facility pollutant					
	Ozone (PSD only)	N/A	N/A	Not a PSD Source					
	NM Toxic Air Pollutants (20.2.72.402 NMAC)	N/A	N/A	New Permitted Facility					

16-	16-D: Modeling performed for this application							
1	For each pollutant, indicate the modeling performed and submitted with this application. Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.							
	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.		

			_	_
CO	\boxtimes			
NO ₂	\boxtimes	\boxtimes		
SO ₂	\boxtimes	\boxtimes		
H ₂ S	\boxtimes			
PM2.5	\boxtimes	\boxtimes		
PM10	\boxtimes	\boxtimes		
Lead				\boxtimes
Ozone				\boxtimes
State air toxic(s) (20.2.72.402 NMAC)	\boxtimes			

16	16-E: New Mexico toxic air pollutants modeling								
1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application.								
		List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required.							
2	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor			
	Asphalt Fumes	5.01	0.333	9.14	1	5.01			
	Calcium Hydroxide	0.18	0.333	18.3	5	0.036			

16-F: Modeling options						
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□			
	AERMOD Version 23132					

16-	16-G: Surrounding source modeling					
1	Date of surround	ing source retrieval	11/13/2023			
2	sources modeled table below to de PM10 and PM2.5	If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed. PM10 and PM2.5 GCP emission sources were set to 71.25 tpy and 17.875 tpy, respectively.				
	GCP2 and GCP3 h AQB Source ID	ours of operation were limited to day Description of Corrections	/light hours only.			

16-H: Building and structure downwash							
1	How many buildings are present at the facility?	4					
2	How many above ground storage tanks are present at the facility?	2					
3	Was building downwash modeled for all buildings and	tanks? If not explain why below.	Yes⊠	No□			
4	Building comments						

16-	16-I: Receptors and modeled property boundary								
 "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restrict Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, the receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area. 								ith a steep a restricted A Restricted	
	Toro Rock Pro for the Facilit located or allo	Facility will be located within White Sand Missile Range. The White Sands Missile Range is fenced. Co-located at the site is Toro Rock Products, LLC's Organ Quarry aggregate plant operating under GCP-2-3269 that will be providing the aggregate for the Facility. At the gate to the site is no trespassing signs for Toro Rock. No White Sands Missile Range personnel are located or allowed in the area. A modeling property boundary was created following south and west fencing around the White Sands Missile Range and an east and north modeling boundary created within the White Sands Missile Range.							
2	Receptors mu	ist be placed al		ssible roads in the rest	•		Yes□	No⊠	
3	Are restricted	l area boundary	/ coordinates incl	uded in the modeling f	iles?		Yes⊠	No□	
	Describe the	receptor grids a	and their spacing.	The table below may b	e used, adding rows a	is nee	eded.	L	
	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility	Co	mments		
4	Very Fine	Cartesian	50 meters	Border	500 Meters				
	Very Fine	Cartesian	100 meters	500 Meters	1 Kilometers				
	Fine	Cartesian	250 meters	1 Kilometers	3 Kilometers				
	Course	Cartesian	500 meters	3 Kilometers	7 Kilometers				
	Course	Cartesian	1000 meters	7 Kilometers	50 Kilometers				
5		ptor spacing al	ong the fence line	2.					
	25 meters								
6		PSD Class I area	receptors.						
	N/A								

16-	16-J: Sensitive areas						
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes□	No⊠				
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠				

