

August 21, 2024

New Mexico Environment Department Air Quality Bureau Minor Source Permitting Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816

RE: Minor Source Construction Permit

Cold Snack CTB

Civitas Permian Operating, LLC Permit # 9923M2, AI # 40991

3.2 mi S of Whites City, Eddy County, New Mexico

Dear Permitting Staff:

On behalf of Civitas Permian Operating, LLC, CDH Consulting is submitting the enclosed NSR permit application to replace the currently permitted generator engines.

This facility and its associated emissions meet the requirements for a minor source construction permit (NMAC 20.2.72.200) and this submittal fulfills that requirement.

If you have any questions or comments, please feel free to contact me at (303) 594-7951 or cmartinez@CDHConsult.com.

Sincerely,

Chris Martinez

Senior Air Quality Engineer

Chris Maty

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

For Department use only:	ly:	e or	use	tment	epar	D	or
--------------------------	-----	------	-----	-------	------	---	----

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

This application is submitted as (check all that apply): ☐ Request for a No Permit Required Determination (no fee) ☐ Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Construction Status: ☐ Not Constructed ☑ Existing Permitted (or NOI) Facility ☐ Existing Non-permitted (or NOI) Facility Minor Source: ☐ NOI 20.2.73 NMAC ☑ 20.2.72 NMAC application or revision ☐ 20.2.72.300 NMAC Streamline application Title V Source: ☐ Title V (new) ☐ Title V renewal ☐ TV minor mod. ☐ TV significant mod. ☐ TV Acid Rain: ☐ New ☐ Renewal PSD Major Source: ☐ PSD major source (new) ☐ Minor Modification to a PSD source ☐ a PSD major modification
Acknowledgements:
🛮 I acknowledge that a pre-application meeting is available to me upon request. 🗖 Title V Operating, Title IV Acid Rain, and NPR
applications have no fees.
applications).
☑Check No.: 1165 in the amount of \$500
I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole
punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a
separate page.
I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-
<u>2/.</u>
This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this
application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form
has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information:
www.env.nm.gov/air-quality/small-biz-eap-2/.)
Citation: Please provide the low level citation under which this application is being submitted: 20.2.72.200.A NMAC

Section 1 - Facility Information

Sec	tion 1-A: Company Information	AI # if known: 40991	Updating Permit/NOI #: 9923M2						
1	Facility Name: Cold Snack CTB	Plant primary SIC Code (4 digits): 1311							
1	Cold Shack CIB	Plant NAIC code (6 digits): 21112							
а	Facility Street Address (If no facility street address, provide directions from a prominent landmark): a From Whites City: Drive 1.6 miles south on Hwy 180. Turn left onto Whites City Road. Follow Whites City Road east and then southeast for approximately 2 miles. Turn right (south) on new access road and follow 0.4 miles to facility.								
2	Plant Operator Company Name: Civitas Permian Operating, LLC	Phone/Fax: (303) 293-9100							
а	Plant Operator Address: 555 17th Street, Suite 3700, Denver, CO 88202								

b	Plant Operator's New Mexico Corporate ID or Tax ID: 61-1630631									
3	Plant Owner(s) name(s): Civitas Permian Operating, LLC	Phone/Fax: (303) 293-9100								
а	Plant Owner(s) Mailing Address(s): 555 17th Street, Suite 3700, Denver, CO 88202									
4	Bill To (Company): Civitas Permian Operating, LLC	Phone/Fax: (303) 293-9100								
а	Mailing Address: 555 17th Street, Suite 3700, Denver, CO 88202	E-mail: rleplatt@civiresources.com								
5	☑ Preparer: Chris Martinez☑ Consultant: CDH Consulting, LLC	Phone/Fax: (303) 594-7951								
а	Mailing Address: 9446 Clermont Street, Thornton, CO 80229	E-mail: cmartinez@cdhconsult.com								
6	Plant Operator Contact: Ron LePlatt	Phone/Fax: (750) 237-2095								
а	Address: 555 17th Street, Suite 3700, Denver, CO 80202	E-mail: rleplatt@civiresources.com								
7	Air Permit Contact: Ron LePlatt	Title: Air Quality Engineer								
а	E-mail: rleplatt@civiresources.com	Phone/Fax: (750) 237-2095								
b	Mailing Address: 555 17th Street, Suite 3700, Denver, CO 80202									
С	The designated Air permit Contact will receive all official correspondence	(i.e. letters, permits) from the Air Quality Bureau.								

Section 1-B: Current Facility Status

	-					
1.a	Has this facility already been constructed? ☐ Yes ☐	1.b If yes to question 1.a, is it currently operating in New Mexico? ☐ Yes ☐ No				
2	If yes to question 1.a, was the existing facility subject to Intent (NOI) (20.2.73 NMAC) before submittal of this ap ☐ Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application?				
3	Is the facility currently shut down? 🔲 Yes 🔯 No	onth and year of shut down (MM/YY):				
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? ☐ Yes ☒ No					
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972? ☐ Yes ☐ No ☒ N/A					
6	Does this facility have a Title V operating permit (20.2.7 ☐ Yes ☑ No	If yes, the permit No. is: P-				
7	Has this facility been issued a No Permit Required (NPR ☐ Yes ☑ No	If yes, the NPR No. is:				
8	Has this facility been issued a Notice of Intent (NOI)?	If yes, the NOI No. is:				
9	Does this facility have a construction permit (20.2.72/2 ☐ Yes ☐ No	If yes, the permit No. is: 9923				
10	Is this facility registered under a General permit (GCP-1 ☐ Yes ☑ No	, GCP-2, etc.)?	If yes, the register No. is:			

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)								
а	Current	Hourly:	Annually:						
b	Proposed	Hourly:	Annually:						
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)								
а	Current Hourly: Oil: 156 bbl Produced water: 646 bbl Natural gas: 875 MSCF		Daily: Oil: 3750 bbl Produced water: 15,500 bbl Natural gas: 21,000 MSCF	Annually: Oil: 1,368,750 bbl Produced water: 5,657,500 bbl Natural gas: 7,665 MMSCF					
b	Proposed	Hourly: Oil: 156 bbl	Daily: Oil: 3750 bbl	Annually: Oil: 1,368,750 bbl					

Produce	d Water: 646 bbl	Produced water: 15,500 bbl	Produced water: 5,657,500 bbl
Natural	gas: 875 MSCF	Natural gas: 21,000 MSCF	Natural gas: 7,665 MMSCF

Section 1-D: Facility Location Information

1	Latitude (decimal degrees): 32.130761	Longitude	(decimal degrees): -104.372	2269	County: Eddy	Elevation (ft): 3460					
2	UTM Zone: 12 or 13		Datum: NAD 83 WGS 84								
а	UTM E (in meters, to nearest 10 meters): 559,20	9	UTM N (in meters, to nearest 1	LO meters)	: 3,555,102						
3	Name and zip code of nearest New Mexico	o town: Whi t	tes City, 88268								
4	Detailed Driving Instructions from nearest south on Hwy 180. Turn left onto Whites miles. Turn right (south) on new access re	City Road. I	Follow Whites City Road ea		-						
5	The facility is 3.2 (distance) miles S (direction) of Whites City (nearest town).										
6	Land Status of facility (check one): Private Indian/Pueblo Government BLM Forest Service Military										
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated:										
8	20.2.72 NMAC applications only: Will the than 50 km (31 miles) to other states, Bern publications/)? ■ Yes No (20.2.72.20 ■ 3.8 km from Carlsbad Caverns No 37.7 km from Guadalupe Mount ■ 14.5 km from the Texas border	nalillo Count 06.A.7 NMA0 P	y, or a Class I area (see <u>www</u> C) If yes, list all with corresp	w.env.nn	n.gov/air-quality	/modeling-					
9	Name nearest Class I area: Carlsbad Caver	rns NP									
10	Shortest distance (in km) from facility bou	ındary to the	boundary of the nearest Cl	ass I are	a (to the nearest 10	meters): 3.8 km					
11	Distance (meters) from the perimeter of t lands, including mining overburden remov			-							
	Method(s) used to delineate the Restricte perimeter ditch and berm.	d Area: Facil	ity is constructed on a rais	ed, leve	led pad with ste	ep grade and					
12	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricte area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.										
	grade that would require special equipme	nt to travers	ed by the Department, such e. If a large property is com	pletely	enclosed by fend	in with steep cing, a restricted					
13	grade that would require special equipme	nt to travers d with signag te this sourc ile source, su at various lo	ed by the Department, such e. If a large property is come only. Public roads cannot e as a portable stationary so ch as an automobile, but a cations, such as a hot mix a	npletely t be part ource as source t sphalt p	of a Restricted of a Restricted of a Restricted of defined in 20.2. That can be installant that is move	in with steep cing, a restricted Area. 72.7.X NMAC? led permanently ed to different job					

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating (hours day): 24): 52	(<u>hours</u>): 8760					
2	Facility's maximum daily operating schedule (if less		□AM □PM	End:	2AM 2PM			
3	Month and year of anticipated start of construction: September 2023							
4	Month and year of anticipated construction completion: Upon permit approval							
5	Month and year of anticipated startup of new or modified facility: Upon permit approval							

6	Will this facility operate at this site for more than one year	r? ⊠Yes □ N	No.						
Sect	ion 1-F: Other Facility Information								
1	Are there any current Notice of Violations (NOV), compliar to this facility? Yes No If yes, specify:	ice orders, or any oth	her compl	iance or enforcement issues related					
а									
b	Is this application in response to any issue listed in 1-F, 1 or 1a above? Yes No If Yes, provide the 1c & 1d info below:								
С	Document Title:	Date:		ment # (or and paragraph #):					
d	Provide the required text to be inserted in this permit:		page ii e	ma paragraph nj.					
2	Is air quality dispersion modeling or modeling waiver being	submitted with this	application	on? Yes No					
3	Does this facility require an "Air Toxics" permit under 20.2	72.400 NMAC & 20.	2.72.502,	Tables A and/or B? Yes No					
4	Will this facility be a source of federal Hazardous Air Pollut	ants (HAP)? 🔀 Yes	☐ No						
а	If Yes, what type of source? \square Major ($\square \ge 10$ tpy of a OR \bowtie Minor ($\bowtie < 10$ tpy of any			tpy of any combination of HAPS)					
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? Yes		_						
	If yes, include the name of company providing commercial	electric power to the	e facility:						
а	Commercial power is purchased from a commercial utility on site for the sole purpose of the user.	company, which spe	ecifically c	does not include power generated					
Sect	tion 1-G: Streamline Application (This section a		_	amline applications only) (This is not a Streamline application.)					
	Thave med out section 15, Addendam for streaming	e Applications.		(This is not a streamline application.)					
	ion 1-H: Current Title V Information - Requ								
	V-source required information for all applications submitted purs C(Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))	uant to 20.2.72 NMAC	(Minor Co	nstruction Permits), or 20.2.74/20.2.79					
1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC):		Р	hone:					
a	R.O. Title:	R.O. e-mail:							
b	R. O. Address:								
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC):		Р	hone:					
а	A. R.O. Title:	A. R.O. e-ma	ail:						
b	A. R. O. Address:								
3	Company's Corporate or Partnership Relationship to any o have operating (20.2.70 NMAC) permits and with whom the relationship):	•	-						
4	Name of Parent Company ("Parent Company" means the permitted wholly or in part.):	rimary name of the o	organizati	on that owns the company to be					
а	Address of Parent Company:								
5	Names of Subsidiary Companies ("Subsidiary Companies" rowned, wholly or in part, by the company to be permitted.	_	, branches	s, divisions or subsidiaries, which are					
_	Telephone numbers & names of the owners' agents and si	te contacts familiar v	vith plant	operations:					
6	receptione numbers a numes of the owners agents and si			•					

7

Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers:

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- 1) One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application
Secure electronic transfer. Air Permit Contact Name: Chris Martinez , Email: cmartinez@cdhconsult.com
Phone number: (303) 594-7951

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If **air dispersion modeling** is required by the application type, include the **NMED Modeling Waiver** and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc,), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

Section 1: **General Facility Information**

Section 2: **Tables**

Section 3: **Application Summary** Section 4: **Process Flow Sheet** Section 5:

Plot Plan Drawn to Scale

Section 6: All Calculations

Information Used to Determine Emissions Section 7:

Section 8: Map(s)

Section 9: **Proof of Public Notice**

Section 10: Written Description of the Routine Operations of the Facility

Section 11: **Source Determination**

Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application

Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation

Section 14: **Operational Plan to Mitigate Emissions**

Section 15: **Alternative Operating Scenarios**

Section 16: **Air Dispersion Modeling** Section 17: **Compliance Test History**

Section 18: Addendum for Streamline Applications (streamline applications only)

Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)

Section 20: **Other Relevant Information** Section 21: Addendum for Landfill Applications

Section 22: Certification Page

Company Name Facility Name Application Date: Revision #

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

					Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition Type	
Unit Number ¹	Source Description	Make	Model #	Serial #	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)			(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
ENG-1	Compressor Engine	Caterpillar	G3408C	TBD	425 HP	425 HP	TBD	CAT-E1	2-02- 002-54	Existing (unchanged) New/Additional	To be Removed Replacement Unit	4SLB	
							TBD	ENG-1		☐ To Be Modified ☐ Existing (unchanged)	☐ To be Replaced ☐ To be Removed		
ENG-2	Compressor Engine	Caterpillar	G3408C	TBD	425 HP	425 HP	TBD TBD	CAT-E2 ENG-2	2-02- 002-54	New/Additional To Be Modified	Replacement Unit To be Replaced	4SLB	
0511.4			44.61		200.115	200.115	UNK	CAT-G1	2-02-	Existing (unchanged)	To be Removed	4000	
GEN-1	Generator Engine	Mesa	14.6L	EEYOF004402	390 HP	390 HP	07/2023	GEN-1	002-53	New/Additional To Be Modified	Replacement Unit To be Replaced	4SRB	
							UNK	CAT-G2	2-02-	Existing (unchanged)	☐ To be Removed		
GEN-2	Generator Engine	Mesa	14.6L	EEYOF501043	390 HP	390 HP	07/2023	GEN-2	002-53	New/Additional To Be Modified	Replacement Unit To be Replaced	4SRB	
							UNK	CAT-G3	2-02-	Existing (unchanged)	To be Removed		
GEN-3	Generator Engine	Mesa	14.6L	No Tag	390 HP	390 HP	07/2023	GEN-3	002-53	New/Additional To Be Modified	☐ Replacement Unit✓ To be Replaced	4SRB	
							UNK	CAT-G4	2-02-	Existing (unchanged)	☐ To be Removed		
GEN-4	Generator Engine	Mesa	14.6L	No Tag	390 HP	390 HP	07/2023	GEN-4	002-53	New/Additional To Be Modified	☐ Replacement Unit✓ To be Replaced	4SRB	
							2/20/2015	CAT-G1	2-02-	Existing (unchanged)	To be Removed		
GEN-1	Generator Engine	PSI	21.9L	EZYOF004402	581 HP	581 HP	2,20,2013	GEN-1	002-53	New/Additional To Be Modified	Replacement Unit	4SRB	GEN-1
							3/26/2014	CAT-G2	2-02-	Existing (unchanged)	To be Replaced To be Removed		
GEN-2	Generator Engine	PSI	21.9L	EEYOF501104	581 HP	581 HP	3/20/2011	GEN-2	002-53	New/Additional	Replacement Unit To be Replaced	4SRB	GEN-2
							6/30/2014	CAT-G3	2-02-	To Be Modified Existing (unchanged)	☐ To be Replaced ☐ To be Removed		
GEN-3	Generator Engine	PSI	21.9L	EEYOF300333	581 HP	581 HP	0/30/2014	GEN-3	002-53	New/Additional	Replacement Unit	4SRB	GEN-3
							2/20/2015	CAT-G4	2-02-	To Be Modified Existing (unchanged)	To be Replaced To be Removed		
GEN-4	Generator Engine	PSI	21.9L	EEYOF504087	581 HP	581 HP	2/20/2013	GEN-4	002-53	New/Additional	Replacement Unit	4SRB	GEN-4
							N/A	GLIN-4		☐ To Be Modified ☐ Existing (unchanged)	To be Replaced To be Removed		
FUG-1	Equipment Fugitives	N/A	N/A	N/A	N/A	N/A	07/2023	FUG-1	3-10- 888-11	New/Additional	Replacement Unit		
					2.2	2.0	•	FUG-1		☐ To Be Modified ☐ Existing (unchanged)	☐ To be Replaced ☐ To be Removed		
HT-1	Heater Treater	UMC ENERGY SOLUTIONS	N/A	56871	2.0 MMBtu/hr	2.0 MMBtu/hr	N/A	UT 4	3-10- 004-04	New/Additional	Replacement Unit		
					-		07/2023	HT-1		☐ To Be Modified ☐ Existing (unchanged)	☐ To be Replaced ☐ To be Removed		
HT-2	Heater Treater	UMC ENERGY SOLUTIONS	N/A	56872	2.0 MMBtu/hr	2.0 MMBtu/hr	N/A	LIT 2	3-10- 004-04	New/Additional	Replacement Unit		
		SOLUTIONS			IVIIVIBLU/III	-	07/2023	HT-2		☐ To Be Modified ☐ Existing (unchanged)	☐ To be Replaced ☐ To be Removed		
TK-1	Crude Oil Tank	PETROSMITH	API	19555	1000 bbl	9581.25	N/A	VRU/FL-LP	4-04-	New/Additional	Replacement Unit		
						Mgal/yr	07/2023	FL-LP	003-12	To Be Modified	To be Replaced		
TK-2	Crude Oil Tank	PETROSMITH	API	19341	1000 bbl	9581.25	N/A	VRU/FL-LP	4-04-	Existing (unchanged)New/Additional	☐ To be Removed ☐ Replacement Unit		
						Mgal/yr	07/2023	FL-LP	003-12	To Be Modified	To be Replaced		
TK-3	Crude Oil Tank	PETROSMITH	API	19339	1000 bbl	9581.25	N/A	VRU/FL-LP	4-04-	Existing (unchanged)New/Additional	☐ To be Removed ☐ Replacement Unit		
						Mgal/yr	07/2023	FL-LP	003-12	To Be Modified	To be Replaced		
TK-4	Crude Oil Tank	PETROSMITH	API	19684	1000 bbl	9581.25	N/A	VRU/FL-LP	4-04-	Existing (unchanged)New/Additional	☐ To be Removed ☐ Replacement Unit		
						Mgal/yr	07/2023	FL-LP	003-12	To Be Modified	☐ To be Replaced		
TK-5	Crude Oil Tank	PETROSMITH	API	19335	1000 bbl	9581.25	N/A	VRU/FL-LP	4-04-	Existing (unchanged)New/Additional	☐ To be Removed ☐ Replacement Unit		
						Mgal/yr	07/2023	FL-LP	003-12	To Be Modified	To be Replaced		

					Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition Type	
Unit Number ¹	Source Description	Make	Model #	Serial #	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)			(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
TK-6	Crude Oil Tank	PETROSMITH	API	19362	1000 bbl	9581.25	N/A	VRU/FL-LP	4-04-	Existing (unchanged)New/Additional	☐ To be Removed ☐ Replacement Unit		
						Mgal/yr	07/2023	FL-LP	003-12	i o be iviouilleu	To be Replaced		
PWTK-1	Produced Water	PETROSMITH	API	19290	1000 bbl	59,403.75	N/A	VRU/FL-LP	4-04-	Existing (unchanged)New/Additional	☐ To be Removed ☐ Replacement Unit		
1 77111 1	Tank	TETROSIVIITI	7.11	13230	1000 551	Mgal/yr	07/2023	FL-LP	003-15	To Be Modified	To be Replaced		
DWTK 2	Produced Water	DETDOCMITH	A DI	10206	4000 FFI	59,403.75	N/A	VRU/FL-LP	4-04-	Existing (unchanged)	To be Removed		
PWTK-2	Tank	PETROSMITH	API	19306	1000 bbl	Mgal/yr	07/2023	FL-LP	003-15	□ New/Additional □ To Be Modified	Replacement Unit To be Replaced		
	Produced Water					59,403.75	N/A	VRU/FL-LP	4-04-	✓ Existing (unchanged)	☐ To be Removed		
PWTK-3	Tank	PETROSMITH	API	19297	1000 bbl	Mgal/yr	07/2023	FL-LP	003-15	New/Additional	Replacement Unit		
						_ '	•	VRU/FL-LP		☐ To Be Modified ☐ Existing (unchanged)	☐ To be Replaced ☐ To be Removed		
PWTK-4	Produced Water	PETROSMITH	API	19298	1000 bbl	59,403.75	N/A		4-04-	☐ New/Additional	Replacement Unit		
	Tank					Mgal/yr	07/2023	FL-LP	003-15	To Be Modified	To be Replaced		
FL-LP	Low Pressure Flare	HERO	T60VT8	N/A	2.70	2.70	N/A		3-10-	Existing (unchanged)New/Additional	☐ To be Removed ☐ Replacement Unit		
1	zow i ressure riure	HERO	100110	14,71	MMScf/d	MMScf/d	07/2023	FL-LP	001-60	To Be Modified	☐ To be Replaced		
FL-LP	Low Pressure Flare -		T601 (T0		2.70	2.70	N/A		3-10-	Existing (unchanged)	To be Removed		
SSM	SSM	HERO	T60VT8	N/A	MMScf/d	MMScf/d	07/2023	FL-LP	001-60	New/Additional To Be Modified	Replacement Unit To be Replaced		
					23.00	23.00	N/A		3-10-	Existing (unchanged)	☐ To be Removed		
FL-HP	High Pressure Flare	HERO	T60VT8	N/A	MMscf/d	MMscf/d	07/2023	FL-HP	001-60	New/Additional	Replacement Unit		
					,	,	<u> </u>	FL-FIP		☐ To Be Modified ☐ Existing (unchanged)	☐ To be Replaced ☐ To be Removed		
FL-HP	High Pressure Flare -	HERO	T60VT8	N/A	23.00	23.00	N/A		3-10-	New/Additional	Replacement Unit		
SSM	SSM				MMscf/d	MMscf/d	07/2023	FL-HP	001-60	☐ To Be Modified	To be Replaced		
OILLOAD-	Oil truck loading	NA	NA	NA	N/A	264,600	N/A	N/A	4-04-	☑ Existing (unchanged) ☐ New/Additional	☐ To be Removed ☐ Replacement Unit		
1	Oil truck loading	NA	INA	NA	IN/A	gal/yr			002-50	To Be Modified	To be Replaced		
PWLOAD-	Produced water					191,000	N/A	N/A	4-04-	Existing (unchanged)	To be Removed		
1	truck loading	NA	NA	NA	N/A	gal/yr	·	-	002-50	☐ New/Additional ☐ To Be Modified	Replacement Unit To be Replaced		
						<u> </u>	N/A	N/A		Existing (unchanged)	☐ To be Replaced ☐ To be Removed		
HR-1	Haul Road	NA	NA	NA	N/A	70 Trips/yr	IN/A	IN/A	3-10- 888-11	☐ New/Additional	Replacement Unit		
									000-11	To Be Modified	To be Replaced		
VRT	Vapor Recovery	N/A	N/A	N/A	_	_	N/A	VRU/FL-LP	3-10-	Existing (unchanged)New/Additional	☐ To be Removed ☐ Replacement Unit		
	Towers		,				07/2023	FL-LP	888-11	☐ To Be Modified	☐ To be Replaced		

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

 $^{^{\}rm 2}$ Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/apb/permit/apb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-content/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Onit Number	Source Description	Manufacturei	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	rol Latil Flete of Equipment, check Onc
			N/A	264,600	20.2.72.202.B.5 (< 0.5 tpy VOC)	j j	Existing (unchanged) To be Removed
OILLOAD-1	Oil truck loading	N/A	N/A	gal/yr		,	☐ New/Additional ☐ Replacement Unit☐ To be Replaced
			N/A	191,100	20.2.72.202.B.5 (< 0.5 tpy VOC)		✓ Existing (unchanged) ☐ To be Removed
PWLOAD-1	Produced water truck loading	N/A		·	20.2.72.202.B.3 (< 0.3 tpy voc)	[☐ New/Additional ☐ Replacement Unit☐ To be Replaced
			N/A	gal/yr			
HR-1	Haul Road	N/A	N/A	70	20.2.72.202.B.5 (< 0.5 tpy VOC)	}	✓ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
HK-I	Haui Road	N/A	N/A	trips/yr			☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced
			-	, , ,			Existing (unchanged) To be Removed
							☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced
						,	Existing (unchanged) To be Removed
							☐ New/Additional ☐ Replacement Unit☐ To be Replaced
							To Be Modified To be Replaced Existing (unchanged) To be Removed
)	
						,	☐ New/Additional ☐ Replacement Unit☐ To Be Modified ☐ To be Replaced
							Existing (unchanged) To be Removed
							New/Additional Replacement Unit
							To Be Modified To be Replaced
							Existing (unchanged) To be Removed
							New/Additional Replacement Unit
							To Be Modified To be Replaced
						,	Existing (unchanged) To be Removed
							New/Additional Replacement Unit To Be Modified To be Replaced
							□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed
							☐ New/Additional ☐ Replacement Unit
							To Be Modified To be Replaced
							Existing (unchanged) To be Removed
							New/Additional Replacement Unit
							☐ To Be Modified ☐ To be Replaced
							Existing (unchanged) To be Removed
							New/Additional Replacement Unit
							To Be Modified To be Replaced
ĺ]	Existing (unchanged) To be Removed
1						<u> </u>	☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced
							To Be Modified To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Company Name Facility Name Application Date: Revision #

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
CAT-E1	Catalytic Reduction	TBD	СО	ENG-1	93	Manufacturer Specification
CAT-E2	Catalytic Reduction	TBD	СО	ENG-2	93	Manufacturer Specification
CAT-G1	Catalytic Reduction	TBD	NOx	GEN-1	99	Manufacturer Specification
CAT-G1	Catalytic Reduction	TBD	СО	GEN-1	85	Manufacturer Specification
CAT-G1	Catalytic Reduction	TBD	VOCs	GEN-1	100	Manufacturer Specification
CAT-G2	Catalytic Reduction	TBD	NOx	GEN-2	99	Manufacturer Specification
CAT-G2	Catalytic Reduction	TBD	со	GEN-2	85	Manufacturer Specification
CAT-G2	Catalytic Reduction	TBD	VOCs	GEN-2	100	Manufacturer Specification
CAT-G3	Catalytic Reduction	TBD	NOx	GEN-3	99	Manufacturer Specification
CAT-G3	Catalytic Reduction	TBD	СО	GEN-3	85	Manufacturer Specification
CAT-G3	Catalytic Reduction	TBD	VOCs	GEN-3	100	Manufacturer Specification
CAT-G4	Catalytic Reduction	TBD	NOx	GEN-4	99	Manufacturer Specification
CAT-G4	Catalytic Reduction	TBD	СО	GEN-4	85	Manufacturer Specification
CAT-G4	Catalytic Reduction	TBD	VOCs	GEN-4	100	Manufacturer Specification
VRU	Vapor Recovery Unit	TBD	VOCs	TK-1	95	Design Calculation
FL-LP	Flare	TBD	VOCs	TK-1	98	Manufacturer Specification
VRU	Vapor Recovery Unit	TBD	VOCs	TK-2	95	Design Calculatio
FL-LP	Flare	TBD	VOCs	TK-2	98	Manufacturer Specification
VRU FL-LP	Vapor Recovery Unit Flare	TBD TBD	VOCs VOCs	TK-3 TK-3	95 98	Design Calculation Manufacturer
VRU	Vapor Recovery Unit	TBD	VOCs	TK-4	95	Specification Design Calculation
FL-LP	Flare	TBD	VOCs	TK-4	98	Manufacturer Specification
VRU	Vapor Recovery Unit	TBD	VOCs	TK-5	95	Design Calculation
FL-LP	Flare	TBD	VOCs	TK-5	98	Manufacturer Specification
VRU	Vapor Recovery Unit	TBD	VOCs	TK-6	95	Design Calculation
FL-LP	Flare	TBD	VOCs	TK-6	98	Manufacturer Specification
VRU	Vapor Recovery Unit	TBD	VOCs	PWTK-1	95	Design Calculation

Form Revision: 7/8/2011 Table 2-C: Page 1 Printed 8/21/2024 7:21 AM

Control		Date		Controlling Emissions for Unit	Efficiency	Method used to						
Equipment	Control Equipment Description	Installed	Controlled Pollutant(s)	Number(s) ¹	(% Control by	Estimate						
Unit No.		ilistalieu		Number (3)	Weight)	Efficiency						
FL-LP	Flare	TBD	VOCs	PWTK-1	98	Manufacturer						
T L-Lr	Hate	100	Vocs	FWIK-1	36	Specification						
VRU	Vapor Recovery Unit	TBD	VOCs	PWTK-2	95	Design Calculation						
FL-LP	Flare	TBD	VOCs	PWTK-2	98	Manufacturer						
FL-LP	Fidie	IBD	VOCS	PWIK-Z	90	Specification						
VRU	Vapor Recovery Unit	TBD	VOCs	PWTK-3	95	Design Calculation						
FL-LP	Flare	TBD	VOCs	PWTK-3	98	Manufacturer						
FL-LF	Flate	TBD	VOCS	FWIK-3		Specification						
VRU	VRU Vapor Recovery Unit TBD VOCs PWTK-4 95 Design Calculation											
FL-LP	Flare	TBD	VOCs	PWTK-4	98	Manufacturer						
FL-LF	Flate	TBD	VOCS	FVVIN-4	36	Specification						
VRU	Vapor Recovery Unit	TBD	VOCs	VRT	95	Design Calculation						
FL-LP	Flare	TBD	VOCs	VRT	98	Manufacturer						
FL-LP	Fidie	IBD	VOCS	VKI	90	Specification						
¹ List each con	trol device on a separate line. For each control device, list all er	mission units	controlled by the control device.									

Form Revision: 7/8/2011 Table 2-C: Page 2 Printed 8/21/2024 7:21 AM

Table 2-D: Maximum Emissions (under normal operating conditions)

☐ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Linia Na	N	Эx	С	0	V	C	S	Ох	PI	VI ¹	PM	10 ¹	PM	2.5 ¹	Н	₂ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	0.94	4.10	2.06	9.03	0.58	2.54	0.0017	0.0076	1	1	0.0309	0.1353	0.0309	0.1353	-	-	1	-
ENG-2	0.94	4.10	2.06	9.03	0.58	2.54	0.0017	0.0076	-	-	0.0309	0.1353	0.0309	0.1353	-	-	-	-
GEN-1	1.28	5.61	2.56	11.22	1.06	4.65	0.0031	0.0135	-	-	0.0906	0.3968	0.0906	0.3968	-	-	-	-
GEN-2	1.28	5.61	2.56	11.22	1.06	4.65	0.0031	0.0135	-	-	0.0906	0.3968	0.0906	0.3968	-	-	-	-
GEN-3	1.28	5.61	2.56	11.22	1.06	4.65	0.0031	0.0135	-	-	0.0906	0.3968	0.0906	0.3968	-	-	-	-
GEN-4	1.28	5.61	2.56	11.22	1.06	4.65	0.0031	0.0135	-	-	0.0906	0.3968	0.0906	0.3968	-	-	-	-
FUG-1	-	-	-	-	5.46	23.93	-	-	-	-	-	-	-	-	-	-	-	-
HT-1	0.20	0.86	0.17	0.72	0.01	0.05	-	-	-	-	0.02	0.07	0.02	0.07				
HT-2	0.20	0.86	0.17	0.72	0.01	0.05	-	-	-	-	0.02	0.07	0.02	0.07				
TK-1	-	-	-	-	33.43	7.32	-	-	-	-	-	-	-	-	-	-	-	-
TK-2	-	-	-	-	33.43	7.32	-	-	-	-	-	-	-	-	-	-	-	-
TK-3	-	-	-	-	33.43	7.32	-	-	-	-	-	-	-	-	-	-	-	-
TK-4	-	-	-	-	33.43	7.32	-	-	-	-	-	-	-	-	-	-	-	-
TK-5	-	-	-	-	33.43	7.32	-	-	-	-	-	-	-	-	-	-	-	-
TK-6	-	-	-	-	33.43	7.32	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-1					2.61	0.57												
PWTK-2					2.61	0.57												
PWTK-3					2.61	0.57												
PWTK-4					2.61	0.57												
FL-LP	0.004	0.019	0.020	0.086	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
FL-LP SSM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FL-HP	0.004	0.019	0.020	0.086	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
FL-HP SSM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OILLOAD-1	-	-	-	-	14.99	0.22	-	-	-	-	-	-	-	-	-	-	-	-
PWLOAD-1	-	-	-	-	0.15	0.00	-	-	-	-	-	-	-	-	-	-	-	-
HR-1	-	-	-	-	-	-	-	-	-	-	0.88	0.01	0.09	0.00	-	-	-	-
VRT	-	-	-	-	-	765.60	-	-	-	-	-	-	-	-	-	-	-	-
Totals	7.39	32.40	14.73	64.56	237.04	859.73	0.02	0.07	0.00	0.00	1.33	2.00	0.54	1.99	0.00	0.00	0.00	0.00

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Form Revision: 6/14/2019 Table 2-D: Page 1 Printed 8/21/2024 7:21 AM

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

	N	Ох	С	0	V	С	SC	Оx	PI	M ¹	PM	10 ¹	PM	2.5 ¹	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	0.94	4.10	0.14	0.63	0.87	3.80	0.00173	0.00756	-	-	0.0309	0.1353	0.0309	0.1353	-	-	1	-
ENG-2	0.94	4.10	0.14	0.63	0.87	3.80	0.00173	0.00756	-	-	0.0309	0.1353	0.0309	0.1353	-	-	-	-
GEN-1	0.64	2.81	0.77	3.37	1.06	4.65	0.0031	0.0135	-	-	0.0906	0.3968	0.0906	0.3968	-	-	-	-
GEN-2	0.64	2.81	0.77	3.37	1.06	4.65	0.0031	0.0135	-	-	0.0906	0.3968	0.0906	0.3968	-	-	-	-
GEN-3	0.64	2.81	0.77	3.37	1.06	4.65	0.0031	0.0135	-	-	0.0906	0.3968	0.0906	0.3968	-	-	-	-
GEN-4	0.64	2.81	0.77	3.37	1.06	4.65	0.0031	0.0135	-	-	0.0906	0.3968	0.0906	0.3968	-	-	-	-
FUG-1	-	-	-	-	5.46	23.93	-	-	-	-	-	-	-	-	-	-	-	-
HT-1	0.20	0.86	0.17	0.72	0.01	0.05	-	-	-	-	0.02	0.07	0.02	0.07				
HT-2	0.20	0.86	0.17	0.72	0.01	0.05	-	-	-	-	0.02	0.07	0.02	0.07				
TK-1	-	-	-	-	0.00	0.00	-	-	-	-	-	=	-	-	-	-	-	-
TK-2	-	-	-	-	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
TK-3	1	-	-	-	0.00	0.00	-	-	-	-	-	=	-	-	ı	-	-	-
TK-4	-	-	-	-	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
TK-5	1	-	-	-	0.00	0.00	-	-	1	-	-	-	-	-	1	-	-	-
TK-6	1	-	-	-	0.00	0.00	-	-	1	-	-	-	-	-	1	-	-	-
PWTK-1					0.00	0.00												
PWTK-2					0.00	0.00												
PWTK-3					0.00	0.00												
PWTK-4					0.00	0.00												
FL-LP	0.37	0.10	1.69	0.45	4.23	0.93	-	-	1	-	-	-	-	-	1	-	-	-
FL-LP SSM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FL-HP	0.004	0.019	0.020	0.086	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
FL-HP SSM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OILLOAD-1	-	-	-	-	14.99	0.22	-	-	-	-	-	-	-	-	-	-	-	-
PWLOAD-1	-	-	-	-	0.15	0.00	-	-	-	-	-	-	-	-	-	-	-	-
HR-1	-	-		-	-	-	-	-	-	-	0.88	0.01	0.09	0.00	-	-	-	-
VRT	-	-	-	-	-	0.00	-	-	-	-	-	-	-	-	-	-	-	-
Totals	5.20	21.28	5.41	16.73	30.83	51.37	0.02	0.07	0.00	0.00	1.33	2.00	0.54	1.99	0.00	0.00	0.00	0.00
Totals (including SSM)	74.49	24.44	321.30	31.11	272.79	63.32	0.02	0.07	0.00	0.00	1.33	2.00	0.54	1.99	0.00	0.00	0.00	0.00

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Form Revision: 6/14/2019 Table 2-E: Page 1 Printed 8/21/2024 7:21 AM

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

☐ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications

(https://www.env.nm.gov/adb/permit/adb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.		Ох		:0	V			Ох		M^2		110 ²		2.5 ²		₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ENG-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GEN-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GEN-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GEN-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
GEN-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FUG-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HT-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HT-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FL-LP	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FL-LP SSM	0.6886	0.151	3.1391	0.6883	7.73	1.69												
FL-HP	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FL-HP SSM	68.6035	3.0048	312.751	13.6985	234.23	10.26												
VRT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Totals	69.2921	3.1558	315.89	14.3868	241.96	11.95	-	-	-	-	-	-	-	-	-	-	-	-

For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

Form Revision: 6/14/2019 Table 2-F: Page 1 Printed 8/21/2024 7:21 AM

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Company Name Facility Name Application Date: R		Facility Name	Application Date:	Revision
--	--	---------------	-------------------	----------

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

☐ I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ох	C	0	V	ос	S	Ох	Р	М	PIV	110	PM	2.5	☐ H ₂ S or	.□ Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
FL-LP	FL-LP, FL-LP SSM	1.06	0.25	4.83	1.14	11.96	2.62	-	-	-	-	-	-	-	-	-	-
																	-
	Totals:																

Form Revision: 5/29/2019 Table 2-G: Page 1 Printed 8/21/2024 7:21 AM

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box.

