APPLICATION TO RENEW AND REVISE TITLE V OPERATING PERMIT NO. P090R3 JAL #3 GAS PLANT LEA COUNTY, NM

MARCH 2023

Submitted to:

New Mexico Environment Department

Air Quality Bureau, Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505

Prepared for:

ETC Texas Pipeline LTD

600 N. Marienfeld St., Suite 700 Midland, TX 79701 575-810-8674

Prepared by:
Altamira-US, LLC
525 Central Park Dr., Suite 500

Oklahoma City, OK 73105 405-702-1618

TABLE OF CONTENTS

SECTIONS

Section 1: General Facility Information

Section 2: Tables

Section 3: Application Summary

Section 4: Process Flow Sheet

Section 5: Plot Plan Drawn to Scale

Section 6: All Calculations

Section 6a: Green House Gas Emissions

Section 7: Information Used to Determine Emissions

Section 8: Map(s)

Section 9: Proof of Public Notice

Section 10: Written Description of the Routine Operations of the

Facility

Section 11: Source Determination

Section 12: PSD Applicability Determination for All Sources

Section 13: Determination of State & Federal Air Quality

Regulations

Section 14: Operational Plan to Mitigate Emissions

Section 15: Alternative Operating Scenarios

Section 16: Air Dispersion Modeling

Section 17: Compliance Test History

Section 19: Requirements for Title V Program

Section 20: Other Relevant Information

Section 22: Certification

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

For Department use only:

MAR 2 4 2023

Air Quality Bureau

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-1 for submittal instructions for other permits.

This application is submitted as (check all that apply): Request for a No Permit Required Determination (no fee)
☐ Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required).
Construction Status: Not Constructed
Minor Source: □ a NOI 20.2.73 NMAC □ 20.2.72 NMAC application or revision □ 20.2.72.300 NMAC Streamline application
Title V Source: ☐ Title V (new) ☑ Title V renewal ☐ TV minor mod. ☑ TV significant mod. TV Acid Rain: ☐ New ☐ Renewal
PSD Major Source: ☐ PSD major source (new) ☐ minor modification to a PSD source ☐ a PSD major modification
Acknowledgements:
☑ I acknowledge that a pre-application meeting is available to me upon request. ☑ Title V Operating, Title IV Acid Rain, and NPR
applications have no fees.
□ \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline
applications).
☐ Check No.: in the amount of
☑ I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched
(except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.
■ l acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-2/.
☐ This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this
application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has
been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information:
www.env.nm.gov/air-quality/small-biz-eap-2/.)
Citation: Please provide the low level citation under which this application is being submitted: 20.2.70.300.B.2 NMAC
(e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is
20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	AI # if known (see 1st 3 to 5 #s of permit IDEA ID No.): 569	Updating Permit/NOI #: P090-R3		
,	Facility Name: Jal #3 Gas Plant	Plant primary SIC Cod	Plant primary SIC Code (4 digits): 4922		
1	Jai #3 Gas Hait	Plant NAIC code (6 di	Plant NAIC code (6 digits): 211130		
a	Facility Street Address (If no facility street address, provide direct north-northeast of Jal, NM.	ctions from a prominent landma	ark): The facility is 4 miles		
2	Plant Operator Company Name: ETC Texas Pipeline, Ltd	Phone/Fax: 575-810-8	674 / NA		
a	Plant Operator Address: 600 N Marienfeld St., Suite 700, Midland	TX 79701			

b	Plant Operator's New Mexico Corporate ID or Tax ID:								
3	Plant Owner(s) name(s): ETC Texas Pipeline, Ltd	Phone/Fax: 575-810-8674 / NA							
a	Plant Owner(s) Mailing Address(s): 600 N Marienfeld St., Suite 700, Midland, TX 79701								
4	Bill To (Company): ETC Texas Pipeline, Ltd	Phone/Fax: 214-840-5650 / NA							
a	Mailing Address: 8111 Westchester Drive, Suite 600, Dallas, TX 75225	E-mail: christopher.hansen@energytranser.com							
5	□ Preparer: ☑ Consultant: Laura Worthen Lodes, Altamira-US, LLC	Phone/Fax: 405-702-1618 / 405-843-4687							
a	Mailing Address: 525 Central Park Dr., Ste. 500 Oklahoma City, OK 73105	E-mail: <u>laura.worthen-lodes@altamira-us.com</u>							
6	Plant Operator Contact: Alena Miro	Phone/Fax: 575-810-8674 /NA							
a	Address: 600 N Marienfeld St., Suite 700, Midland, TX 79701	E-mail: alena.miro@energytranser.com							
7	Air Permit Contact: Alena Miro	Title: Environmental Manager							
a	E-mail: alena.miro@energytranser.com	Phone/Fax: 575-810-8674 / NA							
b	Mailing Address: 600 N Marienfeld St., Suite 700, Midland, TX 79701								
с	The designated Air permit Contact will receive all official correspondence	(i.e. letters, permits) from the Air Quality Bureau.							

Section 1-B: Current Facility Status

Dec	tion 1-b. Current racinty Status	
1.a	Has this facility already been constructed? ✓ Yes □ No	1.b If yes to question 1.a, is it currently operating in New Mexico? ■ Yes □ No
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? ☐ Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ☑ Yes ☐ No
3	Is the facility currently shut down? ☐ Yes ☒ No	If yes, give month and year of shut down (MM/YY):
4	Was this facility constructed before 8/31/1972 and continuously operated s	since 1972? ⊠Yes □ No
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMA ■Yes □No □N/A	C) or the capacity increased since 8/31/1972?
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ✓ Yes ☐ No	If yes, the permit No. is: P090R3
7	Has this facility been issued a No Permit Required (NPR)? ☐ Yes ☒No	If yes, the NPR No. is:
8	Has this facility been issued a Notice of Intent (NOI)? ☐ Yes ☒ No	If yes, the NOI No. is:
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ⊠ Yes □ No	If yes, the permit No. is: 1092-M10
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? ☐ Yes ☒ No	If yes, the register No. is:

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)									
a	Current Hourly: 2.92 MMscf Daily: 70 MMscf Annually: 25,550 MMscf									
b	Proposed	Hourly: 2.92 MMscf	Daily: 70 MMscf	Annually: 25,550 MMscf						
2	What is the	facility's maximum production rate, sp	pecify units (reference here and list capacities in	Section 20, if more room is required)						
a	Current	Hourly: 2.92 MMscf	Daily: 70 MMscf	Annually: 25,550 MMscf						
b	Proposed Hourly: 2.92 MMscf Daily: 70 MMscf Annually: 25,550 MMscf									

Sect	Section 1-D: Facility Location Information									
1	Section: 33	Range: 37E	Township: 24S	County: Lea	Elevation (ft): 3260					
2	UTM Zone:	12 or 🗵 13		Datum: □ NAD 27 ■NAD	83 🗆 WGS 84					
a	UTM E (in meter	rs, to nearest 10 meters	s): 672129	UTM N (in meters, to nearest 10 meters):	3561167					
b	AND Latitude	(deg., min., sec.):	32°10'25"	Longitude (deg., min., sec.): 103°10	0'27"					
3	Name and zip o	code of nearest Ne	ew Mexico town: Jal, 8825	2						
4	Detailed Drivin of Jal, NM.	ng Instructions fro	m nearest NM town (attacl	n a road map if necessary): The facili	ty is 4 miles north-northeast					
5	The facility is 4	(distance) miles	north-northeast (direction)	of Jal (nearest town).						
6	Status of land at facility (check one): Private Indian/Pueblo Federal BLM Federal Forest Service Other (specify)									
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Jal, NM; Indian Tribes: None; Counties: Lea (NM),									
8	than 50 km (31	miles) to other st	ates, Bernalillo County, or	ich the facility is proposed to be cons a Class I area (see www.env.nm.gov/aqb ith corresponding distances in kilome	/modeling/class1areas.html)?					
9	Name nearest C	Class I area: Carls	bad Caverns National Park							
10	Shortest distance	ce (in km) from fa	cility boundary to the bour	ndary of the nearest Class I area (to the	e nearest 10 meters): 112.6 km					
11	lands, including	g mining overburd	len removal areas) to neare	ions (AO is defined as the plant site is stresidence, school or occupied struc						
12	Method(s) used to delineate the Restricted Area: "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.									
13	Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC?									
14			unction with other air regulant number (if known) of the	ated parties on the same property? ne other facility?	⊠ No □ Yes					
				·						

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24	$(\frac{\text{days}}{\text{week}})$: 7	$(\frac{\text{weeks}}{\text{year}})$: 52	$(\frac{\text{hours}}{\text{year}})$: 8760					
2	Facility's maximum daily operating schedule (if les	s than $24 \frac{\text{hours}}{\text{day}}$)? Start: N/A	□AM □PM	End: N/A	□AM □PM				
3	Month and year of anticipated start of construction: N/A								
4	Month and year of anticipated construction complet	ion: N/A							
5	Month and year of anticipated startup of new or mo	dified facility: N/A							
6	Will this facility operate at this site for more than or	ne year? ⊠Yes □ No							

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other complito this facility? ☐ Yes ☒ No If yes, specify:	ance or enforcement issues related
a	If yes, NOV date or description of issue:	NOV Tracking No:

Is this application in response to any issue listed in 1-F, 1 or 1a above? ☐ Yes ☐ No If Yes, provide the 1c & 1d info below:									
Document Title:	Date:	Requirement # (or page # and paragraph #):							
Provide the required text to be inserted in this permit:									
Is air quality dispersion modeling or modeling waiver being submitted with this application? ☐ Yes ☒ No									
Does this facility require an "Air Toxics" permit under 20.	2.72.400 NMAC & 2	0.2.72.502, Tables A and/or B? \square Yes \square No							
Will this facility be a source of federal Hazardous Air Pollo	utants (HAP)? 🛮 Ye	s □ No							
1		= 17 7							
Is any unit exempt under 20.2.72.202.B.3 NMAC? ☐ Yes	s 🛭 No								
If yes, include the name of company providing commercial	l electric power to the	facility:							
Commercial power is purchased from a commercial utility site for the sole purpose of the user.	company, which spe	ecifically does not include power generated on							
	Document Title: Provide the required text to be inserted in this permit: Is air quality dispersion modeling or modeling waiver bein Does this facility require an "Air Toxics" permit under 20. Will this facility be a source of federal Hazardous Air Polls If Yes, what type of source? □ Major (□ ≥10 tpy of an OR ☑ Minor (□ <10 tpy of an Is any unit exempt under 20.2.72.202.B.3 NMAC? □ Yes If yes, include the name of company providing commercial Commercial power is purchased from a commercial utility	Document Title: Provide the required text to be inserted in this permit: Is air quality dispersion modeling or modeling waiver being submitted with this Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 2 Will this facility be a source of federal Hazardous Air Pollutants (HAP)? ☒ Ye If Yes, what type of source? ☐ Major (☐ ≥10 tpy of any single HAP OR OR ☒ Minor (☐ <10 tpy of any single HAP AN) Is any unit exempt under 20.2.72.202.B.3 NMAC? ☐ Yes ☒ No If yes, include the name of company providing commercial electric power to the Commercial power is purchased from a commercial utility company, which specific power is purchased from a commercial utility company, which specific power is purchased from a commercial utility company, which specific power is purchased from a commercial utility company, which specific power is purchased from a commercial utility company, which specific power is purchased from a commercial utility company, which specific power is purchased from a commercial utility company, which specific power is purchased from a commercial utility company, which specific power is purchased from a commercial utility company, which specific power is purchased from a commercial utility company.							

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1 ☐ I have filled out Section 18, "Addendum for Streamline Applications." ☐ N/A (This is not a Streamline application.)

$\textbf{Section 1-H: Current Title V Information} \textbf{ - Required for all applications from TV Sources } \\ \textbf{(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or } \\ \textbf{(Minor Construction Permits)} \\ \textbf{(Minor C$

20.2.7	4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMA	C (Title V))							
1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Toby Clark	Phone: 432-614-9387							
a	R.O. Title: Vice President of Operations R.O. e-mail: toby.clark@energytransfer.com								
b	R. O. Address: 711 Louisiana St., Suite 900, Houston, TX 77002								
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): Mike McCracken	Phone: 817-302-9806							
a	A. R.O. Title: Sr. Director, Operations	A. R.O. e-mail: mike.mccracken@energytransfer.com							
b	A. R. O. Address: 600 N. Marienfeld St., Suite 700, Midland, TX	79701							
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): Energy Transfer Company Field Services, LLC								
4	Name of Parent Company ("Parent Company" means the primary represented wholly or in part.): Energy Transfer Equity, L.P.	name of the organization that owns the company to be							
a	Address of Parent Company: 800 E. Sonterra Blvd., Suite 400, Sar	Antonio, TX 78258							
5	Names of Subsidiary Companies ("Subsidiary Companies" means owned, wholly or in part, by the company to be permitted.): None								
6	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations: Alena Miro, Environmental Manager, (575) 810-8674								
7	Affected Programs to include Other States, local air pollution control Will the property on which the facility is proposed to be constructed states, local pollution control programs, and Indian tribes and pueblones and provide the distances in kilometers: Texas, 10.1 km	d or operated be closer than 80 km (50 miles) from other							

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- 1) One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

☐ CD/DVD attached to paper application

⊠ secure electronic transfer. Air Permit Contact Name: Laura Worthen Lodes

Email: Laura. Worthen-Lodes@Altamira-US.com

Phone number: 405-702-1618

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If **air dispersion modeling** is required by the application type, include the **NMED Modeling Waiver** and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling **summary report only** should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible

format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

Section 1: General Facility Information

Section 2: Tables

Section 3: Application Summary
Section 4: Process Flow Sheet
Section 5: Plot Plan Drawn to Scale

Section 6: All Calculations

Section 7: Information Used to Determine Emissions

Section 8: Map(s)

Section 9: Proof of Public Notice

Section 10: Written Description of the Routine Operations of the Facility

Section 11: Source Determination

Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application

Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulations

Section 14: Operational Plan to Mitigate Emissions

Section 15: Alternative Operating Scenarios

Section 16: Air Dispersion Modeling Section 17: Compliance Test History

Section 18: Addendum for Streamline Applications (streamline applications only)

Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)

Section 20: Other Relevant Information

Section 21: Addendum for Landfill Applications

Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit#	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
S1	Natural Gas Compressor Engine	Superior	2416G	333489	3200 hp	3201 hp	1996 2004	S1 S1	20200254	□ Existing (unchanged) ☑ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	
S2	Natural Gas Compressor Engine	Superior	2416G	333519	3200 hp	3201 hp	1996 2008	S2 S2	20200254	□ Existing (unchanged) ☑ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	
S3	Natural Gas Compressor Engine	Superior	2416G	333529	3200 hp	3201 hp	1997 2004	S3 S3	20200254	□ Existing (unchanged) ☑ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	
S4	Natural Gas Compressor Engine	Superior	2416G	334729	3200 hp	3201 hp	1997 2004	S4 S4	20200254	□ Existing (unchanged) ☑ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	
S5	Natural Gas Compressor Engine	Superior	12 SGTA	2932559	2000 hp	2000 hp	1983 2004	S5 S5	20200254	□ Existing (unchanged) ☑ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	
C1	Natural Gas Compressor Engine	Caterpillar	G3612	1YG0006 5	3550 hp	3550 hp	8/7/2018 2019	C1 C1	20200254	⊠ Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	
C2	Natural Gas Compressor Engine	Caterpillar	G3612	BKE0066 0	3550 hp	3550 hp	1/2/2008 2016	C2 C2	20200254	⊠ Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	
СЗ	Natural Gas Compressor Engine	Caterpillar	G3612	BKE0066 2	3550 hp	3550 hp	1/2/2008 2016	C3	20200254	⊠ Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	
C4	Natural Gas Compressor Engine	Caterpillar	G3612	BKE0065 9	3550 hp	3550 hp	1/2/2008 2016	C4 C4	20200254	☒ Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	
C5	Natural Gas Compressor Engine	Caterpillar	G3606	TBD	1875 hp	1875 hp	Post 7/1/2010 TBD	C5 C5	20200254	□ Existing (unchanged) To be Removed □ New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	
C6	Natural Gas Compressor Engine	Caterpillar	G3606	TBD	1875 hp	1875 hp	Post 7/1/2010 TBD	C6 C6	20200254	□ Existing (unchanged) To be Removed □ New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	
1A	Natural Gas Compressor Engine	Cooper- Bessemer	GMV- 10TF LE	42109	1100 hp	1100 hp	9/1/1948 1948	N/A 1	20200252	□ Existing (unchanged) ☑ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	2SLB	
2A	Natural Gas Compressor Engine	Cooper- Bessemer	GMV- 10TF LE	42110	1100 hp	1100 hp	9/1/1948 1948	N/A 2	20200252	□ Existing (unchanged) ☑ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	2SLB	
3A	Natural Gas Compressor Engine	Cooper- Bessemer	GMV- 10TF LE	42107	1100 hp	1100 hp	9/1/1948 1948	N/A 3	20200252	□ Existing (unchanged) ☑ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	2SLB	
4A	Natural Gas Compressor Engine	Cooper- Bessemer	GMV- 10TF LE	42108	1100 hp	1100 hp	9/1/1948 1948	N/A 4	20200252	□ Existing (unchanged) ☑ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	2SLB	

Form Revision: 5/3/2016 Table 2-A: Page 1 Printed 3/21/2023 10:58 AM

ETC 7	ETC Texas Pipeline, Ltd.						Jal No. 3 Gas Pla	ınt		Application Date: March 2023	Revisio	n #4
Unit					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit#	Source Classi-		RICE Ignition Type (CI, SI,	
Number ¹	Source Description	Make	Model #	Serial#	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
5A	Natural Gas Compressor Engine	Cooper- Bessemer	GMV- 10TF LE	42106	1100 hp	1100 hp	9/1/1948 1948	N/A 5	20200252	□ Existing (unchanged) ☑ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	2SLB	
7H	Gas Heater	Entec	N/A	76152	2.5 MMbtu/hr	2.5 MMbtu/hr	Unknown Unknown	N/A 7H	31000404	☐ Existing (unchanged) ☑ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
11H	Gas Heater	Eclipse	N/A	47973	3.5 MMbtu/hr	3.5 MMbtu/hr	Unknown Unknown	N/A 11H	31000404	□ Existing (unchanged) ☑ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
12H	Regeneration Gas Heater	TBD	N/A	TBD	28 MMbtu/hr	28 MMbtu/hr	TBD	N/A 12H	31000404	☐ Existing (unchanged) To be Removed ☐ New/Additional Replacement Unit To Be Modified To be Replaced		
13H	Dehy Reboiler	TBD	N/A	TBD	2.0 MMbtu/hr	2.0 MMbtu/hr	TBD	13H	31000404	☐ Existing (unchanged) To be Removed ☐ New/Additional Replacement Unit To Be Modified To be Replaced		
14H	Stabilizer Heater	TBD	N/A	TBD	10 MMbtu/hr	10 MMbtu/hr	TBD	14H	31000404	☐ Existing (unchanged) To be Removed ☐ New/Additional Replacement Unit To Be Modified To be Replaced		
9S	Thermal Oxidizer	Entec	N/A	N/A	8 MMbtu/hr	8 MMbtu/hr	Unknown 1993	N/A 9S	31000209	☐ Existing (unchanged) ☑ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
31B	Boiler	Nebraska	MS-E-59	D-3792	90.9 MMbtu/hr	90.9 MMbtu/hr	1998 12/12/2011	N/A 31B	3100414	☐ Existing (unchanged) ☑ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
32B	Boiler	Victory Energy VS-5- 71	VS-5-71	12017	120.9 MMBtu/hr	120.9 MMBtu/hr	7/15/2013 TBD	N/A 32B	31000414	☐ Existing (unchanged) ☑ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
8F	Gas Plant Flare	John Zink	N/A	N/A	10 MMcf/d	10 MMcf/d	Unknown 1971	N/A 8F	31000215	☑ Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
9F	Treatment Flare	John Zink	N/A	N/A	2.9 MMcf/d	2.9 MMcf/d	Unknown 1993	N/A 9F	31000215	⊠ Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
10F	Inlet Flare	John Zink	N/A	N/A	75 MMcf/d	75 MMcf/d	Unknown 1950	N/A 10F	31000215	☒ Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
TK-3	Scrubber Liquids Tank	N/A	N/A	N/A	8,820 gal	8,820 gal	Unknown 1970	N/A N/A	40400301	⊠ Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
TK-4	Scrubber Liquids Tank	N/A	N/A	N/A	8,820 gal	8,820 gal	Unknown 1970	N/A N/A	40400301	⊠ Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
TK-46	Scrubber Liquids Tank	N/A	N/A	N/A	4,512 gal	4,512 gal	Unknown 1970	N/A N/A	40400301	⊠ Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
FUG1	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	N/A N/A	8F-10F 8F-10F	31088811	⊠ Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		

