February 2023

Aquatic Resource Delineation Report US 63 Bridge Replacement Project (CN4101410)

Prepared for: New Mexico Department of Transportation P.O. Box 1149 Santa Fe, NM 87504

Prepared by:

Ecosphere Environmental Services, Inc. 776 E. Second Avenue Durango, CO 81301

Durango, CO Pagosa Springs, CO Albuquerque, NM Farmington, NM This page intentionally left blank.

Executive Summary

The New Mexico Department of Transportation (NMDOT) District 4 is proposing a bridge replacement project on NM 63 between MPs 21.6 and 22.7 within San Miguel County, New Mexico, Control Number (CN) 4101410). The US 63 Bridge Replacement project (Project) area is located approximately 24 miles north of the town of Pecos within the Sante Fe National Forest in San Miguel County, New Mexico. Ecosphere Environmental Services, Inc. (Ecosphere) prepared this report on behalf of the NMDOT to document the characteristics and boundaries of aquatic resources in the project survey area.

The existing bridge is 56-feet long and 25-feet wide and spans the Rio Mora that is a tributary to the Pecos River. The driving surface on the bridge is 24-feet wide with no shoulders (2 12-foot driving lanes). The bridge was originally built in 1940 and reconstructed in 1964. The bridge pier had cracks, spalling and exposed rebar repaired in 2012 by encasing the pier in concrete. Scour is still being observed at the bridge pier and is the primary need and purpose of the proposed bridge replacement project.

Wetlands and other waters of the US (WUS) in the survey area were delineated on August 3, 2023 by an Ecosphere wetland specialists using guidance provided in the *Corps of Engineers Wetlands Delineation Manual* (US Army Corps of Engineers [USACE] 1987) and the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual for the Western Mountains, Valleys, and Coast Region* (USACE 2010). Wetland boundaries were defined based on the presence of hydrophytic vegetation, hydric soils, and hydrologic indicators that under normal conditions would indicate wetland conditions. Any perennial, intermittent, or ephemeral WUS present in the survey area were delineated using *A Guide to Ordinary High Water Mark (OHWM) Delineation for Non-Perennial Streams in the Western Mountains, Valleys, and Coast Region of the United States* (USACE 2014).

Delineation of any wetlands and other Waters of the US (WUS) within the project area will be conducted using the U.S. Army Corps of Engineers (USACE) *Wetland Delineation Manual* (1987 Manual) (Environmental Laboratory 1987) and the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region* (WMVC Supplement) (USACE 2010). Based on pre-field review we anticipate the delineation of approximately 3 acres including the bridge removal and new construction area, drainage courses where there are currently culverts in place, and appropriate upstream and downstream buffers.

Based upon the site investigation conducted by Ecosphere, wetlands and other WUS are present in the survey area. Approximately 0.02 acre of palustrine emergent (PEM) and 0.29 acres of palustrine scrub-shrub (PSS) wetlands were delineated in the survey area. In addition, 35 linear feet of perennial channel WUS along the Mora River were delineated in the survey area.

Based on the proposed project design, temporary impacts to PSS wetlands will total 0.04 acre (1,826 square feet); there are no temporary impacts to PEM wetlands. Permanent impacts to PSS wetlands will total 0.0407 acre (2,005 square feet) and permanent impacts to PEM wetlands will total 0.004 acre (182 square feet). Permanent impacts to all wetlands total 0.0447 acres (2,187 square feet) and are shown below and depicted on Map A-5 in Appendix A.

National Wetland Inventory Classification ¹	Impact	Acres	Square Feet
PSS	Temporary	0.0400	1,826.00
PEM	Temporary	0	0
Total Temporary	Total Temporary Wetland Impacts		1,826.00
PSS	Permanent	0.0407	2,004.61
PEM	Permanent	0.0040	182.39
Total Permanent Wetland Impacts		0.0447	2,187.00

Summary of Impacts

¹PEM=palustrine emergent; PSS=palustrine scrub shrub (Cowardin et al. 1979).

This report assesses the potential for wetlands in the survey area at the time of the field work and does not address conditions at a given time in the future. This report does not constitute a Jurisdictional Determination of WUS, since such determinations must be verified by the USACE and are subject to review by the US Environmental Protection Agency.

Table of Contents

Executive Summaryi
1. Introduction1
1.1 Project Description
1.2 Site Location and Directions
1.3 Contact Information2
2. Methodology2
2.1 Pre-Field Desktop Evaluations2
2.2 Field Evaluations
2.2.1 Wetlands
2.2.2 Ordinary High Water Mark5
3. Existing Conditions
3.1 Current Land Uses, Modifications, and Topography6
3.2 Climate6
3.3 Hydrology
3.4 Vegetation
3.5 Geology and Soils9
4. Aquatic Resources
4.1 PEM/PSS Wetlands
4.2 Perennial Channels (R3SB WUS)11
5. Discussion
6. References
Appendix A – Vicinity/ Aquatic Resource/ Impact Maps A-1
Appendix B – Supporting MapsB-1
Appendix C – Wetland Determination Data FormsC-1
Appendix D – Reference PhotographsD-1
Appendix E – Dominant Plant Species Observed in the Study AreaE-6

List of Tables

Table 3-1. Soil Types in the Project Area, San Miguel County, New Mexico Soil Report	10
Table 4-1. Aquatic Resources Delineated in the Survey Area	11
Table 5-1. Summary of Impacts	12
Appendix Table E-1. Plants Observed During Survey	E-7

List of Maps

Map A-1. Vicinity Map	A-2
Map A-2. Aquatic Resource Delineation Project Detail Map	A-3
Map A-3. Aquatic Resources Delineation Aerial Map	A-4
Map A-4. Aquatic Resources Delineation Topographic Map	A-5
Map A-5. Aquatic Resources Impact Map	A-5
Map B-1. Hydrology NWI/NHD Map	B-2
Map B-2. Geology Map	B-3
Map B-3. Soils Map	B-4

List of Photographs

Photograph D-1. Wetland Soil Data Point T1B1	D-2
Photograph D-2. Upland Soil Data Point T1B2	D-2
Photograph D-3. Upland Soil Data point T2B1	D-3
Photograph D-4. Wetland Soil Data Point T2B2	D-3
Photograph D-5. Mora River looking upstream.	D-3
Photograph D-6. Mora River looking downstream.	D-3
Photograph D-7. Fringe PSS wetlands adjacent to Mora River channel	D-3
Photograph D-8. PSS Wetland Area 4.	D-3

Abbreviations and Acronyms

APT	Antecedent Precipitation Tool
CN	Control Number
Ecosphere	Ecosphere Environmental Services, Inc.
FAC	facultative
FACU	facultative upland
FACW	facultative wetland
FEMA	Federal Emergency Management Agency
FIRM	Flood Insurance Rate Map
GIS	geographic information system
GPS	global positioning system
MP	milepost
NHD	National Hydrologic Dataset
NI	no indicator
NL	not listed
NMDOT	New Mexico Department of Transportation
NOAA	National Oceanic and Atmospheric Administration
NRCS	Natural Resources Conservation Service
NWI	National Wetlands Inventory
OBL	obligate wetland
OHWM	ordinary high water mark
PEM	palustrine emergent
project	US 63 Roadway Project, CN 4101410
PSS	palustrine scrub-shrub
SPI	Standardized Precipitation Index
UPL	upland
US 63	US Highway 63
USACE	US Army Corps of Engineers
USFWS	US Fish and Wildlife Service
USGS	US Geological Survey
WBD	Watershed Boundary Dataset
WUS	waters of the US

1. Introduction

Ecosphere Environmental Services, Inc. (Ecosphere) was contracted in June 2023 by the New Mexico Department of Transportation (NMDOT) to determine the presence of wetlands and other waters of the US (WUS) in the US 63 Bridge Replacement Project, Control Number (CN) 4101410 (project). The project is in San Miguel County in the state of New Mexico (Appendix A, Map A-1).

The purpose of this report is to identify and describe aquatic resources in the survey area and locate and quantify impacts associated with the proposed project. This report facilitates efforts to

- avoid or minimize impacts to aquatic resources during the design process,
- document aquatic resource boundary determinations and impacts for review by regulatory authorities, and
- provide background information for wetland/hydrologic constraints within the project corridor.

The following sections of this report outline the proposed project actions; methodology used during the delineations; and existing conditions, type, acres, and linear feet of wetlands and WUS identified. Maps defining the aquatic resources identified in the project area are provided in Appendix A; additional informational maps, such as soil surveys, are provided in Appendix B. Wetland delineation determination data forms prepared during the surveys are provided in Appendix C and photographs of the project area are included in Appendix D. A table of dominant plants observed is included in Appendix E.

1.1 Project Description

NMDOT in partnership with FHWA is proposing to replace bridge #3926 with a new bridge on a new alignment that is located approximately 10 - 15 feet east of the existing bridge. The new bridge would be 65-feet long and fully span the Rio Mora with no center pier. The new bridge and roadway alignment would be built while leaving the existing bridge in place so that traffic flow is maintained through the Pecos Canyon. Construction activities will likely start in the late fall/winter of 2024/2025 and continue into spring and summer 2025.

The paved temporary detour could be constructed first or later in construction to allow room to build the new roadway approaches on the new alignment. Geotextile material would be placed on top of the natural ground (probably including wetlands) followed by the placement of clean fill and asphalt. New bridge construction would continue along with construction of the new roadway alignment and approaches. Once this is complete, traffic will be diverted to the new bridge and roadway alignment. The temporary detour would be removed along with the geotextile material and fill.

The existing bridge and old roadway would be removed along with the center pier of the existing bridge. Removal of the center pier will occur down to 2-feet below the current streambed. When the center pier is removed, surface flows will be separated from the work area using non-erodible materials such as concrete wall barrier, sand bags, steal sheet piles or other equivalent materials. Removal of the center pier could be done using an excavator, backhoe or bobcat. All disturbed ground will be revegetated per NMDOT Standard Specifications.

1.2 Site Location and Directions

The aquatic resources survey area is located on the Cowles, Colorado, 7.5-minute US Geological Survey (USGS) quadrangle in Section 22, Township 18 N, and Range 12 E (Appendix A, Map A-1). The aquatic resources survey area is located at the existing Mora River bridge location along NM 63 between milepost (MP) 21.6 and MP22.7. The locations of the beginning and end termini of the project alignment are provided below.

The project is located at an elevation of 7,804 ft above sea level along the US Highway 63 corridor at Mora Campground and the confluence of the Mora River and the Pecos River and includes approximately 3 acres including the bridge removal site, new construction alignment, existing and historic drainage courses, and appropriate upstream and downstream buffers.

Location: (Decimal Degrees) (NAD 83)			
Beginning of Project End of Project			
Latitude: 35.7771057°N	Latitude: 35.7752934°N		
Longitude: 105.6602002°W	Longitude: 105.6597742°W		

1.3 Contact Information

Applicant

James Hirsch NMDOT Environmental Bureau P.O. Box 1149 Santa Fe, NM 87504 Email: james.hirsch@dot.nm.gov

Property Owner

New Mexico Department of Transportation

Authorized Agent

Mike Fitzgerald, Principal Ecosphere Environmental Services, Inc. 776 E. 2nd Avenue Durango, Colorado 81301 Office: (970) 382-7256 Email: <u>fitz@ecosphere-services.com</u>

2. Methodology

2.1 Pre-Field Desktop Evaluations

Prior to the initiation of field work, Ecosphere completed a preliminary geographic information system (GIS) desktop evaluation of the project area using the following best available information.

- US Geological Survey (USGS) 7.5-minute topographic quadrangles for local and regional environmental settings relevant to surface waters, wetlands, and contours in the project area
- National Hydrography Dataset (NHD) for mapped "bluelines"—perennial, intermittent, and ephemeral drainages—and other water features in the project area (USGS 2016)
- National Wetlands Inventory (NWI) maps generated by the US Fish and Wildlife Service (USFWS) for the project area (USFWS 2020)
- US Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) Web Soil Survey information for the project area (USDA/NRCS 2017)
- Floodplain data from the Federal Emergency Management Agency (FEMA) Mapping Information Platform (https://msc.fema.gov/portal) (FEMA 2019)
- ESRI ArcGIS Online World Imagery (ESRI World Imagery 2019)
- A historical Standardized Precipitation Index (SPI) report was generated from the National Oceanic and Atmospheric Administration (NOAA) Regional Climate Center for the project area to obtain a precipitation baseline 1 month (30 days) preceding the field investigation efforts (https://hprcc.unl.edu/products/maps/acis/subrgn/NM/Jul23PDataNM.png).
- The Antecedent Precipitation Tool (APT) report (USACE 2019) was also generated for field investigation dates of August 3, 2023. Using daily rainfall data from five regional weather stations, the APT calculates 30-day rolling totals for each of the three 30-day periods preceding the observation date.