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N₂O ton/yr	CH₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO₂e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO₂e											
	mass GHG											
	CO₂e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO2e											
Total	mass GHG											
	CO ₂ e					d in Table A 1 of			hack 40 CER 09			

GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

Form Revision: 5/3/2016 Table 2-P: Page 1 Printed 8/21/2024 7:21 AM

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s) from	Orientation (H-	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	Table 2-A	Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
ENG-1	ENG-1	V	No	20	902	43.90	-	-	124.60	0.67
ENG-2	ENG-2	V	No	20	902	43.90	-	-	124.60	0.67
GEN-1	GEN-1	V	No	15	1382	49.92	-	-	141.60	0.67
GEN-2	GEN-2	V	No	15	1382	49.92	-	-	141.60	0.67
GEN-3	GEN-3	V	No	15	1382	49.92	-	-	141.60	0.67
GEN-4	GEN-4	V	No	15	1382	49.92	-	-	141.60	0.67
HT-1	HT-1	V	No	15	460	10.40	-	-	13.30	1.00
HT-2	HT-2	V	No	15	460	10.40	-	-	13.30	1.00
FL-LP	FL-LP	V	No	60	1500	31.25	-	-	159.00	0.50
FL-LP SSM	FL-LP SSM	V	No	60	1500	31.25	-	-	159.00	0.50
FL-HP	FL-HP	V	No	60	1500	266.00	-	-	755.00	0.67
FL-HP SSM	FL-HP SSM	V	No	60	1500	266.00	-	-	755.00	0.67

Table 2-1: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or

	hold amounts described above.

	t is emitted i	r a adding	CV ICSS CITE	ar are are	Jilola aiii	Janus acse	HDCG GDO	V C.				1		1		i			
Stack No.	Unit No.(s)	Total	HAPs	Formal		Acetalo	-	Acro HAP o			zene r TAP	-	enzene r TAP		rane	Tolu HAP o		Xyl ☑ HAP o	
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	ENG-1	0.31	1.38	0.253	1.1081	0.03291	0.14415	0.0204	0.08865	0.00173	0.00758	0.00016	0.0007	0.00433	0.01897	0.00161	0.00705	0.00072	0.00315
ENG-2	ENG-2	0.31	1.38	0.253	1.1081	0.03291	0.14415	0.0204	0.08865	0.00173	0.00758	0.00016	0.0007	0.00433	0.01897	0.00161	0.00705	0.00072	0.00315
GEN-1	GEN-1	0.2	0.87	0.144	0.632	0.0196	0.086	0.0185	0.0811	0.0111	0.0487	0.00017	0.00074	-	-	0.00393	0.0172	0.0014	0.006
GEN-2	GEN-2	0.2	0.87	0.144	0.632	0.0196	0.086	0.0185	0.0811	0.0111	0.0487	0.00017		-	-	0.00393	0.0172	0.0014	0.006
GEN-3	GEN-3	0.2	0.87	0.144	0.632	0.0196	0.086	0.0185	0.0811	0.0111	0.0487	0.00017		-	-	0.00393	0.0172	0.0014	0.006
GEN-4	GEN-4	0.2	0.87	0.144	0.632	0.0196	0.086	0.0185	0.0811	0.0111	0.0487	0.00017	0.00074	-	-	0.00393	0.0172	0.0014	0.006
Т	otals:	1.42	6.24	1.082	4.7442	0.14422	0.6323	0.1148	0.5017	0.04786	0.20996	0.001	0.00436	0.00866	0.03794	0.01894	0.0829	0.00704	0.0303

Form Revision: 10/9/2014 Table 2-I: Page 1 Printed 8/21/2024 7:21 AM

Table 2-J: FuelSpecify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial, pipeline quality natural gas, residue gas,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	raw/field natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage (MSCF/hr)	Annual Usage (MMSCF/y)	% Sulfur	% Ash
ENG-1	Natural Gas	Field Natural Gas	1153	3.120	27.330	0	0
ENG-2	Natural Gas	Field Natural Gas	1153	3.120	27.330	0	0
GEN-1	Natural Gas	Field Natural Gas	1153	5.400	47.304	0	0
GEN-2	Natural Gas	Field Natural Gas	1153	5.400	47.304	0	0
GEN-3	Natural Gas	Field Natural Gas	1153	5.400	47.304	0	0
GEN-4	Natural Gas	Field Natural Gas	1153	5.400	47.304	0	0
HT-1	Natural Gas	Field Natural Gas	1020	1.960	17.170	0	0
HT-2	Natural Gas	Field Natural Gas	1020	1.960	17.170	0	0
FL-LP	Natural Gas	Field Natural Gas	1153	0.055	0.482	0	0
FL-HP	Natural Gas	Field Natural Gas	1153	0.055	0.482	0	0

 Form Revision: 9/20/2016
 Table 2-J: Page 1
 Printed 8/21/2024 7:21 AM

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stora	age Conditions	Max Stora	ge Conditions
Tank No.	SCC Code		Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
TK-1	4-04-003- 12	Crude Oil	Mixed Hydrocarbons	6.5	45.03	77	10.65	77	10.65
TK-2	4-04-003- 12	Crude Oil	Mixed Hydrocarbons	6.5	45.03	77	10.65	77	10.65
TK-3	4-04-003- 12	Crude Oil	Mixed Hydrocarbons	6.5	45.03	77	10.65	77	10.65
TK-4	4-04-003- 12	Crude Oil	Mixed Hydrocarbons	6.5	45.03	77	10.65	77	10.65
TK-5	4-04-003- 12	Crude Oil	Mixed Hydrocarbons	6.5	45.03	77	10.65	77	10.65
TK-6	4-04-003- 12	Crude Oil	Mixed Hydrocarbons	6.5	45.03	77	10.65	77	10.65
PWTK-1	4-04-003- 15	Produced Water	99% Produced Water, 1% Oil	8.3	27.95	77	0.99	77	0.99
PWTK-2	4-04-003- 15	Produced Water	99% Produced Water, 1% Oil	8.3	27.95	77	0.99	77	0.99
PWTK-3	4-04-003- 15	Produced Water	99% Produced Water, 1% Oil	8.3	27.95	77	0.99	77	0.99
PWTK-4	4-04-003- 15	Produced Water	99% Produced Water, 1% Oil	8.3	27.95	77	0.99	77	0.99

Form Revision: 7/8/2011 Table 2-K: Page 1 Printed 8/21/2024 7:21 AM

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 0.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored		Roof Type (refer to Table 2-	Сара	acity	Diameter (M)	Vapor Space (M)	Table VI-C)		Paint Condition (from Table VI-	Annual Throughput	Turn- overs
			LR below)	LR below)	(bbl)	(M ³)	, ,	. ,	Roof	Shell	C)	(gal/yr)	
TK-1	TBD	Crude Oil	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	9,581,250	228.13
TK-2	TBD	Crude Oil	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	9,581,250	228.13
TK-3	TBD	Crude Oil	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	9,581,250	228.13
TK-4	TBD	Crude Oil	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	9,581,250	228.13
TK-5	TBD	Crude Oil	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	9,581,250	228.13
TK-6	TBD	Crude Oil	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	9,581,250	228.13
PWTK-1	TBD	Produced Water	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	59,403,750	1414.38
PWTK-2	TBD	Produced Water	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	59,403,750	1414.38
PWTK-3	TBD	Produced Water	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	59,403,750	1414.38
PWTK-4	TBD	Produced Water	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	59,403,750	1414.38

 Form Revision: 7/8/2011
 Table 2-L: Page 1
 Printed 8/21/2024 7:21 AM

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, V	/elded Tank Seal Type	Seal Type, Rive	eted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG : Light Gray	1
					MG: Medium Gray]
Note: 1.00 bbl = 0.159 N	M ³ = 42.0 gal				BL: Black	
					OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Mater	ial Processed		N	Naterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
				Crude Oil	Mixed Hydrocarbons	Liquid	3750 bbl/d
				Produced Water	Produced Water	Liquid	15500 bbl/d
				Natural Gas	Natural Gas	Gas	21 MMscf/d

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
N/A								
					Pollutant(s) Manufacturer Model No. Serial No. Frequency	Poliutant(s) Manufacturer Model No. Serial No. Frequency Time	Poliutant(s) Manufacturer Model No. Serial No. Frequency Time Range	rrequency Time

 Form Revision: 7/8/2011
 Table 2-N: Page 1
 Printed 8/21/2024 7:21 AM

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
	N/A							

Application Summary

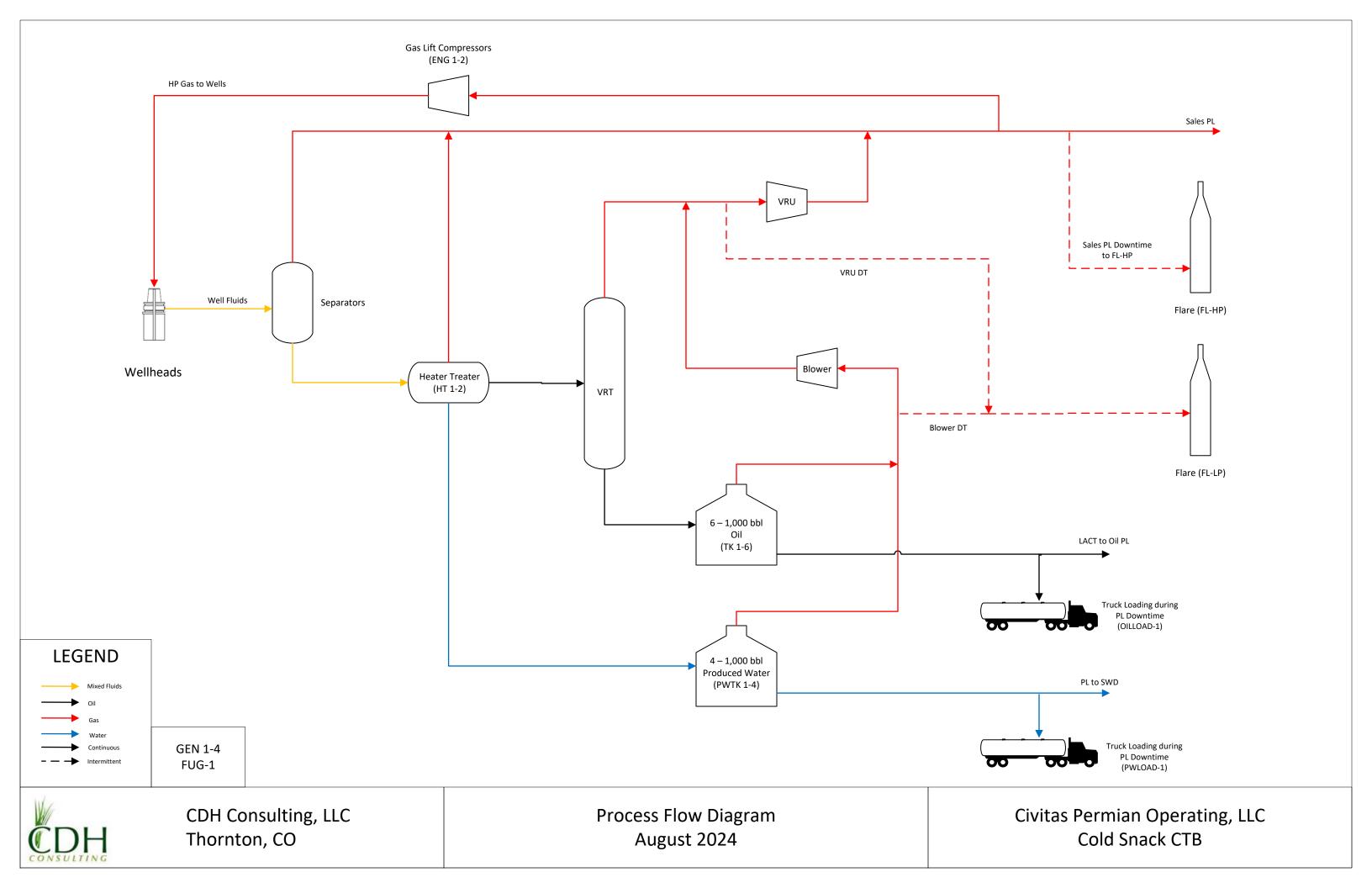
The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking

The **Process Summary** shall include a brief description of the facility and its processes.

impacts, and changes to the facility's major/minor status (both PSD & Title V).

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

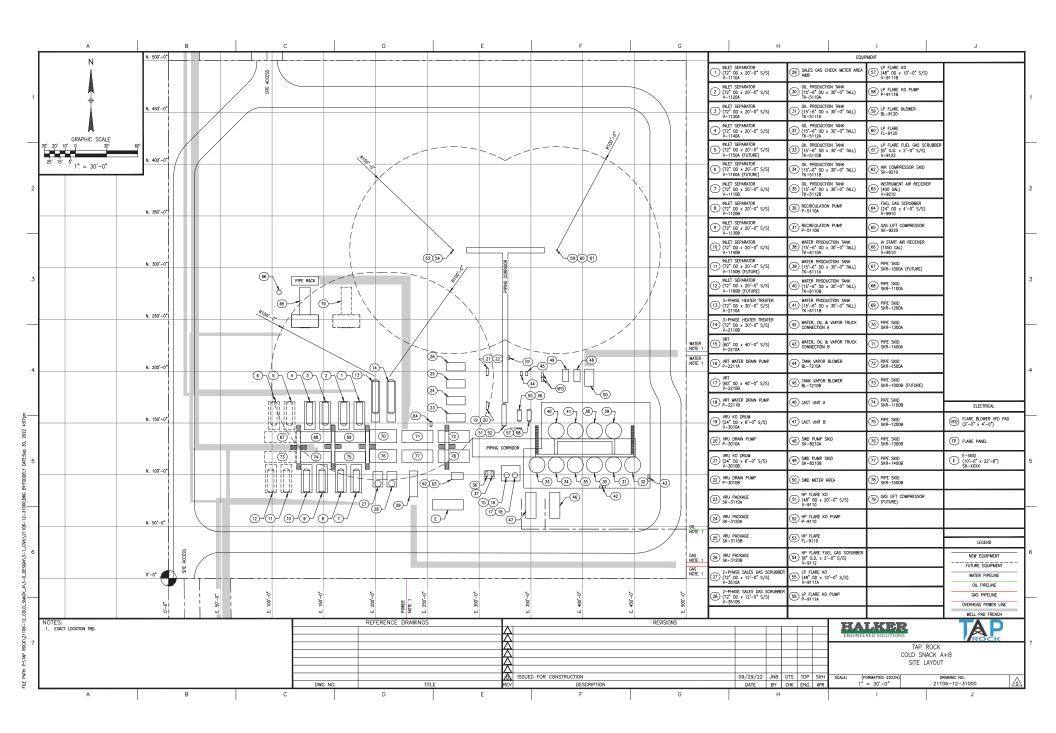
<u>Application Summary:</u> This permit application is being submitted to correct the make/model of the four electrical generators on location and update their respective emissions.


Process Summary: Fluids from each wellbore are routed to an initial separator where gas and liquids are separated. Liquids from the initial separators flow to heater treaters (HT 1-2). Oil from the heater treaters enters the vapor recovery towers (VRTs). Gas from the heater treaters joins the gas from the initial separators and is sent to the sales pipeline. Gas is sent to flare during short pipeline downtime periods (FL-HP). Prior to the sales point, a side stream of gas is removed and sent to gas lift compressors (ENG 1-2). The compressors direct the gas down hole to assist in bringing fluids to the surface. The compressor engines are gas fired and controlled with catalytic converters and air/fuel ratio controllers. Water from the heater treaters flows to atmospheric storage tanks (PWTK 1-4). Vapors from the water storage tanks are captured by the tank blower and routed to the VRU and then to the sales pipeline. When the blower is down for maintenance, the vapors are controlled by the low-pressure flare (FL-LP). When enough water has accumulated in the tanks it is piped off-site for disposal. A small amount of truck loading is included for operational flexibility (PWLOAD-1, HR-1). Gas from the VRTs is routed to a Vapor Recovery Unit (VRU) and to the sales line. The oil from the VRTs is routed to the atmospheric oil storage tanks (TK 1-6). Vapors from the oil storage tanks are captured by the tank blower and routed to the VRU and then to the sales pipeline. When the blower is down for maintenance, the vapors are controlled by the flare (FL-LP). When enough oil has accumulated in the tanks it is piped off-site for sale via LACT. A small amount of truck loading is included for operational flexibility (OILLOAD-1, HR-1).

<u>Startup, Shutdown, and Maintenance (SSM) routine or predictable emissions:</u> VOCs during blower and VRU downtime are controlled by FL-LP. Sales gas pipeline downtime is routed to FL-HP.

Process Flow Sheet

A <u>process flow sheet</u> and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.


Form-Section 4 last revised: 8/15/2011 Section 4, Page 1 Saved Date: 8/2/2024

Plot Plan Drawn to Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

Form-Section 5 last revised: 8/15/2011 Section 5, Page 1 Saved Date: 8/2/2024

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

- A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.
- **B.** At least 5 significant figures shall be retained in all intermediate calculations.
- **C.** In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:
 - (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
 - (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
 - (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
 - (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

AIR EMISSIONS CALCULATION TOOL

Instructions for Completing the Equipment Calculation Forms

- 1. Click the **Start Button** below to reset the form to begin data entry.
- 2. The *Air Emissions Calculation Tool* initially loads with the **Core Data Information Form.** Once all information is entered on this form, the necessary equipment calculation pages will be created based on the information entered on the Core Data Information Form. The customized *Air Emissions Calculation Tool* should now be saved to your computer before entering any other information on the equipment calculation pages. **Warning**, every time you click on the **Start Button b**elow, the *Air Emissions Calculation Tool* will reset and all data entered will be lost.
- 3. Green/Blue colored information boxes require users to enter the required information for the subject facility. Default values may be changed if not appropriate for the facility.
- 4. Yellow colored boxes represent calculated values based on user information entered and may not be changed.
- Yellow boxes with green/blue cross-hatching represent calculated values based on user information entered, however users may input data in these boxes, if necessary.

Ver.-Draft 8/10/18 Page 1 of 33

Core Data Information

Mandatory - All appropriate Data Must Be Entered For All Boxes Below. This Data Will Automatically Create All Required Equipment Forms And Populate This Data In All Emissions Calculation Forms.

Date Field Aug 1, 2024	Permit/NOI/NPR Number 9923M2
Company Name: Civitas Permian Operating, LLC	Select Application Type NSR
Facility Name: Cold Snack CTB	Al# if Known 40991
Max. Facility Gas Production 21,000 (Mscf/d) 875 (Mscf/h)	Elevation (ft.) 3,460
Max. Facility Oil Production 3,750 (BOPD) 156 (BOPH)	Sour Gas Streams at This Site? NO
Max. Facility Produced Water 15,500 (BWPD) 646 (BWPH)	soul dus streams at this site.

Enter The Quantity Of All Air Emissions Sources Located At The Facility (Leave Blank For Each Equipment Type That Is Not Present)

Equipment	Quantity	Equipment	Quantity
Amine Unit(s)		Compressor Engine (s)	2
Dehydrator(s)		Enclosed Combustion Device(s) (ECD)	
Equipment Fugitives	✓	Flare(s)	2
Flash Tower/Ultra-Low Pressure Separator(s)^	2	Generator Engine (s)	4
Gunbarrel Separator(s)/Tank(s)		Heater(s), Heater Treaters	2
Number of Paved Haul Roads Segments		Number of Unpaved Haul Road Segments	1
Low Pressure Compressor(s)* & Compressor(s)*		Oil/Condensate Storage Tank(s)	6
Oil/Condensate Truck Loading	✓	Produced Water Storage Tank(s)	4
Produced Water Truck Loading	✓	Pumpjack Engine(s)	
Reboilers(s) (Amine Units)		Placeholder for Future Use	
Reboilers(s) (Glycol, others)		Startup, Shutdown & Maintenance and Malfunction	
Skim Oil or Slop Oil Tank(s)		Thermal Oxidizer(s) (TO)	
Vapor Combustion Device(s) (VCU)		Vapor Recovery Unit(s) (VRU)^	2

Click Here to Generate Required Forms & Save to Your Computer

Complete all required forms that follow, for the equipment at the subject facility, based on the selections made above. Items with an * indicate an air emissions calculation form currently not required at this time and those with ^ indicate forms under construction at this time.

Ver.-Draft 8/10/18 Page 2 of 33

New Mexico Environment Department Air Quality Bureau Equipment Emissions Calculation Form

Date:Aug 1, 2024Permit Number:NSR-9923M2

Company Name: Civitas Permian Operating, LLC **Al# if Known:** 40991 **Facility Name:** Cold Snack CTB **Elevation (ft.):** 3,460

Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Compressor Engines (100% Load) & Stationary & Non-Road Diesel (≤600hp & >600hp) & Gasoline Compressor Engines (≤600hp)

Enter data in green-shaded areas only! One engine per form unless like-kind engines **Emission Unit ID:** ENG 1 Quantity of Like-kind Engines: Engine Manufacturer: Caterpillar Engine Description Compressor Engine Engine Model: G3408C Hours/year 8,760 TBD Engine Serial #: **Engine Deration** Fuel Type: Field Gas Engine Manuf. Date: > 7/1/2010 No Deration No Deration. Engine Type: |4SLB Stationary - Naturally Aspirated Stationary - Turbo Aspirated 425 **Factory HP Rating** Portable - Naturally Aspirated 425 Allowable HP Rating Notes: Portable - Turbo Aspirated Engine BSFC (Btu/(Hp*Hr)) 8,195 Select Source of Fuel LHV, (BTU/SCF) 1,153 **Emission Factors** Fuel Sulfur (grains/dscf) 0.002 AP-42 Emission Factors Manufacturer Specs (Enter Appropriate Emission Factors Below) or Diesel Tier 1, 2, 3 or 4 Hourly Fuel Flow Rate (MMSCF/hr) 0.003021 NSPS JJJJ; Engine Manuf. Between July 1, 2007-June 30, 2010 & Engine HP≥500HP Annual Fuel Flow Rate (MMSCF/yr) 26.46396 NSPS JJJJ; Engine Manuf. On or after July 1, 2010 & Engine HP≥500HP Maximum Engine RPM 1,800 NSPS JJJJ; Engine Manuf. Between July 1, 2008-Dec. 31, 2010 & Engine HP 100≤HP<500 NSPS JJJJ; Engine Manuf. on or after Jan.1, 2011 & Engine HP 100≤HP<500 902 Exhaust Temperature (°F) NSPS JJJJ; Eng. Manuf. Betw. Jan. 1, 2008-June 30, 2010 & LB Engine HP 500≤HP<1350</p> Exhaust Velocity (ft/sec) 124.6 2,636 NSPS JJJJ; Engine Manuf. on or after July 1, 2010 & LB Engine HP 500≤HP<1350 Exhaust Flow (ACFM) Stack Diameter (ft) 0.67 NSPS JJJJ; Engines < 100HP (Enter Appropriate Emission Factors Below)</p> Stack Height (ft) 20 NSPS IIII; Stationary Diesel Engines

Emission Fac	tors, Catalys	st Contro	l Efficien	cy & Safety	Factor		trolled sions	JJJJ Em	nissions	Controlled Emissions (includes SF) ¹	
Pollutant	Uncontrld. EF g/hp-hr	% Control Efficiency		Contrld EF g/(hp-hr)	JJJJ EF g/hp- hr	lb/hr	Tons/yr	lb/hr	Tons/yr	lb/hr	Tons/yr
NOx^	\times	0	0			0.9369	4.1036	0.9369	4.1036	0.9369	4.1036
СО	2.2	93	0	0.154	2	2.0613	9.0285	1.8739	8.2077	0.1443	0.632
VOC*	0.62	0	0	0.62	0.7	0.5809	2.5443	0.6559	2.8728	0.8668	3.7966
Formaldehyde	0.27	0	0	0.27		0.253	1.1081			0.253	1.1081
TSP/PM10/PM2.5	0.0371	11.05	0	0.033	$\langle\!\langle\!\langle\!\rangle\rangle\!\rangle$	0.0348	0.1524		0	0.0309	0.1353
² SO ₂	0.002	0	0	× 0.002		0.001726	0.00756			0.001726	0.00756
AP-42 HAPs	lb/MMBtu										
Formaldehyde	0.0528	NA	NA	NA	NA	0.20787	0.91047	NA	NA	NA	NA
Acetaldehyde	0.00836	NA	NA	NA	NA	0.03291	0.14415	NA	NA	NA	NA
Acrolein	0.00514	NA	NA	NA	NA	0.02024	0.08865	NA	NA	NA	NA
Benzene	0.00044	NA	NA	NA	NA	0.00173	0.00758	NA	NA	NA	NA
Ethylbenzene	0.0000397	NA	NA	NA	NA	0.00016	0.0007	NA	NA	NA	NA
n-Hexane	0.0011	NA	NA	NA	NA	0.00433	0.01897	NA	NA	NA	NA
Toluene	0.000408	NA	NA	NA	NA	0.00161	0.00705	NA	NA	NA	NA
Xylene	0.000184	NA	NA	NA	NA	0.00072	0.00315	NA	NA	NA	NA
Total HAPs	NA	NA	NA	NA	NA	0.3147	1.37835	NA	NA	0.31	1.38

^{*} Uncontrolled & Controlled VOC emissions include aldehyde emissions. VOC Emissions for JJJJ do not include aldehyde emissions. 1 For NOJ's & NPR, controlled emissions cannot be less than JJJJ emissions. 2 SO2 EF (grains/scf or ppm) except for AP-42 EF in g/hp-hr for SO2 & EF Values for NOx, CO, VOC, TSP/PM10/PM2.5 in Ib/hp-hr for large gasoline & diesel engines. NOx+NMHC Emission Factors for diesel engines assume 75% NOx and 25% VOC

Ver.Draft 8/10/18 Page 3 of 33

Calculation Tool for Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Compressor Engines (100% Load) & Large Stationary Diesel (≤600hp & >600hp) & Gasoline Compressor Engines (≤600hp) Emissions

AP-42 Gas-Fired Engine Emission factors based on AP-42, Tables 3.2-1, 3.2-2 & 3.2-3 (July 2000)

https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s02.pdf

40 CFR Part 60 Subpart JJJJ Emission Factors based on §60.4233 & Table 1

http://www.ecfr.gov/cgi-bin/text-idx?node=sp40.7.60.jjjj

AP-42 Diesel & Gasoline Fired Engine Emission factors based on AP-42, Tables 3.3-1, 3.2-2, 3.4-1, 3.4-2, 3.4-3 & 3.4-4

https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s03.pdf

40 CFR Part 60 Subpart IIII Emission Factors based on §60.4233 & Table 1

http://www.ecfr.gov/cgi-bin/text-idx?node=sp40.7.60.iiii

EPA Tier 1-4 Nonroad Compression Ignition Emission Standards (EPA-42--B-16-022) https://nepis.epa.gov/Exe/ZvNET.exe/P100OA05.txt?ZvActionD=ZvDocument&Client=EPA&Index=2011%20Thru%

202015&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldDp=0&ExtQFieldDp=0&XmlQuery=&File=D%3A%5CZYFILES%5CINDEX%20DATA%5C11THRU15%5CTXT%5C00000019%

5CP100OA05.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/r150y150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1

Emission factors for natural gas and field gas internal combustion engines may be based on AP-42, Tables 3.2-1, 3.2-2 or 3.2-3 or NSPS JJJJ emission standards or manufacturer specifications based on engine applicability.

NOx Sample Calculation Using AP-42 Emission Factors for a 500-HP 4-Stroke Rich Burn Engine

pph = NOx Emission Factor (EF) lb/MMBtu * Heat Value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * Allowable HP * 1/1000000 MMBtu/Btu

= 2.21 lb/MMBtu * 1020 Btu/scf/1020Btu/scf * 7500 MMBtu/hr *500 hp * 1/1000000 MMBtu/Btu

=8.29 lb/hr

tpy

=NOx Emission Factor (EF) lb/MMBtu * Heat Value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * Allowable HP * 1/1000000 MMBtu/Btu * 8760 hrs/yr * 1/2000 tons/lbs

= 2.21 lb/MMBtu * 1020 Btu/scf/1020 Btu/scf * 0.5 MMBtu/hr * 1/1020 Btu/scf * 1000000/1 Btu/MMBtu * 8760 hrs/yr *

1ton/2000lbs

= 36.31 tpy

AP-42 SO_2 emissions based on 100% conversion of fuel sulfur to SO_2 and assumes sulfur content in natural gas of 2,000 grains/ 10^6 scf. The SO_2 emission factor is converted to other natural gas sulfur contents by multiplying the SO_2 emission factor by the ratio of the site-specific sulfur content

 $(grains/10^6 \text{ scf})$ to 2,000 grains/ 10^6 scf . For all other engines not using AP-42, The SO₂ emissions are based on grains S/scf. Fuel Heat values for Diesel = 0.137 MMBtu/gal; LPG = 0.0905 MMBtu/gal and Gasoline = 0.13 MMBtu/gal per AP-42 Appendix A, pg 5 & 6. SO2 emissions for all diesel engines not using AP-42, equals Gal Diesel/hr * diesel wt (lb)/gal * 15 ppm S * 64 lb SO2/32 lb S, where diesel weighs 7.1089 lb/gal.

NOx Sample Calculation Using NSPS JJJJ Emission Factors for a July 1, 2010 500-HP 4-Stroke Rich Burn Engine

```
pph = NOx Emission Factor (EF) g/hp-hr * 1/453.6 lbs/grams * Allowable HP
```

= 1 g/hp-hr * 1/453.6 lbs/grams * 500 hp

 $= 1.1 \, lb/hr$

=NOx Emission Factor (EF) g/hp-hr * 1/453.6 lbs/grams * Allowable HP * 8760 hrs/yr * 1/2000 tons/lbs

= 1 g/hp-hr * 1/453.6 lbs/grams * 500 hp * 8760 hrs/yr * 1ton/2000lbs

= 4.82 tpy

Technical Disclaimer

tpy

This document is intended to help you accurately determine stationary compressor engine emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of stationary compressor engine emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 4 of 33

Date:Aug 1, 2024Permit Number:NSR-9923M2

Company Name: Civitas Permian Operating, LLC **Facility Name:** Cold Snack CTB **Al# if Known:** 40991 **Elevation (ft.):** 3,460

Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Compressor Engines (100% Load) & Stationary & Non-Road Diesel (≤600hp & >600hp) & Gasoline Compressor Engines (≤600hp)

Enter data in green-shaded areas only! One engine per form unless like-kind engines **Emission Unit ID:** ENG 2 Quantity of Like-kind Engines: Engine Manufacturer: Caterpillar **Engine Description Compressor Engine** Engine Model: G3408C Hours/year 8,760 TBD Engine Serial #: **Engine Deration** Fuel Type: Field Gas Engine Manuf. Date: > 7/1/2010 No Deration No Deration. Engine Type: |4SLB Stationary - Naturally Aspirated Stationary - Turbo Aspirated 425 **Factory HP Rating** Portable - Naturally Aspirated 425 Allowable HP Rating Notes: Portable - Turbo Aspirated Engine BSFC (Btu/(Hp*Hr)) 8,195 Select Source of Fuel LHV, (BTU/SCF) 1,153 **Emission Factors** Fuel Sulfur (grains/dscf) 0.002 AP-42 Emission Factors Manufacturer Specs (Enter Appropriate Emission Factors Below) or Diesel Tier 1, 2, 3 or 4 Hourly Fuel Flow Rate (MMSCF/hr) 0.003021 NSPS JJJJ; Engine Manuf. Between July 1, 2007-June 30, 2010 & Engine HP≥500HP Annual Fuel Flow Rate (MMSCF/yr) 26.46396 NSPS JJJJ; Engine Manuf. On or after July 1, 2010 & Engine HP≥500HP Maximum Engine RPM 1,800 NSPS JJJJ; Engine Manuf. Between July 1, 2008-Dec. 31, 2010 & Engine HP 100≤HP<500 NSPS JJJJ; Engine Manuf. on or after Jan.1, 2011 & Engine HP 100≤HP<500 902 Exhaust Temperature (°F) NSPS JJJJ; Eng. Manuf. Betw. Jan. 1, 2008-June 30, 2010 & LB Engine HP 500≤HP<1350</p> Exhaust Velocity (ft/sec) 124.6 NSPS JJJJ; Engine Manuf. on or after July 1, 2010 & LB Engine HP 500≤HP<1350 2,636 Exhaust Flow (ACFM) Stack Diameter (ft) NSPS JJJJ; Engines < 100HP (Enter Appropriate Emission Factors Below) 0.67 Stack Height (ft) 20 NSPS IIII; Stationary Diesel Engines

Emission Fac	ctors, Cataly	st Contro	l Efficien	cy & Safety	Factor		trolled sions	JJJJ Em	nissions	Controlled Emissions (includes SF) ¹	
Pollutant	Uncontrld. EF g/hp-hr	% Control Efficiency		Contrld EF g/(hp-hr)	JJJJ EF g/hp- hr	lb/hr	Tons/yr	lb/hr	Tons/yr	lb/hr	Tons/yr
NOx^	\times	0	0	\times	98988	0.9369	4.1036	0.9369	4.1036	0.9369	4.1036
СО	2.2	93	0	0.154	2	2.0613	9.0285	1.8739	8.2077	0.1443	0.632
VOC*	0.62	0	0	0.62	0.7	0.5809	2.5443	0.6559	2.8728	0.8668	3.7966
Formaldehyde	0.27	0	0	0.27		0.253	1.1081			0.253	1.1081
TSP/PM10/PM2.5	0.0371	11.05	0	0.033	$ \begin{picture}(40,0) \put(0,0){\line(1,0){10}} \put(0,$	0.0348	0.1524		0	0.0309	0.1353
² SO ₂	0.002	0	0	0.002		0.001726	0.00756			0.001726	0.00756
AP-42 HAPs	lb/MMBtu										
Formaldehyde	0.0528	NA	NA	NA	NA	0.20787	0.91047	NA	NA	NA	NA
Acetaldehyde	0.00836	NA	NA	NA	NA	0.03291	0.14415	NA	NA	NA	NA
Acrolein	0.00514	NA	NA	NA	NA	0.02024	0.08865	NA	NA	NA	NA
Benzene	0.00044	NA	NA	NA	NA	0.00173	0.00758	NA	NA	NA	NA
Ethy l benzene	0.0000397	NA	NA	NA	NA	0.00016	0.0007	NA	NA	NA	NA
n-Hexane	0.0011	NA	NA	NA	NA	0.00433	0.01897	NA	NA	NA	NA
Toluene	0.000408	NA	NA	NA	NA	0.00161	0.00705	NA	NA	NA	NA
Xylene	0.000184	NA	NA	NA	NA	0.00072	0.00315	NA	NA	NA	NA
Total HAPs	NA	NA	NA	NA	NA	0.3147	1.37835	NA	NA	0.31	1.38

^{*} Uncontrolled & Controlled VOC emissions include aldehyde emissions. VOC Emissions for JJJJ do not include aldehyde emissions. 1 For NOJ's & NPR, controlled emissions cannot be Jess than JJJJ emissions. 2 SO2 EF (grains/scf or ppm) except for AP-42 EF in g/hp-hr for SO2 & EF Values for NOx, CO, VOC, TSP/PM10/PM2.5 in Ib/hp-hr for large gasoline & diesel engines. ^NOx+NMHC Emission Factors for diesel engines assume 75% NOx and 25% VOC

Ver.Draft 8/10/18 Page 5 of 33

Date:Aug 1, 2024Permit Number:NSR-9923M2

Company Name: Civitas Permian Operating, LLC **Facility Name:** Cold Snack CTB **Al# if Known:** 40991 **Elevation (ft.):** 3,460

Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Generator Engines (100% Load) & Stationary & Non-Road Diesel (≤600hp & >600hp) & Gasoline Generator Engines (≤600hp)

Enter data in green-shaded areas only! One engine per form unless like-kind engines **Emission Unit ID:** GEN 1 Quantity of Like-kind Engines: Engine Manufacturer: Power Solutions International Engine Description Generator Engine Engine Model: 21.9L Hours/year 8,760 EZYOF004402 Engine Serial #: **Engine Deration** Fuel Type: Field Gas Engine Manuf. Date: 02/20/2015 No Deration No Deration. Engine Type: |4SRB Stationary - Naturally Aspirated Stationary - Turbo Aspirated **Factory HP Rating** 581 Portable - Naturally Aspirated 581 Allowable HP Rating Notes: Portable - Turbo Aspirated Engine BSFC (Btu/(Hp*Hr)) 10,716 Select Source of Fuel LHV, (BTU/SCF) 1,153 **Emission Factors** Fuel Sulfur (grains/dscf) 0.002 AP-42 Emission Factors Manufacturer Specs (Enter Appropriate Emission Factors Below) or Diesel Tier 1, 2, 3 or 4 Hourly Fuel Flow Rate (MMSCF/hr) 0.0054 NSPS JJJJ; Engine Manuf. Between July 1, 2007-June 30, 2010 & Engine HP≥500HP Annual Fuel Flow Rate (MMSCF/yr) 47.304 NSPS JJJJ; Engine Manuf. On or after July 1, 2010 & Engine HP≥500HP Maximum Engine RPM 1,800 NSPS JJJJ; Engine Manuf. Between July 1, 2008-Dec. 31, 2010 & Engine HP 100≤HP<500 NSPS JJJJ; Engine Manuf. on or after Jan.1, 2011 & Engine HP 100≤HP<500 1,382 Exhaust Temperature (°F) NSPS JJJJ; Eng. Manuf. Betw. Jan. 1, 2008-June 30, 2010 & LB Engine HP 500≤HP<1350</p> Exhaust Velocity (ft/sec) 141.6 NSPS JJJJ; Engine Manuf. on or after July 1, 2010 & LB Engine HP 500≤HP<1350 2,995 Exhaust Flow (ACFM) Stack Diameter (ft) NSPS JJJJ; Engines < 100HP (Enter Appropriate Emission Factors Below) 0.67 Stack Height (ft) 15 NSPS IIII; Stationary Diesel Engines

Emission Fac	ctors, Cataly	st Contro	l Efficien	cy & Safety	Factor		trolled sions	JJJJ Em	nissions	Controlled Emissions (includes SF) ¹	
Pollutant	Uncontrld. EF g/hp-hr	% Control Efficiency	,	Contrld EF g/(hp-hr)	JJJJ EF g/hp- hr	lb/hr	Tons/yr	lb/hr	Tons/yr	lb/hr	Tons/yr
NOx^	\times	50	0	0.5	XX1XX	1.2809	5.6103	1.2809	5.6103	0.6404	2.805
СО	2	70	0	0.6	2	2.5617	11.2202	2.5617	11.2202	0.7685	3.366
VOC*	0.7	0	0	0.7	0.7	0.8966	3.9271	0.8966	3.9271	1.0605	4.645
Formaldehyde			0	XXXX		0	0			0.1443	0.632
TSP/PM10/PM2.5	0.0943	25.03	0	0.0707	$\langle\!\langle\!\langle\!\rangle\rangle\!\rangle$	0.1208	0.5291		0	0.0906	0.3968
² SO ₂	0.002	0	0	0.002		0.003086	0.013517			0.003086	0.013517
AP-42 HAPs	lb/MMBtu										
Formaldehyde	0.0205	NA	NA	NA	NA	0.14428	0.63195	NA	NA	NA	NA
Acetaldehyde	0.00279	NA	NA	NA	NA	0.01964	0.08602	NA	NA	NA	NA
Acrolein	0.00263	NA	NA	NA	NA	0.01851	0.08107	NA	NA	NA	NA
Benzene	0.00158	NA	NA	NA	NA	0.01112	0.04871	NA	NA	NA	NA
Ethylbenzene	0.0000248	NA	NA	NA	NA	0.00017	0.00074	NA	NA	NA	NA
n-Hexane	$\Diamond \Diamond \Diamond \Diamond \Diamond \Diamond$	NA	NA	NA	NA	0	0	NA	NA	NA	NA
Toluene	0.000558	NA	NA	NA	NA	0.00393	0.01721	NA	NA	NA	NA
Xylene	0.000195	NA	NA	NA	NA	0.00137	0.006	NA	NA	NA	NA
Total HAPs	NA	NA	NA	NA	NA	0.19902	0.8717	NA	NA	0.2	0.87

^{*} Uncontrolled & Controlled VOC emissions include aldehyde emissions. VOC Emissions for JJJJ do not include aldehyde emissions. 1 For NOJ's & NPR, controlled emissions cannot be less than JJJJ emissions. 2 SO2 EF (grains/scf or ppm) except for AP-42 EF in g/hp-hr for SO2 & EF Values for NOx, CO, VOC, TSP/PM10/PM2.5 in Ib/hp-hr for large gasoline & diesel engines. NOx+NMHC Emission Factors for diesel engines assume 75% NOx and 25% VOC

Ver.Draft 8/10/18 Page 6 of 33

Calculation Tool for Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Generator Engines (100% Load) & Large Stationary Diesel (≤600hp & >600hp) & Gasoline Generator Engines (≤600hp) Emissions

AP-42 Gas-Fired Engine Emission factors based on AP-42, Tables 3.2-1, 3.2-2 & 3.2-3 (July 2000)

https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s02.pdf

40 CFR Part 60 Subpart JJJJ Emission Factors based on §60.4233 & Table 1

http://www.ecfr.gov/cgi-bin/text-idx?node=sp40.7.60.jjjj

AP-42 Diesel & Gasoline Fired Engine Emission factors based on AP-42, Tables 3.3-1, 3.2-2, 3.4-1, 3.4-2, 3.4-3 & 3.4-4

https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s03.pdf

40 CFR Part 60 Subpart IIII Emission Factors based on §60.4233 & Table 1

http://www.ecfr.gov/cgi-bin/text-idx?node=sp40.7.60.iiii

EPA Tier 1-4 Nonroad Compression Ignition Emission Standards (EPA-42--B-16-022)

https://nepis.epa.gov/Exe/ZyNET.exe/P100OA05.txt?ZyActionD=ZyDocument&Client=EPA&Index=2011%20Thru%

202015&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldDp=0&ExtQFieldDp=0&XmlQuery=&File=D%3A%5CZYFILES%5CINDEX%20DATA%5C11THRU15%5CTXT%5C00000019%

5CP100OA05.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1

Emission factors for natural gas and field gas internal combustion engines may be based on AP-42, Tables 3.2-1, 3.2-2 or 3.2-3 or NSPS JJJJ emission standards or manufacturer specifications based on engine applicability.

NOx Sample Calculation Using AP-42 Emission Factors for a 500-HP 4-Stroke Rich Burn Engine

- pph = NOx Emission Factor (EF) lb/MMBtu * Heat Value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * Allowable HP * 1/1000000 MMBtu/Btu
 - = 2.21 lb/MMBtu * 1020 Btu/scf/1020Btu/scf * 7500 MMBtu/hr *500 hp * 1/1000000 MMBtu/Btu
 - =8.29 lb/hr
- tpy =NOx Emission Factor (EF) lb/MMBtu * Heat Value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * Allowable HP * 1/1000000 MMBtu/Btu * 8760 hrs/yr * 1/2000 tons/lbs
 - = 2.21 lb/MMBtu * 1020 Btu/scf/1020 Btu/scf * 0.5 MMBtu/hr * 1/1020 Btu/scf * 1000000/1 Btu/MMBtu * 8760 hrs/yr * 1ton/2000lbs
 - = 36.31 tpy

AP-42 SO₂ emissions based on 100% conversion of fuel sulfur to SO₂ and assumes sulfur content in natural gas of 2,000 grains/ 10^6 scf. The SO₂ emission factor is converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/ 10^6 scf) to 2,000 grains/ 10^6 scf. For all other engines not using AP-42, The SO₂ emissions are based on grains S/scf. Fuel Heat values for Diesel = 0.137 MMBtu/gal; LPG = 0.0905 MMBtu/gal and Gasoline = 0.13 MMBtu/gal per AP-42 Appendix A, pg 5 & 6. SO₂ emissions for all diesel engines not using AP-42, equals Gal Diesel/hr * diesel wt (lb)/gal * 15 ppm S * 64 lb SO₂/32 lb S, where diesel weighs 7.1089 lb/gal.