Form Revision: 5/3/2016 Table 2-A: Page 2 Printed 3/21/2023 10:58 AM

Unit	Samue Danisis dan	Mala	M - 1-1 #	Serial #	Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-	Eur Frah Piron of F	continue and Charle Over	RICE Ignition Type (CI, SI,	Replacing
Number ¹	Source Description	Make	Model #	Seriai #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	FOR Each Piece of E	quipment, Check One	4SLB, 4SRB, 2SLB) ⁴	Unit No.
ELICO	Pariting Pariting	NT/A	N/A	N/A	N/A	N/A	N/A	9F	21000011	➤ Existing (unchanged) New/Additional	To be Removed		
FUG2	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	N/A	9F	31088811	To Be Modified	Replacement Unit To be Replaced		
DR1	Dehydrator Regenerator	Unknown	N/A	N/A	150	150	Unknown	9F	31000301	☐ Existing (unchanged) New/Additional	▼ To be Removed Replacement Unit		
DKI	(with condenser)	Ulikilowii	N/A	IN/A	MMscfd	MMscfd	1959 (Regen)	9F	31000301	To Be Modified	To be Replaced		
DR2	Dehydrator Regenerator	TBD	N/A	TBD	70	70	TBD	9F	31000301	☐ Existing (unchanged) ☑ New/Additional	To be Removed Replacement Unit		
DKZ	(with condenser)	TDD	IV/A	TBD	MMscfd	MMscfd	TBD	9F	31000301	To Be Modified	To be Replaced		
LOADO	Condensate Truck	N/A	N/A	N/A	800	800	Unknown	N/A	40400301	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit		
UT	Loadout	14/A	14/74	14/74	bbl/day	bbl/day	Unknown	N/A	40400301	To Be Modified	To be Replaced		
SSM/M	Startup, Shutdown, Maintenance/	N/A	N/A	N/A	N/A	N/A	N/A	8F, 10F	31088811	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
	Malfunction	IV/A	14/74	14/14	14/74	14/74	N/A	8F, 10F	31000011	To Be Modified	To be Replaced		
SSM- Inlet	Routine Inlet Blow						N/A	10F			To be Removed		
(Flare 10F)	Downs	N/A	N/A	N/A	N/A	N/A	N/A	10F	31088811	New/Additional To Be Modified	Replacement Unit To be Replaced		
TK-519	Gunbarrel	N/A	N/A	N/A	600 bbl	600 bbl	N/A	VRU	40400311	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit		
1K-319	Guilloarrei	IN/A	IN/A	IN/A	000 001	000 001	2015	N/A	40400311	To Be Modified	To be Replaced		
TK-	Scrubber Oil Tank	N/A	N/A	N/A	500 bbl	500 bbl	N/A	N/A	40400311	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit		
519C	Scrubber on Tank	14/21	14/21	10/11	300 001	300 001	2015	N/A	10100311	To Be Modified	To be Replaced		
TK-	Water Tank	N/A	N/A	N/A	500 bbl	500 bbl	N/A	N/A	40400315	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit		
519A	Water runk	14/21	14/21	1 1// 1	300 001	300 001	2015	N/A	10 100313	To Be Modified	To be Replaced		
LOAD	Scrubber Oil	N/A	N/A	N/A	500 bbl	500 bbl	N/A	N/A	31088811	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit		
LOND	Loading	1 1/ / 1	11//1	1 1// 1	300 001	300 001	2015	N/A	51000011	To Be Modified	To be Replaced		

To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

4"4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

ETC Texas Pipeline, Ltd. Jal No. 3 Gas Plant Application Date: March 2023 Revision #4

Table 2-B: Insignificant Activities (20.2.70 NMAC) **OR** Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-

content/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
			Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	
P1	Fire Pump	Unknown	Unknown	N/A	20.2.72.202.A.4	Unknown	☒ Existing (unchanged) To be Removed New/Additional Replacement Unit
11	rne i ump	Clikilowii	Unknown	N/A	N/A	Unknown	To Be Modified To be Replaced
P2	Fire Pump	Chrysler	Unknown	N/A	20.2.72.202.A.4	Unknown	 ☑ Existing (unchanged) To be Removed New/Additional Replacement Unit
12	The Tump	Cinysici	Unknown	N/A	N/A	Unknown	To Be Modified To be Replaced
TK-6	Waste Oil Tank	N/A	N/A	8820	20.2.72.202.B.5	Unknown	 ☑ Existing (unchanged) To be Removed New/Additional Replacement Unit
11C-0	waste Off Talik	IVA	N/A	gal	N/A	Unknown	To Be Modified To be Replaced
TK-7	Waste Oil Tank	N/A	N/A	390	20.2.72.202.B.5	Unknown	☒ Existing (unchanged) To be Removed New/Additional Replacement Unit
1 K-7	waste Off Talik	IVA	N/A	gal	N/A	Unknown	To Be Modified To be Replaced
TK-8	Out of Service	N/A	N/A	2100	Not a Source of any Regulated Pollutant	Unknown	☒ Existing (unchanged) To be Removed New/Additional Replacement Unit
110-0	out of service	10/21	N/A	gal	N/A	Unknown	To Be Modified To be Replaced
TK-9	Jacket Water Tank	N/A	N/A	4200	Not a Source of any Regulated Pollutant	Unknown	☒ Existing (unchanged) To be Removed New/Additional Replacement Unit
TIC-)	Jacket Water Falls	1771	N/A	gal	N/A	Unknown	To Be Modified To be Replaced
TK-10	Lube Oil Tanks	N/A	N/A	8820	20.2.72.202.B.2	Unknown	 ☑ Existing (unchanged) To be Removed New/Additional Replacement Unit
110-10	Edoc On Tailes	1771	N/A	gal	N/A	Unknown	To Be Modified To be Replaced
TK-11	Lube Oil Tanks	N/A	N/A	8820	20.2.72.202.B.2	Unknown	☒ Existing (unchanged) To be Removed New/Additional Replacement Unit
110-11	Euoc On Tunks	1071	N/A	gal	N/A	Unknown	To Be Modified To be Replaced
TK-12	Detergent Tank	N/A	N/A	190	Not a Source of any Regulated Pollutant	Unknown	 ☑ Existing (unchanged) New/Additional To be Removed Replacement Unit
111 12	Detergent runk	1071	N/A	gal	N/A	Unknown	To Be Modified To be Replaced
TK-13	Water Treater	N/A	N/A	930	Not a Source of any Regulated Pollutant	Unknown	☒ Existing (unchanged) To be Removed New/Additional Replacement Unit
111 10		1,111	N/A	gal	N/A	Unknown	To Be Modified To be Replaced
TK-14	Lube Oil Tanks	N/A	N/A	8820	20.2.72.202.B.2	Unknown	 ☑ Existing (unchanged) New/Additional To be Removed Replacement Unit
111 11		1,112	N/A	gal	N/A	Unknown	To Be Modified To be Replaced
TK-15	Antifreeze Tank	N/A	N/A	8820	20.2.72.202.B.5	Unknown	 ☑ Existing (unchanged) New/Additional To be Removed Replacement Unit
111 10	THINTED THIN	1.1.2	N/A	gal	N/A	Unknown	To Be Modified To be Replaced
TK-16	Lube Oil Tanks	N/A	N/A	8820	20.2.72.202.B.2	Unknown	☒ Existing (unchanged) To be Removed New/Additional Replacement Unit
111 10	Duot on Tunno	1771	N/A	gal	N/A	Unknown	To Be Modified To be Replaced
TK-17	Lube Oil Tank	N/A	N/A	480	20.2.72.202.B.2	Unknown	☒ Existing (unchanged) To be Removed New/Additional Replacement Unit
112 17	Luce on runk	1,171	N/A	gal	N/A	Unknown	To Be Modified To be Replaced

Form Revision: 7/8/2011 Table 2-B: Page 1 Printed 3/21/2023 10:58 AM

	Jenne, Etd.				5 Gas I lain		tion Bate. March 2023	Revision #4
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Diago of Fo	quipment, Check Onc
Ollit Nulliber	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	FOI Each Fiece of Ea	дигринент, Спеск Опс
TK-18	Solvent Tank	N/A	N/A	660	20.2.72.202.B.2	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-10	Solvent Tank	N/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-19	Waste Oil Tank	N/A	N/A	1130	20.2.72.202.B.5	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-19	waste Oil Talik	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-20	Detergent Tank	N/A	N/A	1670	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-20	Detergent Tank	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-21	Solvent Tank	N/A	N/A	370	20.2.72.202.B.2	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-21	Solvent Talik	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-22	Methanol Tank	N/A	N/A	290	20.2.72.202.B.5	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-22	Wichianor Fank	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-23	Methanol Tank	N/A	N/A	2960	20.2.72.202.B.5	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-23	ivictilation falls	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-24	Methanol Tank	N/A	N/A	2060	20.2.72.202.B.5	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-24	Methanol Tank	N/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-25	Corrosion Inhibitor Tank	N/A	N/A	330	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-23	Corrosion minorior Tank	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-26	Waste Oil Tank	N/A	N/A	410	20.2.72.202.B.5	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-20	waste Oil Talik	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-27	Lube Oil Tank	N/A	N/A	110	20.2.72.202.B.2	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-2 /	Lube Off Talik	IN/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-28	Lube Oil Tank	N/A	N/A	110	20.2.72.202.B.2	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-20	Lube Off Talik	IN/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-29	Water Treater Tank	N/A	N/A	730	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-29	water freater falls	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-30	Out of Service	N/A	N/A	1000	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-30	Out of Service	1N/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-31	Triothylana Glysol Tards	N/A	N/A	2820	20.2.72.202.B.2	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-31	Triethylene Glycol Tank	IN/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TV 22	Aming Taul	NI/A	N/A	8820	20.2.72.202.B.5	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
TK-32	Amine Tank	N/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TV 22	Amine Tenk	N/A	N/A	8820	20.2.72.202.B.2	Unknown	⊠ Existing (unchanged) Navy/Additional	To be Removed
TK-33	Amine Tank	N/A	N/A	gal	N/A	Unknown	New/Additional To Be Modified	Replacement Unit To be Replaced

Form Revision: 7/8/2011 Table 2-B: Page 2 Printed 3/21/2023 10:58 AM

<u> </u>	enne, Etd.						non Bate. Water 2023	Revision #4
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Fach Piece of Fe	quipment, Check Onc
Omt Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	FOI EACH FIECE OF EA	дигринент, Спеск Опс
TIV 24	Amine Tank	N/A	N/A	8820	20.2.72.202.B.2	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
TK-34	Amine Tank	N/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-35	Lube Oil Tanks	N/A	N/A	8820	20.2.72.202.B.2	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-33	Lube Off Talliks	IN/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-36	Antifreeze Tank	N/A	N/A	8820	20.2.72.202.B.5	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-30	Antineeze Tank	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-37	Detergent Tank	N/A	N/A	180	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-37	Detergent Tank	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-38	Antifreeze Tank	N/A	N/A	1690	20.2.72.202.B.5	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-36	Antineeze Tank	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-39	Brine Tank	N/A	N/A	12,600	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-39	Brille Talik	IN/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-40	Solvent Tank	N/A	N/A	1100	20.2.72.202.B.2	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-40	Solvent Tank	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-41	Gasoline Tank	N/A	N/A	560	20.2.72.202.B.5	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
113-41	Gasonne Tank	IVA	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-42	Diesel Tank	N/A	N/A	315	2.72.202.B2	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-42	Diesei Talik	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-44	Lube Oil Tank	N/A	N/A	12,690	20.2.72.202.B.2	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
113-44	Luoc On Tank	IVA	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-45	Detergent Tank	N/A	N/A	210	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-43	Detergent Tank	14/74	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-47	Lube Oil Tank	N/A	N/A	510	20.2.72.202.B.2	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
TIC-47	Euoc On Tunk	14/74	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-48	Natural Gas Liquids Tank	N/A	N/A	102,270	Pressure Vessel (not a source)	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
113-70	Tracturar Gus Elquius Talik	11/13	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-49	Propane Tank	N/A	N/A	26,040	Pressure Vessel (not a source)	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
111-77	Tropane rank	14/14	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-50	Condensate Tank	N/A	N/A	57,540	Pressure Vessel (not a source)	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
11X-30	Condensate Tank	14/14	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-51	Condensate Tank	N/A	N/A	57,540	Pressure Vessel (not a source)	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-31	Condensate Talik	11//1	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced

Form Revision: 7/8/2011 Table 2-B: Page 3 Printed 3/21/2023 10:58 AM

ETC TCAUST	rpenne, zta.			Jui i to.	5 Gas i iant	Пррпоц	tion Date. Water 2023	Revision #4
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of E	quipment, Check Onc
Ont Number	Source Description	ivianuiacturci	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Fiece of E	дигринени, Сисск Опс
TK-52	Condensate Tank	N/A	N/A	57,540	Pressure Vessel (not a source)	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-32	Condensate Tank	N/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-53	Treated Water Tank	N/A	N/A	610	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1K-33	Treated water rank	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-60	Treated Water Tank	N/A	N/A	3380	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
11X-00	Treated Water Fank	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-61	Treated Water Tank	N/A	N/A	8460	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
113-01	Treated Water Tank	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-62	Treated Water Tank	N/A	N/A	44,040	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-02	Treated water rank	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-63	Treated Water Tank	N/A	N/A	44,040	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-03	Treated water rank	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-64	Raw Water Tank	N/A	N/A	426,540	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-04	Raw water rank	IN/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
TK-65	Sulfur Tank	N/A	N/A	55	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-03	Sullul Talik	N/A	N/A	tons	N/A	Unknown	To Be Modified	To be Replaced
TK-66	Amine Tank	N/A	N/A	8820	20.2.72.202.B.2	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-00	Amme Tank	IV/A	N/A	gal	N/A	Unknown	To Be Modified	To be Replaced
VENT	Plant Vent	Unknown	N/A	N/A	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
VENI	Flant Vent	Clikilowii	N/A	N/A	N/A	Unknown	To Be Modified	To be Replaced
TK-67	Treated Water Teels	N/A	N/A	TBD	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-0 /	Treated Water Tank	IN/A	N/A	TBD	N/A	Unknown	To Be Modified	To be Replaced
TK-68	Bullet Tank	N/A	N/A	TBD	Pressure Vessel (not a source)	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-00	Builet Talik	IN/A	N/A	TBD	N/A	Unknown	To Be Modified	To be Replaced
TK-71	Hadanana d Watan Cama Tank	N/A	N/A	TBD	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
1 K-/1	Underground Water Sump Tank	IN/A	N/A	TBD	N/A	Unknown	To Be Modified	To be Replaced
TV 72	Lindananan d Watan Cama Taula	NI/A	N/A	TBD	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) Nam/Additional	To be Removed
TK-72	Underground Water Sump Tank	N/A	N/A	TBD	N/A	Unknown	New/Additional To Be Modified	Replacement Unit To be Replaced
NI/A	El C	Unknown	N/A	N/A	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) New/Additional	To be Removed Replacement Unit
N/A	Electric Compressor	Unknown	N/A	N/A	N/A	Unknown	To Be Modified	To be Replaced
NI/A	Floatrio AGI Communicati	Unknown	N/A	N/A	Not a Source of any Regulated Pollutant	Unknown	➤ Existing (unchanged) New/Additional	To be Removed Replacement Unit
N/A	Electric AGI Compressor 1	Unknown	N/A	N/A	N/A	Unknown	To Be Modified	To be Replaced

Form Revision: 7/8/2011 Table 2-B: Page 4 Printed 3/21/2023 10:58 AM

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	
N/A	Electric AGI Compressor 2	Unknown	N/A	N/A	Not a Source of any Regulated Pollutant	Unknown	☐ Existing (unchanged) To be Removed ☑ New/Additional Replacement Unit
1 N /A	Electric AGI Compressor 2	Clikilowii	N/A	N/A	N/A	Unknown	To Be Modified To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

Form Revision: 7/8/2011 Table 2-B: Page 5 Printed 3/21/2023 10:58 AM

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
C1	Oxidation Catalyst	TBD	CO, VOC, HCHO, acetaldehyde	C1	65.63% VOC, 90% CO & HCHO, 83% Acetaldehyde	Mfg. Data
C2	Oxidation Catalyst	TBD	CO, VOC, HCHO, acetaldehyde	C2	65.63% VOC, 90% CO & HCHO, 83% Acetaldehyde	Mfg. Data
C3	Oxidation Catalyst	TBD	CO, VOC, HCHO, acetaldehyde	C3	65.63% VOC, 90% CO & HCHO, 83% Acetaldehyde	Mfg. Data
C4	Oxidation Catalyst	TBD	CO, VOC, HCHO, acetaldehyde	C4	65.63% VOC, 90% CO & HCHO, 83% Acetaldehyde	Mfg. Data
C5	Oxidation Catalyst	TBD	CO, VOC, HCHO, acetaldehyde	C5	29.58% VOC, 79.51% CO, 60.87% HCHO, 83% Acetaldehyde	Mfg. Data
C6	Oxidation Catalyst	TBD	CO, VOC, HCHO, acetaldehyde	C6	29.58% VOC, 79.51% CO, 60.87% HCHO, 83% Acetaldehyde	Mfg. Data
8F	Gas Plant Flare	Unknown	VOCs, HAPs, H2S	Amine	98%	Eng. Judgement
9F	Dehy Flare	Unknown	H2S, VOC	DR2	98%	Eng. Judgement
10F	Inlet Flare	Unknown	VOC, HAPs, H2S	FUG1, Process Vents	98%	Eng. Judgement
DR2	Condenser, Flare	TBD	VOC	DR2	98% VOCs	ProMax
N/A	Acid Gas Injection System	TBD	H2S	N/A	100%	ProMax
VRU	Vapor Recovery Unit	TBD	VOC	TK-519, TK-519A, TK-519C	95%	ProMax
List each co	Introl device on a separate line. For each control device, list all e	mission units	controlled by the control device.			

Form Revision: 7/8/2011 Table 2-C: Page 1 Printed 3/21/2023 10:58 AM

Table 2-D: Maximum Emissions (under normal operating conditions)

This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Umi4 No	NO	Ox	C	0	V	OC	S	Ox	Pl	M^1	PM	[10 ¹	PM	2.5 ¹	H	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
C1	3.91	14.73	21.52	94.27	7.23	31.72	0.380	1.670	0.27	1.17	0.27	1.17	0.27	1.17	lb/hr	ton/yr	lb/hr	ton/yr
C2	3.91	14.73	21.52	94.27	7.23	31.72	0.380	1.670	0.27	1.17	0.27	1.17	0.27	1.17	-	- 1	-	
С3	3.91	14.73	21.52	94.27	7.23	31.72	0.380	1.670	0.27	1.17	0.27	1.17	0.27	1.17	-	-	-	-
C4	3.91	14.73	21.52	94.27	7.23	31.72	0.380	1.670	0.27	1.17	0.27	1.17	0.27	1.17			-	
C5	1.24	5.43	10.08	44.14	3.90	17.09	0.010	0.040	0.14	0.62	0.14	0.62	0.14	0.62	-	-	-	-
C6	1.24	5.43	10.08	44.14	3.90	17.09	0.010	0.040	0.14	0.62	0.14	0.62	0.14	0.62	-	- 1	-	- 1
12H	2.75	12.02	2.31	10.10	0.15	0.66	0.020	0.070	0.21	0.91	0.21	0.91	0.21	0.91	-	-	-	-
13H	0.20	0.86	0.16	0.72	0.01	0.05	0.001	0.010	0.010	0.07	0.010	0.070	0.010	0.070		- 1	-	- 1
14H	0.98	4.29	0.82	3.61	0.05	0.24	0.010	0.030	0.070	0.33	0.070	0.33	0.070	0.00	-	-	-	-
8F	0.38	1.65	0.75	3.29	0.38	1.67	-	_111	-	-	_	= -1()	-	1	-	- 1	-	_ 1
9F	0.14	0.60	0.28	1.21	0.14	0.61	-	-	-	-	-	-	-	-	-	-	-	-
10F	0.40	1.76	0.80	3.52	0.41	1.79	-	-	-	-	_	- /	10	1	-	- 4	-	-
TK-3	·	1	-	-	0.13	0.57	•	_	-	-	-	-	-	1	-	-	-	-
TK-4	1	-	-	- (0.13	0.57	1	-	-	-	_	- (-	1	-	- 1	-	-
TK-46	-	-	-	-	1.35	5.89	-	-	-	-	_	-	-	-	-	-	-	-
FUG1	1	1	-	-	3.97	34.75	1	-	-	-	1	- 1	-	ı	-	-	-	
FUG2	·	1	-	-	0.001	0.610		-	-	-	_	-	-	1	-	- 1	-	-
LOAD			1		0.17	0.76	-		-		-		-		-		-	-
TK-519C	·	1	-	-	0.22	0.97	1		-	-	-	-	-	1	-		-	-
TK-519A	1		-	-)	0.22	0.97	-		-	-	_		-	-	-		-	-
TK-519	ı	1	-	-	0.00061	0.0027	1	-	-	-	-	-	-	1	-	-	-	-
LOADOUT	-	-	_		41.75	29.35	-	-	-	-	_		-	-	-	- 1	-	-
DR2	-	1	-	-	53.69	1069.61	-	-	-	-	-	-	-	1	-		-	-
Amine	-		-	-	12.12	53.09	-	-::1	-	-	-		<u> </u>	-	1605.83	703.354	0	0
Totals	22.97	90.96	111.36	487.81	151.61	1363.22	1.571	6.87	1.65	7.23	1.65	7.23	1.65	6.9	1605.83	703.354	0	0

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Form Revision: 6/14/2019 Table 2-D: Page 1 Printed 3/21/2023 10:58 AM

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No	N	Ox	C	O	VO	C	SC	Ox	P	M^1	PN	110 ¹	PM	2.5 ¹	Н	$_2$ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
C1	3.91	17.12	2.15	9.42	1.96	8.59	0.38	1.67	0.27	1.17	0.27	1.17	0.27	1.17	-	-	-	-
C2	3.91	17.12	2.15	9.42	1.96	8.59	0.38	1.67	0.27	1.17	0.27	1.17	0.27	1.17			-	- 1
C3	3.91	17.12	2.15	9.42	1.96	8.59	0.38	1.67	0.27	1.17	0.27	1.17	0.27	1.17	1	- (-	-
C4	3.91	17.12	2.15	9.42	1.96	8.59	0.38	1.67	0.27	1.17	0.27	1.17	0.27	1.17		-	1	- 1
C5	1.24	5.43	2.06	9.04	2.46	10.76	0.01	0.04	0.14	0.62	0.14	0.62	0.14	0.62	-	- [-	-
C6	1.24	5.43	2.06	9.04	2.46	10.76	0.01	0.04	0.14	0.62	0.14	0.62	0.14	0.62		-	-	- 1
12H	2.75	12.02	2.31	10.10	0.15	0.66	0.02	0.07	0.21	0.91	0.21	0.91	0.21	0.91	1	-	1	-
13H	0.20	0.86	0.16	0.72	0.01	0.05	0.001	0.01	0.01	0.07	0.01	0.07	0.01	0.07	-	-4	-	- [
14H	0.98	4.29	0.82	3.61	0.05	0.24	0.01	0.03	0.07	0.33	0.07	0.33	0.07	0.33	-	- 1	1	-
8F	2.08	4.12	4.15	8.22	4.31	5.07	9.10	8.52	-			-		-	0.097	0.090	-	- 1
9F	0.32	1.38	0.63	2.76	4.67	20.46	9.11	39.91	-	-	-	-	-	-	-		-	-
10F	414.30	3.52	827.10	7.00	1443.90	7.80	1250.00	5.31	-			-	-		-		-	- 4
TK-3	-	-	-	-	0.13	0.57	-	-	-	-	-	-	-	-	-	- 1	-	-
TK-4	_		1	-	0.13	0.57			-	-			-	- 1	-		-	- 1
TK-46	-	-	-	-	1.35	5.89	-	-	-	-	-	-	_	_	-		-	-
FUG1	_	- 1	-	-	3.97	34.75	-		-	-	17-	- 1	_	-			-	- 1
FUG2	-	- (-	-	0.001	0.61	-	- (-	-	-	-	-	-	-		-	-
LOAD	-		-	-	0.17	0.76	-		-	-	J 1-	-	-	-	-		-	- 4
TK-519C	-	-	-	-	0.02	0.09	-	-	-	-	-	-	-	-	-	- 1	-	-
TK-519A	-				0.000002	0.00001	-		-								_	- 1
TK-519	-	-	-	- 1	0.00061	0.0027	-	- 1	-	- 1	-	-	-	-	-		-	-
LOADOUT	-	-	-	-	41.75	29.35	-	-	-	- 1	<u> </u>	-	-	-	-	-	-	-
Totals	438.75	105.53	847.89	88.17	1513.37	162.75	1269.78	60.61	1.65	7.23	1.65	7.23	1.65	7.23	0.10	0.09		