2.2 Field Evaluations

A pedestrian survey/delineation was conducted by an experienced Ecosphere wetland scientist within the proposed project boundaries to identify any wetlands or other WUS that may occur in the study area. The boundaries of WUS and wetlands were mapped in the field by Ecosphere. All wetland and other WUS ordinary high water mark (OHWM) lines were mapped using a Trimble GeoXT[®] global positioning system (GPS) unit with sub-meter accuracy and documented on maps provided in Appendixes A and B. Photographs were taken where each wetland and OHWM was identified and are included in Appendix D. Data were recorded within a Field Collector GIS data dictionary developed by Ecosphere that includes all data required for submittal to the USACE.

All digital data for the site, including aquatic resource boundary mapping and data point locations, have been included with this report as ESRI shapefiles. Each GIS data file includes a metadata file containing the geographic coordinates, projection, and datum.

2.2.1 Wetlands

Wetlands in the project area were delineated using guidance provided in the Corps of Engineers Wetlands Delineation Manual (USACE 1987) and the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (USACE 2010).

Under the delineation procedures identified in these manuals, an area must exhibit characteristic wetland hydrology, hydric soils, and hydrophytic vegetation to be considered a wetland. The USACE requires that under

normal circumstances, all three of these conditions must be met for an area to be defined as a wetland (USACE 1987). Wetlands are generally defined by the USACE as

"Those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas" (USACE 1987).

Any area that appeared to display these characteristics was documented using the USACE's Wetland Determination Data Form for Western Mountains, Valleys, and Coast Region. Wetland determination data forms from the survey area are provided in Appendix C.

2.2.1.1 Hydrophytic Vegetation

The USACE's 1987 wetland delineation manual defines hydrophytic vegetation as "the community of macrophytes that occurs in areas where inundation or soil saturation is either permanent or of sufficient frequency and duration to exert a controlling influence on the plant species present." Using the USACE's techniques for identifying hydrophytic vegetation, as defined in Part III, paragraph 35 of the 1987 wetland delineation manual, Ecosphere evaluated vegetation on the project site for hydrophytic indicators. Hydrophytic vegetation determinations for this project were primarily based on determining species dominance in a sample area as indicated via visual observation, application of the Dominance Test and/or Prevalence Index worksheet on each sample area determination data form, and identification of the dominant species' wetland indicator status, as defined by the USACE's *National Hydric Plant List* (Lichvar et al. 2016).

Dominant species were defined as those species in each stratum that, when ranked in decreasing order of abundance, exceed 50 percent of the total dominance measure for that stratum, plus any additional plant species comprising 20 percent or more of the total dominance measure for the stratum. Wetland indicator status ratings include obligate (OBL), facultative wetland (FACW), facultative (FAC), facultative upland (FACU), upland (UPL), no indicator (NI), and not listed (NL). Scientific nomenclature of all plant species identified in this report follows that of the NRCS PLANTS Database (NRCS 2021c).

Sampling point locations were selected to capture the primary vegetation communities of the wetland and adjacent upland areas. Points were located within approximately 15 feet of each other to highlight the transition from wetland to upland. At each sample plot's observation point, dominant trees, shrubs, herbaceous species, and woody vines (if present) were identified and recorded on the wetland determination form.

2.2.1.2 Hydric Soils

The National Technical Committee for Hydric Soils defines a hydric soil as "a soil that is saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions that favor the growth and regeneration of hydrophytic vegetation" (USACE 1987, p. 20).

Most hydric soils exhibit characteristic morphologies that result from repeated periods of saturation or inundation for more than a few days. Saturation or inundation combined with microbial activity in the soil causes the depletion of oxygen. These processes are evident in the field and can include high organic contents,

gley formations, development of redoximorphic features, and other hydric soil indicators. The presence of hydric soils at each sample point was determined using the definition, criteria, and indicators identified in the 1987 wetland delineation manual (with revisions related to the 1991 and 1992 guidance memorandums from the USACE) and regional supplement (USACE 2010).

Soil pits were dug in each community type location (Appendix A, Map A-4 and A-5) to a sufficient depth to determine hydric characteristics of wetland soils and hydrology. Parameters evaluated included soil color, texture, saturation, and other indicators of inundation. Soil samples were then examined for soil texture and hydric soil indicators. Soil colors were evaluated using a Munsell[®] soil color chart (Gretag/Macbeth 2000).

2.2.1.3 Wetland Hydrology

Hydrophytic vegetation and hydric soil indicators typically represent a site's medium- to long-term history. According to the USACE wetlands delineation manual, "the term 'wetland hydrology' encompasses all hydrologic characteristics of areas that are periodically inundated or have soils saturated to the surface at some time during the growing season" (USACE 1987, p. 33). Hydrology indicators are the most inconsistent of wetland indicators, especially in the arid west where extended dry seasons are common and precipitation throughout the year has extreme temporal and spatial variability.

Assessment of the hydrologic criterion was based on primary and secondary indicators, as described in Section III, Paragraph 49 of the wetland delineation manual (USACE 1987) and regional supplement (USACE 2010). Primary indicators include observation of surface water or saturation, as well as evidence of recent inundation (e.g., oxidized rhizospheres along living roots) or current or recent soil saturation (e.g., hydrogen sulfide odor, oxidized rhizospheres). Secondary indicators also include indicators of recent inundation or saturation (e.g., drainage patterns, saturation visible on aerial imagery). Wetland areas identified in the study area were located both adjacent to NWI mapped intermittent channels and in low slope depression areas.

2.2.2 Ordinary High Water Mark

In areas that supported a slope or gradient in topography and where hydrology followed a defined channel, field determination was made on whether intermittent WUS present in the survey area supported a defined OHWM. The USACE generally defines OHWM as follows:

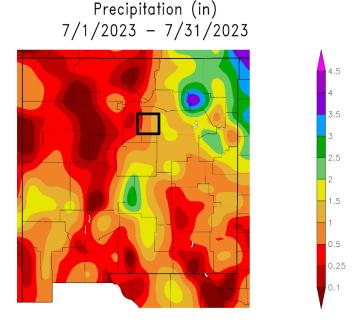
"The term ordinary high water mark means that line on the shore established by the fluctuations of water and indicated by physical characteristics such as a clear, natural line impressed on the bank, shelving, changes in the character of soil, destruction of terrestrial vegetation, the presence of litter and debris, or other appropriate means that consider the characteristics of the surrounding areas" (USACE 2005).

General characteristics for determining an OHWM in the survey area were identified using guidance provided in USACE regulatory guidance letter No. 05-05, *Ordinary High Water Mark Identification* (USACE 2005). OHWMs for any ephemeral or intermittent WUS were delineated using *A Guide to Ordinary High Water Mark (OHWM) Delineation for Non-Perennial Streams in the Western Mountains, Valleys, and Coast Region of the United States* (USACE 2014). Delineation of intermittent active channels in the study area, and thus the OHWM, was based on identification of three primary physical or biological indicators—topographic break in slope, change in sediment characteristics, and change in vegetation characteristics.

3. Existing Conditions

The survey of the project area was completed on August 3, 2023, by Ecosphere botanist/wetland scientist Julia Hanson. Weather during the field investigation was predominantly sunny with temperatures ranging from the mid-60s to mid-70s degrees Fahrenheit. The site was clear of snow cover and vegetation reflected normal growing season conditions typical for the month of August. The site was consistently receiving seasonal monsoonal afternoon precipitation during the week leading up to the field investigation. The 3-acre survey area (Appendix A, Map A-2) was evaluated for the presence of wetlands and other WUS. The results of both pre-field data review and field review for the subject property are included in the following sections.

3.1 Current Land Uses, Modifications, and Topography


The project area is in San Miguel County, New Mexico, in the Pecos River valley of the Sante Fe National Forest. The local topography in the project area is dominated by the riparian corridor of the Mora River that flows to the southwest at approximately 7,900 feet above sea level. The steep hillsides rise above the project area both to the east and west to a maximum elevation of approximately 9,000 feet (Appendix B, Map A-3).

The study area has undergone anthropogenic disturbances associated with construction and maintenance of the US 63 roadway thoroughfare, including culvert placement in drainages, the gravel right-of-way, and pullouts that have disturbed the historical land use. The forested study area is located adjacent to the Mora Campground facilities with access provided by the NM 63 bridge.

Residents and recreationists frequently haul horse trailers and travel trailers across the existing bridge, originally built in 1940 and reconstructed in 1964. This is the only roadway that provides access to the Pecos Canyon. The driving surface on the bridge consists of two 12-foot-wide driving lanes with no shoulders. The bridge pier had cracks, spalling, and exposed rebar, which was addressed in 2012 by encasing the pier in concrete. Scour is still evident at the bridge pier and is the purpose of the bridge replacement.

3.2 Climate

Baseline climate conditions in the study area over the 30 days leading up to the field investigation were assessed in a historical SPI report generated from the NOAA Regional Climate Center for the project area including the month of July 2023. The report reflected a score of 0.5-1 in the study area, indicating slightly higher than normal precipitation at the time of the field investigation (Figure 3-1).

Generated 8/20/2023 at HPRCC using provisional data.

NOAA Regional Climate Centers

Figure 3-1. SPI Report Generated for the study area July 2023

The APT report was also generated for the field investigation date of August 3, 2023. Using daily rainfall data from five regional weather stations, the APT calculates 30-day rolling totals for each of the three 30-day periods preceding the observation date. A weighted condition value is assigned for each period by determining whether the 30-day total falls within, above, or below the 30th to 70th percentiles of precipitation totals from the same date range over the preceding 30 years. The weighted condition values are then summed across the three 30-day periods to calculate a final precipitation normalcy index score. An index score of 9 or lower indicates antecedent precipitation conditions are drier than normal, a score of 10 to 14 indicates conditions are normal, and a score of 15 or higher indicates conditions are wetter than normal. The APT score for the field investigation dates in the project area is reported as 10, indicating normal conditions in the intermittent channels and wetlands on site during the field assessment (Figure 3-2).

Ecosphere Environmental Services, Inc.

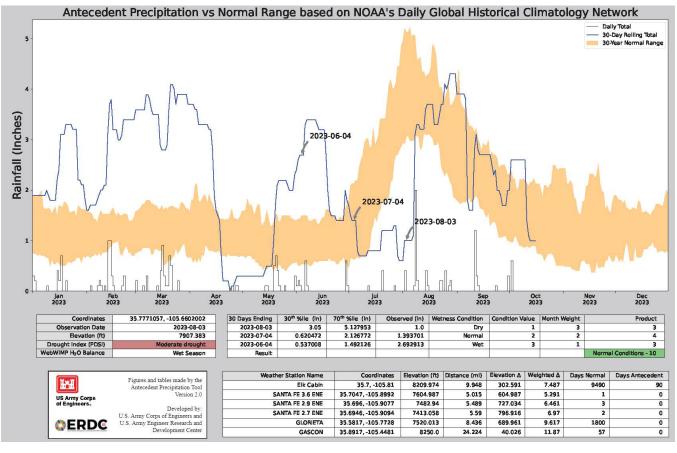


Figure 3-2. Antecedent Precipitation Tool (APT) Report for August 03, 2023

3.3 Hydrology

The study area is in the Pecos River Valley in the Rio Mora watershed (hydrologic unit code 12 [HUC-12] 130600010202), which encompasses 34,419 acres surrounding the study area (WBD 2023). The Rio Mora is a perennial channel and first order tributary to the Pecos River, a perennial waterway that flows southeast through the Sante Fe National Forest to Lake Sumner, near Fort Sumner, New Mexico (NHD 2021). The Rio Mora headwaters are located to the north in the Pecos River Wilderness area in the Sante Fe Mountains and flow southwest to the Pecos River. The smaller watersheds in the higher elevation drainages of the northeast of the study area shed snowmelt and stormwater into ephemeral drainages that flow to the main perennial channel of the Rio Mora (NHD 2021) (Appendix A, Map A-1).