NOx Sample Calculation Using NSPS JJJJ Emission Factors for a July 1, 2010 500-HP 4-Stroke Rich Burn Engine

```
pph = NOx Emission Factor (EF) g/hp-hr * 1/453.6 lbs/grams * Allowable HP
```

= 1 g/hp-hr * 1/453.6 lbs/grams * 500 hp

= 1.1 lb/hr

tpy =NOx Emission Factor (EF) g/hp-hr * 1/453.6 lbs/grams * Allowable HP * 8760 hrs/yr * 1/2000 tons/lbs

= 1 g/hp-hr * 1/453.6 lbs/grams * 500 hp * 8760 hrs/yr * 1ton/2000lbs

= 4.82 tpy

Technical Disclaime

This document is intended to help you accurately determine stationary generator engine emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of stationary generator engine emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 7 of 33

Date: Aug 1, 2024 Permit Number: NSR-9923M2

Company Name: Civitas Permian Operating, LLC **Facility Name:** Cold Snack CTB **Al# if Known:** 40991 **Elevation (ft.):** 3,460

Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Generator Engines (100% Load) & Stationary & Non-Road Diesel (≤600hp & >600hp) & Gasoline Generator Engines (≤600hp)

Enter data in green-shaded areas only! One engine per form unless like-kind engines **Emission Unit ID:** GEN 2 Quantity of Like-kind Engines: Engine Manufacturer: Power Solutions International Engine Description Generator Engine Engine Model: 21.9L Hours/year 8,760 EEYOF501104 Engine Serial #: **Engine Deration** Fuel Type: Field Gas Engine Manuf. Date: 03/26/2014 No Deration No Deration. Engine Type: |4SRB Stationary - Naturally Aspirated Stationary - Turbo Aspirated **Factory HP Rating** 581 Portable - Naturally Aspirated 581 Allowable HP Rating Notes: Portable - Turbo Aspirated Engine BSFC (Btu/(Hp*Hr)) 10,716 Select Source of Fuel LHV, (BTU/SCF) 1,153 **Emission Factors** Fuel Sulfur (grains/dscf) 0.002 AP-42 Emission Factors Manufacturer Specs (Enter Appropriate Emission Factors Below) or Diesel Tier 1, 2, 3 or 4 Hourly Fuel Flow Rate (MMSCF/hr) 0.0054 NSPS JJJJ; Engine Manuf. Between July 1, 2007-June 30, 2010 & Engine HP≥500HP Annual Fuel Flow Rate (MMSCF/yr) 47.304 NSPS JJJJ; Engine Manuf. On or after July 1, 2010 & Engine HP≥500HP Maximum Engine RPM 1,800 NSPS JJJJ; Engine Manuf. Between July 1, 2008-Dec. 31, 2010 & Engine HP 100≤HP<500 NSPS JJJJ; Engine Manuf. on or after Jan.1, 2011 & Engine HP 100≤HP<500 1,382 Exhaust Temperature (°F) NSPS JJJJ; Eng. Manuf. Betw. Jan. 1, 2008-June 30, 2010 & LB Engine HP 500≤HP<1350</p> Exhaust Velocity (ft/sec) 141.6 NSPS JJJJ; Engine Manuf. on or after July 1, 2010 & LB Engine HP 500≤HP<1350 2,995 Exhaust Flow (ACFM) Stack Diameter (ft) NSPS JJJJ; Engines < 100HP (Enter Appropriate Emission Factors Below) 0.67 Stack Height (ft) 15 NSPS IIII; Stationary Diesel Engines

Emission Fac	ctors, Cataly	st Contro	l Efficien	cy & Safety	Factor		trolled sions	JJJJ Em	nissions	Controlled Emissions (includes SF) ¹	
Pollutant	Uncontrld. EF g/hp-hr	% Control Efficiency	,	Contrld EF g/(hp-hr)	JJJJ EF g/hp- hr	lb/hr	Tons/yr	lb/hr	Tons/yr	lb/hr	Tons/yr
NOx^	\times	50	0	0.5	XX1XX	1.2809	5.6103	1.2809	5.6103	0.6404	2.805
СО	2	70	0	0.6	2	2.5617	11.2202	2.5617	11.2202	0.7685	3.366
VOC*	0.7	0	0	0.7	0.7	0.8966	3.9271	0.8966	3.9271	1.0605	4.645
Formaldehyde			0	XXXX		0	0			0.1443	0.632
TSP/PM10/PM2.5	0.0943	25.03	0	0.0707	$\langle\!\langle\!\langle\!\rangle\rangle\!\rangle$	0.1208	0.5291		0	0.0906	0.3968
² SO ₂	0.002	0	0	0.002		0.003086	0.013517			0.003086	0.013517
AP-42 HAPs	lb/MMBtu										
Formaldehyde	0.0205	NA	NA	NA	NA	0.14428	0.63195	NA	NA	NA	NA
Acetaldehyde	0.00279	NA	NA	NA	NA	0.01964	0.08602	NA	NA	NA	NA
Acrolein	0.00263	NA	NA	NA	NA	0.01851	0.08107	NA	NA	NA	NA
Benzene	0.00158	NA	NA	NA	NA	0.01112	0.04871	NA	NA	NA	NA
Ethylbenzene	0.0000248	NA	NA	NA	NA	0.00017	0.00074	NA	NA	NA	NA
n-Hexane	$\Diamond \Diamond \Diamond \Diamond \Diamond \Diamond$	NA	NA	NA	NA	0	0	NA	NA	NA	NA
Toluene	0.000558	NA	NA	NA	NA	0.00393	0.01721	NA	NA	NA	NA
Xylene	0.000195	NA	NA	NA	NA	0.00137	0.006	NA	NA	NA	NA
Total HAPs	NA	NA	NA	NA	NA	0.19902	0.8717	NA	NA	0.2	0.87

^{*} Uncontrolled & Controlled VOC emissions include aldehyde emissions. VOC Emissions for JJJJ do not include aldehyde emissions. 1 For NOJ's & NPR, controlled emissions cannot be less than JJJJ emissions. 2 SO2 EF (grains/scf or ppm) except for AP-42 EF in g/hp-hr for SO2 & EF Values for NOx, CO, VOC, TSP/PM10/PM2.5 in Ib/hp-hr for large gasoline & diesel engines. NOx+NMHC Emission Factors for diesel engines assume 75% NOx and 25% VOC

Ver.Draft 8/10/18 Page 8 of 33

Date: Aug 1, 2024 **Permit Number:** NSR-9923M2

Company Name: Civitas Permian Operating, LLC **Facility Name:** Cold Snack CTB **Al# if Known:** 40991 **Elevation (ft.):** 3,460

Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Generator Engines (100% Load) & Stationary & Non-Road Diesel (≤600hp & >600hp) & Gasoline Generator Engines (≤600hp)

Enter data in green-shaded areas only! One engine per form unless like-kind engines **Emission Unit ID:** GEN 3 Quantity of Like-kind Engines: Engine Manufacturer: Power Solutions International Engine Description Generator Engine Engine Model: 21.9L Hours/year 8,760 EEYOF300333 Engine Serial #: **Engine Deration** Fuel Type: Field Gas Engine Manuf. Date: 06/30/2014 No Deration No Deration. Engine Type: |4SRB Stationary - Naturally Aspirated Stationary - Turbo Aspirated **Factory HP Rating** 581 Portable - Naturally Aspirated 581 Allowable HP Rating Notes: Portable - Turbo Aspirated Engine BSFC (Btu/(Hp*Hr)) 10,716 Select Source of Fuel LHV, (BTU/SCF) 1,153 **Emission Factors** Fuel Sulfur (grains/dscf) 0.002 AP-42 Emission Factors Manufacturer Specs (Enter Appropriate Emission Factors Below) or Diesel Tier 1, 2, 3 or 4 Hourly Fuel Flow Rate (MMSCF/hr) 0.0054 NSPS JJJJ; Engine Manuf. Between July 1, 2007-June 30, 2010 & Engine HP≥500HP Annual Fuel Flow Rate (MMSCF/yr) 47.304 NSPS JJJJ; Engine Manuf. On or after July 1, 2010 & Engine HP≥500HP Maximum Engine RPM 1,800 NSPS JJJJ; Engine Manuf. Between July 1, 2008-Dec. 31, 2010 & Engine HP 100≤HP<500 NSPS JJJJ; Engine Manuf. on or after Jan.1, 2011 & Engine HP 100≤HP<500 1,382 Exhaust Temperature (°F) NSPS JJJJ; Eng. Manuf. Betw. Jan. 1, 2008-June 30, 2010 & LB Engine HP 500≤HP<1350</p> Exhaust Velocity (ft/sec) 141.6 2,995 NSPS JJJJ; Engine Manuf. on or after July 1, 2010 & LB Engine HP 500≤HP<1350 Exhaust Flow (ACFM) Stack Diameter (ft) 0.67 NSPS JJJJ; Engines < 100HP (Enter Appropriate Emission Factors Below)</p> Stack Height (ft) 15 NSPS IIII; Stationary Diesel Engines

Emission Fac	ctors, Cataly	st Contro	l Efficien	cy & Safety	Factor		trolled sions	JJJJ Em	nissions	Controlled Emissions (includes SF)1	
Pollutant	Uncontrld. EF g/hp-hr	% Control Efficiency		Contrld EF g/(hp-hr)	JJJJ EF g/hp- hr	lb/hr	Tons/yr	lb/hr	Tons/yr	lb/hr	Tons/yr
NOx^	$\times\!\!\times\!\!\times\!\!\times$	50	0	0.5		1.2809	5.6103	1.2809	5.6103	0.6404	2.805
СО	2	70	0	0.6	2	2.5617	11.2202	2.5617	11.2202	0.7685	3.366
VOC*	0.7	0	0	0.7	0.7	0.8966	3.9271	0.8966	3.9271	1.0605	4.645
Formaldehyde			0			0	0			0.1443	0.632
TSP/PM10/PM2.5	0.0943	25.03	0	0.0707	$\hspace{0.1cm} \hspace{0.1cm} \hspace$	0.1208	0.5291		0	0.0906	0.3968
² SO ₂	0.002	0	0	× 0.002		0.003086	0.013517			0.003086	0.013517
AP-42 HAPs	lb/MMBtu										
Formaldehyde	0.0205	NA	NA	NA	NA	0.14428	0.63195	NA	NA	NA	NA
Acetaldehyde	0.00279	NA	NA	NA	NA	0.01964	0.08602	NA	NA	NA	NA
Acrolein	0.00263	NA	NA	NA	NA	0.01851	0.08107	NA	NA	NA	NA
Benzene	0.00158	NA	NA	NA	NA	0.01112	0.04871	NA	NA	NA	NA
Ethylbenzene	0.0000248	NA	NA	NA	NA	0.00017	0.00074	NA	NA	NA	NA
n-Hexane	$\Diamond \Diamond \Diamond \Diamond \Diamond \Diamond$	NA	NA	NA	NA	0	0	NA	NA	NA	NA
Toluene	0.000558	NA	NA	NA	NA	0.00393	0.01721	NA	NA	NA	NA
Xylene	0.000195	NA	NA	NA	NA	0.00137	0.006	NA	NA	NA	NA
Total HAPs	NA	NA	NA	NA	NA	0.19902	0.8717	NA	NA	0.2	0.87

^{*} Uncontrolled & Controlled VOC emissions include aldehyde emissions. VOC Emissions for JJJJ do not include aldehyde emissions. 1 For NOJ's & NPR, controlled emissions cannot be less than JJJJ emissions. 2 SO2 EF (grains/scf or ppm) except for AP-42 EF in g/hp-hr for SO2 & EF Values for NOx, CO, VOC, TSP/PM10/PM2.5 in Ib/hp-hr for large gasoline & diesel engines. NOx+NMHC Emission Factors for diesel engines assume 75% NOx and 25% VOC

Ver.Draft 8/10/18 Page 9 of 33

Date: Aug 1, 2024 Permit Number: NSR-9923M2

Company Name: Civitas Permian Operating, LLC **Al# if Known:** 40991 **Facility Name:** Cold Snack CTB **Elevation (ft.):** 3,460

Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Generator Engines (100% Load) & Stationary & Non-Road Diesel (≤600hp & >600hp) & Gasoline Generator Engines (≤600hp)

Enter data in green-shaded areas only! One engine per form unless like-kind engines **Emission Unit ID:** GEN 4 Quantity of Like-kind Engines: Engine Manufacturer: Power Solutions International Engine Description Generator Engine Engine Model: 21.9L Hours/year 8,760 EEYOF504087 Engine Serial #: **Engine Deration** Fuel Type: Field Gas Engine Manuf. Date: 02/20/2015 No Deration No Deration. Engine Type: |4SRB Stationary - Naturally Aspirated Stationary - Turbo Aspirated **Factory HP Rating** 581 Portable - Naturally Aspirated 581 Allowable HP Rating Notes: Portable - Turbo Aspirated Engine BSFC (Btu/(Hp*Hr)) 10,716 Select Source of Fuel LHV, (BTU/SCF) 1,153 **Emission Factors** Fuel Sulfur (grains/dscf) 0.002 AP-42 Emission Factors Manufacturer Specs (Enter Appropriate Emission Factors Below) or Diesel Tier 1, 2, 3 or 4 Hourly Fuel Flow Rate (MMSCF/hr) 0.0054 NSPS JJJJ; Engine Manuf. Between July 1, 2007-June 30, 2010 & Engine HP≥500HP Annual Fuel Flow Rate (MMSCF/yr) 47.304 NSPS JJJJ; Engine Manuf. On or after July 1, 2010 & Engine HP≥500HP Maximum Engine RPM 1,800 NSPS JJJJ; Engine Manuf. Between July 1, 2008-Dec. 31, 2010 & Engine HP 100≤HP<500 NSPS JJJJ; Engine Manuf. on or after Jan.1, 2011 & Engine HP 100≤HP<500 1,382 Exhaust Temperature (°F) NSPS JJJJ; Eng. Manuf. Betw. Jan. 1, 2008-June 30, 2010 & LB Engine HP 500≤HP<1350</p> Exhaust Velocity (ft/sec) 141.6 2,995 NSPS JJJJ; Engine Manuf. on or after July 1, 2010 & LB Engine HP 500≤HP<1350 Exhaust Flow (ACFM) Stack Diameter (ft) 0.67 NSPS JJJJ; Engines < 100HP (Enter Appropriate Emission Factors Below)</p> Stack Height (ft) 15 NSPS IIII; Stationary Diesel Engines

Emission Fac	ctors, Cataly	st Contro	l Efficien	cy & Safety	Factor		trolled sions	JJJJ Em	nissions	Controlled Emissions (includes SF)1	
Pollutant	Uncontrld. EF g/hp-hr	% Control Efficiency		Contrld EF g/(hp-hr)	JJJJ EF g/hp- hr	lb/hr	Tons/yr	lb/hr	Tons/yr	lb/hr	Tons/yr
NOx^	$\times\!\!\times\!\!\times\!\!\times$	50	0	0.5		1.2809	5.6103	1.2809	5.6103	0.6404	2.805
СО	2	70	0	0.6	2	2.5617	11.2202	2.5617	11.2202	0.7685	3.366
VOC*	0.7	0	0	0.7	0.7	0.8966	3.9271	0.8966	3.9271	1.0605	4.645
Formaldehyde			0			0	0			0.1443	0.632
TSP/PM10/PM2.5	0.0943	25.03	0	0.0707	$\langle\!\langle\!\langle\!\rangle\rangle\!\rangle$	0.1208	0.5291		0	0.0906	0.3968
² SO ₂	0.002	0	0	× 0.002		0.003086	0.013517			0.003086	0.013517
AP-42 HAPs	lb/MMBtu										
Formaldehyde	0.0205	NA	NA	NA	NA	0.14428	0.63195	NA	NA	NA	NA
Acetaldehyde	0.00279	NA	NA	NA	NA	0.01964	0.08602	NA	NA	NA	NA
Acrolein	0.00263	NA	NA	NA	NA	0.01851	0.08107	NA	NA	NA	NA
Benzene	0.00158	NA	NA	NA	NA	0.01112	0.04871	NA	NA	NA	NA
Ethylbenzene	0.0000248	NA	NA	NA	NA	0.00017	0.00074	NA	NA	NA	NA
n-Hexane	$\Diamond \Diamond \Diamond \Diamond \Diamond \Diamond$	NA	NA	NA	NA	0	0	NA	NA	NA	NA
Toluene	0.000558	NA	NA	NA	NA	0.00393	0.01721	NA	NA	NA	NA
Xylene	0.000195	NA	NA	NA	NA	0.00137	0.006	NA	NA	NA	NA
Total HAPs	NA	NA	NA	NA	NA	0.19902	0.8717	NA	NA	0.2	0.87

^{*} Uncontrolled & Controlled VOC emissions include aldehyde emissions. VOC Emissions for JJJJ do not include aldehyde emissions. 1 For NOJ's & NPR, controlled emissions cannot be less than JJJJ emissions. 2 SO2 EF (grains/scf or ppm) except for AP-42 EF in g/hp-hr for SO2 & EF Values for NOx, CO, VOC, TSP/PM10/PM2.5 in Ib/hp-hr for large gasoline & diesel engines. NOx+NMHC Emission Factors for diesel engines assume 75% NOx and 25% VOC

Ver.Draft 8/10/18 Page 10 of 33

Date:

Date: Aug 1, 2024 Company Name: Civitas Permian Operating, LLC

Cold Snack CTB Facility Name:

Permit Number:9923M2 **Al# if Known:** 40991

Elevation (ft.): 3,460

Total Requested Emissions For All Regulated Engines (NSR Request)

UnitID	N	O _X	C	0	V	OC	SC	O _x	TS	SP	PM	110	PM	2.5	Н	₂ S	Tota	I HAP
	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
ENG 1	0.94	4.1	0.14	0.63	0.87	3.8	0	0.01	0.03	0.14	0.03	0.14	0.03	0.14			0.31	1.38
ENG 2	0.94	4.1	0.14	0.63	0.87	3.8	0	0.01	0.03	0.14	0.03	0.14	0.03	0.14			0.31	1.38
ENG 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 1	0.64	2.81	0.77	3.37	1.06	4.64	0	0.01	0.09	0.4	0.09	0.4	0.09	0.4			0.2	0.87
GEN 2	0.64	2.81	0.77	3.37	1.06	4.64	0	0.01	0.09	0.4	0.09	0.4	0.09	0.4			0.2	0.87
GEN 3	0.64	2.81	0.77	3.37	1.06	4.64	0	0.01	0.09	0.4	0.09	0.4	0.09	0.4			0.2	0.87
GEN 4	0.64	2.81	0.77	3.37	1.06	4.64	0	0.01	0.09	0.4	0.09	0.4	0.09	0.4			0.2	0.87
GEN 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
Page Totals	4.44	19.44	3.36	14.74	5.98	26.16	0	0.06	0.42	1.88	0.42	1.88	0.42	1.88			1.42	6.24

Page 11 of 33 Ver.-Draft 8/10/18

Date: Aug 1, 2024

Company Name: Civitas Permian Operating, LLC

Facility Name: Cold Snack CTB

Permit Number:9923M2 Al# if Known: 40991 Elevation (ft.): 3,460

Heaters, Heated Separators & Heater Treaters (Only for units rated <100 MMBTU/Hr)

Enter appropriate information in green boxes below changing default values as appropriate and adding additional rows for each heater unit.

Enter the Sulfur Content of Gas or use default value (grains/10⁶ scf).

2,000

SO₂ emissions based on AP-42 EF and assumes 100% conversion of fuel sulfur to SO2 and assumes sulfur content in natural gas of 2,000 grains/1000000 scf. Change default value of 2000 as needed based on gas analysis submitted with application.

Enter the Site Fuel Heat Value of Gas or use default value (Btu/scf).

1,020

	Emissions From All Heaters, Heated Separators & Heater Treaters														
Add/Remove Rows	Unit ID	Heat Input	No	NO _X		vo		VOC		02	PM/PM ₁₀ /PM _{2.5}				
		MMBtu/hr	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy			
+	HT-1	2	0.196	0.858	0.165	0.723	0.011	0.048	0	0	0.015	0.066			
+	HT-2	2	0.196	0.858	0.165	0.723	0.011	0.048	0	0	0.015	0.066			
	Totals		0.392	1.716	0.33	1.446	0.022	0.096	0	0	0.03	0.132			

Ver.-Draft 8/10/18 Page 12 of 33

Calculation Tool for Heaters, Heated Separators & Heater Treater Emissions (Uncontrolled) for Oil & Gas Production Sites (Only for units rated <100 MMBTU/Hr)

All emission factors based on AP-42, Table 1.4-1, Table 1.4-2 and Table 1.4-3 (July 1998) https://www3.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf

Emission factors for natural gas combustion in boilers and furnaces are presented in AP42, Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4. The Tables present emission factors on a volume basis (lb/10⁶ scf). To convert to an energy basis (lb/MMBtu), divide by a heating value of 1,020 MMBtu/10⁶ scf. The emission factors may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value.

NOx Sample Calculation

pph = AP 42 NOx Emission Factor (EF) * site fuel heat value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * 1/site fuel heat Value Btu/scf * 1000000/1Btu/MMBtu

= 100 lb/1000000 scf * 2000 Btu/scf/1020 Btu/scf * 0.5 MMBtu/hr * 1/2000 Btu/scf * 1000000/1Btu/MMBtu

=0.096 lb/hr

tpy = AP 42 NOx Emission Factor (EF) * site fuel heat value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * 1/site fuel heat value Btu/scf * 1000000/1 Btu/MMBtu * 8760 hrs/yr * 1ton/2000 lbs

= 100 lb/1000000 scf * 2000 Btu/scf/1020 Btu/scf * 0.5 MMBtu/hr * 1/2000 Btu/scf * 1000000/1 Btu/MMBtu * 8760 hrs/yr * 1ton/2000lbs

= 0.42 tpy

 SO_2 emissions based on 100% conversion of fuel sulfur to SO_2 and assumes sulfur content in natural gas of 2,000 grains/ 10^6 scf. The SO_2 emission factor is converted to other natural gas sulfur contents by multiplying the SO_2 emission factor by the ratio of the site-specific sulfur content (grains/ 10^6 scf) to 2,000 grains/ 10^6 scf.

Technical Disclaimer

This document is intended to help you accurately determine heaters, heated separators & heater treaters emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these combustion units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of heaters, heated separators & heater treaters emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 13 of 33

Permit Number: NSR-9923M2

40991

3,460

NE TO SERVICE SERVICE

Date: Aug 1, 2024

Company Name: Civitas Permian Operating, LLC

Facility Name: Cold Snack CTB

Al# if Known:
Elevation (ft.):

Flash Tower/Ultra-low Pressure Separators Air Emissions Calculations Form Under Development

Please submit all required calculations and supporting documentation for all Flash Tower/Ultra-low Pressure Separators emissions in the application.

Ver.Draft 8/10/18 Page 14 of 33

Date: Aug 1, 2024

Company Name: Civitas Permian Operating, LLC

Facility Name: Cold Snack CTB

Permit Number: NSR-9923M2

Al# if Known: 40991 **Elevation (ft.):** 3,460

VRT/ULPS (Including the Low Pressure Compressor (LPC) or VRU) Process vs Control Determination

Please complete the Process vs. Control determination below for the VRT/ULPS, which addresses the three criteria referenced in the EPA Nov. 27, 1995 Process Guidance memo and enter appropriate Information in all green boxes.

1. Is the primary purpose of the equipmen										
No, the primary purpose of the VRT/UL to recover flash gas vapors and route t	.PS equipment hem into an av	(including the low pressure compressor (Li ailable gas sales line.	PC) or VRU) is							
Yes, the primary purpose of the VRT/UI to control air pollution.	LPS equipment	t (including the low pressure compressor (L	.PC) or VRU) is							
2. Where the equipment is recovering prother the equipment? (Check approp		he cost savings from the product recovery	compare to							
	•	oositive return on investment. The benefit-or compressor (LPC) or VRU) compared to the	•							
No, the benefit- cost analysis below de	monstrates a n	negative return on investment.								
VRT/ULPS/LPC/VRU-1	VR	T/ULPS/LPC/VRU-1 Benefit-Cost Anal	ysis*							
Capital Cost of VRT/ULPS (\$)	\$5,000.00	Oil Production (BOPD)	3,750							
VRT/ULPS/LPC/VRU Rental Costs (\$/mo)	\$0.00	VRT/ULPS Vapor Production (Mcf/d)	117.06							
Capital Cost of LPC/VRU (\$)	\$5,000.00	Heating Value of Vapors (Btu/scf)	1,075							
Annual Maintenance & Service Costs (\$/yr)	\$5,000.00	Natural Gas Price (\$/MMBtu)	\$2.57							
Annual Electricity or Fuel Costs (\$/yr)		VRT/ULPS/LPC/VRU Life Expectancy (Yrs)	5							
VRT/ULPS/LPC/VRU Lifetime Costs (\$)	\$35,000.00	Lifetime VRT/ULPS/LPC/VRU Profit (Revenues-Costs) (\$/yr)	\$555,218.70							
Annual VRT/ULPS/LPC/VRU Revenue (\$/yr)	\$118,043.74	Payback Period (Yrs)	0.297							
VRT/ULPS/LPC/VRU Lifetime Revenue (\$)	\$590,218.70	Lifetime Benefit-Cost Ratio	16.86							
3. Would the equipment be installed if no										
		ssure compressor (LPC) or VRU) would still b cant cost benefits of product recovery.	oe installed							
No, the VRT/ULPS equipment (including the low pressure compressor (LPC) or VRU) would not be installed if there were no air quality regulations in place.										
Notes:										

Footnote: All estimates based on current dollars unless specified otherwise; Tank vapor estimates based on flash calculation method noted in Tanks form based on oil throughput noted in p2 of AECT (this can be changed by user); Gas price based on EIA Natural Gas Weekly Update. * The time value of money is not taken into account.

Ver.Draft 8/10/18 Page 15 of 33

Permit Number: NSR-9923M2

Aug 1, 2024

Company Name: Civitas Permian Operating, LLC

AI# if Known: 40991 Cold Snack CTB **Facility Name:** Elevation (ft.): 3,460

VRT/ULPS (Including the Low Pressure Compressor (LPC) or VRU) Process vs Control Determination

Please complete the Process vs. Control determination below for the VRT/ULPS, which addresses the three criteria referenced in the EPA Nov. 27, 1995 Process Guidance memo and enter appropriate Information in all green boxes.

1. Is the primary purpose of the equipmen			DC) - " \
to recover flash gas vapors and route t	-PS equipment :hem into an av	(including the low pressure compressor (Lalable gas sales line.	PC) or VRU) is
Yes, the primary purpose of the VRT/U		(including the low pressure compressor (L	
Where the equipment is recovering pro the cost of the equipment? (Check approp		ne cost savings from the product recovery	compare to
Yes, the benefit-cost analysis below de	emonstrates a p	ositive return on investment. The benefit-	cost analysis of
the VRT/ULPS equipment (including the recovered is shown below:	ne low pressure	compressor (LPC) or VRU) compared to the	e product
No, the benefit- cost analysis below de	emonstrates a n	egative return on investment.	
VRT/ULPS/LPC/VRU-2	VR	T/ULPS/LPC/VRU-2 Benefit-Cost Anal	ysis*
Capital Cost of VRT/ULPS (\$)	\$5,000.00	Oil Production (BOPD)	3,750
VRT/ULPS/LPC/VRU Rental Costs (\$/mo)	\$0.00	VRT/ULPS Vapor Production (Mcf/d)	117.06
Capital Cost of LPC/VRU (\$)	\$5,000.00	Heating Value of Vapors (Btu/scf)	2,075
Annual Maintenance & Service Costs (\$/yr)	\$5,000.00	Natural Gas Price (\$/MMBtu)	\$2.57
Annual Electricity or Fuel Costs (\$/yr)		VRT/ULPS/LPC/VRU Life Expectancy (Yrs)	5
VRT/ULPS/LPC/VRU Lifetime Costs (\$)	\$35,000.00	Lifetime VRT/ULPS/LPC/VRU Profit (Revenues-Costs) (\$/yr)	\$1,104,259.40
Annual VRT/ULPS/LPC/VRU Revenue (\$/yr)	\$227,851.88	Payback Period (Yrs)	0.154
VRT/ULPS/LPC/VRU Lifetime Revenue (\$)	\$1,139,259.40	Lifetime Benefit-Cost Ratio	32.55
3. Would the equipment be installed if no	air quality reg	ulations are in place? (Check appropriate	box)
Yes, the VRT/ULPS equipment (including regardless of air quality regulations, duality regulations).	ng the low pres ue to the signifi	sure compressor (LPC) or VRU) would still be cant cost benefits of product recovery.	oe installed
No, the VRT/ULPS equipment (including there were no air quality regulations in		sure compressor (LPC) or VRU) would not b	e installed if
Notes:			

Footnote: All estimates based on current dollars unless specified otherwise; Tank vapor estimates based on flash calculation method noted in Tanks form based on oil throughput noted in p2 of AECT (this can be changed by user); Gas price based on EIA Natural Gas Weekly Update. * The time value of money is not taken into account.

Page 16 of 33 Ver.Draft 8/10/18

Date: Aug 1, 2024

Company Name: Civitas Permian Operating, LLC

Facility Name: Cold Snack CTB

Permit Number: NSR-9923M2

Al# if Known: 40991 **Elevation (ft.):** 3,460

Vertical Fixed Roof (VFR) Oil/Condensate VOC Flash Emissions Calculations Form Select Tanks Flash Emission Calculation Method

GOR	E & P Tanks	ProMax
Vasquez-Beggs	HYSYS	VMGSim

ProMax Oil Tanks Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Tanks VOC Control Method										
Capture Efficiency	100	Represent Uncaptured/Uncollected VOC's at Tanks	YES							
VOC Control Method ¹	VRU & Flare	Represent VRU/ULPC Downtime Emissions at Tanks	NO							
VOC Destruction Efficiency ²	98	Represent VOC Controlled Emissions at Tanks*	NO							
Notes										

Total VOC Flash Emissions From Oil/Condensate Storage Tanks Calculated with ProMax													
Add/Remove Rows	Tank ID	VOC Uncontro	olled Emissions	VOC Emission	s after Control	VOC Emissions at the Tanks							
Up To 10 Units		pph tpy		pph*	tpy*	pph	tpy						
+	- TK-1	23.62	5.17	0.02	0.01	0	0						
+	TK-2	23.62	5.17	0.02	0.01	0	0						
+	TK-3	23.62	5.17	0.02	0.01	0	0						
+	TK-4	23.62	5.17	0.02	0.01	0	0						
+	TK-5	23.62	5.17	0.02	0.01	0	0						
+	TK-6	23.62	5.17	0.02	0.01	0	0						
	Totals	141.72	31.02	0.12	0.06	0	0						

Calculation Tool for Tanks Flashing & Working & Standing Emissions for Oil & Gas Production Sites

All flash emissions based on flash calculation methodology selected;

- 1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.
- 2) Manufacturer documentation required to support % control selected. If using a VRU/LPC, calculations assume VRU/ULPC with a 100% control efficiency, but with 5% downtime;
- 3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;
- 4) GOR and Vasquez-Beggs sample calculations outlined below; E & P Tanks, ProMax, HYSYS & VMG Sim flash emissions require submittal of computer simulation model emissions calculations print-outs;
- 5) Working & Standing emissions based on AP-42 Chpt. 7, tanks 4.09d computer simulation or ProMax, or VMG computer simulation models.

Sample Calculations

GOR Methodology

VOC pph = GOR (scf/bbl) * Facility Oil Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-

mole @ 70°F, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol)

= 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol

= 216.45 lbs/hr

VOC tpy = GOR (scf/bbl) * Facility Oil Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-

mole @ 70⁰F, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * 8760 hr/yr * 1/2000 lbs/ton

= 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 8760 hr/yr * 1/2000 lbs/ton

= 948.05 tpy

Vasquez-Beggs Methodology

	vasqu	iez-peg	js metric	Judiogy						
INPUTS			Constraints				Constants			
API Gravity		API	16	<api></api>	58	⁰ API		⁰ API Gravity		
Separator Pressure (psig)		Р	50	<p+patm></p+patm>	5250	psia	⁰ APTI	<30	≥30	Given ⁰ API
Separator Temp. (⁰ F)		Ti	70	<ti></ti>	295	⁰ F	C1	0.0362	0.0178	
Separator Gas Gravity at Initial Condition		SGi	0.56	<sgi></sgi>	1.18	MW/28.97	C2	1.0937	1.187	
Barrels of Oil/Day (BOPD)	625	Q	None	<q></q>	None	BOPD	С3	25.724	23.931	
Tank Gas MW		MW	18	<mw></mw>	125	lb/lb-mole				
VOC Fraction of Tank Gas		VOC	0.5	<voc></voc>	1.00	Fraction				

2070

scf/bbl

SGx = Dissolved gas gravity at Separator pressure = SGi [1.0+0.00005912*API*Ti*Log(Pi/114.7)]

<Rs>

 $R_{S} = (C1 * SGx * Pi^{C2}) \exp((C3 * API) / (Ti + 460)) \text{ for P + Patm}$

Patm

20

THC = Rs * Q * MW * 1/385 scf/lb-mole * 365 D/Yr * 1 ton/2000 lbs

VOC = THC * Frac. of C3+ in the Stock Tank Vapor

Technical Disclaimer

Atmospheric Pressure (psia)

This document is intended to help you accurately determine oil/condensate storage tank flash, working and standing emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of oil/condensate storage tank flash, working and standing emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 18 of 33

Date: Aug 1, 2024

Company Name: Civitas Permian Operating, LLC

Facility Name: Cold Snack CTB

Permit Number: NSR-9923M2 **Al# if Known:** 40991

Al# if Known: 40991 **Elevation (ft.):** 3,460

Vertical Fixed Roof (VFR) Oil/Condensate VOC Working & Standing Emissions Calculations Form

Select Tanks W & S Emission Calculation Method

AP-42 Chpt. 7

EPA Tanks 4.09d

ProMax

E & P Tanks

ProMax Oil Tanks W & S Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Tanks VOC Control Method								
Capture Efficiency	100	Represent Uncaptured and/or Controlled VOC's at Tanks	YES					
VOC Control Method VRU & Flare		Represent VRU/ULPC Downtime Emissions at Tanks	NO					
VOC Destruction Efficiency	98	Represent VOC Controlled Emissions at Tanks*	NO					
Notes								

Total VOC W & S Emissions From Oil/Condensate Storage Tanks Calculated with ProMax									
Add/Remove Rows	Tank ID	VOC Uncontro	olled Emissions	VOC Emissions after Control		VOC Emissions at the Tanks			
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy		
+	TK-1	9.81	2.15	0.21	0.05	0	0		
+	TK-2	9.81	2.15	0.21	0.05	0	0		
+	TK-3	9.81	2.15	0.21	0.05	0	0		
+	TK-4	9.81	2.15	0.21	0.05	0	0		
+	TK-5	9.81	2.15	0.21	0.05	0	0		
+	TK-6	9.81	2.15	0.21	0.05	0	0		
	Totals	58.86	12.9	1.26	0.3	0	0		

Date: Aug 1, 2024

Company Name: Civitas Permian Operating, LLC

Facility Name: Cold Snack CTB

Permit Number: NSR-9923M2 Al# if Known: 40991 Elevation (ft.): 3,460

Emissions From Loading Petroleum Liquid

Select Appropriate AP-42 Petroleum Liquid Loading Methodology & Enter appropriate information in the green boxes below changing default values as appropriate.

Facility Oil Throughput (gal/yr)

Max. Hourly Loading Rate (gal/hr)

8,820

Select Appropriate AP-42 Petroleum Liquid Loading Methodology Below*

AP-42, 5.2-4 Equa	tion 1	AP-42, Table 5.2-5				
S - Saturation Factor	M - Molecular Weight of	Select Emission Source - From AP-42 Table 5.2-5				
(From AP-42 Table 5.2-1)	Vapors (lb/lb-mole)	© Submerged Loading Dedicated Normal Service				
	B. Martin I	Submerged Loading Vapor Balance Service				
Pannual - Avg. Annual True Vapor Pressure of	Phourly - Max Hourly True Vapor Pressure of	Splash Loading Dedicated Normal Service				
Liquid Loaded (psia)	Liquid Loaded (psia)	Splash Loading Vapor Balance Service				
T _{annual} - Average Annual Temperature ^O F of Bulk Liquid Loaded	Thourly - Maximum Hourly Temperature OF of Bulk Liquid Loaded					

Truck Loading VOC Control Method								
Capture Efficiency	100	Represent Uncaptured/Uncollected VOC's at Loading Rack	NA					
VOC Control Method ¹	Uncontrolled	Represent VRU/ULPC Downtime Emissions at Loading Rack	NA					
VOC Destruction Efficiency ²	0	Represent VOC Controlled Emissions at Loading Rack	YES					
Notes								

Total VOC Emissions From Loading Petroleum Liquids								
Pollutant	VOC Uncontrolled Emissions		VOC Emission	s after Control	VOC Emissions at the Loading Rack			
	pph*	tpy*	pph*	tpy*	pph*	tpy*		
VOC	14.99	0.22	14.99	0.22	14.99	0.22		

Footnote: * All emission factors based on AP-42, 5.2-4 Equation 1 or AP-42 Table 5.2-5 (July 2008); See next page for calculation notes. You may elect to represent the controlled emissions at the loading rack or at the control device or tanks by selecting the appropriate drop-down options under *Truck Loading VOC Control Method*.

Ver.Draft 8/10/18 Page 20 of 33

Calculation Tool for Emissions From Loading Petroleum Liquid

Emissions based on AP-42, 5.2-4 Equation 1 (July 2008) or AP-42, Table 5.2-5

https://www3.epa.gov/ttn/chief/ap42/ch05/final/c05s02.pdf

AP-42 5.2-4 Equation 1

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression: Equation 1 $L_1 = 12.46 * SPM/T$

where:

 $L_{I} = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded;$

S = a saturation factor (see Table 5.2-1 reproduced below))

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")

M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")

T = temperature of bulk liquid loaded, °R (°F + 460)

VOC pph = (12.46*0.6*7.0 (psia)*50 (lb/lb-mole)/550°R)/1000 (gal) * 8400 (gal/hr)

 $= 39.96 \, lb/hr$

VOC tpy = (12.46*0.6*4.5 (psia)*50 (lb/lb-mole)/525°R)/1000 * 1533000 (gal/yr) * 1/2000 (ton/lbs)

= 2.46 tpy

Cargo Carrier	Mode of Operation	S Factor	
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.5	
	Submerged loading: dedicated normal service	0.6	
	Submerged loading: dedicated vapor balance service	1.0	
	Splash loading of a clean cargo tank	1.45	
	Splash loading: dedicated normal service	1.45	
	Splash loading: dedicated vapor balance service	1.0	
Marine vesse l s ^a	Submerged loading: ships	0.2	
	Submerged loading: barges	0.5	

AP-42 Table 5.2-5

VOC pph = (2lb/1000 (gal) * ((100-15)/100) * 8400 (gal/hr) = 16.8 pph

VOC tpy = (2lb/1000 (gal) * ((100-15)/100) * 100 (BOPD) * 42 (gal/bbl) * 365 (days/yr) * 1/2000 (ton/lb) = 1.53 tpy

Table 5.2-5 TOTAL UNCONTROLLED ORGANIC EMISSION FACTORS FOR PETROLEUM LIQUID RAIL TANK CARS AND TANK TRUCKS							
Emission Source Mode of Operation Crude Oil (lb/1000 gal transferred) ^b							
Loading Operations ^c							
	Submerged loading: dedicated normal service	2					
	Submerged loading: dedicated vapor balance service	3					
	Splash loading: dedicated normal service	5					
	Splash loading: dedicated vapor balance service	3					

a Reference 2. VOC factors for crude oil can be assumed to be 15% lower than the total organic factors, to account for the methane and ethane content of crude oil evaporative emissions. All other products should be assumed to have VOC factors equal to total organics; b The example crude oil has an RVP of 34 kPa (5 psia); c Loading emission factors are calculated using Equation 1 for a dispensed product temperature of 16°C (60°F). In the absence of specific inputs for Equations 1, the typical evaporative emission factors presented in Tables 5.2-5 should be used. It should be noted that, although the crude oil used to calculate the emission values presented in this tables has an RVP of 5, the RVP of crude oils can range from less than 1 up to 10. In areas where loading and transportation sources are major factors affecting air quality, it is advisable to obtain the necessary parameters and to calculate emission estimates using Equations 1.