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Form Revision: 6/14/2019 Table 2-E: Page 1 Printed 3/21/2023 10:58 AM

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications

(https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

TI '4 NI	N	Ox	C	0	V	OC	S	Ox	P	M^2	PM	110 ²	PM	$[2.5^2]$	H	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
8F	-	-	(====		_		_	_	_	-	_		_	_				
9F	2.0	7.00	16.4	25.1	0.4		3820.9	120.4	_	_	-	-	_	-	40.6	1.5		
10F	430.1	7.60	1630.6	25.1	1008.6	6.6	2773.2	130.4	_	-	-	_	_		29.5	1.5	-	-
Venting					2.2	0.7												
C1-C6 SSM	/		21.5	2.1	5.0	0.5												
Malfunction		10		10		10		10								10		
		-)															
													2					
Totals		17.6		37.2		17.8		140.4		0		0		0		11.5		0

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

Form Revision: 6/14/2019 Table 2-F: Page 1 Printed 3/21/2023 10:58 AM

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

☑ I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	C	CO	V	OC	SC	Ox	P	M	PN	110	PM	12.5	H ₂ S or	r Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
								1.0									
			- 1														
	1 -																
	Totals:																

Form Revision: 5/29/2019 Table 2-G: Page 1 Printed 3/21/2023 10:58 AM

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation (H-Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
C1	C1	V		54.7	838	401			81.7	2.5
C2	C2	V		54.7	838	401			81.7	2.5
C3	C3	V		54.7	838	401			81.7	2.5
C4	C4	V		54.7	838	401			81.7	2.5
C5	C5	V		35	838	199			112.6	2
С6	C6	V		35	838	199			112.6	2
12H	12H	V		35	500	280.8			57.2	2.5
13H	13H	V		24	500	18.7			10.6	1.5
14H	14H	V		16.7	500	93.6			29.8	2
8F	8F	V		124	1832	99.7			65.6	1.4
9F	9F	V		240	1832	99.7			65.6	1.4
10F	10F	V		135	1832	55.76			65.6	1
										2.1
										11

Form Revision: 11/18/2016 Table 2-H: Page 1 Printed 3/21/2023 10:58 AM

ETC Texas Pipeline, Ltd. Jal No. 3 Gas Plant Application Date: March 2023 Revision #4

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	⊠ HA	ldehyde .P or AP	Acr HA			Pollutant Here or TAP	Name	Pollutant e Here or TAP	Name Here							
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
C1	C1	0.4	1.9	0.2	0.9	0.1	0.6	-	-	-	- 1	-		-	-				
C2	C2	0.4	1.9	0.2	0.9	0.1	0.6	-		-	- 1	_	- 1	-	-				
C3	СЗ	0.4	1.9	0.2	0.9	0.1	0.6	-	-	-	- 1	-	- 1	-	-				
C4	C4	0.4	1.9	0.2	0.9	0.1	0.6	-	-	-	- 1	_	- 1	1	-				
C5	C5	0.5	2.2	0.4	1.6	0.1	0.3	-	-	-	- 1)	-	-	-	-				
C6	С6	0.5	2.2	0.4	1.6	0.1	0.3	-	-	-	-	-	- 1	-	-				
8F	8F	0.5	0.1	-	-	-	-	-	-	-	- \	J -	-	-	-				
9F	9F	-	-	-	-	-	-) -	-1	-	-	-	-	-					
10F	10F	-	-	-	- 1	-	-	-	- 1	-	- 1	-		-	-				
12H	12H	-	-	-		-	_0)	-	-	-	-					-		
13H	13H	-	-	-	-	-	-)	-	-	-	- (-		-	-				
14H	14H	-	-						-	-	-	,		-	-				
N/A	TK-3	-	-		-	1	-	1	-	ı	-	-	-	1	-				
N/A	TK-4	-	-		-		-			1	-	-		1					
N/A	TK-46	-	-		-	1	-	1	-	1	-	-	-	ı	-				
8F-10F	FUG1	-	-			-	-		-	-		-		-	-				
9F	FUG2	-	-	-	-	-	-	-	-	•	- 1	-	-	-	-				
N/A	LOAD	-	_	-	-	-	-0		-0.1	1		-		-	- 0				
N/A	TK-519C	-	-	-	-	-	-	-	-	-		-	-	-	-				
N/A	TK-519A	-	-	-	-	-	-	-		-	-	-		-	-				
N/A	LOADOUT	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-				
1																			
Tot	als:	3.1	12.1	1.6	6.8	0.6	3.0	II-T	- 1			V	J = V		0 = 0				

Form Revision: 10/9/2014 Table 2-I: Page 1 Printed 3/21/2023 10:58 AM

ETC Texas Pipeline, Ltd. Jal No. 3 Gas Plant Application Date: March 2023 Revision #4

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,	Specify Units									
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash					
C1	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	26.2 Mscf	229.5 MMscf	N/A						
C2	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	26.2 Mscf	229.5 MMscf	N/A						
СЗ	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	26.2 Mscf	229.5 MMscf	N/A						
C4	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	26.2 Mscf	229.5 MMscf	N/A						
C5	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	13.8 Mscf	121.1 MMscf	N/A						
C6	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	13.8 Mscf	121.1 MMscf	N/A						
12H	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	27.5 Mscf	240.5 MMscf	N/A						
13H	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	2.0 Mscf	17.2 MMscf	N/A						
14H	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	9.8 Mscf	85.9 MMscf	N/A						
8F (Pilot Only)	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	2.7 Mscf	23.4 MMscf	N/A						
9F (Pilot Only)	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	1.0 Mscf	8.6 MMscf	N/A						
0F (Pilot Only)	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	2.9 Mscf	25.1 MMscf	N/A						

Form Revision: 9/20/2016 Table 2-J: Page 1 Printed 3/21/2023 10:58 AM

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stora	age Conditions	Max Storage Conditions		
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)	
TK-3	40400301	Scrubber Liquids	~25% oil, 75% water	5.62	35.46	72.26	2.06	86.25	2.8	
TK-4	40400301	Scrubber Liquids	~25% oil, 75% water	5.62	35.46	72.26	2.06	86.25	2.8	
TK-46	40400301	Scrubber Liquids	~25% oil, 75% water	5.62	35.46	72.26	2.06	86.25	2.8	
TK-519	40400311	Scrubber Oil/Water	~12% oil, 88% water	5.7	71.47	72.85	2.04	86.25	2.6	
TK-519C	40400311	Scrubber Oil	~100% oil, 0% water	5.7	71.47	72.85	2.04	86.25	2.6	
TK-519A	40400315	Water	~0% oil, 100% water	5.7	71.47	72.85	2.04	86.25	2.6	

Form Revision: 7/8/2011 Table 2-K: Page 1 Printed 3/21/2023 10:58 AM

ETC Texas Pipeline, Ltd. Jal No. 3 Gas Plant Application Date: March 2023 Revision #4

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2	Roof Type (refer to Table 2-	Сар	acity	Diameter (M)	Vapor Space	Color (from Table VI-C)		Paint Condition (from Table	Annual Throughput	Turn- overs
			LR below)	LR below)	(bbl)	(M^3)		(M)	Roof	Shell	VI-C)	(gal/yr)	(per year)
TK-3	1970	Scrubber Liquids	N/A	FX	210	25	3.0	2.3	MG	MG	Good	8,820	1.00
TK-4	1970	Scrubber Liquids	N/A	FX	210	25	3.0	2.3	MG	MG	Good	8,820	1.00
TK-46	1970	Scrubber Liquids	N/A	FX	107	13	2.4	2.4	MG	MG	Good	58,658	13.00
TK-519	2015	Scrubber Oil/Water	N/A	FX	600	95	3.7	9.1	MG	MG	Good	8,400,840	11.50
TK-519C	2015	Scrubber Oil	N/A	FX	500	79	3.7	7.6	MG	MG	Good	735,840	35.04
TK-519A	2015	Water	N/A	FX	500	79	3.7	7.6	MG	MG	Good	7,665,000	365.00

Form Revision: 7/8/2011 Table 2-L: Page 1 Printed 3/21/2023 10:58 AM

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, We	elded Tank Seal Type	Seal Type, Rive	ted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	1
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}^3$	3 = 42.0 gal				BL: Black	
					OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Materi	al Processed			Material Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Natural Gas	Raw Natural Gas	G	70 MMscf/d	Processed Natural Gas	Residue Gas	G	70 MMscf/d
				NGL and water	Natural Gas Liquids, Water	L	11,000 bbl/day

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
	Pollutant(s)	Pollutant(s) Manufacturer Manufacturer	Pollutant(s) Manufacturer Model No. Model No.	Pollutant(s) Manufacturer Model No. Serial No.	Pollutant(s) Manufacturer Model No. Serial No. Serial No. Sample Frequency A control of the control of th	Pollutant(s) Manufacturer Model No. Serial No. Sample Frequency Time Time Averaging Time Averaging Ti	Pollutant(s) Manufacturer Model No. Serial No. Serial No. Sample Frequency Time Range Time Range Range Range Range Ran	Pollutant(s) Manufacturer Model No. Serial No. Serial No. Sample Frequency Time Range Sensitivity Manufacturer

Form Revision: 7/8/2011 Table 2-N: Page 1 Printed 3/21/2023 10:58 AM

ETC Texas Pipeline, Ltd. Jal No. 3 Gas Plant Application Date: March 2023 Revision #4

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
2								

Form Revision: 7/8/2011 Table 2-O: Page 1 Printed 3/21/2023 10:58 AM

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit.

Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²								Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs 1	1	298	25	22,800	footnote 3				1					
C1	mass GHG	15048	0.03	0.28				10.	7	0		0		15049	
C1	CO ₂ e	15048	7	8				10							15063
C2	mass GHG	15048	0.03	0.28				.10.		-				15049	
C2	CO ₂ e	15048	7	8						1		1 1			15063
C2	mass GHG	15048	0.03	0.28										15049	
C3	CO ₂ e	15048	7	8				12.							15063
C4	mass GHG	15048	0.03	0.28								1 3		15049	
C4	CO ₂ e	15048	7	8						911					15063
C5	mass GHG	7938	0.01	0.15										7938	
C5	CO ₂ e	7938	4.46	3.74											7946
CC	mass GHG	7938	0.01	0.15				10						7938	
C6	CO ₂ e	7938	4.46	3.74				1 1		1		1 1			7946
1011	mass GHG	15769	0.03	0.30				140	1		D	1 1	1	15769	
12H	CO ₂ e	15769	8.9	7.4				417							15785
4011	mass GHG	1126	0.002	0.02		1-			-					1126	
13H	CO ₂ e	1126	0.6	0.5											1128
4 477	mass GHG	5632	0.01	0.11				1151						5632	
14H	CO ₂ e	5632	3	3				41.75							5638
077	mass GHG	15243	0.000	0.2				-17:						15243	
8F	CO ₂ e	15243	0.09	5			-	11			1.				15248
	mass GHG	107330	0.001	3		1		177				1 1		107333	
9F	CO ₂ e	107330	0.27	78			1	370							107408
	mass GHG	1372	0.000	5		1		79		7			1	1377	
10F	CO ₂ e	1372	0.000	5	1						1 7				1377
-	mass GHG	-	-					17	4	0	10.	1 1		0 0	
TK-3	CO ₂ e							10							
	mass GHG							.10		111					
TK-4	CO ₂ e					- 1	5 -	1111		All	11				
myr 45	mass GHG										4				
TK-46	CO2e														
PELCA	mass GHG	9		77			-	10	1			- 1		86	
FUG1	CO ₂ e	9		1925				1,11				1			1933
TIVLO S	mass GHG							10		1	10	1			
FUG2	CO ₂ e		-									1			

ETC Texas Pipeline, Ltd. Jal #3 Gas Plant Application Date: March 2023 Revision #4

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit.

Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N₂O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²			***					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs 1	1	298	25	22,800	footnote 3		ĵ.							
LOAD	mass GHG		1	0.2			-				1	1		0.2	1
LOAD	CO ₂ e			5				1		1					5
TK-	mass GHG			Į							2				
519C	CO ₂ e										2				
TK-	mass GHG							1.							
519A	CO ₂ e														
LOADO	mass GHG			8									1	8	
UT	CO ₂ e			182										0 1	182
MSS-1	mass GHG										1				
W155-1	CO ₂ e							-						1	
	mass GHG)
- 1	CO2e		-											1	
Total	mass GHG	222548	0.2	94.92							1			222,644	
Total	CO ₂ e	222547	50	2249			-								224,846

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

Form Revision: 5/3/2016 Table 2-P: Page 2 Printed 3/21/2023 10:58 AM

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a**mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions,

The **Process Summary** shall include a brief description of the facility and its processes.

de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

Startup, Shutdown, and Maintenance (SSM) routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

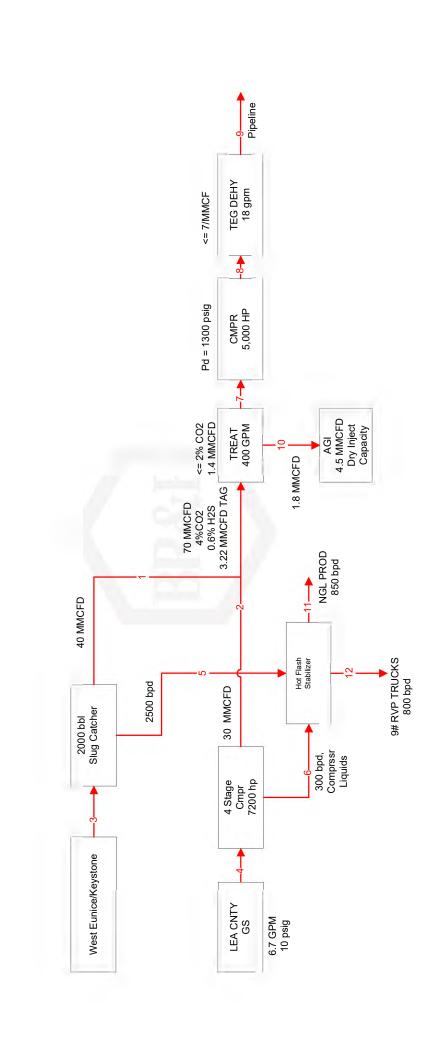
This is an application for renewal and modification of Operating Permit No. P090R3 pursuant to 20.2.70.300.B.2. NMAC. Operating Permit No. P090R3, issued to the Jal #3 Gas Plant (Jal #3), was last revised on March 27, 2019 and expires on March 27, 2024. A renewal application is due 12 months prior to permit expiration.

Jal #3 Gas Plant is authorized under New Source Review (NSR) Permit No. 1092-M10, which was last modified on November 7, 2022. This application to renew and revise Operating Permit No. P090-R3 incorporates the Significant Permit Revision authorized under NSR Permit No. 1092-M10. There have been no other Technical or Significant Revisions to NSR Permit No. 1092-M10.

The ETC Texas Pipeline Ltd (ETC) Jal #3 Gas Plant (Jal 3) is a natural gas processing plant located near Jal, NM in Lea County. Lea County is attainment or non-classifiable for all criteria air pollutants. Jal 3 is currently a minor source under the Prevention of Significant Deterioration (PSD) Permit program and is a minor source of hazardous air pollutants (HAPs).

With this application, ETC plans to remove ten (10) natural gas compressor engines, two (2) heaters, two (2) boilers, one (1) glycol dehydrator, one (1) thermal oxidizer, and supporting equipment. Two (2) Caterpillar 3606 engines, one (1) 28 MMBtu/hr amine system heater, one (1) glycol dehydration unit with associated reboiler and thermal oxidizer, one (1) AGI compressor, and (1) 10 MMBtu/hr condensate stabilizer heater will be added.

UA3 Form Revision: 6/14/19 Section 3, Page 1 Saved Date: 3/21/2023


Section 4

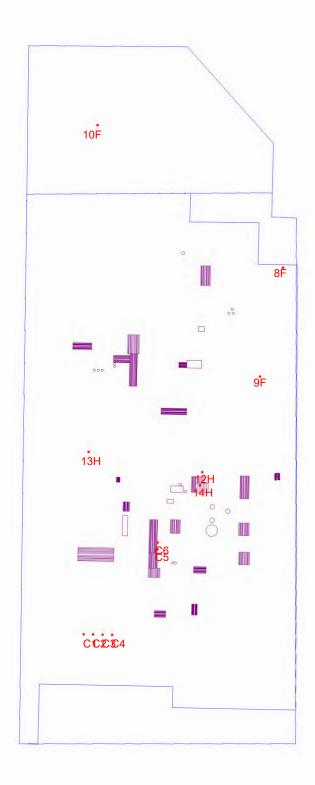
Process Flow Sheet

A process flow sheet	and/or block diagram indicating the individual equipment, all emission points and types of control
applied to those points.	The unit numbering system should be consistent throughout this application.

A process flow sheet is provided in this section.

Form-Section 4 last revised: 8/15/2011 Section 4, Page 1 Saved Date: 3/21/2023

Jal 3 Shutdown Cryo Install new Treater Rev2 02/9/2022


Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A current plot plan of the Facility is provided in this section.

Form-Section 5 last revised: 8/15/2011 Section 5, Page 1 Saved Date: 3/21/2023

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

- **B.** At least 5 significant figures shall be retained in all intermediate calculations.
- C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:
 - (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
 - (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
 - (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
 - (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

Form-Section 6 last revised: 5/3/16 Section 6, Page 1 Saved Date: 3/21/2023

Saved Date: 3/21/2023

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Site-wide emissions calculations are included in this section.

TABLE 6-1 POTENTIAL EMISSIONS SUMMARY JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

		N	O _x	VC	C	С	0	PM ₁₀	PM _{2.5}	S) ₂	H ₂	₂ S	Total	HAP	Formal	dehyde	Acetal	dehyde	Acre	olein	Other	HAPs
Emissions Source	Unit ID	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)
Equipment																							
3550 Hp Caterpillar 3612	C1	3.91	17.12	1.96	8.59	2.15	9.42	0.27	1.17	0.38	1.67			0.43	1.89	0.20	0.89	0.04	0.17	0.14	0.60	0.19	0.83
3550 Hp Caterpillar 3612	C2	3.91	17.12	1.96	8.59	2.15	9.42	0.27	1.17	0.38	1.67			0.43	1.89	0.20	0.89	0.04	0.17	0.14	0.60	0.19	0.83
3550 Hp Caterpillar 3612	C3	3.91	17.12	1.96	8.59	2.15	9.42	0.27	1.17	0.38	1.67			0.43	1.89	0.20	0.89	0.04	0.17	0.14	0.60	0.19	0.83
3550 Hp Caterpillar 3612	C4	3.91	17.12	1.96	8.59	2.15	9.42	0.27	1.17	0.38	1.67			0.43	1.89	0.20	0.89	0.04	0.17	0.14	0.60	0.19	0.83
1875 Hp Caterpillar 3606	C5	1.24	5.43	2.46	10.76	2.06	9.04	0.14	0.62	0.01	0.04			0.49	2.16	0.37	1.63	0.02	0.09	0.07	0.32	0.10	0.44
1875 Hp Caterpillar 3606	C6	1.24	5.43	2.46	10.76	2.06	9.04	0.14	0.62	0.01	0.04			0.49	2.16	0.37	1.63	0.02	0.09	0.07	0.32	0.10	0.44
Hot Oil Heater (28 MMBTU/hr)	12H	2.75	12.02	0.15	0.66	2.31	10.10	0.21	0.91	0.02	0.07												'
Dehy Reboiler	13H	0.20	0.86	0.01	0.05	0.16	0.72	0.01	0.07	0.001	0.01												- '
Stabilizer Heater	14H	0.98	4.29	0.05	0.24	0.82	3.61	0.07	0.33	0.01	0.03												
NE Flare	8F			3.93	3.39							0.097	0.090	0.47	0.15							0.47	0.15
NE Flare	8F	2.08	4.12	0.38	1.67	4.15	8.22			9.10	8.52										-		
Plant Flare	10F	0.40	1.76	1443.47	6.13					1250.00	5.31	24.15	0.10	9.46	0.04							9.46	0.04
Plant Flare - MSS	10F	413.87	3.52	0.41	1.79	827.05	7.03			<0.01	< 0.01										-		
Acid Gas Flare	9F	0.32	1.38	0.14	0.61	0.63	2.76			9.11	39.91	0.10	0.42	192.80	0.07						-	192.80	0.57
Acid Gas Flare	9F			4.53	19.85																-		
Scrubber liquids tank	TK-3			0.13	0.57																-		
Scrubber liquids tank	TK-4			0.13	0.57																-		
Scrubber liquids tank	TK-46			1.35	5.89																		
Scrubber Oil Tank	TK-519C			0.020	0.089																		
Water Tank	TK-519A			0.000002	0.00001																		
Gunbarrel	TK-519			0.00061	0.0027																-		
Condensate Loading	LOADOUT			41.75	29.35																-		
Scrubber Oil Loading	LOAD			0.17	0.76																		
Site Fugitives	FUG-1			3.97	34.75							<0.01	0.77										
Site Fugitives	FUG-1			0.0001	0.61							<0.01	0.77		_			-					
One i agraves	1 30-2		_	0.0001	0.01			_	_		-	-0.01	0.00		-								
Total Facility Emissions		438.71	107.31	1513.35	162.89	847.86	88.20	1.65	7.21	1269.78	60.61	24.35	1.73	205.44	12.14	1.56	6.82	0.19	0.84	0.69	3.04	203.69	4.98
Venting	MSS-1		_	2.2	0.7							<0.01	<0.01										
Malfunction	Malfunction		10.0		10.0		10.0				10.0		10.0					l		l			l
Dehv Flare Combustion of SSM Emissions	9F SSM	2.0		0.4		16.4				3820.9		40.6						l		l			l
Inlet Flare Combustion of SSM Emissions	10F SSM	430.1	7.6	1008.6	6.6	1630.6	25.1			2773.2	130.4	29.5	1.5					l					l
C1 - C6 SSM	C1 - C6 SSM			5.0	0.5	21.5	2.1											-					
Total SSM and Malfunction Emissions		432.1	17.6	1016.2	17.8	1668.5	37.2			6594.1	140.4	70.1	11.5										

TABLE 6-2 POTENTIAL EMISSIONS FROM CATERPILLAR 3612 (C1) **JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD.** LEA COUNTY, NEW MEXICO

		Operating	Emission	n Factors	Potential Em	ission Rate ³
Pollutant	Horsepower	Hours	(grams/Hp-hr) ¹	(lb/MMBtu) ²	(lb/hr)	(T/yr)
NO _x	3,550	8,760	0.50		3.91	17.12
voc	3,550	8,760	0.22		1.72	7.53
со	3,550	8,760	0.28		2.15	9.42
SO ₂	3,550	8,760	0.04885		0.38	1.67
PM ₁₀	3,550	8,760		0.009987	0.27	1.17
нсно	3,550	8,760	0.026		0.20	0.89
Benzene	3,550	8,760		0.00044	0.01	0.05
Acetaldehyde	3,550	8,760		0.00142	0.04	0.17
Acrolein	3,550	8,760		0.00514	0.14	0.60
Ethlybenzene	3,550	8,760		0.00004	0.001	0.005
N-Hexane	3,550	8,760		0.00110	0.03	0.13
Toluene	3,550	8,760		0.00041	0.01	0.05

Notes:

- 1. Emission factors for NOx, VOC, formaldehyde, and CO are based on manufacturer data, with a safety factor on NOx.
- 2. Emission factors for SO₂, PM₁₀, and benzene obtained from AP-42, Table 3.2-2, 4-stroke lean-burn engines, 7/00. The acetaldehyde factor reflects a reduction due to the catalyst.

