NMED AIR QUALITY BUREAU NSR SIGNIFICANT REVISION

TARGA NORTHERN DELAWARE LLC

Road Runner Gas Plant

TRINITY CONSULTANTS

1800 W Loop South Suite 1000 Houston, TX 77027 (713) 552-1371

May 2024

Project 243201.0009

May 1, 2024

Permit Programs Manager NMED Air Quality Bureau 525 Camino de los Marquez Suite 1 Santa Fe, NM 87505-1816

RE: Application for NSR Significant Modification
Targa Northern Delaware LLC; Road Runner Gas Plant

To Whom It May Concern:

On behalf of Targa Northern Delaware LLC, Trinity Consultants is submitting an application for the Road Runner Gas Plant, currently authorized to operate under NSR Permit No. 7200-M4. With this application, Targa seeks to revise the current NSR permit, 7200-M4 by authorizing the following changes:

- Addition of 12 diesel-fired generators (Units GEN-1 GEN-12);
- Addition of 1 300-gallon diesel tank (Unit T-13);
- Addition of an alternate operating scenario for routing amine flash gas (Unit EP-8) to a facility flare (Unit EP-1); and,
- Addition of pigging emissions associated with a recent piping tie-in (Unit MSSM).

The format and content of this application are consistent with the Bureau's current policy regarding NSR significant modification applications. Enclosed are two hard copies of the application, including the original certification. Electronic files will be provided upon request from our assigned permit engineer. Please feel free to contact me by email at andrea.sayles@trinityconsultants.com if you have any questions regarding this application.

Sincerely,

TRINITY CONSULTANTS

Andrea Sayles

Andrea Sayles Managing Consultant

Cc: Charles Bates (Targa Northern Delaware, LLC) Rob Liles (Trinity Consultants)

Trinity Project File: 243201.0009

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

For Department	use only:
----------------	-----------

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

This application is submitted as (check all that apply): Request for a No Permit Required Determination (no fee) Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Construction Status: Not Constructed Existing Permitted (or NOI) Facility Existing Non-permitted (or NOI) Facility Minor Source: NOI 20.2.73 NMAC 20.2.72 NMAC application or revision 20.2.72.300 NMAC Streamline application Title V Source: Title V (new) Title V renewal TV minor mod. TV significant mod. TV Acid Rain: New Renewal PSD Major Source: PSD major source (new) Minor Modification to a PSD source a PSD major modification
Acknowledgements:
🛛 I acknowledge that a pre-application meeting is available to me upon request. 🗌 Title V Operating, Title IV Acid Rain, and NPR
applications have no fees.
\$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline)
applications).
🛛 I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole
punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a
separate page.
☐ I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-
<u>2/.</u>
☐ This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this
application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form
has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information:
www.env.nm.gov/air-quality/small-biz-eap-2/.)
Citation: Please provide the low level citation under which this application is being submitted: 20.2.72.219.D NMAC
(e.g. application for a new minor source would be 20.2.72.200 A NMAC, one example for a Technical Permit Revision is

Section 1 – Facility Information

20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Sec	tion 1-A: Company Information	AI # if known: 36536	Updating Permit/NOI #: 7200-M4			
1	Facility Name: Road Runner Gas Processing Plant	Plant primary SIC Code	(4 digits): 1311			
1		Plant NAIC code (6 digits): 211112				
a	Facility Street Address (If no facility street address, provide directions from a prominent landmark): From Allsup's store Loving, go South on Pecos Hwy to Higby Hole Road to Bounds Road. Turn West for 0.5 miles to facility on North side of r					
2	Plant Operator Company Name: Targa Northern Delaware, LLC	Phone/Fax: (575) 631-7	7093 / (575) 396-7702			

а	Plant Operator Address: 201 S 4th Street, Artesia, NM, 88210				
b	Plant Operator's New Mexico Corporate ID or Tax ID: 1948249				
3	Plant Owner(s) name(s): Targa Northern Delaware, LLC Phone/Fax: (575) 631-7093 / (575) 396-7702				
а	Plant Owner(s) Mailing Address(s): 201 S 4th Street, Artesia, NM, 88210				
4	Bill To (Company): Targa Northern Delaware, LLC	Phone/Fax: (575) 631-7093 / (575) 396-7702			
а	Mailing Address: 201 S 4th Street, Artesia, NM, 88210	E-mail: Jaylen.fuente@targaresources.com			
5	☐ Preparer: ☐ Consultant: Andrea Sayles, Trinity Consultants	Phone/Fax: (217) 971-5797			
а	Mailing Address: 1800 W Loop S #1000, Houston, TX 77027	E-mail: andrea.sayles@trinityconsultants.com			
6	Plant Operator Contact: James Aguilar	Phone/Fax: (575) 810-6093 / (575) 396-7702			
а	Address: 201 South 4th Street, Artesia, NM, 88210	E-mail: james.aguilar@targaresources.com			
7	Air Permit Contact: Robert Andries	Title: Sr. Environmental Specialist			
а	E-mail: randries@targaresources.com	Phone/Fax: (713) 584-1360 / (713) 584-1522			
b	b Mailing Address: 811 Louisiana Street, Ste 2100, Houston, TX 77002				
С	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.				

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? ☐ Yes ☐	s facility already been constructed? Yes No	
2	Intent (NOI) (20.2.73 NMAC) before submittal of this application?		If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? Yes \(\sigma\) No
3	Is the facility currently shut down? 🔲 Yes 🔀 No	If yes, give m	onth and year of shut down (MM/YY): N/A
4	Was this facility constructed before 8/31/1972 and cor	ntinuously ope	rated since 1972? Tyes 🖾 No
5	If Yes to question 3, has this facility been modified (see ☐ Yes ☐ No ☐ N/A	MAC) or the capacity increased since 8/31/1972?	
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☐ Yes ☑ No		If yes, the permit No. is: N/A
7	Has this facility been issued a No Permit Required (NPR)? ☐ Yes ☑ No		If yes, the NPR No. is: N/A
8	Has this facility been issued a Notice of Intent (NOI)? ☐ Yes ☑ No		If yes, the NOI No. is: N/A
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑ Yes ☐ No		If yes, the permit No. is: 7200-M4
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? ☐ Yes ☑ No		If yes, the register No. is: N/A

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)					
а	Current Hourly: 30.63 MMscf Daily: 735 MMscf Annually: 268,275 MMscf					
b	Proposed	Hourly: 30.63 MMscf	Daily: 735 MMscf	Annually: 268,275 MMscf		
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)					
а	Current	Hourly: 30.63 MMscf	Daily: 735 MMscf	Annually: 268,275 MMscf		
b	Proposed	Hourly: 30.63 MMscf	Daily: 735 MMscf	Annually: 268,275 MMscf		

Section 1-D: Facility Location Information

Ject	Section 1-D. Facility Location information					
1	Latitude (decimal degrees): 32.265519	Longitude	(decimal degrees): -104.10831	1X	County: Eddy	Elevation (ft): 3,124
2	UTM Zone: 12 or 13	TM Zone: 12 or 13 Datum: NAD 83 WGS 84				
a	UTM E (in meters, to nearest 10 meters): 583,98 2	2.0 m	UTM N (in meters, to nearest 10 r	meters):	3,570,216.0 m	
3	Name and zip code of nearest New Mexico	o town: Lovi	ng, NM			
4	Detailed Driving Instructions from nearest on Pecos Hwy to Higby Hole Road to Boun				•	
5	The facility is 1.6 (distance) miles south-so	uthwest (di	rection) of Loving, NM (neare	st town	1).	
6	Land Status of facility (check one): 🔀 Priv	vate 🔲 Indi	an/Pueblo 🔲 Government	BLI	M Forest Ser	rvice Military
7	List all municipalities, Indian tribes, and co which the facility is proposed to be constr				· ·	e property on
8	20.2.72 NMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/air-quality/modeling-publications/)? ☑ Yes ☐ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: Lea County (37 km east); Texas 30.6 km south); Carlsbad Caverns National Park (26 km west southwest)					
9	Name nearest Class I area: Carlsbad Caver	ns National	Park (26 km)			
10	Shortest distance (in km) from facility bou	ndary to the	boundary of the nearest Class	s I area	(to the nearest 10 m	neters): 25.97 km
11	Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: 760 m					
	Method(s) used to delineate the Restricted Area: Continuous Fencing					
12	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.					
13	Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? Yes No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.					
14	Will this facility operate in conjunction wit		= :	proper	ty? 🔲 No	Yes
	yee, muc is the name and permit numb	- (ii kilowii)	or the other identity.			

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating (hours day): 24	(days (week): 7	(<u>weeks</u>): 52	(hours year): 8,760	
2	Facility's maximum daily operating schedule (if less	than 24 hours day)? Start: N/A	□AM □PM	End: N/A	AM PM
3	Month and year of anticipated start of construction: Upon Permit Issuance				
4	Month and year of anticipated construction completion: Upon Permit Issuance				
5	Month and year of anticipated startup of new or modified facility: Upon Permit Issuance				
6	6 Will this facility operate at this site for more than one year? Xes No				

Section 1-F: Other Facility Information

	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related
1	to this facility? 🔲 Yes 🔲 No If yes, specify: Site is part of an approved environmental audit under AQB Civil Penalty
	Policy, Appendix D. Approval letter is dated October 26, 2022.

а	If yes, NOV date or description of issue: January 2024 Aud Voluntary Environmental Disclosure Policy	D	NOV Tracking No: N/A	
р	b Is this application in response to any issue listed in 1-F, 1 or 1a above? Yes No If Yes, provide the 1c & 1d info below:			
С	Document Title: January 2024 Audit Report under NMED Voluntary Environmental Disclosure Policy	Date: 1/31/2024	page # a	ment # (or nd paragraph #): Submit significant evision to include sources found in
d	Provide the required text to be inserted in this permit: TBL)		
2	Is air quality dispersion modeling or modeling waiver being submitted with this application?			
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? 🔲 Yes 🔀 No			
4	Will this facility be a source of federal Hazardous Air Pollut	ants (HAP)? 🔀 Yes	No	
а	If Yes, what type of source?			
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? ☐ Yes × No			
а	If yes, include the name of company providing commercial electric power to the facility: N/A Commercial power is purchased from a commercial utility company, which specifically does not include power generated on site for the sole purpose of the user.			
Sect	ion 1-G: Streamline Application (This section a	pplies to 20.2.72.300 N	IMAC Strea	mline applications only)
1	I have filled out Section 18, "Addendum for Streamlin	e Applications."	N/A (¹	This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79

NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))					
1	Responsible Official (R.O.) Jimmy Oxford (20.2.70.300.D.2 NMAC):	, , ,			
а	R.O. Title: Vice President Operations	ent Operations R.O. e-mail: j0xford@targaresources.com			
b	R. O. Address: 4401 North I-35, Suite 303 Denton, Texas 76207				
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): N/A				
a	A. R.O. Title: N/A A. R.O. e-mail: N/A				
b	A. R. O. Address: N/A				
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): Targa Resources, LLC				
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): Targa Resources, LLC				
а	Address of Parent Company: 811 Louisiana Suite 2100, Houston, TX 77002-1400				
5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): None				
6	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations: Jaylen Fuentes – (575) 810-6051 and James Aguilar – (575) 810-6093				

7

Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: **Texas 30.6 km**

Section 1-I - Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- 1) One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

to NSR permits.

Phone number **217-971-5797**.

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If **air dispersion modeling** is required by the application type, include the **NMED Modeling Waiver** and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc,), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

Section 1: General Facility Information

Section 2: Tables

Section 3: Application Summary
Section 4: Process Flow Sheet

Section 5: Plot Plan Drawn to Scale

Section 6: All Calculations

Section 7: Information Used to Determine Emissions

Section 8: Map(s)

Section 9: Proof of Public Notice

Section 10: Written Description of the Routine Operations of the Facility

Section 11: Source Determination

Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application

Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation

Section 14: Operational Plan to Mitigate Emissions

Section 15: Alternative Operating Scenarios

Section 16: Air Dispersion Modeling Section 17: Compliance Test History

Section 18: Addendum for Streamline Applications (streamline applications only)

Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)

Section 20: Other Relevant Information

Section 21: Addendum for Landfill Applications

Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit Number ¹	Source Description	Make	Model#	Serial #	Manufact-urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of Construction/ Reconstruction ²	Controlled by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Ed	quipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
EP-1	Emergency Flare (Pilot with auto ignition)	Zeeco Inc.	FL2100	31927	240.025 MMscf/yr	240.025 MMscf/yr	2017 2017	NA EP-1	31000205	□ Existing (unchanged) New/Additional □ To Be Modified	To be Removed Replacement Unit To be Replaced	NA	NA
2-EP-1	Emergency Flare (Pilot with auto ignition)	TBD	TBD	TBD	240.025 MMscf/yr	240.025 MMscf/yr	TBD TBD	NA 2-EP-1	31000205	 ✓ Existing (unchanged) New/Additional ☐ To Be Modified 	To be Removed Replacement Unit To be Replaced	NA	NA
3-EP-1	Emergency Flare (Pilot with auto ignition)	TBD	TBD	TBD	240.025 MMscf/yr	240.025 MMscf/yr	TBD TBD	NA 3-EP-1	31000205	 ✓ Existing (unchanged) New/Additional ☐ To Be Modified 	To be Removed Replacement Unit To be Replaced	NA	NA
EP-2	Trim Reboiler	Fabsco Shell & Tube	E-207	216-11764- 2/HI14-149	26.5 MMBtu/hr	26.5 MMBtu/hr	2017 2017	NA EP-2	31000404	 ✓ Existing (unchanged) New/Additional ☐ To Be Modified 	To be Removed Replacement Unit To be Replaced	NA	NA
2-EP-2	Trim Reboiler	Fabsco Shell & Tube	E-207	TBD	26.5 MMBtu/hr	26.5 MMBtu/hr	TBD TBD	NA 2-EP-2	31000404	 ✓ Existing (unchanged) New/Additional ☐ To Be Modified 	To be Removed Replacement Unit To be Replaced	NA	NA
3-EP-2	Trim Reboiler	Fabsco Shell & Tube	E-207	TBD	26.5 MMBtu/hr	26.5 MMBtu/hr	TBD TBD	NA 3-EP-2	31000404	 ✓ Existing (unchanged) New/Additional ☐ To Be Modified 	To be Removed Replacement Unit To be Replaced	NA	NA
EP-3A	Amine Reboiler Heater	Patrick	2BKU30/2A- 312/26872002 0A	TBD	70.28 MMBtu/hr	70.28 MMBtu/hr	2017 2017	NA EP-3A	31000404	 ✓ Existing (unchanged) New/Additional ☐ To Be Modified 	To be Removed Replacement Unit To be Replaced	NA	NA
EP-3B	Amine Reboiler Heater	Patrick	TBD	TBD	84.77 MMBtu/hr	84.77 MMBtu/hr	TBD TBD	NA EP-3B	31000404	 ✓ Existing (unchanged) New/Additional ☐ To Be Modified 	To be Removed Replacement Unit To be Replaced	NA	NA
EP-4	Glycol Reboiler Heater	Reset Energy	H-2801	F-9	3.9 MMBtu/hr	3.9 MMBtu/hr	2017 2017	NA EP-4	31000302	 ✓ Existing (unchanged) New/Additional ☐ To Be Modified 	To be Removed Replacement Unit To be Replaced	NA	NA
2-EP-4	Glycol Reboiler Heater	TBD	TBD	TBD	3.9 MMBtu/hr	3.9 MMBtu/hr	TBD TBD	NA 2-EP-4	31000302	 ✓ Existing (unchanged) New/Additional ☐ To Be Modified 	To be Removed Replacement Unit To be Replaced	NA	NA
3-EP-4	Glycol Reboiler Heater	TBD	TBD	TBD	3.9 MMBtu/hr	3.9 MMBtu/hr	TBD TBD	NA 3-EP-4	31000302	 ✓ Existing (unchanged) New/Additional ☐ To Be Modified 	To be Removed Replacement Unit To be Replaced	NA	NA
EP-2	Regen Reboiler Heater	Heatec	HCI2010-40- G	HI16-201	9.5 MMBtu/hr	9.5 MMBtu/hr	2/2017 2017	NA EP-2	31000404	 ✓ Existing (unchanged) New/Additional ☐ To Be Modified 	To be Removed Replacement Unit To be Replaced	NA	NA
2-EP-2	Regen Reboiler Heater	TBD	TBD	TBD	9.5 MMBtu/hr	9.5 MMBtu/hr	TBD TBD	NA 2-EP-2	31000404	 ✓ Existing (unchanged) New/Additional □ To Be Modified 	To be Removed Replacement Unit To be Replaced	NA	NA
3-EP-2	Regen Reboiler Heater	TBD	TBD	TBD	9.5 MMBtu/hr	9.5 MMBtu/hr	TBD TBD	NA 3-EP-2	31000404	✓ Existing (unchanged) New/Additional ☐ To Be Modified	To be Removed Replacement Unit To be Replaced	NA	NA
EP-6	Stabilizer Heater	Phoenix	PX-180	17169	23.4 MMBtu/hr	23.4 MMBtu/hr	2017 2017	NA EP-6	31000404	☑ Existing (unchanged) New/Additional ☐ To Be Modified	To be Removed Replacement Unit To be Replaced	NA	NA
2-EP-6	Stabilizer Heater	TBD	TBD	TBD	23.4 MMBtu/hr	23.4 MMBtu/hr	TBD TBD	NA 2-EP-6	31000404	 ✓ Existing (unchanged) New/Additional □ To Be Modified 	To be Removed Replacement Unit To be Replaced	NA	NA

					Manufact-urer's	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equ	ipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
EP-7	Glycol Dehydrator Still Vent	Reset Energy	T-2707	123	240 MMscf/d	240 MMscf/d	2017 2017	EP-9 EP-9	31000301	☑ Existing (unchanged) New/Additional	To be Removed Replacement Unit	NA	NA
							TBD	EP-9 EP-9		☐ To Be Modified ☐ Existing (unchanged)	To be Replaced To be Removed		
2-EP-7	Glycol Dehydrator Still Vent	TBD	TBD	TBD	240 MMscf/d	240 MMscf/d	TBD	EP-9	31000301	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
							TBD	EP-9		☑ Existing (unchanged)	To be Removed		
3-EP-7	Glycol Dehydrator Still Vent	TBD	TBD	TBD	240 MMscf/d	240 MMscf/d	TBD	EP-9	31000301	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
EP-8	Amine Still Vent	PBP Fabrication	V-2220	493	245 MMscf/d	245 MMscf/d	2017	EP-9	31000305	☐ Existing (unchanged) New/Additional	To be Removed Replacement Unit	NA	NA
EP-8	Amine Still Vent	PBP Fabrication	V-2220	493	243 MMSCI/d	243 Minisci/d	2017	EP-9	31000303	☑ To Be Modified	To be Replaced	NA	NA
2-EP-8	Amine Still Vent	TBD	TBD	TBD	245 MMscf/d	245 MMscf/d	2017	EP-9	31000305	☐ Existing (unchanged) New/Additional	To be Removed Replacement Unit	NA	NA
2 21 0	Tanana San Vene	155	155	155	2 10 1111110011	2 10 1111110011	2017	EP-9	31000303	☑ To Be Modified	To be Replaced	1,11	1111
3-EP-8	Amine Still Vent	TBD	TBD	TBD	245 MMscf/d	245 MMscf/d	2017	EP-9	31000305	 □ Existing (unchanged) New/Additional 	To be Removed Replacement Unit	NA	NA
							2017	EP-9		☑ To Be Modified	To be Replaced		
EP-9	Thermal Oxidizer	Zeeco Inc	TO-22	32339	71 MMBtu/hr	71 MMBtu/hr	2017	NA	31000209	Existing (unchanged)New/Additional	To be Removed Replacement Unit	NA	NA
							2017	EP-9		☐ To Be Modified ☐ Existing (unchanged)	To be Replaced To be Removed		
GEN-1	Generator	GENERAC	2506C- E15TAG3	TBD	762 hp	762 hp	2022	NA GEN-1	20100202	✓ New/Additional	Replacement Unit	CI	NA
			LIJIAGJ				TBD	NA		☐ To Be Modified ☐ Existing (unchanged)	To be Replaced To be Removed		
GEN-2	Generator	GENERAC	TBD	3014145933	268 hp	268 hp	TBD	GEN-2	20100202	✓ New/Additional	Replacement Unit	CI	NA
							TBD	NA		☐ To Be Modified ☐ Existing (unchanged)	To be Replaced To be Removed		
GEN-3	Generator	TBD	TBD	TBD	499 hp	499 hp	TBD	GEN-3	20100202	 ✓ New/Additional ☐ To Be Modified 	Replacement Unit To be Replaced	CI	NA
							TBD	NA		☐ Existing (unchanged)	To be Removed		
GEN-4	Generator	TBD	TBD	TBD	499 hp	499 hp	TBD	GEN-4	20100202	 ✓ New/Additional ☐ To Be Modified 	Replacement Unit To be Replaced	CI	NA
CEN 5	G	TDD	TDD	TDD	400.1	400.1	TBD	NA	20100202	☐ Existing (unchanged)	To be Removed	CI	NIA
GEN-5	Generator	TBD	TBD	TBD	499 hp	499 hp	TBD	GEN-5	20100202	 ✓ New/Additional ☐ To Be Modified 	Replacement Unit To be Replaced	CI	NA
GEN-6	Generator	TBD	TBD	TBD	499 hp	499 hp	TBD	NA	20100202	□ Existing (unchanged) ☑ New/Additional	To be Removed Replacement Unit	CI	NA
GEN-0	Generator	IBD	IBD	IBD	499 np	499 lip	TBD	GEN-6	20100202	☐ To Be Modified	To be Replaced	Cı	INA
GEN-7	Generator	TBD	TBD	TBD	499 hp	499 hp	TBD	NA	20100202	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	CI	NA
GEIV /	Generator	100	TDD	TDD	155 Hp	199 mp	TBD	GEN-7	20100202	☐ To Be Modified	To be Replaced	C1	1771
GEN-8	Generator	TBD	TBD	TBD	499 hp	499 hp	TBD	NA	20100202	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	CI	NA
						···-T	TBD	GEN-8		☐ To Be Modified	To be Replaced		
GEN-9	Generator	TBD	TBD	TBD	499 hp	499 hp	TBD	NA	20100202	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	CI	NA
					•	•	TBD	GEN-9		☐ To Be Modified	To be Replaced To be Removed		
GEN-10	Generator	TBD	TBD	TBD	499 hp	499 hp	TBD	NA CEN 10	20100202	 □ Existing (unchanged) ☑ New/Additional 	Replacement Unit	CI	NA
							TBD	GEN-10		☐ To Be Modified ☐ Existing (unchanged)	To be Replaced To be Removed		
GEN-11	Generator	TBD	TBD	TBD	499 hp	499 hp	TBD	NA GEN-11	20100202	✓ New/Additional	Replacement Unit	CI	NA
							TBD	NA		☐ To Be Modified ☐ Existing (unchanged)	To be Replaced To be Removed	-	
GEN-12	Generator	TBD	TBD	TBD	499 hp	499 hp	TBD	GEN-12	20100202	✓ New/Additional	Replacement Unit To be Replaced	CI	NA
	Startup, Shutdown,						TBD	N/A		☐ To Be Modified ☐ Existing (unchanged)	To be Replaced To be Removed	 	
SSM	Malfunction Emissions	TBD	TBD	TBD	NA	NA	TBD	N/A	31088811	New/Additional ☑ To Be Modified	Replacement Unit To be Replaced	NA	NA
			VCU-7.2.40		12.74	12.74	2017	NA NA		☑ Existing (unchanged)	To be Removed		
COMB-1	Combustor	Zeeco Inc	Flare System	31974-001	MMscf/yr	MMscf/yr	2017	COMB-1	31000209	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
	Condensate Loadout	TD D	mp.p.	mp.p	2,920,000	2,920,000	TBD	N/A	40.0004.0	☑ Existing (unchanged)	To be Removed		27.
LOAD	Emissions	TBD	TBD	TBD	bbl/yr	bbl/yr	TBD	EP-9	40600132	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA

					Manufact-urer's	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Eo	quipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
HAUL	Haul Road Emissions	TBD	TBD	TBD	4380	4380	TBD	N/A	31088811	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	NA	NA
					trips/yr	trips/yr	TBD	N/A		☐ To Be Modified	To be Replaced		
FUG	Fugitive Emissions	TBD	TBD	TBD	NA	NA	TBD TBD	N/A N/A	31000220	 ✓ Existing (unchanged) New/Additional □ To Be Modified 	To be Removed Replacement Unit To be Replaced	NA	NA
T-1	Condensate Storage Tank	Tank &Vessel	NA	201723	1000 bbl	1000 bbl	2017	COMB-1	40400311	☑ Existing (unchanged) New/Additional	To be Removed Replacement Unit	NA	NA
1-1	Condensate Storage Tank	Boilers LP	IVA	201723	1000 001	1000 001	2017	COMB-1	40400311	☐ To Be Modified	To be Replaced	IVA	IVA
T-2	Condensate Storage Tank	Tank &Vessel	NA	201724	1000 bbl	1000 bbl	2017	COMB-1	40400311	Existing (unchanged)New/Additional	To be Removed Replacement Unit	NA	NA
	_	Boilers LP					2017	COMB-1		☐ To Be Modified	To be Replaced		
T-3	Condensate Storage Tank	Tank &Vessel	NA	201720	1000 bbl	1000 bbl	2017	COMB-1	40400311	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	NA	NA
	5	Boilers LP					2017	COMB-1		☐ To Be Modified	To be Replaced		
T-4	Condensate Storage Tank	Tank &Vessel	NA	201721	1000 bbl	1000 bbl	2017	COMB-1	40400311	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	NA	NA
	Condensate Storage Tana	Boilers LP	12	201721	1000 001	1000 001	2017	COMB-1	10100311	☐ To Be Modified	To be Replaced		
T-2	Condensate Storage Tank	Tank &Vessel	NA	201722	1000 bbl	1000 bbl	2017	COMB-1	40400311	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	NA	NA
1 2	Condensate Storage Tank	Boilers LP	1411	201722	1000 001	1000 001	2017	COMB-1	10 100311	☐ To Be Modified	To be Replaced	1171	1471
T-6	Produced Water Tank	Palmer	NA	ST-1711323	400 bbl	400 bbl	8/2017	NA	40400315	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	NA	NA
1-0	Troduced Water Falik	1 anner	INZ	31-1/11323	400 001	400 001	2017	NA	40400313	☐ To Be Modified	To be Replaced	IVA	IVA
D-1	Electric Driven Residue	Ariel	KBZ/6	F24680	60 MMscf/d	60 MMscf/d	9/2017	NA	31000203	 Existing (unchanged) New/Additional 	To be Removed	NA	NA
D-1	Compressor	Allei	KBZ/0	F24000	00 WINISCI/U	00 WIVISCI/U	2017	NA	31000203	☐ To Be Modified	Replacement Unit To be Replaced	INA	INA
D 2	Electric Driven Residue	A 1.1	VD7/C	F2.4701	(0.101 (1)	(0.104 (/1	9/2017	NA	21000202	☑ Existing (unchanged)	To be Removed	NIA	NA
D-2	Compressor	Ariel	KBZ/6	F24701	60 MMscf/d	60 MMscf/d	2017	NA	31000203	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
D-3	Electric Driven Residue	Ariel	KBZ/6	F24720	(0.101 (/1	60 MMscf/d	9/2017	NA	31000203	☑ Existing (unchanged)	To be Removed	NA	NA
D-3	Compressor	Ariei	KBZ/0	F24/20	60 MMscf/d	60 MMSCI/d	2017	NA	31000203	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
D-4	Electric Driven Residue	A 1.1	VD7/C	F2.4720	(0.101 C/1	(0.104 (/1	9/2017	NA	21000202	☑ Existing (unchanged)	To be Removed	NIA	NA
D-4	Compressor	Ariel	KBZ/6	F24720	60 MMscf/d	60 MMscf/d	2017	NA	31000203	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
ъ.	Electric Driven Refrigeration	CE.	XCR-	*********	4500.1	4500.1	2017	NA	21000202	☑ Existing (unchanged)	To be Removed	27.4	274
D-2	Compressor	GEA	XC26222-18	XC0207	4500 hp	4500 hp	TBD	NA	31000203	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
	Electric Driven Refrigeration		XCR-				2017	NA		☑ Existing (unchanged)	To be Removed		
D-6	Compressor	GEA	XC26222-18	XC0208	4500 hp	4500 hp	TBD	NA	31000203	New/Additional To Be Modified	Replacement Unit To be Replaced	NA	NA
	Electric Driven Refrigeration		XCR-				2017	NA		☑ Existing (unchanged)	To be Removed		
D-7	Compressor	GEA	XC26222-18	XC0210	4500 hp	4500 hp	TBD	NA	31000203	New/Additional To Be Modified	Replacement Unit To be Replaced	NA	NA
	Electric Driven Residue						2012	NA		☑ Existing (unchanged)	To be Removed		
2-D-1	Compressor	Ariel	KBZ4	TBD	TBD	TBD	TBD	NA	31000203	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
	Electric Driven Residue						2012	NA		☑ Existing (unchanged)	To be Removed		
2-D-2	Compressor	Ariel	KBZ4	TBD	TBD	TBD	TBD	NA	31000203	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
	Electric Driven Residue						2012	NA		☑ Existing (unchanged)	To be Removed		
2-D-3	Compressor	Ariel	KBZ4	TBD	TBD	TBD	TBD	NA	31000203	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
	Electric Driven Residue						2012	NA		☑ Existing (unchanged)	To be Removed		
2-D-4	Compressor	Ariel	KBZ4	TBD	TBD	TBD	TBD	NA NA	31000203	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
							2012	NA NA		☐ To Be Modified ☐ Existing (unchanged)	To be Replaced To be Removed		
2-D-2	Electric Refrigeration Compressor	Frick	RWF246E	TBD	TBD	TBD	TBD	NA NA	31000203	New/Additional	Replacement Unit	NA	NA
	Compressor		1				IBD	INA		☐ To Be Modified	To be Replaced		

					Manufact-urer's	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of E	quipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
2-D-6	Electric Refrigeration	Frick	RWF246E	TBD	TBD	TBD	2012	NA	31000203	☑ Existing (unchanged) New/Additional	To be Removed Replacement Unit	NA	NA
	Compressor						TBD	NA		☐ To Be Modified	To be Replaced		
2-D-7	Electric Refrigeration	Frick	RWF246E	TBD	TBD	TBD	2012	NA	31000203	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	NA	NA
20,	Compressor	THEK	KW12 IOE	TBB	TBB	155	TBD	NA	31000203	☐ To Be Modified	To be Replaced	1121	1111
2-D-8	Electric Refrigeration	Frick	RWF246E	TBD	TBD	TBD	2012	NA	31000203	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	NA	NA
2-D-0	Compressor	FIICK	KW1240E	TDD	TBD	TBD	TBD	NA	31000203	☐ To Be Modified	To be Replaced	IVA	INZ
3-D-1	Electric Driven Residue	Ariel	KBZ4	TBD	60 MMscf/d	60 MMscf/d	2023	NA	31000203	☑ Existing (unchanged) New/Additional	To be Removed Replacement Unit	NA	NA
3-D-1	Compressor	Anei	KBZ4	TBD	60 Minisci/d	60 MINISCI/d	TBD	NA	31000203	☐ To Be Modified	To be Replaced	NA	NA
3-D-2	Electric Driven Residue		KBZ4	TBD	(0.104 (/)	(0.) 0.4 (/1	2023	NA	21000202	☑ Existing (unchanged)	To be Removed	27.4	374
3-D-2	Compressor	Ariel	KBZ4	TBD	60 MMscf/d	60 MMscf/d	TBD	NA	31000203	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
	Electric Driven Residue		was.	mp.p.	60 3 51 6 71	60.3.0.6.00.1	2023	NA		☑ Existing (unchanged)	To be Removed		
3-D-3	Compressor	Ariel	KBZ4	TBD	60 MMscf/d	60 MMscf/d	TBD	NA	31000203	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
	Electric Driven Residue		was.	mp.p.	60 3 51 6 71	60.3.0.6.00.1	2023	NA		☑ Existing (unchanged)	To be Removed		
3-D-4	Compressor	Ariel	KBZ4	TBD	60 MMscf/d	60 MMscf/d	TBD	NA	31000203	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
	Electric Driven Refrigeration						2023	NA		☑ Existing (unchanged)	To be Removed		
3-D-2	Compressor	Frick	RWF826E	TBD	TBD	TBD	TBD	NA	31000203	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
	Electric Driven Refrigeration						2023	NA		☑ Existing (unchanged)	To be Removed		
3-D-6	Compressor	Frick	RWF826E	TBD	TBD	TBD	TBD	NA	31000203	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
	Electric Driven Refrigeration						2023	NA		☑ Existing (unchanged)	To be Removed		
3-D-7	Compressor	Frick	RWF826E	TBD	TBD	TBD	TBD	NA	31000203	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA
	Electric Driven Refrigeration						2023	NA		☑ Existing (unchanged)	To be Removed		
3-D-8	Compressor	Frick	RWF826E	TBD	TBD	TBD	TBD	NA	31000203	New/Additional ☐ To Be Modified	Replacement Unit To be Replaced	NA	NA

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

""4SLB" means four stroke lean burn engine, "4SRB" means four stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities (20.2.70 NMAC) **OR** Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.2, include emissions calculations and emissions totals for 202.B.2 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-

content/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity Capacity Units	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.2) Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Manufacture /Reconstruction ² Date of Installation /Construction ²	For Each Piece of Equipment, Check Onc
			N/A	400	,	2020	 ✓ Existing (unchanged) To be Removed
T-7	Used Oil/Slop Oil/Skid Runoff	N/A	N/A	bbl	20.72.202.B(2)(a) NMAC	TBD	New/Additional Replacement Unit
			N/A	400		2020	To Be Modified To be Replaced ☑ Existing (unchanged) To be Removed
T-8	Used Oil/Slop Oil/Skid Runoff	N/A	N/A	bbl	20.72.202.B(2)(a) NMAC	TBD	New/Additional Replacement Unit
							To Be Modified To be Replaced ☑ Existing (unchanged) To be Removed
LOAD-2	Produced Water Loading	N/A	N/A	1,032,064	20.72.202.B(2) NMAC	TBD	New/Additional Replacement Unit
			N/A	gal/yr		TBD	To Be Modified To be Replaced
T-9	Methanol Tank	N/A	N/A	1,000	20.72.202.B(2) NMAC	TBD	✓ Existing (unchanged) To be Removed New/Additional Replacement Unit
1 /	Wiemanor Tunk	17/11	N/A	gallons	20.72.202.8(2) 1111111	2020	To Be Modified To be Replaced
T-10	Methanol Tank	N/A	N/A	1,500	20.72.202.B(2) NMAC	TBD	✓ Existing (unchanged) To be Removed New/Additional Replacement Unit
1-10	Methanol Tank	IN/A	N/A	gallons	20.72.202.B(2) NMAC	2020	To Be Modified To be Replaced
		***	N/A	220		TBD	☑ Existing (unchanged) To be Removed
T-11	Diesel Tote	N/A	N/A	gallons	20.72.202.B(2)(a) NMAC	TBD	New/Additional Replacement Unit To Be Modified To be Replaced
			N/A	220		TBD	☑ Existing (unchanged) To be Removed
T-12	Diesel Tote	N/A	N/A	gallons	20.72.202.B(2)(a) NMAC	TBD	New/Additional Replacement Unit To Be Modified To be Replaced
			N/A	300		TBD	☐ Existing (unchanged) To be Removed
T-13	Diesel Tote	N/A	N/A	gallons	20.72.202.B(2)(a) NMAC	TBD	✓ New/Additional Replacement Unit To Be Modified To be Replaced
	Glycol Dehydration Unit -		N/A	N/A		N/A	☑ Existing (unchanged) To be Removed
MSSM-Glycol	Replacement of Glycol Solution	N/A	N/A	N/A	20.72.202.B(2)(a) NMAC	N/A	New/Additional Replacement Unit To Be Modified To be Replaced
	Amine Unit - Replacement of	~*/.	N/A	N/A		N/A	☑ Existing (unchanged) To be Removed
MSSM-Amine	Amine Solution	N/A	N/A	N/A	20.72.202.B(2)(a) NMAC	N/A	New/Additional Replacement Unit To Be Modified To be Replaced
1,000,000		27/1	N/A	N/A	20 72 202 4 (2) 274 4 5	N/A	☑ Existing (unchanged) To be Removed
MSSM-Aerosol	Aerosol Lubricants	N/A	N/A	N/A	20.72.202.A(2) NMAC	N/A	New/Additional Replacement Unit To Be Modified To be Replaced
) (aa) (p: ·	P	27/4	N/A	N/A	20.72.202.4(12).27.44.5	N/A	☑ Existing (unchanged) To be Removed
MSSM-Piping	Piping Components	N/A	N/A	N/A	20.72.202.A(12) NMAC	N/A	New/Additional Replacement Unit To Be Modified To be Replaced
MCCM C.1	IIf.C-1:h4: C-	NI/A	N/A	N/A	20.72.202.4(10) NMAG	N/A	☑ Existing (unchanged) To be Removed
MSSM-Cal	Use of Calibration Gases	N/A	N/A	N/A	20.72.202.A(10) NMAC	N/A	New/Additional Replacement Unit To Be Modified To be Replaced
MCCM M:	Miscellanous Maintenance	NI/A	N/A	N/A	20.72.202.4/2\ NIMA.C	N/A	Existing (unchanged) To be Removed Now/Additional Replacement Unit
MSSM-Misc	Activities	N/A	N/A	N/A	20.72.202.A(2) NMAC	N/A	New/Additional Replacement Unit To Be Modified To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 12, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(2)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
BTEX-1	Condenser	2017	VOC, HAP	EP-7, 2-EP-7, 3-EP-7	98%	Engineering Estimate
COMB-1	Combustor	2017	VOC, HAP, H ₂ S	T-1, T-2, T-3, T-4, T-2	92%	Manufacturer Spec
EP-9	Thermal Oxidizer	2017	VOC, HAP, H2S	EP-8, 2-EP-8, 3-EP-8, EP-7, 2-EP-7, 3-EP-7	99.9%	Manufacturer Spec
EP-1	SSM Flare	2017	VOC, HAP, H_2S	Train 1 inlet gas and residue gas	98%	Manufacturer Spec
2-EP-1	SSM Flare	TBD	VOC, HAP, H ₂ S	Train 2 inlet gas and residue gas	98%	Manufacturer Spec
3-EP-1	SSM Flare	TBD	VOC, HAP, H ₂ S	Train 3 inlet gas and residue gas	98%	Manufacturer Spec
List each contro	l device on a separate line. For each control device, list all emi	ssion units cor	ntrolled by the control device.			

Table 2-D: Maximum Emissions (under normal operating conditions)

This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	C	0	V	OC	SO	Ox	P	\mathbf{M}^1	PM	10^1	PM	2.5 ¹	Н	I_2S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
EP-2	2.60	11.38	2.18	9.56	0.14	0.63	0.022	0.10	0.20	0.86	0.20	0.86	0.20	0.86	-	-	-	-
2-EP-2	0.84	3.68	2.18	9.56	0.14	0.63	0.022	0.10	0.20	0.86	0.20	0.86	0.20	0.86	-	-	-	-
3-EP-2	0.84	3.68	2.18	9.56	0.14	0.63	0.022	0.10	0.20	0.86	0.20	0.86	0.20	0.86	-	-	-	-
EP-3A	2.23	9.77	4.53	19.83	0.38	1.66	0.06	0.26	0.52	2.29	0.52	2.29	0.52	2.29	-	-	-	-
EP-3B	0.34	1.49	3.48	15.22	1.61	7.05	0.07	0.31	1.10	4.83	1.10	4.83	1.10	4.83	-	-	-	-
EP-4	0.38	1.67	0.32	1.41	0.021	0.092	0.0032	0.014	0.029	0.13	0.029	0.13	0.029	0.13	-	-	-	-
2-EP-4	0.38	1.67	0.32	1.41	0.021	0.092	0.0032	0.014	0.029	0.13	0.029	0.13	0.029	0.13	-	-	-	-
3-EP-4	0.38	1.67	0.32	1.41	0.021	0.092	0.0032	0.014	0.029	0.13	0.029	0.13	0.029	0.13	-	-	-	-
EP-5	0.93	4.08	0.78	3.43	0.051	0.22	0.008	0.035	0.071	0.31	0.071	0.31	0.071	0.31	-	-	-	-
2-EP-5	0.93	4.08	0.78	3.43	0.051	0.22	0.008	0.035	0.071	0.31	0.071	0.31	0.071	0.31	-	-	-	-
3-EP-5	0.93	4.08	0.78	3.43	0.051	0.22	0.008	0.035	0.071	0.31	0.071	0.31	0.071	0.31	-	-	-	-
EP-6	2.29	10.05	1.93	8.44	0.126	0.55	0.019	0.09	0.17	0.76	0.17	0.76	0.17	0.76	-	-	-	-
2-EP-6	2.29	10.05	1.93	8.44	0.126	0.55	0.019	0.09	0.17	0.76	0.17	0.76	0.17	0.76	-	-	-	-
EP-7	-	-	-	-	102.15	447.40	-	-	-	-	-	-	-	-	2.15E-05	9.42E-05	-	-
2-EP-7	-	-	-	-	102.15	447.40	-	-	-	-	-	-	-	-	2.15E-05	9.42E-05	-	-
3-EP-7	-	-	-	-	102.15	447.40	-	-	-	-	-	-	-	-	2.15E-05	9.42E-05	-	-
EP-8	-	-	-	-	74.67	327.04	-	-	-	-	-	-	-	-	4.72	20.68	-	-
2-EP-8	-	-	-	-	74.67	327.04	-	-	-	-	-	-	-	-	4.72	20.68	-	-
3-EP-8	-	-	-	-	74.67	327.04	-	-	-	-	-	-	-	-	4.72	20.68	-	-
EP-9						No emiss:	ions from	this unit ir	n an uncon	trolled sce	enario						-	-
EP-1	0.22	0.96	0.44	1.91	-	1	0.01	0.04	-	-	-	-	-	-	2.65E-05	1.16E-04	-	-
2-EP-1	0.17	0.72	0.33	1.45	-	-	0.0082	0.036	-	-	-	-	-	-	2.00E-05	8.76E-05	-	-
3-EP-1	0.03	0.14	0.065	0.28	-	-	0.0016	0.0071	-	-	-	-	-	-	1.40E-06	6.11E-06	-	-
T-1	-	-	-	-	32.12	16.87	-	-	-	-	-	-	-	-	0.0038	0.0023		
T-2	-	-	-	-	32.12	16.87	-	-	-	-	-	-	-	-	0.0038	0.0023	-	-
T-3	-	-	-	-	32.12	16.87	-	-	-	-	-	-	-	-	0.0038	0.0023	-	-
T-4	-	-	-	-	32.12	16.87	-	-	-		-	-	-	-	0.0038	0.0023	-	-
GEN-1	5.75	1.44	0.79	0.20	1.69	0.42	1.77	0.44	0.034	0.0084	0.034	0.0084	0.034	0.0084	-	-	-	-
GEN-2	0.18	0.04	1.54	0.38	0.09	0.022	0.62	0.16	0.0089	0.0022	0.0089	0.0022	0.0089	0.0022	_	-	_	-
GEN-3	0.33	0.08	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0012	0.017	0.0012	0.017	0.0041	-	-		-
GEN-4	0.33	0.08	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
GEN-5	0.33	0.08	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
GEN-6	0.33	0.08	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-

Form Revision: 6/14/2019 Table 2-D: Page 1 Printed 4/30/2024 5:37 PM

Unit No.	N	Ox	C	0	V	ОС	SO	Ox	P !	M ¹	PM	[10 ¹	PM	2.51	H	$_{2}S$	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
GEN-7	0.33	0.08	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
GEN-8	0.33	0.08	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
GEN-9	0.33	0.08	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
GEN-10	0.33	0.08	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	1	-	-
GEN-11	0.33	0.08	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
GEN-12	0.33	0.08	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
T-5	-	-	-	-	32.12	16.87	-	-	1	-	-	-	1	-	0.0038	0.0023	-	-
T-6	-	-	-	-	0.14	0.63	-	-	-	-	-	-	-	-	0.0052	0.010	-	-
COMB-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LOAD	-	-	-	-	257.50	1088.27	-	-	-	-	-	-	-	-	-	-	-	-
FUG	-	-	-	-	25.29	110.76	-	-	1	-	-	-	1	-	0.00070	0.0031	-	-
HAUL	-	-	-	-	-	-	-	-	0.41	1.46	0.11	0.37	0.011	0.037	-	-	-	-
Totals	25.02	71.50	53.47	106.48	980.26	3,620.82	14.25	4.74	3.49	14.07	3.18	12.95	3.08	12.64	14.19	62.07	0.00	0.00

ICondensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.2 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.2. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No	NO	Ox	C	0	VC	OC	so	x	PN	II^1	PM	110 ¹	PM	2.21	H	I ₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
EP-2	2.60	11.38	2.18	9.56	0.14	0.63	0.022	0.10	0.20	0.86	0.20	0.86	0.20	0.86	-	-	-	-
2-EP-2	0.84	3.68	2.18	9.56	0.14	0.63	0.022	0.10	0.20	0.86	0.20	0.86	0.20	0.86	-	-	-	-
3-EP-2	0.84	3.68	2.18	9.56	0.14	0.63	0.022	0.10	0.20	0.86	0.20	0.86	0.20	0.86	-	-	-	-
EP-3A	2.23	9.77	4.53	19.83	0.38	1.66	0.06	0.26	0.52	2.29	0.52	2.29	0.52	2.29	-	-	-	-
EP-3B	0.34	1.49	3.48	15.22	1.61	7.05	0.07	0.31	1.10	4.83	1.10	4.83	1.10	4.83	-	-	-	-
EP-4	0.38	1.67	0.32	1.41	0.021	0.092	0.0032	0.014	0.029	0.127	0.029	0.127	0.029	0.127	-	-	-	-
2-EP-4	0.38	1.67	0.32	1.41	0.021	0.092	0.0032	0.014	0.029	0.127	0.029	0.127	0.029	0.127	-	-	-	-
3-EP-4	0.38	1.67	0.32	1.41	0.021	0.092	0.0032	0.014	0.029	0.127	0.029	0.127	0.029	0.127	-	-	-	-
EP-5	0.93	4.08	0.78	3.43	0.051	0.22	0.008	0.035	0.071	0.31	0.071	0.31	0.071	0.31	-	-	-	-
2-EP-5	0.93	4.08	0.78	3.43	0.051	0.22	0.008	0.035	0.071	0.31	0.071	0.31	0.071	0.31	-	-	-	-
3-EP-5	0.93	4.08	0.78	3.43	0.051	0.22	0.008	0.035	0.071	0.31	0.071	0.31	0.071	0.31	-	-	-	-
EP-6	2.29	10.05	1.93	8.44	0.126	0.55	0.019	0.09	0.17	0.76	0.17	0.76	0.17	0.76	-	-	-	-
2-EP-6	2.29	10.05	1.93	8.44	0.126	0.55	0.019	0.09	0.17	0.76	0.17	0.76	0.17	0.76	-	-	-	-
EP-7							Emiss	ions repre	sented at the	thermal oxid	dizer (Uni	it EP-9)	-		<u>-</u>		_	
2-EP-7		Emissions represented at the thermal oxidizer (Unit EP-9) Emissions represented at the thermal oxidizer (Unit EP-9) Emissions represented at the sharmal oxidizer (Unit EP 0)																
3-EP-7																		
EP-8		Emissions represented at the thermal oxidizer (Unit EP-9)																
2-EP-8		Emissions represented at the thermal oxidizer (Unit EP-9) Emissions represented at the thermal oxidizer (Unit EP-9)																
3-EP-8						_	Emiss	ions repre	sented at the	thermal oxid	dizer (Uni	it EP-9)	_		_			
EP-9	6.12	26.81	2.98	13.05	0.53	2.32	26.66	116.79	0.60	2.63	0.60	2.63	0.60	2.63	0.014	0.062	-	-
T-1							Emiss	sions repre	esented at the	combustor	(Unit CO	MB-1)						
T-2							Emiss	sions repre	esented at the	combustor	(Unit CO	MB-1)						
T-3							Emiss	sions repre	esented at the	combustor	(Unit CO	MB-1)						
T-4							Emiss	sions repre	esented at the	combustor	(Unit CO	MB-1)						
GEN-1	5.75	1.44	0.79	0.20	1.69	0.42	1.77	0.44	0.034	0.0084	0.034	0.0084	0.034	0.0084	-	-	-	-
GEN-2	0.18	0.044	1.54	0.38	0.087	0.022	0.62	0.16	0.0089	0.0022	0.0089	0.0022	0.0089	0.0022	-	-	-	-
GEN-3	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0012	0.017	0.0012	0.017	0.0041	-	-	-	-
GEN-4	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
GEN-5	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
GEN-6	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
GEN-7	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
GEN-8	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
GEN-9	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
GEN-10	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
GEN-11	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
GEN-12	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.0165	0.0041	0.017	0.0012	0.017	0.0041	-	-	-	-
T-5							Emiss	sions repre	esented at the	combustor	(Unit CO	MB-1)						

Unit No.	NO	Ox	C	0	V	OC	SO)x	PN	I^1	PM	[10 ¹	PM	2.21	Н	I ₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
T-6	-	-	-	-	0.14	0.63	-	-	-	-	-	-	-	-	0.0052	0.0096	-	-
COMB-1	7.73	3.08	15.43	6.16	37.59	4.26	0.16	#######	0.42	0.17	0.42	0.17	0.417	0.167	3.53E-03	6.11E-04	-	-
LOAD	-	-	-	-	12.88	54.41	-	-	-	-	-	-	-	-	-	-	-	-
FUG	-	-	-	-	25.29	110.76	-	-	-	-	-	-	-	-	7.01E-04	3.07E-03	-	-
HAUL	-	-	-	-	-	-	-	-	0.41	1.46	0.11	0.37	0.011	0.037	-	-	-	-
Totals	38.45	99.56	71.05	122.05	82.71	185.88	41.05	121.46	4.50	16.86	4.20	15.74	4.10	15.44	0.024	0.075	-	-

Tondensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.2 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.2. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

[&]quot;*" denotes that an hourly emission rate is not requested.

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

☐ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications

(https://www.env.nm.gov/apb/permit/apb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N(C		V		S(M ²		110 ²		2.22		$_{2}S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
EP-1	1583.01	20.71	3,160.29	41.35	2,591.05	48.43	828.62	10.00	-	-	-	-	-	-	8.98	0.11	1	-
2-EP-1	1,578.29	19.66	3,150.87	39.26	2,484.70	29.82	828.55	9.98	-	-	-	-	-	-	8.98	0.11	1	-
3-EP-1	1,578.16	19.08	3,150.60	38.09	2,484.70	29.82	828.54	9.95	-	-	-	-	-	-	8.98	0.11	1	-
SSM-TO	-	-	-	-	326.15	3.26	-	-	-	-	-	-	-	-	14.17	0.142	1	-
MSSM	-	-	-	-	277.95	4.12	-	-	-	-	-	-	-	-	0.011	0.00016	-	-
MSST	-	-	-	-	38.16	0.034	-	-	-	-	-	-	-	-	-	-	-	-
MSSB							Emissio	ons represe	ented at the	e combusto	or (Unit CO	OMB-1)						
L																		
<u> </u>																		
Totals	4,739.46	59.46	9,461.75	118.70	8,202.72	115.48	2,485.70	29.92	0.00	0.00	0.00	0.00	0.00	0.00	41.13	0.47	0.00	0.00

¹ For instance, if the short term steady-state Table 2-E emissions are 2 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

☑ I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	C	O	V	ЭС	S	Ox	P	M	PN	110	PM	12.2	☑ H ₂ S o	r Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
	T																
	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s) from	Orientation (H-Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
EP-1	EP-1	V	No	100.00	1832	0.00	-	-	62.60	1.00
2-EP-1	2-EP-1	V	No	199.00	1832	49.17	-	-	62.60	1.00
3-EP-1	3-EP-1	V	No	120.00	1832	49.17	-	-	62.60	1.00
EP-2	EP-2	V	No	22.20	624	243.70	-	-	21.12	3.83
2-EP-2	2-EP-2	V	No	22.80	624	90.05	-	-	21.12	2.33
3-EP-2	3-EP-2	V	No	22.80	624	90.05	-	-	21.12	2.33
EP-3A	EP-3A	V	No	24.80	624	1416.44	-	-	176.12	3.20
EP-3B	EP-3B	V	No	32.70	624	2213.19	-	-	176.12	4.00
EP-4	EP-4	V	No	22.00	624	243.70	-	-	77.57	2.00
2-EP-4	2-EP-4	V	No	31.80	624	243.70	-	-	77.57	2.00
3-EP-4	3-EP-4	V	No	31.80	624	2213.19	-	-	77.57	2.00
EP-2	EP-2	V	No	12.80	624	9.92	-	-	2.61	2.20
2-EP-2	2-EP-2	V	No	22.00	220	59.33	=	-	42.71	1.33
3-EP-2	3-EP-2	V	No	22.00	220	59.33	-	-	42.71	1.33
EP-6	EP-6	V	No	24.90	624	41980.45	-	-	9845.67	2.33
2-EP-6	2_EP-6	V	No	24.90	624	41980.45	-	-	9845.67	2.33
EP-9	EP-7, 2-EP-7, 3-EP-7, EP-8, 2- EP-8, 3-EP-8	V	No	76.00	1600	951.12	-	-	12.11	10.0
COMB-1	T-1 through T-2	V	No	20.00	1200	708.50	-	-	18.41	7.00
GEN-1	GEN-1	V	No	14.8	782	1667.15	-	-	72.2	0.70
GEN-2	GEN-2	V	No	14.8	782	1667.15	-	-	72.2	0.70
GEN-3	GEN-3	V	No	14.8	782	1667.15	-	-	72.2	0.70
GEN-4	GEN-4	V	No	14.8	782	1667.15	-	-	72.2	0.70
GEN-5	GEN-5	V	No	14.8	782	1667.15	-	-	72.2	0.70
GEN-6	GEN-6	V	No	14.8	782	1667.15	-	-	72.2	0.70
GEN-7	GEN-7	V	No	14.8	782	1667.15	-	-	72.2	0.70

Stack	Serving Unit Number(s) from	Orientation	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
GEN-8	GEN-8	V	No	14.8	782	1667.15	-	-	72.2	0.70
GEN-9	GEN-9	V	No	14.8	782	1667.15	-	-	72.2	0.70
GEN-10	GEN-10	V	No	14.8	782	1667.15	-	-	72.2	0.70
GEN-11	GEN-11	V	No	14.8	782	1667.15	-	-	72.2	0.70
GEN-12	GEN-12	V	No	14.8	782	1667.15	-	-	72.2	0.70

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 typ. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.202 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.202 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Ben: ☑ HAP 0			ane or TAP	Name	Pollutant e Here or TAP	Name Here	Pollutant TAP								
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
EP-2	EP-2	0.0021	0.0092	5.46E-05	2.39E-04	-	-												
2-EP-2	2-EP-2	0.0021	0.0092	5.46E-05	2.39E-04	-	-												
3-EP-2	3-EP-2	0.0021	0.0092	5.46E-05	2.39E-04	1	-												
EP-3A	EP-3A	0.0055	0.024	1.45E-04	6.34E-04	-	-												
EP-3B	EP-3B	0.0067	0.029	-	-	-	-												
EP-4	EP-4	0.00031	0.0013	8.03E-06	3.52E-05	-	-												
2-EP-4	2-EP-4	0.00031	0.0013	8.03E-06	3.52E-05	-	-												
3-EP-4	3-EP-4	0.00031	0.0013	8.03E-06	3.52E-05	-	-												
EP-5	EP-5	0.00075	0.0033	1.96E-05	8.57E-05	-	-												
2-EP-5	2-EP-5	0.00075	0.0033	1.96E-05	8.57E-05	-	-												
3-EP-5	3-EP-5	0.00075	0.0033	1.96E-05	8.57E-05	-	-												
EP-6	EP-6	0.00185	0.0081	4.82E-05	2.11E-04														
2-EP-6	2-EP-6	0.00185	0.0081	4.82E-05	2.11E-04														
2-E1-0	EP-7					-	-												
	2-EP-7					-	-												
	3-EP-7					-	-												
EP-9	EP-8	0.28	1.24	0.13	0.58	-	-												
	2-EP-8					-	-												
	3-EP-8					-	-												
	EP-9					-	-												
	T-1					-	-												
	T-2	1				-	-												
COMP 1	T-3	3.43	4.74	2 42	4.74	-	-												
COMB-1	T-4	3.43	4.74	3.43	4.74	-	-												
	T-5	1				-	-												
	COMB-1	1				-	-												
GEN-1	GEN-1	0.023	0.0056	0.0057	0.0014	-	-												
GEN-2	GEN-2	0.0079	0.0020	0.0020	5.00E-04	-	-												
GEN-3	GEN-3	0.015	3.70E-03	3.72E-03	9.31E-04	-	-												
GEN-4	GEN-4	0.015	3.70E-03	3.72E-03	9.31E-04	-	-												
GEN-5	GEN-5	0.015	3.70E-03	3.72E-03	9.31E-04	-	-												

Stack No.	Unit No.(s)	Total	HAPs	Ben. MAP 0	zene or TAP		vane or TAP		Pollutant e Here or TAP	Name	Pollutant Here Or TAP	Name	Pollutant Here r TAP		Pollutant Here or TAP	Name		Provide I Name Here HAP or	
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
GEN-6	GEN-6	0.015	3.70E-03	3.72E-03	9.31E-04	-	-												
GEN-7	GEN-7	0.015	3.70E-03	3.72E-03	9.31E-04	-	-												
GEN-8	GEN-8	0.015	3.70E-03	3.72E-03	9.31E-04	-	-												
GEN-9	GEN-9	0.015	3.70E-03	3.72E-03	9.31E-04	-	-												
GEN-10	GEN-10	0.015	3.70E-03	3.72E-03	9.31E-04	-	-												
GEN-11	GEN-11	0.015	3.70E-03	3.72E-03	9.31E-04	-	-												
GEN-12	GEN-12	0.015	3.70E-03	3.72E-03	9.31E-04	-	-												
T-6	T-6	0.0050	0.022	3.61E-03	1.55E-02	1	-												
LOAD	LOAD	1.16	4.58	-	-	-	-												
FUG	FUG	1.41	6.19	0.12	0.51	1.12	4.91												
HAUL	HAUL	-	-	-	-	-	-												
Tota	als:	6.49	16.93	3.73	5.86	1.12	4.91	-	-	-	-	-	-	-	-	-	-	-	-

[&]quot;*" denotes that an hourly emission rate is not requested.

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value BTU/scf	Hourly Usage scf/hr	Annual Usage MMscf/yr	Sulfur gr/dscf	% Ash
EP-1	Natural Gas	Residue Gas	1071.8	500.00	4.38	2.00	NA
2-EP-1	Natural Gas	Residue Gas	1071.8	78.00	11832.36	2.00	NA
3-EP-1	Natural Gas	Residue Gas	1071.8	219.00	9764.53	2.00	NA
EP-2	Natural Gas	Residue Gas	1020	25980.39	227.59	2.00	NA
2-EP-2	Natural Gas	Residue Gas	1020	25980.39	0.00	2.00	NA
3-EP-2	Natural Gas	Residue Gas	1020	25980.39	0.00	2.00	NA
EP-3A	Natural Gas	Residue Gas	1020	68901.96	603.58	2.00	NA
EP-3B	Natural Gas	Residue Gas	1020	83107.84	728.02	2.00	NA
EP-4	Natural Gas	Residue Gas	1020	3823.53	33.49	2.00	NA
2-EP-4	Natural Gas	Residue Gas	1020	3823.53	33.49	2.00	NA
3-EP-4	Natural Gas	Residue Gas	1020	3823.53	33.49	2.00	NA
EP-2	Natural Gas	Residue Gas	1020	9313.73	81.59	2.00	NA
2-EP-2	Natural Gas	Residue Gas	1020	9313.73	81.59	2.00	NA
3-EP-2	Natural Gas	Residue Gas	1020	9313.73	81.59	2.00	NA
EP-6	Natural Gas	Residue Gas	1020	22941.18	200.96	2.00	NA
2-EP-6	Natural Gas	Residue Gas	1020	22941.18	200.96	2.00	NA
EP-9	Natural Gas	Residue Gas	1020	29411.76	257.65	2.00	NA
COMB-1	Natural Gas	Residue Gas	1020	65.00	0.57	2.00	NA
GEN-1	Diesel Fuel	Purchased Commercial	137,000 Btu/gal	5.95	0.0030	15 ppm	NA
GEN-2	Diesel Fuel	Purchased Commercial	137,000 Btu/gal	2.09	0.0010	15 ppm	NA
GEN-3	Diesel Fuel	Purchased Commercial	137,000 Btu/gal	3.90	0.0019	15 ppm	NA
GEN-4	Diesel Fuel	Purchased Commercial	137,000 Btu/gal	3.90	0.0019	15 ppm	NA
GEN-5	Diesel Fuel	Purchased Commercial	137,000 Btu/gal	3.90	0.0019	15 ppm	NA
GEN-6	Diesel Fuel	Purchased Commercial	137,000 Btu/gal	3.90	0.0019	15 ppm	NA
GEN-7	Diesel Fuel	Purchased Commercial	137,000 Btu/gal	3.90	0.0019	15 ppm	NA
GEN-8	Diesel Fuel	Purchased Commercial	137,000 Btu/gal	3.90	0.0019	15 ppm	NA
GEN-9	Diesel Fuel	Purchased Commercial	137,000 Btu/gal	3.90	0.0019	15 ppm	NA
GEN-10	Diesel Fuel	Purchased Commercial	137,000 Btu/gal	3.90	0.0019	15 ppm	NA
GEN-11	Diesel Fuel	Purchased Commercial	137,000 Btu/gal	3.90	0.0019	15 ppm	NA
GEN-12	Diesel Fuel	Purchased Commercial	137,000 Btu/gal	3.90	0.0019	15 ppm	NA

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stora	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
T-1	40400311	Condensate	Condensate	3.66	52.44	63.2	6.82	95	4.69
T-2	40400311	Condensate	Condensate	3.66	52.44	63.2	6.82	95	4.69
T-3	40400311	Condensate	Condensate	3.66	52.44	63.2	6.82	95	4.69
T-4	40400311	Condensate	Condensate	3.66	52.44	63.2	6.82	95	4.69
T-5	40400311	Condensate	Condensate	3.66	52.44	63.2	6.82	95	4.69
T-6	40400315	Produced Water	Produced Water	8.29	27.30	63.4	0.82	95	0.42

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Сар	acity	Diameter (M)	Vapor Space	Co (from Ta	lor ble VI-C)	Paint Condition (from Table VI-	Annual Throughput	Turn- overs
			LK below)	LK below)	(bbl)	(M^3)		(M)	Roof	Shell	C)	(gal/yr)	(per year)
T-1	2017	Condensate	NA	FX	1,000	119.2	6.55	8.0	White	White	Good	24,528,000	584
T-2	2017	Condensate	NA	FX	1,000	119.2	6.55	8.0	White	White	Good	24,528,000	584
T-3	2017	Condensate	NA	FX	1,000	119.2	6.55	8.0	White	White	Good	24,528,000	584
T-4	2017	Condensate	NA	FX	1,000	119.2	6.55	8.0	White	White	Good	24,528,000	584
T-5	2017	Condensate	NA	FX	1,000	119.2	6.55	8.0	White	White	Good	24,528,000	584
T-6	2017	Produced Water	NA	FX	400	47.7	3.7	10.00	White	White	Good	1,030,097	61

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Rive	eted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}^2$	3 = 42.0 gal				BL: Black	
					OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Materi	al Processed		N	Iaterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Natural Gas	Natural Gas	Gas	735 MMscfd	Natural Gas	Natural Gas	Gas	735 MMscfd
				Condensate	Condensate	Liquid	8000 bopd
				Produced Water	Produced Water	Liquid	303 bwpd

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
			Not	Applicable					

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
			Not Applicat	ole				•
		-						

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	CH ₄ ton/yr	N ₂ O ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²					Total GHG Mass asis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs 1	1	25	298	22,800	footnote 3						
EP-2	mass GHG	13,577.41	0.26	0.026						1	13,577.69	
E1 -2	CO ₂ e	13,577.41	6.40	7.63								13,591.44
2-EP-2	mass GHG	13,577.41	0.26	0.026						1	3,577.69	
2-121 -2	CO ₂ e	13,577.41	6.40	7.63								13,591.44
3-EP-2	mass GHG	13,577.41	0.26	0.026						1	3,577.69	
3-131 -2	CO ₂ e	13,577.41	6.40	7.63								13,591.44
EP-3A		36,008.32	0.68	0.068						3	36,009.07	
22 0.1	CO ₂ e	36,008.32	16.97	20.22								36,045.51
EP-3B		43,432.35	0.82	0.082						4	13,433.25	
	CO ₂ e	43,432.35	20.46	24.39							1 000 22	43,477.21
EP-4	mass GHG	1,998.19	0.038	0.0038							1,998.23	
	CO ₂ e	1,998.19	0.94	1.122							1 000 22	2,000.25
2-EP-4	mass GHG	1,998.19	0.038	0.0038							1,998.23	2 000 25
	CO ₂ e	1,998.19	0.94	1.122							1 000 22	2,000.25
3-EP-4	mass GHG CO2e	1,998.19 1,998.19	0.038 0.94	0.0038 1.122							1,998.23	2,000.25
	mass GHG	4,867.37	0.94	0.0092							4,867.48	2,000.23
EP-5	CO ₂ e	4,867.37	2.29	2.73							4,007.40	4,872.40
	mass GHG	4,867.37	0.092	0.0092							4,867.48	4,672.40
2-EP-5	CO ₂ e	4,867.37	2.29	2.73						<u> </u>	4,007.40	4,872.40
	mass GHG	4,867.37	0.092	0.0092							4,867.48	4,072.40
3-EP-5	CO ₂ e	4,867.37	2.29	2.73							1,007.10	4,872.40
	mass GHG	11,989.11	0.23	0.023						1	1,989.36	1,072.10
EP-6	CO ₂ e	11,989.11	5.65	6.73							1,,, 0,,,,,	12,001.49
		11,989.11	0.23	0.023						1	1,989.36	12,0011.19
2-EP-6	CO ₂ e	11,989.11	5.65	6.73						_	,	12,001.49
	mass GHG	-	-	-						(0.00E+00	,
EP-7	CO ₂ e	-	-	-								0.00E+00
4 ED 5	mass GHG	-	-	-						(0.00E+00	
2-EP-7	CO ₂ e	-	-	-								0.00E+00
2 ED 5	mass GHG	-	-	-						(0.00E+00	
3-EP-7	CO ₂ e	-	-	-								0.00E+00

		CO ₂ ton/yr	CH ₄ ton/yr	N ₂ O ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²							Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs 1	1	25	298	22,800	footnote 3								
EP-8	mass GHG	-	-	-									0.00	
	CO ₂ e	-	-	-										0.00
2-EP-8 3-EP-8 EP-9	mass GHG	-	-	-									0.00	0.00
	CO ₂ e	-	-	-									0.00	0.00
	mass GHG CO ₂ e	-	-	-									0.00	0.00
	mass GHG	38,426.64	0.72	0.072								3	38,427.44	0.00
	CO ₂ e	38,426.64	18.11	21.58									70,727.77	38,466.33
	mass GHG	73,783.80	68.70	0.030								7	73,852.53	30,100.33
EP-1 2-EP-1	CO ₂ e	73,783.80	1,717.51	8.95								,	75,052.55	75,510.25
	mass GHG	73,783.80	68.70	0.030								7	73,852.53	, , , , , , , , , , ,
	CO ₂ e	73,783.80	1,717.51	8.95									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	75,510.25
3-EP-1 GEN-1 GEN-2	mass GHG	73,783.80	68.70	0.030								7	73,852.53	
	CO ₂ e	73,783.80	1,717.51	8.95										75,510.25
	mass GHG	248.49	0.010	0.002									248.51	
	CO ₂ e	248.49	0.25	0.60										249.35
	mass GHG	87.40	3.55E-03	0.001									87.40	
GEN-2	CO ₂ e	87.40	0.089	0.21										87.70
GEN-3	mass GHG	162.73	6.60E-03	0.001									162.74	
	CO ₂ e	162.73	0.17	0.39										163.29
GEN-4	mass GHG	162.73	6.60E-03	0.001									162.74	
	CO ₂ e	162.73	0.17	0.39									1 60 7 1	163.29
GEN-5	mass GHG	162.73	6.60E-03	0.001									162.74	162.20
	CO ₂ e	162.73	0.17	0.39									162.74	163.29
GEN-6	mass GHG CO ₂ e	162.73 162.73	6.60E-03 0.17	0.001									162.74	163.29
	mass GHG	162.73	6.60E-03	0.001									162.74	103.29
GEN-7	CO ₂ e	162.73	0.0017	0.39									102.74	163.29
	mass GHG	162.73	6.60E-03	0.001									162.74	103.27
GEN-8	CO ₂ e	162.73	0.17	0.39									102.71	163.29
	mass GHG	162.73	6.60E-03	0.001									162.74	3 3 3 1 2 2
GEN-9	CO ₂ e	162.73	0.17	0.39										163.29
CEN 10	mass CHC	162.73	6.60E-03	0.001									162.74	
GEN-10	CO ₂ e	162.73	0.17	0.39										163.29
CEN 11	mass GHG	162.73	6.60E-03	0.001									162.74	
GEN-11	CO ₂ e	162.73	0.17	0.39										163.29
GEN-12	mass GHG	162.73	6.60E-03	0.001									162.74	
GEN-12	COZC	162.73	0.17	0.39										163.29
T-1	mass GHG	-	-	-								C	0.00E+00	
T-2	CO ₂ e	-	-	-										0.00E+00
	mass GHG	-	-	-								C	0.00E+00	0.005:00
	CO ₂ e	-	-	-) OOE + OO	0.00E+00
	mass GHG	-	-	-			-		-	-			0.00E+00	0.00E+00
	CO ₂ e	-	-	-	<u> </u>			<u> </u>			l			0.00E+00

		CO ₂ ton/yr	CH ₄ ton/yr	N ₂ O ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs 1	1	25	298	22,800	footnote 3						
T-4	mass GHG	-	-	-							0.00E+00	
	CO ₂ e	-	-	-								0.00E+00
T-5	mass GHG	-	-	-						-	0.00E+00	
	CO ₂ e	-	-	-								0.00E+00
T-6	mass GHG	1.06	1.01	-							2.07	
	CO ₂ e	1.06	25.26	-								26.32
COMB-	mass GHG	2,990.01	0.018	0.0015							2,990.03	
1	CO ₂ e	2,990.01	0.46	0.448								2,990.92
LOAD	mass GHG	-	-	-							0.00E+00	
	CO ₂ e	-	-	-								0.00E+00
FUG	mass GHG	4.58	333.58	-							338.17	
FUG	CO ₂ e	4.58	8,339.59	-								8,344.17
HAUL	mass GHG	-	-	-							0.00E+00	
HAUL	CO ₂ e	-	-	-								0.00E+00
SSM-	mass GHG	852.77	0.82	-							853.60	
TO	CO ₂ e	852.77	20.62	-								873.39
MSSM	mass GHG	0.94	10.88	-							11.82	
MISSIM	CO ₂ e	0.94	271.95	-								272.89
MSST	mass GHG	-	2.00E-07	-							2.00E-07	
	CO ₂ e	-	4.99E-06	-								4.99E-06
MSSB	mass GHG	-	-	-							0.00E+00	
	CO ₂ e	-	-	-								0.00E+00
Total	mass GHG	428,375.23	556.24	0.47							430,895	
	CO ₂ e	428,375.23	13,906.12	141.39								444,393

TGWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **Process Summary** shall include a brief description of the facility and its processes.

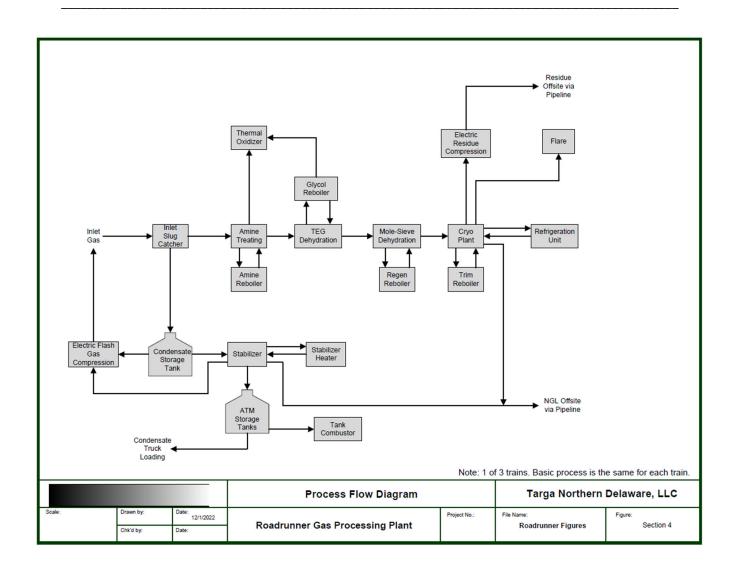
Startup, Shutdown, and Maintenance (SSM) routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Targa Resources, LLC (Targa) owns and operates the Road Runner Gas Processing Plant located near Loving in Eddy County, NM. The site was acquired by Targa on August 1, 2022 from Lucid Energy. The most recent New Source Review (NSR) permit No. 7200-M4 was issued on October 16, 2023.