- 1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.
- 2) Manufacturer documentation required to support % control selected. If using a VRU/LPC, calculations assume VRU/ULPC with a 100% control efficiency, but with 5% downtime;
- 3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;
- ^) Vapor balancing emissions to tanks must be represented at the tanks;

Technical Disclaimer

This document is intended to help you accurately determine truck loading petroleum emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how truck loading operations work and how it generates emissions, how it is monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of truck loading petroleum emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 21 of 33

Date: Aug 1, 2024

Company Name: Civitas Permian Operating, LLC

Facility Name: Cold Snack CTB

Permit Number: NSR-9923M2

Al# if Known: 40991 **Elevation (ft.):** 3,460

Vertical Fixed Roof (VFR) Produced Water VOC Flash Emissions Calculations Form Select Tanks Flash Emission Calculation Method

GWR	E & P Tanks	ProMax
Vasquez-Beggs	HYSIS	VMGSim

ProMax Produced Water Tanks Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Tanks VOC Control Method								
Select % Oil in Water	1	VOC Uncontrolled emissions entered includes this percentage.						
Capture Efficiency 100		Represent Uncaptured and/or Controlled VOC's at Tanks	YES					
VOC Control Method VRU & Flare		Represent VRU/ULPC Downtime Emissions at Tanks	NO					
VOC Destruction Efficiency	98	Represent VOC Controlled Emissions at Tanks*	NO					
Notes								

Total VOC Emissions From Produced Water Storage Tanks Calculated with ProMax								
Add/Remove Rows	Tank ID	VOC Uncontro	olled Emissions	VOC Emissions after Control		VOC Emissions at the Tanks		
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy	
+	PWTK- 1	1.2	0.26	0	0	0	0	
+	PWTK- 2	1.2	0.26	0	0	0	0	
+	PWTK-3	1.2	0.26	0	0	0	0	
+	PWTK-4	1.2	0.26	0	0	0	0	
	Totals	4.8	1.04	0	0	0	0	

Calculation Tool for Tanks Flashing & Working & Standing Emissions for Oil & Gas Production Sites All flash emissions based on flash calculation methodology selected;

- 1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.
- 2) Manufacturer documentation required to support % control selected. Assumes VRU/ULPC with a 100% control efficieny, but with 5% downtime;
- 3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;
- 4) GOR and Vasquez-Beggs sample calculations outlined below; E & P Tanks, ProMax, HYSYS & VMG Sim flash emissions require submittal of computer simulation model emissions calculations print-outs;
- 5) Working & Standing emissions based on AP-42 Chpt. 7, tanks 4.09d computer simulation or ProMax, or VMG computer simulation models.

Sample Calculations

GWR Methodology

VOC pph

- = GWR (scf/bbl) * Facility Water Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-mole @ 70°F, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * Percent Oil in Water
- = 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 1/100
- = 2.16 lbs/hr

VOC tpy

- = GWR (scf/bbl) * Facility Water Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-mole @ 70^OF, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * 8760 hr/yr * 1/2000 lbs/ton * Percent Oil in Water
- = 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 8760 hr/yr * 1/2000 lbs/ton * 1/100 = 9.48 tpy

Vasquez-Beggs Methodology

INPUTS			Constraints				Constants			
API Gravity		API	16	<api></api>	58	⁰ API			⁰ API Gravity	
Separator Pressure (psig)		Р	50	<p+patm></p+patm>	5250	psia	⁰ APTI	<30	≥30	Given ⁰ API
Separator Temp. (⁰ F)		Ti	70	<ti></ti>	295	0F	C1	0.0362	0.0178	
Separator Gas Gravity at Initial Condition		SGi	0.56	<sgi></sgi>	1.18	MW/28.97	C2	1.0937	1.187	
Barrels of Water/Day (BOPD)	3,875	Q	None	<q></q>	None	BOPD	C3	25.724	23.931	
Tank Gas MW	.,.	MW	18	<mw></mw>	125	lb/lb-mole				
VOC Fraction of Tank Gas		VOC	0.5	<v0c></v0c>	1.00	Fraction				

2070

scf/bbl

SGx = Dissolved gas gravity at Separator pressure = SGi [1.0+0.00005912*API*Ti*Log(Pi/114.7)]

<Rs>

 $Rs = (C1 * SGx * Pi^C2) \exp((C3 * API) / (Ti + 460)) \text{ for } P + Patm$

Patm

20

THC = Rs * Q * MW * 1/385 scf/lb-mole * 365 D/Yr * 1 ton/2000 lbs

VOC = THC * Frac. of C3+ in the Stock Tank Vapor

Technical Disclaimer

Atmospheric Pressure (psia)

This document is intended to help you accurately determine produced water storage tank flash, working and standing emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of produced water storage tank flash, working and standing emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 23 of 33

Aug 1, 2024

Company Name: Civitas Permian Operating, LLC

Al# if Known: 40991 **Facility Name:** Cold Snack CTB Elevation (ft.): 3,460

Vertical Fixed Roof (VFR) Water Tanks VOC Working & Standing Emissions Calculations Form

Select Tanks W & S Emission Calculation Method

AP-42 Chpt. 7

EPA Tanks 4.09d

ProMax

E & P Tanks

Permit Number: NSR-9923M2

ProMax Produced Water Tanks W & S Emission Calculations

(Assumes W & S emissions are 1% of the emissions calculated based on oil properties and entered as uncontrolled emissions)

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Tanks VOC Control Method											
Capture Efficiency	100	Represent Uncaptured and/or Controlled VOC's at Tanks	YES								
VOC Control Method	VRU & Flare	Represent VRU/ULPC Downtime Emissions at Tanks	NO								
VOC Destruction Efficiency	98	Represent VOC Controlled Emissions at Tanks*	NO								
Notes											

Total VOC	Total VOC W & S Emissions From Produced Water Storage Tanks Calculated with ProMax												
Add/Remove Rows	Tank ID	VOC Uncontro	olled Emissions	VOC Emission	s after Control	VOC Emissions at the Tanks							
Up To 10 Units		pph tpy		pph*	tpy*	pph	tpy						
+	PWTK-1	1.41	0.31	0.03	0.01	0	0						
+	PWTK-2	1.41	0.31	0.03	0.01	0	0						
+	PWTK-3	1.41	0.31	0.03	0.01	0	0						
+	PWTK-4	1.41	0.31	0.03	0.01	0	0						
	Totals	5.64	1.24	0.12	0.04	0	0						

Aug 1, 2024

Company Name: Civitas Permian Operating, LLC

Cold Snack CTB **Facility Name:**

Permit Number: NSR-9923M2 AI# if Known: 40991 Elevation (ft.): 3,460

Emissions From Loading Produced Water Liquids

Select Appropriate AP-42 Petroleum Liquid Loading Methodology & Enter appropriate information in the green boxes below

	changing default va	alues as appropriate.
	Emission Unit ID:	PWLOAD-1
Throughput (gal/yr)	Max. Hourly Loading Rate (gal/hr) Appropriate AP-42 Petroleum I	8,820 % Oil in Water 1 Liquid Loading Methodology Below*
AP-42, 5.2	2–4 Equation 1	AP-42, Table 5.2-5
- Saturation Factor From AP-42 Table 5.2-1)	M - Molecular Weight of Vapors (lb/lb-mole)	Select Emission Source - From AP-42 Table 5.2-5 Submerged Loading Dedicated Normal Service
Pannual - Avg. Annual rue Vapor Pressure of iquid Loaded (psia)	Phourly - Max Hourly True Vapor Pressure of Liquid Loaded (psia)	Submerged Loading Vapor Balance Service Splash Loading Dedicated Normal Service Splash Loading Vapor Balance Service
annual - Average Innual Temperature ^O F If Bulk Liquid Loaded	Thourly - Maximum Hourly Temperature ^O F of Bulk Liquid Loaded	
Notes:		

Total VOC Emissions From Loading Produced Water Liquids											
Based On % Oil in Water Selected Above											
Pollutant	Uncontrolled Emissions (pph)	Uncontrolled Emissions (tpy)									
VOC	0.15	0									

Footnote: * All emission factors based on AP-42, 5.2-4 Equation 1 or AP-42 Table 5.2-5 (July 2008); See reverse side for calculation notes

Page 25 of 33 Ver.Draft 8/10/18

Calculation Tool for Emissions From Loading Produced Water Liquids

Emissions based on AP-42, 5.2-4 Equation 1 (July 2008) or AP-42, Table 5.2-5

https://www3.epa.gov/ttn/chief/ap42/ch05/final/c05s02.pdf

AP-42 5.2-4 Equation 1

Emissions from loading produced water liquids can be estimated (with a probable error of ± 30 percent)⁴ using the following expression: Equation 1 $L_{\rm L} = 12.46 * {\rm SPM/T}$

where:

 $L_L = loading loss$, pounds per 1000 gallons (lb/ 10^3 gal) of liquid loaded (assumes 1% oil in water)

S = a saturation factor (see Table 5.2-1 reproduced below))

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")

M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")

T = temperature of bulk liquid loaded, °R (°F + 460)

VOC pph = (12.46*0.6*7.0 (psia)*50 (lb/lb-mole)/550°R)/1000 (gal) * 8400 (gal/hr) * 0.01 (1% oil in water)

= 39.96 lb/hr

VOC tpy = (12.46*0.6*4.5 (psia)*50 (lb/lb-mole)/525°R)/1000*1533000 (gal/hr)*1/2000 (ton/lbs)*0.01 (1% oil in water)

= 2.46 tpy

Cargo Carrier	Mode of Operation	S Factor
ank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.5
	Submerged loading: dedicated normal service	0.6
	Submerged loading: dedicated vapor balance service	1.0
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.0
Marine vesse l s ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

AP-42 Table 5.2-5 (assumes 1% oil in water)

VOC pph= (2lb/1000 (gal) * ((100-15)/100) * 8400 (gal/hr) * 0.01 (1% oil in water) = 0.168 pph

VOC tpy = (2lb/1000 (gal) * ((100-15)/100) * 100 (BOPD) * 42 (gal/bbl) * 365 (days/yr) * 1/2000 (ton/lb) * 0.01 (1% oil in water) = 0.0153 tpy

Table 5.2-5 TOTAL UNCONTROLLED ORGANIC EMISSION FACTORS FOR PETROLEUM LIQUID RAIL TANK CARS AND TANK TRUCKS										
Emission Source	Mode of Operation	Crude Oil (lb/1000 gal transferred) ^b								
Loading Operations ^c										
	Submerged loading: dedicated normal service	2								
	Submerged loading: dedicated vapor balance service	3								
	Splash loading: dedicated normal service	5								
	Splash loading: dedicated vapor balance service	3								

a Reference 2.VOC factors for crude oil can be assumed to be 15% lower than the total organic factors, to account for the methane and ethane content of crude oil evaporative emissions. All other products should be assumed to have VOC factors equal to total organics; b The example crude oil has an RVP of 34 kPa (5 psia); c Loading emission factors are calculated using Equation 1 for a dispensed product temperature of 16°C (60°P). In the absence of specific inputs for Equations 1, the typical evaporative emission factors presented in Tables 5.2-5 should be used. It should be noted that, although the crude oil used to calculate the emission values presented in this tables has an RVP of 5, the RVP of crude oils can range from less than 1 up to 10. In areas where loading and transportation sources are major factors affecting air quality, it is advisable to obtain the necessary parameters and to calculate emission estimates using Equations 1.

Technical Disclaimer

This document is intended to help you accurately determine truck loading produced water emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how truck loading operations work and how it generates emissions, how it is monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of truck loading produced water emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 26 of 33

Permit Number: NSR-9923M2

Aug 1, 2024

Company Name: Civitas Permian Operating, LLC

AI# if Known: 40991 **Facility Name:** Cold Snack CTB Elevation (ft.): 3,460

Flare

Enter in	formation	in green b	oxes below	changing de	etault vai	lues as a _l	opropriate	
	Carchina	C C+	C C+				C Ch	$\overline{}$

	Gas Stream	Gas Stream	Gas Stream		Gas Stream	Gas Stream	Gas Stream
	1	2	3		1	2	3
Emission Unit ID	FL-HP	FL-LP Tanks	FL-LP VRU	Hourly Gas Routed to Flare (MMBtu/hr)	1,008.875	5.37768	10.126
Hourly Gas Stream to Flare (Mscf/hr)	875	2.52	4.88	Annual Gas Routed to Flare (MMBtu/yr)	88,377.45	2,347.4	4,440.5
Annual Gas Stream to Flare (MMscf/yr)	76.65	1.1	2.14	Pilot Gas Routed to Flare (MMBtu/hr)	0.063415	0.063415	0
Max. Heat Value of Gas (Btu/scf)	1,153	2,134	2,075	Gas MW (lb/lbmol)	21.28	42.61	41.18
Field Gas Mol Fraction (Ibmol H2S/Ib-mol)				Gas Pressure (psia)	14.7	14.7	14.7
Field Gas Sulfur Content (S grains/100 scf)				Gas Temperature (°F)	70	70	90
Pilot Gas to Flare (Mscf/hr)	0.055	0.055		Field Gas H2S Wt.% to Flare (%)			
Max. Heat Value Pilot Gas (Btu/scf)	1,153	1,153		Flare Control Efficiency	98	98	98
Pilot Gas Sulfur Content (S grains/100 scf)				Total VOC wt.% to Flare (%) ¹	23.84	74.69	72.89
Source of Flare Emission Factors	AP-42 Table	AP-42 Table	AP-42 Table	Safety Factor Applied to Total Emissions (%)			
Use Highest NOx & CO Emission Factors From AP-42 or TCEQ	NO	NO	NO				

					To	tal Emiss	sions to	Flare								
Pollutant		NOx			СО			VOC			SO2			H2S		
Gas Streams to Flare	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	
Uncontrolled (pph)	0	0	0	0	0	0	11,711,68 +	211.28	386.29	0	0	0	0	0	0	
Uncontrolled (tpy)	0	0	0	0	0	0	512.97	46.27	84.6	0	0	0	0	0	0	
Field Gas (pph)	68.6035	0.3657	0.6886	312.7513	1.6671	3.1391	234.23	4.23	7.73	0	0	0	0	0	0	
Field Gas (tpy)	3.0048	0.0798	0.151	13.6985	0.3638	0.6883	10.26	0.93	1.69	0	0	0	0	0	0	
Pilot Gas (pph)	0.0043	0.0043		0.0197	0.0197		0	0	0	0	0	0	0	0	0	
Pilot Gas (tpy)	0.0189	0.0189		0.0861	0.0861		0	0	0	0	0	0	0	0	0	
Subtotal Flare (pph)	68.6078	0.37	0.6886	312.771	1.6868	3.1391	234.23	4.23	7.73	0	0	0	0	0	0	
Subtotal Flare (tpy)	3.0237	0.0987	0.151	13.7846	0.4499	0.6883	10.26	0.93	1.69	0	0	0	0	0	0	
Total Flare (pph)	69.67				317.6			246.19		0			0			
Total Flare (tpy)	3.27				14.92			12.88			0			0		

See reverse side for calculation notes.

1) Based on representative gas analysis which must be submitted with application; 2) Assumes pilot gas has a negligible amount of VOC & 0.25 grains H2S/100scf; *) Emission factors for NOx, CO & VOC based on AP-42, Table 13.5-1, (Dec. 2015) or TCEQ RG-360A/11 (February 2012); #) Assumes H₂S is converted to SO₂ at selected control efficiency; SO₂ emissions based on mass balance;

+) Assumes H₂S Destruction Efficiency equals flare destruction efficiency;

Page 27 of 33 Ver.Draft 8/10/18

Calculation Tool for Flare Emissions for Oil & Gas Production Sites

All emission factors based on AP-42, Emission factors for NOx, CO & VOC, Table 13.5-1, (December 2016); https://www3.epa.gov/ttn/chief/ap42/ch13/final/C13S05_12-13-16.pdf or https://www.tceq.texas.gov/assets/public/comm_exec/pubs/rg/rg360/rg36011/rg-360a.pdf

- 1) Information included in calculation tool must be based on representative gas analysis which must be submitted with application;
- 2) Assumes pilot gas used has a negligible amount of VOC's and 0.25 grains H2S/100 scf;
- 3) SO₂ calculations assumes H₂S is converted to SO₂ at selected control efficiency; SO₂ emissions based on mass balance;
- 4) H₂S calculations assume H₂S Destruction Efficiency equals flare destruction efficiency;

Sample Calculations

NOx pph

- = hourly gas routed to flare (MMBtu/hr) * NOx Emission factor (lbs/MMBtu)
- = 1(MMBtu/hr) * 0.068 (lbs/MMBtu)
- = 0.068 lbs/hr

NOx tpy = annual gas routed to flare (MMBtu/yr) * NOx Emission factor (lbs/MMBtu) * 1/lbs/ton)

- = 1000 (MMBtu/yr) * 0.068 (lb/MMBtu) * 1/2000 (lbs/ton)
- = 0.034 tpy

SO₂ pph= Hourly Gas Stream to flare (MMScf/hr) * 1000000/1 (scf/MMScf) * Field Gas mol Fraction of H₂S (mol H₂S/lb

- -mol)/100 * 1/Universal Gas Constant 385 scf/lb-mole @ 60° F, 1 atm * Conversion Rate of H₂S to SO₂ lb-mol SO₂/lb-mol H₂S * Molecular Weight of Sulfur Dioxide (64 lb SO₂/lb-mol SO₂)
- = 1 MMScf/hr * 1000000/1 (Scf/MMScf) * 0.1 mol H₂S* 1/385 scf/lb-mole * 0.95 lb-mol SO₂/lb-mol H₂S * 64 lb/lb-mol

Residual

H₂S pph= Hourly Gas Stream to flare (MMScf/hr) * 1000000/1 (scf/MMScf) * Field Gas mol Fraction of H₂S (mol H₂S/

lb-mol)/100 * 1/Universal Gas Constant 385 scf/lb-mole @ 60^OF, 1 atm * (100-(Flare Control Efficiency))/100) * Molecular Weight of Hydrogen Sulfide (34 lb H₂S/lb-mol H₂S)

= 1 MMScf/hr * 1000000/1 (Scf/MMScf) * 0.1 mol H₂S* 1/385 scf/lb-mole * (100-95%/100) * 34 lb/lb-mol

Flare	e, Vapor Combustion D	evices & Enclosed Comb	oustion Devices Emission	Factors
Contaminant	Assist Type	Waste Gas Stream Heat Value (Btu/scf)	AP-42 Emission Factor (lb/MMBtu)	TCEQ Emission Factor (lb/MMBtu)
NOx	Steam	≥1000	0.068	0.0485
	Steam	<1000	0.068	0.068
	Air or Unassisted	≥1000	0.068	0.138
	Air or Unassisted	<1000	0.068	0.0641
СО	Steam	≥1000	0.31	0.3503
	Steam	<1000	0.31	0.3465
	Air or Unassisted	≥1000	0.31	0.2755
	Air or Unassisted	<1000	0.31	0.5496
VOC	Air & Steam Assist	≥300	0.66	

Technical Disclaimer

This document is intended to help you accurately determine flares, enclosed combustion devices and vapor combustion units emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these combustion units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of flares, enclosed combustion devices and vapor combustion units emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 28 of 33

Permit Number: NSR-9923M2

Date: Aug 1, 2024
Company Name: Civitas Permian Operating, LLC
Facility Name: Cold Snack CTB AI# if Known: 40991 Elevation (ft.): 3,460

Emission																				(II C)	F	•
Fugitive	Volatile	. 0	rganic	Con	npound	is (VO			trolled			Ben	izene	(CH6) 8	¥ H	yard			tiae lled T		Emiss	ions
					V	oc T	Tota	HAI	P	CH ₆		H ₂ S		VC	VOC		Total HAP		CH ₆		H	H ₂ S
Service 9	6VOC %H	ΑP	%CH ₆	%H ₂	S PPH	TPY	PPH	TP'	Y PP		PΥ	PPF		/ PPH	TP	Y P	PH	TPY	PPF		_	
Gas 2	3.84%				0.84	3.69	0	0	0	0		0	0	0	0	0)	0	0	0	0
Heavy Oil	100%				0	0	0	0	0	0		0	0	0	0	0	()	0	0	0	0
Light Oil	100%				4.52	19.79	0	0	0	0		0	0	0	0	0	()	0	0	0	0
Water/Oil	1%				0	0.01	0	0	0	0		0	0	0	0	0	()	0	0	0	0
	Tota	ls			5.36	23.49	0	0	0	0		0	0	0	0	0	()	0	0	0	0
						Uncoi	ntrolle	d V	OC, HA	4P & C	H ₆	Emis	sions			Con	trolle	d VC	C, HA	NP & Ch	H ₆ Emis	sions
Equipment	Comicai		EFb		No. of	VOC	VOC	: H	IAP	HAP	CH	H ₆	CH ₆	Contro	ı İ	VOC	VO	C	НАР	HAP	CH ₆	CH ₆
Type	Service ^c	F	PPH/So	urce	Sources	PPH	TPY	P	PH	TPY	PP	Ή	TPY	Efficiend	У	PPH	TP	Υ	PPH	TPY	PPH	TPY
Valves	Gas		0.009920	07	275	0.6504	2.848	8 0	0)	0	C)	0%		0	0	0		0	0	0
	Heavy O	il [0.00001	852	0	0	0	0	0		0	C)	0%		0	0	0		0	0	0
	Light Oi	I	0.00551	15	550	3.0313	13.27	<mark>7′</mark> 0	0)	0	()	0%		0	0	0		0	0	0
	Water/O	il	0.00021	605	92	0.0002	0.000	9 0	0)	0	C)	0%		0	0	0		0	0	0
Subtotals		•				3.6819	16.12	<mark>6</mark> 0	0)	0	()			0	0	0		0	0	0
Pump Seals	Gas	(0.00529	104	0	0	0	0	0)	0	C)	0%		0	0	0		0		0
	Heavy O	il	0.02865	98	0	0	0	0	0)	0	C)	0%		0	0	0		0	0	0
	Light Oi	I	0.02865	98	2	0.0573	0.25	1 0	0)	0)	0%		0	0	0		0	0	0
	Water/O	il	0.000052	291	2	0	0	0	0)	0	()	0%		0	0	0		0	0	0
Subtotals	Subtotals				0.0573	0.25	1 0	0)	0	C)			0	0	0		0	0	0	
Connectors	Gas	(0.000440	092	851	0.0895	0.392	2 0	0)	0	()	0%		0	0	0		0	0	0
	Heavy O	i l (0.00001	653	0	0	0	0	0)	0	()	0%		0	0	0		0	0	0
	Light Oi	I	0.000462	297	1,702	0.788	3.451	4 0	0		0	C)	0%		0	0	0		0	0	0
	Water/O	il (0.000242	251	284	0.0007	0.003	1 0	o)	0)	0%		0	0	0		0	0	0
Subtotals	I					0.8782	3.846	5 0	0)	0	()			0	0	0		0	0	0
Flanges	Gas		0.000859	979	33	0.0068		_	0)	0	C)	0%		0	0	0		0	0	0
	Heavy O	il (0.00000.0	086	0	0	0	0	0)	0)	0%		0	0	0		0	0	0
	Light Oi	1 (0.000242	251	66	0.016	0.070	1 0	0)	0)	0%		0	0	0		0	0	0
	Water/O	il (0.00000	639	11	0	0	0	0		0)	0%		0	0	0		0	0	0
Subtotals	ļ					0.0228	0.099	9 0	0)	0)			0	0	0		0	0	0
Open Ends	Gas	(0.004409	92	24	0.0252	_	_	0)	0)	0%		0	0	_		0	0	0
	Heavy O	il (0.00030	864	0	0	0	0	0)	0	0)	0%		0	0			0	0	0
	Light Oi	+			47	0.1451		_	О		0			0%		0	0			0	0	0
	Water/O				8	0	0	0	0)	0			0%		0	0	_		0	0	0
Subtotals	1					0.1703	_		0		0					0	0			0	0	0
Other ^c	Gas		0.01940	048	15	0.0694		_	0		0			0%		0	0			0	0	0
5 1.10	Heavy O				0	0	0.30	0	0		0			0%		0	0			0	0	0
	Light Oi	+			29	0.4795			0		0			0%		0	0			0	0	0
	Water/O	_			5	0.0015			0		0			0%		0	0			0	0	0
Subtotals	1	L`				0.5504		_	0		0					0	0	_		0	0	0

Based on: 1995 Protocol for Equipment Leak Emission Estimates, Table 2.4 Version Date: 6/23/16; See next page for calculation notes.

Page 29 of 33 Ver.Draft 8/10/18

MER CO

New Mexico Environment Department Air Quality Bureau Emissions Calculation Forms

Calculation Tool for Fugitive Emissions Oil & Gas Production Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017), Table 2-4; available at the EPA Web site at https://www3.epa.gov/ttn/chief/efdocs/equiplks.pdf

- a) Service categories are defined as follows:
 - 1) Gas/vapor material in a gaseous state at operating conditions;
 - 2) Light liquid material in a liquid state in which the sum of the concentration of individual constituents with a vapor pressure over 0.3 kilopascals (kPa) at 200C is greater than or equal to 20 weight percent;
 - 3) Heavy liquid not in gas/vapor service or light liquid service.
 - 4) Water/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.
- b) These factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.
- c) The "other" equipment type was derived from compressors, diaphragms, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.
- d) Note that the average factors generally determine total hydrocarbon emissions. Therefore, you may need to multiply the calculated emission rates by the stream's weight percentage of VOC compounds to determine total VOC emissions. Please attach a copy of the appropriate gas and oil analysis with the stream's weight percentage of VOC compounds identified.

VOC Sample Calculation

For 10 Valves in Gas Service with a gas stream weight percentage of 25% VOC

Emission Factor (EF) lb/hr=0.0045 kg/hr * 2.2046 lbs/kg

Gas Valves Uncontrolled Emissions

pph EF (Valves in Gas Service) * Number of Valves in Gas Service & VOC wt% 0.0099207 |b/hr * 10 valves = 0.099207 |b/hr * 25%/100

tpy EF (Valves in Gas Service) * Number of Valves in Gas Service * 8760 hrs/yr * 1ton/2000 lbs 0.0099207 lb/hr * 10 valves * 8760 hrs/yr * 1/2000 ton/lbs = 0.4345 tons/yr * 25%/100

Total Uncontrolled Fugitive Emissions for all Service types in Gas Service

pph (Uncontrolled pph Emissions for Valves + Pump Seals + Connectors + Flanges + Open Ends + Other) * VOC wt%/100 tpy (Uncontrolled tpy Emissions for Valves + Pump Seals + Connectors + Flanges + Open Ends + Other) * VOC wt%/100

Technical Disclaimer

This document is intended to help you accurately determine equipment leak fugitive emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how piping components work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as we continue our scientific studies and as new information becomes available. We welcome any data, information, or feedback that may improve our understanding of equipment leak fugitive emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 30 of 33

Permit Number: NSR-9923M2

Aug 1, 2024

Company Name: Civitas Permian Operating, LLC

AI# if Known: 40991 Cold Snack CTB **Facility Name:** Elevation (ft.): 3,460

Unpaved Haul Roads

		En	ter Information	in all green boxe	es.		
	H	laul Road Fugit	ive Emission Un	it ID:	HR-	1	
	Silt ean Vehicle Weigl	ht (tons)	(Only		Round-trip in Mi p distance with		0.25
Ra	in Days		70 Num	ber of Haul Road	d Round-trips/ho	our	2
	•		Num	ber of Haul Road	d Round-trips/yr		70
US	er % Control		Vehi	cle Miles Travele	ed/hr (VMT/hr)		0.5
			Vehi	cle Miles Travele	ed/yr (VMT/yr)		17.5
Notes	5:						
		Hourly lbs/VMT			Annually lbs/VMT		
	TSP	PM10	PM2.5	TSP	PM10	PM2.5]
	6.88	1.75	0.18	5.56	1.41	0.15	

		TSP/PM1	0/PM2.5 Emissi	on Rates		
Control	TS	SP	PN	110	PM	2.5
	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Continuous	3.44	12.18	0.88	3.09	0.09	0.33
0% Control	3.44	0.05	0.88	0.01	0.09	0
User % Control	3.44	0.05	0.88	0.01	0.09	0

NMED-AQB Unpaved Haul Road Calculation Tool

All emission factors based on AP-42, AP-42 13.2.2-4; November 2006

https://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0202.pdf

Emissions from vehicles traveling on unpaved surfaces at industrial sites (based on 8760 Hours/year) can be estimated using the following expression:

AP-42 13.2.2-4; Equation 1a: $E = k (s/12)^a (W/3)^b$

where k, a, b, c and d are empirical constants (Reference 6) given below and

E = size-specific emission factor (lb/VMT)

s = surface material silt content (%)

W = mean vehicle weight (tons)

M = surface material moisture content (%)

Table 13.2.2-2. CONSTANTS FOR EQUATION 1a											
Constant	Industr	rial Roads (Equa	ation 1a)								
PM-2.5 PM-10 PM-30*											
k (lb/VMT)	0.15	1.5	4.9								
a	0.9	0.9	0.7								
b 0.45 0.45 0.45											
Quality Rating	В	В	В								
*Assumed equivalent to total suspended particulate matter (TSP)											

Technical Disclaimer

This document is intended to help you accurately determine unpaved haul road emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how unpaved haul roads work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as we continue our scientific studies and as new information becomes available. We welcome any data, information, or feedback that may improve our understanding of unpaved haul road emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 32 of 33

Permit Number:9923M2

Al# if Known: 40991

Date: Aug 1, 2024

Company Name: Civitas Permian Operating, LLC

Facility Name: Cold Snack CTB Elevation (ft.): 3,460

Facility N	/ Name: Cold Snack CTB Elevation (ft.): 3,460																	
					Total Re	equested	Emission	s For All R	egulated	Facility E	quipmen	it (NSR Re	quest)					
Emission	N	O _X	C	0	VC	OC .	S	O _X	T:	SP	PM	M ₁₀	PN	12.5	H	₂ S	Tota	I НАР
Unit	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Engines	4.44	19.44	3.36	14.74	5.98	26.16	0	0.06	0.42	1.88	0.42	1.88	0.42	1.88	-	-	1.42	6.24
Heaters	0.39	1.72	0.33	1.45	0.02	0.1	0	0	0.03	0.13	0.03	0.13	0.03	0.13	-	-		
Oil Tanks Flash	-	-	-	-	0	0	-	-	-	-	-	-	-	-				
Oil Tanks W & S	-	-	-	-	0	0	-	-	-	-	-	-	-	-				
Water Tks Flash	-	-	-	-	0	0	1	-	-	-	-	-	-	-				
Water Tks W & S	-	-	-	-	0	0	-	-	-	-	-	-	-	-				
Skim or Slop Tank	-	-	-	-			ı	-	-	-	-	-	1	-				
GBS	-	-	-	-			-	-	-	-	-	-	-	-				
ECD	0	0	0	0	0	0	0	0										
VCU	0	0	0	0	0	0	0	0										
ТО	0	0	0	0	0	0	0	0										
Flares	69.67	3.27	317.6	14.92	246.19	12.88	0	0										
Fugitives	-	-	-	-	5.36	23.49									0	0	0	0
SSM						0												
Malf.	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
Unpaved Haul Rds.	-	-	-	-	-	-	-	-	3.44	0.05	0.88	0.01	0.09	0	-	-	-	-
Paved Haul Rds.	-	-	-	-	-	-	-	-	0	0	0	0	0	0	-	-	0	0
Oil Load	-	-	-	-	14.99	0.22	ı	-	-	-	-	-	ı	-				
Water Loading	-	-	-	-	0.15	0	ı	-	-	-	-	-	ı	-				
Amine Unt	-	-	-	-	0	0	ı	-	-	-	-	-	1	-	0	0	0	0
Amine Reb	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-		
Dehy Unit	-	-	-	-			ı	-	-	-	-	-	ı	-				
Dehy Reb.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-		
Totals	74.5	24.43	321.29	31.11	272.69	62.85	0	0.06	3.89	2.06	1.33	2.02	0.54	2.01	0	0	1.42	6.24

A red-outlined cell indicates that the facility exceeds the allowable emission limits for that pollutant for the requested permitting action and the application cannot be approved as proposed.

Ver.-Draft 8/10/18 Page 33 of 33

Supplemental Calculations Cold Snack CTB

August 2024

Production

	bbl/yr	bbl/d	bbl/hr
Oil	1368750.0	3750.0	156.3
Produced Water	5657500.0	15500.0	645.8

gal/yr/tank	turn/tank/y
9,581,250.0	228.13
59,403,750.0	1414.38

	MMscf/yr	MMscf/d	Mscf/hr
Cac	7665.0	21.0	975.0

LP Flare Calculations													DRE =	98%
				Uncontre	olled W&S	Capture Efficiency				Total Uncontrolled to		Total Cont	rolled afte	
Blower DT>	5%	Uncontrolled Fla	sh Downtime	Dow	ntime	Total Uncontro	lled Downtime	Capture Efficiency	Total Uncontro	olled to Flare	Flare b	y fluid	Fla	are
Unit No.		pph	tpy	pph	tpy	pph	tpy	%	pph	tpy				
TK-1		23.62	5.17	9.81	2.15	33.43	7.32	100%	33.43	7.32				
TK-2		23.62	5.17	9.81	2.15	33.43	7.32	100%	33.43	7.32				
TK-3		23.62	5.17	9.81	2.15	33.43	7.32	100%	33.43	7.32				
TK-4		23.62	5.17	9.81	2.15	33.43	7.32	100%	33.43	7.32				
TK-5		23.62	5.17	9.81	2.15	33.43	7.32	100%	33.43	7.32				
TK-6		23.62	5.17	9.81	2.15	33.43	7.32	100%	33.43	7.32	200.55	43.92	4.01	0.88
PWTK-1		1.20	0.26	1.413	0.31	2.61	0.57	100%	2.61	0.57				
PWTK-2		1.20	0.26	1.413	0.31	2.61	0.57	100%	2.61	0.57				
PWTK-3		1.20	0.26	1.413	0.31	2.61	0.57	100%	2.61	0.57	l			
PWTK-4		1.20	0.26	1.413	0.31	2.61	0.57	100%	2.61	0.57	10.44	2.29	0.21	0.05
											210.99	46.21	4.22	0.92

	MMSCFD (from ProMax)	(scf/hr)	Mscf/hr	MMscf/yr	Btu/scf	MW (lb/lbmol)	VOC wt%	VOC lb/hr	VOC tpy	wt% Benzene	wt% Toluene	wt% Ethylbenz ene	wt% Xylene	wt% n-Hexane
Tank Blower DT (5%) (FL-2b)	0.0603811	2515.88	2.52	1.10	2134	42.61	74.69	211.28	46.27	0.0000	0.0000	0.0000	0.0000	0.0000
VRU DT (5%) (FL-2a)	0.11706	4877.50	4.88	2.14	2075	41.18	72.89	386.29	84.60	0.0000	0.0000	0.0000	0.0000	0.0000
Total Uncontrolled FL-2 (LP)			7.39	3.24				597.56	130.87	0.0000	0.0000	0.0000	0.0000	0.0000
Total Controlled FL-2 (LP)	•		•	•				11.95	2.62			•		

HP Flare Calculations														
Sales Gas DT [1%] (FL-1 [HP])	21	875000.00	875.00	76.65	1153	21.28	23.84	11711.68	512.97	0.0000	0.0000	0.0000	0.0000	0.0000
Total Uncontrolled FL-1 (HP)	21	875000.00	875.00	76.65	1153	21.28	23.84	11711.68	512.97	0.0000	0.0000	0.0000	0.0000	0.0000
Total Controlled FL-1 (HP)	•		•	•			•	234.23	10.26					

Btu/scf Btu/hp-hr

1153 10716.351 1153 10716.351 1153 10716.351 1153 10716.351

246.18 12.88

						240.20	12.00	L	
Flare HAP Calculations (uncontrolled tpy)								='	
Stream	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Acetaldehyde	Acrolein	Total HAP
Tank Blower DT to FL-2b (LP)	0.000	0.000	0.000	0.000	0.000	-	-	-	0.000
Total VRU DT to FL-2a (LP)	0.000	0.000	0.000	0.000	0.000		-		0.000
Total to FL-2 (LP)	0.000	0.000	0.000	0.000	0.000			-	0.000
							•		
Total to FL-1 (HP)	0.000	0.000	0.000	0.000	0.000	-		-	0.000
Flare HAP Calculations (controlled tpy)									
Stream	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Acetaldehyde	Acrolein	Total HAP
Tanks (FL-2b)	0.000	0.000	0.000	0.000	0.000		-	-	0.000
Total VRU DT to FL-2a (LP)	0.000	0.000	0.000	0.000	0.000	-	-	-	0.000
Total from FL-2 (LP)	0.000	0.000	0.000	0.000	0.000		-	-	0.000

Other HAP	Calculations	(controlled tpy)

Total from FL-1 (HP)

Other that calculations (controlled tpy)									
Source	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Acetaldehyde	Acrolein	Total HAP
ENG-1 (3408)	0.00758	0.00705	0.0007	0.00315	0.01897	1.1081	0.14415	0.08865	1.38
ENG-2 (3408)	0.00758	0.00705	0.0007	0.00315	0.01897	1.1081	0.14415	0.08865	1.38
GEN-1 (21.9L)	0.04871	0.01721	0.00074	0.006	0.00	0.632	0.08602	0.08107	0.87
GEN-2 (21.9L)	0.04871	0.01721	0.00074	0.006	0.00	0.632	0.08602	0.08107	0.87
GEN-3 (21.9L)	0.04871	0.01721	0.00074	0.006	0.00	0.632	0.08602	0.08107	0.87
GEN-4 (21.9L)	0.04871	0.01721	0.00074	0.006	0.00	0.632	0.08602	0.08107	0.87
FUG-1	0.00	0.00	0.00	0.00	0.00		-		0
Controlled HAPs Grand Total	0.210	0.083	0.004	0.030	0.038	4.744	0.632	0.502	6.240

Truck Loading LACT to pipeline is Normal Operations

	Capacity	#/yr		Volume (gal)	
Oil Trucks	180	35	5 trucks/day for 7 days	264,600	
Water Trucks	130	35	5 trucks/day for 7 days	191,100	
Total		70	ì		

Stack Parameters (General)

	MMBtu/hr	F-Factor (wscf/MMBtu)*	Temp (F)	Diam (ft)	Flow (acfh)	Flow (acfm)	Flow (acfs)	Velocity (fps)
IT-1	2.00	10610	460	1.0	37543	626	10.4	13.3
HT-2	2.00	10610	460	1.0	37543	626	10.4	13.3
NG-1 (3408)			902	0.67		2636	43.9	124.6
NG-2 (3408)			902	0.67		2636	43.9	124.6
SEN-1 (21.9L)			1382	0.67		2995	49.9	141.6
SEN-2 (21.9L)			1382	0.67		2995	49.9	141.6
SEN-3 (21.9L)			1382	0.67		2995	49.9	141.6
SEN-4 (21.9L)			1382	0.67		2995	49.9	141.6
L-LP			1500	0.50		1875	31.3	159.2
FL-HP			1500	0.67		15960	266.0	754.5

* 40 CFR 60, App A-7, Table 19-2

	F _d		F _w		F _c			
Fuel Type	dscm/J	dscf/10 ⁶ Btu	wscm/J	wscf/10 ⁶ Btu	scm/J	scf/10 ⁶ Btu		
Coal:								
Anthracite ²	2.71 × 10 ⁻⁷	10,100	2.83 × 10 ⁻⁷	10,540	0.530 × 10 ⁻⁷	1,97		
Bituminus ²	2.63 × 10 ⁻⁷	9,780	2.86 × 10 ⁻⁷	10,640	0.484 × 10 ⁻⁷	1,80		
Lignite	2.65 × 10 ⁻⁷	9,860	3.21 × 10 ⁻⁷	11,950	0.513 × 10 ⁻⁷	1,91		
Oil ³	2.47 × 10 ⁻⁷	9,190	2.77 × 10 ⁻⁷	10,320	0.383 × 10 ⁻⁷	1,42		
Gas:								
Natural	2.34 × 10 ⁻⁷	8,710	2.85 × 10 ⁻⁷	10,610	0.287 × 10 ⁻⁷	1,04		
Propane	2.34 × 10 ⁻⁷	8,710	2.74 × 10 ⁻⁷	10,200	0.321 × 10 ⁻⁷	1,19		
Butane	2.34 × 10 ⁻⁷	8,710	2.79 × 10 ⁻⁷	10,390	0.337 × 10 ⁻⁷	1,25		
Wood	2.48 × 10 ⁻⁷	9,240			0.492 × 10 ⁻⁷	1,83		
Wood Bark	2.58 × 10 ⁻⁷	9,600			0.516 × 10 ⁻⁷	1,92		
Municipal	2.57 × 10 ⁻⁷	9,570			0.488 × 10 ⁻⁷	1,82		
Solid Waste								

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

- 1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.
- 2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 Mandatory Greenhouse Gas Reporting.
- 3. Emissions from routine or predictable start up, shut down, and maintenance must be included.
- **4.** Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **short** tons per year and represent each emission unit's Potential to Emit (PTE).
- **5.** All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.
- **6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following:
- By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 Mandatory Green House Gas Reporting except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.
- Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 Mandatory Greenhouse Reporting requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Section 7

Information Used to Determine Emissions

<u>Information Used to Determine Emissions</u> shall include the following:

If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
If an older version of AP-42 is used, include a complete copy of the section.
If an EPA document or other material is referenced, include a complete copy.
Fuel specifications sheet.
If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

G3408C

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Dingo

CATERPILLAR®

GAS COMPRESSION APPLICATION ENGINE SPEED (rpm); COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION; COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION; MOX EMISSION LEVEL (g/bhp-hr NOX): SET POINT TIMBIG:

1800 8.5 SCAC 130 210 TA JW+OC, AC EIS WC LOW EMISSION 1.0 RATING STRATEGY: RATING LEVEL: FUEL SYSTEM: SITE CONDITIONS:

FUEL: FUEL PRESSURE RANGE(psig): (See note 1) FUEL METHANE NUMBER: FUEL LHV (Btu/scf).