16-K: Modeling Scenarios Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3). For HMA Plant, they will limit model hours to the equivalent of 10 hours per day if operating at maximum to account for the requested permit daily production rate. For particulate modeling, 12 scenarios were run beginning with February -November months operating daily limits starting at 12:00 AM. Scenario 2 modeling hours for February - November months two hours from 2 AM. This trend continues for all 12 scenarios. For December and January months, the facility will not operate. NO2 modeling was run for all hours of operation in February – November months. Which scenario produces the highest concentrations? Why? PM10 24 hour – Scenario 1, operating nighttime hours with low winds and low boundary layer PM10 24 hour Inc – Scenario 2, Year 2018, operating nighttime hours with low winds and low boundary layer PM10 Annual Inc – Scenario 1, Year 2015, operating nighttime hours with low winds and low boundary layer PM2.5 24 hour – Scenario 2, operating nighttime hours with low winds and low boundary layer PM2.5 annual – Scenario 12, operating nighttime hours with low winds and low boundary layer Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to Yes⊠ No□ the factors used for calculating the maximum emission rate.) If so, describe factors for each group of sources. List the sources in each group before the factor table for that group. (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting easier.) Sources: For the MV 400 TPH Astec HMA plant, the following hours lists the maximum hours of operation. HMA Production Hours of Operation (MST) Feb Mar May Jun Jul Sep Oct Nov Dec Jan Apr Aug 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM

6:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
7:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
8:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
9:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
10:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
11:00 AM	0	1	1	1	1	1	1	1	1	1	1	0
12:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
1:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
2:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
3:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
4:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
5:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
6:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
7:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
8:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
9:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
10:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
11:00 PM	0	1	1	1	1	1	1	1	1	1	1	0
Total	0	24	24	24	24	24	24	24	24	24	24	0

Since the HMA plant daily hours of operation running at maximum hourly production rate is less than the total hours of operation, twelve (12) PM modeling scenarios will be performed for each averaging period. For each scenario the hours of operation are shifted by two hours.

Model Scenario	Time Segments 5-Hour Blocks February, March, November	Time Segments 8-Hour Blocks April, September, and October	Time Segments 10-Hour Blocks May - August		
1	12 AM to 5 AM	12 AM to 8 AM	12 AM to 10 AM		
2	2 AM to 7 AM	2 AM to 10 AM	2 AM to 12 PM		
3	4 AM to 9 AM	4 AM to 12 PM	4 AM to 2 PM		
4	6 AM to 11 AM	6 AM to 2 PM	6 AM to 4 PM		
5	8 AM to 1 PM	8 AM to 4 PM	8 AM to 6 PM		
6	10 AM to 3 PM	10 AM to 6 PM	10 AM to 8 PM		
7	12 PM to 5 AM	12 PM to 8 PM	12 PM to 10 PM		
8	2 PM to 7 PM	2 PM to 10 PM	2 PM to 12 AM		
9	4 PM to 9 PM	4 PM to 12 AM	4 PM to 2 AM		
10	6 PM to 11 PM	6 PM to 2 AM	6 PM to 4 AM		
11	8 PM to 1 AM	8 PM to 4 AM	8 PM to 6 AM		
12	10 PM to 3 AM	10 PM to 6 AM	10 PM to 8 AM		

HMA Model Scenario Time Segments

6	Were different emission rates used for short-term and annual modeling? If so describe below.	Yes⊠	No□
	For setback modeling, the annual particulate matter modeling included hourly factors based on production.	limitations on a	annual

16	-L: NO ₂	Modeling								
	-	Which types of NO ₂ modeling were used? Check all that apply.								
	ARM2									
1		Image: 100% NOx to NO2 conversion								
	PVMRM									
	□ Other:									
2	Describe the NO ₂ modeling.									
-	NO2 modeling included neighboring sources and no background concentrations.									
3		Were default NO2/NOx ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not describe and justify the ratios used below.Yes \square No \square								
4	Describe	Describe the design value used for each averaging period modeled.								
	1-hour: 98th percentile as calculated by AERMOD Annual: One Year Annual Average									

16-	M: Part	iculate Matter Modeling					
	Select the p	ollutants for which plume depletion modeling was used.					
1		PM2.5					
	\boxtimes	PM10					
		None					
	Describe th	e particle size distributions used. Include the source of information.					
2	out" from t emission po	PM ₁₀ emissions may be modeled using plume deposition. Plume deposition simulates the effect of gravity as particles "fall- out" from the plume to the ground as the plume travels downwind. Therefore, the farther the plume travels from the emission point to the receptor, the greater the effect of plume deposition and the greater the decrease in modeled impacts or concentrations. Particle size distribution, particle mass fraction, and particle density are required inputs to the model to					
	exhaust; HN	e distribution for fugitive dust during material handling, fugitive road dust on unpaved roads; lime silo baghouse MA asphalt particulate emissions; and combustion will use the particle size distribution found in the NMED ection approved values.					

