

9400 Holly Ave NE, Bldg 3, Ste B, Albuquerque, NM 87122 / P 505.266.6611 / trinityconsultants.com

March 15, 2024

Permit Programs Manager NMED Air Quality Bureau 525 Camino de los Marquez Suite 1 Santa Fe, NM 87505-1816

RE: Application for Significant Revision to NSR Permit No. 7995-M3 Targa Northern Delaware, LLC — Cadillac Compressor Station MAR 2 | 2024
Air Quality Bureau

Permit Programs Manager:

On behalf of Targa Northern Delaware, LLC (Targa), Trinity Consultants is submitting this application for a Significant Revision for NSR Permit No. 7995-M3 for the Cadillac Compressor Station, located in Eddy County. Pursuant to 20.2.72.219.D.(1)(a) NMAC, this revision is for the addition of one (1) heater trailer (unit Trailer-1), one (1) air compressor generator (unit GEN-1), and one (1) vapor combustion unit (unit VCU-1); the removal of one (1) Caterpillar 3516 compressor engine (unit 18-0345), and one (1) 300 bbl storage tank (unit TK-4); and the replacement of two (2) Caterpillar 3516 compressor engines (units 18-0341 & 18-0342) with like-kind compressor engines (units ENG-1 & ENG-7, respectively), and five (5) Caterpillar 3606 compressor engines (units 18-0246, 18-0296, 18-0304, ENG-1, & ENG-2) with like-kind replacements (ENG-2 through ENG-6, respectively). The site-wide emission have been updated to reflect a recent inlet gas analysis.

The format and content of this application are consistent with the Bureau's current policy regarding NSR applications; it is a complete application package using the most current application form. Enclosed is a hard copy of the application, including the original certification. Please feel free to contract me at (505) 266-6611 or by email at jaimy.karacaoglu@trinityconsultants.com if you have any questions regarding this application. Alternatively, you may contact Robert Andries at (713) 584-1360 or by email at randries@targaresources.com.

Sincerely,

Jaimy Karacaoglu Consultant

Trinity Project File 243201.0017

NMED AIR QUALITY BUREAU NSR SIGNIFICANT REVISION APPLICATION

Targa Northern Delaware, LLC Cadillac Compressor Station

Prepared By:

Robert Andries - Sr. Environmental Specialist

Targa Northern Delaware, LLC

811 Louisiana Suite 2100 Houston, TX 77002-1400

Jaimy Karacaoglu - Consultant

TRINITY CONSULTANTS

9400 Holly Ave Building 3, Suite B Albuquerque, NM 87122 (505) 266-6611

March 2024

Project 243201.0017

Targa Resources Partners LP 811 Louisiana Street Suite 2100 Houston, TX 77002

JPMORGAN CHASE BANK NA Chicago, IL CHECK NO. CHECK DATE 3500508429 01/30/2024

70-2322/719 709373500

* * * Five Hundred Dollars And Zero Cents*

CHECK AMOUNT \$500.00

Pay To The Order Of STATE OF NEW MEXICO GENERAL FUND AIR QUALITY BUREAU SANTA FE NM 87505-1816

Jung Knesle

THIS CHECK CONTAINS MULTIPLE SECURITY FEATURES - SEE BACK FOR DETAILS

#3500508429# #071923226#

7093735001

PAY TO:		A. 44	Targa Resource	es Corp.		Page 1 of 1
STATE OF NEW ME			VENDOR NO.	CHECK DATE	CHECK NO	CHECK TOTAL
SANTA FE NM 8750	R QUALITY BUREAU 05-1816		1004108	01/30/2024	3500508429	\$500.00
INVOICE	INVOICE					AMOUNT
NUMBER	DATE					PAID
CKBQ013024-3	20240130	Rob	ert Andries		\$	500.00

RECEIVED

MAR 2 1 2024

Air Quality Bureau

Air Permit Application Compliance History Disclosure Form

Pursuant to Subsection 74-2-7(S) of the New Mexico Air Quality Control Act ("AQCA"), NMSA §§ 74-2-1 to -17, the New Mexico Environment Department ("Department") may deny any permit application or revoke any permit issued pursuant to the AQCA if, within ten years immediately preceding the date of submission of the permit application, the applicant met any one of the criteria outlined below. In order for the Department to deem an air permit application administratively complete, or issue an air permit for those permits without an administrative completeness determination process, the applicant must complete this Compliance History Disclosure Form as specified in Subsection 74-2-7(P). An existing permit holder (permit issued prior to June 18, 2021) shall provide this Compliance History Disclosure Form to the Department upon request.

Permittee/Applicant Company Name		Expected Application Submittal Date				
Targa Northern Delaware, LLC		March 15, 2024				
Perm	Permittee/Company Contact Phone Email					
Robe	Robert Andries (713) 584-1360 <u>randries@targaresources.com</u>					
With	in the 10 years preceding the expecte	d date of submittal of the ap	plication, has the permittee or applicant:			
1	Knowingly misrepresented a material fact in an application for a permit?					
2	Refused to disclose information required by the provisions of the New Mexico Air Quality Control Act?					
3	Been convicted of a felony related to environmental crime in any court of any state or the United States?					
4	Been convicted of a crime defined by state or federal statute as involving or being in restraint of trade, price fixing, bribery, or fraud in any court of any state or the United States?					
5a	Constructed or operated any facility for which a permit was sought, including the current facility, without the required air quality permit(s) under 20.2.70 NMAC, 20.2.72 NMAC, 20.2.74 NMAC, 20.2.79 NMAC, or 20.2.84 NMAC?					
5b	If "No" to question 5a, go to question 6. If "Yes" to question 5a, state whether each facility that was constructed or operated without the required air quality permit met at least one of the following exceptions: a. The unpermitted facility was discovered after acquisition during a timely environmental audit that was authorized by the Department; or b. The operator of the facility estimated that the facility's emissions would not require an air permit, and the operator applied for an air permit within 30 calendar days of discovering that an air permit was required for the facility.			□ Yes □ No		
6	Had any permit revoked or permanently suspended for cause under the environmental laws of any state or the United States?					
7	For each "yes" answer, please prov	ide an explanation and docun	nentation.			

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

For Department use only:

RECEIVED

MAR 2 1 2024

Air Quality Bureau

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

This application is submitted as (check all that apply): Request for a No Permit Required Determination (no fee) Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Construction Status: Not Constructed Existing Permitted (or NOI) Facility Existing Non-permitted (or NOI) Facility Minor Source: NOI 20.2.73 NMAC 20.2.72 NMAC application or revision 20.2.72.300 NMAC Streamline application Title V Source: Title V (new) Title V renewal TV minor mod. TV significant mod. TV Acid Rain: New Renewal
PSD Major Source: PSD major source (new) Minor Modification to a PSD source a PSD major modification
Acknowledgements:
☑ I acknowledge that a pre-application meeting is available to me upon request. ☑ Title V Operating, Title IV Acid Rain, and NPR applications have no fees.
\$500 NSR application Filing Fee enclosed OR The full permit fee associated with 10 fee points (required w/ streamline applications).
□ Check No.: 3500508429 in the amount of \$500.
I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.
I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-2/ .
This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/ .)
Citation: Please provide the low level citation under which this application is being submitted: 20.2.72.219.D.(1)(a) NMAC (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	AI # if known: 38618	Permit/NOI #: 7995-M3	
1	Facility Name: Cadillac Compressor Station	Plant primary SIC Code (4 digits): 1311		
		Plant NAIC code (6 digits): 211130		
а	Facility Street Address (If no facility street address, provide directions from the United States Postal Service in Malaga, NM, head south on Hw left onto service road and continue east for 1.3 miles, then turn right and be on the right.	y 285 and continue south	for 4.1 miles, then turn	

2	Plant Operator Company Name: Targa Northern Delaware, LLC	Phone/Fax: (575) 631-7093			
а	Plant Operator Address: 811 Louisiana Suite 2100, Houston, TX 77002-140	00			
b	Plant Operator's New Mexico Corporate ID or Tax ID: 1948249				
3	Plant Owner(s) name(s): Targa Northern Delaware, LLC	Phone/Fax: (575) 631-7093			
а	Plant Owner(s) Mailing Address(s): 811 Louisiana Suite 2100, Houston, TX 77002-1400				
4	Bill To (Company): Targa Northern Delaware, LLC	Phone/Fax: (575) 631-7093			
a	Mailing Address: 811 Louisiana Suite 2100, Houston, TX 77002-1400	E-mail: randries@targaresources.com			
5	☐ Preparer: ☐ Consultant: Jaimy Karacaoglu	Phone/Fax: (505) 266-6611			
a	Mailing Address: 9400 Holly Ave, Bldg 3, Ste B, Albuquerque NM, 87113	E-mail: Jaimy.Karacaoglu@trinityconsultants.com			
6	Plant Operator Contact: Jason Fuentes	Phone/Fax: 575-513-9934			
а	Address: 201 South 4th St. Artesia NM 88210	E-mail: jason.fuentes@targaresources.com			
7	Air Permit Contact: Robert Andries	Title: Sr. Environmental Specialist			
а	E-mail: randries@targaresources.com Phone/Fax: (713) 584-1360				
b	Mailing Address: 811 Louisiana Suite 2100, Houston, TX 77002-1400				
С	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.				

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? 🛛 Yes 📋	1.b If yes to question 1.a, is it currently operating in New Mexico? ☐ Yes ☐ No		
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application?		If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ☐ Yes ☐ No	
3	Is the facility currently shut down? 🔲 Yes 🔯 No	onth and year of shut down (MM/YY): N/A		
4	Was this facility constructed before 8/31/1972 and con	rated since 1972? ☐ Yes ☒ No		
5	If Yes to question 3, has this facility been modified (see ☐ Yes ☐ No ☒ N/A	20.2.72.7.P N	MAC) or the capacity increased since 8/31/1972?	
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☐ Yes ☒ No		If yes, the permit No. is: N/A	
7	Has this facility been issued a No Permit Required (NPR)? ☐ Yes ☑ No		If yes, the NPR No. is: N/A	
8	Has this facility been issued a Notice of Intent (NOI)? ☐ Yes ☒ No		If yes, the NOI No. is: N/A	
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑ Yes ☐ No		? If yes, the permit No. is: 7995-M3	
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? ☐ Yes ☒ No		If yes, the register No. is: N/A	

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)					
а	Current Hourly: 4.167 MMscf/hr Daily: 100 MMscf/day Annually: 36,500 MMscf/yr					
b	Proposed	osed Hourly: 4.167 MMscf/hr Daily: 100 MMscf/day Annually: 36,500 MMscf/yr				
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)					

Section 1-D: Facility Location Information	Section	1-D:	Facility	Location	Information
--	---------	------	-----------------	----------	-------------

	ion 1-b. Tacinty Location into	macioni				
1	Latitude (decimal degrees): 32.149885°	Longitude	(decimal degrees): -104.048548°	County: Eddy	Elevation (ft): 2944	
2	UTM Zone: 12 or 13		Datum: NAD 83 WGS 84			
а	UTM E (in meters, to nearest 10 meters): 589,72	5	UTM N (in meters, to nearest 10 meters): 3,557,446		
3	Name and zip code of nearest New Mexico	o town: Mala	nga, NM 88263			
4	Detailed Driving Instructions from nearest From the United States Postal Service in M left onto service road and continue east for be on the right.	lalaga, NM,	head south on Hwy 285 and contin			
5	The facility is 5.0 miles south-southeast of	Malaga, NN	1.			
6	Land Status of facility (check one): X	vate 🔲 Indi	an/Pueblo Government B	LM Forest Se	rvice Military	
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Malaga, NM, Loving, NM, Eddy County					
8	20.2.72 NMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/air-quality/modeling-publications/)? Yes No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: Carlsbad Caverns National Park ~30.5 km					
9	Name nearest Class I area: Carlsbad Caverns National Park					
10	Shortest distance (in km) from facility boundary to the boundary of the nearest Class I area (to the nearest 10 meters): 30,575 m					
11	Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: 8390 m					
	Method(s) used to delineate the Restricte	d Area: Cont	inuous fencing			
12	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.					
13	Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? Yes No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.					
14	Will this facility operate in conjunction wi If yes, what is the name and permit numb			erty? 🔀 No	Yes	

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating (hours day 1:24 (week week):	7	(weeks year): 52	(hours / year): 8760
2	Facility's maximum daily operating schedule (if less than 24	hours day)? Start: N/A	AM PM	End: N/A AM PM
3	Month and year of anticipated start of construction: N/A			
4	Month and year of anticipated construction completion: N/A			
5	Month and year of anticipated startup of new or modified to	acility: June 2023		
6	Will this facility operate at this site for more than one year	⊠ Yes 🔲 No		

Section 1 E. Other Escility Information

Sect	ion 1-F: Other Facility Information		<u>,</u>		
1	Are there any current Notice of Violations (NOV), complia to this facility? Yes No If yes, specify: N/A	nce orders, or any o	other compl	iance or enforcement issues related	
а	If yes, NOV date or description of issue: N/A NOV Tracking No: N/A				
b	Is this application in response to any issue listed in 1-F, 1 of Yes, provide the 1c & 1d info below:	or 1a above? 🔲 Ye	es 🛭 No		
С	Document Title MA	Date: N/A		ment # (or	
-	Title: N/A	Δ.	hage # a	and paragraph #): N/A	
d	Provide the required text to be inserted in this permit: N/				
2	Is air quality dispersion modeling or modeling waiver beir				
3	Does this facility require an "Air Toxics" permit under 20.	2.72.400 NMAC & 2	0.2.72.502,	Tables A and/or B? Yes No	
4	Will this facility be a source of federal Hazardous Air Pollu	itants (HAP)? 🛛 Ye	es No		
а	If Yes, what type of source?			5 tpy of any combination of HAPS) tpy of any combination of HAPS)	
5	Is any unit exempt under 20.2.72.202.B.3 NMAC?	☑ No			
	If yes, include the name of company providing commercia	al electric power to	the facility:	N/A	
а	Commercial power is purchased from a commercial utilit	y company, which	specifically o	does not include power generated	
	on site for the sole purpose of the user.				
C- al	tion 4 C. Stangarline Application				
Section 1	tion 1-G: Streamline Application (This section I have filled out Section 18, "Addendum for Streamling 19, "Addendum for Stream f			(This is not a Streamline application.)	
(Title	tion 1-H: Current Title V Information - Rec V-source required information for all applications submitted pur C (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V) Responsible Official (R.O.)	suant to 20.2.72 NM	AC (Minor Co	enstruction Permits), or 20.2.74/20.2.79	
1	(20.2.70.300.D.2 NMAC): Jimmy Oxford		F	Phone: (940) 220-2493	
а	R.O. Title: Vice President Operations	R.O. e-m	ail: <u>JOxford@</u>	@targaresources.com	
b	R. O. Address: 4401 North I-35, Suite 303, Denton TX 762	07, United States			
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): N/A		F	Phone: N/A	
а	A. R.O. Title: N/A	A. R.O. e	-mail: N/A		
b	A. R. O. Address: N/A				
3	relationship): Targa Resources, Inc.				
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): Targa Resources, Inc.				
а					
	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): Targa Northern Delaware, LLC, Targa Midstream Services,				
5					

Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: Texas ~16.9 km

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

7

- 1) One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application	
Secure electronic transfer. Air Permit Contact Name: Jaimy Karacao	glu, Email: <u>Jaimy.Karacaoglu@trinityconsultants.com</u>
Phone number: (505) 266-6611.	

- a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.
- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc,), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

Section 1:	General Facility Information
Section 2:	Tables
Section 3:	Application Summary
Section 4:	Process Flow Sheet
Section 5:	Plot Plan Drawn to Scale
Section 6:	All Calculations
Section 7:	Information Used to Determine Emissions
Section 8:	Map(s)
Section 9:	Proof of Public Notice
Section 10:	Written Description of the Routine Operations of the Facility
Section 11:	Source Determination
Section 12:	PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
Section 13:	Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
Section 14:	Operational Plan to Mitigate Emissions
Section 15:	Alternative Operating Scenarios
Section 16:	Air Dispersion Modeling
Section 17:	Compliance Test History
Section 18:	Addendum for Streamline Applications (streamline applications only)
Section 19:	Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
Section 20:	Other Relevant Information
Section 21:	Addendum for Landfill Applications
Section 22:	Certification Page
Section 20: Section 21:	Other Relevant Information Addendum for Landfill Applications

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

11-3-					Manufact- urar's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit#			RICE Ignition Type (CI, SI,	Sam la sina
Unit Number ¹	Source Description	Make	Model#	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/. Reconstruction ²	Emissions vented to Stack#	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
ENG-1	Compressor Engine	Caterpillar	3516)	N6W00743	1380 hp	1380 hp	8/1/2018 TBD	Catalyst 1 ENG-1	20200254	Existing (unchanged) New/Additional To Be Modified To Be Removed Replacement Unit To Be Replaced	4SLB	18-0341
ENG-2	Compressor Engine	Caterpillar	3606	JFE01219	1,875 hp	1,875 hp	12/1/2018 TBD	Catalyst 2 ENG-2	20200254	Existing (unchanged)	4SLB	18-0246
ENG-3	Compressor Engine	Caterpîllar	3606	JFE01019	1875 hp	1875 hp	5/1/2018 TBD	Catalyst 3 ENG-3	20200254	Existing (unchanged) New/Additional To be Removed Replacement Unit To Be Modified To be Replaced	4SLB	18-0296
ENG-4	Compressor Engine	Caterpillar	3606	JFE01118	1875 hp	1875 hp	8/1/2018 TBD	Catalyst 4 ENG-4	20200254	Existing (unchanged) New/Additional To be Removed Replacement Unit To Be Modified To be Replaced	4SLB	18-0304
ENG-5	Compressor Engine	Caterpillar	3606	JFE01220	1875 hp	1875 np	12/1/2018 TBD	Catalyst 5 ENG-5	20200254	Existing (unchanged) New/Additional To be Removed Replacement Unit To Be Modified To be Replaced	4\$LB	ENG-1
ENG-6	Compressor Engine	Caterpillar	3606	JFE01182	1875 hp	1875 hp	10/1/2018 TBD	Catalyst 6 ENG-6	20200254	Existing (unchanged) New/Additional To be Removed Replacement Unit To Be Modified To be Replaced	4SLB	ENG-2
ENG-7	Compressor Engine	Caterpillar	3516J	JEF03405	1380 hp	1380 hp	TBD TBD	Catalyst 7	20200254	Existing (unchanged) New/Additional To be Removed To be Modified To be Replaced	4SLB	18-0342
ENG-8	Compressor Engine	Caterpillar	3608	XH701858	1380 hp	1380 hp	TBD	Catalyst 8 ENG-8	20200254	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	N/A
ENG-9	Compressor Engine	Caterpillar	3608	ТВD	1380 hp	1380 hp	TBD TBD	Catalyst 9 ENG-9	20200254	Existing (unchanged) New/Additional Replacement Unit To be Replaced	4SLB	N/A
ENG-10	Compressor Engine	Caterpillar	3608	ТВD	1380 hp	1380 hp	TBD TBD	Catalyst 10 ENG-10	20200254	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	N/A
18-0246	Compressor Engine	Caterpillar	3606	JFE01182	1875 hp	1875 hp	12/1/2018 3/30/2019	Catalyst 1 18-0246	20200254	Existing (unchanged) New/Additional To Be Modified To Be Replaced	4SLB	N/A
18-0296	Compressor Engine	Caterpillar	3606	JFE01220	1875 hp	1875 hp	1/1/2019 3/30/2019	Catalyst 2 18-0296	20200254	Existing (unchanged) New/Additional To Be Modified To be Replacement Unit To be Replaced	4SLB	N/A
18-0304	Compressor Engine	Caterpillar	3606	JFE01220	1875 hp	1875 hp	11/1/2018 1/24/2019	Catalyst 3	20200254	Existing (unchanged) To be Removed New/Additional Replacement Unit To be Replaced To be Replaced	4\$LB	N/A
18-0341	Compressor Engine	Caterpillar	3516	N6W00717	1380 hp	1380 hp	TBD 10/31/2018	Catalyst 10 18-0341	20200254	Existing (unchanged) New/Additional To be Removed Replacement Unit To Be Modified To be Replaced	4SLB	N/A
18-0342	Compressor Engine	Caterpillar	3516	N6W00760	1380 hp	1380 hp	TBD 10/31/2018	Catalyst 11 18-0342	20200254	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	N/A
18-0345	Compressor Engine	Caterpillar	3516	N6W00705	1380 hp	1380 hp	TBD 10/31/2018	Catalyst 12 18-0345	20200254	Existing (unchanged)	4\$LB	N/A
ENG-1	Compressor Engine	Caterpilfar	3606	TBD	1875 hp	1875 hp	TBD TBD	Catalyst 4	20200254	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4\$LB	N/A
ENG-2	Compressor Engine	Caterpiliar	3606	TBD	1875 hp	1875 hp	TBD TBD	Catalyst 5 ENG-2	20200254	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	N/A

	<u> </u>				Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #			RICE Ignition	
Unit Number ¹	Source Description	Make	Model#	\$erial#	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction	Emissions vented to Stack#	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 451B, 45RB, 2SLB) ⁴	Replacing Unit No.
ENG-8	Compressor Engine	Caterpillar	3608	TBD	2500 hp	2500 hp	TBD TBD	Catalyst 6 ENG-8	20200254	Existing (unchanged) New/Additional Replacement Unit To be Modified To be Removed Replacement Unit To be Replaced	4SLB	N/A
ENG-9	Compressor Engine	Caterpillar	3608	TBD	2500 hp	2500 hp	TBD TBD	Catalyst 7	20200254	Existing (unchanged) New/Additional To be Removed Replacement Unit To be Modified To be Replaced	4SLB	N/A
ENG-10	Compressor Engine	Caterpillar	3608	TBD	2500 hp	2500 hp	TBD TBD	Catalyst 8	20200254	Existing (unchanged) New/Additional New/Additional To be Removed Replacement Unit To be Modified To be Replaced	4SLB	N/A
ENG-11	Compressor Engine	Caterpillar	3608	TBD	2500 hp	2500 hp	TBD TBD	Catalyst 9	20200254	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4\$LB	N/A
Dehy-1	Glycol Dehydrator	Jatco	16067	TBD	100 MMSCFD	100 MMSCFD	TBD	VCU-1	31000301	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
RBL-1	Z.0 MMBtu/hr Reboiler w/ BTEX	FLAMCO	SB18-12	1702-779	2.0 MMBtu/hr	2.0 MMBtu/hr	TBD	N/A RBL-1	31000302	Existing (unchanged) New/Additional Replacement Unit To be Modified To be Replaced	N/A	N/A
Trailer-1	_Conduser Heater Trailer	Allmand	TBD	ТВО	13.8 hp	13.8 hp	TBD TBD	N/A Trailer 1	31000205	Existing (unchanged) To be Removed New/Additional Replacement Unit To be Replaced To be Replaced	N/A	N/A
GEN-1	Air Compressor Generator	PSI	14.6L	TBD	396 hp	396 hp	TBD TBD	N/A GEN-1	20200254	Existing (unchanged) New/Additional To be Removed Replacement Unit To Be Modified To be Replaced	N/A	N/A
TK-1	Atmospheric Storage Tank	Tank Partners	N/A	18263	300 bbi	300 ppl	2018 Post 9/18/2015	VCU-1 VCU-1	40400311	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
TK-2	Atmospheric Storage Tank	Conner Steel Products	N/A	26278	300 bbl	300 ppl	4/28/2010 Post 9/18/2015	VCU-1	40400311	Existing (unchanged) New/Additional To be Removed Replacement Unit To be Modified To be Replaced	N/A	N/A
TK-3	Atmospheric Storage Tank	TBD	TBD	TBD	300 bbl	300 bbl	TBD JBD	VCU-1	40400311	Existing (unchanged) To be Removed New/Additional Replacement Unit To be Modified To be Replaced	N/A	N/A
TK-4	Atmospheric Storage Tank	TBĐ	TBD	ТВО	300 ppl	300 bbl	TBD TBD	N/A N/A	40400311	Existing (unchanged) New/Additional To Be Modified Existing (unchanged) To be Removed Replacement Unit To be Replaced	N/A	N/A
VCU-1	Vapor Combustion Unit	Hero Flare	TBD	TBD	52 Mscf/day	52 Mscf/day	TBD TBD	N/A VCU-1	31000205	Existing (unchanged) New/Additional To Be Modified To be Removed Replacement Unit To Be Replaced	N/A	N/A
LOAD	Truck Loading	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	40600132	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
FUG	Facility-Wide Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	31000220	Existing (unchanged)	N/A	N/A
SSM/M	Startup, Shutdown, Maintenance, and	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	31000888	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A

Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

March 2024; Revision #0

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

^{4&}quot;4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4

NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wpcontent/uploads/sites/7/2017/10/insignificantListTitleV.pdf, TV sources may elect to enter both TV insignificant Activities and Part 72 Exemptions on this form. List Specific 20.2.72.202 NMAC Exemption (e.g. Date of Manufacture Model No. Max Capacity 20.2.72.202.B.5) /Reconstruction² For Each Piece of Equipment, Check Onc Unit Number Source Description Manufacturer Insignificant Activity citation (e.g. IA list item Date of Installation Serial No. Capacity Units /Construction² #1.a) ✓ Existing (unchanged) To be Removed 20.2.72.202.B.5.NMAC TBD TBD 100 New/Additional Replacement Unit N/A Methanol Tank TBD TBD bbl TBD To Be Modified To be Replaced ✓ Existing (unchanged) To be Removed TBD TBD 500 20.2.72.202.B.5.NMAC New/Additional Replacement Unit TBD N/A Glycol Tanks TBD TBD To be Replaced 23 To Be Modified ✓ Existing (unchanged) To be Removed TBD TBD 500 20.2.72,202,B.5,NMAC New/Additional Replacement Unit N/A Lube Oil Tanks TBD TBD TBD gal To Be Modified To be Replaced ✓ Existing (unchanged) To be Removed TBD 20.2.72.202.B.5.NMAC TBD 500 New/Additional Replacement Unit Antifreeze Tanks TBD N/A TBD gal TBD To be Replaced To Be Modified Existing (unchanged) To be Removed N/A N/A 20.2.72.202.B.5.NMAC N/A New/Additional Replacement Unit Haul Road Emissions N/A HAUL N/A To be Replaced N/A ✓ To Be Modified N/A To be Removed Existing (unchanged) New/Additional Replacement Unit To be Replaced To Be Modified Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced Existing (unchanged) To be Removed Replacement Unit New/Additional To Be Modified To be Replaced Existing (unchanged) To be Removed New/Additional Replacement Unit To be Replaced To Be Modified Existing (unchanged) To be Removed New/Additional Replacement Unit To be Replaced To Be Modified To be Removed Existing (unchanged) New/Additional Replacement Unit To be Replaced To Be Modified Existing (unchanged) To be Removed Replacement Unit New/Additional To Be Modified To be Replaced Existing (unchanged) To be Removed New/Additional Replacement Unit To be Replaced

To Be Modified

Printed 3/15/2024 2:40 PM Table 2-B: Page 1 Form Revision: 7/8/2011

Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all

Control Equipment Unit No.	es and list each pollutant controlled by the control device regardle Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
Catalyst 1	Oxidation Catalyst	TBD	CO, VOC, HEHO	ENG-1	CO: 83.2%	Manufacturer Specification
Catalyst 7	Oxidation Catalyst	TBD	.co, Voc, HCHO	ENG-7	VOC: 59.0% HCHO: 82.1%	Manufacturer Specification
Catalyst 2	Oxidation Catalyst	TBD	CO, VOC, HCHO	ENG-2		Manufacturer Specification
Catalyst 3	Oxidation Catalyst	TBD	со, уос, нсно	ENG-3		Manufacturer Specification
Catalast 4	Oxidation Catalyst	TBD	со, уос, нсно	ENG-4	CO: 80.0% VOC: 46.8%	Manufacturer Specification
Catalyst 5	Oxidation Catalyst	TBD	CO, VOC, HCHO	ENG-5	HCHO: 65.0%	Manufacturer Specification
Catalyst 6	Oxidation Catalyst	TBD	co, voc, hcho	ENG-6		Manufacturer Specification
Catalyst 8	Oxidation Catalyst	TBD	co, Voc, Hcho	ENG-8	<u> 1965 - Arribert State Grand Grand Grand</u>	Manufacturer Specification
Catalyst 9	Oxidation Catalyst	TBD	co, voc, hcho	ENG-9	CO: 75.5% VOC: 38.8%	Manufacturer Specification
Catalyst 10	Oxidation Catalyst	TBD	CO, VOC, HCHO	ENG-10	HCHO: 80.0%	Manufacturer Specification
VCU-1	Vapor Combustion Unit	TBD	VOC, H₂S, Total HAP	TK-1 through TK-3, Dehy-1	98%	Manufacturer Specification
VCO _F 1						Specimenon
	and the County of Anna County of the County	Antight of a process	Age Contract			
<u> Karajarin</u>		NEW PLANTS	Elizabeth (San Taribeth Language) and an early are		<u> 1 Heri Mirani, 1864, in prinsi ku a</u>	The Beauty and a second
		The section of the section				
					Mill Winker Star Develo	
<u> </u>	A College of the College of the processing College College College of the College College of the College College of the Colleg	W		and the parties of the control of th	The second	To the second se
		2. 有数据的数据数据 100 mm 2. 100	■常常等的表情的表現他们。可能是被新工作工具等。	网络克里斯特尼斯尼斯斯 医电影 医电影的	🎍 프라진 중심 - 6년 설립되자	.∐ Bakkabala at Ag

Table 2-C: Page 1

¹ List each control device on a separate line. For each control device, list all emission units controlled by the control device.

Form Revision: 7/8/2011

Printed 3/15/2024 2:40 PM

Table 2-D: Maximum Emissions (under normal operating conditions)

This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected.

Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Linia Na	No.	Οx	C	0	VC	C	S	Ox	Pi	VI ¹	PM	101	PM	2.5 ¹	Н	₂ \$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	1.52	6.66	9.07	39.71	4.49	19.66	0.045	0.20	0.20	0.87	0.20	0.87		-	1.39	6.09	-	<u> </u>
ENG-2	2.07	9.05	10.33	45.26	4.68	20.51	0.057	0.25	0.25	1.09	0.25	1.09		<u>,</u>	1.08	4.73	ig _{sy} jn	1 4 4 2 2
ENG-3	2.07	9.05	10.33	45.26	4.68	20.51	0.057	0.25	0.25	1.09	0.25	1.09	-		1.08	4.73		
ENG-4	2.07	9.05	10.33	45.26	4.68	20.51	0.057	0.25	0.25	1.09	0.25	1.09			1.08	4.73		
ENG-5	2.07	9.05	10.33	45.26	4.68	20.51	0.057	0.25	0.25	1.09	0.25	1.09			1.08	4.73	-	
ENG-6	2.07	9.05	10.33	45.26	4.68	20.51	0.057	0.25	0.25	1.09	0.25	1.09			1.08	4.73	<u> </u>	-
ENG-7	1.52	6.66	9.07	39.71	4.49	19.66	0.045	0.20	0.20	0.87	0.20	0.87			1.39	6.09		<u>-</u>
ENG-8	2.76	12.07	15,43	67.59	7.01	30.72	0.075	0.33	0.33	1.44	0.33	1.44			1.60	7.02		. 4
ENG-9	2.76	12.07	15.43	67.59	7.01	30.72	0.075	0.33	0.33	1.44	0.33	1.44	0.33	1.44	-		-	
ENG-10	2.76	12.07	15.43	67.59	7.01	30.72	0.07	0.33	0.33	1.44	0.33	1.44	0.33	1.44			<u>-</u>	
Trailer-1	0.16	0.71	0.15	0.65	8.52E-03	0.037	2.05E-03	8.98E-03	9.13E-03	0.040	9.13E-03	0.040	9.13E-03	0.040	-	-	-	<u>-</u>
GEN-1	0.80	3.50	1.60	6.99	0.78	3.43	0.013	0.056	0.029	0.13	0.029	0.13	0.029	0.13		w. 2 d	<u>.</u>	2 51.5
Dehy-1	-	-	-	-	82.02	359.27	-			,		1	1		0.042	0.19	<u>-</u>	<u> </u>
RBL-1	0.20	0.86	0.16	0.72	0.011	0.047	8.85E-03	0.039	0.015	0.065	0.015	0.065	0.015	0.065	20 miles 100			-
TK-1		-	-	-	34.55	0.60	-	-	-	ı		ŧ	-		0.035	7.69E-04	-	<u>-</u> _
TK-2	-	. Tegra	A G	1	34.55	0.60		100 mg 150					3 44 (44)		0.035	7.69E-04	2013 <mark>-</mark> 113	<u>-</u>
тк-з	-	-	-	_	34.55	0.60		-	· -	-	- 1			-	0.035	7.69E-04		-
VCU-1	3.16E-03	0.014	2.66E-03	0.012	1.74E-04	7.62E-04	1.43E-04	6.26E-04	2.41E-04	1.05E-03	2.41E-04	1.05E-03	2.41E-04	1.05E-03				a sta
LOAD	-	-	-	•	27.16	0.58	-	-		-	-	-	-	-	0.035	7.41E-06	-	
FUG					5.02	21.98								Mar (El-Augr	3.64E-04	1.59E-03	<u> </u>	
	11111						West Co			Y SAS				ākādi.				
				[4.785].[4		ALBU ETŞ				Take the current	Silvings (1971). Bacar (1971).							
				a garaga ayan aya garaga a sababa ayan		yn gwell i Webellis												
	1972 J. 21			efere a service				40°294			ingelikakoakon ji jang						A de Segúnso Segúnsos	(#) +, p
Totals	22.80	99.88	118.01	516.90	272.07	621.15	0.62	2.72	2.67	11.72	2.67	11.72	0.71	3.11	9.97	43.05		

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Form Revision: 6/4/2019 Table 2-D: Page 1 Printed 3/15/2024 2:40 PM

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

Data Bi-	N	Dx	C	O.	VC	C	SC	Эx	PI	M ¹	_ PIV	110 ¹	PM	2.5 ¹	H	₂ S		ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr_	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr_	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	1.52	6.66	1.52	6.66	1.84	8.07	0.045	0.20	- 0.20	0.87	0.20	0:87			0.42	1.82		
ENG-2	2.07	9.05	2.07	9.05	2.49	10.91	0.057	0.25	0.25	1.09	0.25	. 1.09		-	0.54	2.38		
ENG-3	2.07	9.05	2.07	9.05	2.49	10.91	0:057	0.25	0.25	1.09	0.25	1.09			0.54	2.38		
ENG-4	2.07	9.05	2.07	9.05	2.49	10.91	0.057	0.25	0.25	1.09	0.25	1.09	- <u> </u>		0.54	2.38	-	-
ENG-5	2.07	9.05	2.07	9.05	2.49	10.91	0.057	0.25	0.25	1.09	0.25	1.09			0,54	2.38		
ENG-6	2.07	9.05	2.07	9.05	2.49	10.91	0.057	0.25	0.25	1.09	0,25	1.09	-	-	0.54	2.38	[
ENG-7	1.52	6.66	1.52	6.66	1.84	8.07	0.045	0.20	0.20	0.87	0.20	0.87		30% 20%.	0.42	1.82		
ENG-8	2.76	12.07	3.79	16.58	4.29	18.79	0.075	0.33	0.33	1.44	0.33	1.44	0.33	1.44	-			<u> </u>
ENG-9	2.76	12.07	3.79	16.58	4.29	18.79	0.075	0.33	0.33	1.44	0.33	1.44	0.33	1,44		$\sum_{i=1}^{N_{i+1}} \frac{1}{q_i} e^{-\frac{i}{2} \frac{1}{q_i}} \widetilde{H}(q_i) \leq e^{-\frac{i}{2} \frac{1}{q_i}}$	5 (1) 1 (1)	(4-7 4) y
ENG-10	2.76	12.07	3.79	16.58	4.29	18.79	0.075	0.33	0.33	1.44	0.33	1.44	0.33	1.44	-		<u> </u>	
Trailer-1	0.16	3.24E-03	0.15	2.98E-03	8.52E-03	1.70E-04	0.29	5.80E-03	9.13E-03	1.83E-04	9.13E-03	1.83E-04	9:13E-03	1,83E-04				
GEN-1	0.80	3.50	1.60	6.99	0.78	3.43	0.013	0.056	0.029	0.13	0.029	0.13	0.029	0.13	<u> </u>		<u> </u>	
Dehy-1					\$25.7875	18.3		\$ 52 dt 53	(1. S. 42. 1.)			X	\$ £ _*					-
RBL-1	0.20	0.86	0.16	0.72	0.011	0.047	8.85 E-0 3	0.039	0.015	0.065	0.015	0.065	0.015	0.065	-	-	-	
TK-1												建基层					-	247 P. 1.
TK-2	-	-	-	-	-	-	-	-	_		-				-		<u> </u>	
TK-3	43420				ا المراقب المراقب	Wasa E Sal		\$ 12 5s. I	agrandi origi Gonda Valoria			斯尼克斯						
VCU-1	0.51	1.41	0.42	1.18	3.58	7.12	0.079	0.35	0.038	0.11	0.038	0.11	0.038	0.11	8.55E-04	3.79E-03		<u> - </u>
LOAD		The state of the s			27.16	0.58				TATUM SERVICE Services TERRES					0.035	7.41E-06	72.1	
FUG	-	-	-	-	5.02	21.98	-	-	-	-	-		-		3.64E-04	1.59E-03	<u> </u>	
er i digita di seleta di seleta Seleta di seleta di s				35.54%		Million and	据表验证											(40,2)
			1													<u> </u>	<u> </u>	
						Ve S		7.10 %		27 F 10 5	The Street						and Karagaray	Water J.
	rgara su <u>l Lusta ar ser su</u>			3	W., W. 100 1 1													<u> </u>
Harris Anna Salahay	Marah Cin	71. W. G.		JOS SERVICE	Arren Brasilia	والمراجعة المراجعة المراجعة وأور				9 17 R. S	李 罗拉	that is supported to a	Maria de la compa	MARKET P	garage states	April y Magazin	from which	
<u>91 (81) je na</u>	<u> </u>		en diagone no local		1000	A. 24 . 37												Ĺ
					8.728726		\$1,000											
<u> reger i gert 196</u>	1			The state of the s														<u> </u>
		. gwyten		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		sie de la communicación de					A HARD	Alaker Prince		(4 - V-)				
<u> </u>			3.2. 1.3.															
						00 Post 5 Sept 1	TO SERVICE					Maria de la Caración				Systems of the state of the sta		
Totals	23.31	100.56	27.07	117.22	65.58	160.23	0.99	3.07	2.71	11.78	2.71	11.78	1.08	4.61	3.58	15.54		<u> </u>

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Form Revision: 6/14/2019 Table 2-E: Page 1 Printed 3/15/2024 2:40 PM

Targa Northern Delaware, LLC Cadillac Compressor Station March 2024; Revision #0

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications

(bttps://www.env.pm.gov/agh/nermit/agh. nol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41F-4).

	N/	Ох	-	:0	for more det VC	C	S	Ох	P	M ^z	PN	/10 ²	PIV	12.5 ²	Н	l ₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	ib/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SSM/M	-	-	-		1,720.50	7.87	-	_		-	-	_	0.16	7.28E-04	68.87	0.37	-	
												. Porta			PALKY.			(³ 17)
						19.0 JNV 19		#FLE28										
								013 5.5		2,7755.	Agan in Prin							
				A CONTRACT				Fan Steel	1911 J. (1915) 1913 - H. (1915)									nder gelog Neighber
er de Propaga	1. n										党员30 8	148 S.A	43 P#					
		i Aprila Visit de				Serva				Para in			MARKET ST.		A PAROS			
eringiyanî																		
	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			granding Mili Special Control		149 K &											l which is	
Aror.		141/26									es un consult Victoria				Maria de la Companya			
										189782			\$18.13.V		74 (N. 73 (1) (8)			
A will take a si										ार होता चुटल होता चुटल होते के दिख		\$1,500 p					a sosti	
. 1931.5											well below.					60 (1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		13. Av 14.
Totals					1,720,50	7.87	(1.00 to 1.00		Alcored Table	garan siya Pusakenga	and here is a large tree from Stand		0.16	7.28E-04	68.87	0.37		

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

Form Revision: 6/4/2019 Table 2-F: Page 1 Printed 3/15/2024 2:40 PM

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

Table 2A	and Off signific	Serving Unit	N	Ох	7	:0	V	ос	S	Ox	Р	M	PN	/10	PIV	12.5	☐ H ₂ S o	Lead
	Stack No.		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	ib/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
				Ngang	al facility of the state		2 5 475				. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		aring y	4				
	e Kalendaria				en e				en Se San Se Sea	in Sec.			5.00					
		en en la companya de la companya de La companya de la co		Same of the same of the												nogramati, program Openya, program		
	n 1804 eta 1-a fallo La como de capación					ANGE AT	MON SULV			和沙 表示			W.S.F.	\$6.44.6				
					X41083518	ja tyrigi						W. A. J. J. S.		1950 1965 17 1850 3850 186				
													\$75.73					
																15 p. 36		
																	TANK TO	The second
	RANGE (98(8)	
							7777.774			17.5%								
			34.14				(News)											a eleganti, elejan iz a territoria elejan
												3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	5 2250 124					
Totals:				###J6X			12,578	1450-4780			<u> </u>			S. San S.				

Form Revision: 5/29/2019 Table 2-G: Page 1 Printed 3/15/2024 2:40 PM

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s) from	Orientation (H-	Rain Caps	Height Above	Temp.	Flow	v Rate	Moisture by	Velocity	Inside
Number	Table Z-A	Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
ENG-1	ENG-1	Vertical	No	25.50	847	136.37	N/A	N/A	97.67	1.33
ENG-2	ENG-2	Vertical	No	28.00	814	197.33	N/A	N/A	90.45	1.67
ENG-3	ENG-3	Vertical	Νo	28.00	814	197.33	N/A	N/A	90.45	1.67
ENG-4	ENG-4	Vertical	No	28.00	814	197.33	N/A	N/A	90.45	1.67
ENG-5	ENG-5	Vertical	No	28.00	814	197.33	N/A	N/A	90.45	1.67
ENG-6	ENG-6	Vertical	No	28.00	814	197.33	N/A	N/A	90.45	1.67
ENG-7	ENG-7	Vertical	No	25.50	847.00	136.37	N/A	N/A	97.67	1.33
ENG-8	ENG-8	Vertical	No	28.00	835	266.57	N/A	N/A	84.85	2.00
ENG-9	ENG-9	Vertical	No	28.00	835	266.57	N/A	N/A	84.85	2.00
ENG-10	ENG-10	Vertical	No	28.00	835	266.57	N/A	N/A	84.85	2.00
Trailer-1	Trailer-1	Vertical	No	6.99	782	13.72	N/A	N/A	9.83	1.33
GEN-1	GEN-1	Vertical	No	8.21	1382	21.01	N/A	N/A	240.74	0.33
RBL-1	RBL-1	Vertical	No	19.00	600	23.42	N/A	N/A	29.82	1.00
VCU-1	TK-1 through TK-3, Dehy-1	Vertical	No	12.50	1000	83.17	N/A	N/A	6.62	4,00
									¥5.00479	

Form Revision: 11/18/2016 Table 2-H: Page 1 Printed 3/15/2024 2:40 PM

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that

emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	xpected or HAPs		dehyde	Acetalo	dehyde	Acro	olein	i	ene		zene r 🔲 TAP	n-He ☑ HAP o		Xyle	
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	ENG-1	0.42	1.82	0.21	0.93	0.11	0.47	0.067	0.29	5.29E-03	0.023	5.70E-03	0.025	0.014	0.063	2.39E-03	0.010
ENG-2	ENG-2	0.54	2.38	0.29	1.27	0.14	0.59	0.083	0.36	6.60E-03	0.029	7.12F-03	0.031	0.018	0.079	2.98E-03	0.013
ENG-3	ENG-3	0.54	2.38	0.29	1.27	0.14	0.59	0.083	0.36	6.60E-03	0.029	7.12E-03	0.031	0.018	0.079	2.98E-03	0.013
ENG-4	ENG-4	0.54	2:38	0.29	1.27	0,14	0.59	0.083	0.36	6.60E-03	0.029	7.12E-03	0.031	0.018	0.079	2.98E-03	0.013
ENG-5	ENG-5	0.54	2.38	0.29	1.27	0.14	0.59	0.083	0.36	6.60E-03	0.029	7.12E-03	0.031	0.018	0.079	2.98E-03	0.013
ENG-6	ENG-6	0.54	2.38	0.29	1,27	-0.14	0.59	0.083	0.36	6.60E-03	0.029	7.12E-03	0.031	0.018	0.079	2.98E-03	0.013
ENG-7	ENG-7	0.42	1.82	0.21	0.93	0.11	0.47	0.067	0.29	5.29E-03	0.023	5.70E-03	0.025	0.014	0.063	2.39E-03	0.010
ENG-8	ENG-8	0.59	2,58	0.25	1.11	0.18	. 0.78 ⊬	0.11	0.48	8.73E-03	0.038	9.42E-03	0.041	0.024	0.10	3.94E-03	0.017
ENG-9	ENG-9	0.59	2.58	0.25	1.11	0.18	0.78	0.11	0.48	8.73E-03	0.038	9.42E-03	0.041	0.024	0.10	3.94E-03	0.017
ENG-10	ENG-10	0.59	2.58	0.25	1.11	0.18	0.78	0.11	0.48	8.73E-03	0.038	9.42E-03	0.041	0.024	0.10	3.94E-03	0.017
Trailer-1	Trailer-1	1.15E-04	2.31E-06	1.18E-03	2.36E-05	7.67E-04	1.53E-05	9.25E-05	1.85E-06	4.09E-04	8.18E-06	9.33E-04	1.87E-05	-	-	-	
GEN-1	GEN-1	0.25	1.10	0.19	- 0.85	0.031	0.13	0.019	0.083	1.50E-03	6.55E-03	1.61E-03	7.07E-03	4.03E-03	0.018	6.75E-04	2.95E-03
VCU-1	Dehy-1	-	-			-	_	-		<u> </u>	<u>-</u>	<u>-</u>					<u>.</u>
RBL-1	RBL-1	3.69E-03	0.016	1.47E-04	6.44E-04					6.67E-06	2.92E-05	4.12E-06	1.80E-05	3.53E-03	0.015		
VCU-1	TK-1	-	-	-		-	_			<u> </u>		<u> </u>		- 	-	-	-
VCU-1	TK-2		V (V + 1.3.)		- 37 - 14 C		685,40 ((4.3) <u>1</u>					1987 - FREE
VCU-1	тк-з			-			-	-	-	-	-	-	- -	- Managian	- 	- Nasa saka di Wasan	e Wishamana da
VCU-1	VCU-1	0.75	0.96					300 A 100		0.21	0.25	0.38	0.39	0.10	0.23	0.043	0.080
N/A	LOAD	4.80	0.10	<u> </u>		<u> </u>	-	-	-	-	-	-	- 	- 1 (1) (1) (1) (2) (2) (2)	-	- Der Tasseleit	-
N/A	FUG	0.91	3.97					6000 NE 1470. Diese XXX		0.30	1.33	0.17	0.74	0.13	0.55	0.28	1.23
N/A	SSM/M	68.87	0.37				-	-	-	-	- 709 - 209 00000		e e e e e e e e e e e e e e e e e e e	- 	- Pas (2017) 10 (2017)	- 2017 10 10 10 10 10 10 10 10 10 10 10 10 10	et in objection
																Code Side (1965)	
		i Service Car					Art Carelle	SV.5 (8485)						A STANTANTANTANTANTANTANTANTANTANTANTANTANT			
Tota	ale.	80.90	29.79	2.83	12.38	1.46	6.40	0.90	3.93	0.59	1.89	0.63	1.46	0.43	1.64	0.35	1.45

Form Revision: 10/4/2014 Table 2-C: Page 1 Printed 3/15/2024 2:40 PM

Targa Northern Delaware, LLC Cadillac Compressor Station March 2024; Revision #0

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

-	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
ENG-1	Natural Gas	Resīdue Gas	1,291.29 Btu/scf	7.93 Mscf/hr	69.46 MMscf/yr	N/A	N/A
ENG-2	Natural Gas:	Residue Gas	1,291.29 Btu/scf	9.89 Mscf/hr	86.67 MMscf/yr	N/A	N/A
ENG-3	Natural Gas	Residue Gas	1,291.29 Btu/scf	9.89 Mscf/hr	86.67 MMscf/yr	N/A	N/A
ENG-4	Natural Gas	Residue Gas	1,291.29 Btu/scf	9.89 MscF/hr	86.67 MMscf/yr	N/A	N/A
ENG-5	Natural Gas	Residue Gas	1,291.29 Btu/scf	9.89 Mscf/hr	86.67 MMscf/yr	N/A	N/A
ENG-6	Natural Gas	Residue Gas	1,291.29 Btu/scf	9.89 MscF/hr	86.67 MMscf/yr	N/A	N/A
ENG-7	Natural Gas	Residue Gas	1,291.29 Btu/scf	7.93 Mscf/hr	69.46 MMscf/yr	N/A	N/A
ENG-8	Natural Gas	Residue Gas	1,291:29 Btu/scf	13.09 Mscf/hr	114.66 MMscf/yr	N/A	N/A
ENG-9	Natural Gas	Residue Gas	1,291.29 Btu/scf	13.09 Mscf/hr	114.66 MMscf/ут	N/A	N/A
ENG-10	Natural Gas	Residue Gas	1,291.29 Btu/scf	13.09 Mscf/hr	114.66 MMscf/yr	N/A	N/A
Trailer-1	Diesel	Diesel	137,000 Btu/gal	3.20 gal/hr	128.00 gal/yr	N/A	N/A
GEN-1	Natural Gas	Residue Gas.	1;291,29 Btü/scf	2.24 Mscf/hr	19.65 MMscf/уг	N/A	N/A
RBL-1	Natural Gas	Residue Gas	1,291.29 Btu/scf	1.55 Mscf/hr	13.57 MMscf/yr	N/A	N/A
VCU-1	Natural Gas	Residue Gas	1,291.29 Btu/scf	25.00 scf/hr	0.22 MMscf/yr	N/A	N/A

Form Revision: 9/20/2016 Table 2-J: Page 1 . Printed 3/15/2024 2:40 PM

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Stora	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
TK-1	40400311	Condensate/Oily Waste Water	Mixed Hydrocarbons	7.80	22.81	75.78	12.88	95.00	9.08
TK-2	40400311	Condensate/Oily Waste Water	Mixed Hydrocarbons	7,80	22.81	75.78	12.88	95.00	9.08
TK-3	40400311	Condensate/Oily Waste Water	Mixed Hydrocarbons	7.80	22.81	75.78	12.88	95.00	9.08
NAME A				Visiger (Visiger)					
	9.000 E.C								
					an The fire of Silver				
								r kişi ilkiliniyesi.	