ALTITUDE(ft):
ALTITUDE(ft):
INLET AIR TEMPERATURE(°F):
STANDARD RATED POWER:

STANDARD CONTINUOUS LPG IMPCO

WITH AIR FUEL RATIO CONTROL

Gas Analysis 1.5-5.0 50.4 1115 3400

100 425 bhp@1800rpm

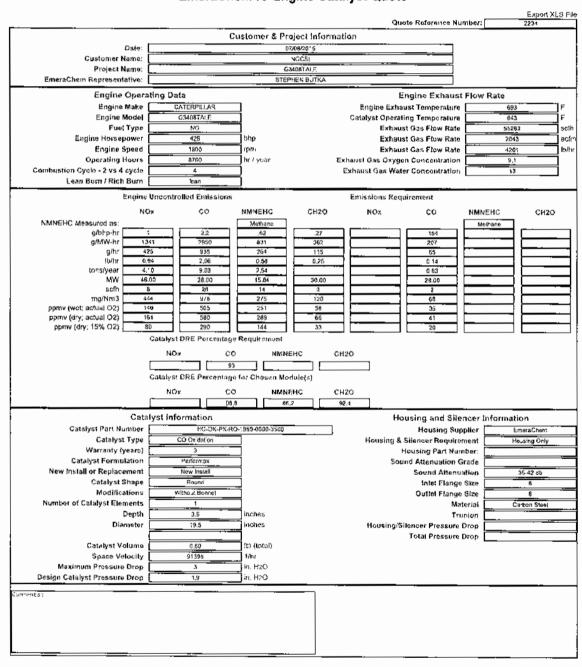
SET POINT TIMING: 31	31 SIA			425 bhp@1800rpm			
				MAXIMUM RATING	SITE RATING AT MAXIMUM INLET AIR TEMPERATURE		
RATING		NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER	(WITHOUT FAN)	(2)	bhp	425	425	319	213
INLET AIR TEMPERATURE			<u>_</u> °F	100	100	100	100
ENGINE DATA							
FUEL CONSUMPTION (LHV)		(3)	Btu/bhp-hr	8195	8195	8510	9170
FUEL CONSUMPTION (HHV)		(3)	Btu/ohp-hr	9032	9032	9380	10107
AIR FLOW (@inlet air temp, 14.7 psia)	(WET)	(4)(5)	ft3/min	1003	1003	762	542
AIR FLOW	(WET)	(4)(5)	lb/hr	4264	4264	3238	2304
FUEL FLOW (60°F. 14.7 psia)			scfm	52	52	41	29
INLET MANIFOLD PRESSURE		(6)	in Hg(abs)	66.1	6 6 . 1	51.1	36.7
EXHAUST TEMPERATURE - ENGINE OUTLET		(7)	~	902	902	849	815
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) EXHAUST GAS MASS FLOW	(WET)	(5)(8)	ft3/min	2636	2636	1927	1337
EXHAUST GAS MASS FLUVY	(WET)	(5)(8)	Ib/hr	4445	4445	3379	2406
EMISSIONS DATA - ENGINE OUT							
NOx (as NO2)		(9)(10)	g/bhp-hr	1.00	1.00	1.00	1.00
CO		(9)(10)	g/bhp-hr	2.02	2.02	2.14	2.40
THC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	3.08	3.08	3.51	4.03
NMHC (mol. wt. of 15.84)]	(9)(10)	g/bhp-hr	1.30	1.30	1.48	1.70
NWNEHC (VOCs) (mol. wt. of 15.84)	į	(9)(10)(11)	g/bhp-hr	0.81	0.81	0.92	1.06
HCHO (Formaldehyde) CO2	1	(9)(10)	g/bhp-hr	0.31	0.31	0.32	0.36
EXHAUST OXYGEN		(9)(10)	g/bho-hr	587	587	609	65 7
		(9)(12)	% DRY	7.8	7.8	7.6	7.3
HEAT REJECTION							
HEAT REJ. TO JACKET WATER (JW)		(13)	Btu/min	15378	15378	13649	11083
HEAT REJ. TO ATMOSPHERE		(13)	Btu/min	2322	2322	1808	1299
HEAT REJ. TO LUBE OIL (OC)	1	(13)	Btu/min	2432	2432	2158	1752
HEAT REJ. TO AFTERCOOLER (AC)		(13)(14)	8tu/min	4054	4054	2648	1374
COOLING SYSTEM SIZING CRITERIA							
TOTAL JACKET WATER CIRCUIT (JW+OC)		(14)	Btu/min	19834			
TOTAL AFTERCOOLER CIRCUIT (AC)		(14)(15)	Btu/min	4257			

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Refer to product O&M manual for details on additional lower load capability. No overload permitted at rating shown.

For notes information consult page three.

Home Products Applications Factory Service Catalyst Sales & Service Centers Dealer Home


Home - Sizing Tool - Quate

Sizing Tool - Quote

Save and Close | Archive | Print | Save as New Quote

1. Product Family - 2, Customer and Engine - 3. Performance Requirements - 4, Sizing - 5, Standard Module Sizes - 6, Housing & Silencer - 7, Quote

EmeraChem IC Engine Catalyst Quote

NG 400

350 kW Prime Power

Key Benefits

Scalable Power

Equipped with the latest paralleling technology, Baseline customers have the ability to seamlessly increase available power as load demand increases, enabling business growth with zero capital investment.

NG Fuel-Flexible

Built with flexibility to adapt to any situation, Baseline generators operate on a variety of natural gas fuels including wellhead gas, Propane, CNG, and LNG. Generators are equipped with on-board, heated fuel scrubbers as well as fuel pressure sensors that automatically switch to a secondary fuel source when required.

Intelligently Connected

The smartest generator fleet on the market is connected by the latest telemetry equipment and supported by an in-house team of automation and control room analysts. Baseline customers benefit from customizable alerts and direct access to a cloud-based online portal that delivers by-the-second performance metrics including power utilization, fuel pressure readings, and historical kW load among many others. All of these features are available with individualized live onboarding and ongoing support.

Environmentally Responsible

Baseline generators are a sustainable solution to reliably produce power. All generators are 100% EPA emissions compliant, including Quad J and Quad Z, and can be upfitted to meet more stringent state-level standards, making air permitting a breeze.

Prime Power

Genset	
Model Name	NG 400
Prime Power	350 kW
Continuous Power	288 kW
Voltage/Hertz/Amps	480/60/526
Phase	3
Parallel Capability	Yes, Up to 32 Units
Controller Type	Digital
Dual Fuel Auto-Switchover	Yes
On-Board Fuel Scrubber	Yes
Cloud-Based Telemetry	Yes
Dimensions (L x W x H)	285 x 102 x 122 in.
Weight	14085 lbs.
Engine	
Туре	V-Type 4 Cycle

Dual Fuel Auto-Switchover	Yes
On-Board Fuel Scrubber	Yes
Cloud-Based Telemetry	Yes
Dimensions (L x W x H)	285 x 102 x 122 in.
Weight	14085 lbs.
Engine	
Туре	V-Type 4 Cycle
Cylinders/Displacement	12 / 21.9L
Aspiration	Turbocharged
Gross Prime Power Rating	580 HP
Noise Level at 23 ft.	75.4 db

Fuel Connec	ctions
-------------	--------

NG Inlet	2.00 in. NPT
LP Inlet	0.50 in. NPT
Scrubber Condensate Dump Line	0.50 in. NPT

Fuel Usage

Power Output	25%	50%	75%	100%
Natural Gas (Mcf/d)	34	56	79	102
Propane (gal/d)	340	538	799	937

Exhaust

Number of Outlets	1
Outlet Diameter	8 in.
Stack Height from Ground	145 in.
Exhaust Flow at Rated Power	2939 lb/hr
Exhaust Flow at Rated Power at 1350°F	2995 cfm

Emissions

Standards	CO	NOx	VOC
EPA JJJJ Limit (g/hp-hr)	2.0	1.0	0.7

^{*} All Baseline generators are certified to meet or exceed EPA standards according to their date of manufacture. Additionally, Baseline generators are meticulously maintained and upfitted with enhanced emissions equipment when necessary to comply with state air permitting regulations. Documentation available upon request.

Catalytic Converter (Table 1A)				
Application	Р	ower Generation		
Engine Model		Doosan 22L		
Engine Mechanical Power		650 HP		
Fuel	Na	atural Gas (PQNG)		
Exhaust Flowrate	2050 lb/hr	x 2 exhausts = 4,099 lbs/hr		
Exhaust Temperature		1000 deg. F		
Catalyst Model		DC46		
Housing Part Number (2 per engine)	C390	05-LQ-010Y-0103-02		
Catalyst Part Number (4 per engine)	CB00	00-LQ-010Y-0103-01		
Catalyst Code	Y/300 cpsi			
Space Velocity (h ⁻¹)	118629 h-1			
Housing Material	304 Stainless steel			
Inlet Connection	3.5 inches			
Outlet Connection	3.5 inches			
Dimensions	Per drawing			
Back-pressure (Catalyst Only)	12 in. WC			
Back-pressure (Catalyst+ Housing)	19 in. WC			
Pre-Catalyst Emissions	NOx	5.3		
(g/bhp-h)	СО	5.04		
	NMNEHC	0.04		
Post-Catalyst (g/bhp-hr)	NOx	0.5		
	СО	0.6		
	VOC	0.7		
Limited Monagety	(doc. X0000-0000-K2) one year or 8,000 hours of			
Limited Warranty	operation			
Guarantee By:	Brendan Filby			

Harker Rev 0: 12/20/21
Megan Henke Flare Technology: Air Assist

Project Reference: Dual Tip Flare (FL-9110) Flare Model: T60VT8

Tap Rock Resources

Hero Flare is pleased to have the opportunity to provide a firm proposal for the supply of our A+ Series smokeless flare technology to handle VRT+Tank Vapors+Heater Treater as well as high pressure sales gas.

The A+ series technology is fully Quad O compliant. Our systems come complete with our Hotspot Ignition TM System which is a high stability pilot that can operate in the most extreme conditions. In addition, all flare systems are provided with a blower VFD to maximize efficiency smokeless capacity across the full operating range.

The Hero Flare system offers the following:

- 40 CFR 60.18 EPA Compliant
- 98% Destruction Efficiency
- Continously Monitored Pilot Ignition System with automatic re-light
- Blower VFD allows for optimium energy and combustion efficency

We look forward to working with you as this project progresses.

Best regards,

Craig Rosencutter

Office: (918) 941-2166 Ext. 101

Cell: (918) 344-4335

Email: craig.rosencutter@heroflare.com

Committed to providing reliable technology that you can count on!

Design Data Sheet

Design Flow Rate

Flow Rate Case	Flow Rate (MMSCFD)	MW	LHV (Btu/SCF)	Flare Inlet Pres. (psig)	Temp.
Inlet 1: H.P. Max Flow Rate	23	20	1200	30	
Inlet 1: H.P. Ringelmann 1 Smokeless	18	20	1200	20	Amb.
Inlet 2: L.P. Ringelmann 0 Smokeless	2.71	40	1,840	0.7	

Site Conditions

Wind 90 MPH	Temperature	0 to 120 °F	Elevation	14.5 Psi
-------------	-------------	-------------	-----------	----------

Site Utilities Required

Pilot Gas (per pilot)	Natural Gas: 55 scfh @ 18 psig OR Pro	opane: 25 scfh @ 9 psig (Clean, dry gas)
Plant Air	No Plant Air Required	
Pilot Panel Electricity	Powered by Converter Located Inside Hero VFD Panel (480VAC to 120VAC)	
Blower / VFD Electricity	480VAC / 3PH	Blower Size: 15 HP

Emission / Flare Performance

Destruction	A 98% or greater hydrocarbon destruction efficiency will be achieved
Smokeless Rate	See Above Smokeless Rates
Max Radiation	Less than 500 Btu/hr/SF at normal & 1500 Btu/hr at max flow rates
Tip Velocity	Meets EPA regulations over full operating range

Pilot Construction

Electrical / Classification	120VAC / Non-Classified Area
Control Panel Type	Nema 4 (Painted)
Pilot(s)	Two (2) Stainless Steel Gas Pilot with Easy Glide Retraction System
Pilot Construction	Stainless Steel
Pilot Monitoring	Type K Thermcouple
Pilot Gas Connection	1/2" FNPT Located at Base of Flare

Flare Construction

Component	Dimension	Material
Stack Height	60'	A53B
Flare tip	2' Long	Stainless
HP Inlet	8" Flanged	Carbon
Tank Vapor Inlet	12" Flanged	Carbon

Certificate of Analysis

Number: 6030-23010267-004A

Artesia Laboratory 200 E Main St. Artesia, NM 88210 Phone 575-746-3481

Alex Batista Jan. 26, 2023

Taprock 602 Park Point Drive Ste. 200

Golden, CO 80401

Station Name: Schlitz Fed Com 211H

Station Number: 7060643 Station Location: Taprock Sample Point: Meter Run

Analyzed: 01/23/2023 11:35:03 by EBH

Sampled By: Jason Bealer
Sample Of: Liquid Spot
Sample Date: 01/20/2023 08:13
Sample Conditions: 121.3 psig, @ 105.4 °F

Method: GPA 2103M Cylinder No: 1111-002300

Analytical Data

Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.004	28.013	0.001	0.8069	0.001
Methane	1.981	16.043	0.267	0.3000	0.694
Carbon Dioxide	0.009	44.010	0.003	0.8172	0.003
Ethane	1.923	30.069	0.485	0.3563	1.063
Propane	3.148	44.096	1.165	0.5072	1.793
Iso-butane	0.948	58.122	0.462	0.5628	0.641
n-Butane	3.516	58.122	1.715	0.5842	2.291
Iso-pentane	1.804	72.149	1.092	0.6251	1.364
n-Pentane	2.776	72.149	1.681	0.6307	2.080
Hexanes	2.393	86.175	1.731	0.6658	2.028
Heptanes Plus	81.498	133.643	91.398	0.8103	88.042
	100.000		100.000		100.000
Calculated Physica	al Properties		To	otal	C7+
Specific Gravity at 6	60°F		0.78	306	0.8103
API Gravity at 60°F			49.7	781	43.124
Molecular Weight			119.1	167 13	33.643
Pounds per Gallon ((in Vacuum)		6.5	507	6.756
Pounds per Gallon ((in Air)		6.5	500	6.748
Cu. Ft. Vapor per G	allon @ 14.69	6 psia	20.7	723	19.183

139. Bulgo

Hydrocarbon Laboratory Manager

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Quality Assurance:

Certificate of Analysis

Number: 6030-23010274-002A

Artesia Laboratory 200 E Main St. Artesia, NM 88210 Phone 575-746-3481

Alex Batista Jan. 25, 2023

Taprock

602 Park Point Drive

Ste. 200

Golden, CO 80401

Station Name: Schlitz Fed Com B Sales

Station Number: 7060652 Sample Point: Meter Run Formation: Spot

County: Eddy, NM
Type of Sample: Spot-Cylinder

Heat Trace Used: N/A

Sampling Method: Fill and Purge

Sampling Company: SPL

Sampled By: Jason Bealer Sample Of: Gas Spot

Sample Of: Gas Spot Sample Date: 01/21/2023 10:38

Sample Conditions: 121.9 psig, @ 85.8 °F Ambient: 50 °F

Effective Date: 01/21/2023 10:38

Method: GPA-2261M

Cylinder No: 5030-03796

Instrument: 6030_GC6 (Inficon GC-3000 Micro)

Last Inst. Cal.: 01/24/2023 0:00 AM

Analyzed: 01/25/2023 08:14:43 by EBH

Analytical Data

Components	Un-normalized Mol %	Mol. %	Wt. %	GPM at 14.73 psia		
Nitrogen	0.503	0.499	0.638		GPM TOTAL C2+	6.133
Methane	79.159	78.596	57.549		GPM TOTAL C3+	3.226
Carbon Dioxide	0.112	0.111	0.223		GPM TOTAL iC5+	1.120
Ethane	10.908	10.830	14.863	2.907		
Propane	4.740	4.706	9.471	1.301		
Iso-butane	0.825	0.819	2.173	0.269		
n-Butane	1.705	1.693	4.491	0.536		
Iso-pentane	0.544	0.540	1.778	0.198		
n-Pentane	0.596	0.592	1.949	0.215		
Hexanes Plus	1.626	1.614	6.865	0.707		
	100.718	100.000	100.000	6.133		
Calculated Physical	Properties	To	otal	C6+		
Relative Density Real		0.75	593	3.2176		
Calculated Molecular	Weight	21	.91	93.19		
Compressibility Factor	or	0.99	959			
GPA 2172 Calculation	on:					
Calculated Gross B	TU per ft ³ @ 14.73 ps	sia & 60°F				
Real Gas Dry BTU		13	322	5141		
Water Sat. Gas Base	BTU	13	300	5052		
Ideal, Gross HV - Dry	at 14.73 psia	131	6.9	5141.1		
Ideal, Gross HV - We		129	4.0	5051.6		
Net BTU Wet Gas - re	eal gas	11	180			

Brille &

Hydrocarbon Laboratory Manager

Quality Assurance: The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality

assurance, unless otherwise stated.

Simulation Report

Project: Cold Snack A & B CTB.pmx

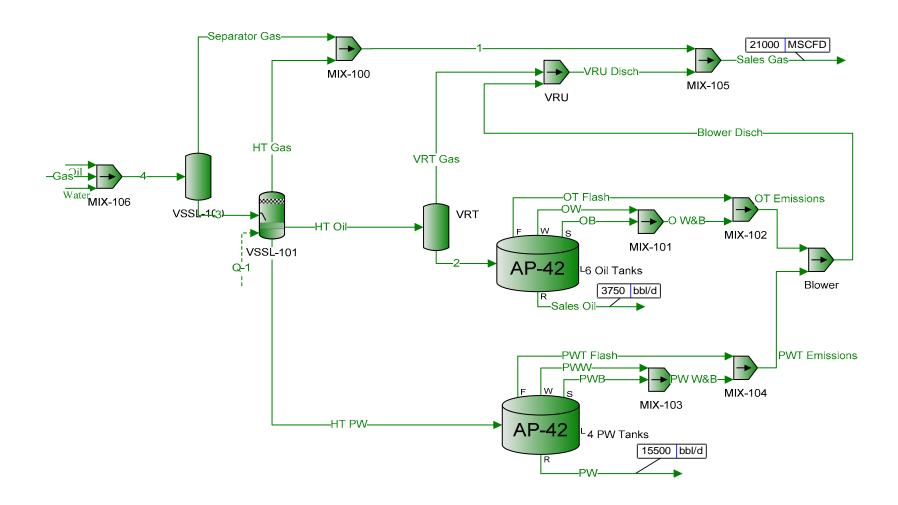
Licensed to Lone Wolf Environmental, LLC and Affiliates

Client Name: Tap Rock Operating, LLC Location: Cold Snack A & B CTB

ProMax Filename: C:\Users\chris\OneDrive - CDH Consulting, LLC\Client Folders\Tap Rock Operating\Air Quality\Facilities\Cold Snack A & B CTB\2023-03 GCP\ProMax\Cold Snack A & B CTB.pmx

ProMax Version: 6.0.23032.0

Simulation Initiated: 3/7/2023 9:21:08 AM


Bryan Research & Engineering, LLC

Chemical Engineering Consultants
P.O. Box 4747 Bryan, Texas 77805
Office: (979) 776-5220
FAX: (979) 776-4818
mailto:sales@bre.com
http://www.bre.com/

Report Navigator can be activated via the ProMax Navigator Toolbar.

An asterisk (*), throughout the report, denotes a user specified value.

A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.

Process Streams	Blower Disch	Gas	HT Gas	HT Oil	HT PW
Composition Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total From Block:	Blower		VSSL-101	VSSL-101	VSSL-101
To Block:	VRU	MIX-106	MIX-100	VRT	4 PW Tanks
Mole Fraction	%	%	%	%	%
Carbon Dioxide	0.404817	0.111202*	0.184280	0.00479281	0.000164360
Nitrogen	0.00857225	0.499414*	0.111239	0.000435261	3.22833E-06
Methane	11.5359	78.5947*	45.6055	0.528199	0.00263581
Ethane	23.6469	10.8302*	18.7027	1.04708	0.00126537
Propane	24.6418	4.70621*	13.4869	2.29522	0.000623137
Isobutane	5.16453	0.819119*	2.75373	0.990452	6.58608E-05
n-Butane	12.2115	1.69285*	6.30203	3.19117	0.000269070
Isopentane	3.57519	0.540122*	1.92293	2.15389	4.65499E-05
n-Pentane	3.95940	0.591751*	2.18856	3.12623	3.33075E-05
i-Hexane	4.75302	1.61441*	2.72874	8.64883	4.44577E-05
C7+	0.993780	0* 0*	0.539868	77.5341	0.000323697
Water Molar Flow	9.10453 Ibmol/h	lbmol/h	5.47348 lbmol/h	0.479658 lbmol/h	99.9945 Ibmol/h
Carbon Dioxide	0.0268383	2.54373*	0.0438646	0.0174852	0.0206335
Nitrogen	0.000568318	11.4241*	0.0264785	0.00158793	0.000405280
Methane	0.764803	1797.85*	10.8556	1.92699	0.330895
Ethane	1.56773	247.741*	4.45184	3.81999	0.158853
Propane	1.63369	107.654*	3.21032	8.37346	0.0782277
Isobutane	0.342395	18.7373*	0.655475	3.61339	0.00826807
n-Butane	0.809592	38.7237*	1.50008	11.6421	0.0337787
Isopentane	0.237026	12.3552*	0.457719	7.85788	0.00584381
n-Pentane	0.262498	13.5363*	0.520947	11.4052	0.00418137
i-Hexane	0.315113	36.9295*	0.649527	31.5529	0.00558115
C7+	0.0658850	0*	0.128506	282.862	0.0406364
Water	0.603607	0*	1.30286	1.74990	12553.2
Mass Fraction	%	%	%	%	%
Carbon Dioxide	0.418140	0.224523*	0.259205	0.00177531	0.000401496
Nitrogen	0.00563608	0.641844*	0.0995962	0.000102625	5.01975E-06
Methane	4.34350	57.8452*	23.3834	0.0713193	0.00234705
Ethane	16.6882	14.9403*	17.9739	0.264996	0.00211191
Propane Isobutane	25.5026	9.52072*	19.0076	0.851839	0.00152516
n-Butane	7.04513 16.6582	2.18420*	5.11543 11.7069	0.484523 1.56110	0.000212474 0.000868050
Isopentane	6.05402	4.51401* 1.78782*	4.43416	1.30795	0.000186417
n-Pentane	6.70463	1.95872*	5.04668	1.89840	0.000133385
i-Hexane	9.61321	6.38263*	7.51561	6.27305	0.000100000
C7+	3.11711	0.00200	2.30597	87.2122	0.00240117
Water	3.84959	0*	3.15155	0.0727297	99.9896
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	1.18114	111.948*	1.93046	0.769516	0.908072
Nitrogen	0.0159205	320.027*	0.741752	0.0444833	0.0113533
Methane	12.2693	28841.9*	174.150	30.9136	5.30837
Ethane	47.1400	7449.33*	133.862	114.863	4.77655
Propane	72.0386	4747.08*	141.561	369.233	3.44950
Isobutane	19.9007	1089.05*	38.0977	210.018	0.480558
n-Butane	47.0553	2250.71*	87.1882	676.664	1.96329
Isopentane	17.1011	891.416*	33.0239	566.936	0.421624
n-Pentane	18.9389	976.625*	37.5857	822.870	0.301681
i-Hexane	27.1549	3182.41*	55.9732	2719.08	0.480958
C7+	8.80507	0*	17.1739	37802.5	5.43078
Water	10.8741	0*	23.4715	31.5250	226149

O W&B	OB	Oil	OT Emissions	OT Flash	OW	PW	PW W&B	PWB
Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
MIX-101	6 Oil Tanks		MIX-102	6 Oil Tanks	6 Oil Tanks	4 PW Tanks	MIX-103	4 PW Tanks
MIX-102	MIX-101	MIX-106	Blower	MIX-102	MIX-101		MIX-104	MIX-103
%	%	%	%	%	%	%	%	%
0.104774	0.104774	0.009*	0.109067	0.110720	0.104774	0	3.43341	3.43341
0.000218380		0.004*	0.00286585		0.000218380	0	0.0180829	0.0180829
2.37468	2.37468	1.981*	7.62716	9.65055	2.37468	0	24.0140	24.0140
31.3790	31.3790	1.923*	24.7649	22.2170	31.3790	0	14.0842	14.0842
31.4866	31.4866	3.148*	27.3416	25.7449	31.4866	0	5.70921	5.70921
6.01934	6.01934	0.948*	5.87322	5.81694	6.01934	0	0.464806	0.464806
13.9969	13.9969	3.516*	13.6371	13.4985	13.9969	0	2.34220	2.34220
4.04945 4.50221	4.04945 4.50221	1.804* 2.776*	4.06367 4.54064	4.06916 4.55545	4.04945 4.50221	0	0.315739 0.116742	0.315739 0.116742
5.47715	5.47715	2.776	5.44089	5.42692	5.47715	0	0.116742	0.116742
0.586835	0.586835	2.393 81.498*	0.718033	0.768575	0.586835	0.000124276	4.10385	4.10385
0.0228847	0.0228847	0*	5.88077	8.13738	0.0228847	99.9999	45.2012	45.2012
lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
0.00165762		0.0314712*	0.00620478	0.00454716	0.00158746	0		0.000237695
3.45496E-06	1.46228E-07	0.0139872*		0.000159583		0		1.25188E-06
0.0375696	0.00159009	6.92717*	0.433908	0.396338	0.0359795	0	0.134187	0.00166249
0.496444	0.0210115	6.72435*	1.40887	0.912429	0.475433	0	0.0787003	0.000975047
0.498145	0.0210835	11.0079*	1.55546	1.05732	0.477062	0	0.0319022	0.000395248
0.0952313	0.00403056	3.31497*	0.334127	0.238896	0.0912007	0	0.00259726	3.21784E-05
0.221443	0.00937234	12.2948*	0.775813	0.554370	0.212070	0	0.0130879	0.000162150
0.0640658	0.00271152	6.30823*	0.231182	0.167116	0.0613543	0	0.00176430	2.18586E-05
0.0712290	0.00301469	9.70713*	0.258316	0.187088	0.0682143	0	0.000652334	8.08201E-06
0.0866533	0.00366751	8.36785*	0.309531	0.222878	0.0829858	0	0.00109825	1.36066E-05
0.00928425	0.000392946	284.983*	0.0408488	0.0315646	0.00889131	0.0156002	0.0229317	0.000284109
0.000362056	1.53236E-05	0*	0.334556		0.000346732	12552.9	0.252577	0.00312927
%	%	%	%	%	%	%	%	%
0.0979849	0.0979849	0.00332379*	0.106593	0.110119	0.0979849	0	5.42334	5.42334
	0.000129998	0.000940309*	0.00178282		0.000129998	0	0.0181815	0.0181815
0.809535	0.809535	0.266686*	2.71721	3.49875	0.809535	0	13.8271	13.8271
20.0502	20.0502	0.485226*	16.5366	15.0971	20.0502	0	15.2001	15.2001
29.5039	29.5039	1.16486* 0.462376*	26.7738 7.58067	25.6552 7.64057	29.5039 7.43447	0	9.03579	9.03579 0.969635
7.43447 17.2875	7.43447 17.2875	1.71489*	17.6017	17.7304	17.2875	0	0.969635 4.88609	4.88609
6.20846	6.20846	1.09222*	6.51084	6.63472	6.20846	0	0.817621	0.817621
6.90262	6.90262	1.68071*	7.27504	7.42762	6.90262	0	0.302308	0.302308
10.0299	10.0299	1.73050*	10.4122	10.5688	10.0299	0	0.607903	0.607903
1.66656	1.66656	91.3983*	2.13098	2.32125	1.66656	0.000921909	19.6849	19.6849
0.00876081	0.00876081	0*	2.35269	3.31295	0.00876081	99.9991	29.2271	29.2271
lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
0.0729510	0.00308757	1.38503*	0.273069	0.200118	0.0698634	0	0.844339	0.0104608
9.67852E-05	4.09633E-06	0.391829*	0.00456724	0.00447045	9.26889E-05	0	0.00283060	3.50694E-05
0.602709	0.0255090	111.129*	6.96095	6.35824	0.577200	0	2.15268	0.0266704
14.9276	0.631795	202.195*	42.3634	27.4359	14.2958	0	2.36644	0.0293187
21.9660		485.402*	68.5891	46.6230	21.0363	0	1.40675	0.0174287
5.53505	0.234265	192.673*	19.4202	13.8851	5.30079	0	0.150959	0.00187028
12.8707	0.544741	714.599*	45.0920	32.2212	12.3260	0	0.760696	0.00942454
4.62227	0.195633	455.131*	16.6795	12.0572	4.42664	0	0.127292	0.00157707
5.13908	0.217506	700.357*	18.6372	13.4981	4.92158	0	0.0470651	0.000583107
7.46738	0.316049	721.103*	26.6740	19.2066	7.15133	0	0.0946421	0.00117256
1.24078		38085.9*	5.45916	4.21838	1.18826	2.08486	3.06466	0.0379692
0.00652253	0.000276059	0*	6.02712	6.02059	0.00624647	226144	4.55025	0.0563748

PWT Emissions	PWT Flash	PWW	Sales Gas	Sales Oil	Separator Gas	VRT Gas	VRU Disch
Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
MIX-104	4 PW Tanks	4 PW Tanks	MIX-105	6 Oil Tanks	VSSL-100	VRT	VRU
Blower	MIX-104	MIX-103			MIX-100	VRU	MIX-105
%	%	%	%	%	%	%	%
2.19330	0.379133	3.43341	0.111609	0.000498739	0.109877	0.152979	0.282880
0.0430803	0.0796491	0.0180829	0.496063	3.40076E-06	0.502822	0.0227033	0.0154143
35.1734	51.4984	24.0140	78.2686	0.0245637	78.9589	22.5988	16.8925
16.8857	20.9840	14.0842	10.9904	0.298514	10.8428	21.8153	22.7601
8.31542	12.1281	5.70921	4.90586	1.57110	4.71552	20.4626	22.6183
0.878876	1.48462	0.464806	0.826345	0.849707	0.783353	4.50824	4.84676
3.59059	5.41686	2.34220	1.76979	2.89345	1.66773	10.5248	11.3948
0.621183	1.06802	0.315739	0.487523	2.10319 3.09242	0.455776	3.28352	3.43397 3.85824
0.444470 0.593263	0.923904 1.17363	0.116742 0.196543	0.534744 0.622186	3.09242 8.77027	0.498570 0.576851	3.75048 4.69436	3.85824 4.72462
2.66129	0.550963	4.10385	0.022188	80.1237	0.0860195	0.902627	0.949645
28.5995	4.31275	45.2012	0.0955166	0.272609	0.801801	7.28359	8.22285
lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
0.0206335	0.00144818	0.0189477	2.57344	0.00176010	2.49321	0.00952035	0.0363587
0.000405280	0.000304236		11.4380	1.20016E-05	11.4096	0.00932033	0.00198121
0.330895	0.196709	0.132524	1804.69	0.0866878	1791.66	1.40639	2.17119
0.158853	0.0801525	0.0777253	253.412	1.05349	246.034	1.35763	2.92536
0.0782277	0.0463256	0.0315069	113.118	5.54455	107.000	1.27345	2.90714
0.00826807	0.00567080	0.00256508	19.0535	2.99870	17.7751	0.280561	0.622956
0.0337787	0.0206908	0.0129257	40.8072	10.2113	37.8425	0.654986	1.46458
0.00584381	0.00407950	0.00174244	11.2411	7.42235	10.3420	0.204343	0.441369
0.00418137		0.000644252	12.3299	10.9135	11.3131	0.233403	0.495901
0.00558115	0.00448290	0.00108464	14.3461	30.9512	13.0894	0.292144	0.607256
0.0250362	0.00210451	0.0226476	2.20244	282.765	1.95187	0.0561731	0.122058
0.269051	0.0164734	0.249448	20.5535	0.962066	18.1937	0.453279	1.05689
%	%	%	%	%	%	%	%
3.45342	0.594180	5.42334	0.230786	0.000180805	0.229551	0.169765	0.302322
0.0431767	0.0794559	0.0181815	0.652930	7.84751E-07	0.668665	0.0160370	0.0104860
20.1878	29.4201	13.8271	58.9960	0.00324605	60.1312	9.14165	6.58089
18.1653	22.4692	15.2001	15.5273	0.0739392	15.4771	16.5405	16.6193
13.1185	19.0444	9.03579	10.1642	0.570674	9.87081	22.7522	24.2201
1.82757	3.07282	0.969635	2.25667	0.406819	2.16136	6.60719	6.84092
7.46643	11.2116	4.88609	4.83313	1.38532	4.60146	15.4249	16.0831
1.60344	2.74402	0.817621	1.65268	1.24996	1.56102	5.97361	6.01653
1.14730	2.37375	0.302308	1.81275	1.83788	1.70759	6.82312	6.75988
1.82909	3.60158	0.607903	2.51923	6.22568	2.35980	10.2006	9.88713
12.7246	2.62209	19.6849	0.599790	88.2058	0.545722	3.04174	3.08197
18.4333 lb/h	2.76678 lb/h	29.2271 lb/h	0.754528 lb/h	0.0404550 lb/h	0.685702 lb/h	3.30867 lb/h	3.59736 lb/h
0.908072	0.0637335	0.833878	113.256	0.0774612	109.725	0.418986	1.60013
0.0113533	0.0037333	0.00279553	320.418	0.000336206	319.621	0.416966	0.0555004
5.30837	3.15569	2.12601	28951.6	1.39069	28742.6	22.5620	34.8313
4.77655	2.41011	2.33712	7619.85	31.6773	7398.02	40.8226	87.9626
3.44950	2.04275	1.38932	4987.99	244.490	4718.24	56.1534	128.192
0.480558	0.329600	0.149088	1107.43	174.291	1033.13	16.3068	36.2076
1.96329	1.20259	0.751271	2371.80	593.502	2199.49	38.0692	85.1245
0.421624	0.294331	0.125715	811.033	535.514	746.165	14.7431	31.8442
0.301681	0.254616	0.0464820	889.589	787.393	816.225	16.8397	35.7786
0.480958	0.386316	0.0934695	1236.28	2667.23	1127.98	25.1756	52.3305
3.34591	0.281254	3.02669	294.340	37789.5	260.854	7.50714	16.3122
	0.201207	5.02000	_00 10				
4.84703	0.296773	4.49388	370.276	17.3319	327.765	8.16594	19.0401

			_	
Water	1	2	3	4
Solved	Solved	Solved	Solved	Solved
	MIX-100	VRT	VSSL-100	MIX-106
MIX-106	MIX-105	6 Oil Tanks	VSSL-101	VSSL-100
%	%	%	%	%
0*	0.110649	0.00222111	0.000633444	0.0169292
0*	0.498757	4.88119E-05	0.000219986	0.0751930
0* 0*	78.6126	0.145175	0.101321	11.8645 1.67284
0*	10.9244 4.80658	0.686661 1.97993	0.0651396 0.0901064	0.780077
0*	0.803808	0.929403	0.0330472	0.144970
0*	1.71584	3.06390	0.101804	0.335392
0*	0.471007	2.13429	0.0642956	0.122693
0*	0.516114	3.11539	0.0921794	0.152801
0*	0.599190	8.71745	0.248855	0.297782
0*	0.0907310	78.8639	2.18683	1.87346
100*	0.850298	0.361580	97.0156	82.6634
lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
0*	2.53708	0.00796488	0.0819833	2.57520
0*	11.4361	0.000175039	0.0284717	11.4380
0*	1802.52	0.520596	13.1135	1804.77
0*	250.486	2.46236	8.43068	254.465
0*	110.210	7.10001	11.6620	118.662
0*	18.4306	3.33283	4.27713	22.0522
0* 0*	39.3426	10.9871	13.1760	51.0185 18.6635
0*	10.7998 11.8340	7.65354 11.1718	8.32144 11.9303	23.2434
0*	13.7389	31.2607	32.2080	45.2973
0*	2.08038	282.805	283.031	284.983
12574.4*	19.4966	1.29662	12556.2	12574.4
%	%	%	%	%
0*	0.230006	0.000813322	0.00133502	0.0356324
0*	0.659935	1.13773E-05	0.000295116	0.100741
0*	59.5675	0.0193780	0.0778399	9.10294
0*	15.5154	0.171794	0.0937986	2.40567
0*	10.0110	0.726427	0.190276	1.64511
0*	2.20668	0.449461	0.0919833	0.402979
0*	4.71047	1.48171	0.283360	0.932303
0*	1.60510	1.28123	0.222148	0.423360
0* 0*	1.75882 2.43890	1.87020 6.25056	0.318489 1.02698	0.527249 1.22728
0*	0.572727	87.6942	13.9957	11.9744
100*	0.723533	0.0541990	83.6978	71.2224
lb/h	lb/h	lb/h	lb/h	lb/h
0*	111.656	0.350530	3.60805	113.333
0*	320.363	0.00490344	0.797589	320.419
0*	28916.8	8.35163	210.372	28953.0
0*	7531.88	74.0408	253.502	7651.52
0*	4859.80	313.080	514.243	5232.48
0*	1071.23	193.711	248.596	1281.72
0*	2286.68	638.594	765.815	2965.31
0*	779.189	552.193	600.382	1346.55
0*	853.811	806.030	860.757	1676.98
			つフプモ Eつ	2002 51
0*	1183.95	2693.90	2775.53	3903.51
0* 0* 226532*	1183.95 278.028 351.236	2693.90 37795.0 23.3590	37825.1 226204	38085.9 226532

Process Streams		Blower Disch	Gas	HT Gas	HT Oil	HT PW
Properties	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	Blower		VSSL-101	VSSL-101	VSSL-101
	To Block:	VRU	MIX-106	MIX-100	VRT	4 PW Tanks
Property	Units					
Temperature	°F	97.1955	85.8*	135*	135	135
Pressure	psig	-1.43595	121.9*	32*	32	32
Mole Fraction Vapor	%	96.6688	100	100	0	0
Mole Fraction Light Liquid	%	0.585448	0	0	100	100
Mole Fraction Heavy Liquid	%	2.74571	0	0	0	0
Phase Mole Fraction	%	100	100	100	100	100
Molecular Weight	lb/lbmol	42.6073	21.7970	31.2882	118.812	18.0162
Mass Density	lb/ft^3	0.0990181	0.526910	0.233428	46.7432	61.4361
Molar Flow	lbmol/h	6.62974	2287.49	23.8032	364.822	12553.9
Mass Flow	lb/h	282.475	49860.5	744.760	43345.4	226172
Vapor Volumetric Flow	ft^3/h	2852.76	94628.0	3190.54	927.308	3681.42
Liquid Volumetric Flow	gpm	355.669	11797.8	397.781	115.612	458.983
Std Vapor Volumetric Flow	MMSCFD	0.0603811	20.8336*	0.216790	3.32266	114.336
Std Liquid Volumetric Flow	sgpm	1.10555	281.040	3.39439	111.374	452.192
Compressibility		0.954770	0.965303	0.980772	0.0185987	0.00214575
Specific Gravity			0.752594	1.08030	0.749466	0.985047
API Gravity					48.7612	10.0023
Enthalpy	Btu/h	-348065	-7.95796E+07	-1.01855E+06	-3.03050E+07	-1.52981E+09
Mass Enthalpy	Btu/lb	-1232.20	-1596.05	-1367.62	-699.152	-6763.90
Mass Cp	Btu/(lb*°F)	0.428234	0.497194	0.468343	0.486828	0.978348
Ideal Gas CpCv Ratio		1.12548	1.23418	1.15907	1.04564	1.32671
Dynamic Viscosity	cP		0.0108031	0.0105604	0.454961	0.495910
Kinematic Viscosity	cSt		1.27994	2.82427	0.607624	0.503916
Thermal Conductivity	Btu/(h*ft*°F)		0.0179754	0.0163661	0.0627491	0.372528
Surface Tension	lbf/ft				0.00146450?	0.00455302
Net Ideal Gas Heating Value	Btu/ft^3	2134.38	1187.44	1609.96	5896.92	0.0952478
Net Liquid Heating Value	Btu/lb	18824.6	20608.8	19378.0	18672.3	-1057.65
Gross Ideal Gas Heating Value	Btu/ft^3	2323.33	1307.72	1761.08	6303.16	50.4110
Gross Liquid Heating Value	Btu/lb	20507.8	22703.0	21211.3	19969.9	2.17249