The primary function of the Road Runner Gas Processing Plant is to separate natural gas (methane) from heavier (liquid) hydrocarbons, raw sweet field gas so that the gas can meet pipeline specifications. The plant has been designated a primary Standard Industrial Classification (SIC) Code of 1311. The gas is treated to remove CO₂, H₂S, water and heavy (liquid) hydrocarbons from the gas stream. Stabilized condensate is removed from the site via pipeline with the option to truck it out as needed. Produced water is trucked out from the site. The amine treater vent flows to a thermal oxidizer to remove volatile organic compounds (VOCs) and hazardous air pollutant (HAP) emissions.

Targa is proposing a significant revision to NSR Permit No.7200-M4 to authorize the following design changes:

- Addition of 12 diesel-fired generators (Units GEN-1 GEN-12);
- Addition of 1 300-gallon diesel tank (Unit T-13);
- Addition of an alternate operating scenario for routing amine flash gas (Unit EP-8) to a facility flare (Unit EP-1); and,
- Addition of pigging emissions associated with a recent piping tie-in (Unit MSSM).

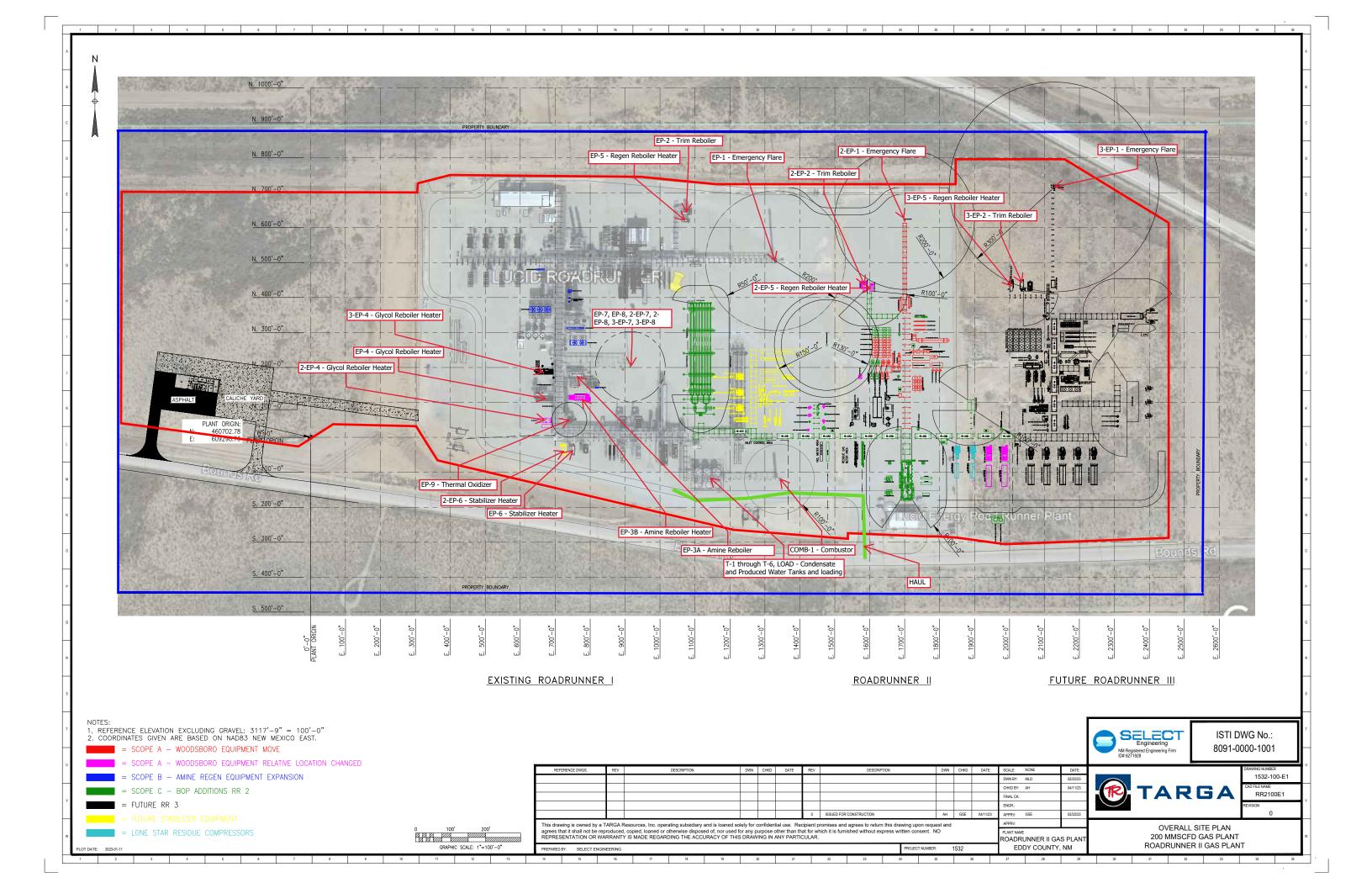

This project will not trigger Prevention of Significant Deterioration (PSD) review, as the facility is currently a minor NSR source and the proposed emission changes are less than 250 tons per year (tpy) for each criteria pollutant and will remain an area source of HAPs.

Saved Date: 4/30/2024

Section 4

Process Flow Sheet

A <u>process flow sheet</u> and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.


Section 5

Plot Plan Drawn to Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is attached.

Form-Section 5 last revised: 8/15/2011 Section 5, Page 1 Saved Date: 4/30/2024

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

- **B.** At least 5 significant figures shall be retained in all intermediate calculations.
- **C.** In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:
 - (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
 - (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
 - (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
 - (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Heaters and Reboilers

The facility will be equipped with several heaters and reboilers of various heat input capacities. For units EP-2, EP-4, 2-EP-4, 3-EP-4, EP-5, 2-EP-5, 3-EP-5, EP-6, and 2-EP-6, AP-42 Chapter 1.4 Natural Gas Combustion was used to determine emissions of nitrogen oxides (NO_x), carbon monoxide (CO), volatile organic compounds (VOC), particulate matter (PM), and hazardous air pollutants (HAPs). Sulfur dioxide emissions were calculated stoichiometrically assuming that the natural gas used as fuel in the heaters and reboilers contains a maximum H₂S content of 5 ppm based on pipeline specifications.

For unit EP-3B, manufacturer specifications were used to determine emissions of nitrogen oxides (NO_x), carbon monoxide (NO_x), volatile organic compounds (NO_x), and particulate matter (NO_x). AP-42 Chapter 1.4 Natural Gas Combustion was used to determine emissions of and hazardous air pollutants (NO_x). Sulfur dioxide emissions were calculated stoichiometrically assuming that the natural gas used as fuel in the heaters and reboilers contains a maximum NO_x 0 content of 5 ppm based on pipeline specifications.

For units 2-EP-2 and 3-EP-2, AP-42 Chapter 1.4 Natural Gas Combustion was used to determine emissions of carbon monoxide (CO), volatile organic compounds (VOC), particulate matter (PM), and hazardous air pollutants (HAPs). Sulfur dioxide emissions were calculated stoichiometrically assuming that the natural gas used as fuel in the heaters and reboilers contains a maximum H_2S content of 5 ppm based on pipeline specifications. Emissions of nitrogen oxides (NO_x) are based on the emission factor presented in 20.2.50.119.B(1) NMAC to comply with 20.2.50.119.B(3) NMAC as these units will be considered new units and must comply upon startup.

Greenhouse gas emissions from all heaters and reboilers were calculated using 40 CFR 98 Subpart C Table C-1 and Table C-2.

TEG Glycol Dehydrators

BR&E ProMax was used to determine emissions from the glycol still vent and non-condensable overheads from the BTEX condenser. Emissions from EP-7, 2-EP-7, and 3-EP-7 are controlled by the thermal oxidizer with a 99.9% destruction efficiency. Controlled emissions from the glycol dehydrators are represented at EP-7, 2-EP-7, and 3-EP-7.

Amine Units

BR&E ProMax was used to determine emissions from the amine units. Contactor overheads are routed to the glycol dehydrators for further treatment. The regenerator overheads are routed to the thermal oxidizer with a 99.9% destruction efficiency, or the facility flare with a 98% destruction efficiency.

Thermal Oxidizer

The thermal oxidizer will control the waste gas from the glycol dehydrators as well as the waste gas from the amine units. Additional supplemental fuel is routed to the thermal oxidizer at a rate of $29,412 \, \text{scf/hr}$. Emissions of nitrogen oxides (NO_x), carbon monoxide (CO), and particulate matter (PM) are based on manufacturer guaranteed emission factors. The thermal oxidizer operates with a destruction efficiency of 99.9%. Greenhouse gas emissions from the thermal oxidizer were calculated using 40 CFR 98 Subpart C Table C-1 and Table C-2.

Thermal Oxidizer SSM

The facility will conduct routine maintenance on the thermal oxidizer during which the thermal oxidizer will be taken offline, and emissions routed to the thermal oxidizer will instead be vented to atmosphere.

<u>Flares</u>

The flares at the facility (EP-1, 2-EP-1, and 3-EP-1) will flare both inlet and residue gas. The expected composition and maximum expected volumes of inlet gas and residue gas were used as the basis of the flare calculation. TNRCC RG-109 flare emission factors for low Btu gas were used to calculate emissions of nitrogen oxides (NO_x) and carbon monoxide (CO). VOC,

 H_2S , and SO_2 emissions are calculated based on the VOC and H_2S content of the inlet and residue gas. An assumed 98% destruction efficiency is applied to the VOC and H_2S emissions. Greenhouse gas emissions from the flares were calculated using 40 CFR 98 Subpart C Table C-1 and Table C-2 with the methodology outlined in 40 CFR 98.233(n).

Condensate Storage Tanks

Emissions from condensate storage tanks, T-1 through T-5, were determined using BR&E ProMax and a site-specific condensate analysis, dated February 3, 2022. Emissions from the condensate tanks are controlled by a combustor with a 95% destruction efficiency.

Produced Water Storage Tanks

Emissions from the produced water storage tank, T-6, were determined using BR&E ProMax. Emissions from the produced water storage tank are uncontrolled and are vented to the atmosphere.

Condensate Loading

Condensate loading emissions were calculated using the loading loss equation and variables from AP-42 Section 5.2, Transportation and Marketing of Petroleum Liquids. True vapor pressure of loaded liquid, molecular weight of vapor, temperature of bulk liquid, and volatile organic compound (VOC), hazardous air pollutants (HAP), and hydrogen sulfide (H₂S) mass percentage were determined with BR&E ProMax. Condensate loading is vapor balanced with the condensate tanks with a 95% capture efficiency.

Tank Combustor

The tank combustor controls emissions from the condensate tanks, condensate loading vapor balance which is routed to the condensate tanks, tank MSS which includes tank cleanings at a frequency of five tank cleanings once per year with a duration of one hour, and blowdowns. The combustor operates with a destruction efficiency of 95%. Emissions of nitrogen oxides (NO_x), carbon monoxide (CO), and particulate matter (PM) were calculated using TNRCC RG-109 and AP-42 Table 1.4-1 and Table 1.4-2. Greenhouse gas emissions from the tank combustor were calculated using 40 CFR 98 Subpart C Table C-1 and Table C-2 with the methodology outlined in 40 CFR 98.233(n).

Fugitives

The emissions from fugitive components associated with this project are calculated using emission factors from Table 2-4 of the EPA Protocol for Equipment Leak Emission estimates, November 1995. Site specific analyses for inlet gas, residue gas, and condensate were used.

Haul Road Emissions

Unpaved haul road emissions were calculated using constants from AP-42 Table 13.2.2-2 and the methodology outlined in AP-42 Chapter 13.2.2.

Miscellaneous MSS

Miscellaneous MSS emissions include routine pigging activities, routine replacement of glycol solution used in dehydration units, routine replacement of solution used in amine units, use of aerosol lubricants, piping components, and calibration activities.

MSS Blowdowns

MSS Blowdown emissions include venting emissions from blowdowns, starter vents, and any gas operated controllers present at the facility, if any.

Diesel Fired Generators (GEN-1 through GEN-12)

Final Tier 4 Emissions Standards for Non-Road Engines for NO_x , CO, HC, and PM was used. Emission factors for HAP emissions and SO_2 were obtained from AP- 42 Section 3.4, Large Stationary Diesel and All Stationary Dual-Fuel Engines, (10/96), were used to calculate potential emissions for the new diesel generators. Greenhouse gas emissions from the thermal oxidizer were calculated using 40 CFR 98 Subpart C Table C-1 and Table C-2. Refer to the attached calculations for detailed documentation of emission factors.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

- 1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.
- 2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 Mandatory Greenhouse Gas Reporting.
- 3. Emissions from routine or predictable start up, shut down, and maintenance must be included.
- **4.** Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **short** tons per year and represent each emission unit's Potential to Emit (PTE).
- **5.** All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.
- **6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 Mandatory Green House Gas Reporting except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.
- Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 Mandatory Greenhouse Reporting requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Form-Section 6 last revised: 5/3/16 Section 6, Page 4 Saved Date: 4/30/2024

Emission Summary

Cantra	ll~4	Emi	cci	one

Controlle	d Emissions																								
		NO	^	CC			ОС	SC	02		SP ²	PN	10	PM ₂	2 2.5	H ₂	S	Tota	HAP	Ber	nzene	CO ₂	CH₄	N ₂ O	CO2e
Unit ID	Equipment Description	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	ton/yr	ton/yr	ton/yr	ton/yr
EP-2	Trim Reboiler	2.60	11.38	2.18	9.56	0.14	0.63	0.022	0.10	0.20	0.86	0.20	0.86	0.20	0.86	-	-	2.09E-03	9.16E-03	5.46E-05	2.39E-04	13,577.41	0.26	0.026	13,591.44
2-EP-2	Trim Reboiler	0.84	3.68	2.18	9.56	0.14	0.63	0.022	0.10	0.20	0.86	0.20	0.86	0.20	0.86	-	-	2.09E-03		5.46E-05	2.39E-04	13,577.41	0.26	0.026	13,591.44
3-EP-2 EP-3A	Trim Reboiler	0.84 2.23	3.68 9.77	2.18 4.53	9.56 19.83	0.14	0.63 1.66	0.022 0.058	0.10	0.20 0.52	0.86	0.20	0.86 2.29	0.20 0.52	0.86 2.29	-	-	2.09E-03		5.46E-05	2.39E-04 6.34E-04	13,577.41	0.26 0.68	0.026 0.068	13,591.44
EP-3A EP-3B	Amine Reboiler Amine Reboiler	0.34	1.49	4.53 3.48	15.22	0.38 1.61	7.05	0.058	0.26 0.31	1.10	2.29 4.83	0.52 1.10	4.83	1.10	4.83	-	-	5.55E-03 6.69E-03	2.43E-02 2.93E-02	1.45E-04	6.34E-04	36,008.32 43,432.35	0.82	0.088	36,045.51 43.477.21
EP-3B	Glycol Reboiler	0.34	1.49	0.32	1.41	0.021	0.092	0.070	0.31	0.029	0.13	0.029	0.13	0.029	0.13	-	-	3.08E-04		8.03E-06	3.52E-05	1,998.19	0.02	0.002	2,000.25
2-EP-4	Glycol Reboiler	0.38	1.67	0.32	1.41	0.021	0.092	0.0032	0.014	0.029	0.13	0.029	0.13	0.029	0.13		_	3.08E-04	1.35E-03	8.03E-06	3.52E-05	1,998.19	0.04	0.0038	2,000.25
3-EP-4	Glycol Reboiler	0.38	1.67	0.32	1.41	0.021	0.092	0.0032	0.014	0.029	0.13	0.029	0.13	0.029	0.13	_	_	3.08E-04		8.03E-06	3.52E-05	1,998.19	0.04	0.0038	2,000.25
EP-5	Regen Reboiler	0.93	4.08	0.78	3.43	0.05	0.22	0.0079	0.035	0.071	0.31	0.023	0.31	0.071	0.31	-	_	7.50E-04	3.28E-03			4,867.37	0.09	0.0092	4,872.40
2-EP-5	Regen Reboiler	0.93	4.08	0.78	3.43	0.05	0.22	0.0079	0.035	0.071	0.31	0.071	0.31	0.071	0.31	_	_	7.50E-04	3.28E-03		8.57E-05	4,867.37	0.09	0.0092	4,872.40
3-EP-5	Regen Reboiler	0.93	4.08	0.78	3.43	0.05	0.22	0.0079	0.035	0.071	0.31	0.071	0.31	0.071	0.31	-	-	7.50E-04	3.28E-03		8.57E-05	4,867.37	0.09	0.0092	4,872.40
EP-6	Stabilizer Heater	2.29	10.05	1.93	8.44	0.13	0.55	0.019	0.09	0.17	0.76	0.17	0.76	0.17	0.76	-	-	1.85E-03	8.09E-03	4.82E-05	2.11E-04	11,989.11	0.23	0.023	12,001.49
2-EP-6	Stabilizer Heater	2.29	10.05	1.93	8.44	0.13	0.55	0.019	0.09	0.17	0.76	0.17	0.76	0.17	0.76	-	-	1.85E-03	8.09E-03	4.82E-05	2.11E-04	11,989.11	0.23	0.023	12,001.49
EP-7	Glycol Dehydrator (99.9% Control)		•	-	•	-		•	•	-	. E	missions re	presented a	at the therma	l oxidizer (U	Init EP-9)		-		=			•		
2-EP-7	Glycol Dehydrator (99.9% Control)										E	Emissions re	presented a	at the therma	l oxidizer (U	Init EP-9)									
3-EP-7	Glycol Dehydrator (99.9% Control)										E	missions re	presented a	at the therma	l oxidizer (U	Init EP-9)									
EP-8	Amine Vent (99.9% Control)										E	Emissions re	presented a	at the therma	I oxidizer (U	Init EP-9)									
2-EP-8	Amine Vent (99.9% Control)										E	Emissions re	presented a	at the therma	l oxidizer (U	Init EP-9)									
3-EP-8	Amine Vent (99.9% Control)			-								missions re		at the therma	l oxidizer (U	. ′				-		-			
EP-9	Thermal Oxidizer	6.12	26.81	2.98	13.05	0.53	2.32	26.66	116.79	0.60	2.63	0.60	2.63	0.60	2.63	0.014	0.062	0.28	1.24	0.13	0.58	38,426.64	0.72	0.072	38,466.33
EP-1	Flare (SSM)	1,583.01	20.71	3,160.29	41.35	2,591.05	48.43	828.62	10.00	-	-	-	-	-	-	8.98	0.11	58.68	0.80	-	-	73,783.80	68.70	0.030	75,510.25
2-EP-1	Flare (SSM)	1,578.29	19.66	3,150.87	39.26	2,484.70	29.82	828.55	9.98	-	-	-	-	-	-	8.98	0.11	58.10	0.70	-	-	73,783.80	68.70	0.030	75,510.25
3-EP-1 GEN-1	Flare (SSM) Diesel Fired Generator	1,578.16 5.75	19.08 1.44	3,150.60 0.79	38.09	2,484.70	29.82 0.42	828.54	9.95 0.44	0.034	0.0084	0.034	0.0084	0.034	0.0084	8.98	0.11	58.10	0.70	5.69E-03	1.42E-03	73,783.80	68.70 1.01E-02	0.030 2.02E-03	75,510.25 249.35
GEN-1	Diesel Fired Generator	0.18	0.044	1.54	0.20 0.38	1.69 0.09	0.42	1.77 0.62	0.44	0.034 0.009	0.0084 0.0022	0.034 0.009	0.0084 0.0022	0.034	0.0064	-	_	0.023 0.0079		2.00E-03	5.00E-04	248.49 87.40	3.55E-03	7.09E-04	87.70
GEN-3	Diesel Fired Generator	0.10	0.044	2.86	0.72	0.03	0.022	1.16	0.10	0.003	0.0022	0.003	0.0022	0.003	0.0022	-	-	0.0073		3.72E-03	9.31E-04	162.73	6.60E-03	1.32E-03	163.29
GEN-4	Diesel Fired Generator	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	0.015		3.72E-03	9.31E-04	162.73	6.60E-03	1.32E-03	163.29
GEN-5	Diesel Fired Generator	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	0.015		3.72E-03	9.31E-04	162.73	6.60E-03	1.32E-03	163.29
GEN-6	Diesel Fired Generator	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	0.015		3.72E-03	9.31E-04	162.73	6.60E-03	1.32E-03	163.29
GEN-7	Diesel Fired Generator	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	0.015		3.72E-03	9.31E-04	162.73	6.60E-03	1.32E-03	163.29
GEN-8	Diesel Fired Generator	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	0.015		3.72E-03	9.31E-04	162.73	6.60E-03	1.32E-03	163.29
GEN-9	Diesel Fired Generator	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	0.015		3.72E-03	9.31E-04	162.73	6.60E-03	1.32E-03	163.29
GEN-10 GEN-11	Diesel Fired Generator Diesel Fired Generator	0.33 0.33	0.083 0.083	2.86 2.86	0.72 0.72	0.16 0.16	0.040 0.040	1.16 1.16	0.29 0.29	0.017 0.017	0.0041 0.0041	0.017 0.017	0.0012 0.0012	0.017 0.017	0.0041 0.0041	-	-	0.015 0.015		3.72E-03 3.72E-03	9.31E-04 9.31E-04	162.73 162.73	6.60E-03 6.60E-03	1.32E-03 1.32E-03	163.29 163.29
GEN-11	Diesel Fired Generator	0.33	0.083	2.86	0.72	0.16	0.040	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	_	_	0.015		3.72E-03 3.72E-03		162.73	6.60E-03	1.32E-03	163.29
	Condensate Storage Tank (95%	0.55	0.000	2.00	0.72	0.10	0.040	1.10	0.23	0.017	•	•		<u>.</u> I			_	0.010	0.7 OL-00	0.72L-00	3.01L-04	102.70	0.00L-00	1.02L-00	100.25
T-1	Control)											Emissions r	epresented	at the combu	ıstor (Unit C	COMB-1)									
T-2	Condensate Storage Tank (95%											Emissians r	onrocented	at the combu	istor (I Init C	CMP 1)									
1-2	Control)											EIIIISSIOIIS II	epresenteu	at the combi	istor (Offit C	COND-1)									
T-3	Condensate Storage Tank (95%											Emissions r	enresented	at the combu	ıstor (Unit C	COMB-1)									
	Control)												ор. осоо а			702 .,									
T-4	Condensate Storage Tank (95%											Emissions r	epresented	at the combu	ıstor (Unit C	COMB-1)									
	Control)												•		·										
T-5	Condensate Storage Tank (95% Control)											Emissions r	epresented	at the combu	ıstor (Unit C	COMB-1)									
T-6	Waste Water Tank	_	1 -	I -	l -	0.14	0.63	_	l -	I .	l _	I .	1 - 1		1 . 1	0.0052	0.010	0.0050	0.022	0.0036	0.02	1.06	1.01	l . I	26.32
COMB-1	Tank Combustor	7.73	3.08	15.43	6.16	37.59	4.26	0.16	0.0038	0.42	0.17	0.42	0.17	0.42	0.17	3.53E-03	6.11E-04	3.43	4.74	3.43	4.74	2,990.01	0.02	1.50E-03	2,990.92
LOAD	Condensate Loading Emissions	-	-	-	-	12.88	54.41	-	-	-	-	-	-	-	-	-	-	1.16	4.58	-	-	-	-	-	-
FUG	Fugitive Emissions	-	-	-	-	25.29	110.76	-	-	-	-	-	-	-	-	7.01E-04	3.07E-03	1.41	6.19	0.12	0.51	4.58	333.58	0.00E+00	8,344.17
HAUL	Haul	-	-	-	-	-	-	-	-	0.41	1.46	0.11	0.37	0.011	0.037	-	-	-	-	-	-	-	-	-	-
SSM-TO	SSM Thermal Oxidizer	-	-	-	-	326.15	3.26	-	-	-	-	-	-	-	-	14.17	0.14	216.77	2.17	-	-	852.77	0.82	-	873.39
MSSM	MSS Miscellaneous	-	-	-	-	277.95	4.12	-	-	-	-	-	-	-	-	1.08E-02	1.61E-04	15.05	0.22	-	4 005 01	0.94	10.88	-	272.89
MSST MSSB	Tank Degassing MSS Blowdowns	-	-	ı -	-	38.16	0.03	-	-	I -	l -	I - Emissions r	enrecented	at the combu	etor (Unit C	- COMR-1)	-	20.01	2.85E-03	16.75	1.38E-04	-	2.00E-07	ı - I	4.99E-06
INIOOR	MSS Blowdowns Totals	4.777.91	450.00	9,532.80	240.75	8,285.43	301.36	2,526.76	151.38	4.50	46.06				15.44		0.54	433.19	21.52	20.48	5.86	430,338.40	556.32	0.49	444,392.66
-	Totals without Fugitives	4,777.91	159.02 159.02		240.75			2,526.76	151.38	4.50	16.86 16.86	4.20 4.20	15.74 15.74	4.10 4.10	15.44	41.15	0.54	433.19	15.33	20.48	5.86	430,338.40		0.49	436.048.49
	เงเสเจ พเนเงนเ คนหูเน่งยร	4,777.91	109.02	შ,შპ∠.ბ0	240./5	0,∠00.14	130.00	۵/،۵∠۵./ ۵	101.38	4.50	10.00	4.20	15./4	4.10	10.44	41.15	U.54	43 I./ Ö	15.33	۷۵.30	უ. აე	430,333.82	222.14	0.49	430,U48.49

Uncontrolled Emissions

		NC) _X	C	0	V	OC	S	O_2	TS	SP ²	PM	2 10	PM:	2 2.5	H ₂	S	Tota	I HAP	Ben	nzene	CO ₂	CH₄	N ₂ O	CO2e
Unit ID	Equipment Description	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	ton/yr	ton/yr	ton/yr	ton/yr
EP-2	Trim Reboiler	2.60	11.38	2.18	9.56	0.14	0.63	0.022	0.10	0.20	0.86	0.20	0.86	0.20	0.86	-	-	2.09E-03	9.16E-03	5.46E-05	2.39E-04	13,577.41	0.26	0.026	13,591.44
2-EP-2	Trim Reboiler	0.84	3.68	2.18	9.56	0.14	0.63	0.022	0.10	0.20	0.86	0.20	0.86	0.20	0.86	-	-	2.09E-03	9.16E-03	5.46E-05	2.39E-04	13,577.41	0.26	0.026	13,591.44
3-EP-2	Trim Reboiler	0.84	3.68	2.18	9.56	0.14	0.63	0.022	0.10	0.20	0.86	0.20	0.86	0.20	0.86	-	-	2.09E-03	9.16E-03	5.46E-05	2.39E-04	13,577.41	0.26	0.026	13,591.44
EP-3A	Amine Reboiler	2.23	9.77	4.53	19.83	0.38	1.66	0.058	0.26	0.52	2.29	0.52	2.29	0.52	2.29	-	-	5.55E-03	2.43E-02	1.45E-04	6.34E-04	36,008.32	0.68	0.068	36,045.51
EP-3B	Amine Reboiler	0.34	1.49	3.48	15.22	1.61	7.05	0.070	0.31	1.10	4.83	1.10	4.83	1.10	4.83	-	-	6.69E-03	2.93E-02	-	-	43,432.35	0.82	0.082	43,477.21
EP-4	Glycol Reboiler	0.38	1.67	0.32	1.41	0.02	0.09	0.0032	0.014	0.029	0.13	0.029	0.13	0.029	0.13	-	-	3.08E-04	1.35E-03	8.03E-06	3.52E-05	1,998.19	0.038	0.0038	2,000.25
2-EP-4	Glycol Reboiler	0.38	1.67	0.32	1.41	0.02	0.09	0.0032	0.014	0.029	0.13	0.029	0.13	0.029	0.13	-	-	3.08E-04	1.35E-03	8.03E-06	3.52E-05	1,998.19	0.038	0.0038	2,000.25
3-EP-4	Glycol Reboiler	0.38	1.67	0.32	1.41	0.02	0.09	0.0032	0.014	0.029	0.13	0.029	0.13	0.029	0.13	-	-	3.08E-04	1.35E-03	8.03E-06	3.52E-05	1,998.19	0.038	0.0038	2,000.25
EP-5	Regen Reboiler	0.93	4.08	0.78	3.43	0.05	0.22	0.0079	0.035	0.071	0.31	0.071	0.31	0.071	0.31	-	-	7.50E-04	3.28E-03		8.57E-05	4,867.37	0.092	0.0092	4,872.40
2-EP-5	Regen Reboiler	0.93	4.08	0.78	3.43	0.05	0.22	0.0079	0.035	0.071	0.31	0.071	0.31	0.071	0.31	-	-	7.50E-04	3.28E-03		8.57E-05	4,867.37	0.092	0.0092	4,872.40
3-EP-5	Regen Reboiler	0.93	4.08	0.78	3.43	0.05	0.22	0.008	0.035	0.071	0.31	0.071	0.31	0.071	0.31	-	-	7.50E-04	3.28E-03	1.96E-05	8.57E-05	4,867.37	0.092	0.0092	4,872.40
EP-6	Stabilizer Heater	2.29	10.05	1.93	8.44	0.13	0.55	0.019	0.085	0.17	0.76	0.17	0.76	0.17	0.76	-	-	1.85E-03	8.09E-03	4.82E-05	2.11E-04	11,989.11	0.23	0.023	12,001.49
2-EP-6	Stabilizer Heater	2.29	10.05	1.93	8.44	0.13	0.55	0.019	0.085	0.17	0.76	0.17	0.76	0.17	0.76	-	-	1.85E-03	8.09E-03	4.82E-05	2.11E-04	11,989.11	0.23	0.023	12,001.49
EP-7	Glycol Dehydrator (99.9% Control)	-	-	-	-	102.15	447.40	-	-	-	-	-	-	-	-	2.15E-05	9.42E-05	33.28	145.74	14.19	62.16	-	20.09	-	502.18
2-EP-7	Glycol Dehydrator (99.9% Control)	-	-	-	-	102.15	447.40	-	-	-	-	-	-	-	-	2.15E-05	9.42E-05	33.28	145.75	14.19	62.15	-	20.12	-	502.99
3-EP-7	Glycol Dehydrator (99.9% Control)	-	-	-	-	102.15	447.40	-	-	-	-	-	-	-	-	2.15E-05	9.42E-05	33.28	145.74	14.19	62.16	-	20.09	-	502.18
EP-8	Amine Vent (99.9% Control)	-	-	-	-	74.67	327.04	-	-	-	-	-	-	-	-	4.72	20.68	61.17	267.90	-	-	124,504.53	114.30	-	127,361.95
2-EP-8	Amine Vent (99.9% Control)		-	-		74.67	327.04			- -		. .		·		4.72	20.68	61.17	267.90			124,504.53	114.30	-	127,361.95
GEN-1	Diesel Fired Generator	5.75	1.44	0.79	0.20	1.69	0.42	1.77	0.44	0.034	0.0084	0.034	0.0084	0.034	0.0084	-	-	0.0226	0.0056	0.0057	0.0014	248.49	1.01E-02	2.02E-03	249.35
GEN-2	Diesel Fired Generator	0.18	0.04	1.54	0.38	0.09	0.02	0.62	0.16	0.009	0.0022	0.009	0.0022	0.009	0.0022	-	-	7.94E-03	1.99E-03	2.00E-03	5.00E-04	87.40	3.55E-03	7.09E-04	87.70
GEN-3	Diesel Fired Generator	0.33	0.08	2.86	0.72	0.16	0.04	1.16	0.29	0.017	0.0012	0.017	0.0012	0.017	0.0041	-	-	0.015	3.70E-03		9.31E-04	162.73	6.60E-03	1.32E-03	163.29
GEN-4	Diesel Fired Generator	0.33	0.08	2.86	0.72	0.16	0.04	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	0.015	3.70E-03		9.31E-04	162.73	6.60E-03	1.32E-03	163.29
GEN-5	Diesel Fired Generator	0.33	0.08	2.86	0.72	0.16	0.04	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	0.015	3.70E-03		9.31E-04	162.73	6.60E-03	1.32E-03	163.29
GEN-6	Diesel Fired Generator	0.33	0.08	2.86	0.72	0.16	0.04	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	0.015	3.70E-03		9.31E-04	162.73	6.60E-03	1.32E-03	163.29
GEN-7	Diesel Fired Generator	0.33	0.08	2.86	0.72	0.16	0.04	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	0.015	3.70E-03		9.31E-04	162.73	6.60E-03	1.32E-03	163.29
GEN-8	Diesel Fired Generator	0.33	0.08	2.86	0.72	0.16	0.04	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	0.015	3.70E-03		9.31E-04	162.73	6.60E-03	1.32E-03	163.29
GEN-9	Diesel Fired Generator	0.33	0.08	2.86	0.72	0.16	0.04	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	0.015	3.70E-03		9.31E-04	162.73	6.60E-03	1.32E-03	163.29
GEN-10	Diesel Fired Generator	0.33	0.08	2.86	0.72	0.16	0.04	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	0.015	3.70E-03		9.31E-04	162.73	6.60E-03	1.32E-03	163.29
GEN-11	Diesel Fired Generator	0.33	0.08	2.86	0.72	0.16	0.04	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	0.015	3.70E-03	3.72E-03 3.72E-03	9.31E-04	162.73	6.60E-03	1.32E-03	163.29 163.29
GEN-12	Diesel Fired Generator Condensate Storage Tank (95%	0.33	0.08	2.86	0.72	0.16	0.04	1.16	0.29	0.017	0.0041	0.017	0.0012	0.017	0.0041	-	-	0.015	3.70E-03	3.72E-03	9.31E-04	162.73	6.60E-03	1.32E-03	163.29
T-5	Control)	-	-	-	-	32.12	16.87	-	-	-	-	-	-	-	-	3.77E-03	2.35E-03	2.89	1.42	-	-	-	-	-	-
T-6	Waste Water Tank	-	-	-	-	0.14	0.63	-	-	-	-	-	-	-	-	0.0052	0.010	0.0050	0.022	0.0036	0.016	1.06	1.01	-	26.32
COMB-1	Tank Combustor	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2,990.01	0.018	1.50E-03	2,990.92
LOAD	Condensate Loading Emissions	-	-	-	-	257.50	1,088.27	-	-	-	-	-	-	-	-	-	-	23.116	91.63	-	-	-	-	-	-
FUG	Fugitive Emissions	-	-	-	-	25.29	110.76	-	-	-	-	-	-	-	-	0.00	0.00	1.41	6.19	-	-	4.58	333.58	0.00E+00	8,344.17
HAUL	Haul	-	-	-	-	-	-	-	-	0.41	1.46	0.11	0.37	0.011	0.037	-	-	-	-	-	-	-	-	-	-
SSM-TO	SSM Thermal Oxidizer	-	-	-	-	326.15	3.26	-	-	-	-	-	-	-	-	14.17	0.14	216.77	2.17	-	-	852.77	0.82	-	873.39
MSSM	MSS Miscellaneous	-	-	-	-	277.95	4.12	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
MSST	Tank Degassing	-	-	-	-	38.16	0.03	-	-	-	-	-	-	-	-	-	-	20.01	2.85E-03	16.75	1.38E-04	-	2.00E-07	-	4.99E-06
MSSB	MSS Blowdowns	-	-	-	-	590.99	11.82	-	-	-		-	-		-	-	-	1.17	0.012	32.16	0.64	-	-	-	-
	Totals	25.02	71.50	53.47	106.48	2,213.51	3,640.05	14.25	4.74	3.49	14.07	3.18	12.95	3.08	12.64	28.36	62.21	560.44	1,348.22	91.53	187.13	544,073.00	741.81	0.33	562,715.88

Heaters

mission Unit:	EP-3B			
escription:		•		
Heater/Boiler rating (MMBtu/hr):	84.77			
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume unco	ontrolled, unles	s specifically stated otherwise)
Operating hours/year:	8,760			
Fuel Heat Value, LHV (Btu/SCF):	1020.0			
pollutant	emission factor (lb/MMBTU)	lb/hr	tpy	
VOC	0.019	1.611	7.055	
NOx	0.004	0.339	1.485	
СО	0.041	3.476	15.223	
PM	0.013	1.102	4.827	
Benzene	2.10E-03	1.75E-04	7.64E-04	
Toluene	3.40E-03	2.83E-04	1.24E-03	
Formaldehyde	7.50E-02	6.23E-03	2.73E-02	
SO ₂	0	0.00E+00	0.00E+00	

SO ₂ Mass Balance calculation	on:		
Fuel H ₂ S content (mol %) =	0.0005	assumptions:	
SO ₂ produced (lb/hr) =	0.0703	SO2 MW	64.06 lb/lb-mole
SO ₂ produced (tpy) =	0.3080	Ideal Gas Law	378.61 SCF/lb-mole

-2 Emissions Calculations (fueled by nat	ural gas)			
•				
Heater/Boiler rating (MMBtu/hr):	26.5			
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume unco	ontrolled, unles	ss specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value, LHV (Btu/SCF):	1020.0	1		
		1		_
pollutant	emission factor (lb/MMCF)	lb/hr	tpy	
VOC	5.5	0.143	0.626	
NOx	100	2.598	11.379	
CO	84	2.182	9.559	
PM	7.6	0.197	0.865	
Benzene	2.10E-03	5.46E-05	2.39E-04	
Toluene	3.40E-03	8.83E-05	3.87E-04	
Formaldehyde	7.50E-02	1.95E-03	8.53E-03	
SO ₂	0	0.00E+00	0.00E+00	

SO₂ Mass Balance calculation	on:		
Fuel H ₂ S content (mol %) =	0.0005	assumptions:	
SO ₂ produced (lb/hr) =	0.0220	SO2 MW	64.06 lb/lb-mole
SO ₂ produced (tpy) =	0.0963	Ideal Gas Law	378.61 SCF/lb-mole

-EP-2 and Emissions Calculations	(fueled by natural gas)				
Heater/Boiler rating (MMBtu/hr):	26.5	1			
Flow Rate (dscfm):	3846.92	1			
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume unco	ontrolled, unles	s specifically state	d otherwise)
Operating hours/year:	8760				
Fuel Heat Value, LHV (Btu/SCF):	1020.0	1			
		•			
pollutant	emission factor (lb/MMCF)	emission factor (ppmv)	lb/hr	tpy	
VOC	5.5		0.143	0.626	
NOx		30	0.841	3.685	
СО	84		2.182	9.559	
PM	7.6		0.197	0.865	
Benzene	2.10E-03		5.46E-05	2.39E-04	
Toluene	3.40E-03		8.83E-05	3.87E-04	
Formaldehyde	7.50E-02		1.95E-03	8.53E-03	
SO ₂	0		0.00E+00	0.00E+00	

SO ₂ Mass Balance calculation	on:		
Fuel H ₂ S content (mol %) =	0.0005	assumptions:	
SO ₂ produced (lb/hr) =	0.0220	SO2 MW	64.06 lb/lb-mole
SO ₂ produced (tpy) =	0.0963	NO2 MW	46 lb/lb-mole
•		CO MW	28 lb/lb-mole
		Ideal Gas Law	378.61 SCF/lb-mole
		F_d^2	8710 dscf/MMBti

3A Emissions Calculations (fueled by na	atural gas)				
		•			
Heater/Boiler rating (MMBtu/hr):	70.28				
Flow Rate (dscfm):	10202.31				
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume unc	ontrolled, unles	s specifically state	ed otherwise)
Operating hours/year:	8760				
Fuel Heat Value, LHV (Btu/SCF):	1020.0]			
	•	•			
		emission			1
pollutant	emission factor (lb/MMCF)	factor	lb/hr	tpy	
		(ppmv)			
VOC	5.5		0.379	1.660	
NOx ¹	-	30	2.231	9.773	
CO ¹	-	100	4.527	19.829	1
PM	7.6		0.524	2.294	1
Benzene	2.10E-03		1.45E-04	6.34E-04	
Toluene	3.40E-03		2.34E-04	1.03E-03	
Formaldehyde	7.50E-02		5.17E-03	2.26E-02	
SO ₂	0		0.00E+00	0.00E+00	

SO₂ Mass Balance calculation	on:	calculation factors	;
Fuel H ₂ S content (mol %) =	0.0005	SO2 MW	64.06 lb/lb-mole
SO ₂ produced (lb/hr) =	0.0583	NO2 MW	46 lb/lb-mole
SO ₂ produced (tpy) =	0.2553	CO MW	28 lb/lb-mole
		Ideal Gas Law	378.61 SCF/lb-mole
		F _d ²	8710 dscf/MMBtu

 $^{^1}$ Manufacturer specific emission factors per Devco corrected for 3% $\rm O_2$ 2 Factor per 40 CFR 40 Appx A Method 19 Table 19-2

Heater/Boiler rating (MMBtu/hr):	3.90	1		
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume unco	ontrolled, unles	ss specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value, LHV (Btu/SCF):	1020.0	1		
pollutant	emission factor (lb/MMCF)	lb/hr	tpy	
VOC	5.5	0.021	0.092	1
NOx	100	0.382	1.675	1
СО	84	0.321	1.407	
PM	7.6	0.029	0.127	
Benzene	2.10E-03	8.03E-06	3.52E-05	
Toluene	3.40E-03	1.30E-05	5.69E-05	
Formaldehyde	7.50E-02	2.87E-04	1.26E-03	
SO ₂	0	0.00E+00	0.00E+00	

e heater/boiler is fueled by Sour Gas, <u>canno</u>	use emission factors a	above to calculate SO ₂ emissions, must use SO ₂	mass balance:
SO ₂ Mass Balance calculation	on:	٦	
Fuel H ₂ S content (mol %) =	0.0005	assumptions:	
SO ₂ produced (lb/hr) =	0.0032	SO2 MW	64.06 lb/lb-mole
SO ₂ produced (tpy) =	0.0142	Ideal Gas Law	378.61 SCF/lb-mole

eater/Boiler rating (MMBtu/hr):	3.90			
ating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume unco	ontrolled, unles	ss specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value, LHV (Btu/SCF):	1020.0			
pollutant	emission factor (lb/MMCF)	lb/hr	tpy]
VOC	5.5	0.021	0.092	
NOx	100	0.382	1.675	
СО	84	0.321	1.407	
PM	7.6	0.029	0.127	
Benzene	2.10E-03	8.03E-06	3.52E-05	
Toluene	3.40E-03	1.30E-05	5.69E-05	
Formaldehyde	7.50E-02	2.87E-04	1.26E-03	
SO ₂	0	0.00E+00	0.00E+00	

SO ₂ Mass Balance calculation	on:		
Fuel H ₂ S content (mol %) =	0.0005	assumptions:	
SO ₂ produced (lb/hr) =	0.0032	SO2 MW	64.06 lb/lb-mole
SO ₂ produced (tpy) =	0.0142	Ideal Gas Law	378.61 SCF/lb-mole

nissions Calculations (fueled by nat	ural gas)			
Heater/Boiler rating (MMBtu/hr):	9.5	1		
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume unco	ontrolled, unles	s specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value, LHV (Btu/SCF):	1020.0			
pollutant	emission factor (lb/MMCF)	lb/hr	tpy	
VOC	5.5	0.051	0.224	
NOx	100	0.931	4.079	
СО	84	0.782	3.427	
PM	7.6	0.071	0.310	
Benzene	2.10E-03	1.96E-05	8.57E-05	
Toluene	3.40E-03	3.17E-05	1.39E-04	
Formaldehyde	7.50E-02	6.99E-04	3.06E-03	
SO ₂	0	0.00E+00	0.00E+00	

SO ₂ Mass Balance calculation	on:		
Fuel H ₂ S content (mol %) =	0.0005	assumptions:	
SO ₂ produced (lb/hr) =	0.0079	SO2 MW	64.06 lb/lb-mole
SO ₂ produced (tpy) =	0.0345	Ideal Gas Law	378.61 SCF/lb-mole

and 3-EP-5 Emissions Calculations (fueled by natural gas)			
,				
Heater/Boiler rating (MMBtu/hr):	9.5	1		
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume unco	ontrolled, unles	s specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value, LHV (Btu/SCF):	1020.0]		
		•		
pollutant	emission factor (lb/MMCF)	lb/hr	tpy	
VOC	5.5	0.051	0.224	
NOx	100	0.931	4.079	
СО	84	0.782	3.427	
PM	7.6	0.071	0.310	
Benzene	2.10E-03	1.96E-05	8.57E-05	
Toluene	3.40E-03	3.17E-05	1.39E-04	
Formaldehyde	7.50E-02	6.99E-04	3.06E-03	
SO ₂	0	0.00E+00	0.00E+00	

SO ₂ Mass Balance calculation	n:		
Fuel H ₂ S content (mol %) =	0.0005	assumptions:	
SO ₂ produced (lb/hr) =	0.0079	SO2 MW	64.06 lb/lb-mole
SO ₂ produced (tpy) =	0.0345	Ideal Gas Law	378.61 SCF/lb-mole

eater/Boiler rating (MMBtu/hr):	23.4]		
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume unco	ontrolled, unles	ss specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value, LHV (Btu/SCF):	1020.0]		
pollutant	emission factor (lb/MMCF)	lb/hr	tpy	
VOC	5.5	0.126	0.553	
NOx	100	2.294	10.048	
CO	84	1.927	8.441	
PM	7.6	0.174	0.764	
Benzene	2.10E-03	4.82E-05	2.11E-04	
Toluene	3.40E-03	7.80E-05	3.42E-04	
Formaldehyde	7.50E-02	1.72E-03	7.54E-03	
SO ₂	0	0.00E+00	0.00E+00	1

SO ₂ Mass Balance calculation	on:		
Fuel H ₂ S content (mol %) =	0.0005	assumptions:	
SO ₂ produced (lb/hr) =	0.0194	SO2 MW	64.06 lb/lb-mole
SO ₂ produced (tpy) =	0.0850	Ideal Gas Law	378.61 SCF/lb-mole

am Services LLC - Roadrunner Gas Processing Plant Fugitive Emissions

Emission unit number(s):

Source description: Total Operating Hours: Facility-wide Fugitive Emissions 8,760

Number of Treatment Trains:

Emission factor¹ VOC Content²
(lb/hr/source) (wt%) HAP Content² H₂S Content CO₂ Content CH₄ Content² VOC Emissions^{4,5} Hexane Emissions^{4,5}
Ib/hr tpy H₂S Emissions^{4,5} CO₂ Emissions^{4,5} CH₄ Emissions^{4,5} Hexane² (wt%) HAP Emissions^{4,5} Component 1b/hr 38.67 23.82 0.00 Count³ 6714 Inlet Gas Residue Gas 169.39 104.35 0.00 0.0017% 14.99% 0.0000% 80.53% 0.00% 0.00 Valves 9.92E-03 5.51E-03 0.76% 99.98% 0.0003% 11.72% 1.39% 0.00% 2982 819 0.22 4.51 0.98 19.77 0.00 0.00 0.00 2.32 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.41 1.80 Light Oil
Inlet Gas
Residue Gas 22.12% 0.76% 99.98% 0.68% 1.39% 18342 0 6.78E-05 0.00E+00 2.97E-04 0.00E+00 0.24 0.00 0.00 1.79 0.00 7.84 0.00 0.04 0.18 0.00 0.61 0.06 0.00 0.00 4.70 0.00 0.00 20.57 0.00 0.00 Connectors Light Oil

Inlet Gas
Residue Gas 2000 0.47 4.63F-04 14.99% 11.72% 0.0000% 0.00% 0.00% 0.93 4.05 0.14 0.11 0.00F+00 0.00F+00 0.52% 0.0017% 14.99% 0.52% 0.42% 0.0003% 11.72% 0.42% 0.0003% 11.72% 0.68% 1.39% 0.00% 0.68% 1.39% 0.00% 8.60E-04 8.60E-04 22.12% 0.76% 0.0008% 0.0000% 58.06% 80.53% 2.27E-05 0.00E+00 9.96E-05 0.00E+00 3156 5406 255 0.60 2.63 0.15 0.27 0.01 0.06 0.05 0.02 0.06 0.08 1.58 3.74 6.90 16.39 0.01 Flanges 99.98% 22.12% 0.76% 99.98% Light Oil
Inlet Gas
Residue Gas 2.43E-04 5.29E-03 0.0000% 0.00% 58.06% 0.00F + 000.00E+00 0.00E+00 0.00E+00 0.52% 0.0017% 14.99% 5.29E-03 2.87E-02 0.0000% 80.53% 0.00% 0.00 0.00 0.00E+00 0.00E+00 0.00 0.00 0.00 Pump Seals 0.00 0.00 0.54 0.00 0.00 0.00 Light Oil Inlet Gas 0.14 0.00 0.13 **6.19** 5.27E-05 2.31E-04 0.04 0.19 3.65 15.99 0.00E+00 0.00E+00 0.00 0.00 0.00 0.00 0.00E+00 0.00E+00 0.00 0.00 0.00 0.00 7.01E-04 3.07E-03 1.05 4.58 76.16 333.58 1.94F-02 22.12% 0.76% 99.98% 0.52% 0.42% 0.0008% 0.68% 58.06% 6.09 0.03 0.03 0.12 Residue Gas Light Oil 1.94E-02 1.65E-02 0.0017% 14.99% 0.0003% 11.72% 0.0000% 0.0000% 1.39% 0.00% 80.53% 0.00% 0.00 0.87 **110.76** 0.00 0.02 1.12 0.00 0.10 **4.89** Other 0.00 0.00 0.20 Total: 25.29 0.03 1.41

¹ Emission factors from Table 2-4 of EPA Protocol for Equipment Leak Emission Estimates, 1995.

<sup>Weight percent of gas and liquid components from site specific liquid and gas analyses.

Weight percent of gas and liquid components from site specific liquid and gas analyses.

Component counts are based on facility design.

Hourly Emissions [lb/hr] = Emissions Factor [lb/hr/component] * Weight Content of Chemical Component [%] * Subcomponent Count.

Annual Emissions [lon/yr] = Hourly Emissions [lb/hr] * Operating Hours [hr/yr] * 1/2000 [ton/lb].</sup>

Glycol Dehydrator

Emission Unit: EP-7 and 3-EP-7

Source Description: TEG Dehydrator emissions

Thermal Oxidizer Control Efficiency: 99.9%
Operating Hours: 8760 hrs/yr

	V	OC	H ₂	S	Tota	HAP	Benz	zene	Tolu	iene	Ethylb	enzene	Xyl	ene	Metl	hane
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Uncontrolled Emissions from ProMax	102.15	447.40	2.15E-05	9.42E-05	33.28	145.74	14.19	62.16	6.56	28.73	1.47	6.46	1.03	4.51	4.59	20.09
TOTAL Controlled Emissions	0.10	0.45	2.15E-08	9.42E-08	0.0333	0.1457	0.0142	0.0622	0.0066	0.0287	0.0015	0.0065	0.0010	0.0045	2.29E-05	1.00E-04
Uncontrolled Emissions Per Unit	102.15	447.40	2.15E-05	9.42E-05	33.28	145.74	14.19	62.16	6.56	28.73	1.47	6.46	1.03	4.51	4.59	20.09
Controlled Emissions Per Unit	0.10	0.45	2.15E-08	9.42E-08	0.0333	0.1457	0.0142	0.0622	0.0066	0.0287	0.0015	0.0065	0.0010	0.0045	2.29E-05	1.00E-04

Note: Controlled methane based on 99.9995% destruction (based on 0.001 kg/MMBtu emission EF in 40 CFR Part 98).

Emissions estimated using BR&E ProMax.

TEG Dehydrator controlled by thermal oxidizer unit EP-9

TEG Dehydrator controlled emissions exit via stack EP-9 but are listed as EP-7 and 3-EP-7 emission unit emissions

Glycol Dehydrator

Emission Unit:

2-EP-7 TEG Dehydrator emissions 99.9% 8760 hrs/yr Source Description: Thermal Oxidizer Control Efficiency: Operating Hours:

	V	OC .	Н	₂ S	Tota	HAP	Ben	zene	Tolu	iene	Ethylb	enzene	Xyl	ene	Met	thane
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Uncontrolled Emissions from ProMax	102.15	447.40	2.24E-05	9.81E-05	33.28	145.75	14.19	62.15	6.56	28.73	1.47	6.46	1.03	4.51	4.59	20.12
TOTAL Controlled Emissions	0.10	0.45	2.24E-08	9.81E-08	0.033	0.15	0.014	0.062	0.0066	0.029	0.0015	0.0065	0.0010	0.0045	2.30E-05	1.01E-04
Uncontrolled Emissions Per Unit	102.15	447.40	2.24E-05	9.81E-05	33.28	145.75	14.19	62.15	6.56	28.7	1.47	6.46	1.03	4.51	4.59	20.12
Controlled Emissions Per Unit	0.10	0.45	2.24E-08	9.81E-08	0.033	0.15	0.014	0.062	0.0066	0.0287	0.0015	0.0065	0.0010	0.0045	2.30E-05	1.01E-04

Note: Controlled methane based on 99.9995% destruction (based on 0.001 kg/MMBtu emission EF in 40 CFR Part 98). Emissions estimated using BR&E ProMax.

TEG Dehydrator controlled by thermal oxidizer unit EP-9
TEG Dehydrator controlled emissions exit via stack EP-9 but are listed as 2-EP-7 emission unit emissions

Amine Gas Treatment

Emission Unit: EP-8, 2-EP-8, 3-EP-8

Source Description: Amine vent controlled by thermal oxidizer unit EP-9

Thermal Oxidizer Control Efficiency: 99.9%
Operating Hours: 8760 hrs/yr

	Unc	ontrolled ¹	Thermal	Controlled⁴			
Components	EP-8 Amine Vent (lb/hr)	EP-8 Amine Vent (ton/yr)	Oxidizer Control Efficiency	EP-8 Amine Vent (lb/hr)	EP-8 Amine Vent (ton/yr)		
H2S ²	14.17	62.05	99.9%	0.014	0.062		
SO2 ³	-	-	-	28.331	124.09		
CO2	85,277.07	373,513.58	-	85,277.074	373513.58		
N2	0.13	0.57	-	0.131	0.57		
Methane	78.29	342.89	99.9%	0.078	0.34		
Ethane	57.56	252.11	99.9%	0.058	2.52E-01		
Propane	24.52	107.41	99.9%	0.025	0.11		
i-Butane	2.53	11.07	99.9%	0.003	0.011		
n-Butane	11.35	49.70	99.9%	0.011	0.050		
i-Pentane	0.71	3.12	99.9%	0.001	< 0.01		
n-Pentane	1.26	5.52	99.9%	0.001	< 0.01		
n-Hexane	0.72	3.15	99.9%	0.00072	< 0.01		
n-Heptane	0.11	0.47	99.9%	0.000	< 0.01		
n-Octane	0.02	0.11	99.9%	0.000	< 0.01		
n-Nonane	0.00E+00	0.00E+00	99.9%	-	0.00E+00		
n-Decane	0.00E+00	0.00E+00	99.9%	-	0.00E+00		
Undecane	0.00E+00	0.00E+00	99.9%	-	0.00E+00		
Benzene	90.79	397.67	99.9%	0.091	0.40		
Toluene	5.62E+01	2.46E+02	99.9%	0.056	0.25		
Ethylbenzene	18.11	79.33	99.9%	0.018	0.08		
m-Xylene	17.67	77.39	99.9%	0.018	0.08		
Water	2,506.19	10,977.09	-	2,506.185	10.98		
MDEA	8.27E-05	3.62E-04	-	0.000	< 0.01		
Piperazine	9.05E-05	3.97E-04	-	0.000	< 0.01		
TEG	0.00E+00	0.00E+00	-	-	0.00		
TOTALS:	88,157	386,129	-	87812.10	373650.86		
TOTAL VOCs:	224.00	981.12	-	0.22	0.98		
TOTAL HAPs:	183.50	803.71	-	0.18	0.80		

Notes:

¹ Emissions from the amine vent are calculated using BR&E ProMax. Hourly emissions are based on the maximum emissions determined from ProMax runs conducted at varying gas flowrates.

 $^{^2}$ Controlled H_2S emissions assume conversion to SO_2 based on control efficiency.

³Controlled SO₂ emissions assumed 100% conversion of H₂S to SO₂.

⁴Controlled emissions are represented at the exit via stack EP-9 but are listed as EP-8 emisision unit emissions except for SO₂ and H₂S.

Diesel Fired Generator

Emission Unit: GEN-1

Source Description: Diesel Fired Generator

Manufacturer: Generac

Model: 2506C-E15TAG3
Type: Compression Ignited

Fuel Consumption

Site horsepower 762 hp Maximum horsepower of generator engine

Site kW500 kWMaximum kW of generator engineFuel heat value137000 Btu/galFuel heat value of typical dieselHeat input6.10 MMBtu/hrFuel consumption * Fuel heat valueHours of Operation500 hrs/yrAssume ~3 weeks/yr of runtime

Fuel Consumption 8000 Btu/hp-hr Engineering Estimate

Emission Calculations

					Ellission Calcula	LIONS			
					Uncontrolle	ed			
NO _x ¹	CO1	VOC ^{1,2}	SO ₂ ³	HCHO⁴	PM ₁₀ ^{1,5}	PM _{2.5} ^{1,5}	Total HAPs⁴		
3.42	0.47	1.00			0.020	0.020		g/hp-hr	Per manufacturers specifications or Tier I standard
			0.29	1.18E-03				lb/MMBtu	AP-42 Table 3.3-1,2
5.75	0.79	1.69	1.77	7.19E-03	0.034	0.034	0.023	lb/hr	
1.44	0.20	0.42	0.44	0.002	0.008	0.008	0.006	tnv	

Acetaldehyde ⁴	Acrolein ⁴	Benzene⁴	1-3 Butadiene ⁴	Toluene ⁴	Xylene ⁴	
0.000767	0.0000925	0.000933	0.0000391	0.000409	0.000285	lb/MMBtu
4.68E-03	5.64E-04	5.69E-03	2.38E-04	2.49E-03	1.74E-03	lb/hr
1.17E-03	1.41E-04	1.42E-03	5.96E-05	6.23E-04	4.34E-04	tpy

NO _x ¹	CO1	VOC ^{1,2}	SO ₂ ³	HCHO⁴	PM ₁₀ ^{1,5}	PM _{2.5} ^{1,5}	Total HAPs⁴		
3.42	0.47	1.00			0.020	0.020		g/hp-hr	Per manufacturers specifications or Tier I standard
0%	0%	0%			0%	0%			% Reduction
			0.29	1.18E-03				lb/MMBtu	AP-42 Table 3.3-1,2
5.75	0.79	1.69	1.77	7.19E-03	0.034	0.034	0.023	lb/hr	·
1.44	0.20	0.42	0.44	0.002	0.008	0.008	0.006	tpy	

NOTES

- ¹ NO_x, CO, VOC, and PM emission factors are referenced from manufacturers specification.
- ² Formaldehyde and acetaldehyde emissions conservatively included in VOC total.
- ³ AP-42 Table 3.3-1 Emission Factors for Uncontrolled Gasoline and Diesel Industrial Engines
- ⁴ HAPs emissions factors are referenced from AP-42 Table 3.2-2 Speciated Organic Compound Emission Factors for Uncontrolled Diesel Engines.

⁵ Assumes PM (Filterable + Condensable) = PM₁₀ = PM_{2,5}

					GHG Emissions	
CO ₂ ¹	CH ₄ ²	N ₂ O ²	CH₄ ³	N ₂ O ³	Total CO2e	
73.96	0.003	0.0006			0.020	kg CO ₂ /MMBtu 40CFR Part 98, Table C-1
			25	298		GWP Factor 40CFR Part 98, Table A-1
993.98	0.040	8.06E-03	1.01	2.40	997.39	lb/hr
248.49	0.010	2.02E-03	0.25	0.60	249.35	tpy

NOTES

¹ CO₂ emission factor is referenced from Table C-1 of 40 CFR Part 98 for Distillate Oil No. 2.

 $^{^{2}}$ CH₄ and N₂O emission factors are referenced from Table C-2 of 40 CFR Part 98.

³ GWP is referenced from Table A-1 of 40 CFR Part 98.

Diesel Fired Generator

Emission Unit: GEN-2

Source Description: Diesel Fired Generator

Manufacturer: TBD Model: TBD

Type: Compression Ignited

Fuel Consumption

Site horsepower 268 hp Maximum horsepower of generator engine

Site kW 200 kW Maximum kW of generator engine
Fuel heat value 137000 Btu/gal Fuel heat value of typical diesel
Heat input 2.14 MMBtu/hr Fuel consumption * Fuel heat value
Hours of Operation 500 hrs/yr Assume ~3 weeks/yr of runtime

Fuel Consumption 8000 Btu/hp-hr Engineering Estimate

Emission Calculations

_						Lillission Calcula	LIUIIS			
I						Uncontrolled				
ı	NO _x ¹	CO ₁	VOC1,2	SO ₂ ³	HCHO ⁴	PM ₁₀ ^{1,5}	PM _{2.5} ^{1,5}	Total HAPs ⁴		
ı	0.30	2.60	0.14			0.015	0.015		g/hp-hr	Tier 4 Emissions Standards for Non-Road Engines
				0.29	1.18E-03				lb/MMBtu	AP-42 Table 3.3-1,2
	0.18	1.54	0.09	0.62	2.53E-03	0.009	0.009	0.008	lb/hr	
- 1	0.04	0.38	0.02	0.16	0.001	0.002	0.002	0.002	tnv	

Acetaldehyde ⁴	Acrolein ⁴	Benzene ⁴	1-3 Butadiene ⁴	Toluene ⁴	Xylene ⁴	
0.000767	0.0000925	0.000933	0.0000391	0.000409	0.000285	lb/MMBtu
1.64E-03	1.98E-04	2.00E-03	8.38E-05	8.77E-04	6.11E-04	lb/hr
4.11E-04	4.96E-05	5.00E-04	2.10E-05	2.19E-04	1.53E-04	tpy

					Controlled				
NO _x ¹	CO1	VOC ^{1,2}	SO ₂ ³	HCHO⁴	PM ₁₀ ^{1,5}	PM _{2.5} ^{1,5}	Total HAPs ⁴		
0.30 0%	2.60	0.14			0.015	0.015		g/hp-hr	Tier 4 Emissions Standards for Non-Road Engines
0%	0%	0%			0%	0%			% Reduction
			0.29	1.18E-03				lb/MMBtu	AP-42 Table 3.3-1,2
0.18	1.54	0.09	0.62	2.53E-03	0.009	0.009	0.008	lb/hr	
0.04	0.38	0.02	0.16	0.001	0.002	0.002	0.002	tpy	

NOTES

⁵ Assumes PM (Filterable + Condensable) = $PM_{10} = PM_{2.5}$

					GHG Emissions	
CO ₂ ¹	CH ₄ ²	N_2O^2	CH ₄ ³	N ₂ O ³	Total CO2e	
73.96	0.003	0.0006			0.020	kg CO₂/MMB 40CFR Part 98, Table C-1
			25	298		GWP Factor 40CFR Part 98, Table A-1
349.59	0.014	2.84E-03	0.35	0.85	350.79	lb/hr
87.40	0.0035	7.09E-04	0.089	0.21	87.70	tpy

NOTES

¹ NO_x, CO, VOC, and PM emission factors are referenced from Final Tier 4 Emissions Standards for Non-Road Engines.

² Formaldehyde and acetaldehyde emissions conservatively included in VOC total.

³ AP-42 Table 3.3-1 Emission Factors for Uncontrolled Gasoline and Diesel Industrial Engines

⁴ HAPs emissions factors are referenced from AP-42 Table 3.2-2 Speciated Organic Compound Emission Factors for Uncontrolled Diesel Engines.

¹ CO₂ emission factor is referenced from Table C-1 of 40 CFR Part 98 for Distillate Oil No. 2.

 $^{^2}$ CH $_{\!\!4}$ and N $_{\!\!2}{\rm O}$ emission factors are referenced from Table C-2 of 40 CFR Part 98.

³ GWP is referenced from Table A-1 of 40 CFR Part 98.

Diesel Fired Generator

GEN-1 through GEN-10 Diesel Fired Generator Source Description:

Manufacturer: TBD TBD Model:

Type: Compression Ignited

Fuel Consumption

499 hp Site horsepower Site kW 210 kW Fuel heat value 137000 Btu/gal 3.99 MMBtu/hr Heat input

Hours of Operation 500 hrs/yr

Fuel Consumption 8000 Btu/hp-hr Maximum horsepower of generator engine

Maximum kW of generator engine Fuel heat value of typical diesel Fuel consumption * Fuel heat value Assume ~3 weeks/yr of runtime

Engineering Estimate

Emission Calculations

					Lillission Calcula	LIUIIS			
NO _x ¹	CO ₁	VOC ^{1,2}	SO ₂ ³	HCHO⁴	PM ₁₀ ^{1,5}	PM _{2.5} ^{1,5}	Total HAPs⁴		
0.30	2.60	0.14			0.015	0.015		g/hp-hr	Tier 4 Emissions Standards for Non-Road Engines
			0.29	1.18E-03				lb/MMBtu	AP-42 Table 3.3-1,2
0.33	2.86	0.16	1.16	4.71E-03	0.017	0.017	0.015	lb/hr	
0.08	0.72	0.04	0.29	0.001	0.004	0.004	0.004	tpv	

Acetaldehyde⁴	Acrolein⁴	Benzene⁴	1-3 Butadiene ⁴	Toluene⁴	Xylene⁴	
0.000767	0.0000925	0.000933	0.0000391	0.000409	0.000285	lb/MMBtu
3.06E-03	3.69E-04	3.72E-03	1.56E-04	1.63E-03	1.14E-03	lb/hr
7.65E-04	9.23E-05	9.31E-04	3.90E-05	4.08E-04	2.84E-04	tpy

					Controlled				
NO _x ¹	CO1	VOC ^{1,2}	SO ₂ ³	HCHO⁴	PM ₁₀ ^{1,5}	PM _{2.5} ^{1,5}	Total HAPs⁴		
0.30 0%	2.60	0.14			0.015	0.015		g/hp-hr	Tier 4 Emissions Standards for Non-Road Engines
0%	0%	0%			0%	0%			% Reduction
			0.29	1.18E-03				lb/MMBtu	AP-42 Table 3.3-1,2
0.33	2.86	0.16	1.16	4.71E-03	0.017	0.017	0.015	lb/hr	
0.08	0.72	0.04	0.29	0.001	0.004	0.004	0.004	tpy	

- ¹ NO_x, CO, VOC, and PM emission factors are referenced from Final Tier 4 Emissions Standards for Non-Road Engines.
- ² Formaldehyde and acetaldehyde emissions conservatively included in VOC total.
- ³ AP-42 Table 3.3-1 Emission Factors for Uncontrolled Gasoline and Diesel Industrial Engines
- ⁴ HAPs emissions factors are referenced from AP-42 Table 3.2-2 Speciated Organic Compound Emission Factors for Uncontrolled Diesel Engines.
- 5 Assumes PM (Filterable + Condensable) = $PM_{10} = PM_{2.5}$

					GHG Emissions	
CO ₂ ¹	CH ₄ ²	N ₂ O ²	CH ₄ ³	N ₂ O ³	Total CO2e	
73.96	0.003	0.0006			0.020	kg CO₂/MMBtu 40CFR Part 98, Table C-1
			25	298		GWP Factor 40CFR Part 98, Table A-1
650.91	0.026	5.28E-03	0.66	1.57	653.15	lb/hr
162.73	0.0066	1.32E-03	0.17	0.39	163.29	tpy

- ¹ CO₂ emission factor is referenced from Table C-1 of 40 CFR Part 98 for Distillate Oil No. 2.
- 2 CH₄ and N₂O emission factors are referenced from Table C-2 of 40 CFR Part 98.
- ³ GWP is referenced from Table A-1 of 40 CFR Part 98.

Condensate Storage Tanks

Emission unit number(s):

Condensate Tanks Source description:

Annual Operating Hours: 8,760 Control Efficiency: 95% Number of Tanks: 5 Capacity of Tanks: 1,000 bbl Hourly Throughout: 333.33 bbl/hr Daily Throughput: Annual Throughput: 8000.00 bbl/d 2920000 bbl/yr Hourly Throughout per Tank: 67 bbl/hr Daily Throughput per Tank: 1600 bbl/d Annual Throughput per Tank: 584000 bbl/yr

		Conde	nsate Tank	Emissions ^{1,2}	2			
	Uncontroll	ed Emissions (hou			ed Emissions (an	nual basis)	Controlled	Emissions
Component	Total Flash (lb/hr)	Total Working and Breathing (lb/hr)	Total per Tank (lb/hr)	Total Flash (lb/hr)	Total Working and Breathing (lb/hr)	Total Emissions Per Tank (tpy)	Total Emissions per Tank (lb/hr)	Total Emissions Per Tank (tpy)
Carbon Dioxide	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Hydrogen Sulfide	2.88E-04	1.86E-02	0.00	0.00E+00	2.68E-03	2.35E-03	1.88E-04	1.17E-04
Nitrogen	7.73E-01	2.29E+00	0.61	0.00E+00	6.18E-01	5.42E-01	6.13E-01	5.42E-01
Methane	3.78E-03	6.10E-02	0.01	0.00E+00	1.29E-02	1.13E-02	6.48E-04	5.67E-04
Ethane	1.85E-03	1.84E-01	0.04	0.00E+00	2.83E-02	2.48E-02	1.86E-03	1.24E-03
Propane	6.92E-03	5.67E-01	0.11	0.00E+00	8.03E-02	7.04E-02	5.74E-03	3.52E-03
i-Butane	1.34E-02	9.91E-01	0.20	0.00E+00	1.34E-01	1.17E-01	1.00E-02	5.85E-03
n-Butane	1.81E-01	1.37E+01	2.78	0.00E+00	1.82E+00	1.59E+00	1.39E-01	7.96E-02
i-Pentane	5.92E-01	4.15E+01	8.42	0.00E+00	5.21E+00	4.57E+00	4.21E-01	2.28E-01
n-Pentane	7.24E-01	5.07E+01	10.28	0.00E+00	6.23E+00	5.46E+00	5.14E-01	2.73E-01
i-Hexane	3.42E-01	2.37E+01	4.82	0.00E+00	2.78E+00	2.44E+00	2.41E-01	1.22E-01
Hexane	1.91E-01	1.31E+01	2.67	0.00E+00	1.51E+00	1.32E+00	1.33E-01	6.60E-02
Heptane	9.96E-02	6.81E+00	1.38	0.00E+00	7.25E-01	6.35E-01	6.91E-02	3.18E-02
Cyclopentane	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Benzene	1.58E-02	7.06E-01	0.14	0.00E+00	7.84E-02	6.87E-02	7.22E-03	3.44E-03
Cyclohexane	6.37E-02	3.96E+00	0.80	0.00E+00	4.45E-01	3.90E-01	4.02E-02	1.95E-02
Methylcyclohexane	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2,2,4-Trimethylpentane	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Toluene	6.58E-03	3.04E-01	0.06	0.00E+00	3.17E-02	2.78E-02	3.11E-03	1.39E-03
Ethylbenzene	2.84E-04	1.37E-02	0.00	0.00E+00	1.33E-03	1.17E-03	1.40E-04	5.85E-05
o-Xylene	9.52E-04	4.02E-02	0.01	0.00E+00	3.84E-03	3.36E-03	4.12E-04	1.68E-04
Octane	3.42E-02	2.13E+00	0.43	0.00E+00	2.08E-01	1.82E-01	2.16E-02	9.09E-03
VOC	2.27	158.34	32.12	0.00	19.26	16.87	1.61	0.84
Total HAPS	0.21	14.21	2.89	0.00	1.62	1.42	0.14	0.07
H₂S	2.88E-04	1.86E-02	3.77E-03	0.00E+00	2.68E-03	2.35E-03	1.88E-04	1.17E-04

¹ Emissions from the condensate tanks are controlled by the combustor (COMB-1) with an assumed 95% DRE.
² Emissions are calculated using BR&E ProMax. Hourly loading emissions are based on the maximum hourly throughput of the facility. Annual emissions

Produced Water Storage Tank

Emission unit number(s): T-6

Source description: Produced Water Storage Tank

Annual Operating Hours: 8,760
Control Efficiency: 0%
Number of Tanks: 1
Capacity of Tanks: 400 bbl
Hourly Throughout: 12.64 bbl/hr
Daily Throughput: 303.32 bbl/d
Annual Throughput: 24526 bbl/yr

		Produce	ed Water Ta	nk Emissio	าร ^{1,2}			
	Uncontroll	ed Emissions (hou			ed Emissions (an	nual basis)	Controlled	Emissions
Component	Flash (lb/hr)	Working and Breathing (lb/hr)	Total per Tank (lb/hr)	Flash (lb/hr)	Working and Breathing (lb/hr)	Total Emissions Per Tank (tpy)	Total Emissions per Tank (lb/hr)	Total Emissions Per Tank (tpy)
Carbon Dioxide	2.29E-01	3.04E-01	5.32E-01	2.29E-01	1.31E-02	1.06E+00	5.32E-01	1.06E+00
Hydrogen Sulfide	2.08E-03	3.11E-03	0.01	2.08E-03	1.17E-04	9.62E-03	5.19E-03	9.62E-03
Nitrogen	1.38E-03	5.16E-06	0.00	1.38E-03	1.08E-06	6.05E-03	1.39E-03	6.05E-03
Methane	2.30E-01	3.23E-03	0.23	2.30E-01	5.00E-04	1.01E+00	2.33E-01	1.01E+00
Ethane	1.92E-01	4.10E-03	0.20	1.92E-01	4.84E-04	8.45E-01	1.97E-01	8.45E-01
Propane	9.70E-02	3.11E-04	0.10	9.70E-02	4.16E-05	4.25E-01	9.73E-02	4.25E-01
i-Butane	1.03E-02	6.10E-06	0.01	1.03E-02	1.08E-06	4.53E-02	1.03E-02	4.53E-02
n-Butane	2.40E-02	1.73E-05	0.02	2.40E-02	2.25E-06	1.05E-01	2.40E-02	1.05E-01
i-Pentane	3.72E-03	5.71E-07	0.00	3.72E-03	9.22E-08	1.63E-02	3.72E-03	1.63E-02
n-Pentane	1.23E-03	5.38E-08	0.00	1.23E-03	9.07E-09	5.40E-03	1.23E-03	5.40E-03
Hexane	3.06E-04	2.42E-09	0.00	3.06E-04	4.40E-10	1.34E-03	3.06E-04	1.34E-03
Heptane	6.65E-05	1.05E-10	0.00	6.65E-05	2.05E-11	2.91E-04	6.65E-05	2.91E-04
Cyclopentane	1.07E-03	9.22E-07	0.00	1.07E-03	6.87E-08	4.69E-03	1.07E-03	4.69E-03
Benzene	3.54E-03	7.15E-05	0.00	3.54E-03	2.81E-06	1.55E-02	3.61E-03	1.55E-02
Cyclohexane	9.89E-04	2.48E-07	0.00	9.89E-04	1.78E-08	4.33E-03	9.89E-04	4.33E-03
Methylcyclohexane	2.20E-04	7.47E-09	0.00	2.20E-04	7.79E-10	9.65E-04	2.20E-04	9.65E-04
2,2,4-Trimethylpentane	1.17E-05	2.31E-11	0.00	1.17E-05	6.23E-12	5.11E-05	1.17E-05	5.11E-05
Toluene	8.44E-04	3.94E-06	0.00	8.44E-04	1.45E-07	3.70E-03	8.48E-04	3.70E-03
Ethylbenzene	1.44E-04	1.90E-07	0.00	1.44E-04	7.39E-09	6.29E-04	1.44E-04	6.29E-04
o-Xylene	8.35E-05	1.20E-07	0.00	8.35E-05	4.46E-09	3.66E-04	8.36E-05	3.66E-04
Octane	1.60E-06	3.22E-13	0.00	1.60E-06	5.76E-14	7.03E-06	1.60E-06	7.03E-06
Water	1.26E-02	6.01E-01	0.61	1.26E-02	2.85E-02	1.80E-01	6.14E-01	1.80E-01
VOC	0.14	4.12E-04	0.14	0.14	4.81E-05	0.63	0.14	0.63
Total HAPS	4.93E-03	7.57E-05	5.00E-03	4.93E-03	2.97E-06	2.16E-02	5.00E-03	2.16E-02
H ₂ S	2.08E-03	3.11E-03	5.19E-03	2.08E-03	1.17E-04	9.62E-03	5.19E-03	9.62E-03

¹ Emissions from the produced water tank are uncontrolled.