3.4 Vegetation

Vegetation in the project area includes species characteristic of montane/subalpine coniferous forests and the riparian corridor of the Mora River. The forested habitat of the study area is dominated by ponderosa pine (*Pinus ponderosa*), Engelmann's spruce (*Picea engelmannii*), blue spruce (*Picea pungens*), and Gambel oak (*Quercus gambelii*). The riparian corridor community associated with the Mora River is dominated by mature overstory canopy of narrow leaf cottonwood (*Populus angustifolia*) and eastern cottonwood (*Populus deltoides*).

Hydrophytic shrubs such as golden currant (*Ribes aureum*), Woods' rose (*Rosa woodsii*), pacific willow (*Salix lucida* ssp. *lasiandra*), and diamondleaf willow (*Salix planifolia*) dominate the shrub strata. Dominant hydrophytic forbs and graminoids identified in the wetland areas include meadow horsetail (*Equisetum pratense*), marsh willowherb (*Epilobium palustre*), feathery false lily of the valley (*Maianthemum racemosum*), water mint (*Mentha aquatica*), black bent (*Agrostis gigantea*), and spreading bent (*A. stolonifera*). Plant species found in wetland areas and their wetland indicator status are included on the list of observed plant species (Appendix E).

Upland species in the study area include fowl bluegrass (*Poa palustris*), Kentucky bluegrass (*Poa pratensis*), smooth brome (*Bromus inermis*), and western wheatgrass (*Pascopyrum smithii*). Graminoid species in the roadside habitat do not represent historical composition of the surrounding native plant community and include red clover (*Trifolium pratense*), common yarrow (*Achillea millefolium*), Norwegian cinquefoil (*Potentilla norvegica*), and common sunflower (*Helianthus annuus*).

3.5 Geology and Soils

From Raton and Taos south to Santa Fe, the Sangre de Cristo Mountains represent the southern Rocky Mountain Province. These mountains were formed by the folding and faulting of the North American continent about 80 to 55 million years ago. Specifically, the geologic unit underlying the study area is metamorphic, undifferentiated Paleoproterozoic mafic metavolcanic rocks with subordinate felsic metavolcanic rocks. Lithologic constituents include metamorphic, metasedimentary, and metaclastic. Numerous metasedimentary rocks are present, mostly metasandstone, metaconglomerate, and various schists. The geologic map is included in Appendix B, Map B-2.

According to the NRCS Web Soil Survey, two soil map units occur in the survey area and include the Morenda-Fiesta-Dula complex, 0 to 35 percent slopes, flooded unit and Etown, moderately deep-Derecho families-Rock outcrop association, 15 to 120 percent slopes unit (Table 3-1). Soils descriptions are included in the soil survey report from the Santa Fe National Forest Area, New Mexico, Parts of Los Alamos, Mora, Rio Arriba, Sandoval, San Miguel and Santa Fe Counties Soil Survey (NRCS 2021a). NRCS soil unit maps for the study area are provided in Table 3-1 and are depicted on the soil map in Appendix B (Map B-3).

Based on the field investigation of delineated aquatic resource areas, the soils were not significantly disturbed or problematic and displayed normal circumstances in wetland areas and soil data points. Soils primarily conform to the depleted matrix (F3) hydric soil indicator, in the persistently saturated soils of the depressional wetlands. Soils were assessed at two soil dataset transects (T1 and T2) conducted in the survey area and are depicted on Map A-2 and Map A-3 in Appendix A. The set of T1 data points was taken within the Area 1 and 2 PSS wetland and reflected hydric conditions that displayed a depleted soil matrix. The data set for T2 soil data points was taken within the PEM/ wetlands labeled Area 3 and displayed depleted dark surface (F7) through the soil profile from 6" to 12" below surface (Appendix C).

Soil Unit Symbol	Soil Type ¹	Description	Hydric Soil?²
MLC	Morenda-Fiesta-Dula complex, 0 to 35 percent slopes, flooded	The Morenda flooded component is on valley floors. The parent material consists of slope alluvium derived from granite and gneiss. This soil does not meet hydric criteria. The Fiesta component consists of slope alluvium derived from granite and gneiss. This component is in the <i>Pinus</i> <i>ponderosa-Juniperus scopulorum/Quercus gambelii</i> ecological site. Non-irrigated land capability classification is 4c. This soil does not meet hydric criteria. The Dula flooded component parent material consists of alluvium derived from igneous, metamorphic and sedimentary rock. This component is in the Mountain Meadow ecological site. This soil meets hydric criteria.	Yes
228	Etown, moderately deep-Derecho families- Rock outcrop association, 15 to 120 percent slopes	The Etown family, moderately deep component parent material consists of colluvium derived from sandstone and shale and/or limestone and/or residuum weathered from sandstone and shale and/or limestone. This soil does not meet hydric criteria. The Derecho family component is on mountain slopes, mountains. The parent material consists of colluvium derived from sandstone and shale and/or limestone and/or residuum weathered from sandstone and shale and/or limestone. This soil does not meet hydric criteria.	No

Table 3-1. Soil Types in the Project Area, San Miguel County, New Mexico Soil Report

^{1, 2} Natural Resources Conservation Service 2023.

4. Aquatic Resources

Wetland delineation determination data forms were completed for all aquatic resources in the survey area; copies of the completed forms are provided in Appendix C. Table 4-1 provides a summary of the aquatic resources delineated in the survey area.

Name	National Wetland Inventory Classification ¹	Latitude	Longitude	Length (Linear Feet)	Area (Acres)
Area 1	PSS	35.776333 N	105.659592 W	NA	0.140
Area 2	PSS	35.776464 N	105.659670 W	NA	0.058
Area 3	PEM	35.779755 N	105.659518 W	NA	0.019
Area 4	PSS	35.775500 N	105.659857 W	NA	0.088
Mora River	R3SB	35.776597 N	105.659646 W	35	NA

Table 4-1. Aquatic Resources Delineated in the Survey Area

¹PEM=palustrine emergent; PSS=palustrine scrub shrub; R3SB=perennial streambed (Cowardin et al. 1979).

4.1 PEM/PSS Wetlands

PSS riparian fringing wetlands Area 1 and 2 are hydrologically sourced by the perennial flows of the Mora River drainage. The Mora River supports a rocky bed channel with low sloping banks that support hydrophytic vegetation, rocky soils with redoxomorphic hydric soil indicators and saturation. The wetlands are linear and typically 8 feet wide within the study area. (Appendix A, Map A-3 and A-4; Appendix D, Photographs D-5, D-6 and D-7).

PEM wetland Area 3 is a topographic depressional area that impounds hydrology sources from the adjacent hillside of the study area. Located in an historic topographic depression that naturally supports wetlands, this area was surface saturated, supported hydric vegetation and bare ground where saturation was prevalent during periods of inundation. (Appendix A, Map A-3 and A-4, Appendix D, Photographs D-4).

PSS wetland Area 4 is also supported by the groundwater hydrology and adjacent proximity to the Mora River. PSS wetland Area 4 is a depressional wetland complex that supports surface saturation during the growing season and ordinary flow levels of the Mora River. The hydrology within PSS Wetland Area 4 may be associated with the low-lying topography of an historical oxbow channel of the Mora River. Hydrophytic shrubs, forbs and graminoids are supported by hydric soils. PSS wetland Area 4 continues south beyond the project area as depicted on Appendix A, Map A-3 and A-4. Photograph D-8 represents the vegetation and low-lying topography observed during the field investigation.

4.2 Perennial Channels (R3SB WUS)

Mora River is a perennial channel mapped within the project area and labeled as R3SB. The cobble stream bed channel flows through the NM 63 project corridor and supported a typical ordinary high water level during the field investigation in August 2023 (Appendix A, Map A-3 and A-4). The perennial channel maintained a defined bed and bank, with an OHWM that was approximately 12-feet wide, with 6- to 8-foot vegetated banks dominated by hydrophytic OBL and FAC forbs, grasses, and shrub species (Photographs D-5 and D-6).

5. Discussion

Ecosphere delineated the aquatic resources along the NM 63 corridor study area. Based upon the site investigation conducted by Ecosphere, wetlands and other WUS are present in the survey area. Approximately 0.02 acre of palustrine emergent (PEM) and 0.29 acres of palustrine scrub-shrub (PSS) wetlands were delineated in the survey area. In addition, 35 linear feet of perennial channel WUS along the Mora River were delineated in the survey area.

The perennial channel (R3SB) displayed a clear bed and bank channel with OHWM indicators with consistent perennial flows during the field investigation in August 2023. The perennial channel transitions into a wetland complex that supports both fringing and depressional PSS and PEM wetlands delineated within the study area (Areas 1, 2, 3, 4).

NMDOT in partnership with FHWA is proposing to replace bridge #3926 with a new bridge on a new alignment that is located approximately 10 to 15 feet east of the existing bridge. The new bridge would be 65 feet long and fully span the Rio Mora with no center pier. The existing bridge and old roadway would be removed along with the center pier of the existing bridge. Removal of the center pier will occur down to 2 feet below the current streambed.

Based on the proposed project design, temporary impacts to PSS wetlands will total 0.04 acre (1,826 square feet); there are no temporary impacts to PEM wetlands. Permanent impacts to PSS wetlands will total 0.04 acre (2,005 square feet) and permanent impacts to PEM wetlands will total 0.004 acre (182 square feet). Permanent impacts to all wetlands total 0.044 acres (2,187 square feet) and are shown in Table 5-1 and depicted on Map A-5 in Appendix A.

National Wetland Inventory Classification ¹	Impact Acres		Square Feet
PSS	Temporary	0.0400	1,826.00
PEM	Temporary	0	0
Total Temporary	Total Temporary Wetland Impacts		1,826.00
PSS	Permanent	0.0407	2,004.61
PEM	Permanent	0.0040	182.39
Total Permanent Wetland Impacts		0.0447	2,187.00

Table 5-1. Summary of Impacts

¹PEM=palustrine emergent; PSS=palustrine scrub shrub (Cowardin et al. 1979).

The boundaries of identified wetlands were mapped using a Trimble GeoXT unit with sub-meter accuracy. Note that field indicators can change with variations in hydrology and other factors. This report assesses the potential for wetlands at the site at the time of the field work and does not address conditions at any time in the future. This report does not constitute a jurisdictional determination of wetlands and other WUS, since such

determinations must be verified by the USACE and are subject to review by the US Environmental Protection Agency.

6. References

Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. US Fish and Wildlife Service, Office of Biological Services, Washington, DC. FWS/OBS-79/31.

Gretag/Macbeth. 2000. Munsell[®] color. New Windsor, New York.

