11701 FM 2244, Suite 215B Bee Cave, TX 78738 Kat@BrightSkyENV.com

March 7, 2024

Ms. Melinda Owens New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505

RE: NSR Application Resubmittal Dagger Draw Gas Plant NSR Permit No. 0001-M11 Al: 211, AIRS Number: 350150024

Dear Ms. Owens:

Frontier Field Services (FFS) operates the Dagger Draw gas plant located near Artesia, New Mexico. The Dagger Draw plant was permitted and constructed in 2022, and currently operates under NSR permit number 0001-M11. An application to authorize as-built equipment and operations was submitted in June 2023 and declared administratively complete on October 26, 2023. After review of the modeling results and discussion with NMED, and per NMED's guidance, the 2023 application was withdrawn on January 25, 2024.

Based on the collaborative effort with NMED, FFS has developed operating scenarios that allow the plant to function as designed while also keeping emissions compliant with federal air quality standards. This permit application reflects those operations, as well as updates equipment representations to align with site conditions. Specific changes include:

- Removal of H-4 and H-5 heaters from the permit. This equipment was never installed.
- Adjustments to emissions factors used for ENG-1 through ENG-6. ENG-5 was renamed to to Ajax 2, and ENG-6 renamed to Ajax 1.
- Addition of amine flash tank and SSM emissions at the Process Flare, FL-2.
- Updated gas sample composition updated for various sources.
- Updated as-built counts of fugitive components used for fugitive emissions calculations.
- Addition of SSM emissions at the Acid Gas Flare, FL-1.

This proposed revision does not increase the facility's total capacity and causes no auxiliary emissions increases.

The original modeling submitted with the June 2023 permit application remains valid and is considered to be CASE #1 in which FL-2 SSM is operating. Included in this permit application is a new CASE #2 in which FL-1 SSM is operating. Both cases should remain in the application.

FFS appreciates NMED's guidance and responsiveness throughout this challenging permitting effort. I hope this letter provides you with the information you need. If you have questions or additional information is needed, please call Rebecca Moore at (346) 224-2455, or email at rmoore@durangomidstream.com, or myself at 281-217-8233 and Kat@BrightSkyENV.com

Sincerely,

Kat Galloway

CC: Andrew Jones, NMED Eric Peters, NMED Jeff Driver, FFS John Prentiss, FFS Darin Kennard, FFS Rebecca Moore, FFS

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

 This application is submitted as (check all that apply):
 Request for a No Permit Required Determination (no fee)

 Updating an application currently under NMED review.
 Include this page and all pages that are being updated (no fee required).

 Construction Status:
 Not Constructed
 Existing Permitted (or NOI) Facility
 Existing Non-permitted (or NOI) Facility

 Minor Source:
 NOI 20.2.73 NMAC
 20.2.72 NMAC application or revision
 20.2.72.300 NMAC Streamline application

 Title V Source:
 Title V (new)
 Title V renewal
 TV minor mod.
 TV significant mod.
 TV Acid Rain:
 New
 Renewal

 PSD Major Source:
 PSD major source (new)
 Minor Modification to a PSD source
 a PSD major modification

Acknowledgements:

I acknowledge that a pre-application meeting is available to me upon request. 🔲 Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

S500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications). Per NMED, the filing fee from the 2023 NSR application will be applied to this permitting action.

Check No.: 500410 in the amount of \$500 dated 06/02/2023.

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.

I acknowledge there is an annual fee for permits in addition to the permit review fee: <u>www.env.nm.gov/air-quality/permit-fees-</u> <u>2/.</u>

This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.219.D.1.a NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sect	tion 1-A: Company Information	AI #: 211	Permit #: 0001M11		
1	Facility Name: Dagger Draw Gas Plant	Plant primary SIC Code (4 digits): 1311			
1		Plant NAIC code (6 digits): 211120			
а	Facility Street Address (If no facility street address, provide directions from 278 Pipeline Rd, Artesia, NM 88210	n a prominent landmark):		
2	Plant Operator Company Name: Frontier Field Services, LLC	Phone/Fax: 575-677-52	108		
а	Plant Operator Address: 1001 Conoco Rd, Maljamar, NM 88624				

b	Plant Operator's New Mexico Corporate ID or Tax ID:								
3	Plant Owner(s) name(s): Frontier Field Services, LLC	Phone/Fax: 346-224-2459							
а	Plant Owner(s) Mailing Address(s): 10077 Grogans Mill Rd, Ste 300, The Woodlands, TX 77380								
4	Bill To (Company): Frontier Field Services, LLC	Phone/Fax: 346-224-2459							
а	Mailing Address: 10077 Grogans Mill Rd, Ste 300 The Woodlands, TX 77380	E-mail: rmoore@durangomidstream.com							
5	Preparer: Consultant: Bright Sky Environmental LLC	Phone/Fax: 281-217-8233							
а	Mailing Address: 11701 FM 2244, Suite 215-B, Bee Cave, Texas 78738	E-mail: Kat@BrightSkyENV.com							
6	Plant Operator Contact: John Prentiss	Phone/Fax: 575-677-5108							
а	Address: 1001 Conoco Road, Maljamar, NM 88264	E-mail: JPrentiss@durangomidstream.com							
7	Air Permit Contact: Rebecca Moore	Title: Environmental Manager							
а	E-mail: rmoore@durangomidstream.com	Phone/Fax: 346-224-2455							
b	Mailing Address: 10077 Grogans Mill Rd, Ste 300, The Woodlands, TX 773	80							
С	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.								

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? 🛛 Yes 🔲	1.b If yes to question 1.a, is it currently operating in New Mexico?						
2	If yes to question 1.a, was the existing facility subject t Intent (NOI) (20.2.73 NMAC) before submittal of this a Yes No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? Yes No						
3	Is the facility currently shut down? 🔲 Yes 🛛 No	onth and year of shut down (MM/YY):						
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? Yes Xo							
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972?							
6	Does this facility have a Title V operating permit (20.2.) ☐ Yes ⊠ No	If yes, the permit No. is: P-						
7	Has this facility been issued a No Permit Required (NPF	R)?	If yes, the NPR No. is:					
8	Has this facility been issued a Notice of Intent (NOI)?	🗌 Yes 🛛 No	If yes, the NOI No. is:					
9	Does this facility have a construction permit (20.2.72/2 ☑ Yes □ No	? If yes, the permit No. is: 0001-M11						
10	Is this facility registered under a General permit (GCP-2	L, GCP-2, etc.)?	P If yes, the register No. is:					

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)										
а	Current	Hourly: 3.75 MMSCF	Daily: 90 MMSCF	Annually: 32,850 MMSCF							
b	Proposed	Hourly: 3.75 MMSCF	Daily: 90 MMSCF	Annually: 32,850 MMSCF							
2	What is the	facility's maximum production rate, sp	pecify units (reference here and list capacities in	n Section 20, if more room is required)							
а	Current	Hourly: 3.75 MMSCF	Daily: 90 MMSCF	Annually: 32,850 MMSCF							
b	Proposed	Hourly: 3.75 MMSCF	Daily: 90 MMSCF	Annually: 32,850 MMSCF							

Section 1-D: Facility Location Information

1	Latitude (decimal degrees): 32.714857	Longitude	(decimal degrees): -104.44588	County: Eddy	Elevation (ft): 3,465			
2	UTM Zone: 🔲 12 or 🔀 13		Datum: 🔀 NAD 83 🛛 WGS 84					
а	UTM E (in meters, to nearest 10 meters): 551,93	33 m E	UTM N (in meters, to nearest 10 meters)	: 3,619,808 m				
3	Name and zip code of nearest New Mexic	o town: Arte	esia, NM 88210					
4	Detailed Driving Instructions from nearest Highway 285 for 9.2 miles then turn right	•						
5	The facility is 9.2 (distance) miles south (d	irection) of A	Artesia (nearest town).					
6	Land Status of facility (check one): 🔀 Pri	vate 🔲 Indi	ian/Pueblo 🗌 Government 🔲 B	LM 🔲 Forest Sei	rvice 🔲 Military			
7	List all municipalities, Indian tribes, and co which the facility is proposed to be constr			3.B.2 NMAC) of th	e property on			
8	20.2.72 NMAC applications only : Will the than 50 km (31 miles) to other states, Ber <u>publications/</u>)? □ Yes ⊠ No (20.2.72.2)	nalillo Count	y, or a Class I area (see <u>www.env.nr</u>	n.gov/air-quality/	modeling-			
9	Name nearest Class I area: Carlsbad Cave	erns Nationa	l Park					
10	Shortest distance (in km) from facility bou	indary to the	boundary of the nearest Class I are	a (to the nearest 10 n	neters): 57.05 km			
11	Distance (meters) from the perimeter of t lands, including mining overburden remover the second seco							
	Method(s) used to delineate the Restricte	d Area:						
12	12 "Restricted Area " is an area to which public entry is effectively precluded. Effective barriers include continuous fencing continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restrict area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.							
	Does the owner/operator intend to opera □ Yes ☑ No							
13	A portable stationary source is not a mobi at one location or that can be re-installed sites.							
14	Will this facility operate in conjunction with			erty? 🛛 No	Yes			
	If yes, what is the name and permit numb	er (if known)) of the other facility?					

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating ($\frac{hours}{day}$): 24	(<mark>days</mark>): 7	(weeks): 52	(<mark>hours</mark>): 8760			
2	Facility's maximum daily operating schedule (if less	than 24 hours day)? Start:		1 End:	AM PM		
3	Month and year of anticipated start of construction	a: Not applicable					
4	Month and year of anticipated construction comple	etion: Not applicable					
5	Month and year of anticipated startup of new or modified facility: Not applicable						
6	Will this facility operate at this site for more than o	ne year? 🛛 Yes 🗌 No					

Section 1-F: Other Facility Information

	Are there any current Notice of Violations (NOV), compliance orders, or any other compli to this facility? Yes X No If yes, specify:	ance or enforcement issues related
а	If yes, NOV date or description of issue:	NOV Tracking No:

b	Is this application in response to any issue listed in 1-F, 1 c If Yes, provide the 1c & 1d info below:	or 1a above? 🔲 Yes	No					
с	Document Title:	Date:	Requirement # (or page # and paragraph #):					
d	Provide the required text to be inserted in this permit:							
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? 🛛 Yes 🔲 No							
3	Does this facility require an "Air Toxics" permit under 20.2	2.72.400 NMAC & 20.	2.72.502, Tables A and/or B? 🔲 Yes 🛛 No					
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? 🔀 Yes 🔲 No							
а	If Yes, what type of source? Major (>10 tpy of a OR Minor (<10 tpy of any		25 tpy of any combination of HAPS) <25 tpy of any combination of HAPS)					
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? Yes	Mo No						
	If yes, include the name of company providing commercia	l electric power to the	e facility:					
а	Commercial power is purchased from a commercial utility company, which specifically does not include power generated on site for the sole purpose of the user.							

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1	I have filled out Section 18,	"Addendum for Streamline Applications."	N/A (This is not a Streamline application.)
---	-------------------------------	---	---

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Darin B. Kennard		Phone: 346-351-2790				
а	a R.O. Title: Vice President & GM R.O. e-mail: DKennard@durangomidstream.com						
b	R. O. Address: 10077 Grogans Mill Road, Suite 300, The Woodland	s, Texas 77380					
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC):		Phone:				
а	A. R.O. Title:	A. R.O. e-mail:					
b	A. R. O. Address:						
3	 Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): Not applicable Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be 						
а	permitted wholly or in part.): Not applicable Address of Parent Company: Not applicable						
5	Names of Subsidiary Companies ("Subsidiary Companies" means or owned, wholly or in part, by the company to be permitted.): Not a	•	nes, divisions or subsidiaries, which are				
6	Telephone numbers & names of the owners' agents and site conta Jeff Driver, 575-457-2591	acts familiar with pla	int operations:				
7	Affected Programs to include Other States, local air pollution cont Will the property on which the facility is proposed to be construct states, local pollution control programs, and Indian tribes and pue ones and provide the distances in kilometers: Not applicable	ed or operated be cl	loser than 80 km (50 miles) from other				

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application

Secure electronic transfer. Air Permit Contact Name: Kat Galloway, Email: kat@brightskyenv.com

Phone number: 281-217-8233.

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

 All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.

- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

		Manufact- urer's Rated Permitted Date of Controlled by Manufacture ² Unit #		Source Classi-			RICE Ignition																		
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipm	nent, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.												
FL-1	Acid Gas Flare	Unknown	Unknown	63568	Unknown	Unknown	2005	N/A	31000205	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	N/A													
							2005	N/A		To Be Modified	To be Replaced														
AU-2	Amine Unit	Longview	TAG # C- 0701	238	40	40	1972		31000201	Existing (unchanged) X	To be Removed Replacement Unit	N/A													
A0-2	Annue Onit	Machine Inc	NB:91	238	MMSCFD	MMSCFD	-		51000201	51000201	51000201	51000201	51000201	To Be Modified	To be Replaced	11/74									
FL-2	Process Flare	IT McGill	Tag #30-	765-2	Unknown	Unknown	5/21/1999	-	31000205	 Existing (unchanged) New/Additional 	To be Removed	N/A													
FL-2	Process Flare	11 McGill	102-1	/03-2	Unknown	Unknown	-	FL-2	51000205	☐ New/Additional ☑ To Be Modified	Replacement Unit To be Replaced	IN/A													
ENC 1	C	C. t	COLLE	47601110	1775 1	1775 1	1/22/2009	CAT-1	20200254	□ Existing (unchanged)	To be Removed	ACLD	and the EF.												
ENG-1	Compressor Engine	Caterpillar	G3606LE	4ZS01112	1775 hp	1775 hp	TBD	ENG-1	20200254	20200234	New/Additional X To Be Modified	Replacement Unit To be Replaced	4SLB	updating EFs											
ENG 2	G F .	G (11	COMP	4ZS/	17751	17751	6/13/2000	CAT-2	20200254	Existing (unchanged)	To be Removed	AGLD													
ENG-2	Compressor Engine	Caterpillar	G3606LE	3XF00268	1775 hp	1775 hp	TBD	ENG-2	20200254	20200254	20200254	20200254	20200254	20200254	20200254	20200234	20200234	20200234	20200234	20200234	20200234	New/Additional X To Be Modified	Replacement Unit To be Replaced	4SLB	updating EFs
ENG A		G	GAGAGEE	47200000	10001	10001	1/16/2008	CAT-3		Existing (unchanged)	To be Removed	101.0													
ENG-3	Compressor Engine	Caterpillar	G3606LE	4ZS00930	1775 hp	1775 hp	TBD	ENG-3	20200254	New/Additional X To Be Modified	Replacement Unit To be Replaced	4SLB	updating EFs												
ENG 4		G	GRACEE	-	10001	10001	TBD	CAT-4		Existing (unchanged)	To be Removed	101.0													
ENG-4	Compressor Engine	Caterpillar	G3606LE	TBD	1775 hp	1775 hp	TBD	ENG-4	20200254	New/Additional X To Be Modified	Replacement Unit To be Replaced	4SLB	updating EFs												
A	AGI Compressor	AJAX	DPC-2804	84174	900 1	800 h	1997	N/A	20200254	□ Existing (unchanged)	To be Removed	201 D	updating												
Ajax 1	Engine	АЈАХ	LE	84174	800 hp	800 hp	6/1/2022	ENG-5	20200254	New/Additional X To Be Modified	Replacement Unit To be Replaced	2SLB	naming and EFs												
	AGI Compressor		DPC-2804	84296	0001	000.1	1997	N/A	20200254	□ Existing (unchanged)	To be Removed	agi p	updating												
Ajax 2	Engine	AJAX	LE	84296	800 hp	800 hp	6/1/2022	ENG-6	20200254	New/Additional X To Be Modified	Replacement Unit To be Replaced	2SLB	naming and EFs												
H-1	Hot Oil Heater	D	TT	TBD	22.4	22.4	TBD	N/A	21000404	X Existing (unchanged)	To be Removed	N/A													
H-1	not Oli Heater	Parmac	Unknown	IRD	MMBtu/Hr	MMBtu/Hr	TBD	H-1	31000404	31000404	New/Additional To Be Modified	Replacement Unit To be Replaced	IN/A												
Н-2	TEC Baser Hester	ARC	Unknown	EC-0045-	1.5	1.5	TBD	N/A	21000228	X Existing (unchanged)	To be Removed	N/A													
п-2	TEG Regen Heater	AKU	Unknown	A-3	MMBtu/Hr	MMBtu/Hr	TBD	H-2	31000228	New/Additional To Be Modified	Replacement Unit To be Replaced	IN/A													

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.									
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equip	oment, Check One											
Н-3	Molecular Sieve Regen Heater	TBD	TBD	TBD	3.18	3.18 MMBtu/Hr	TBD	N/A	31000229	X Existing (unchanged)	To be Removed Replacement Unit	N/A										
	Regen Heater		4V1-34-		MMBtu/Hr	MMBtu/Hr	TBD	H-3		To Be Modified	To be Replaced											
H-4	Hot Oil Heater	Entec	4V1-54- 4HE-8-12-	91674	15.5	15.5	<2000	N/A	31000404	 Existing (unchanged) New/Additional 	X To be Removed Replacement Unit	N/A	remove									
			2HF		MMBtu/hr	MMBtu/hr	<2000	H-4		To Be Modified	To be Replaced											
H-5	Selexol Regenerator	Parmac	Unknown	72-7591	3.5	3.5	1972	N/A	31000231	 Existing (unchanged) New/Additional 	X To be Removed Replacement Unit	N/A	remove									
-	Heater				MMBtu/Hr	MMBtu/Hr		H-5		To Be Modified	To be Replaced											
DEHY-1	TEG Dehydrator	ARC	Unknown	TBD	90 MMscfd	90 MMscfd	2010	BTEX	31000227	X Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A										
	Still Vent							To Inlet		To Be Modified	To be Replaced											
DEHY-2	TEG Dehydrator	Rama	Unknown	2138	40 MMscfd	40 MMscfd	5/21/1999	BTEX	31000227 Ne	X Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A										
DEIII 2	TES Denyulutor	Runn	Clikilowii	2150	to minisera	to minisera	-	To Inlet		To Be Modified	To be Replaced	10/1										
AU-1	Amine Unit	Parmac	Unknown	TBD	90	90	2010	AGI well	31000201	X Existing (unchanged)	To be Removed	N/A										
AU-1	Annue Onit	Faimac	UIKIIOWII	IBD	MMSCFD	MMSCFD		AGI well		31000201	51000201	51000201	51000201	51000201	51000201	51000201	51000201	51000201	51000201	New/Additional To Be Modified	Replacement Unit To be Replaced	IN/A
			** 1		30	30	1972	AGI well			X To be Removed	27/1										
AU-3	Selexol Amine Unit	Parmac	Unknown	72-7590	MMSCFD	MMSCFD		AGI well	31000201	31000201	31000201	51000201	New/Additional To Be Modified	Replacement Unit To be Replaced	N/A							
							N/A	N/A		 Existing (unchanged) 	 Existing (unchanged) 	To be Removed		modifying								
FUG	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	New/Additional To Be Modified	Replacement Unit To be Replaced	N/A	counts									
											· ·											
FL-1 SSM	Startup/Shutdown/ Maintenance	N/A	N/A	N/A	N/A	N/A	N/A	FL-1	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	N/A										
55IVI	Maintenance						N/A	FL-1		To Be Modified	To be Replaced											
FL-2	Startup/Shutdown/	N/A	N/A	N/A	N/A	N/A	N/A	FL-2	N/A	Existing (unchanged)	To be Removed	N/A										
SSM	Maintenance	N/A	N/A	IN/A	N/A	N/A	N/A	FL-2	N/A	☑ New/Additional To Be Modified	Replacement Unit To be Replaced	N/A										
	Startup/Shutdown/						N/A	N/A		□ Existing (unchanged)	To be Removed		quantifying									
SSM	Maintenance	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	New/Additional X To Be Modified	Replacement Unit To be Replaced	N/A	emissions
	Malfunction						N/A	N/A		 Existing (unchanged) 	X To be Removed											
Malf	Emissions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	New/Additional To Be Modified	Replacement Unit To be Replaced	N/A										

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wpcontent/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

TT - 1 DT D -	Sec Description	Mar fast	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	E. E. L.B. C	
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Fiece of	Equipment, Check Onc
TTK 1	A :		TBD	150	20.2.72.202.B.5	TBD	X Existing (unchanged)	To be Removed
TK-1	Amine		5819 & 5820	bbl	N/A	3/1/2021	New/Additional To Be Modified	Replacement Unit To be Replaced
TK-2	TEG		N/A	23.8	20.2.72.202.B.5	TBD	X Existing (unchanged)	To be Removed
1K-2	IEG		N/A	bbl	N/A	3/1/2021	New/Additional To Be Modified	Replacement Unit To be Replaced
TK-3	Lube Oil		N/A	75	20.2.72.202.B.5	N/A	X Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-3	Lube On		N/A	bbl	N/A	N/A	To Be Modified	To be Replaced
TK-4	Waste Water		N/A	100	20.2.72.202.B.5	N/A	X Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-4	waste water		N/A	bbl	N/A	N/A	To Be Modified	To be Replaced
TK-5	Lube Oil		N/A	11.8	20.2.72.202.B.5		X Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-5	Euse On		N/A	bbl	N/A		To Be Modified	To be Replaced
TK-6	Methanol		N/A	23.8	20.2.72.202.B.5		X Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-0	Wiethanol		N/A	bbl	N/A		To Be Modified	To be Replaced
TK-7	Methanol		N/A	17.9	20.2.72.202.B.5		X Existing (unchanged) New/Additional	To be Removed Replacement Unit
117	Wiethanor		N/A	bbl	N/A		To Be Modified	To be Replaced
TK-8	Lube Oil		N/A	11.8	20.2.72.202.B.5		X Existing (unchanged) New/Additional	To be Removed Replacement Unit
114-0	Euse On		N/A	bbl	N/A		To Be Modified	To be Replaced
TK-9	AGR Waste Water		N/A	210	20.2.72.202.B.5		X Existing (unchanged) New/Additional	To be Removed Replacement Unit
11(-)	AGR waste water		N/A	bbl	N/A		To Be Modified	To be Replaced
TK-10	RO Water		N/A	400	20.2.72.202.B.6		X Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-10	Ko water		N/A	bbl	N/A		To Be Modified	To be Replaced
TK-11 through	RO Water		N/A	210	20.2.72.202.B.5		X Existing (unchanged) New/Additional	To be Removed Replacement Unit
TK-13	NO water		N/A	bbl	N/A		To Be Modified	To be Replaced
TK-14	RO Water		N/A	120	20.2.72.202.B.6		X Existing (unchanged) New/Additional	To be Removed Replacement Unit
112-17	ito mater		N/A	bbl	N/A		To Be Modified	To be Replaced
TV 15			N/A	90	20.2.72.202.B.5		X Existing (unchanged)	To be Removed
TK-15	AGR Solvent		N/A	bbl	N/A		New/Additional To Be Modified	Replacement Unit To be Replaced

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
CAT-1	Catalytic Oxidation	TBD	СО, НСНО	ENG-1		
CAT-2	Catalytic Oxidation	TBD	СО, НСНО	ENG-2	CO: 78%	Manufacturer Guarantee & Stack
CAT-3	Catalytic Oxidation	TBD	со, нсно	ENG-3	HCHO: 81%	Testing
CAT-4	Catalytic Oxidation	TBD	со, нсно	ENG-4		
FL-1	Acid Gas Flare	2005	VOC, HAP	AGI System, AU-1	98%	Design Specification
FL-2	Process Flare	>2000	VOC, HAP	Facility, DEHY-1, DEHY-2	98%	Design Specification
AGI Well	Acid Gas Injection unit for Amine Unit control	2006	H_2S	Amine Unit	100%	Design Specification
¹ List each con	trol device on a separate line. For each control device, list all er	nission units o	controlled by the control device.			

Table 2-D: Maximum Emissions (under normal operating conditions)

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

TT 1 (NT	N	Ox	C	0	VO	С	S	Ox	P	M ¹	PM	(10 ¹	PM	2.5 ¹	H	S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	1.96	8.57	10.76	47.13	3.85	16.85	0.01	0.03	0.12	0.51	0.12	0.51	0.12	0.51	-	-	-	-
ENG-2	1.96	8.57	10.76	47.13	3.85	16.85	0.01	0.03	0.12	0.51	0.12	0.51	0.12	0.51	-	-	-	-
ENG-3	1.96	8.57	10.76	47.13	3.85	16.85	0.01	0.03	0.12	0.51	0.12	0.51	0.12	0.51	-	-	-	-
ENG-4	1.96	8.57	10.76	47.13	3.85	16.85	0.01	0.03	0.12	0.51	0.12	0.51	0.12	0.51	-	-	-	-
Ajax 1	3.53	15.45	4.06	17.77	1.90	8.34	0.00	0.02	0.30	1.33	0.30	1.33	0.30	1.33	-	-	-	-
Ajax 2	3.53	15.45	4.06	17.77	1.90	8.34	0.00	0.02	0.30	1.33	0.30	1.33	0.30	1.33	-	-	-	-
H-1	2.20	9.62	1.84	8.08	0.12	0.53	0.13	0.58	0.17	0.73	0.17	0.73	0.17	0.73	-	-	-	-
H-2	0.15	0.64	0.12	0.54	0.01	0.04	0.01	0.04	0.01	0.05	0.01	0.05	0.01	0.05	-	-	-	-
H-3	0.31	1.37	0.26	1.15	0.02	0.08	0.02	0.08	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
DEHY-1		_	_	-	48.49	212.38	_	_	_	_	_	_	_	-	0.01	0.03	_	_
DEHY-2			-	_	+0.+2	212.30			_	_		_	_		0.01	0.05		
AU-1																		
AU-2	-	-	-	-	94.97	153.58	-	-	-	-	-	-	-	-	4143.89	24.32	-	-
AU-3																		
FL-1	0.014	0.061	0.057	0.249	0.017	0.073	0.000	0.000	0.002	0.007	0.002	0.007	0.002	0.007	0.000	0.000	-	-
FL-2	0.493	2.161	1.999	8.756	1.730	7.578	10.427	45.671	0.043	0.189	0.043	0.189	0.043	0.189	0.111	0.486	-	-
FUG	-	-	-	-	1.48	-	-	-	-	-	-	-	0.00	0.00	0.12	0.53	-	-
Totals	18.04	79.03	55.44	242.85	166.04	458.35	10.62	46.52	1.32	5.80	1.32	5.80	1.32	5.80	4144.13	25.36	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

Unit No.	N	Dx	С	0	VC	DC	SC	Dx	P	M ¹	PN	[10 ¹	PM	[2.5 ¹	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	1.96	8.57	2.35	10.28	3.03	13.25	0.01	0.03	0.12	0.51	0.12	0.51	0.12	0.51	-	-		
ENG-2	1.96	8.57	2.35	10.28	3.03	13.25	0.01	0.03	0.12	0.51	0.12	0.51	0.12	0.51	-	-		
ENG-3	1.96	8.57	2.35	10.28	3.03	13.25	0.01	0.03	0.12	0.51	0.12	0.51	0.12	0.51	-	-		
ENG-4	1.96	8.57	2.35	10.28	3.03	13.25	0.01	0.03	0.12	0.51	0.12	0.51	0.12	0.51	-	-		
Ajax 1	3.53	15.45	4.06	17.77	1.90	8.34	0.00	0.02	0.30	1.33	0.30	1.33	0.30	1.33	-	-		
Ajax 2	3.53	15.45	4.06	17.77	1.90	8.34	0.00	0.02	0.30	1.33	0.30	1.33	0.30	1.33	-	-		
H-1	2.20	9.62	1.84	8.08	0.12	0.53	0.13	0.58	0.17	0.73	0.17	0.73	0.17	0.73	-	-		
H-2	0.15	0.64	0.12	0.54	0.01	0.04	0.01	0.04	0.01	0.05	0.01	0.05	0.01	0.05	-	-		
Н-3	0.31	1.37	0.26	1.15	0.02	0.08	0.02	0.08	0.02	0.10	0.02	0.10	0.02	0.10	-	-		
DEHY-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
DEHY-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
AU-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
AU-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
AU-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
FL-1	0.01	0.06	0.06	0.25	0.02	0.07	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00		
FL-1 SSM	3.08	0.71	11.67	2.89	3.03	0.71	931.79	198.00	0.41	0.09	0.41	0.09	0.41	0.09	10.12	2.15		
FL-2	0.49	2.16	2.00	8.76	1.73	7.58	10.43	45.67	0.04	0.19	0.04	0.19	0.04	0.19	0.11	0.49		
FL-2 SSM	258.05	22.58	1045.50	91.48	703.26	61.54	51.70	4.52	23.28	2.04	23.28	2.04	23.28	2.04	0.00	0.00		
FUG	-	-	-	-	1.48	6.49	-	-	-	-	-	-	-	-	0.12	0.53		
Totals	279.17	102.32	1078.96	189.81	725.58	146.73	994.11	249.05	25.01	7.93	25.01	7.93	25.01	7.93	10.349	3.169	0	0

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.m.gov/ap/nermit/aph.nol html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4)

Unit No.	N	Ox	C	0	VO	C	S	Ox	PI	M ²	PM	(10 ²	PM	2.5^2	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SSM	-	-	-	-	22.65	6.20	-	-	-	-	-	-	-	-	-	-	-	-
FL-2 SSM	258.05	22.58	1045.50	91.48	703.26	61.54	51.70	4.52	23.28	2.04	23.28	2.04	23.28	2.04	0.00	0.00	-	-
FL-1 SSM	3.08	0.71	11.67	2.89	3.03	0.71	931.79	198.00	0.41	0.09	0.41	0.09	0.41	0.09	10.12	2.15	-	-
			-															
Totals	261.13	23.29	1057.17	94.37	728.94	68.45	983.49	202.53	23.69	2.13	23.69	2.13	23.69	2.13	10.12	2.15	0.00	0.00

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

Z I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

6	Serving Unit	N	Ox	C	0	V	DC	S	Ox	P	М	PN	110	PN	12.5	H ₂ S or	r Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
	Tetels																
	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation (H-Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
Engine	ENG-1	Vertical	No	30	867	200	-	-	91.40	1.67
Engine	ENG-2	Vertical	No	30	867	200	-	-	91.40	1.67
Engine	ENG-3	Vertical	No	30	867	200			91.40	1.67
Engine	ENG-4	Vertical	No	30	867	200			91.40	1.67
Engine	Ajax 1	Vertical	No	20.1	515	104	-	-	64.90	1.40
Engine	Ajax 2	Vertical	No	20.1	515	104	-	-	64.90	1.40
Heater	H-1	Vertical	No	17.0	600	232	-	-	41.41	2.67
Heater	Н-2	Vertical	No	14	600	14	-	-	7.91	1.50
Heater	Н-3	Vertical	No	25	600	30	-	-	16.76	1.50
Flare	FL-1	Vertical	No	200	1,832	15.0	-	-	27.48	0.63
Flare	FL-2	Vertical	No	100	1,832	506	-	-	0.72	1.67

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP normenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs		ldehyde IAP		dehyde IAP	Acrolein H.	⊠ AP		exane AP		izene AP	Name	Pollutant e Here or TAP	Name	Pollutant e Here or TAP	Name Here	Pollutant e r TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	ENG-1	0.45	1.98	0.20	0.86	0.09	0.40	0.09	0.40	0.01	0.02	0.02	0.10						
ENG-2	ENG-2	0.45	1.98	0.20	0.86	0.09	0.40	0.09	0.40	0.01	0.02	0.02	0.10						
ENG-3	ENG-3	0.45	1.98	0.20	0.86	0.09	0.40	0.09	0.40	0.01	0.02	0.02	0.10						
ENG-4	ENG-4	0.45	1.98	0.20	0.86	0.09	0.40	0.09	0.40	0.01	0.02	0.02	0.10						
Ajax 1	Ajax 1	1.17	2.82	0.53	2.32	0.05	0.23	0.03	0.14	0.01	0.03	0.00	0.01						
Ajax 2	Ajax 2	1.17	2.82	0.53	2.32	0.05	0.23	0.03	0.14	0.01	0.03	0.00	0.01						
H-1	H-1	0.04	0.18	0.00	0.01	0.00	0.00	0.00	0.00	0.04	0.17	0.00	0.00						
H-2	H-2	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00						
Н-3	Н-3	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.00						
H-4	H-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
Н-5	Н-5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
FL-1	DEHY-1	-	-	-	-	-	-	-	-	-	-	-	-						
	DEHY-2	-	-	-	-	-	-	-	-	-	-	-	-						
N/A	AU-1	-	-	-	-	-	-	-	-	-	-	-	-						
N/A	AU-2	-	-	-	-	-	-	-	-	-	-	-	-						
N/A	AU-3	-	-	-	-	-	-	-	-	-	-	-	-						
FL-1	FL-1	0.01	0.03	-	-	-	-	-	-	0.01	0.03	0.00	0.00						
FL-1 SSM	FL-1 SSM	1.34	0.31	0.00	0.00	0.00	0.00	0.00	0.00	1.21	0.28	0.08	0.02						
FL-2	FL-2	0.29	1.28	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.20	0.17	0.73						
FL-2 SSM	FL-2 SSM	22.68	1.98							11.29	1.95	6.62	0.58						
N/A	FUG	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.12	0.05	0.24						
N/A	SSM	-	-	0.00	0.00	0.00	0.00	0.00	0.00	-	-	-	-						
Tot	als:	28.52	17.37	1.84	8.07	0.47	2.06	0.43	1.89	12.66	2.95	7.02	1.99						

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
ENG-1	Natural Gas	Pipeline Quality Natural Gas	1209.58	0.010	85.22	2 grains/100 scf	N/A
ENG-2	Natural Gas	Pipeline Quality Natural Gas	1209.58	0.010	85.22	2 grains/100 scf	N/A
ENG-3	Natural Gas	Pipeline Quality Natural Gas	1209.58	0.010	85.22	2 grains/100 scf	N/A
ENG-4	Natural Gas	Pipeline Quality Natural Gas	1209.58	0.010	85.22	2 grains/100 scf	N/A
Ajax 1	Natural Gas	Pipeline Quality Natural Gas	1209.58	0.0052	45.19	2 grains/100 scf	N/A
Ajax 2	Natural Gas	Pipeline Quality Natural Gas	1209.58	0.0052	45.19	2 grains/100 scf	N/A
H-1	Natural Gas	Pipeline Quality Natural Gas	1209.58	0.019	162.22	2 grains/100 scf	N/A
Н-2	Natural Gas	Pipeline Quality Natural Gas	1209.58	0.0012	10.86	2 grains/100 scf	N/A
Н-3	Natural Gas	Pipeline Quality Natural Gas	1209.58	0.0026	23.03	2 grains/100 scf	N/A
FL-1	Natural Gas (pilot & Purge Gas)	Pipeline Quality Natural Gas	1209.58	0.0002	6.13	2 grains/100 scf	N/A
FL-2	Natural Gas (pilot & Purge Gas)	Pipeline Quality Natural Gas	1209.58	0.0002	6.13	2 grains/100 scf	N/A

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
			N/A - All Tanks are exe	empt at this fa	cility.				

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2 LR below)	Roof Type (refer to Table 2- LR below)		acity	Diameter (M)	Vapor Space (M)	(from Ta	blor ble VI-C)	Paint Condition (from Table VI-	Annual Throughput (gal/yr)	Turn- overs
			LK below)	Lix below)	(bbl)	(M ³)		(NI)	Roof	Shell	C)	(ga/yr)	(per year)
				Ν	/A - All Tanks	s are exempt a	t this facility.						

	Iabl	e 2-L2: Liquid Storage	Tank Data Codes Re	eterence l'able		
Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Rive	eted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$a^{3} = 42.0$ gal				BL: Black	
					OT: Other (specify)	

Table 2-L2·	Liquid Storage	Tank Data	Codes Reference Table
1 abic 2-L2.	Liquiu Storage		Coues Reference Table

	Materi	al Processed		Material Produced					
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)		
Acid Gas	H ₂ S & Natural Gas	Gas	90 MMSCFD	Sweet Natural Gas	Natural Gas	Gas	90 MMSCFD		

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
			N/A - This facility do	es not have CEMS Ec	uipment	-		-	-

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
		N/A - This facility does n	not have Parametric I	Emissions Measuremen	t Equipment			

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box X By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
ENG 4	mass GHG	6,027	0.01	0.11	-						6,027	
ENG-1	CO ₂ e	6,027	3.38	2.84	-							6,033
ENG-2	mass GHG	6,027	0.01	0.11	-						6,027	
ENG-2	CO ₂ e	6,027	3.38	2.84	-							6,033
ENG-3	mass GHG	6,027	0.01	0.11	-						6,027	
ENG-5	CO ₂ e	6,027	3.38	2.84	-							6,033
ENG-4	mass GHG	6,027	0.01	0.11	-						6,027	
	CO ₂ e	6,027	3.38	2.84	-							6,033
Ajax 1	mass GHG	3,218	0.01	0.06	-						3,218	
лјал 1	CO ₂ e	3,218	1.81	1.52	-					-		3,221
Ajax 2	mass GHG	3,218	0.01	0.06	-						3,218	
rijan 2	CO ₂ e	3,218	1.81	1.52	-							3,221
H-1	mass GHG	11,474	0.02	0.22	-			 	 		11,474	
	CO ₂ e	11,474	6.44	5.41	-							11,485
H-2	mass GHG	371.88	7.01E-04	0.01	-						372	ļ'
	CO ₂ e	371.88	0.21	0.18	-							372.267
Н-3	mass GHG	1,629	3.07E-03	0.03	-						1,629	
	CO ₂ e	1,629	0.91	0.77	-							1,631
FL-1	mass GHG	174.34	0.08	6.85	-						181.26	
	CO ₂ e	174.34	23.90	171.19	-							369.42
FL-2	mass GHG	9.64	0.08	194.55	-			 	 		204.27	1.007
	CO ₂ e	9.64	23.90	4,864	-							4,897
DEHY- 1	mass GHG	-	-	-	-						0.00	
DEHY- 2	CO2e	-	-	-	-							0
AU-1	mass GHG	-	-	-	-						0.00	
AU-2												
AU-3	CO ₂ e	-	-	-	-							0
Total	mass GHG	44,202	0.24	202.23	-						44,405	
Total	CO ₂ e	44,202	72.51	5,056	-							49,330.44

GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The **Application Summary** shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **Process Summary** shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

The Dagger Draw Gas Plant is currently permitted under Synthetic Minor > 80, permit NSR-0001-M11, authorized 4/26/2022. Frontier Field Services, LLC seeks a Significant Permit Revision per 20.2.72.219.D NMAC.

The facility's total capacity is 90 MMSCFD of natural gas, which is treated to remove H2S and CO2. The gas plant is located approximately 9.2 miles southwest of Artesia in Eddy County, New Mexico. This permit modification includes the following proposed changes:

- 1. Removal of H-4 and H-5 heaters from the permit. This equipment was never installed.
- 2. Adjustments to emissions factors used for ENG-1 through ENG-6 and renamed ENG-5 to Ajax 2, ENG-6 to Ajax 1.
- 3. Addition of amine flash tank and SSM emissions at the Process Flare, FL-2.
- 4. Updated gas sample composition updated for various sources.
- 5. Updated as-built counts of fugitive components used for fugitive emissions calculations.
- 6. Addition of SSM emissions at the Acid Gas Flare, FL-1.

There are no proposed changes made to the following equipment:

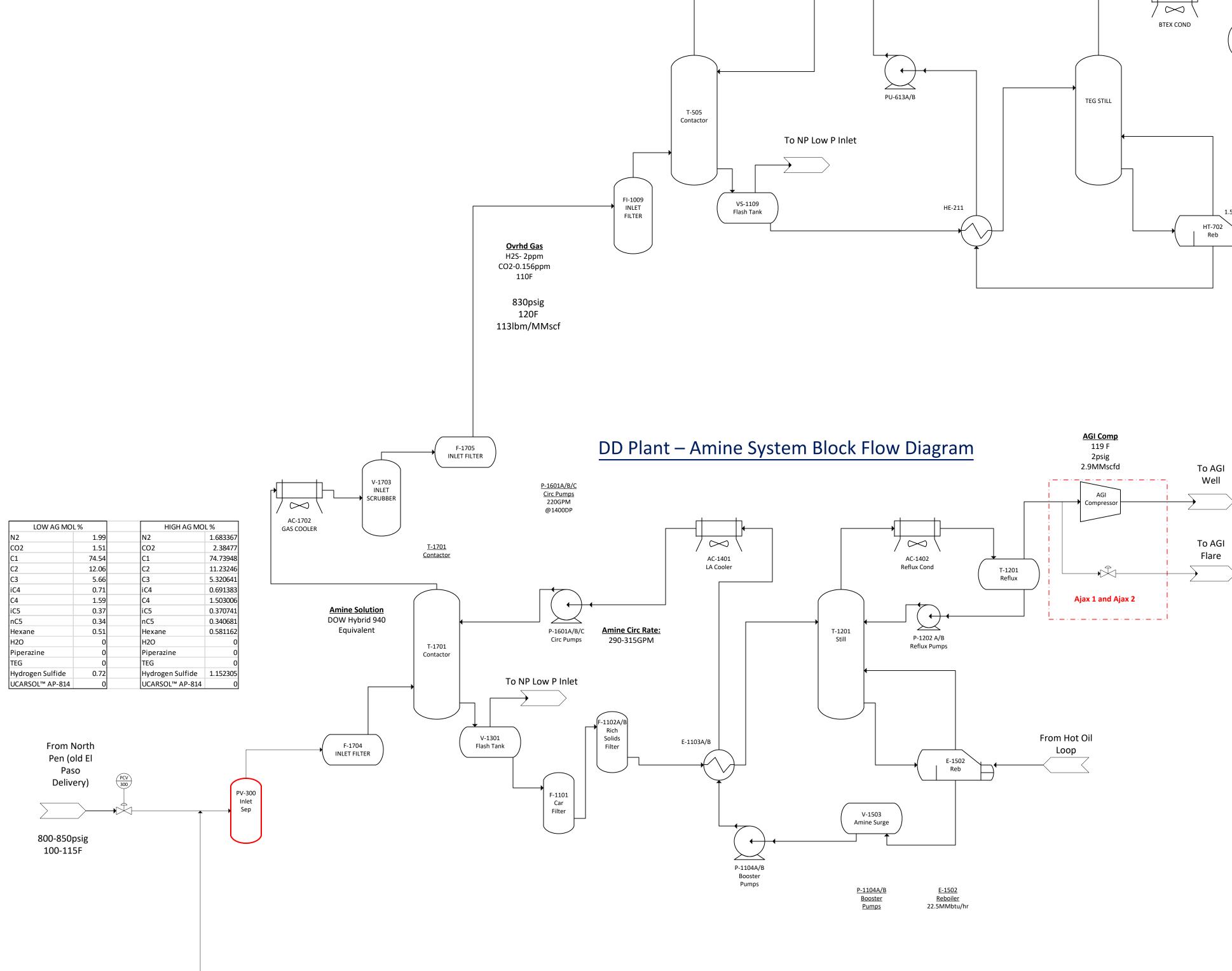
- Dehydrators DEHY-1 and DEHY-2
- Amine treating units AU-1, AU-2, and AU-3

This proposed revision does not increase the facility's total capacity and causes no auxiliary emissions increases.

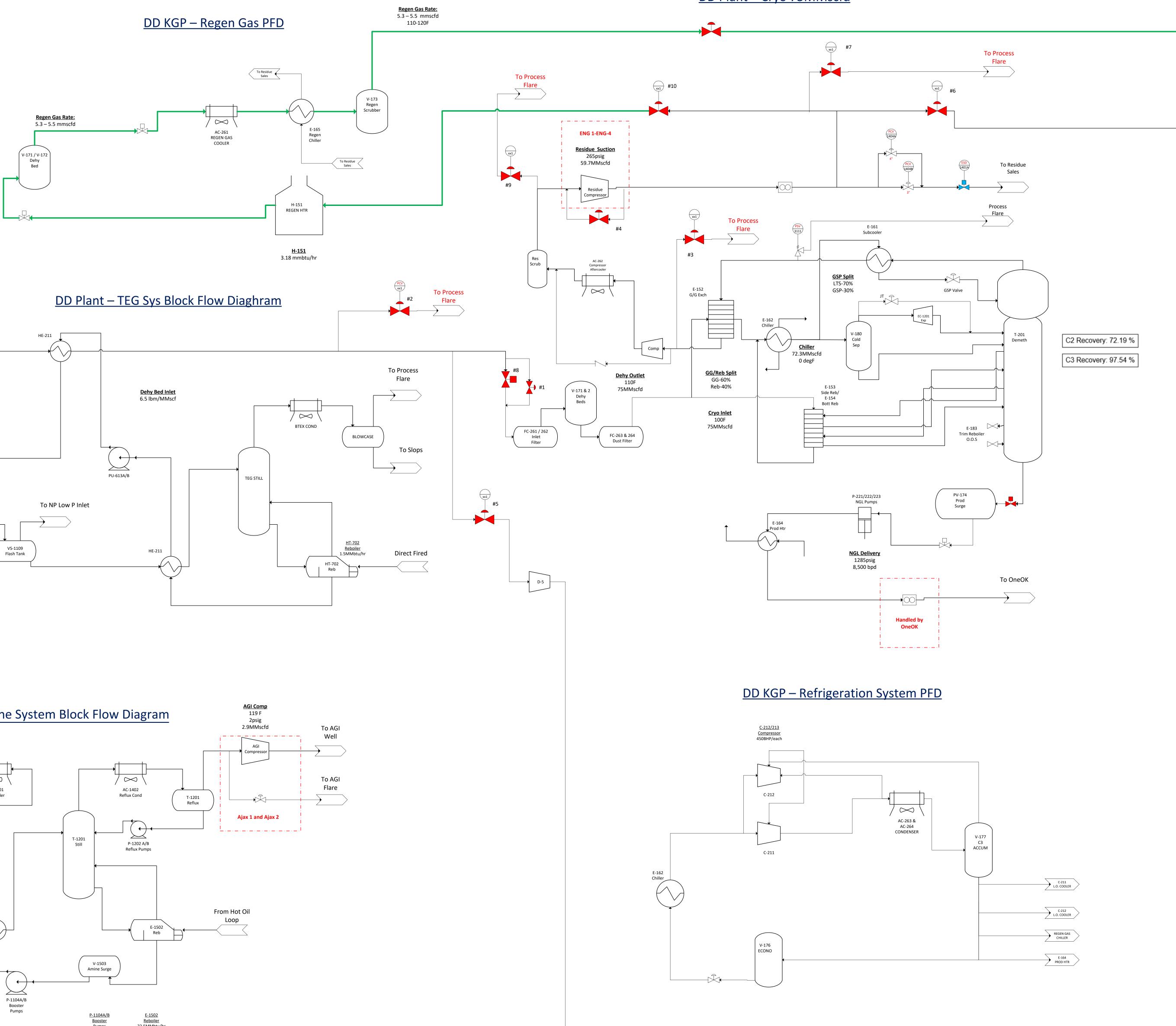
The proposed PTE for the site is as follows:

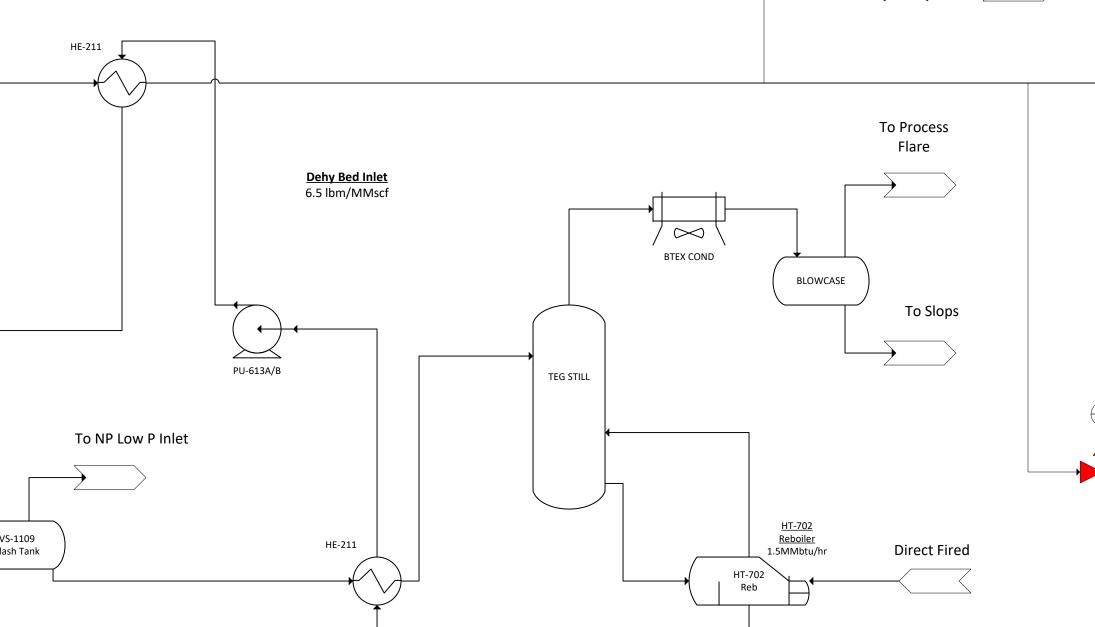
NOX (TPY)	CO (TPY)	VOC (TPY)	SO2 (TPY)	PM10/2.5 (TPY)	Total HAP (TPY)	Single HAP (TPY)
102.32	189.81	152.94	249.05	2.93	17.37	8.07

The facility is not a new major stationary source under the new source review requirements of the FCAA, Part C (PSD). The facility is located in Eddy County, New Mexico, an area that is classified as attainment or unclassified with the National Ambient Air Quality Standards (NAAQS) for all pollutants. Oil and gas production operations are not a listed source category under 40 CFR §52.21(b)(1); therefore, the facility would be considered a major source if criteria pollutant emissions are greater than or equal to the major source threshold of 250 tpy for each pollutant. The maximum annual emission rates for each criteria pollutant are less than 250 tpy. Therefore, the facility will remain a minor source as defined in the rules, and PSD review is not triggered.