O W&B	OB	Oil	OT Emissions	OT Flash	OW	PW	PW W&B	PWB
Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
MIX-101	6 Oil Tanks		MIX-102	6 Oil Tanks	6 Oil Tanks	4 PW Tanks	MIX-103	4 PW Tanks
MIX-102	MIX-101	MIX-106	Blower	MIX-102	MIX-101		MIX-104	MIX-103
106.738	106.738	105.4*	106.734	106.738	106.738	83.5989	83.5989	83.5989
-1.43595	-1.43595	121.3*	-1.43595	-1.43595	-1.43595	-1.43595	-1.43595	-1.43595
100	100	0	100	100	100	0	53.0110	53.0110
0	0	100	0	0	0	100	4.08213	4.08213
0	0	0	0	0	0	0	42.9069	42.9069
100	100	100	100	100	100	100	100	100
47.0588	47.0588	119.167	45.0309	44.2497	47.0588	18.0154	27.8616	27.8616
0.104152	0.104152	47.9029	0.0995338	0.0977609	0.104152	62.1441	0.120058	0.120058
1.58209	0.0669602	349.680	5.68898	4.10690	1.51513	12552.9	0.558785	0.00692299
74.4512	3.15107	41670.3	256.180	181.729	71.3001	226146	15.5686	0.192885
714.834	30.2546	869.891	2573.80	1858.91	684.579	3639.06	129.676	1.60661
89.1221	3.77200	108.454	320.889	231.761	85.3501	453.701	16.1674	0.200304
0.0144091	0.000609848	3.18476	0.0518131	0.0374040	0.0137992	114.327	0.00508920	6.30519E-05
0.295070	0.0124885	106.747*	0.997384	0.702314	0.282581	452.083	0.0558862	0.000692394
0.985654	0.985654	0.0557896	0.986947	0.987406	0.985654	0.000659341	0.527814	0.527814
1.62482	1.62482	0.768059	1.55480	1.52783	1.62482	0.996398		
		47.7429				9.99836		
-74407.0	-3149.20	-2.90966E+07	-286695	-212288	-71257.8	-1.54113E+09	-45712.1	-566.344
-999.406	-999.406	-698.258	-1119.12	-1168.16	-999.406	-6814.74	-2936.17	-2936.17
0.422497	0.422497	0.465033	0.424550	0.425402	0.422497	0.977649	0.580847	0.580847
1.11171	1.11171	1.04820	1.11665	1.11868	1.11171	1.32877	1.20823	1.20823
0.00862968	0.00862968	0.549836	0.00884338	0.00892738	0.00862968	0.843161		
5.17258	5.17258	0.716557	5.54660	5.70083	5.17258	0.847012		
0.0113676	0.0113676	0.0642567	0.0116260	0.0117329	0.0113676	0.353234		
		0.00154414?				0.00493086		
2456.72	2456.72	5913.48	2295.26	2233.06	2456.72	0.00820749	958.716	958.716
19654.6	19654.6	18669.5	19167.8	18968.4	19654.6	-1059.58	12662.4	12662.4
2667.77	2667.77	6318.04	2495.57	2429.24	2667.77	50.3187	1065.50	1065.50
21356.9	21356.9	19957.9	20856.3	20651.2	21356.9	0.182946	14117.2	14117.2

WT Emissions	PWT Flash	PWW	Sales Gas	Sales Oil	Separator Gas	VRT Gas	VRU Disch
Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
MIX-104	4 PW Tanks	4 PW Tanks	MIX-105	6 Oil Tanks	VSSL-100	VRT	VRU
Blower	MIX-104	MIX-103			MIX-100	VRU	MIX-105
00.7700	83.5989	02.5000	0.4.2000	106.738	402.405	400.005	400 404
83.7729		83.5989	94.3906		103.495 121*	133.325 11*	103.134
-1.43595	-1.43595	-1.43595	-1.43595	-1.43595			-1.43595 99.2717
71.9879	99.8291	53.0110	100	0	100	100	
2.54006	0.163833	4.08213	0	100	0	0	0.317232
25.4721	0.00703228	42.9069	0	0	0	0	0.411042
100	100	100	100	100	100	100	100
27.9509	28.0815	27.8616	21.2832	121.397	21.0655	39.6582	41.1793
0.0887317	0.0643460	0.120058	0.0476100	47.7614	0.487112	0.162942	0.0920838
0.940755	0.381970	0.551862	2305.76	352.910	2269.11	6.22329	12.8530
26.2949	10.7263	15.3757	49073.9	42842.4	47799.9	246.804	529.279
296.342	166.697	128.070	1.03075E+06	897.009	98129.0	1514.67	5747.80
36.9465	20.7830	15.9671	128509	111.835	12234.3	188.842	716.608
0.00856803	0.00347884	0.00502614	21.0000	3.21417	20.6661	0.0566793	0.117060
0.108171	0.0522845	0.0551938	279.182	109.375	273.680	1.00197	2.10752
0.716213	0.992576	0.527814	0.996921	0.00554476	0.970980	0.982763	0.981790
			0.734852	0.765791	0.727337	1.36929	
				48.1796			
-61369.3	-15657.1	-45145.8			-7.87052E+07	-300338	-648403
-2333.88	-1459.69	-2936.17	-1637.78	-705.485	-1646.56	-1216.91	-1225.07
0.526154	0.446311	0.580847	0.487015	0.466825	0.506106	0.448341	0.428440
1.20020	1.18959	1.20823	1.23788	1.04698	1.23767	1.12696	1.12823
			0.0108575	0.557912	0.0111916	0.00973875	
			14.2367	0.729235	1.43431	3.73120	
			0.0179812	0.0643388	0.0188509	0.0139282	
				0.00160585			
1161.51	1458.18	958.716	1152.87	6023.50	1142.85	2010.98	2074.63
15480.1	19569.9	12662.4	20486.2	18667.1	20520.6	19069.8	18938.9
1281.75	1598.11	1065.50	1270.71	6437.06	1259.97	2190.96	2259.24
17113.0	21461.4	14117.2	22587.7	19959.8	22630.7	20792.5	20640.6

N	1 Solved MIX-100 MIX-105 97.0693 32 100	2 Solved VRT 6 Oil Tanks	3 Solved VSSL-100 VSSL-101	4 Solved MIX-106 VSSL-100
MIX-106 M	97.0693 32 100	VRT 6 Oil Tanks 133.325 11	VSSL-100 VSSL-101	MIX-106 VSSL-100
MIX-106 M 105.4* 121.3*	97.0693 32 100	6 Oil Tanks 133.325 11	VSSL-101 103.495	VSSL-100 103.503
105.4* 121.3*	97.0693 32 100	133.325 11	103.495	103.503
121.3*	32 100	11		
121.3*	32 100	11		
	100		121	
0		Δ.		121.3
		_	0	14.9157
100	0	100	2.97368	2.53108
0	0	0	97.0263	82.5532
100	100	100	100	100
18.0153	21.1716	120.186	20.8818	20.9092
61.8874	0.167233	46.8838	58.9364	3.10347
12574.4	2292.91	358.599	12942.5	15211.6
226532	48544.6	43098.6	270262	318062
3660.38	290282	919.264	4585.66	102486
456.359	36191.0	114.610	571.719	12777.5
114.523	20.8829	3.26598	117.875	138.541
452.853*	277.074	110.372	566.960	840.640
0.00652828	0.989458	0.0103510	0.00795522	0.151604
0.992282	0.731001	0.751719	0.944967	
9.98354		48.4716	16.5407	
-1.53886E+09 -7.9	7237E+07	-3.00047E+07	-1.56883E+09	-1.64754E+09
-6793.15	-1642.28	-696.187	-5804.85	-5179.93
0.976808	0.492592	0.484780	0.894300	0.835972
1.32795	1.23829	1.04527	1.28148	1.27395
0.662536	0.0109557	0.468519	0.640653	
0.668323	4.08975	0.623855	0.678607	
0.362203	0.0182425	0.0629221	0.300836	
0.00476986		0.00148846?	0.00411855?	
0	1147.70	5964.35	169.275	314.503
-1059.76	20503.0	18670.1	2163.01	4921.86
50.3100	1265.17	6374.53	229.810	383.478
0	22608.9	19965.2	3263.09	6173.74

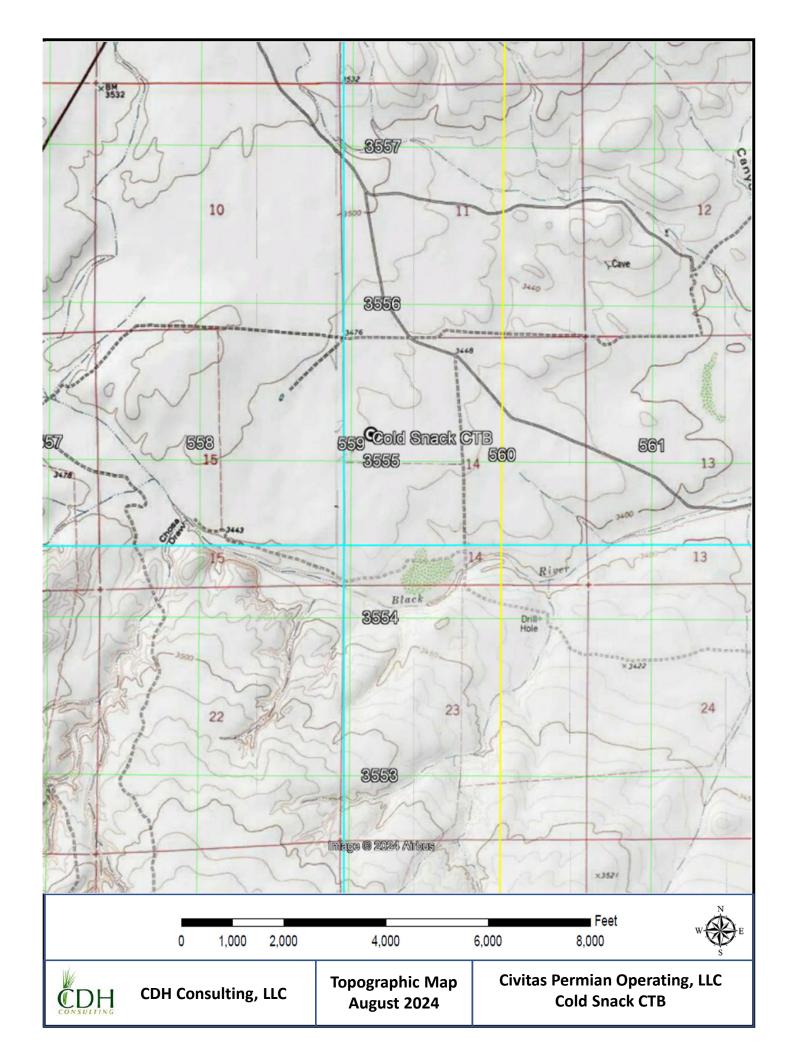
Process Streams	Blower Disch	Gas	HT Gas	HT Oil	HT PW
Composition Statu		Solved	Solved	Solved	Solved
•		Solved			
Phase: Vapor From B		 MIX-106	VSSL-101 MIX-100	VSSL-101 VRT	VSSL-101 4 PW Tanks
Mole Fraction	% VKO	%	%	VNI	4 FVV Taliks
Carbon Dioxide	0.418739	0.111202	0.184280		
Nitrogen	0.00886758	0.499414	0.111239		
Methane	11.9332	78.5947	45.6055		
Ethane	24.4586	10.8302	18.7027		
Propane	25.4796	4.70621	13.4869		
Isobutane	5.33696	0.819119	2.75373		
n-Butane	12.6131	1.69285	6.30203		
Isopentane	3.68475	0.540122	1.92293		
n-Pentane	4.07588	0.591751	2.18856		
i-Hexane	4.85916	1.61441	2.72874		
C7+	0.554644	0	0.539868		
Water	6.57657	0	5.47348		
Molar Flow	lbmol/h	lbmol/h	lbmol/h		
Carbon Dioxide	0.0268366	2.54373	0.0438646		
Nitrogen	0.000568314	11.4241	0.0264785		
Methane	0.764785	1797.85	10.8556		
Ethane	1.56752	247.741	4.45184		
Propane	1.63296	107.654	3.21032		
Isobutane	0.342040	18.7373	0.655475		
n-Butane	0.808361	38.7237	1.50008		
Isopentane	0.236151	12.3552	0.457719		
n-Pentane	0.261219	13.5363	0.520947		
i-Hexane	0.311418	36.9295	0.649527		
C7+	0.0355465	0	0.128506		
Water	0.421485	0	1.30286		
Mass Fraction	%	%	%		
Carbon Dioxide	0.430205	0.224523	0.259205		
Nitrogen	0.00579904	0.641844	0.0995962		
Methane	4.46902	57.8452	23.3834		
Ethane	17.1686	14.9403	17.9739		
Propane	26.2285	9.52072	19.0076		
Isobutane	7.24138	2.18420	5.11543		
n-Butane	17.1139	4.51401	11.7069		
Isopentane	6.20614	1.78782	4.43416		
n-Pentane	6.86492	1.95872	5.04668		
i-Hexane	9.77528	6.38263	7.51561		
C7+	1.73040	0	2.30597		
Water	2.76583	0	3.15155		
Mass Flow	lb/h	lb/h	lb/h		
Carbon Dioxide	1.18106	111.948	1.93046		
Nitrogen Methons	0.0159204	320.027	0.741752		
Methane Ethane	12.2690	28841.9	174.150		
	47.1339	7449.33	133.862		
Propane Isobutano	72.0063	4747.08	141.561 38.0977		
Isobutane n-Butane	19.8801	1089.05			
	46.9837	2250.71	87.1882		
Isopentane	17.0380	891.416	33.0239		
n Dontono	18.8466	976.625	37.5857		
n-Pentane	06 0000	2400 44	EE 0722		
i-Hexane	26.8366	3182.41	55.9732		
	26.8366 4.75055 7.59317	3182.41 0 0	55.9732 17.1739 23.4715		

O W&B	ОВ	Oil	OT Emissions	OT Flash	OW	PW	PW W&B	PWB
Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
MIX-101	6 Oil Tanks		MIX-102	6 Oil Tanks	6 Oil Tanks	4 PW Tanks	MIX-103	4 PW Tanks
MIX-101	MIX-101	MIX-106	Blower	MIX-102	MIX-101		MIX-103	MIX-103
%	%	mix ree	%	%	%		%	%
0.104774	0.104774		0.109067	0.110720	0.104774		6.46980	6.46980
0.000218380			0.00286585		0.000218380		0.0341084	0.0341084
2.37468	2.37468		7.62716	9.65055	2.37468		45.2857	45.2857
31.3790	31.3790		24.7649	22.2170	31.3790		26.5212	26.5212
31.4866	31.4866		27.3416	25.7449	31.4866		10.6999	10.6999
6.01934	6.01934		5.87322	5.81694	6.01934		0.863353	0.863353
13.9969	13.9969		13.6371	13.4985	13.9969		4.31824	4.31824
4.04945	4.04945		4.06367	4.06916	4.04945		0.562151	0.562151
4.50221	4.50221		4.54064	4.55545	4.50221		0.203886	0.203886
5.47715	5.47715		5.44089	5.42692	5.47715		0.308727	0.308727
0.586835	0.586835		0.718033	0.768575	0.586835		0.418215	0.418215
0.0228847	0.0228847		5.88077	8.13738	0.0228847		4.31479	4.31479
lbmol/h	lbmol/h		lbmol/h	lbmol/h	lbmol/h		lbmol/h	lbmol/h
	7.01570E-05		0.00620478	0.00454716	0.00158746		0.0191647	0.000237438
3.45496E-06	1.46228E-07		0.000163038	0.000159583			0.000101035	1.25176E-06
0.0375696	0.00159009		0.433908	0.396338	0.0359795			0.00166196
0.496444	0.0210115		1.40887	0.912429	0.475433			0.000973311
0.498145	0.0210835		1.55546	1.05732	0.477062		0.0316948	0.000392678
0.0952313	0.00403056		0.334127	0.238896	0.0912007			3.16845E-05
0.221443	0.00937234		0.775813	0.554370	0.212070			0.000158477
0.0640658	0.00271152		0.231182	0.167116	0.0613543			2.06306E-05
0.0712290	0.00301469		0.258316	0.187088	0.0682143			7.48250E-06
0.0866533	0.00366751		0.309531	0.222878	0.0829858			1.13301E-05
	0.000392946		0.0408488	0.0315646	0.00889131			1.53482E-05
0.000362056			0.334556		0.000346732			0.000158350
%	%		%	%	%		%	%
0.0979849 0.000129998	0.0979849		0.106593 0.00178282	0.110119	0.0979849 0.000129998		10.1758	10.1758
	0.809535		0.00176262	0.00245995			0.0341476	0.0341476
0.809535			0.74704	2 40075	0.000505			
			2.71721	3.49875	0.809535		25.9636	25.9636
20.0502	20.0502		16.5366	15.0971	20.0502		28.5000	28.5000
29.5039	20.0502 29.5039		16.5366 26.7738	15.0971 25.6552	20.0502 29.5039		28.5000 16.8619	28.5000 16.8619
29.5039 7.43447	20.0502 29.5039 7.43447		16.5366 26.7738 7.58067	15.0971 25.6552 7.64057	20.0502 29.5039 7.43447		28.5000 16.8619 1.79334	28.5000 16.8619 1.79334
29.5039 7.43447 17.2875	20.0502 29.5039 7.43447 17.2875		16.5366 26.7738 7.58067 17.6017	15.0971 25.6552 7.64057 17.7304	20.0502 29.5039 7.43447 17.2875		28.5000 16.8619 1.79334 8.96977	28.5000 16.8619 1.79334 8.96977
29.5039 7.43447 17.2875 6.20846	20.0502 29.5039 7.43447 17.2875 6.20846		16.5366 26.7738 7.58067 17.6017 6.51084	15.0971 25.6552 7.64057 17.7304 6.63472	20.0502 29.5039 7.43447 17.2875 6.20846		28.5000 16.8619 1.79334 8.96977 1.44949	28.5000 16.8619 1.79334 8.96977 1.44949
29.5039 7.43447 17.2875 6.20846 6.90262	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262		16.5366 26.7738 7.58067 17.6017 6.51084 7.27504	15.0971 25.6552 7.64057 17.7304 6.63472 7.42762	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262		28.5000 16.8619 1.79334 8.96977 1.44949 0.525713	28.5000 16.8619 1.79334 8.96977 1.44949 0.525713
29.5039 7.43447 17.2875 6.20846 6.90262 10.0299	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299		16.5366 26.7738 7.58067 17.6017 6.51084 7.27504 10.4122	15.0971 25.6552 7.64057 17.7304 6.63472 7.42762 10.5688	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299		28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802	28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802
29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656		16.5366 26.7738 7.58067 17.6017 6.51084 7.27504 10.4122 2.13098	15.0971 25.6552 7.64057 17.7304 6.63472 7.42762 10.5688 2.32125	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656		28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746	28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746
29.5039 7.43447 17.2875 6.20846 6.90262 10.0299	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299		16.5366 26.7738 7.58067 17.6017 6.51084 7.27504 10.4122	15.0971 25.6552 7.64057 17.7304 6.63472 7.42762 10.5688	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299		28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802	28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802
29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081		16.5366 26.7738 7.58067 17.6017 6.51084 7.27504 10.4122 2.13098 2.35269	15.0971 25.6552 7.64057 17.7304 6.63472 7.42762 10.5688 2.32125 3.31295	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081		28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801	28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801
29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 lb/h		16.5366 26.7738 7.58067 17.6017 6.51084 7.27504 10.4122 2.13098 2.35269	15.0971 25.6552 7.64057 17.7304 6.63472 7.42762 10.5688 2.32125 3.31295 lb/h	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081		28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h	28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801
29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 lb/h	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 lb/h		16.5366 26.7738 7.58067 17.6017 6.51084 7.27504 10.4122 2.13098 2.35269 Ib/h	15.0971 25.6552 7.64057 17.7304 6.63472 7.42762 10.5688 2.32125 3.31295 lb/h	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 lb/h		28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h	28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 lb/h
29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 Ib/h 0.0729510 9.67852E-05	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 lb/h 0.00308757 4.09633E-06		16.5366 26.7738 7.58067 17.6017 6.51084 7.27504 10.4122 2.13098 2.35269 Ib/h 0.273069 0.00456724	15.0971 25.6552 7.64057 17.7304 6.63472 7.42762 10.5688 2.32125 3.31295 Ib/h 0.200118 0.00447045	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 ib/h 0.0698634 9.26889E-05		28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h 0.843427 0.00283033	28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 lb/h 0.0104495 3.50661E-05 0.0266619
29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 lb/h 0.0729510 9.67852E-05 0.602709	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 lb/h 0.00308757 4.09633E-06 0.0255090		16.5366 26.7738 7.58067 17.6017 6.51084 7.27504 10.4122 2.13098 2.35269 Ib/h 0.273069 0.00456724 6.96095	15.0971 25.6552 7.64057 17.7304 6.63472 7.42762 10.5688 2.32125 3.31295 Ib/h 0.200118 0.00447045 6.35824	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 ib/h 0.0698634 9.26889E-05 0.577200		28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 lb/h 0.843427 0.00283033 2.15200	28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 lb/h 0.0104495 3.50661E-05
29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 lb/h 0.0729510 9.67852E-05 0.602709 14.9276	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 Ib/h 0.00308757 4.09633E-06 0.0255090 0.631795		16.5366 26.7738 7.58067 17.6017 6.51084 7.27504 10.4122 2.13098 2.35269 Ib/h 0.273069 0.00456724 6.96095 42.3634	15.0971 25.6552 7.64057 17.7304 6.63472 7.42762 10.5688 2.32125 3.31295 Ib/h 0.200118 0.00447045 6.35824 27.4359 46.6230	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 ib/h 0.0698634 9.26889E-05 0.577200 14.2958		28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 lb/h 0.843427 0.00283033 2.15200 2.36223	28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 ib/h 0.0104495 3.50661E-05 0.0266619 0.0292665
29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 Ib/h 0.0729510 9.67852E-05 0.602709 14.9276 21.9660	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 Ib/h 0.00308757 4.09633E-06 0.0255090 0.631795 0.929689		16.5366 26.7738 7.58067 17.6017 6.51084 7.27504 10.4122 2.13098 2.35269 Ib/h 0.273069 0.00456724 6.96095 42.3634 68.5891	15.0971 25.6552 7.64057 17.7304 6.63472 7.42762 10.5688 2.32125 3.31295 Ib/h 0.200118 0.00447045 6.35824 27.4359	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 Ib/h 0.0698634 9.26889E-05 0.577200 14.2958 21.0363		28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 lb/h 0.843427 0.00283033 2.15200 2.36223 1.39760	28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 lb/h 0.0104495 3.50661E-05 0.0266619 0.0292665 0.0173154
29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 Ib/h 0.0729510 9.67852E-05 0.602709 14.9276 21.9660 5.53505	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 Ib/h 0.00308757 4.09633E-06 0.0255090 0.631795 0.929689 0.234265		16.5366 26.7738 7.58067 17.6017 6.51084 7.27504 10.4122 2.13098 2.35269 Ib/h 0.273069 0.00456724 6.96095 42.3634 68.5891 19.4202	15.0971 25.6552 7.64057 17.7304 6.63472 7.42762 10.5688 2.32125 3.31295 Ib/h 0.200118 0.00447045 6.35824 27.4359 46.6230 13.8851	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 ib/h 0.0698634 9.26889E-05 0.577200 14.2958 21.0363 5.30079		28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h 0.843427 0.00283033 2.15200 2.36223 1.39760 0.148642	28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 ib/h 0.0104495 3.50661E-05 0.0266619 0.0292665 0.0173154 0.00184158
29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 Ib/h 0.0729510 9.67852E-05 0.602709 14.9276 21.9660 5.53505 12.8707	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 1b/h 0.00308757 4.09633E-06 0.0255090 0.631795 0.929689 0.234265 0.544741		16.5366 26.7738 7.58067 17.6017 6.51084 7.27504 10.4122 2.13098 2.35269 Ib/h 0.273069 0.00456724 6.96095 42.3634 68.5891 19.4202 45.0920	15.0971 25.6552 7.64057 17.7304 6.63472 7.42762 10.5688 2.32125 3.31295 Ib/h 0.200118 0.00447045 6.35824 27.4359 46.6230 13.8851 32.2212 12.0572	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 ib/h 0.0698634 9.26889E-05 0.577200 14.2958 21.0363 5.30079 12.3260		28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h 0.843427 0.00283033 2.15200 2.36223 1.39760 0.148642 0.743462 0.120141	28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 ib/h 0.0104495 3.50661E-05 0.0266619 0.0292665 0.0173154 0.00184158 0.00921102
29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 Ib/h 0.0729510 9.67852E-05 0.602709 14.9276 21.9660 5.53505 12.8707 4.62227	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 1b/h 0.00308757 4.09633E-06 0.0255090 0.631795 0.929689 0.234265 0.544741 0.195633		16.5366 26.7738 7.58067 17.6017 6.51084 7.27504 10.4122 2.13098 2.35269 Ib/h 0.273069 0.00456724 6.96095 42.3634 68.5891 19.4202 45.0920 16.6795	15.0971 25.6552 7.64057 17.7304 6.63472 7.42762 10.5688 2.32125 3.31295 Ib/h 0.200118 0.00447045 6.35824 27.4359 46.6230 13.8851 32.2212	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 ib/h 0.0698634 9.26889E-05 0.577200 14.2958 21.0363 5.30079 12.3260 4.42664		28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h 0.04343427 0.00283033 2.15200 2.36223 1.39760 0.148642 0.743462 0.120141 0.0435739	28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h 0.0104495 3.50661E-05 0.0266619 0.0292665 0.0173154 0.00184158 0.00921102 0.00148847
29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 Ib/h 0.0729510 9.67852E-05 0.602709 14.9276 21.9660 5.53505 12.8707 4.62227 5.13908	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 Ib/h 0.00308757 4.09633E-06 0.0255090 0.631795 0.929689 0.234265 0.544741 0.195633 0.217506		16.5366 26.7738 7.58067 17.6017 6.51084 7.27504 10.4122 2.13098 2.35269 Ib/h 0.273069 0.00456724 6.96095 42.3634 68.5891 19.4202 45.0920 16.6795 18.6372	15.0971 25.6552 7.64057 17.7304 6.63472 7.42762 10.5688 2.32125 3.31295 Ib/h 0.00447045 6.35824 27.4359 46.6230 13.8851 32.2212 12.0572 13.4981	20.0502 29.5039 7.43447 17.2875 6.20846 6.90262 10.0299 1.66656 0.00876081 ib/h 0.0698634 9.26889E-05 0.577200 14.2958 21.0363 5.30079 12.3260 4.42664 4.92158		28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h 0.04343427 0.00283033 2.15200 2.36223 1.39760 0.148642 0.743462 0.120141 0.0435739	28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h 0.0104495 3.50661E-05 0.0266619 0.0292665 0.0173154 0.00184158 0.00921102 0.00148847 0.000539853

PWT Emissions	PWT Flash	PWW	Sales Gas	Sales Oil	Separator Gas	VRT Gas	VRU Disch
Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
MIX-104	4 PW Tanks	4 PW Tanks	MIX-105	6 Oil Tanks	VSSL-100	VRT	VRU
Blower	MIX-104	MIX-103			MIX-100	VRU	MIX-105
%	%	%	%		%	%	%
3.04527	0.379776	6.46980	0.111609		0.109877	0.152979	0.284947
0.0598413	0.0797853	0.0341084	0.496063		0.502822	0.0227033	0.0155274
48.8531	51.5863	45.2857	78.2686		78.9589	22.5988	17.0162
23.4371	21.0191	26.5212	10.9904		10.8428	21.8153	22.9255
11.5166	12.1471	10.6999	4.90586		4.71552	20.4626	22.7792
1.21220	1.48666	0.863353	0.826345		0.783353	4.50824	4.87987
4.93531	5.42344	4.31824	1.76979		1.66773	10.5248	11.4700
0.840034	1.06849	0.562151	0.487523		0.455776	3.28352	3.45308
0.595610	0.923905	0.203886	0.534744		0.498570	3.75048	3.87757
0.754832	1.17061	0.308727	0.622186		0.576851	4.69436	4.73306
0.412247	0.402123	0.418215	0.0955188		0.0860195	0.902627	0.696733
4.33789	4.31273	4.31479	0.891395		0.801801	7.28359	7.86824
lbmol/h	lbmol/h	lbmol/h	lbmol/h		lbmol/h	lbmol/h	lbmol/h
0.0206235	0.00144815	0.0189272	2.57344		2.49321	0.00952035	0.0363576
0.000405263	0.000304235		11.4380		11.4096	0.00141289	0.00198120
0.330847	0.196707	0.132482	1804.69		1791.66	1.40639	2.17117
0.158723	0.0801495	0.0775869	253.412		246.034	1.35763	2.92517
0.0779938	0.0463191	0.0313021	113.118		107.000	1.27345	2.90650
0.00820939	0.00566891	0.00252571	19.0535		17.7751	0.280561	0.622643
0.0334233	0.0206805	0.0126329	40.8072		37.8425	0.654986	1.46351
0.00568896	0.00407433	0.00164456	11.2411		10.3420	0.204343	0.440593
0.00403365		0.000596463	12.3299		11.3131	0.233403	0.494755
0.00511194		0.000903171	14.3461		13.0894	0.292144	0.603911
0.00279186	0.00153337	0.00122348	2.20244		1.95187	0.0561731	0.0888991
0.0293774 %	0.0164452 %	0.0126228 %	20.5535 %		18.1937 %	0.453279 %	1.00394 %
	70	70	70		70	70	
4.00400	0.500050		0.000700		0.000554		
4.80162	0.598658	10.1758	0.230786		0.229551	0.169765	0.305737
0.0600596	0.0800559	10.1758 0.0341476	0.652930		0.668665	0.169765 0.0160370	0.305737 0.0106047
0.0600596 28.0788	0.0800559 29.6421	10.1758 0.0341476 25.9636	0.652930 58.9960		0.668665 60.1312	0.169765 0.0160370 9.14165	0.305737 0.0106047 6.65534
0.0600596 28.0788 25.2487	0.0800559 29.6421 22.6380	10.1758 0.0341476 25.9636 28.5000	0.652930 58.9960 15.5273		0.668665 60.1312 15.4771	0.169765 0.0160370 9.14165 16.5405	0.305737 0.0106047 6.65534 16.8065
0.0600596 28.0788 25.2487 18.1943	0.0800559 29.6421 22.6380 19.1855	10.1758 0.0341476 25.9636 28.5000 16.8619	0.652930 58.9960 15.5273 10.1642		0.668665 60.1312 15.4771 9.87081	0.169765 0.0160370 9.14165 16.5405 22.7522	0.305737 0.0106047 6.65534 16.8065 24.4890
0.0600596 28.0788 25.2487 18.1943 2.52425	0.0800559 29.6421 22.6380 19.1855 3.09499	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334	0.652930 58.9960 15.5273 10.1642 2.25667		0.668665 60.1312 15.4771 9.87081 2.16136	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141 1.53959	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123 2.38760	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949 0.525713	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268 1.81275		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102 1.70759	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361 6.82312	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397 6.82064
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141 1.53959 2.33050	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123 2.38760 3.61328	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268 1.81275 2.51923		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102 1.70759 2.35980	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361 6.82312 10.2006	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397 6.82064 9.94402
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141 1.53959 2.33050 1.97387	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123 2.38760 3.61328 1.92491	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268 1.81275 2.51923 0.599790		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102 1.70759 2.35980 0.545722	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361 6.82312 10.2006 3.04174	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397 6.82064 9.94402 2.27012
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141 1.53959 2.33050	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123 2.38760 3.61328	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268 1.81275 2.51923		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102 1.70759 2.35980	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361 6.82312 10.2006	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397 6.82064 9.94402
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141 1.53959 2.33050 1.97387 2.79985	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123 2.38760 3.61328 1.92491 2.78290	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268 1.81275 2.51923 0.599790 0.754528		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102 1.70759 2.35980 0.545722 0.685702	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361 6.82312 10.2006 3.04174 3.30867	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397 6.82064 9.94402 2.27012 3.45585
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141 1.53959 2.33050 1.97387 2.79985	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123 2.38760 3.61328 1.92491 2.78290 Ib/h	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 lb/h 0.832977	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268 1.81275 2.51923 0.599790 0.754528 Ib/h		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102 1.70759 2.35980 0.545722 0.685702	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361 6.82312 10.2006 3.04174 3.30867	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397 6.82064 9.94402 2.27012 3.45585 Ib/h
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141 1.53959 2.33050 1.97387 2.79985	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123 2.38760 3.61328 1.92491 2.78290	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268 1.81275 2.51923 0.599790 0.754528		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102 1.70759 2.35980 0.545722 0.685702	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361 6.82312 10.2006 3.04174 3.30867 lb/h	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397 6.82064 9.94402 2.27012 3.45585
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141 1.53959 2.33050 1.97387 2.79985 Ib/h 0.907628 0.0113528	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123 2.38760 3.61328 1.92491 2.78290 Ib/h 0.0637324 0.00852266	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h 0.832977 0.00279527	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268 1.81275 2.51923 0.599790 0.754528 1b/h		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102 1.70759 2.35980 0.545722 0.685702 Ib/h	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361 6.82312 10.2006 3.04174 3.30867 Ib/h 0.418986 0.0395799	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397 6.82064 9.94402 2.27012 3.45585 Ib/h 1.60008
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141 1.53959 2.33050 1.97387 2.79985 Ib/h 0.907628 0.0113528 5.30760	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123 2.38760 3.61328 1.92491 2.78290 Ib/h 0.0637324 0.00852266 3.15567	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 lb/h 0.832977 0.00279527 2.12534	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268 1.81275 2.51923 0.599790 0.754528 Ib/h 113.256 320.418 28951.6		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102 1.70759 2.35980 0.545722 0.685702 Ib/h 109.725 319.621 28742.6	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361 6.82312 10.2006 3.04174 3.30867 Ib/h 0.418986 0.0395799 22.5620	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397 6.82064 9.94402 2.27012 3.45585 Ib/h 1.60008 0.0555002 34.8309
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141 1.53959 2.33050 1.97387 2.79985 Ib/h 0.907628 0.0113528 5.30760 4.77264	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123 2.38760 3.61328 1.92491 2.78290 Ib/h 0.0637324 0.00852266 3.15567 2.41002	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h 0.832977 0.00279527 2.12534 2.33296	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268 1.81275 2.51923 0.599790 0.754528 1b/h 113.256 320.418 28951.6 7619.85		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102 1.70759 2.35980 0.545722 0.685702 Ib/h 109.725 319.621 28742.6 7398.02 4718.24	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361 6.82312 10.2006 3.04174 3.30867 Ib/h 0.418986 0.0395799 22.5620 40.8226	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397 6.82064 9.94402 2.27012 3.45585 Ib/h 1.60008 0.0555002 34.8309 87.9570 128.164
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141 1.53959 2.33050 1.97387 2.79985 Ib/h 0.907628 0.0113528 5.30760 4.77264 3.43919	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123 2.38760 3.61328 1.92491 2.78290 Ib/h 0.0637324 0.00852266 3.15567 2.41002 2.04247	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h 0.832977 0.00279527 2.12534 2.33296 1.38029	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268 1.81275 2.51923 0.599790 0.754528 1b/h 113.256 320.418 28951.6 7619.85 4987.99		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102 1.70759 2.35980 0.545722 0.685702 Ib/h 109.725 319.621 28742.6 7398.02	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361 6.82312 10.2006 3.04174 3.30867 Ib/h 0.418986 0.0395799 22.5620 40.8226 56.1534	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397 6.82064 9.94402 2.27012 3.45585 Ib/h 1.60008 0.0555002 34.8309 87.9570
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141 1.53959 2.33050 1.97387 2.79985 Ib/h 0.907628 0.0113528 5.30760 4.77264 3.43919 0.477148	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123 2.38760 3.61328 1.92491 2.78290 Ib/h 0.0637324 0.00852266 3.15567 2.41002 2.04247 0.329489	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h 0.832977 0.00279527 2.12534 2.33296 1.38029 0.146800	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268 1.81275 2.51923 0.599790 0.754528 Ib/h 113.256 320.418 28951.6 7619.85 4987.99 1107.43		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102 1.70759 2.35980 0.545722 0.685702 Ib/h 109.725 319.621 28742.6 7398.02 4718.24 1033.13	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361 6.82312 10.2006 3.04174 3.30867 Ib/h 0.418986 0.0395799 22.5620 40.8226 56.1534 16.3068	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397 6.82064 9.94402 2.27012 3.45585 Ib/h 1.60008 0.0555002 34.8309 87.9570 128.164 36.1894
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141 1.53959 2.33050 1.97387 2.79985 Ib/h 0.907628 0.0113528 5.30760 4.77264 3.43919 0.477148 1.94264	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123 2.38760 3.61328 1.92491 2.78290 Ib/h 0.0637324 0.00852266 3.15567 2.41002 2.04247 0.329489 1.20200	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h 0.832977 0.00279527 2.12534 2.33296 1.38029 0.146800 0.734251	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268 1.81275 2.51923 0.599790 0.754528 Ib/h 113.256 320.418 28951.6 7619.85 4987.99 1107.43 2371.80		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102 1.70759 2.35980 0.545722 0.685702 Ib/h 109.725 319.621 28742.6 7398.02 4718.24 1033.13 2199.49	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361 6.82312 10.2006 3.04174 3.30867 Ib/h 0.418986 0.0395799 22.5620 40.8226 56.1534 16.3068 38.0692	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397 6.82064 9.94402 2.27012 3.45585 Ib/h 1.60008 0.0555002 34.8309 87.9570 128.164 36.1894 85.0623
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141 1.53959 2.33050 1.97387 2.79985 Ib/h 0.907628 0.0113528 5.30760 4.77264 3.43919 0.477148 1.94264 0.410451	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123 2.38760 3.61328 1.92491 2.78290 Ib/h 0.0637324 0.00852266 3.15567 2.41002 2.04247 0.329489 1.20200 0.293958	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h 0.832977 0.00279527 2.12534 2.33296 1.38029 0.146800 0.734251 0.118653	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268 1.81275 2.51923 0.599790 0.754528 Ib/h 113.256 320.418 28951.6 7619.85 4987.99 1107.43 2371.80 811.033		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102 1.70759 2.35980 0.545722 0.685702 Ib/h 109.725 319.621 28742.6 7398.02 4718.24 1033.13 2199.49 746.165	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361 6.82312 10.2006 3.04174 3.30867 Ib/h 0.418986 0.0395799 22.5620 40.8226 56.1534 16.3068 38.0692 14.7431	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397 6.82064 9.94402 2.27012 3.45585 Ib/h 1.60008 0.0555002 34.8309 87.9570 128.164 36.1894 85.0623 31.7883
0.0600596 28.0788 25.2487 18.1943 2.52425 10.2771 2.17141 1.53959 2.33050 1.97387 2.79985 Ib/h 0.907628 0.0113528 5.30760 4.77264 3.43919 0.477148 1.94264 0.410451 0.291023	0.0800559 29.6421 22.6380 19.1855 3.09499 11.2907 2.76123 2.38760 3.61328 1.92491 2.78290 Ib/h 0.0637324 0.00852266 3.15567 2.41002 2.04247 0.329489 1.20200 0.293958 0.254181	10.1758 0.0341476 25.9636 28.5000 16.8619 1.79334 8.96977 1.44949 0.525713 0.950802 1.99746 2.77801 Ib/h 0.832977 0.00279527 2.12534 2.33296 1.38029 0.146800 0.734251 0.118653 0.0430341	0.652930 58.9960 15.5273 10.1642 2.25667 4.83313 1.65268 1.81275 2.51923 0.599790 0.754528 Ib/h 113.256 320.418 28951.6 7619.85 4987.99 1107.43 2371.80 811.033 889.589		0.668665 60.1312 15.4771 9.87081 2.16136 4.60146 1.56102 1.70759 2.35980 0.545722 0.685702 Ib/h 109.725 319.621 28742.6 7398.02 4718.24 1033.13 2199.49 746.165 816.225	0.169765 0.0160370 9.14165 16.5405 22.7522 6.60719 15.4249 5.97361 6.82312 10.2006 3.04174 3.30867 Ib/h 0.418986 0.0395799 22.5620 40.8226 56.1534 16.3068 38.0692 14.7431 16.8397	0.305737 0.0106047 6.65534 16.8065 24.4890 6.91492 16.2533 6.07397 6.82064 9.94402 2.27012 3.45585 Ib/h 1.60008 0.0555002 34.8309 87.9570 128.164 36.1894 85.0623 31.7883 35.6960