² Emissions are calculated using BR&E ProMax. Hourly loading emissions are based on the maximum hourly throughput of the facility. Annual emissions are based on the average daily throughput of the facility.

TO 1 EP-9 Thermal Oxidizer Emission Factors for Waste Gas Stream(s) (ppmv) NOx CO 40 Please move on to next question below. Emission Factors for Pilot Stream (lb/MMscf) NOX CO 0 O 0
Emission Factors for Waste Gas Stream(s) (ppmv) NOx CO Please move on to next question below. Emission Factors for Pilot Stream (lb/MMscf) NOx 0
Thermal Oxidizer Emission Factors for Waste Gas Stream(s) (ppmv) NOx CO 40 Please move on to next question below. Emission Factors for Pilot Stream (lb/MMscf) NOx 0
Emission Factors for Waste Gas Stream(s) (ppmv) NOx CO 40 Please move on to next question below. Emission Factors for Pilot Stream (lb/MMscf) NOx 0
Emission Factors for Waste Gas Stream(s) (ppmv) NOx CO 40 Please move on to next question below. Emission Factors for Pilot Stream (lb/MMscf) NOx 0
Please move on to next question below. Emission Factors for Pilot Stream (lb/MMscf) NOx 0
Emission Factors for Pilot Stream (lb/MMscf) NOx 0
Emission Factors for Pilot Stream (lb/MMscf) NOx 0
Emission Factors for Pilot Stream (lb/MMscf) NOx 0
NOx 0
Please move on to next question below.
Emission Factors for Pilot Stream (ppmv) NOx 0
co
added fuel stream information into the boxes in the column for Steam No. 2 below.
Emission Factors for Added Fuel Stream (ppmv)
NOX CO
Please move on to next question below.
Thease more on to next question selow.
•

Emission Factors								
² Emission Factors	s from Zeeco	Guarantee (lb	/MMBtu)					
	DNA /Total	,	0.1	000 lb /8484D4				
	PM (Total			008 lb/MMBtu				
¹ Manufacturers (Pollutant	Guaranteed	Outlet Concent (ppmv)	ration					
NOx		50						
со		40						
calculation factor NO2 MW	rs:	46.006	lb/lb-mole	<u>:</u>				
CO MW		28	lb/lb-mole	:				
Ideal Gas Law		379.43	SCF/lb-mol	e				
Exhaust Stream p		uarantee						
Component CO2	lb/hr 33421		Ib/Ibmol 44	lbmol/hr 759.57	L/I	nr ,349,756	vol% 32%	
H2O	7086.1		18	393.67		,766,369	17%	
							.=/	
N2	31261.58		28	1110.93	47	,314,154	47%	
SO2 O2	15.47 3158.75		64 32	0.24 98.7109375		,283 !04,066	0.0102% 4.1771%	
Supplemental Fu		eeco Guarante	e	30 MMBtu/hr			100%	
Maximum Heatir				75 MMBtu/hr				
PV=nRT								
T=		1	1600 F		1,144 K			
n=		2	,363 lbmol/hr	1	,071,889 gm	ol/hr		
P=			1 atm		29.92 in			
R= V			2057 atm-L/mol-K ,628 L/hr		,554,212 ft3	/hr		
T (act)		1	1600 F		2059.67 R			
T (std)					327.67 R			
V (std)					759,040 ds			
V (std) Safety Factor					12,651 ds 1.33			
V (std) with safet	ty factor			1,	,009,523 ds	cfh		
Emission Factors	from AP-42	Table 1.4-3 (lb/l	MMscf)					
	SO ₂			0.6				
	VOC			5.5				
	benzene		2.10E	-03				
	propane			60				

Stream Sent to Flare/Vapor													
Combustor No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Flare/Vapor													
Combustor Name (Enter Names													
of Each Stream Here)		Waste Gas from Dehy	Waste Gas from Amine	Supplemental Fuel									
Maximum Expected Hourly													
Volumtric Flow Rate of Stream													
(scf/hr)		2577.989	790764	29,412									822753.620
Amount of Time Stream Fired													
(hrs/yr)		8760	8760	8760									
Maximum Expected Annual													
Volumtric Flow Rate of Stream													
(scf/yr)		22,583,187	6,927,091,472	257,647,059									7,207,321,718
Heat Value of Stream - from													
program results or gas analysis													
(Btu/scf)		2550	23.70	1,020									
propane weight percent of total													
stream (%) *OPTIONAL*													
VOC weight percent of total													
stream (%) *OPTIONAL*													
						Hourly (i <u>o/nr)</u>					1	
Stream Sent to Flare/Vapor													
Combustor No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Compustor No.	1	4	,	4	,		,	0	3	10	11	12	Total
Stream Sent to Flare/Vapor													
Combustor Name		Waste Gas from Dehy	Waste Gas from Amine	Supplemental Fuel									
H2S	-	6.45E-05	14.17										14.1
Crude or Condensate VOC	-												0.0
Natural Gas VOC	-	306.44											0.0 530.4
Total VOC	-	306.44											530.4
benzene	-	42.57	90.79			Annual	(tmu)						133.3
H2S		2.82E-04	62			Annual	(тру)						62.0
Crude or Condensate VOC	-	0.00											62.0
Natural Gas VOC	-	1342.19	981.12										2323.3
Total VOC	-	1342.19	981.12										2323.3
benzene	-	186.47	397.67										584.1
									•	•		•	

Controlled Emissions													
						Hourly (I	b/hr)						
Stream Sent to Flare/Vapor			_	_	_		_						
Combustor No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor Name		Waste Gas from Dehy	Waste Gas from Amine	Supplemental Fuel									-
NOx	0.000	1	1	1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.12
	0.000	_1	1	_1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
CO													
PM2.5	0.000	2	2	2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.60
PM10	0.000	2	2	2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.60
H2S	0.000	0.000	0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.01
SO2	0.000	0.000	26.665	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	26.66
Crude or Condensate VOC			0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
	-	-											
Natural Gas VOC	0.00	0.31	0.224	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.53
Total VOC	0.00	0.31	0.224	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.53
benzene	0.000	0.04257	0.091	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.13
						Annual	(tpy)						
Stream Sent to Flare/Vapor Combustor No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
		Waste Car from Balan	Wasta Car form Audio	6									Total
Stream Sent to Flare/Vapor Combustor Name		Waste Gas from Dehy	Waste Gas from Amine	Supplemental Fuel									-
NOx	0.000	_1	_1	_1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	26.81
CO	0.000	1	1	1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	13.05
PM2.5	0.000	2	2	2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.63
PM10	0.000	2	2	2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.63
H2S	0.000	0.000	0.062	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.06
SO2	0.000	0.001	116.792	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	116.79
	0.000	0.001											
Crude or Condensate VOC		-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Natural Gas VOC	0.000	1.342	0.981	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.32
Total VOC	0.000	1.342	0.981	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.32
benzene	0.000	0.0000	0.398	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.40

¹ CO and NOx emissions calculated based on the emission gurantees from manufacturer and the exhaust flue from the TO.

 $^{^{2}}$ PM₁₀/PM₂₅ emissions based on the emission guarantee from the manufacturer and the maximum heating rate of the TO.

	/= . ==\	
Flare/Vapor Combustor Total Em	issions (Each TO)	
	Hourly Emissions (lb/hr)	Annual Emissions (tpy)
Crude or Condensate VOC	0.00	0.00
Natural Gas VOC	0.53	2.32
Total VOC	0.53	2.32
NOx	6.12	26.81
CO	2.98	13.05
PM2.5	0.60	2.63
PM10	0.60	2.63
H2S	0.01	0.06
SO2	26.66	116.79
benzene	0.13	0.40

Thermal Oxidizer Downtime

Emission Unit: SSM-TO

Source Description: Thermal Oxidizer downtime during scheduled maintenance events.

Annual Downtime: 20 hrs/yr

	Uncontroll	ed Emissions	Thermal Oxidize	er Downtime
	EP-8, 2-EP-8, 3-EP-8	EP-7, 2-EP-7, and 3-EP-7	Tota	
Components	lb/hr	lb/hr	lb/hr	ton/yr
H2S ²	14.17	0.000017	14.17	0.14
SO23	0.00	0.00014	1.42E-04	1.42E-06
CO2	85,277.07	0.000011	85277.07	852.77
N2	0.13	0.0063	0.14	0.001
Methane	78.29	4.20	82.48	0.82
Ethane	57.56	11.02	68.58	0.69
Propane	24.52	20.18	44.71	0.45
i-Butane	2.53	4.90	7.43	0.07
n-Butane	11.35	19.25	30.60	0.306
i-Pentane	0.71	7.44	8.15	0.082
n-Pentane	1.26	9.88	11.14	0.111
n-Hexane	0.72	10.35	11.07	0.111
n-Heptane	0.11	6.51	6.62	0.0662
n-Octane	0.02	0.70	7.24E-01	7.24E-03
n-Nonane	0.00	0.00E+00	0.00E+00	0.00E+00
n-Decane	0.00	0.00E+00	0.00E+00	0.00E+00
Undecane	0.00	0.00E+00	0.00	0.00
Benzene	90.79	14.02	104.82	1.05
Toluene	56.20	6.45	62.65	0.63
Ethylbenzene	18.11	1.46	19.57	0.196
m-Xylene	17.67	0.99	18.66	0.19
Water	2,506.19	4.87	2511.05	25.11
MDEA	8.27E-05	1.72E-04	2.55E-04	2.55E-06
Piperazine	9.05E-05	5.68E-06	9.62E-05	9.62E-07
TEG	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Total VOC:	224.00	102.15	326.15	3.26
Total HAPs:	183.50	33.28	216.77	2.17
Total H2S:	14.17	0.00	14.17	0.14

Targa Midstream Services LLC - Notation Services Flare- Inlet Gas Flare Stream Analysis

Fmission Unit: EP-1, 2-EP-1, and 3-EP-1 Source Description: Destruction Efficiency: Process Flares 98%

Annual Inlet Gas Flared Gas Volume:1

Estimated Total Annual Gas (MSCF/yr):	240,000.0	Requested Annual Volume per Train
Manuf. Daily Gas Volume (MSCF/day):	240,000.0	Hourly Treatment Train Gas Flowrate
Max Hourly Flared Gas (MSCF/hr):	10,000.0	•

Component	Mol Wt (lb/lb-mol) ²	(BTU/scf) ²	Inlet Gas Analysis 11/20/2019	Date: mol%
Nitrogen	28.013	0	1.39700%	
Methane	16.043	909	76.98300%	
Carbon Dioxide	44.010	0	0.33000%	
Hydrogen Sulfide*	34.081	587	0.05000%	
Ethane	30.069	1,619		
Propane	44.096	2,315	5.66800%	
Iso-Butane	58.122	3,000	0.71700%	
n-Butane	58.122	3,011	1.59500%	
Iso-Pentane	72.149	3,699	0.28700%	
n-Pentane	72.149	3,707	0.28800%	
i-Hexanes	86.175	4,404	0.17900%	
n-Hexane	86.175	4,404	0.10500%	
Benzene	78.112	3,591	0.01700%	
Cyclohexane	84.160	4,180	0.04800%	
i-Heptanes	100.202	5,100	0.09100%	
n-Heptane	100.202	5,100	0.01700%	
Toluene	92.138	4,273	0.00700%	
i-Octanes	114.229	5,796	0.03400%	
n-Octane	114.229	5,796	0.00200%	
i-Nonanes	128.255	6,493	0.00100%	
TOTAL =	21.30	1143.57	100.05%	

^{*}Hydrogen Sulfide conservatively assumed to be 5 ppm.

Stream Emission Calculation:

	Hourly Emissions	Annual Emissions	Hourly MMBTU Rate 4	Total Net MMBTU 4
Components	(pph) ³	(tpy) ³	MMBTU/hr	MMBTU/yr
Nitrogen	10314.75		0.00	0.00
Methane	325524.06	3906.29	7000.83	168020.02
Hydrogen Sulfide*	449.14	5.39	2.93	70.41
Carbon Dioxide	3827.97	45.94	0.00	0.00
Ethane	96959.45	1163.51	1980.68	47536.43
Propane	65876.68	790.52	1312.14	31491.41
Iso-Butane	10984.05	131.81	215.10	5162.40
n-Butane	24434.53	293.21	480.25	11526.11
Iso-Pentane	5457.77	65.49	106.16	2547.87
n-Pentane	5476.78	65.72	106.76	2562.28
i-Hexanes	4065.72	48.79	78.83	1891.96
n-Hexane	2384.92	28.62	46.24	1109.81
Benzene	350.00	4.20	6.10	146.51
Cyclohexane	1064.75	12.78	20.06	481.54
i-Heptanes	2403.37	28.84	46.41	1113.84
n-Heptane	448.98	5.39	8.67	208.08
Toluene	170.00		2.99	71.79
i-Octanes	1023.67		19.71	472.95
n-Octane	60.22		1.16	27.82
i-Nonanes	33.80		0.65	15.58

^{*}Hydrogen Sulfide conservatively assumed to be 10 ppm.

Total BTU Values =	11,435.70	274,456.81

Gas Flaring Summary						
	pph	tpy				
Total =	561,310.58	6,735.73				
Total VOC =	124,235.22	1,490.82				
Total HAP =	2,904.91	34.859				
Total Hexane =	2,384.92	28.619				
Total H ₂ S =	449.14	5.39				

Controlled Flaring Stream ⁵					
	pph	tpy			
Total VOC =	2,484.70	29.82			
Total HAP =	58.10	0.70			
Total Hexane =	47.70	0.57			
Total H₂S =	8.98	0.11			

- Notes:
 (1) Conservatively estimated annual gas volume. Max anticipated hourly volume based on manufacturer rated capacity.
 (2) Component Molecular Weights from the following source: BR&E Promax
 Component Net Heating Values from the following source: BR&E Promax
 (3) Hourly and Annual Event gas emissions calculated as follows:
 Hourly Emissions (lb/hr) = Hourly Gas Volume (scf/hr) * Component Mol Wt (lb/lb-mol) * Component Mole% / 379.4 ft ³/lb mol
 Annual Emissions (tpy) = Annual Gas Volume (scf/yr) * Component Mol Wt (lb/lb-mol) * Component Mole% / 379.4 ft ³/lb mol / 2000 lb/ton
 (4) Component MMBTU/hr = [Component Annual Emissions (tpp) * Component Net Heating Value (BTU/scf) * 379.4 ft ³/lb-mol] / Component Mole Molecular (Brown of Molecular Molecular (Brown of Brown of

Targa Midstream Services LLC - Roadrunner Gas Processing Plant Flare- Residue Gas Flare Stream Analysis

Emission Unit: EP-1, 2-EP-1, and 3-EP-1 Source Description: Destruction Efficiency: Process Flares

Annual Residue Gas Flared Gas Volume:1

Estimated Total Annual Gas (MSCF/yr):	25.0 Requested Annual Volume per Train
Manuf. Daily Gas Volume (MSCF/day):	600.0 Hourly Treatment Train Gas Flowrate
Max Hourly Flared Gas (MSCF/hr):	25.0

Component	Mol Wt (lb/lb-mol) ²	Component Net Heating Value (BTU/scf) ²	Cold Flare Gas Analysis Date: 11/18/2022 mol%
Helium	4.003	0	0.0000%
Nitrogen	28.013	0	3.3642%
Carbon Dioxide	44.010	0	0.0622%
Oxygen	31.999	0	0.3086%
Hydrogen Sulfide	34.081	587	0.0000%
Methane	16.043	909	79.7621%
Ethane	30.069	1,619	10.5912%
Propane	44.096	2,315	3.6250%
i-Butane	58.122	3,000	0.4816%
n-Butane	58.122	3,011	1.0176%
i-Pentane	72.149	3,699	0.2340%
n-Pentane	72.149	3,707	0.2388%
Neopentane	72.149	3,707	0.0085%
Hexanes+	87.090	4,475	0.1872%
n-Hexane	86.175	4,404	0.0513%
Benzene	78.112	3,591	0.0309%
Toluene	92.138	4,273	0.0311%
2,2,4-Trimethylpentane	114.229	5,796	0.0003%
Ethylbenzene	106.165	4,971	0.0013%
O-Xylene	106.165	4,905	0.0040%
TOTAL =	20.13	1057.02	100.00%

Stream Emission Calculation:

	Hourly Emissions	Annual Emissions	Hourly MMBTU Rate 4	Total Net MMBTU 4
Components	(pph) ³	(tpy) ³	MMBTU/hr	MMBTU/yr
Helium	0.00	0.00E+00	0.00E+00	0.00E+00
Nitrogen	62.10	3.10E-02	0.00E+00	0.00E+00
Oxygen	1.80	9.02E-04	0.00E+00	0.00E+00
Carbon Dioxide	6.51	3.25E-03	0.00E+00	0.00E+00
Hydrogen Sulfide	0.00	0.00E+00	0.00E+00	0.00E+00
Methane	843.19	4.22E-01	1.81E+01	1.81E+01
Ethane	209.85	1.05E-01	4.29E+00	4.29E+00
Propane	105.33	5.27E-02	2.10E+00	2.10E+00
i-Butane	18.44	9.22E-03	3.61E-01	3.61E-01
n-Butane	38.97	1.95E-02	7.66E-01	7.66E-01
i-Pentane	11.12	5.56E-03	2.16E-01	2.16E-01
n-Pentane	11.35	5.68E-03	2.21E-01	2.21E-01
Neopentane	0.40	2.02E-04	7.88E-03	7.88E-03
Hexanes+	10.74	5.37E-03	2.09E-01	2.09E-01
n-Hexane	2.91	1.46E-03	5.65E-02	5.65E-02
Benzene	1.59	7.95E-04	2.77E-02	2.77E-02
Toluene	1.89	9.45E-04	3.33E-02	3.33E-02
2,2,4-Trimethylpentane	0.03	1.29E-05	4.97E-04	4.97E-04
Ethylbenzene	0.09	4.62E-05	1.64E-03	1.64E-03
O-Xylene	0.28	1.40E-04	4.90E-03	4.90E-03

Total BTU Values =	26.43	26.43

Gas Flaring Summary							
	pph	tpy					
Total =	1,326.61	0.66					
Total VOC =	203.16	0.102					
Total HAP =	6.79	0.0034					
Total Hexane =	2.91	0.001					
Total H ₂ S =	0.00E+00	0.00E+00					

Controlled Flaring Stream						
	pph	tpy				
Total VOC =	4.06	2.03E-03				
Total HAP =	0.14	6.79E-05				
Total Hexane =	0.058	2.91E-05				
Total H₂S =	0.00E+00	0.00E+00				

- Notes:
 (1) Conservatively estimated annual gas volume. Max anticipated hourly volume based on manufacturer rated capacity.
 (2) Component Molecular Weights from the following source: BR&E Promax
 Component Net Heating Values from the following source: BR&E Promax
 (3) Hourly and Annual Event gas emissions calculated as follows:
 Hourly Emissions (lb/hr) = Hourly Gas Volume (scf/hr) * Component Mol Wt (lb/lb-mol) * Component Mole% / 379.4 ft ³/lb mol
 Annual Emissions (tpy) = Annual Gas Volume (scf/yr) * Component Mol Wt (lb/lb-mol) * Component Mole% / 379.4 ft ³/lb mol / 2000 lb/ton
 (4) Component MMBTU/hr = [Component Annual Emissions (tpp) * Component Net Heating Value (BTU/scf) * 379.4 ft ³/lb-mol] / Component Mole Molecular (Brown of Molecular Molecular (Brown of Brown of

Process Flares

EP-1, 2-EP-1, and 3-EP-1 Process Flares 98% Emission Units: Source Description: Destruction Efficiency:

Flare Information				
Unit(s):	EP-1, 2-EP-1, and 3-EP-1			
Unit Count:	3			
Annual Operating Hours:	8,760			
Combustion Efficiency (%):	98%			

Input Information ¹							
Activity	Parameters	Value	Unit	Notes:			
	Hourly Volume Flow Rate	500.0	scf/hr	Design Specification			
	Natural Gas Heat Value	1071.8	BTU/scf	Fuel Gas Heat Value			
EP-1 Pilot	Annual Volume Flow Rate	4.38	MMscf/yr				
	Hourly Heat Rate	0.536	MMBtu/hr				
	Annual Heat Rate	4694.48	MMBtu/yr				
	Hourly Volume Flow Rate	980.0	scf/hr	Design Specification			
	Natural Gas Heat Value	1071.8	BTU/scf	Fuel Gas Heat Value			
EP-1 Purge Gas	Annual Volume Flow Rate	8.58	MMscf/yr				
	Hourly Heat Rate	1.050	MMBtu/hr				
	Annual Heat Rate	9201.19	MMBtu/yr				
	Hourly Volume Flow Rate	28227.0	scf/hr	Amine Flash Gas Stream Flow from Promax			
	Stream Heat Value	1197.7	BTU/scf	Amine Flash Gas Heat Value from Promax			
	Annual Operating Hours	350.0	hr/yr				
	Annual Volume Flow Rate	9.88	MMscf/yr	Amine Stream Hourly Flow (scf/hr) * 350 (hr/yr) / 10^6			
	Hourly Heat Rate	33.807	MMBtu/hr				
	Annual Heat Rate	11832.36	MMBtu/yr				
Stream	Hourly VOC Flow	5317.50	lb/hr				
	Annual VOC Flow	930.56	tpy				
	Hourly H ₂ S Flow	0.037	lb/hr				
	Annual H ₂ S Flow	0.0065	tpy				
	Hourly HAP Flow	28.86	lb/hr				
	Annual HAP Flow	5.051	tpy				
	Hourly Volume Flow Rate	78.0	scf/hr	Design Specification			
	Natural Gas Heat Value	1071.8	BTU/scf	Fuel Gas Heat Value			
2-EP-1 Pilot	Annual Volume Flow Rate	0.68	MMscf/yr				
	Hourly Heat Rate	0.084	MMBtu/hr				
	Annual Heat Rate	732.34	MMBtu/yr				
	Hourly Volume Flow Rate	1040.0	scf/hr	Design Specification			
	Natural Gas Heat Value	1071.8	BTU/scf	Fuel Gas Heat Value			
2-EP-1 Purge Gas	Annual Volume Flow Rate	9.11	MMscf/yr				
	Hourly Heat Rate	1.115	MMBtu/hr				
	Annual Heat Rate	9764.53	MMBtu/yr				
	Hourly Volume Flow Rate	219.0	scf/hr	Design Specification			
	Natural Gas Heat Value	1071.8	BTU/scf	Fuel Gas Heat Value			
3-EP-1 Pilot	Annual Volume Flow Rate	1.92	MMscf/yr				
	Hourly Heat Rate	0.235	MMBtu/hr				
	Annual Heat Rate	2056.18	MMBtu/yr				

Pilot and Purge rates for EP-1, 2-EP-2, and 3-EP-3 based on manufacturer specification sheet for each flare.

Pilot Emission Calculation

Description	NO _X 1	co,	VOC	SO,1	H ₂ S ¹	HAPs	Units	Notes
Emission Factors	0.138	0.2755			-		lb/MMBTU	TNRCC RG-109 (high Btu; other)
Emission ractors								
				2.0			gr S/100scf	Conservative assumption for fuel sulfur content (gr/100scf)
				0.0029			lb S/ Mscf	Gr S/100 scf * (1 lb/7000 gr) * (1000scf/Mscf)
Fuel Sulfur and H ₂ S Content					10		ppm	Pipeline Specification
					0.6		gr H ₂ S /100scf	Pilot gas H ₂ S content
					0.001		Ib H ₂ S/Mscf	
EP-1 Pilot Emissions	0.074	0.15		0.0037	8.95E-06		lb/hr	
EP-1 PHOCEHHISSIONS	0.32	0.65		0.016	3.92E-05		tpy	
2-EP-1 Pilot Emissions	0.012	0.023		0.00057	1.40E-06		lb/hr	
2-EP-1 PIIOL EITISSIONS	0.05	0.10		0.0025	6.11E-06		tpy	
	0.032	0.065		0.0016	1.40E-06		lb/hr	
3-EP-1 Pilot Emissions	0.14	0.28		0.0071	6.11E-06		tpy	
EP-1 Purge Emissions	0.14	0.29		0.0056	1.75E-05		lb/hr	
EP-1 Pulge Ellissions	0.63	1.27		0.025	7.68E-05		tpy	
EP-1 Amine Emissions	4.67	9.31	106.35	0.070	7.40E-04	0.58	lb/hr	
EP-1 ATTITLE ETHISSIONS	0.82	1.63	18.61	0.012	1.30E-04	0.10	tpy	
2-EP-1 Purge Emissions	0.15	0.31		0.0077	1.86E-05		lb/hr	
2-EP-1 Purge Emissions	0.67	1.35		0.034	8.15E-05		tpy	
Process Emissions per Flare	1578.13	3150.54	2484.70	828.54	8.98	58.10	lb/hr	Process emissions represent inlet and residue gas flaring when gas can not be sent to sales.
Process Emissions per riare	18.94	37.81	29.82	9.94	0.108	0.70	tpy	
Total EP-1 Flare Emissions	1583.01	3160.29	2591.05	828.62	8.98	58.68	lb/hr	
Total EP-1 Flare Ellissions	20.71	41.35	48.43	10.00	0.11	0.80	tpy	
Total 2-EP-1 Flare Emissions	1578.29	3150.87	2484.70	828.55	8.98	58.10	lb/hr	
I OLAI Z-EP-1 FIATE EMISSIONS	19.66	39.26	29.82	9.98	0.108	0.70	tpy	
Total 3-EP-1 Flare Emissions	1578.16	3150.60	2484.70	828.54	8.98	58.10	lb/hr	
I OLAI 3-EP-1 FIATE EMISSIONS	19.08	38.09	29.82	9.95	0.108	0.70	tov	

	Inlet Gas Flaring Emissions Ca	Iculations per Flare			
			Emission Factors	Emissions	
	Unit ID	Pollutant	(Ib/MMBTU) ¹	lb/hr	tons/yr
		NO _x	0.138	1578.13	18.938
		co	0.2755	3150.54	37.806
	EP-1, 2-EP-1, 3-EP-1	VOC	Mass Balance 2	2484.70	29.82
		HAP	Mass Balance 2	58.10	0.697
	l	H ₂ S	Mass Balance 2	8.98	0.108
		SO ₂	Stoichiometric ¹	828.54	9.94

		Emission Factors	Emiss	
Unit ID	Pollutant	(Ib/MMBTU) ¹	lb/hr	tons/yr
	NO _X	0.138	3.65	1.82E-03
	co	0.2755	7.28	3.64E-03
EP-1, 2-EP-1, 3-EP-1	VOC	Mass Balance 2	4.06	2.03E-03
Er-1, 2-Er-1, 3-Er-1	HAP	Mass Balance 2	0.14	6.79E-05
	H ₂ S	Mass Balance 2	0.00	0.00E+00
	SO ₂	Stoichiometric ¹	0.00	0.00E+00

Flare Stream 3:

11,435.70 274,456.81

Max Net Hourly MMBTU Value (MMBTU/hr) Net Annual MMBTU Value (MMBTU/yr)

Flare Stream 3: 26.43 26.43 Max Net Hourly MMBTU Value (MMBTU/hr) Net Annual MMBTU Value (MMBTU/yr)

(I) Flaer NO, and CO emission factors: TNRCC RG-109 (high Btu; other). SQ; Mass balance assuming 98% combustion of H,S and 100% conversion of combusted H,S to SQ;
Plot Gas SQ: Emissions (bith) = ((Plot Gas Flow (Mc/fm)* Fixel Gas SQ stuft Content (b SA/Mc/Y(e4 bit/bmol SQ) / 24 bit/bmol SQ) + (Plot Gas Flow (Mcd/fm)* Fixel Gas SQ content (b H,S/Mcd)* (Gas Flow (Mcd/fm)* Fixel Gas Flow Content (b H,S/Mcd)* (Gas Flow Key Content (b H,S/Mcd)* (Gas Flow (Mcd/fm)* Fixel Gas H,S Content (b H,S/Mcd)* (Gas Flow (Mcd/fm)* Fixel Gas H,S Content (b H,S/Mcd)* (Gas Flow (Mcd/fm)* Fixel Gas H,S Content (b H,S/Mcd)* (Gas Flow (Mcd/fm)* Fixel Gas H,S Content (b H,S/Mcd)* (Gas Flow (Mcd/fm)* Fixel Gas H,S Content (b H,S/Mcd)* (Gas Flow (Mcd/fm)* Fixel Gas H,S Content (b H,S/Mcd)* (Gas Flow (Mcd/fm)* Fixel Gas H,S Content (b H,S/Mcd)* (Gas Flow (Mcd/fm)* Fixel Gas H,S Content (b H,S/Mcd)* (Gas Flow (Mcd/fm)* Fixel Gas H,S Content (b H,S/Mcd)* (Gas Flow (Mcd/fm)* Fixel Gas H,S Content (b H,S/Mcd)* (Gas Flow (Mcd/fm)* Fixel Gas H,S Content (b H,S/Mcd)* (Gas Flow (Mcd/fm)* Fixel Gas H,S Content (b H,S/Mcd)* (Gas Flow (Mcd/fm)* Fixel Gas H,S Content (b H,S/Mcd)* (Gas Flow (Mcd/fm)* (G

(2) VOC, HAP and H₂S emissions estimated based on event stream routed to flare and 98% efficiency. (3) Flare stream includes inlet and residue gas.

Emission Unit	MSST
Name	Condensate Tanks
Tank No.:	5
Product stored:	Condensate
Type of tank roof	Fixed Roof
Tank Capacity (bbl)	1,000
Tank Diameter (ft) (D)	21.50
Vapor Molecular Wt. (lb/lb mol) (M _v)	72.77
Number of events/yr	5
Height of the roof (ft)	16.00
Saturation factor (S)	1.0

Vapor Space Volume (ft³) (V _v)	5808.80
Height of Vapor Space under roof (ft)* (h _v)	16.00

			Ī
	Max. hourly emissions lb/hr	Avg.Annual emissions tpy	
Duration of activity (hrs/event)	1	1	
True Vapor Pressure (psia) (P)	11.23	6.79	
Day time temperature (°F)	95.00	63.20	
Night time temperature (°F)	68.00	49.10	
Temperature Expansion %	4.86	2.69	
Emissions (lb/event)	797.06	511.07	
Max. Hourly Emissions (lb/hr)	38.78		
Avg. Hourly Emissions (lb/hr)		13.77	
Avg. Annual emissions (tpy)		0.03	

Max > Avg Max > Avg

VOC Wt%	98.41
H ₂ S Wt%	-
Benzene Wt%	0.4391

Type of Control Device									
Are tank vapors (A) uncontrolled; (B) controlled by a									
flare, vapor combustor, thermal oxidizer, or vapor	(4)								
recovery unit (VRU); or (C) controlled by another type	(A) uncontrolled								
of control device?									
VOC Control Efficiency									
H ₂ S Control Efficiency									

VOC Type: (pick from list)	
Natural Gas VOC	

Emission Type: (pick from list)
Low Pressure Periodic

Emissio	ons before control and before wt% reduction	
T	Name to south or some Uniform	Ave. Average because
Type of Losses	Max. hourly mass lb/hr	Avg. Annual mass tpy
Thermal / Passive Expansion	38.78	0.034
	Planned MSS Emissions	
Air Contaminant	Max. hourly emissions lb/hr	Avg.Annual emissions tpy
Total VOC	38.16	0.034
Benzene	16.75	1.38E-04
Toluene	7.38E-02	5.58E-05
Ethylbenzene	0.0033	2.35E-06
Xylene	0.0098	6.75E-06
Hexane	3.17	0.0027
2,2,4-Trimethylpentane	0.00E+00	0.00E+00
Total H ₂ S	0.00E+00	0.00E+00

Equation1:

L_L= 12.46* SPM

Variables1:

L_ * Loading Loss (lbs/1000 gal loaded)

S - Saturation Factor (From Table 5.2-1 of AP-42, Section 5.2)

P - True Vapor Pressure of Loaded Liquid (psia)

M - Molecular Weight of Vapor (lb/lb mol)

T- Temperature of Bulk Liquid (°R = [°F + 460])

																LOAD-1			
													VOC Vapor			Uncaptured	Uncaptured	Uncaptured	
							L _L	Hourly	Capture				Loading	HAP Vapor	H ₂ S Vapor	Hourly VOC	Hourly HAP	Hourly H ₂ S	
Unit	Material	Loading		P _{max} ³	M 3	T _{max} 4	(lbs/1000	Throughput 5	Efficiency	voc		H ₂ S Wt	Losses	Loading	Loading	Emissions 7	Emissions 3,7	Emissions 3,7	DRE
	Loaded 2	Method	S	(psia)	(lb/lbmol)	(°R)	gal)	(gal/hr)	(%)	Wt %	HAP Wt %	%	(lb/hr)	Losses (lb/hr)	Losses (lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(%)
LOAD	Condensate	Submerged	1.0	14.70	52.44	555	17.31	15,120	95.0%	98.41%	8.83%	0.01%	257.50	23.12	0.030	12.88	1.16	1.509E-03	95%
							•			TOTAL			257.50	23.12	0.030	12.88	1.16	1.509E-03	

												LUAD-1							
Unit							L,	Annual	Capture				VOC Vapor Loading	HAP Vapor	H ₂ S Vapor	Uncaptured Annual VOC	Uncaptured Annual HAP	Uncaptured Annual H ₂ S	
	Material	Loading		Pavg	M 3	T _{avg} ~	(lbs/1000	Throughput	Efficiency	voc		H ₂ S Wt	Losses	Loading	Loading	Emissions 7	Emissions 3,7	Emissions 3,7	DRE
	Loaded 2	Method	S	(psia)	(lb/lbmol)	(°R)	gal)	(gal/yr) 6	(%)	Wt %	HAP Wt %	%	(tpy)	Losses (tpy)	Losses (tpy)	(tpy)	(tpy)	(tpy)	(%)
LOAD	Condensate	Submerged	1.0	14.70	52.44	523	18.36	122,640,000	95.0%	96.68%	8.14%	0.01%	1,088.27	91.63	0.151	54.41	4.581	7.57E-05	95%
										TOTAL			1,088.27	91.63	0.151	54.41	4.581	7.57E-05	

Loading loss equation and variables are from AP-42, Section 5.2, Transportation and Marketing of Petroleum Liquids.

Authorized loaded is 100% condensate.

Vapor pressure, molecular weight, HAP content, and H₂S content is obtained from ProMax run.

Maximum temperature is 95°F and the average temperature is 6.3.5°F.

The maximum hourly throughput is based on the capability of the tank truck to load liquids in one hour.

^{**}Remains month of unconjuguous is used on one Laplaceapy or the Laboratory of L

Emission Factors			
Emission Factors from AP-42	Table 1.4-1 and 1.4-2 (lb/MMscf) and T	NRCC RG-109	
	NOx	100	0.138 lb/MMBtu
	со	84	0.276 lb/MMBtu
	PM (Total)	7.6	0.0075 lb/MMBtu
Emission Factors from AP-42	Table 1.4-2 (lb/MMscf)		
	SO ₂	0.6	
	VOC	5.5	0.0054 lb/MMBtu

Stream Sent to Flare/Vapor Combustor		Tank		
Name (Enter Names of Each Stream		Working/Breathi	Loading Vapor Balance	
Here)	BD MSS	ng	to Tanks	-
Maximum Expected Hourly Volumtric				
Flow Rate of Stream (scf/hr)	50000	838.99	418.45	51257.43951
Amount of Time Stream Fired (hrs/yr)	40	8760	8111.11	-
Maximum Expected Annual Volumtric				
Flow Rate of Stream (scf/yr)	2,000,000.00	7,349,572.28	3,394,072.08	12743644.36
Heat Value of Stream - from program				
results or gas analysis (Btu/scf)	1,020.00	3,970.23	3,970.23	-
propane weight percent of total stream (%) *OPTIONAL*				-
VOC weight percent of total stream (%) *OPTIONAL*				

	<u>Hourly</u>	(lb/hr)		
		Tank		
Stream Sent to Flare/Vapor Combustor		Working/Breathi	Loading Vapor Balance	
Name	BD MSS	ng	to Tanks	-
VOC	590.9874909	160.61	244.63	996.22
HAPS	32.16	14.43	21.96	68.54
H ₂ S	0.023	0.02	0.03	0.07
	Annua	l (tpy)		
VOC	11.81974982	84.35	1033.86	1130.02
HAPS	0.643127351	7.10	87.05	94.79
H ₂ S	0.00046	0.01	0.00	0.01

Controlled Emissions										
Hourly (lb/hr)										
Stream Sent to Flare/Vapor Combustor Name	BD MSS	Tank Working/Breathi ng	Loading Vapor Balance to Tanks	-						
NOx	7.038	0.460	0.229	7.73						
со	14.051	0.918	0.458	15.43						
PM2.5	0.380	0.025	0.012	0.42						
PM10	0.380	0.025	0.012	0.42						
H2S	1.16E-03	9.42E-04	1.43E-03	3.53E-03						
SO2	0.071	3.42E-02	5.15E-02	0.16						
Natural Gas VOC	29.549	8.030	0.009	37.59						
Total VOC	29.549	8.030	0.009	37.59						
Total HAPs	1.608	0.721	1.098	3.43						

Annual (tpy)									
Stream Sent to Flare/Vapor Combustor Name	BD MSS	Tank Working/Breathi ng	Loading Vapor Balance to Tanks						
NOx	0.141	2.013	0.930	3.08					
со	0.281	4.019	1.856	6.16					
PM2.5	0.008	0.109	0.050	0.17					
PM10	0.008	0.109	0.050	0.17					
H2S	2.31E-05	5.87E-04	1.02E-06	6.11E-04					
SO2	6.00E-04	2.22E-03	1.02E-03	3.83E-03					
Natural Gas VOC	0.006	4.217	0.036	4.26					
Total VOC	0.006	4.217	0.036	4.26					
Total HAPs	0.032	0.355	4.352	4.74					

Flare/Vapor Combustor Total Emissions		
		Annual Emissions
	Hourly Emissions (lb/hr)	(tpy)
Natural Gas VOC	37.59	4.26
Total HAPs	3.43	4.74
NOx	7.73	3.08
CO	15.43	6.16
PM2.5	0.42	0.17
PM10	0.42	0.17

Haul Road Inputs

Site-Wide

Description	Value	Unit
Annual Operating Hours:	8,760	hr
Daily Operating Hours:	24	hr

Unpaved Haul Road

Parameter	Value	Unit
Empty Vehicle Weight ¹	16	ton
Load Size ²	21.2	ton
Loaded Vehicle Weight ³	37.2	ton
Mean Vehicle Weight ⁴	26.6	ton
Vehicles Per Day ⁵	12	VPD
Vehicles Per Year	4380	VPY
Segment Length	0.06	mile
Trips per Segment	2	-
Effective Segment Length ⁶	0.12	mile
Trips per Hour ⁷	1.00	-
Wet Days ⁸	70	day
Surface Silt Content ⁹	4.8	%
Control Efficiency	0	%

¹ Empty vehicle weight includes driver and occupants and full fuel load.

² Include cargo, transported materials, etc. (5.6 lb/gal RVP10 *7560 gal truck/ 2000lb/ton)

³ Loaded vehicle weight = Empty + Load Size

⁴ Mean Vehicle weight = (Loaded Weight + Empty Weight) / 2

⁵ Vehicles per day = (Turnovers/year) / (365 days/year)

⁶ Effective segment length = trips per segment * segment length

⁷ Trips per hour = Vehicles per day * Segments per trip ÷ Hours of Operation per Day

⁸ Wet days is the NM default allowed by NMED without additional justification

⁹ Surface silt content based on AP-42 Section 13.2.2.2, Table 13.2.2-1

Unpaved Road Emission Factors

	Calculation Parameters ¹													Emission	Factors	Annual Emission Factors		
	s	W	Р		k			а			b			E ²			E _{ext} 5	
Route	Silt Content ¹	Mean Vehicle Weight	Wet Days	PM ₃₀	PM ₁₀	PM _{2.5}	PM ₃₀	PM ₁₀	PM _{2.5}	PM ₃₀	PM ₁₀	PM _{2.5}	PM ₃₀ ³	PM ₁₀	PM _{2.5}	PM ₃₀	PM ₁₀	PM _{2.5}
	%	tons	day	lb/VMT	lb/VMT	lb/VMT							Ib/VMT	lb/VMT	lb/VMT	lb/VMT	lb/VMT	lb/VMT
Condensate Trucks	4.8	26.6	70	4.9	1.5	0.15	0.70	0.90	0.90	0.45	0.45	0.45	6.9	1.8	0.18	5.6	1.4	0.14

Constants are from AP-42 Table 13.2.2-2 in Section 13.2.2.2, and emission factors are calculated using equation 1a.

Unpaved Road Emissions

Calculation Inputs						Uncontrolled Emissions					Controlled Emissions ⁶							
Route	Annual Operation	Segment Length	Trips per Segment	Number of Trucks per Year	Effective Segment Length	Average VMT/yr ⁴	PN	1 1 ₃₀	PM	1 1 ₁₀	PN	M _{2.5}	PN	1 ₃₀	PN	1 1 ₁₀	Pi	M _{2.5}
	hr	mi		trucks/yr	mi	mi/yr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Condensate Trucks	8,760	0.06	2	4380	0.12	526	0.41	1.5	0.11	0.37	0.011	0.037	0.41	1.5	0.11	0.37	0.011	0.037
						Totals	0.41	1.5	0.11	0.37	0.011	0.037	0.41	1.5	0.11	0.37	0.011	0.037

Surface silt = % of 75 micron diameter and smaller particles

E= Size Specific Emission Factor (lb/VMT)

s = surface material silt content (%)

k, a, b = constants from AP-42 Table 13.2.2-2

W = Weighted Mean Vehicle Weight from Haul Road Inputs (tons)

Control Efficiency =

00/

² E = k x (s/12)^a x (W/3)^b (AP-42 page 13.2.2-4 Equation 1a, November 2006)

³ PM₃₀ emission factor in equation is assumed as a surrogate for TSP emissions

⁴ VMT/yr = Vehicle Miles Travelled per year= Trips per year * Segment Length

⁵ Wet Day Emission Factor = E * (365 - Wet Days)/365. Wet days value is the NM default allowed by NMED without additional justification.

⁶ Controlled Emissions = Uncontrolled Emissions * (1 - Control Factor/100%)

Emission Unit	MSSM
Identifier	MSS Pigging

Describe this MSS event in detail, include specifically what is being done Emissions from routine pigging activities. and how it is being done.

Actual Volume of the Vented Unit (scf - standard cubic feet)	3 850 00
Actual Volume of the Vented Unit (acf - actual cubic feet)	62.43
Pressure of Gas Inside the Unit Before Venting (psig)	900
Atmospheric Pressure (psia)	14.7
Pressure of Gas Inside the Unit Before Venting (psia)	914.7
Temperature of Gas Inside the Unit Before Venting (°F)	65.00
Temperature of Gas Inside the Unit Before Venting (°R)	524.67
Duration of Each Event (hours/event)	0.17
Frequency of Events (events/year)	175
Venting Gas Molecular Weight (lb/lb-mol)	21.65
VOC wt %	21.42
benzene wt%	0.082
H ₂ S wt%	0.001
HAPs wt %	1.166
CO2 wt%	4.879
CH4 wt%	56.628
Are planned MSS vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	(A) uncontrolled
VOC Control Efficiency (%)	0
H₂S Control Efficiency (%)	0

Ideal Gas Constant, [(ft3*psia)/(R*Ib-mol)] 10.73159

Gas Molecular Weight and Weight Percents From Inlet Gas Stream from Amine ProMax

Molecular Weight	21.65
VOC wt %	21.42
Benzene wt %	0.082
H2S wt %	0.001
HAPs wt%	1.1656
CO2 wt%	4.8792
CH4 wt%	56.6276

Vapors Captured by Control Device

You need to input these values into the appropriate control device emission calculation tab.

	Hourly Emissions	Annual
	(lb/hr)	Emissions (tpy)
VOC Results:	0.00	0.0000
Benzene Results:	0.00	0.0000
H₂S Results:	0.00	0.0000
HAPs Results:	0.00	0.0000
CO2 Results:	0.00	0.0000
CH4 Results:	0.00	0.0000

Planned MSS Emissions							
	Hourly Emissions	Annual					
	(lb/hr)	Emissions (tpy)					
VOC Results:	276.65	4.12					
Benzene Results:	1.06	0.02					
H₂S Results:	0.01	<0.01					
HAPs Results:	15.05	0.2239					
CO2 Results:	63.01	0.9373					
CH4 Results:	731.29	10.8779					

VOC Type: (pick from list)
Natural Gas VOC

Emission Type: (pick from list)

High Pressure Periodic

Targa Midstream Services LLC - Roadrunner Gas Processing Plant

Pigging Emissions

Basis of Calculation: Emissions from pigging operations are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions for each Unit (lb/hr) = [Volume of gas in pipe (scf/event)] \times [MW of stream (lb/lb-mol)] \times [wt % VOC or speciated constituent] * [events per hour (event/hr) / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions for each Unit (tpy) = [Volume of gas in pipe (scf/event)] \times [MW of stream (lb/lb-mol)] \times [wt % VOC or speciated constituent] \times [frequency of events (events/yr)] / [379.5 (scf/lb-mol)] / [2,000 (lb/ton)]

For sites with multiple units, the total annual emissions are calculated by summing emissions for all units. It is assumed only one unit can be pigged/purged in one hour; therefore, the maximum volume of the units is used for

Pigging and Purging Emissions

12" x 15' Launcher - Volume Vented =	11.78	scf/event
Unit #2 - Volume Vented =	0	scf/event
Unit #3 - Volume Vented =	0	scf/event
Maximum Number of Hourly Pigging/Purging Events	1	events/hr
Unit #1 - Annual Number of Events =	6	events/yr
Unit #2 - Annual Number of Events =	0	events/yr
Unit #3 - Annual Number of Events =	0	events/yr
Pipelines Purged Simultaneously =	1	lines
Molecular Weight of Stream =	42	lb/lb-mol
Control Type =	None	

Compound	Composition (wt %)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)		
VOC	100.00	1.29	< 0.01		
HAP	10.00	0.13	< 0.01		
Total VOC	100.00	1.29	< 0.01		
H ₂ S					
Total HAP	10.00	0.13	< 0.01		

¹ This is a representative estimate of the amount of gas vented per blowdown event.

VENTING EMISSION CALCULATION (for blowdowns, starter vents, gas operated controllers, etc):								
		_	Constant:					
Emission Unit	MSSB							
Venting Volume per Event (SCF/event):	50000	(standard cubic feet)	379.	48 scf/lb-mol				
Number of events per hour:	1							
Number of events per year:	40							
Venting Gas Molecular Weight	20.94		Gas Wt % From I	<u>nlet Stream from</u> Amine Pro				
VOC wt %	21.42		VOC wt %	21.42				
HAPs wt%	1.17		HAPs wt%	1.17				
H₂S wt%	0.0008		H2S wt %	0.0008				
VOC & HAP Control Efficiency (%)	95.00		CO2 wt%	4.8792				
H ₂ S Control Efficiency (%)	98.00		CH4 wt%	56.6276				
		•						
	lb/hr	tpy						
Uncontrolled VOC Emissions:	591.0	11.8197						
Uncontrolled HAPs Emissions:	32.1564	0.6431						
Uncontrolled H ₂ S Emissions:	0.0231	0.0005						
VOC Results:	29.5	0.5910						
HAPs Results:	1.6078	0.0322						
H ₂ S Results:	0.0005	0.0000						

Default VOC emissions for Miscellaneous MSS activities

Company Name	Targa Midstream	
Site Name	Roadrunner Gas Processing Plant	
Default VOC emissions (tpy) associated with miscellaneous MSS activities	0.250	
Add default VOC emissions from miscellaneous MSS activities to the emissions summary	Ves	

#	Activity	Description / comments	Default parameters Equation used		Description / comments Default parameters Equation used		Description / comments Default parameters Equation		Equation used		Input parameters	Annual emissions (tpy)
1	dehydration unit Emissions associated with replacement of glycol solution used in dehydration unit. There	-Calculations based on physical properties of mono ethylene glycol (MEG)(d) because of its low molecular weight and high vapor pressure which gives the most conservative emissions estimate. -Typically the glycol solution used in dehydration unit is not entirely replaced but it is conservatively assumed that the glycol solution is drained once per year for	Glycol solution (gal/activity)	0.001 1 62.07 4000	Loading loss L _L (lb/1000 gal) Loading loss per activity (lb/activity)	0.0015	Number of Dehy units 4	0.000043				
		vessel maintenance. -Per field experience, 4000 gal of glycol solution is used in a large dehydration unit. The replacement of glycol solution used in the dehydration unit is an exempt activity pursuant 20.2.72.202.B(2). The vapor pressure of the glycol solution is less than 0.2 psi.	Molecular weight (lb/lb-mole) V _V Vessel volume (ft³) (5 ft radii * 30 ft height) Ideal gas constant (psia-ft3/lb-mol-*R)	0.001 62.07 2355 10.73	Clingage loss (lb/activity)	0.0155						
			Number of activities per year	1	Total (lbs/yr/unit)	0.0213						
	Emissions associated with	-Calculations based on physical properties of mono ethanol amine (MEA)(e) because of its low molecular weight and high vapor pressure which gives the most	Temperature (°F) Vapor pressure (psia)	68 0.004	Loading loss L _L (lb/1000 gal)	0.0058	Number of Amine units 2	0.000084				
t V	the amine unit. There are two vessels in an amine unit:	conservative emissions estimate. -Typically the solution used in amine unit is not entirely replaced but it is conservatively assumed that the amine solution is drained once per year for vessel	Saturation factor Molecular weight (lb/lbmol) Amine solution (gal/activity)	1 61.08 4000	Loading loss per activity (lb/activity)	0.0231						
C	Ů	maintenance. -Per field experience, 4000 gal of solution is used in a large amine unit. The replacement of solution used in the amine unit is an exempt activity pursuant 20.2.72.202.B(2). The vapor pressure of the amine solution is less than 0.2 psi.	Temperature (*F) Vapor pressure (psia) Molecular weight (lb/lb-mole) V _V Vessel volume (ft³) (5 ft radii * 30 ft height) Ideal gas constant (psia-ft3/lb-mol-*R)	68 0.004 61.08 2355	Clingage loss (lb/activity)	0.0609						
			Number of activities per year		Total (lbs/yr/unit)	0.0840						
ASSM- Lerosol	(b)(2) Aerosol Lubricants	The use of aerosol i	lubricants for the maintenance of equipme	nt or co	ntrol devices is exempt pursuant 20	J.2.72.202.A(2).						
ISSM-Piping ((b)(3) Piping Components	The repositioning or relocating of piping components within the plant that does not reposition or relocate any source of air emission or the emission points from any such source are exempt pursuant 20.2.72.202.A(15). The replacement and maintenance of piping components is exempt pursuant 20.2.72.202.A(2).										
/ISSM-Cal	(b)(2) Calibration	Use of calibration gases is exempt under 20.2.72.202.A(10) NMAC.										
ASSM-Misc	/b//61 MCCM Miss. Cafety factor	to account for MSS activities with the same character and quantity of emissions as	those listed in paragraphs (b) (1) - (5) of 81	ne 250	These activities are evennt nursual	nt 20 2 72 202 /	1/2)	0.028				

	TPY	lbs/hr
Total VOC emissions	2.81E-02	0.006

VOC Type: (pick from list)
Crude Oil or Condensate VOC

Emission Type: (pick from list)
Steady State (continuous)

GHG Emissions from Natural Gas Combustion

		Heat Rate	CO ₂ EF	CO ₂ Emissions		CH₄ EF	CH ₄ EF CH ₄ Emissio		N₂O EF	N₂O Emissions	
Emission Source	Source Description	mmbtu/hr	kg/mmbtu	metric TPY	short tpy	kg/mmbtu	metric TPY	short tpy	kg/mmbtu	metric TPY	short tpy
EP-2	Trim Reboiler	26.5	53.06	12317.35	13577.41	0.001	0.232	0.256	0.0001	0.023	0.026
2-EP-2, 3-EP-2	Trim Reboiler	26.5	53.06	12317.35	13577.41	0.001	0.232	0.256	0.0001	0.023	0.026
EP-3A	Amine Reboiler	70.28	53.06	32666.54	36008.32	0.001	0.616	0.679	0.0001	0.062	0.068
EP-3B	Amine Reboiler	70.28	53.06	32666.54	36008.32	0.001	0.616	0.679	0.0001	0.062	0.068
EP-4	Glycol Reboiler	3.9	53.06	1812.74	1998.19	0.001	0.034	0.038	0.0001	0.003	0.004
2-EP-4, 3-EP-4	Glycol Reboiler	3.9	53.06	1812.74	1998.19	0.001	0.034	0.038	0.0001	0.003	0.004
EP-5	Regen Reboiler	9.5	53.06	4415.65	4867.37	0.001	0.083	0.092	0.0001	0.008	0.009
2-EP-5, 3-EP-5	Regen Reboiler	9.5	53.06	4415.65	4867.37	0.001	0.083	0.092	0.0001	0.008	0.009
EP-6, 2-EP-6	Stabilizer Heater	23.4	53.06	10876.45	11989.11	0.001	0.205	0.226	0.0001	0.020	0.023
EP-9	Thermal Oxidizer	75.00	53.06	34860.42	38426.64	0.001	0.657	0.724	0.0001	0.066	0.072
EP-1	Flare Pilot	0.19	53.06	88.31	97.35	0.001	0.002	0.002	0.0001	0.000	0.000
2/3-EP1	Flare Pilot	0.38	53.06	176.63	194.69	0.001	0.003	0.004	0.0001	0.000	0.000
2-HT-1	Hot Oil Heater	84.77		39401.57	43432.35	0.001	0.743	0.819	0.0001	0.074	0.082

Emission Factors (EF) from Tables C-1 and C-2 to 40 CFR 98 Subpart C

§98.233(n) Flare stack natural gas GHG emissions.

```
Step 1. Calculate contribution of un-combusted CH<sub>4</sub> emissions
```

 $E_{a,CH4}$ (un-combusted) = $V_a * (1-\eta) * X_{CH4}$ (Equation W-39B)

where:

E_{a.CH4} = contribution of annual un-combusted CH₄ emissions from regenerator in cubic feet under actual conditions

V_a = volume of gas sent to combustion unit during the year (cf)

η = Fraction of gas combusted by a burning flare (or regenerator), default value from Subpart W =

For gas sent to an unlit flare, η is zero.

 X_{CH4} = Mole fraction of CH₄ in gas to the flare = 0.7641 (Client gas analysis)

Step 2. Calculate contribution of un-combusted CO₂ emissions

 $E_{a,CO2} = V_a * X_{CO2}$ (Equation W-20)

where:

E_{a,CO2} = contribution of annual un-combusted CO₂ emissions from regenerator in cubic feet under actual conditions.

V_a = volume of gas sent to combustion unit during the year (cf)

 X_{CO2} = Mole fraction of CO_2 in gas to the flare = 0.024

Step 3. Calculate contribution of combusted CO2 emissions

 $E_{a,CO2}$ (combusted) = $\sum (\eta * V_a * Y_j * R_j)$ (Equation W-21)

where:

 η = Fraction of gas combusted by a burning flare (or regenerator) = 0.98

For gas sent to an unlit flare, η is zero.

V_a = volume of gas sent to combustion unit during the year (cf)

Y_i = mole fraction of gas hydrocarbon constituents j:

 Constituent j, Methane =
 0.7641

 Constituent j, Ethane =
 0.1118

 Constituent j, Propane =
 0.0530

 Constituent j, Butane =
 0.0233

 Constituent j, Pentanes Plus =
 0.9348

R_i = number of carbon atoms in the gas hydrocarbon constituent j:

 Constituent j, Methane =
 1

 Constituent j, Ethane =
 2

 Constituent j, Propane =
 3

 Constituent j, Butane =
 4

 Constituent j, Pentanes Plus =
 5

Step 4. Calculate GHG volumetric emissions at standard conditions (scf).

$$\frac{\mathsf{E}_{\mathsf{s},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{a},\mathsf{n}} * (459.67 + \mathsf{T}_{\mathsf{s}})}{(459.67 + \mathsf{T}_{\mathsf{a}}) * \mathsf{P}_{\mathsf{s}}} * \mathsf{P}_{\mathsf{a}} \qquad (Equation W-33)}{\mathsf{E}_{\mathsf{s},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{s},\mathsf{n}} * (459.67 + \mathsf{T}_{\mathsf{a}})}{\mathsf{E}_{\mathsf{s},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{s},\mathsf{n}} * (459.67 + \mathsf{E}_{\mathsf{s},\mathsf{n}})}{\mathsf{E}_{\mathsf{s},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{s},\mathsf{n}} * (459.67 + \mathsf{E}_{\mathsf{n},\mathsf{n}})}{\mathsf{E}_{\mathsf{s},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{n},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{n},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{n},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{n},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{n},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{n},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{n},\mathsf{n}}} = \frac{\mathsf{E}_{\mathsf{n},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{n},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{n},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{n},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{n},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{n},\mathsf{n}} = \frac{\mathsf{E}_{\mathsf{n},\mathsf{n}}} = \frac{\mathsf{E}_{\mathsf{n},\mathsf{n}} = \frac{\mathsf{$$

where:

 $E_{s,n}$ = GHG i volumetric emissions at standard temperature and pressure (STP) in cubic feet

E_{a n} = GHG i volumetric emissions at actual conditions (cf)

 T_s = Temperature at standard conditions (F) = 60 F

 T_a = Temperature at actual conditions (F) = 76 F P_s = Absolute pressure at standard conditions (psia) = 14.7 psia

P_a = Absolute pressure at actual conditions (psia) = 12.73 psia

Constant = 459.67 (temperature conversion from F to R)

Step 5. Calculate annual CH₄ and CO₂ mass emissions (ton).

 $Mass_{s,i} = E_{s,i} * \rho_i * 0.001 * 1.1023$ (Equation W-36)

where:

Mass_{s i} = GHG i (CO₂, CH₄, or N₂O) mass emissions at standard conditions in tons (tpy)

E_{s i} = GHG i (CO₂, CH₄, or N₂O) volumetric emissions at standard conditions (cf)

 ρ_i = Density of GHG i. Use:

CH₄: 0.0192 kg/ft³ (at 60F and 14.7 psia) CO₂: 0.0526 kg/ft³ (at 60F and 14.7 psia)

(Client gas analysis)

 1×10^{-3} = conversion factor from kg to metric tons.

1.1203 = conversion factor from metric tons to short tons.

(Based on Annual Avg Max Temperature for Hobbs, NM from Western Regional Climate Center)

Cilmate Center)

0.98

(Assumption)

Step 6. Calculate annual N2O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40.

Mass_{N2O} = 0.001 * Fuel * HHV * EF*1.1023 (Equation W-40)

where:

 $Mass_{N2O}$ = annual N_2O emissions from combustion of a particular type of fuel (tons).

Fuel = mass or volume of the fuel combusted

HHV = high heat value of the fuel

SSM flaring gas HHV = 0.00107 MMBtu/scf EF = 0.00E-04 kg N_2 O/MMBtu

 10^{-3} = conversion factor from kg to metric tons.

1.1203 = conversion factor from metric tons to short tons.

Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.

		CH₄ Un-	CO ₂ Un-		CH₄ Un-			CH₄ Un-	CO ₂ Un-	CO2		
		Combusted,	Combusted,	CO ₂ Combusted,	Combusted,	CO ₂ Un-	CO ₂ Combusted,	Combusted,	Combusted,	Combusted,	N ₂ O Mass	
	Gas Sent to	E _{a,CH4}	$E_{a,CO2}$	E _{a,CO2}	$E_{a,CH4}$	Combusted, E _{a,CO2}	E _{a,CO2}	$E_{a,CH4}$	E _{a,CO2}	E _{a,CO2}	Emissions	CO2e
Gas Sent to Emergency Flare	Flare (cf/yr)	(cf)	(cf)	(cf)	(scf)	(scf)	(scf)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
SSM Flaring (EP-1, 2-EP-1, and 3-												
EP-1)	252,964,800	3,865,870	6,071,093	1,465,990,682	3,245,978	5,097,592	1,230,918,909	68.70	295.56	71,369.88	0.02984	73,392
Total	252,964,800	3,865,870	6,071,092.8	1,465,990,682	3,245,978	5,097,592.4	1,230,918,909	68.7	295.6	71,369.9	0.02984	73,392

GWP 1 25 298

```
Step 1. Calculate contribution of un-combusted CH4 emissions
```

 $E_{a,CH4}$ (un-combusted) = $V_a * (1- \eta)* X_{CH4}$

where.

E_{a CH4} = contribution of annual un-combusted CH₄ emissions from regenerator in cubic feet under actual conditions.

0.98

(Based on Annual Avg Max Temperature for Hobbs, NM from Western Regional

Climate Center)

(Assumption)

V_a = volume of gas sent to combustion unit during the year (cf)

η = Fraction of gas combusted by a burning flare (or regenerator), default value from Subpart W =

For gas sent to an unlit flare, η is zero.

 X_{CH4} = Mole fraction of CH₄ in gas to the flare = 0.7284 (Promax Run)

(Equation W-39B)

Step 2. Calculate contribution of un-combusted CO₂ emissions

 $E_{a,CO2} = V_a * X_{CO2}$ (Equation W-20) where:

E_{a CO2} = contribution of annual un-combusted CO₂ emissions from regenerator in cubic feet under actual conditions.

V_a = volume of gas sent to combustion unit during the year (cf)

 X_{CO2} = Mole fraction of CO_2 in gas to the flare = 0.013

Step 3. Calculate contribution of combusted CO₂ emissions

 $E_{a,CO2} \text{ (combusted)} = \sum_{i} (\eta * V_a * Y_j * R_j) \qquad \text{(Equation W-21)}$

η = Fraction of gas combusted by a burning flare (or regenerator) = 0.98

For gas sent to an unlit flare, η is zero.

V_a = volume of gas sent to combustion unit during the year (cf)

Y_i = mole fraction of gas hydrocarbon constituents j:

Constituent j, Methane = 0.7284 (Client gas analysis)

 Constituent j, Ethane =
 0.1427

 Constituent j, Propane =
 0.0483

 Constituent j, Butane =
 0.0185

 Constituent j, Pentanes Plus =
 0.6085

R_i = number of carbon atoms in the gas hydrocarbon constituent j:

Constituent j, Methane = 1

Constituent j, Ethane = 2

Constituent j, Propane = 3

Constituent j, Butane = 4

Constituent j, Pentanes Plus = 5

Step 4. Calculate GHG volumetric emissions at standard conditions (scf).

$$E_{s,n} = \frac{E_{a,n} * (459.67 + T_s)}{(459.67 + T_a) * P_s} * P_a$$
 (Equation W-33)

where:

E_{s n} = GHG i volumetric emissions at standard temperature and pressure (STP) in cubic feet

E_{a.n} = GHG i volumetric emissions at actual conditions (cf)

T_o = Temperature at standard conditions (F) = 60 F

T_a = Temperature at actual conditions (F) = 76 F

 P_s = Absolute pressure at standard conditions (psia) = 14.7 psia

P_a = Absolute pressure at actual conditions (psia) = 12.73 psia

Constant = 459.67 (temperature conversion from F to R)

Step 5. Calculate annual CH₄ and CO₂ mass emissions (ton).

 $Mass_{s,i} = E_{s,i} * \rho_i * 0.001 * 1.1023$ (Equation W-36)

Mass_{s,i} = GHG i (CO₂, CH₄, or N₂O) mass emissions at standard conditions in tons (tpy)

 $E_{s,i}$ = GHG i (CO₂, CH₄, or N₂O) volumetric emissions at standard conditions (cf)

 ρ_i = Density of GHG i. Use:

CH₄: 0.0192 kg/ft³ (at 60F and 14.7 psia)

CO₂: 0.0526 kg/ft³ (at 60F and 14.7 psia)

 1×10^{-3} = conversion factor from kg to metric tons.

1.1203 = conversion factor from metric tons to short tons.

Step 6. Calculate annual N_2O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 .

Mass_{N2O} = 0.001 * Fuel * HHV * EF*1.1023 (Equation W-40)

where:

 ${\sf Mass}_{\sf N2O}$ = annual ${\sf N}_2{\sf O}$ emissions from combustion of a particular type of fuel (tons).

Fuel = mass or volume of the fuel combusted

HHV = high heat value of the fuel SSM flaring gas HHV =

0.00108 MMBtu/scf

 $EF = 1.00E-04 \text{ kg N}_2\text{O/MMBtu}$

 10^{-3} = conversion factor from kg to metric tons.

1.1203 = conversion factor from metric tons to short tons.

Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.

		CH₄ Un-	CO ₂ Un-		CH₄ Un-			CH₄ Un-	CO ₂ Un-	CO2		
		Combusted,	Combusted,	CO ₂ Combusted,	Combusted,	CO ₂ Un-	CO ₂ Combusted,	Combusted,	Combusted,	Combusted,	N₂O Mass	
	Gas Sent to	E _{a,CH4}	E _{a,CO2}	$E_{a,CO2}$	E _{a,CH4}	Combusted, E _{a,CO2}	E _{a,CO2}	E _{a,CH4}	E _{a,CO2}	E _{a,CO2}	Emissions	CO2e
Gas Sent to Emergency Flare	Flare (cf/yr)	(cf)	(cf)	(cf)	(scf)	(scf)	(scf)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
SSM Flaring (EP-1, 2-EP-1, and 3-												
EP-1)	9,879,465	143,915	125,195	41,387,809	120,838	105,120	34,751,269	2.56	6.09	2,014.91	0.00118	2,085
Total	9,879,465	143,915	125,195.3	41,387,809	120,838	105,120.2	34,751,269	2.6	6.1	2,014.9	0.00118	2,085

GWP 1 25 298

§98.233(n) Flare stack GHG emissions.

```
Step 1. Calculate contribution of un-combusted CH<sub>4</sub> emissions
```

 $E_{a,CH4}$ (un-combusted) = $V_a * (1-\eta) * X_{CH4}$ (Equation W-39B)

where

E_{a CH4} = contribution of annual un-combusted CH₄ emissions from regenerator in cubic feet under actual conditions.

V_a = volume of gas sent to combustion unit during the year (cf)

 η = Fraction of gas combusted by a burning flare (or regenerator), default value from Subpart W =

For gas sent to an unlit flare, η is zero.

 X_{CH4} = Mole fraction of CH₄ in gas to the flare = 0.0041 (Client gas analysis)

0.98

(Based on Annual Avg Max Temperature for Hobbs, NM from Western Regional Climate Center)

Step 2. Calculate contribution of un-combusted CO₂ emissions

 $E_{a,CO2} = V_a * X_{CO2}$ (Equation W-20)

where:

E_{a CO2} = contribution of annual un-combusted CO₂ emissions from regenerator in cubic feet under actual conditions.

V_a = volume of gas sent to combustion unit during the year (cf)

 X_{CO2} = Mole fraction of CO_2 in gas to the flare = 0.000

Step 3. Calculate contribution of combusted CO₂ emissions

 $\mathsf{E}_{\mathsf{a},\mathsf{CO2}} \, (\mathsf{combusted}) = \sum \, (\mathsf{\eta} \, {}^{\star} \, \mathsf{V}_{\mathsf{a}} \, {}^{\star} \, \mathsf{Y}_{\mathsf{j}} \, {}^{\star} \, \mathsf{R}_{\mathsf{j}}) \qquad \textit{(Equation W-21)}$

where:

 η = Fraction of gas combusted by a burning flare (or regenerator) = 0.98

For gas sent to an unlit flare, η is zero.

V_a = volume of gas sent to combustion unit during the year (cf)

Y_i = mole fraction of gas hydrocarbon constituents j:

Constituent j, Methane = 0.0041
Constituent j, Ethane = 0.0011
Constituent j, Propane = 0.0027
Constituent j, Butane = 0.0624

Constituent j, Butane = 0.0574 Constituent j, Pentanes Plus = 0.9348

R_j = number of carbon atoms in the gas hydrocarbon constituent j:

 Constituent j, Methane =
 1

 Constituent j, Ethane =
 2

 Constituent j, Propane =
 3

 Constituent j, Butane =
 4

 Constituent j, Pentanes Plus =
 5

Step 4. Calculate GHG volumetric emissions at standard conditions (scf).

$$E_{s,n} = \frac{E_{a,n} * (459.67 + T_s) * P_a}{(459.67 + T_a) * P_s}$$
 (Equation W-33)

where

E_{s.n} = GHG i volumetric emissions at standard temperature and pressure (STP) in cubic feet

E_{an} = GHG i volumetric emissions at actual conditions (cf)

 T_s = Temperature at standard conditions (F) = 60 F

T_a = Temperature at actual conditions (F) = 76 F

P_s = Absolute pressure at standard conditions (psia) = 14.7 psia

P_a = Absolute pressure at actual conditions (psia) = 12.73 psia (Assumption)

(Client gas analysis)

Constant = 459.67 (temperature conversion from F to R)

Step 5. Calculate annual CH₄ and CO₂ mass emissions (ton).

Mass_{s i} = $E_{s i} * \rho_{i} * 0.001 * 1.1023$ (Equation W-36)

where:

 $\mathsf{Mass}_{\mathsf{s},\mathsf{i}} = \mathsf{GHG}\,\mathsf{i}\,(\mathsf{CO}_2,\,\mathsf{CH}_4,\,\mathsf{or}\,\mathsf{N}_2\mathsf{O})$ mass emissions at standard conditions in tons (tpy)

E_{s.i} = GHG i (CO₂, CH₄, or N₂O) volumetric emissions at standard conditions (cf)

 ρ_i = Density of GHG i. Use:

CH₄: 0.0192 kg/ft³ (at 60F and 14.7 psia)

CO₂: 0.0526 kg/ft³ (at 60F and 14.7 psia)

 1×10^{-3} = conversion factor from kg to metric tons.

1.1203 = conversion factor from metric tons to short tons.

Step 6. Calculate annual N₂O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 .

(Equation W-40)

Mass_{N2O} = 0.001 * Fuel * HHV * EF*1.1023

 $Mass_{N2O}$ = annual N_2O emissions from combustion of a particular type of fuel (tons).

Fuel = mass or volume of the fuel combusted

HHV = high heat value of the fuel

SSM flaring gas HHV = EF =

0.00107 MMBtu/scf 1.00E-04 kg N₂O/MMBtu

 1×10^{-3} = conversion factor from kg to metric tons.

1.1203 = conversion factor from metric tons to short tons.

Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.

Gas Sent to Combuster	Gas Sent to Combuster (cf/yr)	,	CO ₂ Un- Combusted, E _{a,CO2} (cf)	CO ₂ Combusted, E _{a,CO2} (cf)	CH ₄ Un- Combusted, E _{a,CH4} (scf)	CO ₂ Un- Combusted, E _{a,CO2} (scf)	CO ₂ Combusted, E _{a,CO2} (scf)	CH₄ Un- Combusted, E _{a,CH4} (tpy)	CO ₂ Un- Combusted, E _{a,CO2} (tpy)	CO ₂ Combusted, E _{a,CO2} (tpy)	N₂O Mass Emissions (tpy)	CO2e (tpy)
COMB-1	12,743,644	1,033	0	61,417,098	867	0	51,568,859	0.02	0.00	2,990.01	0.00150	2,991
Total	12,743,644	1,033	0.0	61,417,098	867	0.0	51,568,859	0.0	0.0	2,990.0	0.00150	2,991

 $\frac{\text{CO}_2}{\text{GWP}} = \frac{\text{CH}_4}{1} + \frac{\text{N}_2\text{O}}{25} = \frac{1}{298}$

Section 7

Information Used to Determine Emissions

Information Used to Determine Emissions shall include the following:

Generator (Units GEN-1 through GEN-12)

- Final Tier 4 Emissions Standards for Non-Road Engines
- AP-42, 5th Edition, Table 3.4-3 and Table 3.4-1
- 40 CFR 98 Subpart C Table C-1 and Table C-2

TEG Glycol Dehydrators (EP-7, 2-EP-7, and 3-EP-7)

BR&E ProMax

Amine Units

- BR&E ProMax
- Inlet gas analysis dated November 19, 2019
 - A more recently dated inlet gas analysis, dated November 18, 2022, is available and is included in this
 application package for reference. The gas analysis dated November 19, 2019 was used in lieu of the newer
 analysis as it is more conservative for both VOC and HAPs content.

Thermal Oxidizer (EP-9)

- Manufacturer specifications
- 40 CFR 98 Subpart C Table C-1 and Table C-2

Thermal Oxidizer SSM

BR&E ProMax

Flares (EP-1, 2-EP-1, 3-EP-1)

- TNRCC RG-109 Emission Factors
- Inlet gas analysis dated November 19, 2019

- A more recently dated inlet gas analysis, dated November 18, 2022, is available and is included in this
 application package for reference. The gas analysis dated November 19, 2019 was used in lieu of the newer
 analysis as it is more conservative for both VOC and HAPs content.
- Flare Header Cold Side analysis dated November 18, 2022
- Fuel gas analysis dated July 27, 2021
- 40 CFR 98 Subpart C Table C-1 and Table C-2
- Manufacturer specifications

Condensate Tanks (T-1 through T-5)

- BR&E ProMax
- Condensate analysis dated February 3, 2022

Produced Water Storage Tank (T-6)

BR&E ProMax

Condensate Loading (LOAD)

- AP-42 Chapter 5.2, Transportation and Marketing of Petroleum Liquids
- BR&E ProMax

Tank Combustor (COMB-1)

- TNRCC RG-109 Emission Factors
- BR&E ProMax
- 40 CFR 98 Subpart C Table C-1 and Table C-2

Fugitives (FUG)

- Inlet gas analysis dates November 19, 2019
 - A more recently dated inlet gas analysis, dated November 18, 2022, is available and is included in this
 application package for reference. The gas analysis dated November 19, 2019 was used in lieu of the newer
 analysis as it is more conservative for both VOC and HAPs content.
- Fuel gas analysis dated July 27, 2021
- Condensate analysis dated February 3, 2022
- Table 2-4 of the EPA Protocol for Equipment Leak Emission Estimates, November 1995

Haul Roads (HAUL)

• AP-42 Chapter 13.2.2, Unpaved Roads, Table 13.2.2-2

Number: 6030-22020089-001A

Artesia Laboratory 200 E Main St. Artesia, NM 88210 Phone 575-746-3481

Tom Cleveland Lucid Energy Group 3100 McKinnon St. #800 Dallas, TX 75201

Station Name: Road Runner Gas Plant Tank Condensate

Station Number: N/A Station Location: Lucid

Analyzed: 02/07/2022 10:58:32

Sampled By: Michael Mirabal Sample Of: Liquid Spot Sample Date: 02/03/2022 01:43

Feb. 07, 2022

Sample Conditions:

Method: GPA 2186

Analytical Data

Components	Mol. %	Wt. %	L.V. %		
Nitrogen	0.074	0.023	0.020		
Methane	0.002	NIL	0.001		
Carbon Dioxide	NIL	NIL	NIL		
Ethane	0.003	0.001	0.002		
Propane	0.024	0.012	0.016		
Iso-Butane	0.086	0.056	0.069		
n-Butane	1.731	1.124	1.333		
Iso-Pentane	10.631	8.570	9.496		
n-Pentane	17.244	13.901	15.267		
i-Hexanes	15.924	15.104	15.680		
n-Hexane	12.169	11.715	12.221		
Benzene	1.126	0.983	0.771		
Cyclohexane	5.756	5.413	4.786		
i-Heptanes	13.147	13.810	13.237		
n-Heptane	4.094	4.583	4.614		
Toluene	1.328	1.368	1.088		
i-Octanes	9.110	10.700	9.898		
n-Octane	0.853	1.089	1.066		
Ethylbenzene	0.150	0.179	0.141		
Xylenes	0.623	0.741	0.590		
i-Nonanes	1.549	2.099	1.926		
n-Nonane	0.342	0.490	0.472		
i-Decanes	0.248	0.354	0.301		
Decanes Plus	3.786	7.685	7.005		
	100.000	100.000	100.000		
Calculated Physica	I Properties		Total 72.7803	C10+	
	API Gravity at 60°F			54.3309	
Pounds per Gallon (,		5.769	6.341	
Pounds per Gallon (5.775	6.348	
Cu. Ft. Vapor per Ga		96 psia	24.487 0.6927	13.502	
Specific Gravity at 6	Specific Gravity at 60°F			0.7614	
Molecular Weight			89.496	178.418	

Data reviewed by: Krystle Fitzwater, Laboratory Manager

119204

20640

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

130237

20514

Quality Assurance:

BTU / GAL. (as a vapor)

BTU / LB. (as a vapor)

Number: 6030-22020089-001A

Artesia Laboratory 200 E Main St. Artesia, NM 88210 Phone 575-746-3481

Feb. 07, 2022

Tom Cleveland Lucid Energy Group 3100 McKinnon St. #800 Dallas, TX 75201

Station Name: Road Runner Gas Plant Tank Condensate

Station Number: N/A Station Location: Lucid

Sampled By: Michael Mirabal Sample Of: Liquid Spot Sample Date: 02/03/2022 01:43

Sample Conditions:

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech.	Analysis Date
VP of Crude Oil: V/L = 4:1 @ 37.8 °F	ASTM D-6377	9.09	psi	KNF	02/07/2022
RVPE (D323 Equivalent) @ 3.2 °C	ASTM D-6377	8.32	psi	KNF	02/07/2022

Number: 5030-19110424-001A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Nov. 21, 2019

Lucid Energy Group 416 E. Main St. Artesia, NM 88210

Station Name: ROAD RUNNER INLET

Method: GPA 2286

Cylinder No: A102

Analyzed: 11/20/2019 19:30:36 by WH

Sampled By: DEREK SAUDER
Sample Of: Gas Spot
Sample Date: 11/19/2019

Sample Conditions: 797.5 psig, @ 75 °F

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.696 psia			
Hydrogen Sulfide	0.000	0.000		GPM TOTAL C2+	5.985	
Nitrogen	1.397	1.840		GPM TOTAL C3+	2.710	
Carbon Dioxide	0.330	0.683		GPM TOTAL iC5+	0.409	
Methane	76.983	58.062				
Ethane	12.234	17.295	3.275			
Propane	5.668	11.750	1.563			
Iso-butane	0.717	1.959	0.235			
n-Butane	1.595	4.358	0.503			
Iso-pentane	0.287	0.973	0.105			
n-Pentane	0.288	0.977	0.105			
Hexanes Plus	0.501	2.103	0.199			
	100.000	100.000	5.985			
Calculated Physica	I Properties		Total	C6+		
Relative Density Rea	al Gas		0.7367	3.0526		
Calculated Molecula	r Weight		21.27	88.41		
Compressibility Fact	•					
GPA 2172 Calculati	ion:					
Calculated Gross B	BTU per ft ³ @	14.696 ps	sia & 60°F			
Real Gas Dry BTU	-	-	1264	4785		
Water Sat. Gas Base	e BTU		1242	4701		

Bull &

Number: 5030-19110424-001A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Nov. 21, 2019

Lucid Energy Group 416 E. Main St. Artesia, NM 88210

Station Name: ROAD RUNNER INLET

Method: GPA 2286 Cylinder No: A102

Analyzed: 11/20/2019 19:30:36 by WH

Sampled By: **DEREK SAUDER** Gas Sample Of: Spot Sample Date: 11/19/2019

Sample Conditions: 797.5 psig, @ 75 °F

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.696 psia			
Hydrogen Sulfide	0.000	0.000		GPM TOTAL C2+	5.9850	
Nitrogen	1.397	1.840		GPM TOTAL C3+	2.7100	
Methane	76.983	58.062		GPM TOTAL iC5+	0.4090	
Carbon Dioxide	0.330	0.683				
Ethane	12.234	17.295	3.275			
Propane	5.668	11.750	1.563			
Iso-Butane	0.717	1.959	0.235			
n-Butane	1.595	4.358	0.503			
Iso-Pentane	0.287	0.973	0.105			
n-Pentane	0.288	0.977	0.105			
Hexanes	0.284	1.122	0.113			
Heptanes Plus	0.217	0.981	0.086			
	100.000	100.000	5.985			
Calculated Physica	I Properties		Total	C7+		
Relative Density Rea	al Gas		0.7367	3.1977		
Calculated Molecula	r Weight		21.27	92.61		
Compressibility Fact	or		0.9964			
GPA 2172 Calculati	ion:					
Calculated Gross B	BTU per ft ³ @	14.696 ps	ia & 60°F			
Real Gas Dry BTU	-	-	1263.6	4913.3		
Water Sat. Gas Base	e BTU		1241.5	4827.6		

Number: 5030-19110424-001A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Lucid Energy Group 416 E. Main St. Artesia, NM 88210 Nov. 21, 2019

Station Name: ROAD RUNNER INLET

Method: GPA 2286

Cylinder No: A102

Analyzed: 11/20/2019 19:30:36 by WH

Sample Of: DEREK SAUDER
Sample Of: Gas Spot
Sample Date: 11/19/2019

Sample Conditions: 797.5 psig, @ 75 °F

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.696 psia		
Nitrogen	1.397	1.840	•	GPM TOTAL C2+	5.985
Methane	76.983	58.062		OF WITOTAL OZ	3.303
Carbon Dioxide	0.330	0.683			
Hydrogen Sulfide	NIL	NIL			
Ethane	12.234	17.295	3.275		
Propane	5.668	11.750	1.563		
Iso-Butane	0.717	1.959	0.235		
n-Butane	1.595	4.358	0.503		
Iso-Pentane	0.287	0.973	0.105		
n-Pentane	0.288	0.977	0.105		
i-Hexanes	0.179	0.700	0.070		
n-Hexane	0.105	0.422	0.043		
Benzene	0.017	0.062	0.005		
Cyclohexane	0.048	0.190	0.016		
i-Ĥeptanes	0.091	0.387	0.036		
n-Heptane	0.017	0.079	0.008		
Toluene	0.007	0.029	0.002		
i-Octanes	0.034	0.174	0.016		
n-Octane	0.002	0.012	0.001		
Ethylbenzene	NIL	0.001	NIL		
Xylenes	NIL	0.007	0.001		
i-Nonanes	0.001	0.016	0.001		
n-Nonane	NIL	0.004	NIL		
i-Decanes	NIL	0.008	NIL		
n-Decane	NIL	0.002	NIL		
Undecanes	NIL	0.002	NIL		
Dodecanes	NIL	0.002	NIL		
Tridecanes	NIL	0.005	NIL		
Tetradecanes Plus	NIL	0.001	NIL		
	100.000	100.000	5.985		
Calculated Physical Pr			otal	C14+	
	Relative Density Real Gas		367	NIL	
	Calculated Molecular Weight		271	NIL	
Compressibility Factor		0.99	964		
GPA 2172 Calculation:					
Calculated Gross BTU	per ft ³ @ 14.	•			
Real Gas Dry BTU		126		NIL	
Water Sat. Gas Base B	ΓU	124	1.5	NIL	

13 July

Hydrocarbon Laboratory Manager

Quality Assurance: The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Leaders in Petroleum Analytical Services www.pantechs.com

Analytical Report

Customer:	Lucid Energy Delaware	Order:	O29-2140
Location:	Road Runner Plant	Received:	7/27/2021
Description:	Fuel Gas	Primary Contact:	Jaylen Fuentes

REPORT DISTRIBUTION:

Jaylen Fuentes

All data reported in this Analytical Report is in compliance with the test method(s) performed as of the date noted above. The validity and integrity of this report will remain intact as long as it is accompanied by this page and reproduced in full. Any datafile (e.g. txt, csv, etc.) produced which is associated with the results in this report shall be considered for convenience only and does not supersede this report as the official test results. We reserve the right to return to you any unused samples received if we consider so necessary (e.g. samples identified as hazardous waste).

We appreciate you choosing Pantechs Laboratories. If you have any questions concerning this report, please feel free to contact us at any time.

Pantechs Laboratories, Inc. Order: O29-2140 Order Date: 7/27/2021 Order Description: Road Runner Plant, Fuel Gas

Sample List									
Fluid	Operator	Location	Site	Sample Point	Date	Time			
Gas	Lucid Energy Delaware	Road Runner Plant	Fuel Gas	Fuel Meter	7/27/2021	12:23 PM			

No Sample List				
Operator	Location	Site	Sample Point	Comment

Pantechs Laboratories, Inc. - Order: O29-2140 - Order Date: 7/27/2021 Order Description: Road Runner Plant, Fuel Gas

SAMPLE ID COLLECTION D		COLLECTION DATA	A
Operator	Lucid Energy Delaware	Pressure	15 psig
Location	Road Runner Plant	Sample Temp	N/A
Site	Fuel Gas	Atm Temp	80 F
Site Type	Meter	Collection Date	07/27/2021
Sample Point	Fuel Meter	Collection Time	12:23 PM
Spot/Comp	Spot	Collection By	Cody Carson
Meter ID		Pressure Base	14.730 psi
Purchaser		Temperature Base	60 F
Fluid	Gas	Container(s)	PLS029 , PL2136

Onsite Testing by Stain Tube

METHOD	TYPE	MOL%	GRAINS/100	PPMV
GPA2377	H2S	0.0000	0.00	0.0

GPA 2286 Gas Extended Fractional Analysis

COMPOUND	FORMULA	MOL%	WT%	GPM
HELIUM	Не	0.0064	0.0014	0.0006
NITROGEN	N2	1.1398	1.8037	0.1251
CARBON DIOXIDE	CO2	0.5582	1.3878	0.0950
*OXYGEN+ARGON	O2+Ar	0.0037	0.0067	0.0003
HYDROGEN SULFIDE	H2S	0.0000	0.0000	0.0000
METHANE	C1	88.8585	80.5282	15.0243
ETHANE	C2	9.1322	15.5122	2.4358
PROPANE	C3	0.2906	0.7239	0.0798
I-BUTANE	iC4	0.0071	0.0233	0.0023
N-BUTANE	nC4	0.0027	0.0089	0.0008
I-PENTANE	iC5	0.0001	0.0004	0.0000
N-PENTANE	nC5	0.0001	0.0004	0.0000
NEO-PENTANE	neC5	0.0002	0.0008	0.0001
HEXANES PLUS	C6+	0.0004	0.0023	0.0001
TOTALS:		100.0000	100.0000	17.7645

Value of "0.0000" interpreted as below detectable limit. Onsite H2S value is used in fractional if performed. *Oxygen+Argon: Compounds elute as single peak; additional testing required to distinguish each.

LIQUID YIELD	C2+	C3+	C4+	C5+	26# Liquid	10# Liquid
GAL/MSCF	2.5191	0.0833	0.0035	0.0002	0.0004	
CALC PROP	BTU/CF	Specific Gr.	Z Factor	Mol Weight	LB/SCF	Wobbe IDX
DRY	1,071.8	0.6124	0.9976	18.70	0.0495	1,369.5
WATER SAT.	1,054.4	0.6128	0.9973	18.38	0.0486	
C6+ ONLY	5,052.8	3.4484		99.88		

Hexanes Plus Detail - Road Runner Plant:Fuel Gas:Fuel Meter:7/27/2021

C6 GROUP	FORMULA	MOL%	WT%
2,2-dimethylbutane	C6H14	0.000000	0.000000
2,3-dimethylbutane+cyclopentane	C6H14	0.000000	0.000000
2-methylpentane	C6H14	0.000000	0.000000
3-methylpentane	C6H14	0.000000	0.000000
benzene	C6H6	0.000183	0.000808
cyclohexane	C6H12	0.000000	0.000000
methylcyclopentane	C6H12	0.000000	0.000000
n-hexane	C6H14	0.000054	0.000263
TOTALS:		0.000237	0.001071

C7 GROUP	FORMULA	MOL%	WT%
1,1-dimethylcyclopentane+3-methylhexane	C7H16	0.000000	0.000000
2,2-dimethylpentane	C7H16	0.000000	0.000000
2,3-dimethylpentane	C7H16	0.000000	0.000000
2,4-dimethylhexane+ethylcyclopentane	C7H14	0.000000	0.000000
2,4-dimethylpentane	C7H16	0.000000	0.000000
2-methylhexane	C7H16	0.000000	0.000000
3,3-dimethylpentane	C7H16	0.000000	0.000000
cis-1,3-dimethylcyclopentane+3-Ethylpentane	C7H14	0.000000	0.000000
cycloheptane	C7H14	0.000000	0.000000
Methylcyclohexane+1,1,3-Trimethylpentane	C7H14	0.000000	0.000000
n-heptane	C7H16	0.000030	0.000170
toluene	C7H8	0.000093	0.000484
trans-1,2-dimethylcyclopentane+cis-1,2- Dimethylcyclopentane	C7H14	0.000000	0.000000
trans-1,3-dimethylcyclopentane	C7H14	0.000000	0.000000
TOTALS:		0.000123	0.000654

C8 GROUP	FORMULA	MOL%	WT%
1-ethyl-1-methylcyclopentane	C8H16	0.000000	0.000000
2,2,3-trimethylpentane	C8H18	0.000000	0.000000
2,2,4-trimethylpentane	C8H18	0.000000	0.000000
2,3,4-trimethylpentane	C8H18	0.000000	0.000000
2,5-dimethylhexane	C8H18	0.000000	0.000000
2-methylheptane+4-methylheptane	C8H18	0.000000	0.000000
3,3-dimethylhexane	C8H18	0.000000	0.000000
3-methylheptane	C8H18	0.000000	0.000000
cis-1,2-dimethylcyclohexane	C8H16	0.000000	0.000000
cis-1,3-dimethylcyclohexane	C8H16	0.000000	0.000000

TOTALS:		0.000061	0.000380
trans-1,3-dimethylcyclohexane	C8H16	0.000000	0.000000
o-xylene	C8H10	0.000000	0.000000
n-octane	C8H18	0.000032	0.000206
m-xylene+p-xylene	C8H10	0.000000	0.000000
ethylcyclohexane	C8H16	0.000000	0.000000
ethylbenzene	C8H10	0.000029	0.000174
cyclooctane	C8H16	0.000000	0.000000

C9 GROUP	FORMULA	MOL%	WT%
1,1,2-trimethylcyclohexane	C9H18	0.000000	0.000000
1,2,3-trimethylbenzene	C9H12	0.000000	0.000000
1,2,4-trimethylbenzene+tert-butylbenzene	C9H12	0.000000	0.000000
1,3,5-trimethylbenzene	C9H12	0.000000	0.000000
2,2,3-trimethylhexane	C9H20	0.000000	0.000000
2,2,4-trimethylhexane	C9H20	0.000000	0.000000
2,2-dimethylheptane	C9H20	0.000000	0.000000
2,3,4-trimethylhexane	C9H20	0.000000	0.000000
2,4,4-trimethylhexane	C9H20	0.000000	0.000000
2,5-dimethylheptane	C9H20	0.000000	0.000000
2-methyloctane	C9H20	0.000000	0.000000
3,4-dimethylheptane	C9H20	0.000000	0.000000
cis-1,2,trans-1,4-1,2,4-trimethylcyclohexane	C9H18	0.000000	0.000000
cis,cis-1,2,3-trimethylcyclohexane	C9H18	0.000000	0.000000
isopropylbenzene	C9H12	0.000000	0.000000
methylcyclooctane	C9H18	0.000000	0.000000
m-ethyltoluene+p-ethyltoluene	C9H12	0.000000	0.000000
n-nonane	C9H20	0.000021	0.000152
propylbenzene	C9H12	0.000000	0.000000
propylcyclohexane	C9H18	0.000000	0.000000
r-1,t-2,c-3-trimethylcyclohexane	C9H18	0.000000	0.000000
r-1,t-2,t-4-trimethylcyclohexane	C9H18	0.000000	0.000000
Unidentified C9	C9	0.000000	0.000000
TOTALS:		0.000021	0.000152

C10 GROUP	FORMULA	MOL%	WT%
1,2,3,4-tetramethylbenzene	C10H14	0.000000	0.000000
1,2,3,5-tetramethylbenzene	C10H14	0.000000	0.000000
1,2,4,5-tetramethylbenzene	C10H14	0.000000	0.000000
1,2-diethylbenzene	C10H14	0.000000	0.000000

1,2-dimethyl-3-ethylbenzene	C10H14 C10H14	0.000000	0.000000
1,2-dimethyl-4-ethylbenzene		0.000000	0.000000
1,3-diethylbenzene	C10H14	0.000000	0.000000
1,3-dimethyl-2-ethylbenzene	C10H14	0.000000	0.000000
1,4-diethylbenzene	C10H14	0.000000	0.000000
1,4-dimethyl-2-ethylbenzene	C10H14	0.000000	0.000000
1-methyl-2-isopropylbenzene	C10H14	0.000000	0.000000
1-methyl-2-propylbenzene	C10H14	0.000000	0.000000
1-methyl-3-isopropylbenzene	C10H14	0.000000	0.000000
1-methyl-4-isopropylbenzene	C10H14	0.000000	0.000000
2-methylnonane	C10H22	0.000000	0.000000
3-ethyloctane	C10H22	0.000000	0.000000
3-methylnonane	C10H22	0.000000	0.000000
4-methylnonane	C10H22	0.000000	0.000000
butylbenzene	C10H14	0.000000	0.000000
butylcyclohexane	C10H20	0.000000	0.000000
isobutylbenzene	C10H14	0.000000	0.000000
naphthalene	C10H8	0.000000	0.000000
n-decane	C10H22	0.000000	0.000000
sec-butylbenzene	C10H14	0.000000	0.000000
tert-butylcyclohexane	C10H20	0.000000	0.000000
Unidentified C10	C10	0.000000	0.000000
TOTALS:		0.000000	0.000000

C11 GROUP	FORMULA	MOL%	WT%
n-undecane	C11H24	0.000000	0.000000
pentylbenzene	C11H16	0.000000	0.000000
Unidentified C11	C11	0.000000	0.000000
TOTALS:		0.000000	0.000000

C12 GROUP	FORMULA	MOL%	WT%
n-dodecane	C12H26	0.000000	0.000000
Unidentified C12	C12	0.000000	0.000000
TOTALS:		0.000000	0.000000

C13 GROUP	FORMULA	MOL%	WT%
n-tridecane	C13H28	0.000000	0.000000
Unidentified C13	C13	0.000000	0.000000
TOTALS:		0.000000	0.000000

C14 GROUP FORM	MULA MOL%	WT%
----------------	-----------	-----

n-tetradecane	C14H30	0.000000	0.000000
Unidentified C14 TOTALS:	C14	0.000000	0.000000

C15+ GROUP	FORMULA	MOL%	WT%
n-pentadecane	C15H32	0.000000	0.000000
Unidentified C15	C15	0.000000	0.000000
TOTALS:		0.000000	0.000000

Road Runner Plant:Fuel Gas:Fuel Meter:7/27/2021 ASTM D5504 Gas Sulfur Speciation

SUMMARY	PPMV	GRAINS/100 SCF	PPMW
COMPOUND TOTALS:	0.0	0.00	0.0
TOTAL SULFUR, AS MASS OF SULFUR (PPMW):			0.0

Speciation Detail

SULFIDE GROUP	PPMV	GRAINS/100 SCF	PPMW
hydrogen sulfide	0.0	0.00	0.0
carbonyl sulfide	0.0	0.00	0.0
Dimethyl Sulfide	0.0	0.00	0.0
Methyl Ethyl Sulfide	0.0	0.00	0.0
Diethyl Sulfide	0.0	0.00	0.0
t-Butyl Methyl Sulfide	0.0	0.00	0.0
Methyl sec-Butyl Sulfide	0.0	0.00	0.0
Ethyl n-Propyl Sulfide	0.0	0.00	0.0
Diisopropyl Sulfide	0.0	0.00	0.0
Propyl Sulfide	0.0	0.00	0.0
tert-Butyl Sulfide	0.0	0.00	0.0
SULFIDE TOTALS:	0.0	0.00	0.0

DISULFIDE GROUP	PPMV	GRAINS/100 SCF	PPMW
Carbon Disulfide	0.0	0.00	0.0
Dimethyl Disulfide	0.0	0.00	0.0
Ethyl Methyl Disulfide	0.0	0.00	0.0
Methyl i-Propyl Disulfide	0.0	0.00	0.0
Diethyl Disulfide	0.0	0.00	0.0
Propyl Methyl Disulfide	0.0	0.00	0.0
Methyl tert-Butyl Disulfide	0.0	0.00	0.0
Ethyl i-Propyl Disulfide	0.0	0.00	0.0
Methyl sec-Butyl Disulfide	0.0	0.00	0.0
Ethyl Propyl Disulfide+1-Heptanethiol	0.0	0.00	0.0
i-Propyl Disulfide	0.0	0.00	0.0
n-Propyl Disulfide	0.0	0.00	0.0
t-Butyl Disulfide	0.0	0.00	0.0
Diphenyl Disulfide	0.0	0.00	0.0
DISULFIDE TOTALS:	0.0	0.00	0.0

MERCAPTAN GROUP	PPMV	GRAINS/100 SCF	PPMW
Methyl Mercaptan	0.0	0.00	0.0
Ethyl Mercaptan	0.0	0.00	0.0

i-Propyl Mercaptan	0.0	0.00	0.0
n-Propyl Mercaptan	0.0	0.00	0.0
tert-Butyl Mercaptan	0.0	0.00	0.0
sec-Butyl Mercaptan	0.0	0.00	0.0
i-Butyl Mercaptan	0.0	0.00	0.0
n-Butyl Mercaptan	0.0	0.00	0.0
1,5-Pentanedithiol	0.0	0.00	0.0
2 and 3-Methyl-1- Butanethiol+Tetrahydrothiophene	0.0	0.00	0.0
1-Pentanethiol	0.0	0.00	0.0
1,2-Ethanethiol	0.0	0.00	0.0
1-Hexanethiol	0.0	0.00	0.0
Thiophenol	0.0	0.00	0.0
1,4-Butanethiol	0.0	0.00	0.0
1-Octanethiol	0.0	0.00	0.0
1-Nonanethiol	0.0	0.00	0.0
1-Decanethiol	0.0	0.00	0.0
MERCAPTAN TOTALS:	0.0	0.00	0.0

THIOPHENE GROUP	PPMV	GRAINS/100 SCF	PPMW
Thiophene	0.0	0.00	0.0
2-Methylthiophene+3-Methylthiophene	0.0	0.00	0.0
2-Ethyl Thiophene	0.0	0.00	0.0
2-Bromothiophene	0.0	0.00	0.0
2-Propylthiophene	0.0	0.00	0.0
2-Butylthiophene	0.0	0.00	0.0
3-Butylthiophene	0.0	0.00	0.0
Benzothiophene	0.0	0.00	0.0
2-Methylbenzothiophene	0.0	0.00	0.0
THIOPHENE TOTALS:	0.0	0.00	0.0

OTHER SULFUR GROUP	PPMV	GRAINS/100 SCF	PPMW
sulfur dioxide	0.0	0.00	0.0
Unidentified Sulfur	0.0	0.00	0.0
OTHER SULFUR TOTALS:	0.0	0.00	0.0

Value of "0.0" interpreted as below detectable limit of 0.1 PPM Mol.

Leaders in Petroleum Analytical Services www.pantechs.com

Analytical Report

9/21/2021

Customer:	Lucid Energy Delaware	Order:	0148-2309
Location:	Red Hills Processing Complex	Received:	9/14/2021
Description:	Flare Scrubbers and Amine/Glycol Waste Streams	Primary Contact:	Jaylen Fuentes

REPORT DISTRIBUTION:

Jaylen Fuentes

All data reported in this Analytical Report is in compliance with the test method(s) performed as of the date noted above. The validity and integrity of this report will remain intact as long as it is accompanied by this page and reproduced in full. Any datafile (e.g. txt, csv, etc.) produced which is associated with the results in this report shall be considered for convenience only and does not supersede this report as the official test results. We reserve the right to return to you any unused samples received if we consider so necessary (e.g. samples identified as hazardous waste).

We appreciate you choosing Pantechs Laboratories. If you have any questions concerning this report, please feel free to contact us at any time.

Pantechs Laboratories, Inc. - Order: 0148-2309 - Order Date: 9/14/2021 Order Description: Red Hills Processing Complex, Flare Scrubbers and Amine/Glycol Waste Streams

SAMPLE ID		COLLECTION DATA		
Operator	Lucid Energy Delaware	Pressure	48 psig	
Location	Road Runner Plant	Sample Temp	N/A	
Site	Flare Header	Atm Temp	88 F	
Site Type	Plant	Collection Date	09/14/2021	
Sample Point	Cold Side	Collection Time	12:20 PM	
Spot/Comp	Spot	Collection By	Cody Carson	
Meter ID		Pressure Base	14.730 psi	
Purchaser		Temperature Base	60 F	
Fluid	Gas	Container(s)	PLS022, PL2473	

GPA 2286 Gas Extended Fractional Analysis

GPA 2286 Gas Extended Fractional Analysis						
COMPOUND	FORMULA	MOL%	WT%	GPM		
HELIUM	Не	0.0071	0.0016	0.0007		
NITROGEN	N2	1.2421	1.9343	0.1363		
CARBON DIOXIDE	CO2	0.0560	0.1370	0.0095		
*OXYGEN+ARGON	02+Ar	0.0047	0.0084	0.0004		
HYDROGEN SULFIDE	H2S	0.0000	0.0000	0.0000		
METHANE	C1	88.3783	78.8166	14.9414		
ETHANE	C2	9.0801	15.1779	2.4216		
PROPANE	C3	0.6880	1.6865	0.1890		
I-BUTANE	iC4	0.0644	0.2081	0.0210		
N-BUTANE	nC4	0.1371	0.4430	0.0431		
I-PENTANE	iC5	0.0350	0.1404	0.0128		
N-PENTANE	nC5	0.0481	0.1929	0.0174		
NEO-PENTANE	neC5	0.0013	0.0052	0.0005		
HEXANES PLUS	C6+	0.2578	1.2481	0.0904		
TOTALS:		100.0000	100.0000	17.8841		

Value of "0.0000" interpreted as below detectable limit. Onsite H2S value is used in fractional if performed. *Oxygen+Argon: Compounds elute as single peak; additional testing required to distinguish each.

LIQUID YIELD	C2+	C3+	C4+	C5+	26# Liquid	10# Liquid
GAL/MSCF	2.7958	0.3742	0.1852	0.1205	0.1868	
CALC PROP	BTU/CF	Specific Gr.	Z Factor	Mol Weight	LB/SCF	Wobbe IDX
DRY	1,097.4	0.6224	0.9975	18.64	0.0493	1,391.0
WATER SAT.	1,079.5	0.6227	0.9971	18.31	0.0485	
C6+ ONLY	4,475.3	3.0069		87.09		

Hexanes Plus Detail - Road Runner Plant:Flare Header:Cold Side:9/14/2021

C6 GROUP	FORMULA	MOL%	WT%
2,2-dimethylbutane	C6H14	0.000442	0.002117
2,3-dimethylbutane+cyclopentane	C6H14	0.004374	0.020954
2-methylpentane	C6H14	0.012563	0.060184
3-methylpentane	C6H14	0.007080	0.033917
benzene	C6H6	0.091849	0.398834
cyclohexane	C6H12	0.029683	0.138871
methylcyclopentane	C6H12	0.018108	0.084718
n-hexane	C6H14	0.019024	0.091135
TOTALS:		0.183123	0.830730

C7 GROUP	FORMULA	MOL%	WT%
1,1-dimethylcyclopentane+3-methylhexane	C7H16	0.002711	0.015101
2,2-dimethylpentane	C7H16	0.000000	0.000000
2,3-dimethylpentane	C7H16	0.000620	0.003454
2,4-dimethylhexane+ethylcyclopentane	C7H14	0.000059	0.000322
2,4-dimethylpentane	C7H16	0.000000	0.000000
2-methylhexane	C7H16	0.001847	0.010288
3,3-dimethylpentane	C7H16	0.000000	0.000000
cis-1,3-dimethylcyclopentane+3-Ethylpentane	C7H14	0.001783	0.009732
cycloheptane	C7H14	0.000019	0.000104
Methylcyclohexane+1,1,3-Trimethylpentane	C7H14	0.013266	0.072409
n-heptane	C7H16	0.004923	0.027422
toluene	C7H8	0.027159	0.139109
trans-1,2-dimethylcyclopentane+cis-1,2- Dimethylcyclopentane	C7H14	0.000951	0.005191
trans-1,3-dimethylcyclopentane	C7H14	0.002893	0.015791
TOTALS:		0.056231	0.298923

C8 GROUP	FORMULA	MOL%	WT%
1-ethyl-1-methylcyclopentane	C8H16	0.000194	0.001210
2,2,3-trimethylpentane	C8H18	0.003386	0.021501
2,2,4-trimethylpentane	C8H18	0.004538	0.028816
2,3,4-trimethylpentane	C8H18	0.000151	0.000959
2,5-dimethylhexane	C8H18	0.000320	0.002032
2-methylheptane+4-methylheptane	C8H18	0.000912	0.005791
3,3-dimethylhexane	C8H18	0.000292	0.001854
3-methylheptane	C8H18	0.000171	0.001086
cis-1,2-dimethylcyclohexane	C8H16	0.001204	0.007511
cis-1,3-dimethylcyclohexane	C8H16	0.000198	0.001235

TOTALS:		0.015629	0.097796
trans-1,3-dimethylcyclohexane	C8H16	0.000068	0.000424
o-xylene	C8H10	0.000444	0.002620
n-octane	C8H18	0.000960	0.006096
m-xylene+p-xylene	C8H10	0.001805	0.010653
ethylcyclohexane	C8H16	0.000483	0.003013
ethylbenzene	C8H10	0.000424	0.002502
cyclooctane	C8H16	0.000079	0.000493

C9 GROUP	FORMULA	MOL%	WT%
1,1,2-trimethylcyclohexane	C9H18	0.000087	0.000611
1,2,3-trimethylbenzene	C9H12	0.000063	0.000421
1,2,4-trimethylbenzene+tert-butylbenzene	C9H12	0.000151	0.001009
1,3,5-trimethylbenzene	C9H12	0.000068	0.000454
2,2,3-trimethylhexane	C9H20	0.000000	0.000000
2,2,4-trimethylhexane	C9H20	0.000225	0.001604
2,2-dimethylheptane	C9H20	0.000043	0.000307
2,3,4-trimethylhexane	C9H20	0.000086	0.000613
2,4,4-trimethylhexane	C9H20	0.000207	0.001476
2,5-dimethylheptane	C9H20	0.000259	0.001847
2-methyloctane	C9H20	0.000085	0.000606
3,4-dimethylheptane	C9H20	0.000080	0.000570
cis-1,2,trans-1,4-1,2,4-trimethylcyclohexane	C9H18	0.000031	0.000218
cis,cis-1,2,3-trimethylcyclohexane	C9H18	0.000068	0.000477
isopropylbenzene	C9H12	0.000053	0.000354
methylcyclooctane	C9H18	0.000000	0.000000
m-ethyltoluene+p-ethyltoluene	C9H12	0.000051	0.000341
n-nonane	C9H20	0.000218	0.001554
propylbenzene	C9H12	0.000052	0.000347
propylcyclohexane	C9H18	0.000105	0.000737
r-1,t-2,c-3-trimethylcyclohexane	C9H18	0.000020	0.000140
r-1,t-2,t-4-trimethylcyclohexane	C9H18	0.000072	0.000505
Unidentified C9	C9	0.000186	0.001326
TOTALS:		0.002210	0.015517

C10 GROUP	FORMULA	MOL%	WT%
1,2,3,4-tetramethylbenzene	C10H14	0.000000	0.000000
1,2,3,5-tetramethylbenzene	C10H14	0.000000	0.000000
1,2,4,5-tetramethylbenzene	C10H14	0.000000	0.000000
1,2-diethylbenzene	C10H14	0.000000	0.000000

TOTALS:	0.000497	0.003892	
Unidentified C10	C10	0.000186	0.001471
tert-butylcyclohexane	C10H20	0.000000	0.000000
sec-butylbenzene	C10H14	0.000000	0.000000
n-decane	C10H22	0.000063	0.000498
naphthalene	C10H8	0.000011	0.000078
isobutylbenzene	C10H14	0.000000	0.000000
butylcyclohexane	C10H20	0.000000	0.000000
butylbenzene	C10H14	0.000022	0.000164
4-methylnonane	C10H22	0.000029	0.000229
3-methylnonane	C10H22	0.000000	0.000000
3-ethyloctane	C10H22	0.000054	0.000427
2-methylnonane	C10H22	0.000089	0.000704
1-methyl-4-isopropylbenzene	C10H14	0.000043	0.000321
1-methyl-3-isopropylbenzene	C10H14	0.000000	0.000000
1-methyl-2-propylbenzene	C10H14	0.000000	0.000000
1-methyl-2-isopropylbenzene	C10H14	0.000000	0.000000
1,4-dimethyl-2-ethylbenzene	C10H14	0.000000	0.000000
1,4-diethylbenzene	C10H14	0.000000	0.000000
1,3-dimethyl-2-ethylbenzene	C10H14	0.000000	0.000000
1,3-diethylbenzene	C10H14	0.000000	0.000000
1,2-dimethyl-4-ethylbenzene	C10H14	0.000000	0.000000
1,2-dimethyl-3-ethylbenzene	C10H14	0.000000	0.000000

C11 GROUP	FORMULA	MOL%	WT%
n-undecane	C11H24	0.000052	0.000452
pentylbenzene	C11H16	0.000000	0.000000
Unidentified C11	C11	0.000000	0.000000
TOTALS:		0.000052	0.000452

C12 GROUP	FORMULA	MOL%	WT%
n-dodecane	C12H26	0.000052	0.000492
Unidentified C12	C12	0.000000	0.000000
TOTALS:		0.000052	0.000492

C13 GROUP	FORMULA	MOL%	WT%
n-tridecane	C13H28	0.000026	0.000266
Unidentified C13	C13	0.000000	0.000000
TOTALS:		0.000026	0.000266

C14 GROUP	FORMULA	MOL%	WT%

TOTALS:		0.000000	0.000000
Unidentified C14	C14	0.000000	0.000000
n-tetradecane	C14H30	0.000000	0.000000

C15+ GROUP	FORMULA	MOL%	WT%
n-pentadecane	C15H32	0.000000	0.000000
Unidentified C15	C15	0.000000	0.000000
TOTALS:		0.000000	0.000000

Road Runner Plant:Flare Header:Cold Side:9/14/2021 ASTM D5504 Gas Sulfur Speciation

SUMMARY	PPMV	GRAINS/100 SCF	PPMW
COMPOUND TOTALS:	0.3	0.02	1.7
TOTAL SULFUR, AS MASS OF SULFUR (P	1.0		

Speciation Detail

SULFIDE GROUP	PPMV	GRAINS/100 SCF	PPMW
hydrogen sulfide	0.0	0.00	0.0
carbonyl sulfide	0.0	0.00	0.0
Dimethyl Sulfide	0.0	0.00	0.0
Methyl Ethyl Sulfide	0.0	0.00	0.0
Diethyl Sulfide	0.0	0.00	0.0
t-Butyl Methyl Sulfide	0.0	0.00	0.0
Methyl sec-Butyl Sulfide	0.0	0.00	0.0
Ethyl n-Propyl Sulfide	0.0	0.00	0.0
Diisopropyl Sulfide	0.0	0.00	0.0
Propyl Sulfide	0.0	0.00	0.0
tert-Butyl Sulfide	0.0	0.00	0.0
SULFIDE TOTALS:	0.0	0.00	0.0

DISULFIDE GROUP	PPMV	GRAINS/100 SCF	PPMW
Carbon Disulfide	0.0	0.00	0.0
Dimethyl Disulfide	0.0	0.00	0.0
Ethyl Methyl Disulfide	0.0	0.00	0.0
Methyl i-Propyl Disulfide	0.0	0.00	0.0
Diethyl Disulfide	0.0	0.00	0.0
Propyl Methyl Disulfide	0.0	0.00	0.0
Methyl tert-Butyl Disulfide	0.0	0.00	0.0
Ethyl i-Propyl Disulfide	0.0	0.00	0.0
Methyl sec-Butyl Disulfide	0.0	0.00	0.0
Ethyl Propyl Disulfide+1-Heptanethiol	0.1	0.01	0.8
i-Propyl Disulfide	0.0	0.00	0.0
n-Propyl Disulfide	0.0	0.00	0.0
t-Butyl Disulfide	0.0	0.00	0.0
Diphenyl Disulfide	0.0	0.00	0.0
DISULFIDE TOTALS:	0.1	0.01	0.8

MERCAPTAN GROUP	PPMV	GRAINS/100 SCF	PPMW
Methyl Mercaptan	0.0	0.00	0.0
Ethyl Mercaptan	0.0	0.00	0.0

i-Propyl Mercaptan	0.0	0.00	0.0
n-Propyl Mercaptan	0.0	0.00	0.0
tert-Butyl Mercaptan	0.0	0.00	0.0
sec-Butyl Mercaptan	0.0	0.00	0.0
i-Butyl Mercaptan	0.0	0.00	0.0
n-Butyl Mercaptan	0.0	0.00	0.0
1,5-Pentanedithiol	0.0	0.00	0.0
2 and 3-Methyl-1- Butanethiol+Tetrahydrothiophene	0.0	0.00	0.0
1-Pentanethiol	0.0	0.00	0.0
1,2-Ethanethiol	0.0	0.00	0.0
1-Hexanethiol	0.0	0.00	0.0
Thiophenol	0.0	0.00	0.0
1,4-Butanethiol	0.1	0.01	0.9
1-Octanethiol	0.0	0.00	0.0
1-Nonanethiol	0.0	0.00	0.0
1-Decanethiol	0.0	0.00	0.0
MERCAPTAN TOTALS:	0.1	0.01	0.9

THIOPHENE GROUP	PPMV	GRAINS/100 SCF	PPMW
Thiophene	0.0	0.00	0.0
2-Methylthiophene+3-Methylthiophene	0.0	0.00	0.0
2-Ethyl Thiophene	0.0	0.00	0.0
2-Bromothiophene	0.0	0.00	0.0
2-Propylthiophene	0.0	0.00	0.0
2-Butylthiophene	0.0	0.00	0.0
3-Butylthiophene	0.0	0.00	0.0
Benzothiophene	0.0	0.00	0.0
2-Methylbenzothiophene	0.0	0.00	0.0
THIOPHENE TOTALS:	0.0	0.00	0.0

OTHER SULFUR GROUP	PPMV	GRAINS/100 SCF	PPMW
sulfur dioxide	0.0	0.00	0.0
Unidentified Sulfur	0.0	0.00	0.0
OTHER SULFUR TOTALS:	0.0	0.00	0.0

Value of "0.0" interpreted as below detectable limit of 0.1 PPM Mol.

Zeeco, Inc.

22151 East 91st Street | Broken Arrow, OK

Document No.: 32339-8120

Client: Saulsbury Industries, Inc.
End User: Lucid Energy, RoadRunner
Project: Thermal Oxidizer

1.0 INTRODUCTION

1.1 Summary of Scope of Supply

The vertical thermal oxidizer is intended to oxidize the combustibles present in the specified waste stream. This is understood to apply only when the system is operated in accordance with the operating conditions stipulated in the design summary and for the waste(s) in Section 1.2.1 below.

The firing rate of the system is controlled by maintaining a specified operating temperature inside of the thermal oxidizer while the waste gas flow rates fluctuate. Efficient destruction of the waste is achieved at a thermal oxidizer operating temperature set point controlled at approximately $1,600\,^{\circ}$ F. The temperature works in conjunction with the thermal oxidizer volume and its associated residence time to achieve the efficient destruction of the waste gas stream.

The thermal oxidizer design includes internal shop installed refractory insulation. The selected materials are designed for a long, trouble-free operating lifetime. The list below summarizes the services and equipment provided in Zeeco's supply.

One (1) Thermal Oxidizer Package Including:

- One (1) Vertical Thermal Oxidizer w/ Integral Stack (10'-0" O.D. x 76'-0" OAH)
- Shop Installed and dried to 500°F Refractory Lining
- One (1) GB Style Burner
- One (1) Fuel Control Rack w/ Local Control Panel
- One (1) Combustion Air Fan w/ Ducting

1.2 Process Description

The vertical forced draft thermal oxidizer is equipped with one (1) forced draft fuel gas GB-Series burner. When the purge cycle is complete, the burner pilot is ignited via electric ignition. Once the burner pilot flame is proven, the main burner flame is ignited. The thermal oxidizer is then allowed to achieve a waste permissive temperature of 1,600 °F, following the recommended field cure procedures and schedule in APPENDIX D. Waste gas is then injected around the burner via the inlet nozzle. This high temperature accompanied with thermal oxidizer volume, known as residence time, destroys the hydrocarbon constituents of the waste gas stream. The flue gases from the thermal oxidizer then exit to atmosphere.

A temperature controller (supplied by others in DCS) monitors the combustion product's temperature through a thermocouple input and modulates both the fuel gas and combustion air flows into the burner. This ensures that sufficient temperature is maintained to provide complete destruction of varying waste gas compositions.

The fuel gas alone is used for start-up, burner stability, and refractory cure. The normal heat release for burner stability on fuel gas is $^{\sim}44.8$ MM BTU/HR. When more heat is needed for refractory curing, or if the heat produced by the combustion of the waste gas during operation is not sufficient to maintain a thermal oxidizer temperature of 1,600 $^{\circ}$ F, a maximum fuel gas heat release of 75 MM BTU/HR is available from the burner.

Zeeco, Inc. 22151 East 91st Street | Broken Arrow, OK Document No.: 32339-8120

Client: Saulsbury Industries, Inc. End User: Lucid Energy, RoadRunner Project: Thermal Oxidizer

Combustion air is supplied by the blower. All air enters the thermal oxidizer through the burner via the combustion air nozzle (N9) located on the thermal oxidizer. The flue gas exits the vent stack at an elevation of 76 feet.

1.2.1 Process Design Conditions for Waste Streams

Acid Gas Stream: Normal Opera	ating Conditio	ns (note 4)	Glycol System OVHD Stream				
Temperature	120	°F	Temperature	120	°F		
Pressure (at Still Column)	3	psig	Pressure (at Still Column)	1	psig		
Flow Rate		MMSCFD	Flow Rate		MMSCFD		
	646,716,7	SCFH		1.175.0	SCFH		
				,,			
Mol. Wt.	41.2074		Mol. Wt.	49.7237			
Mass Flow Rate	74,750	lb/hr	Mass Flow Rate	154.10	lb/hr		
Gross Heating Value (HHV)	38.63	BTU/SCF	Gross Heating Value (HHV)	2,585	BTU/SCF		
Net Heating Value (LHV)	31.29	BTU/SCF	Net Heating Value (LHV)	2397	BTU/SCF		
			- , ,				
Gas Composition			Gas Composition				
Carbon Dioxide	88.74	mol%	Carbon Dioxide	0.17605	mol%		
Hydrogen Sulfide	0.354	mol%	Hydrogen Sulfide	0.00483	mol%		
Nitrogen	0.00940	mol%	Nitrogen	0.00820	mol%		
Methane	2.0149	mol%	Methane	9.80494	mol%		
Ethane	0.3716	mol%	Ethane	14.09657	mol%		
Propane	0.1227	mol%	Propane	18.96782	mol%		
i-Butane	0.0098	mol%	i-Butane	2.56932	mol%		
n-Butane	0.02933	mol%	n-Butane	9.91378	mol%		
i-Pentane	0.00224	mol%	i-Pentane	3.61200	mol%		
n-Pentane	0.00300	mol%	n-Pentane	4.83441	mol%		
Hexane	0.0007231	mol%	Hexane	3.17734	mol%		
Heptane	0.000088	mol%	Heptane	1.60118	mol%		
Cyclopentane	0.000665	mol%	Cyclopentane	1.96478	mol%		
Cyclohexane	0.000743	mol%	Cyclohexane	1.87261	mol%		
Methylcyclohexane	0.000133	mol%	Methylcyclohexane	1.01041	mol%		
2,2,4-Trimethylpentane	0.000006	mol%	2,2,4-Trimethylpentane	0.09706	mol%		
n-Octane	0.0000054	mol%	n-Octane	0.13357	mol%		
Water	8.32375	mol%	Water	12.72109	mol%		
Benzene	0.01188	mol%	Benzene	8.93524	mol%		
Toluene	0.00250	mol%	Toluene	3.43888	mol%		
Ethylbenzene	0.00026	mol%	Ethylbenzene	0.61876	mol%		
p-Xylene	0.00000	mol%	m-Xylene	0.00000	mol%		
o-Xylene	0.00018	mol%	o-Xylene	0.43941	mol%		
-			-				
Location:							
Site Elevation	3070	FASL					
Max Ambient	105	F					
Min Ambient	0	F					
Wind Speed	100	mph					
Notes:							
Above information is applicable to the request for quote for a Thermal Oxidizer.							
Unit to achieve best destruction efficiency possible, 99% minimum if possible							

- 3. Unit to be designed with two separate connections; one connection to be designated for the amine acid gas stream and one connection to be designated for the glycol system OVHD stream
- 4. Amine Acid Gas Stream is the amine OVHD gas combined with the Amine Flash Gas, to increase the heating value
- 5. Fuel gas is avaliable
- 6. Excess capacity of 10% requested

Zeeco has considered that the Amine Flash Gas and Amine OVHD Gas will be introduced to the unit on separate connections. While the above composition does not cause a combustion instability problem, injecting the Flash Gas and OVHD Gas together can cause combustion instability during start-up or process upset conditions, when the heating value fluctuates. We will be happy to discuss this point in additional detail if necessary. Please contact us.

Zeeco, Inc. Client: Saulsbury Industries, Inc. 22151 East 91st Street | Broken Arrow, OK End User: Lucid Energy, RoadRunner Document No.: 32339-8120

1.2.2 System Performance @ 1600°F

Stack Emission	Expected Performance
Destruction Efficiency	> 99.9% of all Hydrocarbons
NOx, ppm _{vd} @ 3% O2	50
CO, ppm _{vd} @ 3% O2	50

Note: These values are understood to apply only when the system is operated in accordance with the above operating conditions and waste(s) stipulated in section 1.2.1 above, and design temperature.

1.2.3 Combustion Air Performance

Reference AirPro Fan vendor literature in APPENDIX G for combustion air blower performance curve information.

Project: Thermal Oxidizer

1.2.4 Burner Performance

Reference the burner capacity curve (32339-G009A-001) in APPENDIX D for burner performance information.

1.3 **Equipment Description**

The forced draft thermal oxidizer system is described below.

1.3.1 Burner (Reference Zeeco Drawing 32339-G006A-001)

The forced draft burner assembly consists of one (1) GB Series gas burner. The burner is complete with the following features:

- One (1) GB Series (75 MM BTU/HR) forced draft burner with 10:1 fuel gas turndown.
- AR/GS-1 HEI electric spark ignited pilot assembly (85,000 BTU/HR Intermittent Pilot) NOTE: During normal operation, the purge air to cool the pilot must remain on even when pilot is not in operation.
- ➤ One (1) 42-3/4" fabricated plate flange burner mounting connection.
- ➤ One (1) 4" 150# RFWN fuel gas connection.
- ➤ One (1) 2" 150# RFWN glycol vent connection.
- ➤ One (1) 1-1/2" 150# RFWN pilot mounting connection.
- > One (1) 2" NPS sight port assembly with purge connection.
- > Two (2) 2" FNPT swivel scanner mount assemblies with purge connection.
- ➤ One (1) 1-1/2" 150# RFWN drain connection w/ blind.
- A-36 carbon steel construction.
- ➤ 60% Al₂O₃ burner tile, shipped in eight (8) loose segments.
- Paint per Zeeco document 32339-4030 (See APPENDIX E).

1.3.2 Thermal Oxidizer (Reference Zeeco Drawing 32339-G064A-001)

The thermal oxidizer design is a vertically fired unit supported by legs, and is designed to operate at 1600 °F. The thermal oxidizer is designed and furnished with the following companion features for the Zeeco burner design:

- Nominal 10'-0" O.D. integral stack x 76'-0" overall height.
- > One (1) 42-3/4" fabricated plate flange burner mounting connection
- ➤ One (1) 30" 150# RFWN Amine waste gas connection.

Zeeco, Inc.

22151 East 91st Street | Broken Arrow, OK

Document No.: 32339-8120

Client: Saulsbury Industries, Inc.
End User: Lucid Energy, RoadRunner
Project: Thermal Oxidizer

- ➤ One (1) 40" fabricated plate flange combustion air connection.
- > Two (2) 1-1/2" RFWN thermocouple connections.
- > Two (2) 4" RFWN sample connections w/ blind.
- \triangleright One (1) 4" RFWN O₂ analyzer connection.
- ➤ One (1) 4" sight port connection w/ purge and blast gate.
- > Two (2) 2" RFWN spare scanner connections w/ blind.
- ➤ One (1) 1-1/2" RFWN drain connection w/ blind.
- One (1) 36" fabricated plate flange manway w/ davit.
- ➤ A-36 carbon steel shell with 1/8" corrosion allowance.
- > Two (2) lifting trunnions for use with spreader beam and tailing lug.
- ➤ One (1) lot of ladders & platforms consisting of two (2) service platforms and one (1) step off platform. Ladders & platforms are trial fit in the shop, then shipped loose to prevent damage. All safety gates are the same size and interchangeable.
- Shop fit stack strakes (shipped loose to prevent damage)
- > Shop installed castable refractory lining dried out to 500 °F.
- One (1) lot of rainshield material (shipped loose to prevent damage)
- One (1) 304SS leg mounted grounding lug.
- Paint per Zeeco document 32339-4030 (See APPENDIX E).

1.3.3 Refractory Lining (Reference Zeeco Drawing 32339-R064A-001)

The refractory supplied includes insulating castable and medium weight castable. The castable refractory is held in place using 310 stainless steel anchors located on 9" centers. Refractory anchors and castable are shop installed and dried to 500°F.

Thermal Oxidizer Floor

4" thick 3000 °F, medium weight castable, backed with 2" thick 2300 °F light weight insulating castable with 310 SS Hanlock HL-201-4 (or equal) anchors on 9" centers.

Combustion Zone (First ~ 10' of Thermal Oxidizer Vessel)

4" thick 3000 °F, medium weight castable, backed with 2" thick 2300 °F light weight insulating castable with 310 SS Hanlock HL-201-4 (or equal) 3" tall anchors on 9" centers.

Mixing Zone (Final ~ 51'-9" of Thermal Oxidizer Vessel)

4" thick 2300 °F, light weight insulating castable, with 310 SS Hanlock HL-208-7 (or equal) anchors on 8" centers.

Additional details may be seen in the general arrangement drawings included in APPENDIX D.

1.3.4 Instrumentation & Controls

The Zeeco supplied Control System includes all field-mounted instrumentation and valves, along with controls and rack mounted piping for the burner management system (BMS). Interconnecting conduit, wiring, tubing, and piping between the rack and the Thermal Oxidizer is supplied and field installed by others. For more information, please see Zeeco P&ID drawings 32339-04-11001-001 and 32339-04-11001-002 in APPENDIX D.

Zeeco has supplied a Burner Ignition System, one (1) temperature transmitter (TT-5500), five (5) Pressure Gauges (PI-5501A, -5501B, -5502A, -5503A, -5503B), two (2) Flame Scanners (BE/BSL-5501/5502), two (2) thermocouples (TE-5500 & TE-5504), and the burner controls rack. Refer

Zeeco, Inc.

22151 East 91st Street | Broken Arrow, OK

Document No.: 32339-8120

Client: Saulsbury Industries, Inc.

End User: Lucid Energy, RoadRunner

Project: Thermal Oxidizer

to the Zeeco Shipping List located in APPENDIX F for reference to shipped loose items. The Zeeco supplied instruments and controls (above) are certified to Class I Div. II Group C & D operation.

The P & ID drawing series is included in APPENDIX D (for the Zeeco supplied controls and instruments) to provide detailed information on the instrumentation and mounting. Detailed instrument specification sheets and selected vendors are included in APPENDIX E (documents) and APPENDIX G (vendors).

1.3.5 Combustion Air Blower (Reference AirPro fan drawing in Appendix G)

One (1) Combustion air blower complete with the following features:

- > Designed for 23,238 CFM @ 3.5" w.c.
- ➤ AirPro Model BIHS290, Arrangement 4 Fan Assembly
- > 30 hp., 1760 rpm, 460/60/3 Premium Eff. TEFC Motor
- Silencer w/ bird screen
- > Flanged inlet/outlet connections
- Outlet Flex Connector
- Bolted Access Door
- Drain Connection with plug

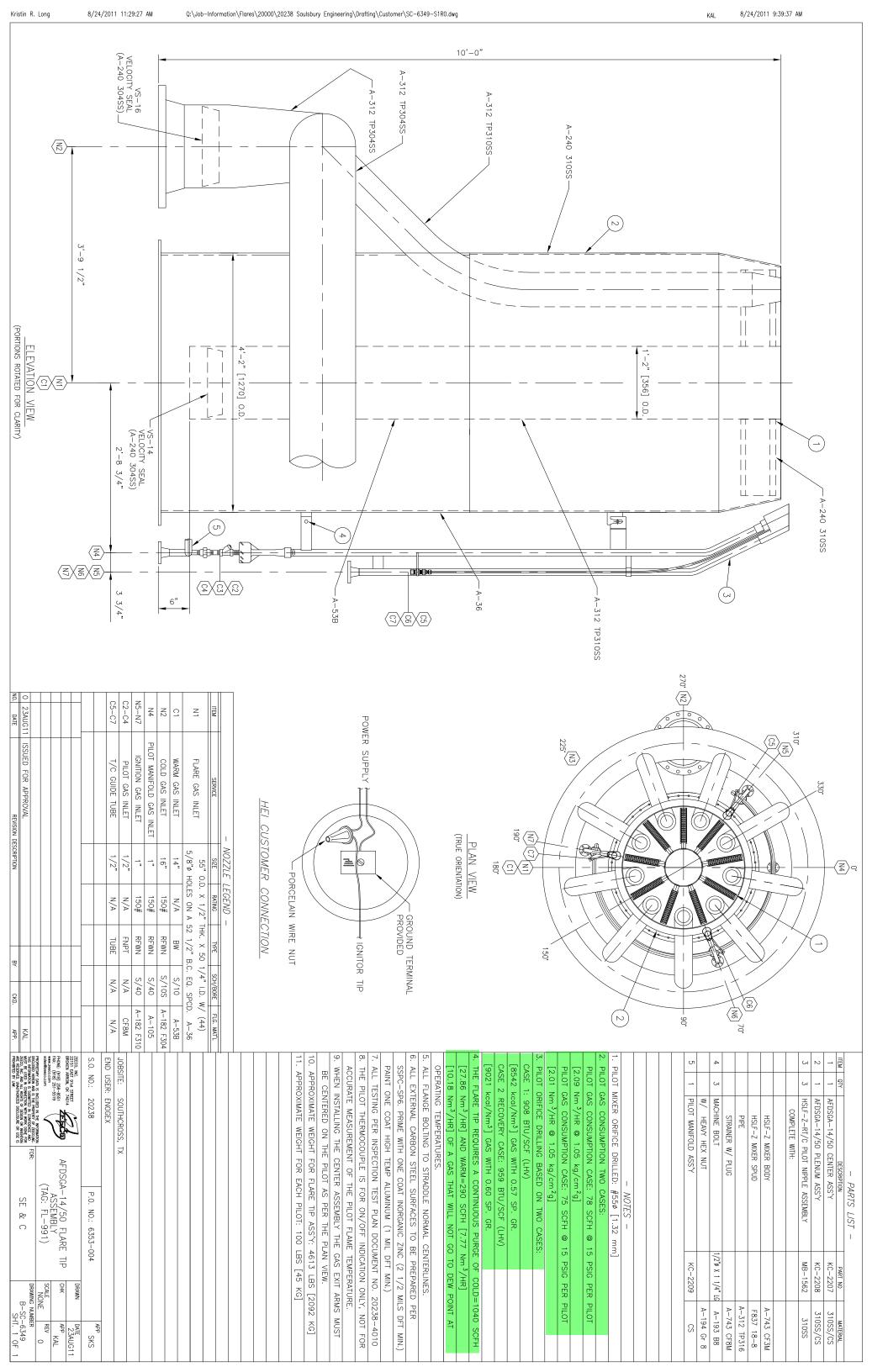
ZEECO, INC.	S.O.20238
Appendix A	
Customer Process Data Sheets	

		PRIMARY FLARE		SAULSBURY
		BY: GLM JOB NO: 6353 PAGE 1	OF 2	
		DATE: 7/28/2011 ITEM NO.: FL-991 CUSTOMER: Southcross Energy		Engineering &
		PLANT: Woodsboro Plant	SAULSBURY	INDUSTRIES Construction
		SERVICE: PRIMARY FLARE		Texas Registered Engineering Firm F-518
		QUANTITY: 1 SIZE: By Mfgr		Work by Saulsbury Engineering: Rev RFQ
	 _R	Design Cases	Cold Flare Riser	Warm Flare Riser
	equest	Flow Rate (Lb/Hr)	392,000	180,000
REV.	Request for Quotation	Controlling Point Sources	PSV-501	PSV-361,161,162,163
	ıotatioı	Molecular Weight	18-19	44
	٦	Temperature, °F at inlet to Riser	-50 to -100	+250
		Maximum Pressure at Inlet Nozzle, PSIG	50	50
DATE	7/29/2011	Smokeless Operation Required (Yes/No)		Yes, Note 3
\vdash		Lower Heating Value, BTU/SCF		
ВҮ	GLM	Composition (Mol % / Weight %)	i !	
ŀ	+	Nirtogen		
APPR.	WST	Carbon Dioxide		
NO.	RFQ	Methane	80-85 Mol%	
FIRM	SE&C	Ethane	 	
	,	Propane	 	Essentially 100%
		Butanes	i 	
		Pentanes	 	
		Hexanes Plus		
		Hydrogen	 	
		Oxygen		
		TOTAL		
		Flare Riser Diameter & Inlet Nozzle Size, Note 2	16"	10"
		Max Wind During Flaring Operation, MPH	30	30

- Notes 1) Elevated, Self-Supported Flare
 - 2) Flare will consist of 2 risers with sizes as shown. As an option, vendor may propose different size with rationale.
 - 3) Smokeless Rate 20% of Warm Flare Rate
 - 4) Features not specifically identified should be similar to the Zeeco SO 17716 or Ref T80793F.
 - 5) Instrument Air available at 85-125 psig.
 - 6) Provide radiation shielding for any JB's, panels, boxes, or other electrical equipment if required to prevent operating temp out of spec during extended release.
 - 7) Supply heavy duty vaneaxial blower air assist, non-overloading two speed TEAO motor and manually adjustable prop.

		PRIMARY FLARE		SAULSBURY
			OF 2	
		DATE: 6/1/2011 ITEM NO.: FL-991 CUSTOMER: Southcross Energy		Engineering &
		PLANT: Woodsboro Plant	SAULSBURY I	NDUSTRIES Construction
		SERVICE: PRIMARY FLARE		Texas Registered Engineering Firm F-518
		QUANTITY: 1 SIZE: By Mfgr		Work by Saulsbury Engineering: Rev RFQ
	Requ	Power Available	460Vac 3 P 60 Hz	120 Vac 1 P 60 Hz
REV	Request for	Control Power	120 Vac 1 P 60 Hz	
<u> </u>	. Quotation	Electric Classification Area	Class 1, Div 2, Grp C,D, Temp T2B	
	ation	Pilot Gas	Pipeline gas, 100 psia	
		Utility Gas	Pipeline Gas, 100 psia	
DATE	7/29/2011	Purge Reduction	Pipeline Gas, 100 psia	
-		Flare Tip	304SS	
В	GLM			
≥	Maximum Allowable Thermal Radiation, BTU/Hr/SqFt		1750 - Note 6	
APPR.	TSW	At Grade, Specify Distance from Flare Base, Ft	100	
NO.	RFQ	Stack Support	Self Supported	
FIRM	SE&C	Structural Design Wind Velocity, MPH	100	
L		Seismic Zone	1	
		Flare Knockout Drum	NO	
		Design Pressure, PSIG / Temperature, F / Corr Allow	50 psig	
		ASME Code Stamp / National Board Registration	NO	
	Ignition Device (Note 8)		FFG	
	Enclosure		Class 1 Div 2, Grp C,D, T2B	
		Ladder Platforms	No	
		Special Instrumentation	Air Assist Flow switch	

NOTES:


- 1) Applicable specifications: NEC NEMA AISC
- 2) ASME B31.3 Piping and Shell, AWS 1.1 Welding, and ASCE 7-05 Structural specs are required.
- 3) Use Rosemount 3051 pressure transmitters for all pressure insrumentation, Rosemount as applicable elsewhere.
- 5) Ignition system: Manual with Automatic relight Pilot status monitors
- 6) No point on the ground is to receive more than 2000 BTU/hr/sq ft under any condition.
- 7) Specify freight charges with proposal, and include drawings, schedules and deliveries.
- 8) FFG = Flame Front Generator type.
- 9) Direct high energy spark ignition HEI with optical pilot monitoring device.

ZEECO, INC.	SO 20238
Appendix B	
Drawings	

ZEECO, INC.

ZEECO Drawing List

Drawing Number	Rev	Description
SC-6349	0	AFDSGA-14/50 Flare Tip Assembly
SC-6355	3	General Arrangement
SC-6356	1	Loading Data
SC-6357	1	Template & Anchor Bolt Drawing
SC-6358 s1-6	2	Riser Detail
SC-6359	0	Piping Arrangement
SC-6360 s1-3	0	Piping Detail
WC-3790 s1-4	0	Control Panel Schematic & Assembly
WC-3791	0	T/C Junction Box Control Panel
WC-3791	0	Schematic & Assembly
WC-3792	0	LMC-3-T/S FFG Ignition Rack Assembly
YA-1491 s1-2	0	P & I Diagram
		-

ULSBURY Corporate Office: 2951 E Interstate 20, Odessa, TX 79766 · P: 432-366-3686 · F: 432-368-0061

10231: Lucid Energy – Road Runner Flare Study

Background

The purpose of the flare and relief valve study performed by Saulsbury Industries was to evaluate the hydraulics in both the main flare header system and the inlet/outlet piping on the individual relief devices. Several different scenarios were considered when evaluating the flare header system hydraulics and flare stack/tip specifications for maximum relieving loads. Some of these scenarios include, but are not limited to:

- Point-source failure of an instrument or controller (i.e. control valve failure into 100% open position)
- External pool fire around an area containing single or multiple pieces of equipment whose relief valves discharge into the flare header. Per API 521 guidelines, a fire circle area of 2500 ft² was used to determine which pieces of equipment could be subjected to a common pool fire.
- Blocked-in flow of single or multiple pieces of rotating equipment, causing the equipment to deadhead and reach the designated relieving pressure.
- Heat exchanger tube rupture
- Process control vents to flare, whose purpose is to provide "pre-relief" on equipment before a relief valve opens during operating pressure upsets.

The flare system consists of both a carbon steel "warm" flare header and a stainless steel "cold" flare header. Each of these individual flare headers are routed to dedicated flare risers on the main flare stack, where they are combined into a single flare-tip at the top of the stack. The stainless steel flare header is designed to collect and handle relief valve discharges from the cryo plant area (routed to/from the UOP-provided V-403 Cold Drain Tank). Some relief valves in the cryo plant area have relieving temperatures far below the 0°F minimum temperature limit for standard carbon steel piping and would otherwise potentially result in significant thermal stress or shock if they are routed to the carbon steel "warm" flare header piping. Only relief valves from the cryo plant equipment will be routed into the stainless steel "cold" flare header. All other relief valves in the plant that are routed to flare and have a relieving temperature comfortably above 0°F are discharged into the warm flare header.

The Aspen Flare System Analyzer v10 software was used to evaluate and confirm flare header hydraulics once the location and arrangement of the plant relief devices was known. The software utilizes isothermal compressible flow models to predict pressure drop throughout the flare system, as well as the Peng-Robinson equation of state to approximate outlet temperatures from relief valve discharges based on the composition of the relieving fluid.

ULSBURY Corporate Office: 2951 E Interstate 20, Odessa, TX 79766 · P: 432-366-3686 · F: 432-368-0061

Assumptions

- 1) Inlet and outlet piping configurations are an approximation based on information available at the time the flare study was performed. However, small changes in pipe routing/distance will not affect the overall operation of the flare system or adversely affect the reported results.
- 2) Residue and flash gas compressor blowdown (manual operation) do not discharge into the flare header, and therefore the flare system analysis excludes this scenario.
- 3) Bypass valves around control valve stations are assumed, via standard plant operating procedures, to be normally closed during plant operation. Inadvertent opening to full 100% trim capacity in these bypass globes valves are not considered.
- 4) Mach number in sub-headers and main header is limited to 90% of sonic velocity. The exception this is when a "sonic break" occurs during a sudden size change at a tie-point between a relief valve discharge lateral into the larger main flare header or sub-header.
- 5) Conventional PSV backpressure limit: 10% of PSV set pressure for non-fire scenario
- 6) Conventional PSV backpressure limit: 21% of PSV set pressure for fire scenario
- 7) Balanced Bellow PSV backpressure limit: 40% of PSV set pressure
- 8) Pilot-Operated PSV backpressure limit: 80% of PSV set pressure
- 9) Relief valve inlet piping pressure drop limit: 3% of PSV set pressure

Flare Headers

The carbon steel "warm" flare header/system at the Lucid Energy Road Runner gas plant consists of the following:

- 12" plant flare header up to the warm flare KO drum with the following sub-headers:
 - o 8" flare header branch in the mol sieve dehydration area rack
 - o 10" flare header branch in refrigeration area rack
 - o 12" flare header branch in amine and TEG regeneration area rack
 - o 12" flare header branch in stabilizer area rack
- 72" OD x 30'-0" S/S warm flare knockout drum, 100 psig @ 350°F design
- 12" flare header from the warm flare KO drum up to the flare stack inlet

The stainless steel "cold" flare header/system at the Lucid Energy RoadRunner gas plant consists of the following:

- 12" plant flare header up to the cold drain tank
- 54" ID x 30'-0" S/S cold drain tank, 150 psig @ 150/-200°F design
- 14" flare header from the cold drain tank to the flare stack inlet

AULSBURY Corporate Office: 2951 E Interstate 20, Odessa, TX 79766 · P: 432-366-3686 · F: 432-368-0061

Flare Stack/Tip Design

The flare tip is an air-assisted, sonic-tip flare that contains two, staged vane-axial blowers that allow the flare to achieve smokeless combustion for all relieving flow rates at 20% or less of the maximum design case outlined in the flare datasheet. The sonic-tip flare is designed to take as much pressure drop at the tip as possible because this not only improves performance, it also increases longevity of the tip itself. The reasoning behind this is that at a higher pressure, and thus higher exit velocity, the flame is more erect and does not lean on the tip and create a hot spot, which over time could cause failure. In addition to improved lifespan, the smokeless performance of the flare is aided by the higher exit velocity – so at full flow rates the flare will likely be 100% smokeless because the air mixes in better at the tip than it would if the flare gas was exiting at lower velocities. By sizing the flare to take the max pressure drop allowable, the flare riser piping is smaller, the tip is smaller and this leads to a more economical flare system.

Each flare riser also contains a velocity seal to reduce the amount of purge gas required to prevent oxygen intrusion into the flare header systems. Furthermore, each dead-leg in the overall plant flare header system contains a purge gas connection at the very end of these headers to ensure that all areas of the flare header maintain a constant sweep and positive pressure.

The flare contains a variable-speed vane axial blower (150 HP) operating on a VFD, where the blower speed ramps up and down depending on the flare gas header flow rate that is present. The blower on the flare is mostly required for lower flowrates where the velocity and operating pressure of the relieving fluids in the flare stack are much lower than the maximum relieving cases by which the tip and flare system were designed for. During these lower flow rate scenarios, much less air is induced by turbulent mixing at the flare tip due to the low pressure drop at the tip, and therefore the blower is needed to help keep the flare smokeless at reduced rates. The blower speed, and thus air flow capacity is controlled via flare header gas pressure vs. air flow control curves provided by Zeeco. These curves relate pressure in the flare gas header to the % Blower VFD that should be applied.