 3. Potential emissions based on emission factors, maximum horsepower, fuel consumption rate of 6,795 Btu/Hp-hr,
- operation of an oxidation catalyst, and 8,760 hours of operation per year.

TABLE 6-3 POTENTIAL EMISSIONS FROM CATERPILLAR 3612 (C2) **JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD.** LEA COUNTY, NEW MEXICO

		Operating	Emission	n Factors	Potential Em	ission Rate ³
Pollutant	Horsepower	Hours	(grams/Hp-hr) ¹	(lb/MMBtu) ²	(lb/hr)	(T/yr)
NO _x	3,550	8,760	0.50		3.91	17.12
voc	3,550	8,760	0.22		1.72	7.53
со	3,550	8,760	0.28		2.15	9.42
SO ₂	3,550	8,760	0.04885		0.38	1.67
PM ₁₀	3,550	8,760		0.009987	0.27	1.17
нсно	3,550	8,760	0.026		0.20	0.89
Benzene	3,550	8,760		0.00044	0.01	0.05
Acetaldehyde	3,550	8,760		0.00142	0.04	0.17
Acrolein	3,550	8,760		0.00514	0.14	0.60
Ethlybenzene	3,550	8,760		0.00004	0.001	0.005
N-Hexane	3,550	8,760		0.00110	0.03	0.13
Toluene	3,550	8,760		0.00041	0.01	0.05

Notes:

- 1. Emission factors for NOx, VOC, formaldehyde, and CO are based on manufacturer data, with a safety factor on NOx.
- 2. Emission factors for SO₂, PM₁₀, and benzene obtained from AP-42, Table 3.2-2, 4-stroke lean-burn engines, 7/00. The acetaldehyde factor reflects a reduction due to the catalyst.

 3. Potential emissions based on emission factors, maximum horsepower, fuel consumption rate of 6,795 Btu/Hp-hr,
- operation of an oxidation catalyst, and 8,760 hours of operation per year.

TABLE 6-4 POTENTIAL EMISSIONS FROM CATERPILLAR 3612 (C3) JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

		Operating	Emission	n Factors	Potential Em	ission Rate ³
Pollutant	Horsepower	Hours	(grams/Hp-hr) ¹	(lb/MMBtu) ²	(lb/hr)	(T/yr)
NO _x	3,550	8,760	0.50	-	3.91	17.12
VOC	3,550	8,760	0.22		1.72	7.53
co	3,550	8,760	0.28		2.15	9.42
SO ₂	3,550	8,760	0.04885		0.38	1.67
PM ₁₀	3,550	8,760		0.009987	0.27	1.17
нсно	3,550	8,760	0.026		0.20	0.89
Benzene	3,550	8,760		0.00044	0.01	0.05
Acetaldehyde	3,550	8,760		0.00142	0.04	0.17
Acrolein	3,550	8,760		0.00514	0.14	0.60
Ethlybenzene	3,550	8,760		0.00004	0.001	0.005
N-Hexane	3,550	8,760		0.00110	0.03	0.13
Toluene	3,550	8,760		0.00041	0.01	0.05

Notes:

- 1. Emission factors for NOx, VOC, formaldehyde, and CO are based on manufacturer data, with a safety factor on NOx.
- 2. Emission factors for SO₂, PM₁₀, and benzene obtained from AP-42, Table 3.2-2, 4-stroke lean-burn engines, 7/00. The acetaldehyde factor reflects a reduction due to the catalyst.
- 3. Potential emissions based on emission factors, maximum horsepower, fuel consumption rate of 6,795 Btu/Hp-hr, operation of an oxidation catalyst, and 8,760 hours of operation per year.

TABLE 6-5 POTENTIAL EMISSIONS FROM CATERPILLAR 3612 (C4) JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

		Operating	Emission	n Factors	Potential Em	ission Rate 3
Pollutant	Horsepower	Hours	(grams/Hp-hr) ¹	(lb/MMBtu) ²	(lb/hr)	(T/yr)
NO _x	3,550	8,760	0.50		3.91	17.12
voc	3,550	8,760	0.22	==	1.72	7.53
co	3,550	8,760	0.28		2.15	9.42
SO ₂	3,550	8,760	0.04885		0.38	1.67
PM ₁₀	3,550	8,760		0.009987	0.27	1.17
нсно	3,550	8,760	0.026		0.20	0.89
Benzene	3,550	8,760		0.00044	0.01	0.05
Acetaldehyde	3,550	8,760		0.00142	0.04	0.17
Acrolein	3,550	8,760		0.00514	0.14	0.60
Ethlybenzene	3,550	8,760		0.00004	0.001	0.005
N-Hexane	3,550	8,760		0.00110	0.03	0.13
Toluene	3,550	8,760		0.00041	0.01	0.05

Notes:

- 1. Emission factors for NOx, VOC, formaldehyde, and CO are based on manufacturer data, with a safety factor on NOx.
- 2. Emission factors for SO_{2} , PM_{10} , and benzene obtained from AP-42, Table 3.2-2, 4-stroke lean-burn engines, 7/00. The acetaldehyde factor reflects a reduction due to the catalyst.
- 3. Potential emissions based on emission factors, maximum horsepower, fuel consumption rate of 6,795 Btu/Hp-hr, operation of an oxidation catalyst, and 8,760 hours of operation per year.

TABLE 6-6 POTENTIAL EMISSIONS FROM CATERPILLAR 3606 (C5) JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

		Operating	Emission	n Factors	Potential Em	ission Rate ³
Pollutant	Horsepower	Hours	(grams/Hp-hr) ¹	(lb/MMBtu) ²	(lb/hr)	(T/yr)
NO _x	1,875	8,760	0.30		1.24	5.43
voc	1,875	8,760	0.50		2.06	9.04
со	1,875	8,760	0.50		2.06	9.04
SO ₂	1,875	8,760		0.000588	0.01	0.04
PM ₁₀	1,875	8,760		0.009987	0.14	0.62
нсно	1,875	8,760	0.090		0.37	1.63
Benzene	1,875	8,760		0.00044	0.01	0.03
Acetaldehyde	1,875	8,760		0.00142	0.02	0.09
Acrolein	1,875	8,760		0.00514	0.07	0.32
Ethlybenzene	1,875	8,760		0.00004	0.001	0.002
N-Hexane	1,875	8,760		0.00110	0.02	0.07
Toluene	1,875	8,760		0.00041	0.01	0.03

Notes:

- 1. Emission factors for NOx, VOC, formaldehyde, and CO are based on manufacturer data, with a safety factor on NOx.
- 2. Emission factors for SO₂, PM₁₀, and benzene obtained from AP-42, Table 3.2-2, 4-stroke lean-burn engines, 7/00. The acetaldehyde factor reflects a reduction due to the catalyst.
- 3. Potential emissions based on emission factors, maximum horsepower, fuel consumption rate of 6,811 Btu/Hp-hr, operation of an oxidation catalyst, and 8,760 hours of operation per year.

TABLE 6-7 POTENTIAL EMISSIONS FROM CATERPILLAR 3606 (C6) JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

		Operating	Emission	n Factors	Potential Em	ission Rate ³
Pollutant	Horsepower	Hours	(grams/Hp-hr) ¹	(lb/MMBtu) ²	(lb/hr)	(T/yr)
NO _x	1,875	8,760	0.30		1.24	5.43
VOC	1,875	8,760	0.50		2.06	9.04
со	1,875	8,760	0.50		2.06	9.04
SO ₂	1,875	8,760		0.000588	0.01	0.04
PM ₁₀	1,875	8,760		0.009987	0.14	0.62
нсно	1,875	8,760	0.090		0.37	1.63
Benzene	1,875	8,760		0.00044	0.01	0.03
Acetaldehyde	1,875	8,760		0.00142	0.02	0.09
Acrolein	1,875	8,760		0.00514	0.07	0.32
Ethlybenzene	1,875	8,760		0.00004	0.001	0.002
N-Hexane	1,875	8,760		0.00110	0.02	0.07
Toluene	1,875	8,760		0.00041	0.01	0.03

Notes:

- 1. Emission factors for NOx, VOC, formaldehyde, and CO are based on manufacturer data, with a safety factor on NOx.
- 2. Emission factors for SO₂, PM₁₀, and benzene obtained from AP-42, Table 3.2-2, 4-stroke lean-burn engines, 7/00. The acetaldehyde factor reflects a reduction due to the catalyst.
- 3. Potential emissions based on emission factors, maximum horsepower, fuel consumption rate of 6,811 Btu/Hp-hr, operation of an oxidation catalyst, and 8,760 hours of operation per year.

TABLE 6-8 POTENTIAL EMISSIONS FROM HOT OIL HEATER (12H) JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

	Max Firing Rate	Gas Heating Value	Emission Factor	Potential Emission Rates ²					
Pollutant	(MMBtu/hr)	(MMBtu/scf)	(lb/MMSCF) 1	(lb/hr)	(T/yr)				
NO _x	28.00	1020	100.0	2.75	12.02				
voc	28.00	1020	5.5	0.15	0.66				
со	28.00	1020	84.0	2.31	10.10				
SO ₂	28.00	1020	0.60	0.016	0.07				
PM ₁₀	28.00	1020	7.6	0.21	0.91				
Benzene	28.00	1020	0.0021	0.00006	0.0003				

Notes:

- 1. Emission factors obtained from AP-42 Table 1.4-1 through 1.4-3 for commercial boilers.
- 2. Potential emissions based on AP-42 emission factors, maximum firing rate of 28 MMBtu/hr. 1,020 Btu/scf fuel heating value, and 8,760 hours per year of operation.

TABLE 6-9 POTENTIAL EMISSIONS FROM DEHY REBOILER (13H) JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

	Max Firing Rate	Gas Heating Value	Emission Factor	Potential Emission Rates ³				
Pollutant	(MMBtu/hr)	(MMBtu/scf)	(lb/MMSCF) 1	(lb/hr)	(T/yr)			
NO _x	2.0	1020	100.0	0.20	0.86			
voc	2.0	1020	5.5	0.01	0.05			
co	2.0	1020	84.0	0.16	0.72			
SO ₂	2.0	1020	0.6	0.00	0.01			
PM ₁₀	2.0	1020	7.6	0.01	0.07			
Benzene	2.0	1020	0.0021	0.000004	0.00002			

Notes:

- 1. Emission factors obtained from AP-42 Table 1.4-1 through 1.4-3 for commercial boilers.
- 3. Potential emissions based on AP-42 emission factors, maximum firing rate of 2.0 MMBtu/hr. 1,020 Btu/scf fuel heating value, and 8,760 hours per year of operation.

TABLE 6-10 POTENTIAL EMISSIONS FROM STABILIZER HEATER (14H) JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

	Max Firing Rate	Gas Heating Value	Emission Factor	Potential Emis	sion Rates ³
Pollutant	(MMBtu/hr)	(MMBtu/scf)	(lb/MMSCF) 1	(lb/hr)	(T/yr)
NO _x	10.0	1020	100.0	0.98	4.29
voc	10.0	1020	5.5	0.05	0.24
со	10.0	1020	84.0	0.82	3.61
SO ₂	10.0	1020	0.6	0.01	0.03
PM ₁₀	10.0	1020	7.6	0.07	0.33
Benzene	10.0	1020	0.0021	0.00002	0.0001

Notes:

- 1. Emission factors obtained from AP-42 Table 1.4-1 through 1.4-3 for commercial boilers.
- 3. Potential emissions based on AP-42 emission factors, maximum firing rate of 10.0 MMBtu/hr. 1,020 Btu/scf fuel heating value, and 8,760 hours per year of operation.

TABLE 6-11 POTENTIAL EMISSIONS SUMMARY PLANT FLARE (8F) JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

	FLARE FEED AND EXHAUST RATES																		
	Fee	d Rates and	l Compositio	ns		Flare			Component	Total Heat	Total Heat								
	Molecular			NGL Flare		DRE	NGL Exha	NGL Exhaust Rate		Release	Release	FLARE EMISSION RATES							
Component	Weight	Cu Ft/lb	lb/hr	MCF/yr	MCF/hr	%	lb/hr 1	T/yr	BTU/SCF	MMBtu/yr	MMBtu/hr		Emission	Pilot	Gas	Flare E	xhaust	Total P	otential
H2S	34	11.1351	4.83	100.76	0.04	98%	0.10	0.09	586.80	59.13	0.02		Factors	Emission	n Rates ³	Emissio	n Rates	Emissio	n Rates
N2	28	13.5460										Pollutant	(lb/MMBtu) ²	(lbs/hr)	(T/yr)	(lbs/hr)	(T/yr)	(lbs/hr)	(T/yr)
SO2							9.10	8.52											
CO2	44	8.6229	20,761.45	335,166.07	119.35	0%	20,761.45	19,434.65				NOx	0.138	0.377	1.65	1.70	2.47	2.08	4.12
C1	16	23.6540	488.69	21,641.59	7.71	98%	9.77	9.15	909.40	19,680.86	7.01	VOC	0.14	0.382	1.67	3.93	3.39	4.31	5.07
C2	30	12.6200	203.44	4,806.68	1.71	98%	4.07	3.81	1,618.70	7,780.57	2.77	CO	0.2755	0.752	3.29	3.40	4.93	4.15	8.22
C3	44	8.6059	113.47	1,828.14	0.65	98%	2.27	2.12	2,314.90	4,231.95	1.51	SO2				9.10	8.52	9.10	8.52
IC4	58	6.5291	8.40	102.74	0.04	98%	0.17	0.16	3,000.40	308.25	0.11	H2S				0.10	0.09	0.10	0.09
NC4	58	6.5291	39.95	488.40	0.17	98%	0.80	0.75	3,010.80	1,470.47	0.52								
IC5	72	5.2596	4.44	43.77	0.02	98%	0.09	0.08	3,699.00	161.89	0.06								
NC5	72	5.2596	6.05	59.54	0.02	98%	0.12	0.11	3,706.90	220.70	0.08			Flarin	ng Period :	8760	hrs/yr		
Benzene	86	4.4035	23.39	192.80	0.0687	98%	0.4677	0.15	3,707.90	714.88	0.25								
C6+	86	4.4035	0.60	262.26	0.00	98%	0.01	0.01	4,403.80	1,154.94	0.01	Flare Pilot and Shepard Ring Rating: 2.7 MMBtu/hr							
Total			21,654.72	364,692.73	129.77		20,788.42	19,459.61		35,783.63	12.34								
Total VOC 4							3.93 3.39												

Notes:

- 1. Flare Exhaust (lb/hr) = Total Volume (MCF/hr) x 1000 / (Cu Ft/#) x (100-Flare DRE (%)).
- 2. Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources: Flares and Vapor Oxidizers, October 2000 RG-109 (Draft), Table 4, high Btu, "other" flare type. VOC based on AP-42 Table 13.5-1 (2/18).
- 3. Pilot gas potential emissions based on AP-42 emission factors, maximum pilot/shepard ring gas rate of 2.7 MMBtu/hr, 1,020 Btu/scf fuel heating value, and continuous operations of 8,760 hours of operation per year.
- 4. Total VOC includes components C3, IC4, NC4, IC5, NC5, & C6+

A-0090-6-Jai3CalcsLWLxlsx3/21/2023

TABLE 6-12 POTENTIAL EMISSIONS SUMMARY PLANT FLARE (10F) JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

					FLARE	FEED AND	EXHAUST R	ATES												
		Feed Ra	tes and Com	positions									1							
Component	Molecular Weight	Cu Ft/lb	Ib/hr I	Process Vents (F	PROCESS-1	MCF/yr	Flare DRE %	PROCESS Ra		Component Heating Value BTU/SCF	Heat F	Heat Release MMBtu/hr MMBtu/yr		Emission	Pil	FLARE EMIS	SION RATES	ot Emission	Total Potent	iol Emission
H2S	34	11.1351	1,207.61	10,264.70	13.447	114.299	98%	24.15	0.10	586.8	7.89063	67.07036	1	Factors		on Rates ³	Rat		Rai	
N2	28	13.5460	2,615.15	11.11	35.42	301.11	_	2615.15	11.11				Pollutant	(lb/MMBtu) ²	(lbs/hr)	(T/yr)	(lbs/hr)	(T/yr)	(lbs/hr)	(T/yr)
SO2								1,250.000	5.31											
CO2	44	8.6229	5,937.83	25.24	51.20	435.21		5937.83	25.24				NOx	0.138	0.40	1.76	413.87	1.76	414.28	3.52
C1	16	23.6540	53,196.46	226.08	1,258.31	10,695.63	98%	1063.93	4.52	909.4	1,144.306	9,726.60	VOC	0.14	0.41	1.79	1443.47	6.13	1443.88	7.92
C2	30	12.6200	21,115.93	89.74	266.48	2,265.11	98%	422.32	1.79	1,618.7	431.356	3,666.53	co	0.2755	0.80	3.52	826.25	3.51	827.05	7.03
C3	44	8.6059	21,823.62	92.75	187.81	1,596.40	98%	436.47	1.86	2,314.9	434.766	3,695.51	SO2				1250.00	5.31	1250.00	5.31
IC4	58	6.5291	1,711.12	7.27	11.17	94.96	98%	34.22	0.15	3,000.4	33.521	284.93	H2S				24.15	0.10	24.15	0.10
NC4	58	6.5291	14,859.72	63.15	97.02	824.68	98%	297.19	1.26	3,010.8	292.110	2,482.93								
IC5	72	5.2596	9,436.79	40.11	49.63	421.89	98%	188.74	0.80	3,699.0	183.595	1,560.56				Flaring Period :	8760	hrs/yr		
NC5	72	5.2596	9,020.46	38.34	47.44	403.27	98%	180.41	0.77	3,706.9	175.870	1,494.90			Flare Pilot/S	weep Gas Rating:	2.92	MMBtu/hr		
Benzene	86	4.4035	473.11	2.01	2.08	17.71	98%	9.46	0.04	3,707.9	7.725	65.66	l		Pr	ocess Gas Flaring	8.5	hrs/yr		
C6+	86	4.4035	14,848.64	63.11	65.39	555.78	98%	296.973	1.26	4,403.8	287.947	2,447.55	1 (Cond. Re-run	Tank Gas Volume:				
Total			156,246.44	10,923.62	2,085.4	17,726.0	-	12756.85	54.22		2999.09	25492.23	l	50000	Maximum dail	y rate (Mcfd)				
Total VOC 4								1443.47	6.13				l	50000	Avg daily throu	ughput (Mcf/day)	17,708.33	_Annual Max	throughput (N	/lcf)

Notes:

- 1. Flare Exhaust (lb/hr) = Total Volume (MCF/hr) x 1000 / (Cu Ft/#) x (100-Flare DRE (%)). Process vents include vapors from equipment such as stabilizer compressors, closed drain tanks, and condensate re-run tanks. Volumes are conservatively assumed to be 50000.0 Mcf/day of gas.
- 2. Flare CO and NOx emission factors from TCEQ Air Permit Techinical Guidance for Chemical Sources: Flares and Vapor Oxidizers, October 2000 RG-109 (Draft), Table 4, high Btu, "other" flare type. VOC based on AP-42 Table 13.5-1 (2/18).
- 3. Pilot gas potential emissions based on AP-42 emission factors, maximum pilot/sweep gas rate of 2.92 MMBtu/hr, 1,020 Btu/scf fuel heating value, and continuous operations of 8,760 hours of operation per year.
- 4. Total VOC includes components C3, IC4, NC4, IC5, NC5, & C6+