The mass-mean particle diameters were calculated using the formula:

$$d = ((d^{3}_{1} + d^{2}_{1}d_{2} + d_{1}d^{2}_{2} + d^{3}_{2}) / 4)^{1/3}$$

Where:

d = mass-mean particle diameterd₁ = low end of particle size category range

 d_2 = high end of particle size category range

Representative average particle densities were obtained from NMED accepted values.

Material	Density (g/cm³)	Reference
Road Dust	2.5	NMED Value
Lime	3.3	NMED Value
HMA Asphalt	1.5	NMED Value
Combustion	1.5	NMED Value
Fugitive Dust	2.5	NMED Value

The size distribution for PM₁₀ emission sources are presented in Tables below.

Road Vehicle Fugitive Dust Deposition Parameters

Particle Size Category (μm)	Mass Mean Particle Diameter (μm)	Mass Weighted Size Distribution (%)	Density (g/cm³)					
	PM10							
0 – 2.5	1.57	25.0	2.5					
2.5 – 10	6.91	75.0	2.5					

Based on NMED Particle Size Distribution Spreadsheet – April 25, 2007 (Vehicle Fugitive)

Lime Baghouse Source Deposition Parameters

Particle Size Category (μm)	Mass Mean Particle Diameter (μm)	Mass Weighted Size Distribution (%)	Density (g/cm³)
	PM10	0	
0-2.5	1.57	25	3.3
2.5-10	6.91	75	3.3

Parameters based on baghouse exhaust capture percentages. (Lime Silo)