If the event that a simultaneous flaring event should occur in both gas headers (cold and warm flare headers), then the flow rate that is measured in each header is converted into its equivalent %VFD per the charts provided by Zeeco. These percentages are then summed together to give the final applied %VFD.

AULSBURY Corporate Office: 2951 E Interstate 20, Odessa, TX 79766 · P: 432-366-3686 · F: 432-368-0061

Summary of Maximum Flare Relief System Cases

The attached plant flare datasheet summarizes the maximum flow cases by which the flare stack and blower were sized for. The two controlling cases for the cold flare header were wide-open failure of the JT-valve (327,800 lb/hr flow) and an external pool fire around the NGL Surge Tank (200,756 lb/hr flow). Likewise, the controlling case for the warm flare header was an external fire around the Condensate Surge Tank (364,824 lb/hr flow) one of the Amine Contactor level control valves failure (210,253 lb/hr). The initial main flare header hydraulics was evaluated using these estimated relief loads to determine the required flare header diameters.

The process data identified on the flare stack datasheet was an up-front estimate of expected maximum relieving loads at the time of the flare stack purchase. However, the actual maximum relieving cases/loads that were analysed during detailed design were less than or very close to the capacity loads used to design the flare stack, thus confirming the flare stack and blowers contain adequate capacity to handle all relieving cases in the plant.

The following table is a summary of some of the largest relieving loads into the warm and cold flare headers that were determined during detailed design. The results of all cases that were evaluated will be included in the appendix of this report.

<u>System</u>	Relieving Case	Relieving Rate
Warm Flare	FIRE: Mole-Sieve Area	89,656 lb/hr
Warm Flare	FIRE: Amine HMO Heater	109,693 lb/hr
Warm Flare	Fire: Condensate Surge Tank Area	461,914 lb/hr
Warm Flare	Fire: Stabilizer Skid Area	221,816 lb/hr
Warm Flare	OPER: Refrig. Compressor Blocked Flow	221,526 lb/hr
Warm Flare	OPER: LV-1201 (or) LV-1202 Control Failure	210,253 lb/hr
Warm Flare	OPER: Demethanizer Overpressure CV Open	345,000 lb/hr
Cold Flare	OPER: PCV-402B (JT-Valve) Control Failure	327,800 lb/hr
Cold Flare	FIRE: NGL Product Surge Tank	268,265 lb/hr
Cold Flare	FIRE: UOP Process Skids Area	212,722 lb/hr

AULSBURY Corporate Office: 2951 E Interstate 20, Odessa, TX 79766 · P: 432-366-3686 · F: 432-368-0061

The flare header hydraulics of both main flare headers, all flare sub-headers, and individual relief valve discharge piping laterals were evaluated utilizing all expected relief loads to verify that the backpressure induced by a single or multiple relief valves of various types (conventional, balanced, pilot-operated) would not cause backpressure issues on the operation of the relief valves. Based on the reported flare study results, all sections of the warm and cold flare headers contain adequate hydraulic capacity to handle all of the relief loads from the various emergency scenarios that were evaluated. The flare header diameters and relief valve discharge piping laterals are of adequate diameter to prevent backpressure in the system from building up that would either exceed the backpressure limitations set forth by the relief valve type and/or the design/test pressures of the flare knockout drums, the main flare header piping, and the individual relief valve discharge piping laterals.

The maximum backpressure seen in the cold flare header at the Cold Drain Tank, V-403, occurs during a JT-Valve failure scenario (PCV-402B wide-open) that would overpressure the demethanizer tower. The backpressure at the Cold Drain Tank inlet nozzle is 8 psig, which is well below the 150 psig design pressure of this vessel. Likewise, the maximum backpressure seen in the warm flare header at the Warm Flare KO Drum, V-5000, occurs during a fire near the Condensate Surge Tan. The backpressure at the Warm Flare KO Drum inlet nozzle is 86 psig, which is below the 100 psig design pressure of this vessel.

Warm and Cold Flare Knockout Drum Performance

The primary and critical function of the flare knockout drums on the cold and warm flare headers is to separate and remove any incoming liquid streams in the flare header that are present during relieving events or if condensation occurs in the flare header during cold ambient temperatures. The main flare headers and all plant sub-headers contain a slope of 1" per 100 ft to ensure that the main headers remain devoid of liquid inventory that would cause liquid slugs and/or water hammer during high-load relieving events.

Per API 521, flare knockout drums are sized to remove a maximum droplet size of between 300-600 microns from the incoming fluid stream to prevent large quantities of liquid carryover to the flare tack/tip in the form of liquid droplets. Utilizing the terminal liquid velocity and horizontal gas flowing velocity equations outlined in API 521 and the GPSA Engineering databook, the attached results indicate that both the Warm Flare KO Drum, V-5000, and the Cold Drain Tank, V-403, are sufficiently sized to achieve separation of liquid droplets below the 600 micron limit established by API 521.

When the Warm Flare KO Drum contains a liquid level above its secondary high level switch alarm point (67% full), the vessel is still capable of removing 300 micron and larger diameter liquid droplets from the incoming fluid stream. The incoming fluid streams that were analysed for the liquid level vs. droplet removal for the Warm Flare KO Drum were the 364,824 lb/hr relieving flow created during an external fire near the Condensate Surge Tank. When the Cold Drain Tank contains a liquid level above its high level alarm point (67% full), the vessel is still capable of removing 500 micron and larger diameter liquid

droplets from the incoming fluid stream. The incoming fluid stream that was analysed for the liquid level vs. droplet removal for the Warm Flare KO Drum was the 327,800 lb/hr relieving flow created during a JT-valve failure.

Radiation Levels

During evaluation of the maximum design cases for flaring events, Zeeco was instructed to design the height of the flare to be such that a maximum radiation exposure level of 1,750 BTU/hr-ft² would be encountered at a ground-level point 100 feet away from the base of the flare. This specification takes into account a radiation intensity of 250 BTU/hr-ft² for solar radiation, and 1,500 BTU/hr-ft² radiation intensity for combustion at the flare tip during maximum relieving scenarios.

Based on the attached radiation isopleths supplied by Zeeco, there will be no relieving cases where radiation intensity in excess of 1,750 BTU/hr- ft^2 will be encountered at any point further than 100 feet away from the flare stack. Since the nearest piece of equipment to the flare stack is ~200 feet away (flare flow meters and platform), the radiation isopleths indicate that excessive radiation exposure will not be encountered during normal maintenance and routine operator rounds, with exception to inspecting the blower at the base of the flare.

SAULSBURY Corporate Office: 2951 E Interstate 20, Odessa, TX 79766 · P: 432-366-3686 · F: 432-368-0061

Appendix A: Flare Design Basis

FLARE							
BY:	EMG	JOB NO:	10231	PAGE	1	OF	2
DATE:	5/3/2017	ITEM NO.: FL-	5100 FL	ARE			
CUSTOMER:	Lucid	Energy					
DI ANT							

		CUSTOMER: Lucid Energy					
	1	PLANT: Roadrunner SERVICE: Flare	<u> </u>	Texas F	Registered Engineering Firm F-51	8	
		QUANTITY: 1 SIZE: 4' - 10" DIA X 100' -	O" OAH	Work by Saulsbury Engineeri		REV. 0	
		Design Cases	Cold Flare Riser (Case #1)	Cold Flare Riser (Case #2)	Warm Flare Riser (Case #1)	Warm Flare Riser (Case #2)	
Issi	Rec	Flow Rate (Lb/Hr)	392,000	267,780	221,526	355,000	
Issue for Construction	Request for Quotation	Relief Scenario	JT-Valve Failure	Fire - NGL Surge Tank	Refrigeration Comp. Blocked Flow	Condensate Surge Tank & Stabilizer PSVs	
Constr	r Quota	Controlling Point Sources	PSV-501	PSV-404	PSV-161,162,163	PSV-1301 and Others	
uctio	ation	Molecular Weight	17.6446	38.602	44.17	50.46	
		Temperature at Inlet Nozzle, °F	-127	170	140 -190	255	
		Pressure at Inlet Nozzle, PSIG	25	15	10	25	
5/3/2017	3/7/2017	Smokeless Operation Required (Yes/No)	Yes	Yes, Note 3	Yes,	Note 3	
017	17	Lower Heating Value, BTU/SCF	979	2039	2318	2553	
EMG	EMG	Composition (Mol %)					
		Nitrogen	0.656%	0.000%		0.023%	
DLS	DLS	Carbon Dioxide	0.021%	0.077%		2.9830%	
0	≻	Methane	89.660%	0.497%		10.210%	
SI	S	Ethane	8.589%	57.194%	0.25%	15.643%	
		Propane	0.995%	27.995%	99.00%	25.187%	
		i-Butane	0.031%	3.312%	0.75%	6.070%	
		n-Butane	0.043%	7.146%		17.287%	
		i-Pentane	0.002%	1.423%		6.200%	
		n-Pentane	0.001%	1.438%		7.288%	
		Hexane	0.000%	0.510%		5.938%	
		Heptane	0.000%	0.142%		2.254%	
		Benzene	0.000%	0.038%		0.425%	
		Toluene	0.000%	0.009%		0.193%	
		O-Xylene	0.000%	0.001%		0.037%	
		P-Xylene	0.000%	0.000%		0.000%	
		Octanes+	0.000%	0.008%		0.2522%	
		Water	0.000%	0.000%		0.000%	
		Hydrogren Sulfide	0.000045%	0.00032%		0.0098%	
		Flare Riser Diameter & Inlet Nozzle Size, Note 2	By Ve	endor By Vendor		endor	
		Radiation Design Parameters: Temp, F / Wind, MPH		′ 30	90	/ 30	

Notes 1) Elevated, self-supported flare.

- 2) Vendor to propose optimum size of two risers
- 3) Smokeless rate is 20% of the warm flare design rate.
- 4) Flare shall be of one-piece lift/erection design for site installation.
- 5) Instrument air available at 85 to 125 psig.
- 6) Provide radiation shielding for any JB's, panels, boxes, or other electrical equipment if required to prevent operating temperature out of spec during extended release.
- 7) Supply heavy duty vaneaxial blower for air assist with VFD control.
- 8) Pressure at flare base for majority of other cases will be 5 psig or less.

FLARE		
BY: EMG JOB NO: 10231 PAGE 2	OF 2	SAULSBURY INDUSTRIES
DATE: 3/7/2017 ITEM NO.: FL-5100 FLARE		INIDITETRIES
CUSTOMER: Lucid Energy PLANT: Roadrunner		INDUSTRIES
SERVICE: Flare		Texas Registered Engineering Firm F-518
QUANTITY: 1 SIZE: *	Work b	by Saulsbury Engineering: REV. 0
Power Available	460Vac 3 P 60 Hz	
Control Power	120 Vac 1 P 60 Hz	
Electric Classification Area	Class 1, Div 2, Grp C,D, Temp T2B	
Pilot Gas	Pipeline gas, 100 psia	
Utility Gas	Pipeline Gas, 100 psia	
Purge Reduction	Pipeline Gas, 100 psia	
Flare Tip	By Vendor	
	'T	
Maximum Allowable Thermal Radiation, BTU/Hr/SqFt	1750 - Note 6	
At Grade, Specify Distance from Flare Base, Ft	100	
Stack Support	Self Supported	
Structural Design Wind Velocity, MPH	120	
Seismic Zone	1	
Flare Knockout Drum	Supplied by Others	
Design Pressure, PSIG / Temperature, F / MDMT, F	50 / 350 / -150	
ASME Code Stamp / National Board Registration	No	
Ignition Device	HEI	
Enclosure	Class 1 Div 2, Grp C,D, T2B	
Ladder Platforms	No	
Special Instrumentation	Air Assist Flow switch	

Notes:

- 1) Applicable specifications: NEC NEMA AISC
- 2) Specifications: Piping ASME B31.3; Welding AWS 1.1; Structural ASCE 7-05 / ASME STS-1-2011
- 3) Use pressure transmitters for all pressure instrumentation.
- 4) Ignition system: Manual with automatic re-light; provide temperature or optical pilot monitoring
- 5) Ignition device: HEI high energy spark ignition; FFG flame front generator
- 6) General documentation to include general arrangement drawings, detail flare stack drawings, ASME STS-1-2011 analysis and required foundation loads.
- 7) Preferred base design is a base plate, top plate and intermediate gussets.

Process Conditions -- English Units

Client:SaulsburyZeeco Ref.: 2017-01312FL-01Date:16-Mar-17Location:Loving, NMClient Ref.: 0Rev.0

			Mo	ol %		
	Cold Case 1	Cold Case 2	Warm Case 1	Warm Case 2	Case K	Case L
METHANE	89.66	0.50		10.21		
ETHANE	8.59	57.19	0.25	15.64		
PROPANE	1.00	28.00	99.00	25.19		
BUTANE	0.07	10.46	0.75	25.36		
PENTANE	0.00	2.86		13.49		
HEXANE		0.51		5.94		
HEPTANE		0.14		2.25		
OCTANE		0.01		0.25		
NONANE						
DECANE						
DODECANE						
TRIDECANE						
CYCLOPENTANE						
ETHYLENE						
PROPYLENE						
BUTYLENE						
ACETYLENE						
BENZENE		0.04		0.43		
TOLUENE		0.01		0.19		
XYLENE		0.00		0.04		
CARBON MONOXIDE						
CARBON DIOXIDE	0.02	0.08		0.98		
HYDROGEN SULFIDE				0.01		
SULFUR DIOXIDE						
AMMONIA						
AIR						
HYDROGEN						
OXYGEN						
NITROGEN	0.66			0.02		
WATER						
BUTADIENE						
METHANOL						
Total	100	100	100	100		
Mol. Wt.	17.64	38.43	44.17	50.57		
L. H. V. (BTU/SCF):	979	2,030	2,319	2,606		
Temperature (Deg. F):	-127.0	170.0	190.0	255.0		
Avail. Static Pressure (psig):	25.00	15.00	10.00	25.00		
Flow Rate (lbs/hr):	392,000	267,780	221,526	355,000		
Smokeless Rate (lbs/hr):	332,330	201,100	221,020	71,000		

SAULSBURY
Corporate Office: 2951 E Interstate 20, Odessa, TX 79766 · P: 432-366-3686 · F: 432-368-0061

Appendix B: Warm and Cold Flare Relieving Scenario Summary Sheets

FLARE STUDY

JOB NO.:

10231

REVISION:

1

CLIENT: PROJECT:

LUCID ENERGY GROUP ROADRUNNER GAS PLANT DATE:

8/30/2017

LOCATION: EDDY COUNTY, NM

BY: EMG/APL

COLD FLARE RELIEVING SCENARIOS SUMMARY

					FIRE: I	NGL Prod	uct Surge	<u>Tank</u>							
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)	Back Pressure at KO Drum (psig)	Back Pressure at Flare Base (psig)	
PSV-404	Pilot	V-404 NGL Product Surge Tank	400	4" P 6"	268,265	301,251	6.360	6.380	1	200**	89	46	32	8.5	
	FIRE: UOP Process Area														
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)	Back Pressure at KO Drum (psig)	Back Pressure at Flare Base (psig)	
PSV-202A	Pilot	E-202 Gas/Product Exchanger	1100	2" J 3"	10,000	189,012	0.145	1.287	0.005	200**	36	34	20	5	
PSV-202B	Balanced	E-202 Gas/Product Exchanger	1440	1" D 1"	4,888	32,780	0.034	0.110	0.751	200**	35	34	20	5	
PSV-206	Pilot	E-206 Reflux Condenser	1100	1" F 2"	28,804	31,852	0.296	0.307	5.589	200**	100	30	20	5	
PSV-203	Pilot	E-203 Chiller	270	4" N 6"	83,326	157,460	2.153	4.340	0.016	200**	40	34	20	5	
PSV-402	Pilot	V-402 Cold Separator	1100	2" J 3"	85,704	156,018	0.947	1.287	1.208	200**	120	32	20	5	
**Note: Backpress	sure limit set by	design pressure of PSV discharge piping	lateral										_		

				<u>OPER</u>	: PCV-402	B (JT-Valv	e) Contr	ol Valve	<u>Failure</u>					
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)	Back Pressure at KO Drum (psig)	Back Pressure at Flare Base (psig)
PSV-501	Pilot	T-501 Demethanizer	400	6" Q 8"	327,800	349,749	11.500	12.270	0.23	200**	29	20	8	2
**Note: Backpress	sure limit set by	design pressure of PSV discharge piping	lateral											

					<u>OPE</u>	R: E-203 T	ube Rup	tur <u>e</u>						
PSV	PSV Type Equipment Size Required Rate (psig) Size Required Rate (lb/hr) (lb/hr) PSV Capacity (lb/hr) Orifice (in²) Orifice (in²) DP (psi) Back Pressure at Limit (psig) Back Pressure at PSV (psig) Back Pressure at Header (psig) KO Drum (psig) Back Pressure at Header (psig) KO Drum (psig) Flare Base (psig)													
PSV-203	Pilot	E-203 Chiller	270	4" N 6"	88,033	89,267	4.280	4.340	0.047	200**	31	9	5	0.6
**Note: Backpress	ure limit set by	design pressure of PSV discharge piping	lateral											

					<u>OPE</u> I	R: E-202 T	ube Rup	<u>ture</u>						
PSV	PSV Type Equipment Size Required Rate (psig) Size Required Rate (lb/hr) PSV Capacity (lb/hr) PSV (l													
PSV-202A	Pilot	E-202 Gas/Product Exchanger	1100	2" J 3"	87,224	91,044	1.233	1.287	0.574	200**	108	38	1	0.3
****	1	design anassume of DCV/ disabenes minima												

FLARE STUDY

JOB NO.: 10231 REVISION:

CLIENT: LUCID ENERGY GROUP DATE: PROJECT: ROAD RUNNER 200MMSCD CRYO

LOCATION: EDDY COUNTY, NM BY: APL/EMG

1

WARM FLARE RELIEVING SCENARIOS SUMMARY - FIRE CASES

					FIRE: F	Refrigerat	ion Area							
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)	Back Pressure at KO Drum (psig)	Back Pressure at Flare Base (psig)
PSV-462	Pilot	V-462 Refrigerant Economizer	270	1.5" F 2"	6,313	10,486	0.185	0.307	4.175	200**	10	6	4	0.7
PSV-463	Pilot	V-463 Refrigerant Accumulator	325	3" K 4"	44,846	65,617	1.256	1.838	1.728	200**	43	7	4	0.7
**Note: Backpress	sure limit set by	design pressure of PSV discharge piping lateral												

					FIRE:	Mole-Sie	ve Area							
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)	Back Pressure at KO Drum (psig)	Back Pressure at Flare Base (psig)
PSV-441	Conv.	F-441 Inlet Filter Coalescer	1100	1" D 1"	8,628	8,768	0.123	0.125	10.267	231	262	157	13	2.9
PSV-442	Balanced	V-442 Mole Sieve Dehydrator	1095	1.5" G 3"	23,891	29,672	0.405	0.503	4.975	200**	36	29	13	2.9
PSV-443	Balanced	V-443 Mole Sieve Dehydrator	1095	1.5" G 3"	23,891	29,672	0.405	0.503	4.975	200**	37	29	13	2.9
PSV-444	Balanced	V-444 Mole Sieve Dehydrator	1095	1.5" G 3"	23,891	29,672	0.405	0.503	4.975	200**	36	28	13	2.9
PSV-445	Conv.	F-445 Mole Sieve Dust Filter	1100	1" D 1"	3,638	7,656	0.059	0.125	0.255	231	182	168	13	2.9
PSV-446	Conv.	F-446 Mole Sieve Dust Filter	1100	1" D 1"	3,638	7,656	0.059	0.125	0.255	231	183	166	13	2.9
PSV-447	Pilot	V-447 Regen Gas Scrubber	1100	2" J 3"	2,079	84,749	0.032	1.287	10.273	260	43	40	13	2.9
**Note: Backpress	sure limit set by	design pressure of PSV discharge piping lateral					-	-	-		-			

					FIRE: A	mine HM	O Heate	<u>r</u>						
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)		Back Pressure at KO Drum (psig)	Back Pressure at Flare Base (psig)
PSV-0801	Balanced	V-0801 Hot Oil Expansion Tank	150	4" M 6"	109,693	133,496	2.958	3.6	0.039	68	11	7	3	0.6

					FIRE:	Cryo HMC) Heater							
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)		Back Pressure at Flare Base (psig)
PSV-781	Pilot	H-781 HMO Expansion Tank	150	1.5" H 3"	29,658	39,398	0.591	0.785	3.069	150	39	38	1	0.2

					FIRE: Inle	t High Pro	essure A	<u>rea</u>						
PSV	PSV Type Equipment Size Required Rate (psig) Size Required Rate (lb/hr) Required (lb/hr) PSV Capacity (lb/hr) Orifice (in²) Orifice (in²) DP (psi) Back Pressure at Limit (psig) Back Pressure at PSV (psig) Header (psig) Required at Header (psig) Required DP (psi) D													
PSV-1225	Pilot	F-1225 Inlet Filter Coalescer	1100	1" E 2"	21,620	21,645	0.140	0.196	0.318	200**	48	3	1	0.1

**Note: Backpressure limit set by design pressure of PSV discharge piping lateral

FLARE STUDY

JOB NO.: 10231 REVISION:

LOCATION: EDDY COUNTY, NM

CLIENT: LUCID ENERGY GROUP DATE: PROJECT: ROAD RUNNER 200MMSCD CRYO

BY: APL/EMG

1

WARM FLARE RELIEVING SCENARIOS SUMMARY - FIRE CASES

				<u>FIR</u>	E: TEG Tre	ating Hig	h Pressu	<u>re Area</u>						
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)	Back Pressure at KO Drum (psig)	Back Pressure at Flare Base (psig)
PSV-1275	Pilot	F-1275 TEG Filter Coalescer	1100	1" E 2"	12,771	14,034	0.161	0.196	0.464	200**	6	3	1	0.08
**Note: Backpress	ure limit set by	y design pressure of PSV discharge piping lateral												

					FIRE: Cor	ndensate	Surge Ta	<u>nk</u>						
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)	Back Pressure at KO Drum (psig)	Back Pressure at Flare Base (psig)
PSV-9060	Pilot	V-9060 Condensate Surge Tank	325	6" R 8"	364,824	291,076	12.0137	16.000	0.26365	200**	181	183	86	84
PSV-1403	Pilot	V-1403 Off-Spec Condensate Drum	325	2" J 3"	53,194	64,296	1.152	1.287	0.3582	200**	176	183	86	84
PSV-1001A	Pilot	F-1001A Condensate Filter	1100	1" D 2"	11,223	19,219	0.051	0.110	0.12693	200**	184	183	86	84
PSV-1001B	Pilot	F-1001B Condensate Filter	1100	1" D 2"	11,223	19,219	0.051	0.110	0.12693	200**	184	183	86	84
PSV-9501	Pilot	F-9500 Flash Gas Filter Coalescer	1200	1 1/2" F 2"	21,450	33,568	0.2002	0.307	0.792	200**	186	183	86	84
**Note: Backpress	ure limit set by	design pressure of PSV discharge piping lateral	-		-					-				-

461,914

					<u>FIRE</u>	: Stabilize	r Area							•
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)	Back Pressure at KO Drum (psig)	Back Pressure at Flare Base (psig)
PSV-3101	Balanced	F-3101 Filter	325	1" D 2"	5,430	7,905	0.045	0.110	3.587	100	84	78	38	30
PSV-3102	Balanced	F-3102 Filter	325	1" D 2"	5,430	7,905	0.045	0.110	3.528	100	84	78	38	30
PSV-3202	Balanced	T-3202 Deethanizer Tower	325	3" J 4"	27,268	31,730	0.942	1.287	2.180	100	81	78	38	30
PSV-3201A	Balanced	E-3201 Feed/Bottoms Exchanger	325	1 1/2" F 2"	28,345	22,061	0.285	0.307	2.557	100	97	78	38	30
PSV-3201B	Balanced	E-3201 Feed/Bottoms Exchanger	325	1 1/2" F 2"	28,345	14,471	0.218	0.307	3.257	100	85	78	38	30
PSV-3301	Pilot	T-3301 Stabilizer Tower	325	4" L 6"	90,664	58,064	2.612	2.853	0.883	100	78	81	38	30
PSV-3702	Balanced	Stabilizer Feed Separator	325	3" J 4"	36,333	38,586	1.231	1.287	0.699	100	85	78	38	30
**Note: Backpress	sure limit set by	design pressure of PSV discharge piping lateral	•	I.	•						•			

				FIR	E: Stabiliz	er HMO E	xpansio	n Tank						
PSV	PSV Type Equipment Size Required Rate (psig) Size Required Rate (lb/hr) PSV Capacity (lb/hr) Orifice (in²) Orifice (in²) Orifice (in²) DP (psi) Back Pressure at PSV (psig) Back Pressure at PSV (psig) Back Pressure at PSV (psig) Back Pressure at Header (psig) Back Pressure at PSV (psig) Back PS													
PSV-3501	Balanced	V-3501 Hot Oil Expansion Tank	150	2" H 3"	15,617	52,715	0.563	0.785	0.839	100	0.304	-1.316	0.5	0.1
**Note: Backpress	ure limit set by	y design pressure of PSV discharge piping lateral												

FIRE: LPG Surge Tank

FLARE STUDY

10231 JOB NO.:

LOCATION: EDDY COUNTY, NM

CLIENT:

PROJECT:

REVISION:

1

LUCID ENERGY GROUP DATE:

ROAD RUNNER 200MMSCD CRYO

BY:

APL/EMG

WARM FLARE RELIEVING SCENARIOS SUMMARY - FIRE CASES

	PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)		Back Pressure at Flare Base (psig)
	PSV-3801	Pilot	V-3801 LPG Surge Tank	325	4" L 6"	88,783	105,217	2.39	2.853	1.461	100	17	18.2074	6.844	5.31
**	Note: Backpressi	ure limit set by	design pressure of PSV discharge piping later	ral	_		_		_				_		

					FIRE: Fla	sh Gas Co	mpresso	ors .							
PSV	(psig) (lb/hr) (lb/hr) Orifice (in²) DP (psi) Limit (psig) PSV (psig) Header (psig) KO Drum (psig) Flare Base (psig)														
PSV-9300	Pilot	C-9300 Flash Gas Compressor	400	1 1/2" H 3"	22,325	20,808	0.5744	0.785	0.323	100	36	8.9	2.47	2	
PSV-9400	Pilot	C-9400 Flash Gas Compressor	400	1 1/2" H 3"	22,325	20,690	0.5744	0.785	0.326	100	42	8.9	2.47	2	

^{**}Note: Backpressure limit set by design pressure of PSV discharge piping lateral

FLARE STUDY

JOB NO.: 10231

LOCATION: EDDY COUNTY, NM

CLIENT:

PROJECT:

REVISION:

0

LUCID ENERGY GROUP DATE: **ROAD RUNNER 200MMSCD CRYO**

BY:

APL/EMG

WARM FLARE RELIEVING SCENARIOS SUMMARY - OPERATING CASES

					<u>OPE</u>	R: E-207 T	ube Rup	<u>ture</u>						
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)			Back Pressure at Flare Base (psig)
PSV-207	Pilot	E-207 Trim Reboiler	150	4" P 6"	68,964	70,966	6.200	6.380	1.050	120	31	10	7	1.4

				<u>OPE</u>	R: Refrige	ration Cor	mpressoi	Blocked	d Flow						
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)		Back Pressure at Flare Base (psig)	
PSV-161															
PSV-162	Pilot	C-162 Refrigerant Compressor	325	3" L 4"	73,842	79,506	2.552	2.853	1.913	200**	80	60	39	13	
PSV-163	Pilot	C-163 Refrigerant Compressor	325	3" L 4"	73,842	79,506	2.552	2.853	2.086	200**	75	61	39	13	
**Note: Backpress	sure limit set by	y design pressure of PSV discharge piping	lateral												

				OPE	R: LV-120	1/1202 C	ontrol Va	alve Failu	ıre**					
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)		Back Pressure at Flare Base (psig)
PSV-0101	Pilot	V-0101 Amine Flash Tank	150	FB, 6" x 8"	210,253	268,644	16.099	20.570	0.432	120	91	70	48	18
**Note: The sizing	scenario only o	considers one of the Amine Contactor Lev	el Control Valve	s (LV-1201 OR	LV-1202) to fail (open, allowing ga	is blow-by. Acc	ounting for fail	ure of both val	ves would be cor	sidered a double	jeopardy scenario	and therefore invali	id.

					OPER: LV	<u>-2701 Cor</u>	<u>ntrol Val</u>	<u>ve Failur</u>	<u>e</u>					
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)			Back Pressure at Flare Base (psig)
PSV-2101	Pilot	V-2101 Glycol Flash Separator	150	3" J 4"	9,675	14,781	0.936	1.287	0.108	120	2.5	0.8	0.3	0.1

					OPER: R	egen Gas	Heater 1	<u>hermal</u>						
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in²)	_	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)	Back Pressure at KO Drum (psig)	Back Pressure at Flare Base (psig)
PSV-741	Conv.	H-741 Regen Gas Heater	1095	1" D 1"	6,000	6,637	0.113	0.125	5.321	110	112	6.8	0.1	0.1

			OPER: P	V-481 Cd	ntrol Val	ve Failure	(Fuel Ga	as Scrubl	er Over	pressure)				
PSV	Set Pressure Required Rate PSV Canacity Required Installed Inlet Pining Rack Pressure at Back Pressure at Ba													
PSV-481	Balanced	V-481 Fuel Gas Scrubber	265	1.5" D 3"	1,062	2,081	0.056	0.110	0.159	132	1	0.1	0.1	0.1

FLARE STUDY

JOB NO.: 10231 REVISION:

CLIENT: LUCID ENERGY GROUP DATE: PROJECT: ROAD RUNNER 200MMSCD CRYO

LOCATION: EDDY COUNTY, NM BY: APL/EMG

0

WARM FLARE RELIEVING SCENARIOS SUMMARY - OPERATING CASES

					<u>OPE</u> F	R: A-361 B	ay Shuto	lown						
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)		Back Pressure at Flare Base (psig)
1" Gate Valves	N/A	A-361 Refrigerant Condenser	230	1" GV	355	N/A	N/A	N/A	1.459	210	114	0.1	0.1	0.1

OPER: V-9060 OH Blocked														
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)	PSV Capacity (lb/hr)	Required Orifice (in ²)	Installed Orifice (in ²)	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)		Back Pressure at Flare Base (psig)
PV-9060B	N/A	V-9060 Condensate Surge Tank	275	3" bv	355	N/A	N/A	N/A	0.018	210	114	0.1	0.1	0.1

OPER: Flash Gas Compressors Blocked Flow (Control Failure)														
PSV	PSV Type	Equipment	Set Pressure (psig)	Size	Required Rate (lb/hr)		Required Orifice (in ²)	_	Inlet Piping DP (psi)	Back Pressure Limit (psig)	Back Pressure at PSV (psig)	Back Pressure at Header (psig)		Back Pressure at Flare Base (psig)
PSV-9301	Pilot	Flash Gas Compressors Header	400	3" K 4"	54,205	31,353	1.546	1.828	0.052	320	51	39.2	15.7	4.5

SAULSBURY Corporate Office: 2951 E Interstate 20, Odessa, TX 79766 · P: 432-366-3686 · F: 432-368-0061

Appendix C: Warm and Cold Flare Knockout Drum Sizing Sheets

Unit OPER: LV-1201 Control Failure

Unit		OPER: LV-	1201 Control	Failure				
Basis	Highest	Individual F	low Plus	0%	Overdesign			
Flow Rates		Gas Oil Water Total Liq	110 1000 1000 2000	mmscfd bpd bpd bpd	Vessel ID Vessel S/S	72 30.000	Inch Ft	
Operating Pressure Gas Compressibility Gas MW Gas Temperature			48 0.808 23.0017 90	psig F				
Bulk Liquid Retention Surge Capacity (NLL Oil SpGr			20 0% 1.024	Minutes of Design Liquid Ca	pacity including	Overdesign	1	
Liquid Volume (Perce Vessel Crossectional Available Crossection	Area		67% 28.274 9.331	SqFt SqFt	Liquid Flow Bulk Liquid V Bulk Liquid V		58.3 1166.7 156.0	GPM Gallons CuFt
Gas Density Gas Flow Gas ACFS			0.302 277798 255.269	Lb/CuFt Lb/Hr Ft3/Sec at TP	Minimum Liqu Surge Area R		5.198 0.000	SqFt SqFt
Droplet Size Gas Viscosity		300 0.0009843 0.0134	Micron ft cP					
<u>Drag Coefficient</u> "X" Axis on Fig 5-19 C From Chart, Drag Coe Drop Terminal Velocit	ef, C	9.700 2.00 2.0998	ft/s	**Figure 5-19 to det **Eq. 7-1 GPSA	ermine droplet d	rag coeffici	ent	
Distance for Droplet to Time for Droplet to Fa		23.76 0.94	Inches Seconds					
Gas Horizontal Veloci Horiz. Distance for Ga Time for Gas to Trave	as Travel	9.03 28.00 3.10	ft/s ft Seconds	**Seam to seam len **This number must fall from mist elim before reaching th	be GREATER 1 inator" value so	ΓΗΑΝ "time gas can fall	l into liquio	d phase

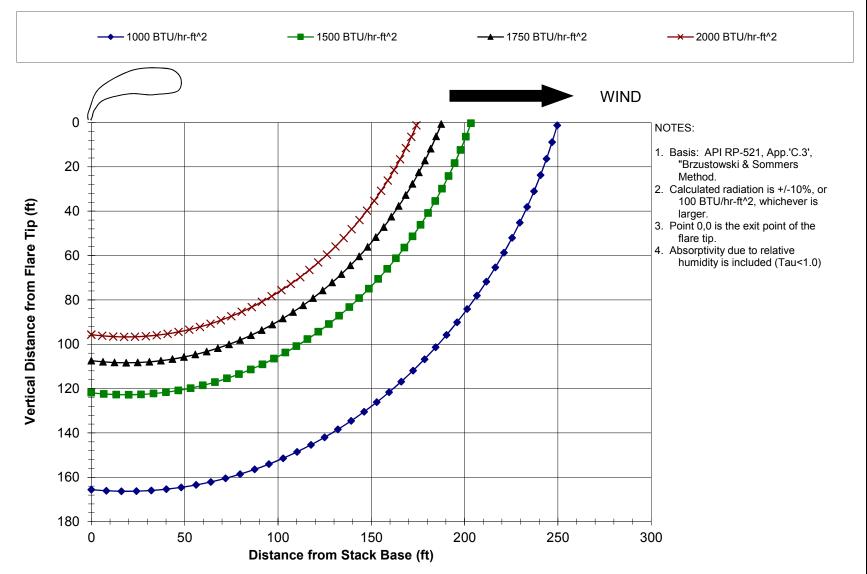
If the Horizontal Time Exceeds Vertical Time, Design is met or exceeded.

Unit OPER: PCV-402B JT-Valve Failure

Basis	Highest Individ	lual Flow Plus	3	0%	Overdesign	Overdesign					
Flow Rates	C	as 101. vil 16 vter (I Liq 16	16 bpd bpd	scfd	Vessel ID Vessel S/S	54 30.000	Inch Ft				
Operating Pressure Gas Compressibility Gas MW Gas Temperature		3 0.8 18. -8	08 16								
Bulk Liquid Retention Surge Capacity (NLL t Oil SpGr	o HLL)	24 0° 0.5	% of D		pacity including	Overdesign					
Liquid Volume (Percer Vessel Crossectional Available Crossectional	Area	63 15.9 5.8	904 SqF		Liquid Flow Bulk Liquid V Bulk Liquid V		47.1 1140.6 152.5	GPM Gallons CuFt			
Gas Density Gas Flow Gas ACFS		0.2 202 214.	661 Lb/H		Minimum Liq Surge Area F		5.082 0.000	SqFt SqFt			
Droplet Size Gas Viscosity		00 Micron 9843 ft 12 cP									
Drag Coefficient "X" Axis on Fig 5-19 G From Chart, Drag Coe Drop Terminal Velocity	f, C 1.	20		gure 5-19 to det ₁ . 7-1 GPSA	ermine droplet o	drag coefficie	ent				
Distance for Droplet to Time for Droplet to Fa		8 Inches 71 Second									
Gas Horizontal Velocit Horiz. Distance for Ga Time for Gas to Trave	s Travel 28	40 ft/s 00 ft 77 Second	<mark>ds</mark> **Th	nis number mus	ngth of vessel mi t be GREATER inator" value so	THAN "time					

before reaching the end of the vessel where gas outlet nozzle is located

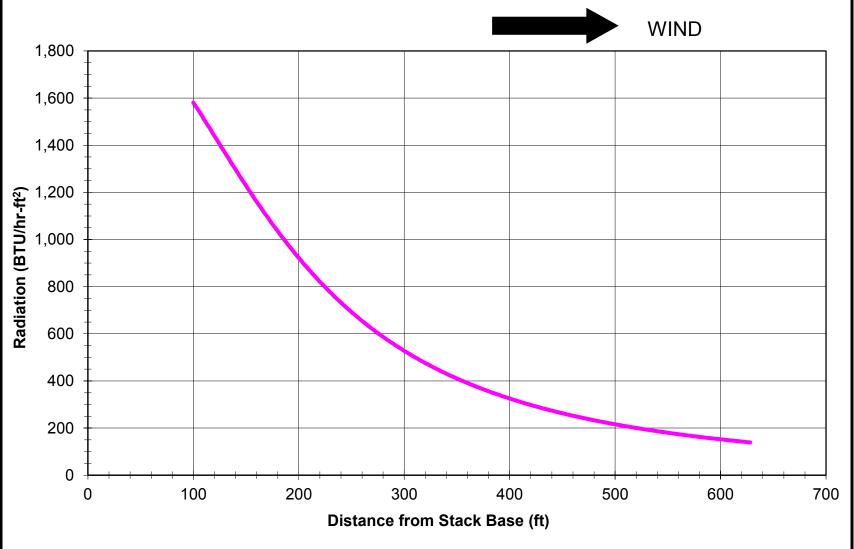
If the Horizontal Time Exceeds Vertical Time, Design is met or exceeded.


SAULSBURY Corporate Office: 2951 E Interstate 20, Odessa, TX 79766 · P: 432-366-3686 · F: 432-368-0061

Appendix D: Flare Radiation Isopleths

Zeeco Ref: SO 31927 Rev. 1 Flare Radiation Isopleths

Solar Radiation Included = 0 BTU/hr-ft2; Wind Speed = 30 ft/s; Rel. Humidity = 85% Flare Tag No. = FL-5100; Operating Case = Cold Case 1



Zeeco Ref: SO 31927 Rev. 1 Radiation At Grade Versus Distance From Stack Base

Stack Height = 100 ft; Relative Humidity = 85%

Solar Radiation Included = 0 BTU/hr-ft^2; Wind Speed = 30 ft/s

Flare Tag No. = FL-5100; Operating Case = Cold Case 1

SAULSBURY Corporate Office: 2951 E Interstate 20, Odessa, TX 79766 · P: 432-366-3686 · F: 432-368-0061

Appendix E: Misc. Flare Information

Air Assisted Flare Tip Specification Sheet

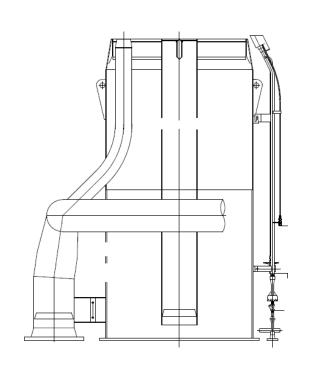
Client:	Saulsbury	Zeeco Ref.:	2017-01312FL-01	Date:	16-Mar-17
Location:	Loving, NM	Client Ref.:	0	Rev.	0

General Information:

Tag No.: FL-5100

Model: AFDSMJ-16-14/58 Type: Air-Assisted

Length: 10'- 0 "
Weight: 5000 lbs
No. of Pilots: 3


Design Case:

Governing Case: Cold Case 1
Molecular weight: 17.6

L. H. V.: 979 BTU/SCF
Temperature: -127 Deg. F
Available Static Pressure: 25.0 psig
Design Flow Rate: 392,000 lbs/hr

Governing Smokeless Case: Warm Case 1

Design Smokeless Rate: 0 lbs/hr
Approximate Exit Velocity: 1133 ft/s
Mach No.: 1.00
Approx. Tip Press. Drop: 29.50 psig

(Typical drawing only)

Construction:

Upper Section:310 SSWindshield:YESLower Section:Carbon SteelFlame retention Ring:310 SS

Lifting Lugs: YES - C.S. Type

Surface Finish (Carbon Steel Surfaces):

Surface Preparation: SSPC-SP6 Primer: Inorganic Zinc

Paint (c. s. surfaces): High Heat Aluminum

Connections:

	Qty.	Size	Туре	Material	
N1 - Cold Gas Inlet:	1	16 "	150# RFWN	304 SS	
N2 - Combustion Air Inlet:	1	58 "	Fab. Plate Flange	Carbon Steel	
N3 - Warm Gas Inlet:	1	14 "	Beveled; Weld	Carbon Steel	
N4 - Pilot Gas Manifold:	1	1 "	150# RFSW	Carbon Steel	

Miscellaneous Notes:

- 1. Includes Integral Purge Reducing Velocity Seal.
- 2. Warm Flare Required Fuel Gas Purge Rate = 290 SCFH.
- 3. Cold Flare Required Fuel Gas Purge Rate = 980 SCFH.

Note: Please refer to process conditions for all flare design conditions.

Self-supported Flare Stack Specification Sheet

Client:	Saulsbury	Zeeco Ref.:	2017-01312FL-01	Date:	16-Mar-17
Location:	Loving, NM	Client Ref.:	0	Rev.:	0

General Information:

Tag No.: FL-5100 Overall Height: 100'- 0 "

Design Criteria:

Wind Design Code:

Seismic Design Code:

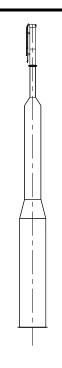
UBC

Importance Factor:

Structural Design Code:

Wind Speed (Structural):

ASCE 7-05


UBC

AlsC

AlsC

Seismic Zone: 1

Warm Min/Max. Design Temp: -20 / 350 Deg. F
Cold Min/Max. Design Temp: -150 / 350 Deg. F
Design Pressure: 50 psig
Riser Corrosion Allow.: 0.063 in.

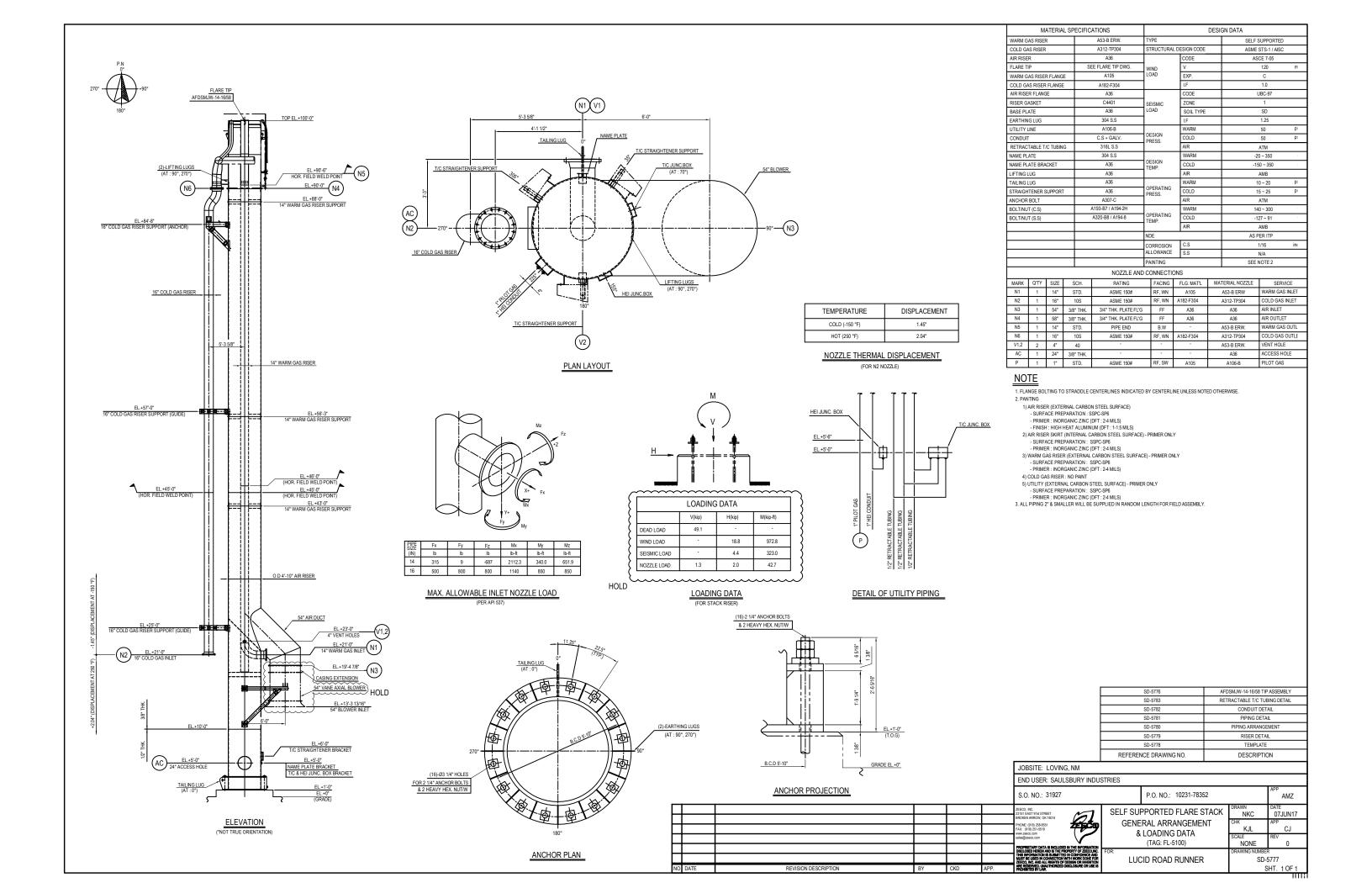
(Typical drawing only)

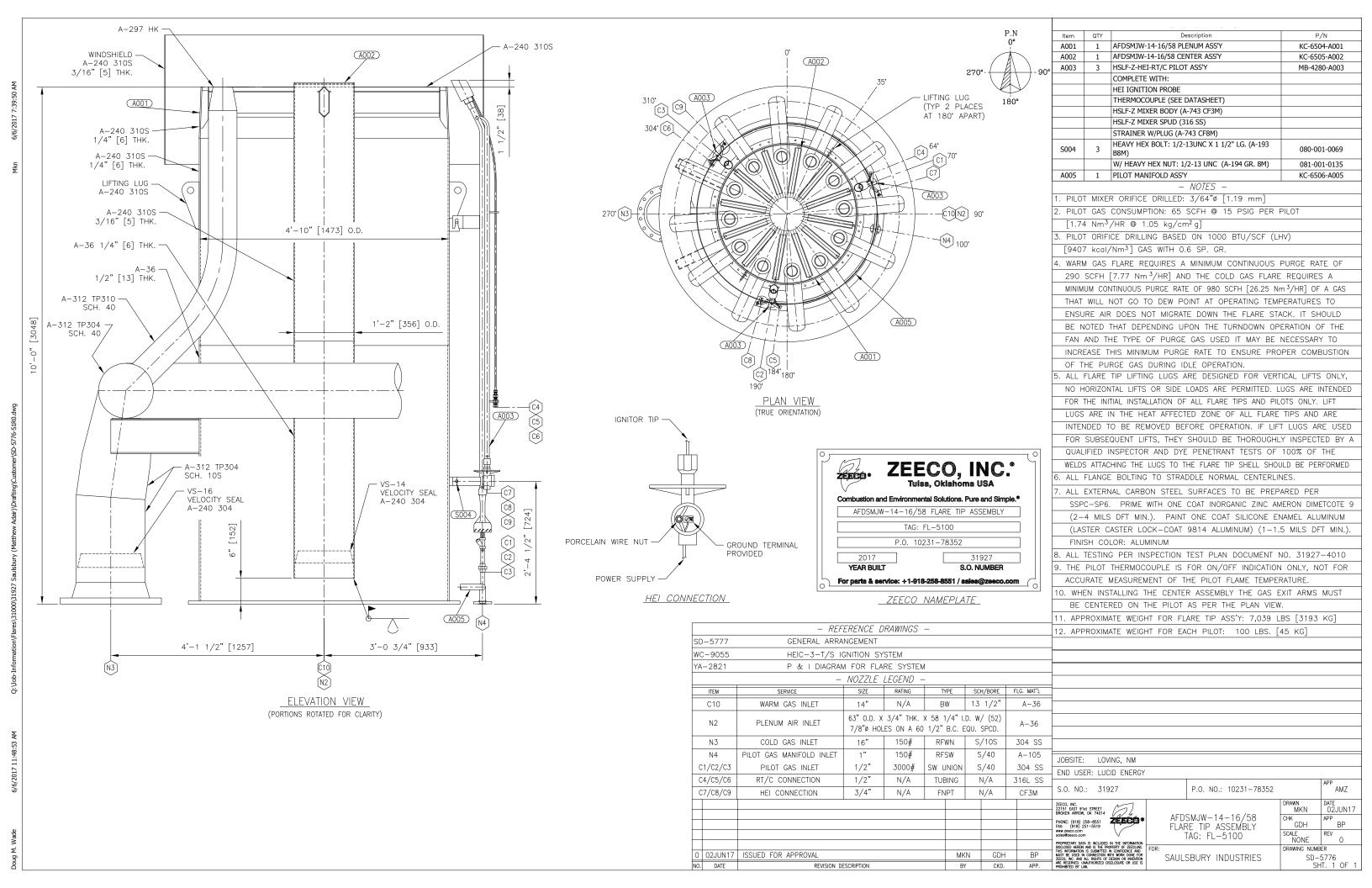
Construction:

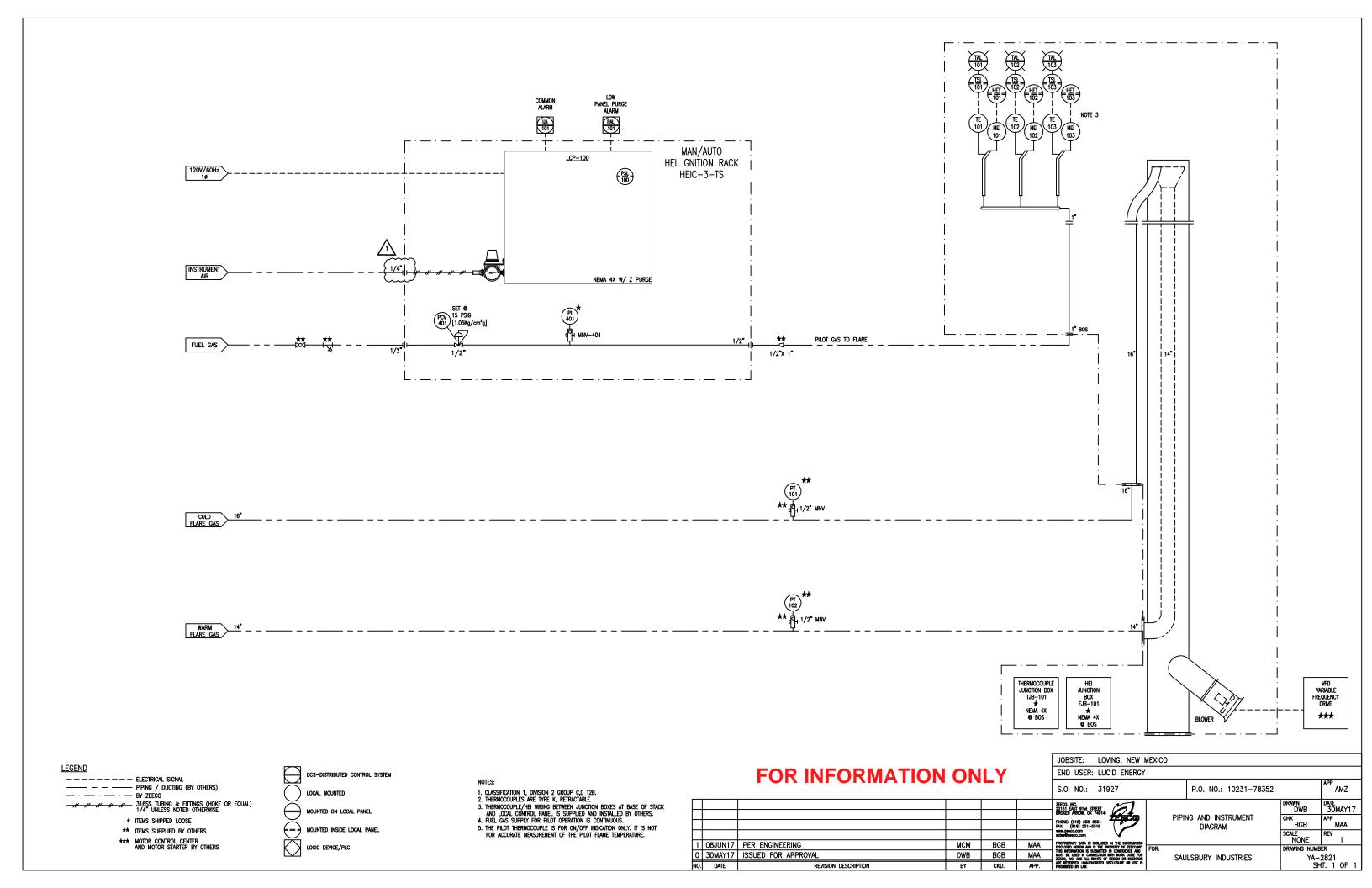
Air Riser Diameter: 58" Ladders & Step-offs: None Cold Riser Diameter: Platform at Tip: None 16" Additional Platforms: Warm Riser Diameter: 14" None Air / Warm Riser Material: CS ACWL: None

Cold Riser Material: 304 SS

Surface Finish (Carbon Steel Surfaces):


Surface Preparation: SSPC-SP-6 Primer: Inorganic Zinc
Int. Coat: None Finish Paint: None


Utility Piping:


Per Attached Utility Piping Scope of Supply

Miscellaneous Notes:

- 1. Vane Axial blower mounted at base of stack
- 2. Blower Power Available: 460 V, 3 Ph, 60 Hz
- 3. Elevation considered for blower sizing: 3,051 feet. Ambient temp considered: 20 / 100 F
- 4. See GA attached for duplicate flare system.

2 Owner: Owner Ref.: H-1054 Targa 3 Purchaser: Targa Purchaser Ref.: **TBD** 4 Manufacturer: Tulsa Heaters Midstream THM Ref.: MJ16-199 Hot Oil Heater Roadrunner Plant 5 Service: Project: 6 Number: Location: Jal, NM 1 7 SHO Duty: MMBTU/ hr SHO Model: SHO5000 55.00 8 9 10 **Guarantees:** NOx 0.0401 Lb/MMBTU 30 11 ppm 12 no quote Lb/MMBTU SOx ppm 13 CO 0.0407 Lb/MMBTU 50 ppm 14 VOC 0.0192 Lb/MMBTU ppm 15 15 UHC 0.007 Lb/MMBTU 15 ppm 16 SPM 0.0133 Lb/MMBTU 15 ppm 17 18 19 Design Case 20 LHV Basis 21 **Heat Release** 63.89 MMBTU/hr 22 **Products of Combustion** 23 MW 24 02 32.00 1,786 Lbm/hr 25 N2 + Ar 28.15 45,262 Lbm/hr 26 CO₂ 44.01 8,217 Lbm/hr 27 H20 18.02 6,961 Lbm/hr 28 29 NOx 46.01 2.56 Lbm/ hr / 30 ppm 30 64.06 0.00 SOx Lbm/ hr / 0 ppm 31 CO 28.01 2.60 Lbm/ hr / 50 ppm 32 VOC 44.10 1.23 Lbm/ hr / 15 ppm 33 UHC 16.04 0.45 Lbm/ hr / 15 ppm 34 0.85 Lbm/ hr / **SPM** 15 ppm 35 62,234 Lbm/ hr 36 Total 37 Flue Gas Exit Temp. °F 38 517 Flue Gas Exit Velocity 39 35.9 Ft/sec Stack Height 40 34.3 ft Stack ID 41 48 in 42 43 44 NOTE: 45 THM emissions guarantees applicable between 50-100% of Design Case combustion conditions w/ 15% excess air. 46 47 THM emissions guarantees applicable for firebox temperatures above 1100°F. 48 49 Emissions above are for Design Case operation with air and fuel in ratio control. Upset conditions, such as operation 50 outside the design, high turndown or start-up are not considered as guaranteed emissions cases. 51 52 53 54 55 56 57 58 59 60 61 62 63 64 revision date description by chk'd appv'd

TULSA HEATERS MIDSTREAM

EMISSIONS PERMIT DATA SHEET AMERICAN ENGINEERING SYSTEM of UNITS

MJ16-199-Emissions-

Pg 1 of 1

SHO = Superior Quality, Flexibility, Dependability & Modularity

USA Applications

4								1
1				0 0				-
2	Owner: Tar			Owner Re		•		Ftnt
3	Purchaser: Tar	rga		Purchase		100		&
4	Manufacturer: Tul		stream, LLC	THM Ref.				Rev
5		t Oil Heater		Project:		ınner Plant		
6	Quantity:	1		Location:	Jal, NM			
7	SHO Duty: 55.			SHO Mod				
8	BMS Release: 70.			BMS Mod				
9	SHOS Flow: 2,	,160 USgpm	@ 196 ft TDH	SHOS.Mo	odel: SHOS2	2220		
10								
11								
12			PROC	ESS DESIGN CONI	DITIONS			
13								
14	Heater Section			Radiant / Convection	Radiant / Convection	Radiant / Convection	Radiant / C	onvection
15	Operating Case			Design				
16	Service			Hot Oil Heater				
17	Heat Absorption ((R/C)	MMBTU/ hr	36.39 / 18.61				
18	Process Fluid			Chemtherm 550				
19	Process Mass Flo		Lb/ hr	885,000				
20	Process Bulk Velo			8 / 8				
21	Process Mass Ve		·	408 / 408		_		
22	Coking Allowance		in			-		
23	Pressure Drop, C			30 / 16				
24	Pressure Drop, F		alc.) psi					
25	Average Heat Flu	ıx (allowable)	BTU/ hr ft2	13,000				
26	Average Heat Flu		BTU/ hr ft2	12,410				
27	Maximum Heat Fl	lux (allowable)	BTU/ hr ft2					
28	Maximum Heat Fl	lux (calc. R/C)	BTU/ hr ft2	22,700 / 26,310				
29	Fouling Factor, In	iternal	hr ft2 °F/ BTU	0.002				
30	Corrosion or Eros	sion Characteris	tics					
31	Max. Film Tempe	rature (allow. / o	calc.) °F	635 / 518				
32								
33	Inlet Conditions:							
34	Temperature		°F	295				
35	Pressure		psig	80				
36	Mass Flow Rate,	Liquid	Lb/ hr	885,000				
37	Mass Flow Rate,	Vapor	Lb/ hr	0				<u></u>
38	Weight Percent, L	Liquid / Vapor	wt%	100% / 0%				<u></u>
39	Density, Liquid / V	/apor	Lb/ ft3	51.10 / 0.00				<u></u>
40	Molecular Weight	t, Liquid / Vapor	Lb/ Lbmole	/ 0.0				
41	Viscosity, Liquid /	' Vapor	ср	2.046 / 0.000				
42	Specific Heat, Liq	uid / Vapor	BTU/ Lb °F	0.5675 / 0.000				
43	Thermal Conduct	ivity, Liq./Vap.	BTU/hr ft °F	0.0702 / 0.000				
44								
45	Outlet Conditions:							
46	Temperature		°F	400		- ·	- ·	
47	Pressure		psig	64			- 1	
48	Mass Flow Rate,		Lb/ hr	885,000			- 1	
49	Mass Flow Rate,		Lb/ hr	0			- 1	
50	Weight Percent, L	Liquid / Vapor	wt%	100% / 0%				
51	Density, Liquid / V		Lb/ ft3	48.82 / 0.00				
52	Molecular Weight		Lb/ Lbmole	/ 0.0				
53	Viscosity, Liquid /	' Vapor	ср	1.001 / 0.000				
54	Specific Heat, Liq	ιuid / Vapor	BTU/ Lb °F	0.618 / 0.000				
55	Thermal Conduct	ivity, Liq./Vap.	BTU/hr ft °F	0.068 / 0.000				<u></u>
56							- '-	
57								
58								
59								
60								
61								
62								
63	Α		Issued with Propo	sal				
64	revision dat	te	description			by	chk'd a	ppv'd
				OA HEATERA				
			<i>TTLIMI</i> TUI	SA HEATEKS	FIRE	D HEATER DA	ATA SHE	=
			λλί	DSTREAM	AMERICA	N ENGINEERING S	SYSTEM of L	JNITS
_	USA Applications		/ / //		M 116 100 L			Pa 1 of 6

- MJ16-199-HTRds-

				0	wner Ref.	: H-1054		THM Re	ef.: MJ16-19	99	
1				COMBII	STION DI	ESIGN CONDI	TION	ıe			Ftnt &
2				COMPO	S HON DI	ESIGN CONDI	HOI	15			م Rev
3	Overall Performance:										_
4	Operating Case				Design						_
5	Service				Hot Oil I						
6 7	Excess Air Calculated Heat Relea	aca (I L I\/)		mol% //MBTU/ hr		.89					_
8	Guaranteed Efficiency		IX	HR%		.1%					_
9	Calculated Efficiency	'		HR%		.1%					
10	Radiation Loss			HR%		0%					
11	Flow Rate, Combustic		np.	Lb/ hr		234					
12	Flue Gas Temp. Leav			°F	1,520	<u>/ 517</u> 667					_
13 14	Flue Gas Mass Veloc	ity		Lb/ sec ft2	0.0						
15	Fuel(s) Data:	Gas 1	Gas 2	Gas 3	Design	Burner Desig	n:				
16			Mol.Wt.	Mol.Wt.	Fuel Oil	OEM		Callidus Technol	ogies, LLC		
17	LHV BTU/ scf					Type		Enhanced IFGR		LII TDA L NO	
18 19	LHV BTU/ Lb P @ Burner psig					Quantities Model No.		1 CUBL-16W-HC-I	H7	ULTRA Low NO Cylindric	
20	T@Burner °F	100				Windbox		ves	12	Cylindric	ai ai
21	MW Lb/ Lbmole					Location		EndWall Center		Horizontally Fire	ec
22	Flow @ design lb/hr	3,041				Pilot Design:					
22 23	Flow @ design scfh	68,172				Type / Mode	el	Self-Inspirating		by O.E.M.	
24	Atomizing Media					Ignition		Electric		uires elec.ign.syste	
24 25 26 27 28	Atom. Media P & T					Heat Releas	se	> 350000	BTU/ hr o	n Gas	1
27	Components:					Burner Perfor	rman	ce.			
28	N wt%					Minimum He			MMBTU/ hr	14.06	_
29 30	S wt%					Design Hea	t Rel	ease	MMBTU/ hr	63.89	_
30	Ash wt%					Maximum H			MMBTU/ hr	70.28	
31	Ni ppm			_		Burner Turn			Max:Min	5.00	_
32 33	Va ppm Na ppm					Volumetric I			BTU/ hr ft3 inH2O	7,743 1.60	
34	Na ppm Fe ppm					Pressure @ Pressure @			inH2O	8.22	_
35	10	-				Combustion			°F	60	_
36	H2 mol%					Flue Gas T			°F	1,320	
37	O2 mol%										
38 39	N2 + Ar mol%					Guaranteed E				2.00/.00/.11	<u> </u>
40	CO mol% CO2 mol%					Basis of Gu		ee	Lb/MMBTU	3.0% O2, dry (LH 0.040 30 ppr	
41	CH4 mol%					SOx Emissi			Lb/MMBTU	no quote	<u>''''</u>
42	C2H6 mol%			-: (CO Emissio			Lb/MMBTU	0.041 50 ppi	m
43	C2H4 mol%					VOC Emiss			Lb/MMBTU	0.019 15 pp	
44	C3H8 mol%			-		UHC Emiss			Lb/MMBTU	0.007 15 ppi	
45	C3H6 mol%			_		SPM10 Emi			Lb/MMBTU	0.013 15 ppi	<u>m</u>
46 47	C4H10 mol% C4H8 mol%					Noise Emiss	SIONS		dBA @ 3ft	00	_
48	C5H12 mol%			_		Net Flame CI	eara	nces:			
49	C5H10 mol%					Est. Flame S		approx. 34.5 ft	L x 6 ft Dian	neter_	
50	C6+ mol%	0.0%				Hor Clearan		3.5 ft NET Tub	e Clearance		
51	H2S ppmv					Vert. Clearar		3.5 ft NET Tub			– ,
52	SO2 mol%			_		Axial Cleara	nce	6.67 ft NET Refr	actory Clearai	nce (to Target hot fa	ace)
53 54	NH3 mol% H2O mol%					Nominal Flan	ne CI	earances:			
55	spare mol%			_		from burner (earances. Vertica	al	Horizontal	
55 56 57	1	3.070				to Tube CL,		ft 28.6		19.07	
57						to Tube CL,	calc	ft 6.50)	6.50	
58	Blower/Fan Peformano		4.0	000		to Refrac., c	alc.	ft <u>n/a</u>	<u>a</u>	41.17	
59 60	Volumetric Flow	acfm		,000 40	•						
61	Rated Power Fan Speed	HF RPM		800	•						
62	Sound Pressure	dBA		85							
63	Area Classification	NEC		ass I, Div. I	I, Groups (C&D					
64											
	444EDIQ444										

AMERICAN ENGINEERING SYSTEM of UNITS TULSA HEATERS MIDSTREAM LLC

FIRED HEATER DATA SHEET MJ16-199-HTRds-

	O	wner Ref.: H-1054	Т	HM Ref.: MJ16-199
				I IWI IZGI WIJ 10-133
1	PRE	ESSURE PARTS D	ESIGN	
3	Coil Design:	RADIANT	SHIELD	CONVECTION
4	Service	Hot Oil Heater	Hot Oil Heater	Hot Oil Heater
5	Design Basis for Tube Temperature	API 530	API 530	API 530
6	Design Basis for Tube Wall Thickness	ASME Sec. VIII-1	ASME Sec. VIII-1	ASME Sec. VIII-1
7		100,000	100,000	100,000
8		250 /	250 /	250 /
9	Design Fluid Temperature °F	400	400	400
10	Design Temperature Allowance °F	25	25	25
11	Design Corrosion Allowance (tubes/fittings) in	0.063 / 0.063	0.063 / 0.063	0.063 / 0.063
12 13	Maximum Tube Temperature (clean) °F	540		
14	Maximum Tube Temperature (fouled) °F	590	485	588
15	Design Tube Temperature °F	615	613	613
16	Inside Film Coefficient BTU/ hr ft2 °F	210	164	164
16 17	Weld Inspection RT or Other	100 of 10%	100 of 10%	100 of 10%
18		None	None	None
18 19 20	Hydrostatic Test Pressure psig	per API	per API	per API
20				
21	Coil Arrangement:	Horizontal	Horizontal	Horizontal
22	Coil Type	Helical	Serpentine	Serpentine
21 22 23 24 25 26 27 28 29 30 31	Tube Material (pipe or tube spec) ASTM	SA106GrB	SA106GrB	SA106GrB
24	11 7 9 1	None 6.625	None 6.625	None 6.625
25				
27	Tube Wall Thickness (aw / mw) in Number of Cells (radiant or convection)	0.280 / 0.245	0.280 / 0.245	0.280 / 0.245
28	Number of Flow Passes (total / cell)	3 / 3		3 / 3
29	Number of Tubes per Row (total / cell)	 	4 / 4	4 / 4
30	Overall Tube (1 turn in radiant) Length ft	40.84	16.04	16.04
31		40.84 / 13.00		14.46
32	Number of Turns or Tubes (total / pass)	41.4 / 13.8	4.0 / 4.0	0.0 / 0.0
33		2,932	100	0
32 33 34 35 36	Number of Ext.Surf. Tubes (total / cell)	0 / 0.0		36 / 36.0
35	Total Exposed Surface ft2	0	0	8,599
36	Tube Spacing (horiz. / tube centers) in			12.00 / 12.00
37	Tube Spacing (horiz. to refractory) in	9.00	6.00	6.00
37 38 39	Coil Fluid Volume USgal	2032	104	935
40	Coil Fittings:	Hot Oil Heater	Hot Oil Heater	Hot Oil Heater
41		SR 90° Elbows		SR 180° U-Bends
42		SA234 WPB	SA234 WPB	SA234 WPB
43	Supplementary Mfg Requirements ASTM	None	None	None
43 44		6.625	6.625	6.625
45	Fitting Wall Thickness (aw / mw) in	0.280 / 0.245		0.280 / 0.245
46 47	Fitting Location internal or external	Internal	External	External
47	Tube Attachment welded or rolled	Welded	Welded	Welded
48				
48 49 50	Coil Terminals:	Outlet		Inlet
50	Terminal Type beveled or flanged			Flanged
51		SA105N		SA105N
52		None / 200#		None
53	Flange Size and Rating NPS/ ASME Flange Type RFWN or RTJ	6" NPS / 300#		6" NPS / 300# RFWN
55	Location	Burner Endwall		Terminal End
56	Location	Darrior Enawaii		TOTTIMICI ETIC
52 53 54 55 56 57 58	Extended Surface:	CONVECTION	CONVECTION	CONVECTION
58	Service	Hot Oil Heater	Hot Oil Heater	Hot Oil Heater
59		No.1 / No.2-3	No.4-5 / No.6-9	1
59 60	Ext. Surface Type seg.fins, solid fins, studs		HF Seg. Fins	
61	Fin/Stud Material	C.S. / C.S.	C.S. / C.S.	
62 63		0.50 / 0.50	0.75 / 1.00	1
63	Fin/Stud Thickness in	0.06 / 0.06	0.06 / 0.06	
64	Fin/Stud Density fin/ in	3.00 / 5.00	5.00 / 5.00	
65				
a a				