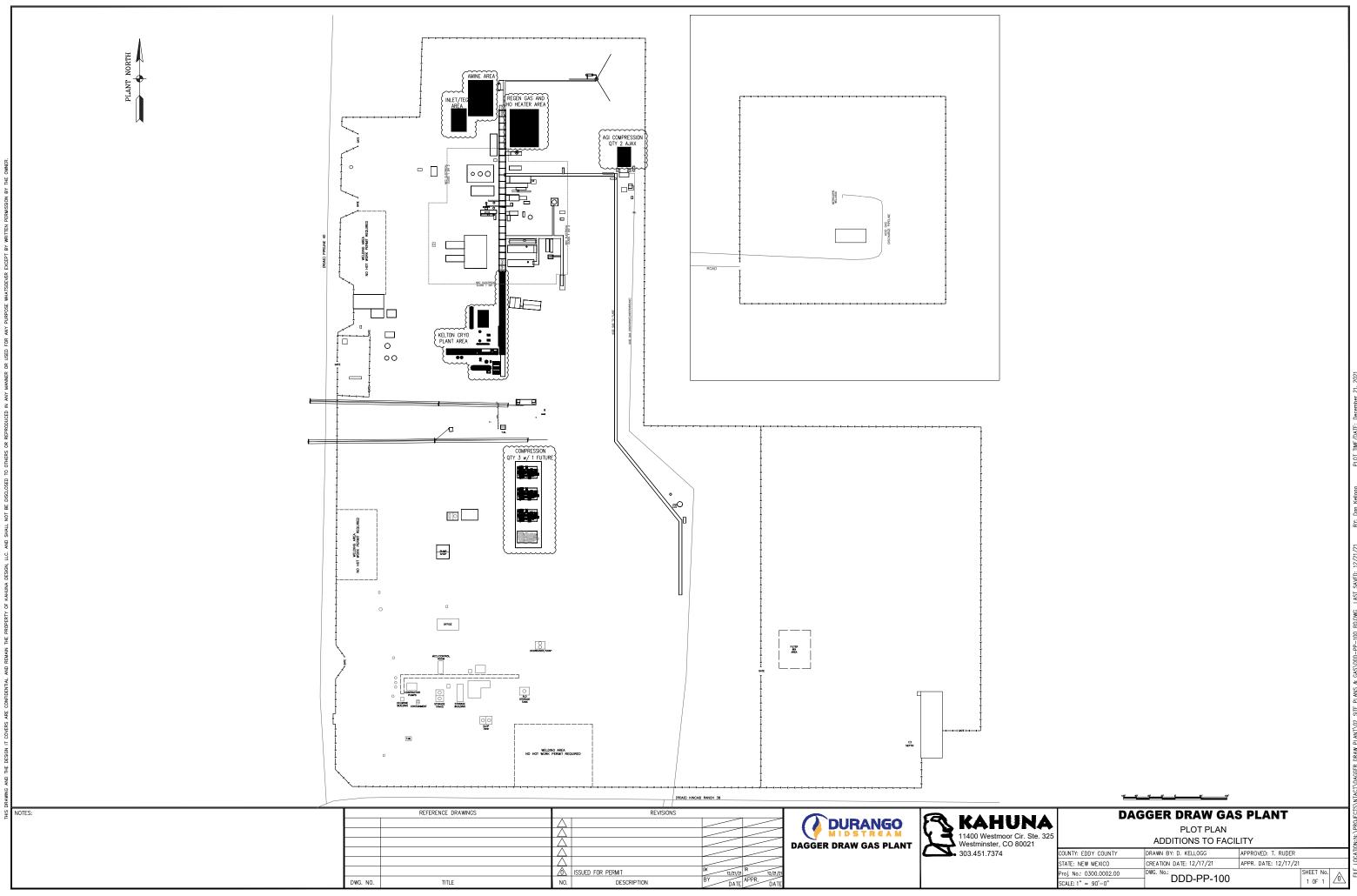

Title V permitting requirements are triggered since the Title V major source thresholds are exceeded (100 tpy for each criteria pollutant, 25 tpy for total HAPs, 10 tpy for any single HAP). The site will be Title V major for NOx, CO, SO2 and VOC.

Section 4


Process Flow Sheet


A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

DAGGER DRAW EXPANSION – PROCESS FLOW DIAGRAM


PLANT RECYCLE LINE 1. Process Sour Scenario 2. Mol Sieve Regen Scenario 3. Residue Sales Sour Scenario

<u>DD Plant – Cryo 75MMscfd</u>

Section 5

Plot Plan Drawn to Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

202
nber 21,
scen
ATE: De
IME/D/
LOT TI
Ч
660
an Kello
BY: Dan
21/21
0: 12/
SAVED
LAST
DWG.
-100_R0.DWG
-44-
AS\DDD
ю ж
PLANS &
_SITE
NT\02_
w Pla
DAGGER DR/
ACT
Ś
PROJEC'
FILE LOCATION: N:
FILE LO

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.

(4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

TEG Dehydrators (Units DEHY-1 & DEHY-2)

Emission rates were calculated using Promax (gas processing analysis/simulation program) the simulated throughput for the facility was set at a combined total of 90 MMscfd. A copy can be found in Section 7 of this application. The dehydrator is controlled by a Venturi system and a condenser. These controls are 100% efficient. 98% control accounts for fugitive emissions. All vapors are routed to the plant flare (unit FL-2). The system has no vent to the atmosphere.

Amine Units (Units AU-1 through AU-3)

Emission rates were calculated using Promax (gas processing analysis/simulation program) based on a combined maximum throughput of 90 MMSCFD for the entire facility. A copy can be found in Section 7 of this application. The Amine unit's flash tank emissions are collected and sent to a low-pressure inlet of the facility, the regenerator emissions are sent to the AGI system. The amine unit flash tank emissions have been updated to route to the facility Process Flare (FL-2) as a worst-case alternating operating scenario for the facility. The system has no vent to the atmosphere.

Compressor Engines (Units ENG-1 through ENG-4, Ajax 1 and Ajax 2)

Emission factors for NOx, CO, VOC, formaldehyde, and GHG are based on manufacturer data. NSCR and Catalytic oxidation for NOx, CO, VOC, and formaldehyde are based on vendor guarantees with a factor for operational flexibility. Emission rates for TSP, PM10, and PM2.5 were calculated using AP-42 Table 3.2-2 emission factors. PM10 and PM2.5 emissions are set equal to TSP emissions as a conservative measure. SO2 emissions were calculated based on the units' fuel consumption and AP-42 assumptions of fuel sulfur. Only those HAPs greater than 1 tpy were illustrated in the application. GHG emissions were calculated using 40 CFR 98 Subpart C Tier1.

Fugitives (Unit FUG)

Fugitives for the facility were calculated using the as-built component counts from LDAR testing and emission factors from EPA/API for oil and gas production facilities.

Hot oil heater, Reboiler, and Mol Sieve Regenerator heater (Units H-1 through H-3)

Emission rates for NOx, CO, VOC, and PM were calculated using AP-42 factors for external natural gas combustion sources, Table 1.4-1 and 1.4-2. PM10 and PM2.5 emissions are set equal to PM emissions as a conservative measure. SO2 emissions were calculated based on the units' fuel consumption and a maximum sulfur content of 2/100 scf). GHG emissions were calculated using 40 CFR 98 Subpart C Tier1.

Flares:

NOx emission factors from AP-42, Table 13.5-1, February 2018. CO emission factor from TCEQ Air Permit Technical Guidance for Flares and Vapor Oxidizers, high btu. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

Acid Gas Flare (Unit FL-1)

The Acid Gas Flare is used in SSM/malfunction/emergency events for acid gas flaring during compressor downtime of acid gas injection system. Pilot emissions are included for the facility flare, assuming year-round operation of the flare pilot. A copy of the flare calculations is provided in this section.

Process Flare (Unit FL-2)

The Process Flare is used to control glycol dehydrator emissions and the amine flash tank. Pilot emissions are included for the facility flare, assuming year-round operation of the flare pilot. A copy of the flare pilot calculation is provided in this section.

SSM emissions: in the event that the facility needs to handle a sour gas event, the gas exiting the amine unit may need to be flared at the Process Flare (FL-2). This permit amendment includes SSM flaring of 3.06 MMscf/hour and 949 MMscf/year of gas at 100 ppm H2S.

Routine or predictable emissions during Startup, Shutdown and Maintenance (SSM):

Frontier Field Services, LLC represents 6.2 tpy of VOC associated with compressor and slug catcher blowdowns that will occur at this facility.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Frontier Field Services, LLC. - Dagger Draw Gas Plant

Emission Summary

Borne university Unit Unit <th colspan="14" th="" uni<=""><th></th><th></th><th></th></th>	<th></th> <th></th> <th></th>																
Unit lb/hr tpy lb/hr	Acrolein	n-hexane	benzene														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	lb/hr tpy	lb/hr tpy	lb/hr tpy														
ENG-3 1.96 8.57 10.76 47.13 3.85 16.85 0.01 0.03 0.12 0.51 - - 1.47 6.43 1.02 4.46 0.09 0.40 ENG-4 1.96 8.57 10.76 47.13 3.85 16.85 0.01 0.03 0.12 0.51 - - 1.47 6.43 1.02 4.46 0.09 0.40 ENG-4 1.96 8.57 10.76 47.13 3.85 16.85 0.01 0.03 0.12 0.51 - - 1.47 6.43 1.02 4.46 0.09 0.40 Ajax 1 3.53 15.45 4.06 17.77 1.90 8.34 0.00 0.02 0.30 1.33 0.30 1.33 - 0.64 2.82 0.53 2.32 0.05 0.23 Ajax 2 3.53 15.45 4.06 17.77 1.90 8.34 0.00 0.02 0.30 1.33 0.30	0.09 0.40	0.01 0.02	0.02 0.10														
ENG.4 1.96 8.87 10.76 47.13 3.85 16.85 0.01 0.02 0.51 0.12 0.51 - - 1.47 6.43 1.02 4.46 0.09 0.40 Ajax 1 3.53 15.45 4.06 17.77 1.90 8.34 0.00 0.02 0.30 1.33 - - 0.64 2.82 0.53 2.32 0.05 0.23 Ajax 2 3.53 15.45 4.06 17.77 1.90 8.34 0.00 0.02 0.30 1.33 - - 0.64 2.82 0.53 2.32 0.05 0.23 Ajax 2 3.53 15.45 4.06 1.77 1.90 8.34 0.00 0.02 0.30 1.33 0.30 1.33 - - 1.17 5.14 0.53 2.32 0.05 0.23	0.09 0.40	0.01 0.02	0.02 0.10														
Ajax 1 3.53 15.45 4.06 17.77 1.90 8.34 0.00 0.02 0.30 1.33 - - 0.64 2.82 0.53 2.32 0.05 0.23 Ajax 2 3.53 15.45 4.06 17.77 1.90 8.34 0.00 0.02 0.30 1.33 - - 0.64 2.82 0.53 2.32 0.05 0.23 Ajax 2 3.53 15.45 4.06 17.77 1.90 8.34 0.00 0.02 0.30 1.33 - - 1.17 5.14 0.53 2.32 0.05 0.23	0.09 0.40	0.01 0.02	0.02 0.10														
Ajax 2 3.53 15.45 4.06 17.77 1.90 8.34 0.00 0.02 0.30 1.33 0.30 1.33 1.17 5.14 0.53 2.32 0.05 0.23	0.09 0.40	0.01 0.02	0.02 0.10														
	0.03 0.14 0.03 0.14	0.01 0.03	0.00 0.01														
H-1 2.20 9.62 1.84 8.08 0.12 0.53 0.13 0.58 0.17 0.73 0.17 0.73 0.04 0.18 0.00 0.01 0.00 0.00	0.03 0.14 0.00 0.00	0.01 0.03 0.04 0.17	0.00 0.01														
H-1 2015 0.64 0.12 0.54 0.01 0.04 0.01 0.05 0.11 0.05 0.11 0.05 0.1 0.05 0.00 0.00	0.00 0.00	0.00 0.01	0.00 0.00														
H-3 0.31 1.37 0.26 1.15 0.02 0.08 0.02 0.08 0.02 0.10 0.02 0.10 0.02 0.10 0.01 0.03 0.00 0.00 0.00 0.00	0.00 0.00	0.01 0.02	0.00 0.00														
H-4 Removed																	
H-5 Removed																	
DEHY-1 48.49 212.38 0.01 0.03 10.73 46.99 0 0 0 0 0	0 0	1.02 4.47	6.74 29.51														
DEHY-2	0 0	1.02 4.47	0.74 29.31														
AU-1																	
AU-2 94.97 153.58 4143.89 24.32 56.25 12.56 0 0 0 0 0	0 0	0.29 1.13	33.80 7.23														
AU-3		0.0060 0.0264	0.0000 0.0000														
I-I-I (park duri) 0.014 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.0000 0.0204	0.0000 0.0000														
EL-2 0.014 0.061 0.057 0.25 0.02 0.07 0.00 0.00 0.0015 0.007 0.0015 0.007 0.00E+00 0.00 0.0264		0.0060 0.0264	0.0000 0.0000														
FL-2 SSM 35162.93 3076.76 0.55 26.70 1134.05 99.23		564.39 49.38	331.17 28.98														
FUG 1.48 0.12 0.53		0.03 0.12	0.05 0.24														
SSM 22.65 6.20			· ·														
MALF Removed Total 17.56 76.93 53.59 234.34 35349.91 3533.81 0.194 0.85 1.28 5.61 144.45.7 51.58 1208.78 192.74 5.13 22.47 0.470 2.060	0.431 1.887	565.83 55.52	371.85 66.38														
Total 17.56 76.93 53.50 234.34 35349.91 3533.81 0.194 0.85 1.28 5.61 1.28 5.61 4144.57 51.58 1208.78 192.74 5.13 22.47 0.470 2.060	0.431 1.88/	505.85 55.52	371.85 66.38														
Controlled Emissions																	
NO, CO VOC* SO, PM ₁₀ PM ₁₅ H,S Total HAP Formaldehyde Acetaldehyde	Acrolein	n-hexane	benzene														
Unit lb/hr tpy	lb/hr tpy	lb/hr tpy	lb/hr tpy														
ENG-1 1.96 8.57 2.35 10.28 3.03 13.25 0.01 0.03 0.12 0.51 0.12 0.51 0.45 1.98 0.20 0.86 0.09 0.40	0.09 0.40	0.01 0.02	0.02 0.10														
ENG-2 1.96 8.57 2.35 10.28 3.03 13.25 0.01 0.03 0.12 0.51 0.12 0.51 0.45 1.98 0.20 0.86 0.09 0.40	0.09 0.40	0.01 0.02	0.02 0.10														
ENG-3 1.96 8.57 2.35 10.28 3.03 13.25 0.01 0.03 0.12 0.51 0.12 0.51 0.45 1.98 0.20 0.86 0.09 0.40	0.09 0.40	0.01 0.02	0.02 0.10														
ENG-4 1.96 8.57 2.35 10.28 3.03 13.25 0.01 0.03 0.12 0.51 0.12 0.51 - - 0.45 1.98 0.20 0.86 0.09 0.40 Aiax1 353 15.45 4.06 17.77 1.90 8.34 0.00 0.02 0.13 - - 1.17 2.82 0.05 0.93	0.09 0.40	0.01 0.02	0.02 0.10														
Ajax 1 3.53 15.45 4.06 17.77 1.90 8.34 0.00 0.02 0.30 1.33 0.30 - - 1.17 2.82 0.53 2.32 0.05 0.23 Ajax 2 3.53 15.45 4.06 17.77 1.90 8.34 0.00 0.02 0.30 1.33 - - 1.17 2.82 0.63 2.32 0.05 0.23 Ajax 2 3.53 15.45 4.06 17.77 1.90 8.34 0.00 0.02 0.30 1.33 - - 1.17 2.82 0.53 2.32 0.05 0.23 Ajax 4 0.00 0.02 0.30 1.33 0.30 1.33 - - 1.17 2.82 0.53 2.32 0.05 0.23	0.03 0.14 0.03 0.14	0.01 0.03 0.01 0.03	0.00 0.01 0.00 0.01														
Agik 2 5.35 1.343 4.00 17.77 1.70 8.34 0.00 0.22 0.30 1.33 0.30 1.33 - 1.17 2.22 0.35 0.30 0.20 0.23 1.33 - 1.17 2.22 0.35 0.30 0.30 0.23 0.23 1.33 1.17 0.73 1.17 0.73 1.17 0.74 0.18 0.00 0.01 0.00 0.00	0.00 0.00	0.04 0.17	0.00 0.01														
H-2 0.15 0.64 0.12 0.54 0.01 0.04 0.01 0.05 0.01 0.05 0.00 0.01 0.00 0.00 0.00 0.00 0.00	0.00 0.00	0.00 0.01	0.00 0.00														
	0.00 0.00	0.01 0.02	0.00 0.00														
H-3 0.31 1.37 0.26 1.15 0.02 0.08 0.02 0.08 0.02 0.10 0.02 0.10 0.00 0.03 0.00 0.00 0.00 0.00 0.00																	
H-3 0.31 1.37 0.26 1.15 0.02 0.08 0.02 0.08 0.02 0.10 0.02 0.10 0.01 0.03 0.00 0.00 0.00 0.00 0.00																	
H-3 0.31 1.37 0.26 1.15 0.02 0.08 0.02 0.10 0.02 0.10 - 0.01 0.03 0.00 0.00 0.00 H-4 H-5 DEHY-1																	
H-3 0.31 1.37 0.26 1.15 0.02 0.08 0.02 0.10 0.02 0.10 - - 0.01 0.03 0.00 0.00 0.00 0.00 H-4 Removed H-5 Second DEHY-1 C - - 0.01 0.03 0.00 0.00 0.00 DEHY-2 - - - - - - - - - - - - - - - - - - 0.01 0.03 0.00 </td <td></td> <td>1</td> <td></td>		1															
H-3 0.31 1.37 0.26 1.15 0.02 0.08 0.02 0.10 0.02 0.10 - - 0.01 0.03 0.00 0.00 0.00 0.00 H-4 Removed H-5																	
H-3 0.31 1.37 0.26 1.15 0.02 0.08 0.02 0.10 0.02 0.10 . . 0.01 0.03 0.00 0.00 0.00 H-4 H-5 Removed H-5 DEHY-1 DEHY-2 . <t< td=""><td></td><td></td><td></td></t<>																	
H-3 0.31 1.37 0.26 1.15 0.02 0.08 0.02 0.10 0.02 0.10 - - 0.01 0.03 0.00 0.00 0.00 H-4 Removed H-5 DEHY-1 - - - - 0.01 0.03 0.00 0.00 0.00 DEHY-1 - - - - - - - - - - - - 0.01 0.03 0.00 0.00 0.00 AU-1 - - - - - - - - - - - - - 0.01 0.03 0.00 0.00 0.00 AU-2 -																	
H-3 0.31 1.37 0.26 1.15 0.02 0.08 0.02 0.10 0.02 0.10 - - 0.01 0.03 0.00 0.00 0.00 0.00 H-4 Removed H-5 Removed DEHY-1 C - <th colsp<="" td=""><td> 0.00 0.00</td><td>0.006 0.026</td><td>0.000 0.000</td></th>	<td> 0.00 0.00</td> <td>0.006 0.026</td> <td>0.000 0.000</td>	 0.00 0.00	0.006 0.026	0.000 0.000													
H-3 0.31 1.37 0.26 1.15 0.02 0.08 0.02 0.10 0.02 0.10 . . 0.01 0.03 0.00 0.00 0.00 0.00 H-4 Removed H-5 Removed DEHY-1 C Removed DEHY-1 C			0.000 0.000														
H-3 0.31 1.37 0.26 1.15 0.02 0.08 0.02 0.10 0.02 0.10 - - 0.01 0.03 0.00 0.00 0.00 0.00 H-4 Removed H-5 Removed DEHY-1 - 0.01 0.03 0.00 BHY-1 Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4"Colspan="4">0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 <th c<="" td=""><td>0.00 0.00</td><td>0.006 0.026</td><td>0.000 0.000 0.08 0.02</td></th>	<td>0.00 0.00</td> <td>0.006 0.026</td> <td>0.000 0.000 0.08 0.02</td>	0.00 0.00	0.006 0.026	0.000 0.000 0.08 0.02													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.006 0.026 1.21 0.28 0.05 0.20	0.000 0.000 0.08 0.02 0.17 0.73														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.006 0.026 1.21 0.28 0.05 0.20 11.29 1.95 0.03 0.12	0.000 0.000 0.08 0.02 0.17 0.73 6.62 0.58 0.05 0.24														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.006 0.026 1.21 0.28 0.05 0.20 11.29 1.95	0.000 0.000 0.08 0.02 0.17 0.73 6.62 0.58														

*Engine VOC includes formaldehyde and acetaldehyde.

** For modeling purposes, FL-1 SSM and FL-2 SSM do not occur simultaneously.

Frontier Field Services, LLC. - Dagger Draw Gas Plant

Engines

Unit: Description: Control Equipment: ENG-1, ENG-2, ENG-3, ENG-4 Engines ENG-1, ENG-2, ENG-3, ENG-4

EPN/FIN:	ENG-1	ENG-2	ENG-3	ENG-4
Name:	CAT 3606	CAT 3606	CAT 3606	CAT 3606
Manufacturer	Caterpillar	Caterpillar	Caterpillar	Caterpillar
Model Number	G3606LE	G3606 TALE	G3606 TALE	G3606 TALE
Rated Horsepower:	1,775	1,775	1,775	1,775
Fuel consumption (Btu/hp-hr):	6,629	6,629	6,629	6,629
(MMBtu/hr)	11.77	11.77	11.77	11.77
Hours of operation per year:	8,760	8,760	8,760	8,760
Total Annual Aggregate heat Input (MMBTU)	103,074	103,074	103,074	103,074
Engine Type:	4 Stroke, Lean-Burn	4 Stroke, Lean-Burn	4 Stroke, Lean-Burn	4 Stroke, Lean-Burn

Fuel Data

Fuel Type	natural gas	natural gas	natural gas	natural gas
Fuel Consumption (BTU/bhp-hr)	6,629	6,629	6,629	6,629
Fuel sulflur content (grains/scf)	0.02	0.02	0.02	0.02
Fuel Gas Heat Value (HHV)	1,030	1,030	1,030	1,030

Method of Emission Control

	Yes/No	Yes/No	Yes/No	Yes/No
NSCR Catalyst	No	No	No	No
SCR Catalyst	No	No	No	No
JLCC Catalyst	No	No	No	No
Parameter Adjustment		No	No	No
Stratified Charge		No	No	No
Other (Specify)	Oxidation	Oxidation	Oxidation	Oxidation

Emissions

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	Emissions Factor Used	units	Uncontrolled Emissions lb/hr	Emissions tpy
VOC	0.7	0.12	0.118	0.0296	0.118	0.7	g/hp-hr	2.74	12.00
NOx	0.5	3.17	4.08	2.21	4.08	0.5	g/hp-hr	1.96	8.57
CO	2.75	0.386	0.317	3.72	0.317	2.75	g/hp-hr	10.76	47.13
PM ₁₀		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM2.5		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂ ^a		0.000588	0.000588	0.000588	0.000588	0.000588	lb/MMBtu	0.0069	0.03
Formaldehyde	0.26	0.0552	0.0528	0.0205	0.0528	0.26	g/hp-hr	1.02	4.46
Benzene		0.00194	0.00044	0.00158	0.00044	0.00044	lb/MMBtu	0.01	0.02
CO2						53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N20						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	6,033

ENG-1 Controlled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	Emissions Factor Used	units	Controlled Emissions lb/hr	Emissions tpy
VOC	0.7	0.12	0.118	0.0296	0.118	0.7	g/hp-hr	2.74	12.00
NOx	0.5	3.17	4.08	2.21	4.08	0.5	g/hp-hr	1.96	8.57
CO	0.6	0.386	0.317	3.72	0.317	0.6	g/hp-hr	2.35	10.28
PM ₁₀		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM2.5		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂ ^a		0.000588	0.000588	0.000588	0.000588	0.000588	lb/MMBtu	0.0069	0.03
Formaldehyde	0.05	0.0552	0.0528	0.0205	0.0528	0.05	g/hp-hr	0.20	0.86
Benzene		0.00194	0.00044	0.00158	0.00044	0.00044	lb/MMBtu	0.01	0.02
CO2						53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N2O						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	6,033

ENG-2 Uncontrolled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Uncontrolled Emissions lb/hr	Emissions tpy
VOC	0.7	0.12	0.118	0.0296	0.118	0.7	g/hp-hr	2.74	12.00
NOx	0.5	3.17	4.08	2.21	4.08	0.5	g/hp-hr	1.96	8.57
CO	2.75	0.386	0.317	3.72	0.317	2.75	g/hp-hr	10.76	47.13
PM ₁₀		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM2.5		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂ ^a		0.000588	0.000588	0.000588	0.000588	0.000588	lb/MMBtu	0.01	0.03
Formaldehyde	0.26	0.0552	0.0528	0.0205	0.0528	0.26	g/hp-hr	1.02	4.46
Benzene		0.00194	0.00044	0.00158	0.00044	0.00044	lb/MMBtu	0.01	0.02
CO2						53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N2O						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	6,033

ENG-2 Controlled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Controlled Emissions lb/hr	Emissions tpy
VOC	0.7	0.12	0.118	0.0296	0.118	0.7	g/hp-hr	2.74	12.00
NOx	0.5	3.17	4.08	2.21	4.08	0.5	g/hp-hr	1.96	8.57
CO	0.6	0.386	0.317	3.72	0.317	0.6	g/hp-hr	2.35	10.28
PM ₁₀		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM2.5		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂ *		0.000588	0.000588	0.000588	0.000588	0.000588	lb/MMBtu	0.01	0.03
Formaldehyde	0.05	0.0552	0.0528	0.0205	0.0528	0.05	g/hp-hr	0.20	0.86
Benzene		0.00194	0.00044	0.00158	0.00044	0.00044	lb/MMBtu	0.01	0.02
CO2						53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N2O						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	6,033

ENG-3 Uncontrolled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Uncontrolled Emissions lb/hr	Emissions (each) tpy
VOC	0.7	0.12	0.118	0.0296	0.0296	0.7	g/hp-hr	2.74	12.00
NO	0.5	3.17	4.08	2.21	2.21	0.5	g/hp-hr	1.96	8.57
co	2.75	0.386	0.317	3.72	3.72	2.75	g/hp-hr	10.76	47.13
PMI)	0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM _{2.1}	5	0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂		0.000588	0.000588	0.000588	0.000588	0.000588	lb/MMBtu	0.01	0.03
Formaldehydd	0.26	0.0552	0.0528	0.0205	0.0205	0.26	g/hp-hr	1.02	4.46
Benzene	2	0.00194	0.00044	0.00158	0.00158	0.00158	lb/MMBtu	0.02	0.08
CO2	2					53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N2C						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	6.033

ENG-3 Controlled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Controlled Emissions lb/hr	Emissions (each) tpy
VOC	0.7	0.12	0.118	0.0296	0.0296	0.7	g/hp-hr	2.74	12.00
NOx	0.5	3.17	4.08	2.21	2.21	0.5	g/hp-hr	1.96	8.57
CO		0.386	0.317	3.72	3.72	0.6	g/hp-hr	2.35	10.28
PM ₁₀		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM2.5		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂ ^a		0.000588	0.000588	0.000588	0.000588	0.000588	lb/MMBtu	0.01	0.03
Formaldehyde	0.05	0.0552	0.0528	0.0205	0.0205	0.05	g/hp-hr	0.20	0.86
Benzene		0.00194	0.00044	0.00158	0.00158	0.00158	lb/MMBtu	0.02	0.08
CO2						53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N2O						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	6,033

ENG-4 Uncontrolled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Uncontrolled Emissions lb/hr	Emissions (each) tpy
VOC	0.7	0.12	0.118	0.0296	0.0296	0.7	g/hp-hr	2.74	12.00
NOx	0.5	3.17	4.08	2.21	2.21	0.5	g/hp-hr	1.96	8.57
CO	2.75	0.386	0.317	3.72	3.72	2.75	g/hp-hr	10.76	47.13
PM ₁₀		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM2.5		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂ ^a		0.000588	0.000588	0.000588	0.000588	0.000588	lb/MMBtu	0.01	0.03
Formaldehyde	0.26	0.0552	0.0528	0.0205	0.0205	0.26	g/hp-hr	1.02	4.46
Benzene		0.00194	0.00044	0.00158	0.00158	0.00158	lb/MMBtu	0.02	0.08
CO2						53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N2O						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	6,033

ENG-4 Controlled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Controlled Emissions lb/hr	Emissions (each) tpy
VOC	0.7	0.12	0.118	0.0296	0.0296	0.7	g/hp-hr	2.74	12.00
NOx	0.5	3.17	4.08	2.21	2.21	0.5	g/hp-hr	1.96	8.57
CO	0.6	0.386	0.317	3.72	3.72	0.6	g/hp-hr	2.35	10.28
PM ₁₀		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
PM2.5		0.04831	0.0099871	0.01941	0.0099871	0.0099871	lb/MMBtu	0.12	0.51
SO ₂ ^a		0.000588	0.000588	0.000588	0.000588	0.000588	lb/MMBtu	0.01	0.03
Formaldehyde	0.05	0.0552	0.0528	0.0205	0.0205	0.05	g/hp-hr	0.20	0.86
Benzene		0.00194	0.00044	0.00158	0.00158	0.00158	lb/MMBtu	0.02	0.08
CO2						53.06	kg/MMBtu		6,027
CH4						1.00E-03	kg/MMBtu		0.11
N20						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	6.033

* Calculation: For emission factors in terms of g/hp-hr: (Emission factor) * (Lossepower) * (Conversion factor) (g/hp-hr) * (hp) * (1 hi/453.59 g) For emission factors in terms of IbMMBu: (Emission factor) * (Conversion factor) # Ontoper 20 her hird * 24 her Are in the Generation factor)

(lb/MMBtu) * (Btu/hp-hr) * (hp) * (1 MMBtu/1,000,000 Btu) ^b SO₂ emissions are based on AP-42 factor-based emissions considering a 2000 gr/MMsef sulfur content

HAP Emissions (controlled)

	Lean Burning 4 Stroke Engines	ENG-1	ENG-1	ENG-2	ENG-2	ENG-3	ENG-3	ENG-4	ENG-4
Pollutant	AP-42 Table 3.2-2, 2000 Emission Factor (lb/MMBtu)	Emissions lb/hr	Emissions tpy	Emissions lb/hr	Emissions tpy	Emissions lb/hr	Emissions tpy	Emissions Ib/hr	Emissions tpy
Acetaldehyde	7.76E-03	0.0913	0.3999	0.0913	0.3999	0.09	0.40	0.09	0.40
Acrolein	7.78E-03	0.0915	0.4010	0.0915	0.4010	0.09	0.40	0.09	0.40
Benzene	1.94E-03	0.0228	0.1000	0.0228	0.099982	0.02	0.10	0.02	0.10
Ethylbenzene	1.08E-04	< 0.01	0.0056	< 0.01	0.0056	< 0.01	0.01	< 0.01	0.01
Formaldehyde	Engine Specific	0.1957	0.8570	0.1957	0.8570	0.20	0.86	0.1957	0.8570
Methanol	2.48E-03	0.0292	0.1278	0.0292	0.1278	0.03	0.13	0.03	0.13
n-Hexane	4.45E-04	0.0052	0.0229	0.0052	0.0229	0.01	0.02	0.01	0.02
Toluene	9.63E-04	0.0113	0.0496	0.0113	0.0496	0.01	0.05	0.01	0.05
Xylenes	2.68E-04	< 0.01	0.0138	< 0.01	0.0138	< 0.01	0.01	< 0.01	0.01
Totals		0.45	1.98	0.45	1.98	0.45	1.98	0.45	1.98

Frontier Field Services, LLC. - Dagger Draw Gas Plant

Engines

Unit: Description: Control Equipment:

Engine Data

Unit:	Ajax 1	Ajax 2
Name:	Ajax 1	Ajax 2
Manufacturer	Ajax	Ajax
Model Number	DPC 2804LE	DPC 2804LE
Rated Horsepower:	800	800
Fuel consumption (Btu/hp-hr):	7,853	7,853
(MMBtu/hr)	6.28	6.28
Hours of operation per year:	8,760	8,760
Total Annual Aggregate heat Input		
(MMBTU)	55,034	55,034
Engine Type:	2 Stroke, Lean-Burn	2 Stroke, Lean-Burn

Ajax 1, Ajax 2 Engines N/A

Fuel Data

Fuel Type	natural gas	natural gas
Fuel Consumption (BTU/bhp-hr)	7,853	7,853
Fuel sulflur content (grains/scf)	0.02	0.02
Fuel Gas Heat Value (HHV)	1,030	1,030

Method of Emission Control

Method of Emission Control		
	Yes/No	Yes/No
NSCR Catalyst	No	No
SCR Catalyst	No	No
JLCC Catalyst	No	No
Parameter Adjustment	No	No
Stratified Charge	No	No
Other (Specify)	Oxidation	Oxidation

Emissions

Ajax 1 Uncontrolled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	Emissions Factor Used	units	Uncontrolled Emissions lb/hr	Emissions tpy
VOC	0.75	0.12	0.118	0.0296	0.12	0.75	g/hp-hr	1.32	5.79
NOx	2.0	3.17	4.08	2.21	3.17	2.0	g/hp-hr	3.53	15.45
CO	2.3	0.386	0.317	3.72	0.386	2.3	g/hp-hr	4.06	17.77
PM ₁₀		0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.33
PM2.5	5	0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.33
SO ₂ [±]	1	0.000588	0.000588	0.000588	0.000588	0.000588	lb/MMBtu	<0.01	0.02
Formaldehyde	0.3	0.0552	0.0528	0.0205	0.0552	0.3	g/hp-hr	0.53	2.32
Benzene		0.00194	0.00044	0.00158	0.00194	0.00194	lb/MMBtu	0.01	0.05
CO2						53.06	kg/MMBtu		3,218
CH4						1.00E-03	kg/MMBtu		0.06
N2O						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	3.221

Ajax 1 Controlled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	Emissions Factor Used	units	Controlled Emissions lb/hr	Emissions tpy
VOC	0.75	0.12	0.118	0.0296	0.12	0.75	g/hp-hr	1.32	5.79
NOx	2.0	3.17	4.08	2.21	3.17	2.0	g/hp-hr	3.53	15.45
CO	2.3	0.386	0.317	3.72	0.386	2.3	g/hp-hr	4.06	17.77
PM ₁₀		0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.33
PM _{2.5}		0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.33
SO ₂ ⁴	1	0.000588	0.000588	0.000588	0.000588	0.000588	lb/MMBtu	<0.01	0.02
Formaldehyde	0.3	0.0552	0.0528	0.0205	0.0552	0.3	g/hp-hr	0.53	2.32
Benzene		0.00194	0.00044	0.00158	0.00194	0.00194	lb/MMBtu	0.01	0.05
CO2						53.06	kg/MMBtu		3,218
CH4						1.00E-03	kg/MMBtu		0.06
N2O						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	3,221

Ajax 2 Uncontrolled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Uncontrolled Emissions lb/hr	Emissions tpy
VOC	0.75	0.12	0.118	0.0296	0.12	0.75	g/hp-hr	1.32	5.79
NOx	2.0	3.17	4.08	2.21	3.17	2.0	g/hp-hr	3.53	15.45
CO	2.3	0.386	0.317	3.72	0.386	2.3	g/hp-hr	4.06	17.77
PM10		0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.33
PM2.5		0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.33
SO ₂ ^a		0.000588	0.000588	0.000588	0.000588	0.000588	lb/MMBtu	<0.01	0.02
Formaldehyde	0.3	0.0552	0.0528	0.0205	0.0552	0.3	g/hp-hr	0.53	2.32
Benzene		0.00194	0.00044	0.00158	0.00194	0.00194	lb/MMBtu	0.01	0.05
CO2						53.06	kg/MMBtu		3,218
CH4						1.00E-03	kg/MMBtu		0.06
N2O						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	3,221

Ajax 2 Controlled

	Manufacturer Emission Factor	<u>AP-42 Table 3.2-1</u> 2 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-2</u> 4 stroke, lean-burn engine emission factors (lb/MMBtu)	<u>AP-42 Table 3.2-3</u> 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Controlled Emissions lb/hr	Emissions tpy
VOC	0.75	0.12	0.118	0.0296	0.0296	0.75	g/hp-hr	1.32	5.79
NOx	2.0	3.17	4.08	2.21	2.21	2.0	g/hp-hr	3.53	15.45
CO	2.3	0.386	0.317	3.72	3.72	2.3	g/hp-hr	4.06	17.77
PM ₁₀		0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.33
PM _{2.5}		0.04831	0.0099871	0.01941	0.04831	0.04831	lb/MMBtu	0.30	1.33
SO ₂ ⁴		0.000588	0.000588	0.000588	0.000588	0.000588	lb/MMBtu	<0.01	0.02
Formaldehyde	0.3	0.0552	0.0528	0.0205	0.0205	0.3	g/hp-hr	0.53	2.32
Benzene		0.00194	0.00044	0.00158	0.00158	0.00158	lb/MMBtu	0.01	0.04
CO2						53.06	kg/MMBtu		3,218
CH4						1.00E-03	kg/MMBtu		0.06
N2O						1.00E-04	kg/MMBtu		0.01
								Total CO2e (TPY)	3,221

^a Calculation: For emission factors in terms of g/hp-hr: (Emission factor) * (Horsepower) * (Conversion factor)

(g/hp-hr) * (hp) * (1 lb/453.59 g) For emission factors in terms of lb/MMBtu:

(Emission factor) * (Fuel Consumption) * (Horsepower) * (Conversion factor) (lb/MBtu) * (Btu/hp-hr) * (hp) * (1 MMBtu/1,000,000 Btu) ^b SO₂ emissions are based on AP-42 factor-based emissions considering a 2000 gr/MMscf sulfur content

HAP Emissions

	Lean Burning 2 Stroke Engines	Ajax 1	Ajax 1	Ajax 2	Ajax 2
Pollutant	AP-42 Table 3.2-1, 2000 Emission Factor (lb/MMBtu)	Emissions lb/hr	Emissions tpy	Emissions lb/hr	Emissions tpy
Acetaldehyde	8.36E-03	0.0525	0.2300	0.0525	0.2300
Acrolein	5.14E-03	0.0323	0.1414	0.0323	0.1414
Benzene	4.40E-04	< 0.01	0.0121	< 0.01	0.0121
Ethylbenzene	3.97E-05	< 0.01	< 0.01	< 0.01	<0.01
Formaldehyde	engine specific	0.5291	2.3175	0.5291	2.3175
Methanol	2.50E-03	0.0157	0.0688	0.0157	0.0688
n-Hexane	1.11E-03	0.0070	0.0305	0.0070	0.0305
Toluene	4.08E-04	< 0.01	0.0112	< 0.01	0.0112
Xylene	1.84E-04	< 0.01	0.0051	< 0.01	0.0051
Totals		0.64	2.82	0.64	2.82

Frontier Field Services, LLC. - Dagger Draw Gas Plant

Heaters

Unit:
Description:
Control Equipment:

H-1, H-2, H-3 Hot Oil Heater, Reboiler, Mol Sieve Regen Heater None

Background Information

Unit	H-1	H-2	H-3
Name:	Hot Oil Heater	Dehy Reboiler	Mol Sieve Regen Heater
Heater/Boiler rating (MMBtu/hr) ¹ :	22.4	1.5	3.18
Rating above is (select from list):	below 100 MMBtu/hp-hr, controlled - low NOx burner	below 100 MMBtu/hp-hr, controlled - low NOx burner	below 100 MMBtu/hp-hr, controlled - low NOx burner
Operating hours/year:	8760	8760	8760
Natural Gas Usage (MM Cubic Feet/hr):	0.0218	0.0015	0.0031
Natural Gas Heat Value (Btu/scf) ² :	1029.80	1029.80	1029.80
H2S Destruction Efficiency (%) ³ :	100	100	100
Fuel Gas Lower Heating Value (Btu/SCF):	1,029.8	1,029.8	1,029.8
Fuel Rate (scf/hr):	21,752	1,457	3,088
Fuel Rate (scf/yr):	190,545,737	12,759,759	27,050,689
Exhaust Oxygen Content (%):		10	
Moisture content (%):		10	
O2 F factor (dscf/106 Btu):		8,710	-
Volume of Exhaust Gas (dscf/hr) ⁴ :	374,098	25,051	53,109
Volume of Exhaust Gas (acf/hr):	834,741	50,308	106,653
Volume of Exhaust Gas (acfm):	13,912	838	1,778
Stack Diameter (ft):	2.67	1.50	1.50
Stack Temperature (F):	600	600	600.00
Stack Velocity (fps):	41.41	7.91	16.76

¹ Calculated heat release based on LHV basis. Heat duty as provided, or as heat release with guaranteed thermal efficiency.

² Heating value for natural gas taken from Section 1.4 of AP-42 (dated 7/98).

³SO₂ emissions conservatively estimated assuming 100% destruction efficiency (conversion) of HS to SO₂. SO₂ emissions are based on AP-42 factor-based emissions considering a 2 gr/100 scf sulfur content

⁴ Exhaust gas flow for heaters are based on 40 CFR 60 Appendix A, Method 19.

Heater Emissions^a

	n i i n i be	NT 14	н. Н-1		Н-2		H-3	
Pollutant	Emission Factor ^{b,c}	Unit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
VOC	5.6	lb/MMscf	0.12	0.53	0.01	0.04	0.02	0.08
NO _x	101.0	lb/MMscf	2.20	9.62	0.15	0.64	0.31	1.37
CO	84.8	lb/MMscf	1.84	8.08	0.12	0.54	0.26	1.15
PM	7.7	lb/MMscf	0.17	0.73	0.01	0.05	0.02	0.10
SO ₂ ^e	6.06	lb/MMscf	0.13	0.58	0.01	0.04	0.02	0.08
APS								
Total HAPs			0.04	0.18	< 0.01	0.01	0.01	0.03
Arsenic	0.0002	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzene	0.0021	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Beryllium	0.0000	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Cadmium	0.0011	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chromium	0.0014	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Cobalt	0.0001	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dichlorobenzene	0.0012	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Formaldehyde	0.0757	lb/MMscf	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01
n-Hexane	1.8173	lb/MMscf	0.04	0.17	< 0.01	0.01	0.01	0.02
Lead	0.0005	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Manganese	0.0004	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Mercury	0.0003	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Naphthalene	0.0006	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nickel	0.0021	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
POM	0.0001	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	0.0034	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Selenium	0.0000	lb/MMscf	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
IG								
CO2	53.06	kg/MMBtu	2,620	11,474	175.42	768.32	371.88	1,629
CH4	0.001	kg/MMBtu	0.05	0.22	< 0.01	0.01	0.01	0.03
N2O	0.0001	kg/MMBtu	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01

^a Example Calculations:

Emission rate (lb/hr) = [Emission Factor (lb/MMscf)] / [Natural Gas Heat Content (1,020 Btu/scf)] * [Heater Rating (MMBtu/hr)]

Emission Rate (tpy) = [Emission Rate (lb/hr)] * [Operating Hours per Year (hr/yr)] / [Conversion Factor (2000 lb/ton)]

^b Criteria pollutant emission factors obtained from AP-42 Natural Gas Combustion, Table 1.4-1, < 100 MMBtu/hr heat input & Table 1.4-2 (7/98). NO x and CO emission factors converted from BACT standards.

^c HAP emission factors are taken from AP-42, Chapter 1, Table 1.4-3 (7/98).

 $^{\rm d}\,{\rm H_2S}$ emissions are calculated based on fuel gas ${\rm H_2S}$ content of 20,000 gr/MMscf.

 $^{\rm e}\,{\rm SO}_2$ emissions conservatively estimated assuming 100% destruction efficiency (conversion) of HzS to SO_2.