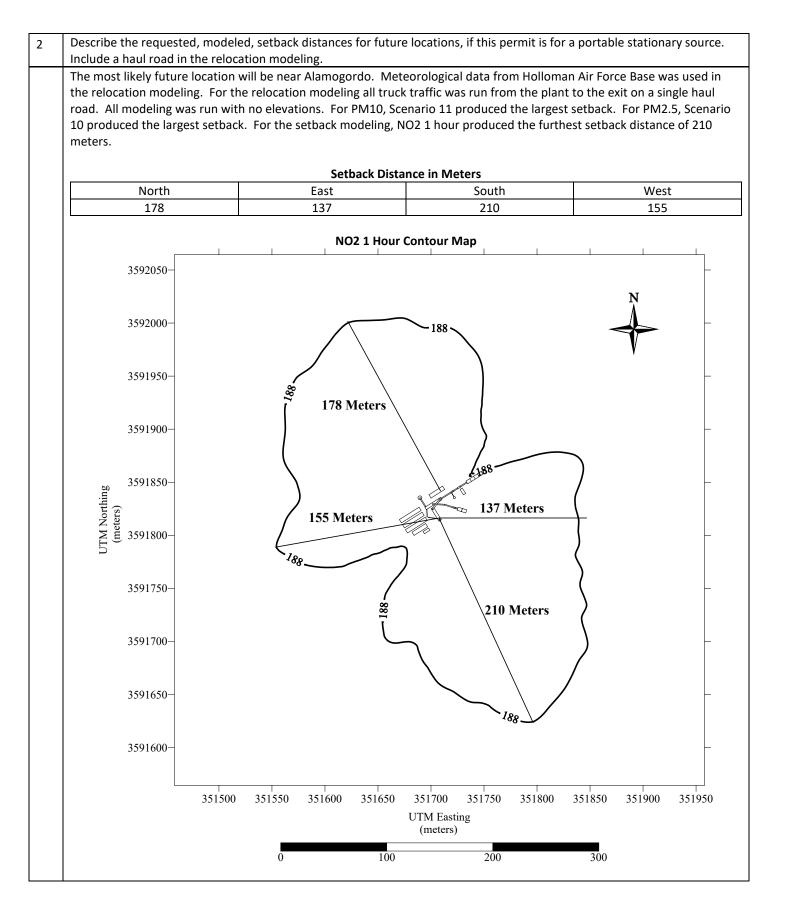
Combustion Source Deposition Parameters

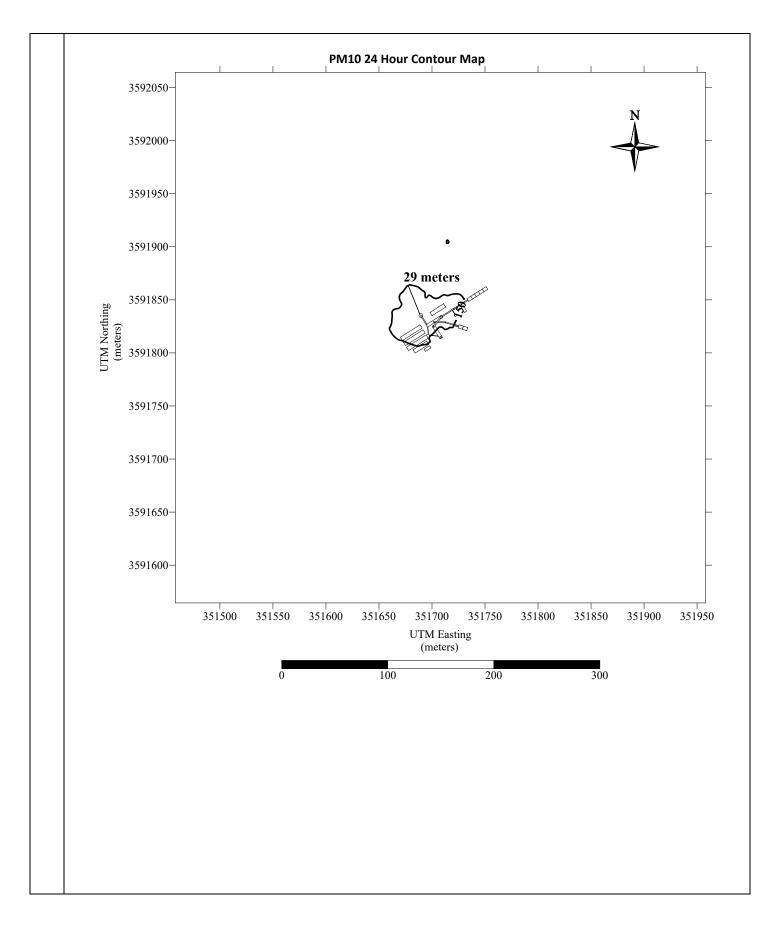
	Particle Size Category (μm)	Mass Mean Particle Diameter (μm)	Mass Weighted Size Distribution (%)	Density (g/cm³)					
		PN	10						
	0 - 2.5	1.57	100	1.5					
Bas	ed on NMED Particle Size	e Distribution Spreadsheet –	April 25, 2007 (Combustion)		<u>.</u>				
	А	sphalt Baghouse and Stack S	ource Deposition Parameters						
	Particle Size Mass Mean Mass Weighted Dopprity								
	Category	Particle Diameter	Size Distribution	Density					
	(μm)	(μm)	(%)	(g/cm ³)					
		PN	10						
	0-1.0	0.63	50.0	1.5					
	1.0-2.5	1.85	19.0	1.5					
	2.5-10	6.92	31.0	1.5					
Bas	ed on NMED Particle Size	Distribution Spreadsheet –	April 25, 2007 (Asphalt Baghou	se Stack)	<u>.</u>				
		Fugitive Dust Source D	eposition Parameters]				
	Particle Size	e Size Mass Mean Mass Weighted							
	Category	Particle Diameter	Size Distribution	Density (g/cm ³)					
	(μm)	(μm) (%)		(0, ,					
		PN	10	1					
	0 - 2.5	1.57	7.8	2.5					
	2.5 – 5	3.88	27.0	2.5					
	5 – 10	7.77	65.2	2.5					
Bas	ed on NMED Particle Size	e Distribution Spreadsheet –	April 25, 2007 (Coal Handling).						
Sources t consider	hat emit at least 40 tons	ons per year of NO _x or at lea per year of NO _x or at least 4 ounts of precursors and mus	0 tons per year of SO ₂ are	Yes⊠	No□				
Was seco	ondary PM modeled for F	M2.5?		Yes⊠	No□				
If MERPs below.	were used to account fo	r secondary PM2.5 fill out th	e information below. If anothe	r method was us	sed describe				
NO _x (ton	/yr) So	D2 (ton/yr)	[PM2.5] _{annual}	[PM2.5] _{24-hour}					
50.3	29	9.4	0.0002	0.005					
The PM _{2.5} secondary emission concentration analysis will follow EPA and NMED AQB guidelines. Following recent EPA guidelines for conversion of NO _x and SO ₂ emission rates to secondary PM _{2.5} emissions, Mesa Verde emissions are comp to appropriate western MERPs values (NO _x 24-Hr – 42498 tpy; NO _x Annual – 130260 tpy; SO ₂ 24-Hr – 9753 tpy; SO ₂ Ann – 53898 tpy). The following equation, found in NMED AQB modeling guidance document on MERPs, will be added to determine if secondary emission would cause violation with PM _{2.5} NAAQS.									