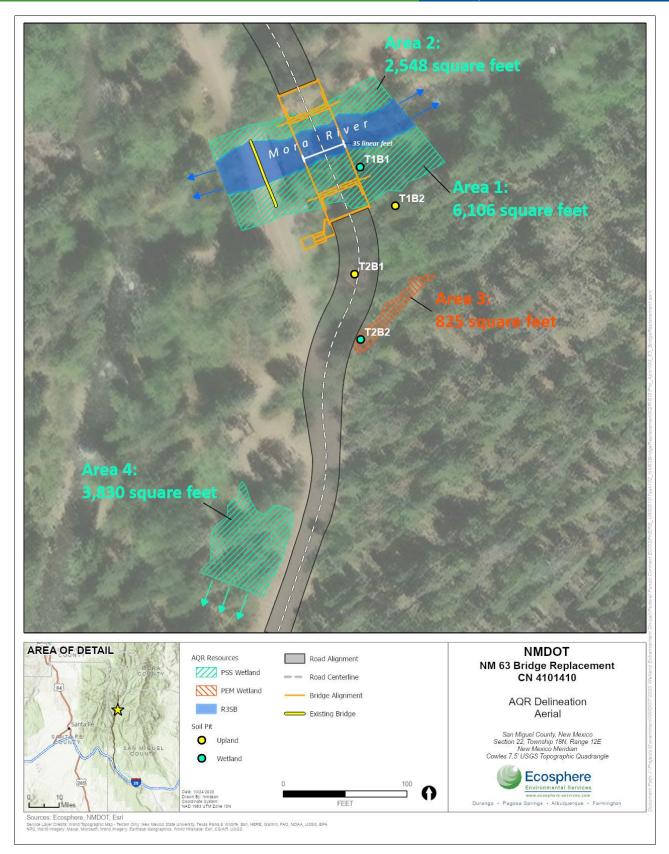
- Natural Resources Conservation Service (NRCS). 2021a. Web soil survey. [Online digital data.] Soil Survey Staff, Natural Resources Conservation Service, US Department of Agriculture. Available online at <u>http://websoilsurvey.sc.egov.usda.gov/</u>. Accessed October 16, 2023.
- NRCS. 2021b. National hydric soils list. Available online at <u>https://www.nrcs.usda.gov/Internet</u> /FSE_DOCUMENTS/nrcseprd1316620.html. Accessed October 16, 2023.
- NRCS. 2021c. The PLANTS database. National plant data team, Greensboro, North Carolina. Available online at http://plants.usda.gov. Accessed October 16, 2023.
- US Army Corps of Engineers (USACE). 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1, Environmental Laboratory, US Army Corps of Engineer Waterways Experiment Station. Vicksburg, Mississippi.
- USACE. 2005. Regulatory Guidance Letter No. 05-05, Ordinary High Water Mark Identification. December 7, 2005.
- USACE. 2010. Regional supplement to the Corps of Engineers wetland delineation manual: western mountains, valleys, and coast region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-03.
- USACE. 2014. A guide to ordinary high water mark (OHWM) delineation for non-perennial streams in the western mountains, valleys, and coast region of the United States. Cold Regions Research and Engineering Laboratory: Hanover, NH. ERDC/CRREL TR-14-13.
- USACE. 2018. National Wetland Plant List, Version 3.4. https://wetland-plants.usace.army.mil/nwpl_static/v34 /home/home.html. Engineer Research and Development Center. Cold Regions Research and Engineering Laboratory, Hanover, NH.
- US Fish and Wildlife Service (USFWS). 2020. National Wetlands Inventory website. US Department of the Interior, Fish and Wildlife Service, Washington, DC. Last modified May 2020. Available at: http://www.fws.gov/wetlands.
- USGS. 2016. National Hydrography Dataset, high resolution. [Online digital data.] US Geological Survey in cooperation with U.S. Forest Service, National Geospatial Technical Operations Center. Denver, Colorado. Available at: https://www.usgs.gov/core-science-systems/ngp/national-hydrography/national-hydrography-dataset?qt-science_support_page_related_con=0#qt-science_support_page_related_con.

Ecosphere Environmental Services, Inc.

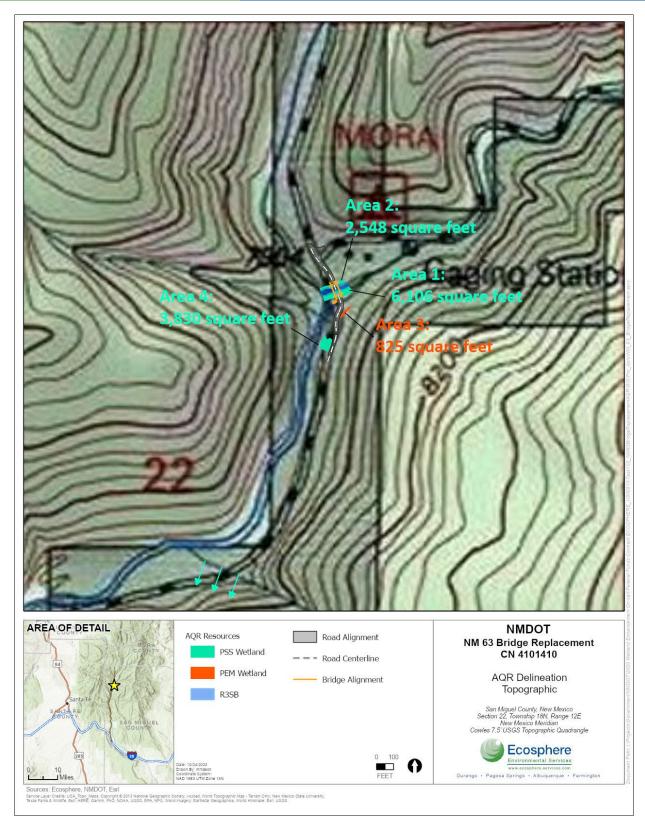
Western Regional Climate Center (WRCC). 2020. Historical Climate Information for Gallup, New Mexico. Western Regional Climate Center, Reno, NV. Located online at: https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?nm3422. Accessed September 2023.

Appendix A – Vicinity and Aquatic Resource Maps

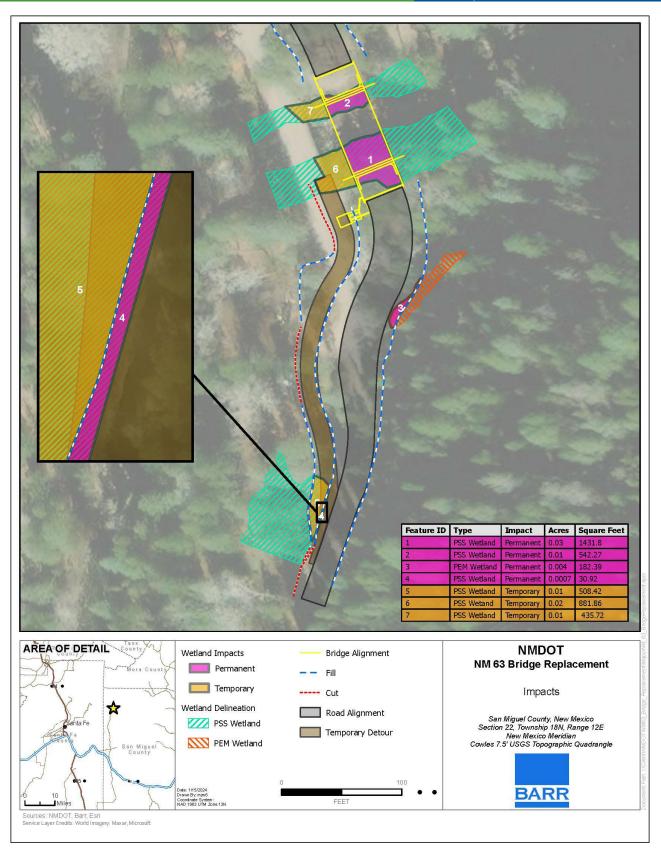
Ecosphere Environmental Services, Inc.



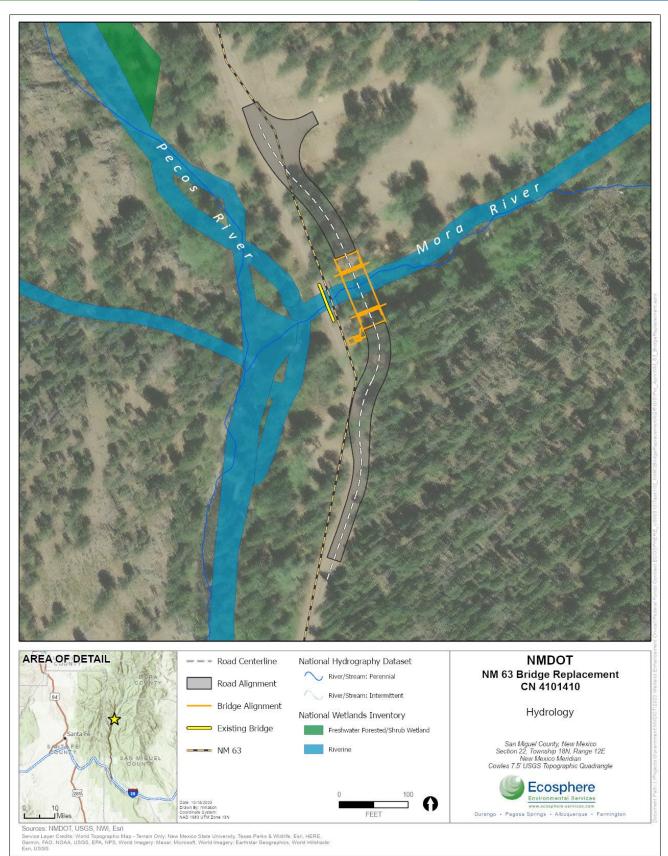
Map A-1. Vicinity Map

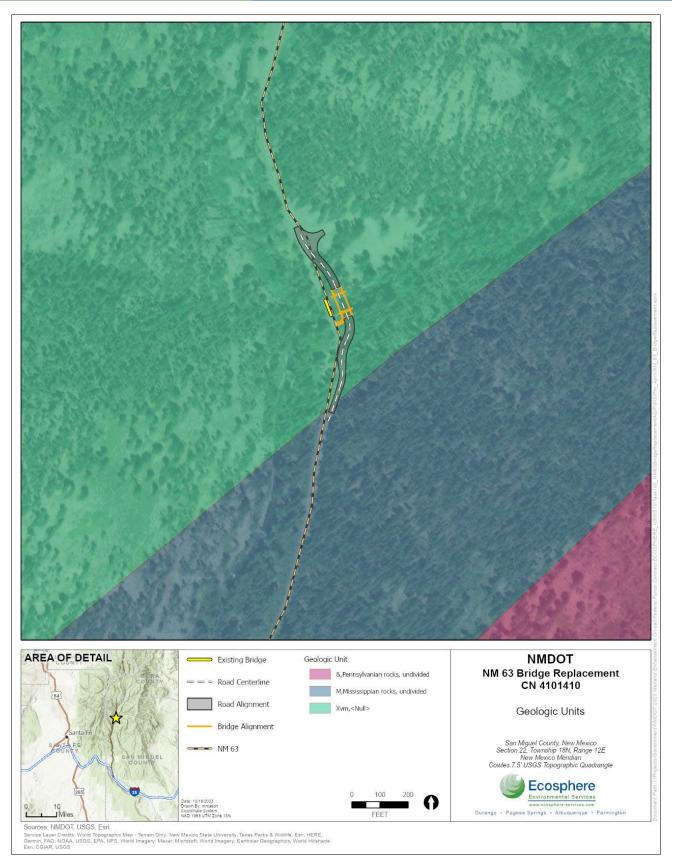

Map A-2. Aquatic Resource Delineation Project Detail Map

Ecosphere Environmental Services, Inc.


Map A-3. Aquatic Resources Delineation Aerial Map

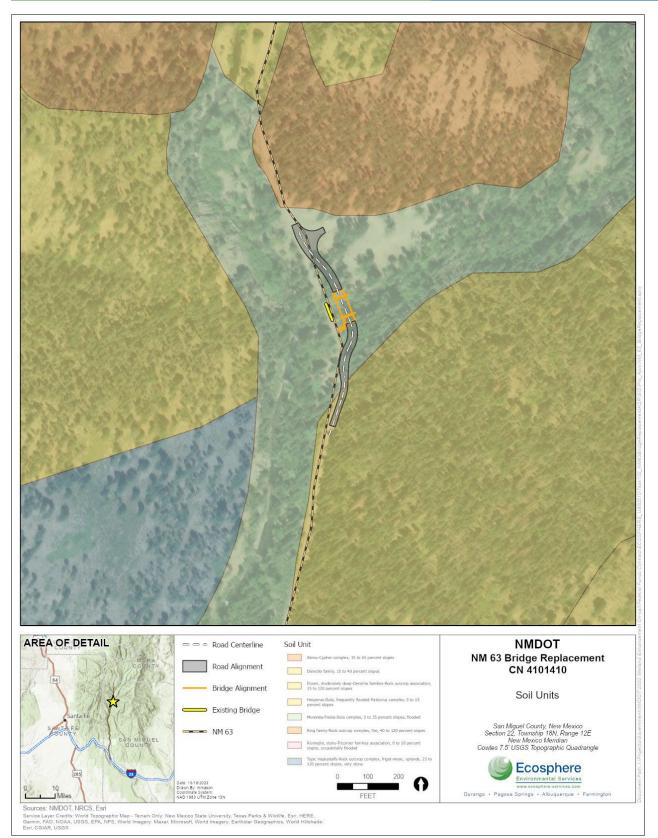
Ecosphere Environmental Services, Inc.