Form Revision; 7/8/2011 Table 2-K: Page 1

Targa Northern Delaware, LLC

Cadillac Compressor Station

March 2024; Revision #0

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Date Installed	Materials Stored			Сар	acity	Diameter (M)		Color (from Table VI-C)		Paint Condition (from Table Vi-	Annual Throughput	Turn- overs
Instance		LR below)	LR below)	(bbl)	(M ³)		(,	Roof	Shell	C)	(gal/yr)	
Post 9/18/2015	Condensate/Oily Waste Water	N/A	Fixed Roof	300	47.70	3.66	3,11	Dark Green	Dark Green	Good	120,993.87	9.60
Post 9/18/2015	Condensate/Oily Waste Water	N/A	Fixed Roof	300	47.70	3.66	3,11	Dark Green	Dark Green	Good	120993.87	9.60
TBD		N/A	Fixed Roof	300	47.70	3.66	3.11	Dark Green	Dark Green	Good	120993.87	9.60
					2007 S.				\$5-72 PM 5		(2) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	<u> </u>
n n yazı								130 mil (1 <u>-</u>				The state of the state of
								talan salah salah Baran salah salah			\$ 1 5 E	
				A Section Acts								. Senikana
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				i <mark>D</mark> efension Militari Barangan					- 1일 : 1일 : 1 - 1 등 1 등 1 등 1 등 1 등 1 등 1 등 1 등 1 등	Çeliyen.
				a grado do libera				1 - 2 J S W				
					A second second second		- HF-5.		1 - 2, 78 2 . 1	0.34 25 5	ej de grants	
									ing witertex obtains.	Premierija i saes tua i	Nile of the section	1 20
		<u>在</u> 学数多形式			Partito	建 等的运行的						
<u> </u>							ensky (s. 1989) 18 februari				fully st	27.75.195.1
<u> </u>												S. A. P. A. A. B.
								N. 0 - 19. 19.			**************************************	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		1. 7.5 F.	arte la partir de la companya de la La companya de la co		2472X							
		3.7473									Aregus (F) (F)	
												A CONTRACTOR
_		1 2 2	Te star se se se se	i njejske gj	Dust the alice		grangua direk	ul ottatiai			1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	Post 9/18/2015 Post 9/18/2015 TBD	Post 9/18/2015 Water Post 9/18/2015 Water Post 9/18/2015 Water TBD Condensate/Oily Waste Water Condensate/Oily Waste Water Condensate/Oily Waste Water Condensate/Oily Waste Water	Post 9/18/2015 Water Post 9/18/2015 Water Post 9/18/2015 Water Post Condensate/Oily Waste 9/18/2015 Water TBD Condensate/Oily Waste Water TBD Condensate/Oily Waste Water N/A Water N/A N/A N/A N/A N/A N/A	Installed Materials Stored Installed Post 9/18/2015 Post 19/18/2015 Post 19/18/2015 Water TBD Condensate/Oily Waste Water Condensate/Oily Waste Water Condensate/Oily Waste Water N/A Fixed Roof Fixed Roof Fixed Roof Fixed Roof Fixed Roof All Pixed Roof Fixed Roof Fixed Roof Fixed Roof Fixed Roof All Pixed Roof Fixed Roof Fixed Roof All Pixed Roof Fixed Roof Fixed Roof Fixed Roof All Pixed Roof Fixed Roof	Materials Stored (refer to Table 2 (R below) (bbl)	Materials Stored (refer to Table 2- (refer to Table 2- (R below) (R below) (B bbl) (M b)	Materials Stored Crefer to Table 2 Crefer to Table 3 Crefe	Naterials Materials Stored Fuser to Table 2 Table 1 Table 2 Tabl	Date Materials Stored Materials Stored Materials Stored Relief to Table 2 Relief to Table 2	Date Materials Stored Mate	Data Materials Store Seal Type Sea	Date Materials Store Mat

Form Revision: 7/8/2011 Table 2-1: Page 1 Printed 3/15/2024 2:40 PM

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

RoofType	Seal Type,	Welded Tank Seal Type	Seal Type, Riv	Roof, Shell Color	Paint Condition	
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resillent seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A. Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	8: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	_
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	_
					MG: Medium Gray	_
Note: 1.00 bbl = 0.159 N	M³ = 42.0 gal				BL: Black	
	~				OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

Description	Chemical Composition	ial Processed Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Material Produced Chemical Composition	Phase Gas Liquid	Quantity (specify units)	
Natural Gas	Mixed Hydrocarbons	Gas	100 MMscf/day	Natural Gas	Mixed Hydrocarbons		100 MMscf/day	
				Condensate	Condensate		23.68 bbl/day	
					<u> </u>	91957		

Form Revision: 7/8/2011 Table 2-M: Page 1 Printed 3/15/2024 2:40 PM

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
			N/A - There is no CE	M Equipment at this	facility				

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
	N/A - There are no p	arametric measuren	ent equipment at this	facility.			
				and the second of the second	and the state of the state of	and the second s	erawa akin ingan
and the second s		and temperatures, and these	gymenteromika kultari est fist agas ar	The stage of the s			neki entii vot
			Andrew & South State of				
				<u> </u>			A CALL PROPERTY OF THE PROPERT
		<u>ni mpila dan pada ang Januara da</u>					
					and an area files was To are 110 are	Book was seen a	m evel at the second
	and the configuration and the section		Na osoboski se Pros				
		N/A - There are no p	N/A - There are no parametric measurem	N/A - There are no parametric measurement equipment at this	Parameter/Pollutant Measured N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility.	Parameter/Pollutant Measured N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement equipment at this facility. N/A - There are no parametric measurement at this facility. N/A - There are no parametric measurement at this facility. N/A - There are no parametric measurement at this facility. N/A - There are no parametric measurement at this facility. N/A - There are no parametric measurement at this facility. N/A - There are no parametric measurement at this facility. N/A - There are no parametric measurement at this facility. N/A - There are no parametric measurement at this facility. N/A - There are no parametric measurement at this facility. N/A - There are no parametric measurement at this facility. N/A - There are no parametric measurement at this facilit	Parameter/Pollutant Measured Location of Measurement Unit of Measure Acceptable Range Maintenance Maintenance Recording N/A-There are no parametric measurement equipment at this facility.

Form Revision: 7/8/2011 Table 2-O: Page 1

Targa Northern Delaware, LLC Cadillac Compressor Station March 2024; Revision #0

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a second separate unit; OR 3) check the following box.

By checking this how the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

·		CO ₂ ton/yr	N₂O ton/yr	CH₄ ton/yr	SF ₅ ton/yr	PFC/HFC ton/yr²									Total GHG Mass Basis ton/yr ⁴	Total CO _z e
Unit No.	GWPs ¹	1.	298	25	22,800	footnote 3							!			
120.00	mass GHG	5,246.37	9.89E-03	0.11			4.27379	Der Ma	8881.5003	2.054 V + 05	Barton Hi	156:55			5,246.49	
ENG-1	CO ₂ e	5,246.37	2.95	2.72												5,252.04
	mass GHG	6,546.05	0.012	0.14	-	-									6,546.20	<u> </u>
ENG-2	CO ₂ e	6,546.05	3.68	3.39	-	-			1			İ			-	6,553.12
	mass GHG	6,546.05	0.012	0.14		Property.	arkt begi	entropies and a			n garage	W. A. 191		100	6,546.20	etin, y anna
ENG-3	CO ₂ e	6,546.05	3.68	3.39				PORT ALTO	To ARCA (M			San San A				6,553.12
	mass GHG	6,546.05	0.012	0.14	-	-									6,546.20	-
ENG-4	CO _z e	6,546.05	3.68	3.39	-	-			ļ						-	6,553.12
	mass GHG	6,546.05	0.012	0.14	13. 20 . 21. 3	prosed that			itut Diyo						6,546.20	
ENG-5	CO ₂ e	6,546.05	3.68	3.39	14.14 Page 1976	A Falighan M.	建筑的形									6,553.12
	mass GHG	6,546.05	0.012	0.14	 -	-									6,546.20	
ENG-6	CO₂e	6,546.05	3.68	3.39	-		1		J .		1				-	6,553.12
	mass GHG	5,246.37	9.89E-03	0.11	والمراجع والمتأسوف المراجع والمتأثرة		Table year	Advantility of	e di seberata yang	建设设置			र मिलको उन्हरी		5,246.49	<u> 18 5,5-115 ge</u>
ENG-7	CO₂e	5,246.37	2,95	2.72			JUNE 1 SZ		多多为允许		対象の表現で			9. v 18.		5,252.04
	mass GHG	8,660.18	0.016	0.18	-	-	1								8,660.38	**
ENG-8	CO ₂ e	8,660.18	4.86	4.49		-	i		i						-	8,669.53
25. 5.3	mass GHG	8,660.18	0.016	0.18	100000000000000000000000000000000000000	100 May 4350	Eligy Days	· 4%。实际特别	· Mark Mark			Park Mina (d	at seconds a	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8,660.38	
ENG-9	CO,e	8,660.18	4.86	4,49				MANUAL SCHOOL		[Part 12] 시간()		네가가 왔네요?				8,669.53
	mass GHG	8,660.18	0.016	0.18	-	_			1						8,660.38	-
ENG-10	CO ₂ e	8,660.18	4.86	4.49		_		 							-	8,669.53
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mass GHG	3.26	2.65E-05	1.32E-04	선생님 사람이 없어.	A Aresto, B	M - 中国经验		(A) (40.5)	(N. 1945) (D. 19	40,550,000	Jan Calabor	All Solling		3.26	
Trailer-1	CO ₂ e	3.26	7.88E-03	3.31E-03	3.12	er nes la	Water Ref	Service Stay	A						Progenition	3.27
	mass GHG	1,483.80	2.80E-03	0.031	_	-			i						1,483.83	_
GEN-1	CO ₂ e	1,483.80	0.83	0.77		_	1				1	1	}		-	1,485.40
	mass GHG		ea kila targe	an enga	N 1. 3 De 1-10	0355 PU	904 Filb	132 5 7 3 18	184) pri 1941 i i	Water Charles	amilian jakoba		Lagran, Ny Es	250		
Deny-1	CO ₂ e	- 1 <u>2</u> 2 - 1	10020		(Maria 23 co. d)	39. M. (4. C. SA)	94.954	A. 13 使多		year and the				2. 10.2 - 9		
****	mass GHG	1,024.72	1.93E-03	0.021	_	-									1,024.74	-
RBL-1	COze	1,024.72	0.58	0.53		-									-	1,025.83
	mass GHG	-		. 15 N/= No. 15		Brands, Ho			A STATE OF THE STA	Daught (18.1899)	1 3 T T 3 T T T T T T T T T T T T T T T				÷	
TK-1	CO₂e			9 (4.2)	184-200	30:02:30	52 S 57 Z			an shall				77 S		
1, 2 9	mass GHG		_	_	_	-			′	ì						
TK-2	COZe		_	-	<u> </u>	-										<u> </u>
100	mass GHG	Silvinia di		y 16 ja≃ 12 gû		3. 75 \$5. 15	Burgas Ka	e filtre control		Finally Fig. 12 At	Algorithms in		a sell selles			and the second
TK-3	CO ₂ e	1, 1, 2, 5, 8,	1 1 2 12 19			9.3423			Controls.	1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m						A STATE OF THE STA
	mass GHG	2,642.25	4.98E-03	0.055	_	-						T			2,642.31	-
VCU-1	CO2e	2,642.25	1.48	1.37		_				1					-	2,645.10
	mass GHG	9.16E-03	2,70	6.21E-03		- 17 L		18-18 25-1	35 St 194 St	10.455.004	ada ja Lan	Maria de la Companya		19 19 18	0.015	
LOAD	CO ₂ e	9.16E-03	i de la Tarrica. Se la Seconda	0.16	70 , <u>u 1</u> 7 4 3.1	14 - 1 - 1 <u>1</u> - 1 1 - 1 - 1	188 × 188 × 18	Establish to	AND SERVE	90 1 ASSE			100000000000000000000000000000000000000		3.34 - 3.37	0.16

raigain	DI IIICHII Delawa							aic Compresso								
		CO ₂ ton/yr	N₂O ton/yr	CH₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²									Total GHG Mass Basis ton/yr ⁴	Total CO _z e
Unit No.	GWPs 1	1	298	25	22,800	footnote 3										
-13-6	mass GHG	26.81	Arres Li t ua Karis	37.45	S. N. Wand	S. Havish		Aug Wilder	Mark Pers		\$-5,				64.26	
FUG	CO2e	26.81	1	936.20					Sabtlat						13 12 2	963.01
	mass GHG	0.15	-	17.65	-									<u> </u>	17.80	- -
SSM/M	CO ₂ e	0.15	_	441.25	-	-										441.41
6.12. J. C. 6		74,384.54	0.14	56.65	新华小新安尼		1.25 (20% julija)		ATTAK DETA	Markey Friday	模型的 现代的	3.01.22.50	Barrya Madella.	34.0	74,441.33	i Bayar-isa s
Total	CO₂e	74,384.54	41.77	1,416.15	Disk Automi	40.万基金对	APP TELEFICIAL	oyun aarii	BADG OF R	\$450 GM		848 SW 18	729 S. 192			75,842.46

GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a mass basis is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The Process Summary shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Targa Northern Delaware, LLC (Targa) is submitting this application for a significant revision to NSR Permit No. 7995-M3 pursuant to 20.2.72.219.D.(1)(a) NMAC for their Cadillac Compressor Station (Cadillac). The facility is located in Eddy County, New Mexico. With this application, Targa seeks to: add one (1) heater trailer (unit Trailer-1), one (1) air compressor generator (unit GEN-1), and one (1) vapor combustion unit (unit VCU-1); remove one (1) Caterpillar 3516 compressor engine (unit 18-0345), and one (1) 300 bbl storage tank (unit TK-4); replace two (2) Caterpillar 3516 compressor engines (units 18-0341 & 18-0342) with like-kind compressor engines (units ENG-1 & ENG-7, respectively), and five (5) Caterpillar 3606 compressor engines (units 18-0246, 18-0296, 18-0304, ENG-1, & ENG-2) with like-kind replacements (ENG-2 through ENG-6, respectively); and to modify all other units based on a recent inlet gas analysis (units ENG-8 through ENG-10, Dehy-1, RBL-1, TK-1 through TK-3, LOAD, FUG, SSM/M).

Low pressure field gas is gathered from various wells in the area and sent to an inlet separator. The gas from the separator is compressed by ten (10) natural gas driven compressor engines (units ENG-1 through ENG-10). Once the gas is compressed, it is treated using a glycol dehydration system (unit Dehy-1) to remove entrained water. The dry gas is then sent off site via pipeline for further processing.

The glycol dehydration unit incorporates three distinct sources of air emissions: (1) flash tank, (2) BTEX condenser still vent, and a (3) natural gas fired reboiler (unit RBL-1). Flash tank emissions are recycled to the inlet, however, during periods where the inlet pressure is too high, the emissions are routed to the storage tanks (units TK-1 through TK-3). The BTEX condenser still vent emissions are routed to the reboiler as fuel, however, during periods in which the reboiler does not call for fuel, the emission are routed to the tanks.

Liquids from the inlet separator, as well as from compressor interstage knockout are sent to three (3) atmospheric storage tanks (units TK-1 though TK-3). Flash, working ,and breathing emissions as well as dehy flash gas (during high inlet pressure periods) and BTEX condenser still vent (during periods in which the reboiler does not call for fuel) are controlled with a vapor combustion unit (unit VCU) with a 100% capture efficiency and a 98% DRE. While liquids may be transported offsite via pipeline, loading emissions (unit LOAD) are represented for the entire facility throughput for liquids along with associated haul road emissions (unit HAUL), the latter of which is exempt pursuant to 20.2.72.202.B.(5) NMAC.

During the winter months, a diesel fired heater trailer (unit Trailer-1) is used to help start up cold engines. A natural gas fired air compressor generator (unit GEN-1) is also used for pneumatics. Startup, shutdown, maintenance /malfunction emissions (SSM/M) include compressor blowdowns, dehydrator blowdowns, filter coalescer blowdowns, scrubber blowdowns, pump blowdowns, reboiler maintenance, pigging, pipeline blowdowns, and tank maintenance. Scrubber blowdowns will not occur at the same time as any other SSM activity. Details regarding the number of events and gas volumes associated with these activities can be found in the provided calculations.

UA3 Form Revision: July 12, 2023

Section 3, Page1

Saved Date: 3/15/2024

Section 4

Process Flow Sheet

A <u>process flow sheet</u> and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

Process flow diagram is attached on the following page.

Saved Date: 3/15/2024

PROCESS FLOW DIAGRAM

Cadillac Compressor Station

March 2023

Section 5

Plot Plan Drawn to Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is attached on the following page.

Form-Section 5 last revised: 8/15/2011 Section 5, Page 1 Saved Date: 3/15/2024

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

- A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.
- B. At least 5 significant figures shall be retained in all intermediate calculations.
- C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:
 - (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
 - (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
 - (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
 - (4) The final result of the calculation shall be expressed in the units of the standard.

Form-Section 6 last revised: 5/3/16

Section 6, Page 1

Saved Date: 3/15/2024

Caterpillar Engines (Units ENG-1 through ENG-10)

 NO_X , CO, VOC, and formaldehyde emissions are calculated using manufacturer specifications. SO_2 emissions are based on a conservative fuel sulfur content estimated of 2 gr S/100 scf and 100% conversion of elemental sulfur to SO_2 . Particulate (PM, PM_{2.5}, and PM₁₀) and HAP emissions were calculated using AP-42 Table 3.2-2. Greenhouse gas emissions are estimated using emission factors from 40 CFR 98 Subpart C Tables C-1 and C-2.

Heater Trailer (Unit Trailer-1)

 NO_x , CO, VOC, and PM emission are calculated using NSPS IIII Tier IV Final Emission Factors. SO_2 and HAP emissions are calculated using AP-42 Table 3.3-1 and 3.3-2 emission factors. Greenhouse gas emissions are estimated using emission factors from 40 CFR 98 Subpart C Tables C-1 and C-2.

Air Compressor Generator (Unit GEN-1)

 NO_{X} , CO, and VOC emissions are calculated using a Certification of Conformity with the Clean Air Act dated 2021. SO_{2} emissions are based on a conservative fuel sulfur content estimated of 2 gr S/100 scf and 100% conversion of elemental sulfur to SO_{2} . Particulate (PM, PM_{2.5}, and PM₁₀) and HAP emissions were calculated using AP-42 Table 3.2-2. Greenhouse gas emissions are estimated using emission factors from 40 CFR 98 Subpart C Tables C-1 and C-2.

Glycol Dehydrator (Unit Dehy-1)

Glycol dehydration emissions are calculated using BR&E ProMax and an extended inlet gas analysis. VOC and HAP emissions from the regenerator are controlled with a BTEX condenser. Flash tank emission are normally recycled back to the inlet, however, during periods in which the inlet gas is too high, flash tank emissions are routed to the storage tanks. The BTEX condenser overheads are normally routed to the reboiler for fuel, however, when the reboiler does not call for fuel, the BTEX condenser overheads are routed to the storage tanks. The storage tanks are controlled by the VCU with a 100% capture efficiency and a 98% DRE.

Glycol Reboiler (Unit RBL-1)

NO_x, CO, VOC, PM, and HAPs emissions are calculated using AP-42 Table 1.4-1 through 1.4-3 emission factors. Greenhouse gas emissions are estimated using emission factors from 40 CFR 98 Subpart C Tables C-1 and C-2.

Atmospheric Storage Tanks (Units TK-1 through TK-3)

Uncontrolled emissions are calculated using BR&E ProMax. Hourly loading emissions are based on the short-term worse case scenario. Annual emissions are based on the daily throughput of the facility. Flash, working, and breathing emissions are routed to the VCU with a 100% capture efficiency and a 98% DRE.

Vapor Combustion Unit (Unit VCU-1)

Emissions for NO_x, CO, and PM are calculated using AP-42 Tables 1.4-1 & 2 emission factors. Pilot SO₂ emissions are based on a conservative fuel sulfur content of 2 gr S/100 scf and a 100% conversion of elemental sulfur to SO₂. SO₂ emissions were calculated based on a 98% DRE, based on the manufacturer specification sheet, and conversion to SO₂. VOC, H₂S, and HAPs are calculated based on BR&E ProMax for the dehydrator flash tank, BTEX condenser overheads, and the flash, working, and breathing emissions from the atmospheric storage tanks. For the H2S, it was assumed 98% was combusted and 100% of the combusted H₂S was converted to SO₂. Greenhouse gas emissions are estimated using emission factors from 40 CFR 98 Subpart C Tables C-1 and C-2.

Loading Emissions (Unit LOAD)

Loading emissions are calculated using AP-42 Section 5.2 methodology. The maximum hourly throughput is based on the assumption that two trucks with a 180 bbl capacity can be loaded in an hour.

Form-Section 6 last revised: 5/3/16

Section 6, Page 2

Saved Date: 3/15/2024

Fugitive Emissions (Unit FUG)

Fugitive emission calculations were completed using emission factors from Table 2-4 of EPA Protocol for Equipment Leak Emissions Estimates, 1995. Subcomponent counts for each subcomponent are based on estimated average component counts for each piece of equipment.

Haul Road Emissions (Unit HAUL)

Emissions are calculated using Equation 2 of AP-42 Section 13.2.2. Haul road emissions at this facility are exempt pursuant to 202.2.82.202.B.(5) NMAC. Emissions calculations are included in the application reference.

Startup, Shutdown, Maintenance/Malfunction (Unit SSM/M)

Emissions are based on various activities including, but not limited to, compressor blowdowns, dehydrator blowdowns, filter coalescer blowdowns, scrubber blowdowns, pump blowdowns, reboiler maintenance, pigging, pipeline downs, tank maintenance, surface coating, and abrasive blasting. All blowdowns are conservatively based on the inlet gas. Blowdown volumes were provided by Targa.

Emissions Summary

	Uncontrolled Emissions																
. 10		N	O _x	14 C	0	V	OC .	S	0,	PI	VI.0	PI	2.5	H	₂ S	Total	HAPs
Unit		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy.	1b/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
ENG-1	CAT 3516J 1380 hp Comp Eng	1.52	6.66	9.07	39.71	4.49	19.66	0.045	0.20	0.20	0.87	0.20	0.87	` ; -	-	1.39	6.09
ENG-2	CAT 3606 1875 hp Comp Eng	2.07	9.05	10.33	45.26	4.68	20.51	0.057	0.25	0.25	1.09	0.25	1.09	, , -		1.08	4.73
ENG-3	CAT 3606 1875 hp Comp Eng	2.07	9.05	10.33	45.26	4.68	20.51	0.057	0.25	0.25	1.09	0.25	1.09			1.08	4.73
ENG-4	CAT 3606 1875 hp Comp Eng	2.07	9.05	10.33	45.26	4.68	20.51	0.057	0.25	0.25	1.09	0.25	1.09		-	. 1.08	4.73
ENG-5	CAT 3606 1875 hp Comp Eng	2.07	9.05	10.33	45.26	4.68	20.51	0.057	0.25	0.25	1.09	0.25	1.09	-	- , "	1.08	4.73
ENG-6	CAT 3606 1875 hp Comp Eng	2.07	9.05	10.33	45.26	4.68	20.51	0.057	0.25	0.25	1.09	0.25	1.09			1.08	4.73
ENG-7	CAT 3516J 1380 hp Comp Eng	1.52	6.66	9.07	39.71	4.49	19.66	0.045	0.20	0.20	0.87	0.20	0.87			1.39	6.09
ENG-8	CAT 3608 2500 hp Comp Eng	2.76	12.07	15.43	67.59	7.01	30.72	0.075	0.33	0.33	1.44	0.33	1.44	1 - 1		1.60	7.02
ENG-9	CAT 3608 2500 hp Comp Eng	2.76	12.07	15.43	67.59	7.01	30.72	0.075	0.33	0.33	1.44	0.33	1.44			1.60	7.02
ENG-10	CAT 3608 2500 hp Comp Eng	2.76	12.07	15.43	67.59	7.01	30.72	0.075	0.33	0.33	1.44	0.33	1.44	-		1.60	7.02
Trailer-1	Diesel-fired Heater Trailer	0.16	0.71	0.15	0.65	8.52E-03	0.037	2.05E-03	8.98E-03	9.13E-03	0.040	9.13E-03	0.040		-	3.79E-03	0.017
GEN-1	Air Compressor Generator	0.80	3.50	1.60	6.99	0.78	3.43	0.013	0.056	0.029	0.13	0.029	0.13			0.25	1.10
Dehy-1	Glycol Dehydrator		·		- '	82.02	359.27	1. 1. ± 1.		1 - 1 - 1	- 1, 1			0.042	0.19	10.95	47.97
RBL-1	2.0 MMBtu/hr Reboiler	0.20	0.86	0.16	0.72	0.011	0.047	8.85E-03	0.039	0.015	0.065	0.015	0.065			3.69E-03	0.016
TK-1	Atmospheric Storage Tank	,		1 - 1	·	34.55	0.60		1 1 - 1 1	j	-:	1 1 7		0.035	7.69E-04	1.47	0.022
TK-2	Atmospheric Storage Tank	-				34.55	0.60		* , .	-	- · · · ·		*	0.035	7.69E-04	1.47	0.022
TK-3	Atmospheric Storage Tank					34.55	0.60							0.035	7.69E-04	1.47	0.022
VCU-1	Tank Vapor Combustion Unit	3.16E-03	0.014	2.66E-03	0.012	1.74E-04	7.62E-04	1.43E-04	6.26E-04	2.41E-04	1.05E-03	2.41E-04	1.05E-03		·		
LOAD	Truck Loading			-	-, -	27.16	0.58	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		-		1, -, -		0.035	7.41E-06	4.80	0.10
FUG	Facility-wide Fugitive Emissions		·	1. 1.	11.4	5.02	21.98	5 - 55		· · · · · · · · · · · · · · · · · · ·		1		3.64E-04	1.59E-03	0.91	3.97
SSM/M	Startup, Shutdown, Maintenance,					1,720.50	7.87							0.16	7.28E-04	68.87	0.37
	and Malfunction	22.80	99,88	118.01	516.90	1,992.57	629.02	0.62	2.72	2.67	11.72	2.67	11.72	0.34	0.19	103.18	110.50
	Total	22.80	99,88	118.01	210.90	1,392.5/	029,02	0.02	4.74	4.07	11./2	2.07	441/4	0.34	0.13	100,10	

Emissions Summary

100	Controlled Emissions Controlled Emissions																
		N	IO _X	(CO	VC	OC .	S	02	PN	110	PN	12.5	н	25	Total	HAPs
Unit		lb/hr_	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	_ fb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
ENG-1	CAT 3516J 1380 hp Comp Eng	1.52	6.66	1.52	6.66	1.84	8.07	0.045	0.20	0,20	0.87	0.20	0.87		-	0.42	1.82
ENG-2	CAT 3606 1875 hp Comp Eng	2.07	9.05	2.07	9.05	2.49	10.91	0.057	0.25	0.25	1.09	0.25	1.09			0.54	2.38
ENG-3	CAT 3606 1875 hp Comp Eng	2.07	9.05	2.07	9.05	2.49	10.91	0.057	0.25	0.25	1.09	0.25	1.09] -		0.54	2.38
ENG-4	CAT 3606 1875 hp Comp Eng	2.07	9.05	2.07	9.05	2.49	10.91	0.057	0.25	0.25	1.09	0.25	1.09			0.54	2.38
ENG-5	CAT 3606 1875 hp Comp Eng	2.07	9.05	2.07	9.05	2.49	10.91	0.057	0.25	0.25	1.09	0.25	1.09	· -		0.54	2.38
ENG-6	CAT 3606 1875 hp Comp Eng	2.07	9.05	2.07	9.05	2.49	10.91	0.057	0.25	0.25	1.09	0.25	1.09			0.54	2.38
ENG-7	CAT 3516J 1380 hp Comp Eng	1.52	6.66	1.52	6.66	1.84	8.07	0.045	0.20	0.20	0.87	0.20	0.87	-	-	0.42	1.82
ENG-8	CAT 3608 2500 hp Comp Eng	2.76	12.07	3.79	16.58	4.29	18.79	0.075	0.33	0.33	1.44	0.33	1.44	-		0.59	2.58
ENG-9	CAT 3608 2500 hp Comp Eng	2.76	12.07	3.79	16.58	4.29	18.79	0.075	0.33	0.33	1.44	0.33	1.44			0.59	2.58
ENG-10	CAT 3608 2500 hp Comp Eng	2.76	12.07	3.79	16.58	4.29	18.79	0.075	0.33	0.33	1.44	0.33	1.44	-	• 17	0.59	2.58
Trailer-1	Diesel-fired Heater Trailer	0.16	3.24E-03	0.15	2.98E-03	8.52E-03	1.70E-04	0.29	5.80E-03	9.13E-03	1.83E-04	9.13E-03	1.83E-04	-	1	1.15E-04	2.31E-06
GEN-1	Air Compressor Generator	0.80	3.50	1.60	6.99	0.78	3.43	0.013	0.056	0.029	0.13	0.029	0.13			0.25	1.10
Dehy-1 1	Glycol Dehydrator	-	1.7	4 .			-	10 1		1 4 1	-	-	-				1
RBL-1	2.0 MMBtu/hr Reboiler	0.20	0.86	0.16	0.72	0.011	0.047	8.85E-03	0.039	0.015	0.065	0.015	0.065	-		3.69E-03	0.016
TK-1 2	Atmospheric Storage Tank				- 1	-	- 1		-		-: '	-		-		` . -	
TK-2 2	Atmospheric Storage Tank	-							, i								
TK-3 ²	Atmospheric Storage Tank			-	- "			- 1	-	-		-	· ·	1. J			
VCU-1	Tank Vapor Combustion Unit	0.51	1.41	0.42	1.18	3.58	7.12	0.079	0.35	0.038	0.11	0.038	0.11	8.55E-04	3.79E-03	0.75	0.96
LOAD	Truck Loading				- 1	27.16	0.58		1-	* . • *		*		0.035	7.41E-06	4.80	0.10
FUG	Facility-wide Fugitive Emissions		· · · · <u>-</u>	*	11.4	5.02	21.98		7	5		-		3.64E-04	1.59E-03	0.91	3.97
	Startup, Shutdown, Maintenance,					1,720.50	7.87				100	Ι.	_	0.16	7.28E-04	68.87	0.37
SSM/M	and Malfunction						·	_ · · ·					· · · · · · · · · · · · · · · · · · ·				
	Total	23.31	100.56	27.07	117.22	1,786.08	168.10	0,99	3.07	2.71	11.78	2.71	11.78	0.20	6.12E-03	80.90	29.79

Sec. 11 75 16						- 11 - 11 - 11	10-14-17	Co	ntrolled HAI	and GHG E	missions		K-1977-61				1				
		Total	HAPs	Formal	dehyde	Acetald	lehyde .	Acre	lein	Tolu	ene .	Ben	zепе ¹	n-He	xane	Xyl	ene	CO2	N₂O	CH ₄	CO ₂ e
Unit		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr_	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy	tpy	tpy	tpy
ENG-1	CAT 3606 1875 hp Comp Eng	0.42	1.82	0.21	0.93	0.11	0.47	0.067	0.29	5.29E-03	0.023	5.70E-03	0.025	0.014	0.063	2.39E-03	0.010	5,246.37	9.89E-03	0.11	5,252.04
ENG-2	CAT 3606 1875 hp Comp Eng	0.54	2.38	0.29	1.27	0.14	0.59	0.083	0.36	6.60E-03	0.029	7.12E-03	0.031	0.018	0.079	2.98E-03	0.013	6,546.05	0.012	0.14	6,553.12
ENG-3	CAT 3606 1875 hp Comp Eng	0.54	2.38	0.29	1.27	0.14	0.59	0.083	0.36	6.60E-03	0.029	7.12E-03	0.031	0.018	0.079	2.98E-03	0.013	6,546.05	0.012	0.14	6,553.12
ENG-4	CAT 3606 1875 hp Comp Eng	0.54	2.38	0.29	1.27	0.14	0.59	0.083	0.36	6.60E-03	0.029	7.12E-03	0.031	0.018	0.079	2.98E-03	0.013	6,546.05	0.012	0.14	6,553.12
ENG-5	CAT 3606 1875 hp Comp Eng	0.54	2.38	0.29	1.27	0.14	0.59	0.083	0.36	6.60E-03	0.029	7.12E-03	0.031	0.018	0.079	2.98E-03	0.013	6,546.05	0.012	0.14 0.14	6,553.12
ENG-6	CAT 3516) 1380 hp Comp Eng	0.54	2.38	0.29	1.27	0.14	0.59	0.083	0.36	6.60E-03	0.029	7.12E-03	0.031	0.018	0.079	2.98E-03	0.013	6,546.05	0.012	0.14	6,553.12 5,252.04
ENG-7	CAT 3608 2500 hp Comp Eng	0.42	1.82	0.21	0.93	0.11	0.47	0.067	0.29	5.29E-03	0.023	5.70E-03	0.025	0.014	0.063	2.39E-03	0.010	5,246.37	9.89E-03 0.016	0.11	8,669.53
ENG-8	CAT 3608 2500 hp Comp Eng	0.59	2.58	0.25	1.11	0.18	0.78	0.11	0.48	8.73E-03	0.038	9.42E-03	0.041	0.024	0.10	3.94E-03	0.017	8,660.18	0.016	0.18	8,669.53
ENG-9	CAT 3608 2500 hp Comp Eng	0.59	2.58	0.25	1.11	0.18	0.78	0.11	0.48	8.73E-03	0.038	9.42E-03	0.041	0.024	0.10	3.94E-03		8,660.18	0.016	0.18	8,669.53
ENG-10	Diesel-fired Heater Trailer	0.59	2.58	0.25	1.11	0.18	0.78	0.11	0.48	8.73E-03	0.038	9.42E-03	0.041	0.024	0.10	3.94E-03	0.017	8,660.18		1.32E-04	3.27
Trailer-1	Diesel-fired Heater Trailer	1.15E-04	2.31E-06	1.18E-03	2.36E-05	7.67E-04	1.53E-05	9.25E-05	1.85E-06	4.09E-04	8.18E-06	9.33E-04	1.87E-05	4 025 02	0.040	6.755.04	3 0EE 03	3.26	2.65E-05 2.80E-03	0.031	1,485.40
GEN-1	Air Compressor Generator	0.25	1.10	0.19	0.85	0.031	0.13	0.019	0.083	1.50E-03	6.55E-03	1.61E-03	7.07E-03	4.03E-03	0.018	6.75E-04	2.95E-03	1,483.80	2.80E-03	0.031	1,403.40
Dehy-1 1	Glycol Dehydrator			-					-			4.435.00	. 005 05	2 525 03	0.015	1 7		1,024.72	1.93E-03	0.021	1,025.83
RBL-1	2.0 MMBtu/hr Reboiler	3.69E-03	0.016	1.47E-04	6.44E-04					6.67E-06	2.92E-05	4.12E-06	1.80E-05	3.53E-03	0.015			1,024.72	1-93E-03	0.021	1,023.03
TK-1 2	Atmospheric Storage Tank		- "	- 1	- ",											_	-		ĺ		
TK-2 2	Atmospheric Storage Tank	:	- i	, 1 1 - 1 1		1 1 ±	- 1		- /	* .		_		·	-		-	7			
TK-3 2	Atmospheric Storage Tank	· · ·	77	,		. 4, 1 - 1 , 14	19 ² 3	in in - vil				0.70	0.70	0.10	0.22	0.043	0.080	2,642.25	4.98E-03	0.055	2,645.10
VCU-1	Tank Vapor Combustion Unit	0.75	0.96				. ** . *	· · ·		0.21	0.25	0.38	0.39	0.10	0.23	0.043	0.080	9.16E-03	4.30E-03	6.21E-03	0.16
LOAD	Truck Loading	4.80	0.10			-		. ,				0.17	0.74	0.13	0.55	0.28	1.23	26.81		37.45	963.01
FUG	Facility-wide Fugitive Emissions	0.91	3.97		-	.,		1 Tue 1	3 3 E 3 E	0.30	1,33	0.17	0.74	0.13	0.55	0.28	1.23	20,81	la fill in		
SSM/M	Startup, Shutdown, Maintenance, and Malfunction	68.87	0.37	; <u>- "</u>		: i i -	2.4	<u> </u>			. <u>- 1</u>	<u> </u>	<u> </u>	. 11 s - s	1.00		- '	0.15		17.65	441.41
	Total	80.90	29.79	2.83	12.38	1.46	6.40	0.90	3.93	0.59	1.89	0.63	1.46	0.43	1.64	0.35	1.45	74,384.54	0.14	56.65	75,842.46

^{*} Indicates an hourly emission limit is not appropriate for this unit.
"-" Indicates emissions of this pollutant are not expected.

⁻ Information of this pollutions are the expected.

1 Deby flash gas and BTEX condenses overheads are represented at the VCU for a worst-case scenario. Emissions are routed with a 100% capture efficiency and a 98% DRE.

2 Tank flash, working, and breathing emissiosn are routed to the VCU with a 100% capture efficiency and a 98% DRE.

Emissions Summary

Site-Wide											
Description	Value	Unit									
Gas Throughput	100	MMSCFD									
Annual Operating Hours	8,760	hr									
Daily Operating Hours	24	hr									
Site Location	32.149972	-104.048467									
Site Elevation	2,944	ft MSL									

Fuel Gas			
Parameter	Value	Unit	Notes
Fuel Heat Value	1,291.29	Btu/scf	Inlet Gas Analysis
Fuel Sulfur Content	2.0	gr S / 100 scf	Engineering Estimate

Engine Input Inform	ation		
Parameter	Value	Unit	Notes
Unit:	ENG-1 & E	NG-7	
Description:	Caterpillar	G3516J Comp	pressor Engines
Rating:	1380	hp	
Fuel Usage:	7929.7	scf/hr	
Unit:	ENG-2 thr	ough ENG-6	
Description:	Caterpillar	G3606 Comp	ressor Engines
Rating:	1875	hp	
Fuel Usage:	9894.2	scf/hr	
Unit:	ENG-8 thr	ough ENG-10	
Description:	Caterpillar	G3608 Comp	ressor Engines
Rating:	2500	hp	
Fuel Usage:	13089.6	scf/hr	

Parameter	Value	Unit	Notes	_
Unit ID	TK-1 through	TK-3		-
Number of Tanks	3	units	Facility Design	
Volume	300	bbl	Facility Design	
Tank Diameter	12	ft		
Tank Height	15	ft		
Capture Efficiency	100%	%	Routed to VCU	
Control Efficiency	N/A	%		
Hourly Throughput	307.79	bbl/hr		
Annual Throughput	8542.42	bbl/yr		

Vapor Combustion	Unit		
Parameter	Value	Unit	Notes
Unit ID	VCU		
Controlled Units	TK-1 through	TK-3, Dehy-1	1
Pilot Flow Rate	25	scf/hr	Mfg, spec sheet
Capacity	0.052	MMscfd	Mfg. spec sheet
DRE	98%		Mfg. spec sheet

Caterpillar G3516J Compressor Engines

Emission Unit:

ENG-1 & ENG-7

Source Description:

Caterpillar G3516J Compressor Engines

Manufacturer:

Caterpillar G3516J

Model: Type:

4SLB

Fuel Consumption

Site horsepower Fuel heat value

1380 hp 1291.29 Btu/scf

Manufacturer Rating Inlet Gas Analysis

Heat input Fuel consumption 10.24 MMBtu/hr

Fuel consumption * Fuel heat value

7.93 Mscf/hr 8760 hrs/yr

Heat input / fuel heat value

Hours of Operation Annual fuel usage

69.46 MMscf/yr

8760 hrs/yr operation

7420 Btu/hp-hr Fuel Consumption

Manufacturer Spec Sheet @ Max Rating

Emission Calculations Uncontrolled	NO.	CO	VOC	50 ₂ ²	нсно	PM ₁₀ ⁴	PM _{2.5} 4	Total HAPs	Units	Notes
Emission Factors	0.50	2.98	1.05	0.02	0.39	1.94E-02	1.94E-02		q/hp-hr lb/MMBtu gr/scf	Catalyst Data AP-42 Table 3.2-2 Engineering Estimate
	1.52 6.66	9.07 39.71	4.49 19.66	0.045 0.20	1.19 5.20	0.20 0.87	0.20 0.87	1.39 6.09	lb/hr tpy	

Controlled	NO.	CO	VOC,	50 ₂ 2	НСНО	PM ₁₀ ⁴	PM _{2.5} 4	Total HAPs	Units	Notes
Emission Factors	0.50 0%	0.50 83%	0.50 59%		0.07 82%				g/hp-hr	Catalyst Guarantee % Reduction
Ethission (actors	0.00	0570				1.94E-02	1.94E-02		lb/MMBtu	AP-42 Table 3.2-2
	1.52	1.52	1.84	0.045	0.21	0.20	0.20	0.42	lb/hr	
1	6.66	6.66	8.07	0.20	0.93	0.87	0.87	1.82	tpy	

Acetaldehyde ⁵	Acrolein ⁵	n-Hexane ⁵	Benzene ⁵	Toluene ⁵	E-Benzene ⁵	Xylene ⁵	Units	Notes
8.36E-03	5.14E-03	1.11E-03	4.40E-04	4.08E-04	3.97E-05	1.84E-04	lb/MMBtu	AP-42 Table 3.2-2
1.06E-02	6.51E-03	1.41E-03	5.57E-04	5.17E-04	5.03E-05	2.33E-04	lb/MMBtu	AP-42 Table 3.2-2 (adjusted)
0.11	0.067	0.014	5.70E-03	5.29E-03	5.15E-04	2.39E-03	lb/hr	
0.47	0.29	0.063	0.025	0.023	2.25E-03	0.010	tpy	

NOTES

- ¹ VOC emission factor is calculated by adding aldehyde emissions.
- ² SO₂ emissions are based on fuel consumption and fuel sulfur content of 2 grains of sulfur per 100 scf
 - 2 gr S/100 scf * fuel scf/hr * 1 lb/7000 gr * 64 lb-mol SO₂/ 32 lb-mol S = lb/hr SO₂
- ³ HAPs emissions factors are referenced from AP-42 Table 3.2-2 (except formaldehyde: provided in mfg spec sheet).
- ⁴ Assumes PM (Filterable + Condensable) = PM₁₀ = PM_{2.5}
- ⁵ AP-42 Table 3.2-2 & adjusted for 1291.29 Btu/scf

Green House Gas Emissions	CO,6	CH ₄ ⁶	N ₂ O ⁶	CO ₂ e ⁶	Units	Notes
	53.06	1.10E-03	1.00E-04	· · · ·	kg/MMBtu	40 CFR 98 Subpart C Tables C-1 & C-2
Emission Factors	1	25	298		GWP	40 CFR 98 Subpart A Table A-1
	5246.37	0.11	9.89E-03	-	tpy	
	5246.37	2.72	2.95	5252.04	tpy CO ₂ e	

 6 N₂O, CH₄, and CO₂ tpy Emission Rate= EF (kg/MMBtu) * Fuel Usage (MMBtu/hr) * (2.20462 lb/kg) / (2000 lb/ton) CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate*GWP Factor + CH₄ Emission Rate*GWP Factor

Caterpillar G3606 Compressor Engines

Emission Unit:

ENG-2 through ENG-6

Source Description:

Caterpillar G3606 Compressor Engines

Manufacturer: Model: Type:

Caterpillar G3606 4SLB

Fuel Consumption

Site horsepower Fuel heat value

1875 hp

Manufacturer Rating Inlet Gas Analysis

Heat input Fuel consumption 1291.29 Btu/scf 12.78 MMBtu/hr 9.89 Mscf/hr

Fuel consumption * Fuel heat value

8760 hrs/yr

Heat input / fuel heat value

Hours of Operation Annual fuel usage Fuel Consumption

86.67 MMscf/yr

8760 hrs/yr operation

6814 Btu/hp-hr

Manufacturer Spec Sheet @ Max Rating

Emission Calculations

Uncontrolled	NO _x	CO	VOC	SO ₂ ²	нсно	PM ₁₀ ⁴	PM _{2.5} 4	Total HAPs ³	Units	Notes
	0.50	2.50	0.90		0.20				g/hp-hr	Catalyst Data
Emission Factors						1.94E-02	1.94E-02		lb/MMBtu	AP-42 Table 3.2-3
		·		0.02		<u> </u>			gr/scf	Engineering Estimate
	2.07	10.33	4.68	0.057	0.83	0.25	0.25	1.08	lb/hr	
	9.05	45.26	20.51	0.25	3.62	1.09	1.09	4.73	tpy	

Controlled	NO,	CO	VOC,	SO ₂ ²	нсно	PM ₁₀ ⁴	PM _{2.5} ⁴	Total HAPs	Units	Notes
	0.50	0.50	0.50		0.07			'	g/hp-hr	Catalyst Guarantee % Reduction
Emission Factors	0%	80%	47%		65%	1.94E-02	1.94E-02		lb/MMBtu	AP-42 Table 3.2-3
	2.07	2.07	2.49	0.057	0.29	0.25	0.25	0.54	lb/hr	
	9.05	9.05	10.91	0.25	1.27	1.09	1.09	2.38	tpy	

Acetaldehyde ⁵	Acrolein ⁵	n-Hexane ⁵	Benzene ⁵	Toluene ⁵	E-Benzene ⁵	Xylene ⁵	Units	Notes
8.36E-03	5.14E-03	1.11E-03	4.40E-04	4.08E-04	3.97E-05	1.84E-04	1b/MMBtu	AP-42 Table 3.2-2
1.06E-02	6.51E-03	1.41E-03	5.57E-04	5.17E-04	5.03E-05	2.33E-04	lb/MMBtu	AP-42 Table 3.2-2 (adjusted)
0.14	0.083	0.018	7.12E-03	6.60E-03	6.42E-04	2.98E-03	lb/hr	
0.59	0.36	0.079	0.031	0.029	2.81E-03	0.013	tpy	

NOTES

¹ VOC emission factor is calculated by adding aldehyde emissions.

² SO₂ emissions are based on fuel consumption and fuel sulfur content of 2 grains of sulfur per 100 scf 2 gr S/100 scf * fuel scf/hr * 1 lb/7000 gr * 64 lb-mol SO₂/ 32 lb-mol S = lb/hr SO₂

³ HAPs emissions factors are referenced from AP-42 Table 3.2-2 (except formaldehyde: provided in mfg spec sheet).

⁴ Assumes PM (Filterable + Condensable) = PM₁₀ = PM_{2,5}

⁵ AP-42 Table 3.2-2 & adjusted for 1291.29 Btu/scf

Green House Gas Emissions	CO ₂ 6	CH ₄ ⁶	N ₂ O ⁶	CO₂e ⁶	Units	Notes
	53.06	1.10E-03	1.00E-04	. ,	kg/MMBtu	40 CFR 98 Subpart C Tables C-1 & C-2
Emission Factors	1	25	298	<u> </u>	GWP	40 CFR 98 Subpart A Table A-1
	6546.05	0.14	0.012		tpy	
	6546.05	3.39	3.68	6553.12	tpy CO₂e	

⁶ N₂O, CH₄, and CO₂ tpy Emission Rate= EF (kg/MMBtu) * Fuel Usage (MMBtu/hr) * (2.20462 lb/kg) / (2000 lb/ton) CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate*GWP Factor + CH₄ Emission Rate*GWP Factor

4SLB

Caterpillar G3608 Compressor Engines

Emission Unit:

ENG-8 through ENG-10

Source Description:

Caterpillar G3608 Compressor Engines Caterpillar G3608

Manufacturer: Model:

Fuel Consumption

Site horsepower Fuel heat value

Type:

2500 hp 1291,29 Btu/scf Manufacturer Rating Inlet Gas Analysis

Fuel heat value
Heat input
Fuel consumption

291.29 Btu/scf 16.90 MMBtu/hr

Fuel consumption * Fuel heat value

13.09 Mscf/hr 8760 hrs/yr Heat input / fuel heat value

Hours of Operation
Annual fuel usage

8760 hrs/yr 114.66 MMscf/yr

8760 hrs/yr operation

Fuel Consumption

6761 Btu/hp-hr

Manufacturer Spec Sheet @ Max Rating

Emission Calculations

Emission Calculations										
Uncontrolled	NO _x	CO	VOC	SO ₂ ²	HCHO	PM ₁₀	PM _{2.5} "	Total HAPs	Units	Notes
	0.50	2.80	1.01		0.23				q/hp-hr	Catalyst Data
Emission Factors						1.94E-02	1.94E-02		lb/MMBtu	AP-42 Table 3.2-2
Elillasion i details				0.02			<u> </u>	<u> </u>	gr/scf	Engineering Estimate
	2.76	15.43	7.01	0.075	1.27	0.33	0.33	1.60	lb/hr	
	12.07	67.59	30.72	0.33	5.55	1.44	1.44	7.02	tpy	

Controlled	NO.	CO	: VOC' :	50 ₂ 2	нсно	PM ₁₀ ⁴	PM _{2.5} 4	Total HAPs	Units	Notes	
	0.50	0.69	0.70		0.046			7	g/hp-hr	Catalyst Guarantee	
Emission Factors	0%	75%	39%		80%					% Reduction	
Estilisatori i decors						1.94E-02	1.94E-02		lb/MMBtu	AP-42 Table 3.2-2	
	2.76	3.79	4.29	0.075	0.25	0.33	0.33	0.59	lb/hr		
	12.07	16.58	18.79	0.33	1.11	1.44	1.44	2.58	tpy	<u> </u>	

Acetaldehyde ⁵	Acrolein ⁵	n-Hexane ⁵	Benzene ⁵	Toluene ⁵	E-Benzene ⁵	Xylene ⁵	Units	Notes
8.36E-03	5.14E-03	1.11E-03	4.40E-04	4.08E-04	3.97E-05	1.84E-04	lb/MMBtu	AP-42 Table 3.2-2
1.06E-02	6.51E-03	1.41E-03	5.57E-04	5.17E-04	5.03E-05	2.33E-04	lb/MMBtu	AP-42 Table 3.2-2 (adjusted)
0.18	0.11	0.024	9.42E-03	8.73E-03	8.50E-04	3.94E-03	lb/hr	
0.78	0.48	0.10	0.041	0.038	3.72E-03	0.017	tpy	

NOTES

¹ VOC emission factor is calculated by adding aldehyde emissions.

² SO₂ emissions are based on fuel consumption and fuel sulfur content of 2 grains of sulfur per 100 scf

2 gr S/100 scf * fuel scf/hr * 1 lb/7000 gr * 64 lb-mol SO₂/ 32 lb-mol S = lb/hr SO₂

³ HAPs emissions factors are referenced from AP-42 Table 3.2-2 (except formaldehyde: provided in mfg spec sheet).