Glycol Dehydrator

Unit:	DEHY-1 & DEHY-2
Description:	Glycol Dehydrators
Control Equipment:	Process Flare (Unit FL-2)

Emission Component	Uncontrolled	l Flash Tank	Uncontrolled	Still Column	Total		
î T	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
Hydrogen Sulfide	1.19E-03	5.23E-03	4.58E-03	0.02	5.77E-03	2.53E-02	
N2	0.17	0.76	4.18E-03	0.02	0.18	0.78	
C1	16.89	74.00	1.54E+00	6.75	18.44	80.75	
CO2	2.52E-05	1.10E-04	2.17E-05	0.00	4.69E-05	2.05E-04	
C2	10.24	44.85	3.15	13.79	13.39	58.64	
C3	8.55	37.47	4.82	21.09	13.37	58.56	
iC4	1.55	6.79	1.12	4.89	2.67	11.68	
C4	4.07	17.83	4.19	18.36	8.26	36.19	
iC5	1.38	6.03	1.84	8.04	3.21	14.08	
nC5	1.36	5.97	1.97	8.63	3.33	14.61	
i-Hexane	0.73	3.20	1.26	5.52	1.99	8.71	
Hexane	0.37	1.60	0.65	2.86	1.02	4.47	
Benzene	0.33	1.46	6.40	28.05	6.74	29.51	
Cyclohexane	0.39	1.72	1.60	7.00	1.99	8.73	
i-Heptane	0.55	2.39	0.83	3.63	1.38	6.03	
n-Heptane	0.12	0.52	0.18	0.78	0.30	1.30	
Toluene	0.16	0.69	2.40	10.53	2.56	11.22	
i-Octane	0.46	2.01	0.69	3.03	1.15	5.03	
n-Octane	0.02	0.09	0.02	0.09	0.04	0.18	
Ethylbenzene	0.02	0.07	0.14	0.60	0.15	0.67	
m-Xylene	0.02	0.11	0.23	1.01	0.26	1.12	
o-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00	0.00	0.00	
p-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00	0.00	0.00	
Nonane	0.03	0.13	0.02	0.10	0.05	0.23	
Decane	8.48E-03	0.04	4.52E-03	0.02	0.01	0.06	
TEG	5.01E-04	2.19E-03	2.18E-10	0.00	5.01E-04	2.19E-03	
H2O	0.29	1.28	1.46	6.38	1.75	7.66	
Total	47.72	209.03	34.52	151.21	82.25	360.24	
Total VOC	20.12	88.13	28.37	124.24	48.49	212.38	
Total HAP	0.90	3.94	9.83	43.05	10.73	46.99	

Notes

¹ Uncontrolled emissions from the regenerator and flash tank are calculated using BR&E ProMax.

 2 100% of emissions from the flash tank and regenerator are captured and routed to the process flare (Unit FL-2).

Frontier Field Services, LLC. - Dagger Draw Gas Plant

Amine Units

Unit:	AU-1, AU-2, and AU-3
Description:	Amine units
Control Equipment:	AGI Well / SSM FL-2

Emission Component	Uncontrolle	d Flash Tank	Uncontro	olled Acid Gas	Т	Total		
	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	TPY		
Hydrogen Sulfide	5.54	24.27	4138.35	0.05	4143.89	24.32		
N2	1.47	6.43	0.05	0.01	1.52	6.45		
C1	128.05	560.87	16.62	1.12	144.67	561.99		
CO2	2.18	9.54	6701.20	0.02	6703.38	9.56		
C2	42.09	184.38	9.51	0.37	51.61	184.74		
C3	18.96	83.04	3.60	0.17	22.56	83.21		
iC4	2.32	10.16	0.35	0.02	2.67	10.18		
C4	6.89	30.20	1.54	0.06	8.43	30.26		
iC5	1.13	4.96	0.13	0.01	1.27	4.97		
nC5	1.30	5.70	0.20	0.01	1.50	5.71		
i-Hexane	0.26	1.13	0.07	2.25E-03	0.33	1.13		
Hexane	0.26	1.13	0.03	0.00	0.29	1.13		
Benzene	1.65	7.21	32.15	0.01	33.80	7.23		
Cyclohexane	0.88	3.83	0.67	0.01	1.55	3.84		
i-Heptane	0.20	0.89	0.01	0.00	0.22	0.89		
n-Heptane	0.04	0.18	0.00	0.00	0.04	0.18		
Toluene	0.76	3.33	16.44	0.01	17.20	3.34		
i-Octane	0.14	0.61	8.77E-03	1.22E-03	0.15	0.61		
n-Octane	0.01	0.03	6.35E-04	6.62E-05	0.01	0.03		
Ethylbenzene	0.07	0.33	1.46	6.53E-04	1.53	0.33		
m-Xylene	0.12	0.53	3.31	1.05E-03	3.43	0.53		
o-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
p-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Nonane	5.14E-03	0.02	2.05E-04	4.50E-05	0.01	0.02		
Decane	5.23E-04	2.29E-03	7.49E-06	4.58E-06	5.31E-04	2.30E-03		
TEG	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
H2O	5.61	24.58	371.58	0.05	377.19	24.63		
Piperazine	5.44E-04	2.38E-03	7.79E-11	4.77E-06	5.44E-04	2.39E-03		
TEG	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
UCARSOL™ AP-814	8.95E-03	0.04	8.90E-10	7.84E-05	0.01	0.04		
Oxygen	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Total	219.95	963.39	11297.29	1.93	11517.25	965.32		
Total VOC	34.99	153.28	59.98	0.31	94.97	153.58		
Total HAP	2.86	12.53	53.39	0.03	56.25	12.56		

Acid Gas Flare (FL-1) - Hourly Emissions

Emission Unit: Source Description:

FL-1 ACID GAS FLARE

Component Hydrogen Sulfide N2 C1 C02 C2 C3 iC4 C5 nC5 i-Hexane Benzene Cyclohexane i-Heptane n-Heptane Toluene i-Octane	Pilot ^b (lb/hr) 0.00E+00 1.10 7.29 0.01 0.63 0.24 0.06 0.11 0.05 0.06 0.07	Purge SSM (lb/hr) 0.00E+00 219.18 1458.84 1.20 126.74 48.65 11.19 0.11	Amine Acid Gas SSM (lb/hr) 505.83 0.01 2.03 819.08 1.16 0.44	Total (1b/hr) 5.06E+02 220.28 1468.17 820.29	Destruction Efficiency (%) 98% 0% 98%	Flare Exhaust (controlled) (lb/hr) 10.117	Component NO _x	Emission Rate (lb/hr)	Emission Factor	Emission Factor Units
N2 C1 C02 C2 C3 iC4 C2 iC5 iC5 iC5 i-Hexane Benzene Cyclohexane -i-Heptane n-Heptane Toluene	0.00E+00 1.10 7.29 0.01 0.63 0.24 0.06 0.11 0.05 0.06	0.00E+00 219.18 1458.84 1.20 126.74 48.65 11.19	505.83 0.01 2.03 819.08 1.16 0.44	5.06E+02 220.28 1468.17 820.29	98% 0%	10.117	NO	(lb/hr)		
N2 C1 C02 C2 C3 iC4 C2 iC5 iC5 iC5 i-Hexane Benzene Cyclohexane -i-Heptane n-Heptane Toluene	1.10 7.29 0.01 0.63 0.24 0.06 0.11 0.05 0.06	219.18 1458.84 1.20 126.74 48.65 11.19	0.01 2.03 819.08 1.16 0.44	220.28 1468.17 820.29	0%		NO.			
C1 C2 C2 C3 C4 C4 C5 C4 ic5 C5 ic4exane C4 Benzene Cyclohexane i-Heptane Cyclohexane i-Heptane Toluene	7.29 0.01 0.63 0.24 0.06 0.11 0.05 0.06	1458.84 1.20 126.74 48.65 11.19	2.03 819.08 1.16 0.44	1468.17 820.29		220.20	nox	3.08	0.068	lb/MMBtu
CO2 C2 C3 C3 iC4 C4 C5 C5 nC5 C5 i-Hexane Denzene Cyclohexane Cyclohexane i-Heptane N-Heptane n-Heptane Toluene	0.01 0.63 0.24 0.06 0.11 0.05 0.06	1.20 126.74 48.65 11.19	819.08 1.16 0.44	820.29	0.00/	220.28	со	12.47	0.2755	lb/MMBtu
C2	0.63 0.24 0.06 0.11 0.05 0.06	126.74 48.65 11.19	1.16 0.44		96%	29.36	SO ₂	931.79		
C3 iC4 C4 C4 iC5 nC5 i-Hexane Benzene Cyclohexane i-Heptane n-Heptane Toluene	0.24 0.06 0.11 0.05 0.06	48.65 11.19	0.44	100 41	0%	820.29	PM ₁₀	0.41	7.60	lb/MMscf
iC4 IC4 C4 IC5 iC5 IC5 i-Hexane IC5 Benzene IC5 Cyclohexane IC5 i-Heptane IC5 n-Heptane IC5 Toluene IC5	0.06 0.11 0.05 0.06	11.19		128.54	98%	2.57	PM _{2.5}	0.41	7.60	lb/MMscf
C4 iC5 i-Hexane Hexane Benzene Cyclohexane i-Heptane n-Heptane Toluene	0.11 0.05 0.06			49.34	98%	0.99	H ₂ S	1.01E+01		
iC5	0.05	0.11	0.04	11.29	98%	0.23			<u> </u>	
iC5	0.06		0.19	0.42	98%	0.01	F	lare Parameters		1
nC5	0.06	10.94	0.02	11.01	98%	0.22				1
i-Hexane Hexane Senzene Cyclohexane		12.19	0.02	12.27	98%	0.25	Flare Destructi	on Efficiency C3+	98%	1
Hexane Benzene Cyclohexane		0.00	0.01	0.01	98%	0.00	H2S mole	ecular weight	34.08	1
Benzene Cyclohexane i-Heptane n-Heptane Toluene Column	0.30	60.31	0.00	60.61	98%	1.21		ecular weight	64.06	1
Cyclohexane	0.00E+00	0.00E+00	3.93	3.93E+00	98%	0.08	562 1101	ceutar weight	04.00	ł
i-Heptane n-Heptane Toluene	0.00E+00	0.00E+00	0.08	8.19E-02	98%	0.00				
n-Heptane Toluene	0.00E+00	0.00E+00	0.00	1.77E-03	98%	0.00				
Toluene	0.00E+00	0.00E+00	0.00	3.62E-04	98%	0.00				
	0.00E+00	0.00E+00	2.01	2.01E+00	98%	0.04				
1-Octane	0.00E+00	0.00E+00	0.00	1.07E-03	98%	0.00				
0.1	0.00E+00	0.00E+00	0.00	7.76E-05	98%	0.00				
n-Octane	0.00E+00	0.00E+00	0.00	1.78E-01	98% 98%	0.00				
Ethylbenzene	0.00E+00	0.00E+00	0.18	4.05E-01	98%	0.00				
m-Xylene										
o-Xylene	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00	0.00E+00 0.00E+00	98% 98%	0.00				
p-Xylene						0.00				
Nonane	0.00E+00	0.00E+00	0.00	2.50E-05	98%	0.00				
Decane	0.00E+00	0.00E+00	0.00	9.16E-07	98%	0.00				
TEG	0.00E+00	0.00E+00	0.00	0.00E+00	98%	0.00				
H2O	0.00E+00	0.00E+00	45.42	4.54E+01	0%	45.42				
Piperazine	0.00E+00	0.00E+00	0.00	9.52E-12	0%	0.00				
UCARSOL™ AP-814	0.00E+00	0.00E+00	0.00	0.00E+00	0%	0.00				
Oxygen	0.00E+00	0.00E+00	0.00	1.09E-10	0%	0.00				
Total	9.86	1949.34	1380.86	3340.07		1131.06				
Total VOC	0.83	143.39	7.33	151.55		3.03				
Total HAP	0.30	60.31	6.53	67.13		1.34				
Heating Value (Btu/scf)	1,030	1,030	279.82	839						
Molecular Weight	18.70	18.70	38.11	20.35	4					
Operating Hours	8,760	425	425		4					
Mass Flow Volumetric Flow (scf/hr)	9.86 200.00	1949.3 40,000	1381 13,750	53,950.00	4					
Heat Release (MMBtu/hr)		40,000			1					
	0.21		3.85	45.25	1					

Comb	oustion Emissions from	om FLARE		Totals
	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Total NO _x	0.01	2.80	0.26	3.08
Total CO	0.06	11.35	0.26	11.67
Total SO ₂	0.00E+00	0.00E+00	931.79	931.79
Total PM ₁₀	1.52E-03	0.30	0.10	0.41
Total PM _{2.5}	1.52E-03	0.30	0.10	0.41

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

^b Pilot fuel gas emissions are conservatively calculated based on a 200 scfh flow rate.

⁶NOx emission factors from AP-42, Table 13.5-1, February 2018. C0 emission factor from TCEQ Air Permit Technical Guidance for Flares and Vapor Oxidizers, high btu. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 98% conversion of H2S to SO2.

Flare Effective Diameter (for modeling only): For modeling purposes, the effective flare diameter is calculated according to TCEQ RG-25, Modeling Guidance Document, 1998 (method not appropriate for enclosed flar

 $D = sqrt(10^{-6} \bullet q_n) \qquad \text{and} \qquad qn = q(1 - 0.048 \bullet sqrt(MW))$

where. q = MW =

 $q_n = D =$

Gross heat release (cal/sec) Weighted (by volume) average molecular weight of the compound being flared Net heat release (cal/sec) Effective Flare Diameter (meters)

q =	3,167,183.53	
MW =	20.35	lb/lb-mole
$q_n =$	2,481,375.12	cal/sec
D =	1.5752	meters
D =	5.168	feet

Acid Gas Flare (FL-1) - Annual Emissions

Emission Unit: Source Description:

FL-1 ACID GAS FLARE

Annual Emission Rates and Composition to Flare ^{a,b}								teria Pollutant Emiss	ions from Fla	re ^c
Component	Pilot ^b	Purge SSM	Amine Acid Gas SSM	Total	Destruction Efficiency	Exhaust Stream (controlled)	Component	Emission Rate	Emission Factor	Emission Factor Units
	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(%)	(ton/yr)		(ton/yr)		
Hydrogen Sulfide	0.00	0.00	107.49	107.49	98%	2.15	NO _X	0.71	0.068	lb/MMBtu
N2	4.80	46.58	0.00	51.38	0%	51.38	со	2.89	0.2755	lb/MMBtu
C1	31.95	310.00	0.43	342.38	98%	6.85	SO ₂	1.98E+02		
CO2	0.03	0.25	174.06	174.34	0%	174.34	PM10	0.09	7.60	lb/MMscf
02	2.78	26.93	0.25	29.95	98%	0.60	PM2.5	0.09	7.60	lb/MMscf
C3	1.07	10.34	0.09	11.50	98%	0.23	H ₂ S	2.15E+00		
iC4	0.25	2.38	0.01	2.63	98%	0.05	N2O	2.31E-03	0.0001	kg/MMBtu
	0.23	0.02	0.01	0.56	98%		1120	2.311-03	0.0001	kg/wiwiBtu
C4						0.01				
iC5	0.24	2.32	0.00	2.57	98%	0.05				
nC5	0.27	2.59	0.01	2.86	98%	0.06				
i-Hexane	0.00	0.00	0.00	0.00	98%	0.00				
Hexane	1.32	12.82	0.00	14.14	98%	0.28				
Benzene	0.00	0.00	0.84	0.84	98%	0.02				
Cyclohexane	0.00	0.00	0.02	0.02	98%	0.00				
•	0.00	0.00	0.00	0.00	98%	0.00				
i-Heptane										
n-Heptane	0.00	0.00	0.00	0.00	98%	0.00				
Toluene	0.00	0.00	0.43	0.43	98%	0.01				
i-Octane	0.00	0.00	0.00	0.00	98%	0.00				
n-Octane	0.00	0.00	0.00	0.00	98%	3.30E-07				
Ethylbenzene	0.00	0.00	0.04	0.04	98%	0.00				
m-Xylene	0.00	0.00	0.09	0.09	98%	0.00				
o-Xylene	0.00	0.00	0.00	0.00	98%	0.00				
p-Xylene	0.00	0.00	0.00	0.00	98%	0.00				
Nonane	0.00	0.00	0.00	0.00	98%	0.00				
	0.00	0.00	0.00	0.00	98%	0.00				
Decane										
TEG	0.00	0.00	0.00	0.00	98%	0.00				
H2O	0.00	0.00	9.65	9.65	0%	9.65				
Piperazine	0.00	0.00	0.00	0.00	0%	0.00				
UCARSOL™ AP-814	0.00	0.00	0.00	0.00	0%	0.00E+00				
Oxygen	0.00	0.00	0.00	2.31E-11	0%	2.31E-11				
Total	43.19	414.24	283.78	750.86		245.67				
Total VOC	3.64	32.03	1.56	35.67		0.71				
Total HAP	1.32	12.82	1.39	15.52		0.31				
Heating Value (Btu/scf)	1,030	1,030	280	852						
Molecular Weight	18.70	18.70	38.11							
Operating Hours	8,760	425	425							
Mass Flow (ton/yr)	43.19	414.24	283.78	750.86						
Volumetric Flow (scf/hr)	200.00	40,000	13,750		4					
Volumetric Flow (MMscf/yr)	1.75	17.00	5.84	24.60	4					
Heat Release (MMBtu/yr)	1,804	17,507	1,635	20,946	1					

Annual Co	Totals							
	(TPY) (TPY) (TPY)							
Total NO _x	0.06	0.60	0.06	0.71				
Total CO	0.25	2.41	0.23	2.89				
Total SO ₂	0.00	0.00	198.00	198.00				
Total PM ₁₀	0.01	0.06	0.02	0.09				
Total PM _{2.5}	0.01	0.06	0.02	0.09				

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

^bPilot fuel gas emissions are conservatively calculated based on a 200 scfh flow rate.

⁶CO and Nox emission factors from AP-42, Table 13.5-1 and 13.5-2, February 2018. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 98% conversion of H2S to SO2.

Frontier Field Services, LLC. - Dagger Draw Gas Plant

 Process Flare (FL-2) - Hourly Emissions

 Emission Unit:
 FL-2, DEHY-1, DEHY-2, AU-1, AU-2, AU-3

 Source Description:
 Process Flare - pilot, purge, dehy still column, dehy flash tank, amine flash tank, inlet gas SSM

		Ma	ximum Hourly Emis	sion Rates and O	Composition to Fl	arê				Criteria Pollutant Emissions from Flare ^c			
Component	Pilot ^b	Purge	Dehy Flash Tank	Dehy Still Column	Amine Flash Tank	Inlet Gas to Dehy SSM	Total	Destruction Efficiency	Flare Exhaust (controlled)	Component	Emission Rate	Emission Factor	Emission Factor Units
	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(%)	(lb/hr)		(lb/hr)		
Hydrogen Sulfide	0.00E+00	0.00E+00	1.19E-03	4.58E-03	5.54	27.51	33.05	100%	0.00	NOx	258.55	0.068	lb/MMBtu
N2	1.10	2.74	0.17	4.18E-03	1.47	3,402	3,407	0%	3,407	CO	1047.50	0.2755	lb/MMBtu
C1	7.29	18.24	16.89	1.54	128.05	102,564	102,736	98%	2,055	SO ₂	62.13		
CO2	0.01	0.01	2.52E-05	2.17E-05	2.18	0.03	2.23	0%	2.23	PM 10	23.32	7.60	lb/MMscf
C2	0.63	1.58	10.24	3.15	42.09	26,616	26,674	98%	533.48	PM _{2.5}	23.32	7.60	lb/MMscf
C3	0.24	0.61	8.55	4.82	18.96	16,796	16,830	98%	336.59	H ₂ S	0.00		-
iC4	0.06	0.14	1.55	1.12	2.32	2,967	2,972	98%	59.44				
C4	0.11	0.11	4.07	4.19	6.89	6,483	6,499	98%	129.98	F	lare Parameters		
iC5	0.05	0.14	1.38	1.84	1.13	2,237	2,242	98%	44.84	El Dustra d	E65	98%	
nC5	0.06	0.15	1.36	1.97	1.30	2,051	2,056	98%	41.12	Flare Destruct	ion Efficiency C3+	98%	
i-Hexane	0.00E+00	0.00E+00	0.73	1.26	0.54	1,115	1,118	98%	22.35	H2S mole	ecular weight	34.08	
Hexane	0.30	0.75	0.37	0.65	0.26	564.39	566.73	98%	11.33	SO2 mole	ecular weight	64.06	
Benzene	0.00E+00	0.00E+00	0.33	6.40	1.65	331.17	339.55	98%	6.79				
Cyclohexane	0.00E+00	0.00E+00	0.39	1.60	0.88	485.33	488.19	98%	9.76	Dehy Inlet G	Gas vol % flared	85.00%	
i-Heptane	0.00E+00	0.00E+00	0.55	0.83	0.20	859	861	98%	17.22	J			
n-Heptane	0.00E+00	0.00E+00	0.12	0.18	0.04	188.85	189.19	98%	3.78				
Toluene	0.00E+00	0.00E+00	0.16	2.40	0.76	180.35	183.67	98%	3.67				
i-Octane	0.00E+00	0.00E+00	0.46	0.69	0.14	728.67	729.96	98%	14.60				
n-Octane	0.00E+00	0.00E+00	0.02	0.02	0.01	35.82	35.87	98%	0.72				
Ethylbenzene	0.00E+00	0.00E+00	0.02	0.14	0.07	22.99	23.22	98%	0.46				
m-Xylene	0.00E+00	0.00E+00	0.02	0.23	0.12	35.15	35.52	98%	0.71				
o-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
,	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00				
p-Xylene	0.00E+00	0.00E+00	0.03	0.002100	0.002100	60.72	60.78	98%	1.22				
Nonane	0.00E+00	0.00E+00	0.03	4.52E-03	5.23E-04	20.07	20.08	98%	0.40				
Decane	0.00E+00	0.00E+00	5.01E-04	4.52E-03 2.18E-10	0.00E+00	0.00E+00	5.01E-04	98%	1.00E-05				
TEG	0.00E+00	0.00E+00	0.29	1.46	5.61	309.42	316.79	98%					
H2O									316.79				
Piperazine	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.44E-04	0.00E+00	5.44E-04	0%	5.44E-04				
UCARSOL™ AP-814	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.01	0.00E+00	0.01	0%	0.01				
Oxygen	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0%	0.00E+00				
Total	9.86	24.48	47.72	34.52	220.24	168,082	168,418	23.54	7,020				
Total VOC	0.83	1.91	20.12	28.37	35.28	35162.93	35,249		704.99				
Total HAP	0.30	0.75	0.90	9.83	2.86	1,134	1,149	1	22.97				
Heating Value (Btu/scf)	1,030	1,030	1,570	2,551	1,188	1,239	1,239	4					
Molecular Weight Operating Hours	18.70 8,760	18.70 8,760	26.82 8,760	49.00 8,760	20.71 8,760	20.83 8,760	20.83	-					
Mass Flow	9.86	24.48	47.72	34.52	220.24	168,082	-	1					
Volumetric Flow (scf/hr)	200.00	500.00	675	267	4,036	3,062,646	3,068,325	1					
Heat Release (MMBtu/hr)	0.21	0.51	1.06	0.68	4.79	3,795	3,802]					
	(lb/har)	Combustion Emis (lb/hr)	sions from FLARE (lb/hr)	(lb/hr)	(lb/ba)	(lh/hu)	Totals (lb/hr)	-					
Total NO _x	(lb/hr) 0.01	(Ib/hr) 0.04	(Ib/hr) 0.07	(lb/hr) 0.05	(lb/hr) 0.33	(lb/hr) 258.05	(lb/hr) 258.55		1				
Total CO	0.06	0.04	0.07	0.03	1.32	1.046	1.047	1					

	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Total NO _x	0.01	0.04	0.07	0.05	0.33	258.05	258.55
Total CO	0.06	0.14	0.29	0.19	1.32	1,046	1,047
Total SO ₂	0.00E+00	0.00E+00	2.24E-03	0.01	10.42	51.70	62.13
Total PM ₁₀	1.52E-03	3.80E-03	0.01	2.03E-03	0.03	23.28	23.32
Total PM2.5	1.52E-03	3.80E-03	0.01	2.03E-03	0.03	23.28	23.32

Footnotes:

¹ Uncontrolled stream properties determined via ProMax.
^b Pilot fuel gas emissions are conservatively calculated based on a 200 scfh flow rate.
^b Pilot fuel gas emissions factors from AP-42, Table 13.5-1, February 2018. CO emission factor from TCEQ Air Permit Technical Guidance for Flares and Vapor Oxidizers, high btu. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, 1998. SO2 emissions assume 100% scorewsino of 1125 to SO2.

Flare Effective Diameter (for modeling only) For modeling purposes, the effective flare diameter is calculated according to TCEQ RG-25, Modeling Guidance Document, 1998 (method not appropriate for enclosed flares).

$D = sqrt(10^{-6} \bullet q_n) \quad \text{ and } \quad qn = q(1 \bullet 0.048 \bullet sqrt(MW))$

where,	q =	Gross heat release (cal/sec)			
		Weighted (by volun		ular weight of the	compound being	flare
	q _n =	Net heat release (ca	l/sec)			
	D =	Effective Flare Diar	meter (meters)			
updated just	for normal operation		_		SSM operation	
q =	507,936.52			q =	266,152,347.83	
MW=	24.06	lb/lb-mole		MW =		lb/lb-mole
q _n =	388,342.69	cal/sec		q _n =	207,842,182.55	cal/sec
D =		meters		D =		meters
D =	2.04	feet		D =	47.30	feet

Frontier Field Services, LLC. - Dagger Draw Gas Plant

 Process Flare (FL-2) - Annual Emissions

 Emission Unit:
 FL-2, DEHY-1, DEHY-2, AU-1, AU-2, AU-3

 Source Description:
 Process Flare - pilot, purge, deby still column, deby flash tank, amine flash tank, inlet gas SSM

	Annual Emission Rates and Composition to Flare ^{ab}										Criteria Pollutant Emissions from Flare ^c			
Component	Pilot ^b	Purge	Dehy Flash Tank	Dehy Still Column	Amine Flash Tank	Inlet Gas SSM	Total	Destruction Efficiency	Exhaust Stream (controlled)	Component	Emission Rate	Emission Factor	Emission Factor Units	
	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(%)	(ton/yr)		(ton/yr)	-		
Hydrogen Sulfide	0.00E+00	0.00E+00	0.01	0.02	24.27	2.41	26.70	100%	0.00	NO _X	24.74	0.068	lb/MMBtu	
N2	4.80	12.00	0.76	0.02	6.43	297.67	321.68	0%	321.68	со	100.24	0.2755	lb/MMBtu	
C1	31.95	79.87	74.00	6.75	560.87	8,974	9,728	98%	194.55	SO ₂	50.19			
CO2	0.03	0.07	1.10E-04	9.51E-05	9.54	2.52E-03	9.64	0%	9.64	PM ₁₀	2.23	7.60	lb/MMscf	
C2	2.78	6.94	44.85	13.79	184.38	2,329	2,582	98%	51.63	PM2.5	2.23	7.60	lb/MMscf	
C3	1.07	2.66	37.47	21.09	83.04	1,470	1,615	98%	32.30	H ₂ S	0.00			
iC4	0.25	0.61	6.79	4.89	10.16	259.58	282.28	98%	5.65	N2O	0.08	0.0001	kg/MMBtu	
C4	0.50	0.50	17.83	18.36	30.20	567.30	634.69	98%	12.69	-				
iC5	0.24	0.60	6.03	8.04	4.96	195.76	215.63	98%	4.31		Flare Parameters		1	
nC5	0.27	0.67	5.97	8.63	5.70	179.48	200.71	98%	4.01			1		
i-Hexane	0.00E+00	0.00E+00	3.20	5.52	2.39	97.58	108.68	98%	2.17	Flare Destru	action Efficiency C3+	98%		
Hexane	1.32	3.30	1.60	2.86	1.13	49.38	59.60	98%	1.19	H2S m	nolecular weight	34.08		
Benzene	0.00E+00	0.00E+00	1.46	28.05	7.21	28.98	65.71	98%	1.31		nolecular weight	64.06	1	
Cyclohexane	0.00E+00	0.00E+00	1.72	7.00	3.83	42.47	55.03	98%	1.10		ě			
i-Heptane	0.00E+00	0.00E+00	2.39	3.63	0.89	75.20	82.11	98%	1.64	SSM	hours to flare	175		
n-Heptane	0.00E+00	0.00E+00	0.52	0.78	0.18	16.52	18.01	98%	0.36				1	
Toluene	0.00E+00	0.00E+00	0.69	10.53	3.33	15.78	30.34	98%	0.61					
	0.00E+00	0.00E+00	2.01	3.03	0.61	63.76	69.40	98%	1.39					
i-Octane n-Octane	0.00E+00	0.00E+00	0.09	0.09	0.03	3.13	3.35	98%	0.07					
	0.00E+00	0.00E+00	0.07	0.60	0.33	2.01	3.01	98%	0.06					
Ethylbenzene	0.00E+00	0.00E+00	0.07	1.01	0.53	3.08	4.72	98%	0.00					
m-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.55 0.00E+00	0.00E+00	4.72 0.00E+00	98%	0.09 0.00E+00					
o-Xylene														
p-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00					
Nonane	0.00E+00	0.00E+00	0.13	0.10	0.02	5.31	5.57	98%	0.11					
Decane	0.00E+00	0.00E+00	0.04	0.02	2.29E-03	1.76	1.82	98%	0.04					
TEG	0.00E+00	0.00E+00	2.19E-03	9.53E-10	0.00E+00	0.00E+00	2.19E-03	98%	4.39E-05					
H2O	0.00E+00	0.00E+00	1.28	6.38	24.58	27.07	59.32	0%	59.32					
Piperazine	0.00E+00	0.00E+00	0.00	0.00E+00	2.38E-03	0.00E+00	2.38E-03	0%	2.38E-03					
UCARSOL™ AP-814	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.04	0.00E+00	0.04	0%	0.04					
Oxygen	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0%	0.00E+00					
Total	43.19	107.22	209.03	151.21	964.65	14,707	16,182	-	705.98					
Total VOC	3.64	8.34	88.13	124.24	154.54	3076.76	3,456	-	69.11					
Total HAP	1.32	3.30	3.94	43.05	12.53	99.23	163.37	-	3.27					
Heating Value (Btu/scf)	1,030	1,030	1,570	2,551	1,188	1,239	1,242							
Molecular Weight Operating Hours	18.70 8,760	18.70 8.760	26.82 8.760	49.00 8,760	20.71 8760	20.83		-						
Mass Flow (ton/yr)	43.19	8,760	209.03	8,760	964.65	1/5	16,182	-						
Volumetric Flow (scf/hr)	200.00	500.00	675	267	4,036	3,062,646		-						
Volumetric Flow (MMscf/yr)	1.75	4.38	5.92	2.34	35.35	535.96	585.71							
Heat Release (MMBtu/yr)	1,804	4,511	9,288	5,975	41,987	664,111	727,676	1						
		Annual Camb	ustion Emissions	fuom Flore			Totals							
	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)							
Total NO _x	0.06	0.15	0.32	0.20	1.43	22.58	24.74							
Total CO	0.25	0.62	1.28	0.82	5.78	91.48	100.24	1						
Total SO ₂	0.00E+00	0.00E+00	0.01	0.04	45.62	4.52	50.19							
Total PM ₁₀	0.01	0.02	0.02	0.01	0.13	2.04	2.23	_						
Total PM25	0.01	0.02	0.02	0.01	0.13	2.04	2.23							

Footnotes: ^a Uncontrolled stream properties determined via ProMax.

^bPilot fuel gas emissions are conservatively calculated based on a 200 sch flow rate. ^cCO and Nox emission factors from AP-42, Table 13.5-1 and 13.5-2, February 2018. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 98% conversion of H2S to SO2.

Fugitive Emissions FUG Fugitives

Emission Unit: Source Description:

Operating Hours:	8760 hours/year
Emission Factor Source	Standard EFs - EPA-453/R-95-017 Table 2-4
Control Efficiency Source:	None
Emission Buffer (%):	0

Service	Component Type	Count		on Factor source) ^a	Control (%) ^b	Pollutant	Mass Fraction ^c	Uncontrolled Emissions	Uncontrolled Emissions	Controlled Emissions	Controlled Emissions
			Table 2-4	Table 2-8				(lb/hr)	(tpy)	(lb/hr)	(tpy)
	Valves	521	9.92E-03	5.51E-05	0%	VOC	0.221	1.3799	6.0440	1.3799	6.0440
	Pump Seals	0	5.29E-03	7.72E-04	0%	H2S	0.020	0.1217	0.5330	0.1217	0.5330
	Connectors	1010	4.41E-04	2.20E-05	0%	Benzene	0.003	0.0178	0.0781	0.0178	0.0781
Gas	Flanges	0	8.60E-04	1.26E-05	0%	Toluene	0.002	0.0139	0.0607	0.0139	0.0607
Gas	Open-Ended Lines	0	4.41E-03	3.31E-05	0%	E-Benzene	0.000	0.0029	0.0126	0.0029	0.0126
	Other	22	1.94E-02	2.65E-04	0%	Xylenes	0.001	0.0047	0.0207	0.0047	0.0207
	Relief Valves	10	1.94E-02	2.65E-04	0%	n-Hexane	0.004	0.0275	0.1206	0.0275	0.1206
						2,2,4 Trimethylpentane	0.000	0.0000	0.0000	0.0000	0.0000
	Valves	0	1.85E-05	1.85E-05	0%	VOC	0.017	0.0000	0.0000	0.0000	0.0000
	Pump Seals	0	0.00E+00	0.00E+00	0%	H2S	0.000	0.0000	0.0000	0.0000	0.0000
	Connectors	0	1.65E-05	1.65E-05	0%	Benzene	0.006	0.0000	0.0000	0.0000	0.0000
Heavy Oil	Flanges	0	8.60E-06	8.60E-07	0%	Toluene	0.002	0.0000	0.0000	0.0000	0.0000
Heavy Oil	Open-Ended Lines	0	3.09E-04	1.59E-05	0%	E-Benzene	0.000	0.0000	0.0000	0.0000	0.0000
	Other	0	3.09E-04	7.05E-05	0%	Xylenes	0.000	0.0000	0.0000	0.0000	0.0000
	Relief Valves	0	3.09E-04	7.05E-05	0%	n-Hexane	0.000	0.0000	0.0000	0.0000	0.0000
						2,2,4 Trimethylpentane	0.000	0.0000	0.0000	0.0000	0.0000
	Valves	940	5.51E-03	4.19E-05	0%	VOC	0.017	0.1027	0.4497	0.1027	0.4497
	Pump Seals	0	2.87E-02	1.12E-03	0%	H2S	0.000	0.0001	0.0006	0.0001	0.0006
	Connectors	1271	4.63E-04	2.14E-05	0%	Benzene	0.006	0.0360	0.1578	0.0360	0.1578
Light Oil	Flanges	0	2.43E-04	5.29E-06	0%	Toluene	0.002	0.0122	0.0533	0.0122	0.0533
Light Oil	Open-Ended Lines	0	2.87E-03	3.09E-05	0%	E-Benzene	0.000	0.0009	0.0039	0.0009	0.0039
	Other	22	1.65E-02	2.43E-04	0%	Xylenes	0.000	0.0010	0.0046	0.0010	0.0046
	Relief Valves	0	1.65E-02	2.43E-04	0%	n-Hexane	0.000	0.0001	0.0005	0.0001	0.0005
						2,2,4 Trimethylpentane	0.000	0.0000	0.0000	0.0000	0.0000
	Valves	0	2.16E-04	2.14E-05	0%	VOC	0.017	0.0000	0.0000	0.0000	0.0000
	Pump Seals	0	5.29E-05	5.29E-05	0%	H2S	0.000	0.0000	0.0000	0.0000	0.0000
	Connectors	0	2.43E-04	2.20E-05	0%	Benzene	0.006	0.0000	0.0000	0.0000	0.0000
Water/Oil	Flanges	0	6.39E-06	6.39E-06	0%	Toluene	0.002	0.0000	0.0000	0.0000	0.0000
water/Oil	Open-Ended Lines	0	5.51E-04	7.72E-06	0%	E-Benzene	0.000	0.0000	0.0000	0.0000	0.0000
	Other	0	3.09E-02	1.30E-04	0%	Xylenes	0.000	0.0000	0.0000	0.0000	0.0000
	Relief Valves	0	3.09E-02	1.30E-04	0%	n-Hexane	0.000	0.0000	0.0000	0.0000	0.0000
						2,2,4 Trimethylpentane	0.000	0.0000	0.0000	0.0000	0.0000

Fugitive Emission Summary

Pollutant	Uncontrol	led Emissions	Controlled Emissions		
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
VOC	1.48	6.49	1.48	6.49	
HAPs	0.12	0.51	0.12	0.51	
H2S	0.12	0.53	0.12	0.53	
Benzene	0.05	0.24	0.05	0.24	
Toluene	0.03	0.11	2.60E-02	0.11	
E-Benzene	0.00	0.02	3.77E-03	1.65E-02	
Xylenes	0.01	0.03	5.78E-03	0.03	
n-Hexane	0.03	0.12	2.76E-02	0.12	
2.2.4 Trimethylpentane	0.00	0.00	0.00E+00	0.00E+00	

Footnotes: *Factors are taken from EPA Document EPA-453/R-095-017, November 1995, Table 2-4 *Gas/vapor based on inlet gas. Heavy Oil, Light Oil, and Water/Oil fugitives were based on Promax estimate of slop from the dehydration system.

Frontier Field Services, LLC. - Dagger Draw Gas Plant

SSM Blowdowns Emission Unit:

SSM Source Description: Vented SSM for blowdowns

Blowdown Description	Blowdown Volume	MW from	VOC Weight	Ideal Gas	Number of	Number of	VOC	VOC	Annual VOC	Annual VOC
	(ft ³)	gas analysis	% from gas	Law	Units	Blowdowns	Emissions	(lb/hr)	Emissions	Emissions
		(lb/lb-mol)	analysis	Conversion		per year	Per	3 blowdowns	(lbs)	(TPY)
			calculation	Factor		(each)	Blowdown	in 1 hour		
				(scf/lb-mol)			(lbs)			
Cat 3606 Compressor	1365	18.7	0.0842	379.5	4	548	5.66	22.65	12,402.77	6.20

Composition Used for				
Component	MW (lb/lb-mole)	Residue Gas ¹ Mole%	MW * wt vol %	Weight %
Water	18.02	0.00%	0.000	0.00%
Hydrogen Sulfide	34.08	0.00%	0.000	0.00%
Carbon Dioxide	44.01	0.03%	0.011	0.06%
Nitrogen	28.01	7.40%	2.073	11.11%
Oxygen	32.00	0.000%	0.000	0.00%
Methane	16.04	86.025%	13.800	73.98%
Ethane	30.07	3.987%	1.199	6.43%
Propane	44.10	1.043%	0.460	2.47%
i-Butane	58.12	0.182%	0.106	0.57%
n-Butane	58.12	0.371%	0.216	1.16%
i-Pentane	72.15	0.144%	0.104	0.56%
Pentanes	72.15	0.160%	0.115	0.62%
Hexanes+	86.18	0.66%	0.570	3.06%
Total		100%	18.65	100.00%
NMNEHC (VOC)		2.6%	1.57	8.42%

Section 7

Information Used to Determine Emissions

Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- □ If an EPA document or other material is referenced, include a complete copy.
- ☑ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Compressor Engines (Units ENG-1 through ENG-4, Ajax 1 and Ajax 2)

- AP-42 3.2-2 Natural Gas-fired Reciprocating Engines
- Manufacturer specifications and catalyst guarantee

All heaters and reboilers (Units H-1 through H-3)

• AP-42 1.4-1 & 2 Natural Gas Combustion

TEG Dehydrators (Units DEHY-1 & DEHY-2)

- BR&E ProMax
- Site-specific inlet gas analysis

Amine Units (Units AU-1 through AU-3)

- BR&E ProMax
- Site-specific inlet gas analysis

Acid Flare and Process Flare (Unit FL-1 & FL-2)

- Site-specific inlet gas analysis.
- TCEQ and EPA Emission Factors

Fugitives (Unit FUG)

- Site-specific inlet gas analysis
- Liquid analysis derived from BR&E ProMax

Equipment Specification

Proposal Information	Proposal Number: Project Reference:	CG-22-000043 Durango Midstream - CAT3606LE - Catalyst Spec Sheet	Date:	1/5/2022
Engine Information	Engine Make: Engine Model: Rated Speed: Fuel Description: Hours Of Operation: Load:	Caterpillar G 3606 LE TA 1000 RPM Natural Gas 8750 Hours per year 100%	Speed: Power Output: Exhaust Flow Rate: Exhaust Temperature Fuel Consumption: O ₂ : H ₂ O:	Rated 1,775 bhp 12,129 acfm (cfm) : 847 ° F 6,811 btu/bhp-hr 12.8% 17%

Emission Data			Rav	v Engine	Emissi	ons			Tarç	get Outle	t Emissi	ions		
(100% Load)	Emission	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	g/kW- hr	lb/MW- hr	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	g/kW- hr	lb/MW- hr	Calculated Reduction
	NO _x *	0.5	8.56	49	67	0.671	1.48	5	85.6	489	671	6.705	14.78	
	СО	2.75	47.08	442	606	3.688	8.13	0.75	12.84	120	165	1.006	2.22	72.7%
	THC**	6.3	107.86	1,767	2,426	8.448	18.63							
	NMNEHC***	0.63	10.79	177	243	0.845	1.86	0.15	2.57	42	58	0.201	0.44	76.2%
	CH ₂ O†	0.26	4.45	39	54	0.349	0.77	0.05	0.86	7	10	0.067	0.15	80.8%

System Specifications	<u>Catalyst (Replacement Catalyst)</u>	
opeemeations	Element Model Number:	MECB-OX-RB3494-3275-0000-291
	Number of Catalyst Layers:	1
	Number of Catalyst Per Layer:	1
	Catalyst Back Pressure:	3.0 inWC (Clean)
	Design Exhaust Flow Rate:	12,129 acfm
	Design Exhaust Temperature:	847f
	Dimensions:	Ø 32.75 in
	Exhaust Temperature Limits++:	550f – 1250f (catalyst inlet); 1350f (catalyst outlet)
	System Pressure Loss:	3.0 inWC (Clean)

* MW referenced as NO₂

** MW referenced as CH4

*** MW referenced as CH₄. Propane in the exhaust shall not exceed 15% by volume of the NMNEHC compounds in the exhaust, excluding aldehydes. The 15% (vol.) shall be established on a wet basis, reported on a methane molecular weight basis. The measurement of exhaust NMNEHC composition shall be based upon EPA method 320 (FTIR), and shall exclude formaldehyde.

† The concentration of formaldehyde in the exhaust shall be measured in real time using an FTIR - EPA method 320 or equivalent

tt General catalyst temperature operating range. Performance is based on the Design Exhaust Temperature.