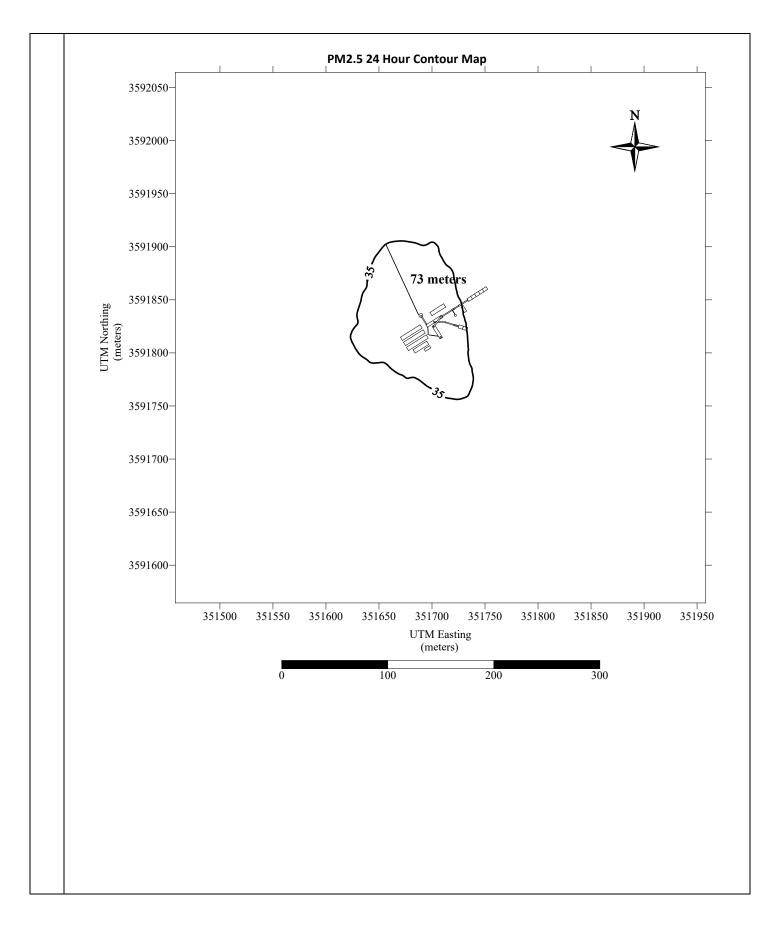
 $PM_{2.5}$ annual = ((NO_x emission rate (tpy)/130260 + (SO₂ emission rate (tpy)/53898)) x 0.2 µg/m³