AMERICAN ENGINEERING SYSTEM of UNITS TULSA HEATERS MIDSTREAM LLC

FIRED HEATER DATA SHEET MJ16-199-HTRds-

	Oı	wner Ref.: H-1054	Т	HM Ref.: MJ16-199
	PDECOU	DE DADTO DEGICI	N. (· · · · · · · · · · · · · · · · · · ·
2	PRESSUI	RE PARTS DESIGI	N (continuea)	
3	Crossovers:	RADIANT	SHIELD	CONVECTION
4	Type, location / connections	External	/ Flanged	None
5			SA234 WPB	
6	Tube & Fitting OD / Thickness (aw) in	6.625	0.280	
7	Lulat Maurifald/a).			Circula I OC
8	Inlet Manifold(s): type Location			Simple LOG Top - Term. End
10	Design Basis for Manifold Thickness			ASME B31.3
11	Design Conditions (temp./press.) °F/ psig			613 / 250
12	Pipe Material ASTM			SA106GrB
13	Fittings Material ASTM			SA234 WPB
14	Flange Material / Style ASTM			SA105N/ RFWN
15 16	Outside Diameters, each Branch in			16" NPS SCH40 (0.5)
17	Wall Thickness(es); aw or mw in End Types (terminal/ dead) beveled or flanged			Flanged / W.Cap
18	Manifold Terminal Type NPS/ ASME			16" NP\$/ 300# Flg
19	Coil Connection Type extrusion, olet, etc.			Weld-O-Let
20	Coil Terminal Type NPS/ ASME			6" NPS / 300# Flg
21				
22		Simple LOG		
23 24	Location	Burner Endwal		
25	Design Basis for Manifold Thickness Design Conditions (temp./press.) °F/ psig	ASME B31.3 615 / 250		
26		SA106GrB		
27		SA234 WPB		
28		SA105N/ RFWN		
29	Outside Diameters, each Branch in	16" NPS		
30		SCH40 (0.5)		
31		Flanged / W.Cap		
32 33	Manifold Terminal Type NPS/ ASME Coil Connection Type extrusion, olet, etc.	16" NPS/ 300# Flo]	<u> </u>
34		6" NPS / 300# Flg	1	
35	Con reminarrype	<u> </u>		_
36				
37	COIL & M	ANIFOLD SUPPOR	RTS DESIGN	
38 39	Tube Supports:	DADIANT	CHIELD	CONVECTION
40	Service	RADIANT Hot Oil Heater	SHIELD Hot Oil Heater	CONVECTION Hot Oil Heater
41	Location Top, Bottom, Ends		Ends	Ends
42	Support Type casting, tubesht, spring, etc.		Welded Tbsheets	Welded Tbsheets
			TTOIGGG I DOILGGG	Welded 1 barreets
43		SCH40	0.375	0.375
44	Support Materials ASTM	A240 T304	0.375 A36 CS	0.375 A36 CS
44 45	Support Materials ASTM Support Temperatures (calc./ design) ASTM °F/°F	A240 T304 951 / 1,140	0.375 A36 CS 628 / 780	0.375 A36 CS 628 / 780
44 45 46	Support Materials ASTM Support Temperatures (calc./ design) °F / °F TbSht Ferrules Thickness/Materials in/ ASTM	A240 T304 951 / 1,140 /	0.375 A36 CS 628 / 780 14 ga. / 304 SS	0.375 A36 CS 628 / 780 14 ga. / 304 SS
44 45 46 47	Support Materials ASTM Support Temperatures (calc./ design) ASTM °F/°F	A240 T304 951 / 1,140	0.375 A36 CS 628 / 780	0.375 A36 CS 628 / 780
44 45 46 47 48	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types ASTM in/ ASTM in/ ASTM	A240 T304 951 / 1,140 / none	0.375 A36 CS 628 / 780 14 ga. / 304 SS	0.375 A36 CS 628 / 780 14 ga. / 304 SS
44 45 46 47 48 49 50	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types Intermediate Guides & Supports: Location ASTM *F / °F in/ ASTM Intermediate Guides & Supports:	A240 T304 951 / 1,140 /	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section
44 45 46 47 48 49 50 51	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types Intermediate Guides & Supports: Location Guide/ Support Type ASTM in/ ASTM in/ ASTM casting, spring, etc.	A240 T304 951 / 1,140 / none	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section
44 45 46 47 48 49 50 51 52	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types Intermediate Guides & Supports: Location Guide/ Support Type Material ASTM ASTM ASTM	A240 T304 951 / 1,140 / none None	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section
44 45 46 47 48 49 50 51 52 53	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types Intermediate Guides & Supports: Location Guide/ Support Type ASTM in/ ASTM in/ ASTM casting, spring, etc.	A240 T304 951 / 1,140 / none None	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section None	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section
44 45 46 47 48 49 50 51 52 53 54	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types Intermediate Guides & Supports: Location Guide/ Support Type Material Spacing, average ASTM ASTM ASTM Spacing, average	A240 T304 951 / 1,140 / none None	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section None	0.375 A36 CS 628
44 45 46 47 48 49 50 51 52 53 54 55	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types Intermediate Guides & Supports: Location Guide/ Support Type Material Spacing, average Tube Guides: ASTM Top, Bottom, Ends	A240 T304 951 / 1,140 / none None	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section None	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section
44 45 46 47 48 49 50 51 52 53 54 55 56	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types Intermediate Guides & Supports: Location Guide/ Support Type Material Spacing, average ASTM ASTM ASTM Spacing, average	A240 T304 951 / 1,140 / none None	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section None	0.375 A36 CS 628
44 45 46 47 48 49 50 51 52 53 54 55 56 57	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types Intermediate Guides & Supports: Location Guide/ Support Type Material Spacing, average Tube Guides: Material Tube Guides: Material Top, Bottom, Ends Material ASTM Manifold Supports:	None None Outlet Manifold	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section None	0.375 A36 CS 628
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types Intermediate Guides & Supports: Location Guide/ Support Type Material Spacing, average Tube Guides: Material Manifold Supports: Material Manifold Supports: Material ASTM Manifold Supports: Material ASTM ASTM	None None Outlet Manifold A240 T304 951 / 1,140 / none None	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section None	0.375 A36 CS 628
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types Intermediate Guides & Supports: Location Guide/ Support Type Material Spacing, average Tube Guides: Material Manifold Supports: Material Manifold Supports: Material Manifold Supports: Material Material Material ASTM Manifold Supports: Material Material Material ASTM ASTM ASTM ASTM Materials Design & Supply	None Outlet Manifold A240 T304 951	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section None	0.375 A36 CS 628
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types Intermediate Guides & Supports: Location Guide/ Support Type Material Spacing, average Tube Guides: Material Manifold Supports: Material Materials Design & Supply Location ASTM Top, Bottom, Ends ASTM Top, Bottom, Ends ASTM	None Outlet Manifold A36 by THM Burner Endwal	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section None	0.375 A36 CS 628
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types Intermediate Guides & Supports: Location Guide/ Support Type Material Spacing, average Tube Guides: Material Materials Design & Supply Location Support Type Top, Bottom, Ends roller, shoe, spring, etc.	A240 T304 951 / 1,140 / none None None Outlet Manifold A36 by THM Burner Endwal Simple Shelf	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section None	0.375 A36 CS 628
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types Intermediate Guides & Supports: Location Guide/ Support Type Material Spacing, average Tube Guides: Material Manifold Supports: Material Materials Design & Supply Location ASTM Top, Bottom, Ends ASTM Top, Bottom, Ends ASTM	None Outlet Manifold A36 by THM Burner Endwal	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section None	0.375 A36 CS 628
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types Intermediate Guides & Supports: Location Guide/ Support Type Material Spacing, average Tube Guides: Material Materials Design & Supply Location Support Type Top, Bottom, Ends roller, shoe, spring, etc.	A240 T304 951 / 1,140 / none None None Outlet Manifold A36 by THM Burner Endwal Simple Shelf	0.375 A36 CS 628 / 780 14 ga. / 304 SS per refrac. section None	0.375 A36 CS 628
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	Support Materials Support Temperatures (calc./ design) TbSht Ferrules Thickness/Materials Refractory & Anchor Materials & Types Intermediate Guides & Supports: Location Guide/ Support Type Material Spacing, average Tube Guides: Material Materials Design & Supply Location Support Type Top, Bottom, Ends roller, shoe, spring, etc.	A240 T304 951 / 1,140 / none None None Outlet Manifold A36 by THM Burner Endwal Simple Shelf One (1) UNITS	0.375 A36 CS 628	0.375

	Oı	wner Ref.: H-1054	Т	HM Ref.: MJ16-19	99
1	CASING / R	EFRACTORY SYS	TEMS DESIGN		_
2 3		BURNER		SHIELDED	TARGET
4 Radiant Section Design		ENDWALL		SIDEWALLS	ENDWALL
5 Total Refractory Thickness	in	5.0		3.0	5.0
6 Hot Face Temperature (design)		2,000		2,000	2,000
7 Hot Face Temperaure (calculated)		1.520		951	1,520
8 Hot Face Layer		1/ 8# CF Blanket			1/ 8# CF Blanket
9 Back-Up Layer No.1	in/	1/ 8# CF Blanket			1/ 8# CF Blanket
10 Back-Up Layer No.2	in/	3/ 6# CF Blanket		None	3/ 6# CF Blanket
11 Foil Vapor Barrier	in/	None		None	None
12 Castable Reinforcement (SS Needles)	wt%	None		None	None
13 Anchors / Tie Backs:		Pins & Clips		Pins & Clips	Pins & Clips
14 Material		310 S.S.		304 S.S.	310 S.S.
15 Attachment		Welded		Welded	Welded
16 Casing:					
17 Material	in/ ASTM	0.1875 / A36		0.1875 / A36	0.1875 / A36
18 Internal Coating		None		None	None
19 External Temperature, Typical	°F	180		180	180
20 Comments / Clarifications		w/ cfb wraps		w/o cfb wraps	w/ cfb wraps
21		SHOP Installed		SHOP Installed	SHOP Installed
22					
23		SIDEV	VALLS	ENDW	/ALLS
24 Convection Section Design		SHIELD	FINNED	TUBESHEETS	HEADER BOXES
25 Total Refractory Thickness	in	3.0	3.0	3.0	2.0
26 Hot Face Temperature (design)	°F	2,000	2,000	2,200	2,000
27 Hot Face Temperaure (calculated)	°F	1,019	1,019	1,019	739
28 Hot Face Layer	in/	1/8# CF Blanket	1/8# CF Blanket	3/ Sparlite HS	1/8# CF Blanket
29 Back-Up Layer No.1	in/	2/6# CF Blanket	2/6# CF Blanket		1/8# CF Blanket
30 Back-Up Layer No.2	in/	None	None	None	None
31 Foil Vapor Barrier	in/	None	None	None	None
32 Castable Reinforcement (SS Needles)	wt%	None	None	None	None
33 Anchors / Tie Backs:		Pins & Clips	Pins & Clips	Bullhorns	Pins & Clips
34 Material		310 S.S.	304 S.S.	304 S.S.	304 S.S.
35 Attachment		Welded	Welded	Welded	Welded
36 Casing:					
37 Material	in/ ASTM	0.1875 / A36	0.1875 / A36		0.1345 / A36
38 Internal Coating		None	None	None	None
39 External Temperature, Typical	°F	180	180		180
40 Comments / Clarifications		Cleaning/Sootblov			Bolted Assembly
41		SHOP Installed	SHOP Installed	SHOP Installed	SHOP Installed
42					
43			FLUE GAS DUCTS		
Stack & Uptakes Design:		BREECHING	15° TRANSITION		
45 Quantity		One	One	One	
Type / Location		Full L / Conv		Self.Spt/ Grade	
Length / Metal Outside Diameter (top)	ft/ ft		2.02 / n/a	7 / 4.000	
Discharge Elev., minimum/ calculated			n/ a / n/ a		
49 Total Refractory Thickness	in	3.0	0.0	0.0	
Hot Face Temperature (design)	°F	2,000			
Hot Face Temperaure (calculated)		517	517	517	
52 Hot Face Layer		1/8# CF Blanket	None	None	
Back-Up Layer No.1	in/	2/ 6# CF Blanket			
Castable Reinforcement (SS Needles)		None			
Anchors / Tie Backs:		Pins & Clips			
56 Material		304 S.S.			
57 Attachment		Welded			
Casing:	: / A O.T.	0.4075 / 400	0.4075 / 400	0.4075 / 400	
Minimum Thickness/ Materia	in/ ASTM		0.1875 / A36	0.1875 / A36	
60 Corrosion Allowance		None	None	None	
61 Internal Coating		None	None	None	
62 External Temperature, Typical	°F	180	517	517	
63 Comments / Clarifications		SHOP Installed			
64		1			
AMERICAN ENGINEERING S TULSA HEATERS MIDS			FIF MJ16-199-HTRds	RED HEATER DAT s-	A SHEET Page 5

Page 5 of 6

			Owner Re	ef.: H-1054	THM Ref.: MJ16-199
1			MECHANICAL / STF	RUCTURAL DESIGN BASIS	
2	Refractory & Co	ootings F	locian:		
4	Refractory Design		Per Std560: 180°F Avg. Casing Te	mperature @ Ambient Condit	ions of 0 MPH & 80°F
5	Refractory Dryo	out	SHOP dryout = None // FIELD dryout pe		22
6	Coating, Interna		None		
7	Coating, Extern	ıal		te 9 IOZ Silicate - Flat Green on	SP-6
9			Int. Coat: None Top Coat: 1.5-2 PPG Pitt-Th	erm 97-724 Series Air Dry Silicor	ne - Federal Standard 595B #16132 Gray
10					
11					
12	A 11 11 01				"
13	Applicable Stan		(ISO 13705): Fired Heaters for	AISC Specific	cation for Design, Steel for Building:
14 15			(ISO 13704); Calc. of Heater Tube .		Structural Welding Code
16			Chemical Plant and Piping		mls pipe/ fitting spec's noted hereir
17			I, II, VIII, IX; ASME B&PV Code	ASTM refracto	ories per C27, C155, C401 & C612
18	ASME S	Section \	V; Non Destructive Examinatior	NFPA NFPA	70; National Electrical Code
19 20	Wind Design:			Seismic Design:	
21	Spec. or Stand	dard	ASCE 7-10	Spec. or Standard	ASCE 7-10
22	Velocity/ Imp.		120 mph / 1	Risck Cat./Imp. Factor	III / 1.25
23	Site Exposure		"C"	Ss/S1/Soil Class	0.5 / 0.15 / D
21 22 23 24 25 26 27	Physical Design		Nama	Site Design Basis:	0F # AMS!
25 26	Plot Limitations Tube Limitation		None None	Site Elevation Stack Design Temp.	25 ft AMSL 90 °F
27	Firebox Pressu		Positive; approximately +1.0 inH2C		34 ft AG
28 29	Ambient Temp		-20 °F Min/ 60 °F Dsn/ 105 °F Max	Area Classification	Class I, Div. II, Groups C&D
29					
30 31			MA IOD SUBSYS	TEMS & ACCESSORIES	
32			WAJOR SUBS 13	TEMS & ACCESSORIES	
32 33	Major Services	& Subsy	rstems	Major Accessories:	
34 35	Process Desig		INCLUDED in base pricing	Casing/ Tube Seals	12 TubeSox; Radiant & Conv.
35	Mechanical De		INCLUDED in base pricing	Observation Doors	2 4 in Dia. w/ H.T. glass
36 37	Structural Desi Radiant Section	•	INCLUDED in base pricing INCLUDED in base pricing	Observation Doors Access Doors	1 4 in Dia. w/ HT glass on Arch 1 Std 24" x 24"
38	Convection Se		INCLUDED in base pricing	Expansion Joints	None
39 40	Burner Mgmt		INCLUDED in base pricing	Ladders & Platforms	Not Included
40	Burner Piping	_	INCLUDED in base pricing	L&P Coating	N/A
41 42	Forced Draft S	System	INCLUDED in base pricing	_	
43	Casing Penetra	tions		Pressure Part Penetration	s c
44	Fbox Purge/ S		None	Coil TSTC's, Radiant	None
45	CA Temp/Pres	S	None	Coil TSTC's, Convection	
46 47	FG Temperatu	ure	2 1.5"NPS 3000# Coupling	Process TI conn's	3 1.5" NPS 300# RFWN
47	FG Pressure FG Comp. (Sa	ample)	2 1.5"NPS 3000# Coupling2 1.5"NPS 3000# Coupling	Process PI conn's	1 1.5" NPS 300# RFWN
48 49	FG Comp. (Sa FG Sample	arripie)	2 1.5"NPS 3000# Coupling2 4"NPS 150# RFWN's	_ spare spare	
50	O2 Analyzer P	Port	None	spare	
51	_				
52	Dampers	ED 5 1	(blower)	n Duete	Stock -t:-0
54		FD Fan (Note:	(blower) qty = 0 Uptak	e Ducis	Stack qty = 0 Note:
55			damper is inappropriate		Stack Damper (which provides draft
56	Materials f	for force	d draft SHO's where O2		control) is inappropriate for forced
50 51 52 53 54 55 56 57			s provided by the BMS O2		draft SHO's where the combustion
58 59			dule which controls the fan		conditions are controlled real-time
60	Positioner <u> </u> Instruments	(nower)	motor's VFD/ VSD.		via the BMS.
61		Qty.	Type Location	FG T Material	Steam T & P O.E.M. / Ref.
62	Lane 1:	None			
63	Lane 2 :	None			
64				T	
	AME	ERICAN	ENGINEERING SYSTEM of UNITS	FI	RED HEATER DATA SHEET
Ĭ		TULSA	HEATERS MIDSTREAM LLC	MJ16-199-HTR	ds- Page 6 of 6
I					

THOMAS RUSSELL CO.

Tulsa, Oklahoma

JOB NO:

TRJ-250

Southcross Energy

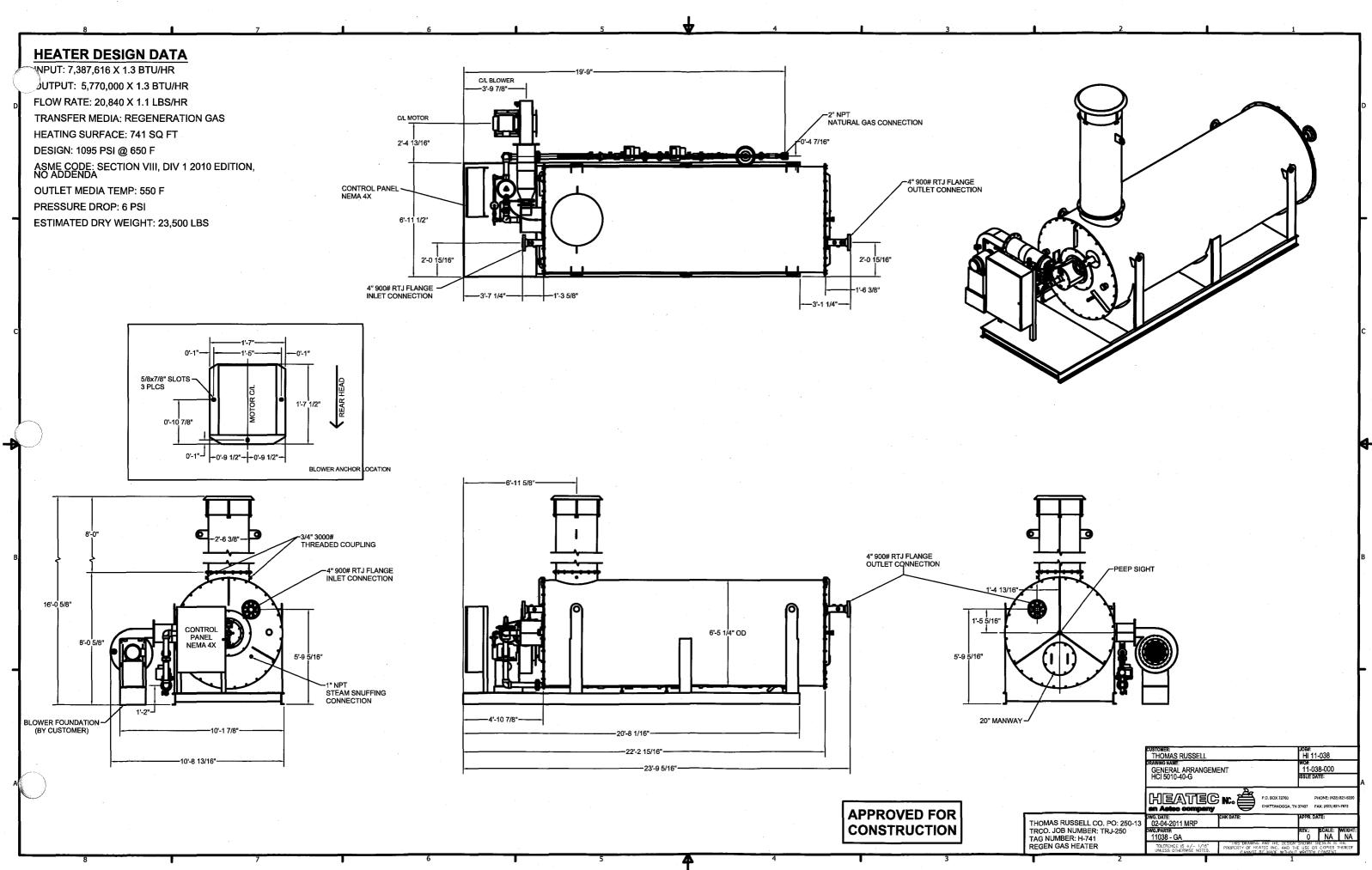
DATE:

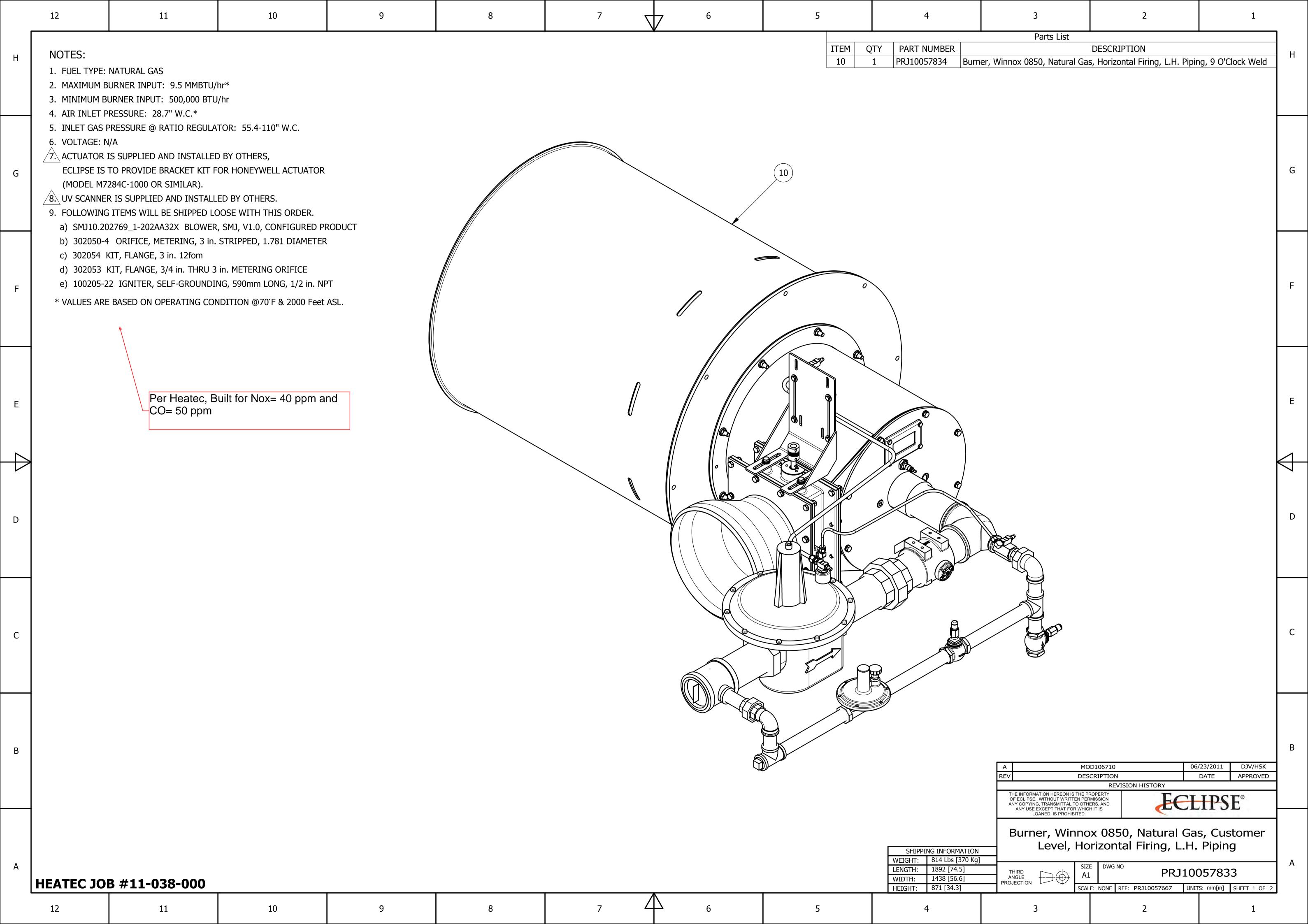
9/21/2010

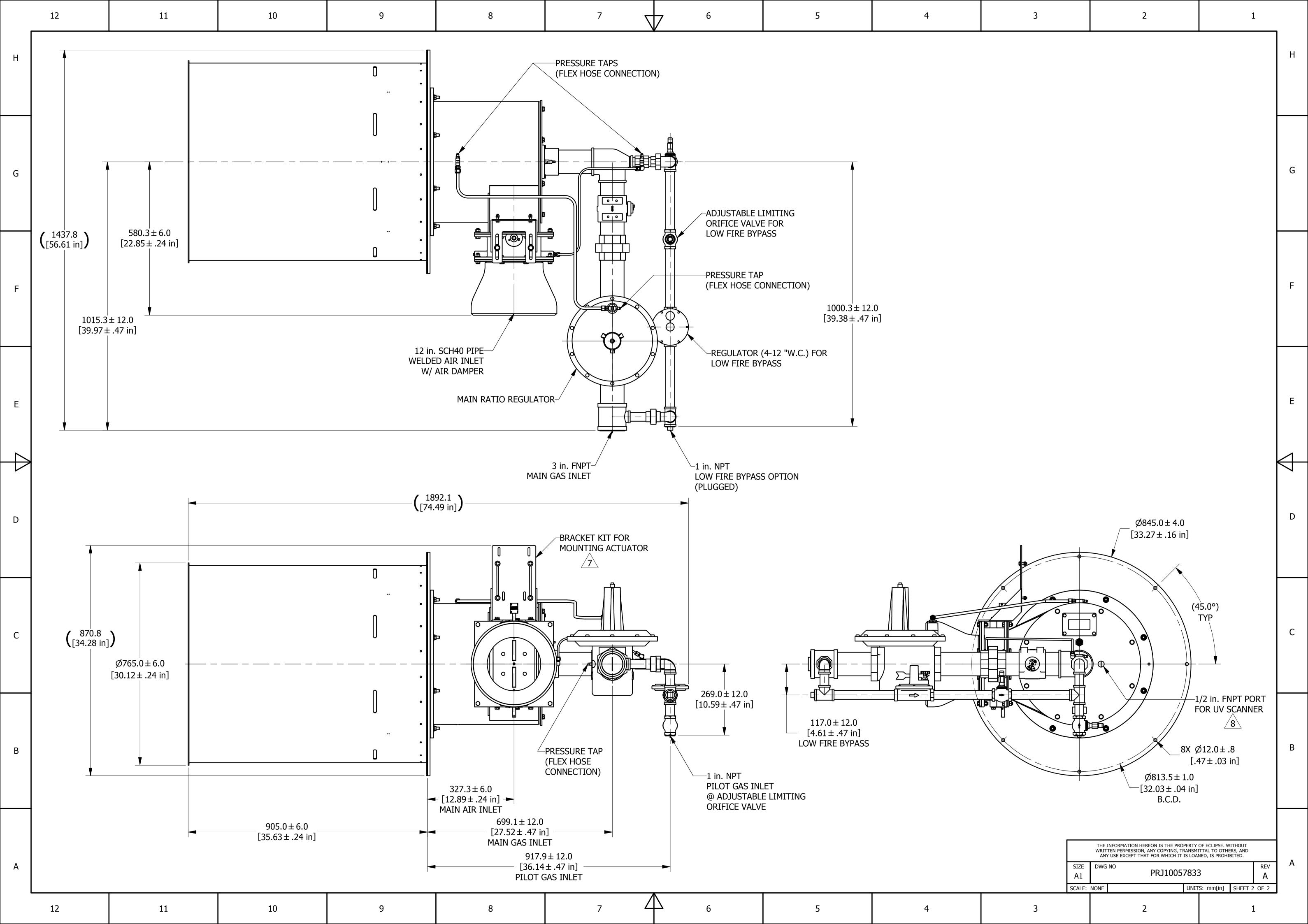
CLIENT:

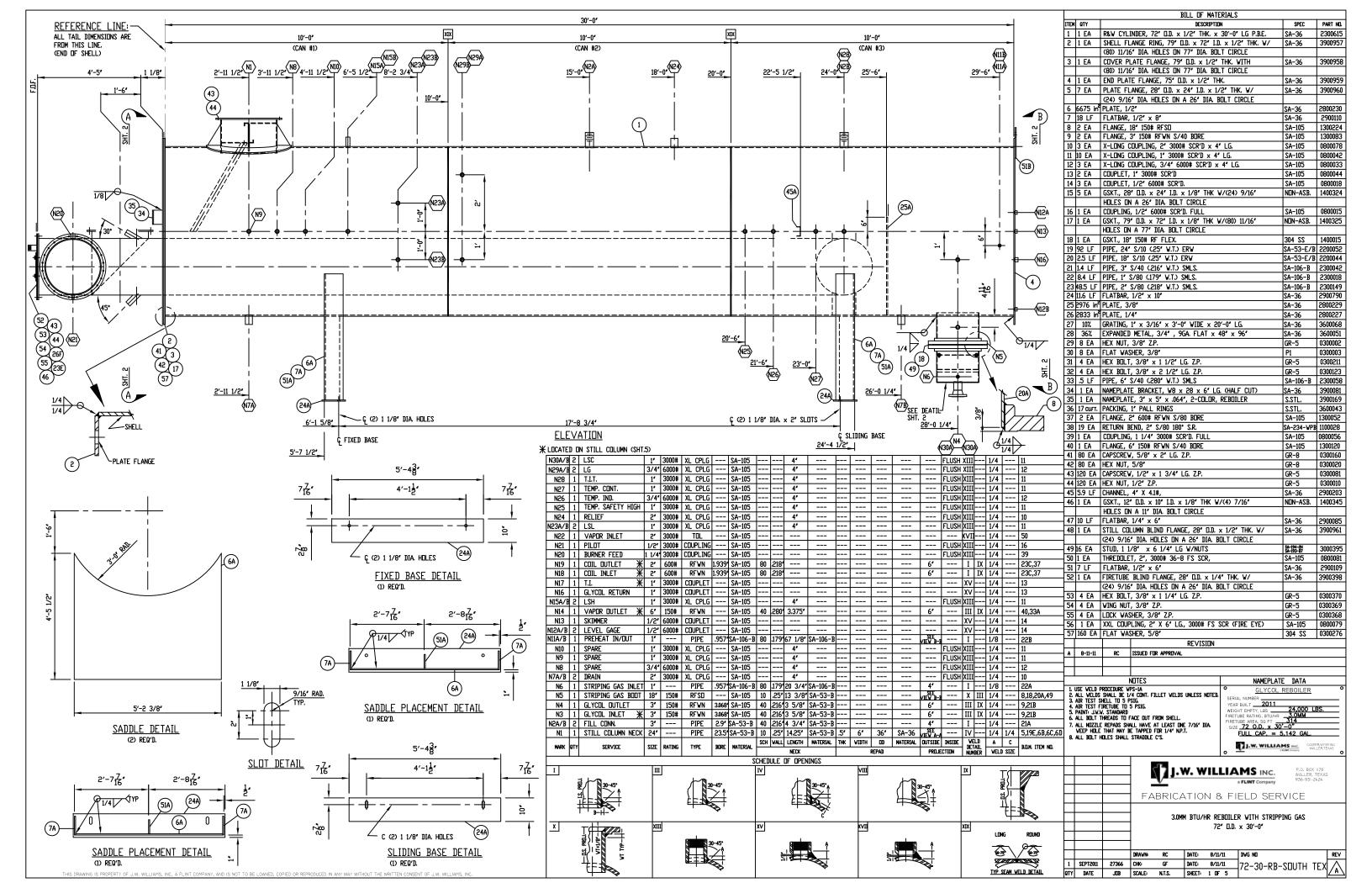
BY:

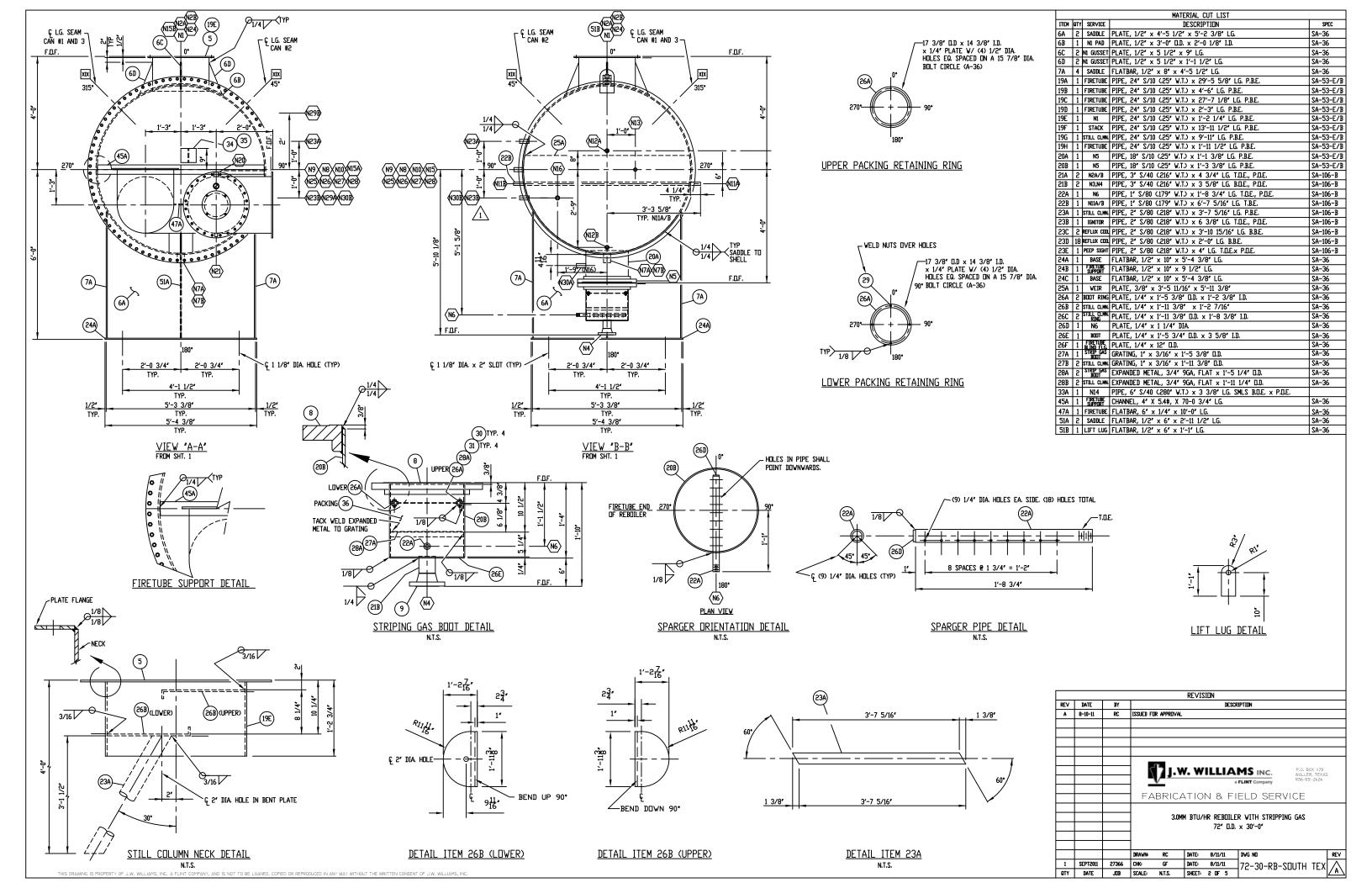
JRG


			•	•
SUBJECT:	200	MMscfd	Сгуо	Plant


		FIRED	HEATER OF				
Service: Regen Gas	Heater			Tag No:	H-741		
Design Duty, MBTU/Hr	5248			Type:	Helical Coil		
No. of Coils per Unit	One	e No. Units:	Oi	neModel: Heatec	Model: Heatec HCI-5010-40-G		
Fluid		Reger	n Gas	Bur	ners		
		Inlet	Outlet		Gas Oil		
Liquids	Lbs/Hr	0	0	LHV (BTU/cf)	973		
Density	Lbs/CuFt			Mol. Wt.	18.26		
Molecular Weight				Gravity			
Specific Heat	BTU/Lb °F			Pressure Avail. (psig)	100		
Thermal Cond.	BTU/Hr-Ft-°F			Pressure Req'd (psig)	10		
Viscosity	сР		-	Steam for Atomizing			
Vapor	Lbs/Hr	19013	19013	Fuel Gas Reg'd (MSCFD)	156.86 N/A		
Density	Lbs/CuFt	3.389	1.716		Eclipse WINOX		
Molecular Weight		19.68	19.68	Type: Forced	Draft - 20 Hp Blower		
Specific Heat	BTU/Lb °F	0.6261	0.7407	Number Reg'd	One		
Thermal Cond.	BTU/HrFt °F	0.0239	0.0438	Pilots Reg'd	Yes , electrical ignition		
Viscosity	сР	0.0140	0.0195	NOx	40 ppm		
Operating Temp.	°F	135	550	Structural Design			
Operating Pressure	PSIA	950		Wind Load, MPH, (3)	90, Exp.C, I=1.15, Cf=0.7		
Velocity	Ft/Sec	Allow.	Calc.	Seismic Zone, (3)	I = 1.25		
Pressure Drop	PSI	10 Allow.	Calc.	Ambient, °F	-20 / 110		
Fouling Resistance	SqFt*F/BTU	0.0		Elevation, Ft	750		
Design Press. / Temp.		1095 PSIG	650 °F		Design		
Min. Design Mtl. Temp.		-20 °F @	1095 PSIG	Self-supporting	Yes		
Corrosion Allowance		0.0	625	Minimum Height	8 ft above top of heater		
Insulation Thickness		3" - 5" ceramic fil	per on the interior	Minimum Wall Thickness:	0.125		
Efficiency-Based on LHV	(%)	85.0%	(Assume 3% Loss)	Lining Type	No		
Excess Air		1	5	Lining Thickness:	No		
Firebox Unit Heat Release		27,800	BTU/Hr- Ft^3	Damper:	No		
Number of Passes		One - process	Two - fireside				
Coil Design		Radiant	Convection-Bare	Convection-Finned			
Gas Temperature	In/Out	135 / 550					
Number Tubes		One					
Tube O.D.	In	Single Circuit 4"	4" 900# RTJ Flg	Inlet and Outlet			
Tube Length	Eff. Ft						
Bare Surface	Sq Ft	697					
Finned Surface	Sq Ft	N/A					
Avg. Heat Flux	BTU/Hr-Sq Ft	8,278					
Tube Materials		SA-106 Gr.B Sch 80	SA-	SA-			
Convection Fins (inch):	Height:	Thickness:	No. / inch	: Material:			
Overall Dimension:	2	5' - 8" L x 7' - 0" W x 8' - 6'	H (less stack)	Dry Weight	: 18,450 lbs		
Code Requirements:	AS	SME VIII Div I	Stamp: Yes	Nat'l Board:	Yes		


Notes:


- 1) Add 30% to duty and 10% flow rates for design.
- 2) See attached Scope of Supply.
- \triangle 3) Wind design per ASCE 7-10, V=150 mph, Exposure C. Seismic design per ASCE 7-10, I=1.25, Site D., S_S=40%, S₁=8%
 - 4) Electric power to be 480 v / 3 ph / 60 hz. Control enclosures to be NEMA 4.
 - 5) Add Spare ignitor.


REVISION	Α		0		1		A 2		
ENGINEER/DATE	JRG	9/21/10	JRG	9/21/10	JRG	9/14/11	MTR	9/20/11	
ISSUED FOR	RFQ		Purchase		Rev	rised	Revised		

THOMAS RUSSELL CO.

Tulsa, Oklahoma

JOB NO: CLIENT:

SUBJECT:

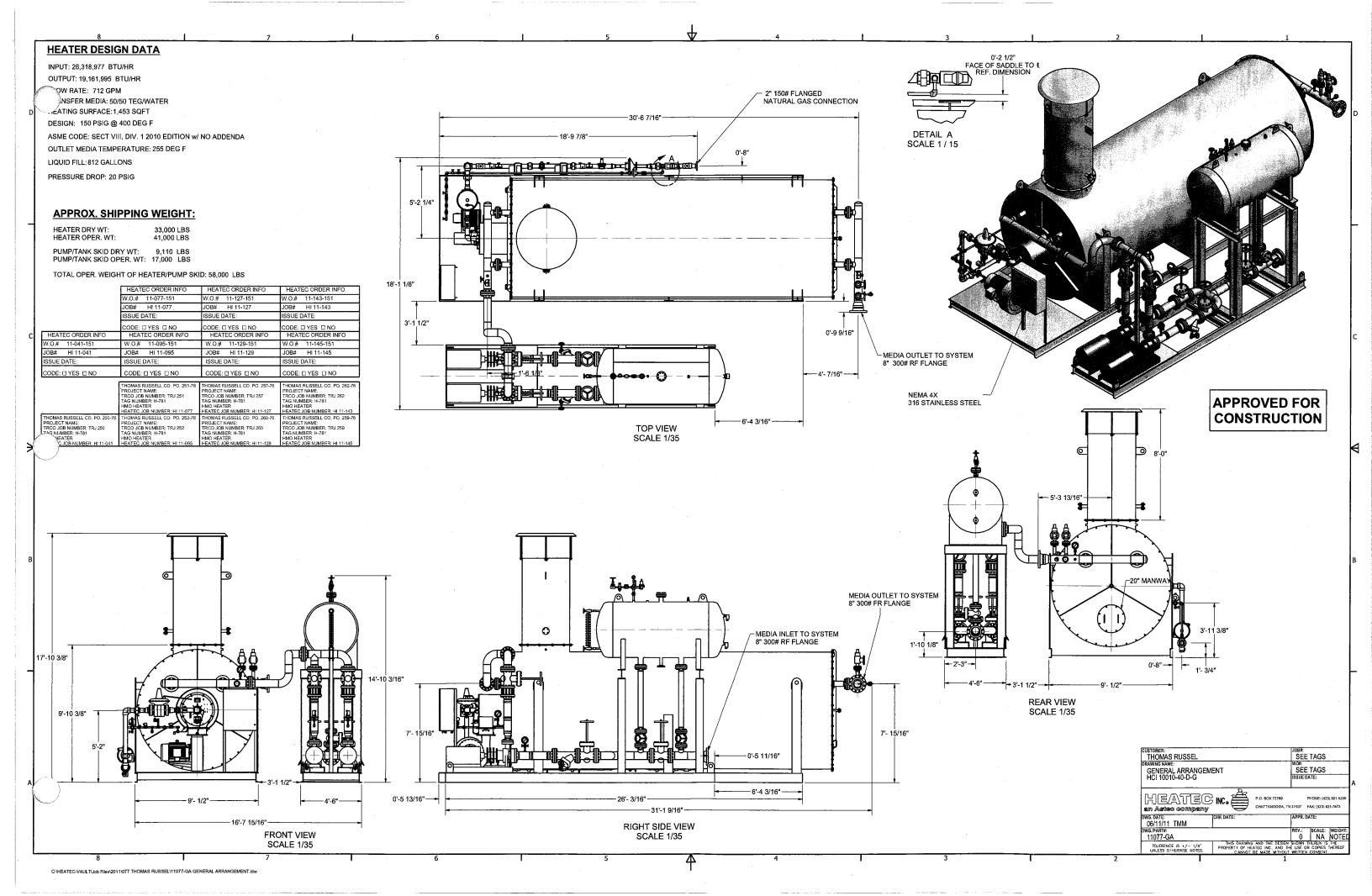
250

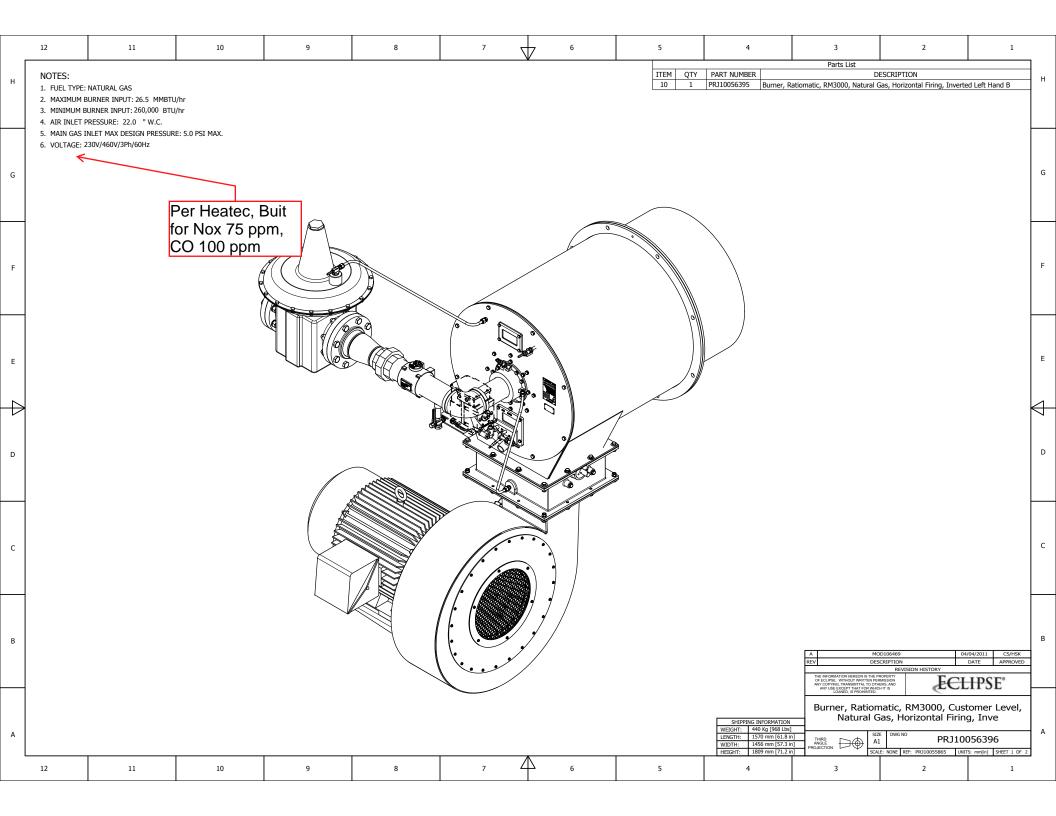
TRCo.

200 MMscfd Cryo Plant

DATE:

9/21/2010


BY:


JRG

		FIRED	HEATER					
Service: HMO Heate	er for E-207				Tag	No:	H-7	81
Design Duty, MBTU/Hr	17,400				Туре):	Helica	l Coil
No. of Coils per Unit	One	No. Units:		One	Mode	el: HCI-10	010-40(D)-G	
Fluid		50:50 TE	G - Water			Burn	ers	
		Inlet	Outle	t			Gas	Oil
Liquids	Lbs/Hr	333,142	333,14	12	LHV (B)	TU/scf)	973	
Density	Lbs/CuFt	64.15	62.56	3	Mol. Wt.		18.26	
Molecular Weight		32.17	32.17	7	Gravity			
Specific Heat	BTU/Lb °F	0.859	0.882	2	Pressure Avail.	(psig)	100	
Thermal Cond.	BTU/Hr-Ft-°F	0.223	0.220)	Pressure Req'd	(psig)		
Viscosity	сР	1.186	0.83	1	Steam for Atomizi	ng		
Vapor	Lbs/Hr	0	0		Fuel Gas Req'd (N		539.10	N/A
Density	Lbs/CuFt				Mfgr:		ipse Ratioma	tic
Molecular Weight					Type:	Forced	Draft - 40 HP	Blower
Specific Heat	BTU/Lb °F			·· ···································	Number Reg'd		O	
Thermal Cond.	BTU/HrFt °F				†	Note 4)	Yes, electri	cal ignitio
Viscosity	сР	**************************************		· · · · · · · · · · · · · · · · · · ·	NOx		< 75 p	
Operating Temp.	°F.	195	255		s	tructura	l Design	
Operating Pressure	PSIA	90			Wind Load, MPH,			
Velocity	Ft/Sec		8	Calc.	Seismic Zone, (3)			
Pressure Drop	PSI	20 Allow.	17	Calc.	Ambient, °F		-20 /	110
Fouling Resistance	SqFt*F/BTU	0.1	0020		Elevation, Ft		13	00
Design Press. / Temp.		150 PSIG	400	°F		Stack I	Design	
Min, Design Mtl. Temp.		-20 °F @	150	PSIG	Self-supporting		Ye	
Corrosion Allowance			.125	· · · · · · · · · · · · · · · · · · ·	Minimum Height		8 ft above to	op of heat
Insulation Thickness		3-5" high ten	np ceramic fiber	· · · · · · · · · · · · · · · · · · ·	Minimum Wall Thi	ckness:	0.1	25
Efficiency-Based on LHV	(%)	82.0%	(Assume 3°	% Loss)	Lining Type		N	0
Excess Air			15		Lining Thickness:		N	0
Firebox Unit Heat Release		28,834	BTU/Hr-	Ft^3	Damper:		N	0
Number of Passes			s, Two - Fireside					
Coil Design		Radiant	Convection	n-Bare	Convection-F	inned		
Gas Temperature	In/Out	195 / 255						
Number Tubes		Two						
Tube O.D.	In	4" Sch 40			Inlet and Outlet		8" 300#	RFWN
Tube Length	Eff. Ft						····	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Bare Surface	Sq Ft	1,453						
Finned Surface	Sq Ft	N/A						
Avg. Heat Flux	BTU/Hr-Sq Ft	15,235						
Tube Materials		SA- 106 Gr. B	SA-		SA-			
Convection Fins (inch):	Height:	Thickness:		No. / inch:	M	aterial:		
Overall Dimension:		x 10' H (Less Stack)			30,0	000 lbs Dr	y Weight	
Code Requirements:		ME VIII DIV I	Stamp:	Yes		l Board:		98

- 2) See attached Scope of Supply.
- Δ 3) Wind design per ASCE 7-10, Exposure C, CATIII. Seismic design per ASCE 7-10, I=1.25, Site D. , S_8 =40% , S_1 =8%
 - 4) Add Spare ignitor

REVISION		3	Δ	4		1		2
ENGINEER/DATE	JRG	1/11/11	MTR	9/20/11	GER	11/22/10	JRG	1/10/11
ISSUED FOR	Revised -	Purchase	Rev	ised	Rev	ised	Rev	ised

1 0F 1

STATEMENT OF EXHAUST EMISSIONS 2022 Perkins Bi-Fuel Fueled Generator

The measured emissions values provided here are proprietary to Generac and it's authorized dealers. This information may only be disseminated upon request to regulatory governmental bodies for emissions permitting purposes or to specifying organizations as submittal data when expressly required by project specifications, and shall remain confidential and not open to public viewing. This information is not intended for compilation or sales purposes and may not be used as such, nor may it be reproduced without the expressed written permission of Generac Power Systems, Inc.. The data provided shall not be meant to include information made public by Generac.

Generator Model: **SB/MB500 EPA Certificate Number:** NCPXL15.2NZS-002 500 CARB Certificate Number: kW Rating: **Not Applicable** Engine Family: NCPXL15.2NZS SCAQMD CEP Number: **Not Applicable**

2506C-E15TAG3 **Engine Model: Emission Standard Category:** Tier 2

Rated Engine Power (BHP)*: 762 Certification Type: Stationary Emergency CI (40 CFR Part 60 Subpart IIII) Diesel/Natural Gas

Fuel Type

Aspiration: Turbocharged/Aftercooled

Rated RPM: 1,800

EMISSIONS BASED ON ENGINE POWER OF SPECIFIC ENGINE MODEL

These Values Are Actual Composite Weighted Exhaust Emissions Results Over the EPA 5-Mode Test Cycle

CO	NOx + NMHC	PM	
0.27	4.30	0.18	Grams/kW-hr
0.20	3.21	0.13	Grams/bhp-hr

These values are 100% load data exhaust emissions results.

CO	NOx + NMHC	PM	
0.63	4.58	0.03	Grams/kW-hr
0.47	3.42	0.02	Grams/bhp-hr

- The stated values are actual exhaust emission test measurements obtained from an engine representative of the type described above.
- Values based on 5-Mode testing are official data of record as submitted to regulatory agencies for certification purposes. Testing was conducted in accordance with prevailing EPA protocol, which is typically accepted by SCAQMD and other regional authorities.
- No emissions values provided above are to be construed as guarantees of emission levels for any given Generac generator unit.
- Generac Power Systems, Inc. reserves the right to revise this information without prior notice.
- Consult state and local regulatory agencies for specific permitting requirements.
- The emission performance data supplied by the equipment manufacturer is only one element required toward completion of the permitting and installation process. State and local regulations may vary on a case-by-case basis and local agencies must be consulted by the permit application/ equipment owner prior to equipment purchase or installation. The data supplied herein by Generac Power Systems Inc. cannot be construed as a guarantee of installability of the generating set.

^{*}Engine power and fuel consumption are declared by the engine manufacturer of record and the U.S EPA.

ELECTRONIC CODE OF FEDERAL REGULATIONS

e-CFR data is current as of August 23, 2017

Title $40 \rightarrow$ Chapter I \rightarrow Subchapter C \rightarrow Part $98 \rightarrow$ Subpart C \rightarrow Appendix

Title 40: Protection of Environment
PART 98—MANDATORY GREENHOUSE GAS REPORTING
Subpart C—General Stationary Fuel Combustion Sources

Table C-1 to Subpart C of Part 98—Default CO_2 Emission Factors and High Heat Values for Various Types of Fuel

Link to an amendment published at 81 FR 89252, Dec. 9, 2016.

Default ${\rm CO_2}$ Emission Factors and High Heat Values for Various Types of Fuel

Fuel type	Default high heat value	Default CO ₂ emission factor
Coal and coke	mmBtu/short ton	kg CO ₂ /mmBtu
Anthracite Seal and control	25.09	103.69
Bituminous	24.93	93.28
Subbituminous	17.25	97.17
Lignite	14.21	97.72
Coal Coke	24.80	113.67
Mixed (Commercial sector)	21.39	94.27
Mixed (Industrial coking)	26.28	93.90
Mixed (Industrial sector)	22.35	94.6
Mixed (Electric Power sector)	19.73	95.52
Natural gas	mmBtu/scf	kg CO ₂ /mmBtı
(Weighted U.S. Average)	1.026 × 10 ⁻³	53.06
Petroleum products	mmBtu/gallon	kg CO ₂ /mmBtu
Distillate Fuel Oil No. 1	0.139	73.25
Distillate Fuel Oil No. 2	0.138	73.96
Distillate Fuel Oil No. 4	0.146	75.04
Residual Fuel Oil No. 5	0.140	73.03
Residual Fuel Oil No. 6	0.150	75.10
Used Oil	0.138	74.00
Kerosene	0.135	75.20
Liquefied petroleum gases (LPG) ¹	0.092	61.7
Propane ¹	0.091	62.87
	0.091	67.77
Propylene ²		
Ethane ¹	0.068	59.60
Ethanol	0.084	68.44
Ethylene ²	0.058	65.96
Isobutane ¹	0.099	64.94
Isobutylene ¹	0.103	68.86
Butane ¹	0.103	64.77
Butylene ¹	0.105	68.72
Naphtha (<401 deg F)	0.125	68.02
Natural Gasoline	0.110	66.88
Other Oil (>401 deg F)	0.139	76.22
Pentanes Plus	0.110	70.02
Petrochemical Feedstocks	0.125	71.02
Petroleum Coke	0.143	102.41
Special Naphtha	0.125	72.34
Unfinished Oils	0.139	74.54
Heavy Gas Oils	0.148	74.92
Lubricants	0.144	74.27
Motor Gasoline	0.125	70.22
Aviation Gasoline	0.120	69.25
Kerosene-Type Jet Fuel	0.135	72.22
Asphalt and Road Oil	0.158	75.36
Crude Oil	0.138	74.54
Other fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Municipal Solid Waste	9.95 ³	90.7
Tires	28.00	85.97
Plastics	38.00	75.00

Petroleum Coke	30.00	102.41
Other fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Blast Furnace Gas	0.092 × 10 ⁻³	274.32
Coke Oven Gas	0.599 × 10 ⁻³	46.85
Propane Gas	2.516 × 10 ⁻³	61.46
Fuel Gas ⁴	1.388 × 10 ⁻³	59.00
Biomass fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Wood and Wood Residuals (dry basis) ⁵	17.48	93.80
Agricultural Byproducts	8.25	118.17
Peat	8.00	111.84
Solid Byproducts	10.39	105.51
Biomass fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Landfill Gas	0.485 × 10 ⁻³	52.07
Other Biomass Gases	0.655 × 10 ⁻³	52.07
Biomass Fuels—Liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Ethanol	0.084	68.44
Biodiesel (100%)	0.128	73.84
Rendered Animal Fat	0.125	71.06
Vegetable Oil	0.120	81.55

¹The HHV for components of LPG determined at 60 °F and saturation pressure with the exception of ethylene.

 5 Use the following formula to calculate a wet basis HHV for use in Equation C-1: HHV_w = ((100 – M)/100)*HHV_d where HHV_w = wet basis HHV, M = moisture content (percent) and HHV_d = dry basis HHV from Table C-1.

|--|

Need assistance?

²Ethylene HHV determined at 41 °F (5 °C) and saturation pressure.

³Use of this default HHV is allowed only for: (a) Units that combust MSW, do not generate steam, and are allowed to use Tier 1; (b) units that derive no more than 10 percent of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year.

 $^{^4}$ Reporters subject to subpart X of this part that are complying with §98.243(d) or subpart Y of this part may only use the default HHV and the default CO_2 emission factor for fuel gas combustion under the conditions prescribed in §98.243(d) (2)(i) and (d)(2)(ii) and §98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4.

ELECTRONIC CODE OF FEDERAL REGULATIONS

e-CFR data is current as of August 23, 2017

Title $40 \rightarrow$ Chapter I \rightarrow Subchapter C \rightarrow Part $98 \rightarrow$ Subpart C \rightarrow Appendix

Title 40: Protection of Environment
PART 98—MANDATORY GREENHOUSE GAS REPORTING
Subpart C—General Stationary Fuel Combustion Sources

Table C-2 to Subpart C of Part 98—Default CH_4 and N_2O Emission Factors for Various Types of Fuel

Link to an amendment published at 81 FR 89252, Dec. 9, 2016.

	Default CH ₄ emission factor (kg	Default N ₂ O emission factor (kg
Fuel type	CH₄/mmBtu)	N₂O/mmBtu)
Coal and Coke (All fuel types in Table C-1)	1.1×10^{-02}	1.6 × 10 ⁻⁰³
Natural Gas	1.0×10^{-03}	1.0×10^{-04}
Petroleum (All fuel types in Table C-1)	3.0×10^{-03}	6.0 × 10 ⁻⁰⁴
Fuel Gas	3.0×10^{-03}	6.0 × 10 ⁻⁰⁴
Municipal Solid Waste	3.2×10^{-02}	4.2 × 10 ⁻⁰³
Tires	3.2 × 10 ⁻⁰²	4.2 × 10 ⁻⁰³
Blast Furnace Gas	2.2 × 10 ⁻⁰⁵	1.0 × 10 ⁻⁰⁴
Coke Oven Gas	4.8×10^{-04}	1.0 × 10 ⁻⁰⁴
Biomass Fuels—Solid (All fuel types in Table C-1, except wood and wood residuals)	3.2 × 10 ⁻⁰²	4.2×10^{-03}
Wood and wood residuals	7.2×10^{-03}	3.6 × 10 ⁻⁰³
Biomass Fuels—Gaseous (All fuel types in Table C-1)	3.2 × 10 ⁻⁰³	6.3 × 10 ⁻⁰⁴
Biomass Fuels—Liquid (All fuel types in Table C-1)	1.1 × 10 ⁻⁰³	1.1 × 10 ⁻⁰⁴

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1g of CH₄/mmBtu.

[78 FR 71952, Nov. 29, 2013]	

Need assistance?

October 2000 RG-109 (Draft)

Air Permit Technical Guidance for Chemical Sources:

Flares and Vapor Oxidizers

Barry R. McBee, Chairman
R. B. "Ralph" Marquez, Commissioner
John M. Baker, Commissioner

Jeffrey A. Saitas, P.E., Executive Director

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Commission would appreciate acknowledgment.

Copies of this publication are available for public use through the Texas State Library, other state depository libraries, and the TNRCC Library, in compliance with the state depository law. For more information on TNRCC publications call (512)239-0028 or visit our Web site at:

htt:www.tnrcc.state.tx.us/publications

Published and distributed by:
Texas Natural Resource Conservation Commission
P.O. Box 13087
Austin, Texas 78711-3087

The TNRCC is an equal opportunity/affirmative action employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex, disability, age, sexual orientation or veteran status. In compliance with the Americans with Disabilities Act, this document may be requested in alternate formats by contacting the TNRCC at (512)239-0028, Fax 239-4488, or 1-800-RELAY-TX (TDD), or by writing P.O. Box 13087, Austin, TX 78711-3087.

Technical Disclaimer

This document is intended as guidance to explain the specific requirements for new source review permitting of flares and vapor oxidizers; it does not supersede or replace any state or federal law, regulation, or rule. References to abatement equipment technologies are not intended to represent minimum or maximum levels of Best Available Control Technology (BACT). Determinations of BACT are made on a case-by-case basis as part of the New Source Review of permit applications. BACT determinations are always subject to adjustment in consideration of specific process requirements, air quality concerns, and recent developments in abatement technology. Additionally, specific health effects concerns may indicate stricter abatement than required by the BACT determination.

The represented calculation methods are intended as an aid in the completion of acceptable submittals; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data.

These guidelines are applicable as of this document's publication date but are subject to revision during the permit application preparation and review period. It is the responsibility of the applicants to remain abreast of any guideline or regulation developments that may affect their industries.

The electronic version of this document may not contain attachments or forms (such as the PI-1, Standard Exemptions, or tables) that can be obtained electronically elsewhere on the TNRCC Web site.

The special conditions included with these guidelines are for purposes of example only. Special conditions included in an actual permit are written by the reviewing engineer to address specific permit requirements and operating conditions.

TABLE OF CONTENTS

Chapter 1—Overview1	
Chapter 2—Types of Flare and Oxidizer Systems	
Flares 3	
Vapor Oxidizers	
Chapter 3—State and Federal Permitting Requirements 5	
Preconstruction Authorization	
General Regulation Applicability6	
Chapter 4—Best Available Control Technology9	
BACT for Flares9	
BACT for Vapor Oxidizers	
Chapter 5—Emission Factors, Efficiencies, and Calculations	
Flares: Introduction	
Flare Emission Factors18	
Flare Destruction Efficiencies	
Sample Calculations	
Vapor Oxidizers	
Chapter 6—Example Permit Conditions	
General	
Flares	
Enclosed Flares or Vapor Oxidizers31	
Vapor Oxidizers	
References	
Glossary	
Attachment A—General Control Device Requirements, 40 CFR § 60.18 39	
Attachment B—Typical Refinery Flare Data	
Attachment C—Typical Acid Gas Flare Data	
Attachment D—NSR Table 4, Combustion Units	

Table 1. Applicable TNRCC Regulations 6
Table 2. Flare Pilot Requirements
Table 3. BACT, Sampling, and Monitoring Guidelines for Vapor Oxidizers 16
Table 4. Flare Factors
Table 5. 99.5 Percent DRE Flare Factors
Table 6. Waste Stream Constituents in Mole Percent
Table 7. Estimation of Average Mass Flow Rates
Table 8. Emission Rates
Table 9. Estimation of Net Heat Releases
Table 10. Estimation of Volume Average Molecular Weight

Chapter 2—Types of Flare and Oxidizer Systems

This document provides guidance for two classes of vapor combustion control devices: flares and vapor oxidizers. While there may be some overlap between the two, flares have generally been treated separately by the EPA and the TNRCC, in large part because flares have an open flame and often cannot be sampled, so emissions are estimated based on the results of flare testing performed in the early 1980s. Each of the two classes will be dealt with separately in each of the chapters of this document.

Combustion Control Devices NOT Discussed. This document will not cover permitting of RCRA or BIF units because the requirements for these units often go beyond the requirements for state air permitting. Incinerators used to treat solid wastes are covered in another technical guidance document, *Incinerators*. Guidance for combustion control devices associated with spray paint booths, coatings operations, and semiconductor facilities should be obtained by calling the TNRCC New Source Review Permits Division at (512) 239-1250.

Flares

Flare systems generally are open-flame control devices used for disposing of waste gas streams during both routine process and emergency or upset conditions. In addition to simple, unassisted flares, typical smokeless flare systems include, but are not limited to, the following:

- Enclosed Flares/Vapor Combustors. Enclosed flares are used in disposing of
 waste gas streams in instances where a visible flame is unacceptable. Applications
 include chemical processing, petroleum refining and production, and municipal
 waste gas treatment. These may be referred to as vapor combustors and can have
 more than one burner in the stack.
- Steam-Assisted Flares. Steam-assisted flares are used in disposing of low-pressure waste gas streams when steam is available and practical to minimize smoking from the flare. Applications are similar to those of enclosed flares. Flares might also be assisted with natural gas if readily available on site; these flares would undergo a case-by-case review.
- Air-Assisted Flares. Air-assisted flares are used in disposing of low-pressure
 waste gas streams when practical or when steam utilities are not available to
 minimize smoking from the flare. Applications include chemical processing,
 petroleum refining and production, and pipeline transportation.
- Sonic Flares. Sonic flares are used in disposing of high-pressure waste gas streams. Applications include gas production, pipeline transportation, and treatment plants.

 Multipoint Flare Systems. Multipoint flare systems are used in disposing of both high- and low-pressure waste gas streams. Multiple burner tips in conjunction with a staged control system provide for controlled combustion. Applications are similar to those of air-assisted flares.

Vapor Oxidizers

These devices generally do not have an open flame but have an exhaust stack which allows for sampling and monitoring of exhaust emissions. The most common type, thermal, relies on the combustion heat of the waste gas and assist fuel (if required) to oxidize the waste gas air contaminants. Other types include:

- Recuperative. In this case, the waste gas is directed to a heat exchanger to be
 preheated by the exhaust gas, to minimize the need for additional assist fuel.
 Recuperative oxidizers are considered a subset of thermal oxidizers in this
 document.
- Regenerative. Combustion takes place in a chamber with a heat sink, such as
 ceramic saddles, which retains the heat of combustion, allowing for combustion
 of more dilute vapor streams (which have a low heat of combustion) at a lower
 cost. These units generally have multiple chambers, which allow for the preheat
 of one chamber by exhaust gases while combustion takes place in another
 chamber.
- Catalytic. Combustion takes place over a catalyst that allows for combustion at
 a lower temperature (in the range of 600 to 800°F as opposed to greater than
 1400°F for many thermal oxidizers). Catalytic oxidizers function best with a
 waste stream with constant flow and composition.

Chapter 5—Emission Factors, Efficiencies, and Calculations

This chapter provides detailed instructions for the calculations necessary to verify BACT and estimate emissions from flares and vapor oxidizers. Flares must be checked to determine whether they will satisfy the flow and thermal requirements of 40 CFR § 60.18, and their emissions are determined by the use of emission factors. Example calculations are provided for these flare calculations.

Oxidizer emissions are determined by using previous sampling results or emission factors from the manufacturer or AP-42. These calculations are very similar to the flare calculations and are only discussed in general terms.

Flares: Introduction

Although emissions from emergency flares are not included in a permit when it is issued, emissions should be estimated for both routine process flares and emergency flares. Sometimes, emissions of routine pilot gas combustion may be included in an issued permit for emergency flares (although not required).

In this section, the *flare* emission factors and destruction efficiencies are presented first. This information is followed by sample *calculations* that demonstrate how to ensure that the requirements of 40 CFR § 60.18 are satisfied and how to estimate emissions from a flare. Flare data in Attachment B (typical refinery flare) will be used as a basis in most of the following calculations. Flare data in Attachment C (acid gas flare) will be used as a basis in the example calculations for SO₂ emissions.

Flare Emission Factors

The usual flare destruction efficiencies and emission factors are provided in Table 4. The high-Btu waste streams referred to in the table have a heating value greater than 1,000 Btu/scf.

Flare Destruction Efficiencies

Claims for destruction efficiencies greater than those listed in Table 4 will be considered on a case-by-case basis. The applicant may make one of the three following demonstrations to justify the higher destruction efficiency: (1) general method, (2) 99.5 percent justification, or (3) flare stack sampling.

Waste Stream	Destruction/Removal Efficiency (DRE)				
VOC	98 percent (generic)				
	99 percent for compounds containing no more than 3 carbons that contain no elements other than carbon and hydrogen in addition to the following compounds: methanol, ethanol, propanol, ethylene oxide and propylene oxide				
H_2S	98 percent				
NH ₃	case by case				
СО	case by case				
Air Contaminants	Emission Fact	ors			
thermal NO _x	steam-assist:	high Btu low Btu	0.0485 lb/MMBtu 0.068 lb/MMBtu		
	other:	high Btu Iow Btu	0.138 lb/MMBtu 0.0641 lb/MMBtu		
fuel NO _x	NO _x is 0.5 wt p	percent of inlet	NH ₃ , other fuels case by case		
СО	steam-assist:	high Btu low Btu	0.3503 lb/MMBtu 0.3465 lb/MMBtu		
	other:	high Btu low Btu	0.2755 lb/MMBtu 0.5496 lb/MMBtu		
PM	none, required to be smokeless				
SO ₂	100 percent S	100 percent S in fuel to SO ₂			

^{*}The only exeption of this is if inorganics might be emitted from the flare. In the case of landfills, the AP-42 PM factor may be used. In other cases, the emissions should be based on the composition of the waste stream routed to the flare.

1.4 Natural Gas Combustion

1.4.1 General¹⁻²

Natural gas is one of the major combustion fuels used throughout the country. It is mainly used to generate industrial and utility electric power, produce industrial process steam and heat, and heat residential and commercial space. Natural gas consists of a high percentage of methane (generally above 85 percent) and varying amounts of ethane, propane, butane, and inerts (typically nitrogen, carbon dioxide, and helium). The average gross heating value of natural gas is approximately 1,020 British thermal units per standard cubic foot (Btu/scf), usually varying from 950 to 1,050 Btu/scf.

1.4.2 Firing Practices³⁻⁵

There are three major types of boilers used for natural gas combustion in commercial, industrial, and utility applications: watertube, firetube, and cast iron. Watertube boilers are designed to pass water through the inside of heat transfer tubes while the outside of the tubes is heated by direct contact with the hot combustion gases and through radiant heat transfer. The watertube design is the most common in utility and large industrial boilers. Watertube boilers are used for a variety of applications, ranging from providing large amounts of process steam, to providing hot water or steam for space heating, to generating high-temperature, high-pressure steam for producing electricity. Furthermore, watertube boilers can be distinguished either as field erected units or packaged units.

Field erected boilers are boilers that are constructed on site and comprise the larger sized watertube boilers. Generally, boilers with heat input levels greater than 100 MMBtu/hr, are field erected. Field erected units usually have multiple burners and, given the customized nature of their construction, also have greater operational flexibility and NO_x control options. Field erected units can also be further categorized as wall-fired or tangential-fired. Wall-fired units are characterized by multiple individual burners located on a single wall or on opposing walls of the furnace while tangential units have several rows of air and fuel nozzles located in each of the four corners of the boiler.

Package units are constructed off-site and shipped to the location where they are needed. While the heat input levels of packaged units may range up to 250 MMBtu/hr, the physical size of these units are constrained by shipping considerations and generally have heat input levels less than 100 MMBtu/hr. Packaged units are always wall-fired units with one or more individual burners. Given the size limitations imposed on packaged boilers, they have limited operational flexibility and cannot feasibly incorporate some NO_x control options.

Firetube boilers are designed such that the hot combustion gases flow through tubes, which heat the water circulating outside of the tubes. These boilers are used primarily for space heating systems, industrial process steam, and portable power boilers. Firetube boilers are almost exclusively packaged units. The two major types of firetube units are Scotch Marine boilers and the older firebox boilers. In cast iron boilers, as in firetube boilers, the hot gases are contained inside the tubes and the water being heated circulates outside the tubes. However, the units are constructed of cast iron rather than steel. Virtually all cast iron boilers are constructed as package boilers. These boilers are used to produce either low-pressure steam or hot water, and are most commonly used in small commercial applications.

Natural gas is also combusted in residential boilers and furnaces. Residential boilers and furnaces generally resemble firetube boilers with flue gas traveling through several channels or tubes with water or air circulated outside the channels or tubes.

1.4.3 Emissions³⁻⁴

The emissions from natural gas-fired boilers and furnaces include nitrogen oxides (NO_x), carbon monoxide (CO_1), and carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O_1), volatile organic compounds (N_2O_1), trace amounts of sulfur dioxide (N_2O_2), and particulate matter (N_2O_2).

Nitrogen Oxides -

Nitrogen oxides formation occurs by three fundamentally different mechanisms. The principal mechanism of NO_x formation in natural gas combustion is thermal NO_x . The thermal NO_x mechanism occurs through the thermal dissociation and subsequent reaction of nitrogen (N_2) and oxygen (O_2) molecules in the combustion air. Most NO_x formed through the thermal NO_x mechanism occurs in the high temperature flame zone near the burners. The formation of thermal NO_x is affected by three furnace-zone factors: (1) oxygen concentration, (2) peak temperature, and (3) time of exposure at peak temperature. As these three factors increase, NO_x emission levels increase. The emission trends due to changes in these factors are fairly consistent for all types of natural gas-fired boilers and furnaces. Emission levels vary considerably with the type and size of combustor and with operating conditions (e.g., combustion air temperature, volumetric heat release rate, load, and excess oxygen level).

The second mechanism of NO_x formation, called prompt NO_x , occurs through early reactions of nitrogen molecules in the combustion air and hydrocarbon radicals from the fuel. Prompt NO_x reactions occur within the flame and are usually negligible when compared to the amount of NO_x formed through the thermal NO_x mechanism. However, prompt NO_x levels may become significant with ultra-low- NO_x burners.

The third mechanism of NO_x formation, called fuel NO_x , stems from the evolution and reaction of fuel-bound nitrogen compounds with oxygen. Due to the characteristically low fuel nitrogen content of natural gas, NO_x formation through the fuel NO_x mechanism is insignificant.

Carbon Monoxide -

The rate of CO emissions from boilers depends on the efficiency of natural gas combustion. Improperly tuned boilers and boilers operating at off-design levels decrease combustion efficiency resulting in increased CO emissions. In some cases, the addition of NO_x control systems such as low NO_x burners and flue gas recirculation (FGR) may also reduce combustion efficiency, resulting in higher CO emissions relative to uncontrolled boilers.

Volatile Organic Compounds -

The rate of VOC emissions from boilers and furnaces also depends on combustion efficiency. VOC emissions are minimized by combustion practices that promote high combustion temperatures, long residence times at those temperatures, and turbulent mixing of fuel and combustion air. Trace amounts of VOC species in the natural gas fuel (e.g., formaldehyde and benzene) may also contribute to VOC emissions if they are not completely combusted in the boiler.

Sulfur Oxides -

Emissions of SO_2 from natural gas-fired boilers are low because pipeline quality natural gas typically has sulfur levels of 2,000 grains per million cubic feet. However, sulfur-containing odorants are added to natural gas for detecting leaks, leading to small amounts of SO_2 emissions. Boilers combusting unprocessed natural gas may have higher SO_2 emissions due to higher levels of sulfur in the natural gas. For these units, a sulfur mass balance should be used to determine SO_2 emissions.