Fuel pressure range 150 psi (10.3 bar) 150 psi (10.3 bar) Exhaust System* Exhaust Stystem* Exhaust Stemperature 465°F (241°C) 515°F (268°C) Exhaust Flow 233 lb/min (106 kg/min) 239 lb/min (108 kg/min) 239 lb/min (108 kg/min) Cooling Water System Capacity 120 gal (454 l) 120 gal (454 l) Lube Oil System³ Capacity 95 gal (360 l) 95 gal (360 l) Consumption 28.2 pints/day (13.3 l/day) 28.2 pints/day (13.3 l/day) Canakcase Makeup 6.6 pints/day (3.1 l/day) 6 pints/day (2.8 l/day) Brake Specific Fuel Consumption 28.2 g/bhp-hr (1.3 l/day) 6 pints/day (2.8 l/day) 100% Load (LHV) 8,000 Btu/bhp-hr (1.3 l/day) 7,800 Btu/bhp-hr (1.0,06 kJ/kWh) CO 1.2 g/bhp-hr 2.8 g/bhp-hr CO 1.2 g/bhp-hr 0.8 g/bhp-hr CO 0.3 g/bhp-hr 0.3 g/bhp-hr CO_ 469 g/bhp-hr 0.3 g/bhp-hr CO_ 469 g/bhp-hr 0.3 g/bhp-hr CO_ 469 g/bhp-hr 0.3 g/bhp-hr CO_ 5 g/bhp-hr 0.3 g/bhp-hr </th <th>Model</th> <th>STD</th> <th>LE</th>	Model	STD	LE
Exhaust System ¹ Exhaust Temperature 465°F (241°C) 515°F (268°C) Exhaust Flow 233 lb/min (106 kg/min) 239 lb/min (108 kg/min) Cooling Water System 233 lb/min (106 kg/min) 239 lb/min (108 kg/min) Capacity 120 gal (454 l) 120 gal (454 l) Lube Oil System ³ Capacity 95 gal (360 l) 95 gal (360 l) Canactase Makeup 6.6 pints/day (13.3 l/day) 28.2 pints/day (13.3 l/day) Crankcase Makeup 6.6 pints/day (3.1 l/day) 6 pints/day (2.8 l/day) Brake Specific Fuel Consumption 100% Load (14V) 8,000 Btu/bhp-hr (11,319 kJ/kWh) 7,800 Btu/bhp-hr (11,036 kJ/kWh) Engine Emissions ² NOX 12 g/bhp-hr 2 g/bhp-hr NOX 12 g/bhp-hr 2 g/bhp-hr 0.7 g/bhp-hr CO 1.2 g/bhp-hr 0.8 g/bhp-hr 0.7 5 g/bhp-hr CO 0.3 g/bhp-hr 0.3 g/bhp-hr 0.7 5 g/bhp-hr CO2 0.5 g/bhp-hr 0.3 g/bhp-hr 0.3 g/bhp-hr CO2 0.5 g/bhp-hr 0.3 g/bhp-hr 0.3 g/bhp-hr CO2 0.5 g/bhp-hr 0.3 g/bhp-h	Fuel Gas System ¹		
Exhaust Temperature 465°F (241°C) 515°F (268°C) Exhaust Flow 233 lb/min (106 kg/min) 239 lb/min (108 kg/min) Cooling Water System Capacity 120 gal (454 l) Capacity 120 gal (454 l) 120 gal (454 l) Lube Oil System ³ Capacity 95 gal (360 l) 95 gal (360 l) Consumption 28.2 pints/day (13.3 l/day) 28.2 pints/day (2.8 l/day) Brake Specific Fuel Consumption 6.6 pints/day (3.1 l/day) 6 pints/day (2.8 l/day) Brake Specific Fuel Consumption 100% Load (LHV) 8,000 Btu/bhp-hr (11,319 kJ/kWh) 7,800 Btu/bhp-hr (11,036 kJ/kWh) Toget Specific Fuel Consumption 12 g/bhp-hr 2 g/bhp-hr 2 g/bhp-hr CO 1.2 g/bhp-hr 2 g/bhp-hr 2 g/bhp-hr CO 1.2 g/bhp-hr 0.8 g/bhp-hr 0.7 g/bhp-hr CO 1.2 g/bhp-hr 0.3 g/bhp-hr 0.7 g/bhp-hr CO2 0.5 g/bhp-hr 0.3 g/bhp-hr 0.7 g/bhp-hr CO2 469 g/bhp-hr 0.3 g/bhp-hr 0.7 g/bhp-hr CO2 469 g/bhp-hr 0.3 g/bhp-hr 0.7 g/bhp-hr <tr< td=""><td>Fuel pressure range</td><td>150 psi (10.3 bar)</td><td>150 psi (10.3 bar)</td></tr<>	Fuel pressure range	150 psi (10.3 bar)	150 psi (10.3 bar)
Exhaust Flow 233 lb/min (106 kg/min) 239 lb/min (108 kg/min) Cooling Water System Capacity 120 gal (454 l) 120 gal (454 l) Capacity 95 gal (360 l) 95 gal (360 l) Cooling Vater System Capacity 95 gal (360 l) 28.2 pints/day (13.3 l/day) 28.2 pints/day (13.3 l/day) Crankcase Makeup 6.6 pints/day (3.1 l/day) 6 pints/day (2.8 l/day) Brake Specific Fuel Consumption 8,000 Btu/bhp-hr (11,319 kl/kWh) 7,800 Btu/bhp-hr (11,036 kl/kWh) Engine Emissions ² NOX 12 g/bhp-hr 2 g/bhp-hr CO 1.2 g/bhp-hr 2.3 g/bhp-hr 2 g/bhp-hr CO 1.2 g/bhp-hr 0.8 g/bhp-hr 0.8 g/bhp-hr VOC 0.5 g/bhp-hr 0.3 g/bhp-hr 0.3 g/bhp-hr Cop_ 469 g/bhp-hr 0.3 g/bhp-hr 0.3 g/bhp-hr Compressor Specifications 3 3 3 No. of Throws 3 3 3 Stocke 11" (279 mm) 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load <td>Exhaust System²</td> <td></td> <td></td>	Exhaust System ²		
Cooling Water System Capacity 120 gal (454 l) 120 gal (454 l) Lube Oil System ³ Capacity 95 gal (360 l) 95 gal (360 l) Consumption 28.2 pints/day (13.3 l/day) 28.2 pints/day (13.3 l/day) 28.2 pints/day (13.3 l/day) Crankcase Makeup 6.6 pints/day (3.1 l/day) 6 pints/day (2.8 l/day) Brake Specific Fuel Consumption 100% Load (LHV) 8,000 Btu/bhp-hr (11,319 kl/kWh) 7,800 Btu/bhp-hr (11,036 kl/kWh) Engine Emissions ² 7,800 Btu/bhp-hr 2 g/bhp-hr NOX 12 g/bhp-hr 2 g/bhp-hr CO 1.2 g/bhp-hr 0.8 g/bhp-hr CO 1.2 g/bhp-hr 0.8 g/bhp-hr CO 1.2 g/bhp-hr 0.8 g/bhp-hr VOC 0.5 g/bhp-hr 0.7 g/bhp-hr Cog 469 g/bhp-hr 0.3 g/bhp-hr Cog 469 g/bhp-hr 0.5 g/bhp-hr Compressor Specifications 807 ft/min (4 m/s) <t< td=""><td>Exhaust Temperature</td><td>465°F (241°C)</td><td>515°F (268°C)</td></t<>	Exhaust Temperature	465°F (241°C)	515°F (268°C)
Capacity 120 gal (454 I) 120 gal (454 I) Lube Oil System ³ Gapacity 95 gal (360 I) 95 gal (360 I) Consumption 28.2 pints/day (13.3 I/day) 28.2 pints/day (13.3 I/day) 6 pints/day (13.3 I/day) Crankcase Makeup 6.6 pints/day (3.1 I/day) 6 pints/day (2.8 I/day) Brake Specific Fuel Consumption 100% Load (LHV) 8,000 Btu/bhp-hr (11,319 kJ/kWh) 7,800 Btu/bhp-hr (11,036 kJ/kWh) Engine Emissions ² NOX 12 g/bhp-hr 2 g/bhp-hr NOX 12 g/bhp-hr 2.8 g/bhp-hr 0.8 g/bhp-hr CO 1.2 g/bhp-hr 0.8 g/bhp-hr 0.8 g/bhp-hr VOC 0.5 g/bhp-hr 0.3 g/bhp-hr 0.3 g/bhp-hr CO, 469 g/bhp-hr 0.3 g/bhp-hr 0.3 g/bhp-hr Compressor Specifications 3 3 3 No. of Throws 3 3 3 Stroke 11" (279 mm) 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Diameter 2.5" (64 mm) 2.5" (64 mm)	Exhaust Flow	233 lb/min (106 kg/min)	239 lb/min (108 kg/min)
Lube Oil System ³ 95 gal (360 l) 95 gal (360 l) Capacity 95 gal (360 l) 28.2 pints/day (13.3 l/day) Crankcase Makeup 6.6 pints/day (3.1 l/day) 6 pints/day (2.8 l/day) Brake Specific Fuel Consumption 100% Load (LHV) 8,000 Btu/bhp-hr (11,319 kl/kWh) 7,800 Btu/bhp-hr (11,036 kl/kWh) Engine Emissions ² NOx 12 g/bhp-hr 2 g/bhp-hr CO 1.2 g/bhp-hr 0.8 g/bhp-hr CO 1.2 g/bhp-hr 0.8 g/bhp-hr VOC 0.5 g/bhp-hr 0.8 g/bhp-hr VOC 0.5 g/bhp-hr 0.3 g/bhp-hr Copy 469 g/bhp-hr 0.3 g/bhp-hr Copy 3 3 3 Stroke 11" (279 mm) 11" (279 mm) Pist	Cooling Water System		
Capacity 95 gal (360 I) 95 gal (360 I) Consumption 28.2 pints/day (13.3 I/day) 28.2 pints/day (13.3 I/day) Crankcase Makeup 6.6 pints/day (3.1 I/day) 6 pints/day (2.8 I/day) Brake Specific Fuel Consumption 100% Load (LHV) 8,000 Btu/bhp-hr (11,319 kI/kWh) 7,800 Btu/bhp-hr (11,036 kJ/kWh) Engine Emissions ² NOX 12 g/bhp-hr 2 g/bhp-hr NOX 12 g/bhp-hr 2 g/bhp-hr CO 1.2 g/bhp-hr 0.8 g/bhp-hr NMHC 0.7 g/bhp-hr 0.8 g/bhp-hr VOC 0.5 g/bhp-hr 0.3 g/bhp-hr VOC 0.5 g/bhp-hr 0.3 g/bhp-hr Cog 469 g/bhp-hr 458 g/bhp-hr CO 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Diameter 2.5" (64 mm) 2.5" (64 mm) Crankshaft Centerline 20" (508 mm) 20" (508 mm) Dry Weight 48,700 lb (22,090 kg) 48,700 lb (22,090 kg) Frame Length	Capacity	120 gal (454 l)	120 gal (454 l)
Consumption 28.2 pints/day (13.3 l/day) 28.2 pints/day (13.3 l/day) Crankcase Makeup 6.6 pints/day (3.1 l/day) 6 pints/day (2.8 l/day) Brake Specific Fuel Consumption 7,800 Btu/bhp-hr (11,319 kl/kWh) 7,800 Btu/bhp-hr (11,036 kl/kWh) Engine Emissions ² 7,800 Btu/bhp-hr (11,319 kl/kWh) 7,800 Btu/bhp-hr (11,036 kl/kWh) Engine Emissions ² 2 g/bhp-hr 2 g/bhp-hr CO 1.2 g/bhp-hr 2.3 g/bhp-hr CO 0.7 g/bhp-hr 0.8 g/bhp-hr VOC 0.5 g/bhp-hr 0.75 g/bhp-hr Formaldehyde 0.3 g/bhp-hr 0.3 g/bhp-hr CO ₂ 469 g/bhp-hr 458 g/bhp-hr Copressor Specifications Compressor Specifications 3 No. of Throws 3 3 3 Stroke 11" (279 mm) 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load 40,000 lb (178 kN) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Load 40,000 lb (22,090 kg) 48,700 lb (22,090 kg) Prame Weight 48,70	Lube Oil System ³		
Crankcase Makeup 6.6 pints/day (3.1 l/day) 6 pints/day (2.8 l/day) Brake Specific Fuel Consumption 100% Load (LHV) 8,000 Btu/bhp-hr (11,319 kJ/kWh) 7,800 Btu/bhp-hr (11,036 kJ/kWh) Engine Emissions ² NOX 12 g/bhp-hr 2 g/bhp-hr NOX 12 g/bhp-hr 2.3 g/bhp-hr CO 1.2 g/bhp-hr 2.3 g/bhp-hr NMHC 0.7 g/bhp-hr 0.8 g/bhp-hr VOC 0.5 g/bhp-hr 0.75 g/bhp-hr VOC 0.5 g/bhp-hr 0.3 g/bhp-hr Cog 469 g/bhp-hr 0.3 g/bhp-hr CO2 469 g/bhp-hr 458 g/bhp-hr Cog 469 g/bhp-hr 458 g/bhp-hr Cog 469 g/bhp-hr 0.3 g/bhp-hr Cog 469 g/bhp-hr 458 g/bhp-hr Cog 469 g/bhp-hr 458 g/bhp-hr Cog 469 g/bhp-hr 458 g/bhp-hr Compressor Specifications 3 3 No. of Throws 3 3 Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Load 40,000 lb (22,090 kg	Capacity	95 gal (360 l)	95 gal (360 l)
Brake Specific Fuel Consumption 100% Load (LHV) 8,000 Btu/bhp-hr (11,319 kJ/kWh) 7,800 Btu/bhp-hr (11,036 kJ/kWh) Engine Emissions ² NOx 12 g/bhp-hr 2 g/bhp-hr NOX 12 g/bhp-hr 2 g/bhp-hr 2 g/bhp-hr CO 1.2 g/bhp-hr 2.3 g/bhp-hr 0.8 g/bhp-hr NMHC 0.7 g/bhp-hr 0.8 g/bhp-hr 0.8 g/bhp-hr VOC 0.5 g/bhp-hr 0.3 g/bhp-hr 0.3 g/bhp-hr Formaldehyde 0.3 g/bhp-hr 0.3 g/bhp-hr 0.3 g/bhp-hr CO2 469 g/bhp-hr 458 g/bhp-hr 0.3 g/bhp-hr CO3 3 dig/bhp-hr 0.3 g/bhp-hr 0.3 g/bhp-hr CO3 469 g/bhp-hr 458 g/bhp-hr 0.3 g/bhp-hr CO4 0.3 g/bhp-hr 0.3 g/bhp-hr 0.3 g/bhp-hr CO3 469 g/bhp-hr 458 g/bhp-hr 0.3 g/bhp-hr CO4 11" (279 mm) 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load 40,000 lb (178 kN) 20" (508 mm) <td>Consumption</td> <td>28.2 pints/day (13.3 l/day)</td> <td>28.2 pints/day (13.3 l/day)</td>	Consumption	28.2 pints/day (13.3 l/day)	28.2 pints/day (13.3 l/day)
100% Load (LHV) 8,000 Btu/bhp-hr (11,319 kJ/kWh) 7,800 Btu/bhp-hr (11,036 kJ/kWh) Engine Emissions ² NOx 12 g/bhp-hr 2 g/bhp-hr NOx 12 g/bhp-hr 2.3 g/bhp-hr CO 1.2 g/bhp-hr 2.3 g/bhp-hr NMHC 0.7 g/bhp-hr 0.8 g/bhp-hr VOC 0.5 g/bhp-hr 0.75 g/bhp-hr Formaldehyde 0.3 g/bhp-hr 0.3 g/bhp-hr CO 11" (279 mh) 11" (279 mm) Corpressor Specifications 3 3 No. of Throws 3 3 Stroke 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Diameter 2.5" (64 mm) 2.5" (64 mm) Crankshaft Centerline 20" (508 mm) 20" (508 mm) Dry Weight 48,700 lb (22,090 kg) 48,700 lb (22,090 kg) Frame Length 171" (4,353 mm) 171" (4,353 mm) Frame Length 171" (4,353 mm) 157" (3,987 mm) Frame Weight	Crankcase Makeup	6.6 pints/day (3.1 l/day)	6 pints/day (2.8 l/day)
Engine Emissions ² NOx 12 g/bhp-hr 2 g/bhp-hr CO 1.2 g/bhp-hr 2.3 g/bhp-hr CO 1.2 g/bhp-hr 2.3 g/bhp-hr NMHC 0.7 g/bhp-hr 0.8 g/bhp-hr VOC 0.5 g/bhp-hr 0.75 g/bhp-hr Formaldehyde 0.3 g/bhp-hr 0.3 g/bhp-hr CO_ 469 g/bhp-hr 458 g/bhp-hr CO_ 469 g/bhp-hr 458 g/bhp-hr CO_ 3 3 3 Stroke 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Load 40,000 lb (22,090 kg) 48,700 lb (22,090 kg) Diameter 2.5" (64 mm) 2.5" (64 mm) Crankshaft Centerline 20" (508 mm) 20" (508 mm) Dry Weight E E Frame Weight 171" (4,353 mm) 171" (4,353 mm) Frame Length 171" (4,353 mm) 157" (3,987 mm	Brake Specific Fuel Consumption		
Nox 12 g/bhp-hr 2 g/bhp-hr CO 1.2 g/bhp-hr 2.3 g/bhp-hr CO 1.2 g/bhp-hr 2.3 g/bhp-hr NMHC 0.7 g/bhp-hr 0.8 g/bhp-hr VOC 0.5 g/bhp-hr 0.75 g/bhp-hr Formaldehyde 0.3 g/bhp-hr 0.3 g/bhp-hr CO_2 469 g/bhp-hr 458 g/bhp-hr Compressor Specifications 0.0 of Throws 3 No. of Throws 3 3 Stroke 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Dameter 2.5" (64 mm) 2.5" (64 mm) Crankshaft Centerline 20" (508 mm) 20" (508 mm) Dry Weight	100% Load (LHV)	8,000 Btu/bhp-hr (11,319 kJ/kWh)	7,800 Btu/bhp-hr (11,036 kJ/kWh)
CO 1.2 g/bhp-hr 2.3 g/bhp-hr NMHC 0.7 g/bhp-hr 0.8 g/bhp-hr NMHC 0.5 g/bhp-hr 0.75 g/bhp-hr VOC 0.5 g/bhp-hr 0.3 g/bhp-hr Formaldehyde 0.3 g/bhp-hr 0.3 g/bhp-hr CO_2 469 g/bhp-hr 458 g/bhp-hr Compressor Specifications 0.0 of Throws 3 No. of Throws 3 3 Stroke 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Diameter 2.5" (64 mm) 2.5" (64 mm) Crankshaft Centerline 20" (508 mm) 20" (508 mm) Dry Weight 20" (508 mm) 20" (508 mm) Frame Weight 48,700 lb (22,090 kg) 48,700 lb (22,090 kg) Dimensions 20" 50,987 mm) Frame Length 171" (4,353 mm) 171" (4,353 mm) Frame Weight 74" (1,881 mm) 74" (1,881 mm) Stack Diameter 17½" (438 mm) 174" (438 mm)	Engine Emissions ²		
NMHC 0.7 g/bhp-hr 0.8 g/bhp-hr VOC 0.5 g/bhp-hr 0.75 g/bhp-hr Formaldehyde 0.3 g/bhp-hr 0.3 g/bhp-hr CO., 469 g/bhp-hr 0.3 g/bhp-hr CO., 469 g/bhp-hr 458 g/bhp-hr Compressor Specifications 3 3 No. of Throws 3 3 Stroke 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Diameter 2.5" (64 mm) 2.5" (64 mm) Crankshaft Centerline 20" (508 mm) 20" (508 mm) Dry Weight 500 lb (22,090 kg) 48,700 lb (22,090 kg) Prame Length 171" (4,353 mm) 171" (4,353 mm) Frame Length 171" (4,353 mm) 157" (3,987 mm) Frame Height 74" (1,881 mm) 74" (1,881 mm) Stack Diameter 17½" (438 mm) 17½" (438 mm) Stack Diameter 17½" (438 mm) 17½" (6,121 mm) Stack Height 241" (6,121 mm) <t< td=""><td>NOx</td><td>12 g/bhp-hr</td><td>2 g/bhp-hr</td></t<>	NOx	12 g/bhp-hr	2 g/bhp-hr
OC O.5 g/bhp-hr O.75 g/bhp-hr Formaldehyde 0.3 g/bhp-hr 0.3 g/bhp-hr CO., 469 g/bhp-hr 458 g/bhp-hr COmpressor Specifications 3 3 No. of Throws 3 3 Stroke 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Load 40,000 lb (22,090 kg) 48,700 lb (22,090 kg) Dimesions 20" (508 mm) 20" (508 mm) Dry Weight 57" (3,987 mm) 171" (4,353 mm) Frame Length 171" (4,353 mm) 171" (4,353 mm) Frame Length 171" (4,353 mm) 157" (3,987 mm) Frame Height 74" (1,881 mm) 74" (1,881 mm) Stack Diameter 17%" (438 mm) 17%" (438 mm) Stack Diameter 17%" (438 mm) 17%" (438 mm) Stack Leight 241" (6,121 mm) 241" (6,121 mm) Elywheel 241" (6,121 mm)<	CO	1.2 g/bhp-hr	2.3 g/bhp-hr
Original Original Original Formaldehyde 0.3 g/bhp-hr 0.3 g/bhp-hr CO2 469 g/bhp-hr 458 g/bhp-hr Compressor Specifications 3 3 No. of Throws 3 3 Stroke 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Diameter 2.5" (64 mm) 2.5" (64 mm) Crankshaft Centerline 20" (508 mm) 20" (508 mm) Dry Weight Erame Weight 48,700 lb (22,090 kg) 48,700 lb (22,090 kg) Dimensions Frame Length 171" (4,353 mm) 171" (4,353 mm) Frame Length 171" (4,353 mm) 157" (3,987 mm) 157" (3,987 mm) Frame Height 74" (1,881 mm) 74" (1,881 mm) 174" (438 mm) Stack Diameter 17½" (438 mm) 17½" (438 mm) 17½" (438 mm) Stack Diameter 17½" (438 mm) 17½" (438 mm) 17½" (438 mm) Stack Height 241" (6,121 mm) 241" (6,121 mm)	NMHC	0.7 g/bhp-hr	0.8 g/bhp-hr
CO2 469 g/bhp-hr 458 g/bhp-hr Compressor Specifications 3 3 No. of Throws 3 3 Stroke 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Diameter 2.5" (64 mm) 2.5" (64 mm) Crankshaft Centerline 20" (508 mm) 20" (508 mm) Dry Weight 5 5 Frame Weight 48,700 lb (22,090 kg) 48,700 lb (22,090 kg) Dimensions 171" (4,353 mm) 171" (4,353 mm) Frame Length 171" (4,353 mm) 157" (3,987 mm) Frame Weight 74" (1,881 mm) 74" (1,881 mm) Frame Height 74" (1,881 mm) 174" (438 mm) Stack Diameter 17½" (438 mm) 17½" (438 mm) Stack Diameter 241" (6,121 mm) 241" (6,121 mm) Flywheel 0 48" (1,219 mm) 48" (1,219 mm)	VOC	0.5 g/bhp-hr	0.75 g/bhp-hr
Compressor Specifications No. of Throws 3 3 Stroke 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Diameter 2.5" (64 mm) 2.5" (64 mm) Crankshaft Centerline 20" (508 mm) 20" (508 mm) Dry Weight 20" (508 mm) 20" (508 mm) Frame Weight 48,700 lb (22,090 kg) 48,700 lb (22,090 kg) Dimensions 71" (4,353 mm) 171" (4,353 mm) Frame Length 171" (4,353 mm) 157" (3,987 mm) Frame Height 74" (1,881 mm) 74" (1,881 mm) Stack Diameter 17½" (438 mm) 17½" (438 mm) Stack Diameter 17½" (438 mm) 241" (6,121 mm) Flywheel 241" (6,121 mm) 241" (6,121 mm)	Formaldehyde	0.3 g/bhp-hr	0.3 g/bhp-hr
No. of Throws 3 3 Stroke 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Diameter 2.5" (64 mm) 2.5" (64 mm) Crankshaft Centerline 20" (508 mm) 20" (508 mm) Dry Weight Prame Weight 48,700 lb (22,090 kg) 48,700 lb (22,090 kg) Dimensions 171" (4,353 mm) 171" (4,353 mm) 171" (4,353 mm) Frame Length 171" (4,353 mm) 157" (3,987 mm) 157" (3,987 mm) Frame Height 74" (1,881 mm) 74" (1,881 mm) 174" (438 mm) Stack Diameter 171%" (438 mm) 174" (6,121 mm) 241" (6,121 mm) Stack Height 241" (6,121 mm) 241" (6,121 mm) 241" (6,121 mm)	CO2	469 g/bhp-hr	458 g/bhp-hr
Stroke 11" (279 mm) 11" (279 mm) Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Diameter 2.5" (64 mm) 2.5" (64 mm) Crankshaft Centerline 20" (508 mm) 20" (508 mm) Dry Weight 20" (508 mm) 20" (508 mm) Frame Weight 48,700 lb (22,090 kg) 48,700 lb (22,090 kg) Dimensions 20" (3,987 mm) 171" (4,353 mm) Frame Length 171" (4,353 mm) 157" (3,987 mm) Frame Height 74" (1,881 mm) 74" (1,881 mm) Stack Diameter 17½" (438 mm) 17½" (438 mm) Stack Height 241" (6,121 mm) 241" (6,121 mm) Flywheel 48" (1,219 mm) 48" (1,219 mm)	Compressor Specifications		
Piston Speed 807 ft/min (4 m/s) 807 ft/min (4 m/s) Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Diameter 2.5" (64 mm) 2.5" (64 mm) Crankshaft Centerline 20" (508 mm) 20" (508 mm) Dry Weight End State End State Frame Weight 48,700 lb (22,090 kg) 48,700 lb (22,090 kg) Dimensions T71" (4,353 mm) 171" (4,353 mm) Frame Length 171" (4,353 mm) 157" (3,987 mm) Frame Height 74" (1,881 mm) 74" (1,881 mm) Stack Diameter 17½" (438 mm) 174" (438 mm) Stack Leight 241" (6,121 mm) 241" (6,121 mm) Flywheel 48" (1,219 mm) 48" (1,219 mm)	No. of Throws	3	3
Rod Load 40,000 lb (178 kN) 40,000 lb (178 kN) Rod Diameter 2.5" (64 mm) 2.5" (64 mm) Crankshaft Centerline 20" (508 mm) 20" (508 mm) Dry Weight 20" (508 mm) Frame Weight 48,700 lb (22,090 kg) 48,700 lb (22,090 kg) Dimensions Frame Length 171" (4,353 mm) 171" (4,353 mm) Frame Width 157" (3,987 mm) 157" (3,987 mm) Frame Height 74" (1,881 mm) 74" (1,881 mm) Stack Diameter 17¼" (438 mm) 17¼" (438 mm) Stack Height 241" (6,121 mm) 241" (6,121 mm) Flywheel 48" (1,219 mm) 48" (1,219 mm)	Stroke	11" (279 mm)	11" (279 mm)
Rod Diameter 2.5" (64 mm) 2.5" (64 mm) Crankshaft Centerline 20" (508 mm) 20" (508 mm) Dry Weight Frame Weight 48,700 lb (22,090 kg) 48,700 lb (22,090 kg) Dimensions 500 lb (22,090 kg) 48,700 lb (22,090 kg) 100 lb (22,090 kg) Frame Length 171" (4,353 mm) 171" (4,353 mm) 171" (4,353 mm) Frame Length 171" (4,353 mm) 157" (3,987 mm) 157" (3,987 mm) Frame Height 74" (1,881 mm) 74" (1,881 mm) 174" (438 mm) Stack Diameter 17½" (438 mm) 17½" (438 mm) 241" (6,121 mm) Stack Height 241" (6,121 mm) 241" (6,121 mm) 48" (1,219 mm) Outside Diameter 48" (1,219 mm) 48" (1,219 mm) 172 mm)	Piston Speed	807 ft/min (4 m/s)	807 ft/min (4 m/s)
Crankshaft Centerline 20" (508 mm) 20" (508 mm) Dry Weight Frame Weight 48,700 lb (22,090 kg) 48,700 lb (22,090 kg) Dimensions Frame Length 171" (4,353 mm) 171" (4,353 mm) Frame Weight 157" (3,987 mm) 157" (3,987 mm) Frame Height 74" (1,881 mm) 74" (1,881 mm) Stack Diameter 171" (4,38 mm) 171" (438 mm) Stack Height 241" (6,121 mm) 241" (6,121 mm) Flywheel 0utside Diameter 48" (1,219 mm) 48" (1,219 mm)	Rod Load	40,000 lb (178 kN)	40,000 lb (178 kN)
Dry Weight Frame Weight 48,700 lb (22,090 kg) 48,700 lb (22,090 kg) Dimensions 5 5 Frame Length 171" (4,353 mm) 171" (4,353 mm) Frame Width 157" (3,987 mm) 157" (3,987 mm) Frame Height 74" (1,881 mm) 74" (1,881 mm) Stack Diameter 17¼" (438 mm) 17¼" (438 mm) Stack Height 241" (6,121 mm) 241" (6,121 mm) Flywheel 0utside Diameter 48" (1,219 mm)	Rod Diameter	2.5" (64 mm)	2.5" (64 mm)
Frame Weight 48,700 lb (22,090 kg) 48,700 lb (22,090 kg) Dimensions Frame Length 171" (4,353 mm) Frame Width 157" (3,987 mm) 157" (3,987 mm) Frame Height 74" (1,881 mm) 74" (1,881 mm) Stack Diameter 17¼" (438 mm) 17¼" (438 mm) Stack Height 241" (6,121 mm) 241" (6,121 mm) Flywheel 0utside Diameter 48" (1,219 mm)	Crankshaft Centerline	20" (508 mm)	20" (508 mm)
Dimensions Frame Length 171" (4,353 mm) Frame Width 157" (3,987 mm) Frame Width 157" (3,987 mm) Frame Height 74" (1,881 mm) Stack Diameter 17½" (438 mm) Stack Height 241" (6,121 mm) Stack Height 241" (6,121 mm) Gutside Diameter 48" (1,219 mm)	Dry Weight		
Frame Length 171" (4,353 mm) 171" (4,353 mm) Frame Width 157" (3,987 mm) 157" (3,987 mm) Frame Height 74" (1,881 mm) 74" (1,881 mm) Stack Diameter 17¼" (438 mm) 17¼" (438 mm) Stack Height 241" (6,121 mm) 241" (6,121 mm) Flywheel 0utside Diameter 48" (1,219 mm) 48" (1,219 mm)	Frame Weight	48,700 lb (22,090 kg)	48,700 lb (22,090 kg)
Frame Width 157" (3,987 mm) 157" (3,987 mm) Frame Height 74" (1,881 mm) 74" (1,881 mm) Stack Diameter 17¼" (438 mm) 17¼" (438 mm) Stack Height 241" (6,121 mm) 241" (6,121 mm) Flywheel 0utside Diameter 48" (1,219 mm) 48" (1,219 mm)	Dimensions		
Frame Height 74" (1,881 mm) 74" (1,881 mm) Stack Diameter 17¼" (438 mm) 17¼" (438 mm) Stack Height 241" (6,121 mm) 241" (6,121 mm) Flywheel 48" (1,219 mm) 48" (1,219 mm)	Frame Length	171" (4,353 mm)	171" (4,353 mm)
Stack Diameter 17¼" (438 mm) 17¼" (438 mm) Stack Height 241" (6,121 mm) 241" (6,121 mm) Flywheel 48" (1,219 mm) 48" (1,219 mm)	Frame Width	157" (3,987 mm)	157" (3,987 mm)
Stack Height 241" (6,121 mm) 241" (6,121 mm) Flywheel 48" (1,219 mm) 48" (1,219 mm)	Frame Height	74" (1,881 mm)	74" (1,881 mm)
Flywheel 48" (1,219 mm) 48" (1,219 mm)	Stack Diameter	17¼" (438 mm)	17¼" (438 mm)
Outside Diameter 48" (1,219 mm) 48" (1,219 mm)	Stack Height	241" (6,121 mm)	241" (6,121 mm)
	Flywheel		
Weight 2,200 lb (998 kg) 2,200 lb (998 kg)	Outside Diameter	48" (1,219 mm)	48" (1,219 mm)
	Weight	2,200 lb (998 kg)	2,200 lb (998 kg)

¹ Fuel gas system pressure noted is maximum pressure at customer connection

² Exhaust and emissions noted based on: PLQNG, 1500 FASL elevation, 65°F ambient temperature for STD and LE

³ Lube oil system consumption rates based on full load and full speed operation. Values do not indicate break-in consumption rates.

LEGENDS DON'T STOP. WE MAKE SURE OF IT.™

CALL +1-844-RECIP-43 (INTERNATIONAL: +1-713-354-1299) 24/7 TECH SUPPORT: SUPPORT@COOPERSERVICES.COM COOPERSERVICES.COM

 $\ensuremath{\mathbb{C}}$ 2020 GE Oil & Gas Compression Systems, LLC – All rights reserved.

AJAX

AJI20025 04/2024

GE Oil & Gas Compression Systems, LLC reserves the right to make changes in specifications and features shown herein, or discontinue the product described at any time without notice or obligation. Contact your Cooper Machinery Services representative for the most current information. Ajax, the Ajax logo and the Cooper Machinery Services logo and tagline are trademarks of GE Oil & Gas Compression Systems, LLC.

TABLE 3.2-1 UNCONTROLLED EMISSION FACTORS FOR 2-STROKE LEAN-BURN ENGINES a (SCC 2-02-002-52)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating					
Criteria Pollutants and Greenhouse Gases							
NO _x ^c 90 - 105% Load	3.17 E+00	А					
NO _x ^c <90% Load	1.94 E+00	А					
CO ^c 90 - 105% Load	3.86 E-01	А					
CO ^c <90% Load	3.53 E-01	А					
CO ₂ ^d	1.10 E+02	А					
so ₂ ^e	5.88 E-04	А					
TOC ^f	1.64 E+00	А					
Methane ^g	1.45 E+00	С					
VOC ^h	1.20 E-01	С					
PM10 (filterable) ⁱ	3.84 E-02	С					
PM2.5 (filterable) ⁱ	3.84 E-02	С					
PM Condensable ^j	9.91 E-03	Е					
Trace Organic Compounds							
1,1,2,2-Tetrachloroethane ^k	6.63 E-05	С					
1,1,2-Trichloroethane ^k	5.27 E-05	С					
1,1-Dichloroethane	3.91 E-05	С					
1,2,3-Trimethylbenzene	3.54 E-05	D					
1,2,4-Trimethylbenzene	1.11 E-04	С					
1,2-Dichloroethane	4.22 E-05	D					
1,2-Dichloropropane	4.46 E-05	С					
1,3,5-Trimethylbenzene	1.80 E-05	D					
1,3-Butadiene ^k	8.20 E-04	D					
1,3-Dichloropropene ^k	4.38 E-05	С					
2,2,4-Trimethylpentane ^k	8.46 E-04	В					
2-Methylnaphthalene ^k	2.14 E-05	С					
Acenaphthene ^k	1.33 E-06	С					

Table 3.2-1. UNCONTROLLED EMISSION FACTORS FOR 2-STROKE LEAN-BURN ENGINES

(Continued)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Acenaphthylene ^k	3.17 E-06	С
Acetaldehyde ^{k,l}	7.76 E-03	А
Acrolein ^{k,1}	7.78 E-03	А
Anthracene ^k	7.18 E-07	С
Benz(a)anthracene ^k	3.36 E-07	С
Benzene ^k	1.94 E-03	А
Benzo(a)pyrene ^k	5.68 E-09	D
Benzo(b)fluoranthenek	8.51 E-09	D
Benzo(e)pyrene ^k	2.34 E-08	D
Benzo(g,h,i)perylene ^k	2.48 E-08	D
Benzo(k)fluoranthenek	4.26 E-09	D
Biphenyl ^k	3.95 E-06	С
Butane	4.75 E-03	С
Butyr/Isobutyraldehyde	4.37 E-04	С
Carbon Tetrachloride ^k	6.07 E-05	С
Chlorobenzene ^k	4.44 E-05	С
Chloroform ^k	4.71 E-05	С
Chrysene ^k	6.72 E-07	С
Cyclohexane	3.08 E-04	С
Cyclopentane	9.47 E-05	С
Ethane	7.09 E-02	А
Ethylbenzene ^k	1.08 E-04	В
Ethylene Dibromide ^k	7.34 E-05	С
Fluoranthene ^k	3.61 E-07	С
Fluorene ^k	1.69 E-06	С
Formaldehyde ^{k,l}	5.52 E-02	А

-

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Indeno(1,2,3-c,d)pyrene ^k	9.93 E-09	D
Isobutane	3.75 E-03	С
Methanol ^k	2.48 E-03	А
Methylcyclohexane	3.38 E-04	С
Methylene Chloride ^k	1.47 E-04	С
n-Hexane ^k	4.45 E-04	С
n-Nonane	3.08 E-05	С
n-Octane	7.44 E-05	С
n-Pentane	1.53 E-03	С
Naphthalene ^k	9.63 E-05	С
PAH ^k	1.34 E-04	D
Perylene ^k	4.97 E-09	D
Phenanthrene ^k	3.53 E-06	С
Phenol ^k	4.21 E-05	С
Propane	2.87 E-02	С
Pyrene ^k	5.84 E-07	С
Styrene ^k	5.48 E-05	А
Toluene ^k	9.63 E-04	А
Vinyl Chloride ^k	2.47 E-05	С
Xylene ^k	2.68 E-04	А

 Table 3.2-1. UNCONTROLLED EMISSION FACTORS FOR 2-STROKE LEAN-BURN ENGINES (Concluded)

^a Reference 7. Factors represent uncontrolled levels. For NO_x, CO, and PM10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM10 = Particulate Matter \leq 10 microns (μ m) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit.

^b Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA

Method 19. To convert from (lb/MMBtu) to (lb/ 10^6 scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from (lb/MMBtu) to (lb/hp-hr) use the following equation:

lb/hp-hr = (lb/MMBtu) (heat input, MMBtu/hr) (1/operating HP, 1/hp)

- ^c Emission tests with unreported load conditions were not included in the data set.
- ^d Based on 99.5% conversion of the fuel carbon to CO_2 . CO_2 [lb/MMBtu] =
- (3.67)(% CON)(C)(D)(1/h), where $\% \text{CON} = \text{percent conversion of fuel carbon to CO}_2$, C = carbon content of fuel by weight (0.75), $D = \text{density of fuel}, 4.1 \text{ E}+04 \text{ lb}/10^6 \text{ scf}, \text{ and}$ h = heating value of natural gas (assume 1020 Btu/scf at 60° F).
- ^e Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content in natural gas of 2,000 gr/10⁶ scf.
- Emission factor for TOC is based on measured emission levels of 43 tests.
- ^g Emission factor for methane is determined by subtracting the VOC and ethane emission factors from the TOC emission factor. Measured emission factor for methane compares well with the calculated emission factor, 1.48 lb/MMBtu vs. 1.45 lb/MMBtu, respectively.
- ^h VOC emission factor is based on the sum of the emission factors for all speciated organic compounds less ethane and methane.
- Considered $\leq 1 \ \mu m$ in aerodynamic diameter. Therefore, for filterable PM emissions, PM10(filterable) = PM2.5(filterable).
- ^j No data were available for condensable PM emissions. The presented emission factor reflects emissions from 4SLB engines.
- ^k Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.
- For lean burn engines, aldehyde emissions quantification using CARB 430 may reflect interference with the sampling compounds due to the nitrogen concentration in the stack. The presented emission factor is based on FTIR measurements. Emissions data based on CARB 430 are available in the background report.

Certificate of Analysis

Number: 6030-21110023-001A

#1 Inlet
633000
FFS
6030_GC2 (Agilent GC-7890B)
09/13/2021 14:54 PM
11/01/2021 16:00:14 by KJM

Nov.	01, 2021
Z	
Gas	Spot
11/01/202	21
:37.1 psig,	@ 81.6 °F
11/01/202	21
GPA 228	6
	Z Gas 11/01/202

Analytical Data

Components l	Jn-normalized Mol %	Mol. %	Wt. %	GPM at 14.65 psia		
Hydrogen Sulfide	0.000	0.80000	1.129		GPM TOTAL C2+	8.183
Nitrogen	1.732	1.69600	1.968		GPM TOTAL C3+	4.263
Methane	69.469	68.00900	45.186		GPM TOTAL iC5+	1.07
Carbon Dioxide	0.989	0.96800	1.764			
Ethane	14.985	14.67000	18.269	3.920		
Propane	7.776	7.61300	13.903	2.095		
Iso-butane	1.027	1.00500	2.419	0.329		
n-Butane	2.474	2.42200	5.830	0.763		
Iso-pentane	0.791	0.77400	2.313	0.283		
n-Pentane	0.753	0.73700	2.202	0.267		
Hexanes Plus	1.334	1.30600	5.017	0.526		
	101.330	100.00000	100.000	8.183		
Calculated Physical Pro	operties	Total		C6+		
Relative Density Real Ga	as	0.8373	5	3.1966		
Calculated Molecular We	eight	24.15	i	92.58		
Compressibility Factor		0.9953	5			
GPA 2172 Calculation:						
Calculated Gross BTU	per ft3 @ 14.65 p	sia & 60°F				
Real Gas Dry BTU		1382		4926		
Water Sat. Gas Base BT	Ū	1358	1	4839		
Ideal, Gross HV - Dry at	14.65 psia	1375.6	;	4925.7		
Ideal, Gross HV - Wet	-	1351.5	i	0.000		

Data reviewed by: Krystle Fitzwater, Laboratory Manager The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 6030-21110023-001A

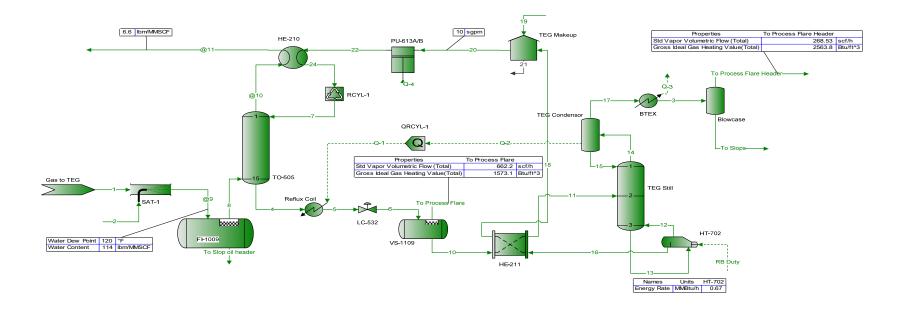
Station Name: #1 Inlet Station Number: 633000 Station Location: FFS Analyzed: 11/01/2021 16:13:44 by KJM

Nov.	01,	2021
------	-----	------

Sampled By:	Z	
Sample Of:	Gas	Spot
Sample Date:	11/01/202	1
Sample Conditions	:37.1 psig,	@ 81.6 °F
Method:	GPA 2286	

Analytical Data

Components	Mol. %	Wt. %	GPM at		
-			14.65 psia		
Hydrogen Sulfide	0.800	1.129			
Nitrogen	1.696	1.968			
Methane	68.009	45.186			
Carbon Dioxide	0.968	1.764			
Ethane	14.670	18.269	3.920		
Propane	7.613	13.903	2.095		
Iso-Butane	1.005	2.419	0.329		
n-Butane	2.422	5.830	0.763		
Iso-Pentane	0.774	2.313	0.283		
n-Pentane	0.737	2.202	0.267		
i-Hexanes	0.286	0.994	0.114		
n-Hexane	0.165	0.573	0.067		
Benzene	0.095	0.306	0.027		
Cyclohexane	0.138	0.477	0.047		
i-Heptanes	0.221	0.852	0.089		
n-Heptane	0.053	0.220	0.025		
Toluene	0.068	0.253	0.022		
i-Octanes	0.169	0.741	0.076		
n-Octane	0.016	0.077	0.008		
Ethylbenzene	0.010	0.042	0.004		
Xylenes	0.019	0.088	0.008		
i-Nonanes	0.033	0.185	0.018		
n-Nonane	0.010	0.050	0.005		
Decanes Plus	0.023	0.159	0.016		
	100.000	100.000	8.183		
Calculated Physical F	Properties		Total	C10+	
Calculated Molecular V			24.15	149.51	
GPA 2172 Calculation	0				
Calculated Gross BT		4.65 psia 8	60°F		
Real Gas Dry BTU			1382.1	8019.1	
Water Sat. Gas Base E	BTU		1357.9	7841.5	
Relative Density Real	Gas		0.8373	5.1622	
Compressibility Factor			0.9953		
Ideal, Gross HV - Wet			1351.5		
Ideal, Gross HV - Dry a	at 14.65 psia		1375.6		
Net BTU Dry Gas - rea			1258		
Net BTU Wet Gas - rea			1236		
	ld Content 0.8				

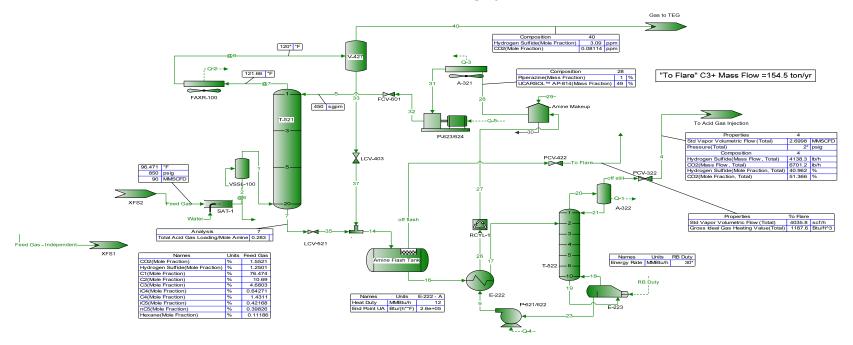


Data reviewed by: Krystle Fitzwater, Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