A-0090-6-Jal3CalcesLWL:xlsx3/2/1/2023

TABLE 6-13 POTENTIAL EMISSIONS SUMMARY TREATMENT FLARE (9F) JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

					FLARE	FEED AND EX	KHAUST RA	ATES													
		Fe	ed Rates	and Composit	tions			Flare	Flare E	xhaust	Component	Total Heat	Total Heat	1							
	Molecular		D	EHY-2		AMINE		DRE	Ra	ate	Heating Value	Release	Release			FLAF	RE EMISS	ION RATE	S		
Component	Weight	Cu Ft/lb	lb/hr	MCF/hr	lb/hr	T/yr	MCF/hr	%	lb/hr 1	T/yr	BTU/SCF	MMBtu/yr	MMBtu/hr		Emission	Pilot	Gas	Flare E	Exhaust	Total P	otential
H2S	34	11.1351	0.01	0.00	4.83	100.76	0.04	98%	0.097	0.42	586.80	0.00	0.00		Factors	Emission	n Rates 3	Emissio	n Rates	Emissio	n Rates
N2	28	13.5460												Pollutant	(lb/MMBtu) ²	(lbs/hr)	(T/yr)	(lbs/hr)	(T/yr)	(lbs/hr)	(T/yr)
SO2									9.11	39.91	l										
CO2	44	8.6229			20,761.45	335,166.07	119.35	0%						NOx	0.138	0.138	0.60	0.18	0.78	0.32	1.38
C1	16	23.6540	3.99	0.09	488.69	21,641.59	7.71	98%	9.854	43.16	909.40	0.09	0.09	VOC	0.14	0.140	0.61	4.53	19.85	4.67	20.46
C2	30	12.6200	7.18	0.09	203.44	4,806.68	1.71	98%	4.21	18.45	1,618.70	0.15	0.15	co	0.2755	0.276	1.21	0.35	1.55	0.63	2.76
C3	44	8.6059	14.07	0.12	113.47	1,828.14	0.65	98%	2.55	11.17	2,314.90	0.28	0.28	SO2				9.11	39.91	9.11	39.91
IC4	58	6.5291	2.99	0.02	8.40	102.74	0.04	98%	0.23	1.00	3,000.40	0.06	0.06	H2S				0.10	0.42	0.10	0.42
NC4	58	6.5291	14.95	0.10	39.95	488.40	0.17	98%	1.10	4.81	3,010.80	0.29	0.29								
IC5	72	5.2596	6.39	0.03	4.44	43.77	0.02	98%	0.22	0.95	3,699.00	0.12	0.12								
NC5	72	5.2596	9.03	0.05	6.05	59.54	0.02	98%	0.30	1.32	3,706.90	0.18	0.18			Flarin	g Period:	8760	hrs/yr		
Benzene	86	4.4035			23.39	192.80	0.0687	98%			3,707.90										
C6+	86	4.4035	6.26	0.03	0.60	262.26	0.00	98%	0.14	0.60	4,403.80	0.12	0.12	FI	are Pilot and S	hepard Rin	ng Rating:	1.0	MMBtu/hi		
Total			64.86	0.53	21,654.724	364,692.733	129.772		27.81	121.79		1.29	1.29								
Total VOC 4		-							4.53	19.85			-								

Notes:

Dehy has 50% safety factor applied

- 1. Flare Exhaust (lb/hr) = Total Volume (MCF/hr) x 1000 / (Cu Ft/#) x (100-Flare DRE (%)). Dehy and Amine rates from Promax process simulation with a 50% safety factor).
- 2. Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources: Flares and Vapor Oxidizers, October 2000 RG-109 (Draft), Table 4, high Btu, "other" flare type. VOC based on AP-42 Table 13.5-1 (2/18).
- 3. Pilot gas potential emissions based on AP-42 emission factors, maximum pilot/shepard ring gas rate of 1.0 MMBtu/hr, 1,020 Btu/scf fuel heating value, and continuous operations of 8,760 hours of operation per year.

4. Total VOC includes components C3, IC4, NC4, IC5, NC5, & C6+

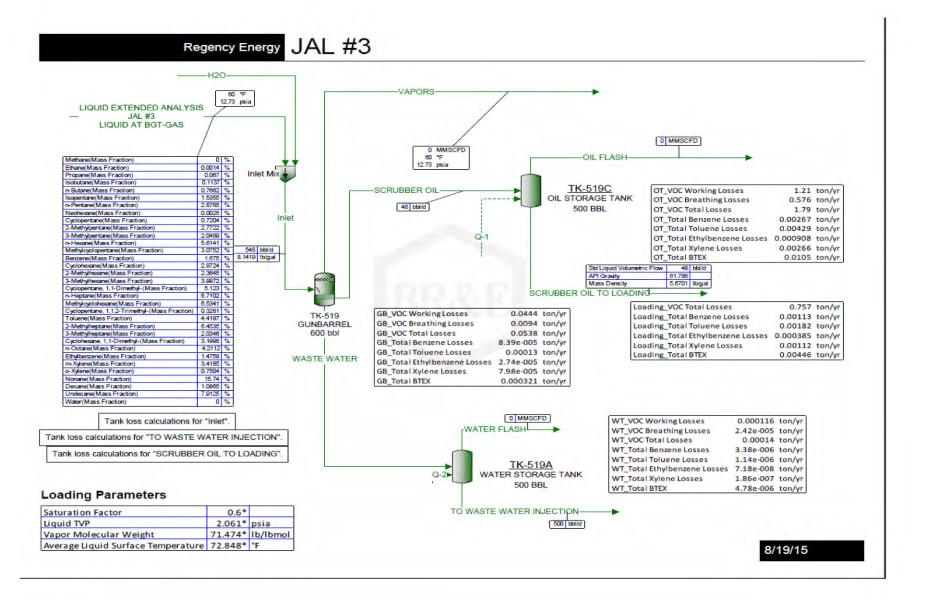
TABLE 6-14 POTENTIAL EMISSIONS FROM STORAGE TANKS - TRAIN 1 JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

				Potential VO	Emissions ¹		
Source	FIN	Annual Throughput ¹ (gallons/year)	Tank Capacity (barrels)	Annual Breathing Losses ² (lbs)	Annual Working Losses ² (lbs)	VOC En	iissions ⁵ (T/yr)
Scrubber liquids tank	TK-3	11,200	210	1,050.39	88.63	0.13	0.57
Scrubber liquids tank	TK-4	11,200	210	1,050.39	88.63	0.13	0.57
Scrubber liquids tank	TK-46	11,200	107	794.61	10,989.08	1.35	5.89
Scrubber Oil Tank	TK-519C	735,840	500	-	-	0.020	0.089
Water Tank	TK-519A	7,665,000	500	-	-	0.0000016	0.0000070
Gunbarrel	TK-519	8,400,840	600	-	-	0.00061	0.0027
						1.63	7.12

Notes:

- 1. Based on maximum expected annual condensate and sump tank throughputs.
- 2. Annual breathing and working losses were calculated using AP-42 Section 7 calculations. Note that all tanks have negligible flash losses.
- 3. Annual VOC losses from Vertical Roof Tanks were estimated using AP-42 Section 7 calculations.
- 4. Benzene emissions based on benzene % of condensate analysis and assuming 1% of VOC emissions for diesel and gasoline.
- 5. Emission Calculation Examples:

Total Annual VOC Emissions (T/yr) = (Breathing Losses (lbs) + Working Losses (lbs)) / 2000 95% of Vapors from TK-519, TK-519A, and TK-519C are captured by a VRU. Emissions are calculated using Promax.


TABLE 6-15

POTENTIAL EMISSIONS SUMMARY AP-42 SECTION 7 FIXED-ROOF TANK EMISSIONS JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

Tank Identification	TK-3 & TK-4	TK-46
Actual Location	Midland, TX	Midland, TX
Location for Calculation Purposes	Roswell, New Mexico	Roswell, New Mexico
Contents of Tank	Gasoline (RVP 9)	Gasoline (RVP 9)
Tank/Roof Type	Cone	Cone
Underground?	Aboveground	Aboveground
Will flashing occur at the tank?	No	No
Are the tanks vapor balanced?	No	No
Diameter, ft	10.0	10.0
Shell Height or Length, ft	15.0	7.5
Nominal Capacity, gal	210	107
Throughput, gallons/yr	11,200	7,665,000
Tank Paint Color	White	White
Tank Paint Condition	Average	Average
Effective Diameter, ft	10.0	10.0
Geometric Capacity, gal	8,225	3,819
Maximum Liquid Height, ft	14.0	6.5
Average Liquid Height, ft	7.0	3.3
Minimum Liquid Height, ft	1.0	1.0
Cone Tank Roof Slope, ft/ft	0.0625	0.0625
Dome Tank Roof Radius, ft	N/A	N/A
Dome Tank Roof Height, ft	N/A	N/A
Roof Outage, ft	0.104	0.104
Vapor Space Outage, ft	8.10	4.35
Vapor Space Volume, ft^3	636	342
Average Daily Minimum Ambient Temperature, F	47.60 75.80	47.60 75.80
Average Daily Maximum Ambient Temperature, F		
Daily Maximum Ambient Temperature, F	93.90 1722	93.90
Daily Total Solar Insolation Factor, Btu/ft^2/day	61.7	1722 61.7
Daily Average Ambient Temperature, F Tank Paint Solar Absorbance, dimensionless	0.250	0.250
Daily Vapor Temperature Range, R	30.6	29.3
Daily Average Liquid Surf. Temperature, F	64.1	64.4
Daily Minimum Liquid Surf. Temperature, F	56.5	57.0
Daily Maximum Liquid Surf. Temperature, F	71.8	71.7
Liquid Bulk Temperature	62.99	62.99
Vapor Molecular Weight, lb/lbmol	67.0	67.0
Antoine's Coefficient A	N/A	N/A
Antoine's Coefficient B	N/A	N/A
Antoine's Coefficient C	N/A	N/A
Type of Substance (for use in calculations)	Gas	Gas
Vapor Pressure at Daily Av. Liquid Surf. Temp., psia	4.998	5.020
Vapor Pressure at Daily Min. Liquid Surf. Temp., psia	4.300	4.348
Vapor Pressure at Daily Max. Liquid Surf. Temp., psia	5.783	5.774
Vapor Pressure Calculation Method	AP-42 Figure 7.1-14b: RVP=9 ASTM Slope=3	AP-42 Figure 7.1-14b: RVP=9 ASTM Slope=3
Vapor Density, lb/ft^3	0.059571	0.059815
Daily Vapor Pressure range, psi	1.482	1.426
Breather Vent Pressure Setting, psig	0.0300	0.0300
Breather Vent Vacuum Setting, psig	-0.0300	-0.0300
Breather Vent Pressure Setting Range, psi	0.0600	0.0600
Ambient Pressure, psia	12.9	12.9
Vapor Space Expansion Factor	0.2388	0.2297
Vented Vapor Saturation Factor	0.318	0.463
Annual Turnovers	1.47	2371.83
Turnover Factor	1.00	0.18
Working Loss K _B Factor	0.99	1.00
Working Loss Product Factor	1.00	1.00
Standing Storage Loss, lb/yr	1,050.39	794.61
Working Loss, lb/yr	88.63	10,989.08
Total Losses, lb/yr	1,139.02	11,783.69
Standing Storage Loss, TPY	0.52519	0.39731
Working Loss, TPY	0.04432	5.49454
Total Losses, TPY	0.56951	5.89185

Based on AP-42, June 2020, Section 7.1.3.1.

A-0090-6-Jal3CalcsLWL:xlsx TANKS AP42

TABLE 6-16 POTENTIAL EMISSIONS FROM TRUCK LOADING JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

Material Name	EU	Saturation Factor ¹ (S)	True \ Press (F	sure ²	Molecular Weight of Vapors ² (M)	Temp of Loaded Liquid ² (F)	Max Temp of Loaded Liquid (F)	Emission	n Factor ¹ C/10 ³ gal)	Annual Throughput ³ (gals)	Estimated Hourly Throughput ³ (gal)		ntrolled VOC sions
			Avg	Max	(lb/lb-mole)			Avg	Max			(lb/hr) ⁴	(T/yr) ⁵
Condensate Scrubber Oil	LOADOUT LOAD	0.6 -	5.00 -	5.78 -	67.00 -	62.9915 -	95 -	4.786 -	5.22 -	12,264,000 735,840	8,000 -	41.75 0.17	29.35 0.76
											TOTAL	41.92	30.11

Notes:

1. Per AP-42, 5th Edition (6/08), Section 5.2, Equation 1 Emission Factor (lb VOC/10³gal) =

S x P x M x 12.46

F + 460

Saturation Factor = 0.6 for submerged loading: dedicated normal service

- 2. True vapor pressure, weight of vapors and temp of loaded liquid obtained from AP-42 run using Gasoline RVP-9.
- 3. Throughput is the amount of condensate loaded out from the storage tank. It is estimated that one truck can load 8,000 gallons in one hour.
- 4. Uncontrolled Hourly VOC Emissions = Estimated Hourly Throughput (gal/hr) x Max Emission Factor (lb VOC/10³ gal) / 1000 Emissions from LOAD are calculated using Promax
- 5. Uncontrolled Annual VOC Emissions = Annual Throughput (gal) x Avg Emission Factor (lb VOC/10³ gal) / 1000 / 2000 (lb/T) Emissions from LOAD are calculated using Promax

TABLE 6-17

FUGITIVE EMISSIONS (FUG1) JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

Fugitive Emissions

Emission Unit: 79 & 80 Stack ID: FUG 1

Source Description: Fugitive Emissions

Components

•	Val	ves	Pump	seals	Conn	ectors	Fla	inges	Open	lines	Oth	ner		Stream					KKK?	VOC	H2S
																	refrigeran		1		
	gas	liq	gas	liq	gas	liq	gas	liq	gas	liq	gas	liq	inlet	residue	product	stream *	t	acid		%	%
EU 79																					
Fuel gas	277		25				1046				36			Х						2%	0.00%
Inlet gas	1648		16				1635		164		18		Х						Х	22%	0.65%
Scrubber oil gas	172		4				75		34		1				Х				X	71%	0.00%
Rich amine		53						159		11		1				Х		Х	Х	0%	15.61%
Sweet gas	44						53		8		1			Х					Х	2%	0.00%
Dry gas	855						2540		171		1			Х					Х	2%	0.00%
NGL	.	86		17				137		17		2			Х				Х	71%	0.00%
Refrigeran	47	47	2	1			141	141	10	9							Х		X	100%	0.00%
Residue	282		9				846		57					Х						2%	0.00%
"S" Plant units	48	12	12				360	60			6		Х						Х	22%	0.65%
"S" Plant refrig	9	9	3	3			30	30			1	1					Х		×	100%	0.00%
EU 80																					
Storage tanks (total)		28				100									Х				1	71%	0.00%
Storage tanks (per tk)		7				25									* ass	umed = aci	d gas				

Control Efficiencies

Valv	es	Pump	seals	Conne	ectors	Fla	nges	Open	lines	Otl	ner
gas	liq	gas	liq	gas	liq	gas	liq	gas	liq	gas	liq

67% 61% 4

Total Fittings

	Valves	Pum	o seals	Conn	ectors	Fla	nges	Open	lines	Ot	her
gas	s liq	gas	liq	gas	liq	gas	liq	gas	liq	gas	liq
338	2 235	71	21	0	100	6726	527	444	37	64	4

Emiss	ion CalculationsVO	Cs			Factors	_ (k	g/hr/sourc	e)							
(lb/yr)		Val	ves	Pump	seals	Conn	ectors	Fla	nges	Open	lines	Ot	her	Total	
Unit		gas	liq	gas	liq	gas	liq	gas	liq	gas	liq	gas	liq	(lb/yr)	
	,	4.5E-03	2.5E-03	2.4E-03	1.3E-02	2.0E-04	2.1E-04	3.9E-04	1.1E-04	2.0E-03	1.4E-03	8.8E-03	7.5E-03		
EU 79															
	Fuel gas	415	0	20	0	0	0	136	0	0	0	106	0	677	
	Inlet gas	10379	0	163	0	0	0	2704	0	1391	0	672	0	15309	
	Scrubber oil gas	3518	0	132	0	0	0	403	0	937	0	121	0	5111	
	Rich amine	0	0	0	0	0	0	0	0	0	0	0	0	1	
	Sweet gas	22	0	0	0	0	0	7	0	5	0	3	0	37	
	Dry gas	423	0	0	0	0	0	330	0	114	0	3	0	870	
	NGL	0	1155	0	1674	0	0	0	208	0	328	0	207	3571	
	Refrigerant	1345	883	93	138	0	0	1060	299	385	243	0	0	4445	
	Residue	423	0	7	0	0	0	110	0	38	0	0	0	578	
	"S" Plant units	302	50	122	0	0	0	595	28	0	0	224	0	1321	
	"S" Plant refrig	258	169	139	413	0	0	225	64	0	0	170	145	1582	
EU 80														0	
	Storage tanks (total)	0	964	0	0	0	289	0	0	0	0	0	0	1253	
														lb/yr	
	·	= '											-	34755	

100% safety factor

Emission Calculations -- H2S

(lb/yr)		Valv	/es	Pump	seals	Conn	ectors	Fla	nges	Open	lines	Ot	her	Total
Unit		gas	liq	(lb/yr)										
		4.5E-03	2.5E-03	2.4E-03	1.3E-02	2.0E-04	2.1E-04	3.9E-04	1.1E-04	2.0E-03	1.4E-03	8.8E-03	7.5E-03	
	Inlet gas	304	0	5	0	0	0	79	0	41	0	20	0	449
	Rich amine	0	155	0	0	0	0	0	53	0	46	0	23	277
	"S" Plant units	9	1	4	0	0	0	17	1	0	0	7	0	39

lb/yr 765 0.38

100% safety factor

0.76

34.75

Gas Analyses

Inlet gas composition

Component	MW	Wet vol/mol %	Dry vol/mol %	MW * dry vol %	LHV Btu/scf	Btu/scf * dry vol %	Mass Fraction (dry)	Spec. Volume ft³/lb	Spec. Volume VOC ft ³ /lb
Water	18.02	2.79%						21.06	
Nitrogen	28.01	1.25%	1.29%	0.360	0	0.00	1.70%	13.547	
CO ₂	44.01	1.15%	1.18%	0.521	0	0.00	2.46%	8.623	
H ₂ S	34.08	0.39%	0.40%	0.137	586.71	2.35	0.65%	11.136	
Methane	16.04	77.53%	79.76%	12.795	909.1	725.05	60.40%	23.65	
Ethane	30.07	8.76%	9.01%	2.710	1617.8	145.79	12.79%	12.62	
Propane	44.10	4.21%	4.33%	1.910	2315.9	100.30	9.01%	8.606	4.456
I-Butane	58.12	0.19%	0.20%	0.114	3001	5.87	0.54%	6.529	0.153
N-Butane	58.12	1.65%	1.70%	0.987	3010.5	51.10	4.66%	6.529	1.325
I-Pentane	72.15	0.68%	0.70%	0.505	3697.9	25.87	2.38%	5.26	0.440
N-Pentane	72.15	0.65%	0.67%	0.482	3706.8	24.79	2.28%	5.26	0.421
Hexanes +	86.18	0.75%	0.77%	0.665	4403.9	33.98	3.14%	4.404	0.406
Total		100%	1.00	21.18		1115	100%		7.201
Dry total		97.21%	(mix	kture mol.	wt)(mixtu	re heating	value)		
	NMHC	16.89%							
	NMEHC (VOC)	8.13%					22.01%		

Residue gas composition

		Wet vol/mol	Dry vol/mol	MW *	LHV	Btu/scf	Mass Fraction	Spec. Volume	Spec. Volume VOC
Component	MW	%	%	%	Btu/scf	%	(dry)	ft ³ /lb	ft ³ /lb
Water	18.02	0.00%						21.06	
Nitrogen	28.01	2.16%	2.16%	0.605	0	0.00	3.54%	13.547	
CO ₂	44.01	0.00%	0.00%	0.000	0	0.00	0.00%	8.623	
H ₂ S	34.08	0.00%	0.00%	0.000	586.71	0.00	0.00%	11.136	
Methane	16.04	93.08%	93.10%	14.936	909.1	846.36	87.42%	23.65	
Ethane	30.07	4.15%	4.15%	1.248	1617.8	67.15	7.31%	12.62	
Propane	44.10	0.38%	0.38%	0.168	2315.9	8.80	0.98%	8.606	5.543
I-Butane	58.12	0.07%	0.07%	0.041	3001	2.10	0.24%	6.529	0.775
N-Butane	58.12	0.10%	0.10%	0.058	3010.5	3.01	0.34%	6.529	1.107
I-Pentane	72.15	0.02%	0.02%	0.014	3697.9	0.74	0.08%	5.26	0.178
N-Pentane	72.15	0.02%	0.02%	0.014	3706.8	0.74	0.08%	5.26	0.178
Hexanes +	86.18	0.00%	0.00%	0.000	4403.9	0.00	0.00%	4.404	0.000
Total		100%	1.00	17.08		929	100%		7.781
Dry total		100.0%	(mix	kture mol.	wt)(mixtu	re heating	value)		
	NMHC	4.74%							
	NMEHC (VOC)	0.59%					1.73%		