⁴ Assumes PM (Filterable + Condensable) = PM₁₀ = PM_{2.5}

⁵ AP-42 Table 3.2-2 & adjusted for 1291.29 Btu/scf

Green House Gas Emissions	CO ₂ 6	CH ₄ ⁶	N ₂ O ⁶	CO₂e ⁶	Units	Notes
	53.06	1.10E-03	1.00E-04	, - · ·	kg/MMBtu	40 CFR 98 Subpart C Tables C-1 & C-2
Emission Factors	1	25	298		GWP	40 CFR 98 Subpart A Table A-1
	8660.18	0.18	0.016		tpy	
	8660.18	4.49	4.86	8669.53	tpy CO ₂ e	

 6 N₂O, CH₄, and CO₂ tpy Emission Rate= EF (kg/MMBtu) * Fuel Usage (MMBtu/hr) * (2.20462 lb/kg) / (2000 lb/ton) CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate*GWP Factor + CH₄ Emission Rate*GWP Factor

Heater Trailer Emission

Unit: Diesel-fired Heater Trailer Description: 10.29 Rating: Manufacturer Specs Horsepower: 13.8 hp Operating hours: 40 hrs/year 3.2 Fuel consumption: gal/hr scf/hr Fuel consumption: 0.43 MMBtu/hr Manufacturer Specs Heating rate: 1.00

Uncontrolled	NO,1	CO	VOC1	SO ₂ ²	PM	HAP ¹	Unit	Notes
	5.32	4.9	0.28		0.3		g/bhp-hr	NSPS IIII Tier IV Final Emission Factors
Emission Factors	5.52		,	2.05E-03			lb/hp-hr	AP-42 Table 3.3-1
Emission ractors						3.79E-03	lb/MMBtu	AP-42 Table 3.3-2
	0.16	0.15	8.52E-03	2.05E-03	9.13E-03	3.79E-03	lb/hr	Maria de la companya della companya della companya della companya de la companya della companya
Emissions	0.71	0.65	0.037	8.98E-03	0.040	0.017	tpy	Emissions based on 8760 hr/yr

Controlled	NO _x ¹	CO	VOC1	50 ₂ ²	PM	HAP1	Unit	Notes
	5.32	4.9	0.28		0.3		g/bhp-hr	NSPS IIII Tier IV Final Emission Factors
Emission Factors				0.29			lb/MMBtu	AP-42 Table 3.3-1
Emission receis						3.79E-03	lb/MMBtu	AP-42 Table 3.3-2
	0.16	0.15	8.52E-03	0.29	9.13E-03	1.15E-04	lb/hr	
Emissions	3.24E-03	2.98E-03	1.70E-04	5.80E-03	1.83E-04	2.31E-06	lb/hr_	Emissions based on 40 hr/yr

Formaldehyde	Acetaldehyde	Acrolein	Benzene	Toluene	Unit	Notes
1.18E-03	7.67E-04	9.25E-05	9.33E-04	4.09E-04	lb/MMBtu	AP-42 Table 3.3-2
1.18E-03	7.67E-04	9.25E-05	9.33E-04	4.09E-04	lb/hr	
2.36E-05	1.53E-05	1.85E-06	1.87E-05	8.18E-06	tpy	1

Notes

² SO₂ and total HAPs were calculated using AP-42 emissions factors for Diesel Industrial Engines (Table 3.3-1 & 3.3-2).

Green House Gas Emissions	CO ₂ 3	CH ₄ ³	N ₂ O ³	CO ₂ e ³	Units	Notes
	73.96	3.00E-03	6.00E-04	*	kg/MMBtu	40 CFR 98 Subpart C Tables C-1 & C-2
Emission Factors	1	25	298	-	GWP	40 CFR 98 Subpart A Table A-1
	3.26	1.32E-04	2.65E-05		tpy	
	3.26	3.31E-03	7.88E-03	3.27	tpy CO₂e	

³N₂O, CH₄, and CO₂ tpy Emission Rate= EF (kg/MMBtu) * Fuel Usage (MMBtu/hr) * (2.20462 lb/kg) / (2000 lb/ton) CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate*GWP Factor + CH₄ Emission Rate*GWP Factor

¹ NSPS IIII Tier IV has a combined NO_x and VOC emission factor of 5.6 g/hp-hr. Per CARB Emission Factors for CI Diesel Engines, when the non-methane hydrocarbon (NMHC) and nitrogen oxide (NO_x) emission factor is combined, assume a breakdown of 5% and 95%, respectivley.

Air Compressor Generator

Emission Unit:

GEN-1

Source Description:

Natural Gas Fired Generator

Manufacturer:

PSI 14.6LTCAC

Model: Type:

4 Stroke Lean Burn

Fuel Consumption

Site horsepower Fuel heat value Heat input Fuel consumption

Hours of Operation

Annual fuel usage Fuel Consumption 362 hp 1291.29 Btu/scf 2.90 MMBtu/hr

2.24 Mscf/hr 8760 hrs/yr 19.65 MMscf/yr 8000 Btu/hp-hr Maximum horsepower of generator Inlet Gas Analysis

Fuel consumption * Fuel heat value Heat input / fuel heat value

8760 hrs/yr operation Engineering Estimate

Uncontrolled									Representation of particle of the second of the second
NO.1	CO ¹	VOC1	SO ₂ ²	нсно	PM ₁₀ ⁴	PM _{2.5}	Total HAPs		
1.00	2.00	0.70		6.68E-02	9.99E-03	9.99E-03		g/hp-hr lb/MMBtu	Table 1 to Subpart JJJJ of Part 60, Title 40 AP-42 Table 3.2-2
0.80	1.60	0.78	0.013	0.19	0.029	0.029	0.25	lb/hr	AF 12 Table 3.2 2
3.50	6.99	3.43	0.056	0.85	0.13	0.13	1.10	tpy	

						· · · · · · · · · · · · · · · · · · ·	***	
1	Acetaldehyde ⁵	Acrolein ⁵	Benzene ⁵	E-Benzene ⁵	n-Hexane ⁵	Toluene	Xylene ⁵	
ı	1.06E-02	6.51E-03	5.57E-04	5.03E-05	1.39E-03	5.17E-04	2.33E-04	lb/MMBtu
ı	0.031	0.019	1.61E-03	1.46E-04	4.03E-03	1.50E-03	6.75E-04	lb/hr
- [0.13	0.08	7.07E-03	6.38E-04	0.02	6.55E-03	2.95E-03	tpy

Controlled									
NO,1	COT	VOC,	SO ₂ ²	HCHO	PM ₁₀ ⁴	PM _{2.5}	Total HAPs		
1.00	2.00	0.70						g/hp-hr	Table 1 to Subpart JJJJ of Part 60, Title 40
0.0%	0%	0%							% Reduction
				6.68E-02	9.99E-03	9.99E-03		lb/MMBtu	AP-42 Table 3.2-2
0.80	1.60	0.78	0.013	0.19	0.029	0.029	0.25	lb/hr	
3.50	6.99	3.43	0.056	0.85	0.13	0.13	1.10	tpy	

NOTES

2 gr S/100 scf * fuel scf/hr * 1 lb/7000 gr * 64 lb-mol SO₂/ 32 lb-mol S = lb/hr SO₂

1291.3

Btu/scf

Green House Gas Emissions	CO ₂ 6	CH4 ⁶	N ₂ O ⁶	CO₂e ⁶	Units	Notes
	53.06	1.10E-03	1.00E-04	1 - 1	kg/MMBtu	40 CFR 98 Subpart C Tables C-1 & C-2
Emission Factors	1	25	298		GWP	40 CFR 98 Subpart A Table A-1
	1,483.80	0.031	2.80E-03	-	tpy	
	1,483.80	0.77	0.83	1,485.40	tpy CO₂e	

⁶ N₂O, CH₄, and CO₂ tpy Emission Rate= EF (kg/MMBtu) * Fuel Usage (MMBtu/hr) * (2.20462 lb/kg) / (2000 lb/ton) CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate*GWP Factor + CH₄ Emission Rate*GWP Factor

 $^{^{1}}$ NO $_{x}$, CO, and VOC emission factors are referenced from Table 1 to Subpart JJJJ of Part 60, Title 40.

² SO₂ emissions are based on fuel consumption and fuel sulfur content of 2 grains of sulfur per 100 scf

³ HAPs emissions factors are referenced from AP-42 Table 3.2-2.

⁴ Assumes PM (Filterable + Condensable) = PM₁₀ = PM_{2,5}

⁵ AP-42 Table 3.2-2 & adjusted for

Uncontrolled Emissions Per Unit | 82.02 | 359.27

Glycol Dehydrator

Emission Unit:

Dehy-1

Source Description:

Glycol Dehydrator 8,760 hrs/yr

Operating Hours:

100 MMSCFD

Throughput:

	V	OC .	1	l ₂ S	Total HA	AP .	Hex	cane	В	enzene	Tolu	iene	Ethylb	enzene	Xyl	lene
Uncontrolled 1	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Uncontrolled Flash Tank Overheads	44.83	196.34	0.01	0.06	2.06	9.03	1.27	5.58	0.35	1.53	0.28	1.24	0.015	0.07	0.14	0.62
Uncontrolled Condenser Overheads	37.20	162.92	0.03	0.13	8.89	38.93	1.40	6.13	4.09	17.93	2.57	11.24	0.08	0.35	0.75	3.28
Uncontrolled Emissions Per Unit	82.02	359.27	0.04	0.19	10.95	47.97	2.67	11.70	4.44	19.47	2.85	12.48	0.10	0.42	0.89	3.90

	V	OC	1 1 2 1	₂ S	Total HA	AP .	Hex	cane	В	enzene	Tolu	rene	Ethylb	enzene	Xyl	lene
Controlled 2	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Controlled Flash Tank Overheads		· · - · · ·	- 1					<u></u>		-		-	-	-		
Controlled Condenser Overheads			,								- ' '	-	-			
Controlled Emissions Per Unit		- "	j - j		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				- , ;	-				- 1	-	

¹ Emissions estimated using BR&E ProMax.

² Flash tank emissions are normally routed recycled to the inlet, however, if the inlet pressure is too high, the emissions are sent to the tanks. The BTEX condenser overheads are normally routed to the reboiler as fuel, however, when the reboiler doesn't call for fuel, the emission are sent to the tanks. The tanks are controlled by a vapor combustion unit (VCU) with a 100% capture efficiency and a 98% DRE. As a worst case scenario, emissions from the flash tank and the BTEX condenser overheads are represented at the VCU.

Dehy Reboiler

RB

Heat Input: Fuel Heat Value: 2.0 MMBTU/hr 1291.29 BTU/scf

Fuel Sulfur Content: Operating Hours: 2 gr/100 scf 8,760 hours/yr

Operating Hours
Fuel Usage:

Unit:

1548.84 scf/hr

			Criteria	Pollutant Emis	sion Rates pe	r Unit	
	NO _x	СО	VOC	SO ₂ 1	PM [*]	Units	Notes
	100	84	5.5	-:	7.6		AP-42 Table 1.4-1 & 2
Emission Factors	126.60	106.34	6.96	·	9.62	lb/MMscf	Adjusted EF, per footnote a in Tables 1.4-1 and 1.4-2
			-	2		gr / 100 scf	
	0.196	0.165	0.01	8.85E-03	0.01	lb/hr³	
Emissions	0.86	0.72	0.047	0.04	0.065	tons/year⁴	

 				AP Forfacion I	Number of the Parish		
	n-Hexane	Benzene	Toluene	HCHO	Rates per Unit Total HAPs ⁵	Units	Notes
	1.8E+00	2.1E-03	3.4E-03	7.5E-02			AP-42 Table 1.4-3
Emission Factors	2.28E+00	2.66E-03	4.30E-03	9.49E-02		lb/MMscf	Adjusted EF, per footnote a in Table 1.4-3
F 1-1-1-1	3.53E-03	4.12E-06	6.67E-06	1.47E-04	3.69E-03	lb/hr ³	
Emissions	0.02	1.80E-05	2.92E-05	6.44E-04	0.02	tons/year⁴	

Notes:

⁵ Total HAP emissions are the sum of all individual HAPs calculated.

Green House Gas Emissions	CO26	CH ₄ ⁶	N₂0 ⁶	CO₂e ⁶	Units	Notes
	53.06	1.10E-03	1.00E-04		kg/MMBtu	40 CFR 98 Subpart C Tables C-1 & C-2
Emission Factors	1	25	298	- 1	GWP	40 CFR 98 Subpart A Table A-1
	1024.72	0.02	1.93E-03		tpy	
	1024.72	0.53	0.58	1025.83	tpy CO₂e	<u> </u>

 $^{^{5}}$ N₂O, CH₄, and CO₂ tpy Emission Rate= EF (kg/MMBtu) * Fuel Usage (MMBtu/hr) * (2.20462 lb/kg) / (2000 lb/ton) CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate*GWP Factor + CH₄ Emission Rate*GWP Factor

¹ SO₂ emissions based on fuel sulfur (gr/100 scf)

² Assumes PM₁₀ = PM_{2.5}

³ lb/hr emissions calculated using the following methods: Criteria and HAPs lb/hr = EF (lb/MMscf) * Rating (MMBtu/hr) / Heat value (Btu/scf)

⁴ For all pollutant calculations, tons/year = lb/hr * Operating hours * 1ton/2000lb

Atmospheric Storage Tanks

Emission unit number(s): TK-1 through TK-3
Source description: 300 bbl Condensate Tanks

Annual Operating Hours: 8,760 Number of Tanks: 3

 Capacity of Tanks:
 300 bbl

 Hourly Throughout:
 307.79 bbl/hr

 Daily Throughput:
 23.68 bbl/d

 Annual Throughput:
 8,642.42 bbl/yr

	Cond	ensate Storage	Tank Emissions	1,2		
	Uncontro	lled Emissions (hou	rly basis)		olled Emissions (a	nnual basis)
Component	Flash (lb/hr)	Working and Breathing	Total per Tank (lb/hr)	Flash (lb/hr)	Working and Breathing	Total Emissions Per Tank
H2S	7 7 7 7	(lb/hr) 1.04E-01	3.48E-02		(lb/hr) 5,27E-04	7.69E-04
Nitrogen		1.04E-01	3.40E-UZ		5,276-04	7.090-04
Carbon Dioxide	1	2.07E+00	6.90E-01	-	6.51E-03	9.51E-03
Methane	1	1.38E+00		-		
Ethane	land the state of		4.60E-01		4.42E-03	6.45E-03
7	1	1.20E+01	3.99E+00		5.90E-02	8.61E-02
Propane	-	1.96E+01	6.53E+00		9.53E-02	1.39E-01
i-Butane		4.58E+00	1.53E+00		2.07E-02	3.03E-02
n-Butane	-	1.78E+01	5.95E+00		7.77E-02	1.13E-01
i-Pentane	1	6.56E+00	2.19E+00		2.62E-02	3.83E-02
n-Pentane		8.69E+00	2.90E+00	i	3.37E-02	4.91E-02
2,2-Dimethylbutane	-	1.48E-01	4.92E-02	-	5.59E-04	8.16E-04
Cyclopentane	-	2.92E+00	9.73E-01	-	1.09E-02	1.59E-02
2-Methylpentane	-	2.47E+00	8.25E-01	- 1	9.04E-03	1.32E-02
3-Methylpentane	-	1.57E+00	5.24E-01		5.67E-03	8.28E-03
n-Hexane	-	3.46E+00	1.15E+00		1.21E-02	1.76E-02
Methylcyclopentane	-	4.89E+00	1.63E+00	-	1.74E-02	2.54E-02
Benzene	-	1.05E+01	3.51E+00	-	3.60E-02	5.25E-02
Cyclohexane	-	4.64E+00	1.55E+00	-	1.59E-02	2.32E-02
2-Methylhexane		4.74E-01	1.58E-01	- "	1.58E-03	2.30E-03
3-Methylhexane	-	7.51E-01	2.50E-01		2.45E-03	3.58E-03
1,1-Dimethylcyclopentane		6.91E-01	2.30E-01	_	2.31E-03	3.38E-03
Heptane		1.20E+00	3.99E-01	- 1	3.80E-03	5.55E-03
Methylcyclohexane	1 .	3.50E+00	1.17E+00		1.12E-02	1.64E-02
1,1,2-Trimethylcyclopentane						
Toluene	-	6.21E+00	2.07E+00	_	1.92E-02	2.80E-02
2-Methylheptane	_	2.20E-01	7.32E-02	-	6.53E-04	9.53E-04
3-Methylheptane		-	-	_	0.001	5.552 01
2,5-Dimethylhexane	2	2.16E-02	7,20E-03		6.64E-05	9.70E-05
Octane		6.52E-01	2.17E-01		1.87E-03	2.73E-03
Ethylbenzene		1.81E-01	6.03E-02		5.01E-04	7.31E-04
p-Xylene	1	1.38E+00	4.60E-01	_	3.86E-03	5.63E-03
o-Xylene		3.16E-01	1.05E-01		8.74E-04	1.28E-03
Nonane	1	1.24E-01	4.14E-02		3.23E-04	4.71E-04
Decane		2.61E-02	8.70E-03		6.17E-05	9.01E-05
Undecane		Z.01E-UZ	0.7UE-U3		0.17E-05	3.01E-02
Water		4.27E+00	1.42E+00	1	1 165 03	1 605 03
TEG					1.16E-02	1.69E-02
		1.86E-10	6.21E-11		9.70E-14	1.42E-13
VOC	<u> </u>	103.64	34.55		0.41	0.60
Total HAPS		4.40	1.47	- · · ·	0.015	0.022
Total H ₂ S	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0.10	0.03	, e e i j = i j e	5.267E-04	7.69E-04

6961.291391

Uncontrolled emissions are calculated using BR&E ProMax. Hourly loading emissions are based on the short-term worse case scenario. Annual emissions are based on the daily throughput of the facility.

'Emissions are sent to the combustor (VCU) with a 100% capture efficiency and a 98% DRE.

				InputInfo	rmation
	Activity	Parametera	Value	Unit	Notas
		Hourly Volume Flow Rate	25	scf/hr	Manufacturer specification sheet
_		Natural Gas Heat Value	1291.29	Btu/scf	Inlet Gas Analysis
	Pilot	Annual Volume Flow Rate	0.22	MMscf/yr	sd/hr * 8760 hr/yr / 10^6
		Hourly Heat Rate	0.032	MMBhu/hr	sd/hr * Btu/sd / 10^6
-		Annual Heat Rate	282.79	MMBturyr	MMStu/tr * 6760 hr/yr
		Hourly Tank Flow Rate	503.14	sd/hr	Worst-case flashing losses and Short-term working losses streams from Pr
_		Hourly Dehy Flow Rate	1542.35	scf/ltr	Flash gas and Condenser Overhead streams from ProMax.
-		Total House's Mahama Bloom Bade	7445 48	a of the	

MCCIAICA	O SECULIAR SEC.	A minut	O'III	THE PARTY OF THE P					
	Hourly Volume Flow Rate	25	scf/hr	Manufacturer specification sheet	calton sheet				
	Natural Gas Heat Value	1291.29	Btu/scf	Inlet Gas Analysis					
Plant	Annual Volume Flow Rate	0.22	MMscf/yr	sd/hr * 8760 hr/yr / 10^6	10^6				
	Hourly Heat Rate	0.032	MMBhu/hr	ud/hr * Blu/sd / 10^6	- B				
	Annual Heat Rate	282.79	MMBtulyr	MMBtu/tir * 8760 hr/yr	(yet				
	Hourly Tank Flow Rate	503.14	sd/hr	Worst-case flashing	Worst-case flashing losses and Short-term working losses streams from ProMax	n working losses s	breams from ProMax		
	Hourly Dehy Flovy Rate	1542.35	scf/ltr	Flash gas and Conde	Flash gas and Condenser Overhead streams from ProMax.	ms from ProHax.			-
	Total Hourly Volume Flow Rate	2445.48	scf/hr						
	Annual Tank Flow Rate	0.032	MMsd/yr	Flash, working, and	Rash, working, and breathing streams from ProMax.	om ProMax.			
	Annual Dehy Flow Rate	13.51	MMscf/yr	Flash gas and Conde	Flash gas and Condenser Overhead streams from ProMax	ms from ProMax.			
	Total Annual Volume Flow Rate	13.54	MMsd/yr						
	Hourly Heating Value	2095.59	Btu/scf	Total Heurly to VCU	Total Hourly to VCU stream from ProMax				
	Annual Heating Value	1867.68	Bhu/scf	Total Annual to VCU	Total Annual to VCU stream from Promao				
PROCESS ESTIMATOR SAFETING	Hourly Heat Rate	5.12	минами по	Hourly flow rate (sd	f/hr) * Hourly weight	ed heating value (fourly flow rate (sd/hr) * Hourly weighted heating value (Blu/scf) / (10 Blu/MMBlu)	(Blu)	
	Annual Heat Rate	25293.48	MMBtu/yr	Annual flow rate (M	Annual flow rate (MMscf/yr) * Annual weighted heating value (Stu/scf)	sighted heating va	ue (Btu/sd)		
	Hourly VOC	179.21	lb/hr VOC	Total Hourty to VCU	Total Hourly to VCU stream from ProMax				
	Annual VOC	356.05	tpy VOC	Total Annual to VCU	Total Annual to VCU stream from Proma-				
	Hourly HAP	37.34	Ib/hr HAP	Total Hourly to VCU	Total Hourly to VCU stream from ProMax				
	Annual HAP	47.83	tpy HAP	Total Annual to VCU	Total Annual to VCU stream from Proma-	•			
	Hourly H ₂ S	0.04	lb/hr H ₂ S	Total Hourly to VCU	Total Hourly to VCU stream from ProMax				
	Annual H ₂ S	0.19	tpy H ₂ S	Total Annual to VCL	Total Annual to VCU stream from Promis				
Emission Calculation									
- Description -	NO _X ,	00'	VOC L	50,1	- Md	HaSta	HAPa	Units	Notes
	100.0	84.0	5.5		7.5			B/MMad	NO _L CO, and VOC: AP 42 Chapter 1, Table 1.4-1 &1.4-2
Emission Factors	126.6	106.3	6.96		9.6			Ib/MMsd	Emission Factor adjusted for pilot gas heat valve
	205.5	172.6			15.6			fb/MMsd	Emission Factor adjusted for process emission heat value
Sual Suffer Contant				0.5				gr 5/100sd	Fuel suffur content (gr/100sd)
Lee Sollar Contests				0,0029				lb S/ Msdf	gr 5/100 scf * (1 lb/7000 gr) * (1000scf/Mscf)
Billet Benkerland	3.16E-03	2.66E-03	1.74E-04	1.43E-04	2.41E-04			lb/hr	EF (lb/MMscf) * Hourly flow (scf/hr) / (10' Btu/MMBtu))
PHOLEMBSIONS	610.0	0.012	7.626-04	6.26E-04	1.05E-03			фy	Hourly emission rate (lb/hr) / (2000 lb/lon) * (8760 hr/yr)
	0.50	0.42	3.58	0.079	0.038	0.55E-04	0.75	M/dl	Total Hourly to VCU stream from ProMax
Process cinissions	1.39	1.17	7.12	0.35	0.11	3.79E-03	0.96	tΦV	Total Annual to VCU stream from Promax
Table building	12.0	0.42	3.58	0.079	0.038	8.55E-04	0.75	m/di	Total amining includes process and pilot amining
The second secon	1 1 11	1 18	7.12	35.0	11.0	1 705-03	0.96	ψy	come annuality increased be acres and being annual acres

Total Emissions 2.51 0.42 3.56 0.059 0.039

Relaxi
(1) YCU HA, CD, Pila VC, and Pel emission factors are from AP-Q: Table 1.4-1 and 1.4-2. Find Gas in conversion for the 2-3 pt \$1000xxx

Find Gas SQ, Emissions (Behr) = Rela Gas Rhow (celly) + Find Gas Salar Connex (Bit Hay) + 64 habited \$51,7 32 influents \$1 + (1900 xcf/Mod)

Fincas SQ, Emissions (Behr) = 185 Max Ten Rela (Bit My) - 192E + (64 habited \$50,7 24 habited \$51,7 32 influents \$1 + (1900 xcf/Mod)

Fincas SQ, Emissions (Behr) = 185 Max Ten Rela (Bit My) - 192E + (64 habited \$50,7 48 habited \$51,7 32 influents \$1 + (1900 xcf/Mod)

Fincas SQ, Emissions (Behr) = 185 Max Ten Rela (Right) - 192E + (64 habited \$50,7 48 habited \$51,7 32 influents \$1 + (1900 xcf/Mod)

Fincas SQ, Emissions (Behr) = 185 Max Ten Rela (Right) - 185E + (64 habited \$50,7 48 habited \$51,7 48 habited

Green House Gas Emission	co,	CH.	N ₂ O*	CO-4"	Units	Notes	100
Section Section	53,06	1.10E-03	1.00E-04		-	40 CFR 98 Subpart C Tables C-1 & C-2	
EXHIBITION PRODUCT	-	25	298		GWP	40 CFR 98 Subpart A Table A-1	
	2642.25	0.055	4.98E-03		Acts		
	2642.25	1.37	1,48	2645.10	tpy CO ₂ e		
	The state of the s		THE PARTY OF THE PARTY.	The state of the state of	ALIE TO A COROLL OF THE PARTY O		

* N₂O, CH₄, and CO₃ (by Emission Rate = EF (hg)+MR(bu) * Fuel Usage (MMR(bu)hy) * (2.20462 lb/hg) / (2000 lb/bos) CO₂- (by Emission Rate = CO₃ Emission Rate + N₂O Emission Rate*GNP Factor + CH, Emission Rate*GNP Factor

Targa Northern Delaware, LLC - Cadillac Compressor Station **Truck Loading (Condensate Tanks)**

Equation1:

Variables1:

L_L - Loading Loss (lbs/1000 gal loaded)

S - Saturation Factor (From Table 5.2-1 of AP-42, Section 5.2)

P - True Vapor Pressure of Loaded Liquid (psia)

M - Molecular Weight of Vapor (lb/lb mol)
T- Temperature of Bulk Liquid (°R = [°F + 460])

																LOAD	
Unit	Material Loaded ²	Loading Method	S	P _{max} ⁶ (psia)	M ⁶ (lb/lbmol)	T _{max} ⁴ (°R)	L _L (lbs/1000 gal)	Hourly Throughput ⁵ (gal/hr)	VOC Wt %	HAP Wt %	H ₂ S Wt % ³	VOC Vapor Loading Losses (lb/hr)	HAP Vapor Loading Losses (lb/hr)	Loading Losses (lb/hr)	Uncontrolled Hourly VOC Emissions (lb/hr)	Hourly HAP Emissions (lb/hr)	Hourly H ₂ S Emissions ³ (lb/hr)
LOAD	Condensate	Submerned	0.6	6.83	45.24	535.45	4.31	7,560	83.33%	14.73%	0.11%	27.16	4.80	0.035	27.16	4.80	0.035
LOND	Condensate	Submergeo		0.00					1000		TOTAL	27.16	4.80	0.035	27.16	4.80	0.035

																LOAD	
Unit	Material Loaded ²	Loading Method	S	P _{avg} ⁷ (psia)	M ⁷ (lb/lbmol)	T _{avg} ⁴ (°R)	L _L (lbs/1000 gal)	Annual Throughput ⁷ (gal/yr)	VOC Wt %	HAP Wt %	H ₂ S Wt % ³	VOC Vapor Loading Losses (tpy)	HAP Vapor Loading Losses (tpy)	H ₂ S Vapor Loading Losses (tpy)	Uncontrolled Annual VOC Emissions (tpy)	Uncontrolled Annual HAP Emissions (tpy)	Uncontrolled Annual H ₂ S Emissions ³ (tov)
LOAD	Candanasta	Submerged	0.6	5.06	45.24	528.56	3.81	362,982	83.33%	14.73%	0.11%	0.58	0.10	7.41E-04	0.58	0.10	7.41E-06
LOAD_	Condensate	Submergeo	0.0	3.50	73.27	320.30	3.01	302,302	00.0070	2 117 0 10	TOTAL	0.58	0.10	7.41E-04	0.58	0.10	7.41E-06

Notes:

¹ Loading loss equation and variables are from AP-42, Section 5.2, Transportation and Marketing of Petroleum Liquids.

² Material loaded is 100% condensate.

3 H₂S content is conservatively assumed.

⁴ Worst case scenario temperature is 95° F and the average temperature is 75.8° F.

⁵ The maximum hourly throughput is based on the assumption that two trucks with a 180 bbl capacity can be loaded in an hour.

⁶ TVP and MW pulled from Max Hourly promax

⁷ TVP, MW, and annual throughput pulled from Annual Average promax

Green House Gas Emissions	CO ₂ 6	CH ₄ ⁶	N ₂ O ⁶	CO ₂ e ⁶	Units	Notes
	1	25	298	1	GWP	40 CFR 98 Subpart A Table A-1
	9.16E-03	6.21E-03			tpy	
	9.16E-03	0.16	-	0.16	tpy CO₂e	

⁶ CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate*GWP Factor + CH₄ Emission Rate*GWP Factor

Fugitive Emissions

Emission unit number: FUG

Source description: Facility-wide Fugitive Emissions
Total Operating Hours: 8,760

Compon	ent	Emission factor ¹ (lb/hr/source)	VOC Content ² (wt%)	HAP Content ² (wt%)	H ₂ S Content ² (wt%)	Hexane Content ² (wt%)	Benzene Content ² (wt%)	Content ² (wt%)	Content ² (wt%)	Xylene Content ² (wt%)	CO ₂ Content ² (wt%)	Methane Content ² (wt%)	Subcomponen Count ³
	Inlet Gas	9.92E-03	25.11%	0.94%	0.00%	0.63%	0.10%	0.11%	0.0098%	0.093%	49.691%	57.260%	900
Valves	Residue Gas	9.92E-03	24.49%	0.83%	0.00%	0.60%	0.09%	0.09%	0.0060%	0.055%	0.500%	57.734%	200
	Light Liquid	5.51E-03	26.10%	15.55%	0.00%	0.66%	3.11%	5.82%	0.56%	5.40%	0.00%	0.00%	600
	Inlet Gas	4.41E-04	25.11%	0.94%	0.00%	0.63%	0.10%	0.11%	0.0098%	0.093%	49.691%	57.260%	2600
Connectors	Residue Gas	4.41E-04	24.49%	0.83%	0.00%	0.60%	0.09%	0.09%	0.0060%	0.055%	0.500%	57.734%	800
	Light Liquid	4.63E-04	26.10%	15.55%	0.00%	0.66%	3.11%	5.82%	0.56%	5.40%	0.00%	0.00%	2400
	Inlet Gas	8.60E-04	25.11%	0.94%	0.00%	0.63%	0.10%	0.11%	0.0098%	0.093%	49.691%	57.260%	1000
Flanges	Residue Gas	8.60E-04	24.49%	0.83%	0.00%	0.60%	0.09%	0.09%	0.0060%	0.055%	0.500%	57.734%	100
	Light Liquid	2.43E-04	26.10%	15.55%	0.00%	0.66%	3.11%	5.82%	0.56%	5.40%	0.00%	0.00%	300
	Inlet Gas	5.29E-03	25.11%	0.94%	0.00%	0.63%	0.10%	0.11%	0.0098%	0.093%	49.691%	57.260%	0
Pump Seals	Residue Gas	5.29E-03	24,49%	0.83%	0.00%	0.60%	0.09%	0.09%	0.0060%	0.055%	0.500%	57.734%	0
	Light Liquid	2.87E-02	26.10%	15.55%	0.00%	0.66%	3.11%	5.82%	0.56%	5.40%	0.00%	0.00%	10
	Inlet Gas	1.94E-02	25.11%	0.94%	0.00%	0.63%	0.10%	0.11%	0.0098%	0.093%	49.691%	57.260%	70
Other	Residue Gas	1.94E-02	24.49%	0.83%	0.00%	0.60%	0.09%	0.09%	0.0060%	0.055%	0.500%	57.734%	10
	Light Liquid	1.65E-02	26.10%	15.55%	0.00%	0.66%	3.11%	5.82%	0.56%	5.40%	0.00%	0.00%	10
	,,	Total (lb/hr):	5.02	0.91	3.64E-04	0.125	0.17	0.30	0.029	0.280	6.12	8.55	
		Total (tpv):	21.98	3.97	1.59E-03	0.55	0.74	1.33	0.13	1.23	26.81	37.45	

Total (tpy): 21.98 3.97

¹ Emission factors from Table 2-4 of EPA Protocol for Equipment Leak Emission Estimates, 1995.

⁵ Annual Emissions [ton/yr] = Hourly Emissions [lb/hr] * Operating Hours [hr/yr] * 1/2000 [ton/lb].

Green House Gas Emissions	CO ₂ ⁶	CH ₄ ⁶	N ₂ O ⁶	CO₂e ⁶	Units	Notes
	1	25	298	-	GWP	40 CFR 98 Subpart A Table A-1
	26.81	37.45	-		tpy	
	26.81	936.20	-	963.01	tpy CO₂e	

⁶ CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate*GWP Factor + CH₄ Emission Rate*GWP Factor

Weight percent of gas and liquid components from site specific liquids and gas analyses.

³ Component counts are based on facility design.

⁴ Hourly Emissions [lb/hr] = Emissions Factor [lb/hr/component] * Weight Content of Chemical Component [%] * Subcomponent Count.

Targa Northern Delaware, LLC - Cadillac Compressor Station Analysis Summary

Inlet Gas	Analysis	
Component	Mol %	Wt.%
H2\$	0.0015	0.0024
Nitrogen	0.9472	1.2226
Carbon Dioxide	0.2451	0.4969
Methane	77.4690	57.2605
Ethane	11.4828	15.9083
Propane	5.4273	11.0265
i-Butane	0.7652	2.0491
n-Butane	1.7544	4.6982
i-Pentane	0.4401	1.4630
n-Pentane	0.4961	1.6492
2,2-Dimethylbutane	0.0070	0.0278
Cyclopentane	0.0340	0.1099
2-Methylpentane	0.1110	0.4408
3-Methylpentane	0.0590	0.2343
n-Hexane	0.1580	0.6275
Methylcyclopentane	0.0660	0.2560
Benzene	0.0280	0.1008
Cyclohexane	0.0780	0.3025
2-Methylhexane	0.0250	0.1154
3-Methylhexane	0.0350	0.1616
1,1-Dimethylcyclopentane	0.0110	0.0498
Heptane	0.0690	0.3186
Methylcyclohexane	0.0890	0.4027
1,1,2-Trimethylcyclopentane	0.0000	0.0000
Toluene	0.0260	0.1104
2-Methylheptane	0.0200	0.1053
3-Methylheptane	0.0000	0.0000
2,5-Dimethylhexane	0.0020	0.0105
Octane	0.0750	0.3948
Ethylbenzene	0.0020	0.0098
p-Xylene	0.0160	0.0783
o-Xylene	0.0030	0.0147
Nonane	0.0340	0.2010
Decane	0.0230	0.1508
Undecane	0.0000	0.0000
Water	0.0000	0.0000
TEG	0.0000	0.0000
Total	100.0000	100.0000
Total VOC	9.8544	25.1094
Total HAP	0.2331	0.9414
Total H2S	0.0015	0.0024

Residue Gas Analysis (Dr	y Gas from De	ehy)
Component	Mol %	Wt.%
H2S	0.0015	0.0024
Nitrogen	0.9492	1.2329
Carbon Dioxide	0.2451	0.5001
Methane	77.6137	57.7343
Ethane	11.4950	16.0271
Propane	5.4226	11.0874
i-Butane	0.7622	2.0543
n-Butane	1.7430	4.6975
i-Pentane	0.4331	1.4491
n-Pentane	0.4860	1.6257
2,2-Dimethylbutane	0.0068	0.0271
Cyclopentane	0.0327	0.1064
2-Methylpentane	0.1062	0.4243
3-Methylpentane	0.0561	0.2243
n-Hexane	0.1490	0.5954
Methylcyclopentane	0.0617	0.2407
Benzene	0.0248	0.0898
Cyclohexane	0.0715	0.2791
2-Methylhexane	0.0225	0.1045
3-Methylhexane	0.0312	0.1450
1,1-Dimethylcyclopentane	0.0099	0.0451
Heptane	0.0600	0.2787
Methylcyclohexane	0.0767	0.3491
1,1,2-Trimethylcyclopentane	0.0000	0.0000
Toluene	0.0201	0.0859
2-Methylheptane	0.0155	0.0823
3-Methylheptane	0.0000	0.0000
2,5-Dimethylhexane	0.0017	0.0088
Octane	0.0540	0.2862
Ethylbenzene	0.0012	0.0060
p-Xylene	0.0096	0.0472
o-Xylene	0.0016	0.0081
Nonane	0.0169	0.1006
Decane	0.0066	0.0434
Undecane	0.0000	0.0000
Water	0.0120	0.0101
TEG	0.0002	0.0012
Total	100.0000	100.0000
Total VOC	9.6833	24.4920
Total HAP	0.2064	0.8324
Total H2S	0.0015	0.0024

		,
Liquid Ana	veie	
Component	Mol %	Wt.%
H2S	0.0002	0.0003
Nitrogen	0.0000	0.0000
Carbon Dioxide	0.0005	0.0011
Methane	0.0002	0.0001
Ethane	0.0003	0.0004
Propane	0.0346	0.0669
i-Butane	0.0169	0.0432
n-Butane	0.1102	0.2807
i-Pentane	0.0937	0.2964
n-Pentane	0.1666	0.5268
2,2-Dimethylbutane	0.0037	0.0138
Cyclopentane	0.1026	0.3154
2-Methylpentane	0.0886	0.3348
3-Methylpentane	0.0644	0.2434
n-Hexane	0.1744	0.6586
Methylcyclopentane	0.2788	1.0284
Benzene	0.9085	3.1107
Cyclohexane	0.3777	1.3935
2-Methylhexane	0.0410	0.1801
3-Methylhexane	0.0740	0.3248
1,1-Dimethylcyclopentane	0.0615	0.2649
Heptane	0.1544	0.6783
Methylcyclohexane	0.4874	2.0979
1,1,2-Trimethylcyclopentane	0.0000	0.0000
Toluene	1.4401	5.8162
2-Methylheptane	0.0538	0.2695
3-Methylheptane	0.0000	0.0000
2,5-Dimethylhexane	0.0036	0.0179
Octane	0.2323	1.1634
Ethylbenzene	0.1208	0.5622
p-Xylene	0.9289	4.3230
o-Xylene	0.2311	1.0755
Nonane	0.1112	0.6250
Decane	0.0626	0.3903
Undecane	0.0000	0.0000
Water	93.5754	73.8964
TEG	0.0000	0.0002
Total	100.0000	100.0000
Total VOC	6.4234	26.1017
Total HAP	3.8038	15.5463
Total H2S	0.0002	0.0003

H₂S Concentration:

1500 ppm

Haul Road

Unit: HAUL

Description: Haul Road Emissions

Control Equipment: N/A

Input Data

Empty vehicle weight ¹	16	tons
Load weight ²	29.5	tons
Loaded vehicle ³	45.5	tons
Mean vehicle weight ⁴	30.7	tons
Daily Oil Throughput	23.7	bbls
Vehicle frequency	0.5	trips/hour
Round-trip distance	0.10	mile/trip
Round-trip distance	4.80	miles/yr
Operating hours	8760	hours/yr
Surface silt content ⁵	4.8	%
Annual wet days ⁶	70	days/yr
Vehicle miles traveled7	0.05	mile/hr
Control percentage	0%	nominal, base course chemical treatment

Emission Factors and Constants

Parameter	PM ₃₀	PM ₁₀	PM _{2.5}
k, lb/VMT ⁸	4.9	1.5	0.15
a, lb/VMT ⁸	0.70	0.90	0.90
b, lb/VMT ⁸	0.45	0.45	0.45
Hourly EF, lb/VMT ⁹	7.35	1.87	0.19
Annual EF, lb/VMT ¹⁰	5.94	1.51	0.15

Uncontrolled Emissions

PM ₃₀	PM ₁₀	PM _{2.5}	
0.37	0.094	9.37E-03	
0.014	3.64E-03	3.64E-04	ton/yr12

Notes

- ¹ Empty vehicle weight includes driver and occupants and full fuel load.
- ² Cargo, transported materials, etc. (Liquid density (lb/ft³) / 7.481 gal/ft³ * lb/gal RVP5 * 7560 gal truck/ 2000lb/ton)
- ³ Loaded vehicle weight = Empty + Load Size
- ⁴ Mean Vehicle weight = (Loaded Weight + Empty Weight) / 2
- ⁵ AP-42 Table 13.2.2-1, Sand and gravel processing
- ⁶ AP-42 Figure 13.2.2-1
- ⁷ VMT/hr = Vehicle Miles Traveled per hour = Trips per hour * Segment Length
- ⁸ Table 13.2.2-2, Industrial Roads
- ⁹ AP-42 13.2.2, Equation 1a
- ¹⁰ AP-42 13.2.2, Equation 2
- AP-42 13.2.2, Equation 2
 Ib/hr = Hourly EF (lb/VMT) * VMT (mile/hr)
 ton/yr = Annual EF (lb/VMT) * Truck/day * Mile/truck * 365day/yr * 1ton/2000lb
 Uncontrolled emissions * (1 Control%)

Targa Northern Delaware, LLC - Cadillac Compressor Station Emission Calculation Inputs

Compressor Blowdowns					
	Ourable -#	Quantity of		Minney !	
	Quantity of Compressors	Compressors Simultaneously	Total Volume	Hours / Blowdown	Number of
Compressor Name	(#)	(#)	(scf/event)1	(hr/event)	Events/yr
RC-1 and RC-7 (CAT 3516)	2	1	4285.9	1	12
RC-2 through RC-6 (CAT 3606)	5	1	4272.7	1	12
RC-8 through RC-10 (CAT 3608)	3	1	6184.9	1	12
¹ Blowdown volumes provided by Targa.					
Dehydrator Blowdowns	Volume of Gas per	# Blowdowns /	Hours /	Number of	
	Blowdown	year	Blowdown	Units	
Dehydrator/Amine	(scf/event)	(#/year)	(hr/event)	(#)	_
60"x30' Contactor	39,821	1	1	1	-
Filter Coalescer Blowdowns					
Input Data	Value	Units			
Volume of gas per blowdown	6900	scf/event			-
Number of Filter Coalescers	1	Units			
Number of Blowdowns per unit per year	1	events/yr			
Duration of Event	1	hr/event			
Scrubbers			فيمسون فينسب		
Input Data	Value	Units			
Volume of Gas Per Blowdown	33800	scf/event			=
Number of Scrubbers	5	Units			
Number of Blowdowns per unit per year Duration of Event	1	events/yr			
Simultaneous unit blowdowns	1 5	hr/event			
			<u> </u>		
Pump Blowdowns Input Data	Value	II-it-			
Volume of gas per blowdown	Value 16	Units scf/event			= "
Number of pumps	2	Units			
Number of blowdowns per unit per year	1	events/yr			
Hours per event Simultaneous unit blowdowns	1 2	hr/event Units			
		Office			
Reboiler Maintenance					
Input Data Volume of Gas Released during Reboiler Maintenance	Value 65	Units			=
Number of Reboilers	1	scf/event			
Duration of Event	1	hr/event			
Maintenance Events per year	1	event/ year			
Actual Pressure Maximum Temperature	15.2 100	psia °F			
Annual Temperature	80	۰F			
Simultaneous Events	1	events			
Pigging	tride is dejumen			U.S. 1750 (4.4.1)	
Input Data	Value	Units			
Unit #1 Volume Vented - Southern Comfort	87	scf/event			_
Unit #2 Volume Vented - Illustrated Man Fee Unit #3 Volume Vented - Oxy Bow Lateral Extension Phase 2	87 212	scf/event scf/event			
Unit #4 Volume Vented - Rick Deckard Flow	87	scf/event			
Unit #5 Volume Vented - Corral Canyon Lateral	346	scf/event			
Unit #6 Volume Vented - Cadillac Discharge Maximum hourly number of pigging events	2336	scf/event events/hr			
Unit #1 Annual Number of Events	12	events/nr events/yr			
Unit #2 Annual Number of Events	12	events/yr			
Unit #3 Annual Number of Events Unit #4 Annual Number of Events	12	events/yr			
Unit #4 Annual Number of Events Unit #5 Annual Number of Events	12 12	events/yr events/yr			
Unit #6 Annual Number of Events	12	events/yr			
Actual Pressure	30	psig			
Maximum Temperatue Annual Temperature	100 80	°F °F			
Pipeline Blowdown - Only if pipeline is opened and a seg					
Input Data Dipoline Diameter - Southern Comfort	Value	Units			_ , , ,
Pipeline Diameter - Southern Comfort Pipeline Length - Southern Comfort	8 14051	inches ft			
Pipeline Diameter - Illustrated Man Fee	8	inches			
Pipeline Length - Illustrated Man Fee	15500	ft			
Pipeline Diameter - Oxy Bow Lateral Extension Phase 2	12	inches			
Pipeline Length - Oxy Bow Lateral Extension Phase 2 Pipeline Diameter - Rick Deckard Flow	8398.96 8	ft Inches			
Pipeline Length - Rick Deckard Flow	13040.26	inches ft			
Pipeline Diameter - Corral Canyon Lateral	16	inches			
Pipeline Length - Corral Canyon Lateral	11985	ft			
Pipeline Diameter - Cadillac Discharge	12	inches			
Pipeline Length - Cadillac Discharge Total Pipleline Volume	27456 59761.79	ft ft³			
Duration of Event	59761.79 0.25	hr/event			
Maintenance events per year	.1	events/yr			
Actual Pressure	100	psia			
Maximum Temperature Annual Temperature	100 80	°F			
Pipeline volume vented	377590	scf/event			

Targa Northern Delaware, LLC - Cadillac Compressor Station
Emission Calculation Inputs

Tank Maintenance	14-1	Malka
Input Data	Value	Units
Number of tanks	3	Units
Molecular Weight of Vapors	70.00	fb/fb-mol
Duration of tank purging/degassing	24	hr/event
Volume of gas released during degassing event	1696.50	scf/event
Tank Height	15	ft
Tank Diameter	12	ft
Number of tank purging/degassing events per tank per year	1	event/yr
Surface Coating		
Input Data	Value	Units
Maximum amount of paint used in an hour	25	gal/hr
Maximum amount of paint used in a year	100	gal/yr
Source Painted	Tank	
Abrasive Blasting		
Input Data	Value	Units
Blasting Material	Sand	•
Usage per Event	3100	lb/event
Events per year	1	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Duration of event		hr/event

SSM Summary

Description	NC),	C)	VO	C	P	M	PN	110	PN	2.5	51	02	Н	₂ S	Total	HAPS	CO ₂	CH ₄	N ₂ O	CO ₂ e
	(lb/hr)	(tpy)	(lb/hr)	(tpv)	(lb/hr)	(tpv)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Compressor Blowdowns	- 1	-			211.72	4.18		-				- / -		_ ^	0.020	<0.01	7.94	0.16	0.083	9.53	-	238.28
Dehydrator Blowdowns	-	- 1 - 1 - 1	-, -		571.85	0.29	_		=, *		1	·		-	0.054	<0.01	21.44	0.011	<0.011	0.65		16.31
Filter Coalescer Blowdowns			1		99.09	0.050						4 . 1			< 0.01	<0.01	3.72	< 0.01	< 0.01	0.11	-	2.03
Scrubber Blowdowns			· · ·		485.38	0.24			1000		1 - 1 - 1			1 ,- 1	0.046	< 0.01	18.20	<0.01	< 0.001	0.55	<u> </u>	13.84
Pump Blowdowns	-		-	- "	0.46	< 0.01	-				-	-		, -	< 0.01	< 0.01	0.017	< 0.01	<0.01	< 0.01		<0.01
Reboiler Maintenance	-		-	-	0.93	< 0.01			-	-					< 0.01	< 0.01	0.035	<0.01	<0.01	<0.01		0.03
Pigging	- 1	-			33.55	0.27				-					< 0.01	<0.01	1.26	0.010	<0.01	0.62		15.50
Pipeline Blowdowns					309.67	2.71	-		1, 1, 2		7 . 2			-1 -1	0.029	< 0.01	11.51	0.10	0.054	6.18	-	154.62
Tank Maintenance	-		-		7.85	0.13									< 0.01	< 0.01	4.66	0.08	< 0.01	<0.01		<0.01
Total		-	· -,		1,720.50	7.87			-		·		·		0.16	<0.01	68.87	0.37	0.15	17.65	-	441.41

Targa Northern Delaware, LLC - Cadillac Compressor Station
Emission Calculation Inputs

Compressor Blowdowns		CHIERONIA OF			
	Quantity of	Quantity of Compressors		Hours /	
		Simultaneously	Total Volume	Blowdown	Number o
Communication Name	Compressors	(#)	(scf/event)1	(hr/event)	Events/y
Compressor Name	(#)				12
RC-1 and RC-7 (CAT 3516)	2	1	4285.9	1	
RC-2 through RC-6 (CAT 3606)	5	1	4272.7	1	12 12
RC-8 through RC-10 (CAT 3608)	3	1	6184.9	1	12
Blowdown volumes provided by Targa.					
No. 1					
Dehydrator Blowdowns	Volume of Gas per	# Blowdowns /	Hours /	Number of	
	Blowdown	year	Blowdown	Units	
Dehydrator/Amine	(scf/event)	(# /year)	(hr/event)	(#)	
50"x30' Contactor	39,821	1	1	1	•
Filter Coalescer Blowdowns					
Input Data	Value	Units		1. 1. 1. 1. 1. 1.	
/olume of gas per blowdown	6900	scf/event			-
Number of Filter Coalescers	1	Units			
Number of Blowdowns per unit per year	1	events/yr			
Duration of Event	1	hr/event			
Scrubbers					
Input Data	Value	Units		1	
Volume of Gas Per Blowdown	33800	scf/event			-
Number of Scrubbers	5	Units			
Number of Blowdowns per unit per year	ĭ	events/yr			
Duration of Event	1	hr/event			
Simultaneous unit blowdowns	5				
Pump Blowdowns					
Input Data	Value	Units		<u> </u>	-
Volume of gas per blowdown	16	scf/event			
Number of pumps	2	Units			
Number of blowdowns per unit per year Hours per event	1	events/yr hr/event			
Simultaneous unit blowdowns	2	Units			
Reboiler Maintenance					
Input Data	Value	Units			
Volume of Gas Released during Reboiler Maintenance	65	scf/event	T		-
Number of Reboilers	1				
Duration of Event	1	hr/event			
Maintenance Events per year	1	event/ year			
Actual Pressure	15.2	psia			
Maximum Temperature	100	°F			
Annual Temperature	80	°F			
Simultaneous Events	1	events			
Pigging		il-la-			
Input Data	Value	Units		<u> </u>	===
Unit #1 Volume Vented - Southern Comfort	87	scf/event			
Unit #2 Volume Vented - Illustrated Man Fee	87	scf/event			
Unit #3 Volume Vented - Oxy Bow Lateral Extension Phase 2	212	scf/event			
Unit #4 Volume Vented - Rick Deckard Flow	87	scf/event			
Unit #5 Volume Vented - Corral Canyon Lateral	346	scf/event scf/event			
Unit #6 Volume Vented - Cadillac Discharge	2336 1				
Maximum hourly number of pigging events	12	events/hr events/yr			
Unit #1 Annual Number of Events	4.00	4.4			
Unit #2 Annual Number of Events	12	events/yr			
Unit #3 Annual Number of Events	12	events/yr			
Unit #4 Annual Number of Events	12	events/yr			
Unit #5 Annual Number of Events	12	events/yr			
Unit #6 Annual Number of Events	12	events/yr			
Actual Pressure	30	psig			
Maximum Temperatue Annual Temperature	100 80	°F			
Pipeline Blowdown - Only if pipeline is opened and a sec	ment is vented				
Input Data	Value	Units			