TEG Glycol Dehydration System

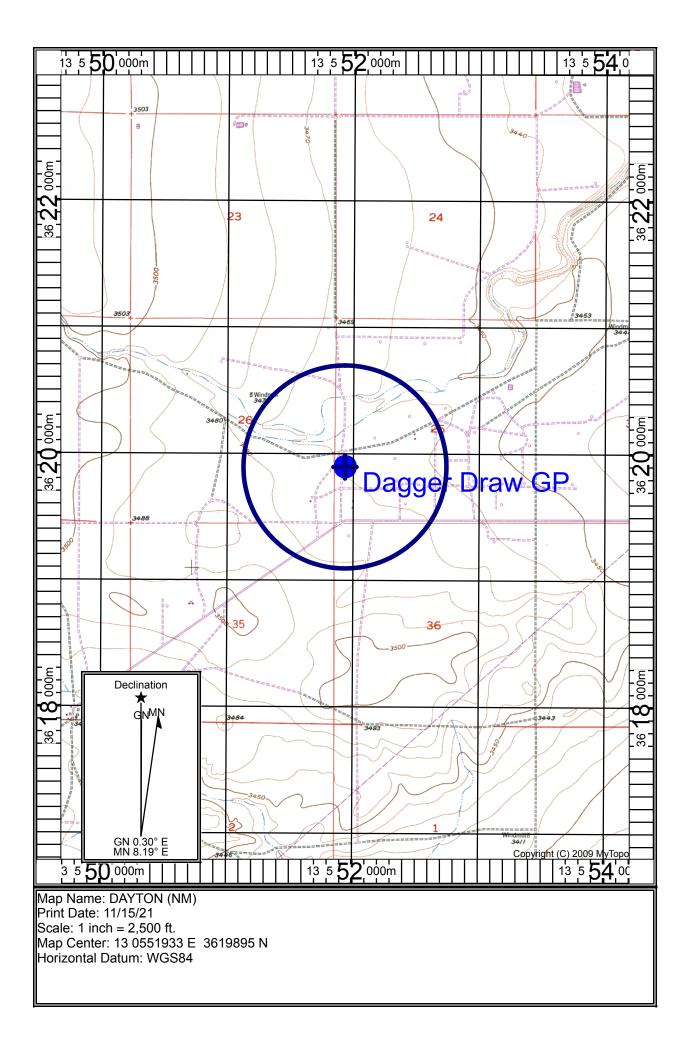


Process Streams Composition Status: Phase: Total From Block	@9 Solved * SAT-1	@10 Solved TO-565	@11 1 Solved HE-210	To Process Flare To Solved VS-1109	Process Flare Header To Solved Biowcase	Slop oil header Solved FI-1009	To Slops Solved Blowcase	1 Solved Gas to TEG	2 Solved -	3 Solved BTEX	4 Solved TO-505	5 Solved Reflux Coll	6 Solved LC-532	7 Solved RCYL-1	8 Solved F1-1009	10 Solved VS-1109	11 Solved HE-211	12 Solved HT-702	13 Solved TEG Sell	14 Solved TEG Sea	15 Solved TEG Condensor	16 Solved HT-702	17 Solved TEG Condensor BTEX	18 Solved HE-211	19 Solved -	20 Solved TEG Makeup	21 Solved TEG Makeup	22 Solved PU-613A/B	24 Solved HE-210
Std Vapor Volumetric Flow Hydrogen Sulfide	MMSCFD 0.000267237	MMSCFD 0.000265621	MMSCFD 0.000265621	MMSCFD 3.18854E-07	MMSCFD 1.22318E-06	MMSCFD 3.20210E-11	MMSCFD 7.38831E-08	MMSCFD 2.67237E-04	MMSCFD 0*	MMSCFD 1.29705E-06	MMSCFD 1.61593E-06	LC-632 MMSCFD 1.61593E-06	MMSCFD 1.61593E-06	MMSCFD 0	MMSCFD 0.000267237	MMSCFD 1.29708E-06	MMSCFD 1.29708E-06	MMSCFD 8.49167E-10	MMSCFD 8.62622E-10	MMSCFD 1.29715E-06	TEG Sell MMSCFD 8.25038E-11	MMSCFD 1.34551E-11	MMSCFD 1.29705E-06	MMSCFD 1.34551E-11	MMSCFD 0*	MMSCFD 0	MMSCFD 0	MMSCFD 0	MMSCFD 0
N2 C1	1.30131 68.5169 7.01718E-06	1.30126 68.5064 7.00740E-06	1.30126 68.5064 7.00740E-06	3.18854E-07 5.64775E-05 0.00959114 5.20932E-09	1.22318E-06 1.35972E-06 0.000875319 4.49188E-09	2.23900E-09 2.02927E-07	1.33003E-08 1 2.86359E-06 6 8.19639E-11 7	.30131E+00 .85169E+01	0*	1.36105E-06 0.000878183 4.57384E-09	5.78385E-05 0.0104693 9.78316E-09	5.78385E-05 0.0104693	5.78385E-05 0.0104693	0	1.30131 68.5169 7.01718E-06	1.36105E-06 0.000878183	1.36105E-06 0.000878183	4.05667E-10 4.05667E-13 1.80156E-09 2.05793E-13	4.05989E-13 1.80461E-09	1.36105E-06 0.000878184	1.18661E-12 1.43949E-09 8.73414E-14	3.22041E-16 3.05013E-12 1.08816E-15	1.36105E-06 0.000878183 4.57384E-09	3.22041E-16 3.05013E-12 1.08816E-15	0* 0*	0	0	0	0
a a	9.48525	9.48118 4.07890	9.48118	0.00310131 0.00176691	0.000953849 0.000994519	2.62093E-08 6.17720E-09	1.52098E-05 9 4.52113E-05 4	0.48525E+00	0*	0.000969059 0.00103973	0.00407037	0.00407037 0.00280664	0.00407037	0	9.48525 4.08171	0.000969059 0.00103973	0.000969059 0.00103973	1.13210E-08	1.13595E-08	0.000969060	1.56577E-09 1.22390E-09	3.84540E-11 1.64910E-10	0.000969059 0.00103973	3.84540E-11 1.64910E-10	0* 0*	0	0	0	6
iC4 C4	0.546954 1.19532	0.546520 1.19393	0.546520 1.19393	0.000242913 0.000637891	0.000175053 0.000656882	3.74408E-10 1.32667E-09	1.57635E-05 9.14453E-05 1	5.46954E-01 1.19532E+00	0* 0*	0.000190817 0.000748327	0.000433730 0.00138622	0.000433730 0.00138622	0.000433730 0.00138622	0 7.73783E-10	0.546954 1.19532	0.000190817 0.000748328	0.000190817 0.000748328	9.46025E-09 6.56703E-08	9.52128E-09 6.61794E-08	0.000190817 0.000748328	9.80314E-11 8.58843E-10	6.10280E-11 5.09057E-10	0.000190817 0.000748327	6.10280E-11 5.09057E-10	0* 0*	0	0	0	6
iCS nCS	0.332283 0.304643 0.138674	0.331795 0.304107 0.138336	0.331795 0.304107 0.138336	0.000173928 0.000172063 7.71451E-05	0.000231724 0.000248861 0.000133135	1.69831E-10 8.95151E-11	8.32502E-05 3 0.000115209 0 0.000128311 0	3.32283E-01 0.304642665	0*	0.000314974	0.000488903 0.000536134	0.000488903	0.000488903 0.000536134 0.000338595	8.90328E-10 1.45412E-09	0.304643	0.000314975 0.000364071	0.000364071	5.45027E-08 8.13894E-08 2.00225E-07	5.50829E-08 8.23328E-08	0.000314974 0.000364071		9.43414E-10	0.000314974	5.80179E-10 9.43414E-10	0*	5.80179E-10 9.43414E-10 4.53686E-09	0	5.80179E-10 9.43414E-10 4.53686E-09	5.80179E-10 9.43414E-10
i-Hexane Hexane Renzene	0.0701814	0.0699844	0.0699844	3.87214E-05	6.91006E-05	1.01087E-11	8.91804E-05	7.01814E-02		0.000158281	0.000197006	0.000197006	0.000197006	6.10479E-09	0.0701814	0.000158285	0.000158285	1.54264E-07	1.58154E-07	0.000158281	5.00474E-11	3.89007E-09	0.000158281		0*	3.89007E-09	0	3.89007E-09	3.89007E-05
Cyclohexane i-Heptane	0.0617950 0.0919038	0.0612248 0.0915837	0.0612248 0.0915837	4.25876E-05 4.96831E-05	0.000746878 0.000173043 7.53584E-05	1.29112E-10 9.73333E-12	0.000354581 0	0.061794988	0* 0*	0.000527624 0.000270334	0.000570275 0.000320021	0.000570275	0.000570275 0.000320021	9.56158E-08 6.85139E-09	0.0617950 0.0919038	0.000527687 0.000270338	0.000527687 0.000270338	1.73464E-06 2.19717E-07	1.79829E-06 2.24133E-07	0.000527625 0.000270334	1.20415E-09 3.89713E-11	6.36572E-08 4.41568E-09	0.000527624 0.000270334	6.36572E-08 4.41568E-09	0* 0*	6.36572E-08 4.41568E-09	0	6.36572E-08 4.41568E-09	6.36572E-08 4.41568E-05
n-Heptane Toluene i-Octane	0.0201959 0.0209747 0.0683568	0.0201087 0.0190636 0.0680732	0.0201087 0.0190636 0.0680732	1.07982E-05 1.56034E-05 3.65017E-05	1.61936E-05 0.000237619 5.51348E-05	1.46286E-12 1.02228E-09	6.02394E-05 2 0.00166119 0.000191925 0	2.01959E-02 0.02097471	0*	0.00189881	0.00192424	0.00192424	8.72334E-05 0.00192424 0.000283568	3.28113E-09 1.31689E-05	0.0209747	0.00190864	0.00190864	9.23580E-08 0.000104936 3.03995E-07	9.44778E-08 0.000114764	7.64331E-05 0.00189889	1.29464E-11	9.82857E-06	0.00189881	2.11976E-09 9.82857E-06 6.68233E-09	0*	2.11976E-09 9.82857E-06 6.68233E-09	0	2.11976E-09 9.82857E-06	2.11976E-05 9.82857E-06
n-Octane In-Octane Ethylbenzene Im-Xylene	0.00336011 0.00232038	0.00333957 0.00204244	0.00333957 0.00204244	3.65017E-05 1.60961E-06 1.38905E-06	1.62928E-06 1.17305E-05	4.58/41E-12 9.50024E-14 6.48623E-11	1.73048E-05 3 0.000266151 0	3.36011E-03 0.002320384	0*	1.89341E-05 0.000277882	2.05450E-05 0.000283218	2.05450E-05 0.000283218	2.05450E-05 0.000283218	1.02087E-08 2.07285E-09 5.27759E-06	0.00336011 0.00232038	1.89354E-05 0.000281829		3.03995E-07 4.59247E-08 3.08419E-05	3.10677E-07 4.72670E-08 3.47889E-05	1.89341E-05 0.000277890	4./3949E-11 2.09781E-12 8.24926E-09	6.68233E-09 1.34225E-09 3.94704E-06		1.34225E-09 3.94704E-06	0*	6.68233E-09 1.34225E-09 3.94704E-06	0	6.68233E-09 1.34225E-09 3.94704E-06	6.68233E-05 1.34225E-05 3.94704E-06
o-Xylene	0.00354778	0.00311115	0.00311115	2.13453E-06 0	1.97605E-05 0	7.64775E-11 0	0.000416836 0	0.003547784	0* 0*	0.000436596	0.000445243		0.000445243	8.60830E-06 0				5.09006E-05 0	5.74125E-05 0	0.000436609	1.27876E-08 0			6.51196E-06 0	0* 0*	6.51196E-06 0	0	6.51196E-06 0	6.51196E-06
p-Xylene Nonane	0 0.00507343 0.00151149	0.00502815	0 0.00502815 0.00149234	0 2.11915E-06	0 1.68578E-06 2.89433E-07	0 6.58299E-14	0 4.14816E-05 1.83301E-05	0 5.07343E-03	0*	0 4.31674E-05	0 4.52946E-05 1.91731E-05	0 4.52946E-05	0 4.52946E-05	0 1.25607E-08 1.65479E-08	0 0.00507343 0.00151149	0 4.31755E-05 1.86301E-05	0 4.31755E-05 1.86301E-05	0 2.03799E-07 1.93468E-07	0 2.11845E-07 2.04022E-07	0 4.31674E-05 1.85195E-05	0 1.47622E-12 2.84623E-13	0 8.04576E-09 1.05538E-08	0 4.31674E-05	0 8.04576E-09 1.05538E-08	0*	0 8.04576E-09 1.05538E-08	0	0 8.04576E-09 1.05538E-08	0 8.04576E-09 1.05538E-08
TEG H2O	0.206329	8.83544E-05 0.0124935	8.83544E-05 0.0124935	5.42996E-07 3.03739E-08 0.000147955	1.31955E-14 0.000736526	0.000263269	6.15002E-08 0	0.00000E+00 0.184049	0*	6.15002E-08 0.193410	0.338815 0.221346	0.338815 0.221346	0.338815 0.221346	0.338904	0.205066	0.338815 0.221198	0.338815 0.221198	0.0108208 0.140949	0.349636 0.168738	4.71347E-06 0.213879	4.65197E-06 0.0204689	0.338815	6.15002E-08 0.193410	0.338815	9.31763E-05* 7 77482E-07*	0.338908	0	0.338908	0.338908
Sulfur Dioxide Mole Fraction	0	0	0	0	0 %	0 %	5	0	0*	N 0	0	0	0 N	0	0	0	0	0 N	0.1007.50	0	0	0.0177005	0 N	0.0177005	0* %	0	0	0	0.0177833
Hydrogen Sulfide N2	0.000308929 1.50433	0.000307848	0.000307848 1.50812	0.00196717 0.348438	0.0190625 0.0211904	1.21516E-05 0.000849674		3.09009E-04 1.50472E+00	0*	0.000633524 0.000664775	0.000275017 0.00984360	0.000275017 0.00984360	0.000275017 0.00984360	0	0.000308930 1.50434	0.000227013 0.000238209	0.000227013 0.000238209	5.58582E-07 2.66848E-10	1.66321E-07 7.82780E-11	0.000575967 0.000604342	4.02973E-07 5.79575E-09	3.66995E-09 8.78384E-14	0.000633524 0.000664775	3.66995E-09 8.78384E-14	0*	0	3.66995E-09 8.78384E-14	0	0
C1 CO2 C2	79.2063 8.11195E-06 10.9651	79.3972 8.12140E-06 10.9884	79.3972 8.12140E-06 10.9884	59.1725 3.21389E-05 19.1336	13.6413 7.00031E-05 14.8651	0.0770084 1.16197E-07 0.00994611	0.00144392 7 4.13289E-08 8 0.00766928 1	8.11404E-06	0* 0*	0.428930 2.23400E-06 0.473317	1.78178 1.66501E-06 0.692741	1.78178 1.66501E-06 0.692741	1.78178 1.66501E-06 0.692741	0	79.2066 8.11197E-06 10.9651	0.153699 8.00510E-07 0.169604	0.153699 8.00510E-07 0.169504	1.18507E-06 1.35371E-10 7.44697E-06	3.47944E-07 3.98884E-11 2.19020E-05		7.03089E-06 4.26601E-10 7.64769E-06	8.31940E-10 2.95801E-13 1.04885E-08	0.428930 2.23400E-06 0.473317	8.31940E-10 2.96801E-13 1.04886E-08	0* 0*	0	8.31940E-10 2.96801E-13 1.04886E-08	0	0
C3 iC4	4.71850	4.72734	4 73734	10.9009	15.4990	0.00234417	0.0227970	4.7197182	0* 0*	0.507835	0.477665	0.477665	0.477665	0	4.71852	0.181973	0.181973	3 433957 07	c >contex or	0.461669	5.97790E-06	4.49801E-08	0.507835	4.49801E-08	0*	0	4.49801E-08	0	0
C4 iCS	1.38180 0.384124	1.38374 0.384542	0.633403 1.38374 0.384542	1.49865 3.93547 1.07305	10.2371 3.61128	0.000503454 6.44489E-05	0.0461097 0.0419775	1.3821582 0.3842227	0*	0.365505 0.153843	0.235922 0.0832069	0.235922 0.0832069	0.235922 0.0832069	2.11007E-07 2.42788E-07	1.38181 0.384125	0.130972	0.130972 0.0551266	2.12783E-05 6.22296E-06 4.31980E-05 3.58519E-05	1.27599E-05 1.06204E-05	0.332278 0.139857	4.19484E-05 8.84426E-07	1.38848E-07 1.58247E-07	0.365505 0.153843	1.38848E-07 1.58247E-07	0* 0*	0 1.58207E-07	1.38848E-07 1.58247E-07	0 1.58207E-07	0 1.58207E-07
mc5 i-Hexane Hexane	0.352171 0.160309 0.0811306	0.352452 0.160328 0.0811102	0.352452 0.160328 0.0811102	1.06154 0.475947 0.238892	3.87835 2.07482 1.07689	3.39699E-05 1.50815E-05 3.83614E-06	0.0580922 0.0646985 0.0449677	0.3522615 0.1603504 0.0811515	0* 0*	0.177823 0.127698 0.0773091	0.0912453 0.0576259 0.0335287	0.0912453 0.0576259 0.0335287	0.0576259	3.96531E-07 1.92110E-06 1.66474E-06	0.352172 0.160310 0.0811308	0.0637194 0.0457588 0.0277029	0.0457588	5.35380E-05 0.000131708	1.58744E-05 3.94798E-05	0.116089	9.66981E-07 6.17593E-07 2.44446E-07	2.57322E-07 1.23745E-06 1.05104E-06	0.177823 0.127698 0.0773091	2.57322E-07 1.23745E-06 1.06104E-06	0* 0*	2.57256E-07 1.23714E-06 1.06077E-06	1.23745E-06	2.57256E-07 1.23714E-06 1.06077E-06	1.23714E-06
Benzene Cyclohexane	0.0525186 0.0714358	0.0496139	0.0496139 0.0709580	0.240525 0.262744 0.306520	11.6365 2.69676 1.17441	0.00135465 4.89965E-05	0.926928 0.178791	0.052532 0.071454	0* 0*	1.26258 0.257707	0.447283 0.0970557	0.447283 0.0970557 0.0544647	0.447283 0.0970557 0.0544647	0.00153938 2.60740E-05	0.0525188 0.0714360	0.453148 0.0923554	0.453148	0.0404905 0.00114105	0.0126709	1.14786 0.234280	0.000672244 5.88141E-06	0.00113545 1.73629E-05	1.26258 0.257707	0.00113545 1.73629E-05	0* 0*	0.00113516 1.73584E-05	0.00113545 1.73629E-05	0.00113516 1.73584E-05	0.00113516 1.73584E-05
i-Heptane n-Heptane Teleson	0.106242 0.0233468 0.0242470	0.106143 0.0233055 0.0220943	0.106143 0.0233055 0.0220943	0.306520 0.0666196 0.0962654	1.17441 0.252368 3.70315	3.69368E-06 5.55137E-07 0.000387943	0.0983129 0.0303747 0.837626	0.1062693 0.0233528 0.024253	0*	0.132039 0.0373322 0.927434	0.0544647 0.0148463 0.327488	0.0544647 0.0148463 0.327488	0.0544647 0.0148463 0.327488	1.86834E-06 8.94747E-07 0.00359109	0.106242 0.0233468 0.0242471	0.0473143 0.0133776 0.334048	0.0473143	0.000144530 6.07531E-05 0.0690269	4.32146E-05	0.120035	1.90348E-07 6.32340E-08 0.000414522	1.20440E-06 5.78178E-07 0.00268080	0.132039 0.0373322 0.927434	1.20440E-06 5.78178E-07 0.00268080	0*	1.20409E-06 5.78030E-07 0.00258011	1.20440E-06	1.20409E-06 5.78030E-07 0.00268011	1.20409E-06
i-Octane n-Octane	0.0790213	0.0788952	0.0788952 0.00387048	0.335403	0.050343	1.74087E-05 3.60522E-08	0.0967746	0.0790416	0*	0.120671	0.0482607 0.00349658	0.0482607 0.00349658	0.0482607	2.78386E-06	0.0790215	0.0432413 0.00331406	0.0432413 0.00331406	0.000199968 3.02093E-05	5.99012E-05 9.11347E-06	0.109701	2.31491E-07 1.02463E-08	1.82264E-06 3.66107E-07	0.120671	1.82264E-06 3.66107E-07	0*	1.82218E-06 3.66013E-07	4.033646.06	4 000405 05	1.82218E-06 3.66013E-07
Ethylbenzene m-Xylene	0.00268239 0.00410128	0.00236714 0.00360574	0.00236714 0.00360574	0.00993051 0.00856977 0.0131690	0.0253913 0.182813 0.307955	2.46145E-05 2.90223E-05	0.134202 0.210182	0.002683 0.004102	0* 0*	0.135726 0.213247	0.0482012 0.0757764	0.0482012 0.0757764	0.0482012 0.0757764	0.00143917 0.00234744	0.00268240 0.00410130	0.0493255 0.0775524	0.0493255 0.0775524	0.0202878 0.0334824	0.00670759 0.0110696	0.123391	4.02918E-05 6.24586E-05	0.00107658	0.135726 0.213247	0.00107658 0.00177617	0* 0*	0.00107630 0.00177572	3.66107E-07 0.00107658 0.00177617	0.00107630 0.00177572	0.00107630
o-Xylene p-Xylene	0 00586495	0 00582750	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0.0262718	0 0 2.498165.08	0 0209164	0 0058665	0*	0 0210842	0 00770874	0 00770874	0 00770874	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 00755653	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 084545-05	0 0191675	0 0 7 210275-09	0	0	0 2 194535-06	0*	0 2 193975-05	0	0 2 193975-05	0 2 193975-06
Decane	0.00174730	0.00172958 0.000102401	0.00172958	0.00335001 0.000187392	0.00451064 2.05643E-10	1.95676E-09	0.00924263	0.00174775 0.00000E+00	0*	0.00909433 3.00385E-05	0.00326309 57.6633	0.00326309 57.6633	0.00326309 57.6633	4.51254E-06	0.00174731	0.00755855 0.00326062 59.2992	0.00755655 0.00326062 59.2992		4.08454E-05 3.93371E-05 67.4127	0.0091875 0.00826757 0.00209291	1.39018E-09 0.0227216	2.19453E-06 2.87862E-06 92.4138	0.00909433 3.00385E-05		0* 99.1725*	2.87789E-06 92.4156	2.19453E-06 2.87862E-06 92.4138	2.87789E-06 92.4156	2.87789E-06
H2O Sulfur Dioxide	0.238519	0.0144796	0.0144796	0.912807	11.4783 0	99.9072 0	97.1522 0	0.2128	100* 0*	94.4671 0	37.6712 0	37.6712 0	37.6712 0	92.4173 7.57372 0	0.238216	38.7139 0	38.7139 0	92.7165 0	32.5340 0	94.9679 0	99.9761 0	7.57948	94.4671 0	7.57948	0.827516*	7.57775	7.57948	7.57775	92.4156 7.57775 0
Mass Fraction Hydrogen Sulfide	% 0.000505597 2.02370	% 0.000503857 2.02891	% 0.000503857 2.02891	% 0.00250018 0.364008	% 0.0132583 0.0121144	% 2.29856E-05 0.00132109	% 6.34374E-05 9.38676E-07 2	% 5.05709E-04 2.02415E+00	5 0*	% 0.00103194	% 9.81643E-05	% 9.81643E-05	% 9.81643E-05 0.00288804	5	% 0.000505598 2.02370	% 7.94098E-05 6.84915E-05	% 7.94098E-05	% 6.91079E-07 2.71368E-10	5.29028E-08 2.04657E-11	% 0.000950060	% 7.61032E-07 8.99688E-09	% 8.92421E-10 1.75570E-14	% 0.00103194 0.000890063	% 8.92421E-10	N 0*	N 0	% 8.92421E-10 1.75570E-14	N 0	5
N2 C1 C02	2.02370 61.0191 1.71438E-05	61.1697	61.1697 1.71647E-05	0.364008 35.4006 5.27469E-05	4.46607 6.28727E-05	0.0685682	9.58676E-07 2 0.00115737 6 9.08780E-08 1	1.03269227	0*	0.000890063 0.328880 4.69904E-06	0.00288804 0.299371 7.67442E-07	0.00288804 0.299371 7.67442E-07	0.299371	0	61.0193	0.0253078	0.0253078	2.71368E-10 6.90151E-07 2.16273E-10	5.20958E-08	0.302767	6.25025E-06 1.04036E-09	9.52274E-11	0.328880	1.75570E-14 9.52274E-11 9.31989E-14	0*	0	1.75570E-14 9.52274E-11 9.31989E-14	0	0
02 C3	15.8331 9.99159	15.8678 10.0109	15.8678 10.0109	21.4553 17.9258	9.12194 13.9475	0.0165992 0.00573717	0.0115221 0.0502264	15.8366123 9.9938130	0* 0*	0.680224 1.07028	0.218159 0.220598	0.218159 0.220598	0.218159 0.220598	0	15.8331 9.99161	0.0523441 0.0823596	0.0523441	8.12885E-06 3.40617E-05	6.14646E-07 2.57987E-06	0.626213 0.985300	1.27428E-05 1.46070E-05	2.25027E-09 1.41519E-08	0.680224 1.07028	2.25027E-09 1.41519E-08	0*	0	2.25027E-09 1.41519E-08	0	0
iC4 C4	1.76478 3.85676	1.76800 3.86239	1.76800 3.86239	3.24834 8.53018	3.23594 12.1428	0.000458351 0.00162411	0.0230826 0.133904	1.7651708 3.857621	0*	0.258905	0.0449347 0.143613	0.0449347 0.143613		0 8.75020E-08	1.76478 3.85677	0.0199231 0.0781325		1.31301E-05 9.11455E-05		0.238348		6.90310E-09 5.75813E-08	0.258905		0*	0 0	6.90310E-09 5.75813E-08	0	0
nCS LHevane	1.33087 1.22016 0.663401	1.33239 1.22121 0.663516	1.33239 1.22121 0.663516	2.88714 2.85618 1.52954	5.31726 5.71050 3.64891	0.000258082 0.000136031 7.21342E-05	0.151323 0.209414 0.278571	1.331165 1.220433 0.663549	0*	0.530501 0.613192 0.525952	0.0628741 0.0689482 0.0520097	0.0528741 0.0589482 0.0520097	0.0689482	1.24979E-07 2.04120E-07 1.18117E-06	1.33087 1.22016 0.663403	0.0408228 0.0471860 0.0404734	0.0471860	9.39012E-05 0.000140223 0.000412027	1.06893E-05	0.564503	3.53596E-06 3.86601E-06 2.94918E-06	1.32466E-07	0 5 2 5 0 5 2	1.32466E-07	0*	8.14415E-08 1.32430E-07 7.60665E-07	1.32466E-07	8.14415E-08 1.32430E-07 7.60665E-07	1.32430E-07
Hexane Benzene	0.335740	0.335675 0.186114	0.335675 0.186114	0.70721 0.700641 0.824623	1.89388 18.5497 4.63174	1.83481E-05 0.00587298	0.193616 3.61761	0.335814 0.19704 0.288769	0* 0*	0.318415 4.71362	0.0302610 0.365917	0.0302610 0.365917	0.0302610 0.365917	1.02355E-06 0.000857914 1.56563E-05	0.335740 0.197000 0.288705	0.0245031 0.363303	0.0245031 0.363303	0.000317447 0.114816 0.00348607	2.45251E-05 0.00923729	0.293132 4.33958 0.954290	1.16730E-06 0.00290978 2.74284E-05	6.52399E-07 0.000632824	0.318415 4.71362	6.52399E-07 0.000632824	0* 0*	6.52222E-07 0.000632651	6.52399E-07 0.000632824	6.52222E-07 0.000632651 1.04233E-05	6.52222E-07 0.000632651
Cyclohexane i-Heptane n-Heptane	0.288705 0.511219 0.112341	0.285790 0.510774 0.112149	0.286790 0.510774 0.112149	0.824623 1.14539 0.248942	4.63174 2.40157 0.516070	0.000228866 2.05423E-05 3.08738E-06	0.751810 0.492204 0.152071	0.288769 0.511333 0.112366	0*	1.03660 0.632351 0.178788	0.0855475 0.0571577 0.0155804	0.0855475 0.0571577 0.0155804	0.0571577	1.56563E-05 1.33571E-06 6.39670E-07	0.288705 0.511220 0.112341	0.0797770 0.0486610 0.0137584	0.0486610	0.00348607 0.000525731 0.000220991	4.04137E-05	0.582141	2.74284E-05 1.05691E-06 3.51110E-07	8.61087E-07	1.03660 0.632351	1.04262E-05 8.61087E-07 4.13368E-07	0*	8.60853E-07	8.61087E-07	1.04233E-05 8.60853E-07 4.13255E-07	8.60853E-07
Tohusoo	0.407304	0.00776.44	0.00033644	0 220772	6 06222	0.00109201	0.1520/1 3.85611 0.552325	0.40724	0*	4.08417 0.658807	0.216024	0.216024	0 216024	0.0000000000	0 107394	0.215000	0.215000	0.220991	0.0100391	3.76005	0.000144640	0.00176340	4.08417	0.00176340	0*	0.00176102	0.00176240	0.00176192	0.00176102
i-Octane n-Octane Ethylbenzene	0.433464 0.0213072 0.0136754	0.432798 0.0212324 0.0120688	0.432798 0.0212324 0.0120688	0.959305 0.0423024 0.0339289	2.00303 0.0591913 0.396084	1.10371E-05 2.28570E-07 0.000145039	0.0498002 0.711868	0.433561 0.0213119 0.013678	0* 0*	0.0504895 0.688690	0.0577367 0.00418314 0.0535948	0.0577367 0.00418314 0.0535948	0.0577367 0.00418314 0.0535948	2.26883E-06 4.60679E-07 0.00109012	0.433466 0.0213072 0.0136754	0.0506974 0.00388551 0.0537483	0.0537483	0.000829211 0.000125269 0.0781891	6.38604E-05 9.71583E-06 0.00664615	0.606496 0.0464805 0.634025	1.46529E-06 6.48573E-08 0.000237036	1.48551E-06 2.98388E-07 0.000815503	0.658807 0.0504895 0.688690	1.48551E-06 2.98388E-07 0.000815503	0* 0*	1.48511E-06 2.98307E-07 0.000815281	1.48551E-06 2.98388E-07 0.000815503	1.48511E-06 2.98307E-07 0.000815281	0.000815281
m-Xylene o-Xylene	0.0209091	0.0183838	0.0183838	0.0521377	0.667217	0.000171012	1.11490	0.02091	0*	1.08204	0.0842556	0.0842556	0.0842556	0.00177810	0.0209092	0.0845063	0.0845063	0.129041	0.0109682	0.996153	0.000367443	0.00134545	1.08204	0.00134545	0*	0.00134508	0.00134545	0.00134508	0.00134508
p-Xylene Nonane Decane	0 0.0361221 0.0119386	0 0.0358936 0.0118182	0 0.0358936 0.0118182	0 0.0625324 0.0177752	0 0.0687643 0.0130974	0 1.77832E-07 1.54525E-08	0 0.134036 0.0657058	0 0.036130 0.0119412	0* 0*	0 0.129245 0.0618443	0 0.0103548 0.00486252	0 0.0103548 0.00486252	0 0.0103548 0.00486252	0 3.13434E-06 4.58089E-06	0 0.0361222 0.0119386	0 0.00994740 0.00476170	0.00994740	0 0.000624167 0.000657327	0 4.88922E-05 5.22363E.05	0 0.118982 0.0569337	0 5.12439E-08 1.09507E-08	0 2.00824E-06 2.92236E-06	0.129245	0 2.00824E-06 2.92236E-06	0* 0*	0 2.00769E-06 2.92156E-05	0 2.00824E-06 2.92236E-06	0 2.00769E-06 2.92156E-06	0 2.00769E-06 2.92156E.06
TEG H2O	0 0.206348	0.000738506 0.0125273	0.000738506 0.0125273	0.00104945 0.613252	6.30238E-10 4.22005	0 99.8967	0.000232679 0 87.4484	0.0000000000000000000000000000000000000	0* 100*	0.000215601 81.3395	90.6933 7.10777	90.6933 7.10777	90.6933 7.10777	99.0204 0.973486	0	91.4014 7.15848	91.4014 7.15848	38.8039 60.6356	94.4834 5.47017	0.0152119 82.8057	1.09607E-08 0.189081 99.8052	99.0212 0.974271	0.000215601 81.3395	99.0212 0.974271	99.9* 0.1*	99.0214	99.0212	99.0214	99.0214 0.974032
Sulfur Dioxide Mass Flow	0 Ibh	0 Ibh	0 Ibih	0 Ibh	0 Ibh	0 Ibh	0 Ibh	0 Balti	0*	0 Ibh	0 Ibih	0 Ibh	0 Ibih	0 Bh	0 Ibh	0 Ibh	0 Ibh	0 Balti	0 Ibh	0 Bih	0 Ibih	0 Ibh	0 Ibh	0 Ibih	0* bh	0 Balti	0 Ibh	0 Ibh	0 Ibh
N2 C1	1.00000 4002.61 120688	4002.43 120669	4002.43 120669	0.00119316 0.173715 16.8941	0.00418224 1.54182	0.000357443	4.09092E-06 4 0.00504403 ##	*********	0* 0*	0.00485363 0.00418634 1.54686	0.00604684 0.177901 18.4410	0.00604684 0.177901 18.4410	0.00604684 0.177901 18.4410	0	4002.61 120588	0.00485368 0.00418634 1.54686	1.54686	3.1776E-09 3.17333E-06	3.17871E-06	1.54686	2.53557E-06	5.03491E-08 9.90539E-13 5.37259E-09	0.00485363 0.00418634 1.54686	5.37259E-09	0* 0*	0	0	0	0
CO2 C2	0.0339082 31315.8	0.0338609 31302.4	0.0338609	2.51723E-05	2.17055E-05 3.14916	1.47958E-09 8.65307E-05	3.96063E-07 3	3.39082E-02	0* 0*	2.21015E-05 2.10027	4.72738E-05 13.4384	4.72738E-05 13.4384	4.72738E-05 13.4384	0	0.0339082 31315.8	2.21016E-05 3.19937 5.03398	2.21016E-05	9.94426E-10	9.99684E-10	2.21020E-05	4.22048E-10	5.25815E-12 1.26957E-07 7.98431E-07	2.21015E-05 3.19937 5.03398	1.26957E-07	0* 0*	0	0	0	0
C3 IC4 C4	19762.1 3490.50 7628.17	19748.5 3487.73 7619.33	19748.5 3487.73 7619.33	8.55469 1.55020 4.07084	4.81508 1.11714 4.19203	2.99076E-05 2.38937E-06 8.46640E-06	0.218896 19 0.100598 3 0.583578 7		0* 0*	5.03398 1.21774 4.77561	13.5887 2.76794 8.84645	13.5887 2.76794 8.84645	13.5887 2.76794 8.84645	0 0 4.93806E-06	19762.1 3490.50 7628.17	5.03398 1.21774 4.77561	5.03398 1.21774 4.77561	0.000156617 6.03726E-05 0.000419089	0.000157415 6.07620E-05 0.000477339	5.03398 1.21774 4.77561	5.92567E-06 6.25608E-07 5.48089E-06	7.98431E-07 3.89463E-07 3.24866E-06	5.03398 1.21774 4.77561	7.98431E-07 3.89463E-07 3.24866E-06	0* 0*	0	0	0	0
iCS nCS	2632.28 2413.32	2628.41 2409.07	2628.41 2409.07	1.37782	1.83567 1.97143	1.34537E-06 7.09121E-07	0.659492 2	632.284543	0*	2.49517 2.88409	3.87299 4.24715	3.87299 4.24715	3.87299	7.05301E-06	2632.28 2413.32	2.49517 2.88410	2.49517 2.88410	0.000431760	0.000436356	2.49517 2.88410	1.43445E-06 1.56834E-06	4.59606E-06 7.47354E-06	2.49517 2.88409	4.59606E-06 7.47354E-06	0*	4.59606E-06 7.47354E-06	0	4.59606E-06 7.47354E-06	7.47354E-06
i-Hexane Hexane	1312.12 664.049 389.640	1308.92 662.185 367.148	1308.92 662.185 367.148	0.729940 0.366378 0.334365	1.25971 0.653823 6.40391	3.76033E-07 9.56479E-08 3.06156E-05	1.21406 0.843816 15.7662	1312.12104 664.049256 389.6395	0*	2.47377 1.49764 22.1701	3.20375 1.86405 22.5402	3.20375 1.86405 22.5402	3.20375	6.66580E-05 5.77629E-05 0.0484152	1312.12 664.049 389.640	2.47381 1.49768 22.2058	2.47381 1.49768 22.2058	0.00189451 0.00145963 0.527925	0.00193744 0.00149644 0.563628	2.47377 1.49764 22.1713	1.19641E-06 4.73544E-07 0.00118042	4.29273E-05 3.68074E-05 0.0357030	2.47377 1.49764	4.29273E-05 3.68074E-05 0.0357030	0* 0*	4.29273E-05 3.68074E-05 0.0357030	0	4.29273E-05 3.68074E-05 0.0357030	4.29273E-05 3.68074E-05 0.0357030
Benzene Cyclohexane i-Heptane	571.020 1011.12	565.751 1007.60	565.751 1007.60	0.393533 0.546613	1.59901 0.829093	1.19307E-06 1.07086E-07	3.27653 2.14512	571.02022 1011.12439	0* 0* 0*	4.87554 2.97421	5.26966 3.52087	5.26966 3.52087	5.26966 3.52087	0.000883544 7.53789E-05	571.020 1011.12	4.87613 2.97426	4.87613 2.97426	0.0160290 0.00241732	0.0166172 0.00246590	4.87555 2.97421	1.11270E-05 4.28762E-07	0.000588228 4.85813E-05	2.97421	0.000588228 4.85813E-05	0* 0*	0.000588228 4.85813E-05	0	0.000588228 4.85813E-05	0.000588228 4.85813E-05
n-Heptane Toluene	222.196 212.193 857.336	221.236 192.860 853.780	221.236 192.860 853.780	0.118802 0.157854 0.457807	0.178162 2.40391 0.691505	1.60943E-08 1.03421E-05 5.75357E-08	0.662753 16.8056 2.40713	222 105575	0* 0*	0.840916 19.2095 3.09864	0.959741	0.959741	0.050741	2 600005 05	222.196 212.193 857.336	0.840939 19.3090 3.09872	0.940929	0.00101612	0.00103944 1.16103 0.00389654	0.940016	1.42436E-07 0.000858583 5.94431E-07	2.33216E-05 0.0994320 8.38103E-05	0.840916 19.2095 3.09864	2.33216E-05 0.0994320 8.38103E-05	0* 0*	2.33216E-05 0.0994320	0	2.33216E-05 0.0994320	2.33216E-05 0.0994320
i-Octane n-Octane Ethylhospano	42.1428	41.8851	41.8851	0.0201879	0.691505 0.0204346 0.136740	1.19153E-09	0.217038	212.1934 857.33644 42.142789	0*	0.237473	19.4668 3.55653 0.257678 2.20129	19.4668 3.55653 0.257678 2.20120	3.55653	0.133225 0.000128038 2.59978E-05 0.0515194	42.1428	0.237490	0.237490	0.000575992	0.000592827	19.2104 3.09864 0.237473 2.23020	5.94431E-07 2.63109E-08 9.61594E-05	1.68346E-05	0.237473	8.38103E-05 1.68346E-05 0.0460095	0*	8.38103E-05 1.68346E-05 0.0460095	0	8.38103E-05 1.68346E-05 0.0460095	8.38103E-05 1.68346E-05 0.0460095
Ethylbenzene m-Xylene o-Xylene	27.0481 41.3555 0	23.8082 36.2658 0	23.8082 36.2658 0	0.0161918 0.0248816 0	0.136740 0.230342 0	7.56082E-07 8.91477E-07 0	3.10245 4.85894 0	27.04807 41.35554 0	0* 0*	3.23919 5.08928 0	3.30139 5.19007 0	3.30139 5.19007 0	3.30139 5.19007 0	0.0615194 0.100345 0	27.0481 41.3555 0	3.28520 5.16519 0	3.28520 5.16519 0	0.359515 0.593334 0	0.405525 0.669242 0	3.23929 5.08943 0	9.61594E-05 0.000149062 0	0.0460095 0.0759081 0	3.23919 5.08928 0		0* 0*	0.0460095 0.0759081 0	0	0.0460095 0.0759081 0	0.0460095 0.0759081 0
p-Xylene Nonane	0 71.4449 23.6129	0 70.8072 23.3137	0 70.8072 23.3137	0 0.0298422 0.00848283	0.0237394	0 9.27028E-10 8.05534E-11	0 0.584152 0.286358	0 71.444909 23.612941	0*	0 0.607891 0.290879	0 0.637847 0.299527	0 0.637847 0.299527	0 0.637847 0.299527	0 0.000176882 0.000258516	0 71.4449 23.6129	0 0.608005 0.291044	0.608005	0 0.00286994	0 0.00298324 0.00318728	0 0.607891 0.290879	0 2.07883E-08	0 0.000113302	0 0.607891 0.290879	0 0.000113302	0* 0*	0 0.000113302	0	0 0.000113302	0
Decane TEG	23.6129 0 408.129	23.3137 1.45685 24.7126	23.3137 1.45685 24.7126	0.00848283 0.000500826 0.292661	0.00452161 2.17576E-10 1.45688	8.05534E-11 0 0.520757	0.286358 0.00101406 381.116	23.612941 0.00000000 364.058	0* 0* 44.0711*	0.290879 0.00101406 382.573	0.299527 5586.63 437.833	0.299527 5586.63 437.833	0.299527 5586.63 437.833	0.000258516 5588.09 54.9374	23.6129 0 407.608	0.291044 5586.63 437.540	0.291044 5586.63 437.540	0.00302241 178.421 278.804	0.00318728 5765.05 333.771	0.290879 0.0777191 423.062	4.44646E-09 0.0767050 40.4884	0.000164875 5586.63 54.9669	0.290879 0.00101406 382.573	0.000164875 5586.63 54.9669	0* 1.53636*	0.000164875 5588.17 54.9685	0	0.000164875 5588.17 54.9685	0.000164875 5588.17
nzo Sulfur Dioxide	408.129 0	24.7126 0	24.7126 0	u.292661 0	1.45688 0	u.520757 0	381.116 0	364.058 0	44.0711* 0*	382.573 0	437.833 0	437.833 0	437.833 0	54.9374 0	407.608 0	437.540 0	437.540 0	278.804 0	333.771 0	423.062 0	40.4884 0	54.9669 0	≾82.573 0	54.9669 0	0.00153790*	54.9685 0	0	54.9685 0	54.9685 0
Process Streams	89	@10	~	To Process Flare To	Process Flare Header To	Slop oil header	To Slops	1	2	3	4	5	6	7	8	10	11	12	13	14	15	16	17	18	19	20	21	22	24
Properties Status: Phase: Total From Block To Block:	Solved k: SAT-1 : FI-1009	Solved TO-565 HE-210	Solved HE-210	Solved VS-1103 	Solved Biowcase	Solved FI-1009	Solved Blowcase	Solved Gas to TEG SAT-1	Solved 	Solved BTEX Blowcase	Solved TO-505 Reflux Coll	Solved Refux Coll LC-532	Solved LC-532 VS-1109	Solved RCYL-1 TO-505	Solved F1-1009 TO-505	Solved VS-1109 HE-211	Solved HE-211 TEG Still	Solved HT-702 TEG SHI	Solved TEG Still HT-702	Solved TEG SSE TEG Condensor	Solved TEG Condensor TEG Sell	Solved HT-782 HE-211	Solved TEG Condensor BTEX	Solved HE-211 TEG Makeup	Solved - TEG Makeup	Solved TEG Maksup PU-613AB	Solved TEG Makeup	Solved PU-613A/B HE-219	Solved HE-210 RCYL-1
Temperature "F Pressure psig	119.930 837.999	123.042 830.999	125.397 828.999	135.743 75	120 0.0500000	119.813 835.999	120 1 0.0500000 8	19.9304208 137.9985065	525.412 837.999	120* 0.0500000	122.311 835.999	133.009 830.999	135.743 75*	123.249 840.993	119.813 835.999	135.743 75	300* 73	395.000 0.55	283.614 0.55	210.824	209.311	395.000 0.55	209.311	212.506 -1.45	100* 10*	212.477 -1.45	-1.45	214.070 842.999*	123.286 840.999
Molecular Wei Ib/Ibmol Mass Flow Ib/h	20.8241 197787	20.8228 197270	20.8228 197270	26.8152 47.7228 0.0162088 0.241936	49.0006 34.5229	18.0172 0.521296	20.0143 435.818	20.8248 197742.979 86.481970	18.0153 44.0711	20.9228 470.341	95.4809 6159.92	95.4809 6159.92	95.4809 6159.92	140.159 5643.37	20.8241 197787	97.4288 6112.20	97.4288 6112.20	27.5468 459.802	107.147 6101.66	20.6613 510.909	18.0461 40.5674 0.0204738	140.152 5641.85	20.9228 470.341	140.152 5641.85	149.079 1.53790	140.155 5643.39	140.152 0	5643.39	140.155 5643.39
Std Vapor Volu MMSCFD Std Liquid Volu sgpm API Gravity	86.5043 1138.90	86.2831 1137.65	86.2831 1137.65	0.0162088 0.241936	0.00641668 0.116062	0.521296 0.000263513 0.00104418 10.0548	0.198321 0.895589 1 13.7790	85.481970 138.815586	0.0222801 0.0881014	0.204738 1.01165	0.587575 11.2509	0.587575 11.2509	0.587575 11.2509	0.366710 10 -6.80886	86.5040 1138.90	0.571366 11.0089	0.571366 11.0089	0.152022 0.879019	0.518650 10.8763	0.225212 1.09273	0.0204738 0.0810803 9.95588	5641.85 0.366628 9.99728 -6.69031	0.204738 1.01165	0.366628 9.99728 -6.69003	9.39538E-05 0.00272201 -7.08511	0.366722 10*	0	0.366722 10 -6.80975	0.366722 10 -6.80947
Gross Ideal GarBtu/ft*3	1238.83	1241.12	1241.12	1569.88	2551.32	10.0548 51.3754	13.7/90 174.351	1239.135	50.3100	248.847	2513.41	2513.41	2513.41	-6.80886 3819.98	1238.83	-4.70766 2540.18	2540.18	348.035	-2.78558 2802.14	230.887	2.95568 51.2860	-6.69031 3819.73	248.847	-6.69003 3819.73	4095.08	-6.69012 3819.80	3819.73	3819.80	-3.8094/ 3819.80

Process Streams		Dehy Feed MSS
Composition Phase: Total	Status:	Solved
	From Block: To Block:	XFS3
Std Vapor Volumetric Flow Hydrogen Sulfide		MMSCFD 0.00864747
N2		1.30120
C1 CO2		68.5027 7.01659E-06
C2		9.48445 4.08136
C3 iC4		0.546908
C4 iC5		1.19522 0.332256
nC5		0.304617
i-Hexane Hexane		0.138663 0.0701755
Benzene		0.0454270
Cyclohexane i-Heptane		0.0617898 0.0918960
n-Heptane Toluene		0.0201942
i-Octane		0.0683510
n-Octane Ethylbenzene		0.00335983 0.00232019
m-Xylene		0.00354749
o-Xylene n-Xylene		0
p-Xylene Nonane		0.00507300
Decane TEG		0.00151137
H2O Sulfur Dioxide		0.184034
Mole Fraction		0%
Hydrogen Sulfide		0.01
N2 C1		1.50472 79.2171
CO2		8.11404E-06 10.9679
C2 C3		4.71972
iC4		0.632448
C4 IC5		1.38216 0.384223
nC5		0.352261
i-Hexane Hexane		0.160350 0.0811515
Benzene Cyclohexane		0.0525322 0.0714542
i-Heptane		0.106269
n-Heptane Toluene		0.0233528 0.0242533
i-Octane		0.0790416
n-Octane Ethylbenzene		0.00388533 0.00268308
m-Xvlene		0.00410234
o-Xylene p-Xylene		0
Nonane		0.00586646
Decane TEG		0.00174775
H2O		0.212818
Sulfur Dioxide Mass Fraction		0%
Hydrogen Sulfide N2		0.0163642 2.02398
C1		61.0201
CO2 C2		1.71462E-05 15.8353
C3		9.99297 1.76502
iC4 C4		3.85730
IC5		1.33105 1.22033
nC5 I-Hexane		0.663493
Hexane Benzene		0.335786 0.197027
Cyclohexane		0.288745
i-Heptane		0.511290 0.112356
n-Heptane Toluene		0.107299
i-Octane		0.433525 0.0213101
n-Octane Ethylbenzene		0.0136773
m-Xylene o-Xylene		0.0209120
p-Xylene		0
Nonane Decane		0.0361272 0.0119402
TEG		0
H2O Sulfur Dioxide		0.184091
Mass Flow Hydrogen Sulfide		lb/h 32.3590
N2		4002.27
C1 CO2 C2		120663 0.0339053
C2		31313.2
C3 iC4		19760.4 3490.21
C4		7627.53
iC5 nC5		2632.06 2413.12
i-Hexane		1312.01 663.994
Hexane Benzene		389.607
Cyclohexane i-Heptane		570.972 1011.04
n-Heptane		222.177
Toluene i-Octane		212.176 857.264
n-Octane		42.1393
Ethylbenzene m-Xylene		27.0458 41.3521
o-Xvlene		0
p-Xylene Nonane		0 71.4389
Decane		23.6110
TEG H2O		0 364.027
H2O Sulfur Dioxide		364.027
Day 04		Dahu Frad MOO

Process Streams	D	ehy Feed MSS
Properties	Status:	Solved
Phase: Total	From Block:	XFS3
	To Block:	-
Property	Units	
Temperature	°F	119.535
Pressure	psig	837.999
Molecular Weight	lb/lbmol	20.8265
Mass Flow	lb/h	197743
Std Vapor Volumetric Flow	MMSCFD	86.4747
Std Liquid Volumetric Flow API Gravity	sgpm	1138.70
Gross Ideal Gas Heating Value	Btu/ft^3	1239.10