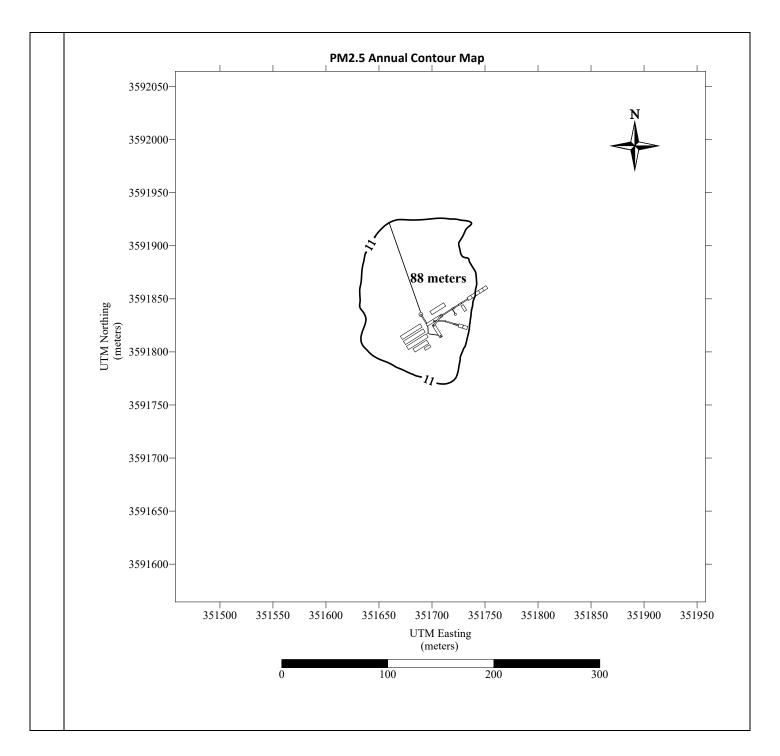
PM_{2.5} annual = ((50.3/130260) + (29.4/53898)) x 0.2 µg/m³ = 0.0002 µg/m³

 $PM_{2.5}$ 24 hour = ((NO_x emission rate (tpy)/42498 + (SO₂ emission rate (tpy)/9753)) x 1.2 μ g/m³


PM_{2.5} 24 hour = ((50.3/42498) + (29.4/9753)) x 1.2 µg/m³ = 0.005 µg/m³


16-N: Setback Distances


1


Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.

At the initial location they will be operating no more than one year. Any relocations back will be to the same location.

16-	16-O: PSD Increment and Source IDs						
1	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-I should match the ones in the modeling files. Do these match? If not, provide a cross-reference table between unit numbers if they do not match below.			No⊠			
	Unit Number in UA-2	Unit Number in Modeling Files					
	TRCK	UHR_1-158					

				AGG_1	-20					
ŀ	YARD			UHR_7						
	The emission	rates in the Table If not, explain wh	s 2-E and 2-F should match the c			deling	files. D	0	Yes□	No⊠
-	Hourly model emission rates for material handling sources (Emissions calculated using AP-42 Section 13.2.4) are calculated using annual average windspeed for Moriarty.									
2					Perm	it Emis	ssion F	ate	Modeled E	mission Rate
	Permit ID	Model ID	Source Description		PM1 Lb/H		PM2 Lb/I	-	PM10 Lb/Hr	PM2.5 Lb/Hr
	rennend	Woder ib	Cold Aggregate Storage Pil	ρ	L0/1		L0/1		L0/11	LO/III
	AGGPILE	AGGPILE1 - 4	(combined)	-	0.593	09	0.089	81	0.34804	0.05270
	AGGPILE	AGGPILE5 – 6	RAP Storage Pile (combined	4)	0.050	57	0.007	66	0.02968	0.00449
	1	HMABIN	Cold Aggregate Feed Bin Load	ling	0.593		0.089		0.34804	0.05270
	8	RAPFEED	RAP Feeder/Hopper		0.050		0.007	66	0.02968	0.00449
3	Have the mine been modeled		urces or Title V Insignificant Acti	vities"	(Table 2	2-B) so	urces		Yes□	No⊠
	Which units c	onsume incremer	t for which pollutants?							
Ī	Model ID		Source Description	ſ	NOx	PM	10			
	AGGPILE	Cold Aggreg	ate/RAP Storage Pile			Х				
	1	Feed Bin Loa	ading			Х	Х			
	2	Feed Bin Un	nloading			Х	х			
	3	Scalping Scr	een			Х	Х			
	4	Scalping Scr	een Unloading			х				
	5	Pug Mill Loa	ad			х				
	6	Pug Mill Unl	oad			Х				
	7	Conveyor Tr	ansfer to Slinger Conveyor			Х				
	8	RAP Bin Loa	ading			X				
	9	RAP Bin Unl	oading			Х				
4	10	RAP Screen				Х				
	11	RAP Screen	Unloading			Х				
	12	RAP Transfe				Х				
	12a		r Conveyor to Drum			Х				
	13		er Silo Baghouse			Х				
	14	Drum Dryer			Х	Х				
	15	Drum Mixer	•			X				
	16		Asphalt Silo Unloading			X				
	17	Main Plant (· · · ·		Х	X				
	18	Standby Ger			X	X				
	19	Asphalt Hea			X	X				
	20		ient Storage Tanks (2)			X				
	TRCK	Haul Road T				X				
	YARD	HMA Yard		_		X				