Paintair Temperature			
Pipeline Blowdown - Only if pipeline is opened and a seg	ment is vented	The state of the state of	
Input Data	Value	Units	
Pipeline Diameter - Southern Comfort	8	inches	
Pipeline Length - Southern Comfort	14051	ft	
Pipeline Diameter - Illustrated Man Fee	8	inches	
Pipeline Length - Illustrated Man Fee	15500	ft	
Pipeline Diameter - Oxy Bow Lateral Extension Phase 2	12	inches	
Pipeline Length - Oxy Bow Lateral Extension Phase 2	8398.96	ft	
Pipeline Diameter - Rick Deckard Flow	8	inches	
Pipeline Length - Rick Deckard Flow	13040.26	ft	
Pipeline Diameter - Corral Canyon Lateral	16	inches	
Pipeline Length - Corral Canyon Lateral	11985	ft :	
Pipeline Diameter - Cadillac Discharge	12	inches	
Pipeline Length - Cadillac Discharge	27456	ft	
Total Pipleline Volume	59761.79	ft ³	
Duration of Event	0.25	hr/event	
Maintenance events per year	1	events/yr	
Actual Pressure	100	psia	
Maximum Temperature	100	°F	
Annual Temperature	80	°F	
Pipeline volume vented	377590	scf/event	

Targa Northern Delaware, LLC - Cadillac Compressor Station Emission Calculation Inputs

Tank Maintenance			
Input Data	Value	Units	
Number of tanks	3	Units	
Molecular Weight of Vapors	70.00	lb/lb-mol	
Duration of tank purging/degassing	24	hr/event	
Volume of gas released during degassing event	1696.50	scf/event	
Tank Height	15	ft	
Tank Diameter	12	ft	
Number of tank purging/degassing events per tank per year	1	event/yr	
Surface Coating			
Input Data	Value	Units	
Maximum amount of paint used in an hour	25	gal/hr	
Maximum amount of paint used in a year	100	gal/yr	
Source Painted	Tank		
Abrasive Blasting		Checking District	
Input Data	Value	Units	
Blasting Material	Sand		
Usage per Event	3100	lb/event	
Events per year	1		
Duration of event	6	hr/event	

SSM Summary

Description	NO)		0	V.	C	Р	М	PM	110	PM	2.5	Si	0,	H .	₂ S	Total	HAPs	COz	CH ₄	N _z O	CO₂e
Description	(lb/hr)	(tov)	(lb/hr)	(tov)	(lb/hr)	(tov)	(lb/hr)	(toy)	(lb/hr)	(tpv)	(lb/hr)	(tpv)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Compressor Blowdowns	(10/111/	(41)	(10/111)	14977	211.72	4.18	-	-							0.020	< 0.01	7.94	0.16	0.083	9.53	-	238.28
Dehydrator Blowdowns	7 - 7		-		571.85	0.29		-	-, -	-					0.054	<0.01	21.44	0.011	<0.011	0.65		16.31
Filter Coalescer Blowdowns		_		1 4 1	99.09	0.050				i i .			·	1 4	< 0.01	<0.01	3.72	<0.01	< 0.01	0.11		2.83
Scrubber Blowdowns					485.38	0.24	100	1			* <u></u>		-	100	0.046	< 0.01	18.20	< 0.01	<0.001	0.55		13.84
Pump Blowdowns			-	-	0.46	< 0.01	-	* *=,	-	-	-	·	** , - ,	-	< 0.01	<0.01	0.017	<0.01	< 0.01	<0.01		< 0.01
Reboiler Maintenance		-		-	0.93	< 0.01			-	-		-		-	<0.01	< 0.01	0.035	<0.01	< 0.01	<0.01		0.03
Pigging	-			1	33.55	0.27							· ·		< 0.01	<0.01	1.26	0.010	< 0.01	0.62	-	15.50
Pipeline Blowdowns		1 T 2 14	1 - 1	* 1 T	309.67	2.71		1 To 1 To 1	12 12			-			0.029	<0.01	11.61	0.10	0.054 <0.01	6.18	<u> </u>	154.62 <0.01
Tank Maintenance		-	· ·	-	7,85	0.13		- "	-	-		-			< 0.01	<0.01	4,66	0.08	-0.00	<0.01		441.41
Total	-		-	-	1,720.50	7.87			-		- 1		·		0.16	<0.01	68.87	0.37	0.15	17.65		441.41

Targa Northern Delaware, LLC - Cadillac Compressor Station RC-1 and RC-7 (CAT 3615) Blowdowns

Basis of Calculation: Emissions from blowdowns are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of blowdown (scf/event/unit)] \times [MW of stream (lb/lb-mol)] \times [wt % VOC or speciated constituent] \times [# compressors blowndown simultaneously (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of blowdown (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# compressors blowndown at site (units)] x [frequency of events (events/yr/unit)] / [379.5 (scf/lb-mol)] / [2,000 (lb/ton)]

Compressor BlowDown EmissionsEstimated Gas Vented per BlowDown Event ¹ = scf/event 4,286 Compressors at Site = units Compressors Blowndown Simultaneously = Assumed BlowDown Duration = units hrs/event events/yr Compressor BlowDowns in One Year = Molecular Weight of Stream = 12 22 None lb/lb-mol Control Type =

Compound	Composition	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)	Control Efficiency (%)	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
H2S	0.0024	5.77E-03	6.93E-05	(-70)	(ID/III)	(сру)
Nitrogen	1.2226	3.00E+00	3.60E-02			
Carbon Dioxide	0.4969	1,22E+00	1.46E-02	1 1 2		
Methane	57.2605	1.40E+02	1.68E+00			
thane	15.9083	3.90E+01	4.68E-01	l		
Propane	11.0265	2.70E+01	3.24E-01			
-Butane	2.0491	5.02E+00	6.03E-02			
-Butane	4.6982	1.15E+01	0.14			
-Pentane	1.4630		4.30E-02			-
-Pentane		3.59E+00				
	1.6492	4.04E+00	4.85E-02	:	77.1	
,2-Dimethylbutane	0.0278	6.81E-02	8.18E-04	- :		
yclopentane	0.1099	2.69E-01	3.23E-03	·		
-Methylpentane	0.4408	1.08E+00	1.30E-02	- 		
-Methylpentane	0.2343	5.74E-01	6.89E-03		/	
-Hexane	0.6275	1.54E+00	1.85E-02	:	T .	
lethylcyclopentane	0.2560	6.27E-01	7.53E-03			
Benzene	0.1008	2.47E-01	2.96E-03		· · · ·	
Cyclohexane	0.3025	7.42E-01	8.90E-03			
2-Methylhexane	0.1154	2.83E-01	3.40E-03			"
3-Methylhexane	0.1616	3.96E-01	4.75E-03		1	
,1-Dimethylcyclopentane	0.0498	1.22E-01	1.46E-03	-	-	- '
leptane	0.3186	7.81E-01	9.37E-03	-		-
Methylcyclohexane	0.4027	9.87E-01	1.18E-02			
,1,2-Trimethylcyclopentan	0.0000	0.00E+00	0.00E+00	1	11 1 44	
oluene	0.1104	2.71E-01	3.25E-03			1 2 2
-Methylheptane	0.1053	2.58E-01	3.10E-03			
3-Methylheptane	0.0000	0.00E+00	0.00E+00	-	·	I
,5-Dimethylhexane	0.0105	2.58E-02	3.10E-04		1	
Octane	0.3948	9.68E-01	1.16E-02			
thylbenzene	0.0098	2.40E-02	2.88E-04	1	l	
-Xylene	0.0783	1.92E-01	2.30E-03		L 12	
-Xylene	0.0147	3.60E-02	4.32E-04	- · ·		,
lonane	0.2010	4.93E-01	5.91E-03			
Decane	0.1508	3.70E-01	4.44E-03			
Indecane	0.0000	0.00E+00	0.00E+00		1	
Vater	0.0000	0.00E+00	0.00E+00		1	
TEG	0.0000	0.00E+00	0.00E+00			
Total VOC	14.08	61.55	0.74			
H ₂ S	2.36E-03	5.77E-03	6.93E-05			
Total HAP	0.70	2.31				
			0.028		-	
Total CO ₂	0.50	1.22	0.015	- · · · · ·	1 1 <u></u> 1 1	
Total CH ₄	57.26	140.36	1.68		· · ·	

¹ This is a representative estimate of the amount of gas vented per blow down event.

Targa Northern Delaware, LLC - Cadillac Compressor Station RC-2 through RC-6 (CAT 3606) Blowdowns

Basis of Calculation: Emissions from blowdowns are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of blowdown (scf/event/unit)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# compressors blowndown simultaneously (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of blowdown (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# compressors blowndown at site (units)] x [frequency of events (events/yr/unit)] / [379.5 (scf/lb-mol)] / [2,000 (lb/ton)]

Compressor BlowDown Emissions

Estimated Gas Vented per BlowDown Event 1 =	4,273	scf/event
Compressors at Site =	5	units
Compressors Blowndown Simultaneously =	1	units
Assumed BlowDown Duration =	1	hrs/event
Compressor BlowDowns in One Year =	12	events/yr
Molecular Weight of Stream =	22	lb/lb-mol
Control Type =	None	

Compound	Composition	Maximum Uncontrolled Hourly Emissions	Maximum Uncontrolled Annual Emissions	Control Efficiency	Maximum Controlled Hourly Emissions	Maximum Controlled Annual Emissions
	(wt %)	(lb/hr)	(tpy)	(%)	(lb/hr)	(tpy)
H2S	0.00	5.76E-03	1.73E-04			
Nitrogen	1.22	2.99E+00	8.96E-02		'	
Carbon Dioxide	0.50	1.21E+00	3.64E-02		1	
Methane	57.26	1.40E+02	4,20E+00	-		
Ethane	15.91	3.89E+01	1.17E+00	· .		
Propane	11.03	2.69E+01	8.08E-01	<u> </u>		
i-Butane	2.05	5.01E+00	1.50E-01	-		
n-Butane	4.70	1.15E+01	0.34			
i-Pentane	1.46	3.58E+00	1.07E-01			
n-Pentane	1.65	4.03E+00	1.21E-01	<u>.</u>		
2,2-Dimethylbutane	0.03	6.79E-02	2.04E-03			
	0.03	2.69E-01	8.06E-03			
Cyclopentane	0.11		3.23E-02		· ·	
2-Methylpentane		1.08E+00				
3-Methylpentane	0.23	5.73E-01	1.72E-02			
n-Hexane	0.63	1.53E+00	4.60E-02	_		
Methylcyclopentane	0.26	6.26E-01	1.88E-02	-		
Benzene	0.10	2.46E-01	7.39E-03	*-	-	
Cyclohexane	0.30	7.39E-01	2.22E-02	· ·		
2-Methylhexane	0.12	2.82E-01	8.46E-03	- "	_	
3-Methylhexane	0.16	3.95E-01	1.18E-02		-	
1,1-Dimethylcyclopentane	0.05	1.22E-01	3.65E-03		-	
Heptane	0.32	7.79E-01	2.34E-02	-		· •
Methylcyclohexane	0.40	9.84E-01	2.95E-02		-	
1,1,2-Trimethylcyclopentane	0.00	0.00E+00	0.00E+00			
Toluene	0.11	2.70E-01	8.09E-03			-
2-Methylheptane	0.11	2.57E-01	7.72E-03			
3-Methylheptane	0.00	0.00E+00	0.00E+00			
2,5-Dimethylhexane	0.01	2.57E-02	7.72E-04	-	<u></u> "	
Octane	0.39	9.65E-01	2.89E-02			
Ethylbenzene	0.01	2.39E-02	7.17E-04			-
p-Xylene	0.08	1.91E-01	5.74E-03			
o-Xylene	0.01	3.59E-02	1.08E-03			
Nonane	0.20	4.91E-01	1.47E-02			
Decane	0.15	3.69E-01	1.11E-02			<u> </u>
Undecane	0.00	0.00E+00	0.00E+00			
Water	0.00	0.00E+00	0.00E+00			
			0.00E+00 0.00E+00			
TEG	0.00	0.00E+00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Total VOC	14.08	61.36	1.84			
H ₂ S	2.36E-03	5.76E-03	1.73E-04			
Total HAP	0.70	2.30	0.069			
Total CO ₂	0.50	1.21	0.036			
Total CH ₄	57.26	139.92	4.20			"

¹ This is a representative estimate of the amount of gas vented per blow down event.

RC-8 through RC-10 (CAT 3608) Blowdowns

Basis of Calculation:

Emissions from blowdowns are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of blowdown (scf/event/unit)] \times [MW of stream (lb/lb-mol)] \times [wt % VOC or speciated constituent] \times [# compressors blowndown simultaneously (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of blowdown (scf/event)] \times [MW of stream (lb/lb-mol)] \times [wt % VOC or speciated constituent] \times [# compressors blowndown at site (units)] \times [frequency of events (events/yr/unit)] / [379.5 (scf/lb-mol)] / [2,000 (lb/ton)]

Compressor BlowDown Emissions
Estimated Gas Vented per BlowDown Event 1 = 6,185 scf/event Compressors at Site = units Compressors Blowndown Simultaneously = Assumed BlowDown Duration = units hrs/event Compressor BlowDowns in One Year = Molecular Weight of Stream = 12 22 lb/lb-mol Control Type = None

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Annual Emissions (tpy)	Control Efficiency	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
H2S	0.0024	8.33E-03	1.50E-04			
Nitrogen	1.2226	4.32E+00	7.78E-02		-	
Carbon Dioxide	0.4969	1.76E+00	3.16E-02			
Methane	57.2605	2.03E+02	3.65E+00	,	-	
Ethane	15.9083	5.63E+01	1.01E+00			
Propane	11.0265	3.90E+01	7.02E-01		-	-
i-Butane	2.0491	7.25E+00	1.30E-01			
n-Butane	4.6982	1.66E+01	0.30			
i-Pentane	1.4630	5.17E+00	9.31E-02		1 1-1	1 1
n-Pentane	1.6492	5.83E+00	1.05E-01			
2,2-Dimethylbutane	0.0278	9.83E-02	1.77E-03			
Cyclopentane	0.1099	3.89E-01	7.00E-03			
2-Methylpentane	0.4408	1.56E+00	2.81E-02			
3-Methylpentane	0.2343	8.29E-01	1.49E-02			_
n-Hexane	0.6275	2.22E+00	4.00E-02			
Methylcyclopentane	0.2560	9.05E-01	1.63E-02			
Benzene	0.1008	3.57E-01	6.42E-03			1
Cyclohexane	0.3025	1.07E+00	1.93E-02			l
2-Methylhexane	0.1154	4.08E-01	7.35E-03			
3-Methylhexane	0.1616	5.72E-01	1.03E-02			
1,1-Dimethylcyclopentane	0.0498	1.76E-01	3.17E-03		-	
Heptane	0.3186	1.13E+00	2.03E-02			
Methylcyclohexane	0.4027	1.42E+00	2.56E-02		-	
1,1,2-Trimethylcyclopentane	0.0000	0.00E+00	0.00E+00			
Toluene	0.1104	3.91E-01	7.03E-03		-	
2-Methylheptane	0.1053	3.72E-01	6.70E-03			
	0.1033		0.00E+00		1	
3-Methylheptane		0.00E+00		1000		
2,5-Dimethylhexane	0.0105	3.72E-02	6.70E-04	***		
Octane	0.3948	1.40E+00	2.51E-02	-		
Ethylbenzene	0.0098	3.46E-02	6.23E-04			-
p-Xylene	0.0783	2.77E-01	4.98E-03			
o-Xylene	0.0147	5.19E-02	9.35E-04		*	
Nonane	0.2010	7.11E-01	1.28E-02			
Decane	0.1508	5.33E-01	9.60E-03			-
Undecane	0.0000	0.00E+00	0.00E+00		-	-
Water	0.0000	0.00E+00	0.00E+00		-	
TEG	0.0000	0.00E+00	0.00E+00			
Total VOC	14.08	88.82	1.60			
H ₂ S	2.36E-03	8.33E-03	1.50E-04			
Total HAP	0.70	3.33	0.060	·		
Total CO ₂	0.50	1.76	0.032			
Total CH ₄	57.26	202.54	3.65			

This is a representative estimate of the amount of gas vented per blow down event.

Compressor Blowdowns

Hours per event:

.

Compressor	Number of Compressors	Volume per Compressor Event (scf/event)	per Compressor	Annual Release (scf/yr)	Hourly Volume (scf/hr)	Molecular Weight (lb/lb-mol)
RC-1 & RC-7 (CAT 3516)	2	4285.9	12	102861.6	8571.8	22
RC-2 through RC-6 (CAT 3606)	5	4272.7	12	256362	21363.5	22
RC-8 through RC-10 (CAT 3608)	3	6184.9	12	222656.4	18554.7	22

Uncontrolled Emissions	VOC		H ₂ S		Tota	al HAP	CO ₂	CH ₄
Uncontrolled Emissions	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	(tpy)	(tpy)
RC-1 & RC-7 (CAT 3516)	61.55	0.74	5.77E-03	6.93E-05	2.31	0.028	0.015	1.68
RC-2 through RC-6 (CAT 3606)	61.36	1.84	5.76E-03	1.73E-04	2.30	0.069	0.036	4.20
RC-8 through RC-10 (CAT 3608)	88.82	1.60	8.33E-03	1.50E-04	3.33	0.060	0.032	3.65
TOTAL	211.72	4.18	0.020	3.92E-04	7.94	0.16	0.083	9.53

Dehydrator Blowdowns

Basis of Calculation:

Emissions from blowdowns are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Estimated blowdown volume (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] / [hour/event] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Estimated blowdown volume (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] * [event/yr] / [379.5 (scf/lb-mol)] / [2,000 (lb/ton)]

The hourly volume is calculated from the sum of the blowdown volumes from each component of the dehydrator (i.e. the contactor, scrubber, flash tank, and

Dehydrator Blowdown Emissions Estimated Hourly Blowdown Volume ¹ = Number of Units = 39,821 scf/event units hr/event Assumed Blowdown Duration = Blowdowns Per Year = event/yr lb/lb-mol Molecular Weight of Stream = 22 Control Type = None

					Maximum	Maximum
		ALCOHOL STORY			Controlled	Controlled
The Administration	STORY OF SERVICE	Maximum Uncontrolled	Maximum Uncontrolled	Control	Hourly	Annual
Compound	Composition	Hourly Emissions	Annual Emissions	Efficiency	Emissions	Emissions
100	. • (wt %)	(lb/hr)	(tpy)	(%)	(lb/hr)	(tpy)
H2S	2.36E-03	5.37E-02	2.68E-05			· ·
Nitrogen	1.22E+00	2.78E+01	1.39E-02			
Carbon Dioxide	4.97E-01	1.13E+01	5.66E-03			-
Methane	5.73E+01	1.30E+03	6.52E-01			
Ethane	1.59E+01	3.62E+02	1.81E-01			
Propane	1.10E+01	2.51E+02	1.26E-01			
i-Butane	2.05E+00	4.67E+01	2.33E-02			!
n-Butane	4.70E+00	1.07E+02	5.35E-02	-		- '
i-Pentane	1.46E+00	3.33E+01	1.67E-02			
n-Pentane	1.65E+00	3.76E+01	1.88E-02			
2,2-Dimethylbutane	2.78E-02	6.33E-01	3.17E-04			
Cyclopentane	1.10E-01	2.50E+00	1.25E-03		* +-	
2-Methylpentane	4.41E-01	1.00E+01	5.02E-03		**	**
3-Methylpentane	2.34E-01	5.34E+00	2.67E-03			
n-Hexane	6.27E-01	1.43E+01	7.15E-03	-	- 1	
Methylcyclopentane	2.56E-01	5.83E+00	2.91E-03			
Benzene	1.01E-01	2.30E+00	1.15E-03			
Cyclohexane	3.03E-01	6.89E+00	3.44E-03			
2-Methylhexane	1.15E-01	2.63E+00	1.31E-03			
3-Methylhexane	1.62E-01	3.68E+00	1.84E-03	· -	:	
1,1-Dimethylcyclopentan	4.98E-02	1.13E+00	5.67E-04			
Heptane	3.19E-01	7.26E+00	3.63E-03			
Methylcyclohexane	4.03E-01	9.17E+00	4.59E-03		-	
1,1,2-Trimethylcyclopent		0.00E+00	0.00E+00			
Toluene	1.10E-01	2.51E+00	1.26E-03			
2-Methylheptane	1.05E-01	2.40E+00	1.20E-03	-		
3-Methylheptane	0.00E+00	0.00E+00	0.00E+00			
2,5-Dimethylhexane	1.05E-02	2.40E-01	1.20E-04	-		
Octane	3.95E-01	8.99E+00	4.50E-03			
Ethylbenzene	9.79E-03	2.23E-01	1.11E-04			-
p-Xylene	7.83E-02	1.78E+00	8.91E-04	1 1	-	
o-Xylene	1.47E-02	3.34E-01	1.67E-04			-
Nonane	2.01E-01	4.58E+00	2.29E-03			
Decane	1.51E-01	3.43E+00	1.72E-03			
Undecane	0.00E+00	0.00E+00	0.00E+00			
Water	0.00E+00	0.00E+00	0.00E+00		l '	
TEG	0.00E+00	0.00E+00	0.00E+00			
Total VOC	14.08	571.85	0.29			
H ₂ S	2.36E-03	0.054	2.68E-05			
Total HAP	0.70	21.44	0.011			
Total CO ₂	0.50	11.32	5.66E-03			
Total CH ₄	57.26	1304.06	0.65			

¹ This is a representative estimate of the amount of gas vented per blowdown event.

Filter Coalescer Blowdowns

Basis of Calculation: Emissions from blowdowns are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of blowdown (scf/event/unit)] \times [MW of stream (lb/lb-mol)] \times [wt % VOC or speciated constituent] \times [# units blowndown simultaneously (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of blowdown (scf/event)] \times [MW of stream (lb/lb-mol)] \times [wt % VOC or speciated constituent] \times [# units blowndown at site (units)] \times [frequency of events (events/yr/unit)] / [379.5 (scf/lb-mol)] / [2,000 (lb/ton)]

Filter Coalescer BlowDown Emissions

Estimated Gas Vented per BlowDown Event 1 =	6,900	scf/event
Units at Site =	1	units
Units Blowndown Simultaneously =	1	units
BlowDown Duration =	1	hrs/event
Unit BlowDowns in One Year =	1	events/yr
Molecular Weight of Stream =	22	lb/lb-mol
Control Type =	None	

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)	Control Efficiency (%)	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
H2S	0.0024	9.30E-03	4.65E-06	,		
Nitrogen	1.2226	4.82E+00	2.41E-03			
Carbon Dioxide	0.4969	1.96E+00	9.80E-04			
Methane	57.2605	2.26E+02	1.13E-01	·		
Ethane	15.9083	6.28E+01	3.14E-02		-	1
Propane	11.0265	4,35E+01	2.18E-02			
i-Butane	2.0491	8.09E+00	4.04E-03	·		
n-Butane	4.6982	1.85E+01	9.27E-03			
i-Pentane	1.4630	5.77E+00	0.00			
In-Pentane	1.6492	6.51E+00	3.25E-03	·		
2.2-Dimethylbutane	0.0278	1.10E-01	5.49E-05			
Cyclopentane	0.1099	4.34E-01	2.17E-04			
2-Methylpentane	0.4408	1.74E+00	8.70E-04	·		
3-Methylpentane	0.2343	9.25E-01	4.62E-04			
n-Hexane	0.6275	2.48E+00	1.24E-03	· · · · · · · · · · · · · · · · · · ·		1 1
Methylcyclopentane	0.2560	1.01E+00	5.05E-04			
Benzene	0.1008	3.98E-01	1.99E-04			
Cyclohexane	0.3025	1.19E+00	5.97E-04		1	
2-Methylhexane	0.1154	4.56E-01	2.28E-04	* * * <u>*</u>		
3-Methylhexane	0.1616	6.38E-01	3.19E-04	-		1
1,1-Dimethylcyclopentane	0.0498	1.96E-01	9.82E-05			
Heptane	0.3186	1.26E+00	6.29E-04			
Methylcyclohexane	0.4027	1.59E+00	7.95E-04			1 1 1 1
1,1,2-Trimethylcyclopentar	0.0000	0.00E+00	0.00E+00			
Toluene	0.1104	4.36E-01	2.18E-04			
2-Methylheptane	0.1104	4.15E-01	2.08E-04			-
	0.0000	0.00E+00	0.00E+00			
3-Methylheptane	0.0000	4.15E-02	2.08E-05			1 1
2,5-Dimethylhexane		1.56E+00	7.79E-04		-	
Octane	0.3948		1.93E-05			
Ethylbenzene	0.0098	3.86E-02	1.93E-05 1.54E-04			
p-Xylene	0.0783	3.09E-01				
o-Xylene	0.0147	5.79E-02	2,90E-05		-	
Nonane	0.2010	7.93E-01	3.97E-04			
Decane	0.1508	5.95E-01	2.98E-04			<u></u>
Undecane	0.0000	0.00E+00	0.00E+00			
Water	0.0000	0.00E+00	0.00E+00			-
TEG	0.0000	0.00E+00	0.00E+00			
Total VOC	14.08	99.09	0.050	·	·	
H ₂ S	2.36E-03	9.30E-03	4.65E-06	· · ·	1 11 1 1 1 1 1	· · · · · · · · ·
Total HAP	0.70	3.72	1.86E-03			
Total CO ₂	0.50	1.96	9.80E-04	, <u></u>		
Total CH ₄	57.26	225.96	0.11			

¹ This is a representative estimate of the amount of gas vented per blow down event.

Scrubber Blowdown

Basis of Calculation:

Emissions from blowdowns are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of blowdown (scf/event/unit)] \times [MW of stream (lb/lb-mol)] \times [wt % VOC or speciated constituent] \times [# units blowndown simultaneously (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of blowdown (scf/event)] \times [MW of stream (lb/lb-mol)] \times [wt % VOC or speciated constituent] \times [# units blowndown at site (units)] \times [frequency of events (events/yr/unit)] / [379.5 (scf/lb-mol)] / [2,000 (lb/ton)]

Scrubber BlowDown Emissions

Estimated Gas Vented per BlowDown Event 1 =	33,800	scf/event
Units at Site =	5	units
Units Blowndown Simultaneously =	1	units
BlowDown Duration =	1	hrs/event
Unit BlowDowns in One Year =	1	events/yr
Molecular Weight of Stream =	22	lb/lb-mol
Control Type =	None	

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)	Control Efficiency (%)	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
H2S	0.0024	4.55E-02	2.28E-05			-
Nitrogen	1.2226	2.36E+01	1.18E-02			
Carbon Dioxide	0.4969	9.61E+00	4.80E-03			
Methane	57.2605	1.11E+03	5.53E-01	, i.e		
Ethane	15.9083	3.08E+02	1.54E-01			
Propane	11.0265	2.13E+02	1.07E-01			
i-Butane	2.0491	3.96E+01	1.98E-02	'		-
n-Butane	4.6982	9.08E+01	4.54E-02			
i-Pentane	1.4630	2.83E+01	0.01			
n-Pentane	1.6492	3.19E+01	1.59E-02			
2,2-Dimethylbutane	0.0278	5.37E-01	2.69E-04		- 2	
Cyclopentane	0.1099	2.12E+00	1.06E-03			
2-Methylpentane	0.4408	8.52E+00	4.26E-03			
3-Methylpentane	0.2343	4.53E+00	2.26E-03		1	
n-Hexane	0.6275	1.21E+01	6.06E-03			
Methylcyclopentane	0.2560	4.95E+00	2.47E-03		<u> </u>	
Benzene	0.1008	1.95E+00	9.74E-04			
Cyclohexane	0.3025	5.85E+00	2.92E-03			
2-Methylhexane	0.1154	2.23E+00	1.12E-03			
3-Methylhexane	0.1616	3.12E+00	1.56E-03			
1,1-Dimethylcyclopentar	0.0498	9.62E-01	4.81E-04			
Heptane	0.3186	6.16E+00	3.08E-03			
Methylcyclohexane	0.4027	7.78E+00	3.89E-03			
1,1,2-Trimethylcyclopen	0.0000	0.00E+00	0.00E+00	<u> </u>		<u> </u>
Toluene	0.1104	2.13E+00	1.07E-03	_		
2-Methylheptane	0.1053	2.04E+00	1.02E-03			
3-Methylheptane	0.0000	0.00E+00	0.00E+00			
2,5-Dimethylhexane	0.0105	2.04E-01	1.02E-04			
Octane	0.3948	7.63E+00	3.82E-03			
Ethylbenzene	0.0098					
p-Xylene	0.0098	1.89E-01 1.51E+00	9.46E-05			
			7.57E-04		1	1
o-Xylene	0.0147	2.84E-01	1.42E-04	1		
Nonane	0.2010	3.88E+00	1.94E-03			
Decane	0.1508	2.92E+00	1.46E-03			
Undecane	0.0000	0.00E+00	0.00E+00			-
Water	0.0000	0.00E+00	0.00E+00			-
TEG	0.0000	0.00E+00	0.00E+00			
Total VOC	14.08	485.38	0.24			
H₂S	2.36E-03	0.046	2.28E-05			
Total HAP	0.70	18.20	9.10E-03			
Total CO ₂	0.50	9.61	4.80E-03			
Total CH ₄	57.26	1106.89	0.55			

¹ This is a representative estimate of the amount of gas vented per blow down event.

² Due to the hourly emissions of H₂S_r scrubber blowdowns will not occur at the same time as any other SSM activity.

Pump Blowdowns

Basis of Calculation:

Emissions from blowdowns are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of blowdown (scf/event/unit)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# units blowndown simultaneously (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of blowdown (scf/event)] \times [MW of stream (lb/lb-mol)] \times [wt % VOC or speciated constituent] \times [# units blowndown at site (units)] \times [frequency of events (events/yr/unit)] / [379.5 (scf/lb-mol)] / [2,000 (lb/ton)]

Pump BlowDown Emissions

I dilip biowbown Emissions		
Estimated Gas Vented per BlowDown Event 1 =	16	scf/event
Units at Site =	2	units
Units Blowndown Simultaneously =	2	units
Assumed BlowDown Duration =	1	hrs/event
Unit BlowDowns in One Year =	1	events/yr
Molecular Weight of Stream =	22	lb/lb-mol
Control Type =	None	

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)	Control Efficiency (%)	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
H2S	2.36E-03	4.31E-05	1.08E-08			
Nitrogen	1.22E+00	2.24E-02	5.59E-06	-		
Carbon Dioxide	4.97E-01	9.09E-03	2.27E-06			
Methane	5.73E+01	1.05E+00	2.62E-04			-
Ethane	1.59E+01	2.91E-01	7.28E-05			<u>-</u>
Propane	1.10E+01	2.02E-01	5.04E-05		-	
i-Butane	2.05E+00	3.75E-02	9.38E-06	- · · · · · · · · · · · · · · · · · · ·		-
n-Butane	4.70E+00	8.60E-02	2.15E-05			
i-Pentane	1.46E+00	2.68E-02	6.69E-06			
n-Pentane	1.65E+00	3.02E-02	7.55E-06			_
2.2-Dimethylbutane	2.78E-02	5.09E-04	1,27E-07			
Cyclopentane	1.10E-01	2.01E-03	5.03E-07			
2-Methylpentane	4.41E-01	8.07E-03	2.02E-06			
3-Methylpentane	2.34E-01	4.29E-03	1.07E-06			
n-Hexane	6.27E-01	1.15E-02	2.87E-06			
Methylcyclopentane	2.56E-01	4.68E-03	1.17E-06			
Benzene	1.01E-01	1.84E-03	4.61E-07	-		_
	3.03E-01	5.54E-03	1.38E-06			
Cyclohexane			5.28E-07			
2-Methylhexane	1.15E-01	2.11E-03	5.28E-07 7.39E-07			
3-Methylhexane	1.62E-01	2.96E-03				
1,1-Dimethylcyclopentar	4.98E-02	9.11E-04	2.28E-07			
Heptane	3.19E-01	5.83E-03	1.46E-06			The second second
Methylcyclohexane	4.03E-01	7.37E-03	1.84E-06	1 7		
1,1,2-Trimethylcyclopen	0.00E+00	0.00E+00	0.00E+00			· · · · ·
Toluene	1.10E-01	2.02E-03	5.05E-07		-	
2-Methylheptane	1.05E-01	1.93E-03	4.82E-07			ļ
3-Methylheptane	0.00E+00	0.00E+00	0.00E+00			1-4
2,5-Dimethylhexane	1.05E-02	1.93E-04	4.82E-08		-	
Octane	3.95E-01	7.23E-03	1.81E-06			
Ethylbenzene	9.79E-03	1.79E-04	4.48E-08			1
p-Xylene	7.83E-02	1.43E-03	3.58E-07		-	
o-Xylene	1.47E-02	2.69E-04	6.72E-08		-	
Nonane	2.01E-01	3.68E-03	9.19E-07			-
Decane	1.51E-01	2.76E-03	6.90E-07	-		
Undecane	0.00E+00	0.00E+00	0.00E+00			
Water	0.00E+00	0.00E+00	0.00E+00	-	-	
TEG	0.00E+00	0.00E+00	0.00E+00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		21
Total VOC	14.08	0.46	1.15E-04			
H ₂ S	2.36E-03	4.31E-05	1.08E-08		***	
Total HAP	0.70	0.017	4.31E-06		22 1 1	
Total CO ₂	0.50	9.09E-03	2.27E-06			
Total CH ₄	57.26	1,05	2.62E-04		· · ·	

¹ This is a representative estimate of the amount of gas vented per blow down event.

Reboiler Maintenance

Basis of Calculation: Emissions from reboiler maintenance activities are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of Gas Vented (scf/event/unit)] \times [MW of stream (lb/lb-mol)] \times [wt % VOC or speciated constituent] \times [# Reboilers worked on simultaneously (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of Gas Vented (scf/event)] \times [MW of stream (lb/lb-mol)] \times [wt % VOC or speciated constituent] \times [# Reboilers at site (units)] \times [frequency of events

Reboiler Maintenance Emissions

Estimated Gas Vented per Event 1 =	65	scf/event
Reboilers at Site =	1	units
Reboilers Maintenance Events Occurring Simultaneously =	1	events
Assumed Reboiler Maintenance Duration =	1	hrs/event
Reboiler Maintenance Activities in One Year =	1	events/yr
Molecular Weight of Stream =	22	lb/lb-mol
Control Type =	None	

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)	Control Efficiency (%)	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
H2S	2.36E-03	8.76E-05	4.38E-08			, , , , , , , , , , , , , , , , , , ,
Nitrogen	1.22E+00	4.54E-02	2.27E-05			
Carbon Dioxide	4.97E-01	1.85E-02	9.24E-06			, .
Methane	5.73E+01	2.13E+00	1.06E-03			
Ethane	1.59E+01	5.91E-01	2.96E-04	" "		
Propane	1.10E+01	4.10E-01	2.05E-04			
-Butane	2.05E+00	7.62E-02	3.81E-05	1 1		
n-Butane	4.70E+00	1,75E-01	8.73E-05			1 1 L
-Pentane	1.46E+00	5.44E-02	2.72E-05			1 1
n-Pentane	1.65E+00	6.13E-02	3.07E-05			
2,2-Dimethylbutane	2.78E-02	1.03E-03	5.17E-07			
Cyclopentane	1.10E-01	4.09E-03	2.04E-06	· · · · · · · · · · · · · · · · · · ·		
2-Methylpentane	4.41E-01	1.64E-02	8.19E-06			
3-Methylpentane	2.34E-01	8.71E-03	4.36E-06		1.2.	
n-Hexane	6.27E-01	2.33E-02	1.17E-05			
Methylcyclopentane	2.56E-01	9.52E-03	4,76E-06		·,	
Benzene	1.01E-01	3.75E-03	1.87E-06			
Cyclohexane	3.03E-01	1.12E-02	5.62E-06			
2-Methylhexane	1.15E-01	4.29E-03	2.15E-06			
3-Methylhexane	1.62E-01	6.01E-03	3.00E-06			
1,1-Dimethylcyclopentane	4.98E-02	1.85E-03	9.25E-07			
Heptane	3.19E-01	1.18E-02	5.92E-06			
Methylcyclohexane	4.03E-01	1.50E-02	7.49E-06			
1,1,2-Trimethylcyclopentan	0.00E+00	0.00E+00	0.00E+00		1	
Toluene	1.10E-01	4.10E-03	2.05E-06		l	
2-Methylheptane	1.05E-01	3.91E-03	1,96E-06			
3-Methylheptane	0.00E+00	0.00E+00	0.00E+00			
2,5-Dimethylhexane	1.05E-02	3.91E-04	1.96E-07			
Octane	3.95E-01	1.47E-02	7.34E-06		i	
Ethylbenzene	9.79E-03	3.64E-04	1.82E-07			
p-Xylene	7.83E-02	2.91E-03	1.46E-06			
o-Xylene	1.47E-02	5.46E-04	2.73E-07			
Nonane	2.01E-01	7.47E-03	3.74E-06			1
Decane	1.51E-01	5.61E-03	2.80E-06	<u></u>	1 24	
Undecane	0.00E+00	0.00E+00	0.00E+00		l	1
Water	0.00E+00	0.00E+00	0.00E+00	2		
TEG	0.00E+00	0.00E+00	0.00E+00	<u></u>		
Total VOC	14.08	0.93	4.67E-04			1 4- 1
H ₂ S	2.36E-03	8.76E-05	4.38E-08			
Total HAP	0.70	0.035	1.75E-05			
Total CO ₂	0.50	0.018	9.24E-06			
Total CH ₄	0.30	0.010	3.24E-00		1	

¹ This is a representative estimate of the amount of gas vented per reboiler maintenance event.

Pigging Emissions

Basis of Calculation:

Emissions from pigging operations are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions for each Unit (lb/hr) = [Volume of gas in pipe (scf/event)] \times [MW of stream (lb/lb-mol)] \times [wt % VOC or speciated constituent] * [events per hour (event/hr) / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions for each Unit (tpy) = [Volume of gas in pipe (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [frequency of events (events/yr)] / [379.5 (scf/lb-mol)] / [2,000 (lb/ton)]

For sites with multiple units, the total annual emissions are calculated by summing emissions for all units. It is assumed only one unit can be pigged/purged in one hour; therefore, the maximum volume of the units is used for the hourly calculations.

Pigging and Purging Emissions

Unit #1 - Volume Vented =	87	scf/event
Unit #2 - Volume Vented =	87	scf/event
Unit #3 - Volume Vented =	212	scf/event
Unit #4 - Volume Vented =	87	scf/event
Unit #5 - Volume Vented =	346	scf/event
Unit #6 - Volume Vented =	2336	scf/event
Maximum Number of Hourly Pigging/Purging Events =	1	events/hr
Unit #1 - Annual Number of Events =	12	events/yr
Unit #2 - Annual Number of Events =	12	events/yr
Unit #3 - Annual Number of Events =	12	events/yr
Unit #4 - Annual Number of Events =	12	events/yr
Unit #5 - Annual Number of Events =	12	events/yr
Unit #6 - Annual Number of Events =	12	events/yr
Pipelines Purged Simultaneously =	1	lines
Molecular Weight of Stream =	22	lb/lb-mol
Control Type =	None	

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)	Control Efficiency (%)	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
H2S	2.36E-03	3.15E-03	2.55E-05	, 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
Nitrogen	1.22E+00	1.63E+00	1.32E-02			"
Carbon Dioxide	4.97E-01	6.64E-01	5.38E-03			
Methane	5.73E+01	7.65E+01	6.20E-01	, · · · · - , · · · ·		i ;
Ethane	1.59E+01	2.13E+01	1.72E-01	·		·
Propane	1.10E+01	1.47E+01	1.19E-01			
i-Butane	2.05E+00	2.74E+00	2.22E-02			·
n-Butane	4.70E+00	6.28E+00	5.09E-02	,		
i-Pentane	1.46E+00	1.95E+00	1.58E-02		· , ·	,
n-Pentane	1.65E+00	2.20E+00	1.79E-02			
2,2-Dimethylbutane	2.78E-02	3.71E-02	3.01E-04		, , , ·	
Cyclopentane	1.10E-01	1.47E-01	1.19E-03			
2-Methylpentane	4.41E-01	5.89E-01	4.77E-03			
3-Methylpentane	2.34E-01	3.13E-01	2.54E-03			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
n-Hexane	6.27E-01	8.38E-01	6.79E-03			·
Methylcyclopentane	2.56E-01	3.42E-01	2.77E-03			
Benzene	1.01E-01	1.35E-01	1.09E-03			
Cyclohexane	3.03E-01	4.04E-01	3.28E-03	a 11 🚊 🖫		
2-Methylhexane	1.15E-01	1.54E-01	1.25E-03			<u></u>
3-Methylhexane	1.62E-01	2.16E-01	1.75E-03		'	"
1,1-Dimethylcyclopentane	4.98E-02	6.65E-02	5.39E-04		1	
Heptane	3.19E-01	4.26E-01	3.45E-03			
Methylcyclohexane	4.03E-01	5.38E-01	4.36E-03			1 1
1,1,2-Trimethylcyclopentar	0.00E+00	0.00E+00	0.00E+00	·		
Toluene	1.10E-01	1.47E-01	1.20E-03			
2-Methylheptane	1.05E-01	1.41E-01	1.14E-03	_ · · · · ·	·	1 1 -2
3-Methylheptane	0.00E+00	0.00E+00	0.00E+00			
2,5-Dimethylhexane	1.05E-02	1.41E-02	1.14E-04			1 1
Octane	3.95E-01	5.27E-01	4.27E-03			
Ethylbenzene	9.79E-03	1.31E-02	1.06E-04		"	·
p-Xylene	7.83E-02	1.05E-01	8.48E-04		1	
o-Xylene	1.47E-02	1.96E-02	1.59E-04			
Nonane	2.01E-01	2.68E-01	2.18E-03		1	1 1
Decane	1.51E-01	2.01E-01	1.63E-03			
Undecane	0.00E+00	0.00E+00	0.00E+00			
Water	0.00E+00	0.00E+00	0.00E+00		·	
TEG	0.00E+00	0.00E+00	0.00E+00			
Total VOC	14.08	33.55	0.27	,		
H ₂ S	2.36E-03	3.15E-03	2.55E-05			·
Total HAP	0.70	1.26	0.010		1	
Total CO ₂	0.50	0.66	5.38E-03	·	. * ' * ' * <u>'</u>	, 42° <u></u> ', 4°
Total CH ₄	57.26	76.50	0.62			

¹ This is a representative estimate of the amount of gas vented per blowdown event.

Pipeline Blowdown

Basis of Calculation:
Emissions from pipeline maintenance operations are calculated based on a mass balance as follows:

 $\label{eq:maximum} \begin{tabular}{ll} Maximum Uncontrolled Hourly Emissions for each Unit (lb/hr) = [Yolume of gas in pipe (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] * [events per hour (event/hr) / [379.5 (scf/lb-mol)] \\ \end{tabular}$

 $\label{lem:maximum} \begin{tabular}{ll} Maximum Uncontrolled Annual Emissions for each Unit (tpy) = [Volume of gas in pipe (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [frequency of events (events/yr)] / [379.5 (scf/lb-mol)] / [2.000 (lb/ton)] \\ \end{tabular}$

Pipeline Blowdown Emissions Max Hourly Pipeline Volume Vented = Pipeline Volume Vented = Molecular Weight of Stream = Control Type =

21563.89 377589.65 scf/hr scf/yr lb/lb-mol

22 None

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)	Control Efficiency (%)	Maximum Controlled Hourly Emissions (lb/hr)	Maximum Controlled Annual Emissions (tpy)
H2S	2.36E-03	2.91E-02	2.54E-04	***		
Nitrogen	1.22E+00	1.51E+01	1.32E-01			
Carbon Dioxide	4.97E-01	6.13E+00	5.37E-02			
Methane	5.73E+01	7.06E+02	6.18E+00			
Ethane	1.59E+01	1.96E+02	1.72E+00			
Propane	1.10E+01	1.36E+02	1.19E+00			
i-Butane	2.05E+00	2.53E+01	2.21E-01			
n-Butane	4.70E+00	5.79E+01	5.07E-01			
i-Pentane	1.46E+00	1.80E+01	1.58E-01			
n-Pentane	1.65E+00	2.03E+01	1.78E-01	·		-
2,2-Dimethylbutane	2.78E-02	3.43E-01	3.00E-03			
Cyclopentane	1.10E-01	1.36E+00	1.19E-02			
2-Methylpentane	4.41E-01	5.44E+00	4.76E-02			
3-Methylpentane	2.34E-01	2.89E+00	2.53E-02			
n-Hexane	6.27E-01	7.74E+00	6.78E-02			
Methylcyclopentane	2.56E-01	3.16E+00	0.03			
Benzene	1.01E-01	1.24E+00	1.09E-02			
Cyclohexane	3.03E-01	3.73E+00	3.27E-02			
2-Methylhexane	1.15E-01	1.42E+00	1.25E-02			
3-Methylhexane	1.62E-01	1.99E+00	1.75E-02	· ·		
1,1-Dimethylcyclopentane	4.98E-02	6.14E-01	5.37E-03			
Heptane	3.19E-01	3.93E+00	3.44E-02			
Methylcyclohexane	4.03E-01	4.97E+00	4.35E-02			
1,1,2-Trimethylcyclopentar	0.00E+00	0.00E+00	0.00E+00			
Toluene	1.10E-01	1.36E+00	1.19E-02			
2-Methylheptane	1.05E-01	1.30E+00	1.14E-02			
3-Methylheptane	0.00E+00	0.00E+00	0.00E+00			
2,5-Dimethylhexane	1.05E-02	1.30E-01	1.14E-03			
Octane	3.95E-01	4.87E+00	4,26E-02			
Ethylbenzene	9.79E-03	1.21E-01	1.06E-03			
p-Xylene	7.83E-02	9.65E-01	8.45E-03			
o-Xylene	1.47E-02	1.81E-01	1.58E-03			
Nonane	2.01E-01	2.48E+00	2.17E-02			1 1 2
Decane	1.51E-01	1.86E+00	1.63E-02			
Undecane	0.00E+00	0.00E+00	0.00E+00			
Water	0.00E+00	0.00E+00	0.00E+00			1 2
TEG	0.00E+00	0.00E+00	0.00E+00	<u>-</u>		1 1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>
Total VOC	14.08	309.67	2.71			
H ₂ S	2.36E-03	0.029	2.54E-04			
Total HAP	0.70	11.61	0.10			
Total CO ₂	0.70					
		6.13	0.054			
Total CH ₄	57.26	706.18	6.18 The calculation accumes that	<u>, , , , , , , , , , , , , , , , , , , </u>		

This is a representative estimate of the amount of gas vented per blowdown event. The calculation assumes that maximum segment is vented in an hour and only

Tank Degassing

Basis of Calculation:

Emissions from tank degassing are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of gas vented (scf/event/unit)] \times [MW of stream (lb/lb-mol)] \times [wt % VOC or speciated constituent] \times [# tank degassing activities occurring simultaneously (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)] + Clingage volume (scf/event) \times Liquid density (lb/scf) / event duration (hr/event) \times [# tank degassing activities occurring simultaneously (units)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of gas vented (scf/event)] \times [MW of stream (lb/lb-mol)] \times [wt % VOC or speciated constituent] \times [# tanks at site (units)] \times [frequency of events (events/yr/unit)] / [379.5 (scf/lb-mol)] / [2,000 (lb/ton)] + Clingage volume (scf/event) \times Liquid density (lb/scf) / Frequency of event (events/yr/unit) / 2,000 (lb/ton) \times [# tanks at site (units)]

Tank Decassing Emissions - Non-Forced Ventilation

Estimated Gas Vented per Degassing Event =	1,697	scf/event
Number of Tanks =	3	units
Tank Degassing Events Occurring Simultaneously =	1	units
Degassing Event Duration =	24	hrs/event
Tank Degassing Events in One Year =	1	events/yr
Molecular Weight of Stream =	70	lb/lb-mol
Is Forced Ventilation used?	No	
Control Type =	None	

Clingage-to-vessel Volume				
Clingage volume 1 =	0.27	scf		
Clingage thickness 2 =	0.0004	ft		
Diameter =	12	ft		
Height =	15	ft		
Liquid Density 1 =	62.40	lb/scf		

¹ The roof of the tank is not included in the clingage volume since no liquid will reach the roof. Liquid density for water is used as a surrogate since the density of each condensate sample is not available and will vary over time.

² Clingage thickness per TCEQ Maintenance, Startup and Shutdown (MSS) Guidance Document for terminals and chemical plants. http://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/mss/mss-guidance.pdf

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)
Total VOC	26	7.85	0.13
Total HAP	16	4.66	0.08
Total H₂S	4.15E-04	1.24E-04	2.05E-06
Total CO ₂	3.06E-03	9.17E-04	1.51E-05
Total CH ₄	1.49E-03	4.46E-04	7.35E-06

¹ HAP content is conservatively assumed to be 25% of the vented liquid vapor analysis.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO_2), nitrous oxide (N_2O_3), methane (CH_4), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF_6).