10.1				
Water	1	2	3	4
Solved	Solved	Solved	Solved	Solved
	MIX-100	VRT	VSSL-100	MIX-106
MIX-106	MIX-105	6 Oil Tanks	VSSL-101	VSSL-100
	%			%
	0.110649			0.109878
	0.498757			0.502861
	78.6126			78.9640
	10.9244			10.8428 4.71481
	4.80658 0.803808			0.783071
	1.71584			1.66689
	0.471007			0.455378
	0.516114			0.498068
	0.599190			0.576061
	0.0907310			0.0858898
	0.850298			0.800274
	lbmol/h			lbmol/h
	2.53708			2.49303
	11.4361			11.4095
	1802.52			1791.63
	250.486			246.014
	110.210			106.975
	18.4306			17.7672
	39.3426			37.8204
	10.7998			10.3321
	11.8340			11.3007
	13.7389			13.0704
	2.08038			1.94877
	19.4966			18.1576 %
	%			
	0.230006 0.659935			0.229574 0.668777
	59.5675			60.1406
	15.5154			15.4785
	10.0110			9.87023
	2.20668			2.16078
	4.71047			4.59957
	1.60510			1.55980
	1.75882			1.70602
	2.43890			2.35678
	0.572727			0.544948
	0.723533			0.684459
	lb/h			lb/h
	111.656			109.717
	320.363			319.619
	28916.8			28742.1
	7531.88			7397.41
	4859.80			4717.13
	1071.23			1032.67
	2286.68			2198.20
	779.189			745.452
	853.811			815.335
	1183.95 278.028			1126.34 260.439
	351.236			327.113
	JJ 1.2J0			JZ1.113

Section 8


Cold Snack CTB

Map(s)

A map such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

Form-Section 8 last revised: 8/15/2011 Saved Date: 8/2/2024

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

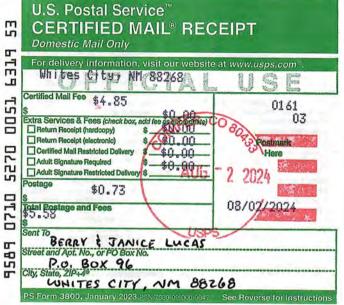
I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:


- 1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g. post office, library, grocery, etc.)
- 3. A copy of the property tax record (20.2.72.203.B NMAC).
- 4. A sample of the letters sent to the owners of record.
- 5. A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. A sample of the public notice posted and a verification of the local postings.
- 7. 🛛 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🛛 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

CONIFER 9546 S DALLMAN DR CONIFER, CO 80433-9997 (800) 275-8777

(800	0)275-8	3777	
08/02/2024			11:53 AM
Product	Qty		Price
First-Class Mail® Letter	1		\$0.73
Carlsbad, NM 88; Weight: 0 lb 0.7 Estimated Delive Mon 08/05/20 Certified Mail®	70 oz erv Dat	te	\$4.85
Tracking #: 9589 07:	10 5270	0051 6319	9 60
Total			\$5.58
First-Class Mail® Letter	1		\$0.73
Whites City, NM Weight: 0 lb 0. Estimated Delive Mon 08/05/20 Certified Mail® Tracking #:	70 oz ery Dat 024	te	\$4.85
9589 07: Total	10 5270	0 0051 6319	9 53 \$5.58
First-Class Mail® Letter Carlsbad, NM 883 Weight: O 1b O. Estimated Delive	220 70 oz ery Dat	te	\$0.73
Mon 08/05/20 Certified Mail® Tracking #:	J24		\$4.85
9589 07: Total	10 5270	0051 6319	9 46 \$5.58
Grand Total:			\$16.74
Credit Card Remit Card Name: VISA Account #: XXXXX Approval #: 633	XXXXXX) 146		\$16.74
Transaction #: AID: A000000003 AL: VISA CREDIT PIN: Not Require	187 1010	Ch	ip

COUNTY NOTICE

Eddy County Clerk c/o Cara Cooke 101 W Greene Street Carlsbad, NM 88220

LANDOWNER NOTICE (within ½ mile)

Berry and Janice Lucas P.O. Box 96, Whites City, NM 88268

John Arthur Ballard 80 Ballard Ranch Road Carlsbad, NM 88220

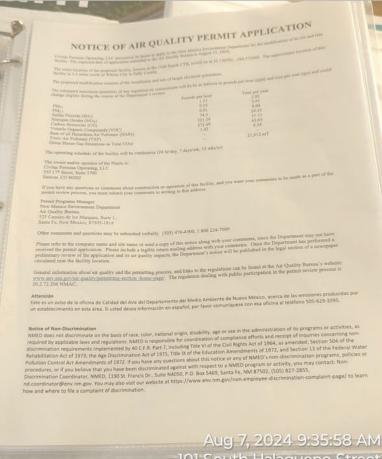
NEWSPAPER PUBLICATION

Carlsbad News-Argus (August 7, 2024)

- Legal Notice
- Display Ad

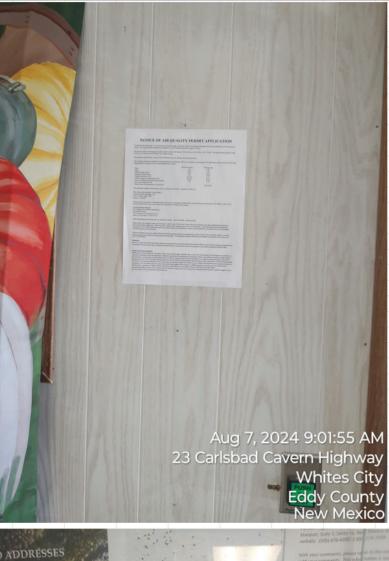
POSTINGS

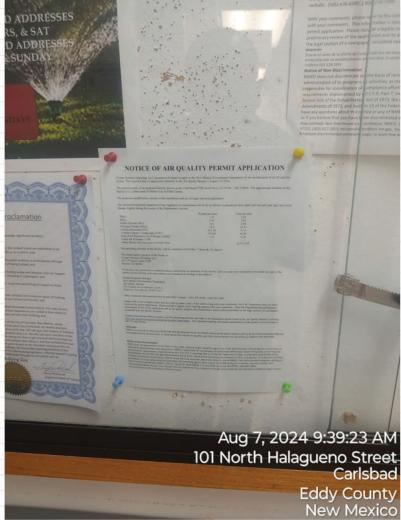
Site location - Cold Snack CTB


US Post Office 23 Carlsbad Cavern Hwy Whites City, NM 88268

Carlsbad Municipal Building 101 N Halagueno St Carlsbad, NM 88220

Carlsbad Public Library 101 S Halagueno St Carlsbad, NM 88220


General Posting of Notices – Certification


i, _		Ronald R. LePlatt	_, the undersigned, certify that on
follo	wing	r 10, 2023, posted a true and correct co publicly accessible and conspicuous pla cate of New Mexico on the following date	py of the attached Public Notice in the ces in Carlsbad & Whites City of Eddy
	1.	Facility entrance August 7, 2024	
	2.	US Post Office August 7, 2024	
		23 Carlsbad Cavern Hwy	
		Whites City, NM 88268	
	3.	Carlsbad Municipal Building August 7, 2	024
		101 N Halagueno St.	
		Carlsbad, NM 88220	
	4.	Carlsbad Public Library August 7, 2024	
		101 S Halagueno St.	
		Carlsbad, NM 88220	
Signe	ed thi	s <u>20th</u> day of <u>August</u> , <u>202</u>	<u>4.</u>
Signa	Parature	of Perflet	8/20/24 Date
JIBITE	ature		bate
	ed Na	R. LePlatt	
^	ir O	ality Engineer	
		ality Engineer LICANT OR RELATIONSHIP TO APPLICANT	· · · · · · · · · · · · · · · · · · ·

Aug 7, 2024 9:35:58 AM 101 South Halagueno Street Carlsbad Eddy County New Mexico

11/9/23, 1:22 PM Account

- Account Search
- View Created Report(s)
- Help?
- Eddy County Website
- County Treasurer
- County Assessor
- County Clerk
- Logout Public

Account: R091854 *Mill Levy does not include Special District Rates such as Penasco, Carlsbad Soil & Water, Central Valley, Eagle Draw, PVC, Cottonwood, and Hackberry

Tax Summary

Tax YearTax DueInterest DuePenalty DueMisc DueLien DueLien Interest DueTotal Due2023\$8.38\$0.00\$0.00\$0.00\$0.00\$0.00

Tax Details

Tax Year	Type	Effective Date	Amount I	Balance
2023	Special Assessment	10/02/2023	\$0.26	\$0.26
2023	Tax	10/02/2023	\$8.12	\$8.12
2022	Tax Payment	12/05/2022	\$8.12	\$0.00
2022	Special Assessment Payment	12/05/2022	\$0.26	\$0.00
2022	Special Assessment	10/06/2022	\$0.26	\$0.00
2022	Tax	10/06/2022	\$8.12	\$0.00
2021	Tax Payment	12/09/2021	\$8.12	\$0.00
2021	Special Assessment Payment	12/09/2021	\$0.26	\$0.00
2021	Special Assessment	10/05/2021	\$0.26	\$0.00
2021	Tax	10/05/2021	\$8.12	\$0.00
2020	Special Assessment Payment	12/02/2020	\$0.26	\$0.00
2020	Tax Payment	12/02/2020	\$8.12	\$0.00
2020	Special Assessment	10/02/2020	\$0.26	\$0.00
2020	Tax	10/02/2020	\$8.12	\$0.00
2019	Special Assessment Payment	12/10/2019	\$0.26	\$0.00
2019	Tax Payment	12/10/2019	\$8.12	\$0.00
2019	Special Assessment	10/03/2019	\$0.26	\$0.00
2019	Tax	10/03/2019	\$8.12	\$0.00
2018	Tax Payment	12/06/2018	\$8.16	\$0.00
2018	Special Assessment Payment	12/06/2018	\$0.26	\$0.00
2018	Special Assessment	10/01/2018	\$0.26	\$0.00
2018	Tax	10/01/2018	\$8.16	\$0.00
2017	Special Assessment Payment	12/05/2017	\$0.26	\$0.00
2017	Tax Payment	12/05/2017	\$8.16	\$0.00
2017	Special Assessment	10/03/2017	\$0.26	\$0.00
2017	Tax	10/03/2017	\$8.16	\$0.00
2016	Special Assessment Payment	12/02/2016	\$0.26	\$0.00
2016	Tax Payment	12/02/2016	\$8.28	\$0.00
2016	Special Assessment	10/03/2016	\$0.26	\$0.00
2016	Tax	10/03/2016	\$8.28	\$0.00

August 2, 2024

Berry and Janice Lucas P.O. Box 96, Whites City, NM 88268

CERTIFIED MAIL - 9589 0710 5270 0051 6319 53

Subject: Air Permit Application Notice

Dear Berry & Janice,

On behalf of Civitas Permian Operating, LLC (Civitas), CDH Consulting, LLC (CDH) is providing this notice of air permit application. Comments can be submitted via methods provided in the attached Notice.

Please do not hesitate to contact me at (303) 594-7951 or cmartnez@cdhconsult.com if you have any questions or require additional information.

Sincerely,

CDH CONSULTING, LLC

Chris Martinez Senior Air Quality Engineer

Attachment A – Air Permit Notice

NOTICE OF AIR QUALITY PERMIT APPLICATION

Civitas Permian Operating, LLC announces its intent to apply to the New Mexico Environment Department for the modification of its Oil and Gas facility. The expected date of application submittal to the Air Quality Bureau is August 15, 2024.

The exact location of the proposed facility, known as the Cold Snack CTB, is/will be at 32.130761, -104.372269. The approximate location of this facility is 3.2 miles south of Whites City in Eddy County.

The proposed modification consists of the installation and use of larger electrical generators.

The estimated maximum quantities of any regulated air contaminant will be be as follows in pounds per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

	Pounds per hour	Tons per year
PM_{10}	1.33	2.02
$PM_{2.5}$	0.54	2.01
Sulfur Dioxide (SO ₂)	0.01	0.06
Nitrogen Oxides (NO _X)	74.5	24.43
Carbon Monoxide (CO)	321.29	31.11
Volatile Organic Compounds (VOC)	272.69	62.85
Sum of all Hazardous Air Pollutant (HAPs)	1.42	6.24
Toxic Air Pollutant (TAP)	-	-
Green House Gas Emissions as Total CO ₂ e	-	21,912 mT

The operating schedule of the facility will be continuous (24 hr/day, 7 days/wk, 52 wks/yr)

The owner and/or operator of the Plants is: Civitas Permian Operating, LLC 555 17th Street, Suite 3700 Denver, CO 80202

If you have any questions or comments about construction or operation of this facility, and you want your comments to be made as a part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico, 87505-1816

Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009

Please refer to the company name and site name or send a copy of this notice along with your comments, since the Department may not have received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: www.env.nm.gov/air-quality/permitting-section-home-page/. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education

Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

August 2, 2024

Eddy County Clerk c/o Cara Cooke 101 W Green Street Carlsbad, NM 88220

CERTIFIED MAIL - 9589 0710 5270 0051 6319 46

Subject: Air Permit Application Notice

Dear Eddy County Clerk,

On behalf of Civitas Permian Operating, LLC (Civitas), CDH Consulting, LLC (CDH) is providing this notice of air permit application. Comments can be submitted via methods provided in the attached Notice.

Please do not hesitate to contact me at (303) 594-7951 or cmartnez@cdhconsult.com if you have any questions or require additional information.

Sincerely,

CDH CONSULTING, LLC

Chris Martinez Senior Air Quality Engineer

Attachment A – Air Permit Notice

Public Service Announcement (August 2024)

Civitas Permian Operating, LLC is applying for an air permit modification with the New Mexico Environmental Department's Air Quality Bureau. The permit is for the Cold Snack central tank battery located approximately 3.1 miles south of Whites City, in Eddy County. Notices required by the Bureau have been posted at the following locations.

The Carlsbad Municipal Building,

The Carlsbad Public Library, and

The U.S. Post Office in Whites City.

Comments may be directed to the New Mexico Environmental Department via telephone at (505) 476-4300 or (800) 224-7009.

CARLSBAD RADIO, INC

PO Box 1538

CARLSBAD, NM 88221

Order #: 3797-00003

Description: Civitas Permian Operating

Date Entered: 8/5/2024

P.O.#:

Salesperson: Hughes, Don

Invoice Frequency: Billed at end of Cal Month, Sorted by Date Notary Req'd

CDH Consulting, LLC

Other (Non-Spot) Charges

	Start Date	End Date	Station	Description of Charge	Repeated		Qty						R	ate		<u>Total</u>
1	8/5/2024	8/5/2024	KCDY-FM	Air Quality Permit	Monthl	у	1						500.0	00		500.00
	On-Air Sched	lule														
	Start Date	End Date	Station	Scheduled Time/Event	Repeated	Length	Qty	Rate	Total	M	Tu	W	Th	F	Sa	Su
1	8/12/2024	8/12/2024	KATK-FM	06:00:00a to 10:00:00a	Weekly	:30	1	0.00	0.00	1	0	0	0	0	0	0
2	8/12/2024	8/12/2024	KATK-FM	01:00:00p to 04:00:00p	Weekly	:30	1	0.00	0.00	1	0	0	0	0	0	0
3	8/12/2024	8/12/2024	KCDY-FM	06:00:00a to 10:00:00a	Weekly	:30	1	0.00	0.00	1	0	0	0	0	0	0
4	8/12/2024	8/12/2024	KCDY-FM	01:00:00p to 04:00:00p	Weekly	:30	1	0.00	0.00	1	0	0	0	0	0	0

Total Charges: Order Start Date: 8/5/2024 Order End Date: 8/12/2024 Spots: 4 \$500.00 **Total Sales Tax** \$36.97

\$536.97 **Total Net:**

Projected Calendar Month Billing Totals for CDH Consulting, LLC / 3797-00003 :

Spot Count Net Billing August 2024 \$500.00

Confirmed & Accepted for CARLSBAD RADIO, INC By:

Printed: 8/6/2024 At 9:12:59AM

Accepted for CDH Consulting, LLC By:

Please Sign and Return One Copy

Page 1 of 1

Submittal of Public Service Announcement – Certification

l, Ronald R. LePlatt	, the undersigned, certify that on August 2,
2024, a public service announcemen	t was submitted to KATK 92.1 FM that serves the Carlsbad
and Whites City area of Eddy County	, New Mexico, in which the source is or is proposed to be
located and that KATK 92.1 FM response	onded that it would air the announcement.
Signed this 20th day of Aujust	. 2024.
Rough L'Effatt	8/20/24
Signature	Date
Ronald R. LePlatt	
Printed Name	
Timed Name	
Air Quality Engineer	
Title {APPLICANT OR RELATIONSHIP	TO APPLICANT}

AFFIDAVIT OF PUBLICATION

CARLSBAD CURRENT-ARGUS **PO BOX 507** HUTCHINSON, KS 67504-0507

STATE OF NEW MEXICO SS COUNTY OF EDDY

Account Number: 1015 Ad Number:

Description: Air Quality Permit App

Ad Cost: \$279.87

Nicole Bitton, being first duly sworn, says:

That she is the Agent of the the Carlsbad Current-Argus, a Weekly newspaper of general circulation, printed and published in Carlsbad, Eddy County, New Mexico; that the publication, a copy of which is attached hereto, was published in said newspaper on the following dates:

August 8, 2024

That said newspaper was regularly issued and circulated on those dates. SIGNED:

Subscribed to and sworn to me this 8th day of August 2024.

KELLI METZGER NOTARY PUBLIC, STATE OF OHIO MY COMMISSION EXPIRES OCTOBER 19, 2024

My commission expires:

CHRIS MARTINEZ CDH CONSULTING LLC 9446 CLERMONT ST **DENVER, CO 80229**

NOTICE OF AIR QUALITY PERMIT APPLICATION

Civitas Permian Operating, LLC announces its intent to apply to the New Mexico Environment Department for the modification of its Oil and Gas facility. The expected date of application submittal to the Air Quality Bureau is August 15, 2024.

The exact location of the proposed facility, known as the Cold Snack CTB, is/will be at 32.130761, -104.372269. The approximate location of this facility is 3.2 miles south of Whites City in Eddy County.

The proposed modification consists of the installation and use of larger electrical generators.

The estimated maximum quantities of any regulated air contaminant will be be as follows in pounds per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

	Pounds per hour	Tons per year
PM10	1.33	2.02
PM2.5	0.54	2.01
Sulfur Dioxide (SO2)	0.01	0.06
Nitrogen Oxides (NOX)	74.5	24.43
Carbon Monoxide (CO)	321.29	31.11
Volatile Organic Compounds (VOC)	272.69	62.85
Sum of all Hazardous Air Pollutant (HAPs)	1.42	6.24
Toxic Air Pollutant (TAP)	-	=
Green House Gas Emissions as Total CO2e	3	21,912 mT

The operating schedule of the facility will be continuous (24 hr/day, 7 days/wk, 52 wks/yr)

The owner and/or operator of the Plants is: Civitas Permian Operating, LLC 555 17th Street, Suite 3700 Denver, CO 80202

If you have any questions or comments about construction or operation of this facility, and you want your comments to be made as a part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico, 87505-1816

Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009

Please refer to the company name and site name or send a copy of this notice along with your comments, since the Department may not have received the permit application. Please include_a legible return mailing address with your comments. Once the Department has performed.sa preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: www.env.nm.gov/air-quality/permitting-section-home-page/. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

8010-Published in the Carlsbad Current-Argus on Aug 8, 2024.

PUBLIC NOTICE

Public Notices

LEGAL NOTICE

This is to notify all interested parties, including Ard Energy; Ard Oil Ltd.; Chevron USA Inc; Diane L. Henly, Successor Trustee of the Delmar Hudson Lewis Living Trust; EOG Resources; Francis Hill Hudson Trustee of the Lindy's Living Trust uta 7/8/94; Julian Ard and wife, Mary T. Ard; Llano Natural Resources, LLC; Mary T. Ard; Occidental Permian Limited Partnership; PBEX Limited LLC; Prime Rock Resources; RKI Exploration & Production, LLC; Tandem Oil Company; and their successors and assigns, that the New Mexico Oil Conservation Division will conduct a hearing on an application submitted by Per-Resources Operating, LLC (Case No. 24751). The hearing will be conducted on August 22, 2024, in a hybrid fashion, both virtually and in-person at the Energy, Minerals, Natural Resources Department, Wendell Chino Building, Pecos Hall, 1220 South St. Francis Drive, 1st Floor, Santa Fe, NM 87505. To participate virtually, see the instructions posted on the OCD Hearings website: https://www. emnrd.nm.gov/ocd/hearinginfo/. Permian Resources Operating, LLC ("Applicant") (OGRID No. 372165) applies for an order pooling all uncommitted interests in the Bone Spring formation underlying a 280-acre, more or less, standard horizontal spacing unit comprised of the NW/4 SE/4 and N/2 SW/4 of Section 25, and the N/2 S/2 of Section 26, Township 19 South, Range 30 East, Eddy County, New Mexico ("Unit"). The Unit will be dedicated to the Morbucks 25-26 Federal Com 123H well ("Well"), which will be drilled from a surface hole location in the SW/4 SE/4 (Unit O) of Section 25. to a bottom hole location in the NW/4 SW/4 (Unit L) of Section 26. The completed interval of the Well will be orthodox. Also to be considered will be the cost of drilling and completing the Well and the allocation of the costs, the designation of Applicant as operator of the Well, and a 200% charge for the risk drilling involved in completing the Well. The Well is located approximately 23

8030-Published in the Carlsbad Current-Argus on Aug 8, 2024.

miles northeast of Carlsbad, New Mexico.

LEGAL NOTICE

This is to notify all interested parties, including Ard Energy; Ard Oil Ltd.; Chevron USA Inc; Diane L. Henly, Successor Trustee of the Delmar Hudson Lewis Living Trust; EOG Resources; Francis Hill Hudson Trustee of the Lindy's Living Trust uta 7/8/94; Julian Ard and wife, Mary T. Ard; Llano Natural Resources, LLC: Mary Ard; Occidental Permian Partnership; Limited PBEX LLC; Prime Rock Resources; RKI Exploration & Production, Tandem Oil Company; a 320-acre, more or less,

Public Notices

successors and

assigns, that the New Mexico Oil Conservation Division will conduct a hearing on an application submitted by Permian Resources Operating, LLC (Case No. 24752). The hearing will be conducted on August 22, 2024, in a hybrid fashion, both virtually and in-person at the Energy, Minerals, Natural Resources Department, Wendell Chino Building, Pecos Hall, 1220 South St. Francis Drive, 1st Floor, Santa Fe, NM 87505. To participate virtually, see instructions posted on the OCD Hearings website: https://www. emnrd.nm.gov/ocd/hearinginfo/. Permian Resources Op-erating, LLC ("Applicant") (OGRID No. 372165) applies for an order pooling all uncommitted interests in the Bone Spring formation underlying a 280-acre, more or less, standard horizontal spacing unit comprised of the SW/4 SE/4 and S/2 SW/4 of Section 25, and the S/2 S/2 of Section Township 19 South, Range 30 East, Eddy County, New Mexico ("Unit"). The Unit will be dedicated to the Morbucks 25-26 Federal Com 124H well ("Well"), which will be drilled from a surface hole location in the SW/4 SE/4 (Unit O) of Section 25, to a bottom hole location in the SW/4 SW/4 (Unit M) of Section 26. The completed interval of the Well be orthodox. Also to be considered will be the cost of drilling and completing the Well and the allocation of the the designation costs. Applicant as operator of the Well, and a 200% charge for the risk involved in drilling and completing the Well. The Well is located approximately 23 miles northeast of Carlsbad, New Mexico.

8040-Published in the Carlsbad Current-Argus on Aug 8, 2024.

LEGAL NOTICE

This is to notify all interested parties, including Avant Operating, LLC; James H. Barnett; Bonefish, LLC; Charles W. Seltzer Trust; Chief Energy Inc.; Double Cabin Minerals, LLC; Legion Produc-tion Partners, LLC; Lepakast Properties, LP; Milestone Resources, LLC; Pocahontas Oil LLC; and their successors and assigns, that the New Mexico conduct a hearing on an application submitted by Colgate Production, LLC (Case No. 24753). The hearing will be conducted on August 22, 2024, in a hybrid fashion, both Energy, Minerals, Natural Re-Chino Building, Pecos Hall, 1220 South St. Francis Drive, To participate virtually, see the instructions posted on the OCD Hearings website: https://www. emnrd.nm.gov/ocd/hearing-info/. Colgate Production, LLC seeks an order extending the operations under Order No. Order No. R-22837 ("Order") in Case No. 23640 on August 25, 2023. The Order: approved

Capital (O&G) II LLC; Daniel Co., Inc.; Shepard Oil & Gas, Oil Conservation Division will virtually and in-person at the sources Department, Wendell 1st Floor, Santa Fe, NM 87505. deadline to commence drilling R-22837. The Division issued

EDDY COUNTY, NM

EMPLOYMENT OPPORTUNITIES

101 W. GREENE ST - CARLSBAD, NM 88220 575-887-9511 www.eddycounty.org

OPEN UNTIL FILLED:

IPRA Administrative Coordinator - \$26.21 - \$28.23 per hour

Grants Administrator - \$24.95 - \$27.54 per hour DOE

Treasurers Accounting Technician I - \$19.99 - \$22.06 per

Code Enforcement Officer - \$21.53 - \$23.75 per hour DOE **Appraiser I -** \$19.99 - \$22.06 per hour DOE

Mapper Trainee - \$21.53 - \$23.75 per hour DOE ECDC Captain - \$87,089.60 Annually

Detention Officer - \$23.75 - \$26.21 per hour DOE Sign-on Incentive of \$5,000 - call HR for Details

Detention Officer - PRN - \$23.75 - \$26.21 per hour DOE

Detention Nurse - PT - \$39.86 - \$43.99 per hour DOE **Detention Nurse - FT** - \$39.86 - \$43.99 per hour DOE

Firefighter/EMT - Certified - \$21.53 - \$23.75 per hour DOE

Firefighter/EMT – Uncertified - \$20.49 - \$22.61 per hour DOE **Deputy Sheriff I** – Uncertified - \$24.35 - \$26.87 per hour DOE

Deputy Sheriff II – Certified - \$28.23 - \$31.15 per hour DOE **Custodian** - \$16.83 - \$18.57 per hour DOE

Summer Mower - \$16.83 - \$18.57 per hour DOE

Light Equipment Operator - Artesia - \$19.99 - \$22.06 per hour DOE

Light Equipment Operator - Carlsbad - \$19.99 - \$22.06 per hour DOE

Road Laborer - Artesia - \$16.83 - \$18.57 per hour DOE **Light Equipment Roll/Off Operator - Carlsbad** - \$19.99 \$22.06 per hour DOE

Mechanic - Carlsbad - \$23.18 - \$25.58 per hour DOE Landfill Operator - \$19.03 - \$21.00 per hour DOE

Excellent Benefits – paid vacation, sick leave and holiday

pay; PERA retirement plans; health insurance paid at 100% for full-time employees and at 60% for their dependents.

Detailed job specifications and applications may be obtained

at www.eddycounty.org. **EQUAL OPPORTUNITY EMPLOYER M/F V/D**

Public Notices

unit comprised of the N/2 N/2 of Sections 0 of Sections 9 and 10, Township 20 South, Range 28 East, Eddy County, New Mexico ("Unit" dedicated the Unit to the Koala 9 Fed Com 111H, Koala 9 Fed Com 121H, and Koala 9 Fed Com 131H wells ("Wells"); and designated Permian Resources Operating, LLC (OGRID No. 372165) ("Permian Resources") as the operator of the Unit and the The Order requires Wells. Permian Resources to commence drilling the Wells within one year of the date of the Order. Colgate Production, LLC and Permian Resources request that the Division extend the deadline to commence drilling the Wells until August 25, 2025, so that the wells can be uniformly developed with offset projects. The are located ately 12 miles Ŵ e 11 s approximately northeast of Carlsbad, New Mexico.

8060-Published in the Carlsbad Current-Argus on Aug 8, 2024.

NOTICE OF APPLICATION FOR SURFACE COMMINGLING

OXY USA INC located at 5

Greenway Plaza, Suite 110 Houston TX 77046 is applying

to the NMOCD to amend the

surface commingle permit PLC 844B/C for gas production for batteries in the Lost Tank area. The facilities are located in Eddy County in Sections 01, 02, 03, 04, 12, 13, 23, 24, 25, 26 and 35 in T22S R31E and Sections 33, 34 and 35 in T21S R31E and in Lea County in Sections 18, 19 and 30 in T22S R32E and Section 31 in T21S R32E. Wells going to the batteries are located in Eddy County in Sections 01, 02, 03, 04, 10, 11, 12, 23, 24, 25 and 26 in T22S R31E and Sections 33, 34 and 35 in T21S R31E and in Lea County in Sections 7, 8, 12, 13, 17, 18, 19 and 30 in T22S R32E and Sections 30 31 in T21S and Production is from the Livingston Ridge;Delaware, Living-ston Ridge;Bone Spring, Livingston Ridge;Delaware Lost Tank; Delaware, Lost Tank;Delaware West, Lost Tank; Wolfcamp, WC-015 G-07 S223112P;Bone Spring, Bilbrey Basin; Bone Spring South, Basin; Bone Spring South, WC-025 G-09 S223219D; Wolfcamp, WC-025 G-09 S233216K; UPR Wolfcamp, WC 22S31E13; Wolfcamp, WC-025 G-08 S243217P; UPR Wolfcamp pools, WC-015 G-08 S233102C; Wolfcamp and Los Medanos; Wolfcamp pools.

Pursuant to Statewide Rule 19.15.12.10, interested parties must file objections or requests for hearing in writing with the division's Santa Fe office within 20 days after publica-tion, or the NMOCD may approve the application.

For questions pertaining to the application, please contact Sandra Mu 366-5106. Musallam at (713)

8090-Published in the Carlsbad Current-Argus on Aug 8, 2024.

LEGAL NOTICE

Case No. 24745: Application of COG Operating, LLC to Amend Order No. R-22859 to Extend Time to Commence Drilling, Eddy County, New Mexico. Notice to all affected interest owners, including all heirs, devisees and successors of: Devon Energy Production Company; Waterloo Resources, LLC; Mewbourne Oil Company. The State of New Mexico, Energy Minerals and Natural Resources Department, Oil Conservation Division ("Division") hereby gives notice that the Division will hold public hearing 8:30 a.m. on August 22, 2024, to consider this application. The hearing will be conducted in a hybrid fashion, both in-person at the Energy, Minerals, Nat-ural Resources Department, Wendell Chino Building, Pecos Hall, 1220 South St. Francis Drive, 1st Floor, Santa Fe, NM 87505 and via the WebEx virtual meeting platform. To participate in the hearings electronically, see the instructions posted on the docket for the hearing date: https://www.emnrd.nm.gov/ocd/ hearing-info/ or contact Freya Tschantz, at Freya.Tschantz@ emnrd.nm.gov. Applicant in the above-styled cause seeks a one-year extension of time to commence drilling the initial wells approved under Order No. R-22859. This pooling Order was entered on September 10, 2023, in Case No. 23650, and created a standard 947-acre, more or less, horizontal well spacing unit in the Wolfcamp formation [Purple Sage Wolfcamp (Gas) Pool (98220)] underlying the S/2 equivalent of irregular Section 30 and all of irregular Section 31, Township 23 South, Range 27 East, NMPM, Eddy County, New Mexico (the "Unit"). COG is the designated operator of the Unit, and it is dedicated the approved TLC 30 Fed Com 701H, 702H,703H, 801H, 802H, 803H and 804H wells. Said area is located approximately 7 miles west of

8240-Published in the Carlsbad Current-Argus on Aug 8, 2024.

Loving, New Mexico.

Public Notices

NOTICE OF APPLICATION FOR SURFACE COMMINGLING

OXY USA INC located at 5 Greenway Plaza, Suite 110 Houston TX 77046 is applying to the NMOCD to amend Order PLC 929 for surface commingling of oil production at the Lost Tank 25 Facility. The facility is located in Eddy County in Section 25 in T22S R31E. Wells going to this facility are located in Sections 24, 25, 26 and 35 in T22S R31E. Production is from the Livingston Ridge; Bone Spring, WC 22S31E13; Wolfcamp, WC-025 G-08 S243217P;UPR Wolfcamp, WC-015 G-08 S233102C;Wolfcamp and Los Medanos; Wolfcamp pools. Pursuant to Statewide Rule

19.15.12.10, interested parties must file objections or requests for hearing in writing with the division's Santa Fe office within 20 days after publication, or the NMOCD may approve the application. For questions pertaining to the

application, please contact San-Musallam at (713) 366-5106.

8180-Published in the Carlsbad Current-Argus on Aug 8, 2024.

NOTICE OF FORECLOSURE SALE STATE OF NEW MEXICO COUNTY OF EDDY FIFTH JUDICIAL DISTRICT COURT

SERVBANK, SB, Plaintiff,

UNITED STATES OF A MERICA BY AND A M E R I C A B Y A N D THROUGH THE SECRETARY OF HOUSING AND URBAN DEVELOPMENT; Defendants. Case No.:

D-503-CV-2023-00054

PLEASE TAKE NOTICE that the above-entitled Court, having appointed me or my designee as Special Master in this matter with the power to sell, has ordered me to sell the real property (the "Property") situated in Eddy County, New Mexico, commonly known as 109 N 10th St, Carlsbad, NM 88220, and more particularly described as follows: LOT 23, BLOCK 19, HILLSIDE SUB-DIVISION, TO THE CITY OF C A R L S B A D , E D D Y COUNTY, NEW MEXICO, AS SHOWN ON THE OFFICIAL PLAT THEREOF ON FILE IN THE OFFICE OF THE COUNTY CLERK OF EDDY COUNTY, NEW MEXICO. Including any mobile home, and any and all improvements, fixtures, and attachments. If there is a conflict between the legal description and the street address, the legal description shall control. The sale is to begin at 11:30 AM on September 17, 2024, outside the front entrance of the Eddy County Courthouse, 102 North

City of

Carlsbad,

Public Notices

County of Eddy, State of New Mexico, at which time I will sell to the highest and best bidder for cash, in lawful currency of the United States of America, the Property to pay expenses of sale, and to the foreclosure Judgment granted on July 1, 2024, the total amount of \$164,326.00, with interest at the rate of 4.6250% per annum from February 22, 2024 through the date of the sale. The sale is subject to the entry of an Order by this Court approving the sale. NOTICE IS FURTHER GIVEN that the real property and improvements concerned with herein will be sold subject to any and all patent reservations, easements, and all taxes and utility liens, special assessments and taxes that may be due. Servbank, SB, its attorneys, and the under-signed Special Master, disclaim all responsibility for, and the purchaser at the sale takes the property "as is," in its present condition, subject to the valuation of the property by the County Assessor as real or personal property, affixture of any mobile or manufactured home to the land, deactivation of title to a mobile or manufactured home on the property, if any, environmental contamination on the property, if any, and zoning violations concerning the property, if any.
NOTICE IS FURTHER GIVEN that the purchaser at such sale shall take title to the above described real property subject to a one (1) month right of redemption. PROSPECTIVE PURCHASERS AT SALE ARE ADVISED TO MAKE THEIR OWN EXAMINATION OF THE TITLE AND THE CONDITION OF THE THE CONDITION OF THE PROPERTY AND TO CONSULT THEIR OWN AT-TORNEY BEFORE BID-DING. By: Margaret Lake 201 Eubank NE Suite #A1 Albuquerque, NM 87123 1 NM-22-950634-JUD IDSPub #0203395

6460-Published in the Carlsbad Current-Argus on July 25, Aug 1, Aug. 8, and Aug 15, 2024.

Public Notices

NOTICE OF PENDENCY OF ACTION STATE OF NEW MEXICO

STATE OF NEW MEXICO COUNTY OF EDDY Fifth Judicial District Court Case No.: D-503-CV-2024-00248 BOKF, N.A., Plaintiff, vs. ANGELINA R. NAVARRO AKA ANGELINA R. SOSA; Defendant. NOTICE OF PENDENCY OF ACTION STATE OF NEW MEXICO to Defendants, Angelina R. Navarro, to be published on: You are hereby notified that the abovenamed Plaintiff BOKF, N.A. has filed a civil action against you in the above-entitled Court and cause, the general object thereof being to foreclose a mortgage on real property located at 2208 Hillcrest, Carlsbad, NM 88220. The real property which is the subject matter of this action is legally described as follows: LOTS 4 AND 5 IN BLOCK "A" TO THE CITY OF CARLSBAD, EDDY COUNTY, NEW MEXICO, AS SHOWN ON THE OFFICIAL PLAT THEREOF ON FILE IN THE OFFICE OF THE COUNTY CLERK OF EDDY COUNTY, NEW MEXICO. If there is a conflict between the legal description and the street address, the legal description shall control. Unless you serve a pleading or motion in response to the Complaint in said cause on or before thirty (30) days after the last publication date, judgment by default may be entered against you. McCARTHY & you. McCARTHY & HOLTHUS, LLP By: /s/ Jason Bousliman Jason Bousliman Daniel Higgins II Attorneys for Plaintiff 6501 Eagle Rock NE, Suite A-3 Albuquerque, New Mexico 87113 Telephone No.: (505) 219-4900 dhiggins@ mccarthyholthus.com IDSPub #0213651

8190-Published in the Carlsbad Current-Argus on Aug 8, Aug 15, and Aug 22, 2024.

INVITATION TO SUBMIT SEALED PROPOSAL

On or before Friday, August 30, 2024 at 2:00 PM Mountain Time. PROPOSALS for the service listed below must be submitted through the Vendor Registry Electronic Bidding System: https://vrapp.vendorregistry.com/Vendor/Selection/SubscriptionSelection?buyerSource=carlsbadmunicipal-schools-nm-vendor-registr-

RFP # 2024-2025-02 Middle School Yearbooks

The Board of Education reserves the right to accept or reject any or all proposals. Specifications and bid forms may be obtained through Vendor Registry or at the District Web site:

https://www.carlsbadschools.net/o/cmsd/page/bids-and-rfp

BOARD OF EDUCATION CARLSBAD MUNICIPAL SCHOOLS CARLSBAD, NEW MEXICO 88220

ISSUED: Crystal H. Gonzalez, CMS Chief Procurement Officer

ATTEST: Clancey McMillan, Board of Education Secretary

8080-Published in the Ruidoso News on Aug 8, 2024.

NOTICE OF AIR QUALITY PERMIT APPLICATION

Civitas Permian Operating, LLC announces its intent to apply to the New Mexico Environmen Department for the modification of its Oil and Gas facility. The expected date of application submittal to the Air Quality Bureau is August 15, 2024.

The exact location of the proposed facility, known as the Cold Snack CTB, is/will be at 32.130761 -104.372269. The approximate location of this facility is 3.2 miles south of Whites City in Eddy County.

The proposed modification consists of the installation and use of larger electrical generators.

The estimated maximum quantities of any regulated air contaminant will be be as follows in pounds per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

	Pounds per hour	Tons per year
PM10	1.33	2.02
PM2.5	0.54	2.01
Sulfur Dioxide (SO2)	0.01	0.06
Nitrogen Oxides (NOX)	74.5	24.43
Carbon Monoxide (CO)	321.29	31.11
Volatile Organic Compounds (VOC)	272.69	62.85
Sum of all Hazardous Air Pollutant (HAPs)	1.42	6.24
Toxic Air Pollutant (TAP)	-	-
Green House Gas Emissions as Total CO2e	-	21,912 mT

The operating schedule of the facility will be continuous (24 hr/day, 7 days/wk, 52 wks/yr)

The owner and/or operator of the Plants is: Civitas Permian Operating, LLC 555 17th Street, Suite 3700 Denver, CO 80202

If you have any questions or comments about construction or operation of this facility, and you wan your comments to be made as a part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico, 87505-1816

Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009

Please refer to the company name and site name or send a copy of this notice along with your comments, since the Department may not have received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: www.env.nm.gov/air-quality/permitting-sectior-home-page/. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civi Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Education Amendments of 1972. Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe tha you have been discriminated against with respect to a NMED program or activity, you may contact Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website a https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

8010-Published in the Carlsbad Current-Argus on Aug 8, 2024.

AFFIDAVIT OF PUBLICATION

County of Eddy, State of New Mexico

Carlsbad Current-Argus

102 S. Canyon Street Carlsbad, NM 88220

AD#8140 Cold Snack CBT

Display

I, the publisher/agent of Carlsbad Current-Argus of Eddy County, in the State of New Mexico. States that this newspaper is a qualified newspaper, published and of general circulation in said county, was published in regular edition of said paper, and that the notice of which the annexed is a copy was published on the following dates:

PUBLICATION DATES

August 8, 2024

Nicole Bitton, Customer Service Rep

Signed and sworn to before me on

ille.