5	PSD increment description for sources. (for unusual cases, i.e., baseline unit expanded emissions after baseline date).	Baseline Consumers		
6	Are all the actual installation dates included in Table 2A of the This is necessary to verify the accuracy of PSD increment mode increment consumption status is determined for the missing in	Yes⊠	No□	

16-P: Flare Modeling								
1	For each flare or flaring scenario, complete the following							
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)				
	NA							

16	Q: Volume and Related Sources							
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing installation dates below.	Yes⊠	No□					
2	Describe the determination of sigma-Y and sigma-Z for fugitive sources. For storage piles the model inputs were based on the size of the pile (100 feet)/4.3 (sigma- or a sigma-Z of 8ft*2/2.15. All others followed standard dimensions from Air Quality Burea		-					
3	Describe how the volume sources are related to unit numbers. Or say they are the same.							
	Yes							
	Describe any open pits.							
4	NA							
5	Describe emission units included in each open pit.							
J	NA							

16	16-R: Background Concentrations						
1	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data that was used.	Yes⊠	No□				

	CO: Del Norte	e High School (350010023)							
	NO2: N/A	NO ₂ : N/A							
	PM2.5: Las Ci	PM2.5: Las Cruces Distric Office (350130025)							
	PM10: Las Cr	PM10: Las Cruces City Well #46 (350130024)							
	SO ₂ : N/A								
	Other:								
	Comments:	NO2 and SO2 were modeled with neighboring sources only. No H2S neighborin	g sources were	identified.					
2	Were background concentrations refined to monthly or hourly values? If so describe below. Yes□ No⊠								

16-S: Meteorological Data							
1	Was NMED provided meteorological data used? If so select the station used.Las Cruces	Yes⊠	No□				
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discu handled, how stability class was determined, and how the data were processed.	uss how missing	data were				
	For site modeling: Holloman Rd 2015-2019; For relocation: Alamogordo 2017 - 2021						

16-T: Terrain							
1	Was complex terrain used in the modeling? If not, describe why below. Yes⊠ No□						
	Yes, for point sources only. For volume sources, model was run in source selected flat terrain mode. For setback modeling all sources are run in flat terrain mode.						
_	What was the source of the terrain data?						
2	USGS National Elevation Data (NED)						

16	-U: Modeling Files							
	Describe the modeling files: For PM10 and PM2.5 modeling, the ROI modeling included all discussed operating scenario. For the results of the ROI particulate matter modeling, the highest six model results were used in the CIA modeling							
	File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)					
1	MVWSRCombustROI	NO2, CO, SO2	ROI/SIA					
	MVWSRPMROIS1-12	PM10, PM2.5	ROI/SIA					
	MVAstecNO2YrCIA	NO2 Annual NAAQS and Increment	Cumulative, Increment					
	MVAstecNO21HrCIA	NO2 1 hour	Cumulative					
	MVAstecSO21HrCIA	SO2 1 hour NAAQS and Increment	Cumulative, Increment					
	MVAstecPM10CIAS1, 2, 3, 9, 10, 1, 12	PM10	Cumulative					