Calculating GHG Emissions:

- 1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO2e emissions from your facility.
- 2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 Mandatory Greenhouse Gas Reporting.
- 3. Emissions from routine or predictable start up, shut down, and maintenance must be included.
- **4.** Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).
- 5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.
- **6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following **2** By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas industry. August 2009 or most recent version.
- Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 Mandatory Greenhouse Reporting requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 - Units of Measure Conversions)

Section 7

Information Used to Determine Emissions

<u>Information Used to Determine Emissions</u> shall include the following:

☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including cont efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
☐ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other the one being permitted, the emission units must be identical. Test data may not be used if any difference in operation conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
☐ If an older version of AP-42 is used, include a complete copy of the section.
☑ If an EPA document or other material is referenced, include a complete copy.
☐ Fuel specifications sheet.
If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, a a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the meth used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V accuracy of the model, the input and output from simulation models and software, all calculations, documentation any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

This section contains the following references or actual document to support the emissions in the required forms and calculations in Section 6:

Documentation used to support calculations in this permit revision:

- Compressor manufacturer and catalyst specification sheets (for ENG-1 through ENG-10)
- Engine manufacturer specification sheet (for Trailer-1)
- Certification of Conformity with the Clean Air Act (for GEN-1)
- Generator manufacturer specification sheets (for GEN-1)
- Vapor combustion unit manufacturer specification sheet (for VCU-1)
- ProMax report
- Inlet gas analysis (June 26, 2023)
- Current version of AP-42 located online at: <u>EPA AP-42 Compilation Air Emissions Factors</u>
- Specific sections used in this application:
 - Section 1.3 Natural Gas external Combustion Sources-Natural Gas (Table 1.4-1 through 1.4-3)
 - o Section 3.2 Natural Gas-fired Reciprocating Engines (Table 3.2-2)
 - o Section 3.3 Gasoline and Diesel Industrial Engines (Tables 3.3-1 & 2)
 - o Section 5.2 Transportation And Marketing Of Petroleum Liquids
 - o Section 13.2-2 Unpaved Haul Roads
- EPA Protocol for Equipment Leak Emissions Estimates, 1995 Table 2-4
- 40 CFR 98 Subpart C Tables C-1 and C-2

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE:
AFTERCOOLER - STAGE 2 INLET (°F):
AFTERCOOLER - STAGE 1 INLET (°F):
JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM:
EXHAUST MANIFOLD:
COMBUSTION:
NOX EMISSION LEVEL (g/bhp-hr NOX):
SET POINT TIMING:

1400 8 SCAC 130 201 210 TA JW+OC+1AC, 2AC

LOW EMISSION

ADEM3

ASWC

RATING STRATEGY: RATING LEVEL: FUEL SYSTEM:

SITE CONDITIONS:

STANDARD CONTINUOUS CAT WIDE RANGE WITH AIR FUEL RATIO CONTROL

> Gas Analysis 7.0-40.0 53,6 1133 500 77

STE CONDITIONS:
FUEL:
FUEL PRESSURE RANGE(pslg): (See note 1)
FUEL METHANE NUMBER:
FUEL LHV (Btu/scf):
ALTITUDE(ft):
MAXIMUM INLET AIR TEMPERATURE(°F):
STANDARD BATED DOWER:

NOX EMISSION LEVEL (g/bhp-hr NOX); SET POINT TIMING:	0.5 28		OM INLET AIR ARD RATED F	POWER:	₹ E(*F);		1380 Ь	77 hp@1400rpm
					MAXIMUM RATING	アイングライア・サブランス 大型 からばれ 一次の	TING AT W	A. Parket of the
RATI	NG		NOTES	LOAD	100%	100%	. 75% ···	- 50%
ENGINE POWER		(WITHOUT FAN)	(2)	bhp	1380	1380	1035	690
INLET AIR TEMPERATURE				°F	77.	77	77	77
ENGINE	DATA							
FUEL CONSUMPTION (LHV)			(3)	Blu/bhp-hr	7420	7420	7947	8535
FUEL CONSUMPTION (HHV)			(3)	Btu/bhp-hr	8180	8180	8761	9410
AIR FLOW (@inlet air temp, 14.7 psia)		(WET)	(4)(5)	ft3/mln	3132	3132	2393	1643
AIR FLOW		(WET)	(4)(5)	lb/hr	13885	13885	10611	7286
FUEL FLOW (60°F, 14.7 psia)				scfm	151	151	121	87
INLET MANIFOLD PRESSURE			(6)	in Hg(abs)	88.2	88.2	70.2	48.3
EXHAUST TEMPERATURE - ENGINE OUTLET			(7)	°F	847	847	865	922
EXHAUST GAS FLOW (@engine outlet temp, 1	4.5 psia)	(WET)	(8)(5)	ft3/min	8182	8182	6353	4562
EXHAUST GAS MASS FLOW		(WET)	(8)(5)	lb/hr	14386	14386	11014	7574
EMISSIONS DATA	Y-ENGINE OUT	and the second second						
NOx (as NO2)			(9)(10)	g/bhp-hr	0.50	0,50	0.50	0,50
co			(9)(10)	g/bhp-hr	2.98	2.98	3,20	3.13
THC (mol. wt. of 15.84)			(9)(10)	g/bhp-hr	4.40	4.40	4.72	4.79
NMHC (mol. wt. of 15.84)			(9)(10)	g/bhp-hr	1.79	1.79	1.92	1.95
NMNEHC (VOCs) (mol. wt, of 15,84)			(9)(10)(11)	g/bhp-hr	1.05	1,05	1.13	1.15
HCHO (Formaldehyde)			(9)(10)	g/bhp-hr	0.39	0.39	0.37	0,36
CO2			(9)(10)	g/bhp-hr	507	507	526	561
EXHAUST OXYGEN			(9)(12)	% DRY	9.1	9.1	8.8	8.4
HEAT RE.	ECTION	cest in a vigital						
HEAT REJ. TO JACKET WATER (JW)			(13)	Btu/min	36501	36501	32695	26964
HEAT REJ. TO ATMOSPHERE			(13)	Btu/min	5313	5313	4428	3543
HEAT REJ. TO LUBE OIL (OC)			(13)	Btu/min	4347	4347	3894	3211
HEAT REJ. TO A/C - STAGE 1 (1AC)			(13)(14)	Btu/min	7661	7661	5688	1140
HEAT REJ. TO A/C - STAGE 2 (2AC)			(13)(14)	Btu/min	5048	5048	4389	2764
COOLING SYSTEM	SIZING CRITERIA							
TOTAL JACKET WATER CIRCUIT (JW+OC+14			(14)(15)	Btu/mln	53412	1		
TOTAL AFTERCOOLER CIRCUIT (2AC)	<u> </u>	·	(14)(15)	Btu/mln	5300			
A cooling system safety factor of 0% has been a	dded to the cooling system	sizing criteria.				[

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 9046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

ICE Catalyst Sizing Program

ENGINE INPUT (Manuf lass Flow Rate	dotaror,				G3516J 1	380bhp 14	100rpm - EXPERT N	
	lbs/hr	"scfr	n" "scfh"	"acfm"	"acfh"	Est	timated Exhaust Gas Com	
lb/hr(Estimated):	14,407	3,25	5 195,316	8182	490,920	N2	74.5	vol%
Brake Horse Power:	1380					O2	10	vol%
			Maximum F	Pressure Drop (in)		H2O	10	vol%
Molecular weight:	28.50		0,029	Exhaust De	ensity (lbs/ft3)	CO2	6	vol%
emperature		Enter pern	nitted grams per brake ho		o-hr)			
ss Temperature (F):	847	NOx	**	CO**		VOC(NMNE	≣)**	H2CO**
		0.5	5	0.5		0.5		0.07
st Type		Catalyst N	Iodule Details		345.955			
			Module Shape		Module/Laye	r 2	Layers	1
esel (Lean)			Square		I TO STATE OF THE PARTY OF THE	CASOCIA CONTRACA	cpsi	300
	4 0 0			X&Y (inch)	15	24	Depth	3.5
Open area for gas flow (ft2):	4.47							
Linear Velocity(ft/min):	1,830	Calc	ulated Space Velocity:	149,737		Safety Val	ue 2	
Foil thickness (inches):	0.002			700				
ıre Drop		Inlet Pollu	tants					
			g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd%O2*	
		NC	0.50	1.52	6.66	64.27	38.65	
		C	2.98	9.07	39.71	383.07	230.39	
		VC	C 1.05	3.19	13.99	134.97	81.17	
300	3.04	H20	0,39	1.19	5.20	50.13	30.15	
t Conversions	a or s	Required	Output Pollutants					
			g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd%O2*	
NOx	0.0%	NO	Ox 0.5	1.52	6.66	64.27	38.65	
co	83.2%	C	0.5	1.52	6,66	64.27	38.66	
VOC(NMNE)	52.4%	VC	OC 0.5	1.52	6.66	64.27	38.65	
H2CO	82.1%	H20	0.07	0.21	0.93	9.00	5.41	
ersions Catalyst Design		Output Po	ollutants with Catalyst Siz				10/ 000	
	5.0000		g/bhp-hr	lb/hr	tons/year	ppmv		1
NOx	0.0%	NO	The second second	1.52	6.66	64.27		
CO	83.2%			1.52	6.66	64.27		
VOC(NMNE)	52.4%			1.52	6.66	64.27		
H2CO	82.1%	H2	CO 0.07	0.21	0.93	9.00	5.41	
					. I all occas	I Taslan Hans		8
Customer: F	A STATE OF THE PARTY OF THE PAR				t: Lucid - G3516			
Sales Person: k	W		Date: 8/10/2	U18 Contac	t: Justin Watson			

Notes: (2) Standard Element Expected Emissions: > 90% CO > 80% VOC > 80% HCHO Trojan Horse

GAS COMPRESSION APPLICATION

FUEL:

ENGINE SPEED (rpm):
COMPRESSION RATIO:
AFTERCOOLER TYPE:
AFTERCOOLER - STAGE 2 INLET (°F):
AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOx EMISSION LEVEL (g/bhp-hr NOx): SET POINT TIMING:

1000 7.6 SCAC 130 174 190 JW+1AC, OC+2AC ADEM4

LOW EMISSION 0.5

DRY

RATING STRATEGY: RATING LEVEL: FUEL SYSTEM: SITE CONDITIONS:

STANDARD CONTINUOUS

GAV WITH AIR FUEL RATIO CONTROL

Gas Analysis 58.0-70,3 53.6 1133 500 77

FUEL LHV (Btu/scf): ALTITUDE(ft):

FUEL PRESSURE RANGE(psig): (See note 1)
FUEL METHANE NUMBER:

MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:

1875 bhp@1000rpm

NOX EMISSION LEVEL (grapp-nr NOX): 0,5 STANI SET POINT TIMING: 16	DARD RATED F	OWER:		٠	1875 b	hp@1000rpm
			the contract of the property	The state of the s	TING AT M	T. S.
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(2)	bhp	1875	1875	1406	938
INLET AIR TEMPERATURE	<u>,</u>	°F	77	77	77	77
ENGINE DATA	1					
FUEL CONSUMPTION (LHV)	(3)	Blu/bhp-hr	6814	6814	7092	7671
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	7512	7512	7818	8457
AIR FLOW (@inlet air temp, 14.7 psia) (WET)		ft3/min	4696	4696	3557	2446
AIR FLOW (WET)		lb/nr	20823	20823	15773	10848
FUEL FLOW (60°F, 14.7 psia)	````	scfm	188	188	147	106
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	101,4	101.4	77.7	55.7
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	۴	814	814	885	966
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)		fi3/min	11840	11840	9481	6930
EXHAUST GAS MASS FLOW (WET		lb/hr	21449	21449	16262	11200
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(9)(10)	g/bhp-hr	0.60	0.50	0.50	0.50
co	(9)(10)	g/bhp-hr	2.50	2,50	2.50	2,50
THC (mol. wt. of 15,84)	(9)(10)	g/bhp-hr	3.94	3.94	4.12	4.35
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	1.61	1.61	1.68	1,77
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bhp-hr	0.94	0.94	0.99	1.04
HCHO (Formaldehyde)	(9)(10)	g/bhp-hr	0.20	0.20	0.22	0.25
CO2	(9)(10)	g/bhp-hr	458	458	473	513
EXHAUST OXYGEN	(9)(12)	% DRY	11.2	11.2	11.0	10.6
HEAT REJECTION]		•			
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/mln	22805	22805	18555	15087
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	5421	5421	5501	5360
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/mln	11714	11714	10805	9351
HEAT REJ. TO A/C - STAGE 1 (1AC)	(13)(14)	Btu/min	13588	13588	6609	1880
HEAT REJ. TO A/C - STAGE 2 (2AC)	(13)(14)	Btu/min	6734	6734	4160	2124
COOLING SYSTEM SIZING CRITERIA]					
TOTAL JACKET WATER CIRCUIT (JW+1AC)	(14)(15)	Btu/min	39353			
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)	(14)(15)	Btu/min	21128			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.		-				

Equal It has a new Definitions

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site infet air temperature. 100% rating at maximum infet air temperature is the maximum engine capability for the specified fuel at alte altitude and maximum site infet air temperature. Maximum rating is the maximum capability at the specified aftercooler infet temperature for the specified fuel at site altitude and reduced infet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

ICE Catalyst Sizing Program

	lbs/hr	"scfm"	"scfh"	"acfm"	"acfh"	Estimate	d Exhaust Gas Comp	
lb/hr(Estimated):	21,388	4,833	289,959	11840	710,400	N2	74.5	vol%
Brake Horse Power:	1875					O2	10	vol%
			Maximum Pres	ssure Drop (in)		H2O	10	vol%
Molecular weight:	28.50		0.030	Exhaust De	nsity (lbs/ft3)	CO2	6	vol%
Temperature		131	ams per brake horse		-hr)			
ess Temperature (F):	814	NOx**		CO**		VOC(NMNE)**		H2CO**
		0.5		0.5		0.5		0.07
lyst Type	No. of the last	Catalyst Module D	The second secon					
			Shape		Module/Layer	2	Layers	1
Diesel (Lean)		Squ	uare		NAME OF TAXABLE PARTY.		cpsi	300
				X&Y (inch)	15	36	Depth	3.5
Open area for gas flow (ft2):	6.81					1.		
Linear Velocity(ft/min):	1,740	Calculated S	pace Velocity:	146,079		Safety Value	2	
Foil thickness (inches):	0.002							
ssure Drop		Inlet Pollutants					manually OOt	C. T. CALMEN
			g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd%O2* 35.38	
		NOx	0.50	2.07	9.05	58.82	176.89	
		CO	2.50	10.33	45.26 17.02	294.12 110.59	66.51	
建建筑	0.00	VOC	0.94	3.89 0.83	3.62	23.53	14.15	
300	2.89	H2CO	0.20	0.83	3.02	23,33	14.15	
rget Conversions		Required Output F	CONTRACT CARA					
			g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd%O2*	
NOx	0.0%	NOx	0.5	2.07	9.05	58.82	35.38 35.38	
CO	80.0%	CO	0.5	2.07	9.05 9.05	58.82 58.82	35.38	
VOC(NMNE)	46.8%	VOC	0.5			8.24	4.95	
H2CO	65.0%	H2CO	0.07	0.29	1.27	0.24	4.80	
nversions Catalyst Design		Output Pollutants	with Catalyst Sizing	lb/hr	tons/year	ppmv	ppmvd%O2*	
NOv	0.00	NOv	g/bhp-hr 0.5	2.07	9.05	58.82	35.38	
NOx CO	0.0% 80.0%	NOx	0.5	2.07	9.05	58.82	35.38	
		voc	0.5	2.07	9.05	58.82	35.38	
VOC(NMNE)	46.8%		0.07	0.29	1.27	8.24	4.95	
H2CO	65.0%	H2CO	0.07	0.25	12.1	0.27		
			otores say					
Customer: I	Penasus			Projec	t: Lucid - G3606A4	Trojan Horse		

Notes: (2) High Activity Elements Expected Emissions: > 90% CO > 60% VOC > 80% HCHO Trojan Horse Exhaust Piping to be Insulated

GAS COMPRESSION APPLICATION

CATERPILLAR®

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

ENGINE SPEED (rpm):
COMPRESSION RATIO:
AFTERCOOLER TYPE:
AFTERCOOLER - STAGE 2 INLET (°F):
AFTERCOOLER - STAGE 1 INLET (°F):
JACKET WATER OUTLET (°F):

ASPIRATION: COOLING SYSTEM; CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION:

NOx EMISSION LEVEL (g/bhp-hr NOx):

1000 7.6 SCAC 130

174 190 TA JW+1AC, OC+2AC ADEM4

LOW EMISSION 0.5

DRY

RATING STRATEGY: RATING LEVEL:

FUEL SYSTEM:

SITE CONDITIONS:

FUEL PRESSURE RANGE(psig): (See note 1)
FUEL METHANE NUMBER:
FUEL LHV (Blu/sof):

ALTITUDE(ft):
INLET AIR TEMPERATURE(°F):
STANDARD RATED POWER:

STANDARD CONTINUOUS

GAV WITH AIR FUEL RATIO CONTROL

Satt Draw (Cadillac)

58,0-70,3 56.8 1118 3000 110

2500 bhp@1000rpm

SET POINT TIMING: 17					2000	ub@ tooothii
			MAXIMUM RATING		TING AT N IR TEMPE	
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN	(2)	bhp	2500	2500	1875	1250
INLET AIR TEMPERATURE		<u>°</u> F	110	110	110	110
ENGINE DATA				-		
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	6761	6761	7007	7512
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	7452	7452	7723	8280
AIR FLOW (@inlet air temp, 14.7 psia) (WET		ft3/mln	6614	6614	5006	3421
AIR FLOW (WET) (4)(5)	lb/hr	27627	27627	20912	14289
FUEL FLOW (60°F, 14,7 psia)		scfm	252	252	196	140
INLET MANIFOLD PRESSURE	(6)	In Hg(abs)	99,0	99.0	75.2	52.9
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	۴۳ °۳	835	835	882	937
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET		ft3/min	15994	15994	12558	8950
EXHAUST GAS MASS FLOW (WET) (8)(5)	lb/hr	28480	28480	21575	14763
EMISSIONS DATA - ENGINE OUT	1					
NOx (as NO2)	(9)(10)	g/bhp-hr	0.50	0.50	0.50	0.50
[CO	(9)(10)	g/bhp-hr	2.80	2.80	2.80	2.80
THC (mot. wt. of 15.84)	(9)(10)	g/bhp-hr	3.99	3,99	4.19	4.21
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	1,66	1.66	1.74	1.75
NMNEHC (VOCs) (mol. wt. of 15,84)	(9)(10)(11)	g/bhp-hr	1.01	1.01	1,06	1.06
HCHO (Formaldehyde)	(9)(10)	g/bhp-hr	0.23	0.23	0.24	0.24
CO2	(9)(10)	g/bhp-hr	454	454	467	500
EXHAUST OXYGEN	(9)(12)	% DRY	11.6	11.6	11.3	10.8
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	26677	26677	23010	19384
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	9106	9106	9529	9540
HEAT REJ. TO LUBE OIL (OC)	(13)	Biu/min	13036	13036	12159	10943
HEAT REJ. TO A/C - STAGE 1 (1AC)	(13)(14)	Btu/min	26905	26905	13289	3479
HEAT REJ. TO A/C - STAGE 2 (2AC)	(13)(14)	Btu/min	8911	8911	5506	2724
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+1AC)	(14)(15)	Btu/min	57595	1		
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)	(14)(15)	Btu/min	24999			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.				1		

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three,

ICE Catalyst Sizing Program

ENGINE INPUT (Manufacturer, Model, Type) - Caterpillar G3608 2500 BHP @ 1000 RPM Caterpillar G3608 A4 - EXPERT MODE

	lbs/hr	"scfm"	"scfh"	"acfm"	"acfh"	Estimate	d Exhaust Gas Comp	position
lb/hr(Estimated):	29,402	6,422	385,338	15994	959,640	N2	74.5	vol%
Brake Horse Power:	2500			and the same of th	asso, accomm	02	10	vol%
Didne Helde Fallett		100	Maximum Pre	ssure Drop (in)	建筑的 特性等	H2O	10	vol%
Molecular weight:	28.50		0.031	Exhaust De	ensity (lbs/ft3)	CO2	6	vol%
			mol% propa	ne in fuel gas:	6.8412			
emperature			ams per brake hors	e power hour (g/bhp	p-hr)			MI AN
ss Temperature (F):	835	NOx**		CO**		VOC(NMNE)**		H2CO**
		0.5		0.6868		0.7	1	0.046
st Type		Catalyst Module D	and the second s					
			e Shape		Module/Layer	3	Layers	400
tallic Propane Catalyst			uare	V0V (1 - 1 '	4	36	cpsi	3.5
		Guard Bed - No		X&Y (inch) Part N	15 lumber ERH-1536-2	36	Depth	3.5
Open area for gas flow (ft2):	10.21	Coloulat- d C	pace Velocity:	129,420		Safety Value	2	
Linear Velocity(ft/min):	1,567	Calculated S	pace velocity.	129,420		Salety Value	-	
Foil thickness (inches):	0.002	Inlet Pollutants						
are brop		mict i olidianis	g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd%O2*	
		NOx	0.50	2.76	12.07	58.92	35,44	
		со	2.80	15.43	67.59	542.09	326.03	
400	3.29	voc	1.01	5.57	24.38	124.15	74.67	
		H2CO	0.23	1.27	5.55	41.56	25.00	
et Conversions		Required Output I	Pollutants	APST ST				W. Yilli
			g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd%O2*	
NOx	0.0%	NOx	<0.5	2.76	12.07	58.92	35.44	
со	75.5%	co	<0.6868	3.78	16.58	132.97	79.97	
VOC(NMNE)	30.7%	voc	<0.7	3.86	16.90	86.04	51.75	
H2CO	80.0%	H2CO	<0.046	0.25	1.11	8.31	5.00	
ersions Catalyst Design		Output Pollutants	with Catalyst Sizing				la cot	
	727222		g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd%O2*	
NOx	0.0%	NOx	0.5	2.76	12.07	58.92	35.44	
СО	75.5%	CO	0.6868	3.78	16.58	132.97	79.97 51.75	
VOC(NMNE)	30.7%	VOC	0.7	3.86	16.90	86.04	43.16	
VOC(NMNE) w/bimetallic	42.20%	VOC	0.58	3.22	14.09	71.75		100
H2CO	80.0%	H2CO	0.046	0.25	1.11	8.31	5.00	
			The second second					
	Votes:							

 Customer:
 Pegasus

 Sales Person:
 KW
 Date:
 8/19/2019

 Housing:
 Element:
 ERH-1536-2

Project: G3608A4 Cadillac Contact: Kolten Kelley

Description: Element, Catalyst, Oxidation, 15 x 36

MAXI-HEAT® 1 MBTU

The Maxi-Heat® line includes a robustly designed towable indirect fired heater, with 1M BTU. This Unit provides heat for different applications including severe harsh conditions. The 1M includes two independently operating burners providing up to a combined 1,000,000 BTUs of heat. For ease of operation the Maxi-Heat® comes fully equipped with the iQ system, which automatically calibrates each burner providing reliable trouble free operation, eliminating the tedious trial and error combustion measurements and adjustments. Recirculation is standard on all Maxi-Heat® products resulting in increased efficiency of the heater and less fuel consumed. The Maxi-Heat® can go from warming equipment to curing concrete, the heat you can rely on when you need it most.

KEY FEATURES

Allmand MAXI-HEAT

External Control

Panel Provides the operator with the necessary operating parameters needed during operation eliminating the need to open the heater door.

Flexible Applications Twin Heater units on the 1M BTU model providing flexibility of heat needed for the jobsite.

iQ System Automatically calibrates burner for temperature, humidity and barometric pressure. Provides damper setting on color display, and information on efficiency, target and actual outlet temperatures.

Lifting Eye

NEW

Remote Fuel Valve and Pumpan be optionally equipped to pump fuel to run the Maxi-Heat from a remote fuel tank.

MA XI-HEAT IMBTU Almand

Reversible Coupler

Adjust able height 2" Bulldog and 3" pintle

NEW

Pacbrake Shut-Off

Valve The optional air intake emergency shut-off valve automatically closes the valve and shuts down the engine when an overspeed runaway condition occurs.

16", 20" or Dual 12" -Duct Flange Outlets

Fluid Containment
System (FCS)Provides
130%+ fluid containment
for all on-board fluids.

Centrifugal Fan Provides decreased dBA output and increased air flow efficiency.

Air Recirculation Inlet

Air inlet comes standard and results in increased efficiency of the heater and less fuel consumed.

NEW

Adjustable Air Recirculation

InletThe optional adjustable air recirculation inlet connection changes size to fit either 16" or 20" ducting.

Durable Steel Enclosure

is built to last through the toughest environments and conditions.

 Sleek Designallowing for ease of transport and maneuverability.

NEW

CSA Approved Steel

Fuel TankThe optional 175 gallon steel double wall (UN-31A rated) fuel tank meets CSA and Transport Canada standards.

TECHNICAL SPECS

Model	Maxi-Heat 1MBTU	Maxi-Heat® 1MBTU
Engine Brand	Kubota D1005	CAT or Perkins 1.1
Engine Model	D1005	1.1
Frequency	60 Hz	60 Hz
Ducting Length - Continuous Heating	3,354 cfm with 96°F rise over ambient @125 ft	3,354 cfm with 96°F rise over ambient @125 f
Sound Level @ 23ft (FULL LOAD) dBA	67.1 dBA	65,7 dBA
Sound Level @ 23ft (NO LOAD) dBA	62.9 dBA	62.4 dBA
Phase	1-phase	1-phase
Prime Power (kW)*	7	8
BTU per Hour	1,000,000	1,000,000
Heated Air Output Maximum (cfm)	7,060	7,060
Horsepower (@ 1,800 RPM) ****	11.6	13.8
Oil Change Interval (hr)	500	1,000
Engine Tier	Tier 4 Final	Tier 4 Final
Fuel Tank - Single (Poly - Standard)		
Fuel Capacity gal (L)	210 (794.9)	210 (794.9)
Operating Time - 1 Heater @ Full Load (hrs	67.5	67.8
Operating Time - 2 Heater @ Full Load (hrs	35.1	34.6
Fuel Tank - Single (Steel - Optional)		
Fuel Capacity gal (L)	175 (662.4)	175 (662.4)
Operating Time - 1 Heater @ Full Load (hrs	56.5	56.4
Operating Time - 2 Heater @ Full Load (hrs	29.2	28.8
Fuel Tank - Multi (Poly - Optional)		
Heater Fuel Tank - 1 Capacity gal (L)	116 (439.1)	116 (439.1)
Heater Fuel Tank - 2 Capacity gal (L)	116 (439.1)	116 (439.1)
Engine Fuel Tank Capacity gal (L)	50 (189.2)	50 (189.2)
Total Fuel Tank Capacity gal (L)	281.6 (1,065.9)	281.6 (1,065.9)
Operating Time - 1 Heater @ Full Load (hrs	42.1	42.1
Operating Time - 2 Heater @ Full Load (hrs	42.1	42.1
Weights & Shipping	Part Printer and Part Part Part Part Part Part Part Part	
Net Dry Weight (Ibs)	4	,633
Operating Wet Weight NO Fuel (lbs)	4	,654
Operating Wet Weight FULL Fuel (lbs)	5	,869
Number of Units on 48' Flatbed		4
Number of Units on 53¹ Flatbed		4

* Prime generator electrical output per Allmand* testing. ** Based on one hour run test full fuel tank consumption. *** All power levels are stated gross horsepower as rated by each engine's manufacturer.† Dry and wet weights vary by model. Allmand* has a policy of continuous product improvement and reserves the right to modify its specifications at any time and without prior notice. See operator's manual or www.allmand.com website for complete warranty details.

Thermostat Package

- Remote Thermostat
- Lead extension

25/16" Bulldog Hitch

Lockable Battery Disconnect

16", 20" or Dual 12" Duct Flange Outlets (ducting sold separately)

Adjustable Air Recirculation Inlet

Air Shut off Valve

Remote Fuel Valve and Pump

Single Steel Fuel Tank or Multi Poly Fuel Tanks

Custom Paint

Telematics (Customer supplied – consult factory)

Emergency Stop

COMPROMISE NOTHING.

At Allmand, our sole focus is providing jobsite support equipment to help your customers get the job done. Whenever they need it. Wherever they are. And whatever it takes. What's more, our genuine commitment to you - the highest standard of service and lowest total cost of ownership - is simply unmatched. Choose the equipment that comes with complete confidence that jobsite productivity won't go dark at 2 a.m.

Allmand. Above All.

Briggs & Stratton LLC P.O. Box 888, Holdrege, NE 68949 Copyright @2023. All rights reserved.

LIQUID COOLED NAT. GAS ENGINE GENERATOR SET

Model		PRIME 105°C RISE
	HZ	NATURAL GAS
PR-2400-60 HERTZ	60	240

All generator sets are USA prototype built and thoroughly tested. Production models are USA factory built and 100% load tested.

UL1446, UL508, UL142, UL498

NFPA 110, 99, 70, 37

All generator sets meet NFPA-110 Level 1, when equipped with the necessary accessories and installed per NFPA standards.

NEC 700, 701, 702, 708

NEMA ICS10, MG1, ICS6, AB1

ANSI C62.41, 27, 59, 32, 480, 400, 81U, 360-05

ASCE 7-05 & 7-10

All generator sets meet 180 MPH rating.

EPA 40CFR Part 60, 1048, 1065, 1068

PRIME MODEL

PR-2400

60 HERTZ

"OPEN" GEN-SET

There is no enclosure, so gen-set must be placed within a weather protected area, un-inhabited by humans or animals, with proper ventilation. Silencer not supplied, as installation requirements are not known. However, this item is available as optional equipment.

"LEVEL 2" HOUSED GEN-SET

Full aluminum weather protection and superior sound attenuation for specific low noise applications. Critical grade muffler is standard.

GENER	ATOR	RATING	SS		NATURAL G	SAS FUEL	
GENERATOR MODEL	VOLTAGE		РН	HZ	105°C RISE PR	IME RATING	POWER LEAD CONNECTIONS
OENERATOR MODEL	L-N	The special control of		112	KW/KVA	AMP	
PR-2400-3-2	120	208	3	60	240/300	834	12 LEAD LOW WYE
PR-2400-3-3	120	240	3	60	240/300	723	12 LEAD HIGH DELTA
PR-2400-3-4	277	480	3	60	240/300	361	12 LEAD HIGH WYE
PR-2400-3-5	127	220	3	60	240/300	788	12 LEAD LOW WYE
PR-2400-3-16	346	600	3	60	240/300	289	4 LEAD WYE 3PH

RATINGS: All single phase gen-sets are dedicated 4 lead windings, rated at unity (1.0) power factor. All three phase gen-sets are 12 lead windings, rated at (.8) power factor. 105°C "PRIME RATINGS" are strictly for gen-sets provide the prime source of electric power, where normal utility power is unavailable or unreliable. A 10% overload is allowed for a total of 1 hour, within every 12 hours of operation of PRIME RATED systems. All gen-set power ratings are based on temperature rise measured by resistance method as defined by MIL-STD 705C and IEEE STD 115, METHOD 6.4.4. All generators have class H (180°C) insulation system on both rotor and stator windings. All factory tests and KW/KVA charts shown above are based on 105°C (prime) R/R winding temperature, within a maximum 40°C ambient condition. Specifications & ratings are subject to change without prior notice.

APPLICATION AND ENGINEERING DATA FOR MODEL PR-2400-60 HZ

GENERATOR SPECIFICATIONS

ManufacturerStamford Electric Generators
Model & Type S4L1DD-311, 4 Pole, 12 Lead, Three Phase
ExciterBrushless, shunt excited
Voltage Regulator Solid State, HZ/Volts
Voltage Regulation
FrequencyField convertible, 60 HZ to 50 HZ
Frequency Regulation
Unbalanced Load Capability 100% of prime amps
Total Stator and Load Insulation
Temperature Rise105°C R/R, prime rating @ 40°C amb.
3 Ø Motor Starting @ 30% Voltage Dip (208-240V) 550 kVA
3 Ø Motor Starting @ 30% Voltage Dip (480V)
Bearing
Coupling Direct flexible disc
Total Harmonic Distortion
Telephone Interference Factor Max 50 (NEMA MG1-22)
Deviation Factor
Ltd. Warranty Period 24 Months from date of start-up or

GENERATOR FEATURES

- World Renown Stamford Electric Generator having UL-1446 certification.
- Full generator protection with Deep Sea 7420 controller, having UL-508 certification.
- Automatic voltage regulator with over-excitation, underfrequency compensation, under-speed protection, and EMI filtering. Entire solid-state board is encapsulated for moisture protection.
- Generator power ratings are based on temperature rise, measured by resistance method, as defined in MIL-STD 705C and IEEE STD 115, Method 6.4.4.
- Power ratings will not exceed temperature rise limitation for class H insulation as per NEMA MG1-22.40.
- Insulation resistance to ground, exceeds 1.5 meg-ohm.
- Stator receives 2000 V. hi-potential test on main windings, and rotor windings receive a 1500 V. hi-potential test, as per MIL-STD 705B.
- Full amortisseur windings with UL-1446 certification.
- Complete engine-generator torsional acceptance, confirmed during initial prototype testing.
- · Full load testing on all engine-generator sets, before shipping.
- · Self ventilating and drip-proof & revolving field design

ENGINE SPECIFICATIONS AND APPLICATIONS DATA

ENGINE	
Manufacturer	Power Solutions Inc. (PSI)
Model and TypeHeavy	Duty, 14.6LTCAC, 4 cycle
AspirationTurbock	narged & Charge Air Cooled
Cylinder Arrangement	8 Cylinders, Vee
Displacement Cu. In. (Liters)	892 (14.6)
Bore & Stroke In. (Cm.)	
Compression Ratio	
Main Bearings & Style	
Cylinder Head	Cast Iron
Pistons	
Crankshaft	
Exhaust Valve	Inconel, A193
Governor	
Frequency Reg. (no load-full load)	lsochronous
Frequency Reg. (steady state)	
Air Cleaner	Dry, Replaceable Cartridge
Engine Speed	1800
Piston Speed, ft/min (m./min)	
Max Power, bhp (kwm) Prime/NG	
Ltd. Warranty Period 12 Mont	hs or 2000 hrs., first to occur

FUEL SYSTEM

Type	NAT. GAS, Vapor Withdrawal
Fuel Pressure (kpa), in. H2O	(1.74), 7"
Secondary Fuel Regulator	NG Vapor System
Auto Fuel Lock-Off Solenoid	Standard on all sets
Fuel Supply Inlet Line	(2) 2" NPTF

FUEL CONSUMPTION

GAS: FT ³ /HR (M ³ /HR)	PRIME
100% LOAD	2760 (78.2)
75% LOAD	2050 (58.0)
50% LOAD	1440 (40.8)
50% LOAD NG = 1000 BTU X FT ³ /HR =	Total B

OIL SYSTEM

Type	Full Pressure
Oil Pan Capacity qt. (L)	
Oil Pan Cap. W/ filter qt. (L)	
Oil Filter	

ELECTRICAL SYSTEM

APPLICATION AND ENGINEERING DATA FOR MODEL PR-2400-60 HZ

COOLING SYSTEM

Type of System	Pressurized, closed recovery
Coolant Pump	
Cooling Fan Type (no. of blades)	
Fan Diameter inches (mm)	45" (1143)
Ambient Capacity of Radiator °F (°	
Engine Jacket Coolant Capacity Ga	
Radiator Coolant Capacity Gal. (L)	
Maximum Restriction of Cooling A	
and discharge side of radiator in. Ha	e0 (kpa) 0.5 (.125)
Water Pump Capacity gpm (L/min)	180 (680)
Heat Reject Coolant: Btu/min (kw)	
Low Radiator Coolant Level Shutde	ownStandard
Note: Coolant temp. shut-down switch settin (water/antifreeze) mix.	g at 230°F (110°C) with 50/50

AIR REQUIREMENTS

Combustion Air, cfm (kg/hr)	532 (1064)
Radiator Air Flow cfm (m³/min)	30,000 (849)
Heat Rejected to Ambient:	
Engine: kw (btu/min)	66.0 (3765)
Alternator: kw (btu/min)	

EXHAUST SYSTEM

Exhaust Outlet Size	(2) 4"
Max. Back Pressure, in. hg (KPA)	3.0 (10.2)
Exhaust Flow, at rated kw: cfm (m3/min)	2521 (71.3)
Exhaust Temp., at rated kw: °F (°C)	1382 (750)
Engines are EPA certified for Natural Gas.	

SOUND LEVELS MEASURED IN dB(A)

	Open	Level 2	
	Set	Encl.	
Level 2, Critical Silencer	92	80	
Level 3, Hospital Silencer			

Note: Open sets (no enclosure) has (2) optional silencer system choices due to unknown job-site applications. Level 2 enclosure has installed critical silencer with upgrade to hospital silencer. Sound tests are averaged from several test points and taken at 23 ft. (7 m) from source of noise at normal operation.

DERATE GENERATOR FOR ALTITUDE

3% per 1000 ft.(305m) above 3000 ft. (914m) from sea level

DERATE GENERATOR FOR TEMPERATURE

2% per 10°F(5.6°C) above 85°F (29.4°C)

DIMENSIONS AND WEIGHTS

	Open Set	Level 2 Enclosure
Length in (cm)	152 (368)	186 (473)
Width in (cm)	72 (183)	72 (183)
Height in (cm)		
3 Ø Net Weight lbs (kg)	8475 (3844)	10975 (4978)
3 Ø Ship Weight lbs (kg)		

DEEP SEA 7420 DIGITAL MICROPROCESSOR CONTROLLER

Deep Sea 7420

The "7420" controller is an auto start mains (utility) failure module for single gen-set applications. This controller includes a backlit LCD display which continuously displays the status of the engine and generator at all times.

The "7420" controller will also monitor speed, frequency, voltage, current, oil pressure, coolant temp., and fuel levels. These modules have been designed to display warning and shut down status. It also includes: (11) configurable inputs • (8) configurable outputs • voltage monitoring • mains (utility) failure detection.

• (250) event logs • configurable timers • automatic shutdown or warning during fault detection • remote start (on load) • engine preheat • advanced metering capability • hour meter • text LCD displays • protected solid state outputs • test buttons for: stop/reset • manual mode • auto mode • lamp test • start button • power monitoring (kWh, kVAr, kVAh, kVArh) This controller includes expansion features including RS232, RS484 (using MODBUS-RTU/TCP), direct USB connection with PC, expansion optioned using DSENet for remote annunciation and remote relay interfacing for a distance of up to 3300FT. The controller software is freely downloadable from the internet and allows monitoring with direct USB cable, LAN, or by internet via the built in web interface.

LOW LOAD CONDITIONS: Operation of PSI HD engines at low-load conditions should be limited to no more than one (1) hour per twenty-four (24) hour period. If the application requires extended time at light loads, it is recommended that the engine load be increased to at least 70% of mechanical rating for a minimum of two (2) hours per fifty (50) hours of low-load operation. Piston scaling rings rely on adequate cylinder firing pressure and temperature to seal the combustion chamber and prevent excessive engine oil from entering the power cylinder. Under low loads these rings will not seal properly, resulting in oil being burned in the combustion chamber and carbon deposits on pistons and valves. This mechanism is well-documented in reciprocating engines of all fuel types and is often referred to as "wet-stacking."

STANDARD FEATURES FOR MODEL PR-2400-60 HZ

CONTROL PANEL:

Deep Sea 7420 digital microprocessor with logic allows programming in the field. Controller has:

- STOP-MANUAL-AUTO modes and automatic engine shutdowns, signaled by full text LCD indicators:
- Low oil pressure
- · Engine fail to start
- High engine temp
- · Engine over speed
- . Low Radiator Level
- · Engine under speed
- Three auxiliary alarms
- Over & under voltage
- · Battery fail alarm

Also included is tamper-proof engine hour meter

ENGINE:

Full flow oil filter • Air filter • Oil pump • Solenoid type starter motor • Hi-temp radiator • Jacket water pump

- Thermostat Pusher fan and guard Exhaust manifold
- 24 VDC battery charging alternator Flexible exhaust connector "Isochronous" duty, electronic governor Secondary dry fuel regulator Dry fuel lock-off solenoid Vibration isolators Closed coolant recovery system with 50/50 water to anti-freeze mixture flexible oil & radiator drain hose.

Design & specifications subject to

AC GENERATOR SYSTEM:

AC generator • Shunt excited • Brushless design • Circuit Breaker installed and wired to gen-set • Direct connection to engine with flex disc • Class H, 180°C insulation • Self ventilated • Drip proof construction • UL Certified

VOLTAGE REGULATOR:

1/2% Voltage regulation • EMI filter • Under-speed protection • Over-excitation protection • total encapsulation

DC ELECTRICAL SYSTEM:

Battery tray • Battery cables • Battery hold down straps • 2-stage battery float charger with maintaining & recharging automatic charge stages

WEATHER/SOUND PROOF ALUMINUM HOUSING CORROSION RESISTANT PROTECTION CONSISTING OF:

- 9 Heated And Agitated Wash Stages
- Zinc Phosphate Etching-coating Stage
- · Final Baked On Enamel Powder Coat
- 18/8 Stainless Steel Hardware

Design & specifications subject to change without prior notice. Dimensions shown are approximate. Contact Gillette for certified drawings. DO NOT USE DIMENSIONS FOR INSTALLATION PURPOSES.

LIOUID COOLED NAT. GAS ENGINE GENERATOR SET

Model		PRIME 105°C RISE
	HZ	NATURAL GAS
PR-1800-60 HERTZ	60	180

All generator sets are USA prototype built and thoroughly tested. Production models are USA factory built and 100% load tested.

UL1446, UL508, UL142, UL498

NFPA 110, 99, 70, 37

All generator sets meet NFPA-110 Level 1, when equipped with the necessary accessories and installed per NFPA standards.

NEC 700, 701, 702, 708

NEMA ICS10, MG1, ICS6, AB1

ANSI C62.41, 27, 59, 32, 480, 400, 81U, 360-05

ASCE 7-05 & 7-10

All generator sets meet 180 MPH rating.

EPA EPA 40CFR Part 60, 1048, 1065, 1068

PR-1800

60 HERTZ

"OPEN" GEN-SET

There is no enclosure, so gen-set must be placed within a weather protected area, un-inhabited by humans or animals, with proper ventilation. Silencer not supplied, as installation requirements are not known. However, this item is available as optional equipment.

"LEVEL 2" HOUSED GEN-SET

Full aluminum weather protection and superior sound attenuation for specific low noise applications. Critical grade muffler is standard.

GENER	ATOR	RATING	<u>ss</u>		NATURAL (GAS FUEL	
GENERATOR MODEL	VOLTAGE		PH HZ		105°C RISE PR	RIME RATING	POWER LEAD CONNECTIONS
OLIVETON MODEL	L-N	L-L	111	112	KW/KVA	AMP	
PR-1800-1-1	120	240	1	60	180/180	750	4 LEAD DEDICATED 1 PH.
PR-1800-3-2	120	208	3	60	180/225	625	12 LEAD LOW WYE
PR-1800-3-3	120	240	3	60	180/225	542	12 LEAD HIGH DELTA
PR-1800-3-4	277	480	3	60	180/225	271	12 LEAD HIGH WYE
PR-1800-3-5	127	220	3	60	180/225	591	12 LEAD LOW WYE
PR-1800-3-16	346	600	3	60	180/225	217	4 LEAD DEDICATED 3 PH.

RATINGS: All single phase gen-sets are dedicated 4 lead windings, rated at unity (1.0) power factor. All three phase gen-sets are 12 lead windings, rated at (.8) power factor. 105°C "PRIME RATINGS" are strictly for gen-sets provide the prime source of electric power, where normal utility power is unavailable or unreliable. A 10% overload is allowed for a total of 1 hour, within every 12 hours of operation of PRIME RATED systems. All gen-set power ratings are based on temperature rise measured by resistance method as defined by MIL-STD 705C and IEEE STD 115, METHOD 6.4.4. All generators have class H (180°C) insulation system on both rotor and stator windings. All factory tests and KW/KVA charts shown above are based on 105°C (prime) R/R winding temperature, within a maximum 40°C ambient condition. Specifications & ratings are subject to change without prior notice.

APPLICATION AND ENGINEERING DATA FOR MODEL PR-1800-60 HZ

GENERATOR SPECIFICATIONS

ManufacturerStamford Electric Generators
Model & Type S4L1DD-311, 4 Pole, 12 Lead, Single Phase
UCI274H-17, 4 Pole, 12 Lead, 600V, Three Phase
ExciterBrushless, shunt excited
Voltage RegulatorSolid State, HZ/Volts
Voltage Regulation
FrequencyField convertible, 60 HZ to 50 HZ
Frequency Regulation
Unbalanced Load Capability100% of prime amps
Total Stator and Load InsulationClass H, 180°C
Temperature Rise105°C R/R, prime rating @ 40°C amb.
1 Ø Motor Starting @ 30% Voltage Dip (240V)490 kVA
3 Ø Motor Starting @ 30% Voltage Dip (208-240V)510 kVA
3 Ø Motor Starting @ 30% Voltage Dip (480V)675 kVA
Bearing
Coupling
Total Harmonic Distortion Max 3½% (MIL-STD705B)
Telephone Interference Factor Max 50 (NEMA MG1-22)
Deviation Factor Max 5% (MIL-STD 405B)
Ltd. Warranty Period24 Months from date of start-up or

GENERATOR FEATURES

- World Renown Stamford Electric Generator having UL-1446 certification.
- Full generator protection with Deep Sea 7420 controller, having UL-508 certification.
- Automatic voltage regulator with over-excitation, underfrequency compensation, under-speed protection, and EMI filtering. Entire solid-state board is encapsulated for moisture protection.
- Generator power ratings are based on temperature rise, measured by resistance method, as defined in MIL-STD 705C and IEEE STD 115, Method 6.4.4.
- Power ratings will not exceed temperature rise limitation for class H insulation as per NEMA MG1-22.40.
- Insulation resistance to ground, exceeds 1.5 meg-ohm.
- Stator receives 2000 V. hi-potential test on main windings, and rotor windings receive a 1500 V. hi-potential test, as per MIL-STD 705B.
- Full amortisseur windings with UL-1446 certification.
- Complete engine-generator torsional acceptance, confirmed during initial prototype testing.
- Full load testing on all engine-generator sets, before shipping.
- · Self ventilating and drip-proof & revolving field design

ENGINE SPECIFICATIONS AND APPLICATIONS DATA

ENGINE

ManufacturerPower Solutions Inc. (PSI)
Model and TypeHeavy Duty 11.1LTCAC, 4 cycle
AspirationTurbocharged & Charge Air Cooled
Cylinder Arrangement6 Cylinders, Inline
Displacement Cu. In. (Liters)674 (11.1)
Bore & Stroke In. (Cm.)4.84 x 6.1 (12.3 x 15.5)
Compression Ratio10.5:1
Main Bearings & Style
Cylinder HeadCast Iron
PistonsCast Aluminum
CrankshaftForged Steel
Exhaust ValveInconel, A193
Governor Electronic
Frequency Reg. (no load-full load) Isochronous
Frequency Reg. (steady state)± 1/4%
Air CleanerDry, Replaceable Cartridge
Engine Speed
Piston Speed, ft/min (m./min)
Max Power, bhp (kwm) Prime/NG272 (203)
Ltd. Warranty Period 12 Months or 2000 hrs., first to occur

FUEL SYSTEM

Type	NAT. GAS, Vapor Withdrawal
Fuel Pressure (kpa), in. H ₂ O	
Secondary Fuel Regulator	NG Vapor System
Auto Fuel Lock-Off Solenoid	Standard on all sets
Fuel Supply Inlet Line	2" NPTF

FUEL CONSUMPTION

NAT. GAS: FT ³ /HR (M ³ /HR)	PRIME
100% LOAD	1980 (56.1)
75% LOAD	1500 (42.5)
50% LOAD	1075 (30.4)
$NG = 1000 \text{ BTU X FT}^3/HR = T$	Total BTU/HR

OIL SYSTEM

Type	Full Pressure
Oil Pan Capacity qt. (L)	
Oil Pan Cap. W/ filter qt. (L)	28.8 (27.0)
Oil Filter	

ELECTRICAL SYSTEM

APPLICATION AND ENGINEERING DATA FOR MODEL PR-1800-60 HZ

COOLING SYSTEM

Type of System	. Pressurized, closed recovery
Coolant Pump	
Cooling Fan Type (no. of blades)	
Fan Diameter inches (mm)	
Ambient Capacity of Radiator °F (°	
Engine Jacket Coolant Capacity Ga	
Radiator Coolant Capacity Gal. (L)	
Maximum Restriction of Cooling A	
and discharge side of radiator in. H	20 (kpa) 0.5 (.125)
Water Pump Capacity gpm (L/min)	
Heat Reject Coolant: Btu/min (kw)	
Low Radiator Coolant Level Shutd	
Note: Coolant temp. shut-down switch settin (water/antifreeze) mix.	ng at 230°F (110°C) with 50/50

AIR REQUIREMENTS

Combustion Air, cfm (m ³ /min)	448 (12.7)
Radiator Air Flow cfm (m³/min)	18,000 (510)
Heat Rejected to Ambient:	
Engine: kw (btu/min)	60.3 (3430)
Alternator: kw (btu/min)	16 (910)

EXHAUST SYSTEM

EXIIACSI SISIEM	A CONTRACTOR OF THE PARTY OF TH
Exhaust Outlet Size	5"
Max. Back Pressure, in. hg (KPA)	3.0 (10.2)
Exhaust Flow, at rated kw: cfm (m3/min)	1425 (40.3)
Exhaust Temp., at rated kw: °F (°C)	1382 (750)
Engines are EPA certified for Natural Gas.	
Engines are EPA certified for Natural Gas.	

SOUND LEVELS MEASURED IN dB(A)

	Open	Level 2
	Set	Encl.
Level 2. Critical Silencer	90	75

Note: Open sets (no enclosure) has (2) optional silencer system choices due to unknown job-site applications. Level 2 enclosure has installed critical silencer with upgrade to hospital silencer. Sound tests are averaged from several test points and taken at 23 ft. (7 m) from source of noise at normal operation.

DERATE GENERATOR FOR ALTITUDE

3% per 1000 ft.(305m) above 3000 ft. (914m) from sea level

DERATE GENERATOR FOR TEMPERATURE

2% per 10°F(5.6°C) above 85°F (29.4°C)

DIMENSIONS AND WEIGHTS

	Open Set	Level 2 Enclosure
Length in (cm)	132 (335)	204 (518)
Width in (cm)	52 (132)	72 (183)
Height in (cm)	80 (203)	94 (239)
3 Ø Net Weight lbs (kg)		
3 Ø Ship Weight lbs (kg)		

DEEP SEA 7420MKII DIGITAL MICROPROCESSOR CONTROLLER

Deep Sea 7420MKII

The "7420MKII" controller is an auto start mains (utility) failure module for single gen-set applications. This controller includes a backlit LCD display which continuously displays the status of the engine and generator at all times.

The "7420" controller will also monitor speed, frequency, voltage, current, oil pressure, coolant temp., and fuel levels. These modules have been designed to display warning and shut down status. It also includes: (11) configurable inputs • (8) configurable outputs • voltage monitoring • mains (utility) failure detection.

• (250) event logs • configurable timers • automatic shutdown or warning during fault detection • remote start (on load) • engine preheat • advanced metering capability • hour meter • text LCD displays • protected solid state outputs • test buttons for: stop/reset • manual mode • auto mode • lamp test • start button • power monitoring (kWh, kVAr, kVAh, kVArh) This controller includes expansion features including RS232, RS484 (using MODBUS-RTU/TCP), direct USB connection with PC, expansion optioned using DSENet for remote annunciation and remote relay interfacing for a distance of up to 3300FT. The controller software is freely downloadable from the internet and allows monitoring with direct USB cable, LAN, or by internet via the built in web interface.

LOW LOAD CONDITIONS: Operation of PSI HD engines at low-load conditions should be limited to no more than one (1) hour per twenty-four (24) hour period. If the application requires extended time at light loads, it is recommended that the engine load be increased to at least 70% of mechanical rating for a minimum of two (2) hours per fifty (50) hours of low-load operation. Piston sealing rings rely on adequate cylinder firing pressure and temperature to seal the combustion chamber and prevent excessive engine oil from entering the power cylinder. Under low loads these rings will not seal properly, resulting in oil being burned in the combustion chamber and carbon deposits on pistons and valves. This mechanism is well-documented in reciprocating engines of all fuel types and is often referred to as "wet-stacking."