KELLI METZGER

NOTARY PUBLIC, STATE OF OHIO MY COMMISSION EXPIRES OCTOBER 19, 2024

Signature above, NOTARY NAME, Notary Public

My commission expires:

Commission#

,2024

Seal

Publication Fee \$

460.73

Calculation Measurement

Words

Tab lines

Columns

Insertions

CherryRoad Media

NOTICE OF AIR QUALITY PERMIT APPLICATION

Civitas Permian Operating, LLC announces its intent to apply to the New Mexico Environment Department for the modification of its Oil and Gas facility. The expected date of application submittal to the Air Quality Bureau is August 15, 2024.

The exact location of the proposed facility, known as the Cold Snack CTB, is/will be at 32.130761, -104.372269. The approximate location of this facility is 3.2 miles south of Whites City in Eddy County.

The proposed modification consists of the installation and use of larger electrical generators.

The estimated maximum quantities of any regulated air contaminant will be be as follows in pounds per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

	Pounds per hour	Tons per year
PM_{10}	1.33	2.02
PM _{2.5}	0.54	2.01
Sulfur Dioxide (SO ₂)	0.01	0.06
Nitrogen Oxides (NO _X)	74.5	24.43
Carbon Monoxide (CO)	321.29	31.11
Volatile Organic Compounds (VOC)	272.69	62.85
Sum of all Hazardous Air Pollutant (HAPs)	1.42	6.24
Toxic Air Pollutant (TAP)		
Green House Gas Emissions as Total CO2e		21,912 mT

The operating schedule of the facility will be continuous (24 hr/day, 7 days/wk, 52 wks/yr)

The owner and/or operator of the Plants is: Civitas Permian Operating, LLC 555 17th Street, Suite 3700 Denver, CO 80202

If you have any questions or comments about construction or operation of this facility, and you want your comments to be made as a part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico, 87505-1816

Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009

Please refer to the company name and site name or send a copy of this notice along with your comments, since the Department may not have received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: www.env.nm.gov/air-quality/permitting-section -home-page/. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

ен ениано

Small Business Development Center provides support to entrepreneurs

By Sky Soto

Do you want to start Development a business but do not know where to start? The SBDC at Carlsbad. located at Southeast New Mexico College, provides exceptional, no-cost services to entrepreneurs in Eddy County, NM. As part of the esteemed New Mexico Small Business Development Center (NMSBDC) Network, the SBDC at Carlsbad serves as a vital resource for local businesses seeking to start, grow, and thrive.

Jessica F., owner at NM Sacred Mountain Soap Company, LLC said, "This program is so important to our community. The knowledge that gets passed on to both new and experienced business owners is invaluable. I look forward to more counseling and more success in my business because of the support I receive from Della,

Joy and the SBDC."

The Small Business Center at Carlsbad offers many services to its clients, including:

- 1. Confidential Oneon-One Professional Business Counseling: Entrepreneurs in Eddy County can access personalized guidance from experienced business advisors who offer insights, strategies, and solutions tailored to their specific needs.
- 2. Business Plan and Marketing Plan The Development: Carlsbad SBDC assists in the creation of comprehensive business and marketing plans, providing entrepreneurs with a roadmap for success and growth.
- 3. Industry Community Research: In-depth research services are available to help businesses understand their industry and local market dynamics,

PROVIDED BY SOUTHEAST NEW MEXICO COLLEGE Della Bedingfield, center director at the Small Business Development Center in Carlsbad.

empowering informed decision-making.

- 4. Training on Effective Recordkeeping, Management, Control: Inventory Entrepreneurs receive training on essential business practices, to empower efficient operations and sustainable growth.
- 5. Identification Traditional Alternative Lenders: The SBDC at Carlsbad helps businesses explore

financing options by connecting them with traditional and alternative lenders, fostering financial stability.

- In addition to its core services, the SBDC at Carlsbad is part of the larger NMSBDC Network, which offers specialized programs to further support businesses:
- Program: 1. APEX Assistance with government contracting, providing businesses

with training on how to engage in public sector projects.

2. IBA Program: Support for international trade, helping businesses expand their reach bevond local borders.

3. TCA Program: Technology

Commercialization/ Intellectual Property assistance, guiding businesses in harnessing the power of innovation.

Della Bedingfield, Center Director at the Small Business Development Center at Carlsbad said "Here at the Carlsbad SBDC, we are dedicated to empowering entrepreneurs by providing them with the tools, expertise, and support they need to transition their business ideas into reality. Working together we can cultivate local talent and drive economic growth by fostering a collaborative community where small business can thrive."

The New Mexico Small Business Develop Center Network is a fully accredited member of America's SBDC, a national organization dedicated to supporting small businesses. Funding for these essential services is made possible through the generous support of the New Mexico State Legislature and the U.S. Small Business Administration (SBA).

For more information about SBDC at Carlsbad and its services, please visit https://www. nmsbdc.org/locations/ carlsbad/ or contact 575-885-9531.

The Small Business Development Center at Carlsbad is dedicated to providing free, high-quality business support services to entrepreneurs in Eddy County, NM. As part of the NMSBDC Network, the center aims to foster business growth, innovation, and economic development in the region.

SENMC signs transfer agreement with Western New Mexico

By Sky Soto

Southeast New Mexico College (SENMC) is proud to announce its collaboration with Western New Mexico University (WNMU) to offer a seamless transfer experience for SENMC students looking to transfer to a bachelor's degree program. The purpose of the MOU (Memorandum of Understanding) is to encourage student completion of the associate's degree and support transition to a bachelor's degree by agreement to coordinate transfer policies, enhance advising, and promote acceptance of the programmatic transfer courses/credits between SENMC and ship, SENMC students: WNMU.

"We are pleased to announce our new partnership with Western New Mexico University. This collaboration will facilitate a seamless transfer process for our students and support their continued educational advancement. Through this partnership, many students will have access to exceptional programs, including one of the leading education programs in the state." Said Erick Dominguez, HSI Grant Services STEM Program Manager at SENMC.

Andrew Lunt, Director of Admissions and Recruitment at WNMU said, "We are so excited about this agreement. With the signing of the MOU between SENMC and WNMU, it will provide opportunities for SENMC students and graduates to continue their education and accomplish their goals through a seamless transition. We look forward to building upon this agreement and continually enhancing our relationship with SENMC with the purpose of bettering and changing lives always being at the forefront of what we do.

Through this partner-

- Will have access to advising from WNMU Staff before, during and after transferring to WNMU.
- Have guaranteed admission to WNMU upon completion of any associate degree program of study at SENMC.
- May receive access to selected student services and privileges at WNMU while at SENMC, such as the WNMU library, fine arts and cultural events, and admission to sports events if the students declare the intention of transferring to WNMU.

• Will be eligible for transfer student scholarships without further applications

Patti West-Okiri, Associate President for Academic Affairs and Dean of the College of Professional Studies at WNMU said "We're excited to welcome SENMC students and alumni into our Mustang Family! Our partnership affords

students seamless transfer opportunities for any of our 67 bachelor's degree options with support from WNMU advisors who can help them plan their pathway, even before they transfer. Statistics show that a four-year degree improves employability and increases earning potential, with median earnings being about 35% higher

for bachelor's degree holders. We have several academic pathways that will help students continue coursework they've already started so that they enter WNMU as juniors and complete their bachelor's in two years if they transfer in with an SENMC associate's degree."

Dr. Kevin Beardmore, President at SENMC said, "Any student who discovered the incredible value that a small college campus environment can provide while they were at SENMC may find Western New Mexico University to be a similarly great place to study and grow. I encourage anyone seeking a transfer opportunity in-state to learn more about what this partnership can do for them."

NOTICE OF AIR QUALITY PERMIT APPLICATION

Civitas Permian Operating, LLC announces its intent to apply to the New Mexico Environment Department for the modification of its Oil and Gas facility. The expected date of application submittal to the Air Quality Bureau is August 15, 2024.

The exact location of the proposed facility, known as the Cold Snack CTB, is/will be at 32.130761, -104.372269. The approximate location of this

The proposed modification consists of the installation and use of larger electrical generators.

The estimated maximum quantities of any regulated air contaminant will be be as follows in pounds per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

	Pounds per nour	I ons per year
PM_{10}	1.33	2.02
PM _{2.5}	0.54	2.01
Sulfur Dioxide (SO ₂)	0.01	0.06
Nitrogen Oxides (NO _X)	74.5	24.43
Carbon Monoxide (CO)	321.29	31.11
Volatile Organic Compounds (VOC)	272.69	62.85
Sum of all Hazardous Air Pollutant (HAPs)	1.42	6.24
Toxic Air Pollutant (TAP)	-	-
Green House Gas Emissions as Total CO2e	-	21,912 mT

The operating schedule of the facility will be continuous (24 hr/day, 7 days/wk, 52 wks/yr)

The owner and/or operator of the Plants is: Civitas Permian Operating, LLC 555 17th Street, Suite 3700 Denver, CO 80202

If you have any questions or comments about construction or operation of this facility, and you want your comments to be made as a part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager New Mexico Environment Department Air Ouality Bureau 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico, 87505-1816

Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009

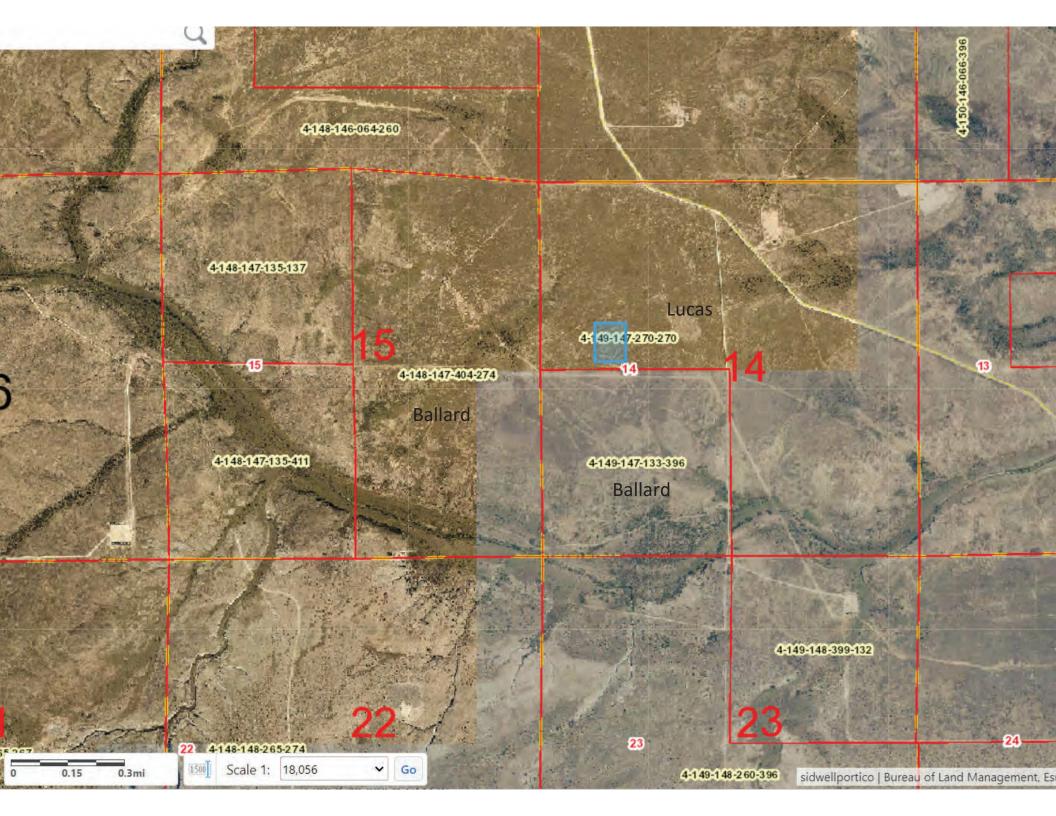
Please refer to the company name and site name or send a copy of this notice along with your comments, since the Department may not have received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: www.env.nm.gov/air-quality/permitting-section -home-page/. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emision es producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination


how and where to file a complaint of discrimination.

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning nondiscrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn

Letters to the Editor **Are Always Welcome** Letters to the editor policy

- Must contain a valid signature and mailing address, day and evening telephone numbers where the writer may be reached
- Names of persons writing letters will not be withheld from publication
- · Unsigned letters will not be published
- Only one letter per person per 30 day period Limited to 300 words (some exceptions possible)
- All letters are subject to editing
- Letters of complaint about private businesses will be forwarded to the business and will not be published
- · When emailing letters, send them in the body of the email, do not attach PDFs

Please send all letters to Dave Shabaz at: dshabaz@elritomedia.com

Section 10

Written Description of the Routine Operations of the Facility

A written description of the routine operations of the facility. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Facility routine operations: Fluids from each wellbore are routed to an initial separator where gas and liquids are separated. Liquids from the initial separators flow to heater treaters (HT 1-2). Oil from the heater treaters enters the vapor recovery towers (VRTs). Gas from the heater treaters joins the gas from the initial separators and is sent to the sales pipeline. Gas is sent to flare during short pipeline downtime periods (FL-HP). Prior to the sales point, a side stream of gas is removed and sent to gas lift compressors (ENG 1-2). The compressors direct the gas down hole to assist in bringing fluids to the surface. The compressor engines are gas fired and controlled with catalytic converters and air/fuel ratio controllers. Water from the heater treaters flows to atmospheric storage tanks (PWTK 1-4). Vapors from the water storage tanks are captured by the tank blower and routed to the VRU and then to the sales pipeline. When the blower is down for maintenance, the vapors are controlled by the low-pressure flare (FL-LP). When enough water has accumulated in the tanks it is piped off-site for disposal. A small amount of truck loading is included for operational flexibility (PWLOAD-1, HR-1). Gas from the VRTs is routed to a Vapor Recovery Unit (VRU) and to the sales line. The oil from the VRTs is routed to the atmospheric oil storage tanks (TK 1-6). Vapors from the oil storage tanks are captured by the tank blower and routed to the VRU and then to the sales pipeline. When the blower is down for maintenance, the vapors are controlled by the flare (FL-LP). When enough oil has accumulated in the tanks it is piped off-site for sale via LACT. A small amount of truck loading is included for operational flexibility (OILLOAD-1, HR-1).

Section 11

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, Single Source Determination Guidance, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A.

A. Identify the emission sources evaluated in this section (list and describe):
There are no surrounding or associated sources within 1.0 miles of the facility.
B. Apply the 3 criteria for determining a single source: SIC Code: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, OR surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.
<u>Common Ownership or Control</u> : Surrounding or associated sources are under common ownership or control as this source.
<u>Contiguous or Adjacent</u> : Surrounding or associated sources are contiguous or adjacent with this source.
C. Make a determination: The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73 and 20.2.74 NMAC applicability purposes.
The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Saved Date: 8/2/2024

Section 12

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

A PSD applic	ability d	etermination for all sources. For sources applying for a significant permit revision, apply the applicable
requirement	s of 20.2	.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and
whether this	modifica	ation is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining
the Net Emis	ssions Ch	ange at a Source as specified by Table A-5 (Page A.45) of the EPA New Source Review Workshop Manual
to determine	e if the re	evision is subject to PSD review.
A.	This fac	
		a minor PSD source before and after this modification (if so, delete C and D below).
		a major PSD source before this modification. This modification will make this a PSD minor source.
		an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
		·
		a new PSD Major Source after this modification.
B.	emissio from ch future t	ility is not one of the listed 20.2.74.501 Table I – PSD Source Categories. The "project" ns for this modification are not significant. The "project" emissions listed below only result anges described in this permit application, thus no emissions from other modifications past or o this facility. The project emissions (before netting) for this project are as follows [see Table 2.74.502 NMAC for a complete list of significance levels]:
	a.	NOx: 24.43 TPY
	b.	CO: 31.11 TPY
	c.	VOC: 62.85 TPY
	d.	SOx: 0.06 TPY
		PM: 2.06 TPY
	f.	PM10: 2.02 TPY
	g.	PM2.5: 2.01 TPY
		Fluorides: TPY
	i.	Lead: TPY
	j.	Sulfur compounds (listed in Table 2): TPY
	k.	GHG: 21,911.81 TPY

Section 13

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column provide any information needed to determine if the regulation does or does not apply. For example, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

Form-Section 13 last revised: 5/8/2023 Section 13, Page 1 Saved Date: 8/2/2024

Example of a Table for State Regulations:

	la lable loi sta			
State Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC states maximum allowable concentrations of various regulated air pollutants in the atmosphere. This application includes a demonstration for meeting the NAAQS requirements.
20.2.7 NMAC	Excess Emissions	Yes	Facility	20.2.7 NMAC states procedures and requirements for notifying the NMED of excess emissions during malfunction, startup, or scheduled maintenance activities.
20.2.23 NMAC	Fugitive Dust Control	No	N/A	Facility is not located in an area requiring a mitigation plan per 40 CFR Part 51.930
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This facility does have gas-fired heaters, but they are less than 1,000,000 BTU per unit.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility does not have any oil burning equipment.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	This facility is not a natural gas processing plant.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	Yes	TK 1-6	This facility's total hydrocarbon storage capacity is greater than 65,000 gallons. The facility also lies within AQCR 155. Subparts 112 and 113 apply.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This facility is not a sulfur recovery plant.
20.2.50 NMAC	Oil and Gas Sector – Ozone Precursor Pollutants	Yes	GEN 1- 4: new FL-LP: existing FUG-1: existing TK 1-6: existing	This regulation establishes emission standards for volatile organic compounds (VOC) and oxides of nitrogen (NOx) for oil and gas production, processing, compression, and transmission sources. 20.2.50 NMAC subparts below: Include the construction status of applicable units as "New", "Existing", "Relocation of Existing", or "Reconstructed" as defined by this Part in your justification: Check the box for the subparts that are applicable: □ 113 − Engines and Turbines □ 114 − Compressor Seals □ 115 − Control Devices and Closed Vent Systems □ 116 − Equipment Leaks and Fugitive Emissions □ 117 − Natural Gas Well Liquid Unloading □ 118 − Glycol Dehydrators □ 119 − Heaters □ 120 − Hydrocarbon Liquid Transfers □ 121 − Pig Launching and Receiving □ 122 − Pneumatic Controllers and Pumps □ 123 − Storage Vessels □ 124 − Well Workovers □ 125 − Small Business Facilities □ 126 − Produced Water Management Unit □ 127 − Flowback Vessels and Preproduction Operations

State Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	HT 1-2, ENG 1- 2, GEN 1-4, FL- LP, FL- HP	These units are stationary combustion equipment and are therefore subject to the requirements of 20.2.61.109 NMAC.
20.2.70 NMAC	Operating Permits	No	N/A	This facility is a minor source that does not have the potential to emit (PTE) 100 tpy or more of any regulated air pollutant. This facility is not a major source of HAPs.
20.2.71 NMAC	Operating Permit Fees	No	N/A	This facility is not subject to 20.2.70 NMAC because it is a minor source facility.
20.2.72 NMAC	Construction Permits	Yes	Facility	This facility has a potential emission rate (PER) greater than 10 pph or 25 tpy for some regulated air contaminants.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The facility is subject to Emissions Inventory Reporting because it is permitted under 20.2.72 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	The facility is not a PSD major source.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation applies if you are submitting an application pursuant to 20.2.72 NMAC.
20.2.77 NMAC	New Source Performance	Yes	FUG-1, ENG 1- 2, GEN 1-4	This is a stationary source which is subject to the requirements of 40 CFR Part 60. FUG-1: Subject to Subpart OOOOa ENG 1-2, GEN 1-4: Subject to Subpart JJJJ
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	This facility does not emit hazardous air pollutants which are subject to the requirements of 40 CFR Part 61.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	The is a minor source facility located in an attainment area.
20.2.80 NMAC	Stack Heights	Yes	HT 1-2, ENG 1- 2, GEN 1-4, FL- LP, FL- HP	Stacks do not exceed GEP height and will be evaluated in the NSR permit.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	ENG 1- 2, GEN 1-4	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63. ENG 1-2, GEN 1-4: Subject to Subpart ZZZZ

Example of a Table for Applicable Federal Regulations (Note: This is not an exhaustive list):

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 50	NAAQS	Yes	Facility	The facility and units within the facility emit criteria pollutants that are subject to

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
				the NAAQS. The facility is subject to 20.2.72 NMAC. Applies if any other Subpart in 40 CFR 60 applies.
NSPS 40 CFR 60, Subpart	General Provisions	Yes	FUG-1, ENG 1-2,	FUG-1: Subject to Subpart OOOOa
A	General Frovisions	163	GEN 1-4	ENG 1-2, GEN 1-4: Subject to Subpart JJJJ
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This facility does not have any electric utility steam generating units.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	This facility does not have any electric utility steam generating units.
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	This facility does not have any electric utility steam generating units.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	The facility was not constructed during the applicable timeframe.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	Does not apply to vessels with a design capacity less than or equal to 1,589.874 m^3 used for petroleum or condensate stored, processed, or treated prior to custody transfer.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	The facility does not have any gas turbines.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	The facility is not a gas plant.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions	No	N/A	The facility is not a gas processing plant.
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No	N/A	Facility commenced construction after September 18th, 2015, and therefore this subpart does not apply.
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	FUG-1	This subpart applies to the fugitive emissions at this facility due to the construction of the facility occurring after September 18 th , 2015.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	No applicable units at this facility.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	ENG 1-2, GEN 1-4	Due to the engine size and date of manufacture, these units are subject to this subpart.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	No applicable units at this facility.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times	No	N/A	No applicable units at this facility.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:		
	for Electric Utility Generating Units					
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	Facility is not a MSW landfill.		
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	No subparts of 40 CFR 61 apply.		
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The facility does not process mercury ore to recover mercury, use mercury chlor- alkali cells to produce chlorine gas and alkali metal hydroxide, or incinerate or dry wastewater treatment plant sludge.		
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	No applicable units at this facility.		
MACT 40 CFR 63, Subpart A	General Provisions	Yes	ENG 1-2, GEN 1-4	Applies if any other Subpart in 40 CFR 63 applies.		
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	No	N/A	I/A The facility is not subject to this subpart as there are no glycol dehydrators.		
MACT 40 CFR 63 Subpart HHH	National Emission Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities	No	N/A	This subpart does not apply because the facility is not a major source or HAPs nor a natural gas transmission and storage facilities.		
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	Facility is not a major source of HAPs.		
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	No applicable units at this facility.		
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating	Yes	ENG 1-2, GEN 1-4	These units are applicable to the subpart and will demonstrate compliance by complying with 40 CFR 60 Subpart JJJJ.		

Saved Date: 8/2/2024

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
	Internal Combustion Engines (RICE MACT)			
40 CFR 64	Compliance Assurance Monitoring	No	N/A	Facility is not a TV major source.
40 CFR 68	Chemical Accident Prevention	No	N/A	The facility does not have more than the threshold quantity of any of the regulated substances as determined under §68.115.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	The facility does not generate commercial electric power or electric power for sale.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	The facility does not generate commercial electric power or electric power for sale.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	The facility does not generate commercial electric power or electric power for sale.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	The facility does not generate commercial electric power or electric power for sale.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	The facility does not use refrigerants.

manufacturer recommendations.

Section 14

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standard and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Form-Section 14 last revised: 8/15/2011 Section 14, Page 1 Saved Date: 8/2/2024

Saved Date: 8/2/2024

Section 15

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

This facility does not have any alternative operating scenarios.

Saved Date: 8/2/2024

Section 16

Air Dispersion Modeling

- 1) Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app form.html) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC). See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	x
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

	See attached, approved modeling waiver for all pollutants from the facility.
	See attached, approved modeling waiver for some pollutants from the facility.
\boxtimes	Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility
	Attached in UA4 is a modeling report for some pollutants from the facility.

☐ No modeling is required.

Check each box that applies:

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-A: Identification					
1	Name of facility:	Cold Snack CTB			
2	Name of company:	Civitas Permian Operating, LLC,			
3	Current Permit number:	9923M2			
4	Name of applicant's modeler:	CDH Consulting, LLC (Chris Martinez)			
5	Phone number of modeler:	(303) 594-7951			
6	E-mail of modeler:	cmartinez@cdhconsult.com			

16	16-B: Brief						
1	Was a modeling protocol submitted and approved?	Yes□	No⊠				
2	Why is the modeling being done? Adding New Equipment						
3	Describe the permit changes relevant to the modeling.						
	The facility is correcting the electrical generators (GEN 1-4) make/model and emission rates.						
4	What geodetic datum was used in the modeling?	NAD83					
5	How long will the facility be at this location? More than one year						
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)? Yes□						

7	Identify the Air Quality Control Region (AQCR) in which the fa	acility is located	155					
	List the PSD baseline dates for this region (minor or major, as appropriate).							
8	NO2	03/16/1988						
	SO2	03/16/1988						
	PM10	02/20/1979						
	PM2.5 11/13/2013							
	Provide the name and distance to Class I areas within 50 km of the facility (300 km for PSD permits).							
0	Carlsbad Caverns NP: 3.8 km							
9	Guadalupe Mountains NP: 37.7 km							
10	Is the facility located in a non-attainment area? If so describe	below	Yes□	No⊠				
	Describe any special modeling requirements, such as streamline permit requirements.							
11								

16-C: Modeling History of Facility

Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).

modeling warversy.			
Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments
СО	9923M2	3/29/2024	
NO ₂	9923M2	3/29/2024	
SO ₂			
H ₂ S			
PM2.5	9923M2	3/29/2024	
PM10	9923M2	3/29/2024	
Lead			
Ozone (PSD only)			
NM Toxic Air			
Pollutants			
(20.2.72.402 NMAC)			

16-D: Modeling performed for this application

For each pollutant, indicate the modeling performed and submitted with this application.
Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.

1767E1

	Pollutant		ROI		Cumulative analysis		Culpability analysis		Waiver approv	/ed	Pollutant not emitted or not changed.
	СО		\boxtimes								
	NO ₂		\boxtimes		\boxtimes						
	SO ₂										\boxtimes
	H ₂ S										\boxtimes
	PM2.5		\boxtimes		\boxtimes						
1	PM10		\boxtimes		\boxtimes						
	Lead										\boxtimes
	Ozone										\boxtimes
	State air to: (20.2.72.40 NMAC)										×
1	application List any NN	. NA //TAPs tha							on factor. Add add		odeled for this al rows to the table
2	below, if re Pollutant	equired. Emissio (pound			Rate Screening unds/hour)	ng Stack Height (meters)		ction Factor		mission Rate/ orrection Factor	
	NA	(роз.:	3,1100.7	Ec. (p	unus, ne a. ,		Ctc. 3/				
	F: Mode	eling (option	S					W		
1	Was the lat	est versi	on of AERI	MOD used	with regulator	y defau	ılt options? I	f not exp	lain below.	es⊠	No□
16-	16-G: Surrounding source modeling										
1					Jacinia	A	: 12 2024				
-	Date of sur	_					t 12, 2024				
2		odeled dif	ffer from t	he invento	ry provided. If		-				escribe how the re made, use the
_	AQB Source ID Description of Corrections										

UTMs incorrect – moved to lat/lon location

16-	16-H: Building and structure downwash							
1	How many buildings are present at the facility?	None						
2	How many above ground storage tanks are present at the facility?							
3	Was building downwash modeled for all buildings and tanks? If not explain why below. Yes⊠ No							
4	Building comments	Tank farm was modeled as a solid build	ling.					

16-	I: Recepto	rs and n	nodeled p	property boun	dary				
1	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area.								
	Facility is constructed on a raised, leveled pad with steep grade and perimeter ditch and berm.								
2	Receptors must be placed along publicly accessible roads in the restricted area. Are there public roads passing through the restricted area? Yes□ No⊠								
3	Are restricted a	area boundar	y coordinates i	ncluded in the modelir	ng files?		Yes⊠	No□	
	Describe the re	ceptor grids a	and their spacii	ng. The table below ma	ay be used, adding ro	ws as nee	eded.	•	
	Grid Type	Grid Type Shape Spacing Start distance from restricted area or center of facility center of facility					ents		
4	RISK	Square	50 m	0 m	500 m				
	RISK	Square	100 m	500 m	1,000 m				
	RISK	Square	250 m	1,000 m	2,500 m				
	RISK	Square	500 m	2,500 m	5,000 m				
	RISK	Square	1,000 m	5,000 m	10,000 m				
	Describe recep	tor spacing al	ong the fence	line.					
5	50m spacing								
	Describe the P	SD Class I area	receptors.						

6	Receptors on 500m spacing on area boundary (Eastern portion) as well as 1,000m grid inside the Class I area for increment analysis.

16-	16-J: Sensitive areas							
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes□	No⊠					
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠					

16	16-K: Modeling Scenarios											
Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different progrates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transit etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be ful described in Section 15 of the Universal Application (UA3).											tion periods,	
	Flare SSM	Flare SSM emissions modeled as they produce highest NOx and CO rates.										
	Which sce	nario prod	uces the h	ighest con	centration	ns? Why?						
2	NA											
3	Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.) Yes□ No ⋈											
4								•	ore the factorification if it makes f			•
	Hour of Day	Factor	Hour of Day	Factor								
	1		13									
	2		14									
	3		15									
5	4		16									
	5		17									
	6		18									
	7		19									
	8		20									
	9		21									
	10 22											

	11		23									
	12		24									
	If hourly, variable emission rates were used that were not described above, describe them below.											
6	Were different emission rates used for short-term and annual modeling? If so describe below. Yes□ No⊠											No⊠

16-	6-L: NO₂ Modeling							
	Which types Check all tha	of NO_2 modeling were used? at apply.						
	\boxtimes	ARM2						
1		100% NO _X to NO ₂ conversion						
		PVMRM						
		□ OLM						
		Other:						
	Describe the NO ₂ modeling.							
2	levels below	cility for SIL impacts. Exceeded SIL for NAAQS and Class I area. Initial results added the NAAQS. Refined model for Class I increment used with surrounding sources a lts below Class I increment.	•	•				
3		t NO_2/NO_X ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not distributed justify the ratios used below.	Yes⊠	No□				
4	Describe the	e design value used for each averaging period modeled.						
		percentile as calculated by AERMOD						
i	Annual: Higl	nest Annual Average of Three Years						

16-	M: Parti	culate Matter Modeling							
	Select the po	Select the pollutants for which plume depletion modeling was used.							
1		□ PM2.5							
		☐ PM10							
	\boxtimes	None							
	Describe the particle size distributions used. Include the source of information.								
2									
Does the facility emit at least 40 tons per year of NO _x or at least 40 tons per year of SO ₂ ? Yes□									
	Sources that emit at least 40 tons per year of NO _x or at least 40 tons per year of SO₂ are								

	considered to emit significant formation of PM2.5.									
4	Was secondary PM modeled for PM2.5? (NO _X and SO₂ significantly less than 40 tpy) Yes□ No⊠									
	If MERPs were used to accoun below.	method was use	ed describe							
5	NO _x (ton/yr)	SO ₂ (ton/yr)	[PM2.5] _{annual}	[PM2.5] _{24-hour}						

16-	N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
	NA
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.
	NA NA

16	16-O: PSD Increment and Source IDs										
1	The unit numbers in the modeling files. Do these numbers if they do not	Yes□	No⊠								
	Unit Number in UA-2			Unit Numb	er in Modeling Files						
	FL-HP SSM			FL-HP							
	FL-LP SSM			FL-LP							
2	The emission rates in the Tables 2-E and 2-F should match the ones in the modeling files. Do these match? If not, explain why below.										
	Have the miner NCD av	omat sources or Title VIII	ncignificant Ac	tivitios" /Tab	lo 2 D) sources	ı					
3	been modeled?	empt sources or Title V II	nsignincant Ac	tivities (Tab	ne 2-B) sources	Yes□	No⊠				
	Which units consume in	ncrement for which pollu	tants?								
	Unit ID	NO ₂	Si	O ₂	PM10		PM2.5				
	FL-HP	Х		-	-		-				
4	FL-LP	X		-	-		-				
	ENG-1	X		-	Х		X				
	ENG-2	X		-	Х		X				
	GEN-1	X		_	Х		X				
	GEN-2	X		-	X		Χ				

	GEN-3	Х	-	Х		Х			
	GEN-4 X HT-1 X		-	Х		Χ			
			- X			Χ			
	HT-2	Χ	-	Х		Χ			
5	PSD increment description for sources. (for unusual cases, i.e., baseline unit expanded emissions after baseline date).								
6	Are all the actual installation dates included in Table 2A of the application form, as required? This is necessary to verify the accuracy of PSD increment modeling. If not please explain how Yes No								

16-	16-P: Flare Modeling										
1	For each flare or flaring scenario, complete the following										
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)							
	FL-HP	21.28	70,620,062	7.415							
	FL-LP	42.61	1,085,682	0.863							

16-	Q: Volume and Related Sources							
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing installation dates below.	Yes□	No⊠					
	NA							
	Describe the determination of sigma-Y and sigma-Z for fugitive sources.							
2	NA							
	Describe how the volume sources are related to unit numbers.							
3	Or say they are the same.							
	NA							
	Describe any open pits.							
4	NA							
5	Describe emission units included in each open pit.							
	NA							

16-		ound Concentrations								
	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data that was used. Yes⊠									
	CO: N/A									
	NO ₂ : Outside (Carlsbad (350151005)								
1		-Jefferson (350450019)								
	PM10: Hobbs-Jefferson (350250008)									
	SO ₂ : Choose a	an item.								
	Other:									
	Comments:									
2	Were backgro	und concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠						
-										
16-	S: Meteo	rological Data								
	Was NMED pr	ovided meteorological data used? If so select the station used.								
1	Carlsbad		Yes⊠	No□						
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discuss how missing data were handled, how stability class was determined, and how the data were processed.									
	NA NA									
16-	T: Terrain		_							
1	Was complex	terrain used in the modeling? If not, describe why below.	Yes⊠	No□						
2	What was the source of the terrain data?									
	WebGIS – NEI	0 1/3 (USA ~10m)								
16-	-U: Model	ing Files								
1	Describe the r	nodeling files: AERMOD input/output, plot files, sources, receptors, BPIPPRIME	input/output							

File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)
CO_SIL	СО	SIA
NO2_SIL	NO2	SIA
PM10_SIL	PM 10	SIA
PM25_SIL	PM 2.5	SIA
NO2_CL1	NO2	Cumulative Class I Increment
PM10_CL2	PM 10	Cumulative NAAQS and Class II Increment
PM25_CL2	PM 2.5	Cumulative NAAQS and Class II Increment

16	-V: PSD New or Major Modification Applications - NA					
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No□			
2	If not, did AQB approve an exemption from preconstruction monitoring? Yes□ No□					
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.					
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.					
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□			

16-W: Modeling Results						
1	If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so describe below.	Yes□	No⊠			
2	Identify the maximum concentrations from the modeling analysis. Rows may be modified, ad below as necessary.	ded and remo	oved from the table			

Pollutant, Time Period	Modeled Facility	Facility with	ed Concentration Secondary Backgrou	Background	Cumulative Value of	Percent of	Location			
and Standard	Concentration (μg/m3)		ding (μg/m3) (μg/m3)	(μg/m3) Standard (μg/m3)	Standard	UTM E (m)	UTM N (m)	Elevation (ft)		
NO2 1-hr	97.1	-		54.5	147.09	188.03	78.2%	559,256.9	3,554,979.0	1,052.41
NO2 Class I Increment (annual)	0.15	1.19			1.19	2.25	59.5%	558.109.0	3.559.023.0	1.097.95
CO 8-hr	157.9		Less than S	SIL (500) – No furt	her modeling con	ducted		559,208.3	3,555,028.3	1,053.01
CO 1-hr	946.7		Less than S	IL (2,000) – No fur	ther modeling cor	nducted		559,208.3	3,555,028.3	1,053.01
PM 10 24-hr	6.15	10.27	-	100.7	110.97	150	74.0%	558,845.0	3,559,935.0	1,110.30
PM10 Class I SIL (annual)	0.01	-	-	-	-	0.2	5.0%	558,109.0	3,559,023.0	1,097.95
PM10 Class I SIL (24-hr)	0.09	-	-	-	1	0.3	30.0%	558,109.0	3,559,023.0	1,097.95
PM10 Class II Increment (annual)	0.93	0.43	-	-	0.43	17.0	2.5%	559,132.1	3,555,142.6	1,054.08
PM10 Class II Increment (24-hr)	6.15	10.27	-	-	10.27	30.0	34.2%	558,845.0	3,559,935.0	1,110.30
PM 2.5 24-hr	6.88	-	-	16.5	23.38	35	66.8%	559,284.5	3,555,066.4	1,052.92
PM2.5 Class I SIL (annual)	0.01	-	-	-	-	0.05	20.0%	558,109.0	3,559,023.0	1,097.95

Pollutant,	Modeled Facility		ed Concentration Second	secondary Background	Cumulative	Value of	Danasataf	Location		
Time Period and Standard	Concentration (μg/m3)	Surrounding Sources (µg/m3)	PM (μg/m3)	Concentration (μg/m3)	Concentration (µg/m3)	Standard (μg/m3)	Percent of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
PM2.5 Class I SIL (24-hr)	0.12	-	-	-	-	0.27	44.4%	558,109.0	3,559,023.0	1,097.95
PM2.5 Class II Increment (annual)	0.93	0.32	-	-	0.32	4.0	7.9%	558,109.0	3,559,023.0	1,097.95
PM2.5 Class II Increment (24-hr)	6.88	3.367	-	-	3.37	9.0	37.4%	558,845.0	3,559,935.0	1,110.30

16-X: Summary/conclusions

1

A statement that modeling requirements have been satisfied and that the permit can be issued.

Modeling requirements have been met and all concentrations are below applicable standards.

Section 17

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

To save paper and to standardize the application format, delete this sentence and the samples in the Compliance Test History Table, and begin your submittal for this attachment on this page.

Compliance Test History Table

Unit No.	Test Description	Test Date
N/A	N/A	N/A

Section 20

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

Form-Section 20 last revised: 8/15/2011 Section 20, Page 1 Saved Date: 8/2/2024

Air Permit Application Compliance History Disclosure Form

Pursuant to Subsection 74-2-7(S) of the New Mexico Air Quality Control Act ("AQCA"), NMSA §§ 74-2-1 to -17, the New Mexico Environment Department ("Department") may deny any permit application or revoke any permit issued pursuant to the AQCA if, within ten years immediately preceding the date of submission of the permit application, the applicant met any one of the criteria outlined below. In order for the Department to deem an air permit application administratively complete, or issue an air permit for those permits without an administrative completeness determination process, the applicant must complete this Compliance History Disclosure Form as specified in Subsection 74-2-7(P). An existing permit holder (permit issued prior to June 18, 2021) shall provide this Compliance History Disclosure Form to the Department upon request.

Permi	ttee/Applicant Company Name	Expected Application Submittal Date				
Civitas	Permian Operating, LLC	August 2024				
Permi	ttee/Company Contact	Phone	Email			
Ron Le	ePlatt	(720) 237-2095	rleplatt@civiresources.com			
Withir	n the 10 years preceding the expected date	e of submittal of the applicat	ion, has the permittee or applicant:			
1	Knowingly misrepresented a material fact in an application for a permit?					
2	Refused to disclose information required	by the provisions of the New	Mexico Air Quality Control Act?	☐ Yes ☒ No		
3	Been convicted of a felony related to env	ironmental crime in any court	t of any state or the United States?	☐ Yes ☒ No		
4	Been convicted of a crime defined by stat price fixing, bribery, or fraud in any court		= =	☐ Yes ⊠ No		
5a	Constructed or operated any facility for which a permit was sought, including the current facility, without the required air quality permit(s) under 20.2.70 NMAC, 20.2.72 NMAC, 20.2.74 NMAC, 20.2.79 NMAC, or 20.2.84 NMAC? □ Yes □ No.					
5b	If "No" to question 5a, go to question 6. If "Yes" to question 5a, state whether each facility that was constructed or operated without the required air quality permit met at least one of the following exceptions: a. The unpermitted facility was discovered after acquisition during a timely environmental audit that was authorized by the Department; or b. The operator of the facility estimated that the facility's emissions would not require an air permit, and					
	the operator applied for an air permit within 30 calendar days of discovering that an air permit was required for the facility.					
6	Had any permit revoked or permanently suspended for cause under the environmental laws of any state or the United States?					
7	For each "yes" answer, please provide an	explanation and documentat	ion.			

Section 22: Certification

Company Name: Civitas Permian Operating, LLC	
I, Ronald R. LePlatt, hereby certify that the true and as accurate as possible, to the best of my knowledge and p	
true and as accurate as possible, to the best of my knowledge and p	ororessional expertise and experience.
Signed this 20 day of August , 2024, upon my oath	or affirmation, before a notary of the State of
Colorado	
*Signature	Aujust 20, 2014
Ronald R. Leflatt Printed Name	Air Quality Engineer Title
Scribed and sworn before me on this 20 day of August	1.214.
My authorization as a notary of the State of <u>Colural</u>	expires on the
02 day of Munh , 2015	÷
Muhalle Prince Notary's Signature	
Michelle Christin Prince Notary's Printed Name	Michelle Christin Prin Notary Public State of Colorado Notary 10# 20214006103 My commission Expires 0302

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.