Amine Treating System


Process Streams Composition Phase: Total	Status: From Block: To Block:	Edved SAT-1 VSSL-100	@7 Solved T-521 FAXR-100	@8 Solved FAXR-100 V-427	Feed Gas Solved XFS2 SAT-1	off flash Solved Amine Flash Tank PCV-422	off still Solved A-322 PCV-322	To Flare Solved PCV-622	Water Solved - SAT-1	1 Solved VSSL-100 T-521	2 Solved VSSL-100 - 1	4 Solved PCV-322 To Acid Gas Injection	5 Solved PCV-601 T-521	7 Solved T-621 LCV-621	9 Solved P-621/622 E-222	14 Solved Amine Flash Tank	16 Solved Imine Flash Tani E-222	17 Solved E-222 T-622	18 Solved E-223 T-622	19 Solved T-522 E-223	20 Solved T-522 A-322	21 Solved A-322 T-522	23 Solved E-223 P-621622	26 Solved E-222 RCYL-1	27 Solved RCYL-1 Amine Makeup	28 Solved Amine Makeup A-321	29 Solved - Amine Makeup	30 Solved Amine Makeup	31 Solved A-321 P-423/624	32 Solved P-623624 FCV-601	33 Solved V-627 LCV-603	35 37 Solved Solv LCV-621 LCV-	40 d Solved 03 V-427 Gas to TEG
Std Vapor Volumetric Flo Hydrogen Sulfide N2 C1	w	1.12506 1.30355 68.8269	MMSCFD 0.000267548 1.30131 68.5169	0.000267548 1.30131 68.5169	1.12506 1.30355 68.8269	MMSCFD 0.00148 0.00048 0.0727	MMSCFD 1.10591 1.69861E-05 0.00943693	0.00148087 0.000477509 0.0726978	0* 0* 0*	1.10766 1.30181 68.5990	0.0174035 0.00174061 0.227859	1.10591 1.69861E-05 0.00943693	MMSCFD 0.0508715 0 0	MMSCFD 1.15826 0.000494493 0.0821344	0.0508702 0 0	MMSCFD 1.15826 0.000494495 0.0821347	MMSCFD 1.15678 0.00002 0.0094	1.15678 1.69861E-05 0.00943693	0.0277068 0 0	0.0785770 0 0	1.11073 1.69867E-05 0.00943758	0.00481812 6.14212E-10 6.58357E-07	0.0508702 0 0	MMSCFD 0.0508702 0 0	0.0508715 0 0	0.0508715 0 0	MMSCFD 0 0 0	MMSCFD 0 0 0 0	MMSCFD 0.0508715 0 0	0.0508715 3 0 2 0 3	MMSCFD 8 3.10799E-07 2.61829E-09 0.0 3.61711E-07	1.15826 3.1079 000494493 2.6182 0.0821344 3.6171	FD MMSCFD 0E-07 0.00026723 0E-09 1.3013 1E-07 68.516
CO2 C2 C3 IC4		1.39692 9.62076 4.21224 0.578436	7.15118E-06 9.48525 4.08171 0.546954	7.15118E-06 9.48525 4.08171 0.546954	1.39692 9.62076 4.21224 0.578436	0.00045 0.01275 0.00392 0.000363	1.38679 0.00288159 0.000743957 5.49402E-05	0.000450890 0.0127501 0.00391578 0.000363425	0* 0* 0*	1.38725 9.50088 4.08637 0.547372	0.00967464 0.119880 0.125871 0.0310638	1.38679 0.00288159 0.000743957 5.49402E-05	0.0189661 0 0	1.40621 0.0156317 0.00465971 0.000418364	0.0189661 0 0	1.40621 0.0156317 0.00465973 0.000418365	1.40576 0.00288 0.00074 0.000055	1.40576 0.00288159 0.000743957 5.49402E-05	0.0251924 0 0	0.0441586 0 0	1.38871 0.00288181 0.000744001 5.49423E-05	0.00192213 2.23937E-07 4.43470E-08 2.06233E-09	0.0189661 0 0	0.0189661 0 0	0.0189561 0 0	0.0189661 0 0	0 0 0		0.0189661 0 0	0.0189661 1 0 6 0 1 0 1	6.25622E-08 (1.40621 1.3400 0.0156317 6.2562 .00465971 1.7835 .00418364 1.4800	2E-08 9.4852
C4 ICS nCS		1.28796 0.379509 0.358430 0.100674	1.19532 0.332283 0.304643 0.0701814	1.19532 0.332283 0.304643 0.0701814	1.28796	0.00108 0.000143 0.000164 0.000027	0.000241035 1.69456E-05 2.48745E-05	0.00108039	0* 0* 0*	1.19664 0.332443 0.304832 0.0702121	0.0913202 0.0470661 0.0535978 0.0304617	0.000241035 1.69456E-05 2.48745E-05 3.51792E-06	0	0.00132142 0.000159848 0.000189066 3.07216E-05	0	0.00132142 0.000159848 0.000189066 3.07217E-05	0.00024 0.000017 0.000025	0.000241035 1.69456E-05 2.48745E-05 3.51792E-06	0	0	0.000241048 1.69461E-05 2.48754E-05 3.51799E-06	1.36314E-08 4.83012E-10 8.74957E-10 6.99468E-11	0	0	0	0	0		0	04.06.07	4.73007E-09 0. 6.12357E-10 0.0 7.05871E-10 0.0	00132142 4.7300 00159848 6.1235 00189066 7.0587 07216E-05 1.0183	7E-09 1.1953 7E-10 0.33228 1E-10 0.30464
H2O TEG MDEA		0.109777 0 0	0.184371 0 0	0.184371 0 0	0 100674	0.00283744 0 0	0.187853 0 0	0.00283744 0 0	0.109777* 0* 0*		0.000915289 0 0	0.187853 0 0	0	55.5251 0 0	0	55.5254 0 0	55.5225606 0 0	55.5226 0 0	15.6521 0 0	70.9868 0 0	6.38178 0 0	6.19393 0 0	55.3347 0 0	0	55.3347 0 0	55.6006 0 0	0		55.6006 0 0	55.6006 0. 0 0	0.000321438	55.5251 0.0003 0 0	1438 0.18404 0 0
Piperazine UCARSOL [™] AP-814 I-Hexane Benzene		0 0.185911 0.0719703	3.99379E-05 0.000405525 0.138674 0.0454309	3.99379E-05 0.000405525 0.138674 0.0454309	0.0719703	5.7516E-08 8.21052E-07 0.000058 0.0001921	7.49668E-06	5.75758E-05 0.000192052	0* 0* 0*	0 0.138739 0.0493716	0 0 0.0471721 0.0225987	8.23258E-15 8.76179E-14 7.49668E-06 0.00374869	0.233174 8.81309 0 0	0.233134 8.81268 6.50722E-05 0.00394073	0.233135 8.81272 0 0	6.50724E-05 0.00394074	8.81271679 0.000007 0.0037487	8.81272 7.49568E-05 0.00374869	0.00342322 0.0383337 0 0	0.236558 8.85105 0 0	7.49683E-06 0.00376873	2.38941E-05 1.49318E-10 2.00357E-05	0.233135 8.81272 0 0	0.233135 8.81272 0 0	0.233135 8.81272 0 0	0.233174 8.81309 0 0	3.87751E-05 0.000371399 0 0		0.233174 8.81309 0 0	8.81309 3 0 2 0 1	3.52267E-05 2.17431E-10 6. 1.41817E-08 0.	0.233134 1.2287 8.81268 3.5226 50722E-05 2.1743 00394073 1.4181	7E-05 0.00037029 1E-10 0.13867 7E-08 0.045430
Cyclohexane I-Heptane Toluene		0.0962095 0.158819 0.0474252	0.0617950 0.0919038 0.0209747	0.0617950 0.0919038 0.0209747	0.0962095 0.158819 0.0474252	0.0000948 0.000018 0.0000753	7.25519E-05 1.31337E-06 0.00162503	9.47522E-05 1.83668E-05 7.52602E-05	0* 0* 0*	0.0519623 0.0919234 0.0226750	0.0342472 0.0668955 0.0247502	7.25519E-05 1.31337E-06 0.00162503	0	0.000167304 1.96801E-05 0.00170028	0	0.000167304 1.96801E-05 0.00170029	0.000001	7.25519E-05 1.31337E-06 0.00162503	0	000	7.25635E-05 1.31339E-06 0.00163155	1.15632E-08 1.50842E-11 6.51981E-06	0	0	0	0	0		0	0.6	6.66344E-11 1	00167304 5.9143 96801E-05 6.6634 .00170028 5.6987	4E-11 0.091903
n-Octane Ethylbenzene m-Xylene		0.129890 0.0104679 0.00854175 0.0140412	0.00336011 0.00232038 0.00354779	0.0683568 0.00336011 0.00232038 0.00354779	0.0474232 0.129890 0.0104679 0.00854175 0.0140412	0.000011 0.000006 0.00000639 0.00000103	6.99426E-07 5.06141E-08 0.000124864 0.000283944	1.83668E-05 7.52602E-05 1.10687E-05 6.02151E-07 6.39276E-06 1.03239E-05	0* 0* 0*	0.0228750 0.0683685 0.00336076 0.00245164 0.00384205	0.0015219 0.00710716 0.00609011 0.0101992	6.99426E-07 5.06141E-08 0.000124864 0.000283944	0	1.17681E-05 6.52763E-07 0.000131256 0.000294267	0	1.17681E-05 6.52765E-07 0.000131257 0.000294268	0.0000001 0.00012486 0.0002839	0.00162503 6.99426E-07 5.06141E-08 0.000124864 0.000283944	0	0000	6.99430E-07 5.05146E-08 0.000125271 0.000285332	4.52601E-12 4.97700E-13 4.07580E-07 1.38841E-06	0	0	0	0	0		0	0 1 0 4 0 1	1.85558E-12 6. 4.59242E-10 0.0 1.05716E-09 0.0	00170028 5.6987 17681E-05 3.2152 52763E-07 1.8555 000131256 4.5924 000294267 1.0571	2E-10 0.0033601 2E-10 0.0023203 5E-09 0.0035477
o-Xylene p-Xylene Nonane Decane		0 0.0302157 0.0169845	0 0.00507343 0.00151149	0 0.00507343 0.00151149	0 0.0302157 0.0169845	0 0 0.0000004 0.0000000	0 0 1.45413E-08 4.79701E-10	0 0 3.65079E-07	0* 0* 0*	0 0.00507381 0.00151153	0 0.0251419 0.0154730	0 0 1.45413E-08 4.79701E-10	0	0 3.79620E-07 3.39654E-08	0 0 0	0 3.79621E-07 3.39655E-08	0 0 0.0000000	0 1.45413E-08 4.79701E-10	0 0 0	0 0 0	0 1.45414E-08 4.79701E-10	0 6.06967E-14 7.39406E-16	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0		0	0 0 1	0 0 1.10349E-12 3.1	0 0 79620E-07 1.1034 39654E-08 1.1432	0 1 0 1 0E-12 0.0050734
n-Heptane Mole Fraction Hydrogen Sulfide		0.0391354 % 1.24855	0.0201959 % 0.000309365 1.50471	0.0201959 % 0.000309365 1.50471	0.0391354 N 1.25007 1.44839	0.0000038 % 1.52888 0.49299	2.69086E-07 % 40.9621	3.78498E-06 % 1.52888 0.492989	0* 0*	0.0202000 % 1.24438	0.0189354 % 1.58648 0.158672	2.69086E-07 % 40.9621 0.000629152	0.0786065	4.05405E-06 % 1.72241 0.000735341	0 5 0.0789292	4.05406E-06 % 1.72240 0.000735341	0.0000003 % 1.72268 0.00003	2.69086E-07 % 1.72268 2.52957E-05	0 5 0.175952	0.0979797	2.69089E-07 % 12.4793 0.000190850	3.08668E-12 % 0.0777025 9.90548E-09	0 0.0789292	0 0.0789292	0 5 0.0789313	0.0786065	N 0	0.0789313	0.0786065	0 1 % 0.0786065	1.36482E-11 4) % 0.0866186	05405E-06 1.3648 % % 1.72241 0.088 000735341 0.00072	2E-11 0.020195 % 6186 0.00030900
C1 C02 C2		1.44662 76.3811 1.55025 10.6767	79.2261 8.26891E-06 10.9678	79.2261 8.26891E-06 10.9678	76.4743 1.55214 10.6897	75.0545 0.46551 13.1635	0.349536 51.3656 0.105732	75.0545 0.465507 13.1635	0* 0* 0*	1.46250 77.0664 1.55848 10.6736	20.7714 0.881930 10.9281	0.349536 51.3656 0.106732	0 0.0293064 0	0.122139 2.09112 0.0232452	0.0294275	0.122139 2.09110 0.0232452	0.0141 2.09345 0.0043	0.0140535 2.09345 0.00429125	0.159985	0.0550625	0.106033 15.6025 0.0323778	1.06174E-05 0.0309985 3.61147E-06	0.0294275	0.0294275	0 0.0294274 0	0.0293064	0	0.0294274	0.0293064	0 0.0293064 0	0.100808 0.0373455 0.0174359	0.122139 0.10 2.09112 0.03 0.0232452 0.01	0808 79.226 3455 8.11400E-0 4359 10.967
C3 K4 C4 K5		4.67456 0.641924 1.42932 0.421163	4.71968 0.632443 1.38215 0.384219	4.71968 0.632443 1.38215 0.384219	1.43107	4.04272 0.375207 1.11541 0.147536	0.000627650	4.04272 0.375207 1.11541 0.147536	0* 0* 0*	4.59076 0.614936 1.34435 0.373478	11.4742 2.83174 8.32465 4.29050	0.0275556 0.00203494 0.00892773 0.000627650	0	0.00692928 0.000622133 0.00196503 0.000237704	0	0.00592927 0.000622131 0.00196502 0.000237703	0.00036	0.00110790 8.18169E-05 0.000358948 2.52353E-05	0	0	0.00270823	7.78961E-09	0	0	0	0	0		0	00	0.000412491 0.0 0.00131825 0.0 0.000170662 0.0	00692928 0.004 00622133 0.0004 00196503 0.001 00237704 0.0001	2491 0.63244 1825 1.3821 0662 0.38422
nCS Hexane H2O TEG		0.397770 0.111724 0.121826	0.352258 0.0811508 0.213188	0.352258 0.0811508 0.213188	0.398255 0.111860 0	0.169515 0.028086 2.929425112	0.000921333 0.000130301 6.95791	0.169515 0.0280857 2.92943	0* 0* 100*	0.342458 0.0788787 0.122299	4.88592 2.77686 0.0834368	0.000921333 0.000130301 6.95791	0 0 85.9138	0.000281152 4.56849E-05 82.5692	0 0 85.8563	0.000281152 4.56848E-05 82.5692	0.000037 0.000005 82.6840867	3.70431E-05 5.23888E-06 82.6841	0 0 99.3989	0 0 88.5154	0.000279481 3.95254E-05 71.7009	1.41106E-08 1.12804E-09 99.8904	0 0 85.8563	0 0 85.8563	0 0 85.8563	0 0 85.9138	0 0 99.8460	0 0 85.8563	0 0 85.9138	0 2	2.83812E-05 4.5	00281152 0.00019 56849E-05 2.8381 82.5692 89	6724 0.35226 2E-05 0.081151 5837 0.21281
MDEA Piperazine UCARSOL ¹⁴ AP-814		0 0 0.206317	0 4.61803E-05 0.000468908	0 4.61803E-05 0.000468908	0 0 0.205568	0 5.93806E-05 0.00084767	0 3.04928E-13 3.24530E-12 0.000277671	0 5.93806E-05 0.000847670	0* 0*	0	0	0 3.04928E-13 3.24530E-12	0.360299	0 0.346684 13.1050 9.67664E-05 0.00586010	0 0.361728 13.6736	0 0.346684 13.1050 9.67662E-05 0.00586009	0 0.34718433 13.1238803 0.000011 0.0055825	0 0.347184 13.1239 1.11640E-05 0.00558254	0 0.0217392 0.243438	0 0.294971 11.0366	0 2.67619E-05 0.000268456	0 3.84142E-05 0.000385344	0 0.361728 13.6736	0 0.361728 13.6736	0 0.361728 13.6736	0 0.360299 13.6180	0 0.0145605 0.139465	0 0.361728 13.6736	0 0.360299 13.6180	0 0.360299 13.6180	0 0.342449 9.81756 6.05974E-05 9.1 0.00395239 0.	0 0.346684 0.34 13.1050 9.8 67664E-05 6.0597 .00586010 0.0039	0 2449 4.47596E-0 1756 0.00042817
Riperazine UCARSOL TM AP-814 i-Hexane Benzene Cyclohexane i-Heptane Toluene i-Octane n-Octane		0.206317 0.0798696 0.106769 0.176251 0.0526304	0.160349 0.0525317 0.0714536 0.105268 0.0242531	0.160349 0.0525317 0.0714536 0.106268 0.0242531	0.206568 0.0799670 0.106899 0.176466 0.0526946	0 5.93806E-05 0.00084767 0.059442 0.1982783 0.097824 0.018962 0.0777000	0.000277671 0.138849 0.00268727 4.86463E-05 0.0601898	0.000847670 0.0594423 0.198278 0.0978239 0.0189622	0* 0* 0*	0.155864 0.0554657 0.0696105 0.103270 0.0254739	4.30016 2.06008 3.12194 6.09813 2.25620 5.60827	0.04928E-13 3.24530E-12 0.000277671 0.138849 0.00268727 4.86463E-05 0.0601838 2.50062E.05	0	9.67664E-05 0.00586010 0.000248791 2.92655E-05 0.00252843	0	9.67652E-05 0.00586009 0.000248790 2.92654E-05 0.00252842	0.000011 0.0055825 0.000108 0.000002 0.0024200	1.11640E-05 0.00558254 0.000108044 1.95587E-06 0.00241999	0	0000	8.42286E-05 0.0423425 0.000815268 1.47562E-05	2.40808E-09 0.000323118 1.86481E-07 2.43265E-10	0	0	0	0	0		0	0 0 0	0.00395239 0. 0.000164831 0.0 1.85708E-05 2.5	00586010 0.0031 00248791 0.00018 92655E-05 1.8570	1756 0.00042817 4E-05 0.16035 5239 0.052531 4831 0.071453 8E-05 0.10626 8823 0.024253
Toluene i-Octane n-Octane Ethylbenzene		0.144147 0.0116169	0.0242531 0.0790409 0.00388530 0.00268306	0.0242531 0.0790409 0.00388530 0.00268306	0.0526946 0.144323 0.0116310 0.00949083	0.0777000 0.011428 0.0006217 0.00660000	0.0601898 2.59062E-05 1.87470E-06 0.00462486	0.0777000 0.0114275 0.000621672 0.00660000	0* 0* 0*	0.0254739 0.0768075 0.00377560 0.00275426	2.25620 5.60827 0.647881 0.555168	0.0601898 2.59062E-05 1.87470E-06 0.00462486	0	0.00252843 1.74999E-05 9.70699E-07 0.000195186	0	1.74998E-05 9.70696E-07 0.000195185	0.0000001 0.00018595	0.00241999 1.04158E-06 7.53744E-08 0.000185947	0 0 0	0000	0.0183308 7.85826E-06 5.68667E-07 0.00140745	0.000105146 7.29916E-11 8.02648E-12 6.57311E-06	0 0 0	0	0	0 0 0	0 0 0		0	0 5	5.171438-07 9.1	00252843 0.0019 74999E-05 8.9608 70699E-07 5.1714 000195186 0.00012	7E-06 0.079041 3E-07 0.0038853
Ethylbenzene m-Xylene p-Xylene p-Xylene		0.00947927 0.0155824 0 0 0.0335321	0.00410230 0 0.00586640	0.00410230 0 0.00586640	0.0156014 0 0	0.0106586 0 0 0.0003769	0.0105171 0 0 5.38600E-07	0.0106586 0 0	0* 0* 0*	0.00431629 0 0 0.00570009	0.929747 0 0 2.29190	0.0105171 0 0 5.38600E-07	0	0.000437592 0 5.64518E-07	0	0.000437592 0	0.0004228 0 0.0000000	0.000422849 0	0	0	0.00320578 0 0 1.63376E-07	2.23911E-05 0	0	0	0	0	0	0	0	0 0) 0	0.000294627 0.0	00437592 0.0002 0 0 64518E-07 3.0753	4627 0.0041023 0 1
Nonane Decane n-Heptane Mass Fraction		0.0335321 0.0188487 0.0434309	0.00174774 0.0233526	0.00174774 0.0233526	0.0335730 0.0188717 0.0434838	0.0003769 0.0000346 0.0039077	5.38600E-07 1.77677E-08 9.96675E-06 %	0.000376915 3.45714E-05 0.00390768	0* 0*	0.00570009 0.00169810 0.0226934	2.29190 1.41050 1.72614 5	1.77677E-08 9.95675E-06 %	0 0 N	5.05086E-08 6.02862E-06 %	0	5.05085E-08 6.02861E-06	0.0000000 0.0000000 0.0000004	2.16549E-08 7.14369E-10 4.00723E-07 %	0	0 0 0	1.63376E-07 5.38956E-09 3.02328E-06 %	9.78863E-13 1.19245E-14 4.97793E-11 %	0	0	0	0	0		0	0 3	3.18606E-08 5.1	64518E-07 3.0753 05086E-08 3.1860 02862E-06 3.8037 % %	5E-08 0.0017477
Hydrogen Sulfide N2 C1 C02		1.94976 1.85689 56.1464 3.12617	0.000506285 2.02409 61.0311 1.74746E-05	0.000506285 2.02409 61.0311 1.74746E-05	1.95172 1.85876 56.2029 3.12931 14.7251	2.51608 0.66688 58.1420 0.98927	36.6313 0.000462466 0.147137 59.3168	2.51608 0.666877 58.1420 0.989270	0* 0* 0*	1.98572 1.91829 57.8881 3.21145	0.905759 0.0744617 5.58217 0.650200	36.6313 0.000462466 0.147137 59.3168 0.0842116	0.0863223 0 0 0.0415587	1.87215 0.000656974 0.0624911 2.93507	0.0865279 0 0 0.0416589	1.87214 0.000656975 0.0624911 2.93505	1.87153 0.00002 0.0072 2.93691 0.0041	1.87153 2.25888E-05 0.00718680 2.93691	0.327959 0 0 0.385070	0.116863 0 0 0.0848070	17.6289 0.000221606 0.0705080 28.4620	0.146823 1.53848E-08 9.44364E-06 0.0756374	0.0865279 0 0 0.0416589	0.0865279 0 0 0.0416589	0.0865302 0 0.0416588	0.0863223 0 0 0.0415587	0 0 0	0.0865302	0.0863223 0 0 0.0415587	0 0415587	0.0593710 0	1.87215 0.10 000656974 0.00075 0.0624911 0.055 2.93507 0.060	6710 61.031 6386 1.714725.0
C2 C3 IC4		3.12617 14.7103 9.44498 1.70958 2.90660	1.747462-05 15.8362 9.99356 1.76513 2.86752	15.8362 9.99356 1.76513 2.96752	9.45449	19.1131 8.60818 1.05306 2.12054	0.0842116 0.0318833 0.00310351	19.1131 8.60818 1.05306		3.21145 15.0274 9.47836 1.67350 2.65952	5.50466 8.47589 2.75716 8.10540	0.0318833	0	0.0222919 0.00974490 0.00115324	0	0.0222919 0.00974489 0.00115324	0.00156	0.00411325 0.00155732 0.000151589	0	0	0.0403545 0.0152783 0.00148715	6.02078E-06 1.74850E-06 1.07179E-07 7.09430E.07	0	0	0	0	0		0	0 0	0.00804678 0	0.0222919 0.011 00974490 0.008 00115324 0.0008	4678 9.9936
iCS nCS Hexane		1.70958 3.80660 1.39234 1.31500 0.441157 0.100565	1.76513 3.85752 1.33113 1.22040 0.335806 0.184423	1.76513 3.85752 1.33113 1.22040 0.335806 0.184423	1.71130 3.81043 1.39374 1.31632 0.441601	1.05306 3.13054 0.51401 0.59058 0.116872 2.548389	0.0136158 0.00118824 0.00174423 0.000294639	1.05306 3.13054 0.514006 0.590580 0.116872 2.54839	0* 0* 0*	1.67350 3.65852 1.26167 1.15688 0.318270 0.103162	5.58217 0.650200 5.50466 8.47589 2.75716 8.10540 5.18565 5.90530 4.00870 0.0251805	0.0136158 0.00118824 0.00174423 0.000294639 3.28911	0	0.00364254 0.000546964 0.000646940 0.000125560	0 0 49.7532	0.000546963 0.000646940 0.000125559 47.4409	0.00015 0.00006 0.00009 0.000014 47.4836938	5.80389E-05 8.51957E-05 1.43914E-05 47.4837	0 0 97.9348	0 0 0 55.8070	0.00652458 0.000569382 0.000835806 0.000141183	3.11597E-08 5.64446E-08 5.38962E-09	0 0 49.7532	0 0 49.7532	0 0 49.7532	0	0 0 0 99.2414	0 0 49.7532	0 0 49.8721	0 0) 0 0) 0 8 49.8721	0.000452039 0.0 0.000521071 0.0 8.97891E-05 0.0	.00115324 0.0008 .00364254 0.0028 300546964 0.00045 300546940 0.0005 300125560 8.9789	2039 1.3311 1071 1.2204 1E-05 0.33580 2489 0.18410
H2O TEG MDEA Piperazine		0.100565 0 0	0 0 0.000191008	0 0 0.000191008	0	0 0 0.000246984	3.28911 0 0 6.89190E-13	0.000246984	100* 0* 0*	0.103162 0 0	0.0251805 0 0	0 0 6.89190E-13	49.8721 0 0	47.4409 0 0 0.952381	0 0 1.00224	0 0 0.952382	0 0 0.95328847	0 0 0.953288	0 0 0.102410	0 0 0.889182	53.5414 0 0 9.55484E-05	99.7733 0 0 0.000183453	0 0 1.00224	0 0 1.00224	0 0 1.00224	49.8721 0 0	0 0 0.0691961	0 0 1.00224	49.8/21 0 0	49.8721 0 0	59.2489 0 0 1.08290 39.3881	0 0 0.952381 1.0	0 1 0 8290 0.00018513
Piperazine UCARSOL™ AP-814 i-Hexane Benzene Cyclohexane		0 0.814671 0.285867 0.411731	0.00205503 0.663532 0.197038 0.288761	0.00205503 0.663532 0.197038 0.288761	0 0.815491 0.286154 0.412146	0.004065468 0.247355 0.747884 0.397549	7.88111E-12 0.000627874 0.284588 0.00593435	0.00406547 0.247355 0.747884 0.397549	0* 0* 0*	0 0.628902 0.202859 0.274303	0 6.20775 2.69567 4.40143	7.88111E-12 0.000627874 0.284588 0.00593435	49	46.6729 0.000265951 0.0145988 0.000667776	49.1164 0 0	46.6729 0.000265951 0.0145987 0.000667775	0.000031 0.013901	46.7173 3.06680E-05 0.0139005 0.000289859	1.24976 0 0	43.1021 0 0	0.00101179 0.000300862 0.137094 0.00284399	0.00194263 1.15054E-08 0.00139935 8.70138E-07	49.1164 0 0	49.1164 0 0	49.1164 0 0	49 0 0	0.689373 0 0	49.1164	49 0 0	49 0 0: 0	0.000191711 0.0	46.6729 39 000265951 0.00019 0.0145988 0.013 000667776 0.00050	3881 0.0018412 1711 0.66353 3341 0.19703 9274 0.28876
i-Heptane Toluene i-Octane n-Octane		0.809229 0.222199 0.754475 0.0608034	0.511320 0.107305 0.433550 0.0213114	0.511320 0.107305 0.433550 0.0213114	0.810044 0.222423 0.755234	0.091750 0.345704 0.063033 0.0034291	0.000127904 0.145520	0.0917501 0.345704 0.0630332 0.00342908	0* 0* 0*	0.484510 0.109898 0.410801 0.0201935	10.2362 3.48245 10.7317 1.23976	0.000127904 0.145520 7.76492E-05 5.61910E-06	0	9.35245E-05 0.00742993 6.37534E-05 3.53633E-06	0	9.35244E-05 0.00742992 6.37533E-05 3.53632E-06	0.000006	6.24739E-06 0.00710781 3.79271E-06 2.74460E-07	0	0	6.12881E-05	1.35147E-09 0.000537134	0	0	0	0	0		0	06	6.83151E-05 9. 0.00537235 0. 3.75781E-05 6.	35245E-05 6.8315 .00742993 0.005 37534E-05 3.7578 53633E-06 2.1686	1E-05 0.51132 7235 0.10730 1E-05 0.43355
n-Octane Ethylbenzene m-Xylene p-Xylene p-Xylene		0.0461128 0.0758018 0	0.0136781 0.0209133 0	0.0136781 0.0209133 0	0.0461592	0.0338351 0.0546415 0	0.0128836 0.0292978 0	0.00342908 0.0338351 0.0546415 0	0* 0* 0*	0.0136911 0.0214558 0	0.987353 1.65353 0	0.0128836 0.0292978 0	0	0.000660881 0.00148165 0	0	0.000660881 0.00148165 0	0.0006293	0.000629291 0.00143103 0	0	0	0.00619355	3.86903E-05 0.000131797 0	0	0	0	0	0		0	0.0	0.000498845 0.0	000660881 0.00049 .00148165 0.0011 0	8845 0.013678
p-Xylene Nonane Decane n-Heptane		0 0.197061 0.122884 0.199407	0 0.0361293 0.0119409 0.112363	0 0.0361293 0.0119409 0.112363	0 0.197259 0.123008 0.199607	0 0.002334 0.000238 0.018908	0 1.81259E-06 6.63346E-08 2.62053E-05	0 0.00233432 0.000237524 0.0189076	0* 0* 0*	0 0.0342302 0.0113127 0.106470	0 4.92422 3.36193 2.89746	0 1.81259E-06 6.63346E-08 2.62053E-05	0	0 2.30912E-06 2.29197E-07 1.92658E-05	0 0 0	0 2.30911E-06 2.29196E-07 1.92658E-05	0 0.000000 0.000000 0.0000001	0 8.85346E-08 3.24006E-09 1.27998E-06	0 0 0	0	0 8.68535E-07 3.17853E-08 1.25568E-05	0 6.96059E-12 9.40673E-14 2.76550E-10	0	0	0	0 0 0	0 0 0		0	0 1 0 1 0 1	0 1.44805E-06 2. 1.66423E-07 2. 1.39924E-05 1.	0 30912E-06 1.4480 29197E-07 1.6642 92658E-05 1.3992	0 0 5E-06 0.036129 3E-07 0.011941 4E-05 0.11236
Mass Flow Hydrogen Sulfide N2 C1		4210.01 4009.48 121234	lbh 1.00117 4002.61 120688	lbh 1.00117 4002.61 120688	4210.01 4009.48 121234	lbh 5.54 1.47 128	lbh 4138.35 0.0522462 16.6225	lbh 5.54144 1.46873 128.052	0* 0* 0*	lbh 4144.88 4004.13 120833	65.1242 5.35380 401.359	Ibh 4138.35 0.0522462 16.6225	Ibh 190.362 0	lbh 4334.24 1.52097 144.674	190.357 0 0	Ibh 4334.25 1.52098 144.675	4328.70 0.05 17	bh 4328.70 0.0522462 16.6225	103.679 0 0	15h 294.037 0 0	lah 4156.38 0.0522481 16.6237	lbh 18.0295 1.88921E-06 0.00115965	190.357 0 0	190.357 0 0	190.362 0 0	190.362 0 0	1941 0 0	bh 0	190.362 0 0	190.362 0 0 8 0 0	Ibh 0.00116301 8.05338E-06 0.000537129	lah lah 4334.24 0.001 1.52097 8.0533 144.674 0.0006	6301 1.0000 8E-06 4002.6 7129 12068
CO2 C2 C3		4210.01 4009.48 121234 6750.16 31763.2 20394.0 3691.41	0.0345557 31315.8 19762.1 3490.50	0.0345557 31315.8 19762.1 3490.50	6750.16 31763.2 20394.0 3691.41	1.47 128 2.18 42.1 19.0 2.32	4138.35 0.0522462 16.6225 6701.20 9.51363 3.60195 0.350613	5.54144 1.46873 128.052 2.17877 42.0949 18.9587 2.31927 (2.00423	0* 0* 0*	4144.88 4004.13 120833 6703.41 31367.4 19784.6 3493.17	65.1242 5.35380 401.359 46.7495 395.785 609.417 198.240	4138.35 0.0522462 16.6225 6701.20 9.51363 3.60195 0.350613	91.6473 0 0	4334.24 1.52097 144.674 6795.02 51.6083 22.5606 2.66988 8.43290	91.6475 0 0	4334.25 1.52098 144.675 6795.02 51.6085 22.5606 2.66989	6792.85 9.5 3.6	0.0522462 16.6225 6792.85 9.51363 3.60195 0.350613	121.734 0 0	213.382 0 0	4156.38 0.0522481 16.6237 6710.49 9.51437 3.60217 0.350626	18.0295 1.88921E-06 0.00115965 9.28805 0.000739334 0.000214711 1.31612E-05 9.60010E.05	91.6475 0 0	91.6475 0 0	91.6473 0 0	91.6473 0 0	0		91.6473 0 0	91.6473 0. 0 0. 0 8	0.000647513 0.000206551 8.63526E-05 9.44539E-06	4334.24 0.001: 1.52097 8.0533 144.674 0.00063 6795.02 0.00064 51.6083 0.00002 22.5606 8.6352 2.66088 9.4453 8.45300 2.0155	7513 0.033908 6551 31315 58-05 19762 98-06 3490.5
C4 IC5 nC5		3691.41 8219.39 3006.40 2839.41 952.566	7628.17 2632.28 2413.32 664.049	2632.28 2413.32	3006.40 2839.41	6.89 1.13 1.30 0.257	0.134240 0.197051	1.13205	0* 0* 0*	2633.55 2414.82	582.779 372.849 424.591 288.226	0.134240 0.197051	0	1.49774	0	1.26629 1.49775	0.33 1.54 0.13 0.20 0.033	1.53821 0.134240 0.197051	0	0000	0.134243 0.197058	3.82633E-06 6.93124E-06	0	0	0	0 0 0	0		0	0304	3.01859E-05 4.85097E-06 5.59178E-06	1.26628 4.8509 1.49774 5.5917	7E-06 2632.2 BE-06 2413.3
Hexane H2O TEG MDEA		952.566 217.145 0 0	364.694 0 0	664.049 364.694 0 0	952.566 0 0	5.612584785 0 0	0.0332862 371.581 0 0	0.257399 5.61258 0 0	0* 217.145* 0* 0*	664.340 215.334 0 0	288.226 1.81048 0 0	0.0332862 371.581 0 0		0.290685 109831 0 0	0 109455 0 0	0	109826.134 0 0	0.0332862 109826 0 0	0 30960.6 0 0	0 140415 0 0	0.0332868 12623.5 0 0	6.61830E-07 12251.9 0 0	0 109455 0 0	0 109455 0 0	0 109455 0 0	0 109980 0 0	0 525.948 0 0		0 109980 0 0	109980 0 0	9.63555E-07 0.635819 0 0	0.290685 9.6355 109831 0.65 0 0	5819 364.05 0 1
Piperazine UCARSOL [™] AP-814 i-Hexane Benzene		0 1759.07 617.256	0.377714 4.06378 1312.12 389.640	0.377714 4.06378 1312.12 389.640	0 0 1759.07 617.256	0.00054396 0.008953806 0.54 1.647	7.78599E-11 8.90352E-10 0.0709328 32.1508	0.000543960 0.00895381 0.544776 1.64714	0* 0* 0*	0 0 1312.74 423.437	0 0 446.338 193.819	7.78599E-11 8.90352E-10 0.0709328 32.1508	2205.25 108057 0	2204.87 108053 0.615707 33.7978	2204.88 108054 0 0	2204.88 108054 0.615709 33.7979	2204.88295 108053.58 0.07 32.151	2204.88 108054 0.0709328 32.1508	32.3752 395.092 0	2237.26 108449 0	0.0225275 0.238550 0.0709342 32.3226	0.0225275 0.238550 1.41283E-06 0.171837	2204.88 108054 0 0	2204.88 108054 0 0	2204.88 108054 0	2205.25 108057 0	0.366717 3.65345 0	0	2205.25 108057 0	108057 0 2	0.0116209 0.422686 2.05731E-06 0.000121630	2204.87 0.01 108053 0.42 0.615707 2.0573 33.7978 0.00012	2686 3.6411 1E-06 1312.1
Cyclohexane I-Heptane Toluene		889.029 1747.33 470.782	571.020 1011.12 212.193	571.020 1011.12 212.192	889.029 1747.33 470.782	0.876 0.20 0.761	0.670421 0.0144497 16.4398	0.875563 0.202071 0.761380 0.138825	0* 0* 0*	572.566 1011.34 239.205	316.463 735.984	0.670421 0.0144497 16.4398	0	1.54598 0.216520 17.2011 0.147597	0	1.54598 0.216521 17.2012	0.670 0.01 16.440	0.670421 0.0144497 16.4398	0	0	0.670527 0.0144499 16.5058 0.00877231	0.000106850 1.65956E-07 0.0659585 5.62656E-08	0	0	0	0	0		0	05.07.05	5.46518E-06 7.33111E-07 5.76524E-05	1.54598 5.4651 0.216520 7.3311 17.2011 5.7652 0.147597 4.0326	8E-06 571.02 1E-07 1011.1 1E-05 212.19
i-Octane n-Octane Ethylbenzene m-Xylene		1629.10 131.290 99.5688 163.675	857.336 42.1428 27.0481 41.3556	857.336 42.1428 27.0481 41.3556	1629.10 131.290 99.5688 163.675	0.14 0.008 0.0745 0.120	0.00877226 0.000634806 1.45550 3.30986	0.138825 0.00755223 0.0745187 0.120343	0* 0* 0*	857.484 42.1510 28.5781 44.7857	771.613 89.1386 70.9908 118.889	0.00877226 0.000634806 1.45550 3.30986	0	0.147597 0.00818701 1.53002 3.43019	0 0 0	0.147597 0.00818704 1.53002 3.43020	0.01 0.001 1.4555 3.310	0.00877226 0.000634806 1.45550 3.30986	0 0 0	0 0 0	0.00877231 0.000634812 1.46025 3.32604	5.67656E-08 6.24220E-09 0.00475105 0.0161843	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0		000000000000000000000000000000000000000	0 2	4.03262E-07 2.32728E-08 0. 5.35326E-06 1.23230E-05	0.147597 4.0326 00818701 2.3272 1.53002 5.3532 3.43019 1.2323	BE-08 42.142
o-Xylene p-Xylene Nonane Derane		0 425.502 265.336 430.568	0 71.4449 23.6129 222.196	0 0 71.4449 23.6129 222.196	0 425.502 265.336 430.568	0 0.005 0.001 0.042	0	0 0.00514111 0.000523125	0* 0* 0*	0 71.4503 23.6135 222.240	0 354.052 241.723 208.328	0 0 0.000204774 7.49402E-06 0.00296049	0	0 0.00534587 0.000530617 0.0446026	0	0 0.00534589 0.000530619 0.0446028	0	0 0.000204774 7.49402E-06 0.00296049	0	0	0 0 0.000204775 7.49403E-06	0 0 8.54741E-10 1.15512E-11	0	0	0	0	0		0			0 0 00534587 1.5539 00530617 1.7859 0.0446026 1.5015	0 1 0 1 5E-08 71.444
n-Heptane		430.568	222.196	222.196		0.042			0*	222.240	208.328	0.00296049		0.0446026	0	0.0445028	0.003	0.00296049	0	0	0.00296052	1.15512E-11 3.39596E-08	0	20	0 17	28	20	1 0	0	0 1	1.50157E-07	0.0446026 1.5015	7E-07 222.19
Process Streams Properties Phase: Total Property	Status: From Block: To Block: Units	86 Solved SAT-1 VSSL-100	@7 Solved T-521 FAXR-100	68 Solved FAXR-100 V-427	SAT-1	off flash Solved Amine Flash Tank PCV-422	off still Solved A-322 PCV-322	To Flare Solved PCV-422	Solved - SAT-1	1 Solved VSSL-100 T-521		4 Solved PCV-322 To Acid Gas Injection	5 Solved PCV-601 T-521	7 Salved T-621 LCV-621	9 Solved P-621/622 E-222	Amine Flash Tark	16 Solved Imine Flash Tani E-222	17 Solved E-222 T-522	18 Solved E-223 T-622	19 Solved T-522 E-223	20 Solved T-522 A-322	21 Solved A-322 T-622	23 Solved E-223 P-621/622	28 Solved E-222 RCYL-1	27 Solved RCYL-1 Amine Makeup	28 Solved Amino Makeup A-321	29 Solved - Amine Makeup	30 Solved Amine Nakeup 	31 Solved A-321 P-423/624	32 Solved P-623624 FCV-601	LCV-403	35 37 Solved Solv LCV-621 LCV-4	Gas to TEG
Temperature Pressure Molecular Weight Mass Flow	"F psig Ib/Ibmol Ib/h	96.4712 849.999 21.8240 215925	121.658 844.999 20.8251 197748	120* 839.999 20.8251 197748	96.4712 849.999 21.8287 215707	141.8367 75.000 20.7089 220	120.000 10 38.1102 11297.3	136.892 2* 20.7089 220.241	527.323 849.999 18.0153 217.145	96.4712 849.999 21.3573 208735 89.0128	96.4712 849.999 59.6944 7190.01 1.09699	118.905 2* 38.1102 11297.3	121.566 859.999* 31.0346 220525 64.7167	139,489 849,999 31,3550 231511 67,2467	253.609 50* 31.0879 219995 64.4504	141.825 80 31.3549 231513	141.8367 75.000 31.3703 231292 67.1502375	210* 72 31.3703 231292 67.1502	253.504 13 18.2846 31613.5	251.927 13 28.5740 251609	221.500 10 24.1255 23577.0	120.000 10 18.0364 12279.7	253.504 13 31.0879 219995 64.4504	191.681 47 31.0879 219995	191.680 47 31.0880 219995 64.4504	191.438 47 31.0346 220525 64.7167	100* 100* 18.1250 529.968 0.266303	47 31.0880 0	120* 44 31.0346 220525	121.538 869.999 31.0346 220525 64.7167 0.	119.879 837.999 27.2389 1.07313		1.893 119.87 80* 837.99 2389 20.825 7313 19774 8813 86.482
Std Vapor Volumetric Std Liquid Volumetric API Gravity Genes Mexico H	Flox MMSCFD Flox sgpm	90.1098 1190.99	137748 86.4827 1138.83	107748 86.4827 1138.83 1239.14	90 1190.55	0.096859965 1.25 1187.61	11297.3 2.69984 27.8016 279.830	0.0968600	0.109777 0.434088 50.3100	1203735 89.0128 1166.82	1.09699 24.1724 96.6589 3248.78	11297.3 2.69984 27.8016 279.820	64.7167 450 4.09007 573.329	67.2467 477.987 -1.83733 564.529	64.4504 448.938 4.22394 575.518	67.2471 477.990 564.528	67.1502375 476.74 -1.90013215 563.63	67.1502 476.740	31613.5 15.7468 63.5349	251609 80.1972 512.473 4.61606 474.394	23577.0 8.90057 52.3632 120.258	12279.7 6.20073 24.5615 9.98228 50.7832	64.4504 448.938 4.23049 575.518	219995 64.4504 448.938 4.22447 575.518	64.4504 448.938 4.22447 575.518	64.7167 450* 4.23320 573.379	0.266303 1.06212 9.90459 55.5892	575.518	64.7167 450 4.23373	64.7167 0. 450 0 4.08832 573.379	0.000358813 0.00220979 5.19504 428.727	231511 1.0 67.2467 0.0003 477.987 0.002 564.529 42	8813 86.482 0979 1138.8 8.727 1239.1
- one weat this might	- o v souf IC.3	1230.31	+£39.14	+439.14	**39./b	1107.61	279.820	1187.61	JU 3100	44.3.33	4490.76	219.620	/3.3/9	304.529	\$10.018	304.328	103.03	610.66	9100.00	474.334	120.428	AJ. 1832	هدد در	373.316	312.218	2/2.2/9	J3.3692	. 3/3.518	112.219	2123/3	749.121		

Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

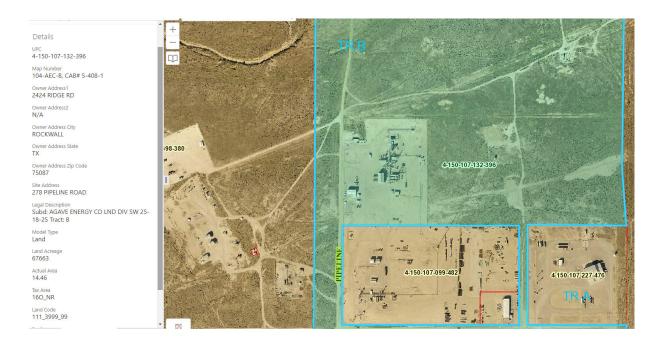
- 1. I A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. ☑ A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. ☑ A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \square A sample of the letters sent to the owners of record.
- 5. I A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. 🗹 A sample of the public notice posted and a verification of the local postings.
- 7. 🗹 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🗹 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. ☑ A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. ☑ A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

Proof of Public Notice

Landowner and Municipality Notifications

Certified letter receipts with post marks

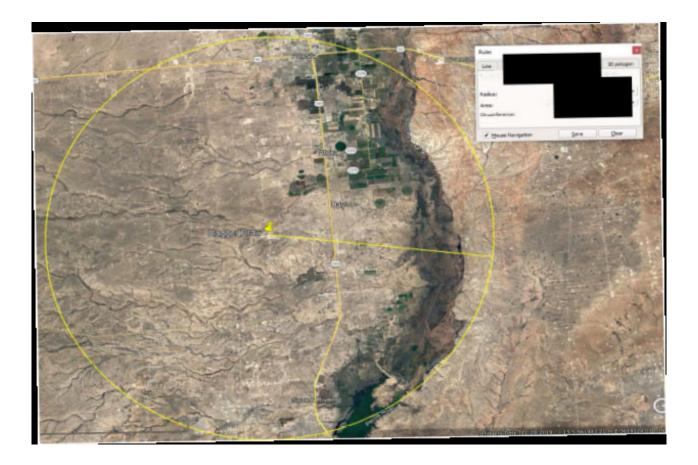
Certified letter receipts with post marks



Landowner and Municipality Notifications

Table of the noticed citizens, counties, and municipalities

Notice Type	Account/ID	Owner Name	Address	City, State, Zip
Landowner	R072812	Agave Energy Company	2424 Ridge Rd	Rockwall, TX 75087
Landowner	R072811	EOG Resources Inc	Po Box 4362	Houston, TX 77210- 4362
Landowner	R040375	Agave Energy Company	3100 McKinnon St Ste 800	Dallas, TX 75201- 7014
Landowner	R066573	State Of New Mexico	310 Old Santa Fe Trail	Santa Fe, NM 87504
Landowner	R040651	Wilson, David D & Diana L Et Al (N-Jt	361 W Kincaid Ranch Rd	Artesia, NM 88210
Landowner	R040653	Wilson, David D & Diana L Et Al (N-Jt)	361 W Kincaid Ranch Rd	Artesia, NM 88210
Landowner	R040574	Hornbaker, F D Estate Et Als	4101 Pershing Drive	El Paso, TX 79903
Landowner	R040657	Wilson, David D & Diana L Et Al (N-Jt)	361 W Kincaid Ranch Rd	Artesia, NM 88210
County	Eddy	County Manager	101 W Greene St, Ste 110	Carlsbad, NM 88220
Municipality	Artesia	City Manager	511 West Texas Avenue	Artesia, NM 88210
Tribes	-	Not Applicable	None within radius	-


Property Tax Record

Maps with a graphic scale showing the facility boundary and the surrounding area for notices.

Maps with a graphic scale showing the facility boundary and the surrounding area for notices.

Sample of the letters sent to counties, municipalities, and landowners

VIA CERTIFIED MAIL 7017 2400 0000 6784 2826

February 29, 2024

Hornbaker Estate 4101 Pershing Drive El Paso, TX 79903

Dear Hornbaker Estate:

Frontier Field Services, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the **modification** of its **gas plant** facility. The expected date of application submittal to the Air Quality Bureau is **March 7, 2024.**

The exact location for the existing facility known as, **Dagger Draw Gas Plant**, is at 278 Pipeline Road, Artesia, NM 88210, at latitude 32.714857 and longitude -104.4458825. The approximate location of this facility is **2.90 miles west of the intersection of US Highway 285 and West Kincaid Ranch Road** in Eddy County.