Ecosphere Environmental Services, Inc.


Map A-5. Aquatic Resources Impact Map

Appendix B – Supporting Maps

Ecosphere Environmental Services, Inc.



Map B-1. Hydrology NWI/NHD Map

Map B-2. Geology Map

Ecosphere Environmental Services, Inc.

Map B-3. Soils Map

Appendix C – Wetland Determination Data Forms

Ecosphere Environmental Services, Inc.

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

E
3

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes _ ✓ No Yes _ ✓ No Yes _ ✓ No	Is the Sampled Area within a Wetland?	Yes No
Remarks:			

VEGETATION - Use scientific names of plants.

•	Absolute	Deminort	Indicator	Dominance Test worksheet:	
Tree Stratum (Plot size:)		Species?		CONTRACTOR A RECEIPTOR REPORT FOR TO THE REPORT OF A	
1. Alnus incana	20	Y	FACW	Number of Dominant Species That Are OBL, FACW, or FAC: 6	(A)
2 Picea engelmannii	20	Y	FAC		. ,
	-03	(0) -	•(1)	Total Number of Dominant	(B)
3		(d)	· — — ·	Species Across All Strata: _/	(B)
4	40	= Total Co		Percent of Dominant Species That Are OBL, FACW, or FAC: 85	
Sapling/Shrub Stratum (Plot size:)	12	10(0100			(A/B)
1. Cornus sericea	5	Y	FACW	Prevalence Index worksheet:	
2. Rosa woodsii	20	Y	FACU	Total % Cover of:Multiply by:	-
3 Ribes aureum	30	Y	FAC	OBL species x 1 =	-16
· · · · · · · · · · · · · · · · · · ·			5. 	FACW species x 2 =	
4			·	FAC species x 3 =	-12
5				FACU species x 4 =	
Llark Stratum (Distaine)	55	= Total Co	over	UPL species x 5 =	
Herb Stratum (Plot size:) 1 Equisetum pratense	20	Y	FACW	Column Totals: (A)	
 Maianthemum racemosum 	5	Y	FAC		
3 Thalictrum fendleri		<u> </u>	FAC	Prevalence Index = B/A =	-
	100		103-00000000000000000000000000000000000	Hydrophytic Vegetation Indicators:	
4				1 - Rapid Test for Hydrophytic Vegetation	
5	-		. <u> </u>	✓ 2 - Dominance Test is >50%	
6				3 - Prevalence Index is ≤3.0 ¹	
7				4 - Morphological Adaptations ¹ (Provide supp	orting
8		~		data in Remarks or on a separate sheet)	
9		- C-		5 - Wetland Non-Vascular Plants ¹	
10				Problematic Hydrophytic Vegetation ¹ (Explain	1)
11	- 216			¹ Indicators of hydric soil and wetland hydrology m	ust
INTER-	27	= Total Co	ver	be present, unless disturbed or problematic.	
Woody Vine Stratum (Plot size:)					
1				Hydrophytic	
2.		VE 57	1014 D	Vegetation	
1031 - T125		_= Total Co	ver	Present? Yes <u>No</u> No	
% Bare Ground in Herb Stratum 20	<u>.</u>				
Remarks:					

Profile Des	scription: (Describ	e to the de	epth needed to docu	ment the	indicator	or confir	m the absence of	Sampling Point: T1B1
Depth	Matrix		8	ox Featur				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-12	10 YR 2/2	80	10YR 2/2	20	D	М	sandy loam	
<u></u>			- /				· ·	
		-10	-		-			
1	-							
			M=Reduced Matrix, C II LRRs, unless othe			ed Sand G		on: PL=Pore Lining, M=Matrix. for Problematic Hydric Soils ³ :
		icable to a			itea.)			1
Histoso			Sandy Redox					luck (A10)
 CONSIDERATION	Epipedon (A2)		Stripped Matrix		[4) (ava an		 Records over the control 	arent Material (TF2)
II. I INTERVIEW	Histic (A3)		Loamy Mucky Loamy Gleyed			(WILKA 1		hallow Dark Surface (TF12)
and the second second second	ien Sulfide (A4) ed Below Dark Surfa	00 (011)	✓ Depleted Matr	STATE OF MARKED STREET	-2)			Explain in Remarks)
	ark Surface (A12)	ace (ATT)	Redox Dark S				³ Indiactore	of hydrophytic vegetation and
and the second s	Mucky Mineral (S1)		Depleted Dark					hydrology must be present,
the second se	Gleyed Matrix (S4)		Redox Depres					listurbed or problematic.
<u> </u>	Layer (if present):	ŝ)			isturbed of problematic.
	Layer (in present).							
Туре:								· · · · · ·
1. A. A.	nches):						Hydric Soil Pr	esent? Yes 🚩 No
Remarks:								
HYDROLC	DGY							
Wetland Hy	ydrology Indicators	s:						
Primary Ind	licators (minimum of	one requir	ed; check all that app	ly)			Seconda	ry Indicators (2 or more required)
Surface	e Water (A1)		Water-St	ained Lea	ves (B9) (e	except	Wate	er-Stained Leaves (B9) (MLRA 1, 2,
	/ater Table (A2)		State		and 4B)	nu, u en 1070 - 2860		A, and 4B)
✓ Saturat			Salt Crus		-			nage Patterns (B10)
	Marks (B1)		Aquatic Ir	1990	oc (P12)		0	Season Water Table (C2)

_	Aquatic Invertebrates (B13)

- ____ Hydrogen Sulfide Odor (C1)
 - ____ Oxidized Rhizospheres along Living Roots (C3) ____ Geomorphic Position (D2)
 - ✓
 Presence of Reduced Iron (C4)
 ______ Shallow Aquitard (D3)
 - ____ Recent Iron Reduction in Tilled Soils (C6) ___ Stunted or Stressed Plants (D1) (LRR A)
 - OIL /Evolain in D

Sparsely Vege	tated Concave Surface (B8)		
Inundation Visi	ble on Aerial Imagery (B7)	Other (Explain in Remarks)	
C. Streamstering and Streamstering Contractions and a stream stre Stream stream str	A CONTRACTOR AND A CONTRACTOR	The second	Construction of the Construction of the

Sparsely Vegetated Con	cave Surface	e (B8)				
Field Observations:			10 autor - Dispanse			
Surface Water Present?	Yes 🗸	_ No	_ Depth (inches): surface			
Water Table Present?	Yes	No 🖌	_ Depth (inches):		1	
Saturation Present? (includes capillary fringe)	Yes_✔	_ No	_ Depth (inches): surface	Wetland Hydrology Present?	Yes 🖌 No	
Describe Recorded Data (stre	eam gauge, r	monitoring	well, aerial photos, previous inspec	ctions), if available:		
Remarks:						

____ Sediment Deposits (B2) ✓ Drift Deposits (B3)

____ Algal Mat or Crust (B4)

____ Surface Soil Cracks (B6)

___ Iron Deposits (B5)

____ Saturation Visible on Aerial Imagery (C9)

____ FAC-Neutral Test (D5)

____ Raised Ant Mounds (D6) (LRR A)

____ Frost-Heave Hummocks (D7)

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: NM Hwy 63 Bridge Replacement	City/County: Cowles/ Sa	n Miguel	Sampling Date: August 3, 2023
Applicant/Owner: NM DOT	212 18		Sampling Point: T1B2
	Section, Township, Range	Section 22, Towns	ship 18 N, and Range 12 E
Landform (hillslope, terrace, etc.): river bank	Local relief (concave, con		
	.776333 N L	ong: <u>105.659592</u> W	Datum: NAD 83
Soil Map Unit Name: Morenda-Fiesta-Dula complex, 0 to 35 perc	ent slopes, flooded	NWI classific	ation: R3SB
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes No	(If no, explain in R	emarks.)
Are Vegetation, Soil, or Hydrology significantly	v disturbed? Are "No	rmal Circumstances" p	oresent? Yes 🖌 No
Are Vegetation, Soil, or Hydrology naturally pro	oblematic? (If need	ed, explain any answe	rs in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No_√ No_√ No_√	Is the Sampled Area within a Wetland?	Yes	No	
Remarks:						

VEGETATION – Use scientific names of plants.

	Alexalista	Denting	6 I	Demission Testandalas	
Tree Stratum (Plot size:)		Dominan Species?		Dominance Test worksheet:	
1. Pinus ponderosa	40	Y	FACU	Number of Dominant Species That Are OBL, FACW, or FAC: 0	(A)
2					
				Total Number of Dominant Species Across All Strata: 4	(B)
3					(D)
4		_ = Total Co		Percent of Dominant Species That Are OBL, FACW, or FAC: 0	(A/B)
Sapling/Shrub Stratum (Plot size:)				Prevalence Index worksheet:	
1. <u></u>				Total % Cover of: Multiply by:	
2	10				_
3				OBL species x 1 =	
4				FACW species x 2 =	-
		· · · ·	<u> </u>	FAC species x 3 =	-
5	- C			FACU species x 4 =	-7
Herb Stratum (Plot size:)		= Total Co	over	UPL species x 5 =	
1. Taraxacum officinale	5	Y	FACU	Column Totals: (A)	
2. Bromus inermis	20	Y	UPL	Prevalence Index = B/A =	_
_{3.} Dactylis glomerata	20	<u>Y</u>	FACU	Hydrophytic Vegetation Indicators:	
4				1 - Rapid Test for Hydrophytic Vegetation	
5				2 - Dominance Test is >50%	
6				$ \underline{\qquad} 3 - \text{Prevalence Index is } \le 3.0^{1} $	
				10	
7				4 - Morphological Adaptations ¹ (Provide supp data in Remarks or on a separate sheet)	orting
9				5 - Wetland Non-Vascular Plants ¹	
				Problematic Hydrophytic Vegetation ¹ (Explain	1)
10			·	¹ Indicators of hydric soil and wetland hydrology m	<i>c</i>
11			•	be present, unless disturbed or problematic.	uot
Woody Vine Stratum (Plot size:)	2	_= Total Co	ver		
1		·		Hydrophytic	
2	17.95			Vegetation Present? Yes No Ves	
50 %		_= Total Co	ver		
% Bare Ground in Herb Stratum 50 %					
Remarks:					