Particulate Matter -

Because natural gas is a gaseous fuel, filterable PM emissions are typically low. Particulate matter from natural gas combustion has been estimated to be less than 1 micrometer in size and has filterable and condensable fractions. Particulate matter in natural gas combustion are usually larger molecular weight hydrocarbons that are not fully combusted. Increased PM emissions may result from poor air/fuel mixing or maintenance problems.

Greenhouse Gases -6-9

 CO_2 , CH_4 , and N_2O emissions are all produced during natural gas combustion. In properly tuned boilers, nearly all of the fuel carbon (99.9 percent) in natural gas is converted to CO_2 during the combustion process. This conversion is relatively independent of boiler or combustor type. Fuel carbon not converted to CO_2 results in CH_4 , CO, and/or VOC emissions and is due to incomplete combustion. Even in boilers operating with poor combustion efficiency, the amount of CH_4 , CO, and VOC produced is insignificant compared to CO_2 levels.

Formation of N_2O during the combustion process is affected by two furnace-zone factors. N_2O emissions are minimized when combustion temperatures are kept high (above 1475°F) and excess oxygen is kept to a minimum (less than 1 percent).

Methane emissions are highest during low-temperature combustion or incomplete combustion, such as the start-up or shut-down cycle for boilers. Typically, conditions that favor formation of N_2O also favor emissions of methane.

1.4.4 Controls^{4,10}

NO_x Controls -

Currently, the two most prevalent combustion control techniques used to reduce NO_x emissions from natural gas-fired boilers are flue gas recirculation (FGR) and low NO_x burners. In an FGR system, a portion of the flue gas is recycled from the stack to the burner windbox. Upon entering the windbox, the recirculated gas is mixed with combustion air prior to being fed to the burner. The recycled flue gas consists of combustion products which act as inerts during combustion of the fuel/air mixture. The FGR system reduces NO_x emissions by two mechanisms. Primarily, the recirculated gas acts as a dilutent to reduce combustion temperatures, thus suppressing the thermal NO_x mechanism. To a lesser extent, FGR also reduces NO_x formation by lowering the oxygen concentration in the primary flame zone. The amount of recirculated flue gas is a key operating parameter influencing NO_x emission rates for these systems. An FGR system is normally used in combination with specially designed low NO_x burners capable of sustaining a stable flame with the increased inert gas flow resulting from the use of FGR. When low NO_x burners and FGR are used in combination, these techniques are capable of reducing NO_x emissions by 60 to 90 percent.

Low NO_x burners reduce NO_x by accomplishing the combustion process in stages. Staging partially delays the combustion process, resulting in a cooler flame which suppresses thermal NO_x formation. The two most common types of low NO_x burners being applied to natural gas-fired boilers are staged air burners and staged fuel burners. NO_x emission reductions of 40 to 85 percent (relative to uncontrolled emission levels) have been observed with low NO_x burners.

Other combustion control techniques used to reduce NO_x emissions include staged combustion and gas reburning. In staged combustion (e.g., burners-out-of-service and overfire air), the degree of staging is a key operating parameter influencing NO_x emission rates. Gas reburning is similar to the use of overfire in the use of combustion staging. However, gas reburning injects additional amounts of natural gas in the upper furnace, just before the overfire air ports, to provide increased reduction of NO_x to NO_2 .

Two postcombustion technologies that may be applied to natural gas-fired boilers to reduce NO_x emissions are selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR). The SNCR system injects ammonia (NH₃) or urea into combustion flue gases (in a specific temperature zone) to reduce NO_x emission. The Alternative Control Techniques (ACT) document for NO_x emissions from utility boilers, maximum SNCR performance was estimated to range from 25 to 40 percent for natural gas-fired boilers. Performance data available from several natural gas fired utility boilers with SNCR show a 24 percent reduction in NO_x for applications on wall-fired boilers and a 13 percent reduction in NO_x for applications on tangential-fired boilers. In many situations, a boiler may have an SNCR system installed to trim NO_x emissions to meet permitted levels. In these cases, the SNCR system may not be operated to achieve maximum NO_x reduction. The SCR system involves injecting NH_3 into the flue gas in the presence of a catalyst to reduce NO_x emissions. No data were available on SCR performance on natural gas fired boilers at the time of this publication. However, the ACT Document for utility boilers estimates NO_x reduction efficiencies for SCR control ranging from 80 to 90 percent. 12

Emission factors for natural gas combustion in boilers and furnaces are presented in Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4. Tables in this section present emission factors on a volume basis (lb/10⁶ scf). To convert to an energy basis (lb/MMBtu), divide by a heating value of 1,020 MMBtu/10⁶ scf. For the purposes of developing emission factors, natural gas combustors have been organized into three general categories: large wall-fired boilers with greater than 100 MMBtu/hr of heat input, boilers and residential furnaces with less than 100 MMBtu/hr of heat input, and tangential-fired boilers. Boilers within these categories share the same general design and operating characteristics and hence have similar emission characteristics when combusting natural gas.

Emission factors are rated from A to E to provide the user with an indication of how "good" the factor is, with "A" being excellent and "E" being poor. The criteria that are used to determine a rating for an emission factor can be found in the Emission Factor Documentation for AP-42 Section 1.4 and in the introduction to the AP-42 document.

1.4.5 Updates Since the Fifth Edition

The Fifth Edition was released in January 1995. Revisions to this section are summarized below. For further detail, consult the Emission Factor Documentation for this section. These and other documents can be found on the Emission Factor and Inventory Group (EFIG) home page (http://www.epa.gov/ttn/chief).

Supplement D, March 1998

- Text was revised concerning Firing Practices, Emissions, and Controls.
- All emission factors were updated based on 482 data points taken from 151 source tests. Many new emission factors have been added for speciated organic compounds, including hazardous air pollutants.

July 1998 - minor changes

• Footnote D was added to table 1.4-3 to explain why the sum of individual HAP may exceed VOC or TOC, the web address was updated, and the references were reordered.

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO_x) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION^a

Combustor Tyres	И	10^{x_p}	CO	
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100)				
[1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	A	84	В
Uncontrolled (Post-NSPS) ^c	190	A	84	В
Controlled - Low NO _x burners	140	A	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	C	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	A	24	C
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10 ⁶ scf to kg/10⁶ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10 ⁶ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable. Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO _X emission factor. For

tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.

NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	A
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO ₂ ^d	0.6	A
TOC	11	В
Methane	2.3	В
VOC	5.5	С

- a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.
- ^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.
- ^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.
- d Based on 100% conversion of fuel sulfur to SO₂.

 Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION^a

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylcholanthrene ^{b, c}	<1.8E-06	E
	7,12- Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	E
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	Е
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	E
120-12-7	Anthracene ^{b,c}	<2.4E-06	Е
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	Е
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	E
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	E
207-08-9	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	E
106-97-8	Butane	2.1E+00	E
218-01-9	Chrysene ^{b,c}	<1.8E-06	E
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	E
25321-22- 6	Dichlorobenzene ^b	1.2E-03	E
74-84-0	Ethane	3.1E+00	E
206-44-0	Fluoranthene ^{b,c}	3.0E-06	E
86-73-7	Fluorene ^{b,c}	2.8E-06	E
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	E
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	E
91-20-3	Naphthalene ^b	6.1E-04	E
109-66-0	Pentane	2.6E+00	E
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D
74-98-6	Propane	1.6E+00	Е

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
129-00-0	Pyrene ^{b, c}	5.0E-06	E
108-88-3	Toluene ^b	3.4E-03	С

- ^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceded with a less-than symbol are based on method detection limits.
- ^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.
- ^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.
- ^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

TABLE 1.4-4. EMISSION FACTORS FOR METALS FROM NATURAL GAS COMBUSTION^a

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
7440-38-2	Arsenic ^b	2.0E-04	Е
7440-39-3	Barium	4.4E-03	D
7440-41-7	Beryllium ^b	<1.2E-05	Е
7440-43-9	Cadmium ^b	1.1E-03	D
7440-47-3	Chromium ^b	1.4E-03	D
7440-48-4	Cobalt ^b	8.4E-05	D
7440-50-8	Copper	8.5E-04	C
7439-96-5	Manganese ^b	3.8E-04	D
7439-97-6	Mercury ^b	2.6E-04	D
7439-98-7	Molybdenum	1.1E-03	D
7440-02-0	Nickel ^b	2.1E-03	C
7782-49-2	Selenium ^b	<2.4E-05	Е
7440-62-2	Vanadium	2.3E-03	D
7440-66-6	Zinc	2.9E-02	E

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. Emission factors preceded by a less-than symbol are based on method detection limits. To convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by l6. To convert from $lb/10^6$ scf to 1b/MMBtu, divide by 1,020.

b Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.

References For Section 1.4

- 1. Exhaust Gases From Combustion And Industrial Processes, EPA Contract No. EHSD 71-36, Engineering Science, Inc., Washington, DC, October 1971.
- 2. *Chemical Engineers' Handbook, Fourth Edition*, J. H. Perry, Editor, McGraw-Hill Book Company, New York, NY, 1963.
- 3. Background Information Document For Industrial Boilers, EPA-450/3-82-006a, U. S. Environmental Protection Agency, Research Triangle Park, NC, March 1982.
- 4. Background Information Document For Small Steam Generating Units, EPA-450/3-87-000, U. S. Environmental Protection Agency, Research Triangle Park, NC, 1987.
- 5. J. L. Muhlbaier, "Particulate and Gaseous Emissions From Natural Gas Furnaces and Water Heaters", *Journal Of The Air Pollution Control Association*, December 1981.
- 6. L. P. Nelson, et al., Global Combustion Sources Of Nitrous Oxide Emissions, Research Project 2333-4 Interim Report, Sacramento: Radian Corporation, 1991.
- 7. R. L. Peer, et al., Characterization Of Nitrous Oxide Emission Sources, Prepared for the U. S. EPA Contract 68-D1-0031, Research Triangle Park, NC: Radian Corporation, 1995.
- 8. S. D. Piccot, et al., Emissions and Cost Estimates For Globally Significant Anthropogenic Combustion Sources Of NO_x, N₂O, CH₄, CO, and CO₂, EPA Contract No. 68-02-4288, Research Triangle Park, NC: Radian Corporation, 1990.
- 9. Sector-Specific Issues and Reporting Methodologies Supporting the General Guidelines for the Voluntary Reporting of Greenhouse Gases under Section 1605(b) of the Energy Policy Act of 1992 (1994) DOE/PO-0028, Volume 2 of 3, U.S. Department of Energy.
- 10. J. P. Kesselring and W. V. Krill, "A Low-NO_x Burner For Gas-Fired Firetube Boilers", *Proceedings: 1985 Symposium On Stationary Combustion NO_x Control, Volume 2*, EPRI CS-4360, Electric Power Research Institute, Palo Alto, CA, January 1986.
- 11. Emission Factor Documentation for AP-42 Section 1.4—Natural Gas Combustion, Technical Support Division, Office of Air Quality Planning and Standards, U. S. Environmental Protection Agency, Research Triangle Park, NC, 1997.
- 12. Alternate Control Techniques Document NO_x Emissions from Utility Boilers, EPA-453/R-94-023, U. S. Environmental Protection Agency, Research Triangle Park, NC, March 1994.

United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park NC 27711

EPA-453/R-95-017 November 1995

Air

Emission EstimatesProtocol for Equipment Leak

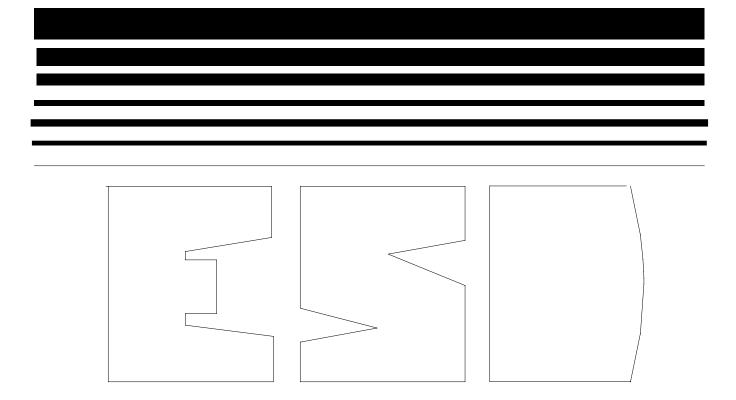


TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

Equipment Type	Service ^a	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

13.2.2 Unpaved Roads

13.2.2.1 General

When a vehicle travels an unpaved road, the force of the wheels on the road surface causes pulverization of surface material. Particles are lifted and dropped from the rolling wheels, and the road surface is exposed to strong air currents in turbulent shear with the surface. The turbulent wake behind the vehicle continues to act on the road surface after the vehicle has passed.

The particulate emission factors presented in the previous draft version of this section of AP-42, dated October 2001, implicitly included the emissions from vehicles in the form of exhaust, brake wear, and tire wear as well as resuspended road surface material²⁵. EPA included these sources in the emission factor equation for unpaved public roads (equation 1b in this section) since the field testing data used to develop the equation included both the direct emissions from vehicles and emissions from resuspension of road dust.

This version of the unpaved public road emission factor equation only estimates particulate emissions from resuspended road surface material ^{23, 26}. The particulate emissions from vehicle exhaust, brake wear, and tire wear are now estimated separately using EPA's MOBILE6.2 ²⁴. This approach eliminates the possibility of double counting emissions. Double counting results when employing the previous version of the emission factor equation in this section and MOBILE6.2 to estimate particulate emissions from vehicle traffic on unpaved public roads. It also incorporates the decrease in exhaust emissions that has occurred since the unpaved public road emission factor equation was developed. The previous version of the unpaved public road emission factor equation includes estimates of emissions from exhaust, brake wear, and tire wear based on emission rates for vehicles in the 1980 calendar year fleet. The amount of PM released from vehicle exhaust has decreased since 1980 due to lower new vehicle emission standards and changes in fuel characteristics.

13.2.2.2 Emissions Calculation And Correction Parameters¹⁻⁶

The quantity of dust emissions from a given segment of unpaved road varies linearly with the volume of traffic. Field investigations also have shown that emissions depend on source parameters that characterize the condition of a particular road and the associated vehicle traffic. Characterization of these source parameters allow for "correction" of emission estimates to specific road and traffic conditions present on public and industrial roadways.

Dust emissions from unpaved roads have been found to vary directly with the fraction of silt (particles smaller than 75 micrometers [µm] in diameter) in the road surface materials. The silt fraction is determined by measuring the proportion of loose dry surface dust that passes a 200-mesh screen, using the ASTM-C-136 method. A summary of this method is contained in Appendix C of AP-42. Table 13.2.2-1 summarizes measured silt values for industrial unpaved roads. Table 13.2.2-2 summarizes measured silt values for public unpaved roads. It should be noted that the ranges of silt content vary over two orders of magnitude. Therefore, the use of data from this table can potentially introduce considerable error. Use of this data is strongly discouraged when it is feasible to obtain locally gathered data.

Since the silt content of a rural dirt road will vary with geographic location, it should be measured for use in projecting emissions. As a conservative approximation, the silt content of the parent soil in the area can be used. Tests, however, show that road silt content is normally lower than in the surrounding parent soil, because the fines are continually removed by the vehicle traffic, leaving a higher percentage of coarse particles.

Other variables are important in addition to the silt content of the road surface material. For example, at industrial sites, where haul trucks and other heavy equipment are common, emissions are highly correlated with vehicle weight. On the other hand, there is far less variability in the weights of cars and pickup trucks that commonly travel publicly accessible unpaved roads throughout the United States. For those roads, the moisture content of the road surface material may be more dominant in determining differences in emission levels between, for example a hot, desert environment and a cool, moist location.

The PM-10 and TSP emission factors presented below are the outcomes from stepwise linear regressions of field emission test results of vehicles traveling over unpaved surfaces. Due to a limited amount of information available for PM-2.5, the expression for that particle size range has been scaled against the result for PM-10. Consequently, the quality rating for the PM-2.5 factor is lower than that for the PM-10 expression.

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS $^{\rm a}$

	Road Use Or	Plant	No. Of	Silt Conte	ent (%)
Industry	Surface Material	Sites	Samples	Range	Mean
Copper smelting	Plant road	1	3	16 - 19	17
Iron and steel production	Plant road	19	135	0.2 - 19	6.0
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	4.8
	Material storage area	1	1	-	7.1
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10
	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3
	Haul road to/from pit	1	12	3.9 - 9.7	5.8
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4
	Plant road	2	2	4.9 - 5.3	5.1
	Scraper route	3	10	7.2 - 25	17
	Haul road (freshly graded)	2	5	18 - 29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills	Disposal routes	4	20	2.2 - 21	6.4

^aReferences 1,5-15.

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^a (W/3)^b$$
 (1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$
 (1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

E = size-specific emission factor (lb/VMT)

s = surface material silt content (%)

W = mean vehicle weight (tons)

M = surface material moisture content (%)

S = mean vehicle speed (mph)

C =emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

$$1 \text{ lb/VMT} = 281.9 \text{ g/VKT}$$

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

	Industrial Roads (Equation 1a)			Public Roads (Equation 1b)		
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0
a	0.9	0.9	0.7	1	1	1
b	0.45	0.45	0.45	-	-	-
С	ı	1	-	0.2	0.2	0.3
d		-	-	0.5	0.5	0.3
Quality Rating	В	В	В	В	В	В

^{*}Assumed equivalent to total suspended particulate matter (TSP)

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

			Vehicle ight		Vehicle eed	Mean	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4-17ª	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model 23 . The emission factor also varies with aerodynamic size range

[&]quot;-" = not used in the emission factor equation

Table 13.2.2-4. EMISSION FACTOR FOR 1980'S VEHICLE FLEET EXHAUST, BRAKE WEAR AND TIRE WEAR

Particle Size Range ^a	C, Emission Factor for Exhaust, Brake Wear and Tire Wear ^b
$PM_{2.5}$	0.00036
PM_{10}	0.00047
PM_{30}^{c}	0.00047

- ^a Refers to airborne particulate matter (PM-x) with an aerodynamic diameter equal to or less than x micrometers.
- b Units shown are pounds per vehicle mile traveled (lb/VMT).
- ^c PM-30 is sometimes termed "suspendable particulate" (SP) and is often used as a surrogate for TSP.

It is important to note that the vehicle-related source conditions refer to the average weight, speed, and number of wheels for all vehicles traveling the road. For example, if 98 percent of traffic on the road are 2-ton cars and trucks while the remaining 2 percent consists of 20-ton trucks, then the mean weight is 2.4 tons. More specifically, Equations 1a and 1b are *not* intended to be used to calculate a separate emission factor for each vehicle class within a mix of traffic on a given unpaved road. That is, in the example, one should *not* determine one factor for the 2-ton vehicles and a second factor for the 20-ton trucks. Instead, only one emission factor should be calculated that represents the "fleet" average of 2.4 tons for all vehicles traveling the road.

Moreover, to retain the quality ratings when addressing a group of unpaved roads, it is necessary that reliable correction parameter values be determined for the road in question. The field and laboratory procedures for determining road surface silt and moisture contents are given in AP-42 Appendices C.1 and C.2. Vehicle-related parameters should be developed by recording visual observations of traffic. In some cases, vehicle parameters for industrial unpaved roads can be determined by reviewing maintenance records or other information sources at the facility.

In the event that site-specific values for correction parameters cannot be obtained, then default values may be used. In the absence of site-specific silt content information, an appropriate mean value from Table 13.2.2-1 may be used as a default value, but the quality rating of the equation is reduced by two letters. Because of significant differences found between different types of road surfaces and between different areas of the country, use of the default moisture content value of 0.5 percent in Equation 1b is discouraged. The quality rating should be downgraded two letters when the default moisture content value is used. (It is assumed that readers addressing industrial roads have access to the information needed to develop average vehicle information in Equation 1a for their facility.)

The effect of routine watering to control emissions from unpaved roads is discussed below in Section 13.2.2.3, "Controls". However, all roads are subject to some natural mitigation because of rainfall and other precipitation. The Equation 1a and 1b emission factors can be extrapolated to annual

average uncontrolled conditions (but including natural mitigation) under the simplifying assumption that annual average emissions are inversely proportional to the number of days with measurable (more than 0.254 mm [0.01 inch]) precipitation:

$$E_{\text{ext}} = E [(365 - P)/365]$$
 (2)

where:

E_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT

E = emission factor from Equation 1a or 1b

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation (see

below)

Figure 13.2.2-1 gives the geographical distribution for the mean annual number of "wet" days for the United States.

Equation 2 provides an estimate that accounts for precipitation on an annual average basis for the purpose of inventorying emissions. It should be noted that Equation 2 does not account for differences in the temporal distributions of the rain events, the quantity of rain during any event, or the potential for the rain to evaporate from the road surface. In the event that a finer temporal and spatial resolution is desired for inventories of public unpaved roads, estimates can be based on a more complex set of assumptions. These assumptions include:

- 1. The moisture content of the road surface material is increased in proportion to the quantity of water added;
- 2. The moisture content of the road surface material is reduced in proportion to the Class A pan evaporation rate;
- 3. The moisture content of the road surface material is reduced in proportion to the traffic volume; and
- 4. The moisture content of the road surface material varies between the extremes observed in the area. The CHIEF Web site (http://www.epa.gov/ttn/chief/ap42/ch13/related/c13s02-2.html) has a file which contains a spreadsheet program for calculating emission factors which are temporally and spatially resolved. Information required for use of the spreadsheet program includes monthly Class A pan evaporation values, hourly meteorological data for precipitation, humidity and snow cover, vehicle traffic information, and road surface material information.

It is emphasized that the simple assumption underlying Equation 2 and the more complex set of assumptions underlying the use of the procedure which produces a finer temporal and spatial resolution have not been verified in any rigorous manner. For this reason, the quality ratings for either approach should be downgraded one letter from the rating that would be applied to Equation 1.

13.2.2.3 Controls¹⁸⁻²²

A wide variety of options exist to control emissions from unpaved roads. Options fall into the following three groupings:

1. Vehicle restrictions that limit the speed, weight or number of vehicles on the road;

- 2. <u>Surface improvement</u>, by measures such as (a) paving or (b) adding gravel or slag to a dirt road; and
 - 3. <u>Surface treatment</u>, such as watering or treatment with chemical dust suppressants.

Available control options span broad ranges in terms of cost, efficiency, and applicability. For example, traffic controls provide moderate emission reductions (often at little cost) but are difficult to enforce. Although paving is highly effective, its high initial cost is often prohibitive. Furthermore, paving is not feasible for industrial roads subject to very heavy vehicles and/or spillage of material in transport. Watering and chemical suppressants, on the other hand, are potentially applicable to most industrial roads at moderate to low costs. However, these require frequent reapplication to maintain an acceptable level of control. Chemical suppressants are generally more cost-effective than water but not in cases of temporary roads (which are common at mines, landfills, and construction sites). In summary, then, one needs to consider not only the type and volume of traffic on the road but also how long the road will be in service when developing control plans.

<u>Vehicle restrictions</u>. These measures seek to limit the amount and type of traffic present on the road or to lower the mean vehicle speed. For example, many industrial plants have restricted employees from driving on plant property and have instead instituted bussing programs. This eliminates emissions due to employees traveling to/from their worksites. Although the heavier average vehicle weight of the busses increases the base emission factor, the decrease in vehicle-miles-traveled results in a lower overall emission rate.

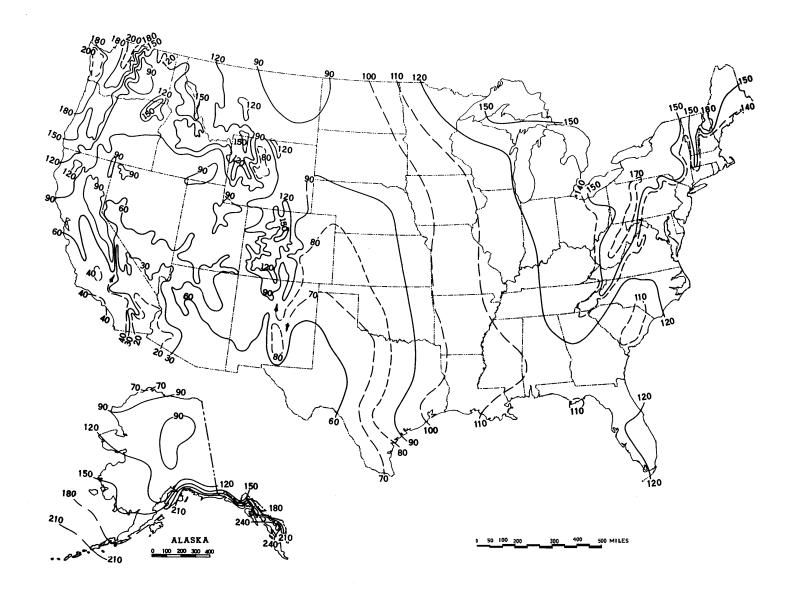


Figure 13.2.2-1. Mean number of days with 0.01 inch or more of precipitation in United States.

<u>Surface improvements</u>. Control options in this category alter the road surface. As opposed to the "surface treatments" discussed below, improvements are relatively "permanent" and do not require periodic retreatment.

The most obvious surface improvement is paving an unpaved road. This option is quite expensive and is probably most applicable to relatively short stretches of unpaved road with at least several hundred vehicle passes per day. Furthermore, if the newly paved road is located near unpaved areas or is used to transport material, it is essential that the control plan address routine cleaning of the newly paved road surface.

The control efficiencies achievable by paving can be estimated by comparing emission factors for unpaved and paved road conditions. The predictive emission factor equation for paved roads, given in Section 13.2.1, requires estimation of the silt loading on the traveled portion of the paved surface, which in turn depends on whether the pavement is periodically cleaned. Unless curbing is to be installed, the effects of vehicle excursion onto unpaved shoulders (berms) also must be taken into account in estimating the control efficiency of paving.

Other improvement methods cover the road surface with another material that has a lower silt content. Examples include placing gravel or slag on a dirt road. Control efficiency can be estimated by comparing the emission factors obtained using the silt contents before and after improvement. The silt content of the road surface should be determined after 3 to 6 months rather than immediately following placement. Control plans should address regular maintenance practices, such as grading, to retain larger aggregate on the traveled portion of the road.

<u>Surface treatments</u> refer to control options which require periodic reapplication. Treatments fall into the two main categories of (a) "wet suppression" (i. e., watering, possibly with surfactants or other additives), which keeps the road surface wet to control emissions and (b) "chemical stabilization/ treatment", which attempts to change the physical characteristics of the surface. The necessary reapplication frequency varies from several minutes for plain water under summertime conditions to several weeks or months for chemical dust suppressants.

Watering increases the moisture content, which conglomerates particles and reduces their likelihood to become suspended when vehicles pass over the surface. The control efficiency depends on how fast the road dries after water is added. This in turn depends on (a) the amount (per unit road surface area) of water added during each application; (b) the period of time between applications; (c) the weight, speed and number of vehicles traveling over the watered road during the period between applications; and (d) meteorological conditions (temperature, wind speed, cloud cover, etc.) that affect evaporation during the period.

Figure 13.2.2-2 presents a simple bilinear relationship between the instantaneous control efficiency due to watering and the resulting increase in surface moisture. The moisture ratio "M" (i.e., the x-axis in Figure 13.2.2-2) is found by dividing the surface moisture content of the watered road by the surface moisture content of the uncontrolled road. As the watered road surface dries, both the ratio M and the predicted instantaneous control efficiency (i.e., the y-axis in the figure) decrease. The figure shows that between the uncontrolled moisture content and a value twice as large, a small increase in moisture content results in a large increase in control efficiency. Beyond that, control efficiency grows slowly with increased moisture content.

Given the complicated nature of how the road dries, characterization of emissions from watered roadways is best done by collecting road surface material samples at various times between water truck passes. (Appendices C.1 and C.2 present the sampling and analysis procedures.) The moisture content measured can then be associated with a control efficiency by use of Figure 13.2.2-2. Samples that reflect average conditions during the watering cycle can take the form of either a series of samples between water applications or a single sample at the midpoint. It is essential that samples be collected during periods with active traffic on the road. Finally, because of different evaporation rates, it is recommended that samples be collected at various times during the year. If only one set of samples is to be collected, these must be collected during hot, summertime conditions.

When developing watering control plans for roads that do not yet exist, it is strongly recommended that the moisture cycle be established by sampling similar roads in the same geographic area. If the moisture cycle cannot be established by similar roads using established watering control plans, the more complex methodology used to estimate the mitigation of rainfall and other precipitation can be used to estimate the control provided by routine watering. An estimate of the maximum daytime Class A pan evaporation (based upon daily evaporation data published in the monthly Climatological Data for the state by the National Climatic Data Center) should be used to insure that adequate watering capability is available during periods of highest evaporation. The hourly precipitation values in the spreadsheet should be replaced with the equivalent inches of precipitation (where the equivalent of 1 inch of precipitation is provided by an application of 5.6 gallons of water per square yard of road). Information on the long term average annual evaporation and on the percentage that occurs between May and October was published in the Climatic Atlas (Reference 16). Figure 13.2.2-3 presents the geographical distribution for "Class A pan evaporation" throughout the United States. Figure 13.2.2-4 presents the geographical distribution of the percentage of this evaporation that occurs between May and October. The U.S. Weather Bureau Class A evaporation pan is a cylindrical metal container with a depth of 10 inches and a diameter of 48 inches. Periodic measurements are made of the changes of the water level.

The above methodology should be used <u>only for prospective analyses</u> and for designing watering programs for existing roadways. The quality rating of an emission factor for a watered road that is based on this methodology should be downgraded two letters. Periodic road surface samples should be collected and analyzed to verify the efficiency of the watering program.

As opposed to watering, chemical dust suppressants have much less frequent reapplication requirements. These materials suppress emissions by changing the physical characteristics of the existing road surface material. Many chemical unpaved road dust suppressants form a hardened surface that binds particles together. After several applications, a treated road often resembles a paved road except that the surface is not uniformly flat. Because the improved surface results in more grinding of small particles, the silt content of loose material on a highly controlled surface may be substantially higher than when the surface was uncontrolled. For this reason, the models presented as Equations 1a and 1b cannot be used to estimate emissions from chemically stabilized roads. Should the road be allowed to return to an

uncontrolled state with no visible signs of large-scale cementing of material, the Equation 1a and 1b emission factors could then be used to obtain conservatively high emission estimates.

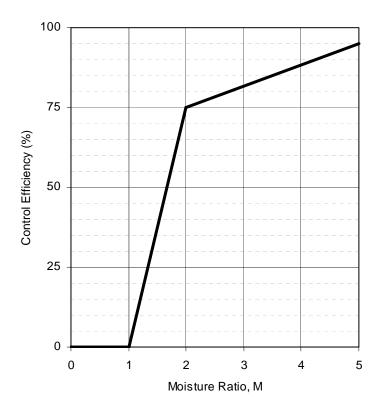


Figure 13.2.2-2. Watering control effectiveness for unpaved travel surfaces

The control effectiveness of chemical dust suppressants appears to depend on (a) the dilution rate used in the mixture; (b) the application rate (volume of solution per unit road surface area); (c) the time between applications; (d) the size, speed and amount of traffic during the period between applications; and (e) meteorological conditions (rainfall, freeze/thaw cycles, etc.) during the period. Other factors that affect the performance of dust suppressants include other traffic characteristics (e. g., cornering, track-on from unpaved areas) and road characteristics (e. g., bearing strength, grade). The variabilities in the above factors and differences between individual dust control products make the control efficiencies of chemical dust suppressants difficult to estimate. Past field testing of emissions from controlled unpaved roads has shown that chemical dust suppressants provide a PM-10 control efficiency of about 80 percent when applied at regular intervals of 2 weeks to 1 month.

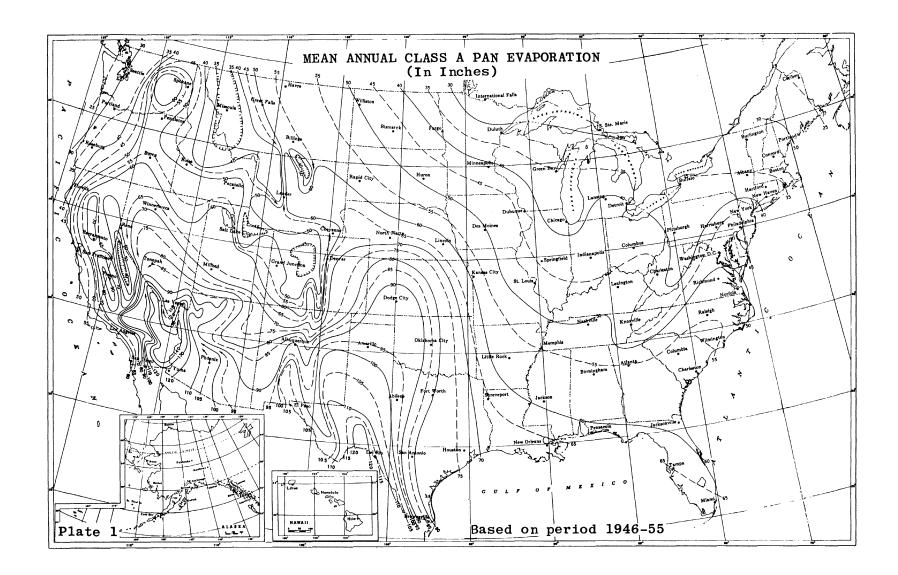


Figure 13.2.2-3. Annual evaporation data.

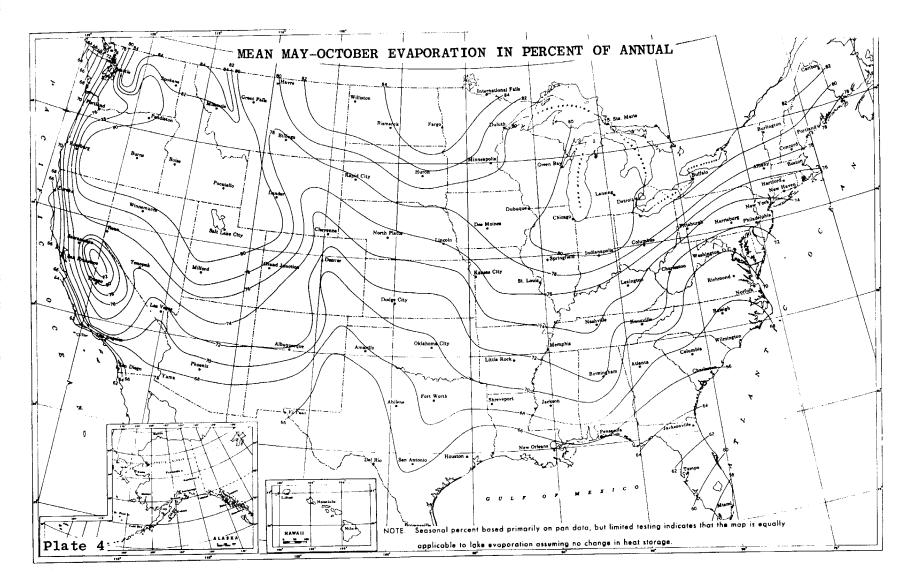


Figure 13.2.2-4. Geographical distribution of the percentage of evaporation occurring between May and October.

Petroleum resin products historically have been the dust suppressants (besides water) most widely used on industrial unpaved roads. Figure 13.2.2-5 presents a method to estimate average control efficiencies associated with petroleum resins applied to unpaved roads.²⁰ Several items should be noted:

- 1. The term "ground inventory" represents the total volume (per unit area) of petroleum resin concentrate (*not solution*) applied since the start of the dust control season.
- 2. Because petroleum resin products must be periodically reapplied to unpaved roads, the use of a time-averaged control efficiency value is appropriate. Figure 13.2.2-5 presents control efficiency values averaged over two common application intervals, 2 weeks and 1 month. Other application intervals will require interpolation.
- 3. Note that zero efficiency is assigned until the ground inventory reaches 0.05 gallon per square yard (gal/yd²). Requiring a minimum ground inventory ensures that one must apply a reasonable amount of chemical dust suppressant to a road before claiming credit for emission control. Recall that the ground inventory refers to the amount of petroleum resin concentrate rather than the total solution.

As an example of the application of Figure 13.2.2-5, suppose that Equation 1a was used to estimate an emission factor of 7.1 lb/VMT for PM-10 from a particular road. Also, suppose that, starting on May 1, the road is treated with 0.221 gal/yd² of a solution (1 part petroleum resin to 5 parts water) on the first of each month through September. Then, the average controlled emission factors, shown in Table 13.2.2-5, are found.

Table 13.2-2-5. EXAMPLE OF AVERAGE CONTROLLED EMISSION FACTORS FOR SPECIFIC CONDITIONS

Period	Ground Inventory, gal/yd ²	Average Control Efficiency, % ^a	Average Controlled Emission Factor, lb/VMT
May	0.037	0	7.1
June	0.073	62	2.7
July	0.11	68	2.3
August	0.15	74	1.8
September	0.18	80	1.4

^a From Figure 13.2.2-5, \leq 10 μ m. Zero efficiency assigned if ground inventory is less than 0.05 gal/yd². 1 lb/VMT = 281.9 g/VKT. 1 gal/yd² = 4.531 L/m².

Besides petroleum resins, other newer dust suppressants have also been successful in controlling emissions from unpaved roads. Specific test results for those chemicals, as well as for petroleum resins and watering, are provided in References 18 through 21.

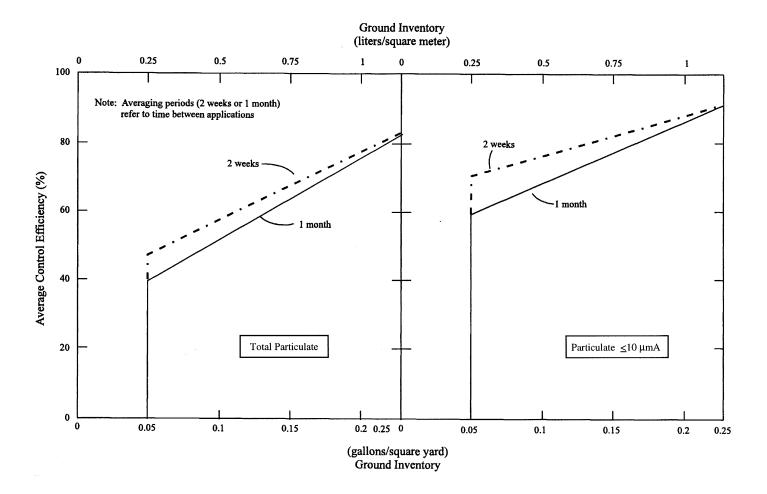


Figure 13.2.2-5. Average control efficiencies over common application intervals.

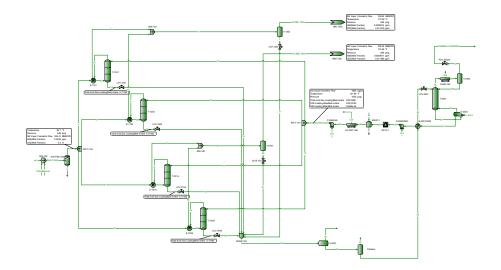
13.2.2.4 Updates Since The Fifth Edition

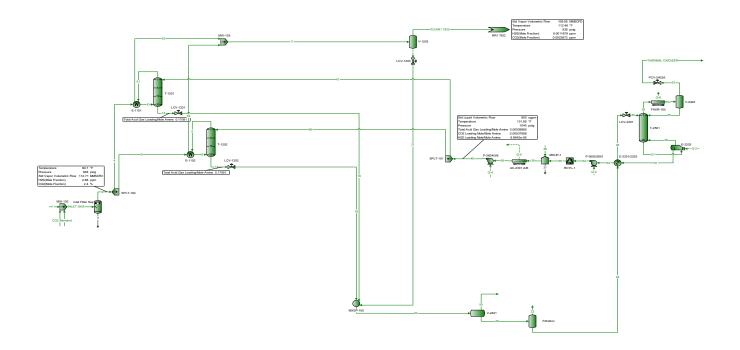
The Fifth Edition was released in January 1995. Revisions to this section since that date are summarized below. For further detail, consult the background report for this section (Reference 6).

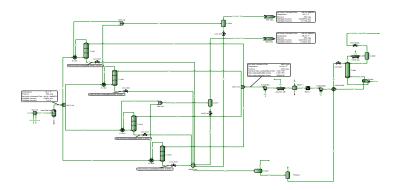
October 1998 (Supplement E)— This was a major revision of this section. Significant changes to the text and the emission factor equations were made.

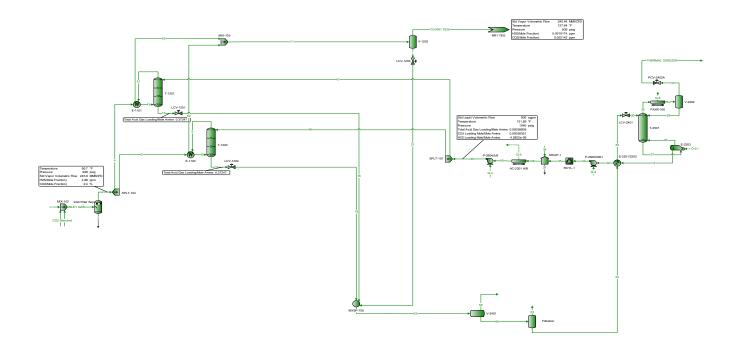
October 2001 – Separate emission factors for unpaved surfaces at industrial sites and publicly accessible roads were introduced. Figure 13.2.2-2 was included to provide control effectiveness estimates for watered roads.

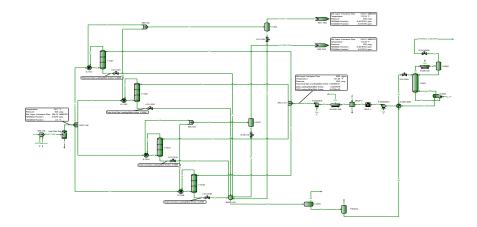
December 2003 – The public road emission factor equation (equation 1b) was adjusted to remove the component of particulate emissions from exhaust, brake wear, and tire wear. The parameter C in the new equation varies with aerodynamic size range of the particulate matter. Table 13.2.2-4 was added to present the new coefficients.

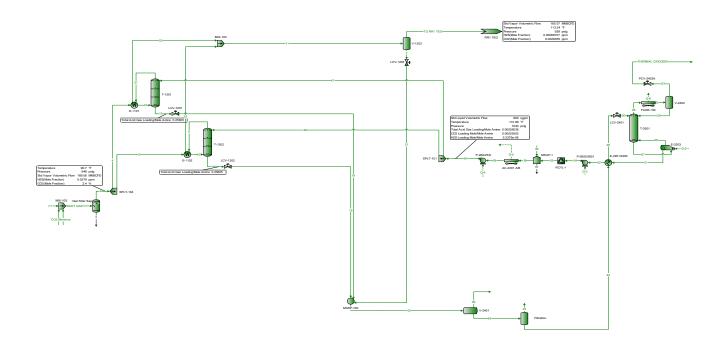

January 2006 – The PM-2.5 particle size multipliers (i.e., factors) in Table 13.2.2-2 were modified and the quality ratings were upgraded from C to B based on the wind tunnel studies of a variety of dust emitting surface materials.

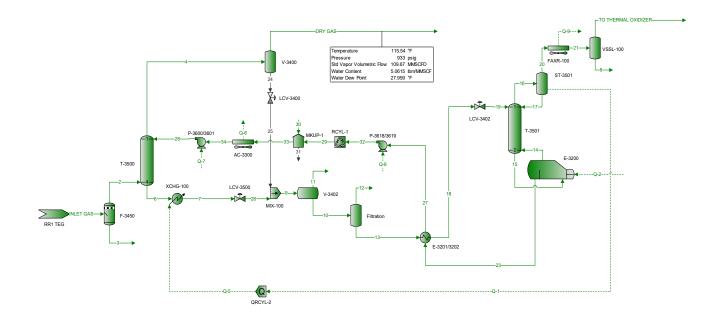

References For Section 13.2.2

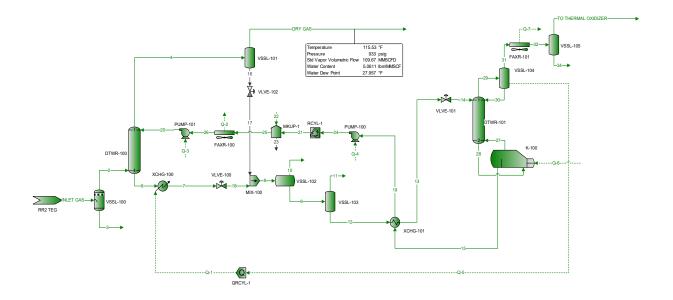

- 1. C. Cowherd, Jr., et al., Development Of Emission Factors For Fugitive Dust Sources, EPA-450/3-74-037, U. S. Environmental Protection Agency, Research Triangle Park, NC, June 1974.
- 2. R. J. Dyck and J. J. Stukel, "Fugitive Dust Emissions From Trucks On Unpaved Roads", *Environmental Science And Technology*, 10(10):1046-1048, October 1976.
- 3. R. O. McCaldin and K. J. Heidel, "Particulate Emissions From Vehicle Travel Over Unpaved Roads", Presented at the 71st Annual Meeting of the Air Pollution Control Association, Houston, TX, June 1978.
- 4. C. Cowherd, Jr, et al., Iron And Steel Plant Open Dust Source Fugitive Emission Evaluation, EPA-600/2-79-013, U. S. Environmental Protection Agency, Cincinnati, OH, May 1979.
- 5. G. Muleski, *Unpaved Road Emission Impact*, Arizona Department of Environmental Quality, Phoenix, AZ, March 1991.
- 6. Emission Factor Documentation For AP-42, Section 13.2.2, Unpaved Roads, Final Report, Midwest Research Institute, Kansas City, MO, September 1998.
- 7. T. Cuscino, Jr., *et al.*, *Taconite Mining Fugitive Emissions Study*, Minnesota Pollution Control Agency, Roseville, MN, June 1979.
- 8. *Improved Emission Factors For Fugitive Dust From Western Surface Coal Mining Sources*, 2 Volumes, EPA Contract No. 68-03-2924, Office of Air Quality Planning and Standards, U. S. Environmental Protection Agency, Research Triangle Park, NC.

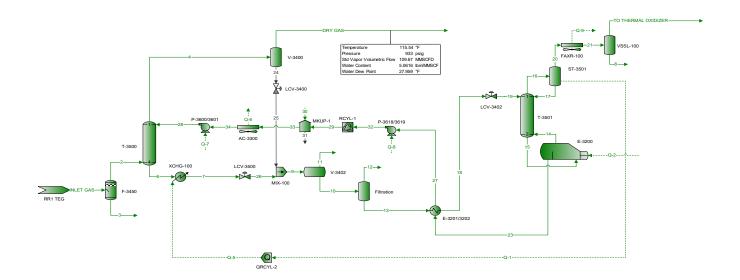

- 9. T. Cuscino, Jr., *et al.*, *Iron And Steel Plant Open Source Fugitive Emission Control Evaluation*, EPA-600/2-83-110, U. S. Environmental Protection Agency, Cincinnati, OH, October 1983.
- 10. Size Specific Emission Factors For Uncontrolled Industrial And Rural Roads, EPA Contract No. 68-02-3158, Midwest Research Institute, Kansas City, MO, September 1983.
- 11. C. Cowherd, Jr., and P. Englehart, *Size Specific Particulate Emission Factors For Industrial And Rural Roads*, EPA-600/7-85-038, U. S. Environmental Protection Agency, Cincinnati, OH, September 1985.
- 12. *PM-10 Emission Inventory Of Landfills In The Lake Calumet Area*, EPA Contract 68-02-3891, Work Assignment 30, Midwest Research Institute, Kansas City, MO, September 1987.
- 13. *Chicago Area Particulate Matter Emission Inventory Sampling And Analysis*, EPA Contract No. 68-02-4395, Work Assignment 1, Midwest Research Institute, Kansas City, MO, May 1988.
- 14. *PM-10 Emissions Inventory Data For The Maricopa And Pima Planning Areas*, EPA Contract No. 68-02-3888, Engineering-Science, Pasadena, CA, January 1987.
- 15. *Oregon Fugitive Dust Emission Inventory*, EPA Contract 68-D0-0123, Midwest Research Institute, Kansas City, MO, January 1992.
- 16. Climatic Atlas Of The United States, U. S. Department Of Commerce, Washington, DC, June 1968.
- 17. National Climatic Data Center, *Solar And Meteorological Surface Observation Network 1961-1990*; 3 Volume CD-ROM. Asheville, NC, 1993.
- 18. C. Cowherd, Jr. *et al.*, *Control Of Open Fugitive Dust Sources*, EPA-450/3-88-008, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 1988.
- 19. G. E. Muleski, et al., Extended Evaluation Of Unpaved Road Dust Suppressants In The Iron And Steel Industry, EPA-600/2-84-027, U. S. Environmental Protection Agency, Cincinnati, OH, February 1984.
- 20. C. Cowherd, Jr., and J. S. Kinsey, *Identification, Assessment And Control Of Fugitive Particulate Emissions*, EPA-600/8-86-023, U. S. Environmental Protection Agency, Cincinnati, OH, August 1986.
- 21. G. E. Muleski and C. Cowherd, Jr., *Evaluation Of The Effectiveness Of Chemical Dust Suppressants On Unpaved Roads*, EPA-600/2-87-102, U. S. Environmental Protection Agency, Cincinnati, OH, November 1986.
- 22. Fugitive Dust Background Document And Technical Information Document For Best Available Control Measures, EPA-450/2-92-004, Office Of Air Quality Planning And Standards, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 1992.
- 23. Written communication (Technical Memorandum) from P. Hemmer, E.H. Pechan & Associates, Inc., Durham, NC to B. Kuykendal, U. S. Environmental Protection Agency, Research Triangle Park, NC, August, 21, 2003.

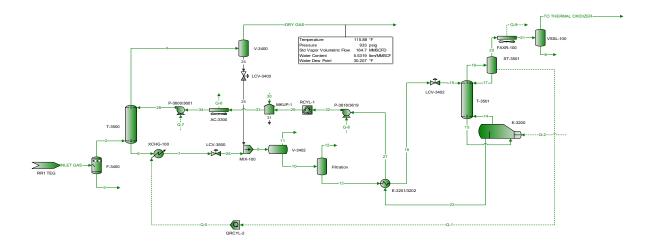

- 24. MOBILE6 User Guide, United States Environmental Protection Agency, Office of Transportation and Air Quality. EPA420-R-02-028, October 2002.
- 25. Written communication (Technical Memorandum) from G. Muleski, Midwest Research Institute, Kansas City, MO, to B. Kuykendal, U. S. Environmental Protection Agency, Research Triangle Park, NC, Subject "Unpaved Roads", September 27, 2001.
- 26. Written communication (Technical Memorandum) from W. Kuykendal, U. S. Environmental Protection Agency, to File, Subject "Decisions on Final AP-42 Section 13.2.2 Unpaved Roads", November 24, 2003.
- 27. C. Cowherd, *Background Document for Revisions to Fine Fraction Ratios & sed for AP-42 Fugitive Dust Emission Factors*. Prepared by Midwest Research Institute for Western Governors Association, Western Regional Air Partnership, Denver, CO, February 1, 2006.

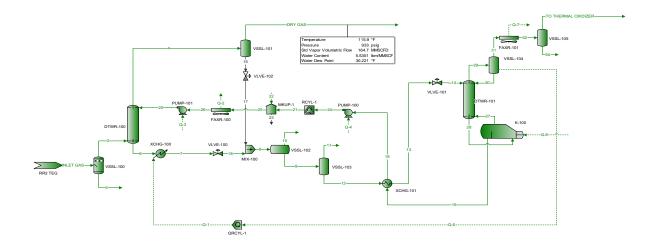


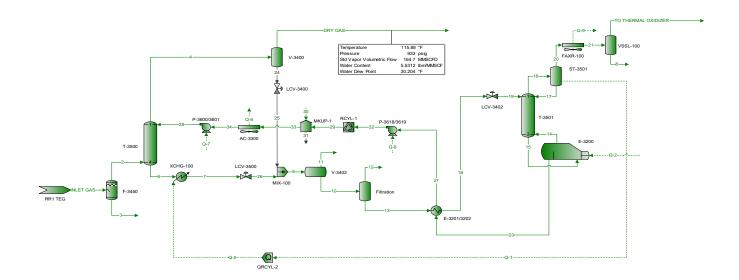


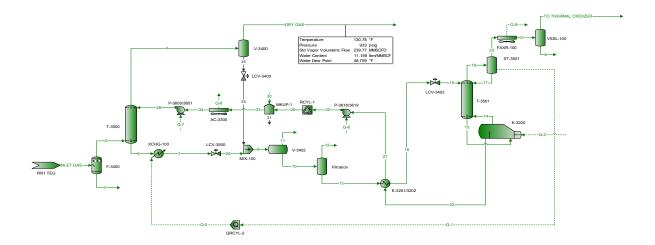


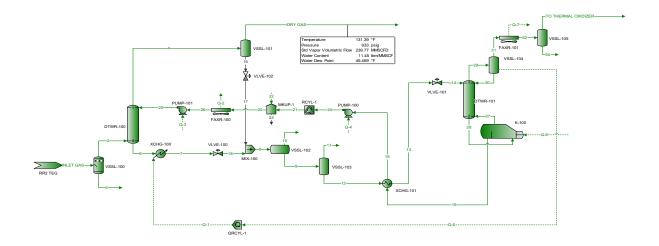


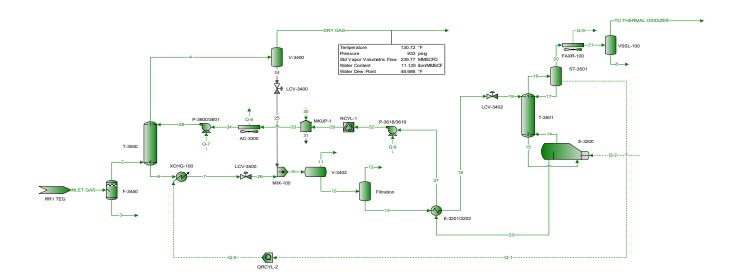


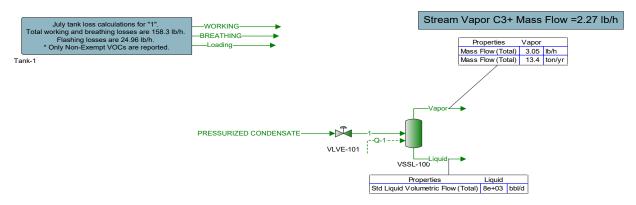


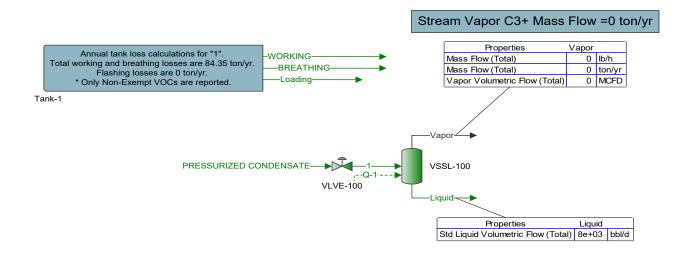




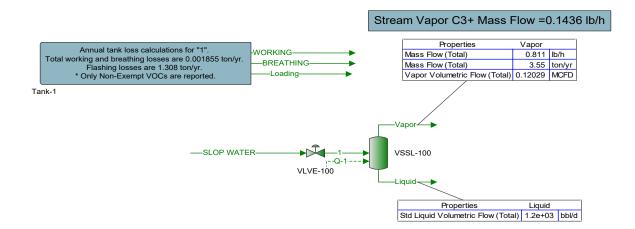








Targa Midstream Services LLC Road Runner Gas Plant Hourly Crude Working/Breathing/Flash

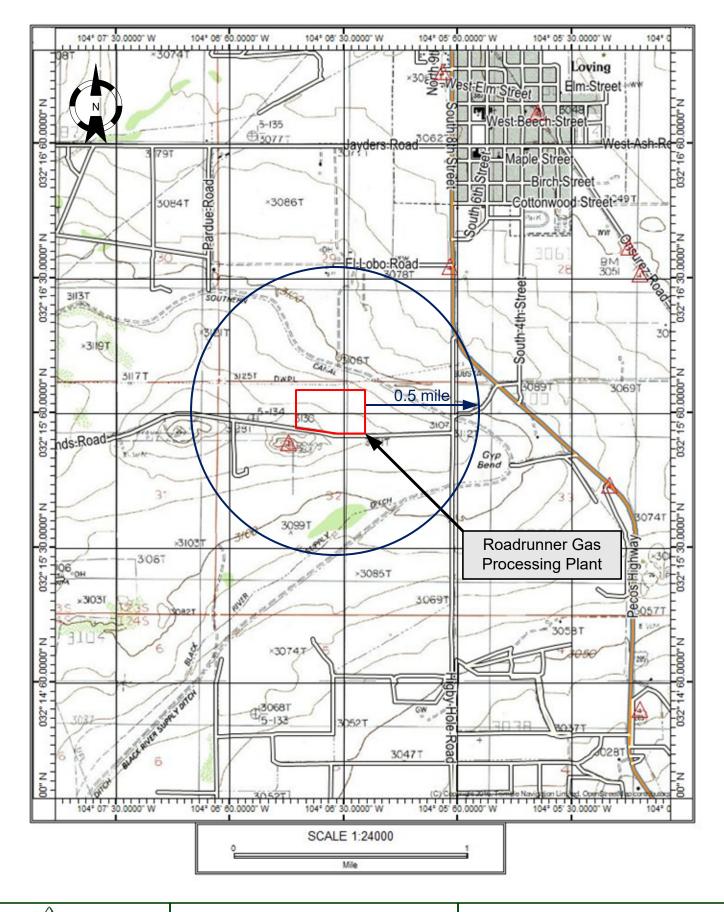

Names	Units	PRESSURIZED CONDENSATE	Liquid	Vapor
Temperature	°F	120*	95	95*
Pressure	psia	14.7*	14.7	14.7
Mass Fraction Vapor	%	0.19202	0	100
Molecular Weight	lb/lbmol	88.602	88.604	52.438
Vapor Volumetric Flow	ft^3/h	2885.6	1913.6	23.24
Liquid Volumetric Flow	gpm	359.76	238.58	2.8975

Road Runner Annual Crude Working/Breathing/Flash

Names	Units	Liquid	Vapor
Temperature	°F	63.2	63.2*
Pressure	psig	0.0040512	0.0040512
Mass Fraction Vapor	%	0	
Molecular Weight	lb/lbmol	88.602	
Vapor Volumetric Flow	ft^3/h	1867.5	0
Liquid Volumetric Flow	gpm	232.83	0

Road Runner Hourly PW Working/Breathing/Flash

Units	Liquid	Vapor
°F	95	95*
psig	20.223	20.223
%	0	100
lb/lbmol	18.02	27.302
ft^3/h	282.26	5.0121
gpm	35.191	0.62488
	°F psig % lb/lbmol ft^3/h	°F 95 psig 20.223 % 0 lb/lbmol 18.02 ft^3/h 282.26


Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A topographical map is attached. Access and haul roads are indicated in green, the facility property boundary is indicated in blue, and the area which will be restricted to public access is indicated in red.

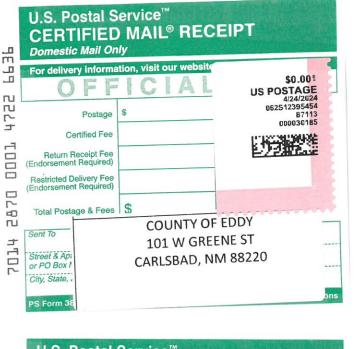
ENVIRONMENTAL, LLC		F	Area Map	Luci	d Energy Delaware,	LLC
Scale: 1:24.000	Drawn by: MDF	Date: 4/8/2020	Roadrunner Gas Processing Plant	Project No.:	File Name:	Figure:
1.24,000	Chk'd by:	Date:	N 32° 15' 56.71" Latitude W 104° 6' 29.97" Longitude	097-002	Roadrunner Figures	Section 8

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

× I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.


Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. × A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. × A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g. post office, library, grocery, etc.)
- 3. \times A copy of the property tax record (20.2.72.203.B NMAC).
- 4. × A sample of the letters sent to the owners of record.
- 5. × A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. × A sample of the public notice posted and a verification of the local postings.
- 7. × A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. $\, imes\,$ A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. × A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. × A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. × A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

20	U.S. Postal Service™ CERTIFIED MAIL® RECEIPT Domestic Mail Only					
E 5	For delivery inform	ation, visit our websi				
4722	OFF	\$0.00 US POSTAGE 4/2/2024 062512395454 87113				
1000 0	Certified Fee Return Recelpt Fee (Endorsement Required) Restricted Delivery Fee (Endorsement Required)	000030168				
2870	Total Postage & Fees	\$				
7014	Street & Api or PO Box N City, State, 2	HENRY MCDONALD PO BOX 597 LOVING, NM 88256-0597				

E B	CE Dom	. Postal RTIFIE estic Mail O	Service [™] D MAIL® RE _{Inly}	ECEIPT	
P	For de	elivery inform	ation, visit our web	site of management of the same	
П		OFF	ICIA	\$0.009	
472		Postage	\$	US POSTAGE 4/24/2024 062S12395454	
Н		Certified Fee		87113 000030173	
1000	Retu (Endorser	rn Recelpt Fee ment Required)			-
70	Restricte (Endorsen	ed Delivery Fee ment Required)			E
. B 2	Total Po	stage & Fees	\$		E
_	Sent To		OGDEN ESTAT	E HEIRS _	-
7014	Street & /	2302 FOREHAND RD			
r-	or PO Bo City, Stat		CARLSBAD, NN	A 88220	
	PS Form			cti	ons

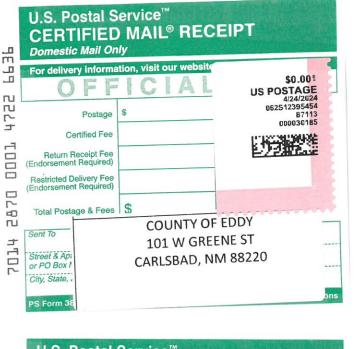
Domestic Mail C	D MAIL® RECEIPT
100	002512393494 87113 000030170
Sent To Street & Apt. No., or PO Box No. City, State, ZIP+ PS Form 3800,	JOSE D & ELISA (N-JT) ZUNIGA 211 W FIESTA DR CARLSBAD, NM 88220

10	CER		Service [™] D MAIL® RE _{nly}	CEIPT	
19	For deliv	very inform	ation, visit our webs	i	46
ги) F F	ICIA	\$0.00	1
472		Postage	\$	US POSTAGE 4/24/2024 062S12395454 87113	
Н	(Certified Fee		000030172	
0001	Return (Endorseme	Receipt Fee nt Required)			
2	Restricted [(Endorsement	Delivery Fee nt Required)			
LD -	Total Posta	age & Fees	\$		
	Sent To	N	ELDA WYRICK I	TAL (JT) COX	
7014	Street & Api		3101 SEXT	ON DR	
7	or PO Box f		NORMAN, C	JK 73026	
	PS Form 38			, br	ns

U.S. Postal CERTIFIE Domestic Mail C	D MAIL® R	ECEIPT				
For delivery inform	nation, visit our wel	D.S				
n OF	FICIA	\$0.00! US POSTAGE				
Postage	\$	4/24/2024 062S12395454	R			
Certified Fee		87113 000030174				
Return Receipt Fee (Endorsement Required)						
Restricted Delivery Fee (Endorsement Required)						
Total Postana & Face						
PARIOR	MARIA REV H	ERNANDEZ TRUST				
Street & A or PO Box	PABLO P & MARIA Q TRUSTEES					
or PO Box	1971 PECO					
City, State	LOVING, NN					
PS Form I			tions			

55	U.S. Postal CERTIFIE Domestic Mail O	D MAIL® RI	ECEIPT	
19	For delivery inform	ation, visit our web		5
2224 1000 0		s s	\$0.00 US POSTAGE 4/24/2024 062S12395454 87113 000030176	
2870	Total Postage & Fees	\$		
1011	Sent To	RYAN M	1 ZUNIGA	
7014	Street & Apt. N		UITE LANE	
2	or PO Box No. City, State, ZIF PS Form 3800	ARTESIA,	NM 88210	5

1 3 2	Domestic Mail (D MAIL® RE		
Ф		nation, visit our websit	e at www.ve-	1
L	Urr	FIGIAL	\$0.009	
472	Postage Certified Fee	\$	US POSTAGE 4/24/2024 062S12395454 87113 000030178	
0001	Return Receipt Fee		000030178	
	(Endorsement Required)			
70	Restricted Delivery Fee (Endorsement Required)			
191	Total Postage & Face	\$		
1	Sent To	STATE OF NEW	MEXICO	
7014	Street & Apt.	310 OLD SANTA	FF TRAIL	1
	or PO Box \ City, State, 2	SANTA FE, NN	187504	
	PS Form 38			
			ons	

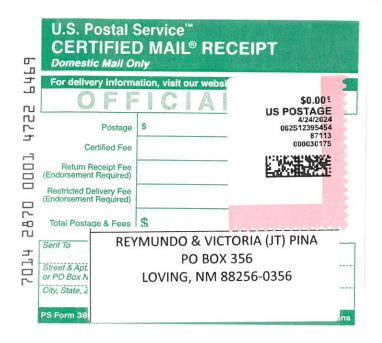

64 <u>1</u> 4	U.S. Postal CERTIFIE Domestic Mail O	D MAIL® RECEIPT	
	For delivery inform	nation, visit our websiter in the second	
ги		FICIAI \$0.00!	
472	Postage	US POSTAGE 4/24/2024 062S12395454	
Н	Certified Fee	87113 000030180	
0001	Return Receipt Fee (Endorsement Required)	ラビルの法	
70 0	Restricted Delivery Fee (Endorsement Required)		
287	Total Postage & Fees		\$
士	Sent To TAP	RGA NORTHERN DELAWARE LLC	
	Street & Apt.	3100 MCKINNON ST STE 800	
~	or PO Box N City, State, Z	DALLAS, TX 75201-7014	
	PS Form 38		ns

P742	CERT	FIE	Service [™] D MAIL [®] RECEI ^{nly}	PT	
7	For delivery	inform	ation, visit our websit		
4722			ICIAL	\$0.00° US POSTAGE 4/24/2024	
		Postage	\$	062S12395454 87113	
		ied Fee		000030184	
0001	Return Rece (Endorsement Re	eipt Fee equired)		THE T	
70 [Restricted Delivi (Endorsement Re	ery Fee equired)			
Pu	Total Postage	& Fees	\$		
	Sent To	EDD	Y COUNTY - COUNTY	MANAGER	
7014	Street & Apt.	101	W GREENE STREET,	SUITE 110	
7	or PO Box Nc City, State, ZI		CARLSBAD, NM 88		
	PS Form 380			,	s

41	U.S. Postal S CERTIFIEI Domestic Mail O	D MAIL® RECEIPT
E 3	For delivery inform	ation, visit our website of
ru ru	OFF	\$0.00! US POSTAGE
47	Postage	\$ 4/24/2024 062S12395454
	Certified Fee	87113 000030182
2870 0001	Return Receipt Fee (Endorsement Required)	
	Restricted Delivery Fee (Endorsement Required)	
4	Total Postar - ° 5000	¢
	Sent To	VILLAGE OF LOVING
丁一		PO BOX 56
7014	Street & Apt. or PO Box N	LOVING, NM 88256-0056
	City, State, Z	
	PS Form 38	ns

गग	CER	TIFIED			IPT
9	For deliv	ery informa	ition, visit our web	osite	
	(FF	ICIA		\$0.00° US POSTAGE 4/24/2024
4727		Postage	\$		062S12395454 87113 000030183
		Certified Fee			PRESCRIPTION
0001	Return (Endorsemo	Receipt Fee ent Required)			
	Restricted (Endorsem	Delivery Fee ent Required)	19		
870	Total Po	stage & Fees			
П	Sent To	LO	VING - VILLA	GE M	ANAGER
ュ	Sent 10		415 W CE	DAR	ST
7014	Street & F or PO Bo.		LOVING, N	M 88	256
	City, State				ctions
	1010111				***************************************

20	U.S. Postal CERTIFIEL Domestic Mail O	D MAIL® RECEIPT
E 5	For delivery inform	ation, visit our websi
4722	OFF	\$0.00 US POSTAGE 4/2/2024 062512395454 87113
1000 0	Certified Fee Return Recelpt Fee (Endorsement Required) Restricted Delivery Fee (Endorsement Required)	000030168
2870	Total Postage & Fees	\$
7014	Street & Api or PO Box N City, State, 2	HENRY MCDONALD PO BOX 597 LOVING, NM 88256-0597



E B	CE Dom	. Postal RTIFIE estic Mail O	Service [™] D MAIL® RE _{Inly}	ECEIPT	
P	For de	elivery inform	ation, visit our web	site of management of the same	
П		OFF	ICIA	\$0.009	
472		Postage	\$	US POSTAGE 4/24/2024 062S12395454	
Н		Certified Fee		87113 000030173	
1000	Retu (Endorser	rn Recelpt Fee ment Required)			-
70	Restricte (Endorsen	ed Delivery Fee ment Required)			E
. B 2	Total Po	stage & Fees	\$		E
_	Sent To		OGDEN ESTAT	E HEIRS _	-
7014	Street & /		2302 FOREHA		
r-	or PO Bo City, Stat		CARLSBAD, NN	A 88220	
	PS Form			cti	ons


Domestic Mail C	D MAIL® RECEIPT
100	002512393494 87113 000030170
Sent To Street & Apt. No., or PO Box No. City, State, ZIP+ PS Form 3800,	JOSE D & ELISA (N-JT) ZUNIGA 211 W FIESTA DR CARLSBAD, NM 88220

10	CER		Service [™] D MAIL® RE _{nly}	CEIPT	
19	For deliv	very inform	ation, visit our webs	i	46
ги) F F	ICIA	\$0.00	1
472		Postage	\$	US POSTAGE 4/24/2024 062S12395454 87113	
Н	(Certified Fee		000030172	
0001	Return (Endorseme	Receipt Fee nt Required)			
2	Restricted [(Endorsement	Delivery Fee nt Required)			
LD -	Total Posta	age & Fees	\$		
	Sent To	N	ELDA WYRICK I	TAL (JT) COX	
7014	Street & Api		3101 SEXT	ON DR	
7	or PO Box f		NORMAN, C	JK 73026	
	PS Form 38			, br	ns

U.S. Postal CERTIFIE Domestic Mail C	D MAIL® R	ECEIPT	
For delivery inform	nation, visit our wel	D.S	
n OF	FICIA	\$0.00! US POSTAGE	
Postage	\$	4/24/2024 062S12395454	R
Certified Fee		87113 000030174	
Return Receipt Fee (Endorsement Required)			
Restricted Delivery Fee (Endorsement Required)			
Total Postana & Face			
PARIOR	MARIA REV H	ERNANDEZ TRUST	
Street & A or PO Box	BLO P & MARIA	O TRUSTEES	
or PO Box	1971 PECO		
City, State	LOVING, NN		
PS Form I			tions

12 12	Domestic Ma	IED	MAIL® RI	ECEIPT	
19	For delivery in	formatio	n, visit our web		Carro
870 0001 4722	Pos Certified Return Receipt (Endorsement Required Restricted Delivery (Endorsement Required	Fee red)	CIA	\$0.00! US POSTAGE 4/24/2024 062512395546 87113 000030176	
	Total Postage & F	ees \$			
士	Sent To			1 ZUNIGA	
7014	Street & Apt. N			UITE LANE	_
	or PO Box No. City, State, ZIF PS Form 3800		ARTESIA,	NM 88210	
					5

P474	U.S. Postal CERTIFIE Domestic Mail O	D MAIL® RECEIPT	
己	For delivery inform	nation, visit our websit	
ги		FICIAI \$0.00:	1
472	Postage	US POSTAGE \$ 4/24/2024 062S12395454	
\vdash	Certified Fee	87113 000030180	
0001	Return Receipt Fee (Endorsement Required)		
	Restricted Delivery Fee (Endorsement Required)	Tr. Bend St.	
287	Total Postage & Fees	\$	\$
+	Sent To TAR	RGA NORTHERN DELAWARE LLC	
707	Street & Apt.	3100 MCKINNON ST STE 800	
75	or PO Box N City, State, Z	DALLAS, TX 75201-7014	
	PS Form 38		ons

P742	CERT	IFIE	Service D MAI	e™ L® RE	CEIPT	
7	For deliver	y inform	ation, visit	our websit		2
רח		June Par	IC	IAL	\$0.00 US POSTAGE	
472		Postage	\$		062S12395454 87113	
-7	Cen	tified Fee			000030184	3
0001	Return Re (Endorsement F	ceipt Fee Required)			7712	
70 [Restricted Deli (Endorsement F	ivery Fee Required)				
-0 Lu	Total Postage	& Fees	\$			
	Sent To	EDD	Y COUN	TY – CO	UNTY MANAGER	
7014	Street & Apt.				REET, SUITE 110	
7	or PO Box No City, State, ZI				IM 88220	
	PS Form 380				h	S

91	U.S. Postal Service™ CERTIFIED MAIL® RECEIPT Domestic Mail Only					
<u> </u>	For delivery inform	ation, visit our website of the state of the				
ги	OFF	C A \$0.00!				
472	Postage	\$ US POSTAGE 4/24/2024 062S12395454 87.113	-			
Н	Certified Fee	000030182				
000	Return Receipt Fee (Endorsement Required)					
	Restricted Delivery Fee (Endorsement Required)					
2870	Total Postar . 5000					
	Sent To	VILLAGE OF LOVING	7			
7014	Street & Apt.	PO BOX 56				
2	or PO Box N	LOVING, NM 88256-0056				
	City, State, Z	****				
	PS Form 38	ns	ı			

गग	U.S. Postal Service™ CERTIFIED MAIL® RECEIPT Domestic Mail Only						
9	For deliv	ery informa	ition, visit our web	osite			
	(FF	ICIA		\$0.00° US POSTAGE 4/24/2024		
12 C +		Postage	\$		062S12395454 87113 000030183		
		Certified Fee			PRESCRIPTION		
0001	Return (Endorsemo	Receipt Fee ent Required)					
	Restricted (Endorsem	Delivery Fee ent Required)	19				
870	Total Po	stage & Fees					
П	Sent To	LO	VING - VILLA	GE M	ANAGER		
ュ	Sent 10		415 W CE	DAR	ST		
7074	Street & F or PO Bo.		LOVING, N	M 88	256		
	City, State				ctions		
	1010111				***************************************		

2. Table of Posted Public Notice Locations

Name	Address	City	State	Zip Code
Facility Entrance				
Village of Loving City Hall	415 W Cedar St.	Loving	NM	88256
Loving Allsup's Convenience Store	105 N 8th St.	Loving	NM	88256
Loving USPS	402 W Beech St.	Loving	NM	88256

7.1 Table of Noticed Citizens

Name	Address	City	State	Zip Code
COUNTY OF EDDY	101 W GREENE ST	CARLSBAD	NM	88220
DAMIAN S & CYNTHIA KAY (JT) ONSUREZ	PO BOX 1088	CARLSBAD	NM	88221-1088
FELIX & DEBRA (JT) CALDERON	PO BOX 64	LOVING	NM	88256-0064
GEORGE A HUFFER	4713 CRAIG AVE	METAIRIE	LA	70003
GLORIA S ONSUREZ	PO BOX 598	LOVING	NM	88256-0598
HENRY MCDONALD	PO BOX 597	LOVING	NM	88256-0597
JOEL S & KATHERINE G (JT) ONSUREZ	PO BOX 1058	LOVING	NM	88256-1058
JOSE D & ELISA (N-JT) ZUNIGA	211 W FIESTA DR	CARLSBAD	NM	88220
MRS F W SOOBY	921 MONTCREST DR	REDDING	CA	96003
NELDA WYRICK ETAL (JT) COX	3101 SEXTON DR	NORMAN	OK	73026
OGDEN ESTATE HEIRS	2302 FOREHAND RD	CARLSBAD	NM	88220
PABLO & MARIA REV HERNANDEZ TRUST, PABLO P & MARIA Q TRUSTEES	1971 PECOS HWY	LOVING	NM	88256
REYMUNDO & VICTORIA (JT) PINA	PO BOX 356	LOVING	NM	88256-0356
RYAN M ZUNIGA	24 MESQUITE LANE	ARTESIA	NM	88210
SOUTHWESTERN PUBLIC SERVICE CO ATTN: PROPERTY TAX DEPT	PO BOX 1979	DENVER	CO	80201-0840
STATE OF NEW MEXICO	310 OLD SANTA FE TRAIL	SANTA FE	NM	87504
SUSAN D & JOHN E BLACKMON	3501 BONNIEBROOK DR	PLANO	TX	75075
TARGA NORTHERN DELAWARE LLC	3100 MCKINNON ST STE 800	DALLAS	TX	75201-7014
VICKIE CONNALLY	125 BRINKLEY LN	ELGIN	TX	78621-5046
VILLAGE OF LOVING	PO BOX 56	LOVING	NM	88256-0056

7.2 Table of Noticed Counties

Name	Address	City	State	Zip Code
EDDY COUNTY - COUNTY MANAGER	101 W GREENE STREET, SUITE 110	Carlsbad	NM	88220

7.3 Table of Noticed Municipalities

Name	Address	City	State	Zip Code
LOVING - VILLAGE MANAGER	415 W CEDAR ST	LOVING	NM	88256

7.4 Table of Noticed Tribes

Name	Address	City	State	Zip Code
	N/A - There are no tribes located within 10 miles of the facility fenceline.			