The proposed modification consists of :

- Removal of H-4 and H-5 heaters from the permit. This equipment was never installed.
- Adjustments to emissions factors used for ENG-1 through ENG-6, and renamed ENG-5 to Ajax 1, ENG-6 to Ajax 2.
- 3. Addition of amine flash tank and SSM emissions at the Process Flare, FL-2.
- 4. Updated gas sample composition updated for various sources.
- 5. Updated as-built counts of fugitive components used for fugitive emissions calculations.
- 6. Addition of SSM emissions at the Acid Gas Flare, FL-1.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM 10	25.01 pph	7.93 tpy
PM 2.5	25.01 pph	7.93 tpy
Sulfur Dioxide (SO2)	994.11 pph	249.05tpy
Nitrogen Oxides (NOx)	279.17 pph	102.32 tpy
Carbon Monoxide (CO)	1078.96 pph	189.81 tpy
Volatile Organic Compounds (VOC)	748.23 pph	152.94 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	28.52pph	17.37 tpy
Green House Gas Emissions as Total CO2e	n/a	49,330 tpy

The standard and maximum operating schedules of the facility will be from 12:00 a.m. to 11:59 p.m. 7 days a week and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: Frontier Field Services, LLC; 1001 Conoco Road, Maljamar, NM 88264.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

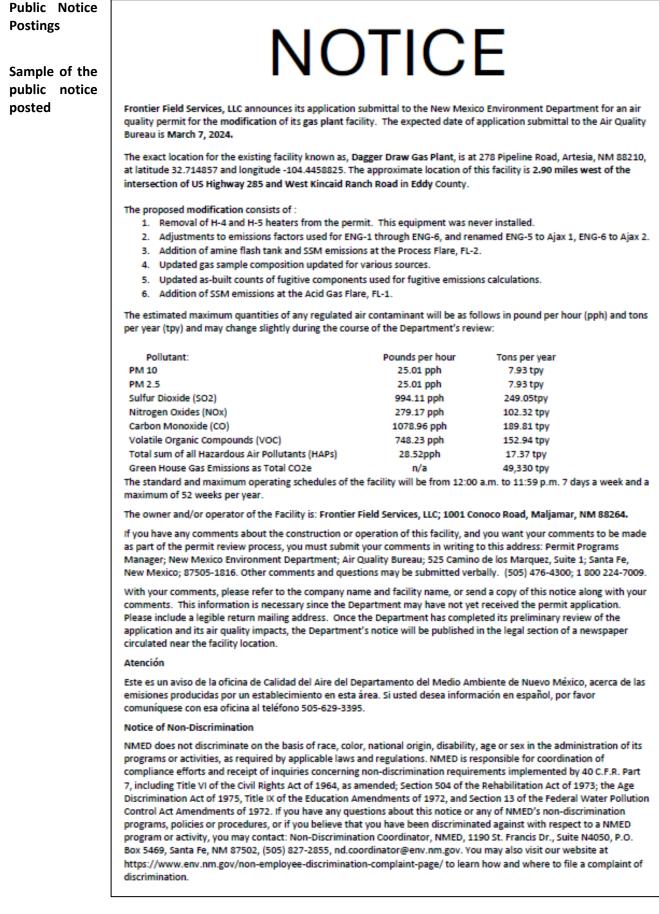
Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Sincerely,

ebura Moore

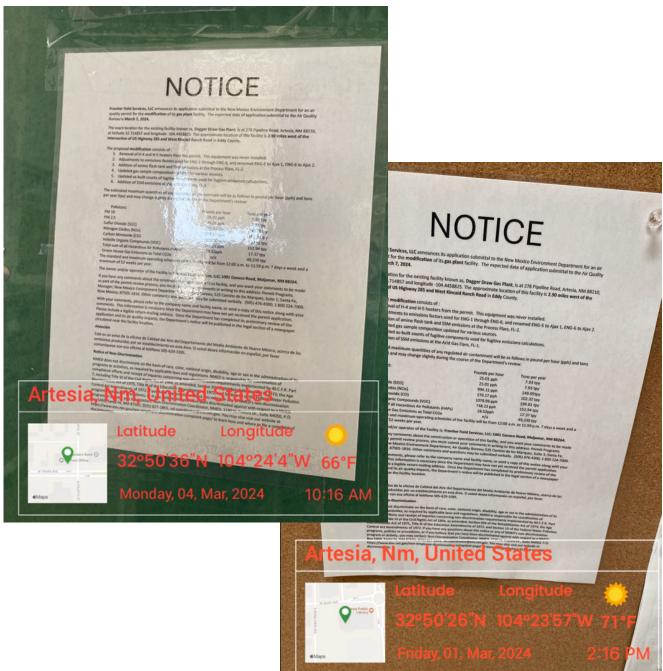

Rebecca Moore, on behalf of Frontier Field Services, 10077 Grogans Mill Road, The Woodlands, TX 77380

Notice of Non-Discrimination

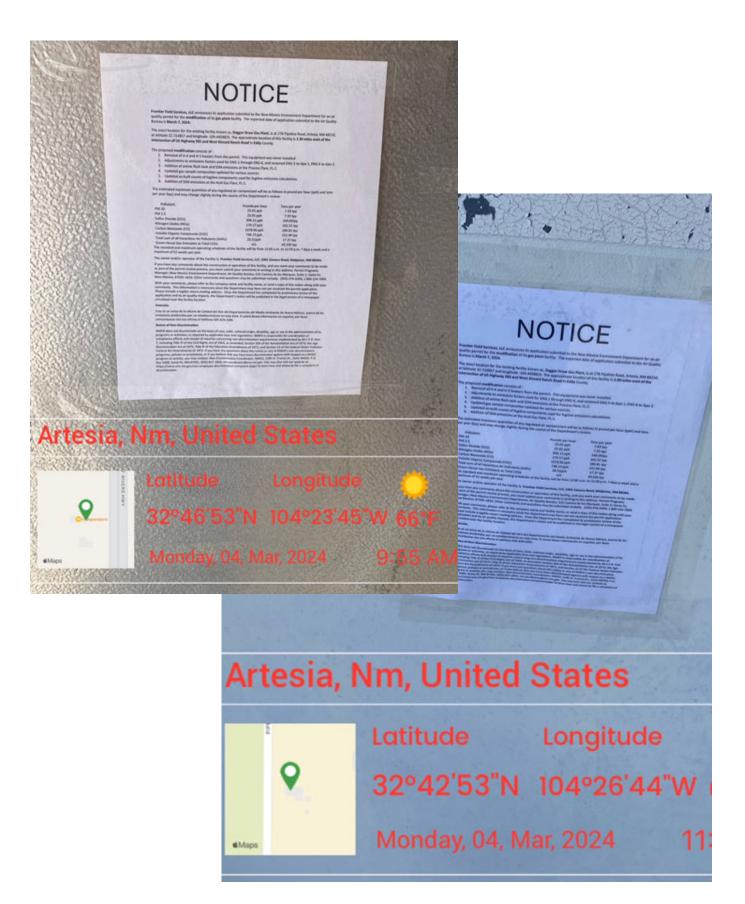
NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855,

nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employeediscrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

March 2024



Public Notice Postings


Public Notice Location List

Name	Address	City	Zip Code
Artesia Post Office	201 N 4 th Street	Artesia	88210
Artesia Public Library	205 W Quay Ave	Artesia	88210
Atoka Grocery Store	6475 7 Rivers Hwy	Artesia	88210
Dagger Draw Gas Plant	278 Pipeline Road	Artesia	88210

Verification of the local public notice postings

Public Notice Postings

General Posting of Notices – Certification

I, <u>Rebecca Moore</u>, the undersigned, certify that on <u>February 29, 2024</u>, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the **CITY** of **Artesia**, **Eddy** County, State of New Mexico on the following dates:

Facility entrance – February 29, 2024 Artesia Post Office – February 29, 2024 Artesia Public Library – February 29, 2024 Atoka Grocery Store – February 29, 2024

Signed this 29th day of February, 2024,

Signature

Jebuary 29,2024

Date

suca Moore

Printed Name

Environmental Manager

Title

Public service announcement (PSA) content

The following is a public service announcement. Dagger Draw Gas Plant, located at 278 Pipeline Road in Artesia, New Mexico, is a natural gas processing plant owned and operated by Frontier Field Services. Frontier has submitted an air permit application to authorize air emissions from operation of the facility as designed and constructed, as well as during startups, shut downs and maintenance activities. Notices of this activity have been posted at the Artesia Public Library, Post Office, and Atoka Grocery Store as well at the facility. If you would like to comment on this, you may write to the New Mexico Environmental Department Air Quality Bureau at 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico, 87505.

Submittal of Public Service Announcement – Certification

I, Rebecca Moore, the undersigned, certify that on February 29, 2024, submitted a public service announcement to KTZA 92.9 The Brand that serves the City of Artesia, Eddy County, New Mexico, in which the source is or is proposed to be located and that KTZA 92.9 The Brand RESPONDED THAT IT WOULD AIR THE ANNOUNCEMENT.

Signed this 29nd day of February, 2024,

ore elune

Signature

February 29, 2024

Date

oove en

Printed Name

Environmental Manager

Title

Public Notice Postings – Classified/Legal Ad

Affidavit of Publication	n Copy of I	Publication:	
	6782	Legal Notice	
State of New Mexico	NOTICE	OF AIR QUALITY PE	RMIT
County of Eddy:	Frontier Field Services TTC	APPLICATION	A State of the second second
Danny Scott & armen & Co	ico Environment Department gas plant facility. The expect Bureau is March 7, 2024.	for an air quality permit ed date of application so	for the modification
being duly sworn, sayes that he is the Publis	her The exact location for the set		
of the Artesia Daily Press, a daily newspaper of General	-104,4458825 The approximitant	, rent 00210, at latitud	c 32.714857 and lon
circulation, published in English at Artesia, said county	intersection of US Highway 28 ty.	5 and West Kincaid Ra	inch Road in Eddy (
and state, and that the hereto attached	The proposed modification cor 1. Removal of H-4 and H	isists of :	
Legal Ad	Removal of H-4 and H never installed Adjustments to amigin	o heaters from the per	mit. This equipmen
was published in a regular and entire issue of the said	renamed ENG-5 to Aiay 1 ENG	ns factors used for EN6 -6 to Ajax 2.	G-1 through ENG-6
Artesia Daily Press, a daily newspaper duly qualified	 Updated gas sample com 	ank and SSM emissions	at the Process Flare, I rious sources
for that purpose within the meaning of Chapter 167 of	 calculations. 	a regirive components u	sed for fugitive emission
the 1937 Session Laws of the state of New Mexico for	 Addition of SSM emission The estimated maximum quantification follows in pound per hour (pph) 		CONTRACTOR PARAMETERS
Consecutive weeks/day on the same	follows in pound per hour (pph) during the course of the Departm	and tons per year (tpy) a nent's review.	r contaminant will b and could change slig
day as follows:	Pollutant:		
First Publication March 7, 2024	PM 10 PM 2.5	Pounds per hour 25.01 pph	Tons per year 7.93 tpy
Second Publication	Sulfur Dioxide (SO2)	25.01 pph	7.93 tpy
Third Publication	Nitrogen Oxides (NOv)	994.11 pph 279.17 pph	249.05tpy
Fourth Publication	Carbon Monoxide (CO) Volatile Organic	1078.96 pph	102.32 tpy 189.81 tpy
	 Compounds (VOC) 	748.23 pph	
Fifth Publication	Total sum of all Hazardous Air Pollutants (HAPs)		152.94 tpy
Sixth Publication	Green House Gas Emissions	28.52pph	17.37 tpy
Subscribed ans sworn before me this	as Total CO2e	n/a	49,330 tpy
7th day of March 2024	The standard and maximum opera a.m. to 11:59 p.m. 7 days a week at	ting schodoles if it is	승규는 일을 통하는 것을 가지 않는
LATISHA ROMINE Notary Public, State of New Mexico Commission No. 1076338 My Commission Expires 05-12-2027	The owner and/or operator of the Conoco Road, Maljamar, NM 8820 If you have any comments about the you want your comments to be me must submit your comments in wr er; New Mexico Environment Dep- los Marquez, Suite 1; Santa Fe, Ne questions may be submitted verball	Facility is: Frontier Fie seconstruction or opera ade as part of the perm iting to this address: Per eartment; Air Quality B w Mexico; 87505-1816. y. (505) 476-4300; 1 80	eks per year. eld Services, LLC; 10 tion of this facility, a nit review process, y mit Programs Mana ureau; 525 Camino Other comments au 0 224-7009.
Latisha Romine Latisha Romine Notary Public, Eddy County, New Mexic	With your comments, please refer to a copy of this notice along with you since the Department may have no include a legible return mailing add preliminary review of the applicatio notice will be published in the legs	the company name and ur comments. This inf it yet received the permi- ress. Once the Departm n and its air quality imp d section of a newspap y and the permitting pr Quality Bureau's webs.	I facility name, or ser ormation is necessa it application. Plea nent has completed i acts, the Departmen er circulated near th occess, and links to th ite: www.enynm.go
	Atención		
1	Este es un aviso de la oficina de Calid	ad del Aire del Departar	anto del Made

Public Notice Postings – Display Ad

A fidavit of Dublication	
Affidavit of Publication	NOTICE OF AIR QUALITY PERMI APPLICATION
No.	Frontier Field Services, LLC announces its application submittal to the ment for an air quality permit for the modification of its gas plant facilit submittal to the Air Quality Bureau is March 7, 2024.
State of New Mexico	The exact location for the existing facility known as, Dagger Draw Gas Pla
County of Eddy: Danny Scott & enne	NM 88210, at latitude 32.714857 and longitude -104.4458825. The approx miles west of the intersection of US Highway 285 and West Kincaid Ra
being duly sworn, sayes that he is the Publisher	The proposed modification consists of : 1. Removal of H-4 and H-5 heaters from the permit. This equipment
of the Artesia Daily Press, a daily newspaper of General	 Adjustments to emissions factors used for ENG-1 through ENG ENG-6 to Aiax 2.
circulation, published in English at Artesia, said county	 Addition of amine flash tank and SSM emissions at the Process FI Updated gas sample composition updated for various sources. Updated as-built counts of fugitive components used for fugitive emissions.
and state, and that the hereto attached	 Updated as-built counts of fugitive components used for fugitive e Addition of SSM emissions at the Acid Gas Flare, FL-1.
Display Ad	The estimated maximum quantities of any regulated air contaminant wi
was published in a regular and entire issue of the said	(pph) and tons per year (tpy) and could change slightly during the course
Artesia Daily Press, a daily newspaper duly qualified	Pollutant: Pounds per hour Tons per year PM 10 25.01 pph 7.93 tpy
for that purpose within the meaning of Chapter 167 of	PM 2.5 25.01 pph 7.93 tpy Sulfur Dioxide (SO2) 994.11 pph 249.05tpy
the 1937 Session Laws of the state of New Mexico for	Nitrogen Oxides (NOx) 279.17 pph 102.32 tpy Carbon Monoxide (CO) 1078.96 pph 189.81 tpy
Consecutive weeks/day on the same	Volatile Organic Compounds (VOC) 748.23 pph 152.94 tpy Total sum of all Hazardous
day as follows:	Air Pollutants (HAPs) 28.52pph 17.37 tpy Green House Gas Emissions
First Publication March 7, 2024	as Total CO2e n/a 49,330 tpy
Second Publication	The standard and maximum operating schedules of the facility will be from week and a maximum of 52 weeks per year.
Third Publication	The owner and/or operator of the Facility is: Frontier Field Services, LLC; 88264.
Fourth Publication	If you have any comments about the construction or operation of this fac
Fifth Publication	to be made as part of the permit review process, you must submit your co Permit Programs Manager; New Mexico Environment Department; Air O
Sixth Publication	Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments an bally. (505) 476-4300; 1 800 224-7009.
Subscribed ans sworn before me this	With your comments, please refer to the company name and facility name
7th day of March 2024	with your comments. This information is necessary since the Departme- permit application. Please include a legible return mailing address. Once preliminary review of the application and its air quality impacts, the Depar- the legal section of a newspaper circulated near the facility location. General information about air quality and the permitting process, and lin at the Air Quality Bureau's website: www.env.nm.gov/air-quality/permittin tion dealing with public participation in the permit review process is 20.2.
	Atención Este es un aviso de la oficina de Calidad del Aire del Departamento del M acerca de las emisiones producidas por un establecimiento en esta área, pañol, por favor comuniquese con esa oficina al teléfono 505-629-3395.
Latisha Rapine Latisha Romine Notary Public, Eddy County, New Mexico	Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, national origin, istration of its programs or activities, as required by applicable laws and for coordination of compliance efforts and receipt of inquiries concerning implemented by 40 C.E.R. Part 7, including Title VI of the Civil Rights Act of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title of 1972, and Section 13 of the Federal Water Pollution Control Act Ame questions about this notice or any of NMED's non-discrimination progr you believe that you have been discriminated against with respect to a NM contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., S Fe, NM 87502, (505) 827-2855, nd.coordinator@envnm.gov. You may also env.nm.gov/non-employee-discrimination-complaint-page/ to learn how discrimination.

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The Dagger Draw Gas Plant consists of four natural gas-fired residue compressor engines, an amine gas treatment system, two natural gas-fired acid gas compressor engines, an Acid Gas Injection Well that controls the acid gas stream from the amine unit, a process flare, an emergency flare, a glycol dehydration system, and ancillary equipment. The primary function of the plant is to remove H2S and CO2 from sour field gas so that the gas can meet pipeline specifications. The plant has been designated a primary Standard Industrial Classification (SIC) Code of 1311. The operation of the Dagger Draw Gas Plant is intended to process 90 MMscfd of gas.

Amine Treating Units (Units AU-1 through AU-3)

The amine units are designed to remove acid gas components (carbon dioxide, hydrogen sulfide and mercaptans) from the natural gas stream. These components are removed from the natural gas because they are corrosive, hazardous to health, and reduce the heating value of the natural gas stream. In addition, the carbon dioxide can freeze in the cryogenic unit forming dry ice and forcing the shut down of the facility. This is known as the gas sweetening process.

Amine treating is an exothermic chemical reaction process. The treating solution is a mixture of RO water and approximately 28-35% DEA (diethanolamine). This aqueous mixture is regenerated and reused. Lean DEA solution is pumped to the top of the contactor and allowed to flow downward. Sour gas is fed into the bottom of the contactor and flows upward. As the lean DEA solution flows down through the contactor, it comes into contact with the sour gas. The H2S and CO2 react with the amine to form an amine sulfide complex and carbonate. The amine is now known as sour or rich amine and the remaining gas is sweet and continues to the dehydration system.

The rich DEA amine solution is fed into a flash tank. This unit reduces the pressure on the rich amine and allows dissolved gases to vent off. The dissolved gases are usually hydrocarbons. This vented stream is sent to the sour gas system. Due to weak chemical bonds between the sour gas and the DEA amine solution, H2S and CO2 can be stripped from the amine by heating the amine at low pressures. Rich amine is fed into a stripper column known as a regenerator. Steam generated in the amine reboiler passes up through the amine still and removes the acid gases from the rich amine. Hot oil is used to supply heat to the regenerator reboiler. H2S and CO2 (acid gases) exit the top of the regenerator and are sent to the acid gas injection well (AGI). The DEA amine solution is now regenerated and leaves the stripper column to be recirculated to the contactor.

Acid Gas Injection Well

The acid gas removed by the amine units is disposed of by compressing and injecting the stream into a disposal well for a control of 100%. Acid gas is injected using two natural gas-fired compressors engines, or with a backup electrical unit. In the event the electrical unit is not functioning and both of the redundant AGI well compressor units go down, FL-1 will incinerate the acid gas stream from the amine unit. The acid gas will be compressed in stages from a pressure of 5 PSIG to a final pressure of no more than 1250 PSIG. After compression, the gas must be cooled and any water that is condensed at the higher pressure will be separated. The water is collected and disposed of in a separate disposal well. Should the acid gas compressor shut down for any reason, valves will automatically isolate it. At this point, the acid gas will be diverted to FL-1. The acid gas will be enriched with sweet natural gas so that it will burn. The entire system will be shut down in a controlled manner if the acid gas compressors are non-functional.

Glycol Dehydration Units (Unit DEHY-1 & DEHY-2)

Frontier Field Services, LLC

The glycol dehydration unit receives up to 90 MMscf/d of treated gas (sweet) from the amine unit and reduce the water content of the gas by circulating approximately 5.0 to 6.5 gallons per minute of triethylene glycol (TEG). The gas passes into the lower section of the glycol contactor and the TEG enters the top of the contactor. The gas and liquid comes into contact on trays within the tower and the TEG absorbs the water. The dry gas exits the top of the contactor and moves on to the next processing phase, the molecular sieve dehydration.

The rich glycol is fed into a flash tank. This unit reduces the pressure on the solution and allows dissolved gases to vent off. The dissolved gases are usually hydrocarbons. This low pressure stream is sent to the fuel gas system. The rich glycol is regenerated by passing through a series of heat exchangers to warm the glycol. It then enters the glycol reboiler where it is heated to approximately 400°F to boil the absorbed water out of the solution. By-products that are also absorbed, such as benzene, toluene, ethyl-benzene and xylene (BTEX), are also boiled out of the solution. Since BTEX is considered a harmful component these vapors (including water) will be collected and condensed into a liquid using an air-cooled exchanger and a separator. These liquids are then disposed of in a disposal well. The overall efficiency of the BTEX controls is maintained at a 95% minimum efficiency.

The glycol unit and the components of the glycol unit are similar to that of an amine unit. Hot oil is the heat source for the glycol regenerator reboiler.

Molecular Sieve Dehydration

Molecular sieve dehydration is used upstream of the cryogenic processes to achieve a -150°F dew point. The process uses two molecular sieve vessels with one vessel in service absorbing moisture from the gas stream and the other vessel in the regeneration mode. During the regeneration mode, hot, dry gas (regen gas) is passed up through the vessel to drive off the absorbed moisture from the molecular sieve. The gas comes from the discharge of the residue compressors and it is passed through a heat exchanger (heated by hot oil) and a heater to achieve a temperature of approximately 500°F. After the gas passes through the bed it is cooled in an air cooled exchanger. The water in the gas condenses and is separated from the gas stream in a separator. The regen gas has four potential paths depending on the concentration of the sulfur products in the regen gas:

- 1. Blended with the sales gas at the sales point (outlet of the plant);
- 2. Routed to the front of the plant for reprocessing;
- 3. Sold to a third-party for processing; or
- 4. Treated on-site via AGI system.

There are no air emissions from the molecular sieve dehydration system, other than combustion emissions from the regen heater.

Cryogenic Unit:

The cryogenic unit is designed to liquefy natural gas components from the sweet, dehydrated inlet gas by removing work (heat) from the gas by means of the turbo expander. The cryogenic unit recovers natural gas liquids (NGL) by cooling the gas stream to extremely cold temperatures (-150°F) and condensing components such as ethane, propane, butanes and heavier. The gas is cooled by a series of heat exchangers and by lowering the pressure of the gas from approximately 650 PSIG to approximately 180 PSIG. Once the gas has passed through the system of heat exchangers and expansion it is re-compressed using the energy obtained from expanding the gas. Further compression is usually required to enter the pipeline, so four residue compressors are located at the end of the process.

The gas flows through the following heat exchangers:

- Gas to Gas Exchanger This unit exchanges heat from the warm inlet gas and the cold residue gas that has already been expanded. This cools the inlet gas.
- Product Heater This unit will cool the inlet gas by exchanging heat with the cold liquid product that has been recovered.
- De-Methanizer Reboiler / Side-Reboiler This unit draws liquid off of the de-methanizer and uses heat from the inlet gas to boil the methane out of the liquid. One stream comes off the side of the tower and one stream comes off of the bottom of the tower. This also cools the inlet gas. The gas is expanded and recompressed in the expander/compressor. At this point the gas temperature should be at its coldest. The de-methanizer is used to stabilize the liquid. By adding heat to the tower, the methane that has been absorbed in the liquid can be rejected with the residue gas.

There are no air emissions associated with the cryogenic unit.

Residual Compression

Once the sweet, dry gas exits the cryogenic unit, it needs to be recompressed to approximately 800 to 1200 psi before the gas is sent to the main transportation pipeline. This is accomplished with three Caterpillar 3606s, with two 2250 horsepower electric driven compressors as backup/standby.

Hot Oil System

The hot oil system in the plant is used to provide heat to certain processes within the facility. It is a very basic system consisting of the following:

- Natural Gas Fired Heater This provides heat input into the system by burning natural gas and circulating the oil through the heater. The heater also has a convection section that assists in heating the regeneration gas for the molecular sieve.
- Hot Oil Pumps These pumps circulate the required amount of hot oil through the system.
- Hot Oil Surge Tank This tank provides expansion volume for the system. As the system heats up the liquid will expand. This tank allows for the liquid to expand without spilling out of the system.
- Heat Exchangers A series of exchangers, mainly the reboiler and regeneration gas heat exchanger that removes heat from the hot oil system and transfers it to the respective process.

Regen Gas Processing

During regeneration mode, hot gas is passed up through the vessel to drive the absorbed moisture off of the molecular sieve. The gas comes from the discharge of the residue compressors. The regen gas also drives off any residual sulfur compounds from the mole sieves. Due to the mercaptan content of the regen gas, it does not generally meet pipeline specifications and must be treated. The sulfur compounds must be removed along with the water that was picked up from the mole sieve beds. The regen gas stream volume ranges from 1.5 MMscfd to 6.0 MMscfd depending on the volume of the mole sieve beds and the concentration of sulfur compounds in the inlet gas.

Sulfur Removal

AU-1 through AU-3 are amine units that are used to remove H2S and CO2. The concentrated waste acid gas is then sent to the AGI well. The selective amine is regenerated using the hot oil heater media. The regen gas waste stream is composed primarily of sulfur compounds. This stream would be mixed with the acid gas stream produced by the main process amine unit. The acid gas that is removed by the amine unit will normally be disposed of by acid gas injection into a disposal well or, under emergency situations, by incinerating in a flare (FL-1).

It is assumed that the main process stream removes 100% of all sulfur compounds for ease of measurement and calculations. In fact, the main amine unit removes 99.8% to 99.9% of H2S and leaves some mercaptans in the gas stream. These additional sulfur compounds are removed by the mole sieves. This additional sulfur removal process will not generate any additional emissions as the emissions are already accounted for in the sulfur calculations of the main amine process unit.

The facility is authorized to operate continuously (8,760 hr/yr) at design maximum capacity processing rates. Frontier Field Services will minimize startup and shutdown activities at the facility in accordance with good operating principles and business objectives. This practice will serve to minimize total annual excess emissions from the facility due to startup, shutdown, and maintenance activities

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

Dagger Draw Gas Plant

B. Apply the 3 criteria for determining a single source:

<u>SIC Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

🗹 Yes 🛛 🗆 No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

🗹 Yes 🗆 No

<u>Contiguous</u> or <u>Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

🗹 Yes 🛛 🗆 No

C. Make a determination:

- ☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the EPA New Source Review Workshop Manual to determine if the revision is subject to PSD review.

- A. This facility is:
 - a minor PSD source before and after this modification (if so, delete C and D below).
 - □ a major PSD source before this modification. This modification will make this a PSD minor source.
 - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - **an existing PSD Major Source that has had a major modification requiring a BACT analysis**
 - □ a new PSD Major Source after this modification.
- B. This facility is not one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are not significant, because the emissions after the modification are below PSD major thresholds. The "project" emissions listed below do only result from changes described in this permit application, thus no emissions from other revisions or modifications are attributable to this facility. This project does not increase facility throughput or any other associated emissions increases. The project emissions (before netting) for this project are as follows:
 - a. NOx: 102.32 TPY
 - b. CO: 189.81 TPY
 - c. VOC: 154.94 TPY
 - d. SOx: 249.05 TPY
 - e. PM: 7.93 TPY
 - f. PM10: 7.93 TPY
 - g. PM2.5: 6.93 TPY
 - h. Fluorides: 0 TPY
 - i. Lead: 0 TPY
 - j. Sulfur compounds (H2S): 2.64 TPY
 - k. GHG: 49,330 TPY
- C. Netting is not required (project is not significant.
- D. BACT is not required for this modification, as this application is a minor modification.
- E. If this is an existing PSD major source, or any facility with emissions greater than 250 TPY (or 100 TPY for 20.2.74.501 Table 1 PSD Source Categories), determine whether any permit modifications are related, or could be considered a single project with this action, and provide an explanation for your determination whether a PSD modification is triggered.

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). **We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example,** if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: <u>http://cfpub.epa.gov/adi/</u>

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

Applicable State Regulations:

<u>State</u> <u>Regulation</u> Citation	Title	Appli es? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	This facility is authorized under a construction permit. Therefore, this regulation applies.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a SIP approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. The facility meets the maximum allowable concentrations of TSP, SO2, H2S, NOX and CO under this regulation.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. The owner or operator will operate the source at the facility having an excess emission, to the extent practicable, including associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions. The facility will also notify the NMED of any excess emissions per 20.2.7.110 NMAC.
20.2.23 NMAC	Fugitive Dust Control	No	Facility	This facility is not authorized under 20.2.73. Therefore, this regulation does not apply.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	Yes	H-1, H- 2, H-3	This facility has existing gas burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit, including H-1, H-2, and H-3. This rule applies.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility does not have oil burning equipment with a heat input of greater than 1,000,000 million British Thermal Units per year per unit. Therefore, this regulation does not apply
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	Yes	Facility	This regulation could apply to existing (prior to July 1, 1974) or new (on or after July 1, 1974) natural gas processing plants that use a Sulfur Recovery Unit to reduce sulfur emissions.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	This regulation could apply to storage tanks at petroleum production facilities, processing facilities, tanks batteries, or hydrocarbon storage facilities. This facility does not have a crude oil or condensate storage capacity greater than 65,000 gallons (1547.6 bbl) and is therefore not subject to this regulation.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This regulation could apply to sulfur recovery plants that are not part of petroleum or natural gas processing facilities. This facility is not a sulfur recovery plant. Therefore, this regulation does not apply.
20.2.50 NMAC	Oil and Gas Sector – Ozone Precursor Pollutants	Yes	ENG 1 through ENG-4, DEHY-1, DEHY-2, H-1, FUG	 This regulation establishes emission standards for volatile organic compounds (VOC) and oxides of nitrogen (NOx) for oil and gas production, processing, compression, and transmission sources. 20.2.50 NMAC subparts below: Check the box for the subparts that are applicable. All sources are existing: \[\begin{bmatrix} 113 - Engines and Turbines \[\begin{bmatrix} 114 - Compressor Seals \[\begin{bmatrix} 115 - Control Devices and Closed Vent Systems \[\begin{bmatrix} 116 - Equipment Leaks and Fugitive Emissions \[\begin{bmatrix} 117 - Natural Gas Well Liquid Unloading \[\begin{bmatrix} 118 - Glycol Dehydrators (below threshold) \[\begin{bmatrix} 119 - Heaters \[\begin{bmatrix} 120 - Hydrocarbon Liquid Transfers (below threshold) \[\begin{bmatrix} 122 - Pneumatic Controllers and Pumps (instrument air) \[\begin{bmatrix} 123 - Storage Vessels

<u>State</u> <u>Regulation</u> Citation	Title	Appli es? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
				 124 – Well Workovers 125 – Small Business Facilities 126 – Produced Water Management Unit 127 – Flowback Vessels and Preproduction Operations
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	ENG-1 through ENG-4, Ajax 1, Ajax 2, H-1, H- 2, H-3, FL-1, and FL-2	This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares unless your equipment is subject to another state regulation that limits particulate matter such as 20.2.19 NMAC (see 20.2.61.109 NMAC).
20.2.70 NMAC	Operating Permits	Yes	Facility	Through this permitting action, the facility will become subject to a Title V operating permit.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	If subject to 20.2.70 NMAC and your permit includes numerical ton per year emission limits, you are subject to 20.2.71 NMAC and normally applies to the entire facility.
20.2.72 NMAC	Construction Permits	Yes	Facility	This facility is permitted under 20.2.72 and is therefore subject to this regulation.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	All facilities that are a Title V Major Source as defined at 20.2.70.7.R NMAC, are subject to Emissions Inventory Reporting.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	The facility is a minor source for PSD purposes therefore this regulation is not applicable.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This application is being submitted under 20.2.72 and is therefore subject to this regulation.
20.2.77 NMAC	New Source Performance	Yes	ENG-1 through ENG-4	This facility is a stationary source with units that are subject to 40 CFR 60. Therefore, this regulation applies.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	This facility does not include equipment subject to 40 CFR 61. Therefore this regulation does not apply.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	This facility is not located in a non-attainment area. Therefore, this regulation does not apply.

<u>State</u> <u>Regulation</u> Citation	Title	Appli es? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.80 NMAC	Stack Heights	No	N/A	This regulation establishes requirements for the evaluation of stack heights and other dispersion techniques. This regulation does not apply as all stacks at the facility will follow good engineering practice.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	ENG-1 through ENG-4, Ajax 1, Ajax 2, DEHY-1, DEHY-2	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63. This facility operates units which are subject to 40 CFR 63. Therefore this regulation applies.

Applicable Federal Regulations

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 50	NAAQS	Yes	Facility	This regulation defines National Ambient Air Quality Standards (NAAQS). The facility meets all applicable NAAQS for NOx, CO, SO2, H2S, PM10, and PM2.5 under this regulation.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	ENG-1 through ENG-4	This facility is a stationary source with units that are subject to 40 CFR 60. Therefore, this regulation applies.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This facility does not include any electric utility steam generating units. Therefore, this regulation does not apply.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	This facility does not include any electric utility steam generating units. Therefore, this regulation does not apply.
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	Applicability: the facility does not have any steam generating units for which construction, modification or reconstruction is commenced after June 9, 1989 and that have a maximum design heat input capacity of 29 MW (100 MMBtu/hr) or less, but greater than or equal to 2.9 MW (10 MMBtu/hr).

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	This facility does not have any tanks with a volume of 420,000 gallons or larger. Therefore, this subpart does not apply.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	This facility does not have any storage vessels with a volume of 75 cubic meters. Therefore this regulation does not apply.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	This facility does not have any stationary turbines. Therefore, this regulation does not apply.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	Yes	Facility	This facility is subject to this regulation as it operates sweetening units, dehydration units, and compressors on site. The site was originally constructed in 2010 and relocated to New Mexico in 2021. The relocation in 2021 is not considered a modification per 40 CFR 60.14(e)(6); therefore, the facility remains subject to NSPS KKK in lieu of NSPS OOOO/OOOOa.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions	No	N/A	The facility is not subject to this subpart as the acid gas is completely reinjected into the geologic formation.
NSPS 40 CFR Part 60 Subpart 0000	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No	N/A	This facility is a gas plant. Therefore, equipment leaks are not subject to this regulation. No compressors at the facility were manufactured after 8/23/2011 and before 9/19/2015. Therefore, no compressors are subject to this regulation.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	ENG-1 through ENG-4, Ajax 1, Ajax 2	The compressors (Units ENG-1 through ENG-6) were constructed/modified after September 18, 2015 and are therefore subject to this regulation.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	There are no compression ignition engines installed at this facility. Therefore, this regulation does not apply.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	ENG-1 through ENG-4	The engines at this facility were manufactured in 2021 after the NSPS JJJJ date of June 12, 2006. The units are therefore subject to this regulation.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	There are no electric generating units at this facility. Therefore, this regulation does not apply.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	There are no electric generating units at this facility. Therefore, this regulation does not apply.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	This facility is not a Municipal Solid Waste Landfill. Therefore, this regulation does not apply.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	No units at this facility are subject to any of the subparts of 40 CFR 61.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	This facility does not process mercury. Therefore, this regulation does not apply.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	This facility is not a major source of HAPs. Therefore, this regulation does not apply.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
MACT 40 CFR 63, Subpart A	General Provisions	Yes	ENG-1 through ENG-4, Ajax 1, Ajax 2, DEHY-1, DEHY-2	This facility is a stationary source with units that are subject to 40 CFR 63. Therefore, this regulation applies.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DEHY-1, DEHY-2	This facility is subject to the requirements of 40 CFR 63 Subpart HH, which includes requirements applicable to area sources with TEG Dehydrators. The site is not a major source of HAPs, but an area source of HAPs and therefore is subject to this subpart. The dehydrator has the potential to emit less than 1 tpy (0.90 megagram per year) of benzene and is therefore exempt from the requirements of §63.764(d) pursuant to §63.764(e)(1)(ii).
MACT 40 CFR 63 Subpart HHH		No	N/A	This subpart applies to owners and operators of natural gas transmission and storage facilities that transport or store natural gas prior to entering the pipeline to a local distribution company or to a final end user. This facility is not a natural gas transmission facility. Therefore, this regulation does not apply.
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	The facility is not major for HAPs; therefore, this regulation does not apply.
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	This facility does not operate any coal & oil fire electric utility steam generating units. Therefore, this regulation does not apply.
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	ENG-1 through ENG-4, Ajax 1, Ajax 2	The compressor engines at this facility are subject to MACT ZZZZ and will comply with this regulation by complying with the requirements of NSPS JJJJ.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 64	Compliance Assurance Monitoring	Yes	AU-1, AU- 2, AU-3, DEHY-1, DEHY-2	 Applies only to Title V Major Sources A CAM plan is applicable to Title V Major sources if 1. The emission unit is subject to an emission limitation or standard for an air pollutant (or surrogate thereof) in an applicable requirement; 2. The emission unit uses a control device to achieve compliance with the emission limitation or standard; and 3. The emission unit has the pre-control device potential to emit greater than or equal to the amount in tons per year required for a site to be classified as a major source. Emissions for Unit AU-1, AU-2, and AU-3 combined are major in and of itself. Emissions for DEHY-1 and DEHY-2 are provided in section 19.1.
40 CFR 68	Chemical Accident Prevention	Yes	Facility	The facility is an affected facility, as it will use flammable process chemicals such as propane at quantities greater than the thresholds. The facility will develop and maintain an RMP for these chemicals.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	This facility does not generate commercial electric power or electric power for sale. Therefore, this regulation does not apply.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	This facility does not generate commercial electric power or electric power for sale. Therefore, this regulation does not apply.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	This facility does not generate commercial electric power or electric power for sale. Therefore, this regulation does not apply.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	This facility does not generate commercial electric power or electric power for sale. Therefore, this regulation does not apply.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	The facility does not service, maintain, or repair equipment containing refrigerants. Therefore, this regulation does not apply.

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

- Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ✓ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions During</u> <u>Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Startup and shutdown procedures are performed according to guidelines, which dictate proper procedural sequence to minimize emissions from the facility during such activities.

Equipment located at the plant is equipped with various safety devices that aid in preventing excess emissions to the atmosphere in the event of an operational emergency. In the event of a malfunction, startup, shutdown, or scheduled maintenance in which emission rates from the facility exceed permitted allowable emissions, Frontier Field Services will notify the AQB in accordance with 20.2.7 NMAC and the equipment responsible for the exceedance will be repaired as soon as possible.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

The operation of the Dagger Draw Gas Plant is intended to process 90 MMscfd of gas. As an alternative operating scenario, the plant will only process sweet gas. The gas will be treated to remove CO2, dehydrated to remove water and processed to remove heavy (liquid) hydrocarbons from the gas stream. Several plant systems will be involved to perform these functions as discussed in Section 10.

Air Dispersion Modeling

- 1) Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	Х
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

- □ See attached, approved modeling **waiver for all** pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- Attached in UA4 is a **modeling report for some** pollutants from the facility.
- □ No modeling is required.

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	16-A: Identification			
1	Name of facility:	Dagger Draw Gas Plant		
2	Name of company:	Frontier Field Services, LLC		
3	Current Permit number:	NSR-0001-M11		
4	Name of applicant's modeler:	Kimberly Krause		
5	Phone number of modeler:	512-773-1973		
6	E-mail of modeler:	kimberly@brightskyenv.com		

16-B: Brief							
1	Was a modeling protocol submitted and approved? Yes⊠ No□						
2	Why is the modeling being done? Other (describe below)						
3	 Describe the permit changes relevant to the modeling. Removal of H-4 and H-5 heaters from the permit. This equipment was never installed. Adjustments to emissions factors used for ENG-1 through ENG-6. ENG-5 is aka Ajax 2 a Addition of amine flash tank and SSM emissions at the Process Flare, FL-2. Updated gas sample composition updated for various sources. Updated stack parameters for ENG-1, ENG-2, and ENG-3. Addition of SSM emissions at the Acid Gas Flare, FL-1. 	and ENG-6 is a	ka Ajax 1				
4	What geodetic datum was used in the modeling?	NAD83					

5	How long will the facility be at this location?	Permanent					
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?			No⊠			
7	Identify the Air Quality Control Region (AQCR) in which the fa	cility is located	155				
	List the PSD baseline dates for this region (minor or major, as appropriate).						
8	NO2	Minor Source Baseline Date - 3/	16/1988				
0	SO2 Minor Source Baseline Date - 7/28/1978						
	PM10	20/1979					
	PM2.5	/13/2013					
	Provide the name and distance to Class I areas within 50 km c	of the facility (300 km for PSD perm	its).				
9	Carlsbad Caverns National Park						
10	Is the facility located in a non-attainment area? If so describe	below	Yes□	No⊠			
	N/A						
11	Describe any special modeling requirements, such as streamline permit requirements.						
	N/A						

16-C: Modeling History of Facility Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers). Latest permit and modification Pollutant number that modeled the Date of Permit Comments pollutant facility-wide. 0001-M11 4/26/2022 CO 0001-M11 NO₂ 4/26/2022 1 0001-M11 4/26/2022 SO_2 H_2S 0001-M11 4/26/2022 PM2.5 0001-M11 4/26/2022 PM10 0001-M11 4/26/2022 Lead N/A N/A Ozone (PSD only) N/A N/A NM Toxic Air N/A Pollutants N/A (20.2.72.402 NMAC)

16-	16-D: Modeling performed for this application					
1	For each pollutant, indicate the modeling performed and submitted with this application. Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.					

Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.
СО	\boxtimes				
NO ₂		\boxtimes			
SO ₂	\boxtimes	\boxtimes			
H ₂ S	\boxtimes	\boxtimes			
PM2.5		\boxtimes			
PM10	\boxtimes				
Lead					\boxtimes
Ozone					\boxtimes
State air toxic(s) (20.2.72.402 NMAC)					\boxtimes

1 6 -	16-E: New Mexico toxic air pollutants modeling List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application.									
	List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required.									
	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor				
2	N/A – No 7	ΓAPs were modeleα	d for this facility.							

16-	16-F: Modeling options						
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□				

16-	16-G: Surrounding source modeling						
1	Date of surrounding source retrieval	5/22/2023					
2	If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed.						

AQB Source ID	Description of Corrections
211E6	Removed-Site owned by Dagger Draw. Known Source has been removed.
211E25	Removed-Source is project source - double counted
211E29	Removed-Source is project source - double counted
211E46	Removed-Source is project source - double counted
211E47	Removed-Source is project source - double counted
211E51	Removed-Source is project source - double counted
211E52	Removed-Source is project source - double counted
211E53	Removed-Source is project source - double counted
211E50	Removed-Source is project source - double counted
211E48	Removed-Source is project source - double counted
211R10	Removed-Source is project source - double counted
39270X	Added-Site owned by Frontier Field Services. Known Source not in inventory. Modeled with parameters from July permit modification.
39270C1	Revised-Site owned by Frontier Field Services. Known Source incorrect in inventory. Modeled with stack height from July permit modification, flare Source parameters for exit temperature and velocity, and effective diameter from previous inventory data.
39270E2	Revised-Site owned by Frontier Field Services. Known Source incorrect in inventory. Modeled with parameters from July permit modification.
39270E8	Revised-Site owned by Frontier Field Services. Known Source incorrect in inventory. Modeled with parameters from July permit modification.
39270E12	Revised-Site owned by Frontier Field Services. Known Source incorrect in inventory. Modeled with parameters from July permit modification.
39270E13	Revised-Site owned by Frontier Field Services. Known Source incorrect in inventory. Modeled with parameters from July permit modification.
39270E19	Revised-Site owned by Frontier Field Services. Known Source incorrect in inventory. Modeled with parameters from July permit modification.
39270E20	Revised-Site owned by Frontier Field Services. Known Source incorrect in inventory. Modeled with parameters from July permit modification.
39270E21	Revised-Site owned by Frontier Field Services. Known Source incorrect in inventory. Modeled with parameters from July permit modification.
39270E22	Revised-Site owned by Frontier Field Services. Known Source incorrect in inventory. Modeled with parameters from July permit modification.
39270E23	Removed-Site owned by Frontier Field Services. Known Source has been removed.
3927EX	Added-Site owned by Frontier Field Services. Known Source not previously included inventory. Modeled using volume Source parameters.
198E233	Removed - Emissions Cap not to be modeled with facility SSM
198E236	Revised emission rates - Values pulled from permit
198E232	Removed - Emissions Cap not to be modeled with facility SSM
35645E6	Removed - Emergency Flare not to be modeled with facility SSM
39387E1	Removed - Temporary Flare not to be modeled with facility SSM
35643E6	Removed - Emergency Flare not to be modeled with facility SSM
26207E4	Revised - 100F not appropriate for heater, used temp from same size heater at other facility

198E55	Revised model using flare parameters - offsite inventory did not use flare parameters
26205E4	Revised - 100F not appropriate for heater, used temp from same size heater at other facility
26205E5	Revised - 100F not appropriate for heater, used temp from same size heater at other facility
26498E5	Revised - 100F not appropriate for heater, used temp from same size heater at other facility
26498E6	Revised - 100F not appropriate for heater, used temp from same size heater at other facility
26498E7	Revised - 100F not appropriate for heater, used temp from same size heater at other facility
26509E4	Revised - 100F not appropriate for heater, used temp from same size heater at other facility
26509E5	Revised - 100F not appropriate for heater, used temp from same size heater at other facility
26206E5	Revised - 100F not appropriate for heater, used temp from same size heater at other facility
26206E6	Revised - 100F not appropriate for heater, used temp from same size heater at other facility
29146E2	Revised - Modeled as point source - inventory listed as volume source - not appropriate for heater treater
29146E8	Revised - Modeled as point source - inventory listed as volume source - not appropriate for heater treater
29146E9	Revised - Modeled as point source - inventory listed as volume source - not appropriate for heater treater
28959E3	Revised - Modeled as point source - inventory listed as volume source - not appropriate for heater treater
28959E4	Revised - Modeled as point source - inventory listed as volume source - not appropriate for heater treater
26301E3	Revised - Modeled as point source - inventory listed as volume source - not appropriate for heater treater
26500E5	Revised - Modeled as point source - inventory listed as volume source - not appropriate for heater treater
26500E6	Revised - Modeled as point source - inventory listed as volume source - not appropriate for heater treater
198R154	Removed - SSM Emissions not to be modeled with facility SSM
26510E4	Revised - Modeled as point source - inventory listed as volume source - not appropriate for heater treater
26510E5	Revised - Modeled as point source - inventory listed as volume source - not appropriate for heater treater
199R2	Removed - SSM Emissions not to be modeled with facility SSM
199R3	Removed - Total Malfunction not to be modeled with facility SSM

16	16-H: Building and structure downwash								
1	1 How many buildings are present at the facility? 26 buildings are modeled at this facility								
2	How many above ground storage tanks are present at the facility?	11 above ground storage tanks were modeled.							
3	Was building downwash modeled for all buildings and tanks? If not explain why below. Yes⊠ No□								
4	Building comments	N/A							

16	16-I: Receptors and modeled property boundary									
1	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area.									
	A secure chai	n link fence su	rrounds the fa	cility, there are three po	ints to enter the facili	ty, but th	ese entry poir	nts are locked.		
2	Receptors must be placed along publicly accessible roads in the restricted area.YesNoAre there public roads passing through the restricted area?YesNo									
3	Are restricted	l area boundai	ry coordinates	included in the modeli	ng files?		Yes□	No⊠		
	Describe the	receptor grids	and their space	cing. The table below m	ay be used, adding ro	ws as ne	eded.			
	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility	Comme	ents			
	Variable density	Circular	50 m	From restricted facility	800 m from restricted facility					
4	Variable density	Circular	100 m	800 m from restricted facility	3,000 m from restricted facility					
	Variable density	Circular	250 m	3,000 m from restricted facility	6,000 m from restricted facility					
	Variable density	Circular	500 m	6,00 m from restricted facility	10,000 m from restricted facility					
	Variable density	Circular	500 m	10,00 m from restricted facility	50,000 m from restricted facility					
	Describe rece	ptor spacing a	long the fence	e line.						
5	Along the fac	ility fence line	a 25 m space	d boundary receptor grid	d was applied.					