Product (liquid) composition

i roddot (iiqdid) comp	oomon								Spec.
		Wet	Dry	MW *		Btu/scf	Mass	Spec.	Volume
		vol/mol	vol/mol	dry vol	LHV	* dry vol	Fraction		voc
Component	MW	%	%	%	Btu/scf	%	(dry)	ft ³ /lb	ft ³ /lb
Water	18.02	0.00%						21.06	
Nitrogen	28.01	0.00%	0.00%	0.000	0	0.00	0.00%	13.547	
CO ₂	44.01	0.00%	0.00%	0.000	0	0.00	0.00%	8.623	
H ₂ S	34.08	0.00%	0.00%	0.000	586.71	0.00	0.00%	11.136	
Methane	16.04	0.35%	0.35%	0.056	909.1	3.18	0.13%	23.65	
Ethane	30.07	40.75%	40.75%	12.254	1617.8	659.25	28.40%	12.62	
Propane	44.10	34.10%	34.10%	15.037	2315.9	789.72	34.86%	8.606	4.982
I-Butane	58.12	4.61%	4.61%	2.679	3001	138.35	6.21%	6.529	0.511
N-Butane	58.12	12.00%	12.00%	6.975	3010.5	361.26	16.17%	6.529	1.330
I-Pentane	72.15	1.64%	1.64%	1.183	3697.9	60.65	2.74%	5.26	0.146
N-Pentane	72.15	4.91%	4.91%	3.543	3706.8	182.00	8.21%	5.26	0.438
Hexanes +	86.18	1.64%	1.64%	1.413	4403.9	72.22	3.28%	4.404	0.123
Total		100%	1.00	43.14		2267	100%		7.531
Dry total		100.0%	(mix	kture mol.	wt)(mixtu	re heating	value)		
	NMHC	99.65%							
	NMEHC (VOC)	58.90%					71.47%		

Acid gas composition

		Wet	Dry	MW *		Btu/scf	Mass	Spec.	Spec. Volume
		vol/mol	vol/mol	dry vol	LHV		Fraction	•	voc
Component	MW	%	%	%	Btu/scf	%	(dry)	ft³/lb	ft ³ /lb
Water	18.02	6.00%						21.06	
Nitrogen	28.01	0.00%	0.00%	0.000	0	0.00	0.00%	13.547	
CO ₂	44.01	74.88%	79.66%	35.058	0	0.00	83.86%	8.623	
H₂S	34.08	18.00%	19.15%	6.526	586.71	112.35	15.61%	11.136	
Methane	16.04	1.00%	1.06%	0.171	909.1	9.67	0.41%	23.65	
Ethane	30.07	0.10%	0.11%	0.032	1617.8	1.72	0.08%	12.62	
Propane	44.10	0.00%	0.00%	0.000	2315.9	0.00	0.00%	8.606	0.000
I-Butane	58.12	0.00%	0.00%	0.000	3001	0.00	0.00%	6.529	0.000
N-Butane	58.12	0.00%	0.00%	0.000	3010.5	0.00	0.00%	6.529	0.000
I-Pentane	72.15	0.00%	0.00%	0.000	3697.9	0.00	0.00%	5.26	0.000
N-Pentane	72.15	0.00%	0.00%	0.000	3706.8	0.00	0.00%	5.26	0.000
Hexanes +	86.18	0.02%	0.02%	0.018	4403.9	0.94	0.04%	4.404	4.404
Total		100%	1.00	41.81		125	100%		4.404
Dry total		94.0%	(mix	kture mol.	wt)(mixtu	re heating	value)		
	NMHC	0.12%							
	NMEHC (VOC)	0.02%					0.04%		

Refrigerant composition

Component	MW	Wet vol/mol %	Dry vol/mol %	MW * dry vol %	LHV Btu/scf	Btu/scf * dry vol %	Mass Fraction (dry)	Spec. Volume ft³/lb	Spec. Volume VOC ft ³ /lb
Water	18.02	0.00%						21.06	
Nitrogen	28.01	0.00%	0.00%	0.000	0	0.00	0.00%	13.547	
CO ₂	44.01	0.00%	0.00%	0.000	0	0.00	0.00%	8.623	
H ₂ S	34.08	0.00%	0.00%	0.000	586.71	0.00	0.00%	11.136	
Methane	16.04	0.00%	0.00%	0.000	909.1	0.00	0.00%	23.65	
Ethane	30.07	0.00%	0.00%	0.000	1617.8	0.00	0.00%	12.62	
Propane	44.10	100%	100.0%	44.097	2315.9	2315.90	100.0%	8.606	8.606
I-Butane	58.12	0.00%	0.00%	0.000	3001	0.00	0.00%	6.529	0.000
N-Butane	58.12	0.00%	0.00%	0.000	3010.5	0.00	0.00%	6.529	0.000
I-Pentane	72.15	0.00%	0.00%	0.000	3697.9	0.00	0.00%	5.26	0.000
N-Pentane	72.15	0.00%	0.00%	0.000	3706.8	0.00	0.00%	5.26	0.000
Hexanes +	86.18	0.00%	0.00%	0.000	4403.9	0.00	0.00%	4.404	0.000
Total		100%	1.00	44.10		2316	100%		8.606
Dry total		100.0%	(mi)	cture mol.	wt)(mixtu	re heating	value)		
	NMHC	100.0%							
	NMEHC (VOC)	100.0%					100.0%		

FUGITIVE EMISSIONS (FUG2) JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

Fugitive Emissions--2nd Treater

EU81 FUG 2 Emission Unit: Stack ID: Source Description: Fugitive Emissions

emission factors from EPA-453/R-95-017

Components

Emission Calc	ulationsVOC	s			Factors	(1	kg/hr/sourc	e)								
(lb/yr)		Valv	es	Pump	seals	Conne	ectors	Flar	nges	Open	lines	Oth	ner			
Stream		gas	liq	gas	liq	gas	liq	gas	liq	gas	liq	gas	liq			
	kg/hr	4.5E-03	2.5E-03	2.4E-03	1.3E-02	2.0E-04	2.1E-04	3.9E-04	1.1E-04	2.0E-03	1.4E-03	8.8E-03	7.5E-03			
	Inlet gas	20	20	0	0	6	6	80	60	10	0	10	0			
	Rich amine		64		2		26		164		1		1			
															VOC % \	/OC leakage
leakage, lb/yr														total lb		
	Inlet gas	1734.48	963.60	0.00	0.00	23.13	24.28	601.29	127.20	385.44	0.00	1695.94	0.00	5555.3	22.01%	1223
	Rich amine	0.00	3083.52	0.00	501.07	0.00	105.23	0.00	347.67	0.00	26.98	0.00	144.54	4209.0	0.04%	2

0.61 tpy

H2S % H2S leakage

Emission Calculations -- H2S Valves (lb/yr)
 gas
 liq
 gas
 liq
 gas
 liq
 yes

 4.5E-03
 2.5E-03
 2.4E-03
 1.3E-02
 2.0E-04
 2.1E-04
 3.9E-04

 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 Stream Inlet gas 20 Rich amine 0 10 0 20 0 6 60 10 0 0 164

> 23.13 24.28 601.29 127.20 385.44 0.00 5555.3 0.65% 1695.94 0.00 36

> Inlet gas
> 1734.48
> 963.60
> 0.00
> 0.00
>
>
> Rich amine
> 0.00
> 3083.52
> 0.00
> 501.07
> 0.00 0.00 144.54 4209.0 15.61% 0.00 105.23 0.00 347.67 26.98 657

> > 0.35

Gas Analyses (from application for 1092-M4) Inlet gas composition

leakage, lb/yr

Component	MW	Wet vol/mol %	Dry vol/mol %	MW * dry vol %	LHV Btu/scf	Btu/scf * dry vol %	Mass Fraction (dry)	Spec. Volume ft ³ /lb	Spec. Volume VOC ft ³ /lb
Water	18.02	2.79%						21.06	
Nitrogen	28.01	1.25%	1.29%	0.360	0	0.00	1.70%	13.547	
CO ₂	44.01	1.15%	1.18%	0.521	0	0.00	2.46%	8.623	
H ₂ S	34.08	0.39%	0.40%	0.137	586.71	2.35	0.65%	11.136	
Methane	16.04	77.53%	79.76%	12.795	909.1	725.05	60.40%	23.65	
Ethane	30.07	8.76%	9.01%	2.710	1617.8	145.79	12.79%	12.62	
Propane	44.10	4.21%	4.33%	1.910	2315.9	100.30	9.01%	8.606	4.456
I-Butane	58.12	0.19%	0.20%	0.114	3001	5.87	0.54%	6.529	0.153
N-Butane	58.12	1.65%	1.70%	0.987	3010.5	51.10	4.66%	6.529	1.325
I-Pentane	72.15	0.68%	0.70%	0.505	3697.9	25.87	2.38%	5.26	0.440
N-Pentane	72.15	0.65%	0.67%	0.482	3706.8	24.79	2.28%	5.26	0.421
Hexanes +	86.18	0.75%	0.77%	0.665	4403.9	33.98	3.14%	4.404	0.406
Total		100%	1.00	21.18		1115	100%		7.201
Dry total		97.21%	(m	ixture mol.	vt) (mixtu	re heating	value)		
	NMHC	16.89%							
	NMEHC (VOC)	8.13%					22.01%		

Acid gas composition

Component	MW	Wet vol/mol %	Dry vol/mol %	MW * dry vol %	LHV Btu/scf	Btu/scf * dry vol %	Mass Fraction (dry)	Spec. Volume ft ³ /lb	Spec. Volume VOC ft ³ /lb
Water	18.02	6.00%						21.06	
Nitrogen	28.01	0.00%	0.00%	0.000	0	0.00	0.00%	13.547	
CO ₂	44.01	74.88%	79.66%	35.058	0	0.00	83.86%	8.623	
H ₂ S	34.08	18.00%	19.15%	6.526	586.71	112.35	15.61%	11.136	
Methane	16.04	1.00%	1.06%	0.171	909.1	9.67	0.41%	23.65	
Ethane	30.07	0.10%	0.11%	0.032	1617.8	1.72	0.08%	12.62	
Propane	44.10	0.00%	0.00%	0.000	2315.9	0.00	0.00%	8.606	0.000
I-Butane	58.12	0.00%	0.00%	0.000	3001	0.00	0.00%	6.529	0.000
N-Butane	58.12	0.00%	0.00%	0.000	3010.5	0.00	0.00%	6.529	0.000
I-Pentane	72.15	0.00%	0.00%	0.000	3697.9	0.00	0.00%	5.26	0.000
N-Pentane	72.15	0.00%	0.00%	0.000	3706.8	0.00	0.00%	5.26	0.000
Hexanes +	86.18	0.02%	0.02%	0.018	4403.9	0.94	0.04%	4.404	4.404
Total		100%	1.00	41.81		125	100%		4.404
Dry total		94.0%	(m	ixture mol. v	vt) (mixtu	re heating	value)		
	NMHC	0.12%							
	NMEHC (VOC)	0.02%					0.04%		

TABLE 6-19 POTENTIAL EMISSIONS FROM MSS ACTIVITIES (10F) JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

Summary of I	MSS Activities	s				
Activity	VC	DC ¹	Other	HAPs	H ₂ S	
Activity	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)
Engine, compressor, turbine and other combustion facilities maintenance				-		
Repair, adjustment, calibration, lubrication and cleaning of site process equipment			-	-		
Replacement of piping components, pneumatic controllers, boiler refractories, wet and dry seals, meters, instruments, analyzers, screens and filters		0.55	-	-	0.001028	0.004501
Turbine or engine component swaps			-	-		
Piping used to bypass a facility during maintenance			-	-		
Pigging and purging of piping	2.04	0.19	-	-	0.01680	0.001533
Total =	2.16	0.73	0.00	0.0000	0.01783	0.006034

MSS - Pigging Operations

Description	Pigging
Number of Events per Year	365
Number of Events per hour	2
Volume per Event, scf	50
Stream Specific Gravity	0.6970
Air MW, lb/mole	28.96
Fuel Stream Density, lb/scf	0.053
VOC Percentage in Gas Stream, wt%	38.21%
VOC Hourly Emission Rate (lb/hr):	2.04
VOC Annual Emission Rate (T/yr):	0.19

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

- 1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.
- **2.** GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 Mandatory Greenhouse Gas Reporting.
- 3. Emissions from routine or predictable start up, shut down, and maintenance must be included.
- **4.** Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **short** tons per year and represent each emission unit's Potential to Emit (PTE).
- **5.** All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.
- **6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.
- Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 Mandatory Greenhouse Reporting requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Form-Section 6 last revised: 5/3/16 Section 6, Page 3 Saved Date: 3/21/2023

TABLE 6a-1

ESTIMATION OF FACILITY-WIDE GHG EMISSIONS JAL #3 GAS PLANT ETC TEXAS PIPELINE, LTD. LEA COUNTY, NEW MEXICO

	Total GHG En	nissions
GHG Emission Source	(m.t. CO ₂ e)	(tons CO ₂ e)
Natural Gas Combustion	5,912,213	6,517,091
Fugitives Amine Unit	1,555,545	1,714,693
stimated Facility Emissions:	7,467,758	8,231,784

Conversion	n Factors	Global Warn	ning Potential
1.10231	ton/m.t.	CO ₂	1
0.001	m.t./kg	CH ₄	25
8,760	Hrs/yr	N ₂ O	298

CO ₂	CH ₄	C ₂ H ₃	C ₃ H ₈	C ₄ H ₁₀	C5+
(mol %)	(mol %)	(mol %)	(mol %)	(mol %)	(mol %)
2.45766	60.39883	12.79118	9.01497	5.19325	7.85526

* Processing emissions for compressor, venting and flaring estimated using EPA's 40 CFR Subpart W Onshore Natural Gas Processing Screening Tool Mole % CO₂ for Acid gas venting used for screening obtained from process simulation data.

Note:

Carbon Dioxide Equivalent (CQe) emissions are calculated in the tables below by multiplying emissions by global warming potentials for each pollutant.

Emissions estimates converted to short tons in the tables below using conversion factor from 40 CFR 98 Subpart A for comparison to PSD/TV thresholds.

Global Warming Potentials obtained from 40 CFR 98 Supart A, Table A-1.

Mol % values obtained from the gas analysis from a representative facility.

Natural Gas Combustion Emissions

	Emission			Emis	ssions Factors 1			Emissions			Emissions		Total E	missions
	Point	Rated	Capacity	CO ₂	CH ₄	N ₂ O		(m.t.)			(m.t. CO ₂ e)			
Emissions Source	Identification	Horsepower	(MMBtu/hr)	(kg/MMBtu)	(kg/MMBtu)	(kg/MMBtu)	CO ₂	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O	(m.t. CO ₂ e)	(tons CO ₂ e)
CATERPILLAR 3612 (C1)	C1	3,550	26.72	58.32	0.0011	0.00011	13,651.70	0.26	0.026	13,651.70	6.44	7.67	13,666	15,064
CATERPILLAR 3612 (C2)	C2	3,550	26.72	58.32	0.0011	0.00011	13,651.70	0.26	0.026	13,651.70	6.44	7.67	13,666	15,064
CATERPILLAR 3612 (C3)	C3	3,550	26.72	58.32	0.0011	0.00011	13,651.70	0.257	0.0257	13,651.70	6.44	7.67	13,666	15,064
CATERPILLAR 3612 (C4)	C4	3,550	26.72	58.32	0.0011	0.00011	13,651.70	0.257	0.0257	13,651.70	6.44	7.67	13,666	15,064
CATERPILLAR 3606 (C5)	C5	1,875	14.09	58.32	0.0011	0.00011	7,200.83	0.136	0.0136	7,200.83	3.40	4.05	7,208	7,946
CATERPILLAR 3606 (C6)	C6	1,875	14.09	58.32	0.0011	0.00011	7,200.83	0.136	0.0136	7,200.83	3.40	4.05	7,208	7,946
HOT OIL HEATER (12H)	12H		28.00	58.32	0.0011	0.00011	14,305.22	0.270	0.0270	14,305.22	6.75	8.04	14,320	15,785
DEHY REBOILER (13H)	13H	-	2.00	58.32	0.0011	0.00011	1,021.80	0.019	0.0019	1,021.80	0.48	0.57	1,023	1,128
STABILIZER HEATER (14H)	14H	-	10.00	58.32	0.0011	0.00011	5,109.01	0.096	0.0096	5,109.01	2.41	2.87	5,114	5,638

Notes:
1. Emission factors for GHG obtained from 40 CFR 98 Supart C, Tables C-1 and C-2.

		Maximum Hours	Annual Gas Usage	Annual Gas Processed	CO2	CH₄	Emission Factor	CO ₂	Emissions CH ₄	N ₂ O	Glob	al Warming Pot	ential	CO ₂	Emissions CH ₄	N ₂ O	Total En	nissions
Source ID Number	Description	of Operation	(scf/hr)	(scf/yr)	(mol %)	(mol %)	(m.t./MMscf)	(m.t.)	(m.t.)	(m.t.)	CO ₂	CH ₄	N ₂ O	(m.t. CO ₂ e)	(m.t. CO ₂ e)	(m.t. CO ₂ e)	(m.t. CO ₂ e)	(tons CO ₂ e)
8F	PLANT FLARE (8F)	8,760	129,772	364,692,733	0.000	0.00	7.10E-07	1,380,367.17	0.1816	0.0002589	1	25	298	1,380,367.17	4.54	0.07716	1,380,371.79	1,521,597.63
10F	PLANT FLARE (10F)	8,760	2,083,333	17,708,333	0.025	0.60	7.10E-07	67,599.53	4.0930	0.0000126	1	25	298	67,599.53	102.32	0.00375	67,701.86	74,628.44
9F	TREATMENT FLARE (9F)	8,760	130,304	1,141,460,382	0.895	0.01	7.10E-07	4,374,531.34	2.8231	0.0008104	1	25	298	4,374,531.34	70.58	0.24151	4,374,602.16	4,822,167.71
Note - CO 2 and N 2 O Emissions estimated using API Compendium Section 4.6										Combustion:	1,380,371.79	6,418,393.78						

			Annual Gas			Emissions ¹		Gloi	oal Warming Pot	ential		Emissions		Total Emi	ssions
Source ID Number	Description	Maximum Days of Operation	Processed (MMscf/yr)	Conversion Factor (m.t./ton)	CO ₂ (tons)	CH ₄ (tons)	N ₂ O (tons)	CO ₂	CH ₄	N ₂ O	CO ₂ (m.t. CO ₂ e)	CH ₄ (m.t. CO ₂ e)	N ₂ O (m.t. CO ₂ e)	(m.t. CO ₂ e)	(tons CO ₂ e)
AMINE	AMINE UNIT VENT (AMINE)		0	1.10231	19,434.65	45.75		1	25	298	17,630.84	1,037.51		18,668.34	20,578.30

Vented Sources

	Emission Point	Days of	AnnualGas Processed	Default CH,	CO.	CH.	Emission Factor	CO.	Emissions CH,	N ₁ O	Globa	al Warming Pote	ential	CO ₂	Emissions CH,	N ₂ O	Total E	missions
Emissions Source	Identification	Operation	(MMscf/yr)	(mol %)	(mol %)	(mol %)	(m.t./MMscf)	(m.t.)	(m.t.)	(m.t.)	CO ₂	CH₄	N ₂ O	(m.t. CO ₂ e)	(tons CO ₂ e)			
Pneumatic Devices 1	-	365	40,150	0.868	2.458	60.40	0.0001425	44.55	398.12		1	25	298	44.55	9,952.89	-	9,997.44	11,020.28

Note - Emissions estimated using API Compendium Sections 5.7.3 and 6.1 for non-routine events and pneumatic devices

Fugitive Sources

		Annual	Annual	Default	Emission	Emis	sions	Control	Controlled	Emissions 2	Total E	missions
	Emission Point	Condensate Production	Condensate Production	Liquid CH ₄ Content '	Factor VOC	voc	voc	(%)	voc	(m.t.)		
Emissions Source	Identification	(bbl/yr)	(1,000 gal/yr)	(mol %)	(lb/1,000 gal)	(tons)	(m.t.)		(m.t.)	CH₄	(m.t. CO ₂ e)	(tons CO ₂ e)
Condensate Truck Loading 1	LOADOUT	292,000	12,264	27.40	4.79	29.35	26.63	0%	26.63	7.30	182.39	182.39
Scrubber Oil	LOAD	17,520	736	28.40	-	0.76	0.69	0%	0.69	0.20	4.90	4.90

- Notes:

 1. Default CH₄ content for crude oil per API compendium Section 5.4 and Appendix B.

 2. Emissions estimated using API Compendium, Section 5.5.

	Emission		Annual Gas	Emission Factor CH ₄	Conversion					Emissi	ions	Global Warmi	ing Potential	Emissi	ons	Total Er	missions
Emissions Source	Point Identification	Days of Operation	Processed (MMscf/yr)	(m.t./MMscf processed)	Factor (ton/m.t.)	Default CH ₄ (mol %)	CO ₂ , CH ₄ (mol %)	CH ₄ (mol %)	CO ₂ /CH ₄ (mol wt)	CO ₂ (m.t.)	CH ₄ (m.t.)	CO ₂	CH ₄	CO ₂ (m.t. CO ₂ e)	CH ₄ (m.t. CO ₂ e)	(m.t. CO ₂ e)	(tons CO ₂ e)
Plant Fugitives 1	FUG-1	365	40,150	0.0025	1.10231	0.868	0.041	60.399	2.75	781.557	6984.48	1	25	781.56	174,612.12	175,393.68	193,338.20

Note - Emissions estimated using API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry Table 6-

	Emission		Annual	Emission Factor	Conversion				Emissions				Global Warr	ming Potential	Emi	ssions	Total En	nissions
	Point	Days of	Operating	CH ₄	Factor	Default CH ₄	CO2/CH4	CH₄	CO2/CH4		CO ₂	CH₄			CO ₂	CH₄		
Emissions Source	Identification	Operation	Hours (hrs/yr)	(m.t./runtime hr)	(ton/m.t.)	(mol %)	(mol %)	(mol %)	(mol wt)	No. of Comps.	(m.t.)	(m.t.)	CO ₂	CH₄	(m.t. CO ₂ e)	(m.t. CO ₂ e)	(m.t. CO ₂ e)	(tons CO ₂ e)
Reciprocating Comp. Fugitive 1	FUG-1	365	8,760	0.00895	1.10231	0.868	0.041	60.399	2.75	10	6,104.674	54555.18	1	25	6104.67	1,363,879.40	1,369,984.07	1,510,147.14

Note - Emissions estimated using API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry Table 6-

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- ☐ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- \square If an older version of AP-42 is used, include a complete copy of the section.
- ☐ If an EPA document or other material is referenced, include a complete copy.
- ĭ Fuel specifications sheet.
- If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Supporting documentation is included in this section.