STANDARD FEATURES FOR MODEL PR-1800-60 HZ

STANDARD FEATURES

CONTROL PANEL:

Deep Sea 7420 digital microprocessor with logic allows programming in the field. Controller has:

- STOP-MANUAL-AUTO modes and automatic engine shutdowns, signaled by full text LCD indicators:
- Low oil pressure
- Engine fail to start
- · High engine temp
- Engine over speed
- Low Radiator Level
- Engine under speed
- Three auxiliary alarms
- Over & under voltage
- Battery fail alarm

Also included is tamper-proof engine hour meter

ENGINE:

Full flow oil filter • Air filter • Oil pump • Solenoid type starter motor • Hi-temp radiator • Jacket water pump

- Thermostat Pusher fan and guard Exhaust manifold
- 24 VDC battery charging alternator Flexible exhaust connector "Isochronous" duty, electronic governor Secondary dry fuel regulator Dry fuel lock-off solenoid Vibration isolators Closed coolant recovery system with 50/50 water to anti-freeze mixture flexible oil & radiator drain hose.

Design & specifications subject to change without prior notice. Dimensions shown are approximate. Contact Gillette for certified drawings. DO NOT USE DIMENSIONS FOR INSTALLATION PURPOSES.

AC GENERATOR SYSTEM:

AC generator • Shunt excited • Brushless design • Circuit Breaker installed and wired to gen-set • Direct connection to engine with flex disc • Class H, 180°C insulation • Self ventilated • Drip proof construction • UL Certified

VOLTAGE REGULATOR:

1/2% Voltage regulation • EMI filter • Under-speed protection • Over-excitation protection • total encapsulation

DC ELECTRICAL SYSTEM:

Battery tray • Battery cables • Battery hold down straps
• 2-stage battery float charger with maintaining & recharging automatic charge stages

WEATHER/SOUND PROOF ALUMINUM HOUSING CORROSION RESISTANT PROTECTION CONSISTING OF:

- 9 Heated And Agitated Wash Stages
- Zinc Phosphate Etching-coating Stage
- Final Baked On Enamel Powder Coat
- 18/8 Stainless Steel Hardware

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2021 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT

OFFICE OF TRANSPORTATION AND AIR QUALITY ANN ARBOR, MICHIGAN 48105

Certificate Issued To: Power Solutions International, Inc.

(U.S. Manufacturer or Importer)

Certificate Number: MPSIB14.6NGP-019

Effective Date: 07/15/2020

Expiration Date: 12/31/2021

n 4.13m

Byron J. Bunker, Division Director Compliance Division Issue Date: 07/15/2020

Revision Date:

Manufacturer: Power Solutions International, Inc.

Engine Family: MPSIB14.6NGP

Mobile/Stationary Certification Type: Mobile and Stationary

Fuel: LPG/Propane

Natural Gas (CNG/LNG)

Emission Standards:

Part 60 Subpart JJJJ Table 1 CO (g/Hp-hr) : 2.0 VOC (g/Hp-hr) : 0.7

NOx (g/Hp-hr): 1.0

Mobile Part 1048

HC + NOx (g/kW-hr): 2.7

CO (g/kW-hr): 4.4

NMHC + NOx (g/kW-hr): 2.7

Stationary Part 1048

CO (g/kW-hr): 4.4

HC + NOx (g/kW-hr) : 2.7 NMHC + NOx (g/kW-hr) : 2.7

Emergency Use Only: N

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 1048, 40 CFR Part 60, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 1048, 40 CFR Part 60 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 1048, 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 1048, 40 CFR Part 60. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 1048, 40 CFR Part 60. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 1048, 40 CFR Part 60.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

Targa Resources

Rev 0: 02/02/24

Reference: Cadillac VCU

Combustor Model: HCD48

Hero Flare is pleased to provide a proposal for a combustor system that is fully compliant with 40 CFR 60.18 subpart OOOO EPA regulatory standards. The system being offered has been fully tested by the manufacturer in-house and has been approved by the EPA.

There are many advantages to our combustor systems:

- Guaranteed destruction efficiency greater than 98% or greater
- Quad O EPA Certified
- Battery / Solar powered OR 120VAC BMS systems available.
- Automated pilot ignition system with continuous pilot flame monitoring.
- No minimum operating pressure requirements.

We look forward to working with you as this project progresses.

Best regards,

Craig Rosencutter

Office: (918) 941-2166 Ext. 101

Cell: (918) 344-4335

Email: craig.rosencutter@heroflare.com

Garrett Consedine

Office: (918) 941-2166 Ext. 114

Cell: (918) 948-4647

Email: garrett.consedine@heroflare.com

Matt Schrum

Cell: (402) 637-1588

Email: matt.schrum@heroflare.com

Visit us at www.heroflare.com

Design Data Sheet

Design Flow Rate

Flow Rate Case	Flow Rate (SCFD)	Molecular Weight	Lower Heating Value (Btu/SCF)	Pressure	Temp. (°F)
Smokeless Rate	0 to 52,000	30 to 40	1,600	6 oz/in ²	Amb.
	See Flow Curv	ve on Last Shee	et of Proposal		

Site Conditions

of the contract of the beam of the contract of the		ALTERNATION OF REPORT OF A STATE OF		Thurstenational most tida, are held.	and the same of the same of
Wind	120 MPH	Temperature	0 to 120 °E	Elevation	14.5 Pei
	120 1411 11	E Comporature	0 10 120 1	Licvation	17.5131
		The state of the price of the contract of the price of the contract of the con			and the same of th

Site Utilities Required

Pilot Gas (per pilot)	Natural Gas: 25 scfh @ 5 psig (Clean, dry gas)
Plant Air	No Plant Air Required
Pilot Panel Electricity	115VAC or Battery / Solar Powered (Specify at time of order)
	No blower included with this offer Blower Size: N/A

Emission / Flare Performance

Destruction	A 98% or greater hydrocarbon destruction efficiency will be achieved
Smokeless Rate	100% Smokeless
Max Radiation	Shell temperature < 150 °F
Tip Velocity	N/A

Pilot Construction

Electrical Area	Non-classified area
Control Panel Type	Nema 4 (Painted)
Pilot(s)	One (1) Gas Pilot
Pilot Construction	Stainless Steel
Pilot Monitoring	Ionization Rod
Pilot Gas Connection	1/4" FNPT Located at Base of Flare

Flare Construction

Component	Dimension	Material
Stack Height x Diameter	12'-6" x 4'	A53B
Internal Insulation	2" Thick	8# Ceramic Fiber
Inlet Connection	3" FNPT	Carbon

HCD48 Equipment Description

Combustor

- · Over 98% mass destruction rate efficiency
- 12'-6" overall height (including skid)
- · Multi-jet burner manifold
- Flame Arrestor at the bottom air intake (Bottom of stack)
- 2" Ceramic internal insulation
- 3" SCD inlet connection
- The combustor shell upper section is shipped lose and requires minimum field installation.

Skid - Optional Item

- Combustor base is shop mounted on a 4'-4" Wide x 11'-0" long skid.
- Optional items (i.e. scrubber) are shop mounted to reduce field assembly time.

Flashback Protection

In-Line Flame Arrestor

Burner Management System

- BMS Enclosure shop mounted to skid (battery / solar powered or 120VAC powered)
- Remote Start / Stop Capabilities
- Automated Pilot Ignition (Includes pilot gas solenoid valve, regulator, gauge)
- · Automated main waste gas butterfly valve

www.permianls.com 575.397.3713 2609 W MARLAND HOBBS, NEW MEXICO 88240

EXTENDED GAS REPORT SUMMARY OF CHROMATOGRAPHIC ANALYSIS

H2S (PPM) = 2.0

Sample Name:

Lucid Cadillac Gas

07/26/2023

Sample Date: Sampled By:

DG 09:30

Time Sampled: Sample Temp:

103.3 F

Sample Press:

1084.6

For:

16380G

Cyl. Ident.:

2023072618

Company:

Targa Midstream

Analysis Date:

07/28/2023 ВН

Analysis By: Data File:

LS_8793.D

C	MM = 1 = 0/	0.514	0.014
Component	Mole%	GPM REAL	GPM IDEAL
H2S	0.000		
Nitrogen	0.947		
Methane	77.450		
CO2	0.245		
Ethane	11.480	3.069	3.062
Propane	5.426	1.494	1.491
Isobutane	0.765	0.250	0.250
N-Butane	1.754	0.553	0.552
Isopentane	0.440	0.161	0.161
N-Pentane	0.496	0.180	0.179
Hexanes+	0.997	0.427	0.425
Total	100.000	6.134	6.120

CALCULATED PARAMETERS

TOTAL ANALYSIS SUMMARY		HEATING VALUE		BTEX SUMMA	BTEX SUMMARY	
MOLE WT:	21.735	BTU/CUFT (DRY)	1301.2	WT% BENZENE	3.415	
VAPOR PRESS PSIA: SPECIFIC GRA	3976.2 VITY	BTU/CUFT (WET)	1279.1	WT% TOLUENE WT% E BENZENE	2.775 0.224	
AIR = $1 (REAL)$:	0.7526			WT% XYLENES	2.123	
AIR = 1 (IDEAL):	0.7501					
H2O = 1 (IDEAL):	0.355					
REPORTED BASIS:	14.73			011.6		
Unnormalized Total:	107.624		_	104 175	, ,	
				LAB MANAGER		

www.permianls.com

Constants: GPA 2145 Method: GPA 2186.m

575.397.3713 2609 W MARLAND HOBBS, NEW MEXICO 88240

Sample Name: Lucid Cadillac Gas

Company:

Targa Midstream

Data File: LS_8793.D

*ANALYSIS OF HEXANES PLUS

Component	MOLE%	WT%	*HEXANES PLUS SUMMARY
2.2 DIMETHYL BUTANE	0.007	0.027	AVG MOLE WT 95.576
2,2 DIMETHYL BUTANE CYCLOPENTANE	0.007	0.122	VAPOR PRESS PSIA 9.860
2-METHYLPENTANE	0.034	0.439	API GRAVITY @ 60F 65.9
3-METHYLPENTANE	0.059	0.236	SPECIFIC GRAVITY
	0.059	0.599	AIR = 1 (IDEAL): 2.975
HEXANE (C6) DIMETHYLPENTANES	0.009	0.042	H2O = 1 (IDEAL): 0.717
METHYLCYCLOPENTANE	0.066	0.256	1120 - 1 (IBE/IE).
2,2,3 TRIMETHYLBUTANE	0.000	0.002	
BENZENE	0.000	0.002	
CYCLOHEXANE	0.020	0.301	COMPONENT RATIOS
2-METHYLHEXANE	0.076	0.114	COMM CIVERT TOTAL
3-METHYLHEXANE	0.025	0.163	HEXANES (C6) MOLE% 36.335
DIMETHYCYCLOPENTANES		0.052	HEPTANES (C7) MOLE% 33.260
HEPTANE (C7)	0.060	0.275	OCTANES (C8) MOLE% 20.666
METHYLCYCLOHEXANE	0.089	0.404	NONANES (C9) MOLE% 6.311
2.5 DIMETHYLHEXANE	0.003	0.009	DECANES+ (C10+) MOLE% 3.428
TOLUENE	0.002	0.112	526, 1126 (6164) 116227
2-METHYLHEPTANE	0.020	0.105	
OTHER OCTANES	0.046	0.243	HEXANES (C6) WT% 32.474
OCTANE (C8)	0.022	0.116	HEPTANES (C7) WT% 32.168
ETHYLCYCLOHEXANE	0.007	0.036	OCTANES (C8) WT% 22.578
ETHYL BENZENE	0.002	0.008	NONANES (C9) WT% 7.817
M,P-XYLENE	0.016	0.078	DECANES+ (C10+) WT% 4.963
O-XYLENE	0.003	0.017	
OTHER NONANES	0.022	0.134	
NONANE (C-9)	0.012	0.071	
IC3 BENZENE	0.003	0.015	
CYCLOOCTANE	0.000	0.000	
NC3 BENZENE	0.000	0.000	
TM BENZENE(S)	0.004	0.021	
IC4 BENZENE	0.000	0.001	
NC4 BENZENE	0.001	0.005	
DECANES + (C10+)	0.023	0.175	

Remarks: On: 6/26/23 spot

Constants: GPA 2145 Method: GPA 2186.m Report Rev 18-05.22 Template: eC6+ Liq

^{*} Hexane+ portion calculated by Allocation Process

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO_x) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION²

Combrator T.	NO	NO _x ^b		
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (Ib/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers				
(>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS)°	280	A	84	В
Uncontrolled (Post-NSPS) ^c	190	A	84	В
Controlled - Low NO _x burners	140	Α	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NOx burners/Flue gas recirculation	32	C	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	A	24	C
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]	1			
Uncontrolled	94	B	40	B

Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10 6 scf to kg/106 m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10 6 scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to the average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.

b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.

NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat

NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
$\mathrm{CO}_2{}^\mathrm{b}$	120,000	A
Lead	0.0005	D
N₂O (Uncontrolled)	2.2	E
N ₂ O (Controlled-low-NO _X burner)	0.64	E
PM (Total)°	7.6	D
PM (Condensable)°	5.7	D
PM (Filterable)°	1.9	В
SO₂ ^d	0.6	A
тос	11	В
Methane	2.3	В
voc	5.5	c

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, 4.2×10^4 lb/ 10^6 scf.

All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO₂.

Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION^a

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylcholanthrene ^{b, c}	<1.8E-06	Е
	7,12- Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	Е
83-32-9	Acenaphthene ^{b,c}	<1.8E - 06	Е
203-96-8	Acenaphthylene ^{h,o}	<1.8E-06	Е
120-12-7	Anthracene ^{b,c}	<2.4E-06	Е
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	E
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,o}	<1.2E-06	E
205-99-2	Benzo(b)fluorantheneb,c	<1.8E-06	E
191-24-2	Benzo(g,h,i)perylene ^{b,o}	<1.2E-06	E
207-08-9	Benzo(k)fluorantheneb,c	<1.8E-06	Е
106-97-8	Butane	2.1E+00	E
218-01-9	Chrysene ^{b,c}	<1.8E-06	E
53-70-3	Dibenzo(a,h)anthraceneb,c	<1.2E-06	E
25321 - 22- 6	Dichlorobenzene ^b	1.2E-03	Е
74-84-0	Ethane	3.1E+00	E
206-44-0	Fluoranthene ^{b,c}	3.0E-06	E
86-73-7	Fluorene ^{b,c}	2.8E-06	E
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	Е
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	E
91-20-3	Naphthalene ^b	6.1E-04	Е
109-66-0	Pentane	2.6E+00	Е
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D
74-98-6	Propane .	1.6E+00	E

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
129-00-0	Pyrene ^{b, c}	5.0E-06	E
108-88-3	Tolueneb	3.4E-03	C

- ^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceded with a less-than symbol are based on method detection limits.
- b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.
- ^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.
- ^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES $^{\rm a}$ (SCC 2-02-002-54)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhouse	Gases	
NO _x c 90 - 105% Load	4.08 E+00	В
NO _x c <90% Load	8.47 E-01	В
CO ^c 90 - 105% Load	3.17 E-01	С
CO ^c <90% Load	5.57 E-01	В
CO ₂ ^d	1.10 E+02	Α
SO ₂ ^e	5.88 E-04	Α
TOC^{f}	1.47 E+00	A
Methane ^g	1.25 E+00	C
Voch	1.18 E-01	C
PM10 (filterable) ⁱ	7.71 E-05	D
PM2.5 (filterable) ⁱ	7.71 E-05	D
PM Condensable ^j	9.91 E-03	D
Trace Organic Compounds		
1,1,2,2-Tetrachloroethanek	<4.00 E-05	Е
1,1,2-Trichloroethanek	<3.18 E-05	·E
1,1-Dichloroethane	<2.36 E-05	E
1,2,3-Trimethylbenzene	2.30 E-05	D
1,2,4-Trimethylbenzene	1.43 E-05	C
1,2-Dichloroethane	<2.36 E-05	Е
1,2-Dichloropropane	<2.69 E-05	Е
1,3,5-Trimethylbenzene	3.38 E-05	D
1,3-Butadiene ^k	2.67E-04	D
1,3-Dichloropropene ^k	<2.64 E-05	Е
2-Methylnaphthalenek	3.32 E-05	C
2,2,4-Trimethylpentanek	2.50 E-04	C
Acenaphthene ^k	1.25 E-06	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES (Continued)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Acenaphthylene ^k	5,53 E-06	С
Acetaldehyde ^{k,l}	8.36 E-03	A
Acrolein ^{k,1}	5.14 E-03	A
Benzenek	4.40 E-04	A
Benzo(b)fluoranthenek	1.66 E-07	D ·
Benzo(e)pyrene ^k	4.15 E-07	D
Benzo(g,h,i)perylenek	4.14 E-07	D
Biphenyl ^k	2.12 E-04	D
Butane	5,41 E-04	D
Butyr/Isobutyraldehyde	1.01 E-04	C
Carbon Tetrachloride ^k	<3.67 E-05	E
Chlorobenzene ^k	<3.04 E-05	Е
Chloroethane	1.87 E-06	D
Chloroform ^k	<2.85 E-05	Е
Chrysene ^k	6.93 E-07	C
Cyclopentane	2.27 E-04	C
Ethane	1.05 E-01	C
Ethylbenzene ^k	3.97 E-05	В
Ethylene Dibromide ^k	<4.43 E-05	Е
Fluoranthene ^k	1.11 E-06	C
Fluorenek	5.67 E-06	C
Formaldehyde ^{k,l}	5.28 E-02	A
Methanol ^k	2.50 E-03	В
Methylcyclohexane	1.23 E-03	C
Methylene Chloride ^k	2.00 E-05	С
n-Hexane ^k	1.11 E-03	C
n-Nonane	1.10 E-04	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES
(Continued)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
n-Octane	3.51 E-04	С
n-Pentane	2.60 E-03	С
Naphthalene ^k	7.44 E-05	С
PAH ^k	2.69 E-05	D
Phenanthrene ^k	1.04 E-05	D
Phenol ^k	2.40 E-05	D
Propane	4.19 E-02	C
Pyrene ^k	1.36 E-06	c
Styrene ^k	<2.36 E-05	Е
Tetrachloroethane ^k	2.48 E-06	D
Toluene ^k	4.08 E-04	В
Vinyl Chloride ^k	1.49 E-05	. с
Xylene ^k	1.84 E-04	В

a Reference 7. Factors represent uncontrolled levels. For NO_x, CO, and PM10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM-10 = Particulate Matter ≤ 10 microns (μm) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit. Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA Method 19. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from (lb/MMBtu) to (lb/hp-hr) use the following equation:

lb/hp-hr = (lb/MMBtu) (heat input, MMBtu/hr) (1/operating HP, 1/hp)

^c Emission tests with unreported load conditions were not included in the data set.

d Based on 99.5% conversion of the fuel carbon to CO₂. CO₂ [lb/MMBtu] =

(3.67)(%CON)(C)(D)(1/h), where %CON = percent conversion of fuel carbon to CO₂,

C = carbon content of fuel by weight (0.75), D = density of fuel, 4.1 E+04 lb/10⁶ scf, and

h = heating value of natural gas (assume 1020 Btu/scf at 60°F).

e Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content in natural gas of 2,000 gr/10⁶scf.

Emission factor for TOC is based on measured emission levels from 22 source tests.

g Emission factor for methane is determined by subtracting the VOC and ethane emission factors from the TOC emission factor. Measured emission factor for methane compares well with the calculated emission factor, 1.31 lb/MMBtu vs. 1.25 lb/MMBtu, respectively.

h VOC emission factor is based on the sum of the emission factors for all speciated organic compounds less ethane and methane.

- Considered $\leq 1 \,\mu\mathrm{m}$ in aerodynamic diameter. Therefore, for filterable PM emissions, PM10(filterable) = PM2.5(filterable).
- ¹ PM Condensable = PM Condensable Inorganic + PM-Condensable Organic Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.
- For lean burn engines, aldehyde emissions quantification using CARB 430 may reflect interference with the sampling compounds due to the nitrogen concentration in the stack. The presented emission factor is based on FTIR measurements. Emissions data based on CARB 430 are available in the background report.

Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES[®]

	Gasoline Fuel (SCC 2-02-003-01, 2-03-003-01)		Diesel Fuel (SCC 2-02-001-02, 2-03-001-01)		
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING
NO _x	0.011	1.63	0.031	4.41	D
co	6,96 E-03 ^d	0.99^{d}	6.68 E-03	0.95	D
SO _x	5.91 E-04	0.084	2.05 E-03	0.29	D
PM-10 ^b	7.21 E-04	0.10	2.20 E-03	0.31	D
CO ₂ °	1.08	154	1.15	164	В
Aldehydes	4.85 E-04	0.07	4,63 E-04	0.07	D
TOC			}		l
Exhaust	0.015	2.10	2.47 E-03	0.35	D
Evaporative	6.61 E-04	0.09	0.00	0.00	E
Crankcase	4.85 E-03	0.69	4.41 E-05	0.01	E
Refueling	1.08 E-03	0.15	0,00	0.00	E

References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.

PM-10 = particulate matter less than or equal to 10 μm aerodynamic diameter. All particulate is assumed to be ≤ 1 μm in size.

Assumes 99% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.

Instead of 0.439 lb/hp-hr (power output) and 62.7 lb/mmBtu (fuel input), the correct emissions factors values are 6.96 E-03 lb/hp-hr (power output) and 0.99 lb/mmBtu (fuel input), respectively. This is an editorial correction. March 24, 2009

Table 3.3-2. SPECIATED ORGANIC COMPOUND EMISSION FACTORS FOR UNCONTROLLED DIESEL ENGINES^a

EMISSION FACTOR RATING: E

Pollutant	Emission Factor (Fuel Input) (lb/MMBtu)
Benzene ^b	9.33 E-04
Toluene ^b	4.09 E-04
Xylenes ^b	2.85 E-04
Propylene	2.58 E-03
1,3-Butadiene ^{b,c}	<3.91 E-05
Formaldehyde ^b	1.18 E-03
Acetaldehyde ^b	7.67 E-04
Acrolein ^b	<9.25 E-05
Polycyclic aromatic hydrocarbons (PAH)	
Naphthalene ^b	8.48 E-05
Acenaphthylene	<5.06 E-06
Acenaphthene	<1.42 E-06
Fluorene	2.92 E-05
Phenanthrene	2.94 E-05
Anthracene	1.87 E-06
Fluoranthene	7.61 E-06
Pyrene	4.78 E-06
Benzo(a)anthracene	1.68 E-06
Chrysene	3.53 E-07
Benzo(b)fluoranthene	<9.91 E-08
Benzo(k)fluoranthene	<1.55 E-07
Benzo(a)pyrene	<1.88 E-07
Indeno(1,2,3-cd)pyrene	<3.75 E-07
Dibenz(a,h)anthracene	<5.83 E-07
Benzo(g,h,l)perylene	<4.89 E-07
TOTAL PAH	1.68 E-04

Based on the uncontrolled levels of 2 diesel engines from References 6-7. Source Classification Codes 2-02-001-02, 2-03-001-01. To convert from lb/MMBtu to ng/J, multiply by 430.
 Hazardous air pollutant listed in the Clean Air Act.
 Based on data from 1 engine.

5.2 Transportation And Marketing Of Petroleum Liquids¹⁻³

5.2.1 General

The transportation and marketing of petroleum liquids involve many distinct operations, each of which represents a potential source of evaporation loss. Crude oil is transported from production operations to a refinery by tankers, barges, rail tank cars, tank trucks, and pipelines. Refined petroleum products are conveyed to fuel marketing terminals and petrochemical industries by these same modes. From the fuel marketing terminals, the fuels are delivered by tank trucks to service stations, commercial accounts, and local bulk storage plants. The final destination for gasoline is usually a motor vehicle gasoline tank. Similar distribution paths exist for fuel oils and other petroleum products. A general depiction of these activities is shown in Figure 5.2-1.

5.2.2 Emissions And Controls

Evaporative emissions from the transportation and marketing of petroleum liquids may be considered, by storage equipment and mode of transportation used, in four categories:

- 1. Rail tank cars, tank trucks, and marine vessels: loading, transit, and ballasting losses.
- 2. Service stations: bulk fuel drop losses and underground tank breathing losses.
- 3. Motor vehicle tanks: refueling losses.
- 4. Large storage tanks: breathing, working, and standing storage losses. (See Chapter 7, "Liquid Storage Tanks".)

Evaporative and exhaust emissions are also associated with motor vehicle operation, and these topics are discussed in AP-42 *Volume II: Mobile Sources*.

5.2.2.1 Rail Tank Cars, Tank Trucks, And Marine Vessels -

Emissions from these sources are from loading losses, ballasting losses, and transit losses.

5.2.2.1.1 Loading Losses -

Loading losses are the primary source of evaporative emissions from rail tank car, tank truck, and marine vessel operations. Loading losses occur as organic vapors in "empty" cargo tanks are displaced to the atmosphere by the liquid being loaded into the tanks. These vapors are a composite of (1) vapors formed in the empty tank by evaporation of residual product from previous loads, (2) vapors transferred to the tank in vapor balance systems as product is being unloaded, and (3) vapors generated in the tank as the new product is being loaded. The quantity of evaporative losses from loading operations is, therefore, a function of the following parameters:

- Physical and chemical characteristics of the previous cargo;
- Method of unloading the previous cargo:
- Operations to transport the empty carrier to a loading terminal;
- Method of loading the new cargo; and
- Physical and chemical characteristics of the new cargo.

The principal methods of cargo carrier loading are illustrated in Figure 5.2-2, Figure 5.2-3, and Figure 5.2-4. In the splash loading method, the fill pipe dispensing the cargo is lowered only part way into the cargo tank. Significant turbulence and vapor/liquid contact occur during the splash

Figure 5.2-1. Flow sheet of petroleum production, refining, and distribution systems. (Points of organic emissions are indicated by vertical arrows.)

Figure 5.2-2. Splash loading method.

Figure 5.2-3. Submerged fill pipe.

Figure 5.2-4. Bottom loading.

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ±30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T} \tag{1}$$

where:

 L_L = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded

S = a saturation factor (see Table 5.2-1)

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")

M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")
T = temperature of bulk liquid loaded, °R (°F + 460)

Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1. SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2 For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

The saturation factor, S, represents the expelled vapor's fractional approach to saturation, and it accounts for the variations observed in emission rates from the different unloading and loading methods. Table 5.2-1 lists suggested saturation factors.

Emissions from controlled loading operations can be calculated by multiplying the uncontrolled emission rate calculated in Equation 1 by an overall reduction efficiency term:

$$\left(1 - \frac{\text{eff}}{100}\right)$$

The overall reduction efficiency should account for the capture efficiency of the collection system as well as both the control efficiency and any downtime of the control device. Measures to reduce loading emissions include selection of alternate loading methods and application of vapor recovery equipment. The latter captures organic vapors displaced during loading operations and recovers the vapors by the use of refrigeration, absorption, and/or compression. The recovered product is piped back to storage. Vapors can also be controlled through combustion in a thermal oxidation unit, with no product recovery. Figure 5.2-6 demonstrates the recovery of gasoline vapors from tank trucks during loading operations at bulk terminals. Control efficiencies for the recovery units range from 90 to over 99 percent, depending on both the nature of the vapors and the type of control equipment used. However, not all of the displaced vapors reach the control device, because of leakage from both the tank truck and collection system. The collection efficiency should be assumed to be 99.2 percent for tanker trucks passing the MACT-level annual leak test (not more than 1 inch water column pressure change in 5 minutes after pressurizing to 18 inches water followed by pulling a vacuum of 6 inches water). A collection efficiency of 98.7 percent (a 1.3 percent leakage rate) should be assumed for trucks passing the NSPS-level annual test (3 inches pressure change) A collection efficiency of 70 percent should be assumed for trucks not passing one of these annual leak tests⁶.

Figure 5.2-6. Tank truck loading with vapor recovery.

Sample Calculation -

Loading losses (L_L) from a gasoline tank truck in dedicated vapor balance service and practicing vapor recovery would be calculated as follows, using Equation 1:

Design basis -

Cargo tank volume is 8000 gal
Gasoline Reid vapor pressure (RVP) is 9 psia
Product temperature is 80°F
Vapor recovery efficiency is 95 percent
Vapor collection efficiency is 98.7 percent (NSPS-level annual leak test)

Loading loss equation -

$$L_{L} = 12.46 \frac{SPM}{T} \left(1 - \frac{eff}{100} \right)$$

where:

S = saturation factor (see Table 5.2-1) - 1.00 P = true vapor pressure of gasoline = 6.6 psia M = molecular weight of gasoline vapors = 66

 $T = \text{temperature of gasoline} = 540^{\circ} R$

eff = overall reduction efficiency (95 percent control x 98.7 percent collection) = 94 percent

$$L_L = 12.46 \frac{(1.00)(6.6)(66)}{540} \left(1 - \frac{94}{100}\right)$$

$$= 0.60 \text{ lb}/10^3 \text{ gal}$$

Total loading losses are:

$$(0.60 \text{ lb}/10^3 \text{ gal}) (8.0 \text{ x } 10^3 \text{ gal}) = 4.8 \text{ pounds (lb)}$$

Measurements of gasoline loading losses from ships and barges have led to the development of emission factors for these specific loading operations. These factors are presented in Table 5.2-2 and should be used instead of Equation 1 for gasoline loading operations at marine terminals. Factors are expressed in units of milligrams per liter (mg/L) and pounds per 1000 gallons (lb/10³ gal).

Table 5.2-2 (Metric And English Units). VOLATILE ORGANIC COMPOUND (VOC) EMISSION FACTORS FOR GASOLINE LOADING OPERATIONS AT MARINE TERMINALS^a

		Ships/Oce	an Barges ^b	Ba	rges ^b
Vessel Tank Condition	Previous Cargo	mg/L Transferred	lb/10³ gal Transferred	mg/L Transferred	1b/10³ gal Transferred
Uncleaned	Volatile ^c	315	2.6	465	3.9
Ballasted	Volatile	205	1.7	d	d
Cleaned	Volatile	180	1.5	ND	ND
Gas-freed	Volatile	85·	0.7	ND	ND
Any condition	Nonvolatile	85	0.7	ND	ND
Gas-freed	Any cargo	ND	ND	245	2.0
Typical overall situation°	Any cargo	215	1.8	410	3.4

^a References 2,9. Factors are for both VOC emissions (which excludes methane and ethane) and total organic emissions, because methane and ethane have been found to constitute a negligible weight fraction

of the evaporative emissions from gasoline. ND = no data.

b Ocean barges (tank compartment depth about 12.2 m [40 ft]) exhibit emission levels similar to tank ships. Shallow draft barges (compartment depth 3.0 to 3.7 m [10 to 12 ft]) exhibit higher emission levels.

Volatile cargoes are those with a true vapor pressure greater than 10 kilopascals (kPa) (1.5 psia).

d Barges are usually not ballasted.

Based on observation that 41% of tested ship compartments were uncleaned, 11% ballasted, 24% cleaned, and 24% gas-freed. For barges, 76% were uncleaned.

In addition to Equation 1, which estimates emissions from the loading of petroleum liquids, Equation 2 has been developed specifically for estimating emissions from the loading of crude oil into ships and ocean barges:

$$C_{L} = C_{A} + C_{G} \tag{2}$$

where:

 $\begin{array}{l} C_L = total\ loading\ loss,\ lb/10^3\ gal\ of\ crude\ oil\ loaded \\ C_A = arrival\ emission\ factor,\ contributed\ by\ vapors\ in\ the\ empty\ tank\ compartment\ before\ loading,\ lb/10^3\ gal\ loaded\ (see\ Note\ below) \\ C_G = generated\ emission\ factor,\ contributed\ by\ evaporation\ during\ loading,\ lb/10^3\ gal\ loaded \end{array}$

Note: Values of C_A for various cargo tank conditions are listed in Table 5.2-3.

5.2-3 (English Units). AVERAGE ARRIVAL EMISSION FACTORS, CA, FOR CRUDE OIL LOADING **EMISSION EQUATION^a**

Ship/Ocean Barge Tank Condition	Previous Cargo	Arrival Emission Factor, 1b/10 ³ gal
Uncleaned	Volatile ^b	0.86
Ballasted	Volatile	0.46
Cleaned or gas-freed	Volatile	0.33
Any condition	Nonvolatile	0.33

^a Arrival emission factors (C_A) to be added to generated emission factors (C_O) calculated in Equation 3 to produce total crude oil loading loss (C_L). Factors are for total organic compounds; VOC emission factors average about 15% lower, because VOC does not include methane or ethane.

Volatile cargoes are those with a true vapor pressure greater than 10 kPa (1.5 psia).

This equation was developed empirically from test measurements of several vessel compartments. The quantity C_G can be calculated using Equation 3:

$$C_G = 1.84 (0.44 P - 0.42) \frac{MG}{T}$$
 (3)

where:

P = true vapor pressure of loaded crude oil, psia

M = molecular weight of vapors, lb/lb-mole
G = vapor growth factor = 1.02 (dimensionless)
T = temperature of vapors, °R (°F + 460)

Emission factors derived from Equation 3 and Table 5,2-3 represent total organic compounds. Volatile organic compound (VOC) emission factors (which exclude methane and ethane because they are exempted from the regulatory definition of "VOC") for crude oil vapors have been found to range from approximately 55 to 100 weight percent of these total organic factors. When specific vapor composition information is not available, the VOC emission factor can be estimated by taking 85 percent of the total organic factor.³

5.2.2.1.2 Ballasting Losses -

Ballasting operations are a major source of evaporative emissions associated with the unloading of petroleum liquids at marine terminals. It is common practice to load several cargo tank compartments with sea water after the cargo has been unloaded. This water, termed "ballast", improves the stability of the empty tanker during the subsequent voyage. Although ballasting practices vary, individual cargo tanks are ballasted typically about 80 percent, and the total vessel 15 to 40 percent, of capacity. Ballasting emissions occur as vapor-laden air in the "empty" cargo tank is displaced to the atmosphere by ballast water being pumped into the tank. Upon arrival at a loading port, the ballast water is pumped from the cargo tanks before the new cargo is loaded. The ballasting of cargo tanks reduces the quantity of vapors returning in the empty tank, thereby reducing the quantity of vapors emitted during subsequent tanker loading. Regulations administered by the U.S. Coast Guard require that, at marine terminals located in ozone nonattainment areas, large tankers with crude oil washing systems contain the organic vapors from ballasting.¹⁰ This is accomplished principally by displacing the vapors during ballasting into a cargo tank being simultaneously unloaded. In other areas, marine vessels emit organic vapors directly to the atmosphere.

Equation 4 has been developed from test data to calculate the ballasting emissions from crude oil ships and ocean barges8:

$$L_{\rm B} = 0.31 + 0.20 \, \text{P} + 0.01 \, \text{PU}_{\rm A} \tag{4}$$

where:

 L_B = ballasting emission factor, lb/10³ gal of ballast water P = true vapor pressure of discharged crude oil, psia U_Λ = arrival cargo true ullage, before dockside discharge, measured from the deck, feet; (the term "ullage" here refers to the distance between the cargo surface level and the deck level)

Table 5.2-4 lists average total organic emission factors for ballasting into uncleaned crude oil cargo compartments. The first category applies to "full" compartments wherein the crude oil true ullage just before cargo discharge is less than 1.5 meters (m) (5 ft). The second category applies to lightered, or short-loaded, compartments (part of cargo previously discharged, or original load a partial fill), with an arrival true ullage greater than 1.5 m (5 ft). It should be remembered that these tabulated emission factors are examples only, based on average conditions, to be used when crude oil vapor pressure is unknown. Equation 4 should be used when information about crude oil vapor pressure and cargo compartment condition is available. The following sample calculation illustrates the use of Equation 4.

5.2-4 (Metric And English Units). TOTAL ORGANIC EMISSION FACTORS FOR CRUDE OIL BALLASTING^a

	Average Emission Factors					
	Ву Са	tegory	Typical Overall ^b			
Compartment Condition Before Cargo Discharge	mg/L Ballast Water	lb/10³ gal Ballast Water	mg/L Ballast Water	lb/10³ gal Ballast Water		
Fully loaded ^c	111	0.9		·····		
Lightered or previously short loaded	171	1.4	129	1.1		

Assumes crude oil temperature of 16°C (60°F) and RVP of 34 kPa (5 psia). VOC emission factors average about 85% of these total organic factors, because VOCs do not include methane or ethane.

Based on observation that 70% of tested compartments had been fully loaded before ballasting. May not represent average vessel practices.

Assumed typical arrival ullage of 0.6 m (2 ft).

Assumed typical arrival ullage of 6.1 m (20 ft).

Sample Calculation -

Ballasting emissions from a crude oil cargo ship would be calculated as follows, using Equation 4:

Design basis -

Vessel and cargo description:

80,000 dead-weight-ton tanker, crude oil capacity 500,000 barrels (bbl); 20 percent of the cargo capacity is filled with ballast water after cargo discharge. The crude oil has an RVP of 6 psia and is discharged at 75°F.

Compartment conditions:

70 percent of the ballast water is loaded into compartments that had been fully loaded to 2 ft ullage, and 30 percent is loaded into compartments that had been lightered to 15 ft ullage before arrival at dockside.

Ballasting emission equation -

$$L_B = 0.31 + 0.20 P + 0.01 PU_A$$

where:

P = true vapor pressure of crude oil

= 4.6 psia

 U_A = true cargo ullage for the full compartments = 2 ft, and true cargo ullage for the lightered compartments = 15 ft

$$L_{\rm B} = 0.70 [0.31 + (0.20) (4.6) + (0.01) (4.6) (2)] + 0.30 [0.31 + (0.20) (4.6) + (0.01) (4.6) (15)]$$
$$= 1.5 \text{ lb/}10^3 \text{ gal}$$

Total ballasting emissions are:

$$(1.5 \text{ lb/}10^3 \text{ gal}) (0.20) (500,000 \text{ bbl}) (42 \text{ gal/bbl}) = 6,300 \text{ lb}$$

Since VOC emissions average about 85 percent of these total organic emissions, emissions of VOCs are about: (0.85)(6,300 lb) = 5,360 lb

5.2.2.1.3 Transit Losses -

In addition to loading and ballasting losses, losses occur while the cargo is in transit. Transit losses are similar in many ways to breathing losses associated with petroleum storage (see Section 7.1, "Organic Liquid Storage Tanks"). Experimental tests on ships and barges⁴ have indicated that transit losses can be calculated using Equation 5:

$$L_{T} = 0.1 \text{ PW} \tag{5}$$

where:

 $L_T = \text{transit loss from ships and barges, lb/week-}10^3 \text{ gal transported}$

P = true vapor pressure of the transported liquid, psia

W = density of the condensed vapors, lb/gal

Emissions from gasoline truck cargo tanks during transit have been studied by a combination of theoretical and experimental techniques, and typical emission values are presented in Table 5.2-5. 11-12 Emissions depend on the extent of venting from the cargo tank during transit, which in turn depends on the vapor tightness of the tank, the pressure relief valve settings, the pressure in the tank at the start of the trip, the vapor pressure of the fuel being transported, and the degree of fuel vapor saturation of the space in the tank. The emissions are not directly proportional to the time spent in transit. If the vapor leakage rate of the tank increases, emissions increase up to a point, and then the rate changes as other determining factors take over. Truck tanks in dedicated vapor balance service usually contain saturated vapors, and this leads to lower emissions during transit because no additional fuel evaporates to raise the pressure in the tank to cause venting. Table 5.2-5 lists "typical" values for transit emissions and "extreme" values that could occur in the unlikely event that all determining factors combined to cause maximum emissions.

Table 5.2-5 (Metric And English Units). TOTAL UNCONTROLLED ORGANIC EMISSION FACTORS FOR PETROLEUM LIQUID RAIL TANK CARS AND TANK TRUCKS

Emission Source	Gasoline ^a	Crude Oil ^b	Jet Naphtha (JP-4)	Jet Kerosene	Distillate Oil No. 2	Residual Oil No. 6
Loading operations ^c						
Submerged loading - Dedicated normal service ^d						
mg/L transferred	590	240	180	1.9	1.7	0.01
lb/10 ³ gal transferred	5	2	1.5	0.016	0.014	0.0001
Submerged loading - Vapor balance service ⁴						
mg/L transferred	980	400	300	 •	c	°
lb/10 ³ gal transferred	. 8	3	2,5	0	c	. <u></u> o
Splash loading - Dedicated normal service						
mg/L transferred	1,430	580	430	5	4	0.03
lb/10 ³ gal transferred	12	5	4	0.04	0.03	0.0003
Splash loading - Vapor balance service		·				
mg/L transferred	980	400	300	_•	عــــه	e
lb/10 ³ gal transferred	8	3	2.5	<u> </u> °	<u>_</u> c	°

Table 5.2-5 (cont.).

Emission Source	Gasoline ^a	Crude Oil ^b	Jet Naphtha (JP-4)	Jet Kerosene	Distillate Oil No. 2	Residual Oil No. 6
Transit losses						
Loaded with product						
mg/L transported						
Typical	0 - 1.0	ND	ND	ND	ND	ND
Extreme	0 - 9.0	ND	ND	ND	ND	ND
lb/10 ³ gal transported						
Typical	0 - 0.01	ND	ND	ND	ND	ND
Extreme	0 ~ 0.08	ND	ND	ND	ND	ND
Return with vapor						
mg/L transported						
Typical	0 - 13.0	ND	ND	ND	ND	ND
Extreme	0 - 44.0	ND	ND	ND	ND	ND
lb/10 ³ gal transported						
Typical	0 - 0.11	ND	ND	ND	ND	ND
Extreme	0 - 0.37	ND	ND	ND	ND	ND

Reference 2. Gasoline factors represent emissions of VOC as well as total organics, because methane and ethane constitute a negligible weight fraction of the evaporative emissions from gasoline. VOC factors for crude oil can be assumed to be 15% lower than the total organic factors, to account for the methane and ethane content of crude oil evaporative emissions. All other products should be assumed to have VOC factors equal to total organics. The example gasoline has an RVP of 69 kPa (10 psia). ND = no data.

The example crude oil has an RVP of 34 kPa (5 psia).

d Reference 2.

In the absence of specific inputs for Equations 1 through 5, the typical evaporative emission factors presented in Tables 5.2-5 and 5.2-6 should be used. It should be noted that, although the crude oil used to calculate the emission values presented in these tables has an RVP of 5, the RVP of crude oils can range from less than 1 up to 10. Similarly, the RVP of gasolines ranges from 7 to 13. In areas where loading and transportation sources are major factors affecting air quality, it is advisable to obtain the necessary parameters and to calculate emission estimates using Equations 1 through 5.

5.2.2.2 Service Stations -

Another major source of evaporative emissions is the filling of underground gasoline storage tanks at service stations. Gasoline is usually delivered to service stations in 30,000-liter (8,000-gal) tank trucks or smaller account trucks. Emissions are generated when gasoline vapors in the underground storage tank are displaced to the atmosphere by the gasoline being loaded into the tank. As with other loading losses, the quantity of loss in service station tank filling depends on several variables, including the method and rate of filling, the tank configuration, and the gasoline temperature, vapor pressure and composition. An average emission rate for submerged filling is 880 mg/L (7.3 lb/1000 gal) of transferred gasoline, and the rate for splash filling is 1380 mg/L (11.5 lb/1000 gal) transferred gasoline (see Table 5.2-7).

^c Loading emission factors are calculated using Equation 1 for a dispensed product temperature of 16°C (60°F).

Not normally used.

Table 5.2-6 (Metric And English Units). TOTAL ORGANIC EMISSION FACTORS FOR PETROLEUM MARINE VESSEL SOURCES^a

Emission Source	Gasolîne ^b	Crude Oilº	Jet Naphtha (JP-4)	Jet Kerosene	Distillate Oil No. 2	Residual Oil No. 6
Loading operations						
Ships/ocean barges		i				
mg/L transferred	4	73	60	0.63	0.55	0.004
lb/10³ gal transferred	d	0.61	0.50	0.005	0.005	0.00004
Barges						
mg/L transferred	a	120	150	1.60	1,40	0.011
lb/10³ gal transferred	d	1.0	1,2	0.013	0.012	0.00009
Tanker ballasting				<u> </u> 		
mg/L ballast water	100	¢	ND	ND	ND	ND
lb/10 ³ gal ballast water	0.8	<u>_</u> e	ND	ND	ND	ND
Transit						
mg/week-L transported	320	150	84	0.60	0.54	0.003
lb/week-10 ³ gal transported	2.7	1,3	0.7	0,005	0.005	0,00003

^a Factors are for a dispensed product of 16°C (60°F). ND = no data.

account for methane and ethane. The example crude oil has an RVP of 34 kPa (5 psia).

See Table 5.2-2 for these factors.

^e See Table 5.2-4 for these factors.

Emissions from underground tank filling operations at service stations can be reduced by the use of a vapor balance system such as in Figure 5.2-5 (termed Stage I vapor control). The vapor balance system employs a hose that returns gasoline vapors displaced from the underground tank to the tank truck cargo compartments being emptied. The control efficiency of the balance system ranges from 93 to 100 percent. Organic emissions from underground tank filling operations at a service station employing a vapor balance system and submerged filling are not expected to exceed 40 mg/L (0.3 lb/1000 gal) of transferred gasoline.

Factors represent VOC as well as total organic emissions, because methane and ethane constitute a negligible fraction of gasoline evaporative emissions. All products other than crude oil can be assumed to have VOC factors equal to total organic factors. The example gasoline has an RVP of 69 kPa (10 psia).

VOC emission factors for a typical crude oil are 15% lower than the total organic factors shown, in order to

Table 5.2-7 (Metric And English Units). EVAPORATIVE EMISSIONS FROM GASOLINE SERVICE STATION OPERATIONS^a

	Emission Rate			
Emission Source	mg/L Throughput	lb/10³ gal Throughput		
Filling underground tank (Stage I)				
Submerged filling	880	7.3		
Splash filling	1,380	11.5		
Balanced submerged filling	40	0.3		
Underground tank breathing and emptying ^b	120	1.0		
Vehicle refueling operations (Stage II)				
Displacement losses (uncontrolled)°	1,320	11.0		
Displacement losses (controlled)	132	1.1		
Spillage	80	0.7		

Factors are for VOC as well as total organic emissions, because of the methane and ethane content of gasoline evaporative emissions is negligible. Includes any vapor loss between underground tank and gas pump.

Based on Equation 6, using average conditions.

A second source of vapor emissions from service stations is underground tank breathing. Breathing losses occur daily and are attributable to gasoline evaporation and barometric pressure changes. The frequency with which gasoline is withdrawn from the tank, allowing fresh air to enter to enhance evaporation, also has a major effect on the quantity of these emissions. An average breathing emission rate is 120 mg/L (1.0 lb/1000 gal) of throughput.

5.2.2.3 Motor Vehicle Refueling -

Service station vehicle refueling activity also produces evaporative emissions. Vehicle refueling emissions come from vapors displaced from the automobile tank by dispensed gasoline and from spillage. The quantity of displaced vapors depends on gasoline temperature, auto tank temperature, gasoline RVP, and dispensing rate. Equation 6 can be used to estimate uncontrolled displacement losses from vehicle refueling for a particular set of conditions.14

$$E_R = 264.2 [(-5.909) - 0.0949 (\Delta T) + 0.0884 (T_D) + 0.485 (RVP)]$$
 (6)

where:

 $E_{\rm R}$ = refueling emissions, mg/L • T = difference between temperature of fuel in vehicle tank and temperature of dispensed fuel, °F $T_{\rm D}$ = temperature of dispensed fuel, °F RVP = Reid vapor pressure, psia

Note that this equation and the spillage loss factor are incorporated into the MOBILE model. The MOBILE model allows for disabling of this calculation if it is desired to include these emissions in the stationary area source portion of an inventory rather than in the mobile source portion. It is estimated that the uncontrolled emissions from vapors displaced during vehicle refueling average 1320 mg/L (11.0 lb/1000 gal) of dispensed gasoline.5,13

Spillage loss is made up of contributions from prefill and postfill nozzle drip and from spit-back and

overflow from the vehicles's fuel tank filler pipe during filling. The amount of spillage loss can depend on several variables, including service station business characteristics, tank configuration, and operator techniques. An average spillage loss is 80 mg/L (0.7 lb/1000 gal) of dispensed gasoline.^{5,13}

Control methods for vehicle refueling emissions are based on conveying the vapors displaced from the vehicle fuel tank to the underground storage tank vapor space through the use of a special hose and nozzle, as depicted in Figure 5.2-7 (termed Stage II vapor control). In "balance" vapor control systems, the vapors are conveyed by natural pressure differentials established during refueling. In "vacuum assist" systems, the conveyance of vapors from the auto fuel tank to the underground storage tank is assisted by a vacuum pump. Tests on a few systems have indicated overall systems control efficiencies in the range of 88 to 92 percent. When inventorying these emissions as an area source, rule penetration and rule effectiveness should also be taken into account. *Procedures For Emission Inventory Preparation, Volume IV: Mobile Sources*, EPA-450/4-81-026d, provides more detail on this.

Figure 5.2-7. Automobile refueling vapor recovery system.

References For Section 5.2

- 1. C. E. Burklin and R. L. Honercamp, *Revision Of Evaporative Hydrocarbon Emission Factors*, EPA-450/3-76-039, U. S. Environmental Protection Agency, Research Triangle Park, NC, August 1976.
- 2. G. A. LaFlam, et al., Revision Of Tank Truck Loading Hydrocarbon Emission Factors, Pacific Environmental Services, Inc., Durham, NC, May 1982.
- 3. G. A. LaFlam, Revision Of Marine Vessel Evaporative Emission Factors, Pacific Environmental Services, Inc., Durham, NC, November 1984.
- 4. Evaporation Loss From Tank Cars, Tank Trucks And Marine Vessels, Bulletin No. 2514, American Petroleum Institute, Washington, DC, 1959.
- 5. C. E. Burklin, et al., A Study Of Vapor Control Methods For Gasoline Marketing Operations, EPA-450/3-75-046A and -046B, U. S. Environmental Protection Agency, Research Triangle Park, NC, May 1975.
- 6. Bulk Gasoline Terminals Background Information For Proposed Standards, EPA-450/3-80-038a, U. S. Environmental Protection Agency, Research Triangle Park, NC, December 1980.

- 7. Gasoline Distribution Industry (Stage I) Background Information for Promulgated Standards, EPA-453/R-94-002b, U.S. Environmental Protection Agency, Research Triangle Park, NC, 1995.
- 8. Atmospheric Hydrocarbon Emissions From Marine Vessel Transfer Operations, Publication 2514A, American Petroleum Institute, Washington, DC, 1981.
- 9. C. E. Burklin, et al., Background Information On Hydrocarbon Emissions From Marine Terminal Operations, EPA-450/3-76-038a and -038b, U. S. Environmental Protection Agency, Research Triangle Park, NC, November 1976.
- 10. Rules For The Protection Of The Marine Environment Relating To Tank Vessels Carrying Oil In Bulk, 45 FR 43705, June 30, 1980.
- 11. R. A. Nichols, Analytical Calculation Of Fuel Transit Breathing Loss, Chevron USA, Inc., San Francisco, CA, March 21, 1977.
- 12. R. A. Nichols, *Tank Truck Leakage Measurements*, Chevron USA, Inc., San Francisco, CA, June 7, 1977.
- 13. Investigation Of Passenger Car Refueling Losses: Final Report, 2nd Year Program, APTD-1453, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 1972.
- 14. Refueling Emissions From Uncontrolled Vehicles, EPA-AA-SDSB-85-6, U. S. Environmental Protection Agency, Ann Arbor, MI, June 1985.