4/23/24, 1:27 PM Account

- Account Search
 View Created Report(s)
- Help?
- Eddy County Website
- County Treasurer
- · County Assessor
- County Clerk Logout Public

Account: R200265 *Mill Levy does not include Special District Rates such as Penasco, Carlsbad Soil & Water, Central Valley, Eagle Draw, PVC, Cottonwood, and Hackberry

Location Owner Information Assessment History Account Number R200265 Owner Name TARGA NORTHERN DELAWARE LLC Actual Value (2024) Situs Address 1098 BOUNDS ROAD Owner Address 3100 MCKINNON ST STE 800 \$37,900 Primary Taxable DALLAS, TX 75201 Tax Area CO_NR - CARLSBAD-OUT (Nonresidential) Tax Area: CO_NR Mill Levy: 22.561000 Parcel Number 4-164-138-202-066 Actual Assessed Acres Non-Residential \$113,699 \$37,900 122.000 Legal Summary Subd: CONNALLY LINE ADJUSTMENT Tract: A THIS TRACT IS IN TWO DIFFERENT SEC'S AND HAS TO BE SOLD TOGETHER SEE 4-163-138-471-039 Quarter:

NE S: 31 T: 23S R: 28E Map Number 320-CLA-A CAB 6-623-1 Parcel Size 122.00 AC ODD SHAPE TRACT Tax History **Images** Tax Year Taxes • <u>GIS</u> *2026 \$881.62 No Tax Values 2025 * Estimated

CERTIFIED MAIL 7014 2870 0001 4722 6336 RETURN RECEIPT REQUESTED (certified mail is required, return receipt is optional)

Dear Neighbor,

Targa Northern Delaware, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its Road Runner Gas Plant facility. The expected date of application submittal to the Air Quality Bureau is April 21, 2024.

The exact location for the proposed facility known as, **Road Runner Gas Plant**, is at latitude **32.265519** and longitude **-104.108318**. The approximate location of this facility is **1.6** miles south-southwest of Loving in Eddy County, New Mexico.

The proposed **modification** consists of updating NSR Permit 7200-M4 to authorize additional diesel generators, increased emissions to the flare and increased startup, shutdown, and maintenance (SSM) and malfunction (M) activities. The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	5 pph	19 tpy
PM ₁₀	5 pph	18 tpy
PM _{2.5}	5 pph	17 tpy
Sulfur Dioxide (SO ₂)	2,809 pph	172 tpy
Nitrogen Oxides (NO _x)	5,254 pph	175 tpy
Carbon Monoxide (CO)	10,482 pph	249 tpy
Volatile Organic Compounds (VOC) (with fugitives)	9,001 pph	312 tpy
Volatile Organic Compounds (VOC) (without fugitives)	8,973 pph	191 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	480 pph	24 tpy
Toxic Air Pollutant (TAP)	n/a pph	n/a tpy
Green House Gas Emissions as Total CO2e	n/a	467,583 tpy

The standard and maximum operating schedules of the facility will be 24 hours a day, 7 days a week and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: Targa Northern Delaware, LLC; 201 S 4th Street, Artesia, NM, 88210

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-372-8373.

Sincerely,

Targa Northern Delaware, LLC PO Box 1689, Lovington, NM 88260

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

CERTIFIED MAIL 7014 2870 0001 4722 6742 RETURN RECEIPT REQUESTED (certified mail is required, return receipt is optional)

Dear Eddy County – County Manager,

Targa Northern Delaware, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its Road Runner Gas Plant facility. The expected date of application submittal to the Air Quality Bureau is April 21, 2024.

The exact location for the proposed facility known as, **Road Runner Gas Plant**, is at latitude **32.265519** and longitude **-104.108318**. The approximate location of this facility is **1.6** miles south-southwest of Loving in Eddy County, New Mexico.

The proposed **modification** consists of updating NSR Permit 7200-M4 to authorize additional diesel generators, increased emissions to the flare and increased startup, shutdown, and maintenance (SSM) and malfunction (M) activities. The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	5 pph	19 tpy
PM ₁₀	5 pph	18 tpy
PM _{2.5}	5 pph	17 tpy
Sulfur Dioxide (SO ₂)	2,809 pph	172 tpy
Nitrogen Oxides (NO _x)	5,254 pph	175 tpy
Carbon Monoxide (CO)	10,482 pph	249 tpy
Volatile Organic Compounds (VOC) (with fugitives)	9,001 pph	312 tpy
Volatile Organic Compounds (VOC) (without fugitives)	8,973 pph	191 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	480 pph	24 tpy
Toxic Air Pollutant (TAP)	n/a pph	n/a tpy
Green House Gas Emissions as Total CO ₂ e	n/a	467,583 tpy

The standard and maximum operating schedules of the facility will be 24 hours a day, 7 days a week and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: Targa Northern Delaware, LLC; 201 S 4th Street, Artesia, NM, 88210

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-372-8373.

Sincerely,

Targa Northern Delaware, LLC PO Box 1689, Lovington, NM 88260

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

General Posting of Notices – Certification

posted a tr	the undersigned, certify that on April 29, 2024 , use and correct copy of the attached Public Notice in the following publicly accessible icuous places in the City of Loving of Eddy County, State of New Mexico on the dates:
1.	Facility entrance {04/29/2024}
2.	Village of Loving City Hall, 415 W Cedar St., Loving, NM 88256 {04/29/2024}
3.	Loving Allsup's Convenience Store, 105 N 8th St., Loving, NM 88256 {04/29/2024}
4.	Loving USPS, 402 W Beech St., Loving, NM 88256 {04/29/2024}
Signed thi Signature Printed Na	day of April , 2024. Sand St. Combon Date Date A.V. FLLIS ume

Targa Northern Delaware, LLC announces its application submitted to the New Microsco Environment Department for an air quality. permit for the modification of its Road Runner Gas Plant facility. The expected dure of application submittal to the Air Quality

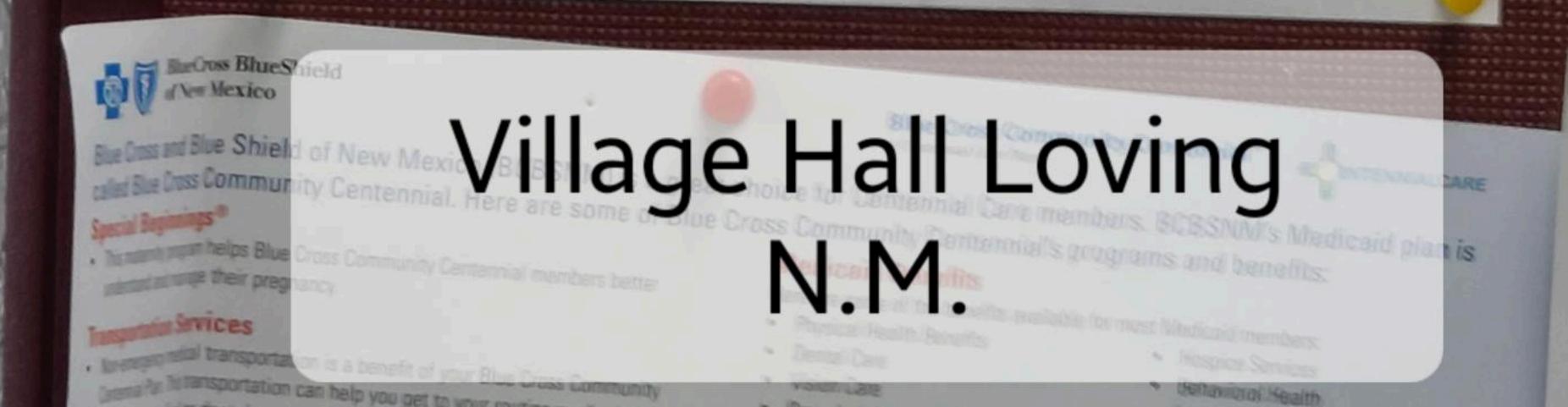
The exact location for the proposed facility known as, Rose Runner Gas Plant, is at builtide 32 265519 and longitude -104 108318. The approximate location of this facility is 1.6 miles south-southwest of Lewing in Eddy County, New Mexico.

The proposed modification consists of updating NSR Permit 7200-MR to authorize additional diesel generators, increased emissions to the flare and increased startup, shutdown, and maintenance (SSM) and mailtinguou (M) activities. The estimated maximum quantities of any regulated air contaminant will be as follows in pound for hour (1990) and tons per your (tpx) and could change slightly during the course of the Department's review.

Pollutant: Particulate Matter (PM) PM 10 PM 25 Sulfur Dioxide (SO ₂) Nitrogen Oxides (NO ₄) Carbon Monoxide (CO) Volatile Organic Compounds (VOC) (with fugitives) Volatile Organic Compounds (VOC) (without fugitives) Total sum of all Hazardous Air Pollutants (HAPs) Toxic Air Pollutant (TAP) Green House Gas Emissions as Total COSe	Provincias (per horae S (per) S (per)	Tons per year 19 qps 18 qps 17 qps 172 qps 175 qps 249 qps 312 qps 190 qps 24 qps 6/a qps 462,583 qps
--	--	--

The standard and maximum operating schedules of the facility will be 24 hours a day, 7 days a week and a maximum of 52 weeks per

The owner and/or operator of the Facility is: Turga Northern Delaware, U.S. 200 S 4th Street, Artesia, NM, 88210.


If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager: New Mexico. Environment Department; Air Quality Bureau; 525 Camino de los Marques, Suite E. Santa Do. New Mexico: 87505-1816. Other comments and questions may be submitted verbally. (S05) 476-4300; | 880 236-7000

With your comments, please refer to the company name and facility mans, or some a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its oil quality impacts, the Department's notice will be published in the legal section of a newspaper cuculated near the facility lecation. Attencion

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambione de Nuevo Mexico, acerça de las emisiones producidas por un establecimiento en esta area. Si usted desea informoción en espubbli, por fasor comuniquese con esa oficina al

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible to coordination of compilance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.S. Pun T. including Title Vitof the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1975, the Age Discrimination Act of 1978, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Course, her Amendments of 1922, If you have any questions about this notice or any of NMED's non-discrimination programs, policies in mucoduses, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact Katheyn Bocker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, PtD. Box Suite Sui nd.coordinator@state.nm.us. You may also visit our website at https://www.orw.min.gov/tron-completion-complaintpage to learn how and where to file a complaint of discrimination.

Allsup's Convenience Store

NOTICE

Targa Northern Delaware, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its Road Runner Gas Plant facility. The expected date of application submittal to the Air Quality

The exact location for the proposed facility known as, Road Runner Gas Plant, is at latitude 32,265519 and longitude -104,108318. The approximate location of this facility is 1.6 miles south-southwest of Loving in Eddy County, New Mexico.

The proposed modification consists of updating NSR Permit 7200-M4 to authorize additional diesel generators, increased emissions to the flare and increased startup, shutdown, and maintenance (SSM) and malfunction (M) activities. The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change

Pollutant: Particulate Matter (PM) PM 11 PM 2.1 Sulfur Dioxide (SO ₂) Nitrogen Oxides (NO ₂) Carbon Monoxide (CO) Volatile Organic Compounds (VOC) (with furitions)	Pounds per hour 5 pph 5 pph 5 pph 2,809 pph 5,254 pph 10,482 pph	Tons per year 19 tpy 18 tpy 17 tpy 172 tpy 175 tpy 249 tpy
Volatile Organic Compounds (VOC) (with fugitives) Volatile Organic Compounds (VOC) (without fugitives) Total sum of all Hazardous Air Pollutants (HAPs) Toxic Air Pollutant (TAP) Green House Gas Emissions as Total COse	9,001 pph 8,973 pph 480 pph n/a pph n/a	249 tpy 312 tpy 191 tpy 24 tpy n/a tpy 467,583 tes

The standard and maximum operating schedules of the facility will be 24 hours a day, 7 days a week and a maximum of 52 weeks per

The owner and/or operator of the Facility is: Targa Northern Delaware, LLC; 201 S 4th Street, Artesia, NM, 88210

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager, New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300, 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emixiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuniquese con esa oficina al

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended, Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd coordinator sestate nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaintpage' to learn how and where to file a complaint of discrimination.

USPS Loving N.M.

NOTICE

Targa Northern Delaware, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its Road Runner Gas Plant facility. The expected date of application submittal to the Air Quality Bureau is April 21, 2024.

The exact location for the proposed facility known as, Road Runner Gas Plant, is at latitude 32.265519 and longitude -114.10ESTE.

The approximate location of this facility is 1.6 miles south-southwest of Loving in Eddy County, New Mexico.

The proposed modification consists of updating NSR Permit 7200-M4 to authorize additional diesel generators, increased emissions to the flare and increased startup, shutdown, and maintenance (SSM) and malfunction (M) activities. The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	5 pph	19 tpy
PM 10	5 pph	18 tpy
PM 25	5 pph	17 apy
Sulfur Dioxide (SO ₂)	2,809 pph	172 apy
Nitrogen Oxides (NO _x)	5,254 pph	175 tpy
Carbon Monoxide (CO)	10,482 pph	249 дру
Volatile Organic Compounds (VOC) (with fugitives)	9,001 pph	312 apy
Volatile Organic Compounds (VOC) (without fugitives)	8,973 pph	191 my
Total sum of all Hazardous Air Pollutants (HAPs)	480 pph	24 tpy
Toxic Air Pollutant (TAP)	n/a pph	n/n tpy
Green House Gas Emissions as Total CO2e	n/a	467,583 tpv
		4.60

The standard and maximum operating schedules of the facility will be 24 hours a day, 7 days a week and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: Targa Northern Delaware, LLC; 201 S 4th Street, Artesia, NM, 88210

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager, New Mexico, Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico, E7505-1816. Officer comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible nature mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuniquese con esa oficime al teléfono 505-372-8373.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of us programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975. Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kuthryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827–2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-compliant-page/ to learn how and where to file a complaint of discrimination.

Submittal of Public Service Announcement – Certification

I, Daniel Dolce	, the undersigned, certify that on April 29, 2024, submitted a
	ad Radio that serves the City\Town\Village of Carlsbad, Eddy County,
New Mexico, in which the source is or i	is proposed to be located and that Carlsbad Radio DID NOT RESPOND
Signed this ²⁹ day of April	2024
Signed this 20 day of 74711	<u>, 2021 , </u>
. 1 . 1	
Daniel Dolce	4/29/2024
Signature	Date
Daniel Dolce	
Printed Name	
Consultant - Trinity Consultants	
Title {APPLICANT OR RELATIONSHIP TO	APPLICANT}

Affidavit of Publication

No.							
State of New Mexico	\	1					
County of Eddy:							
Danny Scott Warms & Cell							
being duly sworn, sayes t	hat he is the	Publisher					
of the Artesia Daily Press	s, a daily newspap	er of General					
circulation, published in	English at Artesia,	, said county					
and state, and that the her	reto attached						
Displ	ay Ad						
was published in a regul	ar and entire issue	of the said					
Artesia Daily Press, a dai	ily newspaper duly	qualified					
for that purpose within th	e meaning of Cha	pter 167 of					
the 1937 Session Laws of	of the state of New	Mexico for					
1 Consecutive weeks/day on the same							
day as follows:							
First Publication	April	25, 2024					
Second Publication							
Third Publication							
Fourth Publication		al: I					
Fifth Publication	1						
Sixth Publication		g-1					
Seventh Publication		8					
Eighth Publication		112					
Subscribed ans sworn before me this							
25th day of	April	2024					
Notary Pu Comr	TISHA ROMINE blic, State of New Me nission No. 107633 commission Expires	8					

tisto Romene

Latisha Romine

Notary Public, Eddy County, New Mexico

Copy of Publication:

NOTICE OF AIR QUALITY PERMIT APPLICATION

Targa Northern Delaware, LLC announces its application submittal to the Mexico Environment Department for an air quality permit for the modific of its Road Runner Gas Plant facility. The expected date of application substo the Air Quality Bureau is April 21, 2024.

The exact location for the proposed facility known as, Road Runner Gas I is at latitude 32.265519 and longitude -104.108318. The approximate loc of this facility is 1.6 miles south-southwest of Loving in Eddy County, Mexico.

The proposed modification consists of updating NSR Permit 7200-M4 to a rize additional diesel generators, increased emissions to the flare and increature, shutdown, and maintenance (SSM) and malfunction (M) activities estimated maximum quantities of any regulated air contaminant will be a lows in pound per hour (pph) and tons per year (tpy) and could change sliduring the course of the Department's review:

		The second second
Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	5 pph	19 tpy
PM ₁₀	5 pph	18 tpy
PM 2.5	5 pph	17 tpy
Sulfur Dioxide (SO ₂)	2,809 pph	172 tpy
Nitrogen Oxides (NO.)	5,254 pph	175 tpy
Carbon Monoxide (CO)	10,482 pph	249 tpy
Volatile Organic Compounds (VOC)		
(with fugitives)	9,001 pph	312 tpy
Volatile Organic Compounds (VOC)		
(without fugitives)	8,973 pph	191 tpy
Total sum of all Hazardous Air		
Pollutants (HAPs)	480 pph	24 tpy
Toxic Air Pollutant (TAP)	n/a pph	n/a tpy
Green House Gas Emissions as Total	CO ₂ e n/a	467,583 tpy

The standard and maximum operating schedules of the facility will be 24 he a day, 7 days a week and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: Targa Northern Delaware, LI 201 S 4th Street, Artesia, NM, 88210

If you have any comments about the construction or operation of this facility you want your comments to be made as part of the permit review process must submit your comments in writing to this address: Permit Programs Maer; New Mexico Environment Department; Air Quality Bureau; 525 Camis los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comment questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and site name, or send a copy of this nalong with your comments, since the Department may have not yet receive permit application. Please include a legible return mailing address with comments. Once the Department has performed a preliminary review of the plication and its air quality impacts, the Department's notice will be publish the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links tregulations can be found at the Air Quality Bureau's website: www.env.nm air-quality/permitting-section-home-page/. The regulation dealing with p participation in the permit review process is 20.2.72.206 NMAC.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del M Ambiente de Nuevo México, acerca de las emisiones producidas por un blecimiento en esta área. Si usted desea información en español, por far muníquese con esa oficina al teléfono 505-372-8373.

Affidavit of Publication

4	No.	26839
State of New Mexico County of Eddy: Danny Scott	emus La	1
being duly sworn, sayes the	nat he is the	Publisher
of the Artesia Daily Press	, a daily newspaper of G	eneral
circulation, published in I	English at Artesia, said c	ounty
and state, and that the her	eto attached	
Lega	ıl Ad	
was published in a regula	ar and entire issue of the	said
Artesia Daily Press, a dai	ly newspaper duly qualif	ried
for that purpose within the	e meaning of Chapter 16	7 of
the 1937 Session Laws o	f the state of New Mexic	o for
1 Consecutive	weeks/day on the same	
day as follows:		
First Publication	April 25, 20)24
Second Publication		
Third Publication		
Fourth Publication		di i
Fifth Publication		
Sixth Publication	9	
Seventh Publication		
Eighth Publication		15
Subscribed ans sworn bef	ore me this	

LATISHA ROMINE
Notary Public, State of New Mexico
Commission No. 1076338
My Commission Expires
05-12-2027

2024

April

Latisha Romine

day of

25th

Notary Public, Eddy County, New Mexico

Copy of Publication:

Legal Notice NOTICE OF AIR QUALITY PERMIT APPLICATION

Targa Northern Delaware, LLC announces its application submittal to the Mexico Environment Department for an air quality permit for the modific of its Road Runner Gas Plant facility. The expected date of application sub to the Air Quality Bureau is April 21, 2024.

The exact location for the proposed facility known as, Road Runner Gas is at latitude 32.265519 and longitude -104.108318. The approximate locat this facility is 1.6 miles south-southwest of Loving in Eddy County, New ico.

The proposed modification consists of updating NSR Permit 7200-M4 to a rize additional diesel generators, increased emissions to the flare and increature, shutdown, and maintenance (SSM) and malfunction (M) activities estimated maximum quantities of any regulated air contaminant will be as for in pound per hour (pph) and tons per year (tpy) and could change slightly defined the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	5 pph	19 tpy
PM 10	5 pph	18 tpy
PM 25	5 pph	17 tpy
Sultur Dioxide (SO ₂)	2,809 pph	172 tpy
Nitrogen Oxides (NO)	5,254 pph	175 tpy
Carbon Monoxide (CO)	10,482 pph	249 tpy
Volatile Organic Compounds (VOC)		17/
(with fugitives)	9,001 pph	312 tpy
Volatile Organic Compounds (VOC)	and the fill that the first of	and the state of
(without fugitives)	8,973 pph	191 tpy
Total sum of all Hazardous Air	and of the party o	151 (ру
Pollutants (HAPs)	480 pph	24 tpy
Toxic Air Pollutant (TAP)	n/a pph	n/a tpy
Green House Gas Emissions as Total	CO.e n/a	467,583 tpy
	00 ₂ 0 m, a	407,363 tpy

The standard and maximum operating schedules of the facility will be 24 houday, 7 days a week and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: Targa Northern Delaware, LLC 201 S 4th Street, Artesia, NM, 88210

If you have any comments about the construction or operation of this facility you want your comments to be made as part of the permit review process, must submit your comments in writing to this address: Permit Programs Maer; New Mexico Environment Department; Air Quality Bureau; 525 Camin los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and site name, or send a copy of this no along with your comments, since the Department may have not yet received permit application. Please include a legible return mailing address with your of ments. Once the Department has performed a preliminary review of the apption and its air quality impacts, the Department's notice will be published in legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to regulations can be found at the Air Quality Bureau's website: www.env.nm. air-quality/permitting-section-home-page/. The regulation dealing with puparticipation in the permit review process is 20.2.72.206 NMAC.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Ma Ambiente de Nuevo México, acerca de las emisiones producidas por un estabimiento en esta área. Si usted desea información en español, por favor c muníque con esa oficina al teléfono 505-372-8373.

Notice of Non-Discrimination

Road Runner Gas Plant Neighbors Web Print: 04/24/2024 This map is a user generated static output from an Internet mapping site and is for reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable.

Written Description of the Routine Operations of the Facility

A written description of the routine operations of the facility. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The Roadunner Gas Processing Plant is a natural gas processing plant located in Eddy County near Loving, NM. The primary function of the plant is to separate natural gas (methane) from heavier (liquid) hydrocarbons, raw sweet field gas so that the gas can meet pipeline specifications. The plant has been designated a primary Standard Industrial Classification (SIC) Code of 1311.

The operation of the Roadrunner Gas Processing Plant is intended to process 735 MMscfd of gas. The gas will be treated to remove CO_2 and H_2S , dehydrated to remove water, and processed to remove heavy (liquid) hydrocarbons from the gas stream. Several plant systems will be involved to perform these functions.

Slug Catcher / Separator

A large slug catcher has been placed at the front of the plant to catch and separate any free hydrocarbon liquids and water present in the inlet pipeline gas stream. It is capable of handling large slugs of liquid brought into the plant from pipeline pigging operations. The equipment also serves as a three-phase separator to separate the free hydrocarbons, gas to be processed, and any water that may have condensed out in the pipeline after field dehydration.

Stabilizers

The overhead stabilization system is in place to lower the Reid Vapor Pressure (RVP) of the pipeline liquids and condensate after they are dropped out of the gas stream. Through a process that heats the condensate to flash off lighter hydrocarbons so the RVP is lowered to 9. The liquids out of the slug catcher are stabilized and sent to the tank farm for truck sales. Any remaining vapors are recycled back to the front of the Slug Catcher. The liquid in the tank farm is then stable and thus does not give off significant flashing vapors. Significant working and standing losses will occur at the tank farm. These emissions will be controlled with a vapor combustor.

Amine Treating

The amine units are designed to remove CO_2 and H_2S (from the natural gas stream) to meet pipeline specifications. Streams containing up to 5 ppm H2S will be processed at the plant. Amine treating is an exothermic chemical reaction process. The treating solution is a mixture of 50% RO water, 40% methyl-diethanolamine (MDEA) and 10% Piperazine. This aqueous mixture is regenerated and reused. Lean MDEA solution is pumped to the top of the contactor and allowed to flow downward. Wet gas is fed into the bottom of the contactor and flows upward.

As the lean MDEA solution flows down through the contactor, it comes into contact with the wet gas. The CO_2 and H_2S are absorbed by amine. The amine is now known as rich amine and the remaining gas is sweet and continues to the dehydration systems.

The regeneration of the amine utilizes one 70.28 MMBtu/hr heater (EP-3A) and one 84.77 MMBtu/hr heater (EP-3B). Significant amounts of VOC and HAP can be generated in this process. The acid gas is sent to a thermal oxidizer where additional combustion will further minimize VOC and H2S emissions.

Glycol Dehydration

Triethylene glycol (TEG) is used to remove water from the natural gas stream. Water is saturated into the sweet gas stream during the Amine Treating process. This water is absorbed by the TEG solution. The wet gas is brought into contact with dry glycol in an absorber. Water vapor is absorbed in the glycol and consequently, the water content is reduced. The wet rich glycol then flows from the absorber to a regeneration system in which the entrained gas is separated and fractionated in a column and re-boiler. The heating allows boiling off the absorbed water vapor and the water dry lean glycol is cooled (via heat exchange) and pumped back to the absorber.

The regeneration of the TEG utilizes small (less than 10 MMBtu/hr) heaters. This process produces VOC and HAP emission. This stream is condensed. The wastewater stream is sent to a wastewater tank. The non-condensable stream is sent to the thermal oxidizer for control where further combustion reduces the emissions. The dehydration flash gas stream us used as plant fuel.

Molecular Sieve Dehydration

Molecular sieve dehydration is used upstream of the cryogenic processes to achieve a -160°F water dew point. The process uses three molecular sieve vessels with two vessels in service adsorbing moisture from the gas stream and the other vessel in the regeneration mode.

During the regeneration mode, hot, dry gas (regen gas) is passed up through the vessel to drive off the adsorbed moisture from the molecular sieve. The gas comes from the discharge of the residue compressors and it is passed through a heat exchanger and a heater to achieve a temperature of approximately 500°F. After the gas passes through the bed it is cooled in an air cooled exchanger. The water in the gas condenses and is separated from the gas stream in a separator. The regen gas is routed to the inlet of the cryogenic unit.

Cryogenic Unit (3)

The cryogenic units are designed to liquefy natural gas components from the sweet, dehydrated inlet gas by removing work from the gas be means of the turbo expander/compressor. The cryogenic unit recovers natural gas liquids (NGL) by cooling the gas stream to extremely cold temperatures (-160°F and lower) and condensing components such as ethane, propane, butanes and heavier. The gas is cooled by a series of heat exchangers and by lowering the pressure of the gas from around 950 PSIG to approximately 190 PSIG. Once the gas has passed through the system of heat exchangers and expansion it is re-compressed using the energy obtained from expanding the gas.

The gas will flow through the following heat exchangers:

- **Gas to Gas Exchanger** This unit exchanges heat from the warm inlet gas and the cold residue gas that has already been expanded. This cools the inlet gas.
- **Product Heater** This unit will cool the inlet gas by exchanging heat with the cold liquid product that has been recovered.
- **Side-Reboiler** This unit uses heat from the inlet gas to boil the methane out of the liquid. One stream comes off the side of the tower and one stream comes off of the bottom of the tower. This also cools the inlet gas.

The gas is expanded and recompressed in the expander/compressor.

Emergency Flares

Three flares are proposed. These flares' header system gathers hydrocarbons from Pressure Safety Devices in the plant, and routes them to the flares. These systems are also used to safely control blow-down hydrocarbons from equipment in the plant.

Compressors

The site will operate a total of 23 electric-driven compressors. No internal combustion engines or turbines will be used to drive compressors.

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

B. Apply the 3 criteria for determining a single source:

<u>SIC Code</u> : Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to						
different 2-digit SIC codes are support facilities	es for this source.					
× Yes	□ No					
<u>Common Ownership or Control</u> : Surroundi ownership or control as this source.	ng or associated sources are under common					
× Yes	□ No					
<u>Contiguous or Adjacent</u> : Surrounding or as with this source.	ssociated sources are contiguous or adjacent					
× Yes	□ No					

C. Make a determination:

- The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- ☐ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

A PSD applicability determination for all sources. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the EPA New Source Review Workshop Manual to determine if the revision is subject to PSD review. A. This facility is: × a minor PSD source before and after this modification (if so, delete C and D below). a major PSD source before this modification. This modification will make this a PSD minor SOURCE. an existing PSD Major Source that has never had a major modification requiring a BACT analysis. an existing PSD Major Source that has had a major modification requiring a BACT analysis ☐ a new PSD Major Source after this modification. B. This facility is not one of the listed 20.2.74.501 Table I - PSD Source Categories. The "project" emissions for this modification are not significant. Project emission increases are less than 250 tpy for all criteria pollutants. The "project" emissions listed below do only result from changes described in this permit application, thus no emissions from other revisions or modifications, past or future to this facility. Also, specifically discuss whether this project results in "de-bottlenecking", or other associated emissions resulting in higher emissions. Debottlenecked emissions are not accounted for since the source is an existing minor NSR site. The project emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]: a. NOx: 158.66 TPY b. **CO**: **240.03 TPY** c. VOC (without fugitives): 172.77 TPY d. SOx: 155.94 TPY e. **PM: 16.86 TPY** f. **PM10: 15.77 TPY** g. PM2.5: 15.40 TPY h. Fluorides: N/A TPY i. Lead: N/A TPY j. Sulfur compounds (listed in Table 2): N/A TPY k. GHG: N/A TPY E. If this is an existing PSD major source, or any facility with emissions greater than 250 TPY (or 100 TPY for 20.2.74.501 Table 1 - PSD Source Categories), determine whether any permit modifications are related, or could be considered a single project with this action, and provide an explanation for your determination whether a PSD modification is triggered. N/A

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column provide any information needed to determine if the regulation does or does not apply. For example, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

Form-Section 13 last revised: 5/8/2023 Section 13, Page 1 Saved Date: 4/30/2024

Example of a Table for State Regulations:

				Justification:
State Regulation	Title	Applies? Enter Yes	Unit(s) or Facility	(You may delete instructions or statements that do not apply in the justification column to shorten
Citation		or No		the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a SIP approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. The facility meets maximum allowable concentrations of the TSP, SO ₂ , H ₂ S, NO _x , and CO under this regulation.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. The owner or operator will operate the source at the facility having an excess emission, to the extent practicable, including associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions. The facility will also notify the NMED of any excess emission per 20.2.7.110 NMAC.
				This regulation may apply if, this is an application for a notice of intent (NOI) per 20.2.73 NMAC, if the activity or facility is a fugitive dust source listed at
			20.2.23.108.A NMAC, and if the activity or facility is located in an area subject to a mitigation plan pursuant to 40 CFR 51.930.	
			As of January 2019, the only areas of the State subject to a mitigation plan per 40 CFR 51.930 are in Doña Ana and Luna Counties.	
			Sources exempt from 20.2.23 NMAC are activities and facilities subject to a permit issued pursuant to the NM Air Quality Control Act, the Mining Act, or the Surface Mining Act (20.2.23.108.B NMAC.	
20.2.23 NMAC	Fugitive Dust Control	No	N/A	20.2.23.108 APPLICABILITY:
	55			A. This part shall apply to persons owning or operating the following fugitive dust sources in areas requiring a mitigation
				plan in accordance with 40 CFR Part 51.930:
				(1) disturbed surface areas or inactive disturbed surface areas, or a combination thereof, encompassing an area equal to or
				greater than one acre; (2) any commercial or industrial bulk material processing,
				handling, transport or storage operations. B. The following fugitive dust sources are exempt from this
				part: (1) agricultural facilities, as defined in this part;
				(2) roadways, as defined in this part;
				(3) operations issued permits pursuant to the state of New Mexico Air Quality Control Act, Mining Act or Surface Mining
				Act; and (4) lands used for state or federal military activities. [20.2.23.108 NMAC - N, 01/01/2019]
20.2.33 NMAC	Gas Burning Equipment -	No	N/A	The site does not have gas burning equipment larger than 1,000,000 MM Btu/year.

State Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
	Nitrogen Dioxide			
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	The site does not have oil burning equipment larger than 1,000,000 MM Btu/year.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	Yes	Facility	This regulation establishes sulfur emission standards for natural gas processing plants. The proposed facility meets the definition of a new natural gas processing plant under this regulation and is subject to the requirements of this regulation [20.2.35.7 (B) NMAC]. The facility will comply with all requirements under 20.2.35 NMAC as applicable.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	Site does not have tank sizes that meet the applicability criteria.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	The site is a natural gas processing facility. As such, this regulation does not apply.
20.2.50 NMAC	Oil and Gas Sector – Ozone Precursor Pollutants	Yes	Check the box for the subparts that are applicable: 113 – Engines and Turbines 114 – Compressor Seals 115 – Control Devices and Closed Vent Systems 116 – Equipment Leaks and Fugitive Emissions 117 – Natural Gas Well Liquid Unloading 118 – Glycol Dehydrators 119 – Heaters 120 – Hydrocarbon Liquid Transfers 121 – Pig Launching and Receiving 122 – Pneumatic Controllers and Pumps 123 – Storage Vessels 124 – Well Workovers 125 – Small Business Facilities 126 – Produced Water Management Unit	113 – N/A—There are no natural gas fired engines > 500 hp at the site; therefore, this requirement does not apply. 114 – The reciprocating compressors associated with the electric driven engines at this facility are subject to this subpart. Targa will comply with the applicable requirements of this subpart. 115 – N/A—There are no control devices used to comply with 20.2.50 NMAC; therefore, this requirement does not apply. 116 – Targa will comply with the applicable requirements of this subpart. 117 – N/A—There are no natural gas well liquid unloading activities at this facility; therefore, this subpart does not apply. 118 – N/A – The dehydrators at this facility will have a PTE of less than two tpy of VOC; therefore, this regulation does not apply. 119 – Heaters (Units EP-3A, EP-3B Amine Reboilers; EP-6, 2-EP-6 Stabilizer Reboilers; EP-2, 2-EP-2, 3_EP-2 Trim Reboilers) have a heat rating greater than 20 MMBtu/hr; therefore, Targa will comply with the applicable requirements of this subpart. 120 – N/A – Since the facility will primarily transport liquids offsite via pipeline, this regulation does not apply. 121 – Pigging activities at this unit are over 1 tpy VOC. Therefore, Targa will comply with the applicable requirements of this subpart.

_				Justification:
State Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	(You may delete instructions or statements that do not apply in the justification column to shorten the document.)
				122– N/A – Pneumatic devices and pumps will utilize instrument air; therefore, this subpart does not apply.
				123 – N/A – The tanks at this facility will have a PTE of less than two tpy of VOC; therefore, this regulation does not apply.
				124 – N/A – There are no well workovers at this facility; therefore, this subpart does not apply.
				125 – N/A – This facility does not qualify as a small business facility; therefore, this subpart does not apply.
				126 – N/A – There are no produced water management units at this facility; therefore, this subpart does not apply.
				127 – N/A – This is not a wellhead site; therefore, this subpart does not apply.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	EP-1; 2-EP-1; 3-EP-1; EP-2; 2-EP-2; 3-EP2; EP-3A; EP-3B; EP-4; 2-EP-4; 3-EP-4; EP-5; 2-EP-5; 3-EP-5; EP-6; 2-EP-6; EP-9; COMB-1; GEN-1-GEN-12	This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares unless your equipment is subject to another state regulation that limits particulate matter such as 20.2.19 NMAC (see 20.2.61.109 NMAC).
20.2.70 NMAC	Operating Permits	Yes	Facility	This regulation establishes requirements for obtaining an operating permit. The facility is a Title V major source.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This regulation establishes a schedule of operating permit emission fees. The facility is subject to 20.2.70 NMAC and is therefore subject to requirements of this regulation.
20.2.72 NMAC	Construction Permits	Yes	Facility	This regulation establishes the requirements for obtaining a construction permit. The facility is a stationary source that has a potential emission rate greater than 10 pounds per hour or 25 tons per year of any regulated air contaminant for which there is a National or New Mexico Air Quality Standard. The facility has a construction permit to meet the requirements of this regulation.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	Emissions Inventory Reporting per 20.2.73.300 NMAC applies to the site. All facilities that are a Title V Major Source as defined at 20.2.70.7.R NMAC are subject to Emissions Inventory Reporting.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	Minor NSR site.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation applies since this submittal is an application pursuant to 20.2.72.
20.2.77 NMAC	New Source Performance	Yes	EP-2; 2-EP-2; 3-EP2; EP-3A; EP-3B; D-1-D-4; 2-D-1-2-D-8; 3-D-1 – 3-D-8 EP-5; 2-EP-5; 3-EP-5; EP-6; 2-EP-6; EP-8; 2-EP-8; 3-EP-8 FUG;	This is a stationary source which is subject to the requirements of 40 CFR Part 60.

State Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
			T-1; T-2; T-3; T-4; T-5; GEN-1-GEN-2	
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	No units at the site are subject to 40 CFR Part 61.
20.2.79 NMAC	Permits – Nonattainment Areas	No	Facility	Site is not located in a nonattainment county.
20.2.80 NMAC	Stack Heights	No	N/A	Not cited in NSR permit. No stacks exceed GEP height.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	GEN-1-GEN-2; EP-7; 2-EP-7; 3-EP-7	The site has dehy units that are subject to MACT Subparts HH and diesel engines subject to MACT ZZZZ.

Example of a Table for Applicable Federal Regulations:

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 50	NAAQS	No	N/A	The modeling and conditions developed from the modeling are the applicable requirements to demonstration compliance with the NAAQs.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	EP-2; 2-EP-2; 3-EP2; EP-3A; EP-3B; D-1-D-4; 2-D-1-2-D-8; 3- D-1 - 3-D-8 EP-5; 2-EP-5; 3-EP-5; EP-6; 2-EP-6; EP-8; 2-EP-8; 3-EP-8 FUG; T-1; T-2; T-3; T-4; T-5; GEN-1-GEN-2	Heaters are subject to NSPS Dc. [40 CFR §60.48c] Compressors are subject to NSPS OOOO, OOOOa, or OOOOb. Amine unit is subject to NSPS OOOOa. [40 CFR §60.5385a] Facility fugitives are subject to NSPS OOOOa. [40 CFR §60.5400a] Tanks 1, 2, 3, 4, and 5 are subject to NSPS Kb and OOOOa. [40 CFR §60.5365a] GEN-1-GEN-2 are subject to NSPS IIII.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	No units are subject to NSPS Subpart Da.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	No units are subject to NSPS Subpart Db.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	Yes	EP-2; 2-EP-2; 3-EP-2; EP-3A; EP-3B; EP-6; 2-EP-6	This facility has steam generating units for which construction, modification or reconstruction is commenced after June 9, 1989 and that have a maximum design heat input capacity of 29 MW (100 MMBtu/hr) or less, but greater than or equal to 2.9 MW (10 MMBtu/hr). Only recordkeeping and notification requirements apply as the units burn only natural gas.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	All hydrocarbon tanks have a storage capacity less than 151,416 liters (40,000 gallons). that are used to store petroleum liquids for which construction is commenced after May 18, 1978.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	Yes	T-1; T-2; T-3; T-4; T-5	This facility has storage vessels with a capacity greater than or equal to 75 cubic meters (m 3) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	No stationary gas turbines are operated at the site.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	This facility commenced construction after August 23, 2011. Thus, the facility is not subject to this subpart.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions	No	N/A	The facility is a natural gas processing plant; however, there is no sulfur recovery plant. Thus, this location does not meet the applicability criteria of 40 CFR 60.640.
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or	Yes	Train 2	Reciprocating electric compressors 2-D-1 through 2-D-8 and fugitive components associated with Train 2 are existing affected facilities that will be relocated from another site and were previously subject to NSPS OOOO. Targa will make a final determination of NSPS OOOO/a/b applicability for these relocated sources and will comply with the NSPS as required. Train 2 will rely on the existing amine sweetening unit installed with Train 1, which is subject to NSPS OOOOa. Pneumatic devices and pumps will utilize instrument air.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
	reconstruction commenced after August 23, 2011 and before September 18, 2015			
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	See Justification column	D-1 through D-7 are electric-driven compressors associated with Train 1 and were manufactured after September 18, 2015 and are thus subject to 60.5385a, 60.5410a, 60.5415a, and 60.5420a. T-1, T-2, T-3, T-4, and T-5 are storage vessels constructed after September 18, 2015 with federally enforceable limitations that limit emissions to less than 6 tpy of VOCs. T-6 is a storage vessel that emits less than 6 tpy of VOCs. As such, T1 to T6 are not subject to 60.5395a, 60.5410a, 60.5417a, 60.5420a. The amine units (single still vent EP-8) are sweetening units as defined in this subpart that were constructed after September 18, 2015. Per 60.5365a(g) (3) the amine units are required to comply with 60.5423a(c) but not required to comply with 60.5405a through 60.5407 and 60.5410a(g) and 60.5415a(g). The facility is defined as an onshore natural gas processing plant. Therefore fugitives are covered by 60.5400a, 60.5401a, 60.5402a, 60.5421a, and 60.5422a. Pneumatic devices and pumps will utilize instrument air.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	Yes	GEN-1 – GEN-2	This regulation establishes standards of performance for stationary compression ignition internal combustion engines. This rule applies to IC engines (diesel engines) that commenced construction after July 11, 2005. Permanent diesel engines at the site are subject to emission standards under this subpart. Engines are Tier 4 diesel engines and meet standards on Table 1 of 40 CFR 89.112. Portable engines (GEN-3-GEN-12) are not subject to this rule as they will not be located at the facility for longer than 12 months.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	No	N/A	This regulation establishes standards of performance for stationary compression ignition internal combustion engines. There are no stationary spark ignition internal combustion engines at the facility. This regulation does not apply.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	This subpart establishes emission standards and compliance schedules for the control of greenhouse gas (GHG) emissions from a steam generating unit, IGCC, or a stationary combustion turbine that commences construction after January 8, 2014 or commences modification or reconstruction after June 18, 2014. This site does not contain the affected facility. This regulation does not apply
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times	No	N/A	This subpart establishes emission guidelines and approval criteria for State or multi-State plans that establish emission standards limiting greenhouse gas (GHG) emissions from an affected steam generating unit, integrated gasification combined cycle (IGCC), or

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:	
	for Electric Utility Generating Units			stationary combustion turbine. This site does not contain the affected facility. This regulation does not apply.	
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	The facility is not a municipal solid waste landfill. This regulation does not apply.	
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	No 40 CFR Part 61 sources at the site.	
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	This regulation establishes a national emission standard for mercury. The facility does not have stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge [40 CFR Part 61.50]. The facility is not subject to this regulation.	
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	This regulation establishes national emission standards for equipment leaks (fugitive emission sources). The facility does not have equipment that operates in volatile hazardous air pollutant (VHAP) service [40 CFR Part 61.240]. The regulated activities subject to this regulation do not take place at this facility. The facility is not subject to this regulation.	
MACT 40 CFR 63, Subpart A	General Provisions	Yes	GEN-1-GEN-2; EP-7; 2-EP-7; 3-EP-7	This facility is an area source for HAPs. Area source provisions of 40 CFR Part 63 subpart HH apply to the glycol dehydrators at the site.	
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	EP-7; 2-EP-7; 3-EP-7	This facility is a HAP Area Source and is subject to the requirements of 40 CFR 63 Subpart HH. Dehydrators EP-7, 2-EP-7, 3-EP-7 have actual and potential emissions less than 1 tpy (0.9 Megagrams per year) and are therefore exempt from control requirements per 40 CFR 63.764(e)(1)(ii). Records of the exempt status will be maintained as required in 40 CFR 63.774(d)(1).	
MACT 40 CFR 63 Subpart HHH	National Emission Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities	No	N/A	This facility is not a natural gas transmission or storage facility. Thus, this subpart does not apply.	
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	This regulation establishes national emission standards for hazardous air pollutants for major industrial, commercial, and institutional boilers and process heaters at Major sources of HAPs. The facility is an area source of HAPs; therefore, this regulation does not apply.	
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric	No	N/A	This subpart establishes national emission limitations and work practice standards for hazardous air pollutants (HAP) emitted from coal- and oil-fired electric utility steam generating units (EGUs) as defined in §63.10042 of this subpart. This facility does	

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:	
	Utility Steam Generating Unit			not contain an affected source under this regulation. This regulation does not apply.	
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal	No	GEN-1 – GEN-2	This regulation defines national emissions standards for HAPs for stationary Reciprocating Internal Combustion Engines. Units GEN-1 – GEN -2 are Tier 4 diesel engines subject to MACT ZZZZ and meet applicable requirements. Portable engines (GEN-3-GEN-12) are not subject to this rule as	
	Combustion Engines (RICE MACT)			they will not be located at the facility for longer than 12 months.	
40 CFR 64	Compliance Assurance Monitoring	TBD	TBD	CAM will be addressed as part of the initial Title V permit application.	
40 CFR 68	Chemical Accident Prevention	No	Facility	This facility is exempt from being subject to this chapter as it handles naturally occurring hydrocarbon mixtures as stated in §68.115(b)(2)(iii).	
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	This part establishes the acid rain program. This part does not apply because the facility is not covered by this regulation [40 CFR Part 72.6].	
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	This part establishes the acid rain program. This part does not apply because the facility is not covered by this regulation [40 CFR Part 72.6].	
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	This part establishes the acid rain program. This part does not apply because the facility is not covered by this regulation [40 CFR Part 72.6].	
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	This part establishes the acid rain program. This part does not apply because the facility is not covered by this regulation [40 CFR Part 72.6].	
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	This regulation establishes a regulation for protection of the stratospheric ozone. The regulation is not applicable because the facility does not "service", "maintain", or "repair" class I or class II appliances nor "disposes" of the appliances [40 CFR Part 82.1(a)].	

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

alternative operating scenario.

Section 15

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

There will be an alternate operating scenario to route the amine flash gas stream from the commingled fuel gas header to the flare (Unit EP-1). This alternative operating scenario will be in place to mitigate the safety and reliability concerns associated with the risk of condensed liquids in the fuel supply to the amine hot oil heaters (Units EP-3A and EP-3B) during low temperature months. Calculations and emission details for this scenario are provided in Section 6.

Section 16

Air Dispersion Modeling

- 1) Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app form.html) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

	Enter an X for
What is the purpose of this application?	each purpose
	that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	Х
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

Ш	See attached, approved modeling waiver for all pollutants from the facility.
	See attached, approved modeling waiver for some pollutants from the facility.
\boxtimes	Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility
	Attached in UA4 is a modeling report for some pollutants from the facility.
П	No modeling is required

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Compliance Test History Table

Unit No.	Test Description	Test Date
COMB-1 (VCU)	CU) State Compliance	
EP-9 (Thermal		
Oxidizer)	State Compliance	5/17/2023

Form-Section 18 last revised: 3/9/2012 (2nd sentence) Section 18, Page 1

Saved Date: 4/30/2024

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is being included in the application.

Form-Section 21 last revised: 10/04/2016 Section 21, Page 1 Saved Date: 4/30/2024

Section 22: Certification

Company Name: Targa Northern Delaware, UC	
I, Jimy E Oxford hereby certify that the istrue and as accurate as possible, to the best of my knowledge and prof	
Signed this 154 day of May , 2024, upon my oath or a	ffirmation, before a notary of the State of
*Signature *Signature *Signature *Dimmy & Oxford Printed Name	Date VP Operations Title
Scribed and sworn before me on this $\frac{5+}{2}$ day of $\frac{mp}{2}$	2024
My authorization as a notary of the State of TRXAS	expires on the
13th day of MARCh 2026.	
Notary's Signature Notary's Printed Name	Date NEIL P CONWAY Notary ID #129737310 My Commission Expires March 13, 2026

^{*}For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

application.

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit

16-	16-A: Identification					
1	Name of facility:	Road Runner Gas Processing Plant				
2	Name of company:	Targe Northern Delaware, LLC				
3	Current Permit number:	7200-M4				
4	Name of applicant's modeler:	John Ke				
5	Phone number of modeler:	651-275-9900				
6	E-mail of modeler:	jke@trinityconsultants.com				

16	-B: Brief					
1	Was a modeling protocol submitted and approved?	Yes□	No⊠			
2	Why is the modeling being done? Other (describe below)					
3	Targa Northern Delaware, LLC (Targa) owns and operates the Road Runner Gas Processing Plant located near Loving in Eddy County, NM. The most recent New Source Review (NSR) permit No. 7200-M4 was issued on October 16, 2023. Targa is proposing a significant revision to its NSR Permit No. 7200-M4 to authorize additional equipment, alternate operating scenario for routing amine flash gas from unit EP-8 to facility flare, and authorize additional pigging emissions associated with the Grand Prix tie-in to its current Road Runner Gas Processing Plant.					
4	What geodetic datum was used in the modeling?	NAD83				
5	How long will the facility be at this location?	Permanent				

Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?

No⊠

Yes□

/	Identify the Air Quality Control Region (AQCR) in which the facility is located					155				
	List the PSD baseline	dates for this region	(minor or major,	as a	ppropriate).					
	NO2				3/16/1988					
8	SO2		7/28/1978							
•	PM10				2/20/1979					
	PM2.5				11/13/2013					
	Provide the name an	d distance to Class I	areas within 50 k	m of	the facility (3	00 km f	or PSD perm	its).		
9	The nearest Class I a	ea is Carlsbad Caver	ns National Park	at 32	.5 km from th	ne facilit	y.			
10	Is the facility located	in a non-attainment	area? If so descri	ibe b	elow			Yes□		No⊠
-										
11	Describe any special	modeling requireme	nts, such as strea	mlin	e permit requ	iremen	ts.			
11	N/A									
16-	5-C: Modeling History of Facility									
		ng history of the faci Standards (NAAQS),								
	Pollutant Latest permit as number that me pollutant facility		odeled the		ite of Permit Comments		ents			
	СО	7200-M4			.0/16/2023					
	NO ₂	7200-M4		10,	0/16/2023					
1	SO ₂	7200-M4		10,	/16/2023					
	H ₂ S	7200-M4		1	/16/2023					
	PM2.5	7200-M4		-	10/16/2023					
	PM10	7200-M4		10,	10/16/2023					
	Lead	N/A								
	Ozone (PSD only) NM Toxic Air	N/A								
	Pollutants	N/A								
	(20.2.72.402 NMAC)									
				1						
16-	D: Modeling	performed fo	or this app	lica	ition					
1	-	ndicate the modeling mplicated modeling a erformed.						sumes RC	OI and o	cumulative
	Pollutant	ROI	Cumulative analysis		Culpability analysis		Waiver app	oroved		ant not ed or not ged.

Targa	Northern	Delaware,	LLC
1 41 54	1 TOT CITCH	Doin marc,	

СО	\boxtimes	\boxtimes		
NO ₂	\boxtimes	\boxtimes		
SO ₂	\boxtimes	\boxtimes		
H ₂ S		\boxtimes		
PM2.5	\boxtimes	\boxtimes		
PM10	\boxtimes	\boxtimes		
Lead				\boxtimes
Ozone				\boxtimes
State air toxic(s) (20.2.72.402 NMAC)				\boxtimes

16-	16-E: New Mexico toxic air pollutants modeling						
1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application. N/A – There are no New Mexico TAPs that are modeled for this application.						
	List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required.						
2	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor	

16-	F: Modeling options		
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□

16	16-G: Surrounding source modeling						
1	Date of surround	ing source retrieval	4/4/2024 (from NMED MergeMaster Database)				
2	sources modeled		ir Quality Bureau was believed to be inaccurate, describe how the f changes to the surrounding source inventory were made, use the				
	AQB Source ID	Description of Corrections					
	Various	Deleted Targa Road Runner Gas Plant sources since that is the site we are modeling for and sources without data.					
	38339E17, 38339E18	Corrected Easting and Northing to match Facility center					
	3589E2, 3589E3, 3589E4, 3589E5, 3589E6,	Corrected Easting and Northing to	match Facility center				

	3589E7, 3589E8, 3589E9, 3589E10								
	1119E2, 1119E3	3 Corrected	d Easting and	Northing to	match Facil	ity center			
16-	H: Building	g and sti	ructure o	downwa	ash				
1	How many build	dings are pre	sent at the fa	cility?	Two (2) b	uildings			
2	How many aborat the facility?	ve ground sto	orage tanks ar	e present	Six (6) abo	ove ground storage to	anks		
3	Was building do	ownwash mo	deled for all b	uildings and	l tanks? If n	ot explain why below	'-	Yes⊠	No□
4	Building comm	ents							
16-	I: Recepto			-					
1	continuous wal grade that wou area within the Area is required receptors shall	ls, or other co ld require spo property ma d in order to o be placed wit	ontinuous bar ecial equipme y be identified exclude recep thin the prope	riers approvent to travers d with signate tors from the erty boundar	red by the Dose. If a large ge only. Puble facility profiles of the facility from the facility profiles of the facility from the facility	ecluded. Effective ba epartment, such as r property is complete olic roads cannot be poperty. If the facility cacility.	ugged phely enclose part of a R does not	ysical terrain water by fencing, a lestricted Area.	ith a steep a restricted A Restricted
	Fence and entr	y gates aroun	d the facility	define the re	estricted are	ea.			
2	Receptors must Are there publi					estricted area.		Yes□	No⊠
3	Are restricted a	rea boundary	y coordinates	included in	the modelin	ng files?		Yes⊠	No□
	Describe the re	ceptor grids a	and their spac	1		y be used, adding ro	ws as nee	eded.	·L
4	Grid Type	Shape	Spacing	Start dist restricted center of		End distance from restricted area or center of facility	Comme	ents	
	Describe recept	L tor spacing al	I ong the fence	line.		I			
	Fenceline recep	otors were pla	aced along the	e facility bou	ındary at lea	ast every 25-meters in	n linear f	enceline distanc	ce.
5	A variable dens	ity rectangula	ar grid was mo	odeled using	the followi	ng spacing			

50 m spacing from center of the facility (excluding restricted area) outward to 800 m

100 m spacing from 800 m to 3,000 m from facility center

	- 250 m spacing from 3,000 m to 6,000 m from facility center
	- 500 m spacing from 6,000 m to 10,000 m from facility center
	- 1,000 m spacing from 10,000 m to 50,000 m from facility center
	Describe the PSD Class I area receptors.
6	PSD Class I area receptors were obtained from the NMED MergeMaster database.

16	-J: Mod	eling S	cenari	os								
1	Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).											
	The one scenario which was modeled was SSM/M flaring with all other units operating.											
2	Which scer	nario prodi	uces the hi	ghest con	centration	s? Why?						
	N/A – only	one scena	rio was mo	odeled								
3	Were emis (This quest the factors	ion pertaii	ns to the "S	SEASON",	"MONTH"	, "HROFDY	•		sets, not to	Yes□		No⊠
4	•	duplicate	_					• .	ore the facto if it makes fo			•
	Hour of Day	Factor	Hour of Day	Factor								
	1		13									
	2		14									
	3		15									
	4		16									
	5		17									
	6		18									
5	7		19									
	8		20									
	9		21									
	10		22									
	11		23									
	12		24									
	If hourly, v	ariable em	ission rate	s were us	ed that we	ere not des	cribed abo	ve, descril	pe them belo	w.		
										ı		_
6	Were diffe below.	rent emiss	ion rates u	ised for sh	ort-term a	and annual	modeling	? If so deso	cribe	Yes⊠		No□

SSM emission rates from the flares were modeled for short term (lb/hr) and annual (tpy). The short-term emission rates are much higher due to short term operation (flaring). The flares do not continuously flare waste gas.

Emergency generators were either excluded from modeling for short-term probabilistic standards or modeled based on annual average emissions for annual standards.

16-	K: NO ₂ N	Modeling					
	Which types Check all tha	of NO₂ modeling were used? at apply.					
1	\boxtimes	⊠ ARM2					
		100% NO _x to NO ₂ conversion					
		□ PVMRM					
	□ OLM						
		Other:					
2	Describe the NO ₂ modeling.						
	ARM2 was used to convert from NOx to NO ₂						
3		t NO ₂ /NO _x ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not I justify the ratios used below.	Yes⊠	No□			
4	Describe the	design value used for each averaging period modeled.					
	1-hour: High	eighth high					
	Annual High	est Annual Average of Three Years:					

16-L: Ozone Analysis

1

2

NMED has performed a generic analysis that demonstrates sources that are minor with respect to PSD do not cause or contribute to any violations of ozone NAAQS. The analysis follows.

The basis of the ozone SIL is documented in <u>Guidance on Significant Impact Levels for Ozone and Fine Particles in the Prevention of Significant Deterioration Permitting Program</u>, EPA, April 17, 2018 and associated documents. NMED accepts this SIL basis and incorporates it into this permit record by reference. Complete documentation of the ozone concentration analysis using MERPS is included in the New Mexico Air Quality Bureau Air Dispersion Modeling Guidelines.

The MERP values presented in Table 10 and Table 11 of the NM AQB Modeling Guidelines that produce the highest concentrations indicate that facilities emitting no more than 250 tons/year of NO $_X$ and no more than 250 tons/year of VOCs will cause less formation of O_3 than the O_3 significance level.

$$[O_3]_{8-hour} = \left(\frac{250\frac{ton}{yr}}{340_{MERP_{NOX}}} + \frac{250\frac{ton}{yr}}{4679_{MERP_{VOC}}}\right) \times 1.96 \ \mu\text{g/m}^3$$

=1.546 μ g/m³, which is below the significance level of 1.96 μ g/m³.

Sources that produce ozone concentrations below the ozone SIL do not cause or contribute to air contaminant levels exceeding the ozone NAAQS.

Does the facility emit at least 250 tons per year of NOx or at least 250 tons per year of

3

VOCs? Sources that emit at least 250 tons per year of NO _x or at least 250 tons per year of Vocs are covered by the analysis above and require an individual analysis.						No□				
	For new PSD	Major Sou	rces or PSD major mod was used describe	odifications, if ME			ozone fil	l out the i	information	
5	NO _x (ton/yr)		MERP _{NOX}	IERP _{NOX} VOCs (ton/yr)		MERP _{VOC}		[O ₃] _{8-hou}	hour	
16-	M: Parti	culate I	Matter Mode	eling						
	Select the po	ollutants for	which plume deple	tion modeling wa	s used.					
1		PM2.5								
		PM10								
		None								
2	Describe the	particle siz	e distributions used	. Include the sour	ce of informa	tion.				
	N/A									
		•	least 40 tons per ye							
3			ources that emit at le			Yes⊠			No□	
	NO _X or at least 40 tons per year of SO ₂ are considered to emit significant amounts of precursors and must account for secondary					1632		NOL		
	formation of				,					
4	Was second	ary PM mod	leled for PM2.5?		١	Yes□ No⊠				
	If MERPs we below.	re used to a	account for seconda	ry PM2.5 fill out th	ne informatio	on below. If anoth	er metho	od was us	ed describe	
	Pollutant		NO _X	SO ₂	[PM2.5] _{24-hour}				
5	MERP _{annual}		26,780	14,978	(0.13284				
	MERP _{24-hour}		7,331	1,981	[PM2.5] _{annual}				
	Emission rat	e (ton/yr)	175	172	(0.00360				
16-	N: Setba	ck Dist	ances							
			rces that need flexib	•	•	•				
1			ources and the restr setback distances fo			e line) for both th	ie initial l	ocation a	nd future	
1	iocations. De	escribe the s	setback distances to	the initial locatio	л.					
	N/A									
2			modeled, setback one relocation modeli		e locations, i	f this permit is fo	r a portak	ole station	nary source.	
	N/A									

16-	16-O: PSD Increment and Source IDs							
1	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-I should match the ones in the modeling files. Do these match? If not, provide a cross-reference table between unit Yes⊠ No□ numbers if they do not match below.							
	Unit Number in UA-2	Number in UA-2 Unit Number in Modeling File						
2	The emission rates in the Tables 2-E and 2-F should match the ones in the modeling files. Do these match? If not, explain why below. Yes⊠ No□							No□
3	Have the minor NSR ex	empt sources or 1	Fitle V Insignificant Ac	tivities" (Tab	ole 2-B) sources	Yes[No⊠
	Which units consume i	ncrement for whi	ch pollutants?			1		
4	Unit ID	NO ₂	SO ₂		PM10	PM2.5		
	Various	Х	X		Х		Х	
5	PSD increment descrip (for unusual cases, i.e., after baseline date).		anded emissions					
6	Are all the actual insta This is necessary to ver increment consumptio	rify the accuracy o	f PSD increment mod	eling. If not _l	please explain how	Yes	X	No□
16-	P: Flare Model	ing						
1	For each flare or flaring	g scenario, comple	ete the following					
				1				

16-	16-P: Flare Modeling							
1	For each flare or flaring scenario, complete the following							
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)				
	EP-1	21.30	804,826,308	25.031				
	2-EP-1	21.30	8.40 x 10^8	25.57				
	3-EP-1	21.30	4.55 x 10^9	59.52				

16-	Q: Volume and Related Sources		
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing installation dates below.	Yes□	No⊠
	Describe the determination of sigma-Y and sigma-Z for fugitive sources.		

	Actual road v	vidth was measured at 28.3 ft (8.62 m).						
_	Initial horizor	ntal sigma was determined for adjacent volumes by dividing W (adjusted road wid	dth) by 2.15 = 14	1.62 m / 2.15				
2	= 6.8 m.							
	Initial vertica	l sigma was calculated based on a large truck release height as shown in Table 28	of the NMED m	odeling				
	guidelines = 3	3.16 m.						
		the volume sources are related to unit numbers.						
3	Or say they a							
		I road emission rates are under ID "HAUL". In the model, the haul road was mod	eled with seven	(7) volume				
	sources with	ID's "Haul1 through Haul7".						
	Describe any	open pits.						
4								
	N/A							
	Describe emi	ssion units included in each open pit.						
5								
5								
	N/A							
4.0	D D l .							
16-	к: васкд	round Concentrations						
		provided background concentrations used? Identify the background station						
		f non-NMED provided background concentrations were used describe the data	Yes□	No□				
	that was used.							
	CO: El Paso Chamizal (481410044)							
	NO ₂ : Outside Carlsbad (350151005)							
1		s-Jefferson (350450019)						
		PM10: Hobbs-Jefferson (350250008)						
	SO ₂ : N/A							
	Other:							
	For PM2.5, background concentration is based on the 350250008 Surrounding sources for all SO2 averaging							
	Comments:	times were used instead of adding background data, according to the NMED me	odeling guidance	e for the				
		Permian basin.		T				
2	Were backgr	ound concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠				
_								
16-	S: Meteo	rological Data						
	ı	rovided meteorological data used? If so select the station used.						
1	VVas WVLD p	Tovided meteorological data used: It so select the station used.						
1	Carlsbad		Yes⊠	No□				
		: NWS_CARLSBAD 2017-2021						
		rided meteorological data was not used describe the data set(s) used below. Discr	uss how missing	data were				
2	-	stability class was determined, and how the data were processed.						
16-	T: Terrai	1						
1	Was complex	terrain used in the modeling? If not, describe why below.	Yes⊠	No□				

_	What was the source of the terrain data?
2	http://nationalmap.gov/viewer.html

16-U: Modeling Files					
Describe the modeling files:					
File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)			
RRGP_SIL_HRLY_1721	NO2, CO, SO2, PM10, PM2.5, H2S	ROI			
RRGP_SIL_Ann_17-21	NO2, SO2, PM10, PM2.5	ROI			
RRGP_NAAQS_SO2_1hr_1721	SO2	Cumulative			
RRGP_NAAQS_CO_1hr8hr_17-21	СО	Cumulative			
RRGP_NAAQS_NO2_1hr_1721	NO2	Cumulative			
RRGP_NAAQS_PM2.5_24hr_1721	PM2.5	Cumulative			
RRGP_NAAQS_PM10_24hr_1721	PM10	Cumulative			
RRGP_NAAQS_NO2_Ann_17-21	NO2	Cumulative			
RRGP_PSD_C1_S_NO2_Ann_17-21	NO2	Cumulative			
RRGP_PSD_C1_S_SO2_Ann_17-21	SO2	Cumulative			
RRGP_PSD_C1_S_SO2_3hr24hr_1721	SO2	Cumulative			
RRGP_PSD_C1_S_PM10_24hr_1721	PM10	Cumulative			
RRGP_PSD_C1_S_PM2.5_24hr_1721	PM2.5	Cumulative			
RRGP_PSD_C2_I_PM2.5_24hr_1721	PM2.5	Cumulative			
RRGP_PSD_C1_I_SO2_3hr24hr_1721	SO2	Cumulative			
RRGP_PSD_C2_I_NO2_Ann_17-21	NO2	Cumulative			
RRGP_PSD_C2_I_PM10_24hr_1721	PM10	Cumulative			
RRGP_PSD_C2_I_SO2_3hr_17-21	SO2	Cumulative			
RRGP_PSD_C2_I_SO2_24hr_17-21	SO2	Cumulative			
RRGP_PSD_C2_I_SO2_Ann_17-21	SO2	Cumulative			

16-	16-V: PSD New or Major Modification Applications								
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No□						
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□						
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.								
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.								
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□						

16-W: N	1odeling	Results								
1	requii signifi	bient standards are red for the source to cance levels for the be below.	Yes□	No⊠	No⊠					
2	below	fy the maximum co as necessary. Pleasarized.			•	•	-			
Pollutant, Time	Modeled Facility	Modeled Concentratio n with	Secondary PM (µg/m3)	Background Concentratio n (µg/m3)	Cumulative Concentratio n (µg/m3)	Value of Standard (μg/m3)	Percent of Standard	Location		
Period and Standard	Concentrati n (µg/m3)	O Surrounding Sources (μg/m3)						UTM E (m)	UTM N (m)	Elevation (ft)
CO 1-hr NAAQS	3848.79 (H2H)			4904	8752.79	40069.60	22%	584019.8	357022 3.4	950.42
CO 8-hr NAAQS	2151.20 (H2H)			3335	5486.20	10303.60	53%	584019.8	357022 3.4	950.42
H₂S 1-hr SIL	0.00043 (H1H)				0.16921	1	0.043%	581750	356975 0	953.8
NO₂ 1-hr NAAQS	69.19 (H8H)			54.5	123.67	188.03	66%	583794.1	357053 3.6	950.01
NO ₂ Annual NAAQS	7.09 (H1H)			9.3	16.39	100	16%	583893.6	357053 0.6	949.27
NO ₂ Annual PSD Class II	5.98 (H1H)			9.3	15.28	25	61%	583893.6	357053 0.6	949.27
NO ₂ Annual PSD Class I	0.0043 (H1H)			0.0043	0.1	4.3%	558179	355886 0	1096.68
PM _{2.5} 24-hr NAAQS	4.43 (H1H)	5.35 (H8H)	0.13	16.5	21.98	35	63%	584019.8	357022 3.4	950.42
PM _{2.5} 24-hr PSD Class I		3.52 (H2H)	0.13		3.65	9	41%	583918.6	357053 2	949.01
PM _{2.5} 24-hr PSD Class II	0.013 (H1H)		0.13		0.143	0.27	53%	558179	355886 0	1096.68

Pollutant, Time	Modeled Facility Concentratio n (μg/m3)	Modeled Concentratio n with Surrounding Sources (µg/m3)	Secondary PM (μg/m3)	Background Concentratio n (μg/m3)	Cumulative Concentratio n (µg/m3)	Value of Standard (μg/m3)	Percent of Standard	Location		
Period and Standard								UTM E (m)	UTM N (m)	Elevation (ft)
PM _{2.5} Annual SIL	0.07 (H1H)		0.003		0.073	0.3	24%	584044.8	357022 1.8	950.5
PM ₁₀ 24-hr NAAQS	6.08 (H1H)	9.45 (H6H)		37.3	46.75	150	31%	584019.8	357022 3.4	950.42
PM ₁₀ 24-hr PSD Class I	0.02007 (H1H)				0.02007	0.3	2.2%	558179	355886 0	1096.68
PM ₁₀ 24-hr PSD Class II		10.39 (H2H)			10.39	30	35%	584019.8	357022 3.4	950.42
SO ₂ 1-hr NAAQS	1182.3 (H1H)	42.53 (H4H)			42.53	196.4	22%	584142.2	357054 4.3	947.29
SO ₂ 3-hr PSD Class II	957.69 (H1H)	100.63 (H2H)			100.63	512	20%	581857	357009 3	954.7
SO ₂ 3-hr PSD Class I	20.32 (H1H)	12.82 (H2H)			13.94	25	56%	540800	355270 0	1468.96
SO ₂ 24-hr PSD Class II	425.06 (H1H)	32.76 (H2H)			32.76	91	36%	581857	357009 3	954.7
SO ₂ 24-hr PSD Class I	4.65 (H1H)	2.59 (H2H)			2.73	5	55%	539800	355370 0	1514.95
SO ₂ Annual PSD Class II	5.77 (H1H)	3.11 (H1H)			3.11	20	16%	583616.6	357053 3.9	949.99
SO ₂ Annual PSD Class I	0.00672 (H1H)				0.00672	0.1	6.7%	557365	355886 0	1093.88

16-X: Summary/conclusions

1

A statement that modeling requirements have been satisfied and that the permit can be issued.

Targa Northern Delaware, LLC has demonstrated through this air dispersion modeling analysis that the proposed revisions to the existing facility neither cause nor contribute to an exceedance of the applicable standards.