MVAstecPM25CIAS1, 2, 3, 9, 10, 1, 12	PM2.5	Cumulative
MVAstecPM10INCS1, 2, 3, 9, 10, 1, 12	PM10 Increment	Increment
MVAstecAF	Asphalt Fumes	TAPs Model
MVAstecH2S	H2S	ROI/SIA
MVAstecNO2Relocation	NO2 1 hour	Relocation Setback
MVAstecPM10RelocationS1, 9, 10, 11, 12	PM10 24 Hour	Relocation Setback
MVAstecPM24RelocationS1, 9, 10, 11, 12	PM2.5 24 Hour and Annual	Relocation Setback

16-	V: PSD New or Major Modification Applications							
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No⊠					
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No⊠					
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.							
	Not a PSD Source							
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.							
-	Not a PSD Source							
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes⊠	No□					
	Secondary PM2.5 were calculated using Modeling Guideline MERPs							

16-W: Model	ing Results									
1	required for the so	rds are exceeded be ource to show that th for the specific pollu	ne contributio	on from this sourc	e is less than the	sis is Yes□]	No⊠		
2	Identify the maximum concentrations from the modeling analysis. Rows may be modified, added and removed from the table below as necessary. For PM10 24 hour, the maximum scenario was Scenario10. For PM2.5 24 hour, the maximum scenario was Scenario11. For PM2.5 Annual, the maximum scenario was Scenario10. For particulate modeling, the highest receptors were located at the traffic exit to the site. All highest applicable concentrations were on the Mesa Verde/Toro Rock Model boundary.									
Pollutant, Time Period and Standard	Modeled Facility rd Concentration (µg/m3)	Concentration Facility With Centration Surrounding	Secondary PM (µg/m3)	Background Concentration (µg/m3)	Cumulative Concentration (µg/m3)	Value of Standard	Percent		Location	
						(µg/m3)	Standard	UTM E (m)	UTM N (m)	Elevation (ft)
Asphalt Fumes – 8 Hr	16.2	NA	NA	NA	NA	50	32.4	351751.1	3591355.2	1705.25
H2S – 1 hr	0.25	NA	NA	NA	NA	SIL – 1.0	25.0	351751.1	3591355.0	1705.25
NOx - Annual	1.65	2.46	NA	NA	2.46	94.0	2.6	351701.5	3591356.3	1686.50
NOx – Annual Inc	1.65	2.07	NA	NA	2.07	25	8.3	351701.5	3591356.3	1686.50
NOx – 1 Hr	95.6	99.0	NA	NA	99.0	188.0	52.7	351726.3	3591355.8	1694.51
CO – 1 hr	627.9	NA	NA	NA	NA	SIL – 2000	31.4	351751.1	3591355.2	1705.25
CO – 8 Hr	176.2	NA	NA	NA	NA	SIL – 500	35.2	351751.1	3591355.2	1705.25
SO ₂ – 1 Hr	136.1	136.1	NA	NA	136.1	196.4	69.3	351726.3	3591355.8	1694.51
PM _{2.5} - Annual	0.74	0.74	0.0002	5.2	5.9	12	49.2	351726.3	3591355.8	1694.51
PM _{2.5} -24 Hr	3.6	3.6	0.005	11.0	14.6	35	41.7	351726.3	3591355.8	1694.51
PM ₁₀ -24 Hr	25.6	25.6	NA	121.7	147.3	150	98.2	350882.4	3591373.3	1596.59
PM ₁₀ -24 Hr Inc	29.1	29.1	NA	NA	29.1	30	97.0	350882.4	3591373.3	1596.59
PM ₁₀ – Annual Inc	6.8	6.8	NA	NA	6.8	17	40.0	350907.3	3591372.8	1597.37

1	16-X: Summary/conclusions					
	A statement that modeling requirements have been satisfied and that the permit can be issued.					
1	Dispersion modeling was performed for the new HMA permit application. All facility pollutants with ambient air quality					
	standards and PSD increments were modeled to show compliance with those standards. All results of this modeling					
	showed the facility in compliance with applicable ambient air quality standards and PSD increments.					