SOIL	
------	--

SOIL								Sampling Point: T1B2
Profile Desc	ription: (Describ	e to the de	oth needed to docu	ment the	indicator	or confirm	n the absence	
Depth	Matrix		Redo	ox Feature	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
1-6	10 YR 5/1	98	10YR 6/6	2	D	М	Sandy loam	
	fo.			-				
<u>.</u>				-50	-			
			3				<u></u>	
	2							
	2		0	343			.	
<u></u>	0		3				<u> </u>	·
	-		3				<u> </u>	
¹ Type: C=Co	oncentration, D=D	epletion, RN	Reduced Matrix, C	S=Covere	d or Coate	ed Sand G		ation: PL=Pore Lining, M=Matrix.
Hydric Soil I	ndicators: (Appl	icable to al	LRRs, unless othe	rwise no	ted.)		Indicator	rs for Problematic Hydric Soils ³ :
Histosol	(A1)		Sandy Redox ((S5)			2 cm	n Muck (A10)
	pipedon (A2)		Stripped Matrix					Parent Material (TF2)
Black Hi	and the second sec		Loamy Mucky			tMLRA 1)		Shallow Dark Surface (TF12)
	n Sulfide (A4)		Loamy Gleyed	STATES AND STREET	2)		Othe	er (Explain in Remarks)
	d Below Dark Surfa ark Surface (A12)	ace (ATT)	Depleted Matri Redox Dark Su	Y200 JC	`		³ Indicator	rs of hydrophytic vegetation and
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lucky Mineral (S1)		Depleted Dark					nd hydrology must be present,
	leyed Matrix (S4)		Redox Depress		36			s disturbed or problematic.
	ayer (if present):							-
Type: roc	⊳k							
Depth (inc	_{ches):} <u>6-12 inche</u>	s					Hydric Soil	Present? Yes No 🖌
Remarks:	·							
	202000-0							
HYDROLO	GY							
Wetland Hyd	drology Indicator	s:						
Primary Indic	ators (minimum o	f one require	d; check all that app	ly)			<u>Secon</u>	dary Indicators (2 or more required)
Surface	Water (A1)		Water-Sta	ained Leav	/es (B9) (e	except	w	ater-Stained Leaves (B9) (MLRA 1, 2,
High Wa	ter Table (A2)		MLRA	1, 2, 4A,	and 4B)			4A, and 4B)
Saturatio	on (A3)		Salt Crust	: (B11)			Dr	rainage Patterns (B10)
Water M	larks (B1)		Aquatic In	vertebrat	es (B13)		Dr	ry-Season Water Table (C2)
Sedimer	nt Deposits (B2)		Hydrogen	Sulfide C	dor (C1)		Sa	aturation Visible on Aerial Imagery (C9)
Drift Dep	oosits (B3)		Oxidized	Rhizosph	eres along	Living Roo	ots (C3) 🔡 Ge	eomorphic Position (D2)
Algal Ma	t or Crust (B4)		Presence	of Reduc	ed Iron (C	4)	Sł	nallow Aquitard (D3)
Iron Dep	osits (B5)		Recent Ire	on Reduct	ion in Tille	d Soils (Ce	6) F#	AC-Neutral Test (D5)
Surface	Soil Cracks (B6)		Stunted o	r Stressed	d Plants (E)1) (LRR A	.)Ra	aised Ant Mounds (D6) (LRR A)
Inundatio	on Visible on Aeria	il Imagery (E	37) Other (Ex	plain in R	emarks)		Fr	ost-Heave Hummocks (D7)
Sparsely	/Vegetated Conca	ve Surface	(B8)					
Field Observ	vations:							
Surface Wate	er Present?	Yes	No 🗾 Depth (in	nches):		_		
Water Table	Present?	Yes	1	iches):				
Saturation Pr	resent?	Yes	No_√ Depth (in	nches):		Wetl	and Hydrology	Present? Yes No 🖌
(includes cap			······································					
Describe Red	corded Data (strea	m gauge, m	onitoring well, aerial	photos, p	revious ins	spections),	it available:	

Remarks:

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: NM Hwy 63 Bridge Replacement	City/County: Cowles/ S	an Miguel	Sampling Date: August 3, 2023
Applicant/Owner: NM DOT	5.87 32	State: NM	Sampling Point: T2B1
Investigator(s): Hanson	Section, Township, Rang	ge: Section 22, Towns	ship 18 N, and Range 12 E
Landform (hillslope, terrace, etc.): depression	Local relief (concave, co	nvex, none): <u>Concave</u>	Slope (%):
Subregion (LRR): LRR D Lat: 35.	.775975 N	Long: <u>105.659518</u> W	Datum: NAD 83
Soil Map Unit Name: Morenda-Fiesta-Dula complex, 0 to 35 perc	ent slopes, flooded	NWI classific	ation: R3SB
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes No	(If no, explain in R	emarks.)
Are Vegetation, Soil, or Hydrology significantly	disturbed? Are "N	ormal Circumstances" p	resent? Yes 🖌 No
Are Vegetation, Soil, or Hydrology naturally pro	oblematic? (If nee	ded, explain any answe	rs in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No_√ No_√ No_√	Is the Sampled Area within a Wetland?	Yes	No
Remarks:					

VEGETATION – Use scientific names of plants.

	Abaaluta	Densin and	la disatan	Deminence Test worksheet
Tree Stratum (Plot size:)		Dominant Species?		Dominance Test worksheet:
1. Populus angustifolia	35	Y	FACW	Number of Dominant Species That Are OBL, FACW, or FAC: <u>1</u> (A)
2				Total Number of Dominant
3	- 202			Species Across All Strata: 5 (B)
4				· a a
Sapling/Shrub Stratum (Plot size:)		_= Total Co		Percent of Dominant Species That Are OBL, FACW, or FAC: 20 (A/B
1 Rosa woodsii	20	Y	FACU	Prevalence Index worksheet:
•			•	Total % Cover of: Multiply by:
2				OBL species x 1 =
3				FACW species x 2 =
4				
5				FAC species x 3 =
		= Total Co	. <u> </u>	FACU species x 4 =
Herb Stratum (Plot size:)	2			UPL species x 5 =
1 Dactylis glomerata	30	Y	FACU	Column Totals: (A) (B)
2 Erigeron flagellaris	30	Y	FACU	Directly and a local and a D(A)
3 Tragopogon dubius	15	Y	UPL	Prevalence Index = B/A =
3. <u> </u>	_101		/// <u>//////////////////////////////////</u>	Hydrophytic Vegetation Indicators:
4				1 - Rapid Test for Hydrophytic Vegetation
5				2 - Dominance Test is >50%
6				3 - Prevalence Index is ≤3.0 ¹
7				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
				5 - Wetland Non-Vascular Plants ¹
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10			· — — ·	¹ Indicators of hydric soil and wetland hydrology must
11		20 20. 01 -0029	·	be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size:)	-	_= Total Co	ver	e. No la serie de la serie de No la serie de
1			·	Hydrophytic
2				Vegetation Present? Yes No
	-	_= Total Co	ver	
% Bare Ground in Herb Stratum				
Remarks:				

Profile Des	cription: (Descri	be to the de	pth needed to docu	ment the i	indicator	or confirm	n the absence	of indicators.)
Depth	Matrix			x Feature				,
(inches)	Color (moist)	%	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
)-10"	10 YR 2/1						sandy loam	
5''	10 nYR 6/8		10 YR 6/8	5	D	М	. <u></u>	restrictive layer
								8
			·	 	·			
	101 201 01 10 10 10 10 10 10 10 10 10 10 10 1		1=Reduced Matrix, C			ed Sand G		cation: PL=Pore Lining, M=Matrix.
_ Histoso _ Histic E _ Black H	(20) J. C		Sandy Redox (Stripped Matrix Loamy Mucky I Loamy Gleyed	S5) : (S6) Mineral (F	1) (excep	t MLRA 1)	2 cr Rec Ver	m Muck (A10) d Parent Material (TF2) y Shallow Dark Surface (TF12) er (Explain in Remarks)
Deplete	ed Below Dark Sur ark Surface (A12)		Depleted Matri	x (F3)				ors of hydrophytic vegetation and
TTR 1253 12	Mucky Mineral (S1		Depleted Dark					and hydrology must be present,
- 12	Gleyed Matrix (S4)		Redox Depress	sions (F8)			unles	ss disturbed or problematic.
	Layer (if present): 						
	ck							
Type: ro								
Depth (in	nches): <u>10-12</u>						Hydric Soil	l Present? Yes No
Depth (in remarks:	nches): <u>10-12</u>						Hydric Soil	I Present? Yes No
Depth (in remarks: /DROLC	nches): <u>10-12</u>	<u>s:</u>					Hydric Soil	I Present? Yes No
Depth (in temarks: (DROLC Vetland Hy	nches): <u>10-12</u> DGY rdrology Indicato		ed; check all that app	y)				I Present? Yes No
Depth (in emarks: /DROLC /etland Hy rimary Indi Surface	DGY rdrology Indicato cators (minimum o Water (A1)		Water-Sta	ined Leav		xcept	<u>Seco</u>	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1,
Depth (in emarks: /DROLC /etland Hy rimary Indi Surface High W	DGY rdrology Indicato cators (minimum of Water (A1) ater Table (A2)		Water-Sta MLRA	ined Leav 1, 2, 4A, a		xcept	<u>Seco</u> V	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 4A, and 4B)
Depth (in emarks: /DROLC /etland Hy rimary Indi Surface High W: Saturati	DGY rdrology Indicato cators (minimum of Water (A1) ater Table (A2) ion (A3)		Water-Sta MLRA Salt Crust	iined Lea∨ 1, 2, 4A, a (B11)	and 4B)	xcept	<u>Seco</u> V C	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10)
Depth (in emarks: /DROLC /etland Hy rimary Indi 	DGY rdrology Indicato cators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1)		Water-Sta MLRA Salt Crust Aquatic In	ined Leav 1, 2, 4A, a (B11) vertebrate	and 4B) es (B13)	except	<u>Seco</u> V C	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Depth (in emarks: /DROLC /etland Hy rimary Indi 	DGY rdrology Indicato cators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2)		Water-Sta MLRA Salt Crust Aquatic In Hydrogen	ined Leav 1, 2, 4A, a (B11) vertebrate Sulfide O	and 4B) es (B13) dor (C1)		<u>Seco</u> V C C S	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C
Depth (in remarks: /DROLC /etland Hy rimary Indi Surface High W: Saturati Saturati Sedime Drift De	DGY rdrology Indicato cators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3)		Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I	ined Leav 1, 2, 4A, a (B11) vertebrate Sulfide O Rhizosphe	and 4B) es (B13) dor (C1) eres along	Living Roo	<u>Seco</u> V C C C S ots (C3) C	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Seomorphic Position (D2)
Depth (in emarks: /DROLC /etland Hy rimary Indi Surface High Wi Saturati Saturati Sedime Drift De Algal M	PGY rdrology Indicato cators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)		Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence	ined Leav 1, 2, 4A, 4 (B11) vertebrate Sulfide O Rhizosphe of Reduce	and 4B) es (B13) dor (C1) res along ed Iron (C-	Living Roo 4)	<u>Seco</u> V C S S S	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Seomorphic Position (D2) Shallow Aquitard (D3)
Depth (in remarks: CDROLC Vetland Hy rimary Indi Saurface High W Saturati Saturati Saturati Saturati Dift De Algal M Iron De	PGY rdrology Indicato cators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)		Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Inc	ined Leav 1, 2, 4A, (B11) vertebrate Sulfide O Rhizosphe of Reduce on Reducti	and 4B) es (B13) dor (C1) res along ed Iron (C on in Tille	Living Roo 4) d Soils (Cé	<u>Seco</u> V C C S ots (C3) C S 5) F	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Seomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
Depth (in emarks: /DROLC /etland Hy rimary Indi 	DGY rdrology Indicato cators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6)	of one require	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o	ined Leav 1, 2, 4A , a (B11) vertebrate Sulfide O Rhizosphe of Reduce on Reducti r Stressed	and 4B) dor (C1) dor (C1) ed Iron (C on in Tille Plants (C	Living Roo 4) d Soils (Cé	<u>Seco</u> V C C C S obts (C3) G S S F	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Seomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Depth (in emarks: DROLC Vetland Hy rimary Indi Surface High W. Saturati Saturati Water M Sedime Drift De Algal M Iron De Surface Inundat	DGY rdrology Indicato cators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeri	of one require	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o 37) Other (Ex	ined Leav 1, 2, 4A , a (B11) vertebrate Sulfide O Rhizosphe of Reduce on Reducti r Stressed	and 4B) dor (C1) dor (C1) ed Iron (C on in Tille Plants (C	Living Roo 4) d Soils (Cé	<u>Seco</u> V C C C S obts (C3) S S S F	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Seomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
Depth (in emarks: DROLC /etland Hy rimary Indi Surface High Wi Saturati Water M Sedime Drift De Algal M Iron De Surface Inundat Sparsel	DGY rdrology Indicato cators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeri y Vegetated Conc	of one require	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o 37) Other (Ex	ined Leav 1, 2, 4A , a (B11) vertebrate Sulfide O Rhizosphe of Reduce on Reducti r Stressed	and 4B) dor (C1) dor (C1) ed Iron (C on in Tille Plants (C	Living Roo 4) d Soils (Cé	<u>Seco</u> V C C C S obts (C3) S S S F	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Seomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Depth (in remarks: /DROLC /etland Hy rimary Indi 	DGY rdrology Indicato cators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeri y Vegetated Conc	of one require al Imagery (E ave Surface	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o 37) Other (Ex (B8)	ined Leav 1, 2, 4A, (B11) vertebrate Sulfide O Rhizosphe of Reduce on Reducti r Stressed plain in Re	and 4B) es (B13) dor (C1) res along ed Iron (C- on in Tille Plants (E emarks)	Living Roo 4) d Soils (C6 1) (LRR A	<u>Seco</u> V C C C S obts (C3) S S S F	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Seomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Depth (in emarks: //DROLC /etland Hy rimary Indi Surface High Wi Saturati Saturati Saturati Saturati Naturati Surface Iron Dep Surface Surface Sparsel ield Obser urface Water	Aches): 10-12 PGY drology Indicato cators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) s Soil Cracks (B6) ion Visible on Aeri y Vegetated Conc rvations: ter Present?	of one require al Imagery (E ave Surface Yes	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o 37) Other (Ex) (B8)	ined Leav 1, 2, 4A, ((B11) vertebrate Sulfide O Rhizosphe of Reduce on Reducti r Stressed plain in Re ches):	and 4B) es (B13) dor (C1) res along ed Iron (C on in Tille Plants (D emarks)	Living Roo 4) d Soils (C6 1) (LRR A	<u>Seco</u> V C C C S obts (C3) S S S F	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Seomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Depth (in Remarks:	PGY rdrology Indicato cators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) soil Cracks (B6) ion Visible on Aeri y Vegetated Concervations: ter Present? Present? pillary fringe)	of one require al Imagery (E ave Surface Yes Yes Yes	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o 37) Other (Ex) (B8) No ✓ Depth (in No ✓ Depth (in	ined Leav 1, 2, 4A, 4 (B11) vertebrate Sulfide O Rhizosphe of Reduce on Reducti r Stressed plain in Re ches): ches):	and 4B) as (B13) dor (C1) res along ed Iron (C- on in Tille Plants (D emarks)	Living Roo 4) d Soils (C6 1) (LRR A	<u>Seco</u> V C C S ots (C3) G 5) F .) F .) F	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Seomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Depth (in Remarks: YDROLC Vetland Hy Primary Indi Surface High W: Saturati Water M Sedime Drift De Algal M Iron De Surface Inundat Sparsel Surface Wal Vater Table Saturation F ncludes ca	PGY rdrology Indicato cators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) soil Cracks (B6) ion Visible on Aeri y Vegetated Concervations: ter Present? Present? pillary fringe)	of one require al Imagery (E ave Surface Yes Yes Yes	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o 37) Other (Ex) (B8) No Depth (in No Depth (in	ined Leav 1, 2, 4A, 4 (B11) vertebrate Sulfide O Rhizosphe of Reduce on Reducti r Stressed plain in Re ches): ches):	and 4B) as (B13) dor (C1) res along ed Iron (C- on in Tille Plants (D emarks)	Living Roo 4) d Soils (C6 1) (LRR A	<u>Seco</u> V C C S ots (C3) G 5) F .) F .) F	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1 , 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Seomorphic Position (D2) Shallow Aquitard (D3) SAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Depth (in Remarks: YDROLC Vetland Hy Primary Indi Surface High W Saturati Water N Sedime Surface Inundat Surface Inundat Sparsel Surface Wal Vater Table Saturation F ncludes ca Describe Re	PGY rdrology Indicato cators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) soil Cracks (B6) ion Visible on Aeri y Vegetated Concervations: ter Present? Present? pillary fringe)	of one require al Imagery (E ave Surface Yes Yes Yes	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o 37) Other (Ex) (B8) No ✓ Depth (in No ✓ Depth (in	ined Leav 1, 2, 4A, 4 (B11) vertebrate Sulfide O Rhizosphe of Reduce on Reducti r Stressed plain in Re ches): ches):	and 4B) as (B13) dor (C1) res along ed Iron (C- on in Tille Plants (D emarks)	Living Roo 4) d Soils (C6 1) (LRR A	<u>Seco</u> V C C S ots (C3) G 5) F .) F .) F	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1 , 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Seomorphic Position (D2) Shallow Aquitard (D3) SAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Depth (in Remarks: YDROLC Yetland Hy Primary Indi Surface High W: Saturati Water N Sedime Drift De Algal M Iron De Surface Inundat Sparsel Surface Wal Vater Table Saturation F ncludes ca	PGY rdrology Indicato cators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) soil Cracks (B6) ion Visible on Aeri y Vegetated Concervations: ter Present? Present? pillary fringe)	of one require al Imagery (E ave Surface Yes Yes Yes	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o 37) Other (Ex) (B8) No ✓ Depth (in No ✓ Depth (in	ined Leav 1, 2, 4A, 4 (B11) vertebrate Sulfide O Rhizosphe of Reduce on Reducti r Stressed plain in Re ches): ches):	and 4B) as (B13) dor (C1) res along ed Iron (C- on in Tille Plants (D emarks)	Living Roo 4) d Soils (C6 1) (LRR A	<u>Seco</u> V C C S ots (C3) G 5) F .) F .) F	ndary Indicators (2 or more required) Vater-Stained Leaves (B9) (MLRA 1 , 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Seomorphic Position (D2) Shallow Aquitard (D3) SAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Ecosphere Environmental Services, Inc.