Saved Date: 3/21/2023

G3606

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Standard Equipment Company New Avalon HWY 285 CS

GAS COMPRESSION APPLICATION

ENGINE SPEED (rpm): COMPRESSION RATIO: 1000 RATING STRATEGY: STANDARD 7.6 RATING LEVEL: CONTINUOUS AFTERCOOLER TYPE: SCAC FUEL SYSTEM: GAV AFTERCOOLER - STAGE 2 INLET (°F): 130 WITH AIR FUEL RATIO CONTROL AFTERCOOLER - STAGE 1 INLET (°F): 214 SITE CONDITIONS: JACKET WATER OUTLET (°F): 230 New Avalon Hwy 285 CS FUEL PRESSURE RANGE(psig): (See note 1) ASPIRATION: TΑ 58.0-70.3 FUEL METHANE NUMBER: COOLING SYSTEM: JW+1AC, OC+2AC 56.7 CONTROL SYSTEM: ADEM4 FUEL LHV (Btu/scf): 1106 EXHAUST MANIFOLD: DRY ALTITUDE(ft): 2950 MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER: LOW EMISSION COMBUSTION: 110 NOx EMISSION LEVEL (g/bhp-hr NOx): 1875 bhp@1000rpm 0.5 SET POINT TIMING: 17

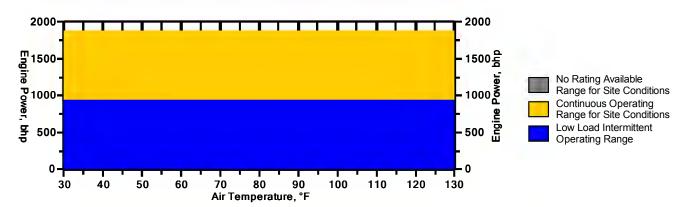
				MAXIMUM RATING	_	TING AT W	
RATING		NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER	(WITHOUT FAN)	(2)	bhp	1875	1875	1406	938
INLET AIR TEMPERATURE			°F	110	110	110	110
ENGINE DATA							
FUEL CONSUMPTION (LHV)		(3)	Btu/bhp-hr	6816	6816	7093	7673
FUEL CONSUMPTION (HHV)		(3)	Btu/bhp-hr	7517	7517	7823	8462
AIR FLOW (@inlet air temp, 14.7 psia)	(WET)	(4)(5)	ft3/min	5030	5030	3806	2609
AIR FLOW	(WET)	(4)(5)	lb/hr	21011	21011	15900	10897
FUEL FLOW (60°F, 14.7 psia)			scfm	193	193	150	108
INLET MANIFOLD PRESSURE		(6)	in Hg(abs)	103.9	103.9	79.5	56.2
EXHAUST TEMPERATURE - ENGINE OUTLET		(7)	°F	813	813	883	966
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia)	(WET)	(8)(5)	ft3/min	11939	11939	9549	6966
EXHAUST GAS MASS FLOW	(WET)	(8)(5)	lb/hr	21645	21645	16395	11254
EMISSIONS DATA - ENGINE OUT							
NOx (as NO2)		(9)(10)	g/bhp-hr	0.50	0.50	0.50	0.50
co		(9)(10)	g/bhp-hr	2.44	2.44	2.44	2.44
THC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	3.28	3.28	3.46	3.41
NMHC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	1.27	1.27	1.34	1.32
NMNEHC (VOCs) (mol. wt. of 15.84)		(9)(10)(11)	g/bhp-hr	0.71	0.71	0.75	0.74
HCHO (Formaldehyde)		(9)(10)	g/bhp-hr	0.23	0.23	0.11	0.12
CO2		(9)(10)	g/bhp-hr	452	452	466	497
EXHAUST OXYGEN		(9)(12)	% DRY	11.4	11.4	11.2	10.8
HEAT REJECTION							
HEAT REJ. TO JACKET WATER (JW)		(13)	Btu/min	21024	21024	17260	14209
HEAT REJ. TO ATMOSPHERE		(13)	Btu/min	6654	6654	6554	6417
HEAT REJ. TO LUBE OIL (OC)		(13)	Btu/min	11716	11716	10807	9353
HEAT REJ. TO A/C - STAGE 1 (1AC)		(13)(14)	Btu/min	17242	17242	8059	1785
HEAT REJ. TO A/C - STAGE 2 (2AC)		(13)(14)	Btu/min	10754	10754	6829	3715
COOLING SYSTEM SIZING CRITERIA							
TOTAL JACKET WATER CIRCUIT (JW+1AC)		(14)(15)	Btu/min	45354			
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)		(14)(15)	Btu/min	27886			
A cooling system safety factor of 10% has been added to the cooling system size	zing criteria.	. ,, ,		•			

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

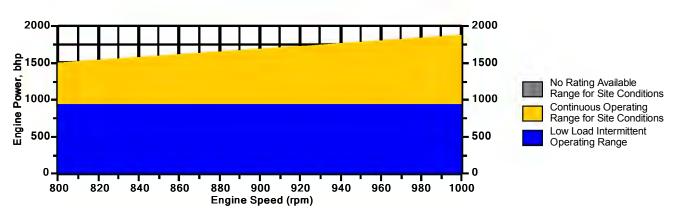
For notes information consult page three.

Standard Equipment Company
New Avalon HWY 285 CS

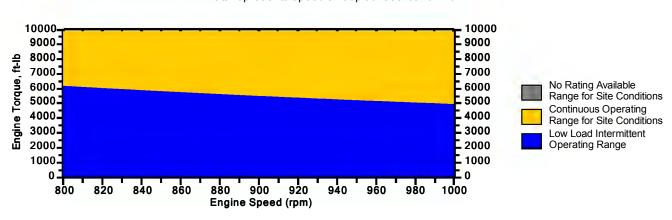

CATERPILLAR®

GAS COMPRESSION APPLICATION

Engine Power vs. Inlet Air Temperature


GAS ENGINE SITE SPECIFIC TECHNICAL DATA

Data represents temperature sweep at 2950 ft and 1000 rpm


Engine Power vs. Engine Speed

Data represents speed sweep at 2950 ft and 110 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 2950 ft and 110 °F

Note: At site conditions of 2950 ft and 110°F inlet air temp., constant torque can be maintained down to 800 rpm. The minimum speed for loading at these conditions is 800 rpm.

G3606

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Standard Equipment Company New Avalon HWY 285 CS

GAS COMPRESSION APPLICATION

NOTES

- 1. Fuel pressure range specified is to the engine gas shutoff valve (GSOV). Additional fuel train components should be considered in pressure and flow calculations.
- 2. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.
- 3. Fuel consumption tolerance is ± 2.5% of full load data.
- 4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.
- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.
- 7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.
- 9. Emissions data is at engine exhaust flange prior to any after treatment.
- 10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.
- 11. VOCs Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ
- 12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.
- 13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.
- 14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.
- 15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied factory tolerances and an additional cooling system factor of 10%.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.2700	0.2700		
Methane	CH4	78.4700	78.4700	Fuel Makeup:	New Avalon Hwy 285
Ethane	C2H6	11.0200	11.0200	Unit of Measure:	English
Propane	C3H8	4.8400	4.8400		-
Isobutane	iso-C4H1O	0.6000	0.6000	Calculated Fuel Properties	
Norbutane	nor-C4H1O	1.3600	1.3600	•	56.7
Isopentane	iso-C5H12	0.2900	0.2900	Caterpillar Methane Number:	56.7
Norpentane	nor-C5H12	0.3100	0.3100		
Hexane	C6H14	0.3800	0.3800	Lower Heating Value (Btu/scf):	1106
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1220
Nitrogen	N2	1.3500	1.3500	WOBBE Index (Btu/scf):	1303
Carbon Dioxide	CO2	1.1100	1.1100	,	
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	39.54
Carbon Monoxide	CO	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	2.46%
Hydrogen	H2	0.0000	0.0000	,	
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.997
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	11.47
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	15.94
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.720
Propylene	C3H6	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.286
TOTAL (Volume %)		100.0000	100.0000	i dei Opecinic Freat Natio (N).	1.200

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS
Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

ENGINE SPEED (rpm): COMPRESSION RATÍO: AFTERCOOLER TYPE: AFTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION:

1000 9:1 SCAC 130 190 TΑ JW, OC+AC CIS/ADEM3

Low Emission

DRY

RATING STRATEGY: FUEL SYSTEM:

SITE CONDITIONS:

STANDARD GAV WITH AIR FUEL RATIO CONTROL

Jal Fuel

FUEL PRESSURE RANGE(psig): 42.8-47.0 FUEL METHANE NUMBER: 82.5 FUEL LHV (Btu/scf): 936 ALTITUDE(ft): 3200 MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER: 110

	ARD RATED PO		E(*F):		3550 I	ohp@1000rpm
			MAXIMUM RATING	-		MAXIMUM RATURE
RATING	NOTES	LOAD	100%	100%	75%	57%
ENGINE POWER (WITHOUT FAN)	(1)	bhp	3550	3137	2353	1775
INLET AIR TEMPERATURE		°F	88	110	110	110
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	6791	6926	7292	7684
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	7527	7677	8082	8516
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(3)(4)	ft3/min	9554	8858	6781	5213
AIR FLOW (WET)	(3)(4)	lb/hr	41491	37001	28326	21777
FUEL FLOW (60°F, 14.7 psia)		scfm	429	387	305	243
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	73.4	65.8	50.8	39.1
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F	838	856	893	925
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(7)(4)	ft3/min	24059	21754	17151	13522
EXHAUST GAS MASS FLOW (WET)	(7)(4)	lb/hr	42658	38053	29157	22438
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(8)(9)	g/bhp-hr	0.50	0.50	0.50	0.50
CO	(8)(9)	g/bhp-hr	2.75	2.74	2.74	2.75
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	6.45	6.52	6.67	6.82
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.97	0.98	1.00	1.02
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10)	g/bhp-hr	0.64	0.65	0.67	0.68
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.26	0.27	0.29	0.31
CO2	(8)(9)	g/bhp-hr	441	449	472	499
EXHAUST OXYGEN	(8)(11)	% DRY	12.8	12.5	11.7	11.0
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	36519	34748	32164	29648
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	14063	13855	13307	12502
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	18081	17982	17723	17049
HEAT REJ. TO AFTERCOOLER (AC)	(12)(13)	Btu/min	40529	40529	14117	3172
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW)	(13)	Btu/min	44188			
TOTAL AFTERCOOLER CIRCUIT (OC+AC)	(13)(14)	Btu/min	70679			
A cooling system safety factor of 10% has been added to the cooling system sizing criteria.						

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

www.permianls.com 575.397.3713 2609 W MARLAND HOBBS, NEW MEXICO 88240

EXTENDED GAS REPORT SUMMARY OF CHROMATOGRAPHIC ANALYSIS

Analysis By:

ВН

Sample Name: Jal #3 Plant C Plant Discharge 12061G For: Sample Date: 10/18/2021 Cyl. Ident.: 2021047219 Sampled By: DJ Company: **Energy Transfer** Time Sampled: 14:15 Analysis Date: 10/20/2021

Sample Temp: 104.4 F

Sample Press: 554.2 **H2S (PPM)** = 5000.0 **Data File:** LS_6449.D

Component	Mole%	GPM REAL	GPM IDEAL
H2S	0.500		
Nitrogen	2.068		
Methane	66.813		
CO2	5.083		
Ethane	10.601	2.834	2.828
Propane	7.164	1.973	1.969
Isobutane	1.060	0.347	0.346
N-Butane	3.187	1.004	1.002
Isopentane	1.008	0.369	0.368
N-Pentane	1.135	0.411	0.410
Hexanes+	1.381	0.545	0.543
Total	100.000	7.483	7.466

CALCULATED PARAMETERS

TOTAL ANALYSIS SU	MMARY	HEATING VAL	.UE	BTEX SUMMARY
MOLE WT: VAPOR PRESS PSIA:	25.268 3441.8	BTU/CUFT (DRY) BTU/CUFT (WET)	1341.8 1319.0	WT% BENZENE 3.824 WT% TOLUENE 1.152
SPECIFIC GRAV		B10/0011 (WE1)	1313.0	WT% E BENZENE 0.000
AIR = $1 (REAL)$:	0.8701			WT% XYLENES 0.089
AIR = 1 (IDEAL):	0.8663			
H2O = 1 (IDEAL):	0.398			
REPORTED BASIS:	14.73			
Unnormalized Total:	99.041		_	
				LAB MANAGER

www.permianls.com

575.397.3713 2609 W MARLAND HOBBS, NEW MEXICO 88240

Sample Name: Jal #3 Plant C Plant Discharge Data File: LS_6449.D

Company: Energy Transfer

*ANALYSIS OF HEXANES PLUS

Component	MOLE%	WT%	*HEXANES PLUS SUMMARY
2,2 DIMETHYL BUTANE	0.011	0.039	AVG MOLE WT 86.981
CYCLOPENTANE	0.110	0.340	VAPOR PRESS PSIA 9.860
2-METHYLPENTANE	0.279	0.953	API GRAVITY @ 60F 71.5
3-METHYLPENTANE	0.173	0.589	SPECIFIC GRAVITY
HEXANE (C6)	0.332	1.107	AIR = 1 (IDEAL): 2.975
DIMETHYLPENTANES	0.013	0.050	H2O = 1 (IDEAL): 0.697
METHYLCYCLOPENTANE	0.142	0.474	
2,2,3 TRIMETHYLBUTANE	0.001	0.005	
BENZENE	0.057	0.175	
CYCLOHEXANE	0.093	0.311	COMPONENT RATIOS
2-METHYLHEXANE	0.019	0.075	
3-METHYLHEXANE	0.029	0.116	HEXANES (C6) MOLE% 65.086
DIMETHYCYCLOPENTANES		0.041	HEPTANES (C7) MOLE% 30.414
HEPTANE (C7)	0.029	0.116	OCTANES (C8) MOLE% 4.201
METHYLCYCLOHEXANE	0.031	0.120	NONANES (C9) MOLE% 0.180
2,5 DIMETHYLHEXANE	0.000	0.002	DECANES+ (C10+) MOLE% 0.119
TOLUENE	0.015	0.055	
2-METHYLHEPTANE	0.002	0.009	
OTHER OCTANES	0.006	0.039	HEXANES (C6) WT% 63.748
OCTANE (C8)	0.001	0.004	HEPTANES (C7) WT% 31.001
ETHYLCYCLOHEXANE	0.000	0.001	OCTANES (C8) WT% 4.825
ETHYL BENZENE	0.000	0.002	NONANES (C9) WT% 0.239
M,P-XYLENE	0.001	0.002	DECANES+ (C10+) WT% 0.187
O-XYLENE	0.000	0.001	
OTHER NONANES	0.000	0.006	
NONANE (C-9)	0.000	0.000	
IC3 BENZENE	0.000	0.000	
CYCLOOCTANE	0.000	0.000	
NC3 BENZENE	0.000	0.000	
TM BENZENE(S)	0.000	0.001	
IC4 BENZENE	0.000	0.000	
NC4 BENZENE	0.000	0.000	
DECANES + (C10+)	0.001	0.008	

Remarks: spot

Constants: GPA 2145

Method: GPA 2186.m

Report Rev 18-05.22

Page 2 of 2

Template: eC6+ Liq

^{*} Hexane+ portion calculated by Allocation Process

www.permianls.com 575.397.3713 2609 W MARLAND HOBBS, NEW MEXICO 88240

EXTENDED GAS REPORT SUMMARY OF CHROMATOGRAPHIC ANALYSIS

Analysis By:

ВН

Sample Name: Jal #3 Plant Slug Catcher Inlet For: 12060G Sample Date: 2021047220 10/18/2021 Cyl. Ident.: Sampled By: DJ Company: **Energy Transfer** Time Sampled: 14:24 **Analysis Date:** 10/20/2021

Sample Temp: 77.1 F

Sample Press: 567.4 **H2S (PPM)** = 5000.0 **Data File:** LS_6448.D

Component Mole%		GPM REAL	GPM IDEAL
H2S	0.500		
Nitrogen	1.767		
Methane	77.389		
CO2	1.961		
Ethane	9.681	2.588	2.582
Propane	5.138	1.415	1.412
Isobutane	0.588	0.192	0.192
N-Butane	1.671	0.527	0.525
Isopentane	0.349	0.128	0.127
N-Pentane	0.422	0.153	0.153
Hexanes+	0.534	0.215	0.213
Total	100.000	5.218	5.204

CALCULATED PARAMETERS

TOTAL ANALYSIS SUMMARY		HEATING VAL	.UE	BTEX SUMMARY		
MOLE WT: VAPOR PRESS PSIA:	21.463 3958.0	BTU/CUFT (DRY) BTU/CUFT (WET)	1219.5 1198.7	WT% BENZENE WT% TOLUENE	3.317 1.565	
SPECIFIC GRAVITY		BIO/COFT (WET)	1190.7	WT% E BENZENE	0.225	
AIR = 1 (REAL): AIR = 1 (IDEAL):	0.7372 0.7349			WT% XYLENES	0.901	
H2O = 1 (IDEAL):	0.356					
REPORTED BASIS:	14.73					
Unnormalized Total:	98.361					
				LAB MANAGER		

www.permianls.com

575.397.3713 2609 W MARLAND HOBBS, NEW MEXICO 88240

Sample Name: Jal #3 Plant Slug Catcher Inlet Data File: LS_6448.D

Company: Energy Transfer

*ANALYSIS OF HEXANES PLUS

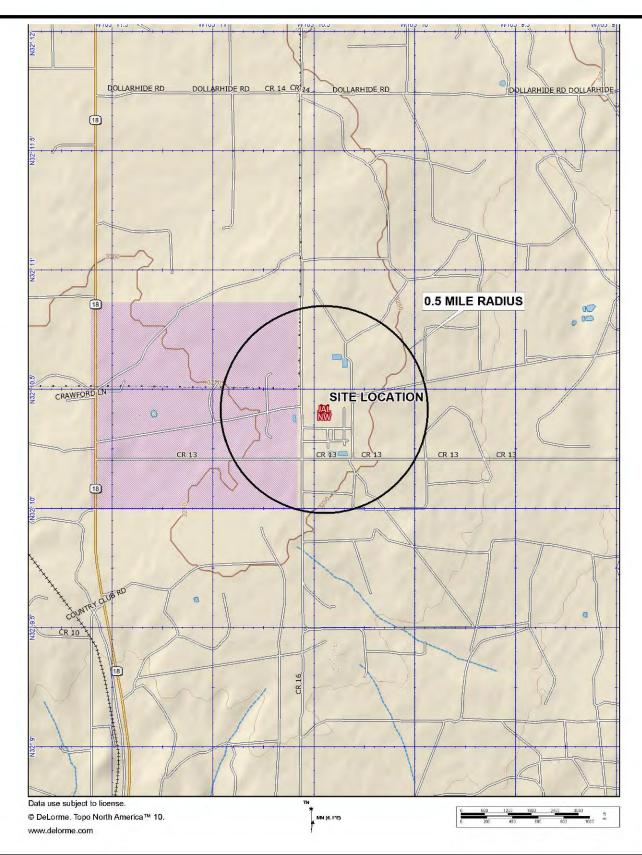
Component	MOLE%	WT%	*HEXANES PLUS SUMMARY
2,2 DIMETHYL BUTANE	0.005	0.021	AVG MOLE WT 88.651
CYCLOPENTANE	0.039	0.141	VAPOR PRESS PSIA 9.860
2-METHYLPENTANE	0.091	0.367	API GRAVITY @ 60F 70.9
3-METHYLPENTANE	0.054	0.218	SPECIFIC GRAVITY
HEXANE (C6)	0.140	0.544	AIR = 1 (IDEAL): 2.975
DIMETHYLPENTANES	0.004	0.020	H2O = 1 (IDEAL): 0.699
METHYLCYCLOPENTANE	0.048	0.187	
2,2,3 TRIMETHYLBUTANE	0.000	0.002	
BENZENE	0.020	0.071	
CYCLOHEXANE	0.031	0.120	COMPONENT RATIOS
2-METHYLHEXANE	0.008	0.040	
3-METHYLHEXANE	0.013	0.059	HEXANES (C6) MOLE% 60.906
DIMETHYCYCLOPENTANES	0.005	0.021	HEPTANES (C7) MOLE% 30.202
HEPTANE (C7)	0.021	0.097	OCTANES (C8) MOLE% 6.937
METHYLCYCLOHEXANE	0.016	0.074	NONANES (C9) MOLE% 1.498
2,5 DIMETHYLHEXANE	0.000	0.002	DECANES+ (C10+) MOLE% 0.457
TOLUENE	0.008	0.035	
2-METHYLHEPTANE	0.002	0.012	
OTHER OCTANES	0.007	0.035	HEXANES (C6) WT% 58.551
OCTANE (C8)	0.003	0.016	HEPTANES (C7) WT% 30.753
ETHYLCYCLOHEXANE	0.001	0.003	OCTANES (C8) WT% 8.001
ETHYL BENZENE	0.001	0.005	NONANES (C9) WT% 1.920
M,P-XYLENE	0.003	0.014	DECANES+ (C10+) WT% 0.775
O-XYLENE	0.001	0.005	
OTHER NONANES	0.000	0.014	
NONANE (C-9)	0.001	0.004	
IC3 BENZENE	0.000	0.000	
CYCLOOCTANE	0.000	0.000	
NC3 BENZENE	0.000	0.001	
TM BENZENE(S)	0.000	0.003	
IC4 BENZENE	0.000	0.000	
NC4 BENZENE	0.000	0.000	
DECANES + (C10+)	0.000	0.014	

Remarks: spot

Constants: GPA 2145 Method: GPA 2186.m Report Rev 18-05.22 Template: eC6+ Liq

^{*} Hexane+ portion calculated by Allocation Process

Map(s)


 $\underline{\mathbf{A}\ \mathbf{map}}$ such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north		
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads		
Topographic features of the area	Facility property boundaries		
The name of the map	The area which will be restricted to public access		
A graphical scale			

A current map of the Facility is provided in this section.