13.2.2 Unpaved Roads

13.2.2.1 General

When a vehicle travels an unpaved road, the force of the wheels on the road surface causes pulverization of surface material. Particles are lifted and dropped from the rolling wheels, and the road surface is exposed to strong air currents in turbulent shear with the surface. The turbulent wake behind the vehicle continues to act on the road surface after the vehicle has passed.

The particulate emission factors presented in the previous draft version of this section of AP-42, dated October 2001, implicitly included the emissions from vehicles in the form of exhaust, brake wear, and tire wear as well as resuspended road surface material²⁵. EPA included these sources in the emission factor equation for unpaved public roads (equation 1b in this section) since the field testing data used to develop the equation included both the direct emissions from vehicles and emissions from resuspension of road dust.

This version of the unpaved public road emission factor equation only estimates particulate emissions from resuspended road surface material ^{23,26}. The particulate emissions from vehicle exhaust, brake wear, and tire wear are now estimated separately using EPA's MOBILE6.2 ²⁴. This approach eliminates the possibility of double counting emissions. Double counting results when employing the previous version of the emission factor equation in this section and MOBILE6.2 to estimate particulate emissions from vehicle traffic on unpaved public roads. It also incorporates the decrease in exhaust emissions that has occurred since the unpaved public road emission factor equation was developed. The previous version of the unpaved public road emission factor equation includes estimates of emissions from exhaust, brake wear, and tire wear based on emission rates for vehicles in the 1980 calendar year fleet. The amount of PM released from vehicle exhaust has decreased since 1980 due to lower new vehicle emission standards and changes in fuel characteristics.

13.2.2.2 Emissions Calculation And Correction Parameters¹⁻⁶

The quantity of dust emissions from a given segment of unpaved road varies linearly with the volume of traffic. Field investigations also have shown that emissions depend on source parameters that characterize the condition of a particular road and the associated vehicle traffic. Characterization of these source parameters allow for "correction" of emission estimates to specific road and traffic conditions present on public and industrial roadways.

Dust emissions from unpaved roads have been found to vary directly with the fraction of silt (particles smaller than 75 micrometers [µm] in diameter) in the road surface materials. The silt fraction is determined by measuring the proportion of loose dry surface dust that passes a 200-mesh screen, using the ASTM-C-136 method. A summary of this method is contained in Appendix C of AP-42. Table 13.2.2-1 summarizes measured silt values for industrial unpaved roads. Table 13.2.2-2 summarizes measured silt values for public unpaved roads. It should be noted that the ranges of silt content vary over two orders of magnitude. Therefore, the use of data from this table can potentially introduce considerable error. Use of this data is strongly discouraged when it is feasible to obtain locally gathered data.

Since the silt content of a rural dirt road will vary with geographic location, it should be measured for use in projecting emissions. As a conservative approximation, the silt content of the parent soil in the area can be used. Tests, however, show that road silt content is normally lower than in the surrounding parent soil, because the fines are continually removed by the vehicle traffic, leaving a higher percentage of coarse particles.

Other variables are important in addition to the silt content of the road surface material. For example, at industrial sites, where haul trucks and other heavy equipment are common, emissions are highly correlated with vehicle weight. On the other hand, there is far less variability in the weights of cars and pickup trucks that commonly travel publicly accessible unpaved roads throughout the United States. For those roads, the moisture content of the road surface material may be more dominant in determining differences in emission levels between, for example a hot, desert environment and a cool, moist location.

The PM-10 and TSP emission factors presented below are the outcomes from stepwise linear regressions of field emission test results of vehicles traveling over unpaved surfaces. Due to a limited amount of information available for PM-2.5, the expression for that particle size range has been scaled against the result for PM-10. Consequently, the quality rating for the PM-2.5 factor is lower than that for the PM-10 expression.

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS^a

	Road Use Or	Plant	No. Of	Silt Conte	ent (%)
Industry	Surface Material	Sites	Samples	Range	Mean
Copper smelting	Plant road	1	3	16 - 19	17
Iron and steel production	Plant road	19	135	0.2 - 19	6.0
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	4.8
	Material storage area	1	1		7.1
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10
	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3
	Haul road to/from pit	1	12	3.9 - 9.7	5.8
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4
	Plant road	2	2	4.9 - 5.3	5,1
	Scraper route	3	10	7.2 - 25	17
	Haul road (freshly graded)	2	5	18 - 29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills	Disposal routes	4	20	2.2 - 21	6.4

*References 1,5-15.

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^a (W/3)^b$$
 (1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$
 (1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

E = size-specific emission factor (lb/VMT)

s = surface material silt content (%)

W = mean vehicle weight (tons)

M = surface material moisture content (%)

S = mean vehicle speed (mph)

C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear,

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

$$1 \text{ lb/VMT} = 281.9 \text{ g/VKT}$$

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

ł	Industria	al Roads (Equ	ation 1a)	Public Roads (Equation 1b		
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0
a	0.9	0.9	0.7	1	1	1
b	0.45	0.45	0.45	-		
c	-	-	144	0.2	0.2	0.3
d		J	-	0.5	0.5	0.3
Quality Rating	В	В	В	В	В	В

^{*}Assumed equivalent to total suspended particulate matter (TSP)

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

		Mean Vehicle Weight		Mean Spe	Vehicle eed	Mean	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25,2	1.8-260	2-290	8-69	5-43	4-17ª	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model ²³. The emission factor also varies with aerodynamic size range

[&]quot;-" = not used in the emission factor equation

Table 13.2.2-4. EMISSION FACTOR FOR 1980'S VEHICLE FLEET EXHAUST, BRAKE WEAR AND TIRE WEAR

Particle Size Range ^a	C, Emission Factor for Exhaust, Brake Wear and Tire Wear ^b
PM _{2.5}	0.00036
PM_{10}	0.00047
PM ₃₀ °	0.00047

- Refers to airborne particulate matter (PM-x) with an aerodynamic diameter equal to or less than x micrometers.
- b Units shown are pounds per vehicle mile traveled (lb/VMT).
- PM-30 is sometimes termed "suspendable particulate" (SP) and is often used as a surrogate for TSP.

It is important to note that the vehicle-related source conditions refer to the average weight, speed, and number of wheels for all vehicles traveling the road. For example, if 98 percent of traffic on the road are 2-ton cars and trucks while the remaining 2 percent consists of 20-ton trucks, then the mean weight is 2.4 tons. More specifically, Equations 1a and 1b are *not* intended to be used to calculate a separate emission factor for each vehicle class within a mix of traffic on a given unpaved road. That is, in the example, one should *not* determine one factor for the 2-ton vehicles and a second factor for the 20-ton trucks. Instead, only one emission factor should be calculated that represents the "fleet" average of 2.4 tons for all vehicles traveling the road.

Moreover, to retain the quality ratings when addressing a group of unpaved roads, it is necessary that reliable correction parameter values be determined for the road in question. The field and laboratory procedures for determining road surface silt and moisture contents are given in AP-42 Appendices C.1 and C.2. Vehicle-related parameters should be developed by recording visual observations of traffic. In some cases, vehicle parameters for industrial unpaved roads can be determined by reviewing maintenance records or other information sources at the facility.

In the event that site-specific values for correction parameters cannot be obtained, then default values may be used. In the absence of site-specific silt content information, an appropriate mean value from Table 13.2.2-1 may be used as a default value, but the quality rating of the equation is reduced by two letters. Because of significant differences found between different types of road surfaces and between different areas of the country, use of the default moisture content value of 0.5 percent in Equation 1b is discouraged. The quality rating should be downgraded two letters when the default moisture content value is used. (It is assumed that readers addressing industrial roads have access to the information needed to develop average vehicle information in Equation 1a for their facility.)

The effect of routine watering to control emissions from unpaved roads is discussed below in Section 13.2.2.3, "Controls". However, all roads are subject to some natural mitigation because of rainfall and other precipitation. The Equation 1a and 1b emission factors can be extrapolated to annual

average uncontrolled conditions (but including natural mitigation) under the simplifying assumption that annual average emissions are inversely proportional to the number of days with measurable (more than 0.254 mm [0.01 inch]) precipitation:

$$E_{\text{ext}} = E [(365 - P)/365]$$
 (2)

where:

 E_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT

E = emission factor from Equation 1a or 1b

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation (see

below)

Figure 13.2.2-1 gives the geographical distribution for the mean annual number of "wet" days for the United States.

Equation 2 provides an estimate that accounts for precipitation on an annual average basis for the purpose of inventorying emissions. It should be noted that Equation 2 does not account for differences in the temporal distributions of the rain events, the quantity of rain during any event, or the potential for the rain to evaporate from the road surface. In the event that a finer temporal and spatial resolution is desired for inventories of public unpaved roads, estimates can be based on a more complex set of assumptions. These assumptions include:

- 1. The moisture content of the road surface material is increased in proportion to the quantity of water added;
- 2. The moisture content of the road surface material is reduced in proportion to the Class A pan evaporation rate;
- 3. The moisture content of the road surface material is reduced in proportion to the traffic volume; and
- 4. The moisture content of the road surface material varies between the extremes observed in the area. The CHIEF Web site (http://www.epa.gov/ttn/chief/ap42/ch13/related/c13s02-2.html) has a file which contains a spreadsheet program for calculating emission factors which are temporally and spatially resolved. Information required for use of the spreadsheet program includes monthly Class A pan evaporation values, hourly meteorological data for precipitation, humidity and snow cover, vehicle traffic information, and road surface material information.

It is emphasized that the simple assumption underlying Equation 2 and the more complex set of assumptions underlying the use of the procedure which produces a finer temporal and spatial resolution have not been verified in any rigorous manner. For this reason, the quality ratings for either approach should be downgraded one letter from the rating that would be applied to Equation 1.

13.2.2.3 Controls 18-22

A wide variety of options exist to control emissions from unpaved roads. Options fall into the following three groupings:

1. Vehicle restrictions that limit the speed, weight or number of vehicles on the road;

- 2. <u>Surface improvement</u>, by measures such as (a) paving or (b) adding gravel or slag to a dirt road; and
 - 3. Surface treatment, such as watering or treatment with chemical dust suppressants.

Available control options span broad ranges in terms of cost, efficiency, and applicability. For example, traffic controls provide moderate emission reductions (often at little cost) but are difficult to enforce. Although paving is highly effective, its high initial cost is often prohibitive. Furthermore, paving is not feasible for industrial roads subject to very heavy vehicles and/or spillage of material in transport. Watering and chemical suppressants, on the other hand, are potentially applicable to most industrial roads at moderate to low costs. However, these require frequent reapplication to maintain an acceptable level of control. Chemical suppressants are generally more cost-effective than water but not in cases of temporary roads (which are common at mines, landfills, and construction sites). In summary, then, one needs to consider not only the type and volume of traffic on the road but also how long the road will be in service when developing control plans.

<u>Vehicle restrictions</u>. These measures seek to limit the amount and type of traffic present on the road or to lower the mean vehicle speed. For example, many industrial plants have restricted employees from driving on plant property and have instead instituted bussing programs. This eliminates emissions due to employees traveling to/from their worksites. Although the heavier average vehicle weight of the busses increases the base emission factor, the decrease in vehicle-miles-traveled results in a lower overall emission rate.

Figure 13.2.2-1. Mean number of days with 0.01 inch or more of precipitation in United States.

<u>Surface improvements</u>. Control options in this category alter the road surface. As opposed to the "surface treatments" discussed below, improvements are relatively "permanent" and do not require periodic retreatment.

The most obvious surface improvement is paving an unpaved road. This option is quite expensive and is probably most applicable to relatively short stretches of unpaved road with at least several hundred vehicle passes per day. Furthermore, if the newly paved road is located near unpaved areas or is used to transport material, it is essential that the control plan address routine cleaning of the newly paved road surface.

The control efficiencies achievable by paving can be estimated by comparing emission factors for unpaved and paved road conditions. The predictive emission factor equation for paved roads, given in Section 13.2.1, requires estimation of the silt loading on the traveled portion of the paved surface, which in turn depends on whether the pavement is periodically cleaned. Unless curbing is to be installed, the effects of vehicle excursion onto unpaved shoulders (berms) also must be taken into account in estimating the control efficiency of paving.

Other improvement methods cover the road surface with another material that has a lower silt content. Examples include placing gravel or slag on a dirt road. Control efficiency can be estimated by comparing the emission factors obtained using the silt contents before and after improvement. The silt content of the road surface should be determined after 3 to 6 months rather than immediately following placement. Control plans should address regular maintenance practices, such as grading, to retain larger aggregate on the traveled portion of the road.

<u>Surface treatments</u> refer to control options which require periodic reapplication. Treatments fall into the two main categories of (a) "wet suppression" (i. e., watering, possibly with surfactants or other additives), which keeps the road surface wet to control emissions and (b) "chemical stabilization/ treatment", which attempts to change the physical characteristics of the surface. The necessary reapplication frequency varies from several minutes for plain water under summertime conditions to several weeks or months for chemical dust suppressants.

Watering increases the moisture content, which conglomerates particles and reduces their likelihood to become suspended when vehicles pass over the surface. The control efficiency depends on how fast the road dries after water is added. This in turn depends on (a) the amount (per unit road surface area) of water added during each application; (b) the period of time between applications; (c) the weight, speed and number of vehicles traveling over the watered road during the period between applications; and (d) meteorological conditions (temperature, wind speed, cloud cover, etc.) that affect evaporation during the period.

Figure 13.2.2-2 presents a simple bilinear relationship between the instantaneous control efficiency due to watering and the resulting increase in surface moisture. The moisture ratio "M" (i.e., the x-axis in Figure 13.2.2-2) is found by dividing the surface moisture content of the watered road by the surface moisture content of the uncontrolled road. As the watered road surface dries, both the ratio M and the predicted instantaneous control efficiency (i.e., the y-axis in the figure) decrease. The figure shows that between the uncontrolled moisture content and a value twice as large, a small increase in moisture content results in a large increase in control efficiency. Beyond that, control efficiency grows slowly with increased moisture content.

Given the complicated nature of how the road dries, characterization of emissions from watered roadways is best done by collecting road surface material samples at various times between water truck passes. (Appendices C.1 and C.2 present the sampling and analysis procedures.) The moisture content measured can then be associated with a control efficiency by use of Figure 13.2.2-2. Samples that reflect average conditions during the watering cycle can take the form of either a series of samples between water applications or a single sample at the midpoint. It is essential that samples be collected during periods with active traffic on the road. Finally, because of different evaporation rates, it is recommended that samples be collected at various times during the year. If only one set of samples is to be collected, these must be collected during hot, summertime conditions.

When developing watering control plans for roads that do not yet exist, it is strongly recommended that the moisture cycle be established by sampling similar roads in the same geographic area. If the moisture cycle cannot be established by similar roads using established watering control plans, the more complex methodology used to estimate the mitigation of rainfall and other precipitation can be used to estimate the control provided by routine watering. An estimate of the maximum daytime Class A pan evaporation (based upon daily evaporation data published in the monthly Climatological Data for the state by the National Climatic Data Center) should be used to insure that adequate watering capability is available during periods of highest evaporation. The hourly precipitation values in the spreadsheet should be replaced with the equivalent inches of precipitation (where the equivalent of 1 inch of precipitation is provided by an application of 5.6 gallons of water per square yard of road). Information on the long term average annual evaporation and on the percentage that occurs between May and October was published in the Climatic Atlas (Reference 16). Figure 13.2.2-3 presents the geographical distribution for "Class A pan evaporation" throughout the United States. Figure 13.2.2-4 presents the geographical distribution of the percentage of this evaporation that occurs between May and October. The U. S. Weather Bureau Class A evaporation pan is a cylindrical metal container with a depth of 10 inches and a diameter of 48 inches. Periodic measurements are made of the changes of the water level.

The above methodology should be used <u>only for prospective analyses</u> and for designing watering programs for existing roadways. The quality rating of an emission factor for a watered road that is based on this methodology should be downgraded two letters. Periodic road surface samples should be collected and analyzed to verify the efficiency of the watering program.

As opposed to watering, chemical dust suppressants have much less frequent reapplication requirements. These materials suppress emissions by changing the physical characteristics of the existing road surface material. Many chemical unpaved road dust suppressants form a hardened surface that binds particles together. After several applications, a treated road often resembles a paved road except that the surface is not uniformly flat. Because the improved surface results in more grinding of small particles, the silt content of loose material on a highly controlled surface may be substantially higher than when the surface was uncontrolled. For this reason, the models presented as Equations 1a and 1b cannot be used to estimate emissions from chemically stabilized roads. Should the road be allowed to return to an

uncontrolled state with no visible signs of large-scale cementing of material, the Equation 1a and 1b emission factors could then be used to obtain conservatively high emission estimates.

Figure 13.2.2-2. Watering control effectiveness for unpaved travel surfaces

The control effectiveness of chemical dust suppressants appears to depend on (a) the dilution rate used in the mixture; (b) the application rate (volume of solution per unit road surface area); (c) the time between applications; (d) the size, speed and amount of traffic during the period between applications; and (e) meteorological conditions (rainfall, freeze/thaw cycles, etc.) during the period. Other factors that affect the performance of dust suppressants include other traffic characteristics (e. g., cornering, track-on from unpaved areas) and road characteristics (e. g., bearing strength, grade). The variabilities in the above factors and differences between individual dust control products make the control efficiencies of chemical dust suppressants difficult to estimate. Past field testing of emissions from controlled unpaved roads has shown that chemical dust suppressants provide a PM-10 control efficiency of about 80 percent when applied at regular intervals of 2 weeks to 1 month.

Figure 13.2.2-4. Geographical distribution of the percentage of evaporation occurring between May and October.

Petroleum resin products historically have been the dust suppressants (besides water) most widely used on industrial unpaved roads. Figure 13.2.2-5 presents a method to estimate average control efficiencies associated with petroleum resins applied to unpaved roads.²⁰ Several items should be noted:

- 1. The term "ground inventory" represents the total volume (per unit area) of petroleum resin concentrate (not solution) applied since the start of the dust control season.
- 2. Because petroleum resin products must be periodically reapplied to unpaved roads, the use of a time-averaged control efficiency value is appropriate. Figure 13.2.2-5 presents control efficiency values averaged over two common application intervals, 2 weeks and 1 month. Other application intervals will require interpolation.
- 3. Note that zero efficiency is assigned until the ground inventory reaches 0.05 gallon per square yard (gal/yd²). Requiring a minimum ground inventory ensures that one must apply a reasonable amount of chemical dust suppressant to a road before claiming credit for emission control. Recall that the ground inventory refers to the amount of petroleum resin concentrate rather than the total solution,

As an example of the application of Figure 13.2.2-5, suppose that Equation 1a was used to estimate an emission factor of 7.1 lb/VMT for PM-10 from a particular road. Also, suppose that, starting on May 1, the road is treated with 0.221 gal/yd² of a solution (1 part petroleum resin to 5 parts water) on the first of each month through September. Then, the average controlled emission factors, shown in Table 13.2.2-5, are found.

Table 13.2-2-5. EXAMPLE OF AVERAGE CONTROLLED EMISSION FACTORS
FOR SPECIFIC CONDITIONS

Period	Ground Inventory, gal/yd²	Average Control Efficiency, % ^a	Average Controlled Emission Factor, lb/VMT
May	0.037	0	7.1
June	0,073	62	2.7
July	0.11	68	2.3
August	0.15	74	1.8
September	0,18	80	1.4

From Figure 13.2.2-5, ≤10 μm. Zero efficiency assigned if ground inventory is less than 0.05 gal/yd². 1 lb/VMT = 281.9 g/VKT. 1 gal/yd² = 4.531 L/m².

Besides petroleum resins, other newer dust suppressants have also been successful in controlling emissions from unpaved roads. Specific test results for those chemicals, as well as for petroleum resins and watering, are provided in References 18 through 21.

Figure 13.2.2-5. Average control efficiencies over common application intervals.

13.2.2.4 Updates Since The Fifth Edition

The Fifth Edition was released in January 1995. Revisions to this section since that date are summarized below. For further detail, consult the background report for this section (Reference 6).

October 1998 (Supplement E)—This was a major revision of this section. Significant changes to the text and the emission factor equations were made.

October 2001 – Separate emission factors for unpaved surfaces at industrial sites and publicly accessible roads were introduced. Figure 13,2.2-2 was included to provide control effectiveness estimates for watered roads.

December 2003 – The public road emission factor equation (equation 1b) was adjusted to remove the component of particulate emissions from exhaust, brake wear, and tire wear. The parameter C in the new equation varies with aerodynamic size range of the particulate matter. Table 13.2.2-4 was added to present the new coefficients.

January 2006 – The PM-2.5 particle size multipliers (i.e., factors) in Table 13.2.2-2 were modified and the quality ratings were upgraded from C to B based on the wind tunnel studies of a variety of dust emitting surface materials.

References For Section 13.2.2

- C. Cowherd, Jr., et al., Development Of Emission Factors For Fugitive Dust Sources, EPA-450/3-74-037, U. S. Environmental Protection Agency, Research Triangle Park, NC, June 1974.
- 2. R. J. Dyck and J. J. Stukel, "Fugitive Dust Emissions From Trucks On Unpaved Roads", Environmental Science And Technology, 10(10):1046-1048, October 1976.
- 3. R. O. McCaldin and K. J. Heidel, "Particulate Emissions From Vehicle Travel Over Unpaved Roads", Presented at the 71st Annual Meeting of the Air Pollution Control Association, Houston, TX, June 1978.
- 4. C. Cowherd, Jr, et al., Iron And Steel Plant Open Dust Source Fugitive Emission Evaluation, EPA-600/2-79-013, U. S. Environmental Protection Agency, Cincinnati, OH, May 1979.
- 5. G. Muleski, *Unpaved Road Emission Impact*, Arizona Department of Environmental Quality, Phoenix, AZ, March 1991.
- 6. Emission Factor Documentation For AP-42, Section 13.2.2, Unpaved Roads, Final Report, Midwest Research Institute, Kansas City, MO, September 1998.
- 7. T. Cuscino, Jr., et al., Taconite Mining Fugitive Emissions Study, Minnesota Pollution Control Agency, Roseville, MN, June 1979.
- 8. Improved Emission Factors For Fugitive Dust From Western Surface Coal Mining Sources, 2 Volumes, EPA Contract No. 68-03-2924, Office of Air Quality Planning and Standards, U. S. Environmental Protection Agency, Research Triangle Park, NC.

- 9. T. Cuscino, Jr., et al., Iron And Steel Plant Open Source Fugitive Emission Control Evaluation, EPA-600/2-83-110, U. S. Environmental Protection Agency, Cincinnati, OH, October 1983.
- 10. Size Specific Emission Factors For Uncontrolled Industrial And Rural Roads, EPA Contract No. 68-02-3158, Midwest Research Institute, Kansas City, MO, September 1983.
- C. Cowherd, Jr., and P. Englehart, Size Specific Particulate Emission Factors For Industrial And Rural Roads, EPA-600/7-85-038, U. S. Environmental Protection Agency, Cincinnati, OH, September 1985.
- 12. PM-10 Emission Inventory Of Landfills In The Lake Calumet Area, EPA Contract 68-02-3891, Work Assignment 30, Midwest Research Institute, Kansas City, MO, September 1987.
- 13. Chicago Area Particulate Matter Emission Inventory Sampling And Analysis, EPA Contract No. 68-02-4395, Work Assignment 1, Midwest Research Institute, Kansas City, MO, May 1988.
- 14. PM-10 Emissions Inventory Data For The Maricopa And Pima Planning Areas, EPA Contract No. 68-02-3888, Engineering-Science, Pasadena, CA, January 1987.
- 15. Oregon Fugitive Dust Emission Inventory, EPA Contract 68-D0-0123, Midwest Research Institute, Kansas City, MO, January 1992.
- 16. Climatic Atlas Of The United States, U. S. Department Of Commerce, Washington, DC, June 1968.
- 17. National Climatic Data Center, Solar And Meteorological Surface Observation Network 1961-1990; 3 Volume CD-ROM. Asheville, NC, 1993.
- 18. C. Cowherd, Jr. et al., Control Of Open Fugitive Dust Sources, EPA-450/3-88-008, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 1988.
- G. E. Muleski, et al., Extended Evaluation Of Unpaved Road Dust Suppressants In The Iron And Steel Industry, EPA-600/2-84-027, U. S. Environmental Protection Agency, Cincinnati, OH, February 1984.
- C. Cowherd, Jr., and J. S. Kinsey, *Identification, Assessment And Control Of Fugitive Particulate Emissions*, EPA-600/8-86-023, U. S. Environmental Protection Agency, Cincinnati, OH, August 1986.
- G. E. Muleski and C. Cowherd, Jr., Evaluation Of The Effectiveness Of Chemical Dust Suppressants On Unpaved Roads, EPA-600/2-87-102, U. S. Environmental Protection Agency, Cincinnati, OH, November 1986.
- 22. Fugitive Dust Background Document And Technical Information Document For Best Available Control Measures, EPA-450/2-92-004, Office Of Air Quality Planning And Standards, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 1992.
- 23. Written communication (Technical Memorandum) from P. Hemmer, E.H. Pechan & Associates, Inc., Durham, NC to B. Kuykendal, U. S. Environmental Protection Agency, Research Triangle Park, NC, August, 21, 2003.

- 24. MOBILE6 User Guide, United States Environmental Protection Agency, Office of Transportation and Air Quality. EPA420-R-02-028, October 2002.
- 25. Written communication (Technical Memorandum) from G. Muleski, Midwest Research Institute, Kansas City, MO, to B. Kuykendal, U. S. Environmental Protection Agency, Research Triangle Park, NC, Subject "Unpaved Roads", September 27, 2001.
- 26. Written communication (Technical Memorandum) from W. Kuykendal, U. S. Environmental Protection Agency, to File, Subject "Decisions on Final AP-42 Section 13.2.2 Unpaved Roads", November 24, 2003.
- 27. C. Cowherd, Background Document for Revisions to Fine Fraction Ratios & Sed for AP-42 Fugitive Dust Emission Factors. Prepared by Midwest Research Institute for Western Governors Association, Western Regional Air Partnership, Denver, CO, February 1, 2006.

United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park NC 27711

EPA-453/R-95-017 November 1995

Air

Emission EstimatesProtocol for Equipment Leak

1995 Protocol for Equipment Leak Emission Estimates

Emission Standards Division

U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Radiation
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711

November 1995

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

	171010110 (119) 111/ 1504110	
Equipment Type	Service ^a	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

This content is from the eCFR and is authoritative but unofficial.

Displaying title 40, up to date as of 8/24/2023. Title 40 was last amended 8/24/2023.

Title 40 —Protection of Environment Chapter I - Environmental Protection Agency Subchapter C —Air Programs Part 98 - Mandatory Greenhouse Gas Reporting Subpart C —General Stationary Fuel Combustion Sources

(i) Table C-1 to Subpart C of Part 98—Default CO₂ Emission Factors and High Heat Values for Various Types of Fuel

Default CO₂ Emission Factors and High Heat Values for Various Types of Fuel

Fuel type	Default high heat value	Default CO ₂ emission factor
Coal and coke	mmBtu/short ton	kg CO ₂ /mmBtu
Anthracite	25.09	103.69
Bituminous	24.93	93.28
Subbituminous	17.25	97.17
Lignite	14.21	97.72
Coal Coke	24.80	113.67
Mixed (Commercial sector)	21.39	94.27
Mixed (Industrial coking)	26.28	93.90
Mixed (Industrial sector)	22.35	94.67
Mixed (Electric Power sector)	19.73	95.52
Natural gas	mmBtu/scf	kg CO ₂ /mmBtu
(Weighted U.S. Average)	1.026 × 10 ⁻³	53.06
Petroleum products-liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Distillate Fuel Oil No. 1	0.139	73.25
Distillate Fuel Oil No. 2	0.138	73.96
Distillate Fuel Oil No. 4	0.146	75.04
Residual Fuel Oil No. 5	0.140	72.93
Residual Fuel Oil No. 6	0.150	75.10
Used Oil	0.138	74.00

This content is from the eCFR and is authoritative but unofficial.

Displaying title 40, up to date as of 6/06/2023. Title 40 was last amended 6/06/2023.

Title 40 -- Protection of Environment Chapter I - Environmental Protection Agency Subchapter C -Air Programs Part 98 - Mandatory Greenhouse Gas Reporting Subpart C —General Stationary Fuel Combustion Sources

Table C-2 to Subpart C of Part 98—Default CH₄ and N₂O Emission Factors for Various Types of Fuel

Fuel type	Default CH4 emission factor (kg CH4/mmBtu)	Default N ₂ O emission factor (kg N ₂ O/mmBtu)
Coal and Coke (All fuel types in Table C-1)	1.1 × 10 ⁻⁰²	1.6 × 10 ⁻⁰³
Natural Gas	1.0 × 10 ⁻⁰³	1.0 × 10 ⁻⁰⁴
Petroleum Products (All fuel types in Table C-1)	3.0 × 10 ⁻⁰³	6.0 × 10 ⁻⁰⁴
Fuel Gas	3.0 × 10 ⁻⁰³	6.0 × 10 ⁻⁰⁴
Other Fuels—Solid	3.2 × 10 ⁻⁰²	4.2 × 10 ⁻⁰³
Blast Furnace Gas	2.2 × 10 ⁻⁰⁵	1.0 × 10 ⁻⁰⁴
Coke Oven Gas	4.8 × 10 ⁻⁰⁴	1.0 × 10 ⁻⁰⁴
Biomass Fuels—Solid (All fuel types in Table C-1, except wood and wood residuals)	3.2 × 10 ⁻⁰²	4.2 × 10 ⁻⁰³
Wood and wood residuals	7.2 × 10 ⁻⁰³	3.6 × 10 ⁻⁰³
Biomass Fuels—Gaseous (All fuel types in Table C-1)	3.2 × 10 ⁻⁰³	6.3 × 10 ⁻⁰⁴
Biomass Fuels—Liquid (All fuel types in Table C-1)	1.1 × 10 ⁻⁰³	1.1 × 10 ⁻⁰⁴

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction", in all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1g of CH₄/mmBtu.

[78 FR 71952, Nov. 29, 2013, as amended at 81 FR 89252, Dec. 9, 2016]

Section 8

Map(s)

A map such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

Section 8, Page 1

Saved Date: 3/15/2024

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only Items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. A copy of the certified letter receipts with post marks (20.2.72,203.B NMAC)
- 2. A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g. post office, library, grocery, etc.)
- 3. A copy of the property tax record (20.2.72,203.B NMAC).
- 4. A sample of the letters sent to the owners of record.
- 5. 🗹 A sample of the letters sent to counties, municipalities, and Indian tribes.
- A sample of the public notice posted and a verification of the local postings.
- 7. 🗹 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🗹 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

55	U.S. Postal S CERTIFIED Domestic Mail On	MAIL® RECEIPT	2
870 0001 4719 1026	Postage Certified Fee Return Receipt Fee (Endorsement Required) Restricted Delivery Fee (Endorsement Required)	tion, visit our websit US POSTAGE 3/15/2024 062512395454 87/13 000029622	The state of the s
7014 28°	Sent To Street & Apt. I or PO Box No City, State, ZI PS Form 380	STATE OF NEW MEXICO 310 OLD SANTA FE TRAIL SANTA FE, NM 87504	hs

14	U.S. Postal S CERTIFIED Domestic Mail On	MAIL® RECEIPT	
1 0001, 4722 683	Postage Certified Fee Return Receipt Fee (Endorsement Required) Restricted Delivery Fee (Endorsement Required)	tion, visit our web C	
7014 2870	Sent To Street & Apt. No., or PO Box No. City, State, ZIP+4 PS Form 3800, July	LOVING CITY MANAGER 415 WEST CEDAR STREET LOVING, NM 87256	

751	U.S. Postal S CERTIFIED Domestic Mail Or	MAIL® RECEIPT	
Б		ation, visit our webs	2
Ln Ln	OFF	SFUSTAGE	
47	Postage	S 062512395454	
Н	Certified Fee	000029626	
1000	Return Receipt Fee (Endorsement Required)	200	
870	Restricted Delivery Fee (Endorsement Required)		la F
LD LD	Total Postage & Fees	s	
#	Sent To	SALT DRAW RANCH, LLC	
	Street & Ac	3201 BOYD DR	
Γ-	or PO Box City, State,	CARLSBAD, NM 88220	
	DS Form 3		5

Table of Posted Public Notice Locations

Name	Address	City	State	Zip Code
Facility Entrance				
Carlsbad Public Library	101 S Halagueno St.	Carlsbad	NM	88220
Carlsbad Municipal Building	101 N Halagueno St.	Carlsbad	МИ	88220
Carlsbad United States Postal Service	301 N. Canyon St.	Carlsbad	NM	88220

- Account Search
- View Created Report(s)
- Help?
- Eddy County Website
- County Treasurer
- County Assessor
- County Clerk
- Logout Public

Account: R091350 *Mill Levy does not include Special District Rates such as Penasco, Carlsbad Soil & Water, Central Valley, Eagle Draw, PVC, Cottonwood, and Hackberry

Location	Owner Information	Assessment	<u>History</u>	
Account Number R091350	Owner Name SALT DRAW RANCH LLC	Actual Valu	ie (2024)	\$144
Situs Address E OF 1102 PECOS HIGHWAY	Owner Address 3201 BOYD DR	Primary Ta	xable	\$48
Tax Area CO_NR - CARLSBAD-OUT (Nonresidential)	CARLSBAD, NM 88220	Tax Area	: CO_NR 22.56100	Mill Levy:
Parcel Number 4-168-146-133-066		Туре	Actual A	ssessed Acres
Legal Summary Quarter: NW S: 12 T: 25S R: 28E N2NW		Agriculture Land	\$144	\$48 80.000
Map Number 383-12				
Parcel Size 80 AC				
Tax History	Images			
Tax Year Taxes	CIG			
*2025 \$1.12	• GIS			

* Estimated

2024

No Tax Values

March 15, 2024

CERTIFIED MAIL 7014 2870 0001 4719 1026

RETURN RECEIPT REQUESTED (certified mail is required, return receipt is optional)

Dear Neighbor,

Targa Northern Delaware, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the **modification** of its **compressor station** facility. The expected date of application submittal to the Air Quality Bureau is **March 15, 2023**.

The exact location for the proposed facility known as, **Cadillac Compressor Station**, is at **32.149885°**, **-104.048548°**. The approximate location of this facility is **5.0** miles **south-southeast** of **Malaga**, **NM** in **Eddy** county.

The proposed **modification** consists of replacing various compressor engines with like-kind replacements, adding a heater trailer, air compressor generator, and vapor combustion unit, removing select compressor engines and one storage tank, and to modify all other units based on a recent inlet gas analysis.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and may change slightly during the course of the Department's review:

Pounds per hour	Tons per year
4	15
4	15
2	4
30	126
34	147
2,274	212
1	1
104	38
N/A	N/A
N/A	93,048
	4 4 2 30 34 2,274 1 104 N/A

The standard operating schedule of the facility will be 24 hours a day, 7 days a week, and 52 weeks per year.

Owners and operators of the facility include:

Targa Northern Delaware, LLC 811 Lousianna St, Ste 2100 Houston, TX 77002

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Sincerely,
Targa Northern Delaware, LLC
811 Lousianna St, Ste 2100
Houston, TX 77002

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

March 15, 2024

CERTIFIED MAIL 7014 2870 0001 4722 6834

RETURN RECEIPT REQUESTED (certified mail is required, return receipt is optional)

Dear Municipal Official,

Targa Northern Delaware, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the **modification** of its **compressor station** facility. The expected date of application submittal to the Air Quality Bureau is **March 15, 2023.**

The exact location for the proposed facility known as, Cadillac Compressor Station, is at 32.149885°, -104.048548°. The approximate location of this facility is 5.0 miles south-southeast of Malaga, NM in Eddy county.

The proposed **modification** consists of replacing various compressor engines with like-kind replacements, adding a heater trailer, air compressor generator, and vapor combustion unit, removing select compressor engines and one storage tank, and to modify all other units based on a recent inlet gas analysis.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM 10	4	15
PM _{2.5}	4	15
Sulfur Dioxide (SO ₂)	2	4
Nitrogen Oxides (NO _x)	30	126
Carbon Monoxide (CO)	34	147
Volatile Organic Compounds (VOC)	2,274	212
Hydrogen Sulfide (H₂S)	1	1
Total sum of all Hazardous Air Pollutants (HAPs)	104	38
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO₂e	N/A	93,048

The standard operating schedule of the facility will be 24 hours a day, 7 days a week, and 52 weeks per year.

Owners and operators of the facility include:

Targa Northern Delaware, LLC 811 Lousianna St, Ste 2100 Houston, TX 77002

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Sincerely,
Targa Northern Delaware, LLC
811 Lousianna St, Ste 2100
Houston, TX 77002

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

General Posting of Notices – Certification

I,Kim Hamlet true and correct copy of the attached Public Notice in in the Town of Carlsbad, Eddy County, State of New N	, the undersigned, certify that on 3-15-2024, posted a the following publicly accessible and conspicuous places Mexico on the following dates:
 Facility entrance [DATE] Carlsbad Public Library, 101 S Halagueno S Carlsbad Municipal Building, 101 N Halagu Carlsbad United States Postal Service 301 	and the company of th
Signed this <u>15</u> day of <u>March</u> , <u>20</u>)24
Kim Hamlet	3-15-2024
Signature	Date
_Kim Hamlet	
Printed Name	
ES&H Coordinator	
Title {APPLICANT OR RELATIONSHIP TO APPLICANT}	

Department for an air quality permit for the modification of its compressor station facility. The espectra date Targa Northern Delaware, LLC announces its application submittal to the Knw Masso Environment of application submittal to the Air Quality Sureauts March 15, 2023.

104.0485481. The approximate location of this fighth is 5.0 miles couch coutherst of Matter, Miller 660y The exact location for the proposed lacking known as, Cadillar Compressor Station, sur 32 L69457.

adding a heater staker, air compressor generator, and vapor combutors and removing which compressor The proposed modification commits of replacing various concretes engines with the underplacements. The estimated maximum quantities of any regulates an consumers will be as bolous in pound problem. (soft) and form per year (spy) and could thanks highly during the course of the Department Establish engines and one storage tank, and to modify at other acut based on a resent whe garanthos

2				Strik William St. Bed 52 week liber stells
1300 per 1446 13 13 13 1446	* # # :	: ⊋	2.5	
Poundi per hour	~ 2	3, 72 3, 72	- 55	200
Popul				r.
			200	
			MOTOR OF SALE (SAND) AT TABLES IN TO SALE (SAND)	Total part of Antipole (198). Total for Policies (198).
		000	Volume Organia (compositorio) prompto special (compositorio) prompto special compositorio del Establia	Strene
	_	102 800 800	(4.8) (4.8)	Total part of an ending the foreign
÷	PM, 15 Surfair Dissacte (90s)	standen Distal (404) Carbon Mondonite (CO)	Application organization (compared to property) (compared to propert	Towns I
Postant	200	O CO	0 1	1

the distribution of the state o

the place of which is presented as a final control of the second of the second present and the second of the secon the common and to operate in the fact from the common and to operate in the fact from the fact from the fact from the fact from the section for a possible from the angle of a possible from the angle of a possible from the angle of the fact from
المواقعة المواقعة المواقعة المواقعة المواقعة المواقعة المواقعة المواقعة المواقعة المواقعة المواقعة المواقعة الم المواقعة الم المواقعة الم الافراديون في والاستخدادي دولوديو دول درسوند وموجول لوق و در اموا شاولون ع دول محرد كو دا يدا نبيادي محددهم وم الافراديوسون الافرادي وموجود وموجود الافراديوسون مع المردي والمردي المواجود المواجود والمواجود والمواجود والموجود وا

The control of the co

A compared of the compared of

03/15/2024 9:34 AM

The second secon

And the second s

The state of the s

Table of Noticed Citizens

Name	Address	City	State	Zip Code
STATE OF NEW MEXICO	310 OLD SANTA FE TRAIL	SANTA FE	NM	87504
JOY ELIZABETH COOKSEY	PO BOX 85	TEAGUE	TX	75860
CHARLES G WILEY TRUST	401 S 5TH STREET	SANTA ROSA	NM	88435
CHARLES GETCHELL WILEY TRUSTEE	401 S 5TH STREET	SANTA ROSA	MM	88435
SALT DRAW RANCH LLC	3201 BOYD DR	CARLSBAD	NM	88220

Table of Noticed Municipalities

Name	Address	City	State	Zip Code
LOVING CITY MANAGER	415 WEST CEDAR STREET	LOVING	MM	87256

Table of Noticed Counties

Name	Address	City	State	zih code
EDDY COUNTY - COUNTY MANAGER	101 W GREENE STREET, SUITE 110	CARLSBAD	NM	88220

Table of Noticed Tribes

Name Address City	State Zip Code
N/A	

Submittal of Public Service Announcement – Certification

	at on March 15, 2024 , submitted a public service City of Carlsbad, Eddy County, New Mexico, in which the Isbad Radio DID NOT RESPOND.
Signed this 15 day of March , 2024	<u> </u>
Daniel Dolce Signature	3/15/2024 Date
Daniel Dolce Printed Name	
Associate Consultant - Trinity Consultants Title {APPLICANT OR RELATIONSHIP TO APPLICANT	Γ}

Daniel Dolce

From:

Daniel Dolce

Sent:

Friday, March 15, 2024 1:10 PM

To:

don@carlsbadradio.com

Subject:

Cadillac Compressor Station Public Service Announcement

Dear Radio 92.1 KATK-FM,

Per New Mexico Administrative Code 20.2.72.203.B NMAC and according to the Guidance for Public Notice for Air Quality Permit Applications – **(5) Notifications: Submittal of Public Service Announcement (PSA):** A public service announcement required for permits and significant permit revisions must be submitted to at least one radio or television station, which services the municipality, or county which the facility is or will be located. **Therefore, based on the above, we respectfully ask you to air the information shown below as a Public Service Announcement.**

The public service announcement request must contain the following information about the facility or proposed facility (20.2,72,203.D NMAC).

a. The name: Cadillac Compressor Station, location: 32.149885°, -104.048548°. and type of business: Compressor Station.

b. The name and principal owner or operator: Targa Northern Delaware, LLC – owner and operator.

c. The type of process or change for which the permit is sought: NSR Significant Revision — replacing various compressor engines with like-kind replacements; adding a heater trailer, air compressor generator, and vapor combustion unit; removing select compressor engines and one storage tank; and to modify all other units based on a recent inlet gas analysis.

d. Locations where the notices have been posted in Loving, NM 88256: (1) Cadillac Station Facility Entrance, (2) Carlsbad Public Library, 101 S Halagueno St. Carlsbad, NM 88220, (3) Carlsbad Municipal Building, 101 N Halagueno St, Carlsbad, NM 88220, and (4) Carlsbad United States Postal Service, 301 N. Canyon Street Carlsbad, NM 88220.

e. The Department's address or telephone number to which comments may be directed: **Permit Programs** manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 (800) 224-7009.

Thank you and regards, Daniel Dolce

Daniel Dolce

Associate Consultant

P 505.266.6611 M 505.818.8761

Email: daniel.dolce@trinityconsultants.com

9400 Holly Avenue NE, Building 3, Suite B, Albuquerque, NM 87122

Connect with us: LinkedIn / YouTube / trinityconsultants.com (UPDATED WEBSITE!)

View our capabilities in the Environmental Consulting, Built Environment, Life Sciences, and Water & Ecology markets.

Affidavit of Publication

No.

State of New Mexico		1			
County of Eddy:					
Danny Scott	mes SE				
being duly sworn, sayes	that he is the	Publisher			
of the Artesia Daily Pres	s, a daily newspaper	of General			
circulation, published in	English at Artesia, sa	aid county			
and state, and that the he	reto attached				
Displ	lay Ad				
was published in a regul	ar and entire issue of	f the said			
Artesia Daily Press, a da	ily newspaper duly q	ualified			
or that purpose within th	or that purpose within the meaning of Chapter 167 of				
the 1937 Session Laws of the state of New Mexico for					
Consecutive weeks/day on the same					
day as follows:					
First Publication	March 14	4, 2024			
Second Publication					
Third Publication					
Fourth Publication					
Fifth Publication					
Sixth Publication					
Subscribed ans sworn before	ore me this				
h day of	March 2	024			

LATISHA ROMINE
Notary Public, State of New Mexico
Commission No. 1076338
My Commission Expires
05-12-2027

Latisha Romine

Notary Public, Eddy County, New Mexico

Copy of Publication:

NOTICE OF AIR QUALITY PERMIT APPLICATION

Targa Northern Delaware, LLC announces its application submittal to tl Mexico Environment Department for an air quality permit for the modif of its compressor station facility. The expected date of application submitted Air Quality Bureau is March 15, 2023.

The exact location for the proposed facility known as, Cadillac Compress tion, is at 32.149885°, - 104.048548°. The approximate location of this fa 5.0 miles south-southeast of Malaga, NM in Eddy County.

The proposed modification consists of replacing various compressor of with like-kind replacements, adding a heater trailer, air compressor ger and vapor combustion unit, removing select compressor engines and one tank, and to modify all other units based on a recent inlet gas analysis.

The estimated maximum quantities of any regulated air contaminant will follows in pound per hour (pph) and tons per year (tpy) and could change a during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM 10 PM 2.5 Sulfur Dioxide (SO2)	$\hat{4}$	15
PM,	4	15
Sulfür Dioxide (SO2)	2	4
Nitrogen Oxides (NO)	30	126
Carbon Monoxide (CO)	34	147
Volatile Organic Compounds (VOC)	2,274	212
Hydrogen Sulfide (H2S)	1	1
Total sum of all Hazardous Air		
Pollutants (HAPs)	104	38
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total	CO ₂ e N/A	93,048

The standard operating schedule of the facility will be 24 hours a day, 7 dayweek, and 52 weeks per year.

The owner and/or operator of the Facility is: Targa Northern Delaware, LLC 811 Lousianna St, Ste 2100 Houston, TX 77002

If you have any comments about the construction or operation of this facili you want your comments to be made as part of the permit review process must submit your comments in writing to this address: Permit Programs Ner; New Mexico Environment Department; Air Quality Bureau; 525 Cam los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other commen questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and site name, or send a copy of this along with your comments, since the Department may have not yet receiv permit application. Please include a legible return mailing address with comments. Once the Department has performed a preliminary review of application and its air quality impacts, the Department's notice will be put in the legal section of a newspaper circulated near the facility location. G information about air quality and the permitting process, and links to the r tions can be found at the Air Quality Bureau's website: www.env.nm.gov/air ity/permitting-section-home-page/. The regulation dealing with public partion in the permit review process is 20.2.72.206 NMAC.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Me Ambiente de Nuevo México, acerca de las emisiones producidas por un est lecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Affidavit of Publication

26796 No. State of New Mexico. County of Eddy; Danny Scott being duly sworn, sayes that be is the Publisher of the Artesia Daily Press, a daily newspaper of General circulation, published in English at Artesia, said county and state, and that the hereto attached Legal Ad was published in a regular and entire issue of the said Artesia Daily Press, a daily newspaper duly qualified for that purpose within the meaning of Chapter 167 of the 1937 Session Laws of the state of New Mexico for Consecutive weeks/day on the same day as follows: First Publication March 14, 2024 Second Publication Third Publication Fourth Publication Fifth Publication Sixth Publication Subscribed ans sworn before me this 14th day of March 2024 LATISHA ROMINE Notary Public, State of New Mexico Commission No. 1076338 My Commission Expires 05-12-2027

Latisha Romine

Notary Public, Eddy County, New Mexico

10 Mine

Copy of Publication:

Legal Notice

NOTICE OF AIR QUALITY PERMIT APPLICATION

Targa Northern Delaware, LLC announces its application submittal to the Mexico Environment Department for an air quality permit for the modification of its compressor station facility. The expected date of application submittated Air Quality Bureau is March 15, 2023.

The exact location for the proposed facility known as, Cadillac Compression, is at 32.149885°, - 104.048548°. The approximate location of this faction of the south-southeast of Malaga, NM in Eddy County.

The proposed modification consists of replacing various compressor engin like-kind replacements, adding a heater trailer, air compressor generator, a por combustion unit, removing select compressor engines and one storag and to modify all other units based on a recent inlet gas analysis.

The estimated maximum quantities of any regulated air contaminant will follows in pound per hour(pph) and tons per year (tpy) and could change during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
	4	15
PM ₁₀ PM ₂₅	4	15
Sulfur Dioxide (SO ₂)	2	4
Nitrogen Oxides (NO)	30	126
Nitrogen Oxides (NO.) Carbon Monoxide (CO)	34	147
Volatile Organic Compounds (VOC)	2,274	212
Hydrogen Sulfide (H,S)	1	1
Total sum of all Hazardous Air		
Pollutants (HAPs)	104	38
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total	CO ₂ e N/A	93,04

The standard operating schedule of the facility will be 24 hours a day, 7 da week, and 52 weeks per year.

The owner and/or operator of the Facility is: Targa Northern Delaware, LLC 811 Lousianna St, Ste 2100 Houston, TX 77002

If you have any comments about the construction or operation of this fact you want your comments to be made as part of the permit review procumust submit your comments in writing to this address: Permit Programs er; New Mexico Environment Department; Air Quality Bureau; 525 Ca los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other commquestions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and site name, or send a copy of the along with your comments, since the Department may have not yet recepermit application. Please include a legible return mailing address with your ments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be point the legal section of a newspaper circulated near the facility location. General information about air quality and the permitting process, and ling regulations can be found at the Air Quality Bureau's website: www.envair-quality/permitting-section-home-page/. The regulation dealing with participation in the permit review process is 20.2.72.206 NMAC.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del M Ambiente de Nuevo México, acerca de las emisiones producidas por un oblecimiento en esta área. Si usted desea información en español, por favo muníquese con esa oficina al teléfono 505-629-3395.

Cadillac Compressor Station Web Print: 03/14/2024 This map is a user generated static output from an Internet mapping site and is for reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable.

Section 10

Written Description of the Routine Operations of the Facility

A written description of the routine operations of the facility. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Low pressure field gas is gathered from various wells in the area and sent to an inlet separator. The gas from the separator is compressed by ten (10) natural gas driven compressor engines (units ENG-1 through ENG-10). Once the gas is compressed, it is treated using a glycol dehydration system (unit Dehy-1) to remove entrained water. The dry gas is then sent off site via pipeline for further processing.

The glycol dehydration unit incorporates three distinct sources of air emissions: (1) flash tank, (2) BTEX condenser still vent, and a (3) natural gas fired reboiler (unit RBL-1). Flash tank emissions are recycled to the inlet, however, during periods where the inlet pressure is too high, the emissions are routed to the storage tanks (units TK-1 through TK-3). The BTEX condenser still vent emissions are routed to the reboiler as fuel, however, during periods in which the reboiler does not call for fuel, the emission are routed to the tanks.

Liquids from the inlet separator, as well as from compressor interstage knockout are sent to three (3) atmospheric storage tanks (units TK-1 though TK-3). Flash, working ,and breathing emissions as well as dehy flash gas (during high inlet pressure periods) and BTEX condenser still vent (during periods in which the reboiler does not call for fuel) are controlled with a vapor combustion unit (unit VCU) with a 100% capture efficiency and a 98% DRE. While liquids may be transported offsite via pipeline, loading emissions (unit LOAD) are represented for the entire facility throughput for liquids along with associated haul road emissions (unit HAUL), the latter of which is exempt pursuant to 20.2.72.202.B.(5) NMAC.