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: NM Hwy 63 Bridge Replacement	City/County: Cowles/ S	San Miguel	Sampling Date: August 3, 2023
Applicant/Owner: NM DOT	5 SAC 52	State: NM	Sampling Point: T2B2
Investigator(s): Hanson	_ Section, Township, Ran	ge: Section 22, Towns	ship 18 N, and Range 12 E
Landform (hillslope, terrace, etc.): depression		onvex, none): <u>Concave</u>	
Subregion (LRR): LRR D Lat: 35	5.775975 N	Long: <u>105.659518</u> W	Datum: NAD 83
Soil Map Unit Name: Morenda-Fiesta-Dula complex, 0 to 35 per	cent slopes, flooded	NWI classific	ation: R3SB
Are climatic / hydrologic conditions on the site typical for this time of y	rear? Yes 🖌 No _	(If no, explain in R	emarks.)
Are Vegetation, Soil, or Hydrology significantly	y disturbed? Are "ì	Normal Circumstances" p	resent? Yes 🖌 No
Are Vegetation, Soil, or Hydrology naturally p	roblematic? (If nee	eded, explain any answe	rs in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes _ ✓ No Yes _ ✔ No Yes _ ✓ No	Is the Sampled Area within a Wetland?	Yes No
Remarks:		·	

VEGETATION – Use scientific names of plants.

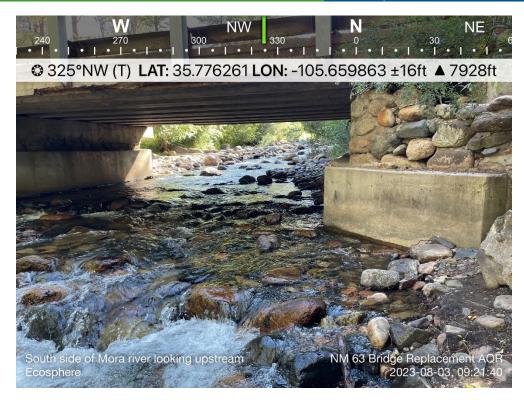
	AL	D	6 I	Development Trade constraints de	
Tree Stratum (Plot size:)	Absolute % Cover	Species?	t Indicator	Dominance Test worksheet:	
1. Populus angustifolia	30	Y	FACW	Number of Dominant Species That Are OBL, FACW, or FAC: <u>5</u> ((A)
2					
3				Total Number of Dominant Species Across All Strata: 5	(B)
			•		(D)
4	30	_ = Total Co	over	Percent of Dominant Species That Are OBL, FACW, or FAC: 100 ((A/B)
Sapling/Shrub Stratum (Plot size:)			=	Prevalence Index worksheet:	
1. Ribes aureum	_ 20	<u>Y</u>	FAC	Total % Cover of: Multiply by:	
2					
3				OBL species x 1 =	
4				FACW species x 2 =	10
5				FAC species x 3 =	6
- S	20	= Total Co		FACU species x 4 =	
Herb Stratum (Plot size:)			over	UPL species x 5 =	
1. Epilobium palustre	20	Y	OBL	Column Totals: (A)	(B)
2 Equisetum pratense	20	Y	FACW		
3 moss	15	Y	OBL	Prevalence Index = B/A = Hydrophytic Vegetation Indicators:	
A.					
4				1 - Rapid Test for Hydrophytic Vegetation	
5				✓ 2 - Dominance Test is >50%	
6			-cs <u></u> c	3 - Prevalence Index is ≤3.0 ¹	
7				4 - Morphological Adaptations ¹ (Provide support data in Remarks or on a separate sheet)	orting
8				5 - Wetland Non-Vascular Plants ¹	
9			·		x
10			. <u> </u>	Problematic Hydrophytic Vegetation ¹ (Explain)	ć.
11	- 0		•	¹ Indicators of hydric soil and wetland hydrology mube present, unless disturbed or problematic.	ust
ರ್ಷವ ಖೆ.ಸ.ಕ. ಮುಂದ ರ್ಞಾನಕ ಶ್ರ. ಸ	55	_= Total Co	ver	be present, unless disturbed of problematic.	
Woody Vine Stratum (Plot size:)					
1				Hydrophytic	
2				Vegetation Present? Yes <u>V</u> No <u>No</u>	
		= Total Co	ver	Present? Yes V No	
% Bare Ground in Herb Stratum <u>40</u>	2				
Remarks:					
1					