Form-Section 8 last revised: 8/15/2011 Section 8, Page 1 Saved Date: 3/21/2023

4950 N O'CONNER RD. SUITE 104 IRVING, TX 75062

www.altamira-us.com

FIGURE TITLE	DATE	2/15/2022
AREA MAP	SCALE	AS SHOWN
DOCUMENT TITLE	DESIGNED BY	AD
111	APPROVED BY	LWL
TITLE V PERMIT RENEWAL	DRAWN BY	AD
CLIENT	PROJECT NUMBER	
ETC TEXAS PIPELINE, LTD	7	= == = = = = = = = = = = = = = = = = = =
LOCATION JAL NO. 3 GAS PLANT	FIGURE	NUMBER
LEA COUNTY, NEW MEXICO	SECTI	ON 8

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

D 41	C-111:	C D 11'	NT 4'C' 4'	1	1	. 1	111
Per ine	Guideimes	for Public	Notification	i aocumeni	i meniionea	anove.	include:

	1 (1 (the Guidelines for 1 done Notification document mentioned above, include.
1.		A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
2.		A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g. post office, library, grocery, etc.)
3.		A copy of the property tax record (20.2.72.203.B NMAC).
4.		A sample of the letters sent to the owners of record.
5.		A sample of the letters sent to counties, municipalities, and Indian tribes.
6.		A sample of the public notice posted and a verification of the local postings.
7.		A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
8.		A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
9.		A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
10.		A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
11.		A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

This section is not applicable to applications submitted under 20.2.70 NMAC.

Written Description of the Routine Operations of the Facility

A written description of the routine operations of the facility. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The facility is a natural gas treating and processing plant. Natural gas is treaterd in amine sweetening units to remove acid gas, consisting of approximately $\sim 18\%$ CO₂ and $\sim 18\%$ H₂S, with traces of other gases. The sweetened gas is then dehydrated in a glycol dehydrator and processed to separate residue gas, primarily methane, from the liquids, including the higher carbon number hydrocarbon fractions.

Acid gas removed from the natural gas stream by the sweetening units directed to a Class II underground injection disposal well, permitted by the Oil Conservation Division (OCD).

A gas treating system and compression is used to move the treated gas to other gas processing facilities in the Delaware Basin. A new amine unit will be installed to treat the incoming gas. The treated gas will be compressed to pipeline delivery pressure by two new compressor units. After compression, the treated gas will flow to a new glycol dehydration unit. Vapors from the still vent will be sent to a flare and vapors from the flash tank will be routed to the site's fuel system.

A condensate stabilizer system which includes a fired HMO will be used.

Acid gas removed from the natural gas stream by the sweetening unit is directed to a new AGI unit where the acid gas is injected into the underground injection well.

Form-Section 10 last revised: 8/15/2011 Section 10, Page 1 Saved Date: 3/21/2023

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, Single Source Determination Guidance, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under of

common ownership or control, and that are contiguous or adjacent constitute a single stationary source 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis these factors in support of the responses below is optional, unless requested by NMED.
A. Identify the emission sources evaluated in this section (list and describe): Jal #3 Gas Plant
B. Apply the 3 criteria for determining a single source: SIC Code: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, OR surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.
▼ Yes □ No
<u>Common Ownership or Control</u> : Surrounding or associated sources are under common ownership or control as this source.
ĭ Yes □ No
<u>Contiguous or Adjacent</u> : Surrounding or associated sources are contiguous or adjacent with this source.
ĭ Yes □ No
 C. Make a determination: ☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.7 or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other than the subject of this application.

- 73, sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- ☐ The source, as described in this application, **does not** constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

This section is not applicable to applications submitted under 20.2.70 NMAC.

Form-Section 12 last revised: 5/29/2019 Section 12, Page 1 Saved Date: 3/21/2023

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

Form-Section 13 last revised: 5/29/2019 Section 13, Page 1 Saved Date: 3/21/2023

Example of a Table for STATE REGULATIONS:

Example	of a Table for S		JULAI	10110.	
STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)	
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.	
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	If subject, this would normally apply to the entire facility. 20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limit the maximum allowable concentration of, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC The TSP NM ambient air quality standard was repealed by the EIB effective	
20.2.7 NMAC	Excess Emissions	Yes	Facility	November 30, 2018. If subject, this would normally apply to the entire facility. If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies. This would not apply to Notices of Intent since these are not permits.	
20.2.23 NMAC	Fugitive Dust Control	No	Facility	The facility is not located in Doña Ana or Luna Counties, and is therefore not subject to 40 CFR §51.930 or 20.2.23 NMAC.	
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This facility does not have existing gas burning equipment having a heat input of greater than 1,000,000 million British Thermal Unit per year per unit. The facility is not subject to this regulation and does not have emission sources that meet the applicability requirements under 20.2.33.108 NMAC.	
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility does not have existing oil burning equipment having a heat input of greater than 1,000,000 million British Thermal Unit per year per unit. The facility is not subject to this regulation and does not have emission sources that meet the applicability requirements under 20.2.34.108 NMAC.	
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	Yes	Facility	This regulation establishes sulfur emission standards for natural gas processing plants. The facility meets the definition of a new natural gas processing plant (the incinerator was added to the facility in 1976) under this regulation and is subject to the requirements of this regulation [20.2.35.7 (B) NMAC]. The facility meets the requirements under 20.2.35.110(B).	
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.	
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	Not applicable as facility does not have petroleum storage tanks with a capacity > 20,000 gallons. In addition this plant does not contain a "tank battery" or a "hydrocarbon storage facility" as these terms are understood.	
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	The facility will not operate a sulfur recovery plant.	
20.2.50 NMAC	Oil and Gas Sector – Ozone Precursor Pollutants			This regulation establishes emission standards for volatile organic compounds (VOC) and oxides of nitrogen (NOx) for oil and gas production, processing, compression, and transmission sources. 20.2.50 NMAC subparts: 113 - Engines and Turbines 114 - Compressor Seals 115 - Control Devices and Closed Vent Systems 116 - Equipment Leaks and Fugitive Emissions 117 - Natural Gas Well Liquid Unloading 118 - Glycol Dehydrators 119 - Heaters 120 - Hydrocarbon Liquid Transfers	

Saved Date: 3/21/2023

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
				☐ 121 − Pig Launching and Receiving ☐ 122 − Pneumatic Controllers and Pumps ☐ 123 − Storage Vessels ☐ 124 − Well Workovers ☐ 125 − Small Business Facilities ☐ 126 − Produced Water Management Unit ☐ 127 − Flowback Vessels and Preproduction Operations
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	C-1 thru C-6, 12H, 13H, 14H, 8F, 9F, 10F	This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares. The combustion equipment at the facility is subject to this regulation.
20.2.70 NMAC	Operating Permits	Yes	Facility	Jal 3 is major for NOx and VOC. Jal 3 has been issued operating permit P090R3
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This regulation established a schedule of operating permit emission fees. The facility is subject to 20.2.70 NMAC and is therefore subject to requirements of this regulation.
20.2.72 NMAC	Construction Permits	Yes	Facility	The objective of this part is to establish the requirements for obtaining a construction permit. The facility is subject as emissions are greater than 10 lb/hr and 25 tpy of regulated air contaminants for which there are National or New Mexico Ambient Air Quality Standards.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The regulation establishes emission inventory requirements. The facility meets the applicability requirements of 20.2.73.300.A.1 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	Facility	Jal 3 is not classified as a PSD source.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation establishes a schedule of construction permit emission fees. The facility is subject to 20.2.72 NMAC and is therefore subject to requirements of this regulation.
20.2.77 NMAC	New Source Performance	Yes	C-1 thru C-6, 8F, 9F, 10F, FUG1, FUG2, DR2, amine unit	These sources are subject to the requirements of 40 CFR Part 60.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	This facility emits hazardous air pollutants which are not subject to the requirements of 40 CFR Part 61.

ETC	Texas	Pine!	line	Ltd
$_{\rm LIC}$	1 CAus	I IPC	m,	Lu.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	This regulation does not apply because the facility is not located in a nonattainment area.
20.2.80 NMAC	Stack Heights	No	N/A	This regulation established requirements for the evaluation of stack heights and other dispersion techniques. The stacks at the facility will follow good engineering practices. This regulation does not apply as all stacks at the facility will follow good engineering practice.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	DR2, C-1 thru C-6, 12H, 13H, 14H	The facility permitted HAP emissions are less than the major HAP source threshold, therefore, the facility is classified as a minor HAP source. The facility is not subject to the major source requirements of 40 CFR 63 Subpart HH, Subpart ZZZZ, and Subpart DDDDD.

Example of a Table for Applicable FEDERAL REGULATIONS (Note: This is not an exhaustive list):

Example of a Table for Applicable February Red				2 122 3 5 21 1 1 3 1 % (1 1 0 0 0 1 1 mis 15 mot win eminutes of 1 0 1 1 5 1)
FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	This regulation defines national ambient air quality standards. The facility meets all applicable national ambient air quality standards for NOx, CO, SO ₂ , H ₂ S, PM ₁₀ , and PM _{2.5} under this regulation.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	C-1 thru C-6, 8F, 10F, 9F, FUG1, FUG2, DR2, amine unit	Applies if any other Subpart in 40 CFR 60 applies. NSPS KKK, Db, Dc, JJJJ, OOOO, OOOOa, and LLL apply.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards for performance for electric utility steam generating units. This regulation does not apply because the facility does not operate any electric utility steam generating units.

Saved Date: 3/21/2023

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	This regulation established standards for performance for industrial-commercial institutional steam generating units. The regulation does not apply because the facility does not operate any industrial-commercial-institutional steam generating units with heat inputs greater than 100 MMBtu/hr.	
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	Yes	12H, 14H	Applicability: facility has steam generating units for which construction, modification or reconstruction is commenced after June 9, 1989 and that have a maximum design heat input capacity of 29 MW (100 MMBtu/hr) or less, but greater than or equal to 2.9 MW (10 MMBtu/hr). This regulation applies to units 12H and 14H.	
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	Not applicable as there are no petroleum liquid storage vessels that commenced construction, reconstruction, or modification after May 18, 1978 and prior to July 23, 1984 and/or have capacities greater than 40,000 gallons.	
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984		N/A	Not applicable as there are no volatile organic liquid storage vessels which commenced construction, reconstruction, or modification after July 23, 1984 a which have capacities greater than 75 cubic meters (m 3).	
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	This regulation establishes standards of performance for stationary gas turbines. The facility does not operate stationary gas turbines and is therefore not subject to this regulation.	
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	NSPS KKK applies to equipment leaks of VOC from natural gas processing plants constructed, reconstructed or modified after January 20, 1984 and on or before August 23, 2011. The equipment at the site is not subject to this regulation.	
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing:	No	N/A	Does not apply at amine units that send acid gas to acid gas re-injection well (AGI).	

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
	SO ₂ Emissions				
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	Yes	C-1, C- 2, C-3, C-4	NSPS OOOO is applicable to the compressor of engine Units C1-C4 since construction commenced after August 23, 2011 (40 CFR 60.5365(e)). In addition component changes associated with Units C1-C4 are considered a modification under NSPS OOOO. Therefore, NSPS OOOO (rather than NSPS KKK) applies these specific fugitive components (portion of FUG1).	
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	C-5, C-6	NSPS OOOOa is applicable to the compressors of engine Units C5-C6 since construction will commence after September 18, 2015 (40 CFR 60.5365(e)). NSPS OOOOa (rather than NSPS KKK) will apply to these specific fugitive components (portion of FUG1) and other process areas with applicable VOC.	
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	This regulation establishes standards of performance for stationary compression ignition internal combustion engines. This facility does not have compression ignition internal combustion engines. This regulation does not apply.	
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	C-1, C- 2, C-3, C-4, C- 5, C-6	The engines are subject to NSPS JJJJ per 60.4230(a)(4)(i) and the standards in 60.4233(e) and Table 1. C1 – C4 • 3550 hp • Mfr dates – 8/7/2018, 1/2/2008, 1/2/2008, and 1/2/2008 • 4SLB C5 – C-6 • 1875 hp • Mfr date – Post 7/1/2010 • 4SLB	
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	There will be no electric generating units at the site.	
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility	No	N/A	There will be no electric generating units at the site.	

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
	Generating Units				
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	The Facility is not a municipal solid waste landfill.	
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	This part applies to the owner or operator of any stationary source for which a standard is prescribed under this part.	
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The provisions of this subpart are applicable to those stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge. This facility does not process mercury therefore this regulation does not apply.	
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	The provisions of this subpart apply to each of the following sources that are intended to operate in volatile hazardous air pollutant (VHAP) service: pumps, compressors, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, and control devices or systems required by this subpart. VHAP service means a piece of equipment either contains or contacts a fluid (liquid or gas) that is at least 10 percent by weight of VHAP. VHAP means a substance regulated under this subpart for which a standard for equipment leaks of the substance has been promulgated. Benzene is a VHAP (See 40 CFR 61 Subpart J). The regulated activities subject to this regulation do not take place at this facility. The facility is not subject to this regulation.	
MACT 40 CFR 63, Subpart A	General Provisions	Yes	C-1, C- 2, C-3, C-4, C- 5, C-6, DR2	3, Applies if any other subpart in 40 CFR 63 applies.	
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DR2	This facility is Subject to the requirements of 40 CFR 63 Subpart HH Facility is a minor source for HAPs (including formaldehyde and total HAPs), a indicated by this application and will comply with the minor source requiremen of Subpart HH.	
MACT 40 CFR 63 Subpart HHH		No	N/A	This subpart applies to owners and operators of natural gas transmission and storage facilities that transport or store natural gas prior to entering the pipeline t a local distribution company or to a final end user (if there is no local distribution company), and that are major sources of hazardous air pollutants (HAP) emission as defined in §63.1271. See link below 40 CFR 63 Subpart HHH	
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	This subpart established national emission limitation and work practice standards for hazardous air pollutants (HAP) emitted from industrial, commercial, and institutional boilers and process heaters located at major sources of HAP. This facility is not a major source of HAP. This regulation does not apply.	
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal &	No	N/A	This subpart establishes national emission limitations and work practice standards for hazardous air pollutants (HAP) emitted from coal- and oil-fired electric utility steam generating units (EGUs) as defined in §63.10042 of this subpart. This facility does not contain the affected source. This regulation does not apply.	

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
	Oil Fire Electric Utility Steam Generating Unit				
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	C-1, C- 2, C-3, C-4, C- 5, C-6	The engines are subject to MACT ZZZZ and meet the requirements by complying with NSPS JJJJ per 63.6590(c)(1).	
40 CFR 64	Compliance Assurance Monitoring	Yes	CAM applies to the acid gas re-injection well and flares 8F and 9F. A pheen submitted to the state. AGI, 8F, 9F The IC engines at the facility are equipped with catalysts are not in the major sources.		
40 CFR 68	Chemical Accident Prevention	Yes	Facility	Jal 3 is subject to the rule.	
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	Jal 3 is not an Acid Rain source.	
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	Jal 3 is not an Acid Rain source.	
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	Jal 3 is not an Acid Rain source.	
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	Jal 3 is not an Acid Rain source.	
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	Yes	N/A	(82.150) if you service, maintain, or repair appliances, dispose of appliances, refrigerant reclaimers, if you are an owner or operator of an appliance, if you are a manufacturer of appliances or of recycling and recovery equipment, if you are an approved recycling and recovery equipment testing organization, and/or if you sell or offer for sell or purchase class I or class I refrigerants. ETC owns appliances containing CFCs and is therefore technically subject to this requirement. ETC uses only certified technicians for the maintenance, service, repair, and disposal of appliances and maintains the appropriate records for this requirement.	

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

	By checking this box and certifying this application the permittee certifies that it has
	developed an <u>Operational Plan to Mitigate Emissions During Startups</u> , <u>Shutdowns</u> , <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by
	20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
	NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an Operational Plan to Mitigate Source Emissions
	<u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
X	Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Startup and shutdown procedures are based on manufacturer's recommendations or ETC's experience with specific equipment. The procedures are designed to proactively address the potential for malfunction to the greatest extent possible. These procedures dictate a sequence of operations that are designed to minimize emissions from the facility during events that result in shutdown and subsequent startup. Equipment located at the facility is equipped with various safety devices and features that aid in the prevention of excess emissions in the event of an operational emergency. If an operational emergency does occur and excess emissions occur, ETC will submit the required Excess Emissions Report per 20.2.7 NMAC. Corrective action to eliminate the excess emissions and prevent recurrence in the future will be undertaken as quickly as safety allows. ETC has developed an Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Malfunctions as required by 20.2.70.300.D.5 NMAC. This plan is kept on site and will be made available to the Department upon request.

Saved Date: 3/21/2023

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

This application does not include alternative operating scenarios.

Form-Section 15 last revised: 8/15/2011 Section 15, Page 1 Saved Date: 3/21/2023

Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	X
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

	See attached, approved modeling waiver for all pollutants from the facility.
	See attached, approved modeling waiver for some pollutants from the facility.
	Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.
	Attached in UA4 is a modeling report for some pollutants from the facility.
X	No modeling is required.

Air quality dispersion modeling was last submitted in June 2022 in an application for NSR Permit No. 1092M10.

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Compliance Test History Table (Modify this sample table to suit your facility)

Unit No.	Test Description	Test Date
Cilit 110.	1 cot Description	7/16/2019, 1/7/2020,
		7/28/2020, 1/4/2022,
C1	NSPS JJJJJ, MACT ZZZZ	7/13/2022,
		10/25/2022
		2/9/2019, 8/23/2016,
		1/5/2017, 7/10/2017,
		10/2/2017, 1/8/2018,
C2	NSPS JJJJ, MACT ZZZZ	1/7/2019, 7/9/2019,
		1/7/2020, 7/28/2020,
		1/5/2022, 8/24/2022,
		10/27/2022
		2/9/2016, 8/23/2016,
		1/6/2017, 7/10/2017,
C3	NSPS JJJJ, MACT ZZZZ	1/8/2018, 1/7/2019,
	NSI S JJJJ, WACT LLLL	7/9/2019, 9/15/2021,
		1/4/2022, 8/24/2022,
		10/27/2022
		2/9/2019, 8/24/2016,
		1/26/2017,
		7/10/2017,
		10/2/2017, 1/8/2018,
C4	NSPS JJJJ, MACT ZZZZ	9/6/2018, 1/7/2019,
		9/5/2019, 1/22/2020,
		7/28/2020,
		9/23/2022,
C5	NODE IIII MACT 7777	10/25/2022
C5	NSPS JJJJ, MACT ZZZZ	TBD
C6 8F	NSPS JJJJ, MACT ZZZZ	TBD
9F	Compliance with visible emissions per NSR 1092/TV-P090	02/12
	Compliance with visible emissions per NSR 1092/TV-P090	08/05
10F	Compliance with visible emissions per NSR 1092/TV-P090	02/12

Requirements for Title V Program

Do not print this section unless this is a Title V application.

Who Must Use this Attachment:

- * Any major source as defined in 20.2.70 NMAC.
- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See www.env.nm.gov/air-quality/air-quality-title-v-operating-permits-guidance-page/. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

The Jal No. 3 Gas Plant is a Title V major source as defined in 20.2.70 NMAC.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

Permit No. P090R3 contains facility CAM requirements per 40 CFR 64 for Unit Nos. AGI, 8F and 9F.

19.2 - Compliance Status (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

All sources at this facility are currently operating in compliance with all applicable requirements.

19.3 - Continued Compliance (20.2.70.300.D.10.c NMAC)

Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement.

ETC will continue to comply with the applicable requirements for which the facility is in compliance at the time of submitting this application. ETS will comply with other applicable requirements in a timely manner as they come into effect during the permit term.

19.4 - Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)

You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.

ETCFS will continue to submit annual compliance certifications.

In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners).

- 1. Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozone-depleting substances?

 ✓ Yes □ No
- Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 lbs?
 ☐ Yes
 ☑ No

 (If the answer is yes, describe the type of equipment and how many units are at the facility.)
- 3. Do your facility personnel maintain, service, repair, or dispose of any motor vehicle air conditioners (MVACs) or appliances ("appliance" and "MVAC" as defined at 82. 152)? ☐ Yes ☒ No
- 4. Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through G.)

There are no operations at this facility that trigger the applicability of these requirements.

19.6 - Compliance Plan and Schedule

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.

B. Compliance plan: (20.2.70.300.D.11.B NMAC)

Form-Section 19 last revised: 8/15/2011 Section 19, Page 2 Saved Date: 3/21/2023

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC)

A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See www.env.nm.gov/air-quality/air-quality-title-v-operating-permits-guidance-page/. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

ETCFS is currently operating in compliance with all applicable requirements. Therefore, a Compliance Plan is not required.

19.7 - 112(r) Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

N/A. There are no sources at the facility subject to Section 112(r) of the Clean Air Act.

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.)

Other States: Texas, 10.1 km

Indian Tribes: None Bernalillo County: >80 km

19.9 - Responsible Official

The Responsible Official is Mr. Toby Clark, Vice President of Operations, who has designated Mr. Mike McCracken, Senior Director, Operations, as the alternate responsible official.

Form-Section 19 last revised: 8/15/2011 Section 19, Page 3 Saved Date: 3/21/2023

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is being submitted with this application.

Form-Section 21 last revised: 10/04/2016 Section 20, Page 1 Saved Date: 3/21/2023

Section 22: Certification

Company Name: <u>ETC Texas Pipeline, LTD</u>	
I,Mike McCracken, hereby certify that the inference and as accurate as possible, to the best of my knowledge and professional	
Signed this Zizday of MARCIA. 2023 upon my oath or aff	
TEXAS	
*Signature	03.21.2023 Date
Mike McCracken Printed Name	_Senior Director Operations_ Title
Scribed and sworn before me on this 218^{t} day of Mourch	
My authorization as a notary of the State of TEXOS	expires on the
10th day of NOVEMBER, 2024.	
Notary's Signature Radious	03-21-2023 Date
	OONA J. MEADOWS V Notary ID # 6555569

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.