6 Describe the PSD Class I area receptors.

		••	-									
16	-J: Mod	eling S	cenari	OS								
	rates, time	s of day, ti ative oper	imes of yea ating scena	ar, simulta arios shou	neous or a d correspo	lternate o ond to all p	peration o	f old and n	os include u ew equipme Application	ent durin	g transit	tion periods,
1	Original ap including n normal ope	Original form UA4 submitted 6/2023 represents modeling for all sitewide changes including the SSM emissions from FL-2. Original approved modeling represents CASE #1 in which FL-2 SSM is occurring and normal operation of all other sources including normal operation of FL-1. This submittal of the modeling represents CASE #2 in which FL-1 SSM is occurring and normal operation of all other sources, including normal operation of FL-2. FL-1 SSM and FL-2 SSM will not occur simultaneously.										
	 For CASE #2, the FL-1 SSM is considered to be an emergency operation which occurs less than 500 hours per year; therefore, no increment modeling is being resubmitted as part of this update. The following modeling runs were submitted in 6/2023 (and approved) and are not affected as part of CASE #2: NO2 CLASS II PSD INCREMENT PM10 24-hour CLASS II PSD INCREMENT PM2.5 24-hour CLASS II PSD INCREMENT PM2.5 annual CLASS II PSD INCREMENT NO2 annual SIL 											
2	Which scenario produces the highest concentrations? Why?											
	CASE #2 (F concentrat		-				-		of hourly C	O, SO2, a	nd NO2	due to the
3	Were emis (This quest the factors	ion pertai	ns to the "S	SEASON",	"MONTH",	, "HROFDY	-		ets, not to	Yes□		No⊠
4			-	-					ore the facto if it makes f		-	
	Hour of Day	Factor	Hour of Day	Factor								
	1		13									
	2		14									
	3		15									
	4		16									
5	5		17									
	6		18									
	7		19									
	8		20									
	9		21				1	1				
	10		22									
	11		23									

	12		24								
	If hourly, va	ariable em	ission rate	s were use	ed that we	re not deso	ribed abov	ve, describ	e them be	low.	
6	Were diffei below.	rent emissi	on rates u	sed for sh	ort-term a	nd annual	modeling?	If so desc	ribe	Yes□	No⊠

16	-K: NO ₂ M	Aodeling				
	Which type: Check all th	s of NO2 modeling were used? at apply.				
	ARM2					
1		100% NO _x to NO ₂ conversion				
		PVMRM				
		OLM				
		Other:				
2	Describe the	e NO2 modeling.				
	The ARM2	Methodology was used with the default maximum and minimum ambient ratios.				
3		lt NO ₂ /NO _x ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not d justify the ratios used below.	Yes⊠	No□		
4	Describe the design value used for each averaging period modeled.					
		n eighth high				
	Annual Higr	est Annual Average of Three Years:				

16-	L: Ozone Analysis
	NMED has performed a generic analysis that demonstrates sources that are minor with respect to PSD do not cause or
	contribute to any violations of ozone NAAQS. The analysis follows.
1	The basis of the ozone SIL is documented in <i>Guidance on Significant Impact Levels for Ozone and Fine Particles in the</i>
	Prevention of Significant Deterioration Permitting Program, EPA, April 17, 2018 and associated documents. NMED
	accepts this SIL basis and incorporates it into this permit record by reference. Complete documentation of the ozone
	concentration analysis using MERPS is included in the New Mexico Air Quality Bureau Air Dispersion Modeling Guidelines.
	The MERP values presented in Table 10 and Table 11 of the NM AQB Modeling Guidelines that produce the highest
	concentrations indicate that facilities emitting no more than 250 tons/year of NO _x and no more than 250 tons/year of VOCs
	will cause less formation of O ₃ than the O ₃ significance level.
2	$[O_3]_{8-hour} = \left(\frac{250\frac{ton}{yr}}{340_{MERP_{NOX}}} + \frac{250\frac{ton}{yr}}{4679_{MERP_{VOC}}}\right) \times 1.96 \mu\text{g/m}^3$ $= 1.546 \mu\text{g/m}^3, \text{ which is below the significance level of } 1.96 \mu\text{g/m}^3.$

	Sources that produce or exceeding the ozone NA		w the ozone SIL do not ca	use or contribute	to air co	ontaminan	it levels		
3	VOCs? Sources that emi	it at least 250 tons per year	f NO _x or at least 250 tons ar of NO _x or at least 250 to ire an individual analysis.	ons per year of	Yes□		No⊠		
	For new PSD Major Sources or PSD major modifications, if MERPs were used to account for ozone fill out the information below. If another method was used describe below.								
5	NO _x (ton/yr)	MERP _{NOX}	VOCs (ton/yr)	MERP _{voc}		[O ₃] _{8-hou}	r		

	Select the pollutants for w	hich plume deple	tion modeling was u	sed.					
1	□ PM2.5								
	□ PM10								
	⊠ None								
2	Describe the particle size of	listributions used	. Include the source of	of inforr	mation.				
Z	N/A. Size distributions we	N/A. Size distributions were not implemented in this modeling.							
3	Does the facility emit at least tons per year of SO ₂ ? Sour NO _X or at least 40 tons per significant amounts of pre- formation of PM2.5.	ces that emit at le year of SO ₂ are c	east 40 tons per year considered to emit	of	Yes⊠	No□			
1	Was secondary PM model	ed for PM2.5?			Yes⊠	No□			
	If MERPs were used to acc below.	ount for seconda	ry PM2.5 fill out the i	nforma	tion below. If another m	ethod was used describe			
	Pollutant	NO _x	SO ₂		[PM2.5] _{24-hour}				
5	MERP _{annual}	N/A	N/A		0.318				
	MERP _{24-hour}	7,331.35	990.67		[PM2.5] _{annual}				
	Emission rate (ton/yr)	102.32	249.05		N/A				

16-	-N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
	N/A

Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source.
 Include a haul road in the relocation modeling.
 N/A

16-	O: PSD Increm	ent and Source	e IDs					
1		he Tables 2-A, 2-B, 2-C, se match? If not, provid ot match below.				Yes	X	No□
	Unit Number in UA-2			Unit Number	in Modeling Files			
2	The emission rates in these match? If not, e	the Tables 2-E and 2-F s xplain why below.	hould match the	ones in the mo	odeling files. Do	Yes	X	No□
3	Have the minor NSR e been modeled?	exempt sources or Title \	/ Insignificant Ac	tivities" (Table 2	2-B) sources	Yes	X	No□
	Which units consume	increment for which po	llutants?			•		
	Unit ID	NO ₂	SO ₂	PM10			PM2.5	
	ENG-1	Yes	Yes	Yes			Yes	
	ENG-2	Yes	Yes	Y	Yes		Yes	
	ENG-3	Yes	Yes	Y	les		Yes	
4	ENG-4	Yes	Yes	Y	les		Yes	
	ENG-5 aka Ajax 2	Yes	Yes	Y	les		Yes	
	ENG-6 aka Ajax 1	Yes	Yes	Yes		Yes		
	H-1	Yes	Yes	Y	les		Yes	
	H-2	Yes	Yes	Y	les		Yes	
	Н-3	Yes	Yes	Y	les		Yes	
	FL-1	Yes	Yes	Y	les		Yes	
	FL-2	Yes	Yes	Y	les		Yes	
5	PSD increment descri (for unusual cases, i.e after baseline date).	otion for sources. ., baseline unit expande	d emissions	N/A				
6	This is necessary to ve	allation dates included in rify the accuracy of PSD on status is determined	increment mod	eling. If not plea	ase explain how	Yes	X	No□

16	16-P: Flare Modeling							
1	For each flare or flaring scenario, complete the following							
	Flare ID (and scenario)	Gross Heat Release (cal/s)	Effective Flare Diameter (m)					
	FL-1 (Normal + SSM)	20.35	3,167,183.53	1.58				
	FL-2 (Normal)	24.06	507,936.52	0.62				

16-	Q: Volume and Related Sources						
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing installation dates below.	Yes	No⊠				
	Describe the determination of sigma-Y and sigma-Z for fugitive sources.						
2	The pipe rack height of height of 10 feet from the ground and length of the AGI well inlet area of 88 ft was used as the dimensions of sigma-Y and sigma-Z values for the fugitive source.						
3	Describe how the volume sources are related to unit numbers. Or say they are the same.						
	They are the same.						
_	Describe any open pits.						
4	N/A						
5	Describe emission units included in each open pit.						
	N/A						

16-	-R: Backgr	ound Concentrations				
		provided background concentrations used? Identify the background station f non-NMED provided background concentrations were used describe the data	Yes⊠	No□		
	NO ₂ : Hobbs-Je	efferson (350250008)				
1	PM2.5: Hobbs-Jefferson (350450019)					
	PM10: Hobbs-Jefferson (350250008)					
	SO ₂ : Amarillo (483751025)					
	Other:					
	Comments:					
2	Were backgro	und concentrations refined to monthly or hourly values? If so describe below.	Yes⊠	No□		

16-	S: Meteorological Data		
	Was NMED provided meteorological data used? If so select the station used.		
1	Choose an item.	Yes⊠	No□
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discu handled, how stability class was determined, and how the data were processed.	uss how missing	data were

N/A

16-T: Terrain						
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□			
2	What was the source of the terrain data?					
	National Elevation Dataset (NED) files were obtained from the following USGS website:					
	https://apps.nationalmap.gov/downloader/#/					

16-	U: Modeling Files							
	Describe the modeling files:							
1	File name (or folder and file name)	Pollutant(s)		e (ROI/SIA, cumulative, ity analysis, other)				
	Dagger Draw SIL_20XX_CO_1	СО	SIL					
	H2S_NMAAQS_20XX_H2S_1	H2S	CIA - NN	1AAQS				
	PM10_24H_NAAQSINC_2017- 2021_PM10_1	PM10	CIA - NA	IAAQS				
	Dagger Draw SIL_20XX_PM10_A	PM10	SIL					
	Dagger Draw SIL_20XX_PM25_1	PM25	SIL					
	Dagger Draw SIL_2017-2021_NO2_1	NO2	SIL					
	Dagger Draw SIL_20XX_SO2_1	SO2	SIL					
	Dagger Draw CIA SO2_1H_2017- 2021_SO2_1	SO2	CIA - NA	AQS				
	Dagger Draw CIA_NO2_1H_2017- 2021_NO2_1	NO2	CIA - NA	AQS				
	Dagger Draw CIA_ PM25_24H_2017- 2021_PM2.5_1	PM2.5	CIA - NA	4AQS				
	Dagger Draw SO2_1H NAAQS - Culpability_2017-2021_SO2_1	SO2	Culpabil	ility Analysis				
16-	V: PSD New or Major Mo	dification Applications	•					
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?			Yes□	No⊠			
2	If not, did AQB approve an exemption fi	QB approve an exemption from preconstruction monitoring?		Yes□	No⊠			
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.							
	N/A							
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.							
	N/A							

5 If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No⊠
--	------	-----

16-W: Modeling Results						
1	If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so describe below. Yes⊠					
	Culpability analysis conducted for 1-hour SO2.					
2	 Identify the maximum concentrations from the modeling analysis. Rows may be modified, ac below as necessary. For CASE #2: The GLCmax for SO₂ 1-hour from all sources is 204.13 μg/m³. The maximum contribution fro μg/m³ at any receptor. There is one receptor with an exceedance over the SO₂ 1- hour NAAQS. The maximally affected receptor with UTM coordinates 563,608 m E, 3,625,665 m N has a m μg/m³ from all modeled sources. The exceedance at this receptor is attributed to a single offsi the NAAQS all on its own. NMED Source ID 26207E4 contributes 202.88 ug/m3 while the fa μg/m³ to the concentration at this receptor. No other offsite source contributes an exceedance at this receptor and associated exceedance be removed from the source offsite source contributes an exceedance at the source contributes and exceedance at the source	om the facility aximum cond te source with cility sources above the NA	y sources alone is 184.09 centration of 204.25 h a concentration above s alone contribute 18.06 AQS to this receptor.			

Modeling Results – Case #2

Pollutant, Time Period, and Standard	Modeled Facility Concentrati	Modeled Concentration with Surrounding	Secondary PM (µg/m ³)	Background Concentration (μg/m3)	Cumulative Concentration (µg/m3)	Value of Standard	Percent of Standard		Location		
	on (µg/m³)	Sources (µg/m ³)	(ro/)	(P0,)	(20,)	(μg/m3)	(μg/m3)		UTM E (m)	UTM N (m)	Elevation (m)
CO (1-HR) Significance	198.36				198.36	2,000.00	9.92%	552,137	3,619,980	1,062	
CO (8-HR) Significance	149.70				149.70	500.00	29.94%	552,208	3,619,915	1,061	
SO ₂ (1-HR) NAAQS	184.09	204.25		N/A	204.13	196.40	103.94%	563,608	3,625,665	1,006	
NO2 (1-HR) NAAQS	116.87			54.50	54.50	188.03	28.98%	552,208	3,619,915	1,061	
PM ₁₀ (24-HR) NAAQS		5.59		37.30	42.89	150.00	28.59%	552,208	3,619,915	1,061	
PM _{2.5} (24-HR) NAAQS		4.46	0.3092	16.50	21.27	35.00	60.78%	552,158	3,619,915	1,061	
H ₂ S (1/2 HR) NMAAQS		68.00			68.00	139.30	48.82%	551,978	3,619,940	1,062	

Modeling Results – Case #1

Pollutant, Time Period, and Standard	Modeled Facility Concentrati on (μg/m3)	Modeled Concentration with Surrounding Sources (μg/m3)	Secondary Formation (µg/m3)	Background Concentration (μg/m3)	Cumulative Concentration (µg/m3)	Value of Standard (µg/m3)	Percent of Standard	UTM East (m)	UTM North (m)	Elevation (ft)
CO (1-HR) NMAAQS	191.812	191.812			191.812	14997.5	1.3	552,158.0	3,619,865.0	3469
CO (8-HR) NMAAQS	143.662	143.662			143.662	9960.1	1.4	552,208.0	3,619,915.0	3468
H ₂ S (1/2 HR) NMAAQS	80.324	81.304			81.304	139.3	58.4	552,137.0	3,619,880.0	3469
NO2 (1-HR) NAAQS	120.545	120.545		65.800	186.345	188.03	99.1	552,158.0	3,619,965.0	3468
NO ₂ (ANN) NMAAQS	6.715	6.715		9.300	16.015	94.02	17.0	552,079.0	3,619,997.0	3468
NO2 (ANN) PSD Class II		6.715		9.300	16.015	25	64.1	552,079.0	3,619,997.0	3468
PM ₁₀ (24-HR) NAAQS	8.258	5.439		37.300	42.739	150	28.5	552,208.0	3,619,915.0	3468
PM ₁₀ (24-HR) PSD Class II		6.133			6.133	30	20.4	552,208.0	3,619,915.0	3468

PM ₁₀ (ANN) PSD Class II	0.580	0.730			0.730	17	4.3	552,208.0	3,619,915.0	3468
PM _{2.5} (24-HR) NAAQS	5.457	3.848	0.0872	16.500	20.435	35	58.4	552,208.0	3,619,915.0	3468
PM2.5 (ANN) NAAQS	0.603	0.926	0.0024	7.100	8.028	12	66.9	552,079.0	3,619,997.0	3468
PM _{2.5} (24-HR) PSD Class II		4.239	0.0872		4.326	9	48.1	552,208.0	3,619,915.0	3468
PM _{2.5} (ANN) PSD Class II		0.715	0.0024		0.718	4	17.9	552,054.0	3,619,997.0	3468
SO ₂ (1-HR) NAAQS	3.250	64.781			64.781	196.4	33.0	552,137.0	3,619,830.0	3470
SO ₂ (ANN) NMAAQS		1.202			1.202	52.4	2.3	552,137.0	3,619,830.0	3470
SO ₂ (3-HR) PSD Class II	3.613	3.613			3.613	512	0.7	551,975.0	3,619,466.0	3476
SO ₂ (ANN) PSD Class II	0.141	1.180			1.180	20	5.9	552,137.0	3,619,830.0	3470
SO ₂ (24-HR) PSD Class II	1.575	1.575			1.575	91	1.7	551,975.0	3,619,466.0	3476

16-X: Summary/conclusions

A statement that modeling requirements have been satisfied and that the permit can be issued.

1 Frontier Field Services has demonstrated that the proposed changes to NSR Permit 0001-M11 would neither cause nor contribute to an exceedance of the standards for SO₂, CO, H₂S, NO₂, PM_{2.5}, and PM₁₀.

Section 17

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Compliance Test History Table

Unit No.	Test Description	Test Date
Facility	Annual Inlet Extended Analysis	6/8/2022
FL-1	Annual Method 22 visible emission monitoring event to demonstrate compliance with the no visible emission standard.	12/14/2022
FL-2	Annual Method 22 visible emission monitoring event to demonstrate compliance with the no visible emission standard.	12/14/2022
FL-1	Perform an annual flare gas analysis to include H2S, Total Sulfur, VOC, and Heating Value.	2/24/2022
FL-2	Perform an annual flare gas analysis to include H2S, Total Sulfur, VOC, and Heating Value.	3/31/2022
ENG-1	Initial compliance tests shall be conducted within sixty days after the unit achieves the maximum normal production rate.	10/25/2022
ENG-2	Initial compliance tests shall be conducted within sixty days after the unit achieves the maximum normal production rate.	10/25/2022
ENG-3	Initial compliance tests shall be conducted within sixty days after the unit achieves the maximum normal production rate.	10/26/2022
Ajax 1	Initial compliance tests shall be conducted within sixty days after the unit achieves the maximum normal production rate.	10/26/2022
Ajax 2	Initial compliance tests shall be conducted within sixty days after the unit achieves the maximum normal production rate.	1/27/2023
ENG-1	Engine emissions testing required quarterly.	3/28/2023
ENG-1	Engine emissions testing required quarterly.	04/25/2023
ENG-1	Engine emissions testing required quarterly.	07/21/2023
ENG-1	Engine emissions testing required quarterly.	10/08/2023
ENG-1	Engine emissions testing required quarterly.	02/13/2024
ENG-2	Engine emissions testing required quarterly.	3/28/2023
ENG-2	Engine emissions testing required quarterly.	04/25/2023
ENG-2	Engine emissions testing required quarterly.	07/21/2023
ENG-2	Engine emissions testing required quarterly.	10/08/2023
ENG-2	Engine emissions testing required quarterly.	02/12/2024
ENG-3	Engine emissions testing required quarterly.	3/28/2023
ENG-3	Engine emissions testing required quarterly.	04/25/2023
ENG-3	Engine emissions testing required quarterly.	09/14/2023
ENG-3	Engine emissions testing required quarterly.	10/08/2023
ENG-3	Engine emissions testing required quarterly.	02/08/2024
Ajax 1	Engine emissions testing required quarterly.	3/28/2023
Ajax 1	Engine emissions testing required quarterly.	04/25/2023
Ajax 1	Engine emissions testing required quarterly.	09/14/2023
Ajax 1	Engine emissions testing required quarterly.	12/20/2023
Ajax 1	Engine emissions testing required quarterly.	2/12/2024

Unit No.	Test Description	Test Date
Ajax 2	Engine emissions testing required quarterly.	3/28/2023
Ajax 2	Engine emissions testing required quarterly.	04/25/2023
Ajax 2	Engine emissions testing required quarterly.	09/14/2023
Ajax 2	Engine emissions testing required quarterly.	12/20/2023
Ajax 2	Engine emissions testing required quarterly.	2/12/2024
Facility	Annual Inlet Extended Analysis	08/03/2023
FL-1	Perform an annual flare gas analysis to include H2S, Total Sulfur, VOC, and Heating Value.	09/11/2023
FL-2	Perform an annual flare gas analysis to include H2S, Total Sulfur, VOC, and Heating Value.	08/03/2023
FL-1	Annual Method 22 visible emission monitoring event to demonstrate compliance with the no visible emission standard.	10/12/2023
FL-2	Annual Method 22 visible emission monitoring event to demonstrate compliance with the no visible emission standard.	10/12/2023

Compliance Test History Table, continued

Section 19

Requirements for Title V Program

Do not print this section unless this is a Title V application.

Who Must Use this Attachment:

* Any major source as defined in 20.2.70 NMAC.

- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See <u>www.env.nm.gov/air-quality/air-quality-title-v-operating-permits-guidance-page/</u>. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this item here.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

Monitoring Protocols

40 CFR 64.2 states that the requirements of this part shall apply to an emissions unit at a major source if the unit satisfies all of the following criteria:

1) The unit is subject to an emission limitation or standard for the applicable regulated air pollutant;

- 2) The unit uses a control device to achieve compliance with any such emission limitation or standard; and
- 3) The unit has potential pre-control device emissions of the applicable regulated air pollutant that are equal to or greater than 100 percent of the amount, in tons per year, required for a source to be classified as a major source.

Compliance Assurance Monitoring Plan for the Amine Units

Emissions from the Amine Units, AU-1, AU-2, and AU-3 combined, will be controlled by an acid gas injection system (AGI, Ariel JGA/6) with flaring (FL-1 Acid Gas Flare with Pilot) as an option during upsets and malfunctions. There are several components to the CAM for the amine units. Acid gas compressor and compressor engine parameters will be monitored. In addition, the flare valve position and flare pilot flame will be monitored. The monitoring system will be part of the PLC system. The following approach will be applicable to the amine units, the acid gas injection system, and the flare FL-1.

Justification

Proper operation of the acid gas injection system should result in no emissions, other than required maintenance activities. Proper operation is ensured by continuous monitoring of compressor discharge pressure and the wellhead pressure and alarming should the

system malfunction (e.g., pressure loss indicating a leak or pressure gain above 1200 psi indicating a blockage in the system). In these events, in addition to alarming, the valve will automatically divert the acid gas to the flare.

CAM Requirement	Acid Injection System (AGI)	Flare (FL-1)
Performance Indicator [64.3(a)(1)]	Discharge pressure (psig) of acid gas compressor will be continuously monitored as will the well head pressure.	Flare valve position.
		Presence of combustion in the flare or flare pilot.
Measurement Approach	The wellhead pressure at the disposal well is monitored by a pressure transducer.	The flare valve position is monitored.
	The discharge pressure of acid gas from the compressor is monitored by a pressure transducer.	Presence of combustion in the flare or flare pilot is monitored continuously by a well-maintained alarm that signals non-combustion of gas.
Indicator Range [64.4(a)(2)]	The pressure differential between the wellhead and the acid gas compressor discharge must be a positive value.	The valve position is either OPEN or SHUT.
	Acceptable wellhead pressure is not to exceed 1200 psig.	An excursion is defined as no flame present or no flame sensed.
	Acceptable discharge pressure is not to exceed 1200 psig.	
Data Representativeness [64.3(b)(1)]	As long as a positive pressure differential is maintained between the acid gas discharge and the wellhead, acid gas will flow between the two. There are valves to close each component so that the pressure differential will either be positive or neutral.	If the valve is not open, gas routed to the flare is not combusted.
		If the pilot flame is not present, gas routed to the flare is not combusted.
Verification of Operational Status [64.3(b)(2)]	The acid gas compressor discharge pressure and the wellhead pressure are checked visually at least once per day during normal working hours.	The valve position shall be visually checked at least once per day during normal working hours.
		The compressor alarm system automatically opens the flare valve.
	An audible alarm occurs if the system malfunctions (pressure loss or pressure gain above 1200 psig).	An audible alarm occurs due to non- combustion of the flare pilot and/or flare flame.
	The pressure transducer alarm system is maintained. The operator records the data and results of each maintenance activity and any repairs or replacements made.	The non-combustion alarm system is maintained. The operator records the date and result of each maintenance activity, and any repairs or replacements made.

CAM Requirement	Acid Injection System (AGI)	Flare (FL-1)
QA/QC Practices and Criteria [64.3(b)(3)]	The pressure transducer is verified at least once every 12-months in accordance with manufacturer's specifications. Verification procedures include adding a known amount of pressure to the system to verify the accuracy of the reading of the transducer.	During initial startup and testing activities, the automatic valve adjustments are checked. Valve adjustments are checked at least once every 12-months.
	At least annually, or more frequently as recommended by the manufacturer, inspections and regular maintenance are performed on the acid gas compressor.	The flame alarm system is tested once in January and once in July of each year by turning off the thermocouples and recording the time required for the alarm to respond.
Monitoring Frequency [64.3(b)(4)]	The PLC system continuously monitors the discharge pressure and the wellhead pressure.	The PLC system continuously monitors the valve position.
		The PLC system continuously monitors the presence of the flare pilot and/or flare flame.
Data Collection Procedures [64.3(b)(4)(i) and (iii)]	The discharge pressure and the wellhead pressure are electronically recorded at least once every 24 hours. In addition, periodic manual readings may be taken.	The PLC system records any change of the valve position, the valve position (open or shut), and the cumulative time that the valve was in that position when the valve position changed.
	Records are maintained of the pressure transducer verification and of inspections, repairs, and maintenance to the pressure transducers.	Records are maintained of non- combustion of the flare or flare pilot for any reason, including failure to deliver fuel and of inspection, repairs, and/or maintenance to the flare and flare pilot.
Averaging Period [64.3(b)(4)]	For the discharge pressure and the wellhead pressure, there is no averaging period. The values are not to exceed minimum and maximum values in the range specified.	Not applicable. The valve is either open or shut. The flare and pilot flare are either present or not.

Compliance Assurance Monitoring Plan

Dehydration Units Using the Process Flare for VOC and H2S Control (FL-2)

I. Background

A. Emissions Unit

Description: Process Flare Identification: FL-2

B. Applicable Regulation, Emission Limit, and Monitoring Requirements

Regulation: Regulated Pollutant: Emission Limit:	NSR Permit and 40 CFR 64 VOC, SO2 Proposed VOC Limit: 705 pph and 116.6 tpy Proposed SO2 Limit: 62.1 pph and 53.7tpy
Monitoring in Permit:	Continuous flare pilot with pilot alarm Continuous flow rate Annual visible emissions

C. Control Technology: Flare

II. Monitoring Approach

The monitoring approach is provided in the table below.

III. Data Availability

Monitoring of the flare pilot is continuous, and any outages will create an alarm signal, which is recorded. Visible emissions will be monitored annually using Method 22. Flow is monitored and recorded continuously.

CAM MONITORING PLAN FOR Process Flare FL-2

	Indicator 1	Indicator 2	Indicator 3
I. Performance Indicator [64.3(a)(1)]	Pilot Flame	Presence of Visible Emissions	Totalized flow volume
Measurement Approach	Pilot flame is constantly monitored using a thermocouple or infrared (IR) device as approved by the Division.	The flare will be monitored for visible emissions in accordance with 40 CFR 60.18 once per year that the flare is operational.	Gas flow to the flare will be measured continuously with a flow meter.
II. Indicator Range or Designated Condition [64.3(a)(2)]	The thermocouple and/or IR is linked to a programmable logic controller (PLC) which constantly monitors the pilot status for presence or absence of flame. Absence of flame causes spark igniter to relight pilot. After set time with no pilot flame, the pilot goes to alarm.	Visible emissions are present or not present	Once every 24 hours, SO2 emissions are calculated based on gas flow to the flare. The calculated emissions are compared to the most recent permit limits.
III. Performance Crit	eria		
A. Data Representativeness [64.3(b)(1)]	Presence of a flame indicated on the PLC pane, PLC registration of pilot status, automatic spark igniter ignition.	Efficient combustion is assumed if no visible emissions are observed.	Calculation of emission rates on a daily basis demonstrates compliance with permitted emission limitations.
B. Verification of Operational Status and AQ Practices and Criteria Verifying Data Validity [64.3(b)(2) & 64.3(b)(3)]	Thermocouple and/or IR sensor visually checked quarterly, and the alarm tested twice per year.	Visible emissions will be determined in accordance with Method 22 of Appendix A of 40 CFR 60 Subpart A.	A sample of the flared gas is analyzed annually. The new H2S concentration is used in the daily calculations to ensure data quality.
C. Monitoring Frequency [64.3(b)(4)]	The presence of a pilot flame is monitored continuously. The thermocouple and/or IR sensor will be monitored quarterly and the alarm monitored semiannually.	Monitoring of visible emissions will occur once per year that the flare is operational.	Flow is continuously measured.
. Data Collection Procedures [64.3(b)(4)]	Presence or absence of flame will be recorded in a log.	Records shall be maintained of all visible emissions observations.	Totalized flow is continuously recorded while the flare is in operation.
E. Averaging Period [64.3(b)(4)]	None	Method 22 shall be conducted over a 30-minute time period or the full duration of the event, whichever is shorter.	24 hours

19.2 - **Compliance Status** (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

A compliance matrix detailing each of the requirements of NSR 0001-M11 has been prepared and associated activities implemented. Please refer to the table below, which provides each actionable requirement, a description of how it is monitored, how recordkeeping is maintained, and associated reporting obligations for each detail.

<u>Unit</u>	<u>Requirement</u>	Monitoring	Recordkeeping	Reporting
Acid Gas Injection System	Monitor the pressure into the AGI well to ensure proper injection of the acid gas stream.	AGI Pressure monitored through Plant DCS.	Plant DCS/Historian	Not applicable
Acid Gas Injection System	Install, maintain, and operate AGI well with redundant compressors (Ajax 1 & 2).	Two gas driven compressors are installed. Operations are monitored through the Plant DCS.	Plant DCS	Not applicable
Acid Gas Injection System	At all times, except during scheduled maintenance of a single compressor, the redundant compressor shall be available to inject gas into the AGI well.	Two gas driven compressors are installed. Operations are monitored through the Plant DCS.	Plant DCS	Not applicable
Acid Gas Injection System	At all times either Ajax 1 or Ajax 2 shall be available to accept the entire acid gas stream during maintenance or failure of the operating compressor.	Two gas driven compressors are installed. Operations are monitored through the Plant DCS.	Plant DCS	Not applicable
Acid Gas Injection System	Maintain a positive pressure differential between the Acid Gas Compressor discharge and the well head.	AGI Pressure monitored through Plant DCS. A check valve (unidirectional valve) prevents gas sent to the AGI well from moving backwards to compression.	Plant DCS	Not applicable
Acid Gas Injection System	Inspect and maintain the AGI Well	Scheduled Maintenance Work Orders	Scheduled Maintenance Work Orders	Not applicable
Acid Gas Injection System	The AGI compressors shall be maintained and inspected in accordance with the manufacturer's recommendations.	Scheduled Maintenance Work Orders	Scheduled Maintenance Work Orders	Not applicable
Amine System	Acid Gas Flare is to be used only during an upset of the AGI system.	The Plant DCS records times and conditions when gas is routed to acid gas flare. Cygnet records flare volumes.	Plant DCS/Historian, Cygnet, Enviance	Excess Emission Event Reporting, Air Emissions Inventory
Amine System	Amine unit flash tank shall at all times be routed to the inlet, other process stream in the facility, or the Process Flare FL-2.	The amine flash is piped to the facility inlet.	Plant DCS/Historian	Not applicable

Amine System	Amine unit and associated equipment must achieve a continuous and permanent daily rolling annual average of 100% control efficiency in reducing SO2 emissions.	The facility is designed to extract and reinject SO2 from the inlet gas stream.	Post-amine system gas analysis, Plant DCS/Historian	Excess Emission Event Reporting, Air Emissions Inventory
Amine System	Inspect amine units and associated control equipment to ensure they are controlling as required and operated in accordance with manufacturers operating procedures.	Operations are monitored continuously through the Plant DCS and operator's daily inspections.	Plant DCS, Scheduled Maintenance Work Orders	Not applicable
Amine System	Total sulfur extended gas analysis to measure mercaptans	An extended gas analysis using ASTM D5504 is run monthly.	Retain Gas Analyses	Not applicable
Compressors	Compressor rod packing changeouts must be completed every 3 years for units subject to OOOOa.	Compressor overhauls are managed through Scheduled Maintenance Work Orders. These are set on a 3-year cycle.	Scheduled Maintenance Work Orders	OOOOa Reporting to EPA
Dehydration System	Glycol Pump Circulation Rate shall not exceed 600 GPH or 10 GPM.	The Plant DCS records equipment operational parameters, including the glycol pump rate.	Plant DCS/Historian	Not applicable
Dehydration System	Still vent emissions shall at all times be routed to the condenser. All non- condensed hydrocarbon vapors shall be routed directly to FL-2 (process flare)	Plant DCS	Plant DCS/Historian	Not applicable
Dehydration System	Flash Tank vents must be routed to FL- 2 at all times.	Plant DCS	Plant DCS/Historian	Not applicable
Dehydration System	Inspect the glycol dehy and control equipment to ensure operating as designed.	Scheduled Maintenance Work Orders	Scheduled Maintenance Work Orders	Not applicable
Dehydration System	Maintain in accordance with manufacturers specifications.	Scheduled Maintenance Work Orders	Scheduled Maintenance Work Orders	Not applicable
Dehydration System	Compliance with the VOC limits demonstrated by no exceeded inlet daily flow rate of 90 MMSCFD.	Plant DCS	Scheduled Maintenance Work Orders	Not applicable
Dehydration System SSM	Compliance with the VOC limits demonstrated by not exceeding 3.06 MMscf/hour and 949 MMscf/year sweetened gas (dehy outlet) gas to FL- 2	Plant DCS	Plant DCS/Historian	Not applicable
Dehydration System	Record daily natural gas throughput	Cygnet	Cygnet	Not applicable
Dehydration System	Promax Run	Promax Output	Promax Output	Not applicable
Dehydration System	Maintain records to show exempt from HH.	Promax Output	Promax Output	Not applicable
Emissions Limits	Facility is limited to 6.2 TPY VOC SSM (Vent only).	Plant DCS, Cygnet	Plant DCS, Cygnet, Enviance	Not applicable
Emissions Limits	Facility is limited to 10 TPY VOC Malfunction Limit (Vent only).	Plant DCS, Cygnet	Plant DCS, Cygnet, Enviance	Not applicable
Engines	All lean burn engines must have oxidation catalyst	Pre-Startup Safety review, Engine Testing Reports	Engine Testing Reports	Not applicable

Engines	Maintain units in accordance with manufacturers recommended maintenance including replacement of oxygen sensors in unit with oxygen based controllers.	Scheduled Maintenance Work Orders	Scheduled Maintenance Work Orders	Not applicable
Engines	Initial compliance tests shall be conducted within sixty days after the units achieve the maximum normal production rate.	Startup date, Engine Testing Reports	Startup date, Engine Testing Reports	Not applicable
Engines	PEA Testing required quarterly. JJJJ can be used to satisfy one quarterly.	Stack testing schedule, Engine Testing Reports	Engine Testing Reports	Not applicable
Facility	Daily Throughput Limit 90 MMSCFD	Cygnet	Cygnet	Not applicable
Facility	Inlet Extended Analysis	Inlet Extended Gas Analysis Inlet Extended Gas Analysis		Not applicable
Facility	Fuel Sulfur levels must not be greater than 2 gr/100 scf.	The gas sulfur content at the amine treatment outlet (source of fuel gas) is continuously monitored to ensure natural gas will meet delivery specifications.	Plant DCS	Not applicable
Flares	Flares must be operated with a flame present at all time and no visible emissions. Continuously monitor presence of a flare pilot flame using a thermocouple or an equivalent device.	Pilot light presence and flaring are continuously monitored through the Plant DCS.	Plant DCS/Historian	Not applicable
Flares	Method 22 visible emission monitoring event to demonstrate compliance with the no visible emission standard.	A Method 22 Test is conducted annually.	Method 22 Test Report	Not applicable
Flares	Inspect to ensure flare is operating in accordance with manufacturers specification. Document name of person performing inspection, results of all equipment inspected and any maintenance or repairs needed for the flares to be compliant. Maintain a copy of the manufacturer's recommendations.	Operator Routine Duties include a daily visual inspection of the flare equipment. In combination with the Plant DCS continuous monitoring and Scheduled Maintenance Work Orders, this ensures proper operation.	Scheduled Maintenance Work Orders	Not applicable
Flares	Continuously monitor the flare flow rate. Pilot, purge, and assist gas should be monitored using a gas flow meter or determined using manufacturers specifications or engineering estimates.	Flare gas meters continuously record gas volumes.	Cygnet, Plant DCS/Historian	Excess Emission Event Reporting, Air Emissions Inventory
Flares	Perform a flare gas analysis to include H2S, Total Sulfur, VOC, and Heating Value.	Flare Gas Analyses are completed annually.	Gas Analysis	Not applicable
Flares	Flow meters and in flow monitors (spectrometer, H2S analyzers, etc) shall be calibrated in accordance with manufacturers specifications.	Flow meters and instrumentation are maintained per the Scheduled Maintenance Work Orders.	Scheduled Maintenance Work Orders	Not applicable
Flares	H2S analyzers are required on the inlet gas and Acid Gas Flare stream and are required to continuously record.	Plant DCS generates a daily report of H2S concentrations on inlet and the acid gas flare streams.	Plant DCS/Historian	Not applicable
Flares	Record all routine SSM Events.	All SSM events are recorded through Plant DCS, volumes in Cygnet, and emissions in Enviance.	Enviance	Excess Emission Event Reporting, Air Emissions Inventory

Flares	Records of flow meter, totalizer, and	Calibrations and maintenance	Scheduled	Not
	in line monitor certifications, calibrations, break downs, and reasons for the breakdowns, and corrective actions shall be maintained.	items are tracked in the Scheduled Maintenance Work Orders. Issues with metering are tracked through the daily production reports.	Maintenance Work Orders	applicable
Flares	Determine the maximum flare tip velocity	Volumes are tracked through Cygnet and Enviance. The 60.18 calculation is kept in facility air quality files.	Cygnet, Enviance, Calculation	Not applicable
Flares	Summarize the following in a table: H2S and Total Sulfur Content % VOC Content Gas Heating Value Max hourly gas flow rate that occurred during the month Hourly gas flow rate for any hours that exceeded PPH emission limits Total SCF of gas sent to flare During the first 12 months of monitoring, cumulative total of gas sent to flare Cumulative total of SO2 and H2S sent to flare in Tons After first 12 months, document rolling 12.	An automated report has been developed that pulls these data points from the systems of record into Enviance and generates the compliance report.	Cygnet, Enviance	Excess Emission Event Reporting, Air Emissions Inventory
Fugitives	Implement and maintain a LDAR program per the facility's NSPS applicability.	Facility components as defined in 40 CFR 60.482 are monitored per requirements.	Reports detailing monitoring, leak detection, and repair are generated monthly.	Details are reported to EPA semiannually.
Heaters	Inspection shall meet those recommended by the manufacturer. At a minimum inspection shall include the following: Check indicators to verify oxygen levels are sufficient for combustion (i.e. blue colored steady flame). Inspection of unit housing for cracks or worn parts.	Facility operations are monitored daily through Operator Routine Duties and Plant DCS. Any issues are documented, and repairs tracked through the Scheduled Maintenance Work Orders.	Scheduled Maintenance Work Orders	Not applicable

The majority of requirements have been met in regard to compliance activities, recordkeeping, and reporting, with the following exceptions:

- Each Ajax DPC 2804LE engine (Ajax 1 and Ajax 2) exhausts at a lower temperature than specified in the product literature, and units were constructed without catalyst housings. As a result, catalytic controls are infeasible for these units. Frontier Field Services is submitting this application to authorize the actual emissions rates of these units.
- Despite specific vendor representations that catalytic controls were installed upon startup, Frontier discovered that ENG 1-3 did not have the catalysts that were ordered installed upon startup. These controls were immediately installed upon discovery.
- Redundant acid gas injection compression has been installed at the facility. There are two gas-driven compressors, with a third electrical unit as a backup. After installation it was discovered that the Ajax units required various maintenance items and repairs to optimize performance. Parts availability for these specialized units is limited and difficult to acquire. As a result, each of the Ajax units experienced downtime during the completion of construction/bringing the plant online and stabilizing processes/operations. As a result, acid gas injection efficiency was lower than the 100% control specified in the permit, and acid gas flaring was higher than allowed under A 106.
- Flare emissions have exceeded the allowable limits in Section A 106. Upon review of the January 2022 permit application, it was noted that although the Process Flare (FL-2) is the control device for facility SSM (blowdowns, process or equipment issues, etc), no SSM was represented in the permit action. Therefore, this application is being submitted to represent actual facility operations and as-built equipment specifications and authorize the associated emissions.

19.3 - Continued Compliance (20.2.70.300.D.10.c NMAC)

Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement.

Frontier Field Services, LLC will continue to be in compliance with requirements for which it is in compliance at the time of permit application. Frontier Field Services, LLC will comply with other applicable requirements as they come into effect during the permit term.

19.4 - Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)

You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.

Frontier Field Services, LLC proposes annual submission of compliance certifications aligned with the permit approval date.

19.5 - Stratospheric Ozone and Climate Protection

In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners).

- 1. Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozone-depleting substances?
- Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 lbs?
 Yes
 No

(If the answer is yes, describe the type of equipment and how many units are at the facility.)

- 3. Do your facility personnel maintain, service, repair, or dispose of any motor vehicle air conditioners (MVACs) or appliances ("appliance" and "MVAC" as defined at 82. 152)? Yes No
- 4. Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through G.)

Not applicable.

19.6 - Compliance Plan and Schedule

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

As illustrated in Section 19.2, Compliance Status, the majority of compliance requirements are being met through equipment installation and maintenance practices, testing, and recordkeeping and reporting. The following items are not in compliance at the time of the application:

• Each Ajax DPC 2804LE engine (Ajax 1 and Ajax 2) exhausts at a lower temperature than specified in the product literature, and units were constructed without catalyst housings. As a result, catalytic controls are infeasible for these units. Frontier Field Services is submitting this application to authorize the actual emissions rates of these units.

• Despite specific vendor representations that catalytic controls were installed upon startup, Frontier discovered that ENG 1-3 did not have the catalysts that were ordered installed upon startup. These controls were immediately installed upon discovery.

• Redundant acid gas injection compression has been installed at the facility. There are two gas-driven compressors, with a third electrical unit as a backup. After installation it was discovered that the Ajax units required various maintenance items and repairs to optimize performance. Parts availability for these specialized units is limited and difficult to acquire. As a result, each of the Ajax units experienced downtime during the completion of construction/bringing the plant online and stabilizing processes/operations. As a result, acid gas injection efficiency was lower than the 100% control specified in the permit, and acid gas flaring was higher than allowed under A 106.

• Flare emissions have exceeded the allowable limits in Section A 106. Upon review of the January 2022 permit application, it was noted that although the Process Flare (FL-2) is the control device for facility SSM (blowdowns, process or equipment issues, etc), no SSM was represented in the permit action. Therefore, this application is being submitted to represent actual facility operations and as-built equipment specifications and authorize the associated emissions.

B. Compliance plan: (20.2.70.300.D.11.B NMAC)

This permit application is being submitted to accurately represent site conditions and operations.

• Authorization of this permit application will bring the Ajax DPC 2804LE units into compliance with permitted emissions limits.

Several strategies are employed to reduce or eliminate acid gas flaring from FI-1.

- Operational strategies include manually managing compressor operations to ensure that automated shutdowns designed to protect the equipment do not occur. For example, liquids in the compressor knockouts will trigger an automated shutdown if the levels get too high. Operations personnel routinely check the compressors and manually drain the knockout to ensure liquids do not reach shut down levels.
- Operations monitors performance of the acid gas injection compressor in use. If issues are noted, such as alarms, pressure changes, or changes in other operational parameters indicating a problem with performance, the backup compressor is proactively warmed up and readied for switch over prior to a unit going down.
- If the plant control system indicates that the amine treatment system is experiencing issues, gas receipts at the inlet of the plant will be restricted in order to reduce inlet volumes and/or high-H2S gas from entering the plant, thereby reducing or eliminating process streams that would need to be routed to the acid gas flare.
- Difficult-to-source spare parts have been ordered and will be kept on hand for reasonably foreseeable required maintenance.
- Reliability issues with the compressors are being addressed through planned engineering and construction updates.

This permit application is being submitted to accurately represent site conditions and operations. Authorization of this permit application will bring the process flare, FL-2, into compliance with permitted emissions limits.

C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

Frontier Field Services strives to be in compliance continually and therefore has already implemented measures to bring the facility into compliance.

- Anticipated permit issuance in 2024 will authorize the engine emissions and process flare emissions.
- Operations and maintenance practices have already been implemented and are designed and anticipated to prevent acid gas flaring in normal operations, routine SSM, and/or alternate operating scenarios.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC)

A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

Frontier Field Services, LLC proposes semiannual compliance reporting in alignment with the Title V semiannual reporting requirements.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See <u>www.env.nm.gov/air-quality/air-quality-title-v-operating-permits-guidance-page/</u>. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

Dagger Draw is not an acid rain source.

19.7 - 112(r) Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

The RMP was last submitted to EPA on November 2, 2022.

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.)

Not applicable.

19.9 - Responsible Official

Provide the Responsible Official as defined in 20.2.70.7.AD NMAC:

Darin B. Kennard Vice President & General Manager

Durango Midstream LLC 10077 Grogans Mill Road – Suite 300 The Woodlands, Texas 77380

Direct: (346) 351-2790 Mobile: (832) 388-8338 Email: DKennard@durangomidstream.com

Section 20

Other Relevant Information

Other relevant information. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

None requested.

February 2024

Section 22: Certification

Company Name: Frontier Field Services, LLC

I, <u>Rebecca Moore</u>, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

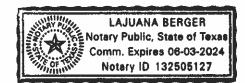
Signed this 28th day of February, 2024, upon my oath or affirmation, before a notary of the State of Texas.

ua Moore ature

Rebecca Moore Printed Name

Scribed and sworn before me on this 28th day of February, 2024.

My authorization as a notary of the State of Texas expires on the


2024 day of 🕒 Notary's Signature

Notary's Printed Name

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

2 28 2024

Environmental Manager Title

Date

Air Permit Application Compliance History Disclosure Form

Pursuant to Subsection 74-2-7(S) of the New Mexico Air Quality Control Act ("AQCA"), NMSA §§ 74-2-1 to -17, the New Mexico Environment Department ("Department") may deny any permit application or revoke any permit issued pursuant to the AQCA if, within ten years immediately preceding the date of submission of the permit application, the applicant met any one of the criteria outlined below. In order for the Department to deem an air permit application administratively complete, or issue an air permit for those permits without an administrative completeness determination process, the applicant must complete this Compliance History Disclosure Form as specified in Subsection 74-2-7(P). An existing permit holder (permit issued prior to June 18, 2021) shall provide this Compliance History Disclosure Form to the Department upon request.

Permittee/Applicant Company Name			Expected Application Submittal Date		
Frontier Field Services, LLC			3/1/2024		
Permittee/Company Contact		Phone	Email		
Rebecca Moore, Environmental Advisor		346-224-2455	RMoore@durangomidstream.com		
Within the 10 years preceding the expected date of submittal of the application, has the permittee or applicant:					
1	Knowingly misrepresented a material fact in an application for a permit?			🗆 Yes 🖾 No	
2	Refused to disclose information required by the provisions of the New Mexico Air Quality Control Act?			🗆 Yes 🖂 No	
3	Been convicted of a felony related to environmental crime in any court of any state or the United States?			🗆 Yes 🗵 No	
4	Been convicted of a crime defined by state or federal statute as involving or being in restraint of trade, price fixing, bribery, or fraud in any court of any state or the United States?			🗆 Yes 🗵 No	
5a	Constructed or operated any facility for which a permit was sought, including the current facility, without the required air quality permit(s) under 20.2.70 NMAC, 20.2.72 NMAC, 20.2.74 NMAC, 20.2.79 NMAC, or 20.2.84 NMAC?			🗆 Yes 🖂 No	
5b	If "No" to question 5a, go to question 6. If "Yes" to question 5a, state whether each facility that was constructed or operated without the required air quality permit met at least one of the following exceptions:			🗆 Yes 🗆 No	
	a. The unpermitted facility was discovered after acquisition during a timely environmental audit that was authorized by the Department; or				
	b. The operator of the facility estimated that the facility's emissions would not require an air permit, and the operator applied for an air permit within 30 calendar days of discovering that an air permit was required for the facility.				
6	Had any permit revoked or permanently suspended for cause under the environmental laws of any state or the United States?		🗆 Yes 🗵 No		
7	For each "yes" answer, please provide an	explanation and documentat	ion.	·	