During the winter months, a diesel fired heater trailer (unit Trailer-1) is used to help start up cold engines. A natural gas fired air compressor generator (unit GEN-1) is also used for pneumatics. Startup, shutdown, maintenance /malfunction emissions (SSM/M) include compressor blowdowns, dehydrator blowdowns, filter coalescer blowdowns, scrubber blowdowns, pump blowdowns, reboiler maintenance, pigging, pipeline blowdowns, and tank maintenance. Details regarding the number of events and gas volumes associated with these activities can be found in the provided calculations.

Saved Date: 3/15/2024

Source Determination

Source submitting under 20,2.70, 20,2.72, 20,2.73, and 20,2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, Single Source Determination Guidance, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of

these factors in support of the responses below is optional, unless requested by NMED. A. Identify the emission sources evaluated in this section (list and describe): Please refer to Table 2-A of this application. B. Apply the 3 criteria for determining a single source: SIC Code: Surrounding or associated sources belong to the same 2-digit industrial grouping

(2-digit SIC code) as this facility different 2-digit SIC codes are sup	r, <u>OR</u> surrou oport facilitie	anding or associated sources that belong to es for this source.
<u> </u>	í Yes	□ No
Common Ownership or Control: ownership or control as this source		ng or associated sources are under common
図	l Yes	□ No
Contiguous or Adjacent: Surrou with this source.	ınding or as	sociated sources are contiguous or adjacent
四	Yes	□ No

C. Make a determination:

- ☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- ☐ The source, as described in this application, does not constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Form-Section 11 last revised: 10/26/2011

Section 11, Page 1

Saved Date: 3/15/2024

Section 12

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

requirements of whether this mo the Net Emission	20.2.7 dificati ns Char	cermination for all sources. For sources applying for a significant permit revision, apply the applicable 4.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and ion is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining age at a Source as specified by Table A-5 (Page A.45) of the EPA New Source Review Workshop Manual
to determine if t	he revi	Ision is subject to PSD review.
A, Thi		
	\mathbf{Z}	a minor PSD source before and after this modification (if so, delete C and D below).
-		a major PSD source before this modification. This modification will make this a PSD minor source.
		an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
		an existing PSD Major Source that has had a major modification requiring a BACT analysis
		a new PSD Major Source after this modification.
		an existing PSD Major Source that has had a major modification requiring a BACT analysis

This application is for an NSR Significant modification.

Section 13

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column provide any information needed to determine if the regulation does or does not apply. For example, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

Form-Section 13 last revised: 5/8/2023 Section 13, Page 1 Saved Date: 3/15/2024

Table for State Regulations:

State Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. The owner or operator will operate the source at the facility having an excess emission, to the extent practicable, including associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions. The facility will also notify the NMED of any excess emissions per 20.2.7.110 NMAC.
20.2.23 NMAC	Fugitive Dust Control	No	Facility	This regulation does not apply because this application is not for a Notice of Intent
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	Yes	RBL-1	This facility has existing gas burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility does not have oil burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	This regulation establishes sulfur emission standards for natural gas processing plants. This facility is a compressor station and not a natural gas process plant. Therefore, this regulation does not apply.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	No	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	This facility does not have any containers with a capacity of 20,000 gallons or a throughput of 30,000 gallons/week.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This facility is not a sulfur recovery plant; therefore, this regulation does not apply
				This regulation establishes emission standards for volatile organic compounds (VOC) and oxides of nitrogen (NOx) for oil and gas production, processing, compression, and transmission sources. 20.2.50 NMAC subparts below:
				Check the box for the subparts that are applicable: ⊠113 – Engines and Turbines ⊠114 – Compressor Seals
	Oil and Can Castan			□115 – Control Devices and Closed Vent Systems □116 – Equipment Leaks and Fugitive Emissions □117 – Natural Gas Well Liquid Unloading □118 – Glycol Dehydrators
20.2.50 NMAC	Oil and Gas Sector – Ozone Precursor Pollutants			☐ 119 – Heaters ☑ 120 – Hydrocarbon Liquid Transfers ☐ 121 – Pig Launching and Receiving
				□ 122 – Pneumatic Controllers and Pumps □ 123 – Storage Vessels □ 124 – Well Workovers
				☐ 125 – Small Business Facilities ☐ 126 – Produced Water Management Unit ☐ 127 – Flowback Vessels and Preproduction Operations
				113 – Units ENG-1 through ENG-10 are existing natural gas-fired spark ignition engines rated >1000 hp and are therefore subject to the requirements of this

Regu	ate lation ation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
					subpart. GEN-1 is a new natural gas-fired spark ignition engine rated <500 hp. Trailer-1 is a diesel fired engine. Therefore, GEN-1 and Trailer-1 are not subject to the requirements of this subpart. 114 – ENG-1 through ENG-10 are reciprocating compressors located at a gathering and boosting station and are therefore subject to the requirements of this subpart. Trailer-1 and GEN-1 are not compressor engines and are therefore not subject to the requirements of this subpart. 115 – N/A – The control devices used at this facility are not used to comply with the requirements of Part 50; therefore, this subpart does not apply. 116 – This facility is a gathering and boosting station and is therefore subject to the requirements of this subpart. 117 – N/A – There are no natural gas wells located at this facility; therefore, this subpart does not apply. 118 – N/A – Dehy-1 does not have a PTE > 2 tpy VOC; therefore, this subpart does not apply. 119 – N/A – RBL-1 does not have a rated heat input >20 MMBtu/hr; therefore, this subpart does not apply. 120 – This facility is a gathering and boosting station with one or more controlled storage vessels and performs hydrocarbon liquid transfers and is therefore subject to the requirements of this subpart. 121 – N/A – The pipeline pigging operations at this facility have a PTE < 1 tpy; therefore, this subpart does not apply. 122 – N/A – The facility will not have natural gas driven pneumatics after this modification; therefore, this subpart does not apply. 123 – N/A – TK-1 through TK-3 are existing storage tanks located at a multi-tank battery, but do not have a PTE > 3 tpy VOC; therefore , this subpart does not apply. 125 – N/A – There are no oil or natural gas wells located at this facility; therefore, this subpart does not apply. 126 – N/A – There are no produced water managements units located at this facility; therefore, this subpart does not apply.
20.2.6 NMAC		Smoke & Visible Emissions	Yes	ENG-1 through ENG-10, Trailer- 1, GEN-1, RBL-1, VCU-1	This regulation establishes controls on smoke and visible emissions from certain sources, including stationary combustion equipment such as engines, boilers, and flares. The compressor engines (ENG-1 through ENG-10), engines (Trailer-1 & GEN-1), glycol reboiler (RBL-1), and vapor combustion unit (VCU-1) are subject to this regulation.
20.2.7 NMAC		Operating Permits	Yes	Facility	This regulation establishes requirements for obtaining an operating permit. This facility is a major source with respect to Title V. The facility will comply with all operating permit conditions as applicable.
20.2.7 NMAC		Operating Permit Fees	Yes	Facility	This regulation establishes a schedule of operating permit emission fees. The facility is subject to 20.2.70 NMAC and is therefore subject to requirements of this regulation.
20.2.7 NMAC		Construction Permits	Yes	Facility	This regulation establishes a schedule of operating permit emission fees. The facility is subject to 20.2.70 NMAC and is therefore subject to requirements of this regulation.
20.2.7 NMAC		NOI & Emissions Inventory Requirements	Yes	Facility	This regulation establishes emission inventory requirements. The facility meets the applicability requirements of 20.2.73.300 NMAC. The facility will meet all applicable reporting requirements under 20.2.73.300.B.1 NMAC.

State Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.74 NMAC	Permits — Prevention of Significant Deterioration (PSD)	No	N/A	This regulation establishes requirements for obtaining a prevention of significant deterioration permit. This facility is not a PSD major source. Therefore, this regulation does not apply.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation establishes a schedule of operating permit emission fees. This facility is subject to 20.2.72 NMAC and in turn subject to 20.2.75 NMAC. The facility is exempt from annual fees under this part (20.2.75.11.E NMAC) as it is subject to fees pursuant to 20.2.71 NMAC.
20.2.77 NMAC	New Source Performance	Yes	ENG-1 through ENG-10, GEN-1	This is a stationary source which is subject to the requirements of 40 CFR Part 60.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	This facility emits hazardous air pollutants which are subject to the requirements of 40 CFR Part 61. However, there are no units subject to 40 CFR Part 61; therefore, this regulation does not apply.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	This regulation establishes the requirements for obtaining a nonattainment area permit. The facility is not located in a non-attainment area and therefore is not subject to this regulation.
20.2.80 NMAC	Stack Heights	No	N/A	This regulation establishes requirements for the evaluation of stack heights and other dispersion techniques. This regulation does not apply, as all stacks at the facility will follow good engineering practice.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	ENG-1 through ENG-10, GEN-1, Dehy-1	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63.

Table for Applicable Federal Regulations (Note: This is not an exhaustive list):

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 50	NAAQS	No	Facility	The modeling and conditions developed from the modeling are the applicable requirements to demonstration compliance with the NAAQS.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	ENG-1 through ENG-10, GEN-1	The compressor engines and generator are subject to NSPS JJJJ, compressors are subject to NSPS OOOOa or OOOOb. Applicability is dependent upon manufacture dates of equipment, which are TBD. Facility fugitives will be subject to NSPS OOOOa. TK-1 through TK-3 are not subject to OOOOa.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards of performance for fossil-fuel-fired stream generators. This regulation does not apply as the facility does not have any fossil fuel-fired steam generating units with a heat input rate of 250 MMBtu/hr [60.40(a)(1)].
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards of performance for electric utility steam generating units. This regulation does not apply because the facility does not operate any electric utility steam generating units.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	This regulation does not apply as there are no small industrial commercial instructional steam generating units at this facility.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	This facility does not operate storage vessels constructed between May 18, 1978 and July 23, 1984. Therefore this subpart does not apply.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	This facility does not have storage vessels with design capacities > 75m ³ .
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	This Facility does not operate stationary gas turbines with a heat input equal to or greater than 10 million Btu per hour. Therefore this regulation does not apply.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	The facility was constructed after the applicability date of 40 CFR 60 Subpart KKK (August 23, 2011).
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions	No	N/A	The facility was constructed after the applicability date of 40 CFR 60 Subpart LLL (August 23, 2011).
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction	No	N/A	This regulation is applicable to onshore affected facilities listed in paragraphs (a) through (g) of this section constructed after August 23, 2011, and on or before September 18, 2015. The facility is not subject to this regulation.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
	commenced after August 23, 2011 and before September 18, 2015			
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015 and before December 6, 2022	No	N/A	This regulation is applicable to onshore affected facilities listed in paragraphs (a) through (g) of this section constructed after September 18, 2015, and on or before December 6, 2022. The facility is not subject to this regulation.
NSPS 40 CFR Part 60 Subpart OOOOb	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After December 6, 2022	Yes	ENG-1 through ENG-10, FUG	This regulation establishes standards of performance for crude oil and natural gas production, transmission, and distribution. The compressors associated with ENG-1 through ENG-10 are subject to this regulation. Fugitive emissions (FUG) are subject to the leak detection requirements of this regulation. Facility wide LDAR monitoring will be conducted by using optical gas imaging for the compressor station. Storage tanks TK-1 through TK-3 have a PTE of less than 6 tpy of VOC and are therefore not subject to this regulation.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	This regulation establishes standards of performance for stationary compression ignition internal combustion engines. This rule applies to IC engines (diesel engines) that commenced construction after July 11, 2005. Trailer-1 is a diesel fired compression ignition engine, however, Trailer-1 will not be stationary for more than 12 months; therefore, this regulation does not apply.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	ENG-1 through ENG-10, GEN-1	ENG-1 through ENG-10 and GEN-1 are stationary spark ignition engines and are subject to NSPS JJJJ pursuant to 40 CFR 60.4233(e).
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	This facility does not have any steam generating units; therefore, the facility is not subject to this regulation.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	This facility does not generate electricity; therefore, this regulation does not apply.
NSPS 40 CFR 60, Subparts	Standards of performance for Municipal Solid			This facility is not a landfill; therefore, this regulation does not apply.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
WWW, XXX, Cc, and Cf	Waste (MSW) Landfills			
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	NSPS 40 CFR 61 does not apply to the facility because the facility does not emit or have the triggering substances on site and/or the facility is not involved in the triggering activity. The facility is not subject to this regulation. None of the subparts of Part 61 apply to the facility.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The provisions of this subpart are applicable to those stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge. Therefore, this subpart does not apply.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	Not applicable as the facility equipment does not operate in VHAP service. VHAP service is a piece of equipment, which contains or encounters a fluid that is at least 10% weight of VHAP. VHAP is a substance regulated under this subpart for which a standard for equipment leaks of VHAPs has been promulgated.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	ENG-1 through ENG-10, GEN-1, Dehy-1	Applies if any other Subpart in 40 CFR 63 applies.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	Dehy-1	This regulation establishes national emission standards for hazardous air pollutants from oil and natural gas production facilities. The facility is a major source of HAPs and meets the definition of a natural gas processing plant. The dehydrator will have a natural gas flow rate equal to or greater than 85 thousand standard cubic meters per day. The dehydrator does not meet the definition of a Large Glycol Dehydration Unit in 40 CFR 63.761 because the actual annual average benzene emissions are not equal to or greater than 0.90 Mg/yr as determined according to 40 CFR 63.772(b). When determining the benzene emissions with federally enforceable controls as allowed in 40 CFR 63.772(b)(2), the benzene emissions are less than 0.9 Mg/yr.
MACT 40 CFR 63 Subpart HHH	National Emissions Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage facilities	No	N/A	This facility is not a natural gas transmission or storage facility. Thus this subpart does not apply.
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	Yes	RBL-1	This regulation establishes the national emissions standards for hazardous air pollutants for major industrial, commercial, and institutional boilers and process heaters. This facility operates a glycol reboiler which meets the definition of a process heater as defined in § 63.7575 and it is located at a major source of HAPs and is therefore subject to the requirements of this regulation.
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	This subpart establishes national emission limitations and work practice standards for hazardous air pollutants (HAP) emitted from coal- and oil-fired electric utility steam generating units (EGUs) as defined in §63.10042 of this subpart. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations. This facility does not contain the affected units and is therefore not subject to this regulation.
MACT	National Emissions Standards for Hazardous Air	Yes	ENG-1 through	This regulation defines national emissions standards for HAPs from stationary reciprocating Internal Combustion Engines. ENG-1 through ENG-10 are subject to

Form-Section 13 last revised: 5/8/2023

Section 13, Page 7

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 63 Subpart ZZZZ	Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)		ENG-10, GEN-1	MACT ZZZZ and comply by following the requirements of NSPS JJJJ. GEN-1 is subject to MACT ZZZZ and complies by following the requirements of NSPS JJJJ.
40 CFR 64	Compliance Assurance Monitoring	No	N/A	This regulation establishes requirements for a Compliance Assurance Monitoring (CAM) plan for pollutant-specific emissions units at a major source required for part 70 or 71 permitting. This application is being submitted under part 72 and is therefore not subject to this regulation.
40 CFR 68	Chemical Accident Prevention	No	N/A	This facility does not have any sources listed in this subpart. Therefore, this regulation does not apply.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	Not applicable as this facility is not an acid rain source.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	Not applicable as this facility is not an acid rain source.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	Not applicable as this facility does not generate commercial electric power or electric power for sale.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	Not applicable as this facility is not an acid rain source.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	Not applicable as the facility does not service, maintain, repair class I or class II appliances nor disposes of the appliances.

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has
developed an Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies defining the
measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by
20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request
This plan should not be submitted with this application.

- NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions During Malfunction</u>, <u>Startup</u>, <u>or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.
 - To the maximum extent practicable, the air pollution control equipment, process equipment, or processes, will be maintained and operated in a manner consistent with good practice for minimizing emissions;
 - Repairs will be made in an expeditious fashion when the operator becomes aware that applicable emission limitations are being exceeded;
 - Off-shift labor and overtime will be utilized, to the extent practicable, to ensure that such repairs were made as expeditiously as practicable;
 - Scheduled maintenance will be planned ahead to coincide with maintenance on other production equipment, or other source shutdowns, to the extent practicable;
 - The amount and duration of the excess emissions (including any during bypass) periods will be minimized to the maximum extent practicable;
 - All possible steps will be taken to minimize the impact of the excess emissions on ambient air quality; and,
 - The facility will monitor all operations to ensure that excess emissions are not part of a recurring pattern indicative of inadequate design, operation, or maintenance.

Form-Section 14 last revised: 8/15/2011 Section 14, Page 1 Saved Date: 3/15/2024

Section 15

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

There are no alternate operating scenarios at this facility.

Form-Section 15 last revised: 8/15/2011 Section 15, Page 1 Saved Date: 3/15/2024

Saved Date: 3/15/2024

Section 16

Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app form.html) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC). See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	Х
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check ea	ich box	that a	pplies:
----------	---------	--------	---------

Ш	See attached, approved modeling waiver for all pollutants from the facility.
	See attached, approved modeling waiver for some pollutants from the facility.
\boxtimes	Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.
	Attached in UA4 is a modeling report for some pollutants from the facility.
	No modeling is required.

AIR DISPERSION MODELING PROTOCOL

NSR Significant Revision Modeling Protocol

Targa Northern Delaware, LLC Cadillac Compressor Station

Prepared By:

Jaimy Karacaoglu - Consultant

TRINITY CONSULTANTS

9400 Holly Avenue NE Building 3, Suite B Albuquerque, NM 87122 (505) 266-6611

March 2024

Project 243201.0017

1.1 Purpose of Modeling

Cadillac Compressor Station (Cadillac) is a natural gas compressor station for transport of natural gas owned by and operated by Targa Northern Delaware, LLC (Targa). Gas enters the facility through an inlet separator, is compressed, and then dehydrated before transported offsite via pipeline. The facility collects and stores condensate generated at the inlet separator and compressors, which will be transported offsite via truck. Cadillac is located approximately 5.0 miles south of Malaga, NM in Eddy County.

Targa is submitting an application pursuant to 20.2.72.219.D.1.a NMAC for significant revision of NSR Permit No. 7995-M3. The purpose of this revision is: to add one (1) heater trailer (unit Trailer-1), one (1) air compressor generator (unit GEN-1), and one (1) vapor combustion unit (unit VCU-1); remove one (1) Caterpillar 3516 compressor engine (unit 18-0345), and one (1) 300 bbl storage tank (unit TK-4); replace two (2) Caterpillar 3516 compressor engines (units 18-0341 & 18-0342) with like-kind compressor engines (units ENG-1 & ENG-7, respectively), and five (5) Caterpillar 3606 compressor engines (units 18-0246, 18-0296, 18-0304, ENG-1, & ENG-2) with like-kind replacements (ENG-2 through ENG-6, respectively); and to modify all other units based on a recent inlet gas analysis (units ENG-8 through ENG-10, Dehy-1, RBL-1, TK-1 through TK-3, LOAD, FUG, SSM/M).

Targa seeks to demonstrate compliance with the National Ambient Air Quality Standards (NAAQS), New Mexico Ambient Air Quality Standards (NMAAQS), and PSD Increment standards as applicable for the following pollutants and averaging periods: NO₂ (1-hour and annual), CO (1-hour and 8-hour), SO₂ (1-hour, 3-hour, 24-hour, and annual), H₂S (1-hour), PM_{2.5} (24-hour and annual), and PM₁₀ (24-hour and annual).

1.2 Facility Description and Location

The approximate UTM coordinates of the facility are 589,773 meters East and 3,557,456 meters North with WGS84 datum at an elevation of approximately 2,955 feet above mean sea level.

2.1 Model Input Options

The latest version of the AERMOD dispersion model (version 23122) will be used for this analysis. The model will be run in regulatory mode with all default options. The ARM2 method will be used to convert NOx to NO₂. Default minimum and maximum ambient ratios will be utilized.

Table 1 shows the emission sources and stack parameters for the facility including the new units (VCU-1, Trailer-1, and GEN-1). Please note that emissions and stack parameters may vary throughout the development of this application.

Table 1- Emission sources and stack parameters to be included in the air dispersion modeling.

Unit	NOx	со	SO ₂	PM ₁₀	PM _{2.5}	H ₂ S	Height	Temp	Veloci ty	Diam.
Number	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	ft	F	ft/s	ft
ENG-1	1.52	1.52	0.045	0.20	0.20	0	25.50	847	97.67	1.33
ENG-2	2.07	2.07	0.057	0.25	0.25	0	28.00	814	90.45	1.67
ENG-3	2.07	2.07	0.057	0.25	0.25	0	28.00	814	90.45	1.67
ENG-4	2.07	2.07	0.057	0.25	0.25	0	28.00	814	90.45	1.67
ENG-5	2.07	2.07	0.057	0.25	0.25	0	28.00	814	90.45	1.67
ENG-6	2.07	2.07	0.057	0.25	0.25	0	28.00	814	90.45	1.67
ENG-7	1.52	1.52	0.045	0.20	0.20	0	25.50	847	97.67	1.33
ENG-8	2.76	3.79	0.075	0.33	0.33	0	28.00	835	84.85	2.00
ENG-9	2.76	3.79	0.075	0.33	0.33	0	28.00	835	84.85	2.00
ENG-10	2.76	3.79	0.075	0.33	0.33	0	28.00	835	84.85	2.00
Trailer-1	0.16	0.15	0.29	0.0091	0.0091	0	6.99	782	9.83	1.33
GEN-1	0.80	1.60	0.013	0.029	0.029	0	8.21	1382	240.74	0.33
RBL-1	0.20	0.16	0.0089	0.015	0.015	0	19.00	600	29.82	1.00
VCU-1	0.51	0.42	0.079	0.038	0.038	0.00085	12.50	1000	6.62	4.00

Volume Source	H₂S lb/hr	Release Height	Initial lateral Dimension ft	Initial Vertical Dimension ft
SSM/FUG/LOAD	0.15	10	17.44	9.30

A downwash analysis using the latest version of BPIP will be conducted and incorporated into the modeling analysis to account for potential effluent downwash due to structures at the facility.

Table 3- Circular Building Downwash Structures

Building ID	X Coordinate	Y Coordinate m	Elevation m	Height m	Radius m	Corners
TK-1	589723.14	3557474.86	897.33	4.57	1.83	24
TK-2	589730.23	3557476.83	897.33	4.57	1.83	24
TK-3	589736.02	3557478.81	897.33	4.57	1.83	24

2.2 Receptor Grid Description and Elevation Data

The center point of the facility will be designated at 589,725 meters east and 3,557,446 meters north. This center point will serve as the center point for a variable density circular receptor grid. The facility fenceline will be modeled using 25 meter grid spacing. A 50 meter grid spacing will extend out to 800 meters in each direction from the facility center point for a very fine grid resolution. A 100 meter grid spacing will extend from 800 meters to 3,000 meters in each direction for a fine grid resolution. A 250 meter grid spacing will extend from 3,000 meters to 6,000 meters in each directions for a medium grid resolution. A 500 meter grid spacing will extend from 6,000 meters to 10,000 meters in each direction for a coarse grid resolution. A 1000 meter grid spacing will extend from 10,000 meters to 50,000 meters in each direction for a very coarse grid resolution. It is expected that the highest impacts from the proposed source will be at or near the facility property.

For the Class I area analysis, a grid spacing of 1000 m is used for receptors over the Class I area. Class I receptors will be obtained through NMED MergeMaster.

The elevations of receptors and facility sources will be determined using the most recent NED data currently available (1/3 arc-second DEM).

2.3 Meteorological Data

The Carlsbad NWS dataset will be used for five meteorological years (2017-2021) as available on the NMED website.

2.4 Significance Analysis (SIL) and Cumulative Impact Analysis (CIA)

The modeled ground-level concentrations will be compared to the corresponding significant impact levels (SILs) to determine whether any modeled ground-level concentrations at any receptor locations are greater than the SIL (i.e., "significant" receptors). If the significance analysis reveals that modeled ground-level concentrations for a particular pollutant and averaging period are greater than the applicable SIL, a Cumulative Impact Analysis (CIA) will be performed at the significant receptors. The CIA will include impacts from the facility sources and background concentrations/surround sources if applicable.

If necessary, the background concentration used for NO₂ from the Carlsbad Monitor (5ZR) will be used. The Hobbs-Jefferson Monitor (5ZS) dataset will be used for PM_{2.5} and PM₁₀ background concentrations. The inclusion of background concentrations will follow the guidance shown in Table 20: "Modeling the Design Value Summary (Default Modeling)" from the Modeling Guidelines¹.

Based on the NMED Modeling Guidelines for SO₂ modeling, if the facility is in the Pecos-Permian Basin Intrastate AQCR (AQCR 155), it will be modeled with surrounding sources, as representative monitoring is not available for background data.

For $PM_{2.5}$ and PM_{10} modeling, the facility will be modeled with nearby sources, secondary formation (if applicable), and a background concentration. For modeling nearby sources, all sources within 10 km of the facility will be included in the model. An inventory of the surrounding sources will be obtained from the NMED MergeMaster. Based on EPA's Guidance for $PM_{2.5}$ Permit Modeling and NMED'S Modeling Guidelines, sources that emit at least 40 tons per year of NO_x or at least 40 tons per year of NO_x are considered to emit

¹ New Mexico Air Quality Bureau Air Dispersion Modeling Guidelines Revised December 2023

significant amounts of precursors. Sources with significant increases of PM_{2.5} precursors must qualitatively and/or quantitatively account for the secondary formation of PM_{2.5}. The secondary formation of PM_{2.5} will be calculated in this modeling following the NMED Modeling Guidelines.

For H₂S modeling, the only sources at the facility that produced H₂S will be the vapor combustion unit (Unit VCU-1), loading emissions (Unit LOAD), fugitive equipment emissions (Unit FUG-1), and startup, shutdown, and maintenance/malfunction emissions (Unit SSM/M). The VCU is going to be modeled as a point source. Fugitives, SSM/M, and loading will be modeled as a single volume source at the center of the facility with dimensions determined per Section 4.3.2 of NMED's modeling guidelines. Based on the NMED Modeling Guidelines for H₂S modeling, if the facility is in the Pecos-Permian Basin Intrastate AQCR, H₂S will be modeling using the 1-hour averaging time and compared to the 1/2-hour averaging period.

2.5 PSD Increment Analysis

If the results of the ROI analysis for NOx, SO2, PM2.5, or PM10 indicate concentrations greater than significance levels, PSD increment analysis will be conducted for the appropriate averaging periods. If required, the PSD increment analysis will be conducted including all PSD increment consuming and expanding sources within 25 km of the facility, plus sources emitting over 1000 pounds per hour within 50 km of the facility. The surrounding source information will be obtained from NMED MergeMaster. The predicted maximum concentrations will be compared to the appropriate Class II PSD Standard.

2.6 Class I Areas Analysis

The nearest Class I area is Carlsbad Caverns National Park at 30.5 km from the facility. Pollutants will be modeled for significance using the Carlsbad Caverns receptor grid obtained from NMED MergeMaster. A Class I area analysis will be performed if concentrations are greater than significance levels as the national park is within the 50 km inclusion zone for PSD minor sources.

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16	16-A: Identification				
1	Name of facility:	Cadillac Compressor Station			
2	Name of company:	Targa Northern Delaware, LLC			
3	Current Permit number:	7995-M3			
4	Name of applicant's modeler:	George Iwaszek			
5	Phone number of modeler:	303-349-4673			
6	E-mail of modeler:	Glwaszek@trinityconsultants.com			

16	-B: Brief		
1	Was a modeling protocol submitted and approved?	Yes□	No⊠
2	Why is the modeling being done?	Adding New B	quipment
	Describe the permit changes relevant to the modeling.		
3	The purpose of this significant revisions is to add one heater trailer (unit Trailer-1), one air composition (unit GEN-1), and one vapor combustion unit (unit VCU-1); remove one Caterpillar 3516 compressor), replace two (2) Caterpillar 3516 compressor engines (units 18-0341 & 18-0342) with like (units ENG-1 & ENG-7, respectively), and five (5) Caterpillar 3606 compressor engines (units 18-ENG-1, & ENG-2) with like-kind replacements (ENG-2 through ENG-6, respectively); and to modificent inlet gas analysis (units ENG-8 through ENG-10, RBL-1, LOAD, FUG, SSM/M).	essor engine (ur -kind compresso 0246, 18-0296,	it 18- or engines 18-0304,
4	What geodetic datum was used in the modeling?	WGS84	

5	How long will the facility be at this locat	Longer tha	n 1 year			
6	Is the facility a major source with respe	ct to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠		
7	Identify the Air Quality Control Region (AQCR) in which the facility is located	155			
	List the PSD baseline dates for this region	on (minor or major, as appropriate).				
•	NO2	3/16/1988				
8	SO2	7/28/1978	7/28/1978			
	PM10	2/20/1979				
	PM2.5	11/13/2013				
	Provide the name and distance to Class	I areas within 50 km of the facility (300 km for PSD pe	rmits).			
9	Carlsbad Caverns National Park (~30.5 l	km)				
10	Is the facility located in a non-attainme	nt area? If so describe below	Yes□	No⊠		
	N/A					
41	Describe any special modeling requiren	nents, such as streamline permit requirements.				
11	N/A					

16-C: Modeling History of Facility Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers). Latest permit and modification Pollutant number that modeled the **Date of Permit** Comments pollutant facility-wide. 03/19/2020 CO 7995-M3 03/19/2020 NO₂ 7995-M3 7995-M3 03/19/2020 SO_2 H₂S 7995-M3 03/19/2020 03/19/2020 PM2,5 7995-M3 03/19/2020 PM10 7995-M3 Lead N/A Ozone (PSD only) N/A NM Toxic Air **Pollutants** N/A (20.2.72.402 NMAC)

Choose		mplicated	e modeling performed and modeling applicable for th			
Polluta	nnt	ROI	Cumulative analysis	Culpability analysis	Waiver approve	Pollutant not d emitted or not changed.
CO		×				
NO ₂		×				
SO ₂						
H ₂ S		×				
PM2.5		×				
PM10		\boxtimes				
Lead						×
Ozone						\boxtimes
State a (20.2.7 NMAC						
List an applica	y New Mexic	o toxic air	c air pollutants collutants (NMTAPs) from at this facility.	the second production of the second production of the second production of the second production of the second	20.2.72.502 NMAC that ar	e modeled for this
	y NMTAPs th , if required.	at are emi	ted but not modeled beca	ause stack height co	orrection factor. Add addi	tional rows to the tabl
Polluta	ant I	on Rate ds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor

1	Date of surround	ding source retrieval	2/16/2024			
	sources modeled		he Air Quality Bureau was believed to be inaccurate, describe how the ed. If changes to the surrounding source inventory were made, use the d.			
	38468E2	lity coordinates (previously 601768.321 m E and 3587209.057 m N). 593650 m E, 3575300 m N based on NMED AP-MAP of this facility.				
	3589E2					
آ	3589E3					
ſ	3589E4					
-	3589E5		acility coordinates (previously 598991.878 m E and 3600197.969 m N).			
ľ	3589E6		590800 m E, 3575390 m N based on facility information provided in the y does not appear in NMED AP-MAP and may need to be removed if the			
ľ	3589E7	facility is no longer in operatio				
Ţ	3589E8	- Tacifity is no longer in operation	***			
ľ	3589E9					
ſ	3589E10	7				
ļ	38339E17	Point sources have incorrect fa	acility coordinates (previously 568241.173 m E and 3595198.763 m N).			
ľ	38339E18	Coordinates were updated to !	581830 m E, 3572260 m N based on NMED AP-MAP of this facility.			

L	How many buildings are present at the facility?	0		
2	How many above ground storage tanks are present at the facility?	3		
3	Was building downwash modeled for all buildings and	d tanks? If not explain why below.	Yes⊠	No□

16-I: Receptors and modeled property boundary

1

"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility.

Describe the fence or other physical barrier at the facility that defines the restricted area.

The property is enclosed by a fence and receptors are placed starting along the fenceline.

Cadillac Compressor Station

2	Receptors must be placed along publicly accessible roads in the restricted area. Are there public roads passing through the restricted area?						Yes□	No⊠
3	Are restricted area boundary coordinates included in the modeling files?						Yes□	No⊠
	Describe the recep	tor grids and	their spacing	. The table below may b	e used, adding rows a	s nee	ded.	
	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility			
4	Variable Density	Square	50	0	800			
	Variable Density	Square	100	800	3,000			
ļ	Variable Density	Square	250	3,000	6,000			
	Variable Density	Square	500	6,000	10,000			
[Variable Density	Square	1000	10,000	50,000			
	Describe receptor spacing along the fence line.							
5	25 m spacing							
	Describe the PSD C	lass I area re	eceptors.					
6	The PSD Class I Are	a receptors	were acquired	from the MergeMaster	database.			

16-	-J: Sensitive areas Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes□	No⊠
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠

16	-K: Modeling Scenarios
1	Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).
	The modeled facility operates 24 hours a day, 7 days a week, and 8760 hours a year.
	Which scenario produces the highest concentrations? Why?
2	N/A

3	Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.)					Yes□	No⊠				
4	If so, describe factors for each group of sources. List the sources in each group before the factor table for that group. (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting easier.) Sources: N/A										
	Hour of Day	Factor	Hour of Day	Factor							
	1		13								
	2		14			<u> </u>					
	3		1 5								
	4		16								
	5		17								
	6		18								
5	7		19							<u> </u>	
	8		20								
	9		21								
]	10		22								
ļ	11		23								
	12	<u> </u>	24	<u> </u>							
	If hourly,	variable en	nission rate	s were us	ed that w	ere not d	escribed a	bove, descril	oe them belo	οw	
	N/A	N/A									
6	Were different emission rates used for short-term and annual modeling? If so describe below.					Yes□	No⊠				
		***************************************			····						

16-	L: NO₂ N	lodeling					
	Which types Check all tha	of NO ₂ modeling were used?					
	×	ARM2					
1		☐ 100% NO _X to NO ₂ conversion					
İ		D PVMRM					
,		OLM					
		Other:					
2	Describe the NO₂ modeling.						
-	The ARM2 N	The ARM2 Methodology was used with the default maximum and minimum ambient ratios					
3		lt NO ₂ /NO _X ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not distributed justify the ratios used below.	Yes⊠	No□			
	N/A						

Cadillac Compressor Station

March 2024 & Revision #0

4	Describe the design value used for each averaging period modeled.				
_	1-hour: High eighth high Annual: One Year Annual Average				

	Select the pollutants for which plume depletion modeling was used.							
	□ PM2.5							
	□ PM10							
	⊠ None							
1	Describe the particle :	size distributions used. Include t	he source of information.					
2	N/A		·					
3	Does the facility emit at least 40 tons per year of NO _X or at least 40 tons per year of SO ₂ ? Sources that emit at least 40 tons per year of NO _X or at least 40 tons per year of SO ₂ are considered to emit significant amounts of precursors and must account for secondary formation of PM2.5.							
ļ	Was secondary PM m	odeled for PM2.5?		Yes□	No⊠			
	If MERPs were used to below.	other method was	s used describe					
	1 .	SO ₂ (ton/yr) [PM2.5] _{annual}		[PM2.5] _{24-hour}				
	NO _x (ton/yr)							

16	-N: Setback Distances	
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.	
	N/A	
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.	
	N/A	

16-	O: PSD Increme	nt and Source I	Ds					
1	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-I should match the ones in the modeling files. Do these match? If not, provide a cross-reference table between unit numbers if they do not match below.				Yes⊠	₫	No⊠	
-	Unit Number in UA-2		·	Unit Numbe	er in Modeling Files)
	FUG-1		··					
	LOAD			S\$M_L_F			:	
								İ
	SSM/M	. T.L. 2 F 4 2 F -b	ماط عاصد مساما	-u-salm than	nadaling files. Do	<u> </u>		
2	these match? If not, exp					Yes⊵		No⊠
	SSM_L_F representation in the model does not allow for scrubber blowdowns to occur at the same time as any other SSM activity. The maximum emission between all other SSM and scrubber blowdowns was used for the SSM contribution to the SSM_L_F source in the models.							
3	Have the minor NSR exe been modeled?	empt sources or Title V in	significant Ac	tivities" (Tabl	e 2-B) sources	YesE		No⊠
	Which units consume increment for which pollutants?							
	Unit ID	NO ₂	SO ₂		PM10		PM2.5	
	ENG-1	Yes	Yes		Yes	Yes		
	ENG-2	Yes	Yes		Yes		Yes	
	ENG-3	Yes	Yes		Yes		Yes	
	ENG-4	Yes	Yes		Yes	Yes		
	ENG-5	Yes	Yes		Yes		Yes	
	ENG-6	Yes	Yes		Yes		Yes	
4	ENG-7	Yes	Yes		Yes		Yes	<u></u>
	ENG-8	Yes	Yes		Yes		Yes	
	ENG-9	Yes	Yes		Yes		Yes	
	ENG-10	Yes	Yes		Yes		Yes	
	Trailer-1	Yes	Yes		Yes		Yes	
	GEN-1	Yes	Yes		Yes		Yes	
i	RBL-1	Yes	Yes		Yes		Yes	
	VCU-1	Yes	Yes		Yes		Yes	
]	LOAD	No	No		No	·	No	
1	FUG	No	No	·	No		No	
	SSM/M	No	No		No		No	
5	PSD increment descript (for unusual cases, i.e., after baseline date).	ion for sources. baseline unit expanded ε	emissions	N/A				·
6	Are all the actual install This is necessary to ver	lation dates included in T ify the accuracy of PSD in a status is determined for	crement mod	deling. If not p	olease explain how	Yes	×	No□
		i i						

16-	Q: Volume and Related Sources				
	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines?		51		
1	If not please explain how increment consumption status is determined for the missing installation dates below.	Yes□	No⊠		
l _	Describe the determination of sigma-Y and sigma-Z for fugitive sources.				
2	The determination of the initial lateral dimension and initial vertical dimension was completed according to the guidance set forth in Section 5.3.2 of the NMED's Air Dispersion Modeling Guidelines (Revised December 2023).				
	Describe how the volume sources are related to unit numbers. Or say they are the same.				
3	Instead of modeling individual volume sources for condensate loading (LOAD), facility fugitives (FUG-1), and startup, shutdown, and maintenance/malfunction emissions (SSM/M), the sources were grouped together as one source modeled at the center of the facility.				
1	Describe any open pits.				
4	N/A				
5	Describe emission units included in each open pit.				
	N/A				

16	R: Background Concentrations		
	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data that was used.	Yes⊠	No□ .
	CO: N/A		
1	NO ₂ : Outside Carlsbad (350151005)		
	PM2.5: Hobbs-Jefferson (350450019)		
	PM10: Hobbs-Jefferson (350250008)		
	SO ₂ : N/A		
	Other:		

	Comments:			
2	Were backgro	ound concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠

16-	S: Meteorological Data		
	Was NMED provided meteorological data used? If so select the station used.		
1	Carlsbad	Yes⊠	No□
2	If NMED provided meteorological data was not used describe the data set(s) used below. Dis handled, how stability class was determined, and how the data were processed.	cuss how missing	g data were
	N/A		

16	T: Terrain		
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□
	N/A		
	What was the source of the terrain data?		
2	Terrain was incorporated into the modeling analysis through the use of AERMAP with the mos	t recent 1/3 der	gree DEM data
	currently available from https://apps.nationalmap.gov/downloader/#/		

16-U: Modeling Files

Describe the modeling files:

Meteorological data inputs - obtained from NMED web site.

- NWS_CARLSBAD2017_2021.sfc Concatenated 5-yr surface data for 2017 2021
- NWS_CARLSBAD2017_2021.pfl Concatenated 5-yr upper air profile data for 2017 2021

Significant Impact Models

1

- File name format "PollSCarlsbad17-21-SIL.INP"
- "Poll" = N... nitrogen oxides; CO...carbon monoxide; H2S... hydrogen sulfide; PM10...particulate matter, PM10;
 PM25...particulate matter, PM2.5; S... sulfur dioxide "S" = SIL
- "Carlsbad17-21" = met dataset
- "SIL" redundant SIL designator
- Files may contain SIL for short-term, annual, and increment averaging periods.

NM/NAAQS and Increment Models

- File name format "PollXCarlsbad17-21-AvgPer.INP"
- "Poll" = N... nitrogen oxides; CO...carbon monoxide; H2S... hydrogen sulfide; PM10...particulate matter, PM10;
 PM25...particulate matter, PM2.5; S... sulfur dioxide
- "X" = N... NM/NAAQS; Inc... Increment

March 2024 & Revision #0

File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)
NSCarlsbad17-21SIL	NO ₂	SIA
CSCarlsbad17-21SIL	СО	SIA
PM10SCarlsbad17-21SiL	PM ₁₀	SIA
PM25SCarlsbad17-21SIL	PM _{2.5}	SIA
SSCarlsbad17-21SIL	SO ₂	SIA
H2SSCarlsbad17-21SIL	H₂S	SIA
H2SNMCarlsbad17-21	H₂S_	Cumulative – ½ hr
Cadillac CS_SIL Class NO2_2024 0315	NO ₂	Class I SIA
NCIIncCarlsbad17-21-Ann	NO ₂	Class II Increment
NNCarlsbad17-21-1hr	NO ₂	Cumulative - 1hr
NNCarlsbad17-21-Ann	NO ₂	Cumulative - Annual
Cadillac CS_SIL Class PM10_2024 0315	PM ₁₀	Class I SIA
PM10NCarlsbad17-21-24hr	PM ₁₀	Cumulative – 24 hr
PM10NCarlsbad17-21-Ann	PM ₁₀	Cumulative - Annual
Cadillac CS_SIL Class I PM2.5_2024 0315	PM _{2.5}	Class I SIA
PM25NCarlsbad17-21-24hr	PM _{2.5}	Cumulative – 24hr
PM25NCarlsbad17-21-Ann	PM _{2,5}	Cumulative – Annual
Cadillac CS_SIL Class SO2_2024 0315	SO ₂	Class I SIA
SINCCarlsbad17-21-1hr	SO ₂	Class II Increment
SNCarlsbad17-21-1h	SO ₂	Cumulative – 1hr

-V: PSD New or Major Modification Applications						
A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No⊠				
If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No⊠				
Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.						
N/A						
Describe the additional impacts analysis required at 20.2.74,304 NMAC.						
N/A						
If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No⊠				
	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)? If not, did AQB approve an exemption from preconstruction monitoring? Describe how preconstruction monitoring has been addressed or attach the approved precomonitoring exemption. N/A Describe the additional impacts analysis required at 20.2.74.304 NMAC. N/A If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)? If not, did AQB approve an exemption from preconstruction monitoring? Pescribe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring exemption. N/A Describe the additional impacts analysis required at 20.2.74.304 NMAC. N/A If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If				

		indards are exce										
1	required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so describe below. No⊠											
2	Identify the m necessary.	aximum concen	trations fror	n the modeling	analysis. Rows n	nay be mod	ified, added an	d removed fro	om the table be	low as		
Pollutant, Time Period and	Modeled Facility	Modeled Concentratio n with	Secondar y PM	Background Concentratio	Cumulative Concentratio	Value of Standar	Percent of		Location			
Standard	Concentratio n (μg/m3)	Surrounding Sources (µg/m3)	μg/m3)	n (μg/m3)	n (μg/m3)	d (μg/m3)	Standard	UTM E (m)	UTM N (m)	Elevation (ft)		
CO 8-hr SIL	150.85	-	-	-	150.85	500	30.2%	589668	3557494	2938.35		
CO 1-hr SIL	213.56	-	-	-	213.56	2,000	10.7%	589668	3557494	2945.47		
H₂S 1/2-hr SIL	103.91	_	-	_	103.91	5.0	Significant	589725	3557506	2944.19		
NO₂ Annual SIL	8.48	-	-	-	8.48	1.0	Significant	589668	3557494	2945.47		
NO₂ 24-hr SIL	80.57	-	-	-	80.57	5.0	Significant	589815	3557462	2943.27		
NO₂ 1-hr SIL	124.94		-	-	124.94	7.52	Significant	589788	3557525	2942.85		
PM _{2.5} Annual SIL	0.89	_	-	-	0.89	0.2	Significant	589678	3557550	2945.54		
PM _{2.5} 24-hr SIL	10.79	_	_	-	10.79	1.2	Significant	589878	3557450	2937.60		
PM ₁₀ Annual SIL	0.89	-	-	-	0.89	1.0	89.1%	589678	3557550	2945.54		
PM ₁₀ 24-hr SIL	10.79	-	-	-	10.79	5.0	Significant	589878	3557450	2937.60		

Form Revision: 8/31/2020

UA4, Page 12 of 16

Printed: 3/19/2024

Targa Northern Delaware, LLC

Cadillac Compressor Station

March 2024 & Revision #0

Pollutant, Time	Modeled Facility	Modeled Concentratio n with	Secondar	Concentratio	Cumulative	Value of	D		Location	
Period and Standard	Concentratio n (µg/m3)	Surrounding Sources (µg/m3)	у PM (µg/m3)		Concentratio n (µg/m3)	Standar d (µg/m3)	Percent of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
SO ₂ Annual SIL	5.42	-	-	-	5.42	1.0	Significant	589815	3557462	2943.27
SO₂ 24-hr SIL	59.03	-	-	-	59.03	5.0	Significant	589815	3557462	2943.27
SO _z 3-hr SIL	90.47	-	-	<u>-</u>	90.47	25.0	Significant	589815	3557462	2943.27
SO ₂ 1-hr SIL	95.65	-	-		95.65	7.8	Significant	589815	3557462	2943.27
H₂S 1/2-hr NMAAQS	103.91	103.91	-	-	103.91	139.3	74.6%	589725	3557506	2944.19
NO₂ Annual NMAAQS	8.48	-	-	9.3	17.78	94.02	18.9%	589668	3557494	2945.47
NO₂ 1-hr NAAQS	122.26	-	-	54.5	176.76	188.03	94.0%	589815	3557462	2943.27
PM _{2.5} Annual NAAQS	0.891	2.9	-	7.1	10.0	12	83.%	589978	3557600	2932.41
PM ₂₅ 24-hr NAAQS	5.8	6.5	<u>-</u>	16.5	23.0	35	65.7%	589927	3557600	2940.16
PM ₁₀ 24-hr NAAQS	6.21	10.6	,	37.3	47.9	150	31.9%	589928	3557500	2927.30
SO₂ 1-hr NAAQS	90.6	136.8		23.1	159.9	196.4	81.4%	589728	3557200	2945.54
NO ₂ Annual Class I SIL	0.003	0.003	-	_	0.003	0.1	3%	558179	3558860	3597.54
NO ₂ Annual PSD Increment Class II	8.5	-	-	9.3	17.8	25	71.2%	589668	3557494	2945.47
PM ₁₀ 24-hr Class I SIL	0.01	_	<u>.</u>		0.01	0.3	3.3%	559359	3560480	3620.90

Printed: 3/19/2024

Targa Northern Delaware, LLC	

Pollutant, Time	Modeled Facility	Modeled Concentratio n with	Secondar	Background	Cumulative Concentratio n (µg/m3)	Value of	Danasat of	Location		
Period and Standard	Concentratio n (µg/m3)	Surrounding Sources (µg/m3)	y PM (μg/m3)	Concentratio n (µg/m3)		Standar d (µg/m3)	Percent of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
PM ₁₀ 24-hr PSD Increment Class II	8.66	11.23		-	11.23	30	37.4%	589878	3557450	2937.60
PM ₁₀ Annual Class I SIL	0.0004	-	-	<u>-</u>	0.0004	0.2	0.2%	558179	3558860	3597.54
PM _{2.5} 24-hr Class I SIL	0.0004	-	-	-	0.0004	0.27	0.2%	558179	3558860	3597.54
PM _{2.5} 24-hr PSD Increment Class II	5.8	7.0	0.018	-	7.02	9	77.9%	589978	3557650	2933.59
PM _{2,5} Annual Class I SIL	0.0004	-	-	_	0.0004	0.05	0.8%	558179	3558860	3597.54
PM _{2.5} Annual PSD Increment Class II	0.89	2.4	0.00079	~ .	2.4	4	60.0%	589928	3557650	2940.16
SO₂ 3-hr Class I SIL	0.031	0.031	-	-	0.031	1.0	3.1%	559359	356048	3620.90
SO ₂ 3-hr PSD increment Class II	90.35	90.41	-	<u>-</u>	90.41	512	17.7%	589815	3557462	2943.27
SO ₂ 24-hr Class I SIL	0.006	0.006	-		0.006	0.2	3.0%	558558	3560080	3645.01
SO ₂ 24-hr PSD Increment Class II	50.10	50.14	_	-	50.14	91	55.1%	589815	3557462.3	897.11
SO₂ Annual Class I SIL	0.0001	0.001		_	0.001	0.1	1.0%	558179	3558860	3597.54

16 Printed: 3/19/2024

Targa Northern Delaware, LLC

Cadillac Compressor Station

March 2024 & Revision #0

Pollutant, Time Period and Standard	Modeled Concentratio Facility n with		Secondar			Value of	alue of tandar Percent of	Location			
	Concentratio n (µg/m3)	Surrounding Sources (µg/m3)	y PM (μg/m3)	Concentratio n (µg/m3)	Concentratio n (µg/m3)	d (µg/m3)	Standard	UTM E (m)	UTM N (m)	Elevation (ft)	
SO₂ Annual PSD Increment Class II	2.42	3.18	-	-	3.18	20	3.5%	589828	3557450	896.63	

Form Revision: 8/31/2020 UA4, Page **15** of **16** Printed: 3/19/2024

16-X: Summary/conclusions

1

A statement that modeling requirements have been satisfied and that the permit can be issued.

Targa has demonstrated that the proposed changes to NSR Permit 7995-M3 would neither cause nor contribute to an exceedance of the standards for CO, H2S, NO_2 , $PM_{2.5}$, PM_{10} , and SO_2 .

Form Revision: 8/31/2020 UA4, Page 16 of 16 Printed: 3/19/2024

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Compliance Test History Table

Unit No.	Test Description	Test Date

Section 17, Page 1

Saved Date: 3/15/2024

Section 20

Other Relevant Information

Other relevant information. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

There is no other information needed for this application.

Form-Section 21 last revised: 10/04/2016 Section 21, Page 1 Saved Date: 3/15/2024

Section 22: Certification

Company Name:Targa Northern Delaware, LLC	
I,, hereby certify that the information and data subas possible, to the best of my knowledge and professional expertise and exp	
Signed this bt day of March , 2024 , upon my oath or affirmation	ation, before a notary of the State of
Texas	
*Signature	3/6/2024 Date
Jimmy Oxford Printed Name	<u>Vice President of Operations</u> Title
Scribed and sworn before me on this day of March	_ 2024.
My authorization as a notary of the State of	expires on the
8th day of February 2025.	
Awa Rogers Notary's Signature	3/6/2024 Date
Neva Rogers Notary's Printed Name	NEVA ROGERS My Notary ID # 3743435 Expires February 8, 2025

^{*}For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.