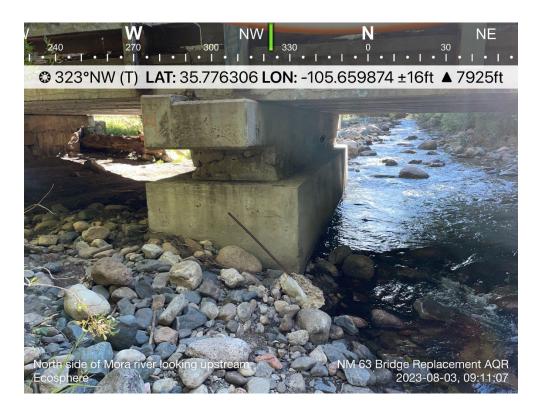
Profile Des	cription: (Describe	to the dent	h needed to docu	mont the i	ndicator	or confirm	n the abser	nce of indicators)
	e 1	e to the dept					ii tile absei	ice of indicators.)
Depth (inches)	<u>Matrix</u> Color (moist)	%	Color (moist)	<u>x Feature</u> %	Type ¹	Loc ²	Texture	Remarks
)-12	10 YR 2/1	90					loam	
5-10	10 YR 5/2					M	loam	
/ 10								
				- <u></u>				
lydric Soi Histoso Histic E	Epipedon (A2)		RRs, unless othe Sandy Redox (Stripped Matrix	rwise not S5) : (S6)	əd.)		India 2	² Location: PL=Pore Lining, M=Matrix. eators for Problematic Hydric Soils ³ : 2 cm Muck (A10) Red Parent Material (TF2)
Hydrog	Histic (A3) jen Sulfide (A4) ed Below Dark Surfa	- 	Loamy Mucky I Loamy Gleyed Depleted Matrix	Matrix (F2		(WILRA1)		√ery Shallow Dark Surface (TF12) Other (Explain in Remarks)
Thick [Sandy	Dark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4)	· · · · · ·	 ✓ Redox Dark Su ✓ Depleted Dark ✓ Depleted Dark ✓ Redox Depress 	irface (F6) Surface (F	7)		W	cators of hydrophytic vegetation and etland hydrology must be present, nless disturbed or problematic.
Restrictive	Layer (if present):						Υ.	
Туре:								1
							2545 02045 2	S 1971 12 12 12 12 12 12 12 12 12 12 12 12 12
Depth (i Remarks:	nches):						Hydric \$	Soil Present? Yes 🖌 No
Remarks: YDROLC	DGY						Hydric \$	Soil Present? Yes <u>V</u> No
Remarks: YDROL(Vetland H	DGY ydrology Indicators		- check all that ann					
YDROL(Yetland H Yrimary Ind	DGY		Water-Sta			except		Soil Present? Yes <u>Y</u> No econdary Indicators (2 or more required) _ Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B)
YDROLO Vetland H Primary Ind Surface High W Satura	DGY ydrology Indicators licators (minimum of e Water (A1) /ater Table (A2) tion (A3)		Water-Sta MLRA Salt Crust	iined Leav 1, 2, 4A, a (B11)	and 4B)	except		econdary Indicators (2 or more required) _ Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) _ Drainage Patterns (B10)
YDROLC YDROLC Vetland H Primary Ind Surfac High W ∠ Satura Water	DGY ydrology Indicators licators (minimum of e Water (A1) /ater Table (A2) tion (A3) Marks (B1)		Water-Sta MLRA Salt Crust Aquatic In	ined Leav 1, 2, 4A, a (B11) vertebrate	and 4B) s (B13)	except		econdary Indicators (2 or more required) _ Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) _ Drainage Patterns (B10) _ Dry-Season Water Table (C2)
YDROLO YDROLO Vetland H Primary Ind Surfac High W ∠ Satura Water Sedime	DGY ydrology Indicators licators (minimum of e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2)		Water-Sta MLRA Salt Crust Aquatic In Hydrogen	ined Leav 1, 2, 4A, a (B11) vertebrate Sulfide Od	and 4B) s (B13) dor (C1)		<u>Se</u>	econdary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3
YDROLO Vetland H Primary Ind Surface High W ∠ Satura Water Sedime Drift De	DGY ydrology Indicators licators (minimum of e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3)		Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I	ined Leav 1, 2, 4A, a (B11) vertebrate Sulfide Oo Rhizosphe	and 4B) s (B13) dor (C1) res along	Living Roo	<u>Se</u> 	 <u>econdary Indicators (2 or more required)</u> Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3) Geomorphic Position (D2)
YDROLO Vetland H Primary Ind Surface High W Satura Water Sedime Drift De Algal M	DGY ydrology Indicators icators (minimum of e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) fat or Crust (B4)		Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized f Presence	ined Leav 1, 2, 4A, a (B11) vertebrate Sulfide Oa Rhizosphe of Reduce	and 4B) s (B13) dor (C1) res along d Iron (C	Living Roo 4)	Se	econdary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3)
YDROLO Vetland H Primary Ind Surface High W Z Satural Water Sedime Drift De Algal M Iron De	DGY ydrology Indicators iicators (minimum of e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) fat or Crust (B4) eposits (B5)		Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized f Presence Recent Inc	ined Leav 1, 2, 4A, a (B11) vertebrate Sulfide Oa Rhizosphe of Reduce on Reducti	and 4B) s (B13) dor (C1) res along d Iron (C on in Tille	Living Roo 4) d Soils (Cé	Se ots (C3) ₆₎	econdary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
YDROLO Vetland H Primary Ind Surface High W Z Satural Water Sedime Drift De Algal M Iron De Surface	DGY ydrology Indicators icators (minimum of e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) fat or Crust (B4) eposits (B5) e Soil Cracks (B6)	one required	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized f Presence Recent Irc Stunted o	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oo Rhizosphe of Reduce on Reducti r Stressed	s (B13) dor (C1) res along d Iron (C on in Tille Plants (D	Living Roo 4) d Soils (Cé	Dots (C3)	econdary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
YDROLO YDROLO Vetland H Primary Ind Surface High W Yater Satural Satural Satural Satural Drift De Algal M Iron De Surface Inunda	DGY ydrology Indicators iicators (minimum of e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) fat or Crust (B4) eposits (B5)	one required	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized f Presence Recent Irc Stunted ou) Other (Exj	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oo Rhizosphe of Reduce on Reducti r Stressed	s (B13) dor (C1) res along d Iron (C on in Tille Plants (D	Living Roo 4) d Soils (Cé	Dots (C3)	econdary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
YDROLO YOROLO Yetland H Primary Ind Surface High W Yeter Satural Satural Surface Iron De Surface Inunda Sparse	DGY ydrology Indicators licators (minimum of e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aerial ly Vegetated Concav	one required	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized f Presence Recent Irc Stunted ou) Other (Exj	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oo Rhizosphe of Reduce on Reducti r Stressed	s (B13) dor (C1) res along d Iron (C on in Tille Plants (D	Living Roo 4) d Soils (Cé	Dots (C3)	econdary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
YDROLO Yetland H Primary Ind Surface High W Z Satural Water Sedime Sedime Drift De Algal M Iron De Surface Inunda Sparse ield Obse	DGY ydrology Indicators licators (minimum of e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) fat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aerial ly Vegetated Concav rvations:	one required Imagery (B7 /e Surface (B	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted ou Other (Exp 8)	ined Leave 1, 2, 4A , a (B11) vertebrate Sulfide Or Rhizosphe of Reduce on Reducti r Stressed plain in Re	nnd 4B) s (B13) dor (C1) res along d Iron (C- on in Tille Plants (D marks)	Living Roo 4) d Soils (Cé	Dots (C3)	econdary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
YDROLO Yetland H Primary Ind Surface High W Yater Sedime Nater Sedime Nater Sedime Nater Surface Sparse Surface Wa	DGY ydrology Indicators licators (minimum of e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) fat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aerial ly Vegetated Concav rvations:	one required Imagery (B7 /e Surface (B	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted ou Other (Exp 8)	ined Leave 1, 2, 4A , a (B11) vertebrate Sulfide Or Rhizosphe of Reduce on Reducti r Stressed plain in Re	nnd 4B) s (B13) dor (C1) res along d Iron (C- on in Tille Plants (D marks)	Living Roo 4) d Soils (Cé	Dots (C3)	econdary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
YDROLO YDROLO Vetland H Primary Ind — Surface — High W Y Satural — Water — Sedime — Orift De — Orift De — Iron De — Iron De — Iron De — Surface Surface Water Tablis Saturation I ncludes ca	DGY ydrology Indicators icators (minimum of e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) fat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aerial ly Vegetated Concav rvations: ater Present? e Present? Present? apillary fringe)	Imagery (B7 /e Surface (B Yes N Yes N Yes N	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted or) Other (Exp 8) Io Depth (in Io Depth (in	ined Leav 1, 2, 4A, a (B11) vertebrate Sulfide Ou Rhizosphe of Reduces on Reducti r Stressed plain in Re ches): <u>SU</u> ches): <u>SU</u>	s (B13) dor (C1) res along d Iron (C- on in Tille Plants (D marks) rface	Living Roo 4) d Soils (C6 01) (LRR A	Dits (C3)	econdary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) No
YDROLO YDROLO Vetland H Primary Ind — Surface — High W Y Satural — Water — Sedime — Orift De — Orift De — Iron De — Iron De — Iron De — Surface Surface Water Tablis Saturation I ncludes ca	DGY ydrology Indicators licators (minimum of e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) fat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aerial ly Vegetated Concav rvations: ater Present? e Present?	Imagery (B7 /e Surface (B Yes N Yes N Yes N	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted or) Other (Exp 8) Io Depth (in Io Depth (in	ined Leav 1, 2, 4A, a (B11) vertebrate Sulfide Ou Rhizosphe of Reduces on Reducti r Stressed plain in Re ches): <u>SU</u> ches): <u>SU</u>	s (B13) dor (C1) res along d Iron (C- on in Tille Plants (D marks) rface	Living Roo 4) d Soils (C6 01) (LRR A	Dits (C3)	econdary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) No
YDROLO YDROLO Vetland H Primary Ind — Surface — High W Y Satural — Water — Sedime — Orift De — Orift De — Iron De — Iron De — Iron De — Surface Surface Water Tablis Saturation I ncludes ca	DGY ydrology Indicators icators (minimum of e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) fat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aerial ly Vegetated Concav rvations: ater Present? e Present? Present? apillary fringe)	Imagery (B7 /e Surface (B Yes N Yes N Yes N	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted or) Other (Exp 8) Io Depth (in Io Depth (in	ined Leav 1, 2, 4A, a (B11) vertebrate Sulfide Ou Rhizosphe of Reduces on Reducti r Stressed plain in Re ches): <u>SU</u> ches): <u>SU</u>	s (B13) dor (C1) res along d Iron (C- on in Tille Plants (D marks) rface	Living Roo 4) d Soils (C6 01) (LRR A	Dits (C3)	econdary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) No
YDROLO Vetland H Primary Ind Surface High W Yater Sedime Sedime Nater Sedime Nater Surface Iron De Surface Surface Surface Surface Wa Saturation I ncludes ca Describe R	DGY ydrology Indicators icators (minimum of e Water (A1) /ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2) eposits (B3) fat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aerial ly Vegetated Concav rvations: ater Present? e Present? Present? apillary fringe)	Imagery (B7 /e Surface (B Yes N Yes N Yes N	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted or) Other (Exp 8) Io Depth (in Io Depth (in	ined Leav 1, 2, 4A, a (B11) vertebrate Sulfide Ou Rhizosphe of Reduces on Reducti r Stressed plain in Re ches): <u>SU</u> ches): <u>SU</u>	s (B13) dor (C1) res along d Iron (C- on in Tille Plants (D marks) rface	Living Roo 4) d Soils (C6 01) (LRR A	Dits (C3)	econdary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) No

Ecosphere Environmental Services, Inc.

Appendix D – Reference Photographs

Photograph D-1. Wetland Soil Data Point T1B1.


Photograph D-2. Upland Soil Data Point T1B2.


Photograph D-3. Upland Soil Data point T2B1.

Photograph D-4. Wetland Soil Data Point T2B2.

Photograph D-5. Mora River looking upstream.

Photograph D-6. Mora River looking downstream.

Photograph D-7. Fringe PSS wetlands adjacent to Mora River channel.

Photograph D-8. PSS Wetland Area 4.

Ecosphere Environmental Services, Inc.

Appendix E– Dominant Plant Species Observed in the Study Area

Scientific Name	Common Name	WMVC Wetland Indicator Status ¹
Trees		
Alnus incana	speckled alder	FACW
Picea engelmannii	Engelmann's spruce	FAC
Picea pungens	blue spruce	FAC
Pinus ponderosa	ponderosa pine	FACU
Populus angustifolia	narrowleaf cottonwood	FACW
Populus deltoides	eastern cottonwood	FAC
Shrubs		
Berberis fendleri	Colorado barberry	UPL
Cornus sericea	redosier dogwood	FACW
Quercus gambelii	Gambel oak	UPL
Ribes aureum	golden currant	FAC
Rosa woodsii	Woods' rose	FACU
Salix exigua	narrowleaf willow	FACW
Salix lasiandra	Pacific willow	FACW
Salix planifolia	diamondleaf willow	OBL
Graminoids		
Agrostis gigantea	black bent	FAC
Agrostis stolonifera	spreading bent	FAC
Bromus inermis	smooth brome	UPL
Dactylis glomerata	orchardgrass	FACU
Pascopyrum smithii	western wheatgrass	FACU
Phleum pratense	timothy	FAC
Poa palustris	fowl bluegrass	FAC
Poa pratensis	Kentucky bluegrass	FAC
Forbs		
Achillea millefolium	common yarrow	FACU
Conyza canadensis	Canadian horseweed	UPL
Descurainia sophia	herb sophia	UPL
Epilobium ciliatum	fringed willowherb	FACW
Epilobium palustre	marsh willow herb	OBL
Equisetum pratense	meadow horsetail	FACW
Erigeron flagellaris	trailing fleabane	FACU
Erigeron speciosus	aspen fleabane	UPL
Geranium richardsonii	Richardson's geranium	FAC
Helianthus annuus	common sunflower	FACU

Appendix Table E-1. List of Dominant Plant Species Observed in the Study Area

Ecosphere Environmental Services, Inc.

Scientific Name	Common Name	WMVC Wetland Indicator Status ¹
Linaria vulgaris	butter and eggs	UPL
Maianthemum racemosum	feathery false lily of the valley	FAC
Mentha aquatica	water mint	FACW
Plantago lanceolata	narrowleaf plantain	FACU
Potentilla norvegica	Norwegian cinquefoil	UPL
Taraxacum officinale	common dandelion	FACU
Thalictrum fendleri	Fendler's meadow-rue	FAC
Tragopogon dubius	yellow salsify	UPL
Trifolium pratense	red clover	FACU

¹Wetland indicator status for western mountains, valleys, and coast (WMVC) (Lichvar et al. 2018):

OBL = Obligate wetland (hydrophyte); occurs in aquatic resources > 99% of the time

FACW = Facultative wetland (hydrophyte); occurs in aquatic resources 67-99% of the time

FAC = Facultative (hydrophyte); occurs in aquatic resources 34-66% of the time

FACU = Facultative upland (non-hydrophyte); occurs in aquatic resources 1-33% of the time

UPL = Obligate upland (non-hydrophyte); occurs in uplands > 99% of the time

NI = indicator